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Abstract

In the last two decades, we have witnessed a massive increase of surveillance cameras in
our surroundings. One of the most important uses of these cameras is to detect suspectful
or abnormal behaviors, e.g., a moving truck in a pedestrian zone or an intruder entering
a prohibited site. These abnormal events occur very rarely and thus it is an extremely
tedious and difficult task for professionals to attentively monitor the video constantly for
finding these events. Therefore, an automatic video analysis system is essential. Tra-
ditional systems suffer to generalize across different types of anomalies, often rely on
handcrafted rules and cannot adapt to abnormal events that they have never seen before.
In the past few years, we have seen a tremendous progress in deep learning based video
surveillance systems. These systems learn representative features from the data itself,
generalize across different scenes and anomalies. That is why, in this thesis, we explore
deep learning based methods. Majority of these methods in automatic video analysis are
supervised, i.e., they require a large volume of labeled data. But since abnormal events
depend on context and are rare, it is very difficult to have labeled anomalous data be-
forehand, and even if there is some annotated data for abnormal events, it will always be
a small portion compared to normal data. Furthermore, one cannot annotate every pos-
sible event that might occur in future. So, we require approaches that can work without
labeled data. Since these events occur in videos, they can have both spatial and tempo-
ral dimensions. Therefore, the approach must be able to learn pertinent spatio-temporal
representations to differentiate abnormal and normal events.

Thus, in this PhD, prepared at LIRIS laboratory and in collaboration with the Foxstream
enterprise, we aim to learn spatio-temporal representations from unlabeled videos to de-
tect abnormal events. Precisely, we address the task of video anomaly detection and its
sub-task, perimeter intrusion detection. We provided mathematical definitions to these
tasks because they were not clearly defined in the literature. The definitions have a direct
impact on the evaluation and therefore, we proposed new suitable evaluation schemes.
Concerning spatio-temporal representation learning without annotations, we proposed
two approaches. In the first approach, we designed a strided 3D convolutional autoen-
coder network and it was used for the perimeter intrusion detection task. The main idea
is to learn normal representation from training data without intrusions (or anomalies)
and detect intrusions (or anomalies) as they deviate from learned normality. It worked
well in small-length videos but suffered in long videos, which have changes in scene dy-
namics like weather, lighting, etc. To address this problem, we introduced an adaptive
thresholding approach using moving z-score. Our extensive experiments showed the vi-
ability of our approach in comparison with other existing methods. To further improve
the spatio-temporal comprehension of normality, we introduced our second approach. It
consisted of a framework that leverages unsupervised and self-supervised learning in an
autoencoder. To be precise, we proposed multiple, carefully designed tasks (unsupervised
and self-supervised) that are performed in a single autoencoder. This method is also
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trained in an end-to-end and joint manner, where training data is without anomalies or
intrusions. For detecting anomalies (or intrusions), each of the task provide an anomaly
score and the combined score is used for final detection. This approach is generic and was
applied to the two tasks. We obtained state-of-the-art results in all major public datasets
for both video anomaly detection and perimeter intrusion detection task.

Keywords: deep learning, computer vision, unsupervised learning, self-supervised learn-
ing, video surveillance, video anomaly detection, perimeter intrusion detection
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Résumé

Au cours des deux dernières décennies, nous avons assisté à une augmentation massive
des caméras de surveillance dans notre environnement. L’une des utilisations les plus
importantes de ces caméras est de détecter des comportements suspects ou anormaux,
par exemple un camion en mouvement dans une zone piétonne ou un intrus pénétrant
dans un site interdit. Ces événements anormaux se produisent très rarement et c’est donc
une tâche extrêmement fastidieuse pour les professionnels de surveiller manuellement la
vidéo en permanence pour trouver ces événements. Par conséquent, une analyse vidéo
automatique est essentielle. Les systèmes traditionnels ont du mal à se généraliser à dif-
férents types d’anomalies, s’appuient souvent sur règles et ne peuvent pas s’adapter à des
événements anormaux qu’ils n’ont jamais vus auparavant. Au cours des dernières années,
nous avons constaté d’énormes progrès dans les systèmes de vidéosurveillance basés sur
l’apprentissage profond. Ces systèmes apprennent des caractéristiques représentatives à
partir des données elles-mêmes et généraliser sur différentes scènes et anomalies. C’est
pourquoi, dans cette thèse, nous explorons méthodes basées sur l’apprentissage profond.
La majorité des travaux de la littérature en analyse vidéo automatique sont supervisés,
c’est-à-dire qu’ils nécessitent un grand volume de données étiquetées pour obtenir des
résultats pertinents. Mais comme les événements anormaux dépendent du contexte et
sont rares, il est très difficile d’avoir des données anomaliques étiquetées à l’avance, et
même s’il existe des données annotées pour les événements anormaux, ce sera toujours
une petite partie par rapport aux données normales. De plus, on ne peut pas annoter tous
les événements possibles qui pourraient se produire. Nous avons donc besoin d’approches
qui peuvent fonctionner directement sur les vidéos, sans nécessiter d’annotations. Puisque
ces événements se produisent dans des vidéos, ils ont à la fois des dimensions spatiales
et temporelles. Par conséquent, l’approche doit pouvoir apprendre des représentations
spatio-temporelles pertinentes pour différencier les événements anormaux et normaux.

Ainsi, dans cette thèse, préparée au sein du laboratoire LIRIS et en collaboration avec
l’entrepr-ise Foxstream, nous visons à apprendre des représentations spatio-temporelles
à partir de vidéos non étiquetées pour détecter des événements anormaux. Plus précisé-
ment, nous abordons la tâche de détection d’anomalie vidéo et sa sous-tâche, la détec-
tion d’intrusion périmétrique. Comme ces tâches n’étaient pas clairement définies, nous
en avons proposé des définitions mathématiques. Ces définitions ont un impact direct
sur l’évaluation et nous avons donc proposé de nouveaux schémas d’évaluation adaptés.
Concernant l’apprentissage des représentations spatio-temporelles sans annotations, nous
avons mis en place deux approches. Dans la première approche, nous avons conçu un
réseau d’auto-encodeur convolutif 3D. L’idée principale est d’apprendre la représentation
normale à partir de données d’entraînement sans intrusions (ou anomalies) et détecter les
intrusions (ou anomalies) lorsqu’elles s’écartent de la normalité apprise. Il a été utilisé
pour la tâche de détection d’intrusion périmétrique. Cela a bien fonctionné dans les vidéos
de petite durée, mais moins bien dans les longues vidéos, qui ont des changements dans
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la dynamique de la scène comme la météo, l’éclairage, etc. Pour résoudre ce problème,
nous avons introduit une approche de seuillage adaptatif utilisant le z-score mobile. Nos
nombreuses expérimentations ont montré la viabilité de notre approche par rapport aux
autres méthodes existantes. Pour encore améliorer la compréhension spatio-temporelle
de la normalité, nous avons introduit notre deuxième approche. Il consistait en un cadre
qui exploite l’apprentissage non supervisé et auto-supervisé dans un auto-encodeur. Pour
être précis, nous avons proposé de multiples tâches bien conçues (non supervisées et auto-
supervisé) qui sont exécutés dans un seul auto-encodeur. Cette méthode est également
entraînée de bout en bout et de manière conjointe, où les données d’entraînement sont
sans anomalies ou intrusions. Pour la détection d’anomalies (ou d’intrusions), chacune
des tâches fournit une anomalie score et le score combiné est utilisé pour la détection
finale. Cette approche est générique et a été appliquée aux deux tâches. Nous avons
obtenu des résultats au-delà de l’état de l’art pour les deux tâches, dans les principaux
jeux de données publics.

Mot clés : apprentissage profond, vision par ordinateur, apprentissage non supervisé,
apprentissage auto-supervisé, vidéosurveillance, détection d’anomalie vidéo, détection
d’intrusion périmétrique
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Introduction

General context

Over the years, the video surveillance systems have evolved from simple video acquisition
and display systems to intelligent autonomous systems (Ibrahim, 2016). The systems of
today use some of the most sophisticated video analysis and decision-making algorithms
to function. The massive installations of cameras in different sites, from banks to super-
markets and in prominent streets, have further helped in developing and testing these
systems.

Visually surveying a site can include various tasks, such as object detection, object
tracking, object segmentation, abnormal event detection, etc (Valera et Velastin, 2005).
Out of these tasks, the abnormal event (anomaly) detection task has gained a major
attention of the computer vision community (Ramachandra et al., 2022). Anomalies are
patterns in data that do not follow a well-defined notion of normal behaviour (Chandola
et al., 2009). Based on context and nature of input data, anomalies can refer to different
patterns, such as abnormal sections in a time-series data, abnormal patches in an image,
abnormal spatio-temporal volumes in a video, etc., as pictured in Figure 1.

Figure 1: Venn diagram to illustrate the taxonomy of tasks in anomaly detection.

For data in video form, video anomaly detection (VAD) refers to the detection of
unusual appearance or motion attributes in the video (Feng et al., 2021; Li et al., 2022).
For example, for a video surveilled site where only pedestrians are authorized, all the
vehicles are anomalies. Depending on the context, video anomaly detection can be further
classified into specific tasks, such as detecting abandoned object (Luna et al., 2018),
loitering (Ramachandra et Jones, 2020), illegally parked vehicle (Xie et al., 2017b), etc.
The task of perimeter intrusion detection (PID) also falls into this category (Saligrama
et al., 2010; Sodemann et al., 2012; Nayak et al., 2021). It aims at detecting the presence of
an intrusion in a secured perimeter. Intrusions are a particular type of anomalies, classified
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INTRODUCTION

as point and contextual anomalies by (Chandola et al. (2009), Section 3.5). Moreover,
the notions of perimeter, intruder movement and site protection time are crucial for the
PID task, i.e., anomalous/unauthorized objects present in the video are intruders only if
they are in movement inside the designated perimeter when the site is being surveyed.

In this thesis, we tackle the tasks of video anomaly detection and perimeter intrusion
detection. Furthermore, both the tasks are carried out in the outdoor environment. The
fact that it is an outdoor environment is very important here as it induces challenges such
as changing weather and light conditions, obtrusion due to insects, animals, vegetation,
etc., contrary to an indoor environment (Matern et al., 2013; Villamizar et al., 2018).
Since the input to both tasks are videos, i.e., data with spatial and temporal dimensions.
Anomalies or intrusion in videos too, can have the spatio-temporal nature. Therefore, it
is essential to understand the spatio-temporal representation in videos correctly, in order
to detect anomalies or intrusions. Some works address spatial (frames) and temporal
dimensions of video separately and then process them sequentially. But these approaches
do not learn the spatio-temporal nature of videos aptly (Hasan et al., 2016; Chong et Tay,
2017; Simonyan et Zisserman, 2014). Thus, we seek to develop approaches that learn the
spatio-temporal nature of videos in a joint and cohesive manner.

Traditionally, most of the works used trajectory-based anomaly detection (Popoola et
Wang, 2012). The main idea is if the objects of interest are not following the learned
normal trajectories, then they are considered anomalous. This approach suffers from oc-
clusions as it needs to monitor continuously the objects of interest. Some other approaches
used low-level appearance, motion and texture features to enhance the comprehension of
normality. Other approaches can be found in the works of (Li et Cai, 2016; Kaur et al.,
2018). All these traditional approaches suffer to generalize across datasets and anomaly
types, often rely on handcrafted features, and are unable to adapt to anomalies that
they have never seen before (Hu et al., 2016; Medel et Savakis, 2016). For a sterile zone
with very few distractions, these approaches can function to some extent for the PID
task but in the case of VAD, these approaches perform poorly. Over the past few years,
deep learning has surpassed traditional approaches in many major computer vision tasks.
Concerning video anomaly detection too, deep learning based approaches have outper-
formed their traditional counterpart. This is because, given enough data, deep learning
based approaches can learn the features themselves, instead of using handcrafted or cho-
sen features. These approaches generalize with different scenes and types of anomalies.
Therefore, in this thesis, we consider developing deep learning based approaches. Most
of the existing works for spatio-temporal representation learning in video rely on huge
volume of labeled data to obtain relevant results. But since in VAD and PID task, the
examples of anomalies or intrusions are rare, it is extremely difficult to obtain annotated
data. Thus, the goal of this thesis is to learn pertinent spatio-temporal representation
from unlabeled videos in order to detect abnormal behaviors like anomaly or intrusion.
Furthermore, the proposed methods should be suitable to run in videos of long length
(hours, even days), in order to test if they are robust to real-world challenges like change
in weather, luminosity, etc.

Industrial context

This thesis is carried out within the framework of a CIFRE (Convention Industrielle de
Formation par la REcherche) partnership between the laboratory LIRIS (Imagine team)
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and the company Foxstream (CIFRE n°2019/1709). The Imagine team of laboratory
LIRIS (Laboratoire d’InfoRmatique en Image et Systèmes d’information) is specialized
in computer vision, machine learning and pattern recognition. On the other hand, the
company Foxstream is specialized in the analysis and automatic processing of real time
video content. The video analysis algorithms developed by the company (perimeter intru-
sion detection, object segmentation, object tracking, etc.) use “classic” signal processing
or image analysis algorithms such as modeling of the static components of the scene or
using low level descriptors such as SIFT, Haar wavelets, HOG, etc. With this thesis, they
want to explore deep learning based solutions for perimeter intrusion detection and video
anomaly detection tasks. Furthermore, since intrusions and anomalies are rare events,
the company cannot provide labeled data as one cannot anticipate all possible anomalies
beforehand. Therefore the proposed methods should be able to work directly in unlabeled
data. Overall, the work from this thesis would help the company to move towards deep
learning approaches in many of its major applications and that too, without additional
cost of manual annotation.

Plan of manuscript

This manuscript is composed of 5 chapters:

• Chapter 1 details various data acquisition schemes and associated challenges in video
surveillance. It also describes various datasets used in this work along with their
challenges and shortcomings.

• Chapter 2 corresponds to a literature review of various topics: spatio-temporal
representation learning in videos with and without annotations, video anomaly de-
tection and perimeter intrusion detection. The basic concepts needed to understand
this manuscript are also defined there.

• Chapter 3 is concerned with formally defining the tasks of video anomaly definition
and perimeter intrusion definition, and revisiting their evaluation frameworks. We
mathematically define the tasks and discuss existing evaluation protocols. We also
propose a new, more suitable evaluation protocol.

• Chapter 4 focuses on the task of perimeter intrusion detection. For this, we propose
an unsupervised autoencoder with adaptive thresholding mechanism. We provide
extensive experimental results of our method in comparison with existing methods,
using different evaluation protocols.

• Chapter 5 introduces a new approach for spatio-temporal representation learning
from unlabeled videos. It leverages unsupervised and self-supervised learning and
is applicable to both VAD and PID tasks. We perform exhaustive experiments
on major public VAD and PID datasets and provide comparative analysis of our
method with existing methods.

Contributions

The scientific contributions made during this thesis and detailed in the chapters of this
manuscript have been published in international peer-reviewed conferences and journals.
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Our first article was dedicated to the task of fall detection and perimeter intrusion de-
tection. It was published in the Reproducible Research in Pattern Recognition (RRPR)
workshop of ICPR 2021 conference (Lohani et al., 2021). Both these tasks are subsets
of VAD task and do not contain training labels. In this work, we extended the original
work to perimeter intrusion detection task. We also proposed to use precision-recall curve
and it provided insightful results on the two tasks. Our next article was published in the
special issue “Unusual Behavior Detection Based on Machine Learning” of the Sensors
2022 journal (Lohani et al., 2022b). In this article, we provided mathematical definition
of the PID task, along with a review of existing methods and proposed a new suitable
evaluation scheme. The work of adaptive PIDS was published in the IEEE International
Conference on Image Processing (ICIP) 2022 (Lohani et al., 2022a). In our final contri-
bution, we proposed multiple tasks (unsupervised and self-supervised) for video anomaly
detection. We proposed these tasks on a single autoencoder and the main idea is to
enrich the spatio-temporal understanding of normality. Experiments were performed in
major public VAD datasets and we obtained state-of-the-art results in each of them. This
work has been accepted in the International Conference on Computer Vision Theory and
Applications (VISAPP), 2023.
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Chapter 1

Video surveillance: Data and challenges

In this chapter, we first explain how using different acquisition schemes, the data can be
acquired in a surveillance system. Then, we explain various forms of challenges associated
either with scene capturing, objects of interest or complexity of the scene. Finally, we
detail the datasets that we use along with their difficulties and shortcomings.
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5



CHAPTER 1. VIDEO SURVEILLANCE: DATA AND CHALLENGES

1.1 Introduction

Main steps of a modern surveillance system are data acquisition, data pre-processing,
data analysis and returning an output signal (like an alarm). In this chapter, we focus on
the data acquisition step. This step is very important since the input of analysis part is
obtained from here. It is the basis of any surveillance system. The data acquired depends
on the type of camera used like visual camera, infrared camera, thermal camera, etc. Each
of these cameras have their strengths and weaknesses, and therefore they should be used
carefully. Thus, in this chapter, we first explain various data acquisition schemes. Since
we are interested in outdoor video surveillance, the cameras are placed in the outdoor
environment. In outdoor environment, they face various challenges, e.g., challenges due
to change in environmental conditions like rain, dust, or bad weather (Hu et al., 2018).
Therefore, there are various challenges associated with data in video surveillance and they
will be also detailed in this chapter. Finally, we also explore different existing VAD and
PID datasets, along with their associated challenges.

1.2 Data Acquisition in surveillance systems

In this section, we describe the various data acquisition systems with their associated
advantages and drawbacks. The area to be surveyed is observed with the help of cameras.
All cameras can acquire the video stream, but the nature of data depends on the type of
camera used. Broadly, the following categories of video capture devices are used.

1.2.1 Visual Camera

It is also called as the ‘classic’ or ‘color’ camera as it captures the visible light in form
of grey-scale or RGB images and was the first type of cameras to be used for the video
surveillance. The advantage is that it renders an image visually closer to the naked eye.
However, for proper functioning, it needs a certain level of brightness in the scene from
external light source like sun and furthermore it is sensitive to illumination changes (Van
De Sande et al., 2009; Ibrahim, 2016). During night, it needs additional lighting for
the sensor to generate a sufficiently contrasted image (Gade et Moeslund, 2014). Adverse
weather conditions such as fog, rain, snow, etc., further limit the observation of objects to a
short distance from the camera (Robinault, 2021), and thus make detection difficult. Even
after all these drawbacks, these cameras have been used extensively in video surveillance
systems (Valera et Velastin, 2005; Kim et al., 2011).

1.2.2 Infrared Camera

To address the issue of scene brightness, the infrared cameras were proposed as they
capture near-infrared emissions from objects (Ibrahim, 2016). To be precise, the term
infrared camera is a bit of misnomer because the classic visual camera can also capture the
near-infrared emissions, but it is restricted to visible bandwidth using a filter (Robinault,
2021). Therefore, the infrared camera is nothing, but a visual camera coupled with an
infrared (IR) lighting. The IR lighting illuminates the scene with near infrared radiation
(0.7-1.4 µm) and the camera captures the reflected radiation from objects in the scene
in both the visible and near infrared spectrum (Gade et Moeslund, 2014). Thus, it can
work during night too and can provide better contrast when an object moves past the
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1.2. DATA ACQUISITION IN SURVEILLANCE SYSTEMS

camera (Haritaoglu et al., 2000). However, it is difficult to detect objects during rain in
this camera as rain drops appear as thick stripes in front of the camera (Liang et al.,
2012). Furthermore, due to the heat from IR lighting, this camera attracts flying insects
and spiders that can raise false alarms and, consequently, impact detection. Figure 1.1
demonstrates these issues with infrared camera.

Figure 1.1: Issues with the infrared camera: low visibility in rain (left) and insect on
camera (right).

1.2.3 Thermal Camera

Unlike the visual and infrared camera, the thermal camera does not require an external
energy source for illuminating the scene. In fact, it relies on the infrared radiation emitted
by all objects with a temperature above absolute zero. The thermal camera captures this
radiation which is in the mid and long infrared wavelength spectrum (3-14 µm) (Gade
et Moeslund, 2014). Since it does not depend on illuminating the scene, it can work
even in complete darkness (Ibrahim, 2016). The thermal image is rendered grayscale
where the high intensity pixels relate to high temperature. In other words, the higher the
temperature of an object in the scene, the brighter it will appear in the thermal image.
Advantages of this camera include lower sensibility to weather conditions and object
shadows (Liang et al., 2012), and long-range detection (Xu et al., 2016; Hu et al., 2018).
However, the main drawback of the thermal camera is that it is difficult to distinguish
an object from its background when both have almost the same temperature (Robinault,
2021).

Figure 1.2 shows examples of data acquisition by color and thermal camera. During
the day, we can observe that three persons and vehicles are visible in both the cameras.
While thermal camera provide better contrast for first two persons and is less affected by
shadows, the third person is better visible in color camera since in thermal camera, the
object is camouflaged with the car behind it. During night, we cannot see much from the
color camera, just the light emitted by an electric scooter. In complete contrast to this,
the thermal camera shows the complete scene with details and the person with its scooter
is clearly visible.
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Figure 1.2: Data acquisition on a site by color (left) and thermal camera (right). Each
camera captures two scenes at the same instant, one during day (top row) and the other
during night (bottom row).

1.2.4 Other Types of Acquisitions

The depth information of an object can be a useful information for its detection (Vil-
lamizar et al., 2018; Aravamuthan et al., 2020). This depth information can be added to
any camera type using an additional depth sensor. It determines the perspective size of
an object in the scene. However, using a depth sensor also has several problems, such as
mixed, lost, and noisy pixels in the depth image (Kim et al., 2013; Shao et al., 2014).

Another important information in the scene is the motion information. The camera
type specializing in this are known as the event camera (Lichtsteiner et al., 2008). It
generates events at the microsecond resolution. An event is triggered each time a single
pixel detects a change in intensity value. It finds its application in motion detection, object
segmentation, pose estimation, motion tracking, etc. (Gallego et al., 2020). Advantages
include low latency (no motion blur), high temporal resolution, high dynamic range, and
ultra-low power consumption. However, it cannot capture static motion and absolute
intensity, and therefore is often used together with other camera types. Event cameras
are not used for tasks such as video anomaly detection and perimeter intrusion detection
yet, where both spatial and temporal information are essential. The main reasons for this
are its extremely high cost and inability to capture visual features, such as texture and
color.

Finally, we can also have acquisitions from multi-camera systems where camera types
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can be homogeneous or heterogeneous. Intuitively, combining multiple cameras can pro-
vide more accurate information about the targeted object and may help to overcome
occlusions. Surveillance systems with multiple cameras has been studied extensively (Cai
et Aggarwal, 1999; Hu et al., 2004; Wang et al., 2009). Recently, an intelligent perime-
ter intrusion detection system was proposed using an integrated image acquisition device
that combines visual and thermal camera (Kim et al., 2018b). However, a multi-camera
system also brings new challenges, such as camera installation, camera calibration, object
matching, automated camera switching and data fusion (Hu et al., 2004).

To conclude, no acquisition scheme is perfect. Visual camera is still largely used but
it does not work well when the scene illumination is low. The infrared camera can work
in low illumination but it suffers in bad weather conditions, particularly during rain, and
furthermore infrared lighting attracts insects, which can occlude the view. Even though
scene illumination does not affect thermal cameras, but it has other problems like an ob-
ject is indistinguishable from the background if their temperature is similar. Additional
sensors, like the depth sensor, can also be added to any of the camera types to improve
scene comprehension. Also, a multi-camera system can be made using various camera
types. But even these configurations have their drawbacks. Therefore, the video acqui-
sition scheme should be chosen according to the requirements of the site and concerned
task.

1.3 Open Challenges

In the context of video surveillance, the cameras are generally fixed in a static position
to monitor a site (Valera et Velastin, 2005; Bouwmans, 2011). This site can be either
indoors like a bank or agency, or outdoors like an industrial site, private property, or public
places such as a city square. We focus on outdoor sites and they are more challenging
due to environmental conditions like rain, dust, or bad weather (Hu et al., 2018). The
system must be operational continuously for many days and encounter changing light
and weather (i-LIDS Team, 2006). Several authors have identified different challenges in
the outdoor video surveillance (Bouwmans, 2011; Brutzer et al., 2011). We can group
all these challenges into three main categories. The first category is specific to the data
acquisition. The second category corresponds to the captured scene as a whole and the
third is linked to the objects of interest.

1.3.1 Challenges in capturing the scene

These challenges are related to the acquisition and transmission of the video signal.

a) Noise: It is characterized by a random variation in pixel intensities or color compo-
nents (Xu et al., 2016). In video surveillance, there are two main sources of noise (Brutzer
et al., 2011). Noise related to the quality of the sensor and noise related to compression.
In the case of the sensor, noise is often present when the brightness of the scene is low.
This noise is more frequent on thermal cameras (Gade et Moeslund, 2014). Compression
noise is related to encoding and depends on the bandwidth available on the network.

b) Automatic adjustments: Cameras try, as far as possible, to maximize the dy-
namics of their sensor to present a correctly contrasted image. They accomplish this with
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functionalities like auto focus, automatic gain control, automatic white balance, and auto
brightness control (Bouwmans, 2014). These adjustments results in an overall change in
brightness and color levels among different frames in the video. This phenomenon is more
important on thermal cameras, where the sensors also auto-adjust depending on the scene
temperature (Gade et Moeslund, 2014).

c) Vibrations or jitters: It refers to all the untimely movements of the camera
which cause a displacement of the optical center. We are in the case of a fixed camera
where the optical center and all the shooting conditions must not be modified during
the acquisition of the video. However, it is not uncommon that the camera experiences
some vibrations due to wind or other factors (Xu et al., 2016; Sehairi et al., 2017). These
vibrations cause false motions in the scene (Bouwmans, 2014). Mechanical or software
solutions can be used to correct this defect (Bouwmans, 2011). If these solutions prove to
be insufficient, the same pixel coordinates on two successive images no longer represents
the same structure in the scene.

d) Dirty or Misadjusted lens: When the cameras are outdoors, projections of rain,
dust or bad weather can gradually degrade the quality of the image (Hu et al., 2018;
Zou et al., 2019). Likewise, the camera lens adjusted during installation may become
out of focus over time. As a result, the video acquired by the camera gradually lose
sharpness and becomes blurry (Liang et al., 2012). This problem should not be taken
lightly because it corresponds to many real cases. A blurred image causes a significant
loss of the information (both texture and color) contained in the scene (Tsakanikas et
Dagiuklas, 2018).

This list is not exhaustive. We can add the case of so-called day / night cameras which
transmit color frames when the scene brightness is sufficient and switch to grayscale frames
when the brightness is low. We can also add the case of cameras with integrated infrared
lighting that we have briefly presented previously or the problems of dazzling by vehicle
headlights.

1.3.2 Challenges related to the complexity of the scene

This second category of challenges is linked to the complexity of the scene, regardless of
the presence or absence of objects of interest. In the context of outdoor video surveillance,
we can be confronted with a multitude of situations which can range from a parking lot
without trees, to a field bordered by tall trees and even a riverbank. In addition, the al-
gorithms must also consider different climatic conditions and different lighting conditions.
These different situations and conditions can be summarized by the following set of cases.

a) Progressive illumination changes: These variations are generally caused by the
change in light conditions which progressively evolve over time and by the course of the
sunlight (Bouwmans et al., 2008; Xu et al., 2016). For example, it can be caused by the
passage of cloud shadows in the scene.

b) Sudden illumination changes: It corresponds to a sudden change in illumination
between two successive images (Brutzer et al., 2011; Xu et al., 2016). This change can
be either in part of the image or in the full image (Cermeño et al., 2018). It is generally
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caused by the activation or deactivation of exterior lighting, but it can also be linked to
the sudden introduction of a massive object into the scene (Bouwmans, 2011).

c) Dynamic background: Sometimes, some parts of the scene are dynamic and
contain movements of irrelevant objects. Examples include tree branches or flag driven
by the wind, the reflection of moving clouds on the surface of river, snowflakes, rain, etc.
This can confuse the system to make false detections (Liang et al., 2012; Bouwmans, 2014;
Cermeño et al., 2018).

d) Shadows: Managing shadows is another big challenge (i-LIDS Team, 2006; Al-
Najdawi et al., 2012). Shadows casted by moving objects of interest or static objects of
scene can lead to false detections (specially in grayscale mode) (Liang et al., 2012). Unlike
color cameras, the thermal cameras do not have this problem of moving object shadows
(Gade et Moeslund, 2014).

e) Perspective: This challenge is linked to the fact that we want to detect objects of
interest both close and far from the camera. However, the same object does not have the
same size depending on its distance from the camera (see Figure 1.3) (Hu et al., 2004).
Besides, weather conditions can attenuate the contrast between the object of interest and
the background of the scene. This, along with object’s perspective, makes detection more
difficult (Buch et Velastin, 2014). Furthermore, as the apparent object size decreases with
the distance, the apparent object speed also decreases.

Figure 1.3: Effect of perspective: three people (with blue bounding boxes) in the same
image with different apparent size. Image source: ShanghaiTech dataset (Luo et al.,
2017a).

1.3.3 Challenges related to the objects of interest

This last category of challenges concerns more specifically the objects that one seeks to
detect in the scene. These challenges are therefore much more linked to the problem we
are trying to solve. Most video surveillance tasks face the following challenges.
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a) Camouflage: Camouflage, whether intentional or not, occurs when the difference
in appearance between the object of interest and the background is small (Maddalena
et Petrosino, 2008; Brutzer et al., 2011). It is a particularly difficult challenge when the
scene is full of different sized objects as shown in Figure 1.4. It is often possible to tune
the parameters of an algorithm to detect objects on a short camouflaged video sequence
(Cermeño et al., 2018; Kim et al., 2018b). We can therefore manage to detect camouflaged
objects by increasing the sensitivity of the algorithm. However, when these very sensitive
parameters are used for monitoring a site 24 hours per day, the number of false alarms
can become impossible to manage.

Figure 1.4: Camouflaged image with three persons to detect. Source: (Robinault, 2021).

b) Hole in the object of interest (Foreground aperture): This problem occurs
when objects having insignificant texture difference with the scene background, move
slowly in the scene or in the axis of the camera. Due to this, the object pixels are difficult
to detect because they can be embedded in the scene background (Maddalena et Petrosino,
2008; Bouwmans, 2014). Thus, the same object may appear as several small objects, as
if there are holes in the object.

Among other challenges, we have the speed of objects and their manner of movement
(i-LIDS Team, 2006). Very slow or very fast moving objects can be difficult to detect.
Furthermore, the manner in which the object moves can create ambiguity, e.g., person
crawling or imitating an animal.

1.4 Datasets

Since we investigate the problem of abnormal event detection in videos, we explore the con-
cerning datasets. Concretely, we describe the datasets for video anomaly detection (VAD)
and perimeter intrusion detection (PID). As mentioned previously (refer Section 1.1), we
are interested in systems that operate in the outdoor environment and consequently we
choose datasets that follow this criterion.
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1.4.1 VAD datasets

Anomalies in video can be caused by anything like riding a bicyle, fighting, dancing,
playing, running, etc. In other words, they depend on context and can differ from one
dataset to another. A formal definition for the VAD task will be presented in Chapter 3.

VAD methods rely on a large number of datasets in the literature such as: subway
entrance (Adam et al., 2008), subway exit (Adam et al., 2008), UMN (Mehran et al., 2009),
UCF-Crime (Sultani et al., 2018), UBnormal (Acsintoae et al., 2022), UCSD Pedestrian
(Li et al., 2013), CUHK Avenue (Lu et al., 2013), ShanghaiTech (Luo et al., 2017a), etc.
However, most of recent works only use the last three datasets of the list for unsupervised
video anomaly detection (Zhao et al., 2017; Lee et al., 2018; Liu et al., 2018; Gong et al.,
2019; Ionescu et al., 2019; Park et al., 2020; Astrid et al., 2021b; Liu et al., 2021b; Lv et al.,
2021; Park et al., 2022). The reasons for not using the other datasets are the following: (a)
Subway entrance and subway exit dataset: the scenes are in indoor environment rather
than outdoors. No clear training sets, for instance, Cheng et al. (2015) use the first
15 minute videos for training, while Lu et al. (2013) use more than half of the videos
for training; (b) UMN: some scenes are in indoor environment, no clear training and
testing split (Ramachandra et al., 2022) and the dataset is already saturated (performance
above 99% by many methods) (Acsintoae et al., 2022); (c) UCF-Crime: used for weakly
or semi supervised anomaly detection since it contains both annotated anomalies and
normal events in the training set (Ramachandra et al., 2022; Acsintoae et al., 2022); (d)
UBnormal: a recent dataset but it consists of synthetic data instead of real anomalies.

We detail below the three commonly used VAD datasets, i.e., UCSD Pedestrian,
CUHK Avenue, and ShanghaiTech, respectively.

1.4.1.1 UCSD Pedestrian Anomaly Dataset

It is one of the most widely used datasets for video anomaly detection (Kiran et al., 2018).
This dataset consists of video clips recorded with a stationary color camera with grayscale
frames, overlooking pedestrian walkways on the UCSD campus (Li et al., 2013). It has
two distinct scenes, leading to two subsets of the dataset, called as Ped1 and Ped2. The
difference between the two subsets is the walking direction (towards and away from the
camera in Ped1, parallel to the camera plane in Ped2) and frame resolution (158 × 238
in Ped1 and 240 × 360 in Ped2). Most works use only the Ped2 dataset (Gong et al.,
2019; Ionescu et al., 2019; Feng et al., 2021; Georgescu et al., 2021a; Liu et al., 2021b;
Cho et al., 2022; Park et al., 2022) because Ped1 has a considerably low video resolution
(Hinami et al., 2017; Doshi et Yilmaz, 2021; Ouyang et Sanchez, 2021; Le et Kim, 2022),
is suitable for pixel-level and not frame-level anomaly detection (Xu et al., 2015a; Luo
et al., 2019) and has ambiguity in anomaly annotation (some events labeled as normal in
training set are considered as anomalies in testing set) (Nguyen et Meunier, 2019). For
all these reasons, we also only focus on the UCSD Ped2 dataset.

There is a constant movement of people in this dataset, and it is considered normal.
The abnormal events are due to the circulation of non-pedestrian entities, i.e., bikers,
skaters, carts, and wheelchairs. All these events occur naturally, i.e., they were not staged
for dataset collection. Figure 1.5 shows illustrative normal and anomalous frames of this
dataset. This dataset contains 28 videos in total, with 120 to 200 frames per video. The
training set has 16 videos (2,550 frames) without anomalies and the testing set comprises
of 12 videos (2,010 frames) with anomalous events. Both pixel-level and frame-level
annotations are provided with this dataset. The following challenges are present in this
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Figure 1.5: Example frames from the UCSD Ped2 dataset. First row contains frames
without any anomaly, with increasing crowd volume (left to right order). Second row
shows anomalous frames with anomalies highlighted in red bounding boxes.

dataset: dynamic background, shadows, perspective, and camouflage.
Despite being widely used, this dataset has various shortcomings. First, it is one of

the smallest datasets in terms of videos, number of frames, total anomalies, and number
of anomaly types. Therefore, most methods have almost perfect results on this dataset.
Second, all the anomalies can be detected by only analyzing a single frame at a time.
In other words, the anomalies have a dominant appearance / spatial difference from
normality and it is easy to detect them based on spatial features, without requiring the
temporal characteristics.

1.4.1.2 CUHK Avenue Dataset

It consists of one scene captured in the Chinese University of Hong Kong (CUHK) campus
avenue with a fixed color camera (Lu et al., 2013). People walking towards various pre-
defined directions is considered as a normal event. The abnormal events are due to
either non-pedestrian objects like bicycle or unexpected pedestrian behavior like running,
loitering, jumping, throwing bag, walking in prohibited direction, etc.. We must highlight
that this was the first dataset to introduce loitering (static) as an anomaly, which is
important for surveillance applications. Unlike UCSD Ped2, anomalies are mostly staged
in this dataset. Some illustrative normal and anomalous frames of this dataset are shown
in Figure 1.6

This dataset contains 16 video clips (15,328 frames) for training and 21 for testing
(15,324 frames), with a frame resolution of 360 × 640. The training videos consists of
normal events with the exception of few videos with small occurrences of anomalies. The
testing videos have both normal and abnormal events. Like UCSD Ped2, we have both
the pixel-level and frame-level annotations. This dataset presents the following challenges:
camera shakes, perspective, dynamic background, and progressive illumination changes.

Avenue dataset also has still some deficiencies. Like UCSD Ped2, we have a very
small amount of data for deep neural networks and some authors argue that the amount
of normal events is not sufficient for training (Li et Chang, 2019). Furthermore, the
annotations are ambiguous for some test videos, leading to their exclusion by some works
(Hinami et al., 2017; Ionescu et al., 2019; Ouyang et Sanchez, 2021).
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Figure 1.6: Example frames from the CUHK Avenue dataset. First row contains frames
without any anomaly but with different scene dynamics. Second row shows the following
anomalies in red bounding boxes (left to right order): bicycle, throwing bag and running
person, loitering and person walking in wrong direction.

Figure 1.7: Some frames from the ShanghaiTech dataset, each from different scene. First
row contains frames without any anomaly but with different scene dynamics. Second row
depicts the following anomalies in red bounding boxes (left to right order): chasing, small
truck, brawling and two people jumping.

1.4.1.3 ShanghaiTech Campus Dataset

All previous datasets had a single camera view (or scene) in training and testing set.
Having only a single view might lead some models to overfit by memorizing the fixed
background. That is why it is essential to have different views in the dataset, so that
the proposed detection method is aware of different scenes and generalizes to them. The
ShanghaiTech Campus dataset is one of the most challenging datasets for video anomaly
detection and includes 13 different views with various lighting conditions and camera
angles (Luo et al., 2017a). The videos are filmed at the ShanghaiTech university campus
using color cameras with the frame resolution of 480 × 856. Pedestrians walking in the
campus with regular pace is considered as a normal event. Abnormal events are caused
either by the movement of unauthorized objects like bicycle, skates, strollers, etc. or by
irregular pedestrian behaviors like brawling, chasing, jumping, throwing objects, robbery,
etc. Figure 1.7 illustrates various normal and abnormal events in this dataset.

It is one of the biggest anomaly detection datasets with 330 training (274,515 frames)
and 107 test videos (42,883 frames). Like other datasets, training videos only contain nor-
mal events and testing videos have both normal and abnormal events. For each anomalous
event both pixel-level and frame-level ground-truth annotations are available. It is worth
noting that recently Zhong et al. (2019) proposed a reorganization of this dataset to also
have annotated anomalies during training for weakly supervised learning. We focus on
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Dataset
Number of frames

#Anomalies #Anomaly
typesTotal Train Test Normal Abnormal

UCSD Ped2 4,560 2,550 2,010 2,924 1,636 23 5

Avenue 30,652 15,328 15,324 26,832 3,820 47 5

ShanghaiTech 317,398 274,515 42,883 300,308 17,090 158 11

Table 1.1: Description of video anomaly detection datasets.

the original dataset setting as we focus on developing methods without annotations. This
dataset presents the following challenges: noise, camera shakes, shadows, perspective,
dynamic background, progressive and sudden illumination changes.

We still have the following deficiencies in this dataset. Despite being a very large
dataset, we have only a small number of anomalies (158) belonging to only 11 anomaly
types. Therefore, it lacks diversity and number of anomalies. Similarly, since there are
overall 13 scenes, we have a small training set for each scene. This small per-scene
training set is not fully representative of all the normal activities (Ramachandra et al.,
2022). Therefore, many works tend to use some form of data augmentation techniques to
have enough representative data (Astrid et al., 2021a; Feng et al., 2021).

Table 1.1 summarizes the three datasets with frame-level details. It must be noted
that none of these datasets have a validation set, which makes it difficult to choose hy-
perparameters while training any model.

1.4.2 PID datasets

A perimeter intrusion detection system (PIDS) concerns with the detection of intrusions
in a secured perimeter. Like VAD, the intrusions depend on the context and vary from one
dataset to another. A mathematical definition for PID task will be presented in Chapter
3. PID can include various subtasks such as detection and tracking, therefore historically
algorithms were tested on the datasets of these subtasks. For example, CAVIAR (Crowley
et al., 2005), PETS2006 (Thirde et al., 2006) and AVSS2007 (AVSS dataset, 2007) have
been used to test the tracking module of the PIDS (Vijverberg et al., 2010, 2013; Nayak
et al., 2019). Concerning the PID task, most works use their private datasets. One recent
work introduces a new dataset, called SIC (Cermeño et al., 2018), but it is available
under strict conditions and, without annotations, thus omissions cannot be evaluated.
Finally, there is only one public dataset, dedicated for the PID task: the i-LIDS sterile
zone dataset (i-LIDS Team, 2006) and it has been extensively used in the literature (Buch
et Velastin, 2008; Vijverberg et al., 2013, 2014; Buch et Velastin, 2014; Cermeño et al.,
2018).

1.4.2.1 i-LIDS sterile zone dataset

The imagery library for the intelligent detection systems (i-LIDS) consists a library of
closed-circuit television (CCTV) video footage datasets for benchmarking video analytics
systems. Concerning the PID task, they propose a sterile zone dataset, known as the
i-LIDS sterile zone dataset (i-LIDS Team, 2006). This dataset comes with a proper
annotation and evaluation procedure to ensure its relevance for the industrial application.
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Figure 1.8: Example frames drawn from i-LIDS sterile zone dataset with various intrusion
(intruders in red boxes) and non-intrusion frames. The color and black and white frames
belong to view 1 and view 2 respectively. The time of the day in four columns are dawn,
dusk, night, and day. The distractions (in blue boxes) in non-intrusion row (left to right
order) are a rabbit, birds with rain, fox and an insect on camera respectively. In intrusion
row (left to right order), we have two intruders, intruder with ladder during snow, log
rolling intruder and crawling intruder respectively.

The PID objective in this dataset is to detect the presence of people in a sterile zone. It
consists of two sites monitored by two different cameras (view 1 in color/monochrome and
view 2 in monochrome) as shown in Figure 1.8. There is a security fence in each site (view)
and the aim is to detect intrusion as soon as it enters the site. Intruders try to breach
the fence in various ways. For example, people may walk, run, crawl, or roll towards the
fence and, on occasion, may carry climbing aids, such as a ladder. The intruders can be at
three different distances from the camera: close, middle, and far. The cameras recordings
are over many days, capturing different times of the day, such as dawn, day, dusk, and
night. They also include various weather conditions, such as cloudy, rainy, snowy, and
foggy. Furthermore, there are various distractions that might trigger false alerts, like
plastic bag or paper moving due to wind, bats, birds, foxes, insects, rabbits, squirrels,
shadows through the fence, etc. Figure 1.8 illustrates various distractions and intrusion
examples. All these factors like different weather conditions, different times of the day,
numerous distractions, and various ways in which the intruder approaches the fence make
it a very challenging and realistic dataset. Finally, the challenges present in this dataset
are noise, automatic adjustments (switch from color to monochrome images and vice-
versa), vibrations, progressive / sudden illumination changes, shadows, perspective, and
camouflage.

It has two separate disks for training and testing. The PID system is developed using
the training disk data and its performance is evaluated with the testing disk data. Each
disk contains the two camera views, with over 20 hours of video recorded in the various
previously cited situations. All videos are taken at 25 FPS with 720 × 576 frame size
resolution. Each disk contains annotations, distractions, and other information for each
video. The annotation provided is the time interval of each intrusion event in the video
i.e., the entry and exit time of people in the respective scene.

Table 1.2 summarizes the i-LIDS dataset where view 1 and view 2 corresponds to
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View Set #Videos #Intrusions
Number of videos per intrusion count
0 1 10 13 15 17 31

View 1
train 123 113 10 113 0 0 0 0 0
test 17 113 10 0 2 1 1 2 1

View 2
train 113 103 10 103 0 0 0 0 0
test 16 103 10 0 1 1 1 2 1

Table 1.2: i-LIDS Sterile Zone dataset description.

the color camera and monochrome camera respectively. Each view has videos with and
without intrusions. In both training and testing disk, we have 10 videos from each view
without any intrusions. In training disk, we have 216 short videos (≈ 3 minutes), with
single intrusion per video. These videos can be used for training and/or validation for
example. The testing disk have 7 and 6 very long videos in view 1 and view 2. These long
videos range from 36 minutes to 92 minutes and contain between 10 and 31 intrusions
per video. Even though the total number of intrusions are also 216 in testing disk, the
long-length videos makes it more challenging. All i-LIDS videos contain various distrac-
tions and/or intruders but these long videos also have a drastic change in weather and
luminosity. This makes this testing dataset even more relevant from practical perspective.
Furthermore, the distractions, intrusions and other information is very well distributed in
both the views and thus we do not have bias for the choice of a camera view. It must be
noted that like VAD datasets, it does not contain an official validation set. However, in
unsupervised context, the intrusion videos from the training set can be used as a form of
validation set.

Although we have extensive real-life elements in i-LIDS dataset, it has some major
drawbacks. First, we only have people as intrusion. This is a limitation because in real-life,
intrusion can very well be some other object like a car, a bike, a truck, etc.. Consequently,
any good human detector system might work very well in this dataset but that does not
necessarily mean that it is a good PIDS. The second important limitation is that we
have only two views with very similar settings. This makes it easy for the algorithms
(particularly supervised learning based) to learn the scene. A multi-view dataset would
have added an additional difficulty in the PID task.

1.5 Conclusion

In this chapter, we explored the data acquisition schemes in the surveillance systems,
followed by the common challenges and finally the datasets used for the VAD and PID
tasks.

Visual camera or color camera is still one of the most used cameras for video surveil-
lance, even though it does not perform well when the scene has low illumination. The
infrared camera eliminates this problem of visual camera with infrared lighting, but this
lighting has other problems, like it attracts insects and performs poor in rainy condition.
Thermal camera relies on the infrared radiation emitted by the objects and hence it does
not require an external lighting, but it also has problems like we cannot distinguish an
object from its background if their temperature is similar. Since none of the video acquisi-
tion device is perfect, often an additional sensor like the depth sensor is used, or multiple
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camera types are used as a multi-camera system, but even these configurations have their
drawbacks. To conclude, one should use the video acquisition scheme depending on the
requirements of the site and concerned task.

We highlighted various challenges for surveillance systems into three categories: con-
cerning capturing the scene, concerning complexity of the scene, and concerning objects
of interest. The first category comprises challenges like noisy frames, camera vibrations
and gain adjustments. The second category includes challenges like illumination changes,
dynamic background, scene perspective and shadows. Finally, the last category includes
camouflage and foreground aperture as challenges.

We explored various datasets for the VAD and PID tasks with their difficulties and
shortcomings. Concerning VAD task, three datasets are mainly used. Out of these three
datasets, UCSD Ped2 and CUHK Avenue are single scene dataset, i.e., they have only one
scene for training and testing. Ped2 is the smallest and easiest dataset, having anomalies
with distinguishable appearance like bike, skate, etc. Avenue dataset is slightly more
difficult as it also have anomalies where the normal object has temporal irregularity, like
person throwing a bag, running, etc. Finally, the ShanghaiTech dataset is the biggest
and most challenging dataset among the three, with 13 different scenes captured by color
cameras. There is a good variety of anomalies in this dataset and contains both appearance
and temporally irregular anomalies. The fact that the same model needs to understand
13 different scenes and detect anomalies is challenging. However, none of these datasets
are perfect: they do not have a validation set, they lack proper anomaly description and
correct test annotations (some normal events like ice-cream eating are present in test set
but not the training set, causing ambiguity), they lack diversity and have small amount
of anomalies, and they contain only short video clips. In real-life, the VAD system needs
to protect a site for a long time (atleast few days or weeks) and must face changing scene
dynamics like weather, lighting, etc., therefore longer videos are essential. Ideally, we
need a new multi-view dataset of long videos, having appropriate anomaly description
and annotations, containing diverse anomalies, and accompanied with a validation set.

For the PID task, we have only one public dataset, i.e., the i-LIDS sterile zone dataset
and it has just two camera scenes. It is challenging as intruders enter the scene in various
ways (like crawling), and there are distractions caused by animals/insects, along with
changing scene dynamics like rain, snow, etc.. There is no official validation set in this
dataset. It also lacks intrusion types and has only person as intruder. Furthermore,
the two scenes are very similar to each other, they are like mirror images of each other.
Therefore, we require more datasets for the PID task, each with a validation set. They
should have multiple scenes and diverse intruder types like cars, bikes, etc.
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Chapter 2

Literature review

This chapter presents a review of existing works for spatio-temporal feature learning in
videos, with main focus on video anomaly detection and perimeter intrusion detection
task. We first present all necessary background concepts needed for understanding the
chapter. We next explore the existing spatio-temporal feature learning approaches, fol-
lowed by unsupervised approaches. In the next two sections, we review existing methods
concerning video anomaly detection and perimeter intrusion detection. Finally, we con-
clude this chapter with takeaway points along with our chosen direction to tackle these
problems.
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2.1. INTRODUCTION

2.1 Introduction

In this chapter, we present the literature review of existing works for spatio-temporal
feature learning on videos, with particular focus on two unsupervised tasks, i.e., video
anomaly detection and perimeter intrusion detection. A video consists of spatial and
temporal dimensions. We need to understand these space-time characteristics of the
video, in order to have a meaningful interpretation of it, which helps in performing various
tasks and applications like video object recognition, segmentation, anomalous behaviour
detection, etc. Many works address this, but they use labeled data. However for some
tasks, there is no available annotated data, such as for video anomaly detection and
perimeter intrusion detection. Therefore, we need methods that can understand the
spatio-temporal characteristics of videos without labeled data. In this chapter, we will
first present some background concepts. Then, we will explore various ways for space-
time feature learning from video, followed by reviewing unsupervised approaches. We will
then consider methods of literature concerning video anomaly detection and perimeter
intrusion detection respectively.

2.2 Background

This section aims to present in a concise manner all necessary background concepts re-
quired for understanding the subsequent sections. These concepts are on different types of
Artificial Neural Networks (ANNs), which aims at learning patterns within data (Bishop
et Nasrabadi, 2006). ANNs originated from various attempts to represent the human
brain from a mathematical perspective (McCulloch et Pitts, 1943; Rosenblatt, 1957).
The underlying hope was that such representation would provide with pertinent learning
capabilities.

The main idea of the neural networks is to construct a model parameterized by weights
(from a few hundreds up to a trillion (Fedus et al., 2022)) in order to fit a given target
function. The learning of models is done with gradient descent and more specifically
by using the backpropagation algorithm (Rumelhart et al., 1986). These models are
constructed by stacking layers and various types of layers were proposed to handle different
types of inputs. For example, convolutional layers (Fukushima et Miyake, 1982) were
introduced to process images. They have a translational invariance property, which is
highly useful for tasks such as object detection in images. For sequential data, recurrent
layers were introduced (Jordan, 1990). These layers keep in an internal state, the memory
of previous inputs, to help future outcomes.

In the following subsections, we begin reviewing the core concepts of neural networks
via the standard feedforward network. Then, we explain the convolutional neural network,
followed by recurrent neural network, autoencoder and finally the generative adversarial
network.

2.2.1 Feedforward neural network

ANNs use artificial neurons that were designed to loosely mimic the biological human
neuron. A human neuron receives inputs through axons and dendrites and, depending on
the intensity of the electrical impulse received, in turn generates an impulse to subsequent
neurons. For ANN, such functioning is formalized (McCulloch et Pitts, 1943) using the
following equation:
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f(x,w) = σ

(∑
i

wixi + b

)
(2.1)

Each input signal xi is multiplied by a dedicated weight wi, the resulting signals are
summed along with a bias term and fed to an activation function σ that decides if the
neuron should activate or not, and propagate the signal to subsequent neurons. Any
function can serve as activation function, as long as it is continuous and non-linear.
Typical activation functions are described in next subsection.

Figure 2.1: Pictorial representation of a feed-forward neural network. Source: (Nielsen,
2017)

The neurons are stacked to make a layer and stacked layers form a neural network
model. The first layer is the raw input data (for example, pixel values of an image or
video) and subsequent layers, called hidden layers, extract more abstract information of
the input until one reaches the final layer, called the output layer. Figure 2.1 depicts a
model with four layers. It is a feedforward neural network, where the term feedforward
means that the information flows strictly in a forward direction from the input to the
output. It is a fully connected network (or dense network) since each neuron on a layer is
connected to all the neurons of the preceding layer. In other words, the activation value
of a neuron depends exclusively on the activation values of the neurons of the preceding
layer. Concretely, the activations of the neurons in the lth layer, i.e., x(l), are a linear
combination of the values of the preceding layer x(l−1), passed through a nonlinear function
σ:

x(l) = σ
(
W(l)x(l−1) + bl

)
(2.2)

where W(l) and b(l) are the weights matrix and the bias vector respectively. These are
the parameters that are tuned during the training stage of the neural network. Usually,
x(0) is referred to as input, x(N) (N being the number of layers in a model) as prediction
or output and the remaining x(i) (i = 1, . . . , N − 1) as hidden layers.

2.2.1.1 Activation functions

An activation function defines how the weighted sum of the input is transformed into an
output from a node or nodes in a layer of the neural network (Haykin et Network, 2004;
Goodfellow et al., 2016). The choice of activation function has a crucial impact on the ca-
pability and performance of the neural network, and different activation functions may be
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used in different parts of the network. Typically, all hidden layers use the same activation
function, while the activation function for the output layer depends upon the type of pre-
diction required. Since neural networks are typically trained using the backpropagation
algorithm (refer next subsection) that requires the derivative of prediction error in order
to update the weights, therefore activation functions are also typically differentiable.

Figure 2.2: Common activation functions.

Some commonly used activation functions are shown in Figure 2.2 and are summarized
below:

• Sigmoid. The sigmoid or logistic function squashes the input in the range 0 to 1.

σ(v) =
1

1 + e−v
(2.3)

As shown in Figure 2.2, the large values of input incline towards the value 1 in
output, while the small values tends closer to 0. This property of sigmoid output
can be seen as a probability distribution, and thus it is used in binary classification
(with single output neuron) to predict whether a certain example belongs to a fixed
pre-defined class or not. However, there are two main issues with this activation
function. The first issue is of the vanishing gradient. Since the output of sigmoid
saturates (i.e. the curve becomes parallel to x-axis) for a large positive or large
negative number, the gradients at these regions is almost zero. When n hidden
layers use an activation like the sigmoid function, n small derivatives are multiplied
together. Thus, the gradient decreases exponentially as we propagate down to the
initial layers. A small gradient means that the weights and biases of the initial
layers will not be updated effectively with each training iteration, thus making the
learning inefficient. That is why, sigmoid function is not used in hidden layers. The
second issue is that the sigmoid outputs are not zero-centered and it is undesirable
because it can indirectly introduce zig-zagging dynamics in the gradient updates for
the weights.

• Hyperbolic tangent. It is also known as the tanh activation and it squashes the
input to [-1, +1] range.

σ(v) =
ev − e−v

ev + e−v
(2.4)

It is very similar to the sigmoid activation and even has the same S-shape as shown
in Figure 2.2. Since the output is centered at zero, we do no have the problem of
zig-zagging dynamics in gradient updates like sigmoid. We still have the same issue
of vanishing gradient but the range of inputs that do not saturate are larger here.
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Like sigmoid, it is not suitable for hidden layers but can be used in output layer for
binary classification. Since the output of tanh is symmetric around zero, it leads to
faster convergence of the neural network.

• ReLU. The rectified linear activation function (ReLU) is a piecewise linear function
that outputs the input if it is positive, otherwise, it outputs zero. It is defined as:

σ(v) = max(0, v) (2.5)

It is less susceptible to the vanishing gradient problem since the gradient for all
inputs greater than 0 is 1. This is why it is one of the most used activation functions
and is mostly used in hidden layers. The main issue with this activation function
is called the dying ReLU. It occurs when the neuron gets stuck in the negative side
and constantly outputs zero. Because gradient of 0 is also 0, it’s unlikely for the
neuron to ever recover. This happens when the learning rate is too high or negative
bias is quite large. To address this issue, Leaky ReLU is proposed, which allows
small negative values when the input is less than zero. ReLU or its variants are
usually not in the output layer.

• Softmax. It is not a classic activation function that can be applied on a single
neuron. The softmax function turns a vector of k real values into a vector of k
real values that sum to 1. The input values can be positive, negative, zero, but the
softmax transforms them into values between 0 and 1, so that they can be inter-
preted as probabilities. It is used as the activation function in the output layer of
neural network models that predict a multinomial probability distribution (Bishop
et Nasrabadi, 2006). It can be seen as a generalization of the sigmoid function which
was used to represent a probability distribution over a binary variable (Goodfellow
et al., 2016). Since softmax converts the input to a normalized probability distribu-
tion (between 0 and 1) that sum to 1, it is used in output layer of networks that do
multi-class classification. It is not used for hidden layer activations. Furthermore,
it should not be used for multi-label classification, i.e., when an example have more
that one labels like a dog and a bone. This is because softmax simply cannot pro-
duce more than one label with values close to 1. In this case, sigmoid function is
used.

We presented above some of the most common activation functions, with particular focus
to functions that are later used in this thesis. There are also other activation functions like
maxout, gaussian linear unit (GLU), exponential linear unit (ELU), etc. For hidden layers,
ReLU activation function is the most used. However, the application and architecture of
the neural network often dictates which functions to use, for example in LSTM (a type of
recurrent neural network), sigmoid and tanh functions are used as a ReLU would make
learning unstable and maybe even impossible. Finally, for binary class classification with
single output value, sigmoid function is used in output layer. Similarly, for multi-class
classification, softmax function is the preferred activation function in output layer.

2.2.1.2 Training

So far we detailed the general architecture of the neural networks along with the various
activation functions, we now review the training procedure used to estimate the target
function. The aim is to train a model M : X → Y to approximate a unknown target
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function, where X is called the input space and Y the output space. The training is
done to extract the statistical properties of the inputs in order to maximize the posterior
probability p(y|x) of getting the correct y ∈ Y given x ∈ X . This maximization is done
through the minimization of an objective function:

min
W

Ex,y [ L(M(x,W), y) ] , (2.6)

where E is the expectation, M is the deep network, W represents the weights of M to
be set and L is the loss function measuring how closeM(x,W) is to the true output. To
do this minimization, gradient descent is usually used. The standard way to do such an
optimization is Stochastic Gradient Descent (SGD) (Bottou et al., 1991). It computes
the average gradient

∆Wk−1 =
1

|B|
∑
i∈B

∆Wk−1
L (yi,M (xi,Wk−1)) , (2.7)

where (xi, yi) is the i-th element of the current batch B sampled from the training data,
and updates the weights using the backpropagation algorithm (Rumelhart et al., 1986)
as:

Wk = Wk−1 − η∆Wk−1 , (2.8)

where ∆Wk−1 is the gradient at iteration k and η is called the learning rate. For such an
optimization method, the speed and convergence towards a minima is highly dependent
on the shape of the surface of the objective function with respect to the weights. As
shown in Figure 2.3a, the optimization process may bounce back and forth, as the slope is
very steep (therefore creating a strong gradient). Multiple update rules have been further
developed to prevent such problem: momentum (Qian, 1999) (Figure 2.3b), Adagrad
(Duchi et al., 2011), RMSprop (Tieleman et Hinton, 2012), Adam (Kingma et Ba, 2015),
Adadelta (Zeiler, 2012), to name the most common.

(a) SGD without momentum (b) SGD with momentum

Figure 2.3: SGD optimization with and without momentum. On the left, without mo-
mentum the optimization process bounces between the ravine’s slopes whereas, on the
right, with momentum, optimization is smoother. Source: (Orr et al., 1999).

2.2.2 Convolutional neural networks

In the last subsection, we detailed the basic architecture of a neural network as well as
the training procedure used to optimize it. However, so far, we have only considered one
type of layer, i.e., the dense layer, where each output neuron is connected to each input
through a weight. While this layer is functional, it is not best suited for all types of input.
For instance, for processing images, each output neuron would be connected to each pixel,
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therefore requiring a tremendous amount of weights. These weights would not only be
hard to optimize but can also lead to overfitting. Furthermore, the dense layer is not
invariant to translations. Translation invariance is a very desirable property for image
processing and it refers to the ability to ignore positional shifts, or translations, of the
target in the image. For example, a cat is still a cat regardless of whether it appears in
the left half or the right half of the image.

To address these problems, layers that operate in a sliding window fashion can be used.
As the window slides over the input image, weights are re-used at every target position.
Therefore, translated inputs result in feature maps with translated activated neurons.
Moreover, as the computations of each neuron within a feature map are independent, one
can leverage the parallelism to speed up processing. Layers with such behavior are called
convolutional layers.

a) Convolutional layer A convolution operation can be mathematically defined as:

o(t) = (a ∗ b)(t) =

∫
a(z)b(t− z)dz (2.9)

where a is input, b is kernel and o is the resultant output obtained by convolving input with
kernel. This can be interpreted as a weighted operation applied around the neighborhood
of the point t. We can easily extend this convolution operation to multiple dimensions.
For image data, we have discrete data as input in the form of pixels. Equation (2.9) can
be extended for image data as:

O(i, j) = (I ∗K)(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n) (2.10)

where I is input image, K is kernel and O is the convolved output at pixel (i, j). This
output is also known as the feature map. Since convolution is commutative, we can
observe that in the equation (I ∗ K) = (K ∗ I). The region in the input space (here
image) that the kernel is looking at the current point is known as the receptive field.
Finally, the displacement in the image that the kernel performs after each convolution
operation is termed as the stride. Figure 2.4 shows an example of convolution operation
applied on an 7× 7 image using a kernel of size 3× 3 and stride 1× 1. The orange region
in the image shows the receptive field of the kernel and green unit in feature map shows
the corresponding convolved output.

Figure 2.4: Convolution of an image I with kernel K using stride 1× 1.
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It is to be noted that various modifications to this classic convolution can be obtained
by increasing kernel stride, or padding the input image, or using dilation. The reader can
refer to the work of Dumoulin et Visin (2016).

b) Pooling layer This layer is also known as the downsampling layer. It is often
placed after obtaining the feature map and it summarizes the most pertinent values of
it. In other words, convolutional layers detect features, while pooling layers aggregate
them. Pooling layers reduce the amount of weights or parameters in the network, thus
speeding up the computation and reducing the chance of overfitting the training data. Like
convolution, this layer also have a kernel or filter, which performs the pooling operation
over the feature map and then this filter is slided with a certain stride. Two most common
pooling operations are max and average, i.e., taking maximum and average of the feature
map for a given filter size. Figure 2.5 demonstrates these two operations. The feature
map and filter size are 4 × 4 and 2 × 2 respectively. The filter is first placed on the top
left of feature map (shown with yellow color) to perform the pooling operation (max or
average), resulting in value (yellow color) shown in right side of the figure. Then, the
filter displaces with stride two to reach the top right (shown in blue color) and performs
the pooling operation again. This pooling process continues until the full feature map is
covered. Finally, we can observe the overall results of max-pooling and average pooling
layers in the figure.

Figure 2.5: Examples of max pooling and average pooling operations with filter size and
stride as two.

Convolutional neural network (CNN) is a type of neural network that uses convolution
in at least one of its layers. However, given a model with a single convolutional layer,
the context (receptive field) a given neuron can gather is limited to the size of the kernel.
Increasing context information requires to increase the size of the kernel and therefore the
computation needed as well as the number of weights. A simple solution to this problem
is to stack multiple convolutional layers. By doing so, the receptive field will naturally
increase, while keeping the desired translational invariance property. Therefore, typical
CNNs are composed of many convolutional layers stacked on top of each other, where
each layer is followed by an activation function like a standard ANN. As we advance in
the layers, the size of feature map should generally decrease. For example, for image
classification task, we need a single output from the image. To do so, generally pooling
layers are used after each convolutional layer. Alternatively, strided convolutional layers
can also be used as they decrease the feature map size. Finally, at the end of last layer
in CNN, often a fully-connected (dense) layer is used and it reduces the final ouput to
desired dimensions (like dimension 1 for image binary classification). The basic mechanism
of training a CNN remains the same as for regular neural networks. Like weights of the
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feed-forward network, in CNN, the kernel parameters are meant to be learned. The initial
weights of an untrained CNN are randomly chosen. Then given the training data and
task, a loss function is used to calculate the error. This error is backpropagated to update
the kernel parameters. Like the regular ANN, the training is continued until the model
converges.

To conclude, CNNs are extremely versatile tools. Thanks to their limited number of
weights, they help mitigate over-parameterization problems inherent to dense layers. Fur-
thermore, they are also translation invariant and allow for easy parallelisation by design.
As a result, convolutional layers are used nowadays throughout the scientific literature.
For instance, 1D-CNNs have been used for automatic speech recognition (Kiranyaz et al.,
2021) and 2D-CNNs are the standard for image processing (Karpathy et al., 2014; Good-
fellow et al., 2016; Liu et al., 2016; Krizhevsky et al., 2017).

2.2.3 Recurrent Neural Networks

For the moment we described networks that takes as input spatial signals such as im-
ages. However in this manuscript, we are also interested in working with sequential
data since we want to extract information from videos. In this case the input data
x = (x1, . . . , xt, . . . , xT ) is a sequence composed of T elements.

By design, the feedforward and convolutional neural networks are not suited to model
long sequential data like a time series, speech, or text. Besides, the CNN can only gather
information up to the receptive field size. Although such behavior might be sufficient
for entries of fixed shape, for entries of varying length, it would be better to manage
to implement some form of memory that can gather a potentially unlimited amount of
information. For this purpose, there is another neural network variant, called recurrent
neural network (RNN) (Jordan, 1990). RNNs employ hidden vector denoted h which is
recursively updated at each timestep using the element from the input, and from which
the output y is predicted as:

ht = σh(Whxt + Uhht−1 + bh) (2.11)

yt = σy(Wyht + by) (2.12)

where σh and σy are activations function and Wh, Wy, bh, by, Uh are parameters matrices
and biases.

(a) RNN (b) LSTM

Figure 2.6: Pictorial representation of a simple RNN and an LSTM. Source: (MathWorks,
2022).
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As shown in Figure 2.6a, in an RNN, the information feeds cells through a loop.
When it makes a decision, it takes into consideration the current input and also what
it has learned from the inputs it received previously. This is also demonstrated from
Equations (2.11 and 2.12). The RNN has two inputs, the present and the recent past.
This is important because the sequence of data contains crucial information about future
information. It allows the previous inputs to affect the current output. Due to this
internal memory, they have a particular advantage to form a much deeper understanding
of a sequence and its context. Classical RNN suffer from two major problems: exploding
and vanish gradient (Le Cun et al., 1997). The first problem refers when algorithm assigns
high importance to the weights, without much reason. The second issue occurs when the
values of a gradient are too small and the model stops learning.

These problems were solved with the introduction of the Long Short-Term Memory
(LSTM) by Hochreiter et Schmidhuber (1997). LSTM is special kind of RNN, capable
of learning long-term dependencies. In standard RNNs, the main unit is composed by a
simple structure, such as a single tanh layer. However, LSTM introduces a structure based
on four gates, which are used to remember important information, to forget irrelevant
information and to select which type of information is used in each iteration during the
learning. This is illustrated in Figure 2.6b. This mechanism allows the gradient to
backpropagate more easily essentially by smoothing out the update of the hidden vector h
at each timestep by using activation functions. Finally, another way to solve the problems
of a standard RNN is to use a Gated Recurrent Unit (GRU) (Chung et al., 2014). The
GRU is a simplified version of LSTM with only two gates: update gate and reset gate.
The update gate is responsible for determining the amount of previous information that
needs to pass along the next state. The reset gate is used from the model to decide how
much of the past information is needed to neglect; in short, it decides whether the previous
cell state is important or not. Finally, these two gates decide what information should be
passed to the output. In comparison to LSTM, GRU have lesser training parameters and
therefore uses smaller memory and executes faster. However, LSTM can provide better
accuracy in larger datasets. Therefore, the choice of RNN should depend on the task and
memory constraints.

While extremely effective, the LSTM or GRU networks are not suited for sequence
of images or videos as they only process vectors. Therefore, to handle such data, one
must first generate a meaningful vectorial representation and then apply the classical
LSTM architecture. This representation has the major drawback of not using the spatial
information for temporal processing. In order to correct this issue, Convolutional Long
Short-Term Memory (ConvLSTM) networks were introduced by (Shi et al., 2015). This
architecture uses the convolutions in both the input-to-state and state-to-state transitions
and adds peephole connections that allow the network to look at the cell state to make
decisions. Due to both convolutions and recurrent neural network in its design, it models
well the spatiotemporal relationships in a video. Similarly, ConvGRU (Ballas et al., 2016)
also have a similar functioning.

To conclude, RNNs facilitate the modeling of long-term dependencies through their
potentially infinite memory. Comparatively, CNNs are limited to a fixed receptive field,
which is cumbersome in case of sequences. However, the main drawback of the RNNs
formulation is its limitation for parallel computations. As the previous state needs to
be computed to output the next one, it becomes mandatory to run the calculations se-
quentially. Yet, despite such limitation, RNNs have been used with great success for
natural language processing (Lipton et al., 2015; Yonghui et al., 2016), speech recognition
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(Graves et al., 2013; Sak et al., 2015), video understanding tasks (Ballas et al., 2016;
Dwibedi et al., 2018; Kim et al., 2018a; Li et al., 2018), etc.

2.2.4 Autoencoder

The Autoencoder (AE) is a type of feed-forward networks which possesses the auto-
association property (Hinton et Zemel, 1993; Wang et al., 2016b). It is an unsupervised
learning algorithm and provides an alternative to dimensionality reduction techniques like
principal component analysis. It projects the data from a higher dimension to a lower
dimension using linear transformations and tries to preserve the important features of
the data while removing the non-essential parts. The main goal of this type of networks
is to learn how to reconstruct the data from a lower dimensional space representation.
Figure 2.7 depicts the classical architecture for AE. It tries to learn an approximation
of the identity function, to output x̂ that is similar to x. The identity function seems a
trivial solution for this, but it can be avoided by placing constraints on the network, such
as by limiting the number of hidden units.

Figure 2.7: Classic autoencoder architecture. Source: (Wikipedia contributors, 2022)

AE can be divided into three parts: encoder, code and decoder. The encoder com-
presses or downsamples the input into a lower dimensional representation. The space
represented by this new dimensionality is often called the latent-space or bottleneck and
contains the semantic representation or the code of the input. The decoder intends to re-
construct the input using only the encoding of the input. AEs have generalized the idea of
encoder and decoder beyond deterministic functions to stochastic mappings fencoder (h|x)
and gdecoder (x̂|h) . The goal is to minimize arg minf,g ‖x− (f o g)(x)‖2. The traditional
AE and PCA are not suitable for images or video frames as they ignore the spatial struc-
ture and location of pixels, which is termed as being permutation invariant. Furthermore,
it is important to note that when working with images, even with a small size like 100
× 100, these methods introduce large redundancy in network parameters due to dense
connections. Therefore, for spatial data of images, we need a new form of autoencoder,
which is presented below.
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2.2.4.1 Convolutional autoencoder

The CNN successfully understands spatial characteristics of images, with many times less
parameters than the fully connected networks due to convolution and pooling operations.
Inspired from this, these operations are used in the autoencoder to obtain a convolu-
tional autoencoder (CAE) (Masci et al., 2011). CAEs have fewer parameters on account
of their kernels being shared across many input locations/pixels. Like CNN, they use
convolutional and pooling layers, or strided convolutional layers, for encoding the input
image. Similarly, for decoding, the deconvolutional layer or unpooling layer, or both are
used. Finally, the mean squared error loss between input and reconstructed images are
back-propagated for learning. We present below the deconvolutional and unpooling layers.

Deconvolutional layer and unpooling
A deconvolutional layer in a neural network is a layer which is able to obtain a dense
map from downsampled and course input (Dumoulin et Visin, 2016). A more appropriate
name is the transposed convolutional layer, as the term deconvolution is misleading since
deconvolutional layers also perform convolutions. A transposed convolution has a trans-
formation going in the opposite direction of a normal convolution, i.e., from something
that has the shape of the output of some convolution to something that has the shape
of its input while maintaining a connectivity pattern that is compatible with said con-
volution. Pooling layers in convolutional networks are required in order to decrease the
number of network parameters. Unpooling layers perform the reverse of pooling layers
(see Figure 2.8).

Figure 2.8: Schematic representation of pooling, unpooling, convolution and deconvolu-
tion. Source: (Noh et al., 2015).

The location of the maximum activation in the pooling layer is recorded in switch
variables (Noh et al., 2015), in the unpooling layer it is placed back. The output of
such an unpooling layer is sparse, as it is an enlarged version of the input map. The
deconvolutional layer can produce a dense output map from the unpooling layer output.
In summary, convolutional layers map multiple activations in a receptive field to a single
activation, deconvolutional layers map one single activation to a field or window of multiple
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activations. Convolutional layers learn a filter which map a receptive field to one value,
consequently deconvolutional layers learn filters that perform the opposite.

Concerning video data, CAE can be used in each image of the sequence but it will
not take into account the temporal dimension. Therefore, Convolutional LSTM based
autoencoder (CLSTM-AE) was proposed (Chong et Tay, 2017). It uses first few convo-
lutional layers for encoding, then later in deeper layers, it uses the ConvLSTM layers.
Similarly for deconding, it first uses the ConvLSTM layers, followed by deconvolutional
layers to get the final video reconstruction. In conclusion, autoencoder is an easy to use,
unsupervised learning algorithm, and can be applied to vector, images, videos, etc.

2.2.5 Generative adversarial network

A Generative adversarial network (GAN) is a category of generative models, first proposed
by Goodfellow et al. (2014), that consists of two sub-networks in competition, a generator
and a discriminator network, as shown in Figure 2.9. During the learning phase, the
generator try to generate convincing data to fool the discriminator who in turn tries to
detect whether the data is real or fake. In this way we obtain two trained networks, one
to generate realistic data and the other to distinguish between real data and generated
data.

Figure 2.9: Illustrating Generative adversarial network (GAN). Source: (Hayes et al.,
2017)

The generator network is often an autoencoder which generates some input for the
discriminator, given a noisy input. The discriminator is usually a fully connected network
that takes the real and generated input and predicts whether the generated input is fake or
not. Like last subsection, for image data, convolutional autoencoders are use as generators
and CNNs are used as discriminators. Similarly, for sequences of images, ConvLSTM or
ConvGRU can be a part of the GAN architecture. Finally, the ability of GANs to generate
meaningful representations has gained a major interest in many applications like object
detection (Li et al., 2017), data generation (Ehsani et al., 2018), super resolution (Ledig
et al., 2017), etc.

2.3 Spatio-temporal feature learning from videos

In this section, we present different methods for learning spatio-temporal features from
a video stream. Since videos have both spatial and temporal dimensions, we explore
in this section, various ways to extract this spatio-temporal information. The methods
presented below are supervised as they were the first to be developed for spatio-temporal
feature learning and furthermore, they act as a baseline for unsupervised approaches. As
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a reminder, in supervised learning we have as input the data with its label for training
the neural network. We present below various approaches, based on how they treat the
spatial and temporal dimensions of video.

2.3.1 Modeling spatial and temporal dimensions independently,
processing them sequentially

One of the first works to obtain features from video was to use image-based 2D CNN
extractors on each frame of the video and then pooling their predictions across the whole
video (Karpathy et al., 2014). It is very convenient to use, but it ignores the temporal
structure of the video, e.g., these models potentially cannot distinguish between opening
and closing of a gate. Therefore, it is essential to model temporal data in the video stream.

Figure 2.10: Illustrative example of 2D CNN for spatial feature extraction and an LSTM
to model this spatial information over time, applied to action recognition task.

One way to continue using image-based extractors without compromising temporal
information is to first extract spatial feature vector by using a 2D CNN shared over all
frames and then modeling the temporal representation of this sequence of spatial features
using a recurrent neural network (Donahue et al., 2015; Yue-Hei Ng et al., 2015). Since
traditional vanilla RNN suffers from the vanishing gradient problem, most of the existing
methods adopt gated RNN architectures like LSTM, to model the long-term temporal
dynamics in video sequences (Du et al., 2017; Sun et al., 2017; Perrett et Damen, 2019).
Figure 2.10 demonstrates this approach, where first the spatial information is extracted
from each video frame using a 2D CNN, then this sequence of spatial information is fed
into an LSTM network which temporally relates it, and finally the overall information is
used for the action recognition task. Some other notable works are described as follows.
Wu et al. (2019a) leveraged two LSTMs operating on coarse-scale and fine-scale CNN
features cooperatively. Majd et Safabakhsh (2020) proposed the C2LSTM model which
incorporates convolution and cross-correlation operators to learn motion and spatial fea-
tures while modeling temporal dependencies. To learn the temporal information from
both the past and future, some works adopt the Bi-directional LSTM consisting of two
independent LSTMs, called the forward and backward LSTM respectively (Ullah et al.,
2017; Zhao et Jin, 2020). The forward LSTM is used with past frame sequence like a
single LSTM network, while the backward LSTM takes a future frame sequence as input.
Finally, the information from both LSTMs are fused together to perform the target task
(like action recognition).

This approach of modeling spatio-temporal data also benefited from the introduc-
tion of attention mechanisms, whether it is spatial attention (Sharma et al., 2016; Ge
et al., 2019; Sudhakaran et al., 2019), temporal attention (Meng et al., 2019; Wu et al.,
2019b), or spatio-temporal attention (Li et al., 2018; Liu et al., 2020). Sharma et al.
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(2016) designed a multi-layer LSTM model, which recursively outputs attention maps
weighting the input features of the next frame to focus on the important spatial features.
Sudhakaran et al. (2019) introduced a recurrent unit with built-in spatial attention to
spatially localize the discriminative information across a video sequence. Li et al. (2018)
proposed a Video-LSTM incorporating convolutions and motion-based attention into the
soft-attention LSTM (Xu et al., 2015b), to better capture both spatial and motion infor-
mation. Compared to LSTM, Gated Recurrent Unit (GRU) has fewer gates, leading to
fewer model parameters. Therefore, many works use GRU instead, for modeling spatio-
temporal data in videos (Ballas et al., 2016; Dwibedi et al., 2018; Kim et al., 2018a).

Some drawbacks of the presented approach to model spatio-temporal are as follows.
Since this approach is sequential, if the 2D CNN fails or performs poorly, the complete
approach will fail. Networks like LSTM are often costly in terms of memory and time.
Finally, this approach has difficulties to model fine-grained action since local motion is
generally hard to model with it. This is because the recurrent network models sequence
of spatial information extracted for the whole frames, thus it captures the propagation
of global frame level spatial information over time, thus not paying special attention to
local motion.

2.3.2 Two-stream modeling

Different from the last approach, in this approach two streams, i.e., appearance (spatial)
and motion (temporal) are used independent of each other and later fused to obtain the
overall spatio-temporal features. It usually works better than the last approach since it
does not process space and time dimensions sequentially. Simonyan et Zisserman (2014)
first introduced the two-stream network consisting of two parallel networks, i.e., spatial
and temporal network. The spatial network accepts raw video frames while the temporal
network gets multi-frame-based optical flows as input. The final score is obtained by
fusing scores from both streams. Optical flow provides an effective motion representation
in the scene and can effectively remove the non-moving background information (Horn
et Schunck, 1981). The proposed network had very high performance on existing bench-
marks, while being very efficient to train and test. Figure 2.11 shows the two-stream
concept of Simonyan et Zisserman (2014).

Figure 2.11: Illustration of Two-stream model for video action recognition proposed by
Simonyan et Zisserman (2014).

In recent years, the two-stream modeling has seen big improvements and is being
used massively in many video tasks. Regarding neural networks, deeper networks have
been introduced for both streams and they improve the performance (Wang et al., 2015b,
2016a). But deeper networks tend to overfit on the video dataset (especially smaller
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datasets) (Wang et al., 2015a) and therefore Wang et al. (2015b) introduced a series of
good practices, including cross-modality initialization, synchronized batch normalization,
corner cropping, data augmentation, large dropout ratio, etc. to prevent it. Since there
are two streams, there is a stage called spatio-temporal fusion, where results from both the
networks are merged to obtain the final score. The standard way is late fusion, which is a
weighted average of final scores from both streams (Simonyan et Zisserman, 2014; Wang
et al., 2015b). Many works claim that late fusion is not the optimal solution (Feichtenhofer
et al., 2016, 2017). For example, Feichtenhofer et al. (2016) shows that a fusion at an
intermediate layer not only improves the performance but also reduces the number of
parameters significantly as compared to original work of Simonyan et Zisserman (2014).
As video is a temporal sequence of frames, researchers have also explored various recurrent
neural networks with two-stream networks like LSTM (Sun et al., 2017; Li et al., 2018),
bi-directional LSTM (Ullah et al., 2017), hierarchical multi-granularity LSTM (Li et al.,
2016), etc. Li et al. (2018) proposed VideoLSTM, a two-stream network with an LSTM-
based spatial attention mechanism and a lightweight motion-based attention mechanism.
It improves results on action recognition task and furthermore, the learned attention can
be used for action localization as well. Other relevant works are Lattice-LSTM (Sun
et al., 2017), ShuttleNet (Shi et al., 2017), FASTER (Zhu et al., 2020), etc. Two-stream
networks still cannot capture long-range temporal information. To address this issue,
Wang et al. (2016a) proposed a temporal segment network which first divides a video
into uniformly distributed segments, then randomly selects one video frame within each
segment and feeds them to the network which shares weights for input frames from all
the segments. In the end, a segmental consensus is performed with one of the operators
like average pooling, max pooling, weighted average etc., to aggregate information from
the sampled video frames. Since this network uses the whole video as input and provides
video-level prediction, it models long-range temporal structure. Other relevant works are
DVOF (Lan et al., 2017), TLE (Diba et al., 2017b), TRN (Zhou et al., 2018), TSM (Lin
et al., 2019), etc.

To conclude, the two-stream approach is better than the last approach since it takes
care of both spatial and temporal dimensions of the video stream. This approach does
not treat the spatial and temporal dimensions jointly but instead relies on an external
component to extract the motion information. If the motion information is correctly
extracted, the spatial and temporal networks can learn the features of video, which are
later fused together to make the final decision. This approach has seen a big evolution
since its beginning and is still being largely used in many video tasks. If the joint spatio-
temporal information is not very important for an application and one can rely on external
detectors for motion information, then this approach provides a good alternative.

2.3.3 Jointly modeling spatio-temporal dimensions

A conceptually simple way to understand a video is to consider it as a 3D tensor with two
spatial and one temporal dimension. One of the simplest ways to jointly model spatial and
temporal dimensions is to extend 2D convolutions into three dimensions. It is called a 3D
convolution and it is an extension of 2D convolution which consists of learning space-time
kernel filters instead of space kernel filters only. Figure 2.12 demonstrates the difference
between 2D and 3D convolutions.
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Figure 2.12: Comparison of 2D convolution (left image) and 3D convolution (right image)
operations. Figure reproduced from (Tran et al., 2015).

A 3D CNN is basically a network like 2D CNN where 2D convolution and pooling
operations are replaced by 3D convolution and pooling operations. The seminal work for
using 3D CNNs is of Baccouche et al. (2011). While inspiring, the network was not deep
enough to show its potential. Tran et al. (2015) extended it to a deeper 3D network, named
C3D. C3D follows the modular design and learns the spatio-temporal features from raw
videos in an end-to-end learning framework. It showed strong generalization capability
and encouraging performance on video action recognition task but was computationally
more expensive than its 2D counterpart. Figure 2.13 demonstrates the schema for video
action recognition task using 3D CNN. We can observe that the 3D CNN takes a video
volume as input and jointly understand the spatio-temporal features (like 2D CNN do
for images) to predict the output. Important characteristics of 3D CNNs are that they
directly create hierarchical representations of spatio-temporal data and are very powerful
in modeling discriminative features. However, the main issue is that they have many more
parameters than 2D CNNs because of the additional kernel dimension, and this makes
them harder and longer to train.

Figure 2.13: Illustration of 3D CNN for video action recognition.

Since 3D CNN needs high memory space and running time (Tran et al., 2015; Qiu
et al., 2017), some works propose to factorize 3D convolutions (Xie et al., 2017a; Tran
et al., 2018). Specifically, they decompose 3D convolution kernels (e.g., 3 × 3 × 3) into
2D spatial kernels (e.g., 1 × 3 × 3) followed by a 1D temporal kernels (e.g., 3 × 1 ×
1), called as (2+1)D kernel. This allows to reduce the number of trainable parameters
significantly while still modeling space-time features. Another alternative to reduce the
complexity of 3D CNN is to use 2D convolutions in place of some 3D convolutions in the
same network. A temporal shift module is proposed by Lin et al. (2019), which shifts
a part of the channels along the temporal dimension to perform temporal interaction
between the features from adjacent frames. Different from these parameter-free temporal
shift operations, Sudhakaran et al. (2020) introduced a lightweight Gate-Shift Module
(GSM), which uses learnable spatial gating blocks for spatial-temporal decomposition of
3D convolutions. S3D (Xie et al., 2018) combines the merits of approaches mentioned
above. It replaces the 3D convolutions at the bottom of the network with 2D kernels and
factorizes the remaining 3D kernels into (2+1)D kernels. It demonstrates that this kind
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of top-heavy network has higher recognition accuracy, along with reduction in model size
and training complexity.

The 3D CNN based methods generally perform spatio-temporal processing over fixed
time intervals via the window-based 3D convolutional operations, where each convolution
operation only attends to relatively short-term context in videos (Baccouche et al., 2011;
Ji et al., 2012; Tran et al., 2015). Thus, by design and due to high computational require-
ments, they are not suitable for long-range spatio-temporal relations in videos. Hence,
several approaches focused on modeling these long-term dependencies. Diba et al. (2017a)
proposed temporal 3D convolutional networks, where the temporal transition layer mod-
els variable temporal convolution kernel depths. It can efficiently capture the appearance
and temporal information at short, middle, and long terms. They reinforced this in their
subsequent work (Diba et al., 2018), with the introduction of a new block with residual
connections, which can model the inter-channel correlations of a 3D CNN with respect
to the temporal and spatial features. A long-term temporal convolution framework was
proposed by Varol et al. (2017) to model the long-term temporal information in videos.
They increase the temporal extents of 3D convolutional layers at the cost of reducing
the spatial resolution. Finally, Hussein et al. (2019) proposed Timeception, a multi-scale
temporal-only convolutional network to account for large variations and tolerate a variety
of temporal extents in complex and long actions.

This approach is a good alternative to the last two approaches. The most important
quality of this approach is that it learns jointly the spatio-temporal features of the video.
This is an essential point since it depends only the video in hand to learn its feature and
does not require external supervision. Even though this approach has seen significant
improvement throughout the years, it still remains computationally expensive and cannot
treat a large video sequence at once. As a concluding remark, this approach should be
used when we want to model the spatio-temporal dimension correctly in the video and
when the long range temporal dependencies are not important.

2.3.4 Hybrid approaches

To further enhance the spatio-temporal comprehension of videos, several works have in-
vestigated using 3D CNN based models with two-stream or multi-stream designs (Carreira
et Zisserman, 2017; Wang et al., 2017; Feichtenhofer et al., 2019; Li et al., 2020). Car-
reira et Zisserman (2017) introduced the two-stream inflated 3D CNN (I3D), made by
inflating the convolutional and pooling kernels of a 2D CNN with an additional temporal
dimension. Similarly, Wang et al. (2017) integrated a two-stream 3D CNN with an LSTM
model to capture the long-range temporal dependencies. To better recognize actions with
low inter-class variability, Martin et al. (2020) introduced a new siamese network with
two streams using 3D convolutions. SlowFast network (Feichtenhofer et al., 2019) extend
the idea of two-stream approaches but without the need of optical flow as input. This 3D
CNN based two-stream network have a slow pathway and a fast pathway that operate on
frames at low and high frame rates to capture semantic and motion, respectively. At each
layer of this network, the features of the fast and slow pathways are fused (by summation
or concatenation) to share the motion and semantic information among sub networks.
Finally, Li et al. (2020) introduced a two-stream spatio-temporal deformable 3D CNN
with attention mechanisms to capture the long-range temporal and long-distance spatial
dependencies. Recently, a new neural network, called the Transformer was introduced
(Vaswani et al., 2017). It mainly utilizes the self-attention mechanism (Bahdanau et al.,
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2015) to extract intrinsic features and shows great potential for extensive use in AI appli-
cations. It was first applied to NLP for machine translation tasks (Vaswani et al., 2017;
Kenton et Toutanova, 2019). Only recently, it has been applied in vision tasks (Doso-
vitskiy et al., 2020; Chen et al., 2020), but it has shown a very strong potential with
performance equal or better than CNN based approaches for various tasks (Zeng et al.,
2020; Khan et al., 2022). Transformers also have various drawbacks like they require very
massive datasets for large-scale training, extremely heavy computational requirements,
and furthermore generalization and robustness of transformers is still an open issue (Han
et al., 2022).

In this section, we studied different types of approaches to learn spatio-temporal fea-
tures from video. We observed that two-stream, 3D CNN and hybrid approaches all rest
viable for effective learning in video. While two-stream approaches require an external
detector for motion and does not treat the spatial and temporal dimensions jointly, the 3D
CNN based approach requires high computational power. Finally, the hybrid approaches
takes best of the both worlds but their drawbacks does accompany these approaches, like
they remain computationally expensive. Finally, the choice of approach depends on the
task at hand and requirements. In this thesis, we want to learn spatio-temporal features
jointly in video and furthemore we want to use minimum supervision possible. For the
applications, i.e., video anomaly detection and perimeter intrusion detection, we do not
require long spatio-temporal information. For example, an intrusion that was detected 10
minutes ago, does not have any direct relation in detecting the current intrusion. There-
fore, we choose the 3D CNN based approach in this thesis. The next section will present
how can we use these approaches in an unsupervised context.

2.4 Unsupervised spatio-temporal video understanding

This section presents various approaches for unsupervised learning of spatio-temporal
features from the video stream. To recall, in unsupervised learning, we do not have labels
with data during training the neural network. In the last section, we explored various
approaches to obtain spatio-temporal features. All the approaches, whether 2D CNN
with a recurrent network, two-stream modeling or 3D CNN, can be used in the context of
unsupervised learning. We just need to employ them either in reconstructive, predictive,
or generative models, that are presented below.

2.4.1 Reconstruction models

The main idea here is to reconstruct a given input, in order to learn pertinent features
of the input data. The input data can be a vector, image or a video sequence. In our
case, it is the video sequence. These models include methods such as auto encoders (refer
Section 2.2.4) or sparse coding, that are used to extract different linear and non-linear
representations of appearance (image) or motion (stream) or both, to model meaningful
patterns of unlabeled videos. We can simply extend the idea of CAE for images to
videos and use many of the video feature extraction approaches described in last section.
Hasan et al. (2016) proposed a spatio-temporal stacked autoencoder with a video clip
of ten frames as input. It consists of a stack of 2D convolutions and 2D deconvolutions
for encoding and decoding, respectively. Similarly, Chong et Tay (2017) introduced a
convolutional LSTM based autoencoder, with the same input of ten frames. They used
2D convolutions with LSTM for encoding and LSTM with 2D deconvolutions for decoding.
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By using LSTM, they were able to better understand the temporal characteristics of video
stream. Similarly, 3D convolutional autoencoder (Zhao et al., 2017) encodes and decodes
using 3D convolutions and 3D deconvolutions respectively. In theory, any approach of
learning spatio-temporal features from videos described in Section 2.3 can be used with
an autoencoder. More works on unsupervised deep learning on videos will be detailed in
upcoming sections for video anomaly detection and perimeter intrusion detection tasks.

2.4.2 Predictive models

Another approach based on unsupervised deep learning tends to use predictive modeling.
It is well-known in time series analysis under auto-regressive models. Different from
reconstructive models where the objective is to train a model to reconstruct the input data,
predictive models try to predict a current sequence of input using the previous sequences.
Concerning video data, the objective is to model output of current frame (or future frame)
as a function of past t frames. Since it concerns temporal sequence, traditionally recurrent
neural networks like LSTM were used (Srivastava et al., 2015; Luo et al., 2017b). Recently,
there have also been attempts to perform efficient video prediction using convolutional
autoencoder networks. The function of an AE can be determined by considering its output
values. When the output values are only the reconstruction of the inputs, the AE is a
reconstructive model. When the output values are the values after the input values in
the time axis, the model is said to be predictive. Medel et Savakis (2016) introduced a
ConvLSTM-based AE where the encoder extracts representations from an input sequence,
a first decoder that uses these representations to reconstruct the input sequence, and a
second decoder that uses the same representations to predict the next frame. Similarly,
Zhao et al. (2017) proposed a network made up of an encoder and two decoders, the first
for reconstruction and the second for prediction. In this network, 3D convolution layers
are used instead of ConvLSTMs, for the learning of spatiotemporal representations. More
works will be discussed with VAD as the application in later sections.

2.4.3 Generative models

Generative models like Generative Adversarial Networks (GAN), Adversarially trained
AutoEncoders (AAE) and Variational Autoencoders (VAE) are used for the purpose of
modeling the likelihood of video samples in unlabeled data. These models are also used
massively in unsupervised video learning tasks like video anomaly detection (Ravanbakhsh
et al., 2017; Kiran et al., 2018). For example, Lee et al. (2018) proposed a generative ad-
versarial network, called STAN (spatio-temporal adversarial networks) for this VAD task.
They use a video clip as input. The middle frame of the video clip is removed and the
resultant clip is fed to a spatio-temporal generator. The generator is a convolutional
autoencoder with convolutions, ConvLSTMs and deconvolutions. It generates the miss-
ing middle frame, which is added to its position in the video clip. The spatio-temporal
discriminator, made using 3D convolution layers, takes the generated video clip and orig-
inal video clip as input and tries to distinguish the clips. Once the two networks are
trained, the detection of abnormal events is done using the losses from both generator
and discriminator. More unsupervised generative works are detailed in later sections.

In this section, we presented various ways to unsupervisely learn spatio-temporal fea-
tures of video. We can observe that all of these approaches are different and none of
them is more suitable than others. Infact, they can also be combined together if required,
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and can potentially lead to better generalization. All of these approaches have been ex-
tensively developed in the last few years. Choosing the correct approach, depends on
the video task being tackled, its requirements, and the spatio-temporal feature learner
(like a 2D CNN, 3DCNN, etc.) being used. Our chosen 3D CNN based approach trans-
lates to 3D CAE in unsupervised learning. This 3DCAE can be used as a reconstructive
model, predictive model and even as the generator of a generative model. In this thesis,
we explore the first two ways and even combine them. The generative model requires
extra computation on top of the generator via discriminator, therefore we avoided that
approach to be computationally light.

2.5 Video anomaly detection (VAD) methods

Given a video stream, this task deals with the detection of anomalies. The anomalies are
context dependent and vary from one dataset to another as described in Section 1.4.1.
Since anomaly is a rare event and the datasets are usually not annotated. Therefore,
most methods use unsupervised deep learning, with or without external supervision from
pre-trained detectors. We focus only on these methods. It must be noted that there are
other methods which rearrange the current VAD datasets to have weak labels and thus
use weakly supervised learning. Some methods use semi-supervised learning by using a
portion of labeled data for training. Finally, there are also a few methods that reorganize
VAD datasets to use supervised learning. We do not review these kind of methods as
they are well out of the scope of this study.

To systematically review the VAD methods, we first explore several types of input
that they can take, followed by different proxy tasks that they can perform and finally
some auxiliary components that they use to enhance their performance.

2.5.1 Types of input

To understand different approaches for video anomaly detection, we must first consider
the different types of input they use. Even though the task is detecting anomalies in
video, the methods can use frames of video, frame patches, objects in frame, objects in
video snippet, etc. as input. We explain below different input types used for VAD.

1. Full Frame (FF): This input means using a single frame as input. This means
that the video is read frame by frame and each frame is an input to the VAD
method. It can be used with any VAD task but has been predominantly used in
the reconstruction task (Ravanbakhsh et al., 2017; Nguyen et Meunier, 2019; Ye
et al., 2019). One major issue with using FF as input is that we miss to capture the
temporal information of video sequence.

2. Frame patch (FP): This input is made by dividing the video frame into smaller
patches. The video is read as frames which are converted into smaller patches and
each patch is considered as a separate input. If an anomaly is detected in one of the
frame patches, then the frame is labeled as anomalous (Sabokrou et al., 2018). We
have similar problem here as we lose the temporal dimension and due to patches,
we loose part of the spatial information.

3. Frame object (FO): It refers to the objects in the video frame. A pre-trained object
detector is first used to detect all possible objects of interest and then these objects
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are used as the input to the method (Ionescu et al., 2019; Georgescu et al., 2021b).
Since the input is object, rather than the whole frame, we do not have background
noise. The problem is that it is highly biased to the external dataset where the
object detector was trained, it assumes that objects of interest causing anomalies
are known in advance and finally if the object detector fails, the VAD will fail too.

4. Video clip (VC): It refers to a video snippet with a fix number of consecutive frames.
It is one of the most widely used input for VAD task (Hasan et al., 2016; Lee et al.,
2018; Dong et al., 2020; Chang et al., 2020; Cho et al., 2022). Since it is a video, we
have both spatial and temporal dimensions to exploit. It has been used with all the
proxy tasks for VAD. However, it takes more time and resources to process video
clips and furthermore, it is comparatively difficult to extract pertinent information
since often the anomalies occupy a small spatio-temporal volume in the video clip.

5. Video clip patch (VCP): It corresponds to 3-dimensional patches extracted from a
video clip. Unlike frame patch, here we include the temporal dimension into the
input. Various methods propose different patch extraction techniques (Tran et Hogg,
2017; Park et al., 2022). Since not the whole video clip is used for creating these 3D
patches, it works faster than video clip as input. These patches are generally created
on parts of the video clip where foreground objects occur (assuming anomaly is in
foreground), therefore they either use moving object detector as a pre-processing,
or they use some heuristics to create patches only in certain parts of the video clip,
where foreground objects should be present (like Park et al. (2022) exclude a margin
of 12.5 percent from the top and bottom in each frame of the video clip).

6. Video clip object (VCO): It refers to a video clip composed of objects detected by
an object detector. It is an extension of frame object to video clip. It is being used
by many recent methods as it is robust to background noise and have both spatio-
temporal dimension like a video clip (Yu et al., 2020; Ouyang et Sanchez, 2021; Liu
et al., 2021b; Georgescu et al., 2021a). The problem with this input is same as that
of frame object due to its dependence on pre-trained object detector.

2.5.2 Types of tasks

Since anomaly is a rare event, there is lack of anomaly examples for training a supervised
two-class classifier. Due to this, most works address the VAD task using a proxy task
like frame reconstruction, prediction, etc. These tasks are called proxy tasks since they
address the main task (VAD is binary classification task) indirectly. We describe below
the classification of approaches based on the proxy task that they use.

2.5.2.1 Reconstruction task

This task concerns the reconstruction of an input entity like frame, video clip, object,
etc. The aim is to learn normality by trying to reconstruct entities in normal videos
(without any anomaly). Since the representations were learned from normal videos, it
is assumed that anomalies will be harder to reconstruct and thus they can be separated
from correctly reconstructed normal entities. This task is usually performed using a
convolutional autoencoder (Masci et al., 2011) or an adversarial network like a GAN
(Goodfellow et al., 2014). Autoencoder (AE) encodes the input data into the latent space
through an encoder and then reconstructs it using a decoder. The anomaly measure is
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Figure 2.14: The architecture of the convolutional autoencoder proposed in Hasan et al.
(2016) for video anomaly detection.

the reconstruction error, which is assumed to be high when anomalies occur since the
training of AE is only done on normal videos.

Figure 2.14 presents an example of convolutional autoencoder proposed by Hasan et al.
(2016), using reconstruction task for video anomaly detection. They use a video clip of
10 frames as input and reconstructs it. They use 2D convolutions and pooling layers for
encoding and 2D deconvolutions and unpooling layers, for decoding. The mean squared
error (MSE) between input clip and its reconstruction is used as the reconstruction error
(anomaly measure). By using only 2D convolutions, the temporal features of the video
clip cannot be taken into account. To address this, Chong et Tay (2017) proposed to add
convolutional long-short term memory (LSTM) layers in both encoder and decoder. Tak-
ing it one step further, Zhao et al. (2017) proposed a 3D convolutional autoencoder with
3D convolutions and 3D deconvolutions for VAD. Unlike 2d convolutions plus LSTM, the
3D convolutional autoencoder jointly captures the spatio-temporal features from normal
videos. Recently, many works used some AE variant for VAD, using FF, VC or VCO as
input (Ye et al., 2019; Ouyang et Sanchez, 2021; Astrid et al., 2021b; Cho et al., 2022).

One of the earliest works for VAD using GANs, with reconstruction as proxy task, was
proposed by Ravanbakhsh et al. (2017). Two conditional GANs are trained, with input
as pairs of frames and noise vectors, which generate corresponding frames of a different
modality (raw frames to optical flows and vice versa in the two GANs). The discriminators
are asked to classify pairs of input and generated representations of frames as real or
fake. Assuming that anomalies are not reconstructed well, they fuse reconstruction errors
from both modalities as an anomaly score. Some works use both AEs and GANs for the
reconstruction task (Nguyen et Meunier, 2019; Ye et al., 2019). One such work is proposed
by Nguyen et Meunier (2019), where they learn a correspondence between common object
appearances and their associated motions in a two-stream model. Using an FF as input,
they use a single encoder coupled with two decoders, one that predicts motion and another
that reconstructs the input frame. This entire network is considered as a generator in
a conditional GAN setup, where the discriminator is another network that distinguishes
between pairs of input frames and corresponding real/estimated flow fields. For testing,
they calculate loss scores at a patch-level. For other VAD works with reconstruction
tasks, the reader can refer to (Kiran et al., 2018; Ramachandra et al., 2022). The main
drawback of using this task is that sometimes the neural network generalize too well and
even reconstruct the anomalies very well. In that case, the difference between normal and
abnormal sample is neglible and thus anomaly cannot be detected.
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2.5.2.2 Prediction task

This task deals with the prediction of an unknown entity, given a known entity. For
example, predicting a future frame, given a video clip with present and previous frames.
Concerning VAD, the future frame prediction task is one of the most used tasks (Liu et al.,
2018; Lv et al., 2021; Park et al., 2020). Other prediction tasks for VAD include future
object prediction (Liu et al., 2021b) or missing bounding box prediction (Georgescu et al.,
2021a). The input entities used are VC, VCO and VCP, with VC being the most common
(Lee et al., 2018; Dong et al., 2020). Models performing prediction task are also trained
only on normal videos, with the assumption that they can precisely predict the entities
in normal test sequences but will fail to correctly predict in anomalous test sequences.
This requires comprehension of how normal spatio-temporal patterns propagate along the
video clip. The anomaly score for this task can be calculated by measuring the difference
between real and predicted entities or by calculating the conditional probability of a new
observation based on the previous samples (Kiran et al., 2018). Autoencoders, GANs and
their combination are typically used for this task.

Figure 2.15: The future frame prediction architecture proposed by Liu et al. (2018) for
video anomaly detection.

Figure 2.15 presents an example of future frame prediction architecture proposed by
Liu et al. (2018). They propose a GAN, where the encoder is a U-Net style network
(Ronneberger et al., 2015) that takes training video clips of length t as input and predicts
the future frame t + 1. The discriminator network checks if the future frame is real
(ground truth) or predicted, by minimizing the intensity and gradient loss. Furthermore,
they add motion (temporal) constraint by using FlowNet (Dosovitskiy et al., 2015) to
estimate pairs of optical flow maps between the frame at t and real or predicted frame at
t + 1. The anomaly score is composed of L1 score between flow maps and intensity plus
gradient scores from frame prediction. Some other prominent VAD works that use GANs
for prediction task are (Lee et al., 2018; Dong et al., 2020), while works using AE for
prediction tasks are (Park et al., 2020; Lv et al., 2021; Le et Kim, 2022; Park et al., 2022).
Since prediction task depends on the given input to learn the features in order to predict
the unknown entity, it can fail when the input contains only stationary anomalies. For
example, for the future frame prediction task, when the input clip contains an stationary
car (anomaly), the model is likely to predict this car in future frame too. Thus, the
prediction error would be too small to differentiate it from the normality.
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2.5.2.3 Self-supervised task

This type of task uses self-supervisory signals from the data itself and does not require
external annotations. In other words, identify any hidden part of the data from any
unhidden part of the data, e.g., predict the missing patch of an image, given the image
without patch. This learning paradigm is known as self-supervised learning. In recent
years, the self-supervised learning is being used massively for different applications in
various domains (Liu et al., 2021a) like natural language processing (NLP), robotics,
computer vision: applied to image and video analysis, etc. It is typically used as a pre-
training step (pretext task) to enrich a learning module, which is later used for supervised
downstream tasks like video classification, detection, etc. (Jing et Tian, 2020). Some
well-known self-supervised tasks for video representation learning are video playback rate
perception (Yao et al., 2020), video pace or speed prediction (Benaim et al., 2020; Wang
et al., 2020), relative speed perception (Chen et al., 2021), video cloze procedure (Luo
et al., 2020), etc.

Figure 2.16: Comparison of VAD tasks: reconstruction (left), frame prediction (middle)
and self-supervised: video event completion (right) (Yu et al., 2020). DNN refers to a
deep neural network and video event is the VCO input.

Concerning VAD, there are only two works that use self-supervised tasks. The first
work is by Yu et al. (2020), where they propose a new self-supervised VAD task, called
video event completion. This task is an adaptation of video cloze procedure task (Luo
et al., 2020). In this task, first VCO is extracted from a video clip using a pre-trained ob-
ject detector and a series of appearance and motion-based operations. The VCO is referred
as video event here and contains image patches with objects of interest like human. From
each video event, one patch is erased randomly and a DNN (U-Net style autoencoder)
predicts it using the rest of incomplete video event, known as appearance completion.
The MSE between predicted and actual patch is used as an anomaly score. Similarly,
motion completion is also done on the same video events: optical flow for each video
patch is extracted using a pre-trained network and then similar pipeline like appearance
completion is followed using the same U-Net style autoencoder. Again, MSE is used as an
anomaly score here. The final anomaly score is a weighted sum of appearance and motion
anomaly scores. Figure 2.16 demonstrates this self-supervised video event completion task
along with a comparison with reconstruction and prediction tasks. The second work is
proposed by Georgescu et al. (2021a), where they perform multiple self-supervised tasks
using the same 3D CNN in a multi-task learning paradigm. They use VCO as input, using
YOLOv3 object detector (Redmon et Farhadi, 2018). The proposed tasks are: (i) arrow
of time prediction (discriminating forward and backward moving objects), (ii) motion ir-
regularity detection (distinguishing objects captured in consecutive frames versus objects
captured in intermittent frames), (iii) middle bounding box prediction (given objects in
preceding and succeeding frames), (iv) model distillation: estimating normality-specific
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class probabilities by distilling pre-trained classification (ImageNet (Russakovsky et al.,
2015)) and detection (MS COCO (Lin et al., 2014)) teachers. Both these works show
promising results but they rely heavily on external supervision using object detectors,
which inhibits their generalizing capability as discussed in Section 2.5.1.

2.5.2.4 Classification task

Despite the fact that video anomaly datasets are imbalanced and that only normal classes
are present during training, there are still some methods that use a classifier to detect
anomalies. Given only normal videos, they either perform one-class classification (Tran
et Hogg, 2017; Sabokrou et al., 2018) or do multi-class classification by adding dummy
anomalies (Ionescu et al., 2019; Georgescu et al., 2021b).

Figure 2.17: One-class classification VAD proposed by Sabokrou et al. (2018). R and D
are generator and discriminator modules of the adversarially learned GAN. X, X̃, Z and
X ′ refers to input, input with noise, latent space and reconstruction respectively, where
target class 1 represents normal (non-anomaly) class.

Figure 2.17 presents an example of one-class classification approach for VAD. The
input of this approach are patches from video frames, i.e., FP rather than the whole
frames. It adopts a GAN where the discriminator (D) is tasked with distinguishing
original image patches from reconstructions of noisy patches obtained from a denoising
auto-encoder network (R) which plays the role of generator. Since R is trained only
on image patches from training data, it deteriorates reconstruction of outliers and thus
enables D to distinguish an anomalous image patch from its reconstruction easily.

Concerning VAD with multi-class classification, Ionescu et al. (2019) proposed one
of the first approaches. Their input is FO, which is obtained by using a pre-trained
single-shot detector (SSD) (Lin et al., 2017) on each frame of the video. They train
convolutional auto-encoders on appearance and gradient features of these objects to learn
latent representations and then perform k-means clustering followed by training of k
one-class SVMs to make binary one-versus-rest classifications. Each cluster represents a
different type of normality. At test time, they simply use the inverse of the maximum
of k classification scores as an anomaly score, meaning if a sample does not belong to
any cluster, it is considered as anomalous. The classification task fails when the anomaly
resemble too much with normality in the latent space, thus making it difficult to separate
anomalies from normality.
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2.5.2.5 Multiple task learning

Since no task is perfect for VAD, many approaches use multiple tasks to benefit from
advantages of different tasks (Zhao et al., 2017; Tang et al., 2020; Liu et al., 2021b).

Figure 2.18: Network architecture proposed by Zhao et al. (2017) for reconstructing
present frames and predicting future frames.

Figure 2.18 presents the work of Zhao et al. (2017) where they combine reconstruction
and prediction tasks. The propose an encoder consisting of 3D convolutions (Baccouche
et al., 2011) and two decoders (one for each task) consisting of 3D deconvolutions (Zeiler
et al., 2010). They train on normal data to reconstruct the current video clip and predict
the future frame video clip. During testing, they use only the reconstruction error of
the test video clip as the anomaly measure. They demonstrated that using these tasks
together boosts the detection of video anomalies. Even though multiple task learning
benefits from advantages of different tasks, it is often difficult to combine various tasks
and furthemore this makes the model computationally very expensive. So, the tasks must
be chosen wisely with taking into consideration the gain in performance (if there is) in
relation to the expense of memory and computation time.

2.5.3 Auxiliary components for enhancing VAD

To enhance the detection of anomalies, often many auxiliary components are used along
with the VAD tasks. We describe below some of the most used components.

2.5.3.1 Optical flow

Since moving objects can cause anomalies, it is important to reinforce motion analysis for
VAD systems. Many motion analysis tasks employ optical flow as a fundamental basis
upon which more semantic interpretation is built (Fortun et al., 2015). Optical flow is
defined as the estimation of a dense motion field, corresponding to the displacement of
each pixel (Beauchemin et Barron, 1995). Concerning VAD, approaches use optical flow
to enrich the input with motion information before feeding it to the deep neural network
(Tran et Hogg, 2017; Zhao et al., 2017; Ravanbakhsh et al., 2017; Liu et al., 2018; Nguyen
et Meunier, 2019; Dong et al., 2020; Yu et al., 2020; Liu et al., 2021b; Georgescu et al.,
2021b).

2.5.3.2 Pre-trained feature extractor

Instead of learning features from anomaly datasets directly, many methods use a pre-
trained feature extractor trained on an external dataset. Pre-trained extractors can be
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used to extract features (of frames / video clips), to extract objects in the video (Ionescu
et al., 2019; Ouyang et Sanchez, 2021; Georgescu et al., 2021a; Le et Kim, 2022), or to
extract optical flow (Zhao et al., 2017; Ravanbakhsh et al., 2017; Liu et al., 2018; Nguyen
et Meunier, 2019; Dong et al., 2020; Yu et al., 2020; Liu et al., 2021b; Georgescu et al.,
2021b). The advantage of features extractors for VAD is that they save computational
capacity, so bigger architectures can be made, and they can add additional information
like optical flow or object information. The main disadvantage is that they are biased
towards the external dataset and an incorrect feature/object/optical flow estimation can
lead to failure of the whole system.

2.5.3.3 Data transformation

Data transformation refers to the modification of input data in various ways so that it
helps in better anomaly detection. The transformed data is used in two ways: as an
augmentation of data to the original input of the model, or as an auxiliary input along
with the original input of the model. Some major works using data transformation in
the first way are (Hasan et al., 2016; Chong et Tay, 2017; Zhao et al., 2017). Hasan
et al. (2016) and Chong et Tay (2017) increase the size of their input data by generating
video clips with different strides (stride-2 and stride-3) between frames. Zhao et al.
(2017) instead augments the data by creating video clips with various transformations
like random cropping, changing brightness and Gaussian blurring. The main motivation
behind this type of data transformation is to train the model with a sufficiently large
dataset with different input variations so that the model becomes adaptive and retain the
most pertinent features of normal input.

Few important VAD works using data transformation in the second way are (Georgescu
et al., 2021a,b; Astrid et al., 2021a,b; Park et al., 2020). Georgescu et al. (2021a) trans-
forms data into various ways for different tasks like reading frames backwards or not for
arrow of time detection, or skipping frames in video clip for irregular/regular motion task,
etc. Georgescu et al. (2021b) and Astrid et al. (2021a,b) transform data to form pseudo
anomalies in order to use normal and pseudo-abnormal data while training.

Figure 2.19: Autoencoder based VAD work of Astrid et al. (2021a) with normal input
and pseudo anomaly input, where probability p regulates quantity of pseudo anomalous
input.

Figure 2.19 shows an example of VAD work that use pseudo anomalies synthesized
from normal data as an auxiliary input to the AE. The pseudo anomalies are formed by
temporally striding the input to create temporal incoherence in video clip, which simulates
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an anomaly. The motivation is to train the AE in order to reduce the reconstruction loss
for normal inputs while increasing it for pseudo anomaly inputs, thus making model
sensitive to anomalies with temporally incoherent behavior.

2.5.3.4 Clustering

It is the task of grouping or segmenting a collection of entities into subsets or “clusters”,
such that the entities within each cluster are more closely related to one another than to
those assigned to other clusters (Hastie et al., 2009). Concerning VAD, Chang et al. (2020)
clusters the encoder output of an AE with reconstruction as proxy task. They propose
a deep k-means clustering in encoder to obtain a more compressed data representation
and extract the common factors of variation within the normal dataset. By minimizing
the distance between the data representation and cluster centers, normal examples are
closely mapped to the cluster center while anomalous examples are mapped away from the
cluster center. The cluster centers can be deemed as a certain kind of normality within the
training dataset. Since the model is only trained on normal events, the distance between
cluster and abnormal representations is much higher than between the normal patterns.
Reconstruction error and the cluster distance are together used as an anomaly score. With
a similar strategy, Ouyang et Sanchez (2021) proposes to cluster the latent manifolds
of the autoencoder using expectation maximization. Different from these approaches,
Ionescu et al. (2019) first clusters the latent space of an autoencoder into different types
of normality, and then train a binary classifier following the one-versus-rest scheme to
separate normality clusters from one another. In the inference phase, a test sample is
labeled as abnormal if the highest classification score is negative, i.e., the sample is not
attributed to any normality cluster.

2.5.3.5 Memory, attention and other units

One of the main challenges with CNN based networks like autoencoder or GAN is that
they have very powerful representational capacity which can even hinder to distinguish
between normality and abnormality, if used naively. For example, reconstruction-based
VAD methods using AE may even reconstruct the abnormal frames well (Zong et al.,
2018; Liu et al., 2018). Hence, the assumption that reconstruction error is comparatively
high for abnormal test frames might be violated.

One popular approach to handle this issue is to use memory units with the network.
The prototypical patterns of normal data are recorded into the memory during training,
whereas while testing on a test input, the most relevant elements from the memory are
retrieved to perform the given task (reconstruction, prediction, etc.). Figure 2.20 shows
one such approach, namely MemAE (Gong et al., 2019). MemAE or memory-augmented
autoencoder is a reconstruction task-based VAD method, which learns and updates the
memory contents during training, to store the prototypical elements of the normal data.
In the test phase, the memory is fixed, and reconstruction is performed using items
selected from the memory. Taking this work forward, Park et al. (2020) propose a similar
strategy to enhance AE for VAD by an improved memory module. They separate stored
memory items explicitly using feature compactness and separateness losses, which enables
using a small number of memory items compared to MemAE (10 vs 2,000 for MemAE).
Furthermore, they also update the memory at test time, while discriminating anomalies
simultaneously, suggesting their model memorizes normal patterns of test data. Overall,
their model better records diverse and discriminative normal patterns for VAD. Finally, a
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recent work by Liu et al. (2021b) uses multiple memory units attached in different parts
of the AE and they propose an ideal arrangement of these memory units along with skip
connections for the VAD task.

Figure 2.20: Proposed schema of MemAE (Gong et al., 2019). The encoder takes the
input x to produce encoding z, which is taken as a query by the memory addressing
unit to obtain the soft addressing weights w. The memory slots can be used to model
the whole encoding or the features on one pixel (as shown in the figure). The updated
encoding ẑ passes via decoder to produce the reconstruction x̂.

Another important approach to enhance neural network is to use attention modules
(Zagoruyko et Komodakis, 2016; Vaswani et al., 2017; Wang et al., 2019). In simple
words, attention is a technique that imitates human cognitive attention, enhancing a
part of input, such as an object and neglecting the remaining parts (Zhou et al., 2019).
Concerning VAD, Le et Kim (2022) proposed an attention-based residual autoencoder
with future frame prediction as the proxy task. To exploit channel dependency of features,
they propose a channel attention module made of two convolutional layers and it is applied
in each layer of the decoder. Similarly, Chang et al. (2020) proposed a cluster driven
autoencoder with future frame prediction task, where a variance-based attention module
is designed to assign an importance to moving part of video clips, thus improving detection
of anomalies with large temporal movements like person running, jumping, etc. Different
from these approaches, Lv et al. (2021) proposed an AE-based VAD method with a
dynamic prototype unit. They learn diverse patterns of the normal data in the form of
prototypes. Prototype is a compact representation of pertinent normal data. A novel
attention operation on the AE encoding map assigns a normalcy weight to each pixel
location to form a normalcy map. Then, prototypes are obtained as an ensemble of the
local encoding vectors under the guidance of normalcy weights. Multiple parallel attention
operations are applied to generate a pool of prototypes, which represent diverse and
compact dynamics of the normal patterns. Finally, the AE encoding map is aggregated
with the normalcy encoding reconstructed by prototypes for latter frame prediction.

Recently, some other types of units have been proposed to tackle with the issue of
powerful representational capacity of CNN based VAD networks. Szymanowicz et al.
(2022) proposed a vector quantized autoencoder for detecting video anomalies using the
future frame prediction task. They store features of the encoder in a learnable codebook
using a vector quantization module. The vector quantization leads to discretization of
high-level features into embeddings, which are used by decoder to predict the future frame.
Since decoder has no direct access to input features but only the discrete embeddings of
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codebook, it is unable to correctly predict the anomalous frames, thus improving the
video anomaly detection. Similarly, Cho et al. (2022) proposed normal density estimation
(NDE) unit which estimate the density of normality in their AE based VAD method.

Method Input Task Principal compo. Auxiliary compo.

Hasan et al. (2016) VC Recon AE DT

Chong et Tay (2017) VC Recon AE, CLSTM DT

Zhao et al. (2017) VC Pred, Recon AE OF, pre., DT

Ravanbakhsh et al. (2017) FF Recon Adv OF, pre.

Tran et Hogg (2017) VCP Classification AE, SVM OF

Lee et al. (2018) VC Pred AE, CLSTM, Adv 7

Sabokrou et al. (2018) FP Classification Adv 7

Liu et al. (2018) VC Pred AE, Adv OF, pre.

Nguyen et Meunier (2019) FF Recon AE, Adv OF, pre.

Ye et al. (2019) FF Recon AE, Adv 7

Gong et al. (2019) VC Recon AE mem.

Ionescu et al. (2019) FO Classification AE, SVM clust., pre.

Dong et al. (2020) VC Pred AE, Adv OF, pre.

Tang et al. (2020) VC Pred, Recon AE, Adv 7

Yu et al. (2020) VCO SST AE OF, pre.

Chang et al. (2020) VC Recon AE clust., att.

Park et al. (2020) VC Pred AE mem.

Ouyang et Sanchez (2021) VCO Recon AE, GMM pre., clust.

Liu et al. (2021b) VCO Pred, Recon AE OF, pre., mem.

Georgescu et al. (2021a) VCO SST AE, FCN pre., DT

Georgescu et al. (2021b) FO Classification AE, Adv OF, pre., DT

Astrid et al. (2021a) VC Recon AE DT

Astrid et al. (2021b) VC Recon AE DT

Lv et al. (2021) VC Pred AE att.

Le et Kim (2022) VC Pred AE att., pre.

Cho et al. (2022) VC Recon AE NDE

Szymanowicz et al. (2022) VC Pred AE codebook

Park et al. (2022) VCP Pred AE DT

Table 2.1: Review of major video anomaly detection methods.

Table 2.1 presents a review summary of various VAD methods. The first column refers
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to the publication associated with the method and the second column shows various input
data (refer Section 2.5.1). In third column, the proxy tasks are mentioned where Pred,
Recon and SST refer to prediction, reconstruction, and self-supervised task, respectively.
The fourth column refers to main learning component of the method, where the unde-
clared terms Adv, CLSTM, GMM and FCN refer to adversial unit, convolutional LSTM,
gaussian mixture modeling and fully connected network. Final column is of the auxiliary
component, where the abbreviated terms are: DT - data transformation, OF - optical
flow, pre. - pre-trained feature extractor, clust. - clustering, mem. - memory unit, att. -
attention unit and NDE - normal density estimation. We can observe the following from
Table 2.1. Most of the methods use video clip based inputs like VC, VCP and VCO and
only a very few methods use the frame based input. This signifies that rather than using
just the spatial data through a single frame, spatio-temporal data via video clips is essen-
tial for VAD. Regarding proxy tasks, reconstruction task is the most preferred, followed
by the prediction task, and they are often combined together. The classification task has
been used only four times and it uses patch or object type inputs, requiring pre-processing
through an external detector or data transformation. This signifies that it is not easy to
perform classification task directly on the raw frame or video clip. The SST task has been
recently used for VAD and there are only two methods that use them. Both of them use
VCO as input, i.e., they need an external object detector to first detect objects and then
perform the task. They obtain excellent performances as they do not suffer from scene
background and associated noise. However, one must note that in real life, we cannot
always detect all the possible anomalous object and furthermore we might not even know
which objects will cause anomaly (unlike offline datasets where we know which objects
are potentially anomalous). The most used learning component is the autoencoder (2D
CAE, 3D CAE, etc.), but other components like GAN, CLSTM, etc., are also used. The
choice of learning component depends on the chosen task, input and architecture design.
For auxiliary components, pre-trained detector, optical flow and data transformations are
mostly used. These components ensure the input data needed for the methods concern.
Rest of the auxiliary components like memory, attention, clustering, codebook, etc., are
used to reinforce the learning component. This signifies that most learning components
do require this auxiliary help to better detect anomalies. To conclude, reconstruction,
prediction, SST, or their combinations should be used for VAD, with minimum or no
auxiliary component. Ideally, video clip should be used as input, since it is the spatio-
temporal data and does not require any processing or external supervision of any sort,
thus it is an unbiased input.

2.6 Perimeter intrusion detection (PID) methods

In this section, we review the existing perimeter intrusion detection methods. It must be
noted that only a few methods tackle the complete PID task. Unlike VAD, the PID task
has not gained enough scientific attention in recent years, even though private enterprises
kept on improving their intrusion detection systems, but they did not share their works
publicly. One simple evidence to support this claim is that there is only one public dataset
available for this task, unlike the VAD with many datasets. Nevertheless, we review the
few existing public methods for this task.
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Figure 2.21: Typical pipeline of a PIDS, composed of an optional offline training (left
part) and an online detection (middle part). An illustrative example of different steps in
online detection is shown in right part of the figure (best viewed in color).

PID is closely related to other computer vision tasks like motion detection, object
detection, tracking, etc. (Valera et Velastin, 2005). Indeed, these tasks are part of the
typical PIDS pipeline as shown in Fig. 2.21. In order to examine PID methods, we must
review methods that tackled one or several of these tasks with the aim to improve the
PIDS pipeline. We describe below various parts of the pipeline, along with some major
methods. It should be noted that here we do not describe data acquisition schemes since
it has been already explored in Section 1.2.

2.6.1 Pre-Processing

In the case of protecting a perimeter, the cameras are usually CCTV and therefore they are
not necessarily of the highest quality. It is because there are several cameras for each site
and it is economically not viable for most people to invest too much in expensive cameras.
Also, the task is just to detect the presence of an intrusion and not necessarily do profound
analysis like face detection of an intruder (which would require high quality cameras). This
low-quality camera sensor and adverse environmental conditions such as snow, fog, rain,
extreme sunshine, etc., may produce highly noisy video streams. We cannot directly feed
this noisy data into the detection algorithm. Therefore, video enhancement is needed to
remove noise and improve the visual appearance of the video. We can classify the existing
video enhancement methods into two broad categories (Agaian et al., 2007; Rao et Chen,
2012): spatial domain enhancement and transform domain enhancement.

Spatial domain video enhancement deals directly with pixels, i.e., it makes a direct
manipulation of pixels in video frames. It is conceptually simple and has a low time
complexity, which favors real-time implementation but lacks robustness. Some surveys
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on this method can be found in (Bennett et McMillan, 2005; Mittal et al., 2006; Rao
et al., 2011). In most PIDS, some standard spatial enhancement is carried out on raw
frames (Buch et Velastin, 2008, 2014; Cermeño et al., 2018), such as image resizing, image
normalization, mean centering, color space conversion (RGB to grayscale or vice versa),
histogram equalization, etc.

Contrary to spatial domain, the transform domain video enhancement operates on
the transform coefficients of the video frame, such as Fourier transform, discrete wavelet
transform and discrete cosine transform (Ali, 2007; Rao et al., 2011). The video quality
is enhanced by manipulating these coefficients. This category of methods has a low
computational complexity with the ease of manipulating the frequency composition of
the video frame. Some major examples of PIDS using these techniques are (Buch et
Velastin, 2008, 2014). They first use fast Fourier transform (FFT) on video frame patches
and then decrease noise by removing very low or high frequencies from the FFT.

Apart from video enhancement, some other pre-processing can be conducted depend-
ing on the PIDS. Buch et Velastin (2014) first define patches of 16-pixel squares in each
video frame. Then, they designate two regions per frame: grass and fence area for seg-
regating the scene into an authorized and unauthorized zone. Their pre-processing is
demonstrated in Figure 2.22. Similarly, another common pre-processing is to have a fixed
spatial perimeter in each frame of the video (Cermeño et al., 2018; Kim et al., 2018b;
Nayak et al., 2019). This helps the PIDS to focus only on this region of the scene and to
ignore activities outside this perimeter.

Figure 2.22: Pre-processing proposed by Buch et Velastin (2014), applied on the i-LIDS
dataset. After normalization of video frame, patches of 16 × 16 pixels with 20% overlap
are constructed on the region of interest, i.e., ground and fence. These patches are used
as input for their PIDS instead of the whole video frame.

2.6.2 Detection

This is one of the most important steps of the pipeline since the goal of a PIDS is to
detect certain categories of objects that might cause an intrusion. Detection in video
can belong to one of the two families: (i) detection of blobs, analyzing the pixel motion,
and (ii) detection of objects, analyzing the image appearance with the localization and
classification of objects. We describe below various detection strategies and associated

55



CHAPTER 2. LITERATURE REVIEW

PID methods.

2.6.2.1 Motion Detection

Intrusion is caused by a moving object in a protected perimeter during an unauthorized
time. Therefore, motion detection is essential in a PIDS. The principal approaches can
be classified into three categories.

a) Optical Flow It literally refers to the displacements of intensity patterns. It is an
approximation of image motion defined as the projection of velocities of 3D surface points
onto the imaging plane of a visual sensor (Beauchemin et Barron, 1995). Optical-flow-
based methods use partial derivatives with respect to the spatial and temporal coordinates
to calculate the motion between video frames. One key benefit of using optical flow is
that it is robust to multiple and simultaneous cameras and camera shakes. However, most
optical flow methods are computationally complex, very sensitive to noise and tough to
implement in real-time settings. Some surveys on optical flow approaches are Beau-
chemin et Barron (1995); Stiller et Konrad (1999). Concerning PIDS, Kim et al. (2018b)
implemented an optical flow based detection to compare it with their proposed detection
method.

b) Temporal Differencing It uses pixel-wise differences among consecutive video
frames to extract moving regions. This technique is adaptive to dynamic environments
and has a low computational complexity. However, it can fail to extract all of the relevant
pixels and can leave holes in regions. Some important studies can be found in (Sehairi
et al., 2017; Dimitriou et al., 2017; Tsakanikas et Dagiuklas, 2018; Cermeño et al., 2018).
The works of Buch et Velastin (2008, 2014) use simple inter-frame difference followed by
some morphological operations for motion detection in their PIDS.

c) Background Subtraction This is one of the most popular and key techniques
for detecting moving objects in video. Background subtraction detects moving regions by
taking the difference between the current frame and the reference frame, often referred
to as the ‘background model’. The detection ability depends on the adaptiveness of the
background model. Some popular background subtraction methods are: running Gaus-
sian average (RGA) (Wren et al., 1997), Gaussian mixture model (GMM) (Stauffer et
Grimson, 1999), kernel density estimator (KDE) (Elgammal et al., 2000) and visual back-
ground extractor (ViBe) (Barnich et Van Droogenbroeck, 2009). Background subtraction
mainly suffers from illumination changes, dynamic background, shadows, camouflage,
video noise, etc. (Bouwmans, 2011). These effects can cause a background object to
appear as a false foreground object and vice-versa. There are dedicated datasets, like
the BMC dataset (Vacavant et al., 2013), for testing these methods. Most comprehensive
surveys on background subtraction-based methods are (Hu et al., 2004; Bouwmans, 2011;
Xu et al., 2016; Garcia-Garcia et al., 2020).

Concerning PIDS, Buch et Velastin (2008, 2014) use Gaussian background modeling
to discriminate people (intruder) from background. The study of Vijverberg et al. (2014)
uses background subtraction to extract object blobs from the video frame, which are later
used for tracking. The work of Kim et al. (2018b) detects moving objects by comparing
a background model with an input video frame in real-time. Figure 2.23 illustrates the
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Figure 2.23: Moving object detection using background subtraction proposed by Kim et al.
(2018b). The first column represents frames from a thermal and color camera respectively,
with objects of interest in white bounding boxes. The second column demonstrates the
output after background subtraction and image binarization, where white regions repre-
sent detected moving objects.

performance of their method. Finally, Cermeño et al. (2018) detect the potential intruder
object using the RGA method.

As already stated, background subtraction also has some drawbacks. In Figure 2.24,
we demonstrate this using two examples proposed by Vijverberg et al. (2013). The first
example, depicted in Figure 2.24a, shows false detections due to snowfall. Since the back-
ground subtraction models scene background and detects any moving object, it produces
false alarms for these moving snow flakes. These are termed as false alarms due to the dy-
namic background. In Figure 2.24b, the second example shows split-object detections due
to camouflage effect as object appearance matches with background (both have similar
white texture).

2.6.2.2 Object Detection

In the last decade, object detection, i.e., object localization and classification, has been
a field of intensive research (Zou et al., 2019). Intrusion detection is closely related to it
as intruders belong to certain categories of objects, such as people, car, bike, etc., to be
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detected in a protected area. Even though intrusion can be caused by vehicles, animals,
etc., the state of art mostly focuses on detecting people as intruders.

(a) False detections due to snowfall in a
private dataset. Yellow blobs show de-
tections along with their index number
in blue.

(b) Object split into extra detections in
i-LIDS dataset. Blue blobs show split-
object detections along with their in-
dex number.

Figure 2.24: Examples of incorrect detections using background subtraction method pro-
posed by Vijverberg et al. (2013).

Figure 2.25: Moving object classification architecture proposed by Kim et al. (2018b).
Input frame of size 224 × 224 × 3 goes through a series of 2D convolutions, local response
normalization and max-pooling units, followed by fully connected layers to finally give
predictions of length ten, where each unit depicts probability of a particular class from a
list of human (intruder) and wild animal classes.

Object detection methods can be classified into traditional and deep-learning-based
detectors (Zou et al., 2019). Some traditional object detectors are the Viola–Jones de-
tector (Viola et Jones, 2001), histograms of oriented gradients (HOG) detector (Dalal et
Triggs, 2005) and deformable part-based model (DPM) (Felzenszwalb et al., 2008). Deep
learning based methods such as Faster R-CNN (Ren et al., 2015) and YOLO (Redmon et
Farhadi, 2017), have achieved remarkable performances in object detection domain. Still
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human detection can be challenging, especially in scenes with an atypical human pose,
such as crawling or creeping, occluded scenes (Patino et al., 2021) and scenes with low lu-
minosity, such as during night. In regard to PIDS, Nayak et al. (2019) uses a pre-trained
YOLO network for intruder object detection. Kim et al. (2018b) first detects moving
objects with background modeling and then classifies them into one of the ten classes,
containing wild animals and human (intruder). For this object classification, they propose
a 2D CNN-based supervised classifier as shown in Figure 2.25.

2.6.3 Tracking

It is essential for a PIDS to keep track of a detected intruder object, otherwise it will be re-
detected (or not) and may cause unnecessary alarms. Furthermore, perimeter protection
solutions may use this information to impose detection constraints. For example, leaving
an area can be allowed, but not entering it. We can also think of raising an intrusion
alarm only if an object is inside the area for a specified amount of time.

Buch et Velastin (2008) proposed to use the Kalman filter on the texture of objects with
a motion mask to build object tracks. Particle filters have also been used to track intruders
(Cermeño et al., 2018; Kim et al., 2018b). In (Buch et Velastin, 2014), an intruder is
tracked by logging positions of foreground objects over time. The work of (Vijverberg
et al., 2013) proposes a tracking algorithm based on tracklet clustering. Finally, Nayak
et al. (2019) uses the simple on-line and real-time tracking (SORT) algorithm (Bewley
et al., 2016) for tracking intruders.

2.6.4 Joint Detection and Tracking

As video stream has two components, spatial and temporal, it is usually analyzed in
two steps. The first step captures spatial patterns by using detection on each frame (see
Section 2.6.2), whereas the second step uses tracking to apprehend temporal coherence (see
Section 2.6.3). This approach creates the hypothesis that spatial and temporal dimensions
are independent and can be processed sequentially.

Recent approaches jointly model spatial and temporal dimensions using 3D convolu-
tions and improve results in video analysis (Tran et al., 2015; Jiao et al., 2021). Like
anomaly detection, an autoencoder or GAN based on 3D convolutions/deconvolutions
can lead to an implicit joint detection and tracking (Zhao et al., 2017; Sun et al., 2020).

2.6.5 Post-Processing

A major failure for the PIDS is when it misses to detect intrusions. In fact, ideally a
system should always try to detect as much as possible, even at the cost of some false
alarms (Cermeño et al., 2018). These false alarms need to be filtered, which is why we
need some form of post-processing. Even though this step is crucial in a PIDS, there
are few publications on this topic because companies prefer to keep their post-processing
confidential. However, despite this, we can list several post-processing techniques.

One of the most common post-processing is to filter objects of interest outside the
chosen perimeter (Cermeño et al., 2018; Kim et al., 2018b; Nayak et al., 2019). Sometimes,
blobs are inconsistent across time, such as rain drops, and a filter can check the coherence
of the blob trajectory. Detected objects can also be filtered with a minimum threshold
on the blob size. For example, Cermeño et al. (2018) filters all the objects with a size less
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than four pixels. Since foreground objects are bigger than background ones, perspective
calibration learns the dimension of object of interest as a function of its position in the
scene. This allows to filter objects with a size smaller than the expected size of the object
of interest at the same position in the scene (AXIS Communications, 2020; FOXSTREAM
Smart Video Analytics, 2021).

2.6.6 Alarm

In a perimeter intrusion detection system, it is essential to send an alarm signal to the
security personnel to indicate the potential occurrence of an intrusion. This alarm signal
alerts the client to verify if there is an intrusion in the site and then to take appropriate
action against it. This alarm may also indicate a false alert in case there is no intrusion
in the site. It is also very important to have this alarm as soon as the intrusion enters
the surveilled place. The reason for this is that if the intrusion has already been inside
the perimeter for long time, it would have already done the damage to the protected
site. For all these reasons, in a PIDS, it is essential to send alarms at right time intervals
(at the beginning of intrusions). The detected and tracked objects are transformed into
alarms by using some sensibility thresholds to set the omissions–false alarms trade-off
(Buch et Velastin, 2008; Kim et al., 2018b; Nayak et al., 2019; Vijverberg et al., 2014).
Generally, these thresholds are manually tuned during the actual deployment of the PIDS.
Furthermore, some high-level rules can be applied to trigger the alarm. In the work
of Buch et Velastin (2014), the alarm is triggered if the intruder moves towards the
target for a minimum time of 2 seconds. In (Kim et al., 2018b; Nayak et al., 2019), the
alarm is generated as long as the intruder is inside the protected perimeter. Figure 2.26
demonstrates this for the work of Nayak et al. (2019). Taking this forward, Cermeño et al.
(2018) adds an extra constraint that the object must be tracked for at least three frames
to give an alarm.

2.6.7 System Deployment

The deployment of a perimeter intrusion detection system is realized in three stages: an
optional offline model training, then an online initialization of the system, and, finally,
online execution.

2.6.7.1 Model Training

There are some PIDS which require an offline training on part of the dataset for their
detection or tracking steps (Vijverberg et al., 2014; Kim et al., 2018b; Nayak et al., 2019).
This training can be supervised, requiring labeled videos (tagging intrusion frames or
events); or, it can be unsupervised, under the assumption that there is no annotated
data. The supervised training can also be done on an external dataset and then the
trained detectors are used for detection or tracking in PIDS. Vijverberg et al. (2014)
proposed a classifier model trained as a multiple instance learning problem by employing
image-based features to distinguish intruder objects from moving vegetation and other
distractions. The works of (Kim et al., 2018b; Nayak et al., 2019) use supervised object
detectors for detection step. So far, we do not have any work which use the unsupervised
learning for perimeter intrusion detection.

60



2.6. PERIMETER INTRUSION DETECTION (PID) METHODS

Figure 2.26: Working illustration of the PIDS proposed by Nayak et al. (2019) on CAVIAR
(Crowley et al., 2005) (first row) and a private dataset (Nayak et al., 2019) (second row).
The first column presents video frames from two different sites with green zones depicting
the areas to protect. In the second column, potential intruder objects detected by YOLO
detector are in yellow bounding boxes and since some of them are inside the protected
zone, the alarm is raised (shown with red zone).

2.6.7.2 System Initialization

When a PIDS is installed in a new site, it may need several seconds to set the internal
state of the system in alignment with the new scene. For example, to initialize the mean
and standard deviation of a GMM (Buch et Velastin, 2014; Cermeño et al., 2018). This is
called the system initialization. This online initialization must be well distinguished from
the offline model training. Furthermore, a PIDS can have sensibility thresholds, which
are manually tuned by the installer during the deployment.

2.6.7.3 System Execution

The final stage is the online execution of the PIDS. It includes all the steps of the pipeline
as illustrated in the right part of Figure 2.21. To provide a reliable protection, most of
the systems work between 5 and 25 frames per second (Buch et Velastin, 2014; Cermeño
et al., 2018).

Table 2.2 summarizes major PIDS works with various methods used in different steps
of the pipeline. It can be observed that most systems use the visual camera for data
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acquisition and only one system is multi-camera based. Most traditional systems use
background modeling for detection, whereas recent deep-learning-based models use 2D
CNN or YOLO detector. Concerning tracking, the Kalman filter, particle filter, tracklet-
based tracking and SORT algorithm are used. For alarms, most systems have their own
method-specific rules. Three systems use supervised training and the rest do not have a
training step.

Publication Data
Acquisition

Pre-
processing Detection Tracking Post-

processing Alarm Model
training

Buch et
Velastin
(2008)

Visual
camera

frame
patches,
FFT

inter-frame
differencing

Kalman
filter 7

rule-
based none

Vijverberg
et al. (2013)

Visual
camera X

background
subtraction

tracklet
tracking 7 7 none

Buch et
Velastin
(2014)

Visual
camera

frame
patches,
FFT

Gaussian
background
modeling

Kalman
filter 7

rule-
based none

Vijverberg
et al. (2014)

Visual
camera X

background
subtraction

tracklet
tracking X

rule-
based supervised

Kim et al.
(2018b)

Multi-
camera:

visual and
thermal

resize,
calibration,
perimeter

2D CNN particle
filter

outside
perimeter

rule-
based supervised

Cermeño
et al. (2018)

Visual
camera perimeter RGA particle

filter
object size

rule
rule-
based none

Nayak et al.
(2019)

Visual
camera perimeter YOLO v2 SORT 7

rule-
based supervised

Table 2.2: PIDS reviewed in chronological order, where columns represent steps of the
pipeline and model training needs. 7 denotes unavailability of the step, whereas X
denotes that the step is available but not detailed.

2.7 Conclusion

We showed that concerning spatio-temporal feature learning, there are broadly four ap-
proaches. The first type of approach uses 2D CNN for learning spatial features, followed
by an RNN-type network for learning temporal features. The second approach has two
network streams to learn different and independent features like appearance and motion,
which are finally fused together to obtain the overall space-time features. The third ap-
proach uses 3D convolution based networks and jointly learns spatio-temporal features.
Finally, the fourth approach is a hybrid approach, which include a combination of above
approaches. In this thesis, we want to learn spatio-temporal features jointly in video, with
minimum supervision possible. Therefore, the 3D convolution-based approaches are ideal
for us, with new variants being also fast and low on computational complexity. We do
not want to rely on external supervision for optical flow, etc., thus two-stream or hybrid
approaches are not suitable.
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To move from these supervised spatio-temporal approaches towards unsupervised ap-
proaches, three principal modeling approaches can be used, i.e., reconstructive, predictive
and generative. Reconstruction models principally use auto-encoder with the aim to re-
construct the input video stream. Predictive models try to predict the future frames
or sequences, given observed sequence. They use LSTM-based models and autoencoder
variants. Finally, the generative models principally use generative adversarial networks
to model the likelihood of video samples in an unlabeled dataset. We found all three
approaches are extensively used in the literature and none of them is more suitable than
others. The choice of approach depends on the video task being tackled, its requirements,
and the spatio-temporal feature learner (like a 2D CNN, 3DCNN, etc.) being used. Our
chosen 3D convolution-based approach can be used as 3D CAE in unsupervised learning.
It can be used as a reconstructive model, predictive model and even as the generator of
a generative model. In this thesis, we explore the first two approaches and also combine
them. The generative model requires extra computation on top of the generator, via the
discriminator, therefore we avoided that approach to be computationally light.

Concerning video anomaly detection, we found that most methods use video clip based
inputs like VC, VCP and VCO as input, thus signifying the importance of spatio-temporal
input data. Majority of methods use the reconstruction or prediction as proxy task and
they accept any type of input. The classification and SST tasks are used less and they
require the help of external object detector or data transformation for obtaining the input
to their model. This external supervision is not only biased to the external dataset but also
in real life, we cannot detect all the possible anomalous objects beforehand (unlike offline
datasets where we know which objects are potentially anomalous). The most used learning
component is the autoencoder but the choice of learning component depends on the chosen
task, input and architecture design. To better detect anomalies, the learning components
often require reinforcement from auxiliary components like memory, attention, clustering,
codebook, etc. To conclude, reconstruction, prediction, SST, or their combinations should
be used for VAD, with minimum or no auxiliary component. Ideally, video clip should be
used as input, since it is the spatio-temporal data and does not require any processing or
external supervision of any sort.

Like VAD, the task of perimeter intrusion detection concerns with detection of rare
and unknown event, i.e., intrusion. In real life PIDS, we do not have labeled data for
these intrusions and thus we need to use an unsupervised approach. Irrespective of this,
none of the methods in state of the art uses unsupervised learning. The simple answer
to this is the lack of public dataset, i.e., there is only one dataset called i-LIDS (i-LIDS
Team, 2006). This dataset was released in 2006, so most traditional methods used non-
deep learning based approaches. Furthermore, the i-LIDS dataset provide annotation in
training set for developing supervised PIDS. This is potentially because during its launch
time (2006), deep learning was not explored much, even less unsupervised deep learning.

In our PIDS review, we found that majority of works use their private datasets and
mostly the visual camera is used for data acquisition and only one system is multi-camera
based. Most traditional systems use background modeling for detection, whereas recent
deep-learning-based models use 2D CNN or YOLO detector. Concerning tracking, the
Kalman filter, particle filter, tracklet-based tracking and SORT algorithm are used. For
alarms, most systems have their own method-specific rules. Three systems use supervised
training and the rest do not have a deep learning based training step. Since no two
systems use the same dataset or same part of the dataset and many use different evaluation
strategies, it is impossible to quantitatively compare the existing methods. Overall, we
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observe that even though there are only human intruders in the i-LIDS dataset, it still has
the potential because of various distractions, weather conditions and intruder approach
manners. Therefore, still an unsupervised deep learning based approach can be evaluated
on this public dataset.

Since in this thesis, we explore for unsupervised deep learning approaches for both
VAD and PID tasks. We will use 3D CAE as our initial point, as stated above. In
Chapter 4, we propose a 3D CAE for PID with reconstruction as the proxy task. It has
an adaptive thresholding mechanism to adapt with changing scene dynamics like weather,
light conditions, etc., and it will be discussed later in that chapter. In Chapter 5, we enrich
our 3D CAE with different unsupervised and self-supervised tasks. This new model shows
promising results for both VAD and PID tasks, without need of external supervision or
memory modules.
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Chapter 3

Defining tasks and their evaluations

In this chapter, we are concerned with formally defining the two tasks that we tackle in
this thesis, i.e., video anomaly definition and perimeter intrusion definition. We math-
ematically describe these two tasks in the first two sections. Then, we explain various
evaluation protocols for these tasks. Since the existing protocols are not fully suitable for
the PID task, we propose a new edge-level evaluation protocol for it. Next, we describe
various evaluation metrics used for these tasks, with a proper explanation concerning
which metrics should be used for each of the tasks. Part of this work was published in
the special issue “Unusual Behavior Detection Based on Machine Learning” of the Sensors
2022 journal (Lohani et al., 2022b).
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3.1 Introduction

In this thesis, we are focused principally on video anomaly detection (VAD) and perimeter
intrusion detection (PID) task. Since past few years, both these tasks have attained a
major attention in the computer vision research (Chandola et al., 2009; Saligrama et al.,
2010; Kiran et al., 2018; Aravamuthan et al., 2020; Nayak et al., 2021; Ramachandra
et al., 2022). Even after all this attention, their definitions still lack clarity, since they
are not defined formally (Vijverberg et al., 2014; Kim et al., 2018b; Kiran et al., 2018;
Aravamuthan et al., 2020; Ramachandra et al., 2022). It is essential to mathematically
define these tasks as it has a direct impact on the evaluation. For example, when a PID
system detects an intrusion, it sends a short video to the security post, where a human
operator validates the alarm as a true intrusion or otherwise. This short video, composed
of several frames before and after the suspected intrusion, must contain the intruder so
that the operator can decide to act on it. The end of the intrusion event is generally not
relevant for this application. In practice, we would like to detect intrusion as soon as it
occurs; thus, we must obey time constraints. This requires a suitable evaluation protocol
that takes these constraints into account. Thus, in this chapter, we first mathematically
define the two tasks. Then we describe the existing evaluation protocols and metrics,
with a correct explanation of which protocols / metrics to be used for the two tasks. We
also propose a new evaluation protocol for the PID task that conforms correctly with its
definition and requirements.

3.2 Defining video anomaly detection

Video anomaly detection is the task of localizing anomalies in space and/or time in a video.
In literature, anomalies are described simply as activities that are out of the ordinary
(Chandola et al., 2009; Saligrama et al., 2010; Sodemann et al., 2012). Anomalies are
also known as abnormalities, novelties, and outliers among other similar terms. Examples
of studied anomalies range from fighting and falling detection, to unattended baggage at
airports, to a person loitering outside a building. According to Saligrama et al. (2010),
video anomalies can be thought of as the occurrence of unusual appearance or motion
attributes or the occurrence of usual appearance or motion attributes in unusual locations
or times.

One simple implication of this definition is that video anomalies are context dependent.
This signifies that an activity considered anomalous in one context or scene may be normal
in another and vice-versa. For example, in one scene, skating is considered a normal
activity, while in another, it is anomalous. Therefore, real-world anomalous events are
complicated and diverse, and it is difficult to list all the possible anomalous events. It
is indeed desirable that the anomaly detection algorithm does not rely on a big prior
information about the events, as it can mislead the algorithm to detect/ignore certain
types of normal/abnormal events.

Overall, the most fundamental question here is to determine what are the events
which can be designated as anomalous. Anomaly definition has always been debated in
the literature due to its subjective nature and the complexity of human behaviors (Jiang
et al., 2009; Saligrama et al., 2010; Sodemann et al., 2012; Kiran et al., 2018). In general,
an event is considered abnormal if it deviates from observed or learned ordinary events
(i.e., the event with low occurrence or statistical representation in the learned model) or
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the event is not known, or it is outstanding. As aforementioned, another important aspect
about the definition of anomalies is the context or environment of the scene. Besides, the
difficulty of defining anomalous events increases as the semantics of events grow. In other
words, the greater the semantics of an event, more complex situations must be described
to determine the anomalous events out of the normal.

To determine whether an event is anomalous, there are two main scenarios: (i) the
expected anomalies are known, (ii) the expected anomalies are unknown. In the first
scenario, we know some information of anomalies in the data, i.e., we have some sort
of labels for anomalies available during training. It is exceptional to have this since
anomalies are rarely labeled beforehand. In the second scenario, we just have the data
without any anomaly information. It is assumed that this data is only normal, i.e.,
without anomalies. This is a more plausible setting since anomalies are rare and it is not
possible to have all potential normal and abnormal samples available during training. The
main challenge here is to understand pertinent features of normal events from a diversity
of scenes and contexts, which would lead to distinguish anomalous events from the normal
events (Sodemann et al., 2012; Kiran et al., 2018).

Please note that throughout the manuscript anomaly and abnormality denotes the
same thing, i.e., they are synonyms for each other. Similarly, their adjective forms anoma-
lous and abnormal are used interchangeably.

We define below the two cases concerning video anomaly detection.

3.2.1 VAD with anomaly information

It refers to video anomaly detection when normal examples and at-least some abnormal
examples are known. We can also say that in this case we have at-least some supervision
via anomalous and normal examples during training.

3.2.1.1 Fully Supervised VAD

Conceptually, the most direct case is fully supervised VAD having well-defined explana-
tion of normality and abnormality, i.e., training data have labels for both normal and
abnormal class. This case is particularly common for some VAD sub-tasks like fall detec-
tion (Vishwakarma et al., 2007; Kong et al., 2019), fighting detection (Esen et al., 2013)
and traffic violation detection (Fu et al., 2005; Zen et Ricci, 2011). Concerning VAD,
since most datasets do not have a training set with anomalies, some works try to re-
arrange the datasets to add anomalies in the training set and provide their annotations.
For example, He et al. (2018) re-organized UCSD Ped datasets (Li et al., 2013) and pro-
vided annotations. Similarly, Landi et al. (2019) and Liu et Ma (2019) provided bounding
box annotations in UCF-Crime dataset. Given both normal and abnormal classes during
training, a supervised binary classifier can efficiently make a distinction between normal
and abnormal videos during testing. Some works on supervised video anomaly detection
are (Huo et al., 2012; He et al., 2018; Liu et Ma, 2019; Landi et al., 2019).

Even though fully supervised VAD can produce good results for a dataset, its outcome
is not generalizable to other datasets. Furthermore, the big assumption of having labeled
data is rarely feasible in real life, especially for mid to large length datasets, which would
require extensive manual or semi-automated annotations. Since the portion of abnormal
samples is extremely small in comparison to the normal samples (as anomaly is a rare
event), there is a huge imbalance of classes in VAD, and this makes it even more difficult
for a supervised classifier to perform well (Kim et al., 2020). Moreover, the big diversity
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of anomalies disturbs the proper training procedure and practically makes it infeasible
to consider all anomaly types. Thus, supervised VAD has a very limited applicability in
real-life applications.

3.2.1.2 Semi-Supervised VAD

Since anomalies are very diverse and rare, it is implausible and computationally expen-
sive to access the complete range of anomalous and normal events for training. However,
using both normal and abnormal samples during training provides a better anomaly un-
derstanding to the model. Therefore, some works propose semi-supervised VAD, where
they use a very small portion of abnormal samples along with the usual training dataset
(with no anomalies) (Akcay et al., 2018; Ruff et al., 2019; Liu et al., 2019).

3.2.1.3 Weakly Supervised VAD

Another, more realistic form of supervision in VAD is weak supervision. It comprises of
video-level labels (as opposed to video clip or frame-level labels), i.e., a label indicating
whether a video is normal or contains anomaly somewhere, but we do not know where
(Sultani et al., 2018). UCF-Crime dataset contains these kinds of labels by default (Sul-
tani et al., 2018). Researchers also re-arranged the well-known ShanghaiTech (Luo et al.,
2017a) dataset to have weakly labeled anomalous videos during training. It is known as
re-organized ShanghaiTech (Zhong et al., 2019) dataset. Some notable works on weakly
supervised video anomaly detection are (Sultani et al., 2018; Zhong et al., 2019; Majhi
et al., 2021; Feng et al., 2021; Tian et al., 2021; Li et al., 2022).

3.2.1.4 Formalism: VAD with anomaly information

We assume x ∈ X and y ∈ Y respectively as the input and the output of a VAD system.
X and Y represent respectively the input and output space. In the case of video anomaly
detection, x can be either a video clip, a video frame or something else like object in
frames, depending on the method (refer Section 2.5.1 for more details), and y ∈ {0, 1} is
the associated label where 1 indicates anomalous class and 0 otherwise.
We assume a training set D = {(xi, yi)}Ni=1 ⊂ X × Y composed of N training samples.
The goal is to learn a mapping function that can correctly predict the label y given the
input x. In VAD with supervision, the anomalies are simply defined by labels given in the
labeled dataset.

In general, a discriminative model, represented by function f and composed of param-
eters θ is supervisely trained as:

θ∗ = arg min
θ

Ex∼X [ Ldis(fθ(x), y) ] , (3.1)

where Ldis is a discriminative loss function. This can be easily used for the VAD task
with a dedicated loss function.

Like the usual supervised binary classification setup, during testing phase, an input
sample x can produce a two-dimensional output (or a single dimensional output) ŷ =
fθ(x), where each dimension corresponds to the probability of normal and abnormal classes
in [0, 1]. The class with higher probability is predicted.
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3.2.2 VAD without anomaly information

In this case, we have training data with no labels. The main assumption is that the train-
ing data has none to very negligible amount of anomalies, which is true since anomalies
are rare. In other words, the training data principally have normal events, i.e., only one
class. Based on this, a popular paradigm for anomaly detection is one-class classifica-
tion, i.e., to encode the usual pattern with only normal training samples (Kiran et al.,
2018; Ramachandra et al., 2022). Then, the distinctive encoded patterns are detected as
anomalies. In this technique, anomalies are detected solely based on intrinsic properties
of normal data instances. The main idea is: “Something that has not being seen before
is considered anomalous”. Since in unsupervised VAD, we do not have strict assumptions
about the training data, it leads to generalizability, especially for applications in which
there is not a precise definition for anomalous events (Mohammadi et al., 2021).

3.2.2.1 Formalism

The formalism proposed here is inspired by probably approximately correct (PAC) learn-
ing framework (Valiant, 1984). In unsupervised VAD, the training set D does not contain
labels, i.e., D = {xi}Ni=1 ⊂ X with N training samples. Usually, it is equivalent to assume
that all videos of D are normal videos, i.e., their labels y = 0. Hence, video clips follow
a distribution N , usually called normality.
A reconstructive model (Kiran et al., 2018), like an autoencoder, is trained as:

θ∗ = arg min
θ

Ex∼N [ Lrec(fθ(x), x) ] , (3.2)

where f is a reconstruction function composed of parameters θ and Lrec is a reconstructive
loss function. During testing, a reconstruction error ŷ is calculated for an input sample x
as:

ŷ = R ( Lrec(fθ(x), x) ) , (3.3)

where R is a common re-scaling function to transform the error into a probability in [0, 1].
Then, when the reconstruction error is low, i.e., it is inferior to a threshold ε << 1, the
input sample is classified as normal with a high confidence, denoted 1− δ where δ << 1:

p ( x ∼ N | ŷ ≤ ε ) ≥ 1− δ . (3.4)

Conversely, when the reconstruction error is high, i.e., it is superior to the threshold 1−ε,
the input sample is classified as abnormal with a high confidence:

p ( x ∼ A | ŷ ≥ 1− ε ) ≥ 1− δ , (3.5)

where A is the distribution followed by abnormal videos.
Finally, we can define abnormality as the complement of the distribution of training

set : A = X\N . It must be well noted that this representation takes care of complicated
or debated cases for VAD using the uncertainty parameter δ << 1. It denotes in Equa-
tions (3.4 and 3.5) that we can never be completely sure that if the reconstruction error
is small, it is normal and if it is large, it is an anomaly. It other words, we cannot be sure
that all representations far from distribution followed by training data should be anomaly.
For example, in ShanghaiTech dataset, the normal activities like picking up stones and
eating ice-creams are present only in the testing set and not the training set. Therefore,
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even if the reconstruction error is high for these activities, we cannot be fully certain that
they are anomaly due to the uncertainty parameter δ. Like reconstructive models, this
definition of anomalies can be easily extended to generative models also.

3.3 Defining perimeter intrusion detection

In simple words, the task of perimeter intrusion detection (PID) aims to detect the pres-
ence of an unauthorized moving object in a protected site during a certain time. As
described before, PID is a specific type of VAD task. Furthermore, intrusions are a par-
ticular type of anomalies, classified as point and contextual anomalies (Chandola et al.,
2009). But contrary to VAD, we can more concretely define this task as it has certain
unique attributes like perimeter, intruder object type, movement constraints and site
protection time.

The PID task has been defined in various ways in the state-of-the-art. Vijverberg et al.
(2014) defined a perimeter intrusion detection system (PIDS) as a monitoring system
that identifies the presence of humans or devices in a pre-defined field of view. In (Kim
et al., 2018b), it is defined as a system that detects physical intrusions on a site having
a protective barrier to isolate it from outside. Aravamuthan et al. (2020) described it as
a system that detects the movements of intruders attempting to breach a security wall
or region and alert security. However, all these definitions lack clarity and formalization;
for example, the following questions need to be addressed: “what are intruders?”, “does
moving intruder cause intrusion?” and “is a perimeter necessary?”. To answer all these
questions concretely, we must mathematically define a PIDS. Before defining a PIDS, we
need a definition of intrusion. Since objects cause intrusion, we first define an object in
the video.

3.3.1 Object in the Video

We define a video V acquired for n frames during the interval T = [1, n] as:

V =
{
It ∈ RH×W×D}

t∈T , (3.6)

where It denotes the frame at the time instant t, with height H, width W and number of
channels D. To define an object in the video, we must first specify the object definition
at frame-level. An object in a frame or image is defined with a spatial specification and
a class that distinguishes one family of objects from another (such as humans, animals,
or cars). The spatial specification can be either on pixel-level by allocating each pixel to
an object or background, or on area-level by encapsulating the object in a bounding box.
We choose the bounding box specification as it has been used in the literature extensively
(Zou et al., 2019). It should be noted that the choice of spatial specification (bounding
box or otherwise) cannot have an impact on the intrusion definition. Thus, we define an
object at frame-level with a class and a bounding box. To define an object in the video,
we consider all of the frames where it is present. Therefore, an object oi in the video is
defined as:

oi =
(
{bi,t}t∈T , ci ∈ C

)
, (3.7)

where ci is the class of the object from the set of object classes C, and bi,t is its bounding
box at time instant t, which is defined as:

bi,t = {gi,t, wi,t, hi,t} , (3.8)
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where gi,t, wi,t and hi,t are the center, width and height of the bounding box, respectively.
The center is defined by its coordinates as gi,t = (xi,t, yi,t) ∈ It. Note that, instead of the
bounding box center, it is also possible to choose other points, such as the bounding box
bottom, as reference. We illustrate these definitions in Figure 3.1.

Figure 3.1: Video with n frames of height H, width W and channels D = 1. Two objects,
shown in orange and green bounding boxes, are defined as o1 = ({b1,1, b1,2, b1,3}, c1) and
o2 = ({b2,3}, c2), where c1, c2 ∈ C are the object classes. Here, {b1,1, b1,2, b1,3} are bounding
boxes of object 1 on first three frames and {b2,3} represents bounding box of object 2 at
frame 3.

3.3.2 Intrusion event

For the protection of a site, some parameters must be defined to qualify objects as non-
authorized (na), i.e., intruders.

• Sna ⊆ RH×W : the subset of the frame/image, defining the surface to protect.

• Tna ⊆ T : the time interval during which the surface must be protected (e.g.,
protection only during night).

• Cna ⊆ C : the set of non-authorized classes, such as person, car, truck, etc. These
classes of objects are considered as possible intruders and can be different from one
site to another.

Since Cna is a non-finite set (it is impossible to make the exhaustive list of non-
authorized objects, exposing the system to omissions), it is easier to explicitly define
a short list of authorized objects Ca (such as small animals), which leads to Cna = C\Ca.

An object causes an intrusion event if it belongs to a non-authorized class and is
moving in a protected area during a prohibited time interval. Our hypothesis is that the
object should be moving and not stationary to cause an intrusion event. It is to tackle the
case where the unauthorized object enters and stays for a long period of time in the site.
For example, if a car enters the site, it causes an intrusion event (assuming car belongs
to non-authorized class) but later if the car stays stationary in the site for many days, it
is not necessarily causing an intrusion event. We are interested in knowing if the intruder
has entered the site, thus our hypothesis of moving object. We define the intrusion event
caused by an object oi as:

IE(oi) = { It s.t. ci ∈ Cna and t ∈ Tna and ‖grad ~gi,t‖ > 0 and gi,t ∈ Sna}t∈T , (3.9)

where ‖grad ~gi,t‖ is the gradient of object oi at instant t and it being non-zero signifies
that the object is in motion. Thus, the intrusion event caused by object oi is a collection

71



CHAPTER 3. DEFINING TASKS AND THEIR EVALUATIONS

of all the frames It such that t ∈ Tna, object class ci ∈ Cna, the gradient is non-zero and
the bounding box center lies in the protected area.

Figure 3.2 illustrates the intrusion event caused by an object. The surface to protect
Sna is depicted with a yellow trapezoid in each frame, and we assume that we want to
protect it during the entire video. One object is present in the video, and it is shown with
a rectangular bounding box plus a center. The object is in motion from the second frame
until the eighth frame. While in motion, the center of object lies in Sna from fourth to
seventh frame, causing an intrusion event. Thus, this object triggers an intrusion event
for four frames.

Figure 3.2: Illustration of an intrusion event caused by a single object. Video with n
frames, where Sna is shown with yellow surface and object with a green bounding box
plus center. The object causes an intrusion event for four frames from frame I4 to I7,
colored in red.

Since a video can have more than one object causing intrusion events, we define the
intrusion events of the whole video containing j objects as:

IE(V) =

j⋃
i=1

IE(oi) . (3.10)

3.3.3 Intrusion interval

Figure 3.3 shows three intrusion events caused by three objects in the video. We can
observe that intrusion events of objects 1 and 2 overlap in time for two frames. It means
that for those two frames, there were two objects causing intrusion events simultaneously.
The intrusion events of this video is a collection of all the intrusion frames, marked by
1 (see Figure 3.3). In the context of video surveillance, we are concerned with whether
there is an intrusion event, regardless of whether one object or many objects are causing
it. Therefore, we are interested in an interval of a contiguous sequence of intrusion frames.
We term this as an intrusion interval, and the task of intrusion detection is focused on
detecting them. Formally, an intrusion interval II ⊆ IE(V) is defined on a closed interval
as:

II = {It ∈ IE(V) with t ∈ [tstart, tend] s.t. Itstart−1 /∈ IE(V) and Itend+1 /∈ IE(V)} , (3.11)

where tstart and tend denote the first and last frames of an intrusion interval. In other
words, an intrusion interval is a contiguous sequence of frames of maximal size derived
from IE(V). Figure 3.3 depicts two intrusion intervals of the video.
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Figure 3.3: Illustration of intrusion events of the video and intrusion intervals. Objects
o1, o2 and o3 cause intrusion events IE(o1), IE(o2) and IE(o3), marked with value 1.
IE(V) is collection of all the frames with value 1. Two intrusion intervals II1 and II2
are shown in red intervals.

3.3.4 PIDS

Given a precise definition of intrusion, we can now define a perimeter intrusion detection
system (PIDS). Given a video V and intrusion parameters (Sna, Tna, Cna), the prediction
of a PIDS can be defined as:

P(V ,Sna, Tna, Cna) = {p̂t ∈ {0, 1}}t∈Tna , (3.12)

where p̂t is a binary prediction for each frame t of video V for time Tna, with 1 denoting
a frame predicted as an intrusion, and 0 otherwise. Therefore, a PIDS classifies each
frame into an intrusion frame or otherwise. This type of output is useful when we want
to evaluate a PIDS at frame-level (refer Section 3.4.1). In a real-life surveillance system,
the system sends an alarm signal to surveillance personnel as soon as there is a transition
from a normal to intrusion state (i-LIDS Team, 2006). The output of the PIDS O(P) can
be derived from P as follows:

O(P) = { p̂t ∈ P s.t. p̂t−1 ∈ P with p̂t−1 = 0 and p̂t = 1 }t∈Tna . (3.13)

This is a set of intrusion alarms created by the system, marked by the rising edge,
i.e., the transition of the system state from non-alarm to alarm. These alarms alert
the surveillance personnel about a suspicious activity. For each alarm, a mini clip is
sent containing some frames before the alarm and some frames after the alarm. The
surveillance personnel visually analyze this mini-clip and decide whether it is an actual
intrusion activity or a false alarm. Therefore, we need an evaluation scheme that takes
into account this real-life constraint.

3.4 Evaluation protocols

Given a video or set of videos and the requested task, the system can detect intrusions
or anomalies. To evaluate the performance, we need to compare the predicted output
with ground truth annotations. The way this evaluation is carried out is essential as each
evaluation scheme quantifies different aspects of the system and depending on the task,
one should wisely choose the correct evaluation methodology. The following subsections
present different evaluation protocols. It must be noted that only frame-level evaluation
is used in both the tasks and other evaluation protocols are only used for the PID task.
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3.4.1 Frame-level evaluation

As the name suggests, in this type of evaluation, we are interested in checking whether
each frame of the video is correctly classified or not.

3.4.1.1 VAD task

Irrespective of the VAD types and formalisms defined in Section 3.2, every system outputs
whether a frame is normal or abnormal. Since per-frame anomaly ground truth is normally
available in VAD datasets (refer Section 1.4.1), the predictions can be easily compared
with it. It is simply the binary classification evaluation of each frame of the video (Sokolova
et al., 2006). First, the elements related to the confusion matrix, i.e., true positive
(TP), false negative (FN), false positive (FP) and true negative (TN), are computed with
anomaly as the objective class. Then, the performance of VAD is evaluated using the
metrics, such as the precision, recall, AUROC, AUPR, etc., as defined in Section 3.5.

In frame level evaluation, the anomalies are evaluated at the lowest level, i.e., frames.
This means that here we loose the notion of anomalous events. For example, if we have
a good frame level score, it does not necessarily mean that all anomalous events are well
detected and maybe a few long anomalous events are contributing a large portion of the
overall score while many small anomalous events are missed or incorrectly detected. In
short, a good frame level anomaly score just gives an overall idea for a VAD performance
and does not guarantee if most anomalous events are correctly detected. Even after
these drawbacks, the VAD community still mostly use the frame-level evaluation protocol
(Popoola et Wang, 2012; Kiran et al., 2018; Nayak et al., 2021; Ramachandra et al., 2022).
In this work, we continue with this evaluation so that we can fairly compare with other
VAD works.

3.4.1.2 PID task

For a video V and given intrusion parameters (Sna, Tna, Cna), the frame-level ground truth
is defined as:

G(V ,Sna, Tna, Cna) = { pt ∈ {0, 1} s.t. pt = 1 if It ∈ IE(V) }t∈Tna , (3.14)

where pt is the ground truth label for each frame t of the video V at time Tna; value 1
denotes an intrusion class, and 0 otherwise.

Given ground truth G and prediction P (see Equation (3.12)), the frame-level intrusion
evaluation is computed like frame-level evaluation of VAD task by computing confusion
matrix elements and using metrics like precision, recall, F1 score, etc.

In this type of evaluation, each frame contributes equally to the overall score. Thus, it
can provide the same overall score for an algorithm that fails to detect multiple intrusion
events altogether, i.e., detecting no frames in those events, versus an algorithm that
detects all intrusion events but does not detect some intrusion frames in multiple intrusion
events. This is an undesirable evaluation in the case of intrusion detection because we
cannot afford to have omissions of intrusion events. In reality, we are more interested
in knowing if the system is able to detect the intrusion events correctly as a whole.
This demands an event-level evaluation. In other words, we want to detect intrusion
intervals (IIs) from the video. More specifically, we are interested in evaluating whether
the beginnings of these intrusion intervals are detected correctly. This is because, if an
intrusion event is detected too late, then that detection is not very useful (i-LIDS Team,
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2006; Buch et Velastin, 2014). The idea is to detect each intrusion interval as soon as it
occurs and, thus, we need an evaluation scheme that takes this into account.

3.4.2 i-LIDS evaluation

To correctly evaluate PID systems, the i-LIDS dataset is provided with an evaluation
protocol (i-LIDS Team, 2006). It focuses on evaluating intrusion at the event-level rather
than frame-level. To be precise, an intrusion is considered correctly detected if there is at
least one system alarm within 10 seconds from the start of the intrusion event.
For an II of the video and alarms O(P), the rules of the i-LIDS evaluation protocol are
as follows:

1. TP: if there is at least one alarm within 10 seconds from the beginning of the II. If
there are multiple alarm candidates, the first one is taken, and the rest are ignored.

2. FN: if there is no alarm within 10 seconds from the beginning of the II.

3. FP: if there is an alarm but not within 10 seconds from the beginning of the II. If
there are consecutive FPs within a 5-seconds gap among them, only the first one is
considered and the rest are ignored.

Apart from these, one rule is specific to the i-LIDS-dataset: all IIs and alarms that
start within 5 minutes from the beginning of the video are ignored. This means that
they wanted to give a preparation time to the system. This evaluation scheme is not
generic and has several drawbacks, as illustrated in Figure 3.4. It penalizes an alarm as
an FP after 10 seconds from the beginning of an II without considering the duration
of intrusion. If the II has a long duration (such as an hour) and we have an alarm at
the 11th second, it is not ideal to mark it as an FP. From a practical point of view, the
surveillance personnel will receive a mini clip as soon as the alarm is triggered and, if
the intrusion is present, then it is not sensible to mark this as an FP. Instead, this alarm
should be ignored as it is not detected within 10 seconds. Similarly, each alarm after
10 seconds but within II is considered as an FP, and this strongly penalizes the system
precision. Instead, these extra alarms should be counted without assigning them as an
FP.

Figure 3.4: Illustration of i-LIDS evaluation protocol, highlighting its drawback on an
intrusion example starting at 9th second. Since no alarm has been raised in the first 10
seconds of the intrusion, a false negative (FN) is counted. Following alarms, at 22nd and
37th second, are marked as false positive (FP) because they do not occur within 10 seconds
from the beginning of the intrusion.
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3.4.3 Edge-level evaluation

To appropriately evaluate a PIDS while considering the real-world aspects, we propose
a new evaluation protocol. An intrusion event begins with a transition from a non-
intrusion to intrusion state, i.e., we have a rising edge as shown in Figure 3.5. Similarly,
an intrusion event stops by a reverse transition, i.e., a falling edge. We are interested
in detecting intrusion within a few frames from the rising edge. Since we focus on this
rising edge, we call this the edge-level evaluation. In other words, we emphasize detecting
the beginning of intrusion intervals. We first define the following terms from an intrusion
interval of the video (see Figure 3.5).

The intrusion interval neighborhood IN is an expanded interval defined by mpre frames
before and mpost frames after the II:

IN(II,mpre,mpost) = [tpre, tpost] s.t. tpre = tstart(II)−mpre and tpost = tend(II) +mpost .

These mpre and mpost frames are in the range of one to five (less than 1/5 seconds for a
video at 25 FPS) and are added in order to take into account the error of annotation.
This error is because it is difficult to mark the exact frame at which the intrusion starts or
ends. This tolerance further permits not strictly penalizing the system when an intrusion
event is detected a few frames before the actual event or when the system detects a few
more intrusion frames after the actual event is finished. These cases arise often when the
intrusion object is in the scene but not inside the surface to protect. Therefore, IN is an
interval where the actual intrusion activity takes place, and an alarm given by a PIDS in
this interval can be counted as either TP or ignored. An alarm given outside IN must be
a false alarm and should be counted as an FP.

Figure 3.5: The top subfigure is an illustration of the definitions of edge-level evaluation
terms on ground truth, with time in abscissa and non-intrusion (0) and intrusion (1) class
for each frame of the video in ordinate. The next two subfigures represent examples of
alarms and possible outcomes (TP, FP, FN) for two different PIDSs evaluated by the
edge-level protocol.

The intrusion beginning neighborhood IBN is an interval comprisingmpre frames before
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and m frames from the beginning of II:

IBN(II,mpre,m) = [tpre, tm] s.t. tpre = tstart(II)−mpre and tm = tstart(II) +m .

This interval highlights the importance of the initial frames of an II, where an intruder
has just entered the protected area, and it is in this interval where we ideally want the
PIDS to raise an alarm. An alarm raised in IBN must be a TP.

For an II and alarms O(P), the possible outcomes at edge-level are defined as:

1. TP: if there is at least one alarm in IBN. For multiple alarms in IBN, only the first
one is considered, and the rest are ignored.

2. FN: if there is no alarm in IBN.

3. FP: if an alarm is outside IN. Each alarm outside of IN is counted as an FP.

In this evaluation scheme, alarms lying outside IBN but inside IN are ignored. This
means that we neither adversely penalize these alarms as an FP nor count them as a
TP. In event-level evaluation, whether i-LIDS or this scheme, we do not define a true
negative (TN). A TN is when a normal (non-intrusion) event is detected as such; in other
words, how well we are classifying a normal event as normal. However, this is not the
aim of intrusion detection; indeed, it is the opposite. Furthermore, the calculation of
TN is ambiguous. We cannot generalize what length of the non-intrusion video should
be considered as a TN. For example, a non-intrusion video clip of 5 minutes cannot be
considered as similar to a non-intrusion video clip of 5 days.
These rules are for individual IIs, but how we deal with scenarios where the intrusion
neighborhoods are so close that they intersect one another is another matter. If INs of
two or more II intersect one another, then we merge them into a single IN. The new IN
consists of mpre frames of the first II and mpost frames of the last II, and all the frames
in between are merged as an II. Algorithm 1 summarizes the protocol to evaluate a
video at edge-level.

Algorithm 1: Edge-Level Evaluation of a PIDS
1 Initialize variables m, mpre and mpost.
2 Calculate IN for all IIs of the video.
3 If two or more INs intersect, merge them into a single expanded IN.
4 Calculate intrusion beginning neighbourhood IBN for each II.
5 Obtain alarms O(P) from the PIDS.
6 Calculate TP, FN and FP.
7 Calculate precision, recall and other metrics.

3.5 Evaluation metrics

Since both PID and VAD tasks are finally a binary classification task, i.e., to classify a
frame or event as an intrusion / anomaly (positive) or otherwise (negative), we can natu-
rally apply common metrics to obtain a quantitative performance measure. We describe
below some widely used metrics in the literature. They are classified into two categories
based on the threshold dependency.
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3.5.1 Threshold dependent metrics

Most of the binary classification methods irrespective of application to VAD or PID
task, produce a continuous output value within a pre-defined range. As an example,
reconstruction-based VAD methods produce an output in [0, 1] range, indicating the prob-
ability for an input to be anomalous (refer Section (2.5.2.1 and 3.2). To convert this
continuous output value into discrete predictions {0, 1}, we need to choose a threshold.
This threshold simply creates a boundary and values above and below it are converted to
1 and 0 respectively.

Given ground truth values, with these binary predictions, we can compute various
metrics as defined below. They also work for methods where the output is not continuous
but discrete values. When any system (PID or VAD) is deployed in a site, we need to
set the threshold and therefore, these metrics are essential in a real-life online scenario.
Concerning their use, the PID community always use these metrics for evaluation (Buch
et Velastin, 2014; Vijverberg et al., 2014; Kim et al., 2018b), while in video anomaly
detection, these are rarely used and instead the offline threshold independent metrics are
used.

3.5.1.1 Precision

The precision is the percentage of correctly predicted output out of the total predictions,
as defined in the Equation (3.15). It is particularly useful when we want to measure how
false alarms are affecting a VAD or PID system. A high value of precision denotes that
we have very low false alarms.

Precision =
TP

TP + FP
. (3.15)

3.5.1.2 Recall

It is also known as sensitivity or true positive rate (TPR). It is the percentage of correct
predictions out of the total predictions, as defined in the Equation (3.16). It is useful
when the cost of the false negatives is high, i.e., when we cannot afford to have omissions
of intrusions or anomalies. Usually, in any system, the preference is to have the minimum
omissions possible. This means that we need to ideally maximize recall.

Recall =
TP

TP + FN
. (3.16)

3.5.1.3 False positive rate (FPR)

It is also known as the false alarm rate. As shown in the Equation (3.17), it is the ratio
between false alarms or false positives and total ground truth negatives (non-intrusion or
non-anomaly in our case). True negatives (TN) have a major impact in FPR.

FPR =
FP

FP + TN
. (3.17)

Concerning VAD and PID, true negatives refer to the case where normal frames or
events (without anomaly or intrusion) are correctly detected. Both these tasks usually
have abundance of normal frames since anomaly or intrusions are rare events. Therefore,
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this metric is not very useful while evaluating systems for these tasks. However, popular
VAD datasets like UCSD Pedestrian, CUHK Avenue, etc. have almost balanced testing
set (see Section 1.4.1) . Thus, FPR is computed for them and it is used to calculate
AUROC score (more details in Section 3.5.2.1).

3.5.1.4 Fβ Score

To take into account both omissions (FN) and false alarms (FP), we need a way to combine
precision and recall. The Fβ score combines them with a bias parameter β, which provides
more or less importance to recall or precision.

Fβ =
(1 + β2)× Precision× Recall

(β2 × Precision) + Recall
. (3.18)

The most common values used for β are 0.5, 1 and 2. With β = 1, we obtain the F1

score. The F1 score is the harmonic mean of precision and recall and it is widely used
(Vijverberg et al., 2013, 2014; Sehairi et al., 2017). The choice of β depends on the
precision versus recall demand. For the i-LIDS dataset, there are two system roles with
different bias values (i-LIDS Team, 2006). The roles are called ‘Operational Alert’ and
‘Event Recording’, with β as 0.81 and 0.87, respectively (in (i-LIDS Team, 2006), α is
used instead of β, where α = β2). The former role is designed for real-time intrusion
detection and, therefore, has a lower β value to give more importance to precision, as
false alarms are essential here. The latter role is for non-real-time systems, where videos
are recorded and analyzed on an offline basis. It has a higher β value, as we cannot afford
omissions in this case. Most PID systems (Buch et Velastin, 2008, 2014; Cermeño et al.,
2018) use this Fβ metric for evaluating on the i-LIDS dataset.

3.5.2 Threshold independent metrics

Often in threshold dependent metrics, it is not clear how the threshold is chosen (Saito et
Rehmsmeier, 2015). Therefore, systems tend to choose a threshold to maximize the final
score, e.g., Buch et Velastin (2014) chose a high detection threshold to eliminate false
alarms, as the metric used is Fβ with β = 0.81, which favors precision.

Alternatively, a system can be evaluated over a range of all possible thresholds, thus
avoiding bias towards the choice of a fixed single threshold. We present below these
types of threshold independent metrics. The main requirement of these metrics is that
the system output should be continuous, and they are not adapted for discrete output
systems. Contrary to threshold dependent metrics, these are not used in online system
deployment but in offline system evaluation instead. These metrics are rarely used in
PID community but are very prevalent for the video anomaly detection task (Kiran et al.,
2018; Nayak et al., 2021; Ramachandra et al., 2022).

3.5.2.1 AUROC

It stands for area under the receiver operating characteristics (ROC) curve. The ROC
curve shows the trade-off between sensitivity and specificity (Fawcett, 2006). It is created
by plotting the TPR against the FPR, where each point corresponds to a threshold from
the list of possible thresholds. This is depicted in Figure 3.6. In ROC curve, a classifier
with random performance is shown via a straight diagonal line from (0, 0) to (1, 1), and
this line is the baseline of ROC, with AUROC value of 0.5. The best possible value of
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AUROC is 1, which signifies perfect classification. Since this score contains FPR, it is
influenced by true negatives (refer Section 3.5.1.3). Therefore, AUROC is not suitable for
imbalanced datasets (Saito et Rehmsmeier, 2015; Sokolova et al., 2006). Since anomalies
or intrusions are rare events, there are often very few anomalies or intrusions compared to
the normal events. Therefore, theoretically AUROC should not be used for these tasks.

Figure 3.6: Illustration of ROC (left sub figure) and PR curve (right sub figure). Each
point in dotted lines represent values ( (TPR, FPR) for ROC and (Precision, Recall) for
PR) corresponding to a threshold. The area under the ROC or PR curve, i.e., AUROC
or AUPR is depicted with colored areas.

However, recent VAD datasets have balanced dataset for testing phase and therefore
AUROC is primarily used there (Kiran et al., 2018; Nayak et al., 2021). Given the
VAD test set, the ROC curve is obtained by varying the thresholds on the frame level
predictions across the whole test set. It is called as “AUROC on all videos” or micro-
averaged AUROC. However, some VAD works compute a “AUROC per video” and report
the average, also called macro-averaged AUC (Georgescu et al., 2021a,b; Ristea et al.,
2022). In this metric, the succession of thresholds to estimate the ROC curve is not
common to all test videos. Since thresholds are adapted to each video, ROC curve is in
risk to be overfitted, providing overly optimistic performances. Consequently, AUROC
should always be measured as “AUROC on all videos”, computed on the whole test set
with thresholds common to all test videos concatenated together (Fawcett, 2006).

3.5.2.2 AUPR

It refers to area under the precision-recall (PR) curve. The precision-recall plot shows
precision values for corresponding sensitivity (recall) values. Like the ROC curve, it is
model-wide evaluation with complete set of possible thresholds, as shown in Figure 3.6.
The AUPR values range from 0 to 1, where 0 and 1 are for the worst and perfect classi-
fication, respectively. It is particularly useful when the datasets are highly imbalanced,
such as in PID or VAD (Saito et Rehmsmeier, 2015). This is because it uses precision
and recall which are focused on predictions of correct class (intrusion or anomaly), rather
than that of incorrect class (normal class), i.e., no dependency on true negatives unlike
ROC. Concerning VAD, it has been used in some works (Kiran et al., 2018) and it must
be used if future datasets are imbalanced (which theoretically they should be).
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3.6 Conclusion

In this chapter, we defined the two tasks that we tackle in this thesis, i.e., the video
anomaly detection and the perimeter intrusion detection. We provided proper formalism
to both these tasks. This clear mathematical formulation is essential for properly evalu-
ating works in these tasks. We explained the usual evaluation protocols and since they
were not suitable according to the definition and task requirements, we provided a new
evaluation protocol. We also studied various evaluation metrics and explained which ones
are suitable for which tasks.

Concerning video anomaly detection, we are interested in detecting the occurrence of
unusual appearance or motion attributes in unusual locations in the video. There are two
principal ways to define an anomaly: either with some labeled anomaly examples during
model training, or with only normal (non-anomaly) examples. The anomalous examples
can provide weak, semi or full supervision. This first case of VAD with supervision is
not practical for real-life use. The two main problems with it are: (1) since anomaly
occur so rarely, it is practically impossible to have annotations for all possible future
anomalous activities in any natural scene, and (2) even if all possible anomalous activities
were available for supervision, the task itself would reduce to binary video classification
where the anomalous class is “known”. This vanquish the spirit of video anomaly detection
where the ultimate goal in practice is to detect any deviation from normality. In contrary
to this, in the second case, the normality is learned from the data. We have data with only
normal scenes in the case. Hence, the main idea is to understand normality from this data
and then the distribution outside this normality is defined as the anomaly. We propose
a formalism for this using the PAC learning framework, which takes into account the
complicated cases where normality and abnormality are conceptually very close to each
other. For VAD evaluation, frame-level evaluation is followed, therefore the concept of
anomalous events is neglected. Furthermore, the threshold-independent metrics are used
instead of online metrics. In short, frame-level AUROC metric is used as an evaluation
measure in most VAD systems.

Perimeter intrusion detection is a special sub-task of VAD with several specificities like
perimeter, intruder object type, movement constraints, etc. It has never been systemati-
cally defined before. We first mathematically define how an object can cause an intrusion
event, followed by the definition of intrusion intervals in the video. We proposed that the
task of perimeter intrusion detection is basically to detect the beginning of these intru-
sion intervals. Since these intrusion intervals are nothing but events, so we first explained
the existing i-LIDS evaluation protocol. We found several drawbacks in this evaluation
scheme. Therefore, we proposed a new evaluation protocol for PIDS, called edge level
evaluation. It is completely coherent with the PID definition and basically focuses on
evaluating a PIDS based on the rising edge from non-intrusion to intrusion state. In
other words, this protocol helps evaluating if an intrusion was detected within the first
few seconds of its beginning. Finally, similar to i-LIDS evaluation protocol, the threshold-
dependent metrics like precision, recall and F1 score can be used with the proposed edge
level evaluation.

81



CHAPTER 3. DEFINING TASKS AND THEIR EVALUATIONS

82



Chapter 4

Unsupervised autoencoder and
adaptive detection

In this chapter, we introduce an unsupervised perimeter intrusion detector. We first in-
troduce how we learn spatio-temporal normality from videos with an end-to-end trainable
neural network, followed by how intrusions are detected using an adaptive mechanism that
handles long-term variations in scene dynamics. We then provide a thorough comparative
analysis with other methods on i-LIDS dataset, using different evaluation protocols. Part
of this work was published in IEEE International Conference on Image Processing (ICIP)
2022 (Lohani et al., 2022a).
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4.1 Introduction

In this chapter, we introduce an unsupervised deep learning method for perimeter intruder
detection. As already stated in previous chapters, intrusions are rare by nature and
therefore it is very difficult to have large amounts of annotated examples for training a
supervised model. We saw in the review of existing PID methods (refer to Section 2.6) that
most methods do not use deep learning. The ones that use deep learning rely on externally
trained supervised object detectors and thus their functioning is biased on the external
dataset, and furthermore they assume that intruder object class is known beforehand.
Therefore, there is a need of methods which learn from the data itself, without requiring
need of annotation or external dataset. We propose such an approach in this chapter.

Inspired from the methods of video anomaly detection, this work is based on video clip
reconstruction proxy task for PID. The same principle as VAD is followed here: learning
normality while training and detecting intrusions as deviations from normality. One major
challenge for any PIDS is to adapt to changing weather, light, and environmental condi-
tions. Standard reconstruction based methods are sensitive to these dynamic conditions
(Chalapathy et Chawla, 2019; Kiran et al., 2018). To address this limitation, we propose
an adaptive strategy so that the presented unsupervised PIDS works well irrespective of
scene dynamics.

In the rest of the chapter, we present our proposed method and provide an extensive
comparative analysis of it with other methods.

4.2 Unsupervised and Adaptive Perimeter Intrusion De-
tector

In this section, we present our proposed AE-Adapt (AutoEncoder with Adaptive thresh-
olding) method. It is the first unsupervised deep learning approach for perimeter in-
trusion detection. It has two main steps: learning spatio-temporal normality using an
autoencoder and detecting intrusions using this learned representation via an adaptive
mechanism. These two steps are described in following subsections.

Before presenting them, we must define the input to our method. We use video clip
as the input unit. We mathematically define it as follows. Given a video V with n frames
{I1, I2, . . . , In}, a video clip Vl,s of length l and temporal gap s between frames is defined
as:

Vl,s =
{
I1, I1+s, . . . , I1+(l−1)s

}
= {I1+xs}0≤x<l , (4.1)

where for simplicity, it is assumed that the clip starts from the 1st frame.

4.2.1 Learning spatio-temporal normality

We propose a strided 3D convolutional autoencoder (S3DCAE) as autoencoder for our
PIDS as shown in Figure 4.1. Given a video, we use a sliding window to extract video
clips. Each video clip is fed to the S3DCAE, which reconstructs it. The idea is to train
the autoencoder with only normal videos (without intrusions) and minimize the error
between input and reconstructed video clips. The intuition is that the trained autoencoder
should correctly reconstruct normal video clips and badly reconstruct the video clips with
intrusions. In other words, it will learn the normality and reconstruction error between the
input and reconstructed clip will help to distinguish between non-intrusion and intrusion.
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Figure 4.1: Learning normality: A sliding window (in yellow) extracts video clips of fixed
length. Each video clip is fed to S3DCAE, which reconstructs it. The mean squared
error (MSE) between input and reconstructed clip is backpropagated to update learnable
parameters of the autoencoder.

4.2.1.1 S3DCAE architecture

The main components of this architecture are 3D convolutions and 3D deconvolutions.
They were used since they jointly model spatio-temporal information and are better suited
for feature learning from videos than 2D convolutions, 2D convolutions with LSTM, etc.
(Section 2.3).

Let us denote the input as X, where X is a video clip of length T and temporal gap of
1, i.e., X = Vl=T,s=1 = {I1, I2, . . . , IT}. The proposed autoencoder takes X and outputs
a reconstructed video clip X̂ of same dimensions. The error between these clips is the
training loss function (MSE), defined as:

L =
1

T ×D ×H ×W

∥∥∥X̂ −X∥∥∥2
F
, (4.2)

where D, H and W denotes channels (depth), height and width of each frame and ‖ · ‖F
denotes the Frobenius norm.

Figure 4.2 shows the architecture of S3DCAE. Each encoder layer consists of a strided
3D convolution while each decoder layer uses a strided 3D deconvolution (Zeiler et al.,
2010), with kernel size of 5 × 3 × 3 (shape : temporal length, height, width). A stride
of 2 × 2 × 2 is used in each operation except the last 3D deconvolution where 1 × 1 × 1
stride is used. This signifies that each encoder layer reduces the input volume into half,
while each decoder layer (except the last) does the opposite. Encoder is composed of two
layers containing (16, 8) filters, while decoder also have two layers with (8, 16) filters
respectively. The ReLU activation function is used between each layer, except the final
layer, which uses the hyperbolic tangent (tanh) activation. A dropout layer with dropout
probability of 0.25 is applied after the first layer. Overall, we have a light architecture
with only 15, 889 parameters (1011 MB size). Finally, this model is trained using the
Adadelta optimizer (Zeiler, 2012).
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Figure 4.2: S3DCAE architecture for PID with encoder and decoder. Conv3D and De-
conv3D refer to 3D convolution and 3D deconvolution respectively, where s is stride, and
the number that follows − denotes number of filters. The rightmost column refers to the
data shape (channels, temporal length, height, width).

4.2.2 Detecting Intrusions

Once we have a trained model, we use it during testing phase with the hypothesis that
the intrusion frames will be badly reconstructed, i.e., with a high reconstruction error.
Figure 4.3 illustrates how intrusions are detected in our system. A video clip is obtained
using a sliding window, the learned S3DCAE takes it as input and reconstructs it. Then,
the frame level reconstruction error is computed using the input and reconstructed clip.
This reconstruction error is used by an adaptive strategy with moving z-score to produce
an intrusion alarm. These steps are explained in detail below.

Figure 4.3: Detecting intrusion using AE-Adapt: an input video clip is reconstructed
after going through the S3DCAE. The reconstruction error is calculated between these
clips and fed to a moving z-score module, the output of which is thresholded to raise an
intrusion alarm.

4.2.2.1 Frame level reconstruction error

From a test video, we obtain video clips using the sliding window like training. A test
video clip of length T frames and temporal gap s = 1, i.e., {I1, I2, . . . , IT} goes through
S3DCAE to produce a reconstructed clip {Î1, Î2, . . . , ÎT}. The reconstruction error can
then be calculated as:

r =
1

T ×D ×H ×W

T∑
k=1

∥∥∥Îk − Ik∥∥∥2
F
. (4.3)
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For real-time applications, we need a reconstruction error for each frame that the
system encounters. Our method is designed for video clip level and not frame level. The
video clips of length T are formed with temporal gap of one between each video clip. This
means that if we have a video with n frames {I1, I2, . . . , In} and T = 8, the first video
clip is {I1, I2, . . . , I8}, the second video clip is {I2, I3, . . . , I9}, etc. Since each video clip
provides a single scalar value of reconstruction error (see Equation 4.3). To convert this
video clip level reconstruction error to frame level error, we assume that the value of each
video clip reconstruction error corresponds to the last frame of the video clip. This implies
that for first T − 1 frames of a video, there are no frame level reconstruction errors, i.e.,
rx with x ≥ T .

4.2.2.2 Adaptive thresholding using moving z-score

A PIDS installed in a site records videos for many days. This long video sequence has
very high scene dynamics with changes in light, weather, temperature, scene background,
etc. Since reconstruction error changes with scene dynamics, naively thresholding it can
provide undesirable outcomes (Ribeiro et al., 2018). To resolve this issue, most work
using unsupervised autoencoder try to standardize the per-frame reconstruction error
for each video (Ribeiro et al., 2018; Ramachandra et al., 2022). They usually use the
min-max (MM) rescaling which force the error values to be in the [0,1] range, where 0
and 1 represents normal and intrusion case, respectively. Thresholding on this rescaled
reconstruction error is dangerous because this standardization will force the lower values
of reconstruction errors (e.g., values of night) to be considered as normal (since forced to
be near 0), even if there is an intrusion.

To address this issue of adjusting to scene dynamics, we propose an adaptive mech-
anism which follows the reconstruction error along time and trigger an alarm as soon as
it deviates from the normal behavior and then continue adapting to the new values. It is
also well aligned with perimeter intrusion detection definition, where the goal is to detect
just the beginning of intrusions and not every intrusion frame in the video. We compute
the moving z-score (MZ) of reconstruction errors to provide a temporal standardization
of values (Barthélemy et al., 2019). Once standardized, values can be easily compared
to a fixed threshold zth. Using frame level reconstruction errors for first t frames, i.e.,
{r1, r2, . . . , rt}, the system is initialized by computing the mean and standard deviation of
them, denoted as µt and σt, respectively. For the (t+1)th frame, z-score of reconstruction
error rt+1 is computed as:

zt+1 =
rt+1 − µt

σt
, (4.4)

If this value is greater than a fixed chosen threshold, i.e., zt+1 ≥ zth, the system raises an
intrusion alarm. Regardless of whether an alarm is raised or not, the moving mean and
standard deviation are updated as:

µt+1 = α rt+1 + (1− α) µt

σt+1 =
√
α (rt+1 − µt+1)

2 + (1− α) σ2
t ,

(4.5)

where α ∈ [0, 1] defines the speed of the exponential update. If α is close to 1, then
it implies that the system adapts itself quickly with the current value of reconstruction
error, without taking much into account the evolution of error. Contrary to this, when α
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is close to 0, the system relies on evolution of error historically and the current value of
error plays a smaller role. This process with Equation (4.4) and Equation (4.5) is repeated
for each new frame of the video.

4.3 Experiments and results

In this section, we first describe our experimental setup with data, methods and evaluation
protocols. Next, we present various results comparing our approach different existing PID
systems.

4.3.1 Implementation details

Here, we present the data used in experiments, the implementation details of our approach
and other methods, and finally the evaluation protocols used.

4.3.1.1 Data

We used the two cameras views of i-LIDS sterile zone dataset as described in Table 1.2.
The frame resolution of i-LIDS dataset is 720x576. The training set contains 10 non-
intrusion videos per view. The testing set contains 17 and 16 videos of view 1 and view 2,
with 7 and 6 videos containing intrusions respectively (from 36 to 92 minutes in length).
For more details on i-LIDS dataset, please refer to Section 1.4.2.

4.3.1.2 Methods

To compare our method with others using different evaluation protocols, we need their
source code. From the list of PID methods (refer Table 2.2), only one method, i.e., Nayak
et al. (2019), provides an implementation of their method. Therefore, we select it for our
PIDS comparison. Since no classical PIDS (non-deep learning based) provides source
code, we use GOFPID (Barthélemy, 2022), which allows to build the traditional PIDS
pipeline. With GOFPID, we can have a representative method for the classical PIDS,
and thus we include it in our experiments.

The method of Nayak et al. (2019) follows the typical PIDS pipeline (see Figure 2.21),
along with some deep-learning-based components. Given a video, frames are extracted
and the user is asked to draw a perimeter in the frame for protection. Then, a potential
intruder object should be chosen from a list of pre-defined classes, such as person, car,
etc. The system detects the intruder object with bounding box using the pre-trained
YOLO v2 network (Redmon et Farhadi, 2017), having a detection threshold of 0.25 for
class human. If the detected intruder object is inside the pre-defined perimeter, then it is
considered as an intrusion. Finally, the object is tracked using simple online and real-time
tracking (SORT) algorithm (Bewley et al., 2016). For testing it in i-LIDS, we first drew
a protection perimeter following the fences for each view. We then chose person as an
intruder class. Then, frames of each video are fed into the system, and we obtained a
binary intrusion/non-intrusion prediction for each frame.

GOFPID (Barthélemy, 2022) helps to define the traditional PIDS pipeline. It also
provides suitable configuration for the i-LIDS dataset. We use this default i-LIDS config-
uration as the classical PIDS method, and it can be described as follows. First, the user
is asked to draw a perimeter in the first frame of the video. Along with perimeter, the
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perspective size of the intruder object (here person) at different distances from the camera
is also requested. We use the same perimeter like last method and use the perspective
settings provided for i-LIDS with GOFPID. Given these settings, the input video frame is
first denoised by spatial blurring using a Gaussian filter. Then, the foreground detection
is performed using an improved adaptive Gaussian mixture model (Zivkovic, 2004). The
obtained foreground mask is then denoised by mathematical morphology. The created
foreground blob is then checked for two conditions: whether it is inside the perimeter
and if it obeys the minimum object size according to the perspective setting. If these
conditions are met, then the blob is tracked using blob tracking. If the blob is tracked for
a minimum of 3 frames and it displaces for a minimum distance (set beforehand), then
an intrusion alarm is raised. Testing this method on i-LIDS dataset was straightforward
and a binary intrusion/non-intrusion output is obtained for each frame.

Concerning the proposed AE-Adapt method, we trained and tested our model in each
view (view 1 and view 2) of i-LIDS dataset. Test uses the same protection perimeter
as defined for the last two methods, signifying that all activities (intrusion or otherwise)
outside this perimeter are ignored. Non-intrusion videos from training set of each view
are used for training, using one Nvidia RTX 3090 GPU, with a batch size of 32. Each
frame is converted to grayscale, pre-processed using histogram equalization and pixels
were rescaled to [−1, 1]. For each video, input video clip is constructed using 8 frames
with temporal stride of one frame, leading to an input of shape 8 × 720 × 576 × 1.
Adaptive thresholding is initialized with reconstruction errors of first 10 frames, moving
z-score is used with zth = 4.5 and α = 0.01, chosen from the validation set.

4.3.1.3 Evaluation Protocols

We used the three evaluation protocols studied in Section 3.4: frame-level (FL), i-LIDS
and edge-level (EL) evaluations. For edge-level evaluation, we set the tolerance variables
mpre and mpost to 3, i.e., less than 1 second of tolerance. For variable m, the following
values were chosen: 5, 10 and 50. This signifies that we tested the methods to detect
within 1, 2 and 10 seconds from the beginning of intrusion (refer Section 3.4.3). The
parameters for 1 and 2 seconds were selected to satisfy the demands of a real-time PIDS,
whereas the parameter for 10 second was chosen in order to be comparable with i-LIDS
evaluation protocol. For each evaluation protocol, we present the results in terms of
precision, recall and F1 score as defined in Section 3.5.

4.3.2 Comparison of Evaluation Protocols for PIDS

Here, we present overall results of different methods on view 1 and view 2 of i-LIDS
dataset, using different evaluation protocols.

4.3.2.1 Results concerning View 1

Figure 4.5 shows the results of the three methods on view 1 of the i-LIDS test dataset
through different evaluation protocols. To better understand results, we must first com-
prehend how these methods predict intrusions. Figure 4.4 shows predictions using these
methods on portions of the video taken from the i-LIDS test dataset.

Observe how each method differs in intrusion detection behavior. It can be observed
that method of Nayak et al. (2019) has the highest number of correct frame predictions,
followed by GOFPID and our method has the least frame predictions. Similarly, the
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same trend follows for omissions, since Nayak et al. (2019) leaves least number of frames
undetected and our method detects only few frames per intrusion. Both these observations
explain the frame level recall scores of the three methods as seen in Figure 4.5. All the
three methods have few false detections as seen in Figure 4.4, but the ratio of correctly
predicted frames to false detections is highest in Nayak et al. (2019), followed by GOFPID
and finally our proposed method. This explain the frame level precision scores of the three
methods, with Nayak et al. (2019) having the best score. Overall, this leads to the frame
level F1 scores, as shown in the left subfigure of Figure 4.5.

(a) GOFPID (Barthélemy, 2022)

(b) Nayak et al. (2019)

(c) Proposed method: AE-Adapt

Figure 4.4: Example of per-frame predictions of the three methods on portions of video
taken from i-LIDS test dataset. The intrusion intervals (ground truth) are shown in light
red strips, the abscissa represents frames and ordinate shows prediction, where 1 signifies
intrusion and 0 otherwise.

The i-LIDS evaluation protocol functions on event level and concerns with intrusion
alarms rather than frame-level binary prediction. To recall, an intrusion alarm is raised
as soon as a system changes its state from 0 to 1. For the i-LIDS evaluation protocol,
if there is at least one alarm in the first 10 seconds of intrusion (ground truth), it is
counted as a true positive (TP). However, an alarm after 10 seconds is counted as a
false positive (FP), as already explained in Section 3.4.2. It can be observed that Nayak
et al. (2019) has a high number of intrusion alarms from the beginning to end of each
intrusion interval. These alarms at the end are considered as false detections, even though
they happen during the intrusion. This explains their poor precision score in the i-LIDS
evaluation protocol as shown in Figure 4.5. Since this method rarely misses producing
alarms within the first 10 seconds, it has a very low number of false negatives (FNs), and
this is depicted with a high recall score. For GOFPID, we can observe in Figure 4.4 that
it produces alarms in beginning of almost all intrusion intervals, this leads to its excellent
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recall score in i-LIDS evaluation protocol (see Figure 4.5). But this method also have
alarms at the end of intrusion intervals and even outside them (see Figure 4.4), and these
are counted as FP, which is aligned with their poor precision score. Our method has a
lower number of alarms, and most of them occur at the beginning of intrusions as shown
in Figure 4.4. This leads to a smaller FP due to fewer late predictions, and we have a
good precision value as seen in Figure 4.5. We also have few omissions within the first 10
seconds; therefore, we observe a good recall value in terms of i-LIDS evaluation.

Figure 4.5: The results on view 1 of i-LIDS test set for three methods: GOFPID
(Barthélemy, 2022) (in green), Nayak et al. (2019) (in blue) and our method (in orange).
The abscissa represents three evaluation protocols: frame-level (FL) (on left subfigure),
i-LIDS and edge-level (EL) (on right subfigure). i-LIDS is evaluated by default for 10 s
whereas, for EL, we show results for 1, 2 and 10 s. The ordinate represents values of three
metrics: precision, recall and F1 score.

In the edge-level evaluation protocol (Figure 4.5), if an alarm is not raised within the
first m seconds of an intrusion, then it is considered as an omission or false negative. But
alarms raised within the intrusion, even though after m seconds from beginning are not
counted as FP like i-LIDS evaluation protocol. Since it is a difficult task to raise the
alarm in 1st second of an intrusion in comparison to 2nd or 10th second, we observe an
increase in recall for all methods from EL (1 s) to EL (10 s). Nayak et al. (2019) and
GOFPID have a lower recall than our method in EL (1 s) and EL (2 s) because they often
raise alarms later than 2 seconds. Regarding precision, here, the excessive late alarms of
these two methods are not penalized as FPs. Therefore, in contrast to i-LIDS evaluation,
we observe a better precision value for Nayak et al. (2019) and GOFPID in edge-level
evaluation. Our method raises fewer false alarms than both of them, thus, has a better
precision in edge-level evaluation.

Overall, we observe that predictions of Nayak et al. (2019) fluctuates frequently be-
tween non-intrusion and intrusion prediction, thus producing a high number of alarms.
This is because it is focused on human detection and it often loses track of the human from
one frame to another, and then re-detects it, causing more intrusion alarms. Furthermore,
it has very few predictions outside intrusions. That is why it has a good precision and re-
call value at frame-level. However, for i-LIDS and edge-level, we observe that their method
has a low precision value. This is because, from this high number of alarms, only few are
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relevant, i.e., the ones at the beginning of intrusions. Other alarms are either treated as
false alarms or discarded depending on the protocol. The aim of intrusion detection is to
detect the intrusion as soon as possible and not just to classify each frame; therefore, it
is important to use the right evaluation protocol that emphasizes these characteristics.

Unlike the method of Nayak et al. (2019), GOFPID does not have depend on person
detection for PIDS. It first detects blobs. The blobs are then filtered out with the per-
spective size of intruder objects. The resultant blobs are tracked irrespective of the blob
information, i.e., whether it is an intruder blob (human for example), or a non-intruder
blob (camera noise or insects). An intrusion alarm is raised as soon as tracked blobs have
minimum displacement. When an actual intruder enters the scene in i-LIDS dataset, it is
moving and thus the alarm is raised by this system. After some time, either the intrusion
stops (as there is a fence) or blob is too small, thus leading to no alarm state. Finally,
often the intrusion starts moving again (like for going on other side of fence), which causes
another alarm as seen in Figure 4.4. There are a few alarms which are raised not for in-
trusion, for example, when there is sudden change in light in the scene, or due to climatic
conditions like snow. This explains the high precision value and low recall value in frame
level. But in reality, the intrusion alarms were raised in beginning of intrusions and both
i-LIDS and edge-level protocols captured it with high recall values. The i-LIDS evaluation
highly penalized alarms end of intrusion alarms (leading to poor precision score), while
edge-level evaluation addressed this issue. Thus, edge-level protocol helped in correctly
evaluating this system

For our method, it can be observed that we have a lower number of alarms. It focuses
more on the beginning of intrusion events and, due to the z-score, it quickly adapts itself
with the scene dynamics. Since only beginning of intrusion are detected, we have a very
poor frame-level recall. Our method is sensitive to flickering light or moving light con-
ditions, therefore it has some false alarms. The relation between few correctly predicted
frames and some false alarm frames leads to poor frame level precision. Therefore, we
have a poorer frame level score. However, in both i-LIDS and at edge-level, we obtain a
good score because the proposed method raises the alarm as soon as the intrusion occurs,
as it is expected from a PIDS.

4.3.2.2 Results concerning View 2

The results of view 2 are shown in Figure 4.6. The GOFPID method follows has similar
results like in View 1. The recall values are slightly decreased in all protocols because few
difficult intrusions were not detected like person rolling far away from camera with same
clothes as background. The precision values have slightly increases in event level metrics
because there is no camera switch from color to monochrome (since only monochrome
videos) and there are less distractions like animals etc. Therefore, the GOFPID method
detects lesser number of irrelevant blobs as intrusions here. Thus, it obtains overall better
results than View 1. We can observe that in all evaluation protocols, our method has a
similar trend of results as in view 1, but with a slight decrease in metric values. This slight
decrease in values is due to an increase in FPs and FNs, which is linked to more instances
of light fluctuation and intrusions at a far distance. Nayak et al. (2019) obtain similar
results to view 1 in frame-level and i-LIDS-level evaluation. In edge-level evaluation, we
observe a perfect precision score of 1. This is because this method did not predict any false
detection outside the intrusion interval in view 2. This perfect precision score augments
their overall score of in edge-level evaluation. This important detail of no false detections
was not captured by the i-LIDS-level protocol, and we observe a poor value of precision
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for them.

Figure 4.6: The results on view 2 of i-LIDS test set for three methods: GOFPID
(Barthélemy, 2022) (in green), Nayak et al. (2019) (in blue) and our method (in orange).
The abscissa represents three evaluation protocols: frame-level (FL) (on left subfigure),
i-LIDS and edge-level (EL) (on right subfigure). i-LIDS is evaluated by default for 10 s
whereas, for EL, we show results for 1, 2 and 10 s. The ordinate represents values of three
metrics: precision, recall and F1 score.

Overall from this subsection, we can conclude that the edge-level protocol is the most
suited for evaluating any PIDS. It can be seen as an evolved version of i-LIDS evaluation
protocol and thus adheres to real-life constraints, like detecting in beginning of intrusion
event. Furthermore, using its parameters, we can evaluate at different lengths from the
beginning of intrusions, like 1 second, 2 seconds, etc. Concerning compared methods, we
found that their performances were very close to one another in edge-level evaluation.
The GOFPID method is representative of the classical PIDS. After extracting blob, it
filters out objects with irregular perspective size and tracks the resultant blobs for atleast
three frames and checks whether the blob moves a minimum distance. These well formed
post-processing operations allows it to filter many irrelevant blobs of objects. Since this
dataset has only person as intruder without too much distractions, this method performs
very well to detect intruders with a high precision. It only fails in complicated cases
where the object is too far and too similar with the background. Some false alarms are
caused due to fast moving light in the scene or due to snow. The method of Nayak et al.
(2019) uses pre-trained person detector. Since this dataset has only person as intruder,
this method works very well. It rarely detects noise due to snow or lighting conditions as
intrusions, thus it has a very good precision value in edge-level evaluation. When intruder
enters the scene, it detects it but then looses it in tracking and have re-detections. Also,
it has problem in detecting when the person in crawling or log-rolling in the far away
distance. It detects most easily when the person is standing. Due to this, it often have
intrusion alarms late, around the end of intrusion, and this leads to a lower recall value for
this method. Finally, our unsupervised and adaptive PID system performed equally well
in comparison to last two methods. The false alarms are mainly caused due to changing
light conditions and insects on camera. But these are very few in number, thus we have
an overall good precision score in edge-level evaluation. Our method detects intrusions
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Figure 4.7: Qualitative comparison of thresholding strategies on a video, with ground
truth (GT) in blue, thresholds in green and alarms in red. Fixed threshold on reconstruc-
tion error of S3DCAE (top); fixed threshold on min-max (MM) rescaled reconstruction
error (middle); adaptive threshold by moving z-score (MZ) of reconstruction error (bot-
tom).

and adapts itself, we rarely miss an intrusion event, therefore we have a very good recall
value. The missed intrusions include cases where intruders are very far from the camera,
having clothes similar to scene background. Our method has still a room for improvement
and we will present a new method in the next chapter. Since i-LIDS dataset is not very
difficult, having only person as intruder, we also test methods on a private dataset which
is detailed in annex Section A.

4.3.3 Effect of adaptive thresholding

In this subsection, we explore the impact of adaptive thresholding in the proposed method.
Figure 4.7 shows the impact of various thresholding strategies. We can observe that the
reconstruction error varies a lot from one intrusion to another. Therefore, trying to
select an optimal threshold on it can lead to unsatisfactory results, e.g., false alarms
before and after 1st intrusion. After min-max rescaling, we obtain a similar conclusion
as only the range of values have changed to [0, 1], without any significant difference in
threshold choosing strategy. We can see that the moving z-score adjusts itself with the
reconstruction error. It detects the beginning of each intrusion and then updates itself.

In Table 4.1, we quantitatively compare the thresholding strategies on proposed S3DCAE.
We observe that the direct outcome from the autoencoder leads to a poor performance.
As expected, it is difficult to choose a threshold when the error varies due to scene dy-
namics. Rescaled reconstruction error using min-max (MM) scheme improves the overall
result by only 5%. Since i-LIDS test-set videos are very long, the rescaling scheme failed
to handle changes in reconstruction error caused by changing scene dynamics. We can
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Methods Precision Recall F1

S3DCAE 0.54 0.44 0.49

S3DCAE + MM 0.49 0.59 0.54

S3DCAE + MZ 0.92 0.91 0.92

Table 4.1: Quantitative comparison of thresholding strategies, on View 1 of i-LIDS
dataset. S3DCAE stands for proposed autoencoder with frame reconstruction error, MM
for min-max scaling, and MZ for moving z-score. EL (10 s) is used as evaluation protocol.

clearly observe that adding an adaptive thresholding with moving z-score (MZ) almost
doubles the overall performance from F1 of 0.49 to 0.92. These results strongly support
our proposition that an adaptive component is necessary for the deployment of a PIDS
in real-life scenes.

4.3.4 Working illustration of AE-Adapt

In this subsection, we demonstrate the working of our proposed method, shown in Fig-
ure 4.8. For ease of comprehension, we continue with the example of Figure 4.7.

Since it is continuously snowing (distraction) in the scene, there are small zigzag effects
in reconstruction error. We can observe in images that the intruders are at different
distances from camera and the magnitude of reconstruction error depends on it. For
instance, the intruders far from camera occupy a smaller area in the image and thus have
smaller reconstruction error. We also observe a high local RE in the beginning of intrusions
(see images in top row). This is because when an intruder enters the scene, there is a high
spatio-temporal change, which for autoencoder is abnormal (normal training videos in
i-LIDS dataset have extremely low number of examples for where objects move) and thus
it is badly reconstructed. Two images in bottom row show that even though the intruder
is present in the scene, the reconstruction error is relatively lower. The reason behind
is the same, i.e., spatio-temporal change. The spatio-temporal change is comparatively
lower in these cases, since the intruders are hardly moving (trying to break in). Finally,
we can observe via the green curve that the moving z-score just detects the beginning
of these intrusions and then adapts itself with the reconstruction error. This is what we
expect ideally from a PIDS.

4.4 Conclusion

In this chapter, we introduced a new unsupervised method called AE-Adapt, for detect-
ing intrusions in a video stream. We proposed a strided 3D convolutional autoencoder
that learns spatio-temporal normality while training only on normal videos. To detect
intrusions during testing, the error between input and reconstructed video clips is used.
This error is thresholded to detect intrusions. But this error depends on the changing
scene dynamics like weather, temperature, etc. We show that naively thresholding this
error, especially on long videos, performs poorly. Therefore, we proposed an adaptive
thresholding strategy using moving z-score on this error. We found that this adaptive
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Figure 4.8: AE-Adapt working illustration on a portion of video of i-LIDS test set. In
the curve, reconstruction error (RE) is shown in black, threshold in green and alarm in
red. GT stands for ground truth per frame, where blue region indicates intrusion. Some
illustrative frames are shown above and below the plot, where the blue bounding box
shows intruder.

mechanism almost doubles the results of our proposed PIDS.
We also compared our PIDS with two existing methods, using different evaluation

protocols. We showed that intrusion detection should be evaluated at a higher level than
frame level, because frame level evaluation cannot tell if the beginning of intrusion events
is detected or not, which is essential for a PIDS. That is why almost all methods in the
state-of-the-art use i-LIDS evaluation. However, the major problem with this evaluation
is that it penalizes all alarms after 10 seconds, even if they are well within the intrusion
interval. It is indeed too strict in counting FPs, and this hits the overall score negatively,
although the system has detected intrusion well within first 10 seconds. We proposed edge-
level evaluation to address this issue, where we can parameterize the time after intrusion
beginning for the evaluation. This helps in testing the system for different practical time
settings and testing its robustness. More importantly, the alarms after a specified time are
not counted as false positives if they are within the intrusion. We found that irrespective
of method, edge level evaluation should be used for PIDS evaluation.

Concerning compared methods, we found that all the three methods have equivalent
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performance on i-LIDS dataset, with edge-level evaluation. The method of Nayak et al.
(2019) depends on a pre-trained person detector and i-LIDS have only people as intruders,
it was an easy task for this method. GOFPID uses traditional PIDS pipeline and also
manually drawn perspective to filter object blobs of irregular size. It performs well in
this dataset, since there are very few non-intruder moving objects. Our proposed method
first learned normality from training set and then detected intrusions as deviations from
it. Theoretically, our method can detect intrusions caused by other objects since it does
not use beforehand information about intruder class. In fact, for edge-level evalaution for
1 and 2 seconds, our method outperformed other methods. This means it is suitable for
rapid real time detection as well. Nevertheless, our proposed method still has drawbacks.
That is why, in the next chapter, we try to enhance the spatio-temporal comprehension
of normality, to better detect intrusions. Also, since i-LIDS dataset was comparatively
easy, we also test these methods on a private dataset, available in annex.
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Chapter 5

Leveraging Unsupervised and
Self-Supervised Learning

In this chapter, we introduce a new approach for spatio-temporal video representation
learning. It leverages unsupervised and self-supervised learning and is applicable to both
VAD and PID tasks. In the coming sections, we first explain our generic approach. Next,
we reveal how it is applied to VAD and PID tasks. Then, the following two sections
show experiments and results for the two tasks. Major part of this work was accepted in
International Conference on Computer Vision Theory and Applications (VISAPP), 2023.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2 Proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.1 Learning normal spatio-temporal patterns using multiple tasks 101

5.2.2 Testing phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Application to tasks . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 VAD task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.2 PID task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 VAD: Experiments and results . . . . . . . . . . . . . . . . . . 110

5.4.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.2 Quantitative results . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4.3 Qualitative results . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4.4 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 PID: Experiments and results . . . . . . . . . . . . . . . . . . . 115

5.5.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.5.3 Importance of adaptiveness in proposed PID methods . . . . . 117

5.5.4 Testing proposed PIDS in a more challenging real-world scenario 118

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

99



CHAPTER 5. LEVERAGING UNSUPERVISED AND SELF-SUPERVISED LEARNING

5.1 Introduction

In this chapter, we propose a new approach to address the task of video anomaly detection
(VAD) and perimeter intrusion detection (PID). As described in Section 2.5, one of the
most highly successful approaches to tackle VAD is to use a deep autoencoder (AE)
(Hasan et al., 2016; Luo et al., 2017a; Ramachandra et al., 2022) and it also has the
least assumptions on data. We also showed in Chapter 4 that the same principle of AE
for VAD can be also used for the task of PID. Therefore in this chapter, we proceed
with the AE based approaches, proposing a method that leverages unsupervised and self-
supervised learning on a single AE. To this end, we devise multiple tasks to enhance
the normal spatio-temporal understanding of the AE by training it only on the normal
data. Each task has its specific objective: (i) video clip reconstruction (VCR) to learn
spatio-temporal characteristics of the normal videos; (ii) future frame prediction (FFP)
to learn how normal spatio-temporal patterns propagate along the videos; (iii) playback
rate prediction (PRP) to strengthen the playback speed perception of the encoder. Our
method is end-to-end trainable and is jointly trained on the three tasks. While testing,
the anomaly or intrusion is detected if the combined score of the three tasks is high.
Most of the current methods use error measures like mean squared error (MSE) or peak
signal to noise ratio (PSNR) for comparing input and reconstructed frames (Astrid et al.,
2021a,b; Gong et al., 2019; Park et al., 2020; Lv et al., 2021). But these measures are
prone to noise (Gudi et al., 2022; Sinha et Russell, 2011) and therefore we introduce a new
measure, called the blur pooled error (BPE). It is locally sensitive and keeps only relevant
pixels for error calculation. Most works apply a min-max rescaling to anomaly scores per
video (Liu et al., 2018; Gong et al., 2019; Park et al., 2020; Astrid et al., 2021a,b). It
is sensitive to extreme values and to address this issue, we propose a robust rescaling of
scores for VAD.

Overall, in this chapter, we propose a new approach for spatio-temporal learning in
videos. It is generic and we applied it to VAD and PID tasks. In the following sections, we
will present our method in general, then its application to VAD and PID tasks, followed
by respective experiments and results.

5.2 Proposed approach

In this section, we present our proposed LUSS-AE (Leveraging Unsupervised and Self-
Supervised AutoEncoder) method. The main idea is to learn normal spatio-temporal
features in order to better discriminate anomalies or intrusions from normal patterns.
To this end, we propose to train a 3D convolutional autoencoder (3D CAE) on normal
videos using carefully designed tasks in a unsupervised and self-supervised manner. The
video clip reconstruction task learns spatio-temporal characteristics of normal videos.
The future frame prediction task is designed to learn the propagation of spatio-temporal
patterns in the normal videos. Finally, the playback rate prediction task strengthens
the speed understanding of the encoder. The autoencoder is jointly trained on all these
tasks. During testing, each of these branches provides a score to distinguish anomalous
or intrusion frames from the normal ones.

100



5.2. PROPOSED APPROACH

Figure 5.1: Overall schema of the proposed LUSS-AE method.

Figure 5.1 illustrates overall schema of our approach. A video clip of T +1 consecutive
frames is extracted from the video. The first T frames of this clip goes through the
3D CAE, which reconstructs it. This reconstruction, after passing through an activation
function, is compared with original clip to perform the video clip reconstruction task. The
same reconstruction (before activation) is fed to the HFFP head, which predicts a future
frame. This frame is compared with the (T +1)th frame of the input clip, thus performing
the future frame prediction task. Another video clip of T frames is extracted from the
video. It is either accelerated or kept at the original playback rate. Then, this video clip is
fed to the encoder of the 3D CAE. This output is fed to the HPRP head, which produces a
prediction for playback rate of the input clip. This prediction is compared with the actual
playback rate of the video clip, to perform the playback rate prediction task. All these
tasks are performed jointly and the weighted sum of errors is backpropagated together in
the network.

In the following subsections, we first detail the role of each task and how they are
trained together, followed by how these tasks act during the testing phase.

5.2.1 Learning normal spatio-temporal patterns using multiple
tasks

In this subsection, we explain how the proposed tasks help in learning normal character-
istics during training. We describe each task with its role, followed by details on how all
these tasks are trained in a joint manner.

5.2.1.1 Video Clip Reconstruction (VCR)

Reconstructing a video clip is one of the most popular tasks for unsupervised VAD (Astrid
et al., 2021a,b; Gong et al., 2019; Liu et al., 2021b; Zhao et al., 2017). We explored its
principle and some major VAD methods in Section 2.5.2.1. In the last chapter, we pro-
posed a video clip reconstruction based PID method and we demonstrated its usefulness
for the task. Concretely, the VCR task aims to reconstruct an input video clip, mostly
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using an autoencoder (AE) type network. The AE is trained only on normal video clips
with the learning objective of minimizing the mean-squared error (MSE) between the in-
put and reconstructed clips. The main hypothesis is that the abnormal or intrusion clips
will be badly reconstructed during testing.
Using Eq. (4.1), a non-strided video clip of length T + 1 frames can be defined as:

VT+1,1 = {I1, I2, . . . , IT , IT+1} . (5.1)

The first T frames of this clip is used for the VCR task and we denote it as XVCR, i.e.,
XVCR = {I1, I2, . . . , IT}. This video clip goes through the autoencoder followed by an
activation function to produce a reconstructed clip X̂VCR as:

X̂VCR = tanh(Dec(Enc(XVCR))) , (5.2)

where Enc and Dec stand for encoder and decoder networks, respectively, and tanh is the
activation function.
The loss function can then be defined as:

LVCR =
1

T ×D ×H ×W

∥∥∥X̂VCR −XVCR

∥∥∥2
F
, (5.3)

where D, H and W denotes channels (depth), height and width of each frame and ‖ · ‖F
denotes the Frobenius norm.

5.2.1.2 Future Frame Prediction (FFP)

Predicting a future frame is also a well-spread task for unsupervised VAD (Liu et al., 2018,
2021b; Lv et al., 2021; Park et al., 2020) and it was discussed thoroughly in Section 2.5.2.2.
To our knowledge, it has not yet been applied for the PID task. FFP aims to predict an
unseen future frame, given an input video clip. This requires comprehension of how normal
spatio-temporal patterns propagate along the video clip. Like VCR task, the objective
is to minimize the MSE, but between the predicted and actual future frame. Since the
AE is trained only on normal videos, it should predict the anomalous or intrusion frames
poorly.
This task uses the same input of VCR task, i.e., XVCR. After passing through the AE,
the video clip XVCR goes through the prediction head HFFP to predict the future frame
as:

X̂FFP = HFFP(Dec(Enc(XVCR))) . (5.4)

This frame is compared with the actual future frame, i.e., frame T + 1 of VT+1,1 (see
Eq. (5.1)) denoted as XFFP, where XFFP = IT+1. The loss function is then defined as:

LFFP =
1

D ×H ×W

∥∥∥X̂FFP −XFFP

∥∥∥2
F
. (5.5)

5.2.1.3 Self-supervised Playback Rate Prediction (PRP)

Section 2.5.2.3 exhibited that self-supervised learning is very recent for the VAD task.
Like FFP task, it has never been studied for the PID. We propose here a self-supervised
task, i.e., playback rate prediction (PRP), applicable to both VAD and PID tasks. The
PRP task does exist in self-supervised representation learning and it is used as a pretext
task to learn transferable semantic spatio-temporal features for downstream tasks like
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action recognition (Liu et al., 2021a). In other words, first PRP task is performed and
later the learned model is adapted to downstream tasks. Contrary to them, we adapt the
PRP task, and train it via a single AE with two other tasks, all done simultaneously in a
joint and end to end manner.

The original PRP task generates speed labels for video clip sampled at different rates
and aims at predicting them (Benaim et al., 2020; Wang et al., 2020; Yao et al., 2020).
Since we know that the training videos are normal in our case, we adapt this task to
generate two speed-rate labels: original playback rate (implying normal behaviour) and
accelerated playback rate with 2x to 5x speed (implying abnormal / intrusion behaviour).
The motive is to enforce the encoder with motion comprehension of normal videos. During
testing, we hypothesize that the encoder would detect anomalies or intrusions caused by
irregular and abrupt motion.

Concretely, given a video clip, this task aims to predict its playback rate. The clip
with default playback rate of the video is termed as the original playback rate clip and
the clip formed by skipping 1 (2x), 2 (3x), 3 (4x) or 4 (5x) frames is designated as an
accelerated playback rate clip. The input XPRP is a video clip of length T , chosen between
an original playback rate (class c = 1) and an accelerated playback rate (class c = 2) with
equal chance (50% probability each):

XPRP =

{
VT,1 when c = 1

VT,s∈{2,3,4,5} when c = 2
, (5.6)

where the accelerated playback rate clip, when c = 2, is a temporally strided video clip
with temporal gap s randomly chosen between 2 and 5. This input XPRP goes through the
encoder, playback rate prediction headHPRP and softmax activation to produce prediction
as:

ŷ = softmax(HPRP(Enc(XPRP))) ∈ R2 (5.7)
The loss function for this classification task is the binary cross-entropy (BCE), defined
as:

LPRP = −
∑
c=1,2

y[c] log (ŷ[c]) , (5.8)

where y is the one-hot encoding of the ground truth classes for XPRP.

5.2.1.4 Training objective

A single autoencoder is trained with the above-mentioned tasks and the overall training
loss is defined as the weighted sum of individual loss functions:

L = λ1LVCR + λ2LFFP + λ3LPRP , (5.9)

where λ1, λ2 and λ3 are the weights in (0, 1] that regulate the importance of each task.

5.2.2 Testing phase

In this subsection, we describe how the LUSS-AE is used during testing. Given a test
video clip, each of the three tasks provides a score and the overall score is a weighted sum
of these scores. Depending on the aimed task (VAD or PID), this score is post-processed
accordingly, e.g., for VAD, it is normalized. After post-processing, the high values of
the score represents anomaly or intrusion. We first define below some image or video
error measures and then describe how these measures help to calculate the overall score
in inference phase.
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5.2.2.1 Image error measures

To quantitatively assess how well a future frame is predicted or how well a video clip is
reconstructed, we need to compare them with the appropriate ground truth using an error
measure. For this, the most widely used measure is MSE (Gong et al., 2019; Liu et al.,
2018; Lv et al., 2021; Zhao et al., 2017). Given two images J, Ĵ ∈ RH×W×D (in our case,
original and reconstructed frame), the MSE is calculated as:

MSE(J, Ĵ) =
1

D ×H ×W

∥∥∥Ĵ − J∥∥∥2
F
. (5.10)

Since last few years, many works use the peak signal to noise ratio (PSNR) measure (Astrid
et al., 2021a,b; Park et al., 2022; Ye et al., 2019). But PSNR also depends on MSE as can
be seen in its mathematical formulation. Both MSE and PSNR integrate errors on the
whole image and therefore are prone to random and incoherent noise (Gudi et al., 2022;
Sinha et Russell, 2011). To overcome this, a new measure called the proximally sensitive
error (PSE) is proposed by Gudi et al. (2022). It is defined as:

PSE(J, Ĵ) =
1

D ×H ×W

∥∥∥(Ĵ − J) ∗G(σ,k)

∥∥∥2
F
, (5.11)

where ∗ is the convolution operator and G(σ,k) is a 2D Gaussian kernel with size k and
standard deviation σ, given by:

G(σ,k)[i, j] =
1

2πσ2
e−

i2+j2

2σ2 , (5.12)

where i and j are the pixel coordinates centered in the kernel. Thanks to the Gaussian
convolution, PSE smooths incoherent noise and is locally sensitive. However, an anomaly
or intrusion generating an important error in some pixels can disappear in the noise of all
other pixels of the high-dimensional image.

To address this, we take this idea one step further and introduce the blur pooled error
(BPE), defined as:

BPE(J, Ĵ) =
1

D ×H ×W

∥∥∥Sb((Ĵ − J) ∗Bk)
∥∥∥2
F
, (5.13)

where Bk is a generic 2D low-pass filter with kernel size k, and Sb signifies a subsampling
with stride b (Zhang, 2019). Using a low-pass filter smooths incoherent noise, like in PSE.
Then, the subsampling keeps only the most pertinent values from it. Thus, this error has
an increased sensitivity to anomalies / intrusions than PSE. All these measures can easily
be extended to video clip by applying them to its constituent frames.

5.2.2.2 Test score

Here, we will focus on how different tasks of our approach act during testing phase and
provide scores. Concretely, we will see how these scores are calculated and how the final
score is obtained. Figure 5.2 shows the schema of our method during testing phase. Given
a test video, we first generate non-strided clip of length T + 1. The first T frames of this
clip, i.e., I1:T is the input to our method. This input first goes through the encoder and
the resultant latent space is input to two branches, i.e., decoder and HPRP head. The one
that goes through HPRP head produces predictions ŷ which are used to compute the APRP
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score. While the one that goes through decoder bifurcates again into two branches, i.e.,
reconstruction andHFFP head. With reconstruction branch, the input clip is reconstructed
as Î1:T and the AVCR score is computed. The branch of HFFP head produces the future
frame ÎT+1, which is compared with frame IT+1 of the input to calculate the AFFP.

Figure 5.2: Overall schema of the proposed LUSS-AE method during testing. A window
of T + 1 consecutive frames is drawn sequentially from the test video. The first T frames
from this window are the input of the system and the output for each task is computed
on it. The anomaly score is determined for each task, i.e., AVCR, AFFP and APRP, and
the final anomaly score is their weighted sum.

The anomaly scores for the three tasks are described below:
(i) the VCR anomaly score is defined as:

AVCR =
1

T

T∑
t=1

E(Ît, It) , (5.14)

where It, Ît are the tth frame and its reconstruction respectively, and E can be one of
three error measures, i.e., MSE, PSE or BPE respectively.
(ii) the FFP anomaly score is computed as:

AFFP = E(ÎT+1, IT+1) . (5.15)

(iii) the PRP anomaly score is defined as the probability of accelerated class (c = 2):

APRP = ŷ[2] , (5.16)

where ŷ is the output of PRP branch as defined in Eq. (5.8).
The final score is defined as:

A = α1AVCR + α2AFFP + α3APRP , (5.17)

where α1, α2, α3 are the weights in [0, 1] for the three scores.
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5.3 Application to tasks

So far, we introduced the main idea of LUSS-AE. It is generic and can be theoretically
applied to any unsupervised video learning task. In this section, we explain concretely
how it is applied to video anomaly detection and perimeter intrusion detection task, and
what is the final measure that leads to detection of anomalies and intrusions.

5.3.1 VAD task

We recall that in this manuscript, we tackle the problem of video anomaly detection
without anomaly information (refer Section 3.2.2). In other words, we have training data
with no labels, and it is considered safe to assume that it contains only normal events.
The idea is to understand these normal events during model training to detect anomalies
as a deviation to normality during testing. We use our proposed LUSS-AE with video
clip (VC) as the input unit. As explained in Section 2.5.1, video clip is an ideal input
for VAD since it contains both spatial and temporal information and does not have bias
towards external detectors. Our motivation is to propose a generic VAD method without
extra supervision or bias. We present below the network architecture we use in LUSS-AE
for VAD and the final anomaly score to detect anomalies.

5.3.1.1 Network architecture

In this subsection, we detail the network architecture of different components of our
method. Precisely, the components are autoencoder, the future frame prediction head
and the playback rate prediction head.

a) Autoencoder We do not propose a new autoencoder architecture and instead use
a widely popular architecture for VAD. Like this, we can study the viability of our method
and understand how exactly it is better or worse in comparison to the existing works. We
use the strided 3D convolutional autoencoder proposed by Gong et al. (2019), and it is also
used by other works (Astrid et al., 2021a,b). The reason for choosing this architecture is
because there are 3D convolutions and 3D deconvolutions, which help in learning spatio-
temporal features jointly from a video stream (refer to Sections 2.3.3 and 4.2.1.1 for more
information).

In Figure 5.3, we demonstrate this architecture. It takes a video clip of 16 frames as
input, where each frame is 256×256 in size. The encoder uses a series of 3D convolutions
with kernel size of 3× 3× 3 (shape : temporal length, height, width). The stride in first
convolution is of shape 1× 2× 2, signifying it reduces only the spatial dimension by half.
Rest of the convolutions diminish all the three dimensions by half using 2× 2× 2 stride.
The decoder uses 3D deconvolutions or transposed convolutions with the same kernel size
of 3× 3× 3. The stride is 2× 2× 2, except for the last deconvolution which has 1× 2× 2
as stride. Each layer is followed by 3D batch normalization and LeakyReLU activation,
except for the last layer. Finally, the output is of the same shape as the input.

b) Future frame prediction head Figure 5.4 shows the proposed architecture of
HFFP head for VAD task. It takes the output of decoder as its input. This input is passed
through a 3D convolution with kernel size of 3× 3× 3 and stride 16× 1× 1, followed by
tanh activation function to produce the future frame.
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Figure 5.3: Autoencoder architecture for VAD with encoder and decoder. Conv3D and
Deconv3D refers to 3D convolution and 3D deconvolution respectively, and the number
that follows them, denotes amount of filters. The rightmost column refers to the data
shape (channels or filters, temporal length, frame height, frame width).

Figure 5.4: Architecture of FFP head i.e., HFFP, for VAD task. Conv3D refers to 3D
convolution, where k and s are kernel size and stride respectively. The rightmost column
refers to the data shape.

c) Playback rate prediction head The proposed architecture of HPRP head for
VAD is shown in Figure 5.5. It takes the encoder output as its input, i.e., an input of
size (256, 2, 16, 16). The input is reduced to a smaller dimension using a series of max-
pooling and 2D convolution operations. This reduced input is then flattened to a vector
of 512 dimensions. Then, three consecutive fully connected (FC) layers reduce the vector
dimension to 2, where the first two FC layers are followed by ReLU activation function.
Finally, this vector is converted into probabilities using the softmax activation function.

5.3.1.2 Anomaly score

Most VAD works apply a min-max rescaling to scores per video (Liu et al., 2018; Gong
et al., 2019; Park et al., 2020; Astrid et al., 2021a,b). This scaling bounds values to interval
[0, 1] where the minimum and maximum values are forced to be 0 and 1 respectively. Due
to this, it is prone to outliers with extreme values. To address this issue, we propose a
robust rescaling per video. For a test video with n frames, the rescaled anomaly score for
frame t is defined as:

Ãt =
At −med ({Ai})
iqr1−99 ({Ai})

, (5.18)

where med(·) and iqr1−99(·) are respectively the median and the interquantile range (be-
tween 1st and 99th percentiles) of scores {Ai}ni=1. Finally, like previous methods, the higher
scores correspond to anomalies.
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Figure 5.5: Architecture of PRP head i.e., HPRP, for VAD task. The different layers are
depicted in middle column with violet color and the number that follows them, denotes
amount of filters or units. Kernel size and stride are denoted by k and s, wherever
applicable. The rightmost column refers to the data shape (channels, temporal length,
frame height, frame width).

5.3.2 PID task

For PID task, we follow the same intuition as the last chapter. In other words, we train
LUSS-AE on training data with no labels to understand normality, so that intrusion can
be detected during testing as they would follow a deviation from normality. Like VAD
and previous PID method (see Section 4.2.1.1), we use video clip as input. We present
below the network architecture we propose in LUSS-AE for PID and the final intrusion
score to detect intrusions.

5.3.2.1 Network architecture

In this subsection, we detail the network architecture of different components of our
method for PID.

a) Autoencoder For autoencoder, we use the same 3DCAE architecture that we
proposed in last chapter. In this way, we can investigate how well or worse the LUSS-
AE performs in comparison to PID method proposed in the last chapter. As shown in
Figure 4.1, this autoencoder takes an input video clip of 8 frames, where each frame is
720×576 in size. The encoder uses a series of strided 3D convolutions to produce a latent
space of (8, 2, 180, 144). The decoder takes this latent space as input and uses a series
3D deconvolutions to produce an output with same size as that of the input video clip.
Refer Section 4.2.1.1 for more details. Even though autoencoder architecture for both
VAD and PID have strided 3D convolutions and deconvolutions, the architecture of PID
takes only 8 frames as input instead of 16, has a much higher frame resolution than VAD,
and smaller amount of filters and layers, making it computationally fast.

b) Future frame prediction head The proposed architectureHFFP for PID is shown
in Figure 5.6. It takes the output of decoder as its input. A 3D convolution with kernel
size of 3×3×3 and stride 8×1×1 is first applied to this input, and then a tanh activation
function is used to produce the future frame.
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Figure 5.6: Architecture of FFP head i.e., HFFP, for perimeter intrusion detection.
Conv3D refers to 3D convolution, where k and s are kernel size and stride respectively.
The rightmost column refers to the data shape (channels, temporal length, frame height,
frame width).

c) Playback rate prediction head The proposed architecture of HPRP head for
PID is shown in Figure 5.7. The encoder output of size (8, 2, 180, 144) is its input. This
input is reduced to a smaller dimension using a series of max-pooling and 2D convolution
operations. It is then flattened to a vector of 828 dimensions. Then, three consecutive
fully connected (FC) layers reduce the vector dimension to 2, where the first two FC layers
are followed by ReLU activation function. Finally, this vector is converted to probabilities
using a softmax activation function.

Figure 5.7: Architecture of PRP head i.e., HPRP, for perimeter intrusion detection. The
different layers are depicted in middle column with violet color. Kernel size and stride are
denoted by k and s, wherever applicable. The rightmost column refers to the data shape.

5.3.2.2 Adaptive Intrusion score

To finally detect intrusion, we need a score that describes it. The overall testing score
A of Equation (5.17) can be used in three ways as an intrusion score: (i) directly using
A as intrusion score; (ii) using normalized A (like in VAD task) as intrusion score; (iii)
using adaptive mechanism of moving z-score (MZ) on A (refer to Section 4.2.2.2). We
concluded in the last chapter that adaptive thresholding is essential for a PID system,
therefore we choose the third way for our experiments with LUSS-AE. We follow exactly
the same method of adaptive thresholding as described in last chapter. We just replace
r values with A values in Equations (4.4 and 4.5), respectively. Since we use LUSS-AE
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with adaptive thresholding, we name this method as LUSS-AE-Adapt, in correspondence
to the nomenclature of the last chapter.

5.4 VAD: Experiments and results

We perform experiments on three publicly available benchmark datasets: UCSD Ped2
(Li et al., 2013), CUHK Avenue (Lu et al., 2013), and ShanghaiTech (Luo et al., 2017a).
Each dataset has a standard training / test division, where the training set consists of
only normal videos while testing set has videos with one or more anomalous events (refer
to Section 1.4.1). We evaluate with the frame-level area under the receiver operating
characteristic (AUROC) metric. Precisely, we use “AUROC on all videos” (micro-averaged
AUROC) computed on the whole test set with thresholds common to all test videos. Refer
to Section 3.5.2.1 for more details.

5.4.1 Implementation details

For both training and testing in each dataset, the frames are resized to 256 × 256 and
pixels are rescaled to the range [−1, 1]. The autoencoder takes a video clip of 16 frames in
grayscale as input, i.e., T=16, D=1, H=256 andW=256 respectively. While training, the
input clip for PRP task is chosen between original playback rate and accelerated playback
rate with equal chance (50% probability for each). For each batch of accelerated playback
rate, the value of s is chosen randomly from (2, 3, 4, 5) with equal chance for the four
values. The balance weights in the training objective function are set to λ1=0.6, λ2=0.4
and λ3=1, respectively. The whole model is trained end-to-end using the Adam optimizer
(Kingma et Ba, 2015) with a learning rate of 10−4 and a batch size of 16. While testing,
a single video clip is used for the three tasks (see Figure 5.2). We use different measures
like MSE, PSE and BPE for the anomaly score. For PSE and BPE, we use σ=1, b=2
while keeping the same kernel size of k=5. For blur kernel, we use a Gaussian filter. After
grid search, we set the optimal weights for anomaly score (α1, α2, α3) as (0.1, 0.8, 1), (0.1,
1, 0.1) and (0.2, 0.2, 0.9) for Ped2, Avenue and ShanghaiTech dataset, respectively.

5.4.2 Quantitative results

In this subsection, we present a quantitative comparison of our method with existing
state of the art methods. Table 5.1 shows this quantitative results. The listed methods
belong to the category of VAD without training labels, with and without external object
detectors. As explained in Section 2.5, methods with external supervision via pre-trained
object detectors should not be directly compared with fully unsupervised VAD methods
and most work respect this notion (Astrid et al., 2021a; Park et al., 2022). Therefore,
even though we list object-centric methods for comparison purpose, our discussion below
will solely focus on fully unsupervised methods.

In the fully unsupervised section of the table, the methods marked with * denote non-
reproducible results, i.e., the originally claimed results were found to be incorrect. These
works have been re-implemented by Menon et Stephen (2021) and Lu et al. (2022), and
the new results have been updated in the table.
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Methods Ped2 Avenue Shanghai
O
bj
ec
t-
ce
nt
ri
c OCAE (Ionescu et al., 2019) 94.30 87.40 78.70

Any-Shot (Doshi et Yilmaz, 2020a) 97.80 86.40 71.62

VEC (Yu et al., 2020) 97.30 89.60 74.80

SSMTL (Georgescu et al., 2021a) 92.4 91.50 82.40

Back-Agnostic (Georgescu et al., 2021b) 98.70 92.30 82.70

Fu
lly

un
su
pe

rv
is
ed

AnoPCN (Ye et al., 2019) 96.80 86.20 73.60

MemAE (Gong et al., 2019) 94.10 83.30 71.20

UNet-inte (Tang et al., 2020) 96.30 85.10 73.00

Cluster AE (Chang et al., 2020) 96.50 86.00 73.30

MNAD (Park et al., 2020) ∗ 97.00 ∗ 88.50 ∗ 70.50 ∗

MNAD (Menon et Stephen, 2021) 96.33 87.91 67.81

STEAL Net (Astrid et al., 2021b) 98.40 87.10 73.70

LNTRA (Astrid et al., 2021a) 96.50 84.91 75.97

MPN (Lv et al., 2021) ∗ 96.90 ∗ 89.50 ∗ 73.80 ∗

MPN (Lu et al., 2022) 96.13 83.90 73.00

ITAE (Cho et al., 2022) 97.30 85.80 74.70

VQU-Net (Szymanowicz et al., 2022) 89.20 88.30 -

FastAno (Park et al., 2022) 96.30 85.30 72.20

LUSS-AE [ours] 98.52 89.04 81.21

Table 5.1: Quantitative comparison with the existing state of the art methods: AUROC
(%) for VAD is computed on Ped2, Avenue and Shanghai datasets. Numbers in bold
indicate the best performance, and ∗ indicate non-reproducible results.

We can observe that our method outperforms all the other methods across all the
datasets. The performance gain in Ped2 and Avenue datasets is less significant as in
the Shanghai dataset. In fact, it has been suggested to not use the Ped2 dataset as the
performance in it is almost saturated (Acsintoae et al., 2022). The Shanghai dataset
is considered one of the most difficult dataset and our high performance gain of 5.24%
in comparison to the best method in state of the art, demonstrates the viability of our
method. Furthermore, the fact that our method works on all the datasets, irrespective
of the type of anomalies, shows its generalizing ability. Even though, we use the same
architecture for autoencoder like many other methods (Astrid et al., 2021a,b; Gong et al.,
2019), still our proposed method outperforms them, without using any sort of external
memory or supervision. Even though our method focus on end to end detection without
external supervision, still we obtain competitive performance, equivalent to object-centric
methods. All these points demonstrate the strength and effectiveness of our LUSS-AE
method.

111



CHAPTER 5. LEVERAGING UNSUPERVISED AND SELF-SUPERVISED LEARNING

5.4.3 Qualitative results

In this part, we discuss the strengths and weaknesses of our method via visual examples.

Figure 5.8: LUSS-AE working illustration on video 11_0176 of Shanghai test set.
Anomaly scores (AVCR, AFFP, APRP, A) are plotted per video frame; red regions de-
pict anomalous events and some illustrative frames are shown above the plot, where the
yellow and red bounding boxes exhibit objects of interest and anomalies respectively.

Figure 5.8 demonstrates an example of our method tested on a video with two anoma-
lous events, both containing movement of bikes. Here, the people move with relatively
normal speed while bikes move with fast speed. Also, the number of people are relatively
less in this example and bike does occupy a big area, which means its displacement causes
a big spatio-temporal change. We can observe that as soon as the bike enters the scene, we
have a high jump in APRP and it remains high until the bike exits the scene. It jumps up
again in next scene and have highest value when two bikes move in the scene. Regarding
AVCR and AFFP, the scores remain high when bikes are in the scene. Overall, our method
detects both anomalous events in this example.

Figure 5.9: LUSS-AE working illustration on video 05_0023 of Shanghai test set.
Anomaly scores (AVCR, AFFP, APRP, A) are plotted per video frame; red regions de-
pict ground truth anomalous events, and some illustrative frames are shown above the
plot, where the yellow and red bounding boxes exhibit objects of interest and anomalies
respectively.

Figure 5.9 demonstrates another example containing three different anomalous events:
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person turning in wrong direction and person jumping, brawling/chasing action, and stone
picking. We can observe that the problem is difficult in this example as not only the
anomalies are spatio-temporal but they also depend on context. In the first anomalous
event, AVCR and AFFP have higher values than APRP in the beginning. The anomaly
here consists of person turning in wrong direction which is well captured by the VCR
and FFP task. Later, when the person jumped, APRP suddenly increases, indicating its
sensitivity to abrupt motion. During the second anomalous event, we observe that APRP

has higher values than AVCR and AFFP, thus contributing primarily to detect the anomaly.
The APRP starts to increase just before the start of this event because the person in red
starts to suddenly approach the other person. We then observe a first peak of APRP as
one person pushes other to the ground. We later observe a big second peak of APRP and
this relates to fast movement chasing. However, the third event is very rare (picking up
stones) and does not contain large spatio-temporal movement in the scene and thus our
method fails to detect it. In fact, the score in later frames is slightly higher than the
third event because there are three people in close proximity, trying to change directions,
which is considered anomalous for Shanghai dataset. Overall, the VCR and FFP tasks
work better in anomalies without abrupt motions and PRP task addresses the anomalies
with sudden motions. There is still a room to improve the spatio-temporal comprehension
of AE for VAD, possibly with a data augmentation technique as the datasets lack more
examples of targetted scenarios.

5.4.4 Ablation studies

In this subsection, we study the importance of different parts of our proposed method.

5.4.4.1 Are all tasks useful ?

In this ablation study, we analyze the impact of different tasks on the autoencoder for
detecting anomalies. Table 5.2 shows combinations of different tasks and their respective
AUROC performances on Avenue and Shanghai datasets. Concretely, for each of these
combinations, we train and test AE using the chosen tasks, and use the introduced BPE
for computing anomaly score during inference.

Tasks AUROC (%)
VCR FFP PRP Avenue Shanghai

X 82.72 73.11
X X 87.95 76.35
X X 87.43 79.20
X X X 89.04 81.21

Table 5.2: Influence of different tasks (VCR, FFP and FRP) used during training and
testing of AE on Avenue and Shanghai datasets, in terms of AUROC (%).

We observe that when AE is trained only with the VCR task, the VAD performance is
the least, i.e., 82.72% and 73.11%. We consider this as the baseline since this a standard
task in VAD (Kiran et al., 2018) and we combine it with other tasks to assess their
impact. Using VCR and FFP tasks together, boost the performance with a gain of 5.23%
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and 3.24% over the baseline, indicating the importance of learning propagation of normal
spatio-temporal patterns via the FFP task. Similarly, when PRP task is trained together
with the VCR task, we observe an increase of 4.71% and 6.09% in comparison to baseline,
validating that indeed playback speed perception enriches the comprehension of normality
for anomaly detection. Finally, when all the tasked are used together, we observe a
substantial yield in performance with 6.32% and 8.10% over the baseline, demonstrating
the effectiveness of our proposed approach to train AE by leveraging unsupervised and
self-supervised tasks.

5.4.4.2 Is the autoencoder enriched by FFP and PRP?

In this work, we employ a 3D CAE used in many previous works (Astrid et al., 2021a,b;
Gong et al., 2019). All these works used it with the VCR task. In this study, we first
reproduced their work by training and testing 3D CAE with the VCR task. Then, we
trained it with the proposed tasks, i.e., VCR, FFP and PRP, and tested using only the
VCR task. This way, we can assess the impact of these tasks on AE’s comprehension of
normality during training to detect anomalies during testing.

Training tasks
Testing only with VCR
Avenue Shanghai

VCR 82.72 73.11
VCR + FFP + PRP 86.48 75.37

Table 5.3: Influence of tasks (VCR, FFP and PRP) used during training of autoencoder
on Avenue and Shanghai datasets, when tested only with VCR, in terms of AUROC (%).

Table 5.3 exhibit this ablation study. It can be observed by training the same au-
toencoder with proposed tasks, a gain of 3.76% and 2.26% is obtained on Avenue and
Shanghai datasets, respectively. Since the three tasks are used only during training and
only VCR is used while testing, this gain in performance reveals that these tasks enriched
the normality comprehension of the 3D CAE.

5.4.4.3 Are error measures equivalent?

The goal of this ablation study is to see the effect of different error measures, i.e., MSE,
PSE and BPE, on the VAD task. Since these measures apply to VCR and FFP tasks,
PRP task will not be considered here.
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Ground truth Prediction MSE PSE
BPE

Figure 5.10: Illustration of different error measures on a test frame of the Avenue dataset.
From left to right: actual frame (ground truth), predicted frame, error frame for MSE,
for PSE and for BPE. (Best viewed in color)

Figure 5.10 shows an visual example using the FFP task to better understand these
measures. We can observe that AE did not correctly predict this frame, where dropping
bag is an anomaly. The error frame for MSE highlights this anomalous region of the image
but it also captures the background noise of the frame. The PSE error frame has a more
visible region of anomaly, and it smooths some background noise. Finally, the BPE error
frame has a principal focus on anomalous region and has theleast amount of background
noise. Furthermore, the BPE frame is smaller than other maps as we remove irrelevant
pixels via subsampling.

Error measure
Testing tasks
VCR FFP

MSE 84.95 85.38
PSE 85.96 86.61
BPE 86.48 87.00

Table 5.4: Influence of error measure (MSE, PSE and BPE) on each task (VCR and FFP)
during testing of AE on Avenue dataset, in terms of AUROC (%).

Table 5.4 shows the quantitative impact of these error measures. To be precise, we
train our method with the three tasks and test it with the respective tasks and measures
shown in the table. We can observe that the PSE improves the performance in both tasks
with 1.01% and 1.23% respectively, signifying the importance of proximity error and noise
reduction. BPE provides a significant boost in results with 1.53% and 1.62% performance
improvement over MSE in the two tasks. This validates the importance of our proposed
BPE for the VAD task.

5.5 PID: Experiments and results

We perform experiments on the i-LIDS sterile zone dataset with the two cameras views
as described in Table 1.2. Using only non-intrusion videos, model was trained on view 1
of i-LIDS training set and tested on view 1 of i-LIDS test set (same procedure for view
2). Test set uses the same protection perimeter as defined in the last chapter. Since,
in the last chapter, we concluded the importance of edge-level (EL) protocol for PID
evaluation, we use only this protocol in this chapter. Finally, we do not demonstrate the
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ablation studies like in VAD (refer Section 5.4.4) because we had similar observations
and thus explanations would be repetitive. In the next subsections, we first describe the
implementation details of LUSS-AE-Adapt for PID, followed by overall results and how it
differs from PIDS proposed in the last chapter. Finally, in the last subsection we provide
a summary of how our method performs in a real-world PID case.

5.5.1 Implementation details

Each frame is converted to grayscale, pre-processed using histogram equalization and
pixels were rescaled to [−1, 1]. The autoencoder we use takes a video clip of 8 frames as
input, i.e., T=8, D=1, H=576 andW=720 respectively. Like VAD, the input clip for PRP
task is chosen between original playback rate and accelerated playback rate with equal
chance. For accelerated playback rate, s is chosen randomly from (2, 3, 4, 5) with equal
chance for the four values. Concerning training objective function, the balance weights
are experimentally set to λ1=0.6, λ2=0.4 and λ3=1 respectively. The whole model is
trained end-to-end using the Adam optimizer (Kingma et Ba, 2015) with a learning rate
of 10−4 and a batch size of 24.

While testing, we used the BPE measure for the overall test score. For blur kernel, we
use a Gaussian filter with σ=1, b=2 and kernel size k of 5. After grid search, we set the
optimal weights for final score (α1, α2, α3) as (1, 1, 0.1). Finally, the adaptive thresholding
is done on moving z-score of A. We use values of first 10 frames for initialization, moving
z-score is used with zth = 4.5 and α = 0.01, like work in previous chapter. Following the
last chapter, for edge-level evaluation, we set the tolerance variables mpre and mpost to 3,
i.e., less than 1 second of tolerance. For variable m, the following values were chosen: 5,
10 and 50. This signifies that we tested the methods to detect within 1, 2 and 10 s from
the beginning of intrusion.

5.5.2 Results

Tables 5.5 and 5.6 show the comparative results for PID in View 1 and View 2 of i-
LIDS datasets respectively. The first three methods mentioned here are well defined in
Section 4.3.1.2 and were used in evaluation in the last chapter. Their results shown in
these tables are taken from the last chapter.

Method
EL (1 s) EL (2 s) EL (10 s)

Precision Recall F1 Precision Recall F1 Precision Recall F1

GOFPID 0.69 0.61 0.65 0.76 0.87 0.81 0.78 0.98 0.87

Nayak et al. (2019) 0.62 0.52 0.57 0.70 0.74 0.72 0.74 0.93 0.83

AE-Adapt 0.90 0.74 0.81 0.92 0.90 0.91 0.92 0.91 0.92

LUSS-AE-Adapt 0.91 0.78 0.84 0.93 0.91 0.92 0.95 0.93 0.94

Table 5.5: PID methods comparison based on edge-level (EL) evaluation at 1, 2 and 10
seconds for View 1 of i-LIDS dataset.
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Method
EL (1 s) EL (2 s) EL (10 s)

Precision Recall F1 Precision Recall F1 Precision Recall F1

GOFPID 0.80 0.59 0.68 0.83 0.73 0.78 0.86 0.94 0.90

Nayak et al. (2019) 0.99 0.47 0.64 0.99 0.69 0.82 0.99 0.94 0.96

AE-Adapt 0.83 0.64 0.73 0.89 0.80 0.84 0.90 0.92 0.91

LUSS-AE-Adapt 0.85 0.70 0.77 0.90 0.82 0.86 0.94 0.93 0.93

Table 5.6: PID methods comparison based on edge-level (EL) evaluation at 1, 2 and 10
seconds for View 2 of i-LIDS dataset.

We can observe that the proposed LUSS-AE-Adapt outperforms AE-Adapt in both
views. In View 1, we obtain the state-of-the-art results with a good margin in terms
of F1 scores in every edge-level metric. Concerning View 2, we still outperform other
methods in 1 and 2 seconds of edge-level evaluation and we are just slightly behind
Nayak et al. (2019) in 10 seconds. This means that we detect better than other methods
in online scenario, i.e., 1 or 2 seconds. It can also be observed that LUSS-AE-Adapt
have constantly better precision and recall scores than AE-Adapt, regardless of edge-level
evalaution parameters or camera view. This signifies that indeed using our proposed
LUSS-AE-Adapt for PID increases the spatio-temporal comprehension of normality, in
order to better detect intrusions.

5.5.3 Importance of adaptiveness in proposed PID methods

Even though the same 3DCAE is used in both AE-Adapt and LUSS-AE-Adapt, we would
like to explore where exactly these two methods differ in terms of PID performance.
Table 5.7 shows the comparative performances of these two methods, with and without
moving z-score, on View 1 of i-LIDS dataset. Please note that without moving z-score,
AE-Adapt or LUSS-AE-Adapt looses the adaptiveness (Adapt) and boils down to just
autoencoders.

Method
Without moving z-score With moving z-score
Precision Recall F1 Precision Recall F1

AE-Adapt 0.54 0.44 0.49 0.92 0.91 0.92

LUSS-AE-Adapt 0.62 0.51 0.56 0.95 0.93 0.94

Table 5.7: Comparison (EL (10 s)) of proposed unsupervised PID methods on i-LIDS
dataset, taking into account the effect of moving z-score.

We can observe that LUSS-AE-Adapt is 7% better than AE-Adapt when no moving
z-score is used. This means that using carefully chosen tasks increases the intrusion de-
tection ability of the autoencoder. When moving z-score is used, both the methods get
massive gains in performances. Moreover, the gap in their performances lowers down
drastically. This indicates that adaptive thresholding is essential for a PIDS when long
time-length videos are present. Even though autoencoder can detect the intrusions locally
(for example, if small videos are taken like in VAD datasets), thresholding it’s reconstruc-
tion error globally for long-length videos leads to poor performance. This is because even
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though reconstruction error is high locally for intrusions in different scene dynamics like
day and night, but the gap between these errors is very large and thus one cannot find
a fixed optimal threshold to detect all the intrusions. Thus, the adaptive component is a
must and it increases the ability of detecting intrusion in both PID systems.

5.5.4 Testing proposed PIDS in a more challenging real-world
scenario

Until now, all experiments concerning intrusion detection were done in i-LIDS dataset.
As already explained in previous chapters, even though this dataset pose some interesting
challenges, it still lacks in many ways, like it only has people as intruders, the scenes
are simple and most of the time if something is moving, it is an intrusion (thus lack of
distractions). To address this, we performed experiments on a private industrial dataset.
This dataset has sheeps roaming in a perimeter continuously and the aim is to detect
human intruder which can walk, run, crawl, etc. Moreover, the intruder is present at
various distances from the camera and at a very far distance, it appears so small that it
is very difficult to recognize. We tested our best proposed method, i.e., LUSS-AE-Adapt,
an industrial PIDS (an evoloved form of GOFPID) and method of Nayak et al. (2019)
on this. We found that our method outperforms the two methods with a huge margin of
26% and 31% respectively. This proves the viability of our method which learns from the
data itself in an end-to-end and unsupervised manner. The performance in this dataset
validates that our approach is very suitable for real-world perimeter intrusion detection
problem. Please refer to Annex A for detailed dataset description, methods analysis and
results.

5.6 Conclusion

In this chapter, we tackled the problem of detecting video anomalies and intrusions with-
out annotations. To address this, we proposed a novel scheme that leverages unsupervised
and self-supervised learning on a single autoencoder. Our method is end-to-end trained
on the normal data and jointly learns to discriminate anomalies / intrusions from normal-
ity using three chosen tasks: (i) unsupervised video clip reconstruction; (ii) unsupervised
future frame prediction; (iii) self-supervised playback rate prediction. The video clip re-
construction task is meant to learn spatio-temporal characteristics of normal videos. The
future frame prediction task is designed to learn the propagation of spatio-temporal pat-
terns in the normal videos. Finally, the playback rate prediction task is for strengthening
the speed understanding of the encoder. It was the first time when the PRP was adapted
for VAD or PID tasks. To focus on anomalous / intrusional regions in the video, we also
proposed a new error measure, called the blur pooled error (BPE) and a robust rescaling
of anomaly scores.

When the proposed LUSS-AE is applied to VAD task, we outperformed the state-of-
the-art methods in three major datasets. The high performance gain in comparison to
previous methods on the Shanghai dataset proved the significance of our method. This
is because the Shanghai dataset is considered one of most difficult VAD dataset with
thirteen different scenes and various anomaly types. Our experiments demonstrate that
the chosen tasks enriched the spatio-temporal comprehension of the autoencoder to better
understand the normality for detecting anomalies. Our ablation study demonstrated the
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importance of each task and we found that the PRP task plays a major role in LUSS-
AE. Furthermore, a significant boost in performance with respect to MSE, showed the
significance of the BPE as it removes the background noise by keeping only the pertinent
pixels.

Concerning application of LUSS-AE to PID, we found that we outperform all other
methods in the i-LIDS dataset. We found through an ablation study that indeed LUSS-
AE leads to a significant improvement in autoencoder performance for PID, but this effect
is less visible when we use the adaptive thresholding using moving z-score. This indicates
that adaptive thresholding is essential for PIDS when there are long-length videos. We
further tested our proposed approach on a real-world industrial dataset having sheeps as
distractors and we found that our approach outperforms existing approaches with a huge
margin. All this validated the viability of our approach for detecting intrusions.

Overall, we can conclude that our proposed LUSS-AE is generic and can be success-
fully applied to both VAD and PID tasks and leads to superior performances in both
tasks. However, there is still a room for improvement. Concerning VAD, there are still
complicated cases (like anomaly at far distance or anomaly with low spatio-temporal
movement), where our method fails. We need to further improve our approach by propos-
ing new proxy tasks, or by using modules like attention. Training network using BPE
also needs to be investigated. Concerning the PID task, we have similar shortcomings.
Therefore, we need to further improve our approach for obtaining an even better VAD /
PID system.
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Conclusion and perspectives

In this thesis, we explored unsupervised deep learning based approaches for learning
spatio-temporal representations of videos. These approaches were developed for applica-
tion in video surveillance domain and in particular for video anomaly detection task and
perimeter intrusion detection task. We first formally defined these tasks in chapter 3,
along with suitable evaluation protocols. Then, in chapter 4, we proposed an unsuper-
vised autoencoder based method for perimeter intrusion detection. It was coupled with
an adaptive thresholding strategy to handle changing scene dynamics. Finally, we also
proposed a new generic method in chapter 5. With carefully chosen tasks, it leverages
unsupervised and self-supervised learning in an single autoencoder. This approach is ap-
plicable to both video anomaly detection and perimeter intrusion detection task. All the
proposed approaches were compared with state of the art methods on standard datasets
and obtained superior performances.

Importance of tasks definition and suitable evaluation

Before solving any problem, it is essential to correctly understand it first and this requires
defining it as precisely as possible. That is why, in chapter 3, we proposed mathematical
definitions for the two main tasks that we address in this thesis along with corresponding
evaluation protocols.

Concerning perimeter intrusion definition (PID), we first defined how an intrusion
event is triggered by an object. An object causes an intrusion event if it belongs to a
non-authorized class (like person, car, etc.) and is moving in a protected area during a
prohibited time interval. The classes considered as non-authorized, the protected area
and the prohibited time interval depend on the end user or client and can vary from one
site to another. We can have multiple objects causing intrusion events and these events
can also overlap. For example, if a car causes an intrusion event and then after some time,
a person also triggers an intrusion event (when car is still there), then these two events
overlap. In the case of PID, at any instant, we are concerned if there is an intrusion event,
regardless of whether one object or many objects are causing it. Therefore, it is safe to
merge intrusion events when they overlap. Consequently, the intrusion event of the whole
video is just the union of its intrusion events. The constituent frames of the intrusion
event of video are called the intrusion frames. The main concern in PID are the time
intervals in video where intrusions occur. We define these time intervals using intrusion
intervals, where an intrusion interval corresponds to a contiguous sequence of intrusion
frames. The goal of PID task is to detect the beginning of intrusions intervals of the
video. The beginning is essential, because if an intrusion is detected too late, then that
detection is not very useful in terms of PID requirements (for client/user, the intruder is
too close or inside the protected site) (i-LIDS Team, 2006; Buch et Velastin, 2014). This
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real-life constraint must be considered by the evaluation protocol. The i-LIDS evaluation
protocol adhered to this constraint and counted a detection as valid if it is within the
first 10 seconds of actual intrusion. The main problem with this evaluation protocol is
that it strongly penalizes the system. It treats detections as false alarms if they occur
after 10 seconds from intrusion beginning, even if the alarms are within the intrusion.
And while doing so, it does not consider the duration of intrusion. For example, if an
intruder enters a site and stay there for 5 minutes and an alarm is triggered at 12th second
after the beginning of intrusion. Then, the i-LIDS evaluation protocol will count it as a
false alarm, even though the alarm is triggered during the intrusion which would stay in
site for almost 5 minutes. We addressed drawbacks of this protocol and introduced an
edge level evaluation protocol. Our evaluation protocol adheres with real-life constraints
of detecting the beginning of intrusions. Moreover, it has tolerance limits of few frames
before and after the intrusion, which permits not to adversely penalize a system if an
intrusion is detected a little bit in advance (like a system might detect a person as soon
as it steps on the scene, while annotation is when the whole person is in the scene) or
when the alarm takes some time to stop after the intrusion.

Defining video anomaly detection is not trivial since anomalies depend on context and
they differ from one dataset to another. In this thesis, we defined VAD on the basis of
available annotations. If annotations of both normal and abnormal events are present dur-
ing training, then the VAD problem boils down to binary classification, i.e., understanding
the two classes (normal and anomalies) with training and then detecting anomalies dur-
ing testing. However, realistically, it is very difficult to have annotations during training
since anomaly is a rare event and it is practically impossible to have annotations for all
possible future anomalous activities. Therefore, the second case is more realistic, where it
is considered that training data primarily contains normal (non-anomalous) videos. We
mathematically describe this case using the probably approximately correct (PAC) learn-
ing framework and consequently anomalies are defined as the complement of normality
distribution present in the training data. This definition takes into account the anomaly
context, since anomalies are defined according to the normal distribution provided with
the dataset. Furthermore, our definition takes care of debated cases for VAD with the
uncertainty parameter of PAC framework. For example, in ShanghaiTech dataset, normal
activities like eating ice-creams are present only in the testing set and not the training
set. Therefore, even though there is high probability for them to be abnormal, we cannot
be fully certain that they are anomaly due to the uncertainty parameter. For evaluat-
ing VAD methods, we used the frame level binary class evaluation. This is done to be
comparable with the state-of-the-art methods, all of which use this evaluation protocol.

Even though our PAC formulation addressed some complicated cases in VAD, there
is still a need for a new dataset with more precise anomaly annotation (during testing).
The training data should be representative of normalities and any deviation from it should
define some degree of anomaliness. Concerning evaluation, anomalies are also events and
like PID, we want to finally know if these events are detected or not. Frame-level eval-
uation does not provide much information for anomalous event detection. For example,
with frame level evaluation, we cannot differentiate between a method that detected some
frames of all anomalous events, with the one that detected only few events having large
number of frames. Therefore, an event level evaluation should also be used in VAD. For
this, datasets like Shanghai and Avenue should be manually annotated at event level.
Concerning event level evaluation, we focused on detecting the beginning of event, but
our proposed protocol can be extended for detecting the complete event if required. In
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some cases, researchers might want to detect if the alarm is raised during the whole event.
In that case, our protocol cannot work since it is dedicated to detect rising edges and not
the frames of an event. Therefore, a suitable evaluation protocol should be developed in
that case. Similarly, we did not penalize re-detections in our evaluation as long as it is
during the event. But one can penalize them to some extent, depending on the system
output requirements.

Unsupervised spatio-temporal video understanding

In this thesis, we explored spatio-temporal learning in videos for unsupervised tasks. We
first proposed a strided 3D convolutional autoencoder (S3DCAE) for this, in chapter
4. To learn spatio-temporal features in a joint manner from videos, we used only 3D
convolutions and 3D deconvolutions. The encoder layers generally use pooling operation
for compressing information, while decoder layers use the unpooling operation. We instead
proposed to use strided convolutions and deconvolutions, therefore our architecture was
light in memory and fast in execution. The proposed autoencoder learns normality during
training as it is trained only on normal videos and detects intrusions as they are badly
reconstructed (having high reconstruction error) during testing. Therefore, it is capable
to understand spatio-temporal normality and detect intrusions (or even anomalies) in an
unsupervised way.

The second method that we proposed, called LUSS-AE, leverages unsupervised and
self-supervised learning using a single autoencoder for spatio-temporal feature learning.
It was proposed in Chapter 5. Like the previous approach, the aim is to learn normality
during training, for detecting anomalies/intrusions during testing. The main idea is to
enrich the spatio-temporal comprehension of an autoencoder using different tasks. We
proposed three tasks: video clip reconstruction (VCR), future frame prediction (FFP)
and playback rate perception (PRP). VCR is meant to learn spatio-temporal character-
istics, FFP is designed to learn the propagation of spatio-temporal patterns, and PRP is
intended to strengthen the speed understanding of the encoder. We demonstrated that
these tasks enhanced the spatio-temporal comprehension of the autoencoder. With suc-
cessful application on both VAD and PID tasks, we showed its effectiveness and generic
behavior.

Notice that one issue with LUSS-AE is that the PRP task has only two classes: original
and accelerated. We group different speeds like 2x, 3x and 4x into a single class (accel-
erated). Semantically, these different speeds have different spatio-temporal information
and therefore they should be in different classes. We can further add cases like slow speed
(0.5x) and even negative speed, implying reverse playback. This will make LUSS-AE even
more speed aware. Another idea could be to use speed regression instead of speed classifi-
cation. In real life, often the speed cannot be discretely categorized as 2x or 3x, etc., but
can be represented by a continuous value. In speed classification, each speed like 2x or 3x,
were treated independently but there is a semantic relation among speeds, e.g., speed of
2x and 3x are more closer to each other than speed of 5x. The speed regression will permit
the network to understand the semantics among different speeds and it should enrich its
spatio-temporal comprehension by making it even more speed aware. Finally, more tasks
can be added to our AE like backward / forward video clip prediction, masking input
and predicting it, input flip or rotation prediction, etc. Attention modules can further
enhance the spatio-temporal comprehension, but they do require extra computational /
memory capacity. There is also a new family of methods that use a transformer network
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(Bertasius et al., 2021; Neimark et al., 2021). These methods are now used extensively
in spatio-temporal video learning, especially in self-supervised learning, as a pre-training
step. However, they need an very large amount of GPU / CPU computational capacity
and long time to train. For instance, video transformer network (Neimark et al., 2021)
has 114 million parameters with 4,218 GFLOPs, while our proposed LUSS-AE for VAD
has 6.12 million parameters with 16.30 GFLOPs only. Even though smaller and quicker
variants of this new family of methods are coming, we are still far to have a model that
runs for real-time tasks like video anomaly detection and perimeter intrusion detection.

Adaptiveness for online outdoor event detection

Since we focused on detecting intrusion or anomalies in the outdoor environment, the
obvious challenge is to face changing scene dynamics like weather, temperature, lighting
conditions, etc. Any detection system must adapt itself to these changes, otherwise it
will underperform. This challenge is particularly dominant for long length videos, like
we have in the i-LIDS dataset. To address this challenge, we proposed an adaptive
mechanism using a moving z-score on the reconstruction error of the autoencoder. It
detected intrusions as soon as they occur and then adapted itself with the scene dynamics.
It is generic and brought massive gains in performance to both the network architectures
we proposed in this thesis. The LUSS-AE with adaptive thresholding (LUSS-AE-Adapt)
was also tested in a private dataset. This dataset is very challenging since majority of
time, there are sheeps moving in the scene, which is considered a normal behavior and
intrusions are caused by human intruders entering the scene in various ways like crawling,
rolling, etc. It was filmed with thermal camera, which makes it even more difficult to
distinguish intrusions with sheeps. Our adaptive LUSS-AE method outperformed an
object detector based method and a private industrial method by a large margin. This
validated the importance of adaptiveness.

Notice that when a VAD or PID system is deployed in real-life, it does need to face
these changing scene dynamics. To develop these adaptive approaches, we need appropri-
ate datasets. Concerning PID, the i-LIDS dataset does conform to this need, but it lacks
different types of intrusions like cars, trucks, skateboard, etc.. Furthermore, the two views
of this dataset are very similar to each other, they are like mirror images of each other.
Also, the amount of distractions is very low in this dataset and thus any person detector
system can work well. Therefore, we need more public PID datasets which address the
above mentioned weaknesses. Even though we also tested our adaptive approach on a
challenging dataset, unfortunately it cannot be made public. In regard to VAD, it is un-
fortunate that we do not have long length test videos in any current VAD dataset. This
would have allowed the development of approaches that adapts themselves with time.
Thus, for development of more adaptive approaches, we would require more realistic VAD
and PID datasets. Furthermore, different types of camera sensors like thermal, depth,
etc. and multiple viewpoints could further help both VAD and PID approaches.

Towards more generic and deployable models

Our proposed approaches learn in offline mode from training data to detect events during
testing. When these approaches are installed in a site, they need to update themselves with
the newly observed data, i.e., learning new normalities on the go. Naively updating model
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weights with newly observed data can lead to catastrophic forgetting (Kirkpatrick et al.,
2017). Another solution is to gather data and re-train the models but this would quickly
become infeasible due to computational and storage needs. Thus, we need to preserve the
initial knowledge of models without reusing the initial data, and also acclimate the model
to newly observed data. To accomplish this, continual learning can be used. Recently, it
has been successfully used for VAD (Doshi et Yilmaz, 2020b, 2022). The approaches we
proposed are trained on each dataset separately. But how can we use a model trained
on one dataset to work on another? Ideally, we would like to just use few frames of the
new dataset to adapt the current model. This is precisely what few shot learning does
(Lake et al., 2015; Finn et al., 2017). Recently, some works have used it in VAD too (Lu
et al., 2020; Lv et al., 2021). This property is extremely desirable since then, we can use
a model trained on an offline dataset to a number of sites and adapt to each one of them.
As already mentioned, we can improve our model with more suitable tasks. However,
the new trend in computer vision is to use transformer like model due to their immense
generalization capacity. In future, smaller and faster transformer like models can be used
in video surveillance.
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A Testing PIDS in a real-world case

So far, we have evaluated different methods on the i-LIDS dataset. As already mentioned
before, this dataset is interesting but it still has some major drawbacks, which makes it
an easy task for any simple person detection. The intrusion in real-life are not so easy to
detect and furthermore they can be very well non-human entity like wild animals or cars.
To address this, we evaluate methods on a private dataset that depicts more challenging
conditions like very dynamic background, different distances from camera, change in light
and scene dynamics and hence it is more inline with recent challenges in video surveillance.

Sheeps dataset

This dataset contains videos of a site surveilled by a thermal camera that principally
contains sheep. The videos are recorded for many days and therefore present varying
light conditions in the scene. Some illustrative frames are shown in Figure A.1.

Figure A.1: Example frames from the Sheeps dataset without intrusions. The images
show video frames from different time of the day. The sheeps present are moving in
random manner. Also, observe the sheeps at the top-right end of the third image.

The intrusions in this dataset are very rare and caused by people. In other words,
when some person enters the scene, it needs to be detected. The human intruders enter
in various ways like running, walking, crawling, etc. Furthermore, they are situated at
different distances from the camera like near, middle and far. Overall, the task is hard
since the PIDS method need to ignore sheeps but at the same time detect human intruders
who often act like sheep. Some illustrative examples of intrusions in this dataset are shown
in Figure A.2.

Figure A.2: Example frames from the Sheeps dataset with intrusions shown in red-
bounding boxes. The images are shown in increasing level of intrusion detection difficulty.
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The videos in this dataset are captured at 5 FPS with frame resolution of 384x288.
Since intrusions are very rare in this dataset, the training set does not contain intrusions.
The training set contains 50 videos (approx. 20,000 frames) with sheeps at different
configurations and having different lighting conditions. In test set, each video contain
atleast one intrusion. The intrusion can be at different distance from the camera and
depicts human crawling, running, etc., accompanied with varied lighting conditions and
sheeps. We have in total 36 videos (11,189 frames) of intrusions (7,077 frames). Since
each video has different level of difficulty for detecting intrusion, the dataset also comes
with video level label from 1 to 5, where 1 is the easiest and 5 is the most difficult case.

Methods and experimental setup

We compare three methods on this dataset: LUSS-AE-Adapt, Nayak et al. (2019) and
an industrial PIDS. We chose LUSS-AE-Adapt because it has enhanced spatio-temporal
comprehension and performs better than AE-Adapt. Instead of using GOFPID, we use
a private industrial PIDS. This is because their functioning is similar (follows similar
traditional pipeline) but industrial PIDS performs better than GOFPID and thus is closer
to the state of the art practiced by industry. For LUSS-AE-Adapt, we use the same
architecture as proposed in Chapter 5. Just the input frame size is updated to 384x288.
Other settings remain the same as mentioned in Section 5.5.1. For (Nayak et al., 2019)
also, the same setting like before (see Section 4.3.1) as used with human as the intrusion
class. The industrial PIDS was also used with appropriate settings. For evaluation, we
use the proposed edge-level protocol (EL (10 s)), as we concluded in Chapter 4 that it
should be used for evaluating PID methods. For better comprehension, we also show
results for some levels of difficulty.

Results

Table 5.8 presents results of the three methods on the whole Sheeps dataset. We can
observe that our proposed method has outperformed the other two methods with a large
margin. The F1 score is almost double in comparison to Nayak et al. (2019) and has a
huge margin 0.26 in comparison to industrial PIDS. We can also observe that our method
also has the best precision and recall values. This is important because Nayak et al. (2019)
also has a good recall value but it is at the cost of high number of false alarms, depicted
by the poor precision value.

Methods Precision Recall F1

Nayak et al. (2019) 0.23 0.78 0.36
Industrial PIDS 0.32 0.57 0.41
LUSS-AE-Adapt 0.57 0.81 0.67

Table 5.8: PID methods comparison based on edge-level (EL) evaluation at 10 seconds in
the Sheeps dataset.

To better understand the results, we also provide results at different difficulty levels.
For sake of simplicity, we provide the results of only three difficulties, i.e., 1, 2 and 5. The
other difficulty have similar results, meaning when difficulty increases performance often
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decreases. The difficulty 1 and 2 correspond to easier cases, while the difficulty of level 5
corresponds to the most difficult case (shown in rightmost image of Figure A.2).

Method
Difficulty - 1 Difficulty - 2 Difficulty - 5

Precision Recall F1 Precision Recall F1 Precision Recall F1

Nayak et al. (2019) 0.21 1 0.35 0.25 1 0.40 0.20 1 0.33

Industrial PIDS 0.45 0.83 0.58 0.50 0.77 0.60 0.10 0.22 0.14

LUSS-AE-Adapt 0.86 1 0.92 0.73 0.89 0.80 0.71 0.56 0.63

Table 5.9: PID methods comparison at different difficulty levels in the Sheeps dataset,
where edge-level (EL) evaluation at 10 seconds is used.

Table 5.9 shows the methods comparison based on different difficulty. We observe that
the method of Nayak et al. (2019) performs similar for the three distances. In fact, the
person object detector seems to fail for distinguishing between person and sheep. That is
why, there is a recall of 1 and very low precision. In other words, their system is always
raising intrusion alarms (thus perfect recall), irrespective of intruder or sheep, and thus
have a very high number of false alarms, depicted with very low precision value. The
industrial PIDS performs better than Nayak et al. (2019). For difficulty 1 and 2, their
precision values are better than the last method, meaning they have fewer false alarms. For
difficulty 5, their method performs poorly and is not able to different between intruders
and sheeps. For our proposed LUSS-AE-Adapt method, we observe that it performs
better than the two methods irrespective of the difficulty. We obtain an excellent F1 score
of 0.92 for difficulty 1, which is very interesting for this difficult PID dataset. We also
observe that the F1 value decreases with increasing difficulty. The main component of this
decrease in scores is due to the recall values. This means that with increase in difficulty,
we detect lesser intrusions but we do not raise a lot of false alarms.

Conclusion

In this annex, we tested our proposed PIDS with different existing methods on a private
dataset. This dataset is very interesting because it contains constant movement of sheeps
(distractors) in a scene, where human intruder tries to enter in various ways. The change
in lighting conditions, arbitrary movement of sheeps, different distances of intruder from
the camera, and various ways in which the intruder enters the scene, makes this dataset
very challenging. The method of Nayak et al. (2019), which has excellent performance in
i-LIDS dataset, performs poorly here. This is precisely because their object detector failed
to detect human intruder among sheeps. To be precise, their detector mostly detected
some sheep as human, thus causing massive false alarms. Therefore, here we observed the
risk of using pre-trained detectors for PIDS. Concerning the private industrial PIDS, it
performed a bit better than Nayak et al. (2019). However, it still fails to detect intrusions
at difficult cases and often confuse sheeps with intruders. We found that our proposed
LUSS-AE-Adapt method outperformed the two other methods by a good margin. Since
our method learned normality, it was able to better differentiate between sheeps and
humans. Our adaptive method has an excellent result for easier cases and even with
increase in difficulty, our method does not trigger a large number of false alarms. One of
the most important aspect is that our method is completely without supervision and learns
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to detect intrusions just from the unlabeled data. Overall, we clearly see the viablity of
our method in real-world perimeter intrusion detection task, provided we have a dataset
to train the method beforehand.
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