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Résumé

Nous définissons une classe de métriques plurisousharmoniques sur 1’espace hybride
X associé a une dégénérescence polarisée (X, L) de variétés complexes. Une telle
métrique hybride induit une métrique psh sur L au sens usuel, ainsi qu’une métrique
psh sur I'analytification non archimédienne X" de X par rapport a la valeur ab-
solue t-adique sur C((¢)). Nous démontrons que toute métrique plurisousharmonique
complexe sur (X, L) admet une extension canonique & I'espace hybride X™". Nous
étudions en particulier le cas ou (Z, L) est une variété torique polarisée, ot nous don-
nons une description combinatoire des métriques toriques hybrides continues psh sur
L.

Nous étudions ensuite les dégénérescences maximales X/D* de variétés de Calabi-
Yau, dans le but de produire une incarnation non archimédienne p : X** — Sk(X)
de la fibration SYZ conjecturale. Pour ce faire, nous tentons dans un premier temps
de comprendre la structure affine entiére induite sur le squelette Sk(.2") par la ré-
traction de Berkovich py associée & un bon R-modéle dlt de X. Cela nous permet
de construire, dans le cas des dégénérescences d’hypersurfaces, une fibration SYZ
non archimédienne induisant sur Sk(X) la structure affine entiére prédite par le pro-
gramme de Gross-Siebert. Lorsque la famille est celle des hypersurfaces de Fermat,
nous montrons en outre que la métrique de Calabi-Yau non archimédienne est in-
variante par cette rétraction.

Enfin, nous considérons une dégénérescence de variétés canoniquement polarisées et
calculons la limite non archimédienne de la famille des métriques de Kéhler-Einstein
dans I’espace hybride associé.






Abstract

We define a class of plurisubharmonic metrics on the hybrid space X"?® associated
to a polarized degeneration (X, L) of complex manifolds over the punctured disk.
Such a psh metric induces by restriction a psh metric on L in the usual sense, as
well as a psh metric on the non-archimedean analytification X?" of X with respect
to the t-adic absolute value on C((¢)). We prove that any complex psh metric on
(X, L) admits a canonical plurisubharmonic extension to the hybrid space X™P. We
also focus on the case of a complex polarized toric variety (Z, L), where we provide
a combinatorial description of continuous plurisubharmonic hybrid toric metrics on
L.

We then study maximal degenerations X/ID* of Calabi-Yau manifolds, with the goal
of constructing a non-archimedean avatar p : X* — Sk(X) of the conjectural SYZ
fibration on the complex fibers. To that extend, we study the integral affine struc-
tures induced on the skeleton Sk(.2") by the Berkovich retraction py associated
to a good dlt R-model of X. This allows us to construct, in the case of degener-
ations of hypersurfaces, a non-archimedean SYZ fibration inducing on Sk(X) the
integral affine structure predicted by the Gross-Siebert program. When the family
of hypersurfaces is the Fermat one, we furthermore prove that the non-archimedean
Calabi-Yau metric is invariant under this retraction.

Finally, we consider degenerations of canonically polarized manifolds and compute
the non-archimedean limit of the family of Kéahler-Einstein metrics inside the asso-
ciated hybrid space.
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Introduction en francais

Le sujet principal de cette thése est I'é¢tude des dégénérescences de variétés al-
gébriques complexes - et plus particuliérement les variétés de Calabi-Yau - au moyen
d’outils provenant de la géométrie analytique non archimédienne.

La premiére partie de ce texte fournit une tentative de généralisation de la théorie du
pluripotentiel non archimédien, développée dans [BEJ16|, [BBJ18|, [BE21], [Reb21]
dans le cas d'une variété X sur un corps non archimédien, au cas des espaces hy-
brides. Pour ce faire, nous définissons une classe de métriques (singuliéres) semi-
positives sur un fibré en droites sur 'analytification au sens de Berkovich dun
schéma X sur un anneau de Banach A. Dans le cas o A = A, est 'anneau des
séries convergentes - pour la norme dite hybride sur C - ceci induit une notion de
métrique semi-positive sur la réunion d’une dégénérescence de variétés complexes
avec l'espace analytique non-archimédien associé. Nous faisons le lien entre notre
deéfinition et diverses constructions apparaissant dans la littérature [BBJ18|, [Reb21],
[Fav20]. Nous étudions ensuite plus en détail le cas des métriques toriques sur une
variété torique, ol celles-ci sont encodées par certaines fonctions sur un espace vec-
toriel réel de dimension finie, et ot la condition de semi-positivité de la métrique se
traduit par la convexité au sens usuel de la fonction associée.

La seconde partie est consacrée a I’étude du probléme suivant: étant donnée X —
D* une dégénéréscence maximale de variétés de Calabi-Yau, on souhaiterait con-
struire une incarnation non archimédienne p : X** — Sk(X) de la fibration SYZ
conjecturale sur les fibres X, |t| < 1, de la famille. Une telle rétraction devant
induire sur Sk(X) une structure affine entiére, singuliére en codimension 2, on es-
pére alors que cette rétraction permette d’identifier la métrique de Calabi-Yau non-
archimédienne & une solution de ’équation de Monge-Ampeére réelle sur le squelette
essentiel Sk(X). Ceci nécessite en particulier de comprendre les singularités des
rétractions de Berkovich pgy @ X** — Sk(Z") associée aux R-modéles de X, ou
R = C]Jt]], étant donné que notre approche pour construire une rétraction SYZ
dans les exemples explicites s’appuie sur des recollements de plusieurs rétractions de
Berkovich, associée a différents modeles de X. Nous étudions en particulier une cer-
taine classe de dégénérescences d’hypersurfaces dans ’espace projectif, oti, en nous
appuyant sur les résultats de la premiére partie et ceux de |Li22|, nous parvenons
a identifier de maniére satisfaisante les solutions des équations de Monge-Ampére
réelle et non archimédienne, lorsque le membre de droite est la mesure de Lebesgue
sur le squelette essentiel Sk(.X).

11
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(Géométrie non archimédienne

Soit (K, |-|) un corps non archimédien complet, c’est-a-dire un corps muni d’une
valeur absolue satisfaisant 1'inégalité dite ultramétrique:

| +y| < max{z], [y},

pour tous z,y € K, et telle que K soit en outre complet par rapport a la distance
induite. Parmi les exemples de tels corps, on note le corps @, des nombres p-adiques,
qui est la complétion de Q muni de la valeur absolue p-adique |-|, = p~", ol v, est
la valuation p-adique; le corps C((t)) des séries de Laurent complexes muni de la
valuation t-adique || = e~ °"%; ou encore n’importe quel corps k muni de la valeur
absolue triviale |-|g, qui est telle que |z|p = 1 pour tout x € k non nul.

On pourrait mentionner diverses tentatives (dues par exemple a Tate, Raynaud
ou Huber), au cours du 20éme siécle, de produire une théorie satisfaisante de la
géométrie analytique sur un corps non archimédien: étant donné une variété pro-
jective X/ K, on souhaiterait lui associer de maniére naturelle un espace analytique
X?" jouissant par exemple d’une topologie plus agréable que celle du schéma X/ K;
de fagon analogue a la maniére selon laquelle on associe a un schéma de type fini X/C
une variété complexe. Notons notamment que ’approche naive, qui consisterait a
prendre K muni de la distance induite par ||, comme espace topologique sous-jacent
a lanalytification de la droite affine AL, n’est pas trés fructueuse: 'inégalité ultra-
métrique implique qu’'un tel espace topologique est totalement discontinu. Ainsi, il
est nécessaire d’élaborer une théorie plus sophistiquée de la géométrie analytique sur
K pour pouvoir obtenir des espaces topologiques aux propriétés plus raisonnables.
Dans ce texte, nous nous en tiendrons a la théorie des espaces K-analytiques dévelop-
pée par Berkovich, qui est celle qui est la plus fidéle & I'intuition provenant des
espaces analytiques complexes. De maniére naive, 1'idée est la suivante: si X est
une variété projective complexe, on peut voir un point fermé r € X comme une
valeur absolue (dégénérée) f — |f(z)| sur le corps des fonctions K(X), étendant
la valeur absolue euclidienne sur le corps de base C C K(X), vu comme les fonc-
tions constantes. Supposons maintenant que K est un corps valué complet et X /K
une variété quasi-projective. Son analytification X*" au sens de Berkovich est alors
définie comme une certaine compactification de I’ensemble des valeurs absolues sur
son corps de fonctions IC(X) étendant la valeur absolue de base sur K, ce dernier
étant muni de la topologie de la convergence simple. Ceci entraine en particulier que
toute fonction méromorphe f sur X, réguliére sur un ouvert de Zariski U, induit
une fonction continue x — |f(x)| := |f|. sur Uouvert U** C X**. Comme dans
le cas complexe, I'analytification X®" d’une variété quasi-projective X/K jouit de
propriétés topologiques agréables: celle-ci est séparée, localement connexe par arcs,
localement contractile et est compacte si et seulement si X/K est propre. Dans le
cas ou K = C est le corps des nombres complexes muni de la valeur absolue eucli-
dienne, 'analytification de Berkovich d’une variété algébrique complexe se trouve
étre son analytification holomorphe au sens usuel.

La théorie de Berkovich s’applique aussi au-dessus d’une base plus générale: si
(A, |-]) est un anneau de Banach, il est possible de définir son spectre analytique
A (A) au sens de Berkovich comme ’ensemble des semi-normes multiplicatives sur
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A qui sont majorées par la norme de référence. Si x € #(A), le noyau p, de la
semi-norme |-|, est un idéal premier de A, et 'on dénote #(z) la complétion du
corps des fraction de 'anneau quotient A/p, par rapport a la valeur absolue ||, -
muni de cette derniére, il s’agit d'un corps valué complet, appelé corps résiduel de
A (A) en x.

L’analytifié X?" d’un A-schéma de type fini est ensuite défini d’une maniére ana-
logue au cas ou A est un corps, celui-ci est de plus muni d’un morphisme structural
T X — #(A), qui est en particulier continu. Sous certaines conditions sur
I'anneau de base A, la fibre X, = 771(x) s’identifie & I'analytifi¢ du changement de
base X ) = X x4 J€(x), par rapport a la valeur absolue |-|, sur J#(x), si bien
que 'on peut penser 'espace analytique X" comme la famille d’espaces analytiques
(X #(2))ze.a(ay sur différents corps valués - de maniére analogue a la facon dont on
peut voir un schéma sur A comme une famille de schémas sur les corps résiduels de
A, et paramétrée par Spec A.

Supposons par exemple que notre anneau de Banach est C™" = (C,|-|py1), ou
|2|lnyb = max{|z|o, |z |} est la norme hybride sur C, a savoir le maximum entre
les valeurs absolues triviale et euclidienne. On peut alors montrer que .# (C™P) =
{I1*/X € [0,1]}, ott 'on note abusivement |-|° = |-|o. Il s’ensuit que si X est une
variété algébrique complexe, son analytification X™P par rapport a la norme hy-
bride - appelée I'espace hybride associé - fibre sur l'intervalle [0, 1], et la fibre X/l\1le
au-dessus de A > 0 s’identifie naturellement, aprés renormalisation de la valeur ab-
solue, & 'analytifié holomorphe de X, tandis que la fibre au-dessus de 0 s’identifie
a 'analytifié Xj" par rapport a la valeur absolue triviale sur C. Ceci fournit donc
une maniére naturelle de voir des renormalisations de la variété analytique complexe
Xhol dégénérer vers 1'espace analytique non archimédien Xg*. Ceci justifie la ter-
minologie, I’espace X™P étant de nature hybride, encodant & la fois la géométrie
analytique holomorphe et non archimédienne de X.

Dégénérescences de variétés complexes et espaces hybrides

Soit désormais X — D* une dégénérescence de variétés projectives complexes,
qu’on suppose telle que les équations des fibres X; soient méromorphes en ¢ = 0.
Ceci nous permet de voir X comme une variété algébrique X sur le corps des séries
de Laurent K = C((t)) qui, comme mentionné précédemment, est muni de la valeur
absolue t-adique qui en fait un corps non archimédien complet. Nous allons main-
tenant expliquer dans quelle mesure l'espace analytique au sens de Berkovich X§"
encode de diverses maniéres des informations sur le comportement asymptotique en
t = 0 de la famille X.

Soit 7 : 2" — I un modéle a croisements normaux simples de X - dont 'existence
est assurée par notre hypothése de méromorphie et par le théoréme d’Hironaka.
Ecrivant la fibre spéciale 2y := 7'(0) = >..; a;D; comme la somme de ses com-
posantes irréductibles, la condition de croisements normaux simples signifie que les
D; sont des diviseurs premiers, lisses, et dont les diverses intersections sont toutes
transverses. Ceci nous permet d’associer a 2 un complexe cellulaire Z(.2p), en-
codant la combinatoire des intersections des D;. Le complexe dual est défini de la
maniére suivante: a toute composante D; de 2, est associé un sommet v;; puis pour
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toute composante connexe de l'intersection D; N D; I'on trace une aréte e;; entre
v; et v;. De la méme maniere, a chaque composante connexe d’une intersection
D; N D; N Dy, on associe un 2-simplexe, délimité par des arétes e;;, ek, €k, et ainsi
de suite pour aboutir a un complexe cellulaire de dimension majorée par la dimen-
sion relative de X. L’un des intérets de cette construction est que le complexe dual
P(Zy) peut naturellement étre plongé dans l'espace analytique X#; en d’autres
termes il est possible de voir les points de Z(25) comme des valuations sur le corps
des fonctions de X. Par exemple, si v; est un sommet de Z(%y) correspondant
4 une composante D;, on lui associe la valuation vp, := f + a; " ordp,(f) pour
feK(Z) ~K(X), la normalisation assurant que vp,(t) = 1. Les faces de dimen-
sion supérieure de Z(Zp) sont ensuite a leur tour plongées dans X" en interpolant
entre les vp,, 'image de ce plongement est notée Sk(2") C X" et appelée squelette
du modéle 2.

Berkovich définit en outre une rétraction py : X** — Sk(Z") pour linclusion
Sk(Z") € X induisant une équivalence d’homotopie entre X** et Sk(.2"). Ceci
permet de penser le squelette Sk(:2") comme une approximation finie de X", ce
dernier étant reconstruit (topologiquement) comme la limite inverse des Sk(.Z"),
prise sur ’ensemble des modéles & croisements normaux simples de X.

Fixons désormais un rayon r € (0,1). Il est possible de définir, d’'une maniére simi-
laire & la construction du paragraphe précédent, un anneau A, de séries convergentes
pour la norme hybride sur C, dont le spectre de Berkovich .# (A,) ~ D, est homéo-
morphe au disque fermé de rayon r. On peut voir la dégénérescence X — D*
comme un schéma sur A,, et son analytification est appellée I'espace hybride:

X 5D,

La fibre 771(0) = X2 est alors analytification de X par rapport a la valeur absolue
t-adique, tandis qu’en dehors de 0, la pré-image 7~1(D}) s’identifie naturellement
avec la restriction de la dégénérescence X a D* - aprés avoir renormalisé la valeur
absolue sur X; par une puissance llg’gg':' . A nouveau, ceci fournit une maniére naturelle
de voir les variétés analytiques complexes X; (avec leur valeur absolue renormalisée)
dégénérer vers l'espace analytique non-archimédien Xg lorsque ¢ — 0. On s’attend
alors a ce que diverses familles d’objets issus de la géométrie complexe vivant sur
les X; admettent une limite sur ’espace hybride - la limite étant plutot une pente
logarithmique en 0, au vu de la renormalisation de la valeur absolue.

Théorie du pluripotentiel non-archimédienne

La théorie du pluripotentiel classique consiste en 1’étude des fonctions plurisoushar-
moniques: si {2 C C” est un domaine, une fonction semi-continue inférieurement
¢ : Q — RU{—o0} est plurisousharmonique (ou psh) si et seulement si pour toute
droite affine complexe ¢, sa restriction ¢, a £ N est sous-harmonique au sens faible,
i.e. son laplacien A¢, au sens des distributions est positif. De maniére équivalente,
ceci signifie que la Hessienne complexe i00¢ > 0 est une (1, 1)-forme positive au sens
des courants. Par exemple, si f € O(Q) est une fonction holomorphe, la formule de
Lelong-Poincaré implique que la fonction ¢ = log|f| est plurisousharmonique sur €2,
et est singuliére précisément sur le lieu { f = 0}. Les fonctions plurisousharmoniques
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peuvent alternativement étre définies a 1’aide d’une inégalité de la moyenne, ce qui
implique que celles-ci sont stables par limites décroissantes et maxima finis.

Cette notion se généralise alors au cadre global, de la maniére suivante. Soit X une
variété complexe, L un fibré en droites ample sur X et h une métrique hermitienne
sur L. On identifie cette derniére a la collection ¢ de ses poids locaux logarithmiques
¢; = —log|s;|, contre les trivialisations locales s; de L, et 'on dit que la métrique
¢ est plurisousharmonique si et seulement si ses poids locaux le sont. Comme dans
I'exemple qui précede, si s € HY(X,mL) est une section globale non-nulle de mL
pour un m > 1, la métrique singuliére ¢ = m~'log|s| est plurishousharmonique, a
nouveau par la formule de Lelong-Poincaré.

Un des théorémes centraux de la théorie du pluripotentiel est le résultat de régulari-
sation suivant, dit & Demailly [Dem92]: toute métrique psh ¢ sur un fibré en droites
ample peut étre écrite comme limite décroissante de métriques de la forme:

1
brg = %log(|so|2 + ...+ |sN|2),

oum > 1 et (sp,...,sy) est une famille de sections globales de mL sans zéros
communs. Ces métriques sont nommées métriques de Fubini-Study sur L, pour
la raison suivante; si f : X — CP" est 'application holomorphe donnée par
f(z) =[so(x) : ... : sy(x)], alors ¢ est & un facteur preés le tiré en arriére par f de la
métrique de Fubini-Study sur CPV.

Revenons maintenant au cas ot K est un corps non archimédien complet. Si (X, L)
est une variété projective sur K, on peut définir de maniére analogue a ce qui précéde
des métriques continues sur l'analytification L**: étant donnée une famille (U, s;)
de trivialisations locales algébriques de L, une métrique continue ¢ est la donnée
d’une famille de poids locaux ¢; = — log|s;|, continus sur les U*", compatibles sur
les intersections (U; N U;)* et compatibles avec la multiplication des sections par
des fonctions.

On peut de méme définir une notion de métrique singuliére sur L, de telle sorte que
si s est une section globale non-nulle de mL, alors m~!log|s| définit une métrique
sur L, singuliére le long du lieu des zéros de s. Poussant I’analogie plus loin, on dit
qu’une métrique de la forme:

dps =m ! log max(|sol, .., |sn]),

pour une famille (s, ..., sy) de sections globales de mL sans zéros communs, est
une métrique de Fubini-Study (tropicale) sur L. Le théoréme de régularisation de
Demailly est alors pris comme définition des métriques plurisousharmoniques sur L:

Définition 0.0.1. La classe PSH(X, L) des métriques plurisousharmoniques sur L
est la plus petite classe de métriques singuliéres qui:

e contienne les métriques de Fubini-Study tropicales,
e soit stable par addition de constantes,
e soit stable par maxima finis,

e soit stable par limites décroissantes.
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Lorsque le corps K est non archimédien, de valuation vx que 'on suppose non
triviale pour simplifier, une classe naturelle de métriques sur L est définie de la
manicre suivante. Soit (Z7,.%) un modéle de (X, L) sur 'anneau de valuation R =
{vk > 0}. De maniére simpliste, la métrique modéle ¢ ¢ est la métrique telle que les
sections locales de L de norme < 1 soient précisément celles qui s’étendent & 2~ en
tant que sections réguliéres de .Z. En particulier, le réseau H°(2',.¢) C H°(X, L)
est la boule unité pour la norme du sup associée a ¢o. Il se trouve alors que les
métriques de Fubini-Study sur L ne sont autres que les métriques modeéles sur (les
puissances positives) de L, associées a des modéles semi-amples £, c’est-a-dire tels
que m.Z soit globablement engendré pour m suffisamment divisible.

L’opérateur de Monge-Ampére

Soient 2 C C" un domaine, et ¢; € PSH(Q2) NC>(£2) pour ¢ = 1, ...,n une collection
de n fonctions psh lisses. Leur mesure de Monge-Ampére (mixte) est définie comme:

MA (¢, ..., ¢p) = 100P1 A ... N i,

et constitue I'un des objets centraux de la théorie du pluripotentiel. On souhait-
erait alors étendre 'opérateur de Monge-Ampére aux fonctions psh qui ne sont plus
nécéssairement lisses; cependant méme si i00¢ est défini pour une fonction psh
quelconque, il s’agit désormais d’un courant et non plus d’une forme différentielle,
si bien qu’il n’est a priori pas possible de considérer des produits d’expressions de
la forme i00¢;. Cependant, les travaux fondateurs de Bedford-Taylor [BT76] ont
montré que 'opérateur de Monge-Ampére pouvait étre étendu de maniére unique
aux fonctions psh bornées - et en particulier, aux fonctions psh continues. Il peut
en outre s’étendre plus généralement a la classe des fonctions psh d’énergie finie par
IBEGZ10], que nous ne définirons pas ici.

Dans un cadre global, soit X une variété projective complexe de dimension n, et
L4, ..., L, des fibrés en droites amples sur X. Etant donné des métriques continues
psh ¢; sur les L;, 'on définit leur mesure de Monge-Ampére comme ci-dessus; nous
continuerons de la dénoter i90¢; A ... Ai0D¢,,. 1l s’agit d’une mesure positive sur X,
dont la masse totale est (& normalisation prés) le nombre d’intersection (Lj - ...+ Ly,).
Le théoréme suivant, connu initialement sous le nom de conjecture de Calabi, est
di & Yau [YauT78| dans le cas lisse et & Kotodziej [Kol98| dans le cas singulier:

Théoréme 0.0.2. Soit X une variété projective complexe lisse, et L un fibré en
droites ample sur X. Soit pu une mesure de probabilité sur X, a densité LP pour un
p>1.

Alors il existe une unique (G une constante additive pres) métrique ¢ € PSH(X, L)
solution de l’équation de Monge-Ampére complexe:

(i006)" = Cp,
ot C' = (2)"L".

Notons que le résultat de Yau garantit que si la mesure p est une forme volume
lisse, alors la solution ¢ de I’équation ci-dessus est lisse et strictement psh.
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La motivation originelle pour ce théoréme était la question de I'existence de métriques
kdhleriennes Ricci-plates sur les variétés de Calabi-Yau: si (X, L) est une variété
de Calabi-Yau polarisée, c’est-a-dire telle que Kx = Oy, alors la solution lisse
¢ € PSH(X, L) de 'équation de Monge-Ampére:

(i004)" = Ci™*Q A Q,

ou ) € H°(X, Kx) est une n-forme holomorphe ne s’annulant pas, est telle que la
form de courbure w = i00¢ est une métrique de Kahler sur X de courbure de Ricci
nulle.

Revenons maintenant au cas non archimeédien, et supposons que K = k((t)) pour
simplifier I'exposition; notons R = k[[t]] et supposons en outre que k est de car-
actéristique zéro. Etant donnée une variété polarisée (X, L) sur K, I'analogue des
métriques lisses sur L est fourni par les métriques de Fubini-Study qui, comme
mentionné précédemment, sont aussi les métriques modeéles ¢ ¢ associées aux R-
modeéles nef (27, %) de (X, L). La mesure de Monge-Ampére mixte d’une collection
(0, ..., z,) de métriques modeles est alors définie comme une somme explicite de
masses de Dirac, dont les coeflicients sont divers nombres d’intersection des .%; sur
Z; bien que cela ne soit pas apparent a premiére vue, cette définition imite la
définition de I'opérateur de Monge-Ampére réel sur les fonctions convexes, affine
par morceaux - un fait notable étant que la mesure atomique MA(¢py, ..., .z, ) est
supportée sur le squelette Sk(.27), et est de masse totale (L; - ... - L,), comme dans
le cas complexe.

L’opérateur de Monge-Ampére est ensuite étendu aux métriques continues psh dans
IBEJ15], o il est établi que I’analogue non archimédien de la conjecture de Calabi
est vrai:

Théoréme 0.0.3. Soit (X, L) une variété polarisée lisse sur K. Soit i une mesure
de probabilité sur X®", supportée sur le squelette d’un R-modéle a croisements nor-
mauz simples de X. Alors il eziste une unique (& une constante additive prés)
métrique plurisousharmonique continue ¢ sur L satisfaisant [’équation de Monge-
Ampére non archimédienne:

MA(¢) = p.

Ici nous avons écrit MA(¢) := MA(¢, ..., ¢).
La preuve du théoréme ci-dessus repose cependant sur un argument de nature vari-
ationelle, si bien qu’elle ne donne pas d’informations sur la nature de la solution,
hormis sa continuité. Il serait notamment souhaitable, comme nous le verrons par
la suite, de traduire cette équation en une équation de Monge-Ampére réelle sur
le squelette Sk(2") sur lequel la mesure p est supportée, ce qui s’avére étre une
question difficile.

La conjecture de Kontsevich-Soibelman

Nous allons maintenant présenter un cercle d’idées, initié au début des années 2000
par Kontsevich et Soibelman comme une tentative d’explication du phénoméne de
symétrie miroir, et qui prédit notamment le comportement asymptotique de la
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famille des métriques kihleriennes Ricci-plates sur une famille de variétés de Calabi-
Yau dont la structure complexe dégénére de la pire maniere possible.

L’heuristique SYZ classique

Soit X — ID* une famille relativement projective, méromorphe en 0 de variétés de
Calabi-Yau, et rappelons que cela signifie pour nous que le fibré canonique Ky, de
chaque fibre X; est trivial, pour ¢ € D*. Fixons une polarisation relative L sur la
famille X, et supposons en outre que la famille est maximalement dégénérée en t = 0,
ce qui signifie que les fibres X; se cassent en le plus de morceaux possibles lorsque
t — 0. Plus formellement, cela signifie que le complexe dual Z(Z25) de tout modéle
& croisements normaux de X est de dimension maximale n = dim X;. Dans ce con-
texte, I'approche de Kontsevich-Soibelman [KS06| de la conjecture de Strominger-
Yau-Zaslow [SYZ906] prédit que les variétés de Calabi-Yau (X, w;) - ol wy est la
métrique kdhlerienne Ricci-plate sur X;, normalisée par la condition w; € ¢1(Ly) -

ont un diameétre d; dont 'ordre de grandeur est ‘log\tHl/ ? ce qui a été confirmé
récemment par les résultats de Li-Tosatti [LT20].
De plus, il est prédit que la fibre X; munie de la métrique de Kéhler @, := d; %w; de-
vrait ressembler a ’espace total d’une fibration lagrangienne dont les fibres sont des
tores réels T” de taille d; ', au-dessus d’une certaine base B de dimension réelle n.
En particulier, la conjecture de Kontsevich-Soibelman prédit que la famille d’espaces
métriques (X;,@;) converge au sens de Gromov-Hausdorff vers la base B, munie
d’une métrique de Monge-Ampére réelle en dehors d’'un lieu de codimension de
Hausdorff 2.
Plus précisement, la construction classique des coordonnées action-angle en géométrie
symplectique implique que la fibration spéciale lagrangienne f; : X; — B munit
l'ouvert BS™ C B d’une structure affine entiére V7, celui-ci étant 'ouvert de B au-
dessus duquel la fibration f; est submersive. La structure affine entiére VZ consiste
en la donnée d'un atlas de cartes dont les fonctions de transition sont des fonc-
tions affines dont la partie linéaire est entiére, autrement dit des éléments du groupe
GL,(Z) x R", et celle-ci permet notamment de parler de fonctions affines entiéres
sur B*™. Les fibres de f; étant asymptotiquement trés petites, le potentiel ¢, de la
métrique de Calabi-Yau devrait étre proche asymptotiquement d’un potentiel ¢, o f;
provenant de la base, ol ¢, est une fonction strictement convexe (multivaluée) en
cordonnées affines sur B¥".
On s’attend alors a ce qu’a la limite ¢ — 0, les fonctions 1), convergent vers une
fonction convexe i sur B®™, ce lieu étant muni d’une structure affine entiére que
I’on peut penser comme la limite tropicale de la structure complexe sur X;. Enfin,
I’équation de Monge-Ampére complexe sur X; se traduit a la limite par I’équation
de Monge-Ampére réelle:

0%¢
Dy 0y;

det ( ) =C

ou (' est une constante et les y; sont des coordonnées affines locales. 1l s’ensuit que
la métrique limite g sur B est localement donnée par la Hessienne g;; = 82-2].17& du
potential local .

Faisons maintenant le lien avec la géométrie non archimédienne.
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Le squelette essentiel

Les métriques de Calabi-Yau w; € ¢;(L;) étant obtenues en résolvant I’équation de
Monge-Ampére complexe:
.2 =
(A)Zl = Ctln Qt A\ Qt7

ou Q; € H(X,, Kx,) est une n-forme holomorphe sur X; ne s’annulant pas, une pre-
miére étape naturelle pour tenter de comprendre leur comportement asymptotique
lorsque t — 0 est d’étudier le comportement de la famille de mesures de probabilité
Wy = Ci™* Q) A ), qui sont de nature plus algébrique. Il se trouve alors que ces
mesures convergent faiblement dans I’espace hybride X™P associé¢ a la dégénérés-
cence [BJ17]:

Théoréme 0.0.4. Soit (X,L) — D* une dégénérescence mazimale polarisée de
variétés de Calabi-Yau , et soit (p)iep la famille des mesures (de probabilité) de
Calabi-Yau. Alors les y; convergent faiblement sur X™P vers une mesure o, qui
est une mesure de type Lebesgue sur un sous-complere Sk(X) de dimension n de
Sk(Z"), pour tout modele & /D a croisements normaux simples.

Le sous-complexe Sk(X') dans I’énoncé ci-dessus est appelé squelette essentiel de
X, et peut-étre calculé explicitement dans Sk(Z), étant donné un modéle 2" /D
[MN15]. Comme la notation le suggere, il est en outre indépendant du choix d’un
modeéle 2~ a croisements normaux.
Ce résultat suggere alors que la base B de la fibration SYZ devrait étre le squelette
essentiel Sk(X) C X" et 'on aimerait alors produire une incarnation non archimé-
dienne:

p: X* — Sk(X),

de la fibration SYZ, qui soit de maniére naturelle la limite dans X™" des fibrations
SYZ archimédiennes f; : X; — B; cela est établi par exemple dans le cas ou X
est une variété abélienne maximalement dégénérée par [Odals]|, [GO22]. Poursuiv-
ant notre analogie avec la fibration SYZ classique, il est naturel de souhaiter que
I'application continue p : X* — Sk(X) soit une fibration en tores affinoides hors
d’un lieu affine par morceaux I' C Sk(X) de codimension au moins 2 - sans donner
de définition précise, il s’agit de I’analogue non-archimédien d’une fibration en tores
réels lisse; par exemple, une telle fibration induit sur Sk(X) \ " une structure affine
entiére, comme dans le cas classique.

Une premiére tentative est fournie par les travaux de Nicaise-Xu-Yu [NX16|, [NXY19):
si 2 /D est un modeéle minimal de la famille X, au sens du programme du modéle
minimal, alors on a ’égalité Sk(X) = Sk(.2), et il est établi dans [NXY19] que la
rétraction de Berkovich:

pa X — Sk(X)

est bien une fibration en tores affinoides en dehors des faces de codimension > 2 de
Sk(Z") = Sk(X).
La propriété de comparaison pour Monge-Ampére

In fine, 'un des objectifs centraux de la théorie est de produire la métrique de Monge-
Ampeére réelle ¢ sur Sk(X) via la géométrie non archimédienne. La convergence



20 CONTENTS

sur X™P des mesures de Calabi-Yau vers g suggére fortement que la solution de
I’équation de Monge-Ampeére non archimédienne:

MA(¢) = Mo

devrait fournir la limite non archimédienne des métriques de Calabi-Yau. La diffi-
culté consiste maintenant & essayer d’identifier ¢ de maniére naturelle a une fonc-
tion convexe multivaluée sur Sk(X), solution de I’équation de Monge-Ampére réelle.
Comme dans le cas archimédien, on cherche alors a produire une fibration SYZ
p: X*™ — Sk(X) telle que la métrique ¢ s’identifie via p avec le tiré en arriére
d’'une fonction convexe multivaluée sur la base, puis & montrer que ceci identifie
lopérateur de Monge-Ampére non archimédien avec I'opérateur de Monge-Ampére
réel sur Sk(X) \ I

Le théoréme suivant, di a Vilsmeier [Vil20], fournit un progrés partiel dans cette
direction:

Théoréme 0.0.5. Soit (Z°,.Z) un modéle semi-stable de (X, L), et écrivons la
métrique de Calabi-Yau non archimédienne ¢ comme:

¢:¢$+¢,

ol ¢ est la métrique modéle associée a L et ¢ 1 X* — R est une fonction
continue. Supposons ) =1 o py au-dessus de l'intérieur d’une face T C Sk(Z") de
dimension n. Alors ¢ est convexe sur Int(7), et on a l’égalité de mesures suivante:

1Int(7) MA(¢) = n'%(w)a

sur Int(7), ot A (V) est la mesure de Monge-Ampere réelle de la fonction convere

.

S’appuyant sur ce résultat, les travaux récents de Yang Li [Li20a] réduisent
I’existence de la fibration SYZ classique au probléme suivant: trouver une fibration
SYZ non archimédienne p, telle que la métrique de Calabi-Yau non-archimédienne
soit constante le long des fibres de p:

Théoréme 0.0.6. Soit X/D* une dégénérescence maximale polarisée de variétés de
Calabi- Yau, et écrivons la solution de I’équation de Monge-Ampére non archimédi-
enne MA(¢) = po sous la forme:

¢:¢$+T/}a

pour un modéle & croisements normavx (Z°,.Z) de (X, L), avec ¢ : X* — R une
fonction continue. Supposons que la propriété de comparaison pour Monge-Ampére:

Y=1vopy

soit vérifiée au-dessus de l'intérieur des faces de dimension mazimale de Sk(X).
Alors pour |t| < 1, il existe une fibration spéciale lagrangienne f; : Uy — Sk(X),
ou Uy C X; est un ouvert de mesure de Calabi-Yau arbitrairement proche de 1.
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Ce résultat réduit la conjecture SYZ classique & un probléme de géométrie non
archimédienne; cependant il ne traite pas la quesion de la convergence de Gromov-
Hausdorff globale des métriques de Calabi-Yau; en effet I'union des faces maximales
de Sk(X) n’étant pas connexe, pour pouvoir accéder a la distance entre deux faces
différentes, il semble nécessaire d’obtenir une propriété de comparaison entre les
opérateurs de Monge-Ampeére réels et non archimédiens en codimension 1- toujours
sous une certaine hypothése d’invariance par rétraction de la métrique de Calabi-Yau
non archimédienne sur X",

Résumé des résultats obtenus

Théorie du pluripotentiel sur les espaces hybrides

Soit X — D* une dégénérescence projective de variétés complexes, et L un fibré en
droites relativement ample sur X. Etant donné une métrique plurisousharmonique
¢ € PSH(X, L) satisfaisant une condition de croissance raisonnable en ¢ = 0, on peut
lui associer une métrique plurisousharmonique ¢4 € PSH(X®", L**) sur ’espace
analytique non archimédien X®", encodant le taux de divergence logarithmique de ¢
le long de la fibre spéciale des modéles de (X, L). Dans le cas o X =Y x D* est un
produit et ¢ est S'-invariante, on dit que ¢ est un rayon psh sur Y, et la métrique
non archimédienne associée a été définie dans [BBJ18|; tandis que le cas général est
traité dans [Reb21].

On aimerait alors dire que ¢N* est d’une maniére naturelle la limite des ¢; = (@)1x,
dans 'espace hybride. Il serait cependant trop naif de prendre cette limite au sens
topologique, étant donné que l'on voudrait qu'un tel énoncé demeure vrai pour
des métriques singuliéres. Il est alors pertinent de définir une classe de métriques
singuliéres sur I'espace hybride, qui encode a la fois les métriques complexes sur la
dégénéréscence X, ainsi que les métriques non archimédiennes qui leur sont associées.
Dans le premier chapitre de cette thése, nous définissons une classe PSH(X, L) de
métriques plurisousharmoniques sur I'analytification de Berkovich X*" d’un schéma
polarisé (X, L) sur un anneau de Banach intégre A; de maniére naive, une métrique
singuliére ¢ € PSH(X, L) peut étre pensée comme une famille de métriques psh
¢e € PSH(X (2), L(z)), variant de maniére plurisousharmonique par rapport a
x € A (A). 1l convient cependant de noter qu’il est possible que ¢, = —oo pour
certains x € . (A).

La classe PSH(X, L) est définie suivant 'approche de [BE21] : il s’agit de la plus
petite classe de métriques singuliéres sur L contenant les métriques de la forme
m~tlog|s| lorsque s € H°(X, mL) est une section non-nulle, et qui soit stable par
limites décroissantes et maxima finis.

Dans le cas ou (X, L) est une dégénérescence de variétés complexes polarisées, une
métrique psh sur I'espace analytique X" induit par restriction et renormalisation
une métrique plurisousharmonique ¢ € PSH(X, L) & croissance logarithmique en 0,
ainsi qu’une métrique psh ¢g € PSH(X?" L*") et est en outre déterminée de maniére
unique par ces deux restrictions. Réciproquement, étant donné une métrique psh ¢
sur la dégénérescence X, nous montrons que la métrique non archimédienne associée
#NA induit une extension psh canonique de ¢ a l’espace hybride:
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Théoréme A. [PS22d, thm. A] Soit ¢ € PSH(X, L) une métrique psh a croissance
logarithmique en t = 0. La métrique singulicre ¢™° sur (X™P LWP) telle que:
Elyb — quA’
hyb
Qs&t = ¢
est plurishousharmonique.

Notons toutefois que toutes les métriques psh sur I’espace hybride ne sont pas
obtenues de cette maniére: le point 0 € D, est pluripolaire - non-négligeable au
sens de la théorie du pluripotentiel hybride - si bien que les métriques psh hybrides
ne sont pas déterminées de maniére unique par leur restriction au-dessus du disque
épointé. Cependant, cette subtilité disparait lorsqu’on se restreint aux métriques
psh continues, puisque le point 0 € D, est d’intérieur vide.

Nous étudions ensuite le cas d'une variété torique polarisée (Z, L) sur C. Dans ce
cas précis, les métriques psh sur L peuvent étre décrites explicitement en termes de
certaines fonctions convexes sur ’espace vectoriel réel Ng contenant 1’éventail X de
Z - et ce, indépendamment de la valeur absolue sur C, euclidienne ou triviale. Plus
précisement, la polarisation L est encodée au niveau combinatoire par une fonction
convexe, linéaire par morceaux ¥y : Ng —> R, et les métriques toriques sur L
sont en correspondance bijective avec les fonctions convexes sur Ny ayant la méme
croissance que ¥, en 'infini.

Nous démontrons alors un énoncé similaire pour les métriques toriques continues
et plurisousharmoniques: la positivité dans la direction horizontale est elle aussi
encodée par de la convexité dans la direction de la base . (C™®) = [0, 1].

Théoréme B. Soit (Z,L) une variété torique compleze polarisée. Il existe une
correspondance bijective entre les métriques toriques continues psh sur L™ et les
fonctions convexes continues:

®:Npx[0,1] —R

telles que (P — W) s’étende continiment a la compactification Nyx, x [0,1] de Ng X
[0,1].

La fibration SYZ non-archimédienne

La seconde partie de cette thése se consacre a I’étude du probléme suivant: étant
donnée une variété de Calabi-Yau polarisée (X, L) sur K = C((t)), tenter de pro-
duire une incarnation non archimédienne p : X* — Sk(X) de la fibration SYZ
- dans l'espoir de trouver une rétraction telle que la métrique de Calabi-Yau non
archimédienne sur L*" soit constante le long des fibres de p.

L’un des objectifs étant d’identifier la solution de 1’équation de Monge-Ampére
non-archimédienne & une solution de l’équation de Monge-Ampére réelle, il est
souhaitable d’avoir a notre disposition une fibration qui soit "lisse" hors d’un lieu
de codimension 2 de la base, celle-ci induisant ainsi une structure affine entiére sur
Sk(X) dont les singularités sont de codimension 2.

Une premiére étape consiste a comprendre les singularités de la rétraction de Berkovich
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associée a un modéle 27, ou plutot leur absence. Le résultat suivant, établi en col-
laboration avec Enrica Mazzon, affirme que si Z est une strate torique de la fibre
spéciale d'une dégénérescence de variétés algébriques, alors sous une certaine hy-
pothése de positivité sur le fibré conormal de Z, la rétraction de Berkovich ps n’a
pas de singularités sur 'intérieur de ’étoile ouverte Star(7z) de la face 74, ie. la
réunion des intérieurs des faces contenant 7:

Théoréme C. [MPS21, thm. B] Soit X/K une variété projective lisse de dimension
n, et Z' /R un modéle dit de X a fibre spéciale réduite Zy =, Dy, tel que chaque
D, soit un diviseur de Cartier.

Soit Z =DyNDiN...ND,_, une strate de dimension r de Zy, telle que:

e Z C Z estle plongement d’un tore dans une variété torique, ou 7 = Z\
Ua;éO,l,...,nfrDa;'

e e fibré conormal Vy o €st un fibré vectoriel nef sur Z;
e pour tout o ¢ {0,...,n — r}, Uintersection D, N Z est conneze ou vide.

Alors le complété formel 5//; de Z le long de Z est isomorphe au complété formel
du fibré normal N' = vz, 4 le long de la section nulle, qui est une variété torique.
En particulier, la rétraction de Berkovich py : X* — Sk(Z") est une fibration en
tores affinoides au-dessus de l’étoile ouverte Star(7y).

Nous étudions ensuite des dégénérescences d’hypersurfaces de la forme:
X ={20...2n41 + tEF, 15 = 0} C P"*! x D*,

ou F,, 4o est un polynome homogeéne de degré (n + 2) général. Le squelette essentiel
Sk(X) est ici donné explicitement comme le complexe dual du bord torique de P!,
et peut en fait étre réalisé canoniquement dans l’espace vectoriel N dans lequel
I'éventail de P"*! vit. Plus précisément, écrivant le tore T C P**!, Papplication de
tropicalisation:

val : T* — Ny

induit un homéomorphisme entre Sk(X) C X" et le sous-complexe borné maximal
de la tropicalisation Trop(X) := val(X® N T*) C Ng de 'hypersurface - celle-ci
étant munie d’'une décomposition cellulaire canonique.

Aprés un choix adapté de discriminant I' C Sk(X) de codimension 2 (aussi appelé
choiz de points de branchements), il est possible de définir sur Sk(X)\I" une structure
affine entiére encodant la nature torique de la dégénérescence, suivant [GS06|. Cette
structure affine entiére n’a en particulier pas de singularité au voisinage de chaque
sommet v; € Sk(X), et le germe de variété affine en v; n’est autre que le germe en
0 de I’éventail ; de la composante D; correspondante - mais n’est pas canonique
puisque dépendant du choix de points de branchement.

Nous nous appuyons ensuite sur le théoréme C et sur la construction par Yamamoto
[Yam21| de contractions tropicales:

0 : Trop(X) — Sk(X),

pour démontrer 1’énoncé suivant:
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Théoréme D. Soit a = (a,), un choix de points de branchement dans Sk(X), et
sout
dq = Trop(X) — Sk(X) la contraction tropicale associée [Yam21, thm. 5.1]. Alors
la composée:

Pa = 04 0 valy : X* — Sk(X)

est une fibration en tores affinoides au-dessus de Sk(X) \ I'. De plus, la structure
affine entiere induite sur Sk(X)\I' par p, coincide avec celle mentionnée ci-dessus.

En dimension 2, la rétraction p, a été construite sans utiliser la contraction
tropicale dans un travail joint avec E. Mazzon [MPS21]|, qui contient aussi une con-
struction similaire en dimension 3. Cette construction alternative permet aussi, en
dimension 2, de raffiner le discriminant afin d’obtenir des structures affines entiéres
sur la 2-sphére ayant 24 points singuliers de type de Kodaira I;; nous renvoyons le
lecteur & la section .21l
Enfin, nous étudions 'exemple de la famille des hypersurfaces de Fermat:

X = {200 zpt1 +t(z{ TP+ .+ 2007) = 0} C P x DY,

qui est munie d'une action du groupe symétrique &,, 2. Dans cet exemple, le com-
portement asymptotique des métriques de Calabi-Yau (archimédiennes) est bien
compris |Li22]: leur potentiel est proche asymptotiquement d’un potentiel torique,
qui est lui défini sur l'espace projectif ambiant. En utilisant les résultats de [Li22]
et le théoréme B, nous démontrons:

Théoréme E. Soit X — D* la famille des hypersurfaces de Fermat, polarisée par
L = Op(1). 1l existe une métrique torique continue psh ¢ € PSH(PE* L), dont
la restriction a X*" est solution de [’équation de Monge-Ampére non archimédienne:

MA(Gb) = Mo,

ol o est la mesure de Lebesgue sur Sk(X). De plus, en écrivant ¢ = ¢ps + 1, la
fonction continue ¥ sur X®" satisfait la propriété de comparaison:

w:wopg

au-dessus de Sk(X)\T', ot p, est la rétraction du théoréeme D, avec a, le barycentre
de T pour chaque face T C Sk(Z"), et I' C Sk(X) le discriminant associé.

La fonction 1 est aussi en un sens naturel la limite des potentiels de Calabi-Yau
archimédiens.
Un énoncé similaire a été obtenu récemment pour une classe plus large d’hypersurfaces
dans [HJMM22].

Dégénérescences de variétés canoniquement polarisées

Soit X — D* une dégénérescence de variétés canoniquement polarisées, et posons
L = Kxp~. D’aprés le théoreme d’Aubin-Yau, chaque fibre X; admet une unique
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métrique de Kahler-Einstein ¢; sur L;, dont la forme de courbure w; = dd°¢; est de
courbure de Ricci constante et négative:

Ric(w;) = —wy.

En outre, il découle des travaux de Schumacher [Sch12| que la famille de métriques
de Kéhler-Einstein ¢ = (¢;)iep+ est aussi a courbure positive dans la direction de la
base, et est a croissance logarithmique en t = 0, de telle sorte que ¢ € PSH(X, L)
satisfait les hypothéses du théoréme A.

Les résultats généraux issus du programme du modéle minimal entrainent en outre
que la famille X admet un unique modéle canonique 2./D, dont le fibré canonique
K4, /p est relativement ample. Les travaux de J. Song [Sonl7]| montrent alors que
les métriques de Kéhler-Einstein convergent en un sens naturel vers 'unique courant
de Kéhler-Einstein wg g sur la fibre spéciale 2., et méme si les potentiels locaux
de ce dernier ne sont pas bornés, leurs singularités sont moindres que n’importe
quels poles logarithmiques. Nous sommes alors en mesure de montrer que la limite
non archimédienne des métriques de Kéhler-Einstein est la métrique modeéle ¢,
associée au modeéle canonique (2, K, /p):

Théoréme F. [PS22d, thm. BJ Soit X = D* une dégénérescence de variétés canon-
iquement polarisées, L = Kx; p+, el ¢pxg € PSH(X, L) la famille des métriques de
Kihler-Einstein.  Supposons que la famille X a réduction stable sur D. Alors la
métrique sur L' définie par:

¢|X = ¢KE7
Po = Pk o/

est continue et plurisousharmonique sur X™P.
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Plan du manuscrit

Ce texte est organisé comme suit.

Le premier chapitre est consacré a la définition et a I’étude de la classe des métriques
plurisousharmoniques sur I'analytification de Berkovich d’un schéma polarisé (X, L)
sur un anneau de Banach A - en pratique, nous nous intéressons surtout au cas de
I’anneau des séries convergentes pour la norme hybride sur C, de telle sorte que les
espaces analytiques associés seront des espaces hybrides. Dans la section [1.1}, nous
rappelons des faits généraux sur les espaces analytiques au sens de Berkovich - en
particulier sur un corps discrétement valué - et sur les espaces hybrides. Dans la
section nous définissons de maniére globale une classe de métriques plurisoushar-
moniques sur I'analytification de Berkovich d'un A-schéma X, et énoncons ses pro-
priétés de base. La section|l.3|est consacrée a I’étude du cas ot X est une dégénéres-
cence projective de variétés complexes sur le disque épointé D*, et son analytifica-
tion au sens de Berkovich est I’espace hybride X™P". Nous comparons en particulier
notre formalisme aux travaux [BBJ1S|, [Reb21], et nous démontrons le théoréme A
(théoréme [1.3.13). Enfin, la section contient une discussion sur les mesures de
Monge-Ampére associées aux métriques psh sur un espace analytique sur un corps
valué, et les familles de mesures induites sur une base plus générale. En particulier,
dans le cas d'un espace hybride, nous énoncons le résulat suivant, essentiellement
dt a Favre [Fav20]: la famille de mesures de Monge-Ampére sur X™® associée a une
métrique continue psh sur un fibré ample est faiblement continue.

Dans le deuxiéme chapitre, nous considérons une variété torique projective Z sur
C munie d’un fibré en droites semi-ample L, ainsi que son analytification Z™P par
rapport & la norme hybride sur C. Dans ce cadre, nous prouvons le théoréme B,
qui fournit une description combinatoire des métriques continues psh sur L™ qui
sont invariantes par ’action du tore fibre-a-fibre: elles sont données par des fonc-
tions convexes continues ® : Ng x [0, 1] — R satisfaisant une certaine condition de
croissance en l'infini (cf. . La section est consacrée a divers rappels de
géométrie convexe et torique, nécessaires a la section [2.2] oul nous introduisons les
métriques toriques fibre-a-fibre sur Z™ et prouvons le théoréme B.

Fixons pour ’ensemble du troisiéme chapitre une dégénérescence maximale polar-
isée (X, L) — D* de variétés de Calabi-Yau. Dans la section nous motivons
les conjectures SYZ et de Kontsevich-Soibelman, et étudions le modéle local non-
archimédien des fibrations en tores lagrangiens. La section est dédiée a la preuve
du théoréme C, qui fournit une premiére étape pour la construction de la fibration
SYZ non archimédienne. Nous incluons aussi, dans la section [3.3] des exemples de
calculs de structures affines entiéres construites via le théoréme C.

Dans le quatriéme chapitre, nous étudions certaines dégénérescences maximales
d’hypersurfaces de Calabi-Yau dans l'espace projectif. Nous produisons, dans la
section [4.1], une fibration SYZ non archimédienne p pour de telles hypersurfaces, et
prouvons le théoréeme D. Nous présentons aussi une construction similaire en dimen-
sions 2 and 3, issue du travail [MPS2]], il s’agit du contenu de la section [1.2] La
section [1.3] est consacrée a 1’étude de la famille des hypersurfaces de Fermat ot nous
démontrons le théoréeme E en nous appuyant sur les résulats des chapitres 1 et 2 et
de T'article |Li22]: la métrique de Calabi-Yau non archimédienne est la restriction
d’une métrique torique sur ’espace projectif ambiant.
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Enfin, dans un bref cinquiéme chapitre, nous étudions les dégénérescences de var-
iétés de Kahler-Einstein a courbure négative, dans le formalisme du chapitre 1. Nous
décrivons le cadre du chapitre dans la section [5.1], ot nous énoncons le théoréme F,
et nous rappelons les résultats d’existence de modeéles canoniques pour de telles
dégénérescences dans la section 5.2 Dans la section 5.3, nous décrivons les résultats
de [Sonl7| concernant la convergence des métriques de Kéhler-Einstein sur le modéle
canonique, et nous démontrons le théoreme F. Nous concluons ce chapitre avec une
bréve discussion sur le cas des variétés de Fano, c’est 'objet de la section [5.4]

Notations et conventions

Tous les anneaux sont supposés commutatifs et unitaires.

Nous utiliserons la notation additive pour les fibrés en droites: si L, M sont deux
fibrés en droites sur une variété X, nous écrirons L + M := L @ M, et kL := L®*
pour k € Z.

Si X est une variété complexe et ¢ une fonction lisse sur X, nous posons dd‘¢ =
%85¢. Cette notation est étendue aux métriques hermitiennes sur les fibrés en
droites: si L est un fibré en droites holomorphe sur X et ¢ une métrique lisse sur
L, sa forme de courbure sera dénotée par dd¢ € ¢1(L) - et idem pour les métriques
singuliéres.

Tout au long de ce texte, lorsque nous dirons que X = D* est une dégénérescence
de variétés complexes, cela signifiera que X est une variété complexe lisse et m une
submersion holomorphe (qui sera généralement omise). Nous supposerons de plus
toujours que la dégénérescence est méromorphe en 0, i.e. que X est définie sur le
corps des fractions de I’anneau des germes en 'origine de fonctions holomorphes. De

maniére équivalente, cela signifie qu’il existe un espace analytique complexe normal
2 5 D tel que Zp- = X.
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Introduction

The main subject of this thesis is the study of degenerations of complex algebraic
varieties - and more specifically, Calabi-Yau manifolds - through means of non-
archimedean geometry.

The first part of this text provides an attempt to generalize the non-archimedean
pluripotential theory that has been developed in [BEJ16|, [BBJ18], [BE21], [Reb21]
for a variety X over a non-archimedean field K to the case of hybrid spaces. To
that purpose, we define a class of (singular) semi-positive metrics on line bundles on
Berkovich analytifications of schemes X over a Banach ring A. In the case where
A = A, is the ring of convergent power series - with respect to the hybrid norm
on C - this yields a notion of semi-positive metrics on the union of a degeneration
of complex manifolds with the associated non-archimedean analytic space. We also
relate our definition with various constructions appearing in the literature [BBJ1§],
[Reb21], [Fav20]. We focus in particular on the case of toric metrics on a toric vari-
ety, where the metrics are encoded by functions on a finite-dimensional real vector
space, and the semi-positivity of the metric translates into convexity of the corre-
sponding function.

The second part is devoted to the following problem: given a maximal degeneration
of Calabi-Yau manifolds X — D*, trying to construct a non-archimedean avatar
p: X — Sk(X) of the conjectural SYZ fibration on the fibers X; for |t| < 1. The
hope is that this retraction induces an integral affine structure singular in codimen-
sion 2, and that the retraction allows us to identify the non-archimedean Calabi-Yau
metric with a solution of the real Monge-Ampére metric on the essential skeleton
Sk(X). This involves in particular understanding the singularities of Berkovich re-
tractions pg : X* — Sk(2") associated to R-models of X, where R = C[[t]], as
our approach to construct the non-archimedean SYZ fibration on explicit examples
involves patching several of these retractions together. We focus in particular on a
certain class of degenerating hypersurfaces in projective space, where building on
the results from [Li22|, we obtain a satisfactory picture regarding the comparison
between the non-archimedean and the real Monge-Ampére equation on Sk(X), with
right-hand side the Lebesgue measure on the essential skeleton Sk(.X).

29
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Non-archimedean geometry

Berkovich analytic spaces

Let (K, |-]) be a complete non-archimedean field, i.e. a field endowed with an abso-
lute value satisfying the ultrametric inequality:

| +y| < max{z[, [y}

for all z,y € K, and such that K is complete with respect to the induced distance.
Examples of such fields include the field Q, of p-adic numbers, which is the metric
completion of Q endowed with the absolute value |-|, = p~*», where v, is the p-adic
valuation; the field C((t)) of Laurent series endowed with the t-adic absolute value
|-] = e~ °*o; or simply any field & endowed with the trivial absolute value ||y, which
is such that |z|o = 1 for any non-zero z € k.

There is a long history, throughout the 20th century, of attempts to produce a sat-
isfying theory of analytic geometry over non-archimedean fields (due for instance
to Tate, Raynaud or Huber): given a projective variety X /K, one would like to
attach to it in a natural way an analytic space X®", satisfying for instance better
topological properties than the scheme X'; in a similar spirit to how one attaches a
complex manifold to a quasi-projective scheme of finite type over C. Let us point
out that the naive attempt of taking K endowed with the distance induced by the
non-archimedean absolute value, as the underlying topological space of the analyti-
fication of the affine line A, works out rather poorly, as the ultrametric inequality
implies that K is a totally disconnected topological space. As a result, there is a
need for a more sophisticated theory of analytic spaces over K.

Throughout this text, we will only be using Berkovich’s theory of K-analytic spaces
[Ber90]. The very basic idea is the following: if X is a complex projective vari-
ety, then one can view a closed point = € X as the (degenerate) absolute value
f— |f(x)| on the function field K(X) of X, which extends the Euclidean absolute
value on the base field C C K(X), viewed as the constant functions on X.

We now let K be a complete valued field and X/K is a quasi-projective variety. Its
Berkovich analytification X" is defined as a certain compactification of the space of
real valuations on the function field of X that extend the given absolute value on K,
and is endowed with the topology of pointwise convergence. In particular, if f is a
meromorphic function on X, defined on a Zariski open U C X, it induces a continu-
ous function z — |f(z)| := |f|. on the open subset U** C X*". The analytification
X" of a quasi-projective variety X/K then satisfies nice topological properties: it is
Hausdorff, locally contractible and pathwise-connected, and is compact if and only
if X/K is proper. Notably, if K = C endowed with the archimedean absolute value,
the Berkovich analytification of a scheme over C is its usual holomorphic analytifi-
cation.

The theory of Berkovich also works over a more general base: given a Banach ring
(A,|"]), one can define its Berkovich spectrum .#(A) as the set of multiplicative
semi-norms on A which are bounded by the reference norm |-|. Given a point
x € M (A), the kernel p, of the semi-norm |-|, is a prime ideal of A, and we denote
by 7 (x) the completion of the fraction field of the quotient A/p, with respect to
||, and call it the residue field of .#Z(A) at = - equipped with |-|,, it is a complete
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valued field.

Berkovich then defines the analytification X" of an A-scheme of finite type in a man-
ner similar to the previous construction; it comes with a continuous structure map
X Ty #(A). When the base ring A is reasonable enough, the fiber X, = 77 !(x)
can be identified with the analytification of the base change X ;) = X x4 (),
with respect to the absolute value on J#(z), so that one can roughly think of X®"
as the family of analytic spaces (X %(m))xe%( 4 over different fields; this is similar to
viewing a scheme over a ring A as a family of varieties over the residue fields of A,
parametrized by Spec A.

For instance, assume that our base Banach ring is C™> = (C, |-|py1), where |2|pg, =
max{|z|o, |z|} is the hybrid norm on C, i.e. the maximum of the trivial and Euclidean
absolute values on C. Then .# (C%") = {]-|*/\ € [0, 1]}, where we abusively denote
|-]° = |-|o the trivial absolute value. As a result, given a complex variety X, its
analytification X™P over the ring C"P® - called the associated hybrid space - fibers
over the unit interval [0,1], and the fiber X}¥" for A > 0 is (up to rescaling the
absolute value) the usual complex analytification of X, while the fiber over 0 is its
analytification X§" with respect to the trivial absolute value on C. The upshot
of this construction is that it provides a natural way to see suitable rescalings of
the complex manifold X! degenerate to the non-archimedean analytic space X3®.
This justifies the name, as the space X™" is of hybrid nature, somewhere between
non-archimedean and usual Euclidean geometry.

Degenerations of complex manifolds and hybrid spaces

We let X — ID* be a projective degeneration of complex manifolds, and assume that
the equations of X inside projective space have meromorphic singularity at t = 0.
This allows us to view X as an algebraic variety Xy over the field K = C((t)) of
complex Laurent series, which is endowed with the t-adic absolute value, making
it a complete non-archimedean field. As we shall explain, the Berkovich analytifi-
cation X®" of X encodes in various ways asymptotic information attached to the
degeneration X — D*.

Let 7 : & — D be a simple normal crossing model of X - which exists by
the meromorphic assumption and Hironaka’s theorem. Writing the special fiber
Zo = 7 10) = Y icr @ D; as the sum of its irreducible components, the simple
normal crossing condition means that these are smooth prime divisors, each having
transverse intersection with any intersection of other components of Z;. One can
then attach to 2y a cell complex Z(.%2) encoding the combinatorics of the intersec-
tions of the D;. The dual complex Z(Zy) is defined roughly as follows: its vertices
v; are in one-to-one correspondence with the components D; of Zy; then for each
connected component of D;ND;, we attach an edge e;; between v; and v;. Similarly,
each connected component Y of D; N D; N Dy, yields a triangle, bounded by three
edges of the form e;;, e;x, ej1; and the final outcome of this construction is a cell
complex Z(%) of dimension less than n, where n is the relative dimension of X.
The upshot of this is that the dual complex can be continuously embedded inside
X2 ie. we may view the points of Z(%;) as valuations on the function field of X.
For instance, if v; is a vertex of 2(2p), we view it as the valuation f + a; ' ordp,(f)
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for f € K(X) ~ K(Z), and the higher-dimensional faces of 2(.Z;) are embedded
in X?" by interpolating between these. The image of the embedding is called the
skeleton of 2, denoted by Sk(Z") C X?".

Moreover, Berkovich defines a retraction pgy : X** — Sk(Z") for the inclusion
Sk(Z") € X?, which in fact induces a homotopy equivalence between X" and
Sk(:Z7). One can think of the skeleton Sk(.Z") as a sort of approximation of X",
as X can be recovered (topologically) as the inverse limit of the skeleta Sk(.2") of
all possible snc models of X.

Let us now fix a radius r € (0,1). One can define a certain hybrid ring A, of conver-
gent power series in a similar spirit to the construction from the previous paragraph,
such that the Berkovich spectrum .# (A,) ~ D,. We may view X as a scheme over
A,, and its analytification is called the hybrid space:

X I D,

which is itself a Berkovich analytic space. Moreover, 7~1(0) = X2 is the Berkovich
analytification of X with respect to the non-archimedean t-adic absolute value on
K, while 771(ID¥) is naturally identified with the restriction of the degeneration X
to the closed punctured disk D* - up to rescaling the absolute value on the fiber
X; by a factor ll;)gg|:|' Once again, this provides a natural way to see the (rescaled)
complex manifolds (X;)ep+ degenerate to a non-archimedean space X*" as t — 0.
As a result, one would expect various families of objects from complex geometry
living on the X;’s to have a natural limit living on the space X®" - with the caveat
that the limit is taken with respect to the rescaled absolute value, so that it rather
corresponds to a logarithmic slope at zero.

Non-archimedean pluripotential theory

Roughly speaking, classical pluripotential theory is the study of plurisubharmonic
functions: if Q C C" is a domain, an upper semi-continuous function ¢ : @ —
R U {—o0} is plurisubharmonic (psh for short) if and only for any complex line
¢ C Cn, its restriction ¢, to £N {2 is a subharmonic function in the weak sense - that
is, the Laplacian A¢, > 0 is the sense of distributions. Concretely, this means that
the mixed Hessian 1904 is a semi-positive (1, 1)-form on (2 - in the sense of currents,
as we are allowing ¢ to be singular. For instance, if f € O(Q) is a holomorphic
function, then it follows from the Lelong-Poincaré formula that ¢ = log|f| is a psh
function on €2, singular precisely along the locus {f = 0}. Alternatively, psh func-
tions can be defined through a mean value inequality, which implies that they are
stable under finite maxima and decreasing limits.

In a more global setting, let (X, L) be a polarized complex manifold, and h a Her-
mitian metric on L. The metric A is identified with the collection ¢ of its loga-
rithmic local weights ¢; = —log|s;|n, where the s; are local sections of L, so that
using additive notation for metrics on L, we say that a (singular) metric ¢ on L
is plurisubharmonic if and only if its local weights ¢; are. In a way similar to the
previous example, if s € H°(X,mL) is a non-zero global section of some positive
power of L, then the singular metric ¢ = m~!log|s| is psh, by the Lelong-Poincaré
formula.
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One of the central theorems in pluripotential theory is the following regularization
result, due to Demailly [Dem92]: any psh metric ¢ on an ample line bundle L can
be written as the decreasing limit of metrics of the form:

1
brg = %logﬂs(ﬂ2 4+ .+ |SN|2),

where m > 1 and (so, ..., sy) are global sections of mL without common zeroes.
These metrics are called Fubini-Study metrics, for the following reason: if f : X —
CPV is the holomorphic map given by f(z) = [so(z) : ... : sy(x)], then ¢pg is the
pull-back via f of the standard Fubini-Study metric on CPV.

We now move to the non-archimedean world, and let K be a complete non-archimedean
field. If (X,L) is a polarized variety over K, then one can define metrics on
the analytification L*" as in the complex case: given local algebraic trivializations
(Ui, s;) of L, a continuous metric ¢ on L*" is a collection of continuous local weights
¢; = —log|si|, on the UM, compatible on the overlaps (U; N U;)*.

We may then define singular metrics as in the complex case, the upshot being that if
s € H°(X,mL) is a non-zero section, then ¢ = m~!log|s| defines a singular metric
on L*". Pushing the analogy with complex pluripotential theory even further, we
say that a metric on L*" of the form:

dpg = m ! log max(|sol, ..., [sn]),

where (sg, ..., sy) are global sections of mL without common zeroes, is a (tropi-
cal) Fubini-Study metric. Demailly’s regularization theorem is now taken as the
definition of the class of semi-positive metrics:

Definition 0.0.7. The class PSH(X, L) of plurisubharmonic metrics is the smallest
class of singular metrics on L that:

e contains all tropical Fubini-Study metrics,
e s stable under addition of constants,

e is stable under finite maxima,

e is stable under decreasing limits.

When the field K is non-archimedean, a natural class of continuous metrics
on L arises as follows. We assume that K is non-trivially valued for convenience,
with valuation vg. Let (Z7,.Z) be a model of (X,mL) over the valuation ring
R = {vg > 0}, and assume that ¥ is semi-ample. Loosely speaking, the model
metric ¢ is the continuous metric on L such that local sections of L have ¢ o-
norm < 1 if and only they extend as regular sections of .Z - as a result, the lattice
HY(%Z, %) C H°X, L) is the unit ball for the sup-norm of the model metric ¢,
following the correspondence between norms and lattices on vector spaces over non-
archimedean fields. It turns out that in this setting, Fubini-Study metrics on L
are nothing but model metrics associated to semi-ample models £ of (positive
multiples) L - that is, such that m.% is globally generated for some m > 1.
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The Monge-Ampére operator

Let Q € C™ a domain, and ¢; € PSH(Q) N C>(Q) for i = 1,...,n be n smooth psh
functions. Then their (mixed) Monge-Ampére measure is defined as:

MA (¢, ..., ¢p) = 100P1 A ... N 10O,

and is one of the central objects of pluripotential theory. One would naturally want
to extend the Monge-Ampére operator to psh functions that are not necessarily
smooth; unfortunately while i00¢ makes sense for an arbitrary psh function, it is
now a current and no longer a differential form, so that it is a priori not possible to
consider products of the i90¢;. However, the fundamental work of Bedford-Taylor
IBT76] showed that the Monge-Ampére operator can be uniquely extended to tuples
of locally bounded psh functions - and in particular, to continuous psh functions. Let
us mention that it was further extended in [BEGZI10] to the class of psh functions
of finite energy, which we will not define here.

In the global setting, let X be a smooth projective complex variety, and L, ..., L,
ample line bundles on X. Then given bounded semi-positive metrics ¢; on the L;,
one can define the mixed Monge-Ampére measure of the ¢,’s as above; we still denote
it by i00¢; A ... Ni0D¢,. It is a positive measure on X, whose total mass is (up to
a normalizing factor) the intersection number (L - ... - L,,). The following theorem,
known as the Calabi conjecture, is due to Yau [Yau78| in the smooth case and to
Kotodziej [Kol9§] in the singular case:

Theorem 0.0.8. Let X be a smooth projective complexr manifold, and L an ample
line bundle on X. Let p be a probability measure on X with LP-density for a p > 1.
Then there exists a unique (up to an additive constant) metric ¢ € PSH(X, L)
solving the complex Monge-Ampeére equation:

(i00¢)" = Cu,
where C' = (2m)"L™.

Note that Yau’s result also ensures that if ;1 is a smooth volume form on X, then
¢ is smooth and strictly psh.
The original motivation for this theorem was the existence of Kéhler Ricci-flat metric
on Calabi-Yau manifolds: if (X, L) is a polarized Calabi-Yau manifold, i.e. such
that Ky = Ox, then the (smooth) solution ¢ € PSH(X, L) to the Monge-Ampére
equation:

(i00¢)" = Ci™ Q A Q,

where 2 € H(X, Ky) is a nowhere-vanishing holomorphic n-form, is such that the
curvature form w = i00¢ is a Kahler metric on X with zero Ricci curvature.

We now move on the non-archimedean case, and we let K = k((¢)) to simplify the
exposition; we write R = k[[t]] and assume that k& has characteristic zero. Given a
polarized variety (X, L) over K, the analog of smooth metrics on L are Fubini-Study
metrics which, as alluded to above, are the same as model metrics ¢ ¢ for R-models
(2, 2Z) of (X, L). The mixed Monge-Ampére measure of a collection (¢4, ..., 0.,)
of model metrics is defined as an explicit sum of Dirac masses, using various inter-
section numbers of the .Z; on Z"; while not transparent at first sight the definition
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is designed to mimic the real Monge-Ampére operator on convex, piecewise-affine
functions - one important point being that MA(¢¢, ..., ¢« ) is supported on the
skeleton Sk(.27), and has total mass (Lj - ... - Ly), as in the complex case.

The Monge-Ampére operator is then extended canonically to continuous psh met-
rics in [BFJ15)], where it is proven that the non-archimedean analog of the Calabi
conjecture holds:

Theorem 0.0.9. Let (X, L) be a smooth polarized variety over K. Let i1 be a
probability measure on X*", supported on the skeleton of some snc R-model of X.
Then there exists a unique (up to an additive constant) continuous, semi-positive
metric ¢ on L satisfying the non-archimedean Monge-Ampére equation:

MA(¢) = p.

Here we write MA(¢) := MA(9, ..., ¢).
The proof of the above theorem is however of variational nature, so that it yields very
little information on the solution, besides its continuity. As we shall see later on, it
would be in particular desirable to translate this equation into a real Monge-Ampére
equation on the skeleton Sk(.2") on which the measure p is supported, which turns
out to be a rather delicate question.

The Kontsevich-Soibelman conjecture

We now move on to explain a circle of ideas, initiated in the early 2000’s by
Kontsevich-Soibelman as a temptative explanation to mirror symmetry, that pre-
dict the asymptotic behavior of a family of Calabi-Yau metrics when the complex
structure degenerates in the worst possible way.

The classical SYZ picture

We let X — D* be a projective, meromorphic at zero, family of Calabi-Yau mani-
folds - recall that by Calabi-Yau we mean that the canonical bundle K, is trivial for
every t € D* - and fix a relative polarization L on X. We furthermore assume that
the family is maximally degenerate at t = 0, which means that the fibers X; break
into as many pieces as possible as t — 0 - more precisely, the dual complex 2(.2Zp)
of any snc model of X has the maximal possible dimension, which is n = dim X;.
In this setting, the Kontsevich-Soibelman approach to the Strominger-Yau-Zaslow
[SYZ96] conjecture stipulates that the Calabi-Yau manifolds (X;,w;) - where w; is
the unique Kéhler Ricci-flat metric on X, normalized by the condition w; € ¢1(L;)

- have diameters of magnitude d; := ‘ log|t| |1/ 2, which was indeed confirmed by the
results of Li-Tosatti [LT20].

Moreover, the fiber X; endowed with the rescaled Calabi-Yau metric @, = d; 200
should asymptotically look like the total space of a Lagrangian T"-fibration, whose
fibers are of size d;!, over a certain real, n-dimensional base B. In particular, the
metric spaces (X;,@;) are expected to converge in the Gromov-Hausdorff sense to
the base B, endowed with a real Monge-Ampére metric gg away from a Hausdorff
codimension 2 subset.
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More precisely, it follows from the classical construction of action-angle coordinates
in symplectic geometry that the special Lagrangian fibration f; : X; — B induces
an integral affine structure VZ on the subset BS™ C B over which the fibration f;
is submersive, i.e. an atlas of charts whose transition functions lie in the group
GL,(Z) x R™ of integral affine transformations. Since at the limit ¢ — 0 the torus
fibers are very small, the Calabi-Yau potential ¢; should be very close to a potential
Yy o fy pulled back from the base, where 1, is a (multivalued) convex function (in
affine coordinates) on B¥™.

As a result, heuristically at the limit ¢ — 0, the ), should converge to a convex
function v on B™. The latter should thus be equipped with an integral affine struc-
ture, which should be thought as the tropical limit’ of the complex structure of Xj.
Additionally, the complex Monge-Ampére equation defining the Calabi-Yau metric
translates into the real Monge-Ampére equation:

a%)zc

det (83/1‘5’%

where the y; are local affine coordinates. As a result, the limiting metric gg should
be given on B™ as the Hessian g;; = 8%¢ of the convex potential locally in affine
coordinates.

We now let non-archimedean geometry enter the picture.

The essential skeleton

Since the Calabi-Yau metrics w; € c¢;(L;) are obtained by solving the complex
Monge-Ampére equation:
Wi = Cyi™ Oy A,

where Q; € H(X;, Kx,) is a nowhere-vanishing holomorphic n-form, a natural first
step towards understanding their behaviour as t — 0 is to understand the behaviour
of the probability measures p; = C,i"*Q, AQy, which are of algebraic origin. It turns
out that these measures converge weakly inside the hybrid space X™" associated to
the degeneration [BJ17]:

Theorem 0.0.10. Let (X, L) — D* be a polarized mazimal degeneration of Calabi-
Yau manifolds, and let (p;)iep~ be the family of Calabi-Yau probability measures.
Then the p; converge weakly on X™® to a measure gy, which is a Lebesque-type
measure on an n-dimensional subcomplex Sk(X) of Sk(Z"), for any snc model 2" /D.

The subcomplex Sk(X) in the statement above is called the essential skeleton of
X, and can be computed explicitly inside Sk(.2"), given a model 2" /D [MN15]. As
suggested by the notation, it is furthermore independent of the choice of snc model
Z.
The above theorem then suggests that the base B of the SYZ fibration should be the
essential skeleton Sk(X) C X®" and one would like to produce a non-archimedean
avatar of the SYZ fibration:

p: X — Sk(X),
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that is in a natural way the limit inside X™ of the archimedean SYZ fibrations
fi + Xy — B; this is know for instance when X is a maximally degenerate abelian
variety by [Odal8]|, [GO22|. Pushing the analogy with the classical SYZ fibration
further, we require for the continuous map p : X** — Sk(X) to be an affinoid torus
fibration away from a piecewise-affine locus I' C Sk(X') of codimension greater than 2
- without giving the precise definition here, this is the non-archimedean counterpart
to smooth torus fibrations; for instance, such a fibration induces an integral affine
structure over Sk(X) \ I, as in the classical case.

A first attempt was provided by Nicaise-Xu-Yu [NX16], [NXYT19|: if Z7/D is a
minimal model of the family X, in the sense of the Minimal Model Program, then
the equality Sk(X) = Sk(.2") holds, and it is proven in [NXY19] that the Berkovich
retraction:

pa  X* — Sk(X)

is indeed an affinoid torus fibration away from the interior of the faces of codimension
> 2 of Sk(Z") = Sk(X).

The Monge-Ampére comparison property

Ultimately, one of the goals is to produce the limiting real Monge-Ampére metric ¢
on Sk(X) through non-archimedean means. The convergence of the Calabi-Yau mea-
sures on X" towards s strongly suggests that the solution to the non-archimedean
Monge-Ampére equation:

MA(¢) = po

should be the appropriate non-archimedean limit to the Calabi-Yau metrics. The
difficulty is now to try and find a way to identify ¢ in a way to the multivalued convex
function on Sk(X) from the previous paragraph. As in the archimedean case, one
needs to produce an SYZ fibration p : X* — Sk(X) such that the metric ¢ may
be identified via p with the pullback of a (multivalued) convex function on the base,
and show that this identifies the non-archimedean Monge-Ampére operator with the
real Monge-Ampére operator on Sk(X) \ I'.

A first step is provided by the following theorem, due to Vilsmeier [Vil20]:

Theorem 0.0.11. Let (Z',.Z) be a semi-stable model of (X, L), and write the
non-archimedean Calabi- Yau metric ¢ as:

¢ =0z +,

where ¢ is the model metric associated to £ and 1 : X*» — R is a continuous
function. Assume that 1 = 1 o py over the interior of an n-dimensional face
T C Sk(Z"). Then ¢ is convex on Int(T), and the equality of measures:

1Int(7‘) MA(¢) = ”'///(@0)7

holds on Int(7), where 4 () is the real Monge-Ampére measure of the convex func-
tion 1.

Building on this, the recent results of Yang Li |[Li20a] reduce the existence of the
classical SYZ fibration to the question of finding a non-archimedean SYZ fibration
p, such that the NA Calabi-Yau metric is constant on the fibers of p:
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Theorem 0.0.12. Let X/D* be a polarized, mazimal degeneration of Calabi-Yau
manifolds, and write the solution to the non-archimedean Monge-Ampeére equation
MA(¢) = uo as:

¢:¢$+wa

for an snc model (Z°,%L) of (X,L) and ¢ : X* — R a continuous function.
Assume that the NA /real Monge-Ampeére comparison property:

Y =1opy

holds on the interior of the mazimal faces of Sk(X).
Then for |t| < 1, there exists a special Lagrangian fibration f; : U, — Sk(X),
where Uy C Xy 1s an open subset of Calabi-Yau measure arbitrarily close to 1.

The above theorem reduces the classical SYZ conjecture to a problem in non-
archimedean geometry, but however does not answer the question of global Gromov-
Hausdorff convergence of the Calabi-Yau metrics; indeed the union of open maximal
faces of Sk(X) is disconnected, so that to be able to access the distance between
two different faces, it seems necessary to establish a connection between the real and
non-archimedean Monge-Ampére operator in codimension 1 - still under a suitable
invariance property for the Calabi-Yau potential on X?".

Summary of the main results

Pluripotential theory on hybrid spaces

Let X — D* be a projective degeneration of complex manifolds, and let L be a
relatively ample line bundle on X. Given a plurisubharmonic metric ¢ € PSH(X, L)
satisfying a reasonable growth condition at ¢ = 0, one can associate to it a plurisub-
harmonic metric o™ € PSH(X®*, L*) on the non-archimedean analytic space X®",
encoding the logarithmic blow-up rate of ¢ along the special fibers of models of
(X, L). In the case where X =Y x D* is a product and ¢ is S'-invariant, one says
that ¢ is a psh ray on Y, and the associated non-archimedean metric was defined in
IBBJ1§|; while the general case was treated in [Reb21].

One would like to say that the metric ¢N* is in a natural way the limit of the
¢: = (¢)x, on the hybrid space. However taking the limit in the topological sense
of the word would be too naive, as it is desirable to be able to work with singular
metrics. It is thus natural to try and define a class of singular metrics on the hybrid
space, which recover both complex singular metrics on the degeneration X, as well
as their associated non-archimedean metrics.

In the first chapter of this thesis, we define a class of plurisubharmonic metrics
PSH(X, L) on the Berkovich analytification X" of a polarized scheme X over an
integral Banach ring A; roughly speaking, a singular metric ¢ € PSH(X, L) can
be seen as a family of psh metrics ¢, € PSH(X z(2), L(s)), varying in a plurisub-
harmonic way with respect to z € .#(A). Note however that it can happen that
¢ = —oo for some z € A (A).

The class PSH(X, L) is defined following the approach of [BE21] : it is the smallest
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class of singular metrics on L that contains metrics of the form m~'log|s| when-
ever s € H°(X,mL) is a non-zero section, and is closed under finite maxima and
decreasing limits.

In the case where (X, L) is a degeneration of polarized complex manifolds, a psh
metric on the analytic space X™" induces by restriction and rescaling a semi-
positive metric ¢ € PSH(X, L) with logarithmic growth, as well as a psh metric
¢o € PSH(X?", L*), and is uniquely recovered by those two restrictions. Con-
versely, given a psh metric ¢ with logarithmic growth on the degeneration X, we
prove that the associated non-archimedean metric ¢N* induces a canonical semi-
positive extension of ¢ to the hybrid space:

Theorem A. [PS522d, thm. A] Let ¢ € PSH(X, L) be a psh metric with logarithmic
growth at t = 0. Then the singular metric g™ on (XWP LW such that:

hyb NA
0y :¢ ’

hyb __
(b\Xt - ¢t
18 Semi-positive.

Note that not all psh metrics on the hybrid space arise in this way: the point
0 € D, is pluripolar - non-negligible in the sense of hybrid pluripotential theory -
so that psh hybrid metrics are not uniquely recovered by their restriction to the
punctured disk. This subtlety however disappears when restricting our attention to
continuous psh metrics, as 0 € D, has empty interior.
We then focus on the case of a polarized toric variety (Z, L) over C. In that case,
continuous toric psh metrics on L can be described explicitly in terms of certain
convex functions on the vector space Ng where the fan ¥ of Z lives - and this,
regardless of the choice of absolute value on C, Euclidean or trivial. More precisely,
the polarization L is encoded combinatorially by a piecewise-linear convex function
VU, : Ng — R, and toric metrics on L are in one-to-one correspondance with convex
functions on N which have the same growth as ¥ at infinity.
We then prove that a similar statement holds for toric continuous psh hybrid metrics:
the semi-positivity in the horizontal direction is naturally encoded by convexity along
the direction of the base . (C™") = [0, 1].

Theorem B. Let (Z, L) be a polarized complez toric variety. There is a one-to-one
correspondence between continuous toric psh metrics on L™ and convex continuous
functions:

d: Ngx[0,1] —R

such that (® — W) extends continuously to the compactification Ny x [0,1] of Ng x
[0, 1].

The non-archimedean SYZ fibration

The second part of this thesis is devoted to the following problem: given a maxi-
mally degenerate Calabi-Yau manifold X /K, polarized by an ample line bundle L,
trying to produce a non-archimedean avatar p : X* — Sk(X) of the conjectural
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SYZ fibration - with the hope of finding a retraction such that the non-archimedean
Calabi-Yau metric on L* is constant along the fibers of the retraction p.

Since one of the main goals is to identify the solution to the non-archimedean Monge-
Ampére equation with a solution of the real Monge-Ampére equation, it is desirable
to have at our disposal a fibration which is "smooth" away from a codimension 2
locus of the base, as it yields this way an integral affine structure on Sk(X') which
has singularities in codimension 2.

A first step was to understand the singularities of the Berkovich retraction associ-
ated to a model 2", or rather the absence thereof. The following theorem, joint
with Enrica Mazzon, states that if a Z is a toric stratum of the special fiber of a
degeneration of algebraic varieties, then under a certain positivity assumption on
the conormal bundle of Z, the Berkovich retraction p4 has no singularities over the
open star Star(7yz) of the face 7, C Sk(Z7), i.e. the union of the interiors of the
faces containing 7:

Theorem C. [MPS2]1, thm. B] Let X/K be a smooth projective variety of dimen-
sionn, and Z /R be a good dlt model of X with reduced special fiber Zo =, Da,
such that every D, is a Cartier divisor.

Let Z = DonNDyN...ND,_, be an r-dimensional stratum of Xy, such that:

e 7 C 7 isa torus embedding, where 7 =7 \ Uazo.1,...n—rDa;
e the conormal bundle V}/% 1s a nef vector bundle on Z;

o foreach a ¢ {0, ...,n—r}, the intersection D,NZ is either empty or connected.

Then the formal completion @/\Z 18 isomorphic to the formal completion of the nor-
mal bundle N = vz, 4 along the zero section, which is a toric variety. In particular,
the Berkovich retraction py : X* — Sk(Z7) is an n-dimensional affinoid torus
fibration over Star(7yz).

We then focus on degenerations of hypersurfaces of the form:
X = {Z(]...Zn+1 —+ tFn+2 = 0} C Pn+1 X ID)*,

where F, 5 is a generic homogeneous polynomial of degree (n + 2). The essen-
tial skeleton Sk(X) is explicitly given as the dual intersection complex of the toric
boundary of P!, and can be in fact realized canonically inside the vector space Ng
where the fan of P**! lives. More precisely, writing T C P"*! the open torus, the
usual tropicalization map:

val : T*" — N

maps Sk(X) C X homeomorphically onto the maximal bounded subcomplex of
the tropicalization Trop(X) := val(X® N T*) C Ng of the hypersurface - which is
endowed with a canonical polyhedral decomposition.

After suitably choosing a discriminant locus I' C Sk(X) of codimension 2 (also
called choice of branch cuts), we may put an integral affine structure on Sk(X)\ I’
that encodes the toric nature of the degeneration, following [GS06]. This integral
affine structure has for instance no singularity near each vertex v; € Sk(X), and
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the germ of affine manifold at v; is nothing but the germ at 0 of the fan >; of the
corresponding component D;. It does however depend on the choice of branch cuts,
and is thus not canonical.
Building on theorem C and on the construction by Yamamoto [Yam21] of certain
tropical contractions:

0 : Trop(X) — Sk(X),

we prove the following:

Theorem D. Let a = (a;), be a choice of branch cuts in Sk(X), and let
dq : Trop(X) — Sk(X) be the associated tropical contraction [Yam?21, thm. 5.1].
Then the composition:

Pa = 04 0 valy : X* — Sk(X)

is an affinoid torus fibration over Sk(X) \ I'. Moreover, the induced integral affine
structure on Sk(X) \ I' coincides with the one mentioned above.

In dimension 2 and 3, the retraction p, was constructed without using the tropical
contraction in a joint work with E. Mazzon [MPS21]. This alternative construction
also allowed us to refine further the discriminant locus in dimension 2, and obtain
integral affine structures on the 2-sphere with 24 singular points of Kodaira type Iy;
we refer to section .21l for details.

Finally, we focus on the particular example of the Fermat family of hypersurfaces:

X = {2z + (T + .+ 200 =0} C P x D,

which enjoys the &,,, 5 symmetry. In that example, the asymptotic behaviour of the
(archimedean) Calabi-Yau metrics is well-understood [Li22]: the Calabi-Yau poten-
tial with respect to the ambient Fubini-Study metric is close to a toric potential,
which is defined on the ambient projective space. Using the results of [Li22] and
theorem B, we are able prove the following:

Theorem E. Let X — D* be the Fermat family of hypersurfaces, polarized by
L = Op(1). Then there exists a semi-positive toric metric ¢ € CPSH(P ", L)
whose restriction to X*" solves the non-archimedean Monge-Ampére equation:

MA(¢) = Mo,

where pg is the Lebesque measure on Sk(X). Moreover, writing ¢ = ¢ps + 1, the
continuous function v on X* satisfies the comparison property:

Y =1op,

over Sk(X) \ I', where p, is the retraction from theorem D, a, is the barycenter of
T for each face T C Sk(Z"), and I' C Sk(X) is the associated discriminant locus of
codimension 2.

The function 1 is also in a natural sense the limit of the archimedean Calabi-Yau
potentials.

A similar statement for more general hypersurfaces was obtained independently in
[HIMM?22].
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Degenerations of canonically polarized manifolds

Let X — D* be a degeneration of canonically polarized manifolds, and write
L = Kxp-. By the classical Aubin-Yau theorem, each fiber X; admits a unique
Kahler-Einstein metric ¢; on L;, whose curvature form w; = dd°¢; has negative
constant Ricci curvature:

Ric(w;) = —wy.

Moreover, it follows from the results of Schumacher [Sch12] that the family of Ké&hler-
Einstein metrics ¢ = (¢;)sep+ also has positive curvature in the direction of the base
and has logarithmic growth at ¢ = 0, so that ¢ € PSH(X, L) satisfies the assumptions
of theorem A.

The machinery of the Minimal Model Program furthermore implies that after a
finite base change, the family admits a unique canonical model Z2./D, which has
ample relative canonical bundle K p. Moreover, by the results of J. Song [Sonl17],
the Kéahler-Einstein metrics converge in a natural sense to a unique Kéahler-Einstein
current wi g on the special fiber 2., and even though this current does not have
bounded potentials, its singularities are milder than any log poles. We are thus able
to show that the non-archimedean limit of the Kéhler-Einstein metrics is the model
metric ¢, ., associated to the canonical model (Z¢, K4, p):

Theorem F. [PS22d, thm. B] Let X = D* be a degeneration of canonically po-
larized manifolds, L = Kx; p~, and let ¢pxg € PSH(X, L) be the family of Kdhler-
Finstein metrics. We assume that the family X has semi-stable reduction over .
Then the metric on L™ defined by:

¢|X = ¢KE7

¢O = ¢K%C/R

is continuous and plurisubharmonic on X™P.
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Organization of the manuscript

This text is organized as follows.

The first chapter is devoted to the definition and study of a class of global semi-
positive metrics on Berkovich analytifications of schemes over a Banach ring A -
in practice, we will be mostly interested about the ring of convergent power series
for the hybrid norm on C, so that the analytic spaces we are considering are hybrid
spaces. Section recalls general facts about Berkovich analytic spaces - in particu-
lar over a discretely-valued field - and about hybrid spaces. In section [I.2] we define
in a global way a class of plurisubharmonic metrics on the Berkovich analytification
of an A-scheme X, and study its basic properties. In section we focus on the
case where X is a projective degeneration of complex varieties over the punctured
disk D*, and its Berkovich analytification is the associated hybrid space X™". We
compare in particular our framework to the work of [BBJ18|, [Reb21l], and prove
theorem A (see theorem. In section , we discuss Monge-Ampére measures
associated to psh metrics on analytic spaces over a valued field, and families there
of in the case of a more general base. In particular, we state that the family of
Monge-Ampére measures associated to a continuous psh metric on a hybrid space
X1b is weakly continuous, this result is essentially due to Favre [Fav20).

The second chapter focuses on the following setting: Z is a complex, projective
toric variety, ZWP is its analytification with respect to the hybrid norm max{|-|o, ||}
on C, and L is a semi-ample line bundle on Z. In this setting, we prove theorem
B which provide a combinatorial description of semi-positive metrics on L"™® that
are fiberwise-invariant under the torus action: they are given by continuous convex
functions ® : Ng x [0, 1] — R satisfying a suitable growth condition at infinity (see
. In section , we recall standard facts from convex and toric geometry that
will be used in section [2.2] where we discuss fiberwise-toric metric on hybrid spaces
and prove theorem B.

Throughout the third chapter, we let (X, L) — D* be a polarized, maximal de-
generation of Calabi-Yau manifolds. We devote section to a discussion on the
SYZ and Kontsevich-Soibelman conjecture, and study the local model of the non-
archimedean analog of a Lagrangian torus fibration. Section [3.2]is devoted to the
proof of theorem C, which is a first step toward producing more global examples of
NA torus fibrations. We also include, in section various computations of the
singular, integral affine structures constructed via theorem C.

The fourth chapter focuses on maximally degenerate Calabi-Yau hypersurfaces in
projective space. In section[d.I] we construct a non-archimedean SYZ fibration p for
such hypersurfaces, and prove theorem D. We also present an alternative construc-
tion of p in dimensions 2 and 3 that was performed in [MPS21], this is the content
of section In section 4.3] we focus on the Fermat family of hypersurfaces, and
prove theorem E building on the results from chapters 1 and 2 and |Li22]: the non-
archimedean Calabi-Yau metric in this setting is the restriction of a toric metric
living on the ambient projective space.

Finally, in a fifth short chapter, we investigate degenerations of Kéahler-Einstein
manifolds with negative curvature, in the framework from chapter 1. We set the
scene in section [5.1], and state theorem F, and then recall some facts about canonical
models of such degenerations in section [5.2] In section [5.3] we describe the results
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from [Sonl7] regarding convergence of the Kahler-Einstein metrics on the canonical
model, and prove theorem F. We conclude with a short discussion on the Fano case
in section 5.4

Notation and conventions

All rings are assumed to be unitary and commutative.

We will use additive notation for line bundles: if L, M are two line bundles on a
variety X, we write L + M := L ® M, and kL := L%* for k € Z.

If X is a complex manifold and ¢ a smooth function on X, we set dd°¢p = ﬁaégb
We extend the notation to Hermitian metrics on line bundles, so that if L is a
holomorphic line bundle on X and ¢ a smooth metric on L, the curvature form
dd°¢ € c¢1(L) - and similarly for singular semi-positive metrics.

Throughout this text, whenever we say that X = D* is a degeneration of complex
manifolds, we mean that X is a smooth complex manifold and 7 a holomorphic
submersion (which will often be omitted from notation). We will furthermore always
assume that the degeneration is meromorphic at 0, i.e. that X is defined over the
ring of germs at zero of holomorphic functions. Equivalently, this means that there
exists a normal complex analytic space 2~ = D such that 2 = X.



Chapter 1

Non-archimedean pluripotential
theory

The study of plurisubharmonic functions and positive currents on complex manifolds
- referred to as pluripotential theory - has proven itself over the past decades to be a
central tool in complex Kahler and algebraic geometry. The heuristic idea that one
should be able to develop a pluripotential theory on Berkovich analytic spaces over
a non-archimedean field K, similar to the classical one over the complex numbers,
is by now well-established, see for instance [BRI0], [CLDI12| [BEJ16], [BE21] in
chronological order.

To be more precise, let K be a complete non-archimedean field, and X/K a proper
algebraic variety. In this setting, Berkovich’s theory of K-analytic spaces [Ber90]
associates to the variety X/K its Berkovich analytification X", in a similar spirit
to how one associates to a variety over C its complex analytification. One may then
define in this setting a class PSH(X, L) of plurisubharmonic (singular) metrics on
L* whose properties mimic those of plurisubharmonic metrics in the complex case.
While the work of Chambert-Loir - Ducros [CLD12] provides a local definition of the
semi-positivity condition, we will adopt a global point of view throughout this paper,
following the approach initiated by Boucksom-Favre-Jonsson in [BF.J16] and further
developped in [BJI§|, [BJ22]. The basic idea is as follows: for m > 1, given a non-
zero global section s € H°(X, mL), the singular metric (using additive notation for
metrics) ¢ = m~!log|s| should be plurisubharmonic, as follows in the complex world
from the Lelong-Poincaré formula. It moreover follows from Demailly’s seminal
work [Dem92| on regularization of plurisubharmonic functions that on a smooth
polarized complex variety (X, L), the class PSH(X, L) is the smallest class of singular
metrics containing the metrics of the form ¢ = m~'log|s| as above, and that is
furthermore stable by addition of constants, finite maxima and decreasing limits
(see thm. [1.2.24)). It is thus natural to take this characterization as the definition of
PSH(X, L) in the non-archimedean setting, which turns out to be consistent with
the more local, Chambert-Loir - Ducros approach, by the results from [BE21].

One of the upsides of Berkovich’s construction of analytic spaces is that it works
over more general bases than non-archimedean fields: given a Banach ring (A, |-|),
one can define its Berkovich spectrum .#(A), and for any reasonable scheme X /A,
a Berkovich analytic space X" = .# (A) equipped with a continuous structure map
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to . (A). Each point x € .#(A) has a residue field 77 (z) in a natural sense, which
is a complete valued field, and when A is a geometric base ring (which will always
be true of the rings considered in this chapter, see section the fiber 771(z)
of the structure map is naturally homeomorphic to Berkovich analytification of the
base change X ;). One may thus view the A-analytic space X*" as the family of
analytic spaces (X j;(z))xe () over different base fields, in a similar manner to which
one views a scheme over a ring A as a family of varieties over different base fields,
parametrized by Spec A. More general Berkovich analytic spaces over Banach rings
were studied more extensively recently in [LP20], where it is for instance proved
that A-analytic spaces form a category in a natural way, under certain assumptions
on A.

At this point, pluripotential theory on Berkovich spaces over a Banach ring remains
a vastly unexplored territory. In this paper, under suitable assumptions on the base
ring, we define a class PSH(X, L) of semi-positive singular metrics on a scheme
X/A of finite type, endowed with a semi-ample line bundle L. Roughly speaking,
a singular metric ¢ € PSH(X, L) can be seen as a family of semi-positive singular
metrics ¢, € PSH(X y(z), Ly(z)) on the fibers of the structure map, varying in a
plurisubharmonic way with respect to = € .#(A). Note however that it can happen
that ¢, = —oo for some z € .#(A), as one would expect in the complex world.
The class PSH(X, L) is defined following the global approach of [BEJ16|, [BE21] :
it is the smallest class of singular metrics on L that contains metrics of the form
m~!log|s| whenever s € HY(X, mL) is a non-zero global section, and is stable under
addition of constants, finite maxima and decreasing limits.

Our main concern is the case where A is a hybrid ring (see section for the
definitions) and X — D* is a projective degeneration of complex manifolds - we
will always assume the degeneration to be meromorphic at ¢ = 0, which means
that we may view X as a projective scheme over the field K = C((t)) of complex
Laurent series - so that X® = X™P ig the associated hybrid space, as studied for
instance in [BJ17], [Fav20]. The hybrid space X™" = D, comes with a continuous
structure map to the closed disk of radius r € (0,1), such that 77(0) = X2 is the
Berkovich analytification of X with respect to the non-archimedean t-adic absolute
value on K, while 771(D¥) can be naturally identified with the restriction of the
degeneration X to the closed punctured disk D* - up to rescaling the absolute value
on the fiber X; by a factor 11(‘)’3:‘. As a result, this provides a natural way to see the
(rescaled) complex manifolds (X;);ep+ degenerate to a non-archimedean space X3
as t — 0. In this setting, if L is a semi-ample line bundle on X, then a psh metric
on (XMW [WP) corresponds to the data of a family of psh metrics ¢, € PSH(X;, L;)
varying in a subharmonic way with respect to ¢, together with a non-archimedean
metric ¢y € PSH(X?", L*").

In the case where the line bundle L is ample on X, given a semi-positive metric
¢ € PSH(X, L) which has logarithmic growth at ¢ = 0 (see definition[1.3.9), one can
associate to it a semi-positive metric ¢N* € PSH(X?®", L") on the non-archimedean
analytic space X®", encoding the generic Lelong numbers of ¢ along the centrals
fibers of models of (X, L) over the disk. In the case where X =Y x D* is a product
and ¢ is an S'-invariant metric on pj{L for an ample line bundle L on Y, one can
view ¢ : Rs>g — PSH(Y, L) as a psh ray on Y, and the non-archimedean limit was
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defined by Berman-Boucksom-Jonsson [BBJ18]| in the context of their proof of the
Yau-Tian-Donaldson conjecture; while the general case was treated in [Reb21].
The main result of this chapter is theorem which states that if (X, L) is a
polarized degeneration of complex manifolds over D*, and ¢ € PSH(X, L) is a psh
family of metrics on L, then ¢ extends in a canonical way to X™" to a metric ">,
whose restriction to the non-archimedean fiber ¢N* is the metric mentioned. We
then compare our formalism with the set-up of [Fav20] for continuous psh metrics on
the hybrid space, which yields a continuity result for the family of fiberwise Monge-
Ampeére measures on the hybrid space associated to a continuous psh hybrid metric
(theorem [1.4.11]).

This chapter is organized as follows. In section [L.1, we recall some general facts
about Berkovich analytic spaces over Banach rings, and in section [I.2] we define and
prove basic properties of the class PSH(X, L) of semi-positive singular metrics on
a polarized scheme (X, L)/A over a geometric base ring; we also give some explicit
examples along the way. We then move on to the case of hybrid spaces: section [1.3
is devoted to the statement and the proof of theorem [1.3.13] and section [1.4] is a
discussion on families of Monge-Ampére measures, where we prove theorem [1.4.11}

1.1 Berkovich analytic spaces

1.1.1 Definitions

Definition 1.1.1. Let A # 0 be a ring. A (submultiplicative) semi-norm ||-|| on A
is a map ||| : A — Rsq such that :

e 1] =1 and Jl0] =0,
e Va,be A, fla+b] < all + bl
e Va,be A, ab]| < [laf[b]]

Its kernel Ker||-|| = {a € A/|la|| = 0} is an ideal of A, which is prime when ||-|| is
multiplicative. A submultiplicative semi-norm on A whose kernel is reduced to zero
is called a norm on A.

Finally, a Banach ring A is a non-zero ring equipped with a submultiplicative norm
||| such that A is complete with respect to ||-|.

For example, any non-zero ring A endowed with the trivial norm ||-||o (such that
lallo = 1 for any non-zero a € A) is a Banach ring.

Definition 1.1.2. Let A be a Banach ring.

The Berkovich spectrum # (A) is the set whose points x € M (A) are multiplicative
semi-norms |-|, : A — Rsq satisfying |-|. < |||

It is equipped with the topology of pointwise convergence on A, which makes it into
a non-empty Hausdorff compact topological space by [Ber90, thm. 1.2.1], and with

a map q : ||z — pr = Ker(|-|.) to Spec(A) which is continuous.

For instance, if A = k is a complete valued field, then .# (k) is reduced to the
point |[-.
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Example 1.1.3. Let A = 7Z be the ring of integers, endowed with the usual archimedean
absolute value |-|«. Let xg = |-|o € A (Z) be the trivial absolute value on Z, and let
x, = ||, be the p-adic absolute value, normalized setting |p|, = p~".

It follows from Ostrowski’s theorem that any point x € .#(Z) is of the following
form: either there exists ¢ € [0,+00] and p a prime number such that x = ||7,
or there exists € € [0,1] such that x = |-|,; where we denote |-|2 = |-|o the trivial
absolute value for any x € M (Z), while |-|>° is the absolute value such that [n[>* =0
if p divides n, and |n[3° =1 otherwise.

Topologically, the Berkovich spectrum 4 (Z) is thus an infinite wedge of segments
parametrized by the prime numbers and oo, glued together at the trivial absolute
value xo. Note that for each neighbourhood V' of x¢ in M (Z), the set of branches
not contained in V is finite.

The map M (Z) % Spec(Z) maps the outer end -5 of the p-adic branch to the

prime ideal (p), and any other point to the generic point of Spec(Z).

Fix A a Banach ring, and let B be a finitely generated A-algebra. The analytifi-
cation Y*" of Y = Spec(B) is defined as the set of multiplicative semi-norms |-|,, on
B whose restriction to A belong to .Z(A). It is endowed with the coarsest topology
making the maps x — |f], continuous, for f € B, and comes with a continuous
structure morphism Y*" — .Z(A) sending a semi-norm to its restriction to A.

If X is a scheme of finite type over A, one can then glue the analytifications of
affine charts of X in order to obtain an analytification functor X — X" from the
category of A-schemes of finite type to the category of A-analytic spaces [LP20)].
Any A-analytic space comes with a sheaf of analytic functions, as defined in [Ber90),
def. 1.5.3)].

When the base ring A is a geometric base ring (see below), the space X" satisfies
nice topological properties by [LP20]: if X/A is separated, then X*" is Hausdorff;
and X" is compact when X/A is projective.

Example 1.1.4. Let A = C endowed with the Fuclidean absolute value, and B be
a complex Banach algebra of finite type. Then the classical Gelfan’d-Mazur theorem
implies that Y** = (Spec B)™ is the set of mazimal ideals of B. As a result, Y*"
is the set Y (C) of closed points of the affine complex algebraic variety Y, and the
induced topology on'Y s the Fuclidean one. More generally, if Y is a reduced scheme
of finite type over C, then the analytification Y?" of Y with respect to the Euclidean
absolute value on C is homeomorphic to the complex variety Y endowed with the
Fuclidean topology.

Example 1.1.5. Let A = K be a complete non-archimedean field, and let X/ K be a
separated scheme of finite type. Then the Berkovich space X?" can be described more
explicitly as the set of couples v = (§,v,), where £ = &, is a scheme-theoretic point
of X and v, is a real valuation on the function field of €,, extending the valuation
on K.

Moreover, the map x — &, from X to X5 is continuous, surjective, and induces a

bijection between the respective sets of connected components; the closed subscheme
Y =&, will be called the support of x € X",

Definition 1.1.6. Let A be a Banach ring, and x € #(A). Write p, = q(z) =
Ker(|-|.), x(x) = Frac(A/p,) the schematic residue field of A at p,. The semi-
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norm ||, descends to an absolute value on k(x); we write (x) for the associated
completion of k(x) and call it the residue field of M (A) at x.

Let A and B be two Banach rings, and assume from now on that A and B
are geometric base rings. We will not give the definition here, and rather refer
the reader to [LP20) def. 3.3.8]. Note however that this includes all Banach rings
relevant for us, in particular discrete valuation rings, hybrid rings (see section m
for the definition) or the ring of integers of a number field. In this setting, one can
define [LP20] a well-behaved category of analytic spaces over A, which in particular
contains the analytifications of A-schemes of finite type (and similarly for B).
Assume given a bounded ring homomorphism A — B. This induces a continuous
map:

p:M(B) — M (A),

which simply sends a semi-norm on B to its pull-back to A. Given an analytic space
X over A, its base change Xp to B exists by [LP20, thm. 4.2.4]; when X = X" is
the analytification of an A-scheme X of locally finite presentation, the base change
(X*)p is canonically isomorphic to the analytification of the B-scheme Xp by
[LP20, §4.1, 4.2], so that we simply denote it by X%, and we have a commutative
diagram:

X%ﬂ F 3 Xal’l

| lm

M(B) —2— M (A).

The following proposition allows us, still assuming that A is a geometric base ring,
to view a Berkovich space over a Banach ring A as a family of Berkovich spaces over
complete valued fields, parametrized by .# (A):

Proposition 1.1.7. [LP20, prop. 4.4.8]

Let A be a geometric base ring, X a scheme of finite type over A, and m : X** —
M (A) the associated analytic space. If x € M (A), then 7 '(x) is canonically
homeomorphic to the analytification of the base change X yp(zy = X x4 H(x) with
respect to the absolute value |-|, on J(x).

More precisely, the base change morphism F}, : inr,}(x) — X®* is a topological
embedding, and induces a homeomorphism between X% and 7 Hz) C X .

Definition 1.1.8. Let A be an integral Banach ring. We say a point v € M (A) is

Zariski-dense if and only the kernel of |-|, is reduced to zero.
We write M (A)" = q~Y(na) C A (A) for the subset of Zariski-dense points.

As the name suggests, those are indeed the points of .# (A) which are dense for
the Zariski topology, where the Zariski topology on .#(A) is the coarsest making
the map ¢ : #(A) — Spec(A) continuous.
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1.1.2 Discretely-valued fields

Let K be a complete, discretely-valued field, with valuation v. We denote by
R = {v > 0} its valuation ring, m = {v > 0} its maximal ideal and £k = R/m
the residue field. If £ and K have the same characteristic, it follows from Cohen’s
structure theorem that K is isomorphic to the field K = k((t)) of Laurent series
over its residue field, endowed with the valuation v = ord,.

Otherwise, K has mixed characteristic, i.e. K has characteristic 0 and k has char-
acteristic p > 0. The most common example of such a field is K = Q, with the
standard p-adic valuation, which has residue field F,. More generally, any finite
extension K of Q, is a discretely-valued field of mixed characteristic.

From now on, we will assume K has equicharacteristic zero, so that K = k((t)). We
let X be a separated K-scheme of finite type, and write n = dim(X). The purpose
of this section is to explain how one can understand the topological space X" more
concretely using piecewise-affine geometry. The basic idea is that for a large enough
class of integral R-models 2" of X, there exists a finite-dimensional cell complex
Sk(Z") C X*, which we may view as a tropicalization of the model Z". As shown
in thm. the space X® is then realized as the inverse limit of all such Sk(2"),
so that X" is homeomorphic to a tower of simplicial complexes.

We start with a definition:

Definition 1.1.9. A model of X is a flat, separated R-scheme Z, together with an
isomorphism of K-schemes 2" xp K ~ X.

We will denote Zy := 2 X gk the special fiber of 2", and by Divo(Z") the group of
Weil divisors on 2 supported on the special fiber.

If 2, Z' are two models of X, a morphism of models f : 27 — 2 is an
R-morphism whose base change to K induces the identity on X. We will say that
2" dominates 2" if there exists such a morphism, in which case it is unique.
Assume that X/ K is proper, and let 2 /R be a proper model of X. By the valuative
criterion of properness, for any x = (&, v,) € X*", the K-morphism Spec 7 (x) —
X - whose image is the point £, - lifts in a unique way to an R-morphism from the
valuation ring J(z)° to 2"

Spec J(x) e

>
T
N
-
-
-
P
-
-
-
-

Spec #(x)° —— Spec R.

The image of the closed point of Spec 7 (z)° under the extended morphism is called
the center of z and denoted by ¢y (x). The map cyp : X** — 2 turns out to be
surjective and anticontinuous, i.e. the preimage of a closed subset of 2y by cy is
open in X"

In the case where X /K is smooth, we say a model 2" /R has simple normal crossing
singularities if 2" /R is smooth, and the special fiber 2} is a simple normal crossing
divisor inside Z°. Such models always exists when K has equicharacteristic zero
and X/K is projective, by Hironaka’s theorem on resolution of singularities. More
precisely, any model £ /R can be dominated by an snc model.
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To every snc model 2" of X, with special fiber 2y = Zie ; a;D;, we can associate
a cell complex encoding the combinatorics of the intersections of the irreducible
components of Zy. We say Y C 2 is a stratum if there exists a non-empty J C [
such that Y is a connected component of D; := Njc;D;. The dual complex of 2
is now defined as follows:

Definition 1.1.10. Let 2" be an snc model of X. To each stratum Y of %o which
is a connected component of D, we associate a simplex:

Ty = {w S RI;](HZ(IJ‘U)J' = 1}

jeJ

We define the cell complex D(Zy) by the following incidence relations: Ty is a face
of Ty if and only if Y C Y.

For reasons that will appear clearer later on, we will sometimes need to work
with a broader class of models, those are divisorially log terminal models:

Definition 1.1.11. Let 2"/ R be a model of X. We say that 2" is a dlt (divisorially
log terminal) model of X if the following conditions hold:

- the pair (27, Zorea) is log canonical in the sense of the Minimal Model Program
(see [KMIS]);

- the pair (2, Zorea) is simple normal crossing at the generic points of log
canonical centers of (2, Zored)-

Moreover, a dlt model & 1is good if each irreducible component of Zorea is Q-
Cartier.

See INXYT19, §1.12-1.14] for an overview on existence results of such models.
We will not give a precise definition of log canonical centers here, and refer the
reader to [KMO98|. As a matter of fact, in the sequel, we will assume the following:

Condition 1.1.12. The log canonical centers of (Z°, Zorea) are precisely the strata
of Zo.

Whenever X is defined over an algebraic curve - which is the most relevant case
for applications - the above condition is satisfied by [Koll3, 4.16], so that a dlt
model 2 is simple normal crossing at the generic points of the strata of Z,. If
Zo is reduced, it follows from the approximation arguments of [NXY19, Corollary
4.4] that this holds in the general case as well. It is in fact expected that condition
[[.1.12 holds in general.

In that case, the second assumption in the definition means that the singularities of
the pair (27, Z0red) do not interact with the combinatorics of the intersections of
the components of the special fiber, so that def. extends in a straightforward
way to dlt models satisfying condition |[1.1.12

Given any dlt model 2" of X over R, there exists a natural embedding i4 of the
dual complex D(Zp) into X", given as follows. The vertices v; of D(Zp) are
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in one-to-one correspondence with irreducible components D; of the special fiber
Zo = Y e @D, so that we set

ig-(vi) = vp, := a; ' ordp,,

where the valuation ordp, associates to a meromorphic function f € K(X) ~ K(Z")
its vanishing order along D; - the normalisation by a; ' ensuring that vp,(t) = 1.

Definition 1.1.13. A valuation given in this way, for some dlt (or equivalently, snc)
model 2 of X, is called divisorial. We write X= C X" for the set of divisorial
valuations, it is a dense subset of X?".

One can now interpolate between those divisorial valuations using quasi-monomial
valuations, in order to embed D(%Z;) into X**:

Proposition 1.1.14 ([MNI15, Proposition 2.4.4]). Let Z" be a dit model of X sat-
1sfying condition with special fiber Zoy = Y, a;D;. Let J C I such that
D; = NjesDj is non-empty, and Y a connected component of Dy, with generic
point . We furthermore fix a local equation z; € Oy, for D;, for any j € J.

Then, for any w € v = {w € ]R';é |2 jesajw; = 1}, there exists a unique valuation

Uy 1 Oz — Rog U {400}

such that for every f € Oy, with expansion f = ZﬁeN\JI cgz? (with cg either zero
or unit), we have:

Uw(f) = mln{<w76> |6 € NlJ‘ac,B 7& 0}7

where { , ) is the usual scalar product on RI’I.

The above valuation is called the quasi-monomial valuation associated with the
data (Y, w). Then:

Ty D(%&))%Xan
Ty D W > Uy

gives a well-defined continuous injective map from D(Zy) to X",

Definition 1.1.15. We call the image of D(Z0) by i4 the skeleton of 2, written
as Sk(Z7) C X*. It is a cell complex of dimension at most dim X .

By compactness of D(Zp), i2 induces a homeomorphism between D(Z;) and
Sk(Z"), so that we will sometimes abusively identify D(%2y) with Sk(.2").

Definition 1.1.16. Let Y be a stratum of Zy. We define Star(ry) as the union of
open faces in Sk(Z") whose closure contains Ty .

Let us now assume that 2 is a good dlt model of X, i.e. that the irreducible
components of 2, are Q-Cartier. We can now define a retraction for the inclusion
Sk(Z7) € X as follows: for any v € X" there exists a minimal stratum Y C
NjesD; of 2y such that the center ¢y (v) of v is contained in Y. Since 2 is good,
for each j € J, there exists e; > 0 such that e;D; is Cartier at cy (v). We now
associate to v the quasi-monomial valuation p4 (v) corresponding to the data (Y, w)
with w; = e;lv(zj), where z; is a local equation of e;D; at the generic point of
¢ (v). This should be seen as a monomial approximation of the valuation v at the
generic point of Y, with respect to the model 2" (which is snc there).
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Definition 1.1.17. The above map py : X** — Sk(Z") is the Berkovich retraction
associated with the model 2"/ R.

The Berkovich retraction is continuous, restricts to the identity on Sk(.2"), and
by [Thu(7] [Ber99|, po is a strong deformation retraction, i.e. there exists a homo-
topy between py and the identity on X" that fixes the points of Sk(.2"). It follows
that X*" and Sk(Z") are homotopy equivalent.

Remark 1.1.18. The Berkovich retraction is a local construction on %,/z’n\the
following sense. LetY be a stratum of Zy. The formal completion Xy = Zy of
2 along Y is a formal R-scheme, and admits a generic fiber X3, in the sense of
Berkovich, which is a Berkovich analytic space and can be explicitly described as the
following open subset of X?":

X} ={r € X co(vs) € Y} = p,} (Star(ry)).

The global construction from above can in fact be made on X3, [Ber99/, so that there
exists a retraction:
py : X} — Star(7y),

which coincides with the restriction of the retraction py. Thus, the restriction of
pa over Star(ty) only depends on the formal completion 2y .

We now want to understand how Sk(.2") changes when we change the model
2. Since every dlt model can be dominated by an snc one, we restrict ourselves
to snc models for convenience. Let f : 27 — 2 be two snc models of X,
together with a morphism of models f. Then one can show that we have an inclusion
Sk(Z") C Sk(Z"), so that the retraction py-~ factors through py-: there exists a map:

rorg  Sk(Z') — Sk(Z)

which is affine on each face of Sk(Z”), and such that py = ry9 o pyr. In fact,
r94 is none other than the restriction of ps to Sk(Z"), but can also be computed
explicitely in terms of coordinates on the simplices, see [BJ17, §4.2]. Moreover,
if 27 — 2" — 2 are three snc models with morphisms as depicted, then
the equality rgwgr = rgr9 o rgng holds. As a result, the family (Sk(Z7))s of
Berkovich skeleta, indexed by the ordered set of snc models of X, is an inverse system
of topological spaces, and the family of py : X** — Sk(Z") defines a continuous
map p from X?" to the inverse limit of all skeleta. We now have the following result:

Theorem 1.1.19. ([KS06, thm. 10]).
The map p : X** — lim Sk(Z") is a homeomorphism.

Note that by Hironaka’s theorem, snc models are cofinal in the category of good
dlt models (that is, every good dlt model of X can be dominated by an snc one), so
that taking the inverse limit over good dlt models yields the same result.

Let Z°/R be a model of X, and let .# be an ideal sheaf on 2. It induces a function:

b X" — R,
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sometimes denoted by ¢, = log|-Z|, as follows. For z € X*", we set:

by = sgp log| f ()],

where the supremum runs over the f € .#,, () - or equivalently, over the finitely
many generators of .# at cy ().

If 4, 5 are vertical ideal sheaves on 2", 2" respectively (i.e., cosupported on the
special fiber), then the equality ¢, = ¢ holds if and only there exists a model
Z" dominating both 2~ and 2" such that the pullbacks:

O+ I = Oy - Iy

agree on Z". In particular, when working with a function of the form ¢, for a
vertical ideal sheaf, we may choose a log-resolution of the ideal .#, so that we may
assume that there exists a model 2" such that % = Oy (D) for a vertical divisor
D € Divy(Z"). This implies for instance the following:

Lemma 1.1.20. Let .# be a vertical ideal sheaf on a model Z of X, and ¢ :
X — R the associated function. Then for any snc model 2" of X, the restriction
of ¢s to the skeleton Sk(Z™") is piecewise-affine.

Note that the converse also holds. This motivates the following terminology:

Definition 1.1.21. A function ¢ : X*® — R is piecewise-affine (PA for short) if
there exists an snc model 2" and a vertical ideal sheaf & on X such that ¢ = ¢ .

1.1.3 Hybrid spaces

Let (k,|-|) be a non-trivially valued field, either archimedean or non-archimedean.

Definition 1.1.22. Let k™" be the Banach ring obtained by equipping the field k
with the norm |||y, defined for non-zero z € k by:

2yt = max{L, [2[}.

One can show [LP20, ex. 1.1.15] that the elements of . (k™) are of the form

|-|*, for A € [0,1], where |-|> = |-|o denotes the trivial absolute value on k. This
yields a homeomorphism \ : .Z (k™) = [0, 1].
Thus, if Z is a scheme of finite type over k, its analytification with respect to |-|hyb,
which we denote by Z™® comes with a structure morphism 7 : ZW> — [0, 1]. If
7 = Spec(A) is affine, the fiber over A # 0 is by definition of 7 the set of semi-norms
extending the absolute value |-|* on k, so that by rescaling, this is easily seen to be
homeomorphic to the analytification Z2" of Z with respect to the absolute value |-|.
One can in fact show that for any Z of finite type, we have a homeomorphism:

p:mH((0,1]) = (0,1] x 2,

compatible with the projections to (0, 1].
On the other hand, the fiber 771(0) consists of the semi-norms extending the trivial
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absolute value on k, so that this is homeomorphic to the analytification Z§" of Z
with respect to the trivial absolute value on k.

Hence, the space Z"™P allows us to see the analytic space Z*" degenerate to its
trivially-valued counterpart.

In the case where k£ = C with the Euclidean absolute value, the analytification Z2"
is homeomorphic to the usual complex analytification Z"! of Z, by example .
Thus, the space Z"™P provides a natural way to degenerate the complex manifold
7! to the non-archimedean analytic space Zg".

We now want to perform a similar construction for degenerations of complex vari-
eties. Let X = D* be a holomorphic family of n-dimensional complex manifolds,
where D* = {|t| < 1} is the punctured unit disk in C. We will furthermore as-
sume that the family is quasi-projective and meromorphic at zero, i.e. that there
exists a relatively algebraic embedding ¢ : X «— P¥ x D* such that = = pr, o,
and the equations of X have meromorphic singularity at ¢ = 0. This allows us to
view (the base change of) X as a quasi-projective scheme over the non-archimedean
field K = C((t)) of Laurent series; we fix a radius r € (0,1) and write X" for the
Berkovich analytification of X with respect to the t-adic valuation on K, normalized
so that [t| = r.

We consider the following Banach ring, which we call the hybrid ring:

Av={f =" ant" € K /|| flloyp = Y _llanluys " < oo}

neL n

The purpose of the above Banach ring is to provide a presentation of the closed
complex disk as an affine non-archimedean analytic space: we denote by CWP(r) :=
A (A,) the Berkovich spectrum of A, and call it the hybrid circle, the terminology
stems from the fact that C"™P(r) is homeomorphic to the circle {|T'| = r} inside the
Berkovich affine line over C"" [Poil(]. We now have the following more explicit
description of the hybrid circle:

Lemma 1.1.23. ([BJ17, prop. A.4])
The map 7 : t — |-|; defined by:

B yordo(f) ift =0,
[Fle = prostseniog ¢ 2 g

for f € A, induces a homeomorphism from D, to .4 (A,).

The upshot of this construction is that is f in A,, then up to a constant
log|f(r(t))| = %f'%)' for t # 0 - we are viewing the point ¢ as a rescaling of the
Euclidean absolute value composed with the evaluation map at ¢. Additionally,
as t — 0, these rescaled absolute values converge to the non-archimedean t-adic

absolute value e "% on A, C C((¢)). This motivates the following definition:

Definition 1.1.24. Let X 5 D* be a quasi-projective degeneration of complex man-
ifolds as above, and view it as a scheme of finite type over the ring of convergent
power series. We write X 4, its base change to the ring A,.. We define the hybrid
space X associated to X as the analytification of X a, over A,, which comes with
a structure map:

Thyb : X2 — O™ (r).
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The hybrid space allows us to see the complex space X degenerate to its non-
archimedean analytification, as a consequence of the following:

Proposition 1.1.25. [Fav20, thm. 1.2] Let X be a degeneration of complex man-
ifolds, X4, the associated A,-scheme, and denote the associated hybrid space by
Tyt © XY> — O™ (r). Then:

. ngylb(o) can be canonically identified with X",

e there exists a homeomorphism f : Xp: — W}:ylb(T(D:)), satisfying mpy, 0 f =
TOoT,

log r
e if ¢ is a rational function on X4, then |p(5(2))| = |¢(z)|@ for z not in the
indeterminacy locus of ¢.

Thus, heuristically, the hybrid space allows us to see the scalings of the usual

modulus on C given by ||11°0ﬁ degenerate to the non-archimedean absolute value
r=°o on K, and hence to see the complex manifolds {X;};cp- degenerate to the
non-archimedean analytification X*".

Assume for instance that (y;)ep+ is a continuous family of probability measures on
X, such that p; is supported on X, for each ¢ € D*. Since the hybrid space provides
a canonical compactification of X over the puncture, it is a natural question to ask
whether or not the family of measures converges on X™P  at least in a weak sense -
more concrete examples of such situations will be given in sections and [5.1}
We now assume that X — D* is proper, and will explain how one can adapt the
statement of thm. to the hybrid setting. If 2~ — DD is a proper snc model
of X over the disk, define:

2= XU,

which comes with a map 7 : 2" — D mapping 2(2") to 0 € D. Following a
construction going back to Morgan-Shalen [MS84|, Boucksom-Jonsson [BJ17| define
a topology on 2" as follows.

Let (%, z) be a coordinate chart, with z € D" and write U = Z N X. We assume
that each z; is either a local equation for some D; C 2, or invertible, and that if J
is the set of j € I such that % meets D;, then % N D meets only one connected
component Y, C D (those charts are called adapted in [BJ17]). Given such an
open chart, we define a continuous map:

Logy : U — 1y,

. <10g|zj] ) ’
10g|f@/| jeJ
where fy, = Hje 7 z;nj is a local equation for D on % .
We then extend this map to WP := U U oy by setting Log,, = Id, on 7. This

construction can then be globalized (although non-canonically), using a partition of
unity argument:
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Proposition 1.1.26. ([BJ17, prop. 2.1])

There exists an open neighbourhood ¥ of 2y in 2, and a map Log, : VWP —s
D(Z), satisfying the following property: for every chart (% ,z) as above, and % C
V', we have Log, (%) C 1v,, and:

Logy = Log, +O((log|fz|™")™")
uniformly on compacts subsets of U .
The topology on 2™™" is now defined as the coarsest topology such that:
e X is open inside 2™™";

e for every open neighbourhood % of % inside 2, the subset U U Z(X%") is
open in 2 WP:

e Log, : YW — 9(2) is continuous.

It follows from the above proposition that this topology is independent of the choice
of ¥ and map Log, .

If 27 — 2 is an snc model that dominates 2", then the map rg9 : 2(Z") —
2(Z") induces a continuous map:

hyb
Ty Xy b,

by declaring that T%E% induces the identity on X. Similarly, there exists a contin-

uous map:
hyb . hyb hyb
pr s X — ‘%UDT )

equal to ps on X* and to the homeomorphism 3 from prop. [1.1.25 over D*. The
upshot is now the following extension of theorem [I.1.19}

Proposition 1.1.27. [BJ17, prop. 4.12] The induced map:

p X — i 271"
Z

18 a homeomorphism, where the inverse limit runs over all proper snc models of X .

In practice, this means that if (u;)iep+ is a family of probability measures on X,
then to compute the hybrid limit of the yu,’s, it is enough to study weak convergence
of the measures:

vy = (Logy )«

on 2(Z), where 2" ranges over the snc models of X. In the case where the measures
we’s are given explicitly, this is often more tractable than working directly on X™P.
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1.1.4 The isotrivial hybrid space

We set K = C((t)). Let X be a projective complex variety, and write X := X x D*
the associated trivial degeneration of complex varieties, as well as X = X xX¢ K.
We thus have two hybrid spaces associated to X: the hybrid space Xélyb obtained
by viewing X as a scheme over C™", and X}}yb the hybrid space associated to the
degeneration X. The goal of this section is to compare both hybrid spaces, so that
results established for hybrid spaces associated to degenerations will naturally yield
similar statements for spaces over C™" simply by specializing to a trivial degener-
ation.

We start by comparing the non-archimedean fibers. We write X7 for the analytifi-
cation of Xy, and X§" for the analytification of X with respect to the trivial absolute
value on C. The t-adic absolute value on C((t)) restricts to the trivial absolute value
on C, so that there exists a base change morphism f : X3 — X§", that can be
described as follows. If KC(X) is the function field of X, then the function field of
Xk is simply K(Xg) = K(X)((t)) = K(X)®c K. Hence, any valuation v on K(Xk)
induces by restriction a valuation f(v) on K(X), and similarly for semi-valuations.
We now compare the base rings: for r € (0,1), the inclusion C® < A, is com-
patible with the hybrid norms, so that it induces a continuous map A : .#(A,) —
A (CWP) | obtained by restricting semi-norms from A, to C™®. It is straightforward
to check that under the homeomorphisms .#(A,) ~ D, and .#(C"™P) ~ [0, 1], we
have A\(t) = llggg‘; for t € I,. We furthermore have the following description of
the base change of X from C™’ to A,, which is a straightforward consequence of
transitivity of base change:

Proposition 1.1.28. Let r € (0,1), and let A : D, — [0,1] be the map defined by

At) = 127 We have a commutative diagram:
log|¢|

F
X X

ok

D, —— [0,1].

where F is the base change of X to A,/C™P, and such that F]ﬂ_;(l(o) = f. Moreover,

for any t € D, F|7r;(1(t) induces the identity on X" under the homeomorphisms
from section|1.1.5

The map f : X' — X" furthermore admits a continuous section, called the
Gauss section, defined in the following way. In the terminology of [Poil3l def. 3.2,
every point of X3" is universal (peaked point, in the terminology of Berkovich) as C
is algebraically closed, so that any x € X§" admits a canonical lift to X3, denoted
by v(x); we call the map v : X§* — X3 the Gauss section. More concretely, if
r=uv, € X" is a valuation on IC(X), it is extended as a valuation:

() - KX)((1)) — RU{—o0},

such that v(v)(t) = 1. For instance, if S = ) _,s,t" an element of IC(X)[t], the
canonical extension is defined by the formula:

H(0)(S) = min(u(s,) +n).
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1.2 Global pluripotential theory

Let A be an integral Banach ring, and X a projective A-scheme of finite type.
Following common practice, we will call line bundle on X any locally free Ox-
module of rank 1. We will use additive notation for the group law on the set of
isomorphism classes of line bundles.

Let L be a semi-ample line bundle on X, and write X** — .#(A) the Berkovich
analytification of X. The purpose of this section is to define a class of semi-positive
(singular) metrics PSH(X, L) on L, in the similar way to the case where A = K is
a complete valued field.

If K = C, and (X, L) is a smooth polarized variety, then the class PSH(X, L) of
plurisubharmonic metrics on L is one of the central objects of pluripotential theory,
and has been extensively studied at this point.

When K is a non-archimedean field, a similar class of semi-positive metrics has been
defined in increasing order of generality in [Zha95|, [BEJ16], [BE21].

In our setting, the basic idea is that a metric ¢ € PSH(X, L) can be viewed as a
family of semi-positive metrics (¢5)ze.z(a), where ¢, € PSH(X p(5), L #(z)), that also
varies in a plurisubharmonic way with respect to € .#(A). This is well-illustrated
for instance by thm. in the toric setting, in which case the semi-positivity
translates into a standard convexity condition.

The main case of interest for us will be when A = A, is a hybrid ring, so that
Xan — XMb g the hybrid space associated to a degeneration of complex varieties.
In this setting, our main result, theorem [1.3.13| states that any psh metric ¢ €
PSH(X, L) on a polarized degeneration of complex manifolds satisfying a certain
growth condition, induces naturally a psh metric on (X™P LhP) whose restriction
to the non-archimedean fiber X®" is the non-archimedean metric ¢N* constructed
in [BBJ1§|, [Reb21], and encodes the logarithmic singularities of ¢ along the special
fibers of models of X.

We also compare our definition with the setting of [Fav20|, and obtain the continuity
on X™P of the family of Monge-Ampére measures associated to a continuous, semi-
positive metric on L™,

Throughout this section, we assume that the Banach ring A is a geometric base ring.

1.2.1 Metrics on Berkovich spaces

We start with some very general definition of metrics on line bundles on Berkovich
analytic spaces.

Definition 1.2.1. Let L be a line bundle on X. A continuous metric ¢ on L*"
consists of the following data: for any Zariski open subset U C X and s € H°(U, L)
a trivializing section, a continuous function:

Islle - U™ — R

such that || fslly = | fllslle for any regular function f € H°(U, Oy), and compatible
with restriction of sections.
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This allows us to define, for any open subset V' C X?" and any analytic section
s of L* on V, a continuous function:

Isllg : V' — Rxo,

as follows: cover X by Zariski open subsets U;,i € I such that Ly, = s; - Oy, and
write, on V N U;:
s = fz © Siy

with f; an analytic function on V. Then we set:

Islle == [filllslls

on VNUM. It is straightforward to check that this is independent on the choice of
trivializations, compatible with restrictions and that the equality:

IFslls = 1£1lslls

holds for any section s and any analytic function f on V.

From now on, we will use additive notation for metrics, i.e. identify the metric ||-||4
with ¢ = —log||-||4. In particular, if Ly, Ly are two line bundles on X and ¢; is a
continuous metric on L; for i = 1,2, then ¢ + ¢ is a continuous metric on L; + Ls.
Moreover, if ¢ : X* — R is a continuous function and ¢ a continuous metric on
L, then ¢ + 1 is also a continuous metric on L.

Example 1.2.2. Let A = C with the Euclidian absolute value, and X/C a variety
endowed with a line bundle. Then our definition matches the standard definition of
a continuous Hermitian metric on L.

Example 1.2.3. Let A = k be a trivially-valued field, X/k a variety and L a line
bundle on X. Then the trivial metric '™V = —log|-|uiv on L is the unique metric
on L™ such that for any pair (U,s), with U C X a Zariski open and s € H°(U, L)
a nowhere-vanishing section of L, the equality:

[s(2)|uiv =1
holds whenever the center c(v,) is contained in U.

Example 1.2.4. Let X = PY, and L = O(1). Then the Fubini-Study metric ¢ps
on L s defined by the formula:

|s(2)]

max(|xol, ..., |[xn])’

I5(2) [l es =
where the x;’s are standard coordinates on PY. We will write:
Ors = gglogml.
Note that while this definition is well-suited for the case when A is a non-archimedean

field, it does not recover the usual Fubini-Study metric on CPY when A = C, so that
we will sometimes call the metric above the tropical Fubini-Study metric.
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In order to define a large enough class of semi-positive metrics, we need to allow
metrics with some singularities.

Definition 1.2.5. Let L be a line bundle on X. A singular metric ¢ on L*™ (or
simply on L when the norm is clear from the context) consists of the following data:
for any Zariski open subset U C X and s € H(U, Liy) a trivializing section, an
upper semi-continuous (usc) function:

6y = —logls]ls : U™ — R U {~o0}

not identically —oo, such that ||fs|s = |f] X ||Isll¢ for any regular function f €
H°(U,Oy), and compatible with restriction of sections.

Example 1.2.6. The following example will be particularly relevant for our pur-
poses. Let m > 1, and sy € H°(X,mL) be a global (algebraic) section of some
positive power of L, we associate to it a metric on L denoted by:

dp=m""! log|so,

which 1s the metric such that for s a local section of L, we have:

Islota) = (13]) "

This metric is singular precisely along the zero locus of sg.

Definition 1.2.7. Let X, Y be two A-schemes of finite type, and f :Y — X be
an A-morphism. If L is a line bundle on X endowed with a (singular) metric ¢,
we define the pull-back metric f*¢ on f*L as follows: cover X = U;c;U; by Zariski
open subsets, and choose a trivialization o; of L on each Uj.

Then we cover Y = Ue[V; with V; = f~Y(U,), and trivialize f*L by the sections f*s;
on V;. We now set:

1 8ill e := llsillo o f-

It is straightforward to check that this is independent on the choice of open cover
and trivializations, and thus defines a metric f*¢ on f*L.
We conclude this section with a discussion on the behaviour on metrics under base
change. We assume that A and B are two geometric base rings, together with a
bounded ring homomorphism A — B, so that we have a base change morphism
F: X% — X for any scheme X/A of finite type.
Now let L be a line bundle on X, and Ly = L ®0, Ox, the induced line bundle on
Xp. Given a continuous metric ¢ on L*", we want to define a continuous metric ¢g
on Lg by a base change operation. To that purpose, cover X = U;c;U; by Zariski
open subsets trivializing L, and set Up; = U; x4 B, which yields an open cover
of Xp. If s; is a generator of the free Ox (U;)-module H°(U;, L), then s; ® 1 is a
generator of H°(Up, Lg) over Ox,(Ug,;), so that we naturally set, for x € U’

I(s @ D)@l = s(F(@))lo-

It is now a straightforward verification that ¢ — ¢p defines a base change map
from the set of continuous metrics on (X**, L*) to the set of continuous metrics
on (X, L%'), which commutes with the usual operations of addition and scaling of
metrics, as well as finite maxima.
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Example 1.2.8. Let A be a geometric base ring, and let x € M (A). Then we have
a canonical morphism of Banach rings A — € (x), so that any continuous metric
¢ on L induces by base change a continuous metric ¢, on (Xj;(m),l}a;;(x)). The
metric ¢, can also be seen as the restriction of ¢ to the fiber m=1(x) of the structure

map 7 : X — M (A), by prop. [1.1.7

1.2.2 Pluripotential theory over a field

Let (X, L) be a smooth polarized variety over C. The class PSH(X, L) of semi-
positive metrics on L lies at the heart of (global) complex pluripotential theory; it
is the class of singular metrics ¢ on L whose curvature form dd‘¢ is semi-positive
in the sense of currents. We refer the reader for instance to [Deml12|, [GZ17] for a
more thorough introduction.

Let m > 1 such that mL is globally generated. Given a family (s, ..., sy) of global
sections of mL without commons zeroes, one can associate to them the continuous
semi-positive metric:

1
= —log(|so|® + ... + |sn]?),
¢ = 5 —log(|sol" + ... + |sw[")
i.e. the continuous metric such that for any local section s of L, we have:

E
|so|2 + ... + |sn[2)1/2m”

‘S|¢ = (

The metric ¢ is none other than the pull-back of the standard Fubini-Study metric
on CP¥ via the holomorphic map:

i [so(x) i ...t sy(x)].

We call such a metric on L a Fubini-Study metric. The following theorem, due to
Demailly [Dem92| when X is smooth and L ample, highlights the importance of
such metrics as basic building blocks of complex pluripotential theory:

Theorem 1.2.9. [BE21, thm. 7.1]

Let X be a complex projective variety, L a semi-ample line bundle on X, and
¢ € PSH(X, L) a semi-positive singular metric on L.

Then there exists a decreasing sequence (¢;)jen of Fubini-Study metrics on L, con-
verging pointwise to ¢@.

In particular, the class PSH(X, L) is the smallest class of singular metrics con-

taining all Fubini-Study metrics, and that is stable under addition of constants,
finite maxima and decreasing limits.
We now move to the case of a non-archimedean field (X, |-|), and assume as above
that (X, L) is a polarized variety over K, with mL globally generated. Following the
general heuristic of replacing sums of squares with maxima in the non-archimedean
world, a (tropical) Fubini-Study metric on L is a continuous metric of the form:

¢=m! max (log|si| + )\i>>

0<i<
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where (sg, ..., sy) is a family of global sections of mL without common zeroes and
(Ao, .-, An) are real constants - unlike in the Archimedean case, the valuation vk :
K* — R need not be surjective, so we are allowing these constants to ensure the
class of Fubini-Study metrics is stable by addition of constants.

Continuous, semi-positive metrics ¢ on L can now be defined, as in the complex
case, by the positivity of their curvature current dd¢, this is the approach taken
in [CLD12|, where Chambert-Loir and Ducros develop a theory of real differential
forms and currents on Berkovich spaces, paralleling the complex case. We will not
use this approach in this text, and rather define (singular) semi-positive metrics on
L in a way such that Demailly’s regularization theorem still holds:

Definition 1.2.10. Let X be a variety over a non-archimedean field K, and L a
semi-ample line bundle on X. A singular metric ¢ on L is semi-positive if and
only if it can be written as the pointwise decreasing limit of a net (¢;); of tropical
Fubini-Study metrics.

This is consistent with the approach of Chambert-Loir - Ducros by [BE21), thm.
7.14].
In the sequel, we will define a class of semi-positive metrics on analytifications of
schemes over a Banach ring A, and the Berkovich spectrum .#(A) will have both
an (open) Archimedean part and a non-archimedean part - that is , for x € .#Z(A),
the complete residue field may be Archimedean or not. As a result, it is desirable to
have a more uniform definition of Fubini-Study metrics, independent of the nature
of the residue field. To that extent, if X is a projective variety over either R or
C and L a semi-ample line bundle on X, we say a continuous metric ¢ on L is a
tropical Fubini-Study metric if it can written as:

—1
d=m Jax, (logls;| + X;),

where (sg, ..., sy) is a family of global sections of mL without common zeroes and

(Ao, -, A ) are real constants - which can always be absorbed in the s;, so that they

are allowed only for convenience. Note that over the complex numbers, any tropical

Fubini-Study metric is psh in the usual sense. In fact, Demailly’s regularization

theorem still holds after replacing Fubini-Study metrics by tropical ones:

Theorem 1.2.11. Let X be a projective complex variety, and L a semi-ample line
bundle on X. Then any semi-positive metric ¢ € PSH(X, L) can be written as the
decreasing limit of a net of tropical Fubini-Study metrics.

The converse is an obvious consequence of the usual properties of PSH(X, L):
any decreasing limit of tropical Fubini-Study metrics is psh. As a result, given any
complete valued field K, we have the following uniform characterization of the class
psh metrics on L: it is the smallest class of metrics that contains tropical Fubini-
Study metrics, and that is stable under addition of constants, finite maxima and
decreasing limits.

Proof. We set PSH™ (X, L) for the class of singular metrics that can be written as
the decreasing limit of a net of tropical Fubini-Study metrics. The class PSH™ (X, L)
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is closed under decreasing limits by the proof of [BJ18|, prop. 5.6].
Let (Sq)aca be a finite family of sections of mL without common zeroes, and ¢ be
the associated L?-Fubini-Study metric:

1 2
6 =5—log(D_lsal),
acA
and set ¢, = m~'log|s,| € PSH(X,L). Then we have ¢ = X((¢a)aca), With
x(2) = 5 10g(3" e 4 €¥™). It now follows from lemma that ¢ is a decreasing
limit of a sequence of tropical Fubini-Study metrics, hence ¢ € PSH"(X, L). By
Demailly’s regularization theorem when X is smooth and L ample, and [BE21], thm.
7.1] in the general case, any metric ¢ in PSH(X, L) can be written as the decreasing
limit of metrics in PSH” (X, L). Since the latter is closed under decreasing limits,
we infer that ¢ € PSH" (X, L), which concludes. m

The following example provides an alternative description of tropical Fubini-
Study metrics over a discretely-valued field K of equicharacteristic zero:

Example 1.2.12. Assume that A = K is a non-trivially valued non-archimedean
field, with valuation ring R and residue field k. If (X, L) is a polarized variety over
K, one can define the class of model metrics on L as follows: for any normal,

projective R-model 2" /R of X and £ a model of mL on 2~ for m > 1, define:
¢ (x) =m ™ log|sz(z)],

where sy is a trivialization of £ at the center cy (vy) of x. One directly checks
that this defines a continuous metric on L, such that the lattice H'(Z ,m.L) C
H°(X,mL) is the unit ball for the induced supnorm whenever Zy is reduced.

It then follows from [BE21, thm. 5.14] that model metrics associated to semi-ample
models are the same as pure Fubini-Study metrics on L, i.e. Fubini-Study metrics
where the constants are taken to be zero in the definition. As an easy consequence,
model metrics are the same as differences of pure Fubini-Study metrics.

1.2.3 Tropical Fubini-Study metrics

Throughout this section, X is an A-scheme of finite type over a geometric base ring
A, and L is a semi-ample line bundle on X.

The discussion from the previous section motivates the definition of the following
class of metrics, that will be the building blocks for our class of semi-positive metrics:

Definition 1.2.13. Let L be a line bundle on X, and let m > 1 be an integer. A
tropical Fubini-Study metric on L is a (non-singular) metric of the form:

¢ = m~" max(log|s;| + a;),
JjeJ

where (s;)jes is a finite family of sections of mL without common zeroes and a; € R.
We write FS™(L) for the set of tropical Fubini-Study metrics on L.

If L = Ox, we will simply say that ¢ is a Fubini-Study function on X, and write
FST(X) =FS"(Ox).

Finally, if the constants a; are all zero in the above definition, we will say that ¢ is
a pure Fubini-Study metric.
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It follows from the definition that FS™(L) is non-empty if and only L is semi-
ample.
The following properties of FS™(L) are straightforward consequences of the defini-
tion:

Proposition 1.2.14. Let X be an A-scheme of finite type and L a line bundle on
X. Then:

1. if $ € FST(L) and c € R, then ¢+ ¢ € FST(L);

2. if ¢1, 09 € FST(L), then max{¢y, ¢} € FST(L);

3. if ¢; € FST(L;) fori=1,2 then ¢1 + ¢po € FST(L1 + Lo);

4. if ¢ is a metric on L such that m¢ € FS™(mL) form > 1, then ¢ € FS"(L);
5. if o1, 02 € FST(L) and ¢1, co € Qs with ¢1+c2 = 1, then c1¢1+cape € FST(L);
6. if f:Y — X is a morphism of A-schemes of finite type and ¢ € FS™(L),

then f*¢ € FST(f*L).

7. if B is a Banach ring together with a bounded homomorphism A — B and
¢ € FST(X, L), then the base change metric o € FS"(Xp, Lp).

We now introduce the following class of metrics, which usually play the role of
smooth metrics in the non-archimedean case:

Definition 1.2.15. Let L be a line bundle on X.

A DFS (difference of Fubini-Study) metric on L is a metric of the form ¢ = ¢1 — ¢,
where ¢; € FS(L;) fori=1,2, with L = Ly — Ls.

We write DFS(L) for the set of DFS metrics on L, and DFS(X) C C°(X™) for the
set of DFS functions on Ox, i.e. DFS metrics on Ox.

Theorem 1.2.16. Assume that X/A is projective. Then the Q-vector space DFS(X)
is dense in CO(X™).

Proof. This is essentially the same proof as in [BJ18, thm. 2.7].

It follows easily from prop. that DFS(X) is a Q-subvector space of C°(X),
containing constant functions. It is furthermore stable under maxima, as if ¢;, v; €
FS(L;) for i = 1,2, then:

max{d; — 1, P2 — o } = max{e; + Yo, 2 + 1} — (Y1 + 13) € DFS(X).

As a result, since X?" is compact, by the Stone-Weierstrass theorem, it is enough
to prove that DFS(X) separates points.

Since DFS is stable by pullback, we may assume that X = P%. Let v # y € X*",
then by considering a hyperplane not containing either x or y, we may assume
z,y € AV = A Spec(Alty, ..., t,]). By definition of .# Spec and since ||, # ||y,
there exists a polynomial f € A[ty,...,t,] such that |f(z)| # |f(y)|; we will assume

[F ()] < 1F ()l

Take homogeneous coordinates z, ..., 2, € H°(P%, O(1)) on P, such that ¢; = z;/z
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on A". We may write f(t1,...,t,) = 25 %s, with s € HO(P%, O(d)).
Let N € Z, and )\, ..., \,, € Z, and set:

¥ = d max (log|z| — A;),

which is an F'S metric on O(d), so that:
u = max{log|sl, ¥ — N} — ¢ = max{logls| — ¥, ~ N}

is a DFS function on P}.
Then for Ay = 0 and \; large enough, we have ¢(z) = dlog|z(z)| and ¢¥(y) =

dlog|z(y)l-
Thus, for N > —log|f(y)|, we have:

u(x) = max{log]s(x)] — dloglto()], N} = max{log|f(x)], ~N'}

< max{log|f(y)], =N} = u(y),

whence the result. O

Example 1.2.17. Let Y = Spec A, so that Y* = #(A). Then a Fubini-Study
function on Y is a continuous function of the following form:

o —1
n=m Iggg(loglfd + Aa),

where the f, € A have no common zeroes and A, € R.

Now, if X/A is a scheme of finite type and X™™ = # (A) is its analytification, the
function nom (that we will still write as n: X* — R) is also an FS function on
X.

1.2.4 Semi-positive metrics

From now on, we will assume that A is an integral Banach ring (in addition to being
a geometric base ring). Recall that .#(A)" is the subset of .#(A) whose elements
|-|» have trivial kernel. In particular, the residue field 5 (z) of .#(A) at x is the
completion of the fraction ring x of A with respect to |-|, so that X 4(,) is the flat
base change of X to J7(x).

Definition 1.2.18. Let X be a scheme of finite type over A, and L a semi-ample
line bundle on X . A plurisubharmonic (or semi-positive) metric ¢ on L is a singular
metric on L that is the pointwise limit of a decreasing net of tropical Fubini-Study
metrics on L, and such that ¢, Z —oo, for allx € M (A)", where ¢, is the restriction
of ¢ to Xj;(x).

We write PSH(X, L) or PSH(L) for the set of semi-positive metrics on L, and
PSH(X) for the set of PSH functions on X®".

Note that since our base ring A is arbitrary, the space PSH(X) could be very
large; for instance even for X = Spec A, every non-zero element a € A induces a PSH
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function ¢, = logla| € PSH(X) on X* = .#(A). Indeed, we have ¢ = lim;(¢;);,
with:
¢; = max(log|al, log|1 — a| = j),

and ¢(z) = logla(z)| > —oo whenever x € .Z(A)".

Let us point out that while the condition ¢, Z —oo for all z € .#(A)" is natural
in the setting of hybrid spaces (we will see later that it translates into finiteness
of Lelong numbers) and spaces over .#(Z), it might be too strong in general - the
analytification of P2 over a trivially valued field contains points that are pluripolar
and Zariski-dense. Such a point lies in an affinoid domain .#(A), which will then
admit a psh function in the sense of [BJ18| that is —oco at a Zariski-dense point.

Definition 1.2.19. We write CPSH(X, L) for the set of continuous, plurisubhar-
monic metrics on L. It is endowed with the topology of uniform convergence on

X.
Note that FS™(X, L) C CPSH(X, L) by definition.
Proposition 1.2.20. The following properties hold:
1. if € PSH(L) and c € R, ¢ + ¢ € PSH(L);
2. if ¢; € PSH(L;) fori=1,2, ¢1 + ¢ € PSH(L; + Ls);
3. if ¢1,¢9 € PSH(L), then max{¢, ¢o} € PSH(L);,

4. if ¢ is a singular metric on L such that m¢ € PSH(mL) for m > 1, then
¢ € PSH(L);

5. Zf ¢17¢2 € PSH(L) and C1,C2 € RZO with cl +cg = 1, then Clgbl + CQ¢2 &
PSH(L);

6. if (¢;); is a decreasing net in PSH(L) and ¢ = lim; ¢; is such that ¢, # —o0
for all x € A (A)", then ¢ € PSH(L);

7. if XA is proper and (¢;); is a net in PSH(L) converging uniformly to ¢, then
¢ € PSH(L).

Note that the difference of two singular psh metrics does not make sense as a
function in general, so that the last item means the following: if (¢;); is a net
in PSH(L), such that there exists a net of continuous functions (f;); in C°(X*")
converging uniformly to zero and such that ¢; = ¢ + f;, then ¢ € PSH(L).

Proof. The first 5 items are straightforward consequences of the corresponding prop-
erties for FS™, stated in prop. [1.2.14; while (6) and (7) follows from [BJ18| lem. 4.6],
(i) and (ii) respectively. O

The subset CPSH(X, L) € PSH(X, L) is naturally endowed with the topology
of uniform convergence; the next proposition states that for this topology, FS™(L)
is dense in CPSH:
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Proposition 1.2.21. [BJ1S, prop. 5.20] Assume that X/A is proper, and let ¢ be
a continuous metric on L. Then ¢ € CPSH(X, L) if and only if there ezists a net
(¢j); in FST(L) converging uniformly to ¢.

Note that the natural topology of uniform convergence on the subset of continu-
ous PSH metrics does not extend to PSH(L), so that it is unclear in this generality
how to put a reasonable topology on PSH(L).

While the Fubini-Study metrics considered above are always continuous - hence
bounded - one can also consider F'S metrics with singularities:

Example 1.2.22. Assume that L is a semi-ample, and let s € H*(X, mL) for some
m > 1 be a non-zero global section. Then ¢ = m~log|s| € PSH(X, L), since we
may write ¢ as the decreasing limit of the following:

o -1 d .
¢; = (md)™" max (log|s’|, max(log|sa| — 7)),

where (Sq)aca 1S a family of sections of mdL without common zeroes. Moreover, if
x € M(A) is a Zariski-dense point, the base change of s to X () is non-zero by
flatness, so that ¢, £ —oo.

More generally, by prop. |1.2.20, for semi-ample L and any finite family (So)aca of
sections of mL, the metric:

_ -1
¢ =m"~ max(log|sa| + ca)

is semi-positive, i.e. ¢ € PSH(X, L).

Remark 1.2.23. Let us point out that unlike the class FST, the class of plurisub-
harmonic metrics is not - strictly speaking - stable under base change. Indeed, if the
ring homomorphism A — B is not flat and s € H°(X,mL) is a non-zero global
section, it could very well happen that the section sp € H°(Xp,mLp) is the zero
section. As a result, the base change to Xp of the psh metric ¢ = m~'log|s| satisfies
¢p = —00. For instance, if ¢ € PSH(X,L) and x € #(A) is not Zariski-dense,
then the restriction ¢, to Xj;}(x) may be identically —oo.

This occurs in the complex world as well, as a psh metric on a the total space of a
holomorphic fibration X — B may be identically —oo on certain fibers X,. One
easy way to remedy this is for instance to allow psh metrics to be identically —oo,
we choose not to as this psh metric would have to be treated separately in several
proofs, making the exposition more cumbersome.

1.2.5 Examples

We start with the case where A = C with the usual absolute value. The following
statement is a mere reformulation of theorem [[.2.1Tk

Theorem 1.2.24. Let X be a projective complex variety, and let L be a semi-ample
line bundle on X.

Then PSH(X, L) is the space of plurisubharmonic metrics on L in the sense of usual
pluripotential theory.



1.2. GLOBAL PLURIPOTENTIAL THEORY 69

As mentioned above, for any Banach ring A, the above definitions for X = Spec A
and L = Ox yield a space PSH(X) of plurisubharmonic functions on .Z(A). We
will compute this space in simple examples.

We start with the case where A = k™" is a hybrid field. Since k is non-trivially
valued, we may assume (up to scaling) that log|k*| D Z. In that case, the homeo-
morphism:

A (A) = [0,1]
is in fact such that A is a Fubini-Study function on X, since A(z) = log|a|, for any
a € k* such that log|a| = 1.
Conversely, any Fubini-Study function on X is of the form:

-1
o(xr) =m max (loglasls + ¢;),

for a; € k* and ¢; € Z. Since logla;|, = A(x)log|a,|, ¢ is a finite maximum of
affine functions, hence convex, and FS(X) contains all finite maxima of affine func-
tions with rational coefficients. Taking decreasing limits (which have finite values
everywhere since all points in . (k™®) are Zariski-dense), we conclude that the
homeomorphism \ identifies the space PSH(.Z (k™)) with the space of real-valued
convex functions on the segment [0, 1]. In particular, plurisubharmonic functions on
X are continuous away from the boundary of the interval. Note however that the
function ¢ : . (k"™P) — R defined by ¢(0) = 1, #(A) = 0 for A > 0 is also psh.
We now move on to the case A = A,., the ring of Laurent series that are convergent
for the hybrid norm on C; recall that we have a canonical homeomorphism from the
hybrid circle C™®(r) := .#(A,) ~ D, to the closed Euclidean disk. The following
proposition asserts that away from the boundary of the closed disk, we may, after
rescaling, identify psh functions on the hybrid circle with subharmonic functions on
the punctured disk that have logarithmic growth at the puncture:

Proposition 1.2.25. Let:

A ={f =Y aut" €CU0) / [ Fllp = 3 Nanllys " < o0},

ne”L

and write T : D, = C™(r) the homeomorphism from prop. [1.1.23,
There exists an order-preserving, injective map:

pr - PSH(C™"(r)) — SH(D,) + Rlog|t|

b (t > log,|t] x (6((1)))
fort #0. Moreover, if ¢ is continuous, then ¢(0) = logr X vo(p,(9)) is a negative
multiple of the (generalized) Lelong number of p.(¢) at 0.
Conversely, for any r’' > r, there exists an order-preserving, injective map:

prrr o SH(D,) 4 Rlog|t| — PSH(C™(r)),

¢(T’1(t)))

o— (¢ t— log 11

with &(0) = ’Iggf") Finally, the composition p, o p., is (up to a scaling factor) the

usual restriction map.
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Proof. Let ¢ € FST(C™P(r)), and write:
_ -1
¢ =m max(log|fa| + ca),

with f, € A,, so that in particular the formal series f, induces a holomorphic

function F, on D,. Moreover, we have log|f.|(7(t)) = llsgg‘; log| Fi, ()| for t # 0.Up to

shifting ¢ by a constant, we may assume that ¢ < 0 on C™P®(r), so that each term
in the maximum is nonpositive.

Thus, defining p,(¢)(t) = log, |t| x ¢(7(t)) for t # 0, we have:

pr(9)(t) = max (log| Fa(t)| + calog, [t]),

since all the terms in the maximum have the same sign. This implies that p,(¢)
extends at ¢ = 0 as the sum of a subharmonic function on I, and a multiple of
log|t|, and with Lelong number at zero:

_ ¢(0)
~ logr

C
2 > 0.

)

Yo(pr(@)) = max(ordo(fo) + 1207
Now if ¢ € PSH(C™P(r)), it is finitely-valued at the Zariski-dense point 0, so that
up to shifting by a constant, we may assume that ¢(0) = —1. We now write ¢ as
the decreasing limit of a net (¢,); in F'S™, with ¢;(0) <0 for all j large enough. By
the computations above, the latter condition means precisely that p,(¢;) extends
over zero as a subharmonic function. We then define the function p,(¢) € SH(D,) as
the decreasing limit of the p,(¢;), which is independent of the choice of decreasing
sequence, since p.(¢) is determined uniquely by ¢ outside 0. If ¢ is furthermore
continuous, then:

£(0) = Tim o(7(t)) = lim 20D

OO = g,y — o8r X ol

Conversely, let 7 > r and let ¢ € SH(D,/). The fact that llsgg‘; - ¢ € PSH(C™"(r))
follows from the more general theorem [1.3.13
Finally it is clear that from the constructions that if ¢ € SH(D, ) + Rlog|t|, then

pr(pr’,r(¢)) = ¢\]D)7u ]

We furthermore expect that the image of the restriction of p, to CPSH(C™"(r))
is the space of continuous subharmonic functions on D, extending continuously to
the boundary of the disk.

Remark 1.2.26. Letn : C™P(r) — R be such that n(0) = 1 andn = 0 outside zero.
Then unsatisfyingly, n € PSH(C™P(r)); we interpret this as the non-archimedean
realization of the following phenomenon. Let:

1 = max(log|t], —j),

which decrease to ¢ = log|t|. We have vy(;) = 0 since ; is bounded near 0,
while vo(¢) = 1 > lim; 1y(¢);). Writing w?yb and Y™ the associated psh functions
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on C™(r) for some r € (0,1), the jump of Lelong numbers along this decreasing
sequence means that the non-archimedean data vy(y)) attached to i differs from the
restriction Y™P(0) = lim, ¢?yb(0) = lim; 1(¢);) to the origin of the hybrid data
associated to 1. The point 0 € C™P(r) is in fact non-pluripolar (as it is Zariski-
dense), and thus is not negligible in the sense of hybrid pluripotential theory.

We also describe subharmonic functions on the Berkovich spectrum .#(Z). We
start by introducing some notation: if I, ~ [0,+oo] is the p-adic branch inside
M (Z), and ¢, : I, — R U {—o0} is a convex function, its (outgoing) slope at zero

0 ¢p(5);¢p(0

is the limit s, := lim,_, ), and its slope at infinity is the (possibly infinite)

limit 5, = lim._, @ The outgoing slope at zero s, is defined similarly on the

archimedean branch.

Proposition 1.2.27. Let X = .#(Z), and write X = |J
the p-adic and archimedean branches.
Then a continuous function ¢ : X — R U {—o0} is psh if and only:

bePUse Ip S the union of

o for every prime number p, its restriction ¢, to the branch I, is convex, with
negative slopes s, 5, at 0 and 400 respectively, and value at infinity ¢,(]-[>°) €
RU {_00}7

e its restriction to the branch I, is conver and increasing, with positive slope at
0,

o the sum of slopes at zero Z}JGP Sp+5s0 > 0; in particular the sum Zpep -5, <
+00.

In other words, the function ¢ is psh on A (Z) if and only it is subharmonic in the
usual sense on the R-tree M (7).

As a consequence, a point x € .#(Z) is polar (that is, contained in {¢ = —oo}
for some ¢ € CPSH(X)) if and only if it is the outer end of a p-adic branch.

Proof. Let ¢ € FS(X) be a Fubini-Study function, then there exists a family of
integers (nq)aca, With min,e 4 v,(n,) = 0 for every prime p, such that:

_ —1
¢ =m™" max(log|na| + ca),

with ¢; € R. Denoting 0 € X the trivial absolute value, we have ¢(0) = m ™! max, c,,
and we write A" C A the set of indices realizing the maximum. Set n; = ged, ¢ 4 Na,
and ny = lemyear Ng.

Under the homeomorphism [, ~ [0, +00], we have:

Gp(e) = m™ max(—uvy(nq) logp - & + ca),

which shows that ¢, is a piecewise-affine convex function, and with slope at zero:

sp = (—logp) (leéljg vp(ne) = log|ns|, <0,
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and constant for € > 1 since there exists a n, with v,(n,) = 0, so that the slope at
infinity 5, = 0. A similar computation on the archimedean branch shows that ¢
is also convex, with:

Zlogp m%xvpna = Zlog|n2|p log|na|s > 0,

peEP peEP

so that the sum of slopes:

S00 + Zsp log

peEP

is positive. Now if ¢ is a continuous psh function on X (with possibly infinite values),
then it is the uniform limit of Fubini-Study functions near zero, hence the only if
part by taking decreasing - hence locally uniform by Dini’s lemma - limits.
Conversely, let ¢ : X — R U {—o0} be a function satisfying the above properties.
We assume that ¢(0) = 0, so that ¢, < 0 for every prime p, and ¢, > 0. We divide
the argument in several steps.

Step 1: Assume that ¢, = 0 for every prime p, and ¢ : [0, 1] — R is a continuous,
increasing convex function, with ¢.,(0) = 0.

For any a > 0 and b < 0 two real numbers, the function ¢ = 1,; on X defined
by ¢oo(x) = ax + b and 1, = 0 for every prime p is psh (although not necessarily
continuous at 0). Indeed, choosing a prime ¢ and writing a = lim; r;logq as the
decreasing limit of rational multiples of log ¢, we see that 1) = lim; max{r; log|q| +
b,0} as a decreasing limit - the max is realized by 0 on every p-adic branch, even
when p = ¢ due to the assumption on a, b.

As a result, writing ¢, as a decreasing limit of piecewise affine convex functions of
the form maxuea,(@a® + by) as above (recall that min, a, > 0, and max, by, = 0
since ¢ (0) = 0), we get that:

¢ = limmax g, s,

j a€A;
as a decreasing limit, and ¢ € PSH(X).
Step 2: we now regularize the ¢,. By our assumptions on the slopes s,, 5,, for every
prime p, we may find a decreasing sequence (¢;,) of convex functions on I, of the
form:

¢jp(e) = m ™ max(—l,logp -+ c,)
aEA,

converging to ¢,, where the ¢,’s are positive integers and such that ¢(0) = ¢,(0) =
max, ¢, = 0. Write s;, = min, ., —o(—¢, log p) the slope at zero of ¢, ,,; by continuity
near zero, the s;, decrease to s,. We use the same notation for the (singular) Fubini-
Study function:
¢jp = m~ " max(log|p‘ | + ca),
a€cA

by straightforward computation we see that the restriction of ¢;, to the branch I
is linear:

(byp(“zo) = —S5;5pT.
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For k € N, let P, = {2,..,pr} be the k smallest primes. We set:

Gh=> ok

PEP

which is psh on X, and such that (¢ ) decreases to ¢ on each p-adic branch.

Step 3: this does not yield the desired outcome on the archimedean branch: the
restrictions of ¢, to the archimedean branch are increasing to x — sz, where we
have set s := — > s, < so. However, the convergence is uniform on I, ~ [0,1], so
that (after extraction of a subsequence) we may find a decreasing sequence (&) of
constants going to zero, such that on I, the ¢}, . = dr o + & decrease to x — sx.
As a result, the psh functions ¢} = ¢, + 5 decrease on X, and the limit ¢’ satisifies
¢, = ¢p, and ¢ () = sz for x € [0, 1].

Step 4: by step 1, the function ¢ : X — R such that ¢, = 0 for every prime p,
and Yo () = ¢oo(x) — sz is psh, since s < so. As a result, ¢ = ¢ + ¢ is indeed
subharmonic on . (Z). O

1.3 PSH metrics on hybrid spaces

Throughout this section, we let X = D* be a degeneration of projective complex
manifolds, endowed with a semi-ample line bundle L. We fix r € (0,1), and write
Xbvb I ) the associated hybrid space, which is the analytification of X viewed
as an A,-scheme, see section [1.1.3

We will use the t-adic valuation on K = C((¢)) normalized so that |t| = r, and write:
log|?|

log, [t| = o1’

which is non-negative on D,.

Definition 1.3.1. Let X 5 D* be a degeneration of projective complex manifolds,
and let L be a line bundle on X. A hybrid (continuous) metric ¢ on L is a singular
(resp. continuous) metric on L™ in the sense of the previous section, viewing X
as an A,-scheme.

We write PSH(L™®) for the set of hybrid semi-positive metrics on L.

Using the explicit description of the hybrid space from prop. |1.1.25, we are able
to describe more concretely continuous hybrid metrics on L:

Proposition 1.3.2. Let X be a degeneration of compler manifolds, and L be a
line bundle on X. A continuous hybrid metric ¢ on L is equivalent to the data of
a continuous family of metrics (¢¢),eps on the (Xy, Ly), together with a continuous
metric oo on L*", such that the following holds: for every Zariski open subset U C X
and any section s € H(U, L), the function:

log|[s(2) 4.
log, [¢|

on UMl (with the Euclidean topology) extends as a continuous function to U™ via
z € U™ log|s(z)||s, -
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Proof. If |t| > 0, we have a canonical homeomorphism ; : X; — X;l ¥* such that
for any (local) regular function on X, we have:

F(B2)] = |f ()]0,

and a homeomorphism [y : X** = 7 (0).

Hence if ¢ is a continuous hybrid metric on L, it induces a continuous family {¢: },cp,
of metrics ¢; on L;, obtained as follows: if U C X is a Zariski open and s a
trivialization of L on U, set:

log|t|

Is()lls. == ls(Be(z)llg™"

for z € U N X,;. The fact that this defines a continuous metric on L, is an easy
consequence of the above equality for functions.
Similarly, the formula:

log|[s()l|g, := logl|s(Bo(x))lle

defines a continuous metric ¢g on L*".
The fact that the data of ¢y and {¢;}ep+ recovers ¢ uniquely is clear. O

We will sometimes write the above relation more loosely as:

where the left-hand side lives on the complex fiber X;, and the metric (25‘ ek lives

on the Berkovich space X™b.
Example 1.3.3. Let s € H*(X, mL) be a global section of mL, and let:
¢ = m " log|s| € PSH(L™")

be the associated (singular) hybrid metric. Then one checks directly that for any
t # 0, the metric ¢, € PSH(Xy, L) is equal to m~'log|s,|, where s, = sx, €
H(X;,mLy).

Now let ¢ € R be a constant, and let:

¢ =m *(log|s| + ¢) € PSH(L™).
Then we have ¢; = m~(log|s| + clog,|t|) € PSH(X;, L;).

Remark 1.3.4. Let ¢ = m~(log|s| + oer) € PSH(L™®) as in the example above.

Then ¢ is the decreasing limit of the (¢;);en, where:

¢; = m~(log|s| + —2

),

log r

where (¢;) jen is a sequence of rational numbers decreasing to c. Up to replacing m by
a high enough multiple depending on the denominator of ¢; (and s by the according
power) we may furthermore assume that ¢; € Z, so that:

¢; = m " log|t7s|



1.3. PSH METRICS ON HYBRID SPACES 75

18 a pure Fubini-Study metric. Since finite maxima commute with decreasing lim-
its, any tropical Fubini-Study metric can be written as a decreasing limit of pure
Fubini-Study metrics. As a consequence, any psh metric on L'™® can be written as
a decreasing limit of pure Fubini-Study metrics.

Let us emphasize that the key point here is that the constant function 10; force Q
can be written as log|f| for some non-zero f € A,, which need not hold over a
general Banach ring A - it fails for instance for A = 7.

1.3.1 Bergman metrics on the hybrid space

Let X — D* be a degeneration of complex varieties, and L a semi-ample line
bundle on X. In the sequel, it will sometimes be convenient for us to work with
singular L2-Bergman metrics in the complex world, i.e. metrics on L of the form:

1
¢ = %log (Z|Sa|2)7
acA

where (84)aca is a finite set of non-zero sections in H°(X, mL), possibly with com-
mon zeroes. It is clear that ¢ € PSH(X, L), and the following proposition asserts
that ¢ extends naturally as a metric ¢ € PSH(L™P), replacing the square-norm with
maxima at the non-archimedean limit:

Proposition 1.3.5. Let (S4)aca be finite family of global sections of mL form > 1,

and set: 1
b= 5—log (D Isael).

acA
$o = m ™ maxlog|s,|.
a€cA

Then this data defines a semi-positive metric ¢ € PSH(X™P LW “which we call
the hybrid Bergman metric associated to the family (Sq)acA-

Proof. We may and will assume that mL is basepoint-free, up to replacing mL by
dmL and the s,’s by their d-th power, for d large enough.
We thus choose a basepoint-free set (s4)aep of sections of mL, where B = AL A’.

Set:
e =m " log (Y e'i[s0,[?),

aEeB
and:
gjo=m"" mg§(10g|8a| + ba.j),

where b, ; =0 if « € A and b,; = —j for « € A". Then the fact that this defines a

continuous psh metric ¢; on L™ follows from the following lemma, applied to the
convex function x(z) = 3 log (Y, e*™ ). Finally, the ¢;’s clearly decrease to ¢
by construction, so that ¢ € PSH(L"™P®) by prop. [1.2.20 O

Lemma 1.3.6. Let P C RY be the standard simplez, i.e. :

P=A{(xy,...,zNn) € (RZO)N/in =1},
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and let x : RN — Rsq be a convex function such that x — max{xy,...,zy} = O(1)
(or P-admissible, in the sense of def. [2.1.5), such that x(z + 1) = x(x) + ¢ for any
ceR, z € RN. For x € RY, let:

x(yz)

X" (z) = lim :
y—oo Y

which is finite since x € Adp.
For any set s, ..., sy of sections of mL without common zeroes and ¢; = m™" log|s,,
the hybrid metric ¢, on L defined by:

¢x7t = X(¢1,t§ -y ¢N,t)

and:
¢X,0 = Xhom(¢1,0, ey ¢N,o)

1S a semi-positive continuous hybrid metric on L.

Proof. The assumption x(x + c1) = x(x) + ¢ ensures that ¢, is compatible with
multiplication of sections by functions, hence each ¢, ; defines a continuous metric
on Ly, for t € D,. We now prove that ¢, is continuous on X" using prop. [1.3.2]
we assume that m = 1 for convenience. Given a nowhere-vanishing section s of L
on a Zariski open U C X, we have:

logs(z,t)loy _ logls(z, )] — x(log]si (2 ), .. loglsw(z, )
log, |¢| log, ||

Y

while each term in the right hand side is not well-defined, the difference is - so that
writing f; = log|%|, the condition x(z + c1) = x(x) + ¢ implies that:

lOg‘S(Z,t)M)X’t . X(fl(z>t)7 "'afN(zat)) . max{fl,.-.,f]\[}
log, [t a log, [t| B log,.|t| +e(t)

since x is P-admissible, where |g(t)] < ﬁ for some constant C' > 0. As a result,
X i

log, [¢]
UMY via o +— log|%|(x) on Uélyb, we infer that ¢, is indeed a continuous metric
on (XM LWP) We now prove that ¢, is semi-positive. Using prop. [2.1.8] we let
(X;)jen be a sequence of P-admissible, piecewise-affine convex functions decreasing
to x, written as:

since away from the zero locus of s; the function extends continuously to

S
s

X; = max (ua + ca),

with u, € P. We write ¢ = (¢1, ..., o) € FS(L™P)N, and set:

)

where e € A, is exp(l) viewed a constant power series. Since the u,’s lie in the
standard simplex, the (u,, @) are tropical Fubini-Study metrics on L™ as convex

linear combinations, so that ¢; € FST(L™?), and:

logle|

b5 = X;(9) = max ({ta, &) + caq

¢j,t - ggi‘}]{ (<ua7 @> + Ca)a
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while:
¢j,0 = (Ixré%l)]( (<U0m@>)7

since logle| = 0 on X" = ﬁgylb(O). Moreover, the (¢;¢); decrease to ¢, by the choice
of (x;);, while (¢;0); decreases to:

be,O = Xhom (@

on X since X" = maxaea, Ua. All in all, (¢;); is a decreasing sequence in
FST(L™®) converging pointwise to ¢,, whence ¢, € PSH(LMP). O

Example 1.3.7. Let X = CPY xDD* with the standard polarization, and let ¢, = drg
be the standard Fubini-Study metric on Xy, v.e. :

¢FS = 10g<|20|2 =+ ...+ |ZN|2),

where the z; are standard homogeneous coordinates on P™. Let furthermore ¢y =
max{|zo|, ..., |2n|} be the non-archimedean Fubini-Study metric on PR*".

Then the metric ¢ps on O(1) on X™WP obtained by gluing the two above metrics is
a continuous semi-positive metric. Note that with our definition, this metric is not
a Fubini-Study metric on O(1), since we would have to work with the max instead
of the square norm on the complex fibers.

Example 1.3.8. Let (X, L) be a complex polarized variety, and set V = H°(X, mL),
for some m > 0 such that mL is globally generated. We let N (V') be the space of
Hermatian norms of V', which is a symmetric space, as fixing a reference norm yields
an identification:

N(V) = GL(V)/U(V).

Let N =dimV, and e = (e, ...,en) be a basis of V.. Then for each tuple (A1, ..., An)
of real numbers, define the associated hermitian norm:

N N
1Y el =) lai®e™.
i=1 i=1

This yields an embedding:
Lo : RY = N(V),

whose image consists precisely of the norms diagonalized by the basis €. The image
Ac(RY) := 16(RY) is called the apartment associated to the basis e. We let I C R be

an interval (not necessarily bounded), and v : I — N(V) a geodesic. Then there
exists a basis e of V such that v(I) C Ae, and an affine map o : I — RN such
that:

Y = le O

More concretely, writing o(y) = (c1y + B, ..., @ny + Br), we have:

N N
||Z el = Z|ai|2€—2m—2aiy'
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Assume that I = (yo,+00) for some yo € R, so that v is a geodesic ray. Then
we see easily that for any non-zero v € V', the limat —% exists and is equal to

—log||v|| xa, where YN is the non-archimedean norm defined by:

I

N
||z; a;e;l|~a = Ig}\?;fﬂaﬂo e ),
1=

where |-|o is the trivial norm on C. Furthermore, two geodesic rays induce the
same non-archimedean norm at infinity if and only they are parallel, i.e. (o —
o) is constant. Thus, the space N (V)N of non-archimedean norms on V' can be
interpreted as the space of asymptotic directions in N'(V).

We now explain how each geodesic ray v : [0,400) — N (V) gives rise to a psh
hybrid metric on L, which we call the associated Bergman metric. More generally,
let W C V' be a basepoint-free subspace, i.e. a subvector space such that the sections
in W have no common basepoints, and let vy : [0,+00) — N (W) be a geodesic
ray. By the above discussion, there exists a basis € = (s1,...,sy) of W, and tuples
a, € RN such that:

N N
1 asill* = "Jai] e

i=1 i=1
The hybrid Bergman metric associated to v, defined by:

20

N
ér = (2m) " (log 3 Jsi[2e ),
=1

where ¢y is the pull-back to X" of ¢‘thb via the rescaling of the absolute value (see
A

the proof of prop. , and:

o =m""

rir%%((log\si\ + ),

is a continuous psh metric on L™P, as follows from prop. applied to the convex
function x(x1,...,xn) = (2m) 1log(3,_, €¥™%).

Note that ¢ is the classical Bergman metric associated to the norm ||-||,, while ¢q is
the non-archimedean Bergman metric associated to the non-archimedean norm yN*.

1.3.2 The non-archimedean limit of a psh family

Let X — D* be a degeneration of complex varieties, and L an ample line bundle
on X. We let ¢ € PSH(X, L) be a semipositive metric on L. Following the general
heuristic of viewing non-archimedean geometry as the asymptotic limit of Kéhler
geometry, we will explain how under a reasonable growth condition on ¢, the family
of generic Lelong numbers of ¢ along prime vertical divisors on models of X naturally
induces a non-archimedean psh metric ¢™* € PSH(X?®*, L**). This construction is
due to [BBJI§| in the isotrivial case and [Reb21] in the general case. Let us start
with a definition.
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Definition 1.3.9. [Reb21, lem. 2.3.2] The metric ¢ € PSH(X, L) has logarithmic
growth at t = 0 if one of the following equivalent conditions are satisfied:

o there exists a normal model (Z°,.L) such that ¢ extends as a psh metric on

Z,

e for any normal model (2", L), there ezists a € R such that ¢+ alog|t| extends
as a psh metric on L,

e there exists a normal model (2", %) and a smooth metric ¢ on £ such that

supy, (¢ — ¢o) < Cllooig‘ﬂ for some constant C > 0.

We will now explain how each psh ray ¢ on (X, L) with logarithmic growth
induces a psh metric $N* on (X L*). We fix a nef model (2,.%) of (X, L), so
that the associated model metric ¢ € PSH(L*) is semipositive.

Let v € X® be a divisorial valuation, so that there exists a model 2" of X and
a prime divisor £ € Divg(2”) such that v = vp = (—logr) x by'ordg, with
bg = ordg(t). We may furthermore assume that 2" dominates 2", via a morphism
p: X — X

By logarithmic growth, there exists a € R such that the metric ¢, := ¢ + alog|t|
extends as a psh metric on (27, p*(.¢)). We choose a psh metric ¢x on 2~ with
divisorial singularities along E, i.e. ¢gp = log|zg| + O(1) locally, where zg is an
equation of E. We define:

ve(¢) =sup{c € R/¢p, < cop+O0(1)} —a

the generic Lelong number of ¢ along E [BFJ0§| -which is easily seen to be inde-

pendent of a - and set:

V) i= 2Bl rp().

Theorem 1.3.10. [BBJIS, thm. 6.2/, [Reb21, thm. 3.3.1]
The function YN : X7 — R admits a unique lower semi-continuous extension to
X and the metric N on L™ defined by:

¢ = (dg + ™) € PSH(X™, L™),

18 a semi-positive metric on L.

Example 1.3.11. Let (2,.Z) be a nef model of (X,L), and ¢ € PSH(X,L) be
bounded, and extending as a locally bounded, semi-positive metric on (2", £). Then
we have Yxa = 0, so that N> = ¢ . Hence, the non-archimedean limit of a metric
extending without singularities to some model £ is simply the associated model
metric.

Example 1.3.12. Let:
¢ = max (log|sa| + ca)

be a tropical Fubini-Study metric on L™, and let v € X7 be a divisorial valuation.
We let (Z°,Z) be a model of (X, L) such that v = vg for some E C Zy, and the
So s extend as holomorphic sections of £ on 2 . Then:

ve(¢) = (o — dz)(vp),
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where ¢q is the induced FS metric on X*". Indeed, extending the s, ’s as holomorphic
sections of £, we have:

(60— 62)(vp) = max (v5(=2) +ca),

Sg

where so is a trivialization of £ at the generic point of E; while:
¢t max<10g|8a| + Ca logr|t|)

15 easily seen to have Lelong number:

. Sa CozbE
ve(9) = el (OrdE(Sg) * logr)

along E. We infer from this that Y~* = (¢g — ), so that ¢ is a tropical Fubini-
Study metric on L™, then ¢NA = ¢y is simply its restriction to X .

We now prove that ¢N* in fact extends ¢ as a semipositive metric on the hybrid
space, and that up to shrinking the disk, every continuous semi-positive metric on
L"® arises in this way:

Theorem 1.3.13. Let (X, L) be a polarized degeneration of complex polarized va-
rieties over D*, and ¢ = (¢¢)iep~ € PSH(X, L) be a semipositive metric on L, with
logarithmic growth at t = 0. Then the metric $™° on L™’ defined by setting:

log r
hyb _ .
¢|Xi“’b 10g|t|¢t’

hyb NA
oy =0

is semi-positive, i.e. P € PSH(XWP b)),
Conversely, let ¢™° € CPSH(X™P LWP) and ¢ > 0, and set:

Y

log|¢|

b= 1oLl

logr ™14

for [t| < r —e. Then (¢1)wens__ is a psh metric on the restriction of L to Xp:__,
with logarithmic growth at 0, and such that N* = gbgyb.

The proof of the theorem will be provided in section [1.3.3

Note that the continuity assumption cannot be removed: in the case where X is
a point, the function 7 such that n(0) = 1 and n = 0 on C™> \ 0 is psh on the
hybrid circle, but 1(0) is not the Lelong number at zero of the induced subharmonic
function on the punctured disk. This says essentially that the point 0 € C™" is non-
pluripolar, so that it is "large" in the sense of pluripotential theory: psh metrics
are not uniquely determined by their restriction outside zero. It has however dense
complement, so that it is negligible topologically, and thus continuous psh metrics
are determined by their restriction outside zero.

The next proposition characterizes, given ¢ € PSH(X, L), the set of semi-positive
metrics on L*" that arise as restrictions to X" of hybrid metrics extending ¢, under
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a finite-energy assumption. Let ¢ € PSH(L*), and assume that ¢ is a metric of
finite energy. Then it follows from |[Reb21] that after a suitable choice of boundary
data, there exists a canonical extension ¢™" € PSH(L™") of ¢ to the hybrid space,
which is also a metric of fiberwise-finite energy. The extension is canonical in the
sense that it is relatively maximal in the sense of pluripotential theory [KIi91], and
the maximal extension mapping: E'(L*) — E£1(L) is an isometric embedding for
the Darvas metric [Dar15] on £!(L) and its non-archimedean analog on £'(L*"); here
EY(L) C PSH(X, L) denotes the set of psh metrics on L which have fiberwise-finite
energy.

Proposition 1.3.14. Let ¢ € PSH(LWP), write ¢ € PSH(L™) its restriction to
X gnd ¢NA € PSH(L™) the non-archimedean metric associated to ¢|x, as defined
by theorem|1.5.10, Then the inequality:

o > ONA

holds on X?".

Conversely, let ¢ € EY(L) be a psh metric of fiberwise-finite energy. Then for any
W € EY(LA™) such that i > NN, there exists a psh extension ¢ € EY(L™P) of ¢ to
LMY satisfying do = .

Proof. Write ¢ = lim; ¢; as the decreasing limit of a net in FST(L™®). Tt follows
from example that for all j, the equality ¢J = ¢J* holds, hence ¢ is the
decreasing limit of the ¢J*. Since ¢ and ¢"* are psh on L*", they are determined
by their (finite) values on divisorial points, so that it is enough to prove that if vg is
a divisorial valuation on X, and after suitably fixing a reference model metric, the
inequality:

i (44 (0)) < (o)

holds, which follows from semi-continuity of Lelong numbers.
Conversely, assume that ¢ € £Y(L) and ¢ € EY(L*), with ¢ > ¢4, By [Reb2]]
and theorem [1.3.13 there exists ¥™* € E1(LMP) such that z/;};yb =1). We set:

n; = max(™, oM — jloglel),

then the decreasing limit of the (7;); is a psh hybrid metric, restricting to ¢ on X"
and to ¢ on X. O

Example 1.3.15. Let (A, L) — D* be a polarized, mazimal degeneration of abelian
varieties (see def. . We let w, € c1(Ly) be the flat Kihler metric on Ly, then
there exists a family of smooth metrics ¢y € PSH(Xy, L;) - called the cubic metrics
- such that wy = dd°¢,. Then it follows from the proof of [GO22, thm. 4.13] that
¢ € PSH(X, L) and has logarithmic growth at t = 0. Moreover, the associated non-
archimedean metric $N* is computed explicitly in [Liuldl, thm. 4.3/, and [GO22,
thm. 4.13] states that the induced hybrid metric ¢™® is in fact continuous, i.e.
PP € CPSH(AWDP, [hyb),

We also prove that given a continuous hybrid metric, it is enough to test its
plurisubharmonicity outside zero.
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Proposition 1.3.16. Let ¢ € PSH(X, L), and assume ¢ extends as a continuous
metric on L™P, that we still denote ¢. Then the extension is semi-positive, i.e.

¢ € CPSH(L™Y).

Proof. By theorem [1.3.13] it is enough to prove that ¢y = ¢™*. By continuity of ¢
and the following lemma, we have:

¢O(UE) = ¢NA(UE)

for every divisorial valuation vy € X . Thus, after fixing a reference model metric
¢, for every snc model 2" on which ¢4 is determined, we have (¢g — ¢py) 0 par =
(¢na — ¢v) © por since those two continuous functions agree on the rational points
of Sk(27), and the result follows from |[BFJ16, prop. 7.6|. O

Lemma 1.3.17. Let ¢ € PSH(X, L) with logarithmic growth and vp € X~ a divi-
sorial valuation. Let (Z°,£) be an snc model of (X, L) such that vg is determined
on 2, and ¢ extends as a psh metric on L. We fix a bounded reference metric ¢ o
on L.

Then there exists a sequence (zj)jen in X converging to vg in X such that the
(9—02)(2)

log,.|t| )j converges to @ZJNA(UE),

sequence (
Proof. Recall that up to a negative scaling factor, ¥"*(vg) is the generic Lelong
number of the psh function (¢ — ¢¢) along F, hence is equal to the Lelong number
of (p — ¢¢) at a very general point of F [BEJ08|. Thus, we may choose a point
200 € E such that z, is not contained in any other irreducible component of %2y,

and such that:

_ logr

@DNA(UE) = EVZOO@ — ¢g).

Choose a sequence (z;); in X converging to z, inside 2Z". Then by construction
((qﬁ%ﬁi'@))j converges to YN (vg), and (z;); converges to vg in Z™P by the dis-

cussion following prop. [1.1.26 hence in X™"_ which concludes the proof. O

The following question is taken from Favre [Fav2(, question 1]|:

Question 1.3.18. Let ¢ € CPSH(L) be a continuous, semi-positive metric on L,
and assume that o~ is a continuous metric on L.

Then is it true that ™ € CPSH(LWP) 2

In view of the proof of theorem [I.3.13] this amounts to proving that assuming
oA € CPSH, we have an estimate of the form:

gbm - Qb < gml 10g|t||717

on X where ¢,, are the Bergman kernels regularizing ¢, and ¢,,, —— 0 is indepen-
m—r0o0

dent of . Such a bound seems difficult to attain without a uniform estimate on the
oscillation of ¢.
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1.3.3 Proof of theorem [1.3.13

This section is devoted to the proof of theorem If p > 0, we will write
D, := {|t| < p} the open disk of radius p, and if 2" is a model of X, 2, := Zp,.
We let ¢ € PSH(X, L) be a psh metric on L with logarithmic growth, so that
after choosing an ample model (Z7,.Z) of (X, L), there exists ¢ € R such that
¢ = ¢ + clog|t| extends as a psh metric on .Z - to alleviate notation, we will still
write ¢ = ¢.. The basic idea of the proof of theorem is that if .7, := Z(m¢)
is the multiplier ideal of the psh metric m¢, then the sequence of piecewise-affine
functions m='¢ s (me) on X decrease pointwise to the relative potential (¢ —¢¢) on
X®. However for m > 1, up to a controlled error term, the sheaf Oy (mL® 7,) is
relatively globally generated on 27, so that the m™'¢ s (¢ are a sequence of ¢ ¢-psh
functions on X" hence ¢ € PSH(X?", L*").
We will roughly apply the same idea here, except we will also have to regularize ¢
itself by a sequence of psh metrics with analytic singularities of the form & (ma).
The procedure we apply to produce such a sequence is standard in complex pluripo-
tential theory and goes back to the work of Demailly [Dem92], so that we merely
outline the proof here and rather refer the reader to the appendix for the tech-
nical details.
We let ¢ € PSH(Z, %) be a smooth metric, whose curvature form w := dd“ is a
Kéhler form on 2. We choose ¢ € (0,1 — r) and my € N such that for all m > 0,
the sheaf Oy ((m +my)Z ® 4,) is globally generated over 2. (see prop. [5.4.5)).
We write:

Vmamo = (M@ + metp) € PSH(Z, (m + mp).ZL)
and recall that we write %, = 7 (Vnm,) = & (m@) for the multiplier ideal of the
psh metric ¢, m, on (2, (m + my).L).
We will regularize ¢ by the Bergman metrics associated to the multiplier ideal .7,,.
More explicitly, set Vi g := HY(Zr1e, (M+mg)L ®.7,,) and define 7, 1y C Vi
as the following Hilbert space:

Hpms = {5 € Vi /II51? ::/ 2, W < oo},

%'4»5

For every couple (m,my), we may choose a Hilbert basis Bim, = (Smumo.t)ien 0f
Honmo, and we now set:

1
m,mo — —1 m,m, 2 )
¢ MO 2<m+m0) Og(%‘s ; o,ll )

and:
¢71\71’L,Am0 =gy + (m+my) b,

It is clear that ¢, m, € PSH(Z,.%), and ¢)2 € PSH(X* [*). We claim that

m,mo
this defines a semi-positive hybrid metric on L:

Proposition 1.3.19. For every m € Ny, the hybrid metric ¢™¥® , on L defined by:

m,m

hyb
gbrri],mo,t - (Qbm,mo)lXt
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and:
(bhyb (bNA

mmOO_

is semi-positive, i.e. ¢ € PSH(XMWb [Wb),

m,mgo

Proof. For q € N, set:

1
m,m, = —— -1 m,m 2 )
¢ ,M0,q 2(m+m0) Og(2|8 ) 0,l| )

I<q

and:
NA

m,mo,q (m + mo) ! r?<ax(log‘8m,m0,l|)'

It follows from prop. 5[ that this defines a semi-positive hybrid metric ¢

mymo,q <
PSH(X™P, LhvP) " we Wlll prove that the (¢ ),y converge uniformly to gbhyb

m,mo,q m,mo
on XWb,
By prop. the ¢py.mq.q converge uniformly to ¢, m, on Z,4. as ¢ — 0o, so that
it remains to prove uniform convergence over X",

We have that
qbgl,Amo,q = gbj + (m + mo)_1¢fq7

where 7, = j((smymml)lgq) = 4, over Z,,. for ¢ > 1 by the strong noetherian
property for coherent sheaves and global generation (see the proof of prop. [5.4.6)),
which concludes. O]

Moreover, after extracting a subsequence, the (m +m0) " Pm.m, decrease to ¢ on
Zrie by theorem and its proof, while the decrease to oN* on X?" by
the proof of [Reb21 thm 3.3.1]. This proves that thyb € PSH(Xb [hvb),

For the converse, if ¢ € CPSH(L™®), and s € H°(U, L) is a local trivialization, then
the function on U:
log|s(z)|s,

log|t|
extends continuously to X™ by , hence is bounded. This proves that ¢ induces
a psh metric with logarithmic growth on L, hence we can define ¢™* as above. By
prop. , we have oM < ¢y, while the semi-continuity of the hybrid metric
induced by (¢, ™*) implies ¢ = lim;_,0 ¢, < ¢~*, which concludes.
This can also be deduced in the following way:

Lemma 1.3.20. The map:
(-)NA . CPSH(LMP) — CPSH(L™)

is well-defined and continuous with respect to the topologies of uniform convergence
on both spaces.

Proof. This follows from the fact that (-) is order-preserving [Reb21, thm. 3.3.1],
and that (¢ + c)N* = N4 + ¢ for c € R.

Indeed, writing ¢ € CPSH(L"P) as the uniform limit of a net (¢;); in FS™, the fact
that (-)N* is order-preserving implies that the (¢}*); converge uniformly to ¢~*,
which is then continuous. O
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It now follows that (-)N* and the restriction map to X"
(*)o : CPSH(L™") — CPSH(L™)

are both continuous, and coincide on the dense set FS™ by example[1.3.12] and thus
coincide on PSH(L™P). This concludes the proof of theorem |1.3.13.

1.3.4 The isotrivial case

Let (X, L) be a projective complex variety, and write (X§",L3") the associated
Berkovich space obtained by endowing the field of complex numbers with the trivial
absolute value. The latter analytic space has proven itself to be a powerful tool in
Kéhler geometry, and in particular has been central in the variational proof of the
Yau-Tian-Donaldson conjecture by Berman-Boucksom-Jonsson [BB.JIS|.

Without going into the details, the proof involves the study of various convex func-
tionals on the space PSH(X, L), and relating their slopes at infinity on geodesic rays
with the corresponding non-archimedean functionals on the space PSH(Xg", L3").

Definition 1.3.21. Let (X, L) be a normal projective complex variety. A family
(¢y)y>0 of psh metrics on L is called a psh ray if and only the S*~invariant metric:

O(2,1) = ¢ togly (7)
on (X x D* piL) is psh.

Let ¢ be a smooth, positively curved reference metric on L. If (¢,),~0 is a psh
ray on X, then the function y — supy (¢, —¢o) is convex, so that its slope at infinity:

Do = lim supx (¢y — ¢o)
Y—00 Y

exists in R U {400} and is independent of the choice of ¢y. It is immediate that
Pmax < +o00 if and only there exists C' > 0 such that supy ¢, < Cy (with slight
abuse of notation), in which case we will say that the ray (¢y)ye(yo,+00) has linear
growth. This is easily seen to be equivalent to the fact that the psh metric ® on
X x D* has logarithmic growth.

Following the general heuristic of viewing non-archimedean geometry as the asymp-
totic limit of Kéhler geometry, each psh ray (¢,), on (X, L) with linear growth
induces a psh metric g™ on (X3§", La"), defined as follows. We fix a smooth refer-
ence metric ¢y on L, whose curvature form wy = dd®¢g is a Kédhler form on X, and
write ¢, = (¢, — ¢o) € PSH(X, wy).

By linear growth, there exists a € R such that the function:

Wo(z,t) = ¥ 10g (7) + alog]t|

on X xDD* is bounded from above near X x {0}, hence extends as a quasi-psh function
on X x D, that we still denote by ¥,. Now if v € X§" is a divisorial valuation on
X, and w = y(v) € (Xk)* denotes the Gauss extension of v to the base change
Xk := X x¢ K, one defines w(¥,) as the generic Lelong number of ¥, along the
center of w, as in section In other words, if ¢ is a psh ray on X and v € X,

then:
PN (v) = OV (y(v),
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Theorem 1.3.22. [BBJIS, thm. 6.2] The function YN* : X* — R extends con-
tinuously to X®, and the metric N on L* defined by:

¢NA — (¢NA + ¢triv) c PSH(Xan, Lan)‘

This is essentially a special case of thm. [1.3.10] since the trivial metric ¢ is
the restriction to the Gauss section (see section |1.1.4)) of the model metric ¢ o €
PSH(X3, L3), where .Z = piL is the trivial model, living on X x D.

Proposition 1.3.23. Let r € (0,1). Then the metric ¢™° on L™’ defined by:

hyb NA
0y :QS )

O, = Adi/n

18 semi-positive on X(})lyb. Moreover, we have:
q)hyb — ‘ka(éhyb7
where F': X?(yb — Xé“yb is the base change map from prop. .

Proof. The equality ®"P = F*¢"P is straightforward from the construction of ¢"b.
To prove that ¢"® is psh, the argument is the same as in the proof of theorem ,
except we need the sections s, ,, from the proof of prop. [1.3.19 to be equivariant
with respect to the S'-action on X x . To achieve this, with the notation of the
previous section for ¢ € Z, we let S, ;o0 C Fnm, be the space of (-equivariant
sections, i.e. sections s such that (e?)*s = € - s. Then %, ,, is the completion
of @eez Hn.mo 0, 50 that we may choose a Hilbert basis of 77, ,,, adapted to the
weight decomposition. The rest of the proof of theorem [I.3.13] carries out without
changes after replacing 10g| S, me.¢| on X§* by (10g|Sm.me.el =€) fOr Spnmo.e € Hnme
so that we omit the details. O

1.4 The Monge-Ampére operator

1.4.1 The case of a valued field

Let K be a complete valued field, X an n-dimensional projective scheme over K,
and let Ly, ..., L, be Q-line bundles on X. By Ostrowski’s theorem, either K = R
or C with (a power of) the usual absolute value, either K is non-archimedean.

Let us start by assuming that K = C and that X is smooth. It then follows from
the seminal work of Bedford-Taylor [BT76| that the mixed Monge-Ampére pairing:

(D1, ooy ) = ddoy A .. A ddy,

a priort defined when each ¢; is a smooth Hermitian metric on L;, actually extends
in a unique way to semi-positive, locally bounded metrics - and in particular to
continuous psh metrics. The pairing was then further extended to semi-positive
singular metrics by Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]. More precisely,
there exists a class (X, L) C PSH(X, L) of finite-energy metrics on (X, L), such
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that the above mixed Monge-Ampére pairing extends uniquely to a multilinear,
measure-valued pairing on (X, L) x ... x (X, L,,). Note that the space (X, L)
contains CPSH(X, L).

We now assume K is non-archimedean, and ¢; € DFS(X, L;) for every i = 1,....n
are differences of Fubini-Study metrics. Then one can associate to the ¢;’s a signed
Radon measure, the mixed Monge-Ampére measure MA(¢y, ..., ¢,), with similar
properties as in the complex analytic case.

Example 1.4.1. Assume that K = k((t)) is a discretely-valued field of characteristic
zero. Then pure Fubini-Study metrics on L; are the same as model metrics on L;, so
that by multilinearity we may assume that ¢; = ¢, where (£, Z;) is a nef model
of (X, L;). Up to passing to a higher model, we may assume 2, = ... = Z,,. Then
the Monge-Ampére measure has the following explicit description [CLOG:

MA(1, ... bn) = > bp(Li - . Lo+ E)dyy,
E

where the sum ranges over the irreducible components E of 2y, bp = ordg(t) and

Oy 18 the Dirac mass at the associated divisorial point vy = bgl ordg.

In general, the mixed Monge-Ampére measure satisfies the following basic prop-
erties:

Proposition 1.4.2. [BE21, prop. 8.3/ Let ¢; € DFS(L;) fori=1,...,n.
o The pairing (¢1, ..., on) = MA(¢1, ..., ¢n) is symmetric and multilinear;
o if ¢; € FS(L;) for all i, then MA(¢1, ..., ¢y) is a positive Radon measure;
o the total mass [y, MA(¢1, ..., ¢0n) = (L1 - ... - Ly);
e if Lo = L; = Ox and ¢, ¢ € DFS(X), then:

/¢0MA<¢1,...,¢H)=/ 61 MA (o, b, s ).
X X

The Monge-Ampére measure can then be extended to more general metrics:

Theorem 1.4.3. [BE21, thm. 8.4/
Let K be a complete valued field, X/K an n-dimensional projective scheme and
Ly,....L, line bundles on X. Then the Monge-Ampére operator:

(D1, v ) > A1 A ... A A,

admits a unique extension to continuous psh metrics on the L;. The extension is
furthermore continuous with respect to the topology of uniform convergence and the
weak topology of Radon measures.

Remark 1.4.4. While the class EY(X, L) of finite-energy psh metrics on L is defined
over any non-archimedean field K, it is unclear in general how to extend the Monge-
Ampére operator on the latter. Note however that in the case where K is discretely-
valued of characteristic zero, this extension was constructed in [BFJ10].
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Remark 1.4.5. The Chambert-Loir - Ducros [CLD12] approach to pluripotential
theory on Berkovich spaces makes sense of the curvature current dd¢ of a continuous
psh metric, and its wedge products, in a spirit close to the work of Bedford-Taylor
in the complex case. Notably, [CLDI12, thm. 6.9.3] states that the wedge product
dd¢y N ... Ndd°¢,, coincides with the mixed Monge-Ampére measure as described in
exzample [1.4.1] when ¢1,..., ¢n are psh model metrics, whence the notation.

1.4.2 The Monge-Ampére equation

Let X be a smooth n-dimensional complex manifold, and L an ample line bundle on
X. Then Yau’s celebrated solution to the Calabi conjecture asserts the following:

Theorem 1.4.6. [Yau78] Let p be a smooth volume form on X, normalized to
have total mass 1. Then there ezists a unique (up to an additive constant) smooth,
positive definite metric ¢ on L such that:

(dd°¢)" = (L") .

The main motivation for this theorem was the case where X is a Calabi-Yau

manifold, and u = i QAQ s the square-norm of a nowhere-vanishing holomorphic
n-form on X: in that case, the curvature form w = dd®¢ is a smooth Kéahler Ricci-
flat metric on X.
Throughout the years, various generalizations of the above theorem in a more singu-
lar setting have appeared in the literature: let us simply mention Kotodziej’s result
[Kol98|, that states that under the same assumptions on (X, L), then the state-
ment of the above theorem holds for a much wider range of probability measures
on X (for instance, measures p with LP-density for some p > 1), when we don’t
require for the solution to be smooth - here the solution is a continuous psh metric
¢ € CPSH(X, L), and the equality (dd°¢)™ = p is understood in the sense of [BT76].
We now let K = k((t)) be a discretely-valued field of equicharacteristic zero. The
following result can be understood as an analog of Kotodziej’s result over K:

Theorem 1.4.7. ([BEJ1H, thm. A, [BGGJ"19])

Let (X, L) be a smooth polarized variety over K. Let p be a probability measure on
X" supported on the skeleton of some snc R-model of X. Then there exists a unique
(up to an additive constant) continuous, semi-positive metric ¢ on L satisying the
non-archimedean Monge-Ampére equation:

MA(¢) = p.

The above theorem was proved when X is defined over the function field of a
curve over k in [BEJ15], and then extended to varieties over non-archimedean fields
of residual characteristic zero in [BGGJ™19].

1.4.3 Family of Monge-Ampére-measures

Let now A be an integral Banach ring, and X/A a projective scheme. Since we may
view X*" as the family of analytic spaces {X?%} }se.#(a), Which are analytic spaces
over fields, one may define a Monge-Ampére operator on each fiber.
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Definition 1.4.8. Let A be an integral Banach ring, X/A an n-dimensional projec-
tive scheme, and Ly, ..., L,, line bundles on X. If (¢1, ..., ¢n) is a tuple of continuous
psh metrics on the L;, we define the associated family of Monge-Ampére measures as
follows. For x € .M (A), write X, = 7' (x) which is an analytic space over F(x),
and ty : X, — X?" the inclusion. Then we set:

This is a family of measures on X* parametrized by A (A).

A natural question is to ask whether or not this family of measures is continuous,
at least in the weak sense:

Question 1.4.9. Let X be a flat, projective A-scheme, L1, ..., L, as above, and let
¢; € CPSH(L;) for each i. Is it true that for 1 € C°(X™), the function:

T V(MA(¢1, - On))a

Xan

is continuous on M (A) ?

The flatness assumption on X is necessary to ensure that the total mass of the
measure:

(MA(¢1a Xy ¢n))x(Xan) = ((Ll)lXﬂm Tt (LN)IXw(z))

is indeed independent of z € .#(A).

By density of DFS(X) C C°(X) and FS(L;) € CPSH(L;), and by using the follow-
ing very general Chern-Levine-Nirenberg estimate, it is enough to prove the above
statement for ¢ € DFS(X®") and ¢; € FS(L;).

While the answer to the above question seems unclear without further assumptions
over the Banach ring A, we are able to provide an affirmative answer in the case of
hybrid spaces in the next section. We also expect the statement to hold when A is
the integer ring of a function field (for instance A = Z), we mention for instance the
work [Poi22] which discusses related questions.

Lemma 1.4.10. [BE21, lem. 8.6] Let K be a non-archimedean field, and X/K.
Let Ly, ..., L, be line bundles on X, and ¢;, ¢, € FS(L;) for each i. Then:

[ 00 MG ) = [ (00— 60 MAG . 60)

an

n
< Ozs}ggwi — ¢}].
=0

1.4.4 Hybrid metrics and admissible data

Throughout this section, we let X = D* be a smooth degeneration of complex man-
ifolds, relatively polarized by an ample line bundle L; and write X™P the associated
hybrid space. In this set-up, after fixing a reference Fubini-Study metric on (X, L),
Favre [Fav20] defines a certain class of model functions ¢x : X™> — R associated
to admissible data on X; and uniform functions which are uniform limits of model
functions. We will explain how those are nothing but hybrid Fubini-Study and hy-
brid cpsh metrics on L. In particular, the following result is a mere reformulation
of [Fav20l thm. 4.2]:
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Theorem 1.4.11. [Fav20, thm. 4.2]
Let (X, L) be as above, and ¢ € CPSH(X™P LWP).  Then the associated family

of Monge-Ampére measures is continuous on X™P in the weak sense: for any f €
CO(X™P) we have:
Fldds) — [ FMA(G).
X, —0 Xan
Recall that DFS(X ") is dense in CO(X™P), while FS™(L"P) is dense in CPSH(L™?)

for the topology of uniform convergence. As a result, by lemma it is enough
to prove the above convergence with f € DFS(X™P), ¢ € FST(LMP).

As in |[Fav20], we fix an snc model 2" of X such that L has an ample model .#
on .2, so that we get a relative embedding ¢ : 2~ < CPY x D by sections of m.%
for m > 1, and write ¢,of = m '*¢ps (here the Fubini-Study metric is taken in
the usual sense, with sums of squares). By example and pullback, we have
bret € CPSH(LMP),

Then a regular admissible datum F = {2, d, D, s1, ..., s} consists of the following:
p: X' — 2 is an snc model dominating 2", D € Divy(Z”) is a vertical divisor
on 2", and (sy,...,5) is a tuple of sections of p*(.£¢)(D) without common zeroes.
An regular admissible datum defines a model function ¢ : X™? — R as follows:

¢ref = Zgllaxl(¢z - ¢ref)

..........

with ¢; = d~'log]|s;|.
Thus, we naturally define:

1/}.7: = ¢ref + ¢f = nzl<alX ¢i7

which is a Fubini-Study metric on L™®, since the s;’s have no common zeroes.
Conversely, any pure Fubini-Study metric on L™, i.e. a metric of the form:

_ g1 )
¢ = d” maxlog|si|

for d > 1 and sy,...,5, € H°(X,dL) without common zeroes, defines a regular
admissible datum. Indeed, we may extend si, ..., s; to meromorphic sections of d.Z
on 2, and set:

I =< 81,...,8 >,

which is a vertical fractional ideal sheaf on 2". It follows from [Fav20, prop. 2.2]
that if p: 27 — 2 is a log-resolution of 2", this yields an admissible datum:

F= {%lada Dap*sla "'7p*3l}7

where D € Divg(.2”) is such that p*(ZL? ® &) = (p*£)? @ O 4+ (D), and it follows
from the previous computation that the associated model function ¢ satisfies:

¢ref = ¢ - ¢ref7

,,,,,

with ¢ = d~! max;<; log|s;|. As a result, model functions on X hyb in the sense of
[Fav20] are precisely the continuous functions ¢ : X™P — R such that (¢, +1) €
FS™(L™P®) is a pure Fubini-Study metric, so that by remark uniform functions
are those such that (¢ + 1) € CPSH(L™P). This proves that the statement of
theorem is equivalent to the statement [Fav20, thm. 4.2].



Chapter 2

The toric case

In this chapter, we focus on the case where (Z, L) is a polarized toric variety over
C, and we investigate toric metrics on (Z"WP, Lh¥P) ‘When working over C equipped
with either the archimedean or trivial absolute value, semi-positive toric metrics on
(Zan L") are well-know to correspond to a certain class of convex functions on the
vector space Ng where the fan of Z lives.

The main result of this section, theorem [2.2.12] states that semi-positive met-
rics on (Z"P M) that are fiberwise-toric, correspond to families parametrized by
M (ChP) ~ [0,1] of convex functions on Ny as above, which vary in a convex way
with respect to the coordinate A on the base.

2.1 Preliminaries

Throughout this section, N denotes a lattice of rank n, M = Hom(N,Z) its dual
and Ng = N ®; R, Mg = M ®; R = Homg(Ng,R). We denote by (-, -) the duality
pairing Mg X Ng — R. We say a function ¢ : Ng — R is piecewise-affine if there
exists a rational polytopal subdivision 7 of Ng such that ¢ is affine on each face of
the subdivision; it is said to be rational piecewise-affine if each affine piece of ¢ has
rational slopes (note that we allow the constant term to be any real number). We
will sometimes say ¢ is adapted to the subdivision T .

2.1.1 Convex geometry

Definition 2.1.1. A (rational) convex polytope P C My is the convex hull in Mg
of finitely many points in Mg.
The polytope is furthermore integral if we can choose the points to be in M.

If P C My is a polytope, a face of P is any intersection of P with a halfspace

such that none of the interior points of the polytope lie on the boundary of the
halfspace.

Definition 2.1.2. Let P C Mg be a convex polytope. Its normal fan ¥ = Xp is the
complete fan in Ng whose cones are the normal cones to the faces of P.
More explicitly, ¥ = {0F }F face of P, Where:

op ={x € Ng/Yu € F,{u,x) = mggc(u,yﬂ.
y

91
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Definition 2.1.3. Let P C Mg be a convex polytope. Its support function Vp :
Nr —> R is defined by the formula:
Up(z) = sup(u, ).
ueP

It is a rational piecewise-linear convexr function on Ng, linear on each face of the
normal fan Xp.

The fact that ¥p is piecewise-linear follows from the fact that for fixed x, the
function u — (u, z) reaches its maximum at a vertex of P, hence the equality:
N\ =
plx) = max{u, ),

where V' C P is the set of vertices of P.
Note that the data of (Xp, ¥p) recovers the polytope P uniquely.

Definition 2.1.4. Let ¢ : Ng — R be a convex function. We define the Legendre
transform ¢* of ¢ by the formula:
¢*(U) = Sup (<U,IL'> - ¢(I)),

€ NR
for w € Mg, and we write its domain P(¢*) :={¢* < 400 } C Mg.

Definition 2.1.5. Let P C Mg be a convex polytope. We say that the convex
function ¢ : Ng — R is P-admissible if and only the equality P(¢*) = P holds.

This is equivalent to the following condition:

Su]\lf) |p(z) — Up(x)] < +00.

We will write Adp(Ng) or simply Adp for the set of P-admissible convex functions.

Example 2.1.6. Let J C PN Mg be a finite subset, and ¢ : Ng — R be the
function defined by:

¢(z) = max((u;, ) + ¢;),
jeJ
where the c¢;’s are real constants. Then ¢ € Adp(Ng) if and only if J contains the
set of vertices of P.

Proposition 2.1.7. Let ¢ € Adp(Ng). Then the Legendre transform ¢* : P — R
is conver and continuous. Moreover, the map ¢ — @ induces a bijection from
Adp(NR) to the set of continuous convex functions on P, whose inverse map 1is
given by B — [B*, where:

f*(x) = sup ((u, x) — 5(u))

ucP
for B: P — R a continuous convex function.

Proof. 1f ¢ is P-admissible, its Legendre transform is upper semi-continuous on P as
a supremum of continuous functions, while it follows from [How88] that the Legendre
transform ¢* is convex on P, hence lower semi-continuous on P. This proves the
first item, and the second item follows from [Roc72, thm. 12.2]. O
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The following proposition states that P-admissible functions can be monotonously
approximated by rational piecewise-affine functions:

Proposition 2.1.8. Let P be a convex polytope in Mg, and let ¢ € Adp(Ngr) be a
P-admissible convex function.

Then there exists a decreasing sequence (¢;)jen of rational piecewise-affine, P-
admissible convex functions converging pointwise to ¢.

Proof. Let f : P — R be the Legendre transform of ¢, and let (z;);en be a
sequence in Ng that is dense in Ng. For each j € N, let (7;)en be a sequence of
rational numbers decreasing to ¢(z;), uniformly with respect to j (uniformity can
be achieved by a diagonal extraction argument). We set:

Bilu) = max ((u, z) — ;).

so that as j — oo, the function f; is close to the maximum of the affine functions
with gradients in {z;};<; that are cutting out supporting hyperplanes of the graph
of 8. It is clear that (3; is rational piecewise-linear, and increasing pointwise to:

B (u) = sup ((u, ) — ¢(x)),

which is none other than . Continuity of § furthermore implies that the convergence
is uniform, by Dini’s lemma.
We now set:

¢3(v) = B () = sup ((u, ) = B;(u)).

It defines an decreasing sequence of P-admissible rational piecewise-affine convex
functions on Ng, by the following lemma. The fact that the ¢;’s decrease (uniformly)
to ¢ is now a consequence of the monotonicity of the Legendre transform. m

Lemma 2.1.9. Let P C Mg a convex polytope and 3 : P — R a function that
15 precewise-affine, adapted to a rational triangulation of P. Then the Legendre
transform [*, defined for x € Ny by:

f*(x) = sup ((u, T) — ﬁ(u))

ueP

can be written as:

B* = rrilealx(ui + ¢i),

where I is a finite set, u; € PN Mg and c¢; € R.
Moreover, p* € Adp(Ng).

Proof. Let T be a rational polytopal decomposition of P such that g is affine on
each face of T (which exists as follows for instance from [BGPS14, lem. 2.5.3]), and
write the set E of vertices of T as E = {u;,7 € [}. Then we have:

B*(w) = max ({ui, z) = Blw)),

as for fixed z, the function u — ((u,2) — B(u)) is affine on each face of T, hence
achieves its maximum at a vertex of 7.

The second item follows from example 2.1.6] since E contains the set of vertices of
P by construction. O]
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2.1.2 Toric varieties

Recall that N is a lattice of rank n, with dual lattice M. We write T = Hom(M, G,,) =
N ® G,, the associated split algebraic torus, which is defined over Z. We further-
more have that M = Hom(T, G,,) is the character lattice of T, so that each m € M
defines a regular invertible function on T, which we denote by x™.

Let ¥ = {0},ex be a fan inside Ng; this is a finite collection of strictly convex
rational polyhedral cones inside Ng, stable under intersection and such that each
face of a cone in ¥ is itself in X.

If k is any field, one can associate to the fan > a normal k-scheme of finite type as
follows: for o € X, set M, = M NV, which is a semi-group. We then define the
affine toric variety associated to o by:

Z, = Spec k[M,];

one can then see that for ¢’ C o, the ring k[M,/| is a localization of k[M,], so that
the collection of {Z,},ex can be glued to define a variety over k:

&:U%

S

Since the cone {On,} € 3, the variety Zs, contains the torus T = Speck[M] as a
dense open subset. Its complement Ay := Z \ T is a reduced Weil divisor which we
call the toric boundary of 7, it is furthermore an anticanonical divisor when Z is
Gorenstein. We write it as the sum of its irreducible components Ay = >, ., Z;.
The fan ¥ encodes various algebro-geometric information about Z, for instance:

Proposition 2.1.10. The following hold:

o the variety Z is proper over k if and only the fan ¥ is complete, i.e. |, o0 =
NR;

e the variety Z is smooth over k if and only if the fan ¥ is reqular, which
means that each top-dimensional cone of ¥ is GL(N)-isomorphic to a standard
orthant. In this case, the boundary Ay is a simple normal crossing divisor.

2.1.3 Line bundles and toric divisors

Assume now that Z is smooth over k (which implies it has simple normal crossing
boundary).

Definition 2.1.11. Let L be a line bundle on Z. A toric structure on L is the data
of an isomorphism L ~ Oz(D), where D is a toric Cartier divisor; together with a
nowhere-vanishing section sp of Lir, which is a monomial on T under the previous
isomorphism Lt ~ Or.

A toric line bundle on Z is a line L endowed with a toric structure.

Since each Cartier divisor on Z can be moved via the torus action to a T-invariant
Cartier divisor, which is thus supported on the boundary, every line bundle L on Z
admits a toric structure.
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The fan allows us to give a rather explicit description of the Picard group of Z.
Indeed, components of the toric boundary provide a canonical set of generators of
Pic(Z), and the relations between them can be described as follows.

Write DivT(Z ) = ®ierZZ) ~ Z* the abelian group of Weil divisors supported on the
boundary. The canonical map ¢ : Div'(Z) — Pic(Z) sends a divisor to its class;
the map p : M — Div'(Z) sends a monomial Y™ to the principal divisor div(yx™).

Lemma 2.1.12 ([Ful93| 3.4]). The following sequence
0 — M 2 Divi(Z2) L Pic(Z) — 0
15 exact.

Let us rephrase this in term of coordinates, after fixing an isomorphism N ~ Z" and
denoting L = {uy, ..., us} the primitive generators of the 1-dimensional cones of 3.
Since by [Ful93, Lemma p.61], we have ordy, (2™) = (w;, m), we obtain div(x™) =
> e (u, m)Z; and hence p(m) = ((u;,m))ier. We deduce the following explicit
description of Pic(Z):

Corollary 2.1.13. Let v = (w1, ...,uy,) forl € {1,...,s}. Then Pic(Z) is gen-
erated by the line bundles Oz(Z;), with the r relations:

Oz(z Ul,lzl) =...= OZ(Z ul,er) = 0.
=1 1=1

In particular, the divisors in the r-tuple

A=Y w®Z € NoDiv'(Z)~ (Div'(2))
leL

are principal.

We now want to describe how the fan Y encodes the intersection theory on
7, under the assumption that Z is proper. Each 1-cycle in Z being numerically
equivalent to a sum of toric strata, it is enough to study the intersection numbers
(C - 7)), where Z; is a boundary component of Z and C' is a 1-dimensional toric
stratum, which is isomorphic to P! by properness and the fact that Z has snc
boundary. The stratum C' is thus a rational curve with two marked points p and
¢, which are the intersection points of C' with two components of Az, denoted here
by Z, and Z,, with corresponding rays p, and p,. The curve C' corresponds to an
(r—1)-dimensional cone o¢ of X, while the points p and ¢ correspond to the maximal
cones generated by < o¢, p, > and < o¢, pg >.

Lemma 2.1.14 ([Ful93, p. 99|). The primitive generators of the rays of the fan
satisfy the following relation:

up—i-uq = — Z (C Zl>ul~

u e
Observing that we have (C'- Z,) = (C - Z,) = 1, and (C - Z;) = 0 for any other [,
this may be rewritten in a more synthetic way:
> (C- Zyu =0 (2.1.15)
leL

Note that this lemma holds even if Z is not proper.
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2.1.4 Positivity

Throughout this section, we assume that Z is smooth, so that each cone ¢ € ¥ can
be written as:

with v; € N the primitive generators of the extremal rays of o.

Definition 2.1.16. Let D = ZZGL a;Z; be a toric divisor on Z. For each maximal
cone o € X, we let:
Up:0 — R

be the unique linear map such that Vp(v)) = a; for each primitive generator u; of
an extremal ray of o.
This defines a piecewise-linear function:

\IIDIZ—>R,

called the support function of D, it is a convex function if and only Oz(D) is globally
generated.

Note that our definition differs from the one in [Ful93| by a minus sign. It follows

from lemma 2.1.13|that if Dy, Dy are two toric divisors such that Oz(D;) ~ Oz(Ds),
then there exists m € M such that Dy — Dy = div(x™), so that the difference
Up, —¥p, = (m,-) is a linear form on Ng.

Definition 2.1.17. Let D be a toric divisor on Z. The associated convex polyhedron
18 defined by:
Pp = {U € Mg ’ <U,> < lI/D}

Similarly to the previous remark, shifting D by a principal toric divisor amounts
to translating Pp inside Mg. The polytope Pp computes the space of sections of

Oz(D):

Proposition 2.1.18. [Ful935, lem. p. 66] If m € M N Pp, then the monomial x~™
defines a reqular section s, = x ™sp € H°(Z,Oz(D)). Moreover,

H(Z,02(D)= EP k-sm.

mePpNM

In the case where Oz(D) is semi-ample (or equivalently, globally generated), the
convex function ¥p can be written as a finite maximum of linear functions:

Uy = e
p = max(mj, ),
so that Pp is the convex hull of the {m;,j € J} and is a convex polytope, whose

support function equates the support function Wp of D. Hence, we will say that a
convex function ¢ : Ng — R is D-admissible if ¢ € Adp, (Ng).
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Lemma 2.1.19. Let J C (Pp N M) be a finite set. Then the s,,,’s, for j € J,
have no common zeroes if and only J contains the set of vertices of Pp, if and only
max;ej(m;,-) is D-admissible.

Proof. The first equivalence is [Ful93, ex. p. 69|, while the second one is example
2.1.0l ]

Finally, we have the following vanishing theorem for nef divisors on a proper
toric variety.

Proposition 2.1.20. Let D be a nef Cartier divisor on a proper toric variety Z.
Then H(Z,04(D)) =0 fori > 0.

Proof. The divisor D being nef is equivalent to it being globally generated, by
[Mus02, Theorem 3.1]. Thus, the result follows directly from [Ful93, p. 74]. ]

2.2 Toric metrics

2.2.1 Analytification of toric varieties

Let A be a Banach ring, and let T be a split algebraic torus over A, with character
lattice M = Hom(T,G,,). The Berkovich analytification T*" of T4 = Spec A[M]
comes with a canonical valuation map:

val : T*" — Ng = Hom(M, R),

z = (m— —log|x™(x)]).

In other words, (m,val(x)) = v,(x™), whence the notation. Fixing coordinates
T, ..., T, on the torus, which amounts to fixing a basis of M, the above map is given
by:

val(z) = (= log|Ti(x)|, ..., — log|T,,(x)]) € R™.

Now let ¥ be a fan inside Ng, and let Zx, /A be the associated toric A-scheme, defined
as in a case of a field, by patching together the Spec A[M,] for o € X. For instance,
if there exists a subfield k£ C A, then Zy 4 = Zx ) X A is the base change of the
k-toric variety with fan X to A.

We want to define a partial compactification Ny, of Nr so that the map val defined
above extends as a continuous map:

Valz : Z%n — NE-

To that extent, we set R = RU {400}, it is a semi-group for the standard addition.
For o € ¥ a cone, the corresponding toric affine chart is given by Z, = Spec A[M,].
It follows from the universal property of the ring A[M,] that the map:

Zy(A) — Homg, (M,, (A, X)),

z= (m— x"(2))
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is a bijection. It is thus natural to set:
N, := Homg, (M,, (R, +)),

since the semi-group homomorphism v4 = —log||| : A — R induces naturally a
map:
val : Z,(A) — N,,
2 (m = —log|x™(2)])-

extending the usual logarithm on the torus (the above expression being defined
since x™ is regular on Z,). We define the topology on N, as the coarsest making
the evaluation maps ev,, : N, — R for m € M, continuous.

Proposition 2.2.1 ([Ful93, §1.2, prop. 2|, [BGPS14] §4.1| ). If o’ C o are two cones
of ¥, then there is a dense open immersion Ny < N,. Thus, the {Ny}ses glue
together to yield a topological space Ny, containing Ng, together with a continuous
val map:

valy, : Z3' — Ny,

restricting to the above val on each Z,.
The topological space Ny, is called the tropical toric variety associated to Y.

Note that the above definition of Ny is independent of the base ring A.
Now assume that A = (K, vk) is a non-archimedean field. Then the map val admits
a canonical section, defined as follows:

Definition 2.2.2. Let © € Ng. The valuation y(x) on K(M) defined on elements
of K[M] by the formula:
'Ury(x)< Z amxm) = TIT{IGIJ\I/I[ (’(}K(am) + <m, .I'>)
meM
18 called the Gauss point associated to x. This defines a continuous embedding:
v NR — Tan,

satisfying val oy = Idy;, .
Furthermore, for any fan ¥ in Ngr, the map v extends as a continuous embedding
v : Ny — Z§", satisfying the property:

Valz oy = Id]\[2 .

Thus, the tropical toric variety Ny, can be naturally realized as a space of mono-
mial valuations, inside Z3". The fact that v,() is indeed a valuation - i.e. the

associated absolute value is multiplicative - as follows for instance from [BGPS14,
prop. 4.2.12|, or [Thu07, §2]|.

Definition 2.2.3. We write:
pPx - Z%n — Z;n

the composition ps, = v o valy, and call its image the (toric) skeleton Sk(Zys,) of Zs.
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In the case K = C with the Euclidean absolute value, there also exists a canonical
section of val, given as follows: since T = Hom(M,C*), there is an embedding
¢ : Ng = T! given by:

z— u(z) = (m— e*<m’x>).

It is clear that this map extends as an embedding ¢ : N, < Z2! using the real
exponential as a section of —log|-|. In terms of coordinates on (C*)", the map ¢ is
simply the section of —log|-| given by the real exponential (up to a sign).

We now move to the case A = C™P, where we want to patch together the sections
from above to construct a section of the continuous map:

Val := (val x7) : Z{* — Ny x .4 (A).
To that purpose, we define ¢y : Ng < T by the formula:
z— u(z) = (m— e”\71<m’x>),

and extend it to Ny cone by cone as above; this yields a continuous embedding ¢, :
Ny — Z2! We then compose these rescaled embeddings with the homeomorphism:

p:Z" % (0,1] = 771((0,1]),
to embed Ni¥" := Ny, x [0, 1] naturally inside the hybrid space:
Proposition 2.2.4. Let u,y1, : Ny x [0,1] — Z"W be defined by the formulas:

thyb (7, A) = pa(ea(w)) for A # 0,

thyb (2, 0) = ().
Then tnyy 15 a continuous embedding, and is a section of Val.
Its image Skhyb(Zg) = tnyb(Ny X [0,1]) is called the hybrid toric skeleton of Zs.

Proof. By definition of the topology on Z™P® in order to prove that 1, is continuous,
it is enough to prove that if f € O(U) is an algebraic function on a Zariski open
subset U of Z, then (x, ) + log|f],, (2 is continuous on Lgylb(Uhyb). We may
assume that f € C[M] is a polynomial, which we write as f =", ;a;x™, where
the a; € C*, m; € M and the index set J is finite.

We now have:

10g|f|Lhyb(ac,)\) = )\IOg ’ Z aje_)‘_ (mj,x)|
jeJ
for A # 0, while:

10g|f|Lhyb($,0) - = I]Il€i§1<Mj,$>.

It is straightforward to check that this indeed defines a continuous function on
Ng x [0,1], and similarly on N, x [0,1] for 0 € X: the function f is defined on Z,
if and only if (x,m;) > 0 for j € J and x € N,, so that we are merely allowing the
exponentials in the above sum to vanish.

The fact that Valou,y, = 1d NP follows from the fact that va1| Zhh = Avale under

the homeomorphism Zf\l

This finally implies that tpy, is an embedding, the inverse map being given by the
restriction of Val to Sk™"(Zs). O

YP v Zhol g6 that 1y is a section of valthyb for A > 0.
A
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Remark 2.2.5. Let Z be a toric variety over C, and Zi its base change to K =
C((t)). Then we have a commutative diagram.:

hyb Q hyb
—>
Zy Z

lValK lValo
Ny x D, —2— Ny x [0,1],

1/x

so that writing t : [0,1] — D, the map given by t(\) = r'/*, we see that the map:

lhyb,K 1= thybo © (Idny X1)

defines a continuous section of Valy.

2.2.2 Fiberwise-toric metrics

Throughout this section, we work with a toric scheme Z = Zy, over a Banach ring
A. The Berkovich analytification Z*" comes with two continuous maps: a val map:

valy, : Z*" — Ny,

and a structure morphism:

w2 — M (A).
Writing Ny (A) = Ny x 4 (A), this yields a continuous map:

valy : Z*" — Nx(A)

defined by the formula vals(z) = (val(z),n(z)). In particular, the torus over A is
endowed with a map:

valy : T%' — Ng X A (A).

Definition 2.2.6. Let (L,s) be a toric line bundle on Z, and ¢ a metric on L.
Then we say that ¢ is a fiberwise-toric metric on L if and only the function:

Isllg : T4 — R
is such that ||s(x)||¢ = |ls(y)|l¢ for any two x,y € T* such that vala(x) = vala(y).

Here a toric line bundle on Z means, as in the case of a field, a line bundle L
on Z, together with an isomorphism L ~ Oz(D) for a toric Cartier divisor D and a
global section s that is a monomial on T4 under the latter isomorphism.

Example 2.2.7. Assume that A = K is a complete valued field. Then if K =C, a
metric is toric if and only if it is invariant under the action of the mazimal compact
torus S C T.

If K is a non-archimedean discretely-valued field, then our definition of a toric
metric matches the one from [BGPS1}), def. 4.3.2].

The following description is a direct consequence of the definition:
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Proposition 2.2.8. Let ¢ be a continuous metric on the toric line bundle L. Then
¢ 1s a toric metric if and only for any b € M (A), the restriction ¢y, of ¢ to Zgrf%p(b)
is a toric metric in the sense of [BGPS1Y, def. 4.3.2].

For continuous toric metrics over a valued field, the semi-positivity of the metric
can be read off in the combinatorial world:

Theorem 2.2.9. [BGPS1/, thm.4.8.1] Let Z be a proper toric variety over a com-
plete valued field K, and (Oz(D),s) a semi-ample toric line bundle on Z. We let
t : Ny — Z* be the canonical section of val as given in section |2.2.1. Then the
mapping:

-l (@ = —loglls o 1]},)

sets up a correspondence between continuous, semi-positive toric metrics ¢ on L and
continuous, D-admissible convex functions ® on Ng.

Note that while we defined the class of D-admissible functions only when Z is
smooth, the above theorem holds without that assumption.
Moreover, it follows from the proof of prop. that if ® is convex and D-
admissible, then the (bounded) function (® — Wp) extends continuously to Ny.
More generally, continuous semi-positive toric metrics on L are in bijection with
continuous convex functions on Ny satisfying the latter condition.
We expect a similar picture to hold over more general Banach rings A: a semi-
positive continuous, fiberwise-toric metric should induce a family of convex functions
on Ng, parametrized by the Berkovich spectrum .#(A), and which satisfy a suitable
growth condition fiberwise over .#(A). The semi-positivity of the metric in the
direction of the base should be equivalent to the fact that this family of convex
functions varies in a psh way on .#(A). What this concretely means in general
seems unclear at the moment; however in the case of the hybrid space attached to a
complex toric variety, we will see in theorem that the semi-positivity on the
base translates into convexity with respect to the coordinate A € [0, 1].
Note that when K is non-archimedean, this is proved only in the case where K is
discretely-valued field in [BGPS14|, but the general case follows roughly from the
argument of the proof of theorem together the following generalization of
IBGPS14l cor. 4.7.2], so that we omit the details.

Proposition 2.2.10. Let K be a complete non-archimedean field, and let ¢ €
FS7™(Zx, L) be a toric metric. Then there exists a finite set (s;)jes of toric sec-
tions of mL such that:
-1
b=m max (logls;| +¢;).

In other words, toric Fubini-Study metrics on L are precisely the Fubini-Study met-
rics associated to toric sections of powers of L.

Proof. Write:
¢ =m ! max (10g]8i| + ci)
icl

for arbitrary sections (s;);c; of mL, without common zeroes. Each s; may be written
in a basis of toric sections as a finite sum s; = Zj AijX™ with A, ; € K, so that if
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x € T2 we have:
loglsi(p(z))| = m?X(vK(Ai,j) + log|x™ (p(x))|)

by definition of the monomial valuation p(z) (see def. [2.2.3). Since ¢ is toric, the
equality ¢(x) = ¢(p(x)) holds for every z € T*", and we infer:

¢ = max (r]neeij (vxc(Aij) + loglx™1) + c)
hence the result since the (xm,);eu,s, have no common zeroes. O

Let K be a complete valued field. As a consequence of thm. [2.2.9] any semi-
ample toric line bundle L = Oz(D) admits a canonical continuous psh metric ¢cay,
such that the associated convex function ®.,, = ¥p. The canonical metric can be
described explicitly as follows: let V' C Pp be the set of vertices, then we have:

Gean = max log|s,y,|.
mGPD

Note that the (s,)mey have no common zeroes, as a semi-ample line bundle on
a toric variety is globally generated [Ful93, p. 68]. This definition can thus be
generalized to a smooth toric scheme over any Banach ring:

Definition 2.2.11. Let A be a Banach ring, and (Z,L) a smooth toric scheme
together with a semi-ample line bundle over A. The canonical metric on L is the
tropical Fubini-Study metric defined by the formula:

Gean = max log|s,,|,
mGPD

where the s, are defined as in prop. |2.1.18,

The canonical metric is in particular fiberwise-toric.

2.2.3 Hybrid toric metrics

If ¢ is a toric hybrid metric on L™" it follows from the previous discussions that it
is entirely determined by the function:

O(w) = —log|[s(tnyn(w))lls,

where w € No¥°. Our next result asserts that in the case of continuous metrics, the
semi-positivity of ¢ can also be read on the hybrid tropical toric variety:

Theorem 2.2.12. Let Z = Zy, be a toric variety over C, and L = (Oz(D),sp) a
semi-ample toric line bundle on Z. We write Up : Ng x [0,1] — R the associated
support function, extended trivially in the \-direction.

There is a one-to-one correspondence between continuous, semi-positive, fiberwise-
toric metrics ¢ on L"P, and continuous convexr functions:

®:Ngx[0,1] —R
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such that the function (& — Wp) extends as a continuous function to Ny x [0, 1].
The correspondence is explicitly given by:

6= ((2.0) = —loglsp (sl Wl ).

Example 2.2.13. Assume that ®(x, \) = ®(x) is independent of X. Then unravel-
ing the definitions and using the isomorphism Z/}\lyb ~ 7P obtained by rescaling the
absolute value, the induced family of metrics on Z"' is given by:

$a(z) = A7 ®(=Aloglz])),

while the non-archimedean metric ¢y on Z§" is described by the convex function @,
in the setting of theorem[2.2.9.

Similarly, pulling back on the trivial degeneration X = Z x ID*, our theorem states
wn particular that the psh family of metrics on pjL:

1
o1 = (~ loglt]) - o(\8

)

log|t]

extends as a continuous psh metric to X™P, with ¢y = ® oval. Note that the ¢, are
psh with respect to (z,t) since ® can be written as the decreasing limit of a sequence
of piecewise-affine functions.

In order to prove theorem [2.2.12] we will need, given a convex function ® satisfy-
ing the assumptions of the theorem, to produce a continuous metric ¢ on L™ whose
associated convex function is . The metric ¢ will be produced as a decreasing limit
of hybrid Fubini-Study metrics, after translating the following relative version of
prop. in terms of toric metrics:

Proposition 2.2.14. Let P C Mg be a convex polytope with support function ¥p
and normal fan 3, and let ® : Ng x [0,1] — R be a continuous convex function,
such that the function (® — Wp) extends continuously to Ny x [0, 1].

Then there exists a sequence (®;)jen of piecewise-affine convex functions on Ny X
[0,1], such that:

o for all j € N, the function (®; — Up) extends continuously to Ny, x [0,1];
o the sequence (®;); decreases to ® over Ny x [0, 1];

o cach ®; has rational slopes in the Ng-direction, i.e. we may write:

®;(x,\) = max ((ua, x) + b A + ca),

a€cA
where the u, € PN Mg, and the as, by, € R.

Proof. Let ®* : P x R — R be the Legendre transform of ¢, then by lemma[2.2.15
below, the function (®* —max{0, a}) extends continuously to P x [—o0, +00], where
a is the coordinate on R.

Let ((x, Aj))jen be a dense sequence of rational points in Ng x [0, 1], and let (r;;)en
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be a sequence of rational numbers decreasing to ¢(z;, A;), uniformly with respect to
j. We furthermore assume that \g = 0 and \; = 1.
We set:

Bi(u,a) = max ((w, z) + a\ —7rj;)

for (u,a) € P x R, it is a sequence of piecewise-affine convex functions increasing
pointwise to ®*. The convergence also holds on P x [—o0, +00] after substracting
max{0,a}, since for 7 > 1 and |a| > 1 depending on u, we have that (5;(u,a) —
max{0,a}) does not depend on a. As a result, the convergence is in fact uniform,
by Dini’s lemma.

We now take ®; to be the Legendre transform of 3;, i.e.:

Q;(x,\) = sup ((u, z) + aX — Bj(u, a)),

(u,a)ePxR

the ®;’s are of the form described in the statement by the argument from lemma
2.1.9 as (B;(u,a) — max{0,a}) does not depend on a for |a] > 1. Since the f;
increase uniformly to ®*, the ®; decrease uniformly to ®**, which is equal to ® by
[Roc72, thm. 12.2].

It remains to prove that (®; — ¥p) extends continuously to Ny, x [0,1]. For ¢ € %,
and m, € M such that (¥p), = m,, since the convex hull Conv(u,)s = P, we
have that ®;(z,\) = (m,,x) + bjyA + ¢j, for x € o and |z| > 1 independent on A,
where jj is such that u;, = m, This proves that (®; — ¥p) extends continuously to
Ny, x [0, 1], and decreasing convergence happens over Ny, x [0, 1] since it is uniform,
which concludes the proof. O

Lemma 2.2.15. Let P C Ng be a convex polytope, and let  : Ng x [0,1] — R
satisfying the assumptions of prop. |2.2.14. Then the Legendre transform.:

¢*: PxR—R

is continuous. Moreover, writing a the coordinate on R, the function (®*—max{0,a})
extends continuously to P X [—00, +00].

Proof. Let (u,a) € Mg X R, then:

®*(u,a) = sup ((u,z) +aX — D(z, \))

N]RX[O,l]
= sup ((u,z) +aX — Up(z) + (Up(z) — D(z,N))),
NRX[O,l]
which is finite if and only if u € P since (¥p — ®) is continuous, hence bounded on

Ny, x [0, 1]. We also infer that:

®*(u,a) = sup ((u,z) + aX — P(z, \))

NEX[Ovl]

whenever u € P, since ®(z, \) = —oo for x € Ny \ Ng. As a result, ®* is continuous
on P x R as a fiberwise-supremum over a compact set of a continuous function.
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We now prove the second item, we assume a > 0 as the other case is treated in the
same way. The convex function ¥, : a — (®*(u,a) — a) on Rs( can be written as:

U, = sup (()\ —1a+ nu()\)),
X€0,1]

where 7 is a continuous function of (u,A). As a result, ¥, is a bounded convex
function, decreasing on R>g, and whose limit at +00 is supy j 7., which is continuous
with respect to u. Thus, the family (¥ (u, a)),>0 of continuous convex functions on P
decreases with respect to a to a continuous function, so that they converge uniformly
by Dini’s lemma, and (®* — a) extends continuously to P x [0, +00]. ]

Proof of theorem [2.2.13 Let ¢ € CPSH(Z™P, L™P) be a continuous psh, fiberwise-
toric metric, and write:
d: Ng x[0,1] — R,

(z, A) = —log||sp (tnyn (2, A)) o,
it is a continuous function by prop. [2.2.4] Then writing ¢ = lim; ¢; as the decreasing
limit of a net in FS”, we have that ® = lim; ®; as a decreasing limit, so that to

prove that ® is convex on Ng x [0,1], it is enough to prove that ®; is convex for
¢; € FST(L"P). Dropping the j subscript, we write:

_ —1
¢ =m rgg}(loglsal + Ca),

with s, € H°(Z,mL) and ¢, € R. By convexity of the maximum of finitely many
convex functions, we are reduced to the case:

¢ =m "log|s|,

where s € H°(Z,mL) for some m > 0. Using the isomorphism Or(D) = spOr, we
may write s = f X (sp)™ on T for f € K[M], so that:

Sm
®(z,\) =m™" log |?D<<Lhyb<x7 A)| = m™ log| f (tyn (2, ).
By the proof of prop. and with the same notation, we have:

®(z,A) = dm " log | Z aje’)‘71<mf’x>}

jed

for A # 0, while:
®(z,0) = —m ™" min{m;, x).

jeJ
The fact that ® is convex on Ny X [0, 1] is now elementary.
We now move back to the case where ¢ € CPSH(L™P) is an arbitrary continuous
psh, fiberwise-toric metric on L"™®. To prove that (® — ¥p) extends continuously to
Ny, x [0, 1], we argue as in the proof of [BGPS14], prop. 4.3.10]. Let o € X be a cone,
then there exists m, € M such that the support function ¥\, = m,. Moreover, the
section s, := x~ "’ sp is a nowhere vanishing section of L on Z,. As a result, the
function:

(2, A) = —log|lso (tnyn (2, A)) [l
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is continuous on NN, x [0, 1]. However the above expression is easily seen to be equal
to ®(z, \) — (my,x) = &(x,\) — ¥p(x), so that (P — ¥p) extends continuously to
Ny, X [O, 1]

Conversely, let ® : Ng x [0,1] — R be a continuous convex function, such that
(® — Up) extends continuously to Ny x [0,1]. We want to produce a continuous,
semi-positive hybrid metric ¢ on L such that ® = —log||sp o tnyb||. We start by
applying prop. to produce a decreasing sequence (®,);en of continuous convex
functions on N x [0, 1], converging to ® pointwise, and such that the function
(®; — ¥p) extends continuously to Ny, x [0, 1] for all j > 0. Additionally, we may
write @, as:

P, = alj_1 max ((ma, Y 4 ba A + ca),

with the m, € M N Pp. Since ®;(-,\) is D-admissible for any A, it follows from
lemma [2.1.19| that (s,,,,a € A) is a family of toric sections of mL without common
zeroes, so that:

¢; =m max (10g|Sm. | + ba logle| + ca)

is a Fubini-Study hybrid metric on L, inducing the convex function ®; on Ng x [0, 1]
by the lemma below. Moreover, since the (®; — ¥p),; decrease to (& — ¥p) over
N x [0, 1], the same holds over Ny, x [0, 1] by uniform convergence, which is easily
seen to imply that the ¢; decrease to a continuous metric ¢ on LPP which concludes
the proof. O

Lemma 2.2.16. Let L = (Oz(D), sp) be a toric line bundle on Z, and m € MNPp.
We write ¢ = log|s,,| the singular metric on L™® induced by prop. |2.1.18. Then for
(x,\) € Ng x [0,1], the equality:

—log|lsp(wmyn(x, A))[lo = (m, )
holds.
Proof. By definition, we have:

— 1085 (tnyb (2, A))lls = log<§—’;|><ehyb<x, N),

but under the isomorphism Or(D) = sp-Op we have s,,/sp = x~™, which concludes.
UJ

2.2.4 Hybrid family of Haar measures

We conclude this chapter with a discussion on Haar measures on hybrid tori, elab-
orating on the framework from [BGPS14] §4.2|, compare also [Poi22, thm. B]

Let Z be a complex projective toric variety, and 7 : Z™> — [0,1] the asso-
ciated hybrid space. For each A > 0, there exists a canonical homeomorphism
pa: 200 5 7y = 771(N), where Z"! denotes the complex analytification of Z.

For € Ng, let S, = val™'(z) € T"!, and ¢, : T"' < Z™> be the composition of
the embedding T  Z'! with the isomorphism Z"' ~ Z". The real compact
torus S, carries a canonical Haar probability measure ug, which we can pushforward
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to the complex torus, and then to Z"P® via the embedding ¢,. We write the resulting
measure as:

Ha = (02)shls,
for A > 0, and define:

fa,0 = Ory(a)

the Dirac mass at the Gauss point y(x).
It is well-understood that the natural non-archimedean analog of the Haar measure
on a real compact torus is the Dirac mass at the Gauss point of the affinoid torus
[IBGPS14l prop. 4.2.10], the following theorem shows that the analogy is furthermore
continuous on the hybrid space:

Theorem 2.2.17. Let Z be a complex projective toric variety, and Z™ the asso-
ciated hybrid space. Then the family of measures (fiz ) (@\)eNax[0,1] ON 7P defined
above is weakly continuous.

Proof. We need to prove that if f € CO(Z™P), then the real-valued function:

(2, A) = f(2)dpz A (2)

Zhyb

is continuous on Ng x [0,1]. If A > 0, then:

(I’ )‘) = f(Z’ )‘)d:uSL(Z)
Zhol

is continuous on Ng x (0, 1] by dominated convergence, since f is continuous and
bounded on Z"! x (0,1].

We now need to examine what happens when A — 0. By density of DFS(Z"P) c
CO(Z™P), it is enough to prove the statement for f € DFS(Z™P), so that we may
assume that there exists a line bundle L on Z such that f = f; — f5, with f; €
FS(ZWP, LhP) - Since every line bundle on Z is isomorphic to a toric one, we may
and will assume that L is a toric line bundle. We thus write:

1

fi=m™ max(log|sa| + ca),

for i = 1,2. Since the measures i, are supported on T™? on which each section
So € H°(Z,mL) can be written as P, x sp, where P, € C[M], we are reduced to
the case where L = Oy and f = g1 — g2, where:

gi=m glg}(loglPcha),

with P, € C[M]. The result thus boils down to the lemma below. O

Lemma 2.2.18. Let (P,)aca be a finite family of polynomials in C|zq, ..., z,]. For
z € R" and XA € R.g, we define the polydisk Dy, := {Alog|z;| < —x; Vi < n} and
Sx e its distinguished boundary. Then there exists a locally bounded function B of x
such that:

/ max(Mog| Py (6)| + c.)du(6) — max(—v,(Pa) + )| < A x B(a),
S,\,x ac aE

where the Haar measure ju on Sy, is normalized to have mass 1.
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Proof. The left integral can be written as:

acA

/ (maxlog| Py (exp(—A "z +i6))| + ca)db,
(sH»

where df is the Haar probability measure on (S')™.
However if P =Y 1 anx™ and 0 € (S')", we have:
(m—mg,z) | .
Aog| P(exp(—A~"2 + i)| + min (m,z) = Alog | Z ame” T
am70 meM
where mg achieves the minimum of (m, z) for a,, # 0. We infer that:
_ (mlfmo,z> +if

1 P 1 . . — 11 10 ot
A log|P(exp(—\ x+z9)]+£%<m,x> Alog |ae —|—Za e X 7

where a is a constant and (m’ — mg,x) > 0 for all m’. Taking the maximum and
averaging over (S!)", this concludes the proof. O



Chapter 3

The non-archimedean SYZ fibration

3.1 Generalities

We will now move on to the main motivation for the content of the previous sections:
maximal degenerations of Calabi-Yau manifolds. We start with a definition:

Definition 3.1.1. A Calabi- Yau manifold is a compact Kdhler manifold X whose
canonical bundle Kx 1s trivial, i.e. there exists a nowhere-vanishing holomorphic
n-form € on X, where n = dim(X).

Note that there are various definitions of Calabi-Yau manifolds across the lit-
erature, some authors require for instance that there exist no global holomorphic
k-forms on X for 0 < k < n; we will rather call such manifolds strict Calabi-Yau.
Our broader definition includes for instance complex tori, as well as hyperkéhler
varieties.

One of the main reason Calabi-Yau have aroused great interest in Kéhler geometry
is the fact that, as originally conjectured by Calabi, they carry Kéahler Ricci-flat
metrics (in each Kéhler class), according to the celebrated Yau theorem:

Theorem 3.1.2. [Yau78/

Let (X,L) be a polarized Calabi-Yau manifold, and Q € H°(X,Kx) such that
fx QO AQ = 1. Then there exists a unique smooth Hermitian metric ¢y on L
whose curvature form w = dd¢cy is a Kdhler form, satisfying the complex Monge-
Ampére equation:

W' = (L™ Q A Q.

3.1.1 The classical SYZ picture

The original Strominger-Yau-Zaslow conjecture [SYZ96] appeared as an attempt
to provide mathematic explanation to the following duality phenomenon, initially
observed by physicists: a smooth Calabi-Yau threefold X should admit a mirror
dual X, satisfying a certain amount of dual properties - the complex geometry of X
being somehow encoded by the symplectic geometry of X. The simplest incarnation
of this would be the quarter-rotation of the Hodge diamond when passing from X
to its mirror dual:

WP(X) = P (X).

109
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More generally, one expects various correspondences between moduli spaces attached
to X and X: the moduli space of holomorphic D-branes on X (which are complex
submanifolds with additional structure) should be isomorphic to the moduli space
of special Lagrangian D-branes on X. Thus, since X itself is the moduli space of
points in X, one should be able to realize X as a certain moduli space of special
Lagrangian submanifolds of X.

Definition 3.1.3. Let (X,w,Q) be a Calabi-Yau manifold of dimension n, and B
an n-dimensional (real) topological manifold.

A special Lagrangian fibration f : X — B is a continuous map which is a smooth
torus fibration outside a codimension 2 subset I C B, and such that for allb € B\T,
wip-1) = 0 and the imaginary part I(Q) -1 = 0.

If f: X — B is a special Lagrangian torus fibration, we write B*" := B\ T’
its smooth locus, each smooth fiber X, = f~1(b) for x € B is a smooth, special
Lagrangian (real) torus inside X.

Loosely speaking, the SYZ conjecture predicts that if X, X are two mirror dual
Calabi-Yau manifolds, each of them should admit a special Lagrangian torus fibra-
tion onto the same half-dimensional base B, and those two fibrations should be dual
to each other, in the sense that for b € B, the fibers X, and X, should be dual
tori, i.e. X, ~ H'(X,,R/Z). Hence, given a Calabi-Yau manifold X and a special
Lagrangian fibration f : X — B, the SYZ heuristic provides a program to recon-
struct the mirror X, by dualizing the fibration f over B® and then extend this
fibration over B.

The problem of compactifying a smooth Lagrangian torus fibration into a singu-
lar one has proven to be a difficult problem, and has led to many developments
over the past years; we refer the reader to the series of recent or upcoming papers
[RZ21al, RZ21Db| [RZ] for some progress on these questions.

The fibration induces the two following structures on B¥™: a Z-affine structure VZ,
and a Riemannian metric gp called the McLean metric. We start with a definition:

Definition 3.1.4. An integral affine structure on a topological manifold is an atlas
of charts (called Z-affine charts) with transition functions in GL,(Z) x R™.

If B is a manifold endowed with an integral affine structure, it makes sense to
speak about integral affine functions on B - those are continuous functions on B that
are, locally in Z-affine coordinates, of the form f(z1,...,2,) = ayz1+...+apx, +0,
with a; € Z and b € R. We denote by Affg. the sheaf of integral affine functions on
R™.

Lemma 3.1.5 ([KS06, 2.1]). An integral affine structure on a topological manifold
M is equivalent to the datum of a subsheaf Affg of the sheaf of continuous functions
on B such that (B, Affp) is locally isomorphic to (R™, Affgn).

Remark 3.1.6. Given an integral affine structure on a topological manifold M,
there s a monodromy representation

T:m(B) — GL,(Z) x R"

defined by covering a loop in M by affine charts and composing the corresponding
transition functions. See [KS06, 2.2] for more details.
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Let b € B and v € T,B a tangent vector, then the symplectic form w on X
induces an isomorphism between 7, B and T X}, the latter of which can be identified
to H'(Xp, R) via evaluation of harmonic 1-forms (here we are using the fact that X
is a real torus).

The lattice and metric on T, B are now simply taken to be the pullbacks of the lattice
H'(X},Z) and the Hodge metric:

o)~ [ anvs

the Hodge star being the one of the metric induced on X, by w.
One can check that there locally exists a convex function K : B — R such that
in Z-affine coordinates y;, the McLean metric can be written as:

_PK
Y5 = Bydy;

Note that the above constructions also work for a Lagrangian torus fibration, not
necessarily special.

Conversely, starting from the data of (B, VZ, K) a smooth Z-affine manifold together
with a (multi-valued) convex function, one can construct a toy model of Lagrangian
fibration with base B as follows: set X = X(B) to be the tangent torus bundle,
that is, X(B) = TB/A, A being the local system of lattices associated to VZ.

In term of local Z-affine coordinates y; on B, we can pick fiber coordinates z; = dy;,
and the complex structure on X is defined by requiring the functions:

— p2im(zj+iy;)

Zj

to be holomorphic. In particular, the map f is now given by:

1

f(zla S Zn) = %(_ 10g|z1\, ) _log‘zn‘)

The Kéahler form on X is defined in terms of its local potential:
w =1i00(K o f),

which restricts to zero on any torus fiber - we even have a stronger statement, that
the Kéhler metric g, restricts to a flat metric to each of the torus fibers, hence the
name semi-flat metric. Moreover, the complex Monge-Ampére measure:

w" = (dd°(K o f))"

is directly related to the real Monge-Ampére measure of K in affine coordinates, as

we have: )

(dd(K o f))" = det( )dz A dz,

0y;0y;
where dz = dz N ... Ndz,.
Later on, it was realized that the SYZ picture should rather occur as an asymptotic



112 CHAPTER 3. THE NON-ARCHIMEDEAN SYZ FIBRATION

phenomenon on the moduli space of Calabi-Yau manifolds, near the locus of the
boundary where the manifolds degenerate in the worst possible way - in the ter-
minology of mirror symmetry, this means that the manifolds approach the "large
complex structure limit". Thus, we now let X — D* be a degeneration of Calabi-
Yau manifolds, polarized by a relatively ample line bundle L. We will assume that
the degeneration is the worst possible, i.e. that the fibers X; break into as many
pieces as possible as ¢ — 0. The precise definition is as follows:

Definition 3.1.7. The family X is mazimally degenerate if for every dit model
2 — D of X, the equality:

dim Z2(Z") = dim(X;)
holds.

Concretely, this means that for any dlt model 2 of X, there exists a non-
empty intersection of n components of 2y, where n = dim X;. The latter condition
is equivalent to the fact that the monodromy action on H"(X;, Q) is maximally
unipotent, i.e. has a Jordan block of size (n + 1).

Example 3.1.8. In the 2-dimensional case, projective mazximally degenerate Calabi—
Yau surfaces coincide with either K3 surfaces of Type 111, or abelian varieties such
that after semi-abelian reduction, the abelian part of the special fiber of the Néron
model 1s trivial.

We now let (X, L) be a polarized, maximal degeneration of Calabi-Yau manifolds.
We fix a relative trivialization Q € H°(X, Ky/p-), and write w = (w)ep+ the
family of Kéahler-Ricci flat metrics on X, normalized by the cohomological condition
wy € ¢1(Ly).

In this setting, a strong version of the SYZ conjecture would predict the following:
for any |t| << 1, the fiber X; admits a special Lagrangian fibration:

fi : Xy — By,

onto a compact base B; of real dimension n, depending in a smooth way of ¢ in

a reasonable sense, and whose fibers are of size (log|t|™')~! with respect to the
Cl(Lt)

logt|
have bounded diameters by [LT20].
In particular, the rescaled Ricci-flat Kéhler manifolds (X}, @;) should collapse in the
Gromov-Hausdorff sense to the base B := lim;_,o By, endowed with an asymptotic
version of the MacLean metric alluded to above.

rescaled Calabi-Yau metric @; € . These rescaled Calabi-Yau metrics indeed

Conjecture 3.1.9. (Weak SYZ conjecture) Let (X, L) be a polarized, mazimal de-
generation of Calabi-Yau manifolds. Then for any 0 > 0, there exists € = €5 > 0
such that for |t| < e, there exists a special Lagrangian fibration:

ft:Ut—>By

where Uy C X is an open subset of Calabi-Yau measure greater than (1 —6).
Moreover, the rescaled Calabi- Yau metrics (X, &) converge in the Gromov-Hausdorff
sense as t — 0 to a compact n-dimensional base (B, gg), such that:
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e (B, gg) is a the metric completion of a smooth Riemannian manifold (B™, ggsm ),
whose complement I' = B\ B*™ has Hausdorff codimension > 2;

e the smooth locus B¥™ is endowed with an integral affine structure, such that the
. . . . . 2
metric g has a potential locally in affine coordinates: we may write g;; = %
10Y;
in affine coordinates (Y1, ..., Yn), for a smooth function K;

o the metric g solves the real Monge-Ampére equation det(g;;) =1 on B™.

This is known in the case of abelian varieties by the work of [Odal8|, and for
Fermat hypersurfaces in P by [Li22).

3.1.2 The essential skeleton

In this section, we will explain how the base B of the SYZ fibration can be realized
in the non-archimedean world.

Let X — ID* be a projective degeneration of smooth complex varieties, with rela-
tively trivial canonical bundle. We use the same notation X/K for the base change
to K = C((¢)).

We let Q € H(X, Kx/p+) be a fiberwise nowhere-vanishing n-form on X; this in-
duces a continuous family of volume forms v; := i’ O A Q, on the X,’s, and thus a
continuous family of probability measures:

Vg

Mt = Vt(Xt).

We are interested in determining the hybrid limit of the p;’s, so that in light of the
discussion following proposition [1.1.27], we fix an snc model 2~ — D of X, in order
to understand the asymptotic behaviour of the measures (Log, )14

Write 2y = > ., a;D;, and:

el

K58y = Ko+ (Zowea — 20) = Y biD.

i€l
We choose our relative holomorphic n-form so that it extends as a holomorphic
section of K l%g/D. We will assume for convenience that min;es Z_i =0, see [BJ17] for
the more general computation.
We let (%, z) be a coordinate chart, and J the set of irreducible components of 2
meeting %/. Then we have, on % :

dt bs dZO dZn
WA — = 27X =N LN 2
A fjl;[] J 20 Zn

with f holomorphic and nowhere-vanishing. Restricting to the fiber X, this yields:

/ ,/t:/|f|2H|zj|2bf|dlogz1/\.../\dlogzn
UNX¢

Jj€J

2

)

where the second integral is taken over a domain of the form )
inside C™*1.

jeg i log|z;| = log|t|
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We thus work in logarithmic polar coordinates, and write z; = exp(w; + ;). This
yields, after integrating over the angle directions and the coordinates not in J:

/ v :/ FHebj“’jdwj,
wUNXy Tt

jedJ

where 7, = {3, ;a;w; = —log|t|} and F is a non-vanishing, bounded continuous
function. It then follows from the change of variable w; = a;w; that as ¢t — 0, we
have:

| = togi )" x o)
UNX¢
where d(J) = [{j € J/b; = 0}| — 1. This leads to the following definition:

Definition 3.1.10. Let 2 be an snc model of the Calabi-Yau variety X/K, and
write Zoy = Y . 0:D;, Klgfyg/m = > e biDi. Fori € I, set Ky = %, and let Ky =
mingey K;.

A face T C SK(Z") is essential if K; = Kmin for each vertexr v; € T; we define the
essential skeleton Sk(X) C Sk(Z") as the union of the essential faces of Sk(Z), it

15 a subcomplex of dimension d < n.

As suggested by the notation, the essential skeleton Sk(X') turns out to be inde-
pendent of the choice of snc model 2", by [KS06l thm. 3|. The essential skeleton can
also be defined more intrinsically as the locus where the weight function associated
with a non-vanishing section Q € H(X, Kx), wtg : X* — R defined in [MNT15]
reaches its minimum; given an snc model 2" /R and a vertex v; € Sk(Z"), we simply

have wtq(v;) = 2— with the notation from the previous computation. We refer the

reader to [MNT5| and [NX16] for details.

We now have the following result, which computes the weak limit on the Calabi-
Yau measures inside the hybrid space X™". The support of the limiting measure is
precisely the essential skeleton:

Theorem 3.1.11. /BJ17, thm. BJ
Let X — D* be a degeneration of Calabi-Yau manifolds, and 2 € H*(X, Kx/p+) a

relative trivialization of the canonical bundle. Writing vy = i”QQt Ay, we have:
vi(Xy) ~ Clt]"(loglt| )7,

ast — 0, where k € Q and d = dim Sk(X) < n. Moreover, the family of rescaled

measures:
Vg

Wy = Vt(Xt)

converge weakly on X™P to a Lebesque-type measure supported on Sk(X) C Xa0.

Here by Lebesgue-type measure we mean a weighted sum of Lebesgue measures
on the top-dimensional faces - in fact when X has semi-stable reduction the weights
are all equal.

This result provides heuristic explanation as to why the base B of the SYZ fibration
should be the essential skeleton Sk(X): since the Calabi-Yau metric is obtained by
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solving the complex Monge-Ampére equation (w;)" = Ciuy, one would expect the
solution to the non-archimedean Monge-Ampére equation MA(¢) = g provided by
theorem [[.4.7] to provide a non-archimedean incarnation of the family of Calabi-
Yau metrics; and since p is supported on Sk(X') one would hope to translate this
equation into a real Monge-Ampére equation on Sk(X), so that the base B appearing
in conjecture is Sk(X). We will come back to this in section [3.1.4]

As we shall now explain, there exists a class of R-models of X whose skeleta realize
the essential skeleton. Those are the minimal models in the sense of MMP:

Definition 3.1.12. Let X/K be a Calabi—Yau variety. A minimal model of X is
a good dit (def. |1.1.11) model Z /R, such that the logarithmic relative canonical

divisor is trivial, i.e.
1
szg/R = Kg/R + %),red - :% ~ Ogg

Building on the general MMP machinery, the existence of such models is known
when X is defined over an algebraic curve (and is expected to hold in the general
case):

Theorem 3.1.13 ([NXY19, Theorem 1.13|). Let X/K be a projective Calabi—Yau
variety, and assume that X s defined over an algebraic curve. Then there exists a
minimal model 2" /R of X. Furthermore, there exists a finite extension K'/K such
that the base change Xy admits a minimal model with reduced special fiber.

Such models are however not unique, but they turn out to have the same skeleton
inside X*" by [NX16] (even though the triangulation may differ), which is in fact
the essential skeleton of X:

Theorem 3.1.14. [NX16, thm. 3.3.3] Let X/K be a Calabi-Yau variety, and let
2 /R be a minimal dlt model of X. Then the skeleton Sk(Z") C X" is the essential
skeleton of X.

Note that if the minimal model is an snc model, then this is a straightforward
consequence of definition [3.1.10}

3.1.3 Affinoid torus fibrations

From now on, we will assume that X/D* is a maximal degeneration of Calabi-Yau
manifolds. Then the metric spaces (X;, &) are conjectured to “look like” the total
space of a special Lagrangian torus fibration over Sk(X), submersive away from a
singular locus of real codimension 2; the affine structure on the base being induced
by action-angle coordinates. Building on these considerations, it is reasonable to
expect that the essential skeleton Sk(X') should be equipped with an integral affine
structure, singular in real codimension > 2. We will now explain how to try and
construct such an affine structure in a purely non-archimedean setting, we write X"
the Berkovich analytification of X viewed as a variety over K = C((t)).

As we saw in section [3.1.1] our local semi-flat model for the SYZ fibration is given
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by f: T — Ng, the map f being simply f(z1, ..., z,) = (= log|z1], ..., — log|z,|).
The non-archimedean counterpart of this map is the following:

val : T*" — NR.
This leads to the following definition:

Definition 3.1.15. Let p : X* — B be a continuous map to a topological space
B. For any point b € B, we say that p is an affinoid torus fibration at b if there
exists an open neighbourhood U of b in B, such that the restriction to p~'(U) fits
into a commutative diagram:

P~ U) —— val ™} (V)

ip Jw

~

- V’
V' being an open subset of R™, the upper horizontal map an isomorphism of analytic
spaces, the lower horizontal map a homeomorphism, and the map val defined as in

section [2.2.1]

Note that the above definition implies that B is a topological manifold at b. In
the case where 2 is a good dlt model of X, the base B = Sk(Z") and p is the
Berkovich retraction pg-, this does not necessarily hold at every point of Sk(.Z").
Given a continuous map p : X** — B, we denote by B*™ the locus of points in B
where p is an affinoid torus fibration at; we call B\ B*™ the discriminant or singular
locus of p. As in the archimedean case, the (possibly disconnected) topological
manifold B*™ is endowed with an integral affine structure, which is the pull-back
of Affg= via the charts in B.1.15] An alternative, more intrinsic description of this
structure is given in [KS06, 4.1, Theorem 1|: let U C B be a connected open
subset. Then if h is an invertible analytic function on p~!(U), its modulus |h| is
constant on the fibers of p by the maximum principle, so that it defines a continuous
function on the base. We now have:

Aff o (U) = {logl] | h € O%un (0™ (U))}.
Example 3.1.16. If 2" /R is a good dlt model of X with reduced special fiber, then
the Berkovich retraction pgy : X* — Sk(Z") is an affinoid torus fibration over the
interior of the mazimal faces T of Sk(Z"). Indeed, the retraction over T only depends
on the formal completion of 2 along the corresponding 0-dimensional stratum p,
and we have that pgg(i") is the generic fiber of Spt Oy ,. By the dlt condition, the
pair (2, Z) is snc at p, so that:

O p = R[[20, ., 20]) /(= 20--20).

The generic fiber X embeds in the torus:

T* = (Spec K[zq, ..., zn) /{t = z0-..2})"

and the Berkovich retraction is the restriction of the val map over the open simplex:

Int(r) = {zg+ ... + 7, = 1} C (Ryo)" ™.
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Definition 3.1.17. Let X/K be a smooth projective variety, B = Sk(Z") the skele-
ton of a dit R-model of X. We say a continuous map:

p: X" — B
15 an admissible retraction if the following hold:

e there exists a piecewise-affine locus I' C B of codimension > 2 such that p is
an affinoid torus fibration over Sk(X) \ I';

e the retraction p is piecewise-affine: for any piecewise-affine function : B —
R, the pullback ¢ o p : X* — R is a piecewise-affine function on X" (see

defn. [1.1.21).

One way to produce a map satisfying the second item of the definition is to
choose an snc model 27 — 2" dominating 2", and a piecewise-affine map = :
Sk(Z7) — Sk(Z"). Then the retraction p = 7o py is piecewise-affine, it would
be interesting to know whether or not all piecewise-affine maps p : X*"* — Sk(2Z")
arise this way.

As suggested by the definition, affinoid torus fibrations are related to the local toric
geometry of X and its models. We now describe a more global class of examples,
that we will be using as building blocks later on.

Let 2" /R be a regular toric model of T, i.e. a regular toric R-scheme such that
2 xpr Spec K = T, which we assume to have reduced special fiber. Such a model
is described by a regular fan 3 C NR := Ng X Rs¢, whose cones intersect Ng x {0}
only at the origin.

We consider the following closed subset of T*":

52”; = {v, € T*| v, has a center on 2"},

which admits a Berkovich retraction:

o~

pa + Xy — Sk(Z)

defined as in remark [[.T.T8] In this case, the map py can be described explicitly as
follows: let ¥; be the polyhedral complex in Ny obtained by intersecting the fan )y
with Ng x {1}. There is a natural identification between 3, and D(.%Z)), sending a
vertex of (%) to the primitive generator of the corresponding ray of 3}, and then
extending on each face by linearity. Moreover, it follows from [GJKMI19, Theorem
A 4] that v(|X]|) = Sk(Z") € T*", where v : Ng — T*" is the Gauss embedding

from definition 2.2.2]
Proposition 3.1.18 ([NXY19, Example 3.5]). The equality:
2y = val ! (|%])

holds, and py = val -, hence is an affinoid torus fibration over the relative interior

|7y
of Sk(Z).

This also holds when X is a regular proper toric variety over K and 2°/R a
regular proper toric model of X, by [GIKMI19, Theorem A.4|.
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Proof. We start by proving the first equality. Let x € T*", we know from lemma
below that x has a center on 2" if and only if y(val(z)) has a center on 2.
Thus, it is enough to prove that for n € Ng and y = y(n), y has a center on 2" if
and only if n € [¥4].

By [GJKM19, Lemma A.1], if y € v(NNg) has a center on 27, it must be the closure
of a torus orbit ¥ C 25. By [KKMSD73, Theorem 6], there exists a cone ¢ € 3.
such that the generic point of Y is contained in the associated toric affine chart
2, = Spec R[g N M |. In particular, for any monomial z™ that is regular on 2,
we have v,(2™) > 0. In other words, writing y = y(n), we have (n,m) > 0 for all
m € &, so that n € 0. Since v,(t) =1, y € v(|X4]).

By the same argument, if n € |¥;|, there exists a cone ¢ such that n € o, which
means that v,,) has positive value on each monomial m € &, and thus has a center
on 4, and in particular on 2.

To prove the second equality, since py- is the identity on v(|X;]) = Sk(Z"), we
merely have to prove that py = py o val. However this follows directly from the
definition of pg, and the fact that cy (z) € ca(y(val(z))) for x € Z, by lemma
Indeed, py (x) only depends on the values v,(z), where z is a local equation
for a component of 24 at cy (z). Since 2 is a toric model, these local equations
can be taken to be monomials, so that the result follows from the fact that x and
v(val(z)) take the same values on monomials. O

Lemma 3.1.19. Let © € T*. Then x has a center on 2" if and only if v(val(x))
has a center on & . Moreover, if this holds, we have cy () € co (y(val(x))).

Proof. Let 2 C % be a toric compactification of 2", i.e. a proper toric R-scheme
containing 2 as a torus-invariant open subset. By the valuative criterion of proper-
ness, any valuation on T®" has a center on 2. We write c4(x) for the center of
x € T*. We start by proving that ¢y (y(val(x)) is the generic point of the clo-
sure Z of the torus orbit O(¢) in 2~ containing c,(z) (in particular, ¢, (x) must
be contained in the toric interior of Z). We may work on the toric affine chart
2., = Spec R[5 N M] associated with Z. Since the valuation ~(val(z)) is monomial,
it is enough to prove that y(val(z))(z™) = v,(2™) > 0 for m € § N M and that
v(val(z))(z) > 0 for z a local equation of any torus invariant divisor containing Z,
to have that cg(y(val(z))) lies in Z. Since 2™ is regular on 2, the first condi-
tion holds; the local equation z is monomial and y(val(z))(z) = v,(z) > 0 since Z
contains ¢4 ().

Now assume that v, is centered on 27, i.e. ¢4 (z) € Z . Since ¢4 (z) is contained
in the interior of the toric stratum Z and lies in 2, so does the generic point of Z,
ie. cy(y(val(z))) € Z. This implies that «y(val(x)) has a center on Z". Conversely,
if y(val(x)) has a center Z on 2", then Z C 2" and c4(z) € Z as mentioned above;
thus, ¢4 (x) € 27, which concludes the proof. O

As our main interest lies in degenerations of Calabi-Yau manifolds, the above
class of examples is too restrictive for us. We are thus naturally lead to consider
degenerations which are only locally formally toric, so that we may apply remark
to produce Berkovich retractions which are locally affinoid torus fibrations.
Let us make this more precise. Following [NXY19|, we will say that an R-scheme
of finite type £ is toric if there exists a toric k-scheme of finite type Z, together
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with a toric morphism ¢ : Z — A}, such that 2 ~ Z x,1 R. Writing N for
the lattice of 1-parameter subgroups of the torus of Z, such a scheme is described
by a fan 3 in Ng, together with a linear map ord(t) : |¥| — Ry, defined by
ord(t)(n) = ordy(t on) for a 1-parameter subgroup n : G,, — Z. Note that the map
ord(t) recovers the function ¢ uniquely, since it is a monomial.

Definition 3.1.20. Let 2" be a normal R-scheme of finite type, such that (2, Zo)
is a good dlt pair, and let' Y be a stratum of Zy. We say that 2 is toric along Y
if there exists a toric R-scheme 2, a stratum W of %y and a formal isomorphism
over R

Ly = Zjw.

The upshot is now that if 2 is toric along Y, then the Berkovich retraction
par + X — Sk(Z") is an affinoid torus fibration over Star(ry). Although this
follows from [NXY19, Theorem 6.1] (end of the proof) and [NXY19, §3.4], we sketch
an argument for reader’s convenience.

As mentioned in remark [1.1.18] the retraction py over Star(rz) only depends on

@/\Z, so that we may assume that 2" is a toric R-scheme. The equality ps = val
now holds over Star(7z) by[3.1.18] so that it follows from [3.1.15|that p- is an affinoid
fibration over Star(7z).

An obvious necessary condition for 2  to be toric along Y is for Y to be a toric
variety itself; our next result (joint with E. Mazzon) states that under a positivity
assumption on the conormal bundle of Y C 27, the converse holds:

Theorem 3.1.21. [MPS21, thm. B| Let X/K be a smooth projective variety of
dimension n, and Z /R be a dlt model of X with reduced special fiber Zo =, Da,
such that every D, is a Cartier divisor.

Let Z = DonNDiN...ND,_, be an r-dimensional stratum of 2}, such that:

e 7 is a proper toric variety with toric boundary Ay = Za\ZgzDa ZNDy,;
e the conormal bundle Vg g 1S @ nef vector bundle on Z;

e foreach a ¢ {0, ...,n—r}, the intersection D,NZ is either empty or connected.

Then the formal completion @ 1s 1somorphic to the formal completion of the nor-
mal bundle N' = vy, 4 along the zero section. In particular, 2 is toric along Z (in

the sense of definition|3.1.20).

The proof of the above theorem will be provided in section[3.2] As an immediate
consequence of the discussing above, we have

Corollary 3.1.22. The retraction py : X — Sk(Z) is an n-dimensional affinoid
torus fibration over Star(tyz). In particular, the integral affine structure induced by
pa over the interior of the maximal faces of Sk(Z") extends to Star(rz) with no
singularities.

Example 3.1.23. Let X/K be a smooth, mazimally degenerate Calabi-Yau mani-
fold, and Z /R be a good minimal dit model of X with reduced special fiber. Then
INXY19, Theorem 6.1] asserts that the Berkovich retraction pgy : X** — Sk(Z") =
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Sk(X) is an affinoid torus fibration away from the codimension 2 locus of the trian-
gulation.

This statement is proved by showing that 2 is toric along the 1-dimensional strata
of the special fiber - which are rational curves, hence toric - which yields on the way a
complete description of such models along these strata. In this very case, the positiv-
ity assumption on the conormal bundle can in fact always be achieved via blowing-up
certain zero-dimensional strata, so that thm. can be seen as a generalization
to higher-dimensional strata of [NXY19, prop. 5.4]. This description also provides
a way to compute the singular Z-affine structure induced on Sk(X), as well as its
monodromy. In sections|3.5.4 and|4.2.1| we give more details and examples of such
computations.

3.1.4 The Monge-Ampére comparison property

In this section, we explain the expected connection between the non-archimedean
Monge-Ampeére operator and the real Monge-Ampére operator on skeleta.

Let N be alattice, ¢ : U — R a convex function defined on an open subset U C Ng,
and let d\ be the Lebesgue measure on the dual Mg := Hom(NV, R).

For zy € U, we define the gradient image of ¢ at xq:

Vo(xg) =4l € Mg/d(xo) + l(x — x0) < ¢(x) Vo € U}.

Geometrically, this is the set of covectors cutting out affine hyperplanes in Ng that
meet the graph I' of ¢ at xy, and are below I'" on all of U.

For instance, if ¢ has C'-regularity, it follows immediately from the convexity of ¢
that the gradient image of ¢ at xy only contains the differential d¢,, of ¢ in the
usual sense.

More generally, if E C U is a Borel set, we set Vo(E) = U,,eeVo(zo).

Definition 3.1.24. Let ¢ : U — R be a convex function defined on an open subset
U C Ng.
The real Monge-Ampére measure of ¢ is defined as:

M (9)(E) = dA(V(E)),
for any Borel set E C U.

If ¢ has C*-regularity, then this is nothing but the density measure det(V2@)d\".
Recall that in the semi-flat setting of section [3.1.1] the Kahler Ricci-flat metric w is
given by:

w=dd(K o f)

for a locally defined convex function K : B — R, and f : X —— B the special
Lagrangian fibration. The Calabi-Yau condition was then translated into the real
Monge-Ampére equation for K:

PK )=
0y;0y;

det(
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with C' > 0 a real constant.
Thus, the semi-flatness condition can be expressed as the fact that the local potential
for the Calabi-Yau metric is constant along the fibers of the SYZ map, which reduces
the complex Monge-Ampére equation to a real Monge-Ampére equation on the base
of the fibration.
We now move back to the non-archimedean picture. In this setting, the analog
of the Calabi-Yau metric is the solution ¢ € CPSH(L*") to the non-archimedean
Monge-Ampére equation:

MA(¢) = po,

where pi9 is the limit measure from thm. [3.1.11]- when X has semi-stable reduction,
this is simply the Lebesgue measure on the essential skeleton Sk(X).

Definition 3.1.25. Let X/K be a smooth projective variety over K, 2 /R a dlt
model of X, and let p : X* — Sk(Z") be an admissible retraction (defn. .
We say that a continuous, semi-positive metric ¢ on L is a semi-flat metric on X
with respect to p if it restricts to a toric metric over any open subset of Sk(Z") over
which p is an affinoid torus fibration.

A bit more precisely, this means that after pulling back L*" to the open Valfl(V)
as in defn. [3.1.15] and choosing a trivialization, the metric ¢ extends to T*" as a
toric metric.
When ¢ is a toric metric, it follows from [BGPS14] that the non-archimedean Monge-
Ampére equation can be reduced to a real Monge-Ampére equation:

Theorem 3.1.26. |[BGPS1j|] Let (Z, L) be a polarized toric variety over K.

Let ¢ be a semi-positive toric metric on L, given by a convex function which we
denote by ® : Ng — R.

Then the non-archimedean Monge-Ampére measure of the metric ¢ can be computed
as follows:

MA(¢) = nle. (A (P)),
where 1 : Ng — Z?" is the embedding given by the Gauss section.

As a result, by locality of the non-archimedean Monge-Ampére operator (see
[CLD12], [BEJI5, cor. 5.2|) and the argument of [Vil20, cor. 5.10], if ¢ is a semi-
flat metric with respect to an admissible retraction p, this implies that away from
the discriminant locus of p, the non-archimedean Monge-Ampére measure MA(¢)
is supported on Sk(Z"), and can be expressed locally as the real Monge-Ampére
measure on Sk(:Z") of locally defined convex functions - which may be however
fairly hard to compute explicitly in terms of the metric ¢.

In general, one would hope to write ¢ = ¢ + 1 for a certain model metric ¢~ on
L, and ¢ : X** — R a continuous function, and be able to rephrase the semi-flat
condition into the invariance property:

Y=1vop

over Sk(Z) \ I We would then obtain, locally in toric charts, an equality of
measures of the form:

MA(¢) = nle. (A (P2 +¢)),
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where ® & is a local toric potential for the model metric ¢». While it is unclear
how to do this in general because it depends on the explicit description of the toric
charts for the retraction, we are able to work this out in the case of degenerations
of hypersurfaces, see remark [£.3.7]

If p = py is the Berkovich retraction associated to an snc model 2 /R and we
restrict our attention to the interior of the maximal faces of Sk(Z"), then things get
simpler and we have the following result:

Theorem 3.1.27. [Vil20] Let (X, L) be a smooth projective variety over K, and
(2, %) be a semi-stable R-model of (X, L). Let ¢ € CPSH(X, L) such that:

¢ =0z +1,

where ¢ € CO(X™). Let 7 be a mazximal face of Sk(Z"), and assume that the
invariance property v = 1 o py holds over Int(r). Then we have the equality of
Measures:

1Int(7’) MA(¢) = n'%(’(ﬂ‘ Int(‘r))'

We now let X/K be a maximal degeneration of CY manifolds, polarized by the
ample line bundle L. We write ¢ € PSH(X?®", L*") the unique solution to the NA
Monge-Ampére equation:

MA(¢) = po

Definition 3.1.28. (Weak comparison property, [Li20d, def. 3.11]) We say that
¢ satisfies the weak NAMA /real MA comparison property if there exists an snc
model 2" /R of X, together with a model £ of L on Z°, such that the function
Y X* — R defined by the formula:

¢=0z+Y
satisfies 1 =1 o py over the interior of the maximal faces of Sk(Z).

The motivation for this definition resides in the following theorem, which proves
that the above condition is sufficient for the weak SYZ conjecture to hold:

Theorem 3.1.29. [Li20d, thm. 1.3] Let X — D* be maximal degeneration of
CY manifolds, polarized by an ample line bundle L. Assume the NAMA /real MA
comparison property holds.

Then for any § > 0, there exists €5 such that for all |t| < es, there exists a spe-
cial Lagragian torus fibration on an open subset of X; of (normalized) Calabi-Yau
measure greater than (1 —§).

Very loosely, the idea of the proof of the above theorem is that the solution
to the non-archimedean Monge-Ampére equation ¢ provides a solution to the real
Monge-Ampére equation on an open region of Sk(X) that has full measure; and
pulling back this solution by the map Log, from prop. |1.1.26| provides an ansatz
for the Calabi-Yau potentials on a region of the X; with asymptotically full measure:
if K C Int(7) is a compact subset, then Li obtains bounds for |¢cy — ¢ o Log 4| over
K using uniform Skoda estimates on the highly degenerate Calabi-Yau manifolds
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X; |Li20b]. The estimates on the potential are then enough to prove the existence
of a special Lagrangian fibration over Log;(K ) which is a perturbation of Log,-,
by the results of Y. Zhang [ZhalT|.

While the above theorem provides us with a asymptotic SYZ fibration, it does not
describe completely the Gromov-Hausdorff limit of the family: we only obtain that
the disjoint union of maximal faces of Sk(X) endowed with a real Monge-Ampére
metric embeds into the Gromov-Hausdorff limit. We expect that in order to ob-
tain Gromov-Hausdorff convergence to the metric completion of Sk(X) \ I' for a
piecewise-affine locus I' of codimension 2, we need a stronger version of the compar-
ison property in order to obtain a solution to the real Monge-Ampére equation in
codimension 1:

Definition 3.1.30. (Strong comparison property) Let X/K be a smooth projective,
mazimally degenerate Calabi- Yau variety, polarized by an ample line bundle L.

Let ¢ be the unique positive metric on L satisfying the non-archimedean Monge-
Ampére equation:

MA(¢) = po.

We say that ¢ satisfies the strong comparison property if there exists an admaissible
retraction p : X* — Sk(X) such that ¢ is a semi-flat metric with respect to p.

Assume that the answer to the above question is positive, and write I' C Sk(X)
the discriminant locus of p. Then (Sk(X)\T') = J,c4 Ua such that p is an affinoid
torus fibration over U,, we write ¢, : U, —> R the convex, toric potential for ¢ on
U,. Then by the previous discussion there is an equality of measures on U,:

1y, po = nlA (¢a),

where the real Monge-Ampére measure on the right-hand side is computed with
respect to the integral affine structure induced by p. Moreover, for a # 3, the
difference ¢, — ¢3 must be affine on U, N Up, so that we may define locally g =

V2 = Z” ;yi‘g;j dy;dy; where the y; are affine coordinates on U,,.

Conjecture 3.1.31. (Kontsevich-Soibelman conjecture) Let (X, L) be a polarized,
mazimal degeneration of Calabi-Yau manifolds. Then there exists a unique admis-
sible retraction:

p: X* — Sk(X),
with discriminant locus T' C Sk(X), such that the solution ¢ to the non-archimedean
Monge-Ampere equation:
MA(¢) = po

is a semi-flat metric with respect to p. Additionally, the collection of local potentials
& = (Pa)a s a smooth, strictly convex solution of the real Monge-Ampére equation
on Sk(X)\ T

Moreover, the rescaled Calabi- Yau metrics (X, &) converge in the Gromov-Hausdorff
sense ast — 0 to a compact n-dimensional base (B, gg), such that:

e (B,gp) contains the smooth Riemannian manifold (Sk(X) \ T, V2¢), whose
complement is of Hausdorff codimension at least 2,
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e B is homeomorphic to Sk(X).

Building on the results from [Li22|, we are able to prove the above conjecture
for degenerations of Fermat hypersurfaces, see section (4.3
Let us point out that assuming the strong comparison property, the strict convexity
of the local potential ¢ can not be deduced from a local PDE argument: there are
non-smooth, non-strictly convex solutions to real Monge-Ampére equations of the
form .4 (¢) = d\ [Mool5|, so that higher regularity of the solution would have to
be obtained through a ’'global’” argument.

3.2 Proof of theorem 3.1.21]
In this section we prove theorem|[3.1.21] We recall the statement and fix the notation.

Theorem 3.2.1. Let X/K be a smooth projective variety of dimensionn, and Z /R
be a dlt model of X with reduced special fiber Zo =, Da, such that every D, is a
Cartier divisor.

Let Z = DyoNDiN...ND,_, be an r-dimensional stratum of Z}, such that:

e 7 is a proper toric variety with toric boundary Ay = Za\ZgzDa ZNDy,;
e the conormal bundle Vg g 1S @ nef vector bundle on Z;

o foreach a ¢ {0,...,n—r}, the intersection D,NZ is either empty or connected.

Then the formal completion @ 1s isomorphic to the formal completion of the nor-
mal bundle N' = vz, 4 along the zero section. In particular, Z is toric along Z (in

the sense of definition|3.1.20).

Note that our assumptions imply that Z is the smooth complete intersection of the
irreducible components D; of Z, containing Z, and thus has simple normal crossing
boundary Az, see remark [3.2.2] Since Z is a complete intersection, the conormal
bundle v ,- is the direct sum of the line bundles Oz(—D;). Hence, here the nefness
assumption simply means that the D;’s containing Z are anti-nef divisors on Z.

3.2.1 Notation and strategy

We set J = {0,1,...,n — r} such that Z = Njc;D;. Since for every irreducible
component D of 2, the intersection D N Z is connected by assumption, this allows
us to denote by D; with | € L the components of 2 intersecting Z transversally
along Z; := Z N Dy, so that the toric boundary of Z is given by Ay =57, ., Z;.

Remark 3.2.2. The dit assumption on 2 and the toricness of Z ensure that Z is
smooth, and that (Z,Ay) is an snc pair. Indeed, the singular locus of Z is a union
of torus invariant subvarieties (see [CLS11l, Proposition 11.1.2]), hence the generic
point of a component of the singular locus is the generic point of a stratum of Ay.
However, (Z,Az) is a dlt pair, thus snc at the generic point of each stratum of Ay.
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Remark 3.2.3. The smoothness of Z and the assumption that the components of
Zo are Cartier divisors imply that 2 is reqular at any point of Z. Indeed, for
any point p € Z and j € J, let z; € Oy, be a local equation of D; at p. As
Ozp =0y ,/(20,- .., 2n—r) is a regular local Ting of dimension r, (2o, ..., 2n—r) can
be extended to form a reqular system of parameters for Oy .

We denote by X C Ng the fan of Z. Its rays are given by Rogu; for [ € L,
with primitive generators u;; the maximal cones of ¥ are in bijection with the set
of unordered r-tuples {i,...,i,} € L" such that Nj_, D;; N Z # &. For a maximal
cone o of ¥, we write L, := {l € L|u; € o}.

Lemma 3.2.4. For any maximal cone o of ¥, we have det((w;)ier,) = £1.

Proof. The smoothness of Z (see remark [3.2.2)) implies that the primitive generators
of o form a Z-basis of N, which is equivalent to the condition det((w;)er,) = £1. O

Let N := vy o 2 Z be the normal bundle of Z in 2, and denote by Z ¢ N/
the zero section. We write Oy (D;);z = Oz(F}) as a Cartier divisor F; on Z, so
that N = ®,c;0z(F};). Since any Cartier divisor on Z is linearly equivalent to a

toric one, for any j = 1,...,n —r, there exist integers \;; such that
Oz(Fy) = 0z( =Y _\uZ). (3.2.5)
leL

For j =0 we set Aoy :=1—3 ", )\ 1oy Aju and verify that

O7(Fy) = O (Do — )17 = 0z( = > F=3_2) = 07(= Y 201,

jeJ\{0} leL leL

We obtain that N = GB]-EJOZ( — ZleL )\j,zZz) and for all [ in L

d Au=1 (3.2.6)

jeJ

The normal bundle A is a toric variety of dimension n+ 1. The corresponding fan )y
lies in Ng x R? and consists of the following cones and their faces (see [CLST1], §7.3]
for a reference). Let eg,. .., e, » be the standard basis of R’; given a cone o € X,
we have

~

o = Cone((0,eq), ..., (0,en—r), (u, (1)) |w € 0) € X.
In particular, we denote the rays of ) by
v; = (0,e;) for j € J, v = (w,(\;;)) for [ € L.

Proposition 3.2.7. For any I1-dimensional toric stratum C' C Z

(C-Dj)v;+ Y (C-D)v,=0in Ng x R”. (3.2.8)
2 )3

jeJ leL
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Proof. The relation in boils down to the two following:

{ZZGL(C “Di)u; =0
(C-Dj) + 2 ier Xia(C - Di) = 0.

The first one follows directly from [2.1.15[in the fan > of Z; the second comes from
the construction of );, and in particular from C-D; = C-F; = =C-> ", ., X\j;Z;. [

The map

ord(t) : Ng x R = Ry (u,w) — ij
=0

is Z-linear, sends all the primitive generators of the rays of ¥ to 1 by and is
compatible with 3 and the fan of A}. Thus, it induces a toric morphism ¢ : N" — A}
whose fiber over 0 is the toric boundary of /. The base change A4 := N x4 R
to R is a toric R-scheme, whose generic fiber is isomorphic to Gy, ;. The special
fiber .4 can be written as Ay = Zie sur, i, where the combinatoric of intersections
between components is exactly the same as in 2.

We prove theorem by constructing a formal isomorphism
f . %'/Z i> </V/2.

More specifically, we proceed as follows. We set the notations X = @/\Z and N =
Hjz

e (sections Let 0 € ¥ be a maximal cone. Denote by Z, and N, :=
Nz, ;2 the corresponding toric affine charts in Z and N respectively. This
induces an open formal subscheme of 91, which we denote by 91,. We construct
a morphism

fo : X\ (Uier\L, Di) = X0 = Ny,

in a similar manner to [NXY19]: we construct n + 1 divisors W¢ and W7 on
2, whose defining equations on the chart X, yields the morphism f,. The
equations are induced by sections of Oz(W¢) and Oz(W7): these are first
constructed on Z, then extended to X by the nef condition on the conormal
bundle v}, 7 assumed in thm. , which ensures the vanishing of higher
cohomology groups for the tensor powers of v, e

e (sections Let 0 and ¢’ be two maximal cones of ¥ intersecting
along a face of codimension one. We establish relations among the respective
divisors and construct sections on X, from those on X,. This allows us to
prove that the morphisms f, on the charts X,’s can be chosen so that they
are compatible on the overlaps X, N X,.. This yields a well defined morphism
f which extends the identity on Z and preserves the ideal .#7, so that it turns
out to be an isomorphism.
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3.2.2 Construction of the divisors

We set
A= Zul ® D; € N ® Divg(Z2") =~ (Dive(Z))";
leL
this is an r-tuple of divisors on 2. Moreover, the restriction of any of these to Z
is a principal divisor by 2.1.13] Given a maximal cone o of X, for any i € L,, we

define det(A
0. et( 7(ul)l6La\{i}> € Divo(2)
det (s, (W)ier,\fiy)

where the column vectors wu; are in the same order in the numerator and in the
denominator, and the denominator has value +1 by

Lemma 3.2.9. The divisor W7 has multiplicity —1 along D;, multiplicity 0 along
Dy forl e L, \ {i}, and along D; for j € J. In other words, we may write:

W7 =-D;+ Z ciaDy
leL\L,
for some coefficients c;; € Z. Moreover, the restriction of W7 to Z is principal.

Proof. The statement on the multiplicities follows from the definition of W7, as

wr=-3% det(u, (ue)rerovi) p

i = det (u;, (Uz/)l/eLa\{i})

Moreover, W7 is a linear combination of the divisors of the r-tuple A, hence its

restriction to Z is principal by O
For j € J, we define the divisor on 2"

ng = —D; — Z NjaDp — Z A iWy¢

leL 1€Ls

=-D; - Z Aja Dy _W_ Z)‘J’7i(7gi+ Z Cilel) (3.2.10)
leL\L, o 1€Ls leL\L,

= —Dj + Z deDl with dj,l = _)‘j,l — Z )\j,ici,l'
l€L\ Ly i1€Ly

The restriction of W7 to Z is a principal divisor, as the VV;’| , are principal and
—Dj, is linearly equivalent to Y oiern N2 by 3.2.5

Lemma 3.2.11. The relation Y ;c ; W7+ ic; W7 = =3 ;Dj—> 1 Dy holds.
Proof. Write W := 3., W7 +3,., W7 € Divo(2). We have

for j € J ordp,(W) = ordp, (W]) = —1
fori e L, ordp,(W)=ordp,(W?)=—1

forle L\ L, ordp,(W)= Zde + Z Ci = _ZAJJ + Z cia(1— Z)\j,i) =—1

jedJ 1€Ls jed 1€Ls jed

by lemma [3.2.9) and the relations and [3.2.0 O
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3.2.3 Construction of the sections for a maximal cone

Let o be a maximal cone of 3. We denote by Z7 and £ the line bundles on X
induced respectively by Q4 (W7) for j € J, and by Qg (W7) for i € L,. Since W7
and W/ are principal on Z, the restrictions (,2”]-"‘ , and Z7  are trivial line bundles
on Z, thus we may choose non-zero global sections s7 and s7 on Z.

We now lift the sections s7 and s{ to global sections of £ and £, which we
still denote by s7 and s7. Indeed, for any n > 1, write (£°/Z),, for the (non-reduced)

subscheme of 2~ defined by the ideal .#7. In the exact sequence
HY(Z | 2)n, £]) — H'(Z | Z) 01, £7) — HN(Z, (V)""),

and in the analogous one for .Z7, the right-hand vanishes: the conormal bundle is
a direct sum of line bundles on Z which are nef by the hypothesis in thm. [3.1.21
and so are its positive tensor powers, thus their first cohomology group vanishes by
lemma [2.1.20] We thus extend the sections constructed above to all of the (2/2),
by induction, which yields an extension to X = I&Hn(‘% /2 ).

Lemma 3.2.12. Under the isomorphism (£7) 2, ~ Oga,(—D;) induced by eq.
3.2.1( (and similarly for i), the restrictions of s§ and s{ to X, are equations for D;

and D;, and thus
wy=t-[J6sH7 T

jeJ 1€ Lo

is an invertible function on X,.

Proof. We show that s is an equation for D; on X,; the proof is analogous for s7.
On Z, W7, = div(h) and s7 is a non-zero global section, which means that

L7 (2) = O,(W)(Z2) = {f € K(Z)|div(f) + div(h) = 0} = Oz(Z) =k
f fh

s} sth=Xek™.

Let U be an open cover of 2"\ ( Uirg oL, Di/) such that D;y = div(gy) for any
U € U, this is possible as D; is a Cartier divisor. On U, W7, = —=Djjp = div(g;")
and

L2(X,NU) = Ox, (X,N0)

fefoy!
s7 sfggl € 0z (X, NU),

where sfg,}l is a regular invertible function on X, N U, as its reduction to 7 is

invertible. Finally, the section sy is defined globally on % and on each open
X, NU gives a local equation of the divisor D;, hence it is a equation for D; on
X, O
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3.2.4 Construction for two adjacent maximal cones

Let 0 and ¢’ be two maximal cones of ¥ intersecting along a face of codimension
one, and let C' C Z be the curve associated with the cone o No’. Setting L., =
L, N Ly, we may write L, = Lyo U {ig} and Ly = Ly U {is}. The sets B =
((vi)ier, > Vig, (vj)jes) and B' = ((vi)icL, .., Ve, (V;)jes) are bases of N=Nea7z
They induce isomorphisms 3, 8" : Z" @ Z’ — N such that the change of basis from
B to B’ is

Loy 19 J
Id  (=C-Diir,, 0\ Loo (3 v;
Mpgp = Blop™ :< 0 -1 O) oo and | v, | = Mzis’F/B Vig
0 (-C . Dj)jGJ Id J Uj Uj

Denote by ((€i)ier,..» iy, (€j)jes) the basis of M = Hom(N,Z) dual to B, and
((eh)ier, .. €5, (€5)jes) the basis dual to B'. Tt follows that

5; &;
8;00 = MB’B Eip . (3213)
8; gj

The isomorphisms 8 and 5" allow us to view

W = ((W7)ier,,.. Wi, (W)jes) € (27 ®Z7) @ Dive(2") =~ (Divo(2))"

and W as elements of N ® Divy(2), that we will still denote by W7 and W7 |

Lemma 3.2.14. Let C C Z be the curve associated with the cone o No’. We have

VVZ."’ =Ws—(C- DZ)VVZ‘(’) fori € Loy
Wi, = -Wg
V[/jff' = W7 —(C-D;)Wg forjelJ

In other words, the relation W7 = (Mgp & Id)W° holds.

Proof. By [2.1.15|we have u;, = —ujy — Y. cr  (C- D)ty S0

det(A "
fOI' 7 & LO’O”) Wza - ¢ ( 7(ul)l€Laa’\{ i} U oo)
det(u“ (ul)l (ra’\{ }7uloo)

_ det(A7 (ul)leLaal\{ }7ulo) . Z (C D )det(A, (u )leL /\{Z}’um)

- det(w, (wier,, (0 tio) " det(ui, (un)ier, 0\ gy Wi )

meLUO'/

det(A, (w)ier,, \{i}> Wi)
det (u;, (Uz)ZGLw,\{i}a Uiy
;o det(A, (w)ier ) det(A, (w)er, )

for1=1 y We = a9 = — 27 =-W?.
00 loo det(uiw7 (ul)leLw,) det(uio, (Ul)leLUU/> 0

—W? — (C- D) = W7 — (C- D)W?;

20’
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For 57 € J, we have:

SN = =N W+ S A (W — (C- D)W

iGLU/ ZGL o
= (= Niw = 2 A€ D) = Ay ) Wi+ S WY
i€L i€Ls
= (C-DYWg+ > AWy by B.2.8
i€L,
W ==Dj=> NuDi= ) N7
leL €L,
=—D; =Y \uDi = > NW7 —(C-Dj)Wg =W7 — (C- D)Wy,
leL i€Ls
VViUI Wo
These relations can be summed up as WZZ; = Mpp | W7 |, ie. W' = (Mpp®
Wy Wy
Id)we. a

The inverse (s7)~" is a section on X of .,2”1‘;:, so by lemma |3.2.14] the sections

SZq_/ - S? X (Sla;))*(CDz) fOI' 7 c LO'O”
s7 = (s7)”

5 —(C-D, ]
57 __5;;.(5;70) (C-Dj) forjeJ

are sections on X of the line bundles (,2”1»"/ and cfj"/. By lemma [3.2.12| these give
equations for D; and D; on the open subscheme X,/, and on X, N X, we have

O'/ (e
i 5

Sgoo = MB’B S?O (3215)
o’ o

Sj 5j

where the additive notation on the matrix corresponds to the multiplicative notation
on the sections. Moreover, on X, N X, we have

wer =t T T 69 = TG 60) - T (597 (7)) - (s5)

jeJ 1€L 1 jeJ €L
_ o\—1 o\—1 > EJCD +> eL C'Di+1 _
=t L) TT 97" (s5)™ oo = Wo,
JjeJ 1€L,

(3.2.16)

hence the invertible function w, on X, extends to X, U X, by w,.

3.2.5 Construction of the morphism

Let I" be the graph with vertices the maximal cones of ¥ (hence the maximal cones
of ¥) and with an edge between o and ¢’ if and only if 0 N ¢’ is a common face of
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codimension one. Note that since Z is proper, if S C Ny is a sphere with center the
origin, then ¥ NS is a triangulation of S. In particular, I' is the 1-skeleton of the
dual complex of a triangulation of the sphere, and is thus connected.

Let 0p € ¥ be a maximal cone, and py € I' the corresponding vertex, that we
will use as a reference point. We fix a tuple of sections s7° of W as in [3.2.3]
Let 0 € ¥ be a maximal cone, and p € I" the corresponding vertex. By connect-
edness of I", there exists a path v from pg to p, hence a sequence of maximal cones
00, . ..,04 = 0 such that o, Moy, is a codimension one face of both o, and oy, for
h=0,...,q—1. The construction of section |3.2.4] allows us to construct inductively
along v a tuple of sections s of W7,

Lemma 3.2.17. The tuple of sections s is independent on the choice of path.

Proof. By for any h = 0,...,q — 1, the sections s?»+! are constructed from
7" by multiplication by the matrix for the change of basis from ((v;)icr,, , (v;)jer)
to ((vi)icL,,,, (vi)jes). Thus, by composition, the sections s7 only depends on s7°
and the change of basis from ((vi)icL,,, (vj)jes) to ((vi)icL,, (v))jer)- O

This provides us with a tuple of sections s” of W for each maximal cone o € ¥,
and the function

we =t [J(s)7 - T (7)) € O(%,)".

jed 1€ Lo

By the w, glue to an invertible function w on X; w admits a (n + 1)-th root
on Z, since it is constant, and by Hensel’s lemma we obtain an invertible function
w’ on X such that (w’)"™! = w. We use the sections s° and the function w’ to define
a morphism

fo i1 Xe — N,

as follows. Denoting by ((&;)icr,, (€j);jes) the dual basis to ((vi)ier,, (v})jes), the
toric chart 91, has the following explicit description:

N, = Spf R[x7,i € LoJ[[x7,j € J]|/{t — x>ieto H2ses =},

Indeed, N, is the formal completion along Z of N x 41 R, where N = Spec k[(5)"N
NJ; since ord(t) = > ,c; €i+ ;o€ on 7, the relation ¢ = yicts ST 2ier % holds.
The map f, is now defined at the level of function rings by

ff :OM,) — O(X,)
X7 aw's] forie L,
/O

X7 = w's]  forjeJ

where the sections s? are viewed as functions on X, thanks to the proof of lemma
SWAV)

Lemma 3.2.18. For any pair of mazimal cones 0,0’ intersecting along a codimen-
sion one face, the morphisms f, and f, coincide on the overlap X, N X, .
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Proof. The cones o and ¢’ correspond to adjacent vertices in I'. Thus, by lemma
We construct s” from any path joining oy to o, and s from s” by the relation
SJI = MB’B 57 in .

The functions x¢ transform into y¢ via the change of dual bases, which is given
by ¢ = Mgpe in Comparing the two formulas, it follows that f, = f,» on
X, NX,. m

Proposition 3.2.19. The morphism of formal R-schemes f : % — j//\z 0b-
tained by gluing the morphisms f, is an isomorphism.

Proof. We follow the argument in [NXY19, Proposition 5.4].
Since the source and the target have same dimension and are integral, it is enough
to check that f is a closed immersion.

If # is the largest ideal of definition of ;V;, i.e. the defining ideal of Z C A,

then f* ¢ = .7 is the largest ideal of definition of @ Indeed, since Z is cut out
inside 2" by the D; for j € J, the ideal .# is locally generated by the s; for j € J;
the same reasoning shows that ¢ is locally generated by the x. The equality
f* 7 = %7 now follows directly from the local definition of f.

We use |Gro61l, 4.8.10] and the fact that f induces an isomorphism on the reduc-
tions to infer that f is a closed immersion, and thus an isomorphism by equality of
dimensions. O

This concludes the proof of theorem [3.1.21} 2 is toric along Z.

3.3 Integral affine structures

Let X/K be a smooth n-dimensional maximally degenerate Calabi-Yau variety. In
this section we compute the transition functions between the charts of the integral
affine structure on Sk(X) associated with a minimal model of X, or obtained by
combining several minimal models. This relies on and generalizes the construction
in [NXY19].

We then focus on certain degenerations of quartic K3 surfaces, and later of quintic
3-folds: we apply theorem [3.1.21] to reconstruct integral affine structures on the
essential skeleton, and provide explicit formulas for the monodromy transformations
around the singularities.

3.3.1 Integral affine structure near a toric vertex

Let X/K be a smooth variey, and let 2" /R be a dlt model of X with reduced
special fiber. We assume that D is a toric irreducible component of 2y, whose toric
boundary is the intersection of D with other irreducible components of 2.

We let ¥ p be the fan of D inside Ng, and let:

Gup, : Star(vp) — Ny

be the unique embedding sending vp to the origin, each vertex v = wvp, to the
primitive generator e; of the ray in >p corresponding to the boundary component
Z; = Dyn D, and that is affine on each cell of Star(vp).
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Definition 3.3.1. The fan structure on Star(vp) is the only integral affine structure
on Star(vp) such that the map ¢, is Z-affine.

Under the assumptions of theorem [3.1.21], we proved that 2 is toric along D,
and that py is an affinoid torus fibration over Star(vp). We claim that the above
construction provides an explicit description of the Z-affine structure induced by p 4
on Star(vp) - note that it only depends on D and not on how D sits inside 2.

Corollary 3.3.2. In the setting of theorem let Z = D be an irreducible
component of Zy. Then the integral affine structure induced by pg over the interior
of Star(vp) is the fan structure defined above.

Proof. By the proof of theorem [3.1.21] and prop. [3.1.18 we have the following dia-
gram:

X)) ——— N
D D

[Pﬁ?f [Val

Star(vp) % Int(%;)

where the upper arrow is an isomorphism of analytic spaces, and the lower one a
homeomorphism. Here X7, and 97, are the generic fibers (in the sense of Berkovich)
of the formal completions 3?/\[) and J/i/;) respectively, and Int(X;) denotes the inte-
rior of the polyhedral complex 3; obtained by intersecting the fan 3 C Ng x R of
the normal bundle of D in 2" with Ng x {1}. In particular, Int(%;) is embedded in
Yp ~ Ng ~ R", the polyhedral decomposition of Star(vp) is the same as Xp, and
the vertex vp corresponds to the origin. By definition, the integral affine structure
on Star(vp) is the pullback via ¢ of the integral affine structure on Xp, and this
concludes the proof. O

3.3.2 Integral affine structure induced by a model

Assume that X/K is a smooth, maximally degenerate Calabi-Yau variety, and let
2" /R be a minimal model of X; we assume that the special fiber 2o = > .., D; is
reduced. We consider a one-dimensional stratum C' = Dy N ...N D,, of 2y, which is
therefore a smooth rational curve, and is such that (2", Zp) is an snc pair in a formal
neighbourhood of C' by [NXY19, Corollary 4.6]. Since (C,A¢) is log Calabi-Yau,
we may write its boundary as A¢ = pg + poo, Where pg = C N Dy and poo = C' N Dy
for two irreducible components Dg, Do, of 2y meeting C' transversally.

Following [NXY19], we write b; = —(C' - D;) for i = 1,...,n; from C'- Z5 =0
we infer Y " b, = 2. The Star(r¢) consists on the union of two maximal faces
corresponding to the zero-dimensional strata pg, po, meeting along 7. The goal of
this section is to describe the integral affine structure on Star(7¢) in terms of the
intersection numbers b;’s, with no assumption on their positivity.

Proposition 3.3.3. Let py be the retraction associated with the model 2, and
endow Sk(X) with the Z-affine structure induced by py away from the codimension
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2 faces of Sk(Z"). Then Star(1¢) is Z-affine isomorphic to the union of the simplices
< VY, U1y eeny Up > and < V1, ..., Up, Uso > 10 R™ where
vo = (1,0,...,0), v1 = (0,1, ...,0),..., v, =0 and voo = (—1,b1, ..., bp_1).

Proof. We write b = min;,, b;; we assume b to be negative or zero by the condition
by + ... + b, = 2, as the case n = 2 and b; = b, = 1 is already treated in the proof
of [INXY19, prop. 5.4].

The blow-up 27 of the point p,, in Z yields a new irreducible component
D+ 1 (we denote the strict transforms by the same letters for notational simplicity)
with multiplicity No1 = n + 1, the point p1 = C N D, and the intersection
numbers b;; := —(C' - D;)2, = b; + 1. If we repeat the process s times, we obtain
the models 2, the exceptional divisors Do, s with multiplicity No, s = ns + 1, the
points ps s = C'N Do s and the intersection numbers b; ; := —(C' - D;) 2, = b; + s.

For s = 1 — b, we have min;<,,{b;1-5} > 0, and by [NXY19] the integral affine
structure induced by Z7_, on Star(7¢) is given by vy, ..., v, and

1

= ———(—1 1—0b,...,b,_ 1-—0). 3.4
Uoo,lb n(l—b)—l—l( ,b1+ b, ,bn 1"— b) (33)

The sequence of blow-ups 2.1 — % induces (weighted) barycentric subdivisions
of the faces 7, , with vertices such that

Noo,erono,erl = Noo,svoo,s + Z V.- (335>
=1

Combining [3.3.4] and [3.3.5] at each step we obtain that

(—1,[71 —|—S,...,bn_1 +S),

Voo,s = — 7

’ ns+ 1
and in particular vo, = (—1,b1,...,b,-1). The proposition follows from the following
lemma. O

Lemma 3.3.6. Let B = 1, Uy be the union of two n-dimensional simplices along a
face of codimension one. Assume we are given a Z-affine structure on B, compatible
with those on the 7;’s. Suppose there exists a sequence of (weighted) star subdivisions
of 71 such that B' := Star(m N1y) (with respect to this subdivision) can be embedded
in R™ compatibly with the Z-affine structure. Then this embedding extends to B,
and the Z-affine structure on B is uniquely recovered by this embedding.

Proof. The assumptions yield two charts for the Z-affine structure on B: the Z-
affine subsets B’ and 7. These two charts are glued along B’ N 7 which is a
simplex and thus has no non-trivial Z-automorphisms preserving the vertices, hence
the affine structure on B is uniquely determined. By induction on the number of
star subdivisions, there exists a unique subset B C R™ such that B’ C R" can be
obtained as the result of the same star subdivisions of B, and uniqueness of the
affine structure ensures a Z-affine isomorphism B ~ B. n
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Remark 3.3.7. Consider an irreducible component D; of Zi and write Ap, =
Z#i D; N D;. By adjunction, the pair (D;, Ap,) is log Calabi-Yau, i.e. D; is a
smooth projective variety over k and Ap, is a divisor such that Kp, + Ap, is trivial.
By [EM21), Theorem 6.14] there exists a Lagrangian torus fibration

¢:U — B C Star(vp,) \ W

where U is a symplectic tubular neighborhood of the 1-dimensional strata of Ap,, B is
a retract of Star(vp,) \W, and W is the union of cells of codimension > 2 in Sk(Z").
The fibration ¢ is constructed gluing toric moment maps defined in the neighborhood
of each stratum curve of Ap,. Evans and Mauri compare the monodromy T} induced
by ¢ on B to the monodromy T,, induced by the affinoid torus fibration

pa : p, (Star(vp,) \ W) — Star(vp,) \ W

and conclude that they are dual. This means that given a loop v € m(B) =~
mi(Star(vp,) \ W), we have T,, () = (Ty(y)"")*. Thus the affine structure con-
structed in [NXY19] has a symplectic topological analog. The duality is due to the
fact that the image of the moment maps lives in Mg, while the image of the tropi-
calization map val is in Ng.

Case of K3 surfaces

Let X/K be a maximally degenerate K3 surface and let 2"/ R be a minimal model
of X with reduced special fiber 2o = >_..; D;. The dual complex D(Zy) is well-
known to be a triangulated 2-sphere, whose vertices correspond to the irreducible
components of 2.

We focus our attention to such a vertex vp, and hence to the corresponding irre-
ducible component D of £, which has boundary Ap =3 (D;ND)=>"_,C,.
Since the simple normal crossing curve Ap € |—Kp| is an anticanonical curve by
adjunction, it follows from general surface theory that Ap is a cycle of rational
curves (C;);<,, whose geometry is encoded by the b; = —(C;- D) = —(C?)p — 2. We
label the curves so that for i« <r, C; N C;y1 # @, with convention C,. . = C}.

Omne can associate to the pair (D, Ap) a pseudo-fan, which is a singular affine
structure on R?, singular at most at 0. The singularity at 0 is a way to measure the
defect of (D, Ap) of being toric: the affine structure affine extends smoothly at 0 if
and only (D, Ap) is a toric pair [Engl8| Proposition 3.9].

The construction, as explained in |[GHKI5, §1.2|, is the following. For each node
pi = C; N Ciyq, consider a cone 0; := Rsqv; + Rsvir1 C R?) (v, v;41) being a basis
of the lattice Z2. The cones o; and 0;,; are then glued to each other along R>qv;, 1,
and the affine structure is extended through the edge by pretending that the pair
(D,Ap) is toric. If the pair was toric, the o;’s would be the maximal cones of its
fan, and the relation

Vigo + U = bip10i41

would hold by Eq. 2.I.15 so that the chart v; : 0; U 0,41 that defines the Z-
affine structure satisfies 1;(0) = 0, ¢;(v;) = (1,0), ¥;(vit1) = (0,1) and ¢;(viy2) =
(—1,b;41), and is extended by dilatation. The unions of the o;’s, glued along the



136 CHAPTER 3. THE NON-ARCHIMEDEAN SYZ FIBRATION

successive edges is homeomorphic to R?, and we obtain this way a Z-affine structure
away from the origin, extending to 0 if and only the pair is toric.

It follows from prop. that the singular Z-affine structure induced by the
Berkovich retraction p4 coincides with the one described above. We now determine
the monodromy around the singularities.

Corollary 3.3.8. Let D be an irreducible component of Zo, with boundary Ap =

S Ci. Writing b = —(C?)p, the monodromy T, of the Z-affine structure in-
duced by pa around vp s given by

T _(bT 1>. _<b2 1)_(1)1 1)
P \—=1 0/ 7 \-1 0 -1 0

with respect to the basis (vp,,vp,) and origin vp.

Proof. By prop. the integral affine structure on Star(7¢,) identifies the set of

vertices (vp,_,,Vp,,Vp,Up,,,) with:
(vo = (1,0),v1 = (0,1),v3 = (0,0),v0 = (—1,0;)),
while on Star(7c,,, ) identifies (vp,,vp,+1,Vp, Vp,,,) With=
(vo = (1,0),v1 = (0,1),v2 = (0,0),v00 = (—1,b;41)).
It follows that the transition map from the chart Star(7¢,) to Star(rc,,,) of the

: L (b 1
integral affine structure on Star(7¢,) N Star(7¢,,,) is given by the matrix (_1 )

Thus, the composition of such matrices gives the monodromy around vp, along a
loop oriented as the path connecting vp,,vp,,...,vp,,Vp,. O

Remark 3.3.9. [t is well-known (see for instance [GHK15]) that T,, = Id if and
only the pair (D,Ap = Y":_, C;) is toric, or if and only if the charge Q) vanishes,
where

Q = Xtop(D\ Ap) =12+ (b —3).

i=1
Example 3.3.10. If S is a K3 surface of Type 111, and 2 /R a minimal model of
S, then the map py is an affinoid torus fibration away from the vertices of D(Zy).
The induced Z-affine structure with isolated singularities on the 2-sphere matches
the one constructed in [GHKI15, 1.2] and [Engl8, Proposition 3.10/, and has no
singularity at a vertex vp if and only if the corresponding component D of Zj is
toric.

3.3.3 Integral affine structure induced by combining several
models

In this short section, we explain how to compute the monodromy of the integral
affine structure induced by a class of admissible retractions that are not necessarily
associated to a model of X (and rather to several of them). These results can be
used for instance to compute the monodromy of the retraction we will construct in
thm. [£.1.8 for degenerations of hypersurfaces. We start with a general definition.
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Definition 3.3.11. Let 7 be a simplex of dimension m and consider the first barycen-
tric subdivision 7' of . For each vertex v of T, we denote the star of v in 7" by Star(v)
and define I'y,_1 to be the polyhedral complex of dimension m — 1 given by

Chr =7\ U Star(v) C 7.

veT

For instance, if m = 2, I'; is the union of the three line segments joining the
barycenter of the triangle to the barycenters of the edges.

We return to the setting of section - that is, let X/K be a smooth n-
dimensional maximally degenerate Calabi—Yau variety. Assume we are given two
minimal models 2", 2" of X such that D(Z,) = D(Zy), so that Sk(Z) =
Sk(Z") = Sk(X), not only as subsets but also with the same cellular decompo-
sition. We fix an ordered labelling (1,...,s) of the vertices of Sk(X), equivalently
of the irreducible components of the special fiber of 2 (resp. Z”).

Fix a codimension 1 face 7 of D(Zy) = D(Zy), with vertices v;,,...,v;,. We write
C' (resp. ") for the corresponding strata curves of 2~ (resp. Z7), and D;, (resp.
D;),l=1,...,n the corresponding components. We then have C' = D; N...ND;
and similarly for C’. We write b;, = —(C - D;,) # the intersection number computed
inside 2", and similarly, b = —(C"-D; )2 forl =1,...,n. The (n—1)-dimensional
face 7 is contained in two maximal faces 7,, and 7, of D(Zy), since the boundary
of C'in (27, Zy) consists of two strata points pg = C'N D;, and p, = C N D;__; we
assume iy < . Weset S := 7, U7, C Sk(X),and I :=T',,_5 C 7¢ as in definition
B.3.11

Given two vertices v;,,,v; , of T¢, with corresponding components D;,, and D; , of
Z, containing C, we assume i, < i, and construct a loop = as follows:

e 7 is contained in S\ I';

e 7 goes around the segment joining the barycenter of 7~ with the barycenter
of the edge between v;,  and Vi,

e ~ has an orientation induced by the fixed ordered labelling on the vertices of
Sk(X) in the following way: in S \ I, 7 is homotopy equivalent to the closed
path given by the edges which connect in order

UDiO ) UDim ) UDioo ) UDim/ .
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Figure 3.1: Two examples of loops v in the case n =3 and C' = Dy N D3 N Dy

Suppose we are given a retraction p : X* — Sk(X) such that

_Jpar  over Us, = Int(r,,) UInt(7, ) U %(vim)
par over U; , :=Int(7,)UInt(7, ) U §t\a/r(v,~m,).

Proposition 3.3.12. The monodromy along the loop vy, of the Z-affine structure
induced by p on U, UU; , is

1 0 0 0
by — b, 10 0
T,(y) = bi, b, 0 1 0 (3.3.13)
bin =V, 00 ... 1
with respect to the basis (vp, ,vp, ,---,vp, ) and origin vp, .

Proof. We need to compute the parallel transport of the vectors
(U, -y Un—1) := (Up,, — VD, s UD;, — VD, s---,VD;  — VD, )

along the loop . By prop. the Z-affine structure on Star(7¢) induced by poy
is described by the chart which has the following vertices:
vo=(1,0,...,0), v =(0,1,...,0), ..., v, =0 and v = (—1,b;,, ..., b;,_,);

while the Z-affine structure induced by p- is given by:
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vy = (1,0,...,0), v; = (0,1,...,0), ..., v;, = 0 and v}, = (—=1,0} ,...,b; ).

Moreover, the vectors u; correspond to the vectors v; (resp. v]) in the chart for
pa (resp. pa+). We now have vy = —vs + Z?:_ll b;,u;, so that the vectors we are
transporting are written on 7,_

n—1
(Voo + E by, Uy, V1, Up1)
=1

in the chart for p,. These are thus mapped to the tuple (—v/ +3 77" by,v), v}, ..., v, )

) Yn—1
by the chart for py+. We now transport back across 7¢ in the chart for py/, to get
the tuple of vectors

n—1 n—1
/ / / / / !/
(—vy — E b, v + E bi, Uy, V], -y Uy q)
=1 =1

according to the relation —v/ = —vf) — S0 bi,v;. We now see that after parallel
transport the vectors (uo, ..., u,_1) have changed to

n—1
(UO + Z(bll - b;l)ul y ULy - 7un—1)7
=1
hence the formula [3.3.13| for the monodromy matrix. O]

Case of K3 surfaces

We focus on the case of a maximally degenerate K3 surface X/K. We have C =
D;,ND; ,,I' = {a} is a point in the interior of 7 and v is a loop around a, oriented
as the path joining in order vp, ,vp, ,vp,_,vp, ,. We assume we have a retraction
p: X — Sk(X) such that

3
m

| pa over Int(7,,) Ulnt(7,, ) U [vi,,a)
~ \par  over Int(7p,) U Int(7,.) U [v; ,,a)

where [v; ,a) is the part of the edge 7¢ joining the vertex to a, but not including a.
Then prop. [3.3.12|may be rewritten as follows; in particular the obtained singularites
are of Kodaira type I,,, for some m € N:

Corollary 3.3.14. The monodromy along the loop ~v, of the Z-affine structure in-
duced by p on Star(to) \ {a}, is

To(v) = (bim ibgm (1)> (3.3.15)

with respect to the basis (vp, ,vp,, ) and origin vp, .

[
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Chapter 4

Degenerations of Calabi-Yau
hypersurfaces

In this chapter, we will be focusing on degenerations of Calabi-Yau manifolds ob-
tained in the following way:

X ={2...2n41 + tEF, 15 = 0} C P"*! x D*,

where F), ;5 is a general homogeneous polynomial of degree (n 4 2). In this setting,
the closure 2~ C P"*1 x D of X inside the projective space provides us with a some-
what canonical model of our degeneration, whose special fiber is the toric boundary
of P**!. In particular, the assumptions of theorem hold for every component
of Zy, but as we shall see, while the model 2" is indeed a minimal dlt model of X
- and in particular Sk(X) = Sk(.Z") - it is not good, i.e. the irreducible components
of 2y are not Q-Cartier, so that it is not possible to apply def. [I.1.17] to produce a
Berkovich retraction py : X** — Sk(Z').

Nevertheless, if v; is a vertex of Sk(.Z"), the toric nature of the corresponding com-
ponent D; allows us to define in a natural way an integral affine structure with
no singularities on Star(v;). These integral affine charts cover Sk(X) but are how-
ever not compatible, so that the local affine structures do not glue to an integral
affine structure on the whole Sk(X). However, after a somewhat ad hoc choice of
codimension 2 discriminant locus I' C Sk(X), we obtain a singular affine structure
on Sk(X) \ I', which recovers the fan of D; near each vertex v;; this integral affine
structure was initially defined in [GS06].

The main result of this chapter, theorem [.1.8] is the construction of a retraction
p : X* — Sk(X), which is an affinoid torus fibration away from the codimen-
sion 2 locus I', and which recovers the above-mentioned singular affine structure on
Sk(X). This builds on the construction by Yamamoto [Yam21] of tropical contrac-
tions, from tropicalizations of Calabi-Yau complete intersections in toric varieties to
their essential skeleton, and generalizes the construction from [MPS21), thm. B| to
any dimension.

While the retraction constructed above depends on a certain choice - namely, an
interior point of each face of Sk(.Z") - in the case of Fermat hypersurfaces, where:

F(z) =20+ ..+ 2012

141
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the &,,1o-symmetry of the problem suggests that choosing the barycenter of each face
is a natural way to make the retraction p we construct canonical. It indeed turns out
that using the results from [Li22] on the convergence of the Calabi-Yau metrics, we
are able to describe explicitly the solution to the non-archimedean Monge-Ampére
in this setting, and prove that it satisfies the comparison property with respect to
the retraction p.

This chapter is organized as follows: in section 4.1} we set the scene and describe the
construction of the tropical contraction from [Yam21], before studying some small
resolutions of the model 2"; and conclude with a proof of thm. In section
we provide an alternative construction of the retraction p in dimension 2 and
3, following [MPS21]; we also provide a refinement of the construction in dimension
2. Finally, in section [4.3] we focus on the Fermat family of hypersurfaces, where we
apply the results of [Li22] to describe the solution of the non-archimedean Monge-
Ampeére equation in this case, and prove that the comparison property holds for
the retraction constructed in thm. [£.1.8] Along the way, we prove that the local
C°°-limit obtained for the Fermat family in [Li22] is unique and does not depend on
a choice of subsequence.

4.1 The SYZ fibration for hypersurfaces

4.1.1 Degenerations of Calabi-Yau hypersurfaces

We are interested in degenerations of Calabi-Yau manifolds obtained in the following
way:
X = {Zo...2n+1 + tFn+2 = 0} C PnJrl X ID)*,

where F,,o € H(P"™! Op(n+2)) is a general section; we also denote by X the base
change to K = C((t)). The fibers X; are Calabi-Yau manifolds by the adjunction
formula, and even simply-connected, strict Calabi-Yau whenever n > 1 (that is,
hi(X;,Ox,) = 0 for 0 < i < n) by the Lefschetz theorem on hyperplane sections.
We will see that in this case, the essential skeleton Sk(X') can be realized explicitly
using tropical geometry, and there is a natural way of endowing it with an integral
affine structure, which is singular in codimension 2. The construction we outline
here is a special case of [Gro05], but since the hypersurface case is far less technical
we will outline the details.

We start by identifying the essential skeleton Sk(X') with the Berkovich skeleton of
the model Z:

Proposition 4.1.1. Let F € H(P"*', Op(n + 2)) be a general section. Then the
hypersurface:
Z = {ZO.-.Zn+1 +tF = 0} C P?{rl

15 a minimal dlt model of the smooth, mazximally degenerate Calabi-Yau manifold

X = Zk; in particular Sk(X) = Sk(Z").

More precisely, the statement of the above proposition holds whenever F' is not
identically zero on any toric stratum Z of P"!, and the intersection ZN{F = 0} is
smooth; such F are called admissible in [HIJMM22].
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Remark 4.1.2. As shown by the proof, the model Z  will not be good for general
choice of F' - the irreducible components of %y are not Q-Cartier at the singular
points of X as soon as n > 2. Thus, there does not exist a Berkovich retraction
pr + X*™ — Sk(Z") in the sense of def. which is consistent with the
statement of theorem [3.1.21]: if such a retraction existed it would be an affinoid
torus fibration over the whole Sk(X) ~ S", yielding an integral affine structure with
no singularities on an n-sphere, which is impossible.

Proof. Tt follows from an elementary computation that for general F', the singular
locus of the total space 2 is given by:

Sing(%):U{zi:zj:t:F:()}C5&”0,
i#]

which is of codimension 3 in the total space 2 . The points where the singularity
is the most severe are the intersection of the strata curves of Z; with the locus
{F = 0}, since F is general this locus does not meet the zero-dimensional strata
of Zy. Thus, we may focus on the curve {z; = ... = 2z, = 0} C 2o, where the
singularity is étale-locally of the form:

U = {z...2, +tw = 0} C AR

so that by |[CLS11], prop. 11.4.24|, the pair (%, %) is log canonical. We also infer
that at the generic point of a stratum, 2  is smooth while the components of 2
meet transversally, which proves that 2" is a dlt model of X.

Moreover, Zj is reduced and K4 ,r = Oy by adjunction, which concludes. O

From now on, we will assume that F' is general, so the statement of the above
lemma holds. We view Zy, = P! as a smooth toric Fano variety of dimension
(n+1), with simple normal crossing boundary A = S/ D; the sum of coordinate
hyperplanes. We additionally let L. = Op(n+2) be the anticanonical polarization on
P+l and we write P C Mg the associated polytope, as in def. If (01, .., Uns1)
is a basis of N, we set vy := —(v; + ... + vp41) and the v)’s for =0, ..., (n 4+ 1) are
the primitive generators of the rays of X.

Writing P* C Ny the polar dual of P, that is:

P* ={z € Ng/{u,z) <1Vu € P},

we see that here P* = Conv(vy, ..., vy,).

One of the reasons such degenerations provide an interesting class of examples is that
their essential skeleton can be realized in the toric world, as we will now explain.
The dual complex of the toric boundary A C CP"*! can naturally be realized
inside Ng: if D; is a coordinate hyperplane, it corresponds to e; € N the primitive
integral generator of the corresponding ray of . Since 2y = A, we see that we
have a canonical isomorphism of simplicial complexes between the dual complex
2(Zs) and the boundary 0P*, sending a vertex vp, € Z(Zp) to v; € N. Realizing
D(Zy) ~ Sk(Z") € X* inside the Berkovich analytification, we have the more
precise statement:
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Proposition 4.1.3. Let X C P%™ as above. Then the composition:

xan C ]P;nJrl,an m NE
induces by restriction a isomorphism of simplicial complezxes from Sk(Z") to OP*.

Proof. It is enough to prove that if Dy, ..., Dy, ,, are (n+ 1) components of A = 2
meeting at a point p, then val maps the corresponding maximal face 7, of Sk(Z")
homeomorphically to:

7, = Conv(vy,, ..., v,,,) C Ng,

where 0 = Z?jll R>ov;,. Thus, we let v € 7, be a quasi-monomial valuation, which
we see as a semi-valuation on P"™!. Using prop. , we identify v with the
monomial weight w = (wy, ..., wp41), where w; = v(f;) for any local equation f; of
Dy, at p. We have 327" w; = 1, by the normalization v,,(t) = 1 and the equation
for the hypersurface. We let [y be the index such that p ¢ D, , and take as a local
equation:

_ Al
fi - )
2l
where [z : ... : z,41] are standard homogeneous coordinates on ]P”};rl - this is possible

as F' does not vanish at p, since it is general. Then by definition of the val map, we
have:

(val(v), m) = v(x™)

for any m € M. We let (my, ..., m,1) be the basis of M dual to (v, ...,v;, ), so that
XM is an equation for D;, on the toric affine chart P,. We now have x™ = f;, so
that writing m = Z?:f Aim;, we infer from prop. [1.1.14f

n+1

v(x™) = Z Wi,
i=1

or equivalently val(v) = 327" w;uy,, which concludes the proof. O

We are thus naturally led to study the image inside Ny, of X" by the valuation
map valy,. This is well-known to be the (extended) tropicalization Trop(X) of the
hypersurface, defined as follows. Write the generic section F' as a sum of monomials:

and let L : Ng — R be the piecewise-affine function obtained by replacing, in the
equation (tF' + zp...z,+1) for X, the products by sums and the sums by minima.
More explicitly, L is defined by the formula:

L(w) = min{0, min(1 - (m,z))},

and Trop(X) C Ng the locus where the minimum is achieved by at least two different
terms. From now on, we will make the following combinatorial assumption:



4.1. THE SYZ FIBRATION FOR HYPERSURFACES 145

Condition 4.1.4. Whenever m € Py is a vertex, we have ¢,, # 0 - equivalently, the
Newton polytope of the section F' is equal to the whole P.

This immediately implies the equality:

L(z) = min{0, min (1— (m,xz))}.

meV (P)
Proposition 4.1.5. The closure Trop(X) C Ny, is the image of X* via the map:
Valg : Z%n — Ny

Moreover, the complement of Trop(X) in Ng admits one bounded connected compo-
nent, which is the interior of P*.

Proof. The first item follows from the fundamental theorem of tropical geometry
[IMS15, thm. 3.1.1], while the second one follows from the fact that the polytope P*
is the locus where L = 0. O]

We will now construct a piecewise-affine subset I' C Sk(X) of codimension 2,
and an integral affine structure on Sk(X) \ I', compatible with the integral affine
structure on the interior of the maximal faces of Sk(.Z"), and compatible with the fan
structure (definition in the neighbourhood of each vertex. The construction
is non-canonical, as it depends on the following choice: for each face 7 of Sk(.Z")
of dimension > 0, we choose a point a, € Int(7). In the sequel, we will call the
collection a = (a,), a choice of branch cuts. If 7 is a vertex of Sk(.Z"), we will write
ar =T.

We let 2 be the subdivision of Sk(Z") whose faces are of the form:

" = Conv(ay,, ..., a,),

whenever 7y C ... C 77 is an ascending chain of faces of Sk(Z").
The discriminant locus in now given as:

I':= UConV(am, ey Oy )

where the union is taken over ascending chains of faces 7o C ... C 7 of Sk(2"), with
dim7y > 1 and dim7; < (n — 1). It is clear from the definition that it defines a
codimension 2 piecewise-affine subset of Sk(X), which generalizes definition [3.3.11]
We will sometimes write I' = I', whenever we wish to emphasize the dependency
on the choice of branch cuts a.

Example 4.1.6. Assume n = 2, then we are choosing a point a. € Int(e) in each
edge of Sk(Z"), in addition to a point a, € Int(7) in each mazimal face T of Sk(Z).
The discriminant locus T’ consists of the set {ae}., which is finite.

Assume now that n = 3, then we are choosing an interior point in each d-cell
of SK(Z") for d = 1,2,3. The discriminant locus I' is a trivalent graph, con-
tained in the union of the 2-cells of Sk(Z"), and its intersection with the 2-face
7 = Conv(vy, vg,v3) is depicted below:
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U3
a1

Qr 23

(%} (%)
12

Let v € Sk(Z") be a vertex, and ¥, be the fan of D, in R™. As in definition

B-3.1], we let:

¢y : Star(v) — R"”

be the unique piecewise-affine homeomorphism sending v to 0 € R", and each vertex
v € Star(v) to the primitive generator of the corresponding ray in ¥,,.

Moreover, if 7 C Sk(.Z") is a maximal face, we let ¢, : 7 — R" be an integral affine
homeomorphism onto a standard simplex.

As mentioned above, the affine charts ¢, do not glue to define an integral affine
structure on Sk(Z"), i.e. the transition functions between them are not integral
affine. To remedy this, we simply shrink the stars of the vertices using the subdi-
vision & so that they don’t intersect anymore. More precisely, for a vertex v of
the skeleton, let %(v) be the star of v in the polyhedral complex &?. Then the
singular affine structure on Sk(.2") is defined as follows:

Definition 4.1.7. The collection of charts ((Int(Sft\a/r(v)),gbv)v U (Int(T),qu)T> is
our induced integral affine structure on Sk(X) \T.

The main theorem of this section is the following:

Theorem 4.1.8. Let a = (a;),; be a choice of branch cuts in Sk(Z"), and 6, :
Trop(X) — Sk(X) the associated tropical contraction [Yam21l, thm. 5.1]. Then

the composition:
Pa = 04 0 valy : X* — Sk(X)

is an affinoid torus fibration over Sk(X) \ I'. Moreover, the induced integral affine
structure on Sk(X) \ T' coincides with the one from definition[{.1.7

In the cases n = 2,3, the retraction p, was constructed in [MPS21] using purely
non-archimedean techniques; this alternative construction will be explained in sec-
tion
Let v = v; € Sk(Z") be a vertex, and let U; C Sk(Z") be the open star of v; with
respect to the simplicial decomposition 2. Then we need to prove that the map
p = pg is an affinoid torus fibration over each U;, as well as over the interior of each
maximal face 7 C Sk(Z"). The proof will proceed in two steps:

e (section {4.1.2)) we mainly review the construction of the tropical contraction,
following [Yam21]. The contraction is in fact constructed face by face, and
we will describe it in particular near a vertex and over a maximal face. The
latter, in combination with prop. will readily imply that p is an affinoid
torus fibration over a maximal face of Sk(.2").
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e (section we then focus on a vertex v; € Sk(:Z7), and construct a small
log resolution Z; — 2, which is an isomorphism over the corresponding
component D;. In particular, we may apply theorem to conclude that
the associated retraction pg; is an affinoid torus fibration over Star(v;), and
we conclude by proving that the equality p = pg; holds over U;.

4.1.2 The tropical contraction

We let X C P be a maximal degeneration of Calabi-Yau hypersurfaces as above.
The goal of this section is to describe in a fairly simple way the construction of a
certain tropical contraction 6 : Trop(X) — Sk(X), due to Yamamoto [Yam21].
Here tropical contraction means that the map ¢ is locally modeled on projections of
the form Ny — Ny, where 3 is the fan of a (closed) orbit in Zs.

Theorem 4.1.9. [Yam21il, thm. 1.2] For any choice of branch cuts a = (a,),, there
exists a tropical contraction:

g : Trop(X) — Sk(X),

where we view Sk(X) C Trop(X) via the embedding of prop. |4.1.9 The tropical
contraction preserves the integral affine structures, in the sense that:

0. Mg x) = J(Affskxonr),

where Aff denotes the sheaf of integral affine functions on Trop(X) (see [Yam?21),
def. 2.10]) and Sk(X) \ I" respectively, and j : Sk(X) \ I < Sk(X) the inclusion.

Let us point out that original construction is far more general, as it applies to a
large range of Calabi-Yau complete intersections inside toric varieties. However the
codimension one case is substantially simpler, so that we will outline the details of
the construction in this case.

We fix once and for all a choice a of branch cuts, and consider the associated sub-
division & of Sk(Z"). Our first step will be to describe Trop(X) more explicitly.
Recall that the open subset Trop(X) C Trop(X) is given as the corner locus of the
function:

L(e) = min{0, min (1 (m.)},

hence the following natural stratification. If x € Trop(X), we let J(z) C [ =
{0} U V(P) the subset of indices that realize the minimum; note that |J(x)| > 2
since € Trop(X). Given a subset J C I, the associated stratum 7); C Trop(X)
is the set of € Trop(X) such that J(x) 2 J. We furthermore write T; C Ny its
closure, which is contained in Trop(X).

Definition 4.1.10. Let 7 C OP* be a face, and write T = Conv(e;,, ...,e;.). The
associated cone o(T) € X is given by:

o(1) = Cone(e;,, ..., €;.),

and its closure (1) C Ny. We additionally set 7 := 7+ (1) C Ny.
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Let J" C V(P) be a non-empty subset of vertices of P, this defines a face 7 of
OP* in the following way:

7y ={x € P*/(m;,x) =1Vj € J'},

this is a face of dimension (n + 1) — |[J/|. It is straightforward to check that for
|J’| > 2, the region 7 is contained in the stratum T ;.

The following proposition asserts that the bounded strata of the tropicalization are
the faces of 0P*, while the unbounded ones are obtained from non-maximal faces of
OP* and their associated cones:

Proposition 4.1.11. Let I = {0} UV(P), and J C I with at least two elements.
We let J' = JNV(P).

e if0c J, then Ty =1y C OP*;

o if0¢& J, thenT;=7p.

Note that in the latter case, since |J| > 2, the face 7, is not a maximal face of
OP*. The following picture depicts the tropicalization when n = 2: Trop(X) is the
union of the boundary of the red polytope P* with the portions of the linear planes
passing through pairs of vertices of P*; here we have colored 7; for J C {1, 2, 3}.

Figure 4.1: The tropicalization of a maximally degenerate K3 surface

We now move to the description of the tropical contraction. If 7 is a face of 9 P*,
we set U, := Int(Star(a,)) the open star of the point a, € Int(7) with respect to Z.
For 7 C 7 a smaller face of 0P*, set:

Wi =U,NUy
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and X, := W, +37(7'). Then

X = ( U XT,T’) QTOP(X>7

T'CT

where the union ranges over the subfaces of 7. For instance, if 7 C 0P* is a maximal
face, we simply have X, = U, = Int(7).

Then by [Yam21), lem. 5.15], the union of X, cover Trop(X) when 7 ranges over the
faces of OP*, so that it is enough to define local tropical contractions:

5, X, — Us,

which glue over the intersections U,, NU,, by [Yam21, lem. 5.14|. Then if x € X, -,
ie. v =w+a', withw e W, and 2’ € 5(7'), we set:

d-(z) = w.

In other words, the local tropical contraction contracts the cone direction, and is
locally isomorphic over W, .+ to the canonical projection p : Ny — Ny, where ¥’
is the fan in Ng/Span(o(7’)) induced by .

In the two-dimensional case, the restriction of the tropical contraction to the stan-
dard orthant is depicted as follows (we have picked the barycenters of the edges as
choice of branch cuts):

Us

Figure 4.2: The tropical contraction in dimension 2

If 7 = eqy is an edge, then W, ,, = Conv(aq2, v;) for i = 1,2, and the contractions
over W, ,. are the projection Ng — Nr/Ruv; (the blue regions); while W, = a2
and X ; is the lower green region, contracted to the point as.

Proposition 4.1.12. Let 7 be a mazximal face of Sk(Z"). Then the retraction p, :
X — Sk(Z7) is an affinoid torus fibration over Int(r).
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Proof. Let 7 be a maximal face of Sk(.Z") ~ OP*, and let p € %, be the cor-
responding zero-dimensional stratum. Then from the construction of §, we have
X, = U, = Int(7), so that 6~'(Int(7)) = Int(7), and p~*((Int(7)) = vals'((Int(7)).
Moreover, by the proof of prop. .13} if:

T = Conv(uvy, ..., u,)

and valg(v) = S Ny, then \; = v(£). In particular, if valy(v) € Int(r), then
v(£) > 0fori=1,.,(n+1), or in other words z; = 0 at the center cy-(v). This
implies that valy(v) € Int(7), if and only cy (v) = p.

We infer that p~" (Int(7)) = X} := (ﬁﬁ/p)”, and that under the identification Sk(.Z") =
OP*, we have pjx1 = px,, which is indeed an affinoid torus fibration by example

5. 1. 10f [

In what follows, we will be mostly interested about what happens near a vertex
v; € Sk(Z7), in which case the following holds:

Proposition 4.1.13. [Yam21, lem. 5.12] Let 7 = v; be a vertex of Sk(2"). Then
X; = U: +Rxgv;, and the local tropical contraction satisfies:

o (w + av;) = w,

for w € U, and « € [0, +00].
In other words, writing p; : Ny, — Ny, the canonical projection, the following
diagram commutes:

05

Xei ” Uz C N]R
X lqi
Vi C Ng/Ru,

where ¢; = (p;) v, s the homeomorphism from U; onto its image V; by the projection
Di-

The above proposition states that up to the homeomorphism ¢;, the tropical
contraction ¢; is given by the linear projection onto the quotient Ng/Rwv; near the
vertex v;.

4.1.3 Small resolution at a vertex

We consider a point in 2™ N D; N ... N D, the singular points in the other
strata curves can be treated analogously. Etale locally around such a point, 2" is
isomorphic to the (base change to R of) the toric variety Z := V(21...z, — wt) C
A7 where the Dyl = {2, =t = 0} are the components of the special fiber %
We still denote these by D;; they form the toric boundary of % together with the :

Dily = {zi = w = 0}.
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If J C{1,..,n}, we let D; = Njc;D;. The singular locus Z*"¢ is of codimension
3, and consists of the union over pairs ¢ # j of indices of the:

Vijlo ={zi=2=w=t=0}=D,nD;ND,ND,

which all intersect at the torus invariant point p := {z; = ... = 2z, = w =t = 0}.
D, {22w0}<§3w0}
B {z1 =w =0}
D1 Vi
Vi
1 Dy Ds
e D, Da3 Dy
Dy
D1 Dl

Figure 4.3: Special fiber of % and a slice of the fan of the toric variety

Proposition 4.1.14. The composition of successive toric blow-ups:
Umn—1)=Blp, \ Zn-2)—Un—-2)=... —U%(1)=8Blp, % — %,

where we inductively abusively denote Dj1 C % (j + 1) the strict transform of
D1 C%(j), is a small log resolution of (% , %), such that the strict transform of

D,, in % (n — 1) is isomorphic to D,

Proof. Let N = Z"™2 with the standard basis written as (eq, ..., e, €, €,), and
N’" C N the codimension 1 sublattice:

N ={u; + ... + up = us + up} C N,

where (uq, ..., Uy, U, uy) is the dual basis in M. Then the primitive generators of the
rays of the fan ¥ of % in Ny are the v; = e; + ¢; (corresponding to the boundary
component D; = {x; =t = 0}) and the v] = e; 4+ e,, (corresponding to the boundary
component D) = {z; = w = 0}), for i = 1,...,n. The fan ¥ has a unique maximal
cone 0 = Y " Roov; + > i Rsgv), it is the cone over the product of an (n — 1)-
simplex and a segment.

We set .7 := Sy ;—1)(D;) the ideal of the strict transform of D; inside % (i — 1), so
that % (i) is the blow-up of % (i — 1) along the toric ideal .#.

We claim that the blow-up % (i) — % (i — 1) has no exceptional divisors (i.e.
divisors in % (i) whose image have codimension > 1), and that %, = (x;,t). We
prove this by induction on i € {1,...,n — 1}.

For i = 1, we are blowing-up the toric ideal .# = (x1,t) inside %/, this amounts
to subdividing the maximal cone o of ¥ into the two subcones ¢ N {u; > w,;} and
oN{u; < u} - the piecewise-linear function attached to .# is ¢, = min{uy, u, }. It
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is straightforward to check that this does not subdivide any 2-dimensional cone of X,
so that the subdivision does not induce any new ray, and %/ (1) has no exceptional
divisors. This also implies that the zero locus of % = (x5,1) is the strict transform
Dy, Cc % (1).

Now assume that the claim holds for ¢ > 1, we want to prove that % (i+1) — % (i)
has no exceptional divisors and that .%o = (x;41,t). Since we are blowing-up the
ideal .#;11 = (x;,t) inside % (i), this means we are subdividing the fan of % (i)
along the hyperplane {u; = u;}, which is once again easily seen not to subdivide
the 2-dimensional cones, hence no rays are added. By the same argument as above,
this implies that inside % (i + 1), the zero locus V' (z;41,t) is the strict transform of

.

D, Dy

Figure 4.4: Slices of the fan of %, % (1) and % (2)

We now prove that % (n —1) is regular. The maximal cones of the fan % (n—1)
are the intersection of o with (n — 1) halfspaces of the form {#(u; — u;) > 0}; by
direct computation there are n maximal cones o4, ..., o, where:

o =0 N {u; > u} N {uim1 < wgh,
with o7 = o N {u; > u;}. This yields:

O; — REOUI + ...+ Rzovi + RZOU’; 4+ ...+ RZOU;W

which is a regular cone as (vy,...,v;,v},...,v,) is a basis of N, so that the pair
(% (n—1),%(n — 1)) is snc.

Finally, we prove that the strict transform of D,, in % (n — 1) is isomorphic to
D,,. The ray p, = R>qv, viewed in the fan of % (n — 1) is contained in only one
maximal cone, namely o,. As a result, the fan of the strict transform of D,, is given
by the maximal cone o, /Rv, and its faces, so that the strict transform D, of D,
is isomorphic to A" ~ D,. Since the restriction of the composition of blow-ups
D,, —» D,, induces the identity on the tori, it is an isomorphism, and this concludes
the proof. n

Back to the global setting, we obtain:
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Corollary 4.1.15. Let 2~ C P%™ be as above, and i € {0,....,n+1 }. Labelling the
elements of {0,...,n+1 } \ '@ as {l1,...,1,}, the sequence of successive blow-ups:

Zi(n) =Blp, Zin—-1) — Zi(n-1)=.. — Zi(1) =Blp, & — Z,

yields an snc model Z; := Z;(n), such that Sk(Z;) = Sk(Z") and the strict trans-
form D} ~ D,.

The upshot of this is that we obtain a Berkovich retraction pg, : X*" —
Sk(Z;) = Sk(Z"), which is an affinoid torus fibration over Star(v;) by theorem
Moreover, the integral affine structure induced on Star(v;) matches the one
induced by the chart ¢,, from definition [4.1.7]
Let us write X; = ‘@;/Di the formal completion. By theorem [3.1.21] writing N' —
A} the total space of normal bundle of D; inside Z; and A4 = N x 1 R, we have a
formal isomorphism:

f . :{z :) </I///\Di7
where D; C 4 denotes the zero section.
Thus, passing to the generic fiber, X embeds analytically as a open subset of a
torus:
X T,
where T , = A4 xr K is the generic fiber of 4.

Lemma 4.1.16. There is a canonical isomorphism of K-tori:
T{/V ~ TDi Xk K.

Proof. Since N is trivial over Tp,, we have a natural morphism Tp, X G, — N,
whose image is precisely the k-torus of N'. Moreover, from the description of the fan
of N (see , the morphism N — A} is the projection onto the second factor,
hence the result. O

We write %; for the fan of D; inside Ng/Ruv;, and let p; : Ny — Ny, be the
canonical projection - on Ng, this is simply the quotient map Ng — Ng/Ruv;.
The above lemma provides us with a map valp, : X! — Ng/Ruv;. Note that up to
identification, the map valp, is none other than the Berkovich retraction px, - more
precisely, viewing Sk(Z") C Ng via prop. the relation valp, = p; o px, holds.

Proposition 4.1.17. Let valp : P*t12 3 Ny, Then we have:
valDi = p;©° Valp .

Proof. We assume i = (n+1) for convenience and pick standard coordinates (2, ..., Z2t)

on the torus of P*™!; then the projection p; : R"*! — R" is given by omitting the
last coordinate. Recall the formal isomorphism:

[+ 2 p. = N,

was constructed cone by cone, in the following way. We let o € ¥; be a maximal cone
in the fan of D;, and we assume that o = Cone(ey, ..., €,) is the standard orthant.
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Then the restriction f, of f to X, was defined by the following property: if s; is a
trivializing section of Oy (Dy — D;) on X, restricting to the meromorphic function
z1/% on D;, then s; = f7(Z) (with the notation of section |3.2.2', W7 = (Do — Dy)).

Thus, if x € X] - which means cy;(v,) C D;, then v,(s;) = v, ;0), hence:

z Zn
valy , (z) = (0(2), ..., v2(22)) € Ng/Rep iy
20 20
while: . . .
valp, () = (Va(25), ooy v (22), 0. (T52)) € N,
<0 <0 <0
hence the result. O

Corollary 4.1.18. For any choice of branch cuts a, the equality 6,0valp = px, holds
on px. (Star(v;)) C XJ.

Proof. Under the identification Sk(.Z") C Ny, we have the equality ¢; o px, = valp,,
where valp, is the composition : X! — T% — Ng(D;). By the above proposition,
we have g; o px, = p; o valp, and by prop. {4.1.13] the equality §, = (¢;) ' o p; holds
over Star(v;), hence the result. O

Since py, is an affinoid torus fibration over Star(v;) and in particular over g‘c\aﬂr(vi),
this implies that p, = d, o valp is an affinoid torus fibration away from I',, and this
concludes the proof of theorem

4.2 An alternative construction in low dimension

In this section, we will explain the alternative construction of the map p from
[IMPS21] in dimension 2 and 3, without taking a detour into tropical geometry -
in fact the n = 2 case originates from [KS06| § 4.2.5|. Recall that to prove that p
was an affinoid torus fibration near a vertex v;, we produced a model Z; — 2~ of
X, that was toric along the strict transform of D;, which produced a local model
for p near v;, simply given by px, in the notation of the previous section.

In low dimension, it is actually possible to explicitly produce an snc model Z /R of
X, that simultaneously dominates all the models 2; - which we call the dominating
model. We then produce a combinatorial retraction 7 : Sk(2") — Sk(X), which is
an explicit piecewise-affine map, and such that near a vertex v; the map 7 is equal
to the restriction of px, to Sk(Z"). The way the map 7 has to be defined for this to
hold is mostly dictated by the explicit pictures we are able to draw, which unfortu-
nately has limited this approach to the low-dimensional case for the moment.
Nevertheless, one upside of this approach is that it allows us to refine the general
construction; let us explain this in the n = 2 case. For degenerations of K3 surfaces,
the discriminant locus consists of 6 singular points, located in the interior of the
edges of the skeleton; however it is expected that a ’generic’ singular affine structure
has 24 singular point - in fact corresponding to the 24 singular points of the model
Z C P%. Accordingly, for a generic K3 hypersurface, the skeleton of the dominating
model contains 24 "wings" (following the terminology of [KS06]), 4 over each edge.
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In the tropical world, we will see that the four wings lying over the same edge get
contracted to only one 2-simplex; while the construction we will describe here allows
us to contract the four wings separately, while choosing a different singular point
inside the edge for each wing, and thus obtain an integral affine structure which is
singular over 4 points in each edge of the skeleton.

4.2.1 Degeneration of quartic K3 surfaces

We consider 2" = {z9212223 + tFy(20, 21, 22, 23) = 0} C P%, where F} is a generic
homogeneous polynomial of degree 4. The total space 2" has 24 singular points,
given by {z; = 0,2z; = 0,t = 0, F;, = 0}, hence 4 on each D; N D;; and the (étale)
local model around a singular point is given by the three-dimensional ordinary double
point % = {xy = 2t} C A%. This implies that 2" is a minimal dlt model of the K3
surface X := 2, but it is not good in the sense of definition [1.1.11]since the prime
components of the special fiber are not Q-Cartier.

Our goal is to construct some (to be more precise, 224) explicit good minimal models
of X starting from £, and then to study the integral affine structures on Sk(X)
induced by the Berkovich retractions associated to these models, or by patching
together several of them. To this purpose, we will apply corollaries [3.3.8 and [3.3.14]
Some good minimal models of X are obtained by performing the following small
resolutions of 2". As in corollary [4.1.17] for any triple of elements 4, j, k in {0, ..., 3}
and any fixed order (7,7, k) on them, we blow-up in order the divisors D;, D; and
Dy, and denote the resulting model by 2;;; and the morphism by

Gijk © Zigk = L.

The exceptional locus of g;;; consists of 24 smooth rational curves whose images
via g, are the singular points of 2. In particular, the strict transform of D is
isomorphic to the blow-up of D; along the 12 singular points in D;; similarly for D;
at 8 points, and for Dy at the 4 remaining singular points. Instead, for h # 1, j, k,
Dy, is isomorphic to its strict transform.

These facts follow from local computations on %: with the notation of section
, blowing-up D, := {x =t = 0} induces an exceptional curve inside the strict
transform D,, which is isomorphic to the blow-up of D, along the origin. The claims
now follow, since the singularities of 2~ are isolated.

If we denote by D,, for m € {1,...,4} the irreducible components of the special
fiber of 2k, and by Cpp = Dm N Dm/ the strata curves, then the intersection
numbers in 2, are:

Di D;j Dy D, h#ijk
Cj;l1 -3 1 1
Coe | 1 1 =3 1
Co |1 1 1 -3 (4.2.1)
Co | 1 1 -3 1
Cin| 1 1 1 -3
Cow| 1 1 1 -3
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Integral affine structure induced by the model 2

By [NXYT9] the non-archimedean SYZ fibration pg; , : X™ — Sk(Zjjr) = Sk(X) ~
S? is an affinoid torus fibration (at least) away from the vertices of the triangulation
of Sk(X') induced by the special fiber of 2, i.e. away from the vp,,’s.
By theorem [3.1.21} py; , is an affinoid torus fibration over Star(p,) for h # i, j, k,
as Dy, ~ P? and g;j; is an isomorphism on the strict transform of Dj. Moreover, by
remark [3.3.9 and [£.2.T| the integral affine structure induced by pa;;, does not extend
to vp,, vp, and vp,.

We conclude that the singular points of the affine structure on Sk(X) induced
by pa;, are precisely vp,, vp, and vp,. Corollary establishes that the mon-
odromies around these vertices are

21 8
1, 00= (% %)

in the basis (vp,,vp,) and origin vp,,

—-15 —4
Tp%x‘jk(%) - ( 4 1 >

in the basis (vp,,vp,) and origin vp,,

() = (}1 ?)

yy

in the basis (vp,,vp,) and origin vp, .

Integral affine structure induced combining more models

We recall a construction from [KS06, §4.2.5]. Consider the resolution h : & — 2~
obtained by blowing-up the 24 singular points of 2" inside P% and then taking the
closure of 2" in the blow-up. By the universal property of blowing-up (applied
to Zijx — Z), this model dominates any of the models %;;;, and the special
fiber is %) = Z?:l D; + Zzil E,; the associated dual complex is the boundary of
a tetrahedron with four additional 2-cells glued along each edge of the tetrahedron;
following Kontsevich—Soibelman we call such 2-cells wings.

We parametrize each edge e of D(Zp) by the interval [—1, 1], and each wing W,
glued to e by the 2-simplex in R?x,y) bounded by e and 0 <y < 1 — |z].

Lemma 4.2.2. Let W, be a wing over the edge ey, for 1 € {i,j,k} and assume
i,J,k, I all distinct. Then the retraction pg,, : Wy — e 1s the contraction of W,
to the edge ey, parallel to the edge e;,:

PZijk Wq — €p
(xay) = (I’ - Y, 0)

Proof. The morphism 2 — 2, is the blow-up of the 24 exceptional curves of g;;p.
In particular, the exceptional divisor £, is the preimage in 2 of a curve contained
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in Dy; it follows that vg, (%) = 1 and vg, (Z,) = 0, where %, Z, are local equations for
[)l, Dy, on Zijk- The Berkovich retraction P2, is linear on W, and hence depends
only on the image of v,, which is determined by vg, (%) and vg,(2,). Thus we
conclude that pg; , (v,) = v and we have the result. O

Kontsevich and Soibelman define a retraction
p X 22 Q%) 2 §? ~ SK(X) = Sk(Z)

where py is the Berkovich retraction onto the skeleton Sk(%), and p’ is a retraction
of the 24 wings of Sk(Z’) to the sphere given as follows. For each edge e of D(Z})
we choose a point a. = (a,0) in the interior of e, and define the retraction of W,
onto e by

Yy
Yq
(x4+y,0) fzx+y<ae
P (zy) = (x—y,0) ifzx—y>a
(e, 0) otherwise. N\(\l // v x
a

€

Picture for a. =0
We note that

- over the interior of any 2-dimensional face 7 C Sk(Z"), p is equal to p#, thus
it is an affinoid torus fibration (see example [3.1.16]).

- Around any vertex vp, p is equal to pg;, for any triple such that D #
D;, D;, Dy, as follows from the previous lemma. Thus, from p is an
affinoid torus fibration around vp, and the affine structure induced there is
the fan structure induced by D, by cor. [3.3.2

- For any edge e corresponding to C. = D;,, N D; ,, adopting the notation of
section [3.3.3]
~Jpa for i,, # 1, j, k, over Int(7,,) U Int(7, ) U [v;,,, ac)
P P2y fOT iy #40 J K over Int(7y,) U Int(7,,) U [v; . ac),
and thus is an affinoid torus fibration over the union of these two open sets.

We conclude that p induces an integral affine structure on Sk(X) away from
the points a.. By corollary we can compute the monodromy around the
singularities. As all these computations are analogous, we exhibit the case C, =
D1 N Dgi

V1 = U;

m

1 0
Tp(’yae) - <bl,%234 _ 617%134 1) V3 = Uz'o

- (3 —1—1) ?) Vi, = U4 @
1

Vg = V;_,
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with respect to the basis (v3,v1) and origin ve. This formula was already stated
in [KS06, §4.2.5].

Lemma 4.2.3. Let W C X® be a wing over the edge e;; C Sk(Z"). Then the
tropicalization map:
Val[p XM — NE

induces an integral affine homeomorphism from the wing W to the convexr hull
Conv(v;,v;,v; + vj) C Ny.

Note that in particular the four wings that lie over the same edge are collapsed
together inside the tropicalization Trop(X).

Proof. Assume for convenience that ¢ = 1 and j = 2. We let & — 2 be the
resolution of 2 defined above, and let f; = j—o be the meromorphic function on
Z induced by the standard coordinates on P"*1. We still denote by D; the strict
transforms of the components of 2 inside 2.

Let ¢ € C42 be a singular point, and E, C Z; the corresponding exceptional divisor.
Then f1, fo are equations for Dy + E,, Dy + E, respectively at the zero-dimensional
stratum p, := E,N Dy N Dy. Thus, choosing an equation fg of E, at p,, and writing
w € W as its monomial weights:

w = (wy, we, wg),
we have w; = w(fz'f;) and wp = w(fg), while:
Trop(w) = (w(/f1), w(f2),0) = (w1 + wg, w2 + wg, 0),

so that in coordinates Trop maps the standard simplex w; + ws + wg = 1 to the
convex hull Conv(vy, vy, vy + v9) C R, hence the result. O

Proposition 4.2.4. Let a = (a.). be a choice of center of the edges. Then the
retraction constructed above is the retraction p, = 0, o val.

Proof. Write p = doval, and p) = 7o py. By the proof of thm. [I.8] the
equality p = p’ holds away from I', so that we let x € X" such that p(x) € I" - or
equivalently, p/(z) € I'. Then there exists a wing W C Sk(Z) such that py(x) € W
- more precisely p#(x) belongs to the yellow region of the wing, as in figure |4.2.1]
Hence the results follows from the lemma above and the picture [£.2] O

Dispersion of singularities

We construct a third singular integral affine structure on Sk(X') pushing forward the
techniques developed so far. This can be viewed as a dispersion of singularities with
respect to the integral affine structure studied in on each edge we pass from
one singular point around which the monodromy is (} ¢), to 4 singular points around
each of which the monodromy is (19). Such singularities are called focus-focus and
are the most standard examples of singularities for Z-affine structures in dimension
2. Those arise for instance when considering the hyperkéhler rotation of a generic
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elliptic K3 surface f : S — CP!, with f an elliptic fibration: the hyperkihler
rotation S™X is a complex surface with same underlying topological space as S, and
hence comes with a map fH¥ : SHX 3 §? induced by f at the level of topological
spaces. The map ¥ is no longer holomorphic, but is a symplectic torus fibration

inducing a Z-affine structure with 24 focus-focus singularities on S? and acting as
an SYZ fibration for SHX. We refer the reader to [GWQ0], [OO18| for more details.

Let e be an edge of Sk(Z"), let C. = D., N D,, be the corresponding stratum
curve in 2. We recall that as the degree four polynomial F} is generic, C, contains
four singular points pq,...,ps of 2", which are ordinary double points. Around
each p;, 2" is étale locally of the form {zxy = wt} C A%, with z and y being local
equations for D., and D,., away from p;. Blowing-up the singular point p; inside
the ambient space yields an exceptional divisor £ ~ P! x P! Co%’cing one or
the other ruling of F, we obtain two distinct small resolutions of Z/¢, around p;,
respectively with an exceptional curve inside D., or D.,.

For j € {0,...,4}, we denote by Z.; the following small resolution of 2Z)c,:
around p; for ¢ < j we consider the small resolution such that the exceptional curve
over p; lies in D, , while for ¢ > j the small resolution such that the exceptional
curves lie in D,,. The gluing of these local small resolutions is done in the étale
topology, so that in general the obtained models are no longer schemes but only
algebraic spaces. Nevertheless, 2. ; is dominated by the scheme 2 (defined in
, so that we may still define a Berkovich retraction py, ., as described in
section . In particular, by prop. f.2.11], p2, ; is an affinoid torus fibration over
Star(7¢, ).

We construct the following continuous retraction

51 X" 22y Sk(%) 2y Sk(X) = Sk(2),

where p# is the Berkovich retraction onto the skeleton Sk(Z°), and 7 is a retraction
of the 24 wings of Sk(Z) to the sphere given as follows. We fix four distinct, ordered,
interior points ae 1, . . ., a. 4 of each edge e. Then the map p’ on the wing W; attached
to e is defined as the map p’ of setting a. = a.,;, for each i € {1,...,4}.

Proposition 4.2.5. The map p is an affinoid torus fibration away from the 24
points a.,;. Furthermore, the monodromy of the Z-affine structure induced by p,
around each singular point, is SLy(7Z)-conjugate to

10

Proof. Over Int(7) of any 2-dimensional face 7 C Sk(.Z"), p is equal to ps, hence
is an affinoid torus fibration. Around any vertex vp, p is equal to pg;, for any
triple such that D # D;, D;, Dy. It follows from that p is an affinoid torus
fibration around vp. We denote by py + ps the boundary of C¢, with py = C. N D;,
and po, = C. N D;; we write a.o = vp, and a.5 = vp, , and denote by (-,-) the
open segment joining two points. Then, for j € {0,...,4}, p is equal to pg; , over
Int(7,,) U Int(7,..) U (@ej, e j11), thus is an affinoid torus fibration. We conclude
that p is an affinoid torus fibration away from the points a.; for i € {1,...,4} .
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For a singular point a. ;, we consider a loop v around it and contained in Int (7, )U

Int(7p, )U(Ge i1, Gei)U(Ge iy Qe it1). We apply cor. [3.3.14]to compute the monodromy
along v: the numbers b, 4., , and b, 4., differ by 1, as the model Z¢; has an
additional exceptional curves in D., with respect to 2., ;. Therefore, we obtain

1 0
Tﬁ(vae’i) - (bel,%’e,i1 - bel’%e’i 1>
- ! )
S B-G-1)-B-10) 1

()

with respect to the basis (vp, ,vp,, ) and origin vp,, . O

4.2.2 Study of the local resolution

We now move on to the case of a degeneration of quintic threefolds, of the form:
X ={z..24 + tF5 = 0} C P},

where Fy is a generic homogeneous polynomial of degree five. We will start by
refining the discussion of section [.1.3

The singular locus 278 of the total space 2 is contained in the special fiber, and
is the intersection in P, of {F5 = 0} and the union of surfaces S;; = {z; = z; = 0}
for 7 # j.

In particular, each D; intersects 2™"¢ along the union of four quintic curves Cj;
and by genericity of F5, we may assume that C;; does not intersect the torus fixed
points of D;.

5
2enD; =y
j=1
i
Oij Q DZ N Dj

Ci; N Cy = {5 points} for j # 5

. Figure 4.5: Irreducible component D;
We consider a point in 2% N Dy N Dy N Dj3; the singular points in the other
strata curves can be treated analogously. Etale locally around such a point, 2" is
isomorphic to the toric variety % = V (zyx2703 — wt) C A}, where the:

are the components of the special fiber {¢ = 0} in %. They form the toric boundary
of % together with the:

D} ={z; = w = 0}.
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We denote the strata surfaces of the special fiber by D;; == D;ND;, fori, j € {1,2,3}
and i # j, and the stratum curve by Di93 := {1 = x9 = 3 =t = 0}. The singular
locus %8 consists of the torus invariant curves:

for {i,7} C {1,2,3}. The three singular curves intersect each other at the torus
invariant point p := {z1 = o = 3 = w =t = 0}.
The toric blow-up Gy : % = Blp, Z — % along D; resolves the singularities
along (5 and ('3 except at the point p. The exceptional locus of GGy consists of two
surfaces S, and Si3 intersecting each other along a curve: these surfaces are mapped
by (GG; to the respective singular curves, are contained in the strict transform of Dy,
and correspond to two new edges in the slice of the fan of %;. The intersection of
S12 and Si3 corresponds to a new 2-dimensional face in the slice of the fan. With a
slight abuse of notation we keep the same notation for the strict transforms in %4.
A resolution of % is given by the composition of G; and the toric blow-up
Gio : U = Blp, 21 — %4 along Ds; the latter indeed resolves the singularities
along Cy3. The exceptional locus of Gy is a surface Sp3, which is mapped by Gy
to (a3 and is contained in the strict transform of Dy. The morphism (15 induces a
new 2-dimensional face in the slice of the fan of %5, and a new edge corresponding
to the surface So3. In particular, after the blow-up Gis, the strict transforms of the
surface S15 and of the divisor D3 have empty intersection.
The small resolution %, of % induces an isomorphism on the strict transform of
D13 and of D»3, while its restriction to the strict transform of D, is the blow-up
of D15 along a general point. These facts can be checked computing the charts of
the blow-ups G and G1o. Alternatively, they can be verified looking at the fans of
the strata surfaces D;; in the slice of the fans of %, % and %; indeed, the fan
of D;; is induced by the intersection of the slice with a normal plane to the edge
corresponding to D;;, as in the picture in the proof of prop. f.1.14]

4.2.3 Local dominating model

We now introduce the local model for the dominating model 2 — 2~ we will
construct.

We consider the blow-up of the exceptional surfaces Sis, S13 and S»3 one after the
other:

blow-up of Sa3 blow-up of Si3 blow-up of S12

yZ yZ 4 Uy —— U
123 Hos 13 Hys 12 His 12 Gr00GH
U g U 1
E23 E13 E12 Atl

As these surfaces are toric strata of %4,, the blow-ups are toric as well and the
corresponding fans are refinements of the fan of %4,. We note that

- the dual complexes of the special fibers of %2, 712, 713 and ¥]23 are obtained
from the slices of the corresponding fans by removing the vertices correspond-
ing to D}, Dj and Dj, as well as each face containing one of these.



162 CHAPTER 4. DEGENERATIONS OF CALABI-YAU HYPERSURFACES

Then Sk(723) consists of four 3-cells: < vy3,v1,v9,v3 >, < V13,1, Vo, V12 >,
< V93, V13, Ug, U3 > and < o3, U13, Vg, V12 >>; it has only one edge in the interior,
which is < Vo, V13 >.

- The remaining 3-dimensional simplices of the slice of the fan of 7.3 are

A
r
< V13, Uy, U3, V12 >

/ /
< Va3, V12, Uy, U3 >

/
< Va3, V13, U3, V12 >

!

< V1,0V, V12, V13 >
!

< V2, Uy, V12, V23 >

!
< V3, Vg, V13, V23 >

- The Berkovich retractions associated with the models %45, 712 and #i3 map
V12 and V13 to V1, and V23 to V3.
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Ay <Y

Py, ON Sk %2 P4, ON Sk 7/13 Pvis O Sk(%gg)

P12 = P © Py ON Sk(%?S)

We study more in details the retraction py;, near the vertex vs, as this will be
relevant later in the construction of the local combinatorial retraction (see [£.2.7).
We observe that py;, collapses the convex hull Conv(vy, va, v3, V13, Va3) of v1, v, v3, V13
and wveg onto the face < vy, vy, v3 >. If we identify the skeleton Sk(%]23) with the
polyhedron in R? below, py,, on Conv(vy, v, v3, V13, va3) is written explicitly as
follows:

(%,y,2)

z <_l 1 1)
for (z,y, z) € Conv(vy, vy, v3, V13, Va3) \ {v3}, R

1 1 2
t t <_§767§)
P12 ((xawa)) = (Z’ + (1 — E) 2,y + 5,270) (O,O, 1) = Va3
11
2,21 vz = (—35,35,1)
where t = 2—y (2 29 ) 202
r+y+1
4.
(1767 ( ]"O’O)
X
—3:3:0)
v = (0,1,0)
07170
(0,3,0) 7

The function ¢ on Conv(vy,vq,v3) is the slope of the line segment joining the
vertex vs to tvy + (1 —t)vy for ¢ € [0,1]. We give a picture of the retraction py;, for
various values of ¢:
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(x 4+ 2,9,0) (z+%z,y+%z,0) (x+§lz,y+}lz,0) (:)3+§z,y+§z,0)
t=0 b= t=13 t=3

(z+ 32,9+ 32,0)
t=1

For purposes which will be clear in the construction of the local combinatorial re-
traction in section [£.2.4] we consider a further toric blow-up. Let Hia3 : 4 — o3
be the blow-up along the disjoint toric strata Dy N Ey3 and F1o N DY; this yields two
new components in the toric boundary, denoted by Fi93 and Ej,;. It follows that
the slice of the fan of ¢ is obtained from the slice of #},3 as star subdivision along
the edges < vg,v13 > and < vy9, V4 >.

In particular, the skeleton Sk(¥¢) is obtained from
Sk(7123) by

1. the star subdivision of the edge e(vy,v13), which

turns the four 3-cells of Sk(%#123) into eight 3-cells; ) P13

2. adding an  additional = 3-cell 7 =
Conv(v12, V13, V23, V]93), Where we denote by
Uly3 the new vertex corresponding to Ej,s.

Sk(¢) n
The diagram below summarizes the resolutions of % we constructed and studied so
far:

D blgw‘ug of D blow-up of blow-up of
2NE13,E12ND3 512,513,523 D1,D>
9 _ Y193 U v .
Hi23 HozoHi30H12 G120Gy
U U U
/
FEra3, Eog Ehs, Er3, Eas S12, 513, S23

4.2.4 Local combinatorial retraction

Other resolutions of %7 can be obtained by blowing-up the divisors of the special
fiber in a different order. Given any order (i1, 1i9,13) on {1,2,3}, we denote
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blow-up of blow-up of blow-up of
SiyigsSigig Siig D;, ,D;,
%12'21'3 %11'2 ? %11'2 ? %
U @)
Ei1i37 Eigig Eilig Si1i27 Si1i37 Sig’ig

The refinement of the fan of % corresponding to %;,,,:, is such that the skeleton
Sk(7;,40i5) = Sk(#123) as subspaces in the Berkovich space of %; it is independent
on the chosen order so that we simply denote this subspace by Sk(¥'). However,
the models 7;,;,;; and #7123 induce in general different simplicial subdivisions and
different retractions onto < vy, vy, v3 >. For instance, the only edge in the interior
of SKk(¥;,iyi5) 1S < U4y, Viy4, >, which indeed depends on the chosen order. Here below
we illustrate the skeletons and the Berkovich retractions in a couple of examples.

(1,2,3)
U3
(%
U1
Sk<7/123) U1 Py, O1 Sk(,y/u) Py, O Sk(%23)
(2,1,3)
U3
(%
U1

Py, ON Sk(%l) Py OL Sk(%l?))
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V32

(1,3, 2)
V13

V2

U1
Sk(#132) W P on Sk(¥i3) Py on Sk(¥132)

The blow-up of 7;,;,:, along the toric strata D;, N E;,;, and E; ;, N D;B yields a
refinement of the fan which coincides with the fan of ¢, constructed at the end of
. It follows that the model ¢ dominates all resolutions %;,;,;, independently on
the order, hence all Berkovich retractions py; , .., py ,, and py, , factors through

i1igig
PG -

Our goal is to construct a map m, composing the Berkovich retraction py with a
collapse x of the additional 3-cell 7 and a combinatorial retraction p

T U 22, 8k(9) —— Sk(¥) —L— Sk(%)
I U U

collapse retraction
U
— — P

U
over Star(v;) pz, ., 7 '(Star(v;)) 27, k(%) SELIN Sk(7,i05) Mz, é_t\a/r(vj)

such that, given any vertex v; in Sk(% ), the restriction of = over S/t\a/r(vj) (the Star
is taken with respect to the first barycentric subdivision, as in [3.3.11) is py, , for
any order (i1,49,7) on {1,2,3}, i.e. any order where the index j is the biggest. This
guarantees that around each v;, the map 7 is the Berkovich retraction induced by a
small resolution %;,;, where the strict transform of D; is isomorphic to Dj, so that

we may apply corollary [3.3.2]

- The retraction p. We identify again the skeleton Sk(%’) with the polyhedron
in R? described in [£.2.3] On the convex hull:

P = Conv (vas, (—1/4,1/4,1),(0,1/3,1),(0,0,0),vs, (0,1/3,0)),

the retraction p is given as follows:
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We extend
x4+ (1 -1 z,y—l—iz,O) ifr+ (1-51)2<0
oy epos d I8 2s )
(0,2.0) ifo+ (1-1)2>0
where t = 2y
r+y+1
(4.2.7)

the definition of p to Sk(¥') by symmetry along the medians of the triangles
< vy, v9,v3 > and < wvyg, V13, U3 >. In particular, we note that the image of
< V19, V13, U3 > is the graph in < vy, vy, v3 > from def.

- The combinatorial retraction 7/. We define the collapse s as the projection
of the additional 3-cell 7 of Sk(¥) onto < wvyg,v13, v23 > along the z-direction.
We call 7’ := p o k the combinatorial retraction of the skeleton Sk(¥) onto
Sk(%) =< V1, Vg, V3 >.

- Finally, we check that 7" = py, . over STt\E;Ir(vj). As the preimage of é_t\z;(vj)
is disjoint from < wig,v13, Va3, V)93 >, We have to prove that p = P, By
symmetry of p, it is enough to check this for vz. Over Star(vs) we have
P, = P¥,.,; there, the expression of py; , determined in @ coincides
with the definition of p in [£.2.7] hence we conclude.

Fix an order (i,7,k,l,h) on {1,...,5} and consider the small resolution 2, ob-
tained from 2 by blowing-up the divisors D;, D;, Dy, D; in that order. It now
follows from the local study of the singularities of 2" that this is indeed a small
resolution of 2.

In Zijw we still denote the strict transforms of the strata of 2 by D,,, by Dy =
D,,ND,, and by Dy = Dy N Dy N D,y with m, m’, m” € {1, . ,5} By the
study of the local model in section , the exceptional locus of g @ Ziju — £

blow-up blow-up blow-up blow-up

of D; of Dy, of Dj of D;
Gijkl - %jkl — %]k Zij Zi — Z
Gijri ijk Gij G;
U U U U
Stn Ski, Sk Sk, Sit, Sin Sijs Sk, Sit, Sin
consists of ten surfaces Sy, with m,m’ € {1,...,5} and m < m’ in the order

(i,7,k,1, h). The surface S, is mapped via g;;x to the singular curve C,,,,, and is
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contained in the strict transform of D,,. The component D}, (corresponding to the
biggest index in the chosen order) is the only one isomorphic to its strict transform.

4.2.5 The global combinatorial retraction

We consider the blow-up hiji : #ijm — Ziju of the surfaces S, in lexicographical
order with respect to (i, j, k, [, h); we denote by E,,,» the corresponding exceptional
divisors. The skeleton Sk(#;i;) consists of the union of the skeleton Sk(X) with
four additional 3-cells for each 2-dimensional face < v, Uy, Uy > of Sk(X): for
each ordered triple m < m’ < m”, the union of the additional cells is isomorphic to
Sk(#123) from section where we identify vy, = v,,, v2 = v,y and v3 = v,,,». The
retraction pg;,, collapses the additional faces onto < vy, Upms, Uy > as pas, © Py, -

Additional 3-cells of Sk(#;i) over
< Uy, Ut Ut >
with a pictorial description of the retraction pg;

Given another order (i, 5", k",I', ') on {1,2,3,4,5}, the skeleton Sk(#; /) co-
incides with Sk(%;1;) as subspace of X*"; we denote this simply by Sk(#). Instead,
the triangulation and the retraction depend on the order. Our goal is therefore to
construct a model 2 which dominates all models %#;;;; regardless of the order, so
that all retractions py; ,, factors through py.

Along the lines of section we define 2 as the blow-up of % along
D,y N Epyr and Eyyp N DY, for all ordered triples m < m/ < m” in the order
(4,4,k, 1, h):

blow-up of ) blow-up of S,/ blow-up of
g Dm’mEmm’“Emm’mDm// W for all m<m’ % D'57Dj7Dk’Dl %’
: , P igkl 17kl B .
or all m<m/<m hijkt Gijkl
U U U
!
Emm’m”a Emm/m// Emm’ Smm’

We denote by E,mm and E! ., the corresponding exceptional divisors, and de-
duce from the local study of these morphisms in that Sk(Z) is obtained from
Sk(#') by adding a new 3-cell Ty =< Vmm’s UVmm? s Ui/ s Vs > fOI €2CH
triple m <m/ <m”.

We now define the combinatorial retraction of Sk(Z") onto Sk(X): given the
2-cell < vy, U, Uy >, we identify v; = v,,, v9 = v,y and v3 = v,,» and contract
onto < Uy, U, U > the additional cells of Sk(Z) over < v, Ups, Uy >, via
the combinatorial retraction 7’ = p o k constructed in With a slight abuse of

notation, we still denote this map by 7. By construction, the composition 7 = 7’'op 4
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i Xan %Sk(fc‘)ﬁ Sk(X)
retraction

I U U U

over Star(vy)  po 7w L(Star(un)) 22 Sk(2) 2 Star(vm)

coincides with pg; ,, over Star(v,,)" for any order (4,7, k,1,m) on {1,2,3,4,5}. In
other words, around each vertex v,,, the map 7 is the Berkovich retraction induced
by a small resolution Z7;i; of 2", where the strict transform of D,, is isomorphic to
D,,, thus in particular Dm C D,, is a torus embedding.

By construction, around any point of Sk(X) \ I', the retraction 7 is equal to the
Berkovich retraction induced by a suitable minimal model 2, of X. It follows from
the results in [NXY19] that 7 induces an integral affine structure with singularities
on Sk(X). By theorem [3.1.21] we obtain that this integral affine structure has no
singularities outside I.

4.2.6 The skeleton of an analytic model

The purpose of this section is to extend the constructions of the Berkovich skeleton
and retraction to the following situation: let X be a smooth family of n-dimensional
projective varieties over the punctured disk D*, X the base change to K = C((t)),
and let 2" be a separated proper regular algebraic space over R, such that 2" x g K =
Xg. Writing abusively 2" the complex analytification of the latter algebraic space,
this means that the morphism 2 — D is a proper holomorphic submersion, not
assumed to be projective, and we will assume that Zj is a strict normal crossing
divisor in £ in the sense of complex analytic geometry; we still call such a space
2 an snc model of X.

Our goal is to define a skeleton Sk(27) C X*" and a retraction py : X** — Sk(Z)
associated with 2.

We start by recalling a construction from [BJ17, 4.2]. Let 2" be another snc
model of X that dominates Z"; we write h : 27 — %2 and the special fibers 2, =
Y icr @Dy and Z§ =Y., a;Dj. Then there exists an integral affine retraction

Torq D(%H) — D(%),

as follows. Let 7/ be the simplex in D(.%{) corresponding to a stratum Y’ C DN
...NDy. Let Y be the minimal stratum of 2y such that h(Y') C Y; we denote by
7 the simplex in D(%Z)) corresponding to Y and we write Dy, ..., D, the irreducible
components of 2y containing Y. Then

q
h*DZ = Z CLijD} + Z aithl
j=0 heI'\{0,...,q}

and we define the map 744 on 7’ by the formula:
q
/ !/
T 2w = (Wy,...,Wq)—~>T1T /a/w:( a~w-> cT.
(wo, ..., wq) = T (W) ;_0 9 ) e
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This yields a continuous integral affine map. Furthermore, we have the following
transitivity property: if 27 — 27 — % are three snc models of X, then

Tany =Ty OTgng:.
Definition 4.2.8. Let 7' be a face of D(Zy). We say 7' is active for vy g if:

- h:Y' — Y is a bimeromorphic morphism,

- the Q-linear map inducing vy 9 - 7' —> T is an isomorphism.

We write Ay 4 for the union of active faces in D(Zy). It follows from [BJ17,
Proposition 4.3| that r 44 induces a homeomorphism from A 445 onto D(Z).

Definition 4.2.9. Let 2 be an snc model of X, and assume there exists a projective
snc model 2" and h : &' — Z'. We define the skeleton Sk(Z") C X as the
image of Agig by the embedding D(Zy) — X*, and the Berkovich retraction
pa : X — Sk(Z") as the composition vy 9 © par (after identifying D(Zy) with
Sk(Z™)).

It follows directly from the transitivity property that this does not depend on
the choice of a projective model 2.

Lemma 4.2.10. Let 2 be an snc model of X and assume that 2 admits a domi-
nating projective snc model. Then for any stratum Y of Xy, the retraction py over
Star(ry) only depends on the formal completion 2y : if % is another snc model,
admitting a projective resolution and such that the birational map % — 2 induces
an isomorphism:

@/Y :> %Y7
then py = pay over Star(ry).

Proof. Let 2" be a projective snc model dominating 2" and write h : 27 — 2.
We denote by Dy, ..., D, the components of 2, containing Y.

Let Z' C DyN...ND; be any stratum of 2, and denote by 7’ the corresponding
simplex in D(Zy). By construction of 744, we have Int(rz) C 13}, ,-(Star(ry)) if
and only if h(Z') C Y in this case, h(D}) NY # & for any j = 0,...,q. Thus, if
D, is an irreducible component of 2y not cutting Y, it follows that h*D, does not
have any component along the D’ for j =0,...,q.

We deduce from this that for each D; component of Z; containing Y and j €
{0,...,q}, the coefficient of D} in h*(D;) is determined by h and a local equation
of D; in a formal niig\hbourhood of Y. This proves that ry4 over Star(ry) only

depends on h over 2y

—

By remark [1.1.18] py+ only depends on 3&”/’2/ above Star(rz/). If moreover

h(Z'") C Y, then h induces a morphism @/ — g”/\y, hence pg only depends
on h over Zy.
By the independence of p4- on the choice of projective model 2" and morphism

h, we conclude that ps over Star(ry) only depends on the formal completion E”/\y
m
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Proposition 4.2.11. Let 2" be an snc model of X and assume that & admits a
dominating projective snc model. Let C' be a one-dimensional stratum of Zy and
assume that C' is isomorphic to P! and C'\ C consists of two points. Then py is
an affinoid torus fibration over Star(rc) C Sk(Z"), and the induced affine structure

over Star(7¢) is described as in[3.3.9

Proof. By lemma the retraction py over Star(7¢) only depends on the formal
completion Z)¢. By [Knu7l, V, Theorem 2.5], since C' is a scheme, the formal

algebraic space Z¢ is a formal scheme. We are therefore in the setting of [NXY19,
Proposition 5.4, Theorem 6.1] and we can conclude. O

4.3 The Fermat case

4.3.1 The non-archimedean Monge-Ampére equation

Let X C P"*! x D* be the Fermat family of Calabi-Yau hypersurfaces:
X = {Zo...2n+1 + t(ZngQ + ...+ Z;Zi%)} = 0,

and 2 C P! x D its closure. We use the same notation for the respective base
change to K and R. We are in the setting of section [£.1.1], as the Fermat polynomial
F=2"4 .+ z,’fﬁ is such that prop. holds. The family X is endowed with
the polarization L = Ox(n + 2), and with the family of Calabi-Yau measures:

Vy = ’l.n2Qt A Qt7

where (€)tea- is a holomorphic trivialization of the relative canonical bundle Kx/a-.
We set:
e = Cyy,

where C; > 0 is the unique constant ensuring that f x, Mt = (L¢)". By theorem

the family (u)sep- converges weakly on X™P to the Lebesgue measure pg on
Sk(X).

Each fiber X; is endowed with the unique Kéhler Ricci-flat metric w; € ¢ (L),
satisfying the complex Monge-Ampére equation:

n _
Weye = Mt

Since for all ¢, the Kéhler form w; € ¢;(L;), there exists a family of hermitian metrics
¢cy, on Ly such that wey = dd¢ey - note however that this family need not vary
in a subharmonic way with respect to the direction of the base.

It turns out that in the non-archimedean limit, the Calabi-Yau metric (whose exis-
tence is ensured by thm. is of toric nature (in an extrinsic way). Recall that
P C My is the convex polytope associated to the toric boundary A of P**!, so that
setting L = Op(A), semi-positive toric metrics on (P [} are in one-to-one
correspondence with convex P-admissible function on Ng, see theorem [2.2.9] We
now have the following:
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Theorem 4.3.1. There exists a convex P-admissible function u : Ng — R, and
induced continuous psh toric metric ¢, € CPSH(PE ™" L), such that the restric-
tion ¢y, = (¢u)|x=n solves the non-archimedean Monge-Ampére equation:

MA(%) = Mo
on X2,

A similar, more general statement was recently obtained independently in [HJMM22]
for hypersurfaces of the form considered in section building on the construc-
tion of a solution to the tropical Monge-Ampére equation on Sk(X).

The fact that the function u solves the real Monge-Ampére equation . (u) = o
on Sk(X) \ I" was established in [Li22] (where the branch cuts are the barycenters
of the faces), however since the solution to this equation may not be unique, the
convex function u was only obtained along a subsequence, and could depend on the
choice thereof. However the solution to the NAMA equation is unique, so that as
observed in [Li22, rem. 5.7|, we get the following strenghtening of [Li22 thm. 5.1]:

Corollary 4.3.2. The locally conver function us, obtained in [Li22, thm. 5.1], as
well as the generic SYZ fibration from [Li22, thm. 5.14[, do not depend on the
choice of a subsequence.

We now move on to the proof of theorem and start by explaining how the
function u is obtained. Since in the sequel it will be more convenient to work with
potentials instead of metrics, we fix once and for all the reference hybrid metric ¢pg
on P"+Lvb guch that on the complex fiber X;:

n—+ 2
brst = ( 5 ) log(|zol* + ... + |20 ]?),

and:
orso = (n + 2) max(log|z], ..., log|zn+1]);

it is a continuous semi-positive metric on P**HP by prop. we use the same
notation for its restriction to X®". This allows us to identify the Calabi-Yau metric
with its relative potential:

Loyt = ¢CY¢ - ¢Fs,ta

normalized by the convention supy, wcy; = 0, for all ¢t € D,. Then Li produces,
via double Legendre transform, P-admissible convex functions ucy,; on Ng which
approximate the Calabi-Yau potential, and which satisfy suitable Lipschitz bounds.
This implies that for any sequence (t;)ren going to zero inside D*, there exists a
subsequence (which we will omit from notation) such that the admissible convex
functions ucy,, converge locally uniformly to a continuous, convex admissible func-
tion u € Adp(Ng) - which a priori depends on a choice of subsequence. By theorem
and in particular example [2.2.13], this induces a continuous hybrid metric
P, € CPSH(P*+ihvb WD) and by restriction to X™P a continuous psh hybrid
metric ¥, on (X, L). We write, following the notation of [Li22] (with a different
sign convention), s(t) = @, and Log,(z) := Log(sz) on the torus of P"*! so that
the restriction of ¥, to X; is equal to s~!(u o Log,).
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Proposition 4.3.3. As k — oo (up to extracting further), the sequence of complex
Monge-Ampere measures (s;"dd(u o Log,, )" )ken on X™ converge weakly to the
Lebesgue measure jig on the essential skeleton.

Before moving to the proof of the proposition, we explain how this implies the-
orem [4.3.1, Writing 1, = UN4 the restriction of ¥, to X it follows from theo-
rem that the sequence of measures (s;"dd®(uoLog,, )" )ken on X™® converges
weakly to MA (v, ), hence the equality. The uniqueness of u now follows from unique-
ness of the solution to the non-archimedean Monge-Ampére equation.

Proof of prop. [/.3.3. By compactness of X™® and after further extraction, we may
assume that the sequence of measures 6 := s;,"dd(u o Log, )™ on X™" converge
weakly to a limit measure 0, supported on X2*, of total mass L". Let f € CO(X™P),
then by [Li22, lem. 5.3, proof of thm. 5.1], as k — oo (up to extracting further) we

have:
R et
U, Us, —00

where Us, denotes the union of the ’toric regions’ US+* from [Li22] §4.5]. Moreover,
we have pg, (X5, \ Us,) — 0 when k& — oo, by [Li22 prop. 3.14]. Thus, if f > 0,
we infer that f yan JOs0 = f wan J Ho, hence O, > pp as measures on X*". However
both measures have the same mass L", so that they are equal, which concludes the
proof. O

Lemma 4.3.4. [Li22, proof of thm. 5.1] Let Log, : X; — Ny, be the restriction to
X; of Logﬁyb. Then as k — oo (up to extracting further),

(Logtk)* (s,;”ddc(u o Logsk)") — Ly flo

weakly in the sense of measures on Ny, where v : Sk(X) < Ny is the embedding

from prop. [{.1.3

4.3.2 The comparison property

The purpose of this section is to prove the following:

Theorem 4.3.5. Let X C P! x ID* be the Fermat family of hypersurfaces, and set
We write (Z°,%) the dit model of X obtained by taking the closure of X inside
Pl x D+,

Writing the solution ¢ to the NAMA equation as:

O =g+,

we have that 1 = 1) o p over Sk(X) \ I', where p : X* — Sk(X) is the admissible
retraction constructed in theorem|[/.1.8, and with choice of branch cuts such that a,
is the barycenter of T, for each face T C Sk(Z').
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As we shall see, the above theorem is mostly a consequence of theorem {4.3.1{ and
|ILi22, cor. 3.28].
Recall that the solution of the non-archimedean Monge-Ampére is explicitly given
as the restriction to X* of the toric metric ¢, € CPSH(P5 "**, L**). The model
metric ¢ is also toric, and we have ¢ = ¢4, Where:

urs(z) = max (m, z)

is the support function of the boundary of P*™!. We infer that the relative toric po-
tential is equal to 1 = (u—upg)ovaly on P"™! hence also on X. We set v/ = (u—ups)
which is a continuous function on Ng, extending continuously to Ny.
We need to prove that if p(x) € Sk(X) \ I', then ¢(x) = ¥ (p(x)). It is enough
to treat the two following cases: p(z) € Int(7) for a maximal face 7 of Sk(Z"), or
p(z) € U; = Int(Star(v;)) for a vertex v; of the skeleton.
We start with the former. If p(z) € Int(7), then p(x) = valg(z) under the identifi-
cation Sk(X) = 0P*, hence ¢(p(x)) = u'(valg(x)) = 9(x) as ¢ is a toric metric on
P,

The second case relies on the following observation:

Lemma 4.3.6. [Li22, cor. 3.28] Letu : Ng — R be the convex admissible function
from the statement of theorem and let v; € Sk(Z") be a vertex. Then on the
region X,, = (U; + Rsov;) N Trop(X), the equality:

u(w + av;) = u(w) + «
holds for any w € U;, a € Rxy.

This implies that if p(z) € U; - which means valg(z) € X,, - then u/(z) =
uw (0(z)). Indeed, writing x = w + av; with w € U;, we have:

ups(z) = mrg%))<m, ) = ups(w) + mrg%a)<m, avy) = ups(w) + @,

since v; is a vertex of P* = {(P,-) < 1}. This yields «/(z) = v/(w) = «/(6(x)) by
prop. and since ¢ = u’ o valy, we get that:

U(p(x)) = ¥(x)
whenever p(z) € U;. This concludes the proof of theorem [4.3.5]

Remark 4.3.7. Let X C P""! x D* be a mazimally degenerate hypersurface as
considered in theorem |4.1.8, and assume that for a certain choice a of branch cuts,
the solution v € C°(X™) of the non-archimedean Monge-Ampére equation:

MA(¢g + 1) = po

satisfies the comparison property 1 = op, over Sk(X)\I'. We write pg : Ng — R
the toric potential for the Fubini-Study metric on the ambient P"™ with the anti-
canonical polarization, and use the same notation for its restriction to Sk(X).
Then the collection of local functions:

Wy =1 on Int(7),
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Vi ==Y + Ppg — m; on U,

where m; € M satisfies (m;,v;) = 1, are convez in affine coordinates on Sk(X)\ T,
and satisfy the real Monge-Ampére equation:

nl A () = po,

away from I'. Note that the local potential ; equates the u,, from [Li22, def. 3.22].
This holds over the maximal faces of Sk(Z") by theorem so that we focus on

an open subset U;. It is enough to prove that under the formal isomorphism:

—

‘gz/l% ::”47Di

provided by theorem [3.1.21], the metric ¢ = ¢ + 1) is toric and has toric potential
v; on U;. The first part follows from the assumption ¢ = 1 o p, while the second
one follows from the fact that the toric potential for (qﬁg)mrDi is (Yrs —my) - recall
that the torus Tp, x of A is the quotient of Tp by the m;-direction.

4.3.3 The hybrid SYZ fibration

While the results from [Li22] do not yield a global SYZ fibration on the Fermat
hypersurfaces X; for |t| < 1, there does exist a special Lagrangian fibration on a
region of X; whose Calabi-Yau measure is arbitrarily close to 1 as t — 0. We will
show that this fibration converges to the retraction p from thm. 4.3.1in the hybrid
topology, this is similar to the results from [GO22| for finite quotients of abelian
varieties.

We start by recalling the precise statement on the existence of an SYZ fibration in
the generic region. By the local theory for the real Monge-Ampére equation, the
locally convex u on Sk(X)\ I is smooth and strictly convex on an open subset R C
(Sk(X)\T), whose complement has (n — 1)-Hausdorff measure zero; in particular
Sk(X) \ R is connected. The estimates from [Li22] imply that the Calabi-Yau
potential converges in a natural, C*-sense to u locally over R, so that the results
from [Zhal7| can be used to obtain the following:

Theorem 4.3.8. [Li22, thm. 5.153] Let K C R be a compact subset.
There exists an open neighbourhood Ve C R of K, and writing U; x = Log; * (Vk),
a special Lagrangian fibration:

ft : Ut,K — Sk(X)

that is a C*-perturbation of the map Log, as t — 0. Moreover, if (K,)nen 1S a
compact exhaustion of R, then the Uk, have Calabi-Yau measure arbitrarily close
tolast—0,n>1.

We claim that these generic SYZ fibrations converge in the hybrid topology to
p:
Proposition 4.3.9. Let Uy x = p~* (V) and:
UR" = valiy (Vie) = || Unie € X™

tebD,
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for r <1 depending on K. Then the hybrid SYZ fibration:
fUR" — K Sk(X)
defined by f; on Ui fort # 0 and p on Uy i is continuous.

Proof. By [Li22, §2.7, thm. 5.13|, for |[t| < 1, the SYZ fibration f; over K is C*-
close to the map Log, in the scale where the torus fibers have diameters of size
O(1), which easily implies our statement, as Log, converges to p over K in the
hybrid topology. [l



Chapter 5

Degenerations of canonically
polarized manifolds

5.1 Statement of the main theorem

In this section, X = D* will denote a meromorphic degeneration of canonically
polarized manifolds, and we will write L = Kx/p+ the polarization. It follows from
the seminal work of Aubin and Yau ([AubT7§|, [Yau78|) that every fiber X; admits
a unique negatively curved Kahler-Einstein metric w; € —c;(X;), satisfying the
equation Ric(w;) = —w;. The Kéhler form w; can be written as the curvature of a
smooth Hermitian metric ¢; on L; = Kx,, i.e.:

Wt = ddcgbt.

The metric ¢; is unique up to addition of a constant. In this situation, the family
of Hermitian metrics (¢;)iep+ turns out to also have plurisubharmonic variation in
the horizontal direction by the work of Schumacher [Sch12|, and has logarithmic
growth at t = 0 by [Schl12, thm. 3|. Thus, the family of metrics (¢;)tep~ induces
an element ¢ € CPSH(X, L), and it is a natural question to try and determine the
non-archimedean limit ¢™* of this family, as it provides a non-archimedean analog
of the Kéhler-Einstein metric.

As we will explain more thoroughly in section after a finite base change ¢ +— t¢
on the punctured disk, that we omit from notation, the family X/D* admits a
canonical model 2. /D such that the canonical bundle K 4, /p is relatively ample; the
model Z./D* is furthermore unique for this property (although it is more singular
than an snc - or even dlt - model). This in turn yields a canonical model metric
OK 4, € CPSH(X™, K§'), which we will prove to be the non-archimedean Kéhler-
Einstein metric:

Theorem 5.1.1. Let X = D* be a degeneration of canonically polarized manifolds,
L = Ky, and let gpxg € CPSH(X, L) be the family of Kihler-Finstein metrics. We
assume that the family X has semi-stable reduction over D. Then the metric on
LYY defined by:

O|x = PKE,

¢0 - ¢K%C/R
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is continuous and semipositive, i.e. ¢ € CPSH(X™Wb [bvb),

If the family of Kéhler-Einstein metrics ¢ were to extend as a bounded metric
¢ € PSH(Z., K4, /p+), then it would follow from example 1.3.11| that pNA = PK -
We will see that this is however not the case, but the singularities of ¢ along the
special fiber of the canonical model are mild enough for the result to still hold - they
are milder than any log poles.

Using theorem [I.4.T1] we have the following immediate consequence:

Corollary 5.1.2. Let X — D* be a meromorphic degeneration of n-dimensional
canonically polarized manifolds, and let wy € —cq(Xy) be the unique Kdhler-Einstein
metric with negative curvature on X;.

The Kihler-Einstein measures ji; = w converge weakly on X™ to g = MA(¢xk ., ),
the non-archimedean Monge-Ampére measure of the canonical model metric.

More explicitly, writing Zeo = Y _,c; b:D; as the sum of its irreducible components,
the measure pigy 1s a weighted sum of Dirac masses supported at the divisorial valua-
tions vp,, given by:

Ho = Z bz‘((K%'c)n : Di>5UD.-

k2
i€l

This was proved in [PS22b thm. A] in a direct way, without using thm. [1.4.11}

5.2 The canonical model

Let X 5 D* be a degeneration of smooth, canonically polarized varieties. In this
case, the Minimal Model Program provides us with a unique canonical model 2.
of X over the disk, at the cost of going out of the class of simple normal crossing
models, and allowing some slightly worse singularities. The appropriate class of
varieties for the central fiber is a higher-dimensional analog of the stable curves, the
correct notion being that of semi-log canonical models.

If 2" is a normal model of X, saying that 2 is semi-log canonical (see for instance
[KoI13]) is a condition on the singularities of the normalisation of £y, which can be
seen as a mild generalization of the simple normal crossing condition; in particular
we require 2y to be reduced and simple normal crossing in codimension 1. More
precisely, the normalization morphism v : Z; — 2 is required to yield a disjoint
union 2 = I_liel(Di,C’i) of log canonical pairs, C; being the restriction of the
conductor C' of v to D;. This is a Weil divisor on 2, whose support is precisely
the locus where the normalization v fails to be an isomorphism, and which is simply
given here by the inverse image by v of the codimension one nodes of Z,. It
furthermore satisfies the formula : v*Ky, = Kgp + C (note that the canonical
divisor of a semi-log canonical variety is assumed to be Q-Cartier).

A semi-log canonical model (or stable variety) is now by definition a proper semi-
log canonical variety, with ample canonical divisor. For instance, one-dimensional
semi-log canonical models are nothing but Deligne-Mumford’s stable curves.

The compactness theorem for moduli of stable varieties of higher dimension is now
as follows:
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Theorem 5.2.1. ([BCHM1(], [KNX1§]).

Let X — ID* be an algebraic degeneration of canonically polarized manifolds.
There exists (possibly after a finite base change) a unique canonical model Z. of X
over the disk, satisfying the following properties:

i) the total space Z. has at worst canonical singularities, while the central fiber 2
18 reduced and has at worst semi-log canonical singularities;

i) the relative canonical divisor K 4, p is relatively ample.

The canonical model is constructed as follows: by the semi-stable reduction the-
orem [KKMSDT3]|, there exists a finite base change t = ()¢ on the punctured disk
such that the family X’ = X xp: D}, admits a semi-stable model over D*, i.e. an snc
model with reduced special fiber. Omitting the base change from notation and start-
ing from a semi-stable model 2 /D of X, we set 2. = Projp, @D, H(Z, mK 4 p),
the main difficulty being to prove finite-generatedness of the relative canonical al-
gebra. This is established in [BCHMI10] when X/D* is defined over an algebraic
curve, and extended to families over the disk in [KNXI8|. The uniqueness of the
canonical model is now a straightforward consequence of the birational invariance of
the relative canonical ring R = @,,-, H°(2,mK 4 p) - as the notation suggests,
R does not depend on the choice of the model 2.

Remark 5.2.2. If 2 is any semi-stable model of X, then the natural rational map
h:Z --+ Z. isin fact a rational contraction - this means that its inverse does not
contract any divisors.

5.3 Metric convergence and proof of theorem [5.1.1

The complete understanding of the Gromov-Hausdorff convergence of the fibers
(X4, 9¢), is due to J. Song [Sonl7| (whose results were further improved recently in
[SSW20]). The crucial first step, is to show that there exists on the central fiber
Zeo = Zie ; D; of the canonical model of X a unique Kahler-Einstein current wgg,
and to derive some geometric estimates on the singularities of this current. The
current wi g on the stable variety 2., was first constructed by Berman-Guenancia
IBG14] using a variational method, while it is reconstructed in [Sonl7] using the
techniques of [EGZ09|, [Kol98|, in order to obtain some stronger control on its
singularities:

Theorem 5.3.1. ([Soni’, thm. 1.1]).

Let Z. — D be the canonical model of X, with semi-log canonical central fiber
P,

There exists a unique Kdhler current wxp € —c1(Zep) on Zep, satisfying the fol-
lowing properties:

i) wip 1s smooth and satisfies the Kdhler-FEinstein equation on the regular locus of
Zeo;

i) wi g has locally bounded potentials on the locus where 2. is log terminal;

iti) Wi,y does not charge mass on the singularities of 2o, and [, wip = [Ka;,]".

Remark 5.3.2. The fact that the above Kdhler-Einstein current on Z.o matches
the one constructed in [BG14[, follows from the uniqueness statement in [BG1},
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thm. AJ. Moreover, the construction of [BG14] implies that fDi wip = (K% - D;).
Indeed, if v : 2y — Zeo denotes the normalization morphism, where 2%, =
UierD;, then the Kdihler-Einstein metric wip is obtained by descending the (singu-
lar) Kihler-Einstein metrics w; € ci1(Kp, + C;) on the log canonical pairs (D;, Cy),
C; being the restriction of the conductor C' of v to D;.

Thus by construction, the mass fDi Wi g equals the intersection number (Kp +C;)" =

(V' Ky, )", the last intersection number being computed on D;. Applying the pro-
jection formula, this is equal to the intersection number Ky, Di= KY - D, by
adjunction and principality of Z.o.

Let us now fix a m > 0 such that mK 4 p is relatively very ample, and a relative
embedding ¢ : 2, < PV x D of the canonical model inside projective space by
sections of mK 4, p. We let ¢pg be the hybrid Bergman metric on (PY)™" from

example and still write ¢pg € CPSH(X™P, LW¥P) its pullback to X™" via the
embedding ¢. More explicitly, we have that

drss = m L} ds,

where ¢rg is the usual (Euclidean) Fubini-Study metric on CPY; while

Prs,0 = PK o /R

since the model (27, K4, /r) is ample.
This allows us to write the Kéahler-Einstein metric ¢xp; = ¢rs; + ¥, with ¢y €
C>(X;). The potential ¢, is the unique solution of the Monge-Ampére equation:

(wrs, + ddP,)" = 6%35,“

with the normalization [y e¥'wis, = (Kx,)". In order to derive uniform estimates
for the family of potentials (¢;);ep+, it is more convenient to work on a semi-stable
model, as a result we perform an additional base change and consider a diagram of
the form:

p , 7

c C

VA Z,
N
d
Dtt—ﬂf D

—

where 2 is the base change of the canonical model 27 via t — t%, and 2" is a semi-
stable resolution of 2. We write the special fiber 2o = >_,; Di+ >, ; Ej, where

l~?i is the strict transform of D; C 3{0’70 = 2.0 and the E;’s are the exceptional

divisors of p. For each i € I, let ¢; be a psh metric on O 4 (D;) with divisorial
singularities along D, i.e. ¢; = log|z;| + O(1) locally, where z; is a local equation
for D;. Similarly, we choose 1; with divisorial singularities along F;, and we may

assume that:
Zgbi + ij = log|t|.

iel jeJ
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In order to apply Cheeger-Colding theory to the Kahler-Einstein metrics on X;,
Song derives uniform estimates on volumes of small balls, which are obtained via
comparison lemmas for volume forms. The estimate focuses on a strict transform
-Dio C Zo which we henceforth fix, and shows that the potentials 1; do not blow-up
as we approach the interior of lN)iO:

Proposition 5.3.3. ([Sonl7, cor. 4.1, lem. 4.2])
We have a uniform bound: supy, ¢, < C.

Moreover, letting J' C J be the subset of exceptional divisors in Zy that meet bio,
the following holds: for any € > 0, there exists a constant C. > 0 such that for all

t£0:
ez e() di+ Y ) —Ce
icl jeJ’
i#i0

This 1mplies smooth convergence of the Kahler-Einstein metrics w; to the current
wrg on Zep \ Sing(Z.o) in the following sense:

for any point p € Z.o \ Sing(Z.0), and any choice of neighbourhood % of p such
that the Uy = % N Xy are all biholomorphic to Uy, and such that the (wpst)™’s are
uniformly equivalent, the pulled-back 1, converge in the C*>-sense to 1.

Note that we have made a small abuse of notation, since the object in the right-
hand side of the inequality is a metric and not a function.

Remark 5.3.4. Fven if we will not need it here, one can show that the previous
theorem combined with a uniform non-collapsing condition implies pointed Gromouv-
Hausdorff convergence of X; to a complete metric space, whose regular part (in the
Cheeger-Colding sense) is precisely ( 2o\ Sing(Zeo), Wk E)-

We also point out that this holds for degeneration of canonically polarized manifolds
over a higher-dimensional base by the results of [SSW20], building on the semi-stable
reduction theorem from [AKO0], [ALTI1S/.

The behaviour of the metrics in the region where the metric collapses is also well-
understood, under the technical assumption that the canonical model is semi-stable,
see [Zhald].

We are now ready to prove theorem[5.1.1] We let ¢y = PK 4, € CPSH(X™, L),
and ¢xp € CPSH(X, L) the family of K&hler-Einstein metrics. In order to prove
that the hybrid metric ¢ defined by the statement of theorem [5.1.1] is continuous
and semi-positive, it is enough to prove that it defines a continuous metric on L™P,
by prop. [1.3.16}

Substracting the reference metric hybrid ¢rg, whose restriction to X*" is the model
metric ¢k, ., it is enough to prove that the potential ¢’s converge to zero as t — 0
in the hybrid topology. In other words, we need to prove that:

(0
}logt]t| ‘ Q

Y

which is an easy consequence of the estimates from prop. This concludes the
proof of theorem [5.1.1]
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5.4 Degenerations of Fano manifolds

In this section, we briefly discuss the case where X = D* is an algebraic degenera-
tion of Fano manifolds.

In this case, the existence of a Kéhler-Einstein metric on every fiber does not hold
in general, contrasting with the Calabi-Yau and canonically polarized cases.

There are several obstructions to the existence of a Kéhler-Einstein metric on a
smooth Fano manifold Z, going back at least to Lichnerowicz and Matsushima, see
for instance [Fut88]. Those "classical" obstructions all come from the automorphism
group of the manifold Z, which must for instance be reductive in order for a Kéahler-
Einstein metric to possibly exist.

Further developments in the subject in the 90’s have brought people to believe that
the existence of a Kahler-Einstein metric on Z is equivalent to a sophisticated form
of GIT (Geometric Invariant Theory) stability for the polarized variety (Z, —Kz).
The correct notion is the one of K-stability.

Although we will not give a precise definition of K-stability here, it is worth em-
phasizing that it is a purely algebro-geometric condition on (Z, —K), which is
furthermore Zariski open on the base of any holomorphic family of Fano manifolds.
It is furthermore equivalent to the condition that Z has finite automorphism group,
in addition to being K-polystable, so that K-polystability should be thought as an
extension of K-stability to manifolds with continuous families of automorphisms.
By [CDS14], the K-polystability of (Z,—K) is now equivalent to the existence,
of a Kéhler-Einstein of positive curvature w € —c;(Kyz), satisfying the equation
Ric(w) = w. This metric is furthermore unique up to Aut’(Z), the connected com-
ponent of the automorphism group of Z containing the identity (which is trivial if
and only if Z is K-stable).

Thus, we let from now X — D* be a degeneration of K-polystable Fano man-
ifolds, hence Kéahler-Einstein. In this case, positivity of the Ricci curvature and
the classical Bonnet-Myers theorem ensure that the diameters of (X, g.,) satisfy a
uniform upper bound, while the Bishop-Gromov inequality imply a uniform non-
collapsing condition on the (X, g,,): for all small radius » > 0 and p € X;, we have
Voly, B(p,r) > cr®™, ¢ > 0 being a uniform constant.

This uniform non-collapsing condition is used in [DS14] to prove that the metric
spaces (Xi, g., ) are well-behaved when ¢ — 0: the limiting object is a mildly singu-
lar Fano variety, which also admits a singular Kéahler-Einstein metric in the sense
of [EGZ09], and the Gromov-Hausdorff limit is unique, and homeomorphic to the
limit in the sense of algebraic geometry (in the relevant Hilbert scheme).

However, the uniqueness of a model 2°/D of X whose central fiber matches the
Gromov-Hausdorff limit of the X; no longer holds, as shown in the following exam-
ple.

Example 5.4.1. Consider X = P! x D*, and 2 = P' x D. We blow-up a closed
point of 2y to obtain an snc model of X whose central fiber is a chain of two (—1)-
curves, and we contract the strict transform of Zq in this model, which yields a new
snc model Xy with central fiber P!, which is not isomorphic to .

In this case, even though the model 2 has the 'right’ central fiber, we see that
the intrinsic behaviour of the metrics inside 2" is rather badly behaved; the metric
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convergence is only extrinsic - that is, after composing by suitable automorphisms.
We see that the issue is due to the presence of a large automorphism group of the
metrics, which makes the situation less rigid than in the negatively curved case.
Even if we assume that the X;’s have a discrete automorphism group for all t € D*,
it may very well happen that a model as above could be such that its irreducible
central fiber 2j has non-trivial Aut’(25) and be non-unique, which would prevent
us from determining on which one we could expect Cheeger-Gromov convergence.
However, it is proven in [BX19| that if there exists a model 2" /D whose irreducible
central fiber is a K-stable Q-Fano manifold (and thus has finite automorphism
group), then such a model is actually unique. We then expect that the follow-
ing holds: the family of Kéahler-Einstein metrics (¢;);ep+ converge on the hybrid
space to the model metric ¢_r, ;.

At the moment, we still lack uniform estimates on 2 on the Kéhler-Einstein po-
tentials with respect to a smooth reference family of metrics that would enable us
to prove this, so that we leave this question aside for future work.
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Appendix

In this appendix, we state and prove a regularization result for psh metrics in the
complex analytic setting, that will be used in the proof of theorem [I.3.13] We
expect that the statement below (thm. is well-known to experts, as well
as the techniques we use in the proof - which are largely due to Demailly [Dem92].
Nevertheless, since we could not find the precise statement required in the literature,
we include a proof.

We let (Y,w) be a Kéhler manifold, and assume given a proper holomorphic map
m:Y — Q, where () is a bounded open subset of C. We furthermore assume that
there exists a m-relatively ample line bundle L on Y such that w € ¢;(L).

Given a semi-positive metric ¢ € PSH(Y, L), we want to write it as a decreasing
limit of a sequence (¢;) ey of psh metrics on L with analytic singularities along the
multiplier ideal sheaf .%; := #(j¢). We recall the basic definitions:

Definition 5.4.2. Let ¢ € PSH(Y, L) be a semi-positive metric on L. The multiplier
ideal sheaf () is the ideal generated by the germs of holomorphic functions f such
that | f|?e=2% is locally integrable on Y .

Here locally integrable means locally integrable in any coordinate chart, we also
abusively view ¢ as a psh function this way.

Definition 5.4.3. Let # C Oy be a coherent ideal sheaf on'Y, and ¢ € PSH(Y, L).
We say that ¢ has analytic singularities along Z if ¢ can be written locally as:

¢ = log (|f1|2 + AP +x
where (f1,..., fr) are a set of local generators of ¢ and x is a smooth function.

Given a coherent ideal sheaf ¢, one can always produce quasi-psh functions
with analytic singularities along ¢, using a partition of unity argument.
The rest of this appendix will be devoted to the proof of the following:

Theorem 5.4.4. Let 2 C C be a bounded open subset, Y a smooth Kdihler manifold
together with a proper holomorphic map m :Y — Q, and let L a relatively ample
line bundle on Y. We let ¢ be a smooth Hermitian metric on L whose curvature
form w = ddy is a Kdahler metric on'Y .

Let ¢ € PSH(Y, L), and write .#,, :== % (m¢) the multiplier ideal of me, for m €
N. Then for any relatively compact, open subset Y' € Y, there exists a sequence
(¢j)jen € PSH(Y', L) such that:

e the ¢; decrease pointwise to ¢ on Y,

185
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e for all j € N, the psh metric 27¢; on 2/ L has analytic singularities of the form
Ioi.

Let us fix a psh exhaustion function 7 : 2 — R, i.e. such that the sublevel sets
Q. := {n < ¢} are relatively compact subsets of €2; note that the Y, := {now < ¢}
are also relatively compact in Y and weakly pseudoconvex. Since the subset Y’ C Y
is relatively compact, we have Y’ C Y, for ¢ > 1.

Proposition 5.4.5. For any ¢ € R such that Y € Y. € Y, there exists a mg > 1
such that for all m > 1, the sheaf Oy ((m + mgy)L & S, is generated by its global
sections on Y,.

Proof. We argue as in [BBJIS8| lem. 5.6], and write n = dimY".

We let H be a relatively very ample line bundle on Y, and we choose my > 1 such
that the line bundle A = moL — Ky — nH is relatively ample on Y.

By the relative Castelnuevo-Mumford regularity criterion (see [DELOQ, lem. 1.4]),
the sheaf Oy ((m + my)L ® .%,,) is m-globally generated on Y, as soon as:

Rim,(((m +mo)L —qH) ® ) =0
for 1 < ¢ <n — 1, which holds by Nadel vanishing [Nad89], [BEJ16, thm. B.8]. O

We will now regularize ¢ by a sequence of psh metrics with analytic singularities
of the form .#(m¢), up to some controlled error term. We mostly follow the argu-
ment from the proof of |[GZ05, thm. 8.1]. For my large enough so that prop.
holds, write:

Vmamo = (M 4+ motp) € PSH(Y, (m + my)L),

we have that .7, = S (Ypm,) = & (m¢) is the multiplier ideal of the psh metric
Vmme o0 (Y, L).

We are naturally led to introduce the Bergman metrics associated to the multiplier
ideal .#,,; for Y, as in prop. we set Viyme = H°(Ye, (m 4+ mo)L ® ,,) and
define J2, , C Vinm, as the following Hilbert space:

%m,mg = {S e mem0/||SH2 = v |$|'l2l)m,m0wn < OO}
c
For every m, we may choose a Hilbert basis %,me = (Sm.mo.1)ien of o m,, and we

now set:
log(Z‘Sm,mo,lF)v
leN

P = 3+ )

we have ¢, m, € PSH(Y., L).

Proposition 5.4.6. For q € N, set:

1
m,mo,q —1 m.m 2 .
¢ ,110,9 2(m+m0) Og(Z"S ) 0,l| )

I<q

Then the ¢umy.q converge uniformly to ¢, m, overY'. Moreover, ¢, m, has analytic
singularities of the form %, over Y’.
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Proof. We drop the (m,mg) subscript to alleviate notation. We choose ¢ < ¢ such
that let Y’ € Y. € Y,, with the freedom to slightly decrease ¢ throughout the steps
of the proof.

We set #, = J((sl)lgq), and ¢ = Ugp0 Zy = J((SZ)ZGN). Then we have 7 =
(m+mo)L ® #(m¢) over Y by global generation, which is a coherent ideal sheaf
on Y. by Nadel’s theorem [Nad89)]. By the strong Noetherian property for coherent
sheaves, the ascending chain (_#,),>0 of ideals is locally stationary, so that we have
Fq= 7 for ¢ > 1 on Yy after shrinking.

We now set:
F=Y |sf,

leN
and:
F,=> |si*
I<q
We will prove that on Y, there exists C; > 1 such that:
F, < F < C,F,

and that C; —— 1. We mostly mimic the argument from step 2 of the proof of

q—ro0

[DPSOT, thm. 2.2.1]. Up to slightly decreasing ¢/, we may work locally, so that we
assume that the s; are holomorphic functions. By the strong Noetherian property
of coherent ideal sheaves, the sequence of ideal sheaves J#; on Y. x Y, generated by
the (s;(2)s;(w))1<q is locally stationary, so that it is stationary at % = U,s.%; on
Y., x Y. for ¢ > 1. From the bound:

L 1/2
Slss@l < ((ClsP) - (Xls@)p))

1<q 1N 1N

we infer that the series >, s1(2)s;(w) converges locally uniformly on Yo x Yo, and
thus by closedness of the space of sections of a coherent ideal sheaf, we get that the
holomorphic function on Y, x Y.:

Zsl(z)sl(w) ex.

leN

Since £ = J, for q large enough, we get that:

leEN 1<q

on Yy x Yy for some C, > 0, and thus:
F < C,F,

over Y, for ¢ large enough by restricting to the complex diagonal z = w.

Finally, let us set x, = ¢ — ¢4: then we proved that for any ¢ > 1, there exists
by > 0 such that 0 < x, < b, on Y. As aresult ¢, and ¢ have the same singularities,
which are analytic singularities along ¢, = ¢ for ¢ > 1.

Moreover, since the sum converges locally uniformly, the y, are continuous and
decrease to zero pointwise, so that from Dini’s lemma the x,’s decrease uniformly
to zero on Y’, and ¢, converges uniformly to ¢ over Y. ]
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We now want to prove that over Y, the ¢, ., decrease with respect to m (up
to an error term) to our initial metric ¢.
We start by proving that the ¢, ,,, converge pointwise to ¢ over Y,.. Writing B,,, ,, C
Hon.mo the unit ball with respect to the L?*-norm, we have:

1

1
Prm,mo 2(m + my) g(;\ ’ O’l‘) 2(m + my)

sup log|s|,
SEBm,mO

since for z € Y., the quantity ;- o[Sm.mo,(2)[? is the operator norm of the evaluation
map ev, : Ao, m, —> LT,

Covering Y, by coordinates charts (U;);cr, we let z € U; and p > 0 such that
B(z,p) C U;. For s € #, m,, since |s|? is subharmonic in U;, we have:

C

|S(Z)|2 < —— ’8|2wn+1 < (' e25UPB(z,p) ¥m,mg |S|12/)m’m wn+1,
) .
P B(z,0) Yo

so that if s € B,, ;,,, the bound:

logl|s(z)|* < sup mm, +C
B(z,p)

holds, hence ¢y m,(2) < supp, ) ¢ + (m +mg)~'C.

The converse inequality follows from the Ohsawa-Takegoshi theorem [Dem15]: there
exists mg > 1 and a universal constant C' > 0 such that for all m € N large enough
and z € Y., there exists s € J7,, ,,, such that:

s[Pe2mmaum 1 < Ols(z)Pe>mmo
Ye

)

so that if we choose the right-hand side to be equal to one, we get s € B,, », such
that:

log|s(2)| = ¥mmy(2) — C,
hence ¢y, m,(2) > ¢(2) — (m + mg)~'C, which proves pointwise convergence on Y.
We now prove that the ¢,,,,, are almost subadditive. We let s € By, 4mpme C
Hn+ma.myg, and set:

m m
%mhmz,mo = {S € HO(Y; X Y;,p’{((ml + 70)3)(jm1) ®p§((m2 + %)Z)(jmz)%

/ |S (21, zz)IQefwmﬁ@(Zl)*zwmﬁ@(m)(m ® wo)" < 00},
Y. xYe

where we have written w; = pjw.

By the Ohsawa-Takegoshi theorem, there exists S € ., imy.m, With L:norm [|S|| <
C for a universal constant C, such that Sja, = s, where Ay, C Y. x Y. is the
diagonal. To be more precise, we let:

Y xY —RU{—o0}

be a quasi-psh function with analytic singularities along .# (Ay ), and we may assume
that £ < 0 on Y.. Then in the notation of [Dem15, thm. 1.4] the measure dVa, ., [¢]
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is uniformly equivalent to w™ on Ay, , as Ay is a local complete intersection, so that
our estimate follows from the aforementioned theorem with 6 = 2.

Since Jnfml,m%mo = %m17m0/2®%m27m0/2, the family (8m17m0/2751 X 8m2,m0/2,l2)(ll,l2)€N2
form a Hilbert basis of 27, n,.m,- We may write:

S(z21, 22) = Z Cly 1 Smymo/201 (21) @ Smymo/2,02(22),
(ll,l2)€N2

with 37, e, 1,[* < C. Thus:
‘S(Z)|2 = [S(2, Z)‘Q < C(Z|Sm1,m0/2,ll(z)‘2) x (Z’Sm27mo/2,l2<z)|2)’
l1 l2
so that:

C (ma +mo/2) Py mo 2 4 (M2 + M0 /2) Py me 2
m1+m2+m0 m1+m2+m0 m1+m2+mo ’

qul +ma,mo S

Since ¢ — 1) is bounded from above over Y., we may assume without loss of generality
that ¢ — ¢ <0, so that (m+ %)*I@Dm,mo/g < (m+m0)*1¢m,m0 and thus ¢y, me/2 <
®m,mo- This now implies that the sequence:

¢j = ¢2J’7m0,m0 + 2_j_20

is decreasing to ¢ over Y., and has the required singularities over Y’ by prop. |5.4.6|
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Mots clés : Espaces de Berkovich, dégénérescences de variétés algébriques, variétés de Calabi-Yau,

symétrie miroir

Résumé : Nous définissons une classe de métriques
plurisousharmoniques sur I'espace hybride associé
a une dégénérescence polarisée (X,L) de variétés
complexes . Une telle métriqgue hybride induit une
métrique psh sur L au sens usuel, ainsi qu'une
métrique psh sur I'analytification non archimédienne
de X par rapport a la valeur absolue t-adique sur
C((t)). Nous démontrons que toute métrique plurisou-
sharmonique complexe sur (X, L) admet une exten-
sion canonique a I'espace hybride. Nous étudions en
particulier le cas ou (Z, L) est une variété torique po-
larisée, ou nous donnons une description combina-
toire des métriques toriques hybrides continues psh
sur L. Nous étudions ensuite les dégénérescences
maximales de variétés de Calabi-Yau, dans le but de
produire une incarnation non archimédienne de la fi-

bration SYZ conjecturale. Pour ce faire, nous tentons
dans un premier temps de comprendre la structure af-
fine entiére induite sur le squelette essentiel Sk(X) par
la rétraction de Berkovich associée a un bon modéle
dit de X. Cela nous permet de construire, dans le
cas des dégénérescences d’hypersurfaces, une fibra-
tion SYZ non archimédienne induisant sur Sk(X) la
structure affine entiére prédite par le programme de
Gross-Siebert. Lorsque la famille est celle des hyper-
surfaces de Fermat, nous montrons en outre que la
métrique de Calabi-Yau non archimédienne est inva-
riante par cette rétraction. Enfin, nous considérons
une dégénérescence de variétés canoniquement po-
larisées et calculons la limite non archimédienne de
la famille des métriques de Kahler-Einstein dans I'es-
pace hybride associé.

Title : Non-archimedean aspects of the SYZ conjecture

Keywords : Berkovich spaces, degenerations of algebraic varieties, Calabi-Yau manifolds, mirror symmetry

Abstract : We define a class of plurisubharmonic me-
trics on the hybrid space associated to a polarized de-
generation (X,L) of complex manifolds over the punc-
tured disk. Such a psh metric induces by restriction
a psh metric on L in the usual sense, as well as a
psh metric on the non-archimedean analytification of
X with respect to the t-adic absolute value on C((t)).
We prove that any complex psh metric on (X, L) ad-
mits a canonical plurisubharmonic extension to the
hybrid space. We also focus on the case of a com-
plex polarized toric variety (Z, L), where we provide
a combinatorial description of continuous plurisubhar-
monic hybrid toric metrics on L. We then study maxi-
mal degenerations of Calabi-Yau manifolds, with the
goal of constructing a non-archimedean avatar of the

conjectural SYZ fibration on the complex fibers. To
that extend, we study the integral affine structures in-
duced on the skeleton Sk(X) by the Berkovich retrac-
tion associated to a good dlt model of X. This allows
us to construct, in the case of degenerations of hyper-
surfaces, a non-archimedean SYZ fibration inducing
on Sk(X) the integral affine structure predicted by the
Gross-Siebert program. When the family of hypersur-
faces is the Fermat one, we furthermore prove that the
non-archimedean Calabi-Yau metric is invariant under
this retraction. Finally, we consider degenerations of
canonically polarized manifolds and compute the non-
archimedean limit of the family of Kahler-Einstein me-
trics inside the associated hybrid space.
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