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Abstract 

Discontinuous shear thickening (DST) in dense non-Brownian suspensions is a well-

documented phenomenon in scientific research, however its origins and effects are still under 

discussion nowadays. Not being able to recognize the direct cause of the phenomenon 

represents a point of weakness in many industrial fields, especially in the field of concrete and 

fiber reinforced concrete production.  

In this thesis, we will study experimentally as well as theoretically the DST in a suspension of 

calcium carbonate microparticles loaded with rigid polyamide and glass fibers. The rheology 

of this suspension simulates the behavior of fiber-reinforced concrete. We reproduce on a 

reduced scale different types of flows occurring in the concrete placement process, such as 

double-helix mixing, pumping through tubes, jet flow at the tube outlet, and we derive 

fundamental rheological behaviors applicable to any type of "sphere-fiber" mixtures. Using 

"mixing" type rheometry (double helix tools adapted to the rotational rheometer), we will first 

show that the addition of fibers shifts the DST transition to lower critical shear rates, which is 

explained by an increase in the viscosity of the suspension, so that the shear rate to reach the 

DST onset stress decreases. However, the mixture jams at a fiber volume fraction greater than 

or equal to 4% vol which is interpreted in terms of the percolation threshold of the fiber network 

in the shear thickening matrix of calcium carbonate. We will show in a second stage that the 

rheological behavior in a flow induced by a pressure gradient through a capillary remains quite 

similar to that in a simple shear but only at low fiber volume fractions 𝜑𝑓 ≤ 1 % vol, and if the 

Mouney-Rabinowitch correction is correctly applied. Above this volume fraction, the flow 

curves in the capillary rheometry become very different from those measured in simple shear 

likely because of microstructural difference in two different flow geometries. The theoretical 

model based on the homogenization approach allows to reproduce at least semi-quantitatively 

the flow curves in the " mixing" type and capillary rheometry at low fiber volume fractions but 

fails to capture microstructural changes at higher volume fractions. Finally, the instabilities of 

the calcium carbonate suspension jet under gravity with and without polyamide fibers will be 

studied. This instability is manifested by strong lateral oscillations of the axial symmetry axis 

of the jet accompanied by a slight undulation of the jet surface. We will perform for the first 

time a two-dimensional direct Fourier transform (2D DFT) analysis of the spatiotemporal 

variation of the jet diameter and the lateral deflection of the jet in the DST regime. We will 

show that the addition of polyamide fibers at different concentrations in the suspension allows 

for jet stability and promotes jet fractures. A theoretical explanation for the onset of jet lateral 

instability and the stabilizing effect of the fibers will then be developed based on the evaluations 

of tensile stresses and the lower and upper thresholds of the DST. 

Keywords: Rheology; Discontinuous shear thickening; Concentrated suspensions; Calcium 

carbonate particles; Fibers. 

 



Résumé 

Le rhéoépaississement discontinu « DST » dans les suspensions denses non browniennes est un 

phénomène bien documenté dans la recherche scientifique, cependant ses origines et ses effets 

sont toujours en discussion aujourd'hui. Ne pas reconnaître la cause directe du phénomène 

représente un point de faiblesse dans de nombreux domaines industriels, en particulier dans le 

domaine de la production de béton et de béton renforcé de fibres.  

Dans ce travail de thèse, nous étudierons expérimentalement ainsi que théoriquement le DST 

dans une suspension de microparticules de carbonate de calcium chargée de fibres rigides de 

polyamide et de verre. La rhéologie de cette suspension simule le comportement de béton 

renforcé par des fibres. Nous reproduisons à l’échelle réduite différents types d’écoulements 

ayant lieu dans le procédé de mise en place du béton, tels que malaxage par double hélice, 

pompage au travers des tubes, écoulement du jet en sortie du tube, et nous en tirons des 

comportements rhéologiques fondamentales applicables à tout type de mélanges « sphères-

fibres ». En utilisant la rhéométrie de type « malaxage » (outils double hélice adapté au 

rhéomètre rotationnel), nous montrerons d'abord que l'ajout de fibres déplace la transition DST 

vers des taux de cisaillement critiques plus faibles, ce qui s'explique par une augmentation de 

la viscosité de la suspension, de sorte que le taux de cisaillement pour atteindre la contrainte de 

début de DST diminue. Cependant, le mélange se bloque à une fraction volumique de fibres 

supérieure ou égale à 4% vol ce qui est interprété en terme du seuil de percolation du réseau de 

fibres dans la matrice rhéoépaississante du carbonate de calcium. Nous monterons dans un 

deuxième temps que le comportement rhéologique dans un écoulement induit par un gradient 

de pression au travers un capillaire reste assez semblable à celui dans un cisaillement simple, 

mais uniquement aux faibles concentrations de fibres, 𝜑𝑓 ≤ 1 % vol, et à condition d’appliquer 

correctement la correction de Mouney-Rabinowitch. Au-dessus de cette concentration les 

courbes d’écoulement dans la rhéométrie capillaire deviennent très éloignés de celles mesurées 

en cisaillement simple probablement à cause de la différence microstructurelle dans ces deux 

géométries. Le modèle théorique basée sur l’approche d’homogénéisation permet de reproduire 

au moins semi-quantitativement les courbes d’écoulement dans les géométries de type 

« malaxage » et capillaire à faible fraction volumique des fibres mais ne donne pas de bonnes 

prédictions au-delà de cette concentration.  Enfin, les instabilités du jet sous gravité de la 

suspension de carbonate de calcium avec et sans fibres de polyamide seront étudiées. Cette 

instabilité se manifeste par de fortes oscillations latérales de l’axe de symétrie axiale du jet 

accompagnées par une légère ondulation de la surface du jet. Nous réaliserons pour la première 

fois une analyse bidimensionnelle par transformée de Fourier directe (2D DFT) de la variation 

spatiotemporelle du diamètre du jet et de la déviation latérale du jet en régime DST. Nous 

montrerons que l'ajout de fibres de polyamide à différentes concentrations dans la suspension 

permet la stabilité du jet et favorise les fractures de celui-ci. Une explication théorique de 

l'apparition de l'instabilité latérale du jet et de l'effet stabilisateur des fibres sera ensuite 

développée à partir des évaluations des contraintes extensionnelles et des seuils inférieur et 

supérieur du DST. 

Mots clés : Rhéologie; Rhéoépaississement discontinue; Suspensions concentrées; Particules 

de Carbonate de calcium; Fibres. 

 

 

 



 ملخص

( في مستعلقات غير براونية كثيفة ظاهرة موثقة جيداً في « DST » التثخين المتقطع للقص )الاختصار الدولي العلمي هو

البحث العلمي ومع ذلك ، لا تزال أصولها وتأثيراتها قيد المناقشة في الوقت الحاضر. عدم القدرة على التعرف على السبب 

المدعمة بالألياف.   المباشر للظاهرة يمثل نقطة ضعف في العديد من المجالات الصناعية، وخاصة في مجال إنتاج الخرسانة

للقص في مستعلق مكون من جزيئات كربونات   المتقطع  التثخين  وكذلك نظرياً  في هذه الأطروحة، سوف ندرس تجريبياً 

وا الصلبة  أميد  البولي  بألياف  ومحملة  المدعمة  الكالسيوم  الخرسانة  سلوك  التعليق  هذا  ريولوجيا  تحاكي  الزجاجية.  لألياف 

بالألياف. نعيد محاكات في تجاربنا على نطاق مخفض، أنواع مختلفة من التدفقات التي تحدث في عملية صب الخرسانة ،  

الأنبو مخرج  عند  النفاث  والتدفق   ، الأنابيب  خلال  من  والضخ   ، المزدوج  الحلزوني  الخلط  السلوكيات  مثل  ونشتق   ، ب 

"الألياف المخاليط  هذه  من  نوع  أي  على  تنطبق  التي  الأساسية  النوع الكرويات".    -الريولوجية  من  التيار  قياس  باستخدام 

انتقال   تغُي ِّر  الألياف  إضافة  أن  أولاً  سنبين   ، الدوراني(  التيار  لمقياس  المُكيَّفة  المزدوج  اللولب  )أدوات  التثخين "الخلاط" 

إلى معدلات قص حرجة أقل ، وهو ما يفسره زيادة لزوجة المستعلق ، لذلك أن معدل القص للوصول إلى بداية    للقص  المتقطع

٪ والذي يتم تفسيره من 4ينخفض. ومع ذلك ، فإن الخليط يتكدس عند نسبة ألياف أكبر من أو يساوي   التثخين المتقطع للقص

 ونات الكالسيوم.حيث عتبة الترشيح لشبكة الألياف في مصفوفة كرب

لذلك  الى حد ما سنبين في مرحلة ثانية أن السلوك الريولوجي في التدفق الناجم عن تدرج الضغط عبر الانابيب يظل مشابهًا  

البسيط، القص  منخفضة في  ألياف  بتركيزات  فقط  𝜑𝑓  ولكن  ≤ تصحيح   % 1 تطبيق  يتم  أن  -Mouneyبشرط 

Rabinowitch  .مختلفة تمامًا عن تلك التي   ريولوجيا الانابيب  تصبح منحنيات التدفق في  التركيز،فوق هذا    بشكل صحيح

يسمح النموذج النظري القائم    تم قياسها في القص البسيط على الأرجح بسبب الاختلاف في البنية المجهرية في هذين الشكلين.

مجسمات من نوع "الخلاط" والانابيب مع تركيزات   على نهج التجانس بإعادة إنتاج منحنيات التدفق شبه كميًا على الأقل في

 . ولكنها لا تعطي تنبؤات جيدة تتجاوز هذا التركيز ،منخفضةألياف 

أخيرًا، سيتم دراسة عدم استقرار نفاث مستعلق كربونات الكالسيوم تحت الجاذبية مع وبدون ألياف البولي أميد. يتجلى عدم  

التذبذبات الجانبية القوية لمحور التناظر المحوري للنفاث المصحوبة بتموج طفيف للسطح النفاث.  الاستقرار هذا من خلال  

( الزماني المكاني لقطر النفاث والانحراف الجانبي  2D-DFTسنقوم لأول مرة بإجراء تحليل فورييه المباشر ثنائي الأبعاد )

للقصللنفاث في   المتقطع  الالتثخين  ألياف  النفاثات  . سنبين أن إضافة  التعليق يسمح بثبات  أميد بتركيزات مختلفة في  بولي 

سيتم بعد ذلك تطوير تفسير نظري لبداية عدم الاستقرار الجانبي للنفاث وتأثير الألياف الاستقراري   ويعزز الكسور في النفاث.

 بناءً على تقييمات الضغوطات والعتبات الدنيا والعليا للتثخين بالقص.

 

 كربونات الكالسيوم؛ اللألياف. جزيئات ريولوجيا؛ التثخين المتقطع للقص؛ المستعلاقات المدعمة؛ المفتاحية:الكلمات 
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CHAPTER 1 

 

1  Basic concepts of rheology. Shear thickening. Thesis objectives 
 

          In this chapter, we provide an overview of some macroscopic rheological laws, 

suspension rheology, and focus on shear thickening in dense suspensions. In particular, we first 

introduce the concept of shear thickening and discuss some of its applications, focusing on the 

discontinuous shear thickening (DST) observed in concentrated suspensions. We also discuss 

on the origin of this physical behavior, providing a detailed history of the different approaches 

that can explain its occurrence in dense non-Brownian suspensions, from the hydrodynamic 

forces approach to frictional contact forces between particles, and also discuss the differences 

between these two approaches. The review of the recent literature on the DST will allow us to 

reveal important lacks of rheological understanding of some particular DST systems, which in 

its turn, will allow us to formulate the objectives of the present work in view of the new physical 

insights and application to cement-based materials. 

1.1 Macroscopic rheological behaviors 

1.1.1 Stress tensor 

          Continuum mechanics expresses the law that defines the behavior of the fluid and its 

motion, or in other words the relationship between applied stress fields and deformations 

undergone in a tensorial form. The surface forces exerted by the fluid are generally represented 

by the Cauchy stress tensor, 𝛔 written in component form as 𝜎𝑖𝑗 . The diagonal terms 𝜎𝑖𝑖 are the 

normal stresses and are responsible for compression and elongation, whereas the terms 

𝜎𝑖𝑗  (𝑖 ≠ 𝑗) are the tangential stresses and are responsible for shear within the fluid, i and j being 

subscripts representing the direction of the stress and the surface of application of the stress, 

this means that the stress 𝜎𝑖𝑗  is the stress applied in the direction i on a surface normal to j. Its 

general expression in the (1,2,3) reference frame representing the directions of flow, velocity 

gradient, and vorticity is given by: 
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𝛔 = [

𝜎11 𝜎12 𝜎13 
𝜎21 𝜎22 𝜎23
𝜎31 𝜎32 𝜎33

]                                                    (1.1) 

Without flow, the stresses are normal, identical, and opposite to the pressure applied on the 

fluid (mainly hydrostatic stresses). The stress tensor can then be reduced to a part representing 

the exerted pressure 𝑝 = −
1

3
𝜎𝑖𝑖 (here summation over repeated subscripts is performed) and a 

part representing the viscous stress tensor 𝛕, which appears when the fluid is in motion.  

𝛔 = 𝛕 − 𝑝𝛅                                                          (1.2) 

where 𝛅 is the Kronecker delta (𝛿𝑖𝑗 = 1 if 𝑖 = 𝑗 and 𝛿𝑖𝑗 = 0 if 𝑖 ≠ 𝑗).  By convention, the 

negative sign of the pressure 𝑝 indicates that the liquid is in compression. 

1.1.2 Simple shear and normal stress differences  

 

Figure 1.1 Simple shear rheology test. The fluid is located between two continuous plates. The upper plate is 

driven by a force 𝐹 and is moving at a speed 𝑉. 

          Simple example of a shear test of a fluid is the flow between two continuous plates 

[Figure 1.1]. In such case the upper surface moves with a velocity 𝐕 by an applied force and 

drags along the fluid between the plates. This creates a velocity gradient otherwise known as a 

shear rate �̇� which is defined as the derivative of the velocity in the normal direction of the flow 

(direction 2) and is equal to the ratio of the maximum velocity (that of the upper surface) to the 

distance ℎ. 

�̇� =
𝜕𝑢

𝜕𝑦
=
𝑉

ℎ
                                                           (1.3) 

The fluid being sheared by a force 𝐅, it naturally undergoes a deformation. The rate of this 

deformation is expressed by the deformation tensor 𝐞: 

𝐞 =
1

2
[
0 �̇� 0
�̇� 0 0
0 0 0

]                                                      (1.4) 

The stress tensor 𝛔 is then written as follows: 
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𝛔 = 𝛕 − 𝑝𝛅 = [

−𝑝 휂�̇� 0
휂�̇� −𝑝 0
0 0 −𝑝

]                                     (1.5) 

knowing that in the case of a Newtonian fluid the viscous stress tensor is directly related to the 

deformation tensor by the fluid viscosity 휂𝑓: 

𝛕 = 2휂𝑓𝐞                                                         (1.6) 

In this case only 𝜎12 = 𝜎21 = 휂�̇� and 𝜎11 = 𝜎22 = 𝜎33 = −𝑝 are non-zero applied stresses 

values, other stresses:  𝜎13, 𝜎23, 𝜎31 𝑎𝑛𝑑 𝜎32 are zero. 

In the case of non-Newtonian fluids, the viscosity can be dependent on the shear rate. The 

viscosity expressions are then non-linear, also for such fluids it is not possible to differentiate 

the pressure 𝑝 from the normal viscous stresses 𝜏𝑖𝑖 [1, 2]. We then try to get rid of the 

contribution of the isotropic pressure 𝑝, which is done by estimating the normal stresses 

differences 𝑁1(first normal stress difference) and 𝑁2 (second normal stress difference). 

𝑁1 = 𝜎11 − 𝜎22                                                    (1.7) 

  𝑁2 = 𝜎22 − 𝜎33                                                    (1.8) 

For a Newtonian fluid the normal stresses differences are nil. The existence of normal stress 

differences in certain non-Newtonian liquids is the cause of spectacular phenomena such as the 

Weissenberg effect and the “die swell”. To observe the former effect, one can immerge a rod 

in this liquid and make it rotate, the liquid can be seen going up along the rod. On the contrary, 

in a Newtonian liquid, it collapses around the rod by inertia [3].  

1.1.3 Non-Newtonian behaviors 

          In non-Newtonian fluids, the viscosity depends strongly on the applied deformation, 

more precisely on the shear rate. Therefore, its value is not constant as in the case of Newtonian 

fluids, this is mainly due to the link between the microstructure of the fluid and the flow, which 

causes the non-linearity. There are three main types of behavior (see Figure 1.2). The first one 

is shear-thinning where the viscosity of the fluid decreases with the shear rate. Simple examples 

of shear-thinning fluids are ketchup or shampoo. The second type is shear thickening where the 

viscosity increases with the shear rate; as an example, the famous mixture of cornstarch with 

water if stirred at high speed, solidifies. And the third type corresponds to the yield stress fluids 

where below a threshold stress, the viscosity is infinite regardless of the applied stress and the 

fluid does not flow. Above this value the fluid can flow.   



Chapter 1            Basic concepts of rheology. Shear thickening. Thesis objectives 

 

17  

 

 

Figure 1.2 Flow curves for different types of fluids. (a): Stress vs shear rate. (b): Viscosity vs shear rate. 

In our thesis, we are focusing more on the shear thickening type of non-Newtonian fluids. 

1.2 Suspension rheology 

1.2.1 Viscosity and volume fraction 

          Consider a suspension of hard particles dispersed in a Newtonian fluid of viscosity 휂𝑓. It 

has been reported that when the volume fraction 𝜑 of the particles in the volume is increased, 

the rheological behavior of the suspension becomes very strongly related to it, being able to 

change the Newtonian nature of the suspension flow to a shear thickening nature. For a simple 

shear test of this suspension (see Figure 1.1), the viscosity 휂 is a function of the suspending 

fluid viscosity 휂𝑓 and a relative shear viscosity 휂𝑠, a function of the volume fraction 𝜑 of the 

particles. 

휂 = 휂𝑓휂𝑠(𝜑)                                                        (1.9) 

Numerous studies show the dependence of the viscosity on the volume fraction. Einstein in 

1906 [4] proposed the first theoretical model for a diluted regime. 

휂𝑠 = 1 + 2.5𝜑                                                    (1.10) 

 This law applies to spherical particles whose interactions are neglected. This assumes very low 

concentrations 𝜑 ≤ 0.03 to avoid hydrodynamic interactions and above this value, it is 

mandatory to consider the interactions between particles. For higher volume fractions, in the 

semi-dilute regime 𝜑 =  0.15, Batchelor and Green [5] extended Einstein's theoretical formula 

for a rapid increase in viscosity since hydrodynamic interactions and Brownian forces in the 
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suspension must be taken into account. The formula found contains a second order term 𝜑2 

highlighting pairwise hydrodynamic interactions between particles implying a faster increase 

in viscosity as a function of volume fraction. 

휂𝑠 = 1 + 2.5𝜑 + 6.5𝜑
2                                           (1.11) 

Beyond this volume fraction, viscosity divergence occurs at concentrations close to the 

maximum volume fraction and there is no analytical model to well describe the viscosity 

divergence. To take into account this divergence it is necessary to consider the contact forces , 

lubrication, possibly colloidal interactions [6-8], and this becomes a very complex matter. Thus, 

empirical models along with experimental and numerical studies were involved trying to 

determine the rheology of suspensions (see Figure 1.3) [9-11]. However, the diversity of the 

studied systems gives great differences in the different laws. The Eilers model [9] was the first 

to predict the divergence of the viscosity for volume fractions near the maximum volume 

fraction 𝜑𝑚: 

휂𝑠 = [1 +
1.25 𝜑

(1−
𝜑

𝜑𝑚
)
]

2

                                                (1.12) 

Later, Maron-Pierce [10], proposed another model in 1956: 

휂𝑠 = (1 −
𝜑

𝜑𝑚
)
−2

                                               (1.13) 

After that, in 1957 Krieger and Dougherty [11] developed a model, which became the most 

popular in the rheologists community : 

휂𝑠 = (1 −
𝜑

𝜑𝑚
)
−[𝜂]𝜑𝑚

                                          (1.14) 

Notice that a small variation in φ in the high-volume fraction range can lead to a large variation 

in 휂. For spherical particles, the maximum packing fraction, or the random close packing (RCP), 

is agreed to be 0.635 ± 0.005 [7], otherwise for high aspect ratio 𝑟 of fibers, 𝜑𝑚 = 5.4/𝑟 

corresponding to the upper granular limit of colloidal rods [12].  

Other viscosity formulas for 휂(𝜑) exist, such as the one proposed by Morris et Boulay [13] in 

1999: 

휂𝑠 = 1 + 2.5𝜑 (1 −
𝜑

𝜑𝑚
)
−1

+ 0.1 (
𝜑

𝜑𝑚
)
2

(1 −
𝜑

𝜑𝑚
)
−2

                (1.15) 



Chapter 1            Basic concepts of rheology. Shear thickening. Thesis objectives 

 

19  

 

Figure 1.3 Relative shear viscosity as a function of volume fraction of particles. From [14] with kind permission 

1.2.2 Particles migration  

          The flow of a suspension of hard particles is very complex and does not lack physical 

effects that have been the subject of several studies. In pioneering works on particle migration, 

it has been found that when a suspension flows through a channel, particles accumulate in the 

center and agglomerate in the low shear zones leading to a plug flow. This heterogeneity leads 

to completely blocked zones where the shearing is the weakest. Gadala-Maria and Acrivos [15] 

observed a decrease in the measured viscosity of the suspension after shear experiments 

conducted in a Couette cell with concentrated suspensions of spheres due to a diffusion of the 

particles induced by shear, this is known as particles migration. There are more interactions 

between particles near the rotating cylinder than near the fixed cylinder, due to the high shear 

rate. Therefore, the particles subjected to this high shear rate move and migrate towards the 

regions where the interactions are less frequent. This migration thus generates a gradient of 

particle concentration, and this gradient itself generates a flow of particles that counterbalances 

the migration. Furthermore, since viscosity is related to particle concentration, the concentration 

gradient creates a viscosity gradient within the suspension [16-19]. Since then, several studies 

have shown similar results in different systems [20-22]. Lagrée and Lhuillier [23], proposed a 

theoretical model of a continuous medium of the concentrated suspension subjected to a steady 

shear in a Couette cell geometry, in two different situations: constant confining pressure, and 

constant average volume fraction (or constant volume of the fluid). The model predicts the 

profiles of velocity and concentration of the particles. In this model, the pressure exerted along 

the radial direction (called granular pressure) is the result of the various particle spatial 
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arrangements, the inter-particle impacts, and the fluid pressure. Because of Reynolds dilatancy 

[24], shearing of the medium at constant average volume fraction leads to an increase in 

granular pressure and, shearing of the medium at constant pressure leads to a decrease in 

average volume fraction. Therefore, at constant mean volume fraction, the volume fraction near 

the rotating inner cylinder decreases while the volume fraction near the fixed outer cylinder 

increases. Therefore, whether at constant pressure or constant volume, they highlight two 

important properties of a volume fraction profile in the Couette cell. The first one is that the 

local volume fraction increases toward the fixed outer cylinder because of the low shear rate 

zone, and the local volume fraction near the rotating inner cylinder decreases as the shear 

increases (see Figure 1.4). 

 

Figure 1.4 (a): Particles volume fraction profile (in arrow direction) for increasing shear stresses and a constant 

confining pressure; (b): Velocity profiles for increasing shear stresses of the Couette cell (in arrow direction) and 

a constant pressure- From Lagrée and Lhuillier [23] with kind permission. 

Other works investigated the particles migration of non-Brownian [25] and Brownian 

suspensions [26] in channels of rectangular shapes. They found in such case that the particles 

tend to migrate to the lower shear zone, which is the center of the channel (see Figure 1.5). 

Otherwise, in 1985 Leighton and Acrivos [17] confirmed the clear effect of migration of 

particles on the decrease of the effective viscosity of a non-Brownian suspension. Their 

experiment was motivated by the strange observations in the previous study in 1980 conducted 

by Gadala-Maria and Acrivos [16] when a decrease in the viscosity was observed for a 

suspension of large diameter polystyrene spheres (40 − 50 μm) suspended in silicone oil at 

high particles volume fraction (𝜑 > 0.4), when the suspension underwent a long period of 

shear. The viscosity after decreasing reached a time independent value after some period of 

shearing. The comments raised by Leighton and Acrivos about the previous study [16] were 

that first the suspending fluid was Newtonian, showing no degradation under the experimental 

conditions and second the particles were large enough (40 − 50 μm) to rule out significant 
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influence of Brownian and electro-viscous forces. After repeating the experiment with their 

thin-gap Couette viscometer, Leighton and Acrivos characterized particles migration by a 

variable frequency of interparticle interactions and variable effective viscosity. They showed 

that during shear, particles migrate to a reservoir containing a stagnant part of the suspension, 

thus to a low-shear region, and as in concentrated suspensions, the viscosity is a function that 

increases very quickly with the particle concentration; its measured value can be therefore 

strongly impacted by even small variations of the particle concentration during migration. 

 

Figure 1.5 Local particles volume fraction as function of the channel distance for different suspension 

concentrations-from Frank et al. [26] with kind permission. 

1.2.3 Particles sedimentation 

          In a non-Brownian concentrated suspension, the particles of the suspension sediment 

under gravity. Sedimentation has also an impact on the viscosity of the suspension and the later 

may increase considerably with the sedimentation of the particles in the suspension. The 

sedimentation is due to three main forces, particles weight (particles density higher than 

suspending fluid in the suspension), buoyancy (Archimedes' force) and friction between 

particles. For dilute suspensions, 𝜑 < 1%, the sedimentation velocity of a particle in a fluid is 

given by [27]: 
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𝑣𝑠 =
9

2

(𝜌𝑓𝑝−𝜌𝑓)𝑔𝑅
2

𝜂𝑓
                                                (1.16) 

where 𝑅 is the particle radius, 𝜌𝑓 is the density of the fluid, 𝜌𝑝 is the density of the particles and 

휂𝑓 is the suspending fluid viscosity. For more concentrated suspensions, the particle 

sedimentation velocity will be strongly affected by the hydrodynamic interactions of 

neighboring particles. Richardson and Zaki [28] considered the impact of the volume fraction 

in their evaluation of the sedimentation velocity: 

〈𝑣〉 = 𝑣𝑠(1 − 𝜑)
4.65                                          (1.17) 

The sedimentation velocity significantly decreases with the increase of the particles volume 

fraction. 

1.2.4 Normal stress differences 

          In the case of simple shear of a Newtonian fluid, the normal stresses remain isotropic and 

only the tangential stress 𝜎12 is influenced by the flow, however in the case of concentrated 

suspensions, the shear induces an anisotropy and leads eventually to a difference between 

normal stresses (see equations 1.7 and 1.8). Numerous studies [29-33] have been conducted on 

suspensions to determine the normal stress differences 𝑁1 and 𝑁2. However, whether the normal 

stresses of the particle phase or of the whole suspension are measured remains open. In previous 

works, normal stress differences have been expressed as a function of shear stress 𝜏 or as a 

function of shear rate. 

Studies on the measurement of N1 and N2 for suspensions are few compared to those on 

polymers. Therefore, recently, various studies have focused on measuring normal stress 

differences in suspensions [34]. 

Dbouk et al. [35], conducted an experimental study to evaluate the first and second normal 

stresses 𝑁1 and 𝑁2 for a suspension of non-Brownian hard spheres. In their study, as expected, 

the second normal stress 𝑁2, is a negative value and is much larger than 𝑁1. This is in agreement 

with other experimental and numerical studies [30, 31, 36- 38] However, in their study, Dbouk 

et al. reported a small but positive value of the first normal stress 𝑁1, which contrasts with other 

experimental studies such as Zarraga et al. and Dai et al, [30], [38] who reported a negative 

value for 𝑁1. It is interesting to note through the previous studies that the sign of the difference 

in the first normal stress is elusive and difficult to assign, some have stated that the value is too 

small to be identified as positive or negative or even null [31]. The influence of particle volume 
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fraction on normal stress differences was also investigated in the work of Dbouk et al. [35] it 

was found that, the second normal stress difference 𝑁2 varies with particle concentration and 

its value increases rapidly when the particle concentration is greater than 0.2 . 

1.3 Shear thickening in concentrated suspensions 

1.3.1 General framework 

Shear thickening behavior of concentrated suspensions has long been the preoccupation of 

many studies [39-49]. One of the simplest examples of shear thickening behavior is the mixture 

of cornstarch polydisperse particles with water, the so-called cornstarch suspension. At low 

concentrations of cornstarch particles, the viscosity of this mixture is Newtonian, which means 

that it does not depend on the imposed shear rate or imposed shear stress, but when the particles 

are put in the suspension at high concentrations, the later becomes shear thickening. This means 

that its viscosity is no longer a constant and increases as a function of the shear rate (or stress). 

There are two types of shear thickening: CST or continuous shear thickening where the 

viscosity increases gently with the shear rate and DST or discontinuous shear thickening, where 

the viscosity of the fluid increases sharply (see Figure 1.6). The reason for the transition from 

CST to DST is the high concentration of particles in the mixture, when the particles 

concentration is sufficiently high, the viscosity of the suspension presents a transition (a 

divergence) at a critical shear rate, noted �̇�𝑐 (or shear stress 𝜎𝑐). This DST effect has allowed 

people to run on a pool of cornstarch because the shear is very high and the suspension is enough 

concentrated, so the viscosity is large enough to support the weight of the person running. The 

DST behavior is universal for various suspensions; however, its physical origin has always been 

an open question [50-56]. 
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Figure 1.6 Evolution of viscosity as a function of the volume fraction of the particles in a suspension. Curves 

extracted from (a): the article by Seto et al  [57], (b): article by Zhongcheng Pan et al [58] and (c): article by Mewis 

and Wagner [59],with kind permissions. 

1.3.2 Shear thickening in industrial applications 

          In many applications, producing industries want to prevent shear thickening behavior or 

at least reduce its effects [60], especially discontinuous shear thickening. A dramatic viscosity 

rises of a fluid or a suspension under shear can cause several problems leading to damage 

tools/materials, like mixers for cement pasts or transporting pipes [61]. However, shear 

thickening can find many useful applications in various industrial fields, such as protective 

body armors which showed promise for enhanced protection and flexibility [62-67], as well as 

in food industry [68, 69], in smart structures like smart viscoelastic damper to obtain adaptive 

stiffness and damping structures/devises [70-72]. Shear thickening can also find a major and 

important use in the cement industry and reinforced concrete, our thematic work is more related 

to this field of use, since our studied shear thickening suspension, which is the calcium 

carbonate (CC) suspension, represent a good model for a cementitious paste. It is a great 

challenge to obtain a strong dry concrete yet easy to work with in the fresh state due to the high 

packing fraction of the particles. Keeping good fluidity in a high compaction fraction has been 
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the subject of vigorous research [73-78], and for a long time, the limited knowledge of concrete 

forced engineers to give a building a linear shape to ensure a solid structure. The search into 

the physics and chemistry of concrete has enable to design self-compacting high-performance 

concrete allowing more complex shapes of the structure and more spectacular buildings to be 

built. To achieve this, researchers studied the physicochemical nature of concrete and analyzed 

it on a microscopic scale. Fresh standard concrete meets all the durability and solidity 

requirements, but it is often extremely hard and viscous and difficult to work with. A natural 

physical phenomenon lies at the root of this problem, cement particles in concrete are 

irreversibly stacked to each other when mixed with water and produce particles agglomeration. 

Thus, the viscosity of the concrete will eventually increase and the concrete will be hard to 

work with. To produce concrete with great fluidity and workability without adding more water, 

researchers have developed technology based on the use of dispersed additives commonly 

known as superplasticizers [79]. A superplasticizer is a molecule that physically separate the 

cement particles. This molecule temporarily neutralizes the forces of attraction between cement 

particles, and this gives the concrete a much more liquid consistency. By taking it in a closer 

look, it can be seen that superplasticizer molecules are made up of long chains grafted to the 

cement particle surface and pointing out from the particle surface toward the solvent. Thus, the 

superplasticizer adsorbs to the cement particles. The quality of the raw material used to 

manufacture the cement can influence this adsorption process. The later generations of 

superplasticizers take this cement variations into account. They possess high adsorption energy 

and cover all the particles regardless of their type. The superplasticizer chains are long enough 

to separate the particles and fluidize the mixture; this known as steric repulsion. The science of 

additives opens up greater opportunities for architects who, thanks to self-compacting, solid 

and long-lasting concert, can design more sophisticated buildings with ever more ambitious 

structures [Figure 1.7]. 

 

Figure 1.7 Pictures of modern concrete light structures. At the right : A museum in Marseille- France “Musée 

des civilisations de l'Europe et de la Méditerranée”. At the left: The Sheikh Zayed Bridge in Abu Dhabi. 
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1.3.3 Shear thickening physical origins  

          In the earlier studies [80-82] shear thickening behavior has often been confused with 

dilatancy. Described as a characteristic of dense granular flows in which, under shear, particles 

attempt to bypass each other but often cannot take a direct path, so their packing volume is 

stretched [7], [24], but this misunderstanding soon was dismissed after the confirmation in 

Metzner and Whitlock's work [81] that dilatancy can be observed without shear thickening in 

some suspensions. It is important to mention that there are still some studies which came after 

and reconsidered dilatancy as a mechanism that may lead to discontinuous shear thickening 

(DST) [83-88]. Brown and Jager [89] carried out experiments in a rheometer with two 

geometries:  a parallel plates geometry where the suspension is confined between the two plates 

by the liquid-air surface tension and another modified geometry similar to a Couette geometry 

where the suspension is completely confined by solid walls all around so that the particles 

cannot penetrate this liquid-air interface. The idea was that when the dense suspension is 

sheared, it delates and is soon frustrated by the boundaries of the confining geometry walls. 

Normal stresses are therefore generated against the confining walls which in turn generate 

opposite reaction forces transmitted fictionally by particles and build a frictional contact chain 

proportional to the normal force applied to the confining walls, this allows the shear stress to 

increase dramatically with the shear rate associated with the DST [Figure 1.8]
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Figure 1.8 Suspension dilation observed in a rheometer shear test using a parallel plate geometry; ω: angular speed 

of the rotating plate. (b): Representation of the evolution of rheology curves in 휂 = 𝑓(𝜏) versus volume fraction. 

the shear thickening regime is limited between the stress interval 𝜏𝑚𝑖𝑛   and 𝜏𝑚𝑎𝑥 . a non-zero slope value 

corresponds to shear thickening while a slope value of 1 corresponds to DST. From Brown and Jaeger [89], with 

kind permission. 

We can see that the frictional contact between particles was involved in the first efforts to 

explain the shear thickening and DST. However, the mechanism involving hydroclusters 

became more popular for some period of time. 

1.3.3.1 Hydrodynamic forces approach 

          After studies that attempted to relate shear thickening to dilatancy, in the last eighties, a 

new mechanism was proposed to describe shear thickening behavior. This mechanism is based 

only on the hydrodynamic forces (viscous-drag friction and lubrication force) exerted between 

particles immersed in a Newtonian fluid. Basically, the particles are prevented from collisions 

with each other by hydrodynamic lubrication forces that diverge when two particles come very 

close to each other. Brady and Bossis [90] were the first to introduce this mechanism in 1985. 

Due to the large increase in hydrodynamic lubrication forces between the vicinity of the 
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particles, at some critical shear, the particles can form what we can call hydrocluster (see Figure 

1.9) and when the hydrocluster of the particles become large, this will increase the effective 

viscosity producing a shear thickening behavior. However, this mechanism based of 

hydrodynamic forces and particles hydroclustering has only been linked to a soft regime of 

shear thickening or what we call continuous shear thickening, especially for colloidal 

suspensions (suspensions with small size particles between 1 nm and 1 µm) [91-94]. As it can 

only rise the viscosity of the suspension to a factor of 2, way too far from the viscosity 

magnitude observed experimentally for discontinuous shear thickening. 

 

Figure 1.9 Observation of different hydroclusters (different colors) in shear thickening regime for a Brownian 

suspension. From Cheng et al. (2011) [95], with kind permission. 

1.3.3.2 Order disorder transition 

          A mechanism to explain the DST in suspensions known as «the order-disorder transition" 

was introduced by Hoffman [39, 40], where the idea was that the DST is the result of a change 

in the microstructure of the suspension. Basically, during shear, the flow transits from a stable 

ordered state at low shear rate where it can flow easily to an unstable disordered state that 

restricts the flow to high shear rate. 

This mechanism was able to predict the onset of DST and has also been validated [96], however, 

other studies [97-99], have shown that DST is not necessarily the result of this transition and 

can be observed in other contexts. Therefore, DST may coincide with a change in the 

microstructure of a suspension but not necessarily the product of it.  

1.3.3.3 Frictional force approach 

          Until a decade ago, there was no solid evidence of the origin of shear thickening. the 

approach of hydrodynamic lubrication forces with the formation of hydroclusters could only 

explain the weak form of shear thickening or CST, on the other hand this mechanism was far 

from explaining the strong form of shear thickening or DST. For non-Brownian suspensions 

the case was even more complex, the models based on hydrodynamic forces all failed to predict 

DST [100], Recently the notion of frictional contact has been brought back into consideration 

[101], and since then a growing number of works have also highlighted the importance of 

frictional contact between particles in suspension rheology in general [102] and for the onset of 
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DST in particular [57], [103 -107] . In the following, we will detail some of proposed theoretical 

model of frictional transition since it is often compared in our work. 

A. General framework 

          The principle behind the frictional transition model can be explained with a simple 

diagram of two spherical solid particles in a suspension with particles volume fraction 

𝜑 suspended in a Newtonian fluid (see Figure 1.10). The relevant parameter of the suspension 

flow is the repulsive force denoted 𝐹𝑅, which is the force that allows the particles to remain in 

lubricated contact. This force comes for example from a layer of polymer adsorbed on the 

surface of the particles [108]. 

During the flow, the fluid exerts a hydrodynamic force denoted 𝐹𝑓, the competition between 

the two forces allows to define the nature of the flow, either lubricated or frictional: 

- If 𝐹𝑅>𝐹𝑓 the flow is lubricated and no frictional contact between particles is established. 

- If 𝐹𝑅< 𝐹𝑓 the repulsion force of the particles cannot counterbalance the hydrodynamic force 

and the contact between particles becomes frictional beyond their lubrication layer. 

 

Figure 1.10 Lubricated contact (left panel) and frictional contact (right panel) between suspension particles. 

This shear dependent transition of regimes (lubricated at low shear rate (or shear stress) to a 

frictional non-lubricated at high shear rate (or shear stress)) allows to introduce a dimensionless 

ratio between the two forces which control the transition: 

�̇� =
𝐹𝑓

𝐹𝑅
                                                        (1.18) 
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The viscosity of the suspension 휂 however, strongly depend on the flow regime 

(frictionless/frictional) and the particles volume fraction 𝜑. Two case scenarios are then noted 

(see Figure 1.11): 

- For low 𝛾 ̇ : The flow regime is frictionless and 휂 =  휂1 that diverge at 𝜑𝑐
1. 

- For high 𝛾 ̇ : The flow regime is frictional and 휂 =  휂2 > 휂1 that diverge at 𝜑𝑐
2< 𝜑𝑐

1 

We can then notice the different regimes for shear thickening according to particles volume 

fraction as the following: 

- If 𝜑 < 𝜑𝑐
2 , then for low values of 𝜑, the shear thickening is qualified as continuous 

CST and for high values of 𝜑, the shear thickening is then discontinuous DST. 

- If 𝜑𝑐
2 < 𝜑 < 𝜑𝑐

1, in that case, continuous stable flow can only occur in the lubricated 

regime. If the shear rate is suddenly increased, the regime quickly becomes frictional 

and the suspension jams.  

 

 

Figure 1.11 Lubricated and frictional contact regimes in the suspension. At the left, when the shear rate is increased 

the contact regime between particles changes from frictionless to frictional between the two curves. Adapted from 

[109]. 

The viscosity of the suspension is now a function of the particles volume fraction as well as 

the shear rate (compared to Eq. 1.9). 

휂 = 휂𝑓휂𝑠(𝜑, 𝛾 ̇  𝑜𝑟 �̇�)                                         (1.19) 

B. Simulations studies 

          Seto et al [57] in 2013, followed by another work of Mari and Seto [103] in 2014, 

proposed a simulation where they consider the frictional contacts between particles. In their 
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simulation, the flow is governed by the set of hydrodynamic forces acting between the particles, 

namely, lubrication force between particles and drag force between the fluid and the particle. 

The flow is also governed by the frictional contact forces taking into consideration the repulsion 

force 𝐹𝑅 between two particles. The frictional contact in their study [57], [103] was 

characterized by the microscopic friction coefficient 𝜇 and the DST regime is clearly governed 

by frictional forces.  

As Figure 1.12 shows, the regime is qualified as frictionless at low shear rate (the viscosity 

evolution is slow). However, at high shear rates, the viscosity curve diverges at a critical volume 

fraction 𝜑j
𝜇>0

 (j index stands for jamming).  

 

Figure 1.12 Relative viscosity against the particles volume fraction, different friction coefficient at different 

shear rate. From Mari and Seto 2014 [103], with kind permission. 

Figure 1.13 shows that during the flow of a suspension a contact network between particles is 

formed and depends substantially on the shear rate. In fact, in both cases the contact network 

increases with the shear rate. In the case of a CST the number of contacts at a given shear rate 

is stable in time. In the case of a DST the number of contacts varies with time at the critical 

shear rate. It is stable at low and high shear rates. 
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Figure 1.13 Representation of contact network evolution as a function of applied shear rate. Adapted from Mari 

and Seto 2014 [103], with kind permission. 

C. Theoretical studies 

          A theoretical model was proposed by Wyart and Cates [107] in 2014. According to this 

model for a suspension of non-Brownian solid particles, the transition from the CST to the DST 

flow regime is established by frictional contact between the particles of the suspension. 

Therefore, they introduced a ratio that allows to predict the type of contacts between particles 

(lubricated or frictional), this ratio is between two pressures, the particle pressure 𝑃𝑃 and the 

repulsive pressure 𝑃𝑅 = 𝐹𝑅/𝑅2 (R is the particles radius). This ratio can be resumed in a 

dimensionless number 𝑃 =  𝑃𝑃/𝑃𝑅. 

- If 𝑃 ≪  1, the contact between particles is lubricated. 

-If 𝑃 ≫  1, the acting pressure on the particles is much higher than the pressure that keeps the 

contact between particles lubricated. The contact between particles is then frictional. 

Two critical particle volume fractions of viscosity divergence can then be distinguished 

according to their model: 

- 𝜑𝑐
1 when the regime is qualified as totally lubricated and can never be blocked below this 

volume fraction, this is for low particle pressure P ≪ 1. 
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- 𝜑𝑐
2 when the regime is qualified as totally frictional and will always be blocked above this 

volume fraction value, this is for low particle pressure P ≫ 1. 

A formula has been suggested for all intermediate critical volume fractions which represents 

the area where the suspension will be able to partially flow at low shear rates and be blocked at 

high shear rates. This will capture the volume fraction 𝜑𝐷𝑆𝑇 of the transition between CST and 

DST.  

𝜑𝑐(P) = 𝑓(𝑃)𝜑𝑐
2 + (1 − 𝑓(𝑃))𝜑𝑐

1                             (1.20) 

where 𝑓 is the fraction of frictional contact function of 𝑃 and giving by: 

𝑓(𝑃) = 1 − exp(−𝑃)                                          (1.21) 

 

Figure 1.14 (a): Shear thickening phase diagram; (b): The prediction of Wyart and Cates model for different flow 

regimes depending on the volume fraction of the particles and the dimensionless pressure ratio. From Wyart and 

Cates [107], with kind permission. 

For volume fraction lower than 𝜑𝑐
1 the flow is continuous with a slight curvature between two 

straight segments exhibiting two Newtonian plateaus, then at a volume fraction of the particles 

𝜑𝐷𝑆𝑇 = 0.554, the two straight segments are then connected by a curvature characterized by an 

infinite slope and the complete curve has an S shape. The suspensions in this case can flow in 

either the lower or the upper straight segment with low or high viscosity respectively. 

The suspension is completely jammed for high pressures applied above a volume fraction 𝜑𝑐
2. 

The Figure 1.14 represents the different flow phases and the jammed section.  
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In contrast to the model based only on hydrodynamic forces [90], the Wyart and Cates model 

provided a robust explanation of the origin of shear thickening and the transition CST to DST, 

which once could not be explained without the involvement of frictional forces between 

particles. Several experimental works [43, 58, 110, 111] afterwards started to confirm this 

transition and observed this S-shaped pattern that connects in the flow curve a first straight 

quasi-Newtonian line, sign to CST regime to a second straight quasi-Newtonian line above the 

transition, sign to DST. However, the contact forces of the particles in the shear thickening 

phases have not yet been measured, but studies have reported the role of frictional interactions 

between particles on the suspension rheology [6, 102]. 

1.3.4 Shear thickening in particle mixtures 

          It has already been shown that adding large spherical particles to a concentrated 

cornstarch suspension shifts the DST transition to lower shear rates. This can be related to the 

two following effects: (a) appearance of highly sheared regions between the large particles in 

which the shear thickening matrix (cornstarch suspension) exhibits local DST transition at 

lower global shear rates as compared to the cornstarch suspensions without addition of large 

particles [112]; (b) local enhancement of the cornstarch concentration due to the excluded-

volume shell surrounding the large particles [113]. The first effect can be simply seen as 

follows: the addition of large particles increases the viscosity of the bimodal particle mixture, 

therefore, the shear rate to reach the onset stress of DST becomes lower, under condition that 

this stress is independent (or slightly dependent) of the large particle volume fraction. Such 

interpretation, particularly relevant for the stress-controlled rheology, stems from the seminal 

work of Ohl and Gleissle [114], who supposed that, at the fixed shear stress, the shear rate in 

particulate suspension is reduced by a factor equal to the suspension relative viscosity. More 

recently, this approach has been successfully applied to describe CST in non-Brownian 

suspensions of spherical or cubic particles dispersed in shear thickening colloidal matrix [115, 

116]. These last works report a possibility of the enhancement of CST by local confinements 

of the colloidal matrix in the spaces between suspended large particles.  

In the case of a particle mixtures suspension, when large rod-like particles are dispersed in a 

shear thickening matrix composed of small isotropic-shaped particles dispersed in a Newtonian 

liquid, similar effects are expected of the rods on the DST of the composite mixture. However, 

the DST transition is believed to be governed not only by the concentration ratio of the large 

and small particles but also by orientation state of the rods since it should affect both the local 

shear rates in the space between rods and the excluded volume and local confinement effects 
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by tuning the size of the pores formed by the rods (see chapter 3). From a general perspective, 

the rheology of shear thickening mixtures of isotropic-shaped particles and fibers is expected 

to show behaviors reminiscent for shear thickening fluids and fiber suspensions, especially 

concerning the effects of the aspect ratio and the fiber orientation distribution on the suspension 

viscosity – see helpful reviews by Larson [117]; Petrie [118] and Bulter and Snook [119]. It is 

worth noticing that the DST transition has already been discovered in concentrated suspensions 

of relatively short (length-to-diameter ratio 1 ≤ 𝐿/𝐷 ≤ 9) non-Brownian polyethylene glycol 

rods and has been found to share similar qualitative features with DST in spherical particle 

suspensions without focusing on the effect of the rod orientation distribution [120].  

1.3.5 Extensional and free surface flows of shear thickening fluids 

          Extensional flows of the DST fluids have been studied to a lesser extent. Filament 

stretching (FiSER) and capillary break-up (CaBER) extensional rheometry was employed in 

experiments and have shown qualitatively similar behavior to those observed in shear 

rheometry: a nearly constant extensional viscosity at low strain rates followed by an abrupt 

increase above a critical strain rate [121, 122]. However, quantitative comparison between shear 

and extensional rheology of DST suspensions remains delicate because of transient character 

and complexity of the flows in FiSER and CaBER experiments. Viscoelastic pinch-off 

experiments in the work of Roché et al. [123] allowed finding the ratio of extensional-to-shear 

viscosities close to 3 (Trouton ratio for Newtonian fluids) above DST transition at small particle 

size-to-filament diameter ratios (weak confinements). This is consistent with particle level 

simulations of the work conducted by Seto et al. [124] showing similar energy dissipation in 

shear and extensional flows of bi-disperse suspensions at a ratio of big-to-small particle size 

higher than 1.4. These simulations have revealed an anisotropic particle microstructure under 

extension with the contact network (tested through a pair correlation function) somewhat 

diffused around the compression axis. In what concerns surface phenomena accompanying 

extensional flow experiments, brittle fracture of filaments reminiscent to glassy states has been 

typically observed above the DST transition in the works of White et al. [121] and the work of 

Andrade et al [122]. For pinch-off experiments, the authors have reported relatively strong 

undulation of the filament surface before the break-up related to a sequence of jammed and 

fluid states, as well as filament bending along its fluid parts after the break-up [123, 125] (see 

Figure 1.15). 
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Figure 1.15 Viscoelastic behavior of: (a). a suspension of cornstarch from [123]. (b). a suspension of PMMA from 

[125], with kind permissions. 

Free surface phenomena of DST fluids have been mainly studied for vibrating DST layers 

exhibiting surface instabilities in form of holes and fingers, as well as in the context of the 

impact resistance with a special accent on propagation of cracks, an important topic for body 

armor application – see the review by Brown and Jaeger [100]. A recent work of Darbois Texier 

et al. [126] reports another type of the surface instability observed in a film flow down an 

inclined plane. Surface waves emerging during this flow have visual resemblance with classical 

roll waves, but they arise without inertia due to the S-shape of the flow curve of DST fluids. 

Falling viscous jets combine extensional and free surface flows and offer an alternative way to 

test the extensional rheology. However, only a few recent publications have considered jet 

flows of DST concentrated suspensions. Liard et al. [127] has studied a free-falling jet of a DST 

aqueous silica suspension. At high particle concentrations, the jet is shown to develop a new 

type of instability manifested through rapid transverse oscillations (somewhat similar to 

filament bending in Roché et al. experiments [123]) accompanied by break-up events above 

some critical length. The instability has been fully ascribed to stress oscillations within the jet 

above the DST transition. Following the motion of wave maxima, the authors have measured a 

distribution of forward and backward wave speeds and found that the waves are not advected 

by the falling jet but the average wave speed is close to the one of a vibrating solid string under 

gravitational stretching. Wang et al. [128, 129] has studied the primary break-up of aqueous 

cornstarch jets by an annular air jet and the secondary break-up of the DST drops by a transverse 

air jet, in the context of the spray atomization process. The authors report so-called “hardened” 

primary break-up, when, under strong shear imposed by a surrounding air jet, the suspension 

jet exhibits lateral oscillations and fractures into large fragments at the inflection points. They 
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also observed a hardened secondary drop break-up manifested through a hemispherical droplet 

shape atypical for this phenomenon.  

However, it is worth mentioning that in the existing literature works, direct relationship between 

the suspension rheology and transverse jet oscillations is still lacking, while different important 

wave characteristics, like dispersion relation, frequency spectra, root mean square (RMS) 

amplitude, have not yet been reported. 

1.4 Unresolved problems and general purpose of the thesis 

          The analysis of the state of the art of the DST phenomenon presented in section 1.3 

reveals a few important aspects that have received little attention and need further and deeper 

investigations: 

1. The DST transition in mixtures of spherical and rod-like (fibers) particles have been 

studied only scarcely and, to the best of our knowledge, the effect of the fiber addition 

on the DST transition has never been reported despite of high practical relevance of this 

effect in mixing, pumping and handling of fiber-reinforced concentrated cement pastes. 

2. The effect of flow geometry on the DST response of shear thickening suspensions has 

also received a little attention, especially nothing is known how confinement of fibers 

in sphere-fiber mixtures will affect the suspension rheology in drag shear (simple shear 

or mixer-type) flows and pressure-driven flows though narrow channels – this question 

being also of crucial importance for cement industry. 

3. Finally, little is known about extensional flows and/or free surface flows of DST fluids 

without any information about behaviors of sphere-fiber mixtures in these flows. Free 

falling jet flow is an example of high practical relevance for mortar spraying or cement 

jet grouting. Jet flow instabilities that may occur above the DST transition (perturbing 

the cement application) should somehow depend on the content of fibers in the sphere-

fiber mixture but this remains completely unknown.   

The above stated lacking knowledge on the DST behavior of sphere-fiber mixtures allow us to 

formulate the objectives of the present thesis work. The general aim of this thesis is to study 

the phenomenon of DST in the sphere-fiber mixtures and to analyze the effect of the fiber 

addition on the suspension rheology. We use a dense non-Brownian suspension of the calcium 

carbonate CaCO3 (CC) particles loaded with fibers. The choice of our suspension is dictated by 

possible application of our results to the flows of concentrated cement pastes loaded with fibers. 
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As justified in section 2.1.1.1, the aqueous dispersion of CC particles is an excellent 

experimental model of a cement paste before hardening. The reinforcement of cementitious 

materials (CM) by fibers improves their mechanical strength and ductility [130-132], however, 

the manufacture of CMs highly loaded with fibers is problematic because of their low fluidity, 

heterogeneity, and poor workability. As we have seen, superplasticizers (polymers adsorbed on 

the surface of cement particles) improve the fluidity but the fiber content remains very limited 

due to the localized shear thickening phenomenon in the vicinity of the contacts between fibers.  

In this thesis we will clarify the effect of fibers on the rheology of shear thickening "particles-

fibers" mixtures both experimentally and theoretically. We will first present in chapter 2 with 

detail the ingredients of our suspension, the method of its preparation, and the experimental 

equipment that we have used. In three subsequent chapters (3-5), we handle the suspension 

flows, which simulate different stages of the cement paste processing: mixing, pumping and 

spaying. In particular, in chapter 3, we will make a shear rheological study for our suspension 

in order to simulate the shear that undergoes a cement paste during its mixing. This will allow 

us to make the point on the suspension rheology and analyze the critical parameters that can 

influence its DST behavior. In chapter 4, we will study the flow of our suspension through a 

cylindrical channel at imposed pressure, the situation simulating concrete pumping in 

construction sites. We will compare then the suspension shear rheology against the capillary 

one in DST flow regime. Finally in chapter 5, the jet under gravity of a shear thickening 

suspension loaded with fibers will be investigated to evaluate the rheology in extension of this 

type of dense and fiber loaded mixtures, DST will be linked to suspension jet instabilities and 

the advantage of fibers addition will be discussed. From application perspective, this part of the 

study simulates to some extent the concrete or mortar spraying when it flows out of the pumping 

lines. Finally, at the end of the manuscript we will present general conclusions with some 

prospects for future work.
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CHAPTER 2 

 

2 Material used and Methods employed 
 

2.1 Materials used in the preparation of the suspension  

          In the present work, the suspensions were constituted of calcium carbonate (CC) 

particles, polyamide (PA) or glass fibers and a superplasticizer PCP-45, all dispersed in a 

deionized water at desired proportions. The CC particles and PCP-45 were extensively 

characterized in the previous works of the hosting team at UCA [133, 134]. Thus, the results of 

their characterizations are briefly reviewed in sections 2.1.1 and 2.1.2. Then, PA and glass fibers 

are characterized in detail in section 2.1.3, while the protocol of the suspension preparation is 

provided in section 2.1.4.  

2.1.1 Calcium carbonate particles 

          With the chemical formula CaCO3, calcium carbonates (CC) are one of the most abundant 

non-toxic minerals.  

There are three allotropic forms of calcium carbonate summarized in Table 2.1 and depicted in 

Figure 2.1. 

Table 2.1 Characteristics of the different allotropes of calcium carbonate [135]. 

CC form Microscopic shape Stability 

Calcite Rhombohedral Very stable 

Aragonite Orthorhombic Fairly stable, obtained at high temperature and 

pressure. 

Vaterite Hexagonal Unstable under normal temperature and pressure 

conditions 
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Figure 2.1 Microphotography of allotropic forms of calcium carbonate, (a): calcite; (b): aragonite; (C): vaterite. 

From Kammoe [136] 

2.1.1.1 Why CC-particles suspension is a good model for cement paste? 

          In our doctoral thesis we studied the CC-suspension as the best representative and closest 

model to a cement paste. This point can be justified in the literature by several works, [137-

143]. We recall the exhaustive work of Mikanovic [144] where the authors have experimentally 

compared a Portland cement with five minerals that can be used as a model for a cement paste, 

among which carbonate calcium. The tests with the cement were all conducted in the handling 

phase before hardening, or the workability phase. The results were all in favor of calcium 

carbonate for a better model to describe the cement paste and this because they have a similarity 

in properties: 

▪ The zeta potential in aqueous medium and the isoelectric point (the pH of an aqueous 

solution in which a solid exists under a neutral electric potential) are the closest to 

cement in case of CC. 

▪ The same packing density was observed with CC-suspension in a sedimentation test.  

▪ Rheological conservation and dissipation moduli in rheological oscillation tests were 

the closest for CC compared with the cement. 



Chapter 2                                                   Material used and Methods employed 

 

41  

2.1.1.2 Characterization of CC-particles used in the present work 

          The CC-particles and the adsorbed superplasticizers used in the present manuscript are 

the same that were used in previous PHD work of Romain Morini [133]. CC-particles were 

supplied by the Swiss company OMYA, a world producer of white minerals. The commercial 

name of the product is BL 200 and it is obtained by mechanical crushing. The shape of the CC 

microparticles is depicted in Figure 2.2 using SEM (Scanning Electron Microscopy) and it is 

rhomboidal and considered isotopic insofar as their size is approximately equal in all directions, 

(see Figure 2.2). Their size distribution was obtained by the static light scattering (SLS) with 

the help of the Master Sizer device from Malvern coupled to a Hydro2000S module, this device 

allows to determine the intensity of the light that the CC-particles scatter with the help of several 

light sensors which are located at different positions encompassing all the light beam of the 

particles and capturing the scattered intensity. Nevertheless, this device has some limitations: 

the shape of the particles must be relatively spherical, the size of the particles must not be 

smaller than 10 nm because the smaller the particle, the more light it scatters with a large angle, 

and the volume concentration must not be high in order to avoid a multiple scattering. 

 

Figure 2.2 SEM picture of CC-particles from [134], with kind permission. 

Figure 2.3 represent the results of the volume size distribution of CC obtained by SLS (empty 

triangles) and by direct geometrical measurements of the particles above 1 𝜇m using SEM 

pictures (filled diamonds) [134].  

The measurement of the specific surface developed by one gram of CC-particles has been 

carried out with great precision by BET analysis (adsorption of nitrogen gas on the surface of 

the particles) [133]. the zeta potential and conductivity of the CC-suspension were estimated 

using Malvern Zeta sizer ZS apparatus. 
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Figure 2.3 CC- particles size distribution curves using static light scattering (SLS) and by classification of particles 

above 1 μm from SEM pictures, from [134], with kind permission. 

Several physical and physicochemical parameters are summarized in Table 2.2 

Table 2.2 Physical and physicochemical parameters of CC-particles [133, 134]. 

Particles Mean 

diameter 

D [𝝁m] 

Density  

𝝆 [𝐤𝐠/𝐦𝟑] 
 

specific surface 

𝑺𝟎 [m2/g] 

Zeta potential 

𝜻 [mV]  

CaCO3 5.5 2525 0.88 8.3 

 

It is important to notice that we have used two series of the same kind of particles. Both series 

corresponded to two different bags containing the particles. Both series had very close 

physicochemical parameters with slightly different particle size distribution (the Table 2.2 show 

the characterization results of the 1st series). However, we got quite different rheometric results 

for both series: the 1st series showed lower critical shear rates of the DST onset as compared to 

the 2nd series. This discrepancy is tentatively explained by the fact that a very slight difference 

in size distribution generates a slight difference in the maximum packing fraction 𝜑𝑚 of 

particles, which is sufficient to provide relatively large rheological differences, provided that 

the suspension viscosity diverges as 휂~(1 − 𝜑𝑝/𝜑𝑚)
−2 and the CC particle volume fraction 

𝜑𝑝 was always close to 𝜑𝑚. Unfortunately, we were unable to conduct all the measurements of 

this work with the same series of particles. For this reason, the rheometric results obtained in 

mixer type and plate-plate geometries (1st series, chapters 3 and 5) cannot be safely compared 

to those obtained in cylindrical Couette and capillary geometries (2nd series, chapter 4). 

However, both particle series showed very similar qualitative behaviors.  
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2.1.2 The superplasticizer 

          The superplasticizers are organic polyeletrolytes. In the concrete industry, the 

superplasticizer plays the role of an additive that is introduced into a concrete mortar, shortly 

before its implementation, ensuring as main function the maximum increase of the workability 

of the mixture by allowing to reduce the water amount, which leads to an increase of the strength 

and the compactness. This is mainly done by neutralizing the electric charges present on the 

surface of the cement particles, known as steric repulsion, which makes it possible to separate 

the particles from each other, thanks to the very long molecular chains of the superplasticizer 

(see Figure 2.4). Therefore, the suspending fluid that once was trapped by the particle flocs is 

free again for the workability of the concrete. Superplasticizers are also sometimes used to delay 

the setting of concrete, but they also depend on the characteristics of the cement and the 

composition of the concrete or mortar.    

Figure 2.4 Effect of superplasticizer - dispersant of cement suspension particles 

The superplasticizers are of different families and the Polyoxyethylene Carboxylate family 

otherwise known as PCP, was first introduced in the 1990's. It consists of one or more chains 

of polyethylene glycols grafted onto carboxylic anionic groups of a polymethacrylate skeleton 

and it is the one we are using as a superplasticizer in our CC-suspension. 

2.1.2.1 Characterization of the PCP superplasticizer  

          Since in our experiments we are working with CC-suspension, which is a good model of 

a cement suspension, it is necessary to add superplasticizer to the mixture. The molecules of 

the superplasticizer are grafted on the surface of the CC-particles separating the particles and 

lubricating them by neutralizing the attractive colloidal forces between particles. 
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The superplasticizer we are using in our experiments have been supplied by the French 

company of additives for building materials Chryso and it is known under the “PCP” 

abbreviation. PCP are polymethacrylates grafted with polyoxyethylene chains (POE) (see 

Figure 2.5). These molecules have P = 45 ethylene oxide units in the PEO chain grafted in 𝑛 =

 10 segments composed of 𝑁 =  5 carboxylate functions.  

 

Figure 2.5 Sketch of the chemical composition of the PCP polymer, from[134], with kind permission. 

Table 2.3 Chemical properties (molar masses) of PCP-45 Superplasticizer [133]. 

Superplasticizer Mbac 

[𝐤𝐠/𝐦𝐨𝐥] 
Mch 

[𝐤𝐠/𝐦𝐨𝐥] 
Mseg 

[𝐤𝐠/𝐦𝐨𝐥] 
MPCP 

[𝐤𝐠/𝐦𝐨𝐥] 
PCP-45 5.310 18.040 2.335 23.350 

 

The chemical properties of the PCP-45 superplasticizer have been provided by Chryso company 

and are summarized in table 2.3, where Mbac, Mch, Mseg, MPCP are respectively the molar masses 

of the whole methacrylate backbone constituting the molecule, the whole POE chain unit, of a 

segment of the molecule having four carboxylic functions and a POE chain and the molar mass 

of the PCP-45 molecule [133]. 

The PCP-45 is 59.3 wt % aqueous solution  of polymers. The zeta potential and conductivity 

for the PCP-45 solution are respectively: 휁 =  −15.6 mV  and 𝑘 = 2.26 mS/cm  at pH =  6,96. 

The zeta potential for the superplasticizer is a negative value meaning its charge is negative at 

a considered pH, which will provide electrostatic attraction between positively charged CC-

particles and  negatively charged PCP-45 superplasticizer, allowing an easy adsorption of PCP-

45 onto CC surface. 

2.1.2.2 Adsorption isotherms of PCP-45 on CC-microparticles 

          An adsorption isotherm is the curve relating the activity of the adsorbate contained in a 

given and known atmosphere to the quantity of adsorbate adsorbed on a solid in equilibrium 
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with this atmosphere. It allows to evaluate the adsorption affinity of different molecules for the 

same surface by giving the maximum number of molecules that can be adsorbed. In our case, 

it will allow to determine the maximum concentration of molecules of the superplasticizer PCP-

45 that can be adsorbed on the surface of CC-particles. By modeling these isotherms, one can 

also trace the adsorption energies, thus the intensity of the bonds between the anchoring 

functions of the molecules on the surface. It is also possible to identify the difference between 

adsorbed and simply coagulated molecules in the presence of certain ions present in the 

suspension. 

Langmuir isotherm model is the simplest of the adsorption models in which four conditions are 

assumed:  

- Each free site in the solid surface of the adsorbent can bind only one molecule of the 

adsorbate, so the adsorption takes place in a monomolecular layer. 

-  All the sites are identical. 

-  The existence of a dynamic equilibrium between the molecules fixed on the surface of 

the adsorbent and those leaving the surface means that there is adsorption and desorption 

of molecules at the same time. 

- There is no interaction between adsorbent molecules. 

The model consists in writing the third condition of equilibrium between the rate of absorption 

and desorption of the molecules. At equilibrium, the Langmuir equation is giving by: 

𝐶𝑎𝑑𝑠 = 𝐶𝑝𝑙𝑎𝑡𝑒𝑎𝑢 (
𝐾𝑒𝑞𝐶𝑓𝑙𝑢𝑖𝑑

1+𝐾𝑒𝑞𝐶𝑓𝑙𝑢𝑖𝑑
)                                         (2.1) 

where: 𝐶𝑎𝑑𝑠, 𝐶𝑝𝑙𝑎𝑡𝑒𝑎𝑢, 𝐶𝑓𝑙𝑢𝑖𝑑, are respectively the concentrations of the molecules adsorbed on 

the surface, the total concentration of the adsorption sites on the adsorbent surface and the 

concentration of free non-adsorbed molecules remaining in the fluid; 𝐾𝑒𝑞 is an equilibrium 

reaction constant. 

Morini in his PhD work [133] measured the adsorption isotherms of PCP-45 on the surface of  

CC particles using the Total Organic Carbon analyzer TOC-VCSH from Shimadzu.  
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Figure 2.6 Adsorption isotherm of PCP-45 on CC microparticles [133]. 

Figure 2.6 represent the adsorption isotherm of PCP-45 expressed as the number of adsorbed 

PCP-45 molecule segments per square nanometer (nm2) of CC surface against the quantities 

of PCP-45 superplasticizer remaining in the solvent (gfluid / l), where the blue points are 

experimental data, and the red line is the modeling by the Langmuir model. The slope of the 

first linear part at the origin of the isotherm gives information on the adsorption affinity of the 

PCP molecule for the surface, while the adsorption plateau gives information on the saturation 

of the surface of the CC particles and allows to determine the maximum quantity of adsorbed 

superplasticizer. We see that the adsorption plateau is approximately achieved at the 

concentration of free (non-adsorbed) PCP, 𝐶𝑓𝑙𝑢𝑖𝑑 ≈ 0.4
g of PCP

L of water
. At adsorption plateau, the free 

PCP concentration is close to the total concentration of PCP added to the suspension: 𝐶𝑓𝑙𝑢𝑖𝑑 ≈

𝐶0. In our CC suspensions of a density 𝜌 ≈ 2000 g/L at particle volume fraction, 𝜑𝑝 = 0.64 −

0.68, the amount of PCP that should be added to the suspension by unit mass of CC particles is 

evaluated as 
𝐶𝑓𝑙𝑢𝑖𝑑

𝜌
≈ 0.002 

g of dry PCP

g of dry CC
. This quantity is used all along the current work for the 

suspension preparation.  

2.1.3 The fibers 

          In the current work, we try to model the fiber reinforced concrete by the suspension of 

CC-particles mixed with rigid fibers in order to study the DST phenomenon in dense 

concentrated suspensions. Since a long time, fibrous substances of micron-to-millimetric sized 

metallic (steel) fibers, or mineral (glass or carbon) fibers, or  polymeric  (polyamide, 

polyethylene or polypropylene) fibers have been added to concrete in the cement industry in 

order to improve its physical and mechanical qualities. Indeed, reinforcements, such as steel 

[145], polymer [130], glass [131, 132], or carbon fibers [146], are commonly used to prevent 

the occurrence and propagation of cracks. The addition of fibers to concrete helps to restrain 
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cracks and reduce potential problems such deterioration due to water infiltration. Fiber-

reinforced concrete also outperforms ordinary concrete in terms of higher tensile strength, and 

ductile tensile behavior and it covers areas requiring extreme mechanical and environmental 

loads. Several studies have considered the addition of polyamide fibers (PA) as a reinforcement 

for concrete and have characterized its physical and mechanical properties [147-149]. PA-fibers 

are synthetic fibers are generally derived from the chemical reaction of difunctional monomers 

containing amine and carboxylic groups. PA-fibers have several mechanical properties, first of 

all they are light in weight, that is why they have been chosen for concrete reinforcement in 

order to guarantee a good workability of the reinforced concrete in the construction site. They 

also have a low water absorbance, a high resistance to humidity and a good resistance to traction 

and abrasion. These and other properties make PA-fibers an ideal choice for fiber reinforced 

concrete [150, 151]. In our work we considered mainly and most of the part the use of PA-

fibers in the CC-suspension (in chapters 3, 4 and  5) and also the use of glass fibers with CC-

suspension in shear rheological tests in chapter 3, in order to compare the rheological behavior, 

especially the DST, in the presence of two types of rigid fibers in a shear thickening CC-

suspension of.  

Figure 2.7 Optical microscopy snapshots of: (a)- the polyamide (PA) fibers and (b)- glass fibers dispersed in 

deionized water. The width of the images (a) and (b) corresponds to 1500 and 700 µ𝑚 respectively. 

     The fibers used in our suspension are considered as anisotropic particles of axisymmetric 

geometry, with cylindrical shape, of mean length L, mean diameter D and mean aspect ratio 

𝑟 = 𝐿/𝐷 ≫ 1. The physical and geometrical properties are summarized later in Table 2.4. The 

PA fibers were supplied by the producer of textile additives, Pinfloc French company. The 

fibers were used without any additional treatment, although we checked their monodispersity 

from several collected and analyzed images (see Figure 2.7). The glass fibers (studied only in 

chapter 2) were purchased from the Arkema company in France initially supplied with an 
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average size of 5 mm and were manually grinded in a ceramic mortar and seeded through a 

series of sieves in order to adapt the average aspect ratio to that of the PA fibers. Figure 2.7 

shows optical microscopy snapshots of the two types of fibers dispersed in deionized water. 

The snapshot (a) shows a fairly good monodispersity of the PA fibers, while both snapshots (a) 

and (b) do not reveal any strong aggregation of two types of fibers. 

 From the optical microscopy snapshots, we could measure the length distribution of the fibers, 

which is represented as a histogram in Figure 2.8.  

 

Figure 2.8 Histogram of the length distribution of PA and glass fibers. 

The PA and glass fibers show a relatively narrow and wide length distribution, respectively, 

and a narrow diameter distribution for both types of fibers. The measured geometric and 

physical properties are summarized in Table 2.4 for both fiber types. 

Table 2.4 Geometrical and physical properties of fibers. 

Fibers Mean 

length 

𝑳 [𝝁𝒎] 

Mean 

diameter 

𝑫 [𝝁𝒎] 

Mean 

aspect 

ratio 

𝒓 =  𝑳/𝑫 

fiber to CC 

part. D/d ratio 

Density 

𝝆 [
𝒌𝒈

𝒎𝟑
] 

Young’s 

Modulus 

𝑬 [𝑮𝑷𝒂] 

PA 800 17 47 3.1 1140 4.56 

Glass 300 7.5 40 1.4 2600 80 

 

It is assumed that we are in the case of a scale separation between the PA-fibers and the CC-

suspension. Indeed, the PA-fibers have a diameter three times larger than the diameter of the 

CC-particles (~5.5 𝜇𝑚) so the fibers see the suspension as an effective medium while the 
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diameter ratio is much smaller (𝐷/𝑑 = 1.4) and the diameters are almost identical for the glass 

fibers and the calcium carbonate. The effective stiffness of both fiber types was estimated based 

on the experimental values of characteristic shear (𝜎) or tensile (𝜎𝐸) stresses developed, 

respectively, in shear or jet flows. The effective stiffness in the shear and jet flow tests is given 

by [152, 153]: 

𝑆 =
𝜎𝑏𝑢𝑙𝑘

{𝜎 or 𝜎𝐸}
≈ 1.2

𝐸 ln(2𝑟)

𝑟4{𝜎 or 𝜎𝐸}
                                         (2.2) 

where 𝜎𝑏𝑢𝑙𝑘 is the characteristic bending stress corresponding to the buckling instability, E is 

the fiber Young modulus (Table 2.4). Both the PA and glass fibers are considered as rigid in 

our study since the effective stiffness 𝑆 is found to be larger than unity in both conducted shear 

and jet flow tests. In particular, for the shear and capillary flows considered in chapters 3 and 

4, the values of S are 51 and 1.6 × 103 for PA and glass fibers respectively at the characteristic 

applied shear stress 𝜎 = 100 Pa in most of experiments. However, in the jet flow considered 

in chapter 5, the profile of the applied tensile stress 𝜎𝐸  depends on the axial and radial 

components of the normal stresses 𝜎𝑧𝑧 and 𝜎𝑟𝑟. For an evaluated tensile stress at DST in jet 

flow of 𝜎𝐸 ≤ 143 Pa, the value of effective stiffness S is 35 for PA fibers. 

2.1.4 Suspension preparation 

          In this section we will mention the steps we followed for the preparation of our CC-

suspension with different concentration of CC-particles and different concentration of PA/glass 

fibers. We will also include the step of degassing the suspension to remove the air bubbles 

present in the mixture and we will discuss later if this step is necessary and sensitive in the 

preparation of our suspension. 

As mentioned above, our suspension consists of a shear thickening CC matrix at different CC-

particles concentrations, and which contains PA/glass fibers dispersed at different 

concentrations. The preparation of the suspension is carried out in the following steps: 

The first step consists of the preparation of the CC suspension without fibers and with a desired 

volume fraction of the CC particles: 

𝜑𝑃 =
𝑉𝑝

𝑉𝑚
                                                          (2.3) 

where, the concentration of the CC particles is equal to the ratio of the volume of the CC dry 

particles 𝑉𝑝 to the volume of the CC aqueous suspension in water 𝑉𝑚. After that, the necessary 

quantity of superplasticizer PCP-45 solution is prepared and mixed with the weighed quantity 
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of CC particles. For this purpose, the solution of PCP-45 is mixed with deionized water 

(resistivity of 18.2 MΩ cm) to reach the desired concentration of superplasticizer. The whole 

(CC dry particles + PCP-45 solution) is quickly mixed and weighed in a balance, and the lacking 

weight is completed with the necessary amount of dry CC particles to reach the final weight of 

the CC suspension. The ingredients must be well mixed to ensure adsorption of the 

superplasticizer PCP-45 on the surface of the CC particles, so we proceed to a 5 min agitation 

in a vortex mixer, followed by 5 min treatment in an ultrasonic bath to ensure a better 

homogeneity and distribution of particles, followed by another 5 min in the vortex mixer. After 

the preparation of CC suspension, we prepare the quantity of the fibers according to the wanted 

concentration (0.2 to 4% vol). The concentration of the fibers is defined as the ratio of the fiber 

solid phase volume 𝑉𝑓 to the whole volume 𝑉 of the mixture of CC shear thickening matrix 

with the PA or glass fibers, 

𝜑𝑓 =
𝑉𝑓

𝑉
=

𝑉𝑓

𝑉𝑓+𝑉𝑚
                                                 (2.4) 

 The fibers are added to the CC suspension and the mixture is stirred and sonicated as the same 

protocol followed before. Finally, after stirring/sonication, we put the suspension to rest for 3 

hours at 4°C to achieve thermodynamic equilibrium of different species (polymers and ions). 

Before proceeding to the shear tests the suspension is again well mixed and sonicated and 

degassed for a 30 min with the use of a vacuum pump which allows to remove the air bubbles 

trapped in the suspension. The 30 min degassing is divided in two ramps of 15 min separated 

also by mixing and sonication of the suspension.  

2.2 Experimental methods employed 

2.2.1 Drag flows in shear rotational rheometry 

          The shear rheology of CC suspensions and CC-fibers mixtures was measured mainly by 

Anton Paar Physica MCR 301 rheometer using a mixer type geometry and a homemade 

cylindrical Couette geometry. In some cases, measurements were performed by Thermo Haake 

RheoStress 600 rheometer using plate-plate geometry. Sample expulsion from the rheometer 

gap at the applied stresses above DST threshold, particle sedimentation and water evaporation 

encountered in plate-plate configuration did not allow reliable and reproducible measurements 

of the samples containing rods; only CC suspensions without rods using a single stress ramp 

gave reliable results. On the contrary mixer type and cylindrical Couette configurations was 

found to be free of the above artefacts thanks to continuous sample mixing and low sample free 

surface – to volume ratio, at the expense of a complex flow field and stress distribution within 
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the sample. Below, we describe in detail the three rheometric tools and associated measurement 

protocols. 

2.2.1.1 Plate-Plate geometry 

A. General description 

 

Figure 2.9 Plate-Plate geometry. 

          The use of a rough geometry (sandpaper glued on the upper and the lower rheometer 

plates) allows to limit the problems of sliding on the walls. It consists of two parallel plates 

where the rotating plate has a radius R, separated by a variable air gap, noted 𝑒 (Figure 2.9). 

The latter is adjustable depending on the particle size of the used suspensions. The measuring 

cell is composed of a fixed bottom part (stator) and un upper rotating part (rotor) linked to the 

rotating shaft of the rheometer spinning at an angular speed  𝜔 . The suspension is confined in 

the space between the rotor and the stator (air gap). Moreover, the shear gradient is not uniform. 

Indeed, there is no shear rate at the center (close to the axis) and it is maximum at the edges of 

the discs. The relationship between the shear rate at the edge of the disk and the rotational speed 

is written as follows [154]:  

�̇� = �̇�𝑅 =
𝜔𝑅

𝑒
                                                      (2.5) 

The equation giving the stress as a function of the torque 𝛤 applied by the tool during rotation 

for a given shear rate �̇�𝑅 at the periphery of the disks is as follows [154]: 

𝜎 = 𝜎 (�̇�𝑅) =
𝛤

2𝜋𝑅3
[3 +

𝑑 ln𝛤 

𝑑 ln �̇�𝑅
] = 𝜎𝑎 [

3

4
+
1

4

𝑑 ln𝛤 

𝑑 ln �̇�𝑅
]                           (2.6) 

with  
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𝜎𝑎 =
2𝛤

𝜋𝑅3
                                                         (2.7) 

being so-called apparent shear stress at the disk edge, i.e. the shear stress that would have been 

developed in a Newtonian liquid at a given applied torque 𝛤. The right-hand side of Eq. (2.6) 

allows relating the true shear stress in a non-Newtonian fluid to the apparent shear stress 𝜎𝑎 

typically reported by the rheometer. This relationship is known under the name of the Moony 

correction.  

B. Measuring protocol 

          The plate-plate geometry of the RheoStress 600 rheometer is characterized by the upper 

plate diameter of 60 mm and rheometer gap set to 1.8 mm. To decrease wall slip, a sandpaper 

of an r.m.s. roughness of 40 µm was glued to both rheometer plates. In order to decrease water 

evaporation, after placing a sample (CC suspension without rods, 1st series of particles – cf. 

note at the end of Section 2.1.1.2) into the rheometer gap, a home-made water trap (Plexiglas 

cylinder with wetted washcloth fitted to inner surface of the cylinder) was placed around the 

upper plate and the temperature at the level of the lower plate was fixed to 14°C by a refrigerated 

circulating bath. A linearly increasing stress ramp was applied to the sample from 𝜎𝑎  = 0 Pa 

to 𝜎𝑎  = 100 Pa with a rate of the stress increase of 0.33 Pa/s and the measured shear rate was 

recorded with a sample rate of 2 points per second. Once the maximum stress was achieved, a 

linearly decreasing stress ramp was applied from 𝜎𝑎  = 100 Pa to 𝜎𝑎  = 0 Pa at the same rate. 

In some cases, a second increasing-decreasing (up-and-down) stress ramp was applied to check 

how the sample expulsion affected the rheological measurements. Once the flow curves were 

measured, the imposed apparent shear stress 𝜎𝑎 was converted to the real shear stress 𝜎  using 

Mooney correction [154]. This correction was subjected to substantial errors above the DST 

transition related to the numerical derivation of strongly oscillating 𝜎𝑎  versus �̇�  dependencies. 

However, it neither changed the qualitative appearance of the flow curves, nor the average 

amplitude of shear rate oscillations above the DST. 
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2.2.1.2 Mixer type geometry  

A. General description 

 

Figure 2.10 Mixer-type rheometric geometry: the double helix rotor (a); streamlines of Newtonian fluid flow 

induced by the double-helix rotation inside a cylindrical cuvette with the arrows showing the direction of possible 

flow-induced particle migration (b); cylindrical Couette analogy of the mixer type geometry (c). 

          This geometry prevents problems due to sedimentation of CC- particles by applying a 

vertical mixing motion in addition to the classical shear motion. It also has the advantage of 

reproducing good measurements and the use of this specific cylindrical cuvette allows to work 

with a large rheometer gap for the longest fibers with a ratio of the gap to the length of the fibers 

which is equal or higher than 3. However, this geometry is not a conventional one. Indeed, to 

obtain the viscosity of a fluid from this geometry, an analogy based on the classical cylindrical 

Couette geometry is performed.  

The assembly consists of a double helix rotating in a cylindrical cuvette separated by a space 

called the air gap, denoted by 𝑒, (see Figure 2.10c). The conversions between the quantities 

measured by the rheometer (applied torque Γ in N.m and rotational speed 𝜔 in rad/s of the 

double helix) and the effective rheological quantities (shear stress 𝜎 and shear rate �̇�) are 

defined according to the work of Aït-Kadi et al. [155]. The complex flow in the mixer type 

geometry is represented by a simple shear flow between two concentric cylinders of the radii 

𝑅𝑒 (for the real external cylinder) and 𝑅𝑖 (for the imaginary internal cylinder), as shown in 

Figure 2.10c. The equivalent radius 𝑅𝑖 of the inner cylinder is evaluated by equating the torque 

developed in the concentric cylinder geometry to the torque measured in the mixer type 

geometry with a Newtonian calibration liquid of a known viscosity 휂0: 

𝑅𝑖 = 𝑅𝑒 [1 +
4𝜋 𝜂0𝐿𝑅𝑒

2

𝛼
]
2

                                            (2.8) 

where 𝐿 is the inner cylinder length, taken to be equal to double helix length and 𝛼 (in 

N ×m× s) is the proportionality factor between the torque Γ and the rotational speed 
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𝜔 experimentally determined for the calibration liquid. The shear rate in the gap between 

cylinders depends on the radial position 𝑟 and on the rheological behavior of the measured non-

Newtonian sample. It has been shown that for power-law rheological behavior, 𝜎 ∝ �̇�𝑛, there 

exists a so-called optimal position 𝑟 = 𝑟∗ where the shear rate does not depend on the exponent 

𝑛. In original paper of Aït-Kadi et al. [155], this position is defined  by  equating  the  shear  

rate  at  two  different  rheological exponents 𝑛 ≠ 1 and 𝑛′ = 1, with the final result for 𝑟∗  

being almost independent of 𝑛. In our case, instead of using an arbitrary value of 𝑛, we evaluate 

𝑟∗ in the limit 𝑛 → 𝑛′ = 1 by developing in Taylor series the original result of Aït-Kadi et al. 

around vanishing values of 𝑛 − 𝑛′: 

𝑟∗ ≈ 𝑅𝑒 exp [
1

2
−

(
𝑅𝑒

𝑅𝑖
⁄ )

2

(
𝑅𝑒

𝑅𝑖
⁄ )

2
−1
ln
𝑅𝑒

𝑅𝑖
]                                      (2.9) 

Taking advantage of independency of the shear rate on the power-law rheological behavior of 

the sample at optimal position 𝑟∗, the stress and the shear rate are evaluated at this position as 

for a Newtonian liquid: 

𝜎 = 𝜎(𝑟∗) =
Γ

2π𝑟∗2𝐿
= 𝐴 × Γ                                      (2.10) 

�̇� = �̇�(𝑟∗) =
2𝜔

𝑟∗2(𝑅𝑖
−2−𝑅𝑒

−2)
= 𝑀 × 𝑁                                (2.11) 

where 𝑁 is the rotational speed imposed (in turns per second) of the tool such that 𝜔 = 2𝜋𝑁, 

then it is only necessary to determine the conversion factors 𝐴 and 𝑀  using Eqs. (2.10), (2.11). 

These factors were checked and corrected by calibration using two Newtonian fluids of known 

viscosity.  

We note that these rheometric conversions are valid for shear thinning power-law rheology but 

have not been validated for shear thickening rheology. Thus, the shear stress and shear rate 

measured in the double helix geometry will be hereinafter, labeled as “apparent” quantities in 

all relevant figures but not in the text for the sake of easier reading. Notice also that in a complex 

flow field, possible extensional components of the rate-of-deformation fields could lead to the 

alignment of the rods along the extension axis and that lead to significant stress levels; however, 

this effect is believed to be relatively weak because the viscosity of the suspension of fibers 

dispersed in a Newtonian solvent perfectly fits to classical shear rheology models. We believe 

therefore that the proposed rheometric conversions can be used for at least semi-qualitative 
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comparison of rheological response of different bimodal mixtures considered in the present 

study. 

The double helix rotor tool is made of stainless-steel material (see Figure 2.10a) and has an 

inner radius of 𝑅𝑖  =  12 mm, the length of the effective working tool is 𝐿 =  37 mm, the 

thickness of the blade is 1 mm, and the radius of the central shaft is 1.5 mm. The outer radius 

of the mixer-type geometry (or the inner radius of the cylindrical cuvette) is 𝑅𝑒 =  14.5 mm 

(see Figure 2.10c) and the inner surface of the bowl has horizontal and vertical grooves 0.5 mm 

wide by deep spaced at a period of 0.5 mm in order to prevent wall slip on the inner surface of 

the bowl. The gap between the bottom surface of the cylindrical cuvette and the bottom part of 

the double helix rotor was set at 2 mm. 

B. Measuring protocol 

          The samples (1st series of CC particles – cf. note at the end of Section 2.1.1.2 – mixed or 

not with PA or glass fibers) were prepared directly in the brass cylindrical cuvette. Before the 

measurements, the double helix tool was gently introduced into the cuvette and the latter was 

placed into the rheometer and the gap of 2 mm was adjusted between the cuvette bottom and 

the bottom part of the double helix. A water trap (wetted washcloth) was placed on the top of 

the cuvette, the cuvette was thermally isolated from the ambient air and the temperature at the 

base of the cuvette was adjusted to 14°C by a Peltier element integrated to the rheometer. 

Increasing-decreasing stress ramps were applied to the sample in a similar way than in the case 

of plate-plate geometry. Each time at least two up-and-down stress ramps were applied in order 

to check the effect of possible particle migration on the suspension rheology. To obtain the flow 

curve from raw rheological data, the applied torque was related to the shear stress and the 

measured rotational speed by Eqs. (2.10), (2.11).  

In some cases, the rheological measurements with double helix geometry were conducted in 

shear rate-imposed mode [chapter 3, section 3.5]. The rate of increase of the shear rate was 

adjusted to a value ensuring the same rate of increase of the stress in the stress-controlled mode. 

All the measurements were repeated a few times in order to check their reproducibility.
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2.2.1.3 Cylindrical Couette geometry  

A. General description 

 

 

Figure 2.11 Cylindrical Couette geometry in (a) and its descriptive scheme in (b). 

          The cylindrical Couette geometry that we used is the same as the conventional geometry, 

although, we made some modification on the rotating tool. Indeed, the geometry is constituted 

by a cylinder of inner radius Ri = 12 mm (rotor) rotating at an angular speed 𝜔. However, this 

tool has a completely flat base (See Figure 2.11b) contrary to the tapered base in the 

commercially available Couette tools. The tool is also grooved in order to avoid slipping on its 

surface. The height of the Couette rotating tool 𝑖𝑠 𝐿 =  37 mm. The cylindrical cuvette of the 

Couette geometry is the same as the one used in the double helix case with an inner radius 𝑅𝑒 =

 14.5 mm and it is also grooved on its inner surface in order to prevent the fluid from slipping 

on the inner surface of the cuvette. 

The torque 𝛤 imposed in the rheometer is converted to shear stress 𝜎  and the corresponding 

measured angular speed 𝜔 is converted to shear rate �̇�. In the present case of relatively small 

rheometer gap (𝑒 = 𝑅𝑒 − 𝑅𝑖) the stress 𝜎 and the shear rate �̇̇� vary only slightly across the gap, 

and their representative values can be taken at the inner cylinder surface. At such condition, the 

relations between the torque and the shear stress and the angular speed and the shear rate read 

[154]: 

𝜎 = 𝜎(𝑅𝑖) =
𝛤

2π𝑅𝑖
2𝐿

                                              (2.12) 

�̇� = �̇�(𝑅𝑖) =
2𝜔

1−(𝑅𝑖 𝑅𝑒⁄ )2
                                           (2.13) 
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B.  Determination of the gap at the measuring position  

          Since the cylindrical rotating tool has a circular flat base surface, it is necessary to 

calculate a sufficient gap 𝐿𝑔 to apply between the bottom surface of the cuvette and the bottom 

surface of the rotating cylinder during the shearing of the suspension, this is necessary to 

minimize the effect of the flat base surface of the measuring tool on the sheared suspension. 

For such a flat surface, the torque applied by the rotating tool is approximately giving by: 

𝛤 = 𝛤𝑐𝑦𝑙 + ∆Γ                                                    (2.14) 

where 𝛤𝑐𝑦𝑙  is the torque contribution coming from the lateral surface of the rotating cylinder, 

and ∆𝛤 is the torque contribution coming from the bottom flat surface of the rotating cylinder. 

For a Newtonian liquid of a viscosity 휂0, we get:  

𝛤 = [
 2π𝑅𝑖

2𝐿 𝜂0 2𝜔

1−(𝑅𝑖 𝑅𝑒⁄ )2
] + [

(
2π𝑅𝑖

3

4
)𝜂0𝜔𝑅𝑖

𝐿𝑔
]                                 (2.15) 

∆Γ

𝛤𝑐𝑦𝑙
  =

𝑅𝑖
2 (1−(𝑅𝑖/𝑅𝑒)

2)

8𝐿𝑔𝐿
                                             (2.16) 

For the following geometrical parameters (see Figure 2.11b):  

- Internal radius: 𝑅𝑖 = 12 mm. 

- External radius : 𝑅𝑒 = 14.5 mm. 

- Gap between the cuvette bottom and the rotating cylinder bottom surface 𝐿𝑔 = 10 mm.  

- Rotating tool length: L = 37 mm, 

we get 
∆𝛤

𝛤𝑐𝑦𝑙
= 0.015, Thus, the effect of the base surface of the rotating cylinder is of the order 

of 1.5% with the chosen gap of 𝐿𝑔 = 10 mm. This is considered a very low percentage of the 

flat effect compared to the torque generated by the lateral surface of the rotating cylinder, such 

that the shear contribution coming from the energy dissipation in the fluid gap between the 

cuvette bottom and the rotating cylinder can be neglected. 

C. Calibration of the cylindrical Couette tool 

          The cylindrical Couette measuring tool used is a home-made tool, consequently, it does 

not carry a recognition microchip as opposed to the standard tools of the Anton Paar Physica 

301 rheometer; for this reason, a calibration before starting the shear tests is required. 

For the calibration of the tool two main coefficients must be determined to allow the good 

conversion of the data by the rheometer. 

The coefficients are:  
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- Coefficient of conversion of the applied torque into shear stress noted "𝐴". 

- Coefficient of conversion of the rotation speed of the tool into shear rate noted "𝑀". 

For a cylindrical Couette tool, the torque-stress relationship is given by: 

𝜎 =  𝐴 ×  𝛤                                                        (2.17) 

 where:  

𝐴 =
1

2𝜋𝑅𝑖
2𝐿

                                                       (2.18) 

and the rotation speed-shear rate conversion is giving by:  

�̇� = 𝑀 × 𝑁                                                       (2.19) 

where: 

𝑀 =
4𝜋

1−(𝑅𝑖/𝑅𝑒)
2                                                   (2.20) 

The values of 𝐴 = 29.871 Pa/mN.m and 𝑀 =  6.6467 evaluated using Eqs. (2.18), (2.20) are 

theoretical and are needed to be checked and corrected through the calibration procedure. For 

this purpose, shear tests with a Newtonian silicon oil of known viscosity were conducted in the 

cylindrical Couette tool and the coefficients 𝐴 and 𝑀 were readjusted in order that the slope 

value of the measured flow curve coincide with the known value of the calibrating oil viscosity.  

D. Measuring protocol 

          In these experiments, we used the 2nd series of CC particles – cf. note at the end of Section 

2.1.1.2 – mixed or not with PA fibers. As mentioned before, the bottom surface of the 

homemade Couette measuring tool is a flat geometric shape, therefore the suspension samples 

were first prepared in the cylindrical cuvette and then the Couette tool was slowly introduced 

into the cylindrical cuvette to avoid any suspension jamming artifacts, until the gap 10 mm was 

adjusted between the Couette tool and the bottom part of the cuvette. The upper surface of the 

cylindrical cuvette was then closed by a cover pierced in its center to allow free rotation of the 

Couette tool. The cover allows the insulation of the suspension from the outer atmosphere, thus 

avoiding any possible evaporation of the water from the samples and helps to keep the adjusted 

temperature within the cuvette of 14°C. The applied shear stress profile this time was set just 

to an ascending stress ramp from 𝜎𝑎  = 0 Pa to 𝜎𝑎  = 500 Pa with the same rate of the stress 

increase in the case of Plate-Plate and Mixer type geometries experiments of 0.33 Pa/s. Each 

time at least two stress ramps for the same sample were applied in order to check the 
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reproducibility of the results. To obtain the flow curves, the applied torque was related to the 

shear stress and the measured rotational speed by Eqs. (2.12), (2.13). 

2.2.1.4 Evaluation of the effect of air bubbles presence in CC-suspension 

          We are interested in this section to see the effects that could have the presence of air 

within the suspension in the form of bubbles during the preparation of the CC-suspension on 

the rheology of this one.  To this purpose, we conducted shear tests in the rheometer using the 

mixer type geometry for two samples at 64% of CC volume fraction and without fibers. The 

first sample is degassed according to the protocol mentioned before (see section 2.1.4) and the 

other one is tested without degassing. 

For this shear tests we have chosen the mixer type geometry described in section 2.2.1.2 with 

the measuring protocol described in section 2.2.1.2-B.  

 

Figure 2.12 Controlled shear stress test for degassed and non-degassed 64% CC-suspensions. 

The sample of the suspension prepared with degassing shows a rather remarkable difference in 

results compared to the sample prepared without degassing. The difference shifts to low shear 

rate compared to the non-degassed suspension; thus, the degassed suspension represents more 

shear thickening behavior and therefore a higher suspension viscosity. Since the removal of air 

bubbles in the prepared suspensions was verified with a second degassing of the suspension 

(the 30 min degassing is performed in two 15 min ramps in order to ensure that no air is left in 

the sample), the difference observed in the results can be justified by the change in 

concentration 𝜑𝑃 of the CC particles in the prepared suspension due to the evaporation of the 

water during the degassing process. 
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In order to verify the variation of CC particles concentration in a degassed carbonate calcium 

suspension, a 𝜑𝑃 = 64% sample was prepared, degassed and weighed before and after 

degassing process to measure the variation of particle concentration due to possible water 

evaporation during degassing. The weighing results are: before degassing: 𝑚1 = 69.1776 g; 

after degassing, 𝑚2 = 68.5590 g and the mass difference ∆𝑚 = 0.6186 g, corresponding to 

the evaporated water. This allows evaluation of the particle volume fraction ratio before and 

after degassing: 

𝜑1

𝜑2
= 

𝑉𝑝
𝑉1
⁄

𝑉𝑝
𝑉2
⁄
=
𝑉1−∆𝑉

𝑉1
= 1 −

∆𝑚𝜌1

𝑚1𝜌𝑤
                                  (2.21) 

where 𝑉1, 𝑉2 are intial and final suspension volumes, ∆𝑉 is the volume of the evaporated water, 

𝜌1 ≈ 2 g/mL and 𝜌𝑤 ≈ 1 g/mL are the densities of the initial suspension and of water, 

respectively. Evaluation gives 
𝜑1

𝜑2
 ≈ 0.98 → 𝜑2 = 65.3% vol. The concentration of CC -

particles in the suspension increased by 1.3% during degassing due to the evaporation of water 

making the suspension more shear thickening. Notice that such an increase of the volume 

fraction near the particle packing limit is very significant because the suspension viscosity 

diverges as (1 − 𝜑𝑝/𝜑𝑚) 
2 as 𝜑𝑝 becomes close to 𝜑𝑚 evaluated to be about 0.69 in our 

experiments (see chapter 3, Appendix C). 

To ensure that the difference in behavior observed in the graphs (Figure 2.13) is not due to the 

presence of air bubbles in non-degassed suspension and that this difference is the result of water 

evaporation, and consequently to the change in concentration of CC-particles in the suspension, 

a test with degassed CC-suspension completed with water after degassing (in order to keep the 

same concentration of CC-particles 𝜑𝑃 = 64% vol) was conducted. The same standard 

procedures for preparing a CC-suspension are followed but with the weighing of the suspension 

after degassing and adding water to compensate evaporation during degassing. Also, to avoid 

water evaporation, we loaded the sample very gently but quickly into the measuring cylinder. 
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Figure 2.13 Controlled shear stress test for degassed and water completed 64% CC- suspension against non-

degassed 64% CC-suspension. 

We can observe from Figure 2.14. a reproduction of the results and a very good agreement 

between curves with a very slight difference that falls within the calculation errors. Completing 

the degassed suspension with water just after degassing allows to keep the desired concentration 

of CC-particles in the suspension at 𝜑𝑃 = 64% vol. The slight difference in measurements 

observed in the graphs is due to errors related to the operation of the experimental equipment 

and is within the tolerated error range. A decision to prepare CC-suspensions without degassing 

was taken, given the results obtained, which confirm the fact that, due to the degassing of the 

suspension, a quantity of the water in the suspension evaporates, thus changing the particle 

concentration. So, the presence of air bubbles in the suspension does not have a major impact 

on the obtained results. 

2.2.2 Pressure-driven flows in capillary rheometry 

A. General description 

          The basic principle behind the capillary rheometry used in our tube flow tests is depicted 

in Figure 2.15. It consists of a homemade pressure-imposed rheometer recently developed in 

the hosting team in UCA [156, 157] and differs from conventional speed-imposed capillary 

rheometers used in literature [154], in which the flow rate is imposed by a moving piston. The 

principle of our homemade capillary rheometry consists of applying a compressed air at a 

desired pressure from an air compressor to a tank containing our suspension, with a pressure 

control valve (MDG-3 from Selid) and a piezoelectric manometer (LEO 2 from 

Serv’instrumentation: resolution 10–3 bar, maximal applied pressure 3 bars) connected to a 3-

port steering valve (SS-43GXS4 from Swagelok). The length and diameter of the plexiglass 
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tank containing the suspension are 𝑙 =  100 mm and 𝑑 =  25 mm, respectively.  A capillary 

is connected to the bottom of the tank by a union (SS-400-6 for a tube of ¼ inch outside diameter 

or 1/4 × 2.54 cm). The capillary has the length 𝐿 =  35 cm and a diameter 𝐷 =  0.77 cm. 

Under the action of the applied air pressure, the suspension flows out from the capillary on the 

top of the electronic balance measuring its mass flow rate.  

B. Measuring protocol 

          The experiment starts by aspirating the freshly prepared CC suspension (2nd series of CC 

particles – cf. note at the end of Section 2.1.1.2) at a specific PA-fibers concentration in the 

tank by turning the 3-port steering valve towards the venturi vacuum ejector and using the 

venturi aspiration valve connected to a vacuum pressure gauge through a steering two port 

valve. Aspirating the suspension to the tank helps degassing the suspension from any trapped 

air bubbles, that can disrupt or block the flow of the suspension through the capillary. The 

aspiration pressure was chosen relatively low ∆𝑃 ≥ 0.2 bar, which corresponds to a wall shear 

stress 𝜎𝑤 of  62 Pa at capillary walls for 0.33 cm capillary diameter and 150 Pa for 0.77 cm 

capillary diameter, in order to avoid suspension jamming due to DST behavior of the suspension 

since the critical DST shear stress for CC-suspension is ranged between 120 Pa for suspension 

without fibers and 165 Pa for suspension with 2.5% vol PA fibers in shear rheology tests using 

cylindrical Couette geometry (see chapter 4, section 4.3.1, Figure 4.4). Once the suspension is 

fully aspirated, a desired air pressure is applied to the confined suspension using the pressure 

control valve, then the mass flow rate of the suspension flowing out from the capillary is 

measured using an electronic balance Ohaus STX 2202, programmed to record the amount of 

the collected  suspension every 1 second and store the results in a USB stick. 
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Figure 2.14 Descriptive sketch of the imposed pressure homemade capillary rheometer. 

C. Rheometric conversions 

          By the application of a known and precise pressure value ∆𝑃  (±5 × 10−3 bar precision) 

using pressurized air in a cylindrical plexiglass container where the suspension is located, the 

mass in grams of the suspension which is evacuated from a capillary connected to this 

cylindrical container is measured for each instant 𝑡 = 1 s. Therefore, by a linear fit of the 

amount of suspension evacuated in time 𝑡, the mass flow rate of the suspension at the exit of 

the capillary is estimated. The applied air pressure ∆𝑃 and the mass flow rate 𝑄𝑚 are converted 

respectively to shear stress and shear rate, both evaluated at the capillary wall: [154] 

𝜎𝑤 =
(∆𝑃+𝜌𝑔𝐿)𝑅

2𝐿
                                                  (2.22) 

�̇�𝑎,𝑤 =
4𝑄𝑚

𝜌𝜋𝑅3
                                                      (2.23) 

where 𝜎𝑤 is the shear stress at the capillary walls and �̇�𝑎,𝑤 the apparent shear rate at the capillary 

walls for a Newtonian fluid. In the case of non-Newtonian, it is mandatory to apply the Mooney- 

Rabinowitch correction, where the apparent shear rate can be related to the real shear rate at 

capillary wall of the non-Newtonian fluid [154]: 

�̇�𝑎,𝑤(𝜎) =
4

𝜎𝑤3
∫ 𝜎2�̇�𝑤(𝜎)𝑑𝜎
𝜎𝑤
0

                                (2.24) 

and the real shear rate �̇�𝑤 can be obtained by deriving equation (2.24) with respect to  𝜎𝑤 to 

give:  
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�̇�𝑤 = �̇�𝑎,𝑤 [
3

4
+
1

4

𝑑 ln �̇�𝑎,𝑤

𝑑 ln𝜎𝑤 
]                                             (2.25) 

This expression contains the derivative of �̇�𝑎,𝑤 with respect to 𝜎𝑤 and gives considerable 

numerical errors when converting �̇�𝑎,𝑤 to �̇�𝑤 for our fluctuating flow curves obtained in shear 

rotational rheometry in the DST domain, (see chapter 4, Figure 4.4), therefore we prefer not to 

make the conversion of the apparent shear rate �̇�𝑎,𝑤 to the real shear rate �̇�𝑤 . However, when 

we compare the results of capillary with rotational rheometer tests (using the cylindrical Couette 

geometry), we convert the shear rate �̇� measured in rotational rheometer tests to the apparent 

shear rate at the capillary walls �̇�𝑎,𝑤 using equation (2.24). This will allow to verify to what 

extent the rheometric geometry affects the DST behavior of our CC-PA mixtures. We will 

therefore compare the curves of �̇�𝑎,𝑤 = 𝑓(𝜎) obtained in the two geometries, with 𝜎 = 𝜎𝑤 for 

capillary geometry. �̇�𝑤 to �̇�𝑎,𝑤 conversion in cylindrical Couette geometry is made by first 

smoothing the corresponding experimental flow curves in order to reduce the shear rate 

fluctuations in the curves, then a higher order polynomial fit is applied to the curve to get the 

corresponding polynomial expression �̇�𝑤 = 𝑓(𝜎) (see Figure 4.7 in chapter 4). Finally, �̇�𝑎,𝑤 can 

be obtained in cylindrical Couette geometry using equation (2.24). Results are then presented 

in form of  �̇�𝑎,𝑤 = 𝑓(𝜎) curves in chapter 4.   

2.2.3 Extensional flows withing a free-falling jet  

2.2.3.1 Experimental setup 

          The experimental setup of the jet flow experiment is presented in Figure 2.15 and 

composed by a filling tank, a vertical tube of an internal diameter 𝐷0 = 2𝑅 0 = 5 mm   and 

length ℎ = 215 mm , connected coaxially to the bottom of the tank, a collecting Petri dish and 

a fast camera Miro C110 (Phantom, US) equipped with a charge-coupled device (CCD) sensor. 

About 30 mL of the suspension were first poured in the tank (average diameter 𝐷1 ≈ 50 mm, 

suspension height ℎ1 ≈ 15 mm). During the filling, the lower tube extremity was maintained 

open allowing the suspension to fill the tube under gravity. Then the lower extremity was 

mechanically closed, and the suspension was left at rest inside the tank and the tube for 1 min. 

At the moment of time t=0, the lower extremity was again opened, the suspension started 

flowing through the tube under gravity at nearly constant flow rate during the whole duration 

of the experiment (thanks to 𝐷0 ≪ 𝐷1 and ℎ1 ≪ ℎ). The flow through the tube is laminar and 

the wall shear stress 𝜎𝑤 ≈ 𝜌𝑔𝑅0/2 ≈ 25 𝑃𝑎 (with 𝜌 ≈ 2000 kg/m3 being the suspension 

density and 𝑔 ≈ 10 m/s2 the gravity acceleration) is believed to be below the DST transition 

(~40 Pa) revealed in a plate-plate (PP) shear rheometry (see the blue curve in Figure 3.2 in 
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chapter 3). Below DST, the CC suspension experiences nearly Newtonian behavior with the 

average low-shear viscosity 휂0 ≈ 5 Pa × s, corresponding to the linear fit of initial part of the 

blue flow curve in defined from shear flow curves [Figure 3.2c in chapter 3]. The velocity 

profile inside the tube is expected to be nearly parabolic and the mean velocity averaged over 

the tube cross-section is given by  

𝑢0 ≈
𝜌𝑔𝑅0

2

32𝜂0
                                    (2.26) 

The measured flow rate Q through the tube fits within 13% error to the theoretical value 𝑄 =

𝑢0𝜋𝑅0
2. This correlates with the supposed laminar flow regime below DST transition. The stress 

field in the jet is supposed to be mostly extensional (at least at axial distances a few tube 

diameters downstream the tube outlet) with the stress levels governed by gravitational forces. 

All experiments were performed at room temperature of 20° C, controlled by an air conditioner.  

 
Figure 2.15 Fast camera device for recording jets of the CC-PA mixtures extending from the tube outlet to the 

experimental table (a). Geometric notations are introduced in (b). 

 

 

The dynamics of the CC-suspension jet was recorded with a high-speed camera at 336.5 fps 

(frames per second) and at spatial resolution of 2.6 pixel/mm. This allowed us to follow the 

falling suspension and enabled capturing the jet diameter 𝑑(𝑡, 𝑧) (supposing preservation of the 

jet’s axial symmetry) and the deviation 𝑥(𝑡, 𝑧) of the jet centerline from rectilinear trajectory 

(hereinafter called lateral drift) at the spatial resolution of 0.39 mm and the temporal resolution 

of 3.0 ms. To quantify the magnitudes 𝑑(𝑡, 𝑧) and 𝑥(𝑡, 𝑧), we developed an image processing 
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script in MATLAB (MathWorks®). Defining the background intensity with graphical user 

interface, the script analyzed each frame of the movie. For each frame (each moment of time 

𝑡), the script detects the jet using a gaussian fit of the intensity profile, to extract its diameter 

𝑑(𝑧) and its lateral drift 𝑥(𝑧) along the vertical axis. In case of the jet break-up, the script also 

quantifies the properties of each jet segment. The script analyses each frame in a parallel 

workflow to optimize the computation time (230ms/frame on a 6-core processor). 

2.2.3.2 Fourier analysis 

          Apart from direct analysis of the jet lateral drift 𝑥(𝑡, 𝑧), we performed a Two-

Dimensional Discrete Fourier Transform (2D DFT) of the measured lateral drift 𝑥(𝑡, 𝑧). To this 

purpose, we applied the “fft2” built-in function of the MATLAB software to the 𝑚 × 𝑛 matrix 

of the x values, whose 𝑚 = 5000 rows and 𝑛 = 364 columns correspond to discrete values of 

𝑡 and 𝑧, respectively. The “fft2” function returns a 𝑚 × 𝑛 matrix 𝐀 of complex values, using 

the following expression: 

𝐴𝑝+1,𝑞+1 = ∑ ∑ exp (−
2𝜋𝑖

𝑚
𝑗𝑝 −

2𝜋𝑖

𝑛
𝑙𝑞) 𝑥𝑗+1,𝑙+1

𝑛−1
𝑙=0

𝑚−1
𝑗=0             (2.27) 

where 𝑖 = √−1 stands for the imaginary unit, 𝑝 = 0,1…𝑚 − 1 and 𝑞 = 0,1…𝑛 − 1. For the 

better presentation (see the results in chapter 5), we shifted the zero-frequency component of 

the matrix 𝐀 to the center of the spectrum using “fftshift” built-in MATLAB function. This 

function swaps the first quadrant of 𝐀 with the third, and the second quadrant with the fourth.  

The components of the matrix 𝐗 of the Fourier spectrum amplitudes were then calculated as 

𝑋𝑗,𝑙 = |𝐴𝑗,𝑙|/(𝑚 ⋅ 𝑛), with the rows 𝑗 = 1…𝑚 and columns 𝑙 = 1…𝑛 corresponding to discrete 

values 𝜔𝑗 = 2𝜋𝑓𝑡(𝑗 − 𝑚/2)/𝑚 and 𝑘𝑙 = 2𝜋𝑓𝑧(𝑙 − 𝑛/2)/𝑛 of the temporal angular frequency 

𝜔 and wave numbers 𝑘, respectively. Here, 𝑓𝑡 = 336.5 s
−1 (fps) is temporal sampling rate 

fixed by the camera speed and 𝑓𝑧 = 2.6 mm
−1  (pixel/mm) is the spatial sampling rate fixed by 

the image resolution. In this way, we obtained a discrete 𝑋(𝜔, 𝑘) dependency of the Fourier 

amplitude on the temporal and spatial frequencies. The final signal 𝑋(𝜔, 𝑘) allowed evaluation 

of dominant frequency and wavelength of the jet lateral oscillations, as well as the dispersion 

relation, which was retrieved as a curve 𝜔(𝑘) drawn along the crests of the 𝑋(𝜔, 𝑘) surface 

plots. A similar 2D DFT analysis was applied to the jet diameter 𝑑(𝑡, 𝑧) with the Fourier 

spectrum amplitude denoted by 𝔇(𝜔, 𝑘) (see the results of the analysis in chapter 5). 

          Notice that the “instrumental” sampling rates 𝑓𝑡 = 336.5 s
−1 and 𝑓𝑧 =2.6 

mm−1 appeared to be too large as compared to maximal observable frequencies in 𝑋(𝜔, 𝑘) and 
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𝔇(𝜔, 𝑘)-transforms. Thus, prior to Fourier transform, we had to “coarse” the recorded data (by 

removing appropriate lines and columns of the 𝑥(𝑡, 𝑧) and 𝑑(𝑡, 𝑧)-matrices and reducing the 

𝑚 × 𝑛 matrix size) to achieve the sampling rates just slightly larger than twice the maximal 

observable frequency. In this way, the Nyquist limit, was still respected.  

          For quantitative comparison of the intensity of lateral oscillations, a root mean square 

(RMS) amplitude 𝑥𝑅𝑀𝑆 of the lateral drift and RMS transverse speed 𝑣𝑅𝑀𝑆 of the jet. These 

parameters are directly defined from the Fourier amplitudes using the Plancherel theorem, as 

follows:  

    𝑥𝑅𝑀𝑆 = √∑ ∑ 𝑋𝑗,𝑙
2𝑛

𝑙=1
𝑚
𝑗=1                            (2.28) 

            𝑣𝑅𝑀𝑆 = √∑ ∑ (𝑋𝑗,𝑙
2 𝜔𝑗

2)𝑛
𝑙=1

𝑚
𝑗=1                           (2.29) 

with the summation performed over all elements of the Fourier amplitude matrix 𝐗.
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CHAPTER 3 

 

3 Drag flows of sphere-fiber mixtures in a mixer-type geometry1  
 

          This chapter is devoted to the study of the drag shear flows of calcium carbonate CC 

suspension concentrated with rigid glass and polyamide fibers. Special attention is paid to the 

effect of fibers on the rheology of the sphere-fiber mixtures and to the mixer-type rheometry 

allowing one to mimic mixing processes of the fiber-reinforced concretes during their 

preparation and transport. The physicochemical characterizations, suspension preparation and 

rheometric protocols are described in detail in chapter 2.  

This chapter is organized as follows. First, we will discuss the rheological behaviors that are 

qualitatively similar for the CC suspensions with and without fibers. These are sigmodal shape 

of the flow curve [section 3.1] and thixotropic behavior [section 3.2]. Then, we will describe 

the effect of fibers on the rheology of the mixtures of isotropic-shaped and fiber-like particles, 

more precisely the effect of the fiber-to-particle diameter [section 3.3] and fiber concentration 

[section 3.4]. After that, the rheological response at imposed shear stress is compared to the 

response at imposed shear rate in section 3.5. On the basis of the experimental findings of 

section 3.1 – 3.5, we propose in section 3.6 two conceptually similar models allowing prediction 

of the flow curves of the fiber-isotropic particles mixtures. These models are based on the 

reduced shear rate approach of Ohl and Gleissle [114] and on homogenization approach of 

 
1 The results of this chapter were obtained with the 1st series of CC particles and can be compared quantitatively 
to the results of the Chapter 5. 
Main results are published in [Sidaoui, N., Arenas Fernandez, P., Bossis, G., Volkova, O., Meloussi, M., Aguib, S., 
& Kuzhir, P. (2020). Discontinuous shear thickening in concentrated mixtures of isotropic-shaped and rod-like 
particles tested through mixer type rheometry. Journal of Rheology, 64(4), 817-836]. 
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Château et al. [158] with a special attention paid to orientation distribution of fibers. Finally, 

jamming behavior above some critical volume fraction of fibers is considered in section 3.7. 

3.1 Sigmodal flow curve 

          Experimental flow curves of the CC suspensions without fibers obtained from the 

increasing branch of the first stress ramp in double helix geometry are shown in Figure 3.1 by 

dotted lines for four different CC particle volume fractions (𝜑𝑝 = 0.62, 0.64, 0.66 and 0.68). 

The flow curves of the samples containing fibers are qualitatively similar to those shown in 

Figure 3.1 and will be discussed in detail in sections 3.3 and 3.4. The flow curve of the CC 

suspension of a particle volume fraction 𝜑𝑝 = 0.62 shows a monotonic, stronger than linear 

increase of the stress with shear rate, which is a signature of continuous shear thickening (CST). 

At higher volume fractions 𝜑𝑝 ≥ 0.64, the flow curves have a sigmodal (S-) shape reminiscent 

to DST with irregular oscillations above the critical stress. Here, we introduce the critical shear 

stress 𝜎𝑐0 and the critical shear rate �̇�𝐶0 of the DST as, respectively, the stress and the shear rate 

at the point where the slope of the flow curve changes from positive one to the negative one, as 

shown by arrows in Figure 3.1. As expected, the critical shear rates decrease with increasing 

particle volume fraction as it approaches some maximal value, called jamming volume fraction. 

There exist different possible mechanisms for the DST transition listed in chapter 1 (section 

1.3.3). Strictly speaking, we cannot directly support any of them without precise microstructural 

information on the spatial organization of particles within the suspension and on polymer 

conformation on particle surface affected by the applied stress. In what follows, we briefly 

discuss on several possible origins of the DST transition in our specific case. 
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Figure 3.1 Flow curves of isotropic shaped particle (CC) suspensions at different volume fractions 𝜑𝑝 of CC 

particles measured for the ascending branch of the 1st stress ramp in mixer type geometry. The arrows show 

definition of the critical shear rate and shear stress in the stress-controlled rheometry. Labels “apparent” in the 

titles of axes recall that the reported shear rate and shear stress values stem from approximate rheometric 

conversions of the raw rheological data [section 2.2.1.2]. 

As stated in chapter 1, the DST is often believed to arise due to transition between lubricated 

and frictional inter-particle contacts building percolated contact network of particles as the 

applied stress increases. Recent measurements on sliding friction between compressed polymer 

layers adsorbed on the particle surface find a direct correlation between boundary-to-

hydrodynamic lubrication transition on the nanoscale and the DST transition at the macroscopic 

scale [159]. The macroscopic physics of such a transition is qualitatively captured by the model 

of Wyart and Cates (WC) [107], which interpolates the suspension rheology between two 

Newtonian states: the low viscosity state at fully lubricated contacts and high viscosity state at 

fully frictional contacts. The WC model is detailed in Appendix E of this chapter, and the fit of 

the flow curves by this model is shown in Figure 3.10 Using different versions of the WC model 

[106, 160, 161], we did not succeed to reliably fit our flow curves above the critical stress 𝜎𝑐0. 

The discrepancy is very likely related to the WC assumption of the Newtonian rheology in 

frictional regime. This assumption likely does not apply to our specific system where attractive 

colloidal interactions could in principle arise above some critical compression of adsorbed 

polymer layers, as point out below.  

From the microscopic perspective, the DST transition could be related to the collapse of the 

polymer layers on the particle surface as a result of the compression of these layers when 

increasing applied shear stress pushes neighboring particles together. This scenario has been 

considered in more details in the work [134] and seems to not contradict to the macroscopic 

picture of the WC frictional transition scenario. Nevertheless, the above hypotheses on the 
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origins of the DST need to be checked by microscale measurements. The value of the critical 

stress 𝜎0 related to the polymer layer collapse can be evaluated by balancing the compressive 

force stemming from the applied shear stress and the repulsive steric force between compressed 

brushes at critical distance between solid particle surfaces taken to be on the order of 

equilibrium thickness of the non-deformed polymer layer, 𝛿 ≈ 5.4 nm. This gives the following 

scaling behavior [134]:  

𝜎0~
𝑘𝐵𝑇𝛿𝑛𝑐

3/2

𝑑
     (3.1) 

where 𝑘𝐵𝑇~4 × 10
−21J is the thermal agitation energy at ambient temperature, 𝑛𝑐 ≈

0.14 nm−2 is the grafting density of the PEG brushes on the CC particle surface [Figure 2.6] 

and 𝑑 ≈ 5.5 µ𝑚 is the average CC particle diameter [cf. section 2.1.1]. Evaluation gives 𝜎0 =

𝑂(102 Pa), which is consistent with the order of magnitude of the critical stress 𝜎𝑐0 of the DST 

transition, (see Figure 3.1 for graphical definition of 𝜎𝑐0). 

3.2 Thixotropic behavior 

          Experimental flow curves of the CC suspensions without fibers obtained from ascending 

and descending branches of several (up to four) consequent stress ramps were analyzed. For the 

sake of brevity, only the ascending branches of the first and the second stress ramps are shown 

in Figure 3.2 for the CC suspension at volume fraction 𝜑𝑝 = 0.68 measured in double helix 

(Figure 3.2a) and plate-plate (Figure 3.2b) geometries. Remarkably, the sigmodal shape of the 

flow curve already disappears at the decreasing branch of the first stress ramp in double helix 

geometry. After that, increasing and decreasing branches of the second stress ramp collapse on 

the decreasing branch of the first ramp and distinguishable flow curve hysteresis is no longer 

observed. The same data collapse without hysteresis is observed for the third and the fourth 

stress ramps (not shown here). On the contrary, the sigmodal shape is always present in 

increasing and decreasing branches of the first, the second and subsequent (not shown here) 

ramps in the plate-plate geometry but a noticeable and reproducible flow curve hysteresis is 

observed for each ramp (Figure 3.2b). 

Since evaporation, particle sedimentation and sample expulsion are minimized in double helix 

geometry, the change of the flow curve shape from S-like to monotonous one could be 

associated to the particle migration. In previous studies [160], the particle migration has been 

qualitatively observed using a high torque rheometer with a large diameter double helix 

geometry. Removing the double helix rotor from the flow cell, one observed a solid-like coaxial 
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plug confined by the internal face of the double helix, while the rest of the suspension (situated 

between the double helix rotor and cylinder) showed fluid-like behavior. This observation 

suggests the particle migration towards the cylinder axis, along the radial direction (shown by 

arrows in Figure 2.10). The suspension experiences lowest shear rates in the central region of 

the flow cell. Thus, our observation seems to be consistent with particle migration towards the 

regions of small shear rates (and consequently smaller normal stresses), as suggested both by 

shear-induced and normal-stress induced scenarios [13, 16]. These migration mechanisms do 

not contradict to the stress-controlled rheology or stress-activated percolated network of 

particles, as long as the coaxial plug can rotate as a solid body together with the double helix 

being subjected to lower stress levels than those expected in the gap between double helix and 

external wall. The particle migration changes the concentration and local stress distributions in 

the double helix geometry, and this certainly affects the “effective” flow curve (obtained from 

the torque versus rotational speed relationship) measured by the rheometer. However, without 

direct access to concentration distribution and local rheological properties, it is impossible to 

predict how the effective flow curve changes as a consequence of particle migration. 

 

Figure 3.2 Effect of the flow history on the shape of experimental flow curves of the isotropic shape particle (CC) 

suspensions at CC particle volume fraction 𝜑𝑝 = 0.68 measured in mixer type (a) and plate-plate (b) geometries. 

All the reported flow curves correspond to the ascending branch of either the 1st or the 2nd stress ramp. Flow curves 

obtained during the 1st ramp in both rheometric geometries are compared in figure (c). 

Conservation of the S-shape of the flow curves in plate-plate geometry remains poorly 

understood. On the one hand, this can point out to insignificant particle migration as typically 

observed for non-shear thickening suspensions in this specific geometry [162, 178]. On the 

other hand, the particle migration could likely induce unsteady locally oscillating vorticity 

bands in plate-plate geometry [111, 163]. Such vorticity banding probably slows down the 
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variation of particle concentration on the scale of the rheometer plate. However, only local 

concentration measurements under shear can affirm or rule out the above hypotheses.  

It is also noticeable that the flow curves measured in both geometries are mainly different in 

the vicinity of the DST transition which occurs at higher critical shear rates in the plate-plate 

geometry, as compared to double helix geometry, as is seen in Figure 3.2c where increasing 

branches of the first ramp are compared for 𝜑𝑝 = 0.68. However, below the DST transition 

increasing branches of the first ramps of the flow curves seem to collapse for both geometries 

within the statistical error of the measurements. These branches correspond to the beginning of 

the measurements when the particle concentration is expected to be roughly homogeneous. The 

same conclusions hold for two other volume fractions 𝜑𝑝 = 0.64 and 0.66 exhibiting DST. 

In what follows, we will consider the quantitative effects of the fibers on the rheology of fiber-

isotropic particles mixtures starting with the effect of the fiber-to-particle diameter ratio. We 

will consider only the results obtained in mixer type geometry (because the plate-plate geometry 

generates numerous artefacts in mixtures with fibers – see section 2.2.1 in chapter 2 and using 

either increasing branch of the first stress ramp (to access the S-shaped flow curves) or 

increasing branch of the second ramp (to access monotonic flow curves not showing any 

hysteresis).  

3.3 Effect of fiber-to-particle diameter ratio 

          The effect of the ratio 𝐷/𝑑 of the fiber diameter 𝐷 to the CC particle diameter 𝑑, can be 

monitored by comparing the rheology of the mixtures containing PA or glass fibers of different 

diameters but roughly similar aspect ratio, recalling that both are considered as rigid in the 

considered stress range according to the evaluation of the effective stiffness (see chapter 2, 

section 2.1.3). Physically, the size ratio 𝐷/𝑑 together with the fiber volume fraction 𝜑𝑓 affects 

the average size of the pores formed by the fiber network. For the two extreme orientation states 

of the fibers, the average distance between aligned fibers and the mean pore size of randomly 

oriented fibers are both roughly equal to 

ℎ ≈
𝐷

2 √
𝜋

𝜑𝑓
     (3.2) 

under the high aspect ratio (𝑟 >> 1) and low concentration (𝜑𝑓 << 1) limits [164, 165]. At 

the highest fiber volume fraction, 𝜑𝑓 = 0.03, for which the yield stress is still absent, the ratio 
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ℎ/𝑑 of the average pore size to the CC particle diameter is on the order of 16 for PA fibers and 

7 for the glass fibers. 

The flow curves of the CC particle- fibers mixtures with addition of either PA or glass fibers 

are presented in Figure 3.3 for the CC volume fraction 𝜑𝑝 = 0.64 and for different volume 

fractions 𝜑𝑓 of fibers (including 0 corresponding to the CC suspension without fibers – black 

curve). Firstly, the flow curves obtained from the ascending branches of the first (Figure 3.3a) 

and second (Figure 3.3b) stress ramps are qualitatively similar to those already reported in 

Figure 3.2a for the suspension without addition of fibers. Second, we observe that the flow 

curves of the suspensions containing PA and glass fibers (respectively, red and blue curves in 

Figure 3.3) are quite close to each other and the difference between them falls into the range of 

the statistical error arising because of flow instability above DST transition. Such quasi-collapse 

of flow curves for two types of rigid fibers at nearly similar average aspect ratio (𝑟 = 47 for 

PA and 𝑟 = 40 for glass fibers) is also observed for other fiber volume fractions (not shown 

here) and indicates that the DST behavior of CC-fibers mixtures is not considerably affected by 

the pore – to – particle size ratio, at least in the range 7 < ℎ/𝑑 < 16. This result does not 

support the hypothesis of Cwalina et al. [116] that the shear thickening enhancement by addition 

of large particles to a shear thickening matrix composed of small particles comes in part from 

the confinement of small particles in the space between the large ones. Quantitatively, 

numerical simulations of Bian et al. [166] predict a mild enhancement of shear thickening at 

ℎ/𝑑 = 16 (𝐿𝑦 = 8 in their paper) but a substantial enhancement at ℎ/𝑑 = 8, as inferred from 

Figure 5 of their paper. This is apparently not the case for our system because the hydrocluster 

model employed in their simulations is likely less relevant for the DST behavior of our system.  
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Figure 3.3 Effect of the ratio 𝐷/𝑑 of fiber – to CC particle diameter on the experimental flow curves of mixtures 

of isotropic-shaped (CC) particles and PA fibers (red curves) or glass fibers (blue curves) measured in mixer type 

geometry for CC particle volume fraction 𝜑𝑝 = 0.64 and at different fiber volume fractions 𝜑𝑓. The 𝐷/𝑑 ratio is 

3.1 for PA fibers and 1.4 for glass fibers. Figures (a) and (b) correspond to the ascending branch of the flow curve 

during the 1st and the 2nd stress ramps, respectively. The black curves on both graphs stand to the flow curves of 

CC suspensions without fibers. 

Since both types of fibers with different size ratios give quantitatively similar behavior, in what 

follows, we rule out the confinement effects induced by addition of fibers and, unless otherwise 

specified, focus our attention on the behavior of suspensions containing PA fibers. 

3.4 Effect of fibers concentration 

          The flow curves of the CC-PA mixtures measured in double helix geometry are shown 

in Figure 3.4 for three CC volume fractions 𝜑𝑝 and for the ascending branch of the first stress 

ramp. For the sake of completeness, the flow curves for the second stress ramp of the CC-PA 

fiber mixtures are presented in Figure 3.11, while the flow curves for the both ramps on CC-

glass fiber mixtures – in Figure 3.12 in Appendix F. Thick solid black lines represent 

predictions of the reduced shear rate (left column in Figure 3.4) and the homogenization (right 

column in Figure 3.4) models that will be presented in section 3.6. Extensive discussion on the 

degree of agreement between the models and experiments will also be presented in section 3.6. 

As is seen in Figure 3.4, the flow curves shift to the left with increasing fiber concentration. As 

a consequence, the critical shear rate �̇�𝑐  of the DST transition is progressively shifted to lower 

values, while the critical shear stress 𝜎𝑐  (see Figure 3.1 for definition of both �̇�𝑐 and 𝜎𝑐 ) remains 

roughly constant up to fiber volume fractions 𝜑𝑓 = 0.02  but increases significantly at 𝜑𝑓 =

0.02 for all CC concentrations 𝜑𝑝. The flow curve and �̇�𝑐 shift to lower shear rates points out 

to enhanced energy dissipation with addition of the fibers. As stated in chapter 1, the addition 

of fibers increases the viscosity of the CC-fiber mixture, therefore, the shear rate to reach the 
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critical stress of DST becomes lower, provided that this stress is nearly independent of the fiber 

volume fraction at 𝜑𝑓 < 0.02. This shift can also be interpreted in terms of local shear rates, as 

specified below, keeping in mind that both interpretations are essentially similar and consistent 

with the stress-controlled rheology. In fact, at the fixed shear stress, the local shear rate �̇�𝑙𝑜𝑐 in 

the shear thickening matrix between fibers is by definition higher than the global shear rate �̇� 

(measured by the rheometer through the rotational speed of the double helix tool). The global 

shear rate in the CC-fiber mixture is consequently lower than in the CC suspension without 

fibers at the same applied stress. Applied to the DST threshold, this reasoning stipulates that, if 

the DST occurs at the same shear stress (at 𝜑𝑓 < 0.02), it should be shifted to lower global 

shear rates. A variation of the critical stress with fiber concentration at 𝜑𝑓 > 0.02, does not 

change this qualitative conclusion. The quantitative dependencies of the critical shear rate and 

shear stress on the fibers concentration will be analyzed in detail in section. 3.6 in comparison 

with the models. 

The increasing branch of the second stress ramp (Figure 3.11) gives oscillating but, in average, 

monotonous flow curves in agreement with the findings of section 3.2. Again, the flow curves 

are shifted to the left when the fibers concentration increases. Despite an average monotonic 

increase of these flow curves, they seem to become very steep at the applied stress on the order 

of 𝜎 = 100 Pa, and the slope increases with the fiber concentration. It is therefore important to 

check whether or not the suspension stress will diverge at some critical shear rate in rheological 

experiments conducted at controlled shear rate at the second shear rate ramp. In addition to it, 

the definition of the critical shear rate �̇�𝑐 and critical shear stress 𝜎𝑐 of the DST at the controlled 

stress experiment (Figure 3.1) is sometimes subjected to uncertainties related to intermittent 

oscillations of the flow curve below the point where the sign of the flow curve slope changes 

to negative. It is therefore desirable to get a supplementary definition of �̇�𝑐 and 𝜎𝑐 in controlled-

rate experiments. These two aspects impose a separate study of the rheological response in 

controlled-rate mode. 
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Figure 3.4 Effect of the fiber volume fraction on the flow curves of the mixtures of isotropic-shaped (CC) particles 

and PA fibers measured in the mixer type geometry for the ascending branch of the 1st stress ramp at different CC 

volume fractions. The first, the second and the third rows correspond to the CC volume fraction 𝜑𝑝  = 0.64;  0.66 

and 0.68, respectively. Experimental flow curves on the left and right columns are identical for each row. 

Simulated flow curves using RSR and H-model and assuming isotropic fiber orientation (𝐴1212 = 1/15) are 

plotted on the left and right columns, respectively. Thin dashed color curves correspond to experimental flow 

curves; thick solid black lines to predictions of both models [section 3.6], thick solid green line – to cubic spline 

interpolation of the experimental flow curve at 𝜑𝑓 = 0. Labels “apparent” in the titles of axes recall that the 

reported shear rate and shear stress values stem from approximate rheometric conversions of the raw rheological 

data [chapter 2, section 2.2.1.2-A] 
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3.5 Controlled-rate versus controlled-stress response 

          Figure 3.5 compares the flow curves measured at applied shear stress (red curves) and 

applied shear rate (blue curves) for the suspensions containing PA fibers at volume fraction 

𝜑𝑓 = 0.02 and CC particles at volume fraction 𝜑𝑝 = 0.64 or 0.68. First of all, the rheological 

response stemming from the first and the second shear rate ramp (respectively left and right 

columns of Figure 3.5) are qualitatively similar and holds for subsequent ramps (not shown 

here). In particular, starting from some critical shear rate, the mixture exhibits either strong 

shear stress oscillations [at 𝜑𝑝 = 0.64, Figures 3.5 (a,b)] or an abrupt increase above the value 

of 3000 Pa at which the rheometer was ordered to stop the measurements (at 𝜑𝑝 = 0.68, Figure 

3.5c,d). Both these behaviors point out to the DST transition in the rate-controlled mode 

observed for the first and the second shear rate ramps. Notice that the controlled-rate 

experiments allowed only ascending branch of the flow curve because strong stress oscillations 

above the DST transition caused the rheometer to stop once the maximal allowable stress of 

3000 Pa was achieved.
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Figure 3.5 Effect of the rheometric mode (stress- or rate-controlled) on the experimental flow curves of the 

mixtures of isotropic (CC) particles and PA fibers measured in the mixer type geometry for PA volume fraction 

𝜑𝑓 = 0.02 and for the CC particle volume fraction 𝜑𝑝 = 0.64 (a, b) and 0.68 (c, d). The left and the right columns 

of figures correspond to the ascending branches of the flow curve during the 1st and the 2nd stress or rate ramps, 

respectively. The insets on each graph show the flow curves in extended stress scale. The arrows in (a) and (c) 

show the definition of the critical shear rate and critical shear stress for the rate-controlled mode. 

We define the critical shear rate �̇�𝑐 and the critical shear stress 𝜎𝑐 for the strain-controlled mode 

at the point of the first abrupt increase of the shear stress (see arrows in Figures 3.5a and 5c), 

while �̇�𝑐 and 𝜎𝑐  for the stress controlled mode are defined, as previously, at the point of the 

change of the sign of the flow curve slope (see arrows in Figure 3.1). Interestingly, the flow 

curves measured in the stress and rate-controlled modes coincide at low shear stress/shear rates, 

below the DST transition, while the critical values 𝜎𝑐 and �̇�𝑐 seem to rather weakly depend on 

whether the stress or the rate are imposed. A quantitative analysis of the values 𝜎𝑐 and �̇�𝑐 as 

function of CC and fiber concentrations will be presented in section 3.6. At this point, it is 

important to stress that the Anton Paar Physica MCR 301 rheometer is unable to reliably control 

the shear rate at fast dynamics of the samples. This results to non-vertical fluctuations of the 

shear stress above DST, as observed in insets of Figures 5 (a,b). Even though the stress values 
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above the DST cannot be considered safely, the onset of the DST transition is still reliably 

measured in the strain-controlled mode. 

3.6 Reduced shear rate versus homogenization approach. Comparison with 

experiments 

          On the basis of the main experimental findings of section 3.3 and section 3.4, we can now 

develop models allowing a better and more quantitative understanding of the effect of fiber 

concentration on the DST transition of the mixtures of fibers with isotropic shaped particles. 

The objective of the models is to predict the flow curve of the CC-fiber mixtures on the basis 

of the experimental flow curves for the CC suspensions without fibers. 

Assuming a perfect scale separation between CC particles and fibers, we consider that the fibers 

are dispersed in a shear thickening matrix – aqueous CC suspension – considered as a 

continuum with the rheology independent of the presence of fibers. Independence (within 

statistical errors) of the flow curves on the fiber – to – particle diameter ratio 𝐷/𝑑 is an argument 

in favor of the scale separation hypothesis, which however will be revisited in section 3.7 in 

conjunction to the jamming behavior. This hypothesis allows us to adapt the reduced shear rate 

(RSR) approach of Ohl and Gleissle [114] and the homogenization (H) approach of Château et 

al. [158], both developed for hard spheres dispersed in a non-Newtonian solvent. Both 

approaches employ essentially similar basic idea that the addition of particles to a non-

Newtonian matrix induces higher local shear rates in the matrix at the same stress, and, 

consequently lower global shear rates in the suspension. Both models determine the local shear 

rate as function of the relative viscosity 휂𝑟(𝜑) of a suspension of the same solid particles but 

dispersed in a Newtonian matrix at a given volume fraction 𝜑. The models mainly differ in the 

way how these relationships are postulated. Furthermore, in the present case of CC-fiber 

mixtures, the relative shear viscosity is the function of both volume fraction 𝜑𝑓 and orientation 

of fibers, described by the shear component 𝐴1212 of the fourth-order orientation tensor 

(subscripts “1” and “2” stand for directions along the velocity and velocity gradient); the 

quantity 𝐴1212 is hereinafter called the orientation parameter.  

The RSR-model relates the global (“macroscopic”) shear rate �̇�(𝜎) in the suspension to the 

(“reduced”) shear rate in the matrix �̇�𝑚(𝜎) = �̇�(𝜎, 𝜑𝑓 = 0) through a proportionality factor 

(shift factor) is simply equal to the relative viscosity [114]: 

�̇�(𝜎) =
�̇�𝑚(𝜎)

𝜂𝑟(𝜑𝑓,A1212)
                           (3.3) 
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The H-model relates �̇�(𝜎) to �̇�𝑚(𝜎) through the condition that the energy dissipation in the 

whole suspension is equal to the energy dissipation in the suspending matrix [158]. This 

approach initially developed for the rate-controlled rheology is adapted to the present case of 

the stress-controlled rheology. The details of derivation are provided in Appendix A, and the 

model predicts the following relationship:  

�̇�(𝜎) = �̇�𝑚(𝜎𝑙𝑜𝑐)√
1−𝜑𝑓

𝜂𝑟(𝜑𝑓,𝐴1212)
        (3.4) 

𝜎𝑙𝑜𝑐 =
𝜎

√(1−𝜑𝑓)𝜂𝑟(𝜑𝑓,𝐴1212)
                      (3.5) 

where 𝜎𝑙𝑜𝑐 is the local root mean square (RMS) shear stress in the suspending matrix, which is 

different form the macroscopic stress 𝜎 applied to the suspension boundaries because the 

applied stress is not uniformly distributed between the solid phase consisting of rigid fibers and 

the suspending matrix. The principal difference between 𝜎𝑙𝑜𝑐 and 𝜎 is discussed in detail in 

Appendix. G. The definition of the local shear stress is exact if the fibers are dispersed in a 

Newtonian matrix. Therefore, it is approximately valid for the CC-fibers mixtures below the 

critical stress of the DST transition, i.e. at 𝜎 ≤ 𝜎𝑐, where the matrix (pure CC suspension) shows 

approximately Newtonian behavior, as inferred from Figure 3.1. However, as shown in 

Appendix B, equation (3.5) remains approximately valid for the shear thickening matrix even 

above the DST transition, at 𝜎 > 𝜎𝑐 where the flow curve becomes nearly vertical. 

The relative viscosity 휂𝑟(𝜑𝑓 , 𝐴1212) of the suspension of fibers dispersed in a Newtonian matrix 

(glycerol) was measured in the double helix geometry [Appendix A, Figure 3.9]. The 

concentration behavior of 휂𝑟 agrees relatively well with the phenomenological equation of 

Phan-Thien and Graham [167] [Eq. (3.14)] without adjustable parameters and with the fiber 

orientation nearly aligned with the flow and corresponding to the orientation parameter 𝐴1212
𝐿𝐻 ≈

0.011, as evaluated by Leal and Hinch model [168] [Eq. (3.15)].  

The flow curves of CC-fiber mixtures can be constructed in parametric form (�̇�(𝜎), 𝜎) using 

Eq. (3.3) for the RSR-model and Eq. (3.4) for the H-approach. To plot the flow curves predicted 

by the RSR model, we proceed as follows. Firstly, we smooth the fluctuations of the 

experimental flow curves of the CC suspensions (𝜑𝑓 = 0) shown in Figure 3.1 using a median 

smoothing algorithm. Then, we interpolate the smoothed data by a continuous function �̇�𝑚(𝜎) 

using a cubic spline interpolation. Finally, we insert �̇�𝑚(𝜎) to Eq. (3.3) that allows us to 

construct theoretical flow curves of CC-fiber mixtures on the basis of an experimental flow 
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curve of the CC suspension without fibers. A similar procedure is used for the H-model, except 

that the argument 𝜎 in the interpolated function �̇�𝑚(𝜎) should be replaced by 𝜎𝑙𝑜𝑐 [Eq. (3.5)] in 

order to get a continuous function �̇�𝑚(𝜎𝑙𝑜𝑐), which is used in Eq. (3.4).  

As an example, in Figure 3.6, we plot experimental and computed flow curves (obtained from 

the ascending branch of the first stress ramp) of the CC-PA mixture at the CC volume fraction 

𝜑𝑝 = 0.66 and the fiber volume fraction 𝜑𝑓  = 0.02. The predictions of the RSR- and H-

models are presented in Figures 3.6 (a,b) respectively. In both figures, the thin dashed red curve 

represents experimental flow curve of the CC suspension without fibers at 𝜑𝑝 = 0.66 and the 

thick black curve is its cubic spline interpolation. The thin dashed blue curve represents the 

experimental flow curve of the CC-fiber mixture, while the thick solid red curve corresponds 

to the prediction of both models. The simulated flow curves appear to be far from the 

experimental ones but relatively close to the flow curve of the shear thickening matrix. This 

indicates that in the present form, both models strongly underestimate the viscous dissipation 

in the CC-fiber mixture. 

 

Figure 3.6 Comparison of experimental (thin dashed blue line) and simulated (thick solid red, blue and green lines) 

flow curves of the mixtures of isotropic (CC) particles and PA fibers for the ascending branch of the 1st stress 

ramp in the mixer type geometry for PA volume fraction 𝜑𝑓 = 0.02 and for the CC particle volume fraction 𝜑𝑝 =

0.66. The predictions of the RSR- and H-models are presented in (a) and (b), respectively. Abbreviations “LH”, 

“Iso” and “CA” in the figure legend stand for the fiber orientations aligned with the flow (𝐴1212 ≈ 0.011), random 

(𝐴1212 = 1/15) and aligned along the compression axis (𝐴1212 = 1/4), respectively. Thin dashed red and thick 

black solid curves are respectively experimental flow curve at 𝜑𝑓 = 0% 𝑣𝑜𝑙, 𝜑𝑝 = 0.66% vol and its cubic spline 

interpolation. The shaded region in (a) and (b) corresponds to the domain between the lower and upper bounds of 

the prediction of each model. 

The most intuitive reason for this discrepancy is that the orientation distribution of the fibers in 

the shear thickening matrix is likely very different from the nearly aligned state observed in the 

Newtonian matrix (like in our experiments with PA fibers suspended in glycerol, cf. Figure 3.9) 
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and described by Eq. (3.15). It is highly possible that the formation of transient clusters of CC 

particles below DST and the flow instability above DST strongly affect fiber dynamics and 

induce more isotropic fiber orientation. In the same vein, the network of frictional contacts 

between CC particles can make the fibers aligned along the main axis of this network, which is 

the compression axis of the shear flow, making the angle −𝜋/4 with the flow direction [57]. 

The orientation parameter 𝐴1212 takes the following values for these two particular cases: 

𝐴1212
𝐼𝑠𝑜 = 1/15 and 𝐴1212

𝐶𝐴 = 1/4, where superscripts “𝐼𝑠𝑜” and “𝐶𝐴” stand for “isotropic” and 

“compression axis”. The orientation state along the compression axis will be hereinafter 

denoted by CA-orientation for brevity. 

To take into account a correct orientation distribution of fibers in shear thickening matrix, an 

appropriate value of 𝐴1212 should be used in Eq. (3.14) for the relative viscosity 휂𝑟 =

𝑓(𝜑𝑓 , 𝐴1212), while computing the CC-fiber flow curve. The simulated flow curves of the CC-

fiber mixture corresponding to both isotropic and CA orientation of fibers are added to Figures. 

3.6a and 3.6b by thick solid blue and green lines, respectively. The flow-aligned orientation 

provides the lowest relative viscosity 휂𝑟 and predicts the smallest shift of the flow curve with 

addition of fibers (thick solid red line), while the CA-orientation provides the highest relative 

viscosity and the largest flow curve shift (thick solid green line). If the models are correct, the 

experimental flow curve (thin dashed blue line) should fit into the shaded space between lower 

and upper bounds of the models corresponding to the two limiting simulated flow curves. This 

is the case for the RSR-model but not completely true for the H-model (for which the 

experimental flow curve leaves the shaded region at intermediate stresses), at least for the 

particular set of volume fractions (𝜑𝑝 = 0.66 and 𝜑𝑓 = 0.02) of the data presented in Figure 

3.6. 

To ensure the best agreement between the models and experiments, it would be possible to fit 

the experimental flow curves by adjusting the orientation parameter 𝐴1212values in Eq. (3.14) 

for the relative viscosity 휂𝑟(𝜑𝑓 , 𝐴1212). However, we prefer comparing experimental flow 

curves with the model flow curves all calculated for a single fixed and physically relevant value 

of the orientation parameter, 𝐴1212 = 𝐴1212
𝐼𝑠𝑜 = 1/15, corresponding to random fiber 

orientation, without necessity of any adjustable parameter. All the experimental flow curves of 

the CC-PA fiber mixtures shown in Figure 3.4 and Figure 3.11 are compared with the simulated 

ones (solid black lines), using the RSR-model (left columns) and the H-model (right columns). 

Thick solid green lines fitted to the experimental black flow curves of pure CC suspensions 
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stand for the cubic spline interpolation. The qualitative difference between predictions of both 

models is that the RSR-model leads to the same critical shear stress of the DST transition 

independently of the volume fraction of fibers, which is mainly supported by experiments for 

fiber volume fractions up to 0.02. In general, the RSR-model agrees better with experiments 

than the H-model at 𝜑𝑓   ≤ 0.02. However, at higher volume fraction, 𝜑𝑓 = 0.03 it fails to 

predict substantial increase of the critical shear stress with respect to the one of the shear 

thickening matrix, while the H-model capture this increase, at least qualitatively. Furthermore, 

at each particle and fiber concentrations, the H-model provides better prediction of the 

monotonously growing flow curves measured at the 2nd stress ramp [Figure 3.11].   

Let us now focus on the critical values of the shear stress and shear rate at the DST transition. 

Let 𝜎𝑐0 and �̇�𝑐0 – critical shear stress and shear rate of the CC suspension without fibers. The 

critical value of �̇�𝑐 for both models is obtained from Eqs. (3.3) and (3.4) by replacing �̇� by �̇�𝑐 

and �̇�𝑚 by �̇�𝑐0. The critical shear stress for the RSR-model is equal to that of the shear thickening 

matrix, since this model postulates only a horizontal shift of the flow curves. The critical shear 

stress for the H-model is obtained from Eq. (3.5) by expressing the applied global stress 

𝜎 through the local stress 𝜎𝑙𝑜𝑐 and then replacing 𝜎𝑙𝑜𝑐 by 𝜎𝑐0, and 𝜎 by 𝜎𝑐. The final set of 

expressions covering both models read: 

�̇�𝑐 = {
�̇�𝑐0/휂𝑟(𝜑𝑓, 𝐴1212),                      for RSR-model;

�̇�𝑐0√(1 − 𝜑𝑓)/휂𝑟(𝜑𝑓 , 𝐴1212),    for H-model;
    (3.6) 

𝜎𝑐 = {
𝜎𝑐0,                                            for RSR-model;

𝜎𝑐0√(1 − 𝜑𝑓)휂𝑟(𝜑𝑓 , 𝐴1212),    for H-model.
  (3.7) 

Thus, using the last two equations, the values of 𝜎𝑐 and �̇�𝑐 can be calculated as function of the 

fiber volume fraction 𝜑𝑓 using experimental values of 𝜎𝑐0 and �̇�𝑐0 obtained from controlled 

stress [section 3.1] or controlled strain [section 3.4] experiments on pure CC suspensions for a 

given CC volume fraction 𝜑𝑝. Simulated and experimental dependencies �̇�𝑐(𝜑𝑓) and 𝜎𝑐(𝜑𝑓) 

are shown in Figures 3.7(a,b) respectively. Triangles and squares correspond to experimental 

values on CC-PA suspensions measured for the ascending branch of the 1st ramp in stress-

controlled mode [Figure 3.4] and strain-controlled mode [Figure 3.5], respectively. Continuous 

and dashed black lines correspond to the prediction of the RSR- and H-models, respectively, 

for a single value of the orientation parameter𝐴1212 = 𝐴1212
𝐼𝑠𝑜 = 1/15 corresponding to the 

isotropic fiber orientation. 
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Firstly, a relatively good agreement, within the experimental statistical errors, is observed 

between two experimental modes of definition of the critical values 𝜎𝑐 and �̇�𝑐. Secondly, the 

RSR and H-models give reasonable agreement with experimental values of the critical shear 

rate. The RSR-model systematically underestimates experimental �̇�𝑐 values and the H-model 

overestimates them. As already mentioned, the RSR-model reproduces the independence of the 

critical stress on the fiber volume fraction at 𝜑𝑓  ≤ 0.02, while the H-model predicts a 

continuous growth of 𝜎𝑐 with 𝜑𝑓 because it differentiate the average stress in the suspending 

matrix (local stress 𝜎𝑙𝑜𝑐) from the macroscopic applied stress 𝜎 and shifts the flow curves both 

vertically and horizontally, as clearly seen on the right column of Figure 3.4. However, this 

trend reverses at the highest considered fiber volume fraction 𝜑𝑓 = 0.03 for which the 

experimental values of 𝜎𝑐 are noticeably larger that the corresponding values 𝜎𝑐0 in the absence 

of fibers. The H-model seems to follow this increase, while the RSR-model is unable to capture 

it. The discrepancy between experiments and RSR-model becomes more dramatic at higher 

volume fractions, 𝜑𝑓 > 0.03, for which we observe the behaviors qualitatively different from 

those reported above. They cannot be reproduced at all by the RSR-model and need a separate 

analysis. 

 

Figure 3.7 Simulated and experimental dependencies of the critical shear rate (a) and the critical shear stress (b) 

of the DST transition on the fiber volume fraction. Experimental data are drawn from the ascending branch of the 

1st ramp of CC-PA mixtures, measured in stress controlled (triangles) and strain controlled (squares) modes. 

Continuous and dashed black lines correspond to the prediction of the RSR- and H-models, respectively, for the 

isotropic orientation distribution in all mixtures (𝐴1212 = 1/15). The error bars correspond to the standard 

deviation of a few measurements realized for each given value of 𝜑𝑝 and 𝜑𝑓.
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3.7 Jamming behavior 

          Experimental flow curves of the CC-PA mixtures at fiber volume fraction 𝜑𝑓 = 0.035 

and at different CC particle volume fractions 𝜑𝑝 are shown in Figure 3.8a for the ascending 

branch of the 1st (thin lines) and the 2nd (thick lines) stress ramps. During the 1st ramp, the flow 

curves show decreasing slope with increasing stress reminiscent to a shear thinning behavior 

(except for 𝜑𝑝 = 0.68), followed by an increasing slope with oscillations (shear thickening). 

The 2nd ramp is characterized by a threshold stress below which the mixture does not flow, 

referred to as a yield stress, and by stronger fluctuations above the yield stress as compared to 

the flow curve fluctuations of the 1st ramp. The subsequent stress ramps show the similar 

behavior to that of the 2nd ramp. As stated in section 3.2, the difference in behaviors of the 1st 

and the 2nd stress ramps could be attributed to CC particle migration which changes the rheology 

on local scale. Notice that, at the fiber volume fraction above 𝜑𝑓  ≥ 0.04, it was impossible to 

make the CC-PA mixtures flow below the maximal achievable stress 𝜎 = 3000Pa in our 

experiments with mixer type geometry. This indicates a jamming transition of the CC-PA 

mixtures at a critical fiber concentration 𝜑𝑓  ≈ 0.04 independent of the CC particle 

concentration within the range 0.64 ≤  𝜑𝑝  ≤ 0.68 at which the shear thickening matrix (CC 

suspension alone) exhibits the DST transition. It is therefore believed that the combination of 

the yield stress and shear thickening at 𝜑𝑓 = 0.035 reflects a transient behavior between purely 

shear thickening behavior at 𝜑𝑓 ≤  0.03 and jamming behavior at 𝜑𝑓 ≥  0.04. Notice that the 

term “jamming transition” should not be confounded with the term “DST transition”, as the 

first one is hereinafter assigned to the liquid-solid transition at any small applied stress for 

particle concentrations near the compaction limit, while the second one is related to the liquid-

solid transition above some non-zero critical stress at concentrations that can be well below the 

compaction limit. 
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Figure 3.8 Experimental flow curves of the CC-PA mixtures at fiber volume fraction 𝜑𝑓 = 0.035 and at different 

CC particle volume fractions 𝜑𝑝 for the ascending branch of the 1st (thin lines) and the 2nd (thick lines) stress ramps 

(a). To explain jamming behavior of the CC-fiber mixtures at the fiber volume fractions 𝜑𝑓 ≥ 0.04, a hypothetical 

flow curve of the CC-fiber mixture is schematically presented in (b) by a solid line. The flow curve of the pure CC 

suspension at the same CC volume fraction is schematically presented by a dashed line in (b). The critical shear 

rate �̇�𝑐 in the concentrated CC-PA mixture is evaluated to be much lower than that, �̇�𝑐0, in the pure CC suspension; 

while the yield stress 𝜎𝑌 [Eq. (3.27)] of the CC-PA mixture is related to a specific value of the local stress in the 

gap between fibers, tentatively assigned to the upper critical stress 𝜎′ of the DST transition in pure CC suspension. 

At this point, we try to find a physical mechanism for the jamming behavior at 𝜑𝑓 ≥ 0.04. First, 

the jamming in a bimodal mixture of particles can simply occur due to a compaction limit 

imposed by geometrical constraints. Second, since the perfect scale separation between CC 

particles and PA fibers is not really fulfilled (even though confinement effects seem to be ruled 

out – cf. section 3.3), the jamming could arise as a result of excluded volume effects, as 

suggested by Madraki et al. [113] for bidisperse mixtures of spheres. These two effects are 

analyzed in detail in Appendix C. It is shown that the two scenarios predict that the jamming of 

the mixture strongly depends both on the particle volume fraction 𝜑𝑝 and on the fiber volume 

fraction 𝜑𝑓, while in experiments it only depends on 𝜑𝑓 and independent of 𝜑𝑝 within the range 

0.64 ≤  𝜑𝑝  ≤ 0.68. The jamming scenario respecting this experimental condition is related to 

the percolation threshold of the fiber network, which, to the first approximation, is expected to 

be independent of 𝜑𝑝.  

In more detail, when the fiber concentration achieves the percolation threshold 𝜑𝑝𝑒𝑟𝑐, the force 

applied at the boundary is transmitted through the small gaps between fibers (filled with shear 

thickening matrix). Due to small effective volumes of these gaps, and their small density in the 

suspensions of fibers as compared to spheres, the local stress in these gaps is expected to be 

much higher than the global (macroscopic) applied stress, as typically observed for the force 

chains in granular media [169]. Consequently, the shear thickening matrix can undergo the DST 

transition locally near the contact points at very small critical values of the global shear stress 
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𝜎𝑐 and the global shear rate �̇�𝑐 that are probably close to zero, as shown schematically on Figure 

3.8b. At 𝜎 > 𝜎𝑐 ≈ 0, extremely strong local viscosity of the shear thickening matrix between 

contact points solidifies the percolated fiber network, which hinders any flow. To fluidize the 

bridges between fibers and therefore to make the mixture flow, the stress level in shear 

thickening matrix near the inter-fiber contacts should at least overcome the upper critical stress 

of the DST, 𝜎′, which is the upper stress value corresponding to the critical shear rate �̇�𝑐0 in the 

shear thickening matrix [Figure 3.8b]. Thus, for the flow onset, one has to apply some 

(presumably high) global stress 𝜎𝑌 (which can be considered as an apparent yield stress) 

corresponding to the local stress 𝜎′. Below percolation threshold, 𝜑𝑓  < 𝜑𝑝𝑒𝑟𝑐, the fiber 

network does not span the rheometer gap facilitating the flow of the shear thickening matrix, 

while above the percolation threshold, 𝜑𝑓  > 𝜑𝑝𝑒𝑟𝑐, the fiber network is solidified by the shear 

thickening matrix leading to the jamming. 

Evaluations of the percolation threshold 𝜑𝑝𝑒𝑟𝑐 and of the stress levels 𝜎𝑐, 𝜎𝑌 are presented in 

Appendix D. Firstly, our experimental value of the jamming threshold 𝜑𝑓 ≈ 0.04 fits to the 

predicted percolation threshold interval 0.015 ≤ 𝜑𝑝𝑒𝑟𝑐 ≤ 0.115. Secondly, the RSR-model 

does not differentiate the local and macroscopic stresses and predicts 𝜎𝑌 = 𝜎
′, 𝜎𝑐 = 𝜎𝑐0 and the 

values of �̇�𝑐 going up to 8 s−1 at 𝜑𝑓 = 0.04; thus it cannot capture jamming behavior at 𝜑𝑓 =

0.04. On the contrary, the H-model is successfully extended to the case when the local stress is 

mainly concentrated within the gaps between fibers. Thirdly, the modified H-model shows that 

the critical shear rate and critical shear stress of the DST vary in the ranges 0.04 < �̇�𝑐 < 0.37 

s−1 and 0.8 < 𝜎𝑐 < 1.6 Pa within the range of CC volume fractions 0.64 ≤ 𝜑𝑝 ≤ 0.68 and at 

PA volume fraction 𝜑𝑓 = 0.04. At such small values of the lower bound of the jammed state, 

the mixture behaves as a solid with the apparent yield stress 𝜎𝑌 estimated to be about 5 % of 

the upper critical stress 𝜎′ of the DST in the CC matrix: 𝜎𝑌 ≈ 0.05𝜎
′. Unfortunately, we do not 

have access to experimental values of 𝜎′ [Figure 3.8b] because in most of the cases, the shear 

rate does not overcome the critical value �̇�𝑐0 at the maximal achievable stress 𝜎 = 3000 Pa. 

Using a high torque rheometer [170] it has been shown that the stress jump at the DST transition 

can achieve the values on the order of  105 Pa2. If so, the apparent yield stress can easily 

 
2 The upper DST threshold in the flows with free surface is usually defined through a capillary stress pushing the 
microparticles through the fluid/air interface, as will be explained in chapter 5. However, in the present case of 
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reach the values above the maximal achievable stress of the Anton Paar rheometer: 𝜎𝑌 >

3000 Pa. Detailed experimental and theoretical studies on the mixture behavior near the fiber 

percolation threshold are required to confirm the above stated trends. 

3.8 Conclusion 

          In this chapter, we have studied the effect of the fibers on the DST transition in the 

mixtures of isotropic-shaped CC particles and rigid (PA or glass) fibers. The chosen mixer type 

rheometric geometry provides only approximate conversions of the raw rheological data (torque 

and angular speed) to the shear stress and the shear rate; both latter quantities are considered as 

apparent. The mixtures are prepared by mixing the fibers at a desired volume fraction 𝜑𝑓 with 

the shear thickening matrix, which presents the suspension of micron-sized CC particles 

dispersed in water at a volume fraction 𝜑𝑝 and coated by a polymer brush of superplasticizer 

molecules. The DST behavior of the matrix is observed at CC volume fractions 𝜑𝑝  ≥ 0.64 and 

is accompanied by irregular oscillations of the shear rate above the critical applied shear 

stress, 𝜎𝑐0. The DST in the considered matrix is believed to be governed by the competition 

between the applied stress and the repulsive steric forces of the compressed polymer brushes. 

In mixer type rheometric geometry, the matrix exhibits thixotropic behavior manifested through 

evolution of the flow curve shape from the S-like to monotonous one likely due to CC particle 

migration towards the axis of symmetry of the mixer type geometry. Nevertheless, irregular 

shear rate oscillations persist even on monotonous branches of the flow curve. 

The effect of the addition of rigid fibers to the shear thickening matrix can be summarized as 

follows: 

1. Within the concentration range 0.01 ≤ 𝜑𝑓 ≤ 0.03, the CC-fibers mixtures exhibit 

qualitatively similar rheological behavior as pure CC suspensions (S-shape of the flow curve, 

irregular oscillations, thixotropy). However, the DST is shifted to lower values of the critical 

shear rate �̇�𝑐, while the critical shear stress 𝜎𝑐 remains essentially the same at 𝜑𝑓 ≤ 0.02. This 

effect is explained by the fact that the addition of fibers increases the viscosity of the CC-fiber 

mixture, therefore, the shear rate to reach the critical stress of DST decreases. Such behavior is 

satisfactorily reproduced by the reduced shear rate (RSR) approach of Ohl and Gleissle [114]. 

At the fiber volume fraction, 𝜑𝑓 = 0.03, the critical shear stress exhibits a noticeable increase 

 
local DST transition in the vicinity of fiber-fiber contact there is no really free surface through which the particles 
would tend to escape, so the definition of the upper DST threshold from physical grounds remains complicated  
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with respect to its value for the shear thickening matrix. This effect seems to be correctly 

reproduced by the homogenization (H) approach of Château et al. [158] adapted here for the 

stress-controlled rheology. However, more experimental points in the vicinity of the volume 

fraction 𝜑𝑓 = 0.03 need to be compared with the predictions of the H-model in order to confirm 

its performance. The H-model distinguishes the average local stress in the shear thickening 

matrix from the macroscopic shear stress applied on the suspension boundaries. 

2. At higher concentrations of fibers, 𝜑𝑓 = 0.035, the behavior of the CC-fiber mixtures 

qualitatively changes and a yield stress, 𝜎𝑌 ≈ 20 Pa, appears at the descending branch of the 1st 

stress ramp and persists during ascending and descending branches of subsequent ramps. At 

𝜑𝑓 = 0.04, the suspension is completely blocked and no any distinguishable shear was detected 

until the upper stress limit, 𝜎 = 3000 Pa, of the rheometer. These behaviors (yielding at 𝜑𝑓 =

0.035 and complete jamming at 𝜑𝑓 = 0.04) are independent of the volume fraction of 

isotropic-shaped particles within the range 0.64 ≤ 𝜑𝑝 ≤ 0.68, where the matrix exhibits the 

DST. At such circumstances, the jamming is expected to arise at the percolation threshold of 

the fiber network, 𝜑𝑓 = 𝜑𝑝𝑒𝑟𝑐, with 0.7/𝑟 ≤ 𝜑𝑝𝑒𝑟𝑐 ≤ 𝑚𝑖𝑛( 5.4/𝑟,  0.35) [cf. Appendix D], 

nearly independent of the CC concentration 𝜑𝑝. At percolation, any distinguishable global 

motion of the mixture is expected to lead to the levels of the local stress sufficient to produce 

DST localized in the vicinity of the contacts between fibers, thus solidifying the percolated fiber 

network. This idea is qualitatively supported by modified H-model, assuming that viscous 

dissipation mostly occurs in the vicinity of the contacts, while the RSR-model fails to capture 

jamming. Similar jamming behavior could be anticipated in bidisperse mixtures of spherical 

particles at the percolation threshold of large spheres (𝜑𝑝𝑒𝑟𝑐0.35). However, the percolation 

network of spheres is likely more fragile than that of fibers because the network of spheres 

could be more or less easily layered by the applied stress. 

3. Comparing predictive capabilities of the RSR and the H-models, it can be summarized 

that for the 1st stress ramp, the RSR-model gives much better predictions at the fiber volume 

fractions well below the percolation threshold of the fiber network, and the H-model performs 

much better near the percolation threshold. For the 2nd and subsequent stress ramps 

characterized by monotonous flow curves, the H-model gives closer predictions to experiments 

in the whole studied range of fiber volume fractions. We believe that the predictive capability 

of the H-model can be further improved by interpolating between two proposed definitions of 

the local stress [Eqs. (3.5) and (3.25)] at two different scales. However, we have to bear in mind 
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that none of these definitions, nor their combination is exact because of complex rheology of 

the shear thickening matrix. 

4. It is difficult to conclude about the role of the fiber orientation without being able to 

control and visualize it. The flow-induced orientation and the DST behavior are expected to 

mutually affect each other. At this stage, on the basis of two proposed models, it can be 

anticipated that the critical shear rate of DST can vary in a wide interval depending on the 

orientation parameter 𝐴1212, as long as the later strongly affects the relative viscosity of the 

mixture. All the calculations in the present work were conducted for the random orientation 

state, ensuring semi-quantitative agreement with experiments without adjustable parameters.  

5. Within statistical measurement errors and within the range 1.4 ≤  𝐷/𝑑 ≤  3.1, the fiber-

to-particle diameter ratio 𝐷/𝑑 seems not to affect the rheological response of the mixtures at 

nearly similar aspect ratio of PA (𝑟 ≈ 47) and glass (𝑟 ≈ 40) fibers. This allows us to rule out 

possible scenario of the DST enhancement by confinement of CC particles within the pores 

formed by the fiber network as the fiber volume fraction increases, as suggested in [116].  

From the practical point of view, we have learned about physical limitations of the 

fluidity in bimodal mixtures. On the basis of the obtained results, standard ratios of the 

isotropic-shaped particles and fibers in cementitious composites could be revisited. In 

perspective, shear-induced microstructure of the considered bimodal mixtures has to be 

extensively studied through X-ray micro-tomography and particle level simulations. This will 

allow assessing the real fiber orientation distribution in shear thickening matrix, the spatial 

distribution of the contact network between isotropic-shaped particles and will allow checking 

the percolation-driven jamming scenario on the microscopic scale. 

3.9 Appendices 

Appendix A. Homogenization approach for the stress-controlled rheology 

          According to the original work of Château et al. [158], the suspension viscosity 휂(�̇�) is 

assumed to be a product of the non-Newtonian matrix viscosity 휂𝑚(�̇�𝑙𝑜𝑐) taken at some local 

shear rate �̇�𝑙𝑜𝑐 and the relative viscosity 휂𝑟(𝜑) of a suspension of the considered particles 

dispersed in a Newtonian solvent at particle volume fraction 𝜑. In our case of the stress-

controlled rheology, the shear thickening matrix viscosity should be taken at a local shear stress 

𝜎𝑙𝑜𝑐, which results in 

휂(𝜎) = 휂𝑚(𝜎𝑙𝑜𝑐)휂𝑟(𝜑𝑓)     (3.8) 
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where 휂𝑟(𝜑𝑓) is the relative viscosity of a suspension of fibers dispersed in a Newtonian solvent 

at a given volume fraction 𝜑𝑓. 

By analogy with �̇�𝑙𝑜𝑐 defined in [158, 171], the local shear stress 𝜎𝑙𝑜𝑐 can be evaluated as a root 

mean square (RMS) stress arising in a Newtonian solvent when the particle suspension (fibers 

dispersed in a Newtonian solvent) is subjected to flow of a given shear field. For the sake of 

simplicity, we assume a simple shear flow at a global shear rate �̇� and a global applied shear 

stress 𝜎, and suppose that the interactions between fibers are solely defined by the rheology of 

the suspending matrix, while direct contact interactions between fibers are absent. As a 

consequence, the energy dissipation in the whole volume 𝑉 of the suspension is equal to the 

viscous dissipation in the volume 𝑉𝑚 of the Newtonian matrix, or rather: 

𝜎�̇�𝑉 =∭ 𝜎𝑖𝑘�̇�𝑖𝑘𝑑𝑉𝑉𝑚
                (3.9) 

where subscripts “𝑖𝑘” denote the components of the local stress and the local rate-of-strain 

tensors along the coordinate axes 𝑖 = 1,2,3 and 𝑘 = 1,2,3. The global and local shear rates, �̇� 

and �̇�𝑖𝑘, in a Newtonian suspension of fibers can be related to the corresponding stresses 𝜎 and 

𝜎𝑖𝑘, through the following obvious formulas: 

  �̇� =
𝜎

𝜂𝑁
=

𝜎

𝜂0𝜂𝑟(𝜑𝑓)
;   �̇�𝑖𝑘 ≡

1

2
(
𝜕𝑣𝑖

𝜕𝑥𝑘
+
𝜕𝑣𝑘

𝜕𝑥𝑖
) =

𝜎𝑖𝑘

2𝜂0
            (3.10) 

where 휂0 and 휂𝑁 = 휂0휂𝑟(𝜑𝑓) are viscosities of the Newtonian solvent and the Newtonian 

suspension of fibers, respectively. Substituting Eq. (3.10) into Eq. (3.9), and dividing by 𝑉, we 

get the following equation: 

  
𝜎2

𝜂0𝜂𝑟(𝜑𝑓)
=

1

𝑉𝜂0
∭

1

2
𝜎𝑖𝑘𝜎𝑖𝑘𝑑𝑉𝑉𝑚

=
(1−𝜑𝑓)𝜎𝑙𝑜𝑐

2

𝜂0
            (3.11) 

which gives us the final expression for the local (RMS) shear stress, as follows: 

𝜎𝑙𝑜𝑐 ≡ (
1

𝑉𝑚
∭

1

2
𝜎𝑖𝑘𝜎𝑖𝑘𝑑𝑉𝑉𝑚

)
1/2

=
𝜎

√(1−𝜑𝑓)𝜂𝑟(𝜑𝑓)
                  (3.12) 

where we have used the following relationship: 𝑉𝑚/𝑉 = 1 − 𝜑𝑓. 

By putting the global shear stress in Eq. (3.12) equal to 𝜎 = 휂𝑁�̇� = 휂0휂𝑟(𝜑𝑓)�̇� (as inferred 

from Eq. (3.10)), we easily check that the local RMS shear stress reduces to 𝜎𝑙𝑜𝑐 = 휂0�̇�𝑙𝑜𝑐, with 

the local RMS shear rate given by the following relationship derived in [171]: 

�̇�𝑙𝑜𝑐 = �̇�√휂𝑟(𝜑𝑓)/(1 − 𝜑𝑓)              (3.13) 
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Thus, as expected, we obtain the local shear rate larger that the global one (�̇�𝑙𝑜𝑐 > �̇�). However, 

according to Eq. (3.12), the local stress is lower than the global one (𝜎𝑙𝑜𝑐 < 𝜎). This can be 

explained by the fact that viscosity 휂𝑁 appears to increase stronger with the volume fraction 

𝜑𝑓 of fibers than the local shear rate �̇�𝑙𝑜𝑐, such that 𝜎𝑙𝑜𝑐 = 휂0�̇�𝑙𝑜𝑐(𝜑𝑓) < 𝜎 = 휂𝑁(𝜑𝑓)�̇�. Notice 

that the tendency reverses for the local shear stress defined on the scale of the small gaps 

between fibers in the vicinity of their contact points: 𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 > 𝜎 [cf. Eq. (3.25)].  

The relative viscosity 휂𝑟(𝜑𝑓) of the suspension of fibers dispersed in a Newtonian matrix can 

be found both experimentally and theoretically. To this purpose, using the mixer type geometry, 

we have measured the viscosity, 휂𝑁, of the suspension of PA fibers dispersed at different 

volume fractions 𝜑𝑓  in a glycerol (휂0 = 2.41 Pas). In the range of the applied stresses, 𝜎 =

0 − 100 Pa, both glycerol and glycerol-fiber suspensions exhibited a Newtonian behavior and 

the concentration dependency of the relative viscosity 휂𝑟(𝜑𝑓) = 휂𝑁(𝜑𝑓)/휂0 is reported in 

Figure 3.9.  

 

Figure 3.9 Relative viscosity 휂𝑟 of the suspension of PA fibers dispersed in a Newtonian solvent (glycerin) as 

function of the fiber volume fraction 𝜑𝑓. Points correspond to the experiment using in the mixer type geometry, 

solid lines to the predictions of Phan- Thien & Graham model [Eq. (3.14)] and Batchelor model. 

The experimental data were well described by the phenomenological equation of Phan-Thien 

and Graham [167] without adjustable parameters: 

휂𝑟(𝜑𝑓) = 1 + 2𝜑𝑓 +
𝜑𝑓(2−𝜑𝑓/𝜑𝑓𝑚)

(1−𝜑𝑓/𝜑𝑓𝑚)
2

𝑓𝐼𝐼(𝑟)

3 𝑙𝑛(2𝑟)
𝑟2𝐴1212            (3.14) 

where 𝑓𝐼𝐼(𝑟) = (1 + 0.64휀)/(1 − 1.5휀) + 1.659휀2 is a correction factor in the slender body 

theory of Batchelor [172]; 휀 = 1/ ln(2𝑟); 𝜑𝑓𝑚 = 5.4/𝑟 is the maximum packing fraction of 

fibers taken at the upper concentration limit of granular suspension of fibers [12]; 𝐴1212 is the 
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orientation parameter, whose value is taken from the seminal work of Leal and Hinch [168] 

predicting the fiber orientation distribution nearly aligned with the shear flow under vanishing 

rotary diffusivity of fibers, 𝐷𝑟 << �̇�/𝑟
3 (caused by inter-fiber collisions) and at the high aspect 

ratio limit 𝑟 >> 1: 

𝐴1212
𝐿𝐻 ≈ 0.315/𝑟𝑒                             (3.15) 

where the superscript “LH” stands for Leal and Hinch, and 𝑟𝑒 ≈ 1.24𝑟/ 𝑙𝑛
1/2 𝑟 is equivalent 

fiber aspect ratio introduced to account for an effect of the blunt shape of the fibers to their 

dynamics under applied shear [173]. Notice that the original Phan-Thien and Graham’s 

equation can be recovered replacing the factor 𝑓𝐼𝐼(𝑟)/(3 𝑙𝑛( 2𝑟)) in Eq. (3.14) by 

1/(2(ln(2𝑟) − 1.5). The original Phan-Thien and Graham’s equation has been slightly 

modified in order to recover the dilute limit viscosity given by Batchelor [172] when keeping 

only the linear term on 𝜑𝑓 in Eq. (3.14). For the sake of completeness, predictions of these two 

models are shown in Figure 3.9. 

Substituting Eq. (3.14) into Eq. (3.12), we get a complete definition of the local stress 𝜎𝑙𝑜𝑐. 

After that, the shear thickening matrix viscosity can be calculated as 휂𝑚(𝜎𝑙𝑜𝑐) = 𝜎𝑙𝑜𝑐/�̇�𝑚(𝜎𝑙𝑜𝑐), 

where �̇�𝑚(𝜎𝑙𝑜𝑐) is the local RMS shear rate in a shear thickening matrix. Substituting this 

expression into Eq. (3.8) and making use of Eq. (3.12) allows us to evaluate the global shear 

rate of the CC-fiber mixture as function of �̇�𝑚(𝜎𝑙𝑜𝑐): 

�̇�(𝜎) =
𝜎

𝜂(𝜎)
=

𝜎

𝜂𝑚(𝜎𝑙𝑜𝑐)𝜂𝑟(𝜑𝑓)
=

𝜎�̇�𝑚(𝜎𝑙𝑜𝑐)

𝜎𝑙𝑜𝑐𝜂𝑟(𝜑𝑓)
= �̇�𝑚(𝜎𝑙𝑜𝑐)√

1−𝜑𝑓

𝜂𝑟(𝜑𝑓)
            (3.16) 

Notice that the last equation can be easily obtained from Eq. (3.13) by replacing �̇�𝑙𝑜𝑐 by 

�̇�𝑚(𝜎𝑙𝑜𝑐). 

Appendix B. Local stress above the DST transition in frames of the H-model 

          Above the DST transition, the shear rate in the shear thickening matrix usually exhibits 

relatively small variations, as the experimental flow curves in Figure 3.1 become nearly vertical, 

at least in the range of the local stress range 𝜎𝑐0 < 𝜎𝑙𝑜𝑐 < 𝜎
′, with 𝜎′ being the upper critical 

stress of the DST in the matrix [Figure 3.8b]. Therefore, within the considered stress range, the 

local shear rate in the space between fibers is assumed to be almost constant and equal to the 

critical value �̇�𝑐0, while the global shear rate in the whole mixture is also taken to be constant 

and equal to its critical value �̇� ≈ �̇�𝑐. The dissipated power at nearly constant levels of the rate-

of-strain tensor, |�̇�𝑖𝑘| ≈ �̇�𝑐0 in the space between fibers, can be very roughly evaluated as 
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follows: ∭ 𝜎𝑖𝑘�̇�𝑖𝑘𝑑𝑉𝑉𝑚
𝜎𝑙𝑜𝑐�̇�𝑐0𝑉𝑚. The dissipated power in the whole mixture at nearly 

constant global shear rate �̇� ≈ �̇�𝑐 is roughly equal to 𝜎�̇�𝑐𝑉. Equating both power dissipations, 

we arrive to the approximate evaluation of the local stress above the DST transition:    

𝜎𝑙𝑜𝑐 ≈
𝜎�̇�𝑐

(1−𝜑𝑓)�̇�𝑐0
, at 𝜎 > 𝜎𝑐              (3.17) 

recalling that 𝑉𝑚/𝑉 = 1 − 𝜑𝑓. Replacing now the critical shear rate �̇�𝑐 by Eq. (3.6), we arrive 

at the final approximate expression for the local shear stress above DST transition: 

𝜎𝑙𝑜𝑐 ≈
𝜎

√(1−𝜑𝑓)𝜂𝑟(𝜑𝑓,𝐴1212)
, at 𝜎 > 𝜎𝑐             (3.18) 

which is similar to Eqs. (3.5) and (3.12) derived for the Newtonian matrix. 

Appendix C. Geometric compaction limit and excluded volume effect in bimodal 

mixtures. 

In this Appendix we evaluate the two following possible reasons of the jamming behavior in 

mixtures of isotropic-shaped particles and fibers: 

(a) The geometric constraints in bimodal mixtures lead to the compaction limit depending 

on volume fractions 𝜑𝑝 and 𝜑𝑓 of both types of particles. The “geometric” compaction limit in 

a bimodal mixture is characterized by a compaction parameter 𝛤𝑚, which is the volume fraction 

of the whole solid phase in the mixture. Under hypothesis of perfect scale separation and using 

our definition of the volume fractions 𝜑𝑝 [Eq. (2.4)] and 𝜑𝑓 [Eq. (2.5)] this parameter is 

evaluated as follows [175]:  

𝛤𝑚 = 𝑚𝑖𝑛 [
𝜑𝑓𝑚

1−𝑦2
,

𝜑𝑝𝑚

1−(1−𝜑𝑝𝑚)𝑦1
], 𝑦1 =

𝜑𝑓

𝜑𝑓+𝜑𝑝(1−𝜑𝑓)
, 𝑦2 =

𝜑𝑝(1−𝜑𝑓)

𝜑𝑓+𝜑𝑝(1−𝜑𝑓)
        (3.19) 

where 𝜑𝑝𝑚 is the maximum packing fraction of isotropic shaped CC particles taken as the 

packing fraction for frictional contacts 𝜑𝑓𝑟 = 0.69  (as evaluated by fits of the CC suspension 

rheology to WC model – see Figure 3.10 and Appendix. E for details) and 𝜑𝑓𝑚 = 5.4/𝑟 is the 

maximum packing fraction of PA fibers taken at the upper concentration limit of granular 

suspension of fibers [Appendix A]. The compaction parameter 𝛤𝑚 has to be compared to the 

experimental values of the concentration parameter 𝛤1 = 𝜑𝑓 + 𝜑𝑝(1 − 𝜑𝑓). It is shown that our 

experimental values 𝛤1 are always below (at least by a value of 0.01) the values 𝛤𝑚 of the 

compaction parameter. Thus, the jamming in our case arises at lower concentrations than those 

predicted by geometric effects. 
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Another concentration parameter was formulated by Martinie [174] for mixtures of cement 

particles with fibers: 𝛤2 = 𝜑𝑓/𝜑𝑓𝑚 + 𝜑𝑝(1 − 𝜑𝑓)/𝜑𝑝𝑚. It was experimentally shown that high 

yield stress appeared in fresh cementitious materials at 𝛤2 ≥ 0.8, while the material did not 

exhibit yield behavior at 𝛤2 < 0.8. In our experimental case, the concentration parameter fits to 

the range 1.0 ≤ 𝛤2 ≤ 1.3 for the CC-PA mixtures not exhibiting any yield stress. It can thus be 

concluded that the critical value of the parameter 𝛤2 for our shear thickening mixtures is well 

above the value 0.8 for shear thinning cementitious materials. In any case the empirical 

parameter 𝛤2 does not inform us about the nature of the jamming behavior. 

(b) The excluded volume effects. They could arise as a result of finite size ratio of isotropic-

shaped particles and fibers (imperfect scale separation). In fact, our bimodal mixture can be 

seen as the fiber network whose pores are filled by the suspension of smaller isotropic-shaped 

particles. Since the CC-particle size, 𝑑, is not infinitely smaller than the PA fiber diameter, 𝐷, 

a part of the pores presents a so-called dead volume non-occupied by CC particles. Thus, the 

true volume fraction 𝜑𝑝
𝑡𝑟𝑢𝑒 of CC particles in the accessible zones of the pores will be higher 

than the apparent one, 𝜑𝑝, evaluated by Eq. (2.5). Volume fraction 𝜑𝑑𝑒𝑎𝑑 of the dead zones can 

be evaluated using the dilute limit (𝜑𝑓 << 1) expansion of the model of Chatterjee [165]: 

𝜑𝑑𝑒𝑎𝑑 ≈ 𝜑𝑓 [(
𝑑

𝐷
)
2

+ 2
𝑑

𝐷
]              (3.20) 

while the true volume fraction of CC-particles reads: 

𝜑𝑝
𝑡𝑟𝑢𝑒 =

𝜑𝑝

1−𝜑𝑑𝑒𝑎𝑑
≈ 𝜑𝑝 [1 + 𝜑𝑓 ((

𝑑

𝐷
)
2

+ 2
𝑑

𝐷
)]            (3.21) 

Evaluation shows that the true volume fraction of CC particles in accessible zones is by 

a factor 1.03 larger than the apparent one for fiber volume fraction 𝜑𝑓 = 0.04. At 𝜑𝑝 = 0.68, 

the true volume fraction 𝜑𝑝
𝑡𝑟𝑢𝑒  ≈ 0.70 rises above the packing limit of frictional contacts 𝜑𝑓𝑟 ≈

0.69 (see Appendix. E), however at 𝜑𝑝 = 0.64 and 0.66, the true volume fraction is respectively 

𝜑𝑝
𝑡𝑟𝑢𝑒 ≈ 0.66 and 0.68, thus remains well below the packing limit 0.69. Thus, the excluded 

volume effect introduced by Eqs. (3.20) and (3.21) cannot fully explain the jamming behavior 

at 𝜑𝑓 = 0.04.  

Appendix D. Percolation threshold and stress levels for the percolated fiber network 

          The percolation threshold of the fiber network depends on the fiber orientation 

distribution. Since this distribution is unknown in our case, we consider two limiting cases of 
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isotropic and aligned fiber orientation. The minimal number 𝑍 of contacts per fiber at the 

percolation threshold has been evaluated by Balberg et al. [175] and is equal to 𝑍𝐼𝑠𝑜 ≈ 1.4 and 

𝑍𝐴 ≈ 2.8 for isotropic and aligned orientation, respectively. An adequate relationship between 

𝑍 and 𝜑𝑓 has been proposed by Toll [176]: 

𝑍 = 4𝜑𝑓 (
2𝑓1𝑟

𝜋
+ 𝑓2 + 1)              (3.22) 

where 𝑓1 = ⟨|𝑠𝑖𝑛 휃|⟩ and 𝑓2 = ⟨|𝑐𝑜𝑠 휃|⟩ are the scalar invariants depending on fiber orientation 

distribution and 휃 is the angle between fibers. For the two considered limiting cases, we get 

𝑓1
𝐼𝑠𝑜 = 𝜋/4, 𝑓2

𝐼𝑠𝑜 = 1/2 and 𝑓1
𝐴 = 0, 𝑓2

𝐴 = 1. This allows finding the following expressions 

for the percolation threshold, the first of which is valid for the high aspect ratio limit 𝑟 >> 1: 

𝜑𝑝𝑒𝑟𝑐
𝐼𝑠𝑜 ≈

0.7

𝑟
               (3.23) 

𝜑𝑝𝑒𝑟𝑐
𝐴 ≈ 0.35              (3.24) 

Notice that Eq. (3.23) is the same as obtained by Philipse and Wierenga [177], while, for our 

fibers with aspect ratio 𝑟 ≈ 47 the concentration threshold given by Eq. (3.24) is higher than 

the upper concentration limit of granular suspension of fibers 𝜑𝑓𝑚 = 5.4/𝑟 [12]. Thus, the 

percolation threshold is expected to fit to the interval 0.7/𝑟 ≤ 𝜑𝑝𝑒𝑟𝑐 ≤ 𝑚𝑖𝑛( 5.4/𝑟,  0.35), that 

in our case gives 0.015 ≤ 𝜑𝑝𝑒𝑟𝑐 ≤ 0.115. Our experimental value of the jamming threshold 

𝜑𝑓 ≈ 0.04 fits to this interval. 

The lower and upper stresses 𝜎𝑐  and 𝜎𝑌 of the suspension jamming at the percolation threshold 

can be evaluated using a modified H-model. It is considered that, above the percolation 

threshold, the most important local stress and rate-of-strain levels arise in some small 

characteristic volumes 𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡 around contact points between fibers called hereinafter contact 

region volumes, while they are almost zero outside these volumes. The local rheology of the 

shear thickening matrix is supposed to be governed by a local stress 𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 averaged over the 

contact region volumes rather than by the stresses 𝜎𝑙𝑜𝑐 averaged over the whole matrix volume, 

nor by the macroscopic applied stress 𝜎. Under these assumptions, the viscous dissipation is 

mostly concentrated in the contact regions and the energy dissipation equality takes the form of 

Eq. (3.9), in which the integration domain 𝑉𝑚 has to be replaced by 𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡. This allows us to 

immediately define the local stress by replacing in Eq. (3.5) the fraction 𝑉𝑚/𝑉 = (1 − 𝜑𝑓) of 

the whole mixture volume filled with the shear thickening matrix by the fraction 𝑉𝑐𝑜𝑛𝑡𝑎𝑐𝑡/𝑉 =

𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡 of the whole volume of the mixture occupied by the contact regions: 
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𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 =
𝜎

√𝜂𝑟(𝜑𝑓,𝐴1212)𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡
             (3.25) 

Similar reasoning, as the one developed in Appendix B, allows showing that Eq. (3.25) remains 

approximately valid even above the DST transition within the local stress range, 𝜎𝑐0 <

𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 < 𝜎
′.  

Since the CC particles are expected to migrate from highly sheared zones near the solid contact 

between fibers to the periphery, the DST transition is expected to extend over the space between 

two fibers delimited by the projected area 𝐷2/⟨|𝑠𝑖𝑛 휃|⟩ of one fiber onto the longitudinal cross-

section of the second fiber. The average volume of a single contact region is 𝑉1 ≈ 𝐷
3(1 −

𝜋/4)/⟨|𝑠𝑖𝑛 휃|⟩, while the volume fraction of all contacts 𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡 may be evaluated by 

multiplying the volume 𝑉1 by the number density of contacts 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡 = 𝑛𝑓
2𝐷𝐿2⟨|𝑠𝑖𝑛 휃|⟩ (with 

𝑛𝑓 = 4𝜙𝑓/(𝜋𝐷
2𝐿) being the number density of fibers) taken at high aspect ratio limit 𝑟 >> 1 

[176], which gives.  

𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡 ≈
16

𝜋2
(1 −

𝜋

4
)𝜑𝑓

2 ≈ 0.35𝜑𝑓
2                   (3.26) 

As expected, the volume fraction 𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡 of contact regions is proportional to the fiber volume 

fraction squared, 𝜑𝑓
2, similarly to the contact density 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡. However, 𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡is 

independent of the fiber orientation distribution because lower contact density 𝑛𝑐𝑜𝑛𝑡𝑎𝑐𝑡 for more 

aligned orientation is compensated by higher volumes 𝑉1 of the single contact region, at least 

in high aspect ratio limit, 𝑟 >> 1. The prefactor at 𝜑𝑓
2 could be different from 0.35 and its 

exact value depends on the length scale of the stress variation near the contact point. 

Finally, the lower and upper bounds 𝜎𝑐 and 𝜎𝑌 of the suspension jamming can be evaluated 

from Eq. (3.25) upon replacing 𝜎𝑐𝑜𝑛𝑡𝑎𝑐𝑡 by 𝜎𝑐0 or 𝜎′, respectively, while the critical shear rate 

�̇�𝑐 of the DST transition is obtained by dividing 𝜎𝑐 by the viscosity of the mixture. The final 

expressions for �̇�𝑐 and 𝜎𝑐 are given by Eqs. (3.6) and (3.7) upon replacing (1 − 𝜑𝑓) by 𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡, 

while the expression for 𝜎𝑌 takes the following form: 

𝜎𝑌 = 𝜎
′√휂𝑟(𝜑𝑓 , 𝐴1212)𝛷𝑐𝑜𝑛𝑡𝑎𝑐𝑡,             (3.27) 

where the relative viscosity of the fiber suspension 휂𝑟(𝜑𝑓 , 𝐴1212) is evaluated using Eq. (3.14) 

with the values of the orientation parameter 𝐴1212 = 𝐴1212
𝐼𝑠𝑜 = 1/15 corresponding to the 

random orientation of fibers. 
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Appendix E. Wyart and Cates model 

          According to Wyart and Cates [107], the fraction f of frictional contacts is supposed to 

be a growing function of the shear stress. Various functional forms 𝑓(𝜎) have been reported in 

literature and our analysis is not restricted to any of them. For the sake of demonstration, we 

choose the following empirical function 𝑓(𝜎) that has been shown to correctly fit the 

rheological data of CC suspensions [Bossis et al. [160]]: 

    𝑓(𝜎) = [1 + 𝑒𝑥𝑝 (−𝜆 (
𝜎

𝜎0
− 1))]

−1

              (3.28) 

where 𝜆 and 𝜎0 are two adjustable parameters, the latter of which being a characteristic stress 

above which the frictional contacts dominate over the lubricated ones. Typically, 𝜎0 is of the 

same order of magnitude that the critical stress 𝜎𝑐0. The jamming volume fraction 𝜑𝑗  is 

supposed to be a sum of the packing fractions of particles in purely lubricated (𝜑𝐿𝑢𝑏) or purely 

frictional (𝜑𝐹𝑟 < 𝜑𝐿𝑢𝑏) regimes, weighed by the fractions (1– 𝑓) and 𝑓 of the lubricated and 

frictional contacts, respectively: 

𝜑𝐽(𝜎) = 𝜑𝐹𝑟𝑓(𝜎) + 𝜑𝐿𝑢𝑏(1 − 𝑓(𝜎))                        (3.29) 

The suspension viscosity is given by an empirical Maron-Pierce law [10], in which the jamming 

volume fraction is a function of the applied stress: 

    휂(𝜎) = 휂∗ (1 −
𝜑

𝜑𝐽(𝜎)
)
−2

          (3.30) 

where 휂∗ is some characteristic viscosity, which is not compulsorily equal to the solvent 

viscosity 휂0 because Eq. (3.30) is only valid for the particle volume fractions 𝜑 relatively close 

to the lowest packing fraction 𝜑𝐹𝑟; thus 휂∗ is taken as another adjustable parameter.  

The shear rate as a function of the applied stress is finally obtained as �̇�(𝜎) = 𝜎/휂(𝜎), allowing 

simulation of the flow curves 𝜎 versus �̇�(𝜎). The experimental flow curves of pure CC 

suspensions shown in Figure 3.10 by dotted lines are fitted to the WC model using the following 

set of adjustable parameters: 𝜆 = 10, 𝜑𝐹𝑟 = 0.69, 𝜑𝐿𝑢𝑏 = 0.72, 휂∗ = 10 − 2 𝑃𝑎𝑠 taken the 

same for all the particle volume fractions 𝜑𝑝, while distinct values of the characteristic stress 

were used for each particle volume fraction: 𝜎0  =  50, 35, 25 and 20 Pa for 𝜑𝑝 = 0.62, 0.64, 

0.66 and 0.68, respectively. Notice that the packing fractions as high as 𝜑𝐹𝑟 = 0.69 and 𝜑𝐿𝑢𝑏 =
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0.72 stem from a polydispersity of the CC particles. The fitted flow curves are shown in Figure 

3.10 by solid lines.  

First, the model predicts that at 𝜑𝑝 < 𝜑𝐹𝑟, in the whole range of the applied stress, 𝜎 ∈ [0,+∞), 

the flow curve must fit to an envelope delimited by two straight lines (branches) corresponding 

to the Newtonian viscosities of the suspension with purely lubricated (𝑓 = 0) and purely 

frictional (𝑓 = 1) inter-particle contacts, as shown by thick dashed lines in Figure 3.10 for 

𝜑𝑝 = 0.66. Second, the theoretical flow curves fit reasonably well the experimental ones only 

below the DST transition. Above this transition, the WC model qualitatively captures a 

sigmodal shape of the flow curve but fails to predict the slope of the curve at high stress if a 

single set of parameters 𝜆, 𝜑𝐹𝑟, 𝜑𝐿𝑢𝑏 and 휂∗ is used for all volume fractions 𝜑𝑝. In other words, 

the experimental flow curves always cross the upper branch of the model. Such disagreement 

persists for any other tested shapes of the 𝑓(𝜎) −functions [107,161] and using other variants 

of the WC model [106, 160]. The discrepancy likely comes from the fact that the granular flow 

at high shear stress is no longer Newtonian as supposed in the WC model. 

 

Figure 3.10 Flow curves of isotropic shaped particle (CC) suspensions at different volume fractions 𝜑𝑝 of CC 

particles measured in mixer type geometry. Dotted curves correspond to experiments; solid curves – to the fit of 

the experimental flow curves by the WC model applied to 𝜑𝑝  = 0.66. Notice that the black dashed line partially 

masks the upper branch (solid green curve) of the theoretical fit of the flow curve at 𝜑𝑝  = 0.66. 
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Appendix F. Complementary data on the rheology of the CC-fiber mixtures 

 

Figure 3.11 Effect of the fiber volume fraction on the flow curves of the mixtures of isotropic-shaped (CC) particles 

and PA fibers measured in the mixer type geometry for the ascending branch of the 2nd stress ramp at different CC 

volume fractions. The first, the second and the third rows correspond to the CC volume fraction 𝜑𝑝 = 0.64; 0.66 

and 0.68, respectively. Experimental flow curves on the left and right columns are identical for each row. Simulated 

flow curves using RSR and H-model and assuming isotropic fiber orientation (𝐴1212 = 1/15) are plotted on the 

left and right columns, respectively. Thin dashed color curves correspond to experimental flow curves; thick solid 

black lines – to predictions of both models [section 3.6], thick solid green line – to cubic spline interpolation of 

the experimental flow curve at 𝜑𝑓  = 0. Labels “apparent” in the titles of axes recall that the reported shear rate 

and shear stress values stem from approximate rheometric conversions of the raw rheological data (see Chapter 2, 

section 2.2.1.2-A) 
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Figure 3.12 Effect of the fiber volume fraction 𝜑𝑓 on the flow curves of the mixtures of isotropic-shaped (CC) 

particles and glass fibers at CC volume fraction 𝜑𝑝  = 0.64. The flow curves were measured in the mixer-type 

geometry in the stress-controlled mode and both ascending branch of the 1st stress ramp (a) or the 2nd ramp (b) are 

presented. 

Appendix G. Local versus global shear rate and shear stress 

          In this Appendix, we show a principal difference between local and global shear rate as 

well as between local and global shear stress. To this purpose we would like first to clarify the 

strict definition of both the local shear rate and local shear stress independently of whether the 

stress or the rate are imposed at the boundaries of the system. We take the Batchelor’s seminal 

work [172] as a basis considering the stress levels in a suspension of force-free rigid particles 

of an arbitrary shape dispersed in a Newtonian solvent at an arbitrary particle volume fraction 

𝜑 (with allowance for hydrodynamic interactions between particles). The volume average of 

the rate-of-strain tensor �̇�𝑖𝑘 (global shear rate) is given by 

⟨�̇�𝑖𝑘⟩ =
1

𝑉
∫ �̇�𝑖𝑘𝑑𝑉𝑉

=
1

𝑉
∫ �̇�𝑖𝑘𝑑𝑉𝑉𝑓

+
1

𝑉
∑ ∮

1

2
(𝑣𝑖𝑛𝑘 + 𝑣𝑘𝑛𝑖)𝑑𝑆𝑆𝑛⏟              

=0 for rigid particles

at no slip at particle surface

𝑛 =
1

𝑉
∫ �̇�𝑖𝑘𝑑𝑉𝑉𝑓

    (3.31) 

where 𝑉𝑓  and 𝑉 stand for the space domains occupied by the solvent and by the whole 

suspension respectively, the summation is conducted over all particles and the surface integral 

is taken over the surface 𝑆𝑛 of the 𝑛’𝑡ℎ particle with 𝐧 being the outward unit vector normal to 

the particle surface and 𝐯 – the velocity vector (with respect to the laboratory reference frame) 

at the particle surface. 

One may introduce the local shear rate in different ways. One possibility (not employed in the 

H-model, section 3.6) is the average shear rate over the solvent volume:  
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⟨�̇�𝑖𝑘
𝑙𝑜𝑐⟩ =

1

𝑉𝑓
∫ �̇�𝑖𝑘𝑑𝑉𝑉𝑓

=
⟨�̇�𝑖𝑘⟩

1−𝜑
              (3.32) 

Here we have made use of Eq. (3.31) and of the evident formula 𝑉𝑓/𝑉 = 1 − 𝜑. 

The volume averaged (global) stress is defined as ⟨𝜎𝑖𝑘⟩ =
1

𝑉
∫ 𝜎𝑖𝑘𝑑𝑉𝑉

, and in simple shear flow 

(axes 1 and 2 stand for the velocity and velocity gradient directions) is found to be of the form 

[154]: 

⟨𝜎12⟩ = 2휂0⟨�̇�12⟩휂𝑟(𝜑)              (3.33) 

with ⟨�̇�12⟩ = �̇�/2 and 휂𝑟(𝜑) - the relative viscosity depending on particle volume fraction. The 

exact correspondence of the volume average quantities ⟨𝜎12⟩and 2⟨�̇�12⟩ with the global stress 

𝜎 = 𝐹/𝑆 and global rate �̇� = 𝑣/ℎ applied through the tangential force 𝐹 and tangential velocity 

𝑣 on a surface 𝑆 of a flat channel of a thickness ℎ is easily checked by transformation of the 

volume integrals into surface integrals and integrating over the closed surface including channel 

walls. 

Let us first define the local shear stress as the average stress over the solvent volume. Using the 

definition of the global shear rate [Eq. (3.31)], and using Eq. (3.33), we get: 

⟨𝜎12
𝑙𝑜𝑐⟩ =

1

𝑉𝑓
∫ 2휂0�̇�𝑖𝑘𝑑𝑉𝑉𝑓

=
2𝜂0⟨�̇�12⟩

1−𝜑
=

⟨𝜎12⟩

𝜂𝑟(𝜑)(1−𝜑)
                    (3.34) 

The formulas (3.32) and (3.34) are exact for Newtonian solvents and for arbitrary particle shape 

and concentration, under condition of particle infinite rigidity. These formulas clearly show 

that, for given definitions, the local shear rate is different form the global one and the local 

shear stress is different form the global one, independently of whether the stress 𝜎 = ⟨𝜎12⟩ or 

the rate �̇� = 2⟨�̇�12⟩ are applied on the suspension boundaries. The same conclusion is expected 

to hold for a non-Newtonian solvent and in the presence of non-hydrodynamic interactions.  

Conversely, if the local average stress ⟨𝜎12
𝑙𝑜𝑐⟩ = 2휂0⟨�̇�𝑖𝑘

𝑙𝑜𝑐⟩ were equal to the global stress ⟨𝜎12⟩, 

the relative viscosity of a Newtonian suspension would be always equal to 휂𝑟(𝜑) = 1/(1 −

𝜑), for any particle shapes and concentrations, as it can be easily shown with the help of Eqs. 

(3.32) and (3.33). 

Other definitions of local shear rate and stress are possible. In particular, in their original paper, 

Château et al. [158] argue that root mean square (RMS) values are more relevant for describing 
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the local rheology in frames of the H-model. The RMS local shear stress and shear rate are 

formulated through Eqs. (3.12) and (3.13) and are also different from their global counterparts. 

Notice that in many numerical simulations of stress-controlled rheology of shear thickening 

suspensions, the homogeneous shear stress is applied across the whole suspension and the shear 

field is retrieved from the relationship between the shear stress (constant over the simulation 

box) and its spatially varying components corresponding to frictional, hydrodynamic and 

repulsive interactions [106, 178]. The simulations provide a considerable insight into 

microscopic physics of the DST transition without real necessity of further improvement. 

However, from the experimental point of view, a constant (over time) tangential force (or 

torque) applied at one of the suspension boundaries would be a more relevant boundary 

condition that would allow for variations of both stress and shear rate over the suspension 

volume and would conduct to some difference between the local and global shear stress.
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CHAPTER 4 

 

4 Pressure driven flow of sphere-fiber mixtures through a capillary3  
 

          In this chapter, the DST transition of a CC-PA mixture is experimentally studied in a 

home-made capillary rheometer under a pressure imposed by compressed air. The description 

of the capillary geometry used is given in chapter 2 (section 2.2.2), while the suspension 

characterization and preparation protocol are provided in section 2.1. First, we inspect in section 

4.1 whether the flow through a capillary is enough slow for the steady-state regime to be 

established during the suspension travel time along the capillary. Then, it is quite intuitive to 

qualitatively compare the rheological results obtained in the capillary rheometer with those 

previously obtained in a mixer type rheometry in chapter 3. However, as already stated, the 

flow fields are quite complicated in the double helix (DH) geometry, so comparison with the 

capillary rheometry results could become delicate (recall that the DH tool was used to avoid 

various artefacts and mimic the mixing process in cement industry). On the contrary, 

standardized cylindrical Couette geometry with roughened walls can be a good compromise for 

the quantitative rheological comparison, since the stress and the shear rate fields are simple and 

well characterized [see chapter 2, Eqs. (2.12), (2.13)], at the expense of possible particle 

sedimentation, which is completely ruled out in the DH mixer type geometry. In this context, 

we present the results of the cylindrical Couette rheometry in section 4.2, followed by the 

presentation of the capillary rheometry results in section 4.3 completed by the comparison 

between rheological responses in both rheometric configurations. The comparison of 

rheological responses in two different geometries allows an implicit check of the difference 

 
3 The results of this chapter were obtained using CC particles of the 2nd series and can be compared with the 
results of the chapters 3 and 5 only qualitatively.  
These results are included into the manuscript: [Meloussi et al. « Pressure-driven pipe flow of discontinously 
shear thickening suspensions of isotropic shaped particles mixed with rigid fibers » under preparation] 



Chapter 4        Pressure driven flow of sphere-fiber mixtures through a capillary 

 

106  

between flow-induced microstructures developed in these geometries. As in chapter 3, we pay 

a special attention to the effects of the fiber volume fraction and orientation distribution on the 

DST transition of the sphere-fiber mixtures. Again, the fiber orientation effect is tested only 

implicitly through theoretical modeling of the flow curves using the homogenization approach 

(H-model described in detail in chapter 3) assuming different orientation distributions.  

4.1 Transient behavior in capillary flow 

          In this section, we have to inspect whether at the constant imposed pressure difference 

the flow rate remains constant or gradually changing with time because of possible water 

evaporation / filtration / particle migration, or even more fluctuating with time because of the 

flow instabilities expected above the DST transition.  

From the technical point of view, when the suspension is aspirated into the plexiglass cuvette 

of our imposed pressure capillary rheometer, the suspension is degassed due to the vacuum 

produced in the cuvette by the air suction process. In theory, if the cylindrical cuvette of the 

system is well isolated from the external atmosphere, there would be no evaporation of water 

from the suspension and therefore no change in the concentration of the CC-particles within the 

suspension tested in the capillary. On the other hand, we have already seen that when degassing 

the carbonate calcium suspension with a vacuum pump (chapter 2, section 2.2.1.2), an important 

amount of the water of the suspension evaporated, and this impacted the concentration of the 

particles in the suspension which increased after degassing and changed the rheology of the 

prepared suspension.  

In our tests conducted in the capillary rheometer at imposed pressure, we have observed an 

increase of the slope of the collected mass versus time curves for a 68%-CC-suspension without 

PA-fibers (see Figure 4.1). This means that there is an increase of the mass flow rate through 

the capillary after a certain moment of time from the beginning of the experiment. This effect 

is frequently reproduced in the curves with the exception of few cases. This effect has also been 

observed for low as well as for high pressure applied in the capillary, like in the case represented 

in Figure 4.1, where ∆𝑃 = 0.2 bar is equivalent to the wall shear stress of 62 Pa (see Eq. (2.22) 

in chapter 2). Therefore, this shear stress is well below the critical stress 𝜎𝑐 = 122 Pa for DST 

observed in rotational rheometry using the cylindrical Couette geometry (see Figure 4.2). Also, 

applied air pressure of ∆𝑃 = 0.9 bar is equivalent to the wall shear stress of 222 Pa, well above 

the critical value 𝜎𝑐 =122 Pa. This observed effect of increasing mass flow rate with time 

cannot in any way be explained by water evaporation, which would increase the particle volume 
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fraction along with the suspension viscosity and would consequently conduct to a decreasing 

flow rate with time at a fixed applied pressure.  

The first scenario behind an increasing flow rate would suggest a liquid-solid phase separation 

in the suspension at some point of the experiment where the particles are pressed into the bottom 

of the cylindrical tank, and the liquid phase of the suspension filtrates through a porous plug 

formed by the particles immobilized in the tank at the capillary inlet. This is a rather extreme 

scenario suggesting that only a liquid phase (water) flows out from the capillary. In reality, we 

would expect a two-phase flow with the liquid phase developing higher average velocity 

through the capillary than the solid particle phase that is somehow slowed down by geometrical 

constriction at the capillary outlet (as often reported for granular flows through a funnel [179]). 

Because of slower convection of particles through the capillary inlet, some particle 

accumulation would be expected at the tank, which would be compensated by a decrease of the 

particle concentration in the capillary resulting in a progressive increase of the mass flow rate, 

as observed in Figure 4.1. Another possible scenario is related to particle migration towards the 

axis of symmetry of the capillary in the direction opposed to the shear rate gradient, as 

commonly observed for the shear-induced migration (cf. Sec. 1.2.2).   

 

Figure 4.1 Mass versus time experimental dependencies for a flow of the CC-suspension at CC volume fraction 

of 68% vol and without PA-fibers. 

To check the first (phase separation) scenario, we tried first to determine the particle 

concentration of the suspension flowing out from the capillary through drying it in an oven and 

weighing the dried particles. Unfortunately, this method was subject to large errors. So, we 

conducted a rheological experiment with the cylindrical Couette geometry for a CC-suspension 
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at 68% vol without PA-fibers that had just been flowed out from the capillary and collected on 

the top of a beaker placed onto the electronic balance.    

 

Figure 4.2 Rotational rheometry test of CC-suspensions at 𝜑𝑝 = 68 % vol without PA-fibers: freshly prepared 

suspension against the suspension previously tested in the capillary rheometer. 

The concentration test has demonstrated a coincidence (within statistical errors related to flow 

fluctuations) of both flow curves meaning that the concentration of the CC-suspension 

previously tested in the capillary rheometer did not change when compared to a freshly prepared 

one. This presumably excludes the two-phase flow scenario with a decelerated particle 

convection with the main flow along the tube. Indeed, by comparing two flow curves in Figure 

4.2, we can claim that the suspension tested in rotational rheometer after the capillary test at 

imposed pressure ∆𝑃 =  1.5 bar and equivalent wall shear stress 𝜎𝑤 = 360 Pa, is still of the 

same particles concentration despite we are well above the critical DST shear stress of 122 Pa.  

Unfortunately, we cannot check experimentally the last scenario related to the particle 

migration. From the theoretical background, Bossis et al. [49], have shown that particle 

migration toward the capillary axis could significantly increase the flow rate at a constant 

applied pressure. The typical timescale of the shear-induced migration is on the order of 

𝜏𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 ≈
1

�̇�𝑎,𝑤
(
𝐷

𝑑𝑐
)
2

, where 𝐷 and 𝑑𝑐 are respectively the capillary diameter and the length 

scale of the flow-induced particle clusters (or rather a space correlation length of the particle 

structures formed under shear in shear thickening suspensions). The cluster size is expected to 

continuously grow with the proportion 𝑓 of frictional contacts (introduced into the Wyart and 

Cates model, cf. chapter 3, Appendix E) starting from the individual particle size, 𝑑𝑐  = 𝐷𝑝 =

5.5 µ𝑚 at 𝑓 = 0 up to the capillary diameter, 𝑑𝑐  = 𝐷 at 𝑓 = 1 meaning complete percolation 

of the channel in the granular flow regime above DST. Since the proportion of frictional 
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contacts can already be non-negligible below the DST critical stress (as long as non-zero f 

values result in continuous shear thickening below the DST transition), 𝑑𝑐 is expected to be 

comparable with 𝐷 at any applied pressures (except the zero one), and it can be claimed that 

the characteristic migration time scale can become comparable with the travel time, 𝜏𝑡𝑟𝑎𝑣𝑒𝑙 =

𝜌𝜋𝐷2𝐿

4𝑄𝑚
≈ 30 − 130 s of the suspension along the capillary tube. 

From the first glance, such a physics is expected to produce a stronger migration at higher 

stresses that would result in a stronger increase of the flow rate (and stronger deviation from 

linear mass-versus-time dependence) at ∆𝑃 = 0.9 bar as compared to ∆𝑃 = 0.2 bar. This is in 

stark contradiction with experimental results presented in Figure 4.1. The discrepancy could be 

tentatively explained through the fact that the particle migration is likely strongly damped if the 

particles are gathered to fully percolated contact network, as expected well above the DST 

transition (∆𝑃 = 0.9 bar) as opposed to non-percolated network below the DST (for ∆𝑃 =

0.2 bar). Numerical simulations and X-ray microtomography should be conducted in future to 

further elucidate the suspension microstructure and better explain the origins of the unsteady 

flow.  

To avoid any artefacts in interpretation of rheological data, we decided to calculate the mass 

flow rate (and consequently the apparent wall shear rate [see Eq. (2.23) in chapter 2]) as a slope 

at the origin of the mass versus time experimental curves, precisely at the first 10 collected 

measurement points corresponding to the first 10s of the experiment (the balance recording 

time is 1s), assuming a homogeneous particle concentration within the capillary at the beginning 

of the flow (at time 𝑡 = 0). Flow rate definition at short times (a few seconds) since the moment 

of the pressure application should not be affected by neither transient rheological response of 

the suspension (related to the relaxation time of the frictional contacts; notice that the 

suspension was degassed excluding the transients related to the air bubble compression), nor 

the time response of the pressure increase in our capillary rheometer, being equal or slightly 

less then 1s. The time response of the suspension to the stress application was estimated by a 

supplementary rheometry test conducted in the cylindrical Couette geometry with the CC-

suspension at 68% vol. The suspension was subjected to an instantaneous shear stress increase 

from 0 Pa to 300 Pa (the value above the critical stress 𝜎𝑐 = 122 Pa) and the characteristic time 

for  the shear rate to reach a steady state value  is evaluated to be about 1 s (see Figure 4.3).  
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Figure 4.3 Time response to an applied stress of a CC-suspension at 68% vol without PA-fibers. 

If the increase of the flow rate observed in Figure 4.1, is related to particles migration scenario, 

we can deduce that the characteristic time of migration (several dozens of seconds, see Figure 

4.1) remains rather higher than the time (~1 s) to reach stationary flow regime (Figure 4.3). So, 

by taking the first 10 seconds (measurement points) of the mass versus time curves in our 

experiments, we already eliminate the initial transient artifacts but do not reach the migration 

process yet. 

Noteworthy, whatever the applied pressure, the mass versus time dependencies never show any 

irregular fluctuation that are expected above the DST transition. However, this is not surprising 

taking into account the discrete nature of these measurements: the mass increment caused by 

each falling suspension drop (or even a part of a broken unstable jet – see chapter 5 for the 

details of the jet flows) is too large and “integrates” possible flow rate fluctuations. Thus, the 

measured mass flow rate and the apparent wall shear rate are some effective magnitudes likely 

corresponding to their time averaged fluctuating counterparts.   

4.2 Shear rheometry in cylindrical Couette geometry 

4.2.1 Flow curves 

          Flow curves of CC-PA fiber mixtures measured using cylindrical Couette geometry in 

rotational rheometer are depicted in Figures 4.4 (a,b). Flow curves 𝜎 = 𝑓(�̇�) show a first regime 

of shear thickening of the suspension, where the slope increases steadily with the shear rate, 

this is called continuous shear thickening. Here the interparticle contacts of the suspension 

remain mostly lubricated and direct frictional contacts between particles are less present. The 

DST regime occurs above a critical value of the shear rate �̇�𝐶 and the shear stress 𝜎𝑐, the 
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viscosity of the suspension suddenly jumps to much higher values indicating that frictional 

contacts between suspension particles become dominant. In tribological studies, it is argued 

that frictional contacts do not always imply dry friction between particles but rather the very 

local proximity between the particles whose asperities are separated by the lubricating layer. 

The latter is strongly squeezed, and it loses its Newtonian character at nanoscale and develops 

a yield stress blocking tangential sliding motion of particles [180]. Thus, the particle-liquid-

particle assembly forms an almost solid contact. This DST onset can be also a signature of the 

formation of a percolated network of particles and fibers, significantly increasing the viscosity 

of the suspension. After the establishment of the DST, the shear rate of the suspension has a 

non-zero value that constantly oscillates between a range of close values that can be explained 

by the effects of inertia of the rotating part of the rheometer [49], or, to a lesser extent, by the 

inertia of the fluid itself [181]. 

These flow curves also show an important progressive decrease of the critical shear rate at 

controlled shear stress with the increase of PA-fiber concentration in the CC-suspension. On 

the other hand, the critical shear stress slightly increases until the fiber volume fraction 𝜑𝑓 =

2% vol and considerably increases between 𝜑𝑓 = 2% vol and 𝜑𝑓 = 2.5% vol. As already 

mentioned in section 3.4 in chapter 3, the shift of the critical shear rate �̇�𝐶 to lower values can 

be interpreted by the fact that at the fixed shear stress, the local shear rate �̇�𝑙𝑜𝑐 in the shear 

thickening matrix (aqueous CC-suspension) between the PA-fibers is higher than the global 

shear rate �̇� (related to the rotational speed of Couette inner cylinder). The global shear rate �̇� 

in the CC-PA fiber mixture is consequently lower than that of the CC-suspension without PA-

fibers at the same applied shear stress, as already reported using two different rheometric 

geometries (double helix and plate-plate, cf. chapter 3).  
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Figure 4.4 Experimental flow curves of CC-PA fiber mixtures in comparison with the theoretical predictions of 

the H-model: (a): Isotropic fibers orientation 𝐴1212 = 1/15; (b) 𝐴1212 being adjustable parameter (see Table 4.1). 

The solid yellow line is the fit of the experimental flow curve of the CC-suspension without PA-fibers, the solid 

black lines correspond to the theoretical predictions by the H-model to every corresponding fiber concentration. 

The horizontal and vertical black arrows indicate the critical shear rate and the critical stress of the experimental 

flow curve of the CC suspension without PA fibers. 

Table 4.1 Adjustable values of the fiber orientation parameter  𝐴1212 corresponding to each fiber concentration. 

Fiber 

concentration, (𝝋𝒇)  
1% 2% 2.5% 

𝑨𝟏𝟐𝟏𝟐 1
30⁄  1

23⁄  1
17⁄  

 

4.2.2 H-model predictions 

          We will now use a theoretical approach to predict the flow curves of the CC-PA fibers 

mixtures and compare them to the experimental curves conducted in the rheometer with the 

cylindrical Couette geometry. The H-model is based on the homogenization approach of 

Château et al [158], which has been adapted to the present case of stress-controlled rheology 

and rod-like particle shape, as detailed in section 3.6 and Appendix A of chapter 3. Recall that 

the model predicts the flow curves of CC-PA fiber mixtures from the flow curve of the CC-

suspension without PA fibers, assuming a perfect scale separation between CC particles and 

PA fibers. PA fibers are considered to be dispersed in an aqueous CC suspension whose shear 

thickening rheology is independent of the presence of the fibers.  

To plot the curves predicted by the H-model we proceeded by the following steps. First, we 

smoothed the experimental shear flow curve of the CC suspension without PA fibers, by 

calculating the arithmetic average using “numpy.mean” function in a Python script to reduce as 

much as possible the shear-rate fluctuations in the curves above the DST transition. With the 

data obtained from the smoothing, we made a segmental fit to the experimental curve using 
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polynomial functions and splitting the curve into three parts according to the applied shear stress 

profile in Figures 4.4 (a, b). The first region corresponds to the continuous shear thickening 

where the suspension exhibits nearly Newtonian behavior; the second region corresponds to a 

narrow stress range, 𝜎𝑐  < 𝜎 < 1.05 𝜎𝑐 in the vicinity of the DST transition, within which an 

abrupt decrease of the shear rate is observed; and the third region corresponds to the stresses 

𝜎 > 1.05 𝜎𝑐within which a smooth variation of the time averaged shear rate is observed. In this 

way, we obtain a continuous smoothed function �̇�𝑚 = 𝑓(𝜎). 

We established then a linear ramp of the stress from 𝜎 =  0 to 𝜎 =  500 Pa to deduce the local 

stress 𝜎𝑙𝑜𝑐 as a function of the applied stess 𝜎 [see Eq. (3.5) in chapter 3]. Finally, by estimating 

the matrix shear rate as a function of the local shear stress �̇�𝑚(𝜎𝑙𝑜𝑐), we can find the global 

shear rate �̇�(𝜎) [Eq. (3.4)] and therefore we can plot the curves corresponding to the 

theoretical prediction (solid lines in Figure 4.4). As already stated in chapter 3, the fiber 

orientation distribution is unknown, because we are unable to neither measure it in opaque 

suspensions, nor predict it through the solution of the Fokker-Planck equation, in which the 

term corresponding to the interactions between fibers and the frictional contact network of 

CC particles is undefined. So, the orientation parameter 𝐴1212 (introduced in section 3.6 of 

chapter 3) is strictly speaking unknown. In this chapter, we will proceed by two following 

approaches. First, we will impose an isotropic fiber distribution with 𝐴1212 = 1/15, inspired 

from chapter 3 with the main argument that the complex flow field within the shear thickening 

matrix may randomize the fiber orientation. Second, we will fit the experimental flow curves 

using 𝐴1212 as an adjustable parameter, chosen within the range 0.315/ 𝑟𝑒 ≤ 𝐴1212  ≤ 1/4, 

whose limits correspond to the nearly aligned orientation with the flow as given by Leal and 

Hinch [168] and the orientation along the compression axis of the shear flow, as suggested in 

section 3.6 of chapter 3. Recall that 𝑟𝑒 = 1.24𝑟/ln
1/2𝑟 is the equivalent fiber aspect ratio. 

The experimental flow curves are compared to the theoretical ones obtained in Figure 4.4a 

for a fixed value of 𝐴1212 = 1/15 and in Figure 4.4b for adjustable 𝐴1212 values (see Table 

4.1). We see that the H-Model predictions are in agreement with the experimental flow curves 

of CC-PA mixtures. However, an important difference can be noticed between the predicted 

curves where the fibers orientation is isotropic [Figure 4.4a] and the predicted curves where 

the orientation of the fibers is adjusted [Figure 4.4b]. First, an isotropic orientation of the fibers 

𝐴1212 = 1/15, gives a higher relative viscosity in the CST as well as the DST regimes 

compared to the adjusted orientations and thus induces a shift of the theoretical curves to the 

left compared to the experimental curves. Secondly, from the observations in Figure 4.4a, it is 
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obvious that the isotropic orientation of the fibers fails to properly predict the transition zone 

between the CST and DST regimes which in contrary is not the case with the adjusted 

orientations. Therefore, we deduce that in our case, the PA-fiber orientation that best fits the 

experimental flow curves lies between nearly aligned with the flow 𝐴1212 =
0.315

𝑟𝑒
≈ 0.011 and 

nearly isotropic orientation (𝐴1212 = 1 15⁄ ).  

Now, we are interested in the variations of the critical shear rate and shear stress of the DST 

transition as a function of the fibers volume fraction.  These variations are shown in Figure 4.5. 

The critical shear rate �̇�𝐶  and shear stress 𝜎𝑐  are evaluated using Eqs. (3.6) and (3.7). (See 

chapter 3). The critical shear rate �̇�𝐶0 and critical shear stress 𝜎𝑐0  of the DST transition for a 

CC- suspension without PA-fibers are depicted by horizontal and vertical arrows in Figure 4.4. 

 

Figure 4.5 Variation of the critical shear rate and the critical stress as a function of fiber volume fraction. The red 

markers correspond to the experimental results. The blue markers (triangles) and the black dotted line represent 

the theoretical predictions of the H-model with respect to fiber orientation parameter 𝐴1212. The error bars 

correspond to the standard deviation of experimental results. 

The experimental findings in Figure 4.5 are in relative agreement with the theory. The H-model 

seems to underestimate the values of the critical shear rate and overestimates the critical shear 

stress for an isotropic fiber orientation 𝐴1212 = 1 15⁄  within the CC-PA mixtures.  However, 

the adjustment of the 𝐴1212 parameter according to previous mentioned values for the different 

fiber volume fractions gives a relatively good match with the experimental results. One can 

notice that in both cases of the experiment and theory, we do have nearly the same progressive 

decrease of the critical shear rate when increasing fiber volume fraction, in agreement with the 

interpretation given in section 4.2.1. In the case of the critical shear stress, the H-model predicts 

a faster increase with the fiber volume fraction, and this discrepancy with experiments is likely 

due to the very rough effective medium approach of the H-model. 
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4.3 Capillary rheometry 

4.3.1 Flow curves 

          In this section, we present the results of the capillary rheometry experiments and compare 

them with the results of the rotational rheometry performed with the cylindrical Couette 

geometry, both using the same 2nd series sample of CC particles. The results are shown in Figure 

4.6. Figures 4.6 (a-d) shows the experimental results of the CC-suspension without and with 

PA-fibers; these results are represented by solid blue points (diamond shape) for the capillary 

rheometry and by thin gray lines for the Couette geometry. The solid red line is a polynomial 

fit of the experimental shear flow curve (gray line) obtained in the cylindrical Couette geometry. 

In the experimental points of the capillary rheometry, the represented shear rate is the apparent 

wall shear rate  �̇�𝑎,𝑤 [see Eq. (2.23) in chapter 2], so in order to compare with the rotational 

Couette rheometry, we had to apply the Moony correction, i.e. to convert the real shear rate 

�̇� obtained in experiment using the cylindrical Couette geometry to the apparent wall shear rate 

for the capillary geometry using Eq. (2.24) (See chapter 2). Therefore, the solid green line in 

Figures 4.6 (a-d) corresponds to the curve 𝜎𝑤 = 𝑓(�̇�𝑎,𝑤) in the capillary rheometry obtained by 

integration of the smoothed experimental flow curve measured in rotational shear rheometry 

test [see Eq. (2.26) in chapter 2]. This curve is expected to coincide with the experimental flow 

curve of the capillary rheometry in the case when the capillary geometry does not induce a 

suspension microstructure different from the one observed in simple shear rheometry with the 

cylindrical Couette geometry. In what follows, this approach [quantified through Eq. (2.24) in 

chapter 2] will be referred to as the “macroscopic model”.  

Figure 4.6e combines the experimental points of the capillary rheometry of CC- PA fiber 

mixtures at different volume fractions (from 0% to 2.5% vol) in comparison with the 

macroscopic model. 
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Figure 4.6 (a-d): Capillary rheometry in comparison with shear cylindrical Couette rheometry results and with the macroscopic 

model for CC-suspensions at different PA-fibers concentrations. (e): Capillary rheometry results in comparison with the 

macroscopic model for all fiber volume fractions. 

The flow curve of the CC-suspension without PA-fibers in capillary rheometry exhibits a 

relatively similar rheology to that observed in shear rheometry [the sigmodal S-shape, Figure 

4.6a]. Before the DST transition (where the regime is qualified as closed to a Newtonian one), 

the experimental points of the capillary rheometry are in a reasonable agreement with the shear 
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flow curve. Then we note a DST transition with critical shear stresses and critical shear rates 

values relatively close for both capillary and shear rheometry. Above the DST transition, strong 

fluctuations in shear rate are observed in both cases. Due to the very complex aspect of the CC 

shear thickening suspension after reaching DST domain, it is difficult to predict the behavior 

of the suspension in two different geometries, but still, it can be seen that the flow curve 

obtained in the capillary rheometry at 𝜑𝑓 = 0% (blue experimental points in Figure 4.6a) still 

fits to the fluctuation range of the shear rheometry curve (grey curve). The same statement holds 

for the fiber volume fraction 𝜑𝑓 =  1% vol, for which the experimental points of the capillary 

rheometry and the flow curve of the shear rheometry are also close below the DST transition 

and overlap above the DST transition stress  [Figure 4.6b]. Furthermore, the curves of CC-

suspension without PA-fibers and of CC-PA suspension at 𝜑𝑓 =  1% vol are close to the curves 

predicted by the macroscopic model (green lines) with a relatively small offset below the DST 

[Figures 4.6 (a, b, e)]. These observations suggest that for CC-PA mixtures at 𝜑𝑓 ≤  1% the 

suspension microstructure (in terms of the geometric and statistical characteristics of the CC-

particle contact network and spatial and orientational organization of PA-fibers) likely remains 

similar in a pressure-driven flow through the capillary and in the drag shear flow between 

concentric cylinders.  

The situation becomes completely different for the CC-PA mixtures at higher fiber volume 

fractions, 𝜑𝑓  ≥ 2% vol. Moreover, for the flow curves at 𝜑𝑓 =  2% vol and 𝜑𝑓 =  2.5% vol, 

we have a rather different rheology [see Figures 4.6 (c,d)]: sigmodal shapes are not very 

apparent anymore and a significant difference between the capillary rheometry experiments and 

the prediction of the macroscopic model can be observed [Figure 4.6e], this difference can even 

be observed below the DST transition. Furthermore, the DST transition in capillary rheometry 

happened at a lower critical shear stress and shear rate than that predicted by the macroscopic 

model and, equivalently in shear rotational rheometry with small fluctuations in shear rate 

values above the DST transition as the curves appear to be almost vertical. At 𝜑𝑓 ≤  1% vol 

the difference between capillary rheometry and shear rheometry is rather small and noticeable 

however, at 𝜑𝑓  ≥ 2% vol, this difference becomes very significant. This shift indicates that at 

a higher fiber volume fraction, the two different geometries imply two different rheological 

behaviors. Indeed, starting from fiber volume fraction 𝜑𝑓  ≥ 2% vol, the microstructure of the 

suspension (CC-particle distribution, fiber orientation distribution) is different in the capillary 

flow compared to the shear flow. It is rather difficult to give a direct and clear explanation of 

the observable differences, but it is also likely that with increasing fiber volume fraction the 
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size and cohesive strength of the flow-induced cluster in the suspension is expected to increase. 

Large solid clusters are likely convected through the capillary along its axis of symmetry, their 

spinning under shear field is obstructed and they give a larger contribution to the energy 

dissipation as compared to the clusters that have better ability to rotate in the simple shear flow 

in the Couette geometry.  In order to get more information about this observable microstructural 

difference as well as the flow-induced microstructure in the two considered geometries, an X-

ray microtomography experiments for these mixtures must be involved in future works. 

4.3.2 H-model predictions 

          We are going now to apply the homogenization approach to predict the flow curves of 

the CC-PA fiber mixtures in capillary rheometry from the experimental flow curve obtained in 

capillary rheometry with CC-suspension without PA-fibers. The same computational 

procedures described in section 4.2.2 were performed to plot the flow curves, and the obtained 

results are depicted in Figure 4.7. 

 

Figure 4.7 Flow curves in capillary geometry of CC-PA fiber mixtures predicted by the H-model in comparison 

with experiments. (a): 𝐴1212 = 1/15, isotropic fiber orientation. (b): The values of 𝐴1212 is adjustable and reported 

in Table 4.1 for each PA-fiber concentration. The diamonds represent the capillary flow experiments, and the 

colored solid lines are the theoretical predictions by the H-model. 

The results of the H-model predictions are divided into two main parts, predictions with 

isotropic PA fiber orientation distribution (𝐴1212 = 1/15) in Figure 4.7a and predictions with 

adjusted PA fiber orientation distribution (distribution between almost aligned with the flow 

and isotropic) in Figure 4.7b (see Table 4.1 for adjustable 𝐴1212 values). The curves with the 

isotropic orientation parameter (𝐴1212 = 1/15) are smoother and capture the DST transition 

zone better this time compared to the curves with the adjusted fiber orientation parameter values 

(see Table 4.1) also the prediction curves with isotropic orientation are the closest to the 

experimental points of the capillary rheometry. 
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The theory succeeded very well in predicting the flow curve in the case of  𝜑𝑓 =  1%  both 

before the DST and after the DST transition as we can clearly see that the capillary experimental 

points are close to the predicted curve in the DST region [Figures 4.7 (a, b)], however a very 

significant difference can be seen for the case of 𝜑𝑓 ≥  2%, the theory fails to predict the flow 

curves at the DST regime in the case of an isotropic fiber distribution [Figure 4.7a] as well as 

for an adjustable orientation [Figure 4.7b], while the experimental points of the capillary 

rheometry for 𝜑𝑓 ≥  2% are scattered to the left of the predicted flow curves. This seems to 

indicate that the effective medium approach is not able to capture the changes in suspension 

structure in capillary rheometry induced by the addition of PA-fibers.  Note that a strong 

disagreement of the flow curves with the H-model predictions for a PA-fiber concentration 

above a critical value of 𝜑𝑓  has already been observed for simple shear in mixing type 

rheometry [chapter 3, Figure 3.4]. It was explained by the percolation of the fiber network 

beyond the critical concentration; the shear thickening matrix experienced strong local stresses 

in the vicinity of the fiber contact and solidified the PA-fiber network even at low global 

stresses. This percolation threshold was 𝜑𝑝𝑒𝑟𝑐 ≈ 4% vol in simple shear. If for some reason, 

the percolation threshold becomes lower in capillary flow, this could in principle explain the 

near-vertical appearance of the experimental curves at 𝜑𝑓  =  2% vol and 𝜑𝑓  =  2.5% vol.  We 

can assume that the orientation of the fibers could be more random in capillary flow (𝐴1212  ≈

 1/15) than in simple shear flow (𝐴1212  ≈  1/30), this would lead to the percolation threshold 

𝜑𝑓  ≈  0.7/𝑟 =  0.015 (1.5% vol). This alternative scenario, although does not contradict to 

the abrupt change in the rheology between 𝜑𝑓  =  1% and 𝜑𝑓  =  2%, but leads to very small 

wall shear rates above the DST transition. Indeed, combining Eqs. (3.6), (3.7) and (3.26), we 

evaluate the critical shear rate and the critical shear stress for the fiber percolation scenario, as 

�̇�𝑐 = �̇�𝑐0√
Φ𝑐𝑜𝑛𝑡𝑎𝑐𝑡

𝜂𝑟(𝜑𝑓,𝐴1212)
≈

0.6𝜑𝑓�̇�𝑐0

√𝜂𝑟(𝜑𝑓,𝐴1212)
    (4.1) 

  𝜎𝑐 = 𝜎𝑐0√Φ𝑐𝑜𝑛𝑡𝑎𝑐𝑡휂𝑟(𝜑𝑓 , 𝐴1212) ≈ 0.6𝜑𝑓𝜎𝑐0√휂𝑟(𝜑𝑓 , 𝐴1212)  (4.2) 

that gives the critical values �̇�𝑐 ≈ 0.4 s
−1 and 𝜎𝑐 ≈ 2 Pa at 𝜑𝑓 =  2% vol. These evaluated 

values appear to be well below the experimental ones. The discrepancy could come from 

underestimation of the volume fraction Φ𝑐𝑜𝑛𝑡𝑎𝑐𝑡 of the suspension involved into the “bridging” 

of neighboring fibers . At this point, it is therefore difficult to affirm any of both scenarios, i.e. 

whether the abrupt change of the flow curves at  𝜑𝑓  ≥  2% vol  comes from microstructural 
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changes in CC particle network or in PA fiber network. It is very likely that the conformation 

of both networks is highly correlated at 𝜑𝑓  ≥  2% vol. At such condition, it is not surprising 

that neither macroscopic model, nor the H-model (assuming scale separation) are unable to 

correctly predict the rheological response of the mixture.  

Let us now inspect the variations of the critical stress 𝜎𝑐 and critical shear rate �̇�𝐶 of the DST 

transition as a function of PA-fiber volume fraction in the case of the capillary rheometry. The 

results are presented in Figure 4.8 along with the theoretical predictions of the H-model for two 

cases: an isotropic distribution (𝐴1212 = 1 15⁄ ) of the fibers in the mixture and a distribution 

intermediate between the one almost aligned with the flow and the isotropic orientation. In this 

second case, 𝐴1212 values are taken equal to those presented in Table 4.1 for the flow curves 

obtained in the Couette geometry.    

 

Figure 4.8 Critical shear rate (a) and critical stress (b) as a function of fiber volume fraction obtained in the capillary 

rheometry versus theoretical predictions by the H-model. The error bars correspond to standard deviation of 

experimental data. 

A correspondence can be observed between the capillary rheometry experiments and the 

predictions by the H-model for the fiber volume fraction 𝜑𝑓  =  1% vol.  However, the H-model 

overestimates the critical shear rate �̇�𝐶 and critical stress 𝜎𝑐 at fiber volume fractions 𝜑𝑓  =  2% 

vol and 𝜑𝑓  =  2.5% vol.  As indicated above, this abrupt change in 𝜎𝑐 and �̇�𝐶 between the two 

PA-fiber volume fractions 𝜑𝑓  =  1% vol and 2% vol may be related to a considerable change 

of the microstructure of the interpenetrated CC particles and PA fibers networks.  We also see 

the adjusted 𝐴1212 values do not significantly alter the correspondence between the H-model 

and experiments at 𝜑𝑓  =  1% vol, as compared to the single value 𝐴1212 = 1/15 used for 

isotropic fiber orientation. 
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4.4 Conclusion  

          In this chapter we have evaluated first the effect of PA-fibers on the DST transition in 

CC-PA mixtures, in a pressure-driven flow through a capillary and compared it to rotational 

rheometry using the classical cylindrical Couette geometry.  

Qualitatively, in these both rheometric configurations, we have noticed that an increase in the 

volume fraction of PA-fibers induces a shift in the shear stress vs. shear rate flow curves of the 

CC-PA fiber mixtures with the critical shear rate of the DST transition decreasing and the 

critical shear stress increasing with the increase of PA-fiber volume fraction. Quantitatively, 

the flow curves obtained in the capillary and cylindrical Couette geometries were quite close to 

each other at zero and low fiber volume fraction, 𝜑𝑓  =  1% vol, which was interpreted in terms 

of a similar flow-induced microstructure in both geometries. On the contrary, at higher fiber 

volume fractions, 𝜑𝑓  =  2% vol and 2.5% vol, the flow curves of the capillary rheometry 

showed a much stronger  viscosity (lower shear rates at a given shear stress) than in the drag 

flow in cylindrical Couette geometry. This difference suggests a strong difference of the 

suspension microstructure that can be assigned to stronger cohesive strength of the 

interpenetrated fiber and CC particle networks with possible percolation phenomena. The 

homogenization approach (H-model) and the macroscopic model (simply based on the 

integration of the local rheological relationship across the capillary cross-section) gave a correct 

prediction of the flow curves only at 𝜑𝑓  =  1% vol, the case for which the suspension 

microstructure was assumed to be independent of the flow geometry. However, both models 

failed, to a larger extent, to reproduce the experimental flow curves at 𝜑𝑓 ≥  2%,  without 

considering microstructural aspects. 

For a deeper understanding of the rheological differences observed in both rotational and 

capillary geometries, it would be necessary to visualize the structure of the suspension under 

flow.  This could in principle be achieved by X-ray microtomography at appropriately chosen 

spatial and temporal resolutions. A Stokesian dynamics modeling would also be useful to 

understand the system behavior. 

Recall that unfortunately, we cannot provide a quantitative comparison of the rheological 

results obtained in capillary and Couette geometries (present chapter) with those obtained in 

double helix and plate-plate geometries (chapter 3) because different series of CC particles were 

used for these two rheometric pairs. However, the qualitative rheological behaviors remain 

similar in all the four geometries: the S-shape of the flow curves; shear rate fluctuations above 
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the DST; the shift of the critical DST shear rate to lower values with addition of fibers; much 

stronger jamming above a critical volume fraction of fibers tentatively explained in terms of 

the percolation of the fiber network. 
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  CHAPTER 5 

 

5  Jet flow and jet instability of sphere-fiber mixtures4 
 

          Shear rheological response of CC-PA mixtures has been reported in detail in chapters 3 

and 4. It is time now to inspect the rheological behavior in extensional flow that is done in the 

present chapter on an example of the free-falling jet of the CC-PA mixtures flowing out from a 

cylindrical capillary under gravity. We warrant the reader that, in contrast to previous chapters, 

in the present chapter, we will mostly focus our attention on fluid dynamics aspects of the 

falling jet (jet instability, wave propagation, …), as long as they are closely related to the 

suspension rheology (especially DST transition) and allow, at least, qualitative evaluation of 

the rheological behavior under extension, while retrieving stress-strain rate relations from the 

jet flows remains quite uncommon (we present however the concept of the jet extensional 

rheometry in Appendix – section 5.5). From the application point of view, the jet flow described 

in this chapter mimics to some extent the flow of the cement paste out of pumping lines and 

can therefore be important for mortar spraying or cement jet grouting. 

Thus, in the present chapter, we conduct a detailed experimental analysis of the jet dynamics 

of CC-PA mixtures based on qualitative observations of the recorded jet flows (section 5.1) and 

on spatiotemporal diagrams of the jet lateral drift and jet surface undulation, as well as on two-

dimensional (2D) Fourier spectra of these both quantities giving access to the dispersion 

relations, wave speeds and RMS amplitude and RMS speed of the lateral drift of the unstable 

jet (section 5.2). Suspension characterizations, the experimental setup and protocols, as well as 

 
4 The results were obtained using the 1st series of CC particles, so they can be safely compared to the results of 
the chapter 3, while only qualitative comparison with the results of chapter 4 is possible.  
Main results of this chapter are published in [M. Meloussi, S. Schaub, A. Ciffreo, S. Aguib, P. Kuzhir. Jet 
instability of suspensions of different shaped particles exhibiting discontinuous shear thickening Journal of 
Rheology, 66, 1005 (2022)] 
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the data processing routines are detailed in chapter 2. As in previous chapters, we inspect the 

effect of rigid polyamide (PA) fibers addition on the jet dynamics. Finally, theoretical 

evaluation of the stress profile along the jet provides, if not complete understanding, a physical 

insight into the origin of the jet instability without fibers and the effect of the fiber addition on 

the jet dynamics (section 5.3). As in the previously studied case of shear flow in chapters 3 and 

4, the fiber orientation distribution is expected to play an important role on the rheology of CC-

PA mixtures in extensional flows within the falling jets when the flow-induced fiber alignment 

could considerably enhance the extensional viscosity [154] and somehow influence the DST 

transition and thus the jet instability – this effect will be discussed in the present chapter.  

5.1 Qualitative observations 

          In this section, we report the visualization experiments conducted on the jet of the CC-

suspension or CC-PA mixtures. First, we consider the CC mixtures without PA fibers and 

evaluate the effect of the jet length on the jet dynamics [section 5.1.1]. Second, we consider CC-

PA mixtures and evaluate the effect of PA fiber addition on the behavior of the jet [subsection  

5.1.2]. 

5.1.1 Effect of the jet length  

          In this section, we inspect the jets of the CC suspension without addition of PA fibers. At 

a given flow rate, depending on the jet length different behaviors are observed, as shown on 

snapshots of Figure 5.1. At the jet length 𝐿 < 4 cm, the jet remains strictly vertical and cannot 

be distinguished from a Newtonian viscous thread [Figure 5.1a]. Viscoelastic coiling instability 

(typically reported for honey-like fluids [182]) then takes place at 4 cm < 𝐿 < 6 cm, when the 

jet extremity describes circular motion on the experimental table, while the whole jet exhibits 

precession motion around the tube axis [Figure 5.1b]. These two first regimes have been 

extensively studied in literature and are out of scope of the present work. Increasing the 

suspension jet length above 𝐿 > 6 cm suddenly gives place to another form of instability. The 

falling jet no longer follows a straight vertical trajectory but undergoes lateral drifts 

(oscillations) with well distinguishable running waves in both downstream and upstream 

directions [Figure 5.1c]. At 𝐿 > 15 cm and at axial positions 𝑧 > 15 cm  we notice periodic 

rupturing of the jet into solid-like segments, which after falling on the experimental table keep 

their cylindrical shape for a few seconds before melting to become liquid again. As it was 

reported, DST state for a shear thickening fluid keeps for a few seconds after applied shear 

stress removal [183], – duration long enough for the jet to stay in DST state after it breaks and 

until it hits the experimental table. These observations on the lateral oscillations and 
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solidification effects agree with previous work of Liard et al. [127] on the jets of silica particle 

suspension. 

 

Figure 5.1 Snapshots of falling CC-suspension jet without PA fibers: stable viscous jet (a); jet subject to coiling 

instability (b); jet subject to lateral oscillations (c). The average length-to-diameter ratio is 𝐿/𝐷0 ≈ 4.0,
8.0 𝑎𝑛𝑑 30for the jets shown in (a), (b c). The average length-to-diameter ratio is 𝐿/𝐷0 ≈ 4.0, 8.0 𝑎𝑛𝑑 30 for the 

jets shown in (a), (b) 

5.1.2 Effect of the PA volume fraction  

          Addition of PA fibers to the CC suspension qualitatively changes the jet behavior, and 

these changes depend on the PA volume fraction. In Figure 5.2, the jet of CC-suspension 

without PA fibers is compared with jets of CC-suspension with three different concentrations 

of PA fibers. The jet length is fixed to 15 cm. The jet of CC-suspension without PA fibers 

[Figure 5.2a] is continuous (with only some rare fracture events), and laterally oscillating all 

along its length. The generation of these oscillations may be due to stress fluctuations in the jet 

above a critical stress of DST transition, as typically observed in confined CC-suspension in 

shear-rheological measurements [100]. Addition of the PA fibers globally decreases the lateral 

oscillations [Figures 5.2 (b-d)] and stops them completely (i.e. the jet becomes completely 

vertical) at 𝜑𝑓 ≈ 0.7 − 0.8 % vol. This effect will be explained and quantitatively evaluated 

later in section 5.3.2. However, with increasing fiber concentration, the break-up events become 

more frequent and occur at shorter distances 𝐿𝑏 from the tube outlet called hereinafter the break-

up length. It is possible that with increasing PA volume fraction, PA fibers form larger flocs 

inside the jet, whose size likely becomes comparable to the jet diameter leading to the jet break-

up, as it occurs with the jet of concentrated suspension of spheres [184]. This point will be 

inspected in section 5.3.3 along with quantitative evaluation of the break-up length. 
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Figure 5.2 Snapshots of the suspension jets at different PA fiber concentrations. (a) CC suspension without PA- 

fibers. The jet is completely unstable showing a wavy pattern along its length. (b) CC-PA mixture at 𝜑𝑓 = 0.6% 

vol. The jet is still unstable and presents some fractures in the bottom section. (c) CC-PA mixture at 𝜑𝑓 =

1.6% 𝑣𝑜𝑙. The jet is stable against lateral oscillations with frequent fractures occurring at the bottom section of 

the jet. (d) CC-PA mixture at 𝜑𝑓 = 2% 𝑣𝑜𝑙. The jet is completely stable against lateral oscillations with frequent 

fractures all along the jet length. 

5.2 Quantitative analyses of jet dynamics 

          We analyze in this section, the dynamics of the jets of CC-PA mixtures through different 

quantitative features, such as the jet diameter, lateral drift, Fourier spectra, dispersion relation, 

wave speed. 

5.2.1 Variation of the jet diameter 

          The suspension jet shows some fluctuations of its diameter along its length and during 

time. For quantitative analysis of these fluctuations, we evaluated first the mean jet diameter, 

〈𝑑〉 = 𝑓(𝑧) averaged over time as function of the axial position, as plotted in Figure 5.3a for 

the CC-PA mixtures at 𝜑𝑓 = 0, 0.6, 1.2 and  2 % vol, with 𝜑𝑓 = 0 corresponding to the CC 

suspension without fibers. The average jet diameter was evaluated excluding zero values of the 

instantaneous jet diameter during possible jet ruptures. For all the curves, we observe an initial 

rather strong decrease of the diameter in the downstream direction attributed to gravitational 

stretching, as typically observed for free falling jets [182]. This decrease is followed by a slight 

increase of the average diameter at the bottom part of the jet due to jet flow deceleration near 

the point where the jet hits the experimental table. We also notice that the average jet diameter 

is a growing function of the fiber volume fraction. This is expected from higher viscosity of the 

CC-PA mixtures with higher 𝜑𝑓 values; the jet of a more viscous fluid exhibits less thinning 

diameter when stretched by gravity. For example, in viscous regime at short axial distances, the 

Newtonian jet radius scales as 𝑅~𝑢−1/2~휂0(𝜌𝑔)
−1/2𝑧−1 (with 𝑢 being the jet speed at a given 

axial position 𝑧) – see, for instance [185]. To quantify jet break-up events that happen at some 

conditions, we introduce the break-up probability Π at a given axial position 𝑧 as a ratio of the 
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time 𝑇𝑑=0 interval, for which zero instantaneous jet diameter was detected, to the observation 

time interval 𝑇, namely Π = (𝑇𝑑=0/𝑇) × 100  (%). Experimental Π(𝑧)-dependency is plotted 

in Figure 5.3b for various 𝜑𝑓 values. As inferred from this figure, the break-up probability is 

zero all along the jet of the CC suspension without fibers, in agreement with observations of 

the jets with the length 𝐿 < 15 cm, cf. section 5.1.1. The break-up probability increases 

dramatically with the fiber volume fraction and achieves 80% at the jet lower section at 𝜑𝑓 =

2 % vol. The axial probability profile has a sigmodal shape at 𝜑𝑓 = 1.2 and 2 % vol, with zero 

break-up probability until some critical break-up length 𝐿𝑏, followed by a gradual increase at 

𝑧 > 𝐿𝑏. The effect of the PA fiber volume fraction on the break-up length will be inspected in 

section 5.3.3 in conjunction with theoretical estimations.  

Then, we evaluated the deviation ∆𝑑(𝑡, 𝑧) = 𝑑(𝑡, 𝑧) − 〈𝑑〉(𝑧) of the instantaneous jet diameter 

𝑑(𝑡, 𝑧) from its average value; the spatiotemporal maps (colormaps) of the ∆𝑑(𝑡, 𝑧) function 

are plotted in Figure 5.4 a, c, e, g for the observation time lapse of 5 s and for the same range 

of the fiber volume fraction 𝜑𝑓 as in Figure 5.3 The colormaps at 𝜑𝑓 = 0 and 0.6 %vol clearly 

show a periodic sequence of the yellow (thicker diameter) and blue (thinner diameter) bands 

corresponding to the blobs and necks along the jet length. The amplitude of these surface 

undulations is relatively small (±0.3 mm) with respect to the wavelengths ~10 − 150 mm and 

the jet mean diameter of 1-5 mm. Such surface undulations have not been detected in jet 

instability experiments of Liard et al. [127] likely because of space resolution limits, as opposed 

to relatively strong undulation of the filament surface in pinch-off experiments of Roché et al. 

[123]. A negative slope of the color bands in the (𝑡, 𝑧)-space [Figure 5.4] points out to the 

downstream propagation of the blobs-and-necks sequence along the jet flow direction. An 

enlarged view of the colormap in Figure 5.4a is provided in the inset of Figure 5.4 and reveals 

complex dynamics of the surface undulations with two kinds of blobs. On the one hand, thick 

bands clearly visible in non-zoomed views correspond to relatively long blobs travelling along 

the jet with a relatively low speed gradually increasing in downward direction. On the other 

hand, in the lower half of the jet, we detect a sequence of thin yellow and blue bands, 

corresponding to shorter and faster blobs and necks, each travelling at a high constant speed of 

about 0.9 m/s, as inferred from the slope of the thin yellow bands – one of these slopes being 

shown in Figure 5.4a. The speed of two kinds of blobs appears to be much higher than the jet 

speed, which increases from ~8 × 10−4 m/s to ~0.02 m/s along the jet. In addition to it, one 

can easily observe the jet ruptures designated by black colored sections. The ruptures are absent 

at 𝜑𝑓 = 0 %vol; some rare break-up events appear at the jet lower section for 𝜑𝑓 = 0.6 %vol; 
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the ruptures become frequent and appear closer to the tube outlet for 𝜑𝑓 = 1.2 and 2 %vol, in 

agreement with observations in section 5.1.2 and with the break-up probability plotted in Figure 

5.3b.  

 

Figure 5.3 Jet diameter 〈𝑑〉 averaged over observation time (a) and the jet break-up probability (b) as function of 

the axial position z for CC-PA mixtures at different PA volume fractions listed in the figure legend.
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Figure 5.4 Spatiotemporal diagrams of the jet diameter deviation ∆𝑑(𝑡, 𝑧) (in mm, parts (a), (c), (e), (g)) and jet 

lateral drift 𝑥(𝑡, 𝑧) (in mm, parts (b), (d), (f), (h)) for CC-PA mixtures at different PA fiber volume fractions: 

𝜑𝑓 = 0 (CC suspension in absence of fibers) (a) and (b); 0.6% vol (c) and (d), 1.2 % vol (e) and (f), 2% vol (g) 

and (h). The inset on the right of (a) and (b) shows an enlarged view of a rectangular region of the ∆𝑑(𝑡, 𝑧)-map 

(a) delimited by the dashed line. Thin yellow bands and thick bands delimited by inclined dashed curves are 

distinguished on this inset. 

For a deeper analysis of the blob-and-neck propagation, we perform a 2D DFT analysis of the 

jet diameter 𝑑(𝑡, 𝑧), as specified in section 2.2.3 of chapter 2. The contour plots of the amplitude 

𝔇(𝜔, 𝑘) of the Fourier spectrum in the frequency domain (𝜔, 𝑘) are presented in Figure 5.5 for 

the CC-PA mixtures at different fiber volume fractions. At 𝜑𝑓 = 0 and 0.2 %vol, we observe 

an elongated pattern extended from the second to the fourth quadrant [Figure 5.5 (a,b)], which 

looks like a mountain crest in a surface 3D plot (not shown here for brevity). This crest 

corresponds to surface undulation waves propagating downstream the flow. In general, the 

projection of the crest onto the horizonal (𝜔, 𝑘)-plane is described by some function 𝜔 = 𝑓(𝑘), 

which is nothing but a wave dispersion relation. In Figure 5.5 (a,b), the crests have a linear 

shape (denoted by a dashed line in Figure 5.5a) corresponding to non-dispersive waves on the 

jet surface with a linear dispersion relation 𝜔 = 𝑣𝑠𝑘. The wave speed 𝑣𝑠 is defined as an average 

slope of experimental 𝜔 = 𝑓(𝑘) dependencies.  
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Figure 5.5 Contour plots of the Fourier amplitude 𝐷(𝜔, 𝑘) (in mm) of the jet instantaneous diameter 𝑑(𝑡, 𝑧) of the 

CC-PA mixtures at different PA volume fractions: 𝜑𝑓 = 0 % 𝑣𝑜𝑙 (a), 0.2 % vol (b), 0.5% vol (c) and 0.7% vol 

(d). The dashed lines in (a) and (c) are guides for eye to follow either a single wave speed (a) or two different wave 

speeds (c). The color bars of (a) and (c) are similar to those of (b) and (d). The sampling rates were fixed to the 

values 𝜔𝑢𝑝 ≈ 1060 𝑟𝑎𝑑/𝑠 and 𝑘𝑢𝑝 ≈ 3200 𝑚
−1 slightly larger than twice the highest observable 𝜔 and 𝑘 values 

(cf. section 2.2.3). The lowest non-zero 𝜔 and 𝑘 values are fixed by the film duration (14.86 s) and the observed 

jet length (145 mm) that gives 𝜔𝑑𝑜𝑤𝑛 ≈ 0.423 𝑟𝑎𝑑/𝑠 and 𝑘𝑑𝑜𝑤𝑛 ≈ 43.3 𝑚
−1. 

     Interestingly, for 𝜑𝑓 ≥  0.5 %vol we observe two separate amplitude crests (highlighted by 

dashed lines in Figure 5.5c), still having a linear shape associated to two different wave speeds 

for the same propagation direction. This situation is expected to reflect a more complex 

dispersion relation that may physically correspond to the wave propagation through 

heterogeneous and/or anisotropic media, which may admit different wave speeds, as often 

reported for elastic waves in granular media [186], porous media [187] or fibrous materials 

[188]. In our case, addition of PA fibers likely brings some anisotropy (in case of non-random 

orientation distribution of fibers along the jet flow) and/or large-scale heterogeneity (in case of 

formation of flocs perceived at the rough jet surface – see Figure 5.2 (c,d); this probably results 

in two wave speeds. Further investigations are required to clarify this point. Notice however 



Chapter 5                                Jet flow and jet instability of sphere-fiber mixtures 

 

131  

that two crests visible in Figure 5.5 (c,d) should not be confounded with the “slow” and “fast” 

blobs detected in the spatiotemporal maps in Figure 5.4 (a,c) because the “slow” blobs 

propagated with a speed varying along the jet, while the wave speeds assigned to the wave 

crests in Figure 5.5 (c,d) are constant and therefore more relevant for “fast” blobs. The “slow” 

blobs dynamics is likely masked by relatively broad central spot of the Fourier spectra in Figure 

5.5. In addition to it, we do not have a clear explanation for the thin horizonal bands appearing 

at 𝜔 ≈ ±370 rad/s−1 in all contour plots of Figure 5.5. It is not expected to come from acoustic 

wave resonance of the suspension-filled tube (with fundamental frequency ~2 × 104 s−1) but 

is probably caused by the resonance with the mechanical support of the fluid tank [Figure 2.15]. 

In what concerns the wavelength range, for all fiber volume fractions, the Fourier amplitude is 

significant at relatively small wavenumbers and decays above 𝑘𝑚𝑎𝑥 ≈ 500 m
−1. This 

corresponds to the surface undulation wavelengths ranging between 𝜆𝑚𝑖𝑛 = 2𝜋/𝑘𝑚𝑎𝑥~10 mm 

and the observable jet length 𝜆𝑚𝑎𝑥~𝐿 ≈ 145 mm. Let us now evaluate two characteristic 

wavelengths of the Rayleigh-Plateau (RP) instability, which are the critical wavelength of the 

instability onset [182], 𝜆𝑐 = 2𝜋𝑅0 ≈ 15 mm and the most amplified wavelength [182], 𝜆𝑚 =

2𝜋𝑅0[2 + 3휂0(𝜌𝛾𝑅0/2)
−1/2]

1/2
, which is equal to 96 – 124 mm for our CC-PA samples, 

where 𝛾 ≈ 0.072 N/m is the surface tension. As we see, both RP wavelengths enter the interval 

of the surface undulation wavelengths observed in our experiments. However, as we will see in 

section 5.2.2, the wave speed in our case is much larger than that of the RP instability, which is 

equal to the jet speed.  

As it will be seen in section 5.2.2, the blob-and-neck propagation along the jet at 𝜑𝑓 <

 0.8 %vol is accompanied by lateral oscillations of the jet centerline. So, the fluctuations of the 

jet diameter and jet centerline seem to be governed by the same physics related to the DST 

transition in extensional flow along the jet, as will be inspected in section 5.3.  

5.2.2 Lateral oscillations 

          The spatiotemporal maps of the jet lateral drift are presented in Figures 5.6 (b-h). It is 

well observed that the jet of CC-suspension without PA fibers is continuous and represents no 

ruptures [Figure 5.6b], as has been shown in the same figure in the diameter deviation 

colormaps [Figures 5.4a] and agrees with zero break-up probability shown by the red line in 

Figure 5.3b. The sequence of blue and red bands in the lateral drift colormaps corresponds to 

negative (to the left from the tube axis) and positive (to the right from the tube axis) drift of the 

jet during time, thus indicates that the jet is strongly oscillating. The color bands appear to be 
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nearly vertical meaning that mostly the whole jet displaces to the left or to the right with respect 

to the tube axis. We also note that the color intensity varies (and sometimes fluctuates) vertically 

along the bands becoming more intense in downstream direction. This means that, as expected, 

the lateral drift is more pronounced at higher axial positions, while color intensity fluctuations 

reflect jet centerline undulations along the jet, as observed in the experimental snapshots [Figure 

5.2 (a, b)]. 

The jet is not totally continuous and the ruptures along its length sometimes occur when adding 

PA fibers at 0.6% vol [Figure 5.4d], but the rupture events are still seldom at this PA volume 

fraction, in agreement with weak (a few %) values of the break-up probability – see the purple 

line in Figure 5.3b. In the lateral drift colormap, the rare rupture events appear as a few 

relatively thin black bands or spots. The ruptures become more pronounced when increasing 

the PA fiber concentration, as inferred from increasing number of black bands in colormaps for 

𝜑𝑓 =1.2% vol [Figure 5.4f] and 2% vol [Figure 5.4h]. This correlates with the increasing break-

up probability revealed from Figure 5.3b. However, the jet becomes completely stable at fiber 

volume fraction 𝜑𝑓 ≥ 0.8 % vol and lateral oscillations disappear. For example, the lateral drift 

colormaps for 𝜑𝑓 = 1.2 % vol [Figure 5.4f] and 2% vol [Figure 5.4h] are rather homogeneous 

(with nearly zero lateral drift), except for the black bands at the lower part of the jet standing 

for the jet ruptures. 

For a finer analysis of the jet lateral drift 𝑥(𝑡, 𝑧), 2D DFT analysis was performed on 𝑥(𝑡, 𝑧) 

signal, as detailed in section 2.2.3. The obtained surface plot of the Fourier spectrum 𝑋(𝜔, 𝑘) 

at 𝜑𝑓 = 0 %vol is shown in Figure 5.6a and the contour plots 𝑋(𝜔, 𝑘) for different PA fiber 

volume fractions are shown in Figure 5.6 (c-f). We observe two main crests in the surface plot 

of Figure 5.6a, one spanning the odd quadrants and corresponding to the forward propagation 

of the jet lateral drift, and another one spanning the even quadrants and assigned to the backward 

wave propagation. A secondary crest at the middle plane of the surface plot (perceived in the 

contour plots as a horizontal band centered at 𝜔 = 0) likely corresponds to some slow dynamics 

occurring at the jet speed 𝑢 ≈ 8 × 10−4 − 0.02 m/s. The contour plots in Figure 5.6 (c-f) allow 

one to appreciate the “width” of the crests, their extension through the (𝜔, 𝑘) domain and the 

difference between the forward and backward wave crests. The shape and the height of the 

crests deserve a detailed analysis. 
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Figure 5.6 Fourier amplitude 𝑋(𝜔, 𝑘) (in mm) of the jet lateral drift 𝑥(𝑧, 𝑡) of the CC-PA mixtures at different PA 

volume fractions: surface plot (a), 3D scatter plot of the second quadrant (𝜔 ≤ 0, 𝑘 ≥ 0) after sign inversion of  

𝜔 (b) and contour plot (c) for 𝜑𝑓 = 0 (CC suspension without PA fibers); contour plots for 𝜑𝑓 = 0.6 % 𝑣𝑜𝑙 (d), 

0.7% vol (e) and 0.8% vol (f). The red lines in (b) correspond to the gaussian fit of each vertical slice (along the 

lines 𝑘 = 𝑐𝑜𝑠𝑛𝑡) of the 3D scatter plot. The black dashed lines in (c) are guides for eye helping one to follow the 

forward and backward wave crests. The sampling rates were fixed to the values 𝜔𝑢𝑝 ≈ 530 𝑟𝑎𝑑/𝑠 and 𝑘𝑢𝑝 ≈

860 𝑚−1 slightly larger than twice the highest observable 𝜔 and 𝑘 values (cf. section 2.2.3). The lowest non-zero 

𝜔 and 𝑘 values are fixed by the film duration (14.86 s) and the observed jet length (145 mm) that gives 𝜔𝑑𝑜𝑤𝑛 ≈
0.423 𝑟𝑎𝑑/𝑠 and 𝑘𝑑𝑜𝑤𝑛 ≈ 43.3 𝑚

−1. 

The projection of crests [Figure 8a] onto a horizontal (𝜔, 𝑘) - plane, gives a dispersion relation 

𝜔 = 𝑓(𝑘) corresponding to the wave propagation of lateral oscillations. The dashed lines in 

Figure 8c indicate an approximate position of both main wave crests. Strictly speaking, the 
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dispersion relation can be exactly established for infinitely thin (and infinitely high) crests with 

the Fourier amplitude along the crests respecting the Dirac delta function – a hypothetical case 

of zero damping (e.g. inviscid fluid) and infinitely long jet. In our case of highly viscous 

suspension, the crests are much more diffuse, so, we have defined the dispersion relation in the 

following way. First, we isolated a single quadrant of the Fourier spectrum corresponding to 

either the forward or backward wave. Second, the residual amplitudes corresponding to the 

secondary (low frequency) crest were manually eliminated, and the rest of the 𝑋(𝜔, 𝑘) data 

lower than some threshold were set to zero (filtered) in order to reduce the noise. Third, the 3D 

scatter plot of the pre-treated 𝑋(𝜔, 𝑘)-signal was generated [Figure 5.6b] and sliced by vertical 

planes parallel to the 𝜔-axis and corresponding to fixed discrete values of the wavenumber 𝑘. 

Each slice contained a point cloud 𝑋𝑘(𝜔) that was fitted by a gaussian function shown by red 

solid lines in Figure 5.6b. The location of peaks of each gaussian curve was assigned to the 

crest position in the (𝜔, 𝑘)-plane that allows a clear definition of the dispersion relation. 

Remarkably, the discrete points of the dispersion relation always gathered along a straight line 

and therefore were fitted by a linear function 𝜔 = 𝑣𝑙𝑘. Such a linear dispersion relation (found 

for forward and backward waves at all fiber volume fractions) corresponds to non-dispersive 

waves and the slope 𝑣𝑙 stands for the wave speed. Notice that for the present case of non-

dispersive waves, the phase speed 𝜔/𝑘 = 𝑣𝑙 is the same as the group speed 𝑑𝜔/𝑑𝑘 = 𝑣𝑙.  

From the theoretical perspective, Liard et al. [127] has supposed that the wave propagation 

along the shear thickening jet is equivalent to vibration of a solid taut string with the gravity 

playing the role of the tensile force. Following this idea, the wave speed squared is given by 

𝑣𝑙
2 = 𝜏/𝜌, where 𝜏 is the tensile force by unit jet cross-section. In ideal string model, the tensile 

force is constant along the string, while in our case of the gravitational stretching, it varies 

linearly with the axial position: 𝜏 = 𝜌𝑔𝑧, resulting in 𝑣𝑙
2(𝑧) = 𝑔𝑧. It can be shown that the last 

expression is valid in a short-wave limit 𝜆 ≪ 𝐿 and under assumptions of nearly constant jet 

cross-section and high wave speeds 𝑣𝑙 ≫ 𝑢. Notice that our Fourier analysis provides some 

effective wave speed likely related to the RMS value of 𝑣𝑙(𝑧), which, in the frames of the 

vibrating string model, is given by 

𝑣𝑙 = √
1

𝐿
∫ 𝑣𝑙

2(𝑧)𝑑𝑧
𝐿

0
= √

𝑔𝐿

2
         (5.1) 

recalling that 𝐿 ≈ 0.15 m is the total jet length.  
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Experimental and theoretical [Eq. (5.1)] dependencies of the wave speed on the fiber volume 

fraction are shown in Figure 5.7 for forward (black squares) and backward (blue triangles) 

waves. The error bars correspond to the confidence interval of the linear fit of the gaussian peak 

locations (cf. Figure 5.6b). Experimental values show some fluctuation with the fiber volume 

fraction without deserving any clear tendency. One can observe near similar (within 

experimental errors) speeds of the forward and backward waves. This suggests the single 

dispersion relation for both propagation directions. Noteworthy, the wave speed 𝑣𝑠 of the blob-

and-neck propagation (green diamonds) is the same (within the error bars) as the wave speed 

𝑣𝑙 of the lateral oscillations. For the CC-PA samples with two blob-and-neck wave speeds 

[Figure 5.5 (c,d)] we use the highest of two 𝑣𝑠 values for comparison with 𝑣𝑙. Quantitatively, 

we find the average value of these speeds 𝑣𝑙 ≈ 𝑣𝑠 ≈ 0.9 ± 0.2 m/s independent of the fiber 

volume fraction. This value is in excellent agreement with the speed propagation of the “fast” 

blobs, ~0.9 m/s, directly revealed from the spatiotemporal maps in Figure 5.4. The similarity 

between 𝑣𝑙 and 𝑣𝑠-values could point out to the same origin of both instabilities coming from 

fluctuating stresses above DST transition. On the other hand, the jet surface undulations are 

typically observed for the RP instability, occurring due to capillary forces. However, the speed 

of the surface undulation propagation is about the jet speed for the RP instability. In our 

experiments the jet speed varies from ~8 × 10−4 m/s at the tube outlet to ~0.02 m/s at the jet 

lower extremity and remains much lower than the wave speed 𝑣𝑠~1 m/s. This could be an 

argument for ruling out the RP instability in our case. 

 

Figure 5.7 Effect of the fiber volume fraction on the forward/backward wave speeds 𝑣𝑙  of the jet lateral oscillation 

and on the blob-and-neck propagation speed 𝑣𝑠. Here, we use the highest of two 𝑣𝑠 values for comparison with 𝑣𝑙 . 

The “vibrating string” model does not distinguish between the jets with and without fibers and 

provides a single wave speed 𝑣𝑙 ≈ 0.87 m/s independently of the fiber volume fraction 
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(horizontal black line in Figure 5.7), provided that the jet is in the “solid” state above the DST 

critical stress. Despite data dispersion, our experiments seem to confirm this tendency and show 

a very good quantitative agreement with the model (0.9 ± 0.2 m/s in experiments vs 0.87 m/s 

in theory). Ignoring the tensile force variation along the jet, Liard et al. [127] has obtained the 

expression 𝑣𝑙 = √𝑔𝐿 for the wave speed, which differs from our one [Equation. (5.1)] by a 

factor of √2 ≈ 1.4. In their experiments, they used a completely different DST fluid 

(concentrated suspension of silica particles) at a different jet length 𝐿 ≈ 0.08 m as compared 

to our experimental value 𝐿 ≈ 0.15 m. They have found similar average values of the forward 

and backward wave speeds, both about half of their theoretical value. They attribute this 

difference to the phase lag between the forward and upward waves. However, their 

experimental value 𝑣𝑙 ≈ 0.45 m/s is relatively close (within large statistical errors) to the 

prediction of Equation. (5.1) that gives 𝑣𝑙 ≈ 0.63 m/s. More data have to be collected for 

establishing exact scaling of the wave speed as function of the jet length. At this stage, we can 

constate that the vibrating string model [Equation. (5.1)] provides a good wave speed prediction 

for two different experimental systems.  

Surprisingly, the wave speeds 𝑣𝑙 and 𝑣𝑠 are also similar for unstable (at 𝜑𝑓 < 0.8 %vol) and 

stable (at 𝜑𝑓 ≥ 0.8 %vol) jets. This correlates with the vibrating string model: both kind of jets 

exhibit the same wave speeds independently of the origin of their vibration, whether it comes 

from self-excitation in unstable jets or external random vibrations (sound, small mechanical 

shocks) of stable jets. The difference is in the oscillation amplitude, which is of course 

significantly lower (if not vanishing) for stable jets, as it will be shown below. 

It is instructive to inspect now the intensity of different harmonics of the jet lateral drift. The 

most relevant magnitude for this purpose is the Fourier amplitude measured along the crests of 

the Fourier spectra, hereinafter called “crest height”. We defined it experimentally as the height 

𝑋𝑐(𝑘) of the gaussian peaks associated to each discrete value of the wavenumber 𝑘 (red curves 

in Figure 5.6b). The confidence interval of the gaussian fit was assigned to the uncertainty (error 

bar) of the crest height determination. The magnitude 𝐿𝑐(𝑘) = √𝜔2(𝑘) + (𝑣𝑙𝑘)2 = 𝑣𝑙𝑘√2 is 

considered as a dimensionally correct measure of the “crest length”, with the wave speed 𝑣𝑙-

values being taken from experiments [Figure 5.7] for each distinct CC-PA mixture. 

Experimental 𝑋𝑐(𝐿𝑐)-dependencies obtained in a parametric form [𝐿𝑐(𝑘), 𝑋𝑐(𝑘)] are shown on 

Figure 5.8 (a,b) for forward and backward waves, respectively and for different PA fiber 

volume fractions. Zero frequency values 𝑋𝑐(0) of the crest height corresponds to a lateral offset 
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of the jet centerline are excluded from the plots because they may change between different 

experimental runs and must vanish when averaged over a large number of runs. 

 

Figure 5.8 Dependency of the crest height on the crest length for the lateral oscillations at different PA fibers 

volume fractions (indicated in the legends) and for forward waves (a) or backward waves (b). 

 

We see that, the crest height gradually decreases with the crest length. The maximal 𝑋𝑐-value 

(excluding zero frequency) corresponds to the lowest non-zero discrete wavenumber value 

𝑘𝑑𝑜𝑤𝑛 ≈ 43.3 m-1 imposed by the observable jet length. Thus, for both propagation directions, 

the dominant wavelength corresponds to the jet length: 𝜆𝑚𝑎𝑥 = 2𝜋/𝑘𝑑𝑜𝑤𝑛 ≈ 𝐿 ≈ 0.15 m. On 

the opposite limit, the shortest distinguishable wavelength can be arbitrarily assigned to that 

having an amplitude about 10% of the maximal amplitude at 𝑘 = 𝑘𝑑𝑜𝑤𝑛. This gives 𝑘𝑚𝑎𝑥 ≈

280 m−1, 𝜆𝑚𝑖𝑛 = 2𝜋/𝑘𝑚𝑎𝑥 ≈ 20 mm  for the forward waves and 𝑘𝑚𝑎𝑥 ≈ 140 m
−1, 𝜆𝑚𝑖𝑛 ≈

40 mm for backward waves. This corroborates with a shorter extension of the backward wave 

crests observed in the contour plots of Figure 5.6. In general, the crest height of the backward 

waves is lower than that of the forward ones. On the other hand, we can conclude that the jet 

surface undulation and forward waves of jet lateral oscillations exhibit near similar wavelength 

range, 𝜆 = 0.01(0.02) − 0.15 m. It can also be seen that the oscillation amplitude is high for 

CC-PA mixtures at the fiber volume fractions 𝜑𝑓 ≤  0.7 % vol but abruptly decreases at 𝜑𝑓 =

 0.8 % vol, in agreement with the direct observations showing that jet lateral oscillations 

disappear at 𝜑𝑓 ≳ 0.8 % vol [section 5.1.2]. Thus, at higher fiber concentrations, 𝜑𝑓 =

 1 and 1.2 % vol, the Fourier amplitudes are no longer discernable from the errors of the data 

processing, especially taking into account strong artefacts related to the jet break-up.  

The possible reasons for the jet lateral oscillations, stabilization by fibers and for the transition 

from lateral oscillation regime to jet break-up with increasing fiber content will be inspected in 

the next section 5.3 in conjunction with theoretical evaluations. 
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5.3 Theoretical insight 

          In this section we try to give the responses on the two main questions of the present 

chapter through a few theoretical evaluations employing the jet’s momentum balance. The two 

questions are: (a) Does the jet transverse oscillation come from the DST transition? (b) What is 

the effect of the fibers on the qualitative and quantitative changes of the jet dynamics? 

5.3.1 Stress profile along the jet 

          We restrict our analysis to the steady state flow inside the jet and a straight vertical shape 

of the jet. This is expected to suffice for the analysis of the instability onset and the effect of 

the fiber addition on the instability threshold. In this section, we consider only the jets of CC 

suspensions without PA fibers. We follow Sauter and Buggisch [189] who derived the 

momentum balance equation from the force balance acting on a jet horizontal slice under 

inertia, capillary, gravity and viscous forces. The flow is classically assumed to be purely 

extensional with the axial velocity 𝑢 depending only on the axial 𝑧 coordinate, as schematically 

presented in Figure 2.15b in chapter 2. The original derivation covering only Newtonian fluids 

is easily extended to non-Newtonian rheology and gives the following set of steady-state 

equations for the evolution of the velocity 𝑢, the jet radius 𝑅 and the tensile stress 𝜎𝐸 = 𝜎𝑧𝑧 −

𝜎𝑟𝑟 with the axial position 𝑧 (here, 𝜎𝑧𝑧 and 𝜎𝑟𝑟 are the axial and radial normal stresses, 

respectively): 

𝜌𝑢
𝑑𝑢

𝑑𝑧
=

1

𝑅2
𝑑

𝑑𝑧
(𝜎𝐸𝑅

2 + 𝛾𝑅) + 𝜌𝑔           (5.2) 

𝑢𝑅2 = 𝑢0𝑅0
2        (5.3) 

𝑑𝑢

𝑑𝑧
= 휀̇(𝜎𝐸) =

𝜎𝐸

3𝜂0𝜂𝐸,𝑟(𝜎𝐸)
             (5.4) 

where 𝛾 ≈ 0.07 N/m is the suspension surface tension, 휀̇(𝜎𝐸) is the extension rate at a given 

axial position 𝑧, 휂0 is the low-shear viscosity of the CC suspension corresponding to quasi-

Newtonian regime well below the DST transition [cf. Figure 3.2c in chapter 3 with h0 

corresponding to the slope of the green line], the factor 3 in Eq. (5.4) corresponds to the Trouton 

ratio [154]; 휂𝐸,𝑟(𝜎𝐸) = 휂𝐸(𝜎𝐸)/(3휂0) is the relative extensional viscosity of the non-

Newtonian CC suspension defined as a ratio of the extensional suspension viscosity 휂𝐸(𝜎𝐸) to 

its extensional viscosity 3휂0 at low extension rate. The equation (5.3) is nothing but the flow 

rate conservation along the jet, with the jet speed at the tube outlet (𝑧 = 0) given by Eq. (2.26) 

in chapter 2, while the equation (5.4) is the rheological relationship for the extensional flow 

along the jet.  
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Let us now introduce the following scaling factors for the velocity, the jet radius, the axial 

position and the tensile stress: 

[𝑢] = 𝑢0 =
𝜌𝑔𝑅0

2

32𝜂0
; [𝑅] = [𝑧] = 𝑅0; [𝜎𝐸] = 𝜌𝑔𝑅0             (5.5) 

The dimensionless quantities, �̃�, �̃�, �̃�, �̃�𝐸 are obtained by dividing the respective dimensional 

quantities by the appropriate scaling factors. Combining Eqs. (5.2), (5.3) and (5.4), we arrive 

to the single differential equation for �̃�𝐸(�̃�) taking the following dimensionless form: 

�̃�
𝑑

𝑑𝑢
(
�̃�𝐸

𝑢
+

𝛽

√𝑢
− 휀�̃�) = −

3𝜂𝐸,𝑟(�̃�𝐸)

32�̃�𝐸
               (5.6) 

where 𝛽 = (𝐿𝑐/𝑅0)
2 = 𝛾/(𝜌𝑔𝑅0

2), 휀 = 𝑢0
2/(𝑔𝑅0) = 𝜌

2𝑔𝑅0
3/(1024휂0

2), and 𝐿𝑐 = √𝛾/(𝜌𝑔) is 

the capillary length. To get the speed dependency on the axial position, we use Eq. (5.4) in the 

dimensionless form as follows; 

𝑑𝑢

𝑑𝑧
=

32�̃�𝐸

3𝜂𝐸,𝑟(�̃�𝐸)
                  (5.7) 

It is known that the forward integration of Eq. (5.6) at an arbitrary initial value of �̃�𝐸(1) leads 

to the solution divergence at large speeds �̃� [185]. This problem is commonly handled by 

backward integration with the initial condition physically corresponding to the inertial regime 

at infinite speed far below the tube outlet. This corresponds to the free fall speed 𝑢∞ = √2𝑔𝑧∞, 

the extensional rate 휀∞̇ = √𝑔/(2𝑧∞) = 𝑔/𝑢∞ and the tensile stress at vanishing extensional 

rate 𝜎𝐸(𝑢∞) = 3휂0휀∞̇ = 3휂0𝑔/𝑢∞ or in dimensionless form: 

�̃�𝐸(�̃�∞) =
3𝜂0𝑔

𝜌𝑔𝑅0𝑢0𝑢∞
=

3

32 𝑢∞
                         (5.8) 

Thus, choosing the initial point at �̃�∞ = 10
4 − 105 and the terminal point at �̃� = 1 (tube 

outlet), we obtain numerical solution of the initial value problem [Eq. (5.6), (5.8)] in terms of 

�̃�𝐸(�̃�)-dependency, which, in the case of the Newtonian rheology, is equivalent to the common 

representation in coordinates 𝑑�̃�/𝑑�̃� = 𝑓(�̃�). The dependency of the flow speed on the axial 

position can further be obtained in inverse form by the forward integration of Eq. (5.7): 

�̃�(�̃�) =
3

32
∫

𝜂𝐸,𝑟(�̃�𝐸(𝑢))

�̃�𝐸(𝑢)
𝑑�̃�

𝑢

1
                          (5.9) 

Thus, varying the dimensionless speed in the interval 1 ≤ �̃� ≤ �̃�∞, we get the axial position as 

a function of speed with the help of Eq. (5.9), while the �̃�𝐸(�̃�)-dependency is obtained in the 

parametric form[�̃�(�̃�); �̃�𝐸(�̃�)]. 
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First, we apply this calculation procedure to the Newtonian limit, which is usually appropriate 

for the shear thickening suspension below the DST transition. To this purpose, we put 

휂𝐸,𝑟(�̃�𝐸) = 1 in Eqs. (5.6) and (5.9) and plot in Figure 5.10a the �̃�𝐸(�̃�) theoretical dependency 

(solid red line) for the typical values 𝛽 = 0.66 and 휀 = 2.44 × 10−5 of the parameters in our 

experiments. This dependency has a typical non-monotonic shape of the 𝑑�̃�/𝑑�̃� = 𝑓(�̃�) 

dependencies reported in literature for Newtonian jets [186,190]. The initial increase of the 

tensile stress with the speed corresponds to the viscous regime with the stress �̃�𝐸(�̃�)~�̃�~√�̃�  

and the final decrease stands for the inertial regime with �̃�𝐸~1/�̃� [cf. Eq. (5.8)]. 

The basic assumption of this work is that the onset of the jet oscillation corresponds to the onset 

of the DST regime at some lower DST threshold stress, which should from now be distinguished 

from the upper DST threshold stress above which the stress again exhibits a smooth variation 

with the shear (or extension) rate. To check this point, we need to introduce a constitutive 

rheological equation for a DST fluid under extensional flow within the jet. As it follows from 

particle level simulations [124], the S-shape of the flow curves (typically observed under shear 

[chapters 3 and 4]) is also expected under extension. At such condition, the Wyart and Cates 

(WC) model [107] (originally developed for shear flows) could be extended to extensional flow. 

Recall that the WC model is based on the assumption of a continuous transition between fully 

lubricated contacts between particles at low stresses and fully frictional contacts at high stresses 

with a built-up of a dense contact network [chapter 3, Appendix E]. The conceptual basis of 

this model seems to hold in extensional flow, as inferred from the simulations of the suspension 

microstructure [124]. We have to bear in mind that the WC model describes only steady-state 

flows. It anticipates the stress range of the unstable flow but is unable to describe the flow 

fluctuations. However, as stated above, the assumption of the steady-state condition should still 

be adequate for finding, at least semi-quantitatively, the onset of the jet instability. Thus, 

extending the steady-state WC model to extensional flow, we get the following expression for 

the relative extensional viscosity, 휂𝐸,𝑟 = 휂𝐸/(3휂0): 

휂𝐸,𝑟(�̃�𝐸) = (
1−𝜑𝑝/𝜑𝐿𝑢𝑏

1−𝜑𝑝/𝜑𝐽(�̃�𝐸)
)
2

     (5.10) 

𝜑𝐽(�̃�𝐸) = 𝜑𝐹𝑟𝑓(�̃�𝐸) + 𝜑𝐿(1 − 𝑓(�̃�𝐸))   (5.11) 

𝑓(�̃�𝐸) = exp (−(
�̃�𝐸,𝑐

�̃�𝐸
)
Λ
)    (5.12) 
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where 𝜑𝑝 = 0.68 (corresponding to 68 % vol) is the CC particle volume fraction; 𝜑𝐽(�̃�𝐸) is the 

so-called jamming volume fraction of the suspension particles depending on the proportion 

𝑓(�̃�𝐸) of frictional versus lubricated contacts between particles; 𝜑𝐹𝑟 and 𝜑𝐿𝑢𝑏 are two limiting 

values of 𝜑𝐽, corresponding to fully frictional or fully lubricated contacts; �̃�𝐸,𝑐 is the 

characteristic stress of the DST transition in extension, normalized by [𝜎𝐸] = 𝜌𝑔𝑅0; �̃�𝐸,𝑐 

approaches the DST threshold �̃�𝐸,𝑙 at high values of the stretching exponent L. The factor (1 −

𝜑𝑝/𝜑𝐿𝑢𝑏) in the numerator of Eq. (5.10) appears because the relative viscosity was not 

introduced with respect to the viscosity of the suspending liquid (water) of the CC suspension 

but with respect to the Newtonian suspension viscosity ~(1 − 𝜑𝑝/𝜑𝐿𝑢𝑏)
−2 at low extensional 

rates. The equation (5.12) is one of the simplest empirical laws for the fraction of frictional 

contacts used in the literature and is slightly different from Eq. (3.28) used in chapter 3.  

For the case of the DST fluid, we conducted the backward integration of Eq. (5.6) replacing 

휂𝐸,𝑟.by Eq. (5.10). The theoretical flow curves in extension are plotted in dimensionless form 

in Figure 5.9b, where the dimensionless extensional rate on the abscissa axis is the function of 

�̃�𝐸 calculated as 휀̇̃ = �̃�𝐸  /휂𝐸,𝑟(�̃�𝐸  ). All the flow curves were simulated at the CC particle 

volume fraction 𝜑𝑝 = 0.68, used in experiments, the packing fractions 𝜑𝐹𝑟 = 0.72 and 𝜑𝐿𝑢𝑏 =

0.69 found in chapter 3, Appendix E, and at two values L=5 and 50 of the stretching exponent. 

 

Figure 5.9 Theoretical stress profile (in log-log scale) along the jet of the CC particle suspension in terms of the 

dimensionless tensile stress as function of the dimensionless jet speed (a). Theoretical flow curves for the 

extensional rheology of the CC particle suspension (b). Both plots (a) and (b) are made for the Newtonian jet (red 

solid line) and for the DST WC rheological model (dashed lines) with different values of �̃�𝐸,𝑐 and 𝛬 parameters. 

The shape of the simulated flow curves in extension is qualitatively similar to the shape of the 

shear flow curves [cf. chapters 3 and 4] at a relatively high value Λ = 50 of the stretching 

exponent (green and blue dashed lines in Figure 5.9b). Furthermore, the value Λ = 50 provides 
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the DST threshold stress �̃�𝐸,𝑙 very close to the characteristic stress �̃�𝐸,𝑐 intervening into Eq. 

(5.12). Anyway, both values of Λ = 5 and 50 provide a linear initial section of the flow curve 

extending up to the DST threshold. This linear section has the same slope at both L values 

corresponding to the relative extensional viscosity 휂𝐸,𝑟(�̃�𝐸  ) = 1, as expected for the 

Newtonian regime below the DST transition. 

For calculation of the tensile stress profile along the jet, we have chosen two characteristic 

values of the characteristic stress, the first one �̃�𝐸,𝑐 = 2 being lower than the peak value �̃�𝐸,𝑚 ≈

2.85 of the Newtonian �̃�𝐸  (�̃�) curve (red solid line in Figure 5.9a), and the second one, �̃�𝐸,𝑐 =

3.5 being higher than �̃�𝐸,𝑚. The value �̃�𝐸,𝑐 = 3.5 > �̃�𝐸,𝑚 at Λ = 50 provides the tensile stress 

profile perfectly collapsing to the Newtonian profile (compare blue dash and red solid lines in 

Figure 5.9a). This is expected because at �̃�𝐸,𝑐 = 3.5, the tensile stress does not achieve the lower 

DST threshold all along the jet and the suspension rheology remains perfectly Newtonian, as 

inferred from Figure 5.9b. On the other hand, the value �̃�𝐸,𝑐 = 2 < �̃�𝐸,𝑚 at Λ = 50 provides a 

strong change in the tensile stress profile (green dashed line in Figure 5.9a). Recalling that the 

profile is obtained by the backward integration, the �̃�𝐸(�̃�) curve follows the Newtonian profile 

(red solid line) when the speed decreases from its terminal value �̃�∞ = 10
4 up to some critical 

value �̃�𝑐 and the tensile stress increases from �̃�𝐸(�̃�∞) = 3/(32휀�̃�∞) [Eq. (5.8)] up to a value 

of the lower DST threshold �̃�𝐸,𝑙 ≈ �̃�𝐸,𝑐 = 2. At lower speeds, �̃� < �̃�𝑐, the tensile stress 

experiences a sharp (but mathematically continuous) increase until reaching a peak value 

�̃�𝐸,𝑚 ≈ 50 being an order of magnitude higher than the peak value �̃�𝐸,𝑚 ≈ 2.85 of the 

Newtonian profile. It is quite intuitive to suppose that the surface of the tensile stress jump 

cannot sustain steady-state and likely moves along the jet with some speed. This surface is 

likely subject to corrugation instability by analogy with propagation of the shock wave front, 

when initially flat horizontal front develops growing wavy patterns [190]. This could lead to 

asymmetric shear stresses that are expected to bend initially straight jet. However, at this 

moment, we have not managed to formulate the linear stability analysis proving this hypothesis. 

Notice that decreasing the value of the stretching exponent to Λ = 5 allows a slightly broader 

region of the tensile stress profile above the DST transition (black dashed line in Figure 5.9a) 

with the stress jump always occurring at the lower DST threshold �̃�𝐸,𝑙 ≈ 1.6 which is somewhat 

lower to the imposed value �̃�𝐸,𝑐 = 2 of the characteristic DST stress in WC model [cf. black 

dashed curve in Figure 5.9b]. In summary, whatever Λ and �̃�𝐸,𝑐 values chosen in simulations, 

the tensile stress jump and, presumably, the jet instability occur only if the lower DST threshold 
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stress �̃�𝐸,𝑙 is lower than the peak value �̃�𝐸,𝑚 ≈ 2.85 of the Newtonian stress profile. In terms of 

dimensional magnitudes, this gives the DST tensile stress 𝜎𝐸,𝑙 ≲ 143 Pa comparable to the DST 

shear stress 𝜎𝑐 ≈ 20 − 50 Pa measured in plate-plate or mixer type shear rheometry [Figure 

3.2c]. 

Notice finally that the slender jet approximation used in the present study along with the 

backward integration scheme are not valid for initial part of the jet, 𝑧 ≲ 𝑅0 and lead to incorrect 

values of the tensile stress at the tube outlet (𝑧 = 0) for both Newtonian and shear thickening 

jets (cf. non-zero �̃�𝐸 values at the ordinate axis in Figure 5.9a). However, this artefact has a 

minor influence on the shape of the stress profile at 𝑧 ≳ 𝑅0. 

5.3.2 Effect of fibers on jet stability 

          Let us now inspect the effect of fiber addition to the tensile stress profile along the jet. 

From now, we will restrict our analysis to the Newtonian case below DST in order to compare 

the threshold stress 𝜎𝐸,𝑙 with the peak value 𝜎𝐸,𝑚 of the Newtonian stress profile. The addition 

of fibers impacts the relative extensional viscosity 휂𝐸,𝑟 in Eqs. (5.6) and (5.9) and the parameter 

e, in which the low-shear viscosity 휂0 of the shear thickening matrix (CC suspension) should 

be replaced by the shear viscosity 휂 = 휂0휂𝑟 of the CC-PA mixture: 휀 = 𝜌2𝑔𝑅0
3/(1024(휂0휂𝑟)

2) 

with 휂𝑟 being the relative shear viscosity of the PA fiber suspension with respect to the low-

shear viscosity of the shear thickening matrix. In the Newtonian regime below DST, both 

relative viscosities 휂𝐸,𝑟 and 휂𝑟 are stress-independent but depend on the volume fraction 𝜑𝑓 of 

fibers and on their orientation. As in experiments we do not have access to fiber orientation, we 

will consider two limiting cases of isotropic orientation and fully aligned orientation when all 

the fibers are parallel to the extension axis (jet axis 𝑧 in Figure 2.15b in chapter 2). The values 

of 휂𝐸,𝑟 and 휂𝑟 are obtained using the rheological model of Phan-Tien and Graham (PTG) model 

[167] developed for a wide concentration range of fiber suspensions and slightly modified in 

chapter 3, Appendix A:  

휂𝑟 =
𝜂

𝜂0
= 1 + 2𝜑𝑓 + 𝐺𝜓𝑆    (5.13) 

휂𝐸,𝑟 =
𝜂𝐸

3𝜂0
= 1 + 2𝜑𝑓 +

1

3
𝐺𝜓𝐸   (5.14) 

𝐺 =
𝜑𝑓(2−𝜑𝑓/𝜑𝑚)

3(1−𝜑𝑓/𝜑𝑚)
2

𝑟2𝑓∥(𝑟)

ln(2𝑟)
; 𝑓∥(𝑟) =

1+0.64/ ln(2𝑟)

1−1.5/ ln(2𝑟)
+ 1.659/ (ln(2𝑟))2      (5.15) 
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where 𝜓𝑆 = A1212 and 𝜓𝐸 = A1111 are the shear and extensional components of the 4th rank 

fiber orientation tensor A (the subscripts 1 and 2 stand for the velocity and the velocity gradient 

directions, respectively), whose values are summarized in Table 5.1 for two chosen fiber 

orientations; 𝜑𝑚 = 5.4/𝑟 is the maximum packing fraction of the fiber suspension taken at the 

upper limit of the granular suspension of rods [12]. Notice that the relative shear and extensional 

viscosities take the same value for the isotropic fiber orientation. 

Table 5.1 Parameters of the CC-PA mixtures related to the tensile stress calculations. 

Fiber volume 

fraction/ orientation 

𝜓𝑠 𝜓𝐸  𝑧𝑚 (mm) 𝜎𝐸,𝑚 (Pa) 

𝜑𝑓 = 0 (no fibers) N/A N/A 53.4 143 

𝜑𝑓 = 1 % vol  

(isotropic) 

1

15
 

1

5
 

77.7 253 

𝜑𝑓 = 1 % vol   

(aligned) 

0.315

𝑟𝑒
≈ 0.011*,  

𝑟𝑒 =
1.24𝑟

ln1/2 𝑟
 

1 87.3 394 

* The 𝜓𝑆 parameter for the aligned orientation in a shear flow through the tube (from which the jet flows out) 

corresponds to the solution of Leal and Hinch [168] for the tumbling rods at vanishing Brownian or hydrodynamic 

rotary diffusivity 

The stress profile in terms of the dimensional 𝜎𝐸(𝑧)-dependency is plotted in Figure 5.10 for 

the CC suspension without PA fibers (red line) and CC-PA mixture at 𝜑𝑓 = 1 % vol  for 

isotropic (blue line) and aligned (green line) fiber orientations. Addition of fibers leads to a 

substantial increase of the stress level along the jet and shifts the stress maximum to higher 𝑧 

values. This is easily explained by a larger viscosity of the mixture, which results to a steeper 

initial increase of the tensile stress and allows extension of the viscous regime to higher axial 

positions. Furthermore, the aligned fiber orientation promotes a higher extensional viscosity 

[129] and, consequently, the higher stress level in the jet than the isotropic orientation. For 

quantitative comparison, the peak values of the tensile stress 𝜎𝐸,𝑚 and corresponding axial 

position 𝑧𝑚 are provided in Table 5.2. 
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Figure 5.10 Theoretical stress profiles along the jet in terms of the tensile stress as a function of the axial position 

along the jet for the CC suspension without fibers and CC-PA mixtures at 𝜑𝑓 = 1 % 𝑣𝑜𝑙 and two different fiber 

orientations. 

Increasing 𝜎𝐸,𝑚 values with addition of fibers presumably increases the stress range Δ𝜎𝐸 =

𝜎𝐸,𝑚 − 𝜎𝐸,𝑙 of the DST regime within the jet. However, the lower DST threshold stress in the 

CC-PA mixture is expected to increase with the fiber volume fraction that could reduce the 

DST interval Δ𝜎𝐸. The increasing 𝜎𝐸,𝑙(𝜑𝑓)-dependency is expected to have a similar physics 

as the increasing 𝜎𝑐(𝜑𝑓)-dependency revealed in shear flows [Figures 3.7b, 4.5b]. As discussed 

in chapter 3, this effect is related to local shear rates and local stress levels in the pores of the 

fiber network filled with a shear thickening matrix (CC suspension). This effect is captured 

semi-quantitatively by the homogenization approach of Château et al. [158] extended to the 

controlled stress shear rheology in [chapter 3, Appendix A]. Extrapolation to the axisymmetric 

extension within the jet is straightforward and gives the following expression for the lower DST 

threshold stress 𝜎𝐸,𝑙(𝜑𝑓) in the CC-PA mixture as function of the DST threshold stress 𝜎𝐸,𝑙(0) 

in the CC matrix: 

𝜎𝐸,𝑙(𝜑𝑓) = 𝜎𝐸,𝑙(0)√(1 − 𝜑𝑓)휂𝐸,𝑟(𝜑𝑓)    (5.16) 

It is important to stress that equation (5.16) is a mixture of the three following theoretical 

models: (a) the WC model [107] capturing the DST transition in spherical particle suspensions; 

(b) the PTG model [167] developed for the Newtonian fiber suspensions, and (c) the 

homogenization approach [158] developed for particle dispersions in non-Newtonian solvents. 

Such a combination needs justification. The WC model (typically applied to suspensions of 

spheres) is believed to apply to the sphere-fibers mixtures as long as the four following 

conditions are accomplished: (i) the size of CC particles is a few times smaller than the minor 

size (diameter) of PA fibers (scale separation condition); (ii) DST is generated in the CC 
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particles suspension (shear thickening matrix) filling the space between PA fibers; (iii) the 

fibers are added at concentrations below the percolation limit, so that they enhance the mixture 

viscosity but do not generate DST themselves; (iv) there is no specific interactions between CC 

particles and PA fibers. At these conditions, verified in our experiments, both WC and PTG 

models can be extended to the sphere-fiber mixtures upon appropriate rescaling of the shear 

rate and the shear stress, provided by the homogenization approach. In its original form, this 

approach postulates that the viscosity 휂 of the mixture is equal to the product of the matrix 

viscosity 휂𝑚(�̇�𝑙𝑜𝑐) evaluated at some local shear rate �̇�𝑙𝑜𝑐 by the relative viscosity 휂𝑟 of a fiber 

suspension dispersed in a Newtonian solvent. In the present case of the controlled stress 

extensional flow, the matrix extensional viscosity 휂𝐸,𝑚(𝜎𝐸,𝑙𝑜𝑐) should be considered at a local 

tensile stress 𝜎𝐸,𝑙𝑜𝑐, by analogy with Eq. (3.8), which results in Eq. (5.16) for the lower DST 

threshold. 

To get quantitative evaluation of the 𝜎𝐸,𝑙(𝜑𝑓)-dependency using Eq. (5.16), we need to know 

the lower DST threshold 𝜎𝐸,𝑙(0) of the pure CC suspension. It can be evaluated from the 

minimal jet length, 𝐿𝑚𝑖𝑛 ≈ 60 mm, above which the jet exhibits the lateral drift instability 

[section 5.1.1]. In theory, the lower DST threshold corresponds to the stress level 𝜎𝐸  of the 

stress profile curve (red line in Figure 5.10) taken at 𝑧 = 𝐿𝑚𝑖𝑛. In practice, we have to take into 

account fringing effects related to the jet deceleration near the point where it hits the Petri dish. 

It seems more reasonable to replace the full jet length 𝐿𝑚𝑖𝑛 by the axial distance 𝐿𝑒𝑓𝑓 ≈ 35 mm 

between the tube outlet and the point of the narrowest jet diameter. The lower DST threshold 

is then estimated to be about 𝜎𝐸,𝑙(0) = 𝜎𝐸(𝑧 = 𝐿𝑒𝑓𝑓) ≈ 133 Pa. We have to bear in mind that 

this a very rough estimation subject to the uncertainty of the considered fringing effect and to 

possible errors of the theoretical evaluation of the stress profile. Injecting the 𝜎𝐸,𝑙(0)-value to 

Eq. (5.16), we are able to plot the 𝜎𝐸,𝑙(𝜑𝑓)-dependency and compare it to previously evaluated 

𝜎𝐸,𝑚(𝜑𝑓)-dependency for a particular case of the isotropic fiber orientation – see Figure 5.11a. 
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Figure 5.11 Theoretical phase diagram of the jet stability with the hatched region indicating jet instability against 

lateral oscillations (DST regime) and non-hatched regions standing for stable jets (stable steady-state flow) (a). 

Experimental dependencies of the RMS amplitude and RMS transverse speed (left ordinate axes) on the fiber 

volume fraction compared to the semi-empirical dependency of the DST stress range (right ordinate axis) on the 

fiber volume fraction (b). 

Evaluation shows that the peak tensile stress 𝜎𝐸,𝑚(𝜑𝑓) exhibits a stronger increase with the 

fiber volume fraction, as compared to the lower DST threshold stress 𝜎𝐸,𝑙(𝜑𝑓). This holds for 

the whole experimental range of 𝜑𝑓 and also for the aligned fiber orientation (curves not shown 

for brevity). This implies that, as already supposed, the stress range Δ𝜎𝐸 = 𝜎𝐸,𝑚 − 𝜎𝐸,𝑙 of the 

DST regime within the jet progressively increases with the fiber volume fraction. Thus, the 

fiber addition is expected to amplify the jet lateral oscillations in contrast to experimental 

observations showing a full stabilization at 𝜑𝑓 ≥ 0.8 %vol. 

However, the DST regime can be bounded above by some upper DST threshold stress, 𝜎𝐸,𝑢, 

which is commonly ascribed to the capillary stress in the case of shear flows with free surface 

[100] (as in plate-plate or cylindrical Couette geometries). In that case, through frictional 

particle network, the applied shear stress induces a strong normal stress, which is no longer 

balanced by the ambient air pressure at the free surface but pushes the particles through the 

surface. The fluid menisci between poking particles at the free surface build a capillary pressure 

(stress), evaluated empirically as 𝑝𝑐 ≈ 𝛾/𝐷𝑐, with 𝐷𝑐 being a characteristic size of the menisci 

between poking particles (𝐷𝑐 ≈ 10𝐷𝑝 for spherical particles of a diameter 𝐷𝑝). It has been 

experimentally confirmed that the applied shear stress, 𝜎 ≈ 𝑝𝑐 corresponds to the end of the 

DST regime and the stress shows a modest increase with the shear rate above 𝑝𝑐 [100]. 

Somewhat similar physics is supposed to hold in the present case of the extensional flow within 

the jet. The radial compressive stress 𝜎𝑟𝑟 pushes the suspending liquid towards the jet centerline 

through a quasi-solid particle frictional network; this can “bare” the peripherical particles at the 

jet surface and create menisci between them resulting in a strong capillary pressure. By analogy 
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with shear flows with a free surface, the capillary pressure is expected to prevent particles from 

escaping the surface until the stress level in the suspension overcomes the characteristic 

capillary pressure. It is therefore reasonable to assign the capillary pressure to the upper DST 

threshold stress in extensional jet flows: 𝜎𝐸,𝑢~𝑝𝑐~𝛾/𝐷𝑐.  

Since the fibers are much larger than the CC particles, the characteristic size 𝐷𝑐  of the menisci 

is expected to be defined by some effective size of the fibers. This size should depend on their 

orientation and possibly the volume fraction and agglomeration state. Visual inspection of 

Figure 5.2 reveals appearance of short-scale (≲ 1 mm) irregularities on the jet surface of CC-

PA mixtures, different from blob-and-necks reported in section 5.2.1 and having wavelengths 

𝜆 ≳ 10 mm. These irregularities seem to reflect poking of PA fibers though the jet surface; 

they are absent (or undistinguishable at the current image resolution) for suspensions of CC 

particles without fibers and their size increases with the PA fiber volume fraction. This could 

be attributed to existence of sparse fiber flocs whose size likely increases with the fiber volume 

fraction. Notice that formation of pulp fiber flocs within the free jets of the papermaking furnish 

is a common phenomenon in the papermaking industry [191]. Unfortunately, space resolution 

of our CCD camera was too poor to get reliable measurements of the floc size distribution. We 

can tentatively suppose that the floc size and consequently the characteristic menisci size 𝐷𝑐 

linearly increases with the fiber volume fraction 𝐷𝑐 ∝ 𝜑𝑓, in qualitative agreement with pulp 

flocs behavior [191]. This leads to the following semi-empirical scaling for the upper DST 

threshold stress: 

𝜎𝐸,𝑢 =
𝛾

𝐷𝑐,1𝜑𝑓
     (5.17) 

where 𝐷𝑐,1 is a size scale that should be determined from experiments. In practice we can 

determine 𝐷𝑐,0 by matching the lower and the upper DST thresholds at the fiber volume fraction 

𝜑𝑓,𝑐 ≈ 0.75 % vol, above which the jet becomes stable. Equalizing the right-hand sides of Eqs. 

(5.16) and (5.17) at 𝜑𝑓 = 𝜑𝑓,𝑐, we get 𝐷𝑐,1 ≈ 63 mm. 

The upper DST threshold stress appears to be inversely proportional to the fiber volume fraction 

[Eq. (5.17)], as a direct consequence of our hypothesis on the characteristic size, 𝐷𝑐 ∝ 𝜑𝑓. Of 

course, this scaling fails at very low fiber volume fractions 𝜑𝑓 ≪ 𝜑𝑓,𝑐 ≈ 0.75 % vol when 𝐷𝑐 

is expected to scale with the CC particle size 𝐷𝑝 ≈ 5.5 µm. The semi-empirical dependency 

𝜎𝐸,𝑢(𝜑𝑓)-dependency is shown in Figure 5.11a by a red line. We see that the upper DST 

threshold stress 𝜎𝐸,𝑢(𝜑𝑓) becomes lower than the lower DST stress 𝜎𝐸,𝑙(𝜑𝑓) above a critical 
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fiber volume fraction, 𝜑𝑓,𝑐 ≈ 0.75 % vol. Such a crossover means that DST cannot occur above 

𝜑𝑓,𝑐 that likely results in stable jets at 𝜑𝑓 > 𝜑𝑓,𝑐 in agreement with experiments. Thus, the DST 

regime within the jet is bounded from above by either the peak tensile stress (black curve in 

Figure 5.11a) or the upper DST threshold (red curve) and is bounded from below by the lower 

DST threshold (blue curve). The hatched zone in Figure 5.11a represents a DST region, which 

is likely equivalent to the region of the jet instability against lateral oscillations. In this context, 

the whole Figure 5.11a can be considered as a phase diagram of the jet stability, with the non-

hatched region corresponding to stable jets.  

Once the upper DST threshold is taken into account, the stress range of the DST regime within 

the jet can be evaluated as a vertical distance between the upper and lower bounds of the hatched 

zone in Figure 5.11a giving the following expression: 

Δ𝜎𝐸(𝜑𝑓) = {
min(𝜎𝐸,𝑚, 𝜎𝐸,𝑢) − 𝜎𝐸,𝑙,   at 𝜑𝑓 ≲ 𝜑𝑓,𝑐
0,                                           at 𝜑𝑓 ≳ 𝜑𝑓,𝑐 

     (5.18) 

It is quite intuitive to expect that the intensity of the jet lateral oscillations at 𝜑𝑓 ≲ 𝜑𝑓,𝑐 is 

somehow correlated to the DST stress range Δ𝜎𝐸. To check this point, we evaluated the RMS 

values of the lateral drift amplitude, 𝑥𝑅𝑀𝑆 and of the transverse jet speed, 𝑣𝑅𝑀𝑆, as adequate 

integral parameters describing the intensity of jet oscillations [cf. section 2.2.3]. Notice that the 

kinetic energy (by unit jet volume) of lateral oscillations can be simply evaluated as 𝑒𝑐𝑖𝑛 =

(1/2)𝜌𝑣𝑅𝑀𝑆
2 . The 𝑥𝑅𝑀𝑆(𝜑𝑓) and 𝑣𝑅𝑀𝑆(𝜑𝑓) experimental dependencies are shown in Figure 

5.11b and compared with the theoretical Δ𝜎𝐸(𝜑𝑓)-dependency (blue line) with Δ𝜎𝐸 assigned to 

the right ordinate axis. Both 𝑥𝑅𝑀𝑆 and 𝑣𝑅𝑀𝑆 seem to show an initial increase with the fiber 

volume fraction 𝜑𝑓 followed by a decrease and drastically fall at 𝜑𝑓 = 0.7 − 0.8  % vol, as the 

jet becomes visually stable. Figure 5.11b confirms that non-monotonic dependencies 𝑥𝑅𝑀𝑆(𝜑𝑓) 

and 𝑣𝑅𝑀𝑆(𝜑𝑓) dependencies correlate qualitatively with the concentration dependency of the 

stress range Δ𝜎𝐸(𝜑𝑓) of the DST regime. This is quite logical issue: larger the DST stress 

interval, higher is the intensity of the jet lateral fluctuations. We consider it as another argument 

supporting the basic hypothesis on the rheological (DST) origin of the observed jet instability. 

5.3.3 Break-up length 

          Jet stabilization above the critical fiber volume fraction still cannot explain why the jet 

breaks up at relatively short lengths without any transverse oscillation. To inspect this behavior, 

we evaluate the experimental break-up length, 𝐿𝑏 as the axial distance from the tube outlet 
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above which the rupture probability in Figure 5.3b departs from zero. The experimental 𝐿𝑏(𝜑𝑓)-

dependency is plotted in Figure 5.12 and confirms a progressive decrease of the rupture length 

with fiber volume fraction stated in section 5.3.2.1. 

 

Figure 5.12 Experimental and evaluated break-up length as function of the fiber volume fraction. The red 

horizontal line stands for the jet length. 

Firstly, we can compare our experimental 𝐿𝑏- values with the break-up length of the RP 

instability. The gravity stretching of jets is known to considerably increase the break-up length 

and physically relevant expression for 𝐿𝑏 has been provided by Javadi et al. [192]: 𝐿𝑏 ≈

172(𝑔𝑢0
2𝑅0

4휂0
4/𝛾4)1/3, valid in the limit of high Ohnesorge numbers 𝑂ℎ = 휂0(𝜌𝛾𝑅0)

−1/2 ≫

1, respected in our experiments. Taking into account the scaling 𝑢0 ∝ 1/휂0 [Eq. (2.26) in 

chapter 2] for the jet velocity at the tube outlet, one finds 𝐿𝑏 ∝ 휂0
2/3

 that contradicts to our 

observations of decreasing break-up length with increasing low-shear viscosity 휂0 of the CC-

PA mixtures at increasing fiber volume fractions. Quantitatively, the last expression gives the 

theoretical break-up length ranging between about 300 mm and 430 mm, which is much larger 

than the experimental jet height 𝐿 ≈ 150 mm. This discrepancy, along with the wave speed 

𝑣𝑠 ≫ 𝑢 [section 5.2.2] allows us to definitely rule out the RP instability as a possible reason of 

the jet break-up. 

A similar break-up is usually observed for the jet of Newtonian concentrated suspensions of 

spherical particles and is attributed to finite size effect when the jet diameter thins under gravity 

up to a size equal to ten particle diameters [184]. The factor of 10 has been confirmed for several 

datasets at different particle diameters and suspending liquid viscosities. In our case of CC-PA 

mixtures, fibers are much larger than the CC particles and the characteristic size 𝐷𝑐 ∝ 𝜑𝑓 of the 

fiber flocs is by far an appropriate scale of the jet diameter corresponding to the jet break-up. 



Chapter 5                                Jet flow and jet instability of sphere-fiber mixtures 

 

151  

We can therefore determine the theoretical jet break-up length 𝐿𝑏 as an axial position at which 

the jet average diameter is: 

< 𝑑 >= 𝐷𝑐 = 𝐷𝑐2𝜑𝑓     (5.19) 

where 𝐷𝑐2 is a size scale that should be determined from experiments. We evaluated the break-

up length using experimental dependencies < 𝑑 > (𝑧) of the jet diameter on the axial distance 

[Figure 5.3a]. Equalizing < 𝑑 > (𝑧)  from Figure 5.3a to the right-hand part of Eq. (5.19), we 

get semi-empirical 𝐿𝑏 values for each fiber volume fraction 𝜑𝑓 at different 𝐷𝑐2 values. The final 

semi-empirical 𝐿𝑏(𝜑𝑓)-dependency (corresponding to the finite particle size scenario of the jet 

break-up) is obtained by choosing a 𝐷𝑐2 value that provides the closest agreement with 

experimental 𝐿𝑏(𝜑𝑓) curve. This value is 𝐷𝑐2 ≈ 1 mm under condition that 𝜑𝑓 in Eq. (5.19) is 

substituted in (% vol) units. Such evaluation gives discrete values of 𝐿𝑏 at each experimental 

value of the fiber volume fraction. These discrete values are added to Figure 5.12 as open circle 

symbols. We observe a qualitative agreement between experiments and evaluation, both 

showing the decrease of the break-up length with the fiber volume fraction that is ascribed to 

increasing critical jet diameter [Eq. (5.19)] corresponding to the jet rupture. Notice that at 

relatively weak fiber volume fractions 𝜑𝑓 ≤ 0.7 %vol, the jet does not thin down the theoretical 

critical diameter [Eq. (5.19)], and the model does not predict jet rupture at 𝜑𝑓 ≤ 0.7 %vol in 

contrast to experiments. This discrepancy is likely related to very rough evaluation of the fiber 

floc size 𝐷𝑐 ∝ 𝜑𝑓 whose scaling should be checked by recording the jet flow at higher space 

resolution. At this stage, we can claim that an increasing size of the jet surface roughness (fiber 

floc size) gives a good explanation for the experimental concentration dependencies of the 

oscillation amplitude (𝑥𝑅𝑀𝑆(𝜑𝑓) and 𝑣𝑅𝑀𝑆(𝜑𝑓), Figure 5.11b) and break-up length (𝐿𝑏(𝜑𝑓), 

Figure 5.12). 

5.4 Conclusion 

          This chapter is devoted to the detailed study of the jet instability occurring in concentrated 

non-Brownian sphere-fiber mixtures presumably above the DST transition in extensional flow. 

In experiments, we employed either an aqueous suspension of CC isotropic-shaped particles or 

aqueous mixtures of CC particles with PA fibers at CC and PA volume fractions, respectively, 

𝜑𝑝 = 𝑐𝑜𝑛𝑠𝑡 = 68 % vol and 𝜑𝑓 = 0 − 2 % vol. The jets of these fluids were subjected to a 

free fall under gravitational stretching at a constant flow rate. The jets were filmed with a high-

speed camera and the stacks of the frames were processed with the MATLAB software in order 

to extract several quantitative characteristics of the jet dynamics. Evaluations of the tensile 
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stress profile along the jet allowed us to shed more light to the origin of the observed instability 

and to propose explanations of the effect of the fiber addition on the observed oscillation-to-

break-up transition. The main results can be summarized as follows: 

1. In the absence of PA fibers, direct visualization of falling jets of CC suspension reveals 

relatively strong lateral oscillations occurring for the jet lengths 𝐿 ≳ 6 cm. Spatiotemporal 

diagrams show that the jet lateral drift 𝑥(𝑡, 𝑧) is accompanied by small but distinguishable 

undulations ∆𝑑(𝑡, 𝑧) of the jet diameter. 2D DFT analysis of 𝑥(𝑡, 𝑧) and ∆𝑑(𝑡, 𝑧) reveals 

approximately linear dispersion relations for propagation of lateral oscillations (𝜔 ≈ 𝑣𝑙𝑘) and 

diameter undulation (𝜔 ≈ 𝑣𝑠𝑘) reminiscent for non-dispersive waves. The wave speeds are 

(within experimental errors) similar for both wave types, 𝑣𝑙 ≈ 𝑣𝑠 ≈ 0.9 m/s, being much larger 

than the jet speed. Moreover, both 𝑥(𝑡, 𝑧) and ∆𝑑(𝑡, 𝑧) oscillations are observed within nearly 

similar wavelength range 𝜆~0.01 − 0.15 m bounded above by the jet length. This allows 

supposing both waves types to be of the same origin related to stress fluctuations above the 

DST transition, while the Rayleigh-Plateau instability for ∆𝑑(𝑡, 𝑧) is ruled out. The difference 

is that the diameter undulation propagates only downstream the jet, while the lateral oscillations 

propagate both downstream at 𝑣𝑙 ≈ 0.9 m/s and upstream at 𝑣𝑙 ≈ −0.9 m/s. The lateral drift 

amplitude (wave crest height) 𝑋𝑐 decreases with the wave crest length 𝐿𝑐 ∝ 𝜔 ∝ 𝑘, with the 

dominant wavelength being equal to the jet length. 

2. Adapting the WC model [107] to extensional flows, we predict abrupt (but mathematically 

continuous) increase of the tensile stress 𝜎𝐸  along the jet, at a location corresponding to the 

lower threshold stress 𝜎𝐸,𝑙 of the DST transition. Such a tensile stress jump is believed to be 

responsible for the jet instability by analogy with shock waves behaviors [190]. Above the DST 

transition, tensile stress fluctuations are expected to lead to fluctuation of the longitudinal and 

transverse velocity fields within the jet; the former being manifested through undulation of the 

jet diameter and the latter being perceived as jet transverse oscillations. Hence, linear and non-

linear stability analysis is required to validate these hypotheses. 

3. Addition of PA fibers to the CC suspension damps lateral oscillations at fiber volume 

fraction 𝜑𝑓 ≳ 0.75 %vol but favors ruptures along the jet at a critical break-up length 𝐿𝑏 

decreasing with 𝜑𝑓. Such oscillation-to-break up transition is tentatively explained by the 

interplay between growing lower (𝜎𝐸,𝑙) and decreasing upper (𝜎𝐸,𝑢) DST threshold stress with 

increasing 𝜑𝑓 along with the jet thinning down the size of fiber flocs poking through the jet 

surface when the tensile stress overcomes the capillary pressure. The upper concentration limit, 

𝜑𝑓,𝑐 ≈ 0.75 %vol, of the jet instability is fixed by the crossover of the two DST thresholds 𝜎𝐸,𝑙 
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and 𝜎𝐸,𝑢. The lower concentration limit is simply 𝜑𝑓 = 0 for any jet length 𝐿 ≳ 60 mm because 

the tensile stress 𝜎𝐸  along the jet overcomes the lower DST threshold stress 𝜎𝐸,𝑙 at 𝜑𝑓 = 0. Our 

theoretical model allows plotting a (𝜎𝐸 , 𝜑𝑓) phase diagram of the jet stability and qualitatively 

captures the shapes of the concentration dependencies of the break-up length 𝐿𝑏(𝜑𝑓), RMS 

oscillation amplitude 𝑥𝑅𝑀𝑆(𝜑𝑓) and RMS transverse speed 𝑣𝑅𝑀𝑆(𝜑𝑓). On the other hand, 

within statistical errors, the wave speeds are poorly affected by addition of fibers. This agrees 

with the model of vibrating solid string under gravitational stretching predicting the wave speed 

𝑣𝑙 = √𝑔𝐿/2 independent of any rheological parameters including the particle volume fraction. 

Surprisingly, experimental wave speed values 𝑣𝑙 = 0.9 ± 0.2 m/s are in a good quantitative 

agreement with the vibrating string model, 𝑣𝑙 ≈ 0.87 m/s, as already reported by Liard et al. 

[127]. Such agreement likely suggests solid-like behavior of the unstable jet above the DST 

transition. 

4. Because of the jet opacity, we were unable to establish the effect of fiber orientation on the 

jet behavior. However, from evaluations of 𝜎𝐸(𝑧) and 𝜎𝐸,𝑙(𝜑𝑓), we could anticipate that the 

flow-aligned fibers provide distinguishable increase of the peak stress 𝜎𝐸,𝑚 and the lower DST 

threshold 𝜎𝐸,𝑙 with respect to the random orientation. However, random orientation better 

correlates with the particle poking scenario of the upper DST threshold and jet break-up (the 

fibers aligned along the jet surface would not result in significant jet surface “roughness” 

observed in experiments). In addition to it, in our previous study, the random fiber orientation 

gave better flow curve predictions in shear flows as compared to aligned orientation. 

The results of this chapter are believed to be useful for both practical applications of shear 

thickening jets (in cement jet grouting, shear thickening polishing, abrasive jet cutting, mortar 

spraying, cement pumping, etc.) and academic research through detailed characterization of the 

new type of jet instability and alternative testing of the extensional rheology of DST fluids, as 

briefly outlined in Appendix (section 5.5). A separate study is needed to develop this rheometric 

method. 

5.5 Appendix: a concept of the jet extensional rheometry 

          In experiments with free falling jets, one can record the flowing jet and using an image 

calculator measure the radius profile along the jet, 𝑅(𝑧). Knowing the jet velocity at the tube 

outlet 𝑢0, one has a direct access to the extension rate along the jet: 

휀̇(𝑧) = 𝑑𝑢/𝑑𝑧 = 𝑢0𝑅0
2𝑑(𝑅−2)/𝑑𝑧    (5.20) 



Chapter 5                                Jet flow and jet instability of sphere-fiber mixtures 

 

154  

The tensile stress profile can be obtained by rearranging Eqs. (5.2) - (5.4) and integrating along 

the jet length: 

𝜎𝐸(𝑧) ≈ 𝜌(𝑢0𝑅0
2)2𝑅−4(1 − (𝑅/𝑅𝑚)

2) − 𝜌𝑔𝑅−2 ∫ 𝑅2𝑑𝑧
𝑧

𝑧𝑚
− 𝛾𝑅−1(1 − 𝑅𝑚/𝑅)    (5.21) 

where 𝑧𝑚 is the axial position of the minimal jet radius 𝑅𝑚 (when the extension is cancelled by 

the compression some distance above the point where the jet hits the bottom surface). Then, the 

flow curve 𝜎𝐸 = 𝑓(휀̇) can be plotted in a parametric form [휀̇(𝑧); 𝜎𝐸(𝑧)], with the axial distance 

𝑧 being a parameter.
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A. Conclusion 

          This thesis work is an experimental and theoretical study on the discontinuous shear 

thickening (DST) in concentrated non-Brownian suspensions containing isotropic shaped 

particles and fibers. Our studied system consists of calcium carbonate (CC) suspension loaded 

with polyamide or glass fibers. This shear thickening mixture represents a model for fiber-

reinforced cementitious materials broadly used in industrial applications. The main objective 

of this work is to study the DST phenomenon in the sphere-fiber mixtures and to analyze the 

effect of the fiber addition on the suspension rheology. In particular, we have studied the DST 

phenomenon in the context of mixing and pumping of cementitious materials loaded with fibers.  

To simulate the mixing process, we conducted shear rheological experiments in a 

rotational rheometer using the mixture of CC-suspension with polyamide (PA) or glass rigid 

fibers and either conventional plate-plate geometry or a customized mixer type geometry with 

a double helix rotor tool. The results of the shear tests for the two geometries employed were 

remarkably deferent particularly on the critical stresses and the critical shear rates of the DST 

onset, which were much lower for the mixer type geometry. The addition of fibers to the shear 

thickening CC suspension also has a major impact to its rheology; at increasing fiber volume 

fractions, the DST threshold shifted to lower critical shear rates, which is obviously explained 

by the increase in the viscosity of the mixture, so that the shear rate to reach the DST onset 

stress decreased. Models based on the homogenization approach of Château et al. [158] and the 

reduced shear rate approach of Ohl and Gleissle [114] also validated the experimental 

observations satisfactorily. An approach adapted from the frictional particle contact model of 

Wyart and Cates [107] was also applied for our mixture but the predictions of the model above 

the DST transition revealed a considerable difference with the conducted shear experiments. 
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In order to simulate the effects of DST during the pumping of fiber-reinforced concrete 

in a construction site, a home-made pressure-controlled capillary rheometer was used for 

pressure-driven flows of  the CC-suspension with PA-fibers at different fiber volume fractions. 

The results of the capillary rheometry were then compared with those of the rotational 

rheometry using the conventional cylindrical Couette geometry. Quantitatively, the flow curves 

obtained in capillary rheometry and cylindrical Couette geometry were relatively close to each 

other for low fiber volume fraction 𝜑𝑓 ≤ 1% vol, However, for higher volume fractions, 𝜑𝑓 ≥

2% vol, the flow curves of the capillary rheometry showed much higher suspension viscosity 

(lower shear rates for a given shear stress) than those of the shear rheometry with cylindrical 

Couette geometry. We have explained this difference by the fact that starting from a fiber 

volume fraction 𝜑𝑓 = 2% vol, the microstructure of the suspension likely becomes 

significantly different in the capillary flow compared to the simple shear flow. The capillary 

rheometry results were also compared with the H-model predictions based on the 

homogenization approach of Château et al. [158]. . The prediction came in agreement with  

experiments at 𝜑𝑓 ≤ 1% vol, while the H-model fails to reproduce the experimental flow 

curves at 𝜑𝑓 ≥ 2% vol. 

Finally, in order to characterize the DST in extensional flows,  encountered when the 

fiber-reinforced concrete exits the pumping line, we conducted experiments on the jet of CC-

suspension with PA-fibers. The suspension jet was subject to tensile forces due to gravitational 

stretching. We characterized the instabilities of the jet both in its diameter variation and the 

lateral drift  of the jet centerline from the vertical axis of the flow. For the first time and 

differently from the reported works in the literature, a two-dimensional Fourier analysis of the 

spatiotemporal maps of the jet instantaneous diameter and lateral drift was conducted. The 

Fourier analysis revealed propagation of non-dispersive waves associated to the jet centerline 

fluctuations and jet surface undulations and allowed us to obtain the wave speeds and 

amplitudes of these fluctuations. It was concluded that the CC- suspension jet, depending on its 

height, transits from a stable to an unstable state with viscoelastic instabilities occurring at the 

tensile stresses presumably above the DST threshold stress. On the other hand, the addition of 

PA-fibers with increasing volume fractions remarkably stabilizes the jet by modifying the 

viscosity of the mixture and thus influencing the threshold of the DST onset. However, the 

addition of fibers at high concentrations favors fractures in the jet giving a new form of 

instability, which can be explained by the thinning of the jet diameter down to the size of flow-

induced fiber flocs visible on the jet surface. 
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B. Perspectives  

          The experimental and theoretical work carried out during this thesis has provided original 

results on the rheological behavior of shear thickening suspensions concentrated by fibers, we 

were able to characterize the phenomenon of DST and to describe its effects in different 

geometries and different flow types. However, it would be very interesting to complete our 

study with a deep analysis of the shear-induced microstructure of sphere-fiber mixtures using 

X-ray micro-tomography technique. It would also be interesting to conduct dynamic 

simulations at particles and fibers scale, as the simulations provide considerable insight into the 

microscopic physics of the DST transition. X-ray micro-tomography and particle level 

simulations will allow evaluating the spatial and orientational distributions of fibers orientation 

in the shear thickening matrix, as well as the spatial distribution of the contact network between 

the isotropic-shaped particles and will validate (or not) the fiber percolation scenario of the flow 

blockage above the fiber percolation threshold. Finally, the extrapolation of our results to the 

fiber-reinforced cement paste is believed to advance the cement production industry.
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