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Thèse de doctorat de l’Institut Polytechnique de Paris
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Résumé

Nous définissons une classe de métriques plurisousharmoniques sur l’espace hybride
Xhyb associé à une dégénérescence polarisée (X,L) de variétés complexes. Une telle
métrique hybride induit une métrique psh sur L au sens usuel, ainsi qu’une métrique
psh sur l’analytification non archimédienne Xan de X par rapport à la valeur ab-
solue t-adique sur C((t)). Nous démontrons que toute métrique plurisousharmonique
complexe sur (X,L) admet une extension canonique à l’espace hybride Xhyb. Nous
étudions en particulier le cas où (Z,L) est une variété torique polarisée, où nous don-
nons une description combinatoire des métriques toriques hybrides continues psh sur
L.
Nous étudions ensuite les dégénérescences maximales X/D∗ de variétés de Calabi-
Yau, dans le but de produire une incarnation non archimédienne ρ : Xan −→ Sk(X)
de la fibration SYZ conjecturale. Pour ce faire, nous tentons dans un premier temps
de comprendre la structure affine entière induite sur le squelette Sk(X ) par la ré-
traction de Berkovich ρX associée à un bon R-modèle dlt de X. Cela nous permet
de construire, dans le cas des dégénérescences d’hypersurfaces, une fibration SYZ
non archimédienne induisant sur Sk(X) la structure affine entière prédite par le pro-
gramme de Gross-Siebert. Lorsque la famille est celle des hypersurfaces de Fermat,
nous montrons en outre que la métrique de Calabi-Yau non archimédienne est in-
variante par cette rétraction.
Enfin, nous considérons une dégénérescence de variétés canoniquement polarisées et
calculons la limite non archimédienne de la famille des métriques de Kähler-Einstein
dans l’espace hybride associé.
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Abstract

We define a class of plurisubharmonic metrics on the hybrid space Xhyb associated
to a polarized degeneration (X,L) of complex manifolds over the punctured disk.
Such a psh metric induces by restriction a psh metric on L in the usual sense, as
well as a psh metric on the non-archimedean analytification Xan of X with respect
to the t-adic absolute value on C((t)). We prove that any complex psh metric on
(X,L) admits a canonical plurisubharmonic extension to the hybrid space Xhyb. We
also focus on the case of a complex polarized toric variety (Z,L), where we provide
a combinatorial description of continuous plurisubharmonic hybrid toric metrics on
L.
We then study maximal degenerations X/D∗ of Calabi-Yau manifolds, with the goal
of constructing a non-archimedean avatar ρ : Xan −→ Sk(X) of the conjectural SYZ
fibration on the complex fibers. To that extend, we study the integral affine struc-
tures induced on the skeleton Sk(X ) by the Berkovich retraction ρX associated
to a good dlt R-model of X. This allows us to construct, in the case of degener-
ations of hypersurfaces, a non-archimedean SYZ fibration inducing on Sk(X) the
integral affine structure predicted by the Gross-Siebert program. When the family
of hypersurfaces is the Fermat one, we furthermore prove that the non-archimedean
Calabi-Yau metric is invariant under this retraction.
Finally, we consider degenerations of canonically polarized manifolds and compute
the non-archimedean limit of the family of Kähler-Einstein metrics inside the asso-
ciated hybrid space.
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Introduction en français

Le sujet principal de cette thèse est l’étude des dégénérescences de variétés al-
gébriques complexes - et plus particulièrement les variétés de Calabi-Yau - au moyen
d’outils provenant de la géométrie analytique non archimédienne.
La première partie de ce texte fournit une tentative de généralisation de la théorie du
pluripotentiel non archimédien, développée dans [BFJ16], [BBJ18], [BE21], [Reb21]
dans le cas d’une variété X sur un corps non archimédien, au cas des espaces hy-
brides. Pour ce faire, nous définissons une classe de métriques (singulières) semi-
positives sur un fibré en droites sur l’analytification au sens de Berkovich d’un
schéma X sur un anneau de Banach A. Dans le cas où A = Ar est l’anneau des
séries convergentes - pour la norme dite hybride sur C - ceci induit une notion de
métrique semi-positive sur la réunion d’une dégénérescence de variétés complexes
avec l’espace analytique non-archimédien associé. Nous faisons le lien entre notre
définition et diverses constructions apparaissant dans la littérature [BBJ18], [Reb21],
[Fav20]. Nous étudions ensuite plus en détail le cas des métriques toriques sur une
variété torique, où celles-ci sont encodées par certaines fonctions sur un espace vec-
toriel réel de dimension finie, et où la condition de semi-positivité de la métrique se
traduit par la convexité au sens usuel de la fonction associée.
La seconde partie est consacrée à l’étude du problème suivant: étant donnée X −→
D∗ une dégénéréscence maximale de variétés de Calabi-Yau, on souhaiterait con-
struire une incarnation non archimédienne ρ : Xan −→ Sk(X) de la fibration SYZ
conjecturale sur les fibres Xt, |t| ≪ 1, de la famille. Une telle rétraction devant
induire sur Sk(X) une structure affine entière, singulière en codimension 2, on es-
père alors que cette rétraction permette d’identifier la métrique de Calabi-Yau non-
archimédienne à une solution de l’équation de Monge-Ampère réelle sur le squelette
essentiel Sk(X). Ceci nécessite en particulier de comprendre les singularités des
rétractions de Berkovich ρX : Xan −→ Sk(X ) associée aux R-modèles de X, où
R = C[[t]], étant donné que notre approche pour construire une rétraction SYZ
dans les exemples explicites s’appuie sur des recollements de plusieurs rétractions de
Berkovich, associée à différents modèles de X. Nous étudions en particulier une cer-
taine classe de dégénérescences d’hypersurfaces dans l’espace projectif, où, en nous
appuyant sur les résultats de la première partie et ceux de [Li22], nous parvenons
à identifier de manière satisfaisante les solutions des équations de Monge-Ampère
réelle et non archimédienne, lorsque le membre de droite est la mesure de Lebesgue
sur le squelette essentiel Sk(X).
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Géométrie non archimédienne

Soit (K, |·|) un corps non archimédien complet, c’est-à-dire un corps muni d’une
valeur absolue satisfaisant l’inégalité dite ultramétrique:

|x+ y| ≤ max{|x|, |y|},

pour tous x, y ∈ K, et telle que K soit en outre complet par rapport à la distance
induite. Parmi les exemples de tels corps, on note le corps Qp des nombres p-adiques,
qui est la complétion de Q muni de la valeur absolue p-adique |·|p = p−vp , où vp est
la valuation p-adique; le corps C((t)) des séries de Laurent complexes muni de la
valuation t-adique |·| = e− ord0 ; ou encore n’importe quel corps k muni de la valeur
absolue triviale |·|0, qui est telle que |x|0 = 1 pour tout x ∈ k non nul.
On pourrait mentionner diverses tentatives (dues par exemple à Tate, Raynaud
ou Huber), au cours du 20ème siècle, de produire une théorie satisfaisante de la
géométrie analytique sur un corps non archimédien: étant donné une variété pro-
jective X/K, on souhaiterait lui associer de manière naturelle un espace analytique
Xan, jouissant par exemple d’une topologie plus agréable que celle du schéma X/K;
de façon analogue à la manière selon laquelle on associe à un schéma de type finiX/C
une variété complexe. Notons notamment que l’approche naïve, qui consisterait à
prendre K muni de la distance induite par |·|, comme espace topologique sous-jacent
à l’analytification de la droite affine A1

K , n’est pas très fructueuse: l’inégalité ultra-
métrique implique qu’un tel espace topologique est totalement discontinu. Ainsi, il
est nécessaire d’élaborer une théorie plus sophistiquée de la géométrie analytique sur
K pour pouvoir obtenir des espaces topologiques aux propriétés plus raisonnables.
Dans ce texte, nous nous en tiendrons à la théorie des espacesK-analytiques dévelop-
pée par Berkovich, qui est celle qui est la plus fidèle à l’intuition provenant des
espaces analytiques complexes. De manière naïve, l’idée est la suivante: si X est
une variété projective complexe, on peut voir un point fermé x ∈ X comme une
valeur absolue (dégénérée) f 7→ |f(x)| sur le corps des fonctions K(X), étendant
la valeur absolue euclidienne sur le corps de base C ⊂ K(X), vu comme les fonc-
tions constantes. Supposons maintenant que K est un corps valué complet et X/K
une variété quasi-projective. Son analytification Xan au sens de Berkovich est alors
définie comme une certaine compactification de l’ensemble des valeurs absolues sur
son corps de fonctions K(X) étendant la valeur absolue de base sur K, ce dernier
étant muni de la topologie de la convergence simple. Ceci entraîne en particulier que
toute fonction méromorphe f sur X, régulière sur un ouvert de Zariski U , induit
une fonction continue x 7→ |f(x)| := |f |x sur l’ouvert Uan ⊂ Xan. Comme dans
le cas complexe, l’analytification Xan d’une variété quasi-projective X/K jouit de
propriétés topologiques agréables: celle-ci est séparée, localement connexe par arcs,
localement contractile et est compacte si et seulement si X/K est propre. Dans le
cas où K = C est le corps des nombres complexes muni de la valeur absolue eucli-
dienne, l’analytification de Berkovich d’une variété algébrique complexe se trouve
être son analytification holomorphe au sens usuel.
La théorie de Berkovich s’applique aussi au-dessus d’une base plus générale: si
(A, |·|) est un anneau de Banach, il est possible de définir son spectre analytique
M (A) au sens de Berkovich comme l’ensemble des semi-normes multiplicatives sur
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A qui sont majorées par la norme de référence. Si x ∈ M (A), le noyau px de la
semi-norme |·|x est un idéal premier de A, et l’on dénote H (x) la complétion du
corps des fraction de l’anneau quotient A/px par rapport à la valeur absolue |·|x -
muni de cette dernière, il s’agit d’un corps valué complet, appelé corps résiduel de
M (A) en x.
L’analytifié Xan d’un A-schéma de type fini est ensuite défini d’une manière ana-
logue au cas où A est un corps, celui-ci est de plus muni d’un morphisme structural
π : Xan −→ M (A), qui est en particulier continu. Sous certaines conditions sur
l’anneau de base A, la fibre Xx = π−1(x) s’identifie à l’analytifié du changement de
base XH (x) = X ×A H (x), par rapport à la valeur absolue |·|x sur H (x), si bien
que l’on peut penser l’espace analytique Xan comme la famille d’espaces analytiques
(XH (x))x∈M (A) sur différents corps valués - de manière analogue à la façon dont on
peut voir un schéma sur A comme une famille de schémas sur les corps résiduels de
A, et paramétrée par SpecA.
Supposons par exemple que notre anneau de Banach est Chyb = (C, |·|hyb), où
|z|hyb = max{|z|0, |z |} est la norme hybride sur C, à savoir le maximum entre
les valeurs absolues triviale et euclidienne. On peut alors montrer que M (Chyb) =
{|·|λ/λ ∈ [0, 1]}, où l’on note abusivement |·|0 = |·|0. Il s’ensuit que si X est une
variété algébrique complexe, son analytification Xhyb par rapport à la norme hy-
bride - appelée l’espace hybride associé - fibre sur l’intervalle [0, 1], et la fibre Xhyb

λ

au-dessus de λ > 0 s’identifie naturellement, après renormalisation de la valeur ab-
solue, à l’analytifié holomorphe de X, tandis que la fibre au-dessus de 0 s’identifie
à l’analytifié Xan

0 par rapport à la valeur absolue triviale sur C. Ceci fournit donc
une manière naturelle de voir des renormalisations de la variété analytique complexe
Xhol dégénérer vers l’espace analytique non archimédien Xan

0 . Ceci justifie la ter-
minologie, l’espace Xhyb étant de nature hybride, encodant à la fois la géométrie
analytique holomorphe et non archimédienne de X.

Dégénérescences de variétés complexes et espaces hybrides

Soit désormais X −→ D∗ une dégénérescence de variétés projectives complexes,
qu’on suppose telle que les équations des fibres Xt soient méromorphes en t = 0.
Ceci nous permet de voir X comme une variété algébrique XK sur le corps des séries
de Laurent K = C((t)) qui, comme mentionné précédemment, est muni de la valeur
absolue t-adique qui en fait un corps non archimédien complet. Nous allons main-
tenant expliquer dans quelle mesure l’espace analytique au sens de Berkovich Xan

K

encode de diverses manières des informations sur le comportement asymptotique en
t = 0 de la famille X.
Soit π : X −→ D un modèle à croisements normaux simples de X - dont l’existence
est assurée par notre hypothèse de méromorphie et par le théorème d’Hironaka.
Ecrivant la fibre spéciale X0 := π−1(0) =

∑
i∈I aiDi comme la somme de ses com-

posantes irréductibles, la condition de croisements normaux simples signifie que les
Di sont des diviseurs premiers, lisses, et dont les diverses intersections sont toutes
transverses. Ceci nous permet d’associer à X0 un complexe cellulaire D(X0), en-
codant la combinatoire des intersections des Di. Le complexe dual est défini de la
manière suivante: à toute composante Di de X0 est associé un sommet vi; puis pour
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toute composante connexe de l’intersection Di ∩ Dj l’on trace une arête eij entre
vi et vj. De la même manière, à chaque composante connexe d’une intersection
Di ∩Dj ∩Dk on associe un 2-simplexe, délimité par des arêtes eij, eik, ejk, et ainsi
de suite pour aboutir à un complexe cellulaire de dimension majorée par la dimen-
sion relative de X. L’un des intêrets de cette construction est que le complexe dual
D(X0) peut naturellement être plongé dans l’espace analytique Xan

K ; en d’autres
termes il est possible de voir les points de D(X0) comme des valuations sur le corps
des fonctions de X. Par exemple, si vi est un sommet de D(X0) correspondant
à une composante Di, on lui associe la valuation vDi

:= f 7→ a−1
i ordDi

(f) pour
f ∈ K(X ) ≃ K(X), la normalisation assurant que vDi

(t) = 1. Les faces de dimen-
sion supérieure de D(X0) sont ensuite à leur tour plongées dans Xan en interpolant
entre les vDi

, l’image de ce plongement est notée Sk(X ) ⊂ Xan et appelée squelette
du modèle X .
Berkovich définit en outre une rétraction ρX : Xan −→ Sk(X ) pour l’inclusion
Sk(X ) ⊂ Xan, induisant une équivalence d’homotopie entre Xan et Sk(X ). Ceci
permet de penser le squelette Sk(X ) comme une approximation finie de Xan, ce
dernier étant reconstruit (topologiquement) comme la limite inverse des Sk(X ),
prise sur l’ensemble des modèles à croisements normaux simples de X.
Fixons désormais un rayon r ∈ (0, 1). Il est possible de définir, d’une manière simi-
laire à la construction du paragraphe précédent, un anneau Ar de séries convergentes
pour la norme hybride sur C, dont le spectre de Berkovich M (Ar) ≃ D̄r est homéo-
morphe au disque fermé de rayon r. On peut voir la dégénérescence X −→ D∗

comme un schéma sur Ar, et son analytification est appellée l’espace hybride:

Xhyb π−→ D̄r.

La fibre π−1(0) = Xan
K est alors l’analytification de X par rapport à la valeur absolue

t-adique, tandis qu’en dehors de 0, la pré-image π−1(D̄∗
r) s’identifie naturellement

avec la restriction de la dégénérescence X à D̄∗
r - après avoir renormalisé la valeur

absolue surXt par une puissance log r
log|t| . A nouveau, ceci fournit une manière naturelle

de voir les variétés analytiques complexes Xt (avec leur valeur absolue renormalisée)
dégénérer vers l’espace analytique non-archimédien XK lorsque t→ 0. On s’attend
alors à ce que diverses familles d’objets issus de la géométrie complexe vivant sur
les Xt admettent une limite sur l’espace hybride - la limite étant plutôt une pente
logarithmique en 0, au vu de la renormalisation de la valeur absolue.

Théorie du pluripotentiel non-archimédienne

La théorie du pluripotentiel classique consiste en l’étude des fonctions plurisoushar-
moniques: si Ω ⊂ Cn est un domaine, une fonction semi-continue inférieurement
ϕ : Ω −→ R∪{−∞} est plurisousharmonique (ou psh) si et seulement si pour toute
droite affine complexe ℓ, sa restriction ϕℓ à ℓ∩Ω est sous-harmonique au sens faible,
i.e. son laplacien ∆ϕℓ au sens des distributions est positif. De manière équivalente,
ceci signifie que la Hessienne complexe i∂∂̄ϕ ≥ 0 est une (1, 1)-forme positive au sens
des courants. Par exemple, si f ∈ O(Ω) est une fonction holomorphe, la formule de
Lelong-Poincaré implique que la fonction ϕ = log|f | est plurisousharmonique sur Ω,
et est singulière précisément sur le lieu {f = 0}. Les fonctions plurisousharmoniques
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peuvent alternativement être définies à l’aide d’une inégalité de la moyenne, ce qui
implique que celles-ci sont stables par limites décroissantes et maxima finis.
Cette notion se généralise alors au cadre global, de la manière suivante. Soit X une
variété complexe, L un fibré en droites ample sur X et h une métrique hermitienne
sur L. On identifie cette dernière à la collection ϕ de ses poids locaux logarithmiques
ϕi = − log|si|h contre les trivialisations locales si de L, et l’on dit que la métrique
ϕ est plurisousharmonique si et seulement si ses poids locaux le sont. Comme dans
l’exemple qui précède, si s ∈ H0(X,mL) est une section globale non-nulle de mL
pour un m ≥ 1, la métrique singulière ϕ = m−1 log|s| est plurishousharmonique, à
nouveau par la formule de Lelong-Poincaré.
Un des théorèmes centraux de la théorie du pluripotentiel est le résultat de régulari-
sation suivant, dû à Demailly [Dem92]: toute métrique psh ϕ sur un fibré en droites
ample peut être écrite comme limite décroissante de métriques de la forme:

ϕFS =
1

2m
log(|s0|2 + ...+ |sN |2),

où m ≥ 1 et (s0, ..., sN) est une famille de sections globales de mL sans zéros
communs. Ces métriques sont nommées métriques de Fubini-Study sur L, pour
la raison suivante; si f : X −→ CPN est l’application holomorphe donnée par
f(x) = [s0(x) : ... : sN(x)], alors ϕ est à un facteur près le tiré en arrière par f de la
métrique de Fubini-Study sur CPN .
Revenons maintenant au cas où K est un corps non archimédien complet. Si (X,L)
est une variété projective surK, on peut définir de manière analogue à ce qui précède
des métriques continues sur l’analytification Lan: étant donnée une famille (Ui, si)
de trivialisations locales algébriques de L, une métrique continue ϕ est la donnée
d’une famille de poids locaux ϕi = − log|si|ϕ continus sur les Uan

i , compatibles sur
les intersections (Ui ∩ Uj)an et compatibles avec la multiplication des sections par
des fonctions.
On peut de même définir une notion de métrique singulière sur L, de telle sorte que
si s est une section globale non-nulle de mL, alors m−1 log|s| définit une métrique
sur L, singulière le long du lieu des zéros de s. Poussant l’analogie plus loin, on dit
qu’une métrique de la forme:

ϕFS = m−1 logmax(|s0|, ..., |sN |),

pour une famille (s0, ..., sN) de sections globales de mL sans zéros communs, est
une métrique de Fubini-Study (tropicale) sur L. Le théorème de régularisation de
Demailly est alors pris comme définition des métriques plurisousharmoniques sur L:

Définition 0.0.1. La classe PSH(X,L) des métriques plurisousharmoniques sur L
est la plus petite classe de métriques singulières qui:

• contienne les métriques de Fubini-Study tropicales,

• soit stable par addition de constantes,

• soit stable par maxima finis,

• soit stable par limites décroissantes.
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Lorsque le corps K est non archimédien, de valuation vK que l’on suppose non
triviale pour simplifier, une classe naturelle de métriques sur L est définie de la
manière suivante. Soit (X ,L ) un modèle de (X,L) sur l’anneau de valuation R =
{vK ≥ 0}. De manière simpliste, la métrique modèle ϕL est la métrique telle que les
sections locales de L de norme ≤ 1 soient précisément celles qui s’étendent à X en
tant que sections régulières de L . En particulier, le réseau H0(X ,L ) ⊂ H0(X,L)
est la boule unité pour la norme du sup associée à ϕL . Il se trouve alors que les
métriques de Fubini-Study sur L ne sont autres que les métriques modèles sur (les
puissances positives) de L, associées à des modèles semi-amples L , c’est-à-dire tels
que mL soit globablement engendré pour m suffisamment divisible.

L’opérateur de Monge-Ampère

Soient Ω ⊂ Cn un domaine, et ϕi ∈ PSH(Ω)∩C∞(Ω) pour i = 1, ..., n une collection
de n fonctions psh lisses. Leur mesure de Monge-Ampère (mixte) est définie comme:

MA(ϕ1, ..., ϕn) = i∂∂̄ϕ1 ∧ ... ∧ i∂∂̄ϕn,

et constitue l’un des objets centraux de la théorie du pluripotentiel. On souhait-
erait alors étendre l’opérateur de Monge-Ampère aux fonctions psh qui ne sont plus
nécéssairement lisses; cependant même si i∂∂̄ϕ est défini pour une fonction psh
quelconque, il s’agit désormais d’un courant et non plus d’une forme différentielle,
si bien qu’il n’est a priori pas possible de considérer des produits d’expressions de
la forme i∂∂̄ϕi. Cependant, les travaux fondateurs de Bedford-Taylor [BT76] ont
montré que l’opérateur de Monge-Ampère pouvait être étendu de manière unique
aux fonctions psh bornées - et en particulier, aux fonctions psh continues. Il peut
en outre s’étendre plus généralement à la classe des fonctions psh d’énergie finie par
[BEGZ10], que nous ne définirons pas ici.
Dans un cadre global, soit X une variété projective complexe de dimension n, et
L1, ..., Ln des fibrés en droites amples sur X. Etant donné des métriques continues
psh ϕi sur les Li, l’on définit leur mesure de Monge-Ampère comme ci-dessus; nous
continuerons de la dénoter i∂∂̄ϕ1∧ ...∧ i∂∂̄ϕn. Il s’agit d’une mesure positive sur X,
dont la masse totale est (à normalisation près) le nombre d’intersection (L1 · ... ·Ln).
Le théorème suivant, connu initialement sous le nom de conjecture de Calabi, est
dû à Yau [Yau78] dans le cas lisse et à Kołodziej [Kol98] dans le cas singulier:

Théorème 0.0.2. Soit X une variété projective complexe lisse, et L un fibré en
droites ample sur X. Soit µ une mesure de probabilité sur X, à densité Lp pour un
p > 1.
Alors il existe une unique (à une constante additive près) métrique ϕ ∈ PSH(X,L)
solution de l’équation de Monge-Ampère complexe:

(i∂∂̄ϕ)n = Cµ,

où C = (2π)nLn.

Notons que le résultat de Yau garantit que si la mesure µ est une forme volume
lisse, alors la solution ϕ de l’équation ci-dessus est lisse et strictement psh.
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La motivation originelle pour ce théorème était la question de l’existence de métriques
kähleriennes Ricci-plates sur les variétés de Calabi-Yau: si (X,L) est une variété
de Calabi-Yau polarisée, c’est-à-dire telle que KX = OX , alors la solution lisse
ϕ ∈ PSH(X,L) de l’équation de Monge-Ampère:

(i∂∂̄ϕ)n = Cin
2

Ω ∧ Ω̄,

où Ω ∈ H0(X,KX) est une n-forme holomorphe ne s’annulant pas, est telle que la
form de courbure ω = i∂∂̄ϕ est une métrique de Kähler sur X de courbure de Ricci
nulle.
Revenons maintenant au cas non archimédien, et supposons que K = k((t)) pour
simplifier l’exposition; notons R = k[[t]] et supposons en outre que k est de car-
actéristique zéro. Étant donnée une variété polarisée (X,L) sur K, l’analogue des
métriques lisses sur L est fourni par les métriques de Fubini-Study qui, comme
mentionné précédemment, sont aussi les métriques modèles ϕL associées aux R-
modèles nef (X ,L ) de (X,L). La mesure de Monge-Ampère mixte d’une collection
(ϕL1 , ..., ϕLn) de métriques modèles est alors définie comme une somme explicite de
masses de Dirac, dont les coefficients sont divers nombres d’intersection des Li sur
X ; bien que cela ne soit pas apparent à première vue, cette définition imite la
définition de l’opérateur de Monge-Ampère réel sur les fonctions convexes, affine
par morceaux - un fait notable étant que la mesure atomique MA(ϕL1 , ..., ϕLn) est
supportée sur le squelette Sk(X ), et est de masse totale (L1 · ... · Ln), comme dans
le cas complexe.
L’opérateur de Monge-Ampère est ensuite étendu aux métriques continues psh dans
[BFJ15], où il est établi que l’analogue non archimédien de la conjecture de Calabi
est vrai:

Théorème 0.0.3. Soit (X,L) une variété polarisée lisse sur K. Soit µ une mesure
de probabilité sur Xan, supportée sur le squelette d’un R-modèle à croisements nor-
maux simples de X. Alors il existe une unique (à une constante additive près)
métrique plurisousharmonique continue ϕ sur L satisfaisant l’équation de Monge-
Ampère non archimédienne:

MA(ϕ) = µ.

Ici nous avons écrit MA(ϕ) := MA(ϕ, ..., ϕ).
La preuve du théorème ci-dessus repose cependant sur un argument de nature vari-
ationelle, si bien qu’elle ne donne pas d’informations sur la nature de la solution,
hormis sa continuité. Il serait notamment souhaitable, comme nous le verrons par
la suite, de traduire cette équation en une équation de Monge-Ampère réelle sur
le squelette Sk(X ) sur lequel la mesure µ est supportée, ce qui s’avère être une
question difficile.

La conjecture de Kontsevich-Soibelman
Nous allons maintenant présenter un cercle d’idées, initié au début des années 2000
par Kontsevich et Soibelman comme une tentative d’explication du phénomène de
symétrie miroir, et qui prédit notamment le comportement asymptotique de la
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famille des métriques kähleriennes Ricci-plates sur une famille de variétés de Calabi-
Yau dont la structure complexe dégénère de la pire manière possible.

L’heuristique SYZ classique

Soit X −→ D∗ une famille relativement projective, méromorphe en 0 de variétés de
Calabi-Yau, et rappelons que cela signifie pour nous que le fibré canonique KXt de
chaque fibre Xt est trivial, pour t ∈ D∗. Fixons une polarisation relative L sur la
familleX, et supposons en outre que la famille est maximalement dégénérée en t = 0,
ce qui signifie que les fibres Xt se cassent en le plus de morceaux possibles lorsque
t −→ 0. Plus formellement, cela signifie que le complexe dual D(X0) de tout modèle
à croisements normaux de X est de dimension maximale n = dimXt. Dans ce con-
texte, l’approche de Kontsevich-Soibelman [KS06] de la conjecture de Strominger-
Yau-Zaslow [SYZ96] prédit que les variétés de Calabi-Yau (Xt, ωt) - où ωt est la
métrique kählerienne Ricci-plate sur Xt, normalisée par la condition ωt ∈ c1(Lt) -
ont un diamètre dt dont l’ordre de grandeur est

∣∣ log|t|∣∣1/2, ce qui a été confirmé
récemment par les résultats de Li-Tosatti [LT20].
De plus, il est prédit que la fibre Xt munie de la métrique de Kähler ω̃t := d−2

t ωt de-
vrait ressembler à l’espace total d’une fibration lagrangienne dont les fibres sont des
tores réels Tn de taille d−1

t , au-dessus d’une certaine base B de dimension réelle n.
En particulier, la conjecture de Kontsevich-Soibelman prédit que la famille d’espaces
métriques (Xt, ω̃t) converge au sens de Gromov-Hausdorff vers la base B, munie
d’une métrique de Monge-Ampère réelle en dehors d’un lieu de codimension de
Hausdorff 2.
Plus précisement, la construction classique des coordonnées action-angle en géométrie
symplectique implique que la fibration spéciale lagrangienne ft : Xt −→ B munit
l’ouvert Bsm ⊂ B d’une structure affine entière ∇Z

t , celui-ci étant l’ouvert de B au-
dessus duquel la fibration ft est submersive. La structure affine entière ∇Z

t consiste
en la donnée d’un atlas de cartes dont les fonctions de transition sont des fonc-
tions affines dont la partie linéaire est entière, autrement dit des éléments du groupe
GLn(Z) ⋊ Rn, et celle-ci permet notamment de parler de fonctions affines entières
sur Bsm. Les fibres de ft étant asymptotiquement très petites, le potentiel ϕt de la
métrique de Calabi-Yau devrait être proche asymptotiquement d’un potentiel ψt ◦ft
provenant de la base, où ψt est une fonction strictement convexe (multivaluée) en
cordonnées affines sur Bsm.
On s’attend alors à ce qu’à la limite t → 0, les fonctions ψt convergent vers une
fonction convexe ψ sur Bsm, ce lieu étant muni d’une structure affine entière que
l’on peut penser comme la limite tropicale de la structure complexe sur Xt. Enfin,
l’équation de Monge-Ampère complexe sur Xt se traduit à la limite par l’équation
de Monge-Ampère réelle:

det
( ∂2ϕ

∂yi∂yj

)
= C,

où C est une constante et les yi sont des coordonnées affines locales. Il s’ensuit que
la métrique limite gB sur Bsm est localement donnée par la Hessienne gij = ∂2ijψ du
potential local ψ.
Faisons maintenant le lien avec la géométrie non archimédienne.
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Le squelette essentiel

Les métriques de Calabi-Yau ωt ∈ c1(Lt) étant obtenues en résolvant l’équation de
Monge-Ampère complexe:

ωnt = Cti
n2

Ωt ∧ Ω̄t,

où Ωt ∈ H0(Xt, KXt) est une n-forme holomorphe sur Xt ne s’annulant pas, une pre-
mière étape naturelle pour tenter de comprendre leur comportement asymptotique
lorsque t→ 0 est d’étudier le comportement de la famille de mesures de probabilité
µt = Cti

n2
Ωt ∧ Ω̄t, qui sont de nature plus algébrique. Il se trouve alors que ces

mesures convergent faiblement dans l’espace hybride Xhyb associé à la dégénérés-
cence [BJ17]:

Théorème 0.0.4. Soit (X,L) −→ D∗ une dégénérescence maximale polarisée de
variétés de Calabi-Yau , et soit (µt)t∈D∗ la famille des mesures (de probabilité) de
Calabi-Yau. Alors les µt convergent faiblement sur Xhyb vers une mesure µ0, qui
est une mesure de type Lebesgue sur un sous-complexe Sk(X) de dimension n de
Sk(X ), pour tout modèle X /D à croisements normaux simples.

Le sous-complexe Sk(X) dans l’énoncé ci-dessus est appelé squelette essentiel de
X, et peut-être calculé explicitement dans Sk(X ), étant donné un modèle X /D
[MN15]. Comme la notation le suggère, il est en outre indépendant du choix d’un
modèle X à croisements normaux.
Ce résultat suggère alors que la base B de la fibration SYZ devrait être le squelette
essentiel Sk(X) ⊂ Xan, et l’on aimerait alors produire une incarnation non archimé-
dienne:

ρ : Xan −→ Sk(X),

de la fibration SYZ, qui soit de manière naturelle la limite dans Xhyb des fibrations
SYZ archimédiennes ft : Xt −→ B; cela est établi par exemple dans le cas où X
est une variété abélienne maximalement dégénérée par [Oda18], [GO22]. Poursuiv-
ant notre analogie avec la fibration SYZ classique, il est naturel de souhaiter que
l’application continue ρ : Xan −→ Sk(X) soit une fibration en tores affinoïdes hors
d’un lieu affine par morceaux Γ ⊂ Sk(X) de codimension au moins 2 - sans donner
de définition précise, il s’agit de l’analogue non-archimédien d’une fibration en tores
réels lisse; par exemple, une telle fibration induit sur Sk(X) \ Γ une structure affine
entière, comme dans le cas classique.
Une première tentative est fournie par les travaux de Nicaise-Xu-Yu [NX16], [NXY19]:
si X /D est un modèle minimal de la famille X, au sens du programme du modèle
minimal, alors on a l’égalité Sk(X) = Sk(X ), et il est établi dans [NXY19] que la
rétraction de Berkovich:

ρX : Xan −→ Sk(X)

est bien une fibration en tores affinoïdes en dehors des faces de codimension ≥ 2 de
Sk(X ) = Sk(X).

La propriété de comparaison pour Monge-Ampère

In fine, l’un des objectifs centraux de la théorie est de produire la métrique de Monge-
Ampère réelle ψ sur Sk(X) via la géométrie non archimédienne. La convergence
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sur Xhyb des mesures de Calabi-Yau vers µ0 suggère fortement que la solution de
l’équation de Monge-Ampère non archimédienne:

MA(ϕ) = µ0

devrait fournir la limite non archimédienne des métriques de Calabi-Yau. La diffi-
culté consiste maintenant à essayer d’identifier ϕ de manière naturelle à une fonc-
tion convexe multivaluée sur Sk(X), solution de l’équation de Monge-Ampère réelle.
Comme dans le cas archimédien, on cherche alors à produire une fibration SYZ
ρ : Xan −→ Sk(X) telle que la métrique ϕ s’identifie via ρ avec le tiré en arrière
d’une fonction convexe multivaluée sur la base, puis à montrer que ceci identifie
l’opérateur de Monge-Ampère non archimédien avec l’opérateur de Monge-Ampère
réel sur Sk(X) \ Γ.
Le théorème suivant, dû à Vilsmeier [Vil20], fournit un progrès partiel dans cette
direction:

Théorème 0.0.5. Soit (X ,L ) un modèle semi-stable de (X,L), et écrivons la
métrique de Calabi-Yau non archimédienne ϕ comme:

ϕ = ϕL + ψ,

où ϕL est la métrique modèle associée à L et ψ : Xan −→ R est une fonction
continue. Supposons ψ = ψ ◦ ρX au-dessus de l’intérieur d’une face τ ⊂ Sk(X ) de
dimension n. Alors ψ est convexe sur Int(τ), et on a l’égalité de mesures suivante:

1Int(τ) MA(ϕ) = n!M (ψ),

sur Int(τ), où M (ψ) est la mesure de Monge-Ampère réelle de la fonction convexe
ψ.

S’appuyant sur ce résultat, les travaux récents de Yang Li [Li20a] réduisent
l’existence de la fibration SYZ classique au problème suivant: trouver une fibration
SYZ non archimédienne ρ, telle que la métrique de Calabi-Yau non-archimédienne
soit constante le long des fibres de ρ:

Théorème 0.0.6. Soit X/D∗ une dégénérescence maximale polarisée de variétés de
Calabi-Yau, et écrivons la solution de l’équation de Monge-Ampère non archimédi-
enne MA(ϕ) = µ0 sous la forme:

ϕ = ϕL + ψ,

pour un modèle à croisements normaux (X ,L ) de (X,L), avec ψ : Xan −→ R une
fonction continue. Supposons que la propriété de comparaison pour Monge-Ampère:

ψ = ψ ◦ ρX

soit vérifiée au-dessus de l’intérieur des faces de dimension maximale de Sk(X).
Alors pour |t| ≪ 1, il existe une fibration spéciale lagrangienne ft : Ut −→ Sk(X),
où Ut ⊂ Xt est un ouvert de mesure de Calabi-Yau arbitrairement proche de 1.
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Ce résultat réduit la conjecture SYZ classique à un problème de géométrie non
archimédienne; cependant il ne traite pas la quesion de la convergence de Gromov-
Hausdorff globale des métriques de Calabi-Yau; en effet l’union des faces maximales
de Sk(X) n’étant pas connexe, pour pouvoir accéder à la distance entre deux faces
différentes, il semble nécessaire d’obtenir une propriété de comparaison entre les
opérateurs de Monge-Ampère réels et non archimédiens en codimension 1- toujours
sous une certaine hypothèse d’invariance par rétraction de la métrique de Calabi-Yau
non archimédienne sur Xan.

Résumé des résultats obtenus

Théorie du pluripotentiel sur les espaces hybrides

Soit X −→ D∗ une dégénérescence projective de variétés complexes, et L un fibré en
droites relativement ample sur X. Etant donné une métrique plurisousharmonique
ϕ ∈ PSH(X,L) satisfaisant une condition de croissance raisonnable en t = 0, on peut
lui associer une métrique plurisousharmonique ϕNA ∈ PSH(Xan, Lan) sur l’espace
analytique non archimédien Xan, encodant le taux de divergence logarithmique de ϕ
le long de la fibre spéciale des modèles de (X,L). Dans le cas où X = Y ×D∗ est un
produit et ϕ est S1-invariante, on dit que ϕ est un rayon psh sur Y , et la métrique
non archimédienne associée a été définie dans [BBJ18]; tandis que le cas général est
traité dans [Reb21].
On aimerait alors dire que ϕNA est d’une manière naturelle la limite des ϕt = (ϕ)|Xt

dans l’espace hybride. Il serait cependant trop naïf de prendre cette limite au sens
topologique, étant donné que l’on voudrait qu’un tel énoncé demeure vrai pour
des métriques singulières. Il est alors pertinent de définir une classe de métriques
singulières sur l’espace hybride, qui encode à la fois les métriques complexes sur la
dégénéréscenceX, ainsi que les métriques non archimédiennes qui leur sont associées.
Dans le premier chapitre de cette thèse, nous définissons une classe PSH(X,L) de
métriques plurisousharmoniques sur l’analytification de Berkovich Xan d’un schéma
polarisé (X,L) sur un anneau de Banach intègre A; de manière naïve, une métrique
singulière ϕ ∈ PSH(X,L) peut être pensée comme une famille de métriques psh
ϕx ∈ PSH(XH (x), LH (x)), variant de manière plurisousharmonique par rapport à
x ∈ M (A). Il convient cependant de noter qu’il est possible que ϕx ≡ −∞ pour
certains x ∈M (A).
La classe PSH(X,L) est définie suivant l’approche de [BE21] : il s’agit de la plus
petite classe de métriques singulières sur L contenant les métriques de la forme
m−1 log|s| lorsque s ∈ H0(X,mL) est une section non-nulle, et qui soit stable par
limites décroissantes et maxima finis.
Dans le cas où (X,L) est une dégénérescence de variétés complexes polarisées, une
métrique psh sur l’espace analytique Xhyb induit par restriction et renormalisation
une métrique plurisousharmonique ϕ ∈ PSH(X,L) à croissance logarithmique en 0,
ainsi qu’une métrique psh ϕ0 ∈ PSH(Xan, Lan), et est en outre déterminée de manière
unique par ces deux restrictions. Réciproquement, étant donné une métrique psh ϕ
sur la dégénérescence X, nous montrons que la métrique non archimédienne associée
ϕNA induit une extension psh canonique de ϕ à l’espace hybride:
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Théorème A. [PS22a, thm. A] Soit ϕ ∈ PSH(X,L) une métrique psh à croissance
logarithmique en t = 0. La métrique singulière ϕhyb sur (Xhyb, Lhyb) telle que:

ϕhyb
0 = ϕNA,

ϕhyb
|Xt

= ϕt

est plurishousharmonique.

Notons toutefois que toutes les métriques psh sur l’espace hybride ne sont pas
obtenues de cette manière: le point 0 ∈ D̄r est pluripolaire - non-négligeable au
sens de la théorie du pluripotentiel hybride - si bien que les métriques psh hybrides
ne sont pas déterminées de manière unique par leur restriction au-dessus du disque
épointé. Cependant, cette subtilité disparaît lorsqu’on se restreint aux métriques
psh continues, puisque le point 0 ∈ D̄r est d’intérieur vide.
Nous étudions ensuite le cas d’une variété torique polarisée (Z,L) sur C. Dans ce
cas précis, les métriques psh sur L peuvent être décrites explicitement en termes de
certaines fonctions convexes sur l’espace vectoriel réel NR contenant l’éventail Σ de
Z - et ce, indépendamment de la valeur absolue sur C, euclidienne ou triviale. Plus
précisement, la polarisation L est encodée au niveau combinatoire par une fonction
convexe, linéaire par morceaux ΨL : NR −→ R, et les métriques toriques sur L
sont en correspondance bijective avec les fonctions convexes sur NR ayant la même
croissance que ΨL en l’infini.
Nous démontrons alors un énoncé similaire pour les métriques toriques continues
et plurisousharmoniques: la positivité dans la direction horizontale est elle aussi
encodée par de la convexité dans la direction de la base M (Chyb) = [0, 1].

Théorème B. Soit (Z,L) une variété torique complexe polarisée. Il existe une
correspondance bijective entre les métriques toriques continues psh sur Lhyb et les
fonctions convexes continues:

Φ : NR × [0, 1] −→ R

telles que (Φ−ΨL) s’étende continûment à la compactification NΣ × [0, 1] de NR ×
[0, 1].

La fibration SYZ non-archimédienne

La seconde partie de cette thèse se consacre à l’étude du problème suivant: étant
donnée une variété de Calabi-Yau polarisée (X,L) sur K = C((t)), tenter de pro-
duire une incarnation non archimédienne ρ : Xan −→ Sk(X) de la fibration SYZ
- dans l’espoir de trouver une rétraction telle que la métrique de Calabi-Yau non
archimédienne sur Lan soit constante le long des fibres de ρ.
L’un des objectifs étant d’identifier la solution de l’équation de Monge-Ampère
non-archimédienne à une solution de l’équation de Monge-Ampère réelle, il est
souhaitable d’avoir à notre disposition une fibration qui soit "lisse" hors d’un lieu
de codimension 2 de la base, celle-ci induisant ainsi une structure affine entière sur
Sk(X) dont les singularités sont de codimension 2.
Une première étape consiste à comprendre les singularités de la rétraction de Berkovich
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associée à un modèle X , ou plutôt leur absence. Le résultat suivant, établi en col-
laboration avec Enrica Mazzon, affirme que si Z est une strate torique de la fibre
spéciale d’une dégénérescence de variétés algébriques, alors sous une certaine hy-
pothèse de positivité sur le fibré conormal de Z, la rétraction de Berkovich ρX n’a
pas de singularités sur l’intérieur de l’étoile ouverte Star(τZ) de la face τZ , i.e. la
réunion des intérieurs des faces contenant τZ :

Théorème C. [MPS21, thm. B] Soit X/K une variété projective lisse de dimension
n, et X /R un modèle dlt de X à fibre spéciale réduite X0 =

∑
αDα, tel que chaque

Dα soit un diviseur de Cartier.
Soit Z = D0 ∩D1 ∩ . . . ∩Dn−r une strate de dimension r de X0, telle que:

• Z̊ ⊂ Z est le plongement d’un tore dans une variété torique, où Z̊ = Z \
∪α ̸=0,1,...,n−rDα;

• le fibré conormal ν∗Z/X est un fibré vectoriel nef sur Z;

• pour tout α /∈ {0, ..., n− r}, l’intersection Dα ∩ Z est connexe ou vide.

Alors le complété formel ‘X/Z de X le long de Z est isomorphe au complété formel
du fibré normal N = νZ/X le long de la section nulle, qui est une variété torique.
En particulier, la rétraction de Berkovich ρX : Xan → Sk(X ) est une fibration en
tores affinoïdes au-dessus de l’étoile ouverte Star(τZ).

Nous étudions ensuite des dégénérescences d’hypersurfaces de la forme:

X = {z0...zn+1 + tFn+2 = 0} ⊂ Pn+1 × D∗,

où Fn+2 est un polynôme homogène de degré (n+ 2) général. Le squelette essentiel
Sk(X) est ici donné explicitement comme le complexe dual du bord torique de Pn+1,
et peut en fait être réalisé canoniquement dans l’espace vectoriel NR dans lequel
l’éventail de Pn+1 vit. Plus précisément, écrivant le tore T ⊂ Pn+1, l’application de
tropicalisation:

val : Tan −→ NR

induit un homéomorphisme entre Sk(X) ⊂ Xan et le sous-complexe borné maximal
de la tropicalisation Trop(X) := val(Xan ∩ Tan) ⊂ NR de l’hypersurface - celle-ci
étant munie d’une décomposition cellulaire canonique.
Après un choix adapté de discriminant Γ ⊂ Sk(X) de codimension 2 (aussi appelé
choix de points de branchements), il est possible de définir sur Sk(X)\Γ une structure
affine entière encodant la nature torique de la dégénérescence, suivant [GS06]. Cette
structure affine entière n’a en particulier pas de singularité au voisinage de chaque
sommet vi ∈ Sk(X), et le germe de variété affine en vi n’est autre que le germe en
0 de l’éventail Σi de la composante Di correspondante - mais n’est pas canonique
puisque dépendant du choix de points de branchement.
Nous nous appuyons ensuite sur le théorème C et sur la construction par Yamamoto
[Yam21] de contractions tropicales:

δ : Trop(X) −→ Sk(X),

pour démontrer l’énoncé suivant:
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Théorème D. Soit a = (aτ )τ un choix de points de branchement dans Sk(X), et
soit
δa : Trop(X) −→ Sk(X) la contraction tropicale associée [Yam21, thm. 5.1]. Alors
la composée:

ρa := δa ◦ valΣ : Xan −→ Sk(X)

est une fibration en tores affinoïdes au-dessus de Sk(X) \ Γ. De plus, la structure
affine entière induite sur Sk(X) \Γ par ρa coïncide avec celle mentionnée ci-dessus.

En dimension 2, la rétraction ρa a été construite sans utiliser la contraction
tropicale dans un travail joint avec E. Mazzon [MPS21], qui contient aussi une con-
struction similaire en dimension 3. Cette construction alternative permet aussi, en
dimension 2, de raffiner le discriminant afin d’obtenir des structures affines entières
sur la 2-sphère ayant 24 points singuliers de type de Kodaira I1; nous renvoyons le
lecteur à la section 4.2.1.
Enfin, nous étudions l’exemple de la famille des hypersurfaces de Fermat:

X = {z0...zn+1 + t(zn+2
0 + ...+ zn+2

n+1) = 0} ⊂ Pn+1 × D∗,

qui est munie d’une action du groupe symétrique Sn+2. Dans cet exemple, le com-
portement asymptotique des métriques de Calabi-Yau (archimédiennes) est bien
compris [Li22]: leur potentiel est proche asymptotiquement d’un potentiel torique,
qui est lui défini sur l’espace projectif ambiant. En utilisant les résultats de [Li22]
et le théorème B, nous démontrons:

Théorème E. Soit X −→ D∗ la famille des hypersurfaces de Fermat, polarisée par
L = OP(1). Il existe une métrique torique continue psh ϕ ∈ PSH(Pn+1,an

K , Lan), dont
la restriction à Xan est solution de l’équation de Monge-Ampère non archimédienne:

MA(ϕ) = µ0,

où µ0 est la mesure de Lebesgue sur Sk(X). De plus, en écrivant ϕ = ϕFS + ψ, la
fonction continue ψ sur Xan satisfait la propriété de comparaison:

ψ = ψ ◦ ρa

au-dessus de Sk(X) \Γ, où ρa est la rétraction du théorème D, avec aτ le barycentre
de τ pour chaque face τ ⊂ Sk(X ), et Γ ⊂ Sk(X) le discriminant associé.

La fonction ψ est aussi en un sens naturel la limite des potentiels de Calabi-Yau
archimédiens.
Un énoncé similaire a été obtenu récemment pour une classe plus large d’hypersurfaces
dans [HJMM22].

Dégénérescences de variétés canoniquement polarisées

Soit X −→ D∗ une dégénérescence de variétés canoniquement polarisées, et posons
L = KX/D∗ . D’après le théorème d’Aubin-Yau, chaque fibre Xt admet une unique
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métrique de Kähler-Einstein ϕt sur Lt, dont la forme de courbure ωt = ddcϕt est de
courbure de Ricci constante et négative:

Ric(ωt) = −ωt.

En outre, il découle des travaux de Schumacher [Sch12] que la famille de métriques
de Kähler-Einstein ϕ = (ϕt)t∈D∗ est aussi à courbure positive dans la direction de la
base, et est à croissance logarithmique en t = 0, de telle sorte que ϕ ∈ PSH(X,L)
satisfait les hypothèses du théorème A.
Les résultats généraux issus du programme du modèle minimal entraînent en outre
que la famille X admet un unique modèle canonique Xc/D, dont le fibré canonique
KXc/D est relativement ample. Les travaux de J. Song [Son17] montrent alors que
les métriques de Kähler-Einstein convergent en un sens naturel vers l’unique courant
de Kähler-Einstein ωKE,0 sur la fibre spéciale Xc,0, et même si les potentiels locaux
de ce dernier ne sont pas bornés, leurs singularités sont moindres que n’importe
quels pôles logarithmiques. Nous sommes alors en mesure de montrer que la limite
non archimédienne des métriques de Kähler-Einstein est la métrique modèle ϕKXc/R

associée au modèle canonique (Xc, KXc/D):

Théorème F. [PS22a, thm. B] Soit X π−→ D∗ une dégénérescence de variétés canon-
iquement polarisées, L = KX/ D∗, et ϕKE ∈ PSH(X,L) la famille des métriques de
Kähler-Einstein. Supposons que la famille X a réduction stable sur D. Alors la
métrique sur Lhyb définie par:

ϕ|X = ϕKE,

ϕ0 = ϕKXc/R

est continue et plurisousharmonique sur Xhyb.
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Plan du manuscrit

Ce texte est organisé comme suit.
Le premier chapitre est consacré à la définition et à l’étude de la classe des métriques
plurisousharmoniques sur l’analytification de Berkovich d’un schéma polarisé (X,L)
sur un anneau de Banach A - en pratique, nous nous intéressons surtout au cas de
l’anneau des séries convergentes pour la norme hybride sur C, de telle sorte que les
espaces analytiques associés seront des espaces hybrides. Dans la section 1.1, nous
rappelons des faits généraux sur les espaces analytiques au sens de Berkovich - en
particulier sur un corps discrètement valué - et sur les espaces hybrides. Dans la
section 1.2, nous définissons de manière globale une classe de métriques plurisoushar-
moniques sur l’analytification de Berkovich d’un A-schéma X, et énoncons ses pro-
priétés de base. La section 1.3 est consacrée à l’étude du cas où X est une dégénéres-
cence projective de variétés complexes sur le disque épointé D∗, et son analytifica-
tion au sens de Berkovich est l’espace hybride Xhyb. Nous comparons en particulier
notre formalisme aux travaux [BBJ18], [Reb21], et nous démontrons le théorème A
(théorème 1.3.13). Enfin, la section 1.4 contient une discussion sur les mesures de
Monge-Ampère associées aux métriques psh sur un espace analytique sur un corps
valué, et les familles de mesures induites sur une base plus générale. En particulier,
dans le cas d’un espace hybride, nous énonçons le résulat suivant, essentiellement
dû à Favre [Fav20]: la famille de mesures de Monge-Ampère sur Xhyb associée à une
métrique continue psh sur un fibré ample est faiblement continue.
Dans le deuxième chapitre, nous considérons une variété torique projective Z sur
C munie d’un fibré en droites semi-ample L, ainsi que son analytification Zhyb par
rapport à la norme hybride sur C. Dans ce cadre, nous prouvons le théorème B,
qui fournit une description combinatoire des métriques continues psh sur Lhyb qui
sont invariantes par l’action du tore fibre-à-fibre: elles sont données par des fonc-
tions convexes continues Φ : NR× [0, 1] −→ R satisfaisant une certaine condition de
croissance en l’infini (cf. 2.2.12). La section 2.1 est consacrée à divers rappels de
géométrie convexe et torique, nécessaires à la section 2.2, où nous introduisons les
métriques toriques fibre-à-fibre sur Zhyb et prouvons le théorème B.
Fixons pour l’ensemble du troisième chapitre une dégénérescence maximale polar-
isée (X,L) −→ D∗ de variétés de Calabi-Yau. Dans la section 3.1, nous motivons
les conjectures SYZ et de Kontsevich-Soibelman, et étudions le modèle local non-
archimédien des fibrations en tores lagrangiens. La section 3.2 est dédiée à la preuve
du théorème C, qui fournit une première étape pour la construction de la fibration
SYZ non archimédienne. Nous incluons aussi, dans la section 3.3, des exemples de
calculs de structures affines entières construites via le théorème C.
Dans le quatrième chapitre, nous étudions certaines dégénérescences maximales
d’hypersurfaces de Calabi-Yau dans l’espace projectif. Nous produisons, dans la
section 4.1, une fibration SYZ non archimédienne ρ pour de telles hypersurfaces, et
prouvons le théorème D. Nous présentons aussi une construction similaire en dimen-
sions 2 and 3, issue du travail [MPS21], il s’agit du contenu de la section 4.2. La
section 4.3, est consacrée à l’étude de la famille des hypersurfaces de Fermat où nous
démontrons le théorème E en nous appuyant sur les résulats des chapitres 1 et 2 et
de l’article [Li22]: la métrique de Calabi-Yau non archimédienne est la restriction
d’une métrique torique sur l’espace projectif ambiant.
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Enfin, dans un bref cinquième chapitre, nous étudions les dégénérescences de var-
iétés de Kähler-Einstein à courbure négative, dans le formalisme du chapitre 1. Nous
décrivons le cadre du chapitre dans la section 5.1, où nous énoncons le théorème F,
et nous rappelons les résultats d’existence de modèles canoniques pour de telles
dégénérescences dans la section 5.2. Dans la section 5.3, nous décrivons les résultats
de [Son17] concernant la convergence des métriques de Kähler-Einstein sur le modèle
canonique, et nous démontrons le théorème F. Nous concluons ce chapitre avec une
brève discussion sur le cas des variétés de Fano, c’est l’objet de la section 5.4.

Notations et conventions

Tous les anneaux sont supposés commutatifs et unitaires.
Nous utiliserons la notation additive pour les fibrés en droites: si L, M sont deux
fibrés en droites sur une variété X, nous écrirons L +M := L ⊗M , et kL := L⊗k

pour k ∈ Z.
Si X est une variété complexe et ϕ une fonction lisse sur X, nous posons ddcϕ =
i
2π
∂∂̄ϕ. Cette notation est étendue aux métriques hermitiennes sur les fibrés en

droites: si L est un fibré en droites holomorphe sur X et ϕ une métrique lisse sur
L, sa forme de courbure sera dénotée par ddcϕ ∈ c1(L) - et idem pour les métriques
singulières.
Tout au long de ce texte, lorsque nous dirons que X π−→ D∗ est une dégénérescence
de variétés complexes, cela signifiera que X est une variété complexe lisse et π une
submersion holomorphe (qui sera généralement omise). Nous supposerons de plus
toujours que la dégénérescence est méromorphe en 0, i.e. que X est définie sur le
corps des fractions de l’anneau des germes en l’origine de fonctions holomorphes. De
manière équivalente, cela signifie qu’il existe un espace analytique complexe normal
X

π−→ D tel que X|D∗ = X.
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Introduction

The main subject of this thesis is the study of degenerations of complex algebraic
varieties - and more specifically, Calabi-Yau manifolds - through means of non-
archimedean geometry.
The first part of this text provides an attempt to generalize the non-archimedean
pluripotential theory that has been developed in [BFJ16], [BBJ18], [BE21], [Reb21]
for a variety X over a non-archimedean field K to the case of hybrid spaces. To
that purpose, we define a class of (singular) semi-positive metrics on line bundles on
Berkovich analytifications of schemes X over a Banach ring A. In the case where
A = Ar is the ring of convergent power series - with respect to the hybrid norm
on C - this yields a notion of semi-positive metrics on the union of a degeneration
of complex manifolds with the associated non-archimedean analytic space. We also
relate our definition with various constructions appearing in the literature [BBJ18],
[Reb21], [Fav20]. We focus in particular on the case of toric metrics on a toric vari-
ety, where the metrics are encoded by functions on a finite-dimensional real vector
space, and the semi-positivity of the metric translates into convexity of the corre-
sponding function.
The second part is devoted to the following problem: given a maximal degeneration
of Calabi-Yau manifolds X −→ D∗, trying to construct a non-archimedean avatar
ρ : Xan −→ Sk(X) of the conjectural SYZ fibration on the fibers Xt for |t| ≪ 1. The
hope is that this retraction induces an integral affine structure singular in codimen-
sion 2, and that the retraction allows us to identify the non-archimedean Calabi-Yau
metric with a solution of the real Monge-Ampère metric on the essential skeleton
Sk(X). This involves in particular understanding the singularities of Berkovich re-
tractions ρX : Xan −→ Sk(X ) associated to R-models of X, where R = C[[t]], as
our approach to construct the non-archimedean SYZ fibration on explicit examples
involves patching several of these retractions together. We focus in particular on a
certain class of degenerating hypersurfaces in projective space, where building on
the results from [Li22], we obtain a satisfactory picture regarding the comparison
between the non-archimedean and the real Monge-Ampère equation on Sk(X), with
right-hand side the Lebesgue measure on the essential skeleton Sk(X).

29
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Non-archimedean geometry

Berkovich analytic spaces

Let (K, |·|) be a complete non-archimedean field, i.e. a field endowed with an abso-
lute value satisfying the ultrametric inequality:

|x+ y| ≤ max{|x|, |y|}

for all x, y ∈ K, and such that K is complete with respect to the induced distance.
Examples of such fields include the field Qp of p-adic numbers, which is the metric
completion of Q endowed with the absolute value |·|p = p−vp , where vp is the p-adic
valuation; the field C((t)) of Laurent series endowed with the t-adic absolute value
|·| = e− ord0 ; or simply any field k endowed with the trivial absolute value |·|0, which
is such that |x|0 = 1 for any non-zero x ∈ k.
There is a long history, throughout the 20th century, of attempts to produce a sat-
isfying theory of analytic geometry over non-archimedean fields (due for instance
to Tate, Raynaud or Huber): given a projective variety X/K, one would like to
attach to it in a natural way an analytic space Xan, satisfying for instance better
topological properties than the scheme X; in a similar spirit to how one attaches a
complex manifold to a quasi-projective scheme of finite type over C. Let us point
out that the naive attempt of taking K endowed with the distance induced by the
non-archimedean absolute value, as the underlying topological space of the analyti-
fication of the affine line A1

K , works out rather poorly, as the ultrametric inequality
implies that K is a totally disconnected topological space. As a result, there is a
need for a more sophisticated theory of analytic spaces over K.
Throughout this text, we will only be using Berkovich’s theory of K-analytic spaces
[Ber90]. The very basic idea is the following: if X is a complex projective vari-
ety, then one can view a closed point x ∈ X as the (degenerate) absolute value
f 7→ |f(x)| on the function field K(X) of X, which extends the Euclidean absolute
value on the base field C ⊂ K(X), viewed as the constant functions on X.
We now let K be a complete valued field and X/K is a quasi-projective variety. Its
Berkovich analytification Xan is defined as a certain compactification of the space of
real valuations on the function field of X that extend the given absolute value on K,
and is endowed with the topology of pointwise convergence. In particular, if f is a
meromorphic function on X, defined on a Zariski open U ⊂ X, it induces a continu-
ous function x 7→ |f(x)| := |f |x on the open subset Uan ⊂ Xan. The analytification
Xan of a quasi-projective variety X/K then satisfies nice topological properties: it is
Hausdorff, locally contractible and pathwise-connected, and is compact if and only
if X/K is proper. Notably, if K = C endowed with the archimedean absolute value,
the Berkovich analytification of a scheme over C is its usual holomorphic analytifi-
cation.
The theory of Berkovich also works over a more general base: given a Banach ring
(A, |·|), one can define its Berkovich spectrum M (A) as the set of multiplicative
semi-norms on A which are bounded by the reference norm |·|. Given a point
x ∈M (A), the kernel px of the semi-norm |·|x is a prime ideal of A, and we denote
by H (x) the completion of the fraction field of the quotient A/px with respect to
|·|x, and call it the residue field of M (A) at x - equipped with |·|x, it is a complete
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valued field.
Berkovich then defines the analytificationXan of an A-scheme of finite type in a man-
ner similar to the previous construction; it comes with a continuous structure map
Xan π−→M (A). When the base ring A is reasonable enough, the fiber Xx = π−1(x)
can be identified with the analytification of the base change XH (x) = X ×A H (x),
with respect to the absolute value on H (x), so that one can roughly think of Xan

as the family of analytic spaces (Xan
H (x))x∈M (A) over different fields; this is similar to

viewing a scheme over a ring A as a family of varieties over the residue fields of A,
parametrized by SpecA.
For instance, assume that our base Banach ring is Chyb = (C, |·|hyb), where |z|hyb =
max{|z|0, |z|} is the hybrid norm on C, i.e. the maximum of the trivial and Euclidean
absolute values on C. Then M (Chyb) = {|·|λ/λ ∈ [0, 1]}, where we abusively denote
|·|0 = |·|0 the trivial absolute value. As a result, given a complex variety X, its
analytification Xhyb over the ring Chyb - called the associated hybrid space - fibers
over the unit interval [0, 1], and the fiber Xhyb

λ for λ > 0 is (up to rescaling the
absolute value) the usual complex analytification of X, while the fiber over 0 is its
analytification Xan

0 with respect to the trivial absolute value on C. The upshot
of this construction is that it provides a natural way to see suitable rescalings of
the complex manifold Xhol degenerate to the non-archimedean analytic space Xan

0 .
This justifies the name, as the space Xhyb is of hybrid nature, somewhere between
non-archimedean and usual Euclidean geometry.

Degenerations of complex manifolds and hybrid spaces

We letX −→ D∗ be a projective degeneration of complex manifolds, and assume that
the equations of X inside projective space have meromorphic singularity at t = 0.
This allows us to view X as an algebraic variety XK over the field K = C((t)) of
complex Laurent series, which is endowed with the t-adic absolute value, making
it a complete non-archimedean field. As we shall explain, the Berkovich analytifi-
cation Xan of XK encodes in various ways asymptotic information attached to the
degeneration X −→ D∗.
Let π : X −→ D be a simple normal crossing model of X - which exists by
the meromorphic assumption and Hironaka’s theorem. Writing the special fiber
X0 = π−1(0) =

∑
i∈I aiDi as the sum of its irreducible components, the simple

normal crossing condition means that these are smooth prime divisors, each having
transverse intersection with any intersection of other components of X0. One can
then attach to X0 a cell complex D(X0) encoding the combinatorics of the intersec-
tions of the Di. The dual complex D(X0) is defined roughly as follows: its vertices
vi are in one-to-one correspondence with the components Di of X0; then for each
connected component of Di∩Dj, we attach an edge eij between vi and vj. Similarly,
each connected component Y of Di ∩ Dj ∩ Dk yields a triangle, bounded by three
edges of the form eij, eik, ejk; and the final outcome of this construction is a cell
complex D(X0) of dimension less than n, where n is the relative dimension of X.
The upshot of this is that the dual complex can be continuously embedded inside
Xan, i.e. we may view the points of D(X0) as valuations on the function field of X.
For instance, if vi is a vertex of D(X0), we view it as the valuation f 7→ a−1

i ordDi
(f)
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for f ∈ K(X) ≃ K(X ), and the higher-dimensional faces of D(X0) are embedded
in Xan by interpolating between these. The image of the embedding is called the
skeleton of X , denoted by Sk(X ) ⊂ Xan.
Moreover, Berkovich defines a retraction ρX : Xan −→ Sk(X ) for the inclusion
Sk(X ) ⊂ Xan, which in fact induces a homotopy equivalence between Xan and
Sk(X ). One can think of the skeleton Sk(X ) as a sort of approximation of Xan,
as Xan can be recovered (topologically) as the inverse limit of the skeleta Sk(X ) of
all possible snc models of X.
Let us now fix a radius r ∈ (0, 1). One can define a certain hybrid ring Ar of conver-
gent power series in a similar spirit to the construction from the previous paragraph,
such that the Berkovich spectrum M (Ar) ≃ D̄r. We may view X as a scheme over
Ar, and its analytification is called the hybrid space:

Xhyb π−→ D̄r,

which is itself a Berkovich analytic space. Moreover, π−1(0) = Xan
K is the Berkovich

analytification of X with respect to the non-archimedean t-adic absolute value on
K, while π−1(D̄∗

r) is naturally identified with the restriction of the degeneration X
to the closed punctured disk D̄∗

r - up to rescaling the absolute value on the fiber
Xt by a factor log r

log|t| . Once again, this provides a natural way to see the (rescaled)
complex manifolds (Xt)t∈D∗ degenerate to a non-archimedean space Xan as t → 0.
As a result, one would expect various families of objects from complex geometry
living on the Xt’s to have a natural limit living on the space Xan - with the caveat
that the limit is taken with respect to the rescaled absolute value, so that it rather
corresponds to a logarithmic slope at zero.

Non-archimedean pluripotential theory

Roughly speaking, classical pluripotential theory is the study of plurisubharmonic
functions: if Ω ⊂ Cn is a domain, an upper semi-continuous function ϕ : Ω −→
R ∪ {−∞} is plurisubharmonic (psh for short) if and only for any complex line
ℓ ⊂ Cn, its restriction ϕℓ to ℓ∩Ω is a subharmonic function in the weak sense - that
is, the Laplacian ∆ϕℓ ≥ 0 is the sense of distributions. Concretely, this means that
the mixed Hessian i∂∂̄ϕ is a semi-positive (1, 1)-form on Ω - in the sense of currents,
as we are allowing ϕ to be singular. For instance, if f ∈ O(Ω) is a holomorphic
function, then it follows from the Lelong-Poincaré formula that ϕ = log|f | is a psh
function on Ω, singular precisely along the locus {f = 0}. Alternatively, psh func-
tions can be defined through a mean value inequality, which implies that they are
stable under finite maxima and decreasing limits.
In a more global setting, let (X,L) be a polarized complex manifold, and h a Her-
mitian metric on L. The metric h is identified with the collection ϕ of its loga-
rithmic local weights ϕi = − log|si|h, where the si are local sections of L, so that
using additive notation for metrics on L, we say that a (singular) metric ϕ on L
is plurisubharmonic if and only if its local weights ϕi are. In a way similar to the
previous example, if s ∈ H0(X,mL) is a non-zero global section of some positive
power of L, then the singular metric ϕ = m−1 log|s| is psh, by the Lelong-Poincaré
formula.
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One of the central theorems in pluripotential theory is the following regularization
result, due to Demailly [Dem92]: any psh metric ϕ on an ample line bundle L can
be written as the decreasing limit of metrics of the form:

ϕFS =
1

2m
log(|s0|2 + ...+ |sN |2),

where m ≥ 1 and (s0, ..., sN) are global sections of mL without common zeroes.
These metrics are called Fubini-Study metrics, for the following reason: if f : X −→
CPN is the holomorphic map given by f(x) = [s0(x) : ... : sN(x)], then ϕFS is the
pull-back via f of the standard Fubini-Study metric on CPN .
We now move to the non-archimedean world, and letK be a complete non-archimedean
field. If (X,L) is a polarized variety over K, then one can define metrics on
the analytification Lan as in the complex case: given local algebraic trivializations
(Ui, si) of L, a continuous metric ϕ on Lan is a collection of continuous local weights
ϕi = − log|si|ϕ on the Uan

i , compatible on the overlaps (Ui ∩ Uj)an.
We may then define singular metrics as in the complex case, the upshot being that if
s ∈ H0(X,mL) is a non-zero section, then ϕ = m−1 log|s| defines a singular metric
on Lan. Pushing the analogy with complex pluripotential theory even further, we
say that a metric on Lan of the form:

ϕFS = m−1 logmax(|s0|, ..., |sN |),

where (s0, ..., sN) are global sections of mL without common zeroes, is a (tropi-
cal) Fubini-Study metric. Demailly’s regularization theorem is now taken as the
definition of the class of semi-positive metrics:

Definition 0.0.7. The class PSH(X,L) of plurisubharmonic metrics is the smallest
class of singular metrics on L that:

• contains all tropical Fubini-Study metrics,

• is stable under addition of constants,

• is stable under finite maxima,

• is stable under decreasing limits.

When the field K is non-archimedean, a natural class of continuous metrics
on L arises as follows. We assume that K is non-trivially valued for convenience,
with valuation vK . Let (X ,L ) be a model of (X,mL) over the valuation ring
R = {vK ≥ 0}, and assume that L is semi-ample. Loosely speaking, the model
metric ϕL is the continuous metric on L such that local sections of L have ϕL -
norm ≤ 1 if and only they extend as regular sections of L - as a result, the lattice
H0(X ,L ) ⊂ H0(X,L) is the unit ball for the sup-norm of the model metric ϕL ,
following the correspondence between norms and lattices on vector spaces over non-
archimedean fields. It turns out that in this setting, Fubini-Study metrics on L
are nothing but model metrics associated to semi-ample models L of (positive
multiples) L - that is, such that mL is globally generated for some m ≥ 1.
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The Monge-Ampère operator

Let Ω ⊂ Cn a domain, and ϕi ∈ PSH(Ω) ∩ C∞(Ω) for i = 1, ..., n be n smooth psh
functions. Then their (mixed) Monge-Ampère measure is defined as:

MA(ϕ1, ..., ϕn) = i∂∂̄ϕ1 ∧ ... ∧ i∂∂̄ϕn,

and is one of the central objects of pluripotential theory. One would naturally want
to extend the Monge-Ampère operator to psh functions that are not necessarily
smooth; unfortunately while i∂∂̄ϕ makes sense for an arbitrary psh function, it is
now a current and no longer a differential form, so that it is a priori not possible to
consider products of the i∂∂̄ϕi. However, the fundamental work of Bedford-Taylor
[BT76] showed that the Monge-Ampère operator can be uniquely extended to tuples
of locally bounded psh functions - and in particular, to continuous psh functions. Let
us mention that it was further extended in [BEGZ10] to the class of psh functions
of finite energy, which we will not define here.
In the global setting, let X be a smooth projective complex variety, and L1, ..., Ln
ample line bundles on X. Then given bounded semi-positive metrics ϕi on the Li,
one can define the mixed Monge-Ampère measure of the ϕi’s as above; we still denote
it by i∂∂̄ϕ1 ∧ ... ∧ i∂∂̄ϕn. It is a positive measure on X, whose total mass is (up to
a normalizing factor) the intersection number (L1 · ... · Ln). The following theorem,
known as the Calabi conjecture, is due to Yau [Yau78] in the smooth case and to
Kołodziej [Kol98] in the singular case:

Theorem 0.0.8. Let X be a smooth projective complex manifold, and L an ample
line bundle on X. Let µ be a probability measure on X with Lp-density for a p > 1.
Then there exists a unique (up to an additive constant) metric ϕ ∈ PSH(X,L)
solving the complex Monge-Ampère equation:

(i∂∂̄ϕ)n = Cµ,

where C = (2π)nLn.

Note that Yau’s result also ensures that if µ is a smooth volume form on X, then
ϕ is smooth and strictly psh.
The original motivation for this theorem was the existence of Kähler Ricci-flat metric
on Calabi-Yau manifolds: if (X,L) is a polarized Calabi-Yau manifold, i.e. such
that KX = OX , then the (smooth) solution ϕ ∈ PSH(X,L) to the Monge-Ampère
equation:

(i∂∂̄ϕ)n = Cin
2

Ω ∧ Ω̄,

where Ω ∈ H0(X,KX) is a nowhere-vanishing holomorphic n-form, is such that the
curvature form ω = i∂∂̄ϕ is a Kähler metric on X with zero Ricci curvature.
We now move on the non-archimedean case, and we let K = k((t)) to simplify the
exposition; we write R = k[[t]] and assume that k has characteristic zero. Given a
polarized variety (X,L) over K, the analog of smooth metrics on L are Fubini-Study
metrics which, as alluded to above, are the same as model metrics ϕL for R-models
(X ,L ) of (X,L). The mixed Monge-Ampère measure of a collection (ϕL1 , ..., ϕLn)
of model metrics is defined as an explicit sum of Dirac masses, using various inter-
section numbers of the Li on X ; while not transparent at first sight the definition
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is designed to mimic the real Monge-Ampère operator on convex, piecewise-affine
functions - one important point being that MA(ϕL1 , ..., ϕLn) is supported on the
skeleton Sk(X ), and has total mass (L1 · ... · Ln), as in the complex case.
The Monge-Ampère operator is then extended canonically to continuous psh met-
rics in [BFJ15], where it is proven that the non-archimedean analog of the Calabi
conjecture holds:

Theorem 0.0.9. Let (X,L) be a smooth polarized variety over K. Let µ be a
probability measure on Xan, supported on the skeleton of some snc R-model of X.
Then there exists a unique (up to an additive constant) continuous, semi-positive
metric ϕ on L satisfying the non-archimedean Monge-Ampère equation:

MA(ϕ) = µ.

Here we write MA(ϕ) := MA(ϕ, ..., ϕ).
The proof of the above theorem is however of variational nature, so that it yields very
little information on the solution, besides its continuity. As we shall see later on, it
would be in particular desirable to translate this equation into a real Monge-Ampère
equation on the skeleton Sk(X ) on which the measure µ is supported, which turns
out to be a rather delicate question.

The Kontsevich-Soibelman conjecture
We now move on to explain a circle of ideas, initiated in the early 2000’s by
Kontsevich-Soibelman as a temptative explanation to mirror symmetry, that pre-
dict the asymptotic behavior of a family of Calabi-Yau metrics when the complex
structure degenerates in the worst possible way.

The classical SYZ picture

We let X −→ D∗ be a projective, meromorphic at zero, family of Calabi-Yau mani-
folds - recall that by Calabi-Yau we mean that the canonical bundle KXt is trivial for
every t ∈ D∗ - and fix a relative polarization L on X. We furthermore assume that
the family is maximally degenerate at t = 0, which means that the fibers Xt break
into as many pieces as possible as t→ 0 - more precisely, the dual complex D(X0)
of any snc model of X has the maximal possible dimension, which is n = dimXt.
In this setting, the Kontsevich-Soibelman approach to the Strominger-Yau-Zaslow
[SYZ96] conjecture stipulates that the Calabi-Yau manifolds (Xt, ωt) - where ωt is
the unique Kähler Ricci-flat metric on Xt, normalized by the condition ωt ∈ c1(Lt)
- have diameters of magnitude dt :=

∣∣ log|t|∣∣1/2, which was indeed confirmed by the
results of Li-Tosatti [LT20].
Moreover, the fiber Xt endowed with the rescaled Calabi-Yau metric ω̃t = d−2

t ωt
should asymptotically look like the total space of a Lagrangian Tn-fibration, whose
fibers are of size d−1

t , over a certain real, n-dimensional base B. In particular, the
metric spaces (Xt, ω̃t) are expected to converge in the Gromov-Hausdorff sense to
the base B, endowed with a real Monge-Ampère metric gB away from a Hausdorff
codimension 2 subset.
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More precisely, it follows from the classical construction of action-angle coordinates
in symplectic geometry that the special Lagrangian fibration ft : Xt −→ B induces
an integral affine structure ∇Z

t on the subset Bsm ⊂ B over which the fibration ft
is submersive, i.e. an atlas of charts whose transition functions lie in the group
GLn(Z) ⋊ Rn of integral affine transformations. Since at the limit t → 0 the torus
fibers are very small, the Calabi-Yau potential ϕt should be very close to a potential
ψt ◦ ft pulled back from the base, where ψt is a (multivalued) convex function (in
affine coordinates) on Bsm.
As a result, heuristically at the limit t → 0, the ψt should converge to a convex
function ψ on Bsm. The latter should thus be equipped with an integral affine struc-
ture, which should be thought as the ’tropical limit’ of the complex structure of Xt.
Additionally, the complex Monge-Ampère equation defining the Calabi-Yau metric
translates into the real Monge-Ampère equation:

det
( ∂2ψ

∂yi∂yj

)
= C,

where the yi are local affine coordinates. As a result, the limiting metric gB should
be given on Bsm as the Hessian gij = ∂2ijψ of the convex potential locally in affine
coordinates.
We now let non-archimedean geometry enter the picture.

The essential skeleton

Since the Calabi-Yau metrics ωt ∈ c1(Lt) are obtained by solving the complex
Monge-Ampère equation:

ωnt = Cti
n2

Ωt ∧ Ω̄t,

where Ωt ∈ H0(Xt, KXt) is a nowhere-vanishing holomorphic n-form, a natural first
step towards understanding their behaviour as t→ 0 is to understand the behaviour
of the probability measures µt = Cti

n2
Ωt∧ Ω̄t, which are of algebraic origin. It turns

out that these measures converge weakly inside the hybrid space Xhyb associated to
the degeneration [BJ17]:

Theorem 0.0.10. Let (X,L) −→ D∗ be a polarized maximal degeneration of Calabi-
Yau manifolds, and let (µt)t∈D∗ be the family of Calabi-Yau probability measures.
Then the µt converge weakly on Xhyb to a measure µ0, which is a Lebesgue-type
measure on an n-dimensional subcomplex Sk(X) of Sk(X ), for any snc model X /D.

The subcomplex Sk(X) in the statement above is called the essential skeleton of
X, and can be computed explicitly inside Sk(X ), given a model X /D [MN15]. As
suggested by the notation, it is furthermore independent of the choice of snc model
X .
The above theorem then suggests that the base B of the SYZ fibration should be the
essential skeleton Sk(X) ⊂ Xan, and one would like to produce a non-archimedean
avatar of the SYZ fibration:

ρ : Xan −→ Sk(X),
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that is in a natural way the limit inside Xhyb of the archimedean SYZ fibrations
ft : Xt −→ B; this is know for instance when X is a maximally degenerate abelian
variety by [Oda18], [GO22]. Pushing the analogy with the classical SYZ fibration
further, we require for the continuous map ρ : Xan −→ Sk(X) to be an affinoid torus
fibration away from a piecewise-affine locus Γ ⊂ Sk(X) of codimension greater than 2
- without giving the precise definition here, this is the non-archimedean counterpart
to smooth torus fibrations; for instance, such a fibration induces an integral affine
structure over Sk(X) \ Γ, as in the classical case.
A first attempt was provided by Nicaise-Xu-Yu [NX16], [NXY19]: if X /D is a
minimal model of the family X, in the sense of the Minimal Model Program, then
the equality Sk(X) = Sk(X ) holds, and it is proven in [NXY19] that the Berkovich
retraction:

ρX : Xan −→ Sk(X)

is indeed an affinoid torus fibration away from the interior of the faces of codimension
≥ 2 of Sk(X ) = Sk(X).

The Monge-Ampère comparison property

Ultimately, one of the goals is to produce the limiting real Monge-Ampère metric ψ
on Sk(X) through non-archimedean means. The convergence of the Calabi-Yau mea-
sures on Xhyb towards µ0 strongly suggests that the solution to the non-archimedean
Monge-Ampère equation:

MA(ϕ) = µ0

should be the appropriate non-archimedean limit to the Calabi-Yau metrics. The
difficulty is now to try and find a way to identify ϕ in a way to the multivalued convex
function on Sk(X) from the previous paragraph. As in the archimedean case, one
needs to produce an SYZ fibration ρ : Xan −→ Sk(X) such that the metric ϕ may
be identified via ρ with the pullback of a (multivalued) convex function on the base,
and show that this identifies the non-archimedean Monge-Ampère operator with the
real Monge-Ampère operator on Sk(X) \ Γ.
A first step is provided by the following theorem, due to Vilsmeier [Vil20]:

Theorem 0.0.11. Let (X ,L ) be a semi-stable model of (X,L), and write the
non-archimedean Calabi-Yau metric ϕ as:

ϕ = ϕL + ψ,

where ϕL is the model metric associated to L and ψ : Xan −→ R is a continuous
function. Assume that ψ = ψ ◦ ρX over the interior of an n-dimensional face
τ ⊂ Sk(X ). Then ψ is convex on Int(τ), and the equality of measures:

1Int(τ) MA(ϕ) = n!M (ψ),

holds on Int(τ), where M (ψ) is the real Monge-Ampère measure of the convex func-
tion ψ.

Building on this, the recent results of Yang Li [Li20a] reduce the existence of the
classical SYZ fibration to the question of finding a non-archimedean SYZ fibration
ρ, such that the NA Calabi-Yau metric is constant on the fibers of ρ:
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Theorem 0.0.12. Let X/D∗ be a polarized, maximal degeneration of Calabi-Yau
manifolds, and write the solution to the non-archimedean Monge-Ampère equation
MA(ϕ) = µ0 as:

ϕ = ϕL + ψ,

for an snc model (X ,L ) of (X,L) and ψ : Xan −→ R a continuous function.
Assume that the NA/real Monge-Ampère comparison property:

ψ = ψ ◦ ρX

holds on the interior of the maximal faces of Sk(X).
Then for |t| ≪ 1, there exists a special Lagrangian fibration ft : Ut −→ Sk(X),
where Ut ⊂ Xt is an open subset of Calabi-Yau measure arbitrarily close to 1.

The above theorem reduces the classical SYZ conjecture to a problem in non-
archimedean geometry, but however does not answer the question of global Gromov-
Hausdorff convergence of the Calabi-Yau metrics; indeed the union of open maximal
faces of Sk(X) is disconnected, so that to be able to access the distance between
two different faces, it seems necessary to establish a connection between the real and
non-archimedean Monge-Ampère operator in codimension 1 - still under a suitable
invariance property for the Calabi-Yau potential on Xan.

Summary of the main results

Pluripotential theory on hybrid spaces

Let X −→ D∗ be a projective degeneration of complex manifolds, and let L be a
relatively ample line bundle on X. Given a plurisubharmonic metric ϕ ∈ PSH(X,L)
satisfying a reasonable growth condition at t = 0, one can associate to it a plurisub-
harmonic metric ϕNA ∈ PSH(Xan, Lan) on the non-archimedean analytic space Xan,
encoding the logarithmic blow-up rate of ϕ along the special fibers of models of
(X,L). In the case where X = Y × D∗ is a product and ϕ is S1-invariant, one says
that ϕ is a psh ray on Y , and the associated non-archimedean metric was defined in
[BBJ18]; while the general case was treated in [Reb21].
One would like to say that the metric ϕNA is in a natural way the limit of the
ϕt = (ϕ)|Xt on the hybrid space. However taking the limit in the topological sense
of the word would be too naive, as it is desirable to be able to work with singular
metrics. It is thus natural to try and define a class of singular metrics on the hybrid
space, which recover both complex singular metrics on the degeneration X, as well
as their associated non-archimedean metrics.
In the first chapter of this thesis, we define a class of plurisubharmonic metrics
PSH(X,L) on the Berkovich analytification Xan of a polarized scheme X over an
integral Banach ring A; roughly speaking, a singular metric ϕ ∈ PSH(X,L) can
be seen as a family of psh metrics ϕx ∈ PSH(XH (x), LH (x)), varying in a plurisub-
harmonic way with respect to x ∈ M (A). Note however that it can happen that
ϕx ≡ −∞ for some x ∈M (A).
The class PSH(X,L) is defined following the approach of [BE21] : it is the smallest
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class of singular metrics on L that contains metrics of the form m−1 log|s| when-
ever s ∈ H0(X,mL) is a non-zero section, and is closed under finite maxima and
decreasing limits.
In the case where (X,L) is a degeneration of polarized complex manifolds, a psh
metric on the analytic space Xhyb induces by restriction and rescaling a semi-
positive metric ϕ ∈ PSH(X,L) with logarithmic growth, as well as a psh metric
ϕ0 ∈ PSH(Xan, Lan), and is uniquely recovered by those two restrictions. Con-
versely, given a psh metric ϕ with logarithmic growth on the degeneration X, we
prove that the associated non-archimedean metric ϕNA induces a canonical semi-
positive extension of ϕ to the hybrid space:

Theorem A. [PS22a, thm. A] Let ϕ ∈ PSH(X,L) be a psh metric with logarithmic
growth at t = 0. Then the singular metric ϕhyb on (Xhyb, Lhyb) such that:

ϕhyb
0 = ϕNA,

ϕhyb
|Xt

= ϕt

is semi-positive.

Note that not all psh metrics on the hybrid space arise in this way: the point
0 ∈ D̄r is pluripolar - non-negligible in the sense of hybrid pluripotential theory -
so that psh hybrid metrics are not uniquely recovered by their restriction to the
punctured disk. This subtlety however disappears when restricting our attention to
continuous psh metrics, as 0 ∈ D̄r has empty interior.
We then focus on the case of a polarized toric variety (Z,L) over C. In that case,
continuous toric psh metrics on L can be described explicitly in terms of certain
convex functions on the vector space NR where the fan Σ of Z lives - and this,
regardless of the choice of absolute value on C, Euclidean or trivial. More precisely,
the polarization L is encoded combinatorially by a piecewise-linear convex function
ΨL : NR −→ R, and toric metrics on L are in one-to-one correspondance with convex
functions on NR which have the same growth as ΨL at infinity.
We then prove that a similar statement holds for toric continuous psh hybrid metrics:
the semi-positivity in the horizontal direction is naturally encoded by convexity along
the direction of the base M (Chyb) = [0, 1].

Theorem B. Let (Z,L) be a polarized complex toric variety. There is a one-to-one
correspondence between continuous toric psh metrics on Lhyb and convex continuous
functions:

Φ : NR × [0, 1] −→ R

such that (Φ−ΨL) extends continuously to the compactification NΣ× [0, 1] of NR×
[0, 1].

The non-archimedean SYZ fibration

The second part of this thesis is devoted to the following problem: given a maxi-
mally degenerate Calabi-Yau manifold X/K, polarized by an ample line bundle L,
trying to produce a non-archimedean avatar ρ : Xan −→ Sk(X) of the conjectural
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SYZ fibration - with the hope of finding a retraction such that the non-archimedean
Calabi-Yau metric on Lan is constant along the fibers of the retraction ρ.
Since one of the main goals is to identify the solution to the non-archimedean Monge-
Ampère equation with a solution of the real Monge-Ampère equation, it is desirable
to have at our disposal a fibration which is "smooth" away from a codimension 2
locus of the base, as it yields this way an integral affine structure on Sk(X) which
has singularities in codimension 2.
A first step was to understand the singularities of the Berkovich retraction associ-
ated to a model X , or rather the absence thereof. The following theorem, joint
with Enrica Mazzon, states that if a Z is a toric stratum of the special fiber of a
degeneration of algebraic varieties, then under a certain positivity assumption on
the conormal bundle of Z, the Berkovich retraction ρX has no singularities over the
open star Star(τZ) of the face τZ ⊂ Sk(X ), i.e. the union of the interiors of the
faces containing τZ :

Theorem C. [MPS21, thm. B] Let X/K be a smooth projective variety of dimen-
sion n, and X /R be a good dlt model of X with reduced special fiber X0 =

∑
αDα,

such that every Dα is a Cartier divisor.
Let Z = D0 ∩D1 ∩ . . . ∩Dn−r be an r-dimensional stratum of X0, such that:

• Z̊ ⊂ Z is a torus embedding, where Z̊ = Z \ ∪α ̸=0,1,...,n−rDα;

• the conormal bundle ν∗Z/X is a nef vector bundle on Z;

• for each α /∈ {0, ..., n−r}, the intersection Dα∩Z is either empty or connected.

Then the formal completion ‘X/Z is isomorphic to the formal completion of the nor-
mal bundle N = νZ/X along the zero section, which is a toric variety. In particular,
the Berkovich retraction ρX : Xan → Sk(X ) is an n-dimensional affinoid torus
fibration over Star(τZ).

We then focus on degenerations of hypersurfaces of the form:

X = {z0...zn+1 + tFn+2 = 0} ⊂ Pn+1 × D∗,

where Fn+2 is a generic homogeneous polynomial of degree (n + 2). The essen-
tial skeleton Sk(X) is explicitly given as the dual intersection complex of the toric
boundary of Pn+1, and can be in fact realized canonically inside the vector space NR
where the fan of Pn+1 lives. More precisely, writing T ⊂ Pn+1 the open torus, the
usual tropicalization map:

val : Tan −→ NR

maps Sk(X) ⊂ Xan homeomorphically onto the maximal bounded subcomplex of
the tropicalization Trop(X) := val(Xan ∩ Tan) ⊂ NR of the hypersurface - which is
endowed with a canonical polyhedral decomposition.
After suitably choosing a discriminant locus Γ ⊂ Sk(X) of codimension 2 (also
called choice of branch cuts), we may put an integral affine structure on Sk(X) \ Γ
that encodes the toric nature of the degeneration, following [GS06]. This integral
affine structure has for instance no singularity near each vertex vi ∈ Sk(X), and



CONTENTS 41

the germ of affine manifold at vi is nothing but the germ at 0 of the fan Σi of the
corresponding component Di. It does however depend on the choice of branch cuts,
and is thus not canonical.
Building on theorem C and on the construction by Yamamoto [Yam21] of certain
tropical contractions:

δ : Trop(X) −→ Sk(X),

we prove the following:

Theorem D. Let a = (aτ )τ be a choice of branch cuts in Sk(X), and let
δa : Trop(X) −→ Sk(X) be the associated tropical contraction [Yam21, thm. 5.1].
Then the composition:

ρa := δa ◦ valΣ : Xan −→ Sk(X)

is an affinoid torus fibration over Sk(X) \ Γ. Moreover, the induced integral affine
structure on Sk(X) \ Γ coincides with the one mentioned above.

In dimension 2 and 3, the retraction ρa was constructed without using the tropical
contraction in a joint work with E. Mazzon [MPS21]. This alternative construction
also allowed us to refine further the discriminant locus in dimension 2, and obtain
integral affine structures on the 2-sphere with 24 singular points of Kodaira type I1;
we refer to section 4.2.1 for details.
Finally, we focus on the particular example of the Fermat family of hypersurfaces:

X = {z0...zn+1 + t(zn+2
0 + ...+ zn+2

n+1) = 0} ⊂ Pn+1 × D∗,

which enjoys the Sn+2 symmetry. In that example, the asymptotic behaviour of the
(archimedean) Calabi-Yau metrics is well-understood [Li22]: the Calabi-Yau poten-
tial with respect to the ambient Fubini-Study metric is close to a toric potential,
which is defined on the ambient projective space. Using the results of [Li22] and
theorem B, we are able prove the following:

Theorem E. Let X −→ D∗ be the Fermat family of hypersurfaces, polarized by
L = OP(1). Then there exists a semi-positive toric metric ϕ ∈ CPSH(Pn+1,an

K , Lan)
whose restriction to Xan solves the non-archimedean Monge-Ampère equation:

MA(ϕ) = µ0,

where µ0 is the Lebesgue measure on Sk(X). Moreover, writing ϕ = ϕFS + ψ, the
continuous function ψ on Xan satisfies the comparison property:

ψ = ψ ◦ ρa

over Sk(X) \ Γ, where ρa is the retraction from theorem D, aτ is the barycenter of
τ for each face τ ⊂ Sk(X ), and Γ ⊂ Sk(X) is the associated discriminant locus of
codimension 2.

The function ψ is also in a natural sense the limit of the archimedean Calabi-Yau
potentials.
A similar statement for more general hypersurfaces was obtained independently in
[HJMM22].
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Degenerations of canonically polarized manifolds

Let X −→ D∗ be a degeneration of canonically polarized manifolds, and write
L = KX/D∗ . By the classical Aubin-Yau theorem, each fiber Xt admits a unique
Kähler-Einstein metric ϕt on Lt, whose curvature form ωt = ddcϕt has negative
constant Ricci curvature:

Ric(ωt) = −ωt.

Moreover, it follows from the results of Schumacher [Sch12] that the family of Kähler-
Einstein metrics ϕ = (ϕt)t∈D∗ also has positive curvature in the direction of the base
and has logarithmic growth at t = 0, so that ϕ ∈ PSH(X,L) satisfies the assumptions
of theorem A.
The machinery of the Minimal Model Program furthermore implies that after a
finite base change, the family admits a unique canonical model Xc/D, which has
ample relative canonical bundle KXc/D. Moreover, by the results of J. Song [Son17],
the Kähler-Einstein metrics converge in a natural sense to a unique Kähler-Einstein
current ωKE,0 on the special fiber Xc,0, and even though this current does not have
bounded potentials, its singularities are milder than any log poles. We are thus able
to show that the non-archimedean limit of the Kähler-Einstein metrics is the model
metric ϕKXc/R

associated to the canonical model (Xc, KXc/D):

Theorem F. [PS22a, thm. B] Let X π−→ D∗ be a degeneration of canonically po-
larized manifolds, L = KX/ D∗, and let ϕKE ∈ PSH(X,L) be the family of Kähler-
Einstein metrics. We assume that the family X has semi-stable reduction over D.
Then the metric on Lhyb defined by:

ϕ|X = ϕKE,

ϕ0 = ϕKXc/R

is continuous and plurisubharmonic on Xhyb.
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Organization of the manuscript

This text is organized as follows.
The first chapter is devoted to the definition and study of a class of global semi-
positive metrics on Berkovich analytifications of schemes over a Banach ring A -
in practice, we will be mostly interested about the ring of convergent power series
for the hybrid norm on C, so that the analytic spaces we are considering are hybrid
spaces. Section 1.1 recalls general facts about Berkovich analytic spaces - in particu-
lar over a discretely-valued field - and about hybrid spaces. In section 1.2, we define
in a global way a class of plurisubharmonic metrics on the Berkovich analytification
of an A-scheme X, and study its basic properties. In section 1.3 we focus on the
case where X is a projective degeneration of complex varieties over the punctured
disk D∗, and its Berkovich analytification is the associated hybrid space Xhyb. We
compare in particular our framework to the work of [BBJ18], [Reb21], and prove
theorem A (see theorem 1.3.13). In section 1.4, we discuss Monge-Ampère measures
associated to psh metrics on analytic spaces over a valued field, and families there
of in the case of a more general base. In particular, we state that the family of
Monge-Ampère measures associated to a continuous psh metric on a hybrid space
Xhyb is weakly continuous, this result is essentially due to Favre [Fav20].
The second chapter focuses on the following setting: Z is a complex, projective
toric variety, Zhyb is its analytification with respect to the hybrid norm max{|·|0, |·|}
on C, and L is a semi-ample line bundle on Z. In this setting, we prove theorem
B which provide a combinatorial description of semi-positive metrics on Lhyb that
are fiberwise-invariant under the torus action: they are given by continuous convex
functions Φ : NR× [0, 1] −→ R satisfying a suitable growth condition at infinity (see
2.2.12). In section 2.1, we recall standard facts from convex and toric geometry that
will be used in section 2.2, where we discuss fiberwise-toric metric on hybrid spaces
and prove theorem B.
Throughout the third chapter, we let (X,L) −→ D∗ be a polarized, maximal de-
generation of Calabi-Yau manifolds. We devote section 3.1 to a discussion on the
SYZ and Kontsevich-Soibelman conjecture, and study the local model of the non-
archimedean analog of a Lagrangian torus fibration. Section 3.2 is devoted to the
proof of theorem C, which is a first step toward producing more global examples of
NA torus fibrations. We also include, in section 3.3, various computations of the
singular, integral affine structures constructed via theorem C.
The fourth chapter focuses on maximally degenerate Calabi-Yau hypersurfaces in
projective space. In section 4.1, we construct a non-archimedean SYZ fibration ρ for
such hypersurfaces, and prove theorem D. We also present an alternative construc-
tion of ρ in dimensions 2 and 3 that was performed in [MPS21], this is the content
of section 4.2. In section 4.3, we focus on the Fermat family of hypersurfaces, and
prove theorem E building on the results from chapters 1 and 2 and [Li22]: the non-
archimedean Calabi-Yau metric in this setting is the restriction of a toric metric
living on the ambient projective space.
Finally, in a fifth short chapter, we investigate degenerations of Kähler-Einstein
manifolds with negative curvature, in the framework from chapter 1. We set the
scene in section 5.1, and state theorem F, and then recall some facts about canonical
models of such degenerations in section 5.2. In section 5.3, we describe the results
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from [Son17] regarding convergence of the Kähler-Einstein metrics on the canonical
model, and prove theorem F. We conclude with a short discussion on the Fano case
in section 5.4.

Notation and conventions

All rings are assumed to be unitary and commutative.
We will use additive notation for line bundles: if L, M are two line bundles on a
variety X, we write L+M := L⊗M , and kL := L⊗k for k ∈ Z.
If X is a complex manifold and ϕ a smooth function on X, we set ddcϕ = i

2π
∂∂̄ϕ.

We extend the notation to Hermitian metrics on line bundles, so that if L is a
holomorphic line bundle on X and ϕ a smooth metric on L, the curvature form
ddcϕ ∈ c1(L) - and similarly for singular semi-positive metrics.
Throughout this text, whenever we say that X π−→ D∗ is a degeneration of complex
manifolds, we mean that X is a smooth complex manifold and π a holomorphic
submersion (which will often be omitted from notation). We will furthermore always
assume that the degeneration is meromorphic at 0, i.e. that X is defined over the
ring of germs at zero of holomorphic functions. Equivalently, this means that there
exists a normal complex analytic space X

π−→ D such that X|D∗ = X.



Chapter 1

Non-archimedean pluripotential
theory

The study of plurisubharmonic functions and positive currents on complex manifolds
- referred to as pluripotential theory - has proven itself over the past decades to be a
central tool in complex Kähler and algebraic geometry. The heuristic idea that one
should be able to develop a pluripotential theory on Berkovich analytic spaces over
a non-archimedean field K, similar to the classical one over the complex numbers,
is by now well-established, see for instance [BR10], [CLD12] [BFJ16], [BE21] in
chronological order.
To be more precise, let K be a complete non-archimedean field, and X/K a proper
algebraic variety. In this setting, Berkovich’s theory of K-analytic spaces [Ber90]
associates to the variety X/K its Berkovich analytification Xan, in a similar spirit
to how one associates to a variety over C its complex analytification. One may then
define in this setting a class PSH(X,L) of plurisubharmonic (singular) metrics on
Lan, whose properties mimic those of plurisubharmonic metrics in the complex case.
While the work of Chambert-Loir - Ducros [CLD12] provides a local definition of the
semi-positivity condition, we will adopt a global point of view throughout this paper,
following the approach initiated by Boucksom-Favre-Jonsson in [BFJ16] and further
developped in [BJ18], [BJ22]. The basic idea is as follows: for m ≥ 1, given a non-
zero global section s ∈ H0(X,mL), the singular metric (using additive notation for
metrics) ϕ = m−1 log|s| should be plurisubharmonic, as follows in the complex world
from the Lelong-Poincaré formula. It moreover follows from Demailly’s seminal
work [Dem92] on regularization of plurisubharmonic functions that on a smooth
polarized complex variety (X,L), the class PSH(X,L) is the smallest class of singular
metrics containing the metrics of the form ϕ = m−1 log|s| as above, and that is
furthermore stable by addition of constants, finite maxima and decreasing limits
(see thm. 1.2.24). It is thus natural to take this characterization as the definition of
PSH(X,L) in the non-archimedean setting, which turns out to be consistent with
the more local, Chambert-Loir - Ducros approach, by the results from [BE21].
One of the upsides of Berkovich’s construction of analytic spaces is that it works
over more general bases than non-archimedean fields: given a Banach ring (A, |·|),
one can define its Berkovich spectrum M (A), and for any reasonable scheme X/A,
a Berkovich analytic space Xan π−→M (A) equipped with a continuous structure map
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to M (A). Each point x ∈M (A) has a residue field H (x) in a natural sense, which
is a complete valued field, and when A is a geometric base ring (which will always
be true of the rings considered in this chapter, see section 1.1.1) the fiber π−1(x)
of the structure map is naturally homeomorphic to Berkovich analytification of the
base change XH (x). One may thus view the A-analytic space Xan as the family of
analytic spaces (Xan

H (x))x∈M (A) over different base fields, in a similar manner to which
one views a scheme over a ring A as a family of varieties over different base fields,
parametrized by SpecA. More general Berkovich analytic spaces over Banach rings
were studied more extensively recently in [LP20], where it is for instance proved
that A-analytic spaces form a category in a natural way, under certain assumptions
on A.
At this point, pluripotential theory on Berkovich spaces over a Banach ring remains
a vastly unexplored territory. In this paper, under suitable assumptions on the base
ring, we define a class PSH(X,L) of semi-positive singular metrics on a scheme
X/A of finite type, endowed with a semi-ample line bundle L. Roughly speaking,
a singular metric ϕ ∈ PSH(X,L) can be seen as a family of semi-positive singular
metrics ϕx ∈ PSH(XH (x), LH (x)) on the fibers of the structure map, varying in a
plurisubharmonic way with respect to x ∈M (A). Note however that it can happen
that ϕx ≡ −∞ for some x ∈ M (A), as one would expect in the complex world.
The class PSH(X,L) is defined following the global approach of [BFJ16], [BE21] :
it is the smallest class of singular metrics on L that contains metrics of the form
m−1 log|s| whenever s ∈ H0(X,mL) is a non-zero global section, and is stable under
addition of constants, finite maxima and decreasing limits.
Our main concern is the case where A is a hybrid ring (see section 1.1.3 for the
definitions) and X −→ D∗ is a projective degeneration of complex manifolds - we
will always assume the degeneration to be meromorphic at t = 0, which means
that we may view X as a projective scheme over the field K = C((t)) of complex
Laurent series - so that Xan = Xhyb is the associated hybrid space, as studied for
instance in [BJ17], [Fav20]. The hybrid space Xhyb π−→ D̄r comes with a continuous
structure map to the closed disk of radius r ∈ (0, 1), such that π−1(0) = Xan

K is the
Berkovich analytification of X with respect to the non-archimedean t-adic absolute
value on K, while π−1(D̄∗

r) can be naturally identified with the restriction of the
degeneration X to the closed punctured disk D̄∗

r - up to rescaling the absolute value
on the fiber Xt by a factor log r

log|t| . As a result, this provides a natural way to see the
(rescaled) complex manifolds (Xt)t∈D∗ degenerate to a non-archimedean space Xan

K

as t → 0. In this setting, if L is a semi-ample line bundle on X, then a psh metric
on (Xhyb, Lhyb) corresponds to the data of a family of psh metrics ϕt ∈ PSH(Xt, Lt)
varying in a subharmonic way with respect to t, together with a non-archimedean
metric ϕ0 ∈ PSH(Xan, Lan).
In the case where the line bundle L is ample on X, given a semi-positive metric
ϕ ∈ PSH(X,L) which has logarithmic growth at t = 0 (see definition 1.3.9), one can
associate to it a semi-positive metric ϕNA ∈ PSH(Xan, Lan) on the non-archimedean
analytic space Xan, encoding the generic Lelong numbers of ϕ along the centrals
fibers of models of (X,L) over the disk. In the case where X = Y ×D∗ is a product
and ϕ is an S1-invariant metric on p∗1L for an ample line bundle L on Y , one can
view ϕ : R≥0 −→ PSH(Y, L) as a psh ray on Y , and the non-archimedean limit was
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defined by Berman-Boucksom-Jonsson [BBJ18] in the context of their proof of the
Yau-Tian-Donaldson conjecture; while the general case was treated in [Reb21].
The main result of this chapter is theorem 1.3.13, which states that if (X,L) is a
polarized degeneration of complex manifolds over D∗, and ϕ ∈ PSH(X,L) is a psh
family of metrics on L, then ϕ extends in a canonical way to Xhyb to a metric ϕhyb,
whose restriction to the non-archimedean fiber ϕNA is the metric mentioned. We
then compare our formalism with the set-up of [Fav20] for continuous psh metrics on
the hybrid space, which yields a continuity result for the family of fiberwise Monge-
Ampère measures on the hybrid space associated to a continuous psh hybrid metric
(theorem 1.4.11).
This chapter is organized as follows. In section 1.1, we recall some general facts
about Berkovich analytic spaces over Banach rings, and in section 1.2 we define and
prove basic properties of the class PSH(X,L) of semi-positive singular metrics on
a polarized scheme (X,L)/A over a geometric base ring; we also give some explicit
examples along the way. We then move on to the case of hybrid spaces: section 1.3
is devoted to the statement and the proof of theorem 1.3.13, and section 1.4 is a
discussion on families of Monge-Ampère measures, where we prove theorem 1.4.11.

1.1 Berkovich analytic spaces

1.1.1 Definitions

Definition 1.1.1. Let A ̸= 0 be a ring. A (submultiplicative) semi-norm ∥·∥ on A
is a map ∥·∥ : A −→ R≥0 such that :

• ∥1∥ = 1 and ∥0∥ = 0,

• ∀a, b ∈ A, ∥a+ b∥ ≤ ∥a∥+ ∥b∥,

• ∀a, b ∈ A, ∥ab∥ ≤ ∥a∥∥b∥.

Its kernel Ker∥·∥ = {a ∈ A/∥a∥ = 0} is an ideal of A, which is prime when ∥·∥ is
multiplicative. A submultiplicative semi-norm on A whose kernel is reduced to zero
is called a norm on A.
Finally, a Banach ring A is a non-zero ring equipped with a submultiplicative norm
∥·∥ such that A is complete with respect to ∥·∥.

For example, any non-zero ring A endowed with the trivial norm ∥·∥0 (such that
∥a∥0 = 1 for any non-zero a ∈ A) is a Banach ring.

Definition 1.1.2. Let A be a Banach ring.
The Berkovich spectrum M (A) is the set whose points x ∈M (A) are multiplicative
semi-norms |·|x : A −→ R≥0 satisfying |·|x ≤ ∥·∥.
It is equipped with the topology of pointwise convergence on A, which makes it into
a non-empty Hausdorff compact topological space by [Ber90, thm. 1.2.1], and with
a map q : |·|x 7→ px = Ker(|·|x) to Spec(A) which is continuous.

For instance, if A = k is a complete valued field, then M (k) is reduced to the
point ∥·∥.
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Example 1.1.3. Let A = Z be the ring of integers, endowed with the usual archimedean
absolute value |·|∞. Let x0 = |·|0 ∈M (Z) be the trivial absolute value on Z, and let
xp = |·|p be the p-adic absolute value, normalized setting |p|p = p−1.
It follows from Ostrowski’s theorem that any point x ∈ M (Z) is of the following
form: either there exists ε ∈ [0,+∞] and p a prime number such that x = |·|εp,
or there exists ε ∈ [0, 1] such that x = |·|ε∞; where we denote |·|0x = |·|0 the trivial
absolute value for any x ∈M (Z), while |·|∞p is the absolute value such that |n|∞p = 0
if p divides n, and |n|∞p = 1 otherwise.
Topologically, the Berkovich spectrum M (Z) is thus an infinite wedge of segments
parametrized by the prime numbers and ∞, glued together at the trivial absolute
value x0. Note that for each neighbourhood V of x0 in M (Z), the set of branches
not contained in V is finite.
The map M (Z) q−→ Spec(Z) maps the outer end |·|∞p of the p-adic branch to the
prime ideal (p), and any other point to the generic point of Spec(Z).

Fix A a Banach ring, and let B be a finitely generated A-algebra. The analytifi-
cation Y an of Y = Spec(B) is defined as the set of multiplicative semi-norms |·|x on
B whose restriction to A belong to M (A). It is endowed with the coarsest topology
making the maps x 7→ |f |x continuous, for f ∈ B, and comes with a continuous
structure morphism Y an −→M (A) sending a semi-norm to its restriction to A.
If X is a scheme of finite type over A, one can then glue the analytifications of
affine charts of X in order to obtain an analytification functor X 7→ Xan from the
category of A-schemes of finite type to the category of A-analytic spaces [LP20].
Any A-analytic space comes with a sheaf of analytic functions, as defined in [Ber90,
def. 1.5.3].
When the base ring A is a geometric base ring (see below), the space Xan satisfies
nice topological properties by [LP20]: if X/A is separated, then Xan is Hausdorff;
and Xan is compact when X/A is projective.

Example 1.1.4. Let A = C endowed with the Euclidean absolute value, and B be
a complex Banach algebra of finite type. Then the classical Gelfan’d-Mazur theorem
implies that Y an = (SpecB)an is the set of maximal ideals of B. As a result, Y an

is the set Y (C) of closed points of the affine complex algebraic variety Y , and the
induced topology on Y is the Euclidean one. More generally, if Y is a reduced scheme
of finite type over C, then the analytification Y an of Y with respect to the Euclidean
absolute value on C is homeomorphic to the complex variety Y endowed with the
Euclidean topology.

Example 1.1.5. Let A = K be a complete non-archimedean field, and let X/K be a
separated scheme of finite type. Then the Berkovich space Xan can be described more
explicitly as the set of couples x = (ξ, vx), where ξ = ξx is a scheme-theoretic point
of X and vx is a real valuation on the function field of ξx, extending the valuation
on K.
Moreover, the map x 7→ ξx from Xan to Xsch is continuous, surjective, and induces a
bijection between the respective sets of connected components; the closed subscheme
Y := ξx will be called the support of x ∈ Xan.

Definition 1.1.6. Let A be a Banach ring, and x ∈ M (A). Write px = q(x) =
Ker(|·|x), κ(x) = Frac(A/px) the schematic residue field of A at px. The semi-



1.1. BERKOVICH ANALYTIC SPACES 49

norm |·|x descends to an absolute value on κ(x); we write H (x) for the associated
completion of κ(x) and call it the residue field of M (A) at x.

Let A and B be two Banach rings, and assume from now on that A and B
are geometric base rings. We will not give the definition here, and rather refer
the reader to [LP20, def. 3.3.8]. Note however that this includes all Banach rings
relevant for us, in particular discrete valuation rings, hybrid rings (see section 1.1.3
for the definition) or the ring of integers of a number field. In this setting, one can
define [LP20] a well-behaved category of analytic spaces over A, which in particular
contains the analytifications of A-schemes of finite type (and similarly for B).
Assume given a bounded ring homomorphism A −→ B. This induces a continuous
map:

ρ : M (B) −→M (A),

which simply sends a semi-norm on B to its pull-back to A. Given an analytic space
X over A, its base change XB to B exists by [LP20, thm. 4.2.4]; when X = Xan is
the analytification of an A-scheme X of locally finite presentation, the base change
(Xan)B is canonically isomorphic to the analytification of the B-scheme XB by
[LP20, §4.1, 4.2], so that we simply denote it by Xan

B , and we have a commutative
diagram:

Xan
B Xan

M (B) M (A).

F

πB πA

ρ

The following proposition allows us, still assuming that A is a geometric base ring,
to view a Berkovich space over a Banach ring A as a family of Berkovich spaces over
complete valued fields, parametrized by M (A):

Proposition 1.1.7. [LP20, prop. 4.4.8]
Let A be a geometric base ring, X a scheme of finite type over A, and π : Xan −→
M (A) the associated analytic space. If x ∈ M (A), then π−1(x) is canonically
homeomorphic to the analytification of the base change XH (x) = X ×A H (x) with
respect to the absolute value |·|x on H (x).

More precisely, the base change morphism Fx : Xan
H (x) −→ Xan is a topological

embedding, and induces a homeomorphism between Xan
H (x) and π−1(x) ⊂ Xan .

Definition 1.1.8. Let A be an integral Banach ring. We say a point x ∈M (A) is
Zariski-dense if and only the kernel of |·|x is reduced to zero.
We write M (A)η = q−1(ηA) ⊂M (A) for the subset of Zariski-dense points.

As the name suggests, those are indeed the points of M (A) which are dense for
the Zariski topology, where the Zariski topology on M (A) is the coarsest making
the map q : M (A) −→ Spec(A) continuous.
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1.1.2 Discretely-valued fields

Let K be a complete, discretely-valued field, with valuation v. We denote by
R = {v ≥ 0} its valuation ring, m = {v > 0} its maximal ideal and k = R/m
the residue field. If k and K have the same characteristic, it follows from Cohen’s
structure theorem that K is isomorphic to the field K = k((t)) of Laurent series
over its residue field, endowed with the valuation v = ord0.
Otherwise, K has mixed characteristic, i.e. K has characteristic 0 and k has char-
acteristic p > 0. The most common example of such a field is K = Qp with the
standard p-adic valuation, which has residue field Fp. More generally, any finite
extension K of Qp is a discretely-valued field of mixed characteristic.
From now on, we will assume K has equicharacteristic zero, so that K = k((t)). We
let X be a separated K-scheme of finite type, and write n = dim(X). The purpose
of this section is to explain how one can understand the topological space Xan more
concretely using piecewise-affine geometry. The basic idea is that for a large enough
class of integral R-models X of X, there exists a finite-dimensional cell complex
Sk(X ) ⊂ Xan, which we may view as a tropicalization of the model X . As shown
in thm. 1.1.19, the space Xan is then realized as the inverse limit of all such Sk(X ),
so that Xan is homeomorphic to a tower of simplicial complexes.
We start with a definition:

Definition 1.1.9. A model of X is a flat, separated R-scheme X , together with an
isomorphism of K-schemes X ×R K ≃ X.
We will denote X0 := X ×R k the special fiber of X , and by Div0(X ) the group of
Weil divisors on X supported on the special fiber.

If X , X ′ are two models of X, a morphism of models f : X ′ −→ X is an
R-morphism whose base change to K induces the identity on X. We will say that
X ′ dominates X if there exists such a morphism, in which case it is unique.
Assume that X/K is proper, and let X /R be a proper model of X. By the valuative
criterion of properness, for any x = (ξx, vx) ∈ Xan, the K-morphism SpecH (x) −→
X - whose image is the point ξx - lifts in a unique way to an R-morphism from the
valuation ring H (x)◦ to X :

SpecH (x) X

SpecH (x)◦ SpecR.

ξx

The image of the closed point of SpecH (x)◦ under the extended morphism is called
the center of x and denoted by cX (x). The map cX : Xan −→ X0 turns out to be
surjective and anticontinuous, i.e. the preimage of a closed subset of X0 by cX is
open in Xan.
In the case where X/K is smooth, we say a model X /R has simple normal crossing
singularities if X /R is smooth, and the special fiber X0 is a simple normal crossing
divisor inside X . Such models always exists when K has equicharacteristic zero
and X/K is projective, by Hironaka’s theorem on resolution of singularities. More
precisely, any model X /R can be dominated by an snc model.
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To every snc model X of X, with special fiber X0 =
∑

i∈I aiDi, we can associate
a cell complex encoding the combinatorics of the intersections of the irreducible
components of X0. We say Y ⊂ X0 is a stratum if there exists a non-empty J ⊂ I
such that Y is a connected component of DJ := ∩j∈JDj. The dual complex of X
is now defined as follows:

Definition 1.1.10. Let X be an snc model of X. To each stratum Y of X0 which
is a connected component of DJ , we associate a simplex:

τY = {w ∈ R|J |
⩾0 |
∑
j∈J

ajwj = 1}.

We define the cell complex D(X0) by the following incidence relations: τY is a face
of τY ′ if and only if Y ′ ⊂ Y .

For reasons that will appear clearer later on, we will sometimes need to work
with a broader class of models, those are divisorially log terminal models:

Definition 1.1.11. Let X /R be a model of X. We say that X is a dlt (divisorially
log terminal) model of X if the following conditions hold:

- the pair (X ,X0,red) is log canonical in the sense of the Minimal Model Program
(see [KM98]);

- the pair (X ,X0,red) is simple normal crossing at the generic points of log
canonical centers of (X ,X0,red).

Moreover, a dlt model X is good if each irreducible component of X0,red is Q-
Cartier.

See [NXY19, §1.12-1.14] for an overview on existence results of such models.
We will not give a precise definition of log canonical centers here, and refer the
reader to [KM98]. As a matter of fact, in the sequel, we will assume the following:

Condition 1.1.12. The log canonical centers of (X ,X0,red) are precisely the strata
of X0.

Whenever X is defined over an algebraic curve - which is the most relevant case
for applications - the above condition is satisfied by [Kol13, 4.16], so that a dlt
model X is simple normal crossing at the generic points of the strata of X0. If
X0 is reduced, it follows from the approximation arguments of [NXY19, Corollary
4.4] that this holds in the general case as well. It is in fact expected that condition
1.1.12 holds in general.
In that case, the second assumption in the definition means that the singularities of
the pair (X ,X0,red) do not interact with the combinatorics of the intersections of
the components of the special fiber, so that def. 1.1.10 extends in a straightforward
way to dlt models satisfying condition 1.1.12.
Given any dlt model X of X over R, there exists a natural embedding iX of the
dual complex D(X0) into Xan, given as follows. The vertices vi of D(X0) are
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in one-to-one correspondence with irreducible components Di of the special fiber
X0 =

∑
i∈I aiDi, so that we set

iX (vi) = vDi
:= a−1

i ordDi
,

where the valuation ordDi
associates to a meromorphic function f ∈ K(X) ≃ K(X )

its vanishing order along Di - the normalisation by a−1
i ensuring that vDi

(t) = 1.

Definition 1.1.13. A valuation given in this way, for some dlt (or equivalently, snc)
model X of X, is called divisorial. We write X÷ ⊂ Xan for the set of divisorial
valuations, it is a dense subset of Xan.

One can now interpolate between those divisorial valuations using quasi-monomial
valuations, in order to embed D(X0) into Xan:

Proposition 1.1.14 ([MN15, Proposition 2.4.4]). Let X be a dlt model of X sat-
isfying condition 1.1.12, with special fiber X0 =

∑
i∈I aiDi. Let J ⊂ I such that

DJ = ∩j∈JDj is non-empty, and Y a connected component of DJ , with generic
point η. We furthermore fix a local equation zj ∈ OX ,η for Dj, for any j ∈ J .
Then, for any w ∈ τY = {w ∈ R|J |

⩾0 |
∑

j∈J ajwj = 1}, there exists a unique valuation

vw : OX ,η −→ R⩾0 ∪ {+∞}

such that for every f ∈ OX ,η, with expansion f =
∑

β∈N|J| cβz
β (with cβ either zero

or unit), we have:
vw(f) = min{⟨w, β⟩ |β ∈ N|J |, cβ ̸= 0},

where ⟨ , ⟩ is the usual scalar product on R|J |.

The above valuation is called the quasi-monomial valuation associated with the
data (Y,w). Then:

iX : D(X0)→ Xan

τY ∋ w 7→ vw

gives a well-defined continuous injective map from D(X0) to Xan.

Definition 1.1.15. We call the image of D(X0) by iX the skeleton of X , written
as Sk(X ) ⊂ Xan. It is a cell complex of dimension at most dimX.

By compactness of D(X0), iX induces a homeomorphism between D(X0) and
Sk(X ), so that we will sometimes abusively identify D(X0) with Sk(X ).

Definition 1.1.16. Let Y be a stratum of X0. We define Star(τY ) as the union of
open faces in Sk(X ) whose closure contains τY .

Let us now assume that X is a good dlt model of X, i.e. that the irreducible
components of X0 are Q-Cartier. We can now define a retraction for the inclusion
Sk(X ) ⊂ Xan as follows: for any v ∈ Xan, there exists a minimal stratum Y ⊆
∩j∈JDj of X0 such that the center cX (v) of v is contained in Y . Since X is good,
for each j ∈ J , there exists ej > 0 such that ejDj is Cartier at cX (v). We now
associate to v the quasi-monomial valuation ρX (v) corresponding to the data (Y,w)
with wj = e−1

j v(zj), where zj is a local equation of ejDj at the generic point of
cX (v). This should be seen as a monomial approximation of the valuation v at the
generic point of Y , with respect to the model X (which is snc there).
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Definition 1.1.17. The above map ρX : Xan −→ Sk(X ) is the Berkovich retraction
associated with the model X /R.

The Berkovich retraction is continuous, restricts to the identity on Sk(X ), and
by [Thu07] [Ber99], ρX is a strong deformation retraction, i.e. there exists a homo-
topy between ρX and the identity on Xan that fixes the points of Sk(X ). It follows
that Xan and Sk(X ) are homotopy equivalent.

Remark 1.1.18. The Berkovich retraction is a local construction on X , in the
following sense. Let Y be a stratum of X0. The formal completion XY := ‘X/Y of
X along Y is a formal R-scheme, and admits a generic fiber Xη

Y in the sense of
Berkovich, which is a Berkovich analytic space and can be explicitly described as the
following open subset of Xan:

Xη
Y = {x ∈ Xan| cX (vx) ∈ Y } = ρ−1

X (Star(τY )).

The global construction from above can in fact be made on Xη
Y [Ber99], so that there

exists a retraction:
ρY : Xη

Y −→ Star(τY ),

which coincides with the restriction of the retraction ρX . Thus, the restriction of
ρX over Star(τY ) only depends on the formal completion ‘X/Y .

We now want to understand how Sk(X ) changes when we change the model
X . Since every dlt model can be dominated by an snc one, we restrict ourselves
to snc models for convenience. Let f : X ′ −→ X be two snc models of X,
together with a morphism of models f . Then one can show that we have an inclusion
Sk(X ) ⊂ Sk(X ′), so that the retraction ρX ′ factors through ρX : there exists a map:

rX ′X : Sk(X ′) −→ Sk(X )

which is affine on each face of Sk(X ′), and such that ρX = rX ′X ◦ ρX ′ . In fact,
rX ′X is none other than the restriction of ρX to Sk(X ′), but can also be computed
explicitely in terms of coordinates on the simplices, see [BJ17, §4.2]. Moreover,
if X ′′ −→ X ′ −→ X are three snc models with morphisms as depicted, then
the equality rX ′′X ′ = rX ′X ◦ rX ′′X ′ holds. As a result, the family (Sk(X ))X of
Berkovich skeleta, indexed by the ordered set of snc models ofX, is an inverse system
of topological spaces, and the family of ρX : Xan −→ Sk(X ) defines a continuous
map ρ from Xan to the inverse limit of all skeleta. We now have the following result:

Theorem 1.1.19. ([KS06, thm. 10]).
The map ρ : Xan −→ lim←−X

Sk(X ) is a homeomorphism.

Note that by Hironaka’s theorem, snc models are cofinal in the category of good
dlt models (that is, every good dlt model of X can be dominated by an snc one), so
that taking the inverse limit over good dlt models yields the same result.
Let X /R be a model of X, and let I be an ideal sheaf on X . It induces a function:

ϕI : Xan −→ R,
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sometimes denoted by ϕI = log|I |, as follows. For x ∈ Xan, we set:

ϕI = sup
f

log|f(x)|,

where the supremum runs over the f ∈ IcX (x) - or equivalently, over the finitely
many generators of I at cX (x).
If I1, I2 are vertical ideal sheaves on X , X ′ respectively (i.e., cosupported on the
special fiber), then the equality ϕI1 = ϕI2 holds if and only there exists a model
X ′′ dominating both X and X ′ such that the pullbacks:

OX ′′ ·I1 = OX ′′ ·I2

agree on X ′′. In particular, when working with a function of the form ϕI for a
vertical ideal sheaf, we may choose a log-resolution of the ideal I , so that we may
assume that there exists a model X such that I = OX (D) for a vertical divisor
D ∈ Div0(X ). This implies for instance the following:

Lemma 1.1.20. Let I be a vertical ideal sheaf on a model X of X, and ϕI :
Xan −→ R the associated function. Then for any snc model X ′ of X, the restriction
of ϕI to the skeleton Sk(X ′) is piecewise-affine.

Note that the converse also holds. This motivates the following terminology:

Definition 1.1.21. A function ϕ : Xan −→ R is piecewise-affine (PA for short) if
there exists an snc model X and a vertical ideal sheaf I on X such that ϕ = ϕI .

1.1.3 Hybrid spaces

Let (k, |·|) be a non-trivially valued field, either archimedean or non-archimedean.

Definition 1.1.22. Let khyb be the Banach ring obtained by equipping the field k
with the norm ∥·∥hyb, defined for non-zero z ∈ k by:

∥z∥hyb = max{1, |z|}.

One can show [LP20, ex. 1.1.15] that the elements of M (khyb) are of the form
|·|λ, for λ ∈ [0, 1], where |·|0 = |·|0 denotes the trivial absolute value on k. This
yields a homeomorphism λ : M (khyb)

∼−→ [0, 1].
Thus, if Z is a scheme of finite type over k, its analytification with respect to |·|hyb,
which we denote by Zhyb, comes with a structure morphism π : Zhyb −→ [0, 1]. If
Z = Spec(A) is affine, the fiber over λ ̸= 0 is by definition of π the set of semi-norms
extending the absolute value |·|λ on k, so that by rescaling, this is easily seen to be
homeomorphic to the analytification Zan of Z with respect to the absolute value |·|.
One can in fact show that for any Z of finite type, we have a homeomorphism:

p : π−1((0, 1])
∼−→ (0, 1]× Zan,

compatible with the projections to (0, 1].
On the other hand, the fiber π−1(0) consists of the semi-norms extending the trivial
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absolute value on k, so that this is homeomorphic to the analytification Zan
0 of Z

with respect to the trivial absolute value on k.
Hence, the space Zhyb allows us to see the analytic space Zan degenerate to its
trivially-valued counterpart.
In the case where k = C with the Euclidean absolute value, the analytification Zan

is homeomorphic to the usual complex analytification Zhol of Z, by example 1.1.4.
Thus, the space Zhyb provides a natural way to degenerate the complex manifold
Zhol to the non-archimedean analytic space Zan

0 .
We now want to perform a similar construction for degenerations of complex vari-
eties. Let X π−→ D∗ be a holomorphic family of n-dimensional complex manifolds,
where D∗ = {|t| < 1} is the punctured unit disk in C. We will furthermore as-
sume that the family is quasi-projective and meromorphic at zero, i.e. that there
exists a relatively algebraic embedding ι : X ↪→ PN × D∗ such that π = pr2 ◦ι,
and the equations of X have meromorphic singularity at t = 0. This allows us to
view (the base change of) X as a quasi-projective scheme over the non-archimedean
field K = C((t)) of Laurent series; we fix a radius r ∈ (0, 1) and write Xan for the
Berkovich analytification of X with respect to the t-adic valuation on K, normalized
so that |t| = r.
We consider the following Banach ring, which we call the hybrid ring :

Ar = {f =
∑
n∈Z

ant
n ∈ K / ∥f∥hyb :=

∑
n

∥an∥hyb r
n <∞}.

The purpose of the above Banach ring is to provide a presentation of the closed
complex disk as an affine non-archimedean analytic space: we denote by Chyb(r) :=
M (Ar) the Berkovich spectrum of Ar and call it the hybrid circle, the terminology
stems from the fact that Chyb(r) is homeomorphic to the circle {|T | = r} inside the
Berkovich affine line over Chyb [Poi10]. We now have the following more explicit
description of the hybrid circle:

Lemma 1.1.23. ([BJ17, prop. A.4])
The map τ : t 7→ |·|t defined by:

|f |t =
ß
rord0(f) if t = 0,
rlog|f(t)|/ log|t| if t ̸= 0

for f ∈ Ar induces a homeomorphism from D̄r to M (Ar).

The upshot of this construction is that is f in Ar, then up to a constant
log|f(τ(t))| = log|f(t)|

log|t| for t ̸= 0 - we are viewing the point t as a rescaling of the
Euclidean absolute value composed with the evaluation map at t. Additionally,
as t → 0, these rescaled absolute values converge to the non-archimedean t-adic
absolute value e− ord0 on Ar ⊂ C((t)). This motivates the following definition:

Definition 1.1.24. Let X π−→ D∗ be a quasi-projective degeneration of complex man-
ifolds as above, and view it as a scheme of finite type over the ring of convergent
power series. We write XAr its base change to the ring Ar. We define the hybrid
space Xhyb

r associated to X as the analytification of XAr over Ar, which comes with
a structure map:

πhyb : Xhyb
r −→ Chyb(r).
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The hybrid space allows us to see the complex space X degenerate to its non-
archimedean analytification, as a consequence of the following:

Proposition 1.1.25. [Fav20, thm. 1.2] Let X be a degeneration of complex man-
ifolds, XAr the associated Ar-scheme, and denote the associated hybrid space by
πhyb : Xhyb

r −→ Chyb(r). Then:

• π−1
hyb(0) can be canonically identified with Xan,

• there exists a homeomorphism β : X|D∗
r

∼−→ π−1
hyb(τ(D∗

r)), satisfying πhyb ◦ β =
τ ◦ π,

• if ϕ is a rational function on XAr , then |ϕ(β(z))| = |ϕ(z)|
log r
log|t| for z not in the

indeterminacy locus of ϕ.

Thus, heuristically, the hybrid space allows us to see the scalings of the usual
modulus on C given by |·|

log r
log|t| degenerate to the non-archimedean absolute value

r− ord0 on K, and hence to see the complex manifolds {Xt}t∈D∗ degenerate to the
non-archimedean analytification Xan.
Assume for instance that (µt)t∈D∗ is a continuous family of probability measures on
X, such that µt is supported on Xt for each t ∈ D∗. Since the hybrid space provides
a canonical compactification of X over the puncture, it is a natural question to ask
whether or not the family of measures converges on Xhyb, at least in a weak sense -
more concrete examples of such situations will be given in sections 1.4.3 and 5.1.
We now assume that X −→ D∗ is proper, and will explain how one can adapt the
statement of thm. 1.1.19 to the hybrid setting. If X −→ D is a proper snc model
of X over the disk, define:

X hyb := X ⊔D(X ),

which comes with a map π : X hyb −→ D mapping D(X ) to 0 ∈ D. Following a
construction going back to Morgan-Shalen [MS84], Boucksom-Jonsson [BJ17] define
a topology on X hyb as follows.
Let (U , z) be a coordinate chart, with z ∈ Dn+1, and write U = U ∩X. We assume
that each zi is either a local equation for some Di ⊂X0 or invertible, and that if J
is the set of j ∈ I such that U meets Dj, then U ∩ D meets only one connected
component YU ⊂ DJ (those charts are called adapted in [BJ17]). Given such an
open chart, we define a continuous map:

LogU : U −→ τY ,

z 7−→
Å
log|zj|
log|fU |

ã
j∈J

,

where fU =
∏

j∈J z
mj

j is a local equation for D on U .
We then extend this map to U hyb := U ⊔ σY by setting LogU = Idτ on τU . This
construction can then be globalized (although non-canonically), using a partition of
unity argument:
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Proposition 1.1.26. ([BJ17, prop. 2.1])
There exists an open neighbourhood V of X0 in X , and a map LogV : V hyb −→
D(X ), satisfying the following property: for every chart (U , z) as above, and U ⊂
V , we have LogV (U ) ⊂ τYU

and:

LogV = LogU +O((log|fU |−1)−1)

uniformly on compacts subsets of U .

The topology on X hyb is now defined as the coarsest topology such that:

• X is open inside X hyb;

• for every open neighbourhood U of X0 inside X , the subset U ⊔ D(X ) is
open in X hyb;

• LogV : V hyb −→ D(X ) is continuous.

It follows from the above proposition that this topology is independent of the choice
of V and map LogV .
If X ′ −→X is an snc model that dominates X , then the map rX ′X : D(X ′) −→
D(X ) induces a continuous map:

rhybX ′X : X ′ hyb −→X hyb,

by declaring that rhybX ′X induces the identity on X. Similarly, there exists a contin-
uous map:

ρhyb : Xhyb −→X hyb

|D̄r
,

equal to ρX on Xan and to the homeomorphism β from prop. 1.1.25 over D̄∗
r. The

upshot is now the following extension of theorem 1.1.19:

Proposition 1.1.27. [BJ17, prop. 4.12] The induced map:

ρ : Xhyb −→ lim←−
X

X hyb

|D̄r

is a homeomorphism, where the inverse limit runs over all proper snc models of X.

In practice, this means that if (µt)t∈D∗ is a family of probability measures on X,
then to compute the hybrid limit of the µt’s, it is enough to study weak convergence
of the measures:

νt = (LogV )∗µt

on D(X ), where X ranges over the snc models ofX. In the case where the measures
µt’s are given explicitly, this is often more tractable than working directly on Xhyb.
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1.1.4 The isotrivial hybrid space

We set K = C((t)). Let X be a projective complex variety, and write X̃ := X ×D∗

the associated trivial degeneration of complex varieties, as well as XK = X ×C K.
We thus have two hybrid spaces associated to X: the hybrid space Xhyb

0 obtained
by viewing X as a scheme over Chyb, and Xhyb

K the hybrid space associated to the
degeneration X̃. The goal of this section is to compare both hybrid spaces, so that
results established for hybrid spaces associated to degenerations will naturally yield
similar statements for spaces over Chyb, simply by specializing to a trivial degener-
ation.
We start by comparing the non-archimedean fibers. We write Xan

K for the analytifi-
cation ofXK , andXan

0 for the analytification ofX with respect to the trivial absolute
value on C. The t-adic absolute value on C((t)) restricts to the trivial absolute value
on C, so that there exists a base change morphism f : Xan

K −→ Xan
0 , that can be

described as follows. If K(X) is the function field of X, then the function field of
XK is simply K(XK) = K(X)((t)) = K(X)⊗CK. Hence, any valuation v on K(XK)
induces by restriction a valuation f(v) on K(X), and similarly for semi-valuations.
We now compare the base rings: for r ∈ (0, 1), the inclusion Chyb ↪→ Ar is com-
patible with the hybrid norms, so that it induces a continuous map λ : M (Ar) −→
M (Chyb), obtained by restricting semi-norms from Ar to Chyb. It is straightforward
to check that under the homeomorphisms M (Ar) ≃ D̄r and M (Chyb) ≃ [0, 1], we
have λ(t) = log r

log|t| for t ∈ D̄r. We furthermore have the following description of
the base change of X from Chyb to Ar, which is a straightforward consequence of
transitivity of base change:

Proposition 1.1.28. Let r ∈ (0, 1), and let λ : D̄r −→ [0, 1] be the map defined by
λ(t) = log r

log|t| . We have a commutative diagram:

Xhyb
K Xhyb

0

D̄r

[
0, 1
]
.

F

πK π0

λ

where F is the base change of X to Ar/Chyb, and such that F|π−1
K (0) = f . Moreover,

for any t ∈ D̄∗
r, F|π−1

K (t) induces the identity on Xhol under the homeomorphisms
from section 1.1.3.

The map f : Xan
K −→ Xan

0 furthermore admits a continuous section, called the
Gauss section, defined in the following way. In the terminology of [Poi13, def. 3.2],
every point of Xan

0 is universal (peaked point, in the terminology of Berkovich) as C
is algebraically closed, so that any x ∈ Xan

0 admits a canonical lift to Xan
K , denoted

by γ(x); we call the map γ : Xan
0 −→ Xan

K the Gauss section. More concretely, if
x = vx ∈ Xan

0 is a valuation on K(X), it is extended as a valuation:

γ(v) : K(X)((t)) −→ R ∪ {−∞},

such that γ(v)(t) = 1. For instance, if S =
∑

n≥0 snt
n an element of K(X)[t], the

canonical extension is defined by the formula:

γ(v)(S) = min
n

(v(sn) + n).
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1.2 Global pluripotential theory

Let A be an integral Banach ring, and X a projective A-scheme of finite type.
Following common practice, we will call line bundle on X any locally free OX-
module of rank 1. We will use additive notation for the group law on the set of
isomorphism classes of line bundles.
Let L be a semi-ample line bundle on X, and write Xan → M (A) the Berkovich
analytification of X. The purpose of this section is to define a class of semi-positive
(singular) metrics PSH(X,L) on L, in the similar way to the case where A = K is
a complete valued field.
If K = C, and (X,L) is a smooth polarized variety, then the class PSH(X,L) of
plurisubharmonic metrics on L is one of the central objects of pluripotential theory,
and has been extensively studied at this point.
When K is a non-archimedean field, a similar class of semi-positive metrics has been
defined in increasing order of generality in [Zha95], [BFJ16], [BE21].
In our setting, the basic idea is that a metric ϕ ∈ PSH(X,L) can be viewed as a
family of semi-positive metrics (ϕx)x∈M (A), where ϕx ∈ PSH(XH (x), LH (x)), that also
varies in a plurisubharmonic way with respect to x ∈M (A). This is well-illustrated
for instance by thm. 2.2.12 in the toric setting, in which case the semi-positivity
translates into a standard convexity condition.
The main case of interest for us will be when A = Ar is a hybrid ring, so that
Xan = Xhyb is the hybrid space associated to a degeneration of complex varieties.
In this setting, our main result, theorem 1.3.13 states that any psh metric ϕ ∈
PSH(X,L) on a polarized degeneration of complex manifolds satisfying a certain
growth condition, induces naturally a psh metric on (Xhyb, Lhyb), whose restriction
to the non-archimedean fiber Xan is the non-archimedean metric ϕNA constructed
in [BBJ18], [Reb21], and encodes the logarithmic singularities of ϕ along the special
fibers of models of X.
We also compare our definition with the setting of [Fav20], and obtain the continuity
on Xhyb of the family of Monge-Ampère measures associated to a continuous, semi-
positive metric on Lhyb.
Throughout this section, we assume that the Banach ring A is a geometric base ring.

1.2.1 Metrics on Berkovich spaces

We start with some very general definition of metrics on line bundles on Berkovich
analytic spaces.

Definition 1.2.1. Let L be a line bundle on X. A continuous metric ϕ on Lan

consists of the following data: for any Zariski open subset U ⊂ X and s ∈ H0(U,L|U)
a trivializing section, a continuous function:

∥s∥ϕ : Uan −→ R>0

such that ∥fs∥ϕ = |f |∥s∥ϕ for any regular function f ∈ H0(U,OU), and compatible
with restriction of sections.
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This allows us to define, for any open subset V ⊂ Xan and any analytic section
s of Lan on V , a continuous function:

∥s∥ϕ : V −→ R≥0,

as follows: cover X by Zariski open subsets Ui, i ∈ I such that L|Ui
= si · OUi

, and
write, on V ∩ Ui:

s = fi · si,

with fi an analytic function on V . Then we set:

∥s∥ϕ := |fi|∥s∥ϕ

on V ∩ Uan
i . It is straightforward to check that this is independent on the choice of

trivializations, compatible with restrictions and that the equality:

∥fs∥ϕ = |f |∥s∥ϕ

holds for any section s and any analytic function f on V .
From now on, we will use additive notation for metrics, i.e. identify the metric ∥·∥ϕ
with ϕ = − log∥·∥ϕ. In particular, if L1, L2 are two line bundles on X and ϕi is a
continuous metric on Li for i = 1, 2, then ϕ1+ϕ2 is a continuous metric on L1+L2.
Moreover, if ψ : Xan −→ R is a continuous function and ϕ a continuous metric on
L, then ϕ+ ψ is also a continuous metric on L.

Example 1.2.2. Let A = C with the Euclidian absolute value, and X/C a variety
endowed with a line bundle. Then our definition matches the standard definition of
a continuous Hermitian metric on L.

Example 1.2.3. Let A = k be a trivially-valued field, X/k a variety and L a line
bundle on X. Then the trivial metric ϕtriv = − log|·|triv on L is the unique metric
on Lan such that for any pair (U, s), with U ⊂ X a Zariski open and s ∈ H0(U,L)
a nowhere-vanishing section of L, the equality:

|s(x)|triv = 1

holds whenever the center c(vx) is contained in U .

Example 1.2.4. Let X = PNA , and L = O(1). Then the Fubini-Study metric ϕFS

on L is defined by the formula:

∥s(x)∥ϕFS
=

|s(x)|
max(|x0|, ..., |xN |)

,

where the xi’s are standard coordinates on PNA . We will write:

ϕFS = max
i≤N

log|xi|.

Note that while this definition is well-suited for the case when A is a non-archimedean
field, it does not recover the usual Fubini-Study metric on CPN when A = C, so that
we will sometimes call the metric above the tropical Fubini-Study metric.
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In order to define a large enough class of semi-positive metrics, we need to allow
metrics with some singularities.

Definition 1.2.5. Let L be a line bundle on X. A singular metric ϕ on Lan (or
simply on L when the norm is clear from the context) consists of the following data:
for any Zariski open subset U ⊂ X and s ∈ H0(U,L|U) a trivializing section, an
upper semi-continuous (usc) function:

ϕs = − log∥s∥ϕ : Uan −→ R ∪ {−∞}

not identically −∞, such that ∥fs∥ϕ = |f | × ∥s∥ϕ for any regular function f ∈
H0(U,OU), and compatible with restriction of sections.

Example 1.2.6. The following example will be particularly relevant for our pur-
poses. Let m ≥ 1, and s0 ∈ H0(X,mL) be a global (algebraic) section of some
positive power of L, we associate to it a metric on L denoted by:

ϕ = m−1 log|s0|,

which is the metric such that for s a local section of L, we have:

∥s∥ϕ(x) =
(∣∣sm(x)
s0(x)

∣∣)1/m.
This metric is singular precisely along the zero locus of s0.

Definition 1.2.7. Let X, Y be two A-schemes of finite type, and f : Y −→ X be
an A-morphism. If L is a line bundle on X endowed with a (singular) metric ϕ,
we define the pull-back metric f ∗ϕ on f ∗L as follows: cover X = ∪i∈IUi by Zariski
open subsets, and choose a trivialization σi of L on each Ui.
Then we cover Y = ∪i∈IVi with Vi = f−1(Ui), and trivialize f ∗L by the sections f ∗si
on Vi. We now set:

∥f ∗si∥f∗ϕ := ∥si∥ϕ ◦ f.

It is straightforward to check that this is independent on the choice of open cover
and trivializations, and thus defines a metric f ∗ϕ on f ∗L.
We conclude this section with a discussion on the behaviour on metrics under base
change. We assume that A and B are two geometric base rings, together with a
bounded ring homomorphism A −→ B, so that we have a base change morphism
F : Xan

B −→ Xan for any scheme X/A of finite type.
Now let L be a line bundle on X, and LB = L⊗OX

OXB
the induced line bundle on

XB. Given a continuous metric ϕ on Lan, we want to define a continuous metric ϕB
on LB by a base change operation. To that purpose, cover X = ∪i∈IUi by Zariski
open subsets trivializing L, and set UB,i = Ui ×A B, which yields an open cover
of XB. If si is a generator of the free OX(Ui)-module H0(Ui, L), then si ⊗ 1 is a
generator of H0(UB,i, LB) over OXB

(UB,i), so that we naturally set, for x ∈ Uan
B,i:

∥(s⊗ 1)(x)∥ϕB := ∥s(F (x))∥ϕ.

It is now a straightforward verification that ϕ 7→ ϕB defines a base change map
from the set of continuous metrics on (Xan, Lan) to the set of continuous metrics
on (Xan

B , L
an
B ), which commutes with the usual operations of addition and scaling of

metrics, as well as finite maxima.
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Example 1.2.8. Let A be a geometric base ring, and let x ∈M (A). Then we have
a canonical morphism of Banach rings A −→H (x), so that any continuous metric
ϕ on L induces by base change a continuous metric ϕx on (Xan

H (x), L
an
H (x)). The

metric ϕx can also be seen as the restriction of ϕ to the fiber π−1(x) of the structure
map π : Xan −→M (A), by prop. 1.1.7.

1.2.2 Pluripotential theory over a field

Let (X,L) be a smooth polarized variety over C. The class PSH(X,L) of semi-
positive metrics on L lies at the heart of (global) complex pluripotential theory; it
is the class of singular metrics ϕ on L whose curvature form ddcϕ is semi-positive
in the sense of currents. We refer the reader for instance to [Dem12], [GZ17] for a
more thorough introduction.
Let m ≥ 1 such that mL is globally generated. Given a family (s0, ..., sN) of global
sections of mL without commons zeroes, one can associate to them the continuous
semi-positive metric:

ϕ =
1

2m
log(|s0|2 + ...+ |sN |2),

i.e. the continuous metric such that for any local section s of L, we have:

|s|ϕ =
|s|

(|s0|2 + ...+ |sN |2)1/2m
.

The metric ϕ is none other than the pull-back of the standard Fubini-Study metric
on CPN via the holomorphic map:

x 7→ [s0(x) : ... : sN(x)].

We call such a metric on L a Fubini-Study metric. The following theorem, due to
Demailly [Dem92] when X is smooth and L ample, highlights the importance of
such metrics as basic building blocks of complex pluripotential theory:

Theorem 1.2.9. [BE21, thm. 7.1]
Let X be a complex projective variety, L a semi-ample line bundle on X, and
ϕ ∈ PSH(X,L) a semi-positive singular metric on L.
Then there exists a decreasing sequence (ϕj)j∈N of Fubini-Study metrics on L, con-
verging pointwise to ϕ.

In particular, the class PSH(X,L) is the smallest class of singular metrics con-
taining all Fubini-Study metrics, and that is stable under addition of constants,
finite maxima and decreasing limits.
We now move to the case of a non-archimedean field (K, |·|), and assume as above
that (X,L) is a polarized variety over K, with mL globally generated. Following the
general heuristic of replacing sums of squares with maxima in the non-archimedean
world, a (tropical) Fubini-Study metric on L is a continuous metric of the form:

ϕ = m−1 max
0≤i≤N

(
log|si|+ λi

)
,
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where (s0, ..., sN) is a family of global sections of mL without common zeroes and
(λ0, ..., λN) are real constants - unlike in the Archimedean case, the valuation vK :
K× −→ R need not be surjective, so we are allowing these constants to ensure the
class of Fubini-Study metrics is stable by addition of constants.
Continuous, semi-positive metrics ϕ on L can now be defined, as in the complex
case, by the positivity of their curvature current ddcϕ, this is the approach taken
in [CLD12], where Chambert-Loir and Ducros develop a theory of real differential
forms and currents on Berkovich spaces, paralleling the complex case. We will not
use this approach in this text, and rather define (singular) semi-positive metrics on
L in a way such that Demailly’s regularization theorem still holds:

Definition 1.2.10. Let X be a variety over a non-archimedean field K, and L a
semi-ample line bundle on X. A singular metric ϕ on L is semi-positive if and
only if it can be written as the pointwise decreasing limit of a net (ϕj)j of tropical
Fubini-Study metrics.

This is consistent with the approach of Chambert-Loir - Ducros by [BE21, thm.
7.14].
In the sequel, we will define a class of semi-positive metrics on analytifications of
schemes over a Banach ring A, and the Berkovich spectrum M (A) will have both
an (open) Archimedean part and a non-archimedean part - that is , for x ∈M (A),
the complete residue field may be Archimedean or not. As a result, it is desirable to
have a more uniform definition of Fubini-Study metrics, independent of the nature
of the residue field. To that extent, if X is a projective variety over either R or
C and L a semi-ample line bundle on X, we say a continuous metric ϕ on L is a
tropical Fubini-Study metric if it can written as:

ϕ = m−1 max
0≤i≤N

(
log|si|+ λi

)
,

where (s0, ..., sN) is a family of global sections of mL without common zeroes and
(λ0, ..., λN) are real constants - which can always be absorbed in the si, so that they
are allowed only for convenience. Note that over the complex numbers, any tropical
Fubini-Study metric is psh in the usual sense. In fact, Demailly’s regularization
theorem still holds after replacing Fubini-Study metrics by tropical ones:

Theorem 1.2.11. Let X be a projective complex variety, and L a semi-ample line
bundle on X. Then any semi-positive metric ϕ ∈ PSH(X,L) can be written as the
decreasing limit of a net of tropical Fubini-Study metrics.

The converse is an obvious consequence of the usual properties of PSH(X,L):
any decreasing limit of tropical Fubini-Study metrics is psh. As a result, given any
complete valued field K, we have the following uniform characterization of the class
psh metrics on L: it is the smallest class of metrics that contains tropical Fubini-
Study metrics, and that is stable under addition of constants, finite maxima and
decreasing limits.

Proof. We set PSHτ (X,L) for the class of singular metrics that can be written as
the decreasing limit of a net of tropical Fubini-Study metrics. The class PSHτ (X,L)
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is closed under decreasing limits by the proof of [BJ18, prop. 5.6].
Let (sα)α∈A be a finite family of sections of mL without common zeroes, and ϕ be
the associated L2-Fubini-Study metric:

ϕ =
1

2m
log(

∑
α∈A

|sα|2),

and set ϕα = m−1 log|sα| ∈ PSH(X,L). Then we have ϕ = χ((ϕα)α∈A), with
χ(x) = 1

2m
log(

∑
α∈A e

2mxα). It now follows from lemma 2.1.8 that ϕ is a decreasing
limit of a sequence of tropical Fubini-Study metrics, hence ϕ ∈ PSHτ (X,L). By
Demailly’s regularization theorem when X is smooth and L ample, and [BE21, thm.
7.1] in the general case, any metric ϕ in PSH(X,L) can be written as the decreasing
limit of metrics in PSHτ (X,L). Since the latter is closed under decreasing limits,
we infer that ϕ ∈ PSHτ (X,L), which concludes.

The following example provides an alternative description of tropical Fubini-
Study metrics over a discretely-valued field K of equicharacteristic zero:

Example 1.2.12. Assume that A = K is a non-trivially valued non-archimedean
field, with valuation ring R and residue field k. If (X,L) is a polarized variety over
K, one can define the class of model metrics on L as follows: for any normal,
projective R-model X /R of X and L a model of mL on X for m ≥ 1, define:

ϕL (x) = m−1 log|sL (x)|,

where sL is a trivialization of L at the center cX (vx) of x. One directly checks
that this defines a continuous metric on L, such that the lattice H0(X ,mL ) ⊂
H0(X,mL) is the unit ball for the induced supnorm whenever X0 is reduced.
It then follows from [BE21, thm. 5.14] that model metrics associated to semi-ample
models are the same as pure Fubini-Study metrics on L, i.e. Fubini-Study metrics
where the constants are taken to be zero in the definition. As an easy consequence,
model metrics are the same as differences of pure Fubini-Study metrics.

1.2.3 Tropical Fubini-Study metrics

Throughout this section, X is an A-scheme of finite type over a geometric base ring
A, and L is a semi-ample line bundle on X.
The discussion from the previous section motivates the definition of the following
class of metrics, that will be the building blocks for our class of semi-positive metrics:

Definition 1.2.13. Let L be a line bundle on X, and let m ≥ 1 be an integer. A
tropical Fubini-Study metric on L is a (non-singular) metric of the form:

ϕ = m−1max
j∈J

(log|sj|+ aj),

where (sj)j∈J is a finite family of sections of mL without common zeroes and aj ∈ R.
We write FSτ (L) for the set of tropical Fubini-Study metrics on L.
If L = OX , we will simply say that ϕ is a Fubini-Study function on X, and write
FSτ (X) = FSτ (OX).
Finally, if the constants aj are all zero in the above definition, we will say that ϕ is
a pure Fubini-Study metric.
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It follows from the definition that FSτ (L) is non-empty if and only L is semi-
ample.
The following properties of FSτ (L) are straightforward consequences of the defini-
tion:

Proposition 1.2.14. Let X be an A-scheme of finite type and L a line bundle on
X. Then:

1. if ϕ ∈ FSτ (L) and c ∈ R, then ϕ+ c ∈ FSτ (L);

2. if ϕ1, ϕ2 ∈ FSτ (L), then max{ϕ1, ϕ2} ∈ FSτ (L);

3. if ϕi ∈ FSτ (Li) for i = 1, 2 then ϕ1 + ϕ2 ∈ FSτ (L1 + L2);

4. if ϕ is a metric on L such that mϕ ∈ FSτ (mL) for m ≥ 1, then ϕ ∈ FSτ (L);

5. if ϕ1, ϕ2 ∈ FSτ (L) and c1, c2 ∈ Q≥0 with c1+c2 = 1, then c1ϕ1+c2ϕ2 ∈ FSτ (L);

6. if f : Y −→ X is a morphism of A-schemes of finite type and ϕ ∈ FSτ (L),
then f ∗ϕ ∈ FSτ (f ∗L).

7. if B is a Banach ring together with a bounded homomorphism A −→ B and
ϕ ∈ FSτ (X,L), then the base change metric ϕB ∈ FSτ (XB, LB).

We now introduce the following class of metrics, which usually play the role of
smooth metrics in the non-archimedean case:

Definition 1.2.15. Let L be a line bundle on X.
A DFS (difference of Fubini-Study) metric on L is a metric of the form ϕ = ϕ1−ϕ2,
where ϕi ∈ FS(Li) for i = 1, 2, with L = L1 − L2.
We write DFS(L) for the set of DFS metrics on L, and DFS(X) ⊂ C0(Xan) for the
set of DFS functions on OX , i.e. DFS metrics on OX .

Theorem 1.2.16. Assume that X/A is projective. Then the Q-vector space DFS(X)
is dense in C0(Xan).

Proof. This is essentially the same proof as in [BJ18, thm. 2.7].
It follows easily from prop. 1.2.14 that DFS(X) is a Q-subvector space of C0(X),
containing constant functions. It is furthermore stable under maxima, as if ϕi, ψi ∈
FS(Li) for i = 1, 2, then:

max{ϕ1 − ψ1, ϕ2 − ψ2 } = max{ϕ1 + ψ2, ϕ2 + ψ1} − (ψ1 + ψ2) ∈ DFS(X).

As a result, since Xan is compact, by the Stone-Weierstrass theorem, it is enough
to prove that DFS(X) separates points.
Since DFS is stable by pullback, we may assume that X = PnA. Let x ̸= y ∈ Xan,
then by considering a hyperplane not containing either x or y, we may assume
x, y ∈ An,an

A = M Spec(A[t1, ..., tn]). By definition of M Spec and since |·|x ̸= |·|y,
there exists a polynomial f ∈ A[t1, ..., tn] such that |f(x)| ̸= |f(y)|; we will assume
|f(x)| < |f(y)|.
Take homogeneous coordinates z0, ..., zn ∈ H0(PnA,O(1)) on PnA, such that ti = zi/z0
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on An. We may write f(t1, ..., tn) = z−d0 s, with s ∈ H0(PnA,O(d)).
Let N ∈ Z, and λ0, ..., λn ∈ Z, and set:

ψ = d max
0≤j≤n

(log|zj| − λj),

which is an FS metric on O(d), so that:

u = max{log|s|, ψ −N} − ψ = max{log|s| − ψ,−N}

is a DFS function on PnA.
Then for λ0 = 0 and λj large enough, we have ψ(x) = d log|z0(x)| and ψ(y) =
d log|z0(y)|.
Thus, for N > − log|f(y)|, we have:

u(x) = max{log|s(x)| − d log|t0(x)|,−N} = max{log|f(x)|,−N}

< max{log|f(y)|,−N} = u(y),

whence the result.

Example 1.2.17. Let Y = SpecA, so that Y an = M (A). Then a Fubini-Study
function on Y an is a continuous function of the following form:

η = m−1max
α∈B

(log|fα|+ λα),

where the fα ∈ A have no common zeroes and λα ∈ R.
Now, if X/A is a scheme of finite type and Xan π−→M (A) is its analytification, the
function η ◦ π (that we will still write as η : Xan −→ R) is also an FS function on
X.

1.2.4 Semi-positive metrics

From now on, we will assume that A is an integral Banach ring (in addition to being
a geometric base ring). Recall that M (A)η is the subset of M (A) whose elements
|·|x have trivial kernel. In particular, the residue field H (x) of M (A) at x is the
completion of the fraction ring κ of A with respect to |·|x, so that XX (x) is the flat
base change of X to H (x).

Definition 1.2.18. Let X be a scheme of finite type over A, and L a semi-ample
line bundle on X. A plurisubharmonic (or semi-positive) metric ϕ on L is a singular
metric on L that is the pointwise limit of a decreasing net of tropical Fubini-Study
metrics on L, and such that ϕx ̸≡ −∞, for all x ∈M (A)η, where ϕx is the restriction
of ϕ to Xan

H (x).
We write PSH(X,L) or PSH(L) for the set of semi-positive metrics on L, and
PSH(X) for the set of PSH functions on Xan.

Note that since our base ring A is arbitrary, the space PSH(X) could be very
large; for instance even forX = SpecA, every non-zero element a ∈ A induces a PSH
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function ϕa = log|a| ∈ PSH(X) on Xan = M (A). Indeed, we have ϕ = limj(ϕj)j,
with:

ϕj = max(log|a|, log|1− a| − j),

and ϕ(x) = log|a(x)| > −∞ whenever x ∈M (A)η.
Let us point out that while the condition ϕx ̸≡ −∞ for all x ∈ M (A)η is natural
in the setting of hybrid spaces (we will see later that it translates into finiteness
of Lelong numbers) and spaces over M (Z), it might be too strong in general - the
analytification of P2 over a trivially valued field contains points that are pluripolar
and Zariski-dense. Such a point lies in an affinoid domain M (A), which will then
admit a psh function in the sense of [BJ18] that is −∞ at a Zariski-dense point.

Definition 1.2.19. We write CPSH(X,L) for the set of continuous, plurisubhar-
monic metrics on L. It is endowed with the topology of uniform convergence on
X.

Note that FSτ (X,L) ⊂ CPSH(X,L) by definition.

Proposition 1.2.20. The following properties hold:

1. if ϕ ∈ PSH(L) and c ∈ R, ϕ+ c ∈ PSH(L);

2. if ϕi ∈ PSH(Li) for i = 1, 2, ϕ1 + ϕ2 ∈ PSH(L1 + L2);

3. if ϕ1, ϕ2 ∈ PSH(L), then max{ϕ1, ϕ2} ∈ PSH(L);

4. if ϕ is a singular metric on L such that mϕ ∈ PSH(mL) for m ≥ 1, then
ϕ ∈ PSH(L);

5. if ϕ1, ϕ2 ∈ PSH(L) and c1, c2 ∈ R≥0 with c1 + c2 = 1, then c1ϕ1 + c2ϕ2 ∈
PSH(L);

6. if (ϕj)j is a decreasing net in PSH(L) and ϕ = limj ϕj is such that ϕx ̸≡ −∞
for all x ∈M (A)η, then ϕ ∈ PSH(L);

7. if X/A is proper and (ϕj)j is a net in PSH(L) converging uniformly to ϕ, then
ϕ ∈ PSH(L).

Note that the difference of two singular psh metrics does not make sense as a
function in general, so that the last item means the following: if (ϕj)j is a net
in PSH(L), such that there exists a net of continuous functions (fj)j in C0(Xan)
converging uniformly to zero and such that ϕj = ϕ+ fj, then ϕ ∈ PSH(L).

Proof. The first 5 items are straightforward consequences of the corresponding prop-
erties for FSτ , stated in prop. 1.2.14; while (6) and (7) follows from [BJ18, lem. 4.6],
(i) and (ii) respectively.

The subset CPSH(X,L) ⊂ PSH(X,L) is naturally endowed with the topology
of uniform convergence; the next proposition states that for this topology, FSτ (L)
is dense in CPSH:
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Proposition 1.2.21. [BJ18, prop. 5.20] Assume that X/A is proper, and let ϕ be
a continuous metric on L. Then ϕ ∈ CPSH(X,L) if and only if there exists a net
(ϕj)j in FSτ (L) converging uniformly to ϕ.

Note that the natural topology of uniform convergence on the subset of continu-
ous PSH metrics does not extend to PSH(L), so that it is unclear in this generality
how to put a reasonable topology on PSH(L).
While the Fubini-Study metrics considered above are always continuous - hence
bounded - one can also consider FS metrics with singularities:

Example 1.2.22. Assume that L is a semi-ample, and let s ∈ H0(X,mL) for some
m ≥ 1 be a non-zero global section. Then ϕ = m−1 log|s| ∈ PSH(X,L), since we
may write ϕ as the decreasing limit of the following:

ϕj = (md)−1max
(
log|sd|,max

α∈A
(log|sα| − j)

)
,

where (sα)α∈A is a family of sections of mdL without common zeroes. Moreover, if
x ∈ M (A) is a Zariski-dense point, the base change of s to XH (x) is non-zero by
flatness, so that ϕx ̸≡ −∞.
More generally, by prop. 1.2.20, for semi-ample L and any finite family (sα)α∈A of
sections of mL, the metric:

ϕ = m−1max
α∈A

(log|sα|+ cα)

is semi-positive, i.e. ϕ ∈ PSH(X,L).

Remark 1.2.23. Let us point out that unlike the class FSτ , the class of plurisub-
harmonic metrics is not - strictly speaking - stable under base change. Indeed, if the
ring homomorphism A −→ B is not flat and s ∈ H0(X,mL) is a non-zero global
section, it could very well happen that the section sB ∈ H0(XB,mLB) is the zero
section. As a result, the base change to XB of the psh metric ϕ = m−1 log|s| satisfies
ϕB ≡ −∞. For instance, if ϕ ∈ PSH(X,L) and x ∈ M (A) is not Zariski-dense,
then the restriction ϕx to Xan

H (x) may be identically −∞.
This occurs in the complex world as well, as a psh metric on a the total space of a
holomorphic fibration X −→ B may be identically −∞ on certain fibers Xb. One
easy way to remedy this is for instance to allow psh metrics to be identically −∞,
we choose not to as this psh metric would have to be treated separately in several
proofs, making the exposition more cumbersome.

1.2.5 Examples

We start with the case where A = C with the usual absolute value. The following
statement is a mere reformulation of theorem 1.2.11:

Theorem 1.2.24. Let X be a projective complex variety, and let L be a semi-ample
line bundle on X.
Then PSH(X,L) is the space of plurisubharmonic metrics on L in the sense of usual
pluripotential theory.
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As mentioned above, for any Banach ring A, the above definitions forX = SpecA
and L = OX yield a space PSH(X) of plurisubharmonic functions on M (A). We
will compute this space in simple examples.
We start with the case where A = khyb is a hybrid field. Since k is non-trivially
valued, we may assume (up to scaling) that log|k×| ⊇ Z. In that case, the homeo-
morphism:

λ : M (A)
∼−→ [0, 1]

is in fact such that λ is a Fubini-Study function on X, since λ(x) = log|a|x for any
a ∈ k× such that log|a| = 1.
Conversely, any Fubini-Study function on X is of the form:

ϕ(x) = m−1max
j∈J

(
log|aj|x + cj

)
,

for aj ∈ k× and cj ∈ Z. Since log|aj|x = λ(x) log|aj|, ϕ is a finite maximum of
affine functions, hence convex, and FS(X) contains all finite maxima of affine func-
tions with rational coefficients. Taking decreasing limits (which have finite values
everywhere since all points in M (khyb) are Zariski-dense), we conclude that the
homeomorphism λ identifies the space PSH(M (khyb)) with the space of real-valued
convex functions on the segment [0, 1]. In particular, plurisubharmonic functions on
X are continuous away from the boundary of the interval. Note however that the
function ϕ : M (khyb) −→ R defined by ϕ(0) = 1, ϕ(λ) = 0 for λ > 0 is also psh.
We now move on to the case A = Ar, the ring of Laurent series that are convergent
for the hybrid norm on C; recall that we have a canonical homeomorphism from the
hybrid circle Chyb(r) := M (Ar) ≃ D̄r to the closed Euclidean disk. The following
proposition asserts that away from the boundary of the closed disk, we may, after
rescaling, identify psh functions on the hybrid circle with subharmonic functions on
the punctured disk that have logarithmic growth at the puncture:

Proposition 1.2.25. Let:

Ar = {f =
∑
n∈Z

ant
n ∈ C((t)) / ∥f∥hyb =

∑
n

∥an∥hyb rn <∞},

and write τ : D̄r
∼−→ Chyb(r) the homeomorphism from prop. 1.1.23.

There exists an order-preserving, injective map:

ρr : PSH(C
hyb(r)) −→ SH(Dr) + R log|t|

ϕ 7−→
(
t 7→ logr|t| × (ϕ(τ(t))

)
for t ̸= 0. Moreover, if ϕ is continuous, then ϕ(0) = log r × ν0(ρr(ϕ)) is a negative
multiple of the (generalized) Lelong number of ρr(ϕ) at 0.
Conversely, for any r′ > r, there exists an order-preserving, injective map:

ρr′,r : SH(Dr′) + R log|t| −→ PSH(Chyb(r)),

ϕ 7−→
(
ϕ̃ : t 7→ ϕ(τ−1(t))

logr|t|
)

with ϕ̃(0) = ν0(ϕ)
log r

. Finally, the composition ρr ◦ ρr′,r is (up to a scaling factor) the
usual restriction map.
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Proof. Let ϕ ∈ FSτ (Chyb(r)), and write:

ϕ = m−1max
α∈A

(log|fα|+ cα),

with fα ∈ Ar, so that in particular the formal series fα induces a holomorphic
function Fα on Dr. Moreover, we have log|fα|(τ(t)) = log r

log|t| log|Fα(t)| for t ̸= 0.Up to
shifting ϕ by a constant, we may assume that ϕ ≤ 0 on Chyb(r), so that each term
in the maximum is nonpositive.
Thus, defining ρr(ϕ)(t) = logr|t| × ϕ(τ(t)) for t ̸= 0, we have:

ρr(ϕ)(t) = max
α∈A

(
log|Fα(t)|+ cα logr|t|

)
,

since all the terms in the maximum have the same sign. This implies that ρr(ϕ)
extends at t = 0 as the sum of a subharmonic function on Dr and a multiple of
log|t|, and with Lelong number at zero:

ν0(ρr(ϕ)) = max
α∈A

(ord0(fα) +
cα
log r

) =
ϕ(0)

log r
≥ 0.

Now if ϕ ∈ PSH(Chyb(r)), it is finitely-valued at the Zariski-dense point 0, so that
up to shifting by a constant, we may assume that ϕ(0) = −1. We now write ϕ as
the decreasing limit of a net (ϕj)j in FSτ , with ϕj(0) ≤ 0 for all j large enough. By
the computations above, the latter condition means precisely that ρr(ϕj) extends
over zero as a subharmonic function. We then define the function ρr(ϕ) ∈ SH(Dr) as
the decreasing limit of the ρr(ϕj), which is independent of the choice of decreasing
sequence, since ρr(ϕ) is determined uniquely by ϕ outside 0. If ϕ is furthermore
continuous, then:

ϕ(0) = lim
t→0

ϕ(τ(t)) = lim
t→0

ρr(ϕ)(t)

logr|t|
= log r × ν0((ρr(ϕ)).

Conversely, let r′ > r and let ϕ ∈ SH(Dr′). The fact that log r
log|t| · ϕ ∈ PSH(Chyb(r))

follows from the more general theorem 1.3.13.
Finally it is clear that from the constructions that if ϕ ∈ SH(Dr′) + R log|t|, then
ρr(ρr′,r(ϕ)) = ϕ|Dr .

We furthermore expect that the image of the restriction of ρr to CPSH(Chyb(r))
is the space of continuous subharmonic functions on Dr, extending continuously to
the boundary of the disk.

Remark 1.2.26. Let η : Chyb(r) −→ R be such that η(0) = 1 and η ≡ 0 outside zero.
Then unsatisfyingly, η ∈ PSH(Chyb(r)); we interpret this as the non-archimedean
realization of the following phenomenon. Let:

ψj = max(log|t|,−j),

which decrease to ψ = log|t|. We have ν0(ψj) ≡ 0 since ψj is bounded near 0,
while ν0(ψ) = 1 > limj ν0(ψj). Writing ψhyb

j and ψhyb the associated psh functions
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on Chyb(r) for some r ∈ (0, 1), the jump of Lelong numbers along this decreasing
sequence means that the non-archimedean data ν0(ψ) attached to ψ differs from the
restriction ψhyb(0) := limj ψ

hyb
j (0) = limj ν0(ψj) to the origin of the hybrid data

associated to ψ. The point 0 ∈ Chyb(r) is in fact non-pluripolar (as it is Zariski-
dense), and thus is not negligible in the sense of hybrid pluripotential theory.

We also describe subharmonic functions on the Berkovich spectrum M (Z). We
start by introducing some notation: if Ip ≃ [0,+∞] is the p-adic branch inside
M (Z), and ϕp : Ip −→ R ∪ {−∞} is a convex function, its (outgoing) slope at zero
is the limit sp := limε→0

ϕp(ε)−ϕp(0)
ε

, and its slope at infinity is the (possibly infinite)
limit s̃p = limε→∞

ϕ(ε)
ε

. The outgoing slope at zero s∞ is defined similarly on the
archimedean branch.

Proposition 1.2.27. Let X = M (Z), and write X =
⋃
p∈P∪∞ Ip as the union of

the p-adic and archimedean branches.
Then a continuous function ϕ : X −→ R ∪ {−∞} is psh if and only:

• for every prime number p, its restriction ϕp to the branch Ip is convex, with
negative slopes sp, s̃p at 0 and +∞ respectively, and value at infinity ϕp(|·|∞p ) ∈
R ∪ {−∞},

• its restriction to the branch I∞ is convex and increasing, with positive slope at
0,

• the sum of slopes at zero
∑

p∈P sp+s∞ ≥ 0; in particular the sum
∑

p∈P −sp <
+∞.

In other words, the function ϕ is psh on M (Z) if and only it is subharmonic in the
usual sense on the R-tree M (Z).

As a consequence, a point x ∈M (Z) is polar (that is, contained in {ϕ = −∞}
for some ϕ ∈ CPSH(X)) if and only if it is the outer end of a p-adic branch.

Proof. Let ϕ ∈ FS(X) be a Fubini-Study function, then there exists a family of
integers (nα)α∈A, with minα∈A vp(nα) = 0 for every prime p, such that:

ϕ = m−1max
α∈A

(log|nα|+ cα),

with cj ∈ R. Denoting 0 ∈ X the trivial absolute value, we have ϕ(0) = m−1maxα cα,
and we write A′ ⊂ A the set of indices realizing the maximum. Set n1 = gcdα∈A′ nα,
and n2 = lcmα∈A′ nα.
Under the homeomorphism Ip ≃ [0,+∞], we have:

ϕp(ε) = m−1max
α∈A

(−vp(nα) log p · ε+ cα),

which shows that ϕp is a piecewise-affine convex function, and with slope at zero:

sp = (− log p) min
α∈A′

vp(nα) = log|n1|p ≤ 0,
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and constant for ε≫ 1 since there exists a nα with vp(nα) = 0, so that the slope at
infinity s̃p = 0. A similar computation on the archimedean branch shows that ϕ∞
is also convex, with:

s∞ =
∑
p∈P

log p ·
(
max
α∈A′

vp(nα)
)
= −

∑
p∈P

log|n2|p = log|n2|∞ ≥ 0,

so that the sum of slopes:

s∞ +
∑
p∈P

sp = log

∣∣∣∣n2

n1

∣∣∣∣
∞

is positive. Now if ϕ is a continuous psh function onX (with possibly infinite values),
then it is the uniform limit of Fubini-Study functions near zero, hence the only if
part by taking decreasing - hence locally uniform by Dini’s lemma - limits.
Conversely, let ϕ : X −→ R ∪ {−∞} be a function satisfying the above properties.
We assume that ϕ(0) = 0, so that ϕp ≤ 0 for every prime p, and ϕ∞ ≥ 0. We divide
the argument in several steps.
Step 1: Assume that ϕp ≡ 0 for every prime p, and ϕ∞ : [0, 1] −→ R is a continuous,
increasing convex function, with ϕ∞(0) = 0.
For any a ≥ 0 and b ≤ 0 two real numbers, the function ψ = ψa,b on X defined
by ψ∞(x) = ax + b and ψp ≡ 0 for every prime p is psh (although not necessarily
continuous at 0). Indeed, choosing a prime q and writing a = limj rj log q as the
decreasing limit of rational multiples of log q, we see that ψ = limj max{rj log|q| +
b, 0} as a decreasing limit - the max is realized by 0 on every p-adic branch, even
when p = q due to the assumption on a, b.
As a result, writing ϕ∞ as a decreasing limit of piecewise affine convex functions of
the form maxα∈Aj

(aαx + bα) as above (recall that minα aα ≥ 0, and maxα bα = 0
since ϕ∞(0) = 0), we get that:

ϕ = lim
j

max
α∈Aj

ψaα,bα

as a decreasing limit, and ϕ ∈ PSH(X).
Step 2: we now regularize the ϕp. By our assumptions on the slopes sp, s̃p, for every
prime p, we may find a decreasing sequence (ϕj,p) of convex functions on Ip of the
form:

ϕj,p(ε) = m−1max
α∈Ap

(−ℓα log p · ε+ cα)

converging to ϕp, where the ℓα’s are positive integers and such that ϕ(0) = ϕp(0) =
maxα cα = 0. Write sj,p = minα,cα=0(−ℓα log p) the slope at zero of ϕj,p; by continuity
near zero, the sj,p decrease to sp. We use the same notation for the (singular) Fubini-
Study function:

ϕj,p = m−1max
α∈A

(log|pℓα|+ cα),

by straightforward computation we see that the restriction of ϕj,p to the branch I∞
is linear:

ϕj,p(|·|x∞) = −sj,px.
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For k ∈ N, let Pk = {2, .., pk} be the k smallest primes. We set:

ϕk =
∑
p∈Pk

ϕp,k,

which is psh on X, and such that (ϕk)k decreases to ϕ on each p-adic branch.
Step 3: this does not yield the desired outcome on the archimedean branch: the
restrictions of ϕk to the archimedean branch are increasing to x 7→ sx, where we
have set s := −

∑
p sp ≤ s∞. However, the convergence is uniform on I∞ ≃ [0, 1], so

that (after extraction of a subsequence) we may find a decreasing sequence (εk)k of
constants going to zero, such that on I∞, the ϕ′

k,∞ = ϕk,∞ + εk decrease to x 7→ sx.
As a result, the psh functions ϕ′

k = ϕk+ εk decrease on X, and the limit ϕ′ satisifies
ϕ′
p = ϕp, and ϕ′

∞(x) = sx for x ∈ [0, 1].
Step 4: by step 1, the function ψ : X −→ R such that ψp ≡ 0 for every prime p,
and ψ∞(x) = ϕ∞(x) − sx is psh, since s ≤ s∞. As a result, ϕ = ϕ′ + ψ is indeed
subharmonic on M (Z).

1.3 PSH metrics on hybrid spaces

Throughout this section, we let X π−→ D∗ be a degeneration of projective complex
manifolds, endowed with a semi-ample line bundle L. We fix r ∈ (0, 1), and write
Xhyb πhyb−−→ D̄r the associated hybrid space, which is the analytification of X viewed
as an Ar-scheme, see section 1.1.3.
We will use the t-adic valuation on K = C((t)) normalized so that |t| = r, and write:

logr|t| =
log|t|
log r

,

which is non-negative on D̄r.

Definition 1.3.1. Let X π−→ D∗ be a degeneration of projective complex manifolds,
and let L be a line bundle on X. A hybrid (continuous) metric ϕ on L is a singular
(resp. continuous) metric on Lhyb in the sense of the previous section, viewing X
as an Ar-scheme.
We write PSH(Lhyb) for the set of hybrid semi-positive metrics on L.

Using the explicit description of the hybrid space from prop. 1.1.25, we are able
to describe more concretely continuous hybrid metrics on L:

Proposition 1.3.2. Let X be a degeneration of complex manifolds, and L be a
line bundle on X. A continuous hybrid metric ϕ on L is equivalent to the data of
a continuous family of metrics (ϕt)t∈D̄∗

r
on the (Xt, Lt), together with a continuous

metric ϕ0 on Lan, such that the following holds: for every Zariski open subset U ⊂ X
and any section s ∈ H0(U,L|U), the function:

z 7→ log∥s(z)∥ϕt
logr|t|

on Uhol (with the Euclidean topology) extends as a continuous function to Uhyb via
x ∈ Uan 7→ log∥s(x)∥ϕ0.
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Proof. If |t| > 0, we have a canonical homeomorphism βt : Xt
∼−→ Xhyb

t , such that
for any (local) regular function on X, we have:

|f(β(z))| = |f(z)|
log r
log|t| ,

and a homeomorphism β0 : X
an ∼−→ π−1

hyb(0).
Hence if ϕ is a continuous hybrid metric on L, it induces a continuous family {ϕt}t∈D̄r

of metrics ϕt on Lt, obtained as follows: if U ⊂ X is a Zariski open and s a
trivialization of L on U , set:

∥s(z)∥ϕt := ∥s(βt(z))∥
log|t|
log r

ϕ ,

for z ∈ U ∩ Xt. The fact that this defines a continuous metric on Lt is an easy
consequence of the above equality for functions.
Similarly, the formula:

log∥s(x)∥ϕ0 := log∥s(β0(x))∥ϕ

defines a continuous metric ϕ0 on Lan.
The fact that the data of ϕ0 and {ϕt}t∈D̄∗

r
recovers ϕ uniquely is clear.

We will sometimes write the above relation more loosely as:

ϕt =
log|t|
log r

ϕ|Xhyb
t
,

where the left-hand side lives on the complex fiber Xt, and the metric ϕ|Xhyb
t

lives
on the Berkovich space Xhyb.

Example 1.3.3. Let s ∈ H0(X,mL) be a global section of mL, and let:

ϕ = m−1 log|s| ∈ PSH(Lhyb)

be the associated (singular) hybrid metric. Then one checks directly that for any
t ̸= 0, the metric ϕt ∈ PSH(Xt, Lt) is equal to m−1 log|st|, where st = s|Xt ∈
H0(Xt,mLt).
Now let c ∈ R be a constant, and let:

ϕ = m−1(log|s|+ c) ∈ PSH(Lhyb).

Then we have ϕt = m−1(log|s|+ c logr|t|) ∈ PSH(Xt, Lt).

Remark 1.3.4. Let ϕ = m−1(log|s| + c
log r

) ∈ PSH(Lhyb) as in the example above.
Then ϕ is the decreasing limit of the (ϕj)j∈N, where:

ϕj = m−1(log|s|+ cj
log r

),

where (cj)j∈N is a sequence of rational numbers decreasing to c. Up to replacing m by
a high enough multiple depending on the denominator of cj (and s by the according
power) we may furthermore assume that cj ∈ Z, so that:

ϕj = m−1 log|tcjs|
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is a pure Fubini-Study metric. Since finite maxima commute with decreasing lim-
its, any tropical Fubini-Study metric can be written as a decreasing limit of pure
Fubini-Study metrics. As a consequence, any psh metric on Lhyb can be written as
a decreasing limit of pure Fubini-Study metrics.
Let us emphasize that the key point here is that the constant function c

log r
for c ∈ Q

can be written as log|f | for some non-zero f ∈ Ar, which need not hold over a
general Banach ring A - it fails for instance for A = Z.

1.3.1 Bergman metrics on the hybrid space

Let X −→ D∗ be a degeneration of complex varieties, and L a semi-ample line
bundle on X. In the sequel, it will sometimes be convenient for us to work with
singular L2-Bergman metrics in the complex world, i.e. metrics on L of the form:

ϕ =
1

2m
log
(∑
α∈A

|sα|2
)
,

where (sα)α∈A is a finite set of non-zero sections in H0(X,mL), possibly with com-
mon zeroes. It is clear that ϕ ∈ PSH(X,L), and the following proposition asserts
that ϕ extends naturally as a metric ϕ ∈ PSH(Lhyb), replacing the square-norm with
maxima at the non-archimedean limit:

Proposition 1.3.5. Let (sα)α∈A be finite family of global sections of mL for m ≥ 1,
and set:

ϕt =
1

2m
log
(∑
α∈A

|sα,t|2
)
,

ϕ0 = m−1max
α∈A

log|sα|.

Then this data defines a semi-positive metric ϕ ∈ PSH(Xhyb, Lhyb), which we call
the hybrid Bergman metric associated to the family (sα)α∈A.

Proof. We may and will assume that mL is basepoint-free, up to replacing mL by
dmL and the sα’s by their d-th power, for d large enough.
We thus choose a basepoint-free set (sα)α∈B of sections of mL, where B = A ⊔ A′.
Set:

ϕj,t := m−1 log
(∑
α∈B

ebα,j |sα,t|2
)
,

and:
ϕj,0 := m−1max

α∈B
(log|sα|+ bα,j),

where bα,j = 0 if α ∈ A and bα,j = −j for α ∈ A′. Then the fact that this defines a
continuous psh metric ϕj on Lhyb follows from the following lemma, applied to the
convex function χ(x) = 1

2
log
(∑

α e
2xα+bα

)
. Finally, the ϕj’s clearly decrease to ϕ

by construction, so that ϕ ∈ PSH(Lhyb) by prop. 1.2.20.

Lemma 1.3.6. Let P ⊂ RN be the standard simplex, i.e. :

P = {(x1, ..., xN) ∈ (R≥0)
N/

N∑
i=1

xi = 1},
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and let χ : RN −→ R≥0 be a convex function such that χ−max{x1, ..., xN} = O(1)
(or P -admissible, in the sense of def. 2.1.5), such that χ(x+ c1) = χ(x)+ c for any
c ∈ R, x ∈ RN . For x ∈ RN , let:

χhom(x) = lim
y→∞

χ(yx)

y
,

which is finite since χ ∈ AdP .
For any set s1, ..., sN of sections of mL without common zeroes and ϕi = m−1 log|si|,
the hybrid metric ϕχ on L defined by:

ϕχ,t = χ(ϕ1,t; ...;ϕN,t)

and:
ϕχ,0 = χhom(ϕ1,0, ..., ϕN,0)

is a semi-positive continuous hybrid metric on L.

Proof. The assumption χ(x + c1) = χ(x) + c ensures that ϕχ is compatible with
multiplication of sections by functions, hence each ϕχ,t defines a continuous metric
on Lt, for t ∈ D̄r. We now prove that ϕχ is continuous on Xhyb using prop. 1.3.2,
we assume that m = 1 for convenience. Given a nowhere-vanishing section s of L
on a Zariski open U ⊂ X, we have:

log|s(z, t)|ϕχ,t

logr|t|
=

log|s(z, t)| − χ(log|s1(z, t)|, ..., log|sN(z, t)|)
logr|t|

,

while each term in the right hand side is not well-defined, the difference is - so that
writing fi = log| si

s
|, the condition χ(x+ c1) = χ(x) + c implies that:

log|s(z, t)|ϕχ,t

logr|t|
=
χ
(
f1(z, t), ..., fN(z, t)

)
logr|t|

=
max{f1, ..., fN}

logr|t|
+ ε(t)

since χ is P -admissible, where |ε(t)| ≤ C
logr|t|

for some constant C > 0. As a result,
since away from the zero locus of si the function fi

logr|t|
extends continuously to

Uhyb via x 7→ log| si
s
|(x) on Uhyb

0 , we infer that ϕχ is indeed a continuous metric
on (Xhyb, Lhyb). We now prove that ϕχ is semi-positive. Using prop. 2.1.8, we let
(χj)j∈N be a sequence of P -admissible, piecewise-affine convex functions decreasing
to χ, written as:

χj = max
α∈Aj

(
uα + cα

)
,

with uα ∈ P . We write ϕ = (ϕ1, ..., ϕN) ∈ FS(Lhyb)N , and set:

ϕj = χj(ϕ) = max
α∈A

(
⟨uα, ϕ⟩+ cα

log|e|
log r

)
,

where e ∈ Ar is exp(1) viewed a constant power series. Since the uα’s lie in the
standard simplex, the ⟨uα, ϕ⟩ are tropical Fubini-Study metrics on Lhyb as convex
linear combinations, so that ϕj ∈ FSτ (Lhyb), and:

ϕj,t = max
α∈Aj

(
⟨uα, ϕt⟩+ cα

)
,
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while:
ϕj,0 = max

α∈Aj

(
⟨uα, ϕ0⟩

)
,

since log|e| ≡ 0 on Xan = π−1
hyb(0). Moreover, the (ϕj,t)j decrease to ϕt by the choice

of (χj)j, while (ϕj,0)j decreases to:

ϕχ,0 = χhom(ϕ)

on Xan since χhom
j = maxα∈Aj

uα. All in all, (ϕj)j is a decreasing sequence in
FSτ (Lhyb) converging pointwise to ϕχ, whence ϕχ ∈ PSH(Lhyb).

Example 1.3.7. Let X = CPN×D∗ with the standard polarization, and let ϕt = ϕFS
be the standard Fubini-Study metric on Xt, i.e. :

ϕFS = log(|z0|2 + ...+ |zN |2),

where the zi are standard homogeneous coordinates on Pn. Let furthermore ϕ0 =
max{|z0|, ..., |zN |} be the non-archimedean Fubini-Study metric on Pn,anK .
Then the metric ϕFS on O(1) on Xhyb obtained by gluing the two above metrics is
a continuous semi-positive metric. Note that with our definition, this metric is not
a Fubini-Study metric on O(1), since we would have to work with the max instead
of the square norm on the complex fibers.

Example 1.3.8. Let (X,L) be a complex polarized variety, and set V = H0(X,mL),
for some m > 0 such that mL is globally generated. We let N (V ) be the space of
Hermitian norms of V , which is a symmetric space, as fixing a reference norm yields
an identification:

N (V ) = GL(V )/U(V ).

Let N = dimV , and e = (e1, ..., eN) be a basis of V . Then for each tuple (λ1, ..., λN)
of real numbers, define the associated hermitian norm:

∥
N∑
i=1

aiei∥2 =
N∑
i=1

|ai|2e−2λi .

This yields an embedding:
ιe : RN ↪→ N (V ),

whose image consists precisely of the norms diagonalized by the basis e. The image
Ae(RN) := ιe(RN) is called the apartment associated to the basis e. We let I ⊂ R be
an interval (not necessarily bounded), and γ : I −→ N (V ) a geodesic. Then there
exists a basis e of V such that γ(I) ⊂ Ae, and an affine map α : I −→ RN such
that:

γ = ιe ◦ α.

More concretely, writing α(y) = (α1y + β1, ..., αny + βn), we have:

∥
N∑
i=1

aiei∥2y =
N∑
i=1

|ai|2e−2βi−2αiy.
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Assume that I = (y0,+∞) for some y0 ∈ R, so that γ is a geodesic ray. Then
we see easily that for any non-zero v ∈ V , the limit − log∥v∥y

y
exists and is equal to

− log∥v∥γNA, where γNA is the non-archimedean norm defined by:

∥
N∑
i=1

aiei∥γNA = max
i≤N

(|ai|0 e−αi),

where |·|0 is the trivial norm on C. Furthermore, two geodesic rays induce the
same non-archimedean norm at infinity if and only they are parallel, i.e. (α −
α′) is constant. Thus, the space N (V )NA of non-archimedean norms on V can be
interpreted as the space of asymptotic directions in N (V ).
We now explain how each geodesic ray γ : [0,+∞) −→ N (V ) gives rise to a psh
hybrid metric on L, which we call the associated Bergman metric. More generally,
let W ⊂ V be a basepoint-free subspace, i.e. a subvector space such that the sections
in W have no common basepoints, and let γ : [0,+∞) −→ N (W ) be a geodesic
ray. By the above discussion, there exists a basis e = (s1, ..., sN) of W , and tuples
α, β ∈ RN such that:

∥
N∑
i=1

aisi∥2 =
N∑
i=1

|ai|2e−2αiy.

The hybrid Bergman metric associated to γ, defined by:

ϕλ = (2m)−1(log
N∑
i=1

|si|2e
2αi
λ ),

where ϕλ is the pull-back to Xhol of ϕ|Xhyb
λ

via the rescaling of the absolute value (see
the proof of prop. 1.3.2), and:

ϕ0 = m−1max
i≤N

(log|si|+ αi),

is a continuous psh metric on Lhyb, as follows from prop. 1.3.6 applied to the convex
function χ(x1, ..., xN) = (2m)−1 log(

∑
i=1 e

2mxi).
Note that ϕλ is the classical Bergman metric associated to the norm ∥·∥y, while ϕ0 is
the non-archimedean Bergman metric associated to the non-archimedean norm γNA.

1.3.2 The non-archimedean limit of a psh family

Let X −→ D∗ be a degeneration of complex varieties, and L an ample line bundle
on X. We let ϕ ∈ PSH(X,L) be a semipositive metric on L. Following the general
heuristic of viewing non-archimedean geometry as the asymptotic limit of Kähler
geometry, we will explain how under a reasonable growth condition on ϕ, the family
of generic Lelong numbers of ϕ along prime vertical divisors on models ofX naturally
induces a non-archimedean psh metric ϕNA ∈ PSH(Xan, Lan). This construction is
due to [BBJ18] in the isotrivial case and [Reb21] in the general case. Let us start
with a definition.
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Definition 1.3.9. [Reb21, lem. 2.3.2] The metric ϕ ∈ PSH(X,L) has logarithmic
growth at t = 0 if one of the following equivalent conditions are satisfied:

• there exists a normal model (X ,L ) such that ϕ extends as a psh metric on
L ,

• for any normal model (X ,L ), there exists a ∈ R such that ϕ+a log|t| extends
as a psh metric on L ,

• there exists a normal model (X ,L ) and a smooth metric ϕ0 on L such that
supXt

(ϕ− ϕ0) ≤ C log|t|
log r

for some constant C > 0.

We will now explain how each psh ray ϕ on (X,L) with logarithmic growth
induces a psh metric ϕNA on (Xan, Lan). We fix a nef model (X ,L ) of (X,L), so
that the associated model metric ϕL ∈ PSH(Lan) is semipositive.
Let v ∈ Xan be a divisorial valuation, so that there exists a model X ′ of X and
a prime divisor E ∈ Div0(X ′) such that v = vE = (− log r) × b−1

E ordE, with
bE = ordE(t). We may furthermore assume that X ′ dominates X , via a morphism
ρ : X ′ −→X .
By logarithmic growth, there exists a ∈ R such that the metric ϕa := ϕ + a log|t|
extends as a psh metric on (X ′, ρ∗(L )). We choose a psh metric ϕE on X ′ with
divisorial singularities along E, i.e. ϕE = log|zE| + O(1) locally, where zE is an
equation of E. We define:

νE(ϕ) = sup{c ∈ R/ϕa ≤ cϕE +O(1)} − a

the generic Lelong number of ϕ along E [BFJ08] -which is easily seen to be inde-
pendent of a - and set:

ψNA(v) :=
log r

bE
νE(ϕ).

Theorem 1.3.10. [BBJ18, thm. 6.2], [Reb21, thm. 3.3.1]
The function ψNA : X÷ −→ R admits a unique lower semi-continuous extension to
Xan, and the metric ϕNA on Lan defined by:

ϕNA := (ϕL + ψNA) ∈ PSH(Xan, Lan),

is a semi-positive metric on Lan.

Example 1.3.11. Let (X ,L ) be a nef model of (X,L), and ϕ ∈ PSH(X,L) be
bounded, and extending as a locally bounded, semi-positive metric on (X ,L ). Then
we have ψNA ≡ 0, so that ϕNA = ϕL . Hence, the non-archimedean limit of a metric
extending without singularities to some model L is simply the associated model
metric.

Example 1.3.12. Let:
ϕ = max

α∈A

(
log|sα|+ cα

)
be a tropical Fubini-Study metric on Lhyb, and let v ∈ X÷ be a divisorial valuation.
We let (X ,L ) be a model of (X,L) such that v = vE for some E ⊂ X0, and the
sα’s extend as holomorphic sections of L on X . Then:

νE(ϕ) = (ϕ0 − ϕL )(vE),
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where ϕ0 is the induced FS metric on Xan. Indeed, extending the sα’s as holomorphic
sections of L , we have:

(ϕ0 − ϕL )(vE) = max
α∈A

(
vE(

sα
sL

) + cα),

where sL is a trivialization of L at the generic point of E; while:

ϕt = max
α∈A

(
log|sα|+ cα logr|t|

)
is easily seen to have Lelong number:

νE(ϕ) = min
α∈A

(
ordE(

sα
sL

) +
cαbE
log r

)
along E. We infer from this that ψNA = (ϕ0 − ϕL ), so that ϕ is a tropical Fubini-
Study metric on Lhyb, then ϕNA = ϕ0 is simply its restriction to Xan.

We now prove that ϕNA in fact extends ϕ as a semipositive metric on the hybrid
space, and that up to shrinking the disk, every continuous semi-positive metric on
Lhyb arises in this way:

Theorem 1.3.13. Let (X,L) be a polarized degeneration of complex polarized va-
rieties over D∗, and ϕ = (ϕt)t∈D∗ ∈ PSH(X,L) be a semipositive metric on L, with
logarithmic growth at t = 0. Then the metric ϕhyb on Lhyb defined by setting:

ϕhyb

|Xhyb
t

=
log r

log|t|
ϕt;

ϕhyb
0 = ϕNA,

is semi-positive, i.e. ϕhyb ∈ PSH(Xhyb, Lhyb).
Conversely, let ϕhyb ∈ CPSH(Xhyb, Lhyb) and ε > 0, and set:

ϕt =
log|t|
log r

ϕ|Xhyb
t

for |t| < r − ε. Then (ϕt)t∈D∗
r−ε

is a psh metric on the restriction of L to X|D∗
r−ε

,
with logarithmic growth at 0, and such that ϕNA = ϕhyb

0 .

The proof of the theorem will be provided in section 1.3.3.
Note that the continuity assumption cannot be removed: in the case where X is
a point, the function η such that η(0) = 1 and η ≡ 0 on Chyb \ 0 is psh on the
hybrid circle, but η(0) is not the Lelong number at zero of the induced subharmonic
function on the punctured disk. This says essentially that the point 0 ∈ Chyb is non-
pluripolar, so that it is "large" in the sense of pluripotential theory: psh metrics
are not uniquely determined by their restriction outside zero. It has however dense
complement, so that it is negligible topologically, and thus continuous psh metrics
are determined by their restriction outside zero.
The next proposition characterizes, given ϕ ∈ PSH(X,L), the set of semi-positive
metrics on Lan that arise as restrictions to Xan of hybrid metrics extending ϕ, under
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a finite-energy assumption. Let ϕ ∈ PSH(Lan), and assume that ϕ is a metric of
finite energy. Then it follows from [Reb21] that after a suitable choice of boundary
data, there exists a canonical extension ϕhyb ∈ PSH(Lhyb) of ϕ to the hybrid space,
which is also a metric of fiberwise-finite energy. The extension is canonical in the
sense that it is relatively maximal in the sense of pluripotential theory [Kli91], and
the maximal extension mapping: E1(Lan) −→ E1(L) is an isometric embedding for
the Darvas metric [Dar15] on E1(L) and its non-archimedean analog on E1(Lan); here
E1(L) ⊂ PSH(X,L) denotes the set of psh metrics on L which have fiberwise-finite
energy.

Proposition 1.3.14. Let ϕ ∈ PSH(Lhyb), write ϕ0 ∈ PSH(Lan) its restriction to
Xan and ϕNA ∈ PSH(Lan) the non-archimedean metric associated to ϕ|X , as defined
by theorem 1.3.10. Then the inequality:

ϕ0 ≥ ϕNA

holds on Xan.
Conversely, let ϕ ∈ E1(L) be a psh metric of fiberwise-finite energy. Then for any
ψ ∈ E1(Lan) such that ψ ≥ ϕNA, there exists a psh extension ϕ̃ ∈ E1(Lhyb) of ϕ to
Lhyb satisfying ϕ̃0 = ψ.

Proof. Write ϕ = limj ϕj as the decreasing limit of a net in FSτ (Lhyb). It follows
from example 1.3.12 that for all j, the equality ϕ0

j = ϕNA
j holds, hence ϕ0 is the

decreasing limit of the ϕNA
j . Since ϕ0 and ϕNA are psh on Lan, they are determined

by their (finite) values on divisorial points, so that it is enough to prove that if vE is
a divisorial valuation on X, and after suitably fixing a reference model metric, the
inequality:

lim
j
(ψNA

j (vE)) ≤ ψNA(vE)

holds, which follows from semi-continuity of Lelong numbers.
Conversely, assume that ϕ ∈ E1(L) and ψ ∈ E1(Lan), with ψ ≥ ϕNA. By [Reb21]
and theorem 1.3.13, there exists ψhyb ∈ E1(Lhyb) such that ψhyb

0 = ψ. We set:

ηj = max(ψhyb, ϕhyb − j log|e|),

then the decreasing limit of the (ηj)j is a psh hybrid metric, restricting to ψ on Xan

and to ϕ on X.

Example 1.3.15. Let (A,L) −→ D∗ be a polarized, maximal degeneration of abelian
varieties (see def. 3.1.7). We let ωt ∈ c1(Lt) be the flat Kähler metric on Lt, then
there exists a family of smooth metrics ϕt ∈ PSH(Xt, Lt) - called the cubic metrics
- such that ωt = ddcϕt. Then it follows from the proof of [GO22, thm. 4.13] that
ϕ ∈ PSH(X,L) and has logarithmic growth at t = 0. Moreover, the associated non-
archimedean metric ϕNA is computed explicitly in [Liu11, thm. 4.3], and [GO22,
thm. 4.13] states that the induced hybrid metric ϕhyb is in fact continuous, i.e.
ϕhyb ∈ CPSH(Ahyb, Lhyb).

We also prove that given a continuous hybrid metric, it is enough to test its
plurisubharmonicity outside zero.
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Proposition 1.3.16. Let ϕ ∈ PSH(X,L), and assume ϕ extends as a continuous
metric on Lhyb, that we still denote ϕ. Then the extension is semi-positive, i.e.
ϕ ∈ CPSH(Lhyb).

Proof. By theorem 1.3.13, it is enough to prove that ϕ0 = ϕNA. By continuity of ϕ
and the following lemma, we have:

ϕ0(vE) = ϕNA(vE)

for every divisorial valuation vE ∈ X÷. Thus, after fixing a reference model metric
ϕL , for every snc model X on which ϕL is determined, we have (ϕ0 − ϕL ) ◦ ρX =
(ϕNA − ϕL ) ◦ ρX since those two continuous functions agree on the rational points
of Sk(X ), and the result follows from [BFJ16, prop. 7.6].

Lemma 1.3.17. Let ϕ ∈ PSH(X,L) with logarithmic growth and vE ∈ X÷ a divi-
sorial valuation. Let (X ,L ) be an snc model of (X,L) such that vE is determined
on X , and ϕ extends as a psh metric on L . We fix a bounded reference metric ϕL

on L .
Then there exists a sequence (zj)j∈N in X converging to vE in Xhyb, such that the
sequence (

(ϕ−ϕL )(zj)

logr|t|
)j converges to ψNA(vE).

Proof. Recall that up to a negative scaling factor, ψNA(vE) is the generic Lelong
number of the psh function (ϕ− ϕL ) along E, hence is equal to the Lelong number
of (ϕ − ϕL ) at a very general point of E [BFJ08]. Thus, we may choose a point
z∞ ∈ E such that z∞ is not contained in any other irreducible component of X0,
and such that:

ψNA(vE) =
log r

bE
νz∞(ϕ− ϕL ).

Choose a sequence (zj)j in X converging to z∞ inside X . Then by construction
(
(ϕ−ϕL )(zj)

logr|t|
)j converges to ψNA(vE), and (zj)j converges to vE in X hyb by the dis-

cussion following prop. 1.1.26, hence in Xhyb, which concludes the proof.

The following question is taken from Favre [Fav20, question 1]:

Question 1.3.18. Let ϕ ∈ CPSH(L) be a continuous, semi-positive metric on L,
and assume that ϕNA is a continuous metric on Lan.
Then is it true that ϕhyb ∈ CPSH(Lhyb) ?

In view of the proof of theorem 1.3.13, this amounts to proving that assuming
ϕNA ∈ CPSH, we have an estimate of the form:

ϕm − ϕ ≤ εm
∣∣ log|t|∣∣−1

,

on X where ϕm are the Bergman kernels regularizing ϕ, and εm −−−→
m→∞

0 is indepen-
dent of t. Such a bound seems difficult to attain without a uniform estimate on the
oscillation of ϕ.
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1.3.3 Proof of theorem 1.3.13

This section is devoted to the proof of theorem 1.3.13. If ρ > 0, we will write
Dρ := {|t| < ρ} the open disk of radius ρ, and if X is a model of X, Xρ := X|Dρ .
We let ϕ ∈ PSH(X,L) be a psh metric on L with logarithmic growth, so that
after choosing an ample model (X ,L ) of (X,L), there exists c ∈ R such that
ϕc = ϕ + c log|t| extends as a psh metric on L - to alleviate notation, we will still
write ϕ = ϕc. The basic idea of the proof of theorem 1.3.10 is that if Im := I (mϕ)
is the multiplier ideal of the psh metric mϕ, then the sequence of piecewise-affine
functions m−1ϕI (mϕ) on Xan decrease pointwise to the relative potential (ϕ−ϕL ) on
Xan. However for m≫ 1, up to a controlled error term, the sheaf OX (mL⊗Im) is
relatively globally generated on X , so that the m−1ϕI (mϕ) are a sequence of ϕL -psh
functions on Xan, hence ϕ ∈ PSH(Xan, Lan).
We will roughly apply the same idea here, except we will also have to regularize ϕ
itself by a sequence of psh metrics with analytic singularities of the form I (mϕ).
The procedure we apply to produce such a sequence is standard in complex pluripo-
tential theory and goes back to the work of Demailly [Dem92], so that we merely
outline the proof here and rather refer the reader to the appendix 5.4 for the tech-
nical details.
We let ψ ∈ PSH(X ,L ) be a smooth metric, whose curvature form ω := ddcψ is a
Kähler form on X . We choose ε ∈ (0, 1 − r) and m0 ∈ N such that for all m ≥ 0,
the sheaf OX ((m+m0)L ⊗Im) is globally generated over Xr+ε (see prop. 5.4.5).
We write:

ψm,m0 =
(
mϕ+m0ψ

)
∈ PSH(X , (m+m0)L )

and recall that we write Im = I (ψm,m0) = I (mϕ) for the multiplier ideal of the
psh metric ψm,m0 on (X , (m+m0)L ).
We will regularize ϕ by the Bergman metrics associated to the multiplier ideal Im.
More explicitly, set Vm,m0 := H0(Xr+ε, (m+m0)L ⊗Im) and define Hm,m0 ⊂ Vm,m0

as the following Hilbert space:

Hm,m0 = {s ∈ Vm,m0/∥s∥2 :=
∫

Xr+ε

|s|2ψm,m0
ωn+1 <∞}.

For every couple (m,m0), we may choose a Hilbert basis Bm,m0 = (sm,m0,l)l∈N of
Hm,m0 , and we now set:

ϕm,m0 =
1

2(m+m0)
log(

∑
l∈N

|sm,m0,l|2),

and:
ϕNA
m,m0

= ϕL + (m+m0)
−1ϕIm .

It is clear that ϕm,m0 ∈ PSH(X ,L ), and ϕNA
m,m0

∈ PSH(Xan, Lan). We claim that
this defines a semi-positive hybrid metric on L:

Proposition 1.3.19. For every m ∈ N>0, the hybrid metric ϕhyb
m,m0

on L defined by:

ϕhyb
m,m0,t = (ϕm,m0)|Xt
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and:
ϕhyb
m,m0,0

= ϕNA
m

is semi-positive, i.e. ϕhyb
m,m0

∈ PSH(Xhyb, Lhyb).

Proof. For q ∈ N, set:

ϕm,m0,q =
1

2(m+m0)
log(

∑
l≤q

|sm,m0,l|2),

and:
ϕNA
m,m0,q

= (m+m0)
−1max

l≤q
(log|sm,m0,l|).

It follows from prop. 1.3.5 that this defines a semi-positive hybrid metric ϕhyb
m,m0,q

∈
PSH(Xhyb, Lhyb), we will prove that the (ϕhyb

m,m0,q
)q∈N converge uniformly to ϕhyb

m,m0

on Xhyb.
By prop. 5.4.6, the ϕm,m0,q converge uniformly to ϕm,m0 on Xr+ε as q →∞, so that
it remains to prove uniform convergence over Xan.
We have that

ϕNA
m,m0,q

= ϕL + (m+m0)
−1ϕJq ,

where Jq = I
(
(sm,m0,l)l≤q

)
≡ Im over Xr+ε for q ≫ 1 by the strong noetherian

property for coherent sheaves and global generation (see the proof of prop. 5.4.6),
which concludes.

Moreover, after extracting a subsequence, the (m+m0)
−1ϕm,m0 decrease to ϕ on

Xr+ε by theorem 5.4.4 and its proof, while the ϕNA
m,m0

decrease to ϕNA on Xan by
the proof of [Reb21, thm. 3.3.1]. This proves that ϕhyb ∈ PSH(Xhyb, Lhyb).
For the converse, if ϕ ∈ CPSH(Lhyb), and s ∈ H0(U,L) is a local trivialization, then
the function on U :

z 7→ log|s(z)|ϕt
log|t|

extends continuously to Xhyb by 1.3.2, hence is bounded. This proves that ϕ induces
a psh metric with logarithmic growth on L, hence we can define ϕNA as above. By
prop. 1.3.14, we have ϕNA ≤ ϕ0, while the semi-continuity of the hybrid metric
induced by (ϕ, ϕNA) implies ϕ0 = limt→0 ϕt ≤ ϕNA, which concludes.
This can also be deduced in the following way:

Lemma 1.3.20. The map:

(·)NA : CPSH(Lhyb) −→ CPSH(Lan)

is well-defined and continuous with respect to the topologies of uniform convergence
on both spaces.

Proof. This follows from the fact that (·)NA is order-preserving [Reb21, thm. 3.3.1],
and that (ϕ+ c)NA = ϕNA + c for c ∈ R.
Indeed, writing ϕ ∈ CPSH(Lhyb) as the uniform limit of a net (ϕj)j in FSτ , the fact
that (·)NA is order-preserving implies that the (ϕNA

j )j converge uniformly to ϕNA,
which is then continuous.
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It now follows that (·)NA and the restriction map to Xan:

(·)0 : CPSH(Lhyb) −→ CPSH(Lan)

are both continuous, and coincide on the dense set FSτ by example 1.3.12, and thus
coincide on PSH(Lhyb). This concludes the proof of theorem 1.3.13.

1.3.4 The isotrivial case

Let (X,L) be a projective complex variety, and write (Xan
0 , L

an
0 ) the associated

Berkovich space obtained by endowing the field of complex numbers with the trivial
absolute value. The latter analytic space has proven itself to be a powerful tool in
Kähler geometry, and in particular has been central in the variational proof of the
Yau-Tian-Donaldson conjecture by Berman-Boucksom-Jonsson [BBJ18].
Without going into the details, the proof involves the study of various convex func-
tionals on the space PSH(X,L), and relating their slopes at infinity on geodesic rays
with the corresponding non-archimedean functionals on the space PSH(Xan

0 , L
an
0 ).

Definition 1.3.21. Let (X,L) be a normal projective complex variety. A family
(ϕy)y>0 of psh metrics on L is called a psh ray if and only the S1-invariant metric:

Φ(x, t) := ϕ− log|t|(x)

on (X × D∗, p∗1L) is psh.

Let ϕ0 be a smooth, positively curved reference metric on L. If (ϕy)y>0 is a psh
ray on X, then the function y 7→ supX(ϕy−ϕ0) is convex, so that its slope at infinity:

pmax := lim
y→∞

supX(ϕy − ϕ0)

y

exists in R ∪ {+∞} and is independent of the choice of ϕ0. It is immediate that
pmax < +∞ if and only there exists C > 0 such that supX ϕy ≤ Cy (with slight
abuse of notation), in which case we will say that the ray (ϕy)y∈(y0,+∞) has linear
growth. This is easily seen to be equivalent to the fact that the psh metric Φ on
X × D∗ has logarithmic growth.
Following the general heuristic of viewing non-archimedean geometry as the asymp-
totic limit of Kähler geometry, each psh ray (ϕy)y on (X,L) with linear growth
induces a psh metric ϕNA on (Xan

0 , L
an
0 ), defined as follows. We fix a smooth refer-

ence metric ϕ0 on L, whose curvature form ω0 = ddcϕ0 is a Kähler form on X, and
write ψy := (ϕy − ϕ0) ∈ PSH(X,ω0).
By linear growth, there exists a ∈ R such that the function:

Ψa(x, t) = ψ− log|t|(x) + a log|t|

onX×D∗ is bounded from above nearX×{0}, hence extends as a quasi-psh function
on X × D, that we still denote by Ψa. Now if v ∈ Xan

0 is a divisorial valuation on
X, and w = γ(v) ∈ (XK)

an denotes the Gauss extension of v to the base change
XK := X ×C K, one defines w(Ψa) as the generic Lelong number of Ψa along the
center of w, as in section 1.3.2. In other words, if ϕ is a psh ray on X and v ∈ X÷,
then:

ϕNA(v) = ΦNA(γ(v)),
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Theorem 1.3.22. [BBJ18, thm. 6.2] The function ψNA : X÷ −→ R extends con-
tinuously to Xan, and the metric ϕNA on Lan defined by:

ϕNA = (ψNA + ϕtriv) ∈ PSH(Xan, Lan).

This is essentially a special case of thm. 1.3.10, since the trivial metric ϕtriv is
the restriction to the Gauss section (see section 1.1.4) of the model metric ϕL ∈
PSH(Xan

K , L
an
K ), where L = p∗1L is the trivial model, living on X × D.

Proposition 1.3.23. Let r ∈ (0, 1). Then the metric ϕhyb on Lhyb defined by:

ϕhyb
0 = ϕNA,

ϕhyb
|Xλ

= λϕ1/λ

is semi-positive on Xhyb
0 . Moreover, we have:

Φhyb = F ∗ϕhyb,

where F : Xhyb
K −→ Xhyb

0 is the base change map from prop. 1.1.28.

Proof. The equality Φhyb = F ∗ϕhyb is straightforward from the construction of ϕhyb.
To prove that ϕhyb is psh, the argument is the same as in the proof of theorem 1.3.13,
except we need the sections sm,m0 from the proof of prop. 1.3.19 to be equivariant
with respect to the S1-action on X × D. To achieve this, with the notation of the
previous section for ℓ ∈ Z, we let Hm,m0,ℓ ⊂ Hm,m0 be the space of ℓ-equivariant
sections, i.e. sections s such that (eiθ)∗s = eiℓθ · s. Then Hm,m0 is the completion
of
⊕

ℓ∈Z Hm,m0,ℓ, so that we may choose a Hilbert basis of Hm,m0 adapted to the
weight decomposition. The rest of the proof of theorem 1.3.13 carries out without
changes after replacing log|sm,m0,ℓ| on Xan

0 by (log|sm,m0,ℓ|− ℓ) for sm,m0,ℓ ∈Hm,m0,ℓ,
so that we omit the details.

1.4 The Monge-Ampère operator

1.4.1 The case of a valued field

Let K be a complete valued field, X an n-dimensional projective scheme over K,
and let L1, ..., Ln be Q-line bundles on X. By Ostrowski’s theorem, either K = R
or C with (a power of) the usual absolute value, either K is non-archimedean.
Let us start by assuming that K = C and that X is smooth. It then follows from
the seminal work of Bedford-Taylor [BT76] that the mixed Monge-Ampère pairing:

(ϕ1, ..., ϕn) 7→ ddcϕ1 ∧ ... ∧ ddcϕn,

a priori defined when each ϕi is a smooth Hermitian metric on Li, actually extends
in a unique way to semi-positive, locally bounded metrics - and in particular to
continuous psh metrics. The pairing was then further extended to semi-positive
singular metrics by Boucksom-Eyssidieux-Guedj-Zeriahi [BEGZ10]. More precisely,
there exists a class E1(X,L) ⊂ PSH(X,L) of finite-energy metrics on (X,L), such
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that the above mixed Monge-Ampère pairing extends uniquely to a multilinear,
measure-valued pairing on E1(X,L1)× ...×E1(X,Ln). Note that the space E1(X,L)
contains CPSH(X,L).
We now assume K is non-archimedean, and ϕi ∈ DFS(X,Li) for every i = 1, ..., n
are differences of Fubini-Study metrics. Then one can associate to the ϕi’s a signed
Radon measure, the mixed Monge-Ampère measure MA(ϕ1, ..., ϕn), with similar
properties as in the complex analytic case.

Example 1.4.1. Assume that K = k((t)) is a discretely-valued field of characteristic
zero. Then pure Fubini-Study metrics on Li are the same as model metrics on Li, so
that by multilinearity we may assume that ϕi = ϕLi

, where (Xi,Li) is a nef model
of (X,Li). Up to passing to a higher model, we may assume X1 = ... = Xn. Then
the Monge-Ampère measure has the following explicit description [CL06]:

MA(ϕ1, ..., ϕn) =
∑
E

bE(L1 · .... ·Ln · E)δvE ,

where the sum ranges over the irreducible components E of X0, bE = ordE(t) and
δvE is the Dirac mass at the associated divisorial point vE = b−1

E ordE.

In general, the mixed Monge-Ampère measure satisfies the following basic prop-
erties:

Proposition 1.4.2. [BE21, prop. 8.3] Let ϕi ∈ DFS(Li) for i = 1, ..., n.

• The pairing (ϕ1, ..., ϕn) 7→ MA(ϕ1, ..., ϕn) is symmetric and multilinear;

• if ϕi ∈ FS(Li) for all i, then MA(ϕ1, ..., ϕn) is a positive Radon measure;

• the total mass
∫
Xan MA(ϕ1, ..., ϕn) = (L1 · ... · Ln);

• if L0 = L1 = OX and ϕ0, ϕ1 ∈ DFS(X), then:∫
X

ϕ0MA(ϕ1, ..., ϕn) =

∫
X

ϕ1MA(ϕ0, ϕ2, ..., ϕn).

The Monge-Ampère measure can then be extended to more general metrics:

Theorem 1.4.3. [BE21, thm. 8.4]
Let K be a complete valued field, X/K an n-dimensional projective scheme and
L1,...,Ln line bundles on X. Then the Monge-Ampère operator:

(ϕ1, ..., ϕn) 7→ ddcϕ1 ∧ ... ∧ ddcϕn

admits a unique extension to continuous psh metrics on the Li. The extension is
furthermore continuous with respect to the topology of uniform convergence and the
weak topology of Radon measures.

Remark 1.4.4. While the class E1(X,L) of finite-energy psh metrics on L is defined
over any non-archimedean field K, it is unclear in general how to extend the Monge-
Ampère operator on the latter. Note however that in the case where K is discretely-
valued of characteristic zero, this extension was constructed in [BFJ16].
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Remark 1.4.5. The Chambert-Loir - Ducros [CLD12] approach to pluripotential
theory on Berkovich spaces makes sense of the curvature current ddcϕ of a continuous
psh metric, and its wedge products, in a spirit close to the work of Bedford-Taylor
in the complex case. Notably, [CLD12, thm. 6.9.3] states that the wedge product
ddcϕ1 ∧ ... ∧ ddcϕn coincides with the mixed Monge-Ampère measure as described in
example 1.4.1 when ϕ1,..., ϕn are psh model metrics, whence the notation.

1.4.2 The Monge-Ampère equation

Let X be a smooth n-dimensional complex manifold, and L an ample line bundle on
X. Then Yau’s celebrated solution to the Calabi conjecture asserts the following:

Theorem 1.4.6. [Yau78] Let µ be a smooth volume form on X, normalized to
have total mass 1. Then there exists a unique (up to an additive constant) smooth,
positive definite metric ϕ on L such that:

(ddcϕ)n = (Ln)µ.

The main motivation for this theorem was the case where X is a Calabi-Yau
manifold, and µ = in

2
Ω∧ Ω̄ is the square-norm of a nowhere-vanishing holomorphic

n-form on X: in that case, the curvature form ω = ddcϕ is a smooth Kähler Ricci-
flat metric on X.
Throughout the years, various generalizations of the above theorem in a more singu-
lar setting have appeared in the literature: let us simply mention Kołodziej’s result
[Kol98], that states that under the same assumptions on (X,L), then the state-
ment of the above theorem holds for a much wider range of probability measures
on X (for instance, measures µ with Lp-density for some p > 1), when we don’t
require for the solution to be smooth - here the solution is a continuous psh metric
ϕ ∈ CPSH(X,L), and the equality (ddcϕ)n = µ is understood in the sense of [BT76].
We now let K = k((t)) be a discretely-valued field of equicharacteristic zero. The
following result can be understood as an analog of Kołodziej’s result over K:

Theorem 1.4.7. ([BFJ15, thm. A], [BGGJ+19])
Let (X,L) be a smooth polarized variety over K. Let µ be a probability measure on
Xan, supported on the skeleton of some snc R-model of X. Then there exists a unique
(up to an additive constant) continuous, semi-positive metric ϕ on L satisying the
non-archimedean Monge-Ampère equation:

MA(ϕ) = µ.

The above theorem was proved when X is defined over the function field of a
curve over k in [BFJ15], and then extended to varieties over non-archimedean fields
of residual characteristic zero in [BGGJ+19].

1.4.3 Family of Monge-Ampère-measures

Let now A be an integral Banach ring, and X/A a projective scheme. Since we may
view Xan as the family of analytic spaces {Xan

Hx
}x∈M (A), which are analytic spaces

over fields, one may define a Monge-Ampère operator on each fiber.
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Definition 1.4.8. Let A be an integral Banach ring, X/A an n-dimensional projec-
tive scheme, and L1, ..., Ln line bundles on X. If (ϕ1, ..., ϕn) is a tuple of continuous
psh metrics on the Li, we define the associated family of Monge-Ampère measures as
follows. For x ∈M (A), write Xx = π−1(x) which is an analytic space over H (x),
and ιx : Xx ↪→ Xan the inclusion. Then we set:

(MA(ϕ1, ..., ϕn))x := (ιx)∗
(
MA((ϕ1)|Xx , ..., (ϕn)|Xx)

)
.

This is a family of measures on Xan parametrized by M (A).

A natural question is to ask whether or not this family of measures is continuous,
at least in the weak sense:

Question 1.4.9. Let X be a flat, projective A-scheme, L1, ..., Ln as above, and let
ϕi ∈ CPSH(Li) for each i. Is it true that for ψ ∈ C0(Xan), the function:

x 7→
∫
Xan

ψ(MA(ϕ1, ..., ϕn))x

is continuous on M (A) ?

The flatness assumption on X is necessary to ensure that the total mass of the
measure:

(MA(ϕ1, ..., ϕn))x(X
an) = ((L1)|XH (x)

· ... · (Ln)|XH (x)
)

is indeed independent of x ∈M (A).
By density of DFS(X) ⊂ C0(X) and FS(Li) ⊂ CPSH(Li), and by using the follow-
ing very general Chern-Levine-Nirenberg estimate, it is enough to prove the above
statement for ψ ∈ DFS(Xan) and ϕi ∈ FS(Li).
While the answer to the above question seems unclear without further assumptions
over the Banach ring A, we are able to provide an affirmative answer in the case of
hybrid spaces in the next section. We also expect the statement to hold when A is
the integer ring of a function field (for instance A = Z), we mention for instance the
work [Poi22] which discusses related questions.

Lemma 1.4.10. [BE21, lem. 8.6] Let K be a non-archimedean field, and X/K.
Let L0, ..., Ln be line bundles on X, and ϕi, ϕ′

i ∈ FS(Li) for each i. Then:∣∣∣∣ ∫
Xan

(ϕ0 − ϕ′
0)MA(ϕ1, ..., ϕn)−

∫
Xan

(ϕ0 − ϕ′
0)MA(ϕ′

1, ..., ϕ
′
n)

∣∣∣∣ ≤ C

n∑
i=0

sup
Xan

|ϕi − ϕ′
i|.

1.4.4 Hybrid metrics and admissible data

Throughout this section, we let X π−→ D∗ be a smooth degeneration of complex man-
ifolds, relatively polarized by an ample line bundle L; and write Xhyb the associated
hybrid space. In this set-up, after fixing a reference Fubini-Study metric on (X,L),
Favre [Fav20] defines a certain class of model functions ϕF : Xhyb −→ R associated
to admissible data on X; and uniform functions which are uniform limits of model
functions. We will explain how those are nothing but hybrid Fubini-Study and hy-
brid cpsh metrics on L. In particular, the following result is a mere reformulation
of [Fav20, thm. 4.2]:
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Theorem 1.4.11. [Fav20, thm. 4.2]
Let (X,L) be as above, and ϕ ∈ CPSH(Xhyb, Lhyb). Then the associated family
of Monge-Ampère measures is continuous on Xhyb in the weak sense: for any f ∈
C0(Xhyb), we have: ∫

Xt

f(ddcϕt)
n −−−→

t−→0

∫
Xan

f MA(ϕ0).

Recall that DFS(Xhyb) is dense in C0(Xhyb), while FSτ (Lhyb) is dense in CPSH(Lhyb)
for the topology of uniform convergence. As a result, by lemma 1.4.10, it is enough
to prove the above convergence with f ∈ DFS(Xhyb), ϕ ∈ FSτ (Lhyb).
As in [Fav20], we fix an snc model X of X such that L has an ample model L
on X , so that we get a relative embedding ι : X ↪→ CPN × D by sections of mL
for m ≥ 1, and write ϕref = m−1ι∗ϕFS (here the Fubini-Study metric is taken in
the usual sense, with sums of squares). By example 1.3.7 and pullback, we have
ϕref ∈ CPSH(Lhyb).
Then a regular admissible datum F = {X ′, d,D, s1, ..., sl} consists of the following:
p : X ′ −→ X is an snc model dominating X , D ∈ Div0(X ′) is a vertical divisor
on X ′, and (s1, ..., sl) is a tuple of sections of p∗(L d)(D) without common zeroes.
An regular admissible datum defines a model function ϕF : Xhyb −→ R as follows:

ϕF = max
i=1,...,l

log∥si∥ϕref = max
i=1,...,l

(ϕi − ϕref)

with ϕi = d−1 log|si|.
Thus, we naturally define:

ψF = ϕref + ϕF = max
i≤l

ϕi,

which is a Fubini-Study metric on Lhyb, since the si’s have no common zeroes.
Conversely, any pure Fubini-Study metric on Lhyb, i.e. a metric of the form:

ϕ = d−1max
i≤l

log|si|

for d ≥ 1 and s1, ..., sl ∈ H0(X, dL) without common zeroes, defines a regular
admissible datum. Indeed, we may extend s1, ..., sl to meromorphic sections of dL
on X , and set:

I =< s1, ..., sl >,

which is a vertical fractional ideal sheaf on X . It follows from [Fav20, prop. 2.2]
that if p : X ′ −→X is a log-resolution of X , this yields an admissible datum:

F = {X ′, d,D, p∗s1, ..., p
∗sl},

where D ∈ Div0(X ′) is such that p∗(L d ⊗I ) = (p∗L )d ⊗OX ′(D), and it follows
from the previous computation that the associated model function ϕF satisfies:

ϕF = max
i=1,...,l

log∥si∥ϕref = ϕ− ϕref ,

with ϕ = d−1maxi≤l log|si|. As a result, model functions on Xhyb in the sense of
[Fav20] are precisely the continuous functions ψ : Xhyb −→ R such that (ϕref +ψ) ∈
FSτ (Lhyb) is a pure Fubini-Study metric, so that by remark 1.3.4, uniform functions
are those such that (ϕref + ψ) ∈ CPSH(Lhyb). This proves that the statement of
theorem 1.4.11 is equivalent to the statement [Fav20, thm. 4.2].



Chapter 2

The toric case

In this chapter, we focus on the case where (Z,L) is a polarized toric variety over
C, and we investigate toric metrics on (Zhyb, Lhyb). When working over C equipped
with either the archimedean or trivial absolute value, semi-positive toric metrics on
(Zan, Lan) are well-know to correspond to a certain class of convex functions on the
vector space NR where the fan of Z lives.
The main result of this section, theorem 2.2.12, states that semi-positive met-
rics on (Zhyb, Lhyb) that are fiberwise-toric, correspond to families parametrized by
M (Chyb) ≃ [0, 1] of convex functions on NR as above, which vary in a convex way
with respect to the coordinate λ on the base.

2.1 Preliminaries
Throughout this section, N denotes a lattice of rank n, M = Hom(N,Z) its dual
and NR = N ⊗Z R, MR =M ⊗Z R = HomR(NR,R). We denote by ⟨·, ·⟩ the duality
pairing MR×NR −→ R. We say a function ϕ : NR −→ R is piecewise-affine if there
exists a rational polytopal subdivision T of NR such that ϕ is affine on each face of
the subdivision; it is said to be rational piecewise-affine if each affine piece of ϕ has
rational slopes (note that we allow the constant term to be any real number). We
will sometimes say ϕ is adapted to the subdivision T .

2.1.1 Convex geometry

Definition 2.1.1. A (rational) convex polytope P ⊂ MR is the convex hull in MR
of finitely many points in MQ.
The polytope is furthermore integral if we can choose the points to be in M .

If P ⊂ MR is a polytope, a face of P is any intersection of P with a halfspace
such that none of the interior points of the polytope lie on the boundary of the
halfspace.

Definition 2.1.2. Let P ⊂MR be a convex polytope. Its normal fan Σ = ΣP is the
complete fan in NR whose cones are the normal cones to the faces of P .
More explicitly, Σ = {σF}F face of P , where:

σF = {x ∈ NR/∀u ∈ F, ⟨u, x⟩ = max
y∈P
⟨u, y⟩}.

91
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Definition 2.1.3. Let P ⊂ MR be a convex polytope. Its support function ΨP :
NR −→ R is defined by the formula:

ΨP (x) = sup
u∈P
⟨u, x⟩.

It is a rational piecewise-linear convex function on NR, linear on each face of the
normal fan ΣP .

The fact that ΨP is piecewise-linear follows from the fact that for fixed x, the
function u 7→ ⟨u, x⟩ reaches its maximum at a vertex of P , hence the equality:

ΨP (x) = max
u∈V
⟨u, x⟩,

where V ⊂ P is the set of vertices of P .
Note that the data of (ΣP ,ΨP ) recovers the polytope P uniquely.

Definition 2.1.4. Let ϕ : NR −→ R be a convex function. We define the Legendre
transform ϕ∗ of ϕ by the formula:

ϕ∗(u) = sup
x∈NR

(
⟨u, x⟩ − ϕ(x)

)
,

for u ∈MR, and we write its domain P (ϕ∗) := {ϕ∗ < +∞ } ⊂MR.

Definition 2.1.5. Let P ⊂ MR be a convex polytope. We say that the convex
function ϕ : NR −→ R is P -admissible if and only the equality P (ϕ∗) = P holds.
This is equivalent to the following condition:

sup
x∈NR

|ϕ(x)−ΨP (x)| < +∞.

We will write AdP (NR) or simply AdP for the set of P -admissible convex functions.

Example 2.1.6. Let J ⊂ P ∩ MQ be a finite subset, and ϕ : NR −→ R be the
function defined by:

ϕ(x) = max
j∈J

(⟨uj, x⟩+ cj),

where the cj’s are real constants. Then ϕ ∈ AdP (NR) if and only if J contains the
set of vertices of P .

Proposition 2.1.7. Let ϕ ∈ AdP (NR). Then the Legendre transform ϕ∗ : P −→ R
is convex and continuous. Moreover, the map ϕ 7→ ϕ∗ induces a bijection from
AdP (NR) to the set of continuous convex functions on P , whose inverse map is
given by β 7→ β∗, where:

β∗(x) = sup
u∈P

(
⟨u, x⟩ − β(u)

)
for β : P −→ R a continuous convex function.

Proof. If ϕ is P -admissible, its Legendre transform is upper semi-continuous on P as
a supremum of continuous functions, while it follows from [How88] that the Legendre
transform ϕ∗ is convex on P , hence lower semi-continuous on P . This proves the
first item, and the second item follows from [Roc72, thm. 12.2].



2.1. PRELIMINARIES 93

The following proposition states that P -admissible functions can be monotonously
approximated by rational piecewise-affine functions:

Proposition 2.1.8. Let P be a convex polytope in MR, and let ϕ ∈ AdP (NR) be a
P -admissible convex function.
Then there exists a decreasing sequence (ϕj)j∈N of rational piecewise-affine, P -
admissible convex functions converging pointwise to ϕ.

Proof. Let β : P −→ R be the Legendre transform of ϕ, and let (xj)j∈N be a
sequence in NQ that is dense in NR. For each j ∈ N, let (rl,j)l∈N be a sequence of
rational numbers decreasing to ϕ(xj), uniformly with respect to j (uniformity can
be achieved by a diagonal extraction argument). We set:

βj(u) = max
l≤j

(
⟨u, xl⟩ − rl,j

)
,

so that as j → ∞, the function βj is close to the maximum of the affine functions
with gradients in {xl}l≤j that are cutting out supporting hyperplanes of the graph
of β. It is clear that βj is rational piecewise-linear, and increasing pointwise to:

β∗∗(u) = sup
x∈NR

(
⟨u, x⟩ − ϕ(x)

)
,

which is none other than β. Continuity of β furthermore implies that the convergence
is uniform, by Dini’s lemma.
We now set:

ϕj(x) = β∗
j (x) = sup

u∈P

(
⟨u, x⟩ − βj(u)

)
.

It defines an decreasing sequence of P -admissible rational piecewise-affine convex
functions on NR, by the following lemma. The fact that the ϕj’s decrease (uniformly)
to ϕ is now a consequence of the monotonicity of the Legendre transform.

Lemma 2.1.9. Let P ⊂ MR a convex polytope and β : P −→ R a function that
is piecewise-affine, adapted to a rational triangulation of P . Then the Legendre
transform β∗, defined for x ∈ NR by:

β∗(x) = sup
u∈P

(
⟨u, x⟩ − β(u)

)
can be written as:

β∗ = max
i∈I

(ui + ci),

where I is a finite set, ui ∈ P ∩MQ and ci ∈ R.
Moreover, β∗ ∈ AdP (NR).

Proof. Let T be a rational polytopal decomposition of P such that β is affine on
each face of T (which exists as follows for instance from [BGPS14, lem. 2.5.3]), and
write the set E of vertices of T as E = {ui, i ∈ I}. Then we have:

β∗(x) = max
i∈I

(
⟨ui, x⟩ − β(ui)

)
,

as for fixed x, the function u 7→
(
⟨u, x⟩ − β(u)

)
is affine on each face of T , hence

achieves its maximum at a vertex of T .
The second item follows from example 2.1.6, since E contains the set of vertices of
P by construction.
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2.1.2 Toric varieties

Recall thatN is a lattice of rank n, with dual latticeM . We write T = Hom(M,Gm) =
N ⊗ Gm the associated split algebraic torus, which is defined over Z. We further-
more have that M = Hom(T,Gm) is the character lattice of T, so that each m ∈M
defines a regular invertible function on T, which we denote by χm.
Let Σ = {σ}σ∈Σ be a fan inside NR; this is a finite collection of strictly convex
rational polyhedral cones inside NR, stable under intersection and such that each
face of a cone in Σ is itself in Σ.
If k is any field, one can associate to the fan Σ a normal k-scheme of finite type as
follows: for σ ∈ Σ, set Mσ = M ∩ σ∨, which is a semi-group. We then define the
affine toric variety associated to σ by:

Zσ := Spec k[Mσ];

one can then see that for σ′ ⊂ σ, the ring k[Mσ′ ] is a localization of k[Mσ], so that
the collection of {Zσ}σ∈Σ can be glued to define a variety over k:

ZΣ =
⋃
σ∈Σ

Zσ.

Since the cone {0NR} ∈ Σ, the variety ZΣ contains the torus T = Spec k[M ] as a
dense open subset. Its complement ∆Z := Z \T is a reduced Weil divisor which we
call the toric boundary of Z, it is furthermore an anticanonical divisor when Z is
Gorenstein. We write it as the sum of its irreducible components ∆Z =

∑
l∈L Zl.

The fan Σ encodes various algebro-geometric information about Z, for instance:

Proposition 2.1.10. The following hold:

• the variety Z is proper over k if and only the fan Σ is complete, i.e.
⋃
σ∈Σ σ =

NR;

• the variety Z is smooth over k if and only if the fan Σ is regular, which
means that each top-dimensional cone of Σ is GL(N)-isomorphic to a standard
orthant. In this case, the boundary ∆Z is a simple normal crossing divisor.

2.1.3 Line bundles and toric divisors

Assume now that Z is smooth over k (which implies it has simple normal crossing
boundary).

Definition 2.1.11. Let L be a line bundle on Z. A toric structure on L is the data
of an isomorphism L ≃ OZ(D), where D is a toric Cartier divisor; together with a
nowhere-vanishing section sD of L|T, which is a monomial on T under the previous
isomorphism LT ≃ OT.
A toric line bundle on Z is a line L endowed with a toric structure.

Since each Cartier divisor on Z can be moved via the torus action to a T-invariant
Cartier divisor, which is thus supported on the boundary, every line bundle L on Z
admits a toric structure.
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The fan allows us to give a rather explicit description of the Picard group of Z.
Indeed, components of the toric boundary provide a canonical set of generators of
Pic(Z), and the relations between them can be described as follows.
Write DivT(Z) = ⊕l∈LZZl ≃ ZL the abelian group of Weil divisors supported on the
boundary. The canonical map q : DivT(Z) −→ Pic(Z) sends a divisor to its class;
the map p :M −→ DivT(Z) sends a monomial χm to the principal divisor div(χm).

Lemma 2.1.12 ([Ful93, 3.4]). The following sequence

0 −→M
p−→ DivT(Z)

q−→ Pic(Z) −→ 0

is exact.

Let us rephrase this in term of coordinates, after fixing an isomorphism N ≃ Zr and
denoting L = {u1, . . . , us} the primitive generators of the 1-dimensional cones of Σ.
Since by [Ful93, Lemma p.61], we have ordZl

(zm) = ⟨ul,m⟩, we obtain div(χm) =∑
l∈L⟨ul,m⟩Zl and hence p(m) = (⟨ul,m⟩)l∈L. We deduce the following explicit

description of Pic(Z):

Corollary 2.1.13. Let ul = (ul,1, . . . , ul,r) for l ∈ {1, . . . , s}. Then Pic(Z) is gen-
erated by the line bundles OZ(Zl), with the r relations:

OZ(
m∑
l=1

ul,1Zl) = . . . = OZ(
m∑
l=1

ul,rZl) = 0.

In particular, the divisors in the r-tuple

∆ =
∑
l∈L

ul ⊗ Zl ∈ N ⊗DivT(Z) ≃ (DivT(Z))r

are principal.

We now want to describe how the fan Σ encodes the intersection theory on
Z, under the assumption that Z is proper. Each 1-cycle in Z being numerically
equivalent to a sum of toric strata, it is enough to study the intersection numbers
(C · Zl), where Zl is a boundary component of Z and C is a 1-dimensional toric
stratum, which is isomorphic to P1 by properness and the fact that Z has snc
boundary. The stratum C is thus a rational curve with two marked points p and
q, which are the intersection points of C with two components of ∆Z , denoted here
by Zp and Zq, with corresponding rays ρp and ρq. The curve C corresponds to an
(r−1)-dimensional cone σC of Σ, while the points p and q correspond to the maximal
cones generated by < σC , ρp > and < σC , ρq >.

Lemma 2.1.14 ([Ful93, p. 99]). The primitive generators of the rays of the fan
satisfy the following relation:

up + uq = −
∑
ul∈σC

(C · Zl)ul.

Observing that we have (C · Zp) = (C · Zq) = 1, and (C · Zl) = 0 for any other l,
this may be rewritten in a more synthetic way:∑

l∈L

(C · Zl)ul = 0. (2.1.15)

Note that this lemma holds even if Z is not proper.
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2.1.4 Positivity

Throughout this section, we assume that Z is smooth, so that each cone σ ∈ Σ can
be written as:

σ =
dimσ∑
l=1

R≥0vl,

with vl ∈ N the primitive generators of the extremal rays of σ.

Definition 2.1.16. Let D =
∑

l∈L alZl be a toric divisor on Z. For each maximal
cone σ ∈ Σ, we let:

ΨD : σ −→ R

be the unique linear map such that ΨD(vl) = al for each primitive generator ul of
an extremal ray of σ.
This defines a piecewise-linear function:

ΨD : Σ −→ R,

called the support function of D, it is a convex function if and only OZ(D) is globally
generated.

Note that our definition differs from the one in [Ful93] by a minus sign. It follows
from lemma 2.1.13 that if D1, D2 are two toric divisors such that OZ(D1) ≃ OZ(D2),
then there exists m ∈ M such that D1 − D2 = div(χm), so that the difference
ΨD1 −ΨD2 = ⟨m, ·⟩ is a linear form on NR.

Definition 2.1.17. Let D be a toric divisor on Z. The associated convex polyhedron
is defined by:

PD = {u ∈MR | ⟨u, ·⟩ ≤ ΨD}.

Similarly to the previous remark, shifting D by a principal toric divisor amounts
to translating PD inside MR. The polytope PD computes the space of sections of
OZ(D):

Proposition 2.1.18. [Ful93, lem. p. 66] If m ∈ M ∩ PD, then the monomial χ−m

defines a regular section sm = χ−msD ∈ H0(Z,OZ(D)). Moreover,

H0(Z,OZ(D)) =
⊕

m∈PD∩M

k · sm.

In the case where OZ(D) is semi-ample (or equivalently, globally generated), the
convex function ΨD can be written as a finite maximum of linear functions:

ΨD = max
j∈J
⟨mj, ·⟩,

so that PD is the convex hull of the {mj, j ∈ J} and is a convex polytope, whose
support function equates the support function ΨD of D. Hence, we will say that a
convex function ϕ : NR −→ R is D-admissible if ϕ ∈ AdPD

(NR).
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Lemma 2.1.19. Let J ⊂ (PD ∩ M) be a finite set. Then the smj
’s, for j ∈ J ,

have no common zeroes if and only J contains the set of vertices of PD, if and only
maxj∈J⟨mj, ·⟩ is D-admissible.

Proof. The first equivalence is [Ful93, ex. p. 69], while the second one is example
2.1.6.

Finally, we have the following vanishing theorem for nef divisors on a proper
toric variety.

Proposition 2.1.20. Let D be a nef Cartier divisor on a proper toric variety Z.
Then H i(Z,OZ(D)) = 0 for i > 0.

Proof. The divisor D being nef is equivalent to it being globally generated, by
[Mus02, Theorem 3.1]. Thus, the result follows directly from [Ful93, p. 74].

2.2 Toric metrics

2.2.1 Analytification of toric varieties

Let A be a Banach ring, and let T be a split algebraic torus over A, with character
lattice M = Hom(T,Gm). The Berkovich analytification Tan of TA = SpecA[M ]
comes with a canonical valuation map:

val : Tan −→ NR = Hom(M,R),

x 7→ (m 7→ − log|χm(x)|).

In other words, ⟨m, val(x)⟩ = vx(χ
m), whence the notation. Fixing coordinates

T1, ..., Tn on the torus, which amounts to fixing a basis of M , the above map is given
by:

val(x) = (− log|T1(x)|, ...,− log|Tn(x)|) ∈ Rn.

Now let Σ be a fan inside NR, and let ZΣ/A be the associated toric A-scheme, defined
as in a case of a field, by patching together the SpecA[Mσ] for σ ∈ Σ. For instance,
if there exists a subfield k ⊂ A, then ZΣ,A = ZΣ,k ×k A is the base change of the
k-toric variety with fan Σ to A.
We want to define a partial compactification NΣ of NR so that the map val defined
above extends as a continuous map:

valΣ : Zan
Σ −→ NΣ.

To that extent, we set R = R∪ {+∞}, it is a semi-group for the standard addition.
For σ ∈ Σ a cone, the corresponding toric affine chart is given by Zσ = SpecA[Mσ].
It follows from the universal property of the ring A[Mσ] that the map:

Zσ(A) −→ Homsg(Mσ, (A,×)),

z 7→ (m 7→ χm(z))
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is a bijection. It is thus natural to set:

Nσ := Homsg(Mσ, (R,+)),

since the semi-group homomorphism vA = − log∥·∥ : A −→ R induces naturally a
map:

val : Zσ(A) −→ Nσ,

z 7→ (m 7→ − log∥χm(z)∥).
extending the usual logarithm on the torus (the above expression being defined
since χm is regular on Zσ). We define the topology on Nσ as the coarsest making
the evaluation maps evm : Nσ −→ R for m ∈Mσ continuous.

Proposition 2.2.1 ([Ful93, §1.2, prop. 2], [BGPS14, §4.1] ). If σ′ ⊂ σ are two cones
of Σ, then there is a dense open immersion Nσ′ ↪→ Nσ. Thus, the {Nσ}σ∈Σ glue
together to yield a topological space NΣ containing NR, together with a continuous
val map:

valΣ : Zan
Σ −→ NΣ

restricting to the above val on each Zσ.
The topological space NΣ is called the tropical toric variety associated to Σ.

Note that the above definition of NΣ is independent of the base ring A.
Now assume that A = (K, vK) is a non-archimedean field. Then the map val admits
a canonical section, defined as follows:

Definition 2.2.2. Let x ∈ NR. The valuation γ(x) on K(M) defined on elements
of K[M ] by the formula:

vγ(x)

Å∑
m∈M

amχ
m

ã
= min

m∈M

(
vK(am) + ⟨m,x⟩

)
is called the Gauss point associated to x. This defines a continuous embedding:

γ : NR −→ Tan,

satisfying val ◦γ = IdNR.
Furthermore, for any fan Σ in NR, the map γ extends as a continuous embedding
γ : NΣ −→ Zan

Σ , satisfying the property:

valΣ ◦γ = IdNΣ
.

Thus, the tropical toric variety NΣ can be naturally realized as a space of mono-
mial valuations, inside Zan

Σ . The fact that vγ(x) is indeed a valuation - i.e. the
associated absolute value is multiplicative - as follows for instance from [BGPS14,
prop. 4.2.12], or [Thu07, §2].

Definition 2.2.3. We write:

ρΣ : Zan
Σ −→ Zan

Σ

the composition ρΣ = γ ◦ valΣ, and call its image the (toric) skeleton Sk(ZΣ) of ZΣ.
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In the caseK = C with the Euclidean absolute value, there also exists a canonical
section of val, given as follows: since T = Hom(M,C∗), there is an embedding
ι : NR ↪→ Thol given by:

x 7−→ ι(x) :=
(
m 7→ e−⟨m,x⟩).

It is clear that this map extends as an embedding ι : Nσ ↪→ Zhol
σ , using the real

exponential as a section of − log|·|. In terms of coordinates on (C∗)n, the map ι is
simply the section of − log|·| given by the real exponential (up to a sign).
We now move to the case A = Chyb, where we want to patch together the sections
from above to construct a section of the continuous map:

Val := (val×π) : Zhyb
Σ −→ NR ×M (A).

To that purpose, we define ιλ : NR ↪→ Thol by the formula:

x 7−→ ιλ(x) :=
(
m 7→ e−λ

−1⟨m,x⟩),
and extend it to NΣ cone by cone as above; this yields a continuous embedding ιλ :
NΣ ↪→ Zhol

Σ . We then compose these rescaled embeddings with the homeomorphism:

p : Zhol × (0, 1]
∼−→ π−1((0, 1]),

to embed Nhyb
Σ := NΣ × [0, 1] naturally inside the hybrid space:

Proposition 2.2.4. Let ιhyb : NΣ × [0, 1] −→ Zhyb be defined by the formulas:

ιhyb(x, λ) = pλ(ιλ(x)) for λ ̸= 0,

ιhyb(x, 0) = γ(x).

Then ιhyb is a continuous embedding, and is a section of Val.
Its image Skhyb(ZΣ) := ιhyb(NΣ × [0, 1]) is called the hybrid toric skeleton of ZΣ.

Proof. By definition of the topology on Zhyb, in order to prove that ιhyb is continuous,
it is enough to prove that if f ∈ O(U) is an algebraic function on a Zariski open
subset U of Z, then (x, λ) 7→ log|f |ιhyb(x,λ) is continuous on ι−1

hyb(U
hyb). We may

assume that f ∈ C[M ] is a polynomial, which we write as f =
∑

j∈J ajχ
mj , where

the aj ∈ C∗, mj ∈M and the index set J is finite.
We now have:

log|f |ιhyb(x,λ) = λ log
∣∣∑
j∈J

aje
−λ−1⟨mj ,x⟩

∣∣
for λ ̸= 0, while:

log|f |ιhyb(x,0) = −min
j∈J
⟨mj, x⟩.

It is straightforward to check that this indeed defines a continuous function on
NR × [0, 1], and similarly on Nσ × [0, 1] for σ ∈ Σ: the function f is defined on Zσ
if and only if ⟨x,mj⟩ ≥ 0 for j ∈ J and x ∈ Nσ, so that we are merely allowing the
exponentials in the above sum to vanish.
The fact that Val ◦ιhyb = IdNhyb

Σ
follows from the fact that val|Zhyb

λ
= λ valC under

the homeomorphism Zhyb
λ ≃ Zhol, so that ιλ is a section of val|Zhyb

λ
for λ > 0.

This finally implies that ιhyb is an embedding, the inverse map being given by the
restriction of Val to Skhyb(ZΣ).
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Remark 2.2.5. Let Z be a toric variety over C, and ZK its base change to K =
C((t)). Then we have a commutative diagram:

Zhyb
K Zhyb

0

NΣ × D̄r NΣ × [0, 1],

Q

ValK Val0

λ

so that writing t : [0, 1] −→ D̄r the map given by t(λ) = r1/λ, we see that the map:

ιhyb,K := ιhyb,0 ◦ (IdNΣ
×t)

defines a continuous section of ValK.

2.2.2 Fiberwise-toric metrics

Throughout this section, we work with a toric scheme Z = ZΣ over a Banach ring
A. The Berkovich analytification Zan comes with two continuous maps: a val map:

valΣ : Zan −→ NΣ,

and a structure morphism:
π : Zan −→M (A).

Writing NΣ(A) = NΣ ×M (A), this yields a continuous map:

valA : Zan −→ NΣ(A)

defined by the formula valA(x) = (val(x), π(x)). In particular, the torus over A is
endowed with a map:

valA : Tan
A −→ NR ×M (A).

Definition 2.2.6. Let (L, s) be a toric line bundle on Z, and ϕ a metric on L.
Then we say that ϕ is a fiberwise-toric metric on L if and only the function:

∥s∥ϕ : Tan
A −→ R

is such that ∥s(x)∥ϕ = ∥s(y)∥ϕ for any two x, y ∈ Tan such that valA(x) = valA(y).

Here a toric line bundle on Z means, as in the case of a field, a line bundle L
on Z, together with an isomorphism L ≃ OZ(D) for a toric Cartier divisor D and a
global section s that is a monomial on TA under the latter isomorphism.

Example 2.2.7. Assume that A = K is a complete valued field. Then if K = C, a
metric is toric if and only if it is invariant under the action of the maximal compact
torus S ⊂ T.
If K is a non-archimedean discretely-valued field, then our definition of a toric
metric matches the one from [BGPS14, def. 4.3.2].

The following description is a direct consequence of the definition:
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Proposition 2.2.8. Let ϕ be a continuous metric on the toric line bundle L. Then
ϕ is a toric metric if and only for any b ∈M (A), the restriction ϕb of ϕ to Zan

Σ,H (b)

is a toric metric in the sense of [BGPS14, def. 4.3.2].

For continuous toric metrics over a valued field, the semi-positivity of the metric
can be read off in the combinatorial world:

Theorem 2.2.9. [BGPS14, thm.4.8.1] Let Z be a proper toric variety over a com-
plete valued field K, and (OZ(D), s) a semi-ample toric line bundle on Z. We let
ι : NΣ ↪→ Zan be the canonical section of val as given in section 2.2.1. Then the
mapping:

∥·∥ϕ 7−→
(
Φ := − log∥s ◦ ι∥ϕ

)
sets up a correspondence between continuous, semi-positive toric metrics ϕ on L and
continuous, D-admissible convex functions Φ on NR.

Note that while we defined the class of D-admissible functions only when Z is
smooth, the above theorem holds without that assumption.
Moreover, it follows from the proof of prop. 2.1.8 that if Φ is convex and D-
admissible, then the (bounded) function (Φ − ΨD) extends continuously to NΣ.
More generally, continuous semi-positive toric metrics on L are in bijection with
continuous convex functions on NR satisfying the latter condition.
We expect a similar picture to hold over more general Banach rings A: a semi-
positive continuous, fiberwise-toric metric should induce a family of convex functions
on NR, parametrized by the Berkovich spectrum M (A), and which satisfy a suitable
growth condition fiberwise over M (A). The semi-positivity of the metric in the
direction of the base should be equivalent to the fact that this family of convex
functions varies in a psh way on M (A). What this concretely means in general
seems unclear at the moment; however in the case of the hybrid space attached to a
complex toric variety, we will see in theorem 2.2.12 that the semi-positivity on the
base translates into convexity with respect to the coordinate λ ∈ [0, 1].
Note that when K is non-archimedean, this is proved only in the case where K is
discretely-valued field in [BGPS14], but the general case follows roughly from the
argument of the proof of theorem 2.2.12, together the following generalization of
[BGPS14, cor. 4.7.2], so that we omit the details.

Proposition 2.2.10. Let K be a complete non-archimedean field, and let ϕ ∈
FSτ (ZΣ, L) be a toric metric. Then there exists a finite set (sj)j∈J of toric sec-
tions of mL such that:

ϕ = m−1max
j∈J

(
log|sj|+ cj

)
.

In other words, toric Fubini-Study metrics on L are precisely the Fubini-Study met-
rics associated to toric sections of powers of L.

Proof. Write:
ϕ = m−1max

i∈I

(
log|si|+ ci

)
for arbitrary sections (si)i∈I of mL, without common zeroes. Each si may be written
in a basis of toric sections as a finite sum si =

∑
j λi,jχ

mj with λi,j ∈ K, so that if
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x ∈ Tan we have:

log|si(ρ(x))| = max
j

(vK(λi,j) + log|χmj(ρ(x))|)

by definition of the monomial valuation ρ(x) (see def. 2.2.3). Since ϕ is toric, the
equality ϕ(x) = ϕ(ρ(x)) holds for every x ∈ Tan, and we infer:

ϕ = max
i∈I

Å
max
j∈Ji

(
vK(λi,j) + log|χmj |

)
+ ci

ã
,

hence the result since the (χmj
)j∈∪iJi have no common zeroes.

Let K be a complete valued field. As a consequence of thm. 2.2.9, any semi-
ample toric line bundle L = OZ(D) admits a canonical continuous psh metric ϕcan,
such that the associated convex function Φcan = ΨD. The canonical metric can be
described explicitly as follows: let V ⊂ PD be the set of vertices, then we have:

ϕcan = max
m∈PD

log|sm|.

Note that the (sm)m∈V have no common zeroes, as a semi-ample line bundle on
a toric variety is globally generated [Ful93, p. 68]. This definition can thus be
generalized to a smooth toric scheme over any Banach ring:

Definition 2.2.11. Let A be a Banach ring, and (Z,L) a smooth toric scheme
together with a semi-ample line bundle over A. The canonical metric on L is the
tropical Fubini-Study metric defined by the formula:

ϕcan = max
m∈PD

log|sm|,

where the sm are defined as in prop. 2.1.18.

The canonical metric is in particular fiberwise-toric.

2.2.3 Hybrid toric metrics

If ϕ is a toric hybrid metric on Lhyb, it follows from the previous discussions that it
is entirely determined by the function:

Φ(w) = − log∥s(ιhyb(w))∥ϕ,

where w ∈ Nhyb
Σ . Our next result asserts that in the case of continuous metrics, the

semi-positivity of ϕ can also be read on the hybrid tropical toric variety:

Theorem 2.2.12. Let Z = ZΣ be a toric variety over C, and L = (OZ(D), sD) a
semi-ample toric line bundle on Z. We write ΨD : NR × [0, 1] −→ R the associated
support function, extended trivially in the λ-direction.
There is a one-to-one correspondence between continuous, semi-positive, fiberwise-
toric metrics ϕ on Lhyb, and continuous convex functions:

Φ : NR × [0, 1] −→ R
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such that the function (Φ−ΨD) extends as a continuous function to NΣ × [0, 1].
The correspondence is explicitly given by:

ϕ 7−→
Å
(x, λ) 7→ − log∥sD(ιhyb(x, λ))∥ϕ

ã
.

Example 2.2.13. Assume that Φ(x, λ) ≡ Φ(x) is independent of λ. Then unravel-
ing the definitions and using the isomorphism Zhyb

λ ≃ Zhol obtained by rescaling the
absolute value, the induced family of metrics on Zhol is given by:

ϕλ(z) = λ−1Φ(−λ log|z|)),

while the non-archimedean metric ϕ0 on Zan
0 is described by the convex function Φ,

in the setting of theorem 2.2.9.
Similarly, pulling back on the trivial degeneration X = Z × D∗, our theorem states
in particular that the psh family of metrics on p∗1L:

ϕt = (− log|t|) · Φ(log|z|
log|t|

)

extends as a continuous psh metric to Xhyb, with ϕ0 = Φ ◦ val. Note that the ϕt are
psh with respect to (z, t) since Φ can be written as the decreasing limit of a sequence
of piecewise-affine functions.

In order to prove theorem 2.2.12, we will need, given a convex function Φ satisfy-
ing the assumptions of the theorem, to produce a continuous metric ϕ on Lhyb whose
associated convex function is Φ. The metric ϕ will be produced as a decreasing limit
of hybrid Fubini-Study metrics, after translating the following relative version of
prop. 2.1.8 in terms of toric metrics:

Proposition 2.2.14. Let P ⊂ MR be a convex polytope with support function ΨP

and normal fan Σ, and let Φ : NR × [0, 1] −→ R be a continuous convex function,
such that the function (Φ−ΨP ) extends continuously to NΣ × [0, 1].
Then there exists a sequence (Φj)j∈N of piecewise-affine convex functions on NR ×
[0, 1], such that:

• for all j ∈ N, the function (Φj −ΨP ) extends continuously to NΣ × [0, 1];

• the sequence (Φj)j decreases to Φ over NΣ × [0, 1];

• each Φj has rational slopes in the NR-direction, i.e. we may write:

Φj(x, λ) = max
α∈A

(
⟨uα, x⟩+ bαλ+ cα

)
,

where the uα ∈ P ∩MQ, and the aα, bα ∈ R.

Proof. Let Φ∗ : P ×R −→ R be the Legendre transform of Φ, then by lemma 2.2.15
below, the function (Φ∗−max{0, a}) extends continuously to P × [−∞,+∞], where
a is the coordinate on R.
Let ((xj, λj))j∈N be a dense sequence of rational points in NR× [0, 1], and let (rj,l)l∈N
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be a sequence of rational numbers decreasing to ϕ(xj, λj), uniformly with respect to
j. We furthermore assume that λ0 = 0 and λ1 = 1.
We set:

βj(u, a) = max
l≤j

(
⟨u, xl⟩+ aλl − rj,l

)
for (u, a) ∈ P × R, it is a sequence of piecewise-affine convex functions increasing
pointwise to Φ∗. The convergence also holds on P × [−∞,+∞] after substracting
max{0, a}, since for j ≥ 1 and |a| ≫ 1 depending on u, we have that (βj(u, a) −
max{0, a}) does not depend on a. As a result, the convergence is in fact uniform,
by Dini’s lemma.
We now take Φj to be the Legendre transform of βj, i.e.:

Φj(x, λ) = sup
(u,a)∈P×R

(
⟨u, x⟩+ aλ− βj(u, a)

)
,

the Φj’s are of the form described in the statement by the argument from lemma
2.1.9, as (βj(u, a) − max{0, a}) does not depend on a for |a| ≫ 1. Since the βj
increase uniformly to Φ∗, the Φj decrease uniformly to Φ∗∗, which is equal to Φ by
[Roc72, thm. 12.2].
It remains to prove that (Φj −ΨP ) extends continuously to NΣ × [0, 1]. For σ ∈ Σ,
and mσ ∈ M such that (ΨP )|σ ≡ mσ, since the convex hull Conv(uα)α = P , we
have that Φj(x, λ) = ⟨mσ, x⟩ + bj0λ + cj0 for x ∈ σ and |x| ≫ 1 independent on λ,
where j0 is such that uj0 = mσ This proves that (Φj −ΨP ) extends continuously to
NΣ× [0, 1], and decreasing convergence happens over NΣ× [0, 1] since it is uniform,
which concludes the proof.

Lemma 2.2.15. Let P ⊂ NR be a convex polytope, and let Φ : NR × [0, 1] −→ R
satisfying the assumptions of prop. 2.2.14. Then the Legendre transform:

Φ∗ : P × R −→ R

is continuous. Moreover, writing a the coordinate on R, the function (Φ∗−max{0, a})
extends continuously to P × [−∞,+∞].

Proof. Let (u, a) ∈MR × R, then:

Φ∗(u, a) = sup
NR×[0,1]

(
⟨u, x⟩+ aλ− Φ(x, λ)

)
= sup

NR×[0,1]

(
⟨u, x⟩+ aλ−ΨP (x) + (ΨP (x)− Φ(x, λ))

)
,

which is finite if and only if u ∈ P since (ΨP −Φ) is continuous, hence bounded on
NΣ × [0, 1]. We also infer that:

Φ∗(u, a) = sup
NΣ×[0,1]

(
⟨u, x⟩+ aλ− Φ(x, λ)

)
whenever u ∈ P , since Φ(x, λ) = −∞ for x ∈ NΣ \NR. As a result, Φ∗ is continuous
on P × R as a fiberwise-supremum over a compact set of a continuous function.
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We now prove the second item, we assume a ≥ 0 as the other case is treated in the
same way. The convex function Ψu : a 7→ (Φ∗(u, a)− a) on R≥0 can be written as:

Ψu = sup
λ∈[0,1]

(
(λ− 1)a+ ηu(λ)

)
,

where η is a continuous function of (u, λ). As a result, Ψu is a bounded convex
function, decreasing on R≥0, and whose limit at +∞ is sup[0,1] ηu, which is continuous
with respect to u. Thus, the family (Ψ(u, a))a≥0 of continuous convex functions on P
decreases with respect to a to a continuous function, so that they converge uniformly
by Dini’s lemma, and (Φ∗ − a) extends continuously to P × [0,+∞].

Proof of theorem 2.2.12. Let ϕ ∈ CPSH(Zhyb, Lhyb) be a continuous psh, fiberwise-
toric metric, and write:

Φ : NR × [0, 1] −→ R,

(x, λ) 7→ − log∥sD(ιhyb(x, λ))∥ϕ,
it is a continuous function by prop. 2.2.4. Then writing ϕ = limj ϕj as the decreasing
limit of a net in FSτ , we have that Φ = limj Φj as a decreasing limit, so that to
prove that Φ is convex on NR × [0, 1], it is enough to prove that Φj is convex for
ϕj ∈ FSτ (Lhyb). Dropping the j subscript, we write:

ϕ = m−1max
α∈A

(log|sα|+ cα),

with sα ∈ H0(Z,mL) and cα ∈ R. By convexity of the maximum of finitely many
convex functions, we are reduced to the case:

ϕ = m−1 log|s|,

where s ∈ H0(Z,mL) for some m > 0. Using the isomorphism OT(D) = sDOT, we
may write s = f × (sD)

m on T for f ∈ K[M ], so that:

Φ(x, λ) = m−1 log
∣∣smD
s
((ιhyb(x, λ))

∣∣ = m−1 log|f(ιhyb(x, λ))|.

By the proof of prop. 2.2.4 and with the same notation, we have:

Φ(x, λ) = λm−1 log
∣∣∑
j∈J

aje
−λ−1⟨mj ,x⟩

∣∣
for λ ̸= 0, while:

Φ(x, 0) = −m−1min
j∈J
⟨mj, x⟩.

The fact that Φ is convex on NR × [0, 1] is now elementary.
We now move back to the case where ϕ ∈ CPSH(Lhyb) is an arbitrary continuous
psh, fiberwise-toric metric on Lhyb. To prove that (Φ−ΨD) extends continuously to
NΣ× [0, 1], we argue as in the proof of [BGPS14, prop. 4.3.10]. Let σ ∈ Σ be a cone,
then there exists mσ ∈M such that the support function Ψ|σ ≡ mσ. Moreover, the
section sσ := χ−mσsD is a nowhere vanishing section of L on Zσ. As a result, the
function:

(x, λ) 7→ − log∥sσ(ιhyb(x, λ))∥ϕ
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is continuous on Nσ× [0, 1]. However the above expression is easily seen to be equal
to Φ(x, λ) − ⟨mσ, x⟩ = Φ(x, λ) − ΨD(x), so that (Φ − ΨD) extends continuously to
NΣ × [0, 1].
Conversely, let Φ : NR × [0, 1] −→ R be a continuous convex function, such that
(Φ − ΨD) extends continuously to NΣ × [0, 1]. We want to produce a continuous,
semi-positive hybrid metric ϕ on L such that Φ = − log∥sD ◦ ιhyb∥. We start by
applying prop. 2.2.14 to produce a decreasing sequence (Φj)j∈N of continuous convex
functions on NR × [0, 1], converging to Φ pointwise, and such that the function
(Φj − ΨD) extends continuously to NΣ × [0, 1] for all j ≥ 0. Additionally, we may
write Φj as:

Φj = d−1
j max

α∈A

(
⟨mα, ·⟩+ bαλ+ cα

)
,

with the mα ∈ M ∩ PD. Since Φj(·, λ) is D-admissible for any λ, it follows from
lemma 2.1.19 that (smα , α ∈ A) is a family of toric sections of mL without common
zeroes, so that:

ϕj = m−1max
α∈A

(
log|smα|+ bα log|e|+ cα

)
is a Fubini-Study hybrid metric on L, inducing the convex function Φj on NR× [0, 1]
by the lemma below. Moreover, since the (Φj − ΨD)j decrease to (Φ − ΨD) over
NR × [0, 1], the same holds over NΣ × [0, 1] by uniform convergence, which is easily
seen to imply that the ϕj decrease to a continuous metric ϕ on Lhyb, which concludes
the proof.

Lemma 2.2.16. Let L = (OZ(D), sD) be a toric line bundle on Z, and m ∈M∩PD.
We write ϕ = log|sm| the singular metric on Lhyb induced by prop. 2.1.18. Then for
(x, λ) ∈ NR × [0, 1], the equality:

− log∥sD(ιhyb(x, λ))∥ϕ = ⟨m,x⟩

holds.

Proof. By definition, we have:

− log∥sD(ιhyb(x, λ))∥ϕ = log(
|sm|
|sD|

)(ιhyb(x, λ)),

but under the isomorphismOT(D) = sD·OT we have sm/sD = χ−m, which concludes.

2.2.4 Hybrid family of Haar measures

We conclude this chapter with a discussion on Haar measures on hybrid tori, elab-
orating on the framework from [BGPS14, §4.2], compare also [Poi22, thm. B]
Let Z be a complex projective toric variety, and π : Zhyb −→ [0, 1] the asso-
ciated hybrid space. For each λ > 0, there exists a canonical homeomorphism
pλ : Z

hol ∼−→ Zλ = π−1(λ), where Zhol denotes the complex analytification of Z.
For x ∈ NR, let Sx = val−1(x) ⊂ Thol, and ιλ : Thol ↪→ Zhyb be the composition of
the embedding Thol ⊂ Zhol with the isomorphism Zhol ≃ Zhyb

λ . The real compact
torus Sx carries a canonical Haar probability measure µS, which we can pushforward
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to the complex torus, and then to Zhyb via the embedding ιλ. We write the resulting
measure as:

µx,λ := (ιλ)∗µSx

for λ > 0, and define:
µx,0 = δγ(x)

the Dirac mass at the Gauss point γ(x).
It is well-understood that the natural non-archimedean analog of the Haar measure
on a real compact torus is the Dirac mass at the Gauss point of the affinoid torus
[BGPS14, prop. 4.2.10], the following theorem shows that the analogy is furthermore
continuous on the hybrid space:

Theorem 2.2.17. Let Z be a complex projective toric variety, and Zhyb the asso-
ciated hybrid space. Then the family of measures (µx,λ)(x,λ)∈NR×[0,1] on Zhyb defined
above is weakly continuous.

Proof. We need to prove that if f ∈ C0(Zhyb), then the real-valued function:

(x, λ) 7→
∫
Zhyb

f(z)dµx,λ(z)

is continuous on NR × [0, 1]. If λ > 0, then:

(x, λ) 7→
∫
Zhol

f(z, λ)dµSx(z)

is continuous on NR × (0, 1] by dominated convergence, since f is continuous and
bounded on Zhol × (0, 1].
We now need to examine what happens when λ −→ 0. By density of DFS(Zhyb) ⊂
C0(Zhyb), it is enough to prove the statement for f ∈ DFS(Zhyb), so that we may
assume that there exists a line bundle L on Z such that f = f1 − f2, with fi ∈
FS(Zhyb, Lhyb). Since every line bundle on Z is isomorphic to a toric one, we may
and will assume that L is a toric line bundle. We thus write:

fi = m−1max
α∈A

(log|sα|+ cα),

for i = 1, 2. Since the measures µx,λ are supported on Thyb, on which each section
sα ∈ H0(Z,mL) can be written as Pα × sD, where Pα ∈ C[M ], we are reduced to
the case where L = OZ and f = g1 − g2, where:

gi = m−1max
α∈A

(log|Pα|+ cα),

with Pα ∈ C[M ]. The result thus boils down to the lemma below.

Lemma 2.2.18. Let (Pα)α∈A be a finite family of polynomials in C[z1, ..., zn]. For
x ∈ Rn and λ ∈ R>0, we define the polydisk Dλ,x := {λ log|zi| < −xi ∀i ≤ n} and
Sλ,x its distinguished boundary. Then there exists a locally bounded function B of x
such that:∣∣∣∣ ∫

Sλ,x
max
α∈A

(λ log|Pα(θ)|+ cα)dµ(θ)−max
α∈A

(−vγ(x)(Pα) + cα)

∣∣∣∣ ≤ λ×B(x),

where the Haar measure µ on Sλ,x is normalized to have mass 1.
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Proof. The left integral can be written as:∫
(S1)n

(
max
α∈A

log|Pα(exp(−λ−1x+ iθ))|+ cα
)
dθ,

where dθ is the Haar probability measure on (S1)n.
However if P =

∑
m∈M amχ

m and θ ∈ (S1)n, we have:

λ log|P (exp(−λ−1x+ iθ)|+ min
am ̸=0
⟨m,x⟩ = λ log

∣∣ ∑
m∈M

ame
− ⟨m−m0,x⟩

λ
+iθ
∣∣,

where m0 achieves the minimum of ⟨m,x⟩ for am ̸= 0. We infer that:

λ log|P (exp(−λ−1x+ iθ)|+ min
am ̸=0
⟨m,x⟩ = λ log

∣∣aeiθ +∑
m′

am′e−
⟨m′−m0,x⟩

λ
+iθ
∣∣,

where a is a constant and ⟨m′ − m0, x⟩ > 0 for all m′. Taking the maximum and
averaging over (S1)n, this concludes the proof.



Chapter 3

The non-archimedean SYZ fibration

3.1 Generalities
We will now move on to the main motivation for the content of the previous sections:
maximal degenerations of Calabi-Yau manifolds. We start with a definition:

Definition 3.1.1. A Calabi-Yau manifold is a compact Kähler manifold X whose
canonical bundle KX is trivial, i.e. there exists a nowhere-vanishing holomorphic
n-form Ω on X, where n = dim(X).

Note that there are various definitions of Calabi-Yau manifolds across the lit-
erature, some authors require for instance that there exist no global holomorphic
k-forms on X for 0 < k < n; we will rather call such manifolds strict Calabi-Yau.
Our broader definition includes for instance complex tori, as well as hyperkähler
varieties.
One of the main reason Calabi-Yau have aroused great interest in Kähler geometry
is the fact that, as originally conjectured by Calabi, they carry Kähler Ricci-flat
metrics (in each Kähler class), according to the celebrated Yau theorem:

Theorem 3.1.2. [Yau78]
Let (X,L) be a polarized Calabi-Yau manifold, and Ω ∈ H0(X,KX) such that∫
X
in

2
Ω ∧ Ω̄ = 1. Then there exists a unique smooth Hermitian metric ϕCY on L

whose curvature form ω = ddcϕCY is a Kähler form, satisfying the complex Monge-
Ampère equation:

ωn = (Ln)in
2

Ω ∧ Ω̄.

3.1.1 The classical SYZ picture

The original Strominger-Yau-Zaslow conjecture [SYZ96] appeared as an attempt
to provide mathematic explanation to the following duality phenomenon, initially
observed by physicists: a smooth Calabi-Yau threefold X should admit a mirror
dual X̌, satisfying a certain amount of dual properties - the complex geometry of X
being somehow encoded by the symplectic geometry of X̌. The simplest incarnation
of this would be the quarter-rotation of the Hodge diamond when passing from X
to its mirror dual:

hp,q(X) = hn−q,p(X̌).

109
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More generally, one expects various correspondences between moduli spaces attached
to X and X̌: the moduli space of holomorphic D-branes on X (which are complex
submanifolds with additional structure) should be isomorphic to the moduli space
of special Lagrangian D-branes on X̌. Thus, since X itself is the moduli space of
points in X, one should be able to realize X as a certain moduli space of special
Lagrangian submanifolds of X̌.

Definition 3.1.3. Let (X,ω,Ω) be a Calabi-Yau manifold of dimension n, and B
an n-dimensional (real) topological manifold.
A special Lagrangian fibration f : X −→ B is a continuous map which is a smooth
torus fibration outside a codimension 2 subset Γ ⊂ B, and such that for all b ∈ B\Γ,
ω|f−1(b) ≡ 0 and the imaginary part ℑ(Ω)|f−1(b) ≡ 0.

If f : X −→ B is a special Lagrangian torus fibration, we write Bsm := B \ Γ
its smooth locus, each smooth fiber Xb = f−1(b) for x ∈ Bsm is a smooth, special
Lagrangian (real) torus inside X.
Loosely speaking, the SYZ conjecture predicts that if X, X̌ are two mirror dual
Calabi-Yau manifolds, each of them should admit a special Lagrangian torus fibra-
tion onto the same half-dimensional base B, and those two fibrations should be dual
to each other, in the sense that for b ∈ B, the fibers Xb and X̌b should be dual
tori, i.e. X̌b ≃ H1(Xb,R/Z). Hence, given a Calabi-Yau manifold X and a special
Lagrangian fibration f : X −→ B, the SYZ heuristic provides a program to recon-
struct the mirror X̌, by dualizing the fibration f over Bsm and then extend this
fibration over B.
The problem of compactifying a smooth Lagrangian torus fibration into a singu-
lar one has proven to be a difficult problem, and has led to many developments
over the past years; we refer the reader to the series of recent or upcoming papers
[RZ21a, RZ21b, RZ] for some progress on these questions.
The fibration induces the two following structures on Bsm: a Z-affine structure ∇Z,
and a Riemannian metric gB called the McLean metric. We start with a definition:

Definition 3.1.4. An integral affine structure on a topological manifold is an atlas
of charts (called Z-affine charts) with transition functions in GLn(Z)⋉Rn.

If B is a manifold endowed with an integral affine structure, it makes sense to
speak about integral affine functions on B - those are continuous functions on B that
are, locally in Z-affine coordinates, of the form f(x1, . . . , xn) = a1x1+ . . .+anxn+ b,
with ai ∈ Z and b ∈ R. We denote by AffRn the sheaf of integral affine functions on
Rn.

Lemma 3.1.5 ([KS06, 2.1]). An integral affine structure on a topological manifold
M is equivalent to the datum of a subsheaf AffB of the sheaf of continuous functions
on B such that (B,AffB) is locally isomorphic to (Rn,AffRn).

Remark 3.1.6. Given an integral affine structure on a topological manifold M ,
there is a monodromy representation

T : π1(B)→ GLn(Z)⋉Rn

defined by covering a loop in M by affine charts and composing the corresponding
transition functions. See [KS06, 2.2] for more details.
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Let b ∈ Bsm and v ∈ TbB a tangent vector, then the symplectic form ω on X
induces an isomorphism between TbB and T ∗

xXb, the latter of which can be identified
to H1(Xb,R) via evaluation of harmonic 1-forms (here we are using the fact that Xb

is a real torus).
The lattice and metric on TbB are now simply taken to be the pullbacks of the lattice
H1(Xb,Z) and the Hodge metric:

g(α, β) =

∫
Xb

α ∧ ∗β,

the Hodge star being the one of the metric induced on Xb by ω.
One can check that there locally exists a convex function K : Bsm −→ R such that
in Z-affine coordinates yi, the McLean metric can be written as:

gij =
∂2K

∂yi∂yj
.

Note that the above constructions also work for a Lagrangian torus fibration, not
necessarily special.
Conversely, starting from the data of (B,∇Z, K) a smooth Z-affine manifold together
with a (multi-valued) convex function, one can construct a toy model of Lagrangian
fibration with base B as follows: set X = X(B) to be the tangent torus bundle,
that is, X(B) = TB/Λ, Λ being the local system of lattices associated to ∇Z.
In term of local Z-affine coordinates yj on B, we can pick fiber coordinates xj = dyj,
and the complex structure on X is defined by requiring the functions:

zj = e2iπ(xj+iyj)

to be holomorphic. In particular, the map f is now given by:

f(z1, ..., zn) =
1

2π
(− log|z1|, ...,− log|zn|).

The Kähler form on X is defined in terms of its local potential:

ω = i∂∂̄(K ◦ f),

which restricts to zero on any torus fiber - we even have a stronger statement, that
the Kähler metric gω restricts to a flat metric to each of the torus fibers, hence the
name semi-flat metric. Moreover, the complex Monge-Ampère measure:

ωn =
(
ddc(K ◦ f)

)n
is directly related to the real Monge-Ampère measure of K in affine coordinates, as
we have: (

ddc(K ◦ f)
)n

= det(
∂2K

∂yi∂yj
)dz ∧ dz̄,

where dz = dz1 ∧ ... ∧ dzn.
Later on, it was realized that the SYZ picture should rather occur as an asymptotic
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phenomenon on the moduli space of Calabi-Yau manifolds, near the locus of the
boundary where the manifolds degenerate in the worst possible way - in the ter-
minology of mirror symmetry, this means that the manifolds approach the "large
complex structure limit". Thus, we now let X −→ D∗ be a degeneration of Calabi-
Yau manifolds, polarized by a relatively ample line bundle L. We will assume that
the degeneration is the worst possible, i.e. that the fibers Xt break into as many
pieces as possible as t → 0. The precise definition is as follows:

Definition 3.1.7. The family X is maximally degenerate if for every dlt model
X −→ D of X, the equality:

dimD(X ) = dim(Xt)

holds.

Concretely, this means that for any dlt model X of X, there exists a non-
empty intersection of n components of X0, where n = dimXt. The latter condition
is equivalent to the fact that the monodromy action on Hn(Xt,Q) is maximally
unipotent, i.e. has a Jordan block of size (n+ 1).

Example 3.1.8. In the 2-dimensional case, projective maximally degenerate Calabi–
Yau surfaces coincide with either K3 surfaces of Type III, or abelian varieties such
that after semi-abelian reduction, the abelian part of the special fiber of the Néron
model is trivial.

We now let (X,L) be a polarized, maximal degeneration of Calabi-Yau manifolds.
We fix a relative trivialization Ω ∈ H0(X,KX/D∗), and write ω = (ωt)t∈D∗ the
family of Kähler-Ricci flat metrics on X, normalized by the cohomological condition
ωt ∈ c1(Lt).
In this setting, a strong version of the SYZ conjecture would predict the following:
for any |t| << 1, the fiber Xt admits a special Lagrangian fibration:

ft : Xt −→ Bt,

onto a compact base Bt of real dimension n, depending in a smooth way of t in
a reasonable sense, and whose fibers are of size (log|t|−1)−1 with respect to the
rescaled Calabi-Yau metric ω̃t ∈ c1(Lt)∣∣ log|t|∣∣ . These rescaled Calabi-Yau metrics indeed

have bounded diameters by [LT20].
In particular, the rescaled Ricci-flat Kähler manifolds (Xt, ω̃t) should collapse in the
Gromov-Hausdorff sense to the base B := limt→0Bt, endowed with an asymptotic
version of the MacLean metric alluded to above.

Conjecture 3.1.9. (Weak SYZ conjecture) Let (X,L) be a polarized, maximal de-
generation of Calabi-Yau manifolds. Then for any δ > 0, there exists ε = εδ > 0
such that for |t| < ε, there exists a special Lagrangian fibration:

ft : Ut −→ B,

where Ut ⊂ Xt is an open subset of Calabi-Yau measure greater than (1− δ).
Moreover, the rescaled Calabi-Yau metrics (Xt, ω̃t) converge in the Gromov-Hausdorff
sense as t→ 0 to a compact n-dimensional base (B, gB), such that:
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• (B, gB) is a the metric completion of a smooth Riemannian manifold (Bsm, gBsm),
whose complement Γ = B \Bsm has Hausdorff codimension ≥ 2;

• the smooth locus Bsm is endowed with an integral affine structure, such that the
metric g has a potential locally in affine coordinates: we may write gij = ∂2K

∂yi∂yj

in affine coordinates (y1, ..., yn), for a smooth function K;

• the metric g solves the real Monge-Ampère equation det(gij) = 1 on Bsm.

This is known in the case of abelian varieties by the work of [Oda18], and for
Fermat hypersurfaces in Pn+1

C by [Li22].

3.1.2 The essential skeleton

In this section, we will explain how the base B of the SYZ fibration can be realized
in the non-archimedean world.
Let X −→ D∗ be a projective degeneration of smooth complex varieties, with rela-
tively trivial canonical bundle. We use the same notation X/K for the base change
to K = C((t)).
We let Ω ∈ H0(X,KX/D∗) be a fiberwise nowhere-vanishing n-form on X; this in-
duces a continuous family of volume forms νt := in

2
Ωt ∧ Ω̄t on the Xt’s, and thus a

continuous family of probability measures:

µt :=
νt

νt(Xt)
.

We are interested in determining the hybrid limit of the µt’s, so that in light of the
discussion following proposition 1.1.27, we fix an snc model X −→ D of X, in order
to understand the asymptotic behaviour of the measures (LogX )∗νt.
Write X0 =

∑
i∈I aiDi, and:

K log
X /D := KX /D + (X0,red −X0) =

∑
i∈I

biDi.

We choose our relative holomorphic n-form so that it extends as a holomorphic
section of K log

X /D. We will assume for convenience that mini∈I
bi
ai

= 0, see [BJ17] for
the more general computation.
We let (U , z) be a coordinate chart, and J the set of irreducible components of X0

meeting U . Then we have, on U :

Ωt ∧
dt

t
= f

∏
j∈J

z
bj
j ×

dz0
z0
∧ ... ∧ dzn

zn
,

with f holomorphic and nowhere-vanishing. Restricting to the fiber Xt, this yields:∫
U ∩Xt

νt =

∫
|f |2

∏
j∈J

|zj|2bj
∣∣d log z1 ∧ ... ∧ d log zn∣∣2,

where the second integral is taken over a domain of the form
∑

j∈J aj log|zj| = log|t|
inside Cn+1.
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We thus work in logarithmic polar coordinates, and write zj = exp(wj + iθj). This
yields, after integrating over the angle directions and the coordinates not in J :∫

U ∩Xt

νt =

∫
τt

F
∏
j∈J

ebjwjdwj,

where τt = {
∑

j∈J ajwj = − log|t|} and F is a non-vanishing, bounded continuous
function. It then follows from the change of variable w′

j = ajwj that as t → 0, we
have: ∫

U ∩Xt

νt = (log|t|−1)d(J) ×O(1),

where d(J) =
∣∣{j ∈ J/bj = 0}

∣∣− 1. This leads to the following definition:

Definition 3.1.10. Let X be an snc model of the Calabi-Yau variety X/K, and
write X0 =

∑
i∈I aiDi, K log

X /D =
∑

i∈I biDi. For i ∈ I, set κi = bi
ai

, and let κmin =
mini∈I κi.
A face τ ⊂ Sk(X ) is essential if κi = κmin for each vertex vi ∈ τ ; we define the
essential skeleton Sk(X) ⊂ Sk(X ) as the union of the essential faces of Sk(X ), it
is a subcomplex of dimension d ≤ n.

As suggested by the notation, the essential skeleton Sk(X) turns out to be inde-
pendent of the choice of snc model X , by [KS06, thm. 3]. The essential skeleton can
also be defined more intrinsically as the locus where the weight function associated
with a non-vanishing section Ω ∈ H0(X,KX), wtΩ : Xan −→ R defined in [MN15]
reaches its minimum; given an snc model X /R and a vertex vi ∈ Sk(X ), we simply
have wtΩ(vi) = bi

ai
with the notation from the previous computation. We refer the

reader to [MN15] and [NX16] for details.
We now have the following result, which computes the weak limit on the Calabi-
Yau measures inside the hybrid space Xhyb. The support of the limiting measure is
precisely the essential skeleton:

Theorem 3.1.11. [BJ17, thm. B]
Let X −→ D∗ be a degeneration of Calabi-Yau manifolds, and Ω ∈ H0(X,KX/D∗) a
relative trivialization of the canonical bundle. Writing νt = in

2
Ωt ∧ Ω̄t, we have:

νt(Xt) ∼ C|t|κ(log|t|−1)d,

as t → 0, where κ ∈ Q and d = dimSk(X) ≤ n. Moreover, the family of rescaled
measures:

µt =
νt

νt(Xt)

converge weakly on Xhyb to a Lebesgue-type measure supported on Sk(X) ⊂ Xan.

Here by Lebesgue-type measure we mean a weighted sum of Lebesgue measures
on the top-dimensional faces - in fact when X has semi-stable reduction the weights
are all equal.
This result provides heuristic explanation as to why the base B of the SYZ fibration
should be the essential skeleton Sk(X): since the Calabi-Yau metric is obtained by
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solving the complex Monge-Ampère equation (ωt)
n = Ctµt, one would expect the

solution to the non-archimedean Monge-Ampère equation MA(ϕ) = µ0 provided by
theorem 1.4.7 to provide a non-archimedean incarnation of the family of Calabi-
Yau metrics; and since µ0 is supported on Sk(X) one would hope to translate this
equation into a real Monge-Ampère equation on Sk(X), so that the base B appearing
in conjecture 3.1.9 is Sk(X). We will come back to this in section 3.1.4.
As we shall now explain, there exists a class of R-models of X whose skeleta realize
the essential skeleton. Those are the minimal models in the sense of MMP:

Definition 3.1.12. Let X/K be a Calabi–Yau variety. A minimal model of X is
a good dlt (def. 1.1.11) model X /R, such that the logarithmic relative canonical
divisor is trivial, i.e.

K log
X /R := KX /R + X0,red −X0 ∼ OX .

Building on the general MMP machinery, the existence of such models is known
when X is defined over an algebraic curve (and is expected to hold in the general
case):

Theorem 3.1.13 ([NXY19, Theorem 1.13]). Let X/K be a projective Calabi–Yau
variety, and assume that X is defined over an algebraic curve. Then there exists a
minimal model X /R of X. Furthermore, there exists a finite extension K ′/K such
that the base change XK′ admits a minimal model with reduced special fiber.

Such models are however not unique, but they turn out to have the same skeleton
inside Xan by [NX16] (even though the triangulation may differ), which is in fact
the essential skeleton of X:

Theorem 3.1.14. [NX16, thm. 3.3.3] Let X/K be a Calabi–Yau variety, and let
X /R be a minimal dlt model of X. Then the skeleton Sk(X ) ⊂ Xan is the essential
skeleton of X.

Note that if the minimal model is an snc model, then this is a straightforward
consequence of definition 3.1.10.

3.1.3 Affinoid torus fibrations

From now on, we will assume that X/D∗ is a maximal degeneration of Calabi-Yau
manifolds. Then the metric spaces (Xt, ω̃t) are conjectured to “look like” the total
space of a special Lagrangian torus fibration over Sk(X), submersive away from a
singular locus of real codimension 2; the affine structure on the base being induced
by action-angle coordinates. Building on these considerations, it is reasonable to
expect that the essential skeleton Sk(X) should be equipped with an integral affine
structure, singular in real codimension ≥ 2. We will now explain how to try and
construct such an affine structure in a purely non-archimedean setting, we write Xan

the Berkovich analytification of X viewed as a variety over K = C((t)).
As we saw in section 3.1.1, our local semi-flat model for the SYZ fibration is given
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by f : T −→ NR, the map f being simply f(z1, ..., zn) = (− log|z1|, ...,− log|zn|).
The non-archimedean counterpart of this map is the following:

val : Tan −→ NR.

This leads to the following definition:

Definition 3.1.15. Let ρ : Xan −→ B be a continuous map to a topological space
B. For any point b ∈ B, we say that ρ is an affinoid torus fibration at b if there
exists an open neighbourhood U of b in B, such that the restriction to ρ−1(U) fits
into a commutative diagram:

ρ−1(U) val−1(V )

U V,

≃

ρ val

∼

V being an open subset of Rn, the upper horizontal map an isomorphism of analytic
spaces, the lower horizontal map a homeomorphism, and the map val defined as in
section 2.2.1.

Note that the above definition implies that B is a topological manifold at b. In
the case where X is a good dlt model of X, the base B = Sk(X ) and ρ is the
Berkovich retraction ρX , this does not necessarily hold at every point of Sk(X ).
Given a continuous map ρ : Xan −→ B, we denote by Bsm the locus of points in B
where ρ is an affinoid torus fibration at; we call B \Bsm the discriminant or singular
locus of ρ. As in the archimedean case, the (possibly disconnected) topological
manifold Bsm is endowed with an integral affine structure, which is the pull-back
of AffRn via the charts in 3.1.15. An alternative, more intrinsic description of this
structure is given in [KS06, 4.1, Theorem 1]: let U ⊂ Bsm be a connected open
subset. Then if h is an invertible analytic function on ρ−1(U), its modulus |h| is
constant on the fibers of ρ by the maximum principle, so that it defines a continuous
function on the base. We now have:

AffBsm(U) = {− log|h| |h ∈ O×
Xan(ρ−1(U))}.

Example 3.1.16. If X /R is a good dlt model of X with reduced special fiber, then
the Berkovich retraction ρX : Xan → Sk(X ) is an affinoid torus fibration over the
interior of the maximal faces τ of Sk(X ). Indeed, the retraction over τ̊ only depends
on the formal completion of X along the corresponding 0-dimensional stratum p,
and we have that ρ−1

X (̊τ) is the generic fiber of Spf “OX ,p. By the dlt condition, the
pair (X ,Xk) is snc at p, so that:“OX ,p ≃ R[[z0, ..., zn]]/(t− z0...zn).

The generic fiber Xη
p embeds in the torus:

Tan =
(
SpecK[z0, ..., zn]/{t = z0...zn}

)an
,

and the Berkovich retraction is the restriction of the val map over the open simplex:

Int(τ) = {x0 + ...+ xn = 1} ⊂ (R>0)
n+1.
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Definition 3.1.17. Let X/K be a smooth projective variety, B = Sk(X ) the skele-
ton of a dlt R-model of X. We say a continuous map:

ρ : Xan −→ B

is an admissible retraction if the following hold:

• there exists a piecewise-affine locus Γ ⊂ B of codimension ≥ 2 such that ρ is
an affinoid torus fibration over Sk(X) \ Γ;

• the retraction ρ is piecewise-affine: for any piecewise-affine function ψ : B −→
R, the pullback ψ ◦ ρ : Xan −→ R is a piecewise-affine function on Xan (see
defn. 1.1.21).

One way to produce a map satisfying the second item of the definition is to
choose an snc model X ′ −→ X dominating X , and a piecewise-affine map π :
Sk(X ′) −→ Sk(X ). Then the retraction ρ = π ◦ ρX ′ is piecewise-affine, it would
be interesting to know whether or not all piecewise-affine maps ρ : Xan −→ Sk(X )
arise this way.
As suggested by the definition, affinoid torus fibrations are related to the local toric
geometry of X and its models. We now describe a more global class of examples,
that we will be using as building blocks later on.
Let X /R be a regular toric model of T, i.e. a regular toric R-scheme such that
X ×R SpecK = T, which we assume to have reduced special fiber. Such a model
is described by a regular fan Σ̂ ⊂ N̂R := NR ×R≥0, whose cones intersect NR × {0}
only at the origin.
We consider the following closed subset of Tan:

X̂η := {vx ∈ Tan| vx has a center on X },

which admits a Berkovich retraction:

ρX : X̂η −→ Sk(X )

defined as in remark 1.1.18. In this case, the map ρX can be described explicitly as
follows: let Σ1 be the polyhedral complex in NR obtained by intersecting the fan Σ̂
with NR × {1}. There is a natural identification between Σ1 and D(X0), sending a
vertex of D(X0) to the primitive generator of the corresponding ray of Σ̂, and then
extending on each face by linearity. Moreover, it follows from [GJKM19, Theorem
A.4] that γ(|Σ1|) = Sk(X ) ⊂ Tan, where γ : NR −→ Tan is the Gauss embedding
from definition 2.2.2.

Proposition 3.1.18 ([NXY19, Example 3.5]). The equality:

X̂η = val−1(|Σ1|)

holds, and ρX = val|X̂η
, hence is an affinoid torus fibration over the relative interior

of Sk(X ).

This also holds when X is a regular proper toric variety over K and X /R a
regular proper toric model of X, by [GJKM19, Theorem A.4].
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Proof. We start by proving the first equality. Let x ∈ Tan, we know from lemma
3.1.19 below that x has a center on X if and only if γ(val(x)) has a center on X .
Thus, it is enough to prove that for n ∈ NR and y = γ(n), y has a center on X if
and only if n ∈ |Σ1|.
By [GJKM19, Lemma A.1], if y ∈ γ(NR) has a center on X , it must be the closure
of a torus orbit Y ⊂ X0. By [KKMSD73, Theorem 6], there exists a cone σ ∈ Σ̂
such that the generic point of Y is contained in the associated toric affine chart
Xσ = SpecR[σ̌ ∩ M̂ ]. In particular, for any monomial zm that is regular on Xσ,
we have vy(zm) ≥ 0. In other words, writing y = γ(n), we have ⟨n,m⟩ ≥ 0 for all
m ∈ σ̌, so that n ∈ σ. Since vy(t) = 1, y ∈ γ(|Σ1|).
By the same argument, if n ∈ |Σ1|, there exists a cone σ such that n ∈ σ, which
means that vγ(n) has positive value on each monomial m ∈ σ̌, and thus has a center
on Xσ and in particular on X .

To prove the second equality, since ρX is the identity on γ(|Σ1|) = Sk(X ), we
merely have to prove that ρX = ρX ◦ val. However this follows directly from the
definition of ρX , and the fact that cX (x) ∈ cX (γ(val(x))) for x ∈ X̂η by lemma
3.1.19. Indeed, ρX (x) only depends on the values vx(z), where z is a local equation
for a component of X0 at cX (x). Since X is a toric model, these local equations
can be taken to be monomials, so that the result follows from the fact that x and
γ(val(x)) take the same values on monomials.

Lemma 3.1.19. Let x ∈ Tan. Then x has a center on X if and only if γ(val(x))
has a center on X . Moreover, if this holds, we have cX (x) ∈ cX (γ(val(x))).

Proof. Let X ⊂ X̄ be a toric compactification of X , i.e. a proper toric R-scheme
containing X as a torus-invariant open subset. By the valuative criterion of proper-
ness, any valuation on Tan has a center on X̄ . We write cX̄ (x) for the center of
x ∈ Tan. We start by proving that cX̄ (γ(val(x)) is the generic point of the clo-
sure Z of the torus orbit O(σ) in X̄ containing cX̄ (x) (in particular, cX̄ (x) must
be contained in the toric interior of Z). We may work on the toric affine chart
X̄σ = SpecR[σ̌ ∩ M̂ ] associated with Z. Since the valuation γ(val(x)) is monomial,
it is enough to prove that γ(val(x))(zm) = vx(z

m) ≥ 0 for m ∈ σ̌ ∩M and that
γ(val(x))(z) > 0 for z a local equation of any torus invariant divisor containing Z,
to have that cX̄ (γ(val(x))) lies in Z. Since zm is regular on X̄σ, the first condi-
tion holds; the local equation z is monomial and γ(val(x))(z) = vx(z) > 0 since Z
contains cX̄ (x).

Now assume that vx is centered on X , i.e. cX̄ (x) ∈X . Since cX̄ (x) is contained
in the interior of the toric stratum Z and lies in X , so does the generic point of Z,
i.e. cX̄ (γ(val(x))) ∈X . This implies that γ(val(x)) has a center on X . Conversely,
if γ(val(x)) has a center Z on X , then Z ⊂X and cX̄ (x) ∈ Z as mentioned above;
thus, cX̄ (x) ∈X , which concludes the proof.

As our main interest lies in degenerations of Calabi-Yau manifolds, the above
class of examples is too restrictive for us. We are thus naturally lead to consider
degenerations which are only locally formally toric, so that we may apply remark
1.1.18 to produce Berkovich retractions which are locally affinoid torus fibrations.
Let us make this more precise. Following [NXY19], we will say that an R-scheme
of finite type Z is toric if there exists a toric k-scheme of finite type Z, together
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with a toric morphism t : Z −→ A1
k, such that Z ≃ Z ×A1 R. Writing “N for

the lattice of 1-parameter subgroups of the torus of Z, such a scheme is described
by a fan Σ̂ in “NR, together with a linear map ord(t) : |Σ̂| −→ R≥0, defined by
ord(t)(n) = ord0(t ◦n) for a 1-parameter subgroup n : Gm → Z. Note that the map
ord(t) recovers the function t uniquely, since it is a monomial.

Definition 3.1.20. Let X be a normal R-scheme of finite type, such that (X ,X0)
is a good dlt pair, and let Y be a stratum of X0. We say that X is toric along Y
if there exists a toric R-scheme Z , a stratum W of Z0 and a formal isomorphism
over R ‘X/Y ≃‘Z/W .

The upshot is now that if X is toric along Y , then the Berkovich retraction
ρX : Xan −→ Sk(X ) is an affinoid torus fibration over Star(τY ). Although this
follows from [NXY19, Theorem 6.1] (end of the proof) and [NXY19, §3.4], we sketch
an argument for reader’s convenience.
As mentioned in remark 1.1.18, the retraction ρX over Star(τZ) only depends on‘X/Z , so that we may assume that X is a toric R-scheme. The equality ρX = val
now holds over Star(τZ) by 3.1.18, so that it follows from 3.1.15 that ρX is an affinoid
fibration over Star(τZ).
An obvious necessary condition for X to be toric along Y is for Y to be a toric
variety itself; our next result (joint with E. Mazzon) states that under a positivity
assumption on the conormal bundle of Y ⊂X , the converse holds:

Theorem 3.1.21. [MPS21, thm. B] Let X/K be a smooth projective variety of
dimension n, and X /R be a dlt model of X with reduced special fiber X0 =

∑
αDα,

such that every Dα is a Cartier divisor.
Let Z = D0 ∩D1 ∩ . . . ∩Dn−r be an r-dimensional stratum of Xk, such that:

• Z is a proper toric variety with toric boundary ∆Z =
∑

α |Z ̸⊂Dα
Z ∩Dα;

• the conormal bundle ν∗Z/X is a nef vector bundle on Z;

• for each α /∈ {0, ..., n−r}, the intersection Dα∩Z is either empty or connected.

Then the formal completion ‘X/Z is isomorphic to the formal completion of the nor-
mal bundle N = νZ/X along the zero section. In particular, X is toric along Z (in
the sense of definition 3.1.20).

The proof of the above theorem will be provided in section 3.2. As an immediate
consequence of the discussing above, we have

Corollary 3.1.22. The retraction ρX : Xan → Sk(X ) is an n-dimensional affinoid
torus fibration over Star(τZ). In particular, the integral affine structure induced by
ρX over the interior of the maximal faces of Sk(X ) extends to Star(τZ) with no
singularities.

Example 3.1.23. Let X/K be a smooth, maximally degenerate Calabi-Yau mani-
fold, and X /R be a good minimal dlt model of X with reduced special fiber. Then
[NXY19, Theorem 6.1] asserts that the Berkovich retraction ρX : Xan −→ Sk(X ) =
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Sk(X) is an affinoid torus fibration away from the codimension 2 locus of the trian-
gulation.
This statement is proved by showing that X is toric along the 1-dimensional strata
of the special fiber - which are rational curves, hence toric - which yields on the way a
complete description of such models along these strata. In this very case, the positiv-
ity assumption on the conormal bundle can in fact always be achieved via blowing-up
certain zero-dimensional strata, so that thm. 5.1.1 can be seen as a generalization
to higher-dimensional strata of [NXY19, prop. 5.4]. This description also provides
a way to compute the singular Z-affine structure induced on Sk(X), as well as its
monodromy. In sections 3.3.2 and 4.2.1 we give more details and examples of such
computations.

3.1.4 The Monge-Ampère comparison property

In this section, we explain the expected connection between the non-archimedean
Monge-Ampère operator and the real Monge-Ampère operator on skeleta.
Let N be a lattice, ϕ : U −→ R a convex function defined on an open subset U ⊂ NR,
and let dλ be the Lebesgue measure on the dual MR := Hom(N,R).
For x0 ∈ U , we define the gradient image of ϕ at x0:

∇ϕ(x0) = {l ∈MR/ϕ(x0) + l(x− x0) ≤ ϕ(x) ∀x ∈ U}.

Geometrically, this is the set of covectors cutting out affine hyperplanes in NR that
meet the graph Γ of ϕ at x0, and are below Γ on all of U .
For instance, if ϕ has C1-regularity, it follows immediately from the convexity of ϕ
that the gradient image of ϕ at x0 only contains the differential dϕx0 of ϕ in the
usual sense.
More generally, if E ⊂ U is a Borel set, we set ∇ϕ(E) = ∪x0∈E∇ϕ(x0).

Definition 3.1.24. Let ϕ : U −→ R be a convex function defined on an open subset
U ⊂ NR.
The real Monge-Ampère measure of ϕ is defined as:

M (ϕ)(E) = dλ(∇ϕ(E)),

for any Borel set E ⊂ U .

If ϕ has C2-regularity, then this is nothing but the density measure det(∇2ϕ)dλ∨.
Recall that in the semi-flat setting of section 3.1.1, the Kähler Ricci-flat metric ω is
given by:

ω = ddc(K ◦ f)

for a locally defined convex function K : Bsm −→ R, and f : X −→ B the special
Lagrangian fibration. The Calabi-Yau condition was then translated into the real
Monge-Ampère equation for K:

det(
∂2K

∂yi∂yj
) = C,
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with C > 0 a real constant.
Thus, the semi-flatness condition can be expressed as the fact that the local potential
for the Calabi-Yau metric is constant along the fibers of the SYZ map, which reduces
the complex Monge-Ampère equation to a real Monge-Ampère equation on the base
of the fibration.
We now move back to the non-archimedean picture. In this setting, the analog
of the Calabi-Yau metric is the solution ϕ ∈ CPSH(Lan) to the non-archimedean
Monge-Ampère equation:

MA(ϕ) = µ0,

where µ0 is the limit measure from thm. 3.1.11 - when X has semi-stable reduction,
this is simply the Lebesgue measure on the essential skeleton Sk(X).

Definition 3.1.25. Let X/K be a smooth projective variety over K, X /R a dlt
model of X, and let ρ : Xan −→ Sk(X ) be an admissible retraction (defn. 3.1.17).
We say that a continuous, semi-positive metric ϕ on L is a semi-flat metric on Xan

with respect to ρ if it restricts to a toric metric over any open subset of Sk(X ) over
which ρ is an affinoid torus fibration.

A bit more precisely, this means that after pulling back Lan to the open val−1(V )
as in defn. 3.1.15 and choosing a trivialization, the metric ϕ extends to Tan as a
toric metric.
When ϕ is a toric metric, it follows from [BGPS14] that the non-archimedean Monge-
Ampère equation can be reduced to a real Monge-Ampère equation:

Theorem 3.1.26. [BGPS14] Let (Z,L) be a polarized toric variety over K.
Let ϕ be a semi-positive toric metric on L, given by a convex function which we
denote by Φ : NR −→ R.
Then the non-archimedean Monge-Ampère measure of the metric ϕ can be computed
as follows:

MA(ϕ) = n!ι∗(M (Φ)),

where ι : NR ↪→ Zan is the embedding given by the Gauss section.

As a result, by locality of the non-archimedean Monge-Ampère operator (see
[CLD12], [BFJ15, cor. 5.2]) and the argument of [Vil20, cor. 5.10], if ϕ is a semi-
flat metric with respect to an admissible retraction ρ, this implies that away from
the discriminant locus of ρ, the non-archimedean Monge-Ampère measure MA(ϕ)
is supported on Sk(X ), and can be expressed locally as the real Monge-Ampère
measure on Sk(X ) of locally defined convex functions - which may be however
fairly hard to compute explicitly in terms of the metric ϕ.
In general, one would hope to write ϕ = ϕL + ψ for a certain model metric ϕL on
L, and ψ : Xan −→ R a continuous function, and be able to rephrase the semi-flat
condition into the invariance property:

ψ = ψ ◦ ρ

over Sk(X ) \ Γ. We would then obtain, locally in toric charts, an equality of
measures of the form:

MA(ϕ) = n!ι∗(M (ΦL + ψ)),
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where ΦL is a local toric potential for the model metric ϕL . While it is unclear
how to do this in general because it depends on the explicit description of the toric
charts for the retraction, we are able to work this out in the case of degenerations
of hypersurfaces, see remark 4.3.7.
If ρ = ρX is the Berkovich retraction associated to an snc model X /R and we
restrict our attention to the interior of the maximal faces of Sk(X ), then things get
simpler and we have the following result:

Theorem 3.1.27. [Vil20] Let (X,L) be a smooth projective variety over K, and
(X ,L ) be a semi-stable R-model of (X,L). Let ϕ ∈ CPSH(X,L) such that:

ϕ = ϕL + ψ,

where ψ ∈ C0(Xan). Let τ be a maximal face of Sk(X ), and assume that the
invariance property ψ = ψ ◦ ρX holds over Int(τ). Then we have the equality of
measures:

1Int(τ) MA(ϕ) = n!M (ψ| Int(τ)).

We now let X/K be a maximal degeneration of CY manifolds, polarized by the
ample line bundle L. We write ϕ ∈ PSH(Xan, Lan) the unique solution to the NA
Monge-Ampère equation:

MA(ϕ) = µ0

Definition 3.1.28. (Weak comparison property, [Li20a, def. 3.11]) We say that
ϕ satisfies the weak NAMA/real MA comparison property if there exists an snc
model X /R of X, together with a model L of L on X , such that the function
ψ : Xan −→ R defined by the formula:

ϕ = ϕL + ψ

satisfies ψ = ψ ◦ ρX over the interior of the maximal faces of Sk(X ).

The motivation for this definition resides in the following theorem, which proves
that the above condition is sufficient for the weak SYZ conjecture to hold:

Theorem 3.1.29. [Li20a, thm. 1.3] Let X −→ D∗ be maximal degeneration of
CY manifolds, polarized by an ample line bundle L. Assume the NAMA/real MA
comparison property holds.
Then for any δ > 0, there exists εδ such that for all |t| ≤ εδ, there exists a spe-
cial Lagragian torus fibration on an open subset of Xt of (normalized) Calabi-Yau
measure greater than (1− δ).

Very loosely, the idea of the proof of the above theorem is that the solution
to the non-archimedean Monge-Ampère equation ϕ provides a solution to the real
Monge-Ampère equation on an open region of Sk(X) that has full measure; and
pulling back this solution by the map LogX from prop. 1.1.26 provides an ansatz
for the Calabi-Yau potentials on a region of the Xt with asymptotically full measure:
if K ⊂ Int(τ) is a compact subset, then Li obtains bounds for |ϕCY,t−ϕ◦LogX | over
K using uniform Skoda estimates on the highly degenerate Calabi-Yau manifolds
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Xt [Li20b]. The estimates on the potential are then enough to prove the existence
of a special Lagrangian fibration over Log−1

X (K) which is a perturbation of LogX ,
by the results of Y. Zhang [Zha17].
While the above theorem provides us with a asymptotic SYZ fibration, it does not
describe completely the Gromov-Hausdorff limit of the family: we only obtain that
the disjoint union of maximal faces of Sk(X) endowed with a real Monge-Ampère
metric embeds into the Gromov-Hausdorff limit. We expect that in order to ob-
tain Gromov-Hausdorff convergence to the metric completion of Sk(X) \ Γ for a
piecewise-affine locus Γ of codimension 2, we need a stronger version of the compar-
ison property in order to obtain a solution to the real Monge-Ampère equation in
codimension 1:

Definition 3.1.30. (Strong comparison property) Let X/K be a smooth projective,
maximally degenerate Calabi-Yau variety, polarized by an ample line bundle L.
Let ϕ be the unique positive metric on L satisfying the non-archimedean Monge-
Ampère equation:

MA(ϕ) = µ0.

We say that ϕ satisfies the strong comparison property if there exists an admissible
retraction ρ : Xan −→ Sk(X) such that ϕ is a semi-flat metric with respect to ρ.

Assume that the answer to the above question is positive, and write Γ ⊂ Sk(X)
the discriminant locus of ρ. Then

(
Sk(X) \Γ

)
=
⋃
α∈A Uα such that ρ is an affinoid

torus fibration over Uα, we write ϕα : Uα −→ R the convex, toric potential for ϕ on
Uα. Then by the previous discussion there is an equality of measures on Uα:

1Uαµ0 = n!M (ϕα),

where the real Monge-Ampère measure on the right-hand side is computed with
respect to the integral affine structure induced by ρ. Moreover, for α ̸= β, the
difference ϕα − ϕβ must be affine on Uα ∩ Uβ, so that we may define locally g =

∇2ϕ :=
∑

i,j
∂2ϕα
∂yi∂yj

dyidyj where the yi are affine coordinates on Uα.

Conjecture 3.1.31. (Kontsevich-Soibelman conjecture) Let (X,L) be a polarized,
maximal degeneration of Calabi-Yau manifolds. Then there exists a unique admis-
sible retraction:

ρ : Xan −→ Sk(X),

with discriminant locus Γ ⊂ Sk(X), such that the solution ϕ to the non-archimedean
Monge-Ampère equation:

MA(ϕ) = µ0

is a semi-flat metric with respect to ρ. Additionally, the collection of local potentials
ϕ = (ϕα)α is a smooth, strictly convex solution of the real Monge-Ampère equation
on Sk(X) \ Γ.
Moreover, the rescaled Calabi-Yau metrics (Xt, ω̃t) converge in the Gromov-Hausdorff
sense as t→ 0 to a compact n-dimensional base (B, gB), such that:

• (B, gB) contains the smooth Riemannian manifold (Sk(X) \ Γ,∇2ϕ), whose
complement is of Hausdorff codimension at least 2,
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• B is homeomorphic to Sk(X).

Building on the results from [Li22], we are able to prove the above conjecture
for degenerations of Fermat hypersurfaces, see section 4.3.
Let us point out that assuming the strong comparison property, the strict convexity
of the local potential ϕ can not be deduced from a local PDE argument: there are
non-smooth, non-strictly convex solutions to real Monge-Ampère equations of the
form M (ϕ) = dλ [Moo15], so that higher regularity of the solution would have to
be obtained through a ’global’ argument.

3.2 Proof of theorem 3.1.21

In this section we prove theorem 3.1.21. We recall the statement and fix the notation.

Theorem 3.2.1. Let X/K be a smooth projective variety of dimension n, and X /R
be a dlt model of X with reduced special fiber X0 =

∑
αDα, such that every Dα is a

Cartier divisor.
Let Z = D0 ∩D1 ∩ . . . ∩Dn−r be an r-dimensional stratum of Xk, such that:

• Z is a proper toric variety with toric boundary ∆Z =
∑

α |Z ̸⊂Dα
Z ∩Dα;

• the conormal bundle ν∗Z/X is a nef vector bundle on Z;

• for each α /∈ {0, ..., n−r}, the intersection Dα∩Z is either empty or connected.

Then the formal completion ‘X/Z is isomorphic to the formal completion of the nor-
mal bundle N = νZ/X along the zero section. In particular, X is toric along Z (in
the sense of definition 3.1.20).

Note that our assumptions imply that Z is the smooth complete intersection of the
irreducible components Dj of X0 containing Z, and thus has simple normal crossing
boundary ∆Z , see remark 3.2.2. Since Z is a complete intersection, the conormal
bundle ν∗Z/X is the direct sum of the line bundles OZ(−Dj). Hence, here the nefness
assumption simply means that the Dj’s containing Z are anti-nef divisors on Z.

3.2.1 Notation and strategy

We set J = {0, 1, . . . , n − r} such that Z = ∩j∈JDj. Since for every irreducible
component D of X0, the intersection D∩Z is connected by assumption, this allows
us to denote by Dl with l ∈ L the components of X0 intersecting Z transversally
along Zl := Z ∩Dl, so that the toric boundary of Z is given by ∆Z =

∑
l∈L Zl.

Remark 3.2.2. The dlt assumption on X and the toricness of Z ensure that Z is
smooth, and that (Z,∆Z) is an snc pair. Indeed, the singular locus of Z is a union
of torus invariant subvarieties (see [CLS11, Proposition 11.1.2]), hence the generic
point of a component of the singular locus is the generic point of a stratum of ∆Z.
However, (Z,∆Z) is a dlt pair, thus snc at the generic point of each stratum of ∆Z.



3.2. PROOF OF THEOREM 3.1.21 125

Remark 3.2.3. The smoothness of Z and the assumption that the components of
X0 are Cartier divisors imply that X is regular at any point of Z. Indeed, for
any point p ∈ Z and j ∈ J , let zj ∈ OX ,p be a local equation of Dj at p. As
OZ,p ≃ OX ,p/(z0, . . . , zn−r) is a regular local ring of dimension r, (z0, . . . , zn−r) can
be extended to form a regular system of parameters for OX ,p.

We denote by Σ ⊂ NR the fan of Z. Its rays are given by R⩾0ul for l ∈ L,
with primitive generators ul; the maximal cones of Σ are in bijection with the set
of unordered r-tuples {i1, . . . , ir} ∈ Lr such that ∩rβ=1Diβ ∩ Z ̸= ∅. For a maximal
cone σ of Σ, we write Lσ := {l ∈ L |ul ∈ σ}.

Lemma 3.2.4. For any maximal cone σ of Σ, we have det((ul)l∈Lσ) = ±1.

Proof. The smoothness of Z (see remark 3.2.2) implies that the primitive generators
of σ form a Z-basis of N , which is equivalent to the condition det((ul)l∈Lσ) = ±1.

Let N := νZ/X
p−→ Z be the normal bundle of Z in X , and denote by Z ⊂ N

the zero section. We write OX (Dj)|Z = OZ(Fj) as a Cartier divisor Fj on Z, so
that N = ⊕j∈JOZ(Fj). Since any Cartier divisor on Z is linearly equivalent to a
toric one, for any j = 1, . . . , n− r, there exist integers λj,l such that

OZ(Fj) = OZ
(
−
∑
l∈L

λj,lZl
)
. (3.2.5)

For j = 0 we set λ0,l := 1−
∑

j∈J\{0} λj,l and verify that

OZ(F0) = OX (D0 −X0)|Z = OZ
(
−

∑
j∈J\{0}

Fj −
∑
l∈L

Zl

)
= OZ(−

∑
l∈L

λ0,lZl).

We obtain that N = ⊕j∈JOZ
(
−
∑

l∈L λj,lZl
)

and for all l in L∑
j∈J

λj,l = 1. (3.2.6)

The normal bundle N is a toric variety of dimension n+1. The corresponding fan Σ̂
lies in NR×RJ and consists of the following cones and their faces (see [CLS11, §7.3]
for a reference). Let e0, . . . , en−r be the standard basis of RJ ; given a cone σ ∈ Σ,
we have

σ̂ = Cone((0, e0), . . . , (0, en−r), (ul, (λj,l)) |ul ∈ σ) ∈ Σ̂.

In particular, we denote the rays of Σ̂ by

vj = (0, ej) for j ∈ J, vl = (ul, (λj,l)) for l ∈ L.

Proposition 3.2.7. For any 1-dimensional toric stratum C ⊆ Z∑
j∈J

(C ·Dj)vj +
∑
l∈L

(C ·Dl)vl = 0 in NR × RJ . (3.2.8)
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Proof. The relation in 3.2.8 boils down to the two following:®∑
l∈L(C ·Dl)ul = 0

(C ·Dj) +
∑

l∈L λj,l(C ·Dl) = 0.

The first one follows directly from 2.1.15 in the fan Σ of Z; the second comes from
the construction of λl, and in particular from C ·Dj = C ·Fj = −C ·

∑
l∈L λj,lZl.

The map

ord(t) : NR × RJ → R⩾0 (u,w) 7→
n−r∑
j=0

wj

is Z-linear, sends all the primitive generators of the rays of Σ̂ to 1 by 3.2.6, and is
compatible with Σ̂ and the fan of A1

k. Thus, it induces a toric morphism t : N → A1
k

whose fiber over 0 is the toric boundary of N . The base change N := N ×A1 R
to R is a toric R-scheme, whose generic fiber is isomorphic to Gn

m,K . The special
fiber N0 can be written as N0 =

∑
i∈J∪LEi, where the combinatoric of intersections

between components is exactly the same as in X0.

We prove theorem 3.1.21 by constructing a formal isomorphism

f :‘X/Z
≃−→‘N/Z .

More specifically, we proceed as follows. We set the notations X = ‘X/Z and N =‘N/Z .

• (sections 3.2.2,3.2.3) Let σ ∈ Σ be a maximal cone. Denote by Zσ and Nσ :=
NZσ/X the corresponding toric affine charts in Z and N respectively. This
induces an open formal subscheme of N, which we denote by Nσ. We construct
a morphism

fσ : X \
(
∪l∈L\Lσ Dl

)
=: Xσ → Nσ,

in a similar manner to [NXY19]: we construct n + 1 divisors W σ
j and W σ

i on
X , whose defining equations on the chart Xσ yields the morphism fσ. The
equations are induced by sections of OZ(W σ

j ) and OZ(W σ
i ): these are first

constructed on Z, then extended to X by the nef condition on the conormal
bundle ν∗Z/X assumed in thm. 3.1.21, which ensures the vanishing of higher
cohomology groups for the tensor powers of ν∗Z/X .

• (sections 3.2.4,3.2.5) Let σ and σ′ be two maximal cones of Σ intersecting
along a face of codimension one. We establish relations among the respective
divisors and construct sections on Xσ′ from those on Xσ. This allows us to
prove that the morphisms fσ on the charts Xσ’s can be chosen so that they
are compatible on the overlaps Xσ ∩Xσ′ . This yields a well defined morphism
f which extends the identity on Z and preserves the ideal IZ , so that it turns
out to be an isomorphism.
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3.2.2 Construction of the divisors

We set
∆ :=

∑
l∈L

ul ⊗Dl ∈ N ⊗Div0(X ) ≃ (Div0(X ))r;

this is an r-tuple of divisors on X . Moreover, the restriction of any of these to Z
is a principal divisor by 2.1.13. Given a maximal cone σ of Σ, for any i ∈ Lσ, we
define

W σ
i := −

det(∆, (ul)l∈Lσ\{i})

det(ui, (ul)l∈Lσ\{i})
∈ Div0(X )

where the column vectors ul are in the same order in the numerator and in the
denominator, and the denominator has value ±1 by 3.2.4.

Lemma 3.2.9. The divisor W σ
i has multiplicity −1 along Di, multiplicity 0 along

Dl for l ∈ Lσ \ {i}, and along Dj for j ∈ J . In other words, we may write:

W σ
i = −Di +

∑
l∈L\Lσ

ci,lDl

for some coefficients ci,l ∈ Z. Moreover, the restriction of W σ
i to Z is principal.

Proof. The statement on the multiplicities follows from the definition of W σ
i , as

W σ
i = −

∑
l∈L

det(ul, (ul′)l′∈Lσ\{i})

det(ui, (ul′)l′∈Lσ\{i})
Dl.

Moreover, W σ
i is a linear combination of the divisors of the r-tuple ∆, hence its

restriction to Z is principal by 2.1.13.

For j ∈ J , we define the divisor on X

W σ
j := −Dj −

∑
l∈L

λj,lDl −
∑
i∈Lσ

λj,iW
σ
i

= −Dj −
∑

l∈L\Lσ

λj,lDl −
�
���

��
∑
l∈Lσ

λj,lDl −
∑
i∈Lσ

λj,i
(
�

��−Di +
∑

l∈L\Lσ

ci,lDl

)
= −Dj +

∑
l∈L\Lσ

dj,lDl with dj,l = −λj,l −
∑
i∈Lσ

λj,ici,l.

(3.2.10)

The restriction of W σ
j to Z is a principal divisor, as the W σ

i |Z are principal and
−Dj |Z is linearly equivalent to

∑
l∈L λj,lZl by 3.2.5.

Lemma 3.2.11. The relation
∑

j∈JW
σ
j +
∑

i∈Lσ
W σ
i = −

∑
j∈J Dj−

∑
l∈LDl holds.

Proof. Write W :=
∑

j∈JW
σ
j +

∑
i∈Lσ

W σ
i ∈ Div0(X ). We have

for j ∈ J ordDj
(W ) = ordDj

(W σ
j ) = −1

for i ∈ Lσ ordDi
(W ) = ordDi

(W σ
i ) = −1

for l ∈ L \ Lσ ordDl
(W ) =

∑
j∈J

dj,l +
∑
i∈Lσ

ci,l = −
∑
j∈J

λj,l +
∑
i∈Lσ

ci,l(1−
∑
j∈J

λj,i) = −1

by lemma 3.2.9 and the relations 3.2.10 and 3.2.6.
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3.2.3 Construction of the sections for a maximal cone

Let σ be a maximal cone of Σ. We denote by L σ
j and L σ

i the line bundles on X
induced respectively by OX (W σ

j ) for j ∈ J , and by OX (W σ
i ) for i ∈ Lσ. Since W σ

j

and W σ
i are principal on Z, the restrictions L σ

j |Z and L σ
i |Z are trivial line bundles

on Z, thus we may choose non-zero global sections sσj and sσi on Z.
We now lift the sections sσj and sσi to global sections of L σ

j and L σ
i , which we

still denote by sσj and sσi . Indeed, for any n ⩾ 1, write (X /Z)n for the (non-reduced)
subscheme of X defined by the ideal I n

Z . In the exact sequence

H0((X /Z)n,L
σ
j ) −→ H0((X /Z)n−1,L

σ
j ) −→ H1(Z, (ν∗Z/X )⊗n),

and in the analogous one for L σ
i , the right-hand vanishes: the conormal bundle is

a direct sum of line bundles on Z which are nef by the hypothesis in thm. 3.1.21
and so are its positive tensor powers, thus their first cohomology group vanishes by
lemma 2.1.20. We thus extend the sections constructed above to all of the (X /Z)n
by induction, which yields an extension to X = lim←−n(X /Z)n.

Lemma 3.2.12. Under the isomorphism (L σ
j )|Xσ ≃ OXσ(−Dj) induced by eq.

3.2.10 (and similarly for i), the restrictions of sσj and sσi to Xσ are equations for Dj

and Di, and thus

wσ := t ·
∏
j∈J

(sσj )
−1 ·

∏
i∈Lσ

(sσi )
−1

is an invertible function on Xσ.

Proof. We show that sσi is an equation for Di on Xσ; the proof is analogous for sσj .
On Z, W σ

i |Z = div(h) and sσi is a non-zero global section, which means that

L σ
i |Z(Z) = OZ(W

σ
i )(Z) = {f ∈ K(Z) | div(f) + div(h) ⩾ 0} ≃−→ OZ(Z) = k

f 7→ fh

sσi 7→ sσi h = λ ∈ k×.

Let U be an open cover of X \
(
∪i′ /∈J∪Lσ Di′

)
such that Di|U = div(gU) for any

U ∈ U ; this is possible as Di is a Cartier divisor. On U , W σ
i |U = −Di|U = div(g−1

U )
and

L σ
i (Xσ ∩ U)

≃−→ OXσ(Xσ ∩ U)
f 7→ fg−1

U

sσi 7→ sσi g
−1
U ∈ O

×
Xσ
(Xσ ∩ U),

where sσi g
−1
U is a regular invertible function on Xσ ∩ U , as its reduction to Z is

invertible. Finally, the section sσi is defined globally on ‘X/Z and on each open
Xσ ∩ U gives a local equation of the divisor Di, hence it is a equation for Di on
Xσ.
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3.2.4 Construction for two adjacent maximal cones

Let σ and σ′ be two maximal cones of Σ intersecting along a face of codimension
one, and let C ⊆ Z be the curve associated with the cone σ ∩ σ′. Setting Lσσ′ =
Lσ ∩ Lσ′ , we may write Lσ = Lσσ′ ∪ {i0} and Lσ′ = Lσσ′ ∪ {i∞}. The sets B =
((vi)i∈Lσσ′ , vi0 , (vj)j∈J) and B′ = ((vi)i∈Lσσ′ , vi∞ , (vj)j∈J) are bases of N̂ = N ⊕ ZJ .
They induce isomorphisms β, β′ : Zr ⊕ ZJ → N̂ such that the change of basis from
B to B′ is

MB′B = β′◦β−1 =

Lσσ′ i0 J( )Id (−C ·Di)i∈Lσσ′ 0 Lσσ′

0 −1 0 i∞
0 (−C ·Dj)j∈J Id J

and

Ñ
vi
vi∞
vj

é
=MT

B′B

Ñ
vi
vi0
vj

é
.

Denote by ((εi)i∈Lσσ′ , εi0 , (εj)j∈J) the basis of M̂ := Hom(N̂ ,Z) dual to B, and
((ε′i)i∈Lσσ′ , ε

′
i∞ , (ε

′
j)j∈J) the basis dual to B′. It follows thatÑ

ε′i
ε′i∞
ε′j

é
=MB′B

Ñ
εi
εi0
εj

é
. (3.2.13)

The isomorphisms β and β′ allow us to view

W σ := ((W σ
i )i∈Lσσ′ ,W

σ
i0
, (W σ

j )j∈J) ∈ (Zr ⊕ ZJ)⊗Div0(X ) ≃ (Div0(X ))n+1

and W σ′ as elements of N̂ ⊗Div0(X ), that we will still denote by W σ and W σ′ .

Lemma 3.2.14. Let C ⊆ Z be the curve associated with the cone σ ∩ σ′. We have
W σ′
i = W σ

i − (C ·Di)W
σ
i0

for i ∈ Lσσ′

W σ′
i∞ = −W σ

i0

W σ′
j = W σ

j − (C ·Dj)W
σ
i0

for j ∈ J

In other words, the relation W σ′
= (MB′B ⊗ Id)W σ holds.

Proof. By 2.1.15 we have ui∞ = −ui0 −
∑

m∈Lσσ′ (C ·Dm)um, so

for i ∈ Lσσ′ , W σ′

i = −
det(∆, (ul)l∈Lσσ′\{i}, ui∞)

det(ui, (ul)l∈Lσσ′\{i}, ui∞)

= −
det(∆, (ul)l∈Lσσ′\{i}, ui0)

det(ui, (ul)l∈Lσσ′\{i}, ui0)
−
∑

m∈Lσσ′

(C ·Dm)
det(∆, (ul)l∈Lσσ′\{i}, um)

det(ui, (ul)l∈Lσσ′\{i}, ui0)

= W σ
i − (C ·Di)

det(∆, (ul)l∈Lσσ′\{i}, ui)

det(ui, (ul)l∈Lσσ′\{i}, ui0)
= W σ

i − (C ·Di)W
σ
i0
;

for i = i∞, W σ′

i∞ =
det(∆, (ul)l∈Lσσ′ )

det(ui∞ , (ul)l∈Lσσ′ )
= −

det(∆, (ul)l∈Lσσ′ )

det(ui0 , (ul)l∈Lσσ′ )
= −W σ

i0
.
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For j ∈ J , we have:∑
i∈Lσ′

λj,iW
σ′

i = −λj,i∞W σ
i0
+
∑
i∈Lσσ′

λj,i
(
W σ
i − (C ·Di)W

σ
i0

)
=
(
− λj,i∞ −

∑
i∈Lσσ′

λj,i(C ·Di)− λj,i0
)
W σ
i0
+
∑
i∈Lσ

λj,iW
σ
i

= (C ·Dj)W
σ
i0
+
∑
i∈Lσ

λi,jW
σ
i by 3.2.8

W σ′

j = −Dj −
∑
l∈L

λj,lDl −
∑
i∈Lσ′

λj,iW
σ′

i

= −Dj −
∑
l∈L

λj,lDl −
∑
i∈Lσ

λj,iW
σ
i − (C ·Dj)W

σ
i0
= W σ

j − (C ·Dj)W
σ
i0
.

These relations can be summed up as

Ñ
W σ′
i

W σ′
i∞

W σ′
j

é
=MB′B

Ñ
W σ
i

W σ
i0

W σ
j

é
, i.e. W σ′

= (MB′B⊗

Id)W σ.

The inverse (sσi0)
−1 is a section on X of L σ′

i∞ , so by lemma 3.2.14 the sections
sσ

′
i := sσi · (sσi0)

−(C·Di) for i ∈ Lσσ′

sσ
′
i∞ := (sσi0)

−1

sσ
′
j := sσj · (sσi0)

−(C·Dj) for j ∈ J

are sections on X of the line bundles L σ′
i and L σ′

j . By lemma 3.2.12 these give
equations for Di and Dj on the open subscheme Xσ′ , and on Xσ ∩ Xσ′ we haveÑ

sσ
′
i

sσ
′
i∞

sσ
′
j

é
=MB′B

Ñ
sσi
sσ

′
i0

sσj

é
(3.2.15)

where the additive notation on the matrix corresponds to the multiplicative notation
on the sections. Moreover, on Xσ ∩ Xσ′ we have

wσ′ := t ·
∏
j∈J

(sσ
′

j )
−1 ·

∏
i∈Lσ′

(sσ
′

i )
−1 = t ·

∏
j∈J

(sσj )
−1(sσi0)

C·Dj ·
∏

i∈Lσσ′

(sσi )
−1(sσi0)

C·Di · (sσi0)

= t ·
∏
j∈J

(sσj )
−1 ·

∏
i∈Lσσ′

(sσi )
−1 · (sσi0)

∑
j∈J C·Dj+

∑
i∈Lσσ′ C·Di+1

= wσ,

(3.2.16)

hence the invertible function wσ on Xσ extends to Xσ ∪ Xσ′ by wσ′ .

3.2.5 Construction of the morphism

Let Γ be the graph with vertices the maximal cones of Σ (hence the maximal cones
of Σ̂) and with an edge between σ and σ′ if and only if σ ∩ σ′ is a common face of



3.2. PROOF OF THEOREM 3.1.21 131

codimension one. Note that since Z is proper, if S ⊂ NR is a sphere with center the
origin, then Σ ∩ S is a triangulation of S. In particular, Γ is the 1-skeleton of the
dual complex of a triangulation of the sphere, and is thus connected.

Let σ0 ∈ Σ be a maximal cone, and p0 ∈ Γ the corresponding vertex, that we
will use as a reference point. We fix a tuple of sections sσ0 of W σ0 as in 3.2.3.
Let σ ∈ Σ be a maximal cone, and p ∈ Γ the corresponding vertex. By connect-
edness of Γ, there exists a path γ from p0 to p, hence a sequence of maximal cones
σ0, . . . , σq = σ such that σh∩σh+1 is a codimension one face of both σh and σh+1, for
h = 0, . . . , q−1. The construction of section 3.2.4 allows us to construct inductively
along γ a tuple of sections sσh of W σh .

Lemma 3.2.17. The tuple of sections sσ is independent on the choice of path.

Proof. By 3.2.15, for any h = 0, . . . , q − 1, the sections sσh+1 are constructed from
sσh by multiplication by the matrix for the change of basis from ((vi)i∈Lσh

, (vj)j∈J)
to ((vi)i∈Lσh+1

, (vj)j∈J). Thus, by composition, the sections sσ only depends on sσ0

and the change of basis from ((vi)i∈Lσ0
, (vj)j∈J) to ((vi)i∈Lσ , (vj)j∈J).

This provides us with a tuple of sections sσ of W σ for each maximal cone σ ∈ Σ,
and the function

wσ = t ·
∏
j∈J

(sσj )
−1 ·

∏
i∈Lσ

(sσi )
−1 ∈ O(Xσ)

×.

By 3.2.16 the wσ glue to an invertible function w on X; w admits a (n+ 1)-th root
on Z, since it is constant, and by Hensel’s lemma we obtain an invertible function
w′ on X such that (w′)n+1 = w. We use the sections sσ and the function w′ to define
a morphism

fσ : Xσ −→ Nσ

as follows. Denoting by ((εi)i∈Lσ , (εj)j∈J) the dual basis to ((vi)i∈Lσ , (vj)j∈J), the
toric chart Nσ has the following explicit description:

Nσ = Spf R[χεi , i ∈ Lσ][[χεj , j ∈ J ]]/{t− χ
∑

i∈Lσ
εi+

∑
j∈J εj}.

Indeed, Nσ is the formal completion along Z of Nσ̂×A1R, where Nσ̂ = Spec k[(σ̂)∨∩
N̂ ]; since ord(t) =

∑
i∈Lσ

εi +
∑

j∈J εj on σ̂, the relation t = χ
∑

i∈Lσ
εi+

∑
j∈J εj holds.

The map fσ is now defined at the level of function rings by

f#
σ : O(Nσ) −→ O(Xσ)

χεi 7→ w′sσi for i ∈ Lσ
χεj 7→ w′sσj for j ∈ J

where the sections sσ are viewed as functions on Xσ thanks to the proof of lemma
3.2.12.

Lemma 3.2.18. For any pair of maximal cones σ, σ′ intersecting along a codimen-
sion one face, the morphisms fσ and fσ′ coincide on the overlap Xσ ∩ Xσ′.
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Proof. The cones σ and σ′ correspond to adjacent vertices in Γ. Thus, by lemma
3.2.17 we construct sσ from any path joining σ0 to σ, and sσ′ from sσ by the relation
sσ

′
=MB′B s

σ in 3.2.15.
The functions χε transform into χε′ via the change of dual bases, which is given

by ε′ = MB′B ε in 3.2.13. Comparing the two formulas, it follows that fσ = fσ′ on
Xσ ∩ Xσ′ .

Proposition 3.2.19. The morphism of formal R-schemes f : ‘X/Z −→‘N/Z ob-
tained by gluing the morphisms fσ is an isomorphism.

Proof. We follow the argument in [NXY19, Proposition 5.4].
Since the source and the target have same dimension and are integral, it is enough
to check that f is a closed immersion.
If J is the largest ideal of definition of ‘N/Z , i.e. the defining ideal of Z ⊂ N ,
then f ∗J = IZ is the largest ideal of definition of ‘X/Z . Indeed, since Z is cut out
inside X by the Dj for j ∈ J , the ideal IZ is locally generated by the sj for j ∈ J ;
the same reasoning shows that J is locally generated by the χεj . The equality
f ∗J = IZ now follows directly from the local definition of f .
We use [Gro61, 4.8.10] and the fact that f induces an isomorphism on the reduc-
tions to infer that f is a closed immersion, and thus an isomorphism by equality of
dimensions.

This concludes the proof of theorem 3.1.21: X is toric along Z.

3.3 Integral affine structures
Let X/K be a smooth n-dimensional maximally degenerate Calabi-Yau variety. In
this section we compute the transition functions between the charts of the integral
affine structure on Sk(X) associated with a minimal model of X, or obtained by
combining several minimal models. This relies on and generalizes the construction
in [NXY19].
We then focus on certain degenerations of quartic K3 surfaces, and later of quintic
3-folds: we apply theorem 3.1.21 to reconstruct integral affine structures on the
essential skeleton, and provide explicit formulas for the monodromy transformations
around the singularities.

3.3.1 Integral affine structure near a toric vertex

Let X/K be a smooth variey, and let X /R be a dlt model of X with reduced
special fiber. We assume that D is a toric irreducible component of X0, whose toric
boundary is the intersection of D with other irreducible components of X0.
We let ΣD be the fan of D inside NR, and let:

ϕvD : Star(vD) −→ NR

be the unique embedding sending vD to the origin, each vertex v = vDl
to the

primitive generator el of the ray in ΣD corresponding to the boundary component
Zl = Dl ∩D, and that is affine on each cell of Star(vD).
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Definition 3.3.1. The fan structure on Star(vD) is the only integral affine structure
on Star(vD) such that the map ϕvD is Z-affine.

Under the assumptions of theorem 3.1.21, we proved that X is toric along D,
and that ρX is an affinoid torus fibration over Star(vD). We claim that the above
construction provides an explicit description of the Z-affine structure induced by ρX

on Star(vD) - note that it only depends on D and not on how D sits inside X .

Corollary 3.3.2. In the setting of theorem 3.1.21, let Z = D be an irreducible
component of X0. Then the integral affine structure induced by ρX over the interior
of Star(vD) is the fan structure defined above.

Proof. By the proof of theorem 3.1.21 and prop. 3.1.18 we have the following dia-
gram:

Xη
D Nη

D

Star(vD) Int(Σ1)

≃

ρX val
≃
φ

where the upper arrow is an isomorphism of analytic spaces, and the lower one a
homeomorphism. Here Xη

D and Nη
D are the generic fibers (in the sense of Berkovich)

of the formal completions ‘X/D and ‘N/D respectively, and Int(Σ1) denotes the inte-
rior of the polyhedral complex Σ1 obtained by intersecting the fan Σ̂ ⊂ NR × R of
the normal bundle of D in X with NR×{1}. In particular, Int(Σ1) is embedded in
ΣD ≃ NR ≃ Rn, the polyhedral decomposition of Star(vD) is the same as ΣD, and
the vertex vD corresponds to the origin. By definition, the integral affine structure
on Star(vD) is the pullback via φ of the integral affine structure on ΣD, and this
concludes the proof.

3.3.2 Integral affine structure induced by a model

Assume that X/K is a smooth, maximally degenerate Calabi-Yau variety, and let
X /R be a minimal model of X; we assume that the special fiber X0 =

∑
i∈I Di is

reduced. We consider a one-dimensional stratum C = D1 ∩ ... ∩Dn of X0, which is
therefore a smooth rational curve, and is such that (X ,X0) is an snc pair in a formal
neighbourhood of C by [NXY19, Corollary 4.6]. Since (C,∆C) is log Calabi–Yau,
we may write its boundary as ∆C = p0 + p∞, where p0 = C ∩D0 and p∞ = C ∩D∞
for two irreducible components D0, D∞ of X0 meeting C transversally.

Following [NXY19], we write bi = −(C · Di) for i = 1, . . . , n; from C ·X0 = 0
we infer

∑n
i=1 bi = 2. The Star(τC) consists on the union of two maximal faces

corresponding to the zero-dimensional strata p0, p∞, meeting along τC . The goal of
this section is to describe the integral affine structure on Star(τC) in terms of the
intersection numbers bi’s, with no assumption on their positivity.

Proposition 3.3.3. Let ρX be the retraction associated with the model X , and
endow Sk(X) with the Z-affine structure induced by ρX away from the codimension
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2 faces of Sk(X ). Then Star(τC) is Z-affine isomorphic to the union of the simplices
< v0, v1, ..., vn > and < v1, ..., vn, v∞ > in Rn where

v0 = (1, 0, ..., 0), v1 = (0, 1, ..., 0),..., vn = 0 and v∞ = (−1, b1, ..., bn−1).

Proof. We write b = mini≤n bi; we assume b to be negative or zero by the condition
b1 + ... + bn = 2, as the case n = 2 and b1 = b2 = 1 is already treated in the proof
of [NXY19, prop. 5.4].

The blow-up X1 of the point p∞ in X yields a new irreducible component
D∞,1 (we denote the strict transforms by the same letters for notational simplicity)
with multiplicity N∞,1 = n + 1, the point p∞,1 = C ∩ D∞,1 and the intersection
numbers bi,1 := −(C · Di)X1 = bi + 1. If we repeat the process s times, we obtain
the models Xs, the exceptional divisors D∞,s with multiplicity N∞,s = ns + 1, the
points p∞,s = C ∩D∞,s and the intersection numbers bi,s := −(C ·Di)Xs = bi + s.

For s = 1 − b, we have mini≤n{bi,1−b} > 0, and by [NXY19] the integral affine
structure induced by X1−b on Star(τC) is given by v0, . . . , vn and

v∞,1−b =
1

n(1− b) + 1
(−1, b1 + 1− b, . . . , bn−1 + 1− b). (3.3.4)

The sequence of blow-ups Xs+1 → Xs induces (weighted) barycentric subdivisions
of the faces τp∞,s with vertices such that

N∞,s+1v∞,s+1 = N∞,sv∞,s +
n∑
i=1

vi. (3.3.5)

Combining 3.3.4 and 3.3.5, at each step we obtain that

v∞,s =
1

ns+ 1
(−1, b1 + s, . . . , bn−1 + s),

and in particular v∞ = (−1, b1, . . . , bn−1). The proposition follows from the following
lemma.

Lemma 3.3.6. Let B = τ1∪ τ2 be the union of two n-dimensional simplices along a
face of codimension one. Assume we are given a Z-affine structure on B, compatible
with those on the τi’s. Suppose there exists a sequence of (weighted) star subdivisions
of τ1 such that B′ := Star(τ1 ∩ τ2) (with respect to this subdivision) can be embedded
in Rn compatibly with the Z-affine structure. Then this embedding extends to B,
and the Z-affine structure on B is uniquely recovered by this embedding.

Proof. The assumptions yield two charts for the Z-affine structure on B: the Z-
affine subsets B′ and τ1. These two charts are glued along B′ ∩ τ1 which is a
simplex and thus has no non-trivial Z-automorphisms preserving the vertices, hence
the affine structure on B is uniquely determined. By induction on the number of
star subdivisions, there exists a unique subset B̃ ⊂ Rn such that B′ ⊂ Rn can be
obtained as the result of the same star subdivisions of B̃, and uniqueness of the
affine structure ensures a Z-affine isomorphism B ≃ B̃.
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Remark 3.3.7. Consider an irreducible component Di of Xk and write ∆Di
=∑

j ̸=iDj ∩ Di. By adjunction, the pair (Di,∆Di
) is log Calabi–Yau, i.e. Di is a

smooth projective variety over k and ∆Di
is a divisor such that KDi

+∆Di
is trivial.

By [EM21, Theorem 6.14] there exists a Lagrangian torus fibration

ϕ : U → B ⊆ Star(vDi
) \W

where U is a symplectic tubular neighborhood of the 1-dimensional strata of ∆Di
, B is

a retract of Star(vDi
)\W , and W is the union of cells of codimension ⩾ 2 in Sk(X ).

The fibration ϕ is constructed gluing toric moment maps defined in the neighborhood
of each stratum curve of ∆Di

. Evans and Mauri compare the monodromy Tϕ induced
by ϕ on B to the monodromy TρX

induced by the affinoid torus fibration

ρX : ρ−1
X (Star(vDi

) \W )→ Star(vDi
) \W

and conclude that they are dual. This means that given a loop γ ∈ π1(B) ≃
π1(Star(vDi

) \W ), we have TρX
(γ) = (Tϕ(γ)

−1)T . Thus the affine structure con-
structed in [NXY19] has a symplectic topological analog. The duality is due to the
fact that the image of the moment maps lives in MR, while the image of the tropi-
calization map val is in NR.

Case of K3 surfaces

Let X/K be a maximally degenerate K3 surface and let X /R be a minimal model
of X with reduced special fiber X0 =

∑
i∈I Di. The dual complex D(X0) is well-

known to be a triangulated 2-sphere, whose vertices correspond to the irreducible
components of X0.
We focus our attention to such a vertex vD, and hence to the corresponding irre-
ducible component D of X0, which has boundary ∆D :=

∑r
i=1(Di ∩D) =

∑r
i=1Ci.

Since the simple normal crossing curve ∆D ∈ |−KD| is an anticanonical curve by
adjunction, it follows from general surface theory that ∆D is a cycle of rational
curves (Ci)i≤r, whose geometry is encoded by the bi = −(Ci ·D) = −(C2

i )D− 2. We
label the curves so that for i ≤ r, Ci ∩ Ci+1 ̸= ∅, with convention Cr+1 = C1.

One can associate to the pair (D,∆D) a pseudo-fan, which is a singular affine
structure on R2, singular at most at 0. The singularity at 0 is a way to measure the
defect of (D,∆D) of being toric: the affine structure affine extends smoothly at 0 if
and only (D,∆D) is a toric pair [Eng18, Proposition 3.9].
The construction, as explained in [GHK15, §1.2], is the following. For each node
pi = Ci ∩ Ci+1, consider a cone σi := R≥0vi + R≥0vi+1 ⊂ R2, (vi, vi+1) being a basis
of the lattice Z2. The cones σi and σi+1 are then glued to each other along R≥0vi+1,
and the affine structure is extended through the edge by pretending that the pair
(D,∆D) is toric. If the pair was toric, the σi’s would be the maximal cones of its
fan, and the relation

vi+2 + vi = bi+1vi+1

would hold by Eq. 2.1.15, so that the chart ψi : σi ∪ σi+1 that defines the Z-
affine structure satisfies ψi(0) = 0, ψi(vi) = (1, 0), ψi(vi+1) = (0, 1) and ψi(vi+2) =
(−1, bi+1), and is extended by dilatation. The unions of the σi’s, glued along the
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successive edges is homeomorphic to R2, and we obtain this way a Z-affine structure
away from the origin, extending to 0 if and only the pair is toric.

It follows from prop. 3.3.3 that the singular Z-affine structure induced by the
Berkovich retraction ρX coincides with the one described above. We now determine
the monodromy around the singularities.

Corollary 3.3.8. Let D be an irreducible component of X0, with boundary ∆D =∑r
i=1Ci. Writing bi = −(C2

i )D, the monodromy TρX
of the Z-affine structure in-

duced by ρX around vD is given by

TρX
=

Å
br 1
−1 0

ã
· . . . ·

Å
b2 1
−1 0

ã
·
Å
b1 1
−1 0

ã
with respect to the basis (vDr , vD1) and origin vD.

Proof. By prop. 3.3.3 the integral affine structure on Star(τCi
) identifies the set of

vertices (vDi−1
, vDi

, vD, vDi+1
) with:

(v0 = (1, 0), v1 = (0, 1), v2 = (0, 0), v∞ = (−1, bi)),

while on Star(τCi+1
) identifies (vDi

, vDi+1, vD, vDi+2
) with=

(v0 = (1, 0), v1 = (0, 1), v2 = (0, 0), v∞ = (−1, bi+1)).

It follows that the transition map from the chart Star(τCi
) to Star(τCi+1

) of the

integral affine structure on Star(τCi
) ∩ Star(τCi+1

) is given by the matrix
Å
bi 1
−1 0

ã
.

Thus, the composition of such matrices gives the monodromy around vD, along a
loop oriented as the path connecting vD1 , vD2 , . . . , vDr , vD1 .

Remark 3.3.9. It is well-known (see for instance [GHK15]) that TρX
= Id if and

only the pair (D,∆D =
∑r

i=1Ci) is toric, or if and only if the charge Q vanishes,
where

Q = χtop(D \∆D) = 12 +
r∑
i=1

(bi − 3).

Example 3.3.10. If S is a K3 surface of Type III, and X /R a minimal model of
S, then the map ρX is an affinoid torus fibration away from the vertices of D(Xk).
The induced Z-affine structure with isolated singularities on the 2-sphere matches
the one constructed in [GHK15, 1.2] and [Eng18, Proposition 3.10], and has no
singularity at a vertex vD if and only if the corresponding component D of Xk is
toric.

3.3.3 Integral affine structure induced by combining several
models

In this short section, we explain how to compute the monodromy of the integral
affine structure induced by a class of admissible retractions that are not necessarily
associated to a model of X (and rather to several of them). These results can be
used for instance to compute the monodromy of the retraction we will construct in
thm. 4.1.8 for degenerations of hypersurfaces. We start with a general definition.
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Definition 3.3.11. Let τ be a simplex of dimension m and consider the first barycen-
tric subdivision τ ′ of τ . For each vertex v of τ , we denote the star of v in τ ′ byfiStar(v)
and define Γm−1 to be the polyhedral complex of dimension m− 1 given by

Γm−1 := τ \
⋃
v∈τ

fiStar(v) ⊂ τ.

For instance, if m = 2, Γ1 is the union of the three line segments joining the
barycenter of the triangle to the barycenters of the edges.

We return to the setting of section 3.3 - that is, let X/K be a smooth n-
dimensional maximally degenerate Calabi–Yau variety. Assume we are given two
minimal models X , X ′ of X such that D(X0) = D(X ′

0 ), so that Sk(X ) =
Sk(X ′) = Sk(X), not only as subsets but also with the same cellular decompo-
sition. We fix an ordered labelling (1, . . . , s) of the vertices of Sk(X), equivalently
of the irreducible components of the special fiber of X (resp. X ′).
Fix a codimension 1 face τ of D(X0) = D(X ′

0 ), with vertices vi1 , . . . , vin . We write
C (resp. C ′) for the corresponding strata curves of X (resp. X ′), and Dil (resp.
D′
il
), l = 1, . . . , n the corresponding components. We then have C = Di1∩ . . .∩Din ,

and similarly for C ′. We write bil = −(C ·Dil)X the intersection number computed
inside X , and similarly, b′il = −(C

′ ·D′
il
)X ′ for l = 1, . . . , n. The (n−1)-dimensional

face τ is contained in two maximal faces τp0 and τp∞ of D(X0), since the boundary
of C in (X ,X0) consists of two strata points p0 = C ∩Di0 and p∞ = C ∩Di∞ ; we
assume i0 < i∞. We set S := τp0∪τp∞ ⊂ Sk(X), and Γ := Γn−2 ⊂ τC as in definition
3.3.11.
Given two vertices vim , vim′ of τC , with corresponding components Dim and Dim′ of
X0 containing C, we assume im < im′ and construct a loop γ as follows:

• γ is contained in S \ Γ;

• γ goes around the segment joining the barycenter of τC with the barycenter
of the edge between vim and vim′ ;

• γ has an orientation induced by the fixed ordered labelling on the vertices of
Sk(X) in the following way: in S \ Γ, γ is homotopy equivalent to the closed
path given by the edges which connect in order

vDi0
, vDim

, vDi∞ , vDim′
.
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vim = v2

v3 = vim′

v4

v5 = vi∞

vi0 = v1

vim = v2

v3

vim′ = v4

v5 = vi∞

vi0 = v1

Figure 3.1: Two examples of loops γ in the case n = 3 and C = D2 ∩D3 ∩D4

Suppose we are given a retraction ρ : Xan −→ Sk(X) such that

ρ =

®
ρX over Uim := Int(τp0) ∪ Int(τp∞) ∪fiStar(vim)
ρX ′ over Uim′ := Int(τp0) ∪ Int(τp∞) ∪fiStar(vim′ ).

Proposition 3.3.12. The monodromy along the loop γ, of the Z-affine structure
induced by ρ on Uim ∪ Uim′ is

Tρ(γ) =

â
1 0 0 . . . 0

bi1 − b′i1 1 0 . . . 0
bi2 − b′i2 0 1 . . . 0

...
... . . .

bin−1 − b′in−1
0 0 . . . 1

ì
(3.3.13)

with respect to the basis (vDi0
, vDi1

, . . . , vDin−1
) and origin vDin

.

Proof. We need to compute the parallel transport of the vectors

(u0, . . . , un−1) := (vDi0
− vDin

, vDi1
− vDin

, . . . , vDin−1
− vDin

)

along the loop γ. By prop. 3.3.3 the Z-affine structure on Star(τC) induced by ρX

is described by the chart which has the following vertices:

v0 = (1, 0, . . . , 0), v1 = (0, 1, . . . , 0), . . . , vn = 0 and v∞ = (−1, bi1 , . . . , bin−1);

while the Z-affine structure induced by ρX ′ is given by:
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v′0 = (1, 0, . . . , 0), v′1 = (0, 1, . . . , 0), . . . , v′n = 0 and v′∞ = (−1, b′i1 , . . . , b
′
in−1

).

Moreover, the vectors ul correspond to the vectors vl (resp. v′l) in the chart for
ρX (resp. ρX ′). We now have v0 = −v∞ +

∑n−1
l=1 bilvl, so that the vectors we are

transporting are written on τp∞

(−v∞ +
n−1∑
l=1

bilvl , v1, . . . , vn−1)

in the chart for ρX . These are thus mapped to the tuple (−v′∞+
∑n−1

l=1 bilv
′
l, v

′
1, . . . , v

′
n−1)

by the chart for ρX ′ . We now transport back across τC in the chart for ρX ′ , to get
the tuple of vectors

(−v′0 −
n−1∑
l=1

b′ilv
′
l +

n−1∑
l=1

bilv
′
l , v

′
1, . . . , v

′
n−1)

according to the relation −v′∞ = −v′0 −
∑n−1

l=1 b
′
il
v′l. We now see that after parallel

transport the vectors (u0, . . . , un−1) have changed to

(u0 +
n−1∑
l=1

(bil − b′il)ul , u1, . . . , un−1),

hence the formula 3.3.13 for the monodromy matrix.

Case of K3 surfaces

We focus on the case of a maximally degenerate K3 surface X/K. We have C =
Dim∩Dim′ , Γ = {a} is a point in the interior of τC and γ is a loop around a, oriented
as the path joining in order vDi0

, vDim
, vDi∞ , vDim′

. We assume we have a retraction
ρ : Xan −→ Sk(X) such that

ρ =

®
ρX over Int(τp0) ∪ Int(τp∞) ∪ [vim , a)

ρX ′ over Int(τp0) ∪ Int(τp∞) ∪ [vim′ , a)

where [vi· , a) is the part of the edge τC joining the vertex to a, but not including a.
Then prop. 3.3.12 may be rewritten as follows; in particular the obtained singularites
are of Kodaira type Im for some m ∈ N:

Corollary 3.3.14. The monodromy along the loop γ, of the Z-affine structure in-
duced by ρ on Star(τC) \ {a}, is

Tρ(γ) =

Å
1 0

bim − b′im 1

ã
(3.3.15)

with respect to the basis (vDi0
, vDim

) and origin vDim′
.
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Chapter 4

Degenerations of Calabi-Yau
hypersurfaces

In this chapter, we will be focusing on degenerations of Calabi-Yau manifolds ob-
tained in the following way:

X = {z0...zn+1 + tFn+2 = 0} ⊂ Pn+1 × D∗,

where Fn+2 is a general homogeneous polynomial of degree (n+ 2). In this setting,
the closure X ⊂ Pn+1×D of X inside the projective space provides us with a some-
what canonical model of our degeneration, whose special fiber is the toric boundary
of Pn+1. In particular, the assumptions of theorem 3.1.21 hold for every component
of X0, but as we shall see, while the model X is indeed a minimal dlt model of X
- and in particular Sk(X) = Sk(X ) - it is not good, i.e. the irreducible components
of X0 are not Q-Cartier, so that it is not possible to apply def. 1.1.17 to produce a
Berkovich retraction ρX : Xan −→ Sk(X ).
Nevertheless, if vi is a vertex of Sk(X ), the toric nature of the corresponding com-
ponent Di allows us to define in a natural way an integral affine structure with
no singularities on Star(vi). These integral affine charts cover Sk(X) but are how-
ever not compatible, so that the local affine structures do not glue to an integral
affine structure on the whole Sk(X). However, after a somewhat ad hoc choice of
codimension 2 discriminant locus Γ ⊂ Sk(X), we obtain a singular affine structure
on Sk(X) \ Γ, which recovers the fan of Di near each vertex vi; this integral affine
structure was initially defined in [GS06].
The main result of this chapter, theorem 4.1.8, is the construction of a retraction
ρ : Xan −→ Sk(X), which is an affinoid torus fibration away from the codimen-
sion 2 locus Γ, and which recovers the above-mentioned singular affine structure on
Sk(X). This builds on the construction by Yamamoto [Yam21] of tropical contrac-
tions, from tropicalizations of Calabi-Yau complete intersections in toric varieties to
their essential skeleton, and generalizes the construction from [MPS21, thm. B] to
any dimension.
While the retraction constructed above depends on a certain choice - namely, an
interior point of each face of Sk(X ) - in the case of Fermat hypersurfaces, where:

F (z) = zn+2
0 + ...+ zn+2

n+1 ,

141
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the Sn+2-symmetry of the problem suggests that choosing the barycenter of each face
is a natural way to make the retraction ρ we construct canonical. It indeed turns out
that using the results from [Li22] on the convergence of the Calabi-Yau metrics, we
are able to describe explicitly the solution to the non-archimedean Monge-Ampère
in this setting, and prove that it satisfies the comparison property with respect to
the retraction ρ.
This chapter is organized as follows: in section 4.1, we set the scene and describe the
construction of the tropical contraction from [Yam21], before studying some small
resolutions of the model X ; and conclude with a proof of thm. 4.1.8. In section
4.2, we provide an alternative construction of the retraction ρ in dimension 2 and
3, following [MPS21]; we also provide a refinement of the construction in dimension
2. Finally, in section 4.3, we focus on the Fermat family of hypersurfaces, where we
apply the results of [Li22] to describe the solution of the non-archimedean Monge-
Ampère equation in this case, and prove that the comparison property holds for
the retraction constructed in thm. 4.1.8. Along the way, we prove that the local
C∞-limit obtained for the Fermat family in [Li22] is unique and does not depend on
a choice of subsequence.

4.1 The SYZ fibration for hypersurfaces

4.1.1 Degenerations of Calabi-Yau hypersurfaces

We are interested in degenerations of Calabi-Yau manifolds obtained in the following
way:

X = {z0...zn+1 + tFn+2 = 0} ⊂ Pn+1 × D∗,

where Fn+2 ∈ H0(Pn+1,OP(n+2)) is a general section; we also denote by X the base
change to K = C((t)). The fibers Xt are Calabi-Yau manifolds by the adjunction
formula, and even simply-connected, strict Calabi-Yau whenever n > 1 (that is,
hi(Xt,OXt) = 0 for 0 < i < n) by the Lefschetz theorem on hyperplane sections.
We will see that in this case, the essential skeleton Sk(X) can be realized explicitly
using tropical geometry, and there is a natural way of endowing it with an integral
affine structure, which is singular in codimension 2. The construction we outline
here is a special case of [Gro05], but since the hypersurface case is far less technical
we will outline the details.
We start by identifying the essential skeleton Sk(X) with the Berkovich skeleton of
the model X :

Proposition 4.1.1. Let F ∈ H0(Pn+1,OP(n + 2)) be a general section. Then the
hypersurface:

X = {z0...zn+1 + tF = 0} ⊂ Pn+1
R

is a minimal dlt model of the smooth, maximally degenerate Calabi-Yau manifold
X = XK; in particular Sk(X) = Sk(X ).

More precisely, the statement of the above proposition holds whenever F is not
identically zero on any toric stratum Z of Pn+1, and the intersection Z ∩{F = 0} is
smooth; such F are called admissible in [HJMM22].
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Remark 4.1.2. As shown by the proof, the model X will not be good for general
choice of F - the irreducible components of X0 are not Q-Cartier at the singular
points of X as soon as n ≥ 2. Thus, there does not exist a Berkovich retraction
ρX : Xan −→ Sk(X ) in the sense of def. 1.1.17, which is consistent with the
statement of theorem 3.1.21: if such a retraction existed it would be an affinoid
torus fibration over the whole Sk(X) ≃ Sn, yielding an integral affine structure with
no singularities on an n-sphere, which is impossible.

Proof. It follows from an elementary computation that for general F , the singular
locus of the total space X is given by:

Sing(X ) =
⋃
i ̸=j

{zi = zj = t = F = 0} ⊂X0,

which is of codimension 3 in the total space X . The points where the singularity
is the most severe are the intersection of the strata curves of X0 with the locus
{F = 0}, since F is general this locus does not meet the zero-dimensional strata
of X0. Thus, we may focus on the curve {z1 = ... = zn = 0} ⊂ X0, where the
singularity is étale-locally of the form:

U = {z1....zn + tw = 0} ⊂ An+1
R .

so that by [CLS11, prop. 11.4.24], the pair (U ,U0) is log canonical. We also infer
that at the generic point of a stratum, X is smooth while the components of X0

meet transversally, which proves that X is a dlt model of X.
Moreover, X0 is reduced and KX /R = OX by adjunction, which concludes.

From now on, we will assume that F is general, so the statement of the above
lemma holds. We view ZΣ = Pn+1 as a smooth toric Fano variety of dimension
(n+1), with simple normal crossing boundary ∆ =

∑n+1
l=0 Dl the sum of coordinate

hyperplanes. We additionally let L = OP(n+2) be the anticanonical polarization on
Pn+1, and we write P ⊂MR the associated polytope, as in def. 2.1.17. If (v1, ..., vn+1)
is a basis of N , we set v0 := −(v1 + ... + vn+1) and the vl’s for l = 0, ..., (n + 1) are
the primitive generators of the rays of Σ.
Writing P ∗ ⊂ NR the polar dual of P , that is:

P ∗ = {x ∈ NR/⟨u, x⟩ ≤ 1 ∀u ∈ P},

we see that here P ∗ = Conv(v0, ..., vn).
One of the reasons such degenerations provide an interesting class of examples is that
their essential skeleton can be realized in the toric world, as we will now explain.
The dual complex of the toric boundary ∆ ⊂ CPn+1 can naturally be realized
inside NR: if Dl is a coordinate hyperplane, it corresponds to el ∈ N the primitive
integral generator of the corresponding ray of Σ. Since X0 = ∆, we see that we
have a canonical isomorphism of simplicial complexes between the dual complex
D(X0) and the boundary ∂P ∗, sending a vertex vDl

∈ D(X0) to vl ∈ N . Realizing
D(X0) ≃ Sk(X ) ⊂ Xan inside the Berkovich analytification, we have the more
precise statement:
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Proposition 4.1.3. Let X ⊂ Pn+1
K as above. Then the composition:

Xan ⊂ Pn+1,an valΣ−−→ NΣ

induces by restriction a isomorphism of simplicial complexes from Sk(X ) to ∂P ∗.

Proof. It is enough to prove that if Dl1 , ..., Dln+1 are (n+1) components of ∆ = X0

meeting at a point p, then val maps the corresponding maximal face τp of Sk(X )
homeomorphically to:

τσ = Conv(vl1 , ..., vln+1) ⊂ NR,

where σ =
∑n+1

i=1 R≥0vli . Thus, we let v ∈ τp be a quasi-monomial valuation, which
we see as a semi-valuation on Pn+1. Using prop. 1.1.14, we identify v with the
monomial weight w = (w1, ..., wn+1), where wi = v(fi) for any local equation fi of
Dli at p. We have

∑n+1
i=1 wi = 1, by the normalization vw(t) = 1 and the equation

for the hypersurface. We let l0 be the index such that p /∈ Dl0 , and take as a local
equation:

fi =
zli
zl0
,

where [z0 : ... : zn+1] are standard homogeneous coordinates on Pn+1
K - this is possible

as F does not vanish at p, since it is general. Then by definition of the val map, we
have:

⟨val(v),m⟩ = v(χm)

for any m ∈M . We let (m1, ...,mn+1) be the basis of M dual to (vl1 , ..., vln), so that
χmi is an equation for Dli on the toric affine chart Pσ. We now have χmi = fi, so
that writing m =

∑n+1
i=1 λimi, we infer from prop. 1.1.14:

v(χm) =
n+1∑
i=1

wiλi,

or equivalently val(v) =
∑n+1

i=1 wivli , which concludes the proof.

We are thus naturally led to study the image inside NΣ of Xan by the valuation
map valΣ. This is well-known to be the (extended) tropicalization Trop(X) of the
hypersurface, defined as follows. Write the generic section F as a sum of monomials:

F (z) =
∑
m∈PZ

cmz
m

and let L : NR −→ R be the piecewise-affine function obtained by replacing, in the
equation (tF + z0...zn+1) for X, the products by sums and the sums by minima.
More explicitly, L is defined by the formula:

L(x) = min{0, min
cm ̸=0

(1− ⟨m,x⟩)},

and Trop(X) ⊂ NR the locus where the minimum is achieved by at least two different
terms. From now on, we will make the following combinatorial assumption:
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Condition 4.1.4. Whenever m ∈ PZ is a vertex, we have cm ̸= 0 - equivalently, the
Newton polytope of the section F is equal to the whole P .

This immediately implies the equality:

L(x) = min{0, min
m∈V (P )

(1− ⟨m,x⟩)}.

Proposition 4.1.5. The closure Trop(X) ⊂ NΣ is the image of Xan via the map:

valΣ : Zan
Σ −→ NΣ.

Moreover, the complement of Trop(X) in NR admits one bounded connected compo-
nent, which is the interior of P ∗.

Proof. The first item follows from the fundamental theorem of tropical geometry
[MS15, thm. 3.1.1], while the second one follows from the fact that the polytope P ∗

is the locus where L = 0.

We will now construct a piecewise-affine subset Γ ⊂ Sk(X) of codimension 2,
and an integral affine structure on Sk(X) \ Γ, compatible with the integral affine
structure on the interior of the maximal faces of Sk(X ), and compatible with the fan
structure (definition 3.3.1) in the neighbourhood of each vertex. The construction
is non-canonical, as it depends on the following choice: for each face τ of Sk(X )
of dimension > 0, we choose a point aτ ∈ Int(τ). In the sequel, we will call the
collection a = (aτ )τ a choice of branch cuts. If τ is a vertex of Sk(X ), we will write
aτ = τ .
We let P̃ be the subdivision of Sk(X ) whose faces are of the form:

τ ′ = Conv(aτ0 , ..., aτl),

whenever τ0 ⊂ ... ⊂ τl is an ascending chain of faces of Sk(X ).
The discriminant locus in now given as:

Γ :=
⋃

Conv(aτ0 , ..., aτl),

where the union is taken over ascending chains of faces τ0 ⊂ ... ⊂ τl of Sk(X ), with
dim τ0 ≥ 1 and dim τl ≤ (n − 1). It is clear from the definition that it defines a
codimension 2 piecewise-affine subset of Sk(X), which generalizes definition 3.3.11.
We will sometimes write Γ = Γa whenever we wish to emphasize the dependency
on the choice of branch cuts a.

Example 4.1.6. Assume n = 2, then we are choosing a point ae ∈ Int(e) in each
edge of Sk(X ), in addition to a point aτ ∈ Int(τ) in each maximal face τ of Sk(X ).
The discriminant locus Γ consists of the set {ae}e, which is finite.
Assume now that n = 3, then we are choosing an interior point in each d-cell
of Sk(X ) for d = 1, 2, 3. The discriminant locus Γ is a trivalent graph, con-
tained in the union of the 2-cells of Sk(X ), and its intersection with the 2-face
τ = Conv(v1, v2, v3) is depicted below:
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v1 v2

v3

a12

a23

a13

aτ

Let v ∈ Sk(X ) be a vertex, and Σv be the fan of Dv in Rn. As in definition
3.3.1, we let:

ϕv : Star(v) −→ Rn

be the unique piecewise-affine homeomorphism sending v to 0 ∈ Rn, and each vertex
vl ∈ Star(v) to the primitive generator of the corresponding ray in Σv.
Moreover, if τ ⊂ Sk(X ) is a maximal face, we let ϕτ : τ −→ Rn be an integral affine
homeomorphism onto a standard simplex.
As mentioned above, the affine charts ϕv do not glue to define an integral affine
structure on Sk(X ), i.e. the transition functions between them are not integral
affine. To remedy this, we simply shrink the stars of the vertices using the subdi-
vision P̃ so that they don’t intersect anymore. More precisely, for a vertex v of
the skeleton, let fiStar(v) be the star of v in the polyhedral complex P̃. Then the
singular affine structure on Sk(X ) is defined as follows:

Definition 4.1.7. The collection of charts
(
(Int(fiStar(v)), ϕv)v ∪ (Int(τ), ϕτ )τ

)
is

our induced integral affine structure on Sk(X) \ Γ.

The main theorem of this section is the following:

Theorem 4.1.8. Let a = (aτ )τ be a choice of branch cuts in Sk(X ), and δa :
Trop(X) −→ Sk(X) the associated tropical contraction [Yam21, thm. 5.1]. Then
the composition:

ρa := δa ◦ valΣ : Xan −→ Sk(X)

is an affinoid torus fibration over Sk(X) \ Γ. Moreover, the induced integral affine
structure on Sk(X) \ Γ coincides with the one from definition 4.1.7.

In the cases n = 2, 3, the retraction ρa was constructed in [MPS21] using purely
non-archimedean techniques; this alternative construction will be explained in sec-
tion 4.2.
Let v = vi ∈ Sk(X ) be a vertex, and let Ui ⊂ Sk(X ) be the open star of vi with
respect to the simplicial decomposition P̃. Then we need to prove that the map
ρ = ρa is an affinoid torus fibration over each Ui, as well as over the interior of each
maximal face τ ⊂ Sk(X ). The proof will proceed in two steps:

• (section 4.1.2) we mainly review the construction of the tropical contraction,
following [Yam21]. The contraction is in fact constructed face by face, and
we will describe it in particular near a vertex and over a maximal face. The
latter, in combination with prop. 4.1.3, will readily imply that ρ is an affinoid
torus fibration over a maximal face of Sk(X ).
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• (section 4.1.3) we then focus on a vertex vi ∈ Sk(X ), and construct a small
log resolution Xi −→ X , which is an isomorphism over the corresponding
component Di. In particular, we may apply theorem 3.1.21 to conclude that
the associated retraction ρXi

is an affinoid torus fibration over Star(vi), and
we conclude by proving that the equality ρ = ρXi

holds over Ui.

4.1.2 The tropical contraction

We let X ⊂ Pn+1
K be a maximal degeneration of Calabi-Yau hypersurfaces as above.

The goal of this section is to describe in a fairly simple way the construction of a
certain tropical contraction δ : Trop(X) −→ Sk(X), due to Yamamoto [Yam21].
Here tropical contraction means that the map δ is locally modeled on projections of
the form NΣ −→ NΣ′ , where Σ′ is the fan of a (closed) orbit in ZΣ.

Theorem 4.1.9. [Yam21, thm. 1.2] For any choice of branch cuts a = (aτ )τ , there
exists a tropical contraction:

δa : Trop(X) −→ Sk(X),

where we view Sk(X) ⊂ Trop(X) via the embedding of prop. 4.1.3. The tropical
contraction preserves the integral affine structures, in the sense that:

δ∗AffTrop(X) = j∗(AffSk(X)\Γ),

where Aff denotes the sheaf of integral affine functions on Trop(X) (see [Yam21,
def. 2.10]) and Sk(X) \ Γ respectively, and j : Sk(X) \ Γ ↪→ Sk(X) the inclusion.

Let us point out that original construction is far more general, as it applies to a
large range of Calabi-Yau complete intersections inside toric varieties. However the
codimension one case is substantially simpler, so that we will outline the details of
the construction in this case.
We fix once and for all a choice a of branch cuts, and consider the associated sub-
division P̃ of Sk(X ). Our first step will be to describe Trop(X) more explicitly.
Recall that the open subset Trop(X) ⊂ Trop(X) is given as the corner locus of the
function:

L(x) = min{0, min
m∈V (P )

(1− ⟨m,x⟩)},

hence the following natural stratification. If x ∈ Trop(X), we let J(x) ⊂ I :=
{0} ∪ V (P ) the subset of indices that realize the minimum; note that |J(x)| ≥ 2
since x ∈ Trop(X). Given a subset J ⊂ I, the associated stratum TJ ⊂ Trop(X)
is the set of x ∈ Trop(X) such that J(x) ⊇ J . We furthermore write T J ⊂ NΣ its
closure, which is contained in Trop(X).

Definition 4.1.10. Let τ ⊂ ∂P ∗ be a face, and write τ = Conv(ei1 , ..., eir). The
associated cone σ(τ) ∈ Σ is given by:

σ(τ) = Cone(ei1 , ..., eir),

and its closure σ̄(τ) ⊂ NΣ. We additionally set τ̃ := τ + σ̄(τ) ⊂ NΣ.
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Let J ′ ⊂ V (P ) be a non-empty subset of vertices of P , this defines a face τJ ′ of
∂P ∗ in the following way:

τJ ′ = {x ∈ P ∗/⟨mj, x⟩ = 1 ∀j ∈ J ′},

this is a face of dimension (n + 1) − |J ′|. It is straightforward to check that for
|J ′| ≥ 2, the region τ̃J ′ is contained in the stratum T J ′ .
The following proposition asserts that the bounded strata of the tropicalization are
the faces of ∂P ∗, while the unbounded ones are obtained from non-maximal faces of
∂P ∗ and their associated cones:

Proposition 4.1.11. Let I = {0} ∪ V (P ), and J ⊂ I with at least two elements.
We let J ′ = J ∩ V (P ).

• if 0 ∈ J , then T J = τJ ′ ⊂ ∂P ∗;

• if 0 /∈ J , then T J = τ̃J ′.

Note that in the latter case, since |J | ≥ 2, the face τJ ′ is not a maximal face of
∂P ∗. The following picture depicts the tropicalization when n = 2: Trop(X) is the
union of the boundary of the red polytope P ∗ with the portions of the linear planes
passing through pairs of vertices of P ∗; here we have colored τ̃J for J ⊂ {1, 2, 3}.

v2

v1

v3

v0

Figure 4.1: The tropicalization of a maximally degenerate K3 surface

We now move to the description of the tropical contraction. If τ is a face of ∂P ∗,
we set Uτ := Int(fiStar(aτ )) the open star of the point aτ ∈ Int(τ) with respect to P̃.
For τ ′ ⊂ τ a smaller face of ∂P ∗, set:

Wτ,τ ′ := Uτ ∩ Uτ ′
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and Xτ,τ ′ := Wτ,τ ′ + σ(τ ′). Then

Xτ :=
( ⋃
τ ′⊂τ

Xτ,τ ′
)
∩ Trop(X),

where the union ranges over the subfaces of τ . For instance, if τ ⊂ ∂P ∗ is a maximal
face, we simply have Xτ = Uτ = Int(τ).
Then by [Yam21, lem. 5.15], the union of Xτ cover Trop(X) when τ ranges over the
faces of ∂P ∗, so that it is enough to define local tropical contractions:

δτ : Xτ −→ Uτ ,

which glue over the intersections Uτ1 ∩Uτ2 by [Yam21, lem. 5.14]. Then if x ∈ Xτ,τ ′ ,
i.e. x = w + x′, with w ∈ Wτ,τ ′ and x′ ∈ σ(τ ′), we set:

δτ (x) = w.

In other words, the local tropical contraction contracts the cone direction, and is
locally isomorphic over Wτ,τ ′ to the canonical projection p : NΣ −→ NΣ′ , where Σ′

is the fan in NR/ Span(σ(τ
′)) induced by Σ.

In the two-dimensional case, the restriction of the tropical contraction to the stan-
dard orthant is depicted as follows (we have picked the barycenters of the edges as
choice of branch cuts):

v2

v1

v3

a12

a23
a13

Figure 4.2: The tropical contraction in dimension 2

If τ = e12 is an edge, then Wτ,vi = Conv(a12, vi) for i = 1, 2, and the contractions
over Wτ,vi are the projection NR −→ NR/Rvi (the blue regions); while Wτ,τ = a12
and Xτ,τ is the lower green region, contracted to the point a12.

Proposition 4.1.12. Let τ be a maximal face of Sk(X ). Then the retraction ρa :
Xan −→ Sk(X ) is an affinoid torus fibration over Int(τ).
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Proof. Let τ be a maximal face of Sk(X ) ≃ ∂P ∗, and let p ∈ X0 be the cor-
responding zero-dimensional stratum. Then from the construction of δ, we have
Xτ = Uτ = Int(τ), so that δ−1(Int(τ)) = Int(τ), and ρ−1((Int(τ)) = val−1

Σ ((Int(τ)).
Moreover, by the proof of prop. 4.1.3, if:

τ = Conv(vl1 , ..., vln)

and valΣ(v) =
∑n+1

i=1 λivli , then λi = v( zi
z0
). In particular, if valΣ(v) ∈ Int(τ), then

v( zi
z0
) > 0 for i = 1, ..., (n + 1), or in other words zi = 0 at the center cX (v). This

implies that valΣ(v) ∈ Int(τ), if and only cX (v) = p.
We infer that ρ−1(Int(τ)) = Xη

p := (X̂/p)
η, and that under the identification Sk(X ) =

∂P ∗, we have ρ|Xη
p
= ρXp , which is indeed an affinoid torus fibration by example

3.1.16.

In what follows, we will be mostly interested about what happens near a vertex
vi ∈ Sk(X ), in which case the following holds:

Proposition 4.1.13. [Yam21, lem. 5.12] Let τ = vi be a vertex of Sk(X ). Then
Xτ = Uτ + R≥0vi, and the local tropical contraction satisfies:

δτ (w + αvi) = w,

for w ∈ Uτ and α ∈ [0,+∞].
In other words, writing pi : NΣ −→ NΣi

the canonical projection, the following
diagram commutes:

Xei Ui ⊂ NR

Vi ⊂ NR/Rvi,

δi

pi qi

where qi = (pi)|Ui
is the homeomorphism from Ui onto its image Vi by the projection

pi.

The above proposition states that up to the homeomorphism qi, the tropical
contraction δi is given by the linear projection onto the quotient NR/Rvi near the
vertex vi.

4.1.3 Small resolution at a vertex

We consider a point in X sing ∩ D1 ∩ ... ∩ Dn, the singular points in the other
strata curves can be treated analogously. Etale locally around such a point, X is
isomorphic to the (base change to R of) the toric variety U := V (z1...zn − wt) ⊂
An+2
k , where the Di|U = {zi = t = 0} are the components of the special fiber U0.

We still denote these by Di; they form the toric boundary of U together with the :

D′
i|U = {zi = w = 0}.
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If J ⊂ {1, ..., n}, we let DJ = ∩j∈JDj. The singular locus U sing is of codimension
3, and consists of the union over pairs i ̸= j of indices of the:

Vij|U = {zi = zj = w = t = 0} = Di ∩Dj ∩D′
i ∩D′

j,

which all intersect at the torus invariant point p := {z1 = ... = zn = w = t = 0}.

p
D123

D1

D2

D3
D23

V12

D12

D2

D1

D3

{z2 = w = 0}

{z1 = w = 0}

{z3 = w = 0}

D12

D23

D13

V12

D123

Figure 4.3: Special fiber of U and a slice of the fan of the toric variety U

Proposition 4.1.14. The composition of successive toric blow-ups:

U (n− 1) = BlDn−1 U (n− 2) −→ U (n− 2) = ... −→ U (1) = BlD1 U −→ U ,

where we inductively abusively denote Dj+1 ⊂ U (j + 1) the strict transform of
Dj+1 ⊂ U (j), is a small log resolution of (U ,U0), such that the strict transform of
Dn in U (n− 1) is isomorphic to Dn.

Proof. Let N = Zn+2, with the standard basis written as (e1, ..., en, et, ew), and
N ′ ⊂ N the codimension 1 sublattice:

N ′ = {u1 + ...+ un = ut + uw} ⊂ N,

where (u1, ..., un, ut, uw) is the dual basis in M . Then the primitive generators of the
rays of the fan Σ of U in N ′

R are the vi = ei + et (corresponding to the boundary
component Di = {xi = t = 0}) and the v′i = ei+ ew (corresponding to the boundary
component D′

i = {xi = w = 0}), for i = 1, ..., n. The fan Σ has a unique maximal
cone σ =

∑n
i=1R≥0vi +

∑n
i=1R≥0v

′
i, it is the cone over the product of an (n − 1)-

simplex and a segment.
We set Ii := IU (i−1)(Di) the ideal of the strict transform of Di inside U (i− 1), so
that U (i) is the blow-up of U (i− 1) along the toric ideal Ii.
We claim that the blow-up U (i) −→ U (i − 1) has no exceptional divisors (i.e.
divisors in U (i) whose image have codimension > 1), and that Ii+1 = (xi, t). We
prove this by induction on i ∈ {1, ..., n− 1}.
For i = 1, we are blowing-up the toric ideal I = (x1, t) inside U , this amounts
to subdividing the maximal cone σ of Σ into the two subcones σ ∩ {u1 ≥ ut} and
σ ∩ {u1 ≤ ut} - the piecewise-linear function attached to I is ϕI = min{u1, ut}. It
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is straightforward to check that this does not subdivide any 2-dimensional cone of Σ,
so that the subdivision does not induce any new ray, and U (1) has no exceptional
divisors. This also implies that the zero locus of I2 = (x2, t) is the strict transform
D2 ⊂ U (1).
Now assume that the claim holds for i ≥ 1, we want to prove that U (i+1) −→ U (i)
has no exceptional divisors and that Ii+2 = (xi+1, t). Since we are blowing-up the
ideal Ii+1 = (xi, t) inside U (i), this means we are subdividing the fan of U (i)
along the hyperplane {ui = ut}, which is once again easily seen not to subdivide
the 2-dimensional cones, hence no rays are added. By the same argument as above,
this implies that inside U (i+ 1), the zero locus V (xi+1, t) is the strict transform of
Di+1.

D2

D1

D3

D2

D1

D3

D2

D1

D3

Figure 4.4: Slices of the fan of U , U (1) and U (2)

We now prove that U (n− 1) is regular. The maximal cones of the fan U (n− 1)
are the intersection of σ with (n − 1) halfspaces of the form {±(ui − ut) ≥ 0}; by
direct computation there are n maximal cones σ1, ..., σn, where:

σi = σ ∩ {ui ≥ ut} ∩ {ui−1 ≤ ut},

with σ1 = σ ∩ {ui ≥ ut}. This yields:

σi = R≥0v1 + ...+ R≥0vi + R≥0v
′
i + ...+ R≥0v

′
n,

which is a regular cone as (v1, ..., vi, v
′
i, ..., v

′
n) is a basis of N , so that the pair

(U (n− 1),U0(n− 1)) is snc.
Finally, we prove that the strict transform of Dn in U (n − 1) is isomorphic to
Dn. The ray ρn = R≥0vn viewed in the fan of U (n − 1) is contained in only one
maximal cone, namely σn. As a result, the fan of the strict transform of Dn is given
by the maximal cone σn/Rvn and its faces, so that the strict transform D̃n of Dn

is isomorphic to An ≃ Dn. Since the restriction of the composition of blow-ups
D̃n −→ Dn induces the identity on the tori, it is an isomorphism, and this concludes
the proof.

Back to the global setting, we obtain:
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Corollary 4.1.15. Let X ⊂ Pn+1
R be as above, and i ∈ {0, ..., n+1 }. Labelling the

elements of {0, ..., n+ 1 } \ i as {l1, ..., ln}, the sequence of successive blow-ups:

Xi(n) = BlDln
Xi(n− 1) −→Xi(n− 1) = ... −→Xi(1) = BlDl1

X −→X ,

yields an snc model Xi := Xi(n), such that Sk(Xi) = Sk(X ) and the strict trans-
form D′

i ≃ Di.

The upshot of this is that we obtain a Berkovich retraction ρXi
: Xan −→

Sk(Xi) = Sk(X ), which is an affinoid torus fibration over Star(vi) by theorem
3.1.21. Moreover, the integral affine structure induced on Star(vi) matches the one
induced by the chart ϕvi from definition 4.1.7.
Let us write Xi = X̂i,/Di

the formal completion. By theorem 3.1.21, writing N −→
A1
k the total space of normal bundle of Di inside Xi and N = N ×A1 R, we have a

formal isomorphism:
f : Xi

∼−→ ”N/Di
,

where Di ⊂ N denotes the zero section.
Thus, passing to the generic fiber, Xη

i embeds analytically as a open subset of a
torus:

Xη
i ↪→ Tan

N ,

where TN = N ×R K is the generic fiber of N .

Lemma 4.1.16. There is a canonical isomorphism of K-tori:

TN ≃ TDi
×k K.

Proof. Since N is trivial over TDi
, we have a natural morphism TDi

×Gm,k −→ N ,
whose image is precisely the k-torus of N . Moreover, from the description of the fan
of N (see 3.2.8), the morphism N −→ A1

k is the projection onto the second factor,
hence the result.

We write Σi for the fan of Di inside NR/Rvi, and let pi : NΣ −→ NΣi
be the

canonical projection - on NR, this is simply the quotient map NR −→ NR/Rvi.
The above lemma provides us with a map valDi

: Xη
i −→ NR/Rvi. Note that up to

identification, the map valDi
is none other than the Berkovich retraction ρXi

- more
precisely, viewing Sk(X ) ⊂ NR via prop. 4.1.3, the relation valDi

= pi ◦ ρXi
holds.

Proposition 4.1.17. Let valP : Pn+1,an −→ NΣ. Then we have:

valDi
= pi ◦ valP .

Proof. We assume i = (n+1) for convenience and pick standard coordinates ( z1
z0
, ..., zn+1

z0
)

on the torus of Pn+1; then the projection pi : Rn+1 −→ Rn is given by omitting the
last coordinate. Recall the formal isomorphism:

f : X̂i,/Di

∼−→ ”N/Di

was constructed cone by cone, in the following way. We let σ ∈ Σi be a maximal cone
in the fan of Di, and we assume that σ = Cone(e1, ..., en) is the standard orthant.



154 CHAPTER 4. DEGENERATIONS OF CALABI-YAU HYPERSURFACES

Then the restriction fσ of f to Xσ was defined by the following property: if sl is a
trivializing section of OX (D0 −Dl) on Xσ, restricting to the meromorphic function
zl/z0 on Di, then sl = f ∗

σ(
zl
z0
) (with the notation of section 3.2.2, W σ

l = (D0 −Dl)).
Thus, if x ∈ Xη

i - which means cXi
(vx) ⊂ Di, then vx(sl) = vx(

zl
z0
), hence:

valTN
(x) = (vx(

z1
z0
), ..., vx(

zn
z0
)) ∈ NR/Ren+1

while:
valTP(x) =

(
vx(

z1
z0
), ..., vx(

zn
z0
), vx(

zn+1

z0
)
)
∈ NR,

hence the result.

Corollary 4.1.18. For any choice of branch cuts a, the equality δa◦valP = ρXi
holds

on ρ−1
Xi
(fiStar(vi)) ⊂ Xη

i .

Proof. Under the identification Sk(X ) ⊂ NΣ, we have the equality qi ◦ ρXi
= valDi

,
where valDi

is the composition : Xη
i ↪→ Tan

Di
−→ NR(Di). By the above proposition,

we have qi ◦ ρXi
= pi ◦ valP, and by prop. 4.1.13, the equality δa = (qi)

−1 ◦ pi holds
over fiStar(vi), hence the result.

Since ρXi
is an affinoid torus fibration over Star(vi) and in particular overfiStar(vi),

this implies that ρa = δa ◦ valP is an affinoid torus fibration away from Γa, and this
concludes the proof of theorem 4.1.8.

4.2 An alternative construction in low dimension
In this section, we will explain the alternative construction of the map ρ from
[MPS21] in dimension 2 and 3, without taking a detour into tropical geometry -
in fact the n = 2 case originates from [KS06, § 4.2.5]. Recall that to prove that ρ
was an affinoid torus fibration near a vertex vi, we produced a model Xi −→X of
X, that was toric along the strict transform of Di, which produced a local model
for ρ near vi, simply given by ρXi

in the notation of the previous section.
In low dimension, it is actually possible to explicitly produce an snc model X̃ /R of
X, that simultaneously dominates all the models Xi - which we call the dominating
model. We then produce a combinatorial retraction π : Sk(X̃ ) −→ Sk(X), which is
an explicit piecewise-affine map, and such that near a vertex vi the map π is equal
to the restriction of ρXi

to Sk(X̃ ). The way the map π has to be defined for this to
hold is mostly dictated by the explicit pictures we are able to draw, which unfortu-
nately has limited this approach to the low-dimensional case for the moment.
Nevertheless, one upside of this approach is that it allows us to refine the general
construction; let us explain this in the n = 2 case. For degenerations of K3 surfaces,
the discriminant locus consists of 6 singular points, located in the interior of the
edges of the skeleton; however it is expected that a ’generic’ singular affine structure
has 24 singular point - in fact corresponding to the 24 singular points of the model
X ⊂ P3

R. Accordingly, for a generic K3 hypersurface, the skeleton of the dominating
model contains 24 "wings" (following the terminology of [KS06]), 4 over each edge.
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In the tropical world, we will see that the four wings lying over the same edge get
contracted to only one 2-simplex; while the construction we will describe here allows
us to contract the four wings separately, while choosing a different singular point
inside the edge for each wing, and thus obtain an integral affine structure which is
singular over 4 points in each edge of the skeleton.

4.2.1 Degeneration of quartic K3 surfaces

We consider X = {z0z1z2z3 + tF4(z0, z1, z2, z3) = 0} ⊂ P3
R, where F4 is a generic

homogeneous polynomial of degree 4. The total space X has 24 singular points,
given by {zi = 0, zj = 0, t = 0, F4 = 0}, hence 4 on each Di ∩ Dj; and the (étale)
local model around a singular point is given by the three-dimensional ordinary double
point U = {xy = zt} ⊂ A3

R. This implies that X is a minimal dlt model of the K3
surface X := XK , but it is not good in the sense of definition 1.1.11 since the prime
components of the special fiber are not Q-Cartier.
Our goal is to construct some (to be more precise, 224) explicit good minimal models
of X starting from X , and then to study the integral affine structures on Sk(X)
induced by the Berkovich retractions associated to these models, or by patching
together several of them. To this purpose, we will apply corollaries 3.3.8 and 3.3.14.
Some good minimal models of X are obtained by performing the following small
resolutions of X . As in corollary 4.1.15, for any triple of elements i, j, k in {0, . . . , 3}
and any fixed order (i, j, k) on them, we blow-up in order the divisors Di, Dj and
Dk, and denote the resulting model by Xijk and the morphism by

gijk : Xijk →X .

The exceptional locus of gijk consists of 24 smooth rational curves whose images
via gijk are the singular points of X . In particular, the strict transform of Di is
isomorphic to the blow-up of Di along the 12 singular points in Di; similarly for Dj

at 8 points, and for Dk at the 4 remaining singular points. Instead, for h ̸= i, j, k,
Dh is isomorphic to its strict transform.
These facts follow from local computations on U : with the notation of section
4.1.3, blowing-up Dx := {x = t = 0} induces an exceptional curve inside the strict
transform D̃x, which is isomorphic to the blow-up of Dx along the origin. The claims
now follow, since the singularities of X are isolated.
If we denote by D̃m for m ∈ {1, . . . , 4} the irreducible components of the special
fiber of Xijk, and by Cmm′ = D̃m ∩ D̃m′ the strata curves, then the intersection
numbers in Xijk are:

D̃i D̃j D̃k D̃h h ̸= i, j, k

Cij 1 -3 1 1
Cik 1 1 -3 1
Cih 1 1 1 -3
Cjk 1 1 -3 1
Cjh 1 1 1 -3
Ckh 1 1 1 -3

(4.2.1)
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Integral affine structure induced by the model Xijk

By [NXY19] the non-archimedean SYZ fibration ρXijk
: Xan → Sk(Xijk) = Sk(X) ≃

S2 is an affinoid torus fibration (at least) away from the vertices of the triangulation
of Sk(X) induced by the special fiber of Xijk, i.e. away from the vDm ’s.
By theorem 3.1.21, ρXijk

is an affinoid torus fibration over Star(τDh
) for h ̸= i, j, k,

as Dh ≃ P2 and gijk is an isomorphism on the strict transform of Dh. Moreover, by
remark 3.3.9 and 4.2.1 the integral affine structure induced by ρXijk

does not extend
to vDi

, vDj
and vDk

.
We conclude that the singular points of the affine structure on Sk(X) induced

by ρXijk
are precisely vDi

, vDj
and vDk

. Corollary 3.3.8 establishes that the mon-
odromies around these vertices are

TρXijk
(γi) =

Å
21 8
−8 −3

ã
in the basis (vDj

, vDk
) and origin vDi

,

TρXijk
(γj) =

Å
−15 −4
4 1

ã
in the basis (vDk

, vDh
) and origin vDj

,

TρXijk
(γk) =

Å
1 0
4 1

ã
in the basis (vDh

, vDi
) and origin vDk

.

v2 = vj

vh = v4

v3 = vk

v1 = vi

γj

γk

γi

Integral affine structure induced combining more models

We recall a construction from [KS06, §4.2.5]. Consider the resolution h : Z → X
obtained by blowing-up the 24 singular points of X inside P3

R and then taking the
closure of X in the blow-up. By the universal property of blowing-up (applied
to Xijk −→ X ), this model dominates any of the models Xijk, and the special
fiber is Z0 =

∑4
i=1Di +

∑24
q=1Eq; the associated dual complex is the boundary of

a tetrahedron with four additional 2-cells glued along each edge of the tetrahedron;
following Kontsevich–Soibelman we call such 2-cells wings.

We parametrize each edge e of D(X0) by the interval [−1, 1], and each wing Wq

glued to e by the 2-simplex in R2
(x,y) bounded by e and 0 ⩽ y ⩽ 1− |x|.

Lemma 4.2.2. Let Wq be a wing over the edge elh, for l ∈ {i, j, k} and assume
i, j, k, h all distinct. Then the retraction ρXijk

: Wq → elh is the contraction of Wq

to the edge elh parallel to the edge elq:

ρXijk
: Wq → elh

(x, y) 7→ (x− y, 0)
vhvl

vq

x

y

Proof. The morphism Z →Xijk is the blow-up of the 24 exceptional curves of gijk.
In particular, the exceptional divisor Eq is the preimage in Z of a curve contained
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in D̃l; it follows that vEq(z̃l) = 1 and vEq(z̃h) = 0, where z̃l, z̃h are local equations for
D̃l, D̃h on Xijk. The Berkovich retraction ρXijk

is linear on Wq and hence depends
only on the image of vq, which is determined by vEq(z̃l) and vEq(z̃h). Thus we
conclude that ρXijk

(vq) = vl and we have the result.

Kontsevich and Soibelman define a retraction

ρ : Xan ρZ−−→ Sk(Z )
ρ′−→ S2 ≃ Sk(X) = Sk(X )

where ρZ is the Berkovich retraction onto the skeleton Sk(Z ), and ρ′ is a retraction
of the 24 wings of Sk(Z ) to the sphere given as follows. For each edge e of D(Xk)
we choose a point ae = (ae, 0) in the interior of e, and define the retraction of Wq

onto e by

(x+ y, 0) if x+ y ⩽ ae
ρ′ : (x, y) 7→ (x− y, 0) if x− y ⩾ ae

(ae, 0) otherwise.

Picture for ae = 0

ae

vq

x

y

We note that

- over the interior of any 2-dimensional face τ ⊂ Sk(X ), ρ is equal to ρZ , thus
it is an affinoid torus fibration (see example 3.1.16).

- Around any vertex vD, ρ is equal to ρXijk
for any triple such that D ̸=

Di, Dj, Dk, as follows from the previous lemma. Thus, from 4.2.1, ρ is an
affinoid torus fibration around vD, and the affine structure induced there is
the fan structure induced by D, by cor. 3.3.2.

- For any edge e corresponding to Ce = Dim ∩ Dim′ , adopting the notation of
section 3.3.3,

ρ =

®
ρXijk

for im ̸= i, j, k, over Int(τp0) ∪ Int(τp∞) ∪ [vim , ae)

ρXi′j′k′
for im′ ̸= i′, j′, k′, over Int(τp0) ∪ Int(τp∞) ∪ [vim′ , ae),

and thus is an affinoid torus fibration over the union of these two open sets.

We conclude that ρ induces an integral affine structure on Sk(X) away from
the points ae. By corollary 3.3.14, we can compute the monodromy around the
singularities. As all these computations are analogous, we exhibit the case Ce =
D1 ∩D2:

Tρ(γae) =

Å
1 0

b1,X234 − b1,X134 1

ã
=

Å
1 0

3− (−1) 1

ã
=

Å
1 0
4 1

ã γaeae

v2 = vim′

vi∞ = v4

v3 = vi0

v1 = vim
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with respect to the basis (v3, v1) and origin v2. This formula was already stated
in [KS06, §4.2.5].

Lemma 4.2.3. Let W ⊂ Xan be a wing over the edge eij ⊂ Sk(X ). Then the
tropicalization map:

valP : Xan −→ NΣ

induces an integral affine homeomorphism from the wing W to the convex hull
Conv(vi, vj, vi + vj) ⊂ NΣ.

Note that in particular the four wings that lie over the same edge are collapsed
together inside the tropicalization Trop(X).

Proof. Assume for convenience that i = 1 and j = 2. We let Z −→ X be the
resolution of X defined above, and let fi = zi

z0
be the meromorphic function on

Z induced by the standard coordinates on Pn+1. We still denote by Di the strict
transforms of the components of X0 inside Z .
Let q ∈ C12 be a singular point, and Eq ⊂ Z0 the corresponding exceptional divisor.
Then f1, f2 are equations for D1 +Eq, D2 +Eq respectively at the zero-dimensional
stratum pq := Eq ∩D1∩D2. Thus, choosing an equation fE of Eq at pq, and writing
w ∈ W as its monomial weights:

w = (w1, w2, wE),

we have wi = w(f−1
E fi) and wE = w(fE), while:

Trop(w) = (w(f1), w(f2), 0) = (w1 + wE, w2 + wE, 0),

so that in coordinates Trop maps the standard simplex w1 + w2 + wE = 1 to the
convex hull Conv(v1, v2, v1 + v2) ⊂ R3, hence the result.

Proposition 4.2.4. Let a = (ae)e be a choice of center of the edges. Then the
retraction constructed above is the retraction ρa = δa ◦ val.

Proof. Write ρ = δ ◦ val, and ρ′ = π ◦ ρZ . By the proof of thm. 4.1.8, the
equality ρ = ρ′ holds away from Γ, so that we let x ∈ Xan such that ρ(x) ∈ Γ - or
equivalently, ρ′(x) ∈ Γ. Then there exists a wing W ⊂ Sk(Z ) such that ρZ (x) ∈ W
- more precisely ρZ (x) belongs to the yellow region of the wing, as in figure 4.2.1.
Hence the results follows from the lemma above and the picture 4.2.

Dispersion of singularities

We construct a third singular integral affine structure on Sk(X) pushing forward the
techniques developed so far. This can be viewed as a dispersion of singularities with
respect to the integral affine structure studied in 4.2.1: on each edge we pass from
one singular point around which the monodromy is ( 1 0

4 1 ), to 4 singular points around
each of which the monodromy is ( 1 0

1 1 ). Such singularities are called focus-focus and
are the most standard examples of singularities for Z-affine structures in dimension
2. Those arise for instance when considering the hyperkähler rotation of a generic
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elliptic K3 surface f : S −→ CP1, with f an elliptic fibration: the hyperkähler
rotation SHK is a complex surface with same underlying topological space as S, and
hence comes with a map fHK : SHK −→ S2, induced by f at the level of topological
spaces. The map fHK is no longer holomorphic, but is a symplectic torus fibration
inducing a Z-affine structure with 24 focus-focus singularities on S2 and acting as
an SYZ fibration for SHK. We refer the reader to [GW00], [OO18] for more details.

Let e be an edge of Sk(X ), let Ce = De1 ∩ De2 be the corresponding stratum
curve in Xk. We recall that as the degree four polynomial F4 is generic, Ce contains
four singular points p1, . . . , p4 of X , which are ordinary double points. Around
each pi, X is étale locally of the form {xy = wt} ⊂ A3

R, with x and y being local
equations for De1 and De2 away from pi. Blowing-up the singular point pi inside
the ambient space yields an exceptional divisor E ≃ P1 × P1. Contracting one or
the other ruling of E, we obtain two distinct small resolutions of ’X/Ce around pi,
respectively with an exceptional curve inside De1 or De2 .

For j ∈ {0, . . . , 4}, we denote by Xe,j the following small resolution of ’X/Ce :
around pi for i ⩽ j we consider the small resolution such that the exceptional curve
over pi lies in De1 , while for i > j the small resolution such that the exceptional
curves lie in De2 . The gluing of these local small resolutions is done in the étale
topology, so that in general the obtained models are no longer schemes but only
algebraic spaces. Nevertheless, Xe,j is dominated by the scheme Z (defined in
4.2.1), so that we may still define a Berkovich retraction ρXe,j

, as described in
section 4.2.6. In particular, by prop. 4.2.11, ρXe,j

is an affinoid torus fibration over
Star(τCe).

We construct the following continuous retraction

ρ : Xan ρZ−−→ Sk(Z )
ρ′−→ Sk(X) = Sk(X ),

where ρZ is the Berkovich retraction onto the skeleton Sk(Z ), and ρ′ is a retraction
of the 24 wings of Sk(Z ) to the sphere given as follows. We fix four distinct, ordered,
interior points ae,1, . . . , ae,4 of each edge e. Then the map ρ′ on the wing Wi attached
to e is defined as the map ρ′ of 4.2.1, setting ae = ae,i, for each i ∈ {1, . . . , 4}.

Proposition 4.2.5. The map ρ is an affinoid torus fibration away from the 24
points ae,i. Furthermore, the monodromy of the Z-affine structure induced by ρ,
around each singular point, is SL2(Z)-conjugate to

Tρ =

Å
1 0
1 1

ã
.

Proof. Over Int(τ) of any 2-dimensional face τ ⊂ Sk(X ), ρ is equal to ρZ , hence
is an affinoid torus fibration. Around any vertex vD, ρ is equal to ρXijk

for any
triple such that D ̸= Di, Dj, Dk. It follows from 4.2.1 that ρ is an affinoid torus
fibration around vD. We denote by p0 + p∞ the boundary of Ce, with p0 = Ce ∩Di0

and p∞ = Ce ∩ Di∞ ; we write ae,0 = vDe1
and ae,5 = vDe2

, and denote by (·, ·) the
open segment joining two points. Then, for j ∈ {0, . . . , 4}, ρ is equal to ρXe,j

over
Int(τp0) ∪ Int(τp∞) ∪ (ae,j, ae,j+1), thus is an affinoid torus fibration. We conclude
that ρ is an affinoid torus fibration away from the points ae,i for i ∈ {1, . . . , 4} .
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For a singular point ae,i, we consider a loop γ around it and contained in Int(τp0)∪
Int(τp∞)∪(ae,i−1, ae,i)∪(ae,i, ae,i+1). We apply cor. 3.3.14 to compute the monodromy
along γ: the numbers be1,Xe,i−1

and be1,Xe,i
differ by 1, as the model Xe,i has an

additional exceptional curves in De1 with respect to Xe,i−1. Therefore, we obtain

Tρ(γae,i) =

Å
1 0

be1,Xe,i−1
− be1,Xe,i

1

ã
=

Å
1 0

3− (i− 1)− (3− i) 1

ã
=

Å
1 0
1 1

ã γae,2

ae,1

ae,2

ae,3

ae,4

v2 = ve2 = ae,5

vi∞ = v4

v3 = vi0

v1 = ve1 = ae,0

with respect to the basis (vDi0
, vDe1

) and origin vDe2
.

4.2.2 Study of the local resolution

We now move on to the case of a degeneration of quintic threefolds, of the form:

X = {z0...z4 + tF5 = 0} ⊂ P4
R,

where F5 is a generic homogeneous polynomial of degree five. We will start by
refining the discussion of section 4.1.3.
The singular locus X sing of the total space X is contained in the special fiber, and
is the intersection in P4

k of {F5 = 0} and the union of surfaces Sij = {zi = zj = 0}
for i ̸= j.
In particular, each Di intersects X sing along the union of four quintic curves Cij
and by genericity of F5, we may assume that Cij does not intersect the torus fixed
points of Di.

X sing ∩Di =
5⋃
j=1
j ̸=i

Cij

Cij ⊆ Di ∩Dj

Cij ∩ Cij′ = {5 points} for j ̸= j′
Cij

Cij′

Figure 4.5: Irreducible component Di

We consider a point in X sing ∩ D1 ∩ D2 ∩ D3; the singular points in the other
strata curves can be treated analogously. Etale locally around such a point, X is
isomorphic to the toric variety U := V (x1x2x3 − wt) ⊂ A5

k, where the:

Di = {xi = t = 0}

are the components of the special fiber {t = 0} in U . They form the toric boundary
of U together with the:

D′
i = {xi = w = 0}.
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We denote the strata surfaces of the special fiber byDij := Dj∩Dj, for i, j ∈ {1, 2, 3}
and i ̸= j, and the stratum curve by D123 := {x1 = x2 = x3 = t = 0}. The singular
locus U sing consists of the torus invariant curves:

Cij = {xi = xj = w = t = 0} = Di ∩Dj ∩D′
i ∩D′

j,

for {i, j} ⊂ {1, 2, 3}. The three singular curves intersect each other at the torus
invariant point p := {x1 = x2 = x3 = w = t = 0}.
The toric blow-up G1 : U1 := BlD1 U → U along D1 resolves the singularities
along C12 and C13 except at the point p. The exceptional locus of G1 consists of two
surfaces S12 and S13 intersecting each other along a curve: these surfaces are mapped
by G1 to the respective singular curves, are contained in the strict transform of D1,
and correspond to two new edges in the slice of the fan of U1. The intersection of
S12 and S13 corresponds to a new 2-dimensional face in the slice of the fan. With a
slight abuse of notation we keep the same notation for the strict transforms in U1.

A resolution of U is given by the composition of G1 and the toric blow-up
G12 : U12 := BlD2 U1 → U1 along D2; the latter indeed resolves the singularities
along C23. The exceptional locus of G12 is a surface S23, which is mapped by G12

to C23 and is contained in the strict transform of D2. The morphism G12 induces a
new 2-dimensional face in the slice of the fan of U12, and a new edge corresponding
to the surface S23. In particular, after the blow-up G12, the strict transforms of the
surface S12 and of the divisor D3 have empty intersection.
The small resolution U12 of U induces an isomorphism on the strict transform of
D13 and of D23, while its restriction to the strict transform of D12 is the blow-up
of D12 along a general point. These facts can be checked computing the charts of
the blow-ups G1 and G12. Alternatively, they can be verified looking at the fans of
the strata surfaces Dij in the slice of the fans of U , U1 and U12; indeed, the fan
of Dij is induced by the intersection of the slice with a normal plane to the edge
corresponding to Dij, as in the picture in the proof of prop. 4.1.14.

4.2.3 Local dominating model

We now introduce the local model for the dominating model Z −→ X we will
construct.
We consider the blow-up of the exceptional surfaces S12, S13 and S23 one after the
other:

V123
blow-up of S23−−−−−−−−→

H23

V13
blow-up of S13−−−−−−−−→

H13

V12
blow-up of S12−−−−−−−−→

H12

U12 −−−−→
G12◦G1

U

∪ ∪ ∪ ↓
E23 E13 E12 A1

t .

As these surfaces are toric strata of U12, the blow-ups are toric as well and the
corresponding fans are refinements of the fan of U12. We note that

- the dual complexes of the special fibers of U12,V12,V13 and V123 are obtained
from the slices of the corresponding fans by removing the vertices correspond-
ing to D′

1, D′
2 and D′

3, as well as each face containing one of these.
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v2

v1

v3

Sk(U12) = Sk(U )

v2

v1

v3

v12

Sk(V12)

v2

v1

v3

v12 v13

Sk(V13)

v2

v1

v3

v12 v13

v23

Sk(V123)

Then Sk(V123) consists of four 3-cells: < v13, v1, v2, v3 >, < v13, v1, v2, v12 >,
< v23, v13, v2, v3 > and < v23, v13, v2, v12 >; it has only one edge in the interior,
which is < v2, v13 >.

- The remaining 3-dimensional simplices of the slice of the fan of V123 are

v′2

v′1

v′3

v12
v13

v23

< v12, v
′
1, v

′
2, v

′
3 >

< v13, v
′
1, v

′
3, v12 >

< v23, v12, v
′
2, v

′
3 >

< v23, v13, v
′
3, v12 >

v2

v1

v3

v′2

v′1

v′3

v12
v13

v23

< v1, v
′
1, v12, v13 >

< v2, v
′
2, v12, v23 >

< v3, v
′
3, v13, v23 >

- The Berkovich retractions associated with the models U12, V12 and V13 map
v12 and v13 to v1, and v23 to v2.
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ρU12
on Sk(V12)

v2

v1

v3

v12

ρV12
on Sk(V13)

v2

v1

v12 v13

ρV13
on Sk(V123)

v2

v1

v13

v23

ρV12
= ρV12

◦ ρV13
on Sk(V123)

v2

v1

v3

v13

v23

We study more in details the retraction ρV12 near the vertex v3, as this will be
relevant later in the construction of the local combinatorial retraction (see 4.2.7).
We observe that ρV12 collapses the convex hull Conv(v1, v2, v3, v13, v23) of v1, v2, v3, v13
and v23 onto the face < v1, v2, v3 >. If we identify the skeleton Sk(V123) with the
polyhedron in R3

(x,y,z) below, ρV12 on Conv(v1, v2, v3, v13, v23) is written explicitly as
follows:

for (x, y, z) ∈ Conv(v1, v2, v3, v13, v23) \ {v3},

ρV12

(
(x, y, z)

)
=
(
x+

Å
1− t

2

ã
z, y +

t

2
z, 0
)

where t =
2y

x+ y + 1
.

(4.2.6)
(1, 0, 0) = v2

v1 = (0, 1, 0)

v3 = (−1, 0, 0)

(1
2
, 1
2
, 1) = v21

v13 = (−1
2
, 1
2
, 1)

(0, 0, 1) = v23

z

x

y

(1
2
, 1
2
, 0)

(−1
2
, 1
2
, 0)

(−1
4
, 1
4
, 1)

(0, 1
3
, 0)

(−1
2
, 1
6
, 2
3
)

The function t on Conv(v1, v2, v3) is the slope of the line segment joining the
vertex v3 to tv1 + (1− t)v2 for t ∈ [0, 1]. We give a picture of the retraction ρV12 for
various values of t:
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(x+ z, y, 0)

t = 0

(x+ 7
8
z, y + 1

8
z, 0)

t = 1
4

(x+ 3
4
z, y + 1

4
z, 0)

t = 1
2

(x+ 5
8
z, y + 3

8
z, 0)

t = 3
4

(x+ 1
2
z, y + 1

2
z, 0)

t = 1

For purposes which will be clear in the construction of the local combinatorial re-
traction in section 4.2.4, we consider a further toric blow-up. Let H123 : G → V123

be the blow-up along the disjoint toric strata D2∩E13 and E12∩D′
3; this yields two

new components in the toric boundary, denoted by E123 and E ′
123. It follows that

the slice of the fan of G is obtained from the slice of V123 as star subdivision along
the edges < v2, v13 > and < v12, v

′
3 >.

In particular, the skeleton Sk(G ) is obtained from
Sk(V123) by

1. the star subdivision of the edge e(v2, v13), which
turns the four 3-cells of Sk(V123) into eight 3-cells;

2. adding an additional 3-cell τ =
Conv(v12, v13, v23, v

′
123), where we denote by

v′123 the new vertex corresponding to E ′
123.

v′123

v123

v2

v1

v3

v12 v13

v23

Sk(G )

The diagram below summarizes the resolutions of U we constructed and studied so
far:

G

blow-up of
D2∩E13,E12∩D′

3−−−−−−−−−→
H123

V123

blow-up of
S12,S13,S23−−−−−−−−→
H23◦H13◦H12

U12

blow-up of
D1,D2−−−−−−→
G12◦G1

U .

∪ ∪ ∪
E123, E

′
123 E12, E13, E23 S12, S13, S23

4.2.4 Local combinatorial retraction

Other resolutions of U can be obtained by blowing-up the divisors of the special
fiber in a different order. Given any order (i1, i2, i3) on {1, 2, 3}, we denote
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Vi1i2i3

blow-up of
Si1i3

,Si2i3−−−−−−→ Vi1i2

blow-up of
Si1i2−−−−−−→ Ui1i2

blow-up of
Di1

,Di2−−−−−−→ U .
∪ ∪ ∪

Ei1i3 , Ei2i3 Ei1i2 Si1i2 , Si1i3 , Si2i3

The refinement of the fan of U corresponding to Vi1i2i3 is such that the skeleton
Sk(Vi1i2i3) = Sk(V123) as subspaces in the Berkovich space of UK ; it is independent
on the chosen order so that we simply denote this subspace by Sk(V ). However,
the models Vi1i2i3 and V123 induce in general different simplicial subdivisions and
different retractions onto < v1, v2, v3 >. For instance, the only edge in the interior
of Sk(Vi1i2i3) is < vi2 , vi1i3 >, which indeed depends on the chosen order. Here below
we illustrate the skeletons and the Berkovich retractions in a couple of examples.

(1, 2, 3)

v2

v1

v3

v12
v13

v23

Sk(V123) ρU12
on Sk(V12)

v2

v1

v3

v12

ρV12
on Sk(V123)

v2

v1

v3

v13

v23

(2, 1, 3)

v2

v1

v3

v21
v13

v23

Sk(V213) ρU21
on Sk(V21)

v2

v1

v3

v21

ρV21
on Sk(V213)

v2

v1

v3

v13

v23
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(1, 3, 2)

v2

v1

v3

v12

v13

v32

Sk(V132) ρU13
on Sk(V13)

v2

v1

v3

v13

ρV13
on Sk(V132)

v2

v1

v3

v13

v32

The blow-up of Vi1i2i3 along the toric strata Di2 ∩ Ei1i3 and Ei1i2 ∩D′
i3

yields a
refinement of the fan which coincides with the fan of G , constructed at the end of
4.2.3. It follows that the model G dominates all resolutions Vi1i2i3 independently on
the order, hence all Berkovich retractions ρVi1i2i3

, ρVi1i2
and ρUi1i2

factors through
ρG .

Our goal is to construct a map π, composing the Berkovich retraction ρG with a
collapse κ of the additional 3-cell τ and a combinatorial retraction ρ

π : U an
K

ρG−→ Sk(G )
κ−−−−→

collapse
Sk(V )

ρ−−−−−→
retraction

Sk(U )

= ∪ ∪ ∪ ∪
over fiStar(vj) ρUi1i2

: π−1(fiStar(vj)) ρG−→ Sk(G )
ρVi1i2j−−−−→ Sk(Vi1i2j)

ρUi1i2−−−−→ fiStar(vj)
such that, given any vertex vj in Sk(U ), the restriction of π over fiStar(vj) (the Star
is taken with respect to the first barycentric subdivision, as in 3.3.11) is ρUi1i2

for
any order (i1, i2, j) on {1, 2, 3}, i.e. any order where the index j is the biggest. This
guarantees that around each vj, the map π is the Berkovich retraction induced by a
small resolution Ui1i2 where the strict transform of Dj is isomorphic to Dj, so that
we may apply corollary 3.3.2.

- The retraction ρ. We identify again the skeleton Sk(V ) with the polyhedron
in R3 described in 4.2.3. On the convex hull:

P = Conv
(
v23, (−1/4, 1/4, 1), (0, 1/3, 1), (0, 0, 0), v3, (0, 1/3, 0)

)
,

the retraction ρ is given as follows:
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(x, y, z) ∈ P 7→


(
x+

(
1− t

2

)
z, y + t

2
z, 0
)

if x+
(
1− t

2

)
z ⩽ 0(

0, y
x+1

, 0
)

if x+
(
1− t

2

)
z ⩾ 0

where t =
2y

x+ y + 1
.

(4.2.7)

Here is a pictorial description for certain values of t:

t = 0 t = 1
4

t = 1
2

We extend

the definition of ρ to Sk(V ) by symmetry along the medians of the triangles
< v1, v2, v3 > and < v12, v13, v23 >. In particular, we note that the image of
< v12, v13, v23 > is the graph in < v1, v2, v3 > from def. 3.3.11.

- The combinatorial retraction π′. We define the collapse κ as the projection
of the additional 3-cell τ of Sk(G ) onto < v12, v13, v23 > along the z-direction.
We call π′ := ρ ◦ κ the combinatorial retraction of the skeleton Sk(G ) onto
Sk(U ) =< v1, v2, v3 >.

- Finally, we check that π′ = ρUi1i2
over fiStar(vj). As the preimage of fiStar(vj)

is disjoint from < v12, v13, v23, v
′
123 >, we have to prove that ρ = ρUi1i2

. By
symmetry of ρ, it is enough to check this for v3. Over Star(v3)

′ we have
ρUi1i2

= ρVi1i2
; there, the expression of ρVi1i2

determined in 4.2.6 coincides
with the definition of ρ in 4.2.7, hence we conclude.

Fix an order (i, j, k, l, h) on {1, . . . , 5} and consider the small resolution Xijkl, ob-
tained from X by blowing-up the divisors Di, Dj, Dk, Dl in that order. It now
follows from the local study of the singularities of X that this is indeed a small
resolution of X .
In Xijkl we still denote the strict transforms of the strata of Xk by Dm, by Dmm′ =
Dm ∩Dm′ and by Dmm′m′′ = Dm ∩Dm′ ∩Dm′′ with m,m′,m′′ ∈ {1, . . . , 5}. By the
study of the local model in section 4.2.2, the exceptional locus of gijkl : Xijkl →X

gijkl : Xijkl

blow-up
of Dl−−−−→
Gijkl

Xijk

blow-up
of Dk−−−−→
Gijk

Xij

blow-up
of Dj−−−−→
Gij

Xi

blow-up
of Di−−−−→
Gi

X

∪ ∪ ∪ ∪
Slh Skl, Skh Sjk, Sjl, Sjh Sij, Sik, Sil, Sih

consists of ten surfaces Smm′ , with m,m′ ∈ {1, . . . , 5} and m < m′ in the order
(i, j, k, l, h). The surface Smm′ is mapped via gijkl to the singular curve Cmm′ , and is
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contained in the strict transform of Dm. The component Dh (corresponding to the
biggest index in the chosen order) is the only one isomorphic to its strict transform.

4.2.5 The global combinatorial retraction

We consider the blow-up hijkl : Wijkl →Xijkl of the surfaces Smm′ in lexicographical
order with respect to (i, j, k, l, h); we denote by Emm′ the corresponding exceptional
divisors. The skeleton Sk(Wijkl) consists of the union of the skeleton Sk(X) with
four additional 3-cells for each 2-dimensional face < vm, vm′ , vm′′ > of Sk(X): for
each ordered triple m < m′ < m′′, the union of the additional cells is isomorphic to
Sk(V123) from section 4.2.3, where we identify v1 = vm, v2 = vm′ and v3 = vm′′ . The
retraction ρXijkl

collapses the additional faces onto < vm, vm′ , vm′′ > as ρU12 ◦ ρV12 .

Additional 3-cells of Sk(Wijkl) over
< vm, vm′ , vm′′ >

with a pictorial description of the retraction ρXijkl

vm′

vm

vm′′

vmm′

vmm′′

vm′m′′

Given another order (i′, j′, k′, l′, h′) on {1, 2, 3, 4, 5}, the skeleton Sk(Wi′j′k′l′) co-
incides with Sk(Wijkl) as subspace of Xan; we denote this simply by Sk(W ). Instead,
the triangulation and the retraction depend on the order. Our goal is therefore to
construct a model Z which dominates all models Wijkl regardless of the order, so
that all retractions ρWijkl

factors through ρZ .
Along the lines of section 4.2.3, we define Z as the blow-up of Wijkl along

Dm′ ∩ Emm′′ and Emm′ ∩ D′
m′′ , for all ordered triples m < m′ < m′′ in the order

(i, j, k, l, h):

Z

blow-up of
Dm′∩Emm′′ ,Emm′∩D′

m′′−−−−−−−−−−−−−−→
for all m<m′<m′′

Wijkl

blow-up of Smm′
for all m<m′
−−−−−−−−−→

hijkl
Xijkl

blow-up of
Di,Dj ,Dk,Dl−−−−−−−→

gijkl
X .

∪ ∪ ∪
Emm′m′′ , E ′

mm′m′′ Emm′ Smm′

We denote by Emm′m′′ and E ′
mm′m′′ the corresponding exceptional divisors, and de-

duce from the local study of these morphisms in 4.2.3 that Sk(Z ) is obtained from
Sk(W ) by adding a new 3-cell τmm′m′′ :=< vmm′ , vmm′′ , vm′m′′ , v′mm′m′′ > for each
triple m < m′ < m′′.

We now define the combinatorial retraction of Sk(Z ) onto Sk(X): given the
2-cell < vm, vm′ , vm′′ >, we identify v1 = vm, v2 = vm′ and v3 = vm′′ and contract
onto < vm, vm′ , vm′′ > the additional cells of Sk(Z ) over < vm, vm′ , vm′′ >, via
the combinatorial retraction π′ = ρ ◦ κ constructed in 4.2.4. With a slight abuse of
notation, we still denote this map by π′. By construction, the composition π = π′◦ρZ
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π : Xan ρZ−−→ Sk(Z )
π′

−−−−−−−→
combinatorial

retraction

Sk(X)

= ∪ ∪ ∪
over fiStar(vm) ρXijkl

: π−1(fiStar(vm)) ρZ−−→ Sk(Z )
ρXijkl−−−−→ fiStar(vm)

coincides with ρXijkl
over Star(vm)

′ for any order (i, j, k, l,m) on {1, 2, 3, 4, 5}. In
other words, around each vertex vm, the map π is the Berkovich retraction induced
by a small resolution Xijkl of X , where the strict transform of Dm is isomorphic to
Dm, thus in particular D̊m ⊂ Dm is a torus embedding.
By construction, around any point of Sk(X) \ Γ, the retraction π is equal to the
Berkovich retraction induced by a suitable minimal model Xijkl ofX. It follows from
the results in [NXY19] that π induces an integral affine structure with singularities
on Sk(X). By theorem 3.1.21, we obtain that this integral affine structure has no
singularities outside Γ.

4.2.6 The skeleton of an analytic model

The purpose of this section is to extend the constructions of the Berkovich skeleton
and retraction to the following situation: let X be a smooth family of n-dimensional
projective varieties over the punctured disk D∗, XK the base change to K = C((t)),
and let X be a separated proper regular algebraic space over R, such that X ×RK =
XK . Writing abusively X the complex analytification of the latter algebraic space,
this means that the morphism X → D is a proper holomorphic submersion, not
assumed to be projective, and we will assume that X0 is a strict normal crossing
divisor in X in the sense of complex analytic geometry; we still call such a space
X an snc model of X.
Our goal is to define a skeleton Sk(X ) ⊂ Xan and a retraction ρX : Xan → Sk(X )
associated with X .

We start by recalling a construction from [BJ17, 4.2]. Let X ′ be another snc
model of X that dominates X ; we write h : X ′ −→X and the special fibers X0 =∑

i∈I aiDi and X ′
0 =

∑
i∈I′ a

′
iD

′
i. Then there exists an integral affine retraction

rX ′X : D(X ′
0 ) −→ D(X0),

as follows. Let τ ′ be the simplex in D(X ′
0 ) corresponding to a stratum Y ′ ⊆ D′

0 ∩
. . . ∩D′

q. Let Y be the minimal stratum of X0 such that h(Y ′) ⊂ Y ; we denote by
τ the simplex in D(X0) corresponding to Y and we write D0, . . . , Dp the irreducible
components of X0 containing Y . Then

h∗Di =

q∑
j=0

aijD
′
j +

∑
h∈I′\{0,...,q}

aihD
′
h

and we define the map rX ′X on τ ′ by the formula:

τ ′ ∋ w = (w0, . . . , wq) 7→ rX ′X (w) =
( q∑
j=0

aijw
′
j

)
0⩽i⩽p

∈ τ.
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This yields a continuous integral affine map. Furthermore, we have the following
transitivity property: if X ′′ −→ X ′ −→ X are three snc models of X, then
rX ′′X = rX ′X ◦ rX ′′X ′ .

Definition 4.2.8. Let τ ′ be a face of D(X ′
0 ). We say τ ′ is active for rX ′X if:

- h : Y ′ −→ Y is a bimeromorphic morphism,

- the Q-linear map inducing rX ′X : τ ′ −→ τ is an isomorphism.

We write AX ′X for the union of active faces in D(X ′
0 ). It follows from [BJ17,

Proposition 4.3] that rX ′X induces a homeomorphism from AX ′X onto D(X0).

Definition 4.2.9. Let X be an snc model of X, and assume there exists a projective
snc model X ′ and h : X ′ −→ X . We define the skeleton Sk(X ) ⊂ Xan as the
image of AX ′X by the embedding D(X ′

0 ) ↪→ Xan, and the Berkovich retraction
ρX : Xan −→ Sk(X ) as the composition rX ′X ◦ ρX ′ (after identifying D(X ′

0 ) with
Sk(X ′)).

It follows directly from the transitivity property that this does not depend on
the choice of a projective model X ′.

Lemma 4.2.10. Let X be an snc model of X and assume that X admits a domi-
nating projective snc model. Then for any stratum Y of X0, the retraction ρX over
Star(τY ) only depends on the formal completion ‘X/Y : if Y is another snc model,
admitting a projective resolution and such that the birational map Y −→X induces
an isomorphism: ‘Y/Y

∼−→‘X/Y ,

then ρX ≡ ρY over Star(τY ).

Proof. Let X ′ be a projective snc model dominating X and write h : X ′ −→ X .
We denote by D0, . . . , Dp the components of X0 containing Y .

Let Z ′ ⊆ D′
0∩ . . .∩D′

q be any stratum of X ′
0 , and denote by τ ′ the corresponding

simplex in D(X ′
0 ). By construction of rX ′X , we have Int(τZ′) ⊆ r−1

X ′X (Star(τY )) if
and only if h(Z ′) ⊆ Y ; in this case, h(D′

j) ∩ Y ̸= ∅ for any j = 0, . . . , q. Thus, if
Dα is an irreducible component of X0 not cutting Y , it follows that h∗Dα does not
have any component along the D′

j for j = 0, . . . , q.
We deduce from this that for each Di component of X0 containing Y and j ∈
{0, . . . , q}, the coefficient of D′

j in h∗(Di) is determined by h and a local equation
of Di in a formal neighbourhood of Y . This proves that rX ′X over Star(τY ) only
depends on h over ‘X/Y .

By remark 1.1.18, ρX ′ only depends on ‘X ′
/Z′ above Star(τZ′). If moreover

h(Z ′) ⊆ Y , then h induces a morphism ‘X ′
/Z′ → ‘X/Y , hence ρX ′ only depends

on h over ‘X/Y .
By the independence of ρX on the choice of projective model X ′ and morphism

h, we conclude that ρX over Star(τY ) only depends on the formal completion ‘X/Y .
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Proposition 4.2.11. Let X be an snc model of X and assume that X admits a
dominating projective snc model. Let C be a one-dimensional stratum of X0 and
assume that C is isomorphic to P1 and C \ C̊ consists of two points. Then ρX is
an affinoid torus fibration over Star(τC) ⊂ Sk(X ), and the induced affine structure
over Star(τC) is described as in 3.3.3.

Proof. By lemma 4.2.10, the retraction ρX over Star(τC) only depends on the formal
completion ‘X/C . By [Knu71, V, Theorem 2.5], since C is a scheme, the formal
algebraic space ‘X/C is a formal scheme. We are therefore in the setting of [NXY19,
Proposition 5.4, Theorem 6.1] and we can conclude.

4.3 The Fermat case

4.3.1 The non-archimedean Monge-Ampère equation

Let X ⊂ Pn+1 × D∗ be the Fermat family of Calabi-Yau hypersurfaces:

X = {z0...zn+1 + t(zn+2
0 + ...+ zn+2

n+1)} = 0,

and X ⊂ Pn+1 × D its closure. We use the same notation for the respective base
change to K and R. We are in the setting of section 4.1.1, as the Fermat polynomial
F = zn+2

0 + ...+ zn+2
n+1 is such that prop. 4.1.1 holds. The family X is endowed with

the polarization L = OX(n+ 2), and with the family of Calabi-Yau measures:

νt := in
2

Ωt ∧ Ω̄t,

where (Ωt)t∈∆∗ is a holomorphic trivialization of the relative canonical bundleKX/∆∗ .
We set:

µt := Ctνt,

where Ct > 0 is the unique constant ensuring that
∫
Xt
µt = (Lt)

n. By theorem
3.1.11, the family (µt)t∈D∗ converges weakly on Xhyb to the Lebesgue measure µ0 on
Sk(X).
Each fiber Xt is endowed with the unique Kähler Ricci-flat metric ωt ∈ c1(L),
satisfying the complex Monge-Ampère equation:

ωnCY,t = µt.

Since for all t, the Kähler form ωt ∈ c1(Lt), there exists a family of hermitian metrics
ϕCY,t on Lt such that ωCY,t = ddcϕCY,t - note however that this family need not vary
in a subharmonic way with respect to the direction of the base.
It turns out that in the non-archimedean limit, the Calabi-Yau metric (whose exis-
tence is ensured by thm. 1.4.7) is of toric nature (in an extrinsic way). Recall that
P ⊂MR is the convex polytope associated to the toric boundary ∆ of Pn+1, so that
setting L = OP(∆), semi-positive toric metrics on (Pn+1,an, Lan) are in one-to-one
correspondence with convex P -admissible function on NR, see theorem 2.2.9. We
now have the following:



172 CHAPTER 4. DEGENERATIONS OF CALABI-YAU HYPERSURFACES

Theorem 4.3.1. There exists a convex P -admissible function u : NR −→ R, and
induced continuous psh toric metric ϕu ∈ CPSH(Pn+1,an

K , Lan), such that the restric-
tion ψu = (ϕu)|Xan solves the non-archimedean Monge-Ampère equation:

MA(ψu) = µ0

on Xan.

A similar, more general statement was recently obtained independently in [HJMM22]
for hypersurfaces of the form considered in section 4.1.1, building on the construc-
tion of a solution to the tropical Monge-Ampère equation on Sk(X).
The fact that the function u solves the real Monge-Ampère equation M (u) = µ0

on Sk(X) \ Γ was established in [Li22] (where the branch cuts are the barycenters
of the faces), however since the solution to this equation may not be unique, the
convex function u was only obtained along a subsequence, and could depend on the
choice thereof. However the solution to the NAMA equation is unique, so that as
observed in [Li22, rem. 5.7], we get the following strenghtening of [Li22, thm. 5.1]:

Corollary 4.3.2. The locally convex function u∞ obtained in [Li22, thm. 5.1], as
well as the generic SYZ fibration from [Li22, thm. 5.14], do not depend on the
choice of a subsequence.

We now move on to the proof of theorem 4.3.1, and start by explaining how the
function u is obtained. Since in the sequel it will be more convenient to work with
potentials instead of metrics, we fix once and for all the reference hybrid metric ϕFS

on Pn+1,hyb, such that on the complex fiber Xt:

ϕFS,t =
(n+ 2)

2
log(|z0|2 + ...+ |zn+1|2),

and:
ϕFS,0 = (n+ 2)max(log|z0|, ..., log|zn+1|);

it is a continuous semi-positive metric on Pn+1,hyb by prop. 1.3.5; we use the same
notation for its restriction to Xan. This allows us to identify the Calabi-Yau metric
with its relative potential:

φCY,t = ϕCY,t − ϕFS,t,

normalized by the convention supXt
φCY,t = 0, for all t ∈ D̄r. Then Li produces,

via double Legendre transform, P -admissible convex functions uCY,t on NR which
approximate the Calabi-Yau potential, and which satisfy suitable Lipschitz bounds.
This implies that for any sequence (tk)k∈N going to zero inside D∗, there exists a
subsequence (which we will omit from notation) such that the admissible convex
functions uCY,tk converge locally uniformly to a continuous, convex admissible func-
tion u ∈ AdP (NR) - which a priori depends on a choice of subsequence. By theorem
2.2.12 and in particular example 2.2.13, this induces a continuous hybrid metric
Φu ∈ CPSH(Pn+1,hyb, Lhyb), and by restriction to Xhyb a continuous psh hybrid
metric Ψu on (X,L). We write, following the notation of [Li22] (with a different
sign convention), s(t) = −1

log|t| , and Logs(z) := Log(sz) on the torus of Pn+1, so that
the restriction of Ψu to Xt is equal to s−1(u ◦ Logs).
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Proposition 4.3.3. As k →∞ (up to extracting further), the sequence of complex
Monge-Ampère measures (s−nk ddc(u ◦ Logsk)

n)k∈N on Xhyb converge weakly to the
Lebesgue measure µ0 on the essential skeleton.

Before moving to the proof of the proposition, we explain how this implies the-
orem 4.3.1. Writing ψu = ΨNA

u the restriction of Ψu to Xan, it follows from theo-
rem 1.4.11 that the sequence of measures (s−nk ddc(u◦Logsk)

n)k∈N on Xhyb converges
weakly to MA(ψu), hence the equality. The uniqueness of u now follows from unique-
ness of the solution to the non-archimedean Monge-Ampère equation.

Proof of prop. 4.3.3. By compactness of Xhyb and after further extraction, we may
assume that the sequence of measures θk := s−nk ddc(u ◦ Logtk)

n on Xhyb converge
weakly to a limit measure θ∞ supported on Xan, of total mass Ln. Let f ∈ C0(Xhyb),
then by [Li22, lem. 5.3, proof of thm. 5.1], as k →∞ (up to extracting further) we
have: ∣∣ ∫

Usk

fµsk −
∫
Usk

fθk
∣∣ −−−→
k→∞

0,

where Usk denotes the union of the ’toric regions’ U sk,∗
w from [Li22, §4.5]. Moreover,

we have µsk(Xsk \ Usk) −→ 0 when k → ∞, by [Li22, prop. 3.14]. Thus, if f ≥ 0,
we infer that

∫
Xan fθ∞ ≥

∫
Xan fµ0, hence θ∞ ≥ µ0 as measures on Xan. However

both measures have the same mass Ln, so that they are equal, which concludes the
proof.

Lemma 4.3.4. [Li22, proof of thm. 5.1] Let Logt : Xt −→ NΣ be the restriction to
Xt of LoghybP . Then as k →∞ (up to extracting further),

(Logtk)∗
(
s−nk ddc(u ◦ Logsk)

n
)
−→ ι∗µ0

weakly in the sense of measures on NΣ, where ι : Sk(X) ↪→ NΣ is the embedding
from prop. 4.1.3.

4.3.2 The comparison property

The purpose of this section is to prove the following:

Theorem 4.3.5. Let X ⊂ Pn+1×D∗ be the Fermat family of hypersurfaces, and set
L = OP(n+ 2).
We write (X ,L ) the dlt model of X obtained by taking the closure of X inside
Pn+1 × D∗.
Writing the solution ϕ to the NAMA equation as:

ϕ = ϕL + ψ,

we have that ψ = ψ ◦ ρ over Sk(X) \ Γ, where ρ : Xan −→ Sk(X) is the admissible
retraction constructed in theorem 4.1.8, and with choice of branch cuts such that aτ
is the barycenter of τ , for each face τ ⊂ Sk(X ).
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As we shall see, the above theorem is mostly a consequence of theorem 4.3.1 and
[Li22, cor. 3.28].
Recall that the solution of the non-archimedean Monge-Ampère is explicitly given
as the restriction to Xan of the toric metric ϕu ∈ CPSH(Pn+1,an

K , Lan). The model
metric ϕL is also toric, and we have ϕL = ϕuFS

, where:

uFS(x) = max
m∈V (P )

⟨m,x⟩

is the support function of the boundary of Pn+1. We infer that the relative toric po-
tential is equal to ψ = (u−uFS)◦valΣ on Pn+1, hence also onX. We set u′ = (u−uFS)
which is a continuous function on NR, extending continuously to NΣ.
We need to prove that if ρ(x) ∈ Sk(X) \ Γ, then ψ(x) = ψ(ρ(x)). It is enough
to treat the two following cases: ρ(x) ∈ Int(τ) for a maximal face τ of Sk(X ), or
ρ(x) ∈ Ui = Int(fiStar(vi)) for a vertex vi of the skeleton.
We start with the former. If ρ(x) ∈ Int(τ), then ρ(x) = valΣ(x) under the identifi-
cation Sk(X) = ∂P ∗, hence ψ(ρ(x)) = u′(valΣ(x)) = ψ(x) as ϕ is a toric metric on
Pn+1.
The second case relies on the following observation:

Lemma 4.3.6. [Li22, cor. 3.28] Let u : NR −→ R be the convex admissible function
from the statement of theorem 4.3.1, and let vi ∈ Sk(X ) be a vertex. Then on the
region Xvi = (Ui + R≥0vi) ∩ Trop(X), the equality:

u(w + αvi) = u(w) + α

holds for any w ∈ Ui, α ∈ R≥0.

This implies that if ρ(x) ∈ Ui - which means valΣ(x) ∈ Xvi - then u′(x) =
u′(δ(x)). Indeed, writing x = w + αvi with w ∈ Ui, we have:

uFS(x) = max
m∈V (P )

⟨m,x⟩ = uFS(w) + max
m∈V (P )

⟨m,αvi⟩ = uFS(w) + α,

since vi is a vertex of P ∗ = {⟨P, ·⟩ ≤ 1}. This yields u′(x) = u′(w) = u′(δ(x)) by
prop. 4.1.13, and since ψ = u′ ◦ valΣ, we get that:

ψ(ρ(x)) = ψ(x)

whenever ρ(x) ∈ Ui. This concludes the proof of theorem 4.3.5.

Remark 4.3.7. Let X ⊂ Pn+1 × D∗ be a maximally degenerate hypersurface as
considered in theorem 4.1.8, and assume that for a certain choice a of branch cuts,
the solution ψ ∈ C0(Xan) of the non-archimedean Monge-Ampère equation:

MA(ϕL + ψ) = µ0

satisfies the comparison property ψ = ψ◦ρa over Sk(X)\Γ. We write ψFS : NR −→ R
the toric potential for the Fubini-Study metric on the ambient Pn+1 with the anti-
canonical polarization, and use the same notation for its restriction to Sk(X).
Then the collection of local functions:

ψτ := ψ on Int(τ),
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ψi := ψ + ψFS −mi on Ui,

where mi ∈M satisfies ⟨mi, vi⟩ = 1, are convex in affine coordinates on Sk(X) \ Γ,
and satisfy the real Monge-Ampère equation:

n!M (ψ) = µ0,

away from Γ. Note that the local potential ψi equates the um from [Li22, def. 3.22].
This holds over the maximal faces of Sk(X ) by theorem 3.1.27, so that we focus on
an open subset Ui. It is enough to prove that under the formal isomorphism:”Xi/Di

≃ ”N/Di

provided by theorem 3.1.21, the metric ϕ = ϕL + ψ is toric and has toric potential
ψi on Ui. The first part follows from the assumption ψ = ψ ◦ ρ, while the second
one follows from the fact that the toric potential for (ϕL )|TDi

is (ψFS −mi) - recall
that the torus TDi,K of N is the quotient of TP by the mi-direction.

4.3.3 The hybrid SYZ fibration

While the results from [Li22] do not yield a global SYZ fibration on the Fermat
hypersurfaces Xt for |t| ≪ 1, there does exist a special Lagrangian fibration on a
region of Xt whose Calabi-Yau measure is arbitrarily close to 1 as t → 0. We will
show that this fibration converges to the retraction ρ from thm. 4.3.1 in the hybrid
topology, this is similar to the results from [GO22] for finite quotients of abelian
varieties.
We start by recalling the precise statement on the existence of an SYZ fibration in
the generic region. By the local theory for the real Monge-Ampère equation, the
locally convex u on Sk(X) \Γ is smooth and strictly convex on an open subset R ⊂(
Sk(X) \ Γ

)
, whose complement has (n− 1)-Hausdorff measure zero; in particular

Sk(X) \ R is connected. The estimates from [Li22] imply that the Calabi-Yau
potential converges in a natural, C∞-sense to u locally over R, so that the results
from [Zha17] can be used to obtain the following:

Theorem 4.3.8. [Li22, thm. 5.13] Let K ⊂ R be a compact subset.
There exists an open neighbourhood VK ⊂ R of K, and writing Ut,K = Log−1

t (VK),
a special Lagrangian fibration:

ft : Ut,K −→ Sk(X)

that is a C∞-perturbation of the map Logt as t → 0. Moreover, if (Kn)n∈N is a
compact exhaustion of R, then the Ut,Kn have Calabi-Yau measure arbitrarily close
to 1 as t→ 0, n≫ 1.

We claim that these generic SYZ fibrations converge in the hybrid topology to
ρ:

Proposition 4.3.9. Let U0,K = ρ−1(VK) and:

Uhyb
K = val−1

hyb(VK) =
⊔
t∈D̄r

Ut,K ⊂ Xhyb
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for r ≪ 1 depending on K. Then the hybrid SYZ fibration:

f : Uhyb
K −→ K ⊂ Sk(X)

defined by ft on Ut,K for t ̸= 0 and ρ on U0,K is continuous.

Proof. By [Li22, §2.7, thm. 5.13], for |t| ≪ 1, the SYZ fibration ft over K is C∞-
close to the map Logt in the scale where the torus fibers have diameters of size
O(1), which easily implies our statement, as Logt converges to ρ over K in the
hybrid topology.



Chapter 5

Degenerations of canonically
polarized manifolds

5.1 Statement of the main theorem
In this section, X π−→ D∗ will denote a meromorphic degeneration of canonically
polarized manifolds, and we will write L = KX/D∗ the polarization. It follows from
the seminal work of Aubin and Yau ([Aub78], [Yau78]) that every fiber Xt admits
a unique negatively curved Kähler-Einstein metric ωt ∈ −c1(Xt), satisfying the
equation Ric(ωt) = −ωt. The Kähler form ωt can be written as the curvature of a
smooth Hermitian metric ϕt on Lt = KXt , i.e.:

ωt = ddcϕt.

The metric ϕt is unique up to addition of a constant. In this situation, the family
of Hermitian metrics (ϕt)t∈D∗ turns out to also have plurisubharmonic variation in
the horizontal direction by the work of Schumacher [Sch12], and has logarithmic
growth at t = 0 by [Sch12, thm. 3]. Thus, the family of metrics (ϕt)t∈D∗ induces
an element ϕ ∈ CPSH(X,L), and it is a natural question to try and determine the
non-archimedean limit ϕNA of this family, as it provides a non-archimedean analog
of the Kähler-Einstein metric.
As we will explain more thoroughly in section 5.2, after a finite base change t 7→ td

on the punctured disk, that we omit from notation, the family X/D∗ admits a
canonical model Xc/D such that the canonical bundle KXc/D is relatively ample; the
model Xc/D∗ is furthermore unique for this property (although it is more singular
than an snc - or even dlt - model). This in turn yields a canonical model metric
ϕKXc/R

∈ CPSH(Xan, Kan
X ), which we will prove to be the non-archimedean Kähler-

Einstein metric:

Theorem 5.1.1. Let X π−→ D∗ be a degeneration of canonically polarized manifolds,
L = KX , and let ϕKE ∈ CPSH(X,L) be the family of Kähler-Einstein metrics. We
assume that the family X has semi-stable reduction over D. Then the metric on
Lhyb defined by:

ϕ|X = ϕKE,

ϕ0 = ϕKXc/R

177
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is continuous and semipositive, i.e. ϕ ∈ CPSH(Xhyb, Lhyb).

If the family of Kähler-Einstein metrics ϕ were to extend as a bounded metric
ϕ ∈ PSH(Xc, KXc/D∗), then it would follow from example 1.3.11 that ϕNA = ϕKXc/R

.
We will see that this is however not the case, but the singularities of ϕ along the
special fiber of the canonical model are mild enough for the result to still hold - they
are milder than any log poles.
Using theorem 1.4.11, we have the following immediate consequence:

Corollary 5.1.2. Let X −→ D∗ be a meromorphic degeneration of n-dimensional
canonically polarized manifolds, and let ωt ∈ −c1(Xt) be the unique Kähler-Einstein
metric with negative curvature on Xt.
The Kähler-Einstein measures µt = ωnt converge weakly on Xhyb to µ0 = MA(ϕKXc

),
the non-archimedean Monge-Ampère measure of the canonical model metric.
More explicitly, writing Xc,0 =

∑
i∈I biDi as the sum of its irreducible components,

the measure µ0 is a weighted sum of Dirac masses supported at the divisorial valua-
tions vDi

, given by:
µ0 =

∑
i∈I

bi
(
(KXc)

n ·Di

)
δvDi

.

This was proved in [PS22b, thm. A] in a direct way, without using thm. 1.4.11.

5.2 The canonical model

Let X π−→ D∗ be a degeneration of smooth, canonically polarized varieties. In this
case, the Minimal Model Program provides us with a unique canonical model Xc

of X over the disk, at the cost of going out of the class of simple normal crossing
models, and allowing some slightly worse singularities. The appropriate class of
varieties for the central fiber is a higher-dimensional analog of the stable curves, the
correct notion being that of semi-log canonical models.
If X is a normal model of X, saying that X0 is semi-log canonical (see for instance
[Kol13]) is a condition on the singularities of the normalisation of X0, which can be
seen as a mild generalization of the simple normal crossing condition; in particular
we require X0 to be reduced and simple normal crossing in codimension 1. More
precisely, the normalization morphism ν : X ν

0 −→X0 is required to yield a disjoint
union X ν

0 = ⊔i∈I(D̃i, Ci) of log canonical pairs, Ci being the restriction of the
conductor C of ν to D̃i. This is a Weil divisor on X ν

0 , whose support is precisely
the locus where the normalization ν fails to be an isomorphism, and which is simply
given here by the inverse image by ν of the codimension one nodes of X0. It
furthermore satisfies the formula : ν∗KX0 = KX ν

0
+ C (note that the canonical

divisor of a semi-log canonical variety is assumed to be Q-Cartier).
A semi-log canonical model (or stable variety) is now by definition a proper semi-
log canonical variety, with ample canonical divisor. For instance, one-dimensional
semi-log canonical models are nothing but Deligne-Mumford’s stable curves.
The compactness theorem for moduli of stable varieties of higher dimension is now
as follows:
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Theorem 5.2.1. ([BCHM10], [KNX18]).
Let X −→ D∗ be an algebraic degeneration of canonically polarized manifolds.
There exists (possibly after a finite base change) a unique canonical model Xc of X
over the disk, satisfying the following properties:
i) the total space Xc has at worst canonical singularities, while the central fiber Xc,0

is reduced and has at worst semi-log canonical singularities;
ii) the relative canonical divisor KXc/D is relatively ample.

The canonical model is constructed as follows: by the semi-stable reduction the-
orem [KKMSD73], there exists a finite base change t = (t′)d on the punctured disk
such that the family X ′ = X×D∗

t
D∗
t′ admits a semi-stable model over D∗, i.e. an snc

model with reduced special fiber. Omitting the base change from notation and start-
ing from a semi-stable model X /D ofX, we set Xc = ProjD

⊕
m≥0H

0(X ,mKX /D),
the main difficulty being to prove finite-generatedness of the relative canonical al-
gebra. This is established in [BCHM10] when X/D∗ is defined over an algebraic
curve, and extended to families over the disk in [KNX18]. The uniqueness of the
canonical model is now a straightforward consequence of the birational invariance of
the relative canonical ring R =

⊕
m≥0H

0(X ,mKX /D) - as the notation suggests,
R does not depend on the choice of the model X .

Remark 5.2.2. If X is any semi-stable model of X, then the natural rational map
h : X 99K Xc is in fact a rational contraction - this means that its inverse does not
contract any divisors.

5.3 Metric convergence and proof of theorem 5.1.1
The complete understanding of the Gromov-Hausdorff convergence of the fibers
(Xt, gt), is due to J. Song [Son17] (whose results were further improved recently in
[SSW20]). The crucial first step, is to show that there exists on the central fiber
Xc,0 =

∑
i∈I Di of the canonical model of X a unique Kähler-Einstein current ωKE,

and to derive some geometric estimates on the singularities of this current. The
current ωKE on the stable variety Xc,0 was first constructed by Berman-Guenancia
[BG14] using a variational method, while it is reconstructed in [Son17] using the
techniques of [EGZ09], [Kol98], in order to obtain some stronger control on its
singularities:

Theorem 5.3.1. ([Son17, thm. 1.1]).
Let Xc −→ D be the canonical model of X, with semi-log canonical central fiber
Xc,0.
There exists a unique Kähler current ωKE ∈ −c1(Xc,0) on Xc,0, satisfying the fol-
lowing properties:
i) ωKE is smooth and satisfies the Kähler-Einstein equation on the regular locus of
Xc,0;
ii) ωKE has locally bounded potentials on the locus where Xc,0 is log terminal;
iii) ωnKE does not charge mass on the singularities of Xc,0, and

∫
Xc,0

ωnKE = [KXc,0 ]
n.

Remark 5.3.2. The fact that the above Kähler-Einstein current on Xc,0 matches
the one constructed in [BG14], follows from the uniqueness statement in [BG14,
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thm. A]. Moreover, the construction of [BG14] implies that
∫
Di
ωnKE = (Kn

Xc
·Di).

Indeed, if ν : X ν
c,0 −→ Xc,0 denotes the normalization morphism, where X ν

c,0 =

⊔i∈ID̃i, then the Kähler-Einstein metric ωKE is obtained by descending the (singu-
lar) Kähler-Einstein metrics ωi ∈ c1(KD̃i

+ Ci) on the log canonical pairs (D̃i, Ci),
Ci being the restriction of the conductor C of ν to D̃i.
Thus by construction, the mass

∫
Di
ωnKE equals the intersection number (KD̃i

+Ci)
n =

(ν∗KXc,0)
n, the last intersection number being computed on D̃i. Applying the pro-

jection formula, this is equal to the intersection number Kn
Xc,0
· Di = Kn

Xc
· Di, by

adjunction and principality of Xc,0.

Let us now fix a m > 0 such that mKXc/D is relatively very ample, and a relative
embedding ι : Xc ↪→ PN × D of the canonical model inside projective space by
sections of mKXc/D. We let ϕFS be the hybrid Bergman metric on (PNK)hyb from
example 1.3.7, and still write ϕFS ∈ CPSH(Xhyb, Lhyb) its pullback to Xhyb via the
embedding ι. More explicitly, we have that

ϕFS,t = m−1ι∗tϕFS,

where ϕFS is the usual (Euclidean) Fubini-Study metric on CPN ; while

ϕFS,0 = ϕKXc/R
,

since the model (Xc, KXc/R) is ample.
This allows us to write the Kähler-Einstein metric ϕKE,t = ϕFS,t + ψt, with ψt ∈
C∞(Xt). The potential ψt is the unique solution of the Monge-Ampère equation:

(ωFS,t + ddcψt)
n = eψtωnFS,t,

with the normalization
∫
Xt
eψtωnFS,t = (KXt)

n. In order to derive uniform estimates
for the family of potentials (ψt)t∈D∗ , it is more convenient to work on a semi-stable
model, as a result we perform an additional base change and consider a diagram of
the form:

X X ′
c Xc

D D

p

π′

t 7→ td

where X ′
c is the base change of the canonical model Xc via t 7→ td, and X is a semi-

stable resolution of X ′
c . We write the special fiber X0 =

∑
i∈I D̃i+

∑
j∈J Ej, where

D̃i is the strict transform of Di ⊂ X ′
c,0 = Xc,0 and the Ej’s are the exceptional

divisors of p. For each i ∈ I, let ϕi be a psh metric on OX (D̃i) with divisorial
singularities along D̃i, i.e. ϕi = log|zi| + O(1) locally, where zi is a local equation
for D̃i. Similarly, we choose ψj with divisorial singularities along Ej, and we may
assume that: ∑

i∈I

ϕi +
∑
j∈J

ψj = log|t|.
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In order to apply Cheeger-Colding theory to the Kähler-Einstein metrics on Xt,
Song derives uniform estimates on volumes of small balls, which are obtained via
comparison lemmas for volume forms. The estimate focuses on a strict transform
D̃i0 ⊂X0 which we henceforth fix, and shows that the potentials ψt do not blow-up
as we approach the interior of D̃i0 :

Proposition 5.3.3. ([Son17, cor. 4.1, lem. 4.2])
We have a uniform bound: supXt

ψt ≤ C.
Moreover, letting J ′ ⊂ J be the subset of exceptional divisors in X0 that meet D̃i0,
the following holds: for any ε > 0, there exists a constant Cε > 0 such that for all
t ̸= 0:

ψt ≥ ε
(∑
i∈I
i ̸=i0

ϕi +
∑
j∈J ′

ψj
)
− Cε.

This implies smooth convergence of the Kähler-Einstein metrics ωt to the current
ωKE on Xc,0 \ Sing(Xc,0) in the following sense:
for any point p ∈ Xc,0 \ Sing(Xc,0), and any choice of neighbourhood U of p such
that the Ut = U ∩Xt are all biholomorphic to U0, and such that the (ωFS,t)

n’s are
uniformly equivalent, the pulled-back ψt converge in the C∞-sense to ψ0.

Note that we have made a small abuse of notation, since the object in the right-
hand side of the inequality is a metric and not a function.

Remark 5.3.4. Even if we will not need it here, one can show that the previous
theorem combined with a uniform non-collapsing condition implies pointed Gromov-
Hausdorff convergence of Xt to a complete metric space, whose regular part (in the
Cheeger-Colding sense) is precisely (Xc,0\ Sing(Xc,0), ωKE).
We also point out that this holds for degeneration of canonically polarized manifolds
over a higher-dimensional base by the results of [SSW20], building on the semi-stable
reduction theorem from [AK00], [ALT18].
The behaviour of the metrics in the region where the metric collapses is also well-
understood, under the technical assumption that the canonical model is semi-stable,
see [Zha15].

We are now ready to prove theorem 5.1.1. We let ϕ0 = ϕKXc/R
∈ CPSH(Xan, Lan),

and ϕKE ∈ CPSH(X,L) the family of Kähler-Einstein metrics. In order to prove
that the hybrid metric ϕ defined by the statement of theorem 5.1.1 is continuous
and semi-positive, it is enough to prove that it defines a continuous metric on Lhyb,
by prop. 1.3.16.
Substracting the reference metric hybrid ϕFS, whose restriction to Xan is the model
metric ϕKXc/R

, it is enough to prove that the potential ψt’s converge to zero as t→ 0
in the hybrid topology. In other words, we need to prove that:∣∣ ψt

log|t|
∣∣ −−→
t→0

0,

which is an easy consequence of the estimates from prop. 5.3.3. This concludes the
proof of theorem 5.1.1.
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5.4 Degenerations of Fano manifolds

In this section, we briefly discuss the case where X π−→ D∗ is an algebraic degenera-
tion of Fano manifolds.
In this case, the existence of a Kähler-Einstein metric on every fiber does not hold
in general, contrasting with the Calabi-Yau and canonically polarized cases.
There are several obstructions to the existence of a Kähler-Einstein metric on a
smooth Fano manifold Z, going back at least to Lichnerowicz and Matsushima, see
for instance [Fut88]. Those "classical" obstructions all come from the automorphism
group of the manifold Z, which must for instance be reductive in order for a Kähler-
Einstein metric to possibly exist.
Further developments in the subject in the 90’s have brought people to believe that
the existence of a Kähler-Einstein metric on Z is equivalent to a sophisticated form
of GIT (Geometric Invariant Theory) stability for the polarized variety (Z,−KZ).
The correct notion is the one of K-stability.
Although we will not give a precise definition of K-stability here, it is worth em-
phasizing that it is a purely algebro-geometric condition on (Z,−KZ), which is
furthermore Zariski open on the base of any holomorphic family of Fano manifolds.
It is furthermore equivalent to the condition that Z has finite automorphism group,
in addition to being K-polystable, so that K-polystability should be thought as an
extension of K-stability to manifolds with continuous families of automorphisms.
By [CDS14], the K-polystability of (Z,−KZ) is now equivalent to the existence,
of a Kähler-Einstein of positive curvature ω ∈ −c1(KZ), satisfying the equation
Ric(ω) = ω. This metric is furthermore unique up to Aut0(Z), the connected com-
ponent of the automorphism group of Z containing the identity (which is trivial if
and only if Z is K-stable).
Thus, we let from now X −→ D∗ be a degeneration of K-polystable Fano man-
ifolds, hence Kähler-Einstein. In this case, positivity of the Ricci curvature and
the classical Bonnet-Myers theorem ensure that the diameters of (Xt, gωt) satisfy a
uniform upper bound, while the Bishop-Gromov inequality imply a uniform non-
collapsing condition on the (Xt, gωt): for all small radius r > 0 and p ∈ Xt, we have
Volgt B(p, r) ≥ cr2n, c > 0 being a uniform constant.
This uniform non-collapsing condition is used in [DS14] to prove that the metric
spaces (Xt, gωt) are well-behaved when t→ 0: the limiting object is a mildly singu-
lar Fano variety, which also admits a singular Kähler-Einstein metric in the sense
of [EGZ09], and the Gromov-Hausdorff limit is unique, and homeomorphic to the
limit in the sense of algebraic geometry (in the relevant Hilbert scheme).
However, the uniqueness of a model X /D of X whose central fiber matches the
Gromov-Hausdorff limit of the Xt no longer holds, as shown in the following exam-
ple.

Example 5.4.1. Consider X = P1 × D∗, and X = P1 × D. We blow-up a closed
point of X0 to obtain an snc model of X whose central fiber is a chain of two (−1)-
curves, and we contract the strict transform of X0 in this model, which yields a new
snc model X ′

0 with central fiber P1, which is not isomorphic to X .

In this case, even though the model X ′ has the ’right’ central fiber, we see that
the intrinsic behaviour of the metrics inside X ′ is rather badly behaved; the metric
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convergence is only extrinsic - that is, after composing by suitable automorphisms.
We see that the issue is due to the presence of a large automorphism group of the
metrics, which makes the situation less rigid than in the negatively curved case.
Even if we assume that the Xt’s have a discrete automorphism group for all t ∈ D∗,
it may very well happen that a model as above could be such that its irreducible
central fiber X0 has non-trivial Aut0(X0) and be non-unique, which would prevent
us from determining on which one we could expect Cheeger-Gromov convergence.
However, it is proven in [BX19] that if there exists a model X /D whose irreducible
central fiber is a K-stable Q-Fano manifold (and thus has finite automorphism
group), then such a model is actually unique. We then expect that the follow-
ing holds: the family of Kähler-Einstein metrics (ϕt)t∈D∗ converge on the hybrid
space to the model metric ϕ−KX /D .
At the moment, we still lack uniform estimates on X on the Kähler-Einstein po-
tentials with respect to a smooth reference family of metrics that would enable us
to prove this, so that we leave this question aside for future work.
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Appendix

In this appendix, we state and prove a regularization result for psh metrics in the
complex analytic setting, that will be used in the proof of theorem 1.3.13. We
expect that the statement below (thm. 5.4.4) is well-known to experts, as well
as the techniques we use in the proof - which are largely due to Demailly [Dem92].
Nevertheless, since we could not find the precise statement required in the literature,
we include a proof.
We let (Y, ω) be a Kähler manifold, and assume given a proper holomorphic map
π : Y −→ Ω, where Ω is a bounded open subset of C. We furthermore assume that
there exists a π-relatively ample line bundle L on Y such that ω ∈ c1(L).
Given a semi-positive metric ϕ ∈ PSH(Y, L), we want to write it as a decreasing
limit of a sequence (ϕj)j∈N of psh metrics on L with analytic singularities along the
multiplier ideal sheaf Ij := I (jϕ). We recall the basic definitions:

Definition 5.4.2. Let ϕ ∈ PSH(Y, L) be a semi-positive metric on L. The multiplier
ideal sheaf I (ϕ) is the ideal generated by the germs of holomorphic functions f such
that |f |2e−2ϕ is locally integrable on Y .

Here locally integrable means locally integrable in any coordinate chart, we also
abusively view ϕ as a psh function this way.

Definition 5.4.3. Let J ⊂ OY be a coherent ideal sheaf on Y , and ϕ ∈ PSH(Y, L).
We say that ϕ has analytic singularities along J if ϕ can be written locally as:

ϕ = log
(
|f1|2 + ...+ |fr|2

)
+ χ,

where (f1, ..., fr) are a set of local generators of J and χ is a smooth function.

Given a coherent ideal sheaf J , one can always produce quasi-psh functions
with analytic singularities along J , using a partition of unity argument.
The rest of this appendix will be devoted to the proof of the following:

Theorem 5.4.4. Let Ω ⊂ C be a bounded open subset, Y a smooth Kähler manifold
together with a proper holomorphic map π : Y −→ Ω, and let L a relatively ample
line bundle on Y . We let ψ be a smooth Hermitian metric on L whose curvature
form ω = ddcψ is a Kähler metric on Y .
Let ϕ ∈ PSH(Y, L), and write Im := I (mϕ) the multiplier ideal of mϕ, for m ∈
N. Then for any relatively compact, open subset Y ′ ⋐ Y , there exists a sequence
(ϕj)j∈N ∈ PSH(Y ′, L) such that:

• the ϕj decrease pointwise to ϕ on Y ′,

185
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• for all j ∈ N, the psh metric 2jϕj on 2jL has analytic singularities of the form
I2j .

Let us fix a psh exhaustion function η : Ω −→ R, i.e. such that the sublevel sets
Ωc := {η < c} are relatively compact subsets of Ω; note that the Yc := {η ◦ π < c}
are also relatively compact in Y and weakly pseudoconvex. Since the subset Y ′ ⊂ Y
is relatively compact, we have Y ′ ⊂ Yc for c≫ 1.

Proposition 5.4.5. For any c ∈ R such that Y ′ ⋐ Yc ⋐ Y , there exists a m0 ≫ 1
such that for all m ≥ 1, the sheaf OY ((m +m0)L ⊗ Im) is generated by its global
sections on Yc.

Proof. We argue as in [BBJ18, lem. 5.6], and write n = dimY .
We let H be a relatively very ample line bundle on Y , and we choose m0 ≫ 1 such
that the line bundle A = m0L−KY − nH is relatively ample on Yc.
By the relative Castelnuevo-Mumford regularity criterion (see [DEL00, lem. 1.4]),
the sheaf OY ((m+m0)L⊗Im) is π-globally generated on Yc as soon as:

Rqπ∗(
(
(m+m0)L− qH

)
⊗Im) = 0

for 1 ≤ q ≤ n− 1, which holds by Nadel vanishing [Nad89], [BFJ16, thm. B.8].

We will now regularize ϕ by a sequence of psh metrics with analytic singularities
of the form I (mϕ), up to some controlled error term. We mostly follow the argu-
ment from the proof of [GZ05, thm. 8.1]. For m0 large enough so that prop. 5.4.5
holds, write:

ψm,m0 =
(
mϕ+m0ψ

)
∈ PSH(Y, (m+m0)L),

we have that Im = I (ψm,m0) = I (mϕ) is the multiplier ideal of the psh metric
ψm,m0 on (Y, L).
We are naturally led to introduce the Bergman metrics associated to the multiplier
ideal Im; for Yc as in prop. 5.4.5, we set Vm,m0 := H0(Yc, (m + m0)L ⊗ Im) and
define Hm,m0 ⊂ Vm,m0 as the following Hilbert space:

Hm,m0 = {s ∈ Vm,m0/∥s∥2 :=
∫
Yc

|s|2ψm,m0
ωn <∞}.

For every m, we may choose a Hilbert basis Bm,m0 = (sm,m0,l)l∈N of Hm,m0 , and we
now set:

ϕm,m0 =
1

2(m+m0)
log(

∑
l∈N

|sm,m0,l|2),

we have ϕm,m0 ∈ PSH(Yc, L).

Proposition 5.4.6. For q ∈ N, set:

ϕm,m0,q =
1

2(m+m0)
log(

∑
l≤q

|sm,m0,l|2).

Then the ϕm,m0,q converge uniformly to ϕm,m0 over Y ′. Moreover, ϕm,m0 has analytic
singularities of the form Im over Y ′.
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Proof. We drop the (m,m0) subscript to alleviate notation. We choose c′ < c such
that let Y ′ ⋐ Yc′ ⋐ Yc, with the freedom to slightly decrease c′ throughout the steps
of the proof.
We set Jq = I

(
(sl)l≤q

)
, and J = ∪q≥0Jq = I

(
(sl)l∈N

)
. Then we have J =

(m+m0)L⊗I (mϕ) over Y ′′′ by global generation, which is a coherent ideal sheaf
on Yc′ by Nadel’s theorem [Nad89]. By the strong Noetherian property for coherent
sheaves, the ascending chain (Jq)q≥0 of ideals is locally stationary, so that we have
Jq ≡J for q ≫ 1 on Yc′ after shrinking.
We now set:

F =
∑
l∈N

|sl|2,

and:
Fq =

∑
l≤q

|sl|2.

We will prove that on Y ′, there exists Cq ≥ 1 such that:

Fq ≤ F ≤ CqFq,

and that Cq −−−−→
q−→∞

1. We mostly mimic the argument from step 2 of the proof of

[DPS01, thm. 2.2.1]. Up to slightly decreasing c′, we may work locally, so that we
assume that the sl are holomorphic functions. By the strong Noetherian property
of coherent ideal sheaves, the sequence of ideal sheaves Kq on Yc × Yc generated by
the (sl(z)sl(w̄))l≤q is locally stationary, so that it is stationary at K = ∪q≥0Kq on
Yc′ × Yc′ for q ≫ 1. From the bound:∑

l≤q

|sl(z)sl(w̄)| ≤
Å(∑

l∈N

|sl(z)|2
)
·
(∑
l∈N

|sl(w̄)|2
)ã1/2

,

we infer that the series
∑

l≤q sl(z)sl(w̄) converges locally uniformly on Yc′ ×Yc′ , and
thus by closedness of the space of sections of a coherent ideal sheaf, we get that the
holomorphic function on Yc′ × Yc′ :∑

l∈N

sl(z)sl(w̄) ∈ K .

Since K = Kq for q large enough, we get that:∑
l∈N

sl(z)sl(w̄) ≤ Cq
∑
l≤q

sl(z)sl(w̄)

on Yc′ × Yc′ for some Cq > 0, and thus:

F ≤ CqFq

over Yc′ for q large enough by restricting to the complex diagonal z = w̄.
Finally, let us set χq = ϕ − ϕq: then we proved that for any q ≫ 1, there exists
bq > 0 such that 0 ≤ χq ≤ bq on Yc′ . As a result ϕq and ϕ have the same singularities,
which are analytic singularities along Jq ≡J for q ≫ 1.
Moreover, since the sum converges locally uniformly, the χq are continuous and
decrease to zero pointwise, so that from Dini’s lemma the χq’s decrease uniformly
to zero on Y ′, and ϕq converges uniformly to ϕ over Y ′.
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We now want to prove that over Y ′, the ϕm,m0 decrease with respect to m (up
to an error term) to our initial metric ϕ.
We start by proving that the ϕm,m0 converge pointwise to ϕ over Yc. Writing Bm,m0 ⊂
Hm,m0 the unit ball with respect to the L2-norm, we have:

ϕm,m0 =
1

2(m+m0)
log
(∑
l≥0

|sm,m0,l|2
)
=

1

2(m+m0)
sup

s∈Bm,m0

log|s|2,

since for z ∈ Yc, the quantity
∑

l≥0|sm,m0,l(z)|2 is the operator norm of the evaluation
map evz : Hm,m0 −→ L⊗m+m0

z .
Covering Yc by coordinates charts (Ui)i∈I , we let z ∈ Ui and ρ > 0 such that
B(z, ρ) ⊂ Ui. For s ∈Hm,m0 , since |s|2 is subharmonic in Ui, we have:

|s(z)|2 ≤ C

ρ2(n+1)

∫
B(z,ρ)

|s|2ωn+1 ≤ C ′e2 supB(z,ρ) ψm,m0

∫
Yc

|s|2ψm,m0
ωn+1,

so that if s ∈ Bm,m0 , the bound:

log|s(z)|2 ≤ sup
B(z,ρ)

ψm,m0 + C

holds, hence ϕm,m0(z) ≤ supB(z,ρ) ϕ+ (m+m0)
−1C.

The converse inequality follows from the Ohsawa-Takegoshi theorem [Dem15]: there
exists m0 ≫ 1 and a universal constant C > 0 such that for all m ∈ N large enough
and z ∈ Yc, there exists s ∈Hm,m0 such that:∫

Yc

|s|2e−2ψm,m0ωn+1 ≤ C|s(z)|2e−2ψm,m0 (z),

so that if we choose the right-hand side to be equal to one, we get s ∈ Bm,m0 such
that:

log|s(z)| ≥ ψm,m0(z)− C,
hence ϕm,m0(z) ≥ ϕ(z)− (m+m0)

−1C, which proves pointwise convergence on Y ′′.
We now prove that the ϕm,m0 are almost subadditive. We let s ∈ Bm1+m2,m0 ⊂
Hm1+m2,m0 , and set:

Hm1,m2,m0 = {S ∈ H0
(
Yc × Yc, p∗1((m1 +

m0

2
)L )(Im1)⊗ p∗2((m2 +

m0

2
)L )(Im2)

)
;∫

Yc×Yc
|S(z1, z2)|2e

−2ψ
m1+

m0
2

(z1)−2ψ
m2+

m0
2

(z2)
(ω1 ⊗ ω2)

n <∞},

where we have written ωi = p∗iω.
By the Ohsawa-Takegoshi theorem, there exists S ∈Hm1,m2,m0 with L2-norm ∥S∥ ≤
C for a universal constant C, such that S|∆Yc

= s, where ∆Yc ⊂ Yc × Yc is the
diagonal. To be more precise, we let:

ξ : Y × Y −→ R ∪ {−∞}

be a quasi-psh function with analytic singularities along I (∆Y ), and we may assume
that ξ ≤ 0 on Yc. Then in the notation of [Dem15, thm. 1.4] the measure dV∆Y ,ω[ξ]
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is uniformly equivalent to ωn on ∆Yc , as ∆Y is a local complete intersection, so that
our estimate follows from the aforementioned theorem with δ = 2.
Since Hm1,m2,m0 = Hm1,m0/2⊗̂Hm2,m0/2, the family (sm1,m0/2,l1 ⊗ sm2,m0/2,l2)(l1,l2)∈N2

form a Hilbert basis of Hm1,m2,m0 . We may write:

S(z1, z2) =
∑

(l1,l2)∈N2

cl1,l2sm1,m0/2,l1(z1)⊗ sm2,m0/2,l2(z2),

with
∑

l1,l2
|cl1,l2|2 ≤ C. Thus:

|s(z)|2 = |S(z, z)|2 ≤ C
(∑

l1

|sm1,m0/2,l1(z)|2
)
×
(∑

l2

|sm2,m0/2,l2(z)|2
)
,

so that:

ϕm1+m2,m0 ≤
C

m1 +m2 +m0

+
(m1 +m0/2)ϕm1,m0/2

m1 +m2 +m0

+
(m2 +m0/2)ϕm2,m0/2

m1 +m2 +m0

.

Since ϕ−ψ is bounded from above over Yc, we may assume without loss of generality
that ϕ−ψ ≤ 0, so that (m+ m0

2
)−1ψm,m0/2 ≤ (m+m0)

−1ψm,m0 and thus ϕm1,m0/2 ≤
ϕm,m0 . This now implies that the sequence:

ϕj = ϕ2j−m0,m0
+ 2−j−2C

is decreasing to ϕ over Yc, and has the required singularities over Y ′ by prop. 5.4.6.



190CHAPTER 5. DEGENERATIONS OF CANONICALLY POLARIZED MANIFOLDS



Bibliography

[AK00] D. Abramovich and K. Karu. Weak semistable reduction in character-
istic 0. Invent. Math., 139 no. 2:241–273, 2000.

[ALT18] K. Adiprasito, G. Liu, and M. Temkin. Semistable reduction in char-
acteristic 0. 2018. arXiv:1810.03131.

[Aub78] T. Aubin. Equations du type Monge-Ampère sur les variétés kähléri-
ennes compactes. Bull. Sci. Math., (2) 102:63–95, 1978.

[BBJ18] R. Berman, S. Boucksom, and M. Jonsson. A variational approach to
the Yau-Tian-Donaldson conjecture. J. Amer. Math. Soc., 2018.

[BCHM10] C. Birkar, P. Cascini, C. Hacon, and J. McKernan. Existence of min-
imal models for varieties of log general type. J. Amer. Math. Soc.,
23:405–468, 2010.

[BE21] S. Boucksom and D. Erikssen. Spaces of norms, determinant of co-
homology and Fekete points in non-archimedean geometry. Advances
Math., 2021.

[BEGZ10] S. Boucksom, P. Eyssidieux, V. Guedj, and A. Zeriahi. Monge-Ampère
equation in big cohomology classes. Acta Math., 205:199–262, 2010.

[Ber90] V. Berkovich. Spectral theory and analytic geometry over non-
Archimedean fields. Mathematical Surveys and Monographs, AMS,
1990.

[Ber99] V. Berkovich. Smooth p-adic analytic spaces are locally contractible.
Invent. Math., 137:1–84, 1999.

[BFJ08] S. Boucksom, C. Favre, and M. Jonsson. Valuations and plurisubhar-
monic singularities. Publ. RIMS, 44:449–494, 2008.

[BFJ15] S. Boucksom, C. Favre, and M. Jonsson. Solution to a non-
Archimedean Monge-Ampère equation. J. Amer. Math. Soc., 28:617–
667, 2015.

[BFJ16] S. Boucksom, C. Favre, and M. Jonsson. Singular semipositive metrics
in non-Archimedean geometry. J. Algebraic Geom., 25:77–139, 2016.

191



192 BIBLIOGRAPHY

[BG14] R. Berman and H. Guenancia. Kähler-Einstein metrics on stable vari-
eties and log canonical pairs. Geometric and Functional Analysis, 24
(6):1683–1730, 2014.

[BGGJ+19] J. Burgos Gil, W. Gubler, P. Jell, K. Künnemann, and F. Martin.
Differentiability of non-archimedean volumes and non-archimedean
Monge-Ampère equations (with an appendix by Robert Lazarsfeld).
2019. arXiv:1608.01919.

[BGPS14] J. Burgos Gil, P. Philippon, and M. Sombra. Arithmetic geom-
etry of toric varieties. Metrics, measures and heights. Astérisque,
(360):vi+222, 2014.

[BJ17] S. Boucksom and M. Jonsson. Tropical and non-Archimedean limits
of degenerating families of volume forms. Journal de l’Ecole polytech-
nique, pages 87–139, 2017.

[BJ18] S. Boucksom and M. Jonsson. Singular semipositive metrics on line
bundles on varieties over trivially valued fields. 2018. arXiv:1801.08229.

[BJ22] S. Boucksom and M. Jonsson. Global pluripotential theory over a
trivially valued field. 2022. arXiv:1801.08229v4.

[BR10] M. Baker and R. Rummely. Potential theory and dynamics on the
Berkovich projective line, volume 159 of Mathematical Surveys and
Monographs. American Mathematical Society, 2010.

[BT76] E. Bedford and A. Taylor. The Dirichlet problem for a complex Monge-
Ampere equation. Invent. Math., 37.1:1–44, 1976.

[BX19] H. Blum and C. Xu. Uniqueness of K-polystable degenerations of Fano
varieties. Ann. of Math., 190:609–656, 2019.

[CDS14] X. Chen, S. Donaldson, and S. Sun. Kähler-Einstein metrics and sta-
bility. Int. Math. Res. Not., 2014.

[CL06] A. Chambert-Loir. Mesures et équidistribution sur les espaces de
berkovich. J. für die reine und angewandte Mathematik, 595:215–235,
2006.

[CLD12] A. Chambert-Loir and A. Ducros. Formes différentielles réelles et
courants sur les espaces de berkovich. 2012. arXiv:1204.6277.

[CLS11] D. A. Cox, J. B. Little, and H. K. Schenck. Toric varieties, volume 124
of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2011.

[Dar15] T. Darvas. The Mabuchi geometry of finite energy classes. Advan.
Math., 285:182–219, 2015.



BIBLIOGRAPHY 193

[DEL00] J.-P. Demailly, L. Ein, and R. Lazarsfeld. A subadditivity property of
multiplier ideals. Michigan Math. J., 48:137–156, 2000.

[Dem92] J.-P. Demailly. Regularization of closed positive currents and inter-
section theory. J. Algebraic Geom., 1 no. 3:361–409, 1992.

[Dem12] J.-P. Demailly. Analytic methods in algebraic geometry. International
Press Somerville, MA, 2012.

[Dem15] Jean-Pierre Demailly. Extension of holomorphic functions defined on
non reduced analytic subvarieties. In The legacy of Bernhard Riemann
after one hundred and fifty years. December 2015.

[dFKX17] T. de Fernex, J. Kollár, and C. Xu. The dual complex of singularities.
In Higher dimensional algebraic geometry, in honour of Professor Yu-
jiro Kawamatas 60th birthday, volume 74, pages 103–130. Adv. Stud.
Pure Math., 2017.

[DPS01] J. Demailly, T. Peternell, and M. Schneider. Pseudo-effective line bun-
dles on compact Kähler manifolds. International Journal of Math.,
6:689– 741, 2001.

[DS14] S.K. Donaldson and S. Sun. Gromov-Hausdorff limits of Kähler man-
ifolds and algebraic geometry. Acta Math., 213:63–106, 2014.

[EGZ09] P. Eyssidieux, V. Guedj, and A. Zeriahi. Singular Kähler-Einstein
metrics. J. Amer. Math. Soc., 22:607–639, 2009.

[EM21] J.D. Evans and M. Mauri. Constructing local models for Lagrangian
torus fibrations. Ann. H. Lebesgue, 4:537–570, 2021.

[Eng18] P. Engel. Looijenga’s conjecture via integral-affine geometry. J. Dif-
ferential Geom., 109:467–495, 2018.

[Fav20] C. Favre. Degeneration of endomorphisms of the complex projective
space in the hybrid space. J. Inst. Math. Jussieu, 19 (4):1141–1183,
2020.

[Ful93] W. Fulton. Introduction to toric varieties. Princeton University Press,
1993.

[Fut88] A. Futaki. Kähler-Einstein metrics and integral invariants. Springer
Verlag, 1988.

[GHK15] M. Gross, P. Hacking, and S. Keel. Mirror symmetry for log Calabi-Yau
surfaces I. Inst. Hautes Etudes Sci. Publ. Math., 155:65–168, 2015.

[GJKM19] W. Gubler, P. Jell, K. Künnemann, and F. Martin. Continuity of
plurisubharmonic envelopes in non-archimedean geometry and test ide-
als. Ann. Inst. Fourier (Grenoble), 69(5):2331–2376, 2019. With an
appendix by José Ignacio Burgos Gil and Martín Sombra.



194 BIBLIOGRAPHY

[GM19] W. Gubler and F. Martin. On Zhang’s semipositive metrics. Doc.
Math., 24:331–372, 2019.

[GO22] K. Goto and Y. Odaka. Special Lagrangian fibrations, Berkovich re-
traction, and crystallographic groups. 2022. arXiv:2206.14474.

[GR04] O. Gabber and L. Ramero. Foundations for almost ring theory – release
6.95. Preprint, 2004.

[Gra62] H. Grauert. Uber Modifikationen und exzeptionelle analytische Men-
gen. Math. Ann., 146:331–368, 1962.

[Gro61] A. Grothendieck. Éléments de géométrie algébrique. III. Étude coho-
mologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ.
Math., (11):167, 1961.

[Gro01] M. Gross. Topological mirror symmetry. Invent. Math., 144(1):75–137,
2001.

[Gro05] M. Gross. Toric degenerations and Batyrev-Borisov duality. Math.
Ann., 333(3):645–688, 2005.

[GS06] M. Gross and B. Siebert. Mirror Symmetry via Logarithmic Degener-
ation Data I. J. Diff. Geom., 72(2):169–338, 2006.

[GW00] M. Gross and P. Wilson. Large complex structure limits of K3 surfaces.
J. Differential Geom., 55:475–546, 2000.

[GZ05] V. Guedj and A. Zeriahi. Intrinsic capacities on compact Kähler man-
ifolds. J. Geom. Anal., 15-4:607–639, 2005.

[GZ17] V. Guedj and A. Zeriahi. Degenerate complex Monge-Ampère equa-
tions. EMS Tracts in Mathematics, 2017.

[HJMM22] J. Hultgren, M. Jonsson, E. Mazzon, and N. McCleerey. Tropical and
non-archimedean Monge–Ampère equations for a class of Calabi–Yau
hypersurfaces. 2022. arXiv:2208.13697.

[How88] R. Howe. Automatic continuity of concave functions. Proceedings of
the Amer. Math. Soc., pages 1196–1200, 1988.

[HZ02] C. Haase and I. Zharkov. Integral affine structures on spheres and
torus fibrations of Calabi-Yau toric hypersurfaces I. arXiv e-prints,
2002.

[KKMSD73] G. Kempf, F. Knudsen, D. Mumford, and B. Saint-Donat. Toroidal
Embeddings I. Lect. Notes in Math., Springer-Verlag, 1973.

[Kli91] M. Klimek. Pluripotential theory. London Math. Soc. Monogr., 1991.



BIBLIOGRAPHY 195

[KM98] J. Kollár and S. Mori. Birational geometry of algebraic varieties, vol-
ume 134 of Cambridge Tracts in Mathematics. Cambridge University
Press, 1998.

[Knu71] D. Knutson. Algebraic Spaces. Lect. Notes in Math., Springer-Verlag,
1971.

[KNX18] J. Kollar, J. Nicaise, and C. Xu. Semi-stable extensions over 1-
dimensional bases. Acta Mathematica Sinica, 34:1:103–113, 2018.

[Kol98] S. Kolodziej. The complex Monge-Ampère equation. Acta Math.,
180:69–170, 1998.

[Kol13] J. Kollár. Singularities of the minimal model program, volume 200 of
Cambridge Tracts in Mathematics. Cambridge University Press, 2013.

[KS06] M. Kontsevich and Y. Soibelman. Affine Structures and Non-
Archimedean Analytic Spaces, pages 321–385. Birkhäuser Boston,
2006.

[Li20a] Y. Li. Metric SYZ conjecture and non-archimedean geometry. arXiv
e-prints, page arXiv:2007.01384, 2020.

[Li20b] Y. Li. Uniform Skoda integrability and Calabi-Yau degeneration. 2020.
arXiv:2006.16961.

[Li22] Y. Li. Strominger-Yau-Zaslow conjecture for Calabi-Yau hypersurfaces
in the Fermat family. Acta Math., 229:1–53, 2022.

[Liu11] Y. Liu. A non-archimedean analogue of Calabi-Yau theorem for totally
degenerate abelian varieties. J. Differential Geom., 89:87–110, 2011.

[LP20] T. Lemanissier and J. Poineau. Espaces de Berkovich sur Z : catégorie,
topologie, cohomologie. 2020.

[LT20] Y. Li and V. Tosatti. Diameter bounds for degenerating Calabi-Yau
metrics. J. Differential Geom., 2020.

[MN15] M. Must,ăta and J. Nicaise. Weight functions on non-archimedean an-
alytic spaces and the Kontsevich-Soibelman skeleton. Algebraic Geom.
2, no. 3:365–404, 2015.

[Moo15] C. Mooney. Partial regularity for singular solutions to the Monge-
Ampère equation. Comm. Pure Appl. Math., 168 no. 6:1066–1084,
2015.

[Mor93] D. R. Morrison. Mirror symmetry and rational curves on quintic three-
folds: a guide for mathematicians. Journal of the American Mathe-
matical Society, 6(1):223–223, 1993.



196 BIBLIOGRAPHY

[MPS21] E. Mazzon and L. Pille-Schneider. Toric geometry and inte-
gral affine structures in non-archimedean mirror symmetry. 2021.
arXiv:2110.04223.

[MS84] J. Morgan and P. Shalen. Valuations, trees, and degenerations of hy-
perbolic structures I. Ann. of Math., (2) 120:401–476, 1984.

[MS15] D. Maclagan and B. Sturmfels. Introduction to tropical geometry, vol-
ume 161 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 2015.

[Mus02] M. Must,ăta. Vanishing theorems on toric varieties. Tohoku Math. J.,
54:451–470, 2002.

[Nad89] A. Nadel. Multiplier ideal sheaves and Kähler-Einstein metrics of pos-
itive scalar curvature. Annals of Math., 132:549–596, 1989.

[Nak04] N. Nakayama. Zariski-decomposition and abundance. MSJ Memoirs,
vol. 14, Mathematical Society of Japan, 2004.

[NX16] J. Nicaise and C. Xu. The essential skeleton of a degeneration of
algebraic varieties. Amer. Math. J., 138(6):1645–1667, 2016.

[NXY19] J. Nicaise, C. Xu, and T. Y. Yu. The non-archimedean SYZ fibration.
Compositio Mathematica, 155(5):953–972, 2019.

[Oda18] Y. Odaka. Tropical Geometric Compactification of Moduli, II: Ag Case
and Holomorphic Limits. International Mathematics Research Notices,
2018.

[OO18] Y. Odaka and Y. Oshima. Collapsing K3 surfaces, tropical geometry
and moduli compactifications of Satake, Morgan-Shalen type. 2018.
arXiv:1810.07685.

[Poi10] J. Poineau. La droite de Berkovich sur Z. Astérisque, 334, 2010.

[Poi13] J. Poineau. Les espaces de Berkovich sont angéliques. Bull. de la Soc.
Math. de France, 141 no. 2:267–297, 2013.

[Poi22] J. Poineau. Dynamique analytique sur Z. I : Mesures d’équilibre sur
une droite projective relative. 2022. arXiv:2201.08480.

[PS22a] L. Pille-Schneider. Global pluripotential theory on hybrid spaces. 2022.
arXiv:2209.04879.

[PS22b] L. Pille-Schneider. Hybrid convergence of Kähler–Einstein measures.
Ann. de l’Institut Fourier, 72 no. 2:587–615, 2022.

[Reb21] R. Reboulet. The space of finite-energy metrics over a degeneration.
2021. arxiv:2107.04841.



BIBLIOGRAPHY 197

[Roc72] R. Rockafellar. Convex analysis. Princeton Mathematical Series.
Princeton University Press, 1972.

[RS20] H. Ruddat and B. Siebert. Period integrals from wall structures via
tropical cycles, canonical coordinates in mirror symmetry and ana-
lyticity of toric degenerations. Publ. Math. Inst. Hautes Études Sci.,
132:1–82, 2020.

[Rua01] W. Ruan. Lagrangian torus fibration of quintic hypersurfaces. I. Fer-
mat quintic case. In Winter School on Mirror Symmetry, Vector Bun-
dles and Lagrangian Submanifolds (Cambridge, MA, 1999), volume 23
of AMS/IP Stud. Adv. Math., pages 297–332. Amer. Math. Soc., Prov-
idence, RI, 2001.

[RZ] H. Ruddat and I. Zharkov. Topological Strominger–Yau–Zaslow fibra-
tions. in preparation.

[RZ21a] H. Ruddat and I. Zharkov. Compactifying torus fibrations over in-
tegral affine manifolds with singularities. 2019-20 MATRIX Annals,
MATRIX Book Series 4, pages 609–622, 2021.

[RZ21b] H. Ruddat and I. Zharkov. Tailoring a pair of pants. Adv. Math., 381,
2021.

[Sch12] G. Schumacher. Positivity of relative canonical bundles and applica-
tions. Invent. Math., 190 (1):1–56, 2012.

[Son17] J. Song. Degeneration of Kähler-Einstein manifolds of negative scalar
curvature. 2017. arxiv.:1706.01518.

[SSW20] J. Song, J. Sturm, and X. Wang. Riemannian geometry of Kahler-
Einstein currents III: compactness of Kahler-einstein manifolds of neg-
ative scalar curvature. 2020. arXiv:2003.04709.

[SYZ96] A. Strominger, S.-T. Yau, and E Zaslow. Mirror Symmetry is T-
duality. Nucl. Phys., B479:243–259, 1996.

[Thu07] A. Thuillier. Géométrie toroïdale et géométrie analytique non archimé-
dienne. Application au type d’homotopie de certains schémas formels.
Manuscr. Math. 123, 4:381–451, 2007.

[Tia90] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds.
J. Differential Geom., 32(1):99–130, 1990.

[Vil20] C. Vilsmeier. A comparison of the real and non-archimedean
Monge–Ampère operator. Math. Zeitschrift, 2020.

[Yam21] Y. Yamamoto. Tropical contractions to integral affine manifolds with
singularities. arXiv e-prints, 2021.



198 BIBLIOGRAPHY

[Yau78] S. Yau. On the Ricci curvature of a compact Kähler manifold and
complex Monge-Ampère equation I. Comm. Pure Appl. Math., 31:339–
411, 1978.

[Zha95] S. Zhang. Small points and adelic metrics. J. Algebr. Geom., 4:281–
300, 1995.

[Zha15] Y. Zhang. Collapsing of negative Kähler-Einstein metrics. Math. Res.
Let., 22(6), 2015.

[Zha17] Y. Zhang. Collapsing of Calabi-Yau manifolds and special Lagrangian
submanifolds. Univ. Iagel. Acta Math., No. 54:53–78, 2017.



Titre : Aspects non archimédiens de la conjecture SYZ

Mots clés : Espaces de Berkovich, dégénérescences de variétés algébriques, variétés de Calabi-Yau,
symétrie miroir

Résumé : Nous définissons une classe de métriques
plurisousharmoniques sur l’espace hybride associé
à une dégénérescence polarisée (X,L) de variétés
complexes . Une telle métrique hybride induit une
métrique psh sur L au sens usuel, ainsi qu’une
métrique psh sur l’analytification non archimédienne
de X par rapport à la valeur absolue t-adique sur
C((t)). Nous démontrons que toute métrique plurisou-
sharmonique complexe sur (X, L) admet une exten-
sion canonique à l’espace hybride. Nous étudions en
particulier le cas où (Z, L) est une variété torique po-
larisée, où nous donnons une description combina-
toire des métriques toriques hybrides continues psh
sur L. Nous étudions ensuite les dégénérescences
maximales de variétés de Calabi-Yau, dans le but de
produire une incarnation non archimédienne de la fi-

bration SYZ conjecturale. Pour ce faire, nous tentons
dans un premier temps de comprendre la structure af-
fine entière induite sur le squelette essentiel Sk(X) par
la rétraction de Berkovich associée à un bon modèle
dlt de X. Cela nous permet de construire, dans le
cas des dégénérescences d’hypersurfaces, une fibra-
tion SYZ non archimédienne induisant sur Sk(X) la
structure affine entière prédite par le programme de
Gross-Siebert. Lorsque la famille est celle des hyper-
surfaces de Fermat, nous montrons en outre que la
métrique de Calabi-Yau non archimédienne est inva-
riante par cette rétraction. Enfin, nous considérons
une dégénérescence de variétés canoniquement po-
larisées et calculons la limite non archimédienne de
la famille des métriques de Kähler-Einstein dans l’es-
pace hybride associé.

Title : Non-archimedean aspects of the SYZ conjecture

Keywords : Berkovich spaces, degenerations of algebraic varieties, Calabi-Yau manifolds, mirror symmetry

Abstract : We define a class of plurisubharmonic me-
trics on the hybrid space associated to a polarized de-
generation (X,L) of complex manifolds over the punc-
tured disk. Such a psh metric induces by restriction
a psh metric on L in the usual sense, as well as a
psh metric on the non-archimedean analytification of
X with respect to the t-adic absolute value on C((t)).
We prove that any complex psh metric on (X, L) ad-
mits a canonical plurisubharmonic extension to the
hybrid space. We also focus on the case of a com-
plex polarized toric variety (Z, L), where we provide
a combinatorial description of continuous plurisubhar-
monic hybrid toric metrics on L. We then study maxi-
mal degenerations of Calabi-Yau manifolds, with the
goal of constructing a non-archimedean avatar of the

conjectural SYZ fibration on the complex fibers. To
that extend, we study the integral affine structures in-
duced on the skeleton Sk(X) by the Berkovich retrac-
tion associated to a good dlt model of X. This allows
us to construct, in the case of degenerations of hyper-
surfaces, a non-archimedean SYZ fibration inducing
on Sk(X) the integral affine structure predicted by the
Gross-Siebert program. When the family of hypersur-
faces is the Fermat one, we furthermore prove that the
non-archimedean Calabi-Yau metric is invariant under
this retraction. Finally, we consider degenerations of
canonically polarized manifolds and compute the non-
archimedean limit of the family of Kähler-Einstein me-
trics inside the associated hybrid space.
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