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Abstract 

Satellite-based Methods for Intra-Day Solar 

Irradiation Forecast in French Guiana  

maha SALLOUM 

Population growth and continuous demand for energy production have prompted 

electricity producers to focus increasingly on the use of local and clean resources. 

Renewable energy sources such as the sun and wind have shown an increasing interest. 

A problem with these power sources are their intermittent and random nature that drives 

grid operators to restrict their integration into the energy mix. This makes it imperative 

to combine different production systems to ensure grid stability and safety. French 

Guiana’s electricity production mainly comes from local renewable energies (64%), 

compared to 36% from imported fossil fuels. To improve the integration of intermittent 

renewable energies, solar energy in this study, it is necessary to focus on resource 

forecasting. Knowing in advance the available power allows optimal management of the 

coupling between conventional and intermittent production systems.  

The contribution of this thesis focuses on forecasting the Global Horizontal Irradiation 

(GHI) at different time horizons combining satellite-derived data instead of ground 

measurements and statistical methods. Satellite images offer the advantage of providing 

irradiance products over wide areas and with satisfactory accuracy. We are interested in 

forecasting the GHI as the generated PV power directly depends on the incoming GHI 

intensity. In this thesis, we have developed and studied ten solar radiation prediction 

models. Their methods are the Persistence, Scaled Persistence, AR, ARMA, Gaussian 

Process, Support Vector Machine, simple regression trees, bagged forests, WRF with 

Kalman filter, and an aggregation method. Satellites-derived data from the meteorological 

geostationary satellite GOES-13 are used as input of each model.  These models were first 

developed to predict the GHI using satellite-derived data as input, and then to predict the 

GHI using ground measurements to be able to quantify discrepancies. The forecast 

horizons tested are from 1 to 6H per hour time step, to provide useful horizons for 

network managers. Data from six measurement sites located in French Guiana are used 

for GHI prediction. Five years of data from the six stations were used for the learning 

phase and one year for the validation phase.  

First, we have characterized the data from each site to study their variability, which means 

their tendency to vary strongly or not with time. The main results of this work are that 

the forecast errors using the satellite-derived and ground measurements data as input are 

slightly different for intra-day forecasts; for all models. For a 1H time horizon, the model’s 

performance using ground data is better than models using satellite-derived data as input. 

Horizons higher than 2H, models using data derived from the satellite are the same or 

better performing depending on the method used. It appears that the machine learning 

models tested in this work give similar results with the tested dataset and that the choice 

of one or the other will rather be made according to the technical and practical constraints 
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of the tools. Moreover, the uncertainties using machine learning models are better than 

the statistical models. Since the WRF model numerically solves equations describing the 

atmospheric processes, the WRF prediction contains information about the future state 

of the atmosphere. It was interesting for us to study the post-processing of the solar 

forecasts by WRF model using satellite-derived data. We have optimized the 24H forecast 

of WRF at hourly time steps using satellite-derived data and a Kalman filter. Using 

satellite-derived data as input for horizons ranging from 1H to 5H, we obtained better 

performance using WRF-kalman than the one obtained using only WRF. For the horizon 

of 6H, the Kalman filter is not considered suitable as a post-processing method. This is an 

interesting case because it will allow to reduce WRF bias and to maintain the advantage 

of WRF’s spatial resolution in French Guiana. Finally, we continued the development and 

optimization of the forecasts by using an Aggregation method as a hybrid ensemble 

model. The models are used as members of the hybrid ensemble model. The comparison 

between the hybrid ensemble method and each member shows an improvement in the 

quality of the forecasts. 
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Résumé 

Prévision intra-journalière de la ressource solaire 

en Guyane française par Méthodes satellitaires  

maha SALLOUM 

La croissance démographique et la demande continue de production d'énergie ont 

incité les producteurs d'électricité à se concentrer de plus en plus sur l'utilisation de 

ressources locales et propres. Les sources d'énergie renouvelables telles que le soleil et le 

vent ont montré un intérêt croissant. Un problème avec ces sources d'énergie est leur 

caractère intermittent et aléatoire qui pousse les gestionnaires de réseau à restreindre 

leur intégration dans le mix énergétique. Il est donc impératif de combiner différents 

systèmes de production pour assurer la stabilité et la sécurité du réseau. La production 

d'électricité de la Guyane française provient principalement d'énergies renouvelables 

locales (64 %), contre 36 % d'énergies fossiles importées. Pour améliorer l'intégration 

des énergies renouvelables intermittentes, l'énergie solaire dans cette étude, il est 

nécessaire de se concentrer sur la prévision des ressources. Connaître à l'avance la 

puissance disponible permet une gestion optimale du couplage entre les systèmes de 

production conventionnels et intermittents.  

La contribution de cette thèse se concentre sur la prévision de l'irradiation horizontale 

globale (GHI) à différents horizons temporels en combinant des données satellitaires au 

lieu de mesures au sol et méthodes statistiques. Les images satellitaires offrent l'avantage 

de fournir des produits d'éclairement sur de larges zones et avec une précision 

satisfaisante. Nous nous intéressons à la prévision du GHI car la puissance photovoltaïque 

générée dépend directement de l'intensité du GHI qui entre. Dans cette thèse, nous avons 

développé et étudié neuf modèles de prédiction du GHI. Leurs méthodes sont la 

persistance, Scaled persistance, AR, ARMA, processus gaussien, machine à vecteurs de 

support, arbres de régression simples, forêts ensachées, WRF avec filtre de Kalman et une 

méthode d'agrégation. Les données dérivées du satellite météorologique géostationnaire 

GOES-13 sont utilisées comme entrée de chaque modèle. Ces modèles ont d'abord été 

développés pour prédire le GHI en utilisant des données satellitaires en entrée, puis pour 

prédire le GHI en utilisant des mesures au sol pour pouvoir quantifier les écarts. Les 

horizons de prévision testés sont de 1 à 6H par pas de temps horaire, pour prévoir des 

horizons utiles aux gestionnaires de réseau. Les données de six sites de mesure situés en 

Guyane française sont utilisées pour la prédiction du GHI. Cinq années de données des six 

stations ont été utilisées pour la phase d'apprentissage du modèle et une année pour la 

phase de validation.  

Dans un premier temps, nous avons caractérisé les données de chaque site et étudié leur 

variabilité, c'est-à-dire leur tendance à varier fortement ou non dans le temps. Les 

principaux résultats de ce travail sont que les erreurs de prévision utilisant les données 

satellitaires et les mesures au sol en entrée sont légèrement différentes pour les 

prévisions intra-journalières ; pour tous les modèles. Pour un horizon temporel de 1H, les 
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performances du modèle utilisant des données au sol sont meilleures que celles des 

modèles utilisant des données satellitaires en entrée. Horizons supérieurs à 2H, les 

modèles utilisant les données dérivées du satellite sont les mêmes ou mieux performants 

selon la méthode utilisée. Il apparaît que modèles d'apprentissage automatique testés 

dans ce travail donnent des résultats similaires avec le jeu de données testé et que le choix 

de l'un ou de l'autre se fera plutôt en fonction des contraintes techniques et pratiques des 

outils. De plus, les incertitudes utilisant les modèles d'apprentissage automatique sont 

beaucoup plus faibles que les modèles statistiques. Étant donné que le modèle WRF résout 

numériquement le système d'équations différentielles décrivant les processus physiques 

et chimiques de l'atmosphère, la prédiction WRF contient des informations sur l'état futur 

de l'atmosphère. Il était intéressant pour nous d'étudier le post-traitement des prévisions 

solaires par le modèle WRF à partir de données satellitaires. Nous avons optimisé la 

prévision de 24H de WRF à des pas de temps horaires à l'aide de données satellitaires et 

d'un filtre de Kalman. En utilisant des données satellitaires en entrée pour des horizons 

allant de 1H à 5H, nous avons obtenu de meilleures performances en utilisant WRF-

kalman que celles obtenues en utilisant uniquement WRF. Pour l'horizon de 6H, le filtre 

de Kalman n'est pas considéré comme approprié comme méthode de post-traitement. 

C'est un cas intéressant car il permettra de réduire le biais de WRF et de conserver 

l'avantage de la résolution spatiale de WRF en Guyane française. Enfin, nous avons 

poursuivi le développement et l'optimisation des prévisions en utilisant une méthode 

d'agrégation comme modèle d'ensemble hybride. Les modèles sont utilisés comme 

membres du modèle d'ensemble hybride. La comparaison entre la méthode d'ensemble 

hybride et chaque membre montre une amélioration de la qualité des prévisions. 
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I.1. Introduction 

I.1.A. Renewable energies: issues and challenges 

Renewable energies refer to energy sources that do not have undesirable 

consequences on the environment. The energy transition from fossil to renewable sources 

is a crucial point toward the environment and to reduce greenhouse gas emissions. 

Renewable energy sources are extendible and are considered "free" energy sources. 

These include biomass energy, wind energy, solar energy, geothermal energy, and 

hydroelectric energy sources. Combined with the use of recycling and clean alternative 

energies, such as the use of solar power systems, this will help ensure human survival in 

the 21st century and beyond. Solar energy is one of the fastest-growing sectors of the 

global energy market (‘Snapshot of Global PV Markets’ 2020). The growth of solar energy, 

since 2009, has been impressive. Solar energy has many basic advantages like its 

renewable nature, free of cost, abundant, and inexhaustible. The total amount of energy 

emitted by the sun at the earth's surface could generate enough energy to meet the 

increasing demand. 

In 2019, solar PV stood for approximately 59% of the total renewable electricity 

production from new production assets (‘Solar Power Europe’ 2019). Nevertheless, due 

to the diurnal cycle and the occurrence of clouds, solar PV plant can’t operate at full 

capacity every time. Yet, renewable resources such as biomass installations can virtually 

produce all day and all year-round. 

The same year, The global total installed PV capacity has exceeded 500 GW in 2019 

(Figure 2) and is expected to exceed 1 TW in 2022. Additionally, global solar energy 

 
Figure 1: Evolution of renewable energy technologies (source ‘Snapshot of Global PV Markets’ 2020). 
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demand is expected to increase by 7% to 169 GW in 2022, and 6% to 180 GW in 2023 

(‘Solar Power Europe’ 2019). 

A major drawback of exploiting solar power is its intermittent nature. Although solar 

energy can still be collected during cloudy and rainy days, the efficiency of the solar 

system decreases, so the generating energy is reduced. This phenomenon could cause 

damage to the operating systems. As the use of solar energy continues to grow, it becomes 

crucial to ensure grid stability and to enable optimal control of electricity and economic 

dispatch. Forecasting solar resource is important for grid management; however, the 

variability of solar resources is a major constraint. It is difficult to maintain the balance 

between electricity production and demand. As a consequence, operating optimally a 

solar PV installation requires planning, and management, including forecasting its 

production. Looking toward the integration of the increasing renewable energy sources 

into the electricity grid, these steps would guarantee the grid stability and cost-
effectiveness (Voyant, Notton, et al. 2017). Forecasting solar resources gives the possibility 

to predict the resource availability and its variations. In the case of lower solar energy 

availability, this energy can be replaced by an alternative energy storage system used in 

off-the-grid solar systems. Consequently, the solar energy will be replaced without a 

significant decrease in volts. 

I.1.B. Technologies for measuring solar radiation 

The most used way to measure the irradiation is to install measurement station. This 

ground station include an instrument called a "pyranometer" that measures the overall 

radiation received on the ground (Chambers, 1977). The installation, implementation, 

and operation of the pyranometer impose some restrictions. First restrict, no shadows 

cast near the measuring instrument (buildings, vegetation). Then, the pyranometer 

should be regularly maintained: cleaning the pyranometer dome, checking and even 

replacing calibration of the equipment and materials, etc. All these upkeep and 

 
Figure 2: Evolution of the global total installed PV capacity in 2000-2018. Europe is shown in light blue, America in dark 
blue, China in orange, the Asia Pacific (APAC) states (excluding China) in yellow, and the Middle East with Africa (MEA) 
in green. (‘Solar Power Europe’ 2019). 
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maintenance operations require human intervention, which explains why there are no 

measuring stations at every point on the earth, (Figure 3). To make up for the lack of 

irradiation measurement in areas where there is no pyranometer installed, interpolation 

techniques can be used to produce data at all points.  

 

Figure 3: Location and period of record of approximately 32,000 stations in version one of the Global Historical Climatology 
Network stations in 2010 (NOAA, 2020) 

The in situ data interpolation allows for mapping of missing solar irradiation, however, 

the interpolation of irradiation data can produce relevant and sufficiently accurate 

estimates that up to an average distance of 50 km between stations for daily average 

irradiation values and up to a distance of 34 km between stations for hourly average 

irradiation values (Perez et al. 1994). Beyond these distances, an alternative approach for 

producing solar irradiation data at any point is based on the use of observations and 

satellite images acquired by imaging radiometers. Regions located in the intertropical 

zone (ITZ ) have higher solar potential (Trieb et al. 2009), The high variability of solar 

irradiation in this zone is due to the speedy cloud transformations (Aryaputera 2015). 

Consequently, solar energy arrived at the ground in this area is highly variable. This 

variability causes economical and technical challenges to fully exploit this resource. 

I.1.C. Technologies for exploiting solar radiation 

Solar panels depend on sunlight to produce solar energy. Consequently, solar energy 

cannot be collected during the night. Although solar energy can still be collected during 

cloudy days, the quantity of this energy is not the same as during clear sky. It can be used 

right away, or it can be stored in large batteries; Figure 4. 
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Maintain reliable power system operations. 
Facilitate photovoltaic energy integration. 

Figure 4: solar energy prediction system. 

These batteries (used in off-the-grid solar systems) can be charged during the day so that 

the energy is used at night or when energy shortage occurs. This is a good solution for 

using solar energy all day long, but it is also an expensive one.  Producing energy from the 

global solar radiation received on the ground can be more interesting by predicting the 

latter mentioned.  

I.1.D. Solar forecasting in the Inter Tropical Zone 

Also called Equatorial Convergence Zone. It is an east-west-oriented low-pressure 

zone near the equator, where the northeast and southeast surface winds meet. The ITCZ 

moves over land and oceans near the equator, this zone is usually found within 350 km of 

the equator; about 80–300 km wide and 5° north and south from the equator. Figure 5 

shows the northernmost and southernmost positions of the ITCZ.  

The position of the ITCZ varies seasonally, The ITCZ crosses French Guiana as it travels to 

the north from May to July, the ITCZ moves northward and it is located roughly at 5° N. 

Then again, as it moves south between November and January, it moves southward to be 

approximately located at 15° S (Albarelo et al. 2015a). The ITCZ is warm all year, 

averaging 25 to 28 degrees Celsius as this zone gets more exposure to the sun. because of 

 

Figure 5: The northernmost and southernmost positions of the ITCZ in January (blue) and July (black) ( source:Credit 
Solargis) 
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all that sun, the tropics do not experience the kind of season as other regions. Giving these 

countries two seasons: the wet season and the dry season. 

From the meteorological point of view this shift from North to the south creates a seasonal 

cycle with 4 periods (Bovolo et al. 2012): 

Dry season: The ITCZ lies north between July and November. Here, the sky is mostly 

clear although weak precipitation may occur (Albarelo et al. 2015a). During this period, 

cirrus and cumulus clouds are predominant. 

Short rainy season: The ITCZ moves southward of French Guiana, starts from 

November to January, (Albarelo et al. 2015a) 

Short dry season: is a period of transition before the ITCZ begins its northward 

motions again, starts from February to March (Albarelo et al. 2015a). 

Rainy season: occurs when the ITCZ moves northward, starts from April to May. 

During this period cumulonimbus clouds are predominant. 

Rising temperatures, changes in precipitation, sea-level rise, an increase in the number of 

extreme events, everyone has heard of climate change and its many consequences for the 

entire planet. From the solar irradiance point of view, the ITCZ shift from North to the 

south create a high variability of the incoming solar resource. Its regional impact is rarely 

examined. So we focus on French Guiana in the international trade area.  

I.1.E. Energy issues in French Guiana 

French Guiana is considered an islanded microgrid since it is non-interconnected to 

its neighbors Brazil and Suriname. A unique electricity network supplies the coastline 

from East to West, and the rest of the territory remains isolated and highly dependent on 

imported oil products (Lesperance et al. 2018). Fossil resources make up about 80% of 

French Guiana's energy supply. Local resources represent only 20% of French Guiana's 

energy supply and more than 89% consist of hydraulic energy. French Guiana’s electricity 

production (at 862.6 GWh in 2014), comes mainly from local renewable energies (64%), 

compared to 36% from imported fossil fuels (ADEME 2017). Between 2009 and 2014, the 

population in French Guiana increased by 27,000 inhabitants, representing a growth of 

12%. This growth must be followed by an increase in electricity production and 

consumption. Consequently, French Guiana aims to increase the share of renewable 

energy in the electricity mix to 80% by 2023 (‘Albioma_DDR’ 2018).  

Table 1: French Guiana: Development objectives for electricity production from renewable energies ( Source: Rapport PPE 
French Guiana (mars 2017)) 

ENR POWER INSTALLER PARAPORT OF 2015 

2018 (MW) 2023 (MW) 

Hydraulic energy 4,5 16,5 

Pv energy without storage energy 8 26 

Pv energy with storage energy 15 25 

Wind energy with storage energy 10 20 

Biomass energy 15 40 

Waste to energy  0 8 
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French Guiana had 45 MWp of PV panels installed at the end of 2016. In 2016, this park 

produced 55.4 GWh of energy or 6% of the energy supplied to the grid. The park is made 

up of 35 MWp of panels without storage and 9.8 MWp of PV panels with storage capacity 

(ADEME 2017). Table 1 shows the renewable energy production to be achieved, by 2018 

and 2023 in French Guiana. 

I.2. Basic terminologies used in solar energy forecast  

The production of electrical energy by a photovoltaic system depends on several 

factors. Slope, technology and PV temperature affect the production, but the received 

solar radiation remains the main factor of variation. Solar radiation assessment is an 

important part of sizing and planning of a photovoltaic power plant. Incoming hourly 

solar radiation data on the surface of a region include both deterministic and stochastic 

behaviors. The deterministic part comes from the solar geometry, whereas the stochastic 

part has occurred due to random atmospheric events such as the motion of clouds. In this 

section, we will define different basic concepts used in solar energy production. 

I.2.A. Solar Radiation 

Solar radiation is made up of electromagnetic waves emitted by the Sun. It includes 

wavelengths ranging from infrared to ultraviolet. Most of the solar radiation entering the 

earth's atmosphere will be absorbed, scattered and reflected (Messenger and Ventre 

2004). The three components of solar radiation are the following:  

Direct Normal radiation (DN): Direct beam radiation comes in a direct line from the 

sun to the earth’s surface.  

Diffuse Horizontal radiation (DH): Diffuse beam radiation, scattered out of the direct 

beam by molecules, cloud droplets, ice crystals, and aerosols (Wald, 2007). 

Albedo radiation: Sunlight that is reflected from the ground is known as albedo 

radiation. 

The sum of the direct beam diffuse, and ground-reflected radiation arriving on a 
surface horizontal to the surface of the earth is called Global Horizontal radiation (GH)  

Most of the energy emitted by the Sun is gathered at wavelengths of the visible spectrum 

(0.39 µm to 0.76 µm). The global irradiation energy received on the ground at any time 

per unit area is called global irradiation, and its unit is watthour per square meter (Wh.m-

2). We usually define two causes of GHI variability: 

- The variability linked to cloud cover and the movement of clouds. 

- The variability traceable to the annual and daily variability induced by the solar 

cycle. 

Atmospheric factors such as aerosols and water vapor also influence GHI variability. The 

expression between these three solar components is given using the following equation: 
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GHI = DHI + DNI * cos (SZA). 1. 1 

These three types of surface shortwave irradiation can be obtained using various models 

such as general circulation models, reanalysis products, satellite-to-irradiation models 

and ground-based radiometers. Different instruments are used to measure the different 

quantities of the components of solar radiation, where a pyrheliometer on a solar tracker 

is used to measure the direct normal radiation, to measure the global horizontal radiation 

a pyranometer is used, and a pyranometer (shaded) is used to measure the diffuse 

horizontal radiation (World Meteorological Organization 2008).  

I.2.B. Solar Position 

The position of the sun as seen from a particular place on the surface of the earth is an 

important input needed to forecast solar radiation and model PV System performance. 

This geometric position varies from day to day and hour to hour in the year. At any given 

instance, the sun’s position can be fixed by three angles, altitude, zenith and azimuth 

(Solstice et al. 2013), represented in Figure 6. 

Solar Zenith Angle (θz): is the angle between the connecting line between the 

observations on the ground and the sun and the vertical above the observation (directly 

overhead),(Duffie and Beckman 2013).  

𝑐𝑜𝑠𝜃𝑧 =  𝑠𝑖𝑛𝛿 𝑠𝑖𝑛𝜑 + 𝑐𝑜𝑠𝛿 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜔 1.2 

Where: ω the hour angle; is expressed as difference between noon and the desired time 

of day in terms of a 360° rotation in 24 hours. δ the declination angle; depends upon the 

revolution of earth and remains constant for a day. φ the latitude; is the angular location 

north or south of the equator. The view of zenith angle matrix values from 0 to 90° is 

shown in Figure 7.  

  

Figure 6: Zenith, altitude and azimuth angles for northern latitude (Shakya 2016). 
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Solar Azimuth Angle (ψ): It is the angle between the horizontal direction of the sun 

and a reference direction (usually North 0°), Figure 6. Briefly, it is the angle around the 

horizon (Duffie and Beckman 2013). The SAA value increases in the clockwise direction 

(North = 0°, east = 90°, south=180°, west=270°). 

Solar altitude or elevation angle (α): It is the angle between the line to the sun and the 

horizontal (Duffie and Beckman 2013). It is denoted by α and is given by: 

𝛼 = 90° −  𝜃𝑧 1.3 

It varies throughout the day, from 0° at sun rise and sunset to 90° when the sun is 

directly overhead. 

I.2.C. Clear Sky Index (Kc) 

For the clear-sky index calculation, a clear-sky model is required. A clear sky model is 

used to estimate the GHI under a cloudless sky, which called a clear-sky irradiation Gc; it 

includes information about the solar position and the cloudless atmospheric conditions. 

An overview of different models is presented by (Antonanzas-Torres et al. 2019) 

presented an overview of different models. Clear-sky models range from empirical 

models to radiative transfer-based calculations. Information on the state of the 

atmosphere is needed as input (Elke Lorenz, Hammer, and Heinemann 2004). (Beyer et 

al. 1996) introduced a clear sky model to better account for the irradiation dependence 

on solar zenith angle, atmospheric aerosol and water vapor content. One of the clear sky 

models is the European Solar Radiation Atlas (ESRA), (Rigollier, Bauer, and Wald 2000). 

It has been applied in forecasting solar studies due to its simplicity and robustness. Kc is 

defined as the ratio of irradiation measured by the ground station GHI to the irradiation 

of a defined clear-sky model Gc,  

K𝑐 =  
GHI

G𝑐
 

1.4 

I.2.D. Clearness Index (Kt) 

Describes the overall extinction of clouds and atmospheric compounds with 

extraterrestrial irradiation. The clearness index k𝑡  is defined as the ratio of irradiation 

 

Figure 7: Solar Zenith Angle matrix in MATLAB. 
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measured by the ground station GHI to extraterrestrial irradiation (Top Of the 

Atmosphere hourly irradiation) G𝑇𝑂𝐴. The clearness index defined as follows: 

K𝑡 =  
GHI

G𝑇𝑂𝐴
 1.5 

Where G𝑇𝑂𝐴 is the intensity (power) of the sun at the top of the Earth’s atmosphere. 

Calculated as a function of solar geometry for the region and day of the year using a solar 

constant of 1366 W m−2. 

I.3. Scientific questions and objectives 

Although ground-based irradiation measurements are the most reliable in terms of 

accuracy; yet they are expensive and have regular need for calibration. The number of 

measurement sites are still relatively scarce worldwide. They are known to be 

instruments that need regular calibration. Sub-optimal data quality control practices may 

significantly reduce the quality of these ground data. For these reasons, researchers often 

resort to the reanalysis of modeled irradiation data or remote-sensed data from 

instruments onboard geostationary satellites. In this regard, satellite-derived irradiance 

is the most promising data for real forecasting applications at the intra-day horizon. To 

best address our study’s issue, the research questions and objectives of this thesis are 

proposed as follows: 

Global Research question: What is the impact of using estimated solar irradiance 

from satellite data on intraday GHI forecasts in tropical environments? 

As this section shows, the interest of our study is to test the robustness of different models 

using satellite-derived data in an ITZ. Consequently, the first research question arises: 

Research question 1: Can statistical method using satellite-derived irradiance 

achieve comparable accuracy than statistical method using ground data in the ITZ?  

Satellite-derived data have a broader coverage than ground-based irradiation 

measurement; yet, they give information only at the top of cloud processes. For 

information on the cloud depth and cloud overlap, multiple spectral channel must be 

considered which may not be available on onboard instruments. NWP models are 

dynamic models representing the whole atmosphere and a part of the Earth's surface.  

Therefore, the second research question that arises is 

Research question 2: What impact do high-resolution satellite-derived irradiance 

have on improving GHI forecasts from a numerical model in French Guiana?  

Nevertheless, these GHI forecasts must be improved as PV managers have financial 

incentives to produce more accurate forecasts of electricity production. The third major 

research question to be answered is 

Research question 3: How the quality of GHI forecasts deriving from geostationary 

satellites can be improved in French Guiana? 

Answering these questions will provide high spatiotemporal resolution solar irradiation 

data forecasting with good precision over a part of the South American continent, 
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considering the climatic specificity of this region. Consequently, three main scientific 

objectives are treated in this thesis. The first objective of this thesis is the following: 

Objective 1: The relevance of using geostationary satellite data with different 

prediction methods to make solar intraday predictions in tropical environments. 

A comparison of the results obtained with geostationary satellite data with those with 

measured station data using the same methods must be done. For that, we develop the 

problem according to: 

- Statistical methods. 

- Machine learning models. 

Once this first objective is achieved, the next step is to quantify the impact on irradiation 

forecast models, leading to the second and third ones: 

Objective 2: Improving predictions of numerical methods using satellite-derived 

irradiance while maintaining a high spatial resolution of these methods.  

Objective 3: The improvement of satellite-based models in French Guiana using a 

hybrid model. 

Three research questions, to be answered during the thesis, are raised. Moreover, three 

main objectives are defined. The overall objective of this thesis consists in implementing 

a solar irradiance forecasting method that uses geostationary satellite data and 

meteorological information from a weather prediction model available in French Guiana 

an ITZ. 

I.4. Outline of the thesis  

This thesis report is performed and presented gradually. It is structured in five chapters: 

Chapter 1: it is an overview of the issue of energy production globally and particularly 

in our study area 'French Guiana'. The fundamentals of solar radiation, and the objectives 

of this work, are discussed. 

Chapter 2: describes the data used in this study. The preprocessing protocol of 

ground-based irradiation measurement, geostationary satellite data, and numerical data 

is discussed. 

Chapter 3: presents the state of the art of forecasting methods with an emphasis on 

their use in the context of solar energy forecasting is discussed. The bibliographic study 

made it possible to determine the areas of performance according to the spatial and 

temporal resolution and the forecast horizon. Classical algorithms and their framework 

of applicability are also presented here.  

Chapter 4: deals with intra-day forecasts of global solar irradiation. This chapter 

presents the forecasting method performance. Statistical methods using ground-

measured irradiance performance are compared to methods using satellite data as input. 

The first step is dedicated to forecast global solar irradiation using statistical methods and 
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satellite-derived data. Then, using four machine learning models and satellite-derived 

irradiance to forecast global solar irradiation over 12 months of 2016. The WRF model 

was configured considering the specificity of French Guiana environment to produce GHI 

forecasts. Then, the systematic error identified in the predictions made by the numerical 

model was corrected by the Kalman filter. This study is carried out over a period of three 

months in 2016. The development of solar energy systems requires solar radiation data 

sufficiently precise to simulate, design, manage and optimize the system's operation. We 

propose to improve the solar irradiation forecasts from statistical, machine learning and 

one hybrid physical statistical prediction model by linearly combining forecasts of five 

models with weights varying by models. 

Lastly, Chapter 5: briefly presenting what is discussed in this report, discuss the 

results obtained and their potential applications and usability in the ITZ. Then, we 

conclude by developing perspectives aimed at ensuring the continuity of the work. 
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Publications 

Parts of this research work have been presented in four publications in an international congress: 

1) European Photovoltaic Solar Energy Conference and Exhibition-2019: 

Improving Hour Ahead Solar Irradiation Forecast Using Ensemble Method in 

French Guiana 

2) European Photovoltaic Solar Energy Conference and Exhibition-2021: Day-

Ahead Solar Irradiation Forecasting Using Model Output Statistics Trained 

with Satellite Data in French Guiana 

3) International Conference on time series and forecasting-2021: Machine 

Learning for Very Short-term Solar Irradiation Forecasting in French Guiana 

4) European Photovoltaic Solar Energy Conference and Exhibition-2021: 

Intraday Post-processing of Solar Irradiation Forecasts from WRF Model Using 

Satellite-Derived Data in French Guiana. 
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II.1. Introduction 

The data obtained will be analyzed to generate a valid dataset for testing the models 

developed later. This chapter presents the data used throughout this manuscript and their 

treatments for modeling the solar radiation. It introduces the formalism, hypotheses, and 

approximations that were made.  

II.2. Time series 

 In this manuscript, a time series refers to a finite series of data indexed by time. These 

data can be measured or simulated. Time series can be expressed in second, minute, hour, 

day, or year depending on the study case. Figure 9 illustrates a time series of hourly solar 

irradiation over île Royale station located in French Guiana. We assume that the time 

interval from ground-based irradiation measurement and numerical model is regular and 

that there is no modification in the acquisition protocol. Yet, for measured time series, it 

is difficult to obtain reliable series of measurements over long periods. This difficulty may 

be due to possible sensor drift or maintenance of the measurement installations. 

The foundations of time series analysis are based on decomposition, analysis of subseries 

and then re-composition of the chronicle. This approach, by decomposition, assumes that 

the time series can be separated into simpler elements that can be modeled, in order then 

to be recomposed to give the forecast. Historical studies on the subject (Bourbonnais and 

Terraza 2010) have made it possible to standardize the decomposition of time series into 

three components:  

 Autocorrelation represents the degree of similarity between time series at 

different instances. The time difference between the two instances is referred to 

as the time lag. 

 Seasonality, the presence of variations occurs at specific regular intervals (less 

than a year: weekly, monthly, or quarterly). Seasonality can also be derived from 

an autocorrelation plot if it has a sinusoidal shape. Looking at the period gives the 

length of the season. 

 Stationarity, an important characteristic of time series. A time series is considered 

stationary if its statistical properties do not change over time. In other words, it 

has a constant mean and variance over time, and a covariance independent of time. 

Having accurate and long-term irradiation is a technical challenge, as discussed in section 

2. Due to the various operational assumptions, the integrity of the dataset must be 

analyzed. Figure 1 and Figure 9 show two representations of the time series dataset. 

Figure 8 and Figure 9 show two representations of global horizontal solar radiation 

measurements at île Royale station, French Guiana. This representation allows having the 

first qualitative evaluation and flagging suspicious value that needs to be investigated. 

 



Data collection and Data pre-processing 
 

 

MAHA SALLOUM-2021   - 42 - 

 

Figure 8: Graphic representation of the time series of global solar radiation measured to illustrate the frequency in 
station IR. Data acquired with an hourly resolution. 

This overview of the measured data permits the first qualitative evaluation of the dataset 

and in particular, makes it possible to have an overview of the orders of magnitude, to 

judge the presence of "holes" and to evaluate the periodicity (double in the case of solar 

radiation: 12H and 366 days) Figure 9 with the presence of daily and annual intervals. 

 

Figure 9: Graphic representation of the time series of global solar irradiation measured in IR to illustrate the daily 
frequency. 

Indeed, there are different time scales: legal time (that of the clock time), universal time 

(Coordinated universal time UTC), Greenwich Mean Time (GMT), mean solar time... we 

have decided to index the data according to UTC time, Regarding French Guiana: local time 

= UTC - 3H. This makes it possible to standardize the scales of the data sets and to 

overcome the legal constraints specific to each country (Iqpal 1983). Further analysis of 

the time series will be described in detail in section II.4. The following part is devoted to 

the different data set used. 
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II.3. Data and Material  

This section presents the datasets that were used to train and validate the models for 

assessing solar irradiation. 

 

Figure 10: Political map of French Guiana in the world (Les Echos) 

Our study focuses on French Guiana. This territory is located near the equator and is 

subjected to high cloud cover as part of a regular and important cycle of evaporation and 

precipitation due to the intertropical Convergence Zone (ICTZ) or monsoon trough. The 

ICTZ passes twice over the Guiana Shield, causing heavy rainfall and defining two main 

seasons: the dry season from July to October, when the ICTZ is located north of the Guiana 

Shield and the sky is mostly clear, and the rainy season from November to June, described 

in detail in section I.1.D. 

II.3.A. Experimental sites  
Measurements of global radiation used in this study are collected from six ground 

stations managed by the French national meteorological agency (Météo France). As of 

2016, Météo France provides data of hourly global horizontal irradiation at each station. 

II.3.A.i. Geographic properties 

The geographical location of the different sites studied shows in Figure 11. 
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Three stations are located inland between 30 and 230 km from the coast to the interior of 

the country named, Maripasoula, Saint Laurent, Saint Georges. The other three stations 

are located on the Atlantic coast, namely: Kourou (situated on the coast), île Royale 

(situated about 7 km offshore from the coast), Rochambeau (situated about 13 km from 

the Atlantic Ocean). These six stations are characterized by different microclimates 

caused by their difference in heights. The list of the stations and their latitude, longitude 

and altitude is given in Table 2. 

All of the ground stations are located in plain areas with effects. Their geographic 

positions are illustrated in Figure 11. Rochambeau and Saint Laurent stations are located 

at an altitude of 4 meters above sea level on a plain area. Saint Georges station is located 

at an altitude of 6 meters in the municipalities of the same name. Maripasoula station is 

located at an altitude of 104 meters on a plain area inside the territory, which is 230 km 

from the ocean. Kourou station is located at an altitude of 12 meters in the municipalities 

of the same name. The last station named île Royale is located at an altitude of 48 meters 

on the island of the same name located in the Atlantic Ocean 14 km from the coast of 

French Guiana. 

   
Figure 11: Meteorological stations in French Guiana (Salloum et al. 2019) 

Table 2: Latitude, longitude and altitude of the ground meteorological stations understudy in French Guiana.  

Station Location Latitude Longitude Altitude Ground 
Data 
points 

Satellite 
Data 
points 

RO 
(Rochambeau) 

Cayenne Felix Eboue 
Airport, Matoury 

4.81 -52.37 4 18270 36540 

SG 
(Saint-Georges) 

Saint George of Oyapock 3.88 -51.80 6 19046 38092 

MP 
(Maripasoula) 

Maripasoula 3.63 -54.03 104 17373 34746 

SL  
(Saint-Laurent) 

Saint-Laurent-du-
Maroni aerodrome 

5.48 -53.90 4 18655 37310 

KR  
(Kourou) 

Guyanese Space Center 5.12 -52.44 12 16570 33140 

IR 
(Ile Royale) 

Kourou 5.28 -52.58 48 18156 36312 
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Figure 12, a) shows the distribution of ground values depending on the month for île 

Royale station in 2016. It can be observed that measured data have a similar tendency 

throughout the year. Comparably, Figure 12, b) exhibits the distribution of the data during 

the day for the same station in the same year. Data distribution shows its maximum values 

at midday and following the expected pattern, increasing in the mornings and decreasing 

in the afternoons. 

II.3.A.ii. Ground-based irradiation measurement 

material 

As of 2016, French weather services in French Guiana do not measure the direct 

normal (DNI) and the diffuse horizontal irradiation parts (DHI). Therefore, in this study, 

only the global horizontal (GHI) component of solar radiation is used. Different 

instruments can measure GHI. A pyranometer with a hemispherical (180°) view angle is 

the most common instrument used to measure GHI. The response of the pyranometer to 

a beam of light is proportional to the cosine of the beam’s incident angle. Most 

pyranometers use a thermopile sensor to sense incoming light; GHI may also be measured 

using a photovoltaic reference cell, which will have spectral sensitivity and will not exhibit 

true cosine response. 

In French Guiana, The weather stations are equipped with a pyranometer of CMP6 class 

B manufactured by Kipp & Zonen, Figure 13. This sensor is the first class pyranometer as 

defined by the World Meteorological Organization. It is suitable for measuring solar 

radiation on a plane surface (W/m2). Additionally, CMP11 also manufactured by Kipp & 

Zonen, is a secondary-standard pyranometer that monitors solar radiation for the full 

solar spectrum range and performs high-precision measurements with an uncertainty of 

less than 3% on daily cumulative radiation (World Meteorological Organization 2008). 

  

a. By month b. During the day 

Figure 12: Hourly GHI-measured data distribution for IR in 2016. 
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Figure 13: CM6B pyrometer (WMO 2008) 

Both are equipped with a ventilation fan. Preventive maintenance is performed every two 

months. Standard exchange of the pyranometer is systematically performed every two 

years. Before its final installation, each pyranometer is calibrated in the Radiometry 

National Center of Météo France located in Carpentras (France). Once installed, the 

coefficients of the new pyranometer are then entered into the data acquisition system of 

the in situ stations (Albarelo 2017). 

II.3.B. Satellite-derived data  

Satellite images have broader coverage than ground-based irradiation measurements. 

Satellite images have many advantages, including: 

 Continuous geographical coverage  

 approx. 3+ km Spatial resolution 

 15 and 30 minutes Frequency of measurements 

 Spatial and temporal consistency Calibration stability  

 High availability (gaps are filled)  

 Up to 27+ years history − variability of weather 

In terms of forecasting, satellite-derived data are mainly used in two ways. The first 

approach directly uses the gridded data to generate areal forecasts. The second approach 

assimilates the satellite-derived irradiance into numerical weather models. Overview of 

past, current and future perspectives for estimating GHI from satellites in (Huang et al. 

2019). A time series of images satellite used in this study are retrieved from the 

meteorological geostationary satellite GOES-13, orbiting at 74.5° W (longitude). 16-bit 

image data are collected from the visible channel (0.55 µm – 0.75 µm) and taken every 30 

min (Fillol et al. 2017), with a spatial resolution of 0.6 km in longitude and 1 km in latitude, 

and a ground spot of approximately 1 km in diameter, more details can be found in section 

III.3.B.  
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Information extracted from the image 

 

Creation of time series 

Figure 14: Satellite-derived data time series. 

The selected images are from January 2011 to December 2016 (6 years of satellite image). 

These images were provided by the National Oceanic and Atmospheric Administration 

(NOAA) via the Comprehensive Large Array-data Stewardship System (CLASS) catalog. 

The day was divided into half-hour slots, as suggested by (Rigollier, Bauer, and Wald 

2000). The period of the day for this study lasts from slot 18 (8h45 UTC) to slot 45 (22h45 

UTC). Satellite data related to ground elevation were also used in this study. The elevation 

map is obtained from the Shuttle Radar Topography Mission (SRTM) digital elevation 

model downloaded at a resolution of 90 m (Jarvis et al. 2008). Figure 14 shows the GHI 

map of the study zone. 

Regarding image acquisition, GHI prediction processing from satellite imagery can be 

divided into two main steps: 

- Conversion: the raw values of the pixels of satellite image are calibrated into radiance 

values then converted into an estimates of GHI (Fillol et al. 2017).  

- Forecast: This involves anticipating the movement of the cloud masses observed. 

The main interest of geostationary satellite imagery for GHI forecasting lies in its ability 

to describe in time and space the cloud cover over large areas with a spatial resolution of 

3 to 10 km and a resolution time of 15 min. Cloud cover represents the main factor of 

intraday variability of the GHI for most sites. 

The distribution of satellite-derived data depending on the month for île Royale station 

for 2016 is shown in Figure 15, a). 

  

a. By month b. During the day 

Figure 15: Hourly GHI satellite data distribution for IR in 2016. 
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Visually comparing measured and satellite data in Figure 12 with Figure 15, respectively. 

It can be observed that both data have a similar tendency throughout the year. 

Comparably, Figure 15, b) exhibits the distribution of satellite data during the day for the 

same station in the same year. Both measured and satellite sets behave alike for visual 

observation, showing their maximum values at midday and following the expected 

pattern, increasing in the mornings and decreasing in the afternoons.  

II.3.C. Weather Research and Forecast Model (WRF) data 

Weather and research forecast (WRF) is a numerical model that forecasts the state of a 

portion of the earth’s atmosphere on a discretized grid. Sub-grid scale (i.e unresolved) 

physical process is approximated using physical parameterization. Radiative transfer, 

hence, the GHI is obtained using the radiative transfer parameterization scheme. For 

tropical locations, solar irradiance at time horizons of 12H or more can only be predicted 

with the help of numerical weather prediction (NWP) models. Numerical Weather 

Prediction (NWP) models simulate the temporal evolution of atmospheric processes 

important to the prediction of solar irradiation.  

In this manuscript, the work of (Diallo 2019) to calibrate WRF is used to forecast GHI in 

French Guiana. where a set of 36H forecasts from WRF is used. The duration of WRF 

simulations was set to 48H with output data at 1H intervals. The first 12H of each 

simulation were discarded as coinciding with the model's spin-up period and evaluation 

was conducted using the remaining 36H of model data. Table 3 shows the physical 

parameterization used in this study. 

Table 3: WRF physical parameterization (Diallo 2018) 

Physical Parameterization Scheme used 
Planetary boundary layer scheme (PBL)  The local second-order MYNN3 

(Nakanishi and Niino, 2009) scheme 

Microphysics scheme (MP)  Thompson aerosol-aware (Thompson 
and Eidhammer, 2014) 

Land Surface Scheme (LSM) Noah (Tewari et al., 2004) 

Cumulus Scheme (Cu) (Grell and Dévényi, 2002) scheme 

Radiation Scheme Longwave Radiations (RAD LW)  RRTMG (Iacono et al., 2008) 

Radiation Scheme Shortwave Radiations (RAD SW) RRTMG (Iacono et al., 2008) 

Horizontal Resolution 1 km 

Vertical Resolution 100 levels 

Time Step 40 seconds 

Radiative Effect 3 minutes 

Numerical Weather Prediction (NWP) Model Global Forecast System (GFS) model 
 

Figure 16. shows the computation domain of WRF, only solar forecast of the domain D03 

was considered. 
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Figure 16: WRF nested domain ways, A large domain, the black square D01, with a resolution of 27 km, then the white 
one D02 with a horizontal resolution of 9 km the last domain is the red one D03 with a horizontal resolution of 3 km. 

Three datasets used in this study have been presented, in the following paragraph, the 

different stages of the preprocessing of solar radiation data will be shown. 

II.4. Data pre-processing  

Before using the measured and simulated data to make a forecast, it is necessary to 

perform several preprocessing steps. The purpose of these steps is to make the data sets 

usable by the methods that we implement during the modeling. If the analyzed data 

comply with quality control, they can then be sent to the preprocessing to feed the models 

and make a forecast. Otherwise, they may, in certain cases, be corrected before use or even 

deleted. 

Data pre-processing protocol will be presented step by step, responding to the problems 

encountered. We will start with quality control, management of missing data, then 

filtering procedure. 

II.4.A. Missing data 

It is common that the ground-based irradiation measurements or satellite images 

contain missing or faked data points, due to communication or sensor failures, or due to 

rejection by data quality control. Concerning the treatment of missing data in our study, 

in the case of missing hours, these data are not taken into account. If a day is missed, it is 

not taken into account for the study. The data are from January 2011 to December 2016. 

Data’s gaps are shown in Table 4 for every site. 

II.4.B. Quality control 

The purpose of data quality control (QC, or quality check) is to verify their presence 

and physical consistency and to establish limits within data is to be accepted. Since the 

study is concerned with the quality of the global irradiation measured and estimated, only 

tests applied directly to both the GHI measured and the GHI estimated are presented in 

this section. Within the framework of the European Geosciences Union 

conference,(Espinar et al. 2012) produced a report based in particular on the work of 
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(Muneer and Fairooz 2002) as well as (Geiger et al. 2002) on the quality control of 

meteorological data. For our study, we performed a Quality Check process based on 

extreme values, following the method proposed by (Geiger et al. 2002) and the SoDa 

website. Hourly GHI (Wh.m-2) was considered valid when it respected the following 

condition:  

𝐺𝑀𝐼𝑁,𝑡 ≤ 𝐺𝐻𝐼𝑡  ≤ min [𝐺𝑚𝑎𝑥1, 𝐺𝑚𝑎𝑥2,𝑡] (2. 1) 

Where: 

𝐺𝑀𝐼𝑁,𝑡 =  0.03 ∗  GTOA,t  

𝐺𝑚𝑎𝑥1 = 1.2 ∗  I0  

𝐺𝑚𝑎𝑥2,𝑡 =  1.5 ∗  I0 ∗ cos(𝜃𝑡)1.2 + 100  

Where the conditions of validity at time t are defined from the radiation outside the 

atmosphere 𝐺𝐻𝐼𝑇𝑂𝐴, and the solar zenith angle θ with the solar constant (𝐼0 =1367 W.m-

2). A simple example in Figure 17, for one year at île Royale site, we get 4792 ground 

values, where 30 ground values were rejected by the QC test.  

 

(a) measured data before QC test 

 

(b) measured data after QC test 

Figure 17: Global Solar radiation at île Royale site with and without QC. 
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Figure 17a and Figure 17b respectively present an overview of the overall radiation 

available on the île Royale site before and after the application of the QC test. The small 

difference between these two figures shows the high-quality of the measurements made 

at the experimental sites. 

A final check of the data concerns their consistency with the time base. Table 4 gathers 

the results obtained after the data QC test, knowing that the total number of daytime 

points for the six years is 21960. 

The quality of the data has been verified, and we can continue preprocessing steps. which 

is to make the solar radiation data stationary after modeling solar radiation under clear 

sky conditions, this is the subject of the next paragraph.  

II.4.C. Data filtering 

Data filtration overcomes two important issues: 

- The night hours, during which the solar irradiation is equal to 0, there is, therefore, 

no need to overload the models with all these very easily predictable data. 

- Data measured at sunrise and sunset are not always reliable. The incident rays on 

the sensor arrive at a low zenith angle, which induces an error in the measurement; the 

response of the sensor is distorted by all the undesirable effects that occur in the 

measurement dome of the pyranometer, this measurement is even more degraded if a 

standard cell is used (Muneer and Fairooz 2002). We then consider that the solar height 

threshold, beyond which the measurement is considered correct is 6 ° (zenith solar angle 

= 84 °) (Muneer and Fairooz 2002). Additionally, for low solar heights, solar illumination 

can be disturbed by the direct environment of the place of the measurement: the presence 

of mountains, trees or buildings around the measurement station can generate errors. In 

the data related to the shadow of these obstacles. 

In our study, we decided to apply refinement for a limit of 10 ° of solar height, (solar zenith 

angle = 80°) in order not to consider the night measurements. 

With this refinement should remember that even with a low level of sunlight, the output 

of a high-power photovoltaic plant can be high. In addition to checking the quality of the 

measurements, it is important to identify the type of sunlight at the experimental sites. In 

this context, a solar classification procedure is put in place to characterize the sites. 

Table 4: Data and quality control 

STATION Number of points Outliers Data Missing Data Time Scale 

Rochambeau 18270 4% 16% UTC-3 

Saint Laurent 18652 4% 15% UTC-3 

Maripasoula 17373 5% 20% UTC-3 

Saint Georges 19046 3% 13% UTC-3 

Iles Royale 18153 5% 17% UTC-3 

Kourou 16563 5% 24% UTC-3 
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II.5. Site characterization 

This paragraph is devoted to the mathematical characterization of the meteorological 

conditions of the data. In addition to materialization, it is important to identify the type of 

sunshine at the experimental sites. In this context, a solar classification procedure is 

implemented to characterize the sites. To estimate, quantitatively, the degree of variation 

of the solar radiation data, a coefficient of variability will be calculated for each 

meteorological site studied. We will thus estimate the impact of this variability on the 

performance of our forecasts.  

II.5.A. Classification of sky conditions  

The classification of daily sky conditions is based on two criteria, namely, the type of 

sky and the variability. The daily mean value, �̅�𝑡,𝑑𝑎𝑦
∗  a day of the clear sky index 𝑘𝑡

∗, defines 

the type of sky. In this context, four classes of day have been identified by (Fouilloy 2019): 

- Clear Sky where the sky is clear and �̅�𝑡,𝑑𝑎𝑦
∗  is greater than 0.8, with 10%-30% 

of cloud in the sky. 

- Cloudy Sky where the sky is mixed and �̅�𝑡,𝑑𝑎𝑦
∗  is from 0.6 to 0.8, with 30%-60% 

of cloud in the sky. Here, there will be more clouds than sunshine. 

- Partly Cloudy where the sky is cloudy and �̅�𝑡,𝑑𝑎𝑦
∗  is between 0.2 and 0.6, with 

60%-70% of cloud in the sky. 

- Over Cast where the entire sky is cloud covered and �̅�𝑡,𝑑𝑎𝑦
∗  is less than 0.2 with 

70%-90% of cloud in the sky. 

In this subsection, the distribution of the different clear sky index classes over the 6 

ground-based irradiation measurement stations was determined for 5 years’ span. This 

involves computing the number of data for several intervals of clear sky indexes;  

�̅�𝑡,𝑑𝑎𝑦
∗ =

1

𝑁
∑ 𝑘∗(𝑡)

𝑖
 (2. 2) 

With N the number of daily measurements available after filtering and with respect to the 

solar zenith angle. We chose to distinguish four classes (Fouilloy 2019), from 0 to 0.25, 

from 0.25 to 0.5, from 0.5 to 0.75, from 0.75 to 1 while clear sky indexes greater than 1 

(data for which the irradiation measured solar exceeds that calculated by clear sky) has 

been excluded. The classification of the daily sunshine of each site is illustrated in Figure 

18 and summarized in the table. 
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Figure 18: Distribution in percentage of measurements according to the quality of sunlight from 2011 to 2016. 

If all days were governed by very low (clear sky) or very heavy (overcast) cloudiness, we 

would get a high percentage of data in the last or first class, and therefore would be 

representative of a low variability climate. In contrast, a very variable climate would see 

a more homogeneous distribution of the clear sky index in the different classes. It is 

therefore possible to relate the classification to a proportion of clear sky indexes with the 

variability of the data. First, all stations have a much more homogeneous distribution of 

clear sky indexes in the different classes, this means that the weather conditions on the 

six stations are similar. Second, the clear sky class [0.75; 1[ is predominant, grouping 

between 40% and 50% of the data for each site, which means that these stations have 

more clear sky days than other types of the sky. In the next section, we try to find the 

relation between the variability within the meaning of the MALR and the distribution by 

clear sky index classes.  

II.5.B. The variability of the data 

To study weather characteristics on each site we quantify the variability of the time 

series for each one; such a study was carried out by (Voyant et al. 2015) who compared 

20 parameters to qualify the variability of different datasets on several stations spread 

across the globe. They concluded that the most relevant parameter was the “mean 

absolute log return” (MALR), defined by Equation (2. 3): 

𝑚𝑒𝑎𝑛(𝑎𝑏𝑠 𝑙𝑜𝑔𝑟) = 𝐸[|ln(𝐾(𝑡)) − ln(𝐾(𝑡 − 1))|] (2. 3) 

With E the Expected value and K the clear sky index for the component considered. The 

results obtained for each dataset are presented in Figure 19. To judge whether the site 

variability is high or low, we calculated the MALR for a time series of constant values 

(Const) and randomly generated values. 

Rochambeau Saint Laurent Maripasoula Saint Georges Iles Royale Kourou

Overcast 7% 7% 3% 9% 7% 6%

Partly cloudy 21% 17% 17% 19% 18% 15%

Cloudy 30% 31% 32% 32% 20% 26%

Clear sky 39% 41% 42% 38% 51% 48%
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Figure 19: Mean Absolute Log Return for the different measurement locations. 

In KR, the solar irradiation data are the least volatile, followed by MP, SG, RO then SL and 

finally IR. Figure 18 and Figure 19 show that for IR and KR, clear sky class is predominant 

for the two sites around 50% of the data; but we can note that IR has a distribution in the 

other three classes that is less homogeneous than KR, which may justify the fact that the 

variability within the meaning of the MALR is higher than for KR. Other stations have a 

much more homogeneous distribution of clear sky indexes, consequently, we can relate 

to the approximately logical way, the variability within the meaning of the MALR, and 

distribution by clear sky index classes. 

It is possible to make an estimate of the variability (var) in percentage from MALRmin 

(constant series;0) and MALRmax (white noise; 1.014) using the following formula: 

𝑣𝑎𝑟% =
MALR

MALRmax − MALRmin
∗ 100 (2. 4) 

This allowed us to classify the datasets as in Table 5, 

We have presented the data used, then studied the sites. Now, to evaluate the models’ 

performance, we have at our disposal several tools, mathematics or graphics, which will 

be detailed in the following part. 

II.6. Model evaluation 

The purpose of the model evaluation step is to measure their ability to make a good 

forecast. It is important to perform this assessment using currently recognized criteria to 

have an objective assessment. In the case of modeling by models, whose relationships 

between inputs and outputs are very complex to interpret, we cannot use an uncertainty 

Table 5: variability calculations for different datasets. 

 CTE KR MP SG RO SL IR ALEAT 
MALR 0 0,251 0,275 0,285 0,291 0,317 0,344 1.014 

var 0 24,75 27,12 28,11 28,70 31,26 33,93 100 
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propagation technique. The models are then evaluated, point by point, by comparing the 

results of the forecast with the corresponding measured variable. 

It is difficult to assess the performance of models among themselves, specially to compare 

them with the results of the literature. There is a set of performance criteria to evaluate 

model accuracy in training and validation sets and to make comparisons between 

different models. According to (Sobri, Koohi-Kamali, and Rahim 2018), (David, Diagne, 

and Lauret 2012). Indeed, the data sets are very different, the periods and time steps of 

measurements are also different and finally, there are several error indications, which 

sometimes even, with the same name, have different definitions. 

Error indicators are used to quantify the differences between the values obtained from 

the observation and the values obtained during the forecast. Two-time series are 

compared with each other, the first one is made up of the observations and the second 

one is made up of the corresponding forecasts. Since there is an error made in the 

observations (fitting, acquisition, etc.) we do not exactly assess the difference between 

forecast and reality, the difference is therefore assessed between forecasting and 

observing reality. Systematic error or bias is measured by some indicators we have 

selected the most widely used valuation indicators in the literature these metrics are 

defined as follows: 

- Root Mean Squared Error (RMSE) 

A measure of the standard deviation of the residuals. It corresponds to the square root 

of the Mean Squared Error (RMSE), computed as the average squared difference between 

the forecasted and measured values (MSE). RMSE tends to penalize large errors in a 

square order by giving them more weight, it is used when significant errors are 

undesirable: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∗ ∑(𝑦𝑖 − 𝑥𝑖)2

𝑖

 
(2. 5) 

Where 𝑥𝑖  is the measured variable; 𝑦𝑖 is the forecasted one that corresponds to ground 

measures; 𝑖 is the time index, 𝑁 is the total number of data. 

For an evaluation of precision, MSE’s does not have the same unit as that of the variable 

studied. It is, for this reason, the RMSE has the same dimension as the variables being 

studied. In the statistical field, the RMSE and its standardized version are widely used 

because they allow good readability as well as a good evaluation of the accuracy of the 

models. Authors do not always define RMSE, some authors divide RMSE by the maximum 

difference between the data, or even the maximum value from the data. In our case, we 

have chosen the “classic” version of the normalization for which we divide the RMSE by 

the mean of the data: 

𝑛𝑅𝑀𝑆𝐸 =
√1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)2

𝑖

1
𝑁

∑ 𝑥𝑖𝑖

∗ 100 (2. 6) 
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- Mean Absolute Error (MAE)  

Measures of the average of the absolute errors between the forecasted and the 

measured values. MAE is less sensitive to large errors because all differences have equal 

weights. MAE combines systematic error and random error. It allows the accuracy of a 

model to be judged, in addition to that its unit is the same as the quantity measured 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖 − 𝑥𝑖|

𝑖
 (2. 7) 

Its normalized form is obtained by dividing the MAE by the mean value of the 

measurements to obtain a percentage error: 

𝑛𝑀𝐴𝐸 =
∑ |𝑦𝑖 − 𝑥𝑖|𝑖

∑ 𝑥𝑖𝑖
∗ 100 (2. 8) 

- Mean Bias Error (MBE)  

A measure of the average bias in the forecasting. It is not a tool for measuring the 

accuracy of a model but only for indicating if the model overestimates or underestimates 

the actual value, the bias defines as follows: 

𝑀𝐵𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑥𝑖)

𝑖
 (2. 9) 

We obtained relative values by normalization to the mean value of the ground-measured 

GHI for the considered period: 

𝑛𝑀𝐵𝐸 =
∑ (𝑦𝑖 − 𝑥𝑖)𝑖

∑ 𝑥𝑖𝑖
∗ 100 (2. 10) 

For RMSE, MAE, MBE, Better predictions are indicated by smaller values (closer to zero), 

which indicates that both forecast and real values were similar. 

- Adjusted R-square (𝒂𝑹𝟐)  
Used to compare models with different numbers of independent variables. It should 

be used while selecting important predictors as input for the model.  

𝑎𝑅² = 1 − [
(1 − 𝑅²) ∗ (𝑇 − 1)

(𝑇 − 𝐾 − 1)
]  (2. 11) 

Where T represents the number de output variables and K represents the number of 
predictors, 𝑅2 is the correlation coefficient that computes the correlation between the 

forecasted and the measured values. 

𝑅2 = 1 −  
𝑆𝑆𝑟𝑒𝑠 

𝑆𝑆𝑡𝑜𝑡 
 (2. 12) 

SSres represents the Sum of Squares of residuals and SStot represents the total Sum of 
Squares. 𝑅2 and 𝑎𝑅2 values closer to one, which indicates a perfect fit.  
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- Mean clear sky index (MKC) and mean clear sky index 

variability (VKC)  

We use two indexes based on clear sky Index 𝐾C (eq 1. 2 in Chapter .I) to quantify the 

GHI variability. The sky conditions were considered as clear when 𝐾C> 0.65, cloudy when 

0.4 <𝐾C< 0.65 and overcast when 𝐾C< 0.4, (Aryaputera 2015). 

The first index is the hourly variability of the clear sky Index VKC (Marquez and Coimbra 

2011) defined as (2.13). The second index is the hourly mean clear sky Index MKC 

(Marquez and Coimbra 2011), defined as (2.14): 

𝑉𝐾𝑐 = √
1

𝑁
∑(𝐾𝑐[𝑡 + ∆𝑡) − 𝐾𝑐[𝑡))2

𝑡+𝑁

𝑡

 

(2. 13) 

𝑀𝐾𝑐 =
1

𝑁
∑ 𝐾𝑐(𝑘) 

𝑡+𝑁

𝑡

 
(2. 14) 

Where dt is the time step of ground-based irradiation measurements, i.e. hourly. For a 

model with hourly GHI outputs N=1. 

- Skill Score (SS) 

The Forecast Score (FS) is an indicator that is increasingly used, it makes it possible to 

compare the performance of the model to a well-known reference model as the 

persistence model. It is interesting to identify very quickly whether a model is correctly 

configured or not. In the results phase, this type of parameter makes it possible to 

determine whether a complex model has much better performance than a simple naive 

model. 

𝑠𝑠 = 1 −
𝑀𝑆𝐸𝑚𝑜𝑑𝑒𝑙

𝑀𝑆𝐸𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (2. 15) 

A negative score indicates that the model is less good than the reference one, a zero score 

indicates that the model is as good. Furthermore, a positive score indicates that one is 

better than the reference model. Finally, a score of one means that the forecast is perfect. 

We have chosen to limit the indicators to these because they are widely used in the field 

of forecasting and provide an accurate idea of the performance of the models. 

II.7. Summary 

In this chapter, we have presented the formalism of time series, which is particularly 

important because it is the basis of the simulations which will be conducted. We then 

detailed all the available data (ground-based irradiation measurement data, satellite-

derived data, or numerical model data) as well as the meteorological characteristics of the 

measurement sites. We then listed data preparation (or preprocessing) phases with their 

quality control, management of missing data, and management of outliers. 
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III.1. Introduction 

This chapter presents the different methods used for intraday GHI forecasting with 

satellite-derived data as observation instead of ground measurement one. Ten models 

were tested in this study. Ground measured data then satellite-derived data were used as 

observations to study the impact of using satellite observations instead of ground one. We 

will detail the models used to conduct this study in this section.  

III.2. Solar global irradiation forecast 

There are several ways to forecast solar irradiation. Forecasting methods Approaches, 

with their limitations and precision, can be found in the literature (Elliston and MacGill 

2010); (Ahmed et al. 2020); (Heinemann 2006); (Diagne et al. 2013). Comparative studies 

of multiple approaches have assessed the accuracy of solar irradiation predictions 

(Mihalakakou, Santamouris, and Asimakopoulos 2000); (Perez et al. 2010); (Remund, 

Perez, and Lorenz 2009). The choice of one or another method depends on the user’s 

needs and the forecast horizon. Indeed, all models do not have the same precision 

depending on the type of forecast desired, the location or the time horizon, or even the 

number of data available. In addition, the metrics used to estimate the error are often 

different, making it even more complex to compare models between them; some 

parameters such as correlation coefficient, root mean square error are often used, but not 

always suitable for comparing model performance. The period used to evaluate the 

precision varies considerably from one article to another: some of them estimate the 

precision of the model over a period of one or more years, others over a period of a few 

weeks introducing a potential seasonal bias. Under these conditions, it is not easy to make 

comparisons of the results presented, the various literature studies must therefore be 

carefully analyzed.  

Existing solar forecasting methods can be categorized depending on the forecast horizons 

or on the selected approach to obtain solar irradiation forecasts as in Figure 20.  

For classification based on the forecast horizon, we may distinguish: 

- The very short-term (intra-hour), models based on sky imaging are used (Kurtz, 

Mejia, and Kleissl 2017), or even statistical models based on the time series formalities 

and the persistence of cloudiness. Other models based on satellite images can also be used 

in these forecast horizons.  

- The short-term (intra-day), models use the time series formalities with machine 

learning methods or even satellite images (Elke Lorenz, Hammer, and Heinemann 2004). 

The forecast using satellite images is based on a cloud motion vector approach. They show 

good performance for the temporal range from 30 minutes up to 6 hours.  

- The long term (day-ahead), based on the resolution of the equations of the 

atmosphere, called NWP for “Numerical Weather Prediction”, are the most relevant 

(Perez et al. 2010). These forecasting models are sometimes associated with post-

processing modules to improve the NWP forecast at a short time horizon (intra-day). The 

NWPs are supplemented with information from satellites (Lara-Fanego et al. 2012).  
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Figure 20: Temporal resolution and time horizon for the different forecasting methods. 

For classification based on the approach used for deriving solar irradiation, there are 

three main methods (Gupta, Gupta, and Saroha 2021): 

- Statistical method, analyzes the trend of a time series to assess future patterns. 

They required long-term and high-quality observations over the area under study 

to train the model. Satellite images offer the advantages of providing long-term 

irradiation observations; yet, its sensor needs to be calibrated and their accuracy 

decreases with time. Examples of direct time series models are Auto-Regressive 

(AR) and Auto Regressive Moving Average (ARMA) models. Furthermore, artificial 

neural networks (ANN), (Prado 2020), (Voyant et al. 2013). 

- Physical method, based on NWP for “Numerical Weather Prediction” and or 

radiative transfer models, as in (Mathiesen and Kleissl 2011), (Diallo 2018). These 

forecasting models are sometimes associated with post-processing modules and 

are supplemented with information from satellites (Lara-Fanego et al., 2012). 

- The hybrid method combines both physical and statistical methods. It gets an 

optimized forecast more specific and more accurate than each member of the 

models as in (Ren, Suganthan, and Srikanth 2015), (Du et al. 2018). 

These methods are illustrated in Figure 21. We focus in Table 6 on solar forecasting 

methods using satellite data. We found only a few studies focused on obtaining GHI 

forecasts in the ITZ without the use of ground-based irradiation measurements. 
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Figure 21: Distribution of studies with respect to the technique used. 

Solar forecasting methods using satellite data and measured one are presented in Table 

6. The highlighted lines expose the studies where only satellite data was used to make the 

forecast.  

Table 6: Information revealed by the Non-exhaustive literature review of forecasting solar irradiation using satellite data 
until 2020. 

AUTEUR LOCATION HORIZON SATELLITE RESULTS 

(Miller et al. 2018) USA Intra-day Goes - Errors = 8.5-17.2%. 

(Mazorra Aguiar et 
al. 2019) 

Canary island Intra-day  Helioclim-3 - ANN (satellite pixels + ghipast) > ANN (ghipast) > smart 

persistence model. 

(Kallio-Myers et al. 
2020). 

Finland, 4 h  Solis-heliosat - Solis-heliosat > persistence. 

(Rodríguez-Benítez 
et al. 2020) 

Spain Intra-day  - rRMSE = 25% to 70%. 

(Voyant 2014) Corsica island 1h Helioclim-3  - nRMSE (scaled persistence and ANN ) = 16.5% . 

(Marquez, Pedro, 
and Coimbra 2013) 

USA Intra-hour 

Intra-day 

_ - Improvements over persistence (h=1) = 5-19% and 10-

25% for multiple time-step forecasts. 

(André et al. 2019) Caribbean 

islands 

1h _ - Spatio-temporal vector autoregressive > cloud 

motion vector. 
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(Cornejo-Bueno et 
al. 2019) 

Spain _ Heliosat-2,  - Extreme learning machines > heliosat-2 and cams. 

(Laguarda et al. 
2020) 

South America _ heliosat-4 method 

(goes-east 

satellite) 

- rRMSD mcclear = 2.8%.  

- In the presence of clouds: model clear-sky < ESRA clear-sky. 

(Yagli 2020) USA Intra-hour 

Intra-day 

National solar 

radiation 

database  

- Improves the forecast accuracy. 

- Leads to high-quality predictive distributions.  

(Bright 2019). several 1h Solcast website - rRMSEclear=3.4%, rRMSEclouded= 25.6%, rRMSEall-sky= 

16.9 . 

(Guijo-Rubio 2020) Spain _ _ - Sigmoid unit-product unit with evolutionary training 

> SVR and > extreme-learning machines. 

(Dong et al. 2014) Singapore 1h _ - The hybrid model has better performance than other 

forecasting models. 

(Aguiar et al. 2016) Gran canary 

island. 

Intra-hour  Helioclim-3 
- (NN + ECMWF + SAT) > (NN +SAT) > (NN +ECMWF).  

(Mazorra Aguiar et 
al. 2015) 

Gran canary 

island. 

Intra-day Helioclim-3 
- (ANN + Gnd + SAT) > (ANN + Gnd). 

(Yagli 2020) several 1h _ - Forecasts generated using bias-corrected satellite-

derived data > ground-based data. 

(Alonso-Suárez et 
al. 2020) 

South 

America. 

Intra-hour 

Intra-day 

NOAA’s surfrad 

solar radiation 

network 

- The addition of satellite information further 

improves the quality of the probabilistic forecasts. 

(Marchesoni-
Acland and Alonso-

Suárez 2020) 

South America Intra-day _ - Averaging window size is an important parameter. 

- Satellite lags are of limited utility and spatial averages 

are more useful than weighted time averages.  

(Singh Doorga et 
al. 2019) 

Island of 

Mauritius 

5 days Eumetsat's 

geostationary 

meteosat 

satellites 

- Double exponential smoothing model > ARMA and > 

NAR-neural network. 

(Deo 2017) Queensland Monthly 

seasonaly 

_ 
- ANN > MLR and > ARIMA. 

(Deo 2019) Australia _ Moderate 

resolution imaging 

spectroradiometer 

- Universally trained ELM > RF, M5 tree, and MARS. 

- Models register a legates & mccabe's index of ELM = 

0.555–0.896, RF = 0.411–0.858, M5 tree = 0.434–

0.811, MARS = 0.113–0.868. 
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-  rRMSEELM = 3.715–7.191% vs. rRMSERF = 4.907–

10.784%, rRMSEM5tree = 7.111–11.169%, rRMSEMARS= 

4.591–18.344%. 

(H. Jiang et al. 
2019) 

China _ Multi-functional 

Transport Satellite 

(MTSAT-1R) 

- RMSE(spatial pattern, point information) of 

- Hourly = 84.18 w/m2, daily total= 0.30 mj/m2, 

monthly total = 1.92 mj/m2 and scales= 1.08 mj/m2. 

(H. Jiang et al. 
2020) 

China _ Multi-functional 

Transport Satellite 

(MTSAT-1R) 

- Exploring spatial scale effects using remote sensing 

data. 

(Verbois 2020) Singapore _ _ - A holistic approach to evaluate forecasts instead of 

RMSE. 

(Verbois et al. 
2018) 

Singapore Day-ahead  Global Forecasting 
System (GFS) 

- (WRF + statistical learning method) > smart 
persistence and > a climatological forecast and GFS. 

- RMSE 23% lower than smart persistence. 

(Mazorra Aguiar et 
al. 2019) 

Canary islands  Cm saf and 

mcclear model 
- Linear Regression > clear and > cloudy sky conditions.  

(Huva, Verbois, 
and Walsh 2020) 

Singapore Day-ahead _ - rRMSE (post-processing 4DVAR) = 37%.  

- Models + post-processing > persistence ensemble 

and > climatological references. 

(Zambrano and 
Giraldo 2020) 

Colombia Intra-day 

Day-ahead 

_ 
- Learned metric > measurements from the whole set 

of available sites. 

(Yeom et al. 2020)  North Korea _ _ - Pyranometer and satellite-sourced solar radiation. 

- Instantaneous: RMSE=87.90 W.m2, MBE=16.84 

W.m2. 

- Daily ‘all sky conditions’ RMSE= 624.98 Wh.m2 

,MBE=13.89 Wh.m2. 

(Salazar et al. 
2020)  

Brazil Intra-hour 

monthly 

_ - Hourly: cams> MERRA-2.  

- Long-term mean-monthly: with cams, ceres and 

NASA-power > MERRA-2.  

(Benamrou et al. 
2020) 

Morocco 1 h _ - Combining the ground measurement and the most 

relevant surrounding satellite-derived GHI improve 

forecasts for time lags 1.2.3 and 4 hours. 

(He et al. 2020) China _ _ - Input meteorological factors combinations were 

different in the four different climatic zones. 

- Sunshine hours, extraterrestrial radiation, and air 

temperature  greater impacts. Wind speed had 

little influence on solar radiation estimation. 
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- SVM > angstrom-prescott formula and > multiple 

linear regression method.  

(Olomiyesan and 
Oyedum 2016) 

Nigeria _ _ - 𝑅2 = 0.922 to 0.961. 

(J. Thorey et al. 
2015) 

France Intra-day _ - Tigge ensembles are under-dispersed but rather 

different from one to another.  

- Aggregation decreases the forecast error by 20%, 

with a more realistic spatial pattern of predicted 

irradiation. 
 

This bibliographic study provided us a piece of useful information on the various 

models used with satellite data. The achieved state of the art then made it possible to 

orient our study towards the models chosen in this study. GHI forecasting approaches 

may be categorized according to the input data used, which also determine the forecast 

horizon (Diagne et al. 2013). 

In the following part, we present the different methods for forecasting solar 

irradiation. Additionally, we will detail the state of the art carried out to orient our work. 

III.3. Thesis methodologies 

Some models are more widely developed than others in solar forecasting. 

Nevertheless, some of the slightly used methods are still interesting to study. In this 

section, we will present different approaches to forecast solar irradiation that have been 

considered in this thesis with their advantages and disadvantages. We start with 

statistical methods in section III.3.A. then describes sky imagery and satellite-based 

method in section III.3.B. We proceed in section III.3.C. with the description of the 

mesoscale weather prediction model and conclude in III.3.D. with hybrid methods. Section 

III.4. summaries of the approaches selected for this thesis and the reason for those 

choices. 

III.3.A. Statistical method 

Methods based on linear regression (ARMA, ARIMA, SARIMA) are widely used, 

although they are slightly less efficient than methods based on learning prediction, they 

can be recommended in some cases. Learning models have also been widely used in the 

field of solar irradiation prediction, they have been studied in many regions of the world 

and researchers have demonstrated the ability of these techniques to achieve a prediction 

based on the use of time series (Benamrou et al. 2020) (Lauret et al. 2015) (Yagli 2019). 

Forecasting methods based on the statistical method fall into two categories: linear 

models and non-linear ones (Diagne et al. 2013). 
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III.3.A.i. Linear models 

 Persistence reference P model 

The most common reference model and simplest way to perform in the solar 

forecasting community for short-term forecasting is the persistence model. The 

persistence estimates the model variability between t and 𝑡 + ∆𝑡, This last point is the key 

for time series forecasting (Diagne et al. 2013). Baseline forecasts with the persistence 

model indicate quickly whether you can do significantly better or not. So this model 

assumes that the global irradiation value at time t is equal to the global irradiation value 

at time 𝑡 + ∆𝑡. For the comparative study equation (3. 1) was used to predict the GHI 

values with ∆𝑡(1, 2, 3 … . . ℎ𝑜𝑢𝑟𝑠 ahead): 

�̂�𝑃(𝑡 + ∆𝑡) = 𝑋(𝑡) (3. 1) 

where �̂�𝑃(𝑡 + ∆𝑡) is the forecasted solar irradiation at time t+∆𝑡. Persistence forecast 

accuracy decreases with forecast horizon according to the evolution of cloud cover. 

Persistence should be used only as a baseline forecast for comparison to more advanced 

techniques (Diagne et al. 2013). 

 Scaled Persistence SP model 

The Persistence model is widely used due to the persistence of weather conditions. 

This model can be improved by coupling with a knowledge model taking into account the 

variation in the position of the sun and therefore in the angle of incidence. This 

improvement, easy to implement, considerably improves the results compared to 

persistence. The Scaled persistence model (Voyant, Motte, et al. 2017), using a clear sky 

solar radiation model for any horizon ∆𝑡, is defined by 

�̂�𝑆𝑃(𝑡 + ∆𝑡) =
�̂�(𝑡). 𝑋𝑐𝑠 (𝑡 +  ∆𝑡)

𝑋𝑐𝑠 (𝑡)
 (3. 2) 

Where 𝑋𝑐𝑠 is the clear sky model irradiation. This model allows making the persistence 

technique on the clear sky index. This type of predictor is sometimes the only one that can 

be used in an operational mode because it does not require historical data and can 

therefore make a prediction even in the case of measurement faults. 

 Auto-Regressive AR model 

Auto-Regressive model assumes that the future value of a variable is a linear 

combination of past time series of this variable. The AR modeling process is a linear model 

and the AR model for solar forecast can be described by the following equation:  

�̂�𝐴𝑅(𝑡) = ∑ 𝜑(𝑖) ∗ 𝑥(𝑡 − 𝑖)
𝑖=𝑝

𝑖=1
+ 𝜔(𝑡) (3. 3) 

where p is a positive integer and 𝜑 with (𝑖 = 0,1,…p) are coefficients, while 𝜔 is a white 

noise with mean zero. Here the future value obtained by a linear combination of past 

observations. The model parameters are 𝜑 with (𝑖 = 0,1,…p) and p the order of AR model. 
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The estimation of the parameters 𝜑 in the equation (3. 3) is obtained using least-squares( 

performs linear regression analysis using the least-squares method to find a line from the 

observed values), for more details see Refs (Singh and Pozo 2019). Additionally, due to 

the geographical differences, each location corresponds to its own unique model. 

Consequently, there is an interest to make a selection of the optimal order p. The p order 

univariate AR (p) models, is determined by information criteria such as Akaike 

Information Criterion (AIC) and Bayesian Information Criteria (BIC), (G.Schwarz 1978); 

(Tsay 1984). The order of AR model is optimized using the auto-mutual information factor 

(Rossi et al. 2006). Results in Table 7 show that the correlation between values at time t 

and the previous value are stronger than the correlation with the second or third previous 

value. 

Table 7: ACF results on data from 2011 to 2015, all stations grouped 

 

For the AR model, we chose an order of (1) which has a 78% correlation. 

 Autoregressive Moving Average (ARMA) model 

Known as the Box–Jenkins model (1976), used for forecasting stationary time series. 

It can be used in fields that deal with a large amount of observed data from the past. It is 

a linear model used in many fields and more particularly in the field of solar radiation 

forecasting.  

The ARMA model is developed using the combinations of two models, Auto-Regressive 

and Moving Average (MA). The first one assumes that the future values are individually 

correlated with previous values up to a certain parameter p, see (3. 4). The second 

assumes that a time series variable may be related to itself by a moving average process 

with a certain window size q, where the letter is given by: 

�̂�𝑀𝐴(𝑡) = ∑ 𝜃(𝑖) ∗ 휀(𝑡 − 𝑖)
𝑞

𝑖=1
 

(3. 5) 

Then, ARMA(p , q) model is developed using equations (3. 3) and (3. 5) as: 

�̂�𝐴𝑅𝑀𝐴(𝑡) = 𝜔(𝑡) + ∑ 𝜑(𝑖) ∗ 𝑥(𝑡 − 𝑖)
𝑝

𝑖=1
+ ∑ 𝜃(𝑖) ∗ 휀(𝑡 − 𝑖)

𝑞

𝑖=1
 

(3.6) 

Where 𝜑 (𝑖) and 𝜃 (𝑖) are the model parameters, p and q are the orders and ε the residue, 

which is the white noise that produces random uncorrelated variables with zero mean 

and constant variance. While 𝜔 is white noise with mean zero. This is if the model is well 

parameterized, and the time series is stationary. The ARMA model is therefore a model 

based on a combination of previous measurements and errors to characterize the current 

data. In the optimization phase of this model, the orders of the model are determined, 

where the model parameters (𝜑 and 𝜃) are determined during the learning phase (Stoica 
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and Selen 2004). We limit p, q ≤ 10 to simplify the process. Typically, this method requires 

a large amount of historical data to obtain the ARMA model. 

This model is widely used in the analysis of time series, and it is quick to implement. There 

are several developments in this type of model, such as ARMAX, SARMA, SARIMA ... The 

interested reader can refer to the work by Box and Jenkins on the analysis of time series 

(Box 1970).  

MATLAB simulations were conducted to obtain the ARMA model. Table 8 presents the 

values of the orders and coefficients for the ARMA model. 

Table 8: The realized ARMA model. 

 

 

p q 𝝋 𝜽 
1 2 𝜑1 = 1.142 

 
𝜃1 = −0.2 
𝜃2 = 0.18 

The advantages of using the previous models are the simplicity of their implementation, 

fast calculation time, cost-effectiveness, and accuracy of forecasting in time.  

III.3.A.ii. Nonlinear models: Machine Learning methods 

Machine learning methods can be used for classification or regression tasks where 

they have proven their efficiency. The use of machine learning is now widespread in many 

fields. This type of approach allows solving problems, which are impossible to represent 

by explicit algorithms. Machine learning models can find relationships between inputs 

and outputs, even if the representation is impossible, making them particularly suitable 

for forecasting tasks. First, these models are calibrated using a training dataset, then can 

be used to predict the result of test data. These algorithms can be divided into different 

categories (Fan et al. 2019):  

 Supervised learning establishes connections, where the goal is to learn a 

general rule that matches inputs to outputs. That will be by training the system 

in the context of successive calculations with different inputs and outputs 

 Unsupervised learning, which is mainly used for clustering, and is applied to 

input data without predefined target values. In other words, the model can find 

in its inputs a hidden structure without knowing the corresponding results. 

 Group learning, in this model, it is necessary to train several so-called "weak" 

learners as members of a larger whole. Their predictions are then combined 

into a single result to achieve better performance. 

Several approximately complex models were used to make the forecast. Deep learning, 

which is a branch of machine learning based on a set of algorithms modeling high-level 

abstractions in data using particularly complex model architectures, composed of 

multiple non-linear transformations, is not taken into account in this study. As GHI 

forecasting time-series can be framed as a supervised learning problem, supervised 

learning models are chosen in this study. This section concerns models for which a 

learning phase is necessary before they can be used. It is necessary to optimally choose 
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the data that will be provided to the model so that it is properly configured. Three basic 

steps must be followed in the process of creating a machine learning model: 

- Training phase: allows the model to know its parameters. 

- Validation phase: model selection is conducted using this measure that monitor the 

performance. 

- Testing phase: allows to test the performance of a trained model on data that have 

never been involved in learning or testing. 

Therefore, it is imperative that the test base includes sufficient different items. Inputs are 

matched with their target value, which corresponds to the value we are trying to predict 

(GHI in this study). We collected a set of meteorological variables to be used next to GHI 

in machine learning multiinputs models, considering the date, hour, and forecast horizon. 

To determine the correlation between variables we used Pearson’s linear correlation 

coefficients, Table 9, which is known as the best method for measuring the association 

between variables of interest because it is based on the method of covariance. It gives 

information about the magnitude of the association, or correlation, as well as the direction 

of the relationship: 

𝑟 =
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

√∑(𝑥𝑖 − �̅�)2  ∑(𝑦𝑖 − �̅�)2 
 (3. 7) 

r= correlation coefficient, 𝑥𝑖  values of the x-variable in a sample, �̅� the mean of the values 

of the x-variable.  

Table 9 shows that the most correlation is between GHI and GHI(t-1), Solar Zenith Angle, 

Elevation angle, GTOA, and GC clear sky model irradiation for ground and satellite data over 

the five years from 2011 to 2015 all stations grouped. Feature Selection and Principal 

Component Analysis (PCA) are performed to identify and select only the relevant features 

that lead to accurate forecasting. PCA is a technique transforms a set of observations of 

probably correlated variables into a set of values of linearly uncorrelated variables which 

are called principal components. Four components from seventeen different values that 

explained 99% of the variance, and two categorical variables: month, and hour, are kept 

from twelve different inputs and are considered to make the predictions. 

After Exploring the optimal input set configuration, the next step is to test the accuracy of 

the proposed machine learning method for solar forecasting, different tests and validation 

methods are exploited. K-fold cross-validation is the most prevalent test method used in 

recent studies (Rohani, Taki, and Abdollahpour 2018); (P. Jiang and Chen 2016). Cross-

validation consists of splitting the data repetitively in pairs of train and test sets, called 

‘folds’ to protect against overfitting. As depicted in Figure 22, in k-fold cross-validation 

the whole data set is split into k folds: at each iteration from 1 to k, one-fold is used as the 

Table 9: Pearson's linear correlation coefficients between pairs of GHI and each variable of measured data (G), 
satellite data (S) 
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testing set and k-1 folds as the training set, until all folds used to build the forecast model, 

k range between 3 and 10 are the typical values, 5-fold cross-validation was selected as a 

validation option in this study. 

 

 

 

  Data set  

K=1 Test  Training  

K=2 Training  Test  Training  

K=3 Training  Test  Training 

K=4 Training  Test  Training  

K=5 Training  Test  

Figure 22: Diagram of k-fold cross-validation with k=5; the blue boxes refer to testing data and the white to training one. 

The hyperparameters of each model have been estimated from 12 hourly ground and 

satellite training data each during 5 years. Models were trained using ground and satellite 

data separately. The best hyper-parameter set is selected as the following three steps:  

- Building several models with different hyper-parameter combinations using a subset 

of data from the training set. 

- Evaluating the models using the unused subset of data from the training set (validation 

set). 

- Choosing the model with the lowest error metric on the validation set. 

MATLAB Machine Learning Toolbox was used to train and validate machine learning 

forecasting models. For this study, we selected four models, namely, Support Vector 

Machines (SVM), Gaussian Process Regression (GPR) and Regression Trees (TRE, 

ENsTRE) models. The input data are taken from the database and loaded into MATLAB 

according to the case and time horizon. Before feeding the models with the inputs, 

datasets are standardized; in other words, rescaled to have a mean zero and a standard 

deviation of one; so that the different ranges of the features do not affect the contribution 

of each one. 

 Simple Regression Tree (TRE) 

It can be used for classification and regression. A decision-tree machine-learning 

algorithm is a type of supervised machine learning, where we give the input and what the 

corresponding output is in the training data. This algorithm automatically grows a 

decision tree by splitting each node on an optimal input variable. It stops splitting the 

nodes when no significant gain is obtained. 

Regression trees are an evolution of decision trees, usable in many fields of data 

processing. A decision tree is a series of choices that lead to a final decision. Graphically, 

the process is represented by a binary tree, each choice being between several branches 

and the decisions will be the leaves. This type of method, started in the 1960s, is part of 

recursive partitioning methods. Formalism as we know it today was carried out by 
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(Breiman et. al 1984) under the abbreviation CART: "Classification and Regression Tree". 

The two forms of this modeling qualitative (classification) and quantitative (regression) 

is compiled. This type of model can be used for forecasting in different fields (De’ath 

2007); (Troncoso et al. 2015); (Tso and Yau 2007). There are several variations of 

regression trees. The first one used to deal with regression problems is classical 

regression tree (Hastie, T., Tibshirani, R 1986) proposed the first formalism of this 

regressive model, the mathematical formula is 

�̂�𝑅𝑇 (𝑡 +  ∆𝑡)  =  ∑ 𝑘𝑖 ∗  𝐻 (𝑥 (𝑡 −  𝑖))
𝒕−𝟏

𝑖=1
 (3. 8) 

Where 𝑘𝑖  is a factor, 𝐻 is a function that returns 1 if the data are used otherwise it returns 

0. Once the tree is constructed, a regression model is applied to each node. When learning 

phase, an iterative process, we try to minimize the error between the value at time t and 

the same predicted value. 

 Ensembles of Trees ‘Bagging’ (ENsTRE) 

The term bagging is an abbreviation for "bootstrap aggregating". Bagging is another 

improvement level in forecasting models and especially regression trees. This method 

consists of generating regression trees on samples from the dataset, but unlike the 

boosting method, successive trees do not depend on responses from previous trees. 

where each tree is built using a bootstrap sample of the dataset. Bootstrap means created 

a new sample from the original dataset. Each sample is constructed by drawing with 

replacement, this is called resampling. The Gaussian assumption on the distribution of 

samples is not necessary. When the trees have been generated and the corresponding 

answers are available, a simple majority vote is used to make the forecast. This overall 

method gives significant improvements in the processing of data concerning complex 

phenomena whose input-output relationships are difficult to understand. We determined 

that the optimal number of leaf size is 30 from the training phase. Naturally, this step will 

have to be conducted as soon as we change the input data. 

 Gaussian Process Regression (GPR) 

Gaussian processes are models whose development is quiet (Rasmussen 2006). This 

type of model is, in fact, a generalization of a multivariate Gaussian (or normal) 

distribution. These are nonlinear models. The interested reader will refer (Lauret, David, 

and Calogine 2012). For a univariate forecast, the mathematical formulation of the models 

is as follows: 

�̂�𝐺𝑃𝑅 (𝑡 +  ∆𝑡)  =  ∑ 𝛼𝑖. 𝑘𝑓 (𝑥𝑖, 𝑥𝑡𝑒𝑠𝑡) 
𝑛

 𝑖 = 1
 (3. 9) 

With 𝑛 the number of training data, 𝒙𝒊 is the 𝑖 th input vector for training and 𝒙𝑡𝑒𝑠𝑡 the test 

input vector. With the covariance function defined by: 

𝑘𝑓 (𝑥𝑝, 𝑥𝑞) =  𝜎𝑓
2 . 𝑒𝑥𝑝 ( 

− (𝑥𝑝  − 𝑥𝑞)2

2𝑙2
) (3. 10) 

Where 𝜎𝑓
2 and 𝑙 are the hyperparameters of the covariance function, they define the 

complexity of the model and are also determined during the learning phase. In this study, 
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the coefficient 𝛼𝑖 is determined during the learning phase (resulting from the application 

of the covariance function on the training data) by connecting the input data with the 

vector of 𝑛 target values of the learning.  
Table 10: TEST GPR kernel 
 

GPR rRMSE rMAE rMBE 

Rational Quadratic 23,96 17,45 -0,20 

Squared Exponential 24,00 17,54 -0,24 

Exponential 24,61 17,83 -0,10 

Matern 5/2 23,95 17,46 -0,18 

In GPR model, the realization that is most coherent with the dataset is selected using 

training data, then the validation set is used to make predictions. The hyperparameters of 

kernel have been estimated from GHI training data via the minimization of the log 

marginal likelihood. Matern 5/2 was selected as the function kernel, Table 10. More 

details on GPR model may be found in (Rasmussen 2006), (Schulz, Speekenbrink, and 

Krause 2018). 

 Support Vector Machine (SVM) 

Support vector machines are a set of supervised learning techniques designed to deal 

with discrimination or regression problems. they can be used for both classification and 

regression. (Vapnik 2000), Support vector regression (SVR) is an adaptation data 

regression method of support vector machines. It has been successfully applied to time 

series forecasting. The formalism of SVRs is similar to that of Gaussian processes. The 

mathematical formula of SVRs applied to time series forecasting is (Lauret et al. 2015): 

�̂�𝑆𝑉𝑀 (𝑡 +  ∆𝑡)  = ∑ 𝛼𝑖

𝑛 

𝑖 = 1
 . 𝑘𝑟𝑏𝑓 (𝑥𝑖, 𝑥𝑡𝑒𝑠𝑡)  +  𝑏  (3. 11) 

Where, 𝒙𝒊 is the 𝑖 th input vector for training and 𝒙𝑡𝑒𝑠𝑡 the test vector. The radial basis 
function 𝑘𝑟𝑏𝑓 is given using 

𝑘𝑟𝑏𝑓(𝑥𝑝, 𝑥𝑞)  =  𝑒𝑥𝑝 [
− (𝑥𝑝  −  𝑥𝑞)2

2𝜎2
 ] (3. 12) 

The parameter 𝑏 (bias parameter) is obtained from the previous equation, the 

hyperparameter 𝜎, defines in particular the complexity of the model. Regarding SVRs, the 

coefficients 𝛼𝑖 are related to the difference of two Lagrange multipliers, a quadratic 

programming problem is solved to deduce 𝛼𝑖. Unlike artificial neural networks, which are 

subject to local minima problems, for SVRs the problem is strictly convex and therefore 

has only one solution. Additionally, it should be noted (unlike Gaussian processes) that 

not all training models participate in the previous relation. Selecting the right kernel is 

important in the Support Vector Machine SVM model. We used an optimizable support 

vector machine that optimizes hyperparameters, a medium Gaussian Kernel was selected. 

III.3.B. Satellite-based models 

Techniques based on satellite data use either images from sky imaging devices 

(cameras pointed at the sky) or images from satellites. From these "images", these 
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techniques can predict the movement of clouds, and from this information, coupled with 

specific algorithms solar radiance can be predicted.  

Satellite solar radiation estimates are also an alternative to a network of ground-based 

irradiation measurements and acquisitions, nationally or globally, Figure 23. Depending 

on the treatment of the interaction of solar radiation and the atmosphere, imaging 

satellites can be divided into two main families (albarelo 2017):  

- Geostationary satellites, whose orbital plane is that of the equator and altitude 

of revolution is approximately 36,000 km. They are suitable for monitoring a 

particular region. For example, GOES (Geostationary Operational Environmental 

Satellite, NASA, United States) and Météosat (Europe). This family is 

characterized by low spatial resolution (1km pixel side for the visible GOES 

channel, 4 km for the GOES infrared channel) and high temporal resolution (for 

example, images every 15 minutes for Meteosat-7 and every 30 minutes for 

GOES). 

- Polar-orbiting meteorological satellites, whose orbit is characterized by an 

inclination close to 90 ° with respect to the equator. They are characterized by 

high to very high spatial resolution (30 m pixel for Landsat 7, between 5 and 20 

m for SPOT 5) and by low temporal resolution (between 2 and 6 images per day). 

Among the main polar-orbiting satellites are the NOAA AVHRR (National 

Oceanic and Atmospheric Administration Advanced Very High-Resolution 

Radiometer) meteorological satellite, as well as Earth observation satellites such 

as Ikonos or SPOT (Satellite for Earth observation).  

 
Figure 23: satellite broadcast coverage map worldwide. 

Satellite models can be classified into two categories physical and statistical models (Noia, 

Ratto, and Festa 1993a) and (Noia, Ratto, and Festa 1993b). The advantages of physical 

models are their generalization due to the use of radiative transfer (RDT) models and the 
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fact that measurements of ground data are not necessary. However, radiative transfer 

models require precise and complete measurement of atmospheric morphology as well 

as careful calibration of satellite measuring devices. Statistical satellite models are based 

on simple statistical regressions between satellite and ground-based irradiation 

measurements. As a result, these statistical models are much simpler due to their 

independence from accurately measuring the composition of the atmosphere, but they 

suffer from their loss of universality and the need for data measured on the ground. 

Heliosat algorithms for estimating solar resources were developed in the 1980s (Cano et 

al. 1986), The original Heliosat method is based on the principle that a change in cloud 

cover above ground affects the overall irradiance reaching this surface. This dependency 

relation was translated by a linear regression between the cloudiness index, (n), and the 

clarity index, (Kt). Beyer (1996) replaced (Kt) with the clear sky index (Kc), which 

simplifies the approach with identical results. Then, (Rigollier, Bauer, and Wald 2000) 

proposed a new evolution of the method now called ”Heliosat-2”, although this method 

uses images from the Meteosat satellite (centered on Africa). (Albarelo et al. 2015b) 

developed Heliosat-2 method to be used with GOES images as input instead of METEOSAT 

images over French Guiana, the modifications include a change in the calculation of the 

cloud albedo and in the Linke turbidity factor values. For this study, we choose the 

optimized method, which offers the best spatial resolution and whose algorithm is 

accessible. For more details, readers are directed to (Albarelo et al. 2015b) and (Fillol et 

al. 2017). 

III.3.C. Numerical weather prediction method 

The NWP model is not a single tool but is a numeric system to forecast weather, based 

on the exploitation of a chain of complementary numerical models. NWP models generate 

a probability of cloud occurrence to be used as an input to dynamic models of the 

atmosphere to then determine the value of solar radiation at ground level. Approaches of 

these forecasting methods, with their limitations and precision, can be found in the 

literature ((Diagne et al. 2014); (Elliston and MacGill, 2010); (Espinar et al., 2010); 

(Heinemann 2006); (Paulescu et al., 2013)). Some of the numerical weather models are 

as follows: 

 The ECMWF model (Europe) “European Center for Medium-Range Weather 

Forecasts”. 

 The GFS model (American) “Global Forecast System model “. 

 The ARPEGE model (World) “Action de Recherche Petite Echelle Grande 

Echelle”. 

 The AROME model (French) for “Application of Research to Operations at 

MEsoscale”. 

 The WRF model (American) “Weather Research and Forecasting model”. 

WRF offers great flexibility to users with various spatial resolutions (from tens of meters 

to thousands of kilometers) and a large choice of different physical models. Moreover, 
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WRF has a large and active worldwide community with a cumulative total over 48 000 of 

researchers in over 160 countries according to the University Corporation for 

Atmospheric Research (UCAR). 

III.3.C.i. Weather Research and Forecasting Model 

(WRF) 

A numerical weather prediction system developed in the latter 1990’s in cooperation 

between the National Center for Atmospheric Research (NCAR), the National Oceanic and 

Atmospheric Administration (represented by the National Centers for Environmental 

Prediction (NCEP) and the Earth System Research Laboratory), the U.S. Air Force, the 

Naval Research Laboratory, University of Oklahoma, and the Federal Aviation 

Administration (FAA) for both weather research and operational forecasting. It is 

interesting to test our proposal on a numerical model like WRF has a physical description 

of clouds. The parameterization of WRF for French Guiana used in this study was carried 

out by Mouhamed Diallo (Diallo 2019). GFS forecast were selected for initial and 

boundary conditions. To choose the initialization, the time needed for WRF to produce a 

balanced state from GFS coarser initial and boundary conditions must be considered 

Figure 24. According to (Aryaputera 2015); (Diagne et al. 2014) the spin up time in the 

ITZ ranges between 6 and 12H. The GFS model is initialized every 6H starting at 00h; 

consequently, we chose the initialization at 00 UTC to allow for a spin up of 12H before 

the sunrise in French Guiana.  

  

Initial and boundary conditions Physiographic data 
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Figure 24: Physical process accounted for NWP models extracted from (Bauer, Thorpe, and Brunet 2015). 

First, initialize the grid (preprocessing) as Figure 25, involves the following steps:  

1) define the area of interest and the spatial resolution needed;  

2) interpolate static data (albedo, topography, …) on the grid (geogrid);  

3) interpolate dynamical data (wind speed, temperature, …) on the grid (metgrid).  

The static data are provided by UCAR website. The dynamical or grid data are provided 

by a global NWP, which allows large-scale phenomena. In this study, we choose the Global 

Forecast System (GFS) data (Environmental Modeling Center, 2003) because archives 

dating back 1997 are available, free of charge and no pre-processing steps are needed to 

ingest GFS forecasts in WRF. The GFS model is initialized every 6H starting at 00h. 

Input data: 

 Initial and boundary conditions (ECMWF). 

 Physiographic data (soil moisture, orography, albedo, land use, etc.). 

 The temporal resolution is 3H. 

 The spatial resolution reaches about 3 km at the center of the grid. 

 

Figure 25: Schematic diagram of WRF Pre-processing System (Rim et al. 2018). 
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Once the initial grid is set, WRF builds successively the next grids (the forecasted grids) 

by resolving the atmospheric equations. (Diallo 2018) found the best schemes in his 

theses work for each parameterization for solar forecasting in French Guiana. These 

parameterizations will be used in this study. Predictions of solar irradiation made using 

numerical models for the one-day ahead are known to be highly biased, due to the 

difficulties associated with insufficient performance of the radiative transfer models 

during partly cloudy situations. The clouds being reproduced in an averaged manner on 

each pixel, these models cannot resolve a partly cloudy sky. Therefore, it is necessary for 

us to refine them with a post-processing method. 

III.3.C.ii. Post-processing of NWP models 

Once forecasts with NWP have been generated, these can be improved by comparing 

them to data measured during an evaluation period in which improved models are 

developed and fitted. This MOS (Model Output Statistic) approach works fully if the 

forecast corrections are updated over time (recursive) and developed separately under 

different conditions or systems. That is because forecast errors often depend on the hour 

and year, sky conditions, etc. These models are frequently modified and updated, which 

requires forecast corrections to adapt them, therefore we will speak of adaptive forecast 

and correction models. (E. Lorenz 2011) applies a method to forecast solar irradiation in 

Germany by coupling the MOS correction with the clear sky index and the solar zenith 

angle to correct the bias related to the forecast. A similar procedure was applied by 

(Mathiesen and Kleissl 2011) for the United States and different bias structures were 

found for different NWP models. The elimination of bias has also been studied by (Pelland, 

Galanis, and Kallos 2013) for North American global radiation forecasts from NWP 

models, using a linear Kalman filter with 30-60 days sliding training window. Other 

approaches to forecast from the outputs of NWP models and historical data have been 

performed. Authors proposed and validated several methods for GHI forecasts in various 

territories located in the ITZ. (Diagne et al. 2014) proposed Model Output Statistics (MOS) 

method which is an ANN model for improving the day ahead solar GHI forecasts from 

Weather Research and Forecasting (WRF) model in Reunion Island. (Soubdhan et al. 

2016) combined a Kalman filter and an Auto-Regressive (AR) model in Guadeloupe to 

produce GHI estimates for forecasting horizons ranging from 1 second to 60 min. In 

another study using WRF as well as two statistical methods to obtain a day ahead GHI 

forecast. Yet, results found for territories located in the ITZ were consistently higher than 

those found for similar climate and models in extra-tropical areas.  

The Kalman model predicts the GHI bias that may occur with the numerical model 

prediction which is WRF in our case. The investigation of the optimal input set in the 

Pelland’s approach (Pelland, Galanis, and Kallos 2013) and replacing the measurements 

with satellite estimates in the application of the Kalman filter to correct the prediction of 

WRF forecasts. This latter combined with the Galanis initialization technique (Galanis et 

al. 2006), Kalman was used for the wind forecast, this combination resulted in a new 

prediction method. 

This family of models is interesting since having significant data histories is not necessary. 

However, they exhibit relatively restricted performance with difficult apprehension due 
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to sudden variations in radiation. They are very often used as a reference model to better 

estimate the contribution of more complex predictive models as WRF model. 

In our study, we used a Kalman filter as a tool for improving the forecast of WRF model. 

which is a recursive estimator (Cheng, 2016), it is a compilation of the estimate at this 

moment only with the estimate at the previous moment and the measure of this moment 

(Chaabene et Ben Ammar, 2008). Furthermore, the recursive nature of the Kalman 

algorithm, unlike other conventional forecasting methods, such as the ARMA model 

makes it a solution suited to this step. The Kalman filter is more often defined by two 

phases, which are complementary, Figure 26: 

- The prediction phase. 

- The correction ‘update’ phase. 

 

Figure 26: Kalman filtering algorithm (Extracted from (Pelland, Galanis, and Kallos 2013)). 

The forecast phase is based on the state at the previous instant to produce a forecast for 

the present instant. This predicted state is called "a priori", at the moment when it is 

generated, it is not possible to have an observation of this moment. 

In the next phase so-called "update" phase, the "priori" forecast is compiled with the 

observation of this moment to refine the forecast. The result of the compilation is then 

called a “posterior” forecast. For the general case, the sequence of the prediction and 

correction phases, as well as the applied equations are written as 

1. State Prediction 

Let  x̂t+h\ t be the state to be predicted at time step h based on information available at 

time t: 

x̂t+h\ t  = M𝑡 . 𝑥𝑡 + 𝜔𝑡.   (3. 13) 
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Here 𝜔𝑡 is white noise represents the state random change from t to t+h, which 

corresponds to a covariance W (= N (0,W)). M𝑡 is the matrix, which connects the real state 

to the observation, in this study we started from the assumption that the observation is 

the real state; therefore, M is an identity matrix. 

At time step h, an observation of the actual state 𝑦𝑡 , takes the following form: 

𝑦𝑡+ℎ = H𝑡+ℎ . 𝑥𝑡 +ℎ\𝑡 + 휀𝑡 (3. 14) 

H𝑡 is a matrix of 3 columns; given as follow:  

In which 휀𝑡 is the observation noise, which is assumed to be an average Gaussian white 

noise with a covariance V (= 𝑁 (0, V)). The initial state of the model and noise at each time 

step is assumed to be mutually independent. This is in fact a "posterior" predicted state 

at time t, which comes from observations up to time t.  

2. Covariance Prediction: It is then necessary to judge the accuracy of the model. We 

calculate the covariance matrix of the "posterior" error, which is called P (an estimate of 

the predicted state). The definition of the form of P is:    

�̂�𝑡 +ℎ\𝑡  = 𝑃𝑡 + 𝑊𝑡 .   (3. 16) 

During the compilation of this matrix P, we defined a “sliding window” for the 

computation of the covariance matrix allowing us to consider the seasonality due to the 

nature of the data constituting the signal.  

3. Gain Correction: deduce the gain of the Kalman filter K, which is defined by: 

𝐾t+h = �̂�𝑡 +ℎ\𝑡 ∗ HT
t+h / (Ht+h ∗ �̂�𝑡 +ℎ\𝑡 ∗ HT

t+h + V ) (3. 17) 

4. State Correction: Then we introduce the correction factor described and defined by 

A.C. Harvey (1990): 

𝑥t+h =  x̂t+h\ t  +  𝐾t+h  ∗  (𝑦t+h  −  Ht+h ∗  x̂t+h\ t) (3. 18) 

5. Covariance Correction: updating the error covariance term 

Pt =  (1 −  𝐾t ∗ Ht) ∗ �̂�𝑡 +ℎ\𝑡. (3. 19) 

Then, sequences of the next prediction and correction phases are repeated. 

From these formulations, we define the forecast model for a horizon h = 1: 

x̂t+1\t =  Mt+1 ∗ x̂t\t (3. 20) 

For the generalized formula for any horizon h (1H to 6H): 

x̂t+∆𝑡\t =  Mt+∆𝑡 ∗ x̂t\t (3. 21) 

Ht+h  = [1, WRF ̂
t+ℎ , Cos (ϴz(t + ℎ)) ] (3. 15) 
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In simple words, the Kalman filter is a model which: 

- Compare the forecast to the observation; 

- Attempt at every moment t to make the best forecast match with the observation. 

First forecasts of the Global Forecast System (GFS) model are downloaded. Second, in 

order to downscale the temporal and spatial resolution of this forecast, data from GFS are 

used as input to the WRF model. WRF builds the forecasted grids of solar irradiation. As 

we said the spatial resolution of this grid can reach 3 km. Third and last, a post-processing 

method as Kalman filter bias correction is applied to obtain one to six hours ahead of 

forecasting using WRF output and satellite data, Figure 27. 

Using measurement data in post-processing step reduces the spatial resolution. In other 

words, the post-processing of WRF is applying only on the point where we have the 

measurement. Our contribution in this part will be testing and validated the use of 

satellite data to correct the WRF forecast’s bias. GHI forecasts from WRF were compared 

with ground-based irradiation measurements to analyze forecast accuracy. This way 

allows us to correct the output of WRF model in any geographical point in French Guiana 

and for several forecast horizons. 

III.3.D. Hybrid method 

Ensemble forecasts are classical in meteorology for uncertainty quantification. 

However, Ensembles combine multiple members to create a single output that should 

have better performance than any other ensemble member. Most of the articles in the 

literature related to comparisons between different complex models, the models are 

compared with each other, and often hybridized to observe the possible improvements in 

their performance due to these hybridizations. Hybridization is putting together different 

models to use them together and observe the effects on performance when forecasting. 

This method often generates improvement but also the complexity of the models. To 

reduce model uncertainties, using hybrid systems have been suggested. A hybrid system 

or a multi-model ensemble is characterized by a combination of any forecasting methods. 

This approach captures the advantages of each ensemble member and forecasting 

 

Figure 27: A Kalman filter bias correction method with satellite data for 1 to 6H ahead. 
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method. It combines ensemble members to produce a single forecast more accurately 

than any individual model of the ensemble. (Mallet, Stoltz, and Mauricette 2009) 

summarized and tested this method on forecasts of respectively electricity consumption 

and ozone concentrations. Still, (Yokohata et al. 2013) studied climatological ensembles 

of top atmosphere radiation and radiation in cloud-free conditions. (Cesa-Bianchi and 

Lugosi 2006) detail the solid mathematical background of hyprid methods. Recently (J. 

Thorey et al. 2015) compare the ensemble forecasts of solar radiation from TIGGE 

(THORPEX Interactive Grand Global Ensemble) and used a sequential aggregation method 

to combine linearly irradiation forecasts from these several weather forecast centers. (J. 

Thorey et al. 2015) found that the aggregated forecast is more accurately than any 

individual forecasts. Nevertheless, this approach only used the weather prediction model 

as ensemble members. To the best of the author’s knowledge, no previous studies have 

attempted to combine weather forecasts model and statistical methods to improve hour 

ahead of solar irradiation forecasts. 

The Ridge Regression method was used to linearly combine all forecasts with weights 

varying by models. Sequential aggregation updates the weights before any forecast using 

satellite-derived data, we validated our method over three months of GHI ground-based 

irradiation measurements of 2016 with hourly data of GHI from six stations of the French 

national weather service. 

We apply a ridge regression method (J. Thorey et al. 2015) to aggregate each ensemble 

member’s GHI forecasts. Data from one site used to obtain every model weight via the 

equation (3.22): 

 𝑤 = 𝑎𝑟𝑔𝑚𝑖𝑛(∑( 𝑋𝑖 − 𝑋′
𝑖
𝑇

𝑤)
2

+ ∑ 𝑤𝑗
2

𝑝

𝑗=1

𝑛

𝑖=1

) (3.22) 

Data from other sites are used to validate these weights to derive an improved GHI 

forecast equation (3.23). 

�̂�𝑀𝐸  (𝑡) = ∑ 𝑤𝑇�̂�𝑇(𝑡)

𝑚

𝑇=1

  (3.23) 

Where, m is the number of models; 𝑤 is The model’s weight and �̂�𝑇(𝑡) is the GHI 

forecasted by the model at time t. Consequently, the aggregated ensemble has a forecast 

horizon of one to six hours. The different steps of the ensemble method used to improve 

the GHI forecasts in the ITZ are shown in Figure 28.  

 

Figure 28: A basic flow diagram of the process. 
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The first model of the ensemble is a hybrid physical statistical model; it is obtained by 

post-processing physical model: Weather Research and Forecasting model (WRF) output 

with a Kalman filter bias correction method, the second, third and fourth models are 

statistical: the smart persistence, Auto Regression moving average and machine learning 

models.  

III.4. Summary of the models 

To forecast the GHI, we considered a coupling with an alternative resource that 

accounts for cloud properties. Satellite-derived data were chosen as the alternative 

resource because they can provide information on the optical properties of the cloud. The 

cloud fraction observed by satellite is used as a proxy of cloud transmittance. Every 

chosen model of these models constitutes an interesting panel of techniques to tackle 

forecasting problems. In the family of models without learning and in general, it is 

possible to assert that these models are easier to implement (persistence and smart 

persistence). In the family of models with training step (much more complex) it is possible 

to "classify" the models by the complexity of implementation: 

- Classic methods, are the least complex (AR, ARMA). 

- Methods based on Kernel functions (Gaussian process, Support vector 

machine). 

The methods of strengthening, bagging and random forests are based on simple 

regression trees. However, the nuances in their operation, whether it is the reinforcement 

algorithm or the sampling of training data from several methods, give these models 

greater complexity of implementation and less readability. For physical methods, we 

chose to use the WRF model to make the GHI forecasts. WRF numerical model is free, has 

a dynamic scientific community and the initialization data are easy to acquire. Indeed, a 

bibliographic study has shown that the Kalman filter is a powerful post-processing 

technique in the field of forecasting meteorological variables. In fact, the treatments are 

done on a desktop computer and the results are available quickly. The program requires 

low computing power and allows results to be obtained in real time. Concerning Hybrid 

Methods, which are the most complicated methods because they require the simultaneous 

use of more than one of the models. We choose a Sequential Aggregation method, one of 

the benefits of aggregation is that large improvements are achieved at the most difficult 

time steps, even with a single member of the ensemble (Jean Thorey 2018).  

For the 6 ground-based irradiation measurements sites, forecasts of GHI at hourly time 

steps and for time horizons of 1H to 6H were produced. The purpose of this research is 

not to compete with various solar forecasting tools that are academically or commercially 

available today, but to generate our own solar forecasting results using satellite-derived 

data with simple, inexpensive and effective methods. 

In the next chapter, 1H forecasts for each model will be first presented using one year of 

measured and then satellite-derived data. The next 1 to 6H forecasts will be discussed. 

Three months’ data of 2016 are used to reduce the bias of a numerical model. Finally, 
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satellite-based method forecasts will be gathered in an ensemble method to get one and 

more accurate forecasts.
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IV.1. Introduction 

We have described, in the previous chapters, the main tools that we have used to 

achieve the hourly GHI multi-horizon forecast using satellite-derived irradiance as 

observations. After discussing the need for forecasting, we have reviewed all of the 

predictive methodologies. which ranges from collecting and preprocessing data in 

Chapter .II to describe in detail the methods tested in Chapter .III. The third chapter 

focused on the development of an operational methodology by detailing the models that 

we have implemented and by proposing a hybrid forecasting approach. The goal is to 

show that satellite-derived data can replace ground measured data. Then study the 

accuracy improvement of the models forecasts due to hybrid ensemble method.  

This chapter contains the results and discussions of empirical tests of the methods chosen. 

All the experiments are conducted using the MATLAB environment; The tests are focused 

on comparing the predictive performance for several ground measured and satellite-

derived irradiance. This chapter is divided into four main sections relating to four 

experimental conditions. The most objective conclusions will then be drawn up to 

highlight the strengths and weaknesses of the different models according to observations. 

The first section of Chapter .IV relates to the models for intraday GHI forecasting per 

hourly time step in French Guiana. These models were previously described in (III.3.A.i),  

Our contribution will be the use of satellite-derived irradiance data as input to  statistical 

methods to forecast solar irradiation in an ITZ. These models will be validated and 

compared over six meteorological sites (Rochambeau, Saint Laurent, Saint Georges, 

Maripasoula, île Royale, and Kourou) in French Guiana. Then we will try to relate the 

results obtained in a hybrid method to improve the forecast. 

As we saw in Chapter .I, forecasting demand from power grid operators is increasing. In 

addition to the expected value of the resource, these users should have a forecasting 

framework. Thus, in the second section of this chapter, we will briefly present the 

development of the different forecast models used in this study. Then, in the third section, 

we will present a preliminary assessment of statistical forecasting techniques using 

hourly satellite-derived irradiance as input to statistical methods. In the fourth section of 

this chapter, four machine learning models will be used to forecast GHI using satellite-

derived irradiance data as input. The fifth section of this chapter will deal with improving 

the prediction of the numerical weather prediction model using satellite-derived 

irradiance data as input in kalman filter. Our proposal with satellite-derived irradiance 

data will allow us to obtain the following framework; using satellite-derived irradiance 

data as observation outperform the post-processing technique predictions. The sixth 

section will present the work and experiments performed within the framework of the 

ensemble method. The operating mode will differ a little from what can be found in the 

literature, and thus lay the foundations for a new forecasting model on the horizon and 

the geographic zone. Finally, a general summary of our simulations and results will be 

presented and discussed. The new approach is the use of hourly satellite-derived 

irradiance as inputs to build and train different models to forecast the GHI in the ITZ. 

Using satellite-derived irradiance as input to statistical methods has the advantage of 
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removing ground-based irradiation measurement stations and then makes it possible to 

make the forecast at any point in the satellite image. 

IV.2. Forecast of horizontal global irradiation (6h/1h) 

The first part of the simulations concerns the development of the different forecast 

models. Additionally, this step allowed us to test the protocol for preparing and using data 

for conducting the forecast. In this section, we will detail the forecasts made using all the 

models we have produced. The goal of most of this work was to evaluate models for 

intraday forecasting GHI at hourly time step according to two sets of observations. 

IV.2.A. Forecast models Construction 

Hourly satellite-derived irradiance is used to realize the prediction with ten models. 

The developed and tested models fall into three main groups:  

1. Statistical Models:  

a. Linear Models 

i. Persistence model (P). 

ii. Scaled Persistence model (SP).  

iii. Auto Regression model (AR). 

iv. Auto Regression Moving Average (ARMA).  

b. Non-linear Models 

i. Gaussian Processes Regression (GPR). 

ii. Support Vector Machines applied to regression (SVM).  

iii. Simple Regression Trees (TRE). 

iv. Ensembles of Trees ‘Bagging’ (ENsTRE). 

2. Numerical models: 

Weather Research and Forecasting model (WRF), numerical weather forecasting 

model, improved by the use of the Kalman filter. 

3. Hybrid models:  
Combine all the previous predictions into a single improved one with a sequential 

aggregation method (J. Thorey et al. 2015). 

The protocol followed for constructing the forecast models is presented in Figure 29 for 

measured data and then satellite one.   
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a. Measured Data 

 

b. Satellite-Derived Data 

Figure 29: Representation of the methodology to construct the forecast models 

The first steps up to pre-processing have been detailed in section II.4 of this document. 

Once; the data are pre-processed, they are ready to be used by the different models. The 

different models are presented in detail in Figure 29. 

IV.2.B. Models performance comparison 

We classified in Table 11 each forecast model used in this study. This classification is 

based on two criteria: their structure complexity and the number of parameters required 

for their implementation. This table aim to ease the comparison between each model and 

highlight both their advantages and drawback.   
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Table 11: Models Classification according to their complexity. A mathematical description of these model was given in 
Chapter .III. Complexity degree increase from + to ++++. 

 
MODELS PROS & CONS  TIME CONFIGURATION 

PARAMETERS 
COMPLEXITY 

1.  P 

Reference model. 
No historical data requirement. 
A high correlation between past and 
future. 

+ - - 

2.  SP 

No historical data requirement. 
A high correlation between past and 
future. 
Clear sky irradiation. 

+  
Clear sky model data. 

+ 

3.  AR 
Forecast using a linear combination of 
predictors. 
Less information is required. 

++  
The number of historical data. 

++ 

4.  ARMA 
Takes into account trends, cycles, 
seasonality, errors, and other non-static 
types of data when making forecasts. 

+++  
The number of historical data. 

++ 

5.  GPR 
Directly captures the model uncertainty. 
Add prior knowledge by selecting 
different kernel functions. 

+++++ The number of historical data. 
Covariance function. 
Hyperparameters. 

+++ 

6.  SVM 
Add prior knowledge by selecting 
different kernel functions. 

+++ The number of historical data. 
Covariance function. 
Hyperparameters. 

+++ 

7.  TRE 

Simple to understand, interpret and 
visualize. 
Over-fitting issues. 
 

+++ The number of historical. 
Data Reinforcement 
Algorithm. 
The number of trees. 

+++ 

8.  ENsTRE 
Reduce the variance of a decision tree. 
Not bias, and solves over-fitting issues in 
a model. 

+++ The number of historical data. 
The number of trees. 
The number of samples. 

++++ 

9.  WRF 
Open source code. 
Easy to acquire data initialization. 

++++++ Download GFS data. 
WRF Parameterization. 

++++ 

10.  Kf 

Recursive nature of the algorithm. 
Efficient technique in meteorological 
variables forecasting. 
Reduce the bias in the GHI forecasts 
without needing a long historical data 
archive 

++  
Solar Zenith Angle. 
Hyperparameters. 
Update window. 

++ 

11.  Ens 

Coupling different methods. 
Improve the prediction performance over 
any contributing member of the 
ensemble. 

++++ Different forecasting 
methods. 

+++ 

 

The simplest model to implement is the Persistence model, this model consists of 

considering that the predicted data are equal to the previous data while keeping in mind 

that it is only efficient in clear sky condition so it is only useful as a reference model. Next 

is the Scaled Persistence model, which despite its simplicity performs better. Slightly 

more complex models are recursive, Auto-Regressive processes and with Moving 

Average. These models have approximately the same number of parameters. Models 

based on machine learning as Regression Trees, Gaussian Processes, and Support Vector 

Machines are even more complex.  

Finally, the more complex models are numerical ones such as WRF. WRF output are 

improved using the Kalman filter. The complexity lies in determining the update window. 

Further details on these update windows were given Chapter .III. 

The last one is the one based on ensemble techniques and data sampling. They require 

more parameters to implement and data sampling can be complex, making these models 

the most computationally intensive. This construction phase was important and allowed 

us to familiarize the operation. Subsequently, we will compare these different models on 

both ground and satellite-derived data series separately. After studying the 
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characteristics of the stations and sky conditions in each station in II.5, we decided to use 

the data from all stations for the simulations. This choice is intended to facilitate the 

discussion and results presentation for the ten different models, the two datasets used as 

input, and horizons from 1 to 6H ahead. For the 6 ground-based irradiation measurement 

sites, we made forecasts of GHI at hourly time steps and for horizons from 1H to 6H ahead. 

We will first present the one-hour forecast results with the ground and satellite-derived 

data separately by identifying the best model according to the uncertainties obtained. 

Second, we will compare the results for the remaining forecast horizons. Details on 

prediction errors by datasets, model, station, and time horizon can be found in the ANNEX. 

We will present graphically the various parameters for estimating the relative forecast 

error RMSE, MAE, and MBE. MBE will not only allow us to judge the accuracy of the 

models, but also to determine whether these predictive models with satellite-derived data 

overestimate or underestimate the reel value. The MAE, RMSE is more sensitive to large 

forecast errors (and weighs larger deviations) and is recognized to be more 

representative of the quality of a model (COST action ES1002 Weather Intelligence for 

Renewable Energies (WIRE), 2012). It is used especially when small errors are tolerable 

and large errors have negative consequences. Models will also be compared with each 

other using the efficiency score of the model "skill score" or "forecast score". Using this 

parameter, the improvement (or not) brought can be estimated using a prediction model 

(more complex) compared to a reference model (naive and simple to implement); this 

reference model in our study is the Persistence. 

The next sections are devoted to the use of models on the available datasets, identifying 

model selection parameters, and showing the forecasting performance from one to six 

hours ahead obtained for models of each category. 
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IV.3. Preliminary assessment of statistical forecasting 

techniques solar irradiation forecast 

The objective of this section is to intraday forecast hourly GHI with good precision 

over French Guiana located in the ITZ. A time series of images are retrieved from the 

meteorological geostationary satellite GOES-13 to estimate GHI (as seen in III.3.B). We 

made a hypothesis in an ITZ, and we studied it for simple and primary cases. Models based 

on Persistence and Auto Regression were first tested. The mathematical methods to build 

the models are introduced in Chapter .III of this document.  

In this section, the two-phase realization of the AR and ARMA models is implemented in 

the MATLAB System Identification Toolbox. Once the ARMA and AR parameters are 

computed, one can forecast hourly GHI for the validation period. To produce GHI forecasts 

at time (t + forecast horizon), these models need observations at time t or (t, t-dt). In this 

section we start by presenting the results using data from each station.  

Figure 29 shows the results of the 1H ahead forecast error for each station. For regression 

models, the differences in forecast error estimates between ground measurement and 

satellite-derived data are less than 2%. Moreover, the differences in the performance of 

persistence model between the ground and satellite-derived data range from 0.2 to 1.5% 

depending on the station. For the 1H time horizon, models perform the same with ground 

and satellite-derived data, noting that the least performing is the persistence model (P). 

The KR station has the lowest forecast error estimates among the six stations with nRMSE 

and nMAE values around 37.3%, 30.8% for ground data and 37.4%, 30.4% for satellite-

derived data, respectively. Whereas the IR station has the highest forecast error estimates 

among the six stations with nRMSE, nMAE around 42.4% 34.7% for ground data and 

41.5% 33.8% for satellite-derived data, respectively. Persistence model is a naïve 

estimator known to perform poorly and is usually used as a reference model for 

comparison with other predictors, as is the case in this study. The Scaled Persistence (SP) 

model with ground data is more accurate than with satellite derived data. For the KR 

station, the nRMSE and nMAE are about 25.3%, 19.3% for ground data and 32.5%, 21.4% 

for satellite-derived data, respectively. 
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Figure 30: 1H forecasting errors according to station for Ground measurement (G), Satellite-derived data (S) with four 
statistical models in 2016. 

Representing the MBE in the form of histograms allows us to judge if the models over- or 

underestimate the observation. If the model is well built, its MBE should be close to zero. 

The nMBE results presented in Figure 30 show that using satellite-derived data in the 

persistence-based method underestimate the observations according to the station by 

about 10.7% to 3.2% for P model and by about 12.4 to 6.9% for SP model. While the use 

of satellite-derived data with the regression-based method tends to vary between 

overestimation or underestimation of observation according to the station. For 1H time 

horizon, results reveal that, the best performance models are ARMA and then SP.  

The next step is to plot the forecasting errors against the horizons. It seems interesting to 

represent several forecasting horizons accuracy for ground and satellite-derived data 

graphically. This representation highlights the performance of these models for 

multistep-ahead in French Guiana, as in Figure 31 and Figure 32. 
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Figure 31: nRMSE forecasting errors vs. time Horizon for Ground measurement (G), Satellite-derived data (S) with four 
statistical models in 2016 according to station. 

Figure 31, satellite-derived data with the ARMA model improves the P model depending 

on the station from 4.9% to 8.7% for the 2H horizon and 57.9% to 67.1% for the 6H 

horizon. This difference can be taken into consideration to justify the use of a complex 

model such as ARMA. Forecasting errors show that models perform better with ground 

data for a one-hour time horizon. 
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Figure 32: nMAE forecasting errors vs time. Horizon for Ground measurement (G), Satellite-derived data (S) with four 
statistical models in 2016 according to station. 

However, for horizons over 2H, satellite-derived data are more suitable to make the 

forecast. Since satellite-derived data give information at the top of cloud processes, they 

have more information about the next value and are more suitable to make the forecast 

than the Ground one.  

The nMBE forecasting errors of four statistical models depending on the station, time 

horizon are shown in Figure 36. 
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Figure 33: nMBE forecasting errors vs. time Horizon for Ground measurement (G), Satellite-derived data (S) with four 
statistical models in 2016 according to station. 

We note that using ground data as inputs to the persistence-based method leads to an 

overestimation of the observation. For P model, the nMBE values range from 0.4% to 1.4% 

and 1.7% to 16.3% depending on the station for 1H to 6H horizon, respectively. While 

using satellite-derived data as input to P model leads to underestimation of the 

observation. Regarding the regression-based model, we note that the two models perform 

the same way in overestimating or underestimating the observations, depending on the 

station.  

Next we present the performance of the models using the data of the six stations together. 

Forecast results of six stations together for a one-hour horizon are recorded in Figure 34. 

Figure 34 shows that when the ground or satellite-derived data are used as inputs for the 

regression models, the differences between the forecast error estimate are negligible. 

Moreover, the difference in nRMSE and nMAE between the forecast error estimate using 

the persistence model when the ground or satellite-derived data are used as inputs are 

small. For 1H time horizon, the less performing model is persistence (P) with values of 
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nRMSE and nMAE about 39.65%, 32.55% for ground data, respectively, and 40.23%, 

32.65% for satellite-derived data, respectively. For 1H, the Scaled Persistence (SP) model 

with ground data is more accurate than satellite-derived data, with nRMSE and nMAE of 

28.06%,19.80%, and 31.44%, 23.24%, respectively.  

 

Figure 34: 1H forecasting errors for Ground measurement (G), Satellite-derived data (S) with four statistical models in 2016. 

Figure 34 shows that using satellite-derived data with the four statistical models 

underestimates the observation with varying values between the persistence-based 

method and the regression-based method. Where P and SP models using satellite-derived 

data underestimate the data by about 6.07%, and 6.2% respectively. AR and ARMA 

models using satellite-derived data underestimate the data by about 0.07% and 0.18%, 

respectively.  

Results reveal that for satellite-derived data, the model that shows the best overall 

performance is ARMA. For the second and third models, the choice is more delicate 

between AR and SP with a small difference in the forecast error estimate. We may explain 

the poor performance of AR due to its prediction method, as we obtain forecast by a linear 

combination of the past hour observation. 

The performance of several forecasting models using ground and satellite-derived data 

for multistep-ahead in French Guiana is shown in Figure 35. 
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Figure 35: nRMSE, nMAE forecasting errors vs. Horizon for Ground measurement (G), Satellite-derived data (S) with four 
statistical models in 2016 for 6 time horizons. 

Using satellite-derived data, the difference between the best-performing model ARMA 

model, and the reference P varies from 27.25% to 40.23% for 1H time horizon, and from 

41.72% to 109.05% for 6H time horizon, respectively. As we mentioned before, this 

difference can be taken into consideration to justify the use of a complex model as ARMA. 

Forecasting errors show that models perform better with ground data for one-hour time 

horizon. However, for horizons over 2H, satellite-derived data combined with regression-

based models are more suitable to make the forecast than with ground one. According to 

the time horizon, models tend to vary between over- or underestimate the observation, 

Figure 36. 

0
20
40
60
80

100
120
140

G S G S G S G S

P P SP SP AR AR ARMA ARMA

nRMSE

1H 2H 3H 4H 5H 6H

0
20
40
60
80

100
120
140

G S G S G S G S

P P SP SP AR AR ARMA ARMA

nMAE

1H 2H 3H 4H 5H 6H



Simulation and forecasting results 

 

MAHA SALLOUM-2021   - 100 - 

 
 

Figure 36: nMBE forecasting errors vs. Horizon for Ground measurement (G), Satellite-derived data (S) with four statistical 
models in 2016. 

nMBE of P with ground data overestimate the observation from 0.50% to 4.5% for 

horizons 1H to 6H, respectively. While P models with satellite-derived data underestimate 

the observation from -6.07% to -0.02% for horizons 1H to 6H, respectively.  

Based on the foregoing, we observed similar results using data from stations separately 

and together. The decision was made to discuss the results of prediction errors using data 

from six stations together. A decision that does not conflict with our purpose and spares 

us complexity and distraction. For the following, we present only the prediction error 

results using the data from the six stations together and not separately. Results for each 

of the stations are presented in the ANNEX. 

Figure 37 represents the skill score as a function of time horizon considering the (P) as a 

reference. Negative results mean that the model is worse than the benchmark, and 

positive results mean it is better. Positive results from this figure show that all Ground-

based and Satellite-based models perform better than the reference for all time horizons. 
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Figure 37: Statistical models’ Skill score compared to P according to forecast horizons. 

To further analyze the effect of the use of satellite-derived data, it seems interesting to 

present the MAE value for the reference model and the best two statistical models as a 

function of Mean clear sky index (MKC) and mean clear sky index variability (VKC) using 

data from MP station and for three horizons h + 1, h + 3 and h + 6 in Figure 38. 

Figure 38, a) shows that the Ground-based models perform better than Satellite-based 

models for clear sky conditions with low variability i.e. V𝐾𝑐<0.2. Higher MAE values for 

each model are found under cloudy and highly variable sky conditions i.e. 0.4<M𝐾𝑐<0.65 

and V𝐾𝑐>0.2. Note that, under cloudy and highly variable sky conditions the Satellite-

based models perform better than Ground-based models. Figure 38, a) also shows that 

the Ground-based models perform better than Satellite-based models for VKc values 

lower than 0.2 and independent of the MKc value. By contrast, for VKc values higher than 

0.2, the Ground-based model data perform poorer than Satellite-based models. 
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MAE(W/m2) 

 

 

a) Time horizon= 1H 
MAE(W/m2) 

  

 

b) Time horizon= 3H c) Time horizon= 6H  
Figure 38: MAE for the reference model (Persistence) and the best two models (Scaled Persistence, ARMA) using 
ground data (G) then satellite-derived data (S) for MP station data in 2016. 
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Figure 38, b) c) shows that Satellite-based models perform better than Ground-based 

models for 3 and 6 time horizons, especially under cloudy and highly variable sky 

conditions. Figure 38, b) c) also shows that the Satellite-based models perform better than 

Ground-based models for VKc values higher than 0.2 and independent of the MKc value. 

For clear sky conditions with low variability; the Satellite-based models perform similar 

to Ground-based models.  

The scatter diagrams of forecast irradiation with satellite-derived versus observed data 

for the ARMA model are illustrated in Figure 39, for six-time horizons.  

 

Figure 39: Scatter plot of forecast irradiation with satellite data versus observed irradiation for ARMA model for six-time 
horizons. The black line represents the GHI forecasted by ARMA using satellite data, the red line is the GHI forecasted by 
ARMA using ground data and the magenta line depicts the line corresponding to x = y (i.e. perfect correlation). 

We note the following: 

- The more the time horizon increases, the more the dots are scattered, which seems 

logical. 

- ARMA_G line interposes the ARMA_S line for all horizons, this can be taken as an 

indication of similar performance. 

- Increasing the angle between the ideal predictor and the two ARMA models with 

the horizon.  
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- For time horizons over 3H, we can notice that ARMA gives a high value to predict 

the lowest GHI values. For example, for a time horizon of 6H, to predict the value 

of 17H (GHI should have a low value where the next hour 18H is the sunset hour) 

the ARMA model will use the high value of 11H as the past value.  

- Even if there are dots whose predicted value is very far from the measured one, 

however, we can see that most of the values are around the ideal predictor.  

Summary 

As a conclusion of this paragraph on combining satellite-derived data with four Well-

used statistical models, we note the following: 

 Persistence (as we expected), does not seem to be suitable. 

 AR and ARMA models perform comparably using the two datasets. 

 Although the models’ performances with satellite-derived data are close. The ARMA 

model is the most suitable. ARMA model improves the persistence model with 

nRMSE from 13% to 70% for 1H to 6H ahead, respectively. 

 When predictive models give very similar results, the choice of the predictor can be 

made based on the complexity of the implementation and the computation time. 

 The SP model presents interesting performances with satellite-derived data and 

has the advantage of being easy to implement. 

 The models with ground data have better performance than satellite-derived data 

for 1H time horizon with a difference in nRMSE of 0.5%, whereas regression-based 

models with satellite-derived data are more suitable to make the forecast than with 

ground one for horizons higher than 2H. 

 For 1H time horizon, Ground-based models perform better than Satellite-based 

models for low variable sky conditions. For the other sky conditions, the Satellite-

based models perform better than ground one. 

 Horizons higher than 1H, Satellite-based models perform better than ground one 

for all sky conditions. 
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IV.4. Machine learning models for intraday solar irradiation 

forecast 

Geostationary satellite-derived data in French Guiana are used to evaluate the 

performance of several machine learning techniques in solar irradiation forecast. This 

section proposes the use of GHI estimations from satellite images with machine learning 

techniques to forecast hourly GHI in French Guiana. These estimations are combined with 

exogenous variables related to sun position to be used as inputs to learn and validate 

machine learning models. Five years (2011 to 2015) of hourly GHI data from six stations 

are used for the training phase of four machine learning techniques: Gaussian Process 

Regression (GPR), Support Vector Machine (SVM), Regression Trees (TRE), Ensembles of 

Trees (ENsTRE). Generalizability and stability were evaluated using different sizes of 

training data with 5-fold analysis. These models have been selected as regression 

techniques to be evaluated, due to their good performance in similar problems in the past. 

Hourly GHI data of 2016 are used for the validation phase. We study the intraday-

forecasting performance for the validation process. One to six hours ahead forecasts were 

obtained using satellite-derived then ground measured data of 2016. Model's 

hyperparameters were obtained by optimization, for more details see Chapter .III. 

Forecasting errors results according to time horizon and station using ground-measured 

data and satellite-derived data with the four machine learning models are presented in 

Annex A. In this section only results using data from the six stations will be discussed. 

Figure 40, shows one hour ahead of forecasting performance. We can observe that nRMSE 

and nMAE values between ground measured and satellite-derived data for GPR, SVM, and 

ENsTRE models are close. Combining satellite-derived data with simple TRE model gives 

a slightly less accurate performance than with ground measured data. The nRMSE results 

show that combining satellite-derived data with GPR gives a really close forecasting 

performance to the model combined with ground one. The nRMSE and nMAE between the 

best model GPR and the reference model P using satellite-derived data range from 25.1% 

to 40.23%, and 18.54% to 32.56%, respectively (see persistence model results in 0). 

Moreover, we cannot ignore the very identical results for SVM and ENsTRE between 

ground measured and satellite-derived data. According to forecast performance, SVM is 

the second best model. Whereas, simple TRE model based on simple regression trees 

gives poor results due to its high probability of overfitting.  



Simulation and forecasting results 

 

MAHA SALLOUM-2021   - 106 - 

 

Figure 40: 1H Horizon forecasting errors for ground measured and satellite-derived data of 2016 with several machine 

learning models, Ground measurement (G), Satellite-derived data (S). 

Observing nMBE in Figure 40, we find that SVM with satellite and ground data trend to 

overestimate the observation. Whereas the other models underestimate the observation. 

From nMBE, we can say that satellite and ground combining with machine learning 

models behave in the same way as concerning underestimate or overestimate the data.  

Results reveal that for satellite-derived data, GPR is the model that shows the best overall 

performance from both nRMSE and nMAE. For the second and third models, the choice is 

more delicate between SVM and ENsTRE with really small differences in the result. 

The next step is to plot the forecasting errors against the horizon to illustrate the 

performance of these four machine learning models for multistep-ahead in French Guiana, 

as in Figure 41. The graph shows the accuracy metrics of the validation process using 

ground then satellite-derived data from six meteorological stations of 2016 as input. 
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Figure 41: nRMSE, nMAE forecasting errors vs. Horizon for Ground measurement (G), Satellite-derived data (S) with 
several machine learning models for all stations of 2016. 

We can observe a good performance with all machine learning techniques, where the 

evolution is linear relative to the forecast horizon. GPR model has the best nRMSE for all 

time horizons. Moreover, the GPR model has very identical performance combining 

models with satellite-derived data and ground one from 1 to 6H.  

 
Figure 42: nMBE errors vs. Horizon for Ground measurement (G), Satellite-derived data (S) with four machine learning 
models for all stations of 2016. 

Figure 42 shows that models tend also to vary between over- or underestimate the 

observation according to the time horizon. Yet, satellite-based or ground-based models 

behave the same according to over- or underestimate the observation. For best model 

GPR, nMBE with ground data increases from -0.50% to 1.9% from 1 to 6H, respectively, 

with satellite-derived data nMBE decreases from -0.11% to -0.024 for 1H to 2H, 

respectively. Then, nMBE increases from 0.42 to 2.08% for 3 to 6H. 

Figure 43 shows the skill score results of the different machine learning models compared 

to the P model and according to the forecast horizon. Positive results from this figure show 
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that all models perform better than the reference model for all time horizons. Even though 

the four models perform similarly with the ground and satellite-derived data, GPR and 

SVM perform slightly over the others compared to the P model.  

 

Figure 43: Machine learning models’ Skill score compared to P according to forecast horizons. 

To further analyze the effect of the use of satellite-derived data, it seems interesting to 

present the MAE value for the reference model and the best two machine learning models 

as a function of MKC and VKC using data from MP station and for three horizons h + 1, h + 

3 and h + 6 in Figure 44. 
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MAE(W/m2) 

  

 

b) Time horizon= 3H c) Time horizon= 6H  
Figure 44: MAE for reference model Persistence and best two models Gaussian Process Regression (GPR), Support 
Vector Machine (SVM) using ground data (G) then satellite-derived one (S). For MP station data in 2016. 

Figure 44, a) shows that for clear sky conditions with low variability the Ground-based 

machine learning models perform better than Satellite one i.e. M𝐾𝑐>0.65 and V𝐾𝑐<0.2. 

Under cloudy and highly variable sky conditions, we find higher MAE values for each 

model. Note that, Satellite-based machine learning models perform better than Ground 

one under cloudy and highly variable sky conditions. Figure 44, b) c) shows that models 

behave in a convergent manner with slight differences. Satellite-based models perform 

better than Ground-based models for 3 and 6 time horizons, especially under cloudy and 

highly variable sky conditions. For 3H forecast Satellite-based machine learning models 

perform better than Ground one for highly variable sky conditions VKc values higher than 

0.2. Figure 44, a) b) and c) also show that forecast accuracy decreases with time horizon 

but remains much better than P model. 

We have presented in Figure 45 the scatter diagrams of forecast irradiation with 

satellite versus observed irradiation for GPR model for six-time horizons;  
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Figure 45: Scatter plot of forecast irradiation with satellite versus observed irradiation for the best model (GPR) for six-time 

horizons of 2016. The black line represents the GHI forecasted by GPR using satellite data, the red line is the GHI forecasted 

by GPR using ground data and the magenta line depicts the line corresponding to x = y (i.e. perfect correlation). 

From Figure 45, we note the following: 

 The more the time horizon increases, the more the dots are scattered; the same 

behavior as in the previous section.  

 GPR model tends to overestimate low values of GHI and underestimate high values 

for all horizons. 

 Horizons more than 2H, the GPR_G line interposes the GPR_S line for all horizons, 

which can be taken as an indication of similar performance. 

 Increasing the angle between the ideal predictor and the GPR models for 1H and 

2H ahead, for horizons more than 2H this angle starts to stabilize.  

 Even if there are dots whose predicted values are very far from the measured one, 

however, we can see that most of the values are around the ideal predictor.  

Summary 

As a conclusion of this paragraph on combining satellite data with machine learning 

models, we note the following: 
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- Although the performances are close, the GPR model with a nRMSE of 24.9% to 

36.9% is the most suitable to be combined with satellite data, followed by SVM 

with a nRMSE of 25.4% to 37.6% for horizons 1H and 6H, respectively; 

- The simple TRE regression model is not suitable; 

- The uncertainties are much smaller than for the previous case; 

- The forecast errors between the satellite and ground data are similar regardless of 

the horizon considered; 

- The models have similar nMBE performance to overestimate or underestimate the 

observation with ground measured and satellite-derived data. 

- The Gaussian Process Regression (GPR) and support vector machine with K-fold 

cross validation model is elected for modeling solar radiation for 1 to 6H. 

- For 1H time horizon, Ground-based models perform better than Satellite-based 

models low variable sky conditions. Horizons higher than 1H, Satellite-based 

models perform better than ground one for all sky conditions. 
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IV.5. Combining satellite-derived data and a numerical 

weather prediction model to improve intra-day solar 

forecasting 

This section studies a globally applicable approach to improve hourly GHI forecasts of 

numerical weather prediction (NWP) in French Guiana. This area has a tropical climate 

regulated by the ITZ and it has not only a high solar potential but also a high variability, 

this is due to rapid cloud transformations caused by the ITZ. This variability causes a 

technical challenge to obtain accurate GHI forecasts. For a large area geographic data 

collection, there is no better observational tool than an NWP. A NWP provides more 

information up to several days ahead, however, there are significant biases and random 

errors in the GHI forecasts of NWP. Weather Research and Forecasting model (WRF) can 

compute a forecast up to 48 H with high spatial resolution (this model is detailed in 

III.3.C.i). However, it is well-known that this model’s output is highly biased. To reduce 

this bias, we propose a post-processing technique via a specific Kalman filter. We chose 

the Kalman filter as a post-processing algorithm because it reduces the bias in the GHI 

forecasts without the need for a long historical data archive, as it can adapt to changes in 

weather quickly. We propose using data derived from satellite images as observation for 

the bias correction technique because satellite images have broader coverage than 

ground-based irradiation measurements. Our method was validated over a period of 

three months of 2016 of hourly GHI data from the WRF model. Hourly measured data are 

collected at six ground stations of the French national weather service. 

A global view of the proposed intra-day forecasting method is illustrated in Figure 46. 

Indeed, it combines in a statistical model, namely the linear Kalman filter, the outputs of 

a numerical forecasting model, the satellite estimation data, and the cosine of the zenith 

solar angle made at the experimental sites. 

 

Figure 46: Global view of the forecasting approach for horizon 1H to 6H. 
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As we mentioned before, three months of 2016 were selected in French Guiana. 

September, May, represent the dry and rainy seasons, respectively. The third month 

March describes the latency period between the ITCZ southward to the northward motion 

over French Guiana. Depending on the selected year March either behaves as a rainy or a 

dry season month. In this section, WRF prediction errors before and after processing 

using ground-measured data and satellite-derived data from all stations are discussed. 

More details on WRF prediction errors by station and time horizon can be found in Annex 

B. 

For all stations, hourly GHI forecasts were tested against ground-based irradiation 

measurements in Figure 44. WRF post-processing method via kalman filter improves 

WRF forecasts. For all-sky conditions, the post-processing method using satellite-derived 

data performs close to the post-processing method using ground-based irradiation 

 
Figure 47:1H MAE for WRF, WRF Kalman with ground data, WRF Kalman with satellite-derived data. Three months of 2016. 
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measurements. Satellite-derived data perform better than ground one for clear sky 

conditions with low variability. Moreover, we note a better performance with satellite-

derived data for high variability and independent of sky condition. 

Multi-horizon forecast errors for post-processing WRF with ground and satellite-derived 

data in Figure 48. nRMSE nMAE and nMBE of WRF and the post-processing methods show 

that the post-processing method using satellite-derived data performs similarly to that 

using ground-based irradiation measurements for all time horizons. We also found from 

Figure 48, Hourly post-processing of GHI forecasted with Kalman filtering using satellite 

gave better results than direct WRF output. Using satellite-derived data as observation 

decreases the nMBE of WRF forecasts to more than the half, from 9.93% 15.4% to 3.7% 

8,5% for 1H to 6H ahead, respectively. For all stations, we found that using satellite-

derived data as observation decreases nRMSE, nMAE and nMBE of WRF from 1 to 6H 

ahead.  

 

 
Figure 48: nRMSE nMAE and nMBE for post-processing WRF with ground data k_G and satellite-derived data k_S for 

horizons of 1, 2, 3, 4, 5, 6 for three months of 2016. 

The objective of the next step is to study the effect of post-processing of the WRF model 

using the satellite. The graphical representation of MAE depending on the MKC and VKC 

according to the time horizon for each model is shown in Figure 49. Results from post-

processing WRF with ground data, and with satellite data are shown in Figure 49.  

Using ground-based irradiation measurements with the Kalman filter improves WRF 

forecasts for all time horizons. The first and second columns in Figure 49 are the 

application of the Kalman hybrid method using ground and satellite-derived data, 

respectively. We can notice that the post-processing of the WRF model with satellite-

derived data has lower MAE than that with ground one for clear sky conditions with high 

variability. We note a close performance of ground data with satellite-derived data for low 

variability and independent of sky condition. 
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The scatter plot of hourly forecasted GHI with satellite-derived data versus hourly 

measured GHI in Figure 50 shows a comparison between post-processing WRF with 

ground data and post-processing WRF with satellite-derived data results. 
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Figure 49: 2 to 6H MAE for WRF Kalman with ground data, WRF Kalman with satellite-derived data. Three months of 2016.  
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Figure 50: Scatter plot of measured and post-processing WRF forecasting according to satellite-derived data for horizons 

of 1 to 6H, for three months of 2016. The black line represents the GHI forecasted by Kalman filtering using satellite data, 

the red line is GHI forecasted by Kalman filtering using ground data and the magenta line depicts the line corresponding to 

x = y (i.e. perfect correlation). 

We notice that for both post-processing techniques, high GHI values are underestimated. 

Moreover, low values of GHI are overestimated and forecasts are very scattered. It is due 

to the variability of the zone of study. Even if there are dots whose predicted value is far 

from the measured one, however, we can see that most of the values are around the ideal 

prediction line. 

Summary 

In conclusion of this study on post-processing of GHI forecasted with WRF using 

satellite for intra-day forecast, we note: 

 Kalman filter improves the 24H forecast of WRF at hourly time steps, for horizons 

of 1H to 6H using ground or satellite datasets in ITZ.  

 Forecast results obtained using satellite-derived data were compared to those 

obtained from measured data. We found that the post-processing method using 

satellite-derived data performs similarly as when measured data are used.  
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 Kalman filter performance by time horizon decreases slightly compared to the 

previous time horizon case. 

 For all-sky conditions and six stations data, we found that using satellite-derived 

data as observation decrease nMBE by approximately 7 - 3% according to the time 

horizon. 

 Using satellite-derived data as an observation in the WRF post-processing 

technique decrease MBE by approximately 50% according to the time horizon. This 

is an interesting case because it will allow to reduce WRF bias on any geographical 

location in French Guiana and to maintain the advantage of WRF’s high spatial 

resolution.  

 A global post-processing technique of WRF by satellite-derived data is successfully 

applied. 
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IV.6. Hybrid method using satellite-derived data to improve 

intra-day solar irradiation forecast  

The objective of this section is to improve the intra-day GHI forecasts in the ITZ using 

satellite-derived data and ensembles of forecasts from several models in French Guiana. 

First, we produce GHI forecasts from four statistical and machine learning methods using 

satellite estimations. The four models are SP, ARMA, GPR, SVM. We used 5 years of hourly 

historical GHI to train models and compute the model’s parameters. Second, we acquired 

WRF forecasts in French Guiana (Mouhamet 2018), we post-processed these WRF outputs 

using a Kalman Filter bias correction method (Pelland, Galanis, and Kallos 2013) to refine 

the forecast of WRF. These WRF corrected outputs are used as an ensemble new member. 

Hourly GHI Satellite estimations for three months of 2016 are used to correct forecasted 

values from WRF. Each model was performed at different horizons (1H, 2H, 3H, 4H, 5H, 

and 6H). In the last step, we apply a ridge regression method (Thorey et al. 2015) to 

aggregate each ensemble member’s GHI forecasts. Data from SL site used to obtain every 

model weight. The accuracy of each model is validated by comparison with hourly data of 

GHI from five stations of the French national weather services as a reference forecast. We 

used the Adjusted R-square aR2, to compare the performance of satellite-based models 

(detailed in section II.3.B). In this section, results are discussed using satellite-derived 

data from all stations to improve solar forecasts. Results depending on the station and 

time horizon are shown in Annex C. 

Figure 51 presents the aR2 according to the horizon. We have selected five models to be 

members of the ensemble method. The five ensemble members are SP, ARMA, GPR, SVM, 

WRF-Kalman. WRF prediction contains information on the state of the atmosphere in the 

future because the WRF model numerically solves a system of differential equations that 

describe the physical and chemical processes of the atmosphere. For this reason, it is 

interesting to use WRF-Kalman as a member of the ensemble method.  

 
 

 

Figure 51: aR2 according to the horizon, all models, and all stations together. 
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Figure 52, presents the nRMSE, nMAE, and nMBE of the ensemble aggregation and each 

ensemble member. This figure shows that the ensemble aggregate obtained using the 

ridge regression method has lower nRMSE, nMAE, and nMBE values.  

 

Figure 52: nRMSE, nMAE, and nMBE for each ensemble member and ensemble aggregation. 5 stations were merged; SL is 
the training station for computing the weights so it was excluded.  

nRMSE for ENS shows an improvement of almost 16% compared with the persistence 

reference model. We found that using a Ridge regression method decreases the 

normalized forecast bias of the reference model by 10% approximately. Figure 52 also 

shows that the aggregate tends to underestimate the GHI with approximately equal to 

0.2%. Yet, we may conclude that using the ridge regression method to aggregate the 

ensemble member improves the GHI forecasts. The effect of the aggregation is analyzed 

in Figure 53, where we present the MAE value as a function of MKC and VKC using data 

from five stations merged. The ensemble member’s properties are transferred to the 

aggregated model. For all sky conditions and low variability, the MAE of the ensemble 

aggregate is lower than the MAE of each member. For a clear sky with highly variable sky 

conditions, the MAE of the ensemble aggregate is lower than the MAE of statistical models 

and similar to the MAE for both machine learning models and the post-processing method. 

Yet, the MAE of the post-processing method for cloudy sky with highly variable sky 

conditions has lower MAE than the ensemble aggregate. 
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Figure 53: MAE for SP, ARMA, GPR, SVM, WRF-Kalman with satellite-derived data and ensemble aggregation. 5 stations 
were merged, SL is the training station for computing the weights and was excluded. 

The next step is to plot the forecasting errors against the horizon. It is interesting to 

represent multistep-ahead forecasting accuracy for satellite-derived data graphically, to 

illustrate the performance of the improvement of the ensemble method compared to its 

members for multistep-ahead in French Guiana, as in Figure 54.  
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Figure 54: nRMSE, nMAE forecasting errors vs. Horizon for Satellite-derived data combined with each ensemble, Scaled 
persistence SP, Auto Regression Moving Average ARMA, Gaussian Process Regression GPR, Support Vector Machine SVM, 
WRF-Kalman KAL, and with the ensemble aggregation ENS. Three months’ data from five stations were merged, SL is the 
training station for computing the weights and was excluded. 

The graph shows the accuracy metrics of the ensemble method and its members using 

satellite-derived data from five meteorological stations of 2016 as input. The nRMSE and 

nMAE of the ensemble aggregate are lower than the nRMSE and nMAE of the members for 

all time horizons. For time horizons higher than 4H, the ensemble method has forecast 

errors close to the best ensemble member GPR. We explain this phenomenon by the 

higher weight given to GPR by the Ridge regression aggregation method. The computed 

weights are 0.34, 0.31, -0.12, 0.46 and 0.28, respectively, for ARMA, SVM, SP, GPR and KAL. 

 
Figure 55: aR2 according to the horizon, of the ensemble method and its members combined with satellite-derived data 
from five meteorological stations of 2016 as input. 
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The aR2 according to the horizon in Figure 55 shows the ensemble method and its five 

members, note that the ensemble method has the best aR2 for all time horizons. 

Summary 

In conclusion of this section to improve GHI forecasts in the ITZ using aggregation 

method combined with satellite-derived data from GOES, we note the following: 

- The ability of each forecasting model is successfully combined.  

- The nRMSE and nMAE of the ensemble aggregate are lower than the best member 

model.  

- For all time horizons, the ensemble aggregate has a lower forecast error than the 

SP, ARMA, GPR, SVM, and Kalman. Yet, it has close forecast errors than GPR. We 

have explained this phenomenon by the different weights of each model. 

- For all-sky conditions merged, we found that the ensemble aggregate decreases the 

1H forecast error of the most accurate single model by 2%. 

- The ensemble aggregate decreases the 1H forecast error of almost 15% compared 

with the persistence reference model. 
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IV.7. Summary  

We provide a brief final summary here as we have provided four summaries relating 

to each subsection. The main purpose of the current study is to forecast GHI in an ITZ 

using satellite-derived data from GOES-13. The novelty of our approach is the use of 

satellite-derived data to forecast GHI with different forecast horizons in French Guiana. 

For intraday forecast using satellite-derived data, we achieved the following studies: 

Firstly, we started to forecast GHI using simple and primary cases, therefore four well-

known statistical forecasting models; Persistence (P), Scaled Persistence (SP), Auto 

Regressive (AR) and Auto Regressive Moving Average (ARMA) models are studied.  

Secondly, four machine learning models are used to forecast GHI; Gaussian Process 

Regression (GPR), Support Vector Machine (SVM), Simple Regression Tree (TRE) and 

Ensembles of Trees ‘Bagging’ (ENsTRE).  

Thirdly, we used satellite-derived data with a post-processing technique to improve 24-h 

WRF predictions. Then investigate the effectiveness of this proposal from 1 to 6 horizons 

with 2.8% and 1.3 % of improvement.  

Finally, we tried to go further and improve GHI forecasts multi-hours ahead in French 
Guiana by using the ensemble of five GHI forecasts. The ensemble includes one hybrid 
physical statistical model (WRF- Kalman), the two best statistical forecasting models (SP, 
ARMA), and two best machine learning models (GPR, SVM), we combine these ensemble 
members using a Ridge regression method. 

In this chapter, we have conducted four comparative studies of using satellite-derived 

data instead of ground measured one in French Guiana: 

- Forecast of hourly GHI for hourly horizons of 1 to 6H with four statistical models; 

- Forecast of hourly GHI for hourly horizons of 1 to 6H with four Machine learning 

models; 

- Improving WRF forecasts using the Kalman filter with satellite-derived data for 

hourly horizons of 1 to 6H; 

- Finally, using the best five predictor models for horizons of 1 to 6H as members in 

a hybrid ensemble method to improve hourly GHI forecasts; 

As mentioned earlier, satellite data has been increasingly used to predict Global 

Horizontal Irradiance GHI. Several recent studies have shown an interesting model 

performance obtained by adding satellite data to the ground measurement. (Jang et al. 

2016) used satellite images and support vector machine to predict the solar power. For 

1H horizon, the nRMSE improvement from the reference model is 13% compared to 

15% in our study. Another study used satellite data is (Aguiar et al. 2016), that combine 

ground measurements with exogenous inputs provided by satellite and NWP data in 

order to improve intra-day solar forecasting. With nRMSE improvement of 1% to 2%, 

for 1H to 6H ahead respectively. (Yagli 2020) used five ML models to generate 1-h-

ahead forecasts of GHI based on ground measurements and satellite-derived data. The 
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forecasts are combined using the trimmed average technique to form ensemble 

forecasts. The improvement in nRMSE using the ensemble vary between 0.1 and 1%, 

depending on the station. 

All results in our study showed that satellite-based model performance was close to 

models built with ground data for an intraday forecast.  

 



 

 

MAHA SALLOUM-2021   - 125 - 

  



Conclusion and outlook 

 

MAHA SALLOUM-2021   - 126 - 

 

 

 

 

 

 

 

 

 

 

 

Chapter .V.  Conclusion and 

outlook 

 

  



Conclusion and outlook 

 

MAHA SALLOUM-2021   - 127 - 

  



Conclusion and outlook 

 

MAHA SALLOUM-2021   - 128 - 

V.1. Conclusion 

Solar energy is a renewable and clean source of energy increasingly used worldwide. 

During the day, photovoltaic solar panels convert solar energy into electrical one. Solar 

energy has a behavior that can cause strong fluctuations in the electrical power injected 

into the electrical network. The limitation of producing electricity from solar energy can 

be overcome, by storing electricity during the periods of high production to recover it 

during periods of low production. Storage would stabilize the photovoltaic power plants 

production. It requires a large amount of storage by a power reserve to smooth the 

fluctuations generated, which is expensive. Another solution is to anticipate the 

availability of production sources by forecasting the production of intermittent solar 

energy and therefore facilitate network management. This solution enables easy network 

management. Additionally, accurate forecasting of solar irradiation can improve the 

efficiency of the renewable energy conversion chain, reduce the risk caused by extreme 

weather conditions, and can optimize power grid management. In other words, accurate 

forecasting of the resource allows power grid managers to adapt their actions and 

maintain the quality and safety of the power grid at all times. The interest of our study is 

to test the robustness of ten models using satellite-derived data in French Guiana. The 

interest of this research is to study the effectiveness of using satellite data rather than 

measured data. To investigate this study, we tested the robustness of ten models using 

data from satellites in French Guiana. 

Models from three main categories were chosen and compared: 

- Statistical models: 

 Models based on the persistence of weather conditions: Persistence (P), the 
Scaled Persistence (SP), and regression: Auto Regression (AR) and Auto 
Regression Moving Average (ARMA). 

 Models based on machine learning: Gaussian Process Regression (GPR), 
Support Vector Machine (SVM), Regression Trees (TRE), Ensembles of 
Trees (ENsTRE). These models require a learning phase to determine 
various parameters of the model. Thus, the time series is partitioned into 
two groups, one for the learning phase (80%) and one for the test phase 

(20%). Cross-validation was used by the k-fold method to prevent the 
learning phase from being subject to seasonal trends and to strengthen the 
validation of our models.  

- The numerical model (weather researching and forecasting model WRF) is based 
on a mathematical representation of atmosphere behavior. Therefore, it gives a 
more detailed description of the atmospheric processes. kalman filter is used to 
post processed WRF forecasts. 

- Hybrid model with estimated satellite data are used to improve solar predictions in 
tropical environments. Aggregation method decreases the forecast error and 
produces a more realistic spatial pattern of predicted irradiation using a 
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combination of five methods to improve the solar irradiation forecast in the French 
Guiana tropical climate.  

The implementation of these models requires the availability of satellite-derived data, in 

addition to the availability of ground measurement to compare models’ performance. 

Hourly data from six meteorological stations in French Guiana over 6 years (2011 to 

2016) are used. Before using ground measured and satellite-derived data to feed the 

forecast models. This data must go through a preprocessing protocol. which consists of 

collecting the data, controlling their quality by detecting outliers and missing data 

periods. After these preprocessing protocols, the data are ready to be used as inputs to 

models. A comparison of these models was conducted on the different datasets. Model 

performance was estimated by several error metrics widely used in solar forecasting. The 

main findings are as follows: 

- From the analysis of statistics and machine learning models, it appears that the 
1H forecast quality of these models using ground data is better than satellite 
one by 0.1 to 2% of nRMSE, then for 2H to 6H time horizon data satellite-
derived data are more efficient by 0.1 to 1% of nRMSE. 

- Although the statistical models’ performances with satellite-derived data are 
close, the ARMA model is the most suitable, then the SP. The SP model presents 
interesting performances with satellite-derived data. Moreover, it has the 
advantage of being easy to implement. 

- It is difficult to compare the machine learning models as predictors because of 
their similar performances. Machine learning models are suited for short-term 
forecasting, from a few minutes to a few hours. 

- Even though, all of the machine learning models seem interesting to predict the 
GHI, we choose GPR and SVM as the elected models to be members in the 
hybrid ensemble model.  

- Using satellite data in the post-processing of numerical model gives a result 
very close to the case with ground data. The advantage of using satellite data is 
to maintain the resolution spatial of the numerical model. 

- The Kalman filter improves WRF forecasts for horizons from 1 to 6H.  

- Hybridizing satellite-based models to get the best out of each gives an 
interesting improvement to try to keep the forecast error as low as possible. 

- For all models the model’s performance difference between ground and 
satellite data is insignificant.  

- Even if the use of satellite-derived data gives results that are very close to the 
case of using ground data. The advantage of using satellite data is its broader 
coverage than ground-based irradiation measurements. 

To conclude, forecasts generated using satellite-derived irradiance estimations have 

comparable quality compared to those generated using ground-based data. Our study 

indicates the use of satellite-derived data as a viable tool for forecasting GHI in French 
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Guiana a region in an ITZ. The information they can provide will establish reliable 

planning for producing electricity from solar energy. 
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V.2. Outlook 

The conclusion of the thesis work revealed interesting prospects for improvement. 

The use and development of several models, each combined with satellite-derived data, 

conclude that satellite estimation is a reliable source to intraday GHI forecast. The use of 

satellite-derived data estimation to predict GHI, is a topic that continues to be the subject 

of many recent articles. At the end of this work, we will present a set of improvements for 

further studies: 

 Extend the temporal depth of the solar irradiation estimates by considering 

data from GOES-8 and GOES-12; 

 Test satellite-derived data to other methods sites, climates, or even to other 

similar climate regions in the world, at least, accounting for the GOES satellite 

coverage; 

 Results could be improved by applying more elaborated pre-processing 

combined with our method to substantially improve forecasting performance; 

 More effective selection of satellite pixels would give us satellite-derived data 

more accurate and essential information about the solar radiation behavior; 

 The methodology presented here may be extended to longer time horizons, by 

adding NWP data with model plus complex; 

 Using clustering to gain more information about the data to improve 

the prediction accuracy. 

 Using more features to improve post-processing techniques; 

 The contribution of other features and the use of a deeper neural network; 

 Using a sequential aggregation method with weights varying with time and by 

model and including other forecasting methods that perform better under 

highly variable sky conditions. 

 Study the influence of our method on the production prediction; 
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Annex A 

Forecasting errors for ground measured and satellite-derived data with four machine 

learning models according to time horizon and station of 2016. 

 

 

 

 

Station  Model

GND SAT GND SAT  GND  SAT GND SAT GND SAT  GND SAT

GPR 26,7 26,7 31,5 31 33,6 33,2 36 35,4 37,3 36,7 39 38,3

SVM 27,2 25,4 32,1 31,3 34,4 34 37,1 36,5 38,4 38,1 40,6 40,2

ENS_TRE 27,4 26,6 32,3 31,4 34,7 33,8 36,7 36,4 38 37,5 40,8 40

TREES 27,9 28,4 32,7 32,4 35,2 35,1 37,7 37,2 38,5 38,1 39,4 39,4

GPR 26,7 27,4 31,6 31,9 33,7 33,8 36,2 36,5 38,6 38,9 41,2 41,4

SVM 26,6 26,6 31,4 31,9 33,8 33,8 35,9 36,2 38,1 38,8 40,1 41

ENS_TRE 27,3 27,4 32,3 32,1 34,2 34,2 37 36,8 40 39,2 42,3 41,9

TREES 28,2 28,6 33,4 33,1 35 35,2 37,1 37,1 40,1 40,5 41,4 41,8

GPR 24,7 23,8 27,3 27 28,6 28,6 30,2 30,1 32,1 32,1 34,2 34,1

SVM 24,4 23,8 27 26,9 28,3 28,5 29,6 29,8 31,7 32 34 34,3

ENS_TRE 25,1 24,2 27,6 27,3 29,2 28,9 31,1 30,5 33 32,8 34,9 34,5

TREES 26,2 25,4 28,8 28,2 29,6 29,8 31,2 31,2 33,3 33,8 35,3 35,1

GPR 26,8 27,5 31,1 31,2 33,6 33,7 35,7 36 38,1 38,5 40,4 41

SVM 26,9 27,6 31,3 31,7 33,7 34,6 36,2 36,6 38,6 38,9 41 42,1

ENS_TRE 27,6 27,5 32 31,5 34,1 34,5 36,9 36,3 39,5 38,5 41,9 42,1

TREES 28,4 28,7 32,6 32,6 35,4 35,5 37,1 37,8 39,5 40,2 41,6 42,4

GPR 22,8 23,8 27,8 27,7 29,9 29,6 31,5 31,3 33,9 33,5 36,8 36,5

SVM 23 23,8 28,1 27,8 30,5 29,7 32 31,3 34,9 34,6 38 38,3

ENS_TRE 23,1 23,5 27,7 27,7 30,1 29,4 31,8 31,8 34,3 33,9 37,7 37,7

TREES 23,9 25,3 28,7 28,8 31 30,7 33 32,7 35,4 34,1 38,3 38

GPR 23,7 26,9 28 29,4 29,5 31 30,1 31,4 31,3 32,3 32,6 33,3

SVM 23,9 26,5 27,8 28,9 29,5 30,2 29,9 30,8 31,8 33 33,2 33,4

ENS_TRE 25,1 26,7 29,1 30,1 30,5 32,2 31,7 33 33,2 34,5 34,6 35,4

TREES 25,6 27,7 29,7 30 31,5 32,3 31,9 33,3 32,6 34 34,4 35,1

GPR 19,3 19,7 23,4 23,2 25,2 24,9 26,8 26,5 27,5 27,3 28,6 28,2

SVM 19,2 18,9 23,3 22,8 24,9 24,5 26,6 26,1 27 26,7 28,3 27,7

ENS_TRE 19,7 19,6 23,9 23,5 26 25,2 27,2 27 28 27,7 29,7 29,2

TREES 20,3 20,9 24,3 24,2 26,2 26,2 27,9 27,4 28,4 28 28,8 28,8

GPR 19,8 20,4 23,9 24,4 25,9 26 28 28,2 29,9 30,2 31,9 32,3

SVM 19,4 19,8 23,5 24 25,5 25,5 27,4 27,4 29,1 29,5 30,8 31,2

ENS_TRE 20,4 20,5 24,4 24,4 26,2 26,2 28,7 28,4 30,9 31,1 32,7 32,2

TREES 20,9 21,5 25,4 25,2 27 27 28,6 28,5 30,8 30,3 32 31,9

GPR 19 18,3 21,5 21,1 22,5 22,4 23,7 23,5 25 25 26,6 26,5

SVM 18,4 18 20,9 20,8 22 22,1 23 23 24,4 24,5 26 26,1

ENS_TRE 19,2 18,5 21,7 21,4 23 22,5 24,4 23,6 25,7 25,3 27 26,6

TREES 20,2 19,6 22,6 22 23,3 23,4 24,5 24,3 26 26,2 27,5 27,3

GPR 19,7 20,5 23,1 23,3 25,1 25,2 26,8 27 28,5 28,7 29,7 30

SVM 19,4 20,1 22,9 23,4 24,6 25,4 26,4 26,8 27,9 28,4 29,4 30,1

ENS_TRE 20,2 20,3 23,6 23,5 25,3 25,7 27,2 27 28,9 28,3 30,2 30,3

TREES 20,8 21,3 24,1 24,4 26,3 26,6 27,7 28,1 29 29,8 30,1 30,8

GPR 15,8 16,8 19,6 19,9 21,2 21,2 22,1 22,4 23,3 23,3 24,8 24,8

SVM 15,5 16,3 19,1 19,2 20,7 20,3 21,4 21,3 23,2 23 25 25,2

ENS_TRE 15,8 16,3 19,3 19,3 20,9 20,7 22,1 22,3 23,6 23 25,3 24,8

TREES 16,8 17,8 20,2 20,2 21,5 21,4 22,9 22,7 24,2 23 25,8 25,5

GPR 17,1 20 21 22,1 22,3 23,3 22,5 23,5 23,2 23,9 24 24,6

SVM 16,8 19,3 20,3 21,2 21,7 22,2 21,9 22,6 22,8 23,5 23,7 23,9

ENS_TRE 18,3 19,7 22,5 22,5 23 24,1 23,7 24,4 24,5 25,2 25,4 25,6

TREES 18,8 20,5 22 22,5 23,8 24,2 24,1 24,7 24,3 25,2 25,4 25,7

IR

KR

KR

nMAE(%)

RO 

SL

MP

SG

nRMSE(%)

RO

SL

MP 

SG 

IR

h+1 h+2 h+3 h+4 h+5   h+6
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GPR 0,4 -0,7 1,2 0,3 2,5 1,4 4,2 3,2 5,2 4,1 6,7 5,4

SVM 1,7 -0,4 3,3 1,9 4,7 3,3 6,9 6,3 8,5 7 10,6 9,6

ENS_TRE 0,5 -0,9 1,7 0,4 2,5 1,2 4,8 3,5 5,1 3,5 5,8 4,4

TREES 1 -0,6 1,4 0,5 2,6 1,3 4 3 4,1 4,5 6,6 5,1

GPR -0,6 -0,5 -0,6 -0,5 -0,5 -0,3 -0,6 -0,1 -1 -0,4 0,2 0,7

SVM 0,1 0,5 1,1 2,1 2,1 3,2 3,1 3,6 2,3 3,5 4 4,2

ENS_TRE -1,1 -0,5 -1,1 -0,6 -1,5 -0,7 -1,5 -0,5 -1,6 -0,1 -0,6 0,3

TREES -0,8 -0,2 -1,1 -0,4 -1 0 -1,8 -0,4 -2,4 -0,4 -0,4 0,9

GPR -1,3 -1,4 -1,8 -1,9 -1,4 -1,4 -0,9 -1,1 -1,2 -1,4 -0,8 -0,8

SVM 0,1 -0,9 0 -0,2 0,5 0,5 0,4 0,3 1,2 1 1,9 1,2

ENS_TRE -2,1 -1,9 -2,4 -2,6 -2,3 -1,9 -2,2 -1,6 -2 -1,9 -1,9 -1,7

TREES -1,9 -1,9 -3 -2,8 -2,8 -2,6 -2 -2,3 -2,5 -2,1 -2,4 -1,6

GPR 0,8 1,5 1 1,6 1,6 2,1 1,8 2,5 2 2,6 1,9 2,3

SVM 1,9 2,1 2 3,3 2,8 4,7 3,7 4,8 4 5,4 5,5 5,5

ENS_TRE 0,5 1,6 0,8 1,4 1 1,9 1,4 2,3 1,9 2,4 1,7 2,3

TREES 0,9 2 0,6 1,3 1,7 2,3 1,6 2,5 2,2 3,3 2,7 3,3

GPR 2,2 2,6 2,8 2,7 3,4 3,2 3,7 3,5 4,9 4,9 7,9 7,9

SVM 3,8 4 5,8 4,9 7,1 6 8,3 6,5 9,8 8,8 13,3 11,9

ENS_TRE 2,1 2,9 2,7 2,6 3 3,4 2,9 3,3 3,9 4,9 7,1 8

TREES 2,2 2,8 2,8 3 3,5 3,7 3,6 3,2 4,8 5,7 8,2 8,5

GPR -2,1 -5 -3,1 -4,4 -3,3 -4,2 -3 -3,9 -2,4 -3,7 -2 -2,6

SVM -1 -3,2 -0,8 -2,4 -0,9 -2 0,3 -1 0 -0,7 0,7 -0,5

ENS_TRE -2,5 -5,2 -3,9 -4,4 -3,4 -4,7 -4,1 -5,2 -3,6 -4,9 -3,1 -4,2

TREES -2,4 -4,4 -2,7 -4,5 -3,4 -4,1 -3,8 -4,8 -3,2 -4,2 -3,5 -3,6

SG

IR

KR

nMBE(%)

RO

SL

MP
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Annex B 

Post processing WRF forecasting errors according to station and time horizon for 

ground-measured data and satellite-derived data, three months of 2016. 

 

 

   

Station  Model

GND SAT GND SAT  GND  SAT GND SAT GND SAT  GND SAT

WRF

KALMAN 38,5 38,3 37,6 37,6 37,3 37,5 37,2 38,4 39,8 39,9 41,1 41,6

WRF

KALMAN 38,1 36,6 37,6 36,7 37,4 36,7 38,5 38 40,2 39,9 41,6 41,3

WRF

KALMAN 33 32,3 32,6 32,6 32,5 32,4 33,5 33,5 34,7 35,4 38,5 39,4

WRF

KALMAN 40,1 40,8 39,9 41,8 40,2 43,2 41,1 42,5 44,1 44,9 45,3 46,6

WRF

KALMAN 42,7 41,2 42,6 41,4 42 41,7 43,4 42,3 45,2 44,6 46,9 49,7

WRF

KALMAN 34,3 34,3 35,4 35,6 37,6 38,2 38,2 37,3 36,3 34,7 36 36,3

WRF

KALMAN 28,7 28,2 28,3 27,7 27,6 27,5 27,1 28,1 28,3 28,6 28,8 30,1

WRF

KALMAN 28,7 27,6 28,4 27,5 28,4 27,7 29 28,6 30,7 30,2 31,9 31,5

WRF

KALMAN 25,1 24,3 24,8 24,9 24,6 24,3 25,4 25,2 26,3 26,1 29,2 28,6

WRF

KALMAN 30,1 30,1 30,4 30,8 30,5 32,2 30,5 31,7 32,7 32,6 32,9 33,6

WRF

KALMAN 32,2 32,1 32,3 32,3 32,3 32 32,4 32,9 33,4 34,8 34,9 39,5

WRF

KALMAN 28,5 26,9 28,6 26,7 28,6 26,7 27,7 26,5 25,7 25,2 25,9 26,2

WRF

KALMAN 6,1 4,5 6,8 5,3 7 5,7 7,5 4,9 8,8 6,1 9 6,4

WRF

KALMAN 3 1,9 2,9 0,9 2,8 1,8 2,8 3,6 3,1 3 4,2 3,4

WRF

KALMAN 6,8 5,6 5,9 3,9 5,2 4,1 5,1 2,8 5,1 0,7 5,7 2,9

WRF

KALMAN 7,1 7,2 5,8 7,5 6,3 9,1 7,6 9,3 7,9 10,8 7,8 9,8

WRF

KALMAN 6,5 3,7 6,8 5,9 7,7 9,4 8,7 11,2 10,8 15,7 15,3 23,4

WRF

KALMAN 3,2 2,3 4,6 4,1 4,5 4,8 5,1 5,1 6 6,2 7,9 9,1

RO

RO

KR

IR

SG 

MP 

SL

SG 

IR

KR

MP 

SL

SG 

IR

KR

RO

SL

MP 

13,9 14,7 15,8 17,5 22,3 31,3

6,3 7,8 8,5 9,3 11 14,1

12,6 11,6 11,7 11,3 11,8 12,3

11,8 11,5 12,6 14,3 14,6 14,5

nMBE(%)

10,4 11 11,8 12,7 14,6 15,2

4,7 4,7 4,6 5,5 6,8 6,7

33,2 33,6 34 34,9 37,4 41,5

26 26,2 26,8 29,5

28,5 28,5 28,8 27,9 26,4 26,6

29 29,5

30,5 30,7 31,1 31,6 33,5 33,6

26,2 25,6

28,5 28,4 29,2 30,5 31,6

nMAE(%)

29,1 28,6 28,1 27,8

42,5 45 45,5

44,3 44,4 44,6 45,3 48,1

40,1

52,3

37,6 37,6 40,5 41,1 41,3 41,7

40,8 41,3

40,5 41,7

39,2 40,7 41,7

34,9 34,1 34,6 35 36,2

h+4 h+5   h+6

nRMSE(%)

39,3 38,5 38 37,8

h+1 h+2 h+3

38,8 38,5 38,3

40,9

28,8
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Annex C 

 Forecasting errors of ensemble method using satellite-derived data according to 

station and time horizon for three months of 2016. 

 

Station  Model h+1 h+2 h+3 h+4 h+5   h+6

SP 33,5 38,2 42,3 45,7 48,8 49,7

ARMA 26,9 30,3 33,0 35,5 37,7 37,8

GPR 25,6 29,3 32,1 33,7 35,2 35,9

SVM 26,3 29,6 32,2 34,2 35,9 35,4

KALMAN 37,9 36,9 36,9 37,7 39,3 40,8

ENS 24,3 28,8 31,4 33,0 33,9 34,5

SP 30,0 36,0 42,2 49,2 55,4 60,9

ARMA 23,8 27,0 29,1 31,0 32,1 35,4

GPR 24,4 26,6 28,1 29,9 31,9 34,8

SVM 24,4 26,8 28,6 30,3 32,5 35,4

KALMAN 32,1 32,3 32,1 33,3 35,3 39,2

ENS 23,7 25,5 27,2 29,8 30,5 33,2

SP 33,6 38,0 42,3 47,6 51,2 56,4

ARMA 29,5 32,7 35,6 38,1 40,4 41,9

GPR 27,4 31,1 33,8 36,2 38,8 41,0

SVM 28,3 31,7 34,6 36,7 39,6 41,9

KALMAN 40,6 41,3 42,5 41,8 44,2 45,9

ENS 26,9 27,6 29,3 32,1 35,2 38,7

SP 31,8 38,4 44,5 49,6 54,7 60,7

ARMA 26,4 31,8 35,0 35,9 39,1 41,0

GPR 23,9 28,5 31,1 31,4 34,8 38,0

SVM 24,2 29,1 32,2 32,5 37,0 41,2

KALMAN 39,6 39,8 40,5 41,0 43,4 48,0

ENS 23,7 27,0 29,5 30,2 32,2 35,8

SP 22,7 26,4 29,3 31,1 32,4 35,5

ARMA 20,4 23,9 25,7 25,8 26,5 28,5

GPR 19,9 22,5 24,3 24,1 23,9 24,9

SVM 20,2 22,5 24,3 24,0 24,2 25,2

KALMAN 26,5 26,6 26,6 26,3 25,0 26,0

ENS 17,4 18,9 20,6 21,9 22,3 23,9

nRMSE(%)

RO

MP

SG

IR

KR



ANNEX 

 

MAHA SALLOUM-2021   - 145 - 

 

SP 24,3 27,9 30,1 32,3 33,4 32,8

ARMA 20,0 23,0 25,7 27,9 29,4 29,7

GPR 18,5 21,9 24,2 25,3 26,1 26,3

SVM 18,7 21,7 23,5 24,7 25,4 25,3

KALMAN 27,9 27,4 27,2 27,9 28,5 29,8

ENS 17,2 19,1 20,4 22,2 23,6 24,8

SP 22,2 26,8 31,0 35,5 40,1 44,3

ARMA 18,2 21,4 22,8 24,4 25,4 28,3

GPR 18,2 20,4 21,2 22,7 24,3 26,4

SVM 18,0 20,1 21,4 22,8 24,2 26,5

KALMAN 24,1 24,8 24,1 25,1 26,1 28,5

ENS 16,1 18,8 19,9 21,2 23,2 25,5

SP 24,8 28,1 31,4 34,6 36,3 39,2

ARMA 22,6 25,6 27,7 29,2 31,2 32,5

GPR 20,0 23,7 26,0 27,7 29,6 30,9

SVM 20,6 23,8 25,7 27,6 29,7 31,3

KALMAN 30,0 30,7 31,9 31,5 32,6 33,5

ENS 18,4 20,9 24,3 25,8 26,2 28,2

SP 24,4 29,6 34,3 37,6 40,1 43,7

ARMA 20,4 24,7 27,0 27,9 29,6 30,3

GPR 17,2 20,7 22,4 22,8 24,1 26,2

SVM 17,0 20,5 22,3 22,6 24,5 27,2

KALMAN 31,1 31,2 31,3 32,3 34,0 38,4

ENS 15,8 19,3 20,2 20,8 22,5 25,0

SP 32,5 37,6 42,9 46,6 49,3 53,5

ARMA 27,5 31,2 33,9 34,3 35,2 37,4

GPR 27,4 30,5 33,1 33,2 33,5 34,4

SVM 27,9 30,8 33,7 33,8 35,0 35,5

KALMAN 36,9 36,9 37,5 36,8 34,2 35,8

ENS 21,8 23,4 25,4 27,3 28,4 30,8

MP

SG

IR

KR

nMAE(%)

RO
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SP -10,7 -10,5 -10,6 -11,0 -11,6 -13,2

ARMA -1,4 0,4 2,0 3,7 5,2 4,4

GPR -1,9 -1,6 -0,8 0,4 2,0 1,9

SVM -3,7 -1,7 -0,4 1,7 2,3 3,6

KALMAN 4,2 5,0 5,4 4,7 6,1 6,1

ENS -3,2 -2,5 -2,1 -1,0 0,8 0,8

SP -10,9 -13,1 -14,2 -16,9 -19,3 -22,3

ARMA -1,1 -0,8 0,7 0,5 0,0 -0,2

GPR -3,5 -3,7 -2,4 -2,3 -3,2 -3,0

SVM -3,1 -2,4 -1,1 -1,8 -1,0 -1,1

KALMAN 5,5 3,7 3,9 2,8 0,7 2,7

ENS -2,9 -4,0 -2,8 -2,6 -3,3 -2,7

SP -7,4 -5,9 -4,5 -3,2 -3,8 -4,5

ARMA 0,7 1,3 1,9 2,5 2,5 2,1

GPR 0,0 -0,9 -0,1 0,3 -0,2 -1,7

SVM -1,2 -0,5 1,1 1,3 1,2 -0,7

KALMAN 7,2 7,5 8,8 9,2 10,8 9,7

ENS -1,3 -1,9 -1,0 -1,7 -1,3 -3,0

SP -6,9 -8,7 -10,8 -13,2 -13,0 -11,0

ARMA 0,5 3,0 4,5 4,5 6,1 8,4

GPR 0,1 1,1 2,5 2,4 5,1 7,6

SVM 0,5 2,1 4,5 4,1 7,7 10,5

KALMAN 2,5 4,7 6,6 7,4 8,8 9,1

ENS 0,9 1,4 2,4 2,3 5,3 8,0

SP -11,9 -12,3 -13,8 -15,3 -17,2 -18,7

ARMA -2,9 -0,4 0,3 1,1 1,2 2,9

GPR -2,4 -1,5 -1,3 -1,1 -1,6 -0,9

SVM -1,9 -1,1 -1,0 0,8 1,4 1,8

KALMAN 1,8 3,9 4,6 4,8 6,0 8,9

ENS -3,3 -3,5 -2,1 -2,2 -2,9 -1,9

MP

SG

IR

KR

nMBE(%)

RO
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