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Plan du Mémoire

Objectif de la recherche L'objectif global de cette thèse est de proposer des modèles de contact en DEM qui permettent de traiter l'ensemble du processus de fatigue lors d'essais de laboratoire à température et fréquence de chargement constantes. Afin d'atteindre cet objectif, les problématiques suivantes sont enoncées :

• Définir une formulation énergétique d'un modèle de contact pour la croissance des fissures en fatigue pour les fissures longues.

• Proposer une description physique et un modèle subséquent pour l'initiation des fissures.

• Combinez les deux aspects dans un seul modèle de contact.

Organisation de la thèse

Cette thèse est organisée en plusieurs parties :

Le chapitre 2 passe en revue les phénomènes de fatigue des matériaux, les essais de fatigue couramment réalisés, les processus physiques impliqués et les étapes correspondantes de l'évolution de la fatigue. Les connaissances de base de la mécanique de la rupture élastique linéaire et de la libération d'énergie pendant le processus de fissuration sont présentées. Les modèles existants sont évalués, y compris le modèle d'endommagement, le modèle de croissance des fissures et le modèle de zone cohésive. Les possibilités d'amélioration sont clarifiées. Dans le chapitre 3, un modèle de contact, le modèle-p, pour la croissance des fissures en fatigue est proposé. Dans le chapitre 4, le modèle-p est validé par des comparaisons respectivement avec les calculs théoriques et l'expérimentation. Au chapitre 5, le modèle-p est simplifié en modèle-sp. De plus, ce modèlesp est utilisé de manière créative comme un modèle d'endommagement qui peut saisir l'ensemble du processus d'évolution de la fatigue pour différents niveaux de déformation des essais de fatigue. Le modèle-sp est validé par des comparaisons avec l'expérimentation pour différents matériaux et méthodes d'essai. Enfin, les conclusions de ce travail sont présentées et plusieurs perspectives Résumé étendu
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Résumé étendu Contexte

Les questions environnementales poussent le secteur de la construction à rechercher des pratiques plus durables. En ce qui concerne l'industrie des chaussées routières, les efforts visant à allonger la durée de vie des structures de chaussée et à réduire la quantité de matériaux consommés sont des éléments clés pour la réduction des impacts environnementaux, notamment en ce qui concerne les émissions de dioxyde de carbone pendant la construction, la réparation et la reconstruction des chaussées.

Le phénomène de fatigue est l'une des principales causes de dégradation des chaussées, entraînant une réduction de leur durée de vie. L'analyse et la prédiction de ces effets sur les structures de chaussée font l'objet d'une attention croissante de la part des praticiens afin d'optimiser la conception et la gestion des routes.

Les sollicitations répétées (trafic et température), sont responsables d'une détérioration mécanique continue des matériaux de structure, qui conduit à l'initiation et à la propagation de fissures en fonction du nombre de cycles. Plusieurs processus physiques, tels que la non-linéarité du module complexe, l'auto-échauffement, la thixotropie et la coalescence des fissures sont impliqués dans les phénomènes de fatigue du béton bitumineux (matériau de chaussée le plus courant).

Aujourd'hui, les essais expérimentaux sont le principal outil pour déterminer la performance en fatigue du béton bitumineux, bien que tous les mécanismes de fatigue ne soient pas encore complètement connus.

L'étude des mécanismes essentiels a été réalisée au cours des dernières décennies par le biais de simulations numériques.

Le béton bitumineux est un matériau composite composé de granulats, de liant bitumineux et éventuellement de matériaux de remplissage. Il présente naturellement une microstructure hétérogène qui affecte de nombreux aspects du comportement en fatigue. Dans la méthode des éléments discrets (DEM), le matériau est décrit au moyen d'un assemblage de particules interagissant par contact, ce qui se transforme en un outil numérique efficace pour imiter l'effet des hétérogénéités. fissure d'un 'saut'. Cependant, la continuité du processus de rupture reste dépendante de la rupture du contact (comme le suggère la Figure 3.4f).

Afin de caractériser spécifiquement le processus de rupture d'un contact, l'effet mécanique de la propagation virtuelle de la pointe de fissure sur une distance d c , définie comme le domaine de contact, est analysé. La longueur d c correspond au déplacement de la pointe de fissure si le contact est coupé. Progressivement, le déplacement de la pointe de la fissure, défini par la longueur a c (0 ≤ a c ≤ d c comme indiqué sur la Figure 3.3), induit une réduction de la rigidité du contact. On peut adopter une variable d'état D (0 ≤ D ≤ 1) pour décrire cette dégradation de la rigidité du contact concernée par le processus de propagation de la pointe de fissure. Aucun processus de propagation n'est observé pour a c = 0, ce qui est automatiquement lié à un contact intact Une relation cohérente entre la propagation de la pointe de fissure a c et la dégradation de la rigidité D permet au modèle discret de définir un déplacement de fissure plus petit que la dimension des particules composant le matériau. Dans les sections suivantes, une relation a c -D basée sur le bilan énergétique d'un contact est proposée.

Définition du ratio de pente p

Le premier élément pour comprendre la relation entre la propagation de la fissure et le processus de dégradation du contact à la pointe de la fissure dans l'échantillon de DEM est l'évolution de la force et des déplacements. Si seul le contact à la pointe de la fissure est relâché (0 ≤ D ≤ 1), dans des conditions élastiques, le matériau entourant la pointe de la fissure se comporte comme un système élastique. Par simplicité, remplaçons le matériau environnant par un ressort élastique représentant l'élasticité du matériau k p , comme proposé dans la Figure 3.5. Si l'on considère le processus de rupture de manière opposée, où la force de contact peut fermer la fissure, l'action individuelle de la force de contact associée à la pointe de la fissure peut réduire linéairement l'écart entre les deux particules. De manière naturelle, une valeur décroissante de F = δ(1 -D)k 0 peut simplement augmenter proportionnellement la distance entre les deux particules (décrite par δ), ce qui explique la trajectoire linéaire observée lors du processus de rupture (0 ≤ D ≤ 1), comme le montre la Figure 3.6.

Dans la Figure 3.6, un contact qui représente une partie du matériau d'une plaque est décrit par les deux systèmes de ressorts et l'évolution de la force de contact F et du déplacement δ dans le système de coordonnées. Quatre états sont choisis, à savoir, (o) une plaque pré-fissurée sans chargement, (A) une plaque soumise à une contrainte constante σ, (B) une fissure se propage jusqu'à la limite du domaine de contact, (C) une fissure traverse totalement le domaine de contact. Trivialement, la force élastique maximale, juste avant le processus de rupture du contact (processus de (B) à (C)) est égale à F max = k 0 δ 0 . Pour cette même force F max agissant sur le ressort 2k p , le déplacement associé au matériau environnant est simplement δ p = F max /k p . Après le processus de rupture progressive, la force diminue de F max à 0 suivant la pente de rupture k p et le ressort du matériau environnant n'est plus en tension. L'augmentation totale du contact rompu est finalement de δ max = δ 0 + δ p = δ 0 (1 + k 0 /k p ), lorsque F = 0.

Définissons le rapport de pente p comme le rapport entre la pente élastique k 0 et la valeur absolue de la pente de rupture k p , soit p = k 0 /k p . Physiquement, le rapport de pente p est une quantité qui caractérise la relation entre la rigidité du contact et la rigidité de son voisinage. Cela signifie que le rapport de pente p tient compte de l'effet du matériau environnant sur la pointe de la fissure.

Pour décrire le changement de la position de la fissure et du déplacement du contact avec la propagation de la fissure, la figure 3.7 montre deux états de la position de la fissure et du déplacement du contact, se référant respectivement aux états (B) et (C) de la figure 3.6.

Figure 4: Description de l'évolution d'un contact pour l'ensemble du processus allant de la fissure proche à la fissure traversant ce contact. En bas de la figure, (o) une plaque pré-fissurée dans laquelle un rectangle rouge représente le contact dont le comportement est décrit par les deux systèmes de ressorts et l'évolution de la force de contact F et du déplacement δ dans le système de coordonnées, (A) plaque soumise à une contrainte constante σ, (B) fissure se propageant jusqu'à la limite du domaine de contact, (C) fissure traversant totalement le domaine de contact. De (B) à (C), la croissance de la fissure dans le domaine de contact est représentée par le processus de dégradation de la rigidité de contact, pour (0 ≤ D ≤ 1), où k 0 est la rigidité de contact initiale, et (1 -D)k 0 est sa valeur dégradée.

x

Résumé étendu

En ce qui concerne la méthode proposée qui représente la propagation des fissures, lorsqu'elle est comparée au modèle de la zone cohésive (CZM), il convient de mentionner une similitude et une différence majeures entre eux. Tous deux utilisent un changement progressif de la propriété mécanique de l'élément situé à l'avant d'une pointe de fissure pour représenter la propagation de la fissure. Pour le CZM, la séparation est régie par la déformation δ qui suit une courbe de radoucissement définie artificiellement. Il est important de noter que pour la méthode discutée ci-dessus, comme le montre la Figure 3.6, la séparation est uniquement régie par la dégradation de la rigidité de contact, et la courbe de radoucissement n'est pas définie mais se forme naturellement et c'est ce qui différencie principalement les deux méthodes. 

Équivalence énergétique

Le principe d'équivalence énergétique se base sur le fait que l'énergie libérée dans les échantillons DEM doit être la même que dans le matériau réel pendant un certain incrément de fissure. Ainsi, l'équivalence de l'énergie libérée dans une fissure et dans un contact pour la même longueur propagée peut finalement conduire aux correspondances entre a c et D

a c d c = 1 -(1 -D) 1 + p(1 -D) , (1) 
ou inversement

1 -D = 1 - a c d c 1 + p a c d c . ( 2 
)
Résumé étendu xi Les équations 3.16 et 3.17 fournissent une relation directe entre la propagation de la fissure et l'endommagement dans un contact (0 ≤ a c /d c ≤ 1 en conformité avec 0 ≤ D ≤ 1). Toutes les informations sont entièrement définies au niveau du contact (propriétés k 0 et d c ) ou mesurées lors de la séparation du contact (F × δ) comme k p (qui conduit à p = k 0 /k p ). Cette approche locale explicite de la libération d'énergie permet l'application directe de modèles de mécanique de la rupture pour simuler la propagation des fissures.

Forme incrémentale de la relation fissure-dommage

La relation a c -D décrite dans les équations 3.16 et 3.17 suppose une pente de séparation constante (constante p), ce qui est raisonnable pour des structures élastiques avec des fissures qui n'interagissent pas, donc ne modifient pas la réponse mécanique près de la pointe de la fissure de l'une à l'autre. Tout comportement non linéaire du matériau qui réduit sa rigidité (comme un endommagement) ou la proximité de fissures qui modifie les conditions aux limites près d'une pointe de fissure peut affecter la valeur de p. La situation générale décrite dans la Figure 3.18 est considérée et une forme incrémentale de a c -D est proposée. En considérant le contact endommagé comme un nouveau contact mais avec un domaine de contact réduit, on peut finalement obtenir

da = (d c -a c )dD (1 -D)[1 + p(1 -D -dD)] , (4) 
ou inversement

dD = (1 -D)     1 - 1 - da d c -a c 1 + p(1 -D) da d c -a c     . (5) 
La relation des taux da -dD permet d'écrire la relation directe entre un incrément de fissure da et un incrément de dégradation de la rigidité dD, pour un rapport de pente instantané p et une dégradation de la rigidité D donnés. L'équation 3.24 associée à l'équation 3.18, permet une description continue de la relation entre a c et D.

Résumé étendu xiii

La loi de Paris

La transformation da -dD permet également d'écrire une représentation énergétiquement cohérente de la propagation d'une fissure causée par un dommage du contact sur une longueur inférieure à l'échelle de la particule. La loi de Paris est un critère de fatigue qui se base sur la libération d'énergie par cycle pour déterminer l'ampleur de la propagation d'une fissure.

La loi de Paris est un critère de croissance des fissures en fatigue dans lequel l'incrément de fissure pendant un cycle de chargement da est déterminé par une fonction puissance de la plage de facteurs d'intensité de contrainte correspondante ∆K = K max -K min dans le cycle de chargement. Le rapport de contrainte est défini comme le rapport entre la contrainte minimale et la contrainte maximale subies pendant un cycle de chargement R = σ min /σ max . Pour R ≤ 0, ∆K = K max -0 = K max . Nous supposons que l'incrément de fissure da se produit au moment où K = K max pendant un cycle de chargement. Ainsi, en considérant la relation entre le taux de libération d'énergie G et le facteur d'intensité de la contrainte K (dans une contrainte plane, par exemple), G = K 2 max /E. La loi de Paris peut alors être réécrite comme suit

da dN = C(GE) m/2 , (6) 
où da/dN est la vitesse de croissance de la fissure, a est la longueur de la fissure et N est le nombre de cycles de chargement, C et m sont des paramètres de fatigue et E est le module de Young du matériau. Le taux de libération d'énergie G = dU/da peut être calculé localement, au niveau d'un contact, sur la base de la libération d'énergie correspondante associée à une propagation de fissure donnée da.

Comparaisons entre les résultats théoriques et le modèle-p

Compte tenu du rôle clé du rapport de pente p, le modèle de propagation des fissures proposé est appelé modèle-p. Les calculs théoriques et les résultats expérimentaux sont utilisés pour être comparés au modèle-p.

La Figure 4.2a montre l'évolution du rapport de rigidité en fonction du nombre de cycles de chargement N pour un échantillon compact carré sous chargement de fatigue contrôler en contrainte. Dans la Figure 4.2b, on peut voir l'augmentation correspondante des fissures. Dans la Figure 4.2c, la dégradation du contact peut être clairement associée à l'augmentation de la fissure à différents états des rapports de rigidité. Les résultats pour tous les diamètres de particules sont proches des résultats théoriques, bien que des résultats plus proches soient observés pour les particules plus petites. Les bons accords entre la simulation et l'expérimentation dans la Figure 5.12 soutiennent fortement la validation du modèle-sp dans la modélisation de l'évolution de la fatigue des matériaux. Les deux problèmes principaux pour la modélisation de la propagation des fissures, à savoir comment représenter une minuscule croissance de fissure da causée par un cycle de chargement et comment déterminer la quantité de croissance de fissure da, sont résolus. Le premier problème est résolu avec succès par les transformations a c -D proposées qui sont basées sur l'équivalence énergétique entre l'énergie dissipée due à la dégradation de la rigidité de contact et l'énergie libérée pendant la propagation de la fissure. Ces transformations permettent de transformer librement l'incrément de fissure da en incrément de dégradation de la rigidité de contact dD ou de manière réversible de dD à da. En profitant des transformations a c -D, la loi de Paris est facilement incorporée sous la forme d'une relation entre le taux de croissance de fissure da/dN et le taux de libération d'énergie G. Après avoir résolu les deux problèmes principaux grâce notre modèle de contact adapté la croissance des fissures de fatigue, le modèle-p est proposé et confirmé à la fois par la comparaison avec le calcul théorique et la comparaison avec l'expérience.

La

Les avantages du modèle-p résident dans sa caractéristique locale et sa précision. Premièrement, une fois que les processus de dégradation du con-tact sont déclenchés par une dégradation initiale donnée D ini , seules les forces de contact F et les déplacements de contact δ sont nécessaires pour continuer. Avec des informations aussi limitées, le modèle p peut toujours calculer le taux de libération d'énergie G et l'incrément de fissure da, puis représenter da par le dommage de contact dD. Cette caractéristique locale fait qu'il peut être naturellement adopté dans la simulation DEM. Deuxièmement, sa précision indique un grand potentiel pour une large gamme de tests de fatigue.

Un modèle d'endommagement est proposé dans lequel le développement de l'endommagement du matériau est causé par le développement d'un réseau de microfissures qui peut être représenté comme une seule croissance de fissure courte régie par une variante de la loi de Paris. Pour capturer le processus d'endommagement à l'échelle du contact, un paramètre supplémentaire p est introduit. En fixant une valeur constante du paramètre p dans les transformations a c -D, le modèle-p est simplifié en modèle-sp qui permet une variation de la valeur calculée du taux de libération d'énergie G. Un tel effet de variation du paramètre p sur G résulte finalement en une évolution de la dégradation de la rigidité du contact qui capture l'ensemble du processus d'évolution de la fatigue, y compris l'initiation et la propagation des fissures. Le 

Perspectives

A partir des méthodes et modèles discutés dans cette thèse, pour améliorer continuellement la modélisation du comportement de la propagation de fissures en fatigue, plusieurs extensions de l'étude méritent d'être approfondies dans le futur. En particulier :

• Le modèle d'endommagement proposé peut saisir globalement l'ensemble du processus d'évolution de la fatigue, tandis que les phénomènes physiques liés à la non-linéarité, à l'auto-échauffement et à la thixotropie, doivent également être directement pris en compte.

• L'utilisation des modèles proposés dans des échantillons tridimensionnels peut couvrir davantage de processus physiques dans le matériau réel, comme une initiation de fissure plus détaillée et une coalescence de fissure plus complexe.

• Pour reproduire de manière plus réaliste l'hétérogénéité du matériau, on peut accorder plus d'attention à la granularité du matériau. 
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Comparison between envelop curves and average curves of 4PB

fatigue test simulations and that of experiments [START_REF] Nguyen | Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid[END_REF], for different test strain levels. For example, Sim ave 115 µε is the average curve of simulation of all three samples at test stain level 115 µε, Sim max 115 µε is the maximum boundary of the envelop of all simulations at test stain level 115 µε, and sign of min for the minimum boundary of the envelop of all simulations. So that for experimental results with sign Exp. . 

Comparison between envelop curves and average curves of 2PB

fatigue tests simulation and that of experimentation [START_REF] Nguyen | Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid[END_REF], for different test strain levels. For example, Sim ave 160 µε is the average curve of simulation of all three samples at test stain level 160 µε, Sim max 160 µε is the maximum boundary of the envelop of all simulations at test stain level 160 µε, and sign of min for the minimum boundary of the envelop of all simulations. So that for experimental results with sign Exp. . 

General background

Environmental issues push the construction industry to search for more sustainable practices. Concerning the road pavement industry, efforts to lengthen the service life of pavement structures and reduce the quantity of consumed materials are key elements for the reduction of environmental impacts, specially related to carbon dioxide emission during pavement construction, reparation and reconstruction.

Fatigue phenomenon is one of the main cause of pavement distresses, causing the reduction of service life. The analysis and prediction of its effects over the pavement structures acquire increasing attention of practitioners in order to optimize the design and management of roads.

Repeated loadings (traffic and temperature), are responsible for a continuous mechanical deterioration of the structural materials, which leads to the initiation and propagation of cracks depending on the number of cycles. Several physical processes, such as the non-linearity of the complex modulus, selfheating, thixotropy and crack coalescence are involved in the fatigue phenomena of asphalt concrete (most common pavement material). Asphalt concrete is a composite material composed by aggregates, bituminous binder and eventually filler materials. It naturally presents an heterogenous microstructure which affects many aspects of the fatigue behavior. In the discrete element method (DEM), the material is described by means of an assembly of particles interacting through contact, which turns into an effective numerical tool to mimic the effect of heterogeneities.

Objectives

The global aim of this thesis is to propose DEM contact models which can deal with the whole fatigue process during laboratory tests under constant temperature and loading frequency. In order to fulfill this global purpose, the following objectives are stated:

• Define an energetic formulation of a contact model for fatigue crack growth for long cracks.

• Propose a physical description and subsequent model for crack initiation.

• Combine both aspects in a single contact model.

Organization of the thesis

This dissertation is organized in the following parts:

In Chapter 2 a review of the fatigue phenomena, usual fatigue tests, and physical processes involved. Basic knowledge of linear elastic fracture mechanics and energy release during cracking process are introduced. Existing models are discussed, including damage, crack growth and cohesive zone approaches.

Advantages and disadvantages of each point of view are commented.

In Chapter 3, the energy release of a contact at a crack tip is analysed.

A relation between the crack propagation length and the contact stiffness reduction is proposed leading to a fatigue crack growth model, p-model.

In Chapter 4, the p-model is applied to theoretical calculation of simple structures. The physical effects of the parameters of the contact model associated 

Asphalt concrete

Asphalt concrete (AC) is a composite material, composed by a mixture of mineral aggregates and bitumen [START_REF] Benedetto | Matériaux routiers bitumineux 2. Hermès Lavoisier editions[END_REF], see in Figure 2.1. The AC material has been widely used in pavement construction due to its good performance in terms of toughness, resistance, durability, installation and maintainability. Mainly, the collective effect of aggregates and bitumen forms the performance of asphalt concrete [4]. Aggregates are considered as the skeleton of the AC material which principally provides the load-bearing capacity through their high strength and interlocking ability. Such a role requires the aggregates to fulfill several requirements including angularity, polish resistance, shock resistance, freeze/thaw resistance and binder/aggregate compatibility [START_REF] Mangiafico | Linear viscoelastic properties and fatigue of bituminous mixtures produced with Reclaimed Asphalt Pavement and corresponding binder blends[END_REF].

The gradation of aggregates describes the particle size distribution of aggregates of the AC material based on sieve analysis. A good gradation of aggregates tends to an optimal density of the mixtures both for the cement concrete [START_REF] Fuller | The laws of proportioning concrete[END_REF] and asphalt concrete [START_REF] Nijboer | Plasticity as a factor in the design of dense bituminous road carpets[END_REF][START_REF] Vavrik | The bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate (with discussion)[END_REF]. There is also the gradation optimization aiming to the minimum air void [START_REF] Olard | GB5 mix design: high-performance and cost-effective asphalt concretes by use of gap-graded curves and SBS modified bitumens[END_REF], for a better rutting resistance. When the sample is loaded, among all aggregates, some aggregates belong to the load chains by their inter particle contacts [START_REF] Roque | Development of mix design guidelines for improved performance of asphalt mixtures[END_REF][START_REF] Santamarina | Soils and waves[END_REF]. The shape and surface texture of aggregates have an influence on the fatigue resistance of the mixtures [START_REF] Miller | Investigating aspects of aggregate properties that influence asphalt mixtures performance[END_REF].

The cohesion of the AC material is provided by the bituminous binder which includes the bitumen and the mineral powder. The bituminous binder also contributes to the elasticity, plasticity and viscosity of asphalt concrete. Generally, the hydrocarbon bitumen mainly contains two important elements, carbon (82 -88%) and hydrogen (8 -11%). Also some other elements exist in bitumen at relatively low proportion, such as sulfur (0 -6%), oxygen (0 -1.5%), nitrogen (0 -1%) and traces of heavy metals, iron, vanadium, aluminum, nickel, etc. . . [START_REF] Read | The shell bitumen handbook[END_REF]. Bitumen is composed of high molecular weight species which are formed by molecules connected through π -π bonds, and this feature is helpful to explain the AC material sensitivity to changes in shear conditions and temperature [START_REF] Petersen | Binder characterization and evaluation[END_REF].

Different additives may be added into bitumen and resulting modified bitumen improve the performance of material in service period or in production procedures. Common additives are adhesion agents, polymers, sulfur, waxes and crumb rubber [START_REF] Eurobitume | The bitumen industry-a global perspective: Production, chemistry, use, specification and occupational exposure[END_REF].

Air void has also some influence on the performances of AC materials, when air void content decreases the stiffness of asphalt mixtures increases [START_REF] Mangiafico | Linear viscoelastic properties and fatigue of bituminous mixtures produced with Reclaimed Asphalt Pavement and corresponding binder blends[END_REF][START_REF] Bazin | Deformability, fatigue and healing properties of asphalt mixes[END_REF][START_REF] Benedetto | State of the art on stiffness modulus and fatigue of bituminous mixtures[END_REF].

The void content has different effects on the fatigue resistance depending on the loading conditions: in strain controlled fatigue test, with the void content decreasing, the fatigue life decreases; however, in stress controlled fatigue test, with the void content decreasing, the fatigue life increases [START_REF] Mangiafico | Linear viscoelastic properties and fatigue of bituminous mixtures produced with Reclaimed Asphalt Pavement and corresponding binder blends[END_REF]. Generally, in laboratory, two main types of cyclic loading, i.e. stress controlled and strain controlled, are applied for fatigue tests [START_REF] Nishizawa | Fatigue analysis of asphalt pavements with thick asphalt mixture layer[END_REF][START_REF] Nunn | Long-life flexible roads[END_REF][START_REF] Al-Khateeb | A distinctive fatigue failure criterion[END_REF]. Figure 2.7 typically shows loadings and responses in different loading modes. In stress controlled mode, a constant stress is imposed and the corresponding strain level of the specimen is monitored, then one of the fatigue failure criteria is based on the moment when the specimen finally reaches excessive tensile strains [START_REF] Pell | The effect of testing and mix variables on the fatigue performance of bituminous materials[END_REF][START_REF] Tayebali | Fatigue response of asphaltaggregate mixtures (with discussion)[END_REF][START_REF] Kim | Fatigue characterization of asphalt concrete using viscoelasticity and continuum damage theory (with discussion)[END_REF]. In strain controlled mode, the most widely used fatigue failure criterion is the 50% reduction of specimen stiffness compared with initial stiffness [START_REF] Tayebali | Modeling fatigue response of asphalt-aggregate mixtures[END_REF], as shown in Figure 2.8. We can mention that some other failure criteria have been suggested by different researchers [START_REF] Rowe | Improved techniques to evaluate the fatigue resistance of asphaltic mixtures[END_REF][START_REF] Reese | Properties of aged asphalt binder related to asphalt concrete fatigue life[END_REF]. The most commonly used loading signal shape is sinusoidal, as shown in Figure 2.5, but there are also square or haversine forms [START_REF] Raithby | Some effects of loading history on the fatigue performance of rolled asphalt[END_REF][START_REF] Said | Fatigue characteristics of asphalt concrete mixtures[END_REF].

Fatigue behavior for asphalt concrete

For strain controlled 4-point bending (4PB) test, as an example, a sinusoidal displacement signal δ v (t) with constant amplitude δ v,max is imposed at two middle points of the specimen (see Figure 2.5). Consequently the bottom and top of the central cross-section are subjected to a sinusoidal strain wave ε(t), whose amplitude ε max is identified as the test strain level, for instance 150 µε, 135 µε and 115 µε. The relation between δ v,max and ε max can be described by the expression [4]:

δ v,max = 5 3 A 2 h ε max (2.1)
And the reaction force F v can be obtained by the equation [4,[START_REF] Xiong | Formulaire de résistance des matériaux[END_REF]:

F v = 6 5 EI A 3 δ v,max (2.2) 
where A is the distance between the two loading points, E is the elastic modulus, I is the moment of inertia of the cross-section and h is the test specimen height.

Physical processes involved in a fatigue test

During a fatigue test, the global stiffness of specimen progressively degrades with increasing number of loading cycles. The fatigue evolution consists of three distinct phases [START_REF] Baaj | Fatigue of mixes: an intrinsic damage approach[END_REF][START_REF] Di Benedetto | Fatigue damage for bituminous mixtures: a pertinent approach[END_REF] (see Figure 2.8). During phase I, the stiffness initially decreases sharply. However, several physical phenomena including non-linearity, self-heating and thixotropy play a more crucial role to the decrease than fatigue. Phase II is characterized by a quasi-linear development trend, during which, the gradient of stiffness change stabilizes and microcracks network progresses. Finally, in phase III, micro-cracks coalesce into macro cracks whose propagation leads to the fracture of material.

One important difference between the laboratory fatigue test and the pavement in real traffic condition is that cyclic loading is generally applied continuously during tests and on the contrary for real pavement the pause between two vehicles passing may last relatively longer than the period of the loading wave in laboratory tests. Fatigue life obtained from laboratory tests may hence deviate from the fatigue distress in real pavement [START_REF] De La Roche | Etude de la fatigue des enrobés bitumineux à l'aide du manège de fatigue du LCPC-Nantes[END_REF]. For continuously performed fatigue tests without the pause between loads the transient reversible variations, mentioned as non-linearity, self-heating and thixotropy, are incorporated in stiffness evolution during tests, especially in phase I. Non-linearity refers to the disproportion between strain amplitude and stress amplitude, when the applied strain level is higher than the linear viscoelastic limit of material [START_REF] Lakes | Viscoelastic materials[END_REF][START_REF] Delgadillo | Nonlinearity of repeated creep and recovery binder test and relationship with mixture permanent deformation[END_REF]. Considering the micro structure inside the material, the binder within the aggregate surrounding space can concentrate a significantly higher strain level than the overall strain [START_REF] Kose | Distribution of strains within hot-mix asphalt binders: applying imaging and finiteelement techniques[END_REF].

Under repetitive loadings, viscoelastic materials exhibit a temperature increase (self-heating), due to the energy dissipation [START_REF] Oldyrev | Self-heating and failure of plastics under cyclic loading[END_REF][START_REF] Riahi | Modelling self-heating and thixotropy phenomena under the cyclic loading of asphalt[END_REF]. Such phenomenon also has been observed during fatigue tests on bituminous mixtures [START_REF] Ashayer | Comportement en fatigue des enrobés bitumineux[END_REF][START_REF] Bodin | Temperature effects in binder fatigue and healing tests[END_REF].

Since the mechanical behavior of bituminous mixture is typically temperature dependent, self-heating plays an important role in the evolution of material properties during fatigue test [START_REF] Nguyen | Determination of thermal properties of asphalt mixtures as another output from cyclic tension-compression test[END_REF].

Thixotropy is defined as the viscosity decrease of the sample, previously at rest when a flow is suddenly applied, and the subsequent viscosity recovery after the flow is stopped [45]. Phenomena of thixotropy occurrence have been observed in bituminous mixtures [START_REF] Gauthier | Non linearity in bituminous materials during cyclic tests[END_REF][START_REF] Mouillet | Thixotropic behavior of paving-grade bitumens under dynamic shear[END_REF][START_REF] Shan | Application of thixotropy to analyze fatigue and healing characteristics of asphalt binder[END_REF][START_REF] Pérez-Jiménez | Differentiating between damage and thixotropy in asphalt binder's fatigue tests[END_REF][START_REF] Santagata | Evaluation of self healing properties of bituminous binders taking into account steric hardening effects[END_REF]. Thixotropy may have a stronger influence than self-heating on the variation of material mechanical properties during fatigue tests of mastics [START_REF] Delaporte | New procedure to evaluate fatigue of bituminous mastics using an annular shear rheometer prototype. Pavement cracking: mechanisms, modeling, detection, testing and case histories[END_REF].

Besides these reversible phenomena, Moreno-Navarro [START_REF] Moreno-Navarro | A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective[END_REF] suggested that the steep decrease of modulus in phase I may be related to both the reversible phenomena and the accumulated permanent deformation which can influence the viscoelastic properties of material (i.e. strain hardening [START_REF] Darabi | Cyclic hardening-relaxation viscoplasticity model for asphalt concrete materials[END_REF][START_REF] Chang | Effects of strain hardening and stress state on fatigue crack closure[END_REF], material tend to more stiffness and elasticity), and finally results in breakage of molecular chain bonds and the forming of stress concentration and cracks (see Figure 2.9).

Figure 2.9: Schema of damage development in bituminous mixtures under traffic load (Modified from [START_REF] Moreno-Navarro | A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective[END_REF]).

Generally, the mechanical behavior of bituminous mixtures may be influenced by several factors, temperature, applied strain amplitude and number of loading cycles. Referring to small strain amplitude and relatively low number of loading cycles, bituminous mixtures behave as a linear viscoelastic material, and the effect caused by the viscosity of material has very limited influence, it can be considered as a kind of linear elastic material, at a very low temperature. Whereas referring to large strain amplitude, it becomes a nonlinear mechanical behavior. However, even under relatively small strain amplitude, with a relatively large number of loading cycles, it may lead to failure caused by fatigue. Temperature also has a strong influence on the behavior of bituminous mixtures [START_REF] Benedetto | Mechanical testing of bituminous mixtures[END_REF]. Temperature affects the phenomena including non-linearity, viscoelasticity and fatigue, as shown in Figure 2.10.

Fatigue endurance limit

Wöhler introduced the Wöhler curve (S-N curve) that relates the magnitude of the applied repetitive stress and the number of cycles to failure (known as 'fatigue life') [START_REF] Schütz | A history of fatigue[END_REF][START_REF] Schijve | Fatigue of structures and materials in the 20th century and the state of the art[END_REF]. In semi-logarithmic scale, the S-N curve shows a straight line as shown in Figure 2.11.

An obvious tendency in S-N curves is that with loading amplitude decreasing the fatigue life increases, till a certain value of loading amplitude, the straight line in S-N curve becomes flat, meaning an infinite fatigue life. The 'endurance limit' was introduced by Wöhler [START_REF] Schütz | A history of fatigue[END_REF], defined as a certain stress level below which the fatigue damage is not accumulative, an infinite or a very huge number of loading cycles could be applied without leading to material failure [START_REF] Beer | Mechanics of materials[END_REF], for instance, for portland cement concrete the stress level for a fatigue life equal to 2 million cycles is the endurance limit (EL) [START_REF] Huang | Pavement analysis and design[END_REF]. Lower strain level at the bottom of the asphalt pavement leads to less probability of cracking [START_REF] Hveem | Pavement deflections and fatigue failures[END_REF][START_REF] Carpenter | Fatigue endurance limit for highway and airport pavements[END_REF][START_REF] Soltani | An investigation of the endurance limit of hot-mix asphalt concrete: Using a new uniaxial fatigue test protocol[END_REF], and below a given strain level the structural damage becomes not accumulative [START_REF] Zeiada | Endurance limit for HMA based on healing concept using uniaxial tensioncompression fatigue test[END_REF], this kind of pavement is called as 'perpetual' pavement [START_REF] Buncher | Perpetual pavements[END_REF]. Such conception is the basis for the fatigue endurance limit of asphalt concrete [START_REF] Norouzi | Fatigue life and endurance limit prediction of asphalt mixtures using energy-based failure criterion[END_REF]. First research in asphalt concrete, Monismith and McLean [START_REF] Monismith | Design considerations for asphalt pavements[END_REF] proposed an endurance limit of 70 microstrain. Some different values of asphalt concrete fatigue endurance limit are reported in [START_REF] Wu | Kansas turnpike: an example of long lasting asphalt pavement[END_REF][START_REF] Bhattacharjee | Application of elasticviscoelastic correspondence principle to determine fatigue endurance limit of hot-mix asphalt[END_REF][START_REF] Thompson | Considering hot-mix-asphalt fatigue endurance limit in full-depth mechanistic-empirical pavement design[END_REF][START_REF] Prowell | Endurance limit of hot mix asphalt mixtures to prevent bottom-up fatigue cracking[END_REF].

Chapter 2. Literature review

Modeling of fatigue damage

Existing modeling methods of fatigue evolution can be categorized into two main directions, based on damage mechanics or fracture mechanics. The damage models intend to establish the evolution law of damage variable which represents the loss of material mechanical capacity, with respect to an increasing number of loading cycles [START_REF] Papa | Anisotropic damage model for the multiaxial static and fatigue behaviour of plain concrete[END_REF][START_REF] Alliche | Damage model for fatigue loading of concrete[END_REF][START_REF] Bodin | Modèle d'endommagement par fatigue: application aux enrobés bitumineux[END_REF][START_REF] Jirásek | Consistent tangent stiffness for nonlocal damage models[END_REF]. On the other hand, crack growth models relate the crack growth increment per loading cycle to fracture mechanics features for cracking state, such as stress intensity factor, energy release rate and crack tip opening [START_REF] Klesnil | Influence of strength and stress history on growth and stabilisation of fatigue cracks[END_REF][START_REF] Ray | Fatigue crack propagation model for plain concrete-an analogy with population growth[END_REF][START_REF] Slowik | Fracture of concrete under variable amplitude fatigue loading[END_REF][START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF].

A favorable fatigue model is supposed to capture both the fatigue evolution, like global stiffness change (see Figure 2.8), and localized failure, like crack distribution and propagation (see Figure 2.12 ). For instance, in Arsenie's study [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], the fatigue evolution is in good agreement with experimental data (Figure 2.13), however, fatigue damage did not localize (Figure 2.14a). In another example, Liu [4] observed localized failure in simulations (Figure 2.14c) and modeled 4PB test at relatively high strain level, 150 µε and 135 µε, but simulation results for strain level 115 µε did not agree with experimental result so well (Figure 2.15). Generally, local damage models use information from local mechanical response of the material (material in one element domain), such as strain, stress or energy, to determine the damage evolution of material within this corresponding element domain. However, due to mesh-dependency, it is dif-Figure 2.13: 4PB test experimental results and simulations in FEM by Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], (Modified from [4]).

ficult to deal with high stress gradient, like stress near crack tip. Furthermore, the strain singularity in an element near the crack tip may lead to an unrealistically huge damage rate which may present a spurious localization [START_REF] Moës | Coupling local and non-local damage evolutions with the thick level set model[END_REF][START_REF] Jirásek | Nonlocal damage mechanics[END_REF]. Non-local damage models need more information beyond the mechanical response of only one element, consequently more programming and computation efforts are required to implement non-local models than corresponding local models [START_REF] Pijaudier-Cabot | A review of non local continuum damage: Modelling of failure?[END_REF][START_REF] Samal | A comparative assessment of local and nonlocal damage models for prediction of fracture behavior during mixed-mode loading[END_REF].

Numerical methods

Both the continuous method (finite element method (FEM) [START_REF] Hrennikoff | Solution of problems of elasticity by the framework method[END_REF] and extended element method (XFEM) [START_REF] Belytschko | Meshless methods: an overview and recent developments[END_REF]) and the discrete element method (DEM) [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF] can be used for fatigue behavior modeling. Compared with continuous method, its discrete nature enables DEM to easily reproduce the heterogeneous micro-structure of granular materials (Figure 2.16) and deal with large deformation, which is a strong advantage for crack propagation modeling [START_REF] Sharafisafa | Application of the distinct element method and the extended finite element method in modelling cracks and coalescence in brittle materials[END_REF]. Furthermore, mesh refinement may be needed to simulate crack propagation in FEM (Figure 2.17).

Damage model

Usually a damage variable D is used to describe the deterioration of material load-bearing capacity, for virgin material D = 0 and D = 1 for totally broken with no stiffness. For isotropic damage case, the effective modulus E can be expressed as ), (c) randomly packing discrete element method conducted by Liu [4], (Modified from [4]).

E = (1 -D)E 0 (2.3)
where E 0 is the modulus of virgin material.

Various damage models have been developed based on different theories and assumptions. The viscoelastic continuum damage (VECD) model is based on the Schapery's work potential theory [START_REF] Schapery | A theory of mechanical behavior of elastic media with growing damage and other changes in structure[END_REF] and the elastic-viscoelastic correspondence principle [START_REF] Schapery | Correspondence principles and a generalizedj integral for large deformation and fracture analysis of viscoelastic media[END_REF], by which the time dependency of material are transformed in the change of mechanical properties, like the reduction of pseudo stiffness. Studies [START_REF] Kutay | Viscoelastic continuum damage (VECD) models for cracking problems in asphalt mixtures[END_REF][START_REF] Cao | Use of indirect tension test and viscoelastic continuum damage theory for fatigue characterization of asphalt mixtures[END_REF][START_REF] Cao | Fatigue performance characterization and prediction of asphalt binders using the linear amplitude sweep based viscoelastic continuum damage approach[END_REF][START_REF] Al Assi | Development of an analysis tool for deterministic and probabilistic viscoelastic continuum damage approach[END_REF][START_REF] Hernandez-Fernandez | Simulation of the asphalt concrete stiffness degradation using simplified Bibliography viscoelastic continuum damage model[END_REF] use the VECD model to generally model the mechanical behavior change of viscoelastic materials. Generally, these models show good agreement with experimentation in the first two phases of fatigue evolution. The disturbed state concept (DSC) model [START_REF] Desai | Mechanics of materials and interfaces: The disturbed state concept[END_REF] considers the behavior of a deforming material as the collective responses of two components, relatively intact (RI) and fully adjusted (FA). This model is used to characterize asphalt concrete behaviors, such as elastic, plastic, creep, rutting, fracture and reflection cracking [START_REF] Desai | Unified DSC constitutive model for pavement materials with numerical implementation[END_REF][START_REF] Desai | Constitutive modeling of materials and contacts using the disturbed state concept: Part 1-background and analysis[END_REF]. One of the machine learning methods, the recurrent neural network (RNN) is trained by experimental results to predict the fatigue behavior of asphalt [5].

The randomness of asphalt concrete structures can be represented by the mesh distribution according to material image [START_REF] Szyd | The use of a two-phase monte carlo material model to reflect the dispersion of asphalt concrete fracture parameters[END_REF] (Figure 2.18) or Monte Carlo Simulation method [START_REF] Cao | Research and application of random aggregate model in determining the fracture behavior of four-point bending beam with notch[END_REF].

Attempts to use only a damage model [START_REF] Bodin | Modèle d'endommagement par fatigue: application aux enrobés bitumineux[END_REF] to simulate the entire process of asphalt concrete 4PB fatigue test [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF] were made respectively by Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], Gao [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] and Liu [4]. Their work may be evaluated from two aspects, localized failure and fatigue evolution. A strong tendency of increasing damage localization is shown following the order Arsenie [START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF], Gao [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] and Liu [4], see 

The elastic stress field near a crack tip

The Westergaard function method [START_REF] Sun | Fracture mechanics[END_REF][START_REF] Westergaard | Bearing pressures and cracks[END_REF] yields the 2D elasticity solution of stress field near a crack tip within an infinite plane under uniform remote tension stress (see Figure 2.21). The Westergaard solutions are given below in the coordinate system shown in Figure 2.22. The origins of the polar coordinate system (r, θ) and rectangular coordinate system (X, Y ) are located at the crack tip.

The stress and displacement fields given by Westergaard Function Method in the polar coordinate system in Mode I are given by:

σ rr = K √ 2πr cos θ 2 1 + sin 2 θ 2 (2.4) σ θθ = K √ 2πr cos 3 θ 2 (2.5) σ rθ = K √ 2πr sin θ 2 cos 2 θ 2 (2.6) u r = K 8µπ √ 2πr (2κ -1) cos θ 2 -cos 3θ 2 (2.7) u θ = K 8µπ √ 2πr (2κ + 1) sin θ 2 -sin 3θ 2 (2.8)
where K is the stress intensity factor (SIF) [START_REF] Irwin | Analysis of stresses and strains near the end of a crack traversing a plate[END_REF], as shown in When θ = 0 and r = x, the stress in y direction can be obtained from Equation 2.5, as:

σ yy = K(a) √ 2πx (2.9)
For infinite plate with center crack subjected to remote uniform tension stress, the stress intensity factor can be written as:

K = σ 0 √ πa (2.10)
where σ 0 is the remote stress, and a is crack length.

Furthermore, the stress intensity factor K for a finite plate with different crack distributions (edge crack, center crack, symmetric edge cracks) has been approximately described [START_REF] Tada | The stress analysis of cracks handbook[END_REF].

Energy release rate

Griffith [START_REF] Griffith | The phenomenon of rupture and flow in solids[END_REF] first proposed the energetic method to characterize material fracture behavior. The condition for crack propagation is that the energy released during crack extension is equal or more than the needed surface energy to generate the newly extended crack surface. Thus, the energy release rate G is the energy dissipated during fracture per unit of newly created fracture surface area, and can it be calculated by Equation 2.11:

G = - ∂(V -W ) ∂Q (2.11)
where V is the potential energy available for crack growth, W is the work associated with any external forces acting, and Q is the extended crack area.

Energy release rate in cracked plate

The Griffith theory of fracture is based on the principle of energy conservation, during crack extension for the system (cracked body) the released energy must be equal to the added energy. A single-edge-cracked elastic plate with unitary thickness t can be used to easily describe the energy release process [START_REF] Sun | Fracture mechanics[END_REF], and four cases of loadings are schematically illustrated in Figures 2.24 to 2.27.

-Case 1: Plate subjected to a constant force F .

-Case 2: After tension, plate displacement δ is fixed.

-Case 3: After tension, plate top is restrained by elastic constraint with stiffness k.

-Case 4: After tension, plate top is restrained by elastic constraint with varying stiffness k and position. For all four cases, Equation 2.11 can be rewritten as

G = dU dA = dW -dV tda (2.12)
where -dA is the crack surface increment, dA = t × da, where da is the crack length increment and t is the thickness of the plate.

-dU is the released energy during crack extension dA.

-dW is the work done by external force during crack extension.

-dV is the strain energy increment during crack extension.

As shown in Figure 2.28, dW can be geometrically expressed as the area of quadrangle formed by (A,B,C,D), S ABCD , and dV is equal to the difference between the area of triangles, S ∆ODC the strain energy after crack extension, and the area of triangles, S ∆OAB the strain energy before crack extension. Thus the released energy dU during crack extension, according to Equation 2.12, can be expressed as

dU R = S ABCD -(S ∆ODC -S ∆OAB ) = S ∆OAD (2.13)
Upon setting O(0, 0), and other two vertices A(δ 1 , F 1 ), D(δ 2 , F 2 ), the triangle surface S ∆OAD can be easily calculated by the Gauss area formula as

S ∆OAD = 1 2 |δ 2 F 1 -δ 1 F 2 | (2.14)
It should be noted that restrained by an elastic constraint (Case 3), the curve formed by the reaction force F and plate displacement δ descends following a slope -k which relate to the stiffness of corresponding elastic constraint, and if the elastic constraint varies during crack propagation, consequently the curve slope changes accordingly (see Figure 2.28d). Imagining that within the region of a cracked plate like in Figure 2.24, a small region which contains the crack tip can be considered as a secondary micro 'cracked plate', and the material surrounding this micro 'cracked plate' can be considered as an elastic constraint. By thinking this way, one may notice that the varying elastic constraint represents meaningful physical processes, such as micro crack network development surrounding the macro crack tip, damage zone or multi cracks propagation.

The relation between G and K in Mode I

The released energy during crack growth can be calculated by the the crack closure method (CCM). The stress distribution before extension and crack surface opening after propagation are shown in Figure 2.29.

The work done to close the crack new increment da is exactly the released energy during crack extension da from its origin position. To calculate the work, the stress field before extension can be described by Equation 2.9, and the displacement of the newly opened surface can be calculated in x'-y' coordinates by Equation 2.8, with θ = π, as 

u y = κ + 1 4µπ K 2π(-x ′ ) (2.15)
Noting that x ′ = x -da, we rewrite this expression as

u y = κ + 1 4µπ K 2π(da -x) (2.16) 
where K = K(a + da). Because da is vanishingly small, K in Eq. 2.16 can be taken to be equal to K(a).

Then the equivalence between the work done to close the crack surface (upper and lower) and the released energy during crack extension can be written as Substituting Equation 2.9 and 2.16 into Equation 2.17, we have the relation between G and K, as

Gda = 2
G = κ + 1 8µ K 2 (2.18)
For plain strain, κ = 3 -4ν, we have

G = 1 -ν 2µ K 2 = 1 -ν 2 E K 2 (2.19)
For plain stress, κ = (3 -ν)/(1 + ν), we have

G = K 2 2µ(1 + ν) = K 2 E (2.20)

Fatigue crack growth-Paris' law

For a wide variety of materials, fatigue crack growth may be well described by the well-known Paris' law [START_REF] Paris | A critical analysis of crack propagation laws[END_REF], in which the crack increment during one loading cycle da is determined by a power function of the corresponding stress intensity factor increment ∆K (Figure 2.30) during one loading cycle.

da dN = C(∆K) m (2.21) ∆K = K max -K min (2.22)
where da/dN is the crack growth rate, a is the crack length and N is the number of loading cycles, C and m are material parameters. Equation 2.21 may not be suitable for short cracks. The deviation from Paris' law for short crack fatigue propagation has been widely noticed and discussed [START_REF] Donahue | Crack opening displacement and the rate of fatigue crack growth[END_REF][START_REF] Haddad | Prediction of non propagating cracks[END_REF][START_REF] Ciavarella | One, no one, and one hundred thousand crack propagation laws: a generalized barenblatt and botvina dimensional analysis approach to fatigue crack growth[END_REF][START_REF] Pugno | A generalized paris' law for fatigue crack growth[END_REF]. Thus, to model different stages of cracking, crack initiation and propagation, different theories may be adopted. 

Fracture process zone (FPZ)

Studying concrete fracture behavior, Glucklich [START_REF] Glucklich | Fracture of plain concrete[END_REF] reported that during crack propagation, the strain energy was mainly converted into surface energy and the surface area absorbing this energy was larger than the effective crack surface. Also it was noticed that ahead of the macro crack exists a damage zone with variable size [START_REF] Kumar | Fracture mechanics of concrete-state-of-theart review[END_REF], such a zone is named the fracture process zone (FPZ).

Micro cracks in FPZ absorb energy by opening surface with increasing deformation, during the macro crack propagation, and the size and shape of the FPZ have been investigated by different techniques, including high-speed photography [START_REF] Bhargava | High-speed photography for fracture studies of concrete[END_REF], ultrasonic measurement [START_REF] Sakata | Crack evaluation in concrete members based on ultrasonic spectroscopy[END_REF], optical microscopy [START_REF] Derucher | Application of the scanning electron microscope to fracture studies of concrete[END_REF], laser speckle interferometry [START_REF] Ansari | Mechanism of microcrack formation in concrete[END_REF], scanning electron microscopy [START_REF] Mindess | A preliminary SEM study of crack propagation in mortar[END_REF][START_REF] Mindess | A device for direct observation of cracking of cement paste or mortar under compressive loading within a scanning electron microscope[END_REF], compliance and multicutting techniques [START_REF] Hu | Experimental method to determine extension of fracture-process zone[END_REF], and acoustic emission (AE) technique [START_REF] Maji | Process zone and acoustic-emission measurements in concrete[END_REF].

By using X-rays and three-dimensional Acoustic Emission (AE) techniques to monitor micro-cracks behavior during splitting test on concrete, Otsuka [START_REF] Otsuka | Fracture process zone in concrete tension specimen[END_REF] defined the micro-cracks zone as two overlapping zones, fracture core zone (FCZ) and fracture process zone (FPZ), corresponding to 70% and 95% of the total energy of all AE events as shown in schematic map of Figure 2.32.

In FCZ, it is observed that AE events are more densely distributed than the FPZ, which implies that a more densely distributed micro-cracks network exists in this area.

Figure 2.32: The schematic map of fracture process zone by Otsuka (Modified from [START_REF] Otsuka | Fracture process zone in concrete tension specimen[END_REF]).

Numerical modeling of fatigue crack growth 2.6.1 Crack growth model

In FEM, meshes need to coincide with crack trajectory [START_REF] Zhou | Incorporation of crack propagation in the ME fatigue cracking prediction[END_REF]. By using zero thickness interface elements, FEM can incorporate the cohesive zone method (CZM) [START_REF] Kollmann | Investigation of the microstructural fracture behaviour of asphalt mixtures using the finite element method[END_REF][START_REF] Chang | Simulation of asphalt concrete cracking using cohesive zone model[END_REF], and cracks propagate along the boundary of finite element meshes [START_REF] Teng | Evaluation of six fracture models in high velocity perforation[END_REF]. A crack can penetrate through a finite element, with the element erosion in FEM [START_REF] Wang | Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles[END_REF]. To adapt the heterogeneity of asphalt concrete, contact phases are defined, aggregate phase, mastic phase and interface between the aggregate and mastic [START_REF] Teng | Numerical fracture investigation of single-edge notched asphalt concrete beam based on random heterogeneous FEM model[END_REF], as shown in Figure 2.33. In addition, the non-ordinary state-based peridynamics (NOSB-PD) can be employed by the FEM to model crack branching in asphalt mixtures [START_REF] Ruan | Morphological characteristics of crack branching in asphalt mixtures under compression[END_REF]. Study [START_REF] Thamburaja | Fracture of viscoelastic materials: FEM implementation of a non-local & rate form-based finite-deformation constitutive theory[END_REF] uses the Gibbs potential-based multinetwork formulation of viscoelasticity to model the crack initiation and propagation.

In XFEM, crack propagation path may be arbitrary and no element remeshing is needed [START_REF] Mahmoud | Extended finite-element modelling of asphalt mixtures fracture properties using the semi-circular bending test[END_REF][START_REF] Wang | Fracture simulation of asphalt concrete with randomly generated aggregate microstructure[END_REF]. Through the use of the partition of unity [START_REF] Melenk | The partition of unity finite element method: basic theory and applications[END_REF], XFEM can model crack location and growth which is independent of meshes. Noting the successful realization of damage distribution and localization in simulations by DEM, we now review two fatigue crack growth models for DEM, respectively proposed by Gao [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] and Nguyen [START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF]. Two issues will be investigated, firstly, how the model incorporates fatigue crack growth law (in these two cases, Paris' law), or how the model calculates the key fracture features (stress intensity factor K), secondly, how the model represents the change of material properties caused by crack growth.

Stress intensity factor calculation

Gao's model [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] uses the relation between stress intensity factor K and energy released rate G (Equation 2.20) to replace the ∆K in Paris' law by ∆G. The advantage of this approach is the avoidance of global variables needed in conventional formulas [START_REF] Tada | The stress analysis of cracks handbook[END_REF] to calculate K, such as remote stress σ, crack length a and specimen dimensions. The disadvantage is that the energy release rate G is based on the degradation process of the former contact, therefore, since this approach is non-local and crack path dependent, it is complex to implement and can not be used for distributed cracks in heterogeneous materials.

On the contrary, Nguyen [START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF] uses conventional formula to calculate stress intensity factor K, while the global variables in formula are replaced by a group of corresponding local variables. The idea is assuming the contact domain as a 'small plate' (Figure 2.36), thus, in the formulas for K, the remote stress is replaced by contact stress, crack length is replaced by a presumed crack length within contact domain, and contact domain dimension is also used. Such replacement allows the local model to calculate K, however, using such a 'small plate' to model real specimen with a macro crack has not been validated. Anyway, this model is local and can lead to a value of K only based on one contact state.

Seemingly, a local model can easily and precisely calculate the stress intensity factor, to be incorporated in Paris' law. 

Representation of crack growth

The cohesive zone model (CZM) [START_REF] Barenblatt | The formation of equilibrium cracks during brittle fracture. general ideas and hypotheses. axially-symmetric cracks[END_REF] assumes that the stress distribution ahead of the crack tip is gradually increasing due to the fracture process zone (FPZ), as shown in Figure 2.37, unlike the singularity near the crack tip resulting from the linear elastic fracture mechanics (LEFM).

In the CZM, the cohesive zone consists of two cohesive surfaces ahead of the nominal crack tip, where the cohesive traction between the two cohesive surfaces is based on the distance between the two cohesive surfaces, according to the cohesive law [START_REF] Park | Cohesive zone models: a critical review of traction-separation relationships across fracture surfaces[END_REF] described in Figure 2.38.

The CZM is implemented into the DEM, to investigate the fracture behavior of asphalt concrete [START_REF] Kim | Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model[END_REF][START_REF] Kim | Discrete fracture modeling of asphalt concrete[END_REF][START_REF] Kim | Micromechanical fracture modeling of asphalt concrete using a single-edge notched beam test[END_REF], as shown in Figure 2.39 and 2.40.

Naturally, the CZM relates the crack surface opening to the traction force.

In DEM, the traction separation law can be seen as a special constitutive contact model describing the relation between contact force and contact displacement. But if we want to represent a certain crack length a or crack length increment da in DEM samples, the correspondence between the crack length a or the crack length increment da and specific mechanical properties, such as contact stiffness, contact force, contact displacement or dissipated energy, has to be established. where the denominator d is the width of contact domain.

As shown in Figure 2.42, after every loading cycle the contact stiffness slightly decreases, consistently with the stress-displacement slope decrease. However, contact stiffness decrease and fatigue-crack-growth behavior ceases when a yield criterion is fulfilled, then the stress-displacement relation starts to follow a soften curve based on fracture behavior. When crack propagates in real materials, the crack tips may totally go through a region of material and the stress in this region may drop to zero. During such process, the stress in this region decreases, the stress intensity factor K at crack tip increases. But in Nguyen's model, when a crack almost thoroughly through a contact domain, the contact stress would close to zero, the K calculated by variables including contact stress would drop to almost zero too, which is the opposite to what happened in real crack propagation. The linear transformation from da to dD is pretty inspiring, nevertheless without theoretical justification. A new transformation from da to dD which can be based on a rigorous derivation and can fulfill the transformation during the whole process of crack propagating through the contact domain would be greatly helpful for fatigue simulation.

Transition from damage model to crack propagation

It may be difficult to use only damage model or crack growth model to describe the three phases of fatigue evolution during tests, since different physical processes dominate at different stage of fatigue, crack initiation and crack propagation. Material can not be considered as homogeneous after macro crack appearance and propagation. A transition between phase II and III has been noticed in fatigue test, and a global damage variable of specimen D III was proposed to distinguish the transition [START_REF] Di Benedetto | Fatigue of bituminous mixtures[END_REF][START_REF] Baaj | Effect of binder characteristics on fatigue of asphalt pavement using an intrinsic damage approach[END_REF]. This variable describes the transition based on the modulus change of specimen during fatigue tests, it points out at which moment the material of the specimen becomes heterogeneous, however, a local transition method is still needed to determine when and where the macro crack occurs in the specimen domain.

A thick level set (TLS) [START_REF] Moës | A level set based model for damage growth: the thick level set approach[END_REF] is proposed and used in XFEM, by which damaged zone and totally damaged zone (like crack) are separated by a level set, material at a distance from the front of damage zone being considered completely damaged. Such method can be considered as performing the transition from damage to fracture [START_REF] Moës | Coupling local and non-local damage evolutions with the thick level set model[END_REF]. While the damage zone in TLS method is always a level surrounding the 'crack path' (totally damaged zone), as shown in Figure 2.43, however, due to heterogeneity of real material, damage and micro cracks may be distributed diffusely within a relatively wide region in material domain. DEM has some advantages for modeling heterogeneous micro structure of material and can easily realize distributed damage in simulation, see 

Conclusion

In the above sections, damage model, cohesive zone model, crack growth model and transition method are reviewed. Common numerical methods, FEM, XFEM and DEM are compared. FEM and XFEM can to a certain extent reproduce heterogeneity and randomness of materials, but need additional operation and more complex than that in DEM. For single or a few number of cracks, FEM and XFEM can also model crack propagation with element mesh refinement or enriched nodes, but in real materials, a relatively large number of cracks occur during fatigue process. In these aspects, DEM shows great potential. Randomly packed DEM with local damage model leads to good damage distribution and initiation of localization, after that, spurious localization occurs like fracture behavior due to strain singularity near crack tip. Great efforts and advances have been made by previous researchers in fatigue crack growth model for DEM, while two issues remain to be addressed, effective approach to calculate stress intensity factor K and good transformation from computational crack increment da to contact stiffness degradation increment dD. Transition method from damage to crack propagation for DEM has still not been developed.

Summary of the chapter

Material fatigue phenomena, especially asphalt concrete, are firstly presented, and physical processes involved and corresponding fatigue evolution stages are explained using an example of 4-point bending fatigue test. Then basic fracture mechanics relevant about fatigue crack growth is mentioned as it is helpful to understand crack propagation in material. Discussion of both existing damage models and crack growth models highlights the advantage of DEM over FEM and XFEM in modeling damage distribution and localization, whilst necessitates the following three improvements in fatigue behavior simulation:

-A crack growth model which can easily and precisely incorporate fatigue evolution law, and rigorous transformation from crack increment da to stiffness loss dD to effectively represent crack growth effect on material. Such a transformation is one of the core ideas and first novelty in this research work.

-A new damage model capable of modeling the whole process of fatigue evolution including crack initiation and crack propagation. 

Introduction

In polycyclic fatigue processes, crack increments are relatively small, much smaller than the particle scale used in simulations. In DEM for crack propagation in real conditions, the contact model should precisely quantify the effect (energetically consistent) of very small crack increment. In this chapter, the energy release of one contact is analyzed with the aim of expressing its stiffness reduction as a function of a virtual crack propagation.

Discrete element method 3.2.1 Contact behavior

A typical elastic bonded contact model is presented in Figure 3.1. The normal and tangential components of the contact force are governed by Equations 3.1, where δ n and δ s are respectively the normal and tangential relative displacements (with time derivatives δn and δs ), k n and k s are the normal and tangential stiffnesses of contact, c n and c s are the normal and tangential viscous damping coefficients.

   F n = k n δ n -c n δn F s = k s δ s -c s δs (3.1)
To avoid disturbing viscoelastic effect, the damping parameters are smaller than values of the critical damping constant c i (see in Appendix A) to improve the convergence in quasi static conditions without any disturbing viscous effect. In Appendix A , more details about the algorithm and numerical strategies are discussed.

The resultant contact force can be expressed as:

F = F n 2 + F s 2 , (3.2) 
based on normal and shear components, F n and F s respectively. Its orientation can be described by the angle θ defined as [4] θ = arctan as shown in Figure 3.1d.

F n F s , (3.3) 
The projection of the contact displacement on the direction of the resultant force F is defined by δ δ = δ n sin θ + δ s cos θ (3.4)

The corresponding strain level of contact can be defined as

ε = δ (R i + R j ) , (3.5) 
where δ is defined by Equation 3.4, R i and R j are the radii of two connecting particles (Figure 3.1e).

Contact stiffness degradation can be expressed by the following equations:

   k n = k n0 (1 -D)δ n k s = k s0 (1 -D)δ s (3.6)
where D is a damage variable representing the loss of contact stiffness, k n0 and k s0 are the initial values of the normal and tangential stiffnesses.

Work at contact level

The work done by external force W F can be calculated as

W F = 1 2 (F n δ n + F s δ s ) = 1 2 (F δ n sin θ + F δ s cos θ) = 1 2 F δ (3.7)
where F is the resultant force defined in Equation 3.2 and δ is defined in Equation 3.4.

Isotropic Elasticity

To make the particle assembly (including randomly packed assembly, as shown in Figure 3.1) generally and evenly exhibit a uniformed modulus, the contact stiffness can be directly related to the contact elastic modulus E cmod and the parameter k ratio (ratio of the normal to shear stiffness) by the expressions [START_REF]Particle Flow Code 5.0 documentation[END_REF]:

         k n = E cmod A c l ij = E cmod × t × 2min(R i , R j ) (R i + R j ) k s = k n k ratio (3.8)
where the contact is supposed to behave as a prismatic bar with a cross section A c = 2 × min(R i , R j ) × t, length l ij = R i + R j , R i and R j are the radii of the particles and t is the thickness of the specimen in experimentation. Calibration tests can be used to reach the elastic parameters of the material (for the isotropic case: Young's modulus E and Poisson ratio ν) [START_REF] Potyondy | A bonded-particle model for rock[END_REF], which may be dependent on particles granular assembly (as shown in Figure 3.2), granulometry, etc. Analytical equations exist for ordered packing. For the square-packed sample A c = t × d, l ij = d, d is the diameter of the particles, and

E cmod = E which leads to k n = k s = Et, (3.9) 
for k ratio = 1. For hexagonal packed sample, Tavarez [START_REF] Tavarez | Discrete element method for modelling solid and particulate materials[END_REF][START_REF] Le | Modélisation discrète en mécanique de la rupture des matériaux fragiles[END_REF] established the relation between contact stiffness and material elastic parameters (Young's modulus E and Poisson ratio ν). In plane stress it corresponds to:

           k n = Et √ 3 (1 -ν) , k s = 1 -3ν 1 + ν k n = 1 -3ν √ 3 (1 -ν 2 )
Et.

(3.10)

Contact behavior at the crack tip

In order to enable the DEM to represent a crack of any length in a sample, the correlations formulated in this section work as a bridge to precisely connect the crack propagation a c (0 ≤ a c ≤ d c , where d c is the contact domain length see Figure 3.3, in this case, d c equal to particle diameter, d c = d) to the contact stiffness degradation (0 ≤ D ≤ 1). The basic idea is to establish a bijection, one-to-one correspondence, between these two quantities a c and D.

Let us consider an example to illustrate the bijection. In Figure 3.4a, a long and rectangular plate with an initial pre-crack of length a 0 is subjected to a constant uniform stress σ, which leads to an elastic vertical displacement δ0 . The propagation ∆a of the crack leads to a variation of the vertical displacement ∆ δ (see Figure 3.4b). The progressive increase of the crack length from a 0 to a 0 +∆a is shown in Figure 3.4c. To simulate such a process, an assembly composed of monodisperse particles of diameter d organized in a bi-dimensional regular square-packed granular assembly(Figure 3.4d) is conceptually adopted to model the elastic plate. In this example, a 0 = 4d, ∆a = d. The crack is simply represented by four contacts which were cut off. The propagation of the crack is represented in this case by cutting the fifth contact (clearly represented in Figure 3.4e). It can make the crack a "jump" forward. However the continuity of the process of rupture remain dependent on the contact rupture (as suggested in Figure 3.4f).

In order to specifically characterize the rupture process of one contact, the mechanical effect of the virtual propagation of the crack tip through a distance d c , defined as the contact domain, is analyzed. The length d c corresponds to the crack tip displacement if the contact is cut off. Gradually, the displacement of the crack tip, defined by the length a c (0 ≤ a c ≤ d c as shown in Figure 3.3), induces a reduction of the stiffness of the contact. One may adopt a state variable D (0 ≤ D ≤ 1) to describe this degradation of stiffness of the contact concerned by the crack tip propagation process. No propagation process is observed for a c = 0, which is automatically related to an intact contact (D = 0). On the other hand, if a c = d c , the crack tip has propagated and cut the contact off (D = 1).

A consistent relation between the crack tip propagation a c and the stiffness degradation D allows the discrete model to define crack displacement smaller than the dimension of the particles composing the material. In the following sections, a relation a c -D based on the energy balance of a contact is proposed.

Contact separation -elastic case 3.4.1 Definition of the slope ratio p

The first element to understand the relation between the crack propagation and the degradation process of the contact at the crack tip in DEM sample is the evolution of the force and the displacements. If only the contact at the crack tip is released (0 ≤ D ≤ 1), in elastic conditions, the material surrounding the crack tip behaves as an elastic system. By simplicity, let us replace the surrounding material by an elastic spring representing the material elasticity k p , as proposed in Figure 3.5. If one considers the rupture process in the opposite way, where the contact force may close the crack, the individual action of the contact force associated to crack tip may reduce the gap between the two particles linearly. In the natural way, a decreasing value of F = δ(1 -D)k 0 may simply increase proportionally the distance between the two particles (described by δ), which explains the observed linear path In Figure 3.6, a contact which represents a part of material of a plate is described by both spring systems and the evolution of contact force F and displacement δ in the coordinate system. And four states are chosen, specifically, (o) a pre-cracked plate without loading, (A) plate subjected to a constant stress σ, (B) crack propagates till the boundary of the contact domain, (C) crack totally through the contact domain. Obviously, the maximum elastic force, right before the rupture process of the contact (process from (B) to (C)) is equal to F max = k 0 δ 0 . For this same force F max acting over the spring 2k p , the displacement associated to the material surrounding material is simply δ p = F max /k p . After the progressive rupture process, the force decrease from F max to 0 following the rupture slope k p and the surrounding material spring is no longer in tension. The total increase of the broken contact is finally δ max = δ 0 + δ p = δ 0 (1 + k 0 /k p ), when F = 0. Let us define the slope ratio p as the ratio between the elastic slope k 0 and k p the absolute value of the rupture slope, that is p = k 0 /k p . Physically, the slope ratio p is a quantity which characterizes the relation between the stiffness of the contact and the stiffness of its vicinity. It means that the slope ratio p account for the effect of the surrounding material on the crack tip.

To describe the change of crack position and contact displacement with crack propagation, Figure 3. For the proposed method which represents crack propagation, when compared with CZM, a major similarity and a major difference between them should be mentioned. Both of them using gradual change of mechanical property of element ahead a crack tip to represent crack propagation. For CZM, the separation is governed by the deformation δ which follows an artificially defined softening curve (Figure 2.38). Importantly, for the method discussed above, as shown in Figure 3.6, the separation is only governed by the contact stiffness degradation, and the softening curve is not defined but forming naturally. That is the biggest difference between them two.

Study of the slope ratio p

In the following analysis, one may observe the effect of the crack length, crack distribution, loading condition and particle size on the slope ratio p.

Crack propagation strategy

To continually observe the rupture process at the crack tip, the crack propagation is performed by orderly releasing contacts (for each contact, 0 ≤ D ≤ 1) in the crack growing direction, in samples, as shown in Figure 3.8.

For symmetric edge cracks (Figure 3.9) and center crack (Figure 3.10), contact degradation is symmetrically and synchronously operated. For square packed samples, the elastic stiffness is k n = 1 × 10 10 N/m as defined in Equation 3.9. Then, for simplicity and without effects on the results, k s = k n .

For hexagonal packed samples, the elastic stiffness is k n = 5.77 × 10 9 N/m as defined in Equation 3.10. A value of k s = k n is also chosen, associated to a Poisson ratio ν = 0.

Analysis of the p ratio variations

In Figures 3.9 due to a more precise definition of the crack tip for smaller particles, where the value of p get stable earlier for smaller particle. The value of p is spe-cially affected during crack initiation where the stress conditions passes from homogeneous (no crack) to singular state (with crack) at the crack tip. This evolution seems more dependent on the number of particles which represents the relative crack length than absolute length as suggested by the results of p as a function of the crack length to diameter ratio a/d (see Figures 3.9b and 3.10b).

The comparison between the values of p for the plates with central and symmetric edge cracks (Figure 3.11) confirms that for fully developed cracks a stable value of p is observed, which only depends on particle packed structures. the homogeneous and ultimate states of materials, as shown in Figure 3.14.

As an example, one may notice that in Figure 3.13 when the crack is small, the value of p tends to be lower than its stable value for well developed crack, and when the crack is almost cutting off the plates, p tends to increase dramatically.

Energetic analysis of the contact separation

In this section, the relation between the propagated crack length and stiffness reduction a c -D is formulated with the energy equivalence between the released energy during DEM contact degradation (damage) and cracking of physical material.

Energy release of a contact

The partial energy released during the contact separation process U B can be calculated (as already discussed in Section 2.5.4) as the surface area of the triangle formed by the origin point O (0, 0), point A (δ 0 , F 0 ) representing coordinated by the contact force and contact displacement before degradation, and point B (δ i , F i ) representing coordinated by the contact force and contact displacement after degradation of the stiffness, as shown in Figure 3.15a. That is to say U B = S ∆OAB . The total energy released by the contact corresponds to U C = S ∆OAC .

The ratio U B /U C can be calculated by

U B U C = S ∆OAB S ∆OAC = S ∆OAC -S ∆OBC S ∆OAC = 1 - F i F 0 = 1 -(1 -D) δ i δ 0 , (3.11) 
where F 0 = k 0 δ 0 and

F i = (1 -D)k 0 δ i .
The length of the bottom line OC, can be geometrically obtained based on δ 0 or δ i by the relation OC = δ 0 (1 + p) = δ i (1 + p(1 -D)) (where p = k 0 /k p ). Introducing the consequent ratio δ i /δ 0 into Equation 3.11, one gets the ratio

U B /U C U B U C = 1 -(1 -D) 1 + p 1 + p(1 -D) = 1 -(1 -D) 1 + p(1 -D) .
(3.12)

Energy release in a crack

The released energy in cracking process can be described by the energy release rate G = dU/dA (see Section 2.5.4) defined as the released energy dU per unit of crack area increment dA (in 2D, dA = t × da, where t is the thickness of the geometry, see Figure 3.15b). Integrating Equation 2.12, the released energy during crack growth U ac , can be calculated as

U ac = t ac 0 G da ≈ tGa c . (3.13)
It should be noted that the energy release rate G is supposed to remain constant during crack growth at the scale of a contact (0 ≤ a c ≤ d c ). This 

Energy equivalence

The equivalence of the energy released in a crack and in a contact for the same propagated length can be obtained by combination of Equations 3.12 and 3.14, where one may get by definition U B /U C = U ac /U dc . It finally leads to the correspondences between a c and D

a c d c = 1 -(1 -D) 1 + p(1 -D) , (3.16) 
or conversely

1 -D = 1 - a c d c 1 + p a c d c
.

(3.17) Equations 3.16 and 3.17 provide a direct relation between the crack propagation and damage in a contact (0 ≤ a c /d c ≤ 1 in compliance with 0 ≤ D ≤ 1). All information is entirely defined at contact level (properties k 0 and d c ) or measured during contact separation (F ×δ) like k p (which leads to p = k 0 /k p ). This explicit local approach of the energy release allows the direct application of fracture mechanics models to simulate the crack propagation as it will be seen in the next sections.

Verification of a c -D transformations

The energy released by cracks in simple structures is precisely related to boundary behavior, which can be adopted to verify the a c -D transformations (in Equations 3.16 and 3.17 the simulated displacements with respect to theory (in Figure 3.17a) confirms the ability of the discrete model to describe the mechanical behavior of the system.

The effect of the a c -D transformations can be clearly observed in Figure 3.17b. For d = 2 mm, the trend for the displacement ratio δ/ δ0 of the simulation is parallel and follows closely the theoretical results, for a single contact release. The offset between simulations and theory decreases with particle diameter d, which is consistent with the mechanical hypothesis considered (energy release rate G is assumed constant during crack crossing one contact). Thus, particle diameter decrease naturally results higher precision of G with respect to theoretical calculation. For d = 1 mm and d = 0.5 mm, 2 and 4 contacts are released respectively. A clear continuity of δ/ δ0 is observed, which indicates that cracks can be described bellow a particle scale with the proposed formulation (in Equation 3.17). 

Contact separation -non elastic case

The a c -D relation described in Equations 3.16 and 3.17 supposes a constant separation slope (constant p), which is reasonable for elastic structures with cracks that do not interact, hence do not modify the mechanical response close to the crack tip from one to another. Any non linear behavior of the material which reduces its stiffness (like damage) or the proximity of cracks which modifies the boundary conditions near a crack tip may affect the value of p (see discussion in Section 3.4.1). The general situation described in Figure 3.18 is considered in this section, where an incremental form of a c -D is proposed. 

Incremental form of the crack-damage relation

In an incremental formulation, increments of crack propagation da are associated to increments of damage dD. The crack evolution and the damage evolution may be written as

   a ci+1 = a ci + da D i+1 = D i + dD (3.18)
where i describes the propagation events. Figure 3.19 schematically shows the relation between the direct and the rate formulations.

Contact evolution scheme

The deduction of the relation da -dD is based on the scheme shown in the contact induced by the crack propagation can be seen after each event as a new contact. As represented in Figure 3.20b at the beginning of each propagation event, one may suppose an initial contact stiffness k i for a contact with a reduced domain d c -a ci . After a propagation da an apparent stiffness reduction dD ′ is observed, with the new contact stiffness k i+1 = (1 -dD ′ )k i and an apparent slope ratio p ′ = k i /k pi . These elements can be automatically introduced in Equation 3.16, which takes the following shape

da d c -a c = 1 -(1 -dD ′ ) 1 + p ′ (1 -dD ′ ) . (3.19) 
The final step is to adapt the apparent parameters (dD ′ and p ′ , defined with respect to the stiffness k i ) to the parameters defined with respect to the initial contact stiffness k 0 (dD and p).

The apparent stiffness reduction is defined by

1 -dD ′ = k i+1 k i = (1 -D i+1 )k 0 (1 -D i )k 0 = (1 -D i+1 ) (1 -D i ) , (3.20) 
where

k i = (1 -D i )k 0 and k i+1 = (1 -D i+1 )k 0 .
The evolution of the stiffness reduction given in Equation 3.18 can be introduced in Equation 3.20. After some algebraic work isolating dD ′ , one may have

dD ′ = dD 1 -D i . (3.21) 
The apparent slope ratio p ′ is defined as 

p ′ = k i k pi = (1 -D i )k 0 k pi = (1 -D i )p i . (3.22) 
da = (d c -a c )dD (1 -D)[1 + p(1 -D -dD)] , (3.23) 
or conversely

dD = (1 -D)     1 - 1 - da d c -a c 1 + p(1 -D) da d c -a c     , (3.24) 
where the index i was dropped.

The rate relation da -dD allows the direct relation between a crack increment da and stiffness degradation increment dD, for a given instantaneous slope ratio p and stiffness degradation D. Equation 3.24 associated to Equation 3.18, allows a continuous description of the relation between a c and D.

Implementation of fatigue crack growth

The transformation da-dD allows an energetically consistent representation of a crack propagation caused by contact damage over a length smaller than the particle scale. Paris' law is a fatigue criterion which relies on the energy release per cycle to determine how much a crack propagates.

Paris' law

As introduced in Section 2.5.6, Paris' law is a fatigue crack growth criterion in which the crack increment during one loading cycle da is determined by a power function of the corresponding stress intensity factor range ∆K = K max -K min in the loading cycle, (Equation 2.21). Stress ratio is defined as the ratio of the minimum stress to the maximum stress experienced during one loading cycle R = σ min /σ max . For R ≤ 0, ∆K = K max -0 = K max . We assume that the crack increment da happens at the moment where K = K max during one loading cycle. Thus, considering the relation between the energy release rate G and the stress intensity factor K (in plane stress, for example), in Equation 2.20, G = K 2 max /E. Then the Paris' law can be rewritten as

da dN = C(GE) m/2 , (3.25) 
where da/dN is the crack growth rate, a is the crack length and N is the number of loading cycles, C and m are fatigue parameters and E is the Young's modulus of the material. The energy release rate G = dU/da can be calculated locally, at a contact, as discussed in Section 3.4.3.1, based on the corresponding energy release associated to a given crack propagation da.

The explicit numerical approach is discussed in the following sections.

A quasi-static approach to simulate fatigue cycles

In controlled conditions, if we neglect any dynamic effect, the loading cycles imposed at the boundaries are in phase with the mechanical efforts inside the structure. For centered loading cycles, the whole structure (in homogeneous conditions) or part of it (in all other cases) are periodically submitted to tension and compression efforts. If one supposes a slow evolution of the material during one cycle, it is reasonable to admit that tension and compression efforts present the same magnitude (but different signs). In this case, for Paris' law, tension ranges can be simply obtained with a static loading representing the amplitude of the loading cycle. For the zones in compression, the absolute value of the mechanical efforts correspond to the same values when in tension.

As shown in Figure 3.21 the range of the stress intensity factor ∆K (or any other mechanical quantity like stress and strain) is obtained in quasi-static conditions.

As shown in Figure 3.21, considering a fatigue test under stress control, the plate subjected to sinusoidal cyclic stress (illustrated by the dotted sinusoidal curve in the top right coordinate system of Figure 3.21), the resultant stress intensity range ∆K at crack tips is a semi sinusoidal curve during tension half cycle and keep 0 in compression half cycle (illustrated by the dotted semi sinusoidal curve in the bottom right coordinate system of Figure 3.21), during every loading cycle crack grows and consequently cause the stress concentration intensity increase at crack tips. 

Numerical procedures for the fatigue crack growth calculation in DEM

The local calculation of the rupture process depends on the progressive release of energy to be defined. As shown in Figure 3.22 (to be simple, elastic separation case is used), an initial (numerical) damage D ini is introduced to give rise to a first release of energy dU and the identification of the value of p. The application of Equation 3.23 allows the identification of da corresponding to dD = D ini -0. The energy release rate can be calculated and the analysis of the crack growth process can start.

The explicit numerical procedure can be presented as follows :

1 ) Definition and application of the initial degradation value D ini , for example

D ini = 1 × 10 -4 ;
2 ) Measurement of dU and p; Considering the key role of the slope ratio p, this model scheme is called p-model in the following. In Chapter 4 applications of p-model are presented where its capabilities and limitations are discussed. 

Summary of the chapter 3

In Chapter 3, the basic equations characterizing the elasticity and rupture of the contacts in discrete element method is presented. The crack tip behavior is analyzed in detail for an elastic medium and the effect of a discrete description of the material is identified on the diagram force×displacements. Consequently, a damage like model is adopted to describe the loss of stiffness of each contact during crack propagation.

An energetic consistent approach is proposed where each damage increment dD is associated to a crack increment da. Crack increments with dimensions much below particle scale become clearly described. Finally, it allowed Paris' law to be adapted to relate the energy release rate G to the crack increment da in fatigue tests.

Introduction

Chapter 3 presents the fatigue rupture of a contact localized at the crack tip consistently with Paris' law. Based on the analysis of pre-cracked samples, where crack tips are clearly identified (similarly to most of the methods in continuum mechanics) practical elements are discussed in this chapter. First, the DEM simulation procedures are presented, then simulation results for regularly packed samples are compared with theoretical calculation. The the width of the contact domain d c for different contact structures is discussed followed by parametric studies of parameters C and m. Finally, comparison of the proposed model with experiments are shown.

DEM simulation procedures 4.2.1 Particle sample arrangements and crack description

Particle regular structures like square and hexagonal packed samples (see Figure 4.1) are adopted here to verify theoretical results considering the more intuitive description of cracks and their evolution. As can be seen in Figure 4.1a, the width of the contact domain d c for a square packed samples is identical to the particle diameter d. In hexagonal packed samples, during one contact total degradation, crack propagates for a distance of d c = d/2, as shown in Figure 4.1b.

However, regular packings are often less realistic to describe geomaterials since their behavior is associated with those of ideal materials, completely homogeneous. The value of d c for randomly packed samples is not directly identified, but it depends on the granulometry, void ratio, etc (as discussed further in Section 4.4). 

Non local crack tip identification and numerical procedure

As shown in Figure 4.1, as soon as a contact is in rupture due to crack propagation, crack surfaces continually grow and crack tip continually advances. The new crack tip is identified as the contact where the strain level ε (Equation 3.5) is maximum in the newly grown crack surface. Thus, the rupture of this contact begins, following the Paris' law formulation discussed in Chapter 3.

Hence, multicracked systems in fatigue may be simulated with the following steps:

1 ) Sample preparation.

2 ) Initialization of cracks.

3 ) Load application.

4 ) Attribute rupture model to contacts at the crack tips.

) Start fatigue crack propagation.

6 ) After each total contact rupture, identification of the new crack tips and return to step 4. Repeat the procedure until the end of the fatigue test.

Comparison of the model with theoretical results

The relevance of the formulation and the physical effects of model parameters are examined in this section through the comparison between numerical and theoretical results (see Appendix D). Two different cyclic boundary conditions are adopted: stress and strain control. 

Sample dimensions and material properties

Cyclic loading

For stress controlled tests, sinusoidal stress with amplitude σ max = 1.0 MPa is applied. The crack propagation induces a reduction of the global stiffness of the plate. For a constant stress amplitude, it yields an increase on the displacements amplitude. Fatigue evolution is monitored by the sample stiffness ratio (see Appendix C) expressed as δ0 / δ which is the ratio of the average displacements at the extremities of a plate without a crack ( δ0 ) compared to the ones of a cracked plate ( δ).

For strain controlled tests, sinusoidal strain with amplitude ε max = 100 µε is applied. The crack propagation induces a reduction of the global stiffness of the plate. For a constant strain amplitude, it corresponds to a decrease of the amplitude of the measured forces. Fatigue evolution is monitored by the sample stiffness ratio expressed as F/F 0 which is the ratio of the resultant forces at the extremities of a plate without a crack (F 0 ) compared to the one of a cracked plate (F ).

Numerical results

Crack length and stiffness evolution

Figure 4.2a shows the evolution of the stiffness ratio as a function of the number of loading cycles N for a square packed sample under stress control fatigue loading. In Figure 4.2b one can see the corresponding crack increase. In Figure 4.2c the contact degradation can be clearly associated to the crack increase at different states of stiffness ratios. The results for all particle diameters are close to the theoretical results, although closer results are observed for smaller particles.

The same trends with respect of the stiffness ratio are observed for hexagonal packed (as visible in Figure 4.3a). Furthermore, hexagonal structure allows the control of the Poisson's ratio ν (as described in Equation 3.10). In Figure 4.3b the complete absence of effect of ν is consistent with the linear elastic fracture mechanics theory.

The results for strain controlled tests (Figure 4.4) follow exactly the same 

Evolution of the energy release rate

The best fit of theoretical result by the simulation results obtained for smaller particles can be explained by the analysis of the trends of the energy release rate G shown in Figure 4.5. In the formulation presented in Chapter 3, the value of G is supposed to be constant during crack propagates through The values of G are usually constant per segment, but some rare deviations can be observed, specially for imposed stress cases. This phenomenon is due to the sensitivity of the value of the slope ratio p in the first rupture cycle associated to the value of the parameter D ini . More details of this point are discussed in Appendix E.

Identification of the dimension d c

The contact domain length d c is a parameter of the propagation model which depends directly on the particle diameter d, but also on particle arrangement. As discussed in Section 4.2.1, d c is equal to d for a square arrangement, and it becomes d/2 for a hexagonal arrangement. In these examples, it can be visually identified. However, a more general interpretation of this intrinsic scale of the granular arrangement can be obtained.

The propagated crack length inside the contact domain can be written as a c = αd c for 0 ≤ α ≤ 1. Replacing this expression for a c in Equation 3.23, one may get

dα 1 -α = dD (1 -D)[1 + p(1 -D -dD)] , (4.1) 
which means that a relative variation of the propagated length dα is directly associated to a stiffness reduction dD independently of d c . A stiffness reduction dD induces a release of energy dU , consequently, it is also independent of d c .

The energy release rate (see Section 2.5.4) can be defined as G = dU/(t×da).

Introducing in Equation 3.25 of the Paris' law: a c = αd c , da = dαd c and the previous definition of G, one may get after some algebraic work

(dαd c ) 1+m/2 = C dU t E m/2 dN. (4.2) 
For a different value of contact domain d ′ c , the only difference in Equation 4.2 would be in the number of cycles dN ′ , since the rest of the parameters (dα, m, C, dU , t and E) is completely independent of d c . It means that dividing Equation 4.2 by itself with another value of contact domain d ′ c (and consequently another number of cycles dN ′ ), one may simply get Due to the heterogeneity and randomness of randomly packed samples, to perform the same modulus as the target material, the contact stiffness can not be set directly as E cmod = E which is good for square packed samples (Section 3.2.3). And an appropriate value of E cmod need to be determined by simulation tests [4]. In this case, based on tension test simulation, the contact stiffness setting are calibrated as E cmod = 1.21 × E and k ratio = 1.0, where E is material Young's modulus.

dN ′ = d ′ c d c 1+m/2 dN. (4.3) 
To reduce the effect of cracks interaction, reference fatigue test is set as single edge cracked plate, with initial crack lengths a 0 = 10 mm, sinusoidal stress with amplitude σ max = 1.0 MPa, plate dimensions and material properties are taken similar to those used in previous fatigue tests (Section 4. ) and m = 3) is adopted. The same effect is observed, since it depends on the crack trajectory and this is not affected by C and m.

To identify the value of d c that yields the best fit of the stiffness ratio as a function of the number of cycles for theoretical calculation in the case of randomly packed samples, d ′ c = 0.875d is set for all six samples, then based on Equation 4.3 and theoretical results, the fatigue behavior and corresponding calibrated d c value of each of them are shown in Figure 4.8a. An average value of contact domain d c = 0.958 is obtained as the identified contact domain d c for samples with the same granulometry as these six samples. Finally simulations with d c = 0.958d confirms the results, and good agreement between the average curve and the theoretical results is observed (Figure 4.8b). Crack trajectories of all six samples are shown in Figure 4.9.

The contact domain length d c is a parameter with an average value for a given particle arrangement, but it presents a natural variation since it depends on crack path during rupture. In Appendix F, a more detailed explanation of the variation of d c is proposed based on the analysis of the morphology of the particle arrangement. 

Parametric study

The effect of parameters C and m over the fatigue behaviour is analysed in the following section. Stress controlled tests are performed on the same plate with double edge cracks and the same material parameters as in Section 4.3.3 unless told otherwise.

Effect of parameter C

The effect of parameter C is examined by comparing three fatigue simulations. In all simulations, the particle size d = 2 mm is adopted as well as the parameters in Table 4.1. 

Effect of parameter m

The effect of parameter m is examined by comparing three fatigue simulations. In all simulations, the particle size d = 2 mm is adopted as well as parameters in Table 4.2.

Since parameter m is an exponent in Equation 3.25 which determines the crack increment da, a larger value of m indicates that crack propagation in the material is more sensitive to the value of the energy release rate G.

As shown in Figure 4.11a, with larger values of m, the fatigue process is dramatically accelerated. The effect of m on fatigue evolution shape can be more visible if the results are shown as a function of a normalized number of cycle N norm (as shown in Figure 4.11b). One may propose a normalization by the number of cycles associated to a similar stiffness ratio:

N norm = N N 0.5 (4.4) 
where N 0.5 is the number of cycles corresponding to δ0 / δ = 0.5.

Generally, parameter C globally effects on fatigue life, which possibly relates to material strength or toughness. Parameter m effects on fatigue rate with respect to crack propagation, which possibly relates to material brittleness. Higher value of parameter m indicates higher brittleness and more concentration of energy release at crack tip, more obvious acceleration in the last phase of fatigue evolution. 

Comparison of the proposed contact model with experimental results

Bažant and Xu [START_REF] Bažant | Size effect in fatigue fracture of concrete[END_REF] analyzed pre-cracked concrete beams subjected to three point bending fatigue tests (see Figure 4.12). A cyclic force is applied with a maximum amplitude F = 4147. Comparisons of the simulations with theoretical results show the relevance of the proposed formulations. The energy release rate is well identified numerically and the assumption of a constant energy release rate per contact appears reasonable.

The contact domain length d c , a particular parameter of the discrete approach, is shown to be a characteristic length of the sample arrangement. Its effect on the numerical results is shown and a systematic procedure for its identification is proposed.

After a parametric study presenting the effect of the parameters of the Paris' law (C and m), a comparison with experimental results confirms the good trends observed with the theoretical analysis.

Both comparisons with theoretical and experimental results support the fatigue crack propagation modeling ability of the proposed p-model. Besides, two advantages shown in the proposed contact model are worthy to be noticed. First, once after the contact degradation processes are triggered by a given initial degradation D ini , only contact forces F and contact displacements δ are needed to continue. With such a limited information, p-model still can calculate energy release rate G and crack increment da, then represents da by contact damage dD. This feature make it a local model and can be easily programmed into DEM. Second, p-model shows high precision with respect to Paris' law, which evidences a good incorporation of fatigue law. The previous chapters present the main elements of an energetical contact model dealing with crack propagations in the framework of linear elastic fracture mechanics (LEFM). That is to say, the energy release is strictly governed by the behavior of crack tips. This approach corresponds to the description of stage 2.

In this chapter, a generalization of the proposed concepts leads to the construction of a damage model able to deal with rupture behavior from initiation to propagation of multiple cracks (stages 1 and 2). Basically, the energy release during material rupture is potentially distributed over all contacts instead of only at previously identified crack tips.

Based on an analysis of the physical effects of the slope ratio p, an implicit variant Paris' law is proposed. After the introduction of the concept of contact endurance limit, the complete damage model is presented.

The proposed damage model is used to simulate the whole process of fatigue tests (T-C, 4PB and 2PB, see Section 2.3.2.1), and comparisons between simulation and experimentation are analyzed.

Physical interpretation of the parameter p

As discussed in Chapter 3, p = k 0 /k p represents the ratio between the elastic slope k 0 and k p the absolute value of the rupture slope of a contact during the propagation of a crack (see Figures 3.6).

The values of p are shown to be measurable following the scheme presented in Figure 3.6. Considering the energy equivalence between crack propagation and energy release in a contact (see Chapter 3), the p variable (mainly governing the a c -D and da -dD relations, Equations 3.16 and 3.23) conceptually characterizes the relation between the propagated length a c and the stiffness reduction of the contact D.

Observing Equations 3.16 and 3.17, without consideration about the physical meaning of p, mere mathematically, the value of p obviously can effect the a c -D relation. In Figure 5.2, different values of p are adopted in Equation 3.17, and resultant curves of corresponding relation between 1 -D and a c /d c show the influence of value of p on a c -D relation.

In p-model (Section 3.7.3), the energy release rate G is calculated as G = dU/(tda), which is related to da -dD relation (Equations 3.23 and 3.24). And we already know that when value of p in Equations 3.23 and 3.24 is adopted as the measured slope ratio p = k 0 /k p , the resultant G values are constant during each contacts and are close to theory result (see Figure 4.5 in Section 4.3.3.2). Thus, it would be interesting to see what will result if an imposed value of p which is not equal to the measured slope ratio p = k 0 /k p is adopted in Equations 3.23 and 3.24.

To present effect of p on the calculated G in p-model, different values of p are respectively adopted in the same example. Figure 5.3a shows the rupture One can conclude that when an imposed value of p is adopted in p-model, the calculated value of energy release rate G ′ in p-model can be expressed as G ′ = f (p)G, where f (p) is an implicit function of p (no expression), and G is the calculated value of energy release rate that of the measured slope ratio k 0 /k p is adopted as the value of p in p-model. 

A variant Paris' law

Paris' law, Equation 2.21, is a power function, the constant power index m is related to the slope of the curve to crack growth rate da/dN and ∆K in logarithmic scale, as shown in Figure 5.1.

For long crack, there exist a clear linear straight stage 2 in Figure 5.1, where Paris' law is suitable. For short crack, Paris' law is not suitable and there does not exist a widely accepted fatigue law [START_REF] Pugno | A generalized paris' law for fatigue crack growth[END_REF]. However, there must exist a function can express the relation of short crack growth rate da/dN and ∆K. Instead of a constant power index m and constant parameter C, varying m and C are surely able to display the relation between crack growth rate da/dN and ∆K. For example, C and m are respectively of two unknown function of number of loading cycle N , C = f (N ) and m = g(N ), then the crack growth rate for short crack can be described as:

da dN = f (N )(∆K) g(N ) (5.1)
Alternatively, one may use another one unknown function q(N ) to replace the two unknown function f (N ) and g(N ) by modifying the base of power function ∆K, Equation 5.1 can be rewritten as:

da dN = C(q(N )∆K) m = C(q(N )GE) m/2 (5.2)
Theoretically, if the function q(N ) is complex enough, the Equation 5.2 can successfully describe the crack growth rate for short crack.

By assuming that G ′ has the same effect as q(N )G, the implicit variant Paris' law 5.2 can be easily realized in p-model, with a proper imposed value of p. It means that the effect of p may enable p-model the ability of modeling short crack propagation.

Continually, assuming the damage development of material is caused by micro-cracks network development which can be represented as a single short crack growth governed by a variant Paris' law (see Figure 5.5). As discussed above (Figure 5.3), the difference between the imposed value of p and the measured slope ratio k 0 /k p leads to variant effect of G which is used in Equation 3.25, and finally results a variant effect of Paris' law.

Contact endurance limit

During fatigue tests, fatigue damage distributes unevenly. For some parts of material subjected to relatively low strain level, fatigue damage is avoided.

To take this phenomenon into consideration, a threshold is needed to determine whether a contact is suffering fatigue damage. Thus, a contact endurance limit ε lim is introduced in simulations, based on the concept of fatigue endurance limit, in Section 2.3.2.3. For contacts where the strain level is below the endurance limit ε < ε lim no stiffness reductions are developed. In practice, D is not affected by the loading cycles for these contacts.

This parameter, which has a direct physical meaning, adds robustness to the model avoiding unrealistic rupture processes in contacts where the strain is too low or fluctuating around zero. 

Complete damage model (sp-model)

Considering the developpements of chapters 3 and 4, and the discussion of the previous section, a damage model to be applied in all contacts identically, where the detection of crack tips is no longer necessary is introduced here.

A simplified p-model, the sp-model is proposed. Two main simplifications related to the parameters d c (contact domain) and p (slope ratio), specially useful for randomly packed samples, are presented as follows:

-The effective width of the contact domain d c = d min , where d min is the smallest diameter of the two particles composing this contact.

-the parameter p becomes an imposed parameter; an intrinsic property of the contact rupture, instead of a measured quantity. 

Simulation approach for fatigue tests in DEM

The quasi-static method (Section 3.7.2) is used to conduct fatigue test simulation. Take 4PB fatigue test simulation as an example, the detailed proce- Once the two middle supports have been moved downward to achieve the test strain amplitudes ε max (Figure 5.7c), they are vertically fixed to keep the sample in the state of maximum strain level corresponding to the loading peak in experiments. Such a state corresponds to the beam bending downward, with bottom layers under tension and upper layers under compression. Thus only bottom layers are involved in the fatigue process, since material under compression does not experience fatigue. In experiment, beam bends alternately downward and upward, therefore, both upper and bottom layers are subjected to fatigue damage alternately. Of course, alternately moving down and up the two middle supports can be numerically achieved, but such a dynamic movement requires huge computational capacity and is time consuming.

As shown in Figure 5.7c, if material at a position (for example,top at middle span) is under compression when beam bends downward (during the fist half of loading cycle), then it will be under tension when beam bends upward (during the second half of loading cycle), and vice versa. The reacted compression force (during the fist half of loading cycle) and tension force (during the second half of loading cycle) at this position are theoretically equal but with inverse sign.

Given such symmetry, it is easy to represent both states of bending upward and downward by only the state of bending upward or downward. To capture fatigue development of the whole loading cycle, in simulation, keep the sample bending downward and make contacts both under tension and compression to be involved into fatigue process, since the contacts under tension represent material undergoing fatigue process in experiment when beam bends downward (during the fist half of loading cycle) and the contacts under compression represent material undergoing fatigue process when beam bends upward (during the second half of loading cycle). This symmetric responses assumption has been proved in previous studies by Liu [4].

By vertically fixing four supports, the sample keeps in the state of bending downward. Then the sp-model is applied to all contacts except for contacts in four circled regions surrounding supports (Figure 5.7c). These four fatigue free regions are set to avoid unrealistic fatigue development caused by stress concentration near supports.

With sp-model, fatigue development is represented by contact degradation increment dD. After each 'loading cycle', contact stiffness is updated, and stress and strain fields in sample are redistributed. Contact dissipated energy is used to calculate the energy release rate G by which contact degradation increment dD for next 'loading cycle' is determined. These steps are repeated to continue fatigue evolution till final failure. Globally, during the whole simulation, the sample keeps bending downward, it is like static, however, locally, its stress and strain fields slowly change for every 'loading cycle'. That is the quasi-static method to model fatigue test. It is also adopted in T-C and 2PB fatigue tests simulation. as E cmod = 1.21 × E and k ratio = 1.0, based on tension tests. Since simulations are in two dimensions 2D method, the cylinder is considered as an isopachous plate with width equal to cylinder diameter 75 mm and thickness t = 75π/4 mm by which the intersection area is same as the cylinder.

Modeling of Tension-Compression fatigue test

Effect of the parameter p

In this section, the effect of p is analysed. Adopted sp-model parameters are gathered in Table 5.1. In Figure 5.9, simulations of tension-compression fatigue tests with different values of p = 1, 3, 5, 7, 10 are shown. 

The parameter p has a strong influence on both fatigue life and the shape of fatigue evolution curve, as shown in Figure 5.9. When p decreases, the fatigue life dramatically increases (see Figure 5.9a), the turn point of fatigue evolution curves occur at higher level of stiffness ratio (expressed as the ratio of the reaction force to the initial reaction force, F/F 0 ) and the accelerated part of fatigue evolution curves become steeper (see Figure 5.9b), which means the final failure caused by macro crack propagation occurs earlier and more sudden. 

Effect of the contact endurance limit

The effect of the contact endurance limit is investigated here. Adopted spmodel parameters are gathered in Table 5.2 with two aditional values of contact endurance limit ε lim = 50 µε and 80 µε. 

As shown in Figure 5.11, despite a slight decrease of the stiffness reduction before fatigue evolution curve turning acceleration, a larger contact endurance limit ε lim tends to decrease the fatigue life by hastening the strain localization leading to a global rupture. Larger cracks dominate the fatigue process causing a more brittle behaviour of the sample. This effect is more visible for lower strain limits because larger zones of the sample become simply elastic, inducing an even bigger localization of strain at crack tips.

In Figure 5.11c, the fatigue process is observed even for a strain level below the contact endurance limit. It is simply explained by the heterogeneity of the random pack structure of the sample, where strain can be locally larger than the average imposed on the sample. The original purpose to introduce the contact endurance limit ε lim is to control the range of contact involved in the damage process. From this point of view, expressing the material endurance limit as a contact endurance limit is reasonable, in a certain extent. When material subjected to a loading condition below its endurance limit, even though its mechanical properties still slowly change with number of loading cycles increase, these change are reversible due to non-linearity, self-healing and thixotropy. Thus, we can consider contact is undamaged under loading condition below the contact endurance limit.

Simulation versus experimental results of T-C fatigue tests

Simulations results are compared to experimental results of [START_REF] Freire | Use of fiberglass geogrids to the reinforcement of bituminous mixtures layers[END_REF] in Figure 5.12. The model parameters are indicated in Table 5.2.

Scaling technique

To save simulation time, the scale effect of parameter C is used (discussed in Appendix G). For example, setting parameter C value 100 times larger than its nominal value in Table 5.2, will accelerate simulation 100 times. Thus, after simulation, the fatigue evolution curve should be scaled by a factor of 100 times. For T-C fatigue test simulation results are shown in Figure 5.12, a scaling factor of 144 was chosen.

Good agreement are obtained between simulations and experimental results of T-C fatigue tests. In Figure 5.13, the crack distribution of the three samples after a fatigue test with strain level of 108 µε is presented. In Figure 5.13a a distributed damage coexists with main crack, which shows the model capability of dealing with complex fatigue processes. More details about fatigue evolution expressed by the reaction force F are disclosed in Appendix H. 

4PB fatigue tests

The 4PB fatigue test experiments performed by Nguyen [START_REF] Nguyen | Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid[END_REF] are parts of the project SolDuGri funded by the French National Research Agency (ANR).

The dimensions of test specimens are presented in Figure 5.7a, the test beam has a total length l = 630 mm, with height H = 100 mm and thickness t = 100 mm. Three strain amplitudes are applied in strain controlled tests, 150 µε, 135 µε and 115 µε, at temperature 10 • C with frequency f = 25 Hz.

As mentioned in Chapter 2, in test, the relation between the displacement amplitude on the middle two points δ v,max and the resultant strain amplitude in upper and bottom layers of beam at middle span ε max can be described by (Equation 2.1):

δ v,max = 5 3 A 2 H ε max . (5.3) 
And the corresponding reaction force F v can be obtained by (Equation 2.2):

F v = 6 5 EI A 3 δ v,max , (5.4) 
where A is distance between two loading points (Figure 5.7a), E is Young's modulus, I is moment inertia and H is the height of beam intersection.

Three randomly packed samples with average particle diameter d = 1.5mm, d min = 1.15mm and d max = 1.85mm, are generated for simulations. Material Young's modulus is taken as E = 13894 MPa (average value of initial modulus in experiments) and the contact stiffness settings are calibrated as E cmod = 1.43 × E and k ratio = 1.0, based on the reaction force and corresponding displacement of supports in bending tests (Equation 5.4).

Simulation results of 4PB tests

Simulation parameters are gathered in 

Simulation results of 2PB tests

Simulation parameters gathered in Table 5.4, and 1350 times scaling is chosen (see Section 5.4.3.1). Comparison between simulation and experimentation is shown in Figures 5.20 

Summary of the chapter

In this chapter, a damage model (sp-model) is proposed based on the crack propagation model (p-model). It can be employed by all contacts. The collective response of all these contacts (governed by sp-model) successfully reflects the fatigue evolution of the whole sample, in both sample stiffness evolution and damage distribution.

A parameter p was introduced in sp-model, it directly performs in da -dD transformation (Equations 3.23 and 3.24). For a contact, the amount of the difference between parameter p and its slope ratio k 0 /k p finally has effect on the fatigue rate of this contact. When p > k 0 /k p , it leads to a decrease effect on the fatigue rate, and with larger amount of p -k 0 /k p , the stronger decrease tendency. On the contrast, when p < k 0 /k p , it leads a increase effect on the fatigue rate.

During fatigue test simulation, all contacts behavior are governed by spmodel with a constant value of parameter p. Contacts at different positions, near or far from a crack tip, also the surrounding micro structures, have different values of the slope ratio k 0 /k p . Also, with fatigue simulation going, the slope ratio of a contact may change due to degradation of surrounding contacts. That is parameter p keeping constant, while contacts slope ratio changes, which means the amount of the difference between parameter p and contact slope ratio k 0 /k p changes and consequently the fatigue rate of contact changes. The collective fatigue evolution of all contacts finally behaves as the fatigue process of the whole sample. 

Conclusions

In this work, a contact model based on the local release of energy is developed for discrete element simulations of fatigue behavior with applications to asphalt concrete samples.

The discrete element method allows a consistent representation of heterogeneous materials, which leads to more realistic failure processes with localized crack development. As outlined in Chapter 2, two aspects are necessary to properly model fatigue crack propagation: firstly, the capacity of representing small crack increments and, secondly, the evaluation of the energy release rate. For the whole fatigue evolution, the crack initiation must naturally be also considered.

The two main problems for modeling crack propagation, are solved in Chapter 3. The proposed relation between propagation length da and stiffness reduction dD allows the representation of any amount of crack growth, much below the particle scale. This is a fundamental feature for fatigue crack propagation, which is based on tiny increments per loading cycle. This description is supported by the evaluation of the energy release, another key element in the large majority of fracture models. Paris' law is then simply incorporated composing a contact model for fatigue crack growth, called here p-model.

Another important advantage of p-model relay on its local evaluation of the energy release rate, which is a key element in a discrete element contact model. The rupture of the contact at the crack tip is triggered by a small initial stiffness degradation D ini and the subsequent evolution is defined by the direct evaluation of contact forces and displacements. Convergent re-Chapter 6. Conclusions and perspectives sults were obtained for regular particle packings with progressive reduction of the particle diameter, which confirms the consistency of the formulation in Chapter 4.

In Chapter 5, the effect of the slope rate p is identified on the evaluation of the energy release rate G. Imposed values (instead of the measured values in p-model) leads to the control of the variation of G inside a contact. This micro-structural effect is incorporated in a damage model, called here sp-model. Such model is defined to be applied in all contacts, independently to the existence of initial cracks. This important feature allows a complete description of the rupture process dealing with crack initiation and its subsequent propagation with a single and simple approach. The simulations of experiments of tension-compression, 2-point and 4-point bending tests of asphalt concrete show very good agreements with different strain amplitudes.

Perspectives

Considering the models proposed in this thesis, several extensions and new applications are worth of more investigation in the future. In particular:

• Phenomena like non-linearity, self-heating and thixotropy, which affects the fatigue response of asphalt materials, can be further discriminated.

• The effect of the granulometry may lead to more complex crack patterns and deserves further analysis.

• The simple extension of the proposed models for three dimensional samples may also cover more complex multi-cracking process.

• The fatigue response of other materials should be analyzed considering the generality of the formulation.

X R = η × h T r -h r + 1 (B.2)
where η is a hysteresis factor working on the numerical stability of the procedure. Its value is set as η = 0.1 in this work, which promises the gradual decrease of the particle radius. If h r is bigger than its target value h T r all particles may be decreased by the scale factor X R < 1, otherwise, their radius may increase. The tolerance of the stress control procedure is defined as:

h r -h T r h T r < 0.2 (B.3)
After the rescaling, the system is no longer in balance. A particle natural rearrangement occurs during a stabilization phase (see Appendix A).

B.2 Floater elimination procedure

Floaters are defined as the particles with less than 3 contacts. These particles are not in stable state because only normal forces exist for all contacts, and thus forming unintended voids inside the material. To eliminate these potential voids, the radius of all particles identified as floaters, are firstly enlarged until they are in contact with more than 2 particles around. Then their radius are decreased step by step until the average overlap of each floater reaches the average overlap of the assembly. During this process, the rest of the particles do not move.

B.3 Interactive procedure and adopted parameters

In practice, after the generation of the particles, a loop containing the Equations B.1 and B.2, followed by the rescaling of radius by the X R factor is calculated until the relative error between the overlap and the target overlap becomes smaller than 20% as expressed in Equation B.3.

In the following, all numerical samples are generated with a uniform distribution of radius between the minimum to maximum particle radius (respectively R min and R max ). If R max /R min is close to 1.0, the assembly will be seriously crystalline arrangement [START_REF] Potyondy | A bonded-particle model for rock[END_REF], while if R max /R min is too big, the demanded number of particles forming the assembly is too large to have acceptable In local view, the energy release only occurs at the crack tip, when crack propagates and new crack surface is generated, since at anywhere else of the plate, material keeps continuous and elastic. Based on Equation ?? and ?? the released energy U a can be calculated as 

E.2 Robustness analysis

As mentioned before, the deviated values of G and p are almost located at the beginning several cycles of a contact, in fact it is the deviated values of parameter p lead to the unrealistic transformation from initial degradation D ini to crack increment da, consequently unrealistic value of da final result a deviated energy release rate G.

While the contact separation ratio p is defined as the absolute value of the ratio of the initial stiffness of contact k 0 (constant)to the slope of contact traction separation k p , thus obviously the deviated value of p may caused by the error in the calculation of the slope of contact traction separation. the system needs to once again get equilibrium, the balance level of system equilibrium [START_REF]Particle Flow Code 5.0 documentation[END_REF] can be defined as the ratio of the magnitude of unbalance 

F.1.1 Simulation procedures

Unlike square-packed and hexagonal packed samples have the constant effective width of contact domain d c , in randomly packed samples, every contacts are identified as the nearest one to crack tip has to detect its surrounding contact structure by which to determine its d c .

As an example shown in Figure F.2a, the contact nearest initial crack tip is identified as the contact whose strain level is the highest among contacts forming initial crack surface near crack tip (from crack tip till a distance equal to half initial crack length). Let us assume the contact c 1 is identified as the contact nearest initial crack tip, obviously it belongs to a polygon contact structure, therefore for contact c Based on tension test simulation, the contact stiffness setting are calibrated as E cmod = 1.21 × E and k ratio = 1.0, where E is material Young's modulus. Then every specific contact stiffness are automatically set based on the contact elastic modulus E cmod and k ratio = 1.0 following Equation 3.8.

F.1.3 Simulation results in randomly packed samples

The modeled fatigue test is exactly same with Section 4.3.3, the plate dimension are height H = 160 mm, width 2b = 100 mm and thickness t = 1 m, with symmetric edge cracks, initial crack length a 0 = 10 mm, subjected sinusoidal strain ε max = 100 µε, material Young's modulus E = 10 GPa.

For theoretical results calculation, the parameters relate to material properties are set as C = 1.0 × 10 -12 and m = 1.25. 
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 12 Figure 1: (a) Pointe de fissure au voisinage d'un contact et avec propagation de la fissure de (a) à (b) puis à (c), sa trajectoire pendant la rupture du contact est décrite par la variable a c (0 ≤ a c ≤ d c ).

  0). En revanche, si a c = d c , la pointe de fissure s'est propagée et a coupé le contact (D = 1).
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 3 Figure 3: Description schématique de la relation mécanique entre le contact à la pointe de la fissure et les particules voisines. (a) Plaque pré-fissurée et (b) son comportement élastique simplifié près de la pointe de la fissure, où k p représente la rigidité du matériau entourant la pointe de la fissure, F et δ sont la force et le déplacement de contact, (c) une description plus intuitive de (b).
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 21 IntroductionNowadays, experimental tests are the main tool to determine the fatigue performance of asphalt concrete, although all fatigue mechanisms are still not completely understood. Investigation of essential mechanisms has been performed in the last decades through numerical simulations.

Figure 2 . 1 :

 21 Figure 2.1: Scheme of volumetric properties of a bituminous mixtures, where V tot is a unit volume of mixture, VMA (Voids in Mineral) and VFA (Voids Filled with Asphalt) [8].

  Asphalt concrete is an important component of multi-layer road pavements, and during service time, it suffers repetitive traffic loads. Bending caused by traffic loads leads to both compression stress in the bulk section and tension stress at the bottom of the layer as shown in Figure2.2. For a long service time, the repetitive stresses and strains in asphalt concrete lead to fatigue cracks, for example, as shown in Figure2.3.

Figure 2 . 2 :

 22 Figure 2.2: Schemes of vehicle loading and pavement layer response [1].

Figure 2 . 3 :

 23 Figure 2.3: Example of fatigue cracks on pavement [21].

Figure 2 . 4 :

 24 Figure 2.4: Typical fatigue tests: Tension-Compression (T/C), Two Point Bending (2PB), Three Point Bending (3PB), Indirect Tensile (IDT) and Four Point Bending Test (4PB), (Modified from [2]).
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 2526 Figure 2.5: Configuration of 4-point bending test.

Figure 2 . 7 :

 27 Figure 2.7: Schematic description of loading and response in: (a, b) strain controlled mode,and (c, d) stress controlled mode[START_REF] Benedetto | Matériaux routiers bitumineux 2. Hermès Lavoisier editions[END_REF].
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 2 Figure 2.8: A typical fatigue evolution curve during fatigue test.

Figure 2 . 10 :

 210 Figure 2.10: Typical mechanical behavior domains of bituminous mixtures depending on strain amplitude ε and number of cycles N , for a given temperature [55].

Figure 2 . 11 :

 211 Figure 2.11: Example of Wohler curve and endurance limit [8].

Figure 2 . 12 :

 212 Figure 2.12: An example of concentrated damage (crack) in asphalt concrete (Modified from [52]).

Figure 2 . 14 :

 214 Figure 2.14: Damage maps (blue to red means D = 0 to D = 1) displaying different localization levels of 4-point bending fatigue test simulations by using damage model: (a) finite element method conducted by Arsenie [3],(Modified from[START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF]), (b) regular packing discrete element method conducted by Gao[START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF], (Modified from[START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF]), (c) randomly packing discrete element method conducted by Liu[4], (Modified from[4]).
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 22 Figure 2.15: 4PB test simulation in DEM by Liu [4], experimental results by Arsenie [3].

Figure 2 .

 2 Figure2.17: (a) Finite element mesh refinement for crack propagation, (Modified from[START_REF] Gibert | A 3d automatic mesh refinement X-FEM approach for fatigue crack propagation[END_REF])and (b) discrete element particles detachment for crack propagation, (Modified from[START_REF] Nguyen | A discrete element modelling approach for fatigue damage growth in cemented materials[END_REF]).
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 218 Figure 2.18: Example of mesh assignment based on material image, (Modified from [99]).

Figure 2 .

 2 [START_REF] Santamarina | Soils and waves[END_REF], due to both the different numerical methods they used and the adaption they made to incorporate the damage model. Arsenie used FEM and originally non-local definition of strain to determine the damage rate, whereas the strain is obtained by an average with weight function based on a characteristic length[START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF][START_REF] Bodin | Modèle d'endommagement par fatigue: application aux enrobés bitumineux[END_REF]. Such a non-local continuous method may to a certain extent yield unrealistic damage distribution, in fact, no localization (Figure2.14a). Gao used regular packing DEM and a relatively local definition of strain related to surrounding contact pairs. This approach resulted in an improvement on damage localization(Figure2.14b), but a sudden and unrealistic crack propagation was observed(Figure2.19).

Figure 2 . 19 :

 219 Figure 2.19: 4PB test simulation in DEM by Gao [101], experimental results and simulations in FEM by Arsenie [3, 102, 103].

2. 5 Figure 2 . 20 :

 5220 Figure 2.20: Schematic of the basic fracture modes: (a) Mode I (opening), (b) Mode II (sliding) and (c) Mode III (tearing) [104].

Figure 2 .

 2 Figure 2.21: A center cracked infinite plate subjected to uniform remote tension [101].

Figure 2 .

 2 [START_REF] Nunn | Long-life flexible roads[END_REF], E is the Young's modulus, ν is Poisson ratio, shear modulus µ = E/[2(1 + ν)], κ = 3 -4ν for plane strain and κ = (3 -ν)/(1 + ν) for plane stress.

Figure 2 . 22 :

 222 Figure 2.22: The rectangular and polar coordinate components of stress field around the crack tip (Modified from [107]).

Figure 2 . 23 :

 223 Figure 2.23: Scheme of the stress distribution near a crack tip as a function of the stress intensity factor K [105].

Figure 2 . 24 :Figure 2 . 25 :

 224225 Figure 2.24: Case 1: plate subjected to a constant force, (a) original state, (b) loading state, (c) crack growth.

Figure 2 . 26 :Figure 2 . 27 :

 226227 Figure 2.26: Case 3: after tension, plate top is restrained by elastic constraint with stiffness k, (a) original state, (b) loading state, (c) crack growth.

Figure 2 . 28 :

 228 Figure 2.28: Released energy during crack extension: (a) constant force, (b) fixed displacement, (c) elastic constraint and (d) varying elastic constraint.

Figure 2 . 29 :

 229 Figure 2.29: Stress distribution before extension and surface opening after extension [101].

Figure 2 . 30 :

 230 Figure 2.30: Scheme of the stress intensity factor range ∆K.

Figure 2 . 31 :

 231 Figure 2.31: Schematic of the fatigue crack growth behavior for long crack and short crack (Modified from [114]).

Figure 2 . 33 :Figure 2 . 34 :

 233234 Figure 2.33: Multiphases and corresponding separation model, (Modified from [131]).

Figure 2 . 35 :

 235 Figure 2.35: Example of crack propagation in XFEM, (Modified from [136]).

Figure 2 . 36 :

 236 Figure 2.36: Schematic of transformation between crack and damage by Nguyen, (Modified from [78]).

Figure 2 . 37 :

 237 Figure 2.37: The cohesive zone in front of a crack tip.

Figure 2 . 38 :

 238 Figure 2.38: An example of the traction separation law for CZM, (Modified from [4]).

Figure 2 . 39 :Figure 2 . 40 :

 239240 Figure 2.39: DEM sample in hexagonal packing, (Modified from [140]).

Figure 2 . 41 :

 241 Figure 2.41: Fatigue curve for tensile simulation by Gao, (Modified from [101]).

Figure 2 . 42 :

 242 Figure 2.42: Contact stress-displacement behavior in pure cyclic tension test by Nguyen, (Modified from [78]).

Figure 2 .

 2 14c as an example. Nevertheless, to the author's knowledge, a transition method for DEM able to reasonably model the transition from damage model to fracture model, when and where macro cracks occur, has not been proposed.

Figure 2 . 43 :

 243 Figure 2.43: Three examples of damage zones in TLS, the black line is the front of damage zone and white zone is the fully damaged material area, (Modified from [143]).

Figure 3 . 1 :

 31 Figure 3.1: (a) Material description in DEM, where the black lines represent the contacts, and (b) their rheological representation. (c) Contact relative displacement, and (d) corresponding normal and shear forces. (e) Representation of the contact domain. (Modified from [4]).

Figure 3 . 2 :

 32 Figure 3.2: Particle arrangements and corresponding contact maps: (a) square-packed, (b) hexagonal packed, and (c) randomly packed.

Figure 3 . 3 :Figure 3 . 4 :

 3334 Figure 3.3: (a) Crack tip at vicinity of a contact and with crack propagation from (a) to (b) then to (c),its trajectory during the rupture of the contact described by the variable a c (0 ≤ a c ≤ d c ).

Figure 3 . 5 :

 35 Figure 3.5: Schematic description of the mechanical relation between the contact at the crack tip and the neighboring particles. (a) Pre-cracked plate and (b) its simplified elastic behavior near the crack tip, where k p represents the stiffness of material surrounding the crack tip, F and δ are contact force and displacement, (c) a more intuitive description of (b).

Figure 3 . 6 :

 36 Figure 3.6: Description of the evolution of a contact for the whole process from crack near to crack through this contact. At the bottom of figure, (o) a pre-cracked plate in which a red rectangular represents the contact whose behavior is described by both spring systems and the evolution of contact force F and displacement δ in the coordinate system, (A) plate subjected to a constant stress σ, (B) crack propagates till the boundary of the contact domain, (C) crack totally through the contact domain. From (B) to (C), crack growth within the contact domain is represented by the process of the contact stiffness degradation, for (0 ≤ D ≤ 1), where k 0 is the initial contact stiffness, and (1 -D)k 0 is its degraded value.

Figure 3 . 7 :

 37 Figure 3.7: Schematic description of the position of crack and contact displacement. (a) Crack tip at the boundary of the contact domain, where δ 0 is the contact displacement, and (b) crack totally through the contact domain.

Figure 3 . 8 :

 38 Figure 3.8: (a) Geometry of the plate, crack propagation modeling in (b) square and (c) hexagonal packed samples.

Figure 3 . 9 :Figure 3 .

 393 Figure 3.9: (a) Value of the slope ratio p as a function of the length to plate width ratio a/b for different particle diameters (0.5 mm ≤ d ≤ 2 mm) of a plate with symmetric edge cracks, simulated by square packed samples and (b) a zoom of the values of p as a function of the crack to diameter ratio a/d during crack initiation a/d ≤ 5.

Figure 3 . 11 :Figure 3 . 12 :

 311312 Figure 3.11: Comparison of p as a function of the crack length to plate width ratio a/b, for center crack and symmetric edge cracks propagation, result from respectively square and hexagonal packed samples, with diameter d = 1mm.

Figure 3 . 13 :

 313 Figure 3.13: Comparison of the slope ratio p as a function of the crack length to plate width ratio a/b, for center crack, (a) with imposed stress and (b) with imposed strain (ε = 100 µε). The black dashed line represents p = 2.8.

Figure 3 . 14 :

 314 Figure 3.14: Schematic description of the limitation of the slope ratio p, for p = 0 corresponding to the homogeneous state and p = ∞ corresponding to the ultimate state.

Figure 3 .

 3 Figure 3.15: (a) Released energy during contact degradation. (b) Cracked plate, and (c) zoom of the crack propagation at the scale of one contact.

Figure 3 . 16 :

 316 Figure 3.16: Plate under uniform stress and the associated boundary displacement for (a) intact and (b) cracked cases.

Figure 3 .

 3 Figure 3.17: (a) Comparison of the ratio of displacement δ/ δ0 between theoretical results and simulation results and (b) a zoom for 0.2 ≤ a/2b ≤ 0.22.

Figure 3 . 18 :

 318 Figure 3.18: Schematic description of nonlinear contact traction separation.

Fig- ure 3 .

 3 Figure 3.19: Transformations (a) between a c and D, (b) between da and dD.

Figure 3 .

 3 Figure 3.20: (a) Description of the contact and force-displacement evolution during a propagation event, (b) a certain state in (a).

Figure 3 . 21 :

 321 Figure 3.21: Quasi-static loading and extraction of the values of stress intensity range ∆K at crack tips.
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 357 Put the initial values of D = 0, a c = 0 and dD = D ini and p into Equation 3.23 and calculate corresponding da; 4 ) Update D = D + dD and a c = a c + da (until D = 1, complete rupture); Calculation of G = dU/(tda); 6 ) Paris' law, Equation 3.25, and calculation of the new crack increment da; The new da, present D, a c and p, into Equation 3.24, calculation of the corresponding new degradation increment dD; 8 ) Measurement of new dU and p and cycle back to step 4.

Figure 3 . 22 :

 322 Figure 3.22: Schematic description of the procedures of fatigue crack growth calculation.

Figure 4 . 1 :

 41 Figure 4.1: Definition of a crack for (a) square, (b) hexagonal and (c) randomly packed samples. Identification of the crack domain d c for square and hexagonal packed samples.

A

  theoretical fatigue test of a rectangular plate with symmetric edge cracks is used as a reference for comparison. The plate dimensions are: height H = 160 mm, width 2b = 100 mm and thickness t = 1 m, with initial crack lengths a 0 = 10 mm A material with Young's modulus E = 10 GPa and Poisson's ratio ν = 0 is adopted. Parameters used in the fatigue model are D ini = 1.0 × 10 -3 , C = 1.0 × 10 -12 (m/cycle/(Pa √ m) m ) and m = 1.25. For these simulations, samples with square and hexagonal packed are employed with 3 different particle diameters: d = 4 mm, d = 2 mm and d = 1 mm, contact stiffnesses setting based on Equations 3.9 and 3.10.

Figure 4 . 2 :

 42 Figure 4.2: Simulations of a symmetric edge cracked plate under stress fatigue loading with square packed samples for different particle sizes and comparison with theoretical results of (a) crack growth and (b) the stiffness ratio as functions of the number of cycles N in controlled stress conditions. (c) Contact degradation map during fatigue evolution for d = 2mm.

Figure 4 . 3 :Figure 4 . 4 :Figure 4 . 5 :

 434445 Figure 4.3: Simulations of a symmetric edge cracked plate under stress controlled fatigue loading with hexagonal packed samples and comparison with theoretical results of the stiffness ratio as a function of the number of loading cycles N for (a) different particle size (Poisson's ratio ν = 0) and (b) different Poisson's ratios (and d = 2mm) in controlled stress conditions.

Equation 4 .Figure 4 . 6 :

 446 Figure 4.6: Stiffness ratio of a double edge cracked plate under stress fatigue: for a square packed sample (a) as a function of the number of cycles N and (b) as a function of [d ′ c /(1.0d)] 1+m/2 N ; for a hexagonal packed sample (c) as a function of the number of cycles N and (d) as a function of [d ′ c /(0.5d)] 1+m/2 N .

Figure 4 . 7 :

 47 Figure 4.7: Stiffness ratio of a single edge cracked plate under stress fatigue for a random packed sample (a) as a function of the number of cycles N and (b) as a function of [d ′ c /(0.875d)] 1+m/2 N , for Paris's law parameters: C = 1.0 × 10 -12 (m/cycle/(Pa √ m) m ) and m = 1.25, and that of (c) and (d) for C = 2.0 × 10 -22 (m/cycle/(Pa √ m) m ) and m = 3.

  and 4.7a and b the parameters of Paris's law are C = 1.0 × 10 -12 (m/cycle/(Pa √ m) m ) and m = 1.25. In Figure 4.7c and d another set of parameters (C = 2.0 × 10 -22 (m/cycle/(Pa √ m) m

Figure 4 . 8 :

 48 Figure 4.8: (a)Stiffness ratio of a double edge cracked plate under stress fatigue for random packed sample s1 to s6, as a function of the number of cycles N . And each calibrated value of d c , based on Equation 4.3 and theoretical results for Paris's law parameters: C = 1.0 × 10 -12 (m/cycle/(Pa √ m) m ) and m = 1.25. (b) Comparison of simulations with d c = 0.958d and the theoretical results.

Figure 4 . 9 :

 49 Figure 4.9: Crack trajectories for all six randomly packed samples.

  Figure 4.10a, with parameters D ini and m unchanged, parameter C has a multiplying effect on the fatigue life, the number of cycles till a certain failure limit. This effect is clearly visible, by displaying the fatigue evolution as a function of C × N (see Figure 4.10b). With this scaling, the three curves with different C are perfectly superposed. Such property of C can be used to save calculation time for long life materials in fatigue simulations by setting a relatively bigger parameter C and then scaling the results.

Figure 4 . 10 :

 410 Figure 4.10: Fatigue evolution (a) versus number of cycles N and (b) versus C × N for different values of parameter C.

Table 4 . 2 :

 42 Set of parameters for the analysis of parameter m in fatigue simulations.

Figure 4 . 11 :

 411 Figure 4.11: Fatigue evolution (a) versus number of cycles N and (b) versus number of cycles N norm for different values of parameter m.

Figure 4 .Figure 4 .

 44 Figure 4.12: (a) Geometry of the three-point bending beam. (b) Evolution of the crack length ratio a/H as a function of the number of cycle N . Comparison between test results and DEM simulation.

4. 7

 7 Summary of the chapterChapter 4 deal with the application of the formulation (p-model) of Chapter 3 to multi-particle crack propagation.

92 Chapter 5 .Figure 5 . 1 :

 92551 Figure 5.1: (a) Scheme of the three fatigue stages and (b) its effect on the propagation of cracks per cycle da/dN as a function of crack length a or stress intensity range ∆K, solid line for long crack (except a is too small or too large, crack propagation complies with Paris' law), and dotted lines indicate tow possibilities of the unknown law for short crack (modified from [114]).

Figure 5 . 2 :

 52 Figure 5.2: Curves relating stiffness reduction 1-D and relative propagated length a c /d c for different values of p, based on Equation 3.16.

Figure 5 .

 5 Figure 5.3b shows G as a function of the ratio of a c /d c , with different imposed values of p. For p = 5, since it is equal to the measured slope ratio k 0 /k p = 5, one gets naturally a constant G, similar to Figure4.5 in Section 4.3.3.2. For other values, a clear variant effect is observed. For p value is bigger than the measured slope ratio k 0 /k p = 5, resultant G evolution is a decreasing curve, and in contrast when p value is smaller than the measured slope ratio k 0 /k p = 5, resultant G evolution is a increasing curve. Furthermore, the resultant values of G for different p in p-model are compared with theoretical result of G. In Figure5.4, the same test which is performed for Figure4.5a is presented for different values of p. The average measured slope ratio is k 0 /k p ≈ 2.85 which induces constant values of G per contact. Figure5.4a is exactly Figure4.5a, As shown in Figure5.4b smaller values of p = 2.6, induce increasing G during crack through each contact domain, and the collective results of G are still close to theoretical results.

Figure 5 .

 5 4a is exactly Figure4.5a, As shown in Figure5.4b smaller values of p = 2.6, induce increasing G during crack through each contact domain, and the collective results of G are still close to theoretical results.

Figure 5 . 3 :

 53 Figure 5.3: (a) Example of a contact in rupture with initial stiffness k 0 , when crack reaches its boundary, contact displacement is δ 0 . During the rupture process, the measured slope ratio k 0 /k p = 5. (b) Corresponding values of energy release rate G for different values of parameter p adopted in Equations 3.23 and 3.24.

Figure 5 . 4 :

 54 Figure 5.4: Simulations of a symmetric edge cracked plate with square packed samples and comparison with theoretical results of the energy release rate G under stress controlled fatigue loading for particle size d = 2 mm (a) p is measured cycle by cycle, generally p ≈ 2.85 and (b) p is imposed as a parameter, p = 2.6.

Figure 5 . 5 :

 55 Figure 5.5: Scheme of the equivalent propagated length for an initially microcracked contact: (a) initial state of material, and (b) progressive coalescence of cracks.

  The damage model contains four parameters: D ini , C, m and p. A constant p enhances the stability and robustness of calculation and enables the model to deal with more complex situations, like multi cracks or crack propagation in softening material caused by damage. It avoids the effects of the fluctuations of the slope ratio expected in these cases. The complete flowchart of the damage model implementation is shown in Figure5.6.

Figure 5 . 6 :

 56 Figure 5.6: Flowchart of the damage model (sp-model) applicable to any couple of interacting particles.

  dures and principles are depicted in Figure 5.7, moreover, these procedures and principles are also practicable for T-C and 2PB fatigue tests simulation. Strain loading is applied by four supports located on the neutral axis of the sample (Figure 5.7b), the two end supports are vertically fixed, and the two middle supports move downward till the displacement amplitude δ v,max is reached. δ v,max = 76.7 µm, 90 µm and 100 µm correspond respectively to test strain amplitudes ε max = 115 µε, 135 µε and 150 µε.

Figure 5 . 7 :

 57 Figure 5.7: (a) Geometry of 4PB tests, (b) samples in DEM, and (c) simulation implementation.

Figure 5 . 8 :

 58 Figure 5.8: (a) Configuration of T-C test, and (b) details of test equipment. (Modified from [8])

Figure 5 . 9 :

 59 Figure 5.9: (a) Fatigue evolution expressed by the stiffness ratio (represented as the ratio of the reaction force to the initial reaction force, F/F 0 ) as a function of the number of cycle N for different values of parameter p, and (b) stiffness ratio versus the normalized number of cycle.

Figure 5 . 10 :

 510 Figure 5.10: Effect of parameter p on fatigue damage distribution at stiffness ratio F/F 0 = 0.5, where red means totally broken and blue means intact.

Figure 5 .

 5 [START_REF] Vavrik | The bailey method of gradation evaluation: the influence of aggregate gradation and packing characteristics on voids in the mineral aggregate (with discussion)[END_REF] shows results for three different imposed strain levels 79 µε, 92 µε and 108 µε.

Figure 5 . 11 :

 511 Figure 5.11: Comparison of results for different levels of contact endurance limit ε lim , for test strain levels respectively (a) 108 µε, (b) 92 µε and (c) 79 µε.

FatigueFigure 5 .Figure 5 . 13 :

 5513 Figure 5.12: T-C fatigue tests simulation results, (a) comparison of average simulation results (three samples) and experimentation [1] with different test strain levels, and fatigue evolution of all three samples (S1, S2 and S3) with strain levels respectively (b) 108 µε, (c) 92 µε and (d) 79 µε.

Figure 5 . 14 :

 514 Figure 5.14: Fatigue lines of experiments and simulation for T-C fatigue tests. The slopes of fatigue lines in log-log scale coordinates and the coefficient of determination R 2 are presented.

Figures 5 . 5 Figure 5 . 15 :Figure 5 . 16 :

 55515516 Figures 5.15 globally shows the good agreement between simulations and experiments for different test strain levels, which evidences the validation of sp-model. In Figure 5.16, the envelop curves of the experimental results and simulations are superposed well, which indicates the simulations for different

Figure 5 .Figure 5 .

 55 Figure 5.17 presents the damage distribution and crack trajectories in samples, one may notice the similarity among these samples that damage and small crack are distributed mainly near the top and bottom of sample with one or two main cracks indicating the final failure of sample. Fatigue lines of experiments and simulations are shown in Figure 5.18. The slopes of fatigue lines in log-log scale coordinates for experimental results is -4.5100 and -4.6744 for simulation, which is close to the value of parameter m = 5.5. The linearity of fatigue lines are expressed by the coefficient of determination R 2 = 0.9533 for experimental results and R 2 = 0.9627 for simulation, these values are close to 1 which means totally straight line. The test strain level ε 6 corresponding to fatigue life equal N = 1.0 × 10 6 , for experiments ε 6 = 115.09 µε, and ε 6 = 115.97 µε for simulation.

Figure 5 . 18 :

 518 Figure 5.18: Fatigue lines of experiments and simulation for 4PB fatigue tests. The slopes of fatigue lines in log-log scale coordinates and the coefficient of determination R 2 are presented.

  and 5.21. More details about fatigue evolution expressed by the reaction force F are shown in Appendix H. Table 5.4: Parameter setting for 2PB fatigue tests simulations. ε lim D ini p C (m/cycle/(Pa √ m) m ) m 70 µε 1 × 10 -4 4.5 3.7 × 10 -38 5.5 Damage distribution and crack trajectories in all three samples are presented in Figure 5.22. It should be mentioned that in experimentation the same material is used for 4PB and 2PB fatigue tests. As a consequence, one may notice that almost all simulation parameters settings are identical for 4PB and 2PB fatigue tests, except slight differences on parameter C which may relate to the slight difference of material void content, around 4.5% for the 2PB fatigue tests and 2% for the 4PB fatigue tests. And fatigue evolution curves are less dispersed for 4PB than 2PB fatigue tests. Fatigue lines of experiments and simulations are shown in Figure 5.23. The slopes of fatigue lines in log-log scale coordinates for experimental results is -6.6000 and -4.8279 for simulation, which is close to the value of parameter m = 5.5. The linearity of fatigue lines are expressed by the coefficient of determination R 2 = 0.8688 for experimental results and R 2 = 0.9129 for simulation. The relatively lower value of R 2 for experiments indicates the disparity of fatigue evolution for different specimens at same test strain level, which also can be reflected from the scattered fatigue evolution curves in Figure 5.21. The test strain level ε 6 corresponding to fatigue life equal N = 1.0 × 10 6 , for experiments ε 6 = 117.49 µε, and ε 6 = 120.73 µε for simulation.

Figure 5 . 20 :Figure 5 . 21 :

 520521 Figure 5.20: Comparison between envelop curves and average curves of 2PB fatigue tests simulation and that of experimentation[START_REF] Nguyen | Development of a rational design procedure based on fatigue characterisation and environmental evaluations of asphalt pavement reinforced with glass fibre grid[END_REF], for different test strain levels. For example, Sim ave 160 µε is the average curve of simulation of all three samples at test stain level 160 µε, Sim max 160 µε is the maximum boundary of the envelop of all simulations at test stain level 160 µε, and sign of min for the minimum boundary of the envelop of all simulations. So that for experimental results with sign Exp.

Figure 5 . 22 :

 522 Figure 5.22: Damage distribution maps (where red is totally broken and blue is intact) for all three samples (90 • rotated) at stiffness ratio F/F 0 = 0.5, for test strain level 160 µε. Main cracks are marked by red rectangular.

Figure 5 . 23 :

 523 Figure 5.23: Fatigue lines of experiments and simulation for 2PB fatigue tests. The slopes of fatigue lines in log-log scale coordinates and the coefficient of determination R 2 are presented.

6 . 1

 61 Good agreements are observed in comparison of simulation and experiment for T-C, 4PB and 2PB fatigue tests. Using the sp-model in DEM successfully catches both the fatigue evolution and localized failure in fatigue tests. Also it works well for different test strain levels. Based on the scale effect of parameter C, a scale technique is used in simulations. It can efficiently save computational time. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9 )

 9 Till here, once we get the expression of U a and submit it into Equation C.9, we can solve Equation C.3.

12 )Figure E. 3 :

 123 Figure E.3: The contact separation ratio p evolution from simulation results with parameter D ini = 1.0 × 10 -2 .

Figure E. 4 :

 4 Figure E.4: Energy release rate from simulation results with parameter D ini = 1.0 × 10 -3 .

Figure E. 7 :

 7 Figure E.7: The contact separation ratio p evolution from simulation results with parameter D ini = 1.0 × 10 -4 .

Figure E. 8 :

 8 Figure E.8: Energy release rate from simulation results with parameter D ini = 1.0 × 10 -5 .

  As shown inFigure E.10, two factors may influence the slope calculation. First, the DEM software computation precision determine the precision of contact displacement and contact forces which can be vividly illustrated as the point position (see Figure E.10). Second, the bigger difference of contact force and displacement between current state and the previous cycle, displayed as a larger distance of two points on the contact traction separation path, can be helpful to reduce the error of slope calculation caused by the computation error. That can explain why larger value of initial degradation D ini result stabler p values. And also that is why under same conditions simulation with larger particle size result stabler p values.

Figure E. 10 :

 10 Figure E.10: Schematic description of the error for contact traction separation slope calculation.

Figure E. 13 :

 13 Figure E.13: Energy release rate from simulation results with balance level 1.0 × 10 -6 .

Figure E. 14 :

 14 Figure E.14: The contact separation ratio p evolution from simulation results with balance level 1.0 × 10 -6 .

Figure F. 2 :

 2 Figure F.2: (a) Initial crack tip identification, yellow contacts shows crack surface near crack tip, and (b) schematic for the effective width of contact domain d c detection.

Figure F. 3

 3 shows one example of crack path and their d c in simulation.

F. 1 . 2

 12 Sample preparationRandomly packed samples generation procedures are detailed in Appendix B. 6 samples with average particle diameter d = 2mm, and another 6 samples with average particle diameter d = 1mm are used in simulations.

  Figure F.3: (a) Crack path in contact degradation map, red to green corresponds to D = 1 to D = 0, and (b) d c of contacts on crack path, red contact means its d c = d min and green means d c = 1 2 d min .

ForFigure H. 3 :

 3 Figure F.5: Crack paths in contact degradation map, red to green corresponds to D = 1 to D = 0, in samples with average particle diameter d = 2mm, s1-s6 represent sample 1-sample 6.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Le développement des dommages peut être considéré comme le développement d'un réseau de microfissures. Au début, le matériau contient quelques microfissures ou défauts isolés. Avec la charge de fatigue, ces microfissures se développent lentement et finissent par fusionner les unes avec les autres (Figure5.5). En considérant l'ensemble du réseau de microfissures dans le domaine de contact comme une fissure courte dont la croissance suit une variante de la loi de Paris.Le modèle-p est simplifié en modèle-sp dans lequel un paramètre supplémentaire p est introduit. Le paramètre p utilisé dans la transformation da -dD (Equations 3.23 et 3.24) devient un paramètre imposé ; une propriété intrinsèque de la rupture de contact, au lieu d'une quantité mesurée (rapport de pente, sa signification physique originale).

	xviii	Résumé étendu

Comme le montrent les exemples de la Figure

5

.3, dans le modèle-sp, lorsque p = 5 est égal au rapport de séparation du contact, le taux de libération d'énergie G calculé reste constant pendant la pénétration de la fissure dans le contact, c'est comme ce qui se passe dans le modèle-p, tandis que si p est supérieur au rapport de séparation du contact, l'évolution du taux de libération d'énergie G résultant est une courbe décroissante, et au contraire si p est inférieur au rapport de séparation du contact, l'évolution du taux de libération d'énergie G résultant est une courbe croissante.

La différence entre la valeur imposée de p et la valeur mesurée (la signification physique originale) de p permet une variation de la valeur calculée du taux de libération d'énergie G. Un tel effet de variation du paramètre p sur G résulte finalement en une évolution de la dégradation de la rigidité de contact qui capture l'ensemble du processus d'évolution de la fatigue, y compris l'initiation et la propagation des fissures.

Comparaisons entre les résultats expérimentaux et le modèle-sp

La Figure

5

.12 montre la simulation et l'expérimentation des essais de fatigue en Traction-Compression avec des niveaux d'essai respectifs, 79 µε, 92 µε et 108 µε.
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  In Chapter 5, a generalization of the p-model is proposed. A damage model able to describe the whole fatigue process, from crack initiation to crack propagation is presented, the sp-model. Simulations are then compared to different fatigue experiments: tension-compression, four-point and two-point bending fatigue tests.Finally, the conclusions of the work are presented and several perspectives for future studies are pointed out in Chapter 6.Fatigue phenomenon is characterized as material mechanical weakening caused by cyclic loading whose magnitude does not exceed material elastic domain. Fatigue damage is the phenomenon due to repeated traffic or climatic loadings is the main source of distresses attributed to the reduction of service life of civil engineering infrastructures such as road and airport pavements. Research efforts have been done in the last decades to improve experimental characterization of such phenomena[START_REF] Freire | Use of fiberglass geogrids to the reinforcement of bituminous mixtures layers[END_REF][START_REF] Di Benedetto | Fatigue of bituminous mixtures[END_REF][START_REF] Arsenie | Etude et modélisation des renforcements de chaussées à l'aide de grilles en fibre de verre sous sollicitations de fatigue[END_REF]. More recently, the contribution of computer modeling has allowed a better interpretation of fatigue tests, which has helped researchers to identify the main physical mechanisms related to the degradation of properties of the materials[4][5][START_REF] Ruan | Morphological characteristics of crack branching in asphalt mixtures under compression[END_REF].
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  In the 19 th century, with the development of the industrial revolution, standard production and transportation designedly or undesignedly exert repetitive loading on structures that finally leads to fatigue failures of materials. Fatigue failures were related to accidents of steam engines, pumps,locomotives and axles, like the Versailles train crash of 1842. Fatigue phenomenon was recognized as a kind of fracture process occurring after materials were exposed to a large number of repetitive loading cycles with the magnitude of repetitive load remaining below the material strength. In 1837, Wilhelm Albert published the first laboratory study on fatigue. Jean-Victor Poncelet for the first time use the word 'fatigue' to describe the phenomenon, in 1839.
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  However, as shown in Figure2.15, globally, one may notice that it is still a challenge to use only damage model to catch all three phases of fatigue evolution in fatigue test, as we can see on the deviation of numerical damage curve from experimental one for strain level 115 µε. Focusing on the beginning of simulation curves and experimental curves, where a large damage rate dominates specimen degradation, obvious deviation occurs for tests with strain level 115 µε. Even for experimental curves, strain effect strongly changes shapes of fatigue curves and final fatigue lives. Thus, a new damage model which can capture material fatigue responses for different strain level tests would be welcome.
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Table 4 .

 4 1: Set of parameters for the analysis of parameter C in fatigue simulations.

Table 5 .

 5 1: Set of parameters for simulations testing the effect of p.

	ε lim	D ini	C (m/cycle/(Pa √	m) m ) m
	70 µε 1 × 10 -4	2.03 × 10 -48	

Table 5 .

 5 

	2: Model parameters for T-C fatigue tests simulations (without
	scaling).		
	ε lim	D ini	p C (m/cycle/(Pa √ m) m ) m
	70 µε 1 × 10 -4 10	1.41 × 10 -51

Table 5 .

 5 3, and 875 times scaling is chosen (see Section 5.4.3.1). Comparison between simulation and experimentation is shown in Figures 5.15 and 5.16. More details about fatigue evolution expressed by the reaction force F are shown in Appendix H.

  [START_REF] Freire | Use of fiberglass geogrids to the reinforcement of bituminous mixtures layers[END_REF] , its d c = d min . Continually, with crack propagation, after crack thoroughly permeates contact c 1 , the contact nearest new crack tip will be identified based on strain level among contacts forming newly grown crack surface. As shown in Figure F.2b, if contact c 2 is identified as the contact nearest new crack tip, and it belongs to a polygon contact structure, thus its d c = d min . Otherwise, if contact c 3 is identified as the contact nearest new crack tip, and it belongs to a triangles contact structure (already broken contacts do not count as any contact structure), thus its d c = 1 2 d min . By the method, crack continually propagates.

3.4. Contact separation -elastic case

Acknowledgements

The relation between the displacement amplitude on the top of sample z (Figure 5.19c) and the corresponding strain amplitude ε max can be described by [151] 

and the corresponding reaction force F can be obtained by [152]:

where h, B, b, e are sample dimensions as shown in Figure 5.19c, and E is Young's modulus of material.

Discrete element method

A.0.1 Algorithm of DEM calculation [START_REF] Gao | Modelling of nominal strength prediction for quasi-brittle materials: application to discrete element modelling of damage and fracture of asphalt concrete under fatigue loading[END_REF] Discrete element method (DEM) is a numerical model capable of describing the mechanical behavior of assemblies of discs and spheres. It allows finite displacements and rotations of discrete particles, detects new contacts automatically as the calculation progresses, and solves the time evolution of this discrete system using an explicit dynamic solution to Newton's laws of motion. The fundamental elements for calculation are the dimensions of the particles, their spatial positions and properties. 

The detailed information about the operations are well described in the documentation of Particle Flow Code 5.0 and summarized as follows [START_REF]Particle Flow Code 5.0 documentation[END_REF]:

1. Timestep determination: The DEM calculation requires a valid, finite timestep to ensure the numerical stability of the model. The critical timestep for one contact is t crit = m/k tran or t crit = I/k rot , where m is the mass, I is the moment of inertia of the particle, k tran and k rot are the translational and rotational stiffnesses. The critical timestep for the whole structure is decided by the smallest t crit among all the contacts.

Law of motion:

The position and velocity of each body is updated according to Newton's laws of motion using the current timestep and the forces calculated during the previous cycle.

Advance time:

The model time is advanced by adding the current timestep to the previous model time.

Contact detection:

Contacts are dynamically created/deleted based on the current particle positions.

Force-displacement law:

The forces developing at each contact are updated by the appropriate contact model using the current state of the particles.

A.0.2 Stabilisation [4]

For a simulation under (quasi-)static condition, the model requires the stable state of force distribution or particle equilibrium, which means that enough time or time-steps are required in order to reach such a balance state or equilibrium. For a quasi-static load, the method of stabilization is low loading rate or small time-step. It should be noted the critical time-step is in fact the maximum timestep to keep a stable state of model, but may not small enough for the quasi-static load. In the simulation with requirement of extreme equilibrium, the stabilization within a certain tolerance should be worked out with all boundary condition fixed unmovable.

A.0.3 Viscous damping

The critical damping constant c i is given by:

where

, m 1 and m 2 are the mass of two connecting particles.

In this work, c n = c s = 0.7c i .

A.0.4 Other

In this work, ball density is set as 2600Kg/m 3 , and time step is set automatically by software PFC. These two settings do not effect the results presented in this work, just for information.

Appendix B

Samples generation [4] There are many methods to generate the randomly packed assemble in DEM, which can be categorized into dynamic methods (e.g. boundary compaction method, particle drop method and particle size scaling method) and constructive method [START_REF] Bagi | An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies[END_REF][START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF]. In this research work, the randomly packed sample generation procedure is based on the procedure adopted by Potyondy [START_REF] Potyondy | A bonded-particle model for rock[END_REF], which is mainly the size scaling method. The assembly is generated with three procedures, namely particle generation, internal stress control and floater elimination. During all the model generation, the particles are frictionless (F s = 0, see Equation 3.1), which avoid any internal shear contact force.

B.1 Particle generation and internal stress control

In the first phase, a highly compacted assembly is generated within the domain of rectangular walls with relatively big overlaps between the particles [START_REF] Potyondy | A bonded-particle model for rock[END_REF]. Normally, when the contact model is applied, the tremendous lock-in force exists among the assembly. Addressing to this issue, a stress control procedure is imposed to reduce the stress of the initial assembly by shrinking all the particle sizes with the same factor step by step. In Potyondy's study [START_REF] Potyondy | A bonded-particle model for rock[END_REF], a specified isotropic stress is set as the target stress, whose value is 1% of the initial stress. The target stress is naturally dependent on the initial particle distribution and should be adapted to the contact stiffness. In order to avoid any misunderstanding, the internal stress level is expressed by the overlap ratio h r relative to the mean particle radius R,

where δ n is the average overlap of all contacts of the assembly.

A scale factor for the particle shrinking X R is then defined based on the existing overlap ratio h r and its target h T r 129 computational time. The size ratio is set as R max /R min = 1.6, which is in the range of the size ratio adopted by other researchers [START_REF] Potyondy | A bonded-particle model for rock[END_REF][START_REF] Yang | A study on the effects of microparameters on macroproperties for specimens created by bonded particles[END_REF][START_REF] Yoon | Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation[END_REF], and is available to produce isotropic macro properties. , where a significant reduction of the contact overlap ratio has been obtained, and there is no floater in the assembly. The system presents 429 particles with an average radius R = 1 mm and L = 40R. A target overlap ratio h T r = 10 -9 is adopted. One may observe the relatively homogeneous overlap distribution at the end of the process, associated to a neglectful internal stress state obtained with the generation procedure. 

B.4 Generator random seed

To generate randomly packed samples, a number is needed as the random seed. By default of the software (PFC), the random seed is 10000. In this work, random seeds for three samples of Tension- 

where the net force F and the average relative displacement δ0 can be obtained by

In the thought experiment, an edge crack appear at the middle and grows to a length a (see in Figure C.1b). The stiffness of plate after cracking k P a may be globally calculated by

By associating to Equation C.1 and C.4, one may get the ratio of k P a to k P 0 ,

In global view, taking the whole plate as an object, the released energy during cracking process U a can be calculated by the difference between the work done by external force and the elastic potential energy change (see section ??), and U a can be geometrically described as the area of the triangle For the plate with two symmetric edge cracks, stress intensity factor K is described as [START_REF] Tada | The stress analysis of cracks handbook[END_REF] 

where ξ = a/b.

The resultant expression of plate stiffness is

where, P = -0.406 ln |ξ -1| -0.406ξ + 0.427ξ 2 -0.135ξ 3 -0.138ξ 4 + 0.147ξ 5 -0.029ξ 6 -0.022ξ 7 + 0.018ξ 8 -0.004ξ 9 C.2. Verification of formulas describing the stiffness of cracked finite plate 137

and ξ = a/b.

For the plate with center crack, stress intensity factor K is described as [START_REF] Tada | The stress analysis of cracks handbook[END_REF] 

where ξ = a/b.

The resultant expression of plate stiffness is

where,

and ξ = a/b.

C.2 Verification of formulas describing the stiffness of cracked finite plate

To compare with Equation C. 

where A c = td is the area of contact intersection, and l = d is contact length, therefore,

A series of crack whose length a is integer multiple of particle diameter d, for example, for particle diameter d = 2mm, crack length could be set as By this approach, the curve of stiffness ratio versus number of cycles and the curve of crack length versus number of cycles can be obtained as the theoretical results of a fatigue test. Mentioned that this approach can also be used for scenario of center crack and edge crack in the same procedures. Compared with the stress controlled fatigue test, for the strain controlled fatigue test the main procedures to calculate theoretical results is exact same, only a slight difference in the calculation of the K max . It is that in stress controlled fatigue test the load stress is constant σ = σ max and can be directly submit into Equation C.16 while for strain controlled fatigue test with the crack growth the holding force F at the ends of plate changes thus the corresponding load stress σ changes accordingly. First the holding force for an intact plate F 0 = εE •2bt, the equivalent initial load stress σ 0 = F 0 /2bt = εE, then after crack occurrence the equivalent load stress σ = σ 0 (k P /k P 0 ), and σ can be used to calculate the K max . Also taking the symmetric edge cracks scenario (see in Figure D.2) as an example, its fatigue evolution both in aspect of crack propagation and plate Second, a larger value of parameter D ini leads to a relative stabler calculation of the contact separation ratio p and G at the first several cycles for a contact (see in Figure E.2 to E.9), such a tendency may due to the computation precision of DEM software, since p is calculated by the scope of two sequential points coordinated by the contact forces and contact displacements. If the parameter D ini as an initial degradation of contact is too small, the two points would be very close, which may increase the error for the calculation of p, force to the magnitude of the resultant force on the particle, like 1.0 × 10 -5 . A lower balance level may leads to a higher precision of particle position and Interestingly, the fatigue evolution seems not influenced by different balance level in computation (see in Figure E.17). And combined with the effect of the initial degradation D ini , the total results prove a strong robustness of the proposed model. The further reason to explain such a robustness is that after the contact degradation is triggered by the given initial degradation D ini , all after calculations are only determined by contact forces and displacements, even though at the beginning several cycles the slope of contact traction separation may be calculated not so precisely, it naturally become stable and precise very soon. In simulation computation, using C ′ = βC will scale the fatigue evolution β times and save β times computation. Appendix H 

Appendix F

Morphology method

Reaction force evolution