
HAL Id: tel-04107211
https://theses.hal.science/tel-04107211

Submitted on 26 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Approaches for Sub-surface
Geological Heterogeneous Sources

Molood Arman

To cite this version:
Molood Arman. Machine Learning Approaches for Sub-surface Geological Heterogeneous Sources.
Databases [cs.DB]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG014�. �tel-04107211�

https://theses.hal.science/tel-04107211
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
3U

PA
SG

01
4

Machine Learning Approaches for
Sub-surface Geological Heterogeneous

Sources
Approches d’apprentissage automatique pour des sources

hétérogènes géologiques de sous-sol

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ d’580, sciences et technologies de l’information et de
la communication (STIC)

Spécialité de doctorat: Informatique
Graduate School : Informatique et sciences du numérique, Référent :

CentraleSupélec

Thèse préparée dans la unité de recherche Laboratoire
interdisciplinaire des sciences du numérique (Université
Paris-Saclay, CNRS), sous la direction de Nacéra Seghouani,

Professeure, la co-direction de Francesca BUGIOTTI,
Enseignant-chercheure, la co-supervision de Sylvain Wlodarczyk, chef

de projet chez Schlumberger.

Molood Arman

Composition du jury
Esteban Zimanyi Rapporteur & Examinateur
Professeur, Université Libre de Bruxelles
Amel Bouzeghoub Rapportrice & Examinatrice
Professeure, Telecom SudParis
Hélène Bonneau Examinatrice
Dr., Université Paris-Saclay, LISN
Anne Vilnat Examinatrice
Professeure, Université Paris-Saclay, LISN

Titre: Approches d’apprentissage automatique pour des sources hétérogènes géologiques de sous-sol

Mots clés: Apprentissage automatique, Entité Nommée, Modèle de langage spécifique à un domaine,
géologie de sous-sol

Résumé: Dans le domaine de l’exploration et de la
production du pétrole et du gaz, il est essentiel de
comprendre les structures géologiques de sous-sol,
tels que les diagraphies de puits et les échantillons
de roche, afin de fournir des outils de prédiction
et d’aide à la décision. Exploiter des données pro-
venant de différentes sources, structurées ou non
structurées, telles que des bases de données rela-
tionnelles et des rapports numérisés portant sur la
géologie du sous-sol, est primordial. Le principal
défi pour les données structurées réside dans l’ab-

sence d’un schéma global permettant de croiser
tous les attributs provenant de différentes sources.
Les défis sont autres pour les données non structu-
rées. La plupart des rapports géologiques de sous-
sol sont des versions scannées de documents. L’ob-
jectif de notre travail de thèse est de fournir une
représentation structurée des différentes sources de
données, et de construire des modèles de language
spécifique au domaine pour l’apprentissage des en-
tités nommées relatives à la géologie du sous-sol.

Title: Machine Learning Approaches for Sub-surface Geological Heterogeneous Sources

Keywords: Machine Learning, NER, Heterogeneous documents, Domain-specific language models,
Sub-surface geology

Abstract: In oil and gas exploration and produc-
tion, understanding subsurface geological struc-
tures, such as well logs and rock samples, is es-
sential to provide predictive and decision support
tools. Gathering and using data from a variety of
sources, both structured and unstructured, such
as relational databases and digitized reports on
the subsurface geology, are critical. The main chal-
lenge for the structured data is the lack of a glo-

bal schema to cross-reference all attributes from
different sources. The challenges are different for
unstructured data. Most subsurface geological re-
ports are scanned versions of documents. Our dis-
sertation aims to provide a structured represen-
tation of the different data sources and to build
domain-specific language models for learning na-
med entities related to subsurface geology.

To women of my homeland, Iran, who fight bravely and resiliently for their freedom and equality
Woman, Life, Freedom

Femme, Vie, liberté
Zan, Zendegi, Azadi

Acknowledgements

I would like to express my deepest appreciation to the members of my dissertation committee who
gave me this honor by agreeing to serve on the committee - Esteban Zimanyi, professor at Université Libre
de Bruxelles, Amel Bouzeghoub, professor at Telecom SudParis whom I am most appreciative for their
time and extreme patience and also for their encouragement, scientific and constructive feedback. I also
extend my deepest gratitude to Hélène Bonneau-Maynard and Anne Vilnat, professors at Paris-Saclay, for
their time and consideration, knowing they would probably have less than two weeks to read my dissertation.

I would like to acknowledge and give my sincere and heartfelt gratitude and appreciation to a wonderful
supervisor Nacéra Seghouani who made this work possible. Undoubtedly, completing this dissertation would
not have been possible without her continuous support and deep understanding of my life’s sudden and
challenging circumstances. She always provided me with the guidance and counsel I needed to succeed in
my path with her academic instruction, meticulous scrutiny, scientific perspective, and encouraging empathy.
I would also like to thank Sylvain Wlodarczyk and Francesca Bugiotti for providing perspective, feedback,
and practical suggestions throughout this research.

I also would like to thank Patrick Marcel from the university of Tours, Paolo Papotti from Eurecom in
Sophia Antipolis, Philippe Caillou from the university Paris-Saclay and again Anne Vilnat from Paris-Saclay
for their dedication, scientific perspective, and constructive advice.

This dissertation would not have been possible without financial support, which was fully funded by
the Ministry of Higher Education, Research and Innovation, which has entrusted its implementation to the
ANRT (Association Nationale de la Recherche et de la Technologie).

This work would have been much more difficult to complete without the support and friendship of some
colleagues at the Schlumberger Montpellier Technology Center (MPTC). I am indebted to them for their
emotional support and occasional advice.

Finally, but not least, I want to thank my parents, family, and friends. I want to express my gratitude
to my parents for their unconditional love, support, care, and instruction in the moral values which guide
my daily decisions, for trusting me when I would lose hope, and for being with me when I fell sick. Also,
special thanks to Soudeh Ghasemian, a friend who stood by my side when times got hard and has never
gotten tired of listening to my dramas and crying with me in the bad times. Thank you for being so much
joy in my life and being my sister through it all, and making me laugh when I didn’t even want to smile,
and to Cristian Hedes, a friend on whom I can always depend and who was by my side like a brother in this
prolonged journey.

Table of Contents

1 Introduction 1
1.1 Context . 1

1.1.1 Schlumberger . 1
1.1.2 Sub-surface Geology Domain Terminologies . 1

1.2 Problem Statement . 6
1.3 Proposed Approaches: Specific Aims . 7

1.3.1 Contributions . 7
1.4 Thesis Outline . 9

1.4.1 Chapter Two . 9
1.4.2 Chapter Three . 10
1.4.3 Chapter Four . 10
1.4.4 Chapter Five . 10

2 PROCLAIM: an Unsupervised Method to Build a Domain-specific Global Schema 13
2.1 Introduction . 13
2.2 Related Work . 15
2.3 PROCLAIM Overview . 18
2.4 Data Preprocessing . 19

2.4.1 Data Integration in Column-based Data Formats 20
2.4.2 Data Cleaning and Transformation . 21

2.5 Data Type Identification . 21
2.6 Attribute Profile Representation . 22
2.7 Attribute Labeling . 25

2.7.1 Clustering . 25
2.7.2 Extended OPTICS . 28
2.7.3 Labeling Function . 29
2.7.4 PROCLAIM Global Schema . 30

2.8 Experiments and Analysis . 30
2.8.1 Environment . 31
2.8.2 Datasets . 31
2.8.3 Evaluation and Analysis . 33

2.9 Conclusion . 37

3 Machine Learning for Document Structure Recognition 39
3.1 Introduction . 39
3.2 Related Work . 47
3.3 OCRANA Overview . 50
3.4 Structured Format . 51

7

3.4.1 OCRANA Data Model . 51
3.4.2 Column-oriented/Parquet Datastore . 53

3.5 Layout Labeling . 54
3.5.1 Labeling Functions . 57
3.5.2 Weakly Supervised Learning Model . 58
3.5.3 Position-based Naïve Bayes Classifier . 63
3.5.4 Evaluation and Experiments . 64

3.6 Semantic Analysis . 69
3.7 Conclusion . 74

4 Unsupervised NER by Automatic Generation of Domain-specific Gazetteers 77
4.1 Introduction . 77
4.2 Background and Preliminaries . 79

4.2.1 Static Word Representation . 80
4.2.2 Contextualized Word Representations . 81

4.3 GAGNER Overview . 84
4.4 Automatic Generation of Domain-specific Gazetteers . 88

4.4.1 Sub-Surface Geology Corpus (C) . 88
4.4.2 Collecting a Set of Seeds . 88
4.4.3 Training Different Static Word Embedding Methods 89
4.4.4 Popularity Score . 92
4.4.5 Implementation and Setup . 94
4.4.6 Evaluation . 95

4.5 Automatic Construction of Annotated NE Corpus . 97
4.6 Learning a Sub-surface Named Entity Model . 98

4.6.1 Fine-tuned BERT . 99
4.6.2 Classification Layer . 100
4.6.3 Model Optimization . 100
4.6.4 Model Evaluation . 101

4.7 Conclusion . 102

5 GeoBERT: NER using Domain-Specific Language Models 105
5.1 Introduction . 105
5.2 Related Work . 107
5.3 GeoBERT Overview . 109
5.4 Extension Embedding Module . 110

5.4.1 Limited Source Corpus . 112
5.4.2 Vocabulary . 113

5.5 Pre-training GeoBERT . 114
5.5.1 Data set and Setup . 114
5.5.2 Experiment and Analysis . 114

5.6 Finetuning GeoBERT . 123
5.6.1 Data set and Setup . 123

8

5.6.2 Experiments and Analysis . 126
5.7 Conclusion . 127

6 Conclusion and Future Work 129

7 A summary of the thesis in French 135

9

1 - Introduction

1.1 . Context

1.1.1 . Schlumberger
Schlumberger2 is recognized as the world’s largest service company for the oil

and gas industry and has been operating in this field since 1920. A service company
is a business whose income is from providing services instead of selling physical pro-
ducts [1]. A closer look at the oil and gas industry reveals that "service companies
provide the infrastructure, equipment, intellectual property, and services needed by
the international oil and gas industry to explore for, extract, and transport crude
oil and natural gas from the earth to the refinery, and eventually to the consumer"
(Wikinvest, n.d. 1). Within the industry, The company currently has more than
92,000 employees across more than 140 different nationalities working in about 85
countries.

The main business of Schlumberger can be divided into two segments: oilfield
services and IT services. "The oilfield services segment is a wide range of services
and products covering formation evaluation, directional drilling, well cementing and
stimulation, well completion, and productivity to consulting software and informa-
tion management" 2. On the other hand, the IT services segment provides services
that support key industry operational processes. Over 100 years, the company has
accumulated a wealth of oil exploration and production knowledge. Additionally,
Schlumberger has demonstrated a commitment to using technology and innova-
tion in processes through its extensive network of research and innovation centers.
The company also derives a competitive advantage from its global perspective,
providing a diverse workforce and international experience to support local know-
ledge and deliver superior service anywhere. Schlumberger is constantly working
on research and development to get advanced approaches for its operations and
processes. It aims to provide innovative technologies and solutions for oil and gas
exploration from the reservoir sub-surface to the surface. The company makes si-
gnificant investments in R&D because it sees technology as a long-term strategy
to support and expand its operations. Schlumberger invests more annually in R&D
than all other oil service companies combined 2.

1.1.2 . Sub-surface Geology Domain Terminologies
Experts deal more with sub-surface data than outcrop data (the rock details

on the surface of the ground) while they work in the petroleum domain. The sub-
surface geology domain studies the physical properties and location of rocks found
below the earth’s surface. Sub-surface studies can provide critical inputs for oil

1. https://www.shorturl.at/jkY14
2. https://www.slb.com/

1

https://www.shorturl.at/jkY14
https://www.slb.com/

and gas development and carbon sequestration. Sub-surface studies are essential
in domains such as the petroleum and construction industries. For this industry,
mining sand and gravel deposits are an important source of revenue. The decisions
made throughout the mining process can be influenced by knowing how much
and what kind of sand and gravel are present in a mineral deposit. In addition,
sub-surface studies are critical to ensure a consistent supply of clean water; it is
crucial to understand and safeguard groundwater aquifers, which is why sub-surface
geology study is crucial. Other specific applications sub-surface investigations can
offer are seismic imaging of magma chambers, geothermal exploration, identifying
active faults (paleoseismology), and metal mining. There are terminologies and
vocabularies specific to this domain. The definition of the most important ones,
which helps for a better understanding of the content of this research, are explained
in the following:

Stratigraphy. The word stratigraphy comes from the Latin word Stratum
(layers of rock) and the Greek word graphia (to study). Stratigraphy is a geos-
cience branch that mainly studies rock deposits (strata) and stratification (buffer
layers). Stratified rock can result from successive lava flows or the formation of
extrusive igneous rocks [2] [3].

Stratigraphy has three related subfields: lithostratigraphy (lithologic stratigra-
phy), biostratigraphy (biologic stratigraphy), and chronostratigraphy (stratigraphy
by age) 3. Table 1.1 shows the principal stratigraphic unit terms related to this
categorization.

Table 1.1 – Stratigraphic categorization and their related unit terms [2]

Stratigraphic categorization Stratigraphic Unit Terms Equivalent Terms

Lithostratigraphy

Supergroup, Group
Formation
Member

Bed(s), Flow(s)

Biostratigraphy

Biozones:
Range zones
Interval Zones
Lineage Zones

Assemblage Zones
Abundance Zones

Other kinds of biozones

Chronostratigraphy

Eonothem Eon
Erathem Era
System Period
Series Epoch
Stage Age

Substage Subage (or Age)
(Chronozone) (Chron)

3. https://en.wikipedia.org/wiki/Stratigraphy

2

https://en.wikipedia.org/wiki/Stratigraphy

Figure 1.1 – LITHOSTRATIGRAPHY: The Albian sequence of the North Sea [4]

Lithostratigraphy. The stratigraphy part uses lithology (the type of rocks)
and stratigraphical relationships to characterize and name rocks. This information
is used to organize rock bodies into lithostratigraphic units. Rock type physical
contrasts cause variation in rock units (lithology). Lithostratigraphy is the division
of rock successions into units based on lithology. These Units can be identified by
visible physical characteristics and are classified in the following order, highest to
lowest [2] [3]:

— Group is made up of two or more adjacent or related formations. Related
groups may be part of a supergroup.

— Formation is the primary unit of lithostratigraphy that is only identified on
lithology.

— Member is a formation’s designated lithological subdivision, which may
extend into other formations.

— Bed is a member’s or formation’s named distinctive layer (a key bed or a
marker bed).

The division, classification, and arrangement of rock strata according to their li-
thologic characteristics is known as lithostratigraphic classification.

It is necessary to know some critical points about lithostratigraphy in the sub-
surface domain:

— Lithostratigraphy is an essential component of model development in explo-
ring oil and gas.

3

— The goal of the petroleum geologist is to create a comprehensive, all-
encompassing stratigraphic model that aids in the exploration of oil and
gas. In that model, lithostratigraphy is included.

Figure 1.2 – Upper Cretaceous lithostratigraphy correlation charts in different locations:
UK, Norway, and Denmark [4]

Lithology. The study of the fundamental physical properties of rock units, such
as color, texture, grain size, and composition, is known as lithology. Lithology can
refer to a thorough explanation of these traits or a synopsis of a rock’s overall
physical characteristics. Sandstone, slate, basalt, or limestone are also examples of
lithologies.

Formation. The fundamental unit of lithostratigraphy is a formation, often
known as a geological formation. A formation comprises a specific number of rock
strata with similar lithology, facies, or other characteristics. Since the thickness of
the rock layers that make up a formation is not a defining factor, the thickness of
various formations can vary considerably [3].

Boundaries of Lithostratigraphic Unit (Depth Interval). Boundaries
of lithostratigraphic units are fixed arbitrarily within zones of lithologic gradation
or at naturally occurring acute or distinct contact between different lithologies at
places of lithologic change. These boundaries of the lithostratigraphic units define
the depth interval of that lithostratigraphic unit in between two units [2] [3] (as
shown in Figure 1.1).

4

Figure 1.3 – Boundaries of Lithostratigraphic Unit (Depth Interval) [4]

Well Definition. A well is a hole planned or already bored into the earth to en-
able the interchange of fluids between a subterranean reservoir and the surface (or
another reservoir) or to enable the detection and measurement of rock properties.
A physical well is formed each time the drill bit pierces the earth’s surface. There
are particular well-related elements that aid in better defining a well, including the
following [5]:

1. Well Origin: The location on the ground’s or ocean’s surface is known as
the well origin, where the drill bit enters or is intended to enter the ground
to construct or overhaul a well.

2. Wellbore: The wellbore is the route that drilling footage takes from the well
origin (at the top) to its end (bottom).

3. Wellbore Segment: A well’s wellbore segment is a distinct interval that
extends from the well’s starting point (well origin) to its ending point or
extra distance from a point in an existing wellbore to the end (terminating
point).

4. Wellbore Contact Interval: To produce, inject, or provide service, a well-
bore must come into contact with one or more stratigraphic zones within a
defined depth range known as the "wellbore contact interval".

5. Wellbore Completion: A group of one or more wellbore contact intervals
that combine to create or inject fluids is known as a wellbore completion.

6. Wellhead Stream: A fluid flow through a conduit called the "Wellhead
Stream" is controlled by an installed wellhead arrangement.

7. Kickoff Point (KOP): It is a location where directional operations start in
a vertical wellbore or inclined section of a slant well.

5

Figure 1.4 – A well with three wellbores

1.2 . Problem Statement

The drilling process for discovering new productive oil and gas wells is beco-
ming a highly investigated task in oil and gas companies. Drilling is an expensive,
time-consuming, and very environmentally destructive activity. Onshore, a single
well costs 5-8 million dollars, while deep-water wells cost 100-200 million dollars or
more [6]. Before and during drilling, oil and gas companies gather and investigate
data about the earth’s sub-surface before and during drilling to drill a profitable
well properly. Data is gathered from regional to microscopic levels. This information
helps oil and gas companies find more productive wells and avoid drilling unpro-
ductive ones. Many geological reports have been accumulated during exploration,
development, production, and other wells related procedures, each containing geo-
logical themes: geological surveys, cutting reports, end-of-well reports, and core lab
reports. Each of these different kinds of reports talks about separate analyses such
as the geological analysis, the study of material extended from the mud during the
drilling process, the formation and similar information when the well is drilled, or
the core extraction analysis of the formations in the laboratory. The contents of
these reports are stored in various formats, including PDFs, images, tables, and
structured databases. These reports contain many structured and unstructured
data [7]. Structured data are usually stored and managed using relational data-
bases; however, gathering and referencing the different values to the same entities
from heterogeneous structured data sources is difficult due to a lack of a global
schema in this domain. Unstructured data include diverse types of information,
which can have more potential value than structured data. Therefore, many re-
search types are focused on developing methods of efficiently managing, mining,

6

and using these unstructured data. Geoscience literature is a rich resource that can
facilitate knowledge discovery and information extraction. This literature contains
a large amount of meaningful information that defines data expertly and can be
applied to train new models and enrich our understanding [7] [8]. To understand
these sub-surface geological reports, we need first to find a way for a computer
to understand and store the structure of these reports in a way that humans see
them. Secondly, we need to use NLP methods to help machines to understand
the language/texts like humans understand them. To extract the information from
the text of these sources, we need to apply NLP tasks such as named entity Re-
cognition (NER). Self-attention-based language models are the most influential
models in NLP domains for some downstream tasks, such as machine translation
or summarising text. However, there are still lots of shortages when it comes to
domain-specific NLP downstream tasks.

1.3 . Proposed Approaches: Specific Aims

The specific aims of this dissertation are related to the three challenges men-
tioned above. Given the available structured and unstructured data, we want to
investigate approaches to understand the sub-surface geological domain better.
Then we could associate each type of data source (structured/unstructured) with
different challenges as listed above:

1. Part I: Deal with heterogeneous structured data sources.

— Gathering and merging heterogeneous structured data sources: automatical-
discovery of the same attributes with different names.

2. Part II: Deal with heterogeneous unstructured data sources.

— Recognize the structure of heterogeneous unstructured sources (such
as PDFs and scanned documents).

— Perform domain-specific entity recognition to accelerate the informa-
tion retrieval process from heterogeneous unstructured sources.

1.3.1 . Contributions
For each specific challenge, we conducted various studies. The available dataset

comprised about 44,000 heterogeneous structured data sources and about 3,400
heterogeneous unstructured data sources. These studies resulted in the following
contributions; organized according to the chapter, they are illustrated in detail.

1. Part I: Dealing with heterogeneous structured data

• PROCLAIM: An Unsupervised Method to Build a Domain-specific Glo-
bal Schema

— Introducing the concept of attribute profile by taking into ac-
count the data type using: (i) the statistical distribution and the

7

dimension of the attribute’s values and (ii) the name and tex-
tual descriptions of the attribute. These properties give a unified
representation to each attribute.

— Defining Extended-OPTICS, an extended version of OPTICS that
clusters the attributes profiles by introducing a dynamic minimum
number of points in place of a static one.

— Proposing the concept of labeling function by taking into account
the following: (i) the attribute descriptions, and (ii) the attribute
names for each cluster to automatically assign a label to each one
as the final name of the similar attributes in the global schema of
the domain.

— Presenting PROCLAIM, a domain-independent method for schema
label prediction. We evaluate our method on two different data-
sets from two different domains, and PROCLAIM performs very
well with increasing heterogeneity of the datasets.

2. Part II: Dealing with heterogeneous unstructured sources

• Machine Learning for Document Structure Recognition

— Introducing OCRANA, a scalable framework that efficiently trans-
forms heterogeneous PDFs or image documents, processed by dif-
ferent OCR engines, into unified structured information to prepare
them for further analysis.

— Demonstrating the unified data model of OCRANA, which allows
representing different kinds of structures of texts and their visual
and content-based properties in an element-level scheme.

— Presenting position-based Naïve Bayes algorithm to find the de-
fined layout labels for each line of heterogeneous PDFs or image
documents presented in OCRANA. This model was built on a
large-scale dataset generated by a weakly supervised approach.

— Showing empirical evidence that OCRANA can accelerate infor-
mation retrieval from unstructured documents.

• Unsupervised NER By Automatic Generation of Gazetteer

— Proposing GAGNER, a novel unsupervised approach to generate
domain-specific gazetteers.

— Demonstrating that GAGNER only uses the corpus text as its
input to generate gazetteers and showing that external resources
(such as Wikidata knowledge base) are not needed. This approach
is promising for any low-resource domain.

— Presenting that GAGNER can tag the less-known abbreviations
and the wrong written forms (typos) of the words in noisy corpora,

8

making it helpful to annotate a corpus, especially for a generated
corpus from the output of OCR engines which usually do not have
very high-quality texts.

— Highlighting that GAGNER uses vector word representations to
find similar words in terms of implicit semantic and/or syntactic
information to generate a different group of entities in the form
of gazetteers.

— Creating a training dataset using generated gazetteers to annotate
the corpus to build a NER system by neural models. In other
words, the final NER neural model builds a NER system using
minimum resources.

• GeoBERT: NER using Domain-Specific Language Model
— Presenting GeoBERT, a domain-specific BERT-variant language

model for the sub-surface geology domain.

— Adapting generic BERT model to a specific domain containing a
limited number of sources.

— Demonstrating that the generic BERT model can benefit from in-
tegrating an extension module to solve a specific domain’s unseen
vocabulary (OOV) issue in a limited-source sub-surface domain.

1.4 . Thesis Outline

This dissertation comprises four main chapters, including an introduction and
a conclusion chapter. Each main chapter presents a complete approach for each
challenge presented in Section 1.3. We summarize each chapter in the following.
The dissertation then concludes with Chapter 6, which discusses the conclusions
and future work.

1.4.1 . Chapter Two
In this chapter, we present PROCLAIM (PROfile-based Cluster-Labeling for

AttrIbute Matching), an unsupervised method for matching attributes from a large
number of heterogeneous sources in a specific domain. Our results show that PRO-
CLAIM is a practical, fully automatic method to discover a set of meaningful voca-
bularies which are the backbone of the definition of a specific domain. PROCLAIM
defines the concept of attribute profile by taking into account the data type using:
(i) the statistical distribution and the dimension of the attribute’s values and (ii)
the name and textual descriptions related to the attribute. The cluster-labeling
function inputs these properties to automatically assign labels to many attributes
[9].

PROCLAIM gives a name (label) to each group of similar attributes from
different schemas, which can represent the essence of each group. The set of these
labels defines the global schema.

9

1.4.2 . Chapter Three
This chapter presents OCRANA (Optical Character Recognition ANAlytics),

a scalable framework that efficiently transforms heterogeneous PDF or image do-
cuments processed by different OCR engines into unified structured information.
OCRANA relies on a data model that represents both intermediate and final re-
sults. OCRANA is based on a data model which supports heterogeneous sources.
The data model is designed to keep different kinds of structures of texts and their
visual and content-based properties (tables, headers, . . .). Moreover, the scalable
architecture of the framework enables storing the results in a columnar data format
and processing a large number of documents, allowing the application of analytics
and information labeling effectively. We also present a position-based Naïve Bayes
classifier algorithm that efficiently recognizes the structure of documents based on
the OCRANA data model.

1.4.3 . Chapter Four
This chapter proposes a named entity recognition (NER) system based on the

automatic generation of name gazetteers. GAGNER (GAzetteer Generation for Na-
med Entity Recognition) automatically generates the lists of entities (gazetteers)
to create an annotated named entity corpus. GAGNER can tag very noisy corpora
containing many typos made originally by humans in the texts and/or made by
OCR engines due to low-quality outputs while extracting the texts from scanned
images of documents. The system can handle different named entities (NE) types
targeted by domain experts. The GAGNER approach uses shallow neural network
methods to generate the corpus-related gazetteers automatically. We apply a pre-
trained language model (BERT) on the annotated NE corpus to train a customized
name entity recognition model based on our corpus. Since the evaluation results
of generated gazetteers show a high accuracy, we can be sure that the annotated
corpus has very high accuracy. We experimentally evaluate the generated gazet-
teers on the sub-surface geology domain corpus as the output of dense part of
reports (around 34,000 scanned images, PDFs, and documents) labeled in Chap-
ter 3 containing around 634,000 sentences. We manually evaluate our NER model
using the BERT model on the high-quality annotated NE corpus. The evaluation
results of having a NER system in this specific domain are promising.

1.4.4 . Chapter Five
This chapter presents GeoBERT, a domain-specific BERT-variant language

model for the oil and gas industry. BERT is a pre-trained language model which
offers subword representations rather than word-level representations for represen-
ting both the tokens of input text and the output. The principal shortage of a
generic BERT model in a new domain is related to the OOV (out-of-vocabulary)
words when many of the common words (most frequent words) in a new domain are
OOVs, and there is a lack of exact embedding representation for them. GeoBERT
adopts the BERT model’s embedded knowledge by injecting the domain-specific

10

vocabularies, OOVs, into the BERT model. Our findings indicate that this approach
is consistent with using small domain-specific sources. According to our knowledge,
this approach has never been used before in the geology, oil and gas domain, or
sub-surface domain, let alone on limited resources. The final result of the NER
task in the sub-surface geological domain shows a significant increase in precision
and recall compared with the generic BERT model.

11

2 - PROCLAIM: an Unsupervised Method to
Build a Domain-specific Global Schema

2.1 . Introduction

A time-consuming step in integrating the data sources is finding matching
attributes across heterogeneous data sources [10]. In this context, schema matching
is the process that automatically creates a global view of various independently
developed schemas [11]. The integration process to generate a global schema must
identify relationships between equivalent schema elements of the data sources. Data
sources will inherently have diverse schema representations modeled separately
by different people. Schema integration must reconcile this diversity in schema
representation to establish schema entity mappings. Once schema mappings are
developed, mapped elements of the data sources are combined to form a unified
global view. For example, schema integration must integrate the search results
fetched from diverse data sources to offer a unified search result. The main problems
that we encounter with data at Schlumberger are as follows:

— Heterogeneous sources: Data heterogeneity leads to input from diverse
sources into a unified system. In every data integration strategy, a primary
concern is a different available schema for various sources, leading to the
redundancy of the same attributes with different names. Also, it can cause
data volume growth since data duplication can accrue a lot. As the starting
point of our research, one problem was the integration of more than 40000
heterogeneous data sources. The relation between different schema elements
of sources was unclear, which led us to this central question of how we
want to gather and store data. The metadata and description for these
data sources’ schema are unavailable. Also, we did not have any reference
(mediated schema) for the schema integration, another problem that will be
explained in more detail later.

— Noisy real datasets: Not all unstructured data has high quality, incredibly
raw data that can be quite uneven in quality. The lack of consistency in
quality happens because data is difficult to verify and, consequently, is not
always accurate. For example, different features related to the same enti-
ties can be captured and stored in different databases. The units of some
measured values can be the same, but they can be stored in different mea-
surement systems or formats (e.g., time and dates). In this case, finding
duplicate records is not an easy task. Also, much of the data may not be
reliable because of a human data entry error or missing values. Regarding
the massive increase in big data, tackling these challenges is time-consuming
and expensive. Most machine learning methods need clean datasets to have

13

good results in accuracy and precision for further analysis.

— Lack of a global schema: schema matching is not a new research domain.
Despite over two decades of extensive research, schema matching still seems
to involve ad-hoc solutions that do not follow any standard [12]. . According
to the classical definition, a pairwise match is applied between the schema
of two different datasets. In this case, if we have a global schema as the
mediated schema, all other schemas are matched by the mediated schema,
and correspondence attributes can be found. However, in the oil and gas
domain, since the data is gathered from different heterogeneous sources
related to various companies and even in different countries and continents,
a global schema does not exist. To our knowledge, most existing tools and
models for schema matching needs a mediated schema. Then we need a
method that can match attributes to find the global schema for our domain
without mediated schema, which leads us to choose clustering approaches.

We present PROCLAIM (PROfile-based Cluster-Labeling for AttrIbute Mat-
ching), an unsupervised method for matching attributes from many heterogeneous
sources in a specific domain. This chapter presents empirical evidence using dif-
ferent datasets showing that our method is efficient on significant heterogeneous
sources. As a final output, PROCLAIM can automatically create a set of unique
labels assigned to a high percentage of attributes from all attributes coming from
different heterogeneous sources. The main contributions of our research are:

1. Defining the concept of attribute profile by taking into account the data type
using: (i) the statistical distribution and the dimension of the attribute’s
values and (ii) the name and textual descriptions of the attribute. These
properties give a unified representation to each attribute.

2. Defining Extended OPTICS, an extended version of OPTICS, introduces a
dynamic minimum number of points instead of a static one to cluster the
attribute profiles.

3. Defining the concept of labeling function by taking into account: (i) the
attribute descriptions, and (ii) the attribute names for each cluster to auto-
matically assign a label to each one as the final name of the similar attributes
in the global schema of the domain.

4. Proposing a domain-independent method for schema label prediction. We
evaluate our method on two different datasets from two different domains,
and PROCLAIM performs very well with an increase in the heterogeneity of
the datasets.

We use domain experts to validate the automatically chosen labels for each at-
tribute. Our evaluation indicates that the quality of these automatically generated
labels is very promising.

14

This chapter is organized as follows: Section 2.2 reviews the related studies
on schema matching. Section 2.3 presents a brief overview of PROCLAIM. Sec-
tions 2.4, 2.5, 2.6, and 2.7 detail each building block of PROCLAIM. Section 2.8
illustrates the results of our experiments in two different domains. Finally, Sec-
tion 2.9 presents the contributions and conclusion.

2.2 . Related Work

A schema is a group of elements connected by some sort of structure, including
element types, attributes, basic types, etc. [13] [14] [15] [16]. Schema matching
is a crucial phase in the data integration process. Finding correlations between
schema is the main goal of the schema matching process, which will be helpful
later during the data integration phase. For a long time, the schema mappings had
been a manual task. However, with the advent of big data, schemas became more
extensive and complicated, leading to the time-consuming and error-prone ma-
nual design of mappings [17]. Therefore, presenting automatic schema matching
became one of the attractive domains of research. Schema matching’s primary
focus is determining the attribute correspondence across syntactic and semantic
heterogeneity in data sources to support the merging decision. The availability of
multiple and heterogeneous data sources has recently given new perspectives to
the schema-matching problem. Schema matching is not a new research domain.
Still, after decades of research [18] [19] [20] [21] [22], there still needs to be a stan-
dard way, especially when we think about specific contexts or domains where data
schema and representations are heterogeneous. There are various types of sche-
mas, including conceptual domain and relational database schemas. For instance,
standards like DTD, XML Schema, and Relax NG may specify XML schema. But
neither the diversity of schemas nor their representations ought to stand in the way
of a general discussion. Much research has been done in the literature on using
data source instances to recognize the correspondence between attributes during
schema matching [15]. In the literature, defining the global (mediated) schema,
also known as a target schema, is the first step in the schema-matching process
[13].

Figure 2.1 shows a taxonomy of schema-matching approaches. An implementa-
tion of matching may use more than one matching algorithm [23]. There are three
categories of information typically used to solve the problem of schema matching,
e,g. identifying the semantics of database attributes and identifying the correspon-
dences between database schemas, e.g., 1) schema information, 2) instances, and
3) auxiliary information [15] [23] [24]. A number of solutions have been suggested
for schema matching. Based on the available database information. Various ap-
proaches have been proposed for different levels of this information, some of which
rely on using each level independently as identified individual matching algorithms.
At the same time, other approaches involve a combination of individual matching

15

Figure 2.1 – Classification of schema matching approaches [23]

algorithms to boost the matching result size. Three levels of schema information
have been identified: the schema level, the instance level, the hybrid level, and
the auxiliary level [15]. Identifying the association between the attributes utilizing
dataset values and semantic and syntactic rules to determine the correspondence
between attributes throughout the schema-matching process is the main goal of
many published works [15]. The majority of works on schema integration presuppo-
sed a global (mediated) schema. They then tried to discover a solution for better
matching, mainly a pairwise matching between the source and mediated schema.
In this situation, it is difficult to construct a global schema that corresponds to all
the attributes of a specific domain [25]. Below is more information on these levels
of schema:

— Schema Levels: Three levels of information are included at the schema
level: the linguistic level, the constraints level, and the structural level. The
Linguistic level makes use of meta-data details such as the names or ab-
breviations of the attribute and any textual descriptions that are readily
available. The data types of database properties like string and numeric,
instance ranges, and distinct types all have a role in the Constraint level.
The schema’s internal and external structure and cardinalities between keys,
like primary and uniqueness, are used at the Structure level.

— Instance Level (known as Content Level): It is frequently challenging to
obtain information from the Schema structure because it is either unavai-
lable or cannot be used for matching. Instances are thought to be the most
effective and trustworthy source of information for determining the simila-
rities and associated attributes of a schema by using the characteristics of
the available values and instances.

16

— Hybrid Level: The hybrid level collects information from both the instance
level (values/instances) and the combination of the schema metadata, such
as attribute names, data type, structure, and description.

— Auxiliary Level: Auxiliary level combines information from the existing
schema with new information collected from external sources. WordNet and
dictionaries are examples of external sources that can help determine the
semantic connections between names or abbreviations of schema attribute
names, such as synonymy and hyponyms if they are comparable.

Furthermore, we need to talk about the leading alternatives for matching the
granularity and cardinality of schemas. There are two main options for the granula-
rity of schema matching: element-level and structure-level matching [15][23] [24].
When using Element-level matching, each element from the second input schema’s
matching elements is detected for each element of the first. Only items with the
highest level of granularity, such as attributes in XML or columns in relational data-
bases, are taken into account. On the other hand, matching at the Structure-level
matching refers to matching sets of elements that coexist in a structure. In the
best-case scenario, every element of the two structures would be matched. Alterna-
tively, only some components may be required to match (e.g., a partial structural
match). The need for partial matches sometimes arises as subschemas of different
domains are being compared. For example, "oil-based mud" is a drilling fluid used
in drilling engineering, which is expensive but is worth the cost. "oil-base mud" va-
lue may come from non-water-based drilling fluid, while "water-mud" comes from
water-based drilling fluid (WBFs) data sources. Real-world data is also frequently
noisy, requiring data cleaning for most integration methodologies. However, data
cleaning is expensive and time-consuming when it comes to massive data. This
chapter develops a heuristic method (PROCLAIM) to deal with the real world and
massive data.

In recent years, generating schema labels through dataset content analysis is
becoming trendy [22] [26] [27]. With no standard for schema attributes names, am-
biguous names are often found in real-world datasets (e.g., many attribute names in
different schema contain abbreviations and compound nouns that hinder automated
schema matching). In [22], they propose a supervised method that recommends
alternative schema labels for ambiguous names of attributes by considering the
content of descriptions and metadata. In [26], they proposed a model based on
the word embeddings of the table attributes tokens using every table’s contextual
information to predict the similarity score of each pair of query-table to retrieve the
related table. In [27], they proposed a context-aware schema-matching model for
predicting labels of attributes without headers by using word embeddings and lan-
guage models. PROCLAIM automatically generates schema labels by considering
the attributes’ context and values.

Table 2.1 shows how PROCLAIM implementations fit the classification criteria
introduced above.

17

Table 2.1 – Characteristics of proposed schema match approach (PROCLAIM)

Type Metadata Granularity Schema-level Instance-level Auxiliary info. Approach

Relational
Hybrid

Element-level Dictionary HybridExternal Linguistic Linguistic
Resource Constraint Constraint

2.3 . PROCLAIM Overview

Schema matching aims to discover semantic correspondences of schemas at-
tributes across heterogeneous sources. We aim to get a global attribute schema
for all the independently developed schemas of the same domain. This process can
be formalized as follows:
Given a set of schemas S={S1, S2, ..., Sn} and the set of all attributesA={A1, A2,

..., An} belonging to these schemas, each Ai contains the whole set of attributes
(a1, ..., am) (ai ∈ A where i ∈ [1 : m]) used in the schema Si. Schema matching
selects sets of n-ary mapping attributes from different schemas that define a cluster
of similar attributes C={C1, C2, ..., Cj}, as illustrated in Example 1.

Example 1. Consider three schemas as a set of attributes about rental cars des-
criptions:
S1= {Fuel_Type, Location, Mileage, Name, Price, Year, Transmissio}
S2= {Country, Disp., HP, Mileage, Price, Type}
S3= {fuel_type, maker, manufacture_year, mileage, model, price_eur, transmission}

Also, consider the following attribute matches among the schemas:
C1= {Fuel_Type, fuel_type, fuel, fuelType}
C2 = {Location, Country, city, county_name, state_name}
C3 ={Name, maker, brand}

All attributes are trivially a cluster by themselves. A label l can identify in the
best way the essence of a semantic cluster of attributes. A labeling function f(C)
indicates the required process to define the label (f : C → L), where L is a set of
labels (li ∈ L) and C is a set of similar attributes’ group (Ci ∈ C). The set of
labels L identifies the elements of a global schema for the given set of schemas S,
as illustrated in Example 2. This resulting schema is also the mediated or target
schema.

Example 2. Consider three clusters of similar attributes from Example 1. Based on the
defined labeling function f(C), labels {Location, Brand, Fuel, . . .} will be assigned to each
cluster of attributes automatically:

C1= {Fuel_Type, fuel_type, fuel, fuelType} → l1=Fuel
C2 = {Location, Country, city, county_name, state_name} → l2=Location
C3 ={Name, maker, brand} → l3 =Brand

The set of these assigned labels to each cluster of similar attributes defines the global
schema for a specific domain: L= {Fuel, Location, Brand, . . .}.

18

The main question addressed in this research is how to define an automatic
process that discovers a set of labels that can effectively represent a global attribute
schema for a specific domain [9]. The PROCLAIM method is proposed as an answer
to this question. PROCLAIM is a new approach that enables automatic holistic
schema matching, which leads to constructing a global attribute schema for a
specific domain. Let us illustrate the procedure by following the main steps it
involves, with the help of Figure 2.2:

1. a set of heterogeneous sources with different schema (S) is provided as
input;

2. the data from all sources are stored in columnar format storage;

3. the data type of each attribute is identified, and data with the same data
type are stored in the same set (Ad);

4. an attribute profile is computed based on the specificity of each data type
(Ad). This attribute profile can contain at most four properties (statistics,
description, unit, and name property). Then each profile of attributes can
contain at most four properties. The assigned profile to each attribute will
be converted into a numerical vector;

5. an automatic labeling process is defined to find all similar attributes and
gives a unified name to each of them. This process includes two principal
components: (1) finding the most similar attributes from different schemas
and (2) giving an automatic label to each attribute by a defined labeling
function (f). A density-based clustering algorithm will be applied to the
numerical profiles to find the most similar attributes. Each profile vector
represents a unique attribute;

6. the list of automatically computed labels will define a global attribute schema
for a specific domain.

As explained in detail in the following sections, PROCLAIM can be applied
to noisy real-life data. The method is designed to handle many heterogeneous
schemas and proposes unified numerical profiling of information of any data type.
The approach enables the usage of common machine learning algorithms such
as clustering. Finally, the automatic labeling and merging of clusters allow the
definition of a global schema that represents the synthesis of the heterogeneous
schemas.

2.4 . Data Preprocessing

Some of the building blocks of PROCLAIM are initial steps to prepare the origi-
nal datasets. Three main steps are defined as the initial steps in data preprocessing
of PROCLAIM to ensure high-quality data (1) data integration, (2) data cleaning,
and (3) data transformation.

19

Figure 2.2 – The framework of PROCLAIM to discover a global schema

2.4.1 . Data Integration in Column-based Data Formats
Traditional databases store data sequentially row-wise (each row presents an

individual record). In a columnar database, the values of attributes related to a re-
cord are present as a pair of attribute-value in each row. Since column-based data
formats enable extensive parallelization and efficient partitioning techniques, they
process large datasets effectively. Since column values are compressed into each
data page, the I/O cost is reduced because the data in a single column is homoge-
neous. Since compressed columns are frequently so little that they can be totally
cached in memory, queries are executed remarkably fast. Data access operations
are usually over individual rows and show the best performances when retrieving
only a subset of the attributes of a table when datasets are sparse and contain
lots of empty values. Moreover, column-based data formats process big datasets
efficiently since they provide large-scale parallelization and effective partitioning
strategies. PROCLAIM, for its calculation, needs a tuple for each attribute’s value
showing its name and value. In this case, storing the data in a columnar-based for-
mat is much more efficient. Some of the advantages of this storage vs. row-based
format storage are described in the following [28]:

1. Column-based storage is most useful when queries that need only a subset
of attributes over big data are performed; Row-based storage is most useful
when many of the attributes related to a record are wanted to use, or many
records are needed to access.

2. Column-based storage is most useful for sparse datasets where many empty
values may appear; The empty values can be easily separated from attributes
with values, hence handling the missing value is so easy.

3. Big data sets frequently consist of hundreds to thousands of files and can
even contain millions of records. Furthermore, these files are usually genera-
ted continuously, and efficiently processing such datasets requires large-scale
parallelization for performance. Column-based storage will be progressively
prone to splitting into independent jobs if the query calculation is associated
with a single column at once. Big data can be split in a customized way,
and we can recall one or more split chunks for further analytical queries.

4. In simple words, data compression can be defined as reducing the size of a
file. The quantity of information required for data storage or transmission

20

is reduced through data compression. It simply saves money and time by
lowering the number of resources required for data transmission and storage.
Comparing the two formats, the columnar-based one can achieve higher
compression rates. More effective compression is possible by storing values
by column and placing those of the same type close to one another.

5. Data in real life may come in any format, such as CSV, JSON, and XML.
Converting data from different formats to the one ideally appropriate for
a specific need can be a process with a strenuous effort which might com-
prise detection, evolution, or modification of schemas, combining or splitting
data sources, and applying to partition. Converting the incoming formats to
columnar-based format can make this process much more manageable.

2.4.2 . Data Cleaning and Transformation

Every time data is obtained from various sources, it is gathered in a raw format
that makes analysis impossible. Some actions are required to ensure data quality,
such as handling missing values, redundancy, correction, and format transforma-
tion. Consolidating data involves removing pointless fields, columns, and records.
Missing values by integrating data in columnar format have already been managed.
Data might also be transformed: Data related to time or date should have the same
format, or the well IDs (well identifiers) of different sources should follow the same
format.

2.5 . Data Type Identification

When the search space is large (the number of attributes or schemas is signifi-
cant), matching the complete input of schemas may require long execution times,
and achieving high-quality results may take much work. One way to reduce the
search space is to find similar attributes within the same data types. The hetero-
geneous sources provide attributes in different data types. Since the type of the
attributes may not be provided in the metadata of sources, we need to identify the
types given the values. One main problem in this step is that the original datasets
need to be cleaned. We have to consider the type based on the data type of most
instances (values). Here, we consider five data types, but this set can be extended
if it is necessary:

— numerical representing all attributes whose value contains integer or float.

— categorical containing all strings, characters, and mixed data type.

— date representing date and time such as DateTime and timestamps.

— rare classifying attributes which have less than ten instances.

— unique refers to attributes with unique values (cardinality equals 1).

21

Formally, let d be the data type of an attribute ai with probability p ≥ threshold

(e.g., threshold = 0.8) where ai ∈ A and d ∈ D = { numerical, cate-
gorical, date, rare, unique} where d ∈ [1,5]. Data Type function (fD)
(fD : A → D; fD(ai) = d) pre-classified the attributes of the whole dataset into
a maximum of five categories (Sd), which contain attributes with the same data
type.

∀ai, aj ∈ Ad : fD(ai) = fD(aj); where Ad ⊆ A (2.1)

2.6 . Attribute Profile Representation

Once we have all the attributes belonging to the same data type (Ad), we can
group them to discover attributes coming from different schemas which contain
the same information (e.g.,{name, maker, brand} in our example). PROCLAIM
performs clustering and labeling based on the computation of a similarity matrix of
numerical profiles of attributes. Before applying our algorithm, we must convert an
attribute to a numerical profile based on its data type. A maximum of four compo-
nents characterize any attribute in our representation according to the data type to
which it belongs. These components are description, unit, name, and statistics. In
this section, we describe each profile component and its contribution to analyzing
the attributes classified in any of the six data types introduced in the previous
section. Notice that the rare type attributes are ignored due to the impossibility
of computing a valid statistic.

Description Property The majority of datasets have a descriptive part for
the schema where the meaning of each attribute can be found. In other cases, the
description is not provided, but the used values belong to domain-specific terms
or abbreviations, and this description can be retrieved, for example, using domain-
specific Wikis. To create the description profile, first, we remove the stop-words,
then apply the stemming method over a bag of tokens. Then for each description,
the stems and the occurrence of each term (in all the different descriptions for
any specified attribute) are used to build the description profiles. Removing stop-
words in a specific domain is necessary since these words can appear in almost
all descriptions and cause false similarities (e.g., for the domain of cars, the words
such as car, vehicle, and automobile are the domain stop-words). We then transform
the descriptions into categorical variables. Next, feature engineering is required to
encode the different categories into a suitable numerical feature vector. One-hot
encoding is a simple but efficient widely-used encoding method [29]. An example
of converting categorical variables for some attributes to numerical values can be
seen in Table 2.2.

22

Table 2.2 – One-hot encoding for converting descriptions to numerical feature

Attribute displac volum engin cc repres kw ccm
ENGINE_DISPLACEMENT 0 0 0 0 0 0 1

ENGINE_POWER 0 0 0 0 0 1 0
DISP. 1 0 1 0 1 0 0

ENGINE 1 1 1 1 0 0 0

Unit Property Dimensions and units are fundamental tools to explain the
characterization of phenomena [30]. A dimension measures a physical variable by
fundamental quantities without numerical value, such as distance, time, mass, and
temperature. However, a unit is a specific way to assign a measurement (with nu-
merical value) to the dimension, e.g., a dimension is a length, whereas meters or
feet are relative units that describe length [30]. Dimensions and units are commonly
confused, even though the solution to most problems must include units. The dis-
tribution of the same entity in different units can be shifted, but by consideration of
the same dimension, the similarity of shifted distribution can be found. Attributes
with units related to the same dimension are also related to each other through a
conversion factor. For example, Kelvin or Celsius measures the temperature dimen-
sion and can convert to each other. Thanks to the descriptive part of the schema,
the related units in a dataset can be found. Units even can be present in a separate
column in the database. The units and their mapped dimensions of attributes can
be extracted and recorded separately. Table 2.3 shows that dimensions and units
characterize some attributes of our running example. The dimension is also enco-
ded using a one-hot encoding approach, as shown in Table 2.4.

Table 2.3 – Some attributes with their units and associated dimension

Attribute Unit Dimension
ENGINE_DISPLACEMENT CCM VOLUME

ENGINE_POWER KW POWER
PRICE_EUR EUR PRICE
ENGINE CC VOLUME

Table 2.4 – One-hot encoding for converting dimensions to numerical feature

Attribute volume power
ENGINE_DISPLACEMENT 1 0

ENGINE_POWER 0 1
ENGINE 1 0

Name Property The name of an attribute can also be useful for the analysis.
Names often contain concatenated words and abbreviations. Thus, they first need
to be normalized before they are used to construct a profile to compute linguistic
similarities. As the first step, tokenization is applied, but it may not be enough;

23

e.g.,for the name ’vehicleType’, the name should be split into the word ’vehicle’
and ’Type’. In this regard, we compare all names of other attributes and see if one
of them is part of the name string; this breakdown will be done.

Statistics Property The statistics profiles concern categorical and nu-
merical data types. PROCLAIM uses descriptive statistical analysis to produce a
profile for each attribute which not only defines the characteristics of an attribute
but also enables comparing the profiles to find similarities. We list the most im-
portant statistical measurements regarding numerical and categorical data
types in the following.

— numerical data type:

For the numerical data type, several measures can be studied. The
domain under analysis and the analyzed data characteristics will help
us select the significant ones. These measures can be variability or
dispersion of the distribution of values per attribute, symmetry of the
distribution, the number of instances (cardinality), and central ten-
dency.

1. Variability or dispersion This metric defines a set’s amount of data
dispersion. The range, interquartile range, variance, and standard de-
viation are the four metrics that are used most frequently to describe
or measure variability or dispersion.

2. Symmetry of distribution This measure shows how much a distri-
bution of the values of an attribute differs from a normal distribution,
either to the left or to the right side, and the skewness measure is
used. This knowledge helps to know which measures of Variability are
most important and where the majority of the values lie.

3. Cardinality This measure is the number of instances of an attribute
and shows its importance. In Table 2.5, count represents the cardinality
of the attribute.

4. Central Tendency This measure shows a central value for a proba-
bility distribution. The most popular measures for numerical variables
are mean and median, but they can also be calculated through inter-
quartile range and skewness.

— categorical data type

For the categorical data type, the considered statistics profile
contains the top most frequent values among all instances of one at-
tribute. This set of most frequent instances can design a pattern for
an attribute.

Since other components of attribute profiles are encoded using a one-hot enco-
ding approach, we decided to apply the same method to the statistics profile. First,

24

log transform will normalize the distribution with left or right skewness, then the
distribution is presented into categorical scale using binning and finally encoded.
We obviously lose the numerical nature of the statistics, but we can merge this
vector easily with the other vectors without a normalization issue.

Table 2.5 – Statistics Profile

Attribute 5% 25% 50% 75% 95% Count
DISP. 90.9 113.75 144.5 180.0 302.0 32

ENGINE 993.0 1198.00 1497.0 1995.0 2982.0 101
ENGINE_DISPLACEMENT 1124.0 1400.00 1600.0 1968.0 2967.0 158

ENGINE_POWER 44.0 65.00 80.0 103.0 161.5 114

Table 2.6 – Normalized Statistics Profile

Attribute 5% 25% 50% 75% 95% Count
DISP. 5 5 5 5 6 3

ENGINE 7 7 7 8 8 5
ENGINE_DISPLACEMENT 7 7 7 8 8 5

ENGINE_POWER 4 4 4 5 5 5

In Table 2.5 we present the statistics profile for four numerical attributes. As
a result of this analysis, we can see that the ’Engine’ and ’Engine Displacement’
have the same normalized distribution. Normalized data with log transformation is
shown in Table 2.6.
For each attribute of the dataset, we compute the global profile, which is made of
the four properties described in this section. Each profile is built by considering the
attribute type, and the global profile is finally converted into a numerical vector.

We finally produce a collection of vectors that will be the input for the next
computation steps.

We propose a weighting factor for each of the four properties that are ad-
justed according to the attribute’s data type. For example, the attribute name
can be ignored for numerical and categorical variables because this information is
uncertain, and the distribution of the values is essential.

2.7 . Attribute Labeling

Attribute labeling is a three-step process that (1) performs attribute clustering,
(2) assigns a label to each cluster, and (3) merges clusters having the same label.
Step 3 creates every single attribute of the global schema. In this section, we will
detail each step of the process.

2.7.1 . Clustering
The calibrated numerical vectors produced as described in Section 2.6 allow us

to apply clustering to find similar groups of attributes (Ci ∈ C). PROCLAIM uses a
density-based clustering method. Density-based clusters are connected, dense areas

25

in the data space separated from each other by low-density areas. Density-based
clustering can be considered a non-parametric approach since this method makes no
assumptions about the number or distribution of clusters [31]. In higher-dimensional
space, the assumption of a certain number of clusters of a given distribution is very
strong and may often be violated. However, other parameters should be identified,
e.g., a density threshold that is the minimum number of points (MinPts) and the
radius of a neighborhood (ϵ) in the case of DBSCAN [32] and OPTICS [33]. Sparse
areas, as opposed to high-density areas, are considered outliers (noise), resulting
in points in the sparse areas that are not assigned to any cluster since, in general,
each outlier can be considered as one cluster containing just one element. As a
result, 1) It is not necessary to specify the number of clusters; 2) not all the points
need to belong to at least one cluster.

OPTICS (Ordering PoinTs to Identify the Clustering Structure) and DBSCAN
are popular density-based clustering algorithms. Despite all the similarities in the
core concept of both algorithms, they have fundamental differences [33]. However,
One of DBSCAN’s biggest weaknesses, the inability to identify meaningful clusters
in data with variable densities, is addressed by OPTICS. For our purpose, because
we encounter various densities for our variables, PROCLAIM uses OPTICS.

To better understand OPTICS, formal definitions for the notion of a density-
based clustering as it was presented for the first time in [33] is shortly introduced
in the following:
Directly density reachable: Directly density reachable: Let D be a set of nu-
merical attribute profiles, p is a profile in this set (p ∈ D) and Nϵ(p) is the
ϵ-neighborhood of p. For each x, y ∈ D, profile y is directly density reachable from
another profile x concerning (ϵ) and MinPts in D if:

1. y is in the ϵ-neighborhood x (y ∈ Nϵ(x));

2. x is a core profile which means the Card(Nϵ(x))≥MinPts (Card(N) indicates
the cardinality of the set N).

Density reachable: A profile x is density reachable from y concerning ϵ and
MinPts in D if there is a chain of core profiles leading from y to x. In general, this
relationship is not symmetric. Density reachable can only be made mutually with
a core profile.

Density connected : Two profiles, y, and z, are density-connected profiles
concerning ϵ and MinPts in D if there is a core profile x, such that both y and z
are density reachable from x. Density connectivity is a symmetric relation.

Clusters and outliers: A cluster Ci (Ci ∈ C) concerning ϵ and MinPts in D

is a non-empty subset of D satisfying the following conditions:

1. Maximality : ∀x, y ∈ D: if x ∈ C and y is density reachable from x concer-
ning ϵ and MinPts, then also y ∈ C.

2. Connectivity : ∀x, y ∈ C: x is density connected to y concerning ϵ and
MinPts in D.

26

Figure 2.3 illustrates the definitions on a sample of a 2-dimensional profile.
Outlier or noise is defined as a set of profiles not belonging to any clusters

{p ∈ D|p /∈ Ci∀i}.
The method in DBSCAN defines a global density parameter (radius of a neigh-

borhood ϵ) which is used as a threshold to define reachability. Different areas in
the data space may have different densities, and it may not be possible to define
clusters effectively with a global density parameter. OPTICS is an algorithm that
produces a cluster ordering of the profiles concerning its density-based clustering
structure. In principle, OPTICS works like an extended DBSCAN algorithm for
an infinite number of distance parameters (ϵ) smaller than a generating distance.
In principle, OPTICS works like an extended DBSCAN algorithm for an infinite
number of distance parameters (ϵ) smaller than a generating distance. The only
difference is that it does not assign cluster memberships but stores the order in
which the profiles are processed (the clustering order) and the following two pieces
of information, which an extended DBSCAN algorithm would use to assign cluster
memberships.

Core distance of a profile p: Let MinPts be a natural number and let MinPts-
distance(p) be the distance from p to its MinPts’ neighbor. Then, the core distance
of a profile p is the smallest distance between p and a profile in its ϵ-neighborhood
such that p would be a core profile concerning this smallest distance if this neighbor
is in Nϵ(p) defined as:

=

{
Undefined if Card(Nϵ(p)) < MinPts,

MinPts− distance(p) if Otherwise.
(2.2)

Reachability distance of a profile p concerning profile o: The reachability
distance of a profile p concerning profile o is the smallest distance which profile p
is directly density reachable from profile o if o is a core profile and can be defined
as:

=

{
Undefined if |Nϵ(o)| < MinPts,

max(core− distance(o), distance(o, p)) if Otherwise.
(2.3)

Density-based clusters pertaining to a higher density (e.g., a lower value for ϵ)
are completely contained in clusters pertaining to a lower density (e.g., a higher
value for ϵ) for a constant MinPts value. In PROCLAIM, we want to reduce the
chain of the core profile effect in order to have small clusters with very similar
profiles; hence, we set a very small value (e.g., 3) for the MinPts input of OP-
TICS. We will then compute many clusters and have many outliers. To reduce the
number of outliers, we ran OPTICS a second time, again with a small value for
the MinPts parameter only on the profiles that were considered as outliers. The
clusters computed during the second step will be added to those computed in the
first step. With these two iterations, as Extended OPTICS, we increase the number
of clusters and reduce the outliers.

27

Figure 2.3 – Principles of density-based clustering: x is a core profile, y is a part
of the cluster but is not a core profile, and Z is an outlier. y is directly density
reachable from x [33]

2.7.2 . Extended OPTICS
In PROCLAIM, we propose an extended version of OPTICS by introducing a

dynamic minimum number of points (MinPts) in place of a static one. A generative
radius of neighbors to have different minimum numbers of points (MinPts) for
clustering the unassigned points (outliers) derived from the OPTICS method.

The outliers, mostly the points from the low-density area of data space, can
be assigned to new clusters with a new value of MinPts. Let D′ be a set of
outlier points not belonging to any clusters distinguished by OPTICS concer-
ning an initial amount of Minpts and generative ϵ, {po ∈ D′|po /∈ Ci∀i, D′ ⊂
D where po is a profile and D is an initial data space}. By decreasing the MinPts
value by one and applying OPTICS again on the new data space (D′), we will
compute new clusters concerning a generative radius and new MinPts value, resul-
ting in the discovery of new clusters. Then, the process can be applied again until
MinPts reaches the minimum value that can define a cluster (2). For attribute
matching, we expect that there should be a large number of clusters with just two
elements. The goal is to define the clusters at their finest level.

With this method, we increase the final number of clusters produced from the
initial data space by OPTICS. However, with such a low MinPts value, there is the
possibility of dividing an inclusive cluster of points into two or more subclusters,
even if they refer to the same attribute. PROCLAIM provides a solution for this
problem by merging similar clusters. The merging process is defined as a Labeling
Function that merges clusters labeled by the same labels (automatically assigned
to clusters) in detail, explained in the following section.

28

2.7.3 . Labeling Function

The labels for each cluster will be created using the descriptions and names of
all elements in each cluster. The stop words will be removed using the common
linguistic and domain-specific words. The idea is to select the most frequent words,
bigram, and trigram terms appearing in the description and name of each attribute
of the cluster. Then, the most frequent term will be the cluster’s label, as shown
in Example 3.

Example 3. Consider C1 = {Engine,Disp.} as a cluster computing using the two-steps
OPTICS algorithm. The descriptions gathered per each attribute are:
Descr_Engine = ’ The displacement volume of the engine in CC.’
Descr_Disp. = ’ : Represents the engine displacement of the car’
The Name profile of attributes can also be added to the descriptions: Descr_names =
{engine, disp}.
Furthermore, after removing the stop words, the following bag of words for each descrip-
tion will be generated:
BOW_Engine = {displacement : 1, volume : 1, engine : 1, cc : 1}
BOW_Disp. = {represents : 1, engine : 1, displacement : 1, car : 1}
BOW_names. = {engine : 1, disp : 1}
Moreover, we create a holistic bag of words by merging all the terms associated with their
total number of occurrences as follows:
BOW_total = {engine : 3, displacement : 2, volume : 1, cc : 1, represents : 1}

By selecting the most represented term, we may produce meaningless labels
such as "displacement engine" rather than "engine displacement". To tackle this
problem, we need to create a domain-specific corpus and extract from it the bigrams
and trigrams associated with the respective number of occurrences, which will result
in adjusting and validating the labels.

Consider a created corpus in the car domain, which includes resources of glos-
saries, dictionaries, and wikis, which can easily be gathered online 1. Now, all com-
binations of the highest frequency words from BOW_total will be considered to
create the bigrams and trigrams which already exist in this domain (the meaningful
N-grams) concerning terms’ frequency in the corpus. The bigrams and trigrams will
create a valid bag of terms. We will also add the most frequent word appearing in
the corpus to this valid bag of terms. From Example 3, we have: Bag_of_terms =
{engine displacement : 2, displacement volume : 1, engine : 3}. To get the selec-
ted label, we take from the bag of terms the term with the maximum number of
occurrences with priority first to the trigrams, then bigrams, and finally, words.
The selected label for the cluster C1= {ENGINE,DISP.} is engine displace-
ment even if the number of occurrences of word engine is higher.

After labeling each cluster, we can finally merge the clusters with the same
label or labels that are synonyms (Example 4).

1. Data from https://www.kaggle.com/

29

https://www.kaggle.com/

Example 4. Consider C2={ENGINE_DISPLACEMENT,ENGINE_POWER}
as another cluster computed using the two-step OPTICS algorithm. The bag of words re-
trieved from related descriptions for these attributes are:
BOW _Engine_Displacement = {ccm : 1}
BOW _Engine_Power = {kw : 1}
BOW _names = {engine : 2, displacement : 1, power : 1}
As the final result, the output is:
Bag_of_terms = {engine displacement : 2, engine power : 1, engine : 3}

The computed label is engine displacement which means that this cluster can be
merged with clusterC1 of example 3. Then the new cluster contains the following attribute
{ENGINE, DISP., ENGINE_DISPLACEMENT, ENGINE_POWER}.

All the merged and labelled clusters generate a global schema for a specific do-
main. The label of different clusters in different data types could be the same,
which enables us to integrate the attributes together even if their data types were
assigned wrongly in Section 2.5. PROCLAIM helps to integrate the data from dif-
ferent sources and creates a general schema that can help integrate new sources
or populate a knowledge base in a specific domain.

2.7.4 . PROCLAIM Global Schema
As explained in the Labeling Function process in Section 2.7.3, the final goal of

PROCLAIM is to automatically provide a set of labels to represent a specific domain
for given different schemas, and it provides the clusters of matched attributes from
thoseschemas. In our approach, the set of vocabularies is the global target schema
of the domain. For example, the set of vocabularies (global schema) for the car
domain retrieved from the Car_Kaggle dataset is shown in Example 5.

Example 5. The output labels grouped according to their data type are:
L_Numerical = {federal information, power, weight, engine displacement, price converted,
kilometers, year, vehicle latitude}
L_Categorical = {name slug, fuel type, automatic transmission, count, listing, state code}
L_Date = {last date}

Then it will lead to having a final set of labels as the global schema for this dataset as
follows:

Global Schema= {federal information, power, weight, engine displacement, price conver-
ted, kilometers, year, vehicle latitude, name slug, fuel type, automatic transmission, count,
listing, state code, last date}.

2.8 . Experiments and Analysis

In this section, we provide the experimental results on two datasets: one of
them is our running example about cars, and the second is from the oil and gas
domain.

30

2.8.1 . Environment
The code of the experiment is implemented in Python 3.6.7. Parquet [34] is

used to store original datasets. Parquet is a column-oriented data storage that is
free, open-source, optimized, and developed on the Apache Hadoop platform.

2.8.2 . Datasets
To our knowledge, there are no benchmark-labeled datasets for comparing

our results with another method. Therefore, we have collected data from Kaggle
challenges for the car example. For the Oil and Gas example, we use a large dataset.
We look at the Oil_NorthSea datasets in detail, and the data preprocessing steps
are done to prepare the data. The same process has been done for the Car_Kaggle
dataset, but since the number of datasets is small and we used these datasets as
an example, we directly present the experiment results in Section 2.8.3.

Car_Kaggledataset The Car_Kaggle dataset was gathered from five different
sources (S1, . . ., S5) about cars from different Kaggle challenges1. The global
Car_Kaggle dataset, which merges all sources, contains 78 original attributes.

Oil_NorthSea dataset The North Sea Oil and Gas (Oil_NorthSea) dataset
was gathered from OGA 2 (The Oil and Gas Authority Open Data) website, which
contains 43,997 different sources with a total of 5260 attributes assigned to 12583
unique well IDs. Based on previous knowledge at the company, we know we have
12183 well in the north sea. well_ids can follow different standards.

Figure 2.4 – Distribution of locations of wells in the (Oil_NorthSea) dataset

The distribution of the location of the good origins of wells is presented in
Figure 2.4. A few of them have the locations except than oil north sea area,
which can indicate two reasons: (1) the latitude and longitude for those wells are

2. The data is published under Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International (CC BY-NC-SA 4.0).

31

not provided correctly in the primary dataset; (2) the latitude and longitude are
correct, and those wells do not belong to the targeted area and should be filtered.
However, except for these few wells, most are in the targeted area, as shown in
Figure 2.5.

Figure 2.5 – Distribution of locations of wells in the North Sea region

Looking at the data, we can explore interesting information about these well-
bores, such as in Figures 2.7 and 2.8.

After applying the data integration step, these datasets were gathered in a
columnar format in Parquet. This integrated dataset is too large, and data cleaning
is very time-consuming and expensive, however as mentioned in section 2.4.2, some
steps are necessary to be applied:

— Harmonizing Data Values Attributes that contain ’date’ in their names
were chosen (for sure, there are more attributes that contain date values but
finding them automatically in this step was not the goal). Fifty-two parame-
ters were found; the date format changed to this format: Day-Abbreviation
of Month-Year; for example, ’12-APR-2001’.

— Unique well IDs Detection The problem with unique "well IDs" is that
different sources follow different standards for naming the same well. Then
the same well can be represented with different names in different sources.
We know that we have 12183 unique wells, in reality, 3 but in our dataset,
there are 12853 unique well IDs; after harmonizing the form of well IDs,
the dates related to each well were compared with each other, and a small
labeled dataset was created representing which name of wells are equal and
which ones are not (see Figure 2.6). We kept one specific format for all equal
wells and finally reached 12212 unique wells. The number is not precisely
12183, but around 640 wells could be matched to their correspondence wells.

3. (This information was provided to us from Equinor company - One of the main
Schlumberger customers in the North Sea

32

https://www.equinor.com

Figure 2.6 – a sample of unique well IDs labeled dataset

— Handling Missing Values Deleting the Non-value data in Parquet format
is so easy.

Figure 2.7 – This chart shows the frequency of lithology terms when the rock in
each depth is cut. The order is based on the frequency of the first component

2.8.3 . Evaluation and Analysis

Table 2.7 – Car_Kaggle dataset Information as the input for PROCLAIM

Dataset Kaggle Challenge Name #Attributes #Descriptions #Units #Source records
S1 Used Cars Price Prediction 13 11 4 1000
S2 cars data 8 7 0 600
S3 personal cars classified 16 11 4 1000
S4 Craigslist Cars EDA 26 24 0 1000
S5 Used cars database 20 12 1 1000
Sum Car_Kaggle 70 65 9 4600

33

Figure 2.8 – Distribution of different lithology elements per each well in different
depths.

Car_Kaggle As we mentioned in Section 2.8.2, the Car_Kaggle dataset contains
78 original attributes: 70 have different names; 65 out of 70 attributes contain des-
criptions, and just 9 out of 70 attributes have the provided unit. In Table 2.7, we
provide the details of each schema. As the first step, we run data type identifica-
tion to discover each attribute’s type. Data for this dataset can be split into four
different types; as we can see, the rare data type is not present. Unique attri-
butes are discarded (6 attributes), and we compute the profile for the 64 remaining
attributes (25 numerical, 35 categorical, and four date attributes) and au-
tomatically assign a label to each attribute. To be able to evaluate PROCLAIM,
we manually labeled all the attributes. A subset of PROCLAIM and manual labels
can be seen in Table 2.10.

Table 2.8 – number of attributes with different data types

Dataset #Numerical Attr. ∗ #Categorical Attr. #Date Attr. #Rare Attr. #Unique Attr.
Car_Kaggle 25 35 4 0 6

The number of labels for different data type attribute sets is given in Table
2.9.

We used three metrics to evaluate the quality of PROCLAIM labels: precision,
recall, and F-measure. Precision is defined as the percentage of the correct labels.
We compared manual labels with PROCLAIM labels. If the pair (Proclaim la-

34

Table 2.9 – Number of automatic labels as the final result of PROCLAIM

Data type #Generated Labels #attributes with label #attributes without label
Numerical 8 25 10
Categorical 6 15 20

Date 1 4 0

Table 2.10 – Number of automatic labels as final result of PROCLAIM

Attributes PROCLAIM labels Annotated labels Match
PRICE_EUR price converted price 1
PRICE price converted price 1

POWERPS power power 1
HP power power 1

WEIGHT weight weight 1
POSTALCODE weight address 0

Table 2.11 – Number of automatic labels as the final result of PROCLAIM

Data type Precision Recall F-measure
numerical 85.7 85.7 85.7
categorical 73.0 58.8 64.2

date 100 100 1
Overall 82.5 72.7 77.3

bel, Manually annotated label) matches, the label is valid, as seen in 2.10.
The recall is the ratio of attributes with correct labels to all attributes (with or
without labels). F-measure is the harmonic mean of precision and recall. This re-
sult is shown in Table 2.11. These measures were calculated separately for each
set of attributes (of each data type) and finally for the whole attributes. As can
be seen in Table 2.11, precision is showing a good quality of labels, but since the
number of attributes and sources is not considerable, we expected not very high
recall, but still, this recall is promising for the schema matching problem, which in
this research is not the primary concern. The main goal is to have labels of high
quality.

Table 2.12 – PROCLAIM Evaluation

Data type Precision Recall F-measure
numerical 85.7 85.7 85.7
categorical 73.0 58.8 64.2

date 100 100 1
Overall 82.5 72.7 77.3

Table 2.13 – Oil North-Sea Datasets Information

Dataset #Sources #Attributes #Columnar format records #Descriptions #Units
Oil_NorthSea 43997 5260 2713222 3481 1668

Oil_NorthSea dataset As mentioned in Section 2.8.2, the North Sea Oil
and Gas (Oil_NorthSea) dataset contains 43,997 different sources with a total of

35

5,260 attributes, 4,713 of which have different names. The description is available
for 3,481 attributes, and the unit is provided for 1,668 over 4,713 attributes. We
apply the same approach as described in Section 2.8.3. The number of different
identified types of attributes is 638 numerical, 631 categorical, 46 date,
574 rare, and 2,824 unique attributes. Since the number of attributes is too
big to be manually annotated, we asked domain experts to label a random set of
attributes (20 labels for numerical and categorical attributes and all labels
for date attributes - the number of date type attributes are less than 50). We
cannot calculate recall and f-measure here since the manual labels are just provided
for a subset of random labels. However, precision is calculated for these subsets for
different experiments. Experiments are done for different profiles for each group of
the same data type attributes, and the result is shown in Table 2.14. The cover
data ratio measures the percentage of labeled attributes. The coverage ratio shows
a high percentage of considered attributes to discover the global schema. As can
be seen, the precision of clusters for numerical, categorical, and date data
type is over 90%, which is a promising result. The global schema created from
the Oil_NorthSea dataset contains 247 labeled attributes which cover 86% of the
1,315 original attributes belonging to the numerical, categorical, and date
data types.

Table 2.14 – Experiments results for different profiles subset

Data Profile Unlabeled Labeled Labels Precision Coverage
Type Attribute Attribute (%) (%)

Numerical

Stat. 84 554 107 58.1 86.8
Descr. 122 516 112 93.25 80.9

[Stat., Descr.] 53 585 128 86.4 91.6
[Stat.,Descr.,Unit] 60 578 110 90.1 90.5

Categorical

Stat. 135 496 102 70.5 78.6
Descr. 203 428 100 94.9 67.8

[Stat., Descr.] 129 502 126 86.2 79.5
[Stat.,Descr.,Unit] 121 510 130 92.1 80.8

Date
Descr. 16 30 3 100 65.2

[Descr.,Name] 5 41 7 94.3 89.1
[Descr.,Unit,Name 1] 5 41 7 94.3 89.1

Total [full profile] 186 1129 247 92.2 85.9
1Unit is not available for Date attributes

36

2.9 . Conclusion

Compared to the massive work on pairwise schema matching, research on
holistic schema matching for more than two sources is still at an early stage.
PROCLAIM is an efficient and effective schema-matching method and provides a
consistent domain-specific attribute schema. Experiments show that thanks to our
approach, we can automatically gather more than 80% of the vocabulary related
to a domain and populate the knowledge bases with corresponding attributes from
heterogeneous sources. In future work, our approach can be extended for handling
new attributes from new sources and enriching the labels by adding similar words
from different thesauri and dictionaries. PROCLAIM can provide an efficient and
effective way for schema matching. Also, this method can provide a global attri-
bute schema in a specific domain. In the real world, we often lack vocabulary as
the starting point for populating domain-specific knowledge bases. Even for some
processes, such as automatic knowledge base construction, manual effort, in the
beginning, is an essential part. However, with PROCLAIM, we can automatically
gather more than 80% of the vocabulary related to a domain and populate the
knowledge bases with corresponding attributes from heterogeneous sources. On
the other hand, we still encounter the cold start problem for completely new at-
tributes from new sources. To solve this problem, one way is using the resultant
global schema from existing tools such as Flexmatcher [16]. These existing tools are
based on pairwise matches, which need a mediated schema. However, PROCLAIM
can be used in several domains to create the basis for an automatic knowledge
base construction regarding many data sources in one domain. Although the labels
are provided by PROCLAIM automatically with good quality, these labels can be
enriched by adding similar words from different thesauri and dictionaries. Also, an
additional step to properly handle abbreviations existing in descriptions could be
added to increase the quality of the labels.
The main goal of PROCLAIM is discovering the global attribute schema in a do-
main which is covering the most attributes. However, this method has its own
limitations. Sometimes, there are not enough statistical or contextual features for
each attribute to distinguish different attributes completely. Also, based on the
PROCLAIM method, two attributes with the same statistical distribution, data-
type, similar names, and context may look likely to be the same. However, this is
not always the case; e.g., Company_Owner_name and Company_drilling_name
are two different attributes. However, both may be assigned to the same label (e.g.,
Company) by PROCLAIM. In future research, one solution to this challenge can
be finding the sub-labels based on new criteria for attributes assigned to the same
label. In this case, we will have hierarchy levels of attributes and more detailed
labels, which can increase the precision and create a better global schema. Besides
the central research challenge of this chapter, PROCLAIM can create large labeled
datasets. The quality of the labels is an important question that can only be evalua-
ted sometimes by asking an expert to do the manual evaluation. Weak Supervision

37

is a promising method here. A denoising Framework like Snorkel [35] can poten-
tially boost accuracy over PROCLAIM method as labeling functions (LFs) for the
Framework. For some categorization tasks, Snuba-on-snorkel [36] can automate
the generation of LFs. The fact that Snorkel does not now accept complicated
prediction outputs like PROCLAIM labels to consider them as LFs directly is an
interesting research challenge.

38

3 - Machine Learning for Document Struc-
ture Recognition

3.1 . Introduction

Hundreds of thousands of reports and PDF files are produced worldwide every
day. Some businesses or governmental organizations need to process them fast.
Sometimes this data contains the core data of the business, and sometimes it helps
to enrich the analysis of the industry. Most companies must transfer data from
these PFDs and forms into digital databases. Many companies extract data from
internal and external documents through manual efforts, which is time-consuming
and expensive. These documents are not only of different structures, but they may
also be digital-born such as PDF files, or in a scanned form that comes from the
handwritten or printed papers. Therefore, it is necessary to process them while
keeping the initial structure to make them understandable by the computers and
extract relevant information.

The development of optical character recognition (OCR) systems for automa-
tic text reading has received a lot of scientific focus in recent years [37] [38] [39]
[40]. OCR format has been widely used due to the need for mass digitization of
historical documents. Various formats for representing the final results of OCR en-
gines have been proposed. These ad-hoc formats are often developed to satisfy the
practical requirements of the applications. Much effort has been invested in the
layout analysis of PDF documents and images. [41] [42] [43] [44] [45]. The layout
structures have been classified as physical (text, tables, pictures, charts, graphics,
. . .) or logical (title, author, abstract, header, footer, captions, . . .). The layout
analysis can be considered the first step for advanced analytics and the heart of
information extraction from unstructured data.
During the last decades, many geological reports have accumulated in the Oil and
Gas industry during exploration, development, production, and other procedures
for wells. Schlumberger company had the opportunity, thanks to its business, to
collect, produce and store these geological reports on different geological themes:
geological surveys, cutting reports, end of well reports, and core lab reports; and
talk about separate analyses such as the geological analysis, the study of material
extended from the mud during the drilling process, the formation and similar in-
formation when the well is drilled, or the core extraction analysis of the formations
in the laboratory. These reports - PDF files or images - differ since they are pro-
duced by different tools, following conventions of other countries, and performed
by heterogeneous experts during different timelines.

Some samples of pages of these heterogeneous structured documents are shown
in Figures 3.1, 3.2, 3.3, and 3.4. As shown in Figure 3.1, we have different tables;

39

some pages include one specific format of papers (Figures a, b in 3.1), while others
can consist of two or more different table formats (Figures c, d in 3.1). Figure 3.2
shows some pages, including graphical contents and figures. The text content in
both tables and figures is a Non-Dense part of PDF files since the text content
is not dense. We call these pages Non-Dense because their structures contain the
Non-Dense part of the text. All figures in 3.1 and 3.2 are Non-Dense. However,
Figure 3.3 shows examples of Dense text pieces in paragraphs.

Some scanned images are from handwritten geological reports (Figure 3.4 b);
some are from geological reports with handwritten marks on them (Figure 3.4 c,
d); and some are from reports with stamp marks on them (Figure 3.4 a). This kind
of remark decreases text quality and makes its content more difficult to exploit.

To understand the content of these documents, we first need to extract the
text from images while keeping the same structure of documents to proceed with
other advanced analytics. If we consider the structure of a document as a hierarchy
scheme, from a coarse-grained document element level to finer element ones such
as paragraphs, lines, tokens, and characters, we would like to have a fine-grained
annotation scheme. We can store the related information regarding a character.
Still, since tokens (words) are the finest element level of a document semantically
for humans, in our hierarchy scheme, we consider the tokens as the finest element
level to be stored. This hierarchy scheme is explained in detail in 3.4.1.

The main issues which we encounter with these documents when we try to get
the text as the output of OCR engines are:

— The output of most OCR engines provides text pages that mainly include
the bounding boxes of large semantic structures. The OCR engines mainly
provide the bounding boxes of the fine-grained elements in a document hie-
rarchy (Characters). However, to keep the same structure of the documents,
we need fine-grained element-level scheme annotations. These elements can
form the structure of the files, such as characters, tokens, lines, etc. There
is a necessity for large-scale datasets in a machine-understandable format
for all documents.

— The output of most OCR engines due to the strike-through text or low
quality of scanned images has a low confident rate for specific characters
(as shown in Figure 3.4). Cleaning and correcting the original documents are
time-consuming tasks. Therefore, we have also to deal with the low quality
of OCR outputs.

When we have the document context in the fine-grained token-level scheme
database, we must distinguish each line’s layout label. As we mentioned, in their
format, documents and PDF files have two kinds of Dense and Non-Dense pieces.
The Dense part of the text, such as paragraphs, and the Non-Dense components,
such as tables and figures. If we have a look into our fine-grained line-level scheme
of the database of our reports, we would like to classify each line of documents in
one of the two categories: Dense, which means this line is part of paragraphs of

40

(a) Page including one table format (b) Page including one table format

(c) Page including two tables formats (d) Page including two tables formats

Figure 3.1 – Samples of scanned images of geological reports with different layouts and
format- different table formats

41

(a) (b)

(c) (d)

(e) (f)

Figure 3.2 – Samples of scanned images of geological reports with different layouts and
format- different figure formats

42

(a) Page including four paragraphs (b) Page including four paragraphs

(c) Page including seven paragraphs
(d) Page including three paragraphs and
one table

Figure 3.3 – Samples of scanned images of geological reports with different layouts and
format-containing dense parts of the text (Paragraphs)

43

(a) Page including four paragraphs (b) Page including four paragraphs

(c) Page including seven paragraphs
(d) Page including three paragraphs and
one table

Figure 3.4 – Samples of pages with strike-through text

44

documents, or Non-Dense, which means this line from the stored structured data is
part of a table, figure, cover page, author name, list of contents, etc. These Dense
and Non-Dense labels help us quickly to find the part of the documents which is
fundamental to creating a domain-specific corpus without considering the images
and tables from the textual context of documents. For example, the text extracted
from tables can be ignored to create a corpus since it is often numerical data with
no consistent sentence structure.

Dense and Non-Dense are coarse-grained layout labels of documents. We could
create a more fine-grained layout-level annotation system to identify whether each
line is part of a table, figure, footnote, header, or cover page. However, our goal
is to create a text corpus from scanned reports. In this context, Dense and Non-
Dense labels will suffice. Due to the heterogeneous structure of these reports, we
are facing these main challenges:

— How to explore these documents in a machine-understanding way, which can
provide a fine-grained element-level document structure?

— How to automate the process of fine-grained element-level scheme annota-
tion? Generating human-labeled fine-grained element-level scheme annota-
tion for documents and layout labels requires a lot of time and labor.

— How to do layout analysis and assign the layout for each fine-grained element-
level scheme stored structure of the documents?

To address these challenges, we propose OCRANA (Optical Character Recog-
nition ANAlytics), a framework to handle documents provided as images or PDF
files processed by different OCR engines to build a unified data model. Generally,
OCR engine tools process these documents and translate them into an interme-
diate data format which provides the bounding content boxes. OCRANA processes
the intermediate data format and gives a unified and more enriched view of the
logical and physical layout using the defined data model. This data model is a
configurable multi-level element-based scheme annotation to store the documents.
By configurable, we mean data model elements’ extendibility (we will discuss it
more in Section 3.4.1). This data model is based on three kinds of properties:

1. Engine-specific properties extracted directly from the intermediate format
as the output of the OCR engine, such as characters, bounding boxes of
each character, and page number; These properties are the core properties
of the data model.

2. Statistical properties are calculated or identified based on the values of
engine-specific properties, such as words in each line, bounding boxes of
each line, number of words in each line, and the maximum or minimum
number of spaces that exist between words in each line. These properties
can help define the documents’ multi-level scheme structure based on the
core properties (Engine-specific properties).

45

3. Engine-independent properties enrich the data model with more text pro-
perties, such as POS tags, lemma, and layout labels. These properties are
an extendable part of the data model. They can result from statistical, lin-
guistic, or machine-learning models.

This conceptual representation provides a basis for understanding the docu-
ments and enables us to have a fine-grained element-level annotation. This re-
presentation allows us to assign the layout labels to the line-level structure of
documents to provide the basis for further NLP applications.

For automatic recognition of the document structure, it is vital to leverage a
kind of supervision to obtain these binary layout labels ("Dense" or "Non-Dense")
with minimum effort, to prepare the data for any NLP applications. Due to these
reasons, experts have been using weaker types of supervision more frequently, in-
cluding heuristically creating training data using external knowledge bases, pat-
terns/rules, or other classifiers [46]. Due to the essence of our input (lines of
documents), the statistical properties play an important role in distinguishing the
Dense from Non-Dense lines. These properties include the number of words in each
line and the minimum and maximum number of spaces between words in each line.

Also, we define a position-based Naïve Bayes algorithm to leverage the semi-
supervised methods to have a model for layout labeling. For this semi-supervised
method, we need to define some layout labeling functions. Some layout labeling
functions are determined based on syntactic information, while others are based
on layout information extracted from bounding boxes for each line. These layout
labeling functions aim to assign a layout label to each line. Still, with this semi-
supervision, we can write a layout labeling function that gives a label to several
lines. We use a position-based Naïve Bayes algorithm to generate the labels for
groups of lines without any assigned layout labeling. This position-based Naïve
Bayes algorithm uses the probability of the positions of each line and the words
and symbols of each group of lines related to each layout label to calculate the
probability of the new layout labels given the new lines. This way, we assign a layout
label to each line of our data store and easily filter the “Dense” lines to generate a
domain-specific corpus. As it is clear, the training data is labeled here automatically
without human-labor effort by leveraging the weak supervision method.

Our approach is scalable and flexible for significant data processing since we
implement the data model in a Parquet [28] columnar datastore in Spark as a
distributed environment. Also, the current implementation of OCRANA handles
JSON (JavaScript Object Notation) representation of OCR documents. Thanks
to different tools, this format can be provided as input, but we chose to rely on
Google Vision API 1 [47].

The main contributions of our research are:

1. OCRANA is a scalable framework that efficiently transforms heterogeneous

1. https://cloud.google.com/vision

46

PDFs or image documents processed by different OCR engines into unified
structured information to prepare them for further analysis.

2. OCRANA relies on a unified data model that allows the representation of
different kinds of structures of texts and their visual and content-based
properties in a fine-grained element-level scheme.

3. OCRANA uses a position-based Naïve Bayes algorithm to construct a large-
scale dataset using a weak supervision approach. It enables models to in-
tegrate textual and layout information to recognize the different parts of a
document. Our results show an improvement in comparison with the Naïve
Bayes algorithm model.

The chapter is organized as follows: Section 3.2 reviews the related studies
on document image understanding and the available tools. Section 3.3 presents
a brief overview of OCRANA. Sections 3.4 and 3.5 detail the building blocks of
OCRANA. Section 3.5.4 illustrates the results of our experiments. Section 3.6
briefly presents further semantic analysis as an application of the OCRANA model,
and finally, Section 3.7 presents the contributions and conclusion and draws some
future steps.

3.2 . Related Work

Document image understanding is the process that transforms the informative
content of a document from a paper version into an electronic format detailing its
logical content. This process is named zoning [48]. Initially, the term zoning was
introduced to define the process that identifies the text regions and their order
of reading in a document image. A general document reading framework would
involve segmenting text regions with different roles in the document context. For
example, a text column differs from a caption, and a caption differs from a para-
graph or footnote. In addition, a complete comprehension of a document includes
the analysis of non-textual components, such as drawings, pictures, and mathe-
matical equations. These elements must be separated and treated with suitable
modules for further analysis. The zoning method was a combination of the study
of geometry (physical) and logical layouts. The geometric structure of the docu-
ment will be defined by the geometric layout analysis. This phase includes several
processes: some preprocessing steps and the decomposition of pages. This last
step aims to decompose the document image into maximum homogeneous regions
whose elements belong to different data types. The logical layout analysis seeks to
define the different logical roles of the detected areas and relationships among them
(titles, paragraphs, captions, headers, . . .) [41][42][43] [44][45][48]. Over time, the
algorithms for layout analysis could be mainly categorized into two groups ac-
cording to their approach. Bottom-up algorithms start with the minor document
components (pixels or connected components) and group them repeatedly to form
more significant, homogeneous regions. In comparison, top-down algorithms be-

47

gin with the complete document image and continually divide it to create smaller
and smaller regions. Each approach has its advantage and works well in particular
circumstances [44]. Therefore, one may also use a hybrid strategy using a mix of
top-down and bottom-up approaches [44]. Lots of other work have been done, and
different formats have been suggested to reflect the outcome of OCR document
processing, which can generally be categorized as follows [37]: 1) Logical formats
for users to operate directly with OCR final results, such as HTML, LaTeX, and
Microsoft Word.; 2) OCR engine-specific formats are the final output of specific
engines such as XML, JSON, and hOCR; 3) benchmarking formats are proposed
for different benchmark aspects of OCR systems. Also, some OCR engines can
have multiple outputs.

Text detection identifies and classifies an image document’s textual elements.
Current text detection approaches handled by common OCR engines can be divided
into three groups:

1. Region-based approaches that use text-based similarity parameters such
as color, height, width, edge, and gradient information to collect pixels;

2. Texture-based approaches that use the distinct textural criteria of text
sections to extract potential sub-windows and then combine these sub-
windows to create the final results;

3. Hybrid approaches combine the advantages of region-based approaches
that can cover text regions closely with texture-based approaches that can
estimate coarse text position in images.

Despite intensive research in document layout analysis, the results still need to
be closer to the desired objective, which is a general technique for properly and
automatically processing images belonging to various document classes. Google
Vision API gives an OCR engine-specific format (JSON) and reshapes its output
format to handle large amounts of data. This API uses a hybrid approach to detect
texts. The Google Vision API can take images of handwritten texts and PDFs to
detect and extract text from them. The extracted string, words, and their bounding
boxes are shown in Figure 3.5. Information such as page, block, paragraph, word,
and breaks are included in the extracted text in the output of vision API in the
JSON format [49][50].

OCRANA is a framework that builds structured information from texts of PDF
documents and images processed by OCR engines. In the OCRANA framework, any
OCR engine which provides the OCR engine-specific formats with the bounding
boxes for characters or tokens can be used, such as Google Vision API, Tesseract,
or OCRopus. The purpose of OCRANA is to provide unified and richer structured
data of different granularity, such as lines, words, and dense parts of documents,
as a basis for advanced analytics of document intelligent understanding.

48

Figure 3.5 – Example of bounding boxes inside an image

49

Figure 3.6 – OCRANA Framework

3.3 . OCRANA Overview

OCRANA workflow can be summarized in three main steps, as shown in Fi-
gure 3.6: 1) OCR engine processing, 2) Conceptual data modeling and storage, and
3) Weak data supervision. The whole OCRANA pipeline is explained as follows.

1. Heterogeneous PDF documents and images are given to the system as input;

2. An OCR engine is applied to the given input to generate an intermediate
semi-structured format (JSON, XML, hOCR, . . .) which contains the posi-
tion of characters in the resources (such as bounding boxes);

3. The intermediate results are translated, enriched, and stored according to
the OCRANA data model in a columnar format in a distributed environment;

4. Weak supervision methods are applied, and the final layout label is assigned
to different data model elements;

5. By taking advantage of the given structured model, NLP analytics can be
done.

Figure 3.7 shows an example of the result of each component of the OCRANA
workflow. The input PDF document generates the intermediate JSON format using
an OCR engine: Google Vision API. The bounding boxes of each OCRANA data
model are then built and stored in the Parquet database. By considering a word
from the PDF document in section 1 of Figure 3.7 (e.g., STAG), the JSON format
of Google vision API contains the separated characters of the word with their cor-
responding values (e.g., bounding boxes, language, and confidence rate separately
for each character (S, T, A, and G)). Section 2 of Figure 3.7shows that the related
data model features (Token and Line) are built as is detailed in section 3.4.1. Par-
quet database containing the tokens and lines based on the OCRANA data model
allows storing the structured information.

The OCRANA approach is generic and modular. It processes any OCR engine
(such as Vision API, Tesseract OCR), can use any intermediate format (JSON,
XML, hOCR, . . .), and can store the data model in any columnar datastore (Par-
quet, Cassandra, . . .). In the current implementation, we choose Parquet [51] data

50

Figure 3.7 – An example workflow of formats: 1) PDF files and scanned images; 2)
Intermediate JSON format; 3) Structured Format

storage. We rely on an end-to-end process that can use Spark-MLIB or existing
python machine learning libraries for the analytics tasks.

3.4 . Structured Format

In this section, we present the OCRANA data model, then explain the imple-
mentation of this data model in a parquet dataset to keep the structure of report
documents.

3.4.1 . OCRANA Data Model

The OCRANA data model shown in Figure 3.8 comprises a set of elements
organized according to a hierarchy that allows a straightforward interpretation of
the documents under analysis. The data model reflects but also enriches the tree
structure provided by the OCR engine. For example, the data model contains the
textual contents and their visual, statistical, and text properties which can guide us
in better analysis. This data model is flexible and can handle N-to-N cardinalities
between its elements.

The Document, which includes a set of Pages, is the foundation of the data
model. Each Page includes a set of Blocks. A Block breaks down into Paragraphs,
and each Paragraph is parsed into Lines. Each Line has its Tokens, an aggregation

51

of characters. The output of the OCR engine captures the position of each page,
block, paragraph, and character in the form of a bounding box. Finally, in our data
model, a Token is the element of a data model with the finest granularity.

Figure 3.8 – OCRANA Data Model

More precisely, a token is any part of the text surrounded by Spaces (Breaktypes
that identify a space). Each Token is defined by its bounding box position (Minx,
MinY, Width, and Height), the BreakType, and Confidence rate.

Minx and MinY are initial bounding boxes vertex of the first character of a
distinguished token. The Width, and Height (that can also be considered as the
font size) for each token were calculated based on the vertices of the last character
in a token.

The confidence rate is a value in the output of OCR engines and, in most cases,
is provided for characters. It measures an OCR engine’s confidence in recognizing
characters from an image. OCRANA considers the average of the confidence rates
of all the characters of each token as the confidence rate of that token. The confi-
dence rate can identify the tokens with a low confidence rate which then contain
some characters possibly not correctly distinguished by the OCR engine (low quality
of the image documents, . . .). This information can help preprocess and clean the
extracted texts to have higher-quality texts. The mentioned features (in blue color)
are engine-specific properties extracted directly from the intermediate format.

In the OCRANA data model a Line is characterized by its position (MinX
and MinY) and by DifferentiateY that remarks the first token having a MinY
considerable different with respect to the previous tokens. Moreover, each Line has
a number of words (Nb of words), a minimum number of spaces between two to-

52

Figure 3.9 – Captured Position for Tokens and Lines

kens (Min Space), a maximum number of spaces between two tokens (Max Space),
and the average number of spaces between two tokens (Avg Space). When the lines
are identified, OCRANA considers the position and height of each token on each
page. Identifying the lines based on DifferentiateY may seem simple, but it can ef-
ficiently detect straight lines of a document. Note that OCRANA does not support
curved line detection. Though, detecting curved text without a performance degra-
dation on linear text detection is an area of interest for researchers [47]. Figure 3.9
shows an example of a possible bounding box for a line. Due to the need for some
calculations to achieve these properties, we call them statistics properties, and
they are shown in yellow in the OCRANA data model.

OCRANA data model is also extended using engine-independent properties
mainly related to text processing, such as POS tags, lemmas, and stems. According
to the granularity, these properties could be for a token (e.g., POS tags) or a line
(e.g., Layout Labels). Figure 3.8 shows these engine-independent features in gray
color. The final Layout Labels are assigned based on the heuristic method by using
engine-specific properties and statistics properties to a line; therefore, to its
tokens, it is an engine-independent property. Any extra information which we
are interested in adding to our data model and extending its elements based on
our NLP analysis is in this category.

3.4.2 . Column-oriented/Parquet Datastore

Physically in our platform, the data model has been implemented in Parquet co-
lumnar datastore. We store hundreds to thousands of documents, each containing
thousands to millions of tokens (or even more). We need to record in OCRANA
data model tokens and their properties. Processing such datasets efficiently usually
require large-scale parallelization to ensure good performances. Parquet is also
considered a massively parallel processing system progressively prone to splitting
into independent jobs if the query calculation is associated with a single column
at once. Our data can be divided in a customized way. We can finally recall one

53

or more split chunks for further analytics queries, and the usage of Parquet in this
context enables us to handle big data [28] [52].
Figures 3.10 and 3.11 show the structured format of a page in Parquet data sto-
rage by parsing the intermediate format through the OCRANA data model. Any
data model elements are stored as a column in Parquet data format. The token
granularity and line granularity reflect the OCRANA data model.

OCRANA is a framework for preparing PDF documents and images for applying
advanced analytics. The analytics application includes machine learning methods,
natural language processing (NLP), and statistics. There are many tools and ready
libraries on NLP and machine learning (e.g., NLTK, SpaCy, Gensim, SparkNLP,
Scikit-learn, . . .), which can be applied directly to the OCRANA’s datastore. We
show analytics can be done effectively and efficiently by using existing libraries.
For example, the part of speech (POS) tags and the extended features of each
token (e.g., lemma, syntactic dependency, shape, detailed POS tags, alpha charac-
ter recognition, stop word recognition, . . .) are identified and added as extended
OCRANA data model features to the schema. Figure 3.12 shows the selected fea-
tures of the OCRANA data model.

This kind of analytics which can be added as extended elements to the OCRANA
data model, can help us to label each line to find the layout labels of document
structure. Before going into the details is better first to illustrate why we need
training data and how to label them.

3.5 . Layout Labeling

To do further analysis on parsed documents represented according to the
OCRANA data model elements, We must be able to distinguish text and its layout
from images and scans, which makes it easier to convert paper documents into a
digital format and then categorize them. The layout of the text, as we mentioned,
can be varied by the granularity, which we define: Fine-grained layout labels such
as header, caption, figure, table, paragraph, and coarse-grained layout labels such
as Dense and Non-Dense; Dense, which means this line is part of paragraphs of
documents or Non-Dense which means this line from the stored structured data is
part of a table, figure, cover page, author name, list of contents, etc.

This section presents a weak supervision approach we defined to assign coarse-
grained Layout labels to each line described in the OCRANA data model. . The
input for these functions is data extracted from reports stored in the format of the
OCRANA data model, including engine-specific, statistic, and engine-independent
properties (e.g., the number of words in each line, font size, average spaces, or
POS tags (as described in Section 3.4.1)). These assigned labels are weak based
on weak supervision methods. When we have our weak-labeled dataset, we train
a machine learning model to have our model for document structure recognition.
Figure 3.13) shows the whole pipeline.

54

a

Fi
gu

re
3.
10

–
St
ru
ct
ur
ed

fo
rm

at
of
a
do
cu
m
en
tp
re
se
nt
ed

ba
se
d
on

to
ke
ns

Fi
gu

re
3.
11

–
St
ru
ct
ur
ed

fo
rm

at
of
a
do
cu
m
en
tp
re
se
nt
ed

ba
se
d
on

lin
es

a.
P_
di
ff_
y
an
d
N_
di
ff_
y
in
Fi
gu
re

3.
11

re
pr
es
en
tt
he

Di
ffe
re
nt
ia
te
Y
in
th
e
O
CR

AN
A’
da
ta
m
od

el
fo
re

ac
h
lin
e
re
ga
rd
in
g
its

pr
ev
io
us

an
d
ne
xt

lin
e
re
sp
ec
tiv
el
y.

55

Figure 3.12 – NLP analytics related to each token

Figure 3.13 – Weak supervision “pipeline”

To assign these weak layout labels and the final model, we need to apply these
steps:

1. Define the labeling functions which can assign a label to each line with high
confidence from human opinions. These labeling functions are simple rules
that can guess the correct layout label for a line. These labeling functions can
use information from the OCRANA elements, such as statistics and engine-
independent properties. Also, these OCRANA elements are categorized into
two types: (1) The statistic elements such as Nb of Words, Min Space, Avg
Space, and Font Size, and (2) The extended features of tokens in each line
as semantic elements such as POS Tag and Lemma. As an example for the
first category, we can use the minimum number of spaces (Min Space) in a
line as a rule for our labeling function and say: “If there are more than two
gaps (spaces) in a line, the layout label is Non-Dense if not, the layout label
is Dense.” We should remember that we can use any number of labeling
functions with any information from the data model as far as a human
can logically justify it. It concludes that here these labeling functions are
domain-independent functions.

2. Some lines can have more than one labeling functions that assign different
layout labels to each line. Different methods can produce the best label for
each input (line). We could take the majority vote on labels to assign a

56

final layout label. So, if 3 labeling functions voted for Non-Dense, we would
assume the label is Non-Dense. The problem is when some lines have an
even number of layout labels of Non-Dense and Dense as the output of the
assigned labeling functions. In this case, assigning a certain layout label to
that line is difficult. Also, some of the rules will have more weight compared
with other rules. For example, the rule which says: “If the number of the
words is less than 5, then the layout label is Non-Dense if not is Dense”, has
more weight than a rule like this: “If there are more than two gaps (spaces)
in a line, the layout label is Non-Dense if not the layout label is Dense.” for
the lines specifically at the end of a paragraph. There can be two methods
to apply these labeling functions:

— Using majority votes for final labels of each labeling function; we
also can assign the weights to prioritize different labeling functions by
human experts [53][54].

— Using a machine learning model such as the Naïve Bayes model,
SGD with Gibbs sampling to assign weights to each labeling func-
tion. This method is part of the Data programming method, which
was first presented in the Snorkel package by Alex Ratner and Chris
Re [35] [46][55].

We use the former method: Majority voting. Based on our labeling functions,
some lines remain without assigned layout labels. By default, for these lines
without any labeling functions, a specific label, "IDK" ("IDK" stands for "I
Don’t Know"), is assigned.

3. A labeled dataset - weak labels - is generated and can be used exactly as any
other labeled dataset by training a machine learning model to predict
the most relatable layout labels for each line. Here, we define the position-
based Naïve Bayes classifier as our ML model, which can outperform
other models (see Table 3.10).

3.5.1 . Labeling Functions
We defined a set of rules-based functions fi(x) to assign to OCRANA extrac-

ted lines Dense or Non-Dense labels. These rules include the grammar syntax of
sentences, if any exists in the lines, or any other statistical information of each line,
such as the number of spaces or words inside the lines. Some lines could have more
than one labeling function, which leads to more than one label. As we explained
in the main steps of assigning weak layout labels to each line in Section 3.5, we
use weighted majority votes to give the final label to each line. The human assi-
gns the weights for this majority voting when writing down the labeling functions.
Based on the different weighting by experts, we will probably have various layout
labels. However, in any case, we face weak labels for each line. We consider the
constrained-based labeling functions to assign a more accurate layout label, which
logically can structure a layout. Let’s look at one example of writing constraint-

57

based semantic labeling functions. This is an example of the second category of
labeling functions using the semantic elements of OCRANA. We will begin by the
search for chunks corresponding to individual noun phrases and verb compounds.
We believe in the Non-dense parts of texts; in each line, we do not have complete
sentences. They are mostly noun phrases. Then, by this hypothesis, we write some
regular expressions to find the noun and verbal phases based on POS tag patterns
(Detail_tags in Figure 3.12). We already have POS tags as part of engine-specific
attributes in our dataset.

Figure 3.14 – The default grammar used as a rule-based chunker

Figure 3.14shows a predefined grammar as the default grammar for rule-based
chunkers. This grammar also can be extended. The focus of the rule-based chunker
here is mainly to find the noun and verbal phrase chunks. When we apply this
grammar to a sentence based on POS tags of tokens of each sentence, we can use
the defined chunks as the subtrees for our sentence.

One of the labeling functions here can be if any verbal phrase chunk (VB)
exists in one line; it is more likely that the line is part of a dense part of the text.

The final layout labels for an example page in Figure 3.15 based on our defined
labeling functions are shown in Figure 3.16. We aim to use weak supervision to
apply these layout labels to all the lines in the documents.

Example 6. Given the page shown in Figure 3.17, a part of the page’s information
stored in the structured format under the OCRANAmodel scheme is shown in Table
3.1. Then the input for the Naïve Bayes classifier is the words of each line (Line
column in Table 3.1).

3.5.2 . Weakly Supervised Learning Model
Once the final layout labels are assigned using labeling functions to the lines

of documents based on OCRANA elements, we finally have a database with weak
labels. Now, it is time to train an ML model to recognize the layout structure of
the documents.

58

Figure 3.15 – Non-dense part of a text in a PDF document

Figure 3.16 – Layout labels for Non-dense parts of the text

Naïve Bayes classifier

Using machine learning, a classifier is a model that uses particular attributes to
distinguish between various objects. Using Bayes theorem, It is possible to calculate
the likelihood of Y occurring given the occurrence of X. The probabilistic machine
learning models known as Naïve Bayes classifiers are used for classification tasks.
In other words, Bayes’ theorem describes updating the probabilities of hypotheses
(guesses) when given evidence. A probabilistic classifier’s output P(Y|X) is the
probability that an input X belongs to a class Y. The input is a set of lines. Each
line belongs to a different layout label: Dense or Non-Dense. Each line contains
tokens that are given probabilities based on the number of occurrences within that
line. For example, a word with two or three numerical values in a line belongs to

59

Algorithm 1 The Naïve Bayes classifier algorithm
Input: C (classes for each line), L set of lines, V vocabulary of L
Output: loglikelihood , logprior , V each class c ∈ C ▷ Calculate P(c)
terms
Nword = number of lines in L
Nc = number of lines from L in class c
logprior[c]← logNc

logNword

V ← vocabulary of L
newdoc[c]← append(l) l ∈ L with class c each word w ∈ V ▷ Calculate
P(w | c) terms
count(w, c)← # of occurrences of w in newdoc[c]

loglikelihood[w, c]← log count(w,c)+1∑
w∈V (count(w,c)+1)

return loglikelihood, logprior, V

Figure 3.17 – Part of a page with different lengths of lines

Table 3.1 – Part of the stored structured format of a page

lineindex Height Width MinX MinY Line
0 0.016647 0.097479 0.463866 0.1200095 TALISMAN
1 0.016647 0.087329 0.463866 0.1305075 SINOPEC
2 0.013080 0.070588 0.463866 0.145065 ENERGY UK
3 0.040428 0.569748 0.216807 0.244947 Wireline Logging QA/QC Report
4 0.017836 0.021849 0.487395 0.278240 on
5 0.030916 0.205042 0.400000 0.325803 Baker Hughes

60

a Non-Dense class with a higher probability. Naïve Bayes can learn the pattern
of analyzing a collection of documents that have been classified and comparing
the contents in all classes by constructing a list of words and their frequency. New
lines of text are categorized using a list like this according to the highest posterior
probability.

Naïve Bayes is a generative model because Eq. 3.1 states a sort of implicit
hypothesis about the generation of a document: first, a class is sampled from
P(x), and then the words are formed by sampling from P(x|y). By following this
process, we can create fake documents, or at the very least, their word counts [56].

ŷ = argmax
y∈Y

P (y|x) = argmax
y∈Y

P (x|y)P (x) = argmax likelihood× prior (3.1)

Naïve Bayes classifier makes two simple assumptions: (1) bag of words as-
sumption , which means we assume that the order of appearing words does not
matter (e.g., the word “formation” has the same effect on the classification result
whether it occurs as the 1st, middle, or last word in the input for classification).
Therefore, we assume that the features only encode word identity and not the
position of the words; (2) Naïve Bayes assumption emphasizes the conditional
independence assumption that the probabilities P (xi|Y) are independent given
the class Y. The chain rule can be used to expand the Naïve Bayes assumption as
follows:

P (x1, x2, ..., xn|Y) = P (x1|y)P (x2|y)...P (xn|y) (3.2)

Word positions must be taken into consideration when using the Nave Bayes
classifier on text:

y = argmax
y∈Y

P (y)
∏

i∈word orders

P (wi|y) (3.3)

Calculations for Naïve Bayes and language modeling are carried out in log space
to prevent underflow and increase processing speed. Therefore, Eq. 3.3 is typically
represented as:

Word orders← all word positions in the test document

y = argmax
y∈Y

logP (y) +
∑

i∈word orders

logP (wi|y) (3.4)

Eq. 3.4 computes the predicted class as a linear function of input features by
considering features in log space. The Naïve Bayes classifier pseudo code algorithm
can be seen in Algorithm 1.

61

Table 3.2 – The new stored structured format of a page after the transformation of the
value of the bounding boxes

lineindex Height Width MinX MinY Line
0 -4.0 -2.0 -1.0 -2.0 TALISMAN
1 -4.0 -2.0 -1.0 -2.0 SINOPEC
2 -4.0 -3.0 -1.0 -2.0 ENERGY UK
3 -3.0 -1.0 -2.0 -1.0 Wireline Logging QA/QC Report
4 -4.0 -4.0 -1.0 -1.0 on
5 -3.0 -2.0 -1.0 -1.0 Baker Hughes

Table 3.3 – The new stored structured format of a page after the transformation of the
value of the bounding boxes

lineindex Height Width MinX MinY Line
0 w_h_-4.0 w_w_-2.0 w_x_-1.0 w_y_-2.0 TALISMAN
1 w_h_-4.0 w_w_-2.0 w_x_-1.0 w_y_-2.0 SINOPEC
2 w_h_-4.0 w_w_-3.0 w_x_-1.0 w_y_-2.0 ENERGY UK
3 w_h_-3.0 w_w_-1.0 w_x_-2.0 w_y_-1.0 Wireline Logging QA/QC Report
4 w_h_-4.0 w_w_-4.0 w_x_-1.0 w_y_-1.0 on
5 w_h_-3.0 w_w_-2.0 w_x_-1.0 w_y_-1.0 Baker Hughes

Table 3.4 – The new stored structured format of lines for our position based Naïve Bayes
classifier

lineindex New Line
0 w_h_-4.0 w_w_-2.0 w_x_-1.0 w_y_-2.0 TALISMAN
1 w_h_-4.0 w_w_-2.0 w_x_-1.0 w_y_-2.0 SINOPEC
2 w_h_-4.0 w_w_-3.0 w_x_-1.0 w_y_-2.0 ENERGY UK
3 w_h_-3.0 w_w_-1.0 w_x_-2.0 w_y_-1.0 Wireline Logging QA/QC Report
4 w_h_-4.0 w_w_-4.0 w_x_-1.0 w_y_-1.0 on
5 w_h_-3.0 w_w_-2.0 w_x_-1.0 w_y_-1.0 Baker Hughes

62

3.5.3 . Position-based Naïve Bayes Classifier

The core of the position-based Naïve Bayes classifier is the Naïve Bayes algo-
rithm. However, in the position-based Naïve Bayes classifier, loglikelihood, logprior
would be calculated not just by a set of words of each line related to a specific
class but also by the values of bounding boxes related to each line (Width, Height,
MinX, MinY). This information is stored in OCRANA per each line. To add this
numerical value as input of the Naïve Bayes algorithm, first, we need to cast this
numerical value to categorical ones. We used the log transform function. Highly
skewed distributions can become less skewed by applying the log transformation.
However, the most important reason here is to map very close values to the same
final value. Finally, this value will be considered a unique string and be added
to the vocabulary of each line. The pseudo-code algorithm for Naïve Bayes and
position-based Naïve Bayes classifier algorithm is shown in Algorithm 1 and 2,
respectively.

Algorithm 2 The position based Naïve Bayes classifier algorithm
Input: C (classes for each line), L set of lines, V vocabulary of L, Boun-
ding boxes of each line (Width, Height, MinX, MinY)
Output: loglikelihood, logprior, V each class c ∈ C ▷ Calculate P(c)
terms
Nword = number of lines in L
Nc = number of lines from L in class c
logprior[c]← logNc

logNword

V ← vocabulary of L
V ← Round(logtransform(x)) when x ∈ (Width, Height, MinX, MinY)
newdoc[c]← append(l) l ∈ L with class c each word w ∈ V ▷ Calculate
P(w | c) terms
count(w, c)← # of occurrences of w in newdoc[c]

loglikelihood[w, c]← log count(w,c)+1∑
w∈V (count(w,c)+1)

return loglikelihood, logprior, V

Example 7. Given the following Width, Height, MinX, and MinY in Table 3.1 for the
consecutive lines of Page in Figure 3.17. The transition steps to prepare the input
for position based Naïve Bayes classifier algorithm are shown as follows:

• First, we need to calculate the Round of log transform of the values of boun-
ding boxes for each line as it is indicated in Algorithm 2 as follows:

V ← Round(logtransform(x)) when x ∈ (Width,Height,MinX,MinY)
(3.5)

The transformed value is shown in Table 3.2.

63

Table 3.5 – Comparison of validation set labels: manual vs. weak labels

Name of Set Dense Non_Dense IDK Total
Manually (Golden labels) 774 5149 0 5923

Labeling functions 770 5141 12 5923

• To not confuse that the new values are supposed to have a categorical es-
sence as the input of our Naïve Bayes algorithm, we add w_h_, w_w_, w_x_,
and w_y_ in front of each transformed value coming from Height, Width,
MinX, and MinY, respectively. Then it will be much easier for us to know the
transformed values defined as brackets of numerical value with the assi-
gned transform value. The new categorical value is shown in Table 3.3.

• Now, It’s time to create new lines as input for our position-based Naïve
Bayes classifier algorithm. The New Line column in Table 3.4is the input for
the Naïve Bayes classifier to calculate the loglikelihood and logprior for the
words of each line and the assigned category of positions for each line.

3.5.4 . Evaluation and Experiments
In this section, first, we evaluate the position-based Naïve Bayes classifier to

model the layout labels of the document. Then, we show the result of some domain-
specific information extracted from records.

Dataset description

This dataset consists of 3459 documents with a total number of 166,548 pages
and a total number of 7,037,338 lines with two types of layout labels (1,149,271
dense lines, 5,872,569 Non_Dense lines, and 15,498 lines without labels (IDK)). It
can be easily seen that the distribution of layout labels in geological reports is very
biased toward Non-dense labels, which is logical because most of the report pages
contain seismic diagrams, tables of geophysical values, and figures. Then even if
we expect the logprior in the Naïve Bayes model to be more biased toward the
Non-dense class, as seen in Table 3.9, this assumption is correct. The validation
set is generated by labeling the lines manually. This set is randomly chosen from
100 pages from 100 random documents. Even though the proportion of validation
set to train set is very low, it provides a golden label set to compare the different
models.

When these lines are labelled manually, we can see the quality of provided
weak labels through our labeling functions. Twelve rows initially did not receive
any assigned labels through our labeling functions, and as can be seen, our labeling
functions provide very accurate and high-quality labels. In Table 3.5, we can see
the comparison of two validation sets, one with golden labels provided by labeling
manually and another one with labels assigned with labeling functions.

5,923 random samples from the whole 7,037,338 lines is a small portion. Still,
it gives us a base to understand the quality of weak layout labels for lines generated

64

Table 3.6 – The quality of weak labels on the validation set in comparison with manual
labels

Model Recall Precision F1 Score
Manually labeled validation set 0.98 0.97 0.97

through our labeling functions, which almost have high accuracy and coverage of
over 97%, as shown in Table 3.6.

Figures 3.18 and 3.19 show how the pages and lines are distributed on separate
files. As can be seen, most documents have fewer than 100 pages and generally
contain fewer than 5000 lines.

Figure 3.18 – The dispersion of pages per file

Figure 3.19 – The dispersion of lines per file

Now that we have our labeled dataset, it is evident that we face an imbalanced
classification problem. However, considering the Naïve Bayes method, this imba-

65

lanced classification probably should help distinguish a more specific likelihood for
words appearing in each class. Then we assume a higher amount of samples and a
more significant imbalance should support our method. To see that this imbalan-
ced data affects on the final result of our position-based Naïve Bayes method, we
evaluate our position-based Naïve Bayes method on three datasets generated from
our labeled dataset. First, we randomly choose about 1,200,000 samples for our
training and 300,000 for our test dataset (we call this dataset "Sample dataset 1")
- we keep the test set the same in all our experiments. Then, we chose a sample of
3,000,000 lines as our second training set ("Sample dataset 2"), and in our final
try, we chose all records of the labeled dataset ("whole dataset"). More details
can be seen in Table 3.7.

Table 3.7 – Information about training sets to seek the impact of the number of samples
and the imbalance classes

datasets Train Total numberDense Non_Dense
Sample dataset 1 400,000 800,000 1,200,000
Sample dataset 2 1,049,271 1,600,000 2,649,271
Whole dataset 1,049,271 5,672,569 6,721,840

We have applied Naïve Bayes and position-based Naïve Bayes methods on
these defined datasets and calculated the accuracy for the test dataset to examine
our assumption about imbalance classes and the number of samples. The accuracy
is presented in Table 3.8. As you can see, the best accuracy belongs to the “Whole
dataset”, which has a higher number of samples and a more significant gap in
imbalanced classes. Then we keep the model which is trained on this training
set as our default model, and in the next section (Section 3.5.4), when we talk
about Naïve Bayes and position-based Naïve Bayes model, we mean the model
which is trained on the “Whole dataset”. Since the “Whole dataset” has the more
significant class imbalanced towards Non_Dense class, we expect a higher logprior
(identification of the initial bias and tendency towards a specific class) towards
Non_Dense class which, as it is shown in Table 3.9, this assumption is correct.

Table 3.8 – Information about training sets to seek the impact of the number of samples
and the imbalance classes

Method Accuracy
Sample dataset 1 Sample dataset 2 Whole dataset

Naïve Bayes 0.7850 0.8424 0.8651
Position-based Naïve Bayes 0.8644 0.8934 0.9154

Settings

We used python version 3.7.4 for our implementation. As we mentioned, the
input of our algorithms is the lines in the parquet format. We may use Spark on

66

Table 3.9 – Calculated logprior for three different training sets, 0 is the value for neutral
bias, then value under zero shows a tendency to label the lines as Non_Dense

Sample dataset 1 Sample dataset 2 Whole dataset
logprior -0.6931 -0.4219 -1.6875

top of the parquet format. In our context, the data model implemented in parquet
format can be directly given as input to the Spark framework for big data analytics.
Big data analytics can be applied directly to Parquet since it is a massively parallel
processing system to handle big data.

Parquet is a columnar data store that is free, open-source, optimized, and
developed on the Apache Hadoop platform [34].

Spark is a prominent open-source distributed processing framework for big data
analytics. Spark offers modules for streaming, structured data processing, graph
analysis, and machine learning. To facilitate rapid application development in a va-
riety of languages, such as Scala, Java, Python, R, and C++, Spark offers language-
integrated APIs [57] [58]. Spark shows fascinating performances at a large scale if
implemented on top of a columnar-based data format such as Parquet [51].

Evaluation Metrics

We used classical evaluation metrics for binary classification in a non-balanced
dataset, including Precision, Recall or Sensitivity, Specificity and F1-score. Accuracy
could only be a good measure if the dataset is balanced. Using accuracy to perform
the models in imbalanced dataset scenarios can result in a misleading interpretation
of results. Then let’s have a look at the evaluation metrics which we used.

Recall sometimes known as sensitivity or true positive rate (TPR), is used as
one of the metrics. Recall is the probability that an actual positive will test, which
means how well a test detects the positives. This can be maximized by a cheating
test that always returns "positive". Recall is defined as follows:

Recall/Sensitivity (TPR) =
TP

TP + FN
(3.6)

We used another metric called specificity, known as the true negative rate. Specifi-
city is the probability that an actual negative will test negative, which means how
good a test is at avoiding false alarms. This can be maximized by a cheating test
that always returns "negative". Specificity is defined as follows:

Specificity (TNR) =
TN

TN + FP
(3.7)

We used another important metric called precision, also known as positive predictive
value. Precision is the ratio of correctly positive labels to all positively predicted

67

Table 3.10 – The performance of different models on validation set with manual labels

Model Recall (TPR) TNR Precision F1 Score
Naïve Bayes classifier 0.8372 0.9594 0.9434 0.8871

Position based Naïve Bayes classifier 0.8449 0.9673 0.9514 0.8949
Bert classifier 0.7974 0.8911 0.8226 0.8086

labels. Precision is defined as follows:

Precision =
TP

TP + FP
(3.8)

Last but not least, we used an important metric called the F1 score. It is the
harmonic mean of recall and precision. Both false positives and false negatives are
considered. Therefore, it performs well when used with an unbalanced dataset. F1
score is defined as follows:

F1 Score = 2× Precision×Recall

Precision+Recall
(3.9)

Position based Naïve Bayes classifier performance

To see how the position-based Naïve Bayes classifier performs well in assigning
a layout label to each line, we compare the model performance based on the metrics
presented in section 3.5.4. We generated a manually-labeled validation set. This
set is randomly generated from 100 pages of 100 randomly chosen documents.
More information about this validation set can be seen in both tables 3.5 and 3.6.
We see the performance of 3 different models on this validation set: the Naïve
Bayes classifier, the position-based Naïve Bayes classifier, and the BERT classifier.
We have already explained the first two; the last classifier, which we will explain
in detail in the next chapter (Section 4.2.2), is a word representation method.
However, as a classification technique, a classification layer may be added on top
of the word embedding layers. As can be seen, the performance of the BERT
classifier is lower than others. We can think of two reasons: (1) we use the existing
public BERT model pre-trained, which is trained in a public domain, and many out-
of-vocabulary words (OOV) exist in the subsurface domain. OOVs are the words
that do not exist in the pre-train words dictionary (we explain more about OOV
in detail in Chapter 4)), (2) the only consideration for the BERT classifier similar
to the Naïve Bayes classifier is the words in the lines, not extra information such
as their position in the document. Also, as shown in Table 3.10, Naïve Bayes and
position-based Naïve Bayes classifiers have much better performance on Specificity
(TNR) than the BERT classifier, which means the Naïve Bayes classifier, in general,
works better at avoiding false alarms.

Now that we have the final model (Position based Naïve Bayes classifier), we
apply the model to the part of the dataset whose lines did not have any specific

68

Table 3.11 – The likelihood and frequency of some specific words

Word Frequency in Dense class Frequency in Non_Dense class likelihood 2 likelihood 3

% 47,147 138,149 -1.6851 -1.4624
ml 137 655 -2.1689 -1.9462
ppm 4,762 48,380 -2.9282 -2.7055

ohm-m 48 150 -1.7355 -1.5128
2Position-based Naïve Bayes classifier 3 Naïve Bayes classifier

labels, and we assigned "IDK" labels to them (about 15,498 lines), which 7,941
of them were assigned to Dense class and 7,557 of them to Non_Dense class.

Since our experiments highlight that, in general, the Naïve Bayes classifier
has high performance, we can conclude that some specific words or characters si-
gnificantly impact assigning a label to a line. For example, by scanning different
documents, we see mostly the cells in tables are numerical values containing per-
centages or units. We expect that the character “%” or units such as ml, ppm, and
ohmm should have a higher frequency in dense lines with a higher likelihood for
this class, as seen in Table 3.11. The negative value for likelihood is a marker for
Non_Dense class.

3.6 . Semantic Analysis

Now that we have the final model, adding the predicted layout label as a new
element to our data model as an engine-independent property is possible. Some-
times we need to extract information only from the paragraphs and dense_part
of the texts not from the tables and images. To this aim, we can easily filter the
lines based on their density for further analysis. This additional analysis can be any
NLP applications on this filtered part of the texts of documents, such as entity
extraction, information retrieval, etc. In this section, we explain our method to
extract the information that we want. We describe an ad hoc approach to show
how we can extract specific entities and relations in the OCRANA framework.

As it is already mentioned in section 3.5.1, we are able to apply specific labeling
functions on top of POS tags (a rule-based chunker on POS tags) to label noun or
verb phrases. The same idea can be applied to label more information in the text,
such as interval, cardinal digits, or . . .; The example of this extended grammar can
be seen in Figure 3.20.

69

Figure 3.20 – an example of extended grammar used to tag information such as cardinal
digits or wellbore depth intervals

Thanks to well-structured data model elements, we can easily extract domain-
specific relation-based information, such as the interval depth of specific formations
mentioned in wellbore documents. As an example of the relation-based informa-
tion R(term1, term2), we show how the Depth intervals related to the specific
formations R(Formation,DepthInterval) where term1 is Formation and term2
is Depth Interval can be extracted. To extract this information, we need to follow
some heuristic steps, which we detail in the following:

• Data Input: We need to filter the dense lines of documents stored based on
our data model since our target text is the dense parts of the documents.
Therefore, we make our search area to extract the considered relation smal-
ler.

• Matchers: Matchers can have two different types: (1) constraint-based rules
or (2) dictionary-based matchers. The constraint-based rules we defined are
regex patterns to tag the noun and verbal phrases. We could extend the
regex pattern to annotate the intervals and cardinal digits (See Figure 3.20.
These constraint-based rules can be extended for different kinds of relation-
based information to tag some other types of patterns. The dictionary-based
matchers match an existing term in the dictionary with the same term in
the input texts. For example, for R(Formation,DepthInterval), the For-
mation terms come from a dictionary matcher provided by the user, and the
Depth Intervals terms come from a constraint-based rule (Regex pattern).

• Candidate Generation: As the result of our matchers, we have the lines
which contain Formations or/and Depth Intervals. All of these lines are
our potential candidates, and we keep the index of lines as our potential
candidates.

• Window Span: We need to limit the number of candidates to find the
terms with the defined relationship. So, we define a window span size, and
we predict one specific relationship can occur in that window span size.
For example, in geological reports, mostly when we have the name of the

70

Formation, the depth interval related to that Formation should appear in
the same line, following line, or maximum in the following two lines. We
considered a span window to consider two terms that have a relationship.
The user can define the window of span and contains the window-span lines
after each term1 to consider term2 as a candidate. For example, we could
consider three as our window span, assigning the depth intervals to the
current formation candidate if any depth interval line candidate accrues in
the following three lines.

These heuristic steps are very similar to the steps to extract the information from
the Fonduer approach presented by the team of Christofer Re at Stanford [59].
The main difference is in Fonduer; originally, all matches from the Matchers step
were considered related. Then the initialization space for finding the relations in
the candidate generation step is huge for a big document with several pages.
Because, based on this model, a value on the last page can have a relationship
with an entity mentioned on the first page, even though by writing some optional
Throttlers, users can filter rules to reduce the number of candidates that are already
initialized together. However, here, we can only initialize a relation among some
matches, and then we filter. If we have M mention matches for term1 and N

mention matches for term2, in founder, first, we need to store M ×N candidates,
but here we need to keep M +N candidates. In both cases, the id of a sentence
or line is stored alongside the match mentions. The Trottlers in Fonduer method
is very similar to our window of span.

Example 8. Let’s consider that as a user, we are looking for the relations of
R(term1, term2) in the specific document D, where term1 is Formation which
a list of them is provided by the user, and term2 is depth interval which can be
found based on a regex pattern written by the user. Document D is stored based on
OCRANA’s elements. Then our matcher to find the formations is a dictionary-based
matcher, and the depth interval is tagged "Interval" based on the regex pattern,
which is already defined. The list of lines that contain any of these two pieces of
information (formation or/and depth interval) for the page shown in Figure 3.21
is gathered as our generated candidates, as an example of those collected candi-
dates can be seen in Table 3.12 and Table 3.13, respectively.

Table 3.12 – An example of extracted Formation candidates in OCRANA

idx lineindex Line Layout_label Formation
0 657 Maureen Formation 5070-5353 ft MDRKB... Dense Maureen
1 658 Initially lithologically similar to.. Dense Lista
2 659 Mureen Formation was Provisionally.. Dense Mureen
3 671 Ekofisk Formation 5335-6375 ft MDRKB ... Dense Ekofisk
4 672 The Ekofisk comprised exclusively limestone... Dense Ekofisk

71

Table 3.13 – An example of extracted depth interval candidates in OCRANA

idx lineindex Line Layout_label Interval
0 657 Maureen Formation 5070-5353... Dense 5070-5353 ft MDRKB
1 657 Maureen Formation 5070-5353... Dense -4988 to -5253 ft TVDSS
2 670 Rates of Penetration ranged.. Dense 28 ft/hr to 211 ft/hr
3 671 Ekofisk Formation 5335-6375 Dense 5335-6375 ft MDRKB
4 671 Ekofisk Formation 5335-6375... Dense -5253 to -5293 ft TVDSS
5 676 Rates of Penetration ranged... Dense 8 ft/hr to 54 ft/hr

Example 9. Let’s consider two sets of linesLterm1 = {L1, L2, ..., Ln} andLterm2 =

{L1, L2, ..., Lm} as the generated candidates belonging to both terms in the rela-
tionshipR in document D. To assign the exact value for term1 from a set ofLterm1

to the precise value of term2 in a set of Lterm2, we consider a window span of 3.
This window spanmeans that for eachLi ∈ Lterm1 if there is anLj ∈ Lterm2, that
0 ≤ indexLj−indexLi ≤ 3 (indexLk

is the index of the lineLk), the value of term1
in Lterm1 is in relation with the value of term2 in Lterm2. For example, by consi-
dering Table 3.12 and Table 3.13 as the extracted candidates for both terms of
relationR(formation, depthinterval), the record 0 of Table 3.12 has a potential
relation with records 0 and 1 of Table 3.13 (for both records: 0 ≤ 657− 657 ≤ 3).

The original page of document D and the final extracted relation of R in the
format of OCRANA from this page is shown in Figures 3.21 and 3.22, respectively.

Figure 3.21 – example of the original page of reports from which we want to extract
relationR(Formation, depthinterval)

72

Figure 3.22 – Example of extracted relationR(formation, depthinterval)

No need to mention that to extract the entities (terms in a relation) regardless
of their relation, we only need to apply the regular expression or use the external
dictionaries to identify the entities.

73

3.7 . Conclusion

OCRANA is a framework to handle large amounts of documents and transform
them into a structured format that is easy to use for further analytics. This additio-
nal analytics includes NLP applications such as entity or relation extraction. Most
features related to documents’ physical and logical layouts are stored in a struc-
tured format based on the OCRANA data model. One of the main goals of this
chapter is to recognize the document structure of various documents. To this aim,
We classified the layout structures into two main classes, Dense and Non_Dense,
identifying the dense and non-dense parts of documents. Our experiments first
highlight the relevance of appearing specific words and characters in each line on
the final assigned labels. To have a classification model to give the labels to new
upcoming documents and those parts of lines to which a labeling function could
not set a label, we used a Naïve Bayes model. However, in addition to the rele-
vance of appearing specific words in each class, we consider the significance of the
positions of lines in the final assigned labels, and we proposed the position-based
Naïve Bayes model. Our experiments show the performance of the position-based
Naïve Bayes model to give the binary layout labels is very promising. At last, we
showed how based on the semantic labeling functions. We can label more informa-
tion in the OCRANA model. In this case, extracting specific information (semantic
analysis) is very promising. We showed how much the named entity recognition
and information extraction from unstructured formats could be done effectively
and efficiently through OCRANA structured format by providing a few examples
to extract this information based on the dictionaries and regex matchers. However,
we still face some specific problems which need more investigation:

1. The dictionaries for specific entities (terms in a specific R) are not inclu-
sive and complete. The part of extracted information and relations in the
OCRANA model is limited to the existing terms in the dictionaries.

2. The regex extracting the intervals is powerful in recognizing the patterns.
Still, there are many similar patterns to the depth interval in the domain
which are not depth intervals, e.g., records 2 and 5 of Table 3.13 are rates
of penetration, not depth intervals. Still, they were extracted as interval
candidates because of their similarity to the regex matcher.

3. Candidate ranking in case of overlap, even considering a window span, is
another challenge that needs to be considered. For example, if we have dif-
ferent entities in a window span of size 3 for more than one unique Formation
or Depth interval, what will be the final selected candidates in this case?

To solve these challenges, we can think of these specific solutions:

1. We need an approach to generate enriched inclusive dictionaries for domain-
specific entities. In this case, we can label more entities and extract more
information. To this aim, we will explore an automatic domain-specific ga-
zetteer generation approach in the next chapter (Chapter 4). Thanks to

74

these gazetteers, named entity recognition and information extraction tasks
in the OCRANA model will be more comprehensive.

2. For each regex matcher for specific R, we need to explore the wrong labeled
entities and write a function to exclude those records, or in our case, we
can ask the geologists as the experts to give us this kind of information as
well. For instance, the numeric range for penetration rates seems very far
from the numeric value of depth intervals. If a pattern repeatedly happens
in wrongly selected candidates, we can filter that specific pattern (e.g., units
of ft/hr, which does not indicate intervals).

3. To solve the problem of multiple candidacies, in our current approach, we
consider those with a lower distance (indexLj−indexLi) among all valid po-
tential candidates. However, still, we may have duplicate candidates with the
same minimum distance. In this case, we can use learning to rank algorithms
that leverage a rich set of features representing each candidate, including
(i) candidate geospatial and (ii) document/entity coherence features.

Named entity recognition and, of course, information extraction in its conti-
nuation can be enriched by discovering an approach to generate dictionaries of
domain-specific entities. We can extract more comprehensive domain-specific in-
formation in the OCRANA framework with the help of these dictionaries. Then we
need an approach to generate enriched inclusive dictionaries for domain-specific
entities. In this case, we can label more entities and extract more information.
To this aim, we will explore an automatic approach for domain-specific gazetteer
generation approach in the next section. With the objective of these gazetteers,
named entity recognition and labeling the lines will be much easier.

The foundation of knowledge extraction is information extraction. The auto-
matic extraction of information from unstructured formats using OCRANA can
help construct an oil and gas knowledge base automatically. Also, in the future, we
can experiment with other models for the final layout labeling classification model,
such as the BERT model. We can add the positions as an external embedded layer
to the BERT model. A more exhaustive benchmark can provide more insights to
see whether adding position information, even in other binary classifications, can
always help to have better results. Also, the next step could be exploring a more
detailed classification, not just a binary classification. More detailed classes such as
title, header, footnote, and paragraph in the Dense class or table and figure labels in
Non_Dense class can add more value to the OCRANA framework. Also, right now,
OCRANA can keep the structure of documents in which their lines are straight.
We want to investigate how OCRANA can detect curved lines in the future. It will
be possible by having a very well-defined training dataset of existing curved lines
and with the help of a deep learning method. Also, solving the problem of multiple
candidacies is demanding and essential to avoid disambiguation. In this case, the
precision and accuracy of final extracted relations from unstructured documents
will be higher, leading to a more reliable framework.

75

4 - Unsupervised NER by Automatic Gene-
ration of Domain-specific Gazetteers

4.1 . Introduction

One of the important tasks in information retrieval is named entity recognition
(NER), which categorizes specified entities in texts. Many researchers are working
on this domain; based on these researches, NER methods can be categorized into
three main approaches: lexicon-based, rule-based, and machine learning-based [60]
[61]. Also, combining these approaches is very popular as well [62] [63] [64]. When
labeled data is provided, NER, which is fundamentally a classification problem,
belongs to supervised machine learning [65]. Since a lot of research has been done
on the general domain, the labeled data can be found for those entities. However,
for domain-specific entities, many challenges still exist. Due to the critical essence
of some specific domains, NER is used extensively on their data, such as biomedical
data for gene, DNA, drug names, or/and disease names identification. However,
the other fields, including oil and gas, do not have this privilege. Recent machine
learning, such as deep neural models, has recently allowed the development of
accurate NER systems. However, these techniques need a lot of manually annotated
training data [60][66], which is particularly challenging in specific domains where
domain experts’ annotation is expensive and slow to obtain [66]. For annotating the
NE corpus, open knowledge bases or dictionaries became popular [67], for example,
WikiData [68] and YAGO [69] in the general domain or MeSH and CTD 1 in the
biomedical domain [66]. Creating training data for NER at a large scale without
human labor is possible thanks to this type of dictionaries. However, the question
will remain if these types of dictionaries do not exist in a specific domain, how can
we build a NER system without human efforts to provide those dictionaries? Also,
the predefined dictionaries still do not contain the not very common abbreviations
or most frequent typos if the corpus is noisy.

The main problems that we encounter in developing a NER system are as
follows:

— Sub-surface geology domain is a very low-resource domain in which existing
dictionaries, knowledge bases, or corpora are very limited. There are no
comprehensive dictionaries for the entities in the domain.

— The corpus generated from the dense part of reports represented in the
OCRANA model (Chapter 3) is a very noisy corpus containing many typos
made originally by humans in the texts and/or made by the OCR engine. It
is due to low-quality outputs while extracting the texts from scanned images

1. https://www.ncbi.nlm.nih.gov/

77

https://www.ncbi.nlm.nih.gov/

of documents.

— To have a NER model, we need a labeled corpus for our training set. However,
we do not want to use human/expert efforts since it is expensive and time-
consuming in a specific domain.

To tackle these challenges, we propose GAGNER (GAzetteer Generation for Na-
med Entity Recognition) to automatically generate the lists of entities (gazetteers)
to create an annotated named entity corpus. We use the vector word represen-
tation as the output of shallow neural networks to generate the gazetteers, each
representing a specific domain-specific entity type. Researches show that Large
unannotated corpora can be used to train word representations, which can then
learn implicit semantic and/or grammatical (syntactic) information. [70] [71] [72].

We summarize our contributions as follows:

— We propose GAGNER, a novel unsupervised approach, to generate domain-
specific gazetteers for domain-specific entities.

— GAGNER uses vector word representations to find similar words in terms of
implicit semantic and/or syntactic information to generate a different group
of entities in the form of gazetteers.

— GAGNER does not need external resources such as the Wikidata knowledge
base to generate the gazetteers; It only uses the corpus text as its input
which is a promising approach for low-resource domains.

— GAGNER can tag the words’ less-known abbreviations and the wrong written
forms (typos) in noisy corpora. Thanks to this ability, the generated text as
the output of OCR engines that do not have high quality can be annotated.

— With the help of these domain-specific gazetteers, an annotated corpus is
generated to feed a neural model to build a NER system. In other words,
the final NER neural model builds a NER system by minimum resource (only
using the corpus text).

GAGNER is an unsupervised model using neural networks. We use the gene-
rated result of GAGNER to train a supervised model. GAGNER result is used in a
weakly supervised approach to have a neural model for NER. Without the require-
ment for manually generated features, neural models have produced state-of-the-art
performance in NER tasks for various languages and domains. These models still
need training data that has been manually annotated, but many languages and
domains lack this type of training dataset [72] [73]. Since the annotation process
needs human labor, it requires time and financial expenses. Unsupervised word
representation may offer a solution for this issue. Large unannotated corpora can
be used to train word representations, which can then learn implicit semantic and
syntactic information [70] [71]. We finally annotate the corpus with generated ga-
zetteers and build a NER system by applying a transformer model (BERT). Since
there is not any benchmark of NER on the specific domain of oil and gas, we

78

benchmark the result with a traditional NER model (Conditional random fields
(CRF)) to see the performance of a domain-specific NER system on the generated
gazetteers.
This chapter is organized as follows: Section 4.2 reviews the related studies on
named entity recognition and explains different word representation approaches.
Section 4.3 presents a brief overview of GAGNER. Section 4.4 details the automa-
tic generation of domain-specific gazetteers and how we evaluate their accuracy.
Section 4.5 explains how we used these generated gazetteers to annotate our cor-
pus to build a training data set for our ML model. Section 4.6 details the final
NER model (BERT) learned on the generated annotated corpus and the model
evaluation. Finally, Section 4.7 presents the contributions and conclusion.

4.2 . Background and Preliminaries

Named entity recognition (NER) is the process of identifying and extracting en-
tities and information units, including names of people, places, and products. NER
is a crucial NLP task and an essential component of many language pipelines,
such as Q&A and information retrieval [74]. NER systems tended to use manual
rule-based algorithms. However, the new systems often use supervised and semi-
supervised machine learning techniques. A significant amount of annotated data is
needed for supervised learning, which is very costly to gather. Then as a solution
to this problem, semi-supervised and unsupervised learning are proposed by using
unlabeled data. The most cutting-edge method nowadays involves using transfer
learning. The NER approaches can be grouped into three main categories: (1) Tra-
ditional approaches, (2) Statistical approaches, and (3) Hybrid approaches [8] [75]
[76] [77] [78] [79]. Traditional approaches mostly contain rule-based and gazetteer-
based approaches (also known as dictionary-based techniques), which rely on the
use of gazetteers (dictionaries) that have a list of predefined named entities. Statis-
tical or neural network methods rely on applying machine learning methods. The-
refore, sometimes these two methods are combined in a hybrid approach. Hybrid
approaches combine the advantages of traditional approaches, such as gazetteer-
based or rule-based approaches, with statistical or neural network methods or both.
Different researchers have proposed a number of hybrid NER techniques [67] [80]
[81] [82]. These techniques need a sizable quantity of training set for their supervi-
sion. Some researches indicate how we can build a NER system automatically with
minimal need for supervision [80] [83] [84] [85] [86]. Word representation models
from unlabeled text data have proven beneficial for many natural language tasks,
including NER [67][87][88]. These word representation models are mostly based on
neural networks. More recently, it has been demonstrated that vector-based word
representations can capture linguistic characteristics of both a semantic and syn-
tactic nature [70]. Word embeddings or the vector representation of a word express
a word as a vector in a predetermined N-dimensional space. The closer the vectors

79

are, the more the two corresponding words are considered to share a similarity,
syntactically or semantically [89]. Typically, a neural network that learns to predict
the most likely word given a list of context words produces word embeddings [90].

Figure 4.1 – Word embeddings methods [91]

Two things are always needed to create word embeddings: a text corpus and
an embedding method. There are many types of embedding methods. Modern
methods based on machine learning models are set to learn the word embeddings.
Machine learning algorithms use the surrounding words in a corpus sentence to
predict a term. These models will ultimately define the meaning of the individual
words. These are machine learning models that use a self-contained data set, called
a corpus, to train their models. The training data is unlabeled and supervised
because the data provides the necessary context, which would ordinarily make
up the labels. So, the corpus is both the training data set and the data that
enables supervision. We can categorize these machine learning models depending
on the factors that interest us. One main character is based on the context in
which the word appears, which can have different embeddings. In this case, two
main categories are (1) Static Word Representation and (2) Contextualized word
representation. This categorization is interesting since it can precisely map into
different main methods: (i) Shallow neural network methods, and (ii) Deep neural
network methods.

A comprehensive categorization of word embedding methods is shown in Figure
4.1. The word embedding methods are categorized into two main categories: Static
word embedding (shallow neural networks) and contextualized word embedding
(deep neural network) methods [91]. Since we use some of these methods in our
approach, briefly, we explain them in the following sections.

4.2.1 . Static Word Representation
In contrast to traditional word embedding methods (e.g., one-hot encoding,

TF-IDF transforms, co-occurrence matrix, and others [92]), the static word re-
presentation can process billions of word occurrences in provided corpora. They

80

also can create semantically and syntactically meaningful word representations
very quickly. They are called static because they generate the same vector for
the exact words in different contexts. The most popular of this group of works is
word2vec [93], presented by Mikolov et al. (2013). Word2vec is a neural network
that creates dense word vector representations by capturing both contextual and
semantic similarities. It can process substantial text corpora, build a vocabulary of
potential words, and produce dense word embeddings for each generated vocabu-
lary. Word2vec uses two different models that aim at maximizing the probability
of a word given its context: the continuous bag-of-words model (CBOW) and the
skip-gram model (Skip-gram) [93]. Word2vec encodes each word in a vector like
an autoencoder and compares words to their nearby neighbors in the input corpus.
Skip-Gram captures information about word order, while CBOW does not. The
computation of the probability distribution of the context words is impractical for
big datasets. For this reason, Mikolov et al. [94] introduced a negative sampling
approximation (SGNS) in which the weights of random negative samples are not
updating, leading to a faster model for big datasets. Another model was introduced
based on a combination of matrix factorization and local context window methods
called Glove [95] by Pennington et al. (2014). Glove (which stands for global vec-
tors for word representation) is an unsupervised method to generate word vector
representation. It analyzes word contexts and iterates on word windows across the
corpus. Unlike the occurrence matrix, the word-word co-occurrence matrix indi-
cates how frequently a specific word pair appears together. Later on, a new archi-
tecture of word2vec was presented to enrich word vectors with subword information
(fastText) [96] by Bojanowski et al. (2016). They proposed character-level word
embeddings to overcome the limitation of Word2vec and Glove approaches: Word
embedding is based on a predefined dictionary which causes an inability to learn re-
presentations of rare words and out-of-vocabulary (OOV) words. FastText uses the
skip-gram model and considers words as an n-gram of characters. Special boundary
symbols < and > are inserted at the start and end of each word to differentiate
prefixes and suffixes to learn a representation for each word. This allows the model
to fit in with previously unknown words, often known as out-of-vocabulary terms
(OOVs). FastText also enables the creation of vector representations of phrases
and sentences by averaging word embedding vectors.

4.2.2 . Contextualized Word Representations
For each word, static word embeddings produce a single representation. It is

a significant problem with static word embeddings which cause all senses of a
polysemous word to share a single vector. To overcome this limitation, Contextua-
lized Word Representations were proposed. Contextualized word representations,
also known as contextual embeddings, are deep neural language models developed
through deep learning that are customized to build models for various downstream
NLP tasks. The success of this method shows that these representations reflect lin-
guistic characteristics that are highly transferable and task-independent [97]. CoVe

81

(Salesforce [98]), ELMo (Allen Institute for AI [99]), BERT (Google [100]), GPT-
2 (OpenAI [101]), and GPT-3 (OpenAI [102]) are the most famous contextualized
word representations. ELMo (which stands for Embeddings from Language Models)
is a 2-layer biLSTM model trained on a bidirectional language modeling task to
generate contextual representations of each token. In contrast, Delvin et al. [100]
and Radford et al. [101] proposed a new method to transfer self-attention blocks
without needing to change the architecture for a specific problem. They suggest
fine-tuning bidirectional transformers which have already been pre-trained for parti-
cular problems. To better understand how BERT and GPT-2/GPT-3 model works,
it’s better to explain transformers briefly.

Transformers are neural networks with an encoder-decoder architecture. It was
used initially for machine translation from English to German by Vaswani et al.
(2017)[103]. . Before transformers, RNN models were the main models for ma-
chine translation. However, transformers model a text entirely based on the atten-
tion mechanism. The main idea of this attention mechanism is to calculate the
relationship between each word of an input sentence with all its words. The Ope-
nAI GPT model represented by Radford et al. (2018) [101] suggests stacking the
encoders to be able to use the architecture as a language model.

Figure 4.2 – Transformer Architecture [103]

As can be seen in Figure 4.2, Transformer can jointly attend to information
coming from different representation sub-spaces at multiple spots thanks to multi-

82

head attention [103]. The obtained model generates word embeddings from the
context before the word (left to right) but not the right to left context, making it
faster but losing bi-directionality.

Bidirectional Encoder Representations from Transformers (BERT), a transformer-
based machine learning method presented by Devlin et al. (2018) [100], “is designed
to pre-train deep bidirectional representations from an unlabeled text by jointly
conditioning on both left and right context in all layers” [100]. There are two
steps of pre-training and fine-tuning in the BERT model. A language representa-
tion model is generated during pre-training using a significant corpus, such as the
entire Wikipedia. Fine-tuning this large model to specific NLP tasks, such as NER
or Q&A models, is done by exploiting the language fundamentals learned during
pre-training [100] [101].

Generative Pre-trained Transformer (GPT) models presented by OpenAI were
introduced first by GPT-1 [101]. To create a language model, GPT applies gene-
rative pre-training to a wide corpus of unlabeled text. This model was developed
by a zero-shot approach to be applied to different NLP tasks. The ability of a mo-
del to complete a task without having already seen any examples is referred to as
zero-shot learning. GPT-2 [104] was proposed a year after, and it was a subsequent
improvement over GPT-1 (by adding more parameters and using a larger dataset)
to learn a stronger language model. GPT-2 has an outstanding performance on
zero-shot learning in zero-shot task transfer. In a zero-shot task transfer scenario,
the model is given few to no examples to help it comprehend the task (also known
as meta-learning). Then finally, GPT-3 [102] was proposed in 2020, one of the most
effective models NLP has seen. It was trained on five distinct corpora, each with
a specific weight using 175 billion parameters. The different parameter of these
methods is mentioned in Table 4.1.

Table 4.1 – Characteristics of different transformer models

Model # Parameters Context window size # Hidden layer # Tokens # Attention layers
BERT 110 million 512 768 30,522 12
GPT-1 117 million 768 512 40,478 12
GPT-2 1.5 billion 1,024 1,600 50,257 48
GPT-3 175 billion 2,048 12,888 50,257 96

GAGNER uses static word representation methods to generate word embed-
ding vectors for a domain-specific corpus. We use these methods because they
are lighter than contextualized word embedding methods, and we do not need
many resources, time, and energy to train a model from scratch for a new corpus.
Also, contextualized embedding vectors need many resources to provide us with
acceptable vectors, but statistic embedding methods can perform well enough on
a small corpus as well. We use different methods such as word2vec and fastText
and merge the results from these methods to enrich the list of named entities
related to different entity classes to have the domain-specific gazetteers. Then we
use these gazetteers to annotate our corpus to have our training data set to train

83

Figure 4.3 – Proposed GAGNER Framework

a NER model. We use contextualized word representation (BERT) to train the fi-
nal model. There are many types of research to generate gazetteers automatically
[83] [84] [105] [106]. A standard technique for NER includes clustering methods
which means extracting named entities from the clustered groups based on context
similarity. Collins et al. [83] showed that by using unlabeled data, the number of
“seed” rules needed for supervision could be cut down to just 7. The method be-
nefits from the data’s natural redundancy. In many cases of named entities, the
type of the named entity can be inferred from both the spelling of the name and
the context in which it appears. Similarly, The difficult task of retrieving large lists
of facts (such as the names of scientists or politicians) from the Web was auto-
mated by the KNOWITALL system [84]. This system bootstraps its recognition
process using a small number of generalized extraction patterns and a set of seed
names as input. The pipeline of the GAGNER approach is a mix of both above
works [83][84]. Still, instead of bootstrapping the recognition process through a set
of rules and patterns, GAGNER uses the similarity among word embedding vec-
tors that contain semantic and syntactic information for the vocabularies through
shallow neural models such as word2vec and fastText.

4.3 . GAGNER Overview

Given a Corpus (C), a set of predefined types of named entities classes E =

{E1;E2; ...;En} and the list of seed tokens assigned to these class of types T =

{Te1 ;Te2 ; ...;Ten}, each Tei contains at least one token which can be classified
by the type Ei and exist in the corpus (T ⊂ C). The first goal of GAGNER is
to automatically generate gazetteer dictionaries that map entities to types. Each
gazetteer is a defined named entity class Ei with its set of tokens Gei . This set of
tokens (Gei) contains tokens similar to seed tokens Tei . In another way, it means
GAGNER tries to enrich the tokens in classes related to each entity type.
Let us consider a single named entity type (Ei) and its list of seed tokens (Tei)

84

(tij ∈ Tei where i ∈ [1 : n]; j ∈ [1 : m] and preferably m <= 20); The goal of
GAGNER is to generate a group of tokens (Gei) similar to initial seed tokens (Tei)
for each entity type class (Ei). To define this similarity, we use word embeddings
of initial seed tokens (Tei) by different word embedding methods (fk), and we try
to find the top most similar tokens in our corpus (C) to that initial seed tokens
(tij). The collection of similar words to all words in our list of initial seed tokens
(tij ∈ Tei) represents the group of similar words to Gei . We call this described
process a Similarity function (Sim(T)). Figure 4.3 depicts our NER system with
the help of the proposed GAGNER approach. The process of our NER system is
performed in three steps which include the following details:

1. First step. Automatic Generation of Domain-specific Gazetteers

(a) Gathering a set of seeds (T) for each predefined named entity class
(E); the seeds should be part of the tokens in the available domain-
specific corpus (C);

(b) Training different static word embedding methods (F) on the available
domain-specific corpus;

(c) Collecting the top-k most similar tokens in each embedding vector
space for all the seeds;

(d) Adding the new similar tokens as the output of embedding methods
function in step (c) to the original set of seeds and repeat the step
(c); (Steps (c) and (d) together define our similarity function process
(Sim(T));

(e) Filtering the list of similar tokens based on the popularity score, which
is defined based on the frequency of appearing the words appear in a
different list of similar words in different word embeddings and other
user-defined parameters such as the threshold for similarity rate and
the iteration of repeating the similarity function;

(f) The final sets of words after applying the popularity score in step (e)
are the generated gazetteers (G) for each defined entity class (E).

2. Second Step. Automatic Construction of Annotated NE Corpus

— Generating a training data set to be used as input training data for a
deep learning model

3. Third Step. Learning a Sub-surface Named Entity Model

— Applying a deep learning BERT model to train a model for a domain-
specific NER

We explain these steps of the framework in detail in the upcoming sections,
but first, let us clarify some concepts here.

See Example 10 where t31 is ’pink’ and Gte31
by applying the CBOW model of

word2vec (f1), and the skip-gram model of word2vec (f2) is shown. fk presents

85

a word embedding function that maps the vocabularies of a corpus (C) to the
vectors, h ∈ Rd (fk : w → h). The function fk has a different vector representation
for different word embedding methods for the same vocabulary. In other words, a
Similarity function (Sim(T)) indicates the required process to define the top L
most similar tokens to the specific token (tij where tij ∈ Tei) in the vector space
produced by any fk (Sim : T → G), where G is a set of a similar group of tokens
(Gei ∈ G). The user can identify the value of L. Given a set of different word
embedding functions (F = {f1; f2; ...; fk}), the similar tokens to each specific
token tij existing in the list of seed tokens (Tei) can be different for different
functions fk. The collection of all these similar tokens to our initial seed list of
tokens identifies the gazetteer for the type of name entity to which the initial seed
tokens belongs E1.

Example 10. Consider three named entity classes with the following predefined types:
E1 = {Age}
E2 = {Formation}
E3 = {Color}
Consider the list of seed tokens belonging to each class as follows:
Te1 = Wage = {toarcian, archean, famennian, visean, anisian} wherem = 5
Te2 = Wformation = {andrew} wherem = 1
Te3 = Wcolor = {pink, grey, red, orange} wherem = 4
Consider the two different word embedding functions:
f1 : CBOW model of word2vec
f2 : Skip-gram model of word2vec

Gei = {G1
ei ;G

2
ei , ...;G

k
ei} = {G

1
tei1

;G1
tei2

; ...;G1
teim

; ...;Gk
tei1

;Gk
tei2

; ...;Gk
teim
}

is a set of a similar group of tokens to the m initial seed tokens in the entity type
Ei (Tei) gathered from applying the different word embedding functions, and k

indicates the specific word embedding function (fk).

Example 11. Consider the application of the CBOWmodel of word2vec (f1) on the list of
seed tokens Te3 = {pink, grey, red, orange} element by element. The top 5 most similar
tokens to Te3 , which have a similarity of more than 90% in our corpus respectively, are:
G1

te31
= {pink, orange, pink brown, pinkish, orange brown, pale, yellow}

G1
te32

= {grey, grey brown, grey green, brown grey, greyish, brown}
G1

te33
= {red, reddish, red brown, black opaque, chocolate, purple}

G1
te34

= {orange, pink, yellow brown, orange red, orange brown, red brown}
Consider the skip-gram model of word2vec (f2) on the list of seed tokens Te3 = {pink,
grey, red, orange} element by element, The top 5 most similar tokens to Te3 which have
similarity more than 90% respectively are:
G2

te31
= {pink, pinky, red pink, pink purple, pinkbul, greeny pink}

G2
te32

= {grey, grey olive, greysih, grey brownish, grey dark, greyhard}
G2

te33
= {red, reddish, reddish purple, red purple, reddish pink, reddieh}

G2
te34

= {orange, orangey, orange gold, rd orange, red orange, brown orange}
As we explained, Gei or GWage

is the gathering of all generated sets from different word
embedding methods:
Gei = {G1

te31
;G1

te32
;G1

te33
;G1

te34
;G2

te31
;G2

te32
;G2

te33
;G2

te34
}; Then

86

Gei = {pink, orange, pink brown, pinkish, orange brown, pale, yellow, grey, grey brown,
grey green, brown grey, greyish, brown, red, reddish, red brown, black opaque, chocolate,
purple, yellow brown, orange red, pinky, red pink, pink purple, pinkbul, greeny pink, grey
olive, grey brownish, grey dark, greyhard, reddish purple, red purple, reddish pink, reddieh
}
Then from 4 initial words in entity type color, we were able to generate 34 terms belonging
to the color entity, and we are sure all of them appeared in our corpus.

The process described in Example 11 can be repeated in more iterations. It
means that when we have G1

te31
, this time, we run the same process by considering

the G1
te31

as the new seed list (T ′
e3) with the new number of seed tokens (m′), then

we try to find the most similar tokens to the new seed of the list. An example can
be seen in Example 12. This iteration can be repeated for every Gk

te3i
generated

in the first iteration from Te3 as the new seed list (T ′
e3). We set a threshold of

90% similarity to choose our most similar tokens. For more accuracy in the found
similarity, this threshold can be increased.

Example 12. Consider the CBOW model of word2vec (f1) on the new list of seed tokens
T ′
e3 = {pink, orange, pink brown, pinkish, orange brown, pale, yellow} with m′ = 7 ele-

ment by element, The top 5 most similar tokens to T ′
e3 which have similarity more than

90% in our corpus respectively are:
G′1

te
31′

= {pink, orange, pink brown, pinkish, orange brown, pale, yellow}

G′1
te

32′
= {orange, pink, yellow brown, orange red, orange brown, red brown}

G′1
te

33′
= {pink brown, pink, yellow orange, orange, pinkish, orange brown}

G′1
te

34′
= {pinkish, pale, bluish, pink, purple, off white}

G′1
te

35′
= {orange brown, purplish, yellow brown, red brown, blue grey, coloured}

G′1
te

36′
= {pale, pinkish, yellowish, buff, pink, bluish}

G′1
te

37′
= {yellow, bright, spotty, yellowish, blue white, orange}.

If we repeat the process for all new Gk
te3i

to find the top 5 similar words to
all the words in those sets, we will end up with a list of words in which some of
them appear in more than one Gk

te3i
and G′k

te3i′
. Then we create a dictionary of

all words appearing in both Gk
te3i

and G′k
te3i′

in different iterations, and we keep
the frequency of appearance of the words by applying different word embedding
functions.

Example 13. Consider applying the CBOW model of word2vec (f1) element by
element on the original list of seed tokens Te3 = {pink, grey, red, orange} and ite-
rate the method by applying the same CBOW model, another time on all the new
set of similar words, the final entities of color derived from this method G1

e3 =

{G1
te3m

, G′1
te3m′
} contains 68 words. A sample of the name entities and their fre-

quencies can be seen in Table 4.2.

87

Table 4.2 – Frequency of final color entities extracted by CBOW model

Color Name Entity Frequency Color Name Entity Frequency
pink 45 pink brown 2
grey 40 pinkish 4
red 41 orange brown 8
orange 46 pale 3

By applying the different word embedding functions (fk), the similar tokens to
each specific token tij existing in the list of seed tokens (Tei) will be merged to
have similar final tokens for different entities (Ei). However, we need to be sure
that all final tokens in Ei are correctly assigned to each named entity class (Ei). To
this aim, we filter the generated set of words based on popularity score to prune
the final class of Ei, which is generated by merging all the different groups of
words generated by different embedding methods (Gk

ei) related to a specific class
of Ei. This popularity score is defined based on the frequency of words appearing
in different lists of similar words in different word embedding functions.

4.4 . Automatic Generation of Domain-specific Gazetteers

The first step of the GAGNER approach is Gazetteers generation, whose details
are explained in the following, and the whole process is done on the sub-surface
geology corpus.

4.4.1 . Sub-Surface Geology Corpus (C)

We must create a corpus for NLP downstream tasks. Most of the geological
information in oil and gas domains are image or scanned version documents; we first
needed to use an OCR engine to extract the texts (See Chapter 3). Since the quality
of these documents are not high, and the accuracy of the OCR engine models is not
100 %, we finally end up with a very noisy corpus. Our proposed model for NER is
consistent with very noisy corpora. This corpus for our research is the extraction of
texts from 3400 heterogeneous unstructured documents. The texts are extracted
as the output of applying the Google Vision OCR engine on these documents, and
after that, the image and tables inside the documents are removed. The remaining
parts of the documents (the Dense part of the documents) were considered a sub-
surface geological corpus. This corpus contains 633,337 sentences. Spacy [107] and
NLTK [108] libraries are used for sentence identification, tokenization, and tagging.

4.4.2 . Collecting a Set of Seeds

Most existing approaches to NER use supervised ML models and techniques to
train and generate a model for classifying pairs of terms as matches or non-matches.
The critical drawback of such approaches is that they necessitate labeled training
data sets. However, such annotated data sets are complex in real-world applications
(for example, in the petroleum domain). Furthermore, due to the sensitivity of the

88

data, manually labeling a data set of sufficient size is often impossible. As a result,
a novel unsupervised learning technique is necessary.

It is the only manual part of the whole approach that the user should do. The
user provides the name of labels for predefined classes of named entities. The list
of entity names and the number of seed tokens chosen by the user in this step is
shown in Table 4.9.

4.4.3 . Training Different Static Word Embedding Methods
Since many entities exist beyond the scope of a specific corpus, but their aliases

(alternative names) may match, blindly using the predefined dictionary can intro-
duce false-positive labels in dictionary matching. For example, when the dictionary
has a character name like “Charlie Brown” and its alias “Brown,” several “Brown”
words would be incorrectly tagged as people. The dictionary should only include
the entities in the specific corpus to ensure high precision while guaranteeing fair
coverage [66]. Also, most predefined dictionaries do not contain the frequent wrong
written format of a word and the not well-known abbreviations of some words. We
need to create corpus-related dictionaries by adding entities that appear in the
given corpus. These entities can be names, aliases, wrong written forms of words,
or abbreviations. We expect the NER model trained on such dictionaries to have
higher precision and a good recall than that trained on the predefined, mostly small
dictionaries. To do so, we use these small predefined dictionaries as our seed list
and try to enrich them. We apply different static word embedding methods to ge-
nerate different vector embedding spaces of words in our domain. Then, we gather
all the most related words from these different embedding spaces to our original
seed list of entities, and we again use this new list to find the most similar words
to them in all vector embedding spaces we have.
The static word embedding methods we used here are fastText (Skip-gram subword
information) and word2vec (CBOW and skip-gram) methods. We could apply more
static word embedding methods to the set of seed tokens here, such as GLOVE
[95]. However, we decided to test our model using these three word embedding
methods. In Word2Vec and fastText, as explained in section 4.2.1, the most similar
tokens to the set of seeds are gathered item by item or based on the similarity to
the whole set of seed tokens. Based on the different architecture of each word
embedding method, the similar final tokens to the set of seed tokens, are different.
To train the word embedding representation based on continuous bag of words
(CBOW) and skip-gram methods for the automatic generation of gazetteers, we
used Gensim [109] and fastText [110] packages.

As we mentioned, fastText can find vectors that are out-of-vocabulary (OOV)
words by adding the vectors for each of its character n-grams, but this only works if
at least one of the character n-grams is included in the corpus used as the training
dataset. However, for the CBOW model, it is only possible to find similar words
for the existing words in the corpus, which will lead us to have original seed lists
in which all of their tokens are existing words in the corpus. As you can see in

89

Table 4.4, there will be a limitation on the size of the seed list for the CBOW
method, but we can increase the list size for the fastText method. It led us to
choose the size of the original seed list based on the availability of seed tokens for
the CBOW method since we want to have just one original seed list for each entity
class. Also, we can find similar words to each seed token one by one (token to list),
or we can find the most similar words whose vector representation is closer to all
of the tokens of the seed list (list to list). In this case, all the top similar words
to the seed list will be gathered by the result of the top most similar words to
the whole list will be the words with the lowest average of distances to all tokens
in the list. We distinguish these two approaches by adding the word item and list
in word embedding methods. We collect all similar words for each type of name
entity by considering a threshold and several iterations, which are explained in
Section 4.3. Based on the different architecture of each word embedding method,
the similar final tokens to the set of seed tokens, are different. For more clarity, we
show the top 5 similar words and their similarity (1 - cosine distance of two-word
representation vectors) in Table 4.3.

Table 4.3 – Top most similar words based on different word embedding methods for the
same corpus

Model seed token = ’wordian’ seed token = ’red’
Top 5 similar tokens Similarity Top 5 similar tokens Similarity

FastText

oxtordian 0.970 reddish 0.864
fordian 0.962 reddish purple 0.862
lerdian 0.950 red purple 0.854
laxfordian 0.947 reddish pink 0.850
gaurdian 0.946 reddieh 0.840

Skip-gram

wuchiapingian 0.927 reddish 0.872
roadian 0.925 brick 0.827
changhsingian 0.899 red brown 0.816
capitanian 0.894 orange 0.808
guadalupian 0.883 green 0.805

CBOW

capitanian .862 reddish 0.833
wuchiapingian 0.820 red brown 0.706
imuture 0.818 black opaque 0.705
changhsingian 0.812 chocolate 0.675
remesella 0.807 purple 0.668

Considering the similarity value of the top 5 most similar tokens in our specific-
domain corpus for two tokens in the example of Table 4.3, "wordian" as an Age en-
tity example (specific-domain entity) and "red" as a Color entity example (general-
domain entity), the distance for specific domain tokens is lower, which means higher
similarity. Additionally, since a significant portion of the component character n-
grams will be the same for similar words, they will typically have a high degree
of similarity in the fastText model. As a result, fastText generally does better at
syntactic tasks than Word2Vec models, for example, all character gram ’-dian’ at
the end of the top 5 similar words to the word "wordian" in Table 4.3. The result
of generated corpus-based tokens for each set of seeds in each word embedding
method can be seen in Table 4.6.

90

The five chosen different static word embedding methods (fk where k = 6) in
GAGNER are 2:

1. f1: fastText_skip-gram_SI_item (fasttext_i)

2. f2: w2v_cbow_item (cbow_i)

3. f3: w2v_sg_item (sg_i)

4. f4: fastText_skip-gram_SI_list (fasttext_l)

5. f5: w2v_cbow_list (cbow_l)

6. f6: w2v_skip-gram_list (sg_l)

The difference between methods distinguished by the words item and the list is
about defining similar words to a word of a seed list or the complete seed list of
words. Item means that we add similar words to each item in the seed list. The
list means we add similar words to all sets of seed tokens in one go. We collect all
similar words for each type of name entity by considering a threshold and several
iterations, which is explained in Section 4.3. In our domain, the manually chosen
seed tokens for Era and Period type contain a limited number of entities that will
not exceed this list. Then we keep the original seed tokens as the final gazetteers
in our process and apply our word embedding methods to the remaining five entity
types. The result of generated corpus-based words for each set of seeds in each
word embedding method can be seen in Table 4.6. So far, we have noticed that
the seed lists of entities are critical to generating the gazetteers. However, the size
of these seed lists is a very important parameter in generating the final gazetteers.
Table 4.4 shows how different sizes of seed lists of any kind of named entity types
have a direct relation with the final number of generated entities in the gazetteers.
Here you can see this relationship for three different named entity types. In each
iteration, the top 10 similar tokens with a similarity threshold higher than α (if
existing) are collected and the collective tokens added to the original seed tokens
are the input for the next iteration, where again top 10 similar words with a higher
threshold than α is collected.

Users can choose the threshold rate and the number of iterations. However, by
default, we set a similarity rate of 80% as the threshold and an iteration number
of 3 for all the methods. In the first iteration, we find similar words to the chosen
set of seeds for an entity type by a similarity rate of 80%. We update the set of
seeds as the input for the second iteration by a gathered set of all similar words
in the first iteration. This time we apply the methods on this new set by again
considering a similarity rate of 80%. The same iteration will be applied to further
iterations. The number of words in the final gathered set of all similar words in the
third iteration is shown in Table 4.6. We keep the frequency of appearing a unique
word in any set in each iteration, then the final output of this section per each

2. The names in the parenthesis are the short form of the method names

91

Table 4.4 – The impact of seed list size on generated similar tokens in each method

Named Entity #seeds

fastText skip-gram cbow
α = 0.8 α = 0.8 α = 0.7

1th 2nd 3rd 1th 2nd 3rd 1th 2nd 3rd
iter. iter. iter. iter. iter. iter. iter. iter. iter.

Age

1 11 44 114 11 77 423 11 87 522
2 20 69 144 22 107 495 22 107 549
4 42 139 273 33 149 607 29 111 554
8 83 231 382 60 252 845 47 186 825

Lithology

1 11 34 63 3 15 79 4 5 15
2 17 55 133 4 16 80 7 13 52
4 42 168 376 6 18 82 9 15 54
8 83 304 813 22 94 391 32 120 359
16 168 559 1469 - - - - - -

Color

1 11 51 175 7 35 136 3 17 53
2 22 96 265 16 78 205 14 51 127
4 22 9 175 28 120 266 42 62 150
8 83 272 475 52 181 362 42 85 192
16 144 479 1072 92 298 570 65 119 266
32 272 1100 3346 - - - - - -

Table 4.5 – The frequency of occurrence of a sample of terms from generated groups of
similar tokens through different word embedding methods in entity class Age

AGE fasttext_i cbow_i sg_i fasttext_l cbow_l sg_l sum #Source
wordian 427 392 399 39 39 39 1335 6

famennian 394 390 417 39 39 39 1318 6
pliensbachian 24 418 177 33 26 - 678 5
barremian - 259 32 - - - 291 2
votgian 101 3 - - - - 104 2
asian 240 - - - - - 240 1

method is the entity and its score (a frequency-based quotient) in each entity type
class. An example of that is shown in Table 4.5.

4.4.4 . Popularity Score

Here, we define a popularity score to filter the top most frequent words ge-
nerated for each entity type. The final goal is to remove the tokens that can
appear in each entity type class, but there is a high chance that they do not
belong to that entity type class. This popularity score (PS(t)) is defined based
on each token’s frequency of appearance in specific word embedding methods
(V (tKe) : te → xfi where te ∈ T and x ⊂ N and i ∈ [1 : k]), the number of the

Table 4.6 – The number of the words for each entity type based on different word em-
bedding methods

Entity Type fasttext_i cbow_i sg_i fasttext_l cbow_l sg_l Sum
Age 599 1107 1539 43 43 43 604

Formation 932 963 809 52 44 51 2495
Lithology 1804 69 54 56 26 1702
Color 1076 90 953 46 26 56 2624
Texture 458 106 700 38 17 38 1109

92

Table 4.7 – Final number of the words for each entity type after filtering by popularity
score (α = 30 for all entity types)

Entity Type #seeds fasttext_i cbow_i sg_i fasttext_l cbow_l sg_l Sum
Age 13 129 77 126 43 43 43 153

Formation 21 93 98 104 52 44 51 152
Lithology 26 148 35 133 55 26 54 166
Color 17 188 66 184 46 44 46 212
Texture 8 118 44 131 36 17 38 157

Table 4.8 – Final number of the words for each entity type after filtering by popularity
score considering α = 10 for different entity types

Entity Type #seeds fasttext_i cbow_i sg_i fasttext_l cbow_l sg_l Sum
Age 13 235 98 164 43 43 43 314

Formation 21 153 130 111 52 44 51 251
Lithology 26 655 36 236 56 26 56 780
Color 17 434 76 312 46 46 46 578
Texture 8 166 47 165 38 16 38 274

unique time that a word appears among these methods (P (tfi)).

P (tfi) =

{
1 if ∃t ∈ fi & i ∈ [1 : k]

0 if ∃t /∈ fi

and the popularity score can be defined through the following equations:

V ′(tfi) =

{
xfi if xfi ≥ α & α is a threshold
0 if xfi < α

PS(t) =

{∑k
i=1 V

′(tfi) if #Source =
∑k

i=1 P (tfi) > 1

0 if #Source ≤ 1

Example 14. Considering k=6, for token tei = wordian, V (tKe) indicates the fre-
quency of term tei in different similarity groups of tokens generated through dif-
ferent word embedding methods (fk). Then for our six different word embedding
methodswhere tei is wordian , we have:V ((t1e)) = 427,V ((t2e)) = 392,V ((t3e)) =

399, V ((t4e)) = 39, V ((t5e)) = 39 and V ((t6e)) = 39.
Also, #Source =

∑k
i=1 P (tfi) = 6. Other examples of different tokens can be

seen in Table 4.5.

Also, the value for α can be modified with a user. A simple way is to consider
the average of frequencies in a class as the threshold value. In other words, we
consider the tokens as the final similar tokens to our seed list, which appear in at
least two similarity functions. Their occurrence frequency in each method should
be higher than a threshold (mean frequency) for that specific word embedding
method.

If PS(t) for each word has a value bigger than zero, that word will be part of
the final generated gazetteers. The number of words for five types of entities for

93

Table 4.9 – Geological entity type and the number of the seed list

Entity Names #Seeds Entity Description
Era 14 a partition of an eon into smaller units of time in geologic time.

Period 22 one of the divisions of geologic time that allows rock cross-referencing.
Age 13 one of the geologic time divisions that splits an epoch into smaller chunks.

Formation 21 a body of rock with a predefined set of physical characteristics.
Lithology 26 the general characteristics of sediments, rocks, and rock types.
Color 17 a particular quality of some rocks that is consistently noted.
Texture 8 the composition of rocks in terms of their constituent materials.

Table 4.10 – Ambiguity percentage between the tokens of each gazetteer

Entity Class Era Period Age Formation Color Lithology Texture
Era 100 0 0 0 0 0 0

Period 0 100 0 0 0 0 0
Age 0 0 100 0 0 0 0

Formation 0 0 0 100 0 1.05 0
Color 0 0 0 0 100 0.26 1.37

Lithology 0 0 0 0.26 0 100 0.31
Texture 0 0 0 0 1.37 0.31 100

each gazetteer can be seen in Table 4.7 after applying the popularity score. Also,
we need to check the overlap of the gazetteers’ different tokens with each other to
be sure that each token appears in exactly one gazetteer. We want to be sure that
there is no ambiguity among generated gazetteers. As shown in Table 4.10, only
three of the gazetteers have a slight overlap; when we check the words appearing
in these gazetteers, as a human, even we cannot apply the correct entity type; for
example, the shared tokens in both lithology and texture gazetteers are: ’silt fine’,
’silt vf’. V here stands for very, f stands for fine, and silt is a kind of formation; these
tokens can be labeled both in lithology or texture. Since the amount of overlap is
very low (1%, 0.2%, and 0.1%), a way to decrease this overlap even to a smaller
value is to try different α values as the threshold to calculate V ′(tfk).

4.4.5 . Implementation and Setup

The experiment is implemented in Python 3.6.7. To train the word embedding
representation based on continuous bag of words (CBOW) and skip-gram methods
for the automatic generation of gazetteers, we used Gensim [109] and fastText
[110]. The common hyperparameters for training the fastText and CBOW models
are as follows: vector_size (dimensionality of vector embeddings), window (context
window size), min_count (words with fewer occurrences should not be used),
epochs (number of epochs), and alpha (initial learning rate).

In addition, fastText has these two additional parameters: min_n (minimum
length of character n-grams) and max_n (maximum length of character n-grams)

The lengths of character n-grams into which each word is divided during trai-
ning and looking up embeddings are controlled by the parameters min_n and
max_n regulate the number of character n-grams that each word is divided into
during training. If max_n is set to 0 or less than min_n, it means that no charac-

94

Table 4.11 – Training Hyperparameters for static word-embedding models: fastText and
Word2Vec

Model vector_size window min_count epochs alpha min_n max_n
fastText 100 5 1 0.025 5 3 6
Skip-gram 100 5 1 0.025 5 3 0
CBOW 100 5 1 0.025 5 - -

ter n-grams are used in the model, which effectively reduces the fastText model to
Word2Vec’s skip-gram model. We used similar hyperparameters for both models
on four core worker threads to speed up the learning process. The value that we
used for our implementation can be seen in Table 4.11.

4.4.6 . Evaluation
One question which remains is how accurate are these generated gazetteers. To

answer this question, we need to show that the quality of the generated gazetteers
is high enough to be used for tagging the NE corpus to have a training data set
for building a domain-specific NER model. Since there is no baseline to see which
percentage of all existing universal entities related to one gazetteer in the corpus
is generated through the GAGNER approach, we could consider an accuracy-based
evaluation. Also, as we mentioned, there is no benchmark to compare the NE corpus
with a manually annotated one in this domain; we need to manually calculate the
accuracy for each gazetteer. Since the number of tokens in the final generated
gazetteer is a lot for some entities such as Lithology and Color, and many of
the entities in the final gazetteers are with typos, it is not just about checking
the generated list, we need to check them in the context in original documents,
which is very time-consuming. Therefore, we sampled a random set of 50 tokens
from each gazetteer, and manually with the help of geologists, we compared the
following classes when comparing the accuracy:

— True (T) if the token in the entity type class is assigned correctly to that
type class.

— True with typos (TT) if the token in the gazetteer is assigned correctly to
that type class, but it is not written correctly. The corpus is very noisy, and
it is possible that the tokens inside the gazetteers are the correct entities
assigned to that class but are not written correctly.

— False (F) if a token is in an entity type class (the generated gazetteers for
that class) but does not belong to that class.

— Ambiguous (A) if a token is not easily distinguished whether it is assigned
correctly or not because of many reasons such as ambiguous nature or typos.

The number of each category for each entity class can be seen in Table 4.12. The
accuracy of the generated gazetteers is calculated based on each class type’s pre-
cision, shown in the following formula. Also, The final result for the accuracy of
the generated gazetteers in GAGNER is shown in Table 4.13. The total precision

95

is the precision of 250 random tokens from a total of 1320 tokens in all gazetteers
(around 20% of all tokens).

Strict Precision =
T + TT

T + TT + F +A

Lenient Precision =
T + TT

T + TT + F

Table 4.12 – Gazetteers evaluation

α #Sampling Metric Entity Type
Age Formation Lithology Color Texture

α = 10

True 35 32 29 36 37
50 samples True with typos 10 13 21 14 13

each entity type False 3 0 0 0 0
Ambiguous 2 5 0 0 0

α = 30

True 139 138 133 193 149
Complete True with typos 151 145 154 203 156
evaluation False 2 7 12 5 0

Ambiguous 0 0 0 4 1

Example 15. Set A. contains some formation names in the Formation gazetteer
having typos (or abbreviation forms), and set B. contains the proper form of those
real entity names.

A = {eather, ek, wus, torn, kimmeridye, kinmeridge}

B = {heather, ekofisk, wuschel, torg, kimmeridge, kimmeridge}

As can be seen, GAGNER has promising results on precision, but we cannot be
sure about the high coverage of all existing named entities in the available corpus.
We could enrich a set of named entities in each entity type, but we still do not know
how much the final generated gazetteers for each entity type are comprehensive
and inclusive.

Table 4.13 – Accuracy of generated gazetteers- for two different generated gazetteers by
applying different threshold (α) in popularity Score to finalize the gazetteers

Entity Type Partial sampling (α = 10) Complete evaluation (α = 30)
Strict Precision (%) Lenient Precision (%) Strict Precision (%) Lenient Precision (%)

Age 90.00 93.75 99.31 99.31
Formation 90.00 100 97.59 97.59
Lithology 100 100 95.99 95.99
Color 100 100 97.78 98.75
Texture 100 100 99.67 100
Total 96.00 98.75 98.07 98.33

96

4.5 . Automatic Construction of Annotated NE Corpus

The sub-surface geology corpus which we created contains around 634,000
sentences. We used the generated gazetteers and annotated the corpus to have a
named entity annotated corpus. Different tagging schemes exist for NER, but we
used the BIO entity tagging scheme in this study (sometimes called IOB). Each
token in the corpus is assigned a type and a position within the entity using the
BIO scheme. B stands for the beginning of an entity, I means inside, and O means
outside of an entity. The labels for each created gazetteer are the type of entity.
We have seven entity types, which increase to 14 when considering the BIO format,
and other tokens with no assigned entity type receive the O (Outside) type.

Automatic Construction of Annotated NE Corpus needs the process of Gazet-
teer Matching. This matching can be done in two levels: single-token matching and
multi-token matching. Assigning gazetteer properties to sentence tokens is known
as gazetteer matching. In this process, we need to determine the entity types of
each token ti in a sentence S = {t1; t2; ...; tn} and map those tokens to entity types
({E1;E2; ...;En}), given a gazetteer dictionary M. The match span Sij represents
positional information that encodes multi-token matches. The match spans are
encoded using BIO (Beginning Inside Outside) tags, similar to the BIO tags of
the CONL-2003 dataset, and we use this format to encode the NER labels. Multi-
token and single-token are the two primary approaches for gazetteer matching [67].
Multi-token matching is looking for the most extended parts of the sentence that
can be mapped to a type in the gazetteer dictionary G [67]. For example, given
G[Light]→ Outside, which means the word “light” is not specifically among the
terms in any gazetteer type classes, and G[Brown]→ Color, which means the term
Brown belongs to gazetteer Color entity; The combination of "Outside" vocabula-
ries with any term in any entities in Color type gazetteers (e.g., G[Light Brown]→
Color) is tagged as a Color entity. For example, consider these two sentences: (1)
“Light metal and alloys possess high strength-to-weight ratios and low density” and
(2) “The dominant lithology is light brown sandy clay” the multi-token matcher
assigns the color gazetteer type to the most extended segment “light brown”.

We also use a seed list of five tokens of epochs: [’upper’, ’mid’, ’early’, ’middle’,
’lower’]. We enrich them through the same method we generated gazetteers, but
we clean the list manually to have a list of 21 tokens of epochs : [’earliest’, ’in-
ner’, ’intra’, ’middle’, ’lower’, ’uppermost’, ’late’, ’middlt’, ’iddle’, ’pre’, ’topmost’,
’latest’, ’post’, ’upper’, ’lowermost’, ’mid’, ’early’,’late’,’niddle’, ’mddle’, ’carliest’]
This time, we apply the same method as we used for color for these entity classes:
Age, Formation, Era, and Period. If any of these tokens of Epochs happen before
the entity from these classes, we apply the same entity label to the token from the
Epoch list. For example, if we have [’upper’, ’flounder’] in our tokenized sentence,
the annotated text will be [’B-formation’, ’I-formation’] or for [’mid’, ’jurassic’], we
have [’B-Period’, ’I-Period’].

Searching for exact matches between any vocabulary term from a gazetteer type

97

is known as single-token matching. In the previous example, each term from the
sentence was individually matched to the tokens in G, then “brown” was matched
to the “Color” type entity class. However, to tag the terms based on the gazetteers,
the multi-token matcher looks for the most extended segments of the terms. These
segments in the corpus are bigram or trigram terms.

Table 4.14 – BIO label distribution: train and test set

Entity Label Training set Test set
B-Era 215 67
B-Period 15420 3852
B-Age 15384 3766
B-color 55130 13602
B-formation 31849 7879
B-Lithology 152332 38653
B-Texture 45361 11449
I-Era 18 6
I-Period 6784 1694
I-Age 12236 3009
I-color 55735 14009
I-formation 4923 1215
I-Lithology 15446 3982
I-Texture 23013 5762
TOTAL 3208213 800172

4.6 . Learning a Sub-surface Named Entity Model

In NLP, we typically deal with variable-length text sequences, such as sentences,
rather than single words without context. The order of the input words is essential
here, and words that come before them will help distinguish later words. Text
data is an example of sequential data without a temporal component compared to
time-series data, such as signal processing data. For this sort of sequential data,
specific DL approaches, such as RNNs and sequence-to-sequence models [111],
and lately, attention networks and transformers [103] have been shown to function
better. This is also true for the NER tasks. Until recently, when self-attention
networks allowed for transfer learning, which is when a pre-trained language model
is fine-tuned with a labeled NER corpus, BiLSTM RNNs, along with the best CNN
algorithms and conditional random field (CRF), where the state-of-the-art in NER
[63] [112] [113]. Lafferty et al. (2001) [114] initially presented CRF as a framework
for statistical sequence modeling. While a conventional classifier does not include
"neighboring" samples when predicting a label for a single sample, a CRF can
consider the context for label prediction [63]. In order to overcome label bias
issues, CRFs use the conditional probability property in place of the independence
assumption in models such as Hidden Markov Models (HMMs). CRFs show better
performance than MEMMs (Maximum Entropy Markov Models) and HMMs in
many domains, such as biomedical, voice recognition, and computational linguistic
modeling [63] [115] [116]. Now that we have defined a NE corpus, we can create
a NER system to extract and classify named entities. We use a transformer model

98

(BERT [100]) to make a NER model. While BERT only uses an encoder stack
for classification, NER uses a feed-forward layer. The essential concept is Masked
Language Modelling, which allows the model to predict a word by looking at the
entire sentence or text [100]. This contrasts with RNNs or Transformers, which
base their predictions simply on a few words of a sentence. 15% of the tokens in
the normal semi-supervised Language Modelling task are masked in BERT. After
that, the model is asked to identify the word for each of these tokens. However,
generalization is enhanced by using a mixture of original, random, and masked
words.

BERT also goes beyond semi-supervised learning by determining whether two
sentences are connected and whether they are logical continuations of their prede-
cessor. These two tasks work together to ensure that BERT generalizes successfully
and captures linguistic structures. One benefit of multi-task learning is that it is
a regularizer for sentence categorization and word prediction. It can prevent over-
fitting to a single task because the weights must balance the need for several
tasks. BERT is a language representation model with two pre-training and fine-
tuning stages [100]. BERT was initially developed for TensorFlow and has since
been implemented into Huggingface Transformers for PyTorch [117]. There are
different models for different applications for BERT, such as BertForSequence-
Classification, BertForMultipleChoice, BertForQuestionAnswering, and BertForTo-
kenClassification. All tasks require additional domain-specific fine-tuning. BERT
models come in various sizes, including base and large, as well as case sensitivity
(cased and uncased) and pre-training language.

As shown in Figure 4.4, the model created consists of three primary compo-
nents: Preprocessing, BERT, and classifier. For the NER task, Devlin et al. used
the BERT output and designed a classifier. The classifiers in this work were deve-
loped using the Feed-Forward layer and Softmax, trying to recreate the model as
was described in the original paper [100]. A ten percent dropout rate is applied to
the results of BERT. Given that Devlin et al. did not share the NER application’s
source code and that little is known about it, it is challenging to replicate the results
they have provided. There is still controversy regarding how BERT accomplished
its NER results on CoNLL-03 3.

4.6.1 . Fine-tuned BERT

This study uses a softmax classification layer similar to the BERT’s original
paper presented by Devlin et al. (2018) [100]. First, corpus words are tokenized
into wordpiece tokens. Following that, the BERT representations are learned by
the BERT encoder. Finally, the classification layer produces the BIO labels for
the sub-surface geology entity type classes. We use pre-trained Bert-base-uncased
using the Huggingface website 4. This model has 12-layer, 768-hidden, 12-heads,

3. https://github.com/google-research/bert/issues/223
4. https://huggingface.co/models

99

https://github.com/google-research/bert/issues/223
https://huggingface.co/models

Figure 4.4 – Simplified overview of the NER model architectures for fine-tuned BERT
being developed in this work.

and 110M parameters.

4.6.2 . Classification Layer
The current study implements fine-tuned BERT with Softmax classification,

consistent with the best-performing BERT implementation by Devlin et al. (2018)
[100]. This Softmax function determines the most likely class for each word in
the given input [118]. The following formula represents the Softmax computation,
where xi stands for the dense layer value for NER class label i:

softmax(xi) =
exp(xi)∑
j exp(xj)

4.6.3 . Model Optimization
The Adam optimizer is frequently used in existing BERT experiments to update

model weights [100][119]. This study uses the same optimizer from the original
paper [100]. However, we also try adjusting the other hyper-parameters, such as
learning rate, epochs, batch size, dropout ratio, and weight decay. Table 4.15 shows
the result for the best hyper-parameters. The maximum length of an input sequence
that the BERT model will accept is 512 tokens. There is no requirement to use all
512 tokens because most sentences in our corpus have significantly fewer tokens.
A few sentences that are longer than 128 tokens had their sentences truncated at

100

Table 4.15 – Model hyper-parameters

Model Architecture Parameter configuration
Batch size Learning rate epochs

BERT + Softmax 32 3e-05 3

the end. the separation token ([SEP]), the classification token ([CLS]), and the
first 126 tokens ([126]) remain.

4.6.4 . Model Evaluation
The NE corpus created by generated gazetteers contains 633,337 sentences,

and 184,142 out of them have at least one label of seven named entities for which
a gazetteer is generated. We split the 184,142 sentences two a train and test data
set by considering the ratio of 80 to 20. The train and test data set information
is shown in Table 4.16. We examined the NE count and split entity types into
the training/test data. The number of entities per dataset is presented in Figure
4.5. Table 4.14 shows the result of true and false predicted labels based on the
different Named entity labels. This result is after applying the model BERT with
the softmax classifiers.

Table 4.16 – Training/test dataset information

Training Test
Sentences 147,314 36,828
Tokens 3,639,957 1,330,085

NE Labeled Tokens 433,846 181,938

Figure 4.5 – NE split in the annotated sub-surface geological corpus.

The same process with the same test and training data set is done to build
a NER system with a CRF classification model. The final result of the average
precision, recall, and F1-score is shown in Table 4.17.

101

Table 4.17 – Experiment results

Model precision recall f1-score
BERT 0.97 0.98 0.97
CRF 0.95 0.91 0.93

Table 4.18 – BERT vs. CRF model results for test set (BIO labels)

Entity Label BERT Model CRF Model
P R F1 P R F1

B-Era 0.98 0.96 0.97 0.93 0.89 0.91
B-Period 1.00 0.99 1.00 0.95 0.94 0.94
B-Age 0.94 0.93 0.94 0.87 0.84 0.85
B-Color 1.00 1.00 1.00 0.86 0.86 0.86
B-Formation 0.99 0.99 0.99 0.97 0.98 0.97
B-Lithology 1.00 1.00 1.00 0.98 0.99 0.98
B-Texture 1.00 1.00 1.00 0.91 0.90 0.90
I-Era 0.78 1.00 0.88 0 0 0
I-Period 0.99 1.00 0.99 0.89 0.94 0.91
I-Age 0.90 0.94 0.92 0.83 0.92 0.87
I-Color 0.99 1.00 1.00 0.87 0.89 0.88
I-Formation 0.97 0.95 0.96 0.89 0.94 0.91
I-Lithology 0.98 0.99 0.98 0.93 0.80 0.86
I-Texture 0.99 1.00 1.00 0.89 0.82 0.86
TOTAL (Macro Average) 0.97 0.98 0.97 0.84 0.83 0.84

4.7 . Conclusion

We have described the annotation of the first NER corpus with a large number
of documents in the sub-surface geology domain. This corpus, with over 663,000
sentences containing over 915,000 NEs in just 184,185 sentences with 6,792,070
tokens, is one of the largest automatically annotated NER corpus available for the
English language, includes a variety of text types that have been annotated for
seven specific-domain entity types. To automatically annotate the NE corpus, we
presented GAGNER, a novel approach for gazetteer generation that uses shallow
neural network methods such as word2vec and skip-gram methods. Finally, we ap-
plied a pre-trained transformer model (BERT) on the annotated NE corpus. Since
the evaluation results of generated gazetteers show high accuracy, we can be sure
that the annotated NE corpus has very high accuracy. We can consider the anno-
tated labels as high-quality manual labels. We see that the final evaluation of the
NER system has a very promising result.
GAGNER is a powerful method for NER, but the type of these named entities
should be words, meaning that finding named entity types containing numerical
values or symbols which follow a pattern is not compatible with this method. Entity
types such as dates, specific identifiers for entities, and numerical values cannot be
tagged through the GAGNER approach. Then if this type of information is impor-
tant for the domain, we should think about another approach. For future work, we
also want to assess the recall of the created gazetteers. Since there is no baseline
to compare how much the generated gazetteers cover all the entities in the corpus.

102

It requires manual labeling for a part of the corpus.
Also, we would like to evaluate GAGNER on non-English language datasets to
show that GAGNER is generating the labels from the corpus. The foundation of
our approach makes us believe that the approach can work well in other languages.
We know in recent years, pre-training large neural language models, such as BERT
or GPT-2/3, had impressive gains on many NLP tasks. For specialized domains
like biomedical, there are many types of research to pre-train domain-specific lan-
guage models dedicated to the domain. Their results show that domain-specific
pre-training language models are a robust baseline for a variety of biomedical NLP
tasks, such as NER, which is leading to new state-of-the-art results [120][121][122].
One idea is to discover if pre-training a language model can also bring more ad-
vantages for our specific sub-surface domain. To this aim, we define the GeoBERT
model, which is presented in detail in Chapter 7.

103

5 - GeoBERT: NER using Domain-Specific
Language Models

5.1 . Introduction

Domain-general corpora are the primary target of most pre-training language
models. The widespread assumption is that domain-general language models can
help even domain-specific pre-training. Numerous studies in specialized domains,
such as bio-medicine, demonstrate that pre-training language models from scratch
yields more significant benefits than continuous pre-training of domain-general
language models for domains with large amounts of unlabeled text [120][121][122].
However, because there is a shortage of literature resources in the geological sub-
surface compared to the biomedical domain, pre-training a language model from
scratch means we lose a lot of the knowledge already embedded in domain-general
language models, such as BERT. As mentioned in the previous chapter (Chapter
4), we face some challenges in building a NER system. Although we could build a
promising NER model (GAGNER), this model held its own limitation. Also, some
main problems still need to be solved.
• GAGNER is a powerful method for NER. Still, the type of named entities

extracted through this approach should be words, meaning that finding na-
med entity types containing numerical values or symbols following a pattern
is not compatible with this method. These entity types include the date and
specific identifiers (e.g., wellbore IDs and numerical values). Then if this kind
of information is vital for the domain, we should consider another approach.

• GAGNER is helpful for the specific NLP task of NER. Suppose, we want
to apply other NLP tasks, such as Q&A, in one particular domain; In that
situation, a domain-specific pre-trained language model can be quite bene-
ficial.

• The sub-surface geology domain is a very low-resource domain in which
existing dictionaries, knowledge bases, or corpora are limited. There are no
comprehensive and inclusive dictionaries for the entities in this domain.

• BERT is a domain-general pre-trained language model (generic BERT). The
principal shortage of the generic BERT model in a specific domain is rela-
ted to out-of-vocabulary words (OOV) (unseen words) and lack of precise
embedding representation for them; since, in a new specific domain, lots of
frequent words (presenting most of the content) are OOVs.

Pre-trained Language Models (PLMs) are refined on a downstream task like
NER after being pre-trained over a large text corpus [123]. BERT (explained in
Section 4.2 in the previous chapter) is a PLM offering subword representations ra-
ther than word-level representations to represent both the tokens of input text and

105

the output. When an unknown word (unseen word in the pre-trained BERT model)
is provided to BERT, it will be divided into a number of subwords, maybe even
character subwords, depending on the situation. It is the way that BERT handles
unseen (OOV) words. The principal shortage of the generic BERT model in a new
domain is related to the OOVs when many of the common words (most frequent
words) in a new domain are OOVs, and there is a lack of exact embedding represen-
tation for them. Some models on a specific domain solve this problem by training
a model from scratch on their own corpus [120] [121]. However, training the new
model requires a considerable corpus and lots of GPUs and TPUs, leading to huge
computational costs. When we train a model from scratch, if our domain-specific
corpus is not large enough, we will lose a lot of already existing information from
the generic BERT model because we will have a new set of vocabularies. Although
some other models alter the pre-trained model by using it as the initial model for
a new domain to tune the word embedding, they nevertheless employ the same
vocabulary as the original BERT model. They initialize the weights of the generic
BERT model to train a model from scratch; The issue with this model is that
most domain-specific terms are still OOV, which causes sub-optimal performance
on downstream tasks. This is because the original vocabulary only includes some
vocabulary of a specific domain. One option to solve this problem is to integrate
the most common words from domain-specific corpus into the BERT vocabulary
dictionary and reuse the pre-trained model’s weights to integrate the vocabulary
embeddings from the new domain to the generic BERT model. Compared with
pre-training a language model from scratch, it results in less computation and
training data. One problem with this concept is that the original BERT vocabula-
ries’ polysemy terms, which have various meanings in other domains, nonetheless
have the exact representation. Then, to overcome this difficulty, a method that
enables interaction between the generic BERT model and the extension model for
domain-specific words (extension module) must be used.

exBERT (extend BERT) [124], for the first time, challenges the same idea in the
biomedical domain, which was presented by Tai et al. (2020). However, exBERT
model was pre-trained on a large number of biomedicine resources, but as we
mentioned, the geological domain is a limited source domain. In this chapter, with
only a limited number of domain-specific sources, we want to challenge the same
idea and adapt the generic BERT model to a specific domain with a limited number
of sources. We want to see whether a limited source domain, such as the sub-surface
geology domain, can also benefit from extending the pre-trained model with new
vocabularies. We demonstrate this by adopting brand-new, additive vocabulary
(out-of-vocabulary words, or OOVs) from domain-specific sources along with an
extension module to modify the initial BERT embedding of a generic vocabulary
to fit the new domain [124]. Our experiments demonstrate improvements over the
generic BERT model as we evaluate our domain-specific BERT-variant language
model (GeoBERT) for a downstream task: NER. Our findings indicate that this

106

approach is consistent with using small domain-specific sources. According to our
knowledge, this approach has never been used before in the geology, oil and gas
domain, or sub-surface domain, let alone on limited resources. We summarize our
contributions as follows:

• Presenting GeoBERT, a domain-specific BERT-variant language model for
the sub-surface geology domain.

• Adapting the generic BERT model to a specific domain with limited sources.

• Demonstrating that the generic BERT model can benefit from integrating an
extension module to solve the unseen vocabulary (OOV) of specific domains
in the limited-source sub-surface domain.

The chapter is organized as follows: Section 5.2 reviews the related studies
on domain-general and domain-specific language models. Section 5.3 presents a
brief overview of GeoBERT. Section 5.4 details the building blocks of GeoBERT.
Section 5.5.2 illustrates the results of our experiments. Finally, Section 5.7 presents
the conclusion and discusses future steps.

5.2 . Related Work

The majority of NER systems use pre-trained domain-general language models,
like BERT, which means that their architecture is based on a language (e,g.,
English, french and others) rather than a narrowly defined domain. In many natural
language processing applications, these pre-trained models have shown substantial
effectiveness; however, they suffer from a domain shift in specific domains. Then,
fine-tuning can be challenging as well. SciBERT [120], a popular BERT variant
trained mostly on biomedical literature. It is an entirely new model trained from
scratch with new vocabularies. We should keep it in mind that when we train a
model from scratch, if our domain-specific corpus is not large enough, we will loss a
lot of already existing information from the generic BERT model. Other models use
the same vocabulary as the original BERT model even if they modify the pre-trained
model by employing it as the initial model for the new domain. They initialize the
weights of the generic BERT model in order to train a model from scratch; the
BioBERT model [121], which uses this technique, is a well-known BERT variant
model in the biomedical domain. The issue with this model is that most biomedical
terms (domain-specific terms) are still OOV, which causes sub-optimal performance
on downstream tasks when using the pre-trained model as is. This is because the
original vocabulary may not be proper for a specific domain. One option to solve this
problem is to integrate the most common words from the domain-specific corpus
into the BERT vocabulary dictionary and reuse the pre-trained model’s weights to
integrate the vocabulary embeddings from the new domain to the generic BERT
model. This will result in less computation and training data. One problem with
this concept is that the original BERT vocabularies’ polysemy terms, which have
various meanings in other domains, nonetheless have the exact representation in

107

another domain. Then, a method that enables interaction between the generic
BERT model and the extension module must be used to overcome this difficulty.
exBERT (extend BERT) [124] challenges the same idea in the biomedical domain.
In their search, they ran into two similar issues [124]: (1) The pre-trained generic
BERT model does not know how the extension vocabularies are embedded; (2) For
a variety of reasons, including differing sentence structures, formality, intent, and
. . ., the distribution of token representation in the original vocabulary may face a
change from the general domain to the specific domain. For instance, the same
word may have distinct meanings when used in contexts of different domains.
They used a weighted combination mechanism in their solution, which enables
cooperation to address these problems.

Figure 5.1 – GeoBERT architecture

108

5.3 . GeoBERT Overview

GeoBERT is a pre-trained language model, a domain-specific BERT-variant
language model for the oil and gas domain. The idea is to adopt a generic BERT
model to a new domain by injecting the out-of-vocabulary words into the already
trained model. By using the byte-pair encoding (BPE) or variants such as Word-
Piece, neural language models create a vocabulary from subword fragments to solve
the issue of out-of-vocabulary words [125] [126] [127]. Specific domains contain
many in-domain terms, which may be divided into sub-word pieces (e.g., ’siltstone’
is tokenized into [’si’, ’##lts’, ’##tone’] in the original BERT model). However,
since ’siltstone’ is part of the most frequent words in the sub-surface domain, ha-
ving a predefined embedding vector for this word seems to enable more meaningful
tokenization of input text, especially if more domain-specific terms are OOV words.
Therefore, the expectation is that GeoBERT will perform better on NLP tasks in
the sub-surface domain by adding the extension vocabulary and accompanying em-
bedding layer. The leading architecture for adding these new vocabularies can be
seen in Figure 5.1.

GeoBERT has borrowed its architecture from exBERT [124], which includes
the original module of the generic BERT model and an extension module which
adds the new domain vocabulary to the original vocabulary of the BERT model.
exBERT challenges the same idea in the biomedical domains, which contain many
text resources. They argue that the same word may take on distinct meanings
when used in various contexts. To address these issues, they proposed a weighted
combination mechanism that was applied in their method that allows cooperation
(Figure 5.1). For instance, the word Silestone is considered as one vocabulary
in the GeoBERT, while in BERT original model is tokenized into three tokens.
Based on this architecture, we have an extended embedding layer that is added
to the original module. We need to pre-train the new extended vocabularies and
merge them with original embeddings of vocabularies from the original model. Then
the model must be pre-trained again, considering the newly injected oov words.
We explain this process more in section 5.5. To train a domain-specific model
based on exBERT architecture, we need to follow two steps: (1) Adding Extension
Embedding Module; (2) Pre-training process. More details of these two main parts
are explained in the following.

109

5.4 . Extension Embedding Module

Some shortages of the BERT model in a specific domain are related to OOV
vocabularies and lack of precise embedding representation for them in a new domain
when lots of frequent words are OOV vocabularies. as we mentioned in related
work, there are some models on a specific domain which solve this problem by
training a model from scratch on their own corpus. This training of the new model
needs a considerable corpus and lots of GPUs and TPUs, which lead to substantial
computational costs. The other idea can be adding the most frequent words on our
corpus to the BERT dictionary and reusing the original pre-trained model’s weights
to add the new domain’s vocabulary embeddings to the original BERT model. This
will cause reduction in required computation and training data. This idea will cause
a reduction in required computation and training data. Also, the issue of polysemy
words in original BERT vocabularies will remain that similar words with different
meanings in another domain still have the exact representation. Then, in order to
overcome this difficulty, a method that enables interaction between the original
BERT model and extension module must be used.

To better understand why handling OOV words is so important through the
extension embedding module, it’s better to answer these questions :

— How a human brain naturally can guess a masked word from a sen-
tence? Where do we put our attention when we as humans read a
text?

For sure, as humans, our brains become certain about the meaning of a word
based on the context if the word is ambiguous or not familiar to us. One
known way to calculate this uncertainty of each word is by calculation by
Shannon entropy [128]. Entropy is the expected value of the variable’s self-
information. Then as a human, even guessing a mask word of a sentence can
be difficult if we are unfamiliar with the domain. e.g., a non-native English
speaker Ph.D. student who is spending lots of time reading papers suddenly
sees a flyer that is torn from the middle of this sentence: Eat some arti
. . .. Her brain may fill the blank part with the word “arti-cles”; However,
another person can quickly and easily fill the missed part of the words with
“arti-chokes”. There are two main reasons for this behavior: 1) being biased
based on her previous knowledge of her expertise, and 2) lack of knowledge
about all the names of edible plants in English. Self-attention-based language
models do the same behavior. They try to get the essential sub-information
tokens in the public domain that they have trained on and build a dictionary
of known tokens to guess the vector of out-of-vocabulary words (unseen
words in their training process) based on their sub-tokens. Since it keeps the
attention of all tokens in the context of an input (a sentence, paragraph, or
chunk of speech), this method can be helpful if we have a small amount of
UNK (unknown) words. It’s like you have a UNK word in a sentence. There’s

110

not any pre-trained embedding representation for that UNK word but based
on the embedding of the other known words in the context plus the known
sub-token parts of that word from the dictionary, the model can assign a
vector initially to the OOV word. Then this embedding representation can
be improved in the NLP downstream tasks. But what if there are lots of
OOV words? Many OOV words mean we are in domain-specific literature,
and our model suffers from a lack of knowledge. Then generic domain such
as the BERT model has a bias to guess towards the OOV words (precisely
like the artichoke-article example), even if some part of word information
can be found in the dictionary (e.g., arti).

— How our brain naturally understands the meaning of a new word in
a text (or understand an unknown meaning of a known word)?

The self-attention mechanism is beneficial for encoding multiple meanings
of ambiguous words This mechanism works like the human brain to unders-
tand the meaning of the mask words. For instance, consider the following
sentence from the beginning of a paragraph in a random paper [129]: “It com-
bines two crucial techniques to solve the problems of attention...”. When I
reach this part of the sentence, my brain can conclude that this paragraph
probably talks about attention deficiency based on my previous knowledge.
Then my brain guesses that the domain of this paragraph is psychology or,
more generally, the mental health domain. The sentence will continue: "It
combines two crucial techniques to solve the problems of attention and me-
mory..." [129]. By adding more known vocabulary, I know memory problems
are probably related to post-trauma syndrome, some neurodevelopmental
syndromes, or brain damage. How do I know this? Again, based on my pre-
vious knowledge. This prior knowledge shaped my training data to predict
the context and the masked words before reading the rest of the sentence
or paragraph here. If you ask another person, she may or may not has the
same idea. However, most people have similar opinions since their common
and public knowledge are mostly the same (the same education systems,
the base public knowledge), and probably now this paragraph talks about
memory loss in health domain. As you noticed, the calculation of certainty
of what we guess depends exactly on what we have already known (as it is
always mentioned in information theory). The text continues as: "It com-
bines two crucial techniques to solve the problems of attention and memory
allocation..." [129], by appearing "allocation" in the term "memory allo-
cation" (notice "memory allocation", not just the word "allocation"), the
whole amount of certainty about even the topic of the paragraph changes
in my brain. This paragraph probably speaks now about the issues in the
computational tasks to use memory more efficiently (generally, computer
science domain). The words such as attention, memory, and allocation are
not OOV words for any educated person. They are not even domain-specific

111

words, but they need representations that show the certainty of all different
contexts in which they can appear. Suppose we even miss any domain that
can appear. In that case, it means we lose some information because of a
lack of knowledge. For example, if an ex-ballerina in her 90s reads this para-
graph probably doesn’t have any idea, even after memory allocation terms,
that this paragraph might be talking about computer research. This might
happen because of her lack of knowledge in this domain; then, she may
end up continuing to read the paragraph with her biased knowledge that
it’s an article about the health domain. Even for the known vocabularies
without enough examples of a different existing domain, a representation of
a known word cannot be its best representation when it comes to a speci-
fic domain. For instance, the word "Platform" encodes multiple meanings
in different contexts, such as offshore platform, computing platform, train
platform, hosting platform, car platform, weapons platform, concert plat-
form, and chunky platform. Through self-attention, language models can
distinguish a word’s correct meaning more clearly. However, if there are lots
of OOV for the language model, it’s not clear that the model should put
its attention based on the context of the text. The context of a text will
remain ambiguous in two situations: 1) there are lots of OOV vocabularies
related to a specific domain. 2) we are in a specific domain in which known
vocabularies in the dictionary have other meanings which we do not have
any previous knowledge about, and it can misguide us (The example of 90
years old ex-ballerina).

5.4.1 . Limited Source Corpus

To have the extension vocabulary, we need a domain-specific corpus. The sub-
surface geology corpus, which we prepared in section 4.2 is very noisy and contains
words that can be non-real vocabulary. We need a clean corpus to have a standard
model that can apply to any sub-surface input text. Then we generated a domain-
specific corpus related to oil, gas, geology, and sub-surface. This geological corpus
gathers mainly from Wikipedia and Schlumberger glossary 1, which we call limited-
geological corpus in this dissertation.
Wikipedia: Specific Categories and their subcategories related to the domain of
geology, earth science, and petroleum categories were scraped from the English
Wikipedia (generally, 2541 categories). These categories contain 14,485 Wikipedia
pages, of which 10,079 contain any content. For these pages, the summary and
text part of the sections under each page title was scraped. 769 out of 10,079 pages
had a non-English title containing an ASCII code inside the URL name, which was
discarded. Finally, we have 9310 pages from Wikipedia.
Schlumberger glossary: From SLB Glossary, the content of pages related to 3213
terms was scraped.

1. https://glossary.oilfield.slb.com/

112

https://glossary.oilfield.slb.com/

Our standard limited source domain-specific corpus contains 12,523 pages with
a total number of 8,627,432 words and 175,856 unique words.

Figure 5.2 – Top 100 most frequent words from the target domain corpus

Figure 5.3 – Domain-specific sub-surface geological words existing in the original BERT
model: Common words with original BERT vocabulary (Orange) vs. OOV words from our
target domain corpus (Yellow)

5.4.2 . Vocabulary
As shown in Figure 5.3, the existing vocabulary of our target domain corpus in

the original BERT vocabulary is just 11.75%. It means that most of the words in
our domain are OOV, even though we have a very limited sources corpus. There is
no pre-trained embedding for about 88% of vocabularies, and generating a voca-
bulary from sub-word pieces can lead to less meaningful content, especially when
the number of OOV is high. To the original BERT vocabulary, a domain extension

113

vocabulary is added. First, using WordPiece [126] and the target domain corpus,
an extension vocabulary is extracted. at the same time, the original generic voca-
bulary used by the original BERT remain unchanged. Any frequent vocabulary of
our corpus that already existed in the original BERT vocabulary was eliminated
to ensure no duplication in the extension vocabulary exists. Then, the extended
vocabulary is included as a corresponding embedding layer, which can be improved
during pre-training and is first initialized randomly. For tokenizing input text, a
total of 43931 tokens from the vocabulary are used: 30,522 (original) and 13,409
(extension) tokens.

5.5 . Pre-training GeoBERT

The BERT model pre-training is done through two tasks: 1) Masking, and 2)
Next Sequence Classification. In masking, a predetermined number of the input
sequence’s words are removed, changed to a random word, or left intact. The
original words for these terms are then predicted by the model. Note that only
the modified words need to be predicted by the model, not the complete denoised
text. The model learns a representation for each word in the sequence because it
is still determining which words it will be questioned about. The process of next
sequence classification, also known as next sentence prediction, involves sampling
two sequences of roughly 256 words that either directly (a) follow each other in
the corpus or (b) are both selected at random and don’t follow each other. The
model should predict which case happened: a or b.

5.5.1 . Data set and Setup
We must extract a training dataset from our corpus with the same description

that we provided above in order to be able to provide the corpus as the input to the
model. We consider a maximum of 128 tokens as the sequence length. First, we
need to have our own sentence recognizer, which creates a flag for those sentences
that follow each other’s and are from the same documents. Then we need to check
the size of how many of the sentences that follow each other are at most 128
tokens. We create a sequence of those eligible sentences as part of our dataset
for part (a). Then we randomly mix sentences from dataset (a) that do not follow
each other, and their lengths are smaller than 128. Now we have our generated
(a) and (b) training datasets. It contains 150000 sequences with the size of about
128 tokens. We feed these sentences to pre-train the GeoBERT model on top of
the embedded pre-trained BERT model.

5.5.2 . Experiment and Analysis
The instance of original BERT in this section refers to Bert-base-uncased. In

GeoBERT, the ’extension module’ comes from the exBERT model [124], which
has the same transformer-based architecture as BERT [100] with smaller sizes. Liu
et al. [130] show that carefully designed pre-training choices like dynamic masking,

114

Figure 5.4 – Parameter importance with respect to average train loss

Figure 5.5 – Parameter importance with respect to average train loss

large batch sizes, more pre-training steps, and long input sequences enhance the
model’s performance. The term "batch size" refers to the total number of training
instances in a batch. As stated in the exBERT model [124], just the extension
module and the weighting block are altered during pre-training. The copy of the
original BERT’s component in the architecture stays fully unchanged. We have
tried different batch sizes and learning rates, as you can see in Figures 5.4 and 5.5.
The best batch size and learning rate for pre-training are 128 and 1e-4, respectively.
The experiments are done on 4 V100 NVIDIA GPUs. The training uses the Adam
optimizer (β1 = 0.9, and β2 = 0.999) as it is used in exBERT model. Input length
and batch size are both set to 128. It means the length of sentences cannot exceed
126 tokens (2 tokens are reserved for [CLS] and [SEP], as it is shown in figure 5.1).
The constructed domain-specific corpus (limited-geological corpus), as mentioned
in section 5.4.1 is used for the pre-training the GeoBERT model. The batch size
is an essential parameter concerning having minimum loss in training the BERT
model. As shown in Figure 5.4, The larger the batch size, the lower the loss. Our
model learns best with the learning rate of 1e-4. The loss changes based on the
value of different parameters are shown in Figures 5.4 and 5.5. We could not try
the bigger batch size, such as 256 since it needs bigger computation power (GPUs).

Figure 5.6 shows the GPU performance on training GeoBERT with different
values of parameters. As it is expected, the smaller batch size causes longer training

115

Figure 5.6 – GPU performance in training GeoBERT with different parameters

Figure 5.7 – Average train loss per epoch

time.
The average training loss per epoch and per batch are shown in Figures 5.7

and 5.8.
Now that we have pre-trained the model let’s see how embeddings change in

the GeoBERT vs. BERT model in the following section (Section 5.5.2).

Pre-trained words embedding in GeoBERT vs. original BERT model

To better understand the embeddings, we cluster pre-trained words embedding
in original BERT vs. GeoBERT. Figure 5.9 shows the T-SNE visualization of clus-
ters of embedding in the last layer of the BERT model based on cosine similarity.
If we zoom in on the middle part of Figure 5.9, we can see some clusters of words
that have similar meanings in better visualization (Figure 5.10):

Figure 5.11 shows the T-SNE visualization of embedding clusters in the last
layer of the GeoBERT model for the same top 4000 most frequent words of the
targeted corpus.

116

Figure 5.8 – Average train loss per batch

Figure 5.9 – Clusters of top 4000 most frequent words embeddings in our target corpus
which are not OOV in original BERT model

117

Figure 5.10 – A closer look to some clusters of word embedding in original BERT

Figure 5.11 – Clusters of top 4000most frequent words embeddings in our target corpus
which are not OOV in GeoBERT model

118

Figure 5.12 – A closer look to some clusters of word embedding in GeoBERT

Figure 5.12 shows the T-SNE visualization of embedding clusters in the last
layer of the GeoBERT model based on cosine similarity.

Let’s look at some specific words shared in both models’ embedding. Figure
5.13 shows the part of embeddings cosine distance in BERT model.

Figure 5.13 – A closer look at the cosine distance of some specific words in BERT

As shown, "coal" is far from "oil" and the cluster of words that contains
the words such as "rocks", "clay", "chalk", and "shale" are far from the cluster
containing words such as "oil" and "fuel". The same colors identifying the closest

119

embedding vectors for a group of words and the same color in two different model
shows how the distance among the same group of words changes.

Table 5.1 – Nearest points to the word Oil in original space of embedding in order

Selected specific words All vocabularies
BERT GeoBERT BERTa GeoBERTa0

Tokens Distanceb Tokens Distance Tokens Distance Tokens Distance
oils 0.574 oils 0.572 oils 0.557 oils 0.541

petroleum 0.622 petroleum 0.624 water 0.564 petroleum 0.591
water 0.677 water 0.685 petroleum 0.575 water 0.663
gas 0.688 gas 0.694 gas 0.604 gas 0.667

energy 0.747 coal 0.752 black 0.635 energy 0.726
coal 0.750 energy 0.783 energy 0.635 coal 0.727
fuel 0.760 fuel 0.792 power 0.639 fuel 0.730
air 0.766 air 0.792 air 0.640 grease 0.739

powder 0.768 hydrocarbon 0.793 food 0.653 air 0.746
black 0.775 power 0.802 white 0.658 power 0.750
food 0.779 lgp 0.804 a 0.659 sugar 0.757

aall vocabularies bCosine distance

However, as you can see in Figure 5.14, which is the showing the cosine distance
of the exact words in the GeoBERT model, the word "coal" is becoming so close to
the word "oil", as well as the cluster of words containing "rocks", "clay", "chalk"
and "shale".

Figure 5.14 – A closer look at the cosine distance of some specific words in GeoBERT

The cosine distance changes for some specific words before and after adding
extended words in the GeoBERT vs. original BERT model are shown in Figures
5.15a and 5.15b.

120

(a
)B

ER
T
M
od
el

(b
)G

eo
BE
RT

M
od
el

Fi
gu

re
5.
15

–
T-
SN

E
vis
ua
liz
at
io
n
of
co
sin

e
di
st
an
ce

of
m
os
ts
im
ila
rw

or
d
em

be
dd
in
gs
to
wo

rd
Co
al

121

(a)BERT
M
odel

(b)GeoBERT
M
odel

Figure
5.16

–
T-SNE

visualization
ofcosine

distance
ofm

ostsim
ilarword

em
beddingsto

word
Shale

122

Figure 5.17 – Loss during 3 epochs for finetuning GeoBERT model

A better sense of the distance and change of most similar words in two models
can be seen in the Tables 5.1 and 5.2.

Table 5.2 – Nearest points to the word Coal in original space of embedding in order

BERT GeoBERT BERTa GeoBERTb
Tokens Distancec Tokens Distance Tokens Distance Tokens Distance
oil 0.747 oil 0.752 oil 0.667 sandstone 0.638

mining 0.757 mining 0.761 mining 0.688 basalt 0.650
copper 0.766 copper 0.770 copper 0.697 limestone 0.666
fuel 0.780 petroleum 0.783 gas 0.703 sedimentary 0.677

petroleum 0.783 fuel 0.783 colliery 0.711 cambrian 0.696
gas 0.783 gas 0.783 fuel 0.711 geologist 0.706

steam 0.789 steam 0.792 iron 0.713 joshi 0.708
tobacco 0.791 tobacco 0.792 gold 0.716 miocene 0.710
diesel 0.791 diesel 0.793 land 0.717 refinery 0.713
miners 0.802 miners 0.802 steel 0.721 westphalia 0.713
freight 0.802 freight 0.804 wood 0.729 groundwater 0.716

aall vocabularies; ball vocabularies; cCosine distance

5.6 . Finetuning GeoBERT

After fine-tuning various pre-trained models for the NER problem, we compare
their performance. The best configuration for this downstream task is fine-tuning
all layers with a learning rate of 1e-5 and batch size of 16 for three epochs on a
dataset provided from a part of sub-surface reports mentioned in section 5.6.1.

This learning rate and batch size value are chosen based on tuning hyper-
parameters for the fine-tuning model for the NER task, as seen in Figure 5.17.

5.6.1 . Data set and Setup
The generated annotated dataset in the previous chapter (Chapter 4) is very

noisy, and the annotated labels are also noisy. One way is to see the result of
the NER task on our annotated dataset. However, another dataset was labeled
during a parallel study in Schlumberger [131]. In this study, we used a part of
the dense part of documents presented in OCRANA format (about 1000 report
documents). The same methodology described in section 4.5is used to annotate the

123

Table 5.3 – Geological entity types and their description

Entity Name Entity Description
Period one of the divisions of geologic time that allows for rock cross-referencing.
Epoch a period of time in geology during which a group of rocks is formed.
Age one of the geologic divisions that splits an epoch into smaller chunks.

Formation a body of rock with a consistent set of physical properties.
Depth_Interval boundaries of a lithostratigraphic unit which indicates the lithologic change.

Interval boundaries of lithostratigraphic unit exactly like Depth_Interval without measure-
ment unit.

WELL_ID an identifier for wellbores.

Table 5.4 – Data sets for Fine-tuning on NER task.

Entity Noisy
set

Clean
set

Eval
set

Test
set

AGE 11243 130 118 280
EPOCH 19366 166 156 360
FORMATION 18424 159 167 381
PERIOD 7416 79 87 166
WELL_ID 15754 125 151 345
INTERVAL 9218 93 83 189
DEPTH_INTERVAL 4258 40 56 92
TOTAL 85679 792 818 1813

texts. The matcher component finds the corresponding chunks where the dictionary
or RegEx matches the specific input. The list of entities selected as our entities
is shown in Table 5.3. The entities identified with blue are the common entities
with those that were annotated in Chapter 4. However, as it can be seen, the main
difference is about the entities with numerical values or special characters such as
WELL_ID, Depth_Interval, or Interval. For example, 30/2a-81 is a typical well
identifier, or a depth interval indicates a boundary of numerical value as depth
measurement: -6990 to -7013 ft TVDSS or Interval which is the same as without
unit of measurement: -6990 to -7013. As was explained in Chapter 4, these kinds
of entities cannot be generated with the GAGNER approach.

The annotated dataset used BIO format. After sentence recognition, more than
125,000 sentences with approximately 227,000 entities were annotated. However,
to generate the training/evaluation/test dataset, the entire data was not selected.
Sentences were selected randomly to create these data sets. Noisy training, clean
training, and test set contain 50000, 500, and 1000 random sentences, respecti-
vely. These sentences contain approximately 86,000 annotated entities (Table 5.3).
These annotated datasets were used to fine-tune the NER task for the BERT and
GeoBERT model5.4.

The code of the experiment is implemented in Python 3.6.7. We used four
vCPUs with 15 GB RAM deployed on the Google Cloud Platform (PyTorch version
1.9). To recognize the sentences from the text of the reports, we used the Spacy
package [107].

124

Table 5.5 – finetuning BERT vs. GeoBERT Model on NER task

BIO format of entity types BERT Model GeoBERT Model
P R F1 P R F1

B-AGE 0.97 1.00 0.98 0.99 1.00 1.00
B-DEPTH_INTERVAL 0.61 0.91 0.73 1.00 0.95 0.97
B-EPOCH 0.92 0.93 0.92 0.95 0.93 0.94
B-FORMATION 0.85 0.84 0.85 0.88 0.85 0.87
B-INTERVAL 0.61 0.84 0.70 0.72 0.89 0.80
B-PERIOD 0.97 0.87 0.92 1.00 0.89 0.94
B-WELL_ID 0.72 0.98 0.83 0.81 0.96 0.87
I-DEPTH_INTERVAL 0.92 0.86 0.89 1.00 0.93 0.96
I-EPOCH 0.55 0.40 0.46 1.00 0.17 0.29
I-FORMATION 0.85 0.80 0.82 0.94 0.82 0.87
I-INTERVAL 0.73 0.64 0.68 0.80 0.80 0.80
I-PERIOD 0.00 0.00 0.00 0.00 0.00 0.00
I-WELL_ID 0.94 0.18 0.31 0.98 0.36 0.53
O 0.98 0.98 0.98 0.98 0.99 0.99
Micro Average 0.85 0.86 0.85 0.96 0.96 0.96
Macro Average 0.76 0.73 0.72 0.86 0.75 0.77

125

5.6.2 . Experiments and Analysis

We fine-tune BERT and GeoBERT on the same dataset 5.6.1, and you can
see the difference in the average losses in the two models in Figure 5.4. As men-
tioned, we chose the best hyperparameters for our GeoBERT model, which means
a learning rate of 1e-5 and batch size of 16. When we talk about the GeoBERT
model, we mean the model with these parameters. The average training loss during
fine-tuning both models of GeoBERT and BERT per batches and epochs is shown
in Figure 5.18. Also, the accuracy and F1-score for both models can be seen in
Figures 5.19 and 5.20, respectively.

Figure 5.18 – Average of loss during finetuning BERT vs. GeoBERT per batches and
epoches for NER task

Figure 5.19 – Accuracy of BERT vs. GeoBERT Model

126

Figure 5.20 – F1-Score of BERT vs. GeoBERT Model

Table 5.5 shows the final result of NER for specific entities in BIO format.
The GeoBert model performs better on NER tasks regarding precision, recall, and
F1-score. In general, the Bert model has a lower performance in recognizing the
numerical patterns such as depth_interval and well_id in comparison with named
entity types such as age, formation, and . . ., especially in terms of recall. However,
even though the same problem happens for the GeoBERT model, we have a much
higher recall for the same Bio format entity types in the GeoBERT model.

5.7 . Conclusion

In this chapter, we represented a domain-specific BERT-variant model for the
oil and gas industry, specifically for the sub-surface geological domain. We knew
pre-training a language model from scratch for a specific domain would cause us
to lose the information related to embedding words in the generic BERT model.
We need these kinds of generic and common words in a specific domain. Then we
decide to adopt a generic BERT model for the oil and gas domain. We present
the GeoBERT model by injecting the most frequent domain-specific words as an
extended module to the original BERT model. We experimentally show how the
extended vocabularies from the oil and gas domain fit in the generic BERT model.
Also, it is shown how the new word embeddings for OOV improve the domain-
specific word representations, even though the targeted corpus for this adaption is
very small since, in general, the sub-surface geological domain is a very limited-
source domain. The corpus on which we pre-trained the model is mostly gathered
from the geological articles of Wikipedia. For pre-training the generic BERT model,
they used the whole of Wikipedia as part of their training corpus. Then, most of the
newly injected OOV words to the GeoBERT model may have already been seen in
the pre-training of BERT. Still, they never appeared in the vocabulary dictionary of
the BERT model in the output. Then somehow, we can conclude that highlighting
the most important domain-specific words in the BERT model, even if they have

127

already been used in the pre-training of the BERT model, can help the specific
domains. We apply the GeoBERT model on a NER downstream task, and as a
result, we have a higher performance than the generic BERT model. This result
indicates that the idea which originally was applied to a large number of biomedical
sources can be used for limited source domains as well. In the future, applying this
model to other downstream tasks, such as Q&A, can demonstrate that GeoBERT
has a better result on different downstream tasks. Also, since the size of GeoBERT
is much larger than generic BERT, can we build a distilled version of GeoBERT
and see how much the performance on distilled version will drop? Will it be like the
performance of the generic BERT model or still be better than the generic BERT
model’s performance?

128

6 - Conclusion and Future Work

Throughout this dissertation, we presented different approaches to solving spe-
cific problems to understand the sub-surface geological domain given a set of hete-
rogeneous data sources. In This final chapter, we summarize the main achievements
resulting from our research; then expose a group of potential improvements toge-
ther with some future perspectives.

Achievements Sub-surface geological heterogeneous data sources vary in dif-
ferent forms: structured or unstructured sources. The main goal for structured
sources is discovering a global schema and the related attributes to that schema to
populate it. There are more challenges for unstructured sources. First, we need to
find a method for machines to understand the unstructured, heterogeneous format
of PDFs and images and extract the related information, primarily domain-specific
entities. We propose the PROCLAIM approach to deal with the challenge of struc-
tured data. We also propose OCRANA, GAGNER, and GeoBERT as our solutions
for turning unstructured data from any documents into a structured format, ge-
nerating domain-specific gazetteers, and finally, a pre-trained language model for
this specific domain, respectively. We can describe the proposed approaches to
tackle our challenges and summarize the achievements of each of these proposed
approaches respectively as follows:

— We present PROCLAIM (PROfile-based Cluster-Labeling for AttrIbute Mat-
ching), an unsupervised method for matching attributes from a large number
of heterogeneous sources in a specific domain. We have shown that our me-
thod is efficient on large heterogeneous sources in different domains. As a
final output, PROCLAIM can automatically create a set of unique labels
assigned to a high percentage of attributes from different heterogeneous
sources.

— Presenting PROCLAIM, a domain-independent method for schema la-
bel prediction, performs very well with an increase in the heterogeneity
of the datasets. We evaluate our method on two different datasets
from two domains, and the results are promising.

— Defining the concept of attribute profile by taking into account the
data type using: (i) the statistical distribution and the dimension of
the attribute’s values and (ii) the name and textual descriptions of
the attribute. These properties give a unified representation to each
attribute.

— Presenting the Extended OPTICS, an extended version of OPTICS, by
introducing a dynamic minimum number of points in place of a static
one for clustering the attributes profiles.

129

— Illustrating the concept of labeling function to name the clusters of si-
milar attributes from different sources. The labeling function considers
(i) the attribute descriptions and (ii) the attribute names for each clus-
ter. Then it automatically assigns a label to each cluster as the final
name of the similar attributes in the global schema of the domain.

— By using PROCLAIM, about 86% of attributes from 44,000 sources
cross-referenced by a name in the generated global schema.

— We propose OCRANA (Optical Character Recognition ANAlytics), a frame-
work to handle documents provided as images or PDF files processed by
different OCR engines to build a unified data model. Generally, OCR tools
process these documents and translate them into an intermediate data for-
mat which provides the bounding content boxes. OCRANA processes the
intermediate data format and gives a unified and more enriched view of the
logical and physical layout using the defined data model. This data model is
a configurable multi-level element-based scheme annotation to store the do-
cuments. To distinguish the dense part from the non-dense part of the texts,
we presented the position-based Naïve Bayes model. Our evaluation shows
that adding positions to the input of the Naïve Bayes model can enrich the
final prediction of the model.

— Designing a scalable framework that efficiently transforms heteroge-
neous PDFs or image documents processed by different OCR engines
into unified structured information to prepare them for further ana-
lysis. This framework relies on a unified data model that allows the
representation of different kinds of structures of texts and their visual
and content-based properties in a fine-grained element-level scheme.

— Defining a position-based Naïve Bayes algorithm to leverage the semi-
supervised methods to train a layout labeling model to distinguish the
dense part of the text from the non-dense part. This position-based
Naïve Bayes algorithm uses the probability of the positions of each
line and the words and symbols of each group of lines related to each
layout label to calculate the probability of the new layout labels given
the new lines. Our results show an improvement in comparison with
the Naïve Bayes algorithm model.

— Experimentally showing that OCRANA can facilitate the information
extraction of entities and their relations from the texts.

— We propose GAGNER (GAzetteer Generation for Named Entity Recogni-
tion) to automatically generate the lists of entities (gazetteers) to create an
annotated named entity corpus. We use the vector word representation as
the output of shallow neural networks to generate the gazetteers, each re-
presenting a specific domain-specific entity type. Researches show that word
representation can capture linguistic regularities of both implicit semantic

130

and syntactic information. In the end, we present a Named entity recogni-
tion system made of two modules: (1) Using GAGNER to tag the entities
in the corpus to generate a training dataset for neural models; (2) Applying
machine learning models on the generated training set. Our result shows
highly satisfying results for our named entity recognition system.

— Presenting GAGNER, a novel unsupervised approach to generating
domain-specific gazetteers which do not need external resources such
as Wikidata knowledge base to generate the gazetteers; It only uses the
corpus text as its input which is a promising approach for low-resource
domains.

— Demonstrating that GAGNER can tag the less-known abbreviations
and the wrong written forms (typos) of the words in noisy corpora,
making it helpful to annotate a corpus, especially for our generated
corpus from the output of OCR engines which does not have very
high-quality texts.

— Illustrating the high quality of generated gazetteers through GAGNER
regarding their precision (The precision of generated gazetteers is al-
most higher than 96%, and by considering lenient precision, almost
higher than 98%). These gazetteers can be considered the final na-
med entity type groups or be used to annotate the corpus to train
neural models to build a NER system by using the minimum resource
(only using the corpus text).

— BERT model by using the training set annotated by these generated
gazetteers after fine-tuning for the NER task has an increase of 2%,
8%, and 4.5% for precision, recall, and F-score, respectively, in compa-
rison with the CRF method, which is one of the state-of-the-art models
for NER.

— We present GeoBERT to adapt the generic BERT model to a specific domain
with limited sources. We notice that a limited sources domain, such as the
sub-surface geology domain, can benefit from an extension of the pre-trained
model with new vocabularies. New additive vocabulary (out-of-vocabulary
words (OOV)) from domain-specific sources are added to an extension mo-
dule to adapt an integrated embedding for the new domain in the context
of the initial BERT embeddings of general vocabularies.

— Pre-training GeoBERT as a domain-specific BERT-variant language
model for the sub-surface geological domain. GeoBERT is adapting
the generic BERT model to this specific domain containing a limited
number of sources. We see that the generic BERT model can benefit
from integrating an extension module to solve the issue of unseen
vocabulary (OOV) of the specific limited-source sub-surface domain.
The final result for the same NER downstream task compared with
the generic BERT model shows improvements.

131

— The size of vocabulary in GeoBERT has increased by 44% compared
to the original vocabulary of the BERT model. The newly added vo-
cabularies are all domain-specific and related to sub-surface geology
(13,409 new vocabularies).

— The precision, recall, and F-score of geological entity recognition through
the GeoBERT model has increased by 13%, 3%, and 7%, respectively,
compared with the original BERT model.

Future Works The subject for this dissertation is very wide. Any problem we
tackled in this dissertation could have been a separate research question with a
deeper concentration. Even though all the challenges are important subjects for
understanding the sub-surface geological domain, each step has many improve-
ments. Many other new steps also can be taken to have a more complete and
holistic framework to understand domain-specific heterogeneous sources such as
the sub-surface geological domain. Some of these improvements which can interest
us are as follows:

— We defined the concept of attribute profile by taking into account the data
type using two important types of information: (i) the statistical distribution
and the dimension of the attribute’s values, and (ii) the name and textual
descriptions of the attribute. These properties give a unified representation
to each attribute. However, these properties are unavailable for all of the
variables in our data sources regarding missing values or lack of provided
metadata. Then we can think of a profiling method for those variables de-
pending on the existing information.

— The labeling function is considered based on: (i) the attribute descriptions
and (ii) the attribute names for each cluster to automatically assign a label
to each one as the final name of the similar attributes in the global schema
of the domain. This depends on bigram and trigram terms generated from
a domain-specific corpus. This corpus can be enriched, which means more
bigram and trigram terms that can be used for labeling the clusters. Also, we
could make a connection between the GeoBERT model and the PROCLAIM
approach, which is definitely interesting and a very genuine idea that can be
explored in the future.

— The final output of OCR engines contains lots of misspellings and errors when
extracting the texts from image versions of documents. In the OCRANA fra-
mework, we keep the confidence rate of the OCR engine for each character.
A simple way to clean the extracted text as much as possible is by conside-
ring a threshold for the confidence rate. When the confidence rate is lower
than this threshold, the alternative character for this character can be pro-
posed to have a correct form of original words. We can have an alternative
list of alternative vocabularies, which, based on the context, have a higher

132

probability of being the alternative words. Applying Bayesian methods can
help to have the best alternative. In this case, we will have much cleaner
output from OCR and high-quality text in our OCRANA model.

— Another way to do text cleaning in the OCRANA framework is to apply
the GAGNER approach. GAGNER will find the best alternative for words
containing at least one character with a low confidence rate. In GAGNER,
we already have the similarity of available alternatives, which can help to
clean the text.

— To generate a weakly labeled dataset of the structure of documents (a da-
taset of binary layout labels), we proposed a position-based Naïve Bayes
algorithm, which considers the position as one important feature to label
the lines. Even though this method is promising, it can be very interesting
to see if we can inject the positions as new OOV words into a generic pre-
trained language model. Exactly like how we pre-train the GeoBERT model,
but this time by adding the categories of positions as vocabularies in ex-
tended vocabularies. Also, training a fine-grained multi-labeling model for
document structure recognition is a very important task that should be done
in the future.

— GAGNER has the capacity to be applied to any language without any
constraints. This approach needs to generate static word representation mo-
dels in any specific language and generate the gazetteers. We have shown
how this model is useful for a limited source domain like a geological sub-
surface. It could be interesting to explore and prove this capacity with more
experiments in other domains and different languages.

— The size of the final GeoBERT model is huge because of the number of
extended vocabularies and weights of the extension module. One way to
have a smaller size for this model is to use a base model with a lower
number of parameters, such as the distilled version of BERT, distillBERT
(the original BERT has 110 million parameters, and distillBERT has 66
million parameters).

— Another way to have a smaller GeoBERT model is to distill the GeoBERT
model directly. A smaller GeoBERT model is very interesting because a
distilled model uses less space and operates more quickly.

133

7 - A summary of the thesis in French

Ce mémoire décrit un problème dans l’industrie pétrolière et gazière où le pro-
cessus de forage de nouveaux puits productifs est coûteux, long et destructeur pour
l’environnement. Les compagnies pétrolières et gazières recueillent et étudient des
données sur le sous-sol avant et pendant le forage afin de forer un ensemble de puits
rentable. Ces données sont stockées dans différents formats, notamment des PDF,
des images, des tableaux et des bases de données structurées. Le texte indique que
de nombreux types de recherche se concentrent sur le développement de méthodes
de gestion, d’exploitation et d’utilisation efficaces de ces données non structurées.
Cette thèse vise à étudier les approches permettant de mieux comprendre le do-
maine géologique, de rassembler et de fusionner des sources de données structurées
hétérogènes, de reconnaître la structure de sources non structurées hétérogènes et
d’effectuer la reconnaissance d’entités spécifiques à un domaine afin d’accélérer
le processus de recherche d’informations. Cette thèse comprend quatre chapitres
principaux, ainsi qu’une introduction et une conclusion. Cette thèse a été menée
sur un jeu de données de 44 000 sources de données hétérogènes structurées et
3 400 sources de données hétérogènes non structurées, ce qui a donné lieu à des
contributions organisées par chapitre. Le chapitre deux présente PROCLAIM, une
méthode non supervisée de mise en correspondance d’attributs provenant d’un
grand nombre de sources hétérogènes dans un domaine spécifique. La technique
utilise des profils d’attributs et l’étiquetage de grappes pour attribuer des étiquettes
à des attributs similaires provenant de différents schémas, représentant l’essence de
chaque groupe et définissant le schéma global. Le chapitre trois présente OCRANA,
un cadre évolutif permettant de transformer efficacement des documents PDF ou
des images hétérogènes en informations structurées unifiées à l’aide d’un modèle
de données représentant les résultats intermédiaires et finaux et d’un algorithme
de classification Naive Bayes basé sur la position. Le chapitre quatre propose un
système de reconnaissance d’entités nommées basé sur la génération automatique
de répertoires de noms, appelé GAGNER. Le système utilise des méthodes de
réseaux neuronaux peu profonds pour générer automatiquement des répertoires
toponymiques et un modèle BERT pré-entraîné pour entraîner un modèle de re-
connaissance d’entités nommées personnalisé. Le chapitre 5 présente GeoBERT,
un modèle linguistique BERT-variante spécifique à un domaine pour l’industrie pé-
trolière et gazière. Il vise à combler le manque d’un modèle BERT générique dans
un nouveau domaine en l’affinant sur un grand corpus de textes liés au pétrole et
au gaz. La thèse se termine par une discussion sur les conclusions et les travaux
futurs au chapitre 6. La première partie de ce mémoire présente une étude de re-
cherche sur l’appariement des schémas, le processus de création d’une vue globale
de divers schémas développés indépendamment. Cette partie aborde les principaux
problèmes de l’intégration des données, notamment l’hétérogénéité des données,

135

les ensembles de données réelles bruyantes et la nécessité d’un schéma global.
Une solution proposée, PROCLAIM (PROfile-based Cluster-Labeling for AttrIbute
Matching), est une méthode non supervisée de mise en correspondance d’attri-
buts provenant de nombreuses sources hétérogènes dans un domaine spécifique.
La méthode utilise des profils d’attributs et le regroupement OPTICS étendu pour
créer automatiquement un ensemble d’étiquettes uniques attribuées à un pourcen-
tage élevé d’attributs et une méthode indépendante du domaine pour la prédiction
des étiquettes de schéma. L’étude démontre l’efficacité de PROCLAIM avec deux
ensembles de données différents provenant de deux domaines différents et valide
la qualité des étiquettes générées avec des experts du domaine. PROCLAIM im-
plique la définition d’un concept de profil d’attribut et l’extension de l’algorithme
de clustering OPTICS. Le profil d’attribut prend en compte le type de données,
la distribution statistique, les descriptions textuelles et les noms d’attributs. Cette
approche propose une méthode indépendante du domaine pour la prédiction des
étiquettes de schéma et utilise des experts du domaine pour valider les étiquettes
générées avec des résultats prometteurs. PROCLAIM est une méthode efficace de
mise en correspondance des schémas qui fournit un schéma d’attributs cohérent et
spécifique à un domaine. Elle a le potentiel de rassembler automatiquement plus
de 80

La technologie OCR (reconnaissance optique de caractères) a été largement
utilisée pour traiter et extraire des informations des PDF et d’autres formes de
documents. Le processus consiste à convertir ces documents dans un format li-
sible par une machine, tout en préservant la structure initiale du document. De
nombreux systèmes OCR ont été développés ces dernières années pour la lecture
automatique de textes. Cependant, l’OCR pose encore des problèmes, comme le
fait de ne fournir que les contours des caractères, des taux de confiance faibles pour
des caractères spécifiques en raison du texte barré ou de la mauvaise qualité des
images numérisées, et la nécessité de disposer d’ensembles de données à grande
échelle dans un format compréhensible par la machine. L’objectif est d’extraire le
texte des images tout en préservant la structure du document, de stocker les infor-
mations dans un schéma hiérarchique et de traiter la faible qualité des résultats de
l’OCR. Le cadre proposé par OCRANA vise à relever les défis posés par la structure
hétérogène des documents afin de fournir une structure de document à grain fin
au niveau des éléments. OCRANA utilise un moteur de reconnaissance optique de
caractères (OCR) pour traiter les documents sous forme d’images ou de fichiers
PDF et les traduire dans un format de données intermédiaire avec des boîtes de
contenu délimitées. OCRANA traite ensuite ce format de données intermédiaire
pour produire une vue unifiée et enrichie de l’agencement logique et physique à
l’aide d’un système d’annotation configurable basé sur des éléments à plusieurs
niveaux. Cette annotation est utilisée pour stocker les documents. En résumé, le
cadre OCRANA est conçu pour traiter des documents au format image ou PDF,
en utilisant différents moteurs d’OCR pour extraire des informations et construire

136

un modèle de données unifié. Le modèle de données est configurable, ce qui signifie
qu’il peut être étendu pour accueillir des éléments supplémentaires. Il est basé sur
trois types de propriétés : 1) des propriétés spécifiques au moteur extraites direc-
tement de la sortie du moteur d’OCR, telles que les caractères, les cadres et les
numéros de page, 2) des propriétés statistiques calculées sur la base des propriétés
spécifiques au moteur, telles que le nombre de mots dans chaque ligne, les cadres
de chaque ligne et les espaces entre les mots, et 3) des propriétés indépendantes
du moteur, telles que les balises POS, les lemmes et les étiquettes de mise en page,
qui peuvent être dérivées de modèles statistiques, linguistiques ou d’apprentissage
automatique. Ce modèle de données unifié fournit la base d’une annotation fine au
niveau des éléments et permet la reconnaissance automatique de la structure des
documents. - L’étiquetage de la mise en page est réalisé à l’aide d’un algorithme de
Naive Bayes basé sur la position et des méthodes semi-supervisées, où les fonctions
d’étiquetage de la mise en page sont déterminées sur la base d’informations syn-
taxiques extraites des boîtes de délimitation de chaque ligne. L’algorithme utilise
une supervision faible pour attribuer une étiquette de mise en page à chaque ligne
sans effort humain. - Le modèle de données utilisé dans OCRANA est configurable
et extensible, ce qui signifie qu’il peut être mis à jour avec de nouvelles informa-
tions et de nouveaux modèles selon les besoins. - Le cadre d’OCRANA est conçu
pour traiter des ensembles de données à grande échelle et peut être utilisé dans
une variété d’applications NLP, y compris la reconnaissance de la structure des
documents et l’extraction d’informations. - L’utilisation d’une supervision faible
dans le processus d’étiquetage de la mise en page réduit la quantité de travail
humain nécessaire, ce qui rend le processus d’étiquetage plus efficace et rentable.
- Les résultats obtenus avec OCRANA démontrent l’efficacité du cadre proposé
dans la reconnaissance de la structure des documents et l’amélioration de la pré-
cision des applications NLP. OCRANA comprend également un algorithme Naïve
Bayes basé sur la position pour distinguer la partie dense du texte de la partie non
dense. Cet algorithme s’appuie sur des méthodes semi-supervisées pour former un
modèle d’étiquetage de la mise en page. L’algorithme de Naïve Bayes basé sur la
position utilise la probabilité des positions de chaque ligne et des mots et symboles
de chaque groupe de lignes liés à chaque étiquette de mise en page pour calculer
la probabilité des nouvelles étiquettes de mise en page en fonction des nouvelles
lignes. Cette approche améliore le modèle de l’algorithme Naïve Bayes.

OCRANA est conçu pour faciliter l’extraction d’informations sur les entités
et leurs relations dans les textes. Le cadre est évolutif, efficace et peut gérer des
documents PDF ou des images hétérogènes traités par différents moteurs d’OCR.
Les réalisations d’OCRANA ont été démontrées par des évaluations expérimentales
qui montrent sa capacité à transformer des données non structurées en informations
structurées, permettant une analyse plus poussée et l’extraction d’informations sur
les entités et leurs relations à partir des textes.

Le troisième chapitre traite du développement d’un système de reconnaissance

137

d’entités nommées (NER) dans un domaine à faibles ressources, tel que le domaine
de la géologie de sous-sol, où les données annotées et les dictionnaires sont limités.
Pour relever ces défis, nous proposons GAGNER. Cette approche non supervisée
génère des répertoires géographiques spécifiques à un domaine pour la reconnais-
sance d’entités en utilisant des représentations vectorielles de mots pour identifier
des mots similaires sur la base de leurs informations sémantiques et syntaxiques
implicites. GAGNER peut marquer les abréviations et les fautes de frappe moins
connues dans des corpus bruyants, et ses résultats peuvent être utilisés pour générer
un modèle de NER supervisé utilisant un modèle de transformateurs (BERT). Nous
comparons cette approche à un modèle NER traditionnel (CRF) pour démontrer sa
performance sur les répertoires géographiques générés. L’approche proposée offre
une solution prometteuse pour construire des systèmes de NER dans des domaines
à faibles ressources sans dépendre du travail humain et des ressources externes.
L’approche GAGNER utilise des techniques statiques de représentation des mots
pour créer des vecteurs d’intégration de mots pour un corpus spécifique à un
domaine. En effet, ces techniques sont moins gourmandes en ressources que les
méthodes d’intégration de mots contextualisés, et elles peuvent donner de bons
résultats même sur des corpus plus petits. L’approche GAGNER utilise différentes
méthodes, telles que word2vec et fastText, pour générer une liste d’entités nom-
mées liées à différentes classes d’entités et créer des répertoires toponymiques
spécifiques à un domaine. Ces répertoires sont utilisés pour annoter le corpus et
créer un ensemble de données d’entraînement pour un modèle NER, qui est ensuite
entraîné à l’aide d’une représentation contextualisée des mots telle que BERT. Dif-
férentes techniques sont disponibles pour générer automatiquement des répertoires
toponymiques, y compris des méthodes de regroupement et d’amorçage. GAGNER
utilise la similarité entre les vecteurs d’intégration des mots qui contiennent des
informations sémantiques et syntaxiques pour les vocabulaires par le biais de mo-
dèles neuronaux peu profonds tels que word2vec et fastText. Comme il n’existe pas
de référence pour comparer le pourcentage d’entités nommées existantes liées à un
répertoire toponymique dans le corpus généré par GAGNER, l’exactitude des réper-
toires toponymiques générés est évaluée sur la base de la précision, qui est calculée
en évaluant manuellement chaque répertoire toponymique avec l’aide de géologues.
Les résultats de précision d’au moins 96À l’aide de ces répertoires toponymiques,
nous annotons un vaste corpus de NER dans le domaine de la géologie de sous-
sol, contenant plus de 663 000 phrases et 915 000 entités nommées dans 7 types
d’entités spécifiques au domaine. Enfin, nous avons affiné un modèle BERT en uti-
lisant ce corpus étiqueté et avons obtenu des résultats prometteurs par rapport au
modèle NER classique de CRF. Les résultats de l’évaluation montrent une grande
précision, ce qui fait des étiquettes annotées un manuel de haute qualité. Cepen-
dant, GAGNER est incompatible avec les types d’entités nommées contenant des
valeurs numériques ou des symboles suivant un modèle. Nous avons besoin d’une
autre approche pour ces types d’entités afin de résoudre cette limitation. Le cha-

138

pitre cinq présente une nouvelle approche appelée GeoBERT, qui est un modèle de
langage BERT-variant spécifique au domaine de la géologie de subsurface. Nous
avons adapté le modèle BERT générique à ce domaine spécifique avec des sources
limitées en intégrant un module d’extension pour résoudre le vocabulaire non vu
(OOV) du domaine de la sub-surface. Si le pré-entraînement des modèles de lan-
gage à partir de zéro peut apporter des avantages significatifs dans des domaines
spécialisés, il implique également la perte des connaissances intégrées dans les mo-
dèles de langage généraux tels que BERT. L’approche GAGNER est utile pour
le NER mais présente des limites dans l’extraction des types d’entités nommées
contenant des valeurs numériques ou des symboles suivant un modèle. D’autres
tâches de TAL, telles que les questions-réponses, peuvent bénéficier de modèles
linguistiques pré-entraînés spécifiques à un domaine. En outre, le domaine de la
géologie ne dispose pas de dictionnaires, de bases de connaissances ou de corpus
complets, et le modèle générique BERT est confronté à des difficultés liées aux
mots hors vocabulaire et à l’absence de représentation précise de l’intégration dans
des domaines spécifiques. Une option pour améliorer la performance d’un modèle
de langage pré-entraîné comme BERT sur un domaine spécifique est d’intégrer
des vocabulaires spécifiques au domaine dans le dictionnaire de vocabulaire BERT
et de réutiliser les poids du modèle pré-entraîné pour intégrer les enchâssements
de vocabulaire du nouveau domaine. Cependant, cette approche peut toujours
aboutir à des performances sous-optimales, car le vocabulaire BERT original peut
contenir des termes polysémiques ayant des significations différentes dans d’autres
domaines. Pour résoudre ce problème, un module d’extension permettant l’inter-
action entre le modèle générique de l’ORET et les mots spécifiques au domaine
doit être utilisé. Ce module peut fournir davantage d’informations contextuelles et
améliorer la capacité du modèle à désambiguïser la signification des mots dans le
domaine spécifique. Cette approche peut contribuer à réduire les coûts de calcul et
les données d’entraînement nécessaires à la construction d’un modèle linguistique
spécifique à un domaine à partir de zéro, tout en conservant les connaissances
précieuses intégrées dans le modèle pré-entraîné. Ce chapitre démontre que cette
approche est compatible avec l’utilisation de petites sources spécifiques à un do-
maine et qu’elle est plus performante que le modèle générique de BERT, comme le
montrent leurs expériences sur le NER. Nous appliquons l’architecture d’exBERT
qui est initialement utilisée dans le domaine biomédical. Cette approche n’a jamais
été utilisée auparavant dans le domaine de la géologie souterraine, et encore moins
avec des ressources limitées. L’architecture de GeoBERT, empruntée à exBERT,
comprend le module original du modèle générique BERT et un module d’extension
qui ajoute le nouveau vocabulaire du domaine au vocabulaire original du modèle
BERT. Le vocabulaire d’extension et la couche d’intégration qui l’accompagne
sont pré-entraînés et fusionnés avec les intégrations originales des vocabulaires du
modèle original. Le modèle doit être entraîné à nouveau, en tenant compte des
mots hors vocabulaire nouvellement injectés. Les deux principales étapes de la

139

formation d’un modèle spécifique à un domaine basé sur l’architecture exBERT
sont l’ajout du module d’intégration d’extension et le processus de préformation.
Tout au long de cette thèse, nous avons présenté différentes approches pour ré-
soudre des problèmes spécifiques afin de comprendre le domaine géologique de
sous-sol à partir d’un ensemble de sources de données hétérogènes. En résumé,
les approches proposées relèvent les défis de l’extraction de données structurées
à partir de sources hétérogènes de données géologiques. PROCLAIM fournit une
méthode pour faire correspondre les attributs de différentes sources et générer un
schéma global pour le domaine. OCRANA est un cadre conçu pour traiter les docu-
ments fournis sous forme d’images ou de fichiers PDF traités par différents moteurs
OCR et les transformer en informations structurées unifiées. Les moteurs d’OCR
traitent les documents et les traduisent dans un format de données intermédiaire
qui fournit les boîtes de contenu délimitées. OCRANA traite ce format de données
intermédiaires pour fournir une vue unifiée et enrichie de la disposition logique et
physique en utilisant une annotation configurable à plusieurs niveaux basée sur les
éléments pour stocker les documents. Ensuite, OCRANA, comme GAGNER, peut
être utilisé pour extraire des entités spécifiques à un domaine à partir de sources
de données non structurées. En outre, GAGNER est une méthode permettant de
générer automatiquement des répertoires géographiques, ce qui peut améliorer la
précision de la reconnaissance des entités nommées. Et enfin, GeoBERT est un
modèle linguistique pré-entraîné qui peut être affiné sur des tâches spécifiques afin
d’en améliorer les performances. Les résultats de chaque approche proposée ont
été démontrés par des évaluations expérimentales sur des ensembles de données
réelles.

140

References

[1] M. Macintyre, G. Parry, and J. Angelis, Service design and delivery. Springer
Science & Business Media, 2011.

[2] S. Crittenden, “The lithostratigraphy and biostratigraphy (foraminifera) of
the early cretaceous of the southern north sea basin,” PhD Thesis, 1988.

[3] K. W. Glennie, “Petroleum geology of the north sea: Basic concepts and
recent advances,” Blackwell Science, 2009.

[4] S. Crittenden and S. Crittenden, “Lithostratigraphy and the cretaceous of
the north sea a brief outline of concepts it is not easy!,” 08 2019.

[5] G. Cope, “What is a well?,” Journal of Petroleum Technology, vol. 63, no. 02,
pp. 18–21, 2011.

[6] Allison and Mandler, “Subsurface data in the oil and gas indus-
try probing beneath the earth’s surface for exploration and hazard
mitigation,” Petroleum and the Environment, Part 23/24, 2018.
https://www.americangeosciences.org/geoscience-currents/
subsurface-data-oil-and-gas-industry.

[7] L. Wu, L. Xue, C. Li, X. Lv, Z. Chen, B. Jiang, M. Guo, and Z. Xie, “A
knowledge-driven geospatially enabled framework for geological big data,”
ISPRS International Journal of Geo-Information, vol. 6, no. 6, p. 166, 2017.

[8] Q. Qiu, Z. Xie, L. Wu, and L. Tao, “Gner: A generative model for geological
named entity recognition without labeled data using deep learning,” Earth
and Space Science, vol. 6, no. 6, pp. 931–946, 2019.

[9] M. Arman, S. Wlodarczyk, N. Bennacer Seghouani, and F. Bugiotti, “Pro-
claim: An unsupervised approach to discover domain-specific attribute mat-
chings from heterogeneous sources,” in International Conference on Advan-
ced Information Systems Engineering, pp. 14–28, Springer, 2020.

[10] H. Zhao, “Matching attributes across overlapping heterogeneous data
sources using mutual information,” Journal of Database Management
(JDM), vol. 21, no. 4, pp. 91–110, 2010.

[11] A. Doan, A. Y. Halevy, and P. M. Domingos, Learning to map between
structured representations of data. University of Washington, 2002.

[12] A. Gal, “Managing uncertainty in schema matching with top-k schema map-
pings,” in Journal on Data Semantics VI, pp. 90–114, Springer, 2006.

[13] E. Taroza, Schema matching and automatic web data extraction. Citeseer,
2006.

[14] C. J. Zhang, Z. Zhao, L. Chen, H. V. Jagadish, and C. C. Cao, “Crowdmat-
cher: crowd-assisted schema matching,” in Proceedings of the 2014 ACM

141

https://www.americangeosciences.org/geoscience-currents/subsurface-data-oil-and-gas-industry
https://www.americangeosciences.org/geoscience-currents/subsurface-data-oil-and-gas-industry

SIGMOD International Conference on Management of Data, pp. 721–724,
2014.

[15] A. A. Alwan, A. Nordin, M. Alzeber, and A. Z. Abualkishik, “A survey of
schema matching research using database schemas and instances,” IJACSA,
vol. 8, no. 10, 2017.

[16] C. Chen, B. Golshan, A. Y. Halevy, W.-C. Tan, and A. Doan, “Biggorilla: An
open-source ecosystem for data preparation and integration.,” IEEE Data
Eng. Bull., vol. 41, no. 2, pp. 10–22, 2018.

[17] A. Bonifati, G. Mecca, P. Papotti, and Y. Velegrakis, “Discovery and correct-
ness of schema mapping transformations,” in Schema matching and map-
ping, pp. 111–147, Springer, 2011.

[18] T. Milo and S. Zohar, “Using schema matching to simplify heterogeneous
data translation,” in vldb, vol. 98, pp. 24–27, Citeseer, 1998.

[19] H.-H. Do, S. Melnik, and E. Rahm, “Comparison of schema matching eva-
luations,” in Net. ObjectDays: International Conference on Object-Oriented
and Internet-Based Technologies, Concepts, and Applications for a Networ-
ked World, pp. 221–237, Springer, 2002.

[20] P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster, “Putting context into
schema matching,” in Proceedings of the 32nd international conference on
Very large data bases, pp. 307–318, Citeseer, 2006.

[21] E. Sutanta, R. Wardoyo, K. Mustofa, and E. Winarko, “Survey: Models and
prototypes of schema matching.,” International Journal of Electrical & Com-
puter Engineering (2088-8708), vol. 6, no. 3, 2016.

[22] Z. Chen, H. Jia, J. Heflin, and B. D. Davison, “Generating schema labels
through dataset content analysis,” in Companion Proceedings of the The
Web Conference 2018, pp. 1515–1522, 2018.

[23] E. Rahm and P. A. Bernstein, “A survey of approaches to automatic schema
matching,” the VLDB Journal, vol. 10, no. 4, pp. 334–350, 2001.

[24] E. Rahm and E. Peukert, “Holistic schema matching.,” 2019.

[25] S. Jiang, J. Liang, Y. Xiao, H. Tang, H. Huang, and J. Tan, “Towards the
completion of a domain-specific knowledge base with emerging query terms,”
in 2019 IEEE 35th International Conference on Data Engineering (ICDE),
pp. 1430–1441, IEEE, 2019.

[26] M. Trabelsi, B. D. Davison, and J. Heflin, “Improved table retrieval using mul-
tiple context embeddings for attributes,” in 2019 IEEE International Confe-
rence on Big Data (Big Data), pp. 1238–1244, IEEE, 2019.

[27] M. Trabelsi, J. Cao, and J. Heflin, “Semantic labeling using a deep contex-
tualized language model,” arXiv preprint arXiv:2010.16037, 2020.

[28] NEXLA, “An introduction to big data formats understanding avro, parquet,
and orc,” in NEXLA White paper, pp. 1–12, 2018.

142

[29] P. Cerda, G. Varoquaux, and B. Kégl, “Similarity encoding for learning with
dirty categorical variables,” Machine Learning, vol. 107, no. 8-10, pp. 1477–
1494, 2018.

[30] D. Rubenstein, W. Yin, and M. D. Frame, Biofluid mechanics: an introduc-
tion to fluid mechanics, macrocirculation, and microcirculation. Academic
Press, 2015.

[31] C. A. Charu and K. R. Chandan, “Data clustering: algorithms and applica-
tions,” 2013.

[32] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” 1996.

[33] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander, “Optics: ordering
points to identify the clustering structure,” in ACM Sigmod record, vol. 28,
pp. 49–60, ACM, 1999.

[34] D. Vohra, “Apache parquet,” in Practical Hadoop Ecosystem, pp. 325–335,
Springer, 2016.

[35] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel:
Rapid training data creation with weak supervision,” Proceedings of the
VLDB Endowment, vol. 11, no. 3, pp. 269–282, 2017.

[36] P. Varma and C. Ré, “Snuba: automating weak supervision to label training
data,” Proceedings of the VLDB Endowment, vol. 12, no. 3, pp. 223–236,
2018.

[37] T. M. Breuel, “The hocr microformat for ocr workflow and results,” in Ninth
International Conference on Document Analysis and Recognition (ICDAR
2007), vol. 2, pp. 1063–1067, IEEE, 2007.

[38] R. Smith, “An overview of the tesseract ocr engine,” in Ninth International
Conference on Document Analysis and Recognition (ICDAR 2007), vol. 2,
pp. 629–633, IEEE, 2007.

[39] T. M. Breuel, “The ocropus open source ocr system,” in Document Recogni-
tion and Retrieval XV, vol. 6815, p. 68150F, International Society for Optics
and Photonics, 2008.

[40] C. Clausner, A. Antonacopoulos, and S. Pletschacher, “Efficient and effec-
tive ocr engine training,” International Journal on Document Analysis and
Recognition (IJDAR), vol. 23, no. 1, pp. 73–88, 2020.

[41] A. Simon, J.-C. Pret, and A. P. Johnson, “A fast algorithm for bottom-
up document layout analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 19, no. 3, pp. 273–277, 1997.

[42] R. P. Futrelle, M. Shao, C. Cieslik, and A. E. Grimes, “Extraction, layout ana-
lysis and classification of diagrams in pdf documents,” in Seventh Internatio-
nal Conference on Document Analysis and Recognition, 2003. Proceedings.,
pp. 1007–1013, IEEE, 2003.

143

[43] F. Shafait, D. Keysers, T. M. Breuel, et al., “Layout analysis of urdu docu-
ment images,” in 2006 IEEE International Multitopic Conference, pp. 293–
298, IEEE, 2006.

[44] A. M. Namboodiri and A. K. Jain, “Document structure and layout analysis,”
in Digital Document Processing, pp. 29–48, Springer, 2007.

[45] A. Zulfiqar, A. Ul-Hasan, and F. Shafait, “Logical layout analysis using deep
learning,” in 2019 Digital Image Computing: Techniques and Applications
(DICTA), pp. 1–5, IEEE, 2019.

[46] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Ré, “Data program-
ming: Creating large training sets, quickly,” Advances in neural information
processing systems, vol. 29, pp. 3567–3575, 2016.

[47] J. Walker, Y. Fujii, and A. C. Popat, “A web-based ocr service for docu-
ments,” in Proceedings of the 13th IAPR International Workshop on Docu-
ment Analysis Systems (DAS), Vienna, Austria, vol. 1, 2018.

[48] R. Cattoni, T. Coianiz, S. Messelodi, and C. M. Modena, “Geometric layout
analysis techniques for document image understanding: a review,” ITC-irst
Technical Report, vol. 9703, no. 09, 1998.

[49] “Google vision api.” https://cloud.google.com/vision/docs/ocr. [On-
line; accessed 26-September-2022].

[50] A. Mehler, K.-U. Kühnberger, H. Lobin, H. Lüngen, A. Storrer, and A. Witt,
Modeling, learning, and processing of text-technological data structures,
vol. 370. Springer, 2011.

[51] “Parquet.” https://developer.ibm.com/hadoop/2016/01/14/
5-reasons-to-choose-parquet-for-spark-sql/. [Online; acces-
sed 26-September-2022].

[52] L. Chang, Z. Wang, T. Ma, L. Jian, L. Ma, A. Goldshuv, L. Lonergan, J. Co-
hen, C. Welton, G. Sherry, et al., “Hawq: a massively parallel processing sql
engine in hadoop,” in Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 1223–1234, 2014.

[53] J. Krishnamurthy and T. Mitchell, “Weakly supervised training of semantic
parsers,” in Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Lear-
ning, pp. 754–765, 2012.

[54] S. Helmstetter and H. Paulheim, “Collecting a large scale dataset for clas-
sifying fake news tweets using weak supervision,” Future Internet, vol. 13,
no. 5, p. 114, 2021.

[55] A. Ratner, S. H. Bach, H. Ehrenberg, J. Fries, S. Wu, and C. Ré, “Snorkel:
Rapid training data creation with weak supervision,” The VLDB Journal,
vol. 29, no. 2, pp. 709–730, 2020.

144

https://cloud.google.com/vision/docs/ocr
https://developer.ibm.com/hadoop/2016/01/14/5-reasons-to-choose-parquet-for-spark-sql/
https://developer.ibm.com/hadoop/2016/01/14/5-reasons-to-choose-parquet-for-spark-sql/

[56] D. Jurafsky and J. H. Martin, “Speech and language processing: An introduc-
tion to natural language processing, computational linguistics, and speech
recognition,” 2020.

[57] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Big data techno-
logies: A survey,” Journal of King Saud University-Computer and Information
Sciences, vol. 30, no. 4, pp. 431–448, 2018.

[58] S. Salloum, R. Dautov, X. Chen, P. X. Peng, and J. Z. Huang, “Big data ana-
lytics on apache spark,” International Journal of Data Science and Analytics,
vol. 1, no. 3-4, pp. 145–164, 2016.

[59] S. Wu, L. Hsiao, X. Cheng, B. Hancock, and C. Re, “Fonduer: Knowledge
base construction from richly formatted data,” Proceedings. ACM-SIGMOD
International Conference on Management of Data, vol. 2018, pp. 1301–1316,
2018.

[60] L. Liu, J. Shang, X. Ren, F. Xu, H. Gui, J. Peng, and J. Han, “Empower
sequence labeling with task-aware neural language model,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, 2018.

[61] H. Shelar, G. Kaur, N. Heda, and P. Agrawal, “Named entity recognition ap-
proaches and their comparison for custom ner model,” Science & Technology
Libraries, vol. 39, no. 3, pp. 324–337, 2020.

[62] A. Passos, V. Kumar, and A. McCallum, “Lexicon infused phrase embeddings
for named entity resolution,” arXiv preprint arXiv:1404.5367, 2014.

[63] H.-J. Song, B.-C. Jo, C.-Y. Park, J.-D. Kim, and Y.-S. Kim, “Comparison
of named entity recognition methodologies in biomedical documents,” Bio-
medical engineering online, vol. 17, no. 2, pp. 1–14, 2018.

[64] A. P. Quimbaya, A. S. Múnera, R. A. G. Rivera, J. C. D. Rodríguez, O. M. M.
Velandia, A. A. G. Peña, and C. Labbé, “Named entity recognition over
electronic health records through a combined dictionary-based approach,”
Procedia Computer Science, vol. 100, pp. 55–61, 2016.

[65] C. Zhu, Machine Reading Comprehension: Algorithms and Practice. Elsevier,
2021.

[66] J. Shang, L. Liu, X. Ren, X. Gu, T. Ren, and J. Han, “Learning named entity
tagger using domain-specific dictionary,” arXiv preprint arXiv:1809.03599,
2018.

[67] S. Peshterliev, C. Dupuy, and I. Kiss, “Self-attention gazetteer embeddings
for named-entity recognition,” arXiv preprint arXiv:2004.04060, 2020.

[68] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative knowledge-
base,” Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[69] T. Rebele, F. Suchanek, J. Hoffart, J. Biega, E. Kuzey, and G. Weikum,
“Yago: A multilingual knowledge base from wikipedia, wordnet, and geo-
names,” in International Semantic Web Conference, pp. 177–185, Springer,
2016.

145

[70] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among lan-
guages for machine translation,” arXiv preprint arXiv:1309.4168, 2013.

[71] S. K. Sienčnik, “Adapting word2vec to named entity recognition,” in Procee-
dings of the 20th Nordic Conference of Computational Linguistics (NODA-
LIDA 2015), pp. 239–243, 2015.

[72] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,
“Neural architectures for named entity recognition,” arXiv preprint
arXiv:1603.01360, 2016.

[73] M. S. Bari, S. Joty, and P. Jwalapuram, “Zero-resource cross-lingual named
entity recognition,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, pp. 7415–7423, 2020.

[74] Y. Zhang, “Named entity recognition for social media text,” 2019.

[75] J. B. Johannessen, K. Hagen, Å. Haaland, A. B. Jónsdottir, A. Nøklestad,
D. Kokkinakis, P. Meurer, E. Bick, and D. Haltrup, “Named entity recognition
for the mainland scandinavian languages,” Literary and Linguistic Compu-
ting, vol. 20, no. 1, pp. 91–102, 2005.

[76] D. Hanisch, K. Fundel, H.-T. Mevissen, R. Zimmer, and J. Fluck, “Prominer:
rule-based protein and gene entity recognition,” BMC bioinformatics, vol. 6,
no. 1, pp. 1–9, 2005.

[77] J. Xie, Z. Yang, G. Neubig, N. A. Smith, and J. Carbonell, “Neural cross-
lingual named entity recognition with minimal resources,” arXiv preprint
arXiv:1808.09861, 2018.

[78] E. Pazhouhi, “Automatic product name recognition from short product des-
criptions,” Master’s thesis, University of Twente, 2018.

[79] Y. Jiang, C. Hu, T. Xiao, C. Zhang, and J. Zhu, “Improved differentiable
architecture search for language modeling and named entity recognition,”
in Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 3585–3590, 2019.

[80] S. Magnolini, V. Piccioni, V. Balaraman, M. Guerini, and B. Magnini, “How
to use gazetteers for entity recognition with neural models,” in Proceedings
of the 5th Workshop on Semantic Deep Learning (SemDeep-5), pp. 40–49,
2019.

[81] C. H. Song, D. Lawrie, T. Finin, and J. Mayfield, “Improving neural named
entity recognition with gazetteers,” arXiv preprint arXiv:2003.03072, 2020.

[82] S. Rijhwani, S. Zhou, G. Neubig, and J. Carbonell, “Soft gazetteers for low-
resource named entity recognition,” arXiv preprint arXiv:2005.01866, 2020.

[83] M. Collins and Y. Singer, “Unsupervised models for named entity classifi-
cation,” in 1999 Joint SIGDAT conference on empirical methods in natural
language processing and very large corpora, 1999.

146

[84] O. Etzioni, M. Cafarella, D. Downey, A.-M. Popescu, T. Shaked, S. So-
derland, D. S. Weld, and A. Yates, “Unsupervised named-entity extraction
from the web: An experimental study,” Artificial intelligence, vol. 165, no. 1,
pp. 91–134, 2005.

[85] Z. Zhang and J. Iria, “A novel approach to automatic gazetteer generation
using wikipedia,” in Proceedings of the 2009 Workshop on The People’s
Web Meets NLP: Collaboratively Constructed Semantic Resources (People’s
Web), pp. 1–9, 2009.

[86] A. Neelakantan and M. Collins, “Learning dictionaries for named entity re-
cognition using minimal supervision,” arXiv preprint arXiv:1504.06650, 2015.

[87] M. Joshi, E. Hart, M. Vogel, and J. D. Ruvini, “Distributed word represen-
tations improve ner for e-commerce,” in Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Processing, pp. 160–167,
2015.

[88] U. Naseem, I. Razzak, S. K. Khan, and M. Prasad, “A comprehensive sur-
vey on word representation models: From classical to state-of-the-art word
representation language models,” Transactions on Asian and Low-Resource
Language Information Processing, vol. 20, no. 5, pp. 1–35, 2021.

[89] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162,
1954.

[90] G. Berardi, A. Esuli, and D. Marcheggiani, “Word embeddings go to italy: A
comparison of models and training datasets.,” in IIR, 2015.

[91] A. Sieg, “From pre-trained word embeddings to pre-trained language models
— focus on bert,” Medium, 2019.

[92] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal of
machine learning research, vol. 12, no. ARTICLE, pp. 2493–2537, 2011.

[93] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[94] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” Advances
in neural information processing systems, vol. 26, 2013.

[95] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pp. 1532–1543, 2014.

[96] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” Transactions of the association for computational
linguistics, vol. 5, pp. 135–146, 2017.

147

[97] K. Ethayarajh, “How contextual are contextualized word representations?
comparing the geometry of bert, elmo, and gpt-2 embeddings,” arXiv preprint
arXiv:1909.00512, 2019.

[98] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in translation:
Contextualized word vectors,” Advances in neural information processing sys-
tems, vol. 30, 2017.

[99] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, “Deep contextualized word representations." arxiv preprint,”
arXiv preprint arXiv:1802.05365, 2018.

[100] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[101] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving lan-
guage understanding by generative pre-training,” Computer Science, 2018.

[102] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language models
are few-shot learners,” Advances in neural information processing systems,
vol. 33, pp. 1877–1901, 2020.

[103] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv preprint
arXiv:1706.03762, 2017.

[104] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog, vol. 1,
no. 8, p. 9, 2019.

[105] D. Nadeau, P. D. Turney, and S. Matwin, “Unsupervised named-entity re-
cognition: Generating gazetteers and resolving ambiguity,” in Conference of
the Canadian society for computational studies of intelligence, pp. 266–277,
Springer, 2006.

[106] S. Zhang and N. Elhadad, “Unsupervised biomedical named entity recogni-
tion: Experiments with clinical and biological texts,” Journal of biomedical
informatics, vol. 46, no. 6, pp. 1088–1098, 2013.

[107] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd, “spaCy:
Industrial-strength Natural Language Processing in Python,” 2020.

[108] S. Bird, E. Klein, and E. Loper, Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.",
2009.

[109] R. Řehůřek and P. Sojka, “Software framework for topic modelling with large
corpora,” in Proceedings of the LREC 2010 Workshop on New Challenges
for NLP Frameworks, (Valletta, Malta), pp. 45–50, ELRA, May 2010.

148

[110] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors
with subword information,” arXiv preprint arXiv:1607.04606, 2016.

[111] L. Chen and A. Moschitti, “Learning to progressively recognize new named
entities with sequence to sequence models,” in Proceedings of the 27th In-
ternational Conference on Computational Linguistics, pp. 2181–2191, 2018.

[112] E. Rosvall, “Comparison of sequence classification techniques with bert for
named entity recognition,” 2019.

[113] S. L. Ingólfsdóttir, Named entity recognition for Icelandic: annotated corpus
and neural models. PhD thesis, Reykjavik University, 2020.

[114] J. Lafferty, A. McCallum, and F. C. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” University
of Pennsylvania, 2001.

[115] J. Teixeira, L. Sarmento, and E. Oliveira, “A bootstrapping approach for
training a ner with conditional random fields,” in Portuguese Conference on
Artificial Intelligence, pp. 664–678, Springer, 2011.

[116] Q. Wei, T. Chen, R. Xu, Y. He, and L. Gui, “Disease named entity recognition
by combining conditional random fields and bidirectional recurrent neural
networks,” Database, vol. 2016, 2016.

[117] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al., “Huggingface’s transformers: State-
of-the-art natural language processing,” arXiv preprint arXiv:1910.03771,
2019.

[118] B. Haak, “Information extraction from homicide-related dutch texts using
bert,” Jheronimus Academy of Data Science, 2020.

[119] M. E. Peters, S. Ruder, and N. A. Smith, “To tune or not to tune? adapting
pretrained representations to diverse tasks,” arXiv preprint arXiv:1903.05987,
2019.

[120] I. Beltagy, K. Lo, and A. Cohan, “Scibert: A pretrained language model for
scientific text,” arXiv preprint arXiv:1903.10676, 2019.

[121] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “Biobert:
a pre-trained biomedical language representation model for biomedical text
mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.

[122] Y. Gu, R. Tinn, H. Cheng, M. Lucas, N. Usuyama, X. Liu, T. Naumann,
J. Gao, and H. Poon, “Domain-specific language model pretraining for biome-
dical natural language processing,” arXiv preprint arXiv:2007.15779, 2020.

[123] Y. Elazar, N. Kassner, S. Ravfogel, A. Ravichander, E. Hovy, H. Schütze,
and Y. Goldberg, “Measuring and improving consistency in pretrained lan-
guage models,” Transactions of the Association for Computational Linguis-
tics, vol. 9, pp. 1012–1031, 2021.

149

[124] W. Tai, H. Kung, X. L. Dong, M. Comiter, and C.-F. Kuo, “exbert: Exten-
ding pre-trained models with domain-specific vocabulary under constrained
training resources,” in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: Findings, pp. 1433–1439, 2020.

[125] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare
words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[126] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Kri-
kun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation,”
arXiv preprint arXiv:1609.08144, 2016.

[127] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,” arXiv
preprint arXiv:1808.06226, 2018.

[128] C. E. Shannon, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[129] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,”
arXiv preprint arXiv:2001.04451, 2020.

[130] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pre-
training approach,” arXiv preprint arXiv:1907.11692, 2019.

[131] R. G. Londoño, S. Wlodarczyk, M. Arman, F. Bugiotti, and N. B. Seghouani,
“Weakly supervised named entity recognition for carbon storage using deep
neural networks,” in International Conference on Discovery Science, pp. 227–
242, Springer, 2022.

150

	Introduction
	Context
	Schlumberger
	Sub-surface Geology Domain Terminologies

	Problem Statement
	Proposed Approaches: Specific Aims
	Contributions

	Thesis Outline
	Chapter Two
	Chapter Three
	Chapter Four
	Chapter Five

	PROCLAIM: an Unsupervised Method to Build a Domain-specific Global Schema
	Introduction
	Related Work
	PROCLAIM Overview
	Data Preprocessing
	Data Integration in Column-based Data Formats
	Data Cleaning and Transformation

	Data Type Identification
	Attribute Profile Representation
	Attribute Labeling
	Clustering
	Extended OPTICS
	Labeling Function
	PROCLAIM Global Schema

	Experiments and Analysis
	Environment
	Datasets
	Evaluation and Analysis

	Conclusion

	Machine Learning for Document Structure Recognition
	Introduction
	Related Work
	OCRANA Overview
	Structured Format
	OCRANA Data Model
	Column-oriented/Parquet Datastore

	Layout Labeling
	Labeling Functions
	Weakly Supervised Learning Model
	Position-based Naïve Bayes Classifier
	Evaluation and Experiments

	Semantic Analysis
	Conclusion

	Unsupervised NER by Automatic Generation of Domain-specific Gazetteers
	Introduction
	Background and Preliminaries
	Static Word Representation
	Contextualized Word Representations

	GAGNER Overview
	Automatic Generation of Domain-specific Gazetteers
	Sub-Surface Geology Corpus (C)
	Collecting a Set of Seeds
	Training Different Static Word Embedding Methods
	Popularity Score
	Implementation and Setup
	Evaluation

	Automatic Construction of Annotated NE Corpus
	Learning a Sub-surface Named Entity Model
	Fine-tuned BERT
	Classification Layer
	 Model Optimization
	Model Evaluation

	Conclusion

	GeoBERT: NER using Domain-Specific Language Models
	Introduction
	Related Work
	GeoBERT Overview
	Extension Embedding Module
	Limited Source Corpus
	Vocabulary

	Pre-training GeoBERT
	Data set and Setup
	Experiment and Analysis

	Finetuning GeoBERT
	Data set and Setup
	Experiments and Analysis

	Conclusion

	Conclusion and Future Work
	A summary of the thesis in French

