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Abstract

A safe and convenient method for the containment of high-level and long-lived nuclear waste obtained
from the reprocessing of nuclear fuel is its inclusion in nuclear glasses, which are specifically designed
to provide the best combination of chemical and radioactive resistance, of inclusion capacity, and of
ease of industrial implementation. The SIVIT (SImulation of VITrification) project of the CEA studies
the behaviour of the glass during the vitrification process, where the glass and the waste are mixed and
brought to a high temperature and then solidified. It is desirable to control a whole set of macroscopic
properties (chemical, thermodynamic, mechanical…) in the produced material, and one of them in par-
ticular is the possible occurrence of phase separation. For example, during the vitrification of waste en-
riched in molybdenum, phase separation may occur following the nucleation and growth regime, with
the molybdenum segregating to the daughter phase. The present work, as part of the SIVIT project,
aims to model and simulate this phase separation at the scale of the interface separating the two liquid
phases of the melted glass. To this end, the modelling must satisfy a number of constraints: tracking a
fully-resolved interface; accounting for the chemical diffusion (which drives the growth dynamics) and
the flow dynamics and the effects of each on the motion of the interfaces; and the respect of the equa-
tion of state of the glass. We will first examine the case of a model ternary glass, the Na2O–SiO2–MoO3
compound. Its phase diagramwas established at the CEA of Saclay, and experimental observations with
this glass are being carried out at the CEA Marcoule. Simulations of the model must also have a high
numerical efficiency to allow for comparisons in three dimensions at a satisfying scale with the previ-
ously mentioned observations. To fulfil these requirements, we formulate a model based on the phase
field theory with a grand potential formulation coupled to the diffusion of the chemical components
and to the incompressible Navier-Stokes equations. We discretize this model with the lattice Boltzmann
method and implement it in a new high-performance simulation code, LBM_saclay, able to exploit the
multi-GPU architectures of modern supercomputers. We then demonstrate the capability of the model
to quantitatively reproduce the growth dynamics after nucleation and the influence of flow and sedi-
mentation on these dynamics. This is done with an idealized equation of state. Finally, we detail at the
end the method to couple the model to the thermodynamic data of the real nuclear glass.
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Résumé en français

Les déchets nucléaires de haute activité (HA) nécessitent une stratégie de confinement bien parti-
culière. La recherche sur ce sujet a commencée en France dans les années 1950 et a montré que le verre
est le matériau le plus approprié à confiner les déchets HA : un verre spécifiquement élaboré assure
le meilleur compromis entre capacité d’incorporation, de mise en œuvre et de résistances (chimiques,
radioactive…). Un tel verre peut alors servir lors du processus industriel de vitrification, où le verre et
les déchets sont mélangés et portés à très haute température (dans un creuset froid par exemple). Après
refroidissement, le verre solidifée piège ainsi les éléments radioactifs.

Le traitement de ces déchets fait partie intégrante du cycle du combustible nucléaire et figure parmi
les problématiques de recherche du CEA. Le project inter-centre SIVIT (SImulation de la VITrification)
du CEA, dans lequel se situe ce travail, s’intéresse en particulier au comportement du verre lors de la
vitrification. Ce procédé inclut des phénomènes physiques très variés, comme par exemple l’hydrody-
namique du verre fondu en creuset, avec le couplage magnéto-hydrodynamique lié au chauffage par
induction et les intéractions fluide-parois, ou la thermo-chimie bien particulière du verre et de ses chan-
gements de phase qui sont conséquences des larges gammes de températures qu’il traverse.

Cette thèse s’intéresse à ce second volet, et plus précisement à la cinétique de la séparation de phase
dans le verre. Notamment, dans le cas de la vitrification de déchets enrichis en molybdène, le verre
peut se séparer en deux phases selon un mécanisme de nucléation-croissance. En effet, les propriétés
chimiques particulières du molybdène fait que cet élément va se ségréger du mélange homogène initial
pour former des ”goutelettes” (phase fille) enrichies de cet élément qui sont immiscibles au mélange
initial (phase mère) qui au contraire s’appauvrit en molybdène. La distribution et la géométrie de ces
goutelettes dépendront de la thermodynamique du verre, du mélange initial, des propriétés d’interface
(la tension de surface) ou même de l’écoulement. Ainsi, même si ce phénomène physique n’est qu’une
partie de la phénomènologie complète du procédé de vitrification, le modéliser et le simuler reste un
défi.

Dans cette thèse, nous établissons un modèle physique pour la séparation de phase dans un verre
de confinement. Celui-ci répond à plusieurs contraintes nécessaires à une modélisation cohérente : le
suivi d’une interface entièrement résolue ; la prise en compte de la diffusion chimique (qui pilote la
dynamique de croissance) et de la dynamique d’écoulement et leur effets sur la cinétique de l’interface ;
et le respect du paysage thermodynamique du verre. Nous nous intéressons d’abord à un verre ternaire
modèle élaboré avec le composé Na2O–SiO2–MoO3, dont le diagramme de phase a été établi au CEA
de Saclay et dont les observations sont en cours au CEA de Marcoule. Les simulations de ce modèle
doivent aussi démontrer un haut degré de performance pour en permettre les comparaisons en 3D et à
une échelle satisfaisante avec ces observations expérimentales.

Pour répondre à toute ces contraintes, nous formulons au premier chapitre un modèle basé sur la
théorie du champ de phase et son couplage à la diffusion des composants et aux équations de Navier-
Stokes incompressibles. Dans la théorie du champ de phase, l’interface est représentée par un champ
diffusé sur une couche d’épaisseur finie et constante. En particulier, nous étendons une reformulation
en grand potentiel de la littérature au cas ternaire pour écrire un couplage cohérent avec la diffusion des
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trois oxides du verre Na2O–SiO2–MoO3 ainsi qu’à la thermodynamique du matériau. Nous montrons
aussi que le modèle admet une limite vers un modèle à interface nette avec une condition d’interface de
type Gibbs-Thomson. Cette condition spécifie que l’équilibre thermodynamique local de l’interface est
perturbé par sa vitesse et sa courbure ; ce dernier point est nécessaire à la description de la cinématique
de croissance après nucléation.

Dans le second chapitre, nous discrétisons ce modèle avec la méthode de Boltzmann sur réseau
(Lattice Boltzmann Method, LBM) et la programmons dans un nouveau code de simulation à haute per-
formance portable, LBM_saclay. La LBM est uneméthode de discrétisation relativement jeune applicable
aux équations de diffusion scalaires ou vectorielles comme celles qui composent notre modèle, et le code
LBM_saclay implémente cette discrétisation. Grâce à la librarie C++ Kokkos, le code est aussi capable
d’exploiter les architectures des supercalculateurs modernes multi-GPU (Graphical Processing Unit) aus-
si bien qu’une machine de bureau avec un unique processeurmultithread plus classique. Nous montrons
comment sont programmés les schémas LBM et nous expliquont comment sont gérés les problématiques
liées au parallélisme.

Au troisième chapitre, nous montrons la validité du modèle et de sa discrétisation bloc-par-bloc
en comparant des résultats de simulations avec des problèmes aux solutions analytiques connues. Une
simulation d’écoulement de double-Poiseuille valide d’abord la partie d’écoulement à deux fluides (équa-
tions du champ de phase couplées aux équations de Navier-Stokes). Ensuite, une simulation d’un couple
de diffusion ternaire valide lamodélisation d’unmatériau ternaire diphasique sans écoulement (équation
du champ de phase couplées à la diffusion chimique) et confirme aussi la reproduction d’une condition
d’interface de type Gibbs-Thomson. Ces préparatifs fait, nous témoignons ensuite de notre capacité à
simuler la croissance après nucléation à une large échelle (2000 goutelettes en 3D). Des mesures en
temps du nombre et du rayon des goutelettes montrent que le régime de croissance simulé est en accord
avec la théorie du mûrissement d’Ostwald. Nous exposons aussi comment l’écoulement, à travers la
flottabilité, peut influer sur ce régime. Tout ceci est fait avec une thermodynamique idéalisée ; à la fin
du chapitre, nous détaillons la stratégie de couplage du modèle avec les données thermodynamique du
verre Na2O–SiO2–MoO3.

Une conclusion générale termine le manuscript. Elle synthétise le travail réalisé et les résultats ob-
tenus et énumère les extensions possibles du travail, que ce soit sur ces apects théorique (modélisation)
que numériques (efficacité de la discrétisation) pour rafinner au mieux la description d’un vrai verre de
confinement.
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Introduction

Nuclear power plants produce energy by sustaining nuclear fission using a fissile fuel. The spent fuel
is then reprocessed to extract on one hand the unused fissile elements, so that the spent fuel may be
recycled; and on the other hand the unusable fission by-products. These unusable products, the nuclear
waste, are generally radioactive and cover a wide range of radioactivity level and lifetimes. The French
nuclear industry classifies the waste according to those two properties and establishes different treat-
ments and containment strategies for each class. One of them is the category of high level waste (déchets
HA, de haute activité) which are accountable for about 95% of the total radioactivity of all waste in the
country despite representing less than 1% of its volume [1]. The elements found in this waste include
some with half-times around 30 years and activities in the terabecquerels per gram (1012 nuclear decays
per second per gram) and all the different elements react together to form a complex chemical solution
with as many as 40 different chemical species.

Because of their non-negligible lifetimes, their high radioactivity (with the accompanying heat gen-
eration), but also their significant chemical activity, high level waste requires very elaborate contain-
ment procedures. Research on its containment started in France in the 1950s and it soon showed that
glass would be the most appropriate material to isolate the waste as it can achieve the best combination
of thermal, chemical and radioactive impermeability [6]. Glasses specifically elaborated for this purpose
are called nuclear glasses, and the process of containing nuclear waste in nuclear glasses is known as
vitrification. Vitrification is conducted by mixing the calcined fission waste and the melted glass in a
furnace. The recent technology used for this process is the cold crucible induction melter: it uses mag-
netic induction to heat up the furnace in its centre (to as high as 1300 °C) while a protective solid layer
forms on its walls.

The nuclear waste, being an integral part of the nuclear fuel cycle, is a research interest of the CEA.
Research on the vitrification process is primarily conducted at the CEAMarcoule, in the south of France.
One aspect of this research is to find the best glass chemical compound for specific profiles of waste and
furnace technology, and one particular case study is the handling of legacy waste rich in molybdenum.
This element is troublesome not necessarily for its radioactivity, but because of its corrosive action
against the glass and its very low solubility inside the glass [4, 6]. In a model molybdenum-enriched
glass, the Na2O–SiO2–MoO3 compound, one can observe the typical behaviour due to the low solubility:
themolybdenumoxideMoO3 segregates from the initially homogeneousmelted glass to form a daughter
phase enriched in molybdenum. This behaviour can be explained purely by the thermodynamics of the
compound as it explores its phase diagram during heating, and at the adequate temperature and initial
composition inventory, this new phase can be liquid and looks similar to the observations presented
in fig. 1 (right): an ensemble of droplets carried by the mother phase in the background. This new
phase appears following the mechanism of nucleation and growth, a slow and local phase separation
mechanism; as opposed to the spinodal decomposition, a rapid phase separation mechanism.

The cross-department project SIVIT (SImulation of VITrification) of CEA, with support from its
industrial partners EDF and Orano, aims at the simulation of the complete vitrification process as done
in a cold crucible. This process has a great variety in its involved physics: the magnetohydrodynamics
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Droplets
50% Na2O–SiO2

50% MoO3

Background
98% Na2O–SiO2

2% MoO3

Figure 1: Experimental observations of liquid-liquid phase separation in a nuclear glass compound. The
Na2O–SiO2–MoO3 compound separates in a similar fashion, with droplets of daughter phase separating
from the mother glass matrix phase. An interface cleanly separates both phases.

of the induction heating; the purely mechanical part of the hydrodynamics, with the waste injection,
the mixing with the glass frit, the stirring of both and the wall interactions; the reactive chemistry of
all materials involved; the complex thermodynamics and the ensuing phenomena, such as the phase
separation mentioned before; and of course, the interactions between all these phenomenologies. The
present work takes place within the SIVIT project to model and simulate a restricted but precise scope
of the bulk vitrification physics. Namely, we are interested in modelling the kinetics of the liquid-liquid
interface of a nuclear glass as its phases separate. We will account for the influence of the fluid flow,
of the diffusion of the glass’ chemical components and of the thermodynamics of the glass on these
kinetics.

The modelling of this phase separation process implies the construction of a coupled mathematical
model for a fully resolved interface tracked in time, for a two-phase flow, and for the chemical diffu-
sion. Two additional constraints are added: this model must have a strong thermodynamic consistency
to respect the thermodynamics of the glass, and simulations of the model must have a high numerical
efficiency to allow for comparisons in three dimensions at a satisfying scale with experimental observa-
tions. The ternary Na2O–SiO2–MoO3 compound will serve as a test case as relevant experimental data
is either already available or is being collected. The physicochemistry department of the CEA of Saclay
established the temperature- and composition-dependent phase diagram of this glass (see fig. 2) while
experimental observations of the Na2O–SiO2–MoO3 phase separation in a furnace are ongoing at the
CEA Marcoule.

To fulfil above-mentioned requirements, we formulate a mathematical model of coupled PDEs (par-
tial differential equations) based on the phase field theory with a grand potential reformulation. The
phase field formalism starts from a thermodynamic description of a two-phase material and produces
a time-evolution PDE to track a fully resolved interface. This interface is represented as a smoothened
step function over a fixed width for an indicator field (the eponymous phase field) with its bounds rep-
resenting each bulk phase: this makes the phase field a diffuse interface approach to the two-phase
problem, in contrast to sharp-interface approaches. The origin of the method exposes a clear and con-
sistent way to be faithful to the thermodynamics of the material studied, including here the detail of
the local diffusion of the three oxides through the interface and in the bulk phases. Since the numer-
ical space discretization is limited by the thickness of the interface, values much larger than the real
physical width (typically in the 10−10 meter range) must be used to obtain efficient simulations. The
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typical exp. composition

Figure 2: Phase diagram of the Na2O–SiO2–MoO3 glass established by the physicochemistry department
of the CEA of Saclay [2]. The point of experimental interested is shown with a black dot, at about a
80%/20% mix of SiO2 and Na2O and less than 10% of MoO3. The composition of the individual liquid
phases is read on the extremeties of the green tieline on which that point sits: a daughter phase enriched
at about 50% in MoO3 and a mother phase with a composition close to the initial mix. This diagram is
drawn in the Gibbs triangle with the three component being the oxides Na2O, SiO2 and MoO3. In the
following sections of this manuscript, the three component will be noted 𝐴, 𝐵 and 𝐶 instead.

effects of this upscaling can be quantified through the reconstruction of a Gibbs-Thomson interface
condition, which also helps to bridge the diffuse- and sharp-interface views. The implicit representation
of the interface and the controllable finite width make the phase field formalism a good candidate for
a numerically efficient two-phase model. Lastly, it is easy to couple a phase field model to the incom-
pressible Navier-Stokes equations to create a two-phase three-component flowmodel. These details and
the derivation of the complete PDE model will be presented in chapter 1. We will explain some part of
the derivation relatively quickly as they were already presented in our previously published work: the
Navier-Stokes coupling introduced in ref. [5] and the mixed formulation grand potential method used
in ref. [3] in the binary case.

Because the phase fieldmodel needs only a scalar field and the resolution of an additional PDE, it does
not constrain our choice of numerical discretization. We thus chose the lattice Boltzmannmethod (LBM)
as our discretization method. The LBM solves partial differential equations in by acting on distribution
functions as the solutions of a Boltzmann equation discretized in space and velocities. Akin to the
kinetic theory of gases, the macroscopic PDE and its variables are recovered as the moments of this
discrete Boltzmann equation and the distribution functions: a discrete equivalent of the Chapman-
Enskog expansion. The LBM was first established as an efficient explicit scheme for the Navier-Stokes
equation but it in fact applicable to most scalar or vector PDEs with diffusive terms, like the one for
the phase field and the composition. The other motivating factor is the adequacy of the LBM to high
performance computations (HPC) and more precisely to modern HPC clusters powered by graphical
processing units (GPUs, as opposed to the usual central processing units, CPUs). To exploit this, we
have continued the development of LBM_saclay, a high performance simulation code based on LBM
schemes. The code relies on the Kokkos C++ library to run its calculations on a multithreaded CPU or
a (by design) highly-parallel GPU. The MPI standard is also used to distribute the simulations on multi-
CPU or multi-GPU computing nodes as found on HPC clusters. In chapter 2, we will introduce the
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lattice Boltzmann method, discretize the model derived in the first chapter, and present the LBM_saclay
code and how it achieves its high parallel performance.

Once the model, its discretization and implementation are detailed, we will show in chapter 3 sim-
ulations of the two-phase three-component model ran with LBM_saclay. We start with intermediate
validations. These are done by simulating subsets of the complete model and numerically solving a few
classical two-phase flows and two-phase diffusion problems, comparing the results against the known
analytical solutions. Then, we simulate the growth kinetics of a population of droplets after nucleation,
first without flow and then with a 3D buoyancy-driven flow. We will compare the time evolution of
the droplets’ mean radius to the power-law in time expected from the Ostwald ripening theory, with
an exponent dependent on the property of the flow. These kinematics depend on the Gibbs-Thomson
condition, which we will have proven to be indeed reconstructed both theoretically and numerically
by the model. The phase field method is particularly adapted to this test case, as it can handle the
disappearance and merging of interfaces with no further complications; however the initial condition
requires a bit of care with an Allen-Cahn model, as will be detailled. The droplet growth simulations
will be a first proof of the applicability of the complete model to describe the growth observed in the
Na2O–SiO2–MoO3 glass. Experimental observations could not yet be made; we have instead focused
our efforts on the quantification of the buoyancy effects on the ripening kinematics and on attempts to
insert the real thermodynamic data of the glass compound (ie. the phase diagram of figure 2) into our
modelling.

A general conclusion will end this manuscript. It will synthesize the work done and the results
obtained and enumerate the possible extensions of the model and the description of the real nuclear
glass on multiple aspects: the theoretical phase field; its discretization and the numerical efficiency of its
implementation; and the parametrization of the thermodynamic, chemical, and mechanical properties
of the Na2O–SiO2–MoO3 glass.
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Chapter 1

Phase field theory

The phase field method is the theoretical framework used for the modelling throughout this thesis work.
It is a description of a two-phase material in a continuum framework, where a scalar field 𝜑(𝑡, 𝐱), is
used to describe the geometrical distribution of the phases as well as the interface between them. This
modelling can be traced back to van der Waals [26, translation of van der Waals’ original 1893 paper]
in the context of liquid-gas interfaces. Van der Waals proposed that the fluid density 𝜌 should vary
continuously between the two phases across a diffuse interface and modelled the capillar energy with
an integral over 𝜌 and its gradient. The same formalism was reintroduced by Cahn and Hilliard [9]
taking the example of a two-phase solution with the composition as a continuous order parameter. The
Cahn-Hilliard equation, one class of phase field models, is named after them. Another class of models,
where the order parameter is not conserved is based on the Allen-Cahn equation [1].

The phase field theory has a strong thermodynamic consistency. To understand this, we will first
introduce the thermodynamic modelling of phase separation in sec. 1.1. Next, sec. 1.2 will present the
phase field models themselves and their derivation based on the free energy of the system. We will
present both the Cahn-Hilliard and Allen-Cahn equations, and explain why we prefer the latter. We
will also present how the Allen-Cahn equation can be coupled to the incompressible Navier-Stokes
equations or to the Onsager diffusion equation after a grand potential reformulation. With all the nec-
essary ingredients introduced, we will finally detail in 1.3 the two-phase ternary fluid model used in our
work.

1.1 Thermodynamics of phase separation
This section introduces the basic thermodynamic description of phase separation. It will introduce
the background for the modelling made by the phase field theory, but it is not strictly necessary to
understand its mathematical formulation. For a more detailed lecture, one can refer to ref. [8].

1.1.1 Equilibrium thermodynamics
Take the example of a binary system with two components 𝐴 and 𝐵 and under the temperature 𝑇 .
This system may present itself as a homogeneous mixture of the two components (eg. a solvent 𝐴 in
a solute 𝐵). It may alternatively separate into two stable phases, one enriched in 𝐴 and another in 𝐵
(eg. air bubbles in water or oil in water). The phase separation can occur in two regimes a local and
stochastic nucleation, or a global and spontaneous spinodal decomposition. The thermodynamics of the
system describes this situation through the change of a thermodynamic potential with respect to global
parameters of the system.

10
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In our example, we describe the system by tracking the change of a free energy 𝐹(𝑁𝐴, 𝑁𝐵, 𝑇 ),
function1 of the numbers of particles of 𝐴, of 𝐵 and of the temperature 𝑇 . Under the additional con-
straint that the total count of particles is constant, 𝑁𝐴 and 𝑁𝐵 can be reduced to a single variable of
composition (here, of A),

𝑐 = 𝑁𝐴

𝑁𝐴 + 𝑁𝐵 . (1.1.1)

The nature of the system’s equilibrium depends on the minima of 𝐹(𝑐, 𝑇 ). When 𝐹 exhibits a single
minimum, the system allows only a single-phase equilibrium. The system can also allow the coexistence
of multiple phases when 𝐹 has multiple local minima. This situation is modelled with a double-well
structure shown in figure 1.1. It can be used to map each couple (𝑐, 𝑇 ) to either a single- or two-phase
equilibrium as represented by the phase diagram in the same figure.
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Figure 1.1: (left) Idealised double well structure of a binary system’s free energy at different tempera-
tures. The height of the energy barrier between the two wells is assumed to decrease with the tempera-
ture. At 𝑇low and 𝑇middle the system has a two-phase equilibrium. At 𝑇high, the barrier vanished and the
system now has a single-phase equilibrium. (right) The 𝑐–𝑇 phase diagram produced by the previous
free energy. The abscissas of the minima of 𝐹 at each temperature draw the outer coexistence curve and
the abscissas of its inflection points draw the inner spinodal curve. Inside the curve, the system sepa-
rates into two stable phases of compositions given by the two minima of 𝐹 . They can also be read at the
ends of the dashed tie-lines on the phase diagram, and the fraction of each phase is given by the relative
distance on the tie-line (the lever rule). These tie lines stem from the common tangent construction,
detailed in the later paragraphs. Between the coexistence and spinodal curves, the energy barrier may
be crossed locally due to the statistical thermal fluctuations or the presence of surfaces and impurities,
in which case the system slowly and locally separates (nucleation and growth regime). In the spinodal
region, it is energitically favorable for the system to separate globally and spontaneously (spinodal de-
composition regime). Outside of the coexistence curve, the system is in a single phase equilibrium.

The free energy is an extensive quantity and the contribution of each phase is thus weighted by their
volume fraction. Wewill denote the phase fraction of one phase as 𝑠; the second phase has fraction 1−𝑠.
Given a global composition 𝑐 for the system, a two-phase equilibrium is the solution of the minimization
under constraint of the total free energy

(1 − 𝑠)𝐹0(𝑐0) + 𝑠𝐹1(𝑐1)
with 𝑐0, 𝑐1 satisfying 𝑐 = (1 − 𝑠)𝑐0 + 𝑠𝑐1, (1.1.2)

1The free energy is also function of the volume 𝑉 occupied by the system, but we will always assume it to be constant.
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𝜇(𝑐0 − 𝑐1)

𝑐0𝑐1

𝐹1(𝐶)
𝐹0(𝐶)

𝐹(
𝑐)

𝑐

Figure 1.2: Common tangent construction for a binary system with two phases. The phases coexist at
equilibrium if their individual equilibrium compositions (𝑐0 and 𝑐1) and free energy contribution (𝑓0(𝑐0)
and 𝑓1(𝑐1)) are such that the free energies at these abscissas share a common tangent, shown here in
green. The slope of this comment tangent is the quantity 𝜇, later defined as the chemical potential. Any
point on that line is a two-phase equilibrium and corresponding phase fraction is read by the distance
along that line (the “lever rule”). Note that the coexisting compositionsmay be close to, but are generally
distinct from the abscissas of the individual minima of the two free energies.

with the subscript 0 identifying the phase at 𝑠 = 0, and subscript 1 the one at 𝑠 = 1. The phase free
energies 𝐹0 and 𝐹1 may for example correspond to a split of the double-well structure (figure 1.1 at
𝑇low) in two parts with their own minimum. The solution can be found by introducing the Lagrange
multiplier 𝜇 and finding the unconstrained minimum of the quantity

(1 − 𝑠)𝐹0(𝑐0) + 𝑠𝐹1(𝑐1) − 𝜇((1 − 𝑠)𝑐0 + 𝑠𝑐1 − 𝑐) (1.1.3)

with respect to 𝑠, 𝑐0 and 𝑐1. Doing so yields the following conditions for equilibrium:

𝜕𝐹0
𝜕𝑐0

= 𝜕𝐹1
𝜕𝑐1

= 𝜇,

𝐹0(𝑐0) − 𝐹1(𝑐1) = 𝜇(𝑐0 − 𝑐1),
(1.1.4)

Solving the chemical equilibrium means finding the two coexisting phase compositions 𝑐0 and 𝑐1 satis-
fying the two equations. The phase fraction is subsequently given by the lever rule

𝑠 = 𝑐0 − 𝑐
𝑐0 − 𝑐1

. (1.1.5)

This definition of the chemical equilibrium in terms of 𝐹 can be represented graphically by the common
tangent construction, shown in fig. 1.2. The next subsection discusses the physical meaning of the slope
𝜇.

1.1.2 Chemical potential and grand potential
TheLagrangemultiplier𝜇 introduced earlier is the chemical potential. We define it here as the derivative
of the system free energy with respect to its composition,

𝜇 = 𝜕𝐹/𝜕𝑐, (1.1.6)

and is thus a measure of the energy cost of a change of composition of the system.
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We must keep in mind that the real thermodynamic definition of the chemical potential is as the
variation of 𝐹 in terms of each species’ particle count and not the composition: there is strictly speaking
one chemical potential for each species, 𝐴 and 𝐵. However, just as we can ignore one composition
variable by assuming a constant total count 𝑁 of all particles, we can also ignore one chemical potential
variable. In that case, one can verify that 𝜇 as 𝜕𝐹/𝜕𝑐 corresponds to the true thermodynamic chemical
potential of species 𝐴 (𝜕𝐹/𝜕𝑁𝐴) relative to the chemical potential of 𝐵 (𝜕𝐹/𝜕𝑁𝐵), up to a factor 𝑁 .

This change of convention only serves tomake calculations simpler and does not change the physical
interpretation of the chemical potential. Indeed, by considering the two phases as two subsystems, the
system’s equilibrium naturally implies equality of their chemical potential as eq. (1.1.4) dictates: the
phases coexist at equilibrium if the chemical exchanges between them cost as much energy for one
phase as the other gains. The chemical potential as defined here is an intensive property conjugate to 𝑐,
in analogy of the temperature being the intensive conjugate of the extensive internal energy (or of the
extensive entropy).

Because 𝜇 and 𝑐 are conjugate, we are free to describe our thermodynamic system in terms of one
or the other (but not both). We do so by applying a Legendre transform on 𝐹 to obtain a new thermo-
dynamic potential:

Ω(𝜇) = 𝐹(𝑐(𝜇)) − 𝜇𝑐(𝜇) (1.1.7)
the grand potential. Note that this transformation is properly defined only if 𝑐 can be expressed as a
function of 𝜇, which in turn implies that 𝜇 is a strictly monotonous function of 𝑐. This condition is
broken if the free energy has concave parts, in which 𝜕𝜇/𝜕𝑐 becomes negative. The inverse transform
is also defined, giving

𝐹(𝑐) = Ω(𝜇(𝑐)) + 𝑐𝜇(𝑐). (1.1.8)
Accordingly, the conjugate variables become defined by

𝜇 = 𝜕𝐹
𝜕𝑐 , 𝑐 = −𝜕Ω

𝜕𝜇 . (1.1.9)

in the free energy and the grand potential formulation, respectively.
We can apply the Legendre transform on the definition of the chemical equilibrium, eqs. (1.1.4).

Again, we split the global grand potential Ω into two parts for each phase and consider the phase-
specific chemical potentials 𝜇0 and 𝜇1. The calculation simply yields

𝜇0 = 𝜇1(= 𝜇)
Ω0(𝜇) = Ω1(𝜇) (1.1.10)

This time, the unique value 𝜇 for the chemical potential does not come from a constrained minimization
but directly from the required equality of the phase specific chemical potential. The global composition
inventory is implicitly constant given the extensity of the grand potential and eq. (1.1.9).

It appears that the grand potential may be a more convenient representation of the chemical equi-
librium of two thermodynamic sub-systems exchanging components (see e.g. [27] for a practical ap-
plication). However, it would not be adequate to describe the chemical equilibrium of a closed global
system2 before its two phases completely separates: the spinodal decomposition regime corresponds to
the composition range for which the free energy is concave in 𝑐 (between its inflexion points), and as
we have said the grand potential can not be defined over composition domains including such points.

We have defined the thermodynamic equilibrium of a binary chemical system in a global view. It
will serve as a support to derive the local behaviour of the components inside the system, as described
in the next subsection.

2An open system connected to a source of chemical components with fixed chemical potential would still be adequately
described by the grand potential. This is in analogy of the free energy being an adequate description of the thermal equilibrium
of an open system in contact with a thermostat at fixed temperature
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1.1.3 Kinetics: Onsager and Fick diffusion
The kinetics of chemical components obeys a fundamental principle of linear irreversible thermody-
namic process known as the Onsager variational principle. It establishes that the flux describing the
local time-evolution of a conserved, extensive thermodynamic variable is proportional to the gradient
of the conjugate intensive variable (see for instance ref. [24]). This is consistent with the global view of
equilibrium thermodynamics: a system will exchange internal energy with a thermostat according to
their difference in temperature, or will exchange particles (𝑐) with a source according to their difference
in chemical potential (𝜇). We thus have the flux

𝐣 = −𝑀∇𝜇 (1.1.11)

going from regions of high chemical potential to regions of low potential. The coefficient 𝑀 is called the
mobility coefficient and is by necessity always positive. The now time-dependent and space-dependent
composition 𝑐(𝑡, 𝐱) will follow the Onsager diffusion PDE

𝜕𝑡𝑐 = −∇ · 𝐣 = ∇ · 𝑀∇𝜇. (1.1.12)

The equation above is by definition a conservation equation which will conserve the global composition
(the integral of 𝑐 of the volume of the system).

The Fick diffusion equation
𝜕𝑡𝑐 = 𝐷∇2𝑐 (1.1.13)

is another kinetic description commonly seen. Historically, the Fick kinetics were introduced before
Onsager’s and the former does not have the fundamental thermodynamic basis the latter has. Phe-
nomenologically however, the Fick diffusion describes the movement of components from points of
high composition to regions of lower composition which is the typical behaviour observed for the ki-
netics of a dilute binary solution. In fact, the Fick equation can be found to be an approximation of
the Onsager equation in this context. To see this, rewrite ∇𝜇 as (𝜕2𝐹/𝜕𝑐2)∇𝑐 to reveal the relation
between the mobility and diffusivity coefficient

𝐷 = 𝜕2𝐹
𝜕𝑐2 𝑀. (1.1.14)

For small variations of 𝑐 around a reference concentration, 𝐹(𝑐) can be expanded as a second-order
polynomial in 𝑐. In this case, 𝐷 and 𝑀 can both be taken as constants and the Fick equation becomes
a good approximation.

We shall reiterate remarks made in Cahn’s 1968 lecture notes [8] on the dynamics of phase sepa-
ration dynamics. The Fick diffusion equation can explain the kinetics of the system when it tends to a
homogeneous mixture. However, during phase separation the components conglomerate into regions
of high concentration, which would imply an “uphill” diffusion with a negative diffusion coefficient 𝐷.
Mathematically, the diffusion equation with 𝐷 < 0 is ill-posed [16]. Thus, to describe phase separation,
one must either regularize the Fick diffusion equation in some way or another, or rely on the Onsager
description. In this second case, remark that the spinodal regime with a concave 𝐹 free energy and the
always positive mobility 𝑀 indeed imply a negative diffusion coefficient, following eq. (1.1.14).

1.1.4 Surface tension
The modelling made throughout this section only took in account the energy contribution of volume
elements of the system. This description is in fact incomplete, because there is also an energy cost
associatedwithmaintaining an interface. It costs an energy 𝜎𝑆 to for the system tomaintain an interface
of surface 𝑆. The surface tension 𝜎 is the energy cost of an interface per unit of surface. Intuitively, this
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Figure 1.3: Illutration of the origin of the surface tension acting on the interface between two phases.
The particles in the bulk of the phase on the left are surrounded by similar particles in all directions.
They interact the same way, resulting in zero net force. In the interface region, the neighborhood of the
particle also include particles from the other phase, with which they interact differently. This results in
a net force pulling the interface particle inwards. At the global system’s equilibrium, this surface force
is balanced by the outward pressure produced by the bulk interactions.

energy cost can be thought to be due to the inhomogeneities of the interactions between the particles
of the system at its interface, see fig. 1.3.

To model this energy cost, the interface can be described as the local variations of a scalar field. This
field shall take constant and homogeneous values in the bulk of each phase, and go smoothly from one
to another at the interfaces. Historically, in the context of liquid-gas systems, van derWaals [26] was the
first to introduce this formulation in terms of the mass density, in 1893. He described the free energy 𝐹
of the system as an integral over the volume 𝑉 of the system and dependent on the local variation of the
density 𝜌, which is supposed to be homogeneous in the bulk of each phase and varies continuously from
one to another bulk values in interface region. After some calculations under assumptions of symmetries
and boundary conditions, the free energy integral is left with a local and a first order non-local term, as

𝐹[𝜌] = ∫
𝑉

(𝑓(𝜌) + 1
2𝜁|∇𝜌|2)𝑑𝑉 . (1.1.15)

The local contribution 𝑓(𝜌) to the free energy density shall be identified as the double-well function
seen earlier. The constant weight 𝜁 of the nonlocal contribution (proportional to the squared norm of
the density gradient) is supposed to be constant. This non-local term represents the contribution of
the density inhomogeneities to the surface tension, fitting the illustration of the surface tension given
previously. The integral above will be found to be the basis of the phase field modelling.

The reader may recognize eq. (1.1.15) as a Ginzburg-Landau functional [21]. The density 𝜌 might
then be linked to the order parameter of the liquid-gas phase transition. Order paramaters are a concept
introduced by Landau’s general theory of phase transition. It will not be necessary to detail this theory
too much; here we may just present order parameters as physical quantities of the system that tells us
in which phase it is. For a liquid-gas system, it is the density difference of the two phases Δ𝜌: it is non-
zero (“ordered”) when the phases are separated or zero (“disordered”) beyond the critical point, where
the liquid and gas become undistinguishable and the system is homogeneous. An order parameter is
always linearly driven by an external field (here, the pressure) according to a susceptibility coefficient
(the compressibility) and is always related to a conserved quantity of the system (the mass).
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1.2 Phase field models
In this section, we will formulate the basics of the phase field theory, starting with the free energy
functional and the derivation of the Cahn-Hilliard and Allen-Cahn equations. After presenting the
advantages of the Allen-Cahn model, we present its coupling to the chemical diffusion kinetics and to
the flow dynamics.

1.2.1 Minimization of an energy functional
As mentioned in the thermodynamics introduction, the phase field modelling is based on a Ginzburg-
Landau functional describing the free energy of a heterogeneous system with respect to a scalar field
𝜑(𝐱). The field takes a different homogeneous and constant value in each phase, and smoothly changes
from one value to the other at the interfaces. The functional is

𝐹[𝜑] = ∫
𝑉

(𝐻𝑓dw(𝜑) + 𝜁
2 |∇𝜑|2𝑑𝑉 ). (1.2.1)

We shall take the convention that𝜑 = 0 identifies one phase and𝜑 = 1 the other one. In accordance, we
will call these phases “phase 0” and “phase 1” and identify values proper to each phase with a subscript
0 or 1. The first term in the integral is a dimensionless form of the double well energy, as the polynomial

𝑓dw(𝜑) = 8𝜑2(1 − 𝜑)2 (1.2.2)

weighted by the bulk energy coefficient 𝐻 (of dimension [𝐸] · 𝐿−3), proportional to the height of the
double-well. As was established in section 1.1, the double well is a recurring structure in the modelling
of phase separation. It favours regions of bulk phases with its minima at 𝜑 = 0 and 𝜑 = 1 (see figure
1.4). Intermediated values are penalized: the favoured interface profile is a sharp step function from 0
to 1 (a sharp interface).

The second term is the gradient energy which on the contrary penalizes sharp variations of 𝜑. The
coefficient 𝜁 (relative to 𝐻) controls the weight of the gradient energy against the local double well
energy and the minimizing profile of 𝐹 will be a balance between both.
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Figure 1.4: Double well function 𝐻𝑓dw(𝜑) = 8𝐻𝜑2(1 − 𝜑)2 with its minima at 𝜑 = 0 and 𝜑 = 1. The
coefficient 𝐻 controls the height of the energy barrier between the two minima.

This equilibrium profile can be derived analytically in the case of a planar interface. Taking it per-
pendicular to the 𝑥-axis, the Euler-Lagrange equation is

𝛿𝐹
𝛿𝜑 =

𝜕(𝐻𝑓dw(𝜑) + 𝜁
2(𝑑𝜑

𝑑𝑥 )
2
)

𝜕𝜑 − 𝑑
𝑑𝑥

𝜕(𝐻𝑓dw(𝜑) + 𝜁
2(𝑑𝜑

𝑑𝑥 )
2
)

𝜕(𝑑𝜑/𝑑𝑥) = 0, (1.2.3)
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giving the ordinary differential equation

𝐻𝑓 ′
dw(𝜑) − 𝜁 𝑑2𝜑

𝑑𝑥2 = 0. (1.2.4)

Its solution is the hyperbolic tangent profile (illustrated in figure 1.5)

𝜑eq(𝑥) = 1
2(1 + tanh(2𝑥

𝑊 )) (1.2.5)

where we define the interface width 𝑊 as

𝑊 = √𝜁/𝐻. (1.2.6)
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Figure 1.5: Equilibrium profile 𝜑eq of a plane interface along the 𝑥 axis. The range [−𝑊, 𝑊] accounts
for about 98% of the transition between the bulk values.

Knowing this, one can derive the characteristic energy cost per surface of maintaining an interface,
ie. the surface tension. This is done by inserting 𝜑eq into 𝐹[𝜑],

𝑆𝜎eq = 𝐹[𝜑eq] = 𝑆 ∫
𝑥

16𝐻𝜑eq2(1 − 𝜑eq)2𝑑𝑥. (1.2.7)

with 𝑆 the surface of the plane interface. Using the change of variable derived from the relation
𝑑𝜑eq/𝑑𝑥 = 4𝜑eq(1 − 𝜑eq)/𝑊 , this becomes

𝜎eq = 2
3𝐻𝑊 = 2

3√𝐻𝜁. (1.2.8)

The first equality lets us interpret 𝐻 as the characteristic volumic energy density within the diffuse
interface.

1.2.2 Time evolution: Cahn-Hilliard and Allen-Cahn equations
Cahn-Hilliard equation

Once 𝐹[𝜑] and its equilibrium are established, one can derive a PDE for the motion of the interface by
asking that the time evolution of the field 𝜑 decreases 𝐹 . One way to do so is through the diffusion flux
𝒋 = −(𝑀𝜑/𝐻)∇(𝛿𝐹/𝛿𝜑), ie.

𝜕𝑡𝜑 = −∇ · 𝒋𝜑 = 𝑀𝜑∇2(𝑓 ′
dw(𝜑) − 𝑊 2∇2𝜑) (1.2.9)
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(in the remainder of the text, we will denote with a prime the derivative with respect to 𝜑, and only
those). This PDE is conservative as it derives from the divergence of a flux and one can verify that the
hyperbolic tangent, eq. (1.2.5) is an equilibrium solution. For a multicomponent system, the phase field
𝜑(𝑡, 𝐱) is identified to the composition field 𝑐(𝑡, 𝐱), giving the canonical Cahn-Hilliard equation [9].
The quantity 𝑀𝜑 is called the mobility. In the Cahn-Hilliard equation, it coincides with the chemical
mobility of the diffused species, up to a constant energy factor3.

This time evolution PDE may be recognized as a particular example of a Ginzburg-Landau model
(namely “model B” in Hohenberg and Halperin’s classification [14, 12]) but Cahn and Hilliard were the
first to exploit these models in the context of material sciences, hence the name of the PDE. Indeed,
there is a complete analogy with the free energy integral (1.2.1) with 𝜑(𝐱) = 𝑐(𝐱) and van der Waals’
formalism, eq. (1.1.15). The composition field 𝑐(𝑡, 𝐱) is related to the order parameterΔ𝑐 of the chemical
phase transition (see fig. 1.1 with the critical point at 𝑇high), conserves the global composition of the
system (the volume integral of 𝑐(𝐱)), and responds linearly to a change of the chemical potential. Note
that in the Cahn Hilliard formalism, the chemical potential is the field

𝛿𝐹
𝛿𝜑 = 𝐻(𝑓 ′

dw(𝜑) − 𝑊 2∇2𝜑) (1.2.10)

up to an elementary volume constant factor. The first term is the contribution owing to the equilibrium
thermodynamics, in analogy of eq. (1.1.6). The second generalizes the chemical potential to account
for the inhomogeneities of composition. Knowing this, it is possible to interpret the Cahn-Hilliard
equation either as the Onsager diffusion equation with a generalized and non-local chemical potential,
or as a Fick diffusion equation regularised with a source term and an increase in the order of the space
derivative. We can remark now that high order space derivative (the bi-laplacian ∇2∇2𝜑) will constrain
the efficiency of numerical resolution scheme based on a stencil space discretization.

By taking the convention 𝜑 = 𝑐 ∈ [0, 1] with the current shape of the double well function, we
have implicitly limited our description to the case of pure alloys, where each phase is only composed of
one or the other species. Taking intermediary values for 𝑐 in the bulk of each phase requires a scaling
of 𝑓dw, which in turns changes the numerical constants in the definition of the interface width or the
surface tension. In practice, this scaling can be absorbed into a change of variable of 𝑐. However, this
is a sign of an important property of the Cahn-Hilliard equation: the bulk and interface properties are
regulated by the same double-well function. Accordingly, the bulk and interface kinetics are regulated
by the same partial differential equation and it is impossible to adjust one aspect without changing the
other. This is particularly unwieldy in the case of 𝑊 as it will already be constrained by the numerical
resolution during simulations.

Handling this coupling is particularly complicated in some cases, typically when introducing asym-
metries in the phase properties or with more than two chemical species; see ref. [25] for an example.
For this reason and the numerical considerations above, we will prefer using an alternate equation as
detailed in the next subsection.

Allen-Cahn equation

Another choice is to propose a linear decrease of 𝐹 , as

𝜕𝑡𝜑 = −𝑀𝜑
𝜁

𝛿𝐹
𝛿𝜑 = 𝑀𝜑∇2𝜑 − 𝑀𝜑

𝑊 2 𝑓 ′
dw(𝜑). (1.2.11)

3Calling 𝑀𝜑 a mobility is thus arguably a misuse of the term, but it is a common nomenclature in the phase-field literature
where the energy dimension is stripped from the final equations. A mobility is by definition the coefficient linearly relating a
force to the velocity it induces, making its dimensions [𝐸] · 𝐿2 · 𝑇 −1, the rate of diffusion of an energy. It would correspond to
𝑀𝜑/𝐻 times an elementary volume.
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This is the Allen-Cahn equation [1]. It is a diffusion equation with a non-linear source term and is not
conservative. The phase field 𝜑 is then not identifiable as the composition and cannot be related to a
physical order parameter of the system. Accordingly, the Allen-Cahn equation is can not be assimilated
to a generalized chemical diffusion PDE and the coefficient 𝑀𝜑, hereafter precized as the mobility of
the phase field, only quantifies the relaxation rate of the diffuse interface to its equilibrium profile 𝜑eq.

However, as exposed in previous discussion on the Cahn-Hilliard equation, this restricted descrip-
tion is convenient. The Allen-Cahn equation is only concerned with the properties and motion of the
interface. The bulk phase properties and the kinetics of components or the diffusion of any other ther-
modynamic quantity can be reintroduced and tuned separately through another PDE. We will detail in
sec. 1.2.4 how this is done: the chemical diffusion will influence the interface motion in a much less
coupled but still thermodynamically consistent manner.

The phase field literature developed a framework to study the asymptotic behaviour of the Allen-
Cahn equation at very thin interface widths. It will be useful later to define a boundary condition for
the coupled model at the (asymptotically sharp) interface between the phases of the chemical system;
for now, we can present a first-order asymptotic result on the Allen-Cahn equation itself. One can show
that the first-order analysis is equivalent to finding an equilibrium solution for 𝜑 describing a spherical
interface moving at a constant normal velocity. Namely,

𝜑(𝑡, 𝑟) = 𝜑eq(𝑟 − 𝑅(𝑡)) (1.2.12)

with 𝑅(𝑡) = 𝑉 𝑡 the radius of the circular domain and 𝑉 its normal expansion velocity. In this case,
𝜕𝑡𝜑 = 𝑉 𝜕𝑟𝜑 and ∇2𝜑 = (2/𝑟)𝜕𝑟𝜑 + 𝜕𝑟𝑟𝜑. The Allen-Cahn equation (1.2.11) then becomes

𝑉 (𝜕𝑟𝜑) = 𝑀𝜑
2
𝑟 (𝜕𝑟𝜑) (1.2.13)

near the interface (𝑟 = 𝑅), the profile 𝜑(𝑟) is solution if the solvability condition

𝑉 = 𝑀𝜑𝜅 (1.2.14)

is satisfied, with 𝜅 = 2/𝑅 the mean curvature4 of the spherical interface. From this quick calculation,
we have exposed the intrinsic curvature-driven movement of the interface that is always contained in
the Allen-Cahn equation.

Finally, the Allen-Cahn PDE is more convenient for a numerical scheme since it only involves second
order spatial derivatives. For all these reasons (separate interface and bulk considerations, asymptotic
behaviour analysis and lower-order spatial derivatives) the Allen-Cahn equation will be used in this
work and preferred over the Cahn-Hilliard equation.

Before showing the coupling to the chemical diffusion in sec. 1.2.4, we will show in sec. 1.2.3 how a
phase field model can be coupled to the Navier-Stokes equations to model two-phase flows.

1.2.3 Flow coupling
A phase field model based on either the Cahn-Hilliard or the Allen-Cahn equation can be coupled to the
Navier-Stokes equations to describe a two-phase flow. The immediate way to do so is to supplement the
phase field equation with an advective term 𝐮 · ∇𝜑 with the velocity field 𝐮 solution of the flow PDEs.
In particular, we will use the Navier-Stokes equations for a Newtonian and incompressible flow

∇ · 𝐮 = 0, (1.2.15)
𝜌𝜕𝑡𝐮 + 𝜌∇ · (𝐮𝐮𝑇 ) = −∇𝑝 + 𝜌∇ · (𝜈(∇𝐮 + ∇𝐮𝑇 )) + 𝐅. (1.2.16)

4The sum of its principal curvatures. For a two-dimensional circular interface, 𝜅 = 1/𝑅 instead.
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In order, these two equations are the conservation of mass for a fluid of constant and homogeneous
mass density 𝜌 and kinematic viscosity 𝜈. The pressure field 𝑝 is also the solution of the Navier-Stokes
equations. We will not attach any particular thermodynamic significance to it; instead, it can be just
considered as the Lagrange multiplier enforcing the zero-divergence constraint on 𝐮 . The term 𝐅 is a
force term developed in the next paragraphs.

The two-phase character of the flow is described with the following considerations:

• the velocity field 𝐮 can be considered as an average of the velocities of the two fluids in the
interface region (see for example sec. 2.1 of [31] or sec. II.B of [3]),

• the viscosity may differ from one phase to another. Its value in the interface is defined through
the harmonic interpolation5 of each phases’ bulk viscosities (𝜈0, 𝜈1) by the phase field. Explicitly,

𝜈 = 𝜈(𝜑) = ((1 − 𝜑)𝜈−1
0 + 𝜑𝜈−1

1 )−1. (1.2.17)

• We may also consider phase specific densities and interpolate them linearly,

𝜌 = 𝜌(𝜑) = (1 − 𝜑)𝜌0 + 𝜑𝜌1. (1.2.18)

For reasons explained later, we may assume that the Boussinesq approximation holds and we will
only consider this density difference in the force terms of the momentum equation. In particular,
we introduce the buoyancy force

(𝜌0 − 𝜌(𝜑))𝐠 = Δ𝜌𝜑𝐠 (1.2.19)

with Δ𝜌 = 𝜌0 − 𝜌1 and 𝐠 the acceleration vector due to gravity. We have assumed phase 0 to be
the heavier phase in these expressions.

• Take into account the capillary effects on the fluid-fluid interface through a force term in the
momentum equation. In 1999 Jacqmin [15] presented a simple potential form of this force in the
Cahn-Hilliard formalism, as 𝐶∇(𝛿𝐹/𝛿𝐶). The direct equivalent for an Allen-Cahn model would
be the force 𝜑∇(𝛿𝐹/𝛿𝜑), but it would reintroduce a high-order space derivative we wanted to
avoid in the first place. Instead, we shall swap the gradient and use the form

𝛿𝐹
𝛿𝜑 ∇𝜑 = 3𝜎

2𝑊 (𝑓 ′
dw(𝜑) − 𝑊 2∇2𝜑)∇𝜑. (1.2.20)

It is just one of themany alternative formulations of the surface tension force in phase fieldmodels
[18, 19]. We will also write it more compactly as

− 𝜎
𝑊 𝛋(𝜑) (1.2.21)

with
𝛋(𝜑) = (3/2)(𝑊 2∇2𝜑 − 𝑓 ′

dw(𝜑))∇𝜑. (1.2.22)
This notation is motivated by the first order asymptotic behaviour6 of the right-hand side, namely
𝛋(𝜑) ∼ 𝑓dw(𝜑)𝜅𝐧: a vector field that, near an interface, measures its mean curvature 𝜅 and is
directed along its normal 𝐧. It becomes the zero vector outside the diffuse interface. This is not a
coincidence: by construction, the force term matches the more general continuum surface force
model [6] as found in e.g. the volume-of-fluid and level-set methods. These are always propor-
tional to the local curvature weighted by the local gradient (𝑓dw(𝜑) ∼ |∇𝜑|2) of the continuum
variable locating the interface, as Jacqmin noted in the same reference.

5For a justification on the usage of the harmonic interpolation against a linear interpolation, see the results presented in [31].
6In this case, it can be seen by assuming 𝜑 at equilibrium for an interface of constant mean curvature 𝜅 and then expand the

expression in spherical coordinates.
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Knowing this, the force term 𝐅 in the momentum equation is

𝐅(𝜑) = Δ𝜌𝜑𝐠 − 𝜎
𝑊 𝛋(𝜑). (1.2.23)

We have seen in the previous section that the Allen-Cahn equation has an intrinsic normal move-
ment due to the interface’s curvature, proportional to 𝑀𝜑𝜅. In the modelling of two-phase flows par-
ticularly, this curvature dependence is sometimes undesirable. This is why some Allen-Cahn two-phase
flowmodels correct the Allen-Cahn equation with a term appropriately proportional to −𝑀𝜑𝜅 to coun-
terbalance it. Folch et. al. [12] first expressed this counterterm as

𝑀𝜑𝜅(𝜑)|∇𝜑|, (1.2.24)

with the scalar curvature field 𝜅(𝜑) as

𝜅(𝜑) = ∇ · ( ∇𝜑
|∇𝜑|). (1.2.25)

The fraction on the right is an approximation of the interface’s normal vector, making this expression
coherent with the differential geometric relationship of the mean curvature and the normal vector of
a surface. See also [28] for a discussion of the Allen-Cahn equation and the cancelling of curvature
effects. The expression can be further manipulated by exploiting the relationships between the first
order solution 𝜑eq, the double-well function 𝑓dw(𝜑eq), their derivatives and the interface’s geometric
quantities. Most notably, Chiu and Lin [10] used the fact that

𝑀𝜑
𝑊 2 𝑓 ′

dw(𝜑) + 𝑀𝜑𝜅(𝜑)|∇𝜑| ∼ 𝑀𝜑
𝑊 ∇ · (√2𝑓dw(𝜑) ∇𝜑

|∇𝜑|), (1.2.26)

assuming 𝜑 ∼ 𝜑eq. This collects the counterbalance term and the double-well source term under the
divergence operator, relying on the coincidence that with the usual double-well function,

|∇𝜑| ∼ 4𝜑(1 − 𝜑)
𝑊 = √2𝑓dw(𝜑)

𝑊 . (1.2.27)

Doing so ensures the resulting PDE can be written as a conservation equation (then sometimes called
the “Conservative Allen-Cahn equation”, CAC). It is of particular interest for two-phase incompress-
ible flows when one interpolates the averaged density field like would be done with eq. (1.2.18): the
conservation of 𝜑 guarantees the conservation of mass.

The two forms of the counterterm, eqs. (1.2.24) and (1.2.26), have the same asymptotic effect at first
order (one may verify this by considering again a spherical interface with a constant velocity as done in
the end of section 1.2.2). Differences are kept to the second order; instead, practical consideration will
favour one form or another (ease of numerical implementation or conservation of 𝜑) or none at all. In
the present case, the growth dynamics fundamentally depend on this normal velocity and the associated
Gibbs-Thomson condition described later and as such we will not use a counterterm. In contrast, in a
preliminary work [31] we employed the term of eq. (1.2.26) to model a liquid-gas flowwith no curvature
effects. In this previous work we also linearly interpolated different densities and introduced a source
term in the conservation of mass, eq. (1.2.15), due to the evaporation at the interface.

We end this section bymetioning that the literature has examples ofmore rigorous couplingmethods
between the flow and the phase field. The advection field can be included in the free energy functional,
and the Navier-Stokes equation with can be derived from its minimization, given the definition of an
adequate stress tensor and of an entropy inequality for the diffusive processes. See for instance refs. [7,
13].
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1.2.4 Coupling the Allen-Cahn equation to the chemical diffusion
Adding a diffusion field

Coupling the Allen-Cahn formalism to the diffusion of thermodynamic variable follows a simple recipe.
Typically, this concerns the diffusion of a field of temperature 𝑇 (“thermal” phase field model) or of a
species composition 𝑐. The free energy functional shall now depend on such a field, e.g.

𝐹[𝜑, 𝑐] = 𝐻 ∫(𝑓dw(𝜑) + 𝑊 2

2 |∇𝜑|2 + 1
𝐻 𝑓(𝜑, 𝑐))𝑑𝑉 . (1.2.28)

The thermodynamic free energy function 𝑓(𝜑, 𝑐) must match the contribution of the each bulk phase
in the extrema of 𝜑 and give a reasonable interpolation in the interface region, hence the dependence
on 𝜑. It is customary to split the two dependencies using an interpolation function 𝑝(𝜑) such that

𝑓(𝜑, 𝑐) = (1 − 𝑝(𝜑))𝑓0(𝑐) + 𝑝(𝜑)𝑓1(𝑐) (1.2.29)

with 𝑓0, 𝑓1 the bulk contributions. For reasons detailed later, we choose the interpolation polynomial

𝑝(𝜑) = 3𝜑2 − 2𝜑3 (1.2.30)

which notably satisfies the conditions 𝑝(0) = 0, 𝑝(1) = 1 and 𝑝′(0) = 𝑝′(1) = 0.
The Allen-Cahn equation is thus supplemented with an additional source term depending on 𝑐:

𝜕𝑡𝜑 = 𝑀𝜑∇2𝜑 − 𝑀𝜑
𝑊 2 𝑓 ′

dw(𝜑) + 𝑀𝜑
𝑊 2

1
𝐻 𝑝′(𝜑)(𝑓0(𝑐) − 𝑓1(𝑐)). (1.2.31)

and the composition field 𝑐(𝐱) is evolved using the Fick diffusion equation

𝜕𝑡𝑐 = ∇ · 𝐷(𝜑)∇𝑐. (1.2.32)

The diffusion coefficient 𝐷(𝜑) can be interpolated with 𝜑 to account for different diffusivities in each
phase. Eqs. (1.2.31) and (1.2.32) would make up a model for the diffusion of chemical species in a two
phase binary system, using the two fields 𝜑(𝐱) and 𝑐(𝐱). This two PDE system would be the analogue
of the single Cahn-Hilliard equation (1.2.9) and we can now clearly see the separation between bulk
and interface kinetics. The Allen-Cahn equation with its source term only handles the movement of the
interface through the phase field and the Fick equation describes the diffusion in the bulk phases. The
effect of the diffusion on the movement of the interface, and conversely the diffusion in the interface
region, are described by interpolations; here through 𝑝(𝜑) and 𝐷(𝜑) respectively. In fact, it might be
thought that interpolations are the main ingredients of the Allen-Cahn models, just as order parameters
are the objects of interest in the Cahn-Hilliard models.

But this naive model present some flaws. We know that the thermodynamic equilibrium of the
binary system implies in general different compositions in each phase. Yet, this model has no way
to reconstruct the discontinuity of 𝑐 at the interface. Even if it did, we also know that the chemical
equilibrium generally does not imply the equality of the phases’ free energies; remember the common
tangent construction of eq. (1.1.4). The source term of the phase field equation is thus non-zero and the
hyperbolic tangent profile is no longer a stationary solution. The solution would depend on the values
of 𝑐 at the interface, and so would the surface tension 𝜎eq.

A way to resolve this issue was first found through the model of Kim, Kim and Suzuki [20]. In this
formulation, the authors propose that each phase has their own composition field 𝑐0(𝐱) and 𝑐1(𝐱), thus
ensuring their discontinuity at the interface. The real composition field 𝑐(𝐱) is then reconstructed by
the closure relation

𝑐(𝐱) = (1 − 𝜑(𝐱))𝑐0(𝐱) + 𝜑(𝐱)𝑐1(𝐱) (1.2.33)



CHAPTER 1. PHASE FIELD THEORY 23

thus identifying 𝜑 as a field of local phase fraction, in analogy of the constraint of constant global
composition for a closed system as it appeared in eq. (1.1.2). One may argue that the definition phase-
specific composition fields is something closer to the spirit of sharp interface model than the one of the
phase field framework. Wewill see another strategy based on the grand potential in the next subsection,
which keeps a single composition field and has a clearer link to the multi-component thermodynamics.

Grand potential formulation

We have presented the grand potential back in sec. 1.1.2 and mentioned that it is a more convenient
representation of the chemical equilibrium. Indeed, a phase field framework based on the grand poten-
tial was presented in ref. [22] to more adequately model chemical systems and we will use and extend
it for our work. Details on the grand potential formalism (along with its mixed 𝑐-𝜇 formulation, de-
fined later) in the binary case can also be found on our published work [5] on the numerical study of
a two-component porous medium. The ternary case was the subject of an internal CEA technical note
[30].

The reformulation is done by replacing the free energy functional, eq. (1.2.28) with the grand poten-
tial functional

Ω[𝜑, 𝜇] = 𝐻 ∫
𝑉

(𝜔dw(𝜑) + 𝑊 2

2 |∇𝜑|2 + 1
𝐻 (1 − 𝑝(𝜑))𝜔0(𝜇) + 𝑝(𝜑)𝜔1(𝜇))𝑑𝑉 (1.2.34)

with 𝜔dw = 𝑓dw. Again, the energy contribution 𝜔0, 𝜔1 of each phase is interpolated using the function
𝑝(𝜑). The field of chemical potential 𝜇(𝒙) is now the dynamical variable of the model. Since the chem-
ical potential is by definition identical in both phases at equilibrium, it is adequate to consider its field
to be continuous at the interface. The phase field PDE is very similar to the free energy one, as

𝜕𝑡𝜑 = 𝑀𝜑∇2𝜑 − 𝑀𝜑
𝑊 2 𝜔′

dw(𝜑) + 𝑀𝜑
𝑊 2

1
𝐻 𝑝′(𝜑)(𝜔0(𝜇) − 𝜔1(𝜇)), (1.2.35)

with the source term being by definition zero at equilibrium, thus keeping the stationary solution 𝜑eq.
To specify the chemical diffusion in terms of 𝜇, we can rely on the Onsager principle and recall eq.

(1.1.12),
𝜕𝑡𝑐 = ∇ · 𝑀(𝜑)∇𝜇 (1.2.36)

where 𝑀(𝜑) is the chemical mobility (not to be confused with the phase field mobility 𝑀𝜑). It can also
be interpolated between the mobilities of each phase. A closure relation is necessary to relate the 𝑐 and
𝜇 fields and it is naturally given by the equilibrium thermodynamics as in eq. (1.1.9),

𝑐(𝜑, 𝜇) = −𝛿Ω
𝛿𝜇 = −𝑉𝑒((1 − 𝑝(𝜑))𝜕𝜔0

𝜕𝜇 + 𝑝(𝜑)𝜕𝜔1
𝜕𝜇 ) (1.2.37)

where 𝑉𝑒 = 𝑉𝑚/𝒩 is the elementary volume, quotient of the molar volume 𝑉𝑚 and the Avogadro
constant 𝒩. This volume is necessary to introduce since the phase contributions are specified in di-
mensions of energies per volume. The molar volume 𝑉𝑚 is assumed to be constant and identical for the
two components; we will reiterate and justify this hypothesis later in the detail of the full model.

The grand potential functions 𝜔0 and 𝜔1 can be inferred from the free energy densities 𝑓0 and 𝑓1
through the Legendre transform

𝜔0(𝜇) = 𝑓0(𝑐) − 𝜕𝑓0
𝜕𝑐 𝑐, (1.2.38)

and the same for 𝜔1 with 𝑓1. The specification of 𝑓0, 𝑓1 is left for a later section, though one may already
notice that taking the free energy functions as quadratic polynomial with identical second derivatives
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make the grand potential reformulation equivalent to the Kim–Kim–Suzuki model seen earlier. Com-
pared to a Cahn-Hilliard model, we will be able to tune those separately of the double-well energy 𝜔dw.

However, unlike the Cahn-Hilliard formulation, this model is unable to describe spinodal decompo-
sition. As we have seen in the first section, this is due to the Legendre transform being undefined if the
free energy is concave. We will not consider it an issue for our purposes: it is known that the Na2O–
SiO2–MoO3 separates following a growth and nucleation regime during the vitrification process. We
may also note that a non-involutive generalization of the Legendre transform exists [29] and is appliable
to non-convex functions.

1.2.5 Asymptotic Gibbs-Thomson interface condition
With an Allen-Cahn coupled to the diffusion of a thermodynamic field, it is possible to extract an asymp-
totic Gibbs-Thomson interface condition. In our case, this condition is

𝜔0(𝜇) − 𝜔1(𝜇) = −𝛿𝜅 − 𝛽𝑉 at the interface, (1.2.39)

where 𝜅 and 𝑉 are again the mean curvature and normal velocity of the interface. The proportionality
constant 𝛿 and 𝛽 are respectively called the capillary length (related to the surface tension) and the
kinetic coefficient of the interface. This kind of condition is the result of a second order asymptotic
expansion of the PDE system, and this calculation will relate 𝛿 and 𝛽 to the parameters of the phase
field and of the grand potential functions. The detail of such an analysis can be found in appendix A.4.8
along with the calculations for the two-phase three component model. Note that the definition of the
interpolation polynomial 𝑝(𝜑) as in eq. (1.2.30) was a necessary condition to obtain the Gibbs-Thomson
relation. See also refs. [17, 2, 11] for important examples of this analysis in the case of a thermal models
and binary chemical models.

We can thus recover the precise behaviour of the thermodynamic field at the interfaces, which was
a priori left unspecified.

1.3 Two-phase three component model
The previous sections have introduced almost all the necessary ingredients to build a phase field model
for a two-phase three-component liquid. We will first mention some details necessary to describe multi-
component chemical diffusion, and after defining some conventions wewill present the full PDE system.

1.3.1 Multi-component considerations
The considered system is a thermodynamic system at a fixed temperature, at a fixed volume and at fixed
total counts of each component. We will label the 3 component species as 𝐴, 𝐵 and 𝐶 , and only the
compositions 𝑐𝐴, 𝑐𝐵 will be considered independent under the constraint 𝑐𝐴 + 𝑐𝐵 + 𝑐𝐶 = 1. We shall
then introduce a component-space vector notation denoted in italic bold symbols. In particular, the
composition variable vector is

𝒄 = (𝑐𝐴 𝑐𝐵)𝑇 . (1.3.1)
Again, two immiscible phases are present and they can exchange the three (miscible) components be-
tween themselves to reach equilibrium. In the two-phase three-component system, the two phases
coexist at equilibrium if their respective compositions 𝒄0 and 𝒄1 satisfy

𝝁0(𝒄0) = 𝝁1(𝒄1) = 𝝁(𝒄),
𝒄 = (1 − 𝑠)𝒄0 + 𝑠𝒄1,
𝑓(𝒄) = (1 − 𝑠)𝑓0(𝒄0) + 𝑠𝑓1(𝒄1),

(1.3.2)
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Figure 1.6: Example of an isothermal phase diagram in the Gibbs triangle for an idealized two-phase
ternary system. The spectrum of solutions to the phase coexistence equilibrium (1.3.2) are graphically
represented by the green tie lines (only some of them are drawn). Each tie line couple two allowed phase
specific compositions 𝒄0 and 𝒄1, which are themselves constrained to their respective phase boundaries,
here the black lines such that 𝑐𝐴

0 + 𝑐𝐵
0 = 0.4 and 𝑐𝐴

1 + 𝑐𝐵
1 = 0.6. They delimit the miscibility gap, in

which the system is thermodynamically stable as a mix of both phases. To each tie line is associated
one value of the chemical potential 𝝁, equal for both phases. The phase fraction 𝑠 can be read by the
distance on the tie line. For illustration, a particular solution with the global composition inventory
𝒄 = (0.1925, 0.3575)𝑇 and the phase fraction (of phase 1) 𝑠 = 0.25 is represented. The shape of the
phase boundary lines and slopes of the tie-lines depend on the behaviour of the derivatives of the free
energy functions 𝑓0 and 𝑓1.

the ternary equivalent of the common tangent construction: the common tangent plane construction.
The chemical potentials also become vectors in component space, namely

𝝁 = (𝜇𝐴 𝜇𝐵)𝑇 = 𝑉𝑒( 𝜕𝑓0
𝜕𝑐𝐴

𝜕𝑓0
𝜕𝑐𝐵 )

𝑇
= 𝑉𝑒( 𝜕𝑓1

𝜕𝑐𝐴
𝜕𝑓1
𝜕𝑐𝐵 )

𝑇
. (1.3.3)

The constant 𝑉𝑒 will disappear later in the derivation of the model.
For consistence with the grand potential formulation, we will again assume that the equality of

chemical potentials always holds and only concern ourselves with a single chemical potential variable
𝝁 = 𝝁0(𝒄0) = 𝝁1(𝒄1). In the binary case, this last assumption and the specification of the global
composition inventory 𝑐 and the phase fraction 𝑠 were sufficient to obtain the unique solution for the
phase compositions. The ternary case has now four constraints and thus one degree of freedom, which
is also seen after expressing the constraints (1.3.2) in the grand potential form (one constraint for two
variables)

𝜔0(𝝁) = 𝜔1(𝝁). (1.3.4)
The extra degree of freedom can be represented graphically in the isothermal phase diagram of the
system, see fig. 1.6. The solutions to the chemical equilibrium form a spectrum of tie-lines, one for each
couple 𝒄0, 𝒄1 (equivalently, 𝝁) satisfying the above conditions.

The diffusion or mobility coefficients now have a matrix structure in component space, namely

𝑫 = (𝐷𝐴𝐴 𝐷𝐴𝐵

𝐷𝐵𝐴 𝐷𝐵𝐵), 𝑴 = (𝑀𝐴𝐴 𝑀𝐴𝐵

𝑀𝐵𝐴 𝑀𝐵𝐵) (1.3.5)

and the chemical diffusion PDE will be then be written generally as

𝜕𝑡𝒄 = ∇ · (𝑴∇𝝁). (1.3.6)
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In practice however, 𝑴 will be assumed diagonal to keep the diffusion equations decoupled from each
other. Note that this equation mixes the 3D-space and component-space vectors and operators. The ∇
operator acts on each component of 𝝁 as ∇𝝁 = (∇𝜇𝐴 ∇𝜇𝐵)𝑇 . The above equation should be read
as one PDE for each component:

𝜕𝑡𝑐𝛼 = ∇ · (∑
𝛽

𝑀𝛼𝛽∇𝜇𝛽) for 𝛼 = 𝐴, 𝐵. (1.3.7)

We are thus ready to extend the grand potential formalism to the ternary case. We may also attempt
to reformulate the chemical diffusion PDE in terms of the grand potential only as is done in [23]. It
is done by expressing the global composition fields as the Legendre transform of the grand potential
functional

𝒄 = −𝑉𝑒( 𝛿Ω
𝛿𝜇𝐴

𝛿Ω
𝛿𝜇𝐵 )

𝑇
(1.3.8)

so that, by the chain rule,

− 𝑉𝑒𝜕𝑡𝑐𝛼 = 𝜕𝑡(
𝛿Ω
𝛿𝜇𝛼 ) = (𝜕𝑡𝜑) 𝜕

𝜕𝜑
𝛿Ω
𝛿𝜇𝛼 + ∑

𝛽=𝐴,𝐵
(𝜕𝑡𝜇𝛽) 𝜕

𝜕𝜇𝛽
𝛿Ω
𝛿𝜇𝛼 . (1.3.9)

One can match the left-hand side terms of both eqs. (1.3.7) and (1.3.9). Before writing this out, let us
define the susceptibility matrix7

Χ𝛼𝛽(𝜑, 𝝁) = −𝑝(1 − 𝜑) 𝜕2𝜔0
𝜕𝜇𝛼𝜕𝜇𝛽 − 𝑝(𝜑) 𝜕2𝜔1

𝜕𝜇𝛼𝜕𝜇𝛽 . (1.3.10)

We may finally rewrite the diffusion PDE as

𝑉𝑒 ∑
𝛽=𝐴,𝐵

Χ𝛼𝛽(𝜑, 𝝁)𝜕𝑡𝜇𝛽 = ∇ · ( ∑
𝛽=𝐴,𝐵

𝑀𝛼𝛽∇𝜇𝛽) − 𝑉𝑒𝑝′(𝜑)𝜕(𝜔0 − 𝜔1)
𝜕𝜇𝛼 𝜕𝑡𝜑. (1.3.11)

This formulation of the diffusion kinetics completely drops 𝒄 as a dynamical variable. The source term
proportional to 𝜕𝑡𝜑 is another point of similarity with the thermal phase fieldmodels [17, eq. (21)] whose
heat diffusion equation includes such a term, interpreted as the release of latent heat at the interface.

However, eq. (1.3.6) is immediately seen as conserving 𝒄 and this property is not as clearly respected
by the equation in terms of 𝝁 only. Furthermore, eq. (1.3.11) linearly couples the time derivative of the
dynamical variables which would be inconvenient for a time explicit numerical algorithm. One may
suggest diagonalizing the 𝜲(𝜑, 𝝁) matrix, but its coefficients are in the general case functions of the
fields 𝜑 and 𝝁 and the diagonalizing computation would have to be done at every point in space. For
these two reasons, we will prefer using the “mixed formulation” [4] provided by eq. (1.3.6) with both the
𝒄 and 𝝁 as dynamical variables. The coherence between the two conjugate variables must be ensured
through the Legendre transform, eq. (1.3.8).

In summary, the time evolution of the chemical components obeys the equations

𝜕𝑡𝒄 = ∇ · (𝑴∇𝝁),

𝒄 = −𝑉𝑒(𝑝(1 − 𝜑)𝜕𝜔0
𝜕𝝁 + 𝑝(𝜑)𝜕𝜔1

𝜕𝝁 ). (1.3.12)

7The susceptibility matrix 𝜲 is named as such because it involves the second derivatives of a thermodynamic potential. One
may also notice that the matrix of second derivatives of 𝜔 with respect to 𝝁 is proportional to the inverse of the matrix of second
derivatives of 𝑓 with respect to 𝒄, denoted later with the symbol 𝑲.
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In practice, this means evolving 𝒄 through the first conservation PDE and then computing 𝝁 as a func-
tion of 𝒄 with the second equation, which needs to be analytically (if applicable) or numerically inverted.
We will precise this last equation by specifying 𝜔0 and 𝜔1 in the next subsection. Note that for concise-
ness, we have introduced the notation

𝜕𝜔
𝜕𝝁 = ( 𝜕𝜔

𝜕𝜇𝐴
𝜕𝜔

𝜕𝜇𝐵 )
𝑇

. (1.3.13)

1.3.2 Ternary free energies and change of variables
We will now specify the thermodynamic potential of each phase through the free energy functions
𝑓0(𝒄), 𝑓1(𝒄). The grand potential functions will naturally follow.

The simplest case of convex paraboloids free energies will be assumed. This is a very convenient
simplifying assumption convenient for multiple reasons. Notably, it ensures that the transform from 𝒄
to 𝝁 is always invertible and the quadratic free energies have a simple parametrization which will help
us later to couple the model to thermodynamic data (sec. 3.4.2). Furthermore, as we mentioned in sec.
1.1.3, any free energy function can be reasonably approximated by a second order polynomial near a
reference composition.

We can first choose to parametrize these free energies with a constant second derivative matrix 𝑲𝜋,
the abscissas of their minimum 𝒄min

𝜋 and a constant energy offset 𝑄𝜋. The index 𝜋 = 0, 1 identifies
parameters belonging to phase 0 or phase 1. The free energy function then write

𝑓𝜋(𝒄) = 1
2𝑲𝜋 ∶ (𝒄 − 𝒄min

𝜋 )(𝒄 − 𝒄min
𝜋 )𝑇 + 𝑄𝜋. (1.3.14)

Thematrix of second derivatives 𝑲𝜋 is necessarily symmetric, and the convexity of 𝑓𝜋 requires it to also
be positive definite, making 𝑲𝜋 symmetric positive definite (SPD). The concatenation of component-
space vectors implies their tensor product and ∶ denotes the tensor double scalar product. With compo-
nent indices, eq. (1.3.14) then reads

𝑓𝜋(𝑐𝐴, 𝑐𝐵) = 1
2 ∑

𝛼,𝛽=𝐴,𝐵
𝐾𝛼𝛽

𝜋 (𝑐𝛼 − 𝑐min𝛼
𝜋)(𝑐𝛽 − 𝑐min𝛽

𝜋) + 𝑄𝜋. (1.3.15)

The compositions and chemical potentials are in general linearly coupled through the matrix-vector
product

𝝁 = 𝑉𝑒
𝜕𝑓𝜋
𝜕𝒄 = 𝑉𝑒𝑲𝜋(𝒄 − 𝒄min

𝜋 ) (1.3.16)

(again, 𝝁0 = 𝝁1 = 𝝁 is implicitly assumed by chemical equilibrium).
However, this parametrization is not ideal. We can obtain a better one by applying the following

transformation on 𝑓𝜋:
𝑓∗

𝜋(𝒄) = 𝑓𝜋(𝒄) − 1
𝑉𝑒

𝝁eq
𝜋 · 𝒄 (1.3.17)

with 𝝁eq
𝜋 the chemical potentials of some tie-line taken as reference. The phase compositions 𝒄eq

𝜋 of the
same equilibrium are obtained by inverting eq. (1.3.16). One can verify that 𝑓∗

𝜋 then expands to

𝑓∗
𝜋(𝒄) = 1

2𝑲𝜋 ∶ (𝒄 − 𝒄eq
𝜋 )(𝒄 − 𝒄eq

𝜋 )𝑇 + 𝑄∗ (1.3.18)

allowing us to drop the parametrization by 𝒄min
𝜋 in favour of 𝒄eq

𝜋 , more directly relevant to the chemical
equilibrium. The new vertical offset is 𝑄∗ = 𝑓𝜋(𝒄eq

𝜋 ) − 𝝁eq
𝜋 · 𝒄eq

𝜋 which is exactly the grand potential at
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equilibrium and is thus the same for both phases. The functions 𝑓∗
𝜋 are quadratic wells around 𝒄eq with

a horizontal common tangent plane. The associated grand potential is

𝜔∗
𝜋(𝝁∗) = − 1

2𝑉 2𝑒
𝑲𝜋

−1 ∶ 𝝁∗𝝁∗𝑇 − 1
𝑉𝑒

𝝁∗ · 𝒄eq
𝜋 + 𝑄∗ (1.3.19)

with the change of variables 𝝁∗ = 𝝁 − 𝝁eq. The reference equilibrium is then at 𝝁∗ = 𝟎 which
is coherent with the tangent plane being horizontally aligned. In addition, one can write the grand
potential 𝜔𝜋(𝝁) of the base ternary free energy and verify that under this change of variables

𝜔(𝝁) = 𝜔∗(𝝁∗). (1.3.20)

The thermodynamics is then entirely coherent and the change of variables only consists of modifying
the reference values for the chemical potentials.

1.3.3 Energy dimension removal
A characteristic thermodynamic energy scale can be extracted from the 𝑲𝜋 matrices of the previous
section. This will be useful to remove the energy dimension from the phase field equation.

Assume that phase 0 is the reference phase in some manner; in the droplet growth phenomenon, it
would be the matrix phase since it is the main support of the chemical exchanges between droplets. The
characteristic values of 𝑲0 are its eigenvalues 𝑘𝐴

0 and 𝑘𝐵
0 and we will use them to define the energy-

per-volume scale
𝑘 = (𝑐eq𝐴

0 − 𝑐eq𝐴
1 )2𝑘𝐴

0 + (𝑐eq𝐵
0 − 𝑐eq𝐵

1 )2𝑘𝐵
0 . (1.3.21)

It corresponds to the trace of the diagonalized 𝑲0 matrix under a scaling of the composition variables
on the range of the tie-line

Using 𝑘 and 𝑉𝑒, one can remove the energy dimension from the previous thermodynamic quantities.
Define

�̄�𝜋 = 𝑲𝜋/𝑘, �̄� = 𝝁∗/𝑉𝑒𝑘, �̄�𝜋 = 𝜔∗
𝜋/𝑘. (1.3.22)

We choose to write our model with these previous conventions: the source term of the phase field
equation will contain the difference of the dimensionless grand potential densities

Δ�̄�(�̄�) = −1
2(�̄�−1

0 − �̄�−1
1 ) ∶ �̄��̄�𝑇 − �̄� · (𝒄eq

0 − 𝒄eq
1 ). (1.3.23)

The closure relation between the 𝒄 and �̄� variables is

�̄� = �̄�(𝜑)(𝒄 − 𝒄eq(𝜑)) (1.3.24)

with the interpolated equilibrium composition

𝒄eq(𝜑) = 𝑝(1 − 𝜑)𝒄eq
0 + 𝑝(𝜑)𝒄eq

1 (1.3.25)

and the interpolated matrix �̄�(𝜑) given by

�̄�(𝜑) = det �̄�(𝜑)(𝑝(1 − 𝜑)
det �̄�0

�̄�0 + 𝑝(𝜑)
det �̄�1

�̄�1)

with det �̄�(𝜑) = (𝑝(1 − 𝜑)2 det �̄�0 + 𝑝(𝜑)2 det �̄�1

+ 𝑝(1 − 𝜑)𝑝(𝜑)(�̄�𝐴𝐴
0 �̄�𝐵𝐵

1 + �̄�𝐵𝐵
0 �̄�𝐴𝐴

1 − 2�̄�𝐴𝐵
0 �̄�𝐴𝐵

1 ))−1.

(1.3.26)
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Because the 𝑲𝜋 are SPD, the interpolated matrix 𝑲(𝜑), a sum with positive real coefficients, is also
SPD. However, the difference of their inverse as it appears in eq. (1.3.23) may or may not be SPD. If it
is, Δ�̄�(�̄�) is also a convex quadratic and the analytical solutions to Δ�̄� = 0 can be parametrized on an
ellipse.

Finally, we define the mobility matrix with the energy dimension removed

�̄� = 𝑉𝑒𝑘𝑴 (1.3.27)

and note that a diffusion matrix can be derived from it and the Legendre transform (1.3.24) as

𝑫 = �̄��̄�(𝜑) (1.3.28)

which in general is also a function of 𝜑.

1.3.4 PDE system
Wenow assemble the Allen-Cahn equation and the ternary Onsager diffusion equations under the grand
potential mixed formulation with the incompressible Navier-Stokes equation as underlined in sec. 1.2.3.
There are two remarks to be made before writing the full set of equations.

First, the definition of a characteristic thermodynamic energy scale 𝑘 leads to introduce the dimen-
sionless thermodynamic coupling parameter 𝜆 = 𝑘/𝐻 : the ratio of the characteristic bulk thermody-
namic energy density over the characteristic interface energy density. The source term of the grand
potential Allen-Cahn equation as seen in eq. (1.2.35) will be

𝜆𝑀𝜑
𝑊 2 𝑝′(𝜑)Δ�̄�(�̄�) (1.3.29)

with Δ�̄�(𝝁) = 𝜔0(𝝁) − 𝜔1(𝝁), see eq. (1.3.23).
Second, we require the Boussinesq approximation for our flow coupling for the reason presented

hereafter. The chemical diffusion process can be assimilated to neighbouring components randomly
exchanging places (the sameway the diffusion of a solvent can be assimilated to a discrete randomwalk).
The fluid elements tracked by the Navier-Stokes equations are composed by those same components. If
the densities of the phases were to differ, it would imply that the diffusion from one to the other displaces
the centre of mass of the corresponding fluid element. We would then require a backward coupling of
the diffusion to the advection, and more care would be required to verify the conservation of mass.
Coincidentally, this reasoning also applies if the component had different or varying molar volumes.
The Boussinesq approximation and the assumption of constant and identical molar volumes are thus
both essential simplifying assumptions. The buoyancy force term in the conservation of moment will
have the form found in eq. (1.2.19) with a constant density difference Δ𝜌.

With that in mind, we can now compose eqs. (1.2.35), the two-phase Navier-Stokes equations from
sec. 1.2.3, and the chemical diffusion equations with the closure relations of eqs. (1.3.12) to write down
the full system of time evolution equations for our two-phase ternary liquid,

∇ · 𝐮 = 0, (1.3.30)

𝜌𝜕𝑡𝐮 + 𝜌∇ · (𝐮𝐮𝑇 ) = −∇𝑝 + 𝜌∇ · (𝜈(𝜑)(∇𝐮 + ∇𝐮𝑇 )) + 𝜑Δ𝜌𝐠 − 𝜎
𝑊 𝛋(𝜑), (1.3.31)

𝜕𝑡𝜑 + 𝐮 · ∇𝜑 = 𝑀𝜑∇2𝜑 − 𝑀𝜑
𝑊 2 𝑓 ′

dw(𝜑) + 𝜆𝑀𝜑
𝑊 2 𝑝′(𝜑)Δ�̄�(�̄�), (1.3.32)

𝜕𝑡𝒄 + 𝐮 · ∇𝒄 = ∇ · (�̄�∇�̄�), (1.3.33)
�̄� = �̄�(𝜑)(𝒄 − 𝒄eq(𝜑)). (1.3.34)
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Note that 3D-space vectors with bold upright symbols (e.g. 𝐮) are to be dissociated from component-
space tensors with bold italic symbols (e.g. 𝒄). There is one diffusion equation (1.3.33) and closure (1.3.34)
for each component. We also remind that the expression of the surface tension’s curvaturemeasure𝛋(𝜑)
is found in eq. (1.2.22); of the grand potentials difference Δ�̄�(�̄�) in eq. (1.3.23); and of the interpolations
of the 𝒄eq vectors and the �̄� matrices in eqs. (1.3.25) and (1.3.26) respectively.

For convenience, the parameters of the model are summarized in table 1.1.

Symbol Description Dimensions
𝜌 Constant and identical density of the two-phase fluid [𝜌]
𝜈(𝜑) Harmonic interpolation of each phase’s kinematic viscos-

ity: 𝜈(𝜑) = ((1 − 𝜑)/𝜈0 + 𝜑/𝜈1)−1
𝐿2 · 𝑇 −1

Δ𝜌𝐠 Buoyancy under the Boussinesq approximation: phase
density difference Δ𝜌 and acceleration of gravity 𝐠

[𝜌] · 𝐿 · 𝑇 −2

𝜎 Surface tension of the diffuse interface [𝐸] · 𝐿−2

𝑊 Diffuse interface width 𝐿
𝑀𝜑 Diffuse interface relaxation rate 𝐿2 · 𝑇 −1

𝜆 Thermodynamic coupling constant: ratio of the diffuse
interface’s energy density to the thermodynamic bulk en-
ergy density

∅

�̄� Non-dimensionalized chemical mobility matrix 𝐿2 · 𝑇 −1

�̄� Non-dimensionalized free energy second ∅
𝒄eq

𝜋 Equilibrium compositions of phase 𝜋 on the reference tie-
line

∅

Table 1.1: Parameters of the two-phase ternary liquid phase field model. The dimensions are listed in
terms of a length unit 𝐿 and time unit 𝑇 . The symbol [𝐸] and [𝜌] denotes arbitrary units of energy and
mass density, respectively. These will be removed by making the PDE system dimensionless.

The phase field and chemical diffusion PDEs were reparametrized to remove the energy dimension.
One may wish to do the same to remove the implicit energy dimension in 𝜎 in the NS equations, but to
do so it is necessary to also make the differential operators 𝜕𝑡 and∇ dimensionless using a characteristic
length scale 𝐿 and velocity scale 𝑣. Doing so reveals a characteristic scale 𝜌𝑣2 of the bulk kinematic
energy density and allow a completely dimensionless form of the PDE system:

∇̄ · �̄� = 0, (1.3.35)

𝜕 ̄𝑡�̄� + ∇̄ · (�̄��̄�𝑇 ) = −∇̄ ̄𝑝 + ∇̄ · (Re−1(𝜑)(∇̄�̄� + ∇̄�̄�𝑇 )) + 𝜑Fr−2 𝐠
||𝐠|| − We−1Cn−1�̄�(𝜑) (1.3.36)

𝜕 ̄𝑡𝜑 + �̄� · ∇̄𝜑 = Pe−1
𝜑 (∇̄2𝜑 − Cn−2(𝑓 ′

dw(𝜑) + 𝜆𝑝′(𝜑)Δ�̄�(�̄�))), (1.3.37)

𝜕 ̄𝑡𝒄 + �̄� · ∇̄𝒄 = ∇̄ · (Pe−1∇̄�̄�), (1.3.38)

�̄� = �̄�(𝜑)(𝒄 − 𝒄eq(𝜑)), (1.3.39)

with the dimensionless differential operators and flow fields

𝜕 ̄𝑡 = (𝐿/𝑣)𝜕𝑡, ∇̄ = (1/𝐿)∇, �̄� = 𝐮/𝑣, ̄𝑝 = 𝑝/𝜌𝑣2, (1.3.40)

the dimensionless measure
�̄�(𝜑) = 3

2(Cn2∇̄2𝜑 − 𝑓 ′
dw(𝜑))∇̄𝜑 (1.3.41)
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and the dimensionless numbers

Re(𝜑) = 𝑣𝐿
𝜈(𝜑) , Fr = 𝑣

√(Δ𝜌/𝜌)||𝐠||𝐿
, We = 𝜌𝑣2𝐿

𝜎 ,

Cn = 𝑊
𝐿 , Pe𝜑 = 𝐿𝑣

𝑀𝜑
, Pe−1 = �̄�

𝐿𝑣 .
(1.3.42)

In the expressions above, ||𝐠|| is the norm of the gravity acceleration vector. The dimensionless numbers
are respectively the Reynolds, Froude, Weber, Cahn, phase field Péclet and chemical Péclet numbers of
the flow. Remark that We Cn ∝ 𝜌𝑣2/𝐻 is the characteristic ratio of the bulk kinematic energy density
against the diffuse interface energy density, the analogue of 𝜆 for the flow. The Schmidt numbers defined
by

Sc−1(𝜑) = �̄�
𝜈(𝜑) (1.3.43)

may also be relevant.
In the simulations of growth with sedimentation presented later, 𝐿 will be defined in regards to the

droplets’s geometry and the gravity will be the main drive of the flow. In this case, the relevant flow
velocity scale is

𝑣 = √Δ𝜌
𝜌 ||𝐠||𝐿, (1.3.44)

implying Fr = 1 is no longer a relevant number, and thatWe can be the replaced with the Eötvös number

Eo = Δ𝜌𝑔𝐿2

𝜎 . (1.3.45)

1.3.5 Conclusion
In this first chapter, we have derived a theoretical model to describe a two-phase fluid with three chem-
ical components. It follows a fully resolved interface by relying on the phase-field theory, a framework
representing the interface as a diffuse interface of a scalar field. The diffusion of the chemical compo-
nents is resolved in consistency with the thermodynamics of the bulk phases of the material. By using
an Allen-Cahn-type model aided by a grand potential reformulation, we are able to specify the free
energies for the bulks in coherence with the system’s chemical equilibrium while still allowing us to
tune separately these bulk properties and the interface properties: the surface tension and the interface
width. The Gibbs-Thomson condition asymptotically reconstructed at the interface was established.
The two-phase fluid’s advection is taken into account by the Navier-Stokes equation in the case of a
Newtonian and incompressible Boussinesq fluid.

There are many points of possible extension for this model. One of them is to take into account
different molar volumes for the components, which would in turn allow us to relax the Boussinesq
assumption. We may take a first step in that direction if we were to reinforce the consistency of the
flow coupling, by inserting the advection field into the free energy functional and rederiving all the
details leading to the Navier-Stokes equation. Furthermore, it may be of interest to look at other forms
of the free energies, for instance to better take into account the very low composition of molybdenum
in the mother phase. For the same reason, we may also want to relax the assumption of a diagonal
mobility matrix.

In the following, the implicit description of the interface made by the phase field will greatly ease
the discretization of the model. This will be described in the next chapter, where we will prepare the
implementation of the model for simulations in a high performance code.
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Chapter 2

Numerical implementation

Chapter 1 established the physical model of a two-phase three-component liquid as a system of par-
tial differential equations. We must now explain how we bring this model to quantitative numerical
simulations.

The first step is to build a discretized form of themodel, meaning transforming it into an approximate
form suitable for processing by a numerical computer algorithm. The most known methods to do so
are the finite differences, finite volumes or finite elements schemes. Here, we will employ a relatively
recent method known as the lattice Boltmannmethod (LBM) [33] [20] which indirectly solves the partial
differential equations by operating on distribution functions obeying a discrete Boltzmann equation and
on their moments in phase space. Themethod and its use are presented in the first section of this chapter,
which will conclude with the complete discretization of the two-phase ternary flow model.

Once the discretization and numerical resolution algorithm is established, the next step is their
implementation by a computer program. The second section of this chapter will present LBM_saclay, a
simulation code for lattice Boltzmann schemes whose development was a significant part of the thesis
work. We will detail the particular care taken to make this code highly performant on modern parallel
architectures.

With the complete implementation, we are able to bring the model to quantitative 3D simulations
of this model as will be presented in the last chapter.

2.1 Lattice Boltzmann method
The lattice Boltzmann method (LBM) is a discretization method for partial differential equations. It is
naturally adapted to advection-diffusion equations, including vector ones such as the Navier-Stokes’
momentum equation. Its algorithm is relatively simple to implement, and its memory accesses are half
local and half stencil-based, making it particularly efficient numerically and easy to parallelize. This
section will mostly only go over the elements of practical use for the simulations carried out in this
thesis. The interested reader can refer to the book by T. Krüger et. al. [28] for more details on the
method.

We may remark that since the LBM was first thought as a way to model flows, there exists whole
classes of LBM-specific models for two-phase flows. For instance, the Shan-Chen pseudopotential
method [42] [7] [48] and the color-gradient method [17] [12]. Over them, the phase field method has
the advantage of having a rigorous thermodynamic consistency and a clear formalism for the coupling
to an intensive thermodynamic diffusion field; though we may underline the similarities of the phase
field theory with what is known as the early “free energy method” [43] in the LBM literature, which is
also based on an energy functional and produces a diffuse interface with an hyperbolic tangent profile.

34
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D2Q9 D3Q19
𝑘 𝐞𝑘 𝑤𝑘 𝑘 𝐞𝑘 𝑤𝑘
0 (0, 0) 4/9 0 (0, 0, 0) 1/3
1, 2, (+1, 0), (0, +1), 1/9 1, 2, 3, (+1, 0, 0), (−1, 0, 0), (0, +1, 0), 1/18
3, 4 (−1, 0), (0, −1) 4, 5, 6 (0, −1, 0), (0, 0, +1), (0, 0, −1)
5, 6 (+1, +1), (−1, +1), 1/36 7, 8, 9, (+1, +1, 0), (−1, −1, 0), (+1, 0, +1), 1/36
7, 8 (−1, −1), (+1, −1) 10, 11, 12, (−1, 0, −1), (0, +1, +1), (0, −1, −1),

13, 14, 15, (+1, −1, 0), (−1, +1, 0), (+1, 0, −1),
16, 17, 18 (−1, 0, +1), (0, +1, −1), (0, −1, +1)

Table 2.1: Detail of the direction vectors 𝐞𝑘 and of the scalar weights 𝑤𝑘 associated to each velocities
of the D2Q9 and D3Q19 lattices.

The literature has many examples of the lattice Boltzmann method being used to discretize a Cahn-
Hilliard or an Allen-Cahn phase field model. Some examples of the first kind of models are found from
2006 to today [51, 22, 11, 41, 31, 2]. Allen-Cahn LBM models are in comparison a bit more recent [14,
47, 38, 3] As far as we know, our work is the first which couples a grand potential Allen-Cahn model to
a lattice Boltzmann discretization with flow dynamics.

Finally, we may remark that even though the LBM is younger than other numerical methods, there
are multiple instances of numerical analysis of its schemes. Some examples are [24, 4, 50].

2.1.1 Discretization of a Boltzmann equation
As opposed to more common discretization methods (finite differences, finite volumes…), the LBM does
not directly discretize a PDE. It is first a discretization in space and velocity-space of the Boltzmann
equation

𝜕𝑡𝑓(𝑡, 𝐱, 𝐜) + 𝐜 · ∇𝑓(𝑡, 𝐱, 𝐜) = −𝑓 − 𝑓eq

𝜏 + 𝑆(𝑡, 𝐱, 𝐜). (2.1.1)

The above Boltzmann equation comes from the classic kinetic theory of gases: it describes the evolution
of a probability density function 𝑓(𝑡, 𝐱, 𝐜) of particles over the positions 𝐱 and velocities 𝐜. The first
quantity on the right-hand side is the Bhatnagar–Gross–Krook collision operator [5] which enforces
the exponential relaxation of 𝑓 towards the equilibrium distribution 𝑓eq(𝑡, 𝐱, 𝐜). An arbitrary source
term 𝑆(𝑡, 𝐱) is also included for later use.

In the LBM, the Boltzmann equation is discretized over space and velocity-space on a regular Carte-
sian grid of nodes with a spacing 𝛿𝑥 and a finite set of 𝑁𝑘 velocities 𝐜𝑘, with 𝑘 = 0, 1, … 𝑁𝑘 − 1 (by
convention, 𝐜0 = 𝟎 is always the zero velocity). The directions carrying these velocities bridge the grid
nodes to their neighbours and a lattice structure naturally emerges; see in particular the two examples
in figure 2.1.

The Boltzmann equation is then discretized along the 𝐜𝑘 velocities (see appendix C.1 of [46] for
details) to obtain the discrete Boltzmann equation

𝑓𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝐜𝑘𝛿𝑡) = 𝑓𝑘(𝑡, 𝐱) − 𝑓𝑘 − 𝑓eq
𝑘

̄𝜏 + 𝛿𝑡𝑆𝑘(𝑡, 𝐱) (2.1.2)

with 𝛿𝑡 a discrete time step, ̄𝜏 = 𝜏/𝛿𝑡+1/2, and 𝑓𝑘, 𝑓eq
𝑘 and 𝑆𝑘 the discrete equivalent of the distribution

function and the source term along each 𝐜𝑘. The time step 𝛿𝑡 is the time taken by the distributions at
velocities 𝐜𝑘 to reach the neighbouring lattice node. In consequence, we will sometime prefer writing
the neighbour positions as 𝐱 + 𝐞𝑘𝛿𝑥, with 𝐜𝑘 = (𝛿𝑥/𝛿𝑡)𝐞𝑘. Eq. (2.1.2) is the general form of the lattice
Boltzmann equation (LBE) that will be used in our work.
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Figure 2.1: LBM lattices used in the present work, (left) D2Q9 and (right) D3Q19 (the first number refers
to the dimension and the second to the total count of discrete velocities). The directions vectors 𝐞𝑘
carries each discrete velocity as 𝐜𝑘 = (𝛿𝑥/𝛿𝑡)𝐞𝑘. See also table 2.1.

2.1.2 Reconstructed macroscopic equations, Chapman-Enskog expansion
The LBM finds its use as a more general PDE discretization through the Chapman-Enskog expansion [6]
[28, chap. 4]. With it, and an adequate definition for the equilibrium distribution 𝑓eq, one shows that the
Boltzmann equation reconstructs the desired macroscopic diffusion equation through its moments. The
canonical example of this expansion is the rederivation of the Navier-Stokes equations with 𝑓eq taken as
the Maxwellian distribution around the macroscopic velocity 𝐮. This last quantity is itself reconstructed
through the moment of 𝑓 , as 𝐮 ∝ ∫𝐜 𝐜𝑓𝑑𝐜.

This property is carried over to the discrete LBE. Again, we take the example of the Navier-Stokes
equations to illustrate. The equivalent of the Maxwellian distribution in the discrete phase space is the
function

𝛾𝑘(𝐮) = 𝑤𝑘(1 + 𝐮 · 𝐜𝑘
𝑐𝑠2 + (𝐮 · 𝐜𝑘)2

2𝑐𝑠4 − 𝐮2

2𝑐𝑠2 ) (2.1.3)

with 𝑐2
𝑠 = 𝛿𝑥2/3𝛿𝑡2 the square of the characteristic lattice speed and 𝑤𝑘 the lattice’s scalar weights

as listed in table 2.1. A discrete Chapman-Enskog expansion of eq. (2.1.2) without the source term and
with 𝑓eq

𝑘 = 𝜌𝛾𝑘 reconstructs the compressible Navier-Stokes equations with its density, pressure and
velocity fields as

𝜌 = ∑
𝑘

𝑓𝑘, 𝑝 = 𝜌𝑐𝑠
2, 𝜌𝐮 = ∑

𝑘
𝐜𝑘𝑓𝑘. (2.1.4)

The integral moments with respect to 𝐜 coherently discretize into sums over the finite set of velocities
𝐜𝑘. In addition, the fluid’s kinematic viscosity is identified as

𝜈 = 𝑐𝑠
2𝛿𝑡( ̄𝜏 − 1

2). (2.1.5)

In the LBM literature, there are common ways to discretize additional source terms or to modify the
equilibrium function to obtain a desired scalar or vector diffusion equation. This is exploited later to dis-
cretize our two-phase three-component flow model; it will be seen that the macroscopic reconstruction
closely follows the previous example.
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2.1.3 Time evolution algorithm
Now that the discrete Boltzmann equation and its link to the macroscopic equations are established, we
explain here the numerical algorithm used to solve the LBE, eq. (2.1.2).

The algorithm is usually described in two steps:

• a local collision step, corresponding to the right-hand side of (2.1.2),

𝑓∗
𝑘(𝑡, 𝐱) = 1

̄𝜏 𝑓eq
𝑘 (𝑡, 𝐱) + (1 − 1

̄𝜏 )𝑓𝑘(𝑡, 𝐱) + 𝛿𝑡𝑆𝑘(𝑡, 𝐱); (2.1.6)

• and a streaming step (or advection step) which only consists of moving data along the lattice,

𝑓𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝐞𝑘𝛿𝑥) = 𝑓∗
𝑘(𝑡, 𝐱). (2.1.7)

The split is not necessary when implementing the algorithm, but it helps underline an advantage of
the method. Half of its calculations are purely local and the other half are copies with stencil pattern
memory accesses. In addition, each discrete distribution 𝑓𝑘 contributes to the update of one and only
one distribution: its neighbour at 𝐱+𝐜𝑘𝛿𝑡. Intuitively, this guarantees a level of spatial memory locality
(use of memory near other recently accessed addresses [19]), necessary for efficiency.

An additional step to compute and save the moments, e.g. eq. (2.1.4), can follow the collision-
streaming. Finally, the boundary conditions (see the next section) are applied and the algorithm loops
back for the next time step.

2.1.4 Initial and boundary conditions
While the LBM algorithm can be written only in terms of distribution functions, the initial and boundary
conditions are more conveniently described in terms of the macroscopic variables. To implement those,
we employ basic algorithms which are detailed below.

Initialization at equilibrium

The simplest initialization scheme consists of setting the distribution function at equilibrium

𝑓𝑘(0, 𝐱) = 𝑓eq
𝑘 (0, 𝐱), (2.1.8)

with 𝑓eq
𝑘 (0, 𝐱) computed with the set of macroscopic fields desired at 𝑡 = 0.

More elaborate initialization scheme can be found in the literature [35], but the initialization at
equilibrium was considered sufficient for practical use here.

Periodic boundaries

Simulating a periodic domain is simply done by advecting the distribution functions from one end of
the domain to the opposite. Note that since the stream stencil has diagonal directions, this can mean
advecting to the opposite face, side or corner.

Bounceback and anti-bounceback

The bounceback algorithm reflects distributions going out of the lattice as illustrated in figure 2.2. It
consists of a substitution of the stream step (2.1.7) as

𝑓𝑘−(𝑡 + 𝛿𝑡, 𝐱) = 𝑓∗
𝑘(𝑡, 𝐱) with 𝑘− s. t. 𝐞𝑘− = −𝐞𝑘. (2.1.9)
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This has the effect of setting the first moment of 𝑓 to 𝟎 at the boundaries. Usually this corresponds to
the advection field 𝐮 for flow LBEs, or to the gradient of the diffusion field for diffusion LBEs.

𝑓∗
𝑘(𝑡, 𝐱)

𝑡

𝑓𝑘−(𝑡 + 𝛿𝑡, 𝐱)

𝑡 + 𝛿𝑡

Figure 2.2: Illustration of the bounceback boundary condition. The distributions that would be advected
outside the domain are instead advected back into the same node in the opposite direction, as if it was
reflected by the boundary. It replaces the usual stream step. This process must still take place within
𝛿𝑡: in consequence, the reflecting boundary is considered to be at a distance 𝛿𝑥/2 from the node, since
this distance is covered twice.

The anti-bounceback follows the same scheme but with a minus sign and an added constant:

𝑓𝑘 = −𝑓𝑘− + 2𝑤𝑘𝐶. (2.1.10)

It sets the zeroth moment of 𝑓 to a desired value 𝐶 [15] at the boundaries; typically the diffusion field
in a scalar diffusion LBE, or the density and/or pressure field in a flow LBE.

2.1.5 Finite differences stencil
The LBEs presented later will involve a source term 𝑆(𝑡, 𝐱) which itself may depend on the gradient
or Laplacian of a macroscopic variable. They will be discretized with a second order finite difference
stencil on the lattice directions as [30]

∇𝐶(𝐱) = 3 ∑
𝑘

𝑤𝑘
𝐶(𝐱 + 𝐞𝑘𝛿𝑥) − 𝐶(𝐱 − 𝐞𝑘𝛿𝑥)

2𝛿𝑥 𝐞𝑘,

∇2𝐶(𝐱) = 3 ∑
𝑘

𝑤𝑘
𝐶(𝐱 − 𝐞𝑘𝛿𝑥) − 2𝐶(𝐱) + 𝐶(𝐱 + 𝐞𝑘𝛿𝑥)

𝛿𝑥2 ,
(2.1.11)

where 𝐶 is again a placeholder for any macroscopic field variable. On the boundaries of a non-periodic
domain, this stencil is replaced by the off-centre Cartesian stencils of second order

𝜕2𝐶
𝜕𝑥2 (𝐱) = 2𝐶(𝐱) − 5𝐶(𝐱 + 𝛿𝑥𝐞𝑥) + 4𝐶(𝐱 + 2𝛿𝑥𝐞𝑥) − 𝐶(𝐱 + 3𝛿𝑥𝐞𝑥)

𝛿𝑥2 ,
𝜕𝐶
𝜕𝑥 (𝐱) = −3𝐶(𝐱) + 4𝐶(𝐱 + 𝛿𝑥𝐞𝑥) − 𝐶(𝐱 + 2𝛿𝑥𝐞𝑥)

2𝛿𝑥 ,
(2.1.12)

in the example of the 𝑥 derivatives at the boundary perpendicular to the −𝑥 axis and with 𝐞𝑥 the
corresponding unit vector.

2.1.6 LBMdiscretization of the two-phase three component phasefieldmodel
We can now write the discretized form of the two-phase three-component flow model. The strategy
adopted here is to define one distribution function for each subset of the model. We denote 𝑣𝑘 the
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distributions for the two incompressible Navier–Stokes equations (1.3.30), (1.3.31); ℎ𝑘 the distributions
for the phase field equation (1.3.32); and 𝑎𝑘, 𝑏𝑘 the distributions for the diffusion of each component
(1.3.33). There are examples in the literature of the opposite strategy with one distribution function
for all PDEs of the continuous model: in [29], the set of lattice is extended (D2Q13) so that the second
moment of a single distribution function is captured as the conservation of energy, giving the PDE of
the diffusion of heat for a single-phase thermal flow. This alternative approach was not considered in
our work because of its complexity relative to the one with multiple isothermal LBEs for each partial
differential equation.

Flow LBE

The distribution functions corresponding to eqs. (1.3.30) and (1.3.31) are written with 𝑣𝑘, and their time
stepping are done with a lattice Boltzmann equation adapted from the He–Luo LBE [18] for incompress-
ible fluids,

𝑣𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝛿𝑥𝐞𝑘) = (1 − 1
̄𝜏𝑣
)𝑣𝑘(𝑡, 𝐱) − 1

̄𝜏𝑣
𝑣eq𝑘 (𝑡, 𝐱) + 𝛿𝑡𝑆𝑣,𝑘(𝑡, 𝐱), (2.1.13)

with

̄𝜏𝑣(𝜑) = 𝜈(𝜑)
𝛿𝑡𝑐2𝑠

+ 1
2, (2.1.14)

𝑣eq𝑘 = 𝑤𝑘𝑝 + (𝛾𝑘 − 𝑤𝑘)𝜌𝑐2
𝑠 − 𝛿𝑡

2 𝑆𝑣,𝑘, (2.1.15)

𝑆𝑣,𝑘 = 𝛾𝑘(𝐜𝑘 − 𝐮) · 𝐅(𝜑). (2.1.16)

See eq. (1.2.23) for the expression of the volume forces 𝐅(𝜑). The pressure and velocity fields solution
of the Navier-Stokes equations are given by the moments of the 𝑣𝑘,

𝑝 = ∑
𝑘

𝑣𝑘, (2.1.17)

𝐮 = 1
𝜌𝑐𝑠2 (∑

𝑘
𝐜𝑘𝑣𝑘 + 𝛿𝑡

2 𝑐2
𝑠𝐅). (2.1.18)

Note that the Boussinesq approximation simplifies the calculation of the pressure. When the density
difference is taken in account in the kinetic terms of the Navier-Stokes equations, an additional term
proportional to ∇𝜌(𝜑)𝑐2

𝑠 appears in eq. (2.1.18) (see eq. (28b) of [46]).

Phase field LBE

Denote ℎ𝑘 the distribution function associated with the phase field equation (1.3.32). Its LBE is

ℎ𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝛿𝑥𝐞𝑘) = (1 − 1
̄𝜏ℎ
)ℎ𝑘(𝑡, 𝐱) + 1

̄𝜏ℎ ℎeq
𝑘 (𝑡, 𝐱) + 𝛿𝑡𝑆ℎ,𝑘, (2.1.19)

where

̄𝜏ℎ = 𝑀𝜑
𝛿𝑡𝑐2𝑠

+ 1
2, (2.1.20)

ℎeq
𝑘 = 𝑤𝑘𝜑(1 + 𝐜𝑘 · 𝐮

𝑐2𝑠
) − 𝛿𝑡

2 𝑆ℎ,𝑘, (2.1.21)

𝑆ℎ,𝑘 = 𝑤𝑘
𝜆𝑀𝜑
𝑊 2 𝑝′(𝜑)Δ�̄�( ̄𝜇𝐴, ̄𝜇𝐵). (2.1.22)
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The phase field 𝜑 is reconstructed by

𝜑 = ∑
𝑘

ℎ𝑘 + 𝛿𝑡
2

𝜆𝑀𝜑
𝑊 2 𝑝′(𝜑)Δ�̄�( ̄𝜇𝐴, ̄𝜇𝐵). (2.1.23)

Notice that the right-hand side of this last expression also depends on 𝜑: strictly speaking, computing
𝜑(𝑡 + 𝛿𝑡) after the stream-collision would require the same 𝜑(𝑡 + 𝛿𝑡) in the source term, making the
calculation implicit. The same remark applies to the chemical potential fields whose reconstruction
will also depend on 𝜑. We sidestep this issue by using the fields from the previous time step instead.
Explicitly,

𝜑(𝑡 + 𝛿𝑡, 𝐱) = ∑
𝑘

ℎ𝑘(𝑡 + 𝛿𝑡, 𝐱) + 𝛿𝑡
2

𝜆𝑀𝜑
𝑊 2 𝑝′(𝜑(𝑡, 𝐱))Δ�̄�( ̄𝜇𝐴(𝑡, 𝐱), ̄𝜇𝐵(𝑡, 𝐱)). (2.1.24)

Component diffusion LBE

The distribution functions 𝑎𝑘 and 𝑏𝑘 are used to solve the diffusion equations (1.3.33), along with the
LBEs

𝑎𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝛿𝑥𝐞𝑘) = (1 − 1
̄𝜏𝑎 )𝑎𝑘(𝑡, 𝐱) + 1

̄𝜏𝑎 𝑎eq
𝑘 (𝑡, 𝐱),

𝑏𝑘(𝑡 + 𝛿𝑡, 𝐱 + 𝛿𝑥𝐞𝑘) = (1 − 1
̄𝜏𝑏 )𝑏𝑘(𝑡, 𝐱) + 1

̄𝜏𝑏 𝑏eq𝑘 (𝑡, 𝐱),
(2.1.25)

with

̄𝜏𝑎 = �̄�𝐴𝐴(𝜑)
𝛿𝑡𝑐2𝑠

+ 1
2, 𝑎eq

𝑘 =
⎧{
⎨{⎩

𝑤𝑘(3Γ ̄𝜇𝐴 + 𝑐𝐴 𝐜𝑘 · 𝐮
𝑐2𝑠

), 𝑘 ≠ 0,
𝑐𝐴 − 3Γ(1 − 𝑤0) ̄𝜇𝐴, 𝑘 = 0,

̄𝜏𝑏 = �̄�𝐵𝐵(𝜑)
𝛿𝑡𝑐2𝑠

+ 1
2, 𝑏eq𝑘 =

⎧{
⎨{⎩

𝑤𝑘(3Γ ̄𝜇𝐵 + 𝑐𝐵 𝐜𝑘 · 𝐮
𝑐2𝑠

), 𝑘 ≠ 0,
𝑐𝐵 − 3Γ(1 − 𝑤0) ̄𝜇𝐵, 𝑘 = 0,

(2.1.26)

where the ̄𝜇𝛼 were computed at the previous time step by eq. (1.3.34). The factor Γ is a numerical tuning
parameter taken here as Γ = 1/3. Finally, the compositions variables are given by the moments

𝑐𝐴 = ∑
𝑘

𝑎𝑘, 𝑐𝐵 = ∑
𝑘

𝑏𝑘. (2.1.27)

Although 𝑎𝑘 and 𝑏𝑘 discretize an advection-diffusion equation like ℎ𝑘 did, they do not have the
same form for their equilibrium distributions. This is due to the fact that the general lattice Boltzmann
equation reconstructs a diffusive term in terms of the secondmoment of the distribution function. When
the diffused variable is the same as the one under the total time derivative, the secondmoment and zeroth
moment (times the identity matrix) coincide. The generic equilibrium function 𝛾𝑘 also has identical
zeroth and second moment. When the two variables differ, the equilibrium function must be adjusted
in consequence: this is why both 𝒄 and 𝝁 appear in the eqs. (2.1.26).

The same remark applies to the LBM discretization of the Cahn-Hilliard equation. In fact, the present
expressions for 𝑎eq

𝑘 and 𝑏eq𝑘 were derived by analogy with the LBEs for Cahn-Hilliard models, as in [22]
for example.
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2.2 The simulation code LBM_saclay
This section details the portable and high-performance simulation code LBM_saclay, first presented in
[46]. The lattice Boltzmann scheme presented in the previous section (among others) is implemented in
this code, and the simulations that will be shown in the next chapter ran with it on local workstations
or GPU clusters.

Pierre Kestener built the first prototype of LBM_saclay. The goal was to merge the efforts of multiple
researchers at the CEA of Saclaywho each had their own LBM code to have a single codemore adapted to
the modern HPC (High Performance Computing) architectures but without being constrained to them.
It does so by using Kokkos [10], a C++ library for performance portability. Its further development
was a significant part of the thesis work. Before the start of the thesis, the code was able to simulate
a generic advection-diffusion equation and a simple two-phase flow with a conservative Allen–Cahn–
Navier–Stokes model but without the capillary force. During the beginning of the thesis, this force
was added and a coupling to a temperature field with a phase change term was implemented. This
resulted in a model for the simulation of a liquid-gas flow with evaporation which was presented in [46]
and served as a base for the later coupling to the incompressible Navier-Stokes equations of the two-
phase three-component model. Other additions made to LBM_saclay will be mentioned throughout this
section.

In the following, we propose a quick summary of the HPC aspects, the use of the Kokkos and of the
MPI standard for parallelism, and a detailed implementation example in LBM_saclay with the two-phase
three-component model.

2.2.1 High performance computing and parallelization
“High Performance Computing” (HPC) is an umbrella term covering the research and engineering of
fast, distributed and efficient hardware architectures and software. It is often found in the context of
numerical algorithms and simulations. For example, the TOP500 list [36] ranks supercomputers by the
speed at which they can solve an enormous floating-point benchmark problem with performance in
the hundred of PFlops (100 × 1015 Flops, floating points operations per second). Very recently the
exascale milestone (1018 Flops) was even reached by the Frontier system at the US Oak Ridge National
Laboratory in June 2022.

Parallelization is a central component of HPC; because the performance of a single processing chip
is ultimately limited by the heat generated by the dissipative processes taking place inside it, hard-
ware architectures must find performance increases by combining multiple processors in a single unit,
such as in the modern multicore and multithreaded general purpose CPUs. There are different scales
of parallelization: a single multithreaded CPU will operate in parallel with its own memory (known as
shared memory parellism, enabled by e.g. the OpenMP specification or the pthreads library); multiple
processing units can work in parallel and make their computation coherent by communicating together
(distributed memory parallelism, e.g. with the MPI standard); and at a smaller scale, specialized float-
ing point units will pack similar operations on multiple floating point numbers into a single processor
instruction (SIMD, Same Instruction Multiple Data, also known as vectorization).

We took the example of general purpose CPUs, but modern HPC (since a bit less than 20 years [27])
increasingly relies on GPUs (Graphical Processing Units). GPUs are specialized processors originally
built to accelerate 3D computer graphics, whose algorithms also involve a lot of floating point number
crunching. Computer graphics rendering obeys a very strict pipeline and at first this constrained a
lot the capbility scope of GPU hardware and programming interfaces to be highly specialised for this
pipeline. The advent of shader-based rendering allowed more generic computations and eventually led
to the usage of GPUs for numerical simulations and other non-graphics usage, both in terms of hardware
capabilities and software programming interfaces. Of these, we can mention OpenCL and the more
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recent Vulkan (open source specifications of the Khronos group, the same behind OpenGL for graphics),
OpenACC (another open source specification) and CUDA (vendor-locked to Nvidia’s GPUs). These
developments led GPUs to become a more powerful and energy-efficient1 option for general floating
point calculations.

In addition of raw processing power, memory access is a primary concern for high performance: a
performance bottleneck appears if a computing unit processes data faster than it can fetch new data from
main memory. In truth, the advances in memory transfer speeds did not keep up with the acceleration
of computing power of successive hardware generations, and this bottleneck has become ubiquitous. In
2005 already HPC codes were increasingly becoming memory-bound rather than compute-bound [49].
This issue is handled by hardware manufacturers and cluster engineers at every level of parallelism:
modern CPU cores with their own hierarchy of local caches, direct GPU-GPU memory transfer without
passing through the dispatching CPU’s memory, high throughput transfers (e.g. by Ethernet) between
CPUs in a distributed supercomputer, etc.

As mentioned, all these points are not only hardware concerns. Parallelization introduces many
new concerns for the software programmer compared to the usual sequential programming. Parallel
and asynchronous computations will still depend on each other in some way in non-trivial programs,
meaning they must wait for each other or communicate but without ending in a deadlock (where two
parallel tasks endlessly wait for one another). Care in regard to memory accesses is necessary for a
parallel program’s efficiency (to cite only the basics, CPU caches prefer sequential accesses while GPUs
threads prefer a pattern known as memory coalescing with strided accesses) and soundness (avoiding
unordered asynchronous writes at the same place in memory).

Programming for a GPU requires additional tools compared to the more usual CPU programming;
typically, a specialized compiler and/or a specialised application programming interface (API), which
can be more or less complex and unfamiliar to usual programming languages. The different APIs vary a
lot on this last point: for example, OpenCL defines a whole new C-like language in which to write GPU
computations in while CUDA and OpenACC appears as more usual preprocessor directives to the usual
C++ language (but only understood by their own compilers). Each API also exposes more or less low-
level control to the programmer for optimizations. Finally, because of the complexity of programming
GPU applications, their source code can end up being only compilable for these architectures and no
other. This last point will be addressed in the next section through the Kokkos library.

We will close this subsection by re-emphasising the advantages of the physical model and its dis-
cretization for a parallel implementation. The implicit interface trackingwill not introduce any new data
structure or steps in the algorithm: the phase field equation is solved just like any other PDE. The LBM
can work with just simple memory-contiguous arrays with high data reuse because of the stencil-like
memory accesses. These are highly efficient on both CPUs and GPUs, though we may remark that even
the GPU implementation of these simple stencil-based schemes are the subject of research to further
improve their memory throughput [37, 26, 9, 39]. Finally, the relative ease of implementation of both
saves programming efforts which can be then focused on the parallelization.

2.2.2 The Kokkos library
Kokkos [10] is an open-source C++ library released by the Sandia National Laboratories. It defines a
single programming model for shared-model parallelism in the form of a C++ API and build system ele-
ments. The build system compiles the KokkosAPI into a chosen backend. Thismeans that a single source
code using the Kokkos constructs can be compiled to run on parallel CPU (pthread, OpenMP backends)
or GPU (CUDA, HIP backends) architectures with no changes to the source, only to flags given to the

1For example, for one hour of computation on the IDRIS supercomputer Jean-Zay; a single Nvidia Tesla V100 GPU consumes
two to three times the power of the 20 cores of a single Intel Cascade Lake 6248 CPU [34]. However, this GPU has four to five
times the flops of the theoretical peak of that CPU [1].
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build system (typically CMake). The library achieves this with an heavy use of C++ templates and very
few preprocessor macros: the source code will stay relatively familiar to the C++ programmer. Despite
this generic aspect, Kokkos still exposes many optimizations opportunities (e.g. through memory access
patterns, which the developer can also ignore and leave at its default settings); this is what Kokkos
defines as the concept of performance portability.

The fundamental constructs of Kokkos and the ones most used in LBM_saclay are the Kokkos::
View type and the concept of parallel functors. AKokkos::View is a generic view into a contiguous
array allocated in CPU (host) or GPU (device) memory2 . It supports multidimensional indexing and
slicing and its memory order with respect to its dimensions can be parametrized. The concept of parallel
functors (or “Kernels” as called in LBM_saclay) defines a regular C++ class whose data and functions
can be accessed and executed on a GPU; it is best illustrated by an example, see listing 1.

/ / Type o f a v iew i n t o a 1D a r r ay o f d o u b l e s a l l o c a t e d i n GPU memory .
using MyView = Kokkos : : View<double ∗ , Kokkos : : De f au l t Exe cu t i onSpa c e > ;

s t ruc t Kerne l {
MyView view ;

Dev i c eFunc to r (MyView v ) : view ( v ) { }

/ / The f u n c t i o n t h a t w i l l be d i s p a t c h e d on t h e GPU and c a l l e d
/ / on a range o f i n d i c e s .
KOKKOS_INLINE_FUNCTION void operator ( ) ( const int &i ) const {

/ / Do some work on view a t i n d e x i . . .
view ( i ) = ( double ) i ;

}
} ;

/ / Somewhere e l s e , b e tween Kokkos : : i n i t i a l i z e ( ) and Kokkos : : f i n a l i z e ( ) . . .
/ / A l l o c a t e an a r r ay o f 256 d o u b l e s and e x e c u t e t h e f u n c t o r .
auto a r r ay = MyView ( ” l a b e l ” , 2 5 6 ) ;
auto f u n c t o r = Dev i c eFunc to r ( a r r ay ) ;
Kokkos : : p a r a l l e l _ f o r ( 2 5 6 , f u n c t o r ) ;

Listing 1: C++ snippet illustrating the basic usage of Kokkos’ View type and functor concept.

2.2.3 MPI domain decomposition
Kokkos onlymanages the sharedmemory parallelism. The distributedmemory parallelism in LBM_saclay
is handled separately with an implementation of MPI (Message Passing Interface), typically the Open-
MPI library [13].

We define a simple Cartesian domain decomposition of the numerical domain by distributing 𝑚𝑥 ×
𝑚𝑦 × 𝑚𝑧 copies of a 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 subdomain (in 2D, ignore 𝑚𝑧 and 𝑛𝑧) on each MPI process. Each of
these subdomains is enlarged by one lattice node in all directions: it is the layer of ghost nodes which
serve as copies of the boundary nodes of the neighboring subdomains and which are used to implement
the boundary conditions (see the next section). Each MPI process also owns a pair of buffers, one

2In the following, we will use “view” and “array” interchangeably to refer to a contiguous memory allocation managed by
Kokkos. This is only adequate because in LBM_saclay there’s only ever one view for each allocated array in use.
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“send” and one “receive” buffer, for each of its subdomain’s faces (including side and corners). This is
all illustrated in figure 2.3. The communications proceed with the following steps:

1. all subdomains copy the data of their two faces perpendicular to the ±𝑥 directions into their
corresponding send buffers;

2. this data is communicated through MPI into the receive buffers of the neighbouring subdomain
(+𝑥 send buffer to right neighbour’s −𝑥 receive buffer, −𝑥 send buffer to left neighbour’s +𝑥
receive buffer);

3. the subdomains copy the received data in the receive buffers data into their corresponding ghost
face;

4. the steps above are repeated for the 𝑦-axis faces and again for the 𝑧 axis faces. Processing each
axis separately ensures the corners are exchanged coherently by the ghost cell pattern [25]; see
again figure 2.3.

By “data”, wemean the distribution functions and the intermediarymacroscopic variables (including
spatial derivatives). The first is necessary for the stream step, and the second is necessary for the source
terms in certain LBEs when streaming from the ghost layer and for the finite differences stencils. It
could have been possible to only communicate the distribution functions and then consistently rebuild
the macroscopic variables in the ghost layer. Streaming from the ghost layer would however require a
second ghost layer if a source term includes a finite difference calculation. This was in fact what the
original version of LBM_saclay did but this behaviour was changed during the thesis. The change was
mainly motivated by an earlier investigation of a conservative Allen-Cahn reformulation of the LBM
model of Safari et. al. [40] of liquid-gas phase change. The LBE for its phase field distribution included
the gradient of the phase field variable (its own moment), which would have recursively required an
infinite number of ghost layers. Communicating the macroscopic variables never requires more than
one layer of ghost nodes. In addition, a layer with all macroscopic variables is generally represents
fewer data than a layer with multiple distributions functions: for example, the two-phase ternary flow
LBEs need at most 13 macroscopic variables in memory (13 double-precision floating points) for each
node, while a node hosts 4 distribution functions with at minimum 9 directions (36 doubles).

Note that the 2D or 3D Cartesian aspect of the decomposition is conveniently represented by MPI’s
API (the MPI_Cart_* family of functions). This API can define a periodic decomposition: for in-
stance, the left neighbour of the leftmost subdomain is the rightmost subdomain. In the subdomains at
the edge of the decomposition, a periodic boundary condition is thus in practice identical to a “commu-
nication” boundary condition.

2.2.4 Boundary conditions with the ghost layer
Conveniently, the ghost layer can also be used to implement the boundary conditions. As mentioned
before, the case of periodic boundary conditions is equivalent to the communications in a periodic
subdomain decomposition: they are implementing by simply allowing streaming into and from the
ghost layer. For the bounceback and anti-bounceback boundary conditions, we make use of the fact that
they can both be seen as a replacement of the streaming step. They are implemented by the following
strategy:

• we again allow distributions on the real (sub)domain nodes to stream into the ghost layer. Thus,
at time 𝑡 the distribution 𝑓∗

𝑘(𝑡, 𝐱) gets sent into the ghost layer as 𝑓𝑘(𝑡 + 𝛿𝑡, 𝐱ghost).
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copy
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send buffer
receive buffer
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Figure 2.3: MPI domain decomposition and communications of boundary data in LBM_saclay. An ex-
ample of a 2D 2×2 decompostion is presented here (𝑚𝑥 = 𝑚𝑦 = 2). We illustrate the communication
of the north boundary of the bottom-left (red outlined rectangle) subdomain into the ghost layer of its
neighbor above (1). When this neighbor then communicates its eastern boundary data (2), it is seen
that the corner data of the bottom-left subdomain correctly lands in the corner of the ghost layer of the
top-right subdomain; this is the ghost cell pattern. For clarity, the other buffers and communications are
not represented.



CHAPTER 2. NUMERICAL IMPLEMENTATION 46

• We do not allow distributions from the ghost layer to stream into the real domain. Instead, after
the stream-collision from 𝑡 to 𝑡 + 𝛿𝑡, a kernel copies back the ghost distributions into the neigh-
bouring real boundary nodes with the inverse directions: 𝑓𝑘(𝑡 + 𝛿𝑡, 𝐱ghost) = 𝑓∗(𝑡, 𝐱) is now
correctly found as 𝑓𝑘−(𝑡 + 𝛿𝑡, 𝐱).

A lot of the additions made to LBM_saclay during the thesis concerned the handling of boundaries. The
above specification of the boundary conditions is part of it. Before that, what LBM_saclay effectively
did was a full-way bounceback where the boundary condition only became effective after 2𝛿𝑡 and the
anti-bounceback scheme was absent. Furthermore, an issue was found with corner nodes sometimes
becoming unstable when the domain had periodic boundaries along one axis and (anti-)bounceback on
another. It turned out that it was necessary to always order the application of the non-periodic boundary
conditions before the periodic ones, and the fix was implemented. Lastly, we implemented the off-centre
finite differences stencil mentioned in sec. 2.1.5, needed near non-periodic boundaries. We have written
some utility functions which branch to the necessary stencil at a given node position and boundary
conditions: the user only needs to call one function to calculate the gradient (or Laplacian) and does not
need to keep track of the different cases.

2.2.5 Implementation of the two-phase three-component phase field model
We present here a detailed example of an LBM model implemented in LBM_saclay by taking the case
of the two phase-three component flow model. Remind that the physical model was derived in chapter
1 and its LBM discretization is found in section 2.1.6.

The main structure of the two-phase phase ternary flow model is a Kokkos kernel, namely two
_phases_ternary_flow::TimeStepKernel3. It reads andwrites data frommultiple Kokkos
views: one 4D array (or 3D; two or three space dimensions plus one dimension for the velocity set) for
each distribution functions 𝑣𝑘, ℎ𝑘, 𝑎𝑘 and 𝑏𝑘 (including the ghost layer), plus one f_tmp view to hold
the distributions at 𝑡+𝛿𝑡 during the stream-collision operation to avoid overwriting previous data out of
order due to the parallelism. It also manipulates a view into a 3D table containing the set of macroscopic
variables of interest for outputs (𝜑, �̄�, 𝒄, 𝑝, 𝐮) and/or necessary for intermediary calculations (notably
the gradient and Laplacian of 𝜑). Finally, it can also read from a small structure holding the values of
the physical parameters (the ones in table 1.1) which are parsed from a text file supplied by the user.

The TimeStepKernel has multiple variants4 of the dispatched operator() functions:

• variant Init will initialize each distribution function at their equilibrium as explained in sec.
2.1.4,

• variants VUpdate, HUpdate, AUpdate and BUpdate perform the stream-collision oper-
ation for each distribution function, implementing all the schemes written in the paragraphs of
sec. 2.1.6. The new distribution functions computed for 𝑡 + 𝛿𝑡 are saved in f_tmp, which is
then swapped for the original view once they’ve all been calculated. The boundary conditions are
applied by a separate functor after calling each *Update variant.

• Variants MacroUpdate1 and MacroUpdate2 compute and save the macroscopic variables.
There are two steps and the second must run after the first has finished working on all nodes. This
is because MacroUpdate2 computes the space derivatives of 𝜑 (and the values depending on
them)which is itself updated byMacroUpdate1. In the case of periodic orMPI communication
boundaries, a separate functor does a periodic copy of the macroscopic variables after the two
variants.

3Found in src/models/two_phase_ternary_flow.hpp in the source tree
4Kokkos can understand and dispatch multiple variants of operator() if they’re distinguished using the C++ function

overloading feature with unit structs.
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In addition to this functor (and other model-specific functors), a class LBMRun5 defines the cen-
tral functionalities of the simulation code. It is where the parameter text file is parsed into memory,
the Views are allocated, result files are output, the model and boundary conditions kernels are dis-
patched and the communication strategy (sec. 2.2.3) is implemented. In particular, one time iteration
of the two-phase ternary flow model is done by the function LBMRun::update_two_phases
_ternary_flow which glues together the dispatch of the different functors.

Note that in truth, the kernels and LBMRun are actually C++ class templates (e.g. LBMRun<int
D,int Q>) to specialise them for each lattice. Doing so avoid duplicating by hand the code of the LBM
algorithm for each lattice (although 2D and 3D implementations still need to be written separately) with
no cost at runtime. In particular, keeping the number of velocities𝑄 a compile-time constant encourages
the compiler to unroll the inner loops on all lattice directions.

2.3 Other numerical considerations
The numerical tooling developed during the thesis is not limited to the core calculations of LBM_saclay.
For example, the simulation code originally could only output simulation results in the vtk format, an
XML-based format specifically designed for Kitware’s VTK (Visualization ToolKit) library on which
depends the Paraview visualization software. We have written a first version of an alternate output
in the HDF5 format. It is a self-describing hierarchical format adequate for heavy scientific data. It
supports compression for individual data fields, is supported by multiple visualization software, and is
can be easily manipulated with the command-line interface tools distributed with the library. Pierre
Kestener improved the HDF5 output of LBM_saclay, notably by enabling parallel I/O so that multiple
MPI process may coherently write to a single output file.

We also tried to ensure the performance of the post-processing of the simulation results. We have
written C++ programs also employing the Kokkos library and used them to extract data from simula-
tions (e.g. the interface position in the later chapter’s diffusion couples, or geometrical measurements
in the droplet growth simulations). We did not implement distributed memory parallelism in the post-
processing tools, but we used the GNU parallel software [45] to parallelise the processing at the level
of the filesystem since each time step has its own separate output file. Finally, we have used either the
Paraview or the visit software [8] to visualize simulations.

2.4 Conclusion
Throughout this chapter we have seen how we discretize the two-phase three-component flow model
and implement it in a new, high-performance and portable simulation code based on the lattice Boltz-
mann method. We are now one step closer to bringing the model to quantitative simulations of droplet
growth by having access to highly parallel simulations. These can be quickly deployed on either a
desktop workstation or a supercomputer, and we will show examples of both in the next chapter.

Before that, we shall mention the possible improvements to the numerical implementation of the
model, the first candidate being the collision operator in the LBM. It is known that the simple BGK
collision operator is not the best when it comes to the stability or accuracy of the simulations, and bet-
ter alternatives such as the multiple-relaxation-time (MRT) [21] and two-relaxation-time (TRT) [16] are
common in the literature. In practice, we have estimated that our simulations stay stable within one or
two orders of magnitudes of difference between the different diffusion rates of the model (viscosities,
chemical mobilities and phase field mobility). We have also considered implementing more elaborate
boundary conditions, but these fell outside the scope of the immediate thesis objectives: bounceback

5Defined in src/LBMRun.h.
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with moving walls (ie. a forced tangential velocity) would allow the simulation of a pulsed column,
a liquid-liquid extraction device used at CEA Marcoule for the treatment of nuclear waste; and out-
flow boundary conditions [32] could have been convenient in the early film boiling simulation or in
the present glass droplet growth simulations to allow the dispersed phase to exit the numerical domain
without accumulating on a bounceback wall. We participated in the supervision of the internship which
investigated the addition of solid bounceback nodes within the simulation domain; this is an approach
often used to model a porous media with the LBM [23, 44]. Lastly, while the performance of the code al-
ways proved very satisfying in practice (even the heaviest 3D simulations completed in under 24 hours),
it would have been interesting to perform more measurements of the performance difference of the var-
ious changes made to the code during the thesis – for example, the tradeoff between the communication
of macroscopic variables versus the additional ghost layer of distribution variables. There was at one
point a rapid performance comparison made between the present fork of the code against the one main-
tained by another PhD student working on LBM_saclay, to coarsely compare the performance relative
to the architectural changes made to the code structure.
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Chapter 3

Simulations

In this chapter, we present the simulation performed of the two-phase ternary phase field model with
flow described at the end of chapter 1. These simulations were conducted with the lattice Boltzmann
formalism and the simulation code LBM_saclay, presented in the previous chapter.

Section 3.1 will first explain the convention taken for the system of units. The following sections will
then present the step-by-step validations of the model (sec. 3.2) until it is deemed ready to represent the
phase separation dynamics in the Na2O–SiO2–MoO3 system (sec. 3.3). The chapter is closed by section
3.4.1 with ways to further reinforce the description of the model ternary glass so that we may eventually
compare simulations to experimental observations.

3.1 Numerical units
The simulation parameters and their results are presented with their own unit system. This system is
defined in terms of a characteristic length 𝐿 and a characteristic time 𝑇 . When a flow is present, we
must also define a characteristic unit involving mass and as such we always define the fluid’s density 𝜌
as the unit density.

For each simulation, 𝐿, 𝑇 must be described. Setting this convention is convenient because the
physical parameters can then be consistently presented with the same numerical value as the ones used
explicitly to parametrize the simulation code.

3.2 Verifications of subsets of the two-phase three-component
flow model

3.2.1 Two-phase flow: Double Poiseuille
We first verified the two-phase flow subset of the model. The simulations are carried out with the
diphasic flow model of LBM_saclay. It corresponds to a subset of the LBE system of section 2.2.5 with
the chemical diffusion equations removed and the addition of a constant force term in the momentum
equation.

Double Poiseuille

The double Poiseuille flow is an extension of the usual single-phase Poiseuille flow test case [34]. It
considers a channel of width 2ℎ with two immiscible fluids of different viscosities layered on top of
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−ℎ

0

ℎ

phase 0

phase 1𝐮(𝑦)𝐅

Figure 3.1: Configuration of the double Poiseuille test case. In a channel of width 2ℎ, the fluid phase 0
is layered on top of the fluid phase 1 with a plane interface between both. A constant force 𝐅 drives the
flow. The viscosity ratio between both phases gives half-parabola profiles of varying amplitudes for the
velocity along the channel axis. It is however continuous at the interface. No-slip conditions force the
velocity to 0 at the walls.

each other. The flow is driven by a constant force parallel to the interface of magnitude

𝐹 = 𝜌𝑢𝑐(𝜈0 + 𝜈1)
ℎ2 (3.2.1)

with 𝑢𝑐 the desired velocity along the interface. The configuration is illustrated in figure 3.1. The
solution is expected to converge to the steady flow

𝑢𝑥(𝑦) =
⎧{{
⎨{{⎩

(𝜈0 + 𝜈1)𝑢𝑐
2𝜈1

(− 𝑦2

ℎ2 + 𝑦
ℎ

𝜈0 − 𝜈1
𝜈0 + 𝜈1

+ 2𝜈1
𝜈0 + 𝜈1

), 0 < 𝑦 < ℎ,
(𝜈0 + 𝜈1)𝑢𝑐

2𝜈0
(− 𝑦2

ℎ2 + 𝑦
ℎ

𝜈0 − 𝜈1
𝜈0 + 𝜈1

+ 2𝜈0
𝜈0 + 𝜈1

), −ℎ < 𝑦 < 0,
(3.2.2)

assuming an infinite 2D channel along the 𝑥-axis. The channel has no-slip boundary conditions on its
walls. Because the interface remains planar, the surface tension never comes into play. The gravity is
also ignored.

The simulation is initialized at rest with a homogeneous pressure. The phase field initially has its
equilibrium profile for a single plane interface along the 𝑥-axis at 𝑦 = 0. The no-slip boundary condi-
tions are enforced by the half bounce-back method on 𝑦 = ±ℎ and the domain is periodic along the
𝑥-axis with a period 2ℎ. The lattice has 256 × 128 nodes and the other simulation parameters are listed
in table 3.1. Three viscosity ratios are simulated: 𝜈1/𝜈0 = 1/3, 1/5 and 1/10. Figure 3.2 compares
the obtained steady state velocity field against eq. (3.2.2) for each ratio. The flow simulations produce
satisfying results, with only a slight departure from the analytical profile at 𝜈0/𝜈1 = 1/10.

See also fig. 6b of our earlier work [28] which presents the same test case with varying density
ratios. Fig. 6c of the same reference also compares the linear and harmonic phase-field interpolation
of the kinematic viscosity. The much better results shown for the latter is the reason we only consider
the harmonic interpolation here. In this same publication, we had also verified the double Poiseuille
solution in the case of different densities, and we verified the Laplace law for a single bubble also in the
case of different densities.

3.2.2 Two-phase three-component: diffusion couple
Thediffusion couple is a test case to validate the two-phase three-component chemical diffusion, without
flow. Two materials of varying composition are welded next to each other and the interface is displaced
only by the diffusion across it. This setup is illustrated in figure 3.3. The problem is an extension of
the free-surface Stefan problem [8] with multiple diffused variables and a discontinuity at the interface.
Diffusion couples also serve as real experiments to measure diffusion coefficients of materials, as done
in e.g. [21].
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LBM
lattice D2Q9
domain [−2𝐿, 2𝐿] × [−𝐿, 𝐿], 256 × 128 nodes
𝛿𝑥 1 𝐿
𝛿𝑡 2.44 × 10−5 𝑇

Two-phase flow
𝜌 1 𝜌
𝜈0 1 𝐿2 · 𝑇 −1

1/3 ratio 1/5 ratio 1/10 ratio

𝜈1 0.333 𝐿2 · 𝑇 −1 0.2 𝐿2 · 𝑇 −1 0.1 𝐿2 · 𝑇 −1

𝑊 6𝛿𝑥 = 0.09375 𝐿
𝑀𝜑 1.2 𝐿2 · 𝑇 −1

𝜎 0 𝜌 · 𝑣2 · 𝐿
𝐠 𝟎 𝐿 · 𝑇 −2

Double poiseuille
ℎ 1 𝐿
𝑢𝑐 0.01 𝐿 · 𝑇 −1

Table 3.1: Parameters of the double poiseuille simulations with varying viscosity ratios. The length unit
𝐿 is the half-width of the channel (ℎ = 1 𝐿) and the time unit 𝑇 is the characteristic viscuous time of
phase 0, namely 𝐿2/𝜈0. The domain is discretized by the D3Q9 lattice with 256 × 128 nodes.

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018
0.02

−1 −0.5 0 0.5 1

𝑢 𝑦
(𝐿

)

𝑦 (𝐿)

𝜈1/𝜈0 = 1/3 (LBM)
𝜈1/𝜈0 = 1/5 (LBM)
𝜈1/𝜈0 = 1/10 (LBM)
𝜈1/𝜈0 = 1/3 (analytical)
𝜈1/𝜈0 = 1/3 (analytical)
𝜈1/𝜈0 = 1/3 (analytical)

Figure 3.2: Velocity profiles for the double poiseuille test-case for different ratios of kinematic viscosities.
The analytical profile of eq. (3.2.2) is plotted with black lines and is compared to the simulation results
with colored symbols.



CHAPTER 3. SIMULATIONS 55

𝐶𝐴

𝐶𝐵

𝑥𝐼
𝑥

̇𝑥𝐼

phase 0 phase 1

Figure 3.3: Setup of the ternary diffusion couple test case. A single planar interface split the infinite
physical domain in halves, one filled with phase 0 and the other with phase 1. The composition are
held constant by boundary conditions at ±∞. At the interface, the compositions are constrained by
the thermodynamic equilibrium and the jump in the compositions and in their gradients are linked
through by interface’s displacement. The solution are compositions profiles in error functions branches
with a discontinuity at the interface, and a interface velocity proportional to

√
𝑡. The problem can be

formulated equivalently in term of the chemical potentials �̄�, which is continuous at the interface.

The formulation and the solutions of the problem can be found in [18] and will be reiterated here.
Using our phase field model, we will approximate the sharp interface problem

𝜕𝑡𝒄 = {𝑫0∇2𝒄, −∞ < 𝑥 < 𝑥𝐼(𝑡),
𝑫1∇2𝒄, 𝑥𝐼(𝑡) < 𝑥 < +∞, (3.2.3)

with𝑫0 and𝑫1 constant diffusionmatrices and 𝑥𝐼(𝑡) the position of themoving interface. The problem
is completed with the interface conditions

𝒄|𝑥−
𝐼

= 𝒄−,
𝒄|𝑥+

𝐼
= 𝒄+,

𝑑𝑥𝐼
𝑑𝑡 (𝒄|𝑥−

𝐼
− 𝒄|𝑥+

𝐼
) = −(𝑫0𝜕𝑥𝒄|𝑥−

𝐼
− 𝑫1𝜕𝑥𝒄|𝑥+

𝐼
),

(3.2.4)

with 𝒄± compositions that satisfy chemical equilibrium, which we will derive from the same free energy
quadratic wells as before (sec. 1.3.2). This equilibrium does not necessarily coincide with the one taken
as reference in the grand potential formulation (𝒄eq

0 and 𝒄eq
1 ). The third interface condition, the balance

of the diffusion fluxes, ensures that the compositions are conserved. The initial conditions

𝑥𝐼(𝑡 = 0) = 0,

𝒄(𝑡 = 0, 𝑥) = {𝒄−∞, −∞ < 𝑥 < 0,
𝒄+∞, 0 < 𝑥 < +∞,

(3.2.5)

must also be specified.
It will be convenient to formulate the problem in the mixed 𝒄–𝝁 formulation. This is easy because

of linear relationship between both variables with quadratic free energies, and the fact that the global
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conservation of 𝒄 is not in effect in an infinite medium. The problem now writes

𝜕𝑡𝒄 = {�̄�0∇2�̄�, −∞ < 𝑥 < 𝑥𝐼(𝑡),
�̄�1∇2�̄�, 𝑥𝐼(𝑡) < 𝑥 < +∞,

�̄�|𝑥−
𝐼

= �̄�|𝑥+
𝐼

= �̄�± with Δ𝜔(𝝁±) = 0,
𝑑𝑥𝐼
𝑑𝑡 (𝒄|𝑥−

𝐼
− 𝒄|𝑥+

𝐼
) = −(�̄�0𝜕𝑥�̄�∣𝑥−

𝐼
− �̄�1𝜕𝑥�̄�∣𝑥+

𝐼
),

𝑥𝐼(𝑡 = 0) = 0,

�̄�(𝑡 = 0, 𝑥) = {�̄�−∞, −∞ < 𝑥 < 0,
�̄�+∞, 0 < 𝑥 < +∞.

(3.2.6)

with �̄�± the chemical potential at the interface which may again not coincide with the reference equi-
librium �̄� = 0. With a sharp interface, the closure relation between 𝒄 and �̄� is

�̄� = {�̄�0(𝒄 − 𝒄eq
0 ), −∞ < 𝑥 < 𝑥𝐼(𝑡),

�̄�1(𝒄 − 𝒄eq
1 ), 𝑥𝐼(𝑡) < 𝑥 < +∞. (3.2.7)

As a simplifying assumption we study only the case where �̄�0 = �̄�1 = 1, the identity matrix, and
where the mobility matrices �̄�0, �̄�1 are diagonal. The diffusion and closure equations are thus decou-
pled and the solutions to the diffusion couple are known to be [18, 11, 27, 15]

̄𝜇𝛼(𝑡, 𝑥) =

⎧{{{{
⎨{{{{⎩

̄𝜇𝛼
−∞ + ( ̄𝜇𝛼

± − ̄𝜇𝛼
−∞)

erfc(−𝑥/2√�̄�𝛼𝛼
0 𝑡)

erfc(−𝜉/2√�̄�𝛼𝛼
0 )

, −∞ < 𝑥 < 𝑥𝐼(𝑡),

̄𝜇𝛼
+∞ + ( ̄𝜇𝛼

± − ̄𝜇𝛼
+∞)

erfc(𝑥/2√�̄�𝛼𝛼
1 𝑡)

erfc(𝜉/2√�̄�𝛼𝛼
1 )

, 𝑥𝐼(𝑡) < 𝑥 < +∞,

(3.2.8)

for 𝛼 = 𝐴, 𝐵, (3.2.9)
𝑥𝐼(𝑡) = 𝜉

√
𝑡. (3.2.10)

Note that this solution is self-similar with a unique dependency on the scaled variable 𝑥/
√

𝑡. The pa-
rameters 𝜉 and �̄�± are identified by the tie-line the system chooses at the interface. In a finite thermo-
dynamic system this choice is determined by its global component inventory. For the infinite diffusion
couple, it is instead determined by the coupling of the chemical equilibrium at the interface and the dy-
manical conditions (flux balance and boundary conditions at ±∞). This coupling translates to 𝜉 being
a solution of the transcendental equation

1
2𝜉((Δ𝑐eq,𝐴)2(𝑢𝐵

0 (−𝜉) + 𝑢𝐵
1 (𝜉) + (Δ𝑐eq,𝐵)2(𝑢𝐴

0 (−𝜉) + 𝑢𝐴
1 (𝜉)))

= Δ𝑐eq,𝐴(𝑢𝐵
0 (−𝜉) + 𝑢𝐵

1 (𝜉))(𝜇𝐴
−∞𝑢𝐴

0 (−𝜉) + 𝜇𝐴
+∞𝑢𝐴

1 (𝜉))
+ Δ𝑐eq,𝐵(𝑢𝐴

0 (−𝜉) + 𝑢𝐴
1 (𝜉))(𝜇𝐵

−∞𝑢𝐵
0 (−𝜉) + 𝜇𝐵

+∞𝑢𝐵
1 (𝜉))

with 𝑢𝛼
𝜋(±𝜉) = √𝑀𝛼𝛼

𝜋
𝜋

exp(−𝜉2/4𝑀𝛼𝛼
𝜋 )

erfc(±𝜉/2√𝑀𝛼𝛼𝜋 ) ,

(3.2.11)

and �̄�± are 𝜉 are related by

− 1
2𝜉Δ𝑐eq,𝛼 = (𝜇𝛼

± − 𝜇𝛼
−∞)𝑢𝛼

0 (−𝜉) + (𝜇𝛼
± − 𝜇𝛼

+∞)𝑢𝛼
1 (𝜉). (3.2.12)
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These equations are obtained after somemanipulations by inserting the solutions (3.2.8) and (3.2.10) into
the second and third equations of the system (3.2.6). . Because of its transcendental nature, eq. (3.2.11) is
solved numerically with the Broyden’s method root-finding algorithm implemented in [19]. It is known
that the equation can have either zero, one, or three solutions, each corresponding to a different tie-line.
Our simulations are always in the case where 𝜉 has only one possible value.

This sharp interface problem is approached with the two-phase ternary phase field model. This
will verify the consistency of its thermodynamic subset (without flow) and in particular confirm that
the proper interface conditions are asymptotically reconstructed. The reconstructed Gibbs-Thomson
condition was mentioned in sec. 1.2.5; in the case of a plane interface (𝜅 = 0) and a properly tuned 𝜆
parameter (such that 𝛽 = 0), it should be equivalent to the classical condition of chemical equilibrium
at the interface. The flux balance at the interface should also always be reconstructed.

We conduct two simulations of a diffusion couple, one with identical phase mobilities (“phase-
symmetric”1, �̄�0 = �̄�1) and the other with different phase mobilities (“phase-asymmetric”). The
infinite 𝑥-axis is simulated with a 2D numerical domain of half-length 𝐿 very large in comparison to
the distance reached by the diffusion front. For this reason the bounce-back and anti-bounceback (en-
forcing �̄�±∞ at ±𝐿) can both be used with no noticeable difference. The second dimension is taken
small and periodic for the simulation to be equivalent to a 1D problem. The numerical domain is then
[−𝐿, 𝐿] × [0.012𝐿, −0.012𝐿] with 3000 × 36 nodes of a D2Q9 lattice. The time unit 𝑇 is taken as the
earliest time at which a diffusion reaches 𝐿, ie. 𝐿2/max(�̄�0, �̄�1). The parameters are specified in
table 3.2.

Figure 3.4 shows the interface displacement produced by the simulations. In both cases they re-
spect the evolution proportional to the square root of time with an adequate coefficient. The phase-
asymmetric case seems to undershoot the analytical solution a bit however; we attribute this to the
fact that with phase-asymmetric mobilities, the errors made by the phase field model on the interface
condition are impossible to cancel [1]. In addition, both setups have more noticeable errors in the very
early times (these times are not plotted on the figures). This is expected: at 𝑡 = 0, the analytical inter-
face velocity 𝑑𝑥𝐼/𝑑𝑡 is infinite and this cannot be properly reproduced by the phase field model or the
numerical discretization.

Figure 3.5 shows the composition profiles near the interface in the phase-asymmetric configuration.
The natural discontinuity of the composition is respected until the diffuse interface smoothens it out.
This smoothened discontinuity is seen to correspond to the phase field model locally crossing the mis-
cibility gap over the diffuse interface, linearly interpolating from 𝒄− to 𝒄+. This is consistent with the
fact that the phase field model interpolates the bulk thermodynamics with 𝜑.

At the time these simulations were made, the values of 𝜆 were chosen “by hand” to obtain the
best fit. However, in the phase-symmetric case, an asymptotic analysis later showed that 𝜆 = 110 fell
within the same order of magnitude as the value 𝜆 = 155.95 that exactly cancel the dependence on
the interface velocity in the Gibbs-Thomson condition as assumed in the problem formulation (see sec.
A.4.8 of appendix A for more details).

These results prove that our phase field model correctly describes the thermodynamics and kinet-
ics of a two-phase three-component interface. The reconstructed Gibbs-Thomson condition was also
verified and the model is able to approach a sharp-interface problem and its solution.

1In the litterature on phase change problems, problems are commonly distinguished as “symmetric” or “asymmetric” depend-
ing on the equality or not of the diffusive coefficients of each phase. This must not be confused with the property of symmetry
of matrices. In particular the multi-component diffusion matrices must always be symmetric matrices, but may or may not take
different values in each phase.
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LBM
lattice D2Q9
domain [−𝐿, 𝐿] × [0.012𝐿, −0.012𝐿], 3000 × 36 nodes
𝛿𝑥 1/1500 𝐿
𝛿𝑡 1.481481 × 10−9 𝑇

Phase field
𝑊 1.2 × 10−3 𝐿
𝑀𝜑 1.2 𝐿2 · 𝑇 −1

phase-symmetric phase-asymmetric
𝜆 110 6000

Free energy
�̄�0 1
�̄�1 1
𝒄eq

0 (0.3 0.3)𝑇

𝒄eq
1 (0.4 0.4)𝑇

Mobilities
phase-symmetric phase-asymmetric

�̄�0 diag(1.0 0.8)𝑇 𝐿2 · 𝑇 −1 diag(1.0 0.9)𝑇 𝐿2 · 𝑇 −1

�̄�1 diag(1.0 0.8)𝑇 𝐿2 · 𝑇 −1 diag(0.85 0.7)𝑇 𝐿2 · 𝑇 −1

Diffusion couple
phase-symmetric phase-asymmetric

�̄�−∞ (0.1 −0.125)𝑇 (0.1 −0.125)𝑇

�̄�+∞ (−0.1 0.2)𝑇 (−0.175 0.2)𝑇

Table 3.2: Parameters for the two simulations of a ternary diffusion couple, one phase-symmetric and
the other phase-asymmetric. In the phase-symmetric case, the solution to the transcendental equation
(3.2.11) is 𝜉 = −0.269824 𝐿 · 𝑇 −1/2; in the phase-asymmetric case, 𝜉 = 0.039175 𝐿 · 𝑇 −1/2. The length
unit 𝐿 is the half-length of the numerical domain and the time unit 𝑇 is the earliest time at which a
diffusion front reaches the domain’s bounds.
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Figure 3.4: Displacement of the interface during the simulation of a (left) phase-symmetric and (right)
phase-asymmetric ternary diffusion couple. The numerical solution in purple crosses is compared to
the analytical solution as the black solid line.
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Figure 3.5: Composition profiles near the interface in the simulation of a phase-asymmetric diffusion
couple. The simulated profiles appears in purple crosses (𝑐𝐴) and green squares (𝑐𝐵). The analytical
profiles, derived from eqs. (3.2.7), (3.2.8) and (3.2.10), are indicated in solid black lines.
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3.3 Simulation of droplet growth
As was mentioned in the introduction, it is known that nucleation and growth occurs in the Na2O–
SiO2–MoO3 glass. To prepare ourmodel to describe the interface dynamics in this system, we performed
simulations of the ripening of an ensemble of randomly distributed droplets.

As section 3.3.1 will explain, the growth of nucleated droplets is usually quantified by their average
radius. At late times, it is expected to follow a power-law in time and its exponent can depend on the
properties of the flow, if present. Section 3.3.2 will detail the pre-nucleated initial conditions of these
simulations. Section 3.3.3 then explains how this average radius is measured, and section 3.3.4 finally
presents the result of the ripening simulations.

3.3.1 Theory of Ostwald ripening
TheOstwald ripening is the name given to the observed redistribution of mass during grain growth after
nucleation. It is driven by the surface tension, which creates a difference of chemical potentials between
droplets of difference sizes. We have seen this through the Gibbs-Thomson condition (sec. 1.2.5); it tells
us that the smaller a droplet is, the more it departs from the planar interface equilibrium, in terms of
Δ�̄�(�̄�). After linearizing in the chemical potential, this means that there is a diffusion of components
from small droplets (“high” �̄�) to larger ones (“low” �̄�). To accommodate the added components without
supersaturating, the larger droplets necessarily grow; conversely, the smaller droplets shrink and end
up evaporating.

The classical quantitative treatment of this phenomenon is the Lifshitz-Slyozov theory [17]. It shows
that the average droplet radius follows an inverse power law of time,

⟨𝑅⟩ ∝ 𝑡1/3. (3.3.1)

This is in a derivation when diffusion is the only transport mechanism. When a liquid flow is taken in
account, and once the minority phase is sufficienltly coalesced, a crossover in the exponent

⟨𝑅⟩ ∝ 𝑡 (3.3.2)

is expected. This was proposed by E. D. Siggia [24] by describing the hydrodynamic interaction between
coalescing droplets via the lubrication theory.

We note thatmore advanced treatments of the diffusion-controlled kinetics of nucleation and growth
can be seen in V. I. Kalikmanov’s book [12].

The literature has many examples of the application of the phase field theory to the modelling of
ripening. Among recent examples without flows, Yamada et al. [33] investigate solid ripening under a
temperature gradient which induces global grainmigration and a greater prefactor to the 𝑡1/3 law; Wang
et al. [31] and Ravash et al. [23] model sintering of solid grains in a liquid matrix, thus requiring careful
geometrical control (by handlingmultiple interface and surface tensions, or the privileged crystallization
directions, respectively). With flows, Henry and Tegze [10, 9] have shown the switch to a 𝑡 regime in
liquid-liquid systems using a Cahn-Hilliard model, and the possible departure from this regime and
changes in topology if there is asymmetries in the phase fraction or the viscosities.

We intend to also show the departure from the 𝑡1/3 law using our alternate Allen-Cahn model. In
addition, we illustrate the possible sedimentation under a gravity field (ie. bigger droplets will migrate
faster), which according to Siggia also induces a second crossover in the power law.

3.3.2 Initial conditions
In the literature, phase field approaches to ripening are often based on Cahn-Hilliard-typemodels. These
models can evolve a randommixture of components and produce local agglomerates of daughter phase.
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With our model however, droplet growth can only be simulated starting from an already nucleated state.
This is due to the lack of a concave part in the bulk free energies in the grand potential formalism.

Ideally, our initial conditions should be specified for a fixed oxide inventory (in coherence with
experimental conditions) and a fixed phase fraction. The phase field 𝜑 is then initialized with randomly
positioned spherical interfaces with random volumes. The components should then be distributed inside
and outside those interfaces in respect of the reference tie-line.

However, specifying the phase fraction, the global composition and the tie-line (and its endpoints)
overspecifies the problem since these values are not independent. Remember that given a phase fraction
𝑠 of phase 1 and a global composition 𝒄inv, we have

𝒄inv = (1 − 𝑠)𝒄eq
0 + 𝑠𝒄eq

1 . (3.3.3)

To respect this condition, we add to the background phase (phase 0) the component quantity

− 𝛿(𝒄eq
0 − 𝒄eq

1 ), (3.3.4)

an offset along the tie-line. A positive 𝛿 corresponds to a supersaturation, bringing the matrix compo-
sition inside the miscibility gap; a negative 𝛿 brings the system away from the gap.

The initial dynamics of the simulation is a spherical variant of the diffusion couple where the droplets
reach local equilibriumwith their surroundingmatrix. By supersaturating thematrix phase along the tie
line, we ensure that the droplet grow by redistribution of the oversaturation to them. This is convenient
because if the droplet were to shrink instead, they could all disappear before the growth dynamics can
start. The dynamics indeed changes regime once the diffusion layers reach neighbouring droplets; this
is reached at its earliest at a time given by the characteristic distance between droplets over the square
root of the greatest mobility coefficient. Specifying a supersaturation 𝛿 can be verified to be equivalent
to specifying a phase fraction 𝑠 below the one at equilibrium, given by |𝒄eq

0 −𝒄inv|/|𝒄eq
0 −𝒄eq

1 |. However,
this “lost” phase fraction would then be regained back as the local equilibria settle. We will have to keep
in mind however that the specified phase fraction 𝑠 will not be exactly the phase fraction at the start of
the growth regime.

We detail below the initialization algorithm. It is specified for an initial phase fraction 𝑠 and a global
component inventory 𝒄inv.

1. Define a uniform random distribution of droplet volumes around an average value 𝑉avg with half-
width Δ𝑉 . Define also a uniform random distribution of random positions on the numerical
domain for the droplets’ centre.

2. Sample the above distributions to define a droplet to be added to the domain. If this droplet is too
close to another droplet, or too close to the numerical domain limits (with respect to a specified
minimal distance criterion), discard it and sample again. Else, commit this droplet for initialization
by saving its volume and position. Keep also track of the volume fraction of phase 1 thus added.

3. Repeat the above step until the phase fraction 𝑠 is reached. If it is overshot, reduce the volume of
the last droplet to the necessary amount.

4. Initialization of 𝜑: on all lattice nodes, search for the closest droplet and initialize the hyperbolic
tangent profile using the distance to the droplet’s centre 𝐱0 and its radius 𝑅, as

𝜑(𝐱) = 1
2(1 + tanh(−2|𝐱 − 𝐱0| − 𝑅

𝑊 )). (3.3.5)

5. Initialization of 𝒄 and �̄�: compute the necessary (normalized) supersaturation 𝛿 for 𝑠 and 𝒄inv to
be consistent, as

𝛿 = 1
1 − 𝑠(|𝒄eq

0 − 𝒄inv|
|𝒄eq

0 − 𝒄eq
1 | − 𝑠). (3.3.6)
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Then, for all lattice nodes, set 𝒄(𝐱) as

𝒄(𝐱) = {(1 − 𝛿)𝒄eq
0 + 𝛿𝒄eq

1 if 𝜑(𝐱) < 1/2,
𝒄eq

1 if 𝜑(𝐱) ≥ 1/2, (3.3.7)

and set the chemical potential at equilibrium, �̄�(𝐱) = 𝟎.
6. Flow initialization: at rest with 𝐮(𝐱) = 𝟎. The pressure field is left homogeneous; 𝑝(𝐱) = 0.

The homogeneous chemical potential �̄� = 𝟎 at initialization is not exactly consistent with the super-
saturation inside the matrix but we won’t consider it an issue. In the simulations, the field �̄� relaxes by
itself for consistency with the composition fields. The same applies to the homogeneous initial pressure2
which quickly relaxes for consistency with the buoyancy and surface tension forces.

The random distributions of droplets volumes and positions are parametrized with a seed for repro-
ducibility. With multi-CPU or multi-GPU simulations, one must ensure that the same seed is used by
all MPI processes.

3.3.3 Geometry measurements
Estimating the initial inter-droplet spacing

We wish to estimate the inter-droplet spacing ℓ and the associated time 𝑇𝐷 for the growth regime to
begin. To do so, we will suppose that the initial droplet geometry is an arrangement on a regular grid
of droplets of volume 𝑉avg. These droplets occupy a volume fraction 𝑠 in total and each droplet has a
box of free volume 𝑉avg/𝑠 around itself. We shall then estimate

ℓ = (𝑉avg/𝑠)1/𝑑 (3.3.8)

in 𝑑 dimensions. The time 𝑇𝐷 is
𝑇𝐷 = ℓ2/max

𝜋,𝛼
(𝑀𝛼𝛼

𝜋 ) = 𝑇 (3.3.9)

and will be the time scale shown in the results.

Measuring the number of droplets and the mean radius

We use integrals of the phase field as estimates of the droplets’ mean radius. For example, to obtain the
average radius ⟨𝑅⟩ of droplets in a 2D simulation, we compute

∫ 4
𝑊 𝜑(1 − 𝜑) d2𝐱 ≈ ∑

droplets
2𝜋 ∫

+∞

0

4
𝑊 𝜑eq(1 − 𝜑eq)𝑟 d𝑟

= 2𝜋 ∑
droplets

𝑅(1 + 𝑂(exp(−2𝑅/𝑊)2))

≈ 2𝜋𝑁⟨𝑅⟩.

(3.3.10)

The radius estimate in 3D is

∫ 16
𝑊 2 𝜑(1 − 𝜑)(1

2 − 𝜑)d3𝐱 ≈ 4𝜋𝑁⟨𝑅⟩. (3.3.11)

These estimates rely on the assumptions that
2Coincidentally, both �̄�(𝐱) and 𝑝(𝐱) are Lagrange multipliers. The first is related to the constraint on 𝒄(𝐱) to conserve the

global composition inventory, and the second to the constraint on 𝐮(𝐱) to conserve mass.
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• the equilibrium profile 𝜑eq(𝑟) = (1 + tanh(2(𝑅 − 𝑟)/𝑊))/2 is established on each droplet, with
𝑅 their individual radius;

• the droplets are sufficiently spaced to separate the integral over each droplet;

• the interface width is always sufficiently small compared to the droplets’ radii so that the term
𝑂(exp(−2𝑅/𝑊)2) can be neglected.

The second line in (3.3.10) is a first order Taylor expansion around 𝑒−2𝑅/𝑊 = 0 applied on the result of
the single droplet integral. Neglecting the term 𝑂(exp(−2𝑅/𝑊)2) is reasonable for large droplets, but
it could over count the small disappearing droplets at the start of the growth regime. The assumption of
spherical droplets can also be source of errors when the coalescence is too slow or frequent, or when the
fluid’s advection distorts the droplets too much. Nonetheless, these integrals can be evaluated quickly
and in parallel by summing over all lattice nodes.

To count the droplets, we employ an algorithm for the computation of the Euler characteristic, to be
understood here as the number of connected regions of 𝜑 = 1. An estimate akin to the one above for
the droplet count can be established (at least in 2D), but the Euler characteristic algorithm also requires
only a single pass over all the lattice points and avoids any of the geometry errors mentioned above.
The computed count is also guaranteed to be an integer. The algorithm implemented is adapted from
[32].

3.3.4 Simulation results
2D without flow

A first simulation of an ensemble of 2738 2D droplets without convection was conducted. The param-
eters are listed in table 3.3 and the numerical domain is periodic. Using the integral estimates, the time
evolution of the particle count 𝑁 and droplet radius ⟨𝑅⟩ is tracked and presented in figure 3.6. It is seen
that the mean radius does follow a power-law in time in this case with an exponent approaching the
value of 1/3 expected from the classical theory. It takes a bit more than 10 𝑇 (ten times the estimated
duration of the transient droplet-matrix dynamics) for this power-law to establish clearly.

A timeline of the phase field and chemical potential fields are presented in figure 3.7. It shows the
growth of the largest droplets and the disappearance of smaller ones as well as the redistribution of
components and the homogenization of the chemical potentials. Refer to the figure’s caption for more
details.

This simulation ran on 4 Nvidia V100 GPUs on Jean-Zay, one of the cluster of the IDRIS institute3.
The simulation ran for 24 million time steps, and took about 40 hours of wallclock time.

2D with flow

We then proceed to simulations with hydrodynamic flow. The boundaries are again periodic and the
parameters are the same as in 3.3 with the addition of the following flow parameters: a unique unit
mass density 𝜌 (the numerical unit and the characteristic density scale) and a surface tension of 10−4 𝜌 ·
𝐿3 · 𝑇 −2. To study the influence of the Schmidt number on the droplet growth, we take two values
for the kinematic viscosity in all phases: 𝜈0 = 𝜈1 = 1 𝐿2 · 𝑇 −1 first, and 𝜈0 = 𝜈1 = 10 𝐿2 · 𝑇 −1

second, corresponding to the Schmidt number values of (Sc𝐴𝐴, Sc𝐵𝐵) = (1, 1.25) and (Sc𝐴𝐴, Sc𝐵𝐵) =
(10, 12.5) respectively. The buoyancy is not active (𝐠 and Δ𝜌 are both zero).

The results are shown in fig. 3.8 and it is concluded that a higher Schmidt number increases the
exponent of the power law, which departs from the value of 1/3 valid for purely diffusive growth. This

3The details and specifications of the Jean-Zay cluster are available at http://www.idris.fr/eng/jean-zay/
index.html. This work was performed using HPC resources from GENCI-IDRIS (Grant 2022-R0091010339).

http://www.idris.fr/eng/jean-zay/index.html
http://www.idris.fr/eng/jean-zay/index.html
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LBM
lattice D2Q9
domain [−28𝐿, 28𝐿] × [−28𝐿, 28𝐿], 4096 × 4096 nodes
𝛿𝑥 2 × 28/4096 𝐿 ≈ 1.367 × 10−2 𝐿
𝛿𝑡 1.96 × 10−5 𝑇

Phase field
𝑊 3𝛿𝑥 ≈ 4.102 × 10−2 𝐿
𝑀𝜑 1.2 𝐿2 · 𝑇 −1

𝜆 155.95

Free energy
�̄�0 1
�̄�1 1
𝒄eq

0 (0.3 0.3)𝑇

𝒄eq
1 (0.4 0.4)𝑇

Mobilities
�̄�𝐴𝐴

0 1.0 𝐿2 · 𝑇 −1

�̄�𝐵𝐵
0 0.8 𝐿2 · 𝑇 −1

�̄�𝐴𝐴
1 1.0 𝐿2 · 𝑇 −1

�̄�𝐵𝐵
1 0.8 𝐿2 · 𝑇 −1

Droplets

𝒄inv (0.31 0.31)𝑇

𝑠 0.08
𝑉avg ± Δ𝑉 (8.0 ± 7.5) × 10−2 𝐿2

Table 3.3: Parameters for the 2D simulation of droplet growth without flow. The length unit 𝐿 is the
half-length of the square numerical domain and the time unit 𝑇 is the expected time until the start of
the growth dynamics, see eq. (3.3.9). With this droplet ensemble, the average inter-droplet distance is
ℓ ≈ 0.038 𝐿.



CHAPTER 3. SIMULATIONS 65

10

100

1000

10000

1 10 100

𝑁

𝑡 (𝑇 )

0.01

0.1

1

10

1 10 100

⟨𝑅⟩ ∝ 𝑡1/3⟨𝑅
⟩(

𝐿)

𝑡 (𝑇 )

Figure 3.6: Time evolution of the droplets number and size. Both plots are in log-log scale. (Left)
droplet count 𝑁 . (Right) average droplet radius ⟨𝑅⟩. The simulations’ data points are in green crosses.
A reference line for ⟨𝑅⟩ ∝ 𝑡1/3 is shown with a solid black line.

is part of the expected result; a more thorough investigation of the different flow parameters is needed
to attain the exponent of 1 mentioned in [24].

3D with buoyancy-driven flow

We present here a simulation of ripening in three dimensions. Compared to the previous 2D simulation,
this simulation also models a buoyancy driving the flow and the bounceback algorithm is used on the
boundaries.

In the Na2O–SiO2–MoO3 glass, the nucleated droplets are enriched in molybdenum, a relatively
heavy element. Hence, we propose to simulate a buoyant droplet phase to model sedimentation, which
might be observed in experiments with sufficient amount of MoO3. In addition, the buoyancy accel-
eration is expected to cause another crossover in the power law for the growth of the droplet radius
[24].

The amplitude of the buoyancy is quantified with the Eötvös number Eo = Δ𝜌||𝐠||𝐿2/𝜎. We tested
the values Eo = 103, 4 × 103, and 2.5 × 104. See table 3.4 for the complete list of the parameters.

We show snapshots of the phase field in figures 3.10, 3.11 and 3.12. Figure 3.9 presents the evolution
of the droplet mean radius in the three simulation. The one with the strongest gravity, Eo = 2.5 × 104,
noticeably differs from the two others: the droplets flow and coalesce much faster. Accordingly, at
this value of Eo, the time evolution of the radius seems to tend towards a power law with an exponent
above one.

We may interpret the result of this last simulation as the manifestation of the crossover due to
gravity mentioned by ref. [24]. To make certain of this, it would be good to perform new simulations
with a higher supersaturation to keep more droplets after the transient regime and thus obtain a better
statistical average. Furthermore, testing intermediate values for Eo would allow us to estimate the
crossover point. Finally, exploring longer times might reveal crossovers from the lower gravity values.

3.4 Conclusion
In this last chapter, we have proven the validity of the two-phase ternary material subset of the model as
well as its two-phase flow subset by reproducing the analytical solutions of two well-known test cases.
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Figure 3.7: Snapshot pictures at different times of the flow-less 2D droplet growth simulation. Only a
portion of the numerical domain is displayed, with a hundred out of the total of 2738 droplets. (Top)
phase field. (Middle, bottom) absolute value of the chemical potentials (ie. departure from the reference
equilibrium) in log scale. During the establishment of the droplet-matrix local equilbria, some of the
smallest droplets disappear. Then, the ripening dynamics proceeds as expected: small droplets disappear
and redistribute their components to the neighboring larger droplets, which grow. This redistribution
can be seen on the chemical potential fields, for instance by the strong gradient created by the two
small shrinking droplets in the upper half at 𝑡 = 17.38 𝑇 , or the smaller gradients bridging the bigger
droplets and their neighbors of similar size. At long times, the ripening dynamics slows down and the
chemical potentials become more and more homogeneous. This homogeneous value is different from
the equilibrium value �̄� = 0 set at equilibrium: it actually matches the mean curvature of the droplets,
following the Gibbs-Thomson condition.
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Figure 3.8: Evolution of the mean radius during two simulations of the growth of 2D droplets under
a flow, one with Schmidt numbers around 1 in purple crosses and the other with Schmidt numbers of
order 10 in green squares (refer to the text for the exaclt values). The best fitting power law is plotted
for each case with a black line.
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Figure 3.9: Time evolution of the mean radius during the simulation of the growth of 3D droplets accel-
erated by their buoyancy. The results are indicated for each tested value of the Eo number, see the key
in the top left.
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LBM
lattice D3Q19
domain [−16𝐿, 16𝐿] × [−4𝐿, 4𝐿] × [−4𝐿, −4𝐿], 2048 × 512 × 512 nodes
𝛿𝑥 8/512 𝐿 = 0.015625 𝐿
𝛿𝑡 2.1 × 10−5 𝑇

Phase field
𝑊 4𝛿𝑥 ≈ 1.565 × 10−2 𝐿
𝑀𝜑 1.2 𝐿2 · 𝑇 −1

𝜆 155.95

Free energy
�̄�0 1
�̄�1 1
𝒄eq

0 (0.3 0.3)𝑇

𝒄eq
1 (0.4 0.4)𝑇

Chemical mobilities
�̄�𝐴𝐴

0 1.0 𝐿2 · 𝑇 −1

�̄�𝐵𝐵
0 0.8 𝐿2 · 𝑇 −1

�̄�𝐴𝐴
1 1.0 𝐿2 · 𝑇 −1

�̄�𝐵𝐵
1 0.8 𝐿2 · 𝑇 −1

Flow
𝜈0 1.0 𝐿2 · 𝑇 −1

𝜈1 1.0 𝐿2 · 𝑇 −1

for Eo = 103 for Eo = 4 × 103 for Eo = 2.5 × 104

Δ𝜌 1 𝜌 4 𝜌 25 𝜌
𝐠 1 𝐿 · 𝑇 −2 𝐞𝑥
𝜎 10−3 𝜌 · 𝐿3 · 𝑇 −2

Droplets

𝒄inv (0.31 0.31)𝑇

𝑠 0.08
𝑉avg ± Δ𝑉 (0.08 ± 0.072) 𝐿3

Table 3.4: Numerical parameters for the 3D simulation of droplet growth with a buoyancy driven flow
in a channel. The numerical length unit 𝐿 is the average distance between two droplets at the initial
time and the time unit 𝑇 is the expected time until the start of the growth dynamics, see eq. (3.3.9).
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Figure 3.10: Snapshot visualisations of the phase field at multiple times during the 3D simulations of
droplet ripening. A constant gravity toward +𝑥 displaces the droplets and accelerates growth and coa-
lescence. The strength of the gravity is quantified with the Eötvös number Eo = Δ𝜌𝑔𝐿2/𝜎; in this figure
Eo = 103. There are 2035 droplets at initialization, and about 30 on the later times. The visualisation
was done with the volume rendering capabilities of the visit [3] software. A transfer function makes
the values under 𝜑 = 0.5 transparent. The presented timesteps were obtained after approximately 22
hours of simulation using 16 Nvidia V100 GPUs on the Jean-Zay cluster.
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Figure 3.11: Visualisations for the droplet ripening simulation with Eo = 4 × 103; see fig. 3.10 for more
details. Compared to the simulation at Eo = 103, the coalescence is only very slightly accelerated with
only the rightmost droplet cluster being noticeably different at the latest time.
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Figure 3.12: Visualisations for the droplet ripening simulation with Eo = 2.5 × 104; see fig. 3.10 for
more details. Compared to the simulation at Eo = 103 and Eo = 4 × 103, the buoyancy noticeably
accelerates the coalescence with the formation of large non-spherical aggregates of daughter phase.
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This allowed us to proceed to simulations of droplet growth, a test case for the complete model and
a basis for future comparisons to experimental observations of the ternary Na2O–SiO2–MoO3 nuclear
glass. Because the model is by construction unable to produce spontaneous nucleations, we took care
to formulate a detailed initialization scheme. During growth, we were able to match the power-law in
time for the average droplet radius, with an exponent of 1/3 without flow and the departure from this
value with a two-phase flow and a buoyancy-driven flow. 3D simulations on a multi-GPU cluster were
conducted, attesting for the numerical efficiency of the model’s implementation in LBM_saclay.

We would hope next to be able to model the growth dynamics in the real Na2O–SiO2–MoO3 glass
and not just in a fictitious idealized material as done in these simulations. In the following subsections,
we will detail our current efforts toward this goal.

3.4.1 Opening: comparison to experiments
Refining the description of theNa2O–SiO2–MoO3 material would be done essentially through themodel’s
physical parameters. Order of magnitudes estimates for the diffusion matrix 𝑫 may be obtained from
the measurements of diffusion is borosilicate glasses conducted in the thesis of H. Pablo [21] [20]. This
would in turn give estimates for the mobility matrix �̄� once the matrix of second derivatives �̄� is
also determined. The fitting strategy of the �̄� matrices from thermodynamic data was established and
implemented. It is extensively detailed in the next subsection. Lastly, the surface tension 𝜎 is probably
the most difficult parameter to obtain, but it may be possible to also estimate it using thermodynamic
data [6].

In the previous paragraph, we mentioned borosilicate glasses. They are of particular interest for
nuclear glasses and present a further opportunity of refinement: extending the model to a quaternary
system with the addition of a boron oxide. The mathematical model in itself is easy to extend to any
number of components. The difficulties lie in the determination of dynamical and thermodynamic prop-
erties of the more complex compound; the choice of a simplified ternary glass was essentially motivated
by the existence of the Na2O–SiO2–MoO3 Calphad database at CEA.

But even without a complete refinement of the model and its parameters, we can already propose
to compare the results of simulations to experimental observations. Work is in progress at the CEA
Marcoule to set up a small glass furnace equipped with an endoscope which would allow observations
of the bulk of the glass. Such experiments will typically operate at temperature around 1110 °C and an
oxide mixture with a few percent of MoO3 and the rest being split at 80%/20% between SiO2 and Na2O
respectively. This mixture sets the initial condition of the droplet growth simulations, and we will see
that both the temperature and mixture will parametrize the fitting of the �̄� matrices.

3.4.2 Coupling to the thermodynamic potential of theNa2O–SiO2–MoO3 glass
To quantitatively describe the real nuclear glass, the parameters of the model must be fitted to the prop-
erties of the glass. In this subsection, we detail howwe fit the free energy parameters in particular. These
parameters are the matrices of second derivatives of the quadratic wells, �̄�0, �̄�1, and the coexistence
compositions of a reference tie-line, 𝒄eq

0 , 𝒄eq
1 .

Fitting methodology

The coupling methodology is similar to the one presented in ref. [4], where the authors present a simple
framework to couple a multi-component grand potential model to thermodynamic data. They do so
by expanding the phase free energies as parabolic polynomials around a reference composition. We
reiterate this method here and propose a practical implementation. This implementation, along with
our model and the first droplet growth test cases, was presented at the CALPHAD 2022 conference [29].
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Remark that the quadratic free energy wells as used in our modelling are equivalent to the second
order Taylor expansion of a global free energy landscape 𝐹(𝒄) around the extremities of a given tie line.
More specifically, when considering the transformation of 𝐹(𝒄) relative to the reference equilibrium
𝐹 ∗(𝒄) = 𝐹(𝒄) − 𝝁eq · 𝒄, one can verify that the expression for 𝑓∗

𝜋(𝒄) in eq. (1.3.18) exactly matches the
expansion of 𝐹 ∗(𝒄) around each coexistence composition 𝑐eq𝜋 with

𝜕2𝐹 ∗

𝜕𝒄𝜕𝒄 ∣
𝒄eq

𝜋

= 𝑲𝜋, 𝜕𝐹 ∗

𝜕𝒄 ∣
𝒄eq

𝜋

= 𝝁∗eq = 𝟎, 𝐹 ∗(𝒄eq
𝜋 ) = 𝑄∗. (3.4.1)

Given 𝐹(𝒄) and a reference equilibrium, we propose to perform this expansion numerically by
curve-fitting the functions 𝑓∗

𝜋(𝒄) against 𝐹 ∗(𝒄) around the abscissas 𝒄eq
𝜋 . This will give the numeri-

cal values for the two 𝑲𝜋 matrices and for 𝑄′. This last parameter is a constant energy offset, identical
for both phases because of the tangent plane removal, and we are free to set it to 0 afterwards. We then
strip the energy dimension as specified in sec. 1.3.3 to obtain the dimensionless matrices �̄�𝜋.

Extracting thermodynamic data with OpenCalphad

We will use thermodynamic data given by the Calphad method [13]. Calphad is a method commonly
used in the material science community to numerically build the Gibbs energy profiles and the corre-
sponding phase diagram of multi-component materials. There are also many examples in the literature
of its use in conjunction with phase field modelling [14, 5, 4].

This thermodynamic landscape is reconstructed by fitting an elaborate model Gibbs energy against
experimental measurements or simulations at the microscopic scale (e.g.molecular dynamics or density
functional theory simulations). They are then exported as thermodynamic databases. Others may then
query those databases to obtain thermodynamic data at a desired pressure, temperature and composition
inventory. Database assessment and querying both use specialized software such as the open-source
OpenCalphad [25] or the proprietary ThermoCalc and FactSage.

Here, as just users of the Calphad method, we may simply imagine it as the numerical function

(𝑇 , 𝑝, 𝒄)global → {(𝐺𝜋, 𝒄eq
𝜋 , 𝝁eq, 𝑠𝜋)}𝜋 (3.4.2)

which, given the global thermodynamic variables (temperature, pressure and global composition in-
ventory), yields the equilibrium thermodynamic data of all stable phases 𝜋 (Gibbs energy, coexistence
composition, chemical potentials and phase fraction). The modelling in terms of the Gibbs energy 𝐺
is the convention taken by Calphad. We will propose that going from 𝐺 to 𝐹 is direct under the as-
sumptions of a closed system, of constant pressure and of identical and constant molar volumes. This
is because under the corresponding equation of state

𝑉 𝒩 = 𝑉 𝐴
𝑚 𝑁𝐴 + 𝑉 𝐵

𝑚 𝑁𝐵 (3.4.3)

the transformation 𝐹 = 𝐺 − 𝑝𝑉 only corresponds to a constant energy offset. In the above equation,
𝑉 𝐴

𝑚 , 𝑉 𝐵
𝑚 are the molar volume of each component species and 𝒩 is the Avogadro constant.

TheCalphadmethod is used herewith theOpenCalphad software to query a thermodynamic database
for the Na2O–SiO2–MoO3 recently produced during the PhD thesis of S. Bordier at the CEA of Saclay’s
Département de Physico-Chimie [2]. The interested reader can refer to the cited manuscript for the
details on its design.

To determine the reference tie-line, we give ourselves a certain global inventory of oxide composition
𝒄 = (𝑐SiO2 , 𝑐Na2O)𝑇 , a certain temperature 𝑇 and a pressure 𝑝 always taken as the atmospheric pressure
of 105 pascals, all being consistent with experimental conditions. We ask OpenCalphad to compute the
equilibrium at these conditions and if it is the desired liquid-liquid two-phase coexistence, the reference
tie-line is obtained.
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Input parameters Ouputs

𝒄inv (0.7879 0.1921)𝑇 𝒄eq
0 (0.7970 0.1885)𝑇

𝑇 1152 °C 𝒄eq
1 (0.009 0.4977)𝑇

𝑝 105 Pa �̄�0 (4.38, 5.49, 4.79)
�̄�1 (6.88, 25.7, −2.62)

Table 3.5: Input parameters and outputs of the example Calphad fitting procedure. Compositions
vectors are given in the order (𝑐SiO2 𝑐Na2O)𝑇 . The symmetric matrices as given as the tuples
(�̄�SiO2 SiO2 , �̄�Na2O Na2O, �̄�SiO2 Na2O).

The global free energy landscape 𝐹(𝒄) is obtained with the same tools. In OpenCalphad, the mech-
anism that resolves the miscibility gaps and determines the phases at equilibrium is called the grid
minimizer. Under an hypothesis of local equilibrium [26], we will assume that OpenCalphad calcu-
lations with this grid minimizer turned off (in which case the function (3.4.2) only returns a single
“mixture” stable phase) are sufficient to obtain consistent Gibbs energy values for a global landscape of
the compound’s free energy.

Implementation and calculation example

In summary, the fitting methodology proceeds in two steps:

1. for a given temperature and global composition inventory, query the Calphad database for the
corresponding equilibrium, ie. sample the numerical function (3.4.2). If it is the liquid-liquid
phase coexistence of interest, this gives us the reference tie line with its endpoints 𝒄eq

𝜋 and the
reference chemical potentials 𝝁eq.

2. Over a given discrete range of compositions 𝒄, execute local equilibria calculations with OpenCal-
phad to obtain the local free energy landscape 𝐹(𝒄). Apply the reference tangent plane removal
(using the previous tie line calculation), the curve fit and the dimension removal to get �̄�0, �̄�1.

We implemented this method in a python program [16] using a python interface to OpenCalphad. The
program also handles the necessary stoichiometry transformations: the thermodynamic database is
written in terms of the chemical species (O, Si, Na, Mo) but our model is written in terms of the oxide
compounds. The curve-fitting is done with the Levenberg-Marquardt least-squares algorithm [22, 7]
implemented in the python library scipy [30] (scipy.optimize.curve_fit). The Jacobian of
𝑓 ′

𝜋 with respect to the coefficients of 𝑲𝜋 is given analytically. The curve fitting done by the program is
parametrized by a radius 𝑅fit. It constrains the points used in the two curve fits to the regions where
(𝒄 − 𝒄eq

𝜋 )2 < 𝑅2
fit. The program verifies that the fitted 𝑲𝜋 matrices are positive definite.

We present an example of these calculations. Table 3.5 lists the input and outputs of the procedure,
figure 3.13 the constructed free energy landscape, and figure 3.14 the fitted paraboloids along the tie
line.

We then attempted to simulate the model with the obtained �̄�𝜋 matrices. The simulation proved
to be unstable and diverged after a few time steps. The reason is not yet clearly identified, but an idea
might lie in the implicit diffusion matrices. This diffusion matrix is given in each phase 𝜋 by

𝑫𝜋 = �̄�𝜋�̄�𝜋, (3.4.4)

the product of the chemical mobility matrix and the matrix of the free energies’ second derivatives (or
their dimensioned equivalents). The previous simulations used identity �̄�𝜋 matrices and diagonal �̄�𝜋
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Figure 3.13: Global free energy landscape ̄𝐹 (𝒄) (in log scale) obtained with local equilibria calculations
with OpenCalphad. The reference tangent plane and the characteristic energy scale was removed. The
reference tie-line obtained by the first equilibrium calculation at 𝒄inv is shown with a black line.
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Matrix coefficients Eigenvalues

𝑫0 ( 4.38 4.79
3.822 4.392) (0.1017 8.670)

𝑫1 ( 6.88 −2.62
−2.096 20.56) (6.490 20.95)

Table 3.6: Numerical values of the implicit diffusion matrices of the chemical diffusion equations when
the mobility matrices are taken as �̄�0 = �̄�1 = diag (1.0, 0.8) and the free energy second derivatives
matrices are taken as in tab. 3.5. All numerical values in this table are to read in the units 𝐿2 · 𝑇 −1, the
characteristic diffusion squared length and inverse time.

matrices equal in both phases, e.g. the mobilities listed in table 3.3. The eigenvalues of the mobility and
diffusion matrices were always within the same order of magnitude: typically 1.0 𝐿2 · 𝑇 −1 for the A
component eigenvalue and 0.8 𝐿2 ·𝑇 −1 for the B component eigenvalue, with𝐿 and 𝑇 the characteristic
length and time units of the diffusive processes.

Using the same values for the �̄�𝜋 matrices and the values of the ̄𝑲𝜋 matrices given by the Calphad
curve fit gives the diffusion matrices listed in table 3.6. One can notice that the eigenvalues differ by
two orders of magnitudes in each phase, or three orders across all phases and components. This may
be relevant since the diffusion eigenvalues are expected to bound the numerical stability of the lattice
Boltzmann scheme: three orders of magnitude across the diffusion eigenvalues might have restricted
the stability range too much. Another remark is that despite the individual �̄�𝜋 and �̄�𝜋 matrices being
symmetric positive definite, the individual �̄�𝜋 are not (it is only the case if �̄�𝜋 and �̄�𝜋 commute).

We are not yet certain if this range of orders of magnitude is truly too restrictive or if the symmetry
of the diffusion matrices are a hard requirement for the numerical stability. We still need to construct
intermediary test values for both kind of matrices to answer these questions. However, it can be hard to
build such test cases while keeping themobility matrices diagonal; this is necessary to keep our diffusion
equations uncoupled, and breaking this condition will require further work on the LBM discretization.
In addition, if the �̄�𝜋 and �̄�𝜋 are to satisfy new constraints, we must also probably guarantee that
the phase field interpolation also upholds these constraints in the interface. For now, we have only
confirmed that the simulations are well-behaved and do not diverge when the �̄�𝜋 matrices are taken
as different but close multiples of the identity matrix.
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Conclusion

Summary
This thesis has set up a framework for the modelling and the simulation of the phase separation of a
ternary nuclear glass in the nucleation and growth regime, like the one observed experimentally in the
model Na2O–SiO2–MoO3 glass. The model relies on the phase field theory to produce a representation
of the interface that is both thermodynamically consistent and numerically convenient. We have rein-
forced this thermodynamic aspect by extending a grand potential formalism to the case of the diffusion
of three chemical species, and by deriving the associated Gibbs-Thomson condition acting at the in-
terface with an asymptotic analysis. The Navier-Stokes equations were coupled to the phase field and
chemical diffusion equations to account for the fluid flow during a liquid-liquid phase separation.

We exploited the simplicity of the diffuse interface model to formulate a parallel and highly efficient
numerical implementation. This was done by discretizing our set of partial differential equations follow-
ing the lattice Boltzmann method, a numerical technique particularly well adapted to the diffusion-type
equations making up our model, and also easy to implement and very efficient on parallel computer
architectures, including modern multi-GPU architectures on HPC clusters. To that goal, we have used
and continued the development of LBM_saclay, a C++ simulation code with high portable performance
enabled by the Kokkos library. This allowed us to carry out simulations on a desktop machine with
a multithreaded CPU, a small multi-CPU cluster of our department, or the national IDRIS Jean-Zay
multi-GPU cluster with a single codebase.

With these theoretical and numerical tools ready, we have conducted numerical simulations that first
asserted the validity of themodel and of its discretization by comparison of numerical results and known
analytical solutions for specific test cases. We then built a specific test case, the diffusion-controlled
growth of droplets, as a first comparison point to experimental observations of the real nuclear glass.
Simulations proved to produce the expected power-law in time for average radius during the growth
regime with an exponent dependent on the flow properties. A 3D simulation with a buoyancy-driven
flow showed the onset of an additional crossover in the power law; the phenomenology of an acceler-
ated coalescence of droplets due to their sedimentation, which may be of interest during experiments
because of the presence of the relatively heavy molybdenum in the glass; and the high parallel efficiency
achievable by our numerical simulations.

Ourwork thus yielded both theoretical and numerical progress, with the establishment of an original
model, its discretization, its implementation under constraint of high performance, the identification of a
test case relevant to the object of study and its simulation. Wewere also regularly involved in discussions
with experimentalists of the CEAMarcoule to prepare applications close to the real nuclear glass. While
this could not be achieved within the time frame of this thesis, we are confident that our model will be
soon able to answer this challenge since we have proven that the growth phenomenology is coherently
simulated and because we have laid out the methodology of coupling to the thermodynamics of the
Na2O–SiO2–MoO3 compound.
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Openings
We have identified many possible extensions on almost every aspect of the model and its simulation,
with most of them listed in the conclusion of each chapter. The most urgent point to examine further
is the coupling to the available Calphad data of the Na2O–SiO2–MoO3 material. This involves inserting
non-trivial matrices of free energy second derivatives (and possibly non-trivial matrices of chemical
mobilities) which we have assessed to challenge the stability of our numerical scheme. Solving this
issue will be a big step towards the description to the real glass.

Possible extensions on the phase field modelling would for example be a stronger formulation of the
Navier-Stokes coupling by rederiving the associated equations from a free energy functional. The def-
inition of an additional intensive thermodynamic field, the temperature, would also be interesting and
relatively easy to implement, as it only consists of extending the Onsager formalism. We may also con-
sider more complicated cases in the asymptotic expansion of the model, for instance by describing the
errors (and possible corrections of these errors) due to asymmetric chemical mobilities, the asymptotic
behaviour of the flow, and asserting if more elaborate interpolations are necessary with the previously
mentioned matrices. On the numerical side, we may want to reinforce the stability of the LBM scheme
by using a more elaborate collision operator; this could end up being necessary if measurements of the
properties of the glass reveal high viscosity or diffusivity contrasts between the phases.

A very interesting modelling extension we have kept for last concerns the relaxation of the hy-
pothesis of identical and constant molar volumes, which would notably create a back-coupling of the
diffusion equations to the flow equations. In complement of the application to the real glass, this is
one of the subjects of a new thesis currently starting which will continue the present work. Moreover,
the LBM_saclay code continues to be developed and extended by other students currently performing
research with it.
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Appendix A

Asymptotic analysis of the
two-phase three components model

The phase-field formalism is an alternative to the sharp-interface models for the description of systems
with free interfaces. However, the impliciteness of the interface means it is not possible to freely and
directly choose the boundary condition that acts in it (in the following, we will name such a boundary
condition an ”interface condition”).

Having explicit interface conditions is physically and mathematically desirable; as such, with the
establishment of phase-field methods came a systematic way to draw an interface condition from the
phase-field equations. This method, an asymptotic analysis, allows for the deduction of an equivalent
sharp-interface formulation for a given phase-field model. These notes attempt to detail a framework
for this analysis (in 3D space, for the sake of completeness).

A general outline of the asymptotic analysis is as follows:
1. the definition of an “outer” (far from the interface) and “inner” scale (close to the interface, and

the definition of an asymptotic parameter 𝜀 as the ratio of both, qualifying the “thinness” of the
interface.

2. The definition of a curvilinear system in the inner region so that the analysis may apply to any
arbitrary interface shape. The differential operators 𝜕𝑡 and ∇ must be given an expression in this
system, and the curvatures describing the interface are expanded in the manner as in 1.

3. The expansion of the field variables and of the differential operators in terms of 𝜀 in both regions.
In the inner region, the interface’s geometry (curvature and velocity) are also expanded.

4. Once both the inner and outer expansions of the PDEs are laid out they are matched to each other
using a set of relations known as the matching conditions. This matching will yield the interface
conditions.

These notes will follow the above outline. Each step will be carried on the ternary model based on
the grand potential with a mixed formulation without flow, a subset of the full model presented in sec.
1.3. We will write it

𝜏𝜕𝑡𝜑 = 𝑊 2∇2𝜑 − 𝑓 ′
dw(𝜑) + 𝜆𝑝′(𝜑)(𝜔𝐿(𝜇𝐴, 𝜇𝐵) − 𝜔𝑅(𝜇𝐴, 𝜇𝐵)), (A.0.1)

𝜕𝑡𝑐𝛼 = 𝑀𝛼∇ · (𝑞𝛼(𝜑)∇𝜇𝛼), (A.0.2)
𝑐𝛼 = −( ̃𝑝(1 − 𝜑)𝜕𝛼𝜔𝐿 + ̃𝑝(𝜑)𝜕𝛼𝜔𝑅). (A.0.3)

We used the same notation as in sec. 1.3 with some changes:
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• the relaxation rate 𝜏 = 𝑊 2/𝑀𝜑 replaces the phase field mobility 𝑀𝜑,

• the two phases are identified with the indices 𝐿 (“left phase”) and 𝑅 (“right phase”) to avoid
confusion with the latter expansion order indices,

• we will use exponent indices instead of vector notations for the component-space variables. The
chemical mobility matrix is assumed to be diagonal with coefficients 𝑀𝛼 with 𝛼 = 𝐴, 𝐵,

• in addition, the mobility coefficients of each phase and through the interface is written as an
interpolation around a mean value 𝑀𝛼, with the interpolation polynomial 𝑞𝛼(𝜑),

• the quantities 𝜔𝐿, 𝜔𝑅, 𝜇𝛼 and 𝑀𝛼 are implicitly used in their dimensionless form. We have
dropped the bar notation when removing the energy dimensions because we will use it instead
for the non-dimensionalization proper to the asymptotic analysis,

• we write the derivative with respect the chemical potential 𝜇𝛼 as 𝜕/𝜕𝜇𝛼 = 𝜕𝛼,

• for the sake generality, we define two energy interpolation functions 𝑝(𝜑) and ̃𝑝(𝜑) even though
the derivation of the model from a grand potential functional requires only one.

The asymptotics will show that this model reconstructs the general Gibbs-Thomson interface condition

Δ𝜔 = −𝛿Κ − 𝛽𝑉𝑛, (A.0.4)

with Δ𝜔 = 𝜔𝐿 − 𝜔𝑅, Κ the mean curvature of the interface, 𝑉𝑛 its normal velocity, and 𝛿, 𝛽 two
coefficients that will be related to the phase field parameters and understood physically as the capillary
length and the kinetic coefficient, respectively.

A.1 Sharp- and thin-interface limit, rescaling
The first step in the asymptotic analysis is to define its expansion parameter 𝜀. A first option is to define

𝜀 = 𝑊/𝐿 (A.1.1)

with 𝐿 the smallest characteristic length in the problem.
Karma and Rappel [6] proposed that the previous definition puts a numerical constraint too high

on the limit 𝜀 → 0. Thus, as an alternative to this “sharp-interface‟ limit, they instead introduce the
“thin-interface” limit with

𝜀 = 𝑊𝑉𝑛/𝐷 (A.1.2)

with 𝑉𝑛 the normal velocity of the interface and 𝐷 a characteristic value for the diffusion coefficients
in the model. Equivalently, this is 𝜀 = 𝑊/ℓ𝐷 with ℓ𝐷 = 𝑀/𝑉𝑛, the length of the diffusion layer in the
coupled model. Note that this definition supposes the existence of such 𝑉𝑛 or ℓ𝐷. This scale is intrinsic
to the physical problem studied and not to the model itself. It might not even be properly defined: in the
diffusion couple, the simplest setup possible of a two-phase problem, the interface velocity is unbounded
at 𝑡 = 0.

To reveal 𝜀 in the equations, we apply a diffusive rescaling: we measure lengths in units of ℓ𝐷 and
time in units of 𝑡𝐷 = ℓ2

𝐷/𝐷. This means defining the dimensionless differential operators

∇̄ = ℓ𝐷∇ = 𝜀−1𝑊∇, (A.1.3)

̄𝜕𝑡 = ℓ2
𝐷
𝐷 𝜕𝑡 = 𝜀−2 𝑊 2

𝐷 𝜕𝑡, (A.1.4)
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and rewriting the model as

𝜀2 𝐷
𝑊 2 𝜏 ̄𝜕𝑡𝜑 = 𝜀2∇̄2𝜑 − 𝑓 ′

dw(𝜑) + 𝜆𝑝′(𝜑)Δ𝜔, (A.1.5)

𝜀2 ̄𝜕𝑡𝑐𝛼 = 𝜀2 𝑀𝛼

𝐷 ∇̄ · (𝑞𝛼(𝜑)∇̄𝜇𝛼). (A.1.6)

The fraction 𝐷/𝑊 2 was simplified out of the diffusion equation. However, it is important to keep the
𝜀2 in, so that both equations’ orders stay coherent.

Later, Echebarria et. al. [3] argued that the thin-interface limit is not entirely coherent. The ex-
pansion parameter 𝑊𝑉𝑛/𝐷 describes a limit of “small” interface velocity, but it does not capture the
assumption of small curvature, necessary in section A.2. In addition, the fact that both the double-well
term and the coupling term 𝜆𝑝′(𝜑)𝑢 fall at the same order can be questionable. Before the energy di-
mensions were stripped from the phase field equation, it was seen that the double-well term was of
characteristic scale 𝐻 , while a scale for the thermodynamic free energy offset between the phases at
equilibrium, Δ𝐹𝑡ℎ, can be extracted from the coupling term. One can argue that the most rigorous
asymptotic limit is the energy constraint

Δ𝐹𝑡ℎ
𝐻 ≪ 1 (A.1.7)

ie. the dynamic issued from the thermodynamic functions should not disturb the double-well structure,
responsible for the separation of phases. This is also consistent with the mathematical process of a
perturbative calculation: knowing the solution of the phase field equation with a zero coupling term,
we look for solutions with non-zero but asymptotically small coupling term by expanding around the
zero coupling solution, translating (A.1.7) into

|𝜆𝜇𝛼| ≪ 1. (A.1.8)

In summary, it is reasonable to expect an order of difference between the double-well and coupling term.
Coincidentally, this order of difference can appear in the sharp-interface limit. Instead of the pre-

vious rescaling, measure lengths in units of the capillary length 𝛿, a physical length intrinsic to the
problem studied, time in units of 𝛿2/𝐷, and specify the expansion parameter as

𝜀 = 𝑊/𝛿. (A.1.9)

More importantly, remember that 𝜆 is defined as 𝐻/𝑘, the ratio of the double-well height and a charac-
teristic energy density scale 𝑘 extracted from the free energy functions. We also know that𝐻 = 3𝜎/2𝑊 ,
meaning

𝜆 = 2
3

𝑘𝑊
𝜎 = 2

3
𝑘𝛿
𝜎 𝜀. (A.1.10)

We can then increase the order in 𝜀 of the coupling term by a change of variable in 𝜆 or in the diffusion
field 𝑢. Choose the former, with

𝜆∗ = 2
3

𝑘𝛿
𝜎 = 𝜀−1𝜆 (A.1.11)

so that the dimensionless model becomes

𝜀2 𝐷
𝑊 2 𝜏 ̄𝜕𝑡𝜑 = 𝜀2∇̄2𝜑 − 𝑓 ′

dw(𝜑) + 𝜀𝜆∗𝑝′(𝜑)Δ𝜔, (A.1.12)

𝜀2 ̄𝜕𝑡𝑐𝛼 = 𝜀2 𝑀𝛼

𝐷 ∇̄ · (𝑞𝛼(𝜑)∇̄𝜇𝛼). (A.1.13)

The change of variable (A.1.11) can feel unsatisfying, as it seemingly only serves to “artificially”
increase the order of the coupling term. Furthermore, the expansion parameter (A.1.9) can be confus-
ing, as 𝛿 defines the asymptotic limit but will also be given an expression in terms of the phase field
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parameters through the reconstructed Gibbs-Thomson interface condition. Ultimately, one must accept
that these manipulations are only a mathematical convenience to fit the sharp-interface view with the
real limit (A.1.7) on the energy scales: this way, one does not have to presuppose the form of the free
energy functions to explicit the expansion parameter, and one can reuse the sharp-interface calculations
as done in [1] (for example).

Note that 𝜀 is then not a conventional asymptotic parameter since 𝜀 ≪ 1 is not necessary (coherent
with Karma and Rappel’s thin interface limit), but it allows rewriting (A.1.8) as

𝜀|𝜆∗𝑢| ≪ 1. (A.1.14)

If we take for granted the reconstructed interface condition (A.0.4), we can give an order of magnitude
for the l.h.s. of the previous relation:

𝜀𝜆∗𝑢 ∼ 𝜀(−𝛿Κ − 𝛽𝑉𝑛 + 𝑊𝑉𝑛/𝐷), (A.1.15)

where the first two terms are the Gibbs-Thomson condition and the third term a dimensionless order
of magnitude (Péclet number) of the diffusion inside the interface region. After substituting 𝜀 by its
definition, the limit (A.1.14) becomes

𝑊Κ + 𝑊𝑉𝑛
𝐷 (𝛽𝐷

𝛿 + 𝑊
𝛿 ) ≪ 1. (A.1.16)

It is seen that the energy criterion then reduces to two constraints on 𝑊 : the geometrical constraint
of the interface width being much smaller than the radius of curvature, and a second thin-interface
constraint on the interface being much more thin than the physical diffusion layer.

With this in mind, we will use the sharp-interface limit with 𝜀 = 𝑊/𝛿 in the rest of these notes.

A.2 Inner region, curvilinear coordinates
To continue with the analysis, the physical space is split into two regions. The first region is the one
inside the diffuse interface ; it is equivalent to the region close to the isocontour { ̂𝑥|𝜑( ̂𝑥) = 1/2}
provided that the interface’s radius of curvature is always much larger than 𝑊 [4]. Additionally, “close”
is understood as examining distances much closer than the radius of curvature of interface.

To follow the shape of the interface in the inner region, define the 3-dimesional orthogonal curvilin-
ear coordinate system (𝑟, 𝑠1, 𝑠2), with 𝑟 the normal signed distance to the interface and 𝑠1, 𝑠2 the two
tangential coordinates1 along the interface (from some indeterminate origin). We take the convention
that 𝑟 is positive toward the 𝜑 = 1 side, and note the unit vectors associated to each coordinate as �̂�, ̂𝑠1
and ̂𝑠2.

A.2.1 Scale factors and differential operators
With orthogonal coordinates, the spatial differential operators are redefined using their scale factors.
In our case, these are

ℎ𝑛 = 1, (A.2.1)
ℎ𝑠1

= |1 + 𝜅1𝑟|, (A.2.2)
ℎ𝑠2

= |1 + 𝜅2𝑟|, (A.2.3)
1In the example model used here, a reference tangential direction can be defined by the diffusive flux −𝐷∇𝑢 across the

interface. It may be convenient to align ̂𝑠1 or ̂𝑠2 on this direction [2], but we chose not to do that here for generalization’s sake
and because our ternary model has two, possibly unaligned diffusive fluxes.
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with 𝜅𝑖 the principal curvature along ̂𝑠𝑖. These definitions can also be seen in [5] in the 2D case and
with a different sign convention. For a generic function 𝑓(𝑟, 𝑠1, 𝑠2) and vector a = 𝑎𝑛�̂�+𝑎𝑠1

̂𝑠1 +𝑎𝑠2
̂𝑠2,

the differential operators are

∇𝑓 = 1
ℎ𝑛

𝜕𝑟𝑓�̂� + 1
ℎ𝑠1

𝜕𝑠1
𝑓 ̂𝑠1 + 1

ℎ𝑠2

𝜕𝑠2
𝑓 ̂𝑠2, (A.2.4)

∇ · a = 1
ℎ𝑛ℎ𝑠1

ℎ𝑠2

[𝜕𝑟(ℎ𝑠1
ℎ𝑠2

𝑎𝑛) + 𝜕𝑠1
(ℎ𝑛ℎ𝑠2

𝑎𝑠1
) + 𝜕𝑠2

(ℎ𝑛ℎ𝑠2
𝑎𝑠2

)], (A.2.5)

which expand to

∇𝑓 = 𝜕𝑟𝑓�̂� + 1
|1 + 𝜅1𝑟|𝜕𝑠1

𝑓 ̂𝑠1 + 1
|1 + 𝜅2𝑟|𝜕𝑠2

𝑓 ̂𝑠2, (A.2.6)

∇ · a = 𝜕𝑟𝑎𝑛 + Δ𝑟 𝑎𝑛 + 1
|1 + 𝜅1𝑟|𝜕𝑠1

𝑎𝑠1
+ 1

|1 + 𝜅2𝑟|𝜕𝑠2
𝑎𝑠2

. (A.2.7)

with Δ𝑟 = (2𝜅1𝜅2 + 𝜅1
2 + 𝜅2

2)/|1 + 𝜅1𝑟||1 + 𝜅2𝑟| (also called the mean curvature in ref. [1]).
We will use these coordinates to describe regions close to the interface, at a distance much smaller

than the radii of curvature. We write these limits as 𝜅1|𝑟| ≪ 1 and 𝜅2|𝑟| ≪ 1, and with them, we can
strip the absolute values from the scale factors and use the following Taylor series expansion for 1/ℎ𝑖
with respect to 𝜅1𝑟 and 𝜅2𝑟:

1
(1 + 𝜅𝑖𝑟)𝑛 = 1 − 𝑛𝜅𝑖𝑟 + 𝑂(𝑟2) 𝑖 = 1, 2. (A.2.8)

We have stopped at the first order. The orders above are all 𝑂(𝑟2) and these terms will be ignored, the
reason being is that they become high order terms (𝑂(𝜀3)) when expanded.

Furthermore, the term Δ𝑟 on the r.h.s. of eq. (A.2.7) can be simplified by considering the total and
Gaussian curvature, respectively

Κ = 𝜅1 + 𝜅2, (A.2.9)
Π = 𝜅1𝜅2, (A.2.10)

with which it becomes
Δ𝑟 = 1

𝑟
Κ𝑟 + 2Π𝑟2

1 + Κ𝑟 + Π𝑟2 . (A.2.11)

The previous limit impliesΚ𝑟 ≪ 1 andΠ𝑟2 ≪ 1. Using again a Taylor series on the second denominator
(with respect to Κ𝑟 and Π𝑟2), the mean curvature is simplified as

Δ𝑟 = Κ(1 − Κ𝑟) + 2Π𝑟 + 𝑂(𝑟2). (A.2.12)

The expansion was also done until the first order, and the 𝑂(𝑟2) terms removed (one can check that the
removed first orders terms would’ve become −3ΠΚ𝑟2 − 2Π2𝑟3).

The expressions (A.2.6) and (A.2.7) for the spatial operators become

∇𝑓 = 𝜕𝑟𝑓�̂� + ∑
𝑖=1,2

(1 − 𝜅𝑖𝑟)𝜕𝑠𝑖
𝑓 ̂𝑠𝑖 + 𝑂(𝑟2), (A.2.13)

∇ · a = 𝜕𝑟𝑎𝑛 + [Κ(1 − Κ𝑟) + 2Π𝑟]𝑎𝑛 + ∑
𝑖=1,2

(1 − 𝜅𝑖𝑟)𝜕𝑠𝑖
𝑎𝑠𝑖

+ 𝑂(𝑟2). (A.2.14)

The interface is in movement with a velocity we will write V. The Eulerian time derivative 𝜕𝑡 is thus
linked to the Lagrangian derivative 𝐷𝑡 through

𝐷𝑡 = 𝜕𝑡 + V · ∇. (A.2.15)
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A.2.2 Stretched normal coordinate and diffusive scaling
The curvilinear coordinates are tied to the asymptotics by defining the stretched normal coordinate

𝜌 = 𝜀−1𝑟 (A.2.16)

and applying the diffusive scaling on all geometrical quantities, defining

̄𝜌 = 𝜌/ℓ𝐷 = 𝜀𝜌/𝑊, (A.2.17)
̄𝑠𝑖 = 𝑠𝑖/ℓ𝐷 = 𝜀𝑠𝑖/𝑊, (A.2.18)
̄𝜅𝑖 = ℓ𝐷𝜅𝑖 = 𝜀−1𝑊𝜅𝑖, (A.2.19)

Κ̄ = ℓ𝐷Κ = 𝜀−1𝑊Κ, (A.2.20)
Π̄ = ℓ2

𝐷Π = 𝜀−2𝑊 2Π, (A.2.21)
̄𝑉𝑛 = ℓ𝐷𝑉𝑛/𝐷, (A.2.22)
̄𝑉𝑠𝑖

= ℓ𝐷𝑉𝑠𝑖
/𝐷. (A.2.23)

With those definitions and the expressions for the curvilinear differential operators (A.2.6), (A.2.7),
(A.2.15), the scaled operators (A.1.3), (A.1.4) become

∇̄𝑓 = 𝜀−1𝜕 ̄𝜌𝑓�̂� + ∑
𝑖=1,2

{𝜕 ̄𝑠𝑖
𝑓 − 𝜀 ̄𝜅𝑖 ̄𝜌𝜕 ̄𝑠𝑖

𝑓} ̂𝑠𝑖 + 𝑂(𝜀2) (A.2.24)

∇̄ · 𝒂 = 𝜀−1𝜕 ̄𝜌𝑎𝑛 + (Κ̄𝑎𝑛 + ∑
𝑖=1,2

𝜕 ̄𝑠𝑖
𝑎𝑠𝑖

) + 𝜀([2Π̄ − Κ̄2] ̄𝜌𝑎𝑛 − ∑
𝑖=1,2

̄𝜅𝑖 ̄𝜌𝜕 ̄𝑠𝑖
𝑎𝑠𝑖

) + 𝑂(𝜀2)

(A.2.25)
𝜕 ̄𝑡𝑓 = −𝜀−1 ̄𝑉𝑛𝜕 ̄𝜌𝑓 − ∑

𝑖=1,2
̄𝑉𝑠𝑖

𝜕 ̄𝑠𝑖
𝑓 + 𝐷 ̄𝑡𝑓 + 𝜀 ∑

𝑖=1,2
̄𝑉𝑠𝑖

̄𝜅𝑖 ̄𝜌𝜕 ̄𝑠𝑖
𝑓 + 𝑂(𝜀2) (A.2.26)

with 𝐷 ̄𝑡 = 𝑡𝐷𝐷𝑡.

A.3 Expansions and matching conditions
In the outer and inner region, the PDEs and their variables will be expanded separately with respect to
𝜀. We will write 𝜑𝑛 and Φ𝑛 with 𝑛 = 0, 1, 2, … the outer and inner phase field variable respectively;
𝜇𝛼

𝑛 and 𝜈𝛼
𝑛 the outer and inner chemical potentials; and 𝑐𝛼

𝑛 and 𝐶𝛼
𝑛 the outer and inner compositions.

In the inner region, the curvatures Κ̄𝑛, ̄𝜅𝑖,𝑛 and Π̄𝑛 will also be expanded.
To obtain the interface condition, we will match both sets of PDEs using the matching conditions

below, in the example of the phase field variables:

lim
𝜌→±∞

Φ0(𝜌, 𝑠) = 𝜑0(0±, 𝑠), (A.3.1)

Φ1(𝜌, 𝑠) ∼ 𝜑1(0±, 𝑠) + 𝜌𝜕𝑟𝜑0(0±, 𝑠) as 𝜌 → ±∞, (A.3.2)

Φ2(𝜌, 𝑠) ∼ 𝜑2(0±, 𝑠) + 𝜌𝜕𝑟𝜑1(0±, 𝑠) + 1
2𝜌2𝜕𝑟𝑟𝜑0(0±, 𝑠) as 𝜌 → ±∞. (A.3.3)

We refer the reader the book by Fife [4] for their justification.
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A.4 Expansion and analysis of the ternary model
We remind below the PDE model studied:

𝜏𝜕𝑡𝜑 = 𝑊 2∇2𝜑 − 𝑓 ′
dw(𝜑) + 𝜆𝑝′(𝜑)(𝜔𝐿(𝜇𝐴, 𝜇𝐵) − 𝜔𝑅(𝜇𝐴, 𝜇𝐵)), (A.4.1)

𝜕𝑡𝑐𝛼 = 𝑀𝛼∇ · (𝑞𝛼(𝜑)∇𝜇𝛼), (A.4.2)
𝑐𝛼 = −( ̃𝑝(1 − 𝜑)𝜕𝛼𝜔𝐿 + ̃𝑝(𝜑)𝜕𝛼𝜔𝑅)., (A.4.3)

As mentioned before, we assume the existence of a characteristic diffusion length scale ℓ𝐷 and we will
define the characteristic diffusion time as 𝑡𝐷 = ℓ2

𝐷/𝐷, here with 𝐷 =
√

𝑀𝐴𝑀𝐵. With these, we can
write right away the model in the outer region:

𝜕 ̄𝑡𝑐𝛼
𝑖 =

𝑀𝛼
{𝐿,𝑅}
𝐷 ∇̄2𝜇𝛼

𝑖 ∀𝑖 = 0, 1, 2, … , (A.4.4)

𝑐𝛼
0 = −𝜕𝛼𝜔{𝐿,𝑅}, (A.4.5)

𝑐𝛼
1 = − ∑

𝛽=𝐴,𝐵
𝜇𝛽

1𝜕𝛽𝛼𝜔{𝐿,𝑅}, (A.4.6)

with 𝑀𝛼
{𝐿,𝑅} = 𝑀𝛼𝑞𝛼({0, 1}). The 𝑂(𝜀2) order of the closure relation will not be useful in the calcu-

lations. In the outer region, where 𝜑 = 0 or 𝜑 = 1, the phase field equation reduces to zero. The inner
expansions are longer to detail and each order is presented in the following subsections.

A.4.1 Phase-field 𝑂(1)
Take eq. (A.4.1) and substitute 𝜑 for its inner expansion Φ0 + 𝜀Φ1 + 𝜀2Φ2 + 𝑂(𝜀3) (the same for 𝜇𝛼),
and replace the differential operator with their dimensionless, expanded equivalents in the curvilinear
coordinates as given by eqs. (A.2.24)–(A.2.26). After reassembling all the terms not proportional to 𝜀 or
its powers, one is left with only

𝑓 ′
dw(Φ0) = 𝜕 ̄𝜌 ̄𝜌Φ0 (A.4.7)

telling us that the usual hyperbolic tangent profile

Φ0( ̄𝜌) = 1
2(1 + tanh 2 ̄𝜌) (A.4.8)

is the zeroth-order solution in the inner region.

A.4.2 Diffusion and closure 𝑂(1)
Doing the same on the diffusion equation (A.4.2) and on the closure relation (A.4.3) gives

𝜕 ̄𝜌(𝑞𝛼(Φ0)𝜕 ̄𝜌𝜈𝛼
0) = 0, (A.4.9)

𝐶𝛼
0 = −( ̃𝑝(1 − Φ0)𝜕𝛼𝜔𝐿 + ̃𝑝(Φ0)𝜕𝛼𝜔𝑅). (A.4.10)

We’ll infer from (A.4.9) that 𝜈𝛼
0 take constant values for all ̄𝜌. The 0th order composition then inter-

polates between two constant values following (A.4.10). Matching to the outer variables using (A.3.1)
tells us

𝜈𝛼
0 = 𝜇𝛼

0(0±, ̄𝑠1, ̄𝑠2), (A.4.11)
− 𝜕𝛼𝜔{𝑅,𝐿}(𝜈𝐴

0, 𝜈𝐵
0) = 𝑐𝛼

0(0±, ̄𝑠1, ̄𝑠2) = −𝜕𝛼𝜔{𝑅,𝐿}(𝜇𝐴
0(0±, ̄𝑠1, ̄𝑠2), 𝜇𝐵

0(0±, ̄𝑠1, ̄𝑠2)), (A.4.12)
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Note that since the leftmost term of (A.4.12) are constants, we can strip the dependence on the ̄𝑠𝑖 on the
right terms. Those relations are consistent with the thermodynamic equilibrium of a multi-component
system: the outer compositions left and right of the interface are given by identical slopes of 𝜔0 and 𝜔1,
ie. identical chemical potentials, at values 𝜈𝐴

0 and 𝜈𝐵
0. Remark that since we study a ternary system,

the phase co-existence tuple (𝜈𝐴
0, 𝜈𝐵

0) is not unique and depends on the tie-line taken by the system
in its phase diagram.

A.4.3 Phase-field 𝑂(𝜀)
We now assemble all terms proportional to 𝜀 after the expansion. This gives

ℒΦ1 + 𝜆𝑝′(Φ0)Δ𝜔0 + (Κ̄0 + 𝑚 ̄𝑉𝑛,0)𝜕 ̄𝜌Φ0 = 0 (A.4.13)

with the linear differential operator ℒ = 𝜕 ̄𝜌 ̄𝜌 − 𝑓″
dw(Φ0) and the notations Δ𝜔𝑖 = 𝜔0(𝜈𝐴

𝑖, 𝜈𝐵
𝑖) −

𝜔1(𝜈𝐴
𝑖, 𝜈𝐵

𝑖) and 𝑚 = 𝜏𝐷/𝑊 2. The solvability condition is

Δ𝜔0(𝜈𝐴
0, 𝜈𝐵

0) = − 𝐼
𝜆𝐽 Κ̄0 − 𝐼𝑚

𝜆𝐽
̄𝑉𝑛,0, (A.4.14)

the expected Gibbs-Thomson condition at first order, with the integrals

𝐼 = ∫
1

0
𝜕 ̄𝜌Φ0𝑑Φ0 = 2/3, (A.4.15)

𝐽 = ∫
+∞

−∞
𝜕 ̄𝜌(𝑝(Φ0))𝑑 ̄𝜌 = 1. (A.4.16)

Note here again the consistency with the thermodynamic equilibrium: for a static plane interface,
𝜔𝐿 = 𝜔𝑅 at the 0th order in 𝜈𝛼, as in the common tangent plane construction. As for non-equilibrium,
remember that the tuple (𝜈𝐴

0, 𝜈𝐵
1) is constant but not unique, and thus the values of 0th order cur-

vature and interface velocity will also depend on the choice of tie-line. The converse might be more
intuitive: the system allows a spectrum of non-equilibrium thermodynamic states depending on curva-
ture and speed of its interface.

For Φ1, we have then
Φ1 = Δ𝜔0ℒ−1(𝜕 ̄𝜌Φ0 − 𝐼

𝐽 𝑝′(Φ0)), (A.4.17)

which vanishes when using 𝑝(𝜑) = 3𝜑2 − 2𝜑3.

A.4.4 Diffusion and closure 𝑂(𝜀)

𝑀𝛼

𝐷 𝜕 ̄𝜌(𝑞𝛼(Φ0)𝜕 ̄𝜌𝜈𝛼
1) = − ̄𝑉𝑛,0 ̃𝑝′(Φ0)(𝜕 ̄𝜌Φ0)𝜕𝛼Δ𝜔0, (A.4.18)

𝐶𝛼
1 = Φ1 ̃𝑝′(Φ0)𝜕𝛼Δ𝜔0 − ∑

𝛽=𝐴,𝐵
𝜈𝛽

1( ̃𝑝(1 − Φ0)𝜕𝛽𝛼𝜔𝐿 + ̃𝑝(Φ0)𝜕𝛽𝛼𝜔𝑅). (A.4.19)

Integrate (A.4.18) once,

𝑞𝛼(Φ0)𝜕 ̄𝜌𝜈𝛼
1 = 𝐴

𝑀𝛼/𝐷 −
̄𝑉𝑛,0

𝑀𝛼/𝐷 ̃𝑝(Φ0)𝜕𝛼Δ𝜔0, (A.4.20)
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and twice

𝜈𝛼
1 = 𝜈𝛼

∗ + 𝐴
𝑀𝛼/𝐷 ∫

̄𝜌

0

𝑑𝜎
𝑞𝛼(Φ0(𝜎)) −

̄𝑉𝑛,0
𝑀𝛼/𝐷(𝜕𝛼Δ𝜔0) ∫

̄𝜌

0

̃𝑝(Φ0(𝜎))
𝑞𝛼(Φ0(𝜎))𝑑𝜎, (A.4.21)

with 𝐴 and 𝜈𝛼
∗ two integrations constants (actually functions of ̄𝑠1, ̄𝑠2 and ̄𝑡).

Next, remember the expression for the far-field expansion of an integral

∫
𝑎

0
𝑓(𝑥)𝑑𝑥 ∼ 𝑎 lim

𝑥→±∞
𝑓(𝑥) + ∫

±∞

0
(𝑓(𝑥) − lim

𝑥→±∞
𝑓(𝑥))𝑑𝑥 + 𝑜(1) as 𝑎 → ±∞. (A.4.22)

Thus, at ̄𝜌 → ±∞, we have

𝜈𝛼
1( ̄𝜌, ̄𝑠, ̄𝑡) ∼

⎧{{
⎨{{⎩

(𝐴 − ̄𝑉𝑛,0𝜕𝛼Δ𝜔0
𝑀𝛼

𝑅/𝐷 ) ̄𝜌 + (𝜈𝛼
∗ + 𝐴𝐺𝛼

+ + ̄𝑉𝑛,0(𝜕𝛼Δ𝜔0) ̃𝐹 𝛼
+

𝑀𝛼/𝐷 ) + 𝑜(1) as ̄𝜌 → +∞,

( 𝐴
𝑀𝛼

𝐿 /𝐷) ̄𝜌 + (𝜈𝛼
∗ + 𝐴𝐺𝛼

− + (𝜕𝛼Δ𝜔0) ̄𝑉𝑛,0 ̃𝐹 𝛼
−

𝑀𝛼/𝐷 ) + 𝑜(1) as ̄𝜌 → −∞,

(A.4.23)
with the integrals

𝐺𝛼
+ = ∫

+∞

0
( 1

𝑞𝛼(Φ0) − 1
𝑞𝛼(1))𝑑 ̄𝜌, ̃𝐹 𝛼

+ = ∫
+∞

0
( 1

𝑞𝛼(1) − ̃𝑝(Φ0)
𝑞𝛼(Φ0))𝑑 ̄𝜌

𝐺𝛼
− = ∫

0

−∞
( 1

𝑞𝛼(0) − 1
𝑞𝛼(Φ0))𝑑 ̄𝜌, ̃𝐹 𝛼

− = ∫
0

−∞

̃𝑝(Φ0)
𝑞𝛼(Φ0)𝑑 ̄𝜌

(A.4.24)

The asymmetries in the above equations is due to the range 𝜑 ∈ [0, 1] and won’t matter in the end. The
matching condition (A.3.2) then gives

𝜕 ̄𝑟𝜇𝛼
0(0±) = 2𝐴 − (1 ± 1) ̄𝑉𝑛,0𝜕𝛼Δ𝜔0

2𝑀𝛼
{𝑅,𝐿}/𝐷 , (A.4.25)

𝜇𝛼
1(0±) = 𝜈𝛼

∗ + 𝐴𝐺𝛼
± + (𝜕𝛼Δ𝜔0) ̄𝑉𝑛,0 ̃𝐹 𝛼

±
𝑀𝛼/𝐷 . (A.4.26)

Taking the difference of the two cases of (A.4.25) and using the previous matching relations (A.4.12),
(A.4.11) to express 𝜕𝛼Δ𝜔0 yields the 0th order of the conservation of the composition at the interface:

𝐷 ̄𝑉𝑛,0(𝑐𝛼
0(0−) − 𝑐𝛼

0(0+)) = −(𝑀𝛼
𝐿 𝜕 ̄𝑟𝜇𝛼

0 (0−) − 𝑀𝛼
𝑅𝜕 ̄𝑟𝜇𝛼

0 (0+)). (A.4.27)

Taking the sum gives an expression for 𝐴,

𝐴 = 1
2𝐷(𝑀𝛼

𝐿 𝜕 ̄𝑟𝜇𝛼
0 (0−) + 𝑀𝛼

𝑅𝜕 ̄𝑟𝜇𝛼
0 (0+)) + 1

2
̄𝑉𝑛,0𝜕𝛼Δ𝜔0. (A.4.28)

Finally, the difference of (A.4.26) is

𝑀𝛼(𝜇𝛼
1(0−) − 𝜇𝛼

1(0+)) = 𝐷𝐴(𝐺𝛼
− − 𝐺𝛼

+) + 𝐷(𝜕𝛼Δ𝜔0) ̄𝑉𝑛,0( ̃𝐹 𝛼
− − ̃𝐹 𝛼

+ ), (A.4.29)

which after putting in the expressions above for ̄𝑉𝑛,0 and 𝐴 becomes

𝑀𝛼(𝑐𝛼
0(0−) − 𝑐𝛼

0(0+))(𝜇𝛼
1(0−) − 𝜇𝛼

1(0+))

= 1
2(𝐺𝛼

− − 𝐺𝛼
+)(𝑐𝛼

0(0−) − 𝑐𝛼
0(0+))(𝑀𝛼

𝐿 𝜕 ̄𝑟𝜇𝛼
0 (0−) + 𝑀𝛼

𝑅𝜕 ̄𝑟𝜇𝛼
0 (0+))

− ((𝜕𝛼Δ𝜔0)( ̃𝐹 𝛼
− − ̃𝐹 𝛼

+ ) + 1
2(𝐺𝛼

− − 𝐺𝛼
+))(𝑀𝛼

𝐿 𝜕 ̄𝑟𝜇𝛼
0 (0−) + 𝑀𝛼

𝑅𝜕 ̄𝑟𝜇𝛼
0 (0+)).

(A.4.30)
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The jump in 𝜇𝛼
1 must vanish at the interface, giving the integral conditions

̃𝐹 𝛼
+ = ̃𝐹 𝛼

− ≡ ̃𝐹 𝛼, (A.4.31)
𝐺𝛼

+ = 𝐺𝛼
− ≡ 𝐺𝛼. (A.4.32)

As for the closure relation (A.4.19), applying the matching condition (A.3.2) and comparing the terms
not proportional to ̄𝜌 gives a simple expression for 𝑐𝛼

1 at the interface ,

𝑐𝛼
1(0±) = ∑

𝛽
𝜇𝛽

1(0±)𝜕𝛼𝛽𝜔{𝑅,𝐿}(0±). (A.4.33)

If the jump in 𝜇𝛼
1 is zero, so is the jump in 𝑐𝛼

1.

A.4.5 Phase-field 𝑂(𝜀2)
ℒΦ2 + (Κ̄0 + 𝑚 ̄𝑉𝑛,0)𝜕 ̄𝜌Φ1 + (2Π̄0 − Κ̄2

0) ̄𝜌𝜕 ̄𝜌Φ0

+ (Κ̄1 + 𝑚 ̄𝑉𝑛,1)𝜕 ̄𝜌Φ0 − 1
2Φ1

2𝑓‴
dw(Φ0)

+ 𝜆Φ1𝑝″(Φ0)Δ𝜔0 + 𝜆𝑝′(Φ0) ∑
𝛼

𝜈𝛼
1𝜕𝛼Δ𝜔0 = 0

(A.4.34)

Following [1], we split the solvability condition at this order in three parts.

Anomalous curvature terms Corresponds to the third term in (A.4.34) :

(2Π̄0 − Κ̄2
0) ∫

+∞

−∞
̄𝜌(𝜕 ̄𝜌Φ0)2𝑑 ̄𝜌. (A.4.35)

Since 𝜕 ̄𝜌Φ0
2 is an even function of ̄𝜌, this term cancels out.

Anomalous thermodynamic terms Corresponds to the terms proportional to Φ1 and 𝜕 ̄𝜌Φ1. They
cancel out if Φ1 is zero, following (A.4.17). Even if Φ1 ≠ 0, it can be shown that the contribution of
these terms amount to zero with just the assumption that 𝑝(𝜑) is an odd function of ̄𝜌 [1, sec. 4.5.2.].

Anomalous kinetic terms The terms left. To begin, look at the term proportional to 𝜈𝛼
1 and use

(A.4.21)

𝜆 ∫
+∞

−∞
𝑝′(Φ0)(𝜕 ̄𝜌Φ0) ∑

𝛼
𝜈𝛼

1(𝜕𝛼Δ𝜔0)𝑑 ̄𝜌

= 𝜆 ∫
+∞

−∞
∑

𝛼
(𝜈𝛼

∗ + 𝐴
𝑀𝛼/𝐷 ∫

̄𝜌

0

𝑑𝜎
𝑞𝛼(Φ0(𝜎)) −

̄𝑉𝑛,0(𝜕𝛼Δ𝜔0)
𝑀𝛼/𝐷 ∫

̄𝜌

0

̃𝑝(Φ0(𝜎))
𝑞𝛼(Φ0(𝜎))𝑑𝜎)

× (𝜕𝛼Δ𝜔0)𝑝′(Φ0)(𝜕 ̄𝜌Φ0)𝑑 ̄𝜌

(A.4.36)

Compute the three integrals in order. The first is

𝜆 ∫
+∞

−∞
∑

𝛼
𝜈𝛼

∗ (𝜕𝛼Δ𝜔0)𝑝′(Φ0)𝜕 ̄𝜌Φ0𝑑 ̄𝜌 = 𝜆𝐽 ∑
𝛼

𝜈𝛼
∗ 𝜕𝛼Δ𝜔0. (A.4.37)
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For the two other integrals, remark that

∫
+∞

−∞
(∫

̄𝜌

0
𝑓(𝜎)𝑑𝜎)𝜕 ̄𝜌𝑝(Φ0)𝑑 ̄𝜌 = ∫

+∞

0
(1 − 𝑝(Φ0))𝑓(𝜎)𝑑𝜎 − ∫

0

−∞
𝑝(Φ0)𝑓(𝜎)𝑑𝜎. (A.4.38)

The second integral is

𝜆𝐴 ∑
𝛼

𝜕𝛼Δ𝜔0
𝑀𝛼/𝐷 ∫

+∞

−∞
(∫

̄𝜌

0

𝑑𝜎
𝑞𝛼(Φ0(𝜎)))𝜕 ̄𝜌𝑝(Φ0)𝑑 ̄𝜌

= 𝜆𝐴 ∑
𝛼

𝜕𝛼Δ𝜔0
𝑀𝛼/𝐷(∫

+∞

0

1 − 𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌 − ∫

0

−∞

𝑝(Φ0)
𝑞𝛼(Φ0)𝑑 ̄𝜌)

= 𝜆𝐴 ∑
𝛼

𝜕𝛼Δ𝜔0
𝑀𝛼/𝐷(𝐺𝛼

+ + 𝐹 𝛼
+ − 𝐹 𝛼

− ).

(A.4.39)

And the third integral is

𝜆 ̄𝑉𝑛,0 ∑
𝛼

(𝜕𝛼Δ𝜔0)2

𝑀𝛼/𝐷 ∫
+∞

−∞
(∫

̄𝜌

0

̃𝑝(Φ0(𝜎))
𝑞𝛼(Φ0(𝜎))𝑑𝜎)𝜕 ̄𝜌𝑝(Φ0)𝑑 ̄𝜌

= 𝜆 ̄𝑉𝑛,0 ∑
𝛼

(𝜕𝛼Δ𝜔0)2

𝑀𝛼/𝐷 (∫
+∞

0

(1 − 𝑝(Φ0)) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌 − ∫

0

−∞

𝑝(Φ0) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌)

= 𝜆 ̄𝑉𝑛,0 ∑
𝛼

(𝜕𝛼Δ𝜔0)2

𝑀𝛼/𝐷 (𝐾𝛼
+ + 𝐾𝛼

−),

(A.4.40)

with

𝐾𝛼
+ = ∫

+∞

0

(1 − 𝑝(Φ0)) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌,

𝐾𝛼
− = − ∫

0

−∞

𝑝(Φ0) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌.

(A.4.41)

The final term proportional to Κ̄1 + 𝑚 ̄𝑉𝑛,1 is the term expected to continue the Gibbs-Thomson
condition. Putting it together with the other, we get the solvability condition

𝐼Κ̄1 + 𝐼𝑚 ̄𝑉𝑛,1 + 𝜆 ∑
𝛼

(𝜕𝛼Δ𝜔0)(𝐽𝜈𝛼
∗ + 𝐴(𝐺𝛼

+ + 𝐹 𝛼
+ − 𝐹 𝛼

− ) − (𝜕𝛼Δ𝜔0) ̄𝑉𝑛,0(𝐾𝛼
+ + 𝐾𝛼

−)
𝑀𝛼/𝐷 ) = 0.

(A.4.42)
Using the expression (A.4.26) for 𝜇𝛼

1 at the interface, we have

∑
𝛼

(𝜕𝛼Δ𝜔0)1
2(𝜇𝛼

1(0+) + 𝜇𝛼
1(0−)) = − 𝐼

𝐽𝜆Κ̄1 − 𝐼𝑚
𝐽𝜆

̄𝑉𝑛,1

− ∑
𝛼

(𝜕𝛼Δ𝜔0)
𝐴(1

2(𝐺𝛼
+ − 𝐺𝛼

−) + (𝐹 𝛼
+ − 𝐹 𝛼

− )) − (𝜕𝛼Δ𝜔0) ̄𝑉𝑛,0(𝐾𝛼
+ + 𝐾𝛼

− + 1
2( ̃𝐹 𝛼

+ + ̃𝐹 𝛼
− ))

𝐽𝑀𝛼/𝐷 ,

(A.4.43)

Using the previous integral conditions (A.4.31), (A.4.32) and the additional condition

𝐹 𝛼
+ = 𝐹 𝛼

− , (A.4.44)
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we can write the equation above as the continuation of the Gibbs-Thomson condition:

Δ𝜔1(𝜇𝐴, 𝜇𝐵) = − 𝐼
𝐽𝜆Κ̄1 − 𝐼𝑚

𝐽𝜆
̄𝑉𝑛,1 + ∑

𝛼

(𝜕𝛼Δ𝜔0)2 ̄𝑉𝑛,0(𝐾𝛼
+ + 𝐾𝛼

− + ̃𝐹 𝛼)
𝐽𝑀𝛼/𝐷 on the interface.

(A.4.45)
We’ve also used (A.4.11) and the fact that

Δ𝜔1(𝜈𝐴, 𝜈𝐵) = ∑
𝛼

𝜈𝛼
0𝜕𝛼Δ𝜔0(𝜈𝐴, 𝜈𝐵) (A.4.46)

to make Δ𝜔1(𝜇𝐴, 𝜇𝐵) appear on the l.h.s. An additional error term proportional to 𝐾𝛼
+ + 𝐾𝛼

− and ̃𝐹 𝛼

appears.

A.4.6 Diffusion and closure 𝑂(𝜀2)

𝑀𝛼

𝐷 (𝜕 ̄𝜌(𝑞𝛼(Φ0)𝜕 ̄𝜌𝜈𝛼
2 + Φ1𝑞𝛼′(Φ0)𝜕 ̄𝜌𝜈𝛼

1) + 𝑞𝛼(Φ0)Κ̄0𝜕 ̄𝜌𝜈𝛼
1 + ∑

𝑖=1,2
𝜕 ̄𝑠𝑖

(𝑞𝛼(Φ0)𝜕 ̄𝑠𝑖
𝜈𝛼

0))

= − ̄𝑉𝑛,0𝜕 ̄𝜌𝐶𝛼
1 − ̄𝑉𝑛,1𝜕 ̄𝜌𝐶𝛼

0 − ∑
𝑖=1,2

̄𝑉𝑠𝑖,0𝜕 ̄𝑠𝑖
𝐶𝛼

0 + 𝐷 ̄𝑡𝐶𝛼
0

(A.4.47)

𝐶𝛼
2 = (Φ2 ̃𝑝′(Φ0) + 1

2Φ1
2 ̃𝑝″(Φ0))𝜕𝛼Δ𝜔0 + Φ1 ̃𝑝′(Φ0) ∑

𝛽=𝐴,𝐵
𝜕𝛽𝛼Δ𝜔0

+ ∑
𝛽=𝐴,𝐵

𝜈𝛽
2( ̃𝑝(1 − Φ0)𝜕𝛽𝛼𝜔𝑙 + ̃𝑝(Φ0)𝜕𝛽𝛼𝜔𝑟)

+ 1
2 ∑

𝛽,𝛾=𝐴,𝐵
𝜈𝛽

1𝜈𝛾
1( ̃𝑝(1 − Φ0)𝜕𝛾𝛽𝛼𝜔𝑙 + ̃𝑝(Φ0)𝜕𝛾𝛽𝛼𝜔𝑟)

(A.4.48)

In the diffusion equation, express the derivative of 𝐶𝛼
0 with eq. (A.4.10) and use the result from eq.

(A.4.20); then integrate and rearrange to get

𝑀𝛼𝑞𝛼(Φ0)𝜕 ̄𝜌𝜈𝛼
2 = −𝑀𝛼Φ1𝑞𝛼′(Φ0)𝜕 ̄𝜌𝜈𝛼

1 + 𝐷𝐵 − 𝐷Κ̄0𝐴 ̄𝜌 + 𝐷 ̃𝑃 ( ̄𝜌)Κ̄0 ̄𝑉𝑛,0𝜕𝛼Δ𝜔0

− 𝑀𝛼𝑄𝛼( ̄𝜌) ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0 − 𝐷 ̄𝑉𝑛,0𝐶𝛼
1 + 𝐷𝑝(Φ0) ̄𝑉𝑛,1𝜕𝛼Δ𝜔0

+ ̄𝜌𝐷( ∑
𝑖=1,2

̄𝑉𝑠𝑖,0𝜕 ̄𝑠𝑖
𝐶𝛼

0 − 𝐷 ̄𝑡𝐶𝛼
0),

(A.4.49)

with 𝐵 an integration constant and

̃𝑃 ( ̄𝜌) = ∫
̃𝜌

0
̃𝑝(Φ0(𝜎))𝑑𝜎, (A.4.50)

𝑄𝛼( ̄𝜌) = ∫
̄𝜌

0
𝑞𝛼(Φ0(𝜎))𝑑𝜎. (A.4.51)
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Next, we write the far-field expansions before applying the matching conditions. The integrals above
expands to

̃𝑃 ( ̄𝜌) ∼ 𝑜(1) + { ̄𝜌 − �̃�+ as ̄𝜌 → +∞
−�̃�− as ̄𝜌 → −∞, (A.4.52)

𝑄𝛼( ̄𝜌) ∼ 𝑜(1) + {𝑞𝛼(1) ̄𝜌 − 𝐽+ as ̄𝜌 → +∞
𝑞𝛼(0) ̄𝜌 − 𝐽− as ̄𝜌 → −∞, (A.4.53)

with

�̃�+ = ∫
+∞

0
(1 − ̃𝑝(Φ0)) 𝑑 ̄𝜌, 𝐽+ = ∫

+∞

0
(𝑞𝛼(1) − 𝑞𝛼(Φ0)) 𝑑 ̄𝜌,

�̃�− = ∫
0

−∞
̃𝑝(Φ0) 𝑑 ̄𝜌, 𝐽− = − ∫

0

−∞
(𝑞𝛼(0) − 𝑞𝛼(Φ0)) 𝑑 ̄𝜌.

(A.4.54)

The second order diffusive flux then expands as

𝑀𝛼
{𝑅,𝐿}𝜕 ̄𝜌𝜈𝛼

2 = {−𝐴𝐷Κ̄0 + 1 ± 1
2 𝐷Κ̄0 ̄𝑉𝑛,0𝜕𝛼Δ𝜔0 − ∑

𝑖=1,2
(𝑀𝛼

{𝑅,𝐿}𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0 + 𝐷 ̄𝑉𝑠𝑖
𝜕 ̄𝑠𝑖

𝐶𝛼
0)

+ 𝐷𝐷 ̄𝑡𝐶𝛼
0 − 𝐷 ̄𝑉𝑛,0 ∑

𝛽=𝐴,𝐵

⎛⎜⎜
⎝

𝐴 − 1 ± 1
2

̄𝑉𝑛,0𝜕𝛽Δ𝜔0

𝑀𝛽/𝐷
⎞⎟⎟
⎠

𝜕𝛽𝛼𝜔{𝑅,𝐿}} ̄𝜌

+ {𝐵 − 𝐷Κ̄0 ̄𝑉𝑛,0�̃�± + 𝐽±𝑀𝛼 ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0

− 𝐷 ̄𝑉𝑛,0 ∑
𝛽=𝐴,𝐵

(𝜈𝛽
∗ + 𝐴𝐺𝛽 + ̄𝑉𝑛,0 ̃𝐹 𝛽

𝑀𝛽/𝐷 )𝜕𝛽𝛼𝜔{𝑅,𝐿} + 1 ± 1
2 𝐷 ̄𝑉𝑛,1𝜕𝛼Δ𝜔0} + 𝑜(1).

(A.4.55)

To write the above equation, we have used the fact that Φ1 ∼ 0 as ̄𝜌 → ±∞, assumed the equalities of
the 𝐺𝛼

± and 𝐹 𝛼
± integrals, and used eqs. (A.4.19) and (A.4.21) to express 𝐶𝛼

1.
Then, derive the second order matching condition (A.3.3) w.r.t. ̄𝜌 and match the 𝑂(1) parts to write

the jump in diffusive flux at the interface

𝑀𝛼
𝑅𝜕 ̄𝑟𝜇𝛼

1(0+) − 𝑀𝛼
𝐿 𝜕 ̄𝑟𝜇𝛼

1(0−) = −𝐷Κ̄0 ̄𝑉𝑛,0(�̃�+ − �̃�−) − 𝑀𝛼(𝐽+ − 𝐽−) ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0

− 𝐷 ̄𝑉𝑛,0 ∑
𝛽=𝐴,𝐵

(𝜈𝛽
∗ + 𝐴𝐺𝛽 + ̄𝑉𝑛,0 ̃𝐹 𝛽

𝑀𝛽/𝐷 )𝜕𝛽𝛼Δ𝜔0 + 𝐷 ̄𝑉𝑛,1𝜕𝛼Δ𝜔0.
(A.4.56)

The last two terms of the right-hand side can be rewritten using the previous results (A.4.12), (A.4.26)
and (A.4.33) to reveal the first order conservation of the composition:

𝑀𝛼
𝑅𝜕 ̄𝑟𝜇𝛼

1(0+) − 𝑀𝛼
𝐿 𝜕 ̄𝑟𝜇𝛼

1(0−) = −𝐷Κ̄0 ̄𝑉𝑛,0(�̃�+ − �̃�−) − 𝑀𝛼(𝐽+ − 𝐽−) ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0

− 𝐷 ̄𝑉𝑛,0(𝑐𝛼
1(0+) − 𝑐𝛼

1(0−)) − 𝐷 ̄𝑉𝑛,1(𝑐𝛼
0(0+) − 𝑐𝛼

0(0−))
(A.4.57)

The first two right terms are error terms, giving the last integral conditions �̃�+ = �̃�− and 𝐽+ = 𝐽−.
We will not investigate the closure relation (A.4.48), as it only serves to obtain intermediate results

for calculations at order 𝑂(𝜀3).
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A.4.7 Summary
Gibbs-Thomson

Reassembling eqs. (A.4.14) and (A.4.45) gives the complete Gibbs-Thomson condition

Δ𝜔0 + 𝜀Δ𝜔1 = − 𝐼
𝜆𝐽 (Κ̄0 + 𝜀Κ̄1) − 𝐼𝑚

𝜆𝐽 ( ̄𝑉𝑛,0 + 𝜀 ̄𝑉𝑛,1)

+ 𝜀 ∑
𝛼

𝐷(𝐾𝛼
+ + 𝐾𝛼

− + ̃𝐹 𝛼)(𝜕𝛼Δ𝜔0)2

𝐽𝑀𝛼
̄𝑉𝑛,0.

(A.4.58)

Restore the physical dimensions (sec. A.2.2) to obtain

Δ𝜔0 + 𝜀Δ𝜔1 = −𝛿(Κ0 + 𝜀Κ1) − 𝛽0(𝑉𝑛,0 + 𝜀𝑉𝑛,1) − 𝛽1𝑉𝑛,0 (A.4.59)

with

𝛿 = 𝜀−1 𝐼
𝐽

𝑊
𝜆 = 𝐼

𝐽
𝑊
𝜆∗ , (A.4.60)

𝛽0 = 𝜀−1 𝐼
𝐽

𝜏
𝜆𝑊 = 𝐼

𝐽
𝜏

𝜆∗𝑊 , (A.4.61)

𝛽1 = − ∑
𝛼

𝐾𝛼
+ + 𝐾𝛼

− + ̃𝐹 𝛼

𝐽
𝑊(𝜕𝛼Δ𝜔0)2

𝑀𝛼 . (A.4.62)

To write those results, we assumed the following integral conditions to be true,

𝜕 ̄𝜌Φ0 = 𝐼
𝐽 𝑝′(Φ0), (A.4.63)

̃𝐹 𝛼
+ = ̃𝐹 𝛼

− ≡ ̃𝐹 𝛼, (A.4.64)
𝐺𝛼

+ = 𝐺𝛼
− ≡ 𝐺𝛼, (A.4.65)

𝐹 𝛼
+ = 𝐹 𝛼

− . (A.4.66)

The integrals involved are

𝐼 = ∫
1

0
𝜕 ̄𝜌Φ0𝑑Φ0 = 2/3, 𝐽 = ∫

+∞

−∞
𝜕 ̄𝜌(𝑝(Φ0))𝑑 ̄𝜌,

̃𝐹 𝛼
+ = ∫

+∞

0
( 1

𝑞𝛼(1) − ̃𝑝(Φ0)
𝑞𝛼(Φ0))𝑑 ̄𝜌, ̃𝐹 𝛼

− = ∫
0

−∞

̃𝑝(Φ0)
𝑞𝛼(Φ0)𝑑 ̄𝜌,

𝐺𝛼
+ = ∫

+∞

0
( 1

𝑞𝛼(Φ0) − 1
𝑞𝛼(1))𝑑 ̄𝜌, 𝐺𝛼

− = ∫
0

−∞
( 1

𝑞𝛼(0) − 1
𝑞𝛼(Φ0))𝑑 ̄𝜌,

𝐹 𝛼
+ = ∫

+∞

0
( 1

𝑞𝛼(1) − 𝑝(Φ0)
𝑞𝛼(Φ0))𝑑 ̄𝜌, 𝐹 𝛼

− = ∫
0

−∞

𝑝(Φ0)
𝑞𝛼(Φ0)𝑑 ̄𝜌,

𝐾𝛼
+ = ∫

+∞

0

(1 − 𝑝(Φ0)) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌, 𝐾𝛼

− = − ∫
0

−∞

𝑝(Φ0) ̃𝑝(Φ0)
𝑞𝛼(Φ0) 𝑑 ̄𝜌.

(A.4.67)

Conservation of the composition

(𝑉𝑛,0[𝑐𝛼
0]+− + 𝜀(𝑉𝑛,1[𝑐𝛼

0]+− + 𝑉𝑛,0[𝑐𝛼
1]+−)) = −[𝑀𝛼𝜕𝑟(𝜇𝛼

0 + 𝜀𝜇𝛼
1)]+

− + 𝜀−1𝐸𝛼 (A.4.68)
with

𝐸𝛼 = −𝑊(Κ0𝑉0(�̃�+ − �̃�−) + 𝑀𝛼(𝐽+ − 𝐽−) ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝜈𝛼

0) (A.4.69)
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A.4.8 Numerical application: symmetrical diffusion couple
We can now verify analytically the value of 𝜆 = 110 estimated numerically in the simulation of a
symmetrical diffusion couple carried out in sec. 3.2.2.

For these simulations, we have used the interpolations polynomials 𝑝(𝜑) = ̃𝑝(𝜑) = 3𝜑2 − 2𝜑3

and 𝑞(𝜑) = 1. With this choice of interpolation functions, the integral constraints are satisfied and
numerical values of the integrals are

̃𝐹 𝛼 = 4 ln 2 − 1
16 , (A.4.70)

𝐾𝛼
− = −30 ln 2 + 17

120 , (A.4.71)

𝐾𝛼
+ = 19

240 . (A.4.72)

(A.4.73)

The free energy used were the usual paraboloids with the second derivatives matrices set to the
identity. With these, the derivative of the difference of 0th-order grand potentials is

𝜕𝛼Δ𝜔0 = 𝑐eq,𝛼
𝐿 − 𝑐eq,𝛼

𝑅 . (A.4.74)

The 𝛽1 term in the Gibbs-Thomson condition is then

𝛽1 = − ∑
𝛼

19
120

𝑊(𝑐eq,𝛼
𝐿 − 𝑐eq,𝛼

𝑅 )2

𝑀𝛼𝛼 . (A.4.75)

To cancel 𝛽 for 𝑀𝜑, 𝑀𝛼𝛼 and Δ𝑐eq,𝛼 given, we have the condition on 𝜆

𝜆 = 80
9

1
𝑀𝜑

(∑
𝛼

Δ𝑚𝛼2

𝑀𝛼 )
−1

(A.4.76)

By cancelling 𝛽, one obtains the Gibbs-Thomson condition with no right-hand side as was supposed
for the diffusion couple. Inserting the numerical values for each parameter listed in table 3.2 gives us
a value of 𝜆 = 155.95, close the estimated value of 110. The analytical reconstruction of the Gibbs-
Thomson condition is thus confirmed.

A.5 Other differential operators in curvilinear coordinates
By making extensive use of Taylor series in 𝜀 and the base expressions of the gradient (A.2.6) and
divergence (A.2.7), one can derive expressions for multiple dimensionless operators in the curvilinear
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coordinates. Below are some of them:

∇̄2𝑓 = 𝜀−2𝜕 ̄𝜌 ̄𝜌𝑓 + 𝜀−1Κ̄𝜕 ̄𝜌𝑓 + (2Π̄ − Κ̄2) ̄𝜌𝜕 ̄𝜌𝑓 + ∑
𝑖=1,2

𝜕 ̄𝑠𝑖 ̄𝑠𝑖
𝑓

− 𝜀 ∑
𝑖=1,2

( ̄𝜌𝜕 ̄𝑠𝑖
̄𝜅𝑖 − 2 ̄𝜅𝑖 ̄𝜌𝜕 ̄𝑠𝑖 ̄𝑠𝑖

𝑓) + 𝑂(𝜀2)
(A.5.1)

∇̄ · (𝐹(𝑓)∇̄𝑓) = 𝜀−2𝜕 ̄𝜌(𝐹(𝑓)𝜕 ̄𝜌𝑓)
+ 𝜀−1𝐹(𝑓)Κ̄𝜕 ̄𝜌𝑓 + 𝐹(𝑓)(2Π̄ − Κ̄2) ̄𝜌𝜕 ̄𝜌𝑓 + ∑

𝑖=1,2
𝜕 ̄𝑠𝑖

(𝐹(𝑓)𝜕 ̄𝑠𝑖
𝑓)

− 𝜀𝐹(𝑓) ∑
𝑖=1,2

( ̄𝜌𝜕 ̄𝑠𝑖
̄𝜅𝑖 − 2 ̄𝜅𝑖 ̄𝜌𝜕 ̄𝑠𝑖 ̄𝑠𝑖

𝑓) + 𝑂(𝜀2)
(A.5.2)

|∇̄𝑓|𝑛 = (𝜕 ̄𝜌𝑓)𝑛⎛⎜
⎝

𝜀−1 + 𝜀𝑛
2 ∑

𝑖=1,2
(

𝜕 ̄𝑠𝑖
𝑓

𝜕 ̄𝜌𝑓 )
2
⎞⎟
⎠

+ 𝑂(𝜀2) (A.5.3)

∇̄𝑓
|∇̄𝑓| =

⎧{
⎨{⎩

1 − 𝜀2 1
2 ∑

𝑖
(

𝜕 ̄𝑠𝑖
𝑓

𝜕 ̄𝜌𝑓 )
2

+ 𝑂(𝜀3)
⎫}
⎬}⎭

�̂� + ∑
𝑖=1,2

{𝜀
𝜕 ̄𝑠𝑖

𝑓
𝜕 ̄𝜌𝑓 − 𝜀2 ̄𝜌 ̄𝜅𝑖

𝜕 ̄𝑠𝑖
𝑓

𝜕 ̄𝜌𝑓 + 𝑂(𝜀3)} ̂𝑠𝑖 (A.5.4)

∇̄ · (𝐹(𝑓) ∇̄𝑓
|∇̄𝑓|) = 𝜀−1𝐹 ′(𝑓)𝜕 ̄𝜌𝑓 + 𝐹(𝑓)Κ̄ + 𝜀(𝐹(𝑓)[2Π̄ − Κ̄2] ̄𝜌

− 𝐹(𝑓)1
2 ∑

𝑖=1,2
𝜕 ̄𝜌[

𝜕 ̄𝑠𝑖
𝑓

𝜕 ̄𝜌𝑓 ]
2

+ 𝐹(𝑓) ∑
𝑖=1,2

𝜕 ̄𝑠𝑖

𝜕 ̄𝑠𝑖
𝑓

𝜕 ̄𝜌𝑓 − 1
2𝐹 ′(𝑓) ∑

𝑖=1,2

(𝜕 ̄𝑠𝑖
𝑓)2

𝜕 ̄𝜌𝑓 ) + 𝑂(𝜀2)
(A.5.5)

In the second and last expression, 𝐹 is an arbitrary function of 𝑓 .
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Appendix B

Two papers published during this
thesis

We include in this appendix two papers written during the thesis. The first one, “Performance porta-
bility of lattice Boltzmann methods for two-phase flows with phase change” [3], publishes the result
of a 5-month internship that preceded this thesis. It built a two-phase flow model based on the con-
servative Allen-Cahn equation for the simulation of a liquid-gas flow, in particular a film boiling test
case. The evaporation at the interface was taken into account by a source term in the mass conser-
vation of the Navier-Stokes equations and in the Allen-Cahn equation. This was the first appearance
of the LBM_saclay code and the paper presents some details of performance and implementation. Be-
sides setting the base for the code and the typical LBM schemes implemented therein, this preliminary
work also helped prepare the flow coupling of our two-phase three-component model; this coupling
was transferred with little changes beyond the assumption of equal densities.

The second, “Grand-potential-based phase-field model of dissolution/precipitation: Lattice Boltz-
mann simulations of counter term effect on porous medium” [1], also presents simulations carried out
with LBM_saclay. It uses themixed formulation grand potential framework tomodel a two-phase (solid-
liquid) binary material with zero diffusion in the solid phase, and showcases the effect of the counter
term on the diffusion in a domain akin to a porous medium. An asymptotic analysis is also presented
in details.

Two other items of scientific production were also authored: an internal technical note at CEA [2]
and an abstract and oral presentation at the CALPHAD 2022 conference in Stockholm, Sweden [4].
A third paper on the two-phase ternary model with flow and the effects of sedimentation on droplet
growth is currently in writing.
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aDES, ISAS, DM2S, STMF, LMSF, CEA, Université de Paris-Saclay, F-91191, Gif-sur-Yvette, France.
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Abstract

Numerical codes using the lattice Boltzmann methods (LBM) for simulating one- or two-phase flows are widely compiled
and run on graphical process units. However, those computational units necessitate to re-write the program by using a low-
level language which is suited to those architectures (e.g. CUDA for GPU NVIDIAr or OpenCL). In this paper we focus our
effort on the performance portability of LBM i.e. the possibility of writing LB algorithms with a high-level of abstraction
while remaining efficient on a wide range of architectures such as multicores x86, GPU NVIDIAr, ARM, and so on.
For such a purpose, implementation of LBM is carried out by developing a unique code, LBM saclay written in the C++
language, coupled with the Kokkos library for performance portability in the context of High Performance Computing. In this
paper, the LBM is used to simulate a phase-field model for two-phase flow problems with phase change. The mathematical
model is composed of the incompressible Navier-Stokes equations coupled with the conservative Allen-Cahn model. Initially
developed in the literature for immiscible binary fluids, the model is extended here to simulate phase change occurring at the
interface between liquid and gas. For that purpose, a heat equation is added with a source term involving the time derivative
of the phase field. In the phase-field equation a source term is added to approximate the mass production rate at the interface.
Several validations are carried out to check step-by-step the implementation of the full model. Finally, computational times
are compared on CPU and GPU platforms for the physical problem of film boiling.

Keywords:
Lattice Boltzmann method, phase-field model, two-phase flows with phase change, performance portability, Kokkos library,
LBM saclay, conservative Allen-Cahn model.

1. Introduction

The Lattice Boltzmann Method (LBM) [1, 2] is a very attractive method to simulate problems involving fluid flows. Since
more than ten years, numerical codes using that method are widely compiled and run on Graphical Process Units (GPU)
[3–6]. The GPUs allow for a very high calculation throughput and they are particularly efficient for repetitive workloads
with simple memory access patterns. These units were initially designed for image processing or graphics rendering, but
LBM simulations can also benefit from their use, because the stages of streaming and collide are two simple (stencil-like)
computational operations. Numerous works have demonstrated the efficiency of LBM on single GPU (e.g. [5]) and later
on clusters of GPUs (e.g. [7, 8]). However, those computational units necessitate to re-write the code by using a low-level
language which is suited to their specific architectures (e.g. CUDA for GPU NVIDIAr or OpenCL). In this paper we focus our
effort on the performance portability of LBM i.e. the possibility of writing LBM algorithms with a high-level of abstraction,
but by remaining efficient on a wide range of architectures such as multicores x86, GPU NVIDIAr, ARM, and so on.

The issue of performance portability has already been studied and implementation of numerical algorithms running
on various architectures (GPU and so on) can be done by directive approaches (mostly OpenMP or OpenACC). Directive-
based parallel programming solutions consist in decorating source code with comments that are interpreted by the compiler
to derive the actual parallel code. They are useful when porting a legacy simulation code with a large number of lines,
for which it is not reasonable to rewrite it from scratch. However, those programming models deal with computational
patterns (for loops, reduction loops, ...) and do not provide tools for data or memory containers. Here we present an
application of a more promising approach that uses a library-based solution which offers high-level abstract programming
concepts and hardware agnostic solution for a better integration into C++ codes. Among libraries sharing the same goal
of performance portability (like RAJA or SYCL), the Kokkos library [9] is used for simulating two-phase flows with LBM.
Kokkos implements a programming model in C++ for writing performance portable applications targeting all major High
Performance Computing (HPC) platforms. Programming tools provide abstractions for both parallel execution of code and
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data management, i.e. they provide memory containers (multidimensional arrays) where the actual memory layout will
be chosen by the library during compilation. Directive-based solution does not provide such advanced features regarding
memory. The Kokkos library can currently use OpenMP, Pthreads and CUDA as backend programming models. The library
has already been applied to accelerate high-order mesh optimization in [10].

Because of its explicit scheme and local interactions, the LBM ideally exploits the massively parallel supercomputers
based on either CPUs or GPUs or heterogeneous architectures. In this paper, we take advantage of those benefits to study
two-phase flows. Several topical reviews exist in the literature for modeling two-phase flows in LBM framework [11, 12].
The main families of methods are the color-gradient method [13], the pseudo-potential method [14, 15], the free-energy
method [16], and the phase-field method [17]. Most of approaches consider the interface as a diffuse zone (characterized by
a thickness and a surface tension) which can be seen as a small region of transition between bulk phases. In pseudo-potential
methods [14, 15] an additional force term is added in the Navier-Stokes equations to take into account an equation of state
which is not the classical law of perfect gases [18]. In that case, the density plays the role of a phase index varying smoothly
between densities of gas and liquid. Several recent applications use that method for simulating liquid-gas phase change
[19, 20]. Another class of diffuse interface methods is the color-gradient model [13] for which two distribution functions are
introduced for computation of each phase (red and blue). In those approaches, surface tension is derived from a recoloring
step involving both distribution functions [21, 22]. The final approach that is commonly applied in the LBM literature is to
capture the interfacial behavior through a phase-field equation. In this paper, we follow this latter method: the phase-field
theory for two-phase flows [23]. The phase-field method is quite similar to the free-energy lattice Boltzmann method [16] in
the sense that both models are thermodynamically consistent and can be derived from a free-energy functional. However, in
the free-energy LB approach, the density gradient appears explicitly in the free-energy functional and the phase separation
is described by a non-ideal equation of state. For that purpose, the equilibrium distribution function is modified to include a
non-ideal thermodynamic pressure tensor. In this paper, both fluids are considered as quasi-incompressible, i.e. we assume
that the incompressibility condition holds in the bulk phases except in the interfacial zone where the mass production rate ṁ′′′

acts. That mass production rate comes from the phase change between the gas and the liquid. A new function φ is introduced
to track the interfacial zone where the density varies.

Two main phase-field models for interface tracking between two immiscible fluids exist in literature: the first one is the
Cahn-Hilliard (CH) model [17, 24, 25] which was extensively applied in LBM literature for simulating spinodal decomposi-
tion [26], buoyancy of bubbles [27], drop impact [28], Rayleigh-Taylor instability [29] and so on. The second one is a more
recent model, called the conservative Allen-Cahn (CAC) model, which was first developed in [30] and derived in conserva-
tive form in [31]. The model became popular in the LB community [32–34] and several papers compare the Cahn-Hilliard
and conservative Allen-Cahn models, e.g. [35] without LBM and [36] with LBM. In this work the CAC model is chosen
for interface tracking in order to eliminate the curvature-driven interface motion which is implicitly contained in the CH
equation (see Section 2). Moreover, the CAC model involves only a second-order derivative and does not require to compute
the fourth-order derivative (Laplacian of chemical potential) which appears in the CH equation.

In this paper, we take advantage of the simplicity of LBM to develop a new portable code for simulating two phase
flows with the coupled Navier-Stokes/conservative Allen-Cahn (NS/CAC) model. The new code, called LBM saclay, targets
all major HPC platforms such as multi-GPUs and multi-CPUs. In this paper, we also check the capability of the NS/CAC
model to simulate phase change problems in the vicinity of the critical temperature. Near the critical temperature, properties
of each phase vary smoothly and the range of variation of those parameters remains small. Several fluid flow models
of phase change have already been proposed in the literature with the Cahn-Hilliard equation [37, 38]. Following those
references, the NS/CAC model is extended here by adding a source term in both the mass balance and the CAC equations.
The source term involves the mass production rate ṁ′′′ occurring at the interface. In references [37, 38], the liquid is often
considered at saturation temperature and its thermal conductivity is neglected. Under those assumptions, ṁ′′′ is calculated
by a gradient operator (Fourier’s law) involving only the thermal conductivity of gas. Moreover, in order to avoid computing
the temperature equation in liquid phase (because the thermal conductivity is neglected), a cut-off value of the phase-field
is introduced beyond which the temperature equation will not be computed [38]. Here we propose an alternative way to
calculate ṁ′′′ that avoids computing this gradient and avoids introducing this cut-off value. For that purpose, ṁ′′′ will be
related to the normal interface velocity and expressed as a source term close to what is done in solidification models (section
2.3). Implementation of lattice Boltzmann methods will be checked step-by-step by considering separately solutions of the
phase-field equation, the phase-field coupled successively with a fluid flow, and the phase-field coupled only with temperature
for which the ratio of physical properties remain low. Finally, the aspects of two-phase flow, phase change and heat transfer
are coupled to simulate the phenomena of film boiling [39].

This paper is organized as follows. Section 2 presents the continuous mathematical model based on the conservative
Allen-Cahn equation which is extended to handle phase change. The model derivation will be reminded, as well as defi-
nition of the chemical potential and interpolation methods for kinematics viscosities and densities. Section 3 presents the
Lattice Boltzmann schemes based on the Bhatnagar-Gross-Krook (BGK) collision operator for each equation. That collision
operator is chosen because of its simplicity of implementation. Several improvements exist such as the two-relaxation-times
(TRT) and the multiple-relaxation-times (MRT). Their benefits will be quickly discussed in that section. Computation of
gradient and Laplacian operators that are involved in equations of phase-field and fluid flow will also be specified. Details
on numerical implementation with the Kokkos library and various optimizations of LBM kernel will be discussed in Section
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3.5. In Section 4, several basic code verifications are presented to check the implementation of each equation step-by-step.
In Section 5, two purely qualitative simulations will be presented on the two-dimensional test case of film boiling. The first
one will illustrate the capability of the model to simulate the detachment of bubbles on nodes and antinodes. The second
one will illustrate the influence of the Jacob number on their detachment and shape. Here, we give a comparison of the code
performance running on two architectures (CPU Intel and GPU NVIDIAr). Finally, Section 6 and three appendices will
conclude this paper.

2. Two-phase flow with mass transfer

2.1. Phase change model
A single component fluid is considered, which can be either in a liquid (l) or gas (g) phase. The system is then composed

with two incompressible fluids with constant densities ρl and ρg. A phase index φ ≡ φ(x, t) is introduced which can vary
between 0 and 1 with φ = 0 (respectively φ = 1) corresponding to fluid l (resp. g) which is characterized by its density ρl
(resp. ρg) and its kinematic viscosity νl (resp. νg). All other values of φ represent the interfacial zone or a mixture of both
fluids l and g. When 0 < φ < 1, the densities ρ(φ) and the kinematic viscosities ν(φ) are respectively interpolated by

ρ(φ) = φ(x, t)ρg +(1−φ(x, t))ρl , (1a)

ν(φ) =
νlνg

φ(x, t)νl +(1−φ(x, t))νg
. (1b)

Local densities depending on position and time are noted ρ̃χ (for χ = g, l) and write ρ̃g(x, t) = ρgφ(x, t) and ρ̃l(x, t) =
(1−φ(x, t))ρl . The total density writes ρ(x, t) = ρgφ(x, t)+ (1−φ(x, t))ρl . The method of harmonic mean is used in this
work to interpolate the viscosity (Eq. (1b)) for simulating flows with viscosity contrast ([29, Eq. (29c)]). A comparison of
both interpolation methods (linear and harmonic mean) is presented on the double-Poiseuille flow in Section 4.1. The local
velocity uχ of each component χ is related to the volume averaged velocity u, the constant bulk density value ρχ, and the
volume diffusive flow rate jχ by [28] ρχjχ = ρ̃χ(uχ−u) i.e. ρ̃χuχ = ρ̃χu+ρχjχ. The mass balance equations for each phase
g and l writes

∂ρ̃g

∂t
+∇∇∇ · (ρ̃gu+ρgjg) = +ṁ′′′, (2a)

∂ρ̃l

∂t
+∇∇∇ · (ρ̃lu+ρljl) =−ṁ′′′, (2b)

where ṁ′′′ is the volumic production term (+) or sink term (−) due to phase change. Its physical dimension is M.L−3.T−1 and
its computation will be discussed in Section 2.3. In Eqs. (2a) and (2b), signs are chosen such as the phase change produces
gas phase g to the detriment of liquid phase l. The mass flux relative to advection in each phase is ρ̃χu. In interfacial region,
the mass flux ρχjχ has a diffusive origin and results of a regular transition of composition between two phases. By expressing
Eqs. (2a) and (2b) with respect to φ(x, t) and assuming that the fluxes jg and jl are identical and opposite, j = jg =−jl , the
following equations are obtained:

∂φ

∂t
+∇∇∇ · (uφ+ j) = +

ṁ′′′

ρg
, (3a)

∂(1−φ)

∂t
+∇∇∇ · (u(1−φ)− j) =− ṁ′′′

ρl
, (3b)

which after summing yield

∇∇∇ ·u = ṁ′′′
(

1
ρg
− 1

ρl

)
. (4)

To derive the interface tracking equation, in references [28, 38] the flux j is assumed to be given by the Cahn-Hilliard
flux defined by j =−Mφ∇∇∇µφ where µφ is the chemical potential. In that case Eq. (3a) becomes the CH equation with a source
term of production in the second member. The Navier-Stokes/Cahn-Hilliard (NS/CH) model is very popular for simulations
of two-phase flow since more than twenty years (e.g. without LBM [17, 25] and [26–29] with LBM). However the chemical
potential can be interpreted as the product of surface tension σ and curvature κ (see details in Section 2.2), and the CH
equation imposes in its formulation a motion due to σ and κ even without coupling with a fluid flow. Here, in order to
eliminate the curvature-driven interface motion inside the phase-field equation, we assume that the flux is defined by [30, 31]
j =−Mφ(∇∇∇φ−4φ(1−φ)n/W ) and Eq. (3a) becomes the conservative Allen-Cahn (CAC) model with a source term:

∂φ

∂t
+∇∇∇ · (uφ) =∇∇∇ ·

[
Mφ

(
∇∇∇φ− 4

W
φ(1−φ)n

)]
+

ṁ′′′

ρg
. (5)
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In Eq. (5), Mφ is the interface mobility, W is the diffuse interface width and

n =
∇∇∇φ∣∣∇∇∇φ
∣∣ (6)

is the unit normal vector at the interface directed from liquid toward gas. Eq. (5) is the Conservative version of Allen-
Cahn (CAC) equation with a source term for modeling interface tracking with phase change. The accuracy of the phase-field
simulations depends on two parameters: the interface thickness W and the mobility Mφ. In reference [17, Sec. 5], a discussion
is given regarding the numerical convergence of the phase-field method and the choice of those parameters in relation to the
discretization step δx. For the Cahn-Hilliard equation, the mobility affects the thickness and perturbation magnitude of the
chemical potential boundary layers. Here, for simulations of film boiling, preliminary sensitivity tests are performed on Mφ

and some details of its effects will be given in Section 5. The choice of ṁ′′′ will be discussed in Section 2.3. In the original
paper [30], this equation is derived by assuming that the total advection velocity is composed of two terms: the external
advective velocity u, plus the normal velocity to the interface unn. That velocity un is also defined as the sum of one term
depending on the curvature κ, plus one independent of κ: unn = (ṽ−Mφκ)n. In the right-hand side of Eq. (5), the first
term ∇∇∇ · j is an equivalent expression to the curvature term that is corrected with a “counter term” −Mφκ

∣∣∇∇∇φ
∣∣ [40], in order

to cancel the curvature-driven interface motion. The derivation is reminded in Appendix A by using the usual definition of
curvature κ =∇∇∇ ·n with n defined by Eq. (6), and introducing the kernel function

φ =
1
2

[
1+ tanh

(
2ζ

W

)]
(7)

in order to give an expression of
∣∣∇∇∇φ
∣∣ (see Eq. (A.7) in Appendix A):∣∣∇∇∇φ

∣∣= 4
W

φ(1−φ). (8)

That choice of kernel function imposes bulk phases for φ= 0 and φ= 1. Similar reasoning that cancels the curvature term can
be found in [41] in order to eliminate effects of surface tension (inherent in phase-field models) for membranes embedded
in a Newtonian fluid. Let us notice that in this work the standard convention 0 ≤ φ ≤ 1 is used. Other conventions are
possible, particularly when studying two-phase flow with high density ratio e.g. −φ? ≤ φ≤ φ? where φ? is defined by ρg and
ρl (e.g. [27, Eq. (31)]). More generally, the inequality φl ≤ φ≤ φg can be chosen. In that case the kernel function (Eq. (7))
and the expression of

∣∣∇∇∇φ
∣∣ must change. Moreover the source term in Eq. (5) must be modified by (see [12, Eq. (188)]):

ṁ′′′(φg/ρg−φl/ρl). Here, that expression is simplified to ṁ′′′/ρg with the standard choice φg = 1 and φl = 0.
The temperature equation is derived from the conservation law of total enthalpy ρH where H is the enthalpy (physical

dimension E.M−1 where E is used for Energy) as carried out in crystal growth simulations [42]:

∂(ρH )

∂t
+∇∇∇ · (uρH ) =∇∇∇ · (K ∇∇∇T ) (9)

where the diffusive flux is given by the Fourier’s law jT = −K ∇∇∇T with T being the temperature and K the thermal con-
ductivity (physical dimension E.T−1.L−1.Θ−1). The enthalpy is defined by H = CpT + φL where Cp is the specific heat
(E.M−1.Θ−1) and L is the latent heat of phase change (E.M−1). With this relation, enthalpies of liquid and gas are respec-
tively equal to Hl = CpT for φ = 0 and Hg = CpT +L for φ = 1. With those notations and definitions the heat equation for
temperature writes

∂T
∂t

+∇∇∇ · (uT ) = α∇∇∇
2T − L

Cp

[
∂φ

∂t
+∇∇∇ · (uφ)

]
, (10)

where α = K /(ρCp) is the thermal diffusivity, the second term in the right-hand side of Eq. (10) is interpreted as the release
(or production) of latent heat during the displacement of the interface. When u = 0 the movement of the interface is only
due to phase change between liquid and gas. Solving only Eq. (5) and (10) must be equivalent to solve the Stefan problem
of phase change (see validation of Section 4).

Finally, the complete model of two-phase flows with phase change writes:

∇∇∇ ·u = ṁ′′′
(

1
ρg
− 1

ρl

)
, (11a)[

∂(ρu)
∂t

+∇∇∇ · (ρuu)
]
=−∇∇∇p+∇∇∇ ·

[
η
(
∇∇∇u+∇∇∇uT )]+Ftot , (11b)

∂φ

∂t
+∇∇∇ · (uφ) =∇∇∇ ·

[
Mφ

(
∇∇∇φ− 4

W
φ(1−φ)n

)]
+

ṁ′′′

ρg
, (11c)

∂T
∂t

+∇∇∇ · (uT ) = α∇∇∇
2T − L

Cp

[
∂φ

∂t
+∇∇∇ · (uφ)

]
. (11d)
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Eqs. (11a) and (11b) are the Navier-Stokes equations for modeling two Newtonian and incompressible fluids. In those
equations p is the pressure, ρ(φ) is the density depending on the phase-field φ and η(φ) is the dynamic viscosity. Ftot is the
total force term defined as:

Ftot = Fs +Fv (12)

where Fs is the surface tension force that is defined in the next subsection. The volumic force Fv is the buoyancy force.
Among different formulations of that force [43, Sec. 3.7], in this work the buoyancy is defined such as Fv = (ρl −ρ(φ))g
where g is the constant acceleration due to the gravity. With that formulation, the gravity acts only on the gas phase for
simulations of film boiling in Section 5.

2.2. Chemical potential and Cahn-Hilliard equation
The surface tension force Fs is expressed here in its potential form [17]:

Fs = µφ∇∇∇φ (13)

where µφ is the chemical potential which is defined as the change of free energy for a small variation of local composition of
mixture: µφ = δF/δφ. When the free energy is defined such as F (φ) =

´
v[V (φ)+K |∇∇∇φ|2 /2]dv with V (φ) = Hφ2(1−φ)2,

the chemical potential writes

µφ = 4Hφ(φ−1)
(

φ− 1
2

)
−K∇∇∇

2
φ. (14)

The first term of the right-hand side of Eq. (14) is the derivative of V (φ) with respect to φ and the second term comes from
the gradient energy term. The double-well ensures minima at φ = 0 and φ = 1. Coefficient H is the height of double-well
and K is the gradient energy coefficient. It is well-known that the one-dimensional solution at equilibrium (i.e. µφ = 0) of
Eq. (14) is the hyperbolic tangent function defined by Eq. (7). A dimensional analysis of F (φ) indicates that H has the
dimension of energy per volume unit, whereas K has the dimension of energy per length unit. In this formalism, the surface
tension σ and the diffuse interface width W are proportional to the product and the ratio of both coefficients:

σ =
1
6

√
2KH and W =

√
8K
H

(15a)

We also note that
√

KH is homogeneous to an energy per surface unit which corresponds to the physical dimension of
surface tension. The term

√
K/H is homogeneous to a length as expected for the interface thickness. For the simulations of

section 4, values of σ and W will be set and K and H will be derived by inverting those two relationships:

K =
3
2

Wσ and H = 12
σ

W
. (15b)

Let us notice that, if we use Eqs. (14) and (15b), the surface tension force Fs = µφ∇∇∇φ can be written as µφ∇∇∇φ =
−(3/2)Wσ

[
∇∇∇2φ−16φ(1−φ)(1−2φ)/W 2

]
∇∇∇φ. The term inside the brackets is the curvature term κ

∣∣∇∇∇φ
∣∣ provided that the

kernel function Eq. (7) is used for the second term (see Eq. (A.9) in Appendix A). In that case, the surface tension σ and
the curvature κ appear explicitly in the definition of the chemical potential µφ and the surface tension force is Fs = µφ∇∇∇φ =

−(3/2)Wσκ
∣∣∇∇∇φ
∣∣∇∇∇φ. Besides, if we set K = ε2 and H = 1/4 in Eq. (15a), then we find (3/2)W = 6

√
2ε. The surface tension

force is Fs =−σ(6
√

2ε)(∇∇∇ ·n)
∣∣∇∇∇φ
∣∣∇∇∇φ which is the same relation in [44, Eq. (13)] provided that the kernel function Eq. (7)

is applied for κ. As mentioned earlier, when the diffusive flux is proportional to the gradient of the chemical potential, then
the evolution of φ follows the Cahn-Hilliard equation:

∂φ

∂t
+∇∇∇ · (uφ) =∇∇∇ · (Mφ∇∇∇µφ), (16)

with µφ defined by Eq. (14). Compared to the standard CH equation, the main advantage of the conservative Allen-Cahn
model lies in the computation of the right-hand side term. Indeed, the CH equation involves a fourth-order derivative because
the flux is assumed to be proportional to gradient of chemical potential. A first Laplacian appears in Eq. (14) and a second one
appears in the conservative equation Eq. (16). In the conservative Allen-Cahn equation (Eq. (11c)), only the second-order
derivative is involved in its definition.

2.3. Production rate ṁ′′′

2.3.1. Interface velocity of phase change
In sharp interface methods, the surface production rate ṁ′′ (physical dimension M.L−2.T−1) occurs on the separation

area between liquid and gas. It is usually defined by [45, 46] ṁ′′ = ρg(ug −VI) · n = ρl(ul −VI) · n where VI is the
velocity of the interface, and ul and ug are respectively the velocities on liquid and gas sides. This relation is derived by
integrating the mass conservation across the interface. Integration of the energy conservation yields an additional relation
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on ṁ′′ which can be calculated in its simplest form by the difference of heat fluxes, ṁ′′ = (K ∇∇∇T |l − K ∇∇∇T |g) ·n/L . The
driving force of evaporation is the heat quantity which is transferred at the interface. In [38], the liquid is assumed to be
at saturation temperature Tsat and in that case, only the heat quantity of the gas is considered and the temperature equation
is solved only in the gas phase. Because of the diffuse interface, the rate ṁ′′ is transformed to a volumic quantity ṁ′′′ by
ṁ′′′ = ṁ′′

∣∣∇∇∇φ
∣∣ = K ∇∇∇T ·∇∇∇φ/L where φ follows the Cahn-Hilliard equation. The model was extended in [47] to include

the gradient of the vapor concentration at the liquid-vapor interface as the driving force for vaporization. The model [38]
was also applied in [48] to simulate nucleate pool boiling, including the bubble growth on and periodic departure from a
superheated wall. Several other popular mass transfer models are reviewed in [39, Section 4.2] for phase change simulations.

Here, we notice that the source term ṁ′′′/ρg in Eq. (11c) can be identified as the normal velocity of the interface −ṽ
∣∣∇∇∇φ
∣∣

(see Eq. (A.8) in Appendix A) i.e. ṁ′′/ρg = −ṽ (because ṁ′′′ = ṁ′′
∣∣∇∇∇φ
∣∣). In Eq. (11c), the total velocity is the sum of an

external velocity u plus the interface normal velocity. The latter has also been separated into one velocity depending on the
curvature−Mφκ (which has been canceled) plus one velocity ṽ independent of the curvature. That velocity is responsible for
the displacement of the interface because of the phase change. Its expression can be approximated by [30, Eq. (A.5)]:

ṽ =
α

A

θI−θ

W
, (17)

where θ is the dimensionless temperature defined as θ = (Cp/L)(T −Tsat), θI is the dimensionless interface temperature and
A is a constant of proportionality that will be specified in section 2.3.2. Finally, if the kernel function

∣∣∇∇∇φ
∣∣= (4/W )φ(1−φ)

is used (see Eq. (8)), the source term ṁ′′′/ρg in Eq. (11c) takes the form

ṁ′′′

ρg
=−ṽ

∣∣∇∇∇φ
∣∣=− 4α

A W 2 (θI−θ)φ(1−φ). (18)

2.3.2. Value of coefficient A

In order to derive the value of A in Eq. (18), we proceed by analogy with the model of phase change for solidification
and crystallization [49]. First, Eq. (11c) with Eq. (18) are re-written in order to make appear the derivatives of the double-
well potential f (φ) and the interpolation function p(φ). Those functions are used in the solidification models derived from
variational formulation based on the minimization of free energy [49]. The interface is tracked by Eq. (11c) by assuming
that the movement due to curvature is cancelled. That equation can be re-written (see Appendix A):

∂φ

∂t
+∇∇∇ · (uφ) = Mφ

[
∇∇∇

2
φ−

∇∇∇φ ·∇∇∇
∣∣∇∇∇φ
∣∣∣∣∇∇∇φ

∣∣
]
−Mφκ

∣∣∇∇∇φ
∣∣− 4α

A W 2 (θI−θ)φ(1−φ). (19)

If the interface temperature is considered at saturation (i.e. θI = 0), the source term is simplified to (4α/A W 2)θφ(1−φ).
With the kernel function Eq. (7), the second term in the brackets writes (see Eq. (A.9)) ∇∇∇φ ·∇∇∇

∣∣∇∇∇φ
∣∣/∣∣∇∇∇φ

∣∣ = (16/W 2)φ(1−
φ)(1− 2φ). That term is proportional to the derivative (with respect to φ) of a double-well potential defined by f (φ) =
Hφ2(1−φ)2 with H = 1, hence ∇∇∇φ ·∇∇∇

∣∣∇∇∇φ
∣∣/∣∣∇∇∇φ

∣∣= (8/W 2)∂ f/∂φ. Besides if we set K ≡ ε2, then the two relationships Eqs.
(15b) with H = 1 yields ε2 =W 2/8. We also set Mφ = ε2/T where T is the kinetic time, then Eq. (19) becomes

T
[

∂φ

∂t
+∇∇∇ · (uφ)

]
= ε

2
∇∇∇

2
φ− ∂ f

∂φ
− ε

2
κ
∣∣∇∇∇φ
∣∣− 4T α

A W 2 (θI−θ)
∂p
∂φ

. (20)

In the right-hand side of Eq. (20), the second term is the derivative of the double-well and the third term is the counter
term. The last term is the coupling with temperature which involves the derivative (with respect to φ) of an interpolation
function defined as p(φ) = φ2/2−φ3/3. The factor 4 comes from the choice a = 1/2 in the kernel function (Eq. (A.6)) and
we set W0 =W/2. If we compare the coupling term of reference [49] with the last term of Eq. (20), we can identify

λ
? =

T α

A W 2
0
, (21)

where W 2
0 =W 2/4 and λ is the coupling coefficient in solidification/crystallization phase-field models. The star of λ? means

it is the particular value of λ that cancels the kinetic coefficient in the Gibbs-Thomson condition recovered by the matched
asymptotic analysis of the phase-field model. Hence, that coupling term (Eq. (21)) means this is the particular model of
phase change which cancels the kinetic coefficient in the Gibbs-Thomson equation. Besides, the curvature term is also
removed by the counter term −ε2κ

∣∣∇∇∇φ
∣∣. Finally, the coefficient A is identified to the coefficient a2 in reference [49]. Its

value is a2 = 0.6267 when the phase-field varies between−1≤ φ≤+1 and when the derivative of the interpolating function
of temperature is pφ(φ) = 1−φ2 (the index φ indicates the derivative with respect to φ). In the present paper, the phase-field
φ varies between 0 and 1 and the derivative of the polynomial function is pφ = φ(1−φ). Because of those differences, the
value of A must be computed from integrals obtained from the matched asymptotic expansion of the phase-field model. In
Appendix B, details are given to obtain A = 10/48≈ 0.21, value that will be used for all simulations of this paper.
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3. Lattice Boltzmann schemes

In this Section, we detail the lattice Boltzmann methods that are used to simulate the phase change model of Section 2
composed of Eqs (11a)–(11d) with Eq (13) for surface tension force and Eq. (18) for mass production rate. Simulations are
performed by using three distribution functions ϑi(x, t)≡ϑi for ϑ= f , h, s where i= 0, ..., Npop and Npop is the total number
of moving directions ei on a lattice (defined below). The first distribution function fi is used to recover the Navier-Stokes
model (subsection 3.1); the second one gi is used for the phase-field equation (subsection 3.2) and the last one si is used for
the temperature equation (subsection 3.3). Each distribution function follows its own discrete lattice Boltzmann equation in
which the collision term is considered with the Bhatnagar-Gross-Krook (BGK) approximation. That collision operator uses
a unique relaxation parameter that is related to the diffusive parameter of the PDE (kinematic viscosity, mobility or diffusion
coefficient). Several improvements exist such as the TRT [50] or MRT [51, 52] collision operators. They both use additional
relaxation parameters (only one for TRT). With MRT, some of them can be related to physical parameters (e.g. anisotropic
diffusion coefficient for transport equation) and the other ones control the stability of the algorithm when increasing the
Reynolds number or Péclet number. Hence a wider range of parameters can be reached when simulations are performed with
TRT and MRT. Let us mention that other alternatives exist in the literature (entropic, central moments, cumulants, ...) but an
in-depth discussion of their benefits and drawbacks is out of the scope of this work. In Eq. (25), each discrete Boltzmann
equation is expressed in terms of new variables f i, gi and si, each one of them being defined by an appropriate variable
change [53] (see details in Appendix C):

ϑi = ϑi +
δt

2τϑ

(
ϑi−ϑ

eq
i
)
− δt

2
S ϑ

i for ϑ = f , h, s, (22)

where τϑ and S ϑ
i are respectively the collision time and the source term relative to the distribution function ϑ; δt is the time

step and ϑ
eq
i is the equilibrium distribution function. Two other notations are introduced: τϑ and ϑ?

i . The first one is the
dimensionless collision rate that is defined by τϑ = τϑ/δt for each ϑ. The second one is the distribution function that is
obtained after the stages of collision and streaming: ϑ?

i ≡ ϑi(x+ ciδt, t + δt). The use of this variable change (Eq. (22))
modifies the calculation of the zeroth-order moment M ϑ

0 of the distribution function ϑi by (see Appendix C)

M ϑ
0 = ∑

i
ϑi +

δt
2

S ϑ
i for ϑ = f , h, s. (23)

It is also useful to introduce the variable change for the equilibrium function (see Appendix C.1)

ϑ
eq
i = ϑ

eq
i −

δt
2

S ϑ
i for ϑ = f , h, s, (24)

so that, with all those notations, the lattice Boltzmann equation writes

ϑ
?
i = ϑi−

1
τϑ +1/2

[
ϑi−ϑ

eq
i

]
+S ϑ

i δt (25)

for each distribution function ϑ = f , h, s. Before defining the equilibrium distribution functions and source terms, several
lattices are introduced. In this work, the D2Q9 lattice and three 3D lattices are used: D3Q7, D3Q15 and D3Q19 (Fig. 1).
For D2Q9 the moving vectors are defined by e0 = (0, 0), e1,3 = (±1, 0), e2,4 = (0,±1), e5,6 = (±1, 1) and e7,8 = (∓1,−1).
for 3D lattices, the moving vectors ei are defined such as e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , . . ., e6 = (0, 0,−1)T for D3Q7
(Fig. 1a). For D3Q15, additional diagonal vectors are defined such as (see Fig. 1b) e7 = (1, 1, 1)T , e8 = (−1, 1, 1)T , . . .,
e14 = (1,−1,−1)T . Finally for D3Q19 (Fig. 1c): e7,8 = (±1, 1, 0)T , e9,10 = (±1,−1,−0)T , e11,12 = (±1, 0, 1), e13,14 =
(±1, 0,−1)T , e15,16 = (0,±1, 1)T , e17,18 = (0,±1,−1)T . For D3Q7 Npop = 6, e2 = 1/4, w0 = 1/4 and w1,...,6 = 1/8. For
D3Q15 Npop = 14, e2 = 1/3, w0 = 2/9, w1,...,6 = 1/9 and w7,...,14 = 1/72. For D3Q19 Npop = 18, e2 = 1/3, w0 = 1/3,
w1,...,6 = 1/18 and w7,...,18 = 1/36. The standard notations will be used: ci = eic with c = δx/δt where δx and δt are the
space- and time-steps respectively and c2

s = c2/3.

3.1. Incompressible Navier-Stokes
Several lattice Boltzmann schemes exist for incompressible version of Navier-Stokes equations. The fully incompressible

condition has already been proposed in literature but necessitates to solve an additional Poisson equation [54] or an additional
predictor-corrector step [29]. Here we prefer to apply the artificial compressibility method [55] for which the solenoidal
condition ∇∇∇ ·u = 0 is approximated by (1/β)∂p/∂t +∇∇∇ ·u = 0 where β is the artificial compressibility coefficient. In LB
framework, the method was derived in [56] with β = ρ0c2

s where ρ0 is the constant density of bulk phase. The LB scheme
writes

f ?i = f i−
1

τ f +1/2
[

f i− f eq
i
]
+S f

i δt, (26a)

f eq
i = wi

[
p+ρ(φ)c2

s

(
ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

)]
, (26b)
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Figure 1: 3D lattices of LB scheme.

with f eq
i = f eq

i −S f
i δt/2 and ρ(φ) is given by Eq. (1a). In Eq. (26a) τ f is the collision rate which is related to the kinematic

viscosity by ν = τ f c2
s δt. Hence, the collision rate is obtained by τ f (φ) = 3ν(φ)(δt/δx2) with the kinematic viscosity ν(φ)

interpolated by Eq. (1b). In Eq. (26a), the source term S f
i contains contributions of external forces (involving Ftot ) plus the

production term in mass conservation (involving ṁ′′′):

S f
i = F f

i +P f
i (27a)

with [57]

F f
i = (ci−u) ·

[
(Γi−wi)∇∇∇ρ(φ)c2

s +ΓiFtot
]
, (27b)

P f
i = wiρc2

s ṁ′′′
(

1
ρg
− 1

ρl

)
. (27c)

In Eq. (27b), Ftot is the external force defined by Eq. (12) and the function Γi ≡ Γi(u) is defined by:

Γi = wi

[
1+

ci ·u
c2

s
+

(ci ·u)2

2c4
s
− u ·u

2c2
s

]
. (27d)

After the stages of collision and streaming, the first-order moment (momentum) and the zeroth-order moment (pressure)
are updated by [57]

ρu =
1
c2

s
∑

i
f ici +

δt
2

Ftot , (28a)

p = ∑
i

f i +
δt
2

{
u ·∇∇∇ρc2

s +ρc2
s ṁ′′′

(
1
ρg
− 1

ρl

)}
. (28b)

3.2. Conservative Allen-Cahn model

The lattice Boltzmann equation for the conservative Allen-Cahn model acts on the distribution function gi. The evolution
equation is

g?i = gi−
1

τg +1/2
[
gi−geq

i
]
+S g

i δt, (29a)

geq = φΓi, (29b)

with the variable change geq
i = geq− δtS g

i /2. The mobility coefficient is related to the collision rate by Mφ = τgc2
s δt. The

source term S g
i contains two contributions:

S g
i = F g

i +P g
i , (30a)

where the first one F g
i involves the counter term with the normal vector n [34], and the second one P g

i involves the mass
production term ṁ′′′:

F g
i =

4
W

φ(1−φ)wici ·n and P g
i = wi

ṁ′′′

ρg
. (30b)
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Let us notice that the scheme is equivalent (see Appendix C.2) to the lattice Boltzmann equation

g?i = gi−
1

τg +1/2

[
gi−geq,CAC

i

]
+P g

i δt (31a)

where only the source term P g
i appears in the source term and the equilibrium distribution function is redefined as [33]

geq,CAC
i = φΓi +Mφ

4
W

φ(1−φ)wi
ci ·n
c2

s
(31b)

with geq,CAC
i = geq,CAC

i −δtP g
i /2.

After the stages of collision and streaming, the new phase-field is obtained by the zeroth-order moment of gi which must
be corrected with the production term:

φ(x, t) = ∑
i

gi +
δt
2 ∑

i
P g

i . (32)

This relation holds for both formulations that use geq
i and geq,CAC

i because ∑i F g
i δt/2 = 0.

3.3. Temperature equation

The lattice Boltzmann scheme for temperature equation writes:

s?i = si−
1

τs +1/2
[
si− seq

i
]
+S s

i δt (33a)

seq
i = T Γi (33b)

where the thermal diffusivity α is related to the collision rate by α = τsc2
s δt. The source term S s

i is defined such as:

S s
i = F s

i +P s
i (33c)

where

F s
i = wi

L
Cp

∇∇∇ · (uφ) and P s
i = wi

L
Cp

∂φ

∂t
(33d)

Finally, the new temperature is computed by

T = ∑
i

si−
δt
2

L
Cp

[
∂φ

∂t
+∇∇∇ · (uφ)

]
. (34)

In Sections 4 and 5, simulations will be carried out with Dirichlet boundary conditions applied on temperature T and
phase-field φ. In order to impose such a condition, for example on temperature Tw on left boundary of a D2Q9 lattice,
the unknown distribution functions si|unknown are updated with the anti bounce-back method [58]: si|unknown =−si′ +2wiTw
where i′ is the opposite direction of i.

3.4. Computations of gradients and Laplacian

The unit normal vector n and force term Fs require computation of gradients. Moreover the chemical potential µφ

necessitates to calculate the Laplacian of φ. Gradients and Laplacian that are involved in definitions of n (Eq. (6)) and µφ

(Eq. (14)) are discretized by using the directional derivatives methods. The method has already demonstrated its performance
for hydrodynamics problem in order to reduce parasitic currents for two-phase flow problem [28, 59, 60]. The directional
derivative is the derivative along each moving direction on the lattice. Taylor’s expansion at second-order of a differentiable
scalar function φ(x) at x+ eiδx and x− eiδx yields the following approximation of directional derivatives:

ei ·∇∇∇φ
∣∣
x =

1
2δx

[φ(x+ eiδx)−φ(x− eiδx)] (35a)

The number of directional derivatives is equal to the number of moving direction ei on the lattice i.e. Npop. The gradient
is obtained by

∇∇∇φ
∣∣
x = 3

Npop

∑
i=1

wiei
(
ei ·∇∇∇φ

∣∣
x
)
. (35b)
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Intel CPUs NVidia GPUs ARM IBM AMD
Sandy/Ivy Bridge Kepler ThunderX Blue gene Q AMD CPUs
Haswell Maxwell ARMv8.0 Power7
Skylake Pascal ARMv8.1 Power8
Westmere CPUs Volta Power9
Knights Landing/Corner Xeon Phi Turing
Broadwell Xeon E-class

Table 1: List of architectures that are currently compatible with the Kokkos library.

The three components of the gradient ∂xφ, ∂yφ and ∂zφ are obtained by calculating each directional derivative ei ·∇∇∇φ
∣∣
x

and next, by calculating the moment of first-order ∇∇∇φ
∣∣
x. For the calculation of ∇∇∇2φ, all directions of propagation are taken

into account by

(ei ·∇∇∇)2
φ
∣∣
x =

1
δx2 [φ(x+ eiδx)−2φ(x)+φ(x− eiδx)] . (36a)

The Laplacian is obtained by summing and weighting each term with

∇∇∇
2
φ
∣∣
x = 3

Npop

∑
i=1

wi(ei ·∇∇∇)2
φ
∣∣
x. (36b)

Other approximations exist [28, 61] such as the first-order and second-order upwind schemes (or biased differences) re-
spectively defined by ei ·∇∇∇up1φ

∣∣
x = [φ(x+eiδx)−φ(x)]/δx and ei ·∇∇∇up2φ

∣∣
x = [−φ(x+2eiδx)+4φ(x+ eiδx)−3φ(x)]/(2δx).

Here, by simplicity, the central difference approximation is applied for all simulations even though that approximation fails
to capture the velocity profiles in low density regions [62] and biased directional derivatives can fix that issue [2]. Those
biased differences could be tested in future works with LBM saclay.

3.5. Numerical implementation and kernel optimization

All LBM schemes of this Section were implemented in a new code called LBM saclay written in C++. The main
advantage of this new code is its portability targeting all major HPC platforms and especially those based on GPU- and
CPU-architectures. Actually, LBM saclay can run without modification on any architecture that Kokkos supports. The
current compatibilities are indicated in [63] and summarized in Tab. 1. For more information, the reader can refer to the
Kokkos documentation. Let us mention that the current support for AMD GPU is experimental through the C++ library HIP
(Heterogeneous-Compute Interface for Portability) and it is planned to be supported at the end of 2020.

Two levels of parallelism are implemented in the code. The first one is the intra-node parallelism (shared memory) with
the Kokkos library, an opensource C++ library with parallel algorithmic patterns and data containers. Specific commands
of the Kokkos library optimize loops with OpenMP, Pthreads or CUDA during compilation. An example of using Kokkos’
functionalities is presented on Fig. 2 to compute at each time-step the zeroth-order moment of a distribution function. The
second level of parallelism is a standard domain decomposition performed with MPI: the full computational domain is cut
into several sub-domains associated with each computational node (distributed memory).

When developing the code, several optimizations were implemented and compared in particular to enhance its perfor-
mance on each architecture. The first way to consider the stages of collision and streaming is to “fuse” those two steps inside
a single kernel, i.e. both stages are simply done in one single “for-loop” performed on the lattice nodes. The “fused” version
does not require an intermediate memory load contrary to standard implementation for which both stages are well separated.
However, the fused kernel contains more floating point operations per iteration of the “for-loop”. This is a drawback if the
number of floating point operations becomes large enough to exhaust the amount of register memory available on the archi-
tecture (this number is significantly lower on GPU than on CPU). So, if the register memory is full, additional variables will
be allocated in the external DRAM memory, generating additional traffic on the memory bus and degrading performance.
For GPUs NVIDIAr and CPUs Intelr Skylake, best performance is obtained with the fused version.

Alternatively, two optimizations were tested which are well suited for Intelr KNL (KNights Landing) processors [64]:
the first one is the “CSoA” optimization (Cluster of Structure of Array) i.e. for each line of the lattice, LBM nodes are stored
in memory modulo M where typically M = 8 and each line is padded to be a multiple of M. The access of data container
is done with data(iMem,j,k,ipop) where iMem is computed from the physical node location i. The CSoA optimization
improves vectorization and memory alignment for streaming stage but performance decreases for large domain on D2Q9
lattice. The second optimization for KNL is “CSoA2”, i.e. the population index ipop of data(i,j,k,ipop) is interverted
to data(i,ipop,j,k), where i,j,k are indices of position. With this permutation, the memory locality is restored for the
collision stage.

Comparisons were performed on a simplified diffusive problem. The CSoA2 optimization enhances performance on
KNL processors, but on Fig. 3, we can see that it remains far below to that obtained on GPUs, even older generation GPUs
(K80). Computational times are expressed in Million Lattice Updates per Second (MLUPS) as an effective metric measuring
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Figure 2: Example of using the Kokkos library to compute the zeroth-order moment of distribution function.

(a) Comparison of computational times for three NVIDIAr graphical cards:
K80 (oldest), P100 and V100 (newest).

(b) Comparisons of computational times for three optimizations of
LBM kernel for Intelr KNL: fused (left), CSoA (middle) and CSoA2
(right).

Figure 3: Computational times (in Million Lattice Updates Per Second – MLUPS) for a diffusive problem with a D3Q19 lattice. (a) GPU for three mesh
sizes and (b) on CPU (Intelr KNL) for two mesh sizes.
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(a) t = Tf /4 (b) t = Tf /2 (c) t = 3Tf /4 (d) t = Tf

Figure 4: Zalesak’s slotted disk with the conservative Allen-Cahn model.

the number of millions of node lattice update per seconds. That performance metric is used by node so that it is independent
of the type of lattice (e.g. D3Q7, D3Q15, D3Q19). With that metric, a larger lattice will give a smaller MLUPS. In the rest
of this paper, most of validations and simulations of Sections 4 and 5 are carried out on GPUs. In Section 5.3, comparisons
of computational times on GPU and CPU will be presented on the test case of film boiling for two mesh sizes.

Finally, let us mention that all kernels (Navier-Stokes, phase-field and temperature equations) have been developed in 2D
and in 3D. They all run in 3D separately. However, all coupling terms, i.e. the surface tension force (Eq. (13)), the chemical
potential (Eq. (14)) and the advective term in Eq. (33d)) were developed and checked only in 2D. Hence, verification
of couplings in Section 4 and film boiling simulations of Section 5 will be presented only in 2D. The three-dimensional
extension of coupling terms is planned for future works.

4. Code verifications

In this section, the numerical implementation of the LBM schemes of Section 3 is checked by comparison with well-
known solutions. Validations are gathered into two parts in order to check implementations step-by-step. In subsection 4.1,
verifications are done without phase change, i.e. by neglecting the temperature equation and by assuming that the mass
transfer is zero (ṁ′′′ = 0 in Eq. (11a) and (11c)). The conservative Allen-Cahn model, and the coupling with fluid flow are
verified successively. In subsection 4.2, the phase change model is checked by considering the phase-field equation coupled
with temperature. The LBM code is compared with an analytical solution of Stefan’s problem with two different diffusivities.

4.1. Verifications without phase change

We first compare implementation of the conservative Allen-Cahn model on two test cases: Zalesak’s slotted disk and
interface deformation inside a vortex. Next the coupling with Navier-Stokes model will be considered with the layered
Poiseuille flow and the Laplace law.

4.1.1. Verifications of the phase-field model
Two verifications of phase-field implementation are presented. In the first one, we check that the contour of a slotted

disk is well conserved inside a rotating fluid [65]. In the second one, we check that the simulation retrieves a circle when
an initial disk is deformed inside a vortex that changes its direction of rotation over time. For both simulations, the mesh is
composed of 201×201×3 nodes with periodic boundary conditions applied on all faces, the time-step is δt = 10−4 and the
space-step δx = 5×10−3.

Zalesak’s slotted disk. Inside a domain of lengths Lx = Ly = 1, and Lz = 0.01, a disk is initialized at the center of the domain

xc = (100, 100, 1)T by φ(x, 0) =
[
1+ tanh

(
(R−dc)/

√
2W0

)]
/2 with dc =

√
(x− xc)2 +(y− yc)2 +(z− zc)2, W0 = 2 and

R = 80 l.u. (lattice units). The diffuse disk is slotted by imposing φ(x, 0) = 0 if xc−R/6≤ x≤ xc+R/6 and yc−1.1R≤ y≤
yc. Components of velocity are imposed by ux(x) = u0(2y−1), uy(x) = u0(1−2x) and uz(x) = 0. The value of u0 is chosen
such that the slotted disk performs one complete rotation at Tf = 4, i.e. u0 = 0.7853975 and both parameters of CAC model
are set as Mφ = 5× 10−4 and W = 6δx. The rotation of the slotted disk is presented on Fig. 4 where the interface position
φ = 1/2 is superimposed to the initial condition at four times. At the final time of simulation t = Tf (Fig. 4d), the contour
φ = 0.5 (red) is superimposed to the initial one (black) although the slot corners are slightly rounded.

Vortex. We study the deformation of an initial disk standing inside a 2D vortex. The three components of velocity are defined
by ux(x) =−u0 cos [π(x−0.5)]sin [π(y−0.5)], uy(x) = u0 sin [π(x−0.5)]cos [π(y−0.5)] and uz(x) = 0. LB simulations are
performed on a D3Q19 lattice for a 3D domain with a very small thickness in z-direction. The initial condition φ(x, 0)
is defined by a full disk centered at xc = (100, 60, 1)T , with W = 2 and R = 40 l.u. The initial condition (φ = 0.5) and
streamlines for u0 = 0.7853975 are presented on Fig. 5a-(i). The rotation is directed counterclockwise. Parameters are
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(i) t = 0 (ii) t = Tf /2 (iii) t = Tf

(a) Without change of rotation during simulation. Streamlines of u (colored lines) and interface φ = 0.5 (black line) at three times.

(i) t = Tf /2 (ii) t = Tf (iii) t = 3Tf /2 (iv) t = 2Tf

(b) With a change of rotation direction during simulation. Streamlines of u′ (colored lines) and contours φ = 0.5 (black lines) for four times.

Figure 5: Deformation of an initial disk standing inside a vortex. (a) Without change of rotation during simulation. (b) With change of rotation.

Tf = 4, W = 6δx and Mφ = 5× 10−4. For t = Tf /2 (Fig. 5a-(ii)) and t = Tf (Fig. 5a-(iii)) black contours φ = 0.5 are
comparable to those presented in reference [32, Fig. 4]. Next, the velocity is changed during the simulation by multiplying
u(x) with a factor depending on time: u′(x, t) = u(x)× cos(πt/2Tf ). With the cosine function, the velocity u′(x, t) presents
three stages during the simulation: when t < Tf , the direction of rotation is counterclockwise (Fig. 5b-(i)); when t = Tf the
cosine function cancels the velocity u′ (Fig. 5b-(ii)); and when t > Tf , the sign changes and the direction of rotation becomes
clockwise (Fig. 5b-(iii)). At the end of simulation t = 2Tf , we expect to find the shape of initial disk. That is what we
observe on Fig. 5b-(iv) which confirms that the interface position φ = 0.5 is similar to the initial condition one (Fig. 5a-(i)).

4.1.2. Verifications of phase-field with fluid flow model
Two classical test cases are presented to check the coupling of phase-field equation and fluid flow model: the layered

Poiseuille flow and the Laplace law.

Layered Poiseuille flow. The Navier-Stokes implementation is checked with the analytical solution of a layered Poiseuille
flow [29] for two fluids named A and B:

ux(y) =


Gh2

2ηA

[
−
( y

h

)2− y
h

(
ηA−ηB
ηA+ηB

)
+ 2ηA

ηA+ηB

]
(−h≤ y≤ 0)

Gh2

2ηB

[
−
( y

h

)2− y
h

(
ηA−ηB
ηA+ηB

)
+ 2ηB

ηA+ηB

]
(0≤ y≤ h)

(37)

where ηA and ηB are the dynamic viscosities and 2h is the channel width. The pressure gradient is defined by G = uc(ηA +
ηB)/h2 with uc = 5×10−5. For the LB simulation, the mesh is composed of 101×101×3 nodes and the pressure gradient
is replaced by a force term defined by F = (G, 0, 0)T . Periodic boundary conditions are set for all limits except for planes of
normal vector directed in y-direction where no-slip conditions are imposed with the half bounce-back method. Two layers
of different viscosity are defined as initial condition for φ: φ(x, 0) = 0.5{1+ tanh [2(y− y0)/W ]} where W = 6δx controls
the slope of the hyperbolic tangent function and y0 = (ymax + ymin)/2. The mobility coefficient is Mφ = 0.1. Comparisons
between the LBM code and the analytical solution are presented for two cases. In the first one, the density is identical for
both fluids (ρA = ρB = 1) and three viscosity ratios are checked on Fig. 6a: ηB/ηA = 1/3, 1/5, 1/10. For the first ratio
νA = 0.1 and νB = 0.3; for the second one νA = 0.07 and νB = 0.35 and for the third one νA = 0.01 and νB = 0.1. For
the second test case, the viscosity of each phase is set equal to νA = νB = 0.07 and three density ratios are checked on Fig.
6b: ρA/ρB = 1/1.658, 1/2, 1/3. The ratio 1/1.658 is used in the simulations of film boiling as well as the viscosity ratio
νA/νB = 1/6. In Fig. 6c this viscosity ratio is checked for two cases. In the first simulation (red curve), the density ratio is
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Figure 6: Verification of coupling between the phase-field equation and fluid flow model without phase change. (a) Double-Poiseuille flow with three
viscosity ratios. (b) Double-Poiseuille for three density ratios. (c) Effect of linear interpolation and harmonic mean of viscosity. (d) Laplace law.

equal to one and the viscosity is interpolated by two methods: the linear (black squares) and the harmonic mean (red circles)
defined by

ν(φ) = [1−φ(x, t)]νA +φ(x, t)νB, (38)

and Eq. (1b) respectively. The differences observed with the former method justify the choice of using the latter in the
second simulation (blue curve) which combines both ratios of viscosity and density.

Laplace law. The two-dimensional Laplace law is checked by initializing a drop at the center of a square domain of length
Lx = Ly = 2.56 discretized with 256×256 nodes. By varying the radius R, the difference between pressure inside the drop
(pin) minus the pressure outside (pout ) must vary proportionally with the surface tension σ:

pin− pout =
σ

R
. (39)

In order to check that relationship, an initial drop of radius R and surface tension σ is initialized at the center of the domain
(xc = yc = 1.28). The density ratio ρg/ρl is set equal to two (ρg = 2, ρl = 1) and the viscosities are identical for each phase:
νl = νg = 0.04. The interface parameters are Mφ = 0.04 and W = 0.05 = 5δx. The LBM code is run with a time-step equal
to δt = 10−4 until the stationary solution is obtained. At the end of simulation, the difference between numerical pressures
∆p = pin− pout is plotted for three values of surface tension σ = 0.04, 0.08, 0.15. For each value of surface tension, six
LBM simulations are run for six values of radius corresponding to each dot on Fig. 6d. On that plot, the slopes of LBM vary
linearly and fit quite well to the Laplace law.

4.2. Verifications with phase change: one-dimensional Stefan problem
In this section, we consider the problem of phase change without flow (u = 0). The objective is to validate the coupling

between equations of phase-field and temperature. More precisely, we check the new approximation (Eq. (18)) of mass
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production rate ṁ′′′ in the phase-field equation (Eq. (11c)) and the latent heat release in the temperature equation (Eq.
(11d)), i.e. the source term −∂φ/∂t. Validation is carried out with the Stefan problem for which several analytical solutions
exist [66, Chapter 12]. Here we consider one of the most general one-dimensional problem where the three unknowns are
the interface position varying with time xI(t), the liquid temperature Tl(x, t) and the gas temperature Tg(x, t). Besides, the
thermal diffusivities of each phase αl and αg can be different. The one-dimensional domain ]0, ∞[, is initially filled with
gas with constant temperature Tg(x, t)

∣∣
x>0, t=0 = T∞ that is greater than the saturation temperature Tsat . The left wall x = 0 is

maintained at Tw for t ≥ 0. As a result, condensation starts at the boundary x = 0 and the liquid-gas interface propagates in
the positive direction. At x→ ∞, the temperature is kept at T∞.

Analytical solutions. The mathematical formulation of this problem writes [66, Section 12-3]

∂Tl

∂t
= αl

∂2Tl

∂x2 (40a)

for 0 < x < xI(t), with the left boundary condition imposed at Tl(x, t)|x=0 = Tw. The evolution of the gas phase is formulated
as

∂Tg

∂t
= αg

∂2Tg

∂x2 (40b)

for xI(t)< x < ∞ with Tg(x→∞, t) = T∞, with the initial condition Tg(x, t = 0) = T∞ and boundary condition Tg(x→∞, t) =
T∞. Interfacial conditions are specified by

Tl(x, t)|x=xI(t) = Tg(x, t)|x=xI(t)
= TI , (40c)

Kl
∂Tl

∂x

∣∣∣∣
x=xI(t)

−Kg
∂Tg

∂x

∣∣∣∣
x=xI(t)

= ρL
dxI(t)

dt
. (40d)

In Eq. (40d), Kl and Kg are the thermal conductivities of each phase. We consider identical specific heat C l
p = C g

p = Cp
and we set Cp = 1, L = 1 and ρ = 1. Solutions of interface position and temperature profiles [66, p. 469] are

xI(t) = 2ξ
√

αlt, (41a)

θl(x, t) = θw +(θI−θw)
erf(x/2

√
αlt)

erf(ξ)
, (41b)

θg(x, t) = θ∞ +(θI−θ∞)
erfc(x/2

√
αgt)

erfc(ξ
√

αl/αg)
, (41c)

where the temperatures are re-written in dimensionless form with θ = Cp(T − Tsat)/L . When θ = 0 the temperature of
system is at saturation temperature Tsat and when θ > 0 (resp. θ < 0), the system is superheated (resp. undercooled). In Eqs.
(41a)–(40d), ξ is solution of the transcendental equation

e−ξ2

erf(ξ)
+

(
αg

αl

)1/2
θI−θ∞

θI−θw

e−ξ2(αl/αg)

erfc(ξ
√

αl/αg)
=−ξ

√
π

θw
(41d)

where θw in the right-hand side is the Stefan number defined by St = Cp(Tw−Tsat)/L . Those solutions are compared with
LBM saclay, first with identical thermal diffusivities αl = αg and an interface temperature θI equals to zero. The second
validation considers three ratios of diffusivity α

j
l /α

j
g (for j = 1,2,3) with an interface temperature which is different of the

saturation one (θI 6= 0).

Data entry of LBM simulations. For LBM simulations, the two-dimensional D2Q9 lattice is used for the temperature and
phase-field equations. The LBM computational domain is [`x, Lx]× [`y, Ly] = [0, 512]× [0, 32] which is discretized by
Nx×Ny = 512×32 nodes i.e. δx = 1. The time-step is also set to δt = 1. Boundary conditions are periodic for si and gi at `y
and Ly (bottom and top walls respectively) and Dirichlet boundary conditions are applied on left (x = `x) and right (x = Lx)
walls by anti-bounceback method on gi and si. For phase-field, the Dirichlet boundary conditions are φ(x, t)

∣∣
x=`x

= 0
and φ(x, t)

∣∣
x=Lx

= 1. For the temperature equation, they are θ(x, t)
∣∣
x=`x

= θw and θ(x, t)
∣∣
x=Lx

= θ∞. The temperature is
initialized with θ(x, 0) = θ∞ for 0 < x≤ Lx and the phase-field with φ(x, 0) = 0.5 [1+ tanh(2x/W )]. The mobility parameter
is Mφ = 0.08, the interface thickness is W = 3δx.
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temperature θ at the end of simulation t f = 2×105. Right: evolution of interface position xI(t) tracked by φ = 1/2. The temperature interface is θI = 0.05.

Figure 7: Comparisons between LBM (dots) and analytical solution of Stefan problem (solid lines). (a) With αl/αg = 1 and θI = 0. (b) With αl/αg 6= 1
and θI 6= 0.

Validations for αl/αg = 1 and θI = 0. Before considering the more general case αl/αg 6= 1 and θI 6= 0, we assume that
thermal diffusivities are the same in liquid and gas (αl = αg = α) and the interface temperature is at saturation (θI = 0).
In that case, whatever the diffusivity value α, the solution of the transcendental equation (Eq. (41d)) depends only on θw
and θ∞. With θw = −0.3 and θ∞ = 0.3, its solution is ξ = 0.280680. Comparisons between analytical solutions and LBM
simulations are presented on Fig. 7a for three values of thermal diffusivity α

j
g = 0.14, 0.08, 0.03 with j = 1, 2, 3. LBM

temperature profiles are superimposed with the analytical solution (Eqs. (41b) and (41c)) at the final time of simulation
t f = 2×105 (Fig. 7a, left). Successive positions of vapor/liquid interface also fit with the analytical solution (Fig. 7a, right)
for three values of thermal diffusivity.

Validations for αl/αg 6= 1 and θI 6= 0. Now we consider a more general case for which the diffusivities of liquid and gas
can be different. Three ratios are simulated α

j
l /α

j
g = 10, 5, 2 for j = 1,2,3 with α1

l = 0.14, α2
l = 0.125 and α3

l = 0.08. Same
values of θw = −0.3 and θ∞ = 0.3 are kept, and the interface temperature is now equal to θI = 0.05. For those values, the
corresponding solutions of the transcendental equation are ξ1 = 0.349635, ξ2 = 0.343882 and ξ3 = 0.331864. For LBM
simulations, all numerical values are identical except for interface temperature and diffusivities of each phase. As confirmed
by temperature profiles (Fig. 7b, left) and the evolution of interface position (Fig. 7b, right), the model of phase change is
well adapted to simulate the phase change problem with different diffusivities in each phase and an interface temperature
not equal to zero. Finally this test case validates the approximation of the mass production rate ṁ′′′ defined by Eq. (18) and
implementation of LBM for the phase-field and temperature equations.

5. Simulations of film boiling

Film boiling is a classical problem of two-phase flows with phase change. It has already been simulated with a lot of
different numerical techniques (see [39] for a recent review) for studying the effect of geometries such as an horizontal
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Liquid and gas properties Interface properties Other parameters
Liquid Gas

Density ρl = 1.658 ρg = 1
Kinematic viscosity νl = 3×10−3 νg = 5×10−4

Thermal diffusivity αl = 2.5×10−4 αg = 2.5×10−3

Parameter Value

Surface tension σ = 5×10−3

Interface temp. θI = 0
Mobility Mφ = 1.7×10−3

Interface width W = 5×10−3

Parameter Value

Gravity gy = 4
Bottom temp. θy=`y = 0.025
Top temp. θy=Ly = 0
Latent/specific heat L/Cp = 1

Table 2: Parameters for film boiling simulations.

cylinder [67] or for studying the effect of an electric field [68]. With the lattice Boltzmann method, several simulations use
the Cahn-Hilliard model or the pseudo-potential method (respectively in [69, 70, and references therein]). Here we present
the capability of the conservative Allen-Cahn equation with a production rate defined by Eq. (18) to simulate that problem.
In section 5.1, the physical configuration is reminded; in section 5.2 one simulation of bubbles detachment on nodes and
anti-nodes is detailed; in section 5.3, indications will be given on computational times for two mesh sizes: 10242 for GPU
and CPU and 4096×3072 for multi-GPUs.

5.1. Physical configuration

Inside a two-dimensional domain Ω = Πυ=x,y[`υ, Lυ], a thin film of gas of height y0 is initialized near the bottom wall
y = `y which is heated by applying a constant temperature θ|y=`y = θw. The liquid is above the thin film and the gravity acts
downward g = (0,−gy)

T . On the top wall y = Ly, the temperature is imposed at saturation and the phase-field is equal to
φ = +1 (i.e. gas phase). The left and right walls are periodic. If the interface is destabilized by an initial condition defined
by

y = y0 + y1 sin
(

2πx
λ

)
, (42)

where y1 and λ are respectively the amplitude and the wavelength of the perturbation, then we can observe bubbles of gas
that grow, detach and rise in the domain, provided that the wavelength of perturbation λ is greater than a critical value λc
defined by

λs =

√
σ

(ρl−ρg)gy
, λc = 2πλs. (43)

The thermal-hydrodynamics of this problem is controlled by several dimensionless numbers: the Grashof number Gr =
ρggy(ρl−ρg)λ

3
s/ρ2

gν2
g, the Prandtl number Pr = νg/αg and the Jacob number Ja = Cp(Tw−Tsat)/L . Moreover the solution

is sensitive to parameters that are involved in Eq. (42). Several sensitivity simulations on parameters of the initial condition
can be found in [71].

Simulations of film boiling with LBM saclay are first carried out inside a two-dimensional domain Ω = [0, 1.28]2 which
is discretized with Nx×Ny = 1024×1024 nodes. The space- and time-steps are respectively equal to δx = 1.25×10−3 and
δt = 7.5×10−5. The D2Q9 lattice is used for all distribution functions fi, gi and si. For parameters of Table 2, the value of
critical wavelength is λc = 2πλs = 0.2738, with λs = 4.358×10−2. The Jacob number is Ja = 0.025, the Prandtl Pr = 0.2
and the Grashof number is Gr = 871.38.

5.2. Simulation of bubble detachment on nodes and antinodes

We present one simulation for which the interface is initialized by Eq. (42) with y0 = 0.03, y1 = 0.015 and λ = 0.64. The
choice λ= 0.64 was done after one first preliminary simulation which was performed with λ= 0.32 (> λc = 0.2738) to check
detachment of bubbles. For λ= 0.64, the maximum value of y is ymax = 0.045 for two positions x(1)ymax = 0.16 and x(2)ymax = 0.8.
Its minimum value is ymin = 0.015 for two positions x(1)ymin = 0.48 and x(2)ymin = 1.12. Positions x(1),(2)ymax are called “nodes” and

x(1),(2)ymin are called “anti-nodes”. Here, we present one simulation to observe detachment of bubbles alternatively on nodes and
anti-nodes. Actually, it is what we observe on Figs. 8a–8c which present the temperature fields and the iso-values φ = 1/2
(black line) at several dimensionless times. The dimensionless time is defined by t? = t/ts where ts =

√
λs/gy = 0.1044. At

the early stage of simulation (Fig. 8a), we can observe that the detachment of bubbles occurs on nodes. Later during the
simulation (Fig. 8b), the bubbles that are emitted on nodes coalesce on the top on the domain, while two other bubbles grow
and are detached from anti-nodes. Finally (Fig. 8c), the cycle is repeated periodically: bubbles emitted at anti-nodes coalesce
and new bubbles on nodes detach and rise. Streamlines and velocity magnitude corresponding to the last time t? ' 158.03
are presented on Fig. 8d. In Table 2, the mobility was set to Mφ = 1.7×10−3 after a sensitivity analysis. If Mφ is too low, the
authors have observed the appearance of parasitic bubbles in the liquid phase. The mobility coefficient is directly related to
the relaxation time τg and the algorithm can be unstable if its value is too low. It is expected that a wider range of parameter
Mφ could be reached with the TRT or MRT collisions operators.
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t?a ' 23.94 t?a +δt? ' 28.73 t?a +2δt? ' 33.52

(a) Detachment of bubbles occurs on nodes at the early stage of the simulation.

t?b ' 114.93 t?b +δt? ' 119.72 t?b +2δt? ' 124.51

(b) Coalescence is observed at the top of the domain for bubbles detached from nodes. It is also observed a detachment of bubbles at anti-nodes.

t?c ' 148.45 t?c +δt? ' 153.24 t?c +2δt? ' 158.03

(c) Later during the simulation, bubbles are detached on nodes, the cycle is pursued periodically.

(d) Streamlines (white lines) and interface φ = 1/2 (black
lines) superimposed on the velocity magnitude (colored
field) at t? ' 158.03.

Figure 8: Simulation of film boiling for Ja = 0.025. Interface position φ = 1/2 superimposed on temperature field and for several dimensionless times of
simulation. Three successive times from (a) t?a ' 23.94, (b) t?b ' 114.93 and (c) t?c ' 148.45 with δt? = 4.79.
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5.3. Computational times
A first comparison of computational times between GPUs and CPUs has been indicated in Section 3.5, but only for a

diffusive problem. For a single- and double-Poiseuille flow of Section 4.1, the computational times on a 100×100 lattice are
respectively 56 MLUPS and 38 MLUPS. Those computations have been performed on a computer equipped of one AMD
CPU processor (Ryzen 5 2600, 3.4GHz with 12 threads). The MLUPS are higher for the single-phase because the algorithm
requires much less floating points computations. There is neither Allen-Cahn equation nor intermediate gradient to update
for a single-phase flow. However, let us note that the MLUPS for two distribution functions are higher than half of the value
obtained with only one (i.e. 28 MLUPS), which indicates a good code optimization by resolving the phase-field equation.

Simulation of diffusion or single-phase flow requires only one distribution and the double-Poiseuille flow requires two
distribution functions. The film boiling simulation requires three Lattice Boltzmann equations with three distribution func-
tions and the computation of additional gradients. In that case, to complete 5.33× 105 time iterations on a computational
domain of 10242 nodes, the simulation took 1h56m (80.96 MLUPS) on a single GPU NVIDIAr K80. The same simulation
took 12h57m (11.97 MLUPS) on 16-cores Intelr Xeonr CPU E5-2630 v3 2.40GHz. The computation on GPU is quicker
than on CPU as expected after the preliminary diffusion simulation of section 3.5. The ratio is 6.7 times in favor of GPU
compared to CPU. Next, the full grid (10242 nodes) is decomposed in four sub-domains composed of 256× 1024 nodes,
each one of them being taken in charge by one GPU. The simulation took 38 minutes (249.99 MLUPS) to perform the same
number of time iterations on four parallel GPUs. The computational time is divided by a factor three compared to a single
GPU. Finally, the computational domain is increased to Ω = [0, 5.12]× [0, 3.84] and discretized by Nx×Ny = 4096×3072
nodes, i.e. the mesh size is twelve times bigger than the previous one. The initial condition is slightly modified to

y = y0 + y1

16

∑
i=1

sin
(

2πx
λi

)
(44)

where the interface position y is perturbed with several modes λi which are randomly picked, uniformly distributed between
0.5λc ≤ λi ≤ 1.5

√
3λc. We simulate two values of wall temperature θw = 0.025 and θw = 0.1 corresponding to Jacob

numbers respectively equal to Ja = 0.025 and Ja = 0.1. All other values of physical parameters remain identical (Table
2). A comparison on shapes of bubbles is given at t? = 95.78 on Fig. 9. When the Jacob number has the value of Section
5.2, discrete bubbles are released periodically from the initial condition (Fig. 9a). When the Jacob number is increased to
0.1, long vapor jets are observed below bubbles (Fig. 9b). That observation is consistent with those simulated with other
techniques and even observed on experiments cited in [39, Sec 5.1.2 and Fig. 9]. The simulation took 80 minutes (713
MLUPS) on 8 parallel GPUs to complete 5.33×105 time iterations.

6. Conclusion

In this paper, the LBM implementation of two-phase flows was revisited by improving two main points. The first one
focuses on the model formulation of phase change and the second one focuses on the portability of the code on various
platforms. The interface is tracked by the conservative Allen-Cahn model with a source term involving a mass production
rate at the interface. In this work, that source term is simplified compared to approaches of literature, and the approximation
avoids to calculate the gradients of temperature numerically. The model is able to simulate two phases of different thermal
diffusivities with an interface temperature which is not necessarily at saturation. The phase-field model is coupled with
the incompressible Navier-Stokes model where a source term was added in the mass balance equation. The source term is
defined as the product of mass production rate times one term inversely proportional to densities. An additional equation
on temperature completes the model. The time derivative of phase-field appears in the source term of that equation. It is
interpreted as the release or absorption of latent heat at the interface.

The Lattice Boltzmann schemes for all equations are implemented in a new C++ code coupled with the Kokkos library
for its performance portability. The new code, called LBM saclay, can be run with good performance on several architectures
such as Graphical Process Units (GPUs), Central Process Units (CPUs) and even multi-GPUs and multi-CPUs. Indeed, two
levels of parallelism are developed inside the code. The first one uses Kokkos for intra-node parallelism, whereas MPI takes in
charge the domain decomposition. Preliminary comparisons between GPUs and CPUs were carried out on a simple diffusive
problem. As expected from literature, those tests show clearly that best performance is obtained with GPU compared to CPU
(Skylake or KNL) even for best optimization of LBM kernels (CSoA2) which has been developed for Intel Skylake. Here,
comparisons were performed with the same C++ source code. No low-level language (CUDA or OpenCL) was used for GPUs.

Numerical implementation was checked with several test cases to validate step-by-step the full model of fluid flows
with phase change. The conservative Allen-Cahn equation is validated with two test cases: (i) Zalesak’s slotted disk and
(ii) interface deformation inside a vortex. The coupling with Navier-Stokes equations is also checked with two test cases:
the layered Poiseuille flow and Laplace law. Next, the coupling between equations of phase-field and temperature were
compared to the most general one-dimensional analytical solution of the Stefan problem. Comparisons were done first by
assuming identical thermal diffusivities, and next by using various ratios of diffusivities with an interface temperature that is
different of the saturation one. The full model was simulated on the test case of film boiling on one GPU and one multicore
CPU for two mesh sizes. Computational times are clearly in favor of GPUs. Finally, the film boiling problem is simulated
with 8 parallel GPUs for mesh size that is twelve times bigger than the previous one.
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(a) Ja = 0.025.

(b) Ja = 0.1.

Figure 9: Velocity magnitude (colored field) and interface position φ = 1/2 (black lines) at t? = 95.78 for (a) Ja = 0.025 and (b) Ja = 0.1.

In this paper, foundations have been laid for improving performance of lattice Boltzmann simulations in a context of
quick evolution of HPC platforms. In the future, a three-dimensional extension of the coupling terms is planned. Next
LBM saclay could be enriched with other models requiring interface tracking such as crystal growth and demixing of ternary
fluids. Besides, the range of physical parameters could be increased and the code stability could be enhanced by using
alternative collision operators such as those based on the Two-Relaxation-Times and Multiple-Relaxation-Times.
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Appendix A. Removal of the driven-curvature interface motion in Eq. (5)

In this Appendix, the derivation of first term in the right-hand side of Eq. (5) is reminded. The advection of phase index
φ writes

∂φ

∂t
+V ·∇∇∇φ = 0. (A.1)

If the total velocity V is defined as the sum of an external advective velocity u of an incompressible fluid plus a normal
velocity of the interface vnn, then V ·∇∇∇φ = u ·∇∇∇φ+ vn

∣∣∇∇∇φ
∣∣. For the second term, we have used the definition of normal

vector n = ∇∇∇φ/
∣∣∇∇∇φ
∣∣. If the normal velocity vn is also assumed to be separated into one term, −Mφκ, depending on the

curvature κ and another one, ṽ independent on κ then: vn
∣∣∇∇∇φ
∣∣=−Mφκ

∣∣∇∇∇φ
∣∣+ ṽ

∣∣∇∇∇φ
∣∣ and Eq. (A.1) writes:

∂φ

∂t
+∇∇∇ · (uφ) = Mφκ

∣∣∇∇∇φ
∣∣− ṽ

∣∣∇∇∇φ
∣∣. (A.2)

For solidification problems, ṽ is the coupling with temperature equation and ensures that the Gibbs-Thomson condition
is well recovered. A discussion on ṽ is presented at the end of this appendix. The next stage of the derivation is to can-
cel the driven-curvature interface motion Mφκ

∣∣∇∇∇φ
∣∣, without setting Mφ = 0, but by adding a supplementary counter term:
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Mφκ
∣∣∇∇∇φ
∣∣−Mφκ

∣∣∇∇∇φ
∣∣= S(φ). The purpose is to transform an hyperbolic-type PDE into a parabolic-type PDE by expanding

κ in the first term with its definition κ =∇∇∇ ·n =∇∇∇ · (∇∇∇φ/
∣∣∇∇∇φ
∣∣) in order to obtain an expression involving the laplacian of φ:

S(φ) = Mφ

[
∇∇∇

2
φ−

∇∇∇φ ·∇∇∇
∣∣∇∇∇φ
∣∣∣∣∇∇∇φ

∣∣
]
−Mφκ

∣∣∇∇∇φ
∣∣. (A.3)

The main advantage of this formulation (Eq. (A.3)) is that, for a plane interface, i.e. κ= 0, the equilibrium solution of S(φ) =
0 is an hyperbolic tangent. By using the definition of n, Eq. (A.3) becomes S(φ) = Mφ

[
∇∇∇2φ−n ·∇∇∇

∣∣∇∇∇φ
∣∣]−Mφ

∣∣∇∇∇φ
∣∣∇∇∇ ·n, i.e.

Eq. (A.2) becomes

∂φ

∂t
+∇∇∇ · (uφ) = Mφ

[
∇∇∇

2
φ−n ·∇∇∇

∣∣∇∇∇φ
∣∣− ∣∣∇∇∇φ

∣∣∇∇∇ ·n]− ṽ
∣∣∇∇∇φ
∣∣ (A.4)

which, after the straightforward manipulation −n ·∇∇∇
∣∣∇∇∇φ
∣∣− ∣∣∇∇∇φ

∣∣∇∇∇ ·n =−∇∇∇ · (
∣∣∇∇∇φ
∣∣n) yields

∂φ

∂t
+∇∇∇ · (uφ) =∇∇∇ ·

[
Mφ(∇∇∇φ−

∣∣∇∇∇φ
∣∣n)]− ṽ

∣∣∇∇∇φ
∣∣. (A.5)

For calculating
∣∣∇∇∇φ
∣∣, the following kernel function is used

φ =
1
2

[
1+ tanh

(
ζ

aW

)]
, (A.6)

where ζ is the normal coordinate of the interface, a controls the slope of the hyperbolic tangent and W is the interface width.
The above kernel function ensures an hyperbolic tangent profile at equilibrium. It is consistent with the profile obtained in
a thermodynamically derived phase-field model, such as the one used for computation of chemical potential (Eq. (14)) with
bulk phases φ = 0 and φ = 1. The normal derivative of Eq. (A.6) leads to

∣∣∇∇∇φ
∣∣= ∂φ

∂ζ
=

2
aW

φ(1−φ). (A.7)

Finally by setting a = 1/2 the conservative Allen-Cahn equation with a source term is

∂φ

∂t
+∇∇∇ · (uφ) =∇∇∇ ·

[
Mφ

(
∇∇∇φ− 4

W
φ(1−φ)n

)]
− ṽ

4
W

φ(1−φ). (A.8)

Eq. (A.8) is the Allen-Cahn equation for which the curvature-driven displacement of the interface has been canceled with
a counter term. Let us notice that, if ṽ is chosen such as ṽ = α(θI −θ)/(A W ) then ṽ

∣∣∇∇∇φ
∣∣ ≈−(4α/A W 2)(θI −θ)φ(1−φ)

can be used in Eq. (A.8) for the problem of phase change. The release or absorption of latent heat at the interface is taken
into account in the temperature equation by the time derivative of φ. If the physical problem necessitates a curvature-driven
interface motion, the curvature term must be kept in the Allen-Cahn equation and then only the first term in the right-hand
side of Eq. (A.3) appears in the derivation. With a = 1/2, the term ∇∇∇φ ·∇∇∇

∣∣∇∇∇φ
∣∣/∣∣∇∇∇φ

∣∣ is equal to

∇∇∇φ ·∇∇∇
∣∣∇∇∇φ
∣∣∣∣∇∇∇φ

∣∣ =
∂2φ

∂ζ2 =
16
W 2 φ(1−φ)(1−2φ) (A.9)

The curvatuve-driven term writes

Mφκ
∣∣∇∇∇φ
∣∣= Mφ

[
∇∇∇

2
φ− 16

W 2 φ(1−φ)(1−2φ)

]
. (A.10)

Appendix B. Numerical value of coefficient A

When the matched asymptotic expansions are carried out on the one-dimensional phase-field model, the coefficient A is
defined by four integrals I , J , G and U by (e.g. [49, Eq. (59)]):

A =
G + J U

2I
, (B.1)

with

I =

ˆ
∞

−∞

dζ(∂ζφ0)
2, J =

ˆ
∞

−∞

dζ(∂ζφ0)p0
φ, G =

ˆ
∞

−∞

dζ(∂ζφ0)p0
φ

ˆ
ζ

0
dζ
′h0, and U =

ˆ 0

−∞

dζh0. (B.2)
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In Eq. (B.2), the functions φ0, p0
φ

and h0 of our model are defined such as

φ0 =
1
2

[
1+ tanh

(
2ζ

W

)]
, p0

φ = φ0(1−φ0), and h0 = φ0 (B.3)

Those integrals can be computed analytically and yield a numerical value provided that the interface width W is set. Here, to
be consistent with the rescaling of space and the analysis performed in [49], it is enough to set W = 2

√
2, and the integrals

are:

I =
1

3
√

2
, J =

1
6
, G =− (12ln2−10)

72
√

2
, and U =

ln2√
2
. (B.4)

Finally Eq. (B.1) yields

A =
10
48
∼= 0.20833. (B.5)

Appendix C. Discrete lattice Boltzmann equations

In this Appendix, the variable change for the discrete lattice Boltzmann equation is reminded in Appendix C.1. In
Appendix C.2, we will show that, for CAC model, the formulation with a source term is equivalent to the formulation with a
modification of the equilibrium distribution function.

Appendix C.1. Variable change for discrete lattice Boltzmann equation
The discrete lattice Boltzmann equation with an external force or source term S ϑ

i can be written with the BGK collision
term:

∂ϑi

∂t
+ ci ·∇∇∇ϑi =−

ϑi−ϑ
eq
i

τϑ

+Sϑ
i . (C.1)

In what follows, the calculations will be performed by setting ϑ ≡ f , S ϑ
i = S f

i = Si and τϑ ≡ τ but the variable change
derivation holds also for ϑ ≡ h and ϑ ≡ s. Terms that are evaluated at position x and time t are noted fi ≡ fi(x, t), f eq

i ≡
f eq
i (x, t) and Si ≡ Si(x, t), whereas terms evaluated at position x+ ciδt and time t + δt are noted with a star: f ?i ≡ fi(x+

ciδt, t + δt), f ?eq
i ≡ f eq

i (x+ ciδt, t + δt) and S?
i ≡ Si(x+ ciδt, t + δt). With those notations, integration of Eq. (C.1) over t

and t +δt yields:

f ?i = fi−
δt
2τ

(
f ?i − f ?eq

i
)
− δt

2τ

(
fi− f eq

i
)
+

δt
2

S?
i +

δt
2

Si (C.2)

where the trapezoidal rule was applied for the right-hand side of Eq. (C.1). In this expression, the natural variable change
for implicit terms is

f ?i = f ?i +
δt
2τ

(
f ?i − f ?eq

i
)
− δt

2
S?

i . (C.3)

The same variable change is used for f i:

f i = fi +
δt
2τ

(
fi− f eq

i
)
− δt

2
Si. (C.4)

By inverting the latter relation in order to express fi with respect to f i , we obtain:

fi =
2τ

2τ+δt

(
f i +

δt
2τ

f eq
i +

δt
2

Si

)
. (C.5)

With Eqs. (C.3) and (C.5), Eq. (C.2) becomes

f ?i = f i−
δt

τ+δt/2

(
f i− f eq

i +
δt
2

Si

)
+δtSi (C.6)

At this stage, if we define a new variable change

f eq
i = f eq

i −
δt
2

Si, (C.7)

then Eq. (C.6) is equivalent to

f ?i = f i−
δt

τ+δt/2
(

f i− f eq
i
)
+δtSi. (C.8)
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Without using the previous variable change for f eq
i , Eq. (C.6) is equivalent to

f ?i = f i−
δt

τ+δt/2
(

f i− f eq
i
)
+

τδt
τ+δt/2

Si, (C.9)

where only the factor in front of the source term is modified.
By introducing the dimensionless collision rate which is defined by τ = τ/δt, Eq. (C.8) finally writes

f ?i = f i−
1

τ+1/2
(

f i− f eq
i
)
+δtSi, (C.10)

or alternatively,

f ?i = f i−
1

τ+1/2
(

f i− f eq
i
)
+

τδt
τ+1/2

Si. (C.11)

In Section 3, Eq. (C.10) is the starting point for each lattice Boltzmann equation. The variable change Eq. (C.4) leads to
the calculation of the zeroth-order moment:

M0 = ∑
i

f i +
δt
2 ∑

i
Si (C.12)

Appendix C.2. Equivalence of lattice Boltzmann formulations for the Allen-Cahn equation

The purpose of this Appendix is to prove the equivalence between the source term and the modification of the equilibrium
distribution function. The lattice Boltzmann scheme for the conservative Allen-Cahn equation is (Eq. (29a) with S g

i defined
by Eq. (30a)):

g?i = gi−
1

τg +1/2
[
gi−geq

i
]
+P g

i δt +F g
i δt (C.13)

with the mobility coefficient defined by Mφ = τgc2
s δt. By using the definition of geq

i for geq
i = φΓi− δtP g

i /2−F g
i δt/2 and

gathering the term F g
i δt inside the bracket, we obtain

g?i = gi−
1

τg +1/2

[
gi−φΓi−F g

i τgδt +
δt
2

P g
i

]
+P g

i δt (C.14)

Next, the collision rate is replaced by its mobility τg = Mφ/(c2
s δt):

g?i = gi−
1

τg +1/2

[
gi−φΓi−F g

i
Mφ

c2
s
+

δt
2

P g
i

]
+P g

i δt (C.15)

Finally, if we use the definition of F g
i given by Eq. (30b), the Allen-Cahn equilibrium distribution function geq,CAC

i can
be defined by [33]

geq,CAC
i = φΓi +Mφ

4
W

φ(1−φ)wi
ci ·n
c2

s
(C.16)

and the alternative lattice Boltzmann equation is

g?i = gi−
1

τg +1/2

[
gi−geq,CAC

i

]
+P g

i δt (C.17)

with geq,CAC
i = geq,CAC

i −P g
i δt/2 with P g

i defined by Eq. (30b).
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[21] S. Leclaire, M. Reggio, J.-Y. Trépanier, Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice boltzmann model,

Applied Mathematical Modelling 36 (5) (2012) 2237 – 2252. doi:10.1016/j.apm.2011.08.027.
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[66] D. Hahn, M. Özisik, Heat Conduction. Third Edition, Wiley & Sons, 2012.
[67] A. Esmaeeli, G. Tryggvason, A front tracking method for computations of boiling in complex geometries, International Journal of Multiphase Flow

30 (7) (2004) 1037 – 1050, a Collection of Papers in Honor of Professor G. Yadigaroglu on the Occasion of his 65th Birthday. doi:10.1016/j.
ijmultiphaseflow.2004.04.008.

[68] V. Pandey, G. Biswas, A. Dalal, Effect of superheat and electric field on saturated film boiling, Physics of Fluids 28 (5) (2016) 052102. doi:
10.1063/1.4948545.

[69] A. Begmohammadi, M. Rahimian, M. Farhadzadeh, M. A. Hatani, Numerical simulation of single- and multi-mode film boiling using lattice Boltz-
mann method, Computers & Mathematics with Applications 71 (9) (2016) 1861 – 1874. doi:10.1016/j.camwa.2016.02.033.

[70] A. Hu, D. Liu, 2D Simulation of boiling heat transfer on the wall with an improved hybrid lattice Boltzmann model, Applied Thermal Engineering
159 (2019) 113788. doi:10.1016/j.applthermaleng.2019.113788.

[71] N. K. Singh, B. Premachandran, Numerical investigation of film boiling on a horizontal wavy wall, International Journal of Heat and Mass Transfer
150 (2020) 119371. doi:10.1016/j.ijheatmasstransfer.2020.119371.

25



Grand-potential-based phase-field model of dissolution/precipitation: lattice
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Abstract

Most of the lattice Boltzmann methods simulate an approximation of the sharp interface problem of dissolution and
precipitation. In such studies the curvature-driven motion of interface is neglected in the Gibbs-Thomson condition. In order
to simulate those phenomena with or without curvature-driven motion, we propose a phase-field model which is derived
from a thermodynamic functional of grand-potential. Compared to the free energy, the main advantage of the grand-potential
is to provide a theoretical framework which is consistent with the equilibrium properties such as the equality of chemical
potentials. The model is composed of one equation for the phase-field φ coupled with one equation for the chemical potential
µ. In the phase-field method, the curvature-driven motion is always contained in the phase-field equation. For canceling it,
a counter term must be added in the φ-equation. For reason of mass conservation, the µ-equation is written with a mixed
formulation which involves the composition c and the chemical potential. The closure relationship between c and µ is derived
by assuming quadratic free energies for the bulk phases. The anti-trapping current is also considered in the composition
equation for simulations with null solid diffusion. The lattice Boltzmann schemes are implemented in LBM_saclay, a
numerical code running on various High Performance Computing architectures. Validations are carried out with analytical
solutions representative of dissolution and precipitation. Simulations with or without counter term are compared on the shape
of porous medium characterized by microtomography. The computations have run on a single GPU-V100.

Keywords:
Phase-field model, Grand-potential, Lattice Boltzmann method, Dissolution/Precipitation, porous media, LBM_saclay code.

1. Introduction

The Lattice Boltzmann Equation (LBE) [1] is an attrac-
tive method to simulate flow and transport phenomena in
several areas of science and engineering. Because of its
local collision term and its ease of implementation of the
bounce-back method, the LBE has been extensively applied
in porous media literature for simulating two-phase flows
and transport at pore scale [2, 3, 4] (see [5] for a recent re-
view). When the surface of separation Γsl between solid
(s) and liquid (l) does not depend on time, it is sufficient
to identify the nodes located at the interface and to apply
the bounce-back method. However, when physico-chemical
processes occur on the surface of solid, such as those in-
volved in matrix dissolution or pore clogging, it is neces-
sary to consider the free-boundary problem because the in-
terface position Γsl(t) is now a function of time. The general
sharp interface model of dissolution and precipitation with-
out fluid flows writes:

∂c
∂t

= DΦ∇∇∇
2c in ΓΦ(t) (1a)

(c− cs)vn =−Dl∇∇∇c ·nnn
∣∣
l +Ds∇∇∇c ·nnn

∣∣
s on Γsl(t) (1b)

G(c) =−d0κ−βvn on Γsl(t) (1c)

∗Corresponding author. Tel.:+33 (0)1 69 08 40 67
Email addresses: teo.boutin@cea.fr (TÉO BOUTIN),

werner.verdier@cea.fr (WERNER VERDIER),
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Eq. (1a) is the mass conservation of solute in bulk domains
ΓΦ(t) (where Φ = s, l), c is the composition, DΦ is the dif-
fusion coefficient of liquid (Φ = l) and solid (Φ = s). Al-
though Ds is supposed to be zero in most of the dissolution
studies, two diffusion coefficients Dl and Ds are considered
for mathematical reasons. In Section 2.4, we will see the
necessity of using an anti-trapping current in the phase-field
model when Ds = 0. Two conditions hold at the interface
Γsl(t). The first one (Eq. (1b)) is the balance of advec-
tive and diffusive fluxes where vn is the normal velocity of
interface. In that equation the right-hand side is the differ-
ence of diffusive fluxes between liquid and solid, nnn is the
unit normal vector of interface pointing into the liquid, and
cs is the composition of the solid phase. The second inter-
face equation (Eq. (1c)) is the Gibbs-Thomson condition
that relates the driving force G(c) (left-hand side) to the
interface motion (right-hand side). In literature, the most
common form of G(c) is proportional to the difference be-
tween the interface composition ci and the solid composition
cs: G(c) ∝ (ci− cs). Two terms contributes to the interface
motion: the first one is the curvature-driven motion −d0κ

where κ is the curvature and d0 is a capillary length coeffi-
cient. The second term is the normal velocity−βvn where β

is a kinetic coefficient representing the dissipation of energy.
In literature, the lattice Boltzmann methods often simu-

late an approximation of that sharp interface problem. In [6],
the equilibrium distribution functions are designed to fulfill
the mass conservation at the interface (Eq. (1b)). However,
the method only simulates an approximation of the Gibbs-
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Thomson condition because the curvature term is neglected
(−d0κ = 0). For instance in [7], Eq. (1c) is replaced by an
evolution equation of the volume fraction of solid: the time
variation of the mineral volume V is related to the reaction
flux by ∂tV =−VmA(c−cs) [7, Eq. (5)] where Vm is the mo-
lar volume of mineral and A is the product of solid area times
a kinetic coefficient. The model has been applied recently
in [8] for studying the influence of pore space heterogeneity
on mineral dissolution. When the surface tension of the ma-
terial can be neglected, then the assumption −d0κ = 0 hold.
But in most cases −d0κ 6= 0 and the accurate position of in-
terface Γsl(t) must be computed while maintaining the two
conditions Eqs (1b)-(1c) at each time-step.

Alternative methods exist for simulating the interface
tracking problem. In the “phase-field method”, a phase in-
dex φ ≡ φ(xxx, t) is introduced to describe the solid matrix if
φ = 0 (solid) and the pore volume if φ = 1 (liquid). The
phase index varies continuously between those two extreme
values (0 ≤ φ ≤ 1) i.e. the method considers the interface
as a diffuse zone. That diffuse interface is characterized by
a diffusivity coefficient Mφ and an interface width W . The
interface, initially a surface, becomes a volumic region of
transition between liquid and solid. The model is composed
of two coupled Partial Derivative Equations (PDEs) defined
on the whole computational domain. The first equation de-
scribes the dynamics of the phase-field φ and the second one
describes the dynamics of composition c ≡ c(xxx, t). Those
two PDEs recover the sharp interface problem Eqs. (1a)–
(1c) when W → 0. The Gibbs-Thomson condition Eq. (1c)
is replaced by the phase-field equation which contains im-
plicitly the curvature term −d0κ. By “implicitly” we mean
that the phase-field models always include the curvature-
driven motion when they derive from a double-well poten-
tial.

Various phase-field models have already been proposed
for simulating the processes of precipitation and dissolution
[9, 10, 11, 12]. The main feature of those works is the model
derivation from a free energy functional F [φ, c]. The phase-
field models that derive from such a functional have been
successfully applied for solid/liquid phase change such as
those encountered in crystal growth (e.g. [13] for pure sub-
stance and [14, 15] for dilute binary mixture). For those
applications, the functional F [φ, T ] depends on the phase-
field φ and the temperature T , which is an intensive thermo-
dynamic variable. In spite of those successes for solid/liquid
phase change, an issue occurs for models involving com-
position. The composition is an extensive thermodynamic
quantity and the models do not necessarily insure the equal-
ity of chemical potentials at equilibrium. In order to fulfill
that condition, the Kim-Kim-Suzuki (KKS) model [16] in-
troduces two fictitious compositions cs(xxx, t) and cl(xxx, t) in
addition to the global composition c(xxx, t). The two PDEs are
formulated in φ and c and the source term of φ depends on
cs and cl . With a Newton method, those two compositions
are explicitly computed inside the interface by imposing the
equality of chemical potential [17, p. 126]. That model has
been applied for dissolution in [10, 12].

A formulation based on the grand-potential thermody-
namic functional Ω[φ, µ] avoids that supplementary numer-
ical stage. That approach, proposed in [18], yields a phase-

field model that is totally equivalent to the KKS model. That
theoretical framework contains the construction of common
tangent and insures the equality of chemical potential at equi-
librium. In the same way as they are derived from F [φ, c],
the PDEs are established by minimizing Ω[φ, µ]. Hence,
we retrieve the same features in the definition of Ω. The
density of grand-potential is composed of two terms. The
first one, noted ωint(φ,∇∇∇φ), contains the standard double-
well potential and the gradient energy term of the inter-
face. The second one, noted ωbulk(φ, µ) is an interpola-
tion of bulk grand-potentials ωΦ(µ). Those latter come from
the Legendre transform of free energy densities fΦ(c). The
main dynamical variables of Ω are the phase-field φ and the
chemical potential µ ≡ µ(xxx, t). The chemical potential is
the conjugate variable to c, and like temperature, it is an
intensive thermodynamic quantity. Whereas it is inappro-
priate to make an analogy between T and c when deriving
models, an analogy can be done between T and µ. Thus,
the asymptotics are quite similar for establishing the equiv-
alence between the sharp interface models and the phase-
field ones. That theoretical framework is already extended
to study multi-component phase transformation [19]. It has
been applied for dendritic electro-deposition in [20]. The
capability of grand-potential phase-field models to simulate
spinodal decomposition is presented in [21]. In reference
[22] effects are presented of introducing elasticity with dif-
ferent interpolation schemes in the grand-potential frame-
work.

Contrary to solidification, the curvature term −d0κ is
often neglected in models of dissolution and precipitation.
For instance in [9], the Gibbs-Thomson condition simply
relates the normal velocity vn proportionally to (ci− cs). In
[10] the normal velocity is only equal to the Tafel’s equa-
tion [10, Eqs. (2)-(3)]. In [11], the curvature term ap-
pears in the sharp interface model but the coefficient in front
of the curvature is considered very small. However, the
curvature-driven motion plays a fundamental role in the Ost-
wald ripening [23]. The Ostwald ripening is the dissolu-
tion of matter that occurs at regions with small radius of
curvature. After diffusion of solute through the liquid, a
re-precipitation occurs at regions with larger radius of cur-
vature. The phenomenon originates from the difference of
chemical potentials between solid grains of different sizes
which is proportional to the surface tension and inversely
proportional to the radius (i.e. the curvature κ). The larger
grains are energetically more favorable than smaller ones
which disappear in favor of bigger ones. The same process
occurs for two-phase systems composed of two immiscible
liquids. The drop of pressure is proportional to the ratio
of the surface tension over the radius (Laplace’s law). The
smallest droplets disappear whereas the larger ones growth.

As already mentioned, that motion is always contained
in the phase-field model. If it is undesired in the simulations,
it is necessary to add a counter term−Mφκ

∣∣∇∇∇φ
∣∣ in the phase-

field equation as proposed in the pioneer work [24]. The
counter term has been included for interface tracking in the
Allen-Cahn equation in reference [25]. For two-phase flows
a “conservative Allen-Cahn” equation has been formulated
in [26] and coupled with the incompressible Navier-Stokes
equations. For dissolution, the same term has been con-
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sidered in the phase-field equation of [9]. Here, the effect
of the counter term is presented on the dissolution of a 2D
porous medium. That term has an impact on the shape of the
porous medium and the heterogeneity of composition inside
the solid phase.

In this paper, we derive in Section 2 a phase-field model
based on the grand-potential functional for simulating the
processes of dissolution and precipitation. In Section 2.1,
the phase-field equation is presented without counter term
−Mφκ

∣∣∇∇∇φ
∣∣ for keeping the curvature-driven motion. Next,

in Section 2.2, the counter term is included in the phase-
field equation which is reformulated in conservative form.
Although the second main dynamical variable is the chemi-
cal potential µ, we use in this work a mixed formulation be-
tween the composition c and the chemical potential µ (Sec-
tion 2.3). The reason of this choice is explained by a better
mass conservation when simulating the model. For the sake
of simplicity, the link to a thermodynamic database is not
considered in this work. The grand-potential densities of
each bulk phase derive from two analytical forms of free en-
ergy densities. We assume they are quadratic with different
curvatures εl and εs for each parabola (Section 2.3). Next,
Section 2.4 is dedicated to a discussion about the relation-
ships of phase-field parameters W , λ and Mφ with the sharp
interface parameters, the capillary length d0 and the kinetic
coefficient β. Those relationships will give indications to set
the coupling parameter λ in the simulations.

The model is implemented in LBM_saclay, a numerical
code running on various High Performance Computing ar-
chitectures. With simple modifications of compilation flags,
the code can run on CPUs (Central Process Units) or GPUs
(Graphics Process Units) [27]. The LBM schemes of phase-
field model are presented in Section 3. A special care is
taken for canceling diffusion in solid phase and accounting
for the anti-trapping current. Validations are carried out in
Section 4. LBM results are compared with analytical so-
lutions for precipitation and next for dissolution. The first
case is performed for Ds 'Dl (Section 4.1) to show the dis-
continuity of composition on each side of interface. The
second one presents for Ds = 0 (Section 4.2) the impact of
anti-trapping current on the profiles of composition. Finally,
in Section 5, we present the dissolution of a porous medium
characterized by microtomography. Two simulations com-
pare the effect of the counter term on the composition and
the shape of porous medium.

2. Phase-field model of dissolution/precipitation

The purpose of this Section is to present the phase-field
model of dissolution and precipitation. Its derivation intro-
duces a great quantity of mathematical notations. The rea-
son is inherent to the whole methodology: the diffuse inter-
face method, which originates from out-of-equilibrium ther-
modynamics, recovers the sharp-interface model through the
matched asymptotic expansions. Each keyword introduces
its own mathematical notations. All those relative to physi-
cal modeling are summarized in Tab. 1.

In Section 2.1, we remind the theoretical framework of
grand-potential Ω, and we present the general evolution equa-
tions on φ and µ. Section 2.2 reminds the equilibrium prop-

erties of the phase-field equation and introduces the counter
term for canceling the curvature-driven motion. Equations
on φ and µ require the densities of grand-potential for each
phase ωs(µ) and ωl(µ). In Section 2.3 their expressions
are derived from analytical forms of free energies fs(c) and
fl(c). The phase-field model will be re-written with a mixed
formulation between µ and c with the compositions of coex-
istence and the equilibrium chemical potential. Finally, in
Section 2.4 a discussion will be done regarding the links be-
tween phase-field model and free-boundary problem.

2.1. General equations on φ and µ in the grand-potential
theoretical framework

The grand-potential Ω[φ, µ] is a thermodynamic func-
tional which depends on the phase-field φ ≡ φ(xxx, t) and the
chemical potential µ ≡ µ(xxx, t), two functions of position xxx
and time t. In comparison, φ(xxx, t) and the composition c(xxx, t)
are two main dynamical variables of free energy F [φ, c].
The functional of grand-potential contains the contribution
of two terms:

Ω[φ, µ] =
∫

V
[ωint(φ,∇∇∇φ)+ωbulk(φ, µ)]dV (2)

The first term inside the brackets is the grand-potential den-
sity of interface ωint(φ,∇∇∇φ) which is defined by the contri-
bution of two terms depending respectively on φ and ∇∇∇φ:

ωint(φ,∇∇∇φ) = Hωdw(φ)+
ζ

2

∣∣∇∇∇φ
∣∣2. (3)

In Eq. (3), the first term is the double-well potential ωdw(φ)
and H is its height. The second term is the gradient energy
term which is proportional to the coefficient ζ. A quick di-
mensional analysis shows that the physical dimension of H
is an energy per volume unit ([E].[L]−3) and ζ has the di-
mension of energy per length unit ([E].[L]−1). Those two
contributions are identical for models that are formulated
with a free energy functional F [φ, c]. The mathematical
form of the double-well used in this work will be specified
in Section 2.2.

In Eq. (2), the second term ωbulk(φ, µ) interpolates the
grand-potential densities of each bulk phase ωs(µ) and ωl(µ)
by:

ωbulk(φ, µ) = p(φ)ωl(µ)+ [1− p(φ)]ωs(µ) (4)

where p(φ) is an interpolation function. It is sufficient to
define it (see Section 2.4) as a monotonous function such as
p(0) = 0 and p(1) = 1 in the bulk phases with null deriva-
tives (w.r.t. φ) p′(0) = p′(1) = 0. In this work we choose

p(φ) = φ
2(3−2φ) (5a)

and its derivative w.r.t. φ is

p′(φ) = 6φ(1−φ) (5b)

With that convention, if φ = 0 then ωbulk(µ) = ωs(µ) and if
φ = 1 then ωbulk(µ) = ωl(µ).

In this paper, we work with the dimensionless compo-
sition c(φ, µ) describing the local fraction of one chemical
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Nomenclature of physical modeling

Symbol Definition Dimension Description
Thermodynamics
Ω[φ, µ] [E] Grand-potential functional
µ(xxx, t) [E].[mol]−1 Chemical potential
C(φ, µ) [mol].[L]−3 Global concentration depending on φ and µ
ωint(φ,∇∇∇φ) Eq. (3) [E].[L]−3 Grand-potential density of interface
ωdw(φ) see Tab. 2 [–] Double-well potential of minima φs and φl
ωbulk(φ, µ) Eq. (4) [E].[L]−3 Interpolation of bulk grand-potential density
Vm [L]3.[mol]−1 Molar volume
χ = ∂C(φ, µ)/∂µ [mol]2.[L]−3.[E]−1 Generalized susceptibility
Φ [–] Index for bulk phases: solid Φ = s and liquid Φ = l
Mφ [L]3.[E]−1.[T]−1 Mobility coefficient of the interface
φ0(xxx) [–] Hyperbolic tangent solution
ζ [E].[L]−1 Coefficient of gradient energy term
H [E].[L]−3 Height of double-well function
σ = (1/6)

√
2ζH [E].[L]−2 Surface tension

fΦ(c) [E].[L]−3 Free energy density of bulk phases
mΦ [–] Compositions for which fΦ is minimum
ωΦ(µ) = fΦ−µC [E].[L]−3 Grand-potential density of each bulk phase
εΦ [E].[L]−3 Curvature of quadratic free energies
E =

√
εlεs [E].[L]−3 Reference volumic energy for dimensionless quantities

∆ f min = f min
s − f min

l [E].[L]−3 Difference of minimum values of free energy densities
ωΦ = ωΦ/E [–] Dimensionless grand-potential of bulk phases
f Φ = fΦ/E [–] Dimensionless free energy densities
Phase-field model
φ(xxx, t) [–] Phase-field φs ≤ φ≤ φl
φs, φl [–] values of φ(xxx, t) in bulk phases: φs = 0 and φl = 1
W =

√
8ζ/H [L] Interface width of φ-equation

Mφ = Mφζ [L]2.[T]−1 Diffusivity of φ-equation
λ = 8E /H [–] Coupling coefficient of φ-equation
nnn(xxx, t) =∇∇∇φ/

∣∣∇∇∇φ
∣∣ [–] Unit normal vector of interface

c(φ, µ) =VmC(φ, µ) [–] Global composition depending on φ and µ
µ(xxx, t) = µ/(EVm) [–] Dimensionless chemical potential
µeq = ∆ f min

/∆m [–] Equilibrium chemical potential of interface Eq. (29a)
cco

Φ
[–] Coexistence (or equilibrium) compositions of each phase

cco(φ) Eq. (29b) [–] Interpolation of coexistence compositions cco
s and cco

l
DΦ [L]2.[T]−1 Diffusion coefficient of solid (Φ = s) and liquid (Φ = l)
p(φ) see Tab. 2 [–] Interpolation function of derivative zero for φ = 0 and φ = 1
h(φ) see Tab. 2 [–] Interpolation function for c(φ, µ)
q(φ) see Tab. 2 [–] Interpolation function for diffusion coefficients
Sφ(φ, µ) Eq. (25) [–] Source term of phase-field equation
κ(xxx, t) =∇∇∇ ·nnn [L]−1 Curvature
−Mφκ

∣∣∇∇∇φ
∣∣ [T]−1 Phenomenological counter term

jjjat(xxx, t) Eq. (32) [L].[T]−1 Phenomenological anti-trapping current
a 1/4 [–] Coefficient of anti-trapping current
Sharp interface
vn = vvv ·nnn [L].[T]−1 Normal velocity of interface
d0 Eq. (36a) [L] Capillary length in Gibbs-Thomson condition Eq. (35c)
βΦ Eq. (36b) [L]−1.[T] Kinetic coefficients in Gibbs-Thomson condition for Φ = s, l
qs = Ds/Dl [–] Ratio of diffusion
ε =W/d0 [–] Small parameter of asymptotic expansions
FΦ, F̃Φ GΦ, HΦ See Tab. 3 [–] Integrals (part 1) of interpolation functions (for Φ = s, l)
I , K , JΦ See Tab. 3 [–] Integrals (part 2)
E1, E2, E3 Error terms derived from the asymptotic analysis

Table 1: Main mathematical symbols with their physical dimensions. Unit convention: energy [E], length [L], time [T] and mole [mol].
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species and varying between zero and one. It is related to
the concentration C(φ, µ) (physical dimension [mol].[L]−3)
by c(φ, µ) = VmC(φ, µ) where Vm is the molar volume of
([L]3.[mol]−1). For both chemical species, the molar vol-
ume is assumed to be constant and identical. In the rest
of this paper Vm will appear in the equations for reasons of
physical dimension, but it will be considered equal to Vm = 1
for all numerical simulations.

The concentration C is now a function of φ and µ. It is
related to the grand-potential by [18] C(φ, µ) = −δΩ/δµ =
−∂ωbulk(φ, µ)/∂µ. The application of that relationship with
ωbulk(φ, µ) defined by Eq. (4) yields:

C(φ, µ) = p(φ)
[
−∂ωl(µ)

∂µ

]
+[1− p(φ)]

[
−∂ωs(µ)

∂µ

]
(6)

The concentration C(φ, µ) is defined by an interpolation of
derivatives of ωs(µ) and ωl(µ) w.r.t. µ. Each derivative de-
fines the concentration of bulk phase Cs(µ) = −∂ωs(µ)/∂µ
and Cl(µ) =−∂ωl(µ)/∂µ.

In Eq. (4), the grand-potential densities of each bulk
phase ωl(µ) and ωs(µ) are defined by the Legendre trans-
form of free energy densities fs(c) and fl(c):

ωΦ(µ) = fΦ(c)−µC for Φ = s, l (7)

where µ = ∂ fΦ/∂C. Finally, the phase-field equations are
obtained from the minimization of the grand-potential func-
tional Ω[φ, µ]. The most general PDEs write (see [18, Eq.
(43) and Eq. (47)]):

∂φ

∂t
= Mφ

{
ζ∇∇∇

2
φ−Hω

′
dw(φ)

− p′(φ) [ωl(µ)−ωs(µ)]
}

(8a)

χ(φ, µ)
∂µ
∂t

=∇∇∇ · [D(φ, µ)χ(φ, µ)∇∇∇µ]

− p′(φ)
[

∂ωs(µ)
∂µ

− ∂ωl(µ)
∂µ

]
∂φ

∂t
(8b)

Eq. (8a) is the evolution equation on φ(xxx, t) which tracks
the interface between solid and liquid. The phase-field equa-
tion is derived from ∂tφ = −MφδΩ/δφ where Mφ is a co-
efficient of dimension [L]3.[E]−1.[T]−1. The equilibrium
properties of that equation are reminded in Section 2.2. The
derivative of the double-well function w.r.t. φ is noted ω′dw =
∂ωdw/∂φ. Compared to the model of reference [18], we no-
tice the opposite sign of the last term because our convention
is φ= 0 for solid and φ= 1 for liquid. In the reference, φ= 1
is solid and φ = −1 is liquid and the interpolation function
p(φ) is opposite. In order to reveal the diffusivity coefficient
Mφ = Mφζ of dimension [L]2.[T]−1, the coefficient ζ can be
put in factor of the right-hand side. In that case, the second
term is multiplied by H/ζ whereas the last term is divided
by ζ.

Eq. (8b) is the evolution equation on chemical poten-
tial µ(xxx, t). It is obtained from the conservation equation
∂tC(φ, µ) = −∇∇∇ · jjjdi f f where the diffusive flux is given by
jjjdi f f = −D(φ, µ)χ(φ, µ)∇∇∇µ. The time derivative term has
been expressed by the chain rule ∂C(φ, µ)/∂t =(∂C/∂µ)∂tµ+

(∂C/∂φ)∂tφ. The function χ(φ, µ), called the generalized
susceptibility, is defined by the partial derivative of C(φ, µ)
with respect to µ. For most general cases, the coefficient
D(φ, µ) is the diffusion coefficient which depends on φ and
µ. Here we assume that the diffusion coefficients Ds and Dl
are only interpolated by φ, i.e. D(φ, µ) ≡ D(φ). Actually,
in section 2.3, that equation on µ will be transformed back
to an equation on C (or c) for reasons of mass conservation
in simulations. Eq. (6) will be used to supply a relationship
between µ and c.

For simulating Eqs. (8a) and (8b), it is necessary to de-
fine the grand-potential densities of each bulk phase ωs(µ)
and ωl(µ). They both derive from Legendre transforms (Eq.
(7)) which require the knowledge of free energy densities
fs(c) and fl(c). The free energy densities fs(c) and fl(c)
depend on the phase diagram of chemical species (or mate-
rials), the temperature and the number of species involved in
the process (binary or ternary mixtures). When the model is
implemented in a numerical code coupled with a thermo-
dynamic database, those values are updated at each time
step of computation. A method for coupling a phase-field
model based on the grand-potential with a thermodynamic
database is proposed in [28]. A coupling of a phase-field
model with the “thermodynamics advanced fuel international
database” is presented in [29] with OpenCalphad [30, 31].
In this work, we assume in Section 2.3 that the densities of
free energies fs(c) and fl(c) are quadratic.

The variational formulation based on the grand-potential
yields to evolution equations on φ and µ (Eqs. (8a)-(8b)).
Two ingredients are missing in those equations: the first one
is the counter term −Mφκ

∣∣∇∇∇φ
∣∣ and the second one is the

anti-trapping current jjjat . In our work, both are not con-
tained in the definition of grand-potential Ω[φ, µ] and have
no variational origin. The counter term has been derived in
[24]. It is used in the phase-field equation (Section 2.2.2) to
make vanish the curvature-driven motion. The anti-trapping
current has been derived in [32]. It is used in the chemical
potential equation (Section 2.3.4) to cancel spurious effects
at interface when the diffusion is supposed to be null in the
solid. Their use is justified by the matched asymptotic ex-
pansions carried out on the phase-field model. The links be-
tween the phase-field model and the free-boundary problem
will be discussed in Section 2.4.

2.2. Equilibrium properties of phase-field equation

The phase-field equation Eq. (8a) has the same structure
as those derived from functionals of free energy. Hence, the
equilibrium properties such as the hyperbolic tangent solu-
tion φ0, the interface width W and the surface tension σ re-
main the same. Those equilibrium properties are reminded
in Section 2.2.1 with one particular choice of double-well
potential ωdw(φ). This is done for two reasons. The phase-
field equation is written with “thermodynamic” parameters
ζ, H and Mφ. The phase-field equation is re-written with
“macroscopic” parameters Mφ, W and the dimensionless cou-
pling coefficient λ because they are directly related to the
capillary length d0 and kinetic coefficient β of sharp inter-
face model. The equilibrium properties are also necessary
for introducing in Section 2.2.2 the kernel function

∣∣∇∇∇φ
∣∣ =

4φ(1−φ)/W and the counter term −Mφκ
∣∣∇∇∇φ
∣∣.
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2.2.1. Hyperbolic tangent solution φ0, width W and surface
tension σ

When the system is at equilibrium, the construction of
common tangent hold and the chemical potential is identi-
cal in both phases of value µeq. The construction of common
tangent is mathematically equivalent to ωs(µeq) = ωl(µeq).
When the two phases are at equilibrium, we define the cor-
responding compositions of coexistence (or equilibrium) by
cco

s = cl(µeq) and cco
l = cl(µeq) for solid and liquid respec-

tively. Hence, the last term proportional to p′(φ) in Eq.
(8a) vanishes at equilibrium and the time derivative is zero
(∂φ/∂t = 0). We recognize the standard equilibrium equa-
tion for the interface ζ∇∇∇2φ−Hω′dw = 0 i.e. in one dimension
ζd2φ/dx2−Hdω/dφ = 0. After multiplying by dφ/dx, the
first term is the derivative d/dx of (dφ/dx)2 and the second
term becomes a derivative of the double-well w.r.t. x. After
gathering those two terms inside the same brackets, it yields:

d
dx

[(
dφ

dx

)2

− 2H
ζ

ωdw

]
= 0 (9)

In this work we define the double-well by

ωdw(φ) = φ
2(1−φ)2 (10a)

for which the two minima are φs = 0 and φl = +1 and its
derivative w.r.t. φ is:

ω
′
dw(φ) = 2φ(1−φ)(1−2φ) (10b)

For that form of double-well, the solution of Eq. (9) is the
usual hyperbolic tangent function

φ0(x) =
1
2

[
1+ tanh

(
2x
W

)]
(11)

where the interface width W and the surface tension σ are
defined by

W =

√
8ζ

H
and σ =

1
6

√
2ζH (12a)

We can check that the square root of the ratio ζ/H is homo-
geneous to a length as expected for the physical dimension
of the width W . Moreover, the square root of the product ζH
is homogeneous to an energy per surface unit as expected for
the surface tension σ. The two relationships Eq. (12a) can
be easily inverted to yield

ζ =
3
2

Wσ and H = 12
σ

W
(12b)

From Eq. (12b), the ratio H/ζ is equal to 8/W 2. Hence,
the factor in front of the double-well in Eq. (8a) can be
replaced by 8/W 2 and the factor of the last term is once
again expressed with W 2 i.e. 1/ζ = 8/(W 2H).

As a matter of fact, the double-well function Eq. (10a)
is a special case of other popular choices of double-well.
For example in two-phase flows of immiscible fluids, the
double-well is ωdw(φ) = (φl − φ)2(φ− φs)

2 [33] with φs ≤
φ ≤ φl for which the two minima are φl and φs. For that
form of double-well, the equilibrium solution is φ0(x) =
0.5 [φl +φs +(φl−φs) tanh(2x/W )], the surface tension is
σ = (1/6)(φl − φs)

3
√

2ζH and the interface width is W =

[1/(φl−φs)]
√

8ζ/H. Eqs. (11) and (12a) can be recovered
by setting φl = 1 and φs = 0. Another popular choice of
double-well is ωdw(φ) = (φ?−φ)2(φ+φ?)2 [34] for which
the two minima are±φ?. Once again, that double-well func-
tion is a particular case of the previous one by setting φl = φ?

and φs = −φ?. The equilibrium solution writes φ0(x) =
φ? tanh(2x/W ), the surface tension is σ = (4φ?3/3)

√
2ζH

and the interface width W = (1/φ?)
√

2ζ/H. In this work
the choice of Eq. (10a) is done by simplicity.

2.2.2. Removing the curvature-driven motion in Eq. (8a)
Another useful relationship that derives from Eq. (9) is

the kernel function
∣∣∇∇∇φ
∣∣. The square root of the term inside

the brackets yields
∣∣∇∇∇φ
∣∣ = (4/W )

√
ωdw where the coeffi-

cient 2H/ζ was replaced by the interface width W with Eq.
(12b) (2H/ζ = 16/W 2). Thus, with a double-well function
defined by Eq. (10a), the kernel function writes:∣∣∇∇∇φ

∣∣= 4
W

φ(1−φ) (13)

For canceling the curvature-driven interface motion, a
counter term −Mφκ

∣∣∇∇∇φ
∣∣ is simply added in the right-hand

side of the phase-field equation. The counter term is propor-
tional to the interface diffusivity Mφ, the curvature κ and the
kernel function

∣∣∇∇∇φ
∣∣. The curvature is defined by κ = ∇∇∇ ·nnn

where nnn is the unit normal vector of the interface

nnn =
∇∇∇φ∣∣∇∇∇φ
∣∣ (14)

In Section 2.4.3, we check that adding such a counter
term in the phase-field equation cancels the curvature mo-
tion−d0κ in the Gibbs-Thomson equation. In order to write
the phase-field equation in a more compact form, we remark
that the second term involving the derivative of the double-
well is equivalent to

−
8Mφ

W 2 ω
′
dw(φ) =−Mφnnn ·∇∇∇

∣∣∇∇∇φ
∣∣ (15a)

provided that the kernel function Eq. (13) is used for
∣∣∇∇∇φ
∣∣.

If the counter term −Mφκ
∣∣∇∇∇φ
∣∣ is added in the right-hand

side of Eq. (8a) then

−
8Mφ

W 2 ω
′
dw(φ)−Mφκ

∣∣∇∇∇φ
∣∣=−Mφnnn ·∇∇∇

∣∣∇∇∇φ
∣∣−Mφ(∇∇∇ ·nnn)

∣∣∇∇∇φ
∣∣

(15b)
where the definition of the curvature κ = ∇∇∇ · nnn has been
applied for the second term. The right-hand side of Eq.
(15b) is −Mφ∇∇∇ ·

[∣∣∇∇∇φ
∣∣nnn] and by using the kernel function∣∣∇∇∇φ

∣∣= (4/W )φ(1−φ) the phase-field equation writes

∂φ

∂t
= Mφ∇∇∇ ·

[
∇∇∇φ− 4

W
φ(1−φ)nnn

]
−

8Mφ

W 2H
p′(φ)∆ω (16)

where ∆ω=ωl(µ)−ωs(µ). In simulations of Sections 4 and
5 two versions of the phase-field equation are used: Eq. (8a)
when the curvature-driven motion is desired and Eq. (16)
when that motion is undesired. When the source term of
that equation is null, and when an advective term ∇∇∇ · (uuuφ) is
considered, Eq. (16) is the conservative Allen-Cahn equa-
tion that is applied for interface tracking of two immiscible
fluids [26, 35].
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2.3. Phase-field model derived from quadratic free energies
The source terms of Eqs. (8a) and (8b) contain the bulk

densities of grand-potential ωl(µ) and ωs(µ). They need to
be specified. Here, we work with analytical expressions
which define explicitly ωl and ωs as functions of µ. The
main advantage of that choice is to simplify their expres-
sions by involving several scalar parameters representative
of the thermodynamics. The densities of grand-potential are
defined by the Legendre transform of free energy densities
fs(c) and fl(c). In [18], several choices for fΦ(c) are pro-
posed in order to relate the grand-potential framework to the
well-known models derived from free energy. The simplest
phenomenological approximation is a quadratic free energy
for each phase Φ = s and Φ = l:

fΦ(c) =
εΦ

2
(c−mΦ)

2 + f min
Φ for Φ = s, l (17)

where εΦ, of physical dimension [E].[L]−3, are the curva-
ture of each parabola and mΦ are two values of composi-
tion for which fΦ(c) are minimum of values f min

Φ
. In other

words, when the phase diagram (i.e. the free energy ver-
sus composition) is available, it presents two regions (one
for each phase) of smallest free energy f min

Φ
corresponding

to the composition mΦ. Eq. (17) means that each region
is approximated by one parabola, where εΦ is a parame-
ter for improving the curvature fit around each minimum.
As a comparison, the well-known Cahn-Hilliard equation is
derived from one single double-well potential. The Cahn-
Hilliard model is a fourth-order equation where the vari-
able plays the roles of interface tracking and composition.
Here, the single double-well is approximated by two sepa-
rated parabolas. The advantage of that splitting is to facil-
itate the thermodynamical fit around each minima by using
two functions with their own parameters. The double-well
ωdw, defined in ωint (Eq. (3)), is used for tracking the inter-
face between the bulk phases. With that approach, the pa-
rameters of ωint control the interface properties (width and
surface tension) whereas the parameters of fΦ control the
thermodynamics. As a drawback, the compositions of solid
and liquid must not be initialized too far from each com-
position mΦ. In particular, the spinodal decomposition can-
not be simulated without modification of the model. Let us
emphasize that the compositions mΦ do not correspond to
the coexistence compositions cco

Φ
(also called compositions

of equilibrium). When a binary system is considered with
εs = εl , the construction of common tangent yields a simple
relationship between mΦ and cco

Φ
(see Section 2.3.2). But

this is not true for more general cases, in particular for a
system with two phases and three components.

In this Section, all terms of Eqs. (8a) and (8b) involving
ωΦ are simplified with the hypothesis of Eq. (17). First,
Section 2.3.1 deals with the difference of grand-potential
densities ωl(µ)−ωs(µ) which will be written with the di-
mensionless chemical potential µ and the thermodynamical
parameters εΦ, mΦ and f min

Φ of Eq. (17). Section 2.3.2 intro-
duces the coexistence compositions cco

Φ
of interface and the

equilibrium chemical potential µeq. The difference ωl(µ)−
ωs(µ) will be re-expressed with cco

Φ
, µ and µeq. In Section

2.3.3 the composition equation is re-written with a mixed

formulation between c(φ, µ) and µ, and in Section 2.3.4 the
anti-trapping current jjjat will be formulated as a function of
cco

Φ
. Finally, the complete model is summarized in Section

2.3.5.

2.3.1. Difference of grand-potential densities in φ-equation
We start with the difference ωl(µ)−ωs(µ) where the

chemical potential is defined by µ = ∂ fΦ/∂C = Vm∂ fΦ/∂c
(for Φ = s, l). By inverting those relationships to obtain c as
a function of µ, the Legendre transforms of each bulk phase
yield the grand-potential densities as function of µ (see in-
termediate steps in [18]):

ωΦ(µ) =−
µ2

2V 2
mεΦ

− µ
Vm

mΦ + f min
Φ for Φ = s, l (18)

Before going further we set ∆ f min = f min
s − f min

l and we de-
fine the quantity E =

√
εsεl (dimension [E].[L]−3) for in-

troducing the dimensionless quantities ωΦ, µ and ∆ f min by
ωΦ = ωΦE (with Φ = s, l), µ = µVmE and ∆ f min = E ∆ f min.
With those reduced variables, the difference ∆ω = ωl(µ)−
ωs(µ) writes

E ∆ω = E

[
(εl− εs)√

εlεs

µ2

2
− (ml−ms)µ−∆ f min

]
(19)

Finally, if we define the dimensionless coefficient of cou-
pling by λ = 8E /H, the last term of Eq. (8a) writes

−
8MφE

W 2H
p′(φ)∆ω =−

λMφ

W 2 Sφ(φ, µ) (20)

where for future use we have set Sφ(φ, µ)≡Sφ defined by:

Sφ = p′(φ)
[
(εl− εs)√

εlεs

µ2

2
− (ml−ms)µ−∆ f min

]
(21)

When the free energies are quadratic, the coupling term of
Eq. (8a) becomes Eq. (20) with Sφ(φ, µ) defined by Eq.
(21). The dimensionless chemical potential µ appears ex-
plicitly in that equation.

2.3.2. Coexistence compositions and chemical potential of
equilibrium

In Eq. (21), ms and ml are two specific values of c for
which the quadratic free energies fs and fl are minimum. A
close link exists between mΦ and the coexistence (or equi-
librium) compositions cco

Φ
. Two relationships allow deriving

them: the first one is the equality of chemical potential µeq:

µeq =Vm
∂ fs

∂c

∣∣∣∣
c=cco

s

=Vm
∂ fl

∂c

∣∣∣∣
c=cco

l

(22a)

and the second one is the equality of grand-potential densi-
ties

ωs(µeq) = ωl(µeq). (22b)

The graphical representation of Eq. (22b) is the standard
construction of common tangent. When the curvature of
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each parabola are identical εs = εl = ε, Eq. (22a) yields
µeq = cco

s −ms = cco
l −ml and Eq. (22b) yields

µeq =
∆ f min

∆m
(23)

where ∆m = ms−ml and ∆ f min has been defined in Section
2.3.1. Finally, those two conditions yield two simple rela-
tionships between cco

Φ
and the parameters mΦ and f min

Φ :

cco
l = ml +

∆ f min

∆m
(24a)

cco
s = ms +

∆ f min

∆m
(24b)

In the binary case this couple of coexistence compo-
sitions is unique, and the mathematical model can be re-
defined with cco

Φ
and µeq. More precisely in Eq. (21), ml and

ms are replaced with cco
l and cco

s by using Eqs. (24a)-(24b).
In addition, the ratio ∆ f min

/∆m is simply replaced by µeq.
The source term simplifies to

Sφ = p′(φ)(cco
s − cco

l )(µ−µeq) (25)

Here the source term has been formulated with cco
s and

cco
l provided that εs = εl = ε. If εs 6= εl the relationships be-

tween mΦ and cco
Φ

are more complicated because they are
solutions of second degree equations. That case will be
studied in a future work. Finally, we can relate the com-
positions c(φ, µ) to the chemical potential µ. By using the
definition CΦ(µ) = cΦ(µ)/Vm and the dimensionless nota-
tion µ = µ/VmE , we obtain cl(µ) = µ(εs/εl)

1/2 + ml and
cs(µ) = µ(εl/εs)

1/2 +ms. Those relationships will be use-
ful in Section 4.

2.3.3. Mixed formulation and closure relationship between
c(φ, µ) and µ in c-equation

Even though the equation on chemical potential (Eq.
(8b)) could be directly simulated, we prefer using a mixed
formulation that involves both variables c and µ. The time
derivative is expressed with c and the flux is expressed with
µ. The advantage of such a formulation, inspired from [36,
p. 62], is explained by a better mass conservation. With the
chain rule, the PDE on µ (Eq. (8b)) is transformed back to
the diffusion equation ∂C/∂t = ∇∇∇ · [χ(φ, µ)D(φ, µ)∇∇∇µ]. Al-
though, the diffusion coefficient is a function of µ in general
cases, here we assume that it is only a function of φ i.e.
D(φ) = Dlφ+ (1− φ)Ds. It is relevant to define D(φ) =
Dlq(φ) with q(φ) = φ+(1−φ)(Ds/Dl) because the interpo-
lation function q(φ) appears naturally during the asymptotic
analysis of Section 2.4 when switching to a dimensionless
timescale. In addition, the coefficient χ(φ, µ) is defined by
χ = ∂C(φ, µ)/∂µ where C is defined by Eq. (27) when the
free energies are quadratic. When εs = εl = E that coeffi-
cient is simply equal to χ = 1/V 2

mE (see Eq. (27)). Finally,
with C(φ, µ) = c(φ, µ)/Vm and µ = µVmE , the composition
equation writes:

∂c
∂t

=∇∇∇ · [Dlq(φ)∇∇∇µ] (26)

The closure equation between µ and c(φ, µ) is simply ob-
tained with Eqs. (6) and (18) for expressing the composition
c(φ, µ). In Eq. (6), the interpolation function p(φ) can be re-
placed by another one h(φ). The form of h(φ) is discussed
below. The closure equation writes:

c(φ, µ) = h(φ)ml +[1−h(φ)]ms+{
h(φ)

1
Vmεl

+[1−h(φ)]
1

Vmεs

}
µ (27)

Next, by inverting Eq. (27), we find a relationship that re-
lates the dimensionless chemical potential µ = µ/VmE to
compositions c(φ, µ), ms and ml :

µ =

√
εsεl

εsh(φ)+ εl [1−h(φ)]

{
c(φ, µ)−h(φ)ml

− [1−h(φ)]ms

}
(28)

Once again, when εs = εl that closure can be re-expressed
with cco

s , cco
l and µeq. In that case, the factor of Eq. (28) is

equal to one, and we replace ml and ms by Eqs. (24a)-(24b)
to obtain:

µ = µeq + c(φ, µ)− cco(φ) (29a)

where:

cco(φ) = cco
l h(φ)+ cco

s [1−h(φ)] (29b)

is the interpolation of coexistence compositions.
A special care must be taken for choosing the interpola-

tion functions q(φ) in Eq. (26) and h(φ) in Eq. (28). Indeed,
the matched asymptotic expansions show that q(φ) and h(φ)
are involved in several pairs of integrals. Each pair of in-
tegrals must have identical values for canceling the spuri-
ous terms arising from expansions. The particular choices
h(φ) = φ and q(φ) = φ + (1− φ)qs with qs = Ds/Dl ful-
fill those requirements. More details are given in Section
2.4. When Ds = 0, the interpolation function q(φ) is simply
equal to φ.

2.3.4. Anti-trapping current jjjat in Eq. (8b)
The anti-trapping current has been proposed in [32] in

order to counterbalance spurious solute trapping when Ds =
0 or when the ratio of diffusivities Ds/Dl is very small.
The anti-trapping current is introduced for phenomenolog-
ical reasons in the mass balance equation and justified by
carrying out the matched asymptotic expansions. An al-
ternative justification for this current has been proposed in
[37, 38]. Thus, with anti-trapping current, the model be-
comes equivalent to the free-boundary problem without in-
troducing other thin interface effects [14]. In the framework
of grand-potential, the anti-trapping current is defined by
[18]:

jjjat = a(φ)W
[

∂ωl(µ)
∂µ

− ∂ωs(µ)
∂µ

]
∂φ

∂t
nnn (30)

This current is proportional to the velocity (∂tφ) and the
thickness W of the interface. It is normal to the interface
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and points from solid to liquid. The coefficient a is used
as a degree of freedom to remove the spurious terms aris-
ing from the matched asymptotic expansions. The coeffi-
cient a(φ) depends on the choice of interpolation functions
in the phase-field model. For our choice it is sufficient to
set a = 1/4 to fulfill the equality of integrals (see Section
2.4.2 for more details). When the quadratic free energies
are used, the term inside the brackets is simplified by deriv-
ing Eq. (19) w.r.t. µ. Using the dimensionless quantities, the
anti-trapping current writes:

jjjat =
1
4

W
[
−εs− εl√

εsεl
µ+ms−ml

]
∂φ

∂t
nnn (31)

When εs = εl , the first term inside the brackets is zero. The
coefficients ms and ml are expressed with the coexistence
compositions (Eqs. (24a)-(24b)) and the anti-trapping writes:

jjjat =
1
4

W (cco
s − cco

l )
∂φ

∂t
nnn (32)

The impact of that anti-trapping current will be empha-
sized in Section 4.2. The chemical potentials and compo-
sitions will be compared on one case of dissolution with
Ds = 0.

2.3.5. Summary of the phase-field model
The complete phase-field model is composed of two cou-

pled PDEs which write:

∂φ

∂t
= Mφ∇∇∇

2
φ−

8Mφ

W 2 ω
′
dw(φ)−

λMφ

W 2 Sφ(φ, µ) (33a)

∂c
∂t

=∇∇∇ ·
[
Dlq(φ)∇∇∇µ− jjjat(φ, µ)

]
(33b)

where the source term Sφ(φ, µ) is re-written below for con-
venience:

Sφ(φ, µ) = p′(φ)(cco
s − cco

l )(µ−µeq) (33c)

In c-equation, the anti-trapping current jjjat is defined by Eq.
(32).

The chemical potential µ appears inside the φ-equation
through the source term (Eq. (33c)). It also appears in the
c-equation through the laplacian term and the anti-trapping
current jjjat . The closure equation between µ and c is given
by Eqs. (29a)-(29b). The derivatives p′(φ) and ω′dw(φ) of
interpolation function and double-well have been defined by
Eqs. (10b) and (5b). All functions depending on φ are sum-
marized in Tab. 2.

The phase-field equation Eq. (33a) includes the curvature-
driven motion (see Section 2.4.1). In order to cancel it, the
following PDE is solved for simulations:

∂φ

∂t
= Mφ∇∇∇ ·

[
∇∇∇φ− 4

W
φ(1−φ)nnn

]
−

λMφ

W 2 Sφ(φ, µ) (34)

In that equation the counter term −Mφκ
∣∣∇∇∇φ
∣∣ has been in-

cluded in the first term of the right-hand side.
Several scalar parameters appear in that model. The φ-

equation involves the diffusivity coefficient Mφ, the inter-
face width W , and the coupling parameter λ. Those three

parameters have a close link with the capillary length d0
and the kinetic coefficient β of the Gibbs-Thomson condi-
tion. Their relationships will be discussed in Section 2.4.1.
They will indicate us how to set their values for simulations.

The model also requires providing the triplet of values
(cco

s , cco
l , µeq). The phase-field model can simulate the dis-

solution processes as well as the precipitation ones. The dif-
ference lies in the sign of (cco

s − cco
l )(µ− µeq) in the source

term Sφ. If we suppose that µ(xxx, 0) = µeq in the solid with
Ds = 0, then the processes of dissolution or precipitation
depend on the choice of the initial condition for the liquid
phase. For instance, in the simulations of Sections 4 and 5,
with the convention cco

s −cco
l > 0, the dissolution process oc-

curs when µ(xxx, 0)< µeq in the liquid whereas the precipita-
tion occurs when µ(xxx, 0)> µeq. In terms of composition, the
dissolution occurs when the composition of liquid is lower
than its coexistence value: c(xxx, 0) < cco

l . The precipitation
process occurs if its value is greater: cco

l < c(xxx, 0)< cco
s .

2.4. Discussion on the matched asymptotic expansions

The equivalence between the phase-field model and the
free-boundary problem is classically established with the
method of “matched asymptotic expansions” [39, 40]. The
method has been presented for solid/liquid phase change for
identical conductivity in the solid and the liquid in [13], and
for unequal conductivity in [41, 42]. That approach con-
siders the ratio ε = W/d0 as small parameter of expansion
where d0 is the capillary length. This choice of ε yields a
correction of second order on the kinetic coefficient β. That
correction makes possible to cancel β, if desired, by choos-
ing appropriately the parameters λ, W and Mφ of the phase-
field model. Based on that analysis, the anti-trapping current
was derived in [32].

The matched asymptotic expansions have been applied
in [14] for dilute binary mixture with anti-trapping current
and Ds = 0. In [15] the analysis has been done for coupling
with temperature. The case Ds 6= 0 with anti-trapping cur-
rent has been studied in [43]. In reference [44] the method
has been applied to investigate the impact of one additional
term in the phase-field equation which is derived from a
variational formulation. Finally, the method has been ap-
plied recently for coupling with fluid flow in [45]. A ped-
agogical presentation of that method can be found in the
Appendix of [17] which takes into account the anti-trapping
current with Ds = 0.

2.4.1. Results of the asymptotic analysis
In this paper, the details of the matched asymptotic ex-

pansions are presented in Appendix A (equations of order
ε0, ε1 and ε2 and their respective solutions φ j and µ j for
0≤ j≤ 2). The stages and the results remain essentially the
same as those already published in [14] and [17, Appendix
A]. In those references, the analyses are carried out in the
theoretical framework of free energy with anti-trapping cur-
rent and Ds = 0. In this Section, we focus the discussion
on the main assumptions and results (Section 2.4.1). In our
model, the use of grand-potential simplifies the source term
analysis (see Appendix A). Two modifications have also an
influence on the relationships relating the phase-field param-
eters to the interface conditions. The first one is our choice
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Description Functions Derivatives
Double-well potential of minima φs = 0 and φl =+1 ωdw(φ) = φ2 (1−φ)2

ω′dw(φ) = 2φ(1−φ)(1−2φ)

Interpolation of coupling in Eq. (33a) p(φ) = φ2 (3−2φ) p′(φ) = 6φ(1−φ)

Interpolation of c(φ, µ) h(φ) = φ h′(φ) = 1
Equilibrium solution φ0(x) = 1

2
[
1+ tanh

( 2x
W
)]

∂φ0
∂x = 4

W φ0(1−φ0)

Interpolation of bulk diffusivities D(φ) = Dlq(φ)
Interpolation of q(φ) q(φ) = φ+(1−φ) Ds

Dl

Table 2: All functions depending on φ in this work.

of interpolation functions (Tab. 2) which impact the co-
efficient a(φ) of the anti-trapping current jjjat . The second
one concerns the counter term −Mφκ

∣∣∇∇∇φ
∣∣ for canceling the

curvature-driven motion. Those two modifications are dis-
cussed respectively in Sections 2.4.2 and 2.4.3.

In Appendix A, the phase-field model is expanded with
anti-trapping jjjat with εs = εl and Ds 6=Dl . By setting ∂nµ|l =
∂nc|l and qs∂nµ|s = ∂nc|s, the equivalent sharp interface model
writes for Φ = s, l:

∂c
∂t

= DΦ∇∇∇
2c (35a)

Dl∂nc|l−Ds∂nc|s =−vn∆cco−E2∆H −E3∆J (35b)
(µΦ−µeq)∆cco =−d0κ−βΦvn+

+E1
[
∆F̃ −∆GΦ

]
∆cco (35c)

Eq. (35a) is the mass balance for each bulk phase and Eqs.
(35b)-(35c) are the two interface conditions, respectively
the mass conservation (or Stefan condition) and the Gibbs-
Thomson condition.

The right-hand sides of the last two equations contain
three error terms: E1 in Eq. (35c) and E2, E3 in Eq. (35b).
The accurate form of those error terms are written in Ap-
pendix A. The E-terms are multiplied by integrals defined in
Tab. 3: ∆H = Hl−Hs, ∆J = Jl−Js in Eq. (35b) and
∆F̃ = F̃l−F̃s, ∆GΦ = Gl−GΦ in Eq. (35c). The integrals
vanish with an appropriate choice of interpolation functions
p(φ), h(φ) and q(φ). Those summarized in Tab. 2 fulfill
the requirements Hl = Hs and Jl = Js. For satisfying
the conditions Fl = Fs and Gl = Gs, we must also consider
identical diffusivities for each phase (i.e. qs = Ds/Dl = 1).
When Ds = 0, the discussion with anti-trapping current (i.e.
a(φ0) 6= 0 in Tab. 3) is detailed in Section 2.4.2.

As expected, the term in the left-hand side of the Gibbs-
Thomson condition (Eq. (35c)), appears in the source term
Sφ of φ-equation (Eq. (33c)). Let us emphasize that the
index Φ appears in Eq. (35c) because the condition is not
necessarily the same for each side of the interface: the ki-
netic coefficient βl can be different of βs (see Eqs. (A.25a)
and (A.25b) in Appendix A.3.5). More precisely, the cap-
illary length d0 and the kinetic coefficient βΦ are related to
W , λ and Mφ of the phase-field equation by:

d0 = I
W
λ

(36a)

βΦ =
WI

Mφλ

[
1−λ

Mφ

Dl

K +FΦ

I
(∆cco)2

]
(36b)

The two different values of βs and βl come from the integral
FΦ in Eq. (36b). A single value βl = βs = β is obtained
provided that Fl = Fs = F . The integrals FΦ, I and K
of Eqs. (36a)-(36b) are defined in Tab. 3.

For validations of Section 4, the comparisons between
the numerical simulations of phase-field model and the ana-
lytical solutions of Stefan’s problem are carried out by con-
sidering β = 0. The particular value of λ that fulfills that
requirement is noted λ? and writes:

λ
? =

Dl

Mφ (∆cco)2
I

K +F
(37)

Finally, Eq. (36a) relates the capillary length d0 to the
interface width W and the coupling coefficient λ. The counter
term−Mφκ

∣∣∇∇∇φ
∣∣must be considered in the phase-field equa-

tion when d0 is negligible in the Gibbs-Thomson Eq. (35c).
The capillary length d0 is directly related to the surface ten-
sion σ. Indeed, from its definition Eq. (12a), we have σ =
(1/6)

√
2ζH and we use the relationships 1/ζ = 8/(W 2H)

and H = 2E /λ to find σ = [(2/3)W/λ]E . The term inside
the brackets is Eq. (36a) with I = 2/3 i.e. σ = d0E . If
the surface tension of the system can be neglected, then the
counter term must be considered in φ-equation. Its impact is
illustrated in the simulation of Section 5.

2.4.2. Analysis of anti-trapping current jjjat in c-equation
When qs = Ds/Dl 6= 1, the model does not satisfy the

conditions Fl =Fs and Gl =Gs (see Tab. 3 with a(φ0) = 0).
The reason is that the diffusive behavior is not symmet-
ric anymore inside the interface. Adding an anti-trapping
current jjjat (Eq. (30) inside the composition equation be-
comes necessary to correct this asymmetry. In the most
general cases, the coefficient a(φ) is a function of φ which
adds a supplementary freedom degree in the model to can-
cel ∆F . In this work, the asymptotic expansions were per-
formed with jjjat in order to determine the correct form of
a(φ). From Tab. (3) we can see that a(φ) is involved in three
integrals Fl , Fs and K . Computing the integrals with the
functions p(φ) = φ2(3−2φ), h(φ) = φ and q(φ) = φ+(1−
φ)qs yields a = (1− qs)/4. When Ds = 0, that condition
simplifies to a = 1/4. Another way to derive that value is to
consider that the integrands of condition Fl = Fs (see Tab.
3) must be identical to those of condition Hl = Hs yielding
the relationship [h(φ0)−a(φ0)∂φ0/∂ξ]/q(φ0) = h(φ0). The
value a = 1/4 directly arises from that equality (see Ap-
pendix A.4). When qs 6= 1, the condition Gl = Gs cannot be
satisfied with the current model, even with the anti-trapping
current. However, the spurious term E1 in Eq. (35c) van-
ishes when Ds = 0. Finally, the sharp interface model is
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Integral Value Integral Value

I =
∫

∞

−∞

(∂ξφ0)
2dξ

2
3

K =
∫

∞

−∞

{
∂ξ p(φ0)

∫
ξ

0

[
h(φ0)−a(φ0)∂ξφ0

q(φ0)

]
dx
}

dξ
31−30ln2

150

Fl =
∫

∞

0

[
1−

h(φ0)−a(φ0)∂ξφ0

q(φ0)

]
dξ

ln2
4

Fs =
∫ 0

−∞

[
h(φ0)−a(φ0)∂ξφ0

q(φ0)

]
dξ

ln2
4

F̃l =
∫

∞

0

[
1− p(φ0)

q(φ0)

]
dξ

ln(2)−1
4 F̃s =

∫ 0

−∞

p(φ0)

q(φ0)
dξ

ln(2)+1
4

Gl =
∫

∞

0

[
1

q(φ0)
−1
]

dξ

[
1
qs
−1
]

ln(qs +1)
4

Gs =
∫ −∞

0

[
1

q(φ0)
− 1

qs

]
dξ

[
1
qs
−1
]

ln(qs +1)− ln(qs)

4

Hl =
∫

∞

0
[1−h(φ0)]dξ

ln2
4

Hs =
∫ 0

−∞

h(φ0)dξ
ln2
4

Jl =
∫

∞

0
[q(φ0)−1]dξ − ln2

4
Js =

∫ −∞

0
[q(φ0)−qs]dξ − ln2

4

Table 3: Definition of integrals involved in Eqs. (35b), (35c), (36a) and (36b). Their values are computed with qs = 0 (except Gl and Gs discussed in
Appendix A.4) and the interpolation functions defined in Tab. 2. Here ξ = x/W and φ0 is defined by Eq. (11).

recovered for Ds = Dl and when Ds = 0 with anti-trapping.
When Ds/Dl ∼ 1, the error term E1∆GΦ remains very small
as confirmed by Section 4.1.

2.4.3. Analysis of counter term −Mφκ
∣∣∇∇∇φ
∣∣ in φ-equation

The references [24] and [46] have proved that adding the
counter term−Mφκ

∣∣∇∇∇φ
∣∣ cancels the curvature motion−d0κ

in the Gibbs-Thomson condition. As a matter of fact, the
curvature-driven term −d0κ arises from the asymptotic ex-
pansions of standard φ-equation (Eq. (33a)). More precisely
it arises from the expansion of two terms: the laplacian term
and the double-well one. In references [24] and [46] such an
analysis has been performed directly by adding −Mφκ

∣∣∇∇∇φ
∣∣

to those two terms.
Here, the phase-field equation (Eq. (34)) differs slightly

of φ-equations of those references. It has been reformu-
lated in Section 2.2.2 by using the kernel function

∣∣∇∇∇φ
∣∣ =

(4/W )
√

ωdw (Eq. (13)) and the chain rule of the divergence
operator. The manipulations made to obtain Eq. (34) con-
serves the structure of order zero of the phase-field equa-
tion and the Gibbs-Thomson condition. The results of the
asymptotic expansions of Eq. (34) were found to be equiv-
alent to those of the previous references: the equation guar-
antees canceling the curvature motion of the interface.

3. Lattice Boltzmann methods

The phase-field model of section 2.3.5 is implemented
in LBM_saclay, a 3D numerical code written in C++ lan-
guage. The main advantage of this code is its portability on
all major HPC architectures (especially GPUs and CPUs). It
has already been used to study two-phase flows with phase
change in the framework of the phase-field method in refer-
ence [27]. Section 3.1 introduces the main notations and the
lattice. The LBM schemes for φ-equation are presented in
Section 3.2 and those for c-equation in Section 3.3.

3.1. LBM notations

Several standard lattices have already been implemented
in top-level files of LBM_saclay. The two-dimensional lat-
tices are D2Q5 and D2Q9 and the three-dimensional ones
are D3Q7, D3Q15 and D3Q19. The lattice speed is s= δx/δt
where δx and δt are respectively the space- and time-steps.

Among all those lattices, we only use in this work the stan-
dard D2Q9 one. It is defined by nine directions of displace-
ment, each one of them is indexed by k = 0, . . . , Npop with
Npop = 8. The nine vectors are eee0 = (0, 0)T , eee1 = (1, 0)T ,
eee2 = (0, 1)T , eee3 = (−1, 0)T , eee4 = (0,−1)T , eee5 = (1, 1)T ,
eee6 = (−1, 1)T , eee7 = (−1,−1)T and eee8 = (1,−1)T . The lat-
tice velocities are defined by ξξξk = seeek and the lattice weights
are w0 = 4/9, w1,...,4 = 1/9 and w5,...,8 = 1/36. The lattice
coefficient is noted ξ2

s = s2/3.
On that lattice, two distribution functions gk(xxx, t) and

hk(xxx, t) are defined, for updating respectively the phase-field
φ(xxx, t) and the composition c(xxx, t) at each time-step. No
distribution function is introduced for the chemical poten-
tial µ(xxx, t). Here µ is simply an additional macroscopic field
which is kept in memory for updating c(xxx, t). A LBM us-
ing µ as main variable instead of c could have been possible.
Indeed, the mathematical form of Eq. (8b) is similar to the
supersaturation equation of reference [47]. But here, we use
c as main computational variable for reason of mass conser-
vation.

The evolution of distribution functions gk and hk obeys
the “discrete velocity lattice Boltzmann equations” with a
collision approximated by the BGK operator. With that form
of collision, each distribution function relaxes toward an
equilibrium geq

k and heq
k proportionally to collision times τg

and τh. For each LBE, the source terms are noted Gk and
Hk. The space and time discretizations are performed by
method of characteristics. The BGK collision operators and
the source terms are integrated with the trapezoidal rule, a
method of second-order accuracy. In order to keep an ex-
plicit algorithm, the variable changes of gk and hk are de-
fined by g̃k = gk +(δt/2τg)(gk− geq

k )−Gk(δt/2) and h̃k =
hk + (δt/2τh)(hk − heq

k )−Hk(δt/2). The ratios τg/δt and
τh/δt are the dimensionless collision rates respectively noted
τg and τh. All details of that variable change can be found
in [27, Appendix C].

3.2. LBM for φ-equation

The lattice Boltzmann method for the phase-field equa-
tion acts on the distribution function g̃k. The evolution equa-
tion is:

g̃?k = g̃k−
1

τg +1/2
[
g̃k− g̃eq

k

]
+Gkδt (38)

11



Nomenclature for lattice Boltzmann

Symbol Definition Dimension Description
eeek Sec. 3.1 [–] Vectors of displacement on the lattice
k 0≤ k ≤ Npop [–] Index for each direction of propagation
Npop Npop = 8 for D2Q9 [–] Total number directions
δx [L] Spatial discretization
δt [T] Time discretization
s = δx/δt [L].[T]−1 Lattice speed
ξξξk = seeek [L].[T]−1 Velocities associated to the vectors of displacement
ξ2

s = s2/3 [L]2.[T]−2 Lattice coefficient
gk(xxx, t), hk(xxx, t) [–] Distribution function for φ and for c
geq

k , heq
k Eq. (39) and Eq. (46) [–] Equilibrium distribution functions in LBE for gk and hk

τg, τh [–] Collision rate in LBE for gk and hk
Gk, Hk Eq. (40) and Eq. (47) [T]−1 Source terms in LBE for gk and hk
wk [–] Weights (constant) for each LBE
γ τh = 3δt/(γδx2) [L]−2.[T] Parameter related to τh in LBE for hk

Table 4: Main mathematical symbols for the lattice Boltzmann schemes (LBE: lattice Boltzmann equation).

where g̃?k ≡ g̃k(xxx+ξξξkδt, t+δt) and the variable change g̃eq
k =

geq
k − δtGk/2 has been used. The equilibrium distribution

function geq
k is defined by:

geq
k = φwk (39)

for which its moments are φ (moment of order zero), 000 (or-
der one) and φIII (order two) where III is the identity tensor
of second-order. The diffusivity coefficient is related to the
collision rate by Mφ = τgξ2

s δt. The source term Gk contains
two contributions:

Gk = wk
(
G st +G curv) (40)

The first one G st involves the source term Sφ(φ, µ) defined
by Eq. (41a). The second one G curv is either equal to the
double-well term Gdw or equal to the counter term G ct

k . The
three source terms are defined by:

G st =−
λMφ

W 2 Sφ(φ, µ) (41a)

Gdw =−
8Mφ

W 2 ω
′
dw(φ) (41b)

G ct
k =

4
W

φ(1−φ)ξξξk ·nnn (41c)

The choice between Gdw or G ct
k depends on the curvature-

driven motion term i.e. the version of the phase-field equa-
tion we wish to simulate. For simulating Eq. (33a), the
curvature term must contain the double-well ωdw(φ). In that
case G curv is equal to Eq. (41b). If the curvature-driven mo-
tion is undesired, the term must involve the kernel function∣∣∇∇∇φ
∣∣= (4/W )φ(1−φ) with the normal vector nnn. In that case

G curv is equal to Eq. (41c).
After the stages of collision and streaming, the new phase-

field is obtained by the zeroth-order moment of g̃k which
must be corrected with the source term Gk:

φ = ∑
k

g̃k +
δt
2 ∑

k
Gk. (42)

The unit normal vector nnn requires the computation of
gradients of φ. The gradients are discretized by using the
method of directional derivatives. The method has already
demonstrated its performance in hydrodynamics in order to
reduce parasitic currents for two-phase flow problems [48,
49]. The directional derivative is the derivative along each
moving direction on the lattice. The Taylor expansions at
second-order of a differentiable scalar function φ(xxx) at xxx+
eeekδx and xxx−eeekδx yields the following approximation of di-
rectional derivatives:

eeek ·∇∇∇φ
∣∣
xxx =

1
2δx

[φ(xxx+eeekδx)−φ(xxx−eeekδx)] (43a)

The number of directional derivatives is equal to the
number of moving directions eeek on the lattice i.e. Npop. The
gradient is obtained by:

∇∇∇φ
∣∣
xxx = 3∑

k
wkeeek

(
eeek ·∇∇∇φ

∣∣
xxx

)
. (43b)

The two components of gradient ∂xφ and ∂yφ are com-
puted by the moment of first-order of each directional deriva-
tive eeek ·∇∇∇φ

∣∣
xxx.

3.3. LBM for c-equation
The basic LB algorithm for composition equation works

on a new distribution function hk. The specificity of Eq.
(33b) is the mixed formulation between c and µ. The closure
relationship is given by Eq. (28). The equilibrium distribu-
tion heq

k must be designed such as its moment of zeroth-order
is c and its moment of second-order is IIIµ. That equation is
quite close to the Cahn-Hilliard (CH) equation with a sim-
pler closure (Eq. (28)) which does not involve the laplacian
of c (case of CH equation). The numerical scheme can be
inspired from what is done for CH equation for two-phase
flows of two immiscible fluids [34, 50]. For anti-trapping
current jjjat , the methods are the same as those presented in
[47] for crystal growth applications of binary mixture.

In the usual BGK operator, the diffusion coefficient D(φ)
is related to the relaxation time τh(φ) with the relationship
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D(φ) = (1/3)τh(φ)δx2/δt. However, the interpolation of
diffusion D(φ) = Dlφ means that the diffusion is null in
the solid phase. In that case, the relaxation time would be
equal to 0 leading to the occurrence of instabilities in the
algorithm. In order to overcome the instability, the diffu-
sive term is reformulated with the chain rule by ∇∇∇ [D(φ)µ] =
D(φ)∇∇∇µ+D ′(φ)µ∇∇∇φ with D ′(φ) = Dl . Eq. (33b) becomes:

∂c
∂t

+∇∇∇ ·
[
µD ′(φ)∇∇∇φ

]
+∇∇∇ · jjjat =∇∇∇

2 [D(φ)µ] (44)

Moreover, the laplacian term is reformulated as ∇∇∇2 [D(φ)µ] =
(1/γ)∇∇∇2 [γD(φ)µ] where γ is a supplementary parameter al-
lowing a better control of the relaxation rate. When the pa-
rameters Mφ and D(φ) presents a ratio of several order of
magnitude, it is useful to set γ = 1/Mφ. The stability con-
dition of the relaxation rates will be the same for both LBE.
The discrete lattice Boltzmann equation writes

h̃?k = h̃k−
1

τh +1/2
[
h̃k− h̃eq

k

]
+Hkδt (45)

where h̃?k ≡ h̃k(xxx+ξξξkδt, t+δt) and h̃eq
k = heq

k −Hkδt/2. The
equilibrium distribution function writes:

heq
k =

{
c(φ, µ)− (1−w0)γD(φ)µ(xxx, t) if k = 0
wkγD(φ)µ(xxx, t) if k 6= 0

(46)

The first line of Eq. (46) corresponds to a moment of order
zero that is equal to c. The second line corresponds to a
second-order moment equal to D(φ)µIII. The anti-trapping
current jjjat and the term D ′(φ)µ∇∇∇φ appear in the source term
Hk ≡Hk(xxx, t) defined by:

Hk = γwkξξξk ·
[
µD ′(φ)∇∇∇φ+ jjjat(φ, µ)

]
(47)

The relaxation rate τh is related to γ by τh = 3δt/(γδx2).
After the stages of collision and streaming the composition
c(φ, µ) is updated by:

c = ∑
k

h̃k (48)

The moment of zeroth-order of Eq. (47) is null. For this
reason, Hk does not appear in the calculation of c. Once
the new composition is known, the chemical potential µ is
computed by Eq. (29a) and used in equilibrium function
(Eq. (46)). The anti-trapping current jjjat is computed by Eq.
(32) where the normal vector nnn and the time derivative ∂φ/∂t
are required. The normal vector has already been computed
in Section 3.2. The time derivative of φ is computed by an
explicit Euler scheme of first-order. Hence, the LBE on h̃k
must be solved after the LBE on g̃k. At first time-step the
term ∂φ/∂t in Eq. (31) is obtained by φ(xxx, δt)− φ(xxx, t =
0)/δt where φ(xxx, t = 0) is the initial condition and φ(xxx, δt)
is the phase-field after the first time-step.

Another formulation is possible for jjjat and µD ′(φ)∇∇∇φ.
They could have been included inside an alternative equilib-
rium distribution function heq,alt

k with Hk = 0. In that case,
the scheme writes

h̃?k = h̃k−
1

τh +1/2

[
h̃k−heq,alt

k

]
(49a)

with heq,alt
k defined by

heq,alt
k =

c(φ, µ)− (1−w0)γD(φ)µ if k = 0

wk

[
γD(φ)µ+

ξξξk·( jjjat+µD ′∇∇∇φ)
ξ2

s

]
if k 6= 0

(49b)

The computational stages for µ and jjjat remain the same as
those presented above.

4. Validations

The implementation of lattice Boltzmann schemes is val-
idated with several analytical solutions. The solutions are
obtained from the classical Stefan’s problem. We present
one case of precipitation in Section 4.1 for Dl 'Ds and one
case of dissolution in Section 4.2 for Ds = 0. The domain
is one-dimensional with x varying between [−Lx, Lx] where
Lx = 0.25. The initial configuration states an interface posi-
tion located at xi(0) = 0 with a solid phase on the left side
(interval [−Lx, 0[) and a liquid phase on the right side (in-
terval ]0, Lx]). For the phase-field model, the first test is
simulated without anti-trapping. Next, the second one is
simulated successively with and without jjjat to present its
impact on the profiles of composition and chemical poten-
tial. For each validation, the relative L2-errors, defined by∥∥ϑLBM−ϑas

∥∥
2 /‖ϑ

as‖2, are indicated in the caption of fig-
ures. The function ϑ corresponds to c or µ. The errors are
computed only over the range shown on each graph and the
superscript as means “analytical solution”.

The LBM simulations are carried out on a 2D compu-
tational domain varying between [−Lx, Lx]× [`y, Ly] with
`y = 0 and Ly = 0.0036. The D2Q9 lattice is used with
Nx ×Ny nodes with Nx = 5000 and Ny = 36. The space-
and times-steps are δx = 10−4 and δt = 5× 10−9. The ini-
tial conditions for φ-equation and c-equation are two hyper-
bolic tangent functions: φ(x, 0) is initialized by Eq. (11) and
c(x, 0) by

c(x, 0) =
1
2

[
c∞

l + c∞
s +(c∞

l − c∞
s ) tanh

(
2x
W

)]
(50)

where c∞
s and c∞

l are the compositions of bulk far from in-
terface. For horizontal walls at y = 0 and y = Ly, the bound-
ary conditions are periodic. For vertical walls at x = ±Lx,
the boundary conditions are imposed with the bounce-back
method. A preliminary test was carried out to check that so-
lutions of both φ-equations (Eqs. (33a) and (34)) are identi-
cal on that one-dimensional case.

4.1. Validation with Dl ' Ds

We first check the LBM implementation with two coef-
ficients of diffusion: Ds = 0.9 and Dl = 1. The analytical
solution of such a problem can be found in [51, Chap. 12].
However, in that reference, the mathematical formulation of
this problem is done by using the temperature as main vari-
able. The equivalent intensive quantity in our model is the
chemical potential. The validations using that quantity will
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Figure 1: Analytical solutions Eqs. (52a)–(52c) (lines) compared to LBM (symbols) for one case of precipitation with Ds = 0.9 and Dl = 1. The system is
initialized with an interface located at x = 0. The solid and liquid are respectively on left- and right-side.

be presented in next section. Here, we prefer use the solu-
tions of reference [52] which are written in terms of com-
positions. The numerical implementation must reproduce
correctly the discontinuity of compositions at interface.

In [52], the solutions are derived for a ternary case. For
binary case, the transcendental equation reduces to:

−1
2

α∆m2 = ∆ f min
[us(−α)+ul(α)]+

∆m [(ms− c∞
s )us(−α)+

(ml− c∞
l )ul(α)] (51a)

where the function uΦ(α) is defined by

uΦ(α) =

√
DΦ

π

e−α2/4DΦ

erfc
(
α/2
√

DΦ

) for Φ = s, l (51b)

The compositions far from the interface are c∞
s = 0.75

and c∞
l = 0.4. For ms = 0.2, ml = 0.1, ∆m= 0.1 and ∆ f min

=
0.04, the root of the transcendental equation is α= 0.184841.
The three solutions are the interface position xi(t), the com-
position of solid cs(x, t) and the composition of liquid cl(x, t).
The interface position writes as a function of α and t:

xi(t) = α
√

t (52a)

Since α > 0, the interface moves from xi(0) = 0 towards
positive values of x, meaning that a precipitation process
occurs. The two analytical solutions in the solid and the
liquid write:

cas
s (x, t) = c∞

s +(cco
s − c∞

s )
erfc

[
−x/2

√
Dst
]

erfc
[
−α/2

√
Ds
] (52b)

cas
l (x, t) = c∞

l +(cco
l − c∞

l )
erfc

[
x/2
√

Dlt
]

erfc
[
α/2
√

Dl
] (52c)

where Eq. (52b) is defined for x∈ [−Lx, xi(t)[ and Eq. (52c)
for x ∈]xi(t)], Lx]. On the whole domain, the composition c
is discontinuous at interface xi(t), of value cco

s = 0.6 on solid
side and cco

l = 0.5 on liquid side. From those values, each
profile of composition diffuses until c∞

s for x→−Lx and c∞
l

for x→ Lx.
The simulations are performed without anti-trapping cur-

rent. The interpolation of diffusion coefficients is simply
done by D(φ) = φDl +(1−φ)Ds. In φ-equation the param-
eters are Mφ = 1.2, W = 1.2×10−3 and λ? = 277. The com-
parisons between the analytical solutions and the LBM sim-
ulation are presented on Fig. 1. As expected from the the-
ory, the interface position xi(t) is an increasing function of
time (Fig. 1a). On the profiles of composition (Fig. 1b), the
jump on each side of the interface is also well-reproduced
by the numerical model. The coexistence values cco

s = 0.6
and cco

l = 0.5 remain the same at two times t1 = 2.5×10−5

and t2 = 5× 10−4. The LBM simulations fit perfectly with
the analytical solutions.

The two solutions Eqs. (52b)–(52c) can be easily ex-
pressed in terms of chemical potential µas

s (x, t) and µas
l (x, t).

For instance, we add −ms on both sides of Eq. (52b) and
add ms −ms inside the term (cco

s − c∞
s ). Thanks to Eqs.

(24a)–(24b) we obtain (cco
s −c∞

s )≡ (µeq−µ∞
s ) for solid and

(cco
l −c∞

l )≡ (µeq−µ∞
l ) for liquid. When expressed in terms

of chemical potential, the solution does not present a jump
at interface xi(t). The single value is µeq and each profile
diffuse from that value until µ∞

s when x→−Lx (solid) and
µ∞

l when x→ Lx (liquid). The next section presents a valida-
tion using µ as main variable for discussing the analogy with
temperature and comparing with solidification problems.

4.2. Validation with Ds = 0: effect of anti-trapping current

The analytical solution of the one-sided diffusion is pre-
sented in [51, Sec. 12-1]. Now a direct analogy is done
between the temperature of that reference and the chemical
potential of our model. The two solutions are xi(t), the inter-
face position, and µas

l (x, t) the chemical potential of liquid.
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The chemical potential of solid is set equal to the equilib-
rium value µeq = 0.4. Its value remains constant during the
simulation because Ds = 0. The transcendental equation of
that problem writes:

αeα2
erfc(α)+

(µeq−µ∞
l )

(cco
s − cco

l )
√

π
= 0 (53)

where α is the root of this equation, and µ∞
l is the value

of chemical potential far from the interface. By analogy
with problems of phase change (solidification or melting),
the equilibrium chemical potential µeq plays the role of melt-
ing temperature. The term ∆cco = cco

s −cco
l can be compared

to the latent heat. For phase change problems, that quantity
is released (resp. absorbed) at interface during solidifica-
tion (resp. melting). Here for our convention cco

s > cco
l , the

quantity ∆cco is released at interface during dissolution and
absorbed during precipitation. Finally, the quantity χ = 1
plays the role of specific heat.

In Eq. (53), the dissolution or precipitation processes
can occur depending on the sign of second term. We keep
cco

s = 0.6 and cco
l = 0.5 (i.e. ∆cco > 0), and we set µ∞

l = 0.3
meaning that µeq−µ∞

l > 0. The root of this equation is equal
to α =−0.357835. The interface position xi(t) is a function
of α, t and Dl which writes:

xi(t) = 2α
√

Dlt (54a)

Since α < 0, the interface position moves from xi(0) = 0 to-
wards negative values of x, meaning that a dissolution pro-
cess occurs. The chemical potential of liquid is

µas
l (x, t) = µ∞

l +(µeq−µ∞
l )

erfc[x/2
√

Dlt]
erfc(α)

(54b)

for x ∈]xi(t), Lx]. In the liquid, µas
l (x, t) diffuses from the

equilibrium value µeq at the interface until µ∞
l when x→ Lx.

In the solid, the chemical potential µas
s (x, t) is constant of

value µeq for x ∈ [−Lx, xi(t)[.
For LBM simulations, the parameters of φ-equation are

W = 5× 10−3, λ? = 230 and Mφ = 1.2. In c-equation, the
diffusion is interpolated by D(φ)= φDl and the anti-trapping
current is considered. The initial condition of composition
is imposed by Eq. (50) with c∞

l = µ∞
l +ml = 0.4 and c∞

s =
µ∞

s +ms = 0.6 with ms = 0.2 and ml = 0.1. The compar-
isons between the analytical solutions and the LBM simu-
lation are presented in Fig. 2. Compared to the previous
section, now the curve of the interface position decreases
with time (Fig. 2a) because the dissolution process occurs.
The results of LBM are in good agreement with the analyt-
ical solutions for three times t1 = 5×10−5, t2 = 2.5×10−4

and t3 = 5×10−4 (Fig. 2b).
The anti-trapping effect is compared on the profiles of

composition and chemical potential (Fig. 3). For composi-
tion, the analytical solution can be derived from Eq. (54b)
by adding ml on both sides and by adding and subtracting
ml inside (µeq−µ∞

l ). We obtain:

cas
l (x, t) = c∞

l +(cco
l − c∞

l )
erfc[x/2

√
Dlt]

erfc(α)
(55a)

where cco
l = µeq +ml = 0.5. In the solid phase, the compo-

sition is a constant of value cs(x, t) = µeq +ms = 0.6 corre-
sponding to its value of coexistence cco

s . The compositions
cas

l (x, t) and cs(x, t) are plotted with dashed lines on Fig. 3a.
The LBM simulations are carried out successively with

and without anti-trapping current. The profiles of composi-
tion are reported on Fig. 3a at t = 10−4 (symbols). With-
out anti-trapping, the theory cannot provide a value of λ?

because the phase-field model is not strictly equivalent to
the sharp interface one (see Section 2.4). Hence, the value
of λ? = 500 is chosen such as the displacement of the in-
terface is close to the analytical solution. The simulation
corresponds to the best fit that is possible to obtain when
Ds = 0 and jjjat = 000 in c-equation (squares on Fig. 3a). On
that figure, the semi-analytical solution (sas) is plotted for
comparison:

csas(φ) = cas
l (x, t)φ(x, t)+ cs [1−φ(x, t)] (55b)

The sas-solution corresponds to an interpolation of cas
l (x, t)

and cs with φ. When jjjat is not considered in c-equation, the
compositions fit well far from the interface. However, inside
the interface region, the compositions are over-estimated on
the solid side whereas they are under-estimated on the liquid
side. On the interval [−Lx, xi(t)[ (solid), the profile slightly
oscillates above the composition of coexistence. That oscil-
lation is more visible when we plot the chemical potential
(Fig. 3b). That lack of accuracy slows down the displace-
ment of interface compared to the analytical solution Eq.
(54a).

5. Dissolution of porous medium: counter term effect

In Section 4, the initial conditions of φ and c are de-
fined by two hyperbolic tangent functions. Here, the phase-
field is initialized with an input datafile which comes from
the characterization of a 3D porous sample with X-ray to-
mography. The datafile contains 256×256×236 rows with
three indices of position (x, y and z) and one additional in-
dex describing the solid (value 0) or the pore (value 255).
For simulating the dissolution, we assume that the poral
volume is filled with a solute of smaller composition than
the coexistence composition of liquid. A two-dimensional
slice of size 256× 256 has been extracted from the datafile
and rescaled to 1024×1024 nodes covering a square of size
[0, 1]2 (δx' 9.76×10−4). The time-step of discretization is
δt = 5× 10−7. The type of all boundary conditions is zero
flux.

For the parameters of φ-equation, the diffusivity is Mφ =
1.2 and the interface width is set equal to W = 0.02 (i.e.
∼ 20δx). The value of coupling coefficient λ? = 230 (cor-
responding to β = 0) is computed by using Eq. (37) with
values of K , F and I = 2/3 defined in Tab. 3. For c-
equation, the coexistence compositions of solid and liquid
are respectively equal to cco

s = 0.6 and cco
l = 0.5 (∆cco = 0.1)

and the chemical potential of equilibrium is µeq = 0.4. The
diffusion coefficients are zero in the solid (Ds = 0) and one
in the liquid (Dl = 1). The anti-trapping current jjjat is used
in the simulations.
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Figure 2: Analytical solutions Eqs. (54a), (54b), (55a) (lines) compared with LBM (symbols) for a case of dissolution with Ds = 0 and Dl = 1. The
anti-trapping current jjjat is considered in the simulation. The system is initialized with an interface located at x = 0. The solid and liquid are respectively on
left- and right-side.
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Figure 3: LB simulations with (dots) and without (squares) jjjat in c-equation. Comparison on profiles of composition (Fig. 3a) and chemical potential (Fig.
3b). Zoom between [−0.015, 0.002] at t = 10−4.

The phase-field is simply initialized at t0 = 0 with two
discontinuous values: for solid φ(xxxs, t0) = φs = 0 and for
liquid φ(xxxl , t0) = φl = 1. The composition of the solid phase
c(xxxs, t0) is set equal to the coexistence composition of solid
cco

s . For liquid, the initial condition is below its coexistence
composition: c(xxxl , t0) = 0.4 < 0.5. Those initializations are
presented on Fig. 4a for φ and Fig. 4b for c. On both figures,
three squares are sketched for comparing the evolution of
small pores which are enclosed inside the solid.

With those initial conditions, the dissolution process oc-
curs until the composition of the liquid phase is equal to
cco

l . Two simulations are compared. In the first one, the φ-
equation is Eq. (34) which accounts for the counter term
−Mφκ

∣∣∇∇∇φ
∣∣. In the second one, the curvature-driven motion

is possible because the φ-equation is Eq. (33a). For both
simulations, a diffuse interface replaces at first time-steps
the initial discontinuity between the solid and liquid phases.

The code ran 70 seconds on a single GPU (Volta 100) until
the steady state is reached after 104 time steps.

The results are presented in Fig. 5 for three times: t1 =
102δt (left), t2 = 103δt (middle) and t f = 104δt (right). At
first sight, the difference concerns the shapes of the solid
phase at the end of simulations. When the counter term is
considered, the interface is much more irregular (Fig. 5a-
right) than that obtained without counter term (Fig. 5b-
right). The reason is that, with counter term, the interface
motion is only caused by differences of composition in liq-
uid and solid. The dissolution occurs in isotropic way un-
til the equilibrium is reached. Without counter term, the
irregularities of solid disappear because of the curvature-
driven motion. Finally, the shape of the solid phase is much
smoother.

For both simulations, when the steady state is reached,
the composition of liquid phase is equal to the coexistence
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(a) Initialization of phase-field: for solid φ(xxxs, t0) = φs = 0 (black) and for
liquid φ(xxxl , t0) = φl = 1 (blue).

(b) Initialization of composition: for solid, the composition is set equal
to the solid coexistence i.e. c(xxxs, t0) = cco

s = 0.6 (yellow). For liquid
c(xxxl , t0) = 0.4 (dark blue) i.e. below the composition of coexistence cco

l =
0.5.

Figure 4: Positions xxxs and xxxl of datafile used to define the initial conditions for φ (Fig. 4a) and c (Fig. 4b). Three squares are sketched for comparing the
evolution of small pores enclosed inside the solid.

composition of liquid c(xxxl , t f ) = cco
l (gray areas in the right

figures of 5c and 5d). However, the composition inside the
solid phase is different. When the curvature-driven motion
is canceled, the composition c(xxxs, t f ) is homogeneous of
value cco

s (see Fig. 5c-right). When that motion is taken into
account, the solid composition c(xxxs, t f ) is heterogeneous as
revealed by the presence of areas of composition lower than
cco

s (gray areas inside squares in Fig. 5d-right). Those areas
correspond to solid phases as confirmed by Fig. 5b-right.

That heterogeneity of composition is explained by the
curvature-driven motion occurring when the counter term is
not considered in φ-equation. That interface motion makes
disappear the small pores embedded in the solid phase. For
instance at t1, the small one inside the white square has dis-
appeared (Fig. 5b-left) and the pore inside the cyan square
has almost disappeared (red dot). That same pore has fully
disappeared at t2 (Fig. 5b-middle) and one of the two pores
inside the magenta square has also disappeared. At last both
of them have disappeared at t f (Fig. 5b-right). With counter
term, all those pores still exist at the end of simulation (Fig.
5a-right).

With the curvature-driven motion a special area which
is initially liquid (φ = 1) may become solid (φ = 0) even
though the local composition c(xxxl , t) is not greater than cco

l .
That curvature motion acts like a precipitation process. For
those areas, the diffusion coefficient changes from Dl to
Ds = 0 meaning that the diffusion process does not occur
anymore. The value of composition is “frozen” explaining
why small islands of lower composition are embedded in the
solid phase.

An in-depth physical analysis is based on the Gibbs-
Thomson condition Eq. (35c) i.e. µ = µeq− d0κ (with β =
0). When two phases coexist, the interface will move to-
wards the position where the chemical potential µ is closer to
µeq. In the first case, the counter term cancels the motion d0κ

whereas in the second case that motion exists. In our simu-

lations µ(xxxs, t) = µeq = 0.4 in the solid and µ(xxxl , t) = 0.3 in
the liquid. For small pores trapped in the solid, the interface
will move towards the liquid phase and the physical process
acts like precipitation. The interface disappears because it
is the unique way to reach the equilibrium value µeq. On
the contrary, for outgrowths, the curvature is opposite and
the interface will move towards the solid phase, dissolution
occurs.

6. Conclusion

In this work we have presented a phase-field model of
dissolution and precipitation. Its main feature lies in its
derivation which is based on the functional of grand-potential
Ω[φ, µ]. In that theoretical framework, the phase-field φ and
the chemical potential µ are the two main dynamical vari-
ables. In models based on free energy, φ and the compo-
sition c are the two main variables. The benefits of using
the grand-potential are twofold. First, for models based on
free-energy, two additional conditions must be solved inside
the diffuse zone in order to ensure the equality of chem-
ical potential at interface. In grand-potential theory, it is
not necessary because the model includes that assumption in
its formulation. Second, the chemical potential is an inten-
sive thermodynamic quantity like temperature so that many
analogies can be done with solidification problems. Hence,
the analytical solutions of the Stefan problem can be used
for validation by comparing directly the temperature and the
chemical potential. Besides, the matched asymptotic expan-
sions can be directly inspired from those already performed
for solidification problems. The phase-field model is com-
posed of two PDEs. The first equation computes the evolu-
tion of the interface position φ. The second one is a mixed
formulation using the composition and chemical potential.
Although that equation requires a closure relationship be-
tween c and µ, that formulation improves the mass conser-
vation.
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t1 = 2×102δt t2 = 103δt t f = 104δt

(a) Evolution of the phase-field when the counter term is considered in φ-equation.

(b) Phase-field at same time steps without counter term. Because of the curvature-driven motion the final shape of solid is smoother and the small pores inside
the squares have disappeared.

(c) Fields of composition at same time steps with counter term in φ-equation. At final time the composition is homogeneous in the solid phase of value cco
s .

(d) Fields of composition without counter term at same time steps. The composition of solid is heterogeneous because the small pores have disappeared and
the diffusion is zero. Several areas of smaller composition than cco

s are trapped in the solid phase (e.g. inside the squares).

Figure 5: Dissolution of porous medium simulated by a phase-field model based on the grand-potential. Snapshots of phase-field and composition at
t1 = 2×102δt (left), t2 = 103δt (middle) and final time of simulation t f = 104δt (right). Two simulations are carried out: in Figs. 5a and 5c the φ-equation
is Eq. (34) whereas in Figs. 5b and 5d the φ-equation is Eq. (33a). The iso-contour φ = 0.5 (black line) is super-imposed on Figs. 5c and 5d.
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In many simulations of dissolution or precipitation, two
main hypotheses are often considered. First, the interface
is assumed to move because of chemical reactions, which is
often considered by a kinetics of first-order. That assump-
tion means that the curvature-driven motion is neglected in
the Gibbs-Thomson condition. In the phase-field theory,
that motion is always contained in the φ-equation. In order
to cancel it, a counter term −Mφκ

∣∣∇∇∇φ
∣∣ must be added in φ-

equation. The second hypothesis is the diffusion that is ne-
glected in the solid phase. In that case, the anti-trapping cur-
rent jjjat must be considered in c-equation. Those two terms
are not contained in the functional of grand-potential, they
are added for phenomenological reasons. Without them,
the phase-field model is not equivalent to the sharp inter-
face model because several spurious terms arise from the
matched asymptotic expansions.

The model has been implemented with lattice Boltzmann
schemes in the LBM_saclay code. The one-dimensional val-
idations have been carried out with two analytical solutions
of the Stefan problem. The test cases present one process
of precipitation with Ds 'Dl and another one of dissolution
for Ds = 0. The first one is performed without anti-trapping
and compares the profiles of composition. The jump of com-
position is well-reproduced by the model at interface. The
diffusive behavior is also perfectly fitted for each phase. The
second test emphasizes the analogy with problems of solidi-
fication (or melting) where the equilibrium chemical poten-
tial µeq plays the role of melting temperature and ∆cco is
compared to the latent heat. For that test, the use of anti-
trapping current avoids the oscillations of algorithm and im-
proves the accuracy of composition profiles.

Finally, the numerical model has been applied for simu-
lating the dissolution process of a porous medium. The rock
sample has been characterized by X-ray microtomography.
The datafile has been used for defining the initial conditions
for φ and c. Two simulations have compared the impact
of counter term on the shape of solid. When the counter
term is not considered in φ-equation, the curvature-driven
motion makes disappear small areas of liquid trapped inside
the solid phase. The main consequence of that effect, acting
like precipitation, is the heterogeneity of composition inside
the solid phase. When the counter term is taken into ac-
count, the solid/liquid interface is much more irregular and
the composition is homogeneous inside the solid phase.

The grand-potential densities ωΦ of each phase are de-
fined by the Legendre transform of free energy densities fΦ.
In this work, the main assumption is that fs and fl are de-
fined by two parabolas with identical curvature εs = εl . That
hypothesis simplifies the link between the thermodynamic
parameters mΦ, εΦ and f min

Φ and the properties of equilib-
rium i.e. the coexistence compositions cco

s , cco
l , and the equi-

librium chemical potential µeq. Nevertheless, for real ma-
terials the thermodynamics does not fulfill necessarily that
condition. An in-depth study with εs 6= εl is planned for fu-
ture work for binary and ternary mixtures.
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Appendix A. Matched asymptotic expansions

The starting point of this Appendix is the phase-field
model composed of Eqs. (33a)–(33c). The analysis is per-
formed into two main stages. First, the whole computa-
tional domain is divided into two regions. The first region
is located far from the interface (bulk phases) and called
the “outer domain”. The second region is the diffuse in-
terface and called the “inner domain”. In Appendix A.1, we
define the dimensionless variables and the matching condi-
tions between both regions. Next, we present the analysis
of the outer domain in Appendix A.2 and the inner domain
in Appendix A.3. Finally a discussion is carried out in Ap-
pendix A.4 to remove the error terms.

Appendix A.1. Main definitions

Appendix A.1.1. Outer domain and inner domain
The unknown are φout , µout , cout for the outer domain,

and φin, µin, cin for the inner domain. They are expanded as
power of a small parameter ε� 1:

φ
out ' φ

out
0 + εφ

out
1 + ε

2
φ

out
2 , φ

in ' φ
in
0 + εφ

in
1 + ε

2
φ

in
2

cout ' cout
0 + εcout

1 + ε
2cout

2 , cin ' cin
0 + εcin

1 + ε
2cin

2

µout ' µout
0 + εµout

1 + ε
2µout

2 , µin ' µin
0 + εµin

1 + ε
2µin

2

The small parameter of expansions is defined by ε =
W/d0, where d0 =W/(αλ) is the capillary length, and α is
a parameter to be determined. The two coefficients Dl and
d0 define a characteristic speed vc = Dl/d0 = εDl/W , and a
characteristic time tc = d2

0/Dl = d0/vc. For the expansions,
we also assume 1/κ ∼ d0 i.e. Wκ∼ ε. In the phase-field
equation, the coefficient λ is replaced by ε/α. Finally, we
define the following dimensionless quantities: the interface
speed v̄n = vn/vc, the interface curvature κ̄ = d0κ, the time
t̄ = t/tc, the spatial coordinate x̄xx = xxx/d0, and the dimension-
less diffusivity D̄ = Dl/Mφ. Finally qs = Ds/Dl is the ratio
of diffusion coefficients.

For each domain, the model is re-written with the curvi-
linear coordinates r and s, where r is the signed distance to
the level line φ= 0.5, and s the arc length along the interface.
The dimensionless coordinates are also defined by: η= r/d0
and s = s/d0. The spatial operators (divergence, gradient,
laplacian) and the time derivatives are also expressed in this
new system of coordinates, and next expanded in power of
ε. Finally, the terms of same order are gathered and the solu-
tions of all orders can be calculated with appropriate bound-
ary conditions: the “matching conditions”.

Appendix A.1.2. Matching conditions
The matching conditions are established by comparing

the limits of inner variables far from the interface with the
limits of outer variables near the interface. For that pur-
pose we define ξ = r/W , a “stretched” normal coordinate in
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the inner region. Let us notice that the curvilinear coordi-
nates r and s have been made dimensionless by introducing
η = r/d0 and s = s/d0 in the outer domain, we observe that
η/ξ = ε� 1. This motivates us to compare the limits of
inner variables when ξ→±∞ with the limits of outer vari-
ables when η→ 0±. For the phase-fields φin

0 and φout
0 , we

define the matching conditions:

lim
ξ→+∞

φ
in
0 = lim

η→0+
φ

out
0 and lim

ξ→−∞

φ
in
0 = lim

η→0−
φ

out
0

For the chemical potentials µin
j and µout

j (0 ≤ j ≤ 2), the
matching conditions are:

lim
ξ→±∞

µin
0 = µout

0 (0±)

lim
ξ→±∞

µin
1 = µout

1 (0±)+∂ηµout
0 (0±)ξ

lim
ξ→±∞

∂ξµin
2 = ∂ηµout

1 (0±)+∂
2
ηηµout

0 (0±)ξ

where µout
j (0±)= limη→0± µout

j for j = 0, 1 and ∂ηµout
0 (0±)=

limη→0± ∂ηµout
0 .

Appendix A.2. Analysis of outer domain

In the outer domain, the use of curvilinear coordinates
is not necessary because the region is far from the interface.
Thus, the model is written with the dimensionless cartesian
coordinates xxx, the dimensionless time t and the parameter of
expansion ε. The model writes:

D̄ε
2
∂t̄φ

out = ε
2
∇̄̄∇̄∇

2
φ

out −ω
′
dw(φ

out)− ε

α
∂φω

p(φout ,µout)

∂t̄c = ∇̄̄∇̄∇ ·
[
q(φout)∇̄̄∇̄∇µout − jjjat(φ

out)
]

(A.1)

where the notation ωp = p(φ)ωl(µ)+ [1− p(φ)]ωs(µ) and
jjjat(φ

out) =−a(φout)∆cco∂t̄φ
outnnn with the normal vector nnn =

∇̄̄∇̄∇φout/
∣∣∇̄̄∇̄∇φout

∣∣. The expansions of φ-equation write for each
order:

O(1) : 0 = ω
′
dw(φ

out
0 ) (A.2a)

O(ε) : 0 = ω
′′
dw(φ

out
0 )φout

1 +α
−1

∂φω
p(φout

0 ,µout
0 ) (A.2b)

O(ε2) : 0 = D̄ε
2
∂t̄φ

out
0 − ∇̄̄∇̄∇

2
φ

out
0 +ω

′′′
dw(φ

out
0 )φout

2

+
1
2

ω
′′
dw(φ

out
0 )(φout

1 )2 +
1
α

∂
2
φφω

p(φout
0 ,µout

0 )φout
1

+α
−1

∂
2
φµω

p(φout
0 ,µout

0 )µout
1 (A.2c)

According to Eq. (A.2a), ωdw(φ
out
0 ) takes a minimal

value in the outer domain, i.e. φout
0 is either equal to φs = 0

or φl = 1. In addition, p(φ) must be chosen such that its
derivatives vanish in the bulk phases. Then Eq. (A.2b) be-
comes simply ω′′dw(φ

out
0 )φout

1 = 0, implying φout
1 = 0. Simi-

larly, Eq. (A.2c) simplifies to ω′′dw(φ
out
0 )φout

2 = 0 involving
φout

2 = 0. Finally, the analysis of φ-equation in the outer do-
main yields

φ
out
0 = φΦ and φ

out
1 = φ

out
2 = 0 for Φ = s, l (A.3)

We can complete the matching conditions with the addi-
tional relation limξ→±∞ φin

j = 0 for j ≥ 1. Because of Eq.
(A.3), the term ∂tφ

out is null in Eq. (A.1), and the c-equation
simplifies to:

∂t̄c = ∇̄̄∇̄∇ ·
[
q(φΦ)∇̄̄∇̄∇µout] for Φ = s, l (A.4)

The analysis of the outer domain recovers the standard dif-
fusion equation Eq. (A.4) with a constant phase-field Eq.
(A.3) for each bulk phase.

Appendix A.3. Analysis of inner domain

Now we focus on the analysis of the inner domain. After
expansions of each PDE (Appendix A.3.1), the solutions are
calculated order-by-order and used to derive the interface
conditions (Appendix A.3.2–Appendix A.3.6).

Appendix A.3.1. Expanded equations
The expansions of φ-equation and c-equation write:

O(1) : ∂2
ξξ

φin
0 −ω′dw(φ

in
0 ) = 0 (A.5a)

O(ε) : ∂2
ξξ

φin
1 −ω′′dw(φ

in
0 )φ

in
1 =−(D̄v̄n + κ̄)∂ξφ0 +α

−1
∂φω

p (
φ

in
0 ,µ

in
0
)

(A.5b)

O(ε2) : ∂2
ξξ

φin
2 −ω′′dw(φ
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0 )φ

in
2 = (1/2)(φin

1 )
2
ω
′′′
dw(φ

in
0 )+ D̄∂tφ

in
0 −∂

2
ssφ

in
0 − (D̄v̄n + κ̄)∂ξφ
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1

+ξκ̄
2
∂ξφ
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−1
∂

2
φφω

p(φin
0 ,µ
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0 )φ
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1 +α
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2
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p(φin
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0 )µ
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1 (A.5c)

O(1) : ∂ξ

[
q(φin

0 )∂ξµin
0
]

= 0 (A.6a)

O(ε) : ∂ξ

[
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1
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1 ∂φq(φin

0 )∂ξµin
0
]
− v̄n∂ξcin

0 − κ̄q(φin
0 )∂ξµin

0 +∂ξ
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a(φin
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(A.6b)
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(A.6c)
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The closure equation writes (only O(1) is necessary):

O(1) : cin
0 =−∂µω

h(φin
0 ,µ

in
0 ) (A.7)

In the rest of this section, the superscript “in” will be
removed for all inner variables i.e. for 0 ≤ j ≤ 2 we note
φ j ≡ φin

j , µ j ≡ µin
j and c j ≡ cin

j . The superscript “out” is kept
for the variables of outer domain.

Appendix A.3.2. Analysis of terms O(1)
For φ-equation, Eq. (A.5a) can be easily solved by using

ωdw. At order zero, we obtain the hyperbolic tangent profile
of the phase-field:

φ0(ξ) =
1+ tanh(2ξ)

2
(A.8)

For c-equation, two successive integrations of Eq. (A.6a)
yield ∂ξµ0 =A(s)/q(φ0) and µ0 =B(s)+A(s)

∫ ξ

0 q−1(φ0)dξ.
Both constants of integration A and B can depend on s. We
can see that A = 0 is necessary because the integral does not
converge when ξ→ +∞ (because q→ 1 when ξ→ +∞).
Hence, µ0 depends only on the position along the interface
s, and the matching conditions yield:

µout
0 (0+) = µout

0 (0−) (A.9)

i.e. the continuity of the chemical potential at order zero.

Appendix A.3.3. φ-equation: analysis of terms O(ε)

The Gibbs-Thomson condition at order zero arises from
the analysis of terms O(ε) of φ-equation. After multiplica-
tion of Eq. (A.5b) by ∂ξφ0 and integration wrt ξ from−∞ to
+∞, we obtain:

∫ +∞

−∞

L(φ1)∂ξφ0dξ =−(D̄v̄n + κ̄)
∫ +∞

−∞

(∂ξφ0)
2dξ+

1
α

∫ +∞

−∞

∂ξφ0∂φω
p(φ0,µ0)dξ (A.10)

where we set L(φ1) = ∂2
ξξ

φ1 −ω′′dw(φ0)φ1. The left-hand
side (LHS) of Eq. (A.10) is integrated by parts (using O(1)
phase field for the last equality), we find:∫ +∞

−∞

∂ξφ0L(φ1)dξ =−
∫ +∞

−∞

∂ξφ1L(φ0)dξ = 0

In the right-hand side (RHS) of Eq. (A.10), the first integral
is noted I =

∫ +∞

−∞
(∂ξφ0)

2dξ = 2/3. The second integral
can be calculated because µ0 is independent of ξ. Finally
Eq. (A.10) becomes:

0 =−(D̄v̄n + κ̄)I +
1
α
[ωl(µ0)−ωs(µ0)] (A.11)

Using the expression ωl(µ0)−ωs(µ0) = −(cco
l − cco

s )(µ0−
µeq) and the definitions of D, vn and κ, we obtain:

(µ0−µeq)∆cco =−IW
λ

κ− IW
Mφλ

vn (A.12)

where ∆cco = cco
l − cco

s . We identify d0 = IW/λ, meaning
that α = 1/I , and β0 = d0/Mφ.

Another useful result for simplifying the future analyses
is the first-order phase-field φ1. The bilinear form (ψ, φ)→∫

ψL(φ) is continuous and coercive where ψ and φ are two
functions vanishing at +∞ and −∞. This means that the
operator L is invertible in this space. Combined with Eq.
(A.11), this indicates that φ1 is determined by:

φ1 =
∆ω(µ0)

α
L−1

[
p′(φ0)−

1
I

∂ξφ0

]
With the derivatives of p(φ) and φ0 defined in Tab 2 and
I = 2/3, the term inside the brackets vanishes. The unique
solution is φ1 = 0 meaning that all terms depending on φ1 in
Eqs. (A.5c), (A.6b) and (A.6c) can be removed.

Appendix A.3.4. c-equation: analysis of terms O(ε)

The Stefan condition at order zero arises from the anal-
ysis of terms O(ε) of c-equation. However, the analysis also
reveals two spurious terms for the chemical potential: the
chemical potentials of first-order µout

1 (0+) and µout
1 (0−) are

not identical on both sides of the interface.
We start with a simplification of c-equation Eq. (A.6b)

with the previous result ∂ξµ0 = 0:

∂ξ

[
q(φ0)∂ξµ1

]
=−v̄n∂ξc0 +∂ξ

[
∆ccoa(φ0)v̄n∂ξφ0

]
After one integration, we obtain:

q(φ0)∂ξµ1 =−v̄nc0 +A+∆ccoa(φ0)v̄n∂ξφ0 (A.13)

Considering the limit ξ→−∞, the integration constant A is
found equal to A = Λs + v̄ncs(µ0) where Λs = qs∂ηµout

0 (0−).
The closure relation Eq. (A.7) writes c0 = h(φ0)cl(µ0) +
[1−h(φ0)]cs(µ0). Eq. (A.13) becomes

∂ξµ1 =
1

q(φ0)

[
−v̄nh(φ0)∆c0 +Λs +∆ccoa(φ0)v̄n∂ξφ0

]
(A.14)

where ∆c0 = cl(µ0)− cs(µ0). Because of the choice of free
energies, we also have ∆c0 = ∆cco (see Eqs. (24a)-(24b)).
Integrating once again from 0 to ξ, we obtain

µ1 = ϒ− v̄n∆c0

∫
ξ

0

h(φ0)

q(φ0)

+Λs

∫
ξ

0

1
q(φ0)

+ v̄n

∫
ξ

0

a(φ0)∆cco∂ξφ0

q(φ0)
(A.15)

where ϒ is a constant of integration that will be determined
in Appendix A.3.5. Now the matching conditions are used
when ξ→±∞. When ξ→+∞, we ensure the convergence
of the first two integrals by adding +1− 1 i.e. the first in-
tegral considered is

∫ ξ

0 h(φ0)/q(φ0)+ 1− 1 and the second
one is Λs

∫ ξ

0 q−1(φ0)+1−1. This yields:

µout
1 (0+)+∂ηµout

0 (0+)ξ = ϒ+∆c0v̄nFl

−v̄n∆c0ξ+qs∂ηµout
0 (0−)[Gl +ξ] (A.16a)

µout
1 (0−)+∂ηµout

0 (0−)ξ = ϒ+∆c0v̄nFs

+qs∂ηµout
0 (0−)[Gs +(ξ/qs)] (A.16b)

21



where Fl , Fs, Gl and Gs are four integrals which are defined
in Tab. 3. In Eqs. (A.16a)-(A.16b), the ξ-terms are consid-
ered separately and gathered in one additional equation. The
three equations write:

µout
1 (0+) = ϒ+ v̄n∆c0Fl +qs∂ηµout

0 (0−)Gl (A.17a)

µout
1 (0−) = ϒ+ v̄n∆c0Fs +qs∂ηµout

0 (0−)Gs (A.17b)

∂ηµout
0 (0+) =−v̄n∆c0 +qs∂ηµout

0 (0−) (A.17c)

The last relationship Eq. (A.17c) is the Stefan condition at
order zero:

∂ηµout
0 (0+)−qs∂ηµout

0 (0−) =−v̄n∆c0 (A.18)

Eq. (A.17a) minus Eq. (A.17b) yields the jump of the first-
order chemical potential:

µout
1 (0+)−µout

1 (0−) = v̄n∆c0∆F +qs∂ηµout
0 (0−)∆G

(A.19)
where ∆F = Fl −Fs and ∆G = Gl −Gs. The first-order
chemical potentials are not the same on both side of the in-
terface. The discontinuity contains two terms proportional
to v̄n∆c0 and qs∂ηµout

0 (0−).

Appendix A.3.5. φ-equation: analysis of terms O(ε2)

The analysis of terms O(ε2) of φ-equation reveals that
the discontinuity of the first-order chemical potential adds
an error term in the Gibbs-Thomson condition. Since φ1 = 0
and φ0 does not depend on t̄ and s, Eq. (A.5c) simplifies to:

∂
2
ξξ

φ2−ω
′′
dw(φ0)φ2 = α

−1
∂

2
φµω

p(φ0,µ0)µ1 +ξκ̄
2
∂ξφ0

We use the same method applied to φ-eq of order O(ε): the
LHS is noted L(φ2) and we multiply the two sides by ∂ξφ0
before integrating over ξ varying from −∞ to +∞:

∫
∞

−∞

∂ξφ0L(φ2)dξ = α
−1

∫ +∞

−∞

∂ξφ0∂
2
φµω

p(φ0,µ0)µ1dξ

+
∫

∞

−∞

κ̄
2
ξ(∂ξφ0)

2dξ (A.20)

With the same arguments as the O(ε)-equation, the LHS of
Eq. (A.20) is null. The last integral on the RHS vanishes
because the integrand is odd. Eq. (A.20) is reduced to:∫ +∞

−∞

[
∂ξφ0∂

2
φµω

p(φ0,µ0)µ1
]

dξ = 0 (A.21)

From this point, the analysis is straightforward. Compara-
tively, during the analysis of a KKS-type formulation of the
model (like in [17, Appendix A]), a similar integral would
have been obtained, but with the interpolation of grand po-
tentials ωp which is replaced by the free energy of an in-
terpolation of compositions. A lengthy analysis involving
the closure equation A.7 expanded at first-order would have
been required to get to the same point. Here, the use of
the grand-potential formulation significantly simplifies the
analysis. It can also be noted that such a simplification has

already been used for the O(ε)-terms of φ-equation in Sec.
Appendix A.3.3 because the integration of ∂ξφ0∂φωp(φ0, µ0)
is much easier than ∂ξφ0∂φ f (φ0, c0) (since µ0 is constant and
not c0). In Eq. (A.21), we replace µ1 by its expression Eq.
(A.15):

∫ +∞

−∞

∂ξφ0∂
2
φµω

p(φ0,µ0)µ1 =−
∫ +∞

−∞

[
∂ξφ0 p′(φ0)∆c0

]
×{

ϒ− v̄n∆c0

∫
ξ

0

[
h(φ0)

q(φ0)
−

a(φ0)∂ξφ0

q(φ0)

]
+Λs

∫
ξ

0

1
q(φ0)

}
= v̄n (∆c0)

2 K −ϒ∆c0

−Λs(Gl + F̃l− F̃s)∆c0

where the three integrals K , F̃l and F̃s are defined in Tab.
3. For that result we used the two relations

∫ +∞

−∞
∂ξφ0 p′(φ0)=

p(1)− p(0)= 1 and
∫ +∞

−∞
∂ξφ0 p′(φ0)

∫ ξ

0 q−1(φ0)=Gl +F̃l−
F̃s. From Eq. (A.21) the integral is zero, so ϒ is given by:

ϒ = v̄n∆c0K −Λs(Gl + F̃l− F̃s) (A.22)

That relation is used to replace ϒ in Eqs. (A.17a)-(A.17b):

µout
1 (0+) = v̄n∆c0[K +Fl ]−Λs∆F̃ (A.23a)

µout
1 (0−) = v̄n∆c0[K +Fs]−Λs[∆G +∆F̃ ] (A.23b)

where we have set ∆F̃ = F̃l− F̃s and ∆G = Gl−Gs.
By summing Eq. (A.12) with ε×Eqs. (A.23a)-(A.23b)

such as µout(0±) = µ0(0±)+εµout
1 (0±), we get the disconti-

nuity of chemical potential at interface:

µl−µs = εvn
IW
Dlλ

∆F +qsW∂rµout
0 (0−)∆G (A.24)

where µl ≡ µout(0+) and µs ≡ µout(0−). That jump involves
two Gibbs-Thomson conditions, one for each side of the in-
terface:

µl−µeq =− d0

∆cco κ− βl

∆cco vn +E1∆F̃ (A.25a)

µs−µeq =− d0

∆cco κ− βs

∆cco vn +E1
[
∆F̃ −∆G

]
(A.25b)

where the first error term is noted E1 = qsW∂rµout
0 (0−) which

cancels if qs = 0 i.e. Ds = 0. Those two relations are simply
written for Φ = s, l:

µΦ−µeq =− d0

∆cco κ− βΦ

∆cco vn +E1
[
∆F̃ −∆GΦ

]
(A.26a)

where ∆GΦ = Gl −GΦ. The capillary length d0 and the ki-
netic coefficient βΦ are defined by:

d0 =
IW

λ
(A.26b)

βΦ =
IW
λMφ

[
1−λ

Mφ

Dl

K +FΦ

I
(∆cco)2

]
(A.26c)
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Appendix A.3.6. c-equation: analysis of terms O(ε2)

For c-equation, two spurious terms in the Stefan condi-
tion arise from the analysis of terms O(ε2). After consider-
ing φ1 = 0, ∂ξµ0 = 0, and ∂tc0 = 0 (because c0 is constant),
Eq. (A.6c) becomes:

∂ξ

[
q(φ0)∂ξµ2

]
=−v̄n∂ξc1− κ̄q(φ0)∂ξµ1−q(φ0)∂

2
ssµ0

+ κ̄a(φ0)∆ccov̄n∂ξφ0

In the RHS, the second term q(φ0)∂ξµ1 is replaced by its
expression Eq. (A.14). After integration w.r.t. ξ, we obtain:

q(φ0)∂ξµ2 =−v̄nc1 +∆c0κ̄v̄n

∫
ξ

0
h(φ0)− κ̄Λsξ

−∂
2
ssµ0

∫
ξ

0
q(φ0)+B(s)

where B(s) is a constant of integration. Then we use the
matching conditions and look at the limits when ξ tends to
+∞ and −∞. For ξ→+∞, we obtain:

∂ηµout
1 (0+)+∂

2
ηηµout

1 (0+)ξ =−v̄nc1(0+)

+∆c0κ̄v̄n

∫
∞

0
[h(φ0)−1]+∆c0κ̄v̄nξ+B(s)

−κ̄Λsξ−∂
2
ssµ0

∫
∞

0
{[q(φ0)−1]+ξ}

and for ξ→−∞:

qs∂ηµout
1 (0−)+qs∂

2
ηηµout

1 (0−)ξ =−v̄nc1(0−)

+∆c0κ̄v̄n

∫ −∞

0
h(φ0)− κ̄Λsξ+B(s)

−∂
2
ssµ0

∫ −∞

0
{[q(φ0)−qs]+qsξ}

We focus on the terms independent of ξ:

∂ηµout
1 (0+) =−v̄nc1(0+)−∆c0κ̄v̄0Hl +B(s)−Jl∂

2
ssµ0

qs∂ηµout
1 (0−) =−v̄nc1(0−)−∆c0κ̄v̄0Hs +B(s)−Js∂

2
ssµ0

where the integrals Hl , Hs, Jl and Js are defined in Tab.
3. The first equation minus the second one yields:

∂ηµout
1 (0+)−qs∂ηµout

1 (0−) =−v̄n∆c1−∆c0κ̄v̄n∆H

−∂
2
ssµ0∆J (A.27)

where ∆H = Hl −Hs and ∆J = Jl −Js. To obtain
the Stefan condition, we recombine Eq. (A.18) with ε×Eq.
(A.27):

Dl∂rµ|l−Ds∂rµ|s =−vn∆cco−E2∆H −E3∆J (A.28)

where E2 =Wκv0∆c0 and E3 =WDl∂
2
ssµ0.

Appendix A.4. Removal of error terms E1, E2, E3

Three error terms appear in the sharp interface model
which is recovered by the analysis: E1 in the Gibbs-Thomson
condition Eq. (A.26a) and E2, E3 in the Stefan condition Eq.
(A.28). The errors E2, E3 disappear provided that ∆H = 0
and ∆J = 0. The condition ∆H = 0 is fulfilled for h(φ)
defined in Tab. 2. As a matter of fact, that stays true as long
as h(φ) is an odd function of φ. For ∆J , the same property
of the interpolation function q(φ): ∆J = 0 as long as an
odd function is used to interpolate the diffusivities.

The condition ∆F = 0 cannot be ensured in the model
without antitrapping current (i.e. a(φ) = 0). However, the
condition can be respected by choosing appropriately the
function a(φ) of jjjat . We already know that the integrand
h(φ0) verifies ∆H = 0. To fulfill the condition ∆F = 0,
the minimal requirement is to equalize the integrand of ∆F
with h(φ0):

h(φ0)−a(φ0)∂ξφ0

q(φ0)
= h(φ0)

Knowing ∂ξφ0 = 4φ0(1−φ0), we have to define the function
a(φ0) as:

a(φ0) =
[1−q(φ0)]

4φ0(1−φ0)
h(φ0) =

1−qs

4

As already mentioned, the error term E1 is proportional
to qs and vanishes if qs = 0 (i.e. Ds = 0). If qs 6= 0 then the
error term disappears if ∆F̃ = 0 and ∆G = 0. Cancelling the
term ∆G is possible by using one harmonic interpolation for
the diffusion coefficients instead of the linear interpolation
q(φ) of Tab. 2. However, in that case, ∆J is no longer zero.
To cancel both, one solution is to use a tensorial diffusivity
so as to set the interpolation as linear in the direction tangent
to the interface and harmonic in the normal direction (see
[53, 44]). In our model, Gl = Gs = 0 if qs = 1 (see Tab.
3) i.e. for identical diffusivities of bulk phases. Finally the
error term E1 disappears for two cases: Ds = 0 and Ds = Dl .
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Titre : Modélisation et simulations par champ de phase de la démixtion dans le verre de confinement Na2O–
SiO2–MoO3

Mots clés : mécanique des fluides numérique, Boltzmann sur réseau, champ de phase, verres de confinement,
nucléation-croissance, écoulement diphasique

Résumé : Le confinement des déchets radioactifs is-
sus des centrales est fait à l’aide de verres de confi-
nement nucléaire spécialement élaborés à ce but. Le
projet SIVIT du CEA s’intéresse au comportement du
verre lors du processus de vitrification, où le verre et
les déchets sont mélangés et portés à haute tempé-
rature pour ensuite se solidifier. L’une des proprités
qu’il est souhaitable de controller est la cinématique
de séparation de phase du verre. Par example, le verre
Na2O–SiO2–MoO3 peut se séparer en deux phases se-
lon un mécanisme de nucléation-croissance avec des
goutellettes enrichies en molybdène. Le présent tra-
vail modélise et simule cette séparation de phase à
l’échelle de l’interface qui sépare les deux phases li-
quides séparées du verre fondu. La modélisation doit
satisfaire un certain nombre de contraintes : le suivi
de l’interface ; la prise en compte de la diffusion chi-
mique (qui pilote la dynamique de croissance) et de

la dynamique d’écoulement ; et le respect du paysage
thermodynamique du verre. Les simulations de ce mo-
dèle doivent aussi démontrer un haut degré de per-
formance pour en permettre les comparaisons en 3D
et à une échelle satisfaisante avec ces observations ex-
périmentales. Pour répondre à ces contraintes, nous
formulons un modèle basé sur la théorie du champ de
phase et son couplage à la diffusion chimique et aux
équations de Navier-Stokes incompressibles. Nous dis-
crétisons ce modèle avec la méthode de Boltzmann sur
réseau et la programmons dans un nouveau code de si-
mulation à haute performance portable, LBM_saclay,
capable d’exploiter les architectures des supercalcula-
teurs modernes multi-GPU. Nous exposons ensuite la
capacité du modèle à reproduire quantitativement la
dynamique de maturation après séparation de phase
et l’influence de l’écoulement et de la sédimentation
sur cette dynamique.

Title : Phase-field modelling and simulations of phase separation in the two-phase nuclear glass Na2O–SiO2–
MoO3

Keywords : computational fluid dynamics, lattice Boltzmann, phase field, nuclear glass, multiphase flow, nu-
cleation and growth

Abstract : A safe and convenient method for the
containment of nuclear waste is its inclusion in nu-
clear glasses, which are specifically designed to provide
the best chemical, thermal and radioactive isolation.
The SIVIT (SImulation of VITrification) project of the
CEA studies the behaviour of the glass during the vi-
trification process, where the glass and the waste are
mixed and brought to a high temperature and then so-
lidified. It is desirable to control a whole set of macro-
scopic properties (chemical, thermodynamic, mechani-
cal…) in the produced material, and one of them in par-
ticular is the possible occurrence of phase separation.
For example, during the vitrification of waste enriched
in molybdenum, phase separation may occur following
the nucleation and growth regime, with the molybde-
num segregating to the daughter phase. The present
work, as part of the SIVIT project, aims to model and
simulate this phase separation at the scale of the in-
terface separating the two liquid phases of the melted
glass. To this end, the modelling must satisfy a num-
ber of constraints : tracking a fully-resolved interface ;
accounting for the chemical diffusion (which drives the
growth dynamics) and the flow dynamics and the ef-
fects of each on the motion of the interfaces ; and the

respect of the equation of state of the glass. We will
first examine the case of a model ternary glass, the
Na2O–SiO2–MoO3 compound. Its phase diagram was
established at the CEA of Saclay, and experimental
observations with this glass are being carried out at
the CEA Marcoule. Simulations of the model must also
have a high numerical efficiency to allow for compari-
sons in three dimensions at a satisfying scale with the
previously mentioned observations. To fulfil these re-
quirements, we formulate a model based on the phase
field theory with a grand potential formulation coupled
to the diffusion of the chemical components and to the
incompressible Navier-Stokes equations. We discretize
this model with the lattice Boltzmann method and im-
plement it in a new high-performance simulation code,
LBM_saclay, able to exploit the multi-GPU architec-
tures of modern supercomputers. We then demonstrate
the capability of the model to quantitatively reproduce
the growth dynamics after nucleation and the influence
of flow and sedimentation on these dynamics. This is
done with an idealized equation of state. Finally, we
detail at the end the method to couple the model to
the thermodynamic data of the real nuclear glass.
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