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Abstract

Motivé par des sujets économiques et d’ingénierie, vers 2006, les jeux à champ moyen ont
été introduits par Jean-Michel Lasry et Pierre-Louis Lions, et Peter E. Caines, Minyi Huang
et Roland P. Malhamé, indépendamment, et leur but était d’approximer les équilibres de
Nash des jeux avec un grand nombre d’agents symétriques. L’équilibre de Nash est une
situation dans laquelle aucun agent n’a intérêt à modifier unilatéralement sa stratégie : dans
un équilibre de Nash, étant donné les choix actuels des autres agents, un agent donné ne peut
améliorer son propre coût en changeant sa stratégie. Depuis leur introduction, les jeux à
champ moyen ont été largement étudiés dans la littérature et plusieurs sujets de recherche ont
été abordés, tant d’un point de vue théorique qu’appliqué. Cette thèse aborde des modèles
de jeux à champ moyen avec temps final libre, et en plus avec une contribution principale
pour les jeux à champ moyen avec des contraintes d’état.

Dans le premier chapitre, nous considérons plusieurs populations en interaction évoluant
dans Rd visant à atteindre des ensembles cibles donnés en un minimum de temps, en sup-
posant que leur vitesse maximale est bornée en termes de la densité des agents autour de
leur position. Le système de contrôle satisfait par chaque agent dépend de sa position, de
la répartition des autres agents de la même population et de la répartition des agents des
autres populations. Ainsi, les interactions entre agents se font par leur dynamique. Nous
considérons dans ce chapitre l’existence d’équilibres lagrangiens à ce jeu à champ moyen, ce
qui consiste à considérer une mesure de probabilité sur l’espace des trajectoires continues ;
leur comportement asymptotique, en étudiant les taux de convergence des distributions des
agents vers une distribution limite au sens de la distance de Wasserstein ; et leur caractéri-
sation comme solutions d’un système de jeu à champ moyen, sous quelques hypothèses de
régularité sur la dynamique des agents. En particulier, le système de jeu de champ moyen
est établi sans s’appuyer sur les propriétés de semi-concavité de la fonction de valeur.

De manière similaire au premier chapitre, dans le deuxième chapitre, nous considérons
un modèle de jeu à champ moyen inspiré de mouvement de foule où les agents visent à
atteindre un ensemble fermé, appelé ensemble cible, en un temps minimal, mais en plus des
phénomènes de congestion, qui affectent la vitesse de un agent, le modèle est considéré en
présence de contraintes d’état : en gros, ces contraintes peuvent modéliser des murs, des
colonnes, des clôtures, des haies ou d’autres types d’obstacles à la frontière du domaine que
les agents ne peuvent pas franchir. Nous rappelons tout d’abord quelques résultats antérieurs
sur l’existence d’équilibres pour de tels jeux et présentons les principales difficultés liées à la
présence de contraintes d’état. Notre principale contribution est de montrer que les équilibres
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du jeu satisfont un système d’équations aux dérivées partielles couplées, connu sous le nom de
système de jeu à champ moyen, grâce aux techniques de caractérisation de contrôles optimaux
développées dans le chapitre précédent, adaptées au cas de systèmes avec contraintes d’état.
Ces techniques permettent non seulement de traiter des contraintes d’état mais nécessitent
également très peu d’hypothèses de régularité sur la dynamique des agents.

Dans notre dernier chapitre, nous considérons un modèle de jeu à champ moyen pour le
mouvement de foule dans lequel les piétons interagissent non seulement par leur position,
mais aussi par leur vitesse. Plus précisément, chaque piéton est supposé minimiser un coût
impliquant son temps pour atteindre un certain ensemble cible, un coût intégral individuel et
un coût intégral d’interaction modélisant le fait que les agents veulent éviter les régions trop
denses et préfèrent se déplacer avec les agents allant dans la même direction qu’eux, ce qui
peut être vu comme une interaction de type Cucker–Smale. Le résultat principal que nous
obtenons dans ce chapitre est l’existence d’équilibres pour un tel jeu, qui est basé sur une
approche variationnelle qui repose sur la caractérisation des équilibres comme minimiseurs
d’un coût fonctionnel global.
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Chapter 1

Introduction

1.1 General Framework
Mean Field Games (MFGs) refer to differential games with a continuum of agents assumed
to be rational, indistinguishable, and influenced only by an average behavior of the others
through mean field type interaction. Motivated by problems in economics and engineering
on games with infinitely many agents [8, 9, 66], the theory of mean field games has been
introduced around in 2006 by Jean-Michel Lasry and Pierre-Louis Lions [69–71], and Peter
E. Caines, Minyi Huang, and Roland P. Malhamé [61–63], independently. In these works
the main goal is to approximate Nash equilibria of games with a large number of symmetric
agents.

Let us start by a short informal description of games with finitely many agents. Games
with N players can be described by a set X of possible choices or strategies for an agent
and a function Ci : X

N → R ∪ {±∞}, representing the cost of an agent. The goal of the
ith-agent, for i ∈ {1, . . . , N}, is to solve the minimization problem

(1.1) min
x∈X

Ci(x1, . . . , xi−1, x, xi+1, . . . , xN).

A vector X = (x1, . . . , xN) solving all of the above minimization problems is called a
Nash equilibrium of the game.

An N -player game is said to be symmetric if the permutations of agents do not change
the game. Mathematically, this means that all the functions Ci, with i ∈ {1, . . . , N}, are
equal to a certain function C : XN → R ∪ {±∞} which satisfies

C(x1, . . . , xN) = C(xσ(1), . . . , xσ(N)) for any permutation σ on {1, . . . , N}.

In other words, one specific agent can choose its strategy without considering any order of
others to react for solving its minimization criterion.

Mean field games belong to a class of differential games, i.e. games in which the choice
of an agent is a trajectory submitted to a given differential equation. More precisely, the set
X is usually a subset of the set C([0, T ]; Ω) of all continuous trajectories defined on a given
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time interval [0, T ] and taking values in a given domain Ω, which is typically the closure
of an open bounded subset of Rd. This subset X is usually characterized as the set of all
possible solutions of the control system

(1.2) γ̇(t) = f
(
t, γ(t), u(t)

)
, u(t) ∈ U

where f : [0, T ] × Ω × U → R is the dynamics of the control system and u is a control
input which takes values in a given set U ⊆ R

m. We always work with differential games
and symmetric agents in the sequel. In several works in the literature, for simplicity, the
domain Ω is considered as Td = R

d/Zd due to being a compact manifold without boundary.
However, in the sequel of thesis, we do not make such an assumption on Ω.

MFGs can be seen as limits of differential symmetric N -player games as the number of
agents N tends to infinity. In an N -player game, the location of agents at time t ∈ [0, T ],
can be described by

(
γ1(t), γ2(t), . . . , γN(t)

)
∈ ΩN and their distribution is given by mt =

1
N

∑N
i=1 δγi(t) ∈ P(Ω), where P(Ω) is the space of probability measures on Ω and δγ(t) denotes

the Dirac measure at γ(t) ∈ Ω. Since any probability measure can be approximated by a
finite sum of Dirac measures in the weak topology of P(Ω), an MFG is obtained by replacing
the above measure mt with any arbitrary time-dependent probability measure, still denoted
by mt ∈ P(Ω) for simplicity, which not necessarily the sum of Dirac measures. The measure
mt is called the density of agents.

1.1.1 The MFG system

Equilibria of mean field games are usually characterized by a system of PDEs known as MFG
system, made of a continuity equation coupled with a Hamilton–Jacobi–Bellman equation.
We now briefly describe how to obtain such a system of PDEs from the formulation of the
game in a simple setting following the presentation of [28]. For simplicity, assume that the
control system (1.2), for a representative agent, is given by γ̇(t) = u(t). The minimization
problem (1.1) solved by each agent is here to minimize a cost of the form

(1.3)
∫ T

0

L
(
γ(t), u(t),m(t)

)
dt+ Φ

(
γ(T ),m(T )

)
,

in which the functions L : Ω×Rd×P(Ω) → R and Φ: Ω×P(Ω) → R are called Lagrangian
and final cost, respectively, and T > 0 is fixed. To study the optimization of (1.3) solved by
each agent, one usually defines the value function associated with (1.3) by

(1.4) φ(t0, x) = inf
u∈L2([0,T ];U)

{∫ T

t0

L
(
γ(t), u(t),m(t)

)
dt+ Φ

(
γ(T ),m(T )

) ∣∣∣∣ γ(t0) = x

}
.

Notice that under some adequate assumptions on L, Φ and control u such as uniform bounds,
convexity and superlinearity (see, e.g. [48, Chap. 3 and Chap. 10]), one deduces that the
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infimum in (1.4) is attained. Let us now introduce the Hamiltonian H : Ω×Rd×P(Ω) → R

which is defined through the Fenchel transform of the Lagrangian L in (1.4),

H(x, p,m) = sup
u(t)∈U

(
p · u− L

(
x, u,m(t)

))
, ∀x ∈ Ω, ∀ p ∈ Rd and ∀m ∈ P(Ω).

Furthermore, by using classical techniques in optimal control, for instance those from [27,
Chap. 7], we observe that the value function (1.4) satisfies the following PDE, called Hamil-
ton–Jacobi–Bellman equation, in the sense of viscosity,

(1.5) − ∂tφ(t, x) +H
(
x,∇φ(t, x),m(t)

)
= 0, for (t, x) ∈ (0, T )× Ω.

In addition, the optimal control u corresponding to an optimal trajectory γ is given by

(1.6) u(t) = −∇pH
(
γ(t),∇φ(t, γ(t)),m(t)

)
,

and hence optimal trajectories solve the differential equation γ̇(t) = V (t, γ(t)), where the
velocity field V is given by

(1.7) V (t, x) = −∇pH
(
x,∇φ(t, x),m(t)

)
.

We now wish to describe the evolution of mt through a continuity equation, which is the
other equation in an MFG system. Let us first recall the formal derivation of continuity equa-
tion describing the evolution of a density mt subject to some velocity field V : [0, T ]×Ω → R

d

without source terms in the domain Ω. For simplicity, we assume the measure mt admits a
density, which we also denote by mt or m(t, ·). Considering the integral

∫
ω
m(t, x) dx, which

represents the total mass of agents in some subdomain ω ⊆ Ω with smooth boundary, the
changes of this quantity in ω is only due to the exchanges through the boundary of domain,
i.e.,

(1.8)
d

dt

∫
ω

m(t, x) dx = −
∫
∂ω

m(t, x)V (t, x) · n(x) dσ,

where n is the unit outward normal vector to the boundary ∂ω and σ is the Hausdorff
measure on the boundary ∂ω. On the other hand, one knows by the divergence theorem,

(1.9)
∫
∂ω

m(t, x)V (t, x) · n(x) dσ =

∫
ω

div
(
m(t, x)V (t, x)

)
dx.

Hence by substituting (1.9) into (1.8), it follows

(1.10)
∫
ω

( ∂
∂t
m(t, x) + div

(
m(t, x)V (t, x)

))
dx = 0.

Since ω ⊆ Ω is arbitrary in (1.10), we thus deduce that

(1.11) ∂tm+ div(mV ) = 0 for (t, x) ∈ (0, T )× Ω.

3



Hence, all in all, we have established the following MFG system, containing a Hamilton–
Jacobi–Bellman equation in the form of (1.5) coupled with a continuity equation in the form
of (1.11), with velocity field given by (1.7),

(1.12)


∂tm(t, x)− div

(
m(t, x)∇pH

(
x,∇φ(t, x),m(t)

))
= 0, (t, x) ∈ (0, T )× Ω,

− ∂tφ(t, x) +H
(
x,∇φ(t, x),m(t)

)
= 0, (t, x) ∈ (0, T )× Ω,

m(0, x) = m0, φ(T, x) = Φ
(
x,m(T )

)
, x ∈ Ω,

where m0 is the initial distribution of agents. Notice that mt ∈ P(Ω) satisfies the continuity
equation in the sense of distributions. Under some suitable assumptions on H, there exists
at least one solution (m,φ) ∈ C

(
[0, T ],P(Ω)

)
×W 1,∞([0, T ]×Ω) to the MFG system (1.12)

(see, e.g. [28, Theorem 3.1]), and moreover, uniqueness results are provided particularly by
monotonicity assumption, for instance in the works [28, 69–71].

The description of the equilibrium of an MFG through (1.12) done above is usually known
as the Eulerian approach. Other approaches have also been used in the literature, such as
the Lagrangian approach and, when possible a variational approach described in the next
two sections.

1.1.2 Lagrangian approach

In the previous section, we described the equilibrium of an MFG through a time-dependent
probability measure mt ∈ P(Ω̄). An alternative approach to describe equilibria is to consider
instead a probability measure Q on the space of continuous trajectories C([0, T ]; Ω̄), i.e.
Q ∈ P(C([0, T ]; Ω̄)). The relation between these two measures can be retrieved through the
evaluation map et : C([0, T ]; Ω̄) → Ω̄, defined by et(γ) = γ(t). More precisely, if one considers
the push-forward of Q by evaluation map at time t, it exactly gives us the measure mt, i.e.
et#Q = mt.

The definition of equilibrium is adapted to the Lagrangian setting by saying that such
a Q is an equilibrium if Q-a.e. γ ∈ C([0, T ]; Ω̄) is optimal with respect to the optimization
criterion. The Lagrangian approach is a classical technique in optimal transport, used in
particular to study some problems in incompressible flows, traffic flows and branched trans-
port problems (see, e.g. [6, 13, 18, 34, 85, 87]). Inspiring by this approach from optimal
transport, there are some works about mean field games in the literature using Lagrangian
setting (see, e.g. [12, 21, 29, 33, 75]).

Similarly to the Eulerian setting, we also have here a dependence of the optimal control
problem on the evolution of agents itself, described through Q. For instance for a cost
function of the form (1.3) the Lagrangian term becomes L(γ(t), u(t), et#Q) and similarly
for the final cost Φ. When studying Lagrangian equilibria of MFGs, the dependence of the
optimal control problem with respect to Q is usually an important topic to study.
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1.1.3 Variational approach

This approach describes the equilibrium as a minimizer of some functional, created based
upon the cost function. In the context of games with finitely many players, the variational
approach is more commonly known as potential : the functional minimized by the equilibrium
is called a potential, and games admitting such a functional are called potential games. As an
illustration, consider a two-player game in which players want to minimize the cost functions

player 1: C1(x1, x2) = L(x1) +H(x1, x2),

player 2: C2(x1, x2) = L(x2) +H(x1, x2),

where the the functions L and H represent individual and interaction costs, respectively.
Then, one can define the functional

J(x1, x2) = L(x1) + L(x2) +H(x1, x2),

which leads us to see immediately that minimizers of J are a Nash equilibria of our two-
player game. In the context of mean field games, the variational approach was adapted in
work [12], where the authors consider a model in which each agent is choosing a trajectory
γ(t) and optimizing the quantity∫ T

0

(
|γ̇(t)|2

2
+ g
(
γ(t),mt

))
dt+ Φ

(
γ(T )

)
,

where g : Ω × P(Ω) → R represents the congestion relation between the agents. Then, by
that, they have considered an overall cost functional defined by

J (m, v) :=

∫ T

0

∫
Ω

(
1

2
mt|v|2 +G(x,mt)

)
dx dt+

∫
Ω

ΦdmT ,

where G is the anti-derivative of g with respect to its second variable. Under some appropri-
ate assumptions on J (see, e.g. [12, § 2]) they have concluded the existence of a minimizer
of J (see, e.g. [12, Theorem 2.2]) and shown that it satisfies their MFG system (see, e.g.
[12, Theorem 2.3]). Notice that not all mean field games can be formulated in a variational
framework. According to the model, sometimes constructing of such a functional J is not
easy. For more details and references, we address the reader also to the works [55, 69–71].

1.2 Minimal-time mean field games
Minimal-time MFGs deal with modeling and analysing situations in which the players may
leave the game at different times. In Section 1.1, the minimization criterion was considered
on the interval [0, T ] for some fixed positive T > 0, but in more realistic situations, T is not
necessarily fixed. The players may indeed stop at different times according to the different
parameters of the game. This motivates the study of MFG models with free final time, in
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which time is a part of optimization criterion. For instance, in the work [56], the authors
have considered competing producers with exhaustible resources who leave the market as
soon as they exhaust their capacities. In that model, players wish to maximize their sale
profit, while they must manage their exhaustible resource through a non-negative rate of
production

Another realistic situation in which time can play a role in minimization criterion is crowd
motion. This topic has been widely subject of many works from different perspectives, aim-
ing mainly to studying questions on analysis, control and optimization of crowd behaviour
(see, e.g. [42, 49, 73, 74, 78]). For instance, the work [73] describes crowd behaviour using
a macroscopic perspective, which can be suited to the flow of people in emergency evacua-
tion. In their model, the velocity field of pedestrians is unknown due to incompressibility
constraints, which yields the actual velocity to be the projection of desired one onto the set
of admissible velocities.

Most of the literature in crowd motion does not take into account the strategic choices
of an agent, i.e. the fact that an agent may wish to anticipate the future behaviour of others
and take such an anticipation into account when deciding their own trajectory. Game theory
provides a natural framework to model such an anticipation, which motivated recent works to
consider MFG models for the movement of large crowds. There are several works regarding
this direction such as [12, 20, 33, 67]. These works generally consider the optimization
criterion in a fixed time interval without any restriction on their speed. One may instead
consider that the time interval is not fixed, but that each agent is free to chose their final
time. This means that the agent leaves the game after that time, and they do not therefore
have any contribution to minimize the cost afterwards.

It is also natural to consider constraints on the agent’s maximal speed in terms of be-
haviour of the others around one specific agent. A motivation for such an assumption is the
fact that the congestion which exists around the agent’s position may work as a physical
barrier and it thus prevents them to increase their speed by just paying some additional cost.
There are some cases in which the authors have considered this kind of congestion such as
Ref. [4], while still working on a finite time horizon.

One of the first studies of free final time problems is the work [75], where the authors
have also used the Lagrangian approach in order to formulate the equilibrium. In that work,
the agents are assumed to move in a certain open bounded subset Ω ⊂ R

d aim at reaching
in minimal time a given target set, considered to be the whole boundary of Ω, i.e. ∂Ω. In
other words, the agents are evolving in Ω, and their goal is to leave the domain in minimal
time. In that reference, the authors define the first exit time after time t of a trajectory γ
by

(1.13) τ(t, γ) = inf
{
s ≥ 0 | γ(t+ s) ∈ ∂Ω

}
.

In the optimal control problem, agents’ dynamic K : P(Ω) × Ω → R is considered with
control system

(1.14) γ̇(t) = K
(
mt, γ(t)

)
u(t), u(t) ∈ U .
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Notice that the function K : P(Ω)× Ω → R represents the congestion around an agent and
also interaction between an agent and the others through the density mt. For instance, a
suitable candidate of such a function is given by

K(mt, x) = g

(∫
Ω

χ(x− y)η(y) dmt(y)

)
,

in which g : R+ → R
∗
+ is decreasing, the function χ : Rd → R+ is a smooth convolution

kernel and η : Rd → R+ has C1,1 regularity. The value function is then defined as follows.

(1.15) φ(t, x) = inf
γ∈Adm
γ(t)=x

τ(t, γ),

where Adm is the set of all admissible trajectories starting from x at time t (see, e.g. [75,
Definition 3.1]). After performing the preliminary studies of the optimal control problem,
the authors, under some appropriate assumptions on the agents’ dynamics K, have proved
the existence of a Lagrangian equilibrium after reformulating the notion of equilibrium as
a fixed point of some set-valued map and proving the existence of such a fixed point by
Kakutani fixed point theorem, and moreover, shown the equilibrium satisfies the continuity
equation in the sense of distributions, coupled with a Hamilton–Jacobi equation on the value
function (1.15).

More precisely and from a technical point of view, considering the target set as the
whole boundary, having C1,1 regularity assumption on the function K and uniform exterior
sphere property of Ω are required to show that the value function is Lipschitz continuous
and semiconcave. Even though, the MFG system was established in this work, the optimal
control could not be characterized as an explicit form except when the value function φ is
differentiable. Hence, they only could obtain the MFG system by defining the normalized
gradient (see, e.g. [75]) on their semiconcave value function.

Concerning the characterization of optimal control without having differentiability as-
sumption on the value function φ, the work [47] contains some interesting results regarding
to this direction. The authors have indeed shown that the semiconcavity of the value func-
tion yields to the existence of ∇φ(t, x) along the optimal trajectories, for t ∈ (0, φ(0, x)),
and hence by using Pontryagin maximum principle, one observes the optimal control can be
thus given by − ∇φ(t,x)

|∇φ(t,x)| . Therefore, the MFG system can be established as follows.
∂tm(t, x)− div

(
m(t, x)K(mt, x)

∇φ(t, x)
|∇φ(t, x)|

)
= 0, (t, x) ∈ R∗

+ × Ω,

− ∂tφ(t, x) + |∇φ(t, x)|K(mt, x)− 1 = 0, (t, x) ∈ R+ × Ω,

m(0, x) = m0,

φ(t, x) = 0, (t, x) ∈ R+ × ∂Ω.

The initial and boundary condition, respectively, on m and φ are quite natural, since m0

is the initial agents’ distribution, and on the other hand, if there are some players who are
already on the target set, then the minimal time starting from boundary is obviously zero.
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1.3 Mean field games with state constraints
In this section, we consider an MFG problem in the presence of state constraints. In this
type of models, the agents are constrained to remain in the domain Ω ⊂ R

d, i.e. γ(t) ∈ Ω,
for t ∈ R+. For instance, state constraints appear naturally in the context of crowd motion
to model physical barriers for the movement of agents, such as walls, columns, fences, or
holes, while they also appear naturally in other contexts, such as non-negativity and maximal
capacity constraints for stocks of a product in economics.

Notice that, in the work [75] described previously in Section 1.2, even though the authors
assume that agents’ trajectories γ must satisfies γ(t) ∈ Ω, their model is an unconstrained
MFG, since, for them, the target set was taken as the whole boundary ∂Ω. If, for instance,
the target set was just a part of boundary, then they would have been in state constraints
situation. Furthermore, notice that proving the existence of equilibrium is independent of
been in a free state model or state constraints model. In other words, the existence of
equilibrium can be still done by fixed point arguments, whether in the presence or absence
of state constraints. For instance, in the work [21], the authors have considered an MFG
system for which the constrained MFG equilibria has been established in the Lagrangian
setting. Moreover, due to having some sort of monotonicity on a function in their MFG
system (see, e.g. [21, Theorem 4.1]), uniqueness of equilibrium have been also shown.

One of the consequences of having state constraints on the model is the possible lack
of semiconcavity of value function (see, e.g. [24, Example 4.4]). Classical strategies for
studying mean field games usually rely on semiconcavity of the value function to establish
further properties of the optimal control problem solved by each agent, such as characterizing
optimal controls in terms of the gradient of the value function. In the works [21–23], the
authors have concentrated on a model in the presence of state constraints and shown that
the value function of their optimal control problem is semiconcave but not in the classical
sense, i.e. with a linear modulus of semiconcavity (see, e.g. [27, Remark 1.1.2]). They have
instead shown the value function is semiconcave with a fractional modulus of semiconcavity
(see, e.g. [23, Theorem 3.1 and Corollary 3.2]) thanks to which the optimal control u has
been characterized and continuity equation is deduced (see, e.g. [23, Theorem 4.5]). Notice
that the equilibrium and Hamilton–Jacobi–Bellmann equation have been established with
no major difficulties.

Another major issue of working with state constraints in optimal control problems consists
in applying Pontryagin maximum principle in order to obtain further information on optimal
trajectories and controls. Indeed, the necessary conditions provided by Pontryagin maximum
principle involve an additional Radon measure in the equation of the costate, which comes
from the presence of state constraints and is supported only on time instants in which the
trajectory touches the boundary of the constrained set (see, e.g. [40, Theorem 5.2.1]). The
presence of this additional term and its lack of regularity make it harder for one to deduce
properties of the costate and of optimal trajectories.

In order to overcome the previous difficulty, [25] proposes an alternative approach which
consists in applying Pontryagin maximum principle to a modified optimal control problem
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in which the state constraint is replaced by a suitable (non-smooth) penalization. Such a
penalization allows the trajectories to violate the constraints, and one of the main results in
[25] states that, if the penalization parameter is small enough, and under suitable regularity
assumptions on the constraints, optimal trajectories of the unconstrained penalized problem
coincide with those of the original constrained problem.

Let us present in more details the difficulties discussed above by following the presentation
of [25]. Consider the control system (1.16) submitted to a state constraint of the form
γ(t) ∈ Ω.

(1.16)

{
γ̇(t) = f

(
t, γ(t), u(t)

)
for a.e. t ∈ [0, T ],

γ(0) = x0.

By applying the Pontryagin maximum principle with state constraints from [40, Theo-
rem 5.2.1], there exist the functions p, h and a Radon measure µ such that

(1.17) (ḣ(t),−ṗ(t), γ̇(t)) ∈ ∂H
(
t, x(t), p(t) + ψ(t)

)
,

where H is corresponding Hamiltonian and ∂H denotes the generalized gradient of H (see,
e.g. [40, § 1.2]) and

ψ(t) =

∫
[0,t)

νΩ
(
γ(s)

)
dµ(s)

h(t) = H
(
t, γ(t), p(t) + ψ(t)

)
,

in which νΩ
(
γ(t)

)
is in the normal cone to Ω at γ(t), and the measure µ is supported on

those times for which γ(t) ∈ ∂Ω. Under appropriate assumptions on H and having enough
smoothness on ∂Ω, the authors in [25] show that (1.17) can be rewritten as

(1.18)
γ̇(t) = ∇pH

(
t, γ(t), p(t)

)
−ṗ(t) = ∇xH

(
t, γ(t), p(t)

)
− λ(t)νΩ

(
γ(t)

)
1∂Ω
(
γ(t)

)
,

where λ is a measurable function, depending only on H and ∂Ω, and 1∂Ω is characteristic
function on the boundary. The above formulation is more explicit and usually easier to work
with than (1.16), since the term ψ(t) is replaced by a more explicit term in the equation of
ṗ.

More precisely, in order to obtain (1.18) from (1.16), the authors in [25] proceed by first
defining the signed distance to the boundary to the boundary d±∂Ω : Rd → R

d±∂Ω(x) = dΩ(x)− dRd\Ω(x),

where dΩ(x) = inf
{
|x−y| | y ∈ Ω

}
. Then, under some regularity assumption on Hamiltonian

H, they have deduced the following result ([25, Theorem 2.1]), stating that there exist a
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Lipschitz continuous functions p : [0, T ] → R
d, with |p(t)| > 0, and a bounded measurable

function λ(t) ≥ 0 such that{
γ̇(t) = ∇pH

(
t, γ(t), p(t)

)
for a.e. t ∈ [0, T ]

−ṗ(t) = ∇xH
(
t, γ(t), p(t)

)
− λ(t)∇d±∂Ω(γ(t)), for a.e. t ∈ [0, T ],

The proof relies on applying a penalization technique by considering a penalized control
system without state constraint. More precisely, the perturbed function fϵ and Hamiltonian
Hϵ are respectively defined by

fϵ
(
t, x, u

)
= f

(
t, x, u

)(
1− 1

ϵ
dΩ
(
x
))

+

Hϵ

(
t, x, p

)
= H

(
t, x, p

)(
1− 1

ϵ
dΩ
(
x
))

+
,

where the notation “+” refers to positive part. Thus, the unconstrained control system is
given by

(1.19)

{
γ̇ϵ(t) = fϵ

(
t, γϵ(t), uϵ(t)

)
for a.e. t ∈ [0, T ],

γϵ(0) = x0.

and, by applying the unconstrained Pontryagin maximum principle, one obtains the system γ̇ϵ(t) = ∇pH
(
t, γϵ(t), pϵ(t)

)(
1− 1

ϵ
dΩ
(
γ(t)

))
+

for a.e. t ∈ [0, T ],

−ṗϵ(t) ∈ ∇xHϵ

(
t, γϵ(t), pϵ(t)

)
, for a.e. t ∈ [0, T ],

where γϵ represents the optimal trajectory for an unconstrained problem.
In order to relate the optimal trajectories of the original, constrained problem with those

of the penalized problem, the authors in [25] show that both sets of optimal trajectories
actually coincide if ϵ is small enough. Hence, optimal trajectories of the original problem
can be characterized though Pontryagin maximum principle applied to the penalized problem
with small enough ϵ, yielding the main result of [25].

1.4 Mean field games of controls
In all the MFG models discussed earlier in Sections 1.1, 1.2 and 1.3, the interaction between
agents happens only through their state, i.e. the trajectory γ of an agent depends on the other
agents only through m, which represents the distribution of positions of other agents. Mean
field games of controls have been introduced to model situations in which an agent depends
on the behavior of others not only through their state, but also though their controls. This
kind of interaction appears naturally in many applications: in crowd motion, for instance,
this would correspond to agents taking decisions based not only on other agents’ positions,
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but also on their velocities. This consist in having a mean field type interaction between
agents not only thorough their distribution on the state, but also through their controls.
Notice that this property can make the analysis of the model more difficult, by the fact that
the Hamiltonian H also depends on the other agent’s control. Let us now review some of
the works in this direction such as [16, 31, 32, 54, 86].

For instance in the work [31], the authors have considered a model inspired by trade
crowding which deals with taking decision to buy or to sell a large number of productions or
contracts. Modeling of such an interaction between the price dynamics, which plays a role as
the control, and trading process is quite difficult, since in reality theses dynamics describe the
managing of assets by buying or selling the productions. Their framework indeed concerns
the finite time interval [0, T ], since by the model their starting point was optimal liquidation
problem for which T usually stands as a day or a week. After establishing the MFG system
associated with their model [31, § 2, system (9)], they have proposed a general model for
mean field games of controls [31, § 5].

In the work [32], the authors have studied the long time behaviour of solutions to the
first-order MFG system with a control on the acceleration. They have considered an ergodic
system for which the long-time average of value function converges to an ergodic constant
which is represented as a minimum of Lagrangian over a suitable class of closed probability
measures (see, e.g. [32, Theorem 2.2]). However, that ergodic system may make no sense in
the first sight due to the mean field interaction in the Hamilton–Jacobi equation, and the
authors have then investigated the solution to such a system (see, e.g. [32, Theorem 2.5]).

Some works have approached mean field games of controls through a random variable
framework. This is the case, for instance, of [54] which considers mean field games with
interactions in state and control through a random variable approach. More precisely, in their
MFG system, the Hamiltonian depends on X and Ẋ, where X : [0, T ] → Lq(Ω;Rd) is a path
in the space of random variables. Moreover, instead of considering the continuity equation in
order to describe the agents’ evolution, the control system Ẋ = −∇pH(X,∇pφ(X, t), X, Ẋ)
was used, which can be seen as a continuity equation formulated in terms of the random
variable X instead of its distribution. The authors have indeed shown the existence of a
Lipschitz continuous value function φ : Rd × [0, T ] → R and a C1,1 random variable X such
that their MFG system is satisfied (see, e.g. [54, Theorem 1]).

In contrast to the previous work [54], which was based on random variable framework, the
work [16] refers to a deterministic optimal control problem involving nonlinear dynamics and
mixed state-control constraints. In their model, the interaction between the agents’ control
occurs in a price variable and a congestion term, based on the collective behaviour of the
agents. This price variable penalizes linearly the agent’s control, which can be interpreted as
a demand. As a matter of fact, this kind of frameworks are suitable to some models in which
companies compete without market power such as the energy markets containing a large
number of small storage devices. As an another application of these mixed state-control and
final state constraints, one can look at the storage devices which are necessarily loaded at
the end of the time frame.

To finish this part, let us discuss the work [86] in which the model is built upon a
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Cucker–Smale inspired MFG with velocity interactions. The Cucker–Smale model describes
the evolution of N particles which are usually representing a bunch of birds in movement.
The state xi of the i-th bird in the population is modelled by the system

x′i = vi, v′i = − 1

N

∑
j ̸=i

η(xi − xj)(vi − vj),

where η is a decreasing function of distance between two agents and is used in the spirit of
making a particle to align its velocity to that of the others. Inspired by that, a very simple
example of a game model, should contain, in the cost function of agent i, a term of the form∫ T

0

∑
j

1

2
η
(
xi(t)− xj(t)

)
|x′i(t)− x′j(t)|2 dt,

From modeling point of view, another term should be contained in the cost which rep-
resents the kinetic energy of each player. The global cost, for each agent, has therefore the
following form.∫ T

0

(
δ

2
|ẋi(t)|2 + λ

∑
j

1

2
η
(
xi(t)− xj(t)

)
|ẋi(t)− ẋj(t)|2

)
dt+ Φ

(
xi(T )

)
,

for some positive parameters δ and λ and final cost Φ. Since the authors have considered
the model in the Lagrangian setting, they have thus used a probability measure Q on the
space of continuous curves, for which the cost function in this continuous setting takes the
form ∫ T

0

(
δ

2
|γ̇(t)|2 + λ

∫
C([0,T ];Ω̄)

1

2
η
(
γ(t)− γ̃(t)

)
|γ̇(t)− ˙̃γ(t)|2 dQ(γ̃)

)
dt+ Φ

(
γ(T )

)
.

Notice that since the cost function is invariant under translation of all trajectories by a
common time-dependent vector, then the compactness property will be therefore lost, and
as a consequence, proving the existence of equilibrium by some fixed point arguments such
as Kakutani, is not so straightforward. Hence, the authors have shown the existence of
an equilibrium Q ∈ P(C([0, T ]; Ω̄)) in a variational framework, by building an appropriate
overall functional J (Q), whose minimizers are equilibria of the game, where the existence
of such a minimizer relies a lot on the lower semicontinuity of the functional J .

1.5 Contributions
Having considered the previous sections, we are now ready to justify the aims and motivations
of this thesis, which are essentially based on studying MFG models motivated by their
potential applications in crowd motion. One of the motivations behind this thesis is to
study models in which the agents do not necessarily stop their optimization criterion all at
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the same time, while furthermore, each agent may belong to a different population with a
different optimization criterion for each population. Secondly, rather than taking the agents
into accounts in a free state model by putting some restrictive assumptions such as taking
the target set as the whole boundary, like in Section 1.2, the agents may optimize their cost
function subject to some certain state constraints, which is usually the case from practical
point of view. Finally, another practical and realistic situation is due to having the agents’
interaction not only through their density, but also relying their optimization criterion on
the direction of the movement of the others. Let us now present our contribution to the
literature as the different chapters of this thesis which are organized as follows. The first
chapter is dedicated to multipopulation minimal-time mean field games, while the second and
third ones are nonsmooth mean field games with state constraints and a variational mean
field game of controls with free final time and pairwise interaction, respectively.

1.5.1 Multipopulation minimal-time mean field games

We here present the idea, novelties and difficulty of the problem, and then the results that we
have established on it, based on the work [83], described in Chapter 2. Since by hypotheses
of mean field game theory, the agents are indistinguishable and the individual behaviour of
an agent does not affect the whole crowd, one may come up with considering some identical
agents as a group or population and thus separating them into several parts, where each part
is now considered as a new identical population for which the general movement direction
interests us rather than individual movement of each agent. This, hence, motivates to
generalize the previous minimal-time mean field games works in the literature. Similar to
the work [75], described in Section 1.2, this part refers to the minimal time mean field games
in which the agents may reach the target set at different times and time is indeed the main
part of optimization criterion, which essentially yields that there is no definite time interval
[0, T ] on which the agents leave the game. In contrast to lots of works in the literature, but
again similar to [75] the agents are not able to move as fast as they want only by paying
some additional cost. Therefore, their maximal speed is bounded by the density of the other
agents.

Let us now go through the main novelties of this contribution. The first novelty is to
consider N populations of agents who are evolving in the space Rd, instead of inside of a
compact subset of Rd, with N target sets, one for each population, and specific dynamics
Ki in the form (1.14), for i ∈ {1, . . . , N}. One of the difficulties of this setting is the fact
that we work in a noncompact space, but this can be easily overcome thanks to the following
result (see Chapter 2, Proposition 2.4.4).

• Consider the optimal control problem of reaching a nonempty closed set Γ ⊂ R
d in min-

imal time with dynamics γ̇(t) = k(t, γ(t))u(t), where k : R+ ×Rd → R+ is continuous
and upper and lower bounded by positive constants. Let φ be the corresponding value
function. Then there exist two nondecreasing maps with linear growth ψ, T : R+ → R+

depending only on target set and the agent’s speed bounds such that, for every R > 0,
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t0 ∈ R+, x0 ∈ BR, we have φ(t0, x0) ≤ T (R) and, for every optimal γ starting from
x0, we have γ(t) ∈ Bψ(R) for every t ≥ 0.

In the above statement, BR is the closed ball centred at the origin with radius R. This result
says that, if an initial point of an agent starts from a ball with radius R > 0, for a fixed R
but arbitrary, then its trajectory must remain in a ball with radius ψ(R), and its exit time is
at most T (R). Thanks to this result, we can prove existence of a Lagrangian equilibrium Q
for the multipopulation minimal-time mean field game considered here by following roughly
the same fixed-point strategy as in [75], as described in Chapter 2, Section 2.5.1.

Concerning the asymptotic behaviour of the probability measure mt = et#Q ∈ Pp(Rd)
as t → +∞, we need first to make sense the evaluation map at +∞ by proving its Borel
measurability, for which we refer the reader to [83, § 5.2], then provide the following statement
on each population (see Chapter 2, Theorem 2.5.8; the population index is omitted here for
simplicity).

• Let Q be an equilibrium and mt = et#Q. There exists m∞ ∈ P(Rd) such that mt → m∞
as t→ +∞.

• Let p ∈ [1,+∞), and assume that m0 ∈ Pp(Rd). Then for every t ∈ [0,+∞], we have
mt ∈ Pp(Rd) and moreover mt → m∞ in the sense of usual Wasserstein distance Wp,
where Pp(Rd) =

{
µ ∈ P(Rd) |

∫
Rd |x|p dµ(x) < +∞

}
.

• Assume that m0 is compactly supported. Then, for every t ∈ [0,+∞], mt is compactly
supported and there exists τ ≥ 0 such that

mt = m∞, ∀ t ≥ τ.

Finally, the main contribution of this part will be dedicated to relaxing the regularity
assumption on the agents’ dynamics. To the best of our knowledge, this is the first study of
a minimal-time mean field game without having C1,1 regularity assumption on the dynamics
of each agent. This assumption is indeed used in other works to establish the semiconcavity
of value function of the optimal control problem, which is a key property to provide the
differentiability of value function along the optimal trajectories, by which one can recognize
the velocity field of the continuity equation and thus deduce that continuity equation is
satisfied by equilibria.

We overcome this difficulty by taking advantage of a new technique which does not rely
on C1,1 regularity assumption. To justify this technique, we first need to recall the dynamic
programming principle (for more details, see, e.g [11, Proposition 2.1]).

• Consider the same optimal control problem as before and its value function φ. Then,
for every (t0, x0) ∈ R+ ×Rd and γ ∈ Adm with γ(t0) = x0, we have

φ
(
t0 + h, γ(t0 + h)

)
+ h ≥ φ(t0, x0), for every h ≥ 0,

with equality for every h ∈ [0, τ(t0, γ)], if γ is optimal.
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Inspired by this inequality, and assuming the dynamics K to be continuous in both variables
and Lipschitz continuous in its state variable, we have that, for every u0 ∈ Sd−1,

φ
(
t0 + h, x0 + hK(m0, x0)u0

)
− φ(t0, x0)

h
≥ −1 + o(1), as h→ 0+.

The goal is now to conclude that an element u0 is the optimal direction where the above ratio
attains its infinitesimal lower bound −1 at the limit h→ 0+, which essentially corresponds to
those directions in which φ decreases with maximal rate. Hence, based on this explanation,
we propose the following definition.

• We define the set U(t0, x0) of optimal directions at (t0, x0) as the set of all u0 ∈ Sd−1 for
which there exists an optimal trajectory γ such that the corresponding optimal control
u satisfies u(t0) = u0.

• We define the set W(t0, x0) of directions of maximal descent of φ at (t0, x0) as the set
of all u0 ∈ Sd−1 such that

(1.20) lim
h→0+

φ
(
t0 + h, x0 + hK(m0, x0)u0

)
− φ(t0, x0)

h
= −1.

If W(t0, x0) contains exactly one element ω0, then −ω0 is called the normalized gradient of φ
at (t0, x0) and denoted by −ω0 = ∇̂φ(t0, x0). In order to deduce the MFG system, one needs
to specify the velocity field of continuity equation. To do so, we have provided the following
result under some appropriate assumptions on the game (see Chapter 2, Theorem 2.4.14).

• For every (t0, x0) ∈ R+ ×Rd, we have U(t0, x0) = W(t0, x0).

The proof of the inclusion U(t0, x0) ⊂ W(t0, x0) follows easily from the dynamic programming
principle, but converse inclusion is more delicate to show. Given an element u0 ∈ W(t0, x0),
we prove that u0 is indeed an optimal direction by reasoning by contradiction: if it is not, we
construct a trajectory starting from (t0, x0) going in a different direction from u0 and arriving
at the target set strictly faster than the optimal time φ(t0, x0), yielding the conclusion.

Since the set U(t0, x0) admits a unique element along the optimal trajectories, thanks to
the result shown in Chapter 2, Proposition 2.4.12, then one concludes the same for the set
W(t0, x0). Hence, the MFG system can been established by using the normalized gradient as
the velocity field of continuity equation, which is satisfied in the sense of distribution, while
the Hamilton–Jacobi–Bellman equation holds in the viscosity sense (see [83, Theorem 5.11]).

1.5.2 Nonsmooth mean field games with state constraints

We now present the main results of Chapter 3 of this thesis, which is based on [81]. As
discussed in Section 1.3, the goal of this part is to study the model when the agents are
restricted to remain in a certain Ω ⊂ R

d, where this constraint representing the fact that
agents cannot cross walls, columns, fences, hedges, or other kind of obstacles. In this case,
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even though providing the existence of equilibria is not a difficult issue, as it has already been
done in [75], characterization of optimal control as the velocity field of continuity equation
in an MFG system is a more delicate question.

This characterization can typically be done based on the semiconcavity of the value func-
tion, which may fail in state-constrained models, even with C1,1 regularity assumption on the
agents’ dynamics. Even though there are some techniques in the literature to overcome the
state-constrained difficulty by establishing the fractional semiconcavity of the value function
instead of classical semiconcavity (see, e.g. [21–23]), it is not clear how these techniques could
be adapted to the present setting of mean field games with free final time. Hence, the idea
is to take advantage of the technique which was discussed in Section 1.5.1 and the penaliza-
tion technique in Section 1.3, in order to apply Pontryagin maximum principle without the
difficulties coming from the Radon measure which appears in the optimality system.

In contrast to the Section 1.3 and more generally, we take the target set Γ ⊂ Ω as
a closed subset of Ω and not necessarily ∂Ω, and consider the penalized optimal control
problem and set of optimal trajectories started at time t0 and position x0, described in
Section 1.3. In order to retrieve additional properties of optimal trajectories and controls,
we apply Pontryagin maximum principle (as stated in [88]), to an unconstrained penalized
problem constructed in a similar spirit to the penalization technique described in Section 1.3
(see Chapter 3, Propositions 3.4.3 and 3.4.5). Since the penalized dynamics is non-smooth,
tools from non-smooth analysis (see Chapter 3, Lemma 3.4.4) are needed in order to obtain
the desired properties.

Finally, still making use of the penalization technique, we can show, similarly to Sec-
tion 1.3, that optimal trajectories of the penalized problem coincide with optimal trajectories
of the original problem. Therefore, starting from a point inside of the domain, including the
boundary, assures that the agent will remain in Ω̄, which is actually a particular case of the
following result (see Chapter 3, Proposition 3.4.7).

• There exists ϵ0 > 0 such that, for every ϵ ∈ (0, ϵ0), (t0, x0) ∈ R+ ×Rd, if γ is optimal
with respect to the penalized optimal control system, then we have dΩ

(
γ(t)

)
≤ dΩ(x0)

for every t ∈ R+. In particular, if x0 ∈ Ω̄, then γ(t) ∈ Ω̄ for every t ∈ R+.

As a consequence of that, one observes (see Chapter 3, Theorem 3.4.8)

• There exists ϵ0 > 0 such that, for every ϵ ∈ (0, ϵ0) and (t0, x0) ∈ R+ × Ω̄, the optimal
trajectories of penalized control system are optimal with respect to the original control
system and vice versa.

Regarding the characterization of optimal control, we proceed similarly to Section 1.5.1.
The main difficulty due to the state constraint is that, if an agent starts their movement
from the boundary, i.e. x0 ∈ ∂Ω, then at the position x0 + hK(m0, x0)u0, he may have left
the domain Ω, i.e. x0 + hK(m0, x0)u0 /∈ Ω̄, and as a matter of fact, the limit (1.20) does
not make sense anymore. Hence, we modify the definition of directions of maximal decent
as follows.
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• For (t0, x0) ∈ R+ × Ω̄, we define the set Wϵ(t0, x0) of directions of maximal descent of
φϵ at (t0, x0) by

Wϵ(t0, x0) =

{
u0 ∈ Sd−1

∣∣∣∣∣ lim
h→0+

φϵ
(
t0 + h, x0 + hK(m0, x0)u0

)
− φ(t0, x0)

h
= −1

}
.

We can again show this set Wϵ coincides with U , which leads us to deduce the MFG system in
the presence of state constraint (see Chapter 3, Theorem 3.5.2). Moreover, some additional
properties on value function can be concluded such as boundary conditions on R+× (∂Ω\Γ)
(see Chapter 3, Theorem 3.4.11).

• The value function φ satisfies ∇φ(t, x) · n(x) ≥ 0 in the viscosity supersolution sense
for every (t, x) ∈ R+ × (∂Ω \ Γ), where n is the unit outward vector to the boundary
∂Ω \ Γ.

1.5.3 A variational mean field game of controls with free final time
and pairwise interaction

The results described in this section are those from Chapter 4, which is based on the work
in preparation [84].

One of the main drawbacks of the MFG models considered in Sections 1.5.1 and 1.5.2 is
that they consider that agents only interact through their positions. We now consider situa-
tions in which agents also take into account other agents’ controls in their own optimization
criterion. This allows for more realistic models for crowd motion, by allowing a pedestrian’s
choice to depend not only on the position of others but also where they are going.

In contrast to Section 1.5.2, where obtaining the equilibria was not a major issue, here we
need to establish existence of equilibria. For that purpose, we adopt a variational approach,
discussed in Section 1.1.3. Notice that we are still in a Lagrangian setting to describe the
model, however we aim at describing equilibria in a variational setting, instead of a fixed-
point setting.

The model we consider here is based on that from [86], which was discussed in Section 1.4.
The main novelty here is that we consider an optimization criterion with free final time, as
discussed in Section 1.2, which brings some additional technical difficulties with respect
to the approach taken in [86]. In addition, we also consider a more general individual
cost for each agent, which is the integral of some running cost ℓ

(
t, γ(t), γ̇(t)

)
as well as

a more general interaction cost h
(
t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)

)
, where ℓ and h satisfy standard

assumptions. Therefore, the cost function, which each agent minimizes, can be represented
as follows.

(1.21)
∫ +∞

0

ℓ
(
t, γ(t), γ̇(t)

)
dt+

∫
C

∫ τ(γ)∧τ(γ̃)

0

h
(
t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)

)
dt dQ(γ̃) + Ψ

(
τ(γ)

)
,

where τ is the exist time defined as in (1.13) in Section 1.2, Ψ is an increasing final cost
which penalizes the exist time, respectively, and C = C(R+; Ω̄) has been set, for simplicity.
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In order to show existence of an equilibrium of the game, we first define a notion of
equilibrium of this game by the following definition,

• Let m0 ∈ P(Ω̄). A measure Q ∈ P(C) is called equilibrium of MFG, with initial
condition m0, if e0#Q = m0 and∫

C
F (γ,Q) dQ(γ) < +∞, F (γ,Q) = inf

ω∈C
ω(0)=γ(0)

F (ω,Q), Q-a.e. γ ∈ C,

where F (γ,Q) is the cost function defined by (1.21).

We now aim at introducing a global cost functional J whose minimizers should yield
equilibria of the MFG. For that purpose, we consider the functional J defined by

J (Q) =

∫
C×C

J(γ, γ̃) d(Q⊗Q)(γ, γ̃),

where J(γ, γ̃) represents the individual and interaction costs of two arbitrary agents γ and
γ̃ together with their final costs, i.e.,

J(γ, γ̃) =

∫ +∞

0

ℓ
(
t, γ(t), γ̇(t)

)
+ ℓ
(
t, γ̃(t), ˙̃γ(t)

)
dt

+

∫ τ(γ)∧τ(γ̃)

0

h
(
t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)

)
dt+Ψ

(
τ(γ)

)
+Ψ

(
τ(γ̃)

)
.

Based on the variational approach, explained in Section 1.1.3, there is a tonic relation between
the minimizers of functional J and equilibria of a game, which is not obvious and needs to
be verified, as follows (see Chapter 4, Theorem 4.5.2).

• Every minimizer of J is an equilibrium of the game.

On the other hand, we can also prove the following result (see Chapter 4, Theorem 4.5.3).

• The functional J admits a global minimizer.

Hence as a consequence of that, we deduce the main result of Chapter 4, stated in Theo-
rem 4.5.4, namely,

• There exists an equilibrium Q ∈ P(C) for the game with initial condition m0.
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Chapter 2

Multipopulation minimal-time mean
field games

In this chapter, we consider a mean field game model inspired by crowd motion in which
several interacting populations evolving in Rd aim at reaching given target sets in minimal
time. The movement of each agent is described by a control system depending on their posi-
tion, the distribution of other agents in the same population, and the distribution of agents
on other populations. Thus, interactions between agents occur through their dynamics. We
consider in this chapter the existence of Lagrangian equilibria to this mean field game, their
asymptotic behavior, and their characterization as solutions of a mean field game system,
under few regularity assumptions on agents’ dynamics. In particular, the mean field game
system is established without relying on semiconcavity properties of the value function.

2.1 Introduction
Mean field games (MFGs for short) are differential games with a continuum of agents assumed
to be rational, indistinguishable, and influenced only by an averaged behavior of other agents
through a mean-field type interaction. Following previous works in the economics literature
on games with infinitely many agents [8, 9, 66], the theory of mean field games has been
introduced in 2006 by the simultaneous works of Jean-Michel Lasry and Pierre-Louis Lions
[69–71], and of Peter E. Caines, Minyi Huang, and Roland P. Malhamé [61–63], motivated by
problems in economics and engineering and with the goal of approximating Nash equilibria
of games with a large number of symmetric agents. Since their introduction, mean field
games have been extensively studied in the literature and several research topics have been
addressed, both from theoretical and applied perspectives. The main goal is typically to
study equilibria of such games, which are usually characterized as solutions of a system of
PDEs, called MFG system. We refer to [28, 30, 36, 37, 53] for more details and further
references on mean field games.

In this chapter, we consider a mean field game model inspired by crowd motion in which
a multi-population crowd wishes to arrive at given target sets in minimal time. Motivated by
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modeling, control, and optimization objectives, the mathematical analysis of crowd motion
is the subject of a very large number of works from diverse perspectives [43, 51, 58–60, 72,
77, 78, 80]. Among other points of view commonly adopted in the literature, the macroscopic
modeling of crowds consists in approximating the location of the finitely many agents in the
crowd by a continuous distribution, which is usually assumed to evolve according to some
conservation law, and is the natural framework for a mean field game model of crowd motion.

Some previous works on mean field games, such as [1, 3, 12, 20, 33, 35, 46, 47, 67, 75, 76],
have considered mean field games for, or related to, crowd motion. For instance, [67] proposes
a MFG model for a two-population crowd with trajectories perturbed by additive Brownian
motion and considers both their stationary distributions and their evolution on a prescribed
time interval. Other works also considered multi-population MFGs, such as [1, 35], which
study in particular a two-population MFG model motivated by urban settlements. The work
[20] considers the fast exit of a crowd, whose agents are perturbed by additive Brownian
motion, and proposes a mean field game model, which is studied numerically. Even though
[33] is not originally motivated by the modeling of crowd motion, the MFG model studied in
that reference presents a density constraint, preventing high concentration of agents, which
is a natural assumption in some crowd motion models. We refer to [76] for second-order
mean field games with density constraints. Numerical simulations for some variational mean
field games related to crowd motion are presented in [12].

The present work is more closely related to [46, 47, 75], which present some particular
characteristics with respect to most of the MFG literature. Firstly, contrarily to a large part
of the MFG literature but similarly to [20] and some other works with motivation unrelated
to crowd motion, such as [56], references [46, 47, 75] consider mean field games in which
agents do not necessarily stop all at the same time, but may instead have different stopping
times, which are actually the main part of the optimization criterion. Secondly, most of
MFG models consider that agents are free to choose their speed, with high speeds penalized
in the optimization criterion of each agent, but [46, 47, 75] assume instead that agents may
move only up to a certain maximal speed, which depends on the average distribution of
agents around their position. As detailed in [75], this assumption is intended to model
crowd motion situations in which an agent may not be able to move faster by simply paying
some additional cost, since the congestion provoked by other agents may work as a physical
barrier for the agent to increase their speed. We refer to [46, 47, 75] for more details on the
motivation of the model and its relation to other crowd motion models.

Similarly to [46, 47, 75], the MFG studied in this chapter assumes that agents want to
minimize their time to reach a certain target set, their optimal control problem being thus
with a free final time, and that their maximal speed is bounded in terms of the density of
agents around their position. Several novelties are considered in the MFG from the present
chapter. Firstly, we assume that the agents taking part in the game are not all identical,
but are instead subdivided in N populations. Each population i ∈ {1, . . . , N} may present
different dynamics and different target sets. This additional assumption brings no major
difficulty in the analysis of the MFG but allows for the representation of more realistic
situations, such as two populations in a corridor starting at opposite sides, each one wanting
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to reach the other side in minimal time. We also allow for the interaction of an agent with
other agents of the same population to be different than their interaction with agents of
other populations, in order to model the fact that it may be easier to move with other agents
that want to reach the same target, and hence move in the same general direction, than to
move in a crowd of people going on different directions.

Another novelty from the present chapter with respect to [46, 47, 75] is to consider
that agents move on Rd, instead of on a compact subset of Rd. Lack of compactness of
the state space brings additional difficulties in the analysis of the MFG, in particular since
we are interested in situations in which the initial distribution of agents is not necessarily
compactly supported, but these difficulties can be overcome by exploiting suitable properties
of optimal trajectories. In particular, the time for an agent to reach their target set is no
longer uniformly bounded, but we are able to provide sharp bounds on the convergence rate
of the distribution of agents towards their limit distribution concentrated in the target set.
We also remark that, contrarily to [46, 47, 75], the target sets are not assumed to be the
boundary of a compact domain, but can be arbitrary nonempty closed subsets of Rd.

Finally, we also relax the regularity assumptions on the dynamics of agents from [47, 75],
requiring only continuity with respect to the distributions of other agents and Lipschitz
continuity with respect to the space variable. In those references, similar assumptions were
used to prove existence of Lagrangian equilibria, but additional regularity assumptions were
required to characterize such equilibria as solutions of a MFG system. These additional
assumptions were used in [47, 75] to obtain semiconcavity of the value function of the optimal
control problem solved by each agent, which is a key step to obtain differentiability of the
value function along optimal trajectories and hence deduce that the velocity field in the
continuity equation of the MFG system is well-defined and continuous on the support of
the distribution of agents. By not requiring these additional regularity assumptions, the
present chapter uses instead different techniques to study the velocity field appearing in the
continuity equation, based on a detailed study of some properties of optimal trajectories,
which allows us to obtain the MFG system without relying on the semiconcavity of the value
function. This is probably one of the main contributions of the present chapter and brings
several interesting perspectives, in particular since these techniques might be adapted to
other MFG models in which semiconcavity of the value function is known not to hold, such
as in some MFGs with state constraints. We also refer the interested reader to [21–23] for
other approaches for dealing with MFGs with state constraints.

The notion of MFG equilibrium is formulated in this chapter in a Lagrangian setting,
which describes the motion of agents by a measure on the set of all possible trajectories,
instead of the more classical approach consisting in describing the evolution of agents through
a time-dependent measure on the space state. The Lagrangian approach is classical in
optimal transport problems (see, e.g., [6, 13, 18, 34, 85, 87]) and has also recently been used
in several works on mean field games [12, 21, 29, 33, 47, 75].

This chapter is organized as follows. Section 2.2 settles the main notations used in the
chapter, while Section 2.3 describes the mean field game model considered here together
with its associated optimal control problem solved by each agent, and presents the main
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tools used in the sequel. Section 2.4 presents the important results on the optimal control
problem needed for the sequel of the chapter. The main results on our MFG model are
provided in Section 2.5, which proves the existence of an equilibrium, studies its asymptotic
behavior at large times, and shows that the distribution of the agents and the value function
of the optimal control problem solved by each agent can be characterized by the system of
partial differential equations known as MFG system.

2.2 Notation and preliminary definitions
In this chapter, N and d are fixed positive integers. The set of nonnegative real numbers is
denoted by R+. We denote the usual Euclidean norm in Rd by |·| and the unit sphere in Rd

by Sd−1. Given x ∈ Rd and R ≥ 0, we write B(x,R) for the closed ball centered at x and of
radius R. When x = 0, this ball is denoted simply by BR. We use P(Rd) to denote the set
of all Borel probability measures on Rd, which is assumed to be endowed with the topology
of weak convergence of measures.

Given two sets A,B, a set-valued map F : A⇒ B is a map that, to each a ∈ A, associates
a (possibly empty) set F (a) ⊂ B.

Recall that, for two metric spaces X and Y endowed with their Borel σ-algebras and a
Borel map f : X → Y , the pushforward of a measure µ on X through f is the measure f#µ
on Y defined by

f#µ(B) = µ(f−1(B))

for every Borel subset B of Y . We extend the pushforward notation componentwise to
vectors of measures: if µµµ = (µ1, . . . , µN) with µi a measure on X for every i ∈ {1, . . . , N},
then we set f#µµµ = (f#µ1, . . . , f#µN).

We define, for p ∈ [1,+∞), the set

Pp(Rd) =

{
µ ∈ P(Rd)

∣∣∣∣ ∫
Rd

|x|p dµ(x) < +∞
}
.

We endow Pp(Rd) with the usual Wasserstein distance Wp, defined by

(2.1) Wp(µ, ν) = inf

{∫
Rd×Rd

|x− y|p dλ(x, y)
∣∣∣∣ λ ∈ Π(µ, ν)

}1/p

,

where Π(µ, ν) =
{
λ ∈ P(Rd ×Rd)

∣∣ π1#λ = µ, π2#λ = ν
}

and π1, π2 : Rd × R
d → R

d

denote the canonical projections onto the first and second factors of the product Rd ×Rd,
respectively.

Given two metric spaces X and Y and M > 0, C(X;Y ), Lip(X;Y ), and LipM(X;Y )
denote, respectively, the set of all continuous functions from X to Y , the set of all Lips-
chitz continuous functions from X to Y , and the subset of Lip(X;Y ) containing only those
functions whose Lipschitz constant is at most M .
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For t ∈ R+, we denote by et : C(R+;R
d) → R

d the evaluation map at time t, defined
by et(γ) = γ(t) for every γ ∈ C(R+;R

d). We remark that C(R+;R
d), endowed with the

topology of uniform convergence on compact sets, is a Polish space, which is complete when
endowed, for instance, with the metric d given by

(2.2) d(γ1, γ2) =
∑
n>0

1

2n
supt∈[0,n]|γ1(t)− γ2(t)|

1 + supt∈[0,n]|γ1(t)− γ2(t)|

for γ1, γ2 ∈ C(R+;R
d). Whenever needed, we assume in the sequel that C(R+;R

d) is
endowed with this metric.

2.3 The MFG model
For i ∈ {1, . . . , N}, let Γi ⊂ R

d be a closed nonempty set, Ki : P(Rd)× P(Rd)N−1 ×Rd →
R+, mi

0 ∈ P(Rd), and denote for simplicity Γ = (Γ1, . . . ,ΓN), K = (K1, . . . , KN), and
m0 = (m1

0, . . . ,m
N
0 ). We consider in this chapter the following mean field game, denoted

by MFG(Γ,K,m0): N populations evolve in the space Rd and, for i ∈ {1, . . . , N}, the
distribution of the i-th population at time t ≥ 0 is described by a probability measure
mi
t ∈ P(Rd). The aim of each agent of population i is to minimize their time to reach their

target set Γi and, in order to model congestion, we assume that the speed of an agent of
population i at a position x in time t is bounded by Ki(m

i
t, m̂

i
t, x), where m̂i

t ∈ P(Rd)N−1

describes the distribution of agents in the other populations and is defined by

(2.3) m̂i
t = (m1

t , . . . ,m
i−1
t ,mi+1

t , . . . ,mN
t ).

More precisely, we assume that the movement of a representative agent of population i is
described by the control system

(2.4) γ̇(t) = Ki(m
i
t, m̂

i
t, γ(t))u(t), u(t) ∈ B1,

where γ(t) ∈ Rd is the state of the agent and u(t) is their control at time t, the control being
constrained to remain in the closed unit ball B1.

In order to properly model congestion through the functions K1, . . . , KN , a reasonable
assumption is that Ki(µi, µ̂i, x) is small when the measures µ1, . . . , µN are large around x,
and that larger values of µj, j ̸= i, are more penalized than larger values of µi, to model
the fact that an agent moving with their own population is less penalized than if this same
agent moves in the middle of another population going potentially in another direction. A
possible form for each Ki is

Ki(µi, µ̂i, x) = g

∫
Rd

χ(x− y) dµi(y) +
N∑
j=1
j ̸=i

λj

∫
Rd

χ(x− y) dµj(y)

 ,
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where g : R+ → R
∗
+ is decreasing, χ : Rd → R+ is a smooth convolution kernel, and λj > 1 is

a constant for j ∈ {1, . . . , N}\{i}. Let us point out that we do not assume this specific form
of Ki in the sequel but, under suitable regularity assumptions on g and χ, such a Ki satisfies
assumptions (H2) and (H3) stated below as well as assumption (H8) from Section 2.5.3 (see,
e.g., [75, Proposition 3.1] for a similar result).

The trajectory γ of an agent in population i depends on the distribution of agents of
population i and also on that of agents of other populations, since the speed of γ should
not exceed Ki(m

i
t, m̂

i
t, γ(t)). On the other hand, the distributions mi

t depend on how agents
choose their trajectories. We are interested here in equilibrium situations, i.e., situations in
which, starting from time evolutions of the distributions of agents mi : R+ → P(Rd), the
trajectories chosen by agents induce evolutions of the initial distribution of agents mi

0 that
are precisely given by mi

t.
To provide a more precise description of MFG(Γ,K,m0), we now introduce an auxiliary

optimal control problem. Given Γ ⊂ R
d nonempty and closed and k : R+ ×Rd → R+, we

consider the optimal control problem OCP(Γ, k) in which an agent evolving in Rd wants to
reach Γ in minimal time, their speed at position x and time t being bounded by k(t, x). For
this optimal control problem, k does not depend on the density of the agents and is considered
as a given function. The relation between the optimal control problem OCP(Γ, k) and the
mean field game MFG(Γ,K,m0) is that, for every population i ∈ {1, . . . , N}, an agent of
population i solves OCP(Γi, ki), where ki is defined by ki(t, x) = Ki(m

i
t, m̂

i
t, x) for t ≥ 0 and

x ∈ Rd.

Definition 2.3.1. Let Γ ⊂ R
d be nonempty and closed and k : R+ ×Rd → R+.

(a) A curve γ ∈ Lip(R+;R
d) is said to be admissible for OCP(Γ, k) if it satisfies |γ̇(t)| ≤

k(t, γ(t)) for almost every t ∈ R+. The set of all admissible curves is denoted by
Adm(k).

(b) Let t0 ∈ R+. The first exit time after t0 of a curve γ ∈ Lip(R+;R
d) is the number

τΓ(t0, γ) ∈ [0,+∞] defined by

τΓ(t0, γ) = inf{t ≥ 0 | γ(t+ t0) ∈ Γ}.

(c) Let t0 ∈ R+ and x0 ∈ Rd. A curve γ ∈ Lip(R+;R
d) is said to be an optimal trajectory

for (Γ, k, t0, x0) if γ ∈ Adm(k), γ(t) = x0 for every t ∈ [0, t0], τΓ(t0, γ) < +∞, γ(t) =
γ(t0 + τΓ(t0, γ)) ∈ Γ for every t ∈ [t0 + τΓ(t0, γ),+∞), and

(2.5) τΓ(t0, γ) = inf
β∈Adm(k)
β(t0)=x0

τΓ(t0, β).

The set of all optimal trajectories for (Γ, k, t0, x0) is denoted by Opt(Γ, k, t0, x0).

Note that admissible curves γ for OCP(Γ, k) are trajectories of the control system

(2.6) γ̇(t) = k(t, γ(t))u(t),
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where the measurable function u : R+ → B1 is the control associated with γ. The control
system (2.6) is nonautonomous, since k explicitly depends on t.

We now provide the definition of Lagrangian equilibrium (which we refer to simply as
equilibrium in this chapter for simplicity) of MFG(Γ,K,m0).

Definition 2.3.2. Let m0 = (m1
0, . . . ,m

N
0 ) ∈ P(Rd)N , Γ = (Γ1, . . . ,ΓN), and K = (K1,

. . . , KN) with Γi ⊂ R
d nonempty and closed and Ki : P(Rd) × P(Rd)N−1 × Rd → R+ for

every i ∈ {1, . . . , N}. A vector of measures Q = (Q1, . . . , QN) ∈ P(C(R+;R
d))N is called a

(Lagrangian) equilibrium for MFG(Γ,K,m0) if e0#Q = m0 and, for every i ∈ {1, . . . , N},
Qi-almost every γ is optimal for (Γi, ki, 0, γ(0)), where ki : R+ × R

d → R+ is defined for
(t, x) ∈ R+ ×Rd by ki(t, x) = Ki(m

i
t, m̂

i
t, x), mi

t = et#Qi, and m̂i
t is given by (2.3).

Let us now state the base assumptions on the data of MFG(Γ,K,m0) and OCP(Γ, k)
used throughout this chapter. Concerning MFG(Γ,K,m0), we shall always assume the
following hypotheses to be satisfied.

(H1) For i ∈ {1, . . . , N}, Γi is a nonempty closed subset of Rd.

(H2) There exist positive constants Kmin, Kmax such that, for every i ∈ {1, . . . , N}, Ki :
P(Rd)×P(Rd)N−1 ×Rd → R+ is continuous and Ki(µ, ν, x) ∈ [Kmin, Kmax] for every
(µ, ν, x) ∈ P(Rd)× P(Rd)N−1 ×Rd.

(H3) The functions Ki are Lipschitz continuous with respect to their third variable, uni-
formly with respect to the first two variables, i.e., there exists L > 0 such that, for
every i ∈ {1, . . . , N}, µ ∈ P(Rd), ν ∈ P(Rd)N−1, and x1, x2 ∈ Rd, we have

|Ki(µ, ν, x1)−Ki(µ, ν, x2)| ≤ L|x1 − x2|.

As for OCP(Γ, k), we always assume the following hypotheses to be satisfied.

(H4) The set Γ is a nonempty closed subset of Rd.

(H5) There exist positive constants Kmin, Kmax such that k : R+ ×Rd → R+ is continuous
and k(t, x) ∈ [Kmin, Kmax] for every (t, x) ∈ R+ ×Rd.

(H6) The function k is locally Lipschitz continuous with respect to its second variable,
uniformly with respect to the first variable, i.e., for every R > 0, there exists L > 0
such that, for every t ∈ R+ and x1, x2 ∈ BR, we have

|k(t, x1)− k(t, x2)| ≤ L|x1 − x2|.

In the sequel of the chapter, we always use the following notation.

Notation 2.3.3. Given m1
0, . . . ,m

N
0 ∈ P(Rd), we denote by ϕ : R+ → R+ the function

defined for R ≥ 0 by ϕ(R) = mini∈{1,...,N}m
i
0(BR).
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Notice that ϕ is nondecreasing and satisfies limR→+∞ ϕ(R) = 1 and mi
0(BR) ≥ ϕ(R) for

every i ∈ {1, . . . , N} and R ≥ 0.

Remark 2.3.4. Even though this chapter considers multi-population mean field games, our
techniques also apply to single-population mean field games, in which the function Ki in (2.4)
is replaced by a function K depending on the distribution mt of the single population at time
t and on the position γ(t) of an agent. We chose to consider the multi-population setting
due to the fact that it is closer to applications, since, in most crowd motion situations in
practice, different parts of crowd may wish to reach different target sets, such as people taking
different exists in a metro station. In addition, the multi-population setting considered here
does not bring much additional difficulty when compared, for instance, with single-population
minimal-time mean field games treated in [47, 75].

2.4 Preliminary results on the optimal control problem
In this section, we collect the main properties of the optimal control problem OCP(Γ, k)
that will be of use in the sequel of the chapter. Note that OCP(Γ, k) is a minimal-time
optimal control problem, which is a classic subject in the optimal control literature (see, e.g.,
[11, 27, 40, 79]), but the assumptions (H4)–(H6) on OCP(Γ, k) allow for less smooth Γ and
k than those typically considered in the literature. Minimal-time optimal control problems
have also been studied in connection with mean field games, for instance in [47, 75], the main
difference with respect to the present chapter being that those references consider optimal
control problems in a compact state space, whereas the state space in the present chapter is
R
d.

The first property of OCP(Γ, k) that we consider is the existence of optimal trajecto-
ries, stated in the proposition below. Its proof can be carried out by standard techniques
based on minimizing sequences and using the relative compactness of bounded subsets of
LipKmax

(R+;R
d) in the topology of C(R+;R

d) and is omitted here for simplicity (see, e.g.,
[27, Theorem 8.1.4] for a similar proof in the case of a more general optimal exit time problem
for an autonomous control system).

Proposition 2.4.1. Consider the optimal control problem OCP(Γ, k) and assume that (H4)
and (H5) are satisfied. Then, for every t0 ∈ R+ and x0 ∈ R

d, there exists an optimal
trajectory γ for (Γ, k, t0, x0).

Another property of OCP(Γ, k) than can be obtained by a straightforward argument is
the following, which states that restrictions of optimal trajectories are still optimal.

Proposition 2.4.2. Consider the optimal control problem OCP(Γ, k) and let (t0, x0) ∈ R+×
R
d and γ0 ∈ Opt(Γ, k, t0, x0). Then, for every t1 ∈ [t0,+∞), denoting x1 = γ0(t1), the

function γ1 : R+ → R
d defined by γ1(t) = x1 for t ≤ t1 and γ1(t) = γ0(t) for t ≥ t1 satisfies

γ1 ∈ Opt(Γ, k, t1, x1).
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2.4.1 The value function

We consider in this section properties of the value function corresponding to the optimal
control problem OCP(Γ, k), whose definition is given next.

Definition 2.4.3. Let Γ ⊂ R
d be a nonempty closed set and k : R+ × R

d → R+. The
value function of the optimal control problem OCP(Γ, k) is the function φ : R+ ×Rd → R+

defined for (t0, x0) ∈ R+ ×Rd by

(2.7) φ(t0, x0) = inf
γ∈Adm(k)
γ(t0)=x0

τΓ(t0, γ).

Our next preliminary result provides local bounds on the value function and on the norm
of optimal trajectories.

Proposition 2.4.4. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4) and (H5) are satisfied. Then there exist two nondecreasing maps with
linear growth ψ, T : R+ → R+ depending only on Γ, Kmin, and Kmax such that, for every
R > 0, t0 ∈ R+, x0 ∈ BR, we have φ(t0, x0) ≤ T (R) and, for every γ ∈ Opt(Γ, k, t0, x0), we
have γ(t) ∈ Bψ(R) for every t ≥ 0.

The bound T (R) on the value function can be obtained, for instance, by remarking that
a particular admissible trajectory is the one that moves with speed Kmin along the segment
from x0 to 0 and then along the segment from 0 to the closest point of Γ from 0. Since any
optimal trajectory γ is Kmax-Lipschitz and arrives at the target set in time at most T (R),
one can easily bound |γ(t)| by |x0|+KmaxT (R), yielding the bound on optimal trajectories.

In the next result we recall the dynamic programming principle, which can be proved by
standard techniques in optimal control (see, e.g., [11, Proposition 2.1] and [27, (8.4)] for the
corresponding result in the autonomous case).

Proposition 2.4.5. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4) and (H5) are satisfied. Then, for every (t0, x0) ∈ R+ × R

d and
γ ∈ Adm(k) with γ(t0) = x0, we have

(2.8) φ(t0 + h, γ(t0 + h)) + h ≥ φ(t0, x0), for every h ≥ 0,

with equality for every h ∈ [0, τΓ(t0, γ)] if γ ∈ Opt(Γ, k, t0, x0). Moreover, if γ is constant
on [0, t0] and on [t0 + τΓ(t0, γ),+∞) and if equality holds in (2.8) for every h ∈ [0, τΓ(t0, γ)],
then γ ∈ Opt(Γ, k, t0, x0).

Our next preliminary result on OCP(Γ, k) deals with the Lipschitz continuity of the
value function. Lipschitz continuity of the value function is a classical result in optimal
exit time problems (see, e.g., [27, Theorem 8.2.5]), but most of the literature deals only
with autonomous control systems, in which case the value function is a function of the space
variable x only. A classical state augmentation technique of (2.6) would be sufficient to obtain
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Lipschitz continuity of φ on both time and space, but this would require the assumption that
k is locally Lipschitz continuous in the pair (t, x), which is stronger than (H6). In order to
highlight the fact that such an assumption is not necessary, we provide below a detailed
proof of the Lipschitz continuity of φ, based on that of [27, Theorem 8.2.5] but containing
some simplifications due to the particular structure of the problem at hand. We start with
a preliminary result stating Lipschitz continuity of x 7→ φ(t, x) for fixed t ∈ R+.

Lemma 2.4.6. Consider the optimal control problem OCP(Γ, k) and its value function φ
and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists CR > 0 such
that, for every t0 ∈ R+ and x0, x1 ∈ BR, we have

|φ(t0, x0)− φ(t0, x1)| ≤ CR|x0 − x1|.

Proof. Let T : R+ → R+ be as in the statement of Proposition 2.4.4, R > 0, t0 ∈ R+, and
x0, x1 ∈ BR. Let γ0 ∈ Opt(Γ, k, t0, x0) and denote by u0 the corresponding optimal control,
i.e., γ̇0(t) = k(t, γ0(t))u0(t) for a.e. t ∈ R+. Let t∗0 = t0 + φ(t0, x0) be the time at which γ0
arrives at the target set Γ and x∗0 = γ0(t

∗
0) ∈ Γ be the arrival position of γ0 at Γ. We define

γ1 : R+ → R
d as follows: for t ∈ [0, t0], we set γ1(t) = x1; for t ∈ [t0, t

∗
0], γ1 is the unique

solution of the differential equation γ̇1(t) = k(t, γ1(t))u0(t) with initial condition γ1(t0) = x1;
for t ∈ (t∗0, t

∗
1], we set γ1(t) =

(
1− t−t∗0

t∗1−t∗0

)
x∗1+

t−t∗0
t∗1−t∗0

x∗0, where x∗1 = γ1(t
∗
0) and t∗1 = t∗0+

|x∗1−x∗0|
Kmin

;
and, for t > t∗1, we set γ1(t) = γ1(t

∗
1) = x∗0 ∈ Γ. In other words, γ1 remains at x1 until time t0,

then it is defined as the solution of the control system (2.6) with control u0 until time t∗0, and
finally γ1 moves from its position x∗1 at time t∗0 to the final position x∗0 of γ0 along the segment
connecting these two points and with constant speed Kmin, remaining at x∗0 afterward. By
construction, we have γ1 ∈ Adm(k) and τΓ(t0, γ1) ≤ t∗1 − t0 = φ(t0, x0) +

|x∗1−x∗0|
Kmin

, and hence

(2.9) φ(t0, x1) ≤ φ(t0, x0) +
|x∗1 − x∗0|
Kmin

.

Let us estimate |x∗1 − x∗0|. Notice first that, since γ0 and γ1 are Kmax-Lipschitz, we have,
for every t ∈ [t0, t

∗
0] and i ∈ {0, 1},

|γi(t)| ≤ |xi|+Kmax(t
∗
0 − t0) ≤ R +KmaxT (R).

Let L > 0 be the Lipschitz constant of k with respect to its second variable on R+ ×
BR+KmaxT (R). We then have, for every t ∈ [t0, t

∗
0],

γ1(t)− γ0(t) = x1 − x0 +

∫ t

t0

[k(s, γ1(s))− k(s, γ0(s))]u0(s) ds,

and thus

|γ1(t)− γ0(t)| ≤ |x1 − x0|+ L

∫ t

t0

|γ1(s)− γ0(s)| ds.
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Hence, by Grönwall’s inequality, we deduce that

|x∗1 − x∗0| ≤ eLT (R)|x1 − x0|.

Combining with (2.9), we obtain that

φ(t0, x1) ≤ φ(t0, x0) +
eLT (R)

Kmin

|x1 − x0|.

The conclusion follows with CR = eLT (R)

Kmin
by exchanging the role of x0 and x1 in the above

argument.

We can now deduce Lipschitz continuity of φ by using Lemma 2.4.6 and the dynamic
programming principle from Proposition 2.4.5.

Proposition 2.4.7. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists MR > 0
such that, for every (t0, x0), (t1, x1) ∈ R+ ×BR, we have

|φ(t0, x0)− φ(t1, x1)| ≤MR (|t0 − t1|+ |x0 − x1|) .

Proof. Let ψ : R+ → R+ be as in the statement of Proposition 2.4.4, R > 0, and (t0, x0), (t1,
x1) ∈ R+×BR and assume, with no loss of generality, that t0 < t1. Let γ0 ∈ Opt(Γ, k, t0, x0)
and x∗0 = γ0(t1). By Proposition 2.4.4, we have |x∗0| ≤ ψ(R) and, by Lemma 2.4.6, we have

(2.10) |φ(t1, x∗0)− φ(t1, x1)| ≤ Cψ(R)|x∗0 − x1|,

where Cψ(R) denotes the Lipschitz constant of x 7→ φ(t, x) on Bψ(R) for all t ≥ 0.
If t1 ≤ t0 + φ(t0, x0), then, by Proposition 2.4.5, since γ0 ∈ Opt(Γ, k, t0, x0), we have

φ(t1, x
∗
0) = φ(t0, x0)− (t1 − t0), and thus

(2.11) |φ(t0, x0)− φ(t1, x1)| ≤ |t1 − t0|+ Cψ(R)|x∗0 − x1|.

Otherwise, we have t1 > t0 + φ(t0, x0), in which case x∗0 = γ0(t1) = γ0(t0 + φ(t0, x0)) ∈ Γ
and thus φ(t1, x∗0) = 0. Combining this with (2.10) and the fact that φ(t0, x0) < t1 − t0, we
deduce that (2.11) also holds in this case.

Since γ0 is Kmax-Lipschitz, we have |x0 − x∗0| ≤ Kmax|t1 − t0|. Hence, combining with
(2.11), we deduce that

|φ(t0, x0)− φ(t1, x1)| ≤ (Cψ(R)Kmax + 1)|t1 − t0|+ Cψ(R)|x0 − x1|,

yielding the conclusion.

A classical consequence of the dynamic programming principle is that the value function
φ satisfies a Hamilton–Jacobi equation in the viscosity sense, which is the topic of the
next proposition, whose proof is omitted here since it can be obtained by adapting classical
arguments (see, e.g., [11, Chapter IV, Proposition 2.3] and [27, Theorem 8.1.8]) to our non-
autonomous setting.
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Proposition 2.4.8. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Consider the Hamilton–Jacobi equation

(2.12) − ∂tφ(t, x) + k(t, x)|∇φ(t, x)| − 1 = 0.

Then φ is a viscosity solution of (2.12) on R+ × (Rd \ Γ) and satisfies φ(t, x) = 0 for
(t, x) ∈ R+ × Γ.

We next provide the following property of φ, whose proof can be found in [47, Proposi-
tion 3.9 and Corollary 3.11].

Proposition 2.4.9. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4)–(H6) are satisfied. Then, for every R > 0, there exists c > 0 such
that, for every t0, t1 ∈ R+ with t0 ̸= t1 and x ∈ BR, we have

φ(t1, x)− φ(t0, x)

t1 − t0
≥ c− 1.

In particular, if φ is differentiable at (t0, x), then ∂tφ(t0, x) ≥ c− 1 and |∇φ(t0, x)| ≥ c
Kmax

.

2.4.2 Characterization of optimal controls

Now that we have established elementary properties of the value function in Section 2.4.1,
we turn to the problem of characterizing the optimal control u : R+ → B1 associated with
an optimal trajectory γ ∈ Opt(Γ, k, t0, x0). Formally, by differentiating with respect to h the
equality of the dynamic programming principle in Proposition 2.4.5 for optimal trajectories
and using the Hamilton–Jacobi equation (2.12), one obtains that the optimal control u should
satisfy u(t) = − ∇φ(t,γ(t))

|∇φ(t,γ(t))| , an argument that can be made precise when φ is differentiable at
(t, γ(t)) (see, e.g., [75, Corollary 4.1]).

If φ was semiconcave, one could deduce by standard arguments (see, e.g., [27, Section 7.3]
and [47, Section 3.4]) that it is differentiable along optimal trajectories and hence obtain the
above characterization of optimal controls. In particular (see, e.g., [27, Theorem 7.3.16]), φ
can be shown to be semiconcave under the additional assumption that k ∈ C1,1(R+×Rd;R)
(i.e., k is C1 and its differential is locally Lipschitz continuous). On the other hand, under
our standing assumptions (H4)–(H6), neither semiconcavity nor differentiability of φ along
optimal trajectories are guaranteed, and, up to the authors’ knowledge, it is an open question
if these properties hold or not.

The goal of this section is to provide an alternative characterization of u when k is
not necessarily more regular than locally Lipschitz continuous. This is done mainly for
two reasons. Firstly, regularity assumptions on k for OCP(Γ, k) correspond to regularity
assumptions on Ki, i ∈ {1, . . . , N}, for MFG(Γ,K,m0), and hence avoiding additional
regularity assumptions on k allow to obtain more general results for mean field games.
Secondly, even when k is smooth, the value function φ may fail to be semiconcave in some
situations, such as in the presence of state constraints (see, e.g., [24, Example 4.4]), and

30



semiconcavity of φ is a key step in proving its differentiability along optimal trajectories and
hence in characterizing u as above. This motivates the search for techniques for characterizing
optimal controls without relying on the semiconcavity of φ.

We shall need in this section the following additional assumption on k.

(H7) The function k : R+×Rd → R+ is Lipschitz continuous with respect to both variables
and locally in the second variable, i.e., for every R > 0, there exists L > 0 such that,
for every (t1, x1), (t2, x2) ∈ R+ ×BR, we have

|k(t1, x1)− k(t2, x2)| ≤ L (|t1 − t2|+ |x1 − x2|) .

The first result we present is the following, which provides additional regularity assump-
tions on the optimal control u. It can be obtained by applying Pontryagin Maximum Prin-
ciple to OCP(Γ, k) and using the maximization condition to deduce a relation between the
optimal control u and the costate variable in Pontryagin Maximum Principle. We refer the
reader to [75, Proposition 4.6 and Corollary 4.2] for the details of the proof.

Proposition 2.4.10. Consider the optimal control problem OCP(Γ, k) and assume that
(H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ × R

d, γ ∈ Opt(Γ, k, t0, x0), and u be the
optimal control corresponding to γ. Then u ∈ Lip([t0, t0 + φ(t0, x0)];S

d−1). Moreover, its
Lipschitz constant is bounded by the Lipschitz constant of k on the set [t0, t0+φ(t0, x0)]×BR,
where R > 0 is such that γ(t) ∈ BR for every t ≥ 0.

We now introduce the two main objects that we will use to characterize optimal controls.

Definition 2.4.11. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ ×Rd.

1. We define the set U(t0, x0) of optimal directions at (t0, x0) as the set of all u0 ∈ Sd−1

for which there exists γ ∈ Opt(Γ, k, t0, x0) such that the corresponding optimal control
u satisfies u(t0) = u0.

2. We define the set W(t0, x0) of directions of maximal descent of φ at (t0, x0) as the set
of all u0 ∈ Sd−1 such that

(2.13) lim
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
= −1.

Thanks to Proposition 2.4.10, optimal controls are continuous and take values in Sd−1,
and in particular the pointwise value u(t0) is well-defined. Together with Proposition 2.4.1,
we immediately deduce that U(t0, x0) ̸= ∅ for every (t0, x0) ∈ R+ × (Rd \ Γ). On the
other hand, for (t0, x0) ∈ Rd × Γ, one observes that U(t0, x0) = ∅, since, when x0 ∈ Γ, the
only optimal control is the control constantly equal to 0, but, by definition, the members of
U(t0, x0) must belong to the unit sphere Sd−1.
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Note also that, if u0 ∈ S
d−1 and γ ∈ Adm(k) is the trajectory obtained by taking a

constant control u(t) = u0 in (2.6), then, by Proposition 2.4.5, φ(t0+h, γ(t0+h))−φ(t0, x0) ≥
−h, yielding, using also Proposition 2.4.7, that, as h→ 0+,

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
≥ −1 + o(1).

Hence, an element u0 ∈ W(t0, x0) can be interpreted as a direction in which the above
ratio attains its infinitesimal lower bound −1 at the limit h → 0+, and corresponds thus to
directions in which φ decreases with maximal rate.

Before turning to the main result of this section, Theorem 2.4.14, asserting the equality
between U(t0, x0) and W(t0, x0), let us first present some elementary properties of these
set-valued maps. The first one is that, along an optimal trajectory γ, U(t, γ(t)) is single-
ton, except possibly at its initial and final points. Its proof is the same as that of [75,
Proposition 4.7] and is thus omitted here.

Proposition 2.4.12. Consider the optimal control problem OCP(Γ, k) and its value func-
tion φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+ × R

d and γ ∈
Opt(Γ, k, t0, x0). Then, for every t ∈ (t0, t0 + φ(t0, x0)), U(t, γ(t)) contains exactly one
element.

Our next result shows, on the other hand, that, at the points (t0, x0) where φ is differen-
tiable, W(t0, x0) contains a unique direction of maximal descent which, as one might expect,
is equal to − ∇φ(t0,x0)

|∇φ(t0,x0)| , as |∇φ(t0, x0)| ≠ 0 is guaranteed by Proposition 2.4.9.

Proposition 2.4.13. Consider the optimal control problem OCP(Γ, k) and its value func-
tion φ and assume that (H4), (H5), and (H7) hold. Let (t0, x0) ∈ R+× (Rd \Γ) be such that
φ is differentiable at (t0, x0). Then

W(t0, x0) =

{
− ∇φ(t0, x0)
|∇φ(t0, x0)|

}
.

Proof. Since φ is differentiable at (t0, x0) and using Proposition 2.4.8, we have, for every
u0 ∈ Sd−1,

lim
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h

= ∂tφ(t0, x0) + k(t0, x0)∇φ(t0, x0) · u0 = −1 + k(t0, x0)[∇φ(t0, x0) · u0 + |∇φ(t0, x0)|].

Hence (2.13) holds if and only if ∇φ(t0, x0) · u0 = −|∇φ(t0, x0)| and, since ∇φ(t0, x0) ̸= 0

by Proposition 2.4.9, it follows that (2.13) holds if and only if u0 = − ∇φ(t0,x0)
|∇φ(t0,x0)| , yielding the

conclusion.

The main result of this section is the following.
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Theorem 2.4.14. Consider the optimal control problem OCP(Γ, k) and its value function
φ and assume that (H4), (H5), and (H7) hold. Then, for every (t0, x0) ∈ R+ ×Rd, we have
U(t0, x0) = W(t0, x0).

Proof. We first remark that, if x0 ∈ Γ, then U(t0, x0) = W(t0, x0) = ∅, and so we are only
left to consider the case x0 ∈ Rd \ Γ.

The inclusion U(t0, x0) ⊂ W(t0, x0) follows from the fact that, if γ ∈ Opt(Γ, k, t0, x0)
and u is the corresponding optimal control, then, by Proposition 2.4.5, we have, for every
h ∈ (0, φ(t0, x0)], that

φ(t0 + h, γ(t0 + h))− φ(t0, x0)

h
= −1

and, using the facts that γ(t0+h) = x0+hk(t0, x0)u(t0)+o(h) and that φ is locally Lipschitz
continuous (Proposition 2.4.7), we deduce, letting h→ 0+, that u(t0) ∈ W(t0, x0).

Let us now show that W(t0, x0) ⊂ U(t0, x0). Let u0 ∈ W(t0, x0) and h > 0, which is
implicitly always assumed to be small enough. Then, as h→ 0+,

(2.14) φ(t0 + h, x0 + hk(t0, x0)u0) = φ(t0, x0)− h+ o(h).

Define γ0 : [t0, t0 + h] → R
d by

(2.15)

{
γ̇0(t) = k(t, γ0(t))u0,

γ0(t0) = x0.

Let xh1 = γ0(t0 + h) and th1 = t0 + h. Since Rd \ Γ is open, one has xh1 ∈ Rd \ Γ for h > 0
small enough. Let γh1 ∈ Opt(Γ, k, th1 , x

h
1) and uh1 be the optimal control associated with γh1 .

Set ūh1 = uh1(t
h
1) ∈ Sd−1 and define γ̄h1 : [th1 , t

h
1 + h] → R

d by

(2.16)

{
˙̄γh1 (t) = k(t, γ̄h1 (t))ū

h
1

γ̄h1 (t
h
1) = xh1 .

Let us also set th2 = th1 + h, xh2 = γh1 (t
h
2) and x̄h2 = γ̄h1 (t

h
2). We split the sequel of the proof in

two cases.

Case 1. We assume in this case that limh→0+ ū
h
1 = u0. Let ûh1 ∈ Lip(R+;S

d−1) be defined by
ûh1(t) = ūh1 for t ∈ [0, th1 ], ûh1(t) = uh1(t) for t ∈ [th1 , t

h
1+φ(t

h
1 , x

h
1)], and ûh1(t) = uh1(t

h
1+φ(t

h
1 , x

h
1))

for t ≥ th1 +φ(t
h
1 , x

h
1). Since γh1 and ûh1 are Lipschitz continuous and their Lipschitz constants

do not depend on h (see Proposition 2.4.10), one deduces from Arzelà–Ascoli Theorem
that there exist a positive sequence (hn)n∈N converging to 0 as n → +∞ and elements
γ∗ ∈ LipKmax

(R+;R
d) and u∗ ∈ Lip(R+;S

d−1) such that γhn1 → γ∗ and ûhn1 → u∗ as
n → +∞, uniformly on compact time intervals. Since γh1 ∈ Opt(Γ, k, th1 , x

h
1) for h > 0

and th1 → t0 and xh1 → x0 as h → 0+, one can easily show, using the continuity of φ,
that γ∗ ∈ Opt(Γ, k, t0, x0) and the restriction of u∗ to [t0, t0 + φ(t0, x0)] is its corresponding
optimal control. On the other hand, we have

u∗(t0) = lim
n→+∞

ûhn1 (thn1 ) = lim
n→+∞

ūhn1 = u0,
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which implies that u0 ∈ U(t0, x0), as required.

Case 2. We now consider the case where (ūh1)h>0 does not converge to u0 as h → 0+, and
we prove that this case is not possible. Let ϵ > 0 and (hn)n∈N be a positive sequence such
that hn → 0 as n→ +∞ and |ūhn1 − u0| ≥ ϵ for every n ∈ N. For simplicity, we set thn1 = tn1 ,
xhn1 = xn1 , and similarly for all other variables whose upper index is hn. In order to clarify
the constructions used in this case, we illustrate them in Figure 2.1, which represents points
and curves already constructed as well as those which will be defined in the sequel of the
proof.

γ0
γn2

γn1

γ̄n1

γn3

x0

xn1 x̄n2

xn2

xn3

Figure 2.1: Illustration of the constructions used in the proof of Theorem 2.4.14.

Integrating (2.15) on [t0, t
n
1 ], we get

xn1 − x0 =

∫ tn1

t0

k(s, γ0(s)) ds u0,

and, proceeding similarly for (2.16), we get

x̄n2 − xn1 =

∫ tn2

tn1

k(s, γ̄n1 (s)) ds ū
n
1 .

Denote the integrals in the right-hand side of the above equalities by In0 and In1 , respectively.
We have

|x̄n2 − x0|2 = (In0 u0 + In1 ū
n
1 ) · (In0 u0 + In1 ū

n
1 )

= (In0 )
2 + (In1 )

2 + 2In0 I
n
1 u0 · ūn1

= |xn1 − x0|2 + |x̄n2 − xn1 |
2 + 2In0 I

n
1 u0 · ūn1 .

We know that |ūn1 − u0| ≥ ϵ, which leads us to observe that there exists α ∈ (0, 1) such that
u0 · ūn1 < α for every n ∈ N. Thus

|x̄n2 − x0|2 < |xn1 − x0|2 + |x̄n2 − xn1 |
2 + 2αIn0 I

n
1 .

Define

ρ :=

√
1− (1− α)

K2
min

2K2
max

,
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then obviously ρ < 1 and

|x̄n2 − x0|2 < (|xn1 − x0|+ |x̄n2 − xn1 |)
2 − 2(1− α)In0 I

n
1

=

(
1− (1− α)

2In0 I
n
1

(In0 + In1 )
2

)
(|xn1 − x0|+ |x̄n2 − xn1 |)

2

≤ ρ2 (|xn1 − x0|+ |x̄n2 − xn1 |)
2 ,(2.17)

where we use that Ini ∈ [hKmin, hKmax] for i ∈ {1, 2}. Let un2 =
x̄n2−x0
|x̄n2−x0|

(with the convention
un2 = 0 if x̄n2 = x0) and define γn2 : [t0, t0 + τn] → R

d by

(2.18)

{
γ̇n2 (t) = k(t, γn2 (t))u

n
2

γn2 (t0) = x0,

where τn ≥ 0 is chosen so that γn2 (t0 + τn) = x̄n2 .

Claim. As n→ +∞, we have τn ≤ 2ρhn +O(h2n).

Proof. Note that we have nothing to prove in the case x̄n2 = x0, and hence we assume x̄n2 ̸= x0
in the sequel. If |x̄n2 −x0| ≤ ρ|xn1 −x0|, we let xn3 = x̄n2 , otherwise we choose xn3 as the unique
point in the segment (x0, x̄

n
2 ) such that |xn3 − x0| = ρ|xn1 − x0|. In both cases, we have

|xn3 − x0| = ρ̄|xn1 − x0| for some ρ̄ ≤ ρ. Let τn1 be the time that γn2 takes to reach the point
xn3 , i.e., γn2 (t0 + τn1 ) = xn3 . (Note that τn1 = τn in the case |x̄n2 − x0| ≤ ρ|xn1 − x0|.) We show
that τn1 ≤ ρhn + O(h2n). To obtain that, we observe, by integrating (2.15) and (2.18) and
doing a change of variables, that∫ t0+τn1

t0

k(s, γn2 (s)) ds = |xn3 − x0| = ρ̄|xn1 − x0| = ρ̄

∫ t0+hn

t0

k(s, γ0(s)) ds

=

∫ t0+ρ̄hn

t0

k

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
ds

=

∫ t0+ρ̄hn

t0

k(s, γn2 (s)) ds

+

∫ t0+ρ̄hn

t0

[
k

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
− k(s, γn2 (s))

]
ds

=

∫ t0+ρ̄hn

t0

k(s, γn2 (s)) ds+O(h2n),(2.19)

in which the last equality follows from the Lipschitz continuity of k and the fact that∣∣∣∣γ0(t0 + s− t0
ρ̄

)
− γn2 (s)

∣∣∣∣ ≤ ∣∣∣∣γ0(t0 + s− t0
ρ̄

)
− x0

∣∣∣∣+ |x0 − γn2 (s)|

≤ Kmax

[
s− t0
ρ̄

+ (s− t0)

]
.
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Define F : [0, τn] → R+ by F (t) =
∫ t0+t
t0

k(s, γn2 (s)) ds, then obviously F is increasing,
which implies that F−1 is well-defined on the range of F . Since F ′(t) = k(t, γn2 (t)), F
is Kmax-Lipschitz continuous and, since (F−1)′(t) = 1

F ′(F−1(t))
, we also deduce that F−1 is

1
Kmin

-Lipschitz continuous. Therefore, by (2.19), we deduce that

τn1 = F−1(F (ρ̄hn) +O(h2n)) = ρ̄hn +O(h2n) ≤ ρhn +O(h2n).

This concludes the proof of the claim in the case |x̄n2 − x0| ≤ ρ|xn1 − x0|, since τn1 = τn in
that case.

Otherwise, we have ρ̄ = ρ and |xn3 − x0| = ρ|xn1 − x0|, and thus, from (2.17), we get

|x̄n2 − x0| < ρ(|xn1 − x0|+ |x̄n2 − xn1 |) = |xn3 − x0|+ ρ|x̄n2 − xn1 |.

On the other hand, since xn3 belongs to the segment (x0, x̄n2 ), we have |x̄n2 − x0| = |x̄n2 − xn3 |+
|xn3 − x0|, hence the inequality |x̄n2 − xn3 | ≤ ρ|x̄n2 − xn1 | holds. Suppose τn2 is the time the
trajectory γn2 takes to go from xn3 to x̄n2 , i.e., γn2 (t0+τn1 +τn2 ) = x̄n2 , and note that τn = τn1 +τ

n
2 .

As before, we compare the times between |x̄n2 − xn3 | and |x̄n2 − xn1 |. Let β ≤ ρ be such that
|x̄n2 − xn3 | = β|x̄n2 − xn1 |. Proceeding similarly to (2.19), we get∫ τn2

0

k(s+ t0 + τn1 , γ
n
2 (s+ t0 + τn1 )) ds = |x̄n2 − xn3 | = β|x̄n2 − xn1 | = β

∫ tn2

tn1

k(s, γ̄n1 (s)) ds

=

∫ βhn

0

k

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
ds

=

∫ βhn

0

k(s+ t0 + τn1 , γ
n
2 (s+ t0 + τn1 )) ds

+

∫ βhn

0

[
k

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
− k(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 ))

]
ds

=

∫ βhn

0

k(s+ t0 + τn1 , γ
n
2 (s+ t0 + τn1 )) ds+O(h2n),

in which the last equality follows from the Lipschitz continuity of k and the facts that
τn1 = O(hn) and∣∣∣∣γ̄n1 ( sβ + t0 + hn

)
− γn2 (s+ t0 + τn1 ))

∣∣∣∣
≤
∣∣∣∣γ̄n1 ( sβ + t0 + hn

)
− xn1

∣∣∣∣+ |xn1 − x0|+ |x0 − γn2 (s+ t0 + τn1 ))|

≤ Kmax

[
s

β
+ hn + s+ τn1

]
.

Arguing similarly to above, we deduce that τn2 = βhn + O(h2n). Therefore the time τn to
reach x̄n2 from x0 satisfies

τn = (ρ+ β)hn +O(h2n) ≤ 2ρhn +O(h2n).
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Let us now compare the trajectories γ̄n1 and γn1 on [tn1 , t
n
2 ]. Let δn1 (t) = γn1 (t) − γ̄n1 (t).

Hence, from the ODEs satisfied by the trajectories γ̄n1 and γn1 , we have

δn1 (t) =

∫ t

tn1

[
k(s, γn1 (s))u

n
1 (s)− k(s, γ̄n1 (s))ū

n
1

]
ds

=

∫ t

tn1

[
k(s, γn1 (s))− k(s, γ̄n1 (s))

]
un1 (s) ds+

∫ t

tn1

k(s, γ̄n1 (s))(u
n
1 (s)− ūn1 ) ds.

Since un1 is the optimal control, by Proposition 2.4.10, it is Lipschitz continuous. Therefore,
denoting by L > 0 the Lipschitz constant of k on a bounded set containing the trajectories
γn1 and γ̄n1 for every n, we have

|δn1 (t)| ≤ L

∫ t

tn1

|δn1 (s)| ds+Kmax

∫ t

tn1

L|s− tn1 | ds,

and hence, by using Grönwall’s inequality,

|δn1 (t)| ≤ LKmax
(t− tn1 )

2

2
eL(t−t

n
1 ).

In particular, if we set t = tn1 + hn, then

|xn2 − x̄n2 | ≤ LKmax
h2n
2
eLhn = O(h2n).

Let un3 =
xn2−x̄n2
|xn2−x̄n2 |

(with the convention xn3 = 0 if xn2 = x̄n2 ) and γn3 be the solution of

(2.20)

{
γ̇n3 (t) = k(t, γn3 (t))u

n
3

γn3 (t0 + τn) = x̄n2 .

Using the lower bound Kmin on k and the fact that |xn2 − x̄n2 | = O(h2n), one can easily deduce
that the time σn from x̄n2 to xn2 along γn3 (i.e., γn3 (t0 + τn + σn) = xn2 ) satisfies σn = O(h2n).

We have thus constructed two ways to go from x0 to xn2 . The first one is to choose the
path containing x0, xn1 , and xn2 , which corresponds to the concatenation of the trajectories
γ0 on [t0, t

n
1 ] and γn1 on [tn1 , t

n
2 ], and the second one is the path containing x0, x̄n2 , and xn2 ,

which corresponds to the concatenation of the trajectories γn2 on [t0, t0 + τn] and γn3 on
[t0 + τn, t0 + τn + σn]. Letting T n1 and T n2 be the times for going from x0 to xn2 along
these two paths, respectively, we have, by construction and the claim, that T n1 = 2hn and
T n2 = τn + σn ≤ 2ρhn + O(h2n). Hence, since ρ < 1, we have, for n large enough, that
T n2 < T n1 .

From (2.14), we deduce that

φ(t0, x0) = φ(tn1 , x
n
1 ) + hn + o(hn) = φ(tn2 , x

n
2 ) + T n1 + o(hn),
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where the last equality comes from Proposition 2.4.5 and the fact that γn1 ∈ Opt(Γ, k, tn1 , x
n
1 ).

On the other hand, since the path from x0 to xn2 going through x̄n2 is an admissible trajectory
for k, we have, by Proposition 2.4.5, that φ(t0, x0) ≤ T n2 + φ(t0 + T n2 , x

n
2 ). Hence

(2.21) φ(tn2 , x
n
2 ) + T n1 + o(hn) ≤ T n2 + φ(t0 + T n2 , x

n
2 ).

We also know that t0+T n2 < t0+T
n
1 = tn2 for n large enough. Therefore, by Proposition 2.4.9,

there exists a constant c > 0 such that

φ(tn2 , x
n
2 ) > φ(t0 + T n2 , x

n
2 ) + (c− 1)(tn2 − t0 − T n2 ) = φ(t0 + T n2 , x

n
2 ) + (c− 1)(T n1 − T n2 ),

and, using (2.21), we get (c− 1)(T n1 − T n2 ) + T n1 + o(hn) ≤ T n2 , which leads to

2hn + o(hn) = T n1 + o(hn) ≤ T n2 ≤ 2ρhn +O(h2n).

Divide above inequality by hn to observe that

2 + o(1) ≤ 2ρ+O(hn).

Finally by letting n → +∞, we conclude that ρ ≥ 1, which is a contradiction. Therefore
Case 2 will never happen and this ends the proof.

Motivated by Proposition 2.4.13, we introduce the following definition.

Definition 2.4.15. Consider the optimal control problem OCP(Γ, k) and its value function
φ under the assumptions (H4), (H5), and (H7) and let W be as in Definition 2.4.11. If
(t0, x0) ∈ R+×Rd is such that W(t0, x0) contains exactly one element −ω0, then ω0 is called
the normalized gradient of φ at (t0, x0) and denoted by ω0 = ∇̂φ(t0, x0).

As an immediate consequence of Proposition 2.4.12 and Theorem 2.4.14, we obtain the
following characterization of optimal controls.

Corollary 2.4.16. Consider the optimal control problem OCP(Γ, k) and its value function
φ under the assumptions (H4), (H5), and (H7). Let (t0, x0) ∈ R+×Rd, γ ∈ Opt(Γ, k, t0, x0),
and u be the optimal control associated with γ. Then, for every t ∈ (t0, t0 + φ(t0, x0)), φ
admits a normalized gradient at (t, γ(t)) and u(t) = −∇̂φ(t, γ(t)), i.e.,

(2.22) γ̇(t) = −k(t, γ(t))∇̂φ(t, γ(t)).

Combining Proposition 2.4.10 and Corollary 2.4.16, for every optimal trajectory γ, we
obtain that t 7→ ∇̂φ(t, γ(t)) is Lipschitz continuous for t between the initial and exit times
of γ. However, this provides no information on the regularity of (t, x) 7→ ∇̂φ(t, x), which is
the topic of our next result.

Proposition 2.4.17. Consider the optimal control problem OCP(Γ, k) and its value func-
tion φ under the assumptions (H4), (H5), and (H7). Then ∇̂φ is continuous on its domain
of definition.
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Proof. Let U be as in Definition 2.4.11 and D ⊂ R+ × (Rd \ Γ) be the domain of definition
of ∇̂φ, i.e., D = {(t0, x0) ∈ R+ × (Rd \ Γ) | U(t0, x0) is a singleton}. Let (tn, xn)n∈N be
a sequence in D converging as n → +∞ to some (t0, x0) ∈ D and let ūn = −∇̂φ(tn, xn).
We want to show that ūn → −∇̂φ(t0, x0) as n → +∞ and, since (ūn)n∈N is a sequence in
the compact set Sd−1, it suffices to show that −∇̂φ(t0, x0) is the unique adherent point of
(ūn)n∈N. Let ū0 be an adherent point of (ūn)n∈N and consider a subsequence of (ūn)n∈N
converging to ū0, which we still denote by (ūn)n∈N for simplicity.

Since ūn ∈ U(tn, xn), there exists a sequence of optimal trajectories (γn)n∈N, γn ∈
Opt(Γ, k, tn, xn), and a corresponding sequence of optimal controls (un)n∈N such that un(tn)
= ūn. From Proposition 2.4.10 and Arzelà–Ascoli Theorem, there exist elements γ∗ and
u∗ such that, up to extracting a subsequence, γn → γ∗ and un → u∗ uniformly on com-
pact time intervals. One immediately verifies that u∗(t0) = ū0, γ∗(t0) = x0, and that
γ∗ ∈ Opt(Γ, k, t0, x0) and u∗ is its associated optimal control, which shows that ū0 ∈
U(t0, x0) = {−∇̂φ(t0, x0)}, as required.

2.5 Minimal-time mean field games
After having collected in Section 2.4 several preliminary results on the optimal control prob-
lem OCP(Γ, k), we now turn to the study of the main problem considered in the chapter,
the multi-population minimal-time mean field game MFG(Γ,K,m0). We address existence
of equilibria in Section 2.5.1, study their asymptotic behavior for large time in Section 2.5.2,
and characterize equilibria as solutions of a system of PDEs in Section 2.5.3.

Recall that, according to the presentation provided in Section 2.3, equilibria of MFG(Γ,
K,m0) are described in terms of vectors of measures Q = (Q1, . . . , QN) ∈ P(C(R+;R

d))N .
Given such a vector of measures, we shall consider the N optimal control problems OCP(Γi,
kQ,i), with kQ,i given by kQ,i(t, x) = Ki(m

i
t, m̂

i
t, x) for (t, x) ∈ R+×Rd and where mi

t = et#Qi

and m̂i
t is defined in (2.3). We will denote the value function of OCP(Γi, kQ,i) by φQ,i, and

we omit Q from the notation of both kQ,i and φQ,i when it is clear from the context.
For simplicity of notation, we also write Admi(Q) for Adm(ki) and Opti(Γ,Q, t0, x0) for
Opt(Γi, ki, t0, x0).

2.5.1 Existence of equilibria

The goal of this part is to establish existence of equilibria for MFG(Γ,K,m0), which is done
by recasting the existence of an equilibrium in terms of the existence of a fixed point of a
certain set-valued map and applying a suitable fixed-point theorem. This section follows
closely [75, Section 5] but, due to the facts that assumptions (H1)–(H3) are weaker than
those from [75] and that we work here with mean field games in the non-compact state space
R
d, several proofs must be adapted in a nontrivial way to the present setting. The main

result to be proved in this section is the following.
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Theorem 2.5.1. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1)–
(H3). Then there exists an equilibrium Q ∈ P(C(R+;R

d))N for MFG(Γ,K,m0).

Let us start by showing an additional continuity property of the value function.

Lemma 2.5.2. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3). Then, for every i ∈ {1, . . . , N}, (t, x,Q) 7→ φQ,i(t, x) is continuous on R+ × R

d ×
P(C(R+;R

d))N .

Proof. Fix i ∈ {1, . . . , N} and let (tn, xn,Qn)n∈N be a sequence taking values in R+ ×
R
d×P(C(R+;R

d))N converging to some (t∗, x∗,Q∗), and denote Qn = (Q1,n, . . . , QN,n) and
Q∗ = (Q1,∗, . . . , QN,∗). For n ∈ N and (t, x) ∈ R+ × Rd, define kn(t, x) = K(mi

n,t, m̂
i
n,t, x)

and k∗(t, x) = K(mi
∗,t, m̂

i
∗,t, x), where mi

n,t = et#Qn,i, mi
∗,t = et#Q∗,i, and m̂i

n,t and m̂i
∗,t are

defined as in (2.3). Note that, by continuity of Q 7→ et#Q, we have that kn(t, x) → k∗(t, x)
for every (t, x) ∈ R+ × R

d. For simplicity of notation, we write φn and φ∗ for φQn,i and
φQ∗,i, respectively.

By Proposition 2.4.4, (φn(tn, xn))n∈N is a bounded sequence and thus, to prove that it
converges to φ∗(t∗, x∗), it suffices to show that φ∗(t∗, x∗) is the unique adherent point of
(φn(tn, xn))n∈N. Let κ∗ be an adherent point of (φn(tn, xn))n∈N and consider the subse-
quence of (φn(tn, xn))n∈N which converges to κ∗, which we still denote by (φn(tn, xn))n∈N for
simplicity.

For n ∈ N, let γn ∈ Opti(Γ,Qn, tn, xn). Since (γn)n∈N is an equibounded and equi-
Lipschitz sequence, by Arzelà–Ascoli Theorem, up to extracting a subsequence, which we
still denote by (γn)n∈N, there exists γ∗ ∈ LipKmax

(R+;R
d) such that γn → γ∗ as n →

+∞ (uniformly on compact time intervals). For every t1, t2 ∈ R+ with t1 < t2, we have∣∣∣γn(t2)−γn(t1)t2−t1

∣∣∣ ≤ 1
t2−t1

∫ t2
t1
kn(s, γn(s)) ds and, using (H3) and letting n → +∞, we deduce

that
∣∣∣γ∗(t2)−γ∗(t1)t2−t1

∣∣∣ ≤ 1
t2−t1

∫ t2
t1
k∗(s, γ∗(s)) ds, yielding that γ∗ ∈ Admi(Q∗). Moreover, since

γn(tn) = xn, γn is constant on [0, tn] and [tn + φn(tn, xn),+∞), and γn(tn + φn(tn, xn)) ∈ Γ
for every n ∈ N, we easily deduce that γ∗(t∗) = x∗, γ∗ is constant on [0, t∗] and [t∗+κ∗,+∞),
and γ∗(t∗ + κ∗) ∈ Γ, yielding in particular that φ∗(t∗, x∗) ≤ κ∗.

Let us assume, to obtain a contradiction, that φ∗(t∗, x∗) < κ∗. For simplicity, let ςn =
tn + φ∗(t∗, x∗), ς∗ = t∗ + φ∗(t∗, x∗), ξn = γn(ςn), and ξ∗ = γ∗(ς∗) ∈ Γ. Note that, since
φ∗(t∗, x∗) < κ∗, we have ξn /∈ Γ for n large enough. Let γ̃n ∈ C(R+;R

d) be defined by

γ̃n(t) =



γn(t) if 0 ≤ t ≤ ςn,

ξn +
ξ∗ − ξn
|ξ∗ − ξn|

Kmin(t− ςn) if ςn ≤ t ≤ ςn +
|ξ∗ − ξn|
Kmin

,

ξ∗ if t ≥ ςn +
|ξ∗ − ξn|
Kmin

.

Clearly, γ̃n ∈ Admi(Q) and τΓ(tn, γ̃n) ≤ φ∗(t∗, x∗) +
|ξ∗−ξn|
Kmin

. Since φ∗(t∗, x∗) < κ∗, we have
τΓ(tn, γ̃n) <

φ∗(t∗,x∗)+κ∗
2

< κ∗ for n large enough, implying that φn(tn, xn) < φ∗(t∗,x∗)+κ∗
2

< κ∗
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for n large enough and contradicting thus the fact that φn(tn, xn) → κ∗ as n→ +∞. Hence,
one has necessarily φn(tn, xn) → φ∗(t∗, x∗) as n→ +∞, as required.

The next result, which is an immediate consequence of Proposition 2.4.4, states an a
priori property of equilibria.

Lemma 2.5.3. Consider the mean field game MFG(Γ,K,m0), assume that (H1) and (H2)
are satisfied, and let ϕ be the function from Notation 2.3.3. Then there exists a nondecreasing
function ψ : R+ → R+ such that, for every equilibrium Q = (Q1, . . . , QN) ∈ P(C(R+;R

d))N

of MFG(Γ,K,m0), t ≥ 0, i ∈ {1, . . . , N}, and R > 0, we have

Qi

(
LipKmax

(R+;Bψ(R))
)
≥ ϕ(R).

In particular, denoting mi
t = et#Qi, we have mi

t(Bψ(R)) ≥ ϕ(R).

Lemma 2.5.3 shows that it suffices to look for equilibria of MFG(Γ,K,m0) in the set

(2.23) Q =
{
Q = (Q1, . . . , QN) ∈ P(C(R+;R

d))N
∣∣ e0#Q = m0 and

∀i ∈ {1, . . . , N}, ∀R > 0, Qi

(
LipKmax

(R+;Bψ(R))
)
≥ ϕ(R)

}
,

where ϕ and ψ are as in the statement of Lemma 2.5.3. We next provide elementary prop-
erties of Q.

Lemma 2.5.4. Consider the mean field game MFG(Γ,K,m0), assume that (H1) and (H2)
are satisfied, and let Q be the set defined in (2.23). Then Q is nonempty, convex, and
compact with respect to the topology of weak convergence of measures.

Proof. The set Q is clearly convex and, to see that it is nonempty, define b : Rd → C(R+;R
d)

as the function which associates with each x ∈ Rd the function b(x) given by b(x)(t) = x for
every t ∈ R+. It is immediate to check that b#m0 ∈ Q, and hence Q is nonempty.

To prove that Q is compact, notice first that Q = QN
1 ∩Q2, where

Q1 =
{
Q ∈ P(C(R+;R

d))
∣∣ ∀R > 0, Q

(
LipKmax

(R+;Bψ(R))
)
≥ ϕ(R)

}
and Q2 = {Q ∈ P(C(R+;R

d))N | e0#Q = m0}. Since Q 7→ e0#Q is continuous, Q2 is
closed, and hence it suffices to show that Q1 is compact. By Prokhorov Theorem (see, e.g.,
[6, Theorem 5.1.3]), it suffices to show that Q1 is tight and closed. Tightness of Q1 follows
immediately from the facts that ϕ(R) → 1 as R → +∞ and that, by Arzelà–Ascoli Theorem,
for every R > 0, LipKmax

(R+;Bψ(R)) is compact in the topology of uniform convergence on
compact sets.

To see that Q1 is closed, let (Qn)n∈N be a sequence in Q1 converging to some Q ∈
P(C(R+;R

d)). For every R > 0, LipKmax
(R+;Bψ(R)) is closed and thus, by using [14,

Theorem 2.1], one obtains

Q(LipKmax
(R+;Bψ(R))) ≥ lim sup

n→∞
Qn(LipKmax

(R+;Bψ(R))) ≥ ϕ(R),

which proves that Q ∈ Q1. Hence Q1 is closed.
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We now recast the definition of equilibrium of MFG(Γ,K,m0) in terms of fixed points
of a set-valued map defined on Q. Let F : Q ⇒ Q associate with each Q ∈ Q the subset
F (Q) of Q defined by

(2.24) F (Q) =
{
Q̃ = (Q̃1, . . . , Q̃N) ∈ Q

∣∣∣
∀i ∈ {1, . . . , N}, Q̃i-almost every γ satisfies γ ∈ Opti(Γ,Q, 0, γ(0))

}
.

Clearly, Q ∈ Q is an equilibrium of MFG(Γ,K,m0) if and only if it is a fixed point of F , i.e.,
Q ∈ F (Q). For every i ∈ {1, . . . , N}, we consider the set Opti(Q) ⊂ C(R+;R

d) containing
all optimal trajectories of the i-th population for Q and starting at time 0, i.e.,

(2.25) Opti(Q) =
⋃

x0∈Rd

Opti(Γ,Q, 0, x0).

The set F (Q) can be rewritten in terms of Opti(Q) as

(2.26) F (Q) =
{
Q̃ = (Q̃1, . . . , Q̃N) ∈ Q

∣∣∣ ∀i ∈ {1, . . . , N}, Q̃i(Opti(Q)) = 1
}
.

Lemma 2.5.5. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3) and let Q and Opti, i ∈ {1, . . . , N}, be defined as in (2.23) and (2.25). For every R > 0

and i ∈ {1, . . . , N}, define Ôpti,R : Q ⇒ C(R+;R
d) by

Ôpti,R(Q) = Opti(Q) ∩ LipKmax
(R+;Bψ(R)).

Then Ôpti,R is upper semicontinuous.

The proof of Lemma 2.5.5 is based on the continuity of the value function from
Lemma 2.5.2 and follows the same lines as that of [75, Lemma 5.4], being thus omitted
here.

Lemma 2.5.6. Consider the mean field game MFG(Γ,K,m0) under the assumptions (H1)–
(H3) and let Q and F be defined as in (2.23) and (2.24), respectively. Then F is upper
semicontinuous and, for every Q ∈ Q, F (Q) is nonempty, convex, and compact.

Proof. Given Q ∈ Q, it follows immediately from (2.26) that F (Q) is convex, and one can
easily prove that it is nonempty and compact by adapting the arguments of [75, Lemma 5.3]
(see also [47, Lemma 4.7(a)]).

Since Q is compact and F has closed values, to prove that F is upper semicontinuous it
is sufficient to show that its graph is closed. Let (Qn)n∈N be a sequence in Q with Qn → Q
for some Q ∈ Q and (Q̃n)n∈N be a sequence in Q with Q̃n ∈ F (Qn) for every n ∈ N and
Q̃n → Q̃ for some Q̃ ∈ Q. We denote Qn = (Qn,1, . . . , Qn,N) and Q̃n = (Q̃n,1, . . . , Q̃n,N).

For each n ∈ N, since Q̃n ∈ F (Qn), we have Q̃n,i(Opti(Qn)) = 1 for every i ∈
{1, . . . , N} and, since Q̃n ∈ Q, we also have that Q̃n,i(LipKmax

(R+;Bψ(R))) ≥ ϕ(R) for
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every i ∈ {1, . . . , N} and R > 0, where ϕ is the function from Notation 2.3.3. Hence
Q̃n,i(Ôpti,R(Qn)) ≥ ϕ(R) for every n ∈ N, i ∈ {1, . . . , N}, and R > 0.

For every ϵ ∈ (0, 1) and i ∈ {1, . . . , N}, let V i
ϵ = {γ ∈ C(R+;R

d) | d(γ,Opti(Q)) ≤
ϵ}, where d is given by (2.2), and note that V i

ϵ is a neighborhood of Ôpti,R(Q) for every
R > 0. Let R0 > 0 be such that ϕ(R0) ≥ 1 − ϵ. Since Ôpti,R0

is upper semicontinuous by
Lemma 2.5.5, there exists a neighborhood Wϵ of Q in Q such that Ôpti,R0

(Q̂) ⊂ V i
ϵ for every

i ∈ {1, . . . , N} and Q̂ ∈ Wϵ. From the convergence Qn → Q, one concludes that there exists
Nϵ such that, for every n ≥ Nϵ, one has Qn ∈ Wϵ, and thus Ôpti,R0

(Qn) ⊂ V i
ϵ .

Since Q̃n,i(Ôpti,R0
(Qn)) ≥ ϕ(R0) ≥ 1 − ϵ, one obtains that Q̃n,i(V

i
ϵ ) ≥ 1 − ϵ for ev-

ery n ≥ Nϵ and i ∈ {1, . . . , N}. Since Q̃n → Q̃ and V i
ϵ is closed, we have Q̃i(V

i
ϵ ) ≥

lim supn→∞ Q̃n,i(V
i
ϵ ) ≥ 1 − ϵ. On the other hand, since Opti(Q) is closed and (V i

ϵ )ϵ∈(0,1) is
a nondecreasing family of sets with

⋂
ϵ∈(0,1) V

i
ϵ = Opti(Q), we conclude that Q̃i(Opti(Q)) =

limϵ→0 Q̃i(V
i
ϵ ) = 1. Hence Q̃ ∈ F (Q), which concludes the proof that the graph of F is

closed.

Let us now conclude the proof of Theorem 2.5.1.

Proof of Theorem 2.5.1. By Lemmas 2.5.4 and 2.5.6 and Kakutani fixed point theorem (see,
e.g., [57, § 7, Theorem 8.6]), F admits a fixed point, i.e., there exists Q ∈ Q such that
Q ∈ F (Q), which means Q is an equilibrium for MFG(Γ,K,m0).

Remark 2.5.7. Theorem 2.5.1 asserts the existence of an equilibrium for MFG(Γ,K,m0),
but uniqueness does not necessarily hold. An example of this fact in the single-population
case is presented in [75, Remark 7.1] under the assumption K1 ≡ 1, in which there is no
interaction between agents.

Let us provide a heuristic example illustrating why uniqueness is not expected in the
multi-population case even when agents interact. Consider the case d = N = 2, m1

0 is the
uniform measure on B((−1, 0), R), m2

0 is the uniform measure on B((1, 0), R), 0 < R < 1,
Γ1 = B((1, 0), R), and Γ2 = B((−1, 0), R), and assume that K1 and K2 are such that agents
are more penalized by the other population than by their own population, i.e., Ki(µ, ν, x) <
Ki(ν, µ, x) if ν is larger than µ in a neighbourhood of x, for i = 1, 2. In this case, we may
expect heuristically the phenomenon of lane formation, in which the populations will group
in separate lanes, so that each population gets to its target set while avoiding interaction
with the other population (see, for instance, [43, 51] for more details on lane formation in
other kinds of models for crowd motion and in experiments). If the lanes at an equilibrium
are asymmetric (which is expected if our model reproduces the behaviour usually observed in
experiments), then we obtain another different equilibrium with the same initial conditions
by performing the symmetry transformation (x1, x2) 7→ (x1,−x2), and hence we do not
expect uniqueness of equilibrium in this case.
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2.5.2 Asymptotic behavior

In this part, we characterize the behavior of mi
t as t → +∞, where mi

t = et#Qi and Q =
(Q1, . . . , QN) is an equilibrium of MFG(Γ,K,m0). Intuitively, one expects mi

t to converge
to a measure concentrated on the target set Γi and, in addition to proving this result in
the general case, we also provide convergence rates when the initial measure mi

0 has finite p
moments for some p ∈ [1,+∞) and prove finite-time convergence when the initial measure
has bounded support.

In order to characterize the limit of mi
t as t→ +∞, let us introduce some notation. Let

Clim(R+;R
d) = {γ ∈ C(R+;R

d) | limt→+∞ γ(t) exists and is finite}, which is a Borel subset
of C(R+;R

d), and define e∞ : Clim(R+;R
d) → R

d by e∞(γ) = limt→+∞ γ(t), which is a
Borel-measurable function. By definition of optimal trajectories, Opti(Q) ⊂ Clim(R+;R

d)
for every Q ∈ P(C(R+;R

d))N , and thus e∞#Q ∈ P(Rd)N is well-defined for every equilib-
rium Q of a mean field game MFG(Γ,K,m0).

We are now in position to state and prove the main result of this section.

Theorem 2.5.8. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1)
and (H2). Let Q = (Q1, . . . , QN) ∈ P(C(R+;R

d))N be an equilibrium of MFG(Γ,K,m0),
mt = (m1

t , . . . ,m
N
t ) be defined by mt = et#Q for t ∈ [0,+∞], and ψ be the function whose

existence is asserted in Proposition 2.4.4.

1. For every i ∈ {1, . . . , N}, we have mi
t → mi

∞ as t→ +∞.

2. Let p ∈ [1,+∞), i ∈ {1, . . . , N}, and assume that mi
0 ∈ Pp(Rd). Then, for every

t ∈ [0,+∞], we have mi
t ∈ Pp(Rd). Moreover, there exist constants α > 0 and t0 ≥ 0

such that

(2.27) Wp(m
i
t,m

i
∞)p ≤ 2p

∫
Rd\Bα(t−t0)

ψ(|x|)p dmi
0(x), ∀t ≥ t0.

3. Let i ∈ {1, . . . , N} and assume that mi
0 is compactly supported. Then, for every t ∈

[0,+∞], mi
t is compactly supported and there exists τ ≥ 0 such that

mi
t = mi

∞, ∀t ≥ τ.

Remark 2.5.9. Note that, by Proposition 2.4.4, ψ has linear growth and thus, together
with the assumption that mi

0 ∈ Pp(Rd)N , one immediately obtains that the right-hand side
of (2.27) tends to 0 as t → +∞. When more information on the distribution of mi

0 is
available, the right-hand side of (2.27) allows one to obtain estimates on the convergence
rate of mi

t as t→ +∞ in the Wasserstein distance.

Proof of Theorem 2.5.8. To show 1, let f : Rd → R be continuous and bounded and fix
i ∈ {1, . . . , N}. We then have, using the continuity and boundedness of f and Lebesgue’s
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dominated convergence theorem, that∫
Rd

f(x) dmi
t(x) =

∫
Clim(R+;Rd)

f(γ(t)) dQi(γ)

−−−−→
t→+∞

∫
Clim(R+;Rd)

f
(

lim
t→+∞

γ(t)
)
dQi(γ) =

∫
Rd

f(x) dmi
∞(x),

yielding the required convergence.
Let us now prove 2. For t ∈ [0,+∞], we have, using Proposition 2.4.4, that∫
Rd

|x|p dmi
t(x) =

∫
Opti(Q)

|γ(t)|p dQi(γ)

≤
∫
Opti(Q)

ψ(|γ(0)|)p dQi(γ) =

∫
Rd

ψ(|x|)p dmi
0(x),

where γ(∞) is defined as limt→+∞ γ(t). Since ψ has linear growth, it follows thatmi
t ∈ Pp(Rd)

for every t ∈ [0,+∞].
Let T be the function whose existence is asserted in Proposition 2.4.4 and α > 0, t0 ≥ 0

be such that T (R) ≤ R
α
+t0 for every R > 0. Let t ∈ [t0,+∞). Note that, using the notations

introduced in Section 2.2, we have (et, e∞)#Qi ∈ Π(mi
t,m

i
∞) and thus, by (2.1), we have

Wp(m
i
t,m

i
∞)p ≤

∫
Rd×Rd

|x− y|p d(et, e∞)#Qi(x, y) =

∫
Opti(Q)

|et(γ)− e∞(γ)|p dQi(γ).

If γ ∈ Opti(Q) is such that |γ(0)| ≤ α(t − t0), then, since T (|γ(0)|) ≤ t, we have, as a
consequence of Proposition 2.4.4, that γ(t) ∈ Γi and γ is constant on [t,+∞), yielding that
et(γ) = e∞(γ). Thus

Wp(m
i
t,m

i
∞)p ≤

∫
Opti(Q)∩{γ|γ(0)/∈Bα(t−t0)}

|et(γ)− e∞(γ)|p dQi(γ).

By using the fact from Proposition 2.4.4 that et(γ) ∈ Bψ(|γ(0)|) for all t ∈ [0,+∞] and
γ ∈ Opti(Q), one has |et(γ)| ≤ ψ(|γ(0)|) and thus

Wp(m
i
t,m

i
∞)p ≤

∫
Opti(Q)∩{γ|γ(0)/∈Bα(t−t0)}

2pψ(|γ(0)|)p dQi(γ)

= 2p
∫
Rd\Bα(t−t0)

ψ(|x|)p dmi
0(x),

as required.
Finally, to prove 3, let R0 > 0 be such that the support of mi

0 is included in BR and
notice that, as a consequence of Proposition 2.4.4, the support of mi

t is included in Bψ(R0)

for every t ∈ [0,+∞]. Letting T be as in the statement of Proposition 2.4.4 and τ = T (R0),
we deduce that, for every t ≥ τ and γ ∈ Opti(Q) with |γ(0)| ≤ R0, we have et(γ) = e∞(γ),
which concludes the proof since Qi is supported in Opti(Q) ∩ {γ | |γ(0)| ≤ R0}.
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2.5.3 The MFG system

As a final step in the study of MFG(Γ,K,m0), we characterize its equilibria as solutions of
a system of partial differential equations, called the MFG system. Given an equilibrium Q =
(Q1, . . . , QN), by Proposition 2.4.8, the value functions φQ,i, i ∈ {1, . . . , N}, corresponding
to each population are already known to satisfy a Hamilton–Jacobi equation, and we are thus
left to prove that the measures mi

t = et#Qi are also solutions of suitable partial differential
equations. Since Qi is concentrated on optimal trajectories, which satisfy (2.22) thanks to
Corollary 2.4.16, one expects t 7→ mi

t to be a solution to a continuity equation with velocity
field −∇̂φQ,i.

In order for the above reasoning to be made precise, one must verify that the assumptions
of Corollary 2.4.16 are satisfied. Since (H7) requires k to be locally Lipschitz continuous both
in time and space, we shall make here the following stronger assumption on MFG(Γ,K,m0).

(H8) There exists p ≥ 1 such that m0 ∈ Pp(Rd)N and, for every i ∈ {1, . . . , N}, Ki :
Pp(Rd)×Pp(Rd)N−1×Rd → R+ is Lipschitz continuous with respect to all its variables
(using the Wasserstein distance Wp in Pp(Rd)) and locally in the last variable, i.e.,
for every R > 0, there exists L > 0 such that, for every (µ1, ν1, x1), (µ2, ν2, x2) ∈
Pp(Rd)× Pp(Rd)N−1 ×BR, we have

|Ki(µ1, ν1, x1)−Ki(µ2, ν2, x2)| ≤ L (Wp(µ1, µ2) +Wp(ν1, ν2) + |x1 − x2|) .

Remark 2.5.10. If Q = (Q1, . . . , QN) ∈ P(C(R+;R
d))N is such that Qi(Lipc(R+;R

d)) = 1
for some c > 0 and every i ∈ {1, . . . , N}, and if et#Qi ∈ Pp(Rd) for some p ≥ 1 and every
t ≥ 0 and i ∈ {1, . . . , N}, then one immediately verifies, by considering the coupling measure
(et, es)#Qi ∈ Π(mi

t,m
i
s) in (2.1), that t 7→ et#Qi is Lipschitz continuous with respect to the

distance Wp in Pp(Rd). Hence, if MFG(Γ,K,m0) satisfies (H8) and Q is an equilibrium of
MFG(Γ,K,m0), the corresponding optimal control problems OCP(Γi, kQ,i), i ∈ {1, . . . , N},
satisfy (H7).

Theorem 2.5.11. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1),
(H2), and (H8) and assume that Q = (Q1, . . . , QN) ∈ P(C(R+;R

d))N is an equilibrium of
MFG(Γ,K,m0). Consider the value functions φi = φQ,i and the time-dependent measures
mi(t, ·) = mi

t = et#Qi for i ∈ {1, . . . , N}. Then (m1, . . . ,mN , φ1, . . . , φN) solves the MFG
system

(2.28)


∂tmi(t, x)− div

(
mi(t, x)Ki(m

i
t, m̂

i
t, x)∇̂φi(t, x)

)
= 0, (t, x) ∈ R∗

+ × (Rd \ Γi),

− ∂tφi(t, x) + |∇φi(t, x)|Ki(m
i
t, m̂

i
t, x)− 1 = 0, (t, x) ∈ R+ × (Rd \ Γi),

mi(0, ·) = mi
0,

φi(t, x) = 0, (t, x) ∈ R+ × Γi,

for all i ∈ {1, . . . , N}, where the first and second equations are satisfied, respectively, in the
sense of distributions and in the viscosity sense.
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Note that the Hamilton–Jacobi equations on φi and the corresponding boundary condi-
tions follow immediately from Proposition 2.4.8, and the continuity equations on mi can be
established using (2.22) and the fact that, from Proposition 2.4.12, Theorem 2.4.14, Defini-
tion 2.4.15, and Proposition 2.4.17, ∇̂φi is continuous on the support of mi

t. We refer to [75,
Theorem 6.1] and [47, Theorem 4.12] for more details on the proof in the case of a single
population, but we stress the fact, contrarily to those references, we establish here (2.22),
and hence the continuity equations on mi, under weaker assumptions on Ki and without re-
lying on semiconcavity properties of φi. Notice also that the coupling between the different
populations occur through the terms m̂i

t, which are defined in (2.3).
Theorem 2.5.11 shows that any equilibrium Q of a mean field game MFG(Γ,K,m0)

satisfies the MFG system (2.28). To prove that (2.28) actually characterizes equilibria of
MFG(Γ,K,m0), we also need a converse statement, namely that solutions of (2.28) yield
equilibria of MFG(Γ,K,m0). Such a converse statement has been sketched in [75, Re-
mark 6.1] for single-population minimal-time mean field games. We now provide a more
detailed argument in our present setting.

Theorem 2.5.12. Consider the mean field game MFG(Γ,K,m0) under assumptions (H1),
(H2), and (H8), and assume in addition that m0 = (m1

0, . . . ,m
N
0 ) is such that mi

0 is compactly
supported for every i ∈ {1, . . . , N}. For i ∈ {1, . . . , N}, let φi : R+ × R

d → R+ and t 7→
mi(t, ·) ∈ P(Rd) be continuous functions. Assume that, for every i ∈ {1, . . . , N} and t > 0,
∇̂φi(t, ·) exists and is continuous in the support of mi(t, ·), and that (m1, . . . ,mN , φ1, . . . , φN)
satisfies (2.28), where the first equation is satisfied in the sense of distributions and the
second equation is satisfied in the viscosity sense. Then there exists an equilibrium Q =
(Q1, . . . , QN) ∈ P(C(R+;R

d))N of MFG(Γ,K,m0) such that, for every i ∈ {1, . . . , N},
mi
t = mi(t, ·) = et#Qi for every t ≥ 0 and φi is the value function of OCP(Γi, kQ,i).

Proof. Let ki : R+ ×Rd → R+ be defined for (t, x) ∈ R+ ×Rd by ki(t, x) = Ki(m
i
t, m̂

i
t, x),

where m̂i
t is defined as in (2.3), and consider the optimal control problem OCP(Γi, ki). Since

φi is lower bounded by 0, satisfies the second equation of (2.28) in the viscosity sense, and
also satisfies the fourth equation of (2.28), we deduce from [11, Chapter IV, Corollary 4.3]
that φi is the value function of OCP(Γi, ki). Note that [11, Chapter IV, Corollary 4.3] is
stated for autonomous control systems, but it can be applied to the non-autonomous control
system γ̇(t) = ki(t, γ(t))u(t) by considering the augmented state x̃(t) = (t, γ(t)). Moreover,
[11, Chapter IV, Corollary 4.3] assumes that the target set has compact boundary, but we
get the conclusion in our framework by reasoning locally and using Proposition 2.4.4.

For i ∈ {1, . . . , N}, since mi satisfies the continuity equation in (2.28) in the sense of
distributions and the corresponding velocity field is bounded by Kmax, it follows from the
Superposition Principle for continuity equations (see [5, Theorem 3.2]) that there exists
Qi ∈ P(C(R+;R

d)) such that mi
t = et#Qi for every t ≥ 0. Let Q = (Q1, . . . , QN). Note

that, since mi
0 is compactly supported and the velocity field in the continuity equation is

bounded, mi
t is also compactly supported, and thus Q ∈ Q. We will show that Q is an

equilibrium of MFG(Γ,K,m0) by showing that Q ∈ F (Q), i.e., that Qi is supported on
Opti(Q).
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To see that, notice that, from the proof of [5, Theorem 3.2], it also follows that Qi is
concentrated on the solutions of γ̇(t) = −ki(t, γ(t))∇̂φi(t, γ(t)), which are clearly admissible
trajectories for OCP(Γi, ki) since |∇̂φi(t, γ(t))| = 1. We prove that such trajectories are
optimal by showing that they satisfy the equality in the dynamic programming principle
(2.8). Let γ be such a trajectory and notice that it is Kmax Lipschitz continuous. From the
definition of normalized gradient, we have

lim
h→0+

φi
(
t+ h, γ(t)− hki(t, γ(t))∇̂φi(t, γ(t))

)
− φi(t, γ(t))

h
= −1.

Using the facts that γ(t + h) = γ(t) + hγ̇(t) + o(h) and that φi is Lipschitz continuous, we
deduce that

lim
h→0+

φi(t+ h, γ(t+ h))− φi(t, γ(t))

h
= −1.

Since t 7→ φi(t, γ(t)) is Lipschitz continuous, and hence differentiable almost everywhere, we
deduce that d

dt
φi(t, γ(t)) = −1 a.e., and thus, integrating the above expression from t to

t+ h, we get that φi(t+ h, γ(t+ h))− φi(t, γ(t)) = −h, and therefore, by Proposition 2.4.5,
γ is optimal for OCP(Γi, ki). Hence Qi is concentrated on Opti(Q), concluding the proof
that Q is an equilibrium.
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Chapter 3

Nonsmooth mean field games with state
constraints

In this chapter, we consider a mean field game model inspired by crowd motion where
agents aim to reach a closed set, called target set, in minimal time. Congestion phenomena
are modeled through a constraint on the velocity of an agent that depends on the average
density of agents around their position. The model is considered in the presence of state
constraints: roughly speaking, these constraints may model walls, columns, fences, hedges,
or other kinds of obstacles at the boundary of the domain which agents cannot cross. After
providing a more detailed description of the model, the chapter recalls some previous results
on the existence of equilibria for such games and presents the main difficulties that arise
due to the presence of state constraints. Our main contribution is to show that equilibria of
the game satisfy a system of coupled partial differential equations, known mean field game
system, thanks to recent techniques to characterize optimal controls in the presence of state
constraints. These techniques not only allow to deal with state constraints but also require
very few regularity assumptions on the dynamics of the agents.

3.1 Introduction
Mean field games (MFGs for short) were first introduced around 2006 by Larsy and Lions
[69–71] and independently by Caines, Huang, and Malhamé [61–63], motivated by problems
in economics and engineering and based on some previous works on games with infinitely
many players, such as those from [8, 9, 66]. MFGs are differential games with a continuum of
players, assumed to be rational, indistinguishable, individually negligible, and influenced only
by some “average” behavior of other players through a “mean-field type” interaction. Since
their introduction, MFGs have been studied both in connection with several applications and
from a theoretical point of view, in which the main goals are typically proving the existence
of equilibria, characterizing such equilibria as solutions to a system of partial differential
equations, called MFG system, or studying the connections between MFGs and games with
a large (but finite) number of symmetric players. We refer to [2, 28, 30, 36, 37, 53] for
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more details and further references on mean field games. In this chapter, we use the words
“players” and “agents” interchangeably to refer to people taking part in the game.

Most works on mean field games consider either first- or second-order mean field games.
First-order MFGs, also known as deterministic mean field games, usually assume that players’
dynamics are described by a deterministic control system, and their equilibria are charac-
terized by a system of first-order partial differential equations, whereas second-order MFGs,
also known as probabilistic mean field games, consider that players’ dynamics are determined
by a stochastic control system, typically with an additive Brownian motion modeling a ran-
dom drift, and their equilibria are typically described by a system of second-order partial
differential equations.

This chapter considers a class of first-order mean field games inspired by crowd motion in
which agents are assumed to remain inside of a specific domain while their goal is to arrive
at a given target set in minimal time. In order to model congestion, the speed of each agent
is constrained by a function depending on the position of the agent and on the distribution
of all agents.

Crowd motion has been the subject of a very large number of works in the literature
from different points of view, motivated not only by understanding but also by controlling
and optimizing the crowd behavior (see, e.g., [42, 51, 58–60, 64, 65, 72, 77, 78, 80]). The
natural framework for a mean field game modeling crowd motion is to adopt a macroscopic
modeling of crowd, i.e., to describe the crowd at a given time t as infinitely many agents
represented by a measure mt on the space of possible positions, which evolves according to
some conservation law, typically a continuity equation of the form ∂tm+div(mV ) = 0, where
V is the velocity field followed by the agents. While most macroscopic crowd motion models
consider a given velocity field V constructed from modeling assumptions, the mean field
game approach consists instead in considering that each agent will choose their trajectory
by solving some optimal control problem, and the velocity field V is a consequence of the
optimal choices of the agents.

Up to the authors’ knowledge, the first work to be fully dedicated to a mean field game
model for crowd motion is [67], which proposes an MFG model for a two-population crowd
with trajectories perturbed by additive Brownian motion and considers both their stationary
distributions and their evolution on a prescribed time interval. Other works have later
proposed MFG models for crowd motion taking into account different characteristics, such
as [20], which considers the fast exit of a crowd and proposes a mean field game model which
is studied numerically; [33], which is not originally motivated by the modeling of crowd
motion but considers a MFG model with a density constraint, which is a natural assumption
in some crowd motion models; [12], which presents numerical simulations for some variational
mean field games related to crowd motion; or also [41], which provides a generalized MFG
model for pedestrians with limited predictive abilities.

The present chapter considers the MFG model inspired by crowd motion introduced in
[75] (described in details in Section 3.2 below), which contains two major differences with
respect to previous MFGs for crowd motions and also to most MFG models in general.
Firstly, the model from [75] assumes that each agent solves an optimal control problem with
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free final time, and actually that the optimization criterion of each agent is to minimize their
arrival time at a certain target set, after which they quit the game. This is in contrast with
most of the MFG literature, which usually considers either optimization criteria with a given
and known finite final time or infinite-horizon optimization criteria. Secondly, congestion is
modeled in [75] by imposing a maximal speed for each agent which depends on their position
and the distribution of other agents, while, in most of other MFG works, agents are allowed to
choose their speed without constraints, but high speeds and congestion are instead penalized
in the cost function. The motivation of [75] to impose a constraint on the speed of agents is
to model high-congestion situations in which an agent may be unable to move faster since
other agents in front of them may work as a physical barrier which cannot be crossed by
simply paying a higher “cost”.

The main results of [75] are the existence of equilibria of the proposed MFG model and the
characterization of equilibria through an MFG system. Even though existence of equilibria
is proved in [75] under rather general assumptions, their characterization through an MFG
system is only shown in the case where the target set of the agents is the whole boundary
of the compact domain in which they evolve, which avoids the presence of state constraints
in the minimal-time optimal control problem solved by each agent. This is a very restrictive
assumption for a MFG model for crowd motion, since crowds often evolve in domains with
boundaries which cannot be crossed by the agents, such as walls, columns, fences, hedges, or
other obstacles. However, from a technical point of view, the major difficulty in analyzing
optimal control problems with state constraints is that their value functions may fail to
be semiconcave (see, e.g., [24, Example 4.4]), the latter property being important in the
characterization of optimal controls (see, e.g., [27]), which is a key step in obtaining the
MFG system in [75]. Other works, such as [46, 47, 83], have further explored the model
from [75] and related models, but none of those works consider the case of MFGs with state
constraints.

Studying optimal control problems and mean field games with state constraints turns out
to be a challenging problem due to the possible lack of semiconcavity of the value function.
The series of papers [21–23] represent an important step in the study of MFGs with state
constraints: in those works, the authors prove that, for the optimal control problem they
consider, even though the corresponding value function may fail to be semiconcave in the
classical sense, i.e., with a linear modulus of semiconcavity, the value function is still semi-
concave with a fractional modulus of semiconcavity, which is sufficient to obtain additional
properties of optimal trajectories allowing to characterize optimal controls. However, it is
not clear how to adapt that strategy to minimal-time optimal control problems. In order to
circumvent this difficulty, this chapter proves the required additional properties of optimal
trajectories without relying on the semiconcavity of the value function. This has also the
additional advantage of requiring fewer regularity properties on the dynamics of the control
system satisfied by each agent.

The main contribution of the present chapter is thus to characterize optimal controls
and deduce the MFG system for the model of [75] under state constraints, which is an
important step towards the study of MFG models for crowd motion with more realistic
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assumptions. A first step in the characterization of optimal controls is to apply Pontryagin
Maximum Principle in order to deduce additional information on optimal trajectories. To do
so, we adapt the penalization technique used in [25]: we transform the minimal-time optimal
control problem with state constraints into a penalized optimal control problem without state
constraints and show that, similarly to [25], if the penalization parameter is small enough,
optimal trajectories of the penalized problem coincide with optimal trajectories of the original
problem (see Theorem 3.4.8), which allows us to deduce properties of the optimal trajectories
of the original optimal control problem by applying Pontryagin Maximum Principle to the
penalized problem (see Corollary 3.4.9).

With those properties of optimal trajectories, we then proceed to the study of optimal
controls by following the arguments used in the recent paper [83]: our main results are
Theorem 3.4.11, which provides a boundary condition for the value function of the optimal
control problem solved by each agent; Theorem 3.4.23, which characterizes the optimal
control at a given point as the direction of greatest decrease of the value function by adapting
the arguments of [83, Theorem 4.14] to the case with state constraints; and Theorem 3.5.2,
which shows that equilibria of our MFG model satisfy the MFG system.

The present chapter is an extended version of [82], which announced most of the results
from this paper and provided some details of the strategy of the proofs of the main results.
With respect to that reference, this chapter works under weaker assumptions on the dynamics
of the control system (compare (H4)–(H7) below with [82, (H2)–(H3)]), which renders some
proofs more technically involved and require different proof strategies at some points, such as
in Lemma 3.3.2 and for most of the results of Section 3.4.1. This chapter also provides a more
detailed introduction to the subject, details proofs that had been omitted or only sketched
in [82] (and in particular the results in Section 3.4.3), and provides additional remarks and
comments on the results.

The chapter is organized as follows. Some notations and standard definitions are provided
in Section 3.2, together with the precise description of the optimal control problem and the
mean field game model considered in this chapter, and the list of hypotheses used here.
Section 3.3 presents preliminary results on the optimal control problem and the mean field
game, most of which are either easy to prove or already present in the literature. The major
new contributions in Section 3.3 are the proof of Lipschitz continuity of the value function
of the optimal control problem under the weaker assumptions (H4) and (H5) as well as the
alternative characterization of equilibria from Proposition 3.3.7, which also holds for other
mean field game models (see, e.g., [86, Lemma 3.4]).

The main results of this chapter are provided in Sections 3.4 and 3.5. Section 3.4.1 uses
the strategy of [25] to study an optimal control problem with state constraints through a
penalized optimal control problem without state constraints, adapting the techniques of that
reference to our setting in order to show that optimal trajectories of the original problem
coincide with that of the penalized problem if the penalization parameter is small enough
(Theorem 3.4.8). Section 3.4.2 provides a boundary condition for the value function of
the optimal control problem in the part of the boundary which is not in the target set.
We then provide, in Section 3.4.3, the characterization of optimal controls as directions of
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maximal descent of the value function, and we use this characterization in Section 3.4.4
to introduce the notion of normalized gradient and provide its main properties. The main
result concerning the mean field game model of interest is the fact that its equilibria satisfy
a system of PDEs, shown in Section 3.5.

3.2 Notations and definitions

3.2.1 General notations

In this chapter, N denotes the set of positive integers, d is a fixed positive integer, the sets
of nonnegative and positive real numbers are denoted respectively by R+ and R∗

+, Rd is
endowed with the usual Euclidean norm |·|, and the unit sphere is denoted by Sd−1. For
A ⊂ R

d, Ā denotes its closure, ∂A denotes its boundary, and coA denotes its convex hull.
For any x ∈ R

d and r ≥ 0, B(x, r) (resp., B̄(x, r)) denotes1 the open (resp., closed) ball
centered at x and with radius r. We denote this ball simply by Br (resp., B̄r) if x = 0 and
by B (resp., B̄) if x = 0 and r = 1, i.e., B (resp., B̄) is the open (resp., closed) unit ball
centered at the origin.

For two sets A and B, a set-valued map from A to B is a map F that associates, with
each x ∈ A, a (possibly empty) set F (x) ⊂ B. We use the notation F : A ⇒ B to indicate
that F is a set-valued map from A to B.

Given two metric spaces X and Y and a constant M > 0, C(X;Y ), Lip(X;Y ), and
LipM(X;Y ) denote, respectively, the set of all continuous functions from X to Y , the set
of all Lipschitz continuous functions from X to Y , and the subset of Lip(X;Y ) containing
only those functions whose Lipschitz constant is at most M . We will often use these spaces
to represent time-dependent functions defined for nonnegative times, in which case X = R+

and, for simplicity, we omit X from the previous notations, writing simply C(Y ), Lip(Y ),
and LipM(Y ), respectively. When X ⊂ R

k and Y ⊂ R
m for some positive integers k and m,

we also consider the set C1(X;Y ) of continuously differentiable functions, the set C1,1(X;Y )
of differentiable functions with a Lipschitz continuous differential, and the set C∞

c (X;Y ) of
infinitely differentiable functions with compact support on X. If f : X → Y and Z ⊂ X,
we write f ∈ C(Z;Y ) to denote that the restriction of f to Z is continuous (even though f
itself may fail to be continuous in the boundary of Z), with similar notations for the other
functional spaces defined above.

For compact A ⊂ R
d, the space C(A) is assumed to be endowed with the topology of

uniform convergence on compact sets, with respect to which C(A) is a Polish space (see,
e.g., [17, Chapter X]). For t ∈ R+, we denote by et : C(A) → A the evaluation map at time
t, defined by et(γ) = γ(t) for every γ ∈ C(A).

1In accordance with the previous notation, B̄(x, r) is the closure of B(x, r) whenever r > 0. However,
our notation is slightly ambiguous for r = 0: B(x, 0) = ∅, but B̄(x, 0) = {x} is not the closure of B(x, 0).
All along the chapter, we use the convention that, when referring to balls, the notation B̄(x, r) is the closed
ball centered at x and with radius r. The same convention applies to the notation B̄r, and we remark that
B̄ is unambiguous.
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Recall that, for two metric spaces X and Y endowed with their Borel σ-algebras and a
Borel-measurable map f : X → Y , the pushforward of a measure µ on X through f is the
measure f#µ on Y defined by f#µ(B) = µ(f−1(B)) for every Borel subset B of Y . Given
a Polish space X, the set of all Borel probability measures on X is denoted by P(X) and
is endowed with the topology of weak convergence of measures (which is also sometimes
referred to as narrow convergence). The support of a measure µ ∈ P(X) is denoted by
spt(µ), and is defined as the set of all points x ∈ X such that µ(Nx) > 0 for every open
neighborhood Nx of x. When X is endowed with a complete metric d with respect to which
X is bounded, we endow P(X) with the Wasserstein distance W1, defined for µ, ν ∈ P(X)
by

W1(µ, ν) = inf

{∫
X×X

d(x, y) dλ(x, y)

∣∣∣∣ λ ∈ Π(µ, ν)

}
,

where Π(µ, ν) = {λ ∈ P(X×X) | π1#λ = µ, π2#λ = ν} and π1, π2 : X×X → X denote the
canonical projections on to the first and second factors of the product X ×X, respectively.
Recall (see, e.g., [6, Chapter 7] and [85, Chapter 5]) that W1 is compatible with the topology
of weak convergence in P(X) and that it admits the dual formulation

W1(µ, ν) = sup

{∫
X

Φ(x) d(µ− ν)

∣∣∣∣ Φ ∈ Lip1(X;R)

}
.

We shall also need in this chapter the notion of signed distance to the boundary of a set,
whose definition we now provide, together with the classical definition of distance from a
point to a set.

Definition 3.2.1. Let A ⊂ R
d. If A ̸= ∅, we denote by dA the Euclidean distance to A,

defined by dA(x) = infy∈A|x− y|. If A ̸= ∅ and A ̸= R
d, the signed distance to the boundary

of A, d±∂A : Rd → R, is defined by

d±∂A(x) = dA(x)− dRd\A(x).

Finally, we will need, in Section 3.4, the notion of normal cones of nonsmooth sets. We
recall here the definitions provided in [88, Section 4.2].

Definition 3.2.2. Let k be a positive integer, C ⊂ R
k be a nonempty closed set, and x ∈ C.

1. The proximal normal cone to C at x is the set NP
C (x) defined by

NP
C (x) = {p ∈ Rk | ∃M > 0 such that p · (y − x) ≤M |y − x|2 for every y ∈ C}.

2. The limiting normal cone to C at x is the set NC(x) of vectors p ∈ Rk for which there
exist a sequence (xn)n∈N in C and a sequence (pn)n∈N in Rk such that xn → x and
pn → p as n→ +∞ and pn ∈ NP

C (xn) for every n ∈ N.
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3.2.2 The minimal-time optimal control problem

Before introducing the minimal-time mean field game of interest to this chapter, let us first
consider an auxiliary minimal-time optimal control problem, which is a classical kind of
problem in control theory. Let Ω ⊂ R

d be a nonempty open bounded set and Γ ⊂ Ω̄ be a
nonempty closed set. We consider the control system

(3.1)

{
γ̇(t) = k(t, γ(t))u(t), u(t) ∈ B̄,

γ(0) = x,

where x ∈ Ω̄, k : R+ × Ω̄ → R+, and, for t ≥ 0, γ(t) ∈ Ω̄ is the state and u(t) ∈ B̄ is the
control. The function k describes the dynamics of the system and, due to the constraint that
u(t) ∈ B̄, k(t, x) can be interpreted as the maximal speed at which an agent at position x
at time t can move. The fact of requiring that γ(t) ∈ Ω̄ for every time t ≥ 0 is a constraint
we impose in the state of (3.1).

We are interested in this chapter in the optimal control problem consisting in minimizing
the time a trajectory of (3.1) takes to reach the set Γ, called the target set. This optimal
control problem, to which we refer in the sequel as OCP(k) making explicit its dependence
on the dynamics k, is made more precise in the following definition.

Definition 3.2.3. Let Ω ⊂ R
d be a nonempty open bounded set, Γ ⊂ Ω̄ be a nonempty

closed set, and k : R+ × Ω̄ → R+.

(a) A curve γ ∈ Lip(Ω̄) is said to be admissible for OCP(k) if there exists a measurable
function u : R+ → B̄, called the control associated with γ, such that the first equation
of (3.1) is satisfied for almost every t ∈ R+. The set of all admissible curves for OCP(k)
is denoted by Adm(k).

(b) Let t0 ∈ R+. The first exit time after t0 of a curve γ ∈ Lip(Ω̄) is the number τ(t0, γ)
defined by

τ(t0, γ) = inf{t ≥ 0 | γ(t+ t0) ∈ Γ},

with the convention that τ(t0, γ) = +∞ if γ(t+ t0) ̸∈ Γ for every t ≥ 0.

(c) Let t0 ∈ R+ and x0 ∈ Ω̄. A curve γ ∈ Lip(Ω̄) is said to be an optimal trajectory for
OCP(k) from (t0, x0) if γ ∈ Adm(k), γ(t) = x0 for every t ∈ [0, t0],

(3.2) τ(t0, γ) = inf
β∈Adm(k)
β(t0)=x0

τ(t0, β),

and γ(t) = γ(t0+ τ(t0, γ)) for every t ∈ [t0+ τ(t0, γ),+∞). In this case, the associated
control u of γ is called an optimal control associated with γ. The set of all optimal
trajectories for OCP(k) from (t0, x0) is denoted by Opt(k, t0, x0).
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(d) The value function of the optimal control problem OCP(k) is the function φ : R+×Ω̄ →
R+ defined for (t0, x0) ∈ R+ × Ω̄ by

(3.3) φ(t0, x0) = inf
γ∈Adm(k)
γ(t0)=x0

τ(t0, γ).

We highlight the fact that, for a curve γ to be admissible, it must not only satisfy the
first equation of (3.1) for some control u and almost every time t ≥ 0, but it must also
remain inside Ω̄ for all times.

Remark 3.2.4. Since we are considering in Definition 3.2.3(c) optimal trajectories γ start-
ing at time t0 from x0 and minimizing the time to reach Γ, these trajectories could have been
defined only in the interval [t0, t0+ τ(t0, γ)]. However, in order to simplify the notations and
deal in this chapter only with trajectories and controls defined on R+, we extend an optimal
trajectory to R+ by requiring it to be constant on [0, t0] and on [t0 + τ(t0, γ),+∞), as done
in Definition 3.2.3(c).

3.2.3 The minimal-time mean field game and its equilibria

As in Section 3.2.2, we fix a nonempty open bounded set Ω ⊂ R
d and a nonempty closed

set Γ ⊂ Ω̄. We consider a minimal-time mean field game in which a population of agents
evolves on Ω̄ and the goal of each agent is to reach the target set Γ in minimal time. The
population is described by a time-dependent probability measure mt ∈ P(Ω̄) for t ≥ 0, and
m0 is assumed to be known. The trajectory γ of an agent starting its movement at a position
x ∈ Ω̄ is assumed to satisfy the control system

(3.4)

{
γ̇(t) = K(mt, γ(t))u(t), u(t) ∈ B̄,

γ(0) = x,

where K : P(Ω̄) × Ω̄ → R+ and u : R+ → B̄ is the control of the agent. Note that (3.4)
corresponds to (3.1) with k defined by k(t, x) = K(mt, x) for t ≥ 0 and x ∈ Ω̄. Each agent is
assumed to choose their control in order to solve the optimal control problem OCP(k) with
k defined from K as before. This mean field game is denoted in the sequel by MFG(K).

The function K models interactions between agents and states that the maximal speed
at which an agent at position x at time t can move depends on the position x itself and on
the distribution of all agents at time t, mt. This function can be used to model congestion
phenomena in crowd motion by choosing K(mt, x) to be small when mt is “large” around x,
which means that it is harder for agents to move on more crowded regions. For instance, K
can be chosen as

(3.5) K(µ, x) = g

(∫
Ω̄

χ(x− y)η(y) dµ(y)

)
,

where χ : Rd → R+ is a convolution kernel, η : Ω̄ → R+ is a weight function in the space
Ω̄, and g : R+ → R+ is a decreasing function. The function χ may represent, for instance,
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the region around an agent at which they look in order to evaluate local congestion, while η
may be a function that is larger in regions difficult to move, such as regions with obstacles
or other kinds of difficult terrain, and which can also be used to discount people who already
reached the target set, as it was done in [47, 75]. Note, however, that we do not assume this
specific form for K in this chapter.

Note that, since K depends on mt for all t ≥ 0, the optimal trajectories taken by the
agents depend on mt. On the other hand, mt itself describes the evolution of the agents,
and hence is determined by their choices of trajectories. We are interested in this chapter
in equilibrium situations, in which, roughly speaking, starting from time evolution of the
distribution of agents m : R+ → P(Ω̄), the optimal trajectories chosen by agents induce an
evolution of the initial distribution of agents m0 that is precisely given by t 7→ mt.

We provide a more precise notion of equilibrium in what is known as the Lagrangian
framework, in which, instead of describing the evolution of agents as a time-dependent
measurem : R+ → P(Ω̄), we rely instead on a measureQ on the set of all possible trajectories
P(C(Ω̄)). Note that, given a measure Q ∈ P(C(Ω̄)), one can obtain the associated time-
dependent measure m by setting mt = et#Q for t ≥ 0. The Lagrangian approach is a
classical approach in optimal transport problems (see, e.g., [6, 85]) which has been used to
define equilibria of first-order mean field games in some recent works, such as [12, 21, 26, 29,
33, 47, 50, 75, 83].

Definition 3.2.5. Let Ω ⊂ R
d be a nonempty open bounded set, Γ ⊂ Ω̄ be a nonempty

closed set, K : P(Ω̄) × Ω̄ → R+, and m0 ∈ P(Ω̄). A measure Q ∈ P(C(Ω̄)) is called a
Lagrangian equilibrium of MFG(K) with initial condition m0 if e0#Q = m0 and Q-almost
every γ ∈ C(Ω̄) satisfies γ ∈ Opt(kQ, 0, γ(0)), where kQ : R+ × Ω̄ → R+ is defined for t ≥ 0
and x ∈ Ω̄ by kQ(t, x) = K(et#Q, x).

In the sequel of the chapter, we refer to Lagrangian equilibria simply as equilibria.

Remark 3.2.6. Another classical way to describe the evolution of agents in a mean field
game, which dates back to [62] and has been used and developed in several other references
such as [38, 54, 68], is to fix a probability space (Z,Z,P) and describe the motion of agents
through a time-dependent random variable in Z, i.e., through a function X defined on R+

and such that, for every t ≥ 0, X(t) : Z → Ω̄ is measurable. One can then retrieve the time-
dependent measure mt ∈ P(Ω̄) as the law of X(t), i.e., mt = X(t)#P, but X contains more
information than m, since X also carries information on the correlation of the distributions
of agents at different times, for instance. This formulation using random variables has the
additional advantage of being also adapted to study of other kinds of mean field games, such
as second-order mean field games or mean field games of controls.

In addition, if2 R+ ∋ t 7→ X(t, z) ∈ Ω̄ is continuous for almost every z ∈ Z and the
function Ξ : Z → C(Ω̄) defined by setting Ξ(z) = X(·, z) for a.e. z ∈ Z is measurable, then
the probability measure Q ∈ P(C(Ω̄)) describing the evolution of agents from a Lagrangian
perspective can be retrieved as Q = Ξ#P.

2Here, X(t, z) is a simplified notation for X(t)(z).
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Conversely, given a measure Q ∈ P(C(Ω̄)) describing the evolution of agents, one can
consider the probability space (C(Ω̄),B, Q), where B is the Borel σ-algebra of C(Ω̄), and in
this case the evolution of agents can be described by the time-dependent random variable X
defined by X(t) = et for t ≥ 0.

3.2.4 Hypotheses

Along the chapter, we will need several assumptions on Ω, Γ, K, and k, which we collect in
this subsection. We start with the following assumptions on the sets Ω and Γ.

(H1) The set Ω ⊂ R
d is nonempty, open, bounded, and connected.

(H2) The set Γ ⊂ Ω̄ is nonempty and closed.

(H3) The boundary ∂Ω is a compact C1,1 submanifold of Rd of dimension d− 1.

Whenever we assume that (H3) holds, we use n(x) to denote the outward unit normal
vector to Ω̄ at the point x ∈ ∂Ω.

When studying the optimal control problem OCP(k), we shall need the following as-
sumptions on the function k.

(H4) The function k : R+ × Ω̄ → R+ is continuous and there exist positive constants Kmin

and Kmax such that k(t, x) ∈ [Kmin, Kmax] for every (t, x) ∈ R+ × Ω̄.

(H5) The function k is Lipschitz continuous with respect to its second variable, uniformly
with respect to the first variable, i.e., there exists L > 0 such that, for every t ∈ R+

and x1, x2 ∈ Ω̄, we have

|k(t, x1)− k(t, x2)| ≤ L|x1 − x2|.

The counterpart of Hypotheses (H4) and (H5) concerning the function K from the mean
field game MFG(K) are the following.

(H6) The function K : P(Ω̄) × Ω̄ → R+ is continuous and there exist positive constants
Kmin and Kmax such that K(µ, x) ∈ [Kmin, Kmax] for every (µ, x) ∈ P(Ω̄)× Ω̄.

(H7) The functions K is Lipschitz continuous with respect to its second variable, uniformly
with respect to the first variable, i.e., there exists L > 0 such that, for every µ ∈ P(Ω̄)
and x1, x2 ∈ Ω̄, we have

|K(µ, x1)−K(µ, x2)| ≤ L|x1 − x2|.

Note that (H6) and (H7) are satisfied in the particular case where K is chosen as in (3.5)
if g is Lipschitz continuous, upper bounded, and lower bounded by a positive constant, χ is
Lipschitz continuous, and η is continuous.
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3.3 Preliminary results
This section presents results on OCP(k) and MFG(K) that will be useful in the sequel, most
of which are either present in other references or easy to prove using classical techniques. It
turns out that the results we will present in this section require fewer regularity assumptions
on Ω than (H1) and (H3); namely, we replace here (H3) by the following assumption.

(H3′) There exists D > 0 such that, for every x, y ∈ Ω̄, there exists a curve γ included in Ω̄
connecting x to y and of length at most D|x− y|.

Hypothesis (H3′) means that the geodesic distance in Ω̄ is equivalent to the usual Euclidean
distance, and it holds in particular when (H1) and (H3) are satisfied.

The first result we present concerns three elementary properties of OCP(k): existence
of optimal trajectories, boundedness of the value function, and the dynamic programming
principle. The proof is omitted, since all properties are either easy to prove or classical.
Indeed, existence of optimal trajectories can be proved easily using compactness of a min-
imizing sequence (see [27, Theorem 8.1.4] for a proof in the autonomous case, i.e., when
k : R+ × Ω̄ → R+ does not depend on its first variable). Boundedness of the value function
follows from the fact that, using (H3′), one can easily construct, for every point x ∈ Ω̄, an
admissible trajectory connecting it to a point in Γ with constant speed Kmin and that arrives
in Γ in time at most DdΓ(x)

Kmin
, and the continuous function dΓ is bounded in the compact set Ω̄.

Finally, the proof of the dynamic programming principle is classical: the autonomous case
can be found, for instance, in [11, Proposition 2.1] and [27, (8.4)], and the corresponding
proofs can be easily adapted to our nonautonomous setting.

Proposition 3.3.1. Consider OCP(k) under hypotheses (H1), (H2), (H3′), (H4), and (H5).

1. For every (t0, x0) ∈ R+ × Ω̄, there exists an optimal trajectory γ for OCP(k) from
(t0, x0).

2. There exists T > 0 such that, for every (t0, x0) ∈ R+× Ω̄, the value function φ satisfies
φ(t0, x0) ≤ T .

3. For every (t0, x0) ∈ R+ × Ω̄ and γ ∈ Adm(k) such that γ(t0) = x0, we have, for every
h ≥ 0,

(3.6) φ(t0 + h, γ(t0 + h)) + h ≥ φ(t0, x0),

with equality if γ ∈ Opt(k, t0, x0) and h ∈ [0, τ(t0, γ)]. Conversely, if γ ∈ Adm(k)
satisfies γ(t0) = x0, γ is constant on [0, t0] and on [t0 + τ(t0, γ),+∞), and equality
holds in (3.6) for every h ∈ [0, τ(t0, γ)], then γ ∈ Opt(k, t0, x0).

Our next result deals with Lipschitz continuity of the value function φ. This kind of
result is classical for optimal control problems with free final time (see, e.g., [27, Proposi-
tion 8.2.5] for a proof in the autonomous case), and a complete proof for the nonautonomous
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optimal control problem OCP(k) was given in [75, Propositions 4.2 and 4.3]. However, that
reference uses the stronger assumption that k ∈ Lip(R+ × Ω̄;R+). When the optimal con-
trol problem does not have state constraints, this assumption can be relaxed to (H5) by first
showing Lipschitz continuity of φ with respect to x, which can be done by adapting the
classical proof of [27, Proposition 8.2.5], and then using the dynamic programming principle
to deduce Lipschitz continuity also with respect to t. This strategy was described in [47,
Proposition 3.8] and carried out in details in [83, Lemma 4.7 and Proposition 4.8], however
those proofs rely on the absence of state constraints and cannot be easily generalized to op-
timal control problems with state constraints. For that reason, we present here a new proof,
which is inspired by that of [75, Propositions 4.2 and 4.3] but uses a technique introduced
in the proof of [47, Proposition 3.9] in order to replace the assumption k ∈ Lip(R+× Ω̄;R+)
by the weaker assumption (H5). As a first step, we prove Lipschitz continuity of φ in space
for fixed time.

Lemma 3.3.2. Consider the optimal control problem OCP(k) and its value function φ and
assume that (H1), (H2), (H3′), (H4), and (H5) are satisfied. Then there exists C > 0 such
that, for every t0 ∈ R+ and x0, x1 ∈ Ω̄, we have

(3.7) |φ(t0, x0)− φ(t0, x1)| ≤ C|x0 − x1|.

Proof. Let D > 0 be as in (H3′), L > 0 be as in (H5), and T > 0 be as in the statement of
Proposition 3.3.12. It suffices to show that there exists C > 0 such that, for every t0 ∈ R+

and x0, x1 ∈ Ω̄, we have

(3.8) φ(t0, x1)− φ(t0, x0) ≤ C|x0 − x1|,

since, in this case, (3.7) can be deduced by exchanging the role of x0 and x1.
Let t0 ∈ R+ and x0, x1 ∈ Ω̄. Let γ0 ∈ Opt(k, t0, x0) and denote by u0 the corresponding

optimal control, i.e., γ̇0(t) = k(t, γ0(t))u0(t) for a.e. t ∈ R+. Let t∗0 = t0 + φ(t0, x0) be the
time at which γ0 arrives at the target set Γ.

Let us first describe informally the idea of the proof. We will construct an admissible
trajectory γ1 ∈ Lip(Ω̄) which remains constant at x1 in the time interval [0, t0], then moves
from x1 to x0 in a time interval [t0, t1], and then follows the same path of γ0, but with a
change in the time scale since it starts from x0 at time t1 > t0. This trajectory will then
arrive at x∗0 ∈ Γ, and we will prove that its arrival time at Γ satisfies

(3.9) τ(t0, γ1) ≤ φ(t0, x0) + C|x0 − x1|,

which yields the conclusion since φ(t0, x1) ≤ τ(t0, γ1). The difficult part of the proof is to
perform a suitable change in time scale guaranteeing both that γ1 is admissible and that its
arrival time at Γ satisfies the above inequality.

Applying (H3′) and renormalizing the speed of the curve whose existence is asserted
in that hypothesis, we obtain the existence of t1 ≥ t0 and a Lipschitz continuous curve
σ : [t0, t1] → Ω̄ such that σ(t0) = x1, σ(t1) = x0, |σ̇(t)| = Kmin for almost every t ∈ [t0, t1],
and t1 − t0 ≤ D|x1−x0|

Kmin
.
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Let us now define ϕ : [t1,+∞) → [t0,+∞) as a solution of the problem ϕ̇(t) =
k(t, γ0(ϕ(t)))

k(ϕ(t), γ0(ϕ(t)))
for t ≥ t1,

ϕ(t1) = t0.

Note that, since (t, s) 7→ k(t,γ0(s))
k(s,γ0(s))

is continuous (but not necessarily Lipschitz continuous in
its second argument), a solution ϕ to the above problem exists and is of class C1 (but it may
not be unique). Moreover, ϕ̇(t) ∈

[
Kmin

Kmax
, Kmax

Kmin

]
for every t ∈ [t1,+∞), which implies that

ϕ : [t1,+∞) → [t0,+∞) is increasing and surjective, and hence invertible, and both ϕ and
ϕ−1 are Lispchitz continuous, with Lipschitz constant Kmax

Kmin
. We define σ1 : [t1,+∞) → Ω̄

by σ1(t) = γ0(ϕ(t)), which, by construction, satisfies σ1(t1) = x0, σ1 ∈ Lip(Ω̄), and σ̇1(t) =
k(t, σ1(t))u1(t) for a.e. t ∈ [t1,+∞), where u1 is defined for t ∈ [t1,+∞) by u1(t) = u0(ϕ(t)).
In particular, since ϕ−1 is Lipschitz continuous, u1 is measurable. We define t∗1 = ϕ−1(t∗0)
and remark that σ1(t∗1) = γ0(t

∗
0) = x∗0 ∈ Γ.

Finally, we define γ1 ∈ Lip(Ω̄) by γ1(t) = x1 for t ∈ [0, t0], γ1(t) = σ(t) for t ∈ [t0, t1], and
γ1(t) = σ1(t) for t ∈ [t1,+∞). By construction, we have γ1 ∈ Adm(k) and τ(t0, γ1) ≤ t∗1− t0.
We are thus only left to show (3.9).

Note that, for every t ∈ [t1,+∞), we have k(ϕ(t), γ0(ϕ(t)))ϕ̇(t) = k(t, γ0(ϕ(t))) and thus,
by integrating this identity and performing a change of variables, we deduce that, for every
t ≥ t1,

(3.10)
∫ ϕ(t)

t0

k(s, γ0(s)) ds =

∫ t

t1

k(s, γ0(ϕ(s))) ds.

Let G : [t0,+∞) → [0,+∞) be defined for θ ≥ t0 by

G(θ) =

∫ θ

t0

k(s, γ0(s)) ds.

Then G is differentiable, with Ġ(θ) = k(θ, γ0(θ)) ∈ [Kmin, Kmax] for every θ ≥ t0. In particu-
lar, G is Kmax-Lipschitz continuous, invertible, and its inverse is 1

Kmin
-Lipschitz continuous.

Moreover, using (3.10), we have, for every t ≥ t1, that

G(ϕ(t)) =

∫ t

t1

k(s, γ0(ϕ(s))) ds, G(t) =

∫ t

t0

k(s, γ0(s)) ds.

Hence, for every t ≥ t1, we have

|ϕ(t)− t| =
∣∣∣∣G−1

(∫ t

t1

k(s, γ0(ϕ(s))) ds

)
−G−1

(∫ t

t0

k(s, γ0(s)) ds

)∣∣∣∣
≤ 1

Kmin

∣∣∣∣∫ t

t1

k(s, γ0(ϕ(s))) ds−
∫ t

t0

k(s, γ0(s)) ds

∣∣∣∣
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≤ 1

Kmin

∫ t

t1

|k(s, γ0(ϕ(s)))− k(s, γ0(s))| ds+
1

Kmin

∫ t1

t0

k(s, γ0(s)) ds

≤ LKmax

Kmin

∫ t

t1

|ϕ(s)− s| ds+ Kmax

Kmin

(t1 − t0).

Thus, by Grönwall’s inequality, we have, for every t ≥ t1,

|ϕ(t)− t| ≤ (t1 − t0)
Kmax

Kmin

e
LKmax
Kmin

(t−t1),

which yields, for t = t∗1, that

|t∗1 − t∗0| ≤ (t1 − t0)
Kmax

Kmin

e
LKmax
Kmin

(t∗1−t1).

Note that 0 ≤ t∗1−t1 = ϕ−1(t∗0)−ϕ−1(t0) ≤ Kmax

Kmin
(t∗0−t0) = Kmax

Kmin
φ(t0, x0) ≤ TKmax

Kmin
. Moreover,

t∗1 = t0+τ(t0, γ1) and t∗0 = t0+φ(t0, x0), showing that |t∗1−t∗0| = |τ(t0, γ1)−φ(t0, x0)|. Hence,
we deduce that

τ(t0, γ1)− φ(t0, x0) ≤ (t1 − t0)
Kmax

Kmin

exp

(
TLK2

max

K2
min

)
.

Recalling that 0 ≤ t1− t0 ≤ D|x1−x0|
Kmin

, we finally obtain (3.9) with C = DKmax

K2
min

exp
(
TLK2

max

K2
min

)
.

Now, exactly as in [83, Proposition 4.8], we can deduce Lipschitz continuity of φ by using
Lemma 3.3.2 and the dynamic programming principle from Proposition 3.3.13. We provide
a proof of this fact here for sake of completeness.

Proposition 3.3.3. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1), (H2), (H3′), (H4), and (H5) are satisfied. Then there exists M > 0
such that, for every (t0, x0), (t1, x1) ∈ R+ × Ω̄, we have

|φ(t0, x0)− φ(t1, x1)| ≤M (|t0 − t1|+ |x0 − x1|) .

Proof. We denote by C > 0 the Lipschitz constant from Lemma 3.3.2. Let (t0, x0), (t1, x1) ∈
R+ × Ω̄ and assume, with no loss of generality, that t0 < t1. Fix γ0 ∈ Opt(k, t0, x0) and set
x∗0 = γ0(t1). By Lemma 3.3.2, we have

(3.11) |φ(t1, x∗0)− φ(t1, x1)| ≤ C|x∗0 − x1|.

If t1 ≤ t0 + φ(t0, x0), then, by Proposition 3.3.13, since γ0 ∈ Opt(k, t0, x0), we have
φ(t1, x

∗
0) = φ(t0, x0)− (t1 − t0), and thus

(3.12) |φ(t0, x0)− φ(t1, x1)| ≤ |t1 − t0|+ C|x∗0 − x1|.
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Otherwise, we have t1 > t0+φ(t0, x0), which shows that x∗0 = γ0(t1) = γ0(t0+φ(t0, x0)) ∈ Γ,
and thus φ(t1, x∗0) = 0. Combining this with (3.11) and the fact that φ(t0, x0) < t1 − t0, we
deduce that (3.12) also holds in this case.

Since γ0 is Kmax-Lipschitz, we have |x∗0 − x0| = |γ0(t1)− γ0(t0)| ≤ Kmax|t1 − t0|. Hence,
combining with (3.12), we deduce that

|φ(t0, x0)− φ(t1, x1)| ≤ (CKmax + 1)|t1 − t0|+ C|x0 − x1|,

yielding the conclusion.

The next preliminary result we present is the fact that φ satisfies a Hamilton–Jacobi
equation. This kind of result is classical and can be obtained by adapting classical proofs
used in the autonomous case, such as those of [11, Chapter IV, Proposition 2.3] and [27,
Theorem 8.1.8]. The statement provided here can also be found in [47, Proposition 3.5] and
[75, Theorem 4.1].

Proposition 3.3.4. Consider OCP(k) under hypotheses (H1), (H2), (H3′), (H4), and (H5).
The value function φ of OCP(k) satisfies the Hamilton–Jacobi equation

(3.13) − ∂tφ(t, x) + |∇φ(t, x)|k(t, x)− 1 = 0

in the following sense: φ is a viscosity subsolution of (3.13) in R+ × (Ω \ Γ) and a viscosity
supersolution of (3.13) in R+ × (Ω̄ \ Γ). Moreover, φ satisfies φ(t, x) = 0 for every (t, x) ∈
R+ × Γ.

We next provide in Proposition 3.3.5 two properties of φ, the first one providing a lower
bound on the rate of change of φ over time at a fixed position, and the second one character-
izing the optimal control at points at which φ and the optimal trajectory are differentiable.
The first result was shown in [75, Proposition 4.4], once again under the stronger assump-
tion that k ∈ Lip(R+ × Ω̄;R+), but its proof was later refined in [47, Proposition 3.9] in
order to use only assumptions (H4) and (H5). Even though [47] considers only minimal-time
mean field games without state constraints, the proof of [47, Proposition 3.9] remains un-
changed when state constraints are present. The second result of Proposition 3.3.5 follows
as a consequence of the first one and Proposition 3.3.4, as detailed, for instance, in [75,
Corollary 4.1].

Proposition 3.3.5. Consider OCP(k) under hypotheses (H1), (H2), (H3′), (H4), and (H5),
and let φ be the value function of OCP(k).

1. There exists c > 0 such that, for every x ∈ Ω̄ and t0, t1 ∈ R+ with t0 ̸= t1, we have

φ(t1, x)− φ(t0, x)

t1 − t0
≥ c− 1.

In particular, if φ is differentiable at (t0, x), then ∂tφ(t0, x) ≥ c−1 and |∇φ(t0, x)| ≥ c.

63



2. For every (t0, x0) ∈ R+ × Ω̄, if γ ∈ Opt(k, t0, x0), t ∈ [t0, t0 + φ(t0, x0)), and φ is
differentiable at (t, γ(t)), then |∇φ(t, γ(t))| ≠ 0 and

γ̇(t) = −k(t, γ(t)) ∇φ(t, γ(t))
|∇φ(t, γ(t))|

.

We now turn to preliminary results concerning the mean field game MFG(K). The main
result on MFG(K) we present here is the following, asserting existence of equilibria.

Proposition 3.3.6. Consider the mean field game MFG(K) under hypotheses (H1), (H2),
(H3′), (H6), and (H7). Then, for every m0 ∈ P(Ω̄), there exists an equilibrium Q ∈ P(C(Ω̄))
for MFG(K) with initial condition m0.

A result similar to Proposition 3.3.6 was shown in [75, Theorem 5.1], but requiring the
stronger assumption that K ∈ Lip(P(Ω̄) × Ω̄;R+) instead of (H7). Proofs using only the
weaker assumption (H7) were provided in [47, Theorem 4.4] and [83, Theorem 5.1]. Both
references consider only mean field games without state constraints, but the only point in
those proofs where the absence of state constraints is used is to show Lipschitz continuity of
value functions of optimal control problems with functions k satisfying (H4) and (H5). Since
Proposition 3.3.3 above proves this fact also in the presence of state constraints, the proof of
Proposition 3.3.6 can be carried out exactly as in [47, Theorem 4.4] and [83, Theorem 5.1],
and it is thus omitted here.

A natural question regarding the definition of an equilibrium of a mean field game is
whether we can replace “Q-almost every γ ∈ C(Ω̄) satisfies γ ∈ Opt(kQ, 0, γ(0))” by “every
γ ∈ spt(Q) satisfies γ ∈ Opt(kQ, 0, γ(0))” in Definition 3.2.5. The last result of this section
provides an affirmative answer to that question.

Proposition 3.3.7. Consider the mean field game MFG(K) under hypotheses (H1), (H2),
(H3′), (H6), and (H7), and let m0 ∈ P(Ω̄). A measure Q ∈ P(C(Ω̄)) is an equilibrium
of MFG(K) with initial condition m0 if and only if e0#Q = m0 and every γ ∈ spt(Q)
satisfies γ ∈ Opt(kQ, 0, γ(0)), where kQ : R+ × Ω̄ → R+ is defined for t ≥ 0 and x ∈ Ω̄ by
kQ(t, x) = K(et#Q, x).

Proof. Notice first that t 7→ et#Q is Lipschitz continuous with Lipschitz constant Kmax,
since, for t0, t1 ∈ R+, we have

W1(et0#Q, et1#Q) = sup
Φ∈Lip1(Ω̄;R)

∫
Ω̄

Φ(x) d(et0#Q− et1#Q)(x)

= sup
Φ∈Lip1(Ω̄;R)

∫
C(Ω̄)

[Φ(γ(t0))− Φ(γ(t1))] dQ(γ) ≤ Kmax|t0 − t1|.

In particular, kQ satisfies (H4) and (H5).
The result is proved if we show that, for every Q ∈ P(C(Ω̄)), γ ∈ Opt(kQ, 0, γ(0)) for

every γ ∈ spt(Q) if and only if γ ∈ Opt(kQ, 0, γ(0)) for Q-almost every γ ∈ C(Ω̄). Since
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spt(Q) is a set of full Q measure, we clearly have γ ∈ Opt(kQ, 0, γ(0)) for Q-almost every
γ ∈ C(Ω̄) if γ ∈ Opt(kQ, 0, γ(0)) for every γ ∈ spt(Q).

To prove the converse implication, assume that γ ∈ Opt(kQ, 0, γ(0)) for Q-almost every
γ ∈ C(Ω̄). Fix γ ∈ spt(Q). By definition of support, for every open neighborhood V
of γ in C(Ω̄), we have Q(V ) > 0, and thus, by assumption, there exists γV ∈ V such
that γV ∈ Opt(kQ, 0, γV (0)). In particular, there exists a sequence (γn)n∈N such that γn ∈
Opt(kQ, 0, γn(0)) for every n ∈ N and γn → γ in the topology of C(Ω̄) (i.e., uniformly on
compact subsets of R+) as n→ +∞.

Since γn ∈ Opt(kQ, 0, γn(0)), we have in particular γn ∈ Adm(kQ), which implies that,
for every t0, t1 ∈ R+, we have

|γn(t1)− γn(t0)| ≤
∫ t1

t0

kQ(s, γn(s)) ds.

Letting n→ +∞, we deduce that

|γ(t1)− γ(t0)| ≤
∫ t1

t0

kQ(s, γ(s)) ds,

which shows in particular that γ is Kmax-Lipschitz continuous. Moreover, dividing by |t1−t0|
and letting t1 → t0, we deduce that |γ̇(t)| ≤ kQ(t, γ(t)) for almost every t ∈ R+, showing
that γ ∈ Adm(kQ).

To prove optimality of γ, notice that γn(φQ(0, γn(0))) ∈ Γ, where φQ denotes the value
function of OCP(kQ). Since Γ is closed and, by Proposition 3.3.3, φQ is continuous, we
deduce by letting n→ +∞ that γ(φQ(0, γ(0))) ∈ Γ, showing that τ(0, γ) ≤ φQ(0, γ(0)). On
the other hand, since γ ∈ Adm(kQ), we have φQ(0, γ(0)) ≤ τ(0, γ) by the definition (3.3) of
φQ, yielding that τ(0, γ) = φQ(0, γ(0)). Thus γ ∈ Opt(kQ, 0, γ(0)), as required.

3.4 Further properties of the optimal control problem
We now provide some further results on the optimal control problem OCP(k). In the ref-
erences [47, 75, 83], additional properties of the value function and of optimal trajectories,
such as C1,1 regularity of optimal trajectories or differentiability of the value function along
optimal trajectories, were obtained only for optimal control problems without state con-
straints. The technique used in those references is to apply the (unconstrained) Pontryagin
Maximum Principle to obtain further properties of optimal trajectories that can then be used
to deduce additional results on OCP(k). The main difficulty in generalizing this technique
is that, even though versions of Pontryagin Maximum Principle taking into account control
systems with state constraints such as (3.1) exist in the literature (see, e.g., [40, Chapter 5]),
it is a difficult problem to get nice additional properties of OCP(k) from their conclusions.

The strategy we follow in this section relies instead on a penalization technique adapted
from [25], which consists in considering an optimal control problem with no state constraints
but such that the maximal speed of each agent decays fast to 0 as the agent moves away from
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Ω̄. It is then possible to show that, if the penalization parameter is small enough, optimal
trajectories of the penalized problem never leave Ω̄ and thus they coincide with optimal
trajectories of the original problem with state constraints. As consequences, we provide
a boundary condition for the Hamilton–Jacobi equation (3.13) and a characterization of
optimal controls, the latter being a key ingredient for showing, in Section 3.5, that equilibria
of MFG(K) satisfy an MFG system.

3.4.1 Penalized optimal control problem

We present in this section the penalized optimal control problem we consider in order to
study optimal trajectories of OCP(k). Before turning to the core of this section, let us first
recall, in the next proposition, some classical consequences of (H3) on the signed distance to
∂Ω, whose proofs can be found, for instance, in [45, Theorems 5.1 and 5.7].

Proposition 3.4.1. Let Ω ⊂ R
d be a set satisfying (H3).

1. The signed distance d±∂Ω is Lipschitz continuous on Rd, with Lipschitz constant equal
to 1.

2. There exists a neighborhood W of ∂Ω such that the signed distance to ∂Ω satisfies
d±∂Ω ∈ C1,1(W ;R). Moreover,

∣∣∇d±∂Ω(x)∣∣ = 1 for every x ∈ W .

3. For every x ∈ ∂Ω, ∇d±∂Ω(x) is the outward unit normal to Ω at x.

Let us now introduced the penalized optimal control problem. We fix Ω, Γ, and k
satisfying assumptions (H1)–(H3), (H4), and (H5), and we extend k to a continuous function
defined on R+ × R

d and taking values in [Kmin, Kmax] such that, for every t ∈ R+, x 7→
k(t, x) is L-Lipschitz continuous on Rd, with L independent of t. Such an extension can be
constructed, for instance, by proceeding as in [10].

For ϵ > 0, we define kϵ : R+ ×Rd → R+ by

(3.14) kϵ(t, x) = k(t, x)

(
1− 1

ϵ
dΩ(x)

)
+

,

where the notation a+ is defined by a+ = max(0, a) for a ∈ R. In particular, kϵ is continuous,
nonnegative, upper bounded by Kmax, x 7→ kϵ(t, x) is Lipschitz continuous for every t ∈ R+

with a Lipschitz constant Lϵ = L + Kmax

ϵ
independent of t, kϵ(t, x) = k(t, x) for every

(t, x) ∈ R+ × Ω̄, and kϵ(t, x) = 0 if dΩ(x) ≥ ϵ.
We consider the penalized control system

(3.15) γ̇(t) = kϵ(t, γ(t))u(t), t ≥ 0,

where γ(t) ∈ Rd is the state (which is no longer constrained to remain in Ω̄) and u(t) ∈ B̄ is
the control. We denote by OCPϵ(kϵ) the minimal-time optimal control problem of finding,
for any (t0, x0) ∈ R+ × R

d, a trajectory γ ∈ Lip(Rd) with γ(t0) = x0 and a measurable

66



control u : R+ → B̄ satisfying (3.15) and minimizing the time at which γ reaches the
target set Γ for the first time after t0. Similarly to Definition 3.2.3, we denote by Admϵ(kϵ)
the set of admissible curves for (3.15), i.e., the set of γ ∈ Lip(Rd) such that (3.15) is
satisfied for some measurable u : R+ → B̄. The definition of the first exit time τ(t0, γ) from
Definition 3.2.3(b) is extended to curves γ ∈ Lip(Rd), and we define optimal trajectories
for OCPϵ(kϵ) as in Definition 3.2.3(c), but requiring in addition that τ(t0, γ) < +∞ for
a trajectory γ to be considered optimal from (t0, x0) ∈ R+ × R

d. The set of optimal
trajectories for OCPϵ(kϵ) from (t0, x0) ∈ R+ ×Rd is denoted by Optϵ(kϵ, t0, x0). The value
function φϵ : R+×Rd → R+∪{+∞} of OCPϵ(kϵ) is defined similarly to Definition 3.2.3(d).

Standard arguments allow to show that OCPϵ(kϵ) also satisfies a dynamic programming
principle: if (t0, x0) ∈ R+ × Rd and γ ∈ Admϵ(kϵ) is such that γ(t0) = x0, then, for every
h ≥ 0, we have

(3.16) φϵ(t0 + h, γ(t0 + h)) + h ≥ φϵ(t0, x0),

with equality if γ ∈ Optϵ(kϵ, t0, x0) and h ∈ [0, φϵ(t0, x0)]. However, contrarily to OCP(k),
we may have nonexistence of optimal trajectories for OCPϵ(kϵ). More precisely, Optϵ(kϵ, t0,
x0) = ∅ if dΩ(x0) ≥ ϵ, but one can show by standard arguments that this set is nonempty
as soon as dΩ(x0) < ϵ. In addition, φϵ(t, x) < +∞ if and only if dΩ(x) < ϵ.

The first result we show for OCPϵ(kϵ) is the following property of optimal trajectories.

Proposition 3.4.2. Consider the optimal control problem OCPϵ(kϵ) under assumptions
(H1)–(H3), (H4), and (H5). Let (t0, x0) ∈ R+ × R

d and γ ∈ Optϵ(kϵ, t0, x0). Then
dΩ(γ(t)) < ϵ for every t ∈ R+.

Proof. Denote by u : R+ → B̄ an optimal control associated with γ. Assume, to obtain a
contradiction, that there exists t1 ∈ R+ such that dΩ(γ(t1)) ≥ ϵ. In particular, kϵ(t, γ(t1)) =
0 for every t ∈ R+, and thus the function γ̃ : R+ → R

d, defined by γ̃(t) = γ(t1) satisfies
˙̃γ(t) = kϵ(t, γ̃(t))u(t) for every t ∈ R+. Since the initial value problem consisting of this
equation and the initial condition γ̃(t1) = γ(t1) admits a unique solution, then necessarily
γ̃ = γ. However, since γ ∈ Optϵ(kϵ, t0, x0), we have τ(t0, γ) < +∞ and γ(t0+ τ(t0, γ)) ∈ Γ ⊂
Ω̄, which contradicts the fact that dΩ(γ(t0+τ(t0, γ))) = dΩ(γ̃(t0+τ(t0, γ))) = dΩ(γ(t1)) ≥ ϵ.

We now apply Pontryagin Maximum Principle to optimal trajectories of the penalized
problem OCPϵ(kϵ) starting from a point in Rd \ Γ.

Proposition 3.4.3. Consider the optimal control problem OCPϵ(kϵ) under assumptions
(H1)–(H3), (H4), and (H5), and with kϵ defined from k as in (3.14). Let (t0, x0) ∈ R+×(Rd\
Γ), γ ∈ Optϵ(kϵ, t0, x0), T = φϵ(t0, x0), and u : R+ → B̄ be an optimal control associated
with γ. Then there exist λ ≥ 0 and an absolutely continuous function p : [t0, t0 + T ] → R

d

such that the following assertions hold.

1. λ+maxt∈[t0,t0+T ]|p(t)| > 0.
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2. For almost every t ∈ [t0, t0 + T ], we have

(3.17) ṗ(t) ∈ co
{
ζ ∈ Rd

∣∣ (ζ, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t))
}
,

where, for t ≥ 0, the set Gϵ(t) is defined by

(3.18) Gϵ(t) =
{
(x, v) ∈ Rd ×Rd

∣∣ ∃u ∈ B̄ such that kϵ(t, x)u = v
}
.

3. −p(t0 + T ) ∈ NΓ(γ(t0 + T )).

4. One has

u(t) =
p(t)

|p(t)|
,

almost everywhere on {t ∈ [t0, t0 + T ] | p(t) ̸= 0}.

5. λ = kϵ(t0 + T, γ(t0 + T ))|p(t0 + T )|.

Before turning to the proof of Proposition 3.4.3, we remark that, by taking γ ∈ Optϵ(kϵ,
t0, x0), we implicitly assume that Optϵ(kϵ, t0, x0) is not empty, and thus dΩ(x0) < ϵ.

Proof. We apply [88, Theorem 8.4.1] to OCPϵ(kϵ) and the optimal trajectory γ over the
interval [t0, t0 + T ]. Notice, first, that, since γ ∈ Optϵ(kϵ, t0, x0), we have in particular
T < +∞ and, since x0 ∈ Rd \ Γ, we have T > 0. We denote by Lϵ the Lipschitz constant of
x 7→ kϵ(t, x), and we recall that this constant is independent of t ∈ R+.

We first introduce some notation in accordance to the statement of [88, Theorem 8.4.1].
Let g : R × R

d × R × R
d → R be defined for (t1, x1, t2, x2) ∈ R × R

d × R × R
d by

g(t1, x1, t2, x2) = t2−t1, define C = {(t1, x1, t2, x2) ∈ R×Rd×R×Rd | t1 = t0, x1 = x0, t2 ≥
t1, x2 ∈ Γ}, and let Fϵ : R×Rd ⇒ R

d be the set-valued map defined for (t, x) ∈ R×Rd by
Fϵ(t, x) = {kϵ(max(t, 0), x)u | u ∈ B̄}. Notice that the optimal control problem OCPϵ(kϵ)
starting from the given (t0, x0) ∈ R+ × R

d can be rephrased as: minimize g(t0, γ̃(t0), t0 +
T, γ̃(t0+T )) over intervals [t0, t0+T ] and absolutely continuous functions γ̃ : [t0, t0+T ] → R

d

such that ˙̃γ(t) ∈ Fϵ(t, γ̃(t)) for a.e. t ∈ [t0, t0+T ] and (t0, γ̃(t0), t0+T, γ̃(t0+T )) ∈ C. Remark
also that the set Gϵ(t) from 2 is the graph of Rd ∋ x 7→ Fϵ(t, x) ⊂ R

d.
Let us verify the assumptions of [88, Theorem 8.4.1]. First, the constant δ > 0 from [88,

Theorem 8.4.1] can be chosen arbitrarily. Since g is of class C∞ and Γ is closed, assumption
(H1) from [88, Theorem 8.4.1] is verified. The fact that kϵ is continuous also allows one to
easily verify assumption (H2) from [88, Theorem 8.4.1]. Using the fact that kϵ is Lϵ-Lipschitz
continuous in its second variable uniformly with respect to the first variable, assumption (H3)
from [88, Theorem 8.4.1] is satisfied with β = 0 and kFϵ(t) = Lϵ for every t ∈ [t0, t0 + T ].
Since t0 is fixed, assumption (H4) from [88, Theorem 8.4.1] is not needed. Finally, using once
again that kϵ is Lϵ-Lipschitz continuous in its second variable uniformly with respect to the
first variable, we deduce that (H5) from [88, Theorem 8.4.1] holds with c1 = Kmax, k1 = Lϵ,
and with an arbitrary δ1 > 0. Thus, all assumptions of [88, Theorem 8.4.1] are verified.
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The statement of [88, Theorem 8.4.1] now asserts the existence of an absolutely continuous
p : [t0, t0 + T ] → R

d and real numbers λ ≥ 0, ξ, and η, satisfying (i)–(iv) and (vi) from the
statement of [88, Theorem 8.4.1]. Items (i) and (ii) are exactly 1 and 2 above.

Assertion [88, Theorem 8.4.1(iii)] states that

(3.19) (−ξ, p(t0), η,−p(t0+T )) ∈ λ∂g(t0, x0, t0+T, γ(t0+T ))+NC(t0, x0, t0+T, γ(t0+T )),

where ∂g denotes the limiting subdifferential of g (see [88, Definition 4.3.1] for its definition).
Since g is smooth, we have ∂g(t0, x0, t0 + T, γ(t0 + T )) = {∇g(t0, x0, t0 + T, γ(t0 + T ))} =
{(−1, 0, 1, 0)}.

Let us now compute the limiting normal cone of C at (t0, x0, t0 + T, γ(t0 + T )). For that
purpose, we first compute its proximal normal cone at every (t1, x1, t2, x2) ∈ C with t2 > t1.
Let (s1, p1, s2, p2) ∈ NP

C (t1, x1, t2, x2). By Definition 3.2.21, there exists M > 0 such that

(s1, p1, s2, p2) · (t′1 − t1, x
′
1 − x1, t

′
2 − t2, x

′
2 − x2)

≤M
[
|t′1 − t1|2 + |x′1 − x1|2 + |t′2 − t2|2 + |x′2 − x2|2

]
for every (t′1, x

′
1, t

′
2, x

′
2) ∈ C. By definition of C, we have t1 = t′1 = t0, x1 = x′1 = x0, and thus

s2(t
′
2 − t2) + p2 · (x′2 − x2) ≤M

[
|t′2 − t2|2 + |x′2 − x2|2

]
.

Taking t′2 = t2, we deduce that p2 · (x′2 − x2) ≤ M |x′2 − x2|2 for every x′2 ∈ Γ, and thus
p2 ∈ NP

Γ (x2). Taking x′2 = x2, we deduce that s2(t′2− t2) ≤M |t′2− t2|2 for every t′2 ≥ t′1 = t0.
In particular, for every ρ > 0, taking t′2 = t2 + ρ, we have s2ρ ≤ Mρ2, which yields, since
ρ > 0 is arbitrary, that s2 ≤ 0. On the other hand, taking t′2 = t2 − ρ for ρ ∈ (0, t2 − t1], we
have −s2ρ ≤Mρ2, which yields, since ρ ∈ (0, t2 − t1] is arbitrary and t2 > t1, that −s2 ≤ 0,
and thus s2 = 0. We have thus shown that3

NP
C (t1, x1, t2, x2) ⊂ R×Rd × {0} ×NP

Γ (x2),

It now follows, using Definition 3.2.22, that4

NC(t0, x0, t0 + T, γ(t0 + T )) ⊂ R×Rd × {0} ×NΓ(γ(t0 + T )).

In particular, (3.19) imposes no constraints on ξ and p(t0), and asserts that η = λ and
−p(t0 + T ) ∈ NΓ(γ(t0 + T )), showing 3.

To show 4, notice that [88, Theorem 8.4.1(iv)] states that, for almost every t ∈ [t0, t0+T ],
we have p(t) · γ̇(t) ≥ p(t) · v for every v ∈ Fϵ(t, γ(t)), which means that, for almost every
t ∈ [t0, t0 + T ], we have kϵ(t, γ(t))p(t) · u(t) ≥ kϵ(t, γ(t))p(t) · w for every w ∈ B̄. By
Proposition 3.4.2, we have that dΩ(γ(t)) < ϵ for every t ∈ [t0, t0 + T ], yielding from (3.14)

3The converse inclusion can be shown by straightforward arguments, but it is not necessary for our proof.
Notice also that this inclusion is false in the case t2 = t1, but this case is not needed in our proof.

4Once again, we also have the converse inclusion, but it is not necessary for our proof.
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that kϵ(t, γ(t)) > 0. Hence, for almost every t ∈ [t0, t0 + T ], we have p(t) · u(t) ≥ p(t) ·w for
every w ∈ B̄, and this is equivalent to 4.

Finally, define Hϵ : R × R
d × R

d → R for (t, x, p) ∈ R × R
d × R

d by Hϵ(t, x, p) =
supv∈Fϵ(t,x) p · v, and notice that Hϵ(t, x, p) = kϵ(t, x)|p|. In particular, remarking that Hϵ is
continuous, [88, Theorem 8.4.1(vi)] then asserts that η = kϵ(t0+T, γ(t0+T ))|p(t0+T )|, and
thus 5 holds since η = λ.

The absolutely continuous function p from Proposition 3.4.32 is known as the costate
associated with the optimal trajectory γ. Even though Proposition 3.4.32 provides the
differential inclusion (3.17) for the costate p, this inclusion is in general hard to manipulate.
We provide, in the next lemma, the main consequence of this differential inclusion that we
will use in the sequel. Recall that, for r > 0, B̄r denotes the closed ball centered at the
origin and with radius r.

Lemma 3.4.4. Consider the optimal control problem OCPϵ(kϵ) under assumptions (H1)–
(H3), (H4), and (H5), and with kϵ defined from k as in (3.14). Let (t0, x0), γ, T , and p be
as in the statement of Proposition 3.4.3 and Lϵ > 0 be the Lipschitz constant of x 7→ kϵ(t, x),
which is independent of t. Then, for almost every t ∈ [t0, t0 + T ], we have

co
{
ζ ∈ Rd

∣∣ (ζ, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t))
}
⊂ B̄Lϵ|p(t)|.

In particular, for almost every t ∈ [t0, t0 + T ], we have |ṗ(t)| ≤ Lϵ|p(t)|.

Proof. Let Gϵ be defined as in the statement of Proposition 3.4.32. Since B̄Lϵ|p(t)| is convex,
the result is proved if we show that, for a.e. t ∈ [t0, t0 + T ] and every ζ ∈ Rd, if (ζ, p(t)) ∈
NGϵ(t)(γ(t), γ̇(t)), then |ζ| ≤ Lϵ|p(t)|. Note that this inequality is trivial if ζ = 0, and thus
we assume from now on that ζ ̸= 0.

Fix t ∈ [t0, t0 + T ] at which p and γ are differentiable and (3.17) holds. Let ζ ∈ Rd be
such that (ζ, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t)). By definition of the limiting normal cone of Gϵ(t),
there exist sequences (xn, vn)n∈N in Gϵ(t) and (ζn, pn)n∈N in Rd ×Rd such that (xn, vn) →
(γ(t), γ̇(t)) and (ζn, pn) → (ζ, p(t)) as n→ +∞ and (ζn, pn) ∈ NP

Gϵ(t)
(xn, vn) for every n ∈ N.

Since ζ ̸= 0, we assume, with no loss of generality, that ζn ̸= 0 for every n ∈ N.
Take n ∈ N. Since (xn, vn) ∈ Gϵ(t), it follows from (3.18) that there exists un ∈ B̄ such

that vn = kϵ(t, xn)un. Since (ζn, pn) ∈ NP
Gϵ(t)

(xn, vn), there exists Mn > 0 such that

(3.20) (ζn, pn) · (y − xn, kϵ(t, y)u− kϵ(t, xn)un) ≤Mn

[
|y − xn|2 + |kϵ(t, y)u− kϵ(t, xn)un|2

]
for every y ∈ Rd and u ∈ B̄. Let αn = ((n + 1)(1 + L2

ϵ)Mn)
−1 > 0 and take y = xn + αnζn

and u = un in (3.20). Then

αn|ζn|2 + [kϵ(t, xn + αnζn)− kϵ(t, xn)] pn · un
≤Mn

[
α2
n|ζn|

2 + |kϵ(t, xn + αnζn)− kϵ(t, xn)|2
]
.
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Hence
αn|ζn|2 ≤Mnα

2
n|ζn|2 +MnL

2
ϵα

2
n|ζn|2 + αnLϵ|ζn||pn|.

Since αn > 0 and |ζn| > 0, we deduce that(
1−Mnαn −MnL

2
ϵαn
)
|ζn| ≤ Lϵ|pn|.

By definition of αn, we have Mnαn +MnL
2
ϵαn = 1

n+1
< 1, and thus

|ζn| ≤
Lϵ

1− 1
n+1

|pn|.

The conclusion follows by letting n→ +∞.

Using Lemma 3.4.4, we can prove additional regularity properties of optimal trajectories
and optimal controls for OCPϵ(kϵ).

Proposition 3.4.5. Consider the optimal control problem OCPϵ(kϵ) under assumptions
(H1)–(H3), (H4), and (H5), and with kϵ defined from k as in (3.14). Let (t0, x0), γ, T , u, and
p be as in the statement of Proposition 3.4.3 and Lϵ > 0 be the Lipschitz constant of kϵ with
respect to its second variable, which is independent of its first variable. For t ∈ [t0, t0 + T ],
define Ξϵ(t) by

(3.21) Ξϵ(t) = co
{
ξ ∈ Rd

∣∣ (ξ|p(t)|, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t))
}
,

where Gϵ(t) is given by (3.18). Then, up to redefining u in a set of Lebesgue measure zero,
the following assertions hold.

1. For every t ∈ [t0, t0 + T ], we have |p(t)| ≠ 0 and u(t) = p(t)
|p(t)| .

2. For almost every t ∈ [t0, t0 + T ] and every ξ ∈ Ξϵ(t), we have |ξ| ≤ Lϵ.

3. We have γ ∈ C1([t0, t0 + T ];Rd), u ∈ LipLϵ
([t0, t0 + T ];Sd−1), and (γ, u) satisfies, for

almost every t ∈ [t0, t0 + T ], the system

(3.22)

{
γ̇(t) = kϵ(t, γ(t))u(t)

u̇(t) ∈ Pr⊥u(t) Ξϵ(t)

where, for x ∈ Sd−1 and A ⊂ R
d, Pr⊥x A denotes the projection of the vectors of A onto

the tangent space of Sd−1 at x, defined by Pr⊥x A = {a− (x · a)x | a ∈ A}.

Proof. Let us first prove 1. By Lemma 3.4.4, we have that |ṗ(t)| ≤ |p(t)|Lϵ, implying that,
for every t1, t2 ∈ [t0, t0 + T ], we have

|p(t2)| ≤ |p(t1)|+ Lϵ

∫ max{t1,t2}

min{t1,t2}
|p(s)| ds.
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Hence, by Grönwall’s inequality, for every t1, t2 ∈ [t0, t0 + T ], we have

|p(t2)| ≤ |pϵ(t1)|eLϵ|t2−t1|.

If there exists t1 such that p(t1) = 0, then p(t) = 0 for every t ∈ [t0, t0+Tϵ]. Letting λ ≥ 0 be
as in the statement of Proposition 3.4.3, we have, by Proposition 3.4.35, that λ = 0, which is
a contradiction according to Proposition 3.4.31. Therefore |p(t)| ≠ 0 for every t ∈ [t0, t0+T ].
We then deduce from Proposition 3.4.34 that u(t) = p(t)

|p(t)| for almost every t ∈ [t0, t0 + T ],
and the conclusion for every t ∈ [t0, t0 + T ] holds by redefining u in a set of measure zero.
Hence 1 is proved.

Note that, for every t ∈ [t0, t0 + T ], we have ξ ∈ Ξϵ(t) if and only if

ξ

|p(t)|
∈ co

{
ζ ∈ Rd

∣∣ (ζ, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t))
}
.

In particular, 2 follows as a consequence of 1 and Lemma 3.4.4. Notice also that, by Propo-
sition 3.4.32, we have ṗ(t) ∈ |p(t)|Ξϵ(t) for a.e. t ∈ [t0, t0 + T ].

Let us now prove 3. Note that, by 1, u(t) ∈ S
d−1 for every t ∈ [t0, t0 + T ] and, since

p is absolutely continuous, u is also absolutely continuous. Let ξ : [t0, t0 + T ] → R
d be

a measurable function with ξ(t) ∈ Ξϵ(t) and ṗ(t) = |p(t)|ξ(t) for a.e. t ∈ [t0, t0 + T ]. We
compute, for a.e. t ∈ [t0, t0 + T ],

u̇(t) =
ṗ(t)|p(t)| − p(t)·ṗ(t)

|p(t)| p(t)

|p(t)|2
= ξ(t)− (u(t) · ξ(t))u(t),

which yields the differential inclusion for u in system (3.22). By 2, we deduce that |u̇(t)| ≤ Lϵ
for a.e. t ∈ [t0, t0 + T ], yielding that u is Lϵ-Lipschitz continuous on [t0, t0 + T ]. The first
equation in (3.22) is simply (3.15), and its right-hand side is continuous on [t0, t0 + T ],
showing that γ ∈ C1([t0, t0 + T ];Rd).

We will need in the sequel the following technical lemma.

Lemma 3.4.6. Consider the optimal control problem OCPϵ(kϵ) under assumptions (H1)–
(H3), (H4), and (H5), and with kϵ defined from k as in (3.14). Let (t0, x0), γ, T , and p be
as in the statement of Proposition 3.4.3 and L > 0 be the Lipschitz constant of Rd ∋ x 7→
k(t, x) ∈ [Kmin, Kmax], which is independent of t. For t ∈ [t0, t0 + T ], define Ξϵ(t) as in the
statement of Proposition 3.4.5. Finally, let W be as in the statement of Proposition 3.4.12.

For almost every t ∈ [t0, t0 + T ], if γ(t) ∈ W and γ(t) /∈ Ω̄, then, for every ξ ∈ Ξϵ(t), we
have

(3.23)
∣∣∣∣ξ · ∇d±∂Ω(γ(t))− 1

ϵ
k(t, γ(t))

∣∣∣∣ ≤ (1− 1

ϵ
dΩ(γ(t))

)
L.

Proof. Fix t ∈ [t0, t0 + T ] at which γ is differentiable and such that γ(t) ∈ W and γ(t) /∈ Ω̄.
Since the set of ξ ∈ Rd such that (3.23) holds is convex, it suffices to show that, for every
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ξ ∈ R
d, if (ξ|p(t)|, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t)), then (3.23) holds, where Gϵ(t) is given by

(3.18). Fix ξ ∈ Rd such that (ξ|p(t)|, p(t)) ∈ NGϵ(t)(γ(t), γ̇(t)). Let u be an optimal control
associated with γ and recall that, by Proposition 3.4.5, u is Lipschitz continuous.

By definition of NGϵ(t)(γ(t), γ̇(t)), there exist sequences (xn)n∈N in Rd, (un)n∈N in B̄,
(ζn)n∈N in Rd, and (pn)n∈N in Rd such that, as n→ +∞, we have xn → γ(t), kϵ(t, xn)un →
kϵ(t, γ(t))u(t), ζn → ξ|p(t)|, and pn → p(t), and in addition (ζn, pn) ∈ NP

Gϵ(t)
(xn, kϵ(t, xn)un)

for every n ∈ N. By Proposition 3.4.51, we have |p(t)| ≠ 0, and we then define ξn = ζn
|p(t)| for

n ∈ N. Then, as n → +∞, we have ξn → ξ and, since kϵ is continuous and5 kϵ(t, γ(t)) > 0,
we also have un → u(t).

For every n ∈ N, since (ζn, pn) ∈ NP
Gϵ(t)

(xn, kϵ(t, xn)un), there exists Mn > 0 such that

(3.24) (ξn|p(t)|, pn) · (y − xn, kϵ(t, y)w − kϵ(t, xn)un)

≤Mn

[
|y − xn|2 + |kϵ(t, y)w − kϵ(t, xn)un|2

]
for every y ∈ R

d and w ∈ B̄. Let (αn)n∈N be a sequence of positive real numbers such
that αn → 0 and Mnαn → 0 as n → +∞. Since γ(t) ∈ W , γ(t) /∈ Ω̄, and dΩ(γ(t)) <
ϵ, for n large enough, we have xn ∈ W , xn /∈ Ω̄, and dΩ(xn) < ϵ. In particular, by
Proposition 3.4.12, ∇d±∂Ω(xn) is well-defined and |∇d±∂Ω(xn)| = 1. For n ∈ N, apply (3.24)
with y = xn + αn∇d±∂Ω(xn) and w = un. Then

αn|p(t)|ξn · ∇d±∂Ω(xn) + pn · un
[
kϵ(t, xn + αn∇d±∂Ω(xn))− kϵ(t, xn)

]
≤Mnα

2
n(1 + L2

ϵ),

where Lϵ is the Lipschitz constant of Rd ∋ x 7→ kϵ(t, x) ∈ R+, which is independent of t.
Dividing by αn, we get

(3.25) |p(t)|ξn · ∇d±∂Ω(xn) + pn · un
kϵ(t, xn + αn∇d±∂Ω(xn))− kϵ(t, xn)

αn
≤Mnαn(1 + L2

ϵ).

Since ∇d±∂Ω is continuous in W , we have, as n→ +∞, that ξn · ∇d±∂Ω(xn) → ξ · ∇d±∂Ω(γ(t)),
pn · un → p(t) · u(t) = |p(t)|, and, by construction, Mnαn → 0.

Let us denote for simplicity zn = xn + αn∇d±∂Ω(xn). Since αn → 0 as n → +∞ and
γ(t) ∈ W , γ(t) /∈ Ω̄, and dΩ(γ(t)) < ϵ, we deduce that, for n large enough, xn ∈ W , zn ∈ W ,
xn /∈ Ω̄, zn /∈ Ω̄, dΩ(xn) < ϵ, and dΩ(zn) < ϵ for n large enough. Using those facts and (3.14),
we compute

1

αn
[kϵ(t, zn)− kϵ(t, xn)] =

1

αn

[
k(t, zn)

(
1− 1

ϵ
d±∂Ω(zn)

)
− k(t, xn)

(
1− 1

ϵ
d±∂Ω(xn)

)]
=

1

ϵ
k(t, zn)

d±∂Ω(xn)− d±∂Ω(zn)

αn
+ βn

(
1− 1

ϵ
d±∂Ω(xn)

)
,

where
βn =

k(t, zn)− k(t, xn)

αn
.

5Recall that, by Proposition 3.4.2, we have dΩ(γ(t)) < ϵ.
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Note that, since k is L-Lipschitz continuous in its second argument, we have |βn| ≤ L for n
large enough. In particular, up to extracting a subsequence, there exists β∗ ∈ [−L,L] such
that βn → β∗ as n → +∞. Moreover, since d±∂Ω ∈ C1,1(W ;R), we have d±∂Ω(xn)−d

±
∂Ω(zn)

αn
→

−
∣∣∇d±∂Ω(γ(t))∣∣2 = −1 as n→ +∞. Hence, letting n→ +∞ in (3.25) and dividing by |p(t)|,

we deduce that

(3.26) ξ · ∇d±∂Ω(γ(t))−
1

ϵ
k(t, γ(t)) + β∗

(
1− 1

ϵ
d±∂Ω(γ(t))

)
≤ 0.

Performing the same computations as above from (3.24) but now taking y = xn −
αn∇d±∂Ω(xn) and w = un, we get that

−ξ · ∇d±∂Ω(γ(t)) +
1

ϵ
k(t, γ(t)) + β̃∗

(
1− 1

ϵ
d±∂Ω(γ(t))

)
≤ 0

for some β̃∗ ∈ [−L,L]. Together with (3.26), this yields (3.23), as required.

Proposition 3.4.2 stated that, for every ϵ > 0, optimal trajectories for OCPϵ(kϵ) always
remain in an ϵ neighborhood of Ω̄. Using the previous results, we can now be more precise
and show that, if ϵ > 0 is small enough, optimal trajectories for OCPϵ(kϵ) starting at
(t0, x0) ∈ R+ × Ω̄ never leave Ω̄.

Proposition 3.4.7. Consider the optimal control problem OCPϵ(kϵ) under assumptions
(H1)–(H3), (H4), and (H5) and kϵ defined from k as in (3.14). There exists ϵ0 > 0 such that,
for every ϵ ∈ (0, ϵ0), (t0, x0) ∈ R+ ×Rd, and γ ∈ Optϵ(kϵ, t0, x0), we have dΩ(γ(t)) ≤ dΩ(x0)
for every t ∈ R+. In particular, if x0 ∈ Ω̄, then γ(t) ∈ Ω̄ for every t ∈ R+.

Proof. Take (t0, x0) ∈ R+ × R
d. Notice first that, if x0 ∈ Γ, then Optϵ(kϵ, t0, x0) is equal

to the singleton containing only the trajectory that remains in x0 for all times. We thus
assume, for the rest of the proof, that x0 ∈ Ω̄ \ Γ.

Let W be as in the statement of Proposition 3.4.12 and take ϵ∗ > 0 such that {x ∈ Rd |
d∂Ω(x) < ϵ∗} ⊂ W . Let C be a Lipschitz constant of ∇d±∂Ω on W and L, Kmax, and Kmin be
as in (H4) and (H5). Let ϵ0 = min

{
ϵ∗,

Kmin

L+CKmax

}
and take ϵ ∈ (0, ϵ0).

Fix γ ∈ Optϵ(kϵ, t0, x0) and let T = φϵ(t0, x0). Recall that, by Proposition 3.4.2,
dΩ(γ(t)) < ϵ for every t ∈ R+. Let p : [t0, t0 + T ] → R

d be the costate associated with
γ, whose existence is asserted in Proposition 3.4.3. By Propositions 3.4.32 and 3.4.51, there
exists a measurable function ξ : [t0, t0 + T ] → R

d such that ξ(t) ∈ Ξϵ(t) and ṗ(t) = |p(t)|ξ(t)
for a.e. t ∈ [t0, t0 + T ], where Ξϵ(t) is defined in (3.21).

By definition of optimal trajectories, we have that γ(t) = x0 for every t ∈ [0, t0] and
γ(t) = γ(t0 + T ) ∈ Γ ⊂ Ω̄ for every t ∈ [t0 + T,+∞), and hence dΩ(γ(t)) ≤ dΩ(x0) for every
t ∈ [0, t0]∪ [t0+T,+∞). Assume, to obtain a contradiction, that there exist a, b ∈ [t0, t0+T ]
such that a < b, dΩ(γ(t)) > dΩ(x0) for t ∈ (a, b) and dΩ(γ(t)) = dΩ(x0) for t ∈ {a, b}. In
particular, dΩ(γ(t)) > 0 for t ∈ (a, b), implying that γ(t) /∈ Ω̄ for t ∈ (a, b) and γ(t) /∈ Ω for
t ∈ [a, b].
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Recall that, by Proposition 3.4.2, dΩ(γ(t)) < ϵ for every t ∈ R+, and thus, in particular,
γ(t) ∈ W for every t ∈ [a, b]. Hence, by Propositions 3.4.1 and 3.4.53, the map t 7→ d±∂Ω(γ(t))
is differentiable on (t0, t0 + T ), d±∂Ω(γ(t)) > dΩ(x0) for t ∈ (a, b), and d±∂Ω(γ(t)) = dΩ(x0) for
t ∈ {a, b}. Thus, its derivative is nonnegative at a and nonpositive at b, i.e.,

γ̇(a) · ∇d±∂Ω(γ(a)) ≥ 0 and γ̇(b) · ∇d±∂Ω(γ(b)) ≤ 0.

Since, by Propositions 3.4.2 and 3.4.5, we have γ̇(t) = kϵ(t, γ(t))
p(t)
|p(t)| and kϵ(t,γ(t))

|p(t)| > 0 for
every t ∈ [t0, t0 + T ], we deduce that

(3.27) p(a) · ∇d±∂Ω(γ(a)) ≥ 0 and p(b) · ∇d±∂Ω(γ(b)) ≤ 0.

Consider now the map α : t 7→ p(t) · ∇d±∂Ω(γ(t)). Since γ(t) ∈ W for every t ∈ [a, b] and
d±∂Ω ∈ C1,1(W ;R), α is absolutely continuous on [a, b] and, for a.e. t ∈ (a, b), we have, using
Lemma 3.4.6 and the fact that ∇d±∂Ω ◦ γ is CKmax-Lipschitz continuous in [a, b], that

α̇(t) = ṗ(t) · ∇d±∂Ω(γ(t)) + p(t) ·
d
[
∇d±∂Ω ◦ γ

]
dt

(t)

= |p(t)|ξ(t) · ∇d±∂Ω(γ(t)) + p(t) ·
d
[
∇d±∂Ω ◦ γ

]
dt

(t)

≥ 1

ϵ
|p(t)|k(t, γ(t))−

(
1− 1

ϵ
dΩ(γ(t))

)
L|p(t)| − CKmax|p(t)|

≥ |p(t)|
(
Kmin

ϵ
− L− CKmax

)
> 0,

which contradicts (3.27).

We are now in position to show the main result of this section.

Theorem 3.4.8. Consider the optimal control problem OCP(k) under assumptions (H1)–
(H3), (H4), and (H5), as well as the problem OCPϵ(kϵ) with kϵ defined from k as in (3.14).
There exists ϵ0 > 0 such that, for every ϵ ∈ (0, ϵ0) and (t0, x0) ∈ R+ × Ω̄, we have
Optϵ(kϵ, t0, x0) = Opt(k, t0, x0) and φϵ(t0, x0) = φ(t0, x0).

Proof. Let ϵ0 > 0 be as in the statement of Proposition 3.4.7, ϵ ∈ (0, ϵ0), and (t0, x0) ∈ R×Ω̄.
Let γϵ ∈ Optϵ(kϵ, t0, x0) and γ ∈ Opt(k, t0, x0), and denote Tϵ = φϵ(t0, x0) and T = φ(t0, x0).
Clearly, γ ∈ Admϵ(kϵ), and thus Tϵ ≤ T . On the other hand, thanks to Proposition 3.4.7,
γϵ ∈ Adm(k), which leads us to T ≤ Tϵ. Hence T = Tϵ, which shows that we have both
γϵ ∈ Opt(k, t0, x0) and γ ∈ Optϵ(kϵ, t0, x0), as required.

Thanks to Theorem 3.4.8, all properties established in this section for optimal trajectories
of OCPϵ(kϵ) also hold for optimal trajectories of OCP(k). The next statement, whose proof
is an immediate consequence of Proposition 3.4.53 and Theorem 3.4.8, gathers the properties
of optimal trajectories of OCP(k) that will be used in the sequel.
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Corollary 3.4.9. Consider the optimal control problem OCP(k) under assumptions (H1)–
(H3), (H4), and (H5). Let (t0, x0) ∈ R+ × Ω̄, γ ∈ Opt(k, t0, x0), T = φ(t0, x0), and u :
R+ → B̄ be an optimal control associated with γ. Then, up to redefining u in a set of
Lebesgue measure zero, we have γ ∈ C1([t0, t0 + T ]; Ω̄) and u ∈ Lip([t0, t0 + T ];Sd−1).

Before concluding this section, we also provide the following result on the local Lipschitz
continuity of φϵ, which can be obtained as a consequence of Proposition 3.4.7. For its
statement, we introduce, for ϵ > 0, the set

Ωϵ = {x ∈ Rd | dΩ(x) < ϵ}.

Proposition 3.4.10. Consider the optimal control problem OCPϵ(kϵ) and its value function
φϵ under assumptions (H1)–(H3), (H4), and (H5) and kϵ defined from k as in (3.14). Then
there exists ϵ0 > 0 such that, for every ϵ ∈ (0, ϵ0), the value function φϵ : R+ × Ωϵ → R+ of
OCPϵ(kϵ) is locally Lipschitz continuous. More precisely, for every η ∈ [0, ϵ), φϵ is Lipschitz
continuous on R+ × Ω̄η.

Proof. Let ϵ0 > 0 be as in the statement of Proposition 3.4.7 and fix ϵ ∈ (0, ϵ0) and η ∈ [0, ϵ).
We consider the optimal control problem ÔCP defined as follows: given (t0, x0) ∈ R+ × Ω̄η,
minimize τ(t0, γ) over all Lipschitz continuous curves γ : R+ → Ω̄η satisfying (3.15) for
some measurable function u : R+ → B̄ and γ(t0) = x0. We denote by φ̂ : R+ × Ω̄η → R+

the value function of ÔCP and by Ôpt(kϵ, t0, x0) the set of optimal trajectories for (t0, x0),
with the convention that γ ∈ Ôpt(kϵ, t0, x0) must satisfy γ(t) = x0 for t ∈ [0, t0] and
γ(t) = γ(t0 + φ̂(t0, x0)) for t ∈ [t0 + φ̂(t0, x0),+∞).

Note that ÔCP is a minimal-time optimal control problem with dynamics defined by kϵ
and with the state constraint γ(t) ∈ Ω̄η for every t ≥ 0. In particular, ÔCP coincides with
the optimal control problem OCP(k) if one replaces Ω by Ωη and k by the restriction of kϵ
to R+× Ω̄η, and assumptions (H1)–(H3), (H4), and (H5) are satisfied for ÔCP, with Kmin in
(H4) replaced by K̂min =

(
1− η

ϵ

)
Kmin and L in (H5) replaced by L̂ = Lϵ = L+ Kmax

ϵ
. Hence,

all properties of Section 3.3 apply to ÔCP and thus, by Proposition 3.3.3, φ̂ is Lipschitz
continuous on R+ × Ω̄η.

In order to conclude, it suffices to show that φϵ and φ̂ coincide on this set. For this
purpose, we proceed as in the proof of Theorem 3.4.8. Let (t0, x0) ∈ R × Ω̄η. Let γϵ ∈
Optϵ(kϵ, t0, x0) and γ̂ ∈ Ôpt(kϵ, t0, x0), and denote Tϵ = φϵ(t0, x0) and T̂ = φ̂(t0, x0). Clearly,
γ̂ ∈ Admϵ(kϵ), and thus Tϵ ≤ T̂ . On the other hand, thanks to Proposition 3.4.7, we have
dΩ(γϵ(t)) ≤ dΩ(x0) ≤ η for every t ≥ 0, showing that γϵ takes values in Ω̄η. Hence γϵ is an
admissible trajectory for the optimal control problem ÔCP, showing that T̂ ≤ Tϵ. Hence
T̂ = Tϵ, as required.

3.4.2 Boundary condition of the value function

Proposition 3.3.4 in Section 3.3 asserts that φ is a viscosity solution of the Hamilton–Jacobi
equation (3.13) and also provides its boundary condition on R+ × Γ. The only information
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provided in Proposition 3.3.4 on φ on the part of the boundary R+ × (∂Ω \ Γ) is that φ is
a viscosity supersolution there. The main result of this section, Theorem 3.4.11, provides
additional information on φ on R+ × (∂Ω \ Γ).

Theorem 3.4.11. Consider the optimal control problem OCP(k) and its value function φ
under assumptions (H1)–(H3), (H4), and (H5). Then φ satisfies ∇φ(t, x) · n(x) ≥ 0 in the
viscosity supersolution sense for every (t, x) ∈ R+ × (∂Ω \ Γ).

Proof. We consider in this proof that k is extended to a continuous function, still denoted
by k, defined in [−1,+∞) × R

d which is Lipschitz continuous with respect to its second
variable, uniformly with respect to the first one. Note that, up to considering the optimal
control problem OCP(k(·−1, ·)), all of the previous results on minimal-time optimal control
problems apply to k with the time domain R+ replaced by [−1,+∞)

Fix (t0, x0) ∈ R+ × (∂Ω \ Γ) and let ξ ∈ C1(V ;R) be such that ξ(t0, x0) = φ(t0, x0) and
ξ(t, x) ≤ φ(t, x) for every (t, x) ∈ V , where V is a neighborhood of (t0, x0) in [−1,+∞)× Ω̄.
Assume, to obtain a contradiction, that ∇ξ(t0, x0) · n(x0) < 0. In particular, we have
∇ξ(t0, x0) ̸= 0.

Let γ ∈ Opt(k, t0, x0), u be an optimal control for γ, and T = φ(t0, x0). Since x0 /∈ Γ,
we have T > 0 and, by Corollary 3.4.9, we have γ ∈ C1([t0, t0 + T ]; Ω̄) and u ∈ Lip([t0, t0 +
T ];Sd−1).

Let σ : [−1,+∞) → R
d denote the solution of the initial value problem σ̇(t) = −k(t, σ(t)) ∇ξ(t0, x0)

|∇ξ(t0, x0)|
,

σ(t0) = x0.

Since k is continuous, by construction, σ ∈ C1([−1,+∞),Rd). We claim that there exists
ϵ ∈ (0, 1] such that σ(t) ∈ Ω̄ and (t, σ(t)) ∈ V for every t ∈ [t0− ϵ, t0]. Indeed, let W be as in
Proposition 3.4.12 and notice that, since x0 ∈ ∂Ω, there exists ϵ0 ∈ (0, 1] such that σ(t) ∈ W
for every t ∈ [t0 − ϵ0, t0 + ϵ0]. Moreover, up to reducing ϵ0, we also have (t, σ(t)) ∈ V for
every t ∈ [t0− ϵ0, t0+ ϵ0]. Consider the map β : t 7→ d±∂Ω(σ(t)), which is Lipschitz continuous
on [t0 − ϵ0, t0 + ϵ0]. By differentiating, we have, for a.e. t ∈ [t0 − ϵ0, t0 + ϵ0],

(3.28) β̇(t) = σ̇(t) · ∇d±∂Ω(σ(t)) = −k(t, σ(t))∇d±∂Ω(σ(t)) ·
∇ξ(t0, x0)
|∇ξ(t0, x0)|

.

Recalling that n(x0) = ∇d±∂Ω(x0) and using the continuity of ∇d∂Ω, we deduce from the fact
that ∇ξ(t0, x0) · n(x0) < 0 that there exists ϵ ∈ (0, ϵ0] such that ∇d±∂Ω(σ(t)) · ∇ξ(t0, x0) < 0
for every t ∈ [t0 − ϵ, t0 + ϵ]. Hence, by (3.28), we have β̇(t) > 0 for a.e. t ∈ [t0 − ϵ, t0 + ϵ].
Since β(t0) = 0, we thus have β(t) ≤ 0 for t ∈ [t0 − ϵ, t0], which implies that σ(t) ∈ Ω̄ for
every t ∈ [t0 − ϵ, t0]. Since ϵ ∈ (0, ϵ0], we also have in particular that (t, σ(t)) ∈ V for every
t ∈ [t0 − ϵ, t0].
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Define γ̃ : [−1,+∞) → Ω̄ by

γ̃(t) =


σ(t0 − ϵ), if t ∈ [−1, t0 − ϵ),
σ(t), if t ∈ [t0 − ϵ, t0),
γ(t), if t ≥ t0.

Hence γ̃ is an admissible trajectory for k and thus, by Proposition 3.3.13, for every h ∈ [0, ϵ],
we have φ(t0, x0) ≥ φ(t0 − h, γ̃(t0 − h)) − h, and thus ξ(t0, x0) ≥ ξ(t0 − h, γ̃(t0 − h)) − h.
Notice also that, for h ∈ [0, ϵ], we have γ̃(t0 − h) = σ(t0 − h), yielding that ξ(t0, x0) ≥
ξ(t0 − h, σ(t0 − h))− h. Since ξ and σ are C1 functions, for h ∈ [0, ϵ], we have

ξ(t0 − h, σ(t0 − h)) = ξ(t0, x0)− h∂tξ(t0, x0)− h∇ξ(t0, x0) · σ̇(t0) + o(h).

Inserting this fact in the inequality ξ(t0, x0) ≥ ξ(t0 − h, σ(t0 − h)) − h for h ∈ (0, ϵ], using
the definition of σ, dividing by h and letting h→ 0+, we deduce that

(3.29) − ∂tξ(t0, x0) + k(t0, x0)|∇ξ(t0, x0)| − 1 ≤ 0.

Since γ ∈ Opt(k, t0, x0), we have, by Proposition 3.3.13, that φ(t0, x0) = φ(t0 + h, γ(t0 +
h)) + h for every h ∈ [0, T ], and thus ξ(t0, x0) ≥ ξ(t0 + h, γ(t0 + h)) + h. We also have, for
h ∈ [0, T ],

ξ(t0 + h, γ(t0 + h)) = ξ(t0, x0) + h∂tξ(t0, x0) + h∇ξ(t0, x0) · γ̇(t+0 ) + o(h),

where we use the fact that γ ∈ C1([t0, t0 + T ]; Ω̄) and γ̇(t+0 ) denotes the limit of γ̇(t) as
t → t+0 . Using the fact that γ satisfies the first equation of (3.1), we deduce as before,
dividing by h and letting h→ 0+, that

∂tξ(t0, x0) + k(t0, x0)∇ξ(t0, x0) · u(t0) + 1 ≤ 0.

Adding with (3.29), we deduce that ∇ξ(t0, x0) ·u(t0)+ |∇ξ(t0, x0)| ≤ 0 and, since u(t0) ∈ B̄,
this implies that u(t0) = − ∇ξ(t0,x0)

|∇ξ(t0,x0)| .
Consider now the function α : t 7→ d±∂Ω(γ(t)) defined on [t0, t0+T ]. Since γ(t0) = x0 ∈ ∂Ω,

there exists δ0 ∈ (0, T ] such that γ(t) ∈ W for every t ∈ [t0, t0 + δ0], and thus α is C1 on
[t0, t0 + δ0], with

α̇(t) = ∇d±∂Ω(γ(t)) · γ̇(t) = k(t, γ(t))∇d±∂Ω(γ(t)) · u(t).

In particular, α̇(t0) = −k(t0, x0)n(x0) · ∇ξ(t0,x0)
|∇ξ(t0,x0)| > 0, showing that there exists δ ∈ (0, δ0]

such that α(t) > α(t0) = 0 for every t ∈ (t0, t0 + δ]. From the definition of α, this means
that γ(t) /∈ Ω̄ for t ∈ (t0, t0 + δ], which is a contradiction since γ ∈ Opt(k, t0, x0). This
contradiction establishes that ∇ξ(t0, x0) · n(x0) ≥ 0, as required.

Remark 3.4.12. Under the assumptions of Theorem 3.4.11, if (t0, x0) ∈ R+× (∂Ω \Γ) and
φ is differentiable at (t0, x0), then the inequality ∇φ(t0, x0) · n(x0) ≥ 0 holds in the classical
sense.
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Proposition 3.3.4 asserts that the value function φ is a viscosity solution of the Hamilton–
Jacobi equation (3.13) in R+ × (Ω \ Γ) and thus, as a consequence of standard properties of
viscosity solutions, (3.13) is satisfied in the classical sense at all points (t, x) ∈ R+ × (Ω \ Γ)
at which φ is differentiable. Thanks to Theorem 3.4.11, we can prove that (3.13) is actually
satisfied at all points (t, x) ∈ R+ × (Ω̄ \ Γ) at which φ is differentiable.

Proposition 3.4.13. Consider the optimal control problem OCP(k) and its value function
φ under assumptions (H1)–(H3), (H4), and (H5). Let (t0, x0) ∈ R+ × (Ω̄ \Γ) be such that φ
is differentiable at (t0, x0). Then

−∂tφ(t0, x0) + |∇φ(t0, x0)|k(t0, x0)− 1 = 0.

Proof. If x0 ∈ Ω \ Γ, this fact is a consequence of classical properties of viscosity solu-
tions, and so we assume in the sequel that x0 ∈ ∂Ω \ Γ. By Remark 3.4.12, we have that
∇φ(t0, x0) · n(x0) ≥ 0. Moreover, by Proposition 3.3.51, we have ∇φ(t0, x0) ̸= 0. Since,
by Proposition 3.3.4, φ is a viscosity supersolution of (3.13) in R+ × (Ω̄ \ Γ), we have in
particular that

−∂tφ(t0, x0) + |∇φ(t0, x0)|k(t0, x0)− 1 ≥ 0.

We are thus left to show the converse inequality.
Let D be the set of unit vectors pointing to the inside of Γ̄ at x0, i.e., D is the set

of u0 ∈ S
d−1 for which there exists h0 > 0 such that x0 + hu0 ∈ Ω̄ for every h ∈ [0, h0].

Notice that {u0 ∈ Sd−1 | u0 · n(x0) < 0} ⊂ D ⊂ {u0 ∈ Sd−1 | u0 · n(x0) ≤ 0} and thus, in
particular, D̄ = {u0 ∈ Sd−1 | u0 · n(x0) ≤ 0}. Since ∇φ(t0, x0) · n(x0) ≥ 0, we deduce that
− ∇φ(t0,x0)

|∇φ(t0,x0)| ∈ D̄.
Let u ∈ D and σ ∈ C1(R+;R

d) be the unique solution of

(3.30)

{
σ̇(t) = k(t, σ(t))u

σ(t0) = x0.

Since u ∈ D, there exists h0 > 0 such that σ(t) ∈ Ω̄ for every t ∈ [t0, t0+h0]. Let γ ∈ Adm(k)
be defined by γ(t) = x0 for t ∈ [0, t0], γ(t) = σ(t) for t ∈ [t0, t0 + h0], and γ(t) = σ(t0 + h0)
for t ≥ t0 + h0. By Proposition 3.3.13, we have, for every h ∈ [0, h0],

(3.31) φ(t0, x0) ≤ h+ φ(t0 + h, σ(t0 + h)).

One the other hand, notice that σ(t0 + h) = x0 + hk(t0, x0)u + o(h) as h → 0. Since φ is
differentiable at (t0, x0) and Lipschitz continuous, we deduce that, as h→ 0+,

φ(t0 + h, σ(t0 + h))− φ(t0, x0) = h∂tφ(t0, x0) + hk(t0, x0)∇φ(t0, x0) · u+ o(h).

Dividing the above expression by h, using (3.31) and letting h→ 0+, we get

−1 ≤ ∂tφ(t0, x0) + k(t0, x0)∇φ(t0, x0) · u.
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Since this holds for every u ∈ D and the right-hand side of the above inequality is continuous
in u, we get that

∂tφ(t0, x0) + k(t0, x0) inf
u∈D̄

∇φ(t0, x0) · u+ 1 ≥ 0.

Since − ∇φ(t0,x0)
|∇φ(t0,x0)| ∈ D̄, the above infimum is attained at u = − ∇φ(t0,x0)

|∇φ(t0,x0)| , yielding that

−∂tφ(t0, x0) + |∇φ(t0, x0)|k(t0, x0)− 1 ≤ 0,

as required.

Remark 3.4.14. At the light of Proposition 3.4.13, a natural question is whether φ is
also a viscosity subsolution of (3.13) in R+ × (Ω̄ \ Γ), since this would imply the result of
Proposition 3.4.13. However, this may fail to be the case, as illustrated by the following
example. Consider the case d = 1, Ω = (0, 1), Γ = {0}, and k : R+ × [0, 1] → R+ given
by k(t, x) = 1 for every (t, x) ∈ R+ × [0, 1]. One easily computes that φ(t, x) = x for
every (t, x) ∈ R+ × [0, 1]. For every α ∈ (−∞, 1], the function ξ : R+ × [0, 1] defined for
(t, x) ∈ R+× [0, 1] by ξ(t, x) = 1+α(x−1) satisfies ξ(t, 1) = φ(t, 1) = 1 and ξ(t, x) ≥ φ(t, x)
for every (t, x) ∈ R+ × [0, 1]. However, for α < −1 and t ∈ R+, we have

−∂tξ(t, 1) + |∂xξ(t, 1)|k(t, 1)− 1 = |α| − 1 > 0,

showing that φ cannot be a viscosity subsolution of (3.13) at (t, 1).

3.4.3 Characterization of optimal controls

We now turn to the problem of characterizing the optimal control u : R+ → B̄ associated
with an optimal trajectory γ ∈ Opt(k, t0, x0). By Proposition 3.3.52, the optimal control u
can be written as u(t) = −∇φ(t,γ(t))

|∇φ(t,γ(t)| for every t ∈ [t0, t0 + φ(t0, x0)) such that φ is differen-
tiable at (t, γ(t)). For optimal control problems without state constraints, one can typically
prove that φ is a semiconcave function (see, e.g., [27, Theorem 8.2.7]) and use this fact and
properties of superdifferentials of semiconcave functions to deduce that φ is indeed differ-
entiable along optimal trajectories, except possibly at their starting and ending times (see,
e.g., [27, Theorem 8.4.6]).

Since value functions of optimal control problems with state constraints may fail to
be semiconcave, we propose in this section an alternative way to characterize the optimal
control. In particular, we are also able to provide a characterization of the optimal control
under weaker assumptions: semiconcavity results usually require the dynamics of the system
to be C1,1 with respect to the state, as in [27, Theorem 8.2.7], but the Lipschitz continuity
assumption (H5) is actually sufficient for our strategy. The approach we follow here is an
adaptation to the case with state constraints of the characterization of optimal controls from
[83]. We start by introducing the set of optimal directions at a point.

Definition 3.4.15. Consider the optimal control problem OCP(k) and assume that (H1)–
(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄. We define the set U(t0, x0) of optimal
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directions at (t0, x0) as the set of u0 ∈ S
d−1 for which there exists γ ∈ Opt(k, t0, x0) such

that the corresponding optimal control u ∈ Lip([t0, t0 + φ(t0, x0)],S
d−1) associated with γ

satisfies u(t0) = u0.

Notice that, by Proposition 3.3.11 and Corollary 3.4.9, the set U(t0, x0) is non-empty
whenever x0 ∈ Ω̄ \ Γ. We now show that U(t0, x0) is singleton along optimal trajecto-
ries, except possibly at their initial and final points. This result was already presented in
[75, Proposition 4.11] for optimal control problems without state constraints and with the
stronger assumption that k ∈ Lip(R+ × Ω̄;R+), but the proof presented in that reference
also applies to our setting. We provide the proof here for completeness and also since it is
an easy and interesting consequence of Corollary 3.4.9.

Proposition 3.4.16. Consider the optimal control problem OCP(k) and its value func-
tion φ and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄ and
γ ∈ Opt(k, t0, x0). Then, for every t ∈ (t0, t0 + φ(t0, x0)), the set U(t, γ(t)) contains ex-
actly one element.

Proof. Let u : R+ → B̄ be the optimal control associated with γ, t1 ∈ (t0, t0+φ(t0, x0)), and
x1 = γ(t1). Since x1 ∈ Ω̄ \ Γ, we have U(t1, x1) ̸= ∅. Moreover, by Proposition 3.3.13, we
have φ(t1, x1)+ t1− t0 = φ(t0, x0) and, noticing that τ(t1, γ) = t0+φ(t0, x0)− t1 = φ(t1, x1),
we deduce that the restriction of γ to [t1, t0+φ(t0, x0)] (extended by constant values to R+)
is an optimal trajectory for OCP(k) from (t1, x1), and thus u(t1) ∈ U(t1, x1).

We conclude the proof by showing that, for every u1 ∈ U(t1, x1), we have u1 = u(t1). For
that purpose, take u1 ∈ U(t1, x1). By definition of U(t1, x1), there exists γ̃ ∈ Opt(k, t1, x1)
such that its associated control ũ satisfies ũ(t1) = u1. Consider the trajectory γ̂ : R+ → Ω̄
defined by γ̂(t) = γ(t) for t ≤ t1 and γ̂(t) = γ̃(t) for t ≥ t1, and notice that its associated
control û satisfies û(t) = u(t) for t < t1 and û(t) = ũ(t) for t > t1. Then γ̂ ∈ Adm(k) and,
by construction, τ(t0, γ̂) = t1− t0+τ(t1, γ̃) = t1− t0+φ(t1, x1) = φ(t0, x0), which yields that
γ̂ ∈ Opt(k, t0, x0). In particular, by Corollary 3.4.9, we have û ∈ Lip([t0, t0+φ(t0, x0)];S

d−1),
and thus û(t1) = limt→t−1

û(t) = u(t1) and û(t1) = limt→t+1
û(t) = ũ(t1) = u1, yielding that

u1 = u(t1), as required.

Similarly to [83], the goal of this section is to characterize U(t0, x0) as the set of directions
of maximal descent of the value function φ of OCP(k). For that purpose, we first introduce
the notion of descent rate of φ along a given direction.

Definition 3.4.17. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄.

1. The set of inward pointing directions at x0 is the set In(x0) of vectors u0 ∈ Sd−1 for
which there exists h0 > 0 such that x0 + hu0 ∈ Ω̄ for every h ∈ [0, h0].

2. The descent rate of φ at (t0, x0) is the function ∆(t0,x0) : In(x0) → R defined for
u0 ∈ In(x0) by

∆(t0,x0)(u0) = lim sup
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
.
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Note that In(x0) = S
d−1 if x0 ∈ Ω, while, thanks to (H3), for x0 ∈ ∂Ω, we have

{u0 ∈ Sd−1 | u0 · n(x0) < 0} ⊂ In(x0) ⊂ {u0 ∈ Sd−1 | u0 · n(x0) ≤ 0}.

In general, both inclusions may be strict. As a consequence of those inclusions, we have

In(x0) = {u0 ∈ Sd−1 | u0 · n(x0) ≤ 0}.

The next proposition provides important properties of the descent rate function.

Proposition 3.4.18. Consider the optimal control problem OCP(k) and assume that (H1)–
(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄.

1. For every u0 ∈ In(x0), we have ∆(t0,x0)(u0) ≥ −1.

2. The function ∆(t0,x0) is Lipschitz continuous on In(x0), with a Lipschitz constant de-
pending only on Kmax and the Lipschitz constant of φ, and thus independent of (t0, x0).

Proof. To show 1, take u0 ∈ In(x0) and let σ ∈ C1(R+;R
d) be the unique solution of{

σ̇(t) = k(t, σ(t))u0,

σ(t0) = x0.

Since u0 ∈ In(x0), there exists t∗ > t0 such that σ(t) ∈ Ω̄ for every t ∈ [t0, t∗]. Define
γ ∈ Adm(k) by

γ(t) =


x0, if t ∈ [0, t0],
σ(t), if t ∈ [t0, t∗],
σ(t∗), if t ≥ t∗.

Applying Proposition 3.3.13 to γ, we deduce that φ(t0 + h, γ(t0 + h)) + h ≥ φ(t0, x0) for
every h ≥ 0, and thus, for h ∈ (0, t∗ − t0], we have

φ(t0 + h, σ(t0 + h))− φ(t0, x0)

h
≥ −1.

Since σ(t0+h) = x0+hk(t0, x0)u0+o(h) as h→ 0+ and φ is Lipschitz continuous, we deduce
that φ(t0 + h, σ(t0 + h)) = φ(t0 + h, x0 + hk(t0, x0)u0) + o(h), yielding that, as h→ 0+,

(3.32)
φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
≥ −1 + o(1),

and the conclusion of 1 follows from the definition of ∆(t0,x0).
In order to prove 2, take u1, u2 ∈ In(x0) and denote by C > 0 the Lipschitz constant of

φ. For h > 0 small enough, we have

φ(t0 + h, x0 + hk(t0, x0)u1)− φ(t0, x0)

h
=
φ(t0 + h, x0 + hk(t0, x0)u2)− φ(t0, x0)

h

+
φ(t0 + h, x0 + hk(t0, x0)u1)− φ(t0 + h, x0 + hk(t0, x0)u2)

h

≤ φ(t0 + h, x0 + hk(t0, x0)u2)− φ(t0, x0)

h
+ CKmax|u1 − u2|.
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Taking the lim sup as h → 0+, we deduce that ∆(t0,x0)(u1) ≤ ∆(t0,x0)(u2) + CKmax|u1 − u2|.
Since this holds for every u1, u2 ∈ In(x0), we obtain that

|∆(t0,x0)(u1)−∆(t0,x0)(u2)| ≤ CKmax|u1 − u2| for every u1, u2 ∈ In(x0),

as required.

As a consequence of Proposition 3.4.182, ∆(t0,x0) : In(x0) → R can be extended in a
unique way to a Lipschitz continuous function defined on In(x0). In the sequel, by a slight
abuse of notation, we use ∆(t0,x0) to denote this Lipschitz continuous extension. Note that
this extension still satisfies the assertions of Proposition 3.4.18.

We are now in position to provide the definition of the set of directions of maximal descent
of the value function.

Definition 3.4.19. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄. We define the set
W(t0, x0) of directions of maximal descent of φ at (t0, x0) by

W(t0, x0) = ∆−1
(t0,x0)

({−1}) = {u0 ∈ In(x0) | ∆(t0,x0)(u0) = −1}.

Notice that the term maximal descent is motivated by Proposition 3.4.181, since we are
considering the elements u0 ∈ In(x0) reaching the lower bound −1 on ∆(t0,x0).

Remark 3.4.20. If x0 ∈ Ω (or, more generally, if the set In(x0) is closed), then W(t0, x0)
is simply the set of u0 ∈ Sd−1 such that

(3.33) lim
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
= −1,

which is the definition of W(t0, x0) provided previously in [83, Definition 4.11] for optimal
control problems without state constraints. Indeed, notice that, if In(x0) is closed, then
u0 ∈ W(t0, x0) if and only if

(3.34) lim sup
h→0+

φ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
= −1.

On the other hand, (3.32) also yields that

lim inf
h→0+

φ(t0 + h, x0 + hk(t0, x0)u)− φ(t0, x0)

h
≥ −1

for every u ∈ In(x0), and hence (3.33) is equivalent to (3.34).

Our next result shows that, at the points (t0, x0) where φ is differentiable, W(t0, x0)
contains a unique direction of maximal descent which, as one might expect, is equal to
− ∇φ(t0,x0)

|∇φ(t0,x0)| . This was already shown in [83, Proposition 4.13] for optimal control problems
without state constraints, and that proof also carries over to the present case thanks to
Proposition 3.4.13. For sake of completeness, and since this proof is quite elementary, we
provide it here.
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Proposition 3.4.21. Consider the optimal control problem OCP(k) and its value function
φ and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+× (Ω̄ \Γ) be such that
φ is differentiable at (t0, x0). Then

(3.35) W(t0, x0) =

{
− ∇φ(t0, x0)
|∇φ(t0, x0)|

}
.

Proof. Since φ is differentiable at (t0, x0), we have, for every u ∈ In(x0),

(3.36) ∆(t0,x0)(u) = ∂tφ(t0, x0) + k(t0, x0)∇φ(t0, x0) · u.

By continuity, the above equality also holds for every u ∈ In(x0). We also have, by Proposi-
tion 3.4.13, that

(3.37) − ∂tφ(t0, x0) + k(t0, x0)|∇φ(t0, x0)| − 1 = 0.

Moreover, recall that k(t0, x0) > 0 and, by Proposition 3.3.51, ∇φ(t0, x0) ̸= 0. If u0 ∈
W(t0, x0), then ∆(t0,x0)(u0) = −1 and, combining with (3.36) and (3.37), we deduce that

k(t0, x0) [|∇φ(t0, x0)|+∇φ(t0, x0) · u0] = 0,

which yields u0 = − ∇φ(t0,x0)
|∇φ(t0,x0)| since u0 ∈ S

d−1. Conversely, defining u0 = − ∇φ(t0,x0)
|∇φ(t0,x0)| , Re-

mark 3.4.12 ensures that u0 ∈ In(x0) and it is immediate to compute, using (3.36) and (3.37),
that ∆(t0,x0)(u0) = −1, showing that u0 ∈ W(t0, x0).

The reason why we go through the definition of descent rate ∆(t0,x0) in order to define
W(t0, x0) instead of the more direct definition provided in [83, Definition 4.11] is that, if
x0 ∈ ∂Ω and u0 ∈ Sd−1, one might have x0 + hk(t0, x0)u0 /∈ Ω̄ for every h > 0 small enough.
Since φ is defined only in the set R+×Ω̄, this means that the term φ(t0+h, x0+hk(t0, x0)u0)
is not well-defined for any h > 0 small enough, and thus the limit in the left-hand side of
(3.33) does not make sense. An alternative approach, however, is to replace φ in (3.33) by the
value function φϵ of the penalized optimal control problem OCPϵ(kϵ) defined in Section 3.4.1.
This is the subject of our next definition.

Definition 3.4.22. Consider the optimal control problems OCP(k) and OCPϵ(kϵ) and their
respective value functions φ and φϵ and assume that (H1)–(H3), (H4), and (H5) hold. Let
(t0, x0) ∈ R+ × Ω̄. For ϵ > 0, we define the set Wϵ(t0, x0) of directions of maximal descent
of φϵ at (t0, x0) by

Wϵ(t0, x0) =

{
u0 ∈ Sd−1

∣∣∣∣ lim
h→0+

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
= −1

}
.

Our next result concerns the relation between optimal directions (i.e., elements of
U(t0, x0)) and directions of maximal descent of φ (i.e., elements of W(t0, x0)), and asserts that
both notions actually coincide, and that they also coincide with Wϵ(t0, x0) for ϵ > 0 small
enough. The fact that U(t0, x0) = W(t0, x0) was already established in [83, Theorem 4.14]
for minimal-time optimal control problems without state constraints, and the proof we pro-
vide here follows the same lines, but passes through the optimal control problem OCPϵ(kϵ)
in order to handle the state constraints appropriately.
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Theorem 3.4.23. Consider the optimal control problems OCP(k) and OCPϵ(kϵ) and as-
sume that (H1)–(H3), (H4), and (H5) hold. There exists ϵ0 > 0 such that, for every ϵ ∈ (0, ϵ0)
and (t0, x0) ∈ R+ × Ω̄, we have U(t0, x0) = W(t0, x0) = Wϵ(t0, x0).

Proof. We first remark that, if x0 ∈ Γ, then U(t0, x0) = W(t0, x0) = Wϵ(t0, x0) = ∅, and
so we are only left to consider the case x0 ∈ Ω̄ \ Γ. We let ϵ0 > 0 be as in the statement
of Propositions 3.4.7 and 3.4.10 and Theorem 3.4.8, and we fix ϵ ∈ (0, ϵ0). We proceed by
proving that U(t0, x0) ⊂ W(t0, x0) ⊂ Wϵ(t0, x0) ⊂ U(t0, x0).

Part I: Proof of the inclusion U(t0, x0) ⊂ W(t0, x0). Let u0 ∈ U(t0, x0) and take γ ∈
Opt(k, t0, x0) and u : R+ → B̄ an optimal control associated with γ such that u ∈ Lip([t0, t0+
φ(t0, x0)];S

d−1) and u(t0) = u0. By Proposition 3.3.13, we have, for every h ∈ (0, φ(t0, x0)],
that

(3.38)
φ(t0 + h, γ(t0 + h))− φ(t0, x0)

h
= −1.

We claim that u0 ∈ In(x0). Indeed, this is trivial if x0 ∈ Ω, and, if x0 ∈ ∂Ω, since γ takes
values in Ω̄ and γ̇(t0) = k(t0, x0)u0, one can easily check that u0 · n(x0) ≤ 0, implying that
u0 ∈ In(x0).

Let (un)n∈N be a sequence in In(x0) such that un → u0 as n → +∞. Fix n ∈ N and
notice that, as h→ 0+, we have

γ(t0 + h) = x0 + hk(t0, x0)u0 + o(h)

= x0 + hk(t0, x0)un + hk(t0, x0)(u0 − un) + o(h).

Recall that φ is Lipschitz continuous (Proposition 3.3.3) and denote by M > 0 its Lipschitz
constant. Using the fact that x0 + hk(t0, x0)un ∈ Ω̄ for h > 0 small enough, we deduce that,
as h→ 0+,

|φ(t0 + h, γ(t0 + h))− φ(t0 + h, x0 + hk(t0, x0)un)| ≤ hMKmax|un − u0|+ o(h)

Combining with (3.38) and letting h→ 0, we deduce that, for every n ∈ N,

∆(t0,x0)(un) = lim sup
h→0+

φ(t0 + h, x0 + hk(t0, x0)un)− φ(t0, x0)

h
≤ −1 +MKmax|un − u0|.

Hence, letting n → +∞ and using Proposition 3.4.18, we deduce that ∆(t0,x0)(u0) = −1,
showing that u0 ∈ W(t0, x0), as required.

Part II: Proof of the inclusion W(t0, x0) ⊂ Wϵ(t0, x0). Let u0 ∈ W(t0, x0) and consider a
sequence (un)n∈N in In(x0) such that un → u0 as n → +∞. By Proposition 3.4.10, φϵ is
Lipschitz continuous on R+×Ω̄ϵ/2, and we denote by Cϵ > 0 a Lipschitz constant of this map.
Notice that, for h ∈

[
0, ϵ

2Kmax

]
, we have dΩ(x0 + hk(t0, x0)un) ≤ ϵ

2
for every n ∈ N ∪ {0}.
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Hence, for h ∈
(
0, ϵ

2Kmax

]
and n ∈ N, we have

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h

≤ φϵ(t0 + h, x0 + hk(t0, x0)un)− φ(t0, x0)

h
+ CϵKmax|un − u0|.

For n ∈ N, since un ∈ In(x0), we have x0 + hk(t0, x0)un ∈ Ω̄ for h > 0 small enough, and
thus, by Theorem 3.4.8, we have φϵ(t0 + h, x0 + hk(t0, x0)un) = φ(t0 + h, x0 + hk(t0, x0)un)
for h small enough. Letting h→ 0+, we thus deduce that

lim sup
h→0+

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
≤ ∆(t0,x0)(un) + CϵKmax|un − u0|.

Taking now the limit as n→ +∞, we obtain that

(3.39) lim sup
h→0+

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
≤ −1.

Let γ : R+ → R
d be defined by γ(t) = x0 for t ∈ [0, t0] and as the solution of the dif-

ferential equation γ̇(t) = kϵ(t, γ(t))u0 with initial condition γ(t0) = x0 for t ≥ t0. Then
γ ∈ Admϵ(kϵ) and, by the dynamic programming principle (3.16) for OCPϵ(kϵ), and using
also Theorem 3.4.8, we have, for h ≥ 0,

φϵ(t0 + h, γ(t0 + h))− φ(t0, x0)

h
≥ −1.

Using that γ(t0 + h) = x0 + hk(t0, x0)u0 + o(h) as h→ 0+, γ(t0 + h) ∈ Ω̄ϵ/2 for h ≥ 0 small
enough, and that φϵ is Lipschitz continuous in R+ × Ω̄ϵ/2, we deduce that, as h→ 0+,

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
≥ −1 + o(1).

Together with (3.39), this shows that

lim
h→0+

φϵ(t0 + h, x0 + hk(t0, x0)u0)− φ(t0, x0)

h
= −1,

and thus u0 ∈ Wϵ(t0, x0), as required.

Part III: Proof of the inclusion Wϵ(t0, x0) ⊂ U(t0, x0). Let u0 ∈ Wϵ(t0, x0) and h > 0, which
is implicitly always assumed to be small enough. Then, by definition of Wϵ(t0, x0), we have,
as h→ 0+,

(3.40) φϵ(t0 + h, x0 + hk(t0, x0)u0) = φ(t0, x0)− h+ o(h).
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Define γ0 : [t0, t0 + h] → R
d by

(3.41)

{
γ̇0(t) = kϵ(t, γ0(t))u0,

γ0(t0) = x0.

Let xh1 = γ0(t0 + h) and th1 = t0 + h. Since Γ is closed and x0 /∈ Γ, we have xh1 /∈ Γ for h > 0
small enough. Let γh1 ∈ Optϵ(kϵ, t

h
1 , x

h
1) and uh1 be the optimal control associated with γh1 ,

which satisfies uh1 ∈ Lip([th1 , t
h
1 + φϵ(t

h
1 , x

h
1)];S

d−1) by Proposition 3.4.5. Set ūh1 = uh1(t
h
1) ∈

S
d−1 and define γ̄h1 : [th1 , t

h
1 + h] → R

d by

(3.42)

{
˙̄γh1 (t) = kϵ(t, γ̄

h
1 (t))ū

h
1

γ̄h1 (t
h
1) = xh1 .

Let us also set th2 = th1 + h, xh2 = γh1 (t
h
2) and x̄h2 = γ̄h1 (t

h
2). We split the sequel of the proof in

two cases.

Case 1. We assume in this case that limh→0+ ū
h
1 = u0. Let ûh1 ∈ Lip(Sd−1) be defined

by ûh1(t) = ūh1 for t ∈ [0, th1 ], ûh1(t) = uh1(t) for t ∈ [th1 , t
h
1 + φϵ(t

h
1 , x

h
1)], and ûh1(t) =

uh1(t
h
1+φ(t

h
1 , x

h
1)) for t ≥ th1+φ(t

h
1 , x

h
1). Since γh1 and ûh1 are Lipschitz continuous and their Lip-

schitz constants do not depend on h (see Proposition 3.4.5), one deduces from Arzelà–Ascoli
Theorem that there exist a positive sequence (hn)n∈N converging to 0 as n → +∞ and ele-
ments γ∗ ∈ LipKmax

(Rd) and u∗ ∈ Lip(Sd−1) such that γhn1 → γ∗ and ûhn1 → u∗ as n→ +∞,
uniformly on compact time intervals. Since γh1 ∈ Optϵ(kϵ, t

h
1 , x

h
1) for h > 0 and th1 → t0 and

xh1 → x0 as h→ 0+, one can easily show, using the continuity of φϵ, that γ∗ ∈ Optϵ(kϵ, t0, x0)
and its corresponding optimal control coincides with u∗ on [t0, t0+φ(t0, x0)]. Moreover, since
x0 ∈ Ω̄, we have from Theorem 3.4.8 that Optϵ(kϵ, t0, x0) = Opt(k, t0, x0). In addition,

u∗(t0) = lim
n→+∞

ûhn1 (thn1 ) = lim
n→+∞

ūhn1 = u0,

which implies that u0 ∈ U(t0, x0), as required.

Case 2. We now consider the case where (ūh1)h>0 does not converge to u0 as h → 0+, and
we prove that this case is not possible. Let ϵ > 0 and (hn)n∈N be a positive sequence such
that hn → 0 as n→ +∞ and |ūhn1 − u0| ≥ ϵ for every n ∈ N. For simplicity, we set thn1 = tn1 ,
xhn1 = xn1 , and similarly for all other variables whose upper index is hn. In order to clarify
the constructions used in this case, we illustrate them in Figure 3.1.

Notice that |xn1 − x0| ≤ Kmaxhn, |γn1 (t) − xn1 | ≤ Kmaxhn for every t ∈ [tn1 , t
n
1 + hn], and

|x̄n2−xn1 | ≤ Kmaxhn. Hence, for all t ∈ [tn1 , t
n
1+hn], we have xn1 , γn1 (t), xn2 , x̄n2 ∈ B̄(x0, 2Kmaxhn).

Since x0 ∈ Ω̄, for n large enough, this ball is included in Ω̄ϵ/2 = {x ∈ Rd | dΩ(x) ≤ ϵ
2
}, and

in particular kϵ(t, x) ≥ 1
2
Kmin for every (t, x) ∈ R+ × B̄(x0, 2Kmaxhn).

Integrating (3.41) on [t0, t
n
1 ], we get

xn1 − x0 =

∫ tn1

t0

kϵ(s, γ0(s)) ds u0,

87



γ0
γn2
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γ̄n1

γn3
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xn1 x̄n2

xn2
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Figure 3.1: Illustration of the constructions used in the proof of Theorem 3.4.23.

and, proceeding similarly for (3.42), we get

x̄n2 − xn1 =

∫ tn2

tn1

kϵ(s, γ̄
n
1 (s)) ds ū

n
1 .

Denote the integrals in the right-hand side of the above equalities by In0 and In1 , respectively.
We have

|x̄n2 − x0|2 = (In0 u0 + In1 ū
n
1 ) · (In0 u0 + In1 ū

n
1 )

= (In0 )
2 + (In1 )

2 + 2In0 I
n
1 u0 · ūn1

= |xn1 − x0|2 + |x̄n2 − xn1 |
2 + 2In0 I

n
1 u0 · ūn1 .

We know that |ūn1 − u0| ≥ ϵ, which leads us to observe that there exists α ∈ (0, 1) such that
u0 · ūn1 < α for every n ∈ N. Thus

|x̄n2 − x0|2 < |xn1 − x0|2 + |x̄n2 − xn1 |
2 + 2αIn0 I

n
1 .

Define

ρ :=

√
1− (1− α)

K2
min

8K2
max

,

then obviously ρ < 1 and

|x̄n2 − x0|2 < (|xn1 − x0|+ |x̄n2 − xn1 |)
2 − 2(1− α)In0 I

n
1

=

(
1− (1− α)

2In0 I
n
1

(In0 + In1 )
2

)
(|xn1 − x0|+ |x̄n2 − xn1 |)

2

≤ ρ2 (|xn1 − x0|+ |x̄n2 − xn1 |)
2 ,(3.43)

where we use that Ini ∈
[
1
2
hKmin, hKmax

]
for i ∈ {1, 2}. Let un2 =

x̄n2−x0
|x̄n2−x0|

(with the convention
un2 = 0 if x̄n2 = x0) and define γn2 : [t0, t0 + τn] → R

d by

(3.44)

{
γ̇n2 (t) = kϵ(t, γ

n
2 (t))u

n
2

γn2 (t0) = x0,
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where τn ≥ 0 is chosen so that6 γn2 (t0 + τn) = x̄n2 .

Claim. As n→ +∞, we have τn ≤ 2ρhn + o(hn).

Proof. Note that we have nothing to prove in the case x̄n2 = x0, and hence we assume x̄n2 ̸= x0
in the sequel. If |x̄n2 −x0| ≤ ρ|xn1 −x0|, we let xn3 = x̄n2 , otherwise we choose xn3 as the unique
point in the segment (x0, x̄

n
2 ) such that |xn3 − x0| = ρ|xn1 − x0|. In both cases, we have

|xn3 − x0| = ρ̄|xn1 − x0| for some ρ̄ ≤ ρ. Let τn1 be the time that γn2 takes to reach the point
xn3 , i.e., γn2 (t0 + τn1 ) = xn3 . (Note that τn1 = τn in the case |x̄n2 − x0| ≤ ρ|xn1 − x0|.)

We first show that τn1 ≤ ρhn + o(hn). To obtain that, we observe, by integrating (3.41)
and (3.44) and doing a change of variables, that
(3.45)∫ t0+τn1

t0

kϵ(s, γ
n
2 (s)) ds = |xn3 − x0| = ρ̄|xn1 − x0| = ρ̄

∫ t0+hn

t0

kϵ(s, γ0(s)) ds

=

∫ t0+ρ̄hn

t0

kϵ

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
ds

=

∫ t0+ρ̄hn

t0

kϵ(s, γ
n
2 (s)) ds

+

∫ t0+ρ̄hn

t0

[
kϵ

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
− kϵ(s, γ

n
2 (s))

]
ds.

Let us show that

(3.46) lim
n→+∞

1

hn

∫ t0+ρ̄hn

t0

[
kϵ

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
− kϵ(s, γ

n
2 (s))

]
ds = 0

Let δ > 0. Since kϵ is continuous in (t0, x0), there exists η > 0 such that |kϵ(t, x)−kϵ(t0, x0)| <
δ for every (t, x) ∈ R+×Rd satisfying |t−t0| < η and |x−x0| < η. Since hn → 0 as n→ +∞,
there exists N ∈ N such that, for every n ≥ N , we have hn < η and Kmaxhn < η. Noticing
that, for every s ∈ [t0, t0+ρ̄hn], we have

∣∣∣ s−t0ρ̄ ∣∣∣ ≤ hn < η,
∣∣∣γ0 (t0 + s−t0

ρ̄

)
− x0

∣∣∣ ≤ Kmaxhn < η,
|s − t0| ≤ ρ̄hn < η, and |γn2 (s) − x0| ≤ ρ̄Kmaxhn < η, we deduce that, for n ≥ N , we have,
for every s ∈ [t0, t0 + ρ̄hn],

kϵ(t0, x0)− δ < kϵ

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
< kϵ(t0, x0) + δ,

kϵ(t0, x0)− δ < kϵ(s, γ
n
2 (s)) < kϵ(t0, x0) + δ.

Subtracting those inequalities, integrating on s in [t0, t0+ρ̄hn], and dividing by hn, we deduce
that

1

hn

∣∣∣∣∫ t0+ρ̄hn

t0

[
kϵ

(
t0 +

s− t0
ρ̄

, γ0

(
t0 +

s− t0
ρ̄

))
− kϵ(s, γ

n
2 (s))

]
ds

∣∣∣∣ < 2ρ̄δ,

6This is possible since, for n large enough, all points in the segment from x0 to x̄n
2 lie within Ωϵ/2, on

which kϵ is lower bounded by 1
2Kmin.
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concluding the proof of (3.46). Now, (3.45) and (3.46) imply that

(3.47)
∫ t0+τn1

t0

kϵ(s, γ
n
2 (s)) ds =

∫ t0+ρ̄hn

t0

kϵ(s, γ
n
2 (s)) ds+ o(hn).

Define F : [0, τn] → R+ by F (t) =
∫ t0+t
t0

kϵ(s, γ
n
2 (s)) ds, then obviously F is continuous

and increasing, which implies that F−1 is well-defined on the range of F . Since Ḟ (t) =
k(t, γn2 (t)), F is Kmax-Lipschitz continuous and, since d

dt
F−1(t) = 1

Ḟ (F−1(t))
, we also deduce

that F−1 is 2
Kmin

-Lipschitz continuous. Therefore, by (3.47), we deduce that

τn1 = F−1(F (ρ̄hn) + o(hn)) = ρ̄hn + o(hn) ≤ ρhn + o(hn).

This concludes the proof of the claim in the case |x̄n2 − x0| ≤ ρ|xn1 − x0|, since τn1 = τn in
that case.

Otherwise, we have ρ̄ = ρ and |xn3 − x0| = ρ|xn1 − x0|, and thus, from (3.43), we get

|x̄n2 − x0| < ρ(|xn1 − x0|+ |x̄n2 − xn1 |) = |xn3 − x0|+ ρ|x̄n2 − xn1 |.

On the other hand, since xn3 belongs to the segment (x0, x̄
n
2 ), we have |x̄n2 − x0| = |x̄n2 − xn3 |

+ |xn3 − x0|, hence the inequality |x̄n2 − xn3 | ≤ ρ|x̄n2 − xn1 | holds. Suppose τn2 is the time the
trajectory γn2 takes to go from xn3 to x̄n2 , i.e., γn2 (t0+τn1 +τn2 ) = x̄n2 , and note that τn = τn1 +τ

n
2 .

As before, we compare the times between |x̄n2 − xn3 | and |x̄n2 − xn1 |. Let β ≤ ρ be such that
|x̄n2 − xn3 | = β|x̄n2 − xn1 |. Proceeding similarly to (3.45), we get∫ τn2

0

kϵ(s+ t0 + τn1 , γ
n
2 (s+ t0 + τn1 )) ds = |x̄n2 − xn3 |

= β|x̄n2 − xn1 | = β

∫ tn2

tn1

kϵ(s, γ̄
n
1 (s)) ds

=

∫ βhn

0

kϵ

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
ds

=

∫ βhn

0

kϵ(s+ t0 + τn1 , γ
n
2 (s+ t0 + τn1 )) ds

+

∫ βhn

0

[
kϵ

(
s

β
+ t0 + hn, γ̄

n
1

(
s

β
+ t0 + hn

))
− kϵ(s+ t0 + τn1 , γ

n
2 (s+ t0 + τn1 ))

]
ds.

Proceeding as in the proof of (3.46), we can show that the last integral in the above expression
is an o(hn) as n→ +∞, and thus∫ t0+τn2

t0

kϵ(s+ τn1 , γ
n
2 (s+ τn1 )) ds =

∫ t0+βhn

t0

kϵ(s+ τn1 , γ
n
2 (s+ τn1 )) ds+ o(hn).

Defining F (t) =
∫ t0+t
t0

kϵ(s + τn1 , γ
n
2 (s + τn1 )) ds and arguing similarly to above, we deduce

that τn2 = βhn + o(hn). Therefore the time τn to reach x̄n2 from x0 satisfies

τn = (ρ+ β)hn + o(hn) ≤ 2ρhn + o(hn).
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Let us now compare the trajectories γ̄n1 and γn1 on [tn1 , t
n
2 ]. Let δn1 (t) = γn1 (t) − γ̄n1 (t).

Hence, from the ODEs satisfied by the trajectories γ̄n1 and γn1 , we have

δn1 (t) =

∫ t

tn1

[
kϵ(s, γ

n
1 (s))u

n
1 (s)− kϵ(s, γ̄

n
1 (s))ū

n
1

]
ds

=

∫ t

tn1

[
kϵ(s, γ

n
1 (s))− kϵ(s, γ̄

n
1 (s))

]
un1 (s) ds+

∫ t

tn1

kϵ(s, γ̄
n
1 (s))(u

n
1 (s)− ūn1 ) ds.

Since un1 is the optimal control associated with γn1 , by Proposition 3.4.5, it is Lipschitz
continuous in [tn1 , t

n
1 + φϵ(t

n
1 , x

n
1 )] and its Lipschitz constant is independent of n. Therefore,

denoting by Lϵ > 0 the Lipschitz constant of kϵ with respect to its second variable (which is
independent of the first variable) and C > 0 the Lipschitz constant of un1 , we have

|δn1 (t)| ≤ Lϵ

∫ t

tn1

|δn1 (s)| ds+ CKmax

∫ t

tn1

|s− tn1 | ds,

and hence, by using Grönwall’s inequality,

|δn1 (t)| ≤ CKmax
(t− tn1 )

2

2
eLϵ(t−tn1 ).

In particular, if we set t = tn1 + hn, then

|xn2 − x̄n2 | ≤ CKmax
h2n
2
eLϵhn = O(h2n).

Let un3 =
xn2−x̄n2
|xn2−x̄n2 |

(with the convention xn3 = 0 if xn2 = x̄n2 ) and γn3 be the solution of

(3.48)

{
γ̇n3 (t) = kϵ(t, γ

n
3 (t))u

n
3

γn3 (t0 + τn) = x̄n2 .

Using the lower bound 1
2
Kmin on kϵ and the fact that |xn2 − x̄n2 | = O(h2n), one can easily deduce

that the time σn from x̄n2 to xn2 along γn3 (i.e., the value σn > 0 such that γn3 (t0+τn+σn) = xn2 )
satisfies σn = O(h2n).

We have thus constructed two ways to go from x0 to xn2 . The first one is to choose the
path containing x0, xn1 , and xn2 , which corresponds to the concatenation of the trajectories
γ0 on [t0, t

n
1 ] and γn1 on [tn1 , t

n
2 ], and the second one is the path containing x0, x̄n2 , and xn2 ,

which corresponds to the concatenation of the trajectories γn2 on [t0, t0 + τn] and γn3 on
[t0 + τn, t0 + τn + σn]. Letting T n1 and T n2 be the times for going from x0 to xn2 along
these two paths, respectively, we have, by construction and the claim, that T n1 = 2hn and
T n2 = τn+σn ≤ 2ρhn+o(hn). Hence, since ρ < 1, we have, for n large enough, that T n2 < T n1 .

By definition of γ0, we have xn1 = γ0(t
n
1 ) = x0 + hnk(t0, x0)u0 + o(hn) and, using (3.40)

and the fact that φϵ is Lipschitz continuous (Proposition 3.4.10), we deduce that

φ(t0, x0) = φϵ(t
n
1 , x

n
1 ) + hn + o(hn).
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Moreover, since γn1 ∈ Optϵ(kϵ, t
n
1 , x

n
1 ), we have from (3.16) that φϵ(tn1 , xn1 ) = φϵ(t

n
2 , x

n
2 ) + hn,

yielding that
φ(t0, x0) = φ(tn2 , x

n
2 ) + T n1 + o(hn).

On the other hand, since the path from x0 to xn2 going through x̄n2 is an admissible trajectory
for kϵ, we have, by (3.16), that φ(t0, x0) ≤ T n2 + φϵ(t0 + T n2 , x

n
2 ). Hence

(3.49) φϵ(t
n
2 , x

n
2 ) + T n1 + o(hn) ≤ T n2 + φϵ(t0 + T n2 , x

n
2 ).

We also know that t0 + T n2 < t0 + T n1 = tn2 for n large enough. Therefore7, by Proposi-
tion 3.3.51, there exists a constant c > 0 such that

φϵ(t
n
2 , x

n
2 ) > φϵ(t0 + T n2 , x

n
2 ) + (c− 1)(tn2 − t0 − T n2 ) = φϵ(t0 + T n2 , x

n
2 ) + (c− 1)(T n1 − T n2 ),

and, using (3.49), we get (c− 1)(T n1 − T n2 ) + T n1 + o(hn) ≤ T n2 , which leads to

2hn + o(hn) = T n1 + o(hn) ≤ T n2 ≤ 2ρhn + o(hn).

Divide above inequality by hn to observe that

2 + o(1) ≤ 2ρ+ o(1).

Finally by letting n → +∞, we conclude that ρ ≥ 1, which is a contradiction. Therefore
Case 2 will never happen and this ends the proof.

We conclude this section with a technical result showing that, for x ∈ ∂Ω \ Γ, if all
directions of W(t, x) point to the inside of the domain, then no optimal trajectories starting
at time 0 are close to x at time t. For that purpose, we introduce

Proposition 3.4.24. Consider the optimal control problem OCP(k) and assume that (H1)–
(H3), (H4), and (H5) hold. Let x ∈ ∂Ω \ Γ, t > 0, and assume that there exists w ∈ W(t, x)
such that w · n(x) < 0. Then there exists a neighborhood N of x in Ω̄ such that, for every
x0 ∈ Ω̄ and γ ∈ Opt(k, 0, x0), we have γ(t) /∈ N .

Proof. Assume, to obtain a contradiction, that there exist sequences (x0,n)n∈N and (γn)n∈N
with x0,n ∈ Ω̄ and γn ∈ Opt(k, 0, x0,n) for every n ∈ N and such that γn(t) → x as n →
+∞. Since Ω̄ is compact and (γn)n∈N is a sequence of functions which are Kmax-Lipschitz
continuous, applying Arzelà–Ascoli Theorem, we deduce that there exist x0 ∈ Ω̄ and γ ∈
LipKmax

(Ω̄) such that, up to extracting subsequences (which we still denote by (x0,n)n∈N and
(γn)n∈N for simplicity), we have, as n → +∞, that x0,n → x0 and γn → γ uniformly on

7Strictly speaking, Proposition 3.3.51 only applies to φ, and not to φϵ. However, one can still get its
conclusion by arguing as follows. Let ÔCP be defined as in the proof of Proposition 3.4.10 with η = ϵ

2 and
consider its value function φ̂. By the arguments provided in that proof, φ̂ satisfies Proposition 3.3.51 and φ̂
and φϵ coincide in Ω̄ϵ/2. The conclusion then follows since all points involved here belong to Ω̄ϵ/2 for n large
enough. Note that the constant c > 0 depends on ϵ.
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compact time intervals. By straightforward arguments based on the continuity of the value
function, we deduce that γ ∈ Opt(k, 0, x0), and in addition we have γ(t) = x.

Recall that, by Corollary 3.4.9, we have γ ∈ C1([0, T ]; Ω̄), where T = φ(0, x0) and φ
is the value function of OCP(k). Since t > 0 and x /∈ Γ, we have t ∈ (0, T ), and thus γ
is differentiable at t. Moreover, by Proposition 3.4.16 and Theorem 3.4.23, the set W(t, x)
contains exactly one element, which we denote by w0 ∈ S

d−1, and thus, by assumption,
we have w0 · n(x) < 0. By Definition 3.4.15 and Theorem 3.4.23, we deduce also that
γ̇(t) = k(t, x)w0.

Let α : h 7→ d±∂Ω(γ(t + h)) be defined on an open neighborhood of 0 in R. Then
α(0) = d±∂Ω(x) = 0 and α̇(0) = k(t, x)n(x) · w0 < 0. In particular, there exists h0 ∈ [−t, 0)
such that, for every h ∈ [h0, 0), we have α(h) > 0, and thus γ(t+ h) /∈ Ω̄, which contradicts
the fact that γ takes values in Ω̄. This contradiction yields the conclusion.

3.4.4 The normalized gradient

Now that Theorem 3.4.23 characterizes the set of optimal directions U(t0, x0) as the set
W(t0, x0) of directions of maximal descent of φ, we provide the following definition, which
is motivated by Proposition 3.4.21.

Definition 3.4.25. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+×Ω̄. If W(t0, x0) contains
exactly one element, we denote this element by −∇̂φ(t0, x0), and call it the normalized
gradient of φ at (t0, x0).

As a consequence of Proposition 3.4.16 and Theorem 3.4.23, we immediately obtain the
following characterization of optimal controls.

Corollary 3.4.26. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1)–(H3), (H4), and (H5) hold. Let (t0, x0) ∈ R+ × Ω̄, γ ∈ Opt(k, t0, x0),
and T = φ(t0, x0). Then for every t ∈ (t0, t0+T ), φ admits a normalized gradient at (t, γ(t))
and

γ̇(t) = −k(t, γ(t))∇̂φ(t, γ(t)).

Combining the above result with Corollary 3.4.9, we deduce that, for every optimal
trajectory γ, the map t 7→ ∇̂φ(t, γ(t)) is Lipschitz continuous as long as γ(t) ∈ Ω̄\Γ and t is
larger than the initial time of γ. However, this provides no information on the regularity of
(t, x) 7→ ∇̂φ(t, x). We are interested in proving the continuity of this map on its domain of
definition. For that purpose, we first prove the upper semi-continuity of the set-valued map
U (we refer to [7, Definition 1.4.1] for the definition of upper semi-continuity for set-valued
maps).

Proposition 3.4.27. Consider the optimal control problem OCP(k) and assume that (H1)–
(H3), (H4), and (H5) hold. Let U : R+ × Ω̄ ⇒ S

d−1 be the set valued map introduced in
Definition 3.4.15. Then U is upper semi-continuous.
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Proof. Since Sd−1 is a compact set, it suffices to show that U has a closed graph (see, e.g.,
[7, Proposition 1.4.8]). Let (tn, xn)n∈N be a sequence in R+ × Ω̄ converging as n → +∞
to some (t0, x0) ∈ R+ × Ω̄, (ūn)n∈N be a sequence such that ūn ∈ U(tn, xn) for every
n ∈ N and ūn → ū0 as n → +∞ for some ū0 ∈ S

d−1. Since ūn ∈ U(tn, xn) for every
n ∈ N, there exists a sequence (γn)n∈N of optimal trajectories with γn ∈ Opt(k, tn, xn) for
every n ∈ N and a corresponding sequence of the associated optimal controls (un)n∈N with
un ∈ Lip([tn, tn+φ(tn, xn)];S

d−1) and un(tn) = ūn for every n ∈ N. From Corollary 3.4.9, up
to modifying un outside of the interval [tn, tn+φ(tn, xn)], the sequences (γn)n∈N and (un)n∈N
are sequences of Lipschitz continuous functions with Lipschitz constants independent of n,
and thus, by Arzelà–Ascoli Theorem, one finds elements γ∗ ∈ Lip(Ω̄) and u∗ ∈ Lip(Sd−1)
such that, up to a subsequence, γn → γ∗ and un → u∗ uniformly on compact time intervals.
In particular,

u∗(t0) = lim
n→∞

un(tn) = lim
n→∞

ūn = ū0

and
γ∗(t0) = lim

n→∞
γn(tn) = lim

n→∞
xn = x0.

By using the dynamic programming principle from Proposition 3.3.13 and the Lipschtiz
continuity of the value function from Proposition 3.3.3, one observes that the restriction of
u∗ to [t0, t0 + φ(t0, x0)] is the optimal control corresponding to the optimal trajectory γ∗.
Hence ū0 = u∗(t0) ∈ U(t0, x0), concluding the proof that U has a closed graph.

On the set of points where a set-valued map is single-valued, upper semi-continuity
coincides with standard continuity of single-valued functions. As an immediate consequence
of this fact, Proposition 3.4.27, and Theorem 3.4.23, we have the following result.

Corollary 3.4.28. Consider the optimal control problem OCP(k) and its value function φ
and assume that (H1)–(H3), (H4), and (H5) hold. Let W : R+× Ω̄ ⇒ S

d−1 be the set valued
map introduced in Definition 3.4.19 and ∇̂φ be the normalized gradient of φ. Then W is
upper semi-continuous and ∇̂φ is a continuous function on the set where it is defined.

3.5 The MFG system
We now turn to the characterization of equilibria Q ∈ P(C(Ω̄)) of a mean field game
MFG(K) through a system of PDEs, known as the MFG system, consisting of a conti-
nuity equation on the density of agents t 7→ mt, defined through the relation mt = et#Q,
coupled with the Hamilton–Jacobi equation (3.13) on the value function φ of the optimal
control problem OCP(k), where k is defined from K and Q by setting k(t, x) = K(mt, x).
The main difficulty in this characterization lies within the continuity equation for mt, and
more precisely on the characterization of the corresponding velocity field. Corollary 3.4.26
suggests that such velocity field should be given by the opposite of the normalized gradient
of φ multiplied by the dynamics k.
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Corollary 3.4.28 states the continuity of the normalized gradient ∇̂φ on the set of points
of R+ × Ω̄ where it is defined. We will now show that, for the purposes of studying the
equilibria of mean field games, this set is quite “large”. More precisely, consider the mean
field game MFG(K) and an equilibrium Q ∈ P(C(Ω̄)) for this game. We will prove that,
for every fixed t > 0, the set of points x ∈ Ω̄ \Γ at which ∇̂φ does not exist has mt measure
zero, where mt is the evaluation at time t of the equilibrium measure Q.

For that purpose, let us introduce the set
(3.50)

Υ =
{
(t, x) ∈ R∗

+ × (Ω̄ \ Γ)
∣∣ ∃t0 ∈ [0, t), ∃x0 ∈ Ω̄, ∃γ ∈ Opt(k, t0, x0) s.t. γ(t) = x

}
.

In other words, Υ contains all points (t, x) ∈ R
∗
+ × (Ω̄ \ Γ) which are strictly between

the starting and the final points of an optimal trajectory. In particular, it follows from
Corollary 3.4.26 that ∇̂φ(t, x) exists for every (t, x) ∈ Υ, and, by Corollary 3.4.28, ∇̂φ is
continuous in Υ. We also introduce, for t > 0, the set

(3.51) Υt =
{
x ∈ Ω̄ \ Γ

∣∣ (t, x) ∈ Υ
}
.

Proposition 3.5.1. Consider the mean field game MFG(K) under the assumptions (H1)–
(H3), (H6), and (H7). Let Q be an equilibrium for MFG(K), set mt = et#Q for t ≥ 0, define
k : R+ × Ω̄ → R+ by k(t, x) = K(mt, x), consider the optimal control problem OCP(k), and
let Υ and Υt be defined as in (3.50) and (3.51), respectively. Then for every t > 0, we have
mt(Ω̄ \ (Γ ∪Υt)) = 0.

Proof. Let Opt =
⋃
x0∈Ω̄ Opt(k, 0, x0). Since Q is an equilibrium of MFG(K), then Q(Opt)

= 1. For every t > 0, from the definition of Υ, one has that {γ ∈ Opt | γ(t) ∈ Ω̄\(Γ∪Υt)} =

∅, and then mt(Ω̄ \ (Γ ∪Υt)) = Q
(
{γ ∈ Opt | γ(t) ∈ Ω̄ \ (Γ ∪Υt)}

)
= Q(∅) = 0.

We are now ready to provide our main result concerning the MFG system of MFG(K).

Theorem 3.5.2. Consider the mean field game MFG(K) under assumptions (H1)–(H3),
(H6), and (H7). Let m0 ∈ P(Ω̄), Q be an equilibrium of MFG(K) with initial condition m0,
mt ∈ P(Ω̄) be defined for t > 0 by mt = et#Q, k : R+ × Ω̄ → R+ be defined from Q and K
by k(t, x) = K(et#Q, x), φ be the value function of OCP(k), and W be the set-valued map
provided in Definition 3.4.19. For t > 0, set

∂Ω−
t = {x ∈ ∂Ω \ Γ | ∃w ∈ W(t, x) such that w · n(x) < 0}.

Then (m,φ) solves the MFG system

(3.52)



∂tmt(x)− div
(
mt(x)K(mt, x)∇̂φ(t, x)

)
= 0, in R∗

+ × (Ω̄ \ Γ),

− ∂tφ(t, x) + |∇φ(t, x)|K(mt, x)− 1 = 0, in R+ × (Ω̄ \ Γ),
mt(x) = 0, for t > 0 and x ∈ ∂Ω−

t ,

φ(t, x) = 0, on R+ × Γ,

∇φ(t, x) · n(x) ≥ 0, on R+ × (∂Ω \ Γ),
mt = m0, in {0} × Ω̄,
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where the first equation is satisfied in the sense of distributions, the second and fifth equations
are satisfied in the viscosity senses of Proposition 3.3.4 and Theorem 3.4.11, respectively, and
the third equation is satisfied in the following sense: for every t > 0 and x ∈ ∂Ω−

t , there
exists a neighborhood N of x such that mt(N) = 0.

Proof. Notice first that, since K satisfies (H6) and (H7), then k satisfies (H4) and (H5). The
Hamilton–Jacobi equation on φ and its boundary conditions then follow immediately from
Proposition 3.3.4 and Theorem 3.4.11. The initial condition on mt follows from its definition.

Let us prove that mt satisfies the continuity equation in (3.52). First, thanks to Corol-
lary 3.4.28, ∇̂φ is continuous on the set Υ defined in (3.50). Let ξ ∈ C∞

c (R∗
+ × (Ω̄ \ Γ);R)

be a test function. Take γ ∈ Opt(k, 0, x0) and let T = φ(0, x0). By Corollary 3.4.26, one has
γ̇(t) = −K(mt, γ(t))∇̂φ(t, γ(t)) for every t ∈ (0, T ). Hence

(3.53)
d

dt

(
ξ(t, γ(t))

)
= ∂t ξ(t, γ(t))−∇x ξ(t, γ(t)) · ∇̂φ(t, γ(t))K(mt, γ(t)).

Let us denote the set of all optimal trajectories by Opt, i.e., Opt =
⋃
x0∈Ω̄Opt(k, 0, x).

Thanks to the continuity of the right-hand side of (3.53) on R∗
+×Opt, one can integrate to

observe that ∫ ∞

0

∫
Opt

d

dt

(
ξ(t, γ(t))

)
dQ(γ) dt

=

∫ ∞

0

∫
Opt

∂t ξ(t, γ(t)) dQ(γ) dt

−
∫ ∞

0

∫
Opt

∇x ξ(t, γ(t)) · ∇̂φ(t, γ(t))K(mt, γ(t)) dQ(γ) dt.

Since φ is compactly supported, the left-hand side of the above equality is zero. Hence, by
using the Proposition 3.5.1 and the relation between mt and Q, one concludes that∫ ∞

0

∫
Ω̄

∂tξ(t, x) dmt(x) dt =

∫ ∞

0

∫
Ω̄

∇x ξ(t, x) · ∇̂φ(t, x)K(mt, x) dmt(x) dt,

which is precisely the weak formulation of the continuity equation in (3.52).
Finally, let us prove the boundary condition on mt. Let t > 0 and x ∈ ∂Ω−

t . Then, using
the definition of mt and Proposition 3.4.24, there exists a neighborhood N of x such that

mt(N) = Q ({γ ∈ Opt | γ(t) ∈ N}) = Q(∅) = 0,

as required.

96



Chapter 4

A variational mean field game of controls
with free final time and pairwise
interaction

In this chapter, we consider a mean field game model for crowd motion in which pedestrians
interact not only through their position, but also through their velocity. More precisely, each
pedestrian is assumed to minimize a cost involving their time to reach a certain target set, an
individual integral cost, and an interaction integral cost modelling the fact that agents want
to avoid congestion and prefer to move together with agents going in the same direction,
in which can be seen as a Cucker–Smale type interaction. The main result we obtain in
this chapter is the existence of equilibria for such a game, which is based on a variational
approach.

4.1 Introduction
We deal with a model that studies the collective behaviour of agents’ motion in a given
domain, by taking advantage of mean field game tools. Mean field games were introduced in
2006 by by Jean-Michel Lasry and Pierre-Louis Lions [69–71], and simultaneous independent
works by Peter E. Caines, Minyi Huang, and Roland P. Malhamé [61–63], based in applica-
tions in engineering and economics, and have been extensively studied in the previous years.
Our aim is to propose and study here an MFG model inspired by crowd motion and using
elements from a Cucker–Smale type model in order to take into account interactions between
agents.

Our aim here is to provide a similar model for the movement of pedestrians, in which,
similarly to [86], we consider instead that pedestrians choose their trajectories by optimizing
a certain criterion, and the Cucker–Smale interaction is taken into account as an interaction
term in this optimization criterion. We also replace the finite population of the Cucker–Smale
model by infinitely many pedestrians, in the spirit of an MFG model. The Cucker–Smale
model was introduced in [44] to study the evolution of a flock of birds, in which finitely many
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birds evolve according to a prescribed law taking into account the fact that birds wish to
align their velocities with others, and that this alignment effect is stronger when the birds
are closer.

In our mean field game model, agents take into account not only the position but also the
direction of the movements of others in their optimization criterion and, in this sense, the
mean field game we consider here can be seen as an mean field games of controls. MFGs of
controls and related models were extensively studied in the literature, for instance in [16, 31,
32, 54, 86]. The work [31] studies a model inspired by trade crowding which deals with taking
decision to buy or to sell a large number of productions or contracts in which the control of
others plays a role for optimization criterion. The work [54] studies a mean field game of
controls in a random framework by taking the agents’ trajectories in the space of random
variables. In contrast to this work [54], the work [16] studies a model in a deterministic mode
involving nonlinear dynamics and mixed state-control constraints through a price variable
and a congestion term.

Our work is more closely related to the work [86], which considers that each agent mini-
mizes a cost function of the form

(4.1)
∫ T

0

(
δ

2
|γ̇(t)|2 + λ

∫
Γ

1

2
η
(
γ(t)− γ̃(t)

)
|γ̇(t)− ˙̃γ(t)|2 dQ(γ̃)

)
dt+ Φ

(
γ(T )

)
,

where γ and γ̃ represent agents’ trajectories, Q is a probability measure on the space of
continuous curves Γ, Ψ is the final cost which penalizes the agent’s final position and η is
a decreasing interaction kernel. The authors of [86] have shown the existence of equilibria
of the game, in the variational setting, by proving the existence of a minimizer of a func-
tional cost, based upon the above cost function. Furthermore, due to having a quadratic
form of individual cost and a specific interaction cost, they could manage to establish the
corresponding MFG system.

One of the main novelties of this chapter is to consider the optimization criterion with
free final time and not in a compact time interval [0, T ]. Moreover, inspired by this model,
another novelty of this chapter is to generalize the above cost function (4.1) by replacing a
general individual cost ℓ

(
t, γ(t), γ̇(t)

)
instead of that special quadratic form, and a general

interaction cost h
(
t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)

)
. The main result of this chapter is the existence

of equilibria for such a model, which is done by adapting the techniques of [86] to the free
final time setting. More precisely, we construct a functional J on the space of probability
measures on the set of continuous curves Γ and prove that, under suitable assumptions,
critical points of such a function coincide with equilibria of the game. Existence of equilibria
is then proved by showing existence of minimizers of the functional, which are also necessarily
critical points. In addition, we also discuss two different notions of equilibria, called here
“weak” and “strong”, and show their equivalence under additional assumptions on ℓ.

This chapter is organized as follows. In Section 4.2, we introduced the general definitions
and notations used along the chapter. Section 4.3 provides a precise description of the model
and shows some useful preliminary properties, such as lower semicontinuity of the exit time
function and of other functions involved in the minimization criterion of each agent. In
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Sections 4.4 and 4.5, in addition to provide some definitions such as differentiability of
a functional with respect to a measure and critical point in our context, we establish the
relations between equilibrium, critical point and the minimizer of the functional J and prove
in addition the existence of a minimizer of J , yielding the existence of an equilibrium for our
mean field game model. Finally in Section 4.6, we address the question of the equivalence
between two notions of equilibrium, weak and strong, under an additional assumption.

4.2 Notations and definitions
In this chapter, d is a fixed positive integer. The set of nonnegative real numbers is denoted
by R+. Let the space Ω be an open bounded subset of Rd, Ξ be a non-empty closed subset of
Ω̄ and consider C(R+; Ω̄), AC(R+; Ω̄) as the space of continuous and absolutely continuous
curves from R+ to Ω̄, respectively, which are endowed with the topology of uniform conver-
gence on compact time intervals. Having considered this latter topology, the space C(R+; Ω̄)
is a Polish space. For simplicity, we denote C(R+; Ω̄) by Γ i.e., Γ = C(R+; Ω̄).

We denote the space of Borel probability measures on Γ by P(Γ) with topology of weak
convergence of measures. The support of Q ∈ P(Γ) is denoted by spt(Q), and is defined as
the set of all curves γ ∈ Γ such that Q(Nγ) > 0 for every open neighborhood Nγ of γ. We
denote the Dirac measure centered at a curve γ0 ∈ Γ by δγ0 .

For two metric spaces X and Y endowed with their Borel σ-algebras and a Borel-
measurable map f : X → Y , the pushforward of a measure µ on X through f is the measure
f#µ on Y defined by f#µ(B) = µ(f−1(B)) for every Borel subset B of Y . For t ∈ R+, we
denote by et : Γ → Ω̄ the evaluation map at time t, defined by et(γ) = γ(t) for every γ ∈ Γ.

4.3 The model
We consider in this chapter the mean field game model in which a representative agent wishes
to select their trajectory γ ∈ Γ in order to minimize the cost function∫ +∞

0

ℓ(t, γ(t), γ̇(t)) dt+

∫
Γ

∫ τ(γ)∧τ(γ̃)

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt dQ(γ̃) + Ψ(τ(γ))

where τ(γ) denotes the first exit time (see Definition 4.3.1 below), the function ℓ denotes
the individual cost associated to a specific trajectory, the function h deals with interaction
between trajectories through their positions and controls, and Q is a probability measure on
Γ denoting the distributions of the trajectories of all agents taking part in the game. We
consider the infinite bound for individual cost, since in the free final time context, it may
happen a trajectory never arrives at the target set and as a consequence it penalizes more
and more as long as the trajectory remains in the domain, or roughly specking engaging to
the game. In contrast, the optimal trajectories reach the target set and remain constant
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afterwards. More precisely, for an optimal trajectory∫ +∞

0

ℓ
(
t, γ(t), γ̇(t)

)
dt =

∫ τ(γ)

0

ℓ
(
t, γ(t), γ̇(t)

)
dt+

∫ +∞

τ(γ)

ℓ(t, γ(t), 0) dt,

and assuming ℓ(t, γ(t), 0) = 0, we conclude∫ +∞

0

ℓ
(
t, γ(t), γ̇(t)

)
dt =

∫ τ(γ)

0

ℓ
(
t, γ(t), γ̇(t)

)
dt.

In order to study this game, let us introduce some notation. We define the individual
cost L(γ) of a trajectory γ ∈ Γ by

(4.2) L(γ) =


∫ +∞

0

ℓ(t, γ(t), γ̇(t)) dt+Ψ(τ(γ)) if γ ∈ AC(R+; Ω̄)

+∞, otherwise,

the interaction cost by

(4.3) H(γ, γ̃) =


∫ τ(γ)∧τ(γ̃)

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt if γ and γ̃ ∈ AC(R+; Ω̄)

+∞, otherwise,

and then the cost function by

(4.4) F (γ,Q) = L(γ) +

∫
Γ

H(γ, γ̃) dQ(γ̃).

Notice that for the above functionals, it is possible to have +∞, even if γ ∈ AC(R+; Ω̄).
In order to analyze the model, we assume the following assumptions on the functions ℓ, h,
and Ψ hold.

(H1) The function ℓ : R+ × Ω̄×Rd → R is non-negative, measurable with respect to its first
variable, and continuous with respect to its other variables. Moreover, it is convex in
its third variable and there exist constants α > 0 and θ > 1 such that

ℓ(t, x, p) ≥ α|p|θ, for all t ∈ R+, x ∈ Ω̄ and p ∈ Rd.

(H2) The function h : R+×Ω̄×Ω̄×Rd×Rd → R is measurable with respect to its first variable,
continuous with respect to others, jointly convex in the forth and fifth variables, non-
negative and satisfies the symmetry property, i.e.

h(t, x, x̃, p, p̃) = h(t, x̃, x, p̃, p), for all t ∈ R+, x, x̃ ∈ Ω̄ and p ∈ Rd.
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(H3) The function Ψ: R+ → R+ is lower semicontinuous, non-decreasing there exist positive
constants a and b such that

Ψ(t) ≥ at− b, for all t ∈ R+.

(H4) There exist constants C > 0 and β ∈ (0, θ), where θ is the constant from (H1) such
that

h(t, x, x̃, p, p̃) ≤ C(|p|β + |p̃|β), for all t ∈ R+, x, x̃ ∈ Ω̄ and p, p̃ ∈ Rd.

(H5) There exists a constant κ > 0 such that for every x0, there exists γ ∈ AC(R+; Ω̄) with
γ(0) = x0 and

L(γ) ≤ κ.

We now define the first exit time appearing in the last part of the cost function.

Definition 4.3.1. The first exit time is the function τ : Γ → R+ ∪ {+∞}, defined by

τ(γ) = inf{t | γ(t) ∈ Ξ},

where by convention inf ∅ = +∞.

Finally, we introduce the notion of equilibrium of the mean field game considered in this
chapter.

Definition 4.3.2. Let m0 ∈ P(Ω̄). A measure Q ∈ P(Γ) is called an equilibrium of the
MFG model, with initial condition m0, if e0#Q = m0 and∫

Γ

F (γ,Q) dQ(γ) < +∞, F (γ,Q) = inf
ω∈Γ

ω(0)=γ(0)

F (ω,Q), Q-a.e. γ.

4.3.1 Lower semicontinuity properties

Our first results prove that, under our standing assumptions (H1)–(H5), several functions
we use in the sequel are lower semicontinuous with respect to their arguments.

Lemma 4.3.3. The function τ is lower semicontinuous.

Proof. Let (γn)n∈N be a sequence converging to some γ uniformly on compact time intervals.
We show

lim inf
n→∞

τ(γn) ≥ τ(γ).

If the left-hand side of the above inequality is infinity, then there is nothing to prove. We
can then assume that lim infn→∞ τ(γn) < +∞. Let (γnk

)k∈N be a subsequence such that
limk→∞ τ(γnk

) = lim infn→∞ τ(γn). Notice that the target set Ξ is closed which implies

γnk
(τ(γnk

)) −→ γ(lim inf
n→∞

τ(γn)) ∈ Ξ as k → ∞.

Hence by the definition of τ , we observe

τ(γ) ≤ lim inf
n→∞

τ(γn).
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Corollary 4.3.4. The function Ψ ◦ τ : Γ → R+ is lower semicontinuous.

Proof. First let γn → γ. Since Ψ is lower semicontinuous and non-decreasing, we have

lim inf
n→∞

Ψ(τ(γn)) ≥ Ψ(lim inf
n→∞

τ(γn)) ≥ Ψ(τ(γ)).

Proposition 4.3.5. Under the previous assumptions, the extended real valued function J : Γ
× Γ → R ∪ {+∞} defined by

J(γ, γ̃) = L(γ) + L(γ̃) +H(γ, γ̃)

is lower semicontinuous.

Proof. Let (γn)n∈N and (γ̃n)n∈N be two sequences in Γ which converges to some γ and γ̃. The
goal is to show the following inequality

lim inf
n→∞

J(γn, γ̃n) ≥ J(γ, γ̃).

To do so, we first show
lim inf
n→∞

L(γn) ≥ L(γ).

Without loss of generality, we assume that the left hand side is strictly less than ∞, since
otherwise the inequality is trivial. By extracting a subsequence, we assume that

lim
k→∞

L(γnk
) = lim inf

n→∞
L(γn).

By the assumption (H1) on the map ℓ in the cost function, we observe
∫ +∞
0

|γ̇n(t)|θdt < C,
and on the other hand, since Ω is a bounded open subset of Rd, by letting T > 0 be fixed,
we have

∫ T
0
|γn(t)|θ dt < C, for constant C > 0 independent from n, by which one concludes

(γn)n∈N is a bounded sequence in W 1,θ
(
[0, T ]; Ω̄

)
. Hence its limit γ ∈ W 1,θ

(
[0, T ]; Ω̄

)
and

in particular, (γ̇n)n∈N converges weakly to γ̇ ∈ Lθ
(
[0, T ]; Ω̄

)
. Now consider the function∫ T

0
ℓ(t, γ(t), γ̇(t)) dt + Ψ(τ(γ)). One observes, by applying [52, Theorem 4.5] and Corol-

lary 4.3.4∫ T

0

ℓ(t, γ(t), γ̇(t)) dt+Ψ(τ(γ)) ≤ lim inf
n→∞

∫ T

0

ℓ(t, γn(t), γ̇n(t)) dt+Ψ(τ(γn)).

Notice that due to the positivity of function ℓ, we have∫ T

0

ℓ(t, γ(t), γ̇(t)) dt+Ψ(τ(γ)) ≤ lim inf
n→∞

∫ +∞

0

ℓ(t, γn(t), γ̇n(t)) dt+Ψ(τ(γn)),
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and since this holds for every T > 0, one concludes

(4.5) L(γ) ≤ lim inf
n→∞

L(γn),

which means the individual cost L is indeed lower semicontinuous.
By doing the same procedure as before, we can show lim infn→∞ L(γ̃n) ≥ L(γ̃), and we

thus left to deal with interaction cost. More precisely, we show

lim inf
n→∞

H(γn, γ̃n) ≥ H(γ, γ̃).

Without loss of generality, we assume that the left hand side is strictly less than ∞, since
otherwise the inequality is trivial. By extracting a subsequence, we assume that

lim
k→∞

H(γnk
, γ̃nk

) = lim inf
n→∞

H(γn, γ̃n).

Knowing that (γn)n∈N and (γ̃n)n∈N are two bounded sequences in W 1,θ([0, T ]; Ω̄) and hence
their limits γ and γ̃ are in W 1,θ

(
[0, T ]; Ω̄

)
together with weakly converging of γ̇n and ˙̃γn to γ̇

and ˙̃γ in the space Lθ([0, T ]; Ω̄), respectively, we proceed as follows. For simplicity, we first
rewrite the function as follows.

H(γ, γ̃) =

∫ σ

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt,

where σ = τ(γ) ∧ τ(γ̃), and σn = τ(γn) ∧ τ(γ̃n). In the sequel, we consider two cases to
treat for σ, whether is finite or infinity, i.e. σ < ∞ or σ = +∞. By Lemma 4.3.3, one
knows lim infn→∞ σn ≥ σ, by which if σ = +∞, then σn is necessary unbounded. As a
matter of fact, being unbounded insists on considering σ ∧ T and σn ∧ T , as the upper
bounds of integrals, by which the domain of integrals can be interpreted as the closed time
interval [0, T ], since they converge to +∞, and moreover by assumption (H2) and from [52,
Theorem 4.5], we have∫ T

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt ≤ lim inf
n→∞

∫ T

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt

≤ lim inf
n→∞

∫ σn

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt.

Since for large enough n ∈ N, we have σn ≥ T . On the other hand, since it holds for every
T > 0 and σ is infinity, then one concludes

H(γ, γ̃) ≤ lim inf
n→∞

H(γn, γ̃n).

Now assume σ and σn are bounded. We show the Liminf of the following subtraction is
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non-negative.

H̃(n) :=

∫ σn

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt−
∫ σ

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt

=

∫ σn

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt−
∫ σ

0

h(t, γn(t), γ̃n(t)︸ ︷︷ ︸
H̃

(n)
1

, γ̇n(t), ˙̃γn(t)) dt

+

∫ σ

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt−
∫ σ

0

h(t, γ(t), γ̃(t)︸ ︷︷ ︸
H̃

(n)
2

, γ̇(t), ˙̃γ(t)) dt

Without loss of generality, up to extracting subsequences, we can assume limn→∞ H̃(n) =
lim infn→∞ H̃(n) and limn→∞ σn = lim infn→∞ σn. One can easily apply [52, Theorem 4.5] on
H̃

(n)
2 to see

(4.6) lim inf
n→∞

∫ σ

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt ≥
∫ σ

0

h(t, γ(t), γ̃(t), γ̇(t), ˙̃γ(t)) dt.

For H̃(n)
1 , we proceed as follows. By Lemma 4.3.3, limn→∞ σn ≥ σ. Let us first assume

limn→∞ σn > σ. Therefore, there exists N ∈ N such that σn > σ, for n ≥ N . Since h is a
positive function, we thus have∫ σn

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt−
∫ σ

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt

=

∫ σn

σ

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt ≥ 0.

We now assume limn→∞ σn = σ. By Hypotheses (H4), we have∣∣∣∣∫ σn

σ

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt

∣∣∣∣ ≤ C

(∣∣∣∣∫ σn

σ

|γ̇n(t)|β dt
∣∣∣∣+ ∣∣∣∣∫ σn

σ

| ˙̃γn(t)|β dt
∣∣∣∣)

≤ C

(
|σn − σ|

1
ξ

∣∣∣∣( ∫ σn

σ

|γ̇n(t)|βξ
′
dt
) 1

ξ′
∣∣∣∣+

|σn − σ|
1
ξ

∣∣∣∣( ∫ σn

σ

∣∣ ˙̃γn(t)∣∣βξ′ dt) 1
ξ′
∣∣∣∣) ,

where 1
ξ
+ 1

ξ′
= 1. Now, by choosing ξ′ = θ

β
, one observes

∫ σn
σ

|γ̇n(t)|βξ
′
dt < C and∫ σn

σ

∣∣ ˙̃γn(t)∣∣βξ′ dt < C. Moreover, ξ′ > 1 leads us to see ξ < +∞. Hence by taking the
Lim, we have

lim
n→∞

∣∣∣∣∫ σn

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt−
∫ σ

0

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt

∣∣∣∣
≤ lim

n→∞

∣∣∣∣∫ σn

σ

h(t, γn(t), γ̃n(t), γ̇n(t), ˙̃γn(t)) dt

∣∣∣∣ = 0,
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which essentially means limn→∞ H̃
(n)
1 = 0. Hence, the desired inequality also holds for H,

which leads us to conclude that the function J is lower semicontinuous.

4.4 Auxiliary results on the cost function
We define for every Q, Q̃ ∈ P(Γ)

(4.7)

L(Q) :=
∫
Γ

L(γ) dQ(γ),

H(Q, Q̃) :=

∫
Γ×Γ

H(γ, γ̃) d(Q⊗ Q̃)(γ, γ̃),

J (Q) :=

∫
Γ×Γ

J(γ, γ̃) d(Q⊗Q)(γ, γ̃),

and, by convention, we denote H(Q,Q) simply by H(Q) in the sequel. Moreover, we consider
the following definitions.

Qm0 =
{
Q ∈ P(Γ) | e0#Q = m0

}
.

and
Dom(J ) = {Q ∈ P(Γ) | J (Q) < +∞}.

Remark 4.4.1. According to the definitions of L, H and J in (4.7), one can easily check
that J (Q) = 2L(Q) +H(Q) and

∫
Γ
F (γ,Q) dQ(γ) = L(Q) +H(Q), for every Q ∈ P(Γ). In

addition, J (Q) < +∞ if and only if
∫
Γ
F (γ,Q) dQ(γ) < +∞.

Remark 4.4.2. We point out that Qm0 is closed, thanks to the continuity of the map
Q 7→ e0#Q.

Lemma 4.4.3. There exists a constant C > 0 such that for every γ ∈ Γ, one has

H(γ, γ̃) ≤ C(L(γ) + L(γ̃) + 1).

Proof. Under the assumptions (H4), one observes (up to increasing the constant C from one
estimate to the next one)

H(γ, γ̃) ≤
∫ τ(γ)∧τ(γ̃)

0

C(|γ̇(t)|β +
∣∣ ˙̃γ(t)∣∣β) dt

≤ C

(∫ τ(γ)

0

|γ̇(t)|β dt

)
+ C

(∫ τ(γ̃)

0

∣∣ ˙̃γ(t)∣∣β dt) ,
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by applying Young’s inquality on |γ̇(t)|β and
∣∣ ˙̃γ(t)∣∣β, and then integrating, together with

assumption (H3)

H(γ, γ̃) ≤ C

(
τ(γ)

ξ
+

1

ξ′

∫ τ(γ)

0

|γ̇(t)|βξ
′
dt

)
+ C

(
τ(γ̃)

ξ
+

1

ξ′

∫ τ(γ̃)

0

∣∣ ˙̃γ(t)∣∣βξ′ dt)

≤ C
(∫ +∞

0

1

ξ′α
ℓ(t, γ(t), γ̇(t)) dt+

Ψ(τ(γ)) + b

ξa

)
+ C

(∫ +∞

0

1

ξ′α
ℓ(t, γ̃(t), ˙̃γ(t)) dt+

Ψ(τ(γ̃)) + b

ξa

)
≤ C(L(γ) + L(γ̃) + 1),

where 1
ξ
+ 1

ξ′
= 1 and in particular, ξ′ = θ

β
> 1 is chosen.

As a direct consequence of Lemma 4.4.3, we have the following Corollary.

Corollary 4.4.4. There exists a constant C > 0 such that for every Q ∈ P(Γ), we have

H(Q, Q̃) ≤ C(L(Q) + L(Q̃) + 1).

Proof. By definition of H and Lemma 4.4.3, we have

H(Q, Q̃) =

∫
Γ×Γ

H(γ, γ̃) d(Q⊗ Q̃)(γ, γ̃)

≤ C

∫
Γ

∫
Γ

L(γ) dQ(γ) dQ̃(γ̃) + C

∫
Γ

∫
Γ

L(γ̃) dQ̃(γ̃) dQ(γ) + C

≤ C(L(Q) + L(Q̃) + 1).

Lemma 4.4.5. Let domain of L be defined by

Dom(L) = {Q ∈ P(Γ) | L(Q) < +∞}.

Then, one has Dom(J ) = Dom(L).

Proof. If one takes Q ∈ Dom(J ), then by Remark 4.4.1, L(Q) ≤ J (Q) < +∞ obviously
holds, and hence, Dom(J ) ⊆ Dom(L). For the reverse inclusion, take Q ∈ Dom(L), for
which by Corollary 4.4.4, one has H(Q) < +∞. Hence by Remark 4.4.1, J (Q) < +∞,
which means Q ∈ Dom(J ). Therefore, Dom(L) ⊆ Dom(J ), and this ends the proof.

Remark 4.4.6. Thanks to Corollary 4.4.4, the function H : Dom(L)×Dom(L) → R+ can
be extended by bilinearity to a unique bilinear function, still denoted by H, on Span(Dom(L))
× Span(Dom(L)), i.e., H : Span(Dom(L))× Span(Dom(L)) → R+, where the Span is taken
in the space of signed measures on Γ.

Lemma 4.4.7. Under the previous assumptions, there exists a Borel measurable function
Φ: Ω̄ → Γ such that for every x0, the trajectory γ = Φ(x0) satisfies γ(0) = x0 and L(γ) ≤ κ.
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Proof. Let us first consider the set valued map

G : Ω̄ ∋ x0 7→
{
γ ∈ AC(R+; Ω̄) | γ(0) = x0 and L(γ) ≤ κ

}
.

We show the graph of above set valued map is closed. To do so, let (xn)n∈N be a sequence
which converges to some x∗ and γn ∈ G(xn) converges to some γ∗ ∈ Γ. By uniform conver-
gence of trajectories, one easily observe γ∗(0) = x∗. On the other hand, by Proposition 4.3.5,
one observes

L(γ∗) ≤ lim inf
n→∞

L(γn) ≤ κ.

Hence γ∗ ∈ G(x∗). Notice now by assumption (H5),G(x0) ̸= ∅ for every x0 ∈ Ω̄, and the
set {γ ∈ C(R+; Ω̄) | L(γ) ≤ κ}, in which G takes values is compact, since if one takes a
sequence (γn)n∈N such that L(γn) ≤ κ, then

∫∞
0
|γ̇n(t)|θ dt ≤ κ

α
. On the other hand, since

Ω ⊂ Rd is bounded, one observes
∫ T
0
|γn(t)|θ dt is bounded, for every T > 0. Hence γn ∈

W 1,θ([0, T ]; Ω̄) is bounded which implies γn ⇀ γ ∈ W 1,θ([0, T ]; Ω̄). By compact embedding
of W 1,θ([0, T ]; Ω̄) in the space Γ, we deduce the compactness of the set {γ ∈ C([0, T ]; Ω̄) |
L(γ) ≤ κ}. Now by using [7, Proposition 1.4.8], we observe G is upper semicontinuous and
by [7, Proposition 1.4.4], the set G−1(A) = {x ∈ Ω̄ | G(x)∩A ̸= ∅} is closed for every closed
set A. Hence by [39, Proposition III.11] G−1(B) is open for every open set B, hence G is
measurable.

Now by applying [7, Theorem 8.1.3], we conclude the set valued map G has a Borel
measurable selection, which is our desired function Φ.

Remark 4.4.8. Notice that it is not possible to apply Theorem 8.1.4 in Ref. [7] in order to
extract directly a Borel measurable selection from closed graph because our space Ω̄ is not
a complete measure space with Borel σ-algebra.

Corollary 4.4.9. Under previous assumptions, there exists Q ∈ Qm0 such that L(Q) < +∞,
i.e., Dom(L) ∩Qm0 ̸= ∅.

Proof. We set Q = Φ#m0, which is well-defined by Lemma 4.4.7. By definition of L(Q), we
have ∫

Γ

L(γ) dQ(γ) ≤
∫
Γ

κ dQ(γ) =

∫
Ω̄

κ dm0(x) = κ.

Proposition 4.4.10. Under previous assumptions, Dom(J ) is a non-empty set.

Proof. One observes that being non-empty is a consequence of Corollaries 4.4.4 and 4.4.9,
and Remark 4.4.1.
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4.4.1 Regularity of functional J
Lemma 4.4.11. Under previous assumptions, Dom(L) is a convex set. In particular,
Dom(J ) is convex.

Proof. In order to show the convexity, we take Q0, Q ∈ Dom(L) and t ∈ [0, 1]. By linearity
of L, we have

L(Q0 + t(Q−Q0)) = (1− t)L(Q0) + tL(Q) < +∞.

Convexity of Dom(J ) is now straightforward by Lemma 4.4.5.

Definition 4.4.12. Let Q0 ∈ Dom(J ). We say J is differentiable at Q0, if there exists
a Borel measurable functional G : Γ → R such that for all Q ∈ Dom(J ), G is (Q − Q0)-
integrable and we have

(4.8) lim
t→0

J (Q0 + t(Q−Q0))− J (Q0)

t
=

∫
Γ

G(γ) d(Q−Q0)(γ) < +∞,

for all Q ∈ Dom(J ). When such a functional exists, we denote it by δJ
δQ

(Q0). We also denote
the right-hand side of (4.8) by ⟨ δJ

δQ
(Q0), Q−Q0⟩.

In our next result, we establish the fact that the functional δJ
δQ

(Q0) is unique up to a
constant. To do so, we are first required to establish the following result.

Lemma 4.4.13. Assume that Q0 ∈ Dom(J ). Let G1 and G2 be two Borel measurable
functions such that∫

Γ

G1(γ) d(Q−Q0)(γ) =

∫
Γ

G2(γ) d(Q−Q0)(γ), ∀Q ∈ Dom(J ).

Then there exists λ ∈ R such that G1(γ) = G2(γ) + λ, for Q0-almost every γ ∈ Γ.

Proof. We first claim that for Q0-almost every γ ∈ Γ, δγ ∈ Dom(J ). To do so, since
Q0 ∈ Dom(J ), by Lemma 4.4.5, one can easily check L(γ) < +∞, for Q0-almost every
γ ∈ Γ. Now, one observes

L(δγ) =
∫
Γ

L(γ) dδγ(γ) = L(γ) < +∞.

Therefore, by Lemma 4.4.5, we deduce δγ ∈ Dom(L) = Dom(J ). We now set λ =
∫
Γ
(G1 −

G2)(γ) dQ0(γ) and observe that∫
Γ

G1(γ) dQ(γ) =

∫
Γ

G1(γ) dQ(γ) + λ, ∀Q ∈ Dom(J ),

which yields us to take Q as δγ, for Q0-almost every γ ∈ Γ, and as a consequence to have
G1(γ) = G2(γ) + λ.
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Lemma 4.4.14. Under the previous assumptions, for all Q0 ∈ Dom(J ), the functional J
is differentiable at Q0, and moreover, δJ

δQ
(Q0)(γ) = 2F (γ,Q0) for Q0-almost every γ ∈ Γ.

Proof. By taking advantage of Remark 4.4.1, for Q ∈ Dom(J ), we observe

J (Q0 + t(Q−Q0))− J (Q0)

t
= 2(L(Q) +H(Q0, Q))− 2(L(Q0) +H(Q0))

+ tH(Q−Q0),

where H(Q − Q0) is well-defined by Remark 4.4.6. Thanks to Corollary 4.4.4 and Re-
mark 4.4.6, we conclude tH(Q−Q0) −→ 0, as t→ 0. Hence, by Remark 4.4.1, we have

(4.9)

lim
t→0

J (Q0 + t(Q−Q0))− J (Q0)

t
= 2(L(Q) +H(Q0, Q))− 2(L(Q0) +H(Q0))

=

∫
Γ

2F (γ,Q0) dQ(γ)−
∫
Γ

2F (γ,Q0) dQ0(γ)

=

∫
Γ

2F (γ,Q0) d(Q−Q0)(γ) < +∞.

Since the equality (4.9) holds for every Q ∈ Dom(J ), we deduce δJ
δQ

(Q0)(γ) = 2F (γ,Q0).

Definition 4.4.15. We callQ0 ∈ Dom(J )∩Qm0 a critical point of J in Qm0 , if ⟨ δJ
δQ

(Q0), Q−
Q0⟩ ≥ 0 holds, for every Q ∈ Dom(J ) ∩Qm0 .

Proposition 4.4.16. Under the previous assumptions, any local minimizer Q0 of J in
Dom(J ) ∩Qm0 is a critical point.

Proof. We first take Q ∈ Dom(J ) ∩Qm0 and observe that

J (Q0 + t(Q−Q0))− J (Q0)

t
≥ 0,

for small enough t > 0, since Q0 ∈ Dom(J ) ∩Qm0 is a local minimizer and Q0 + t(Q−Q0)
weakly converges to Q0 as t→ 0. Now, by taking the limit as t→ 0 and by Definition 4.4.12,
we have ⟨ δJ

δQ
(Q0), Q−Q0⟩ ≥ 0. Hence, Q0 is a critical point.

4.5 Potential game
In the next result, we establish the equivalence interpretation between critical points and
equilibria. Our proof is closely based on that of [86, Lemma 3.3].

Theorem 4.5.1. Under previous assumptions Q0 ∈ Dom(J )∩Qm0 is a critical point of J
in Qm0 if and only if Q0 is an equilibrium with initial condition m0.
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Proof. Recall that, according to Remark 4.4.1, Q0 ∈ Dom(J ) is equivalent to having∫
Γ
F (γ,Q0) dQ0(γ) < +∞. Assume first that Q0 ∈ Dom(J ) ∩ Qm0 is a critical point of

J in Qm0 . To obtain a contradiction, suppose that the set{
γ ∈ Γ | ∃ω ∈ Γ, F (ω,Q0) < F (γ,Q0), ω(0) = γ(0)

}
is not Q0-negligible. Note that the above set is equal to⋃

(q,r)∈Q2
+

0<q<r

{
γ ∈ Γ | F (γ,Q0) > r, {ω ∈ Γ | ω(0) = γ(0), F (ω,Q0) ≤ q} ≠ ∅

}
,

and thus there exists a pair of positive rational numbers (q, r) with q < r such that the set
A defined by

(4.10) A =
{
γ ∈ Γ | F (γ,Q0) > r, {ω ∈ Γ | ω(0) = γ(0), F (ω,Q0) ≤ q} ≠ ∅

}
is not Q0-negligible.

For any p ∈ R, define Ap as

Ap =
{
γ ∈ Γ | F (γ,Q0) ≤ p

}
.

By the definition of Ap, we observe
∫ +∞
0

ℓ(t, γ(t), γ̇(t)) dt is finite for all γ ∈ Ap. By the
assumption (H1), for a fixed T > 0 but arbitrary, one concludes γ ∈ W 1,θ([0, T ]; Ω̄) which
implied the compactness of Ap, since W 1,θ([0, T ]; Ω) is compactly embedded in the space of
continuous functions Γ.

Let us now define the multifunction S as

S : Γ → 2A
q

, S(γ) =
{
ω ∈ Aq | ω(0) = γ(0)

}
.

Since Aq is a compact set, one can easily verify S has a closed graph, thus its domain
Dom(S) = {γ ∈ Γ | S(γ) ̸= ∅} is closed and, by [7, Proposition 1.4.8], we deduce that S is
upper semicontinuous. Hence, by [7, Proposition 1.4.4], S−1(A) = {γ ∈ Γ | S(γ)∩A ̸= ∅} is
closed for every closed set A. Now by definition of measurability and [39, Proposition III.11],
we observe S is measurable, and, by [7, Theorem 8.1.3], there exists a measurable function
s : Dom(S) → Aq satisfying

s(γ) ∈ S(γ), ∀ γ ∈ Dom(S).

Note that the set A defined in (4.10) is Borel measurable, since it can be written as

A =
{
γ ∈ Γ | F (γ,Q0) > r

}
∩Dom(S),
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Dom(S) is closed, and {γ ∈ Γ | F (γ,Q0) > r} is the complement of Ar, and hence it is open.
We can thus define a measure Q̃ ∈ P(C) by Q̃ = s#(Q0|A) +Q0|(Γ\A), which is in Qm0 since
one observes

e0#Q̃ = e0#
(
s#(Q0|A) +Q0|(Γ\A)

)
= e0#

(
s#(Q0|A)

)
+ e0#(Q0|(Γ\A))

= (e0 ◦ s)#
(
Q0|A

)
+ e0#(Q0|(Γ\A)) = e0#(Q0|A) + e0#(Q0|(Γ\A))

= e0#(Q0|A +Q0|(Γ\A)) = e0#(Q0) = m0,

where the equality (e0 ◦ s)#(·) = e0#(·) is coming from the fact that the function s preserves
the initial points. Then we have∫

Γ

F (γ,Q0) dQ̃(γ) =

∫
Γ

F (γ,Q0) dQ0|(Γ\A)(γ) +
∫
Γ

F (γ,Q0) ds#Q0|A(γ)

≤
∫
Γ\A

F (γ,Q0) dQ0(γ) +

∫
Γ

F (s(γ), Q0) dQ0|A(γ)

=

∫
Γ\A

F (γ,Q0) dQ0(γ) +

∫
A

F (s(γ), Q0) dQ0(γ)

≤
∫
Γ\A

F (γ,Q0) dQ0(γ) +

∫
A

q dQ0(γ)

=

∫
Γ\A

F (γ,Q0) dQ0(γ) + qQ0(A)

<

∫
Γ\A

F (γ,Q0) dQ0(γ) + rQ0(A)

<

∫
Γ\A

F (γ,Q0) dQ0(γ) +

∫
A

F (γ,Q0) dQ0(γ)

=

∫
Γ

F (γ,Q0) dQ0(γ),

which is a contradiction.
For the reverse implication, assume that Q0 ∈ Dom(J ) ∩ Qm0 is an equilibrium with

initial condition m0. We first set

ν(x0) = inf
ω∈Γ,

ω(0)=x0

F (ω,Q0),

from which one has F (γ,Q0) = ν(γ(0)) for Q0-almost every γ ∈ Γ. One thus observes∫
Γ

F (γ,Q0) dQ0(γ) =

∫
Γ

ν(γ(0)) dQ0(γ).

On the other hand, if one takes Q ∈ Dom(J ) ∩Qm0 , then∫
Γ

F (ω,Q0) dQ(ω) ≥
∫
Γ

ν(ω(0)) dQ(ω) =

∫
Ω̄

ν(x0) d(e0#Q)(x0),

111



in which ∫
Ω̄

ν(x0) d(e0#Q)(x0) =

∫
Ω̄

ν(x0) dm0(x0) =

∫
Γ

ν(γ(0)) dQ0(γ).

Since Q ∈ Qm0 was arbitrary, we thus conclude the proof.

Theorem 4.5.2. Under the previous assumptions, any local minimizer Q0 of J in Qm0 is
an equilibrium for the mean field game.

Proof. This is a direct consequence of Proposition 4.4.16 and Theorem 4.5.1.

In order to show the existence of an equilibrium, it is sufficient to prove the existence of
a global minimizer of J in Qm0 , by Theorem 4.5.2.

Proposition 4.5.3. Under the previous assumptions, there exists a global minimizer of
functional J in Qm0.

Proof. We show that there exists a minimizer to the functional J restricted to Qm0 . We
first consider the following minimizing sequence (Qn)n∈N ⊂ Qm0 of J , i.e.,

J (Q1) ≥ J (Q2) ≥ · · · , lim
n→∞

J (Qn) = inf
Q∈P(Γ)

J (Q) <∞,

The fact that the infimum is finite comes from Corollary 4.4.9. We now claim that the
collection {Qn | n ≥ 1} is tight. For this purpose we define the set CM as

CM :=
{
γ ∈ C | L(γ) ≤M

}
.

Notice that we can show the compactness of CM by taking a sequence γn ∈ CM and using
the compact embedding of W 1,θ([0, T ]; Ω) in Γ, for every T > 0. Without loss of generality,
assume J (Q1) < +∞, otherwise by refining the sequence with removing finitely many
elements, we can choose a suitable Q ∈ Qm0 . By using Markov inequality, we have

Qn

({
γ | L(γ) > M

})
≤ 1

M
L(Qn) ≤

1

M
J (Qn),

then the sequence (Qn)n∈N is tight. Therefore, by Prokhorov theorem (see, e.g. [6, Theo-
rem 5.1.3]), the sequence (Qn)n∈N has a converging subsequence (Qni

)i∈N to some probability
measure Q∞ ∈ P(Γ) which belongs to Qm0 by the closedness, mentioned in Remark 4.4.2.
Moreover, since Γ is a polish space, the product measure (Qni

⊗Qni
)i∈N converges to Q∞⊗Q∞

(see e.g., [86, Lemma 3.5]). Let Jc(γ, γ̃) be defined by Jc(γ, γ̃) = min{J(γ, γ̃), C}, for a con-
stant C > 0. By [15, Corollary 8.2.5], we have∫

Γ×Γ

Jc d(Q∞ ⊗Q∞) ≤ lim inf
n→∞

∫
Γ×Γ

Jc d(Qn ⊗Qn)

≤ lim inf
n→∞

∫
Γ×Γ

J d(Qn ⊗Qn)

= inf
Q∈P(Γ)

J (Q).
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Since the above holds for every C > 0, by Lebesgue monotone convergence theorem, one
observes ∫

Γ×Γ

Jc d(Q∞ ⊗Q∞) −→
∫
Γ×Γ

J d(Q∞ ⊗Q∞) as C → +∞.

and then we can deduce J (Q∞) ≤ infQ∈P(Γ) J (Q). Hence, Q∞ is the desired minimizer and
this ends the proof.

As a direct consequences of Theorem 4.5.2 and Proposition 4.5.3, we have the following
Theorem.

Theorem 4.5.4. Under the previous assumptions, there exists an equilibrium probability
measure Q∞ in Qm0 of the mean field game.

4.6 Strong equilibrium
In this section, we introduce a stronger notion of equilibrium, and we show the existence of
such an equilibrium under some additional assumptions.

Definition 4.6.1. A measure Q ∈ Qm0 is called strong equilibrium of MFG, if∫
Γ

F (γ,Q) dQ(γ) < +∞, F (γ,Q) = inf
ω∈Γ

ω(0)=γ(0)

F (ω,Q), ∀ γ ∈ spt(Q).

We introduce the next assumptions on ℓ and Ω.

(H6) Assumption (H1) holds and moreover there exists α∗ > 0 such that

ℓ(t, x, p) ≤ α∗|p|θ ∀ p ∈ Rd.

(H7) If one has xn → x0 ∈ Ω̄, then

dgeo(xn, x0) −→ 0, as n→ ∞.

We set
Opt(Q) =

{
γ ∈ Γ | F (γ,Q) = inf

ω∈Γ
ω(0)=γ(0)

F (ω,Q))
}
,

containing all the optimal trajectories with respect to Q. In the sequel, we need to establish
the following result which deals with the situations that one considers agent’s starting point
in the target set.

Lemma 4.6.2. Let x0 ∈ Ξ. Then the unique minimizer of the cost function (4.4) is a
constant trajectory, i.e. γ ≡ x0, for all t ∈ R+.
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Proof. We first assume that γ is constant and equals to x0. Then, we observe γ̇(t) = 0,
for t ∈ R+. By assumption (H6) and the fact that the function ℓ is positive, one deduces
ℓ(t, γ(t), 0) = 0. On the other hand, in the interaction part, the bound of the integral is 0,
since the agent is already on the target set which means τ(γ) = 0. Now if we take another
trajectory γ̃ ∈ Γ, then we have

(4.11) F (γ,Q) = Ψ(τ(γ)) < F (γ̃, Q),

since for this trajectory γ̃, one indeed has the positive individual and interaction parts. We
may now show the uniqueness of such a solution. Let γ1 and γ2 be two optimal trajec-
tories starting from a same initial condition, which means F (γ1, Q) = F (γ2, Q). But this
contradicts the fact that for every γ ∈ Opt(Q) the strict inequality 4.11 holds. Hence
Opt(Q) = {γ1 ≡ γ2 ≡ x0}.

Lemma 4.6.3. Let Q ∈ Dom(L), then together with assumption (H6) and (H7), the set
Opt(Q) is closed.

Proof. Let (γn)n∈N be a sequence which converges uniformly to γ on compact time intervals
and satisfies

F (γn, Q) = inf
ω∈Γ

ω(0)=γn(0)

F (ω,Q) <∞.

Let x0 = γ(0) and xn = γn(0). The aim is to show the optimality of γ, for which one takes
γ̃ ∈ Γ with γ̃(0) = x0 and constructs suitable trajectories γ̃n with γ̃n(0) = xn to obtain the
following inequality

(4.12) F (γ,Q) ≤ lim inf
n→∞

F (γn, Q) ≤ lim inf
n→∞

F (γ̃n, Q) = F (γ̃, Q),

in which the first equality can be easily deduced form Proposition 4.3.5, the second inequality
holds thanks to the optimality of γn ∈ Γ. We are thus left to show the last equality in (4.12).
To do so, consider γ̃ ∈ Γ with γ̃(0) = γ(0) = x0. Let ϵn = dgeo(xn, x0) and ςn : [0, ϵn] → Ω̄ be a
geodesic curve such that ςn(0) = xn, ςn(ϵn) = γ̃(ϵn) with constant speed |ς̇n(t)| = dgeo(xn,γ̃(ϵn))

ϵn
,

for every t ∈ [0, ϵn], where ϵn → 0, as n → ∞, due to the assumption (H7). Notice
that the existence of such a geodesic curve can be assured by assumption (H7) and [19,
Proposition 2.5.19]. Let us define

γ̃n(t) =

{
ςn(t) t ≤ ϵn

γ̃(t) t ≥ ϵn,

and show limn→∞ F (γ̃n, Q) = F (γ̃, Q), as n→ ∞, by which we will have established the last
equality in (4.12). Since our model deals with free final time optimization, we must thus pay
attention to the two following cases, i.e., whether x0 ∈ Ω̄ \ Ξ or x0 ∈ Ξ. Let us first treat
the case x0 ∈ Ω̄ \ Ξ, in which due to the closeness of Ξ, for large enough n ∈ N, we have
xn /∈ Ξ. For the first part of the cost function (4.4), since γ̃n and γ̃ coincide on [ϵn,+∞), we
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only need to show the integration
∫ ϵn
0
ℓ(t, γ̃n(t), ˙̃γn(t)) dt will tend to zero. By using (H6),

we have

(4.13)

∫ ϵn

0

ℓ(t, γ̃n(t), ˙̃γn(t)) dt =

∫ ϵn

0

ℓ(t, ςn(t), ς̇n(t)) dt

≤ α∗
∫ ϵn

0

|ς̇n(t)|θ dt ≤ α∗dgeo(xn, γ̃(ϵn))
θ

dgeo(xn, x0)θ−1
.

We claim that dgeo(xn,γ̃(ϵn))θ

dgeo(xn,x0)θ−1 → 0 as n→ ∞. To see this, notice first

dgeo(xn, γ̃(ϵn))
θ ≤

(
dgeo(γ̃n(0), γ̃(0)) + dgeo(γ̃(0), γ̃(ϵn))

)θ
≤ 2θ−1

(
dgeo(xn, x0)

θ +
(∫ ϵn

0

∣∣ ˙̃γ(t)∣∣ dt)θ)
and secondly, by using the Hölder inequality(∫ ϵn

0

∣∣ ˙̃γ(t)∣∣ dt)θ ≤ (∫ ϵn

0

∣∣ ˙̃γ(t)∣∣ξ dt) θ
ξ
ϵ
(1− 1

ξ
)θ

n

in which by choosing ξ = θ, we have(∫ ϵn

0

∣∣ ˙̃γ(t)∣∣ dt)θ ≤ ϵθ−1
n

∫ ϵn

0

∣∣ ˙̃γ(t)∣∣θ dt.
Hence

(4.14)
dgeo(xn, γ̃(ϵn))

θ

dgeo(xn, x0)θ−1
≤ 2θ−1

(
ϵn +

∫ ϵn

0

∣∣ ˙̃γ(t)∣∣θ dt) −→ 0, as n→ ∞,

since ˙̃γ ∈ Lθ(R+; Ω̄) and hence by dominated convergence theorem∫ ϵn

0

∣∣ ˙̃γ(t)∣∣θ dt = ∫ ∞

0

∣∣ ˙̃γ(t)∣∣θ1(0,ϵn) dt −→ 0, as n→ ∞.

Therefore, the integration
∫ ϵn
0
ℓ(t, γ̃n(t), ˙̃γn(t)) dt → 0 as ϵn → 0. Moreover, thanks to

assumption (H7) and triangle inequality, one can easily see dgeo(xn, γ̃(ϵn)) → 0. Regarding
the final cost, for large enough n ∈ N, we show Ψ(τ(γ̃n)) = Ψ(τ(γ̃)), for which we indeed
prove ∥ςn−x0∥L∞(0,ϵn) → 0, since by that and using the fact x0 ∈ Ω̄\Ξ, we can thus conclude.
To do so, we proceed as follows. For every t ∈ [0, ϵn], we have

|ςn(t)− x0| =
∣∣∣∣ςn(0) + ∫ t

0

ς̇n(s) ds− x0

∣∣∣∣
≤ |xn − x0|+

∫ t

0

|ς̇n(t)| ds

≤ |xn − x0|+ t
dgeo(xn, γ̃(ϵn))

ϵn
≤ |xn − x0|+ dgeo(xn, γ̃(ϵn)) −→ 0, as n→ ∞, by (4.14).
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Hence, for the first part of cost function (4.4), we have shown

L(γ̃n) −→ L(γ̃) as n→ ∞.

For the second part of the cost function (4.4), we have∫
Γ

∫ ϵn

0

h(t, ςn(t), ω(t), ς̇n(t), ω̇(t)) dt dQ(ω)

≤ C
(∫

Γ

∫ ϵn

0

|ς̇n(t)|β + |ω̇(t)|β dt dQ(ω)
)

≤ C

∫ ϵn

0

|ς̇n(t)|β dt+ C

∫
Γ

∫ ϵn

0

|ω̇(t)|β dt dQ(ω).

We thus observe∫ ϵn

0

|ς̇n(t)|β dt ≤ ϵ
1− 1

ξ
n

(∫ ϵn

0

|ς̇n(t)|βξ dt
) 1

ξ ≤ ϵ
1−β

θ
n

(∫ ϵn

0

|ς̇n(t)|θ dt
)β

θ
,

in which ξ = θ
β

has been chosen, and as a consequence, by using the inequality (4.13) and
the fact 1− β

θ
> 0, one concludes

∫ ϵn
0
|ς̇n(t)|β dt→ 0 as n→ ∞. We also have∫

Γ

∫ ϵn

0

|ω̇(t)|β dt dQ(ω)

≤ ϵ
1−β

θ
n

(∫
Γ

∫ ϵn

0

|ω̇(t)|θ dt dQ(ω)
)β

θ −→ 0, as n→ ∞.

Hence, ∫
Γ

∫ τ(γ̃n)∧τ(ω)

0

h(t, γ̃n(t), ω(t), ˙̃γn(t), ω̇(t)) dt dQ(ω)

−→
∫
Γ

∫ τ(γ̃)∧τ(ω)

0

h(t, γ̃(t), ω(t), ˙̃γ(t), ω̇(t)) dt dQ(ω),

as n→ ∞. This shows the optimality of γ.
We now consider the case x0 ∈ Ξ. For this, we need to split the argument into two parts.

First, if there exists a subsequence (xnk
)k∈N of sequence (xn)n∈N such that xnk

∈ Ξ, then we
observe the optimal trajectories γnk

∈ Γ, starting from xnk
, are constant and equal to xnk

, for
every t ∈ R+ by Lemma 4.6.2. Hence by taking the limit, as k → ∞, one concludes γ(t) = x0
is constant for every t ∈ R+, and thus, again by Lemma 4.6.2, γ is optimal. However, it
is possible to only have xn ∈ Ξ for finitely many elements of (xn)n∈N, which means there
exists k ∈ N such that xn ∈ Ω̄ \ Ξ, for all n ≥ k. In this case, we proceed as follows. Let
ϵn = dgeo(xn, x0) and σn : [0, ϵn] → Ω̄ be a geodesic curve such that σn(0) = xn, σn(ϵn) = x0
with constant speed |σ̇n(t)| = 1, for every t ∈ (0, ϵn). One can easily extend the domain of
σn to R+ by setting σn(t) = x0 , for all t ≥ ϵn, to observe the individual and interaction cost
converge to zero, in the same manner as done before, and as a consequence

F (σn, Q) −→ Ψ(0+), as n→ ∞.
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Since γn is optimal, we have F (γn, Q) ≤ F (σn, Q), and on the other hand, since τ(γn) > 0,
we have Ψ(0+) ≤ Ψ(τ(γn)) ≤ F (γn, Q). Hence, limn→∞ F (γn, Q) = Ψ(0+), by which the
assumption (H1) leads us to observe

∫ +∞
0

|γ̇n(t)|θ dt → 0. Therefore, by applying Fatou’s
lemma, one can deduce

0 ≤
∫ +∞

0

|γ̇(t)|θ dt ≤ lim inf
n→∞

∫ +∞

0

|γ̇n(t)|θ dt = 0.

Hence,
∫ +∞
0

|γ̇(t)|θ dt = 0 and as a consequence |γ̇(t)| = 0, which means γ ∈ W 1,θ(R+; Ω̄) is
constant. Therefore, by Lemma 4.6.2, γ is optimal and this ends the proof.

The next corollary, which is an immediate consequence of Lemma 4.6.3, states the equiv-
alence of weak and strong notion of equilibrium for the mean field game.

Theorem 4.6.4. Under the assumptions (H6) and (H7), the weak and strong notion of
equilibria are the same.

Proof. Let us first assume that Q is a weak equilibrium by which we deduce existence of a
Borel measurable set, A ⊂ Γ, with Q(A) = 0 such that every γ ∈ Ac is optimal. Now take
γ ∈ spt(Q) and consider γn ∈ Ac ⊂ Opt(Q) such that γn → γ, uniformly on compact time
intervals. Since Opt(Q) is closed by Lemma 4.6.3, one thus deduces, γ ∈ spt(Q) is optimal.
On the other hand, the reverse implication is obvious, and this ends the proof.
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Titre : Jeux à champ moyen avec temps final libre

Mots clés : Jeux à champ moyen, Contrôle optimal, Analyse non lisse, Contraintes d’état, Équilibre lagrangien,
Jeux à champ moyen variationnels

Résumé : Motivé par des sujets économiques et d’ingénierie,
vers 2006, les jeux à champ moyen ont été introduits par Jean-
Michel Lasry et Pierre-Louis Lions, et Peter E. Caines, Minyi Huang
et Roland P. Malhamé, indépendamment. Cette thèse aborde des
modèles de jeux à champ moyen avec temps final libre.
Dans le premier chapitre, nous considérons plusieurs populations
en interaction évoluant dans Rd visant à atteindre des ensembles
cibles donnés en un minimum de temps. Le système de contrôle
satisfait par chaque agent dépend de sa position, de la répartition
des autres agents de la même population et de la répartition des
agents des autres populations. Ainsi, les interactions entre agents
se font par leur dynamique. Nous considérons dans ce chapitre
l’existence d’équilibres lagrangiens à ce jeu à champ moyen, leur
comportement asymptotique et leur caractérisation comme solu-
tions d’un système de jeu à champ moyen, sous quelques hypo-
thèses de régularité sur la dynamique des agents. En particulier, le
système de jeu de champ moyen est établi sans s’appuyer sur les
propriétés de semi-concavité de la fonction de valeur.
De manière similaire au premier chapitre, dans le deuxième cha-
pitre, nous considérons un modèle de jeu à champ moyen inspiré
du mouvement de foule où les agents visent à atteindre un en-
semble fermé, appelé ensemble cible, en un temps minimal, mais
en plus des phénomènes de congestion, qui affectent la vitesse
de un agent, le modèle est considéré en présence de contraintes
d’état : en gros, ces contraintes peuvent modéliser des murs, des

colonnes, des clôtures, des haies ou d’autres types d’obstacles à la
frontière du domaine que les agents ne peuvent pas franchir. Nous
rappelons tout d’abord quelques résultats antérieurs sur l’existence
d’équilibres pour de tels jeux et présentons les principales difficul-
tés liées à la présence de contraintes d’état. Notre principale contri-
bution est de montrer que les équilibres du jeu satisfont un système
d’équations aux dérivées partielles couplées, connu sous le nom
de système de jeu à champ moyen, grâce à des techniques ré-
centes de caractérisation des contrôles optimaux en présence de
contraintes d’état. Ces techniques permettent non seulement de
traiter des contraintes d’état mais nécessitent également très peu
d’hypothèses de régularité sur la dynamique des agents.
Dans notre dernier chapitre, nous considérons un modèle de jeu à
champ moyen pour le mouvement de foule dans lequel les piétons
interagissent non seulement par leur position, mais aussi par leur
vitesse. Plus précisément, chaque piéton est supposé minimiser
un coût impliquant son temps pour atteindre un certain ensemble
cible, un coût intégral individuel et un coût intégral d’interaction mo-
délisant le fait que les agents veulent éviter les régions trop denses
et préfèrent se déplacer avec les agents allant dans la même di-
rection qu’eux, ce qui peut être vu comme une interaction de type
Cucker–Smale. Le résultat principal que nous obtenons dans ce
chapitre est l’existence d’équilibres pour un tel jeu, qui est basé sur
une approche variationnelle.

Title : Mean field games with free final time

Keywords : Mean field games, Optimal control, Nonsmooth analysis, State constraints, Lagrangian equili-
brium, Variational mean field games

Abstract : Motivated by economical and engineering topics,
around 2006, mean field games were introduced by Jean-Michel
Lasry and Pierre-Louis Lions, and Peter E. Caines, Minyi Huang
and Roland P. Malhamé, independently. This thesis addresses
some mean field games models with free final time.
In the first chapter, we consider several interacting populations evol-
ving in Rd aiming at reaching given target sets in minimal time.
The control system satisfied by each agent depends on an agent’s
position, the distribution of other agents in the same population,
and the distribution of agents on other populations. Thus, interac-
tions between agents occur through their dynamics. We consider
in this chapter the existence of Lagrangian equilibria to this mean
field game, their asymptotic behavior, and their characterization as
solutions of a mean field game system, under few regularity as-
sumptions on agents’ dynamics. In particular, the mean field game
system is established without relying on semiconcavity properties
of the value function.
Similarly to the first chapter, in the second chapter, we consider
a mean field game model inspired by crowd motion where agents
aim to reach a closed set, called target set, in minimal time, ho-
wever in addition to congestion phenomena, which affects the ve-
locity of an agent, the model is considered in the presence of

state constraints: roughly speaking, these constraints may model
walls, columns, fences, hedges, or other kinds of obstacles at the
boundary of the domain which agents cannot cross. We first re-
call some previous results on the existence of equilibria for such
games and presents the main difficulties that arise due to the pre-
sence of state constraints. Our main contribution is to show that
equilibria of the game satisfy a mean field game system, thanks to
recent techniques to characterize optimal controls in the presence
of state constraints. These techniques not only allow to deal with
state constraints but also require very few regularity assumptions
on the dynamics of the agents.
In our last chapter, we consider a mean field game model for crowd
motion in which pedestrians interact not only through their position,
but also through their velocity. More precisely, each pedestrian is
assumed to minimize a cost involving their time to reach a certain
target set, an individual integral cost, and an interaction integral cost
modelling the fact that agents want to avoid congestion and prefer
to move together with agents going in the same direction, in which
can be seen as a Cucker–Smale type interaction. The main result
we obtain in this chapter is the existence of equilibria for such a
game, which is based on a variational approach.
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