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Notation

Listed below are some of the notations I use in this manuscript.

Constants
• c : Vacuum speed of light

• kB : The Boltzmann cosntant

• ϵ0 :Tthe vacuum permittivity

• h : The planck constant

• ℏ = h/2π : The reduced planck constant

• a0 : The Bohr radius

• e : The elementary electric charge. e > 0 (an electron carries the charge of −e)

• α = (4πϵ0)−1e2/(ℏc) : The fine structure constant

Acronyms
ARP Adiabatic Rapid Passage

AOM Acousto-Optic Modulator

BBR Black Body Radiation

CRA Circular Rydberg Atoms

FGR Fermi’s Golden Rule

ITO Indium-Tin-Oxide

MOT Magneto Optical Trap

MW Microwave

rf radio frequency

TRP Total Radiated Power

UHV Ultra High Vacuum
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Chapter 1

Introduction

The advent of quantum mechanics not only brought a complete [11] physical theory to describe
the atomic scaled systems, but also revealed untapped resources we could take advantage
of. The non-local entanglement between two quantum bits proved to be not only an asset
in the long-distance quantum key distribution and teleportation [22, 33], but also a resource
for quantum computation [44]. The development of modern technologies in the previous
decades enabled the manipulation and detection of individual quantum systems [55, 66]. Exotic
superposition states such as the squeezed states [77–99], or the Schrödinger-cat states [1010–1212]
are used to build the quantum-limited sensors approaching the fundamental Heisenberg limit
[1313].

The success of quantum technologies brings the promise to build quantum machines
[1414] made of multiple coupled quantum objects to solve classically hard problems. These
problems can have real life applications in network design or finance, such as the maximum
independent (MIS) set problem [1515, 1616], which has the combinatorial complexity as the
number of vertices grow in a graph. But more often than not, the problems to be solved are
quantum ones, which have an exponential growth in computation complexity as a function
of the system size. By today’s standard, a quantum circuit computation task involving ≳ 50
qubits and a circuit depth of a few tens could be considered classically intractable [1717]. While
a fault tolerant universal quantum computer is still far from practical realization [1818], tasks
of this scale can already be undertaken by quantum simulators [1919].

A quantum simulator produces analog results without digitally computing anything,
much like a thin lens can carry out the Fourier transform of the incident light in its focal
planes without really crunching any number. It is merely a controllable, modifiable, and
measurable quantum system in the lab, built to emulate some other systems of interest.
The latter systems are less accessible to direct study. For example, in the solids, electrons
travel at a speed on the order of 106 m/s (Fermi velocity), the atom separations are sub-
nanometer. Direct system detection would have to be repeated at least every femtosecond to
barely capture electron transport. However, in an optical lattice, cold atoms (as surrogate
electrons) move at a few mm/s, and the lattice potential wells are separated by a few hundred
nanometers. Such a simulation system can play back the dynamics of the solids in a bloated
millisecond time scale and an enlarged micrometer spatial scale, enough to be captured by an
imaging camera. This leads to the successful observations of simulated quantum many-body
phenomena such as Anderson localization [2020] and Mott insulator [2121].

The Hamiltonian engineering is another focus of the many-body quantum simulations,

1



2 CHAPTER 1. INTRODUCTION

during which every quantum bit is localized with controlled interactions between each other.
The more widely simulated Hamiltonians are the spin models. In this category, the Rydberg
atoms have long been proposed as excellent quantum bits [2222–2626]. These are highly excited
atoms with long lifetimes (≳ 100 µs) and strong dipole-dipole interaction (a few MHz) over
large separations (a few µm). In addition, the off-resonant interaction (either dipole-dipole
or van der Waals) causes one excited Rydberg atom to shift the levels of another atom in
a radius of typically ≈ 10 µm, preventing it from being excited by the same laser. This
“Rydberg blockade” phenomenon is a very natural two-qubit controlled gate mechanism
[2727]. For implementing a controlled-phase gate, the qubit states |0⟩, |1⟩ can be encoded in
two ground hyperfine levels. A “target” qubit initially in |1⟩t gathers a phase of π (becomes
− |1⟩t) after a 2π rotation between the ground state |1⟩t and a Rydberg state |r⟩t. However,
in the presence of a “control” qubit in the Rydberg state |r⟩c, the |1⟩t ↔ |r⟩t transition is
detuned from the laser, thus no phase is gathered for |1⟩t. The above controlled-phase gate
was combined with single qubit Hadamard rotations to experimentally realize a two-atom
controlled-not gate [2828]. In this experiment, the two atoms are spaced by 10 µm, each trapped
inside a far-off-resonant dipole trap with micrometer-sized trapping volume, the trapping
laser being focused by high-numerical-aperture lenses. Such single atom dipole traps [2929]
are more commonly called optical tweezers in recently years. An array of optical tweezers
can be achieved through shaping a laser beam’s wavefront before focusing. The wavefront
shaping can be done with a programmable spatial light modulator, which is an array of
electrically controlled birefringence pixels. By this technique, two-dimensional neutral atom
arrays are constructed. However, earlier demonstrations [3030] of spin model simulation still
suffered from non-deterministic loading of tweezer arrays due to light-assisted collision. This
difficulty was removed by actively sorting the initially loaded atoms with dynamical optical
tweezers [3131]. Since then, defect free arrays of as many as > 300 atoms have been realized
[3232–3434]. Subsequently, a number of impressive simulations have been demonstrated with this
platform.

New phenomena are being revealed by the Rydberg qubit arrays. In an Ising-type spin
chain simulation using ground-Rydberg qubits [3535], the quantum many-body scars were ob-
served as robust oscillations in a nine-qubit chain long after the system should have thermal-
ized. This unusual violation of ergodicity in the presence of quenched disorder demonstrates
a new universality class of quantum dynamics [3636] that could be used to protect the coher-
ence of a system. In another Ising-type simulation [3737], the versatility of the programmable
tweezer traps allow the adjustment of Rydberg blockade radius by setting the atomic lattice
spacing. This results in a few new phases emerging in the experiment when the Rydberg
blockade is extended beyond the nearest neighbors. The flexibility of the tweezer array gener-
ation does not only allow great scalability of the platform, but also brings possibility for new
quantum simulation protocols. In a neutral atom quantum processor experiment [3838], pairs
of atoms are entangled using Rydberg blockade enabled controlled-phase gate. Afterwards,
the qubit pair can be separated across a large region capable to host 2000 qubits. These
entangled ancilla qubits can be shuttled to mediate entanglement between other qubits that
never directly interacted. By this technique, a surface code state and a toric code state have
been experimentally realized. The easy scalability of the platform already enables some clas-
sically intractable simulations. In a two-dimensional transverse-field Ising model simulation
[3939], defect free arrays of up to 196 atoms have been used to simulate the antiferromagnetic
phase of the system, whereas the corresponding numerical simulation has to stop at ≈ 100
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atoms before it becomes prohibitively resource heavy.
In the works mentioned above, two limitations are noteworthy. The first limitation is the

lack of Rydberg atom trapping. The optical tweezer lights do not trap the Rydberg atoms
(it even repels them), which become free as soon as they are created by laser excitation.
The Rydberg interaction time is then limited to 10–20 µs even if the atoms were initially
cooled to 10–20 µK. The second limitation is the Rydberg state lifetime, which is long,
but still limited to typically 100 µs to 200 µs at room temperature (the condition for all
the spin model simulations discussed above). To overcome the first limitation, one can
either trap the Rydberg atoms using additional ponderomotive traps for low-field seekers
[4040, 4141], or trap the ionic core of alkaline-earth Rydberg atoms using an optical tweezer,
which also traps the ground state atoms before the Rydberg excitation [4242]. Both are new
techniques that could be implemented in spin model simulations in the near future. The
Rydberg interaction time would then be longer than the Rydberg atom lifetime. The lifetime
of a low-ℓ Rydberg atom, even at low temperature, is limited to typically ≲ 1 ms by its
optical spontaneous emissions. At room temperature, it is reduced even more by the 300 K
blackbody radiation (BBR) induced transfers. The BBR induced errors in the long term
can affect the gate fidelity of a fault-tolerant neutral atom computation platform [4343]. In a
recent experimental demonstration of the MIS quantum optimization [1616], the BBR-induced
violations of blockade is listed as one potential factor that limits this useful optimization,
which essentially hinges on the Rydberg blockade mechanism [4444]. The straightforward way
to overcome the room temperature BBR is to move the platform to a cryogenic environment.
There are already efforts towards this direction [3434, 4545]. In a 4 K environment, the low-ℓ
Rydberg atom lifetime is expected to increase by a factor of 2 to 3 (depends on the n).

This 2- or 3-fold increase of Rydberg lifetime seems moderate. However, this is only for
the low-ℓ Rydberg states. For the other Rydberg qubit with the potential for large-scale
quantum simulations [2626, 4646, 4747], namely the circular Rydberg atom, a 4 K environment can
increase its lifetime by a factor of more than 50. Even in a 10 K environment, a lifetime in
the range of a few millisecond is already reachable [4848]. A circular Rydberg atom (CRA)
is a Rydberg atom in the circular state, which has the longest lifetime among all the other
Rydberg levels within the same manifold. It has only one weak MW spontaneous emission
channel, which makes its lifetime much more sensitive to the number of BBR photons than
the low-ℓ Rydberg states. In addition, a trait unique to the CRAs is that their single MW
spontaneous emission channel can be inhibited by simple confinement structures [4949–5151],
typically a plane-parallel capacitor. This would give rise to unprecedented interaction time
in the range of seconds or more, which is intrinsically unreachable by the low-ℓ Rydberg
atoms. A few simulation platforms of the CRA taking advantage of the inhibition feature
have been proposed, such as shown in Fig. 1.11.1. Panel (a) is the proposal in [2626]. In this
poposal, the spontaneous emission inhibited CRAs in a cryostat are expected be able to
simulate a Heisenberg XXZ model for seconds with a tunable interaction strength. With a
chosen interacting strength of > 10 kHz, it would be possible to follow ≃ 105 spin exchange
periods in a phenomenon with slow dynamics. Panel (b) is the poposal in [4646]. In this
proposal, the capacitor plates are glass plates with a layer of optically transparent and
electrically conductive Indium-Tin-Oxide coating. This allows conventional optical tweezers
to be implemented in a novel way, essentially threading the circular electron wave function
with the tightly focused tweezer beam. The established dynamical tweezer sorting techniques
can then be readily applied to construct defect free and trapped CRA arrays in 2D. The
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proposal estimates a room temperature interaction time in the range of milliseconds, and a
dipole-dipole interaction as large as 17 MHz for the high-n CRAs required for this trap. This
leads to ≃ 104 to ≃ 105 cycles of a fast dynamics without a cryostat.

B. Principle of the proposed simulator

We propose here a circular-state quantum simulator,
schematized in Fig. 1, which combines the best features of
the other platforms and avoids some of their bottlenecks.
Rydberg atoms in circular states, i.e., states with maximum
angular momentum, are trapped in the ponderomotive
potential induced by laser fields [104,105]. These low-
field seekers are radially confined on the OX axis (axis
assignment in Fig. 1) by a Laguerre-Gauss “hollow beam”
at a 1-μmwavelength. They are longitudinally confined in a
one-dimensional adjustable lattice produced by two 1-μm-
wavelength beams, propagating in the XOY plane at small
angles with respect to the OY axis. In the following, we
consider, for the sake of definiteness, two lattices with
intersite spacings d ¼ 5 μm and d ¼ 7 μm, corresponding
to a strong or moderate dipole-dipole interaction, respec-
tively. The main decay channel of circular levels (sponta-
neous emission on the microwave transition towards the
next lower circular level) is efficiently inhibited [106] by
placing the atoms in a plane-parallel capacitor, which also
provides a static electric field defining the quantization
axisOZ (the plane of the circular orbit is thus parallel to the
capacitor plates). A method based on a van der Waals
variant of evaporative cooling [107] prepares determinis-
tically long chains of atoms. It also leads to an efficient
detection of individual atomic states with single-site
resolution.
The spin-up and spin-down states of the simulator are

encoded in the circular levels with principal quantum
numbers 50 and 48, respectively, connected by a two-
photon transition. The dipole-dipole interaction provides a
general spin-1=2 XXZ chain Hamiltonian [21] with near-
est-neighbor interactions. Its parameters can be adjusted at
will over a short time scale by tuning the static electric field
and a near-resonant microwave dressing. This complete
freedom in the choice of the model Hamiltonian is a unique
feature of the circular-state quantum simulator.
The dynamics of a chain with a few tens of spins can be

followed over up to about 105 spin-coupling times. The
final state of each spin can be individually measured.

Adiabatic evolutions through quantum phase transitions,
sudden quenches, and fast modulations of the interaction
parameters are within reach. This proposal thus opens
promising perspectives for the simulation of spin systems
in a thermodynamically relevant limit, beyond the grasp of
classical computing methods.
In Sec. II, we recall the main properties of circular

Rydberg atoms and discuss their dipole-dipole interaction.
Additional details are given in Appendix A. Section III is
devoted to the interaction Hamiltonian of an atom chain
and to the rich phase diagram of the corresponding spin
system, with details on the associated numerical simula-
tions in Appendix B. Section IV is devoted to the laser
trapping of circular atoms and to their protection from
loss mechanisms, with technical details in Appendixes C
and D. Section V is devoted to the deterministic preparation
of a Rydberg-atom lattice with unit filling (see also
Appendix E). Section VI presents the results of state-of-
the-art numerical simulations, showing that the simulator
reaches a thermodynamically relevant regime. We examine
the most interesting perspectives in Sec. VII.

II. CIRCULAR RYDBERG ATOMS AND VAN DER
WAALS INTERACTION

The circular states jnCi have a large principal quantum
number n and maximum orbital and magnetic quantum
numbers: l ¼ jmj ¼ n − 1 [74]. They are the states closest
to the circular orbit of the Bohr model, with a radius rn ¼
a0n2 (a0: Bohr radius). Their wave function is a torus, with
a small radius rn=

ffiffiffi
n

p
, centered on this orbit. This aniso-

tropic orbit is stable only in a directing electric field F,
normal to the orbit, defining the quantization axis OZ and
isolating the circular state from the hydrogenic manifold
[108] (Appendix A). The circular states cannot be excited
directly from the ground state. Their preparation relies on a
complex but efficient and fast process, combining laser and
radio-frequency photon absorption [109]. These states have
long radiative lifetimes, scaling as n5 (25 ms for j48Ci).
The microwave transitions between neighboring circular
states are strongly coupled to the electromagnetic field.
These remarkable properties make them ideal tools for
experiments on fundamental quantum processes in cavity
quantum electrodynamics experiments [110,111].
The large dipole matrix elements between circular levels

make them particularly sensitive to the dipole-dipole
interaction. Two atoms in the same circular state jnCi
experience a van der Waals, second-order interaction
proportional to 1=d6 (d: interatomic distance), repulsive
in the proposed geometry (the interatomic axis OX is
perpendicular to the quantization axis OZ, see Fig. 1). For
atoms in different circular states, jnCi and jpCi, this
interaction competes with the resonant Förster-like transfer
of energy (“spin exchange”) from one atom to the other:
jnC; pCi ↔ jpC; nCi. This exchange process is at first

X

Y
Z

FIG. 1. Pictorial scheme of the proposed circular-state quantum
simulator.
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FIG. 1. (a) Illustration of the proposed setup. A pair of ITO-coated
glass plates separated by d form a capacitor to stabilize the circu-
lar Rydberg state against radiative decay. While reflective at mi-
crowave frequencies, optical transparency provides access for trap-
ping in optical tweezer arrays. (b) Atomic level scheme of the three
largest angular momentum states for the Rydberg manifolds n and
n±1. Arrows denote open decay paths of the circular state |n,Ci via
spontaneous emission (red) and blackbody decay (blue). (c) Cavity-
induced suppression factor x for s± (red) and p-transitions (gray) as
a function of the capacitor spacing d. Solid lines depict x for perfect
reflection (R = 1), while dashed (dot-dashed) lines show results for
finite film reflectivity R = 0.8 (R = 0.6). (d) Suppression factor x for
s±-transitions as a function of R for different d as indicated.

larized microwave radiation through a single dipole-allowed
transition into the circular state of the next lower hydrogenic
manifold |n� 1,Ci (see Fig. 1(b)). Despite the large transi-
tion strength, the small mode density in the microwave do-
main causes much longer lifetimes compared to low-l Ryd-
berg states.

Evidently, this only holds for negligible blackbody-induced
decay. Stimulated absorption and emission of s+-polarized
blackbody radiation at temperature T drives the circular state
into the adjacent levels |n±1,Ci. Furthermore, weaker transi-
tions induced by the p- and s�-polarized components of the
thermal radiation field couple to elliptical states (dashed and
dotted arrows in Fig. 1(b)). The total blackbody-reduced de-
cay rate of the circular Rydberg level thus reads

g = A|n,Ci,|n�1,Ci +Â
| f i

n̄(w,T )A|n,Ci,| f i . (1)

Here, A|ii,| f i denotes the Einstein A-coefficient between states
|ii and | f i, w the corresponding transition frequency, and n̄
the thermal average photon number. The sum runs over all fi-
nal states | f i with non-zero dipole matrix element h f |e~r|n,Ci.
Note that the latter decrease very rapidly for final states of
more distant manifolds than n + 1. In Fig. 2, the calculated
lifetime 1/g for circular states ranging from n = 40 to n = 120
is shown for bare spontaneous decay (T = 0, circles) as well
as for a situation at room temperature (T = 300K, squares).

The detrimental blackbody-induced reduction of the lifetime
by up to three orders of magnitude ensues predominantly from
the strong transitions |n,Ci� |n ± 1,Ci between adjacent cir-
cular Rydberg states.

B. Stabilizing circular Rydberg states in a cavity

The above discussion suggests a severe obstacle in exploit-
ing circular Rydberg states at room temperature to encode a
long-lived qubit for quantum simulations. However, the chal-
lenge may be solved effectively by placing the atom in the
center of a pair of conductive plane-parallel capacitor plates.
As first predicted in Ref. [18] and later observed experimen-
tally [19], this setting allows for suppressing Rydberg state
decay. The suppression is induced by suitably restricting
the available electromagnetic field modes for atomic state de-
cay. Specifically, a plane-parallel capacitor with spacing d
inhibits the propagation of modes with wavelengths l > 2d
and polarized parallel to the capacitor plates. For a circu-
lar Rydberg state |n,Ci whose orbital plane is oriented par-
allel with the capacitor plates, this suppresses the dominant
decay channels via circularly polarized photon modes when
the microwave-photon wavelengths associated with the transi-
tions |n,Ci� |n±1,Ci fulfill the above condition. For exam-
ple, the critical capacitor spacing associated with the transi-
tion wavelength between adjacent n-manifolds is 2.7 mm for
n = 50 and 2.2 cm for n = 100, and the corresponding mi-
crowave transition frequencies f = w/(2p) are 54.3 GHz and
6.7 GHz, respectively. Modes polarized perpendicular to the
capacitor plane are generally not inhibited to propagate and in-
duce the weaker p-transitions. Note that transitions via these
modes may be even slightly enhanced by the cavity.

The suppression factor can be calculated in a classical
framework considering an oscillating dipole in the vicinity of
metallic surfaces. It is straightforward using the method of
image charges to evaluate the case of the two infinitely ex-
tended plane-parallel capacitor plates with finite reflectivity R
(the field reflectivity is r =

p
R). One finds [23, 24]
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for s±- and p-transitions, respectively, and with fn =
n2pd/l . The suppression factors for the different polar-
ization modes and for various values of R are depicted in
Fig. 1(c). For a perfectly reflecting capacitor, x s±

is strictly
zero for d < l/2, and Rydberg-state decay via s±-transitions
is fully suppressed. A finite reflectivity, however, causes im-
perfect suppression (see also Fig. 1(d)) and partially opens the
decay channel. Note also the aforementioned enhancement
for p-transitions in the cavity.

We are now in a position to compute the circular-state life-
time in the capacitor by evaluating Eq. 1 with the cavity-
modified Einstein A-coefficients, i.e. x s±(p)A|n,Ci,| f i for the

(a) (b)

Fig. 1.1 CRA simulation platform proposals. (a) Picture taken from [2626]. Spin
chain platform inside an inhibition capacitor. Single CRAs are trapped in the x
direction by the fringes of two counterpropagating dipole trap beams, in the z
and y directions by a Laguerre-Gauss hollow beam. (b) Picture taken from [4646].
Two-dimensional array platform inside an inhibition capacitor. The tranparent
electrodes enable the implementation of tweezers.

One other unique advantage of these circular qubits is found when they are prepared
from the alkali-earth elements with two valence electrons. In this case, the circular Rydberg
electron is not susceptible to the auto-ionization [5252], a known effect that the optically
excited core electron exerts on a low-ℓ Rydberg electron. The alkali-earth CRAs thus retain
an optically active and accessible core electron with potentially game changing applications.
The optical transition could be used to cool the circular qubits during the runtime of a
quantum simulation. The quadrupole interaction between the core electron and the circular
Rydberg electron causes state dependent energy shifts in both [5353]. This provides, on the
one hand, the means for efficient or even QND detection of the circular Rydberg electron via
optical imaging of the transition of the core electron, on the other hand, the individual MW
addressability of the circular electron by optically switching the states of the core electron.

For applications in measurement and metrology, the Rydberg atoms are naturally ideal
sensors of the electromagnetic fields. Being atoms, they possess stable and well-studied prop-
erties that require no calibration. The large dipoles of the Rydberg atoms couple strongly to
the fields in the range from MW [5454] to rf [5555]. The quantum nature of these sensors allows
Schrödinger-cat states to be prepared in a single atom to achieve quantum-limited sensitivity
and ultra high spatial resolution at the same time [5656]. In particular, the superposition of
two circular states with their huge magnetic dipoles (≃ 50 Bohr magnetons each) opposite
in sign is a purely “circular” magnetic field sensor without any non-circular components.
This “circular cat state” demonstrated a single-atom DC magnetic field detection sensitivity
of 13.2 ± 0.2 nT, given an interrogation time of 20 µs in a cryostat [5757]. The practical ap-
plication of these atom-based sensors requires a miniaturized room temperature apparatus.
In this scenario, the 300 K BBR becomes the limiting factor, preventing the circular cat
state from existing for more than ≃ 100 µs. However, with a spontaneous emission inhibition
structure, even at room temperature, this single-atom magnetometer could have an effective
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interrogation time of over one millisecond [4949]. The corresponding sensitivity would be less
than 0.26 nT. The precise, space-resolved, and non-invasive magnetic field measurement can
find real-world applications such as brain activity monitor and local mapping of fields in a
nanodevice.

The increasing interest and accelerating advancement in the Rydberg technologies call for
a solution to the limited atomic lifetime that would eventually become a bottleneck, limiting
either the ultimate benchmark in a cryogenic environment, or the performance potential at
room temperature. With this problem in mind, the work of this thesis demonstrates the
inhibition of the BBR-induced transfers in a room temperature experiment to extend the
lifetime of the CRA by one order of magnitude. The techniques developed in this work could
contribute to overcome the lifetime bottleneck in both the experiments and the applications
of the Rydberg technologies in the future.

1.1 This Work

In this thesis we experimentally realized a small-scale vapor cell experiment with excellent
optical access. We prepared the CRAs from laser-cooled rubidium. We carefully character-
ized their lifetimes and reported for certain circular states a state-of-the-art lifetime of over
1 millisecond at room temperature.

The organization of this thesis is listed below.
Chapter 22 introduces the Rydberg atom as the quantum system we explore and exploit.

The element we use in the experiment is the rubidium. Therefore, we first introduce the
hydrogen model, which, paired with a model potential using the quantum defect theory,
leads to the the rubidium model that we use. Afterwards, we show the principle of how we
experimentally prepare the circular state. And finally, we discuss the theories regarding the
characterization, derivation, and modification of the lifetime of the CRA. We put a particular
stress on the mode density modification caused by a plane-parallel capacitor, and its utility
in the inhibition of the decay channels of the CRA.

Chapter 33 includes all the experiment descriptions. In section 3.13.1, the whole setup itself
was decomposed into different functional parts to be discussed separately, from the vacuum
chamber to the magneto-optical trap. The central part of the experiment, the inhibition
capacitor, is studied in simulation to examine the expected lifetimes of the CRAs inside it.
With the composition of the experiment in mind, in section 3.23.2, we proceed to describe the
experimental preparation of the CRA inside the plane-parallel capacitor. In this section,
we first show the principle of state-selective ionization of Rydberg states. The ionization
signal detected by this technique is the raw form of our data, from which we infer the state
of the atoms. We then show the optimization procedures for both the field conditions of
the experiment and the circularization adiabatic passage. This chapter concludes with the
preparation sequences for the seven different circular states we prepare in this work.

Chapter 44 presents the data. The data is the time evolution snapshots of seven different
circular states over a duration of up to 900 µs. The corresponding BBR-induced population
redistributions follow from the Fermi’s golden rule, and can be physically modeled by the rate
equations. We thus build such a rate equation model and use it to fit a large amount of data.
The obtained transition rates between the observed circular states can faithfully reproduce
the dynamics in the complete data collection. From these rates we obtained the lifetimes
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of the CRAs we prepared or observed in the experiment. The rates and the corresponding
lifetimes reconstruct well in the frequency domain the cutoff feature of the parallel plate
waveguide.

Finally, in the conclusion, we summarize this work and discuss its limitations. In addition,
we give a brief account of a future experiment built to push the limit of the lifetime of a
CRA to much larger values.



Chapter 2

The Quantum System: Rydberg
Atom

A Rydberg atom is an atom with a highly excited electron, associated with a high principal
quantum number1 n. The atom concerned typically has one (H, Rb) or two (Sr, Ca) valence
electrons. The gross structure of the atom is then given by the Rydberg formula:

En = − 1
n2 Ry (2.1)

where we have used the Rydberg energy unit 1 Ry ≈ 13.6 eV, a value related to the Rydberg
constant by a factor of hc. Some other systems (ion, molecule, semiconductor) with a
Coulomb potential bound electron also share the same or similar Rydberg level series as in
Eq. (2.12.1).

The simplest Rydberg system is a hydrogen atom. The essential Rydberg physics is all
contained in the hydrogen model, which is discussed in section 2.12.1.

The quantum defect theory provides the energy corrections for the non-hydrogenic ele-
ments. The corrections for rubidium, the element used in this work, is introduced in sec-
tion 2.22.2

In our experiment we characterize the lifetime of the circular Rydberg atoms (CRA). The
principle of our circular state preparation method (circularization) is explained in section 2.32.3.

Finally, section 2.42.4 focuses on the theoretical framework of our lifetime measurement. In
particular, we study the cases when a CRA’s decay channels are inhibited, and the atomic
lifetime is extended.

2.1 Hydrogen Atom
In a hydrogen atom, the single electron is bound by a time-independent Coulomb potential.
Consequently, the wave functions of the electron found by the Schrödinger’s equation are

1The Rydberg level series as defined by (2.12.1) was historically found to match precisely the hydrogen levels.
Therefore an hydrogen atom, no matter the n, should always be a Rydberg atom if we stick to the textbook
definition. Under modern context, alkali elements are more popular subjects of Rydberg experiments, these
atoms’ levels approximate that of hydrogen only at a relatively high n. We usually imply n ≥ 10 when we
refer to a Rydberg atom [5858]. In addition, when dubbing an atom a Rydberg atom, we often imply other
experimentally desirable high-n properties, e.g. the large coupling to the environment.

7
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a series of stationary states. These states are the solutions to the corresponding time-
independent Schrödinger’s equation:

Hψ = Eψ (2.2)

H = − ℏ2

2µ∇2 − 1
4πϵ0

e2

r
(2.3)

in which µ = me/(1 + me/mcore) is the reduced mass of the electron mass me and the
core mass mcore. r = |re − rcore| is the distance between the electron and the core. These
substitutions allow us to reduce the two-body Hamiltonian to the form of Eq. (2.32.3), a single
particle in a central potential.

The solution to (2.22.2) can be given in either the spherical basis (subsection 2.1.12.1.1) or the
parabolic basis (subsection 2.1.22.1.2). The latter basis provides the necessary quantum numbers
to describe the Rydberg energy levels in the presence of a DC electric field (subsection 2.1.32.1.3).

2.1.1 Spherical Basis
The solution to Eq. (2.22.2) under the Hamiltonian (2.32.3) is well known:

ψnlm(r) = Rnl(r)Ylm(θ, φ) (2.4)

Rnl(r) =
√( 2

na0

)3 (n− l − 1)!
2n[(n+ l)!] e

−r/na0

( 2r
na0

)l

L2l+1
n−l−1

( 2r
na0

)
(2.5)

Ylm(θ, φ) =
√

(l − |m|)!(2l + 1)
(l + |m|)!4π P

|m|
l (cos θ)eimφ (2.6)

in which Lk
n(x) and P k

n (x) are respectively the associated Laguerre polynomials and the
associated Legendre polynomials.

In the solution (2.42.4), a stationary state ψnlm(r) is expressed in the spherical coordinates
(r,θ,φ). This allows it to be separated into a radial part Rnl(r) and an angular part Ylm(θ,φ)
(spherical harmonics). The three integer quantum numbers in the subscript completely
determine the stationary state:

• n: The principal quantum number. It is the same n that indexes the gross structure
in Eq. (2.12.1). For hydrogen without any core electrons, n = 1,2, . . ..

• l: The angular momentum quantum number. 0 ≤ l < n.

• m: The magnetic quantum number. −l ≤ m ≤ l

The high-m Rydberg states we focus on in this work are a simple system. The spin angular
momentum quantum number ms = ±1/2 can always be ignored, because the corresponding
relativistic correction is small (kHz for n = 50). In addition, the MW and rf we apply to
the atoms do not flip their spin states (∆ms = 0 selection rule). The relative level transition
frequencies do not change whether we start from a spin-up or a spin-down state, or a mixture
of both.

Without considering the relativistic effect, the hydrogen eigenenergies En in the spherical
basis are independent of l and m. The value of En coincides exactly with that given by the
Bohr model (En = −n−2mec

2/2α2), and has a n2-fold degeneracy.
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2.1.2 Parabolic Basis
The Schrödinger’s equation (2.22.2) is also separable in the parabolic basis, which has a cylin-
drical symmetry and will be a more suitable basis to work with when a static external field is
applied. The conversion between the parabolic basis coordinates (ξ, η, φ) and the Cartesian
coordinates is given by:

x =
√
ξη cos(φ)

y =
√
ξη sin(φ)

z = 1
2(ξ − η)


ξ = r + z = r(1 + cos θ)
η = r − z = r(1 − cos θ)
φ = tan y

x

(2.7)

in which r = (ξ + η)/2 =
√
x2 + y2 + z2.

The eigenstates in the parabolic basis are expressed as:

ψn1n2m(r) = u1(ξ)u2(η)eimφ (2.8)

in which the form of the u1 (u2) depends on the three quantum numbers n, n1(n2), m.
The n, m here are the same quantum numbers as introduced in subsection 2.1.12.1.1. The two
parabolic quantum numbers n1, n2, both being non-negative integers, satisfy the relation:

n = n1 + n2 + |m| + 1 (2.9)

From the parabolic quantum numbers, the electric quantum number k is defined as:

k = n1 − n2 (2.10)

2.1.3 Hydrogen Atom in External Electric Field
In the presence of a finite electric field F = Fuz. The Hamiltonian of a hydrogen atom
reads:

H = Hzero + VDC (2.11)
VDC = −D̂ · F = −er̂ · F = −eẑF (2.12)

in which Hzero is the zero field hydrogen Hamiltonian (2.32.3), D̂ is the electric dipole operator.
Note that e > 0.

The interaction term VDC shifts the bare eigenenergies of the zero field Hamiltonian Hzero,
giving rise to the DC Stark shift. However, there is no analytical solution to this problem.
One can instead seek a perturbative solution. The first order energy correction is found
by limiting the diagonalization procedure within each n-manifold subspace. If we use the
parabolic basis |n1,n2,m⟩ in the process, we find that there is little to do: the perturbation
term ẑ is already diagonalized in the |n1,n2,m⟩ basis for the first order correction. We
can then use the approximate good quantum numbers n1, n2, m to label the shifted energy
levels, or the “Stark levels”, within one manifold. These Stark levels labeled by the parabolic
quantum numbers are shown in Fig. 2.12.1.

In section 2.1.3.12.1.3.1, we introduce the most important Stark level in this work, the circular
Rydberg level. In section 2.1.3.22.1.3.2, we discuss the higher order Stark corrections.
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1.1. The Hydrogen atom
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Figure 1.3: Energy levels of the hydrogen atom in a static electric field F are shifted from their
zero-field energy En . For each value of the magnetic quantum number m, the respective
n −|m| levels split into equidistant vertical ladders, called m-ladders. In this sketch, the
levels are sorted by their energy for each value of m and are labelled with the parabolic
quantum numbers n1 (orange) and n2 (blue).

where a0 is the Bohr radius. The new eigenstates remain the parabolic states and the new
energy eigenvalues can be written as

E = En +E (1)
n , with E (1)

n = 3

2
ea0n(n1 −n2)F, (1.11)

where En are the unperturbed energy eigenvalues given by Bohr’s formula (Eq. 1.6), and
E (1)

n the first order Stark shift. The linear Stark shift, proportional to n and to the applied
electric field strength F , partially lifts the degeneracy of the n2 levels of the n-manifold.
However, the degeneracy of levels with same (n1 −n2) value remains. For each value of
m, the states split into equidistant ladders of n −|m| states, also called m-ladders, which
are distributed symmetrically with respect to the unperturbed energy En . In Fig. 1.3,
the energy eigenvalues of the eigenstates |n1,n2,m〉 are sketched over the respective
magnetic quantum number m.

The second order energy correction, or second order Stark shift, is given by [159]

E (2)
n =

∑
n′ 6=n,n′

1,m′

| 〈n′,n′
1,m′|V̂DC |n,n1,m〉 |2

En −En′
. (1.12)

Note that the ẑ commutes with L̂z so we can restrict this sum to m′ = m. Once no longer
restricted to a given manifold, the operator ẑ is no longer diagonal in the parabolic
basis. The parabolic states are therefore no longer the eigenstates. However, we continue
to use the parabolic quantum numbers to label the states, keeping in mind that their
wave-functions are no longer fully described by Eq. 1.8.
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Fig. 2.1 The Stark levels within one n-manifold are uniquely identified by the
parabolic quantum numbers n1, n2, and the magnetic quantum number m. Notably
the angular momentum quantum number ℓ becomes a bad quantum number and
cannot be used to describe these Stark levels. Figure taken from [5959].

2.1.3.1 The circular state, the elliptical states

In Fig 2.12.1, a circular Rydberg level is the Stark level with the largest angular momentum
along the quantization axis. Within one manifold this condition corresponds to the two
levels at the two extremities of the Stark structure in Fig. 2.12.1. Due to the ±m symmetry
of the Stark structure and the well-defined σ+ polarization of our CRA preparation rf field
(see subsection 3.1.1.43.1.1.4), the population in our system is confined in the m ≥ 0 half of the
manifold. Therefore, in this manuscript, we use the notation nC to unambiguously denote
the Stark state |n1 = 0, n2 = 0,m = n− 1⟩. The m < 0 half of the manifold and the other
circular state |n1 = 0, n2 = 0,m = −(n− 1)⟩ never enter the picture. However, we note that
one can explicitly prepare the superposition of both circular states for the application in
magnetometry [5757].

The wave function of the circular state nC has a simple form [6060]:

ψnC(r, θ, φ) = 1√
πa3

0

1
nn!

(
− r

na0
sin θeiφ

)n−1
e−r/na0 (2.13)

The probability distribution is localized inside a torus of radius rn = n2a0 and dispersion
(thickness) ∆rn = a0n

2/
√

2n in the θ = π/2 plane. The torus’s small angular dispersion in θ
is evident from the sinn−1θ term in Eq. (2.132.13). The radial probability distribution of a 60C
state is shown in Fig. 2.22.2, from which we see the reason for the name “circular”.

For convenience, the other non-circular Stark levels in this manuscript are called the
elliptical levels. The elliptical levels with the next highest m values after the nC are often
discussed. Therefore we assign to them the short notations shown in Fig. 2.32.3.

The circular states are eigenstates in both the spherical and the parabolic basis. This
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Figure 1.1 a) Radial probability of inding the outer electron Ǥ2ǌ60(Ǥ) for 87Rb 60ƽ state. b)
Radial part of wavefunction for the 87Rb circular 60ƽ state.

Circular Rydberg state

A remarkable case is when Ǟ and |ǟ�| take their maximum values Ǟ = |ǟ�| = Ǡ−1. From
equations (1.3) and (1.5) the wavefunction has then a simple form

�(Ǥ, �, �) = 1
√�Ǖ30

1ǠǠ! (− ǤǠǕ0 sin �Ǚ��)�−1 Ǚ−�/��0 . (1.10)

The orbital is a torus of radius Ǡ2Ǖ0 and thickness (dispersion) ΔǤ/Ǥ = Δ� ≈ 1/√2Ǡ,
lying perpendicular to the quantization axis ǉǬ. A cut through the plane of the torus
is depicted in Figure 1.1a. In the Bohr-Sommerfeld semi-classical model, the outer
electron travels around the atomic core on eccentric elliptical trajectories depicted in
Figure 1.2. The larger Ǟ, the less eccentric the orbit is. The torus somehow corresponds
to the semi-classical image of a circular orbit with a maximum angular quantum num-
ber Ǟ, especially for very high Ǡ, where the coninement to the Bohr orbit is tighter. The
state with Ǟ = |ǟ�| = Ǡ − 1 is thus given the name circular state, and denoted ∣Ǡƽ⟩. The
other states are called elliptical to distinguish them from the circular one. There are
two circular states in the same Ǡ manifold, corresponding to ǟ� > 0 and ǟ� < 0. In
practice, a strong electric ield is added to deine the quantization axis. The behaviors
of the two circular states in presence of an external electric ield are the same (see sub-
section 1.4.2). If not speciied otherwise, we implicitly consider the ǟ� positive case.

Fine structure

In a more complete picture, we have to take into account the interaction between the
electron spin and its motion. The interaction Hamiltonian reads

ǂ�� = ƻ� ⋅ � , (1.11)

where � and � are the total orbital momentum and the spin operators of the Rydberg
electron. The strength of the interaction is represented by the constant ƻ. We deine

Fig. 2.2 Radial probability of finding the outer electron of the 60C state of 87Rb.
Figure taken from [6161].
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—–ne′
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· · · —–ne1
—–ne2

Fig. 2.3 Notation assignment for the high-m states in the n-manifold. For an
elliptical state, the subscript increases as m decreases. Primed states have higher
energy than the unprimed

however does not suggest that one can prepare a CRA in a zero field. The circular state is
only stable in an external quantization axis field (electric or magnetic) [6262]. If the magnitude
of this directing field is reduced to ≈ 0, the corresponding Stark or Zeeman shifts are also
vanishingly small, the slightest environment stray fields would cause an eigenbasis rotation
faster than the system can adiabatically follow. Consequently, the pure circular state be-
comes a mixture. For this reason, we always apply a DC electric field to the atoms in the
experiment.

2.1.3.2 Higher order Stark shifts

The perturbative expansion of the DC Stark energy correction up to the fourth order is given
below:
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E(0)
n = − Eh

2n2 × F 0 (2.14)

E(1)
n =3ea0

2 nk × F 1 (2.15)

E(2)
n = − (ea0)2

16Eh
n4(17n2 − 9m2 + 19 − 3k2) × F 2 (2.16)

E(3)
n =3(ea0)3

32E2
h
n7k(23n2 − k2 + 11m2 + 39) × F 3 (2.17)

E(4)
n = − (ea0)4

1024E3
h
n10(5487n4 + 35182n2 − 1134m2k2

+ 1806n2k2 − 3402n2m2 + 147k4 − 549m2 + 5754k2

− 8622m2 + 16211) × F 4 (2.18)

where we have used the Hartree energy unit: Eh ≈ 27.2 eV.
In the expansion, the zeroth order term Eq. (2.142.14) is the Rydberg formula (2.12.1). Eqs. (2.152.15),

(2.162.16) respectively add to the Rydberg energies the linear Stark shift and the quadratic Stark
shift. The circular state to the first order has zero electric dipole, and hence has zero linear
Stark shift. The quadratic Stark shift experienced by the circular state has an intuitive
classical interpretation [6060]: For a circular state, the Stark field is a directing field (the
quantization axis field) always perpendicular to the orbiting plane of the outer electron.
The ionic core under the directing field is pushed slightly outside of the electron’s orbiting
plane, deviating from the zero dipole configuration and obtaining a dipole, proportional to
the applied field. The induced dipole coupling gives rise to the quadratic Stark shift.

Experimentally, for the highly hydrogenic circular and the high-m elliptical states, the
perturbative expansion up to the quadratic Stark shift is precise enough to predict the MW
spectroscopy line shift in the regime of hundreds of V/m or less (error is less than the
spectrum peak width). As a result, the quadratic Stark shift was often used as an easy
means to quickly calibrate the directing field of the CRA.

Including higher order Stark shifts up to at least the fourth order is preferable when the
involved field strength is approaching the ionization thresholds of the Rydberg atoms [6363, 6464].
This is also what we do in the calculation of the ionization signals (see subsection 3.2.1.23.2.1.2).
Historically, the Stark shifts of the first three orders were easily obtained [6565]. The fourth
order shift posed a challenge. The correct form was not reached until 1974 [6666]. The computer
aided method was then developed to carry out the expansion to as high as twenty-fifth order
[6767]. But this effort was mainly to prove that the expansion should not be carried out too
far, because this perturbation series is asymptotic and non-convergent.

The perturbative expansion is useful for a fast evaluation of high-ℓ Rydberg energy spec-
trum at relatively low fields. But when the field is large and level crossings between different
terms occur, the better-suited method to comprehensively study the Stark structure of the
Rydberg states is the diagonalization of the full energy matrix [6363].
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2.2 Rubidium Atom
The rubidium isotope 85Rb is used throughout this work. It is a more abundant isotope
than the other one, 87Rb. Unlike hydrogen, 85Rb has a ground state with n = 5. When its
valence electron is excited to the Rydberg levels, there remains a sizable ionic core composed
of 36 electrons, 37 protons, and 48 neutrons.

For a hydrogen Rydberg atom, its core is nearly point-like. A single proton’s charge
provides the −e2/r Coulomb potential. However, for a rubidium Rydberg atom, its low-ℓ
electron wave functions can partially penetrate the non-negligible spatial extension of the
core. The classical analogy is a highly elliptical orbit that has a perihelion very close to
the core. In this case, the many protons’ charge are not completely screened by the core
electrons. As a result, the outer electron feels a stronger potential of −Ze2/r. A Rydberg
state with a higher angular momentum, on the other hand, has a less elliptical orbit and less
wave function overlapping with the core. It thus deviates less from a hydrogenic Rydberg
state. The global effect is that the low-ℓ Rydberg states have lower energy than rest of the
levels in the same manifold. This breaks the n2-fold degeneracy of the hydrogen model, and
is known as the quantum defect.

The ℓ dependency of the core penetration effect can be described by assigning an ℓ-
dependent effective principal quantum number neff < n to a hydrogen Rydberg level. The
eigenenergy of the level then becomes smaller:

Enlj = − 1
n2

eff
Ry (2.19)

neff = n− δnlj (2.20)

where δnlj is the phenomenological quantum defect constant, j is the total angular momen-
tum (orbit plus spin) quantum number. δnlj is expressed by an expansion:

δnlj = δ0 + δ2
(n− δ0)2 + δ4

(n− δ0)4 + · · · (2.21)

in which all δi’s are constants that depend on l and j. For high-n levels, the fist two terms
in Eq. (2.212.21) provide a good approximation of δnlj . The constants δ0 and δ2 are reported in
various sources. A summary of their values can be found in the thesis of E. K. Dietsche [5959].

The quantum defect of the Rydberg states is only weakly dependent on n and j, compared
to its strong l dependence. The levels are approximately hydrogenic when their quantum
defect is much lower than 1. This approximation starts to be correct for l = 3 (δnlj ≈ 0.016)
and becomes increasingly accurate as l rises. With the quantization axis field we routinely
apply to the atoms, the corresponding Stark shifts (a few hundred MHz) are at least larger,
if not much larger, than the quantum defect shifts for l > 4 (a few tens of MHz for l = 5).
For this reason, in this work we consider the levels with l > 4 to be hydrogen-like.

In Fig. 2.42.4, we plot the mj = 1/2 energy levels of the n = 52 and n = 60 manifolds
of 85Rb in the field range of 350 V/m. In this work, all the atomic state manipulations are
performed below this field. The chosen energy range is enough to show the l = 3 levels
of both manifolds. On the left of the figure, the 52-manifold is representative of the usual
n ≈ 50 Rydberg manifolds in which the CRAs are prepared in many important works [6868].
Going higher in n brings the advantage of larger atomic dipole and lifetime. At the same
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53D

52F

61D

60F

Fig. 2.4 Numerically calculated 85Rb levels with mj = 1/2 as a function of the
electric field. The reference energy is chosen to be the degenerate high-ℓ manifold
levels at zero field for both n = 52 and n = 60.

time, the increased sensitivity to stray fields limits one from operating at an arbitrarily high
n. The n ≈ 50 region is a compromise between the two conflicting requirements [6060]. On
the right of the figure, the 60-manifold is representative of the high-n Rydberg manifolds
we experimentally access in this work. This is for accessing the tighter level spacings higher
in the Rydberg gross structure, where the atomic decay transitions are effectively inhibited
in our setup. Comparing the two manifolds, we see that the effect of the quantum defect
is less at n = 60. On the other hand, the level crossing between the neighboring manifolds
start at a smaller field. In both plots, the high-l levels shift linearly as a function of field.
The quantum defect shifted D and F levels exhibit a quadratic Stark shift before joining the
manifold. This is because when the off-diagonal energy matrix elements (eẑF ) are less than
the quantum defect energy shifts in the diagonal elements, the first order Stark shift does
not emerge.

2.3 Reaching Circular State through Adiabatic Rapid Passage

A CRA with both a high n and a high m is prepared in two steps from the ground state. In
a first step, the laser excitation increases the n; in a second step, a rf multi-photon adiabatic
rapid passage (ARP) increases the m. The scheme of these two steps is shown in Fig. 2.52.5 for
the preparation of 52C in a n ≈ 50 manifold. Considerations for circularization in a n ≈ 60
manifold will follow the discussion of the n ≈ 50 case.
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2.2. Preparation and detection of the atoms

electric fields [175]. We have thus covered all surfaces in direct "view" of the atom with
Aquadag, a colloidal graphite suspended in a solution. However, the gain in coherence
time was limited if not non-existent, leading to the conclusion that the graphite is either
not working or that the coherence time is limited by noise instead of the stray charges.

52f m=2 

5D5/2 F=5 mF=5 

5P3/2 F=4 mF=4 

5S1/2 F=3 mF=3 

 σ+   776nm 

 π   1258nm 

 σ+    780nm 

Optical excitation to the Rydberg state 

n1=0 

n1=0 

n1=1 n1=0 
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.   .   .   .   .   .    

.  .  .  . 
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Adiabatic passage to the circular Rydberg state 
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49 radio-frequency photons 
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𝜎+ 

n=52 manifold 

Stark  
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Figure 2.2: Preparation scheme of the circular Rydberg state. The atom is first excited in the
52 f Rydberg state by three optical photons (red and green, the colors correspond to the laser
beams in Fig 2.1) in the presence of a small electric field: The 85Rb atom is excited from
the hyperfine level |5S1/2,F = 3,mF = 3〉 of the ground state to the |5P3/2,F = 4,mF = 4〉
state by a first σ+ photon with a wavelength of 780 nm. A second σ+ photon with a
wavelength of 776 nm brings the atom in the |5D5/2,F = 5,mF = 5〉 state. A π photon with
a wavelength of 1258 nm excites the atom to the final optical excited state |52, l = 3,m = 2〉.
In the second step, after increasing the electric field so that the laser accessible 52 f state
can join the n = 52 manifold, the state of the atom is adiabatically transferred to the |52c〉
by 49 radio-frequency photons.

2.2 Preparation and detection of the atoms

For most of the experiments presented in this work the atom is initially prepared in the
circular Rydberg state |52c〉. In order to prepare this state, the atom needs to be provided
with both energy and angular momentum. To this end, the atom in the ground state
has to absorb three optical photons with well chosen polarizations and 49 σ+ polarized
radio-frequency photons in an adiabatic passage. The excitation scheme is shown in
Fig. 2.2. The two essential steps, the optical excitation and the radio-frequency adiabatic
passage are described in the following sections. We then describe the detection of the
atomic state by ionization.

43

Fig. 2.5 CRA prepration scheme: laser excitation, Stark switching, and the ARP.
During the ARP stage, the absoprtion of 49 rf photons is accompanied by a down-
ramped electric field (the Stark level spacings are continuously varied). Figure
taken from [5959].

In the figure, the three-stage laser excitation provides the three photons needed to access
the 52 F level. In the presence of a small Stark field (a few tens V/m), the degeneracy of
the 52 F multiplicity is lifted. One can then choose specifically to excite the atom to the
|52 F,m = 2⟩ level, which, after switching to a high field (a few hundred V/m), is adiabat-
ically connected to the |n1 = 1,m = 2⟩ Stark level. Afterwards, a σ+-polarized rf field is
applied. The pure polarization of the rf allows it to couple only the lowest diagonal levels
in a Stark manifold. In this subspace, the 50 levels from m = 2 to m = 51 form an ap-
proximately harmonic ladder in the field range from at least 150 V/m to 250 V/m. They
are at the same time very detuned from the last two lowest diagonal levels |n1 = 1,m = 0⟩
and |n1 = 1,m = 1⟩. In the previously given field range, down-ramping the field decreases
the linear Stark shifts between the ladder levels. In the presence of a constant rf dressing
frequency of 230 MHz, the ladder comes cross the resonance with the rf at2 230 V/m. This
is equivalent to chirping the rf frequency through the ladder resonance while keeping the
Stark field constant. In both cases, an adiabatic passage is accomplished. In this process,
the atom absorbs 49 rf photons, each providing an increase in the angular momentum by
∆m = 1. At the end of the ARP, the atom reaches 52C.

It is more demonstrative to show the ARP in the dressed picture (Fig. 2.62.6). In the figure,
from (a) to (b) we show the transition from the bare atom basis to the dressed atom basis.

2A unique property of the 52-manifold is that its linear Stark shift [0.998 MHz (V/m)−1] is almost exactly
1 MHz per 1 V/m.
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The latter is composed of the uncoupled atom-(rf)field levels |k,N⟩, where k is the electric
quantum number [Eq. (2.102.10)], proportional to the linear Stark shift of each bare atomic level.
For the Stark structure’s lowest diagonal levels involved in the ARP, each level is uniquely
denoted by a |k⟩ index, which also intuitively represents the level’s linear Stark shift. The
other index |N⟩ denotes the Fock state of the rf field. We choose N to be 0 for the circular
level |k = 0⟩. Under this choice, for any uncoupled basis vector |k,N⟩, the two indices in
the ket satisfy k + N = 0. To obtain the energies of the dressed basis in (b), it consists in
up-shifting each energy line of the bare basis in (a) by an amount of N×h×230 MHz. When
the rf coupling is switched on in (c), an anti-crossing appears between the high field and the
low field. When one scans the electric field through the anti-crossing, the lowest level in the
ladder connects exactly to the highest circular level.

III.2. Rydberg atoms 73

Multi-photon adiabatic passage

The pure RF polarization decouples the bigger part of the multiplicity isolating a
subspace of almost equidistant levels, as shown in Figure III.15 (n1 = 0 ladder in blue).
At ⇠2 V/cm the Stark term in the atomic Hamiltonian becomes dominant with respect
to the energy shifts due to the quantum defect and all levels (l > 2) have a linear energy
dependence with the electric field (see Figure I.3). As a consequence, the energy gap
between the first level of the circularization ladder and the next is approximately equal
to that of all the rest (see eq.(I.7)) [106]. Then, by turning on a �+ 230 MHz field
and scanning the electric field through the ladder resonance, an adiabatic transfer from
level |52F i to the circular states is achieved.

It is illuminating to think of the adiabatic circularization in the dressed atom pic-
ture. In Figure III.19 we draw the associated diagram. In the first panel we see the
Stark energies for the n = 52 Rydberg manifold (see also Figure I.3). In the middle
panel we show the energies of the atomic levels dressed by the RF field. The notation
for the joint quantum states used here is |k, Ni and refers to the atomic states in the
n1 = 0 ladder by their parabolic quantum number k while N stands for the Fock state
of the RF field. In this diagram we consider the energies to be additive and each line is
displaced by N times the photon energy (h⇥230 MHz). The level crossing is produced
in ‘resonance’ where neighboring bare states are spaced by the photon energy. If the
RF is applied over the atoms, a multi-photon avoided crossing appears. We show this
in the last panel of Figure III.19. By scanning the electric field under the RF coupling
(as shown in the inset), we adiabatically couple the |52F i state to the |52ci state pro-
ducing an effective absorption of 49 RF photons, each providing a quantum of angular
momentum. The green arrow in the picture shows the evolution of the atomic state
during the passage.4

Uncoupled
atom-photon levels

(dressed levels)

Electric field

Bare atom

En
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Coupled
atom-photon levels

(dressed levels)

Electric field

Electric field
TimeRF

(a)                                                 (b)                                                  (c)

Figure III.19 Adiabatic circularization in the n = 52 manifold in the dressed atom picture.
In (a) we show the bare energy levels (n1 = 0) that take part in the circularization. In (b)
the energy of the joint atom-photon states in absence of coupling are seen to cross. In (c) the
atom-photon coupling makes an anti-crossing appear.

4Experimentally we use a classical RF field |↵i (coherent, hNi = |↵|2 � 1) and the photon number
states considered in the dressed atom picture must be understood as its components in the Fock basis.
In full rigor the state evolution is the coherent superposition of all N contained in |↵i undergoing
|52F, N ⇠ |↵|2 + 49i ! |52c, N ⇠ |↵|2i where we use that |↵|2 + 49 ⇠ |↵|2. Note that the coupling
(the gap at the anti-crossing) is actually proportional to

p
N + 1 [141].

Fig. 2.6 ARP in the dressed picture. (a) The 50 lowest diagonal levels of the
52-manifold in the bare picture as a function of the Stark field. (b) The same
levels in the dressed picture (or in a rotating frame spinning at frequency 230 MHz)
without the rf (c) The 230 MHz σ+-polarized rf dressing field is switched on. An
anti-crossing connects the lowest level and the highest level in the ladder. Figure
taken from [6969]

The process of an ARP lasts only a few microseconds. It has been demonstrated that in
the presence of a constant rf Rabi frequency of 3 MHz (equal to the level spacing at the anti-
crossing), a 1.5 µs field down-ramping is enough to yield an ARP circularization efficiency of
98% in the 51-manifold [7070]. In the presence of a varying rf Rabi frequency, a 1.5 µs down
ramp has an estimated circularization efficiency of 99.5% [7171].

We are interested in the Stark shift variations of the ARP ladder during the ramp.
Therefore, we plot the Stark shifts of the m = 0 to m = 6 levels, and the corresponding
∆m = 1 transition frequencies between these levels as a function of field. These numerical
results are shown in Fig. 2.72.7. The plots in the first and second column show the levels
respectively in the 52-manifold and the 60-manifold, the latter being an example of a high-n
manifold that poses additional problems during circularization.

In the figure, we see that the 0 ↔ 1 (black) and 1 ↔ 2 (blue) transitions are greatly de-
tuned from the rest of the transitions, therefore they never join the ARP. In the 52 manifold
(bottom left plot). The higher transitions, the 3 ↔ 4, 4 ↔ 5 and 5 ↔ 6, exhibit the hydro-
genic degeneracy, since the concerned levels are higher in angular momentum. Transitions
involving m ≥ 7 are not plotted, since they will have the same hydrogenic behavior. The
98% circularization efficiency reported by A. Signoles et al. [7070] is achieved with an ARP
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(a)

0 1 2 3 4 5 6
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Figure 2.3: (a) Numerical calculation of the energy levels of the lowest æ+ diagonal with
m = 0,1,2,3 of the rubidium atom with n = 52 as a function of the electric field F , where
the |52 f ,m = 2i state is highlighted (red). (b) The energy difference for selected ¢m =
+1 transitions (see inset for color code): m = 0 $ 1 (black) and m = 1 $ 2 (blue) are
very different from the hydrogen-like transitions (green, yellow, dashed); m = 2 $ 3 (red)
becomes resonant with the hydrogen-like transitions for an electric field ª200 V/m.

2.2.1 Laser excitation

The first step of the preparation is the laser excitation to the Rydberg state. The choice of
the level that are prepared is due to two conditions. First, we need to excite a level whose
energy is close to the manifold. Due to the quantum defect, the s, p and d states have
energy eigenvalues far from the manifold. The f state, however, is relatively close to the
manifold (only E/h = 773 MHz below the energy of the degenerated n = 52 manifold) so
that this state adiabatically connects to the nearly hydrogen-like states when the electric
field is increased, shown in Fig. 2.3a.

Second, we need to prepare a state that can be easily transferred into the circular
state. As we have seen, states with m < 3 of the rubidium atom are not hydrogen-like.
However, as shown in Fig. 2.3b, at F º 230 V/m, the transition frequency of the lowest
m = 2 state to the lowest m = 3 state of the manifold is very similar to the frequency of the
hydrogen like transition of the manifold (level structure in inset of Fig. 2.3b). This is why
we initially prepare the |52, l = 3,m = 2i state, noted as "52 f ". Each photon can add one
unit of orbital angular momentum |¢l | = 1. Since the atom is initially in an s ground state,
we can reach a p state with one, a d state with two and an f state with three photons.

To prepare the 52f state the polarization of the laser photons plays an important role.
We need a æ+ polarized photon with a wavelength of ∏ = 780.24 nm, a æ+ polarized
photon with ∏= 775.97 nm and a º polarized photon with ∏= 1258.38 nm (see Fig. 2.2).

In order to have a pure æ+ polarization, the quantization axis has to be along the
direction of the laser beam of the æ+ polarized photons. Therefore, the optical excitation
is performed in a small electric field applied on the ring electrodes along the axis of the
780 nm & 776 nm laser beam direction, shown in Fig. 2.4a. The electric field is small
enough so that the 52 f state is still far away from the manifold, but large enough to lift
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53D
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lowest diagonal states 
of 52 manifold up to 

m=6

lowest diagonal states 
of 60 manifold up to 

m=6

Fig. 2.7 Numerically calculated first few lowest diagonal states of 52-manifold
and 60-manifold as a function of electric field. First row: Stark shifts of the fisrt
7 lowest diagonal levels in the 52-manifold and the 60-manifold. The chosen field
range ends before the D levels join the manifold. The reference energy is chosen
to be the m = 6 level at zero field for both manifolds. The starting level of the
ARP, the |n, n1 = 0,m = 2⟩ state, is colored red. Second row: the nearest-neighbor
transition frequencies between the 7 levels of both manifolds in the same field range.
The inset shows the color code for the transitions. The two vertical dashed lines
mark the fields where the 2 ↔ 3 transition (red curves in the second row) is detuned
by 3 MHz from the higher transitions.
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that starts with a +10 MHz detuning from the 230 MHz rf dressing field, and ends with a
symmetrical detuning of −10 MHz. Assuming the same dressing rf in the 52-manifold, the
+10 MHz detuned field is found at 240 V/m (vertical dotted line on the left). The 2 ↔ 3
transition at this field is detuned by 3 MHz from the rest of the ladder. The same 3 MHz
detuning corresponds to a field of 130 V/m in the 60-manifold (vertical dotted line on the
right). Therefore, a similar ARP carried out in a higher manifold should start the down ramp
at a lower field. If the starting field is too high, the consequence is clear: the m = 2 level, the
starting level of the ARP, would break away from the rest of the ladder. Correspondingly,
the dressing rf of the ARP should have a lower frequency so that the anti-crossing appears
at a field below the dashed line threshold in the figure.

The message obtained from the above comparison is relevant in this work, because we
routinely perform the circularization ARP at a relatively high manifold with n = 58.

2.4 Lifetime of the CRA
The lifetime of an atom, or more specifically the lifetime of an excited atomic state, is the
natural exponential relaxation time for the atom to leave that state. Note there are situations
in which an atom does not experience the usual exponential relaxation of its excited levels,
notably when it is strongly coupled to a single mode of a high finesse cavity [7272]. In this
case the vacuum Rabi oscillation takes place, the atom and the cavity become an inseparable
whole, and the concept of a relaxation lifetime for an isolated atomic state does not apply.
Therefore by considering the lifetime of the atom, we automatically put us in the perturbative
regime where the atom is only weakly coupled to its environment.

All environmental parameters must be completely specified to determine the lifetime
of an excited level. We consider in particular three relevant conditions in this work: the
environment temperature, the physical boundary limitations set on the field, and the atom’s
relative position to these boundary conditions. With all conditions constant, the atomic
population leaves the initial state with a constant rate Γat, the atomic lifetime τat is then
defined to be the inverse of this rate:

τat = Γ−1
at (2.22)

The rate Γat is a total rate that is the sum of the decay rates Γi’s through individual
decay channels: Γat = ∑

i Γi . In the regime where the non-radiative decays, e.g. collisions,
are always negligible, then these individual Γi’s are attributed to either the spontaneous
emission or the stimulated emission and absorption induced by the blackbody radiation in a
finite temperature environment (we will call both a stimulated decay when discrimination is
not necessary, with the agreement that a general decay can go either upwards or downwards
in energy). For a low-n atomic state, the stimulated decay rates are negligible, because all
the decay transitions are optical, the optical thermal photon number ≪ 1 and induce negli-
gible stimulated decays. The resulting lifetime is only limited by the spontaneous emission
channels. Early atomic lifetime measurements are mostly in this category [7373, 7474], and the
lifetime measured is called the radiative lifetime. Sometimes we also see the terms like natural
radiative lifetime [7575] or spontaneous radiative lifetime [7676] used to stress the spontaneous-
emission-limited nature of the concerned lifetime. In measurement, the radiative lifetime can
be strictly obtained via a simple exponential fit e−Γatt to the state population signal (e.g.
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fluorescence intensity or ionization counts) as a function of time. And the exponential fit
is set to converge at infinite time to zero population (or otherwise a known baseline of the
experiment), due to the irreversible nature of the spontaneous emission.

However, for a Rydberg state, the rate contributions from the stimulated decays usually
can not be ignored. This is well demonstrated in Fig. 2.82.8, in which all the individual decay
rates from the 60 S1/2 state of 87Rb are shown in a bar plot to compare their relative contri-
butions. The figure notably shows that at 300 K, more than half of the 60 S1/2 decay rate
comes from the stimulated decays, which in comparison are negligible at a low temperature.
This phenomenon is caused by the abundance of the room temperature blackbody radiation
thermal photons in the microwave range in which lie the typical separation frequencies be-
tween the neighboring high-n Rydberg levels: the highest two rates connecting the 60 S1/2
to the 59P and the 60P states correspond to decay transition frequencies of ≃ 20 GHz. At
this frequency and at 300 K there are ≃ 300 thermal photons per mode. It is important
to note that Fig. 2.82.8 shows only the first step decay. The rapidly populated 59P and 60P,
for example, are still high-n Rydberg levels susceptible to the same hundreds of room tem-
perature thermal photons which keep transferring them to the adjacent nS and nD levels,
which are still Rydberg levels. . . . The multiplication of the populated Rydberg levels plus
the directionless thermal photon transfer, i.e. the stimulated emission and absorption at
equal rates between two levels, complicate the dynamics.

Since the stimulated decay rate is still a constant rate, formally any stimulated decay
away from the initial level still contributes a generic Γi to the total Γat, the lifetime defini-
tion Eq. (2.222.22) thus does not need to change for the Rydberg levels. But a simple one-level
“radioactive” decay e−Γatt can not correctly model the target state evolution anymore. In-
stead a complete rate equation model to include at least the significantly populated levels is
needed. If the populations of the significant levels can be measured individually, the lifetime
conforming to Eq. (2.222.22) can be strictly obtained. This is typical of a circular Rydberg state
[4848, 4949]. On the other hand, if the BBR populated levels can not be measured separately
to feed a multi-level rate equation model, one can still try an exponential fit to the target
state population and obtain an exponential t1 as a characteristic lifetime, but this lifetime
does not conform to Eq. (2.222.22) and is dependent on the choice of the time span of the data.
This is typical of a low-ℓ Rydberg state [7777–7979]. In the literatures, Gallagher and Cooke
[8080] gave the first notable acknowledgment to the BBR photons’ effect to the lifetime of the
Rydberg atoms. They called the effect a “reduction of the radiative lifetime”. The term
“radiative lifetime” has been ever since avoided to describe the Rydberg state lifetime when
the BBR photons are not negligible. In this case, some use the term effective lifetime [7676, 8181]
to explicitly refer to a BBR-influenced Rydberg lifetime conforming to Eq (2.222.22).

In general for the Rydberg atoms, the word “lifetime”, alone without context, does not
necessarily mean Eq. (2.222.22). However, when attainable, such as in this work, Eq (2.222.22) should
be the most desirable definition of the lifetime since every individual rate Γi, spontaneous or
stimulated, is physically a well defined rate from a time-dependent perturbation treatment
to the first order (the Fermi’s golden rule, or FGR) [8282, 8383].

In this section, we first introduce the lifetime-limiting decay rates for the Rydberg atom
in subsection 2.4.12.4.1. Then we turn to the mechanisms to modify the decay rates, in particular,
the waveguide structures can cause decreased mode density for the atomic decay channels
below the cutoff frequency, these are discussed in subsection 2.4.22.4.2. The lifetime of the CRA
in free space is examined in subsection 2.4.32.4.3. Finally, the lifetime of the CRA in a plane
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stimulated decay at 4 K

Fig. 2.8 All the decay channels of the 60 S1/2 state of 87Rb. For 60 S1/2, every
decay channel ends in a nP1/2,3/2 state due to the selection rules. The plot shows
the sum of the decay rates to nP1/2 and nP3/2 as one bar at n. The green, red, and
striped bars represent the decay rates contributions respectively of the spontaneous
emission, the stimulated decay at 300 K and 4 K. The inset is the same plot zoomed
onto the high-n spontaneous emissions and the low temperature stimulated decays.
Figure taken from [6161] with adapted in-figure text.

parallel capacitor structure that is pertinent to this work is analyzed in subsection 2.4.42.4.4.

2.4.1 Rates of Spontaneous Emission, Stimulated Emission, and Stimulated
Absorption

Even in a perfect vacuum and at absolute 0 K, the lifetime of an excited atomic state is still
limited by the spontaneous emission downwards from that state. A classical and a quantum
effect contribute separately to this fundamental emission [8484, 8585]: The electron has a self-
interaction with its own field (classical radiation reaction effect); the quantum fluctuations of
the vacuum perturb the excited state. At the ground level however these two effects cancel
out each other [8686–8888], giving rise to the radiative stability of atomic ground states.

On the one hand, the spontaneous emission rate can be obtained by considering the dipole
couplings between the atom and all possible modes of the emitted photon. On the other
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hand, the stimulated emission and absorption rates between two levels can be obtained
when the field energy density at the level transition frequency is known. Assuming the
known energy density is that of the thermal field, these stimulated rates are then related
to the environment temperature by the Planck law. Whether spontaneous or stimulated,
obtaining one leads to the other, because all these rates are correlated in the Einstein rate
equation, which describes the thermalization between the atom and the environment.

2.4.1.1 The spontaneous emission rate

Historically, to characterize the intensity of the spontaneous emission phenomenon, Einstein
in 1917 introduced in his rate equation a phenomenological coefficient A as the spontaneous
emission rate, a quantity meant to be an intrinsic property of the atom. However, the A rate
is not a constant, as discovered by Purcell [8989]. In the presence of a cavity tuned on-resonance
with a two level system, the spontaneous emission between the two levels is enhanced. This
realization that the atomic lifetime is not a property of the atom itself but one of the coupled
atom-field system is the starting point of the cavity quantum electrodynamics (CQED).

It thus does not change the nature of the problem whether we consider the atomic lifetime
in free space or in a waveguide structure. In both cases, the field modes are propagation
modes, and the spontaneous emission can be interpreted as the atom coupled to all the
available propagation modes. These modes are classical modes obtained conventionally by
assuming translational symmetry in space and then setting the periodic boundary conditions
for propagation wave vector k in a virtual box of an arbitrary volume V . The k would then
naturally take only the quantized values in a box, knowing that in the limit of a very large V ,
the quantized k’s can always be as closely spaced as one needs. This discretization in a box
gives rise to a set of field eigenmodes αk,ε(r), each αk,ε(r) is completely determined by the
pair of indices (k, ε) indicating the wave vector and the global structure of the eigenmode.
With this eigenbasis, the decomposition of any real and sourceless field E(r, t) is equivalent
to the expansion of its positive frequency part3 E+(r, t) onto the eigenbasis [9090]:

E+(r, t) =
∑
k,ε

Ek,ε(t)αk,ε(r) (2.23)

In the equation above, the expansion coefficient Ek,ε(t) is the electric field amplitude of the
corresponding field mode. Each eigenmode basis vector αk,ε(r) is a complex vector function
describing the spatial structure (e.g. nodes, antinodes, polarization) of the corresponding
classical mode at the position r. In free space, ε corresponds to one of the two orthogonal
polarizations of any plane wave mode; in an ideal waveguide structure, ε refers to one of the
many possible transverse electric (TE) or transverse magnetic (TM) modes in that waveguide.

3The Fourier transform of the real field E(r, t) is shown in the first equation below. The positive frequency
part E+(r, t) is exactly the same integration, but only over the positive half, shown in the second equation.

E(r, t) = 1√
2π

∫ ∞

−∞
Ẽ(r, ω)e−iωtdω

E+(r, t) = 1√
2π

∫ ∞

0
Ẽ(r, ω)e−iωtdω
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Photon modes sharing a certain ε naturally form a family of propagation modes. The
eigenmode basis is orthonormal, so that for any two basis vectors αk,ε(r) and αk′,ε′(r) we
have: ∫

V
α∗

k′,ε′(r) · αk,ε(r)d3r = δk,k′δε,ε′ (2.24)

where the delta is the Kronecker symbol.
The spontaneous emission process we consider starts with an exited atom, ends with a

de-excited atom and a photon emitted into one propagation mode as an elementary mode
excitation. This propagation mode is always in an energy continuum of other modes. The
levels in this energy continuum are naturally indexed by the mode’s circular frequency ω. At
the same time, an emitted photon can propagate in continuously variable directions in space.
We label a propagation mode’s direction with a condensed notation β, which for example
can be the two angular coordinates giving the direction of the emitted photon in free space.
Then all the modes of a certain frequency ω constitute a degenerate continuum indexed by
β. One unique propagation mode can then be denoted by (ω,β, ε).

With the above convention of notations, we set out to find the spontaneous emission rate
dAij(β, ε) when an atom decays from level |i⟩ to a lower level |j⟩ while releasing one photon
of frequency ωij into a specific mode (ωij , β, ε). The Fermi’s golden rule for a degenerate
continuum [9191] gives the specific form of dAij(β, ε) as:

dAij(β,ε) = 2π
ℏ2 | ⟨j, (ωij , β, ε)|HI|i,0⟩|2ρ(ωij , β, ε)dβ (2.25)

where ⟨j, (ωij , β, ε)|HI|i,0⟩ is the matrix element coupling the initial atom-field state |i, 0⟩
and the final state |j, (ωij , β, ε)⟩ in the atom-field interaction Hamiltonian HI. The quantity
ρ(ωij , β, ε)dβdω is formulated to give the number of propagation modes in the mode family
ε that fall within the energy interval ωij → ωij + dω and the directional interval β → β+ dβ
at the same time. The ρ(ωij , β, ε) is then the mode spectral density for the modes in the
family ε propagating in the direction β. Eq. (2.252.25) hence says that the concerned emission
rate into one specific propagation mode is proportional to the corresponding mode spectral
density and the square of the interaction matrix element.

In the dipole approximation regime we can specify the form of the interaction as a dipole
interaction [8686]:

dAij(β, ε) = π

ℏϵ0
ωij

∣∣Dij · αk,ε(rat)
∣∣2ρ(ωij ,β,ε)dβ (2.26)

In Eq. (2.262.26), Dij is the dipole matrix element ⟨i|er̂|j⟩. αk,ε(r) is the eigenmode function
introduced earlier of the emitted photon. For evaluating the emission rate, αk,ε takes the
value of αk,ε(r = rat) at the position of the atom.

The global spontaneous emission rate Aij is the sum of individual rates so that the
emitted photon can end up in all possible modes:

Aij =
∑

ε

∫
dAij(β, ε) (2.27)

Eq. (2.272.27) involves formally all the quantities needed to estimate the spontaneous emission
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rate when all field modes are propagation modes4. For the circular Rydberg levels, Dij can
be precisely calculated. The mode properties αk,ε(r) and ρ(ωij , β, ε) also have analytical
forms for simple and ideal waveguide models, open in one or two directions (e.g a circular
waveguide, a parallel plate waveguide). The simplest case is a completely open “waveguide”,
which is the free space. The well-known free space spontaneous emission rate can be readily
reached starting from Eq. (2.272.27):

A
(freespace)
ij =

ω3
ijD

2
ij

3πℏϵ0c3 (2.28)

Appendix AA gives the deduction of the spontaneous emission rate for two ideal cases: the
free space and a parallel plate waveguide.

2.4.1.2 The temperature stimulated transition rates

When the environment temperature is above zero (T > 0), the field modes, whether in free
space or in a cavity, are not empty but populated by thermal photons. The mean number of
thermal photons per mode nth(ω, T ) at the photon frequency ω/2π and temperature T is a
dimensionless value given by the blackbody radiation law as5:

nth(ω, T ) = 1
eℏω/kBT − 1

(2.29)

An environment above 0 K necessarily subjects the atom, in addition to the spontaneous
emission, to the stimulated emission and the stimulated absorption caused by the thermal
photons. If we assume these BBR induced transitions are between levels with no degeneracy
(corresponding to the case of our experiment), then between any two allowed levels |i⟩ and
|j⟩, the stimulated emission rate Bij from |i⟩ to |j⟩ and the stimulated absorption rate Bji

from |j⟩ to |i⟩ are always equal in value6: Bij = Bji. Given the expression Eq. (2.292.29) for
the thermal photon number, the values of these stimulated rates at temperature T can be
conveniently expressed as the corresponding spontaneous emission rate Aij multiplied by a
factor of nth:

Bij(T ) = Bji(T ) = nth(ωij , T )Aij (2.30)

Importantly, Eq. (2.302.30) shows that, at a given temperature T , a change in the spontaneous
emission rate is associated with the same change in the corresponding stimulated rates, only
scaled by a factor of nth. If the spontaneous emission from |i⟩ to |j⟩ is inhibited (enhanced),
the stimulated rates for this transition are also inhibited (enhanced).

4It applies also to the spontaneous emission in an enclosed but highly damped cavity. In this case the di-
rectional argument β disappears, the modes are not propagation modes in an energy continuum but resonator
modes separated in frequency. In the perturbative regime, each mode should have a large width due to the
low quality factor. To estimate the in-cavity spontaneous emission rate of an emitter mainly coupled to one
cavity mode, the ρ(ωij , β, ε) in Eq. (2.262.26) is to be replaced by the 3D cavity’s single mode spectral density
(1 mode)/∆ωV [6060], where V is the true cavity size. The mode width ∆ω is obtained from the relation
Q = ωc/∆ω with a known quality factor Q and mode frequency ωc

5In the cavity QED experiments, one has access to the QND photon counting in a single mode [9292]. The
thermal photon number distribution is then measured directly to determine the temperature in the cavity
[9393].

6Here the B rates are not directly the Einstein coefficient B, which is not a rate.
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2.4.2 Environment Modification to Decay Rates

How can we change the spontaneous emission rate? The FGR argument in Eq. (2.262.26) shows
that the spontaneous emission rate for a given transition ωij depends on the values of dipole
matrix element, the position of the atom, and the mode spectral density.

The dipole matrix element Dij is considered invariant in the experiment. Changing Dij

means changing the wave function of the atom, this does not happen considering the atoms
we measure are at least a few millimeters away from the boundaries of the structure, a
distance far too large to ever affect the dipole matrix element Dij , which is a spatial integral
localized within the ≃ 100 nm span of our typical Rydberg electron’s wave function.

The macroscopic position rat of the atom can modify the emission rate by yielding dipole
coupling of different magnitudes at different positions in a given mode. The most basic
example, amply discussed in various sources [8686, 9494], is the dependence of the atomic lifetime
on its distance from a conductive mirror. In this scenario, no mode can have tangential
electric field components along the mirror surface. For a CRA having a quantization axis
normal to the mirror, the closer it is positioned to the mirror surface, the more its only
σ+ spontaneous emission is inhibited. This is because the transverse electric components
of any modes can only form nodes on the mirror. As the CRA approaches these on-mirror
nodes, its transition dipole moment can only couple very weakly to the field: at the zero
distance limit there is zero transverse field to couple to on the mirror. This position-based
rate inhibition is not the focus of our experimental work, but we give the accounts of this
phenomenon in both the ideal model and the numerical simulation of our parallel plates
system (see subsection 2.4.42.4.4). We note that a real mirror’s surface plasmon modes would
complicate the interaction, and the arbitrarily large inhibition of emission promised by an
ideal surface is not guaranteed [9595].

The last decay rate modifier, the mode density, can changed drastically in a cavity
or a waveguide structure having the characteristic dimension of the emission wavelength.
According to Eq. (2.262.26), the probability for a photon to be emitted at all is proportional to
the number of all available photonic modes, each weighted differently by the corresponding
atom-mode interaction and the mode spectral density. It follows that if there is no mode for
a photon to be emitted into, the atom stays excited forever. Such a zero mode density regime
for the inhibition of the spontaneous emission of a CRA was first proposed by Kleppner [5151].
The proposed zero mode density regime occurs for instance in a circular waveguide (i.e. a
metal tube) when the atomic transiton is below cut off.

The global mode spectral density of an ideal circular waveguide is shown in Fig. 2.92.9. The
most striking feature is the complete zero mode density region below the circular frequency
ω0, which marks the cutoff of the lowest mode TE11 of a circular waveguide. Above the
cutoff, the change in mode density is drastic, up until a few ω0. At very high frequencies
ω ≫ ω0, the mode density in the waveguide will eventually become indistinguishable from
that of the free space, falling back to our common sense that a beam of laser traveling through
a MW waveguide shall be indifferent to its surroundings. For a realistic metal tube which is
not infinite in length and conductivity, the fundamental cutoff would tend to a Lorentzian
tail towards low frequency. The ideal zero mode density does not exist in reality, but the
mode density below cutoff would be greatly reduced if the conductivity of the waveguide is
sufficiently high or the frequency considered is sufficiently low.

To take advantage of the low mode density below cutoff, the originally proposed experi-
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Fig. 2.9 The mode density in an ideal circular waveguide plotted in small and large
frequency range, developed from the figure 1 in the paper of Kleppner [5151]. The
waveguide’s mode density (black curves) is normalized by that of the free space,
consequently the free space mode density is represented by a straight red line at
y = 1 in both plots. (a) The localized view in the frequency range ω ∈ [0,2.5ω0].
Below the cut-off frequency ω0 of the fundamental propagation mode TE11, the
mode density in the ideal waveguide is completely zero. (b) An extended view in
the frequency range ω ∈ [0,20ω0]. This plot captures the gradual process of the
circular waveguide’s mode density tending to that of the free space in the regime
of ω ≫ ω0.

ment [5151] is to send a thermal beam of circular atoms through a tube, and the transition to
be inhibited is |25C⟩ → |24C⟩. The tube’s diameter then should be less than 0.4 mm to place
the transition below the fundamental cutoff and inside the low mode density region. This
would be a purely proof-of-principle experiment. In particular, the relatively low-n circular
state chosen is actually for the relatively short lifetime of such a state (for a CRA, the higher
the n, the longer the free space lifetime, see subsection 2.4.32.4.3), so that it should normally
decay in free space during the travel time in the tube, the tube’s inhibition effect would then
be prominent in measurement. The barely machinable tube diameter 0.4 mm represents a
limit that prevents one from choosing an even lower n. Indeed, the first demonstration of the
inhibited spontaneous emission of a CRA [5050] was later done in the transition |22C⟩ → |21C⟩
(freespace lifetime 460 µs). The thermal beam in this experiment did not travel through a
tube, but between two parallel plates separated by quartz spacers to create a ≃ 200 µm gap,
avoiding the difficulty of machining a tube of comparable size. With the relatively high-n
circular states which are routinely used in all present experiments, the distance in between
the plates can be much more generous, e.g. a 4 mm gap that can inhibit well the states
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|58C⟩ and above as demonstrated in this work. This is consistent with the change from the
thermal beam paradigm: the atoms can be cooled and trapped in the center of the parallel
plates, consequently one should instead prepare the CRAs with higher-n and longer free
space lifetime, and extend the lifetime even longer with the inhibition structure.

In general, the parallel plates as an inhibition structure are easy to implement and pose
no clear disadvantage, the reason it was not initially proposed (and even explicitly dismissed
in the inhibition proposal paper of Kleppner) is probably because of its “deceptive” global
mode density, which appears to have no cutoff at low frequency. This is shown in Fig 2.102.10.
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Fig. 2.10 The global mode spectral density in an ideal parallel plate waveguide,
normalized by the free space mode density.

In a parallel plate waveguide, or a capacitor for short, a mode can only propagate in the
transverse directions, and is either a TEm mode or a TMm mode. A TEm (TMm) propagation
mode has its electric (magnetic) component exclusively parallel to the plates and has zero
electric (magnetic) component normal to the plates. The order index m = 0,1,2, . . . is the
number of the transverse electric antinodes (transverse magnetic nodes) across the spacing of
the plates. A TEm (TMm) mode family is often referred to as “a mode” in other context, but
in our case it is really a family of propagation modes, including all the TEm (TMm) modes
propagating in the whole 2π directions transversely, and encompassing mode frequency range
starting from the cutoff to infinity. The capacitor waveguide has very simple distribution
of cutoff frequencies, each TEm and TMm with the same m are degenerate in their cutoff
frequency at mω0 = mcπ/L (excluding m = 0, since TE0 does not exist), where L is the
capacitor spacing.

In Fig. 2.102.10, at high frequency the capacitor mode density still tends towards that of the
free space, however, below the cutoff of TEm (TMm), instead of reaching zero mode density
as in the case of a circular waveguide, we see the curve goes to infinity at low frequency.
First of all, this infinity is not to be taken literally, since what is plotted is the mode density
ratio of the capacitor to the free space, the infinity only reflects that the free space mode
density converges to zero faster than that of the capacitor, while none is divergent at low
frequency. Secondly, the enhanced TM0 family that cuts off at DC never couples to a CRA
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with its quantization axis normal to the capacitor plates. This means for a carefully oriented
CRA, it experiences the same sudden vanishing of the mode density below the cutoff of TX1
in a capacitor as a randomly oriented CRA experiences below the fundamental cutoff in a
tube. The corresponding decay rate analysis and simulation of this phenomenon is shown in
subsection 2.4.42.4.4.

In our work, the capacitor inhibits both the spontaneous emission and the stimulated
decays, this follows from the scaling of the stimulated rate Bij as the spontaneous rate Aij

in Eq. (2.302.30) , which in our experiment is ultimately attributed to their mutual dependence
on the transition mode density ρ(ωij). This type of modification in decay rates is inde-
pendent from the number of per-mode thermal photons nth, which is a constant at a given
temperature. One can of course reduce the stimulated rates through reducing nth: in a Ry-
dberg experiment this corresponds to decreasing the environmental temperature to typically
a few Kelvins by using a cryostat. However a cryostat large in size approximates the free
space, therefore does not alter ρ(ωij), the spontaneous rate Aij governed by Eq. (2.262.26) stays
the same inside the cryostat. In this sense the modification in the mode density ρ(ωij),
which changes both Aij and Bij , is a “two birds with one stone” method compared with the
modification in nth, which changes only Bij .

In relevant literatures reporting increased atomic lifetime in a confinement structure,
language-wise, different rates tend to be addressed separately: It is either “inhibited spon-
taneous emission” [5050, 5151], when nth ≪ 1, or “inhibited stimulated absorption” [9696], when
nth ≫ 1 . But the one underlying mechanism to encompass both would be “decreased mode
density”, which does not really make the difference between the A rate or the B rate, and
would always change both simultaneously by the same factor.

The technical details of the figures in this subsection is found in appendix BB.

2.4.3 Lifetime of the CRA in Free Space
Starting from the initial level |i⟩, an atom can decay to a lower energy level |g⟩, and also
to a higher energy level |e⟩. We express the corresponding decay rates with the notation
Γig = Aig + Big and Γie = Bie, with the spontaneous and stimulated decay rates A and B
as introduced in the preceding subsections. The total decay rate Γat from the initial state
|i⟩ can then be written by summing over the dipole-allowed upward and downward decay
channels:

Γat =
∑
g<i

Γig +
∑
e>i

Γie =
∑
g<i

(Aig +Big) +
∑
e>i

Bie (2.31)

or if we use the mean number of thermal photon nth(ωij , T ) resonant with the decay transition
frequency ωij/2π at the temperature T , with Eq. (2.302.30) the above equation can be expressed
only in terms of the spontaneous emission rates:

Γat =
∑
g<i

Aig[1 + nth(ωig, T )] +
∑
e>i

Aeinth(ωei, T ) (2.32)

where the spontaneous emission rates (A coefficients) can be obtained by methods introduced
in subsection 2.4.1.12.4.1.1, and the nth for a certain decay channel is simply a known function of
temperature. Eq. (2.322.32) is general not only for the free space scenario, but also for atoms in
confined structures with modified spontaneous emission rates.
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The total decay rate of a CRA is thus dependent on the determination of its major decay
channels, corresponding to the decays to final levels |g⟩’s and |e⟩’s in the general equation
(2.322.32). For the situation concerned in this work and for the clarity of analysis, we give in
Fig. 2.112.11 the dipole-allowed decay channels starting from the initial level |60C⟩ at room
temperature 300 K and in free space. The manifold selection ends at a lower bound of
59 because there is no selection-rule allowed transitions below, and at a higher bound of
62 because the decay rates to levels above are negligible. The calculated transition rates
shown in red numbers in Fig. 2.112.11 is the direct analytical result from the individual terms in
Eq. (2.322.32), in which the spontaneous emission rates are obtained from the Eq. (2.282.28). The
only parameter to obtain numerically [6161] in this rate calculation is the radial part of the
dipole matrix element Dij . The resulting |Dij |’s used are given in the figure in units of ea0.

In this figure, we see the absolute dominant decays from the |60C⟩ are the downward
and upward transitions to the neighboring circular states. In particular, the BBR-stimulated
upward transitions can be open to many decay channels, but in practice the σ+ transition to
|61C⟩ is still the dominant compared to the π and σ− transitions to the same 61-manifold.
For these thermal-induced decays from 60C to the immediate next 61 manifold, the difference
in the energies of the end levels (61C, 61e1, 61e′

1, 61e2, 61e′
2, 61e′′

2) are small (a few hundred
MHz of linear Stark shift) compared to the ∆E/h ≃ 30 GHz energy difference between the
two manifolds. For these transitions, the similar transition frequencies result in the similar
free space mode densities and number of thermal photons. Consequently, the transition
matrix element is the main parameter that causes the difference in the transition rates
(∝ D2

ij). If we inspect the upward transitions from 60C to the levels in the 61-manifold, we
find that σ+, π, and σ− transitions rates increasing smaller by orders of magnitude. This
comes from the fact that, for these nearest-manifold upward transitions, the dipole matrix
elements are very different: D2

σ+ ≫ D2
π ≫ D2

σ− . Each term is >100 times larger than the
next, resulting in the same scaling in the corresponding transition rates.

In the experiments of the CRA at room temperature, the π transitions are often neglected
for its ≃ 1% contribution in the total decay rate, we however label the π transitions’ rates
in Fig. 2.112.11 because it belongs to the next leading decay rates and will play an important
part when the circular-to-circular σ+ transitions are inhibited (subsection 2.4.42.4.4). The π
transition we mention in this work, without specific context, will be exclusively a nearest-
manifold n → n+ 1 transition, the other π transitions spanning 2 and more manifolds being
always negligible in comparison. There are, however, two high frequency σ+ transitions
(n → n + 2) that bear the similar rates of tens of Hz as those of the π transitions. In
Fig. 2.112.11 these transitions correspond to a one-photon decay in the channel 60C → 62e1 and
60C → 62e′

1. We denote such a transition as a “2σ” transition7 for the ease of discussion,
while the notations σ+, σ− or their common notation σ are reserved only for the nearest
manifold n → n± 1 transitions.

We now focus back on the dominant circular-to-circular σ+ transitions which determine
the lifetime of the CRA in free space. It is instructive to first examine the CRA’s spontaneous
emission at 0 K when all the upward decays are zero. The scaling law of the CRA’s radiative
lifetime limited by the spontaneous emission can be found with a semi-classical argument [6060]:
The lifetime τn of the nC state is considered to be the time during which the spontaneous

7The naming follows from the convention used in the thesis of R. G. Cortiñas [6969], who made a detailed
analysis concerning the lifetime limiting effect of these high frequency σ+ decays of the CRAs in an ideal
capacitor and in the high-temperature limit.
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(transition rate from 60C at 300 K)
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Fig. 2.11 All the Rydberg levels satisfying |n− 60| ≤ 2 and m ≥ 58 under a small
Stark field. Level energy is not to scale. All levels except for |62C⟩ are selection-
rule allowed dipole transitions from |60C⟩. The transition dipole matrix element
values are shown in black. The notable transition rate values at 300 K are shown
in red (for levels without the transition rates, the corresponding rates are either
< 1 Hz or ≪ 1 Hz). The arrows show a few representative room temperature decay
transitions from |60C⟩. The absolutely dominant decay channels are the two σ+

transitions drawn in thick arrows, compared to which the π-polarized decays are
negligible (<1% contribution in the total decay rate of |60C⟩), and the σ−-polarized
decays even more negligible (in dashed arrow). This trend is true for all the CRAs
we prepare or observe (mostly with n from 50 to 60) in this work.
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emission nC → (n − 1)C takes place and a photon of energy ℏωn is emitted. The emission
power P can be estimated by the Larmor formula:

P = ℏωn/τn = 2
3
e2a2

4πϵ0c3 ∝ a2, (2.33)

where a is the acceleration of the electron. In the semi-classical picture, the orbiting electron’s
acceleration is given by a = rnω

2
n, where rn = n2a0 is the radius of the atom of Bohr, a

quantity that scales as n2. The emission frequency ωn follows from the Rydberg equation
ωn ∝ 1/(n− 1)2 − 1/n2. At the very large n we consider, ωn ∝ n−3 to the first order in 1/n.
Taking the scaling of rn and ωn back into Eq. (2.332.33), we get8:

τn ∝ n5 (at 0 K) , (2.34)

The longer lifetime at high n is consistent with the classical interpretation: the larger the
orbiting radius of the electron, the less the orbiting acceleration, the atom radiates less power
and is more long-lived. The same lifetime scaling can be also found in the spontaneous
emission rate in Eq. (2.282.28) which we obtained from the FGR. The lifetime in this case scales
as τn ∝ ω−3

n D−2
n ∝ n5, with ωn ∝ n−3 as mentioned above and the nC ↔ (n − 1)C dipole

matrix element Dn ∝ n2.
To examine the CRA’s lifetime at 300 K, we add the ingredient of thermal photons. The

downward decay rate Γn↓ from nC is the spontaneous emission rate enhanced by the ther-
mal photons, therefore (neglecting the negligible spontaneous emission) Γn↓ ∝ ω3

nD
2
nnth ∝

n−5nth. The BBR at room temperature is very well in the Rayleigh-Jeans limit: kBT ≫ ℏωn.
In this limit, nth = kBT/ℏωn ∝ ω−1

n ∝ n3. It follows that Γn↓ ∝ n−2. The upward BBR-
induced transition rate Γn↑ to the next circular state has the same scaling9, therefore the
lifetime τn = 1/(Γn↓ + Γn↑) at room temperature scales as:

τn ∝ n2 (T ≫ 1 K and n ≳ 50 ) , (2.35)

We note that since kB/ℏ = (2π)×20.8 GHz/Kelvin, for the CRAs we work with (typically
with n > 50 with decay transition frequencies ≲ 50 GHz), a few Kelvins is enough to achieve
kBT > ℏωn. At ≃ 10 K the BBR can already reach a good “high temperaure” Rayleigh-Jeans
limit. The more detailed analysis by R. G. Cortiñas [6969] suggests that the behavior of the
limit can manifest starting from < 5 K. It is thus crucial to reach < 1 K to benefit from the
∝ n5 scaling of lifetime in Eq. (2.342.34) for the CRAs with n ≳ 50.

Finally, in table 2.12.1 we give the theoretical lifetimes of some of the CRAs we have prepared
or observed in this work:

8For the low-ℓ Rydberg states at 0 K, τn ∝ n3 [9797].
9At this point we are able to express the 300 K BBR-induced transition rate in terms of only the matrix

element and the transition frequency. If we deviate from the dominant circular-to-circular transitions and
consider, for example, the transition rate Γce from a circular to an elliptical state. We find that Γce ∝ ω2

ceD2
ce

with the contribution of the thermal photons already included. This allows us to understand the slightly larger
2σ transition rates compared to those of the π transitions in Fig. 2.112.11: Even when the former transitions have
relatively smaller dipole matrix elements, it is compensated by an almost doubled transition frequency which
makes the decay channel’s mode density ≃ 4 times larger. We can also see that even the rf decay channels
60C → 60e1 and 60C → 60e′

1 have dipole matrix elements similar in magnitude to that of the π transition,
nevertheless the decay rates of the rf channels should be at least 10000 times smaller, which is the square of
≃ 100 times difference in the transition frequencies between the rf decay within one manifold and the MW
decay crossing two manifolds.
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Table 2.1: The theoretical free space lifetimes of the circular states relevant in this work.
The different lifetime scalings at 0 K and 300 K is a manifestation of their different scaling
laws (∝ n5 vs ∝ n2)

CRA (nC) 0 K lifetime (ms) 300 K lifetime (µs)
60C 71 177
59C 66 171
58C 60 166
57C 55 160
56C 50 154
55C 46 149
54C 42 144
53C 38 138
52C 34 133
51C 32 128
50C 29 123

2.4.4 Lifetime of the CRA Between Two Mirrors
In this subsection, we first study the decay rate modification of a CRA in an ideal capacitor
(subsection 2.4.4.12.4.4.1). We show the difference in the capacitor’s modifications to the σ tran-
sitions and to the π transitions. In particular we identify the capacitor’s first order cutoff
below which the CRA’s major σ+ decay channels in free space are completely inhibited.

We then turn to analyze the effect of the next leading decay rates at room temperature
after the inhibition of the σ+ channels (subsection 2.4.4.22.4.4.2). In this case the π and 2σ
transitions dominate the lifetime of the CRA, and the π transfers set a fundamental limit to
the best possible room temperature lifetime of a capacitor-inhibited CRA.

In the end, we show the principle of calculating the decay rate modifications in a real
capacitor by means of classical electrodynamics.

2.4.4.1 The modified decay rates of the CRA in an ideal capacitor

For a CRA with a well oriented quantization axis, the σ and π transitions are induced by
the field modes with the electric component normal and parallel to the quantization axis,
respectively. The different transitions are in this sense mode-selective. This mode selection
of the CRA is not evident in free space due to the spherical symmetry of the space and the
field modes within. For the atomic emission inhibition, the most intuitive mechanism is to
create a zero mode density zone in the position of the atoms, as demonstrated in a circular
waveguide (Fig. 2.92.9). In comparison, the global mode density in between a plane parallel
capacitor is always non-zero. The spontaneous emission inhibition asset of such a capacitor
relies on its breaking of the spatial symmetry together with the mode selection of a CRA.

Using the FGR, given the capacitor’s mode structure and the atomic dipole’s position
and orientation in between the capacitor, one can work out the atom’s spontaneous emission
rate in the capacitor (an example of this deduction is given in appendix AA). For two spe-
cific configurations, a dipole transversely oriented and vertically oriented, the corresponding
spontaneous emission rates modification factors are given as the dimensionless numbers Cσ
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and Cπ below [9494]:

Cσ =
⌊2L/λ⌋∑

n=0

3λ
4L

[
1 +

(
nλ

2L

)2]
sin2

(
nπz

L

)
(2.36)

Cπ = 3λ
4L +

⌊2L/λ⌋∑
n=1

3λ
2L

[
1 −

(
nλ

2L

)2]
cos2

(
nπz

L

)
(2.37)

The above equations apply to an ideal capacitor (infinite in size and conductivity), the
spacing of which is L. The dipole’s vertical displacement z can be chosen to start from 0
at the bottom plate and end at L at the top plate. λ is the dipole emission’s wavelength in
question. The quantities inside the floor brackets on top of the sum signs are to be evaluated
to its integer part, e.g. ⌊1.1⌋ = ⌊1⌋ = 1. In the case of a CRA having the quantization axis
perfectly normal to the capacitor plates, the Cσ and Cπ respectively modify the CRA’s σ
and π transition rates relative to those in free space.

In Fig. 2.122.12, we plot the Cσ (black) and the Cπ (red) for a dipole in the center (solid)
and at 3/4L (dashed) between the ideal capacitor. The total vanishing of Cσ below the
circular frequency ω0 = cπ/L is the most important feature that allows the inhibition of
the dominant σ+ transitions from a CRA. This desirable inhibition takes effect only when
the CRA’s quantization axis is oriented normal to the plates (the capacitor plates can then
be conveniently used to apply the quantization axis field). We can, for example, imagine a
CRA with the quantization axis parallel to the plates, the non-dominant π transition of the
CRA would be inhibited instead, but this is not of practical interest.

This inhibition of a selected transition type of the CRA is associated with the mode
structures in the capacitor, on which we gave a first brief introduction in subsection 2.4.22.4.2.
On top of Fig. 2.122.12, we show pictorially the transverse and vertical electric amplitudes,
denoted respectively by E↔ and E↕, of the capacitor’s TEm/TMm modes with the mode
order index m running from 0 to 3. One sees that the perfect inhibition of the σ+ transition
below ω0 is because the transverse electric component cannot exist below this first order
cutoff at ω0, which in the following discussion will implicitly be the cutoff we refer to by
mentioning “the cutoff” without other context. The only capacitor mode below ω0 is the
TM0 mode, which sometimes is called the capacitor’s TEM mode [5151], since both the electric
and the magnetic components of this mode are transverse with respect to the its direction of
propagation (parallel to the plates), a feature not shared by the rest of the capacitor modes.

The behavior of the dipole coupling with higher order capacitor modes up till a few
ω0 can also be understood intuitively by examining the shape of the corresponding mode
structures. For example, in the solid black curve, the second order modes should normally
emerge at 2ω0, but the corresponding σ enhancement resonance is missing at this frequency.
This is due to the zero coupling of the centered dipole with the centered node of the E↔
component of the m = 2 modes. The σ enhancement at 2ω0 is regained by shifting the
transversely oriented dipole away from z = L/2 (dashed black). This position dependent
transition rate modification in a capacitor is most evident within the frequency bound of a
few ω0 that we plot. In particular, if a CRA is positioned very close to either of the two
surfaces of the capacitor, it couples very weakly to the E↔ component of any available modes,
and the situation approximates that of the single mirror inhibition. This can be of practical
interest in real experiments, where below the cutoff the first order modes do not disappear
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Fig. 2.12 The main plot at the bottom shows the radiative damping rate of a
classical dipole in an fixed ideal capacitor as a function of the dipole radiation
frequency (or equivalently as a function of the capacitor separation L for a fixed
dipole radiation frequency). The inset shows four dipole configurations yielding
the four different rate curves with matched color and style (when the solid line
overlaps completely with the dashed line, only the solid is evident). The damping
rate Γ (ω) in any configuration has been normalized by the free space damping
rate Γ0(ω) of the dipole. Above the main plot is a grid view of the parallel plate
waveguide’s first four orders of TEm, TMm emerging at equispaced and degenerate
cutoff frequencies mω0, for m = 0,1,2,3. The nodes and antinodes of each mode’s
transverse (longitudinal) electric field component E↔ (E↕) are plotted vertically
along the capacitor spacing, with the concerned dipole positions marked by empty
balls. Two notable exceptions are found at m = 0: TE0 does not exsit; TM0 is
a TEM mode propagating parallel to the plates, with a uniform field distribution
along the plate spacing.
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completely, one can then try to move the CRA away from center to gain better σ inhibition.
In a numerical simulation of a real capacitor, we find the σ transition rates can be reduced
by a factor of two by simply moving the atom from L/2 to 3L/4 (see subsection 3.1.4.33.1.4.3)

2.4.4.2 The room temperature lifetime limit of a CRA in an ideal capcitor

We focus again on the concrete case of the 300 K decay channels of a 60C, as we did in
subsection 2.4.32.4.3, but now the CRA is positioned in an ideal capacitor with a 4.1 mm spacing
(the parameter of our experiment), as shown in Fig. 2.132.13.

In the figure, the dominant free space σ+ transitions from 60C to 59C and 61C are below
the ideal cutoff and accept zero population transfers from the initial 60C. The next leading
transitions are then the π and 2σ transitions we introduced before. The 2σ channels can
be inhibited by a capacitor with less spacing and is not the fundamental limit of the 300 K
lifetime of the CRA. However in real experiments, a cutoff frequency high enough to cover
the frequency range of ∆n = 2 requires either a very high n or a very small capacitor spacing
L. The former would pose a challenge to the circularization process, the latter could cause
difficulty in the field control in a tight space. Therefore, leaving the 2σ channels uninhibited
may a compromise in reality such as in our experiment.

After the total ideal inhibition of the circular-to-circular σ+ decay channels, the next
feature we recognize is the modifications to the π transition rates and the 2σ transition rates
by the Cπ, Cσ factors in Eqs.~(2.362.36), (2.372.37). For the π transitions, they are to be put below
the cutoff together with the σ+ upward transition from the initial circular state, as a result,
for any capacitor-inhibited CRA, its π transitions are enhanced by at least a factor of 1.5
(the Cπ at ω0). The 2σ transition rates, if not inhibited by a high cutoff, in most cases are
also to be consistently enhanced10. A detailed analysis has been done regarding the effect of
the 2σ decays in the case of a 2 mm ideal capacitor [6969] at hight temperature. The analysis
shows that for the CRAs from n = 50 to n = 55, corresponding to the regime where the
σ+ channels are inhibited but the 2σ channels are still open, the 2σ decays dominate the
lifetime of the CRA.

If we turn to the even more ideal case when the cutoff is high enough to inhibit the 2σ
decays, the only decay channels left of the CRA are the two BBR-induced π transitions.
The corresponding transition rates correction Cπ increases with n. However one can show
that the competition between the increased Cπ and the reduced π transition mode density
actually reaches a draw: the π transition rate Γπ below the cutoff does not depend on n [6969]:

Γπ ∝ n0T (2.38)

The above relation shows that there is a fundamental limit for the best lifetime of the
CRA that one can achieve in an ideal capacitor at a certain temperature T . This lifetime
limit depends on the ideal capacitor’s spacing L. At 300 K, the π transfer limited lifetime
of any CRA (if the n is sufficiently high) is ≈ 12 ms in a capacitor with L = 4.1 mm (the
parameter of our setup), and ≃ 6 ms for L = 2 mm (the parameter in [2626]). This reduction in
the fundamental 300 K lifetime by switching to a tighter capacitor can be easily understood

10In Fig. 2.122.12, the solid black curve at 2ω0 gives a Cσ of 15/16, corresponds to a negligible inhibition to
the 2σ rates which can only be achieved by a CRA with a very high n and its σ+ transitions barely below
the cutoff. However in this situation a relatively large capacitor spacing is already enough to simply inhibit
the 2σ completely
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(transition rate from 60C at 300 K)
level name

transition polarization from 60C

36.56  GHz (cutoff)

36.56  GHz (cutoff)4.1 mm

∞ ∞

Energy

31.24 GHz 

29.72  GHz 

Fig. 2.13 The dominant decay transfers from |60C⟩ in a 4.1 mm ideal capacitor
at 300 K. The CRA in the initial state |60C⟩ and a quantization axis normal to the
capacitor plates is positioned in the center of the capacitor (see bottom illustration).
Two features are different compared with the free space: 1. Below the cutoff, all
σ+ and σ− decay channels are completely inhibited (grayed out levels); 2. The
dominant BBR transfers (guided by red arrows) are the two π transitions and the
two 2σ (high frequency σ+) transitions. Their corresponding thermal decay rates
are modified by the Cπ, Cσ factors given in Eqs. (2.362.36), (2.372.37) and shown in red.
For the other non-inhibited transitions, the corresponding BBR-induced transfer
rates (not shown) are all ≪ 1 Hz.
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from Fig. 2.122.12: below the cutoff, the reduction in L for a fixed transition wavelength λ (of the
only non-inhibited π transition) corresponds to a shift towards the left of the plot and hence
more enhancement caused by the TEM mode. This gives rise to the interesting conclusion
that for a CRA of a certain n at 300 K, there is a best capacitor spacing L that should be
small enough to have a large cutoff frequency that puts both the σ and 2σ transitions below,
but only barely below to not cause too much the π enhancement. For 60C and 50C , this
ideal L to enable their best possible in-capacitor lifetime is L ≈ 2.6 mm (lifetime ≈ 8 ms)
and L ≈ 1.5 mm (lifetime ≈ 4 ms), respectively.

2.4.4.3 The decay rate modifications in a non-ideal capacitor

The ideal models we have studied allow us to obtain the exact mode structures and decay
rate modifications in these models, from which we can identify the main features that also
apply to a non-ideal capacitor with finite size, conductivity, and irregular geometries. For
the latter case, one has to turn to the numerical simulation to obtain the rate modification.

Since the waveguide modes we treat are fundamentally classical electromagnetic modes
and the atomic decays are dipolar. The capacitor’s modification to the decay rate of the CRA
as formulated in Eqs. (2.362.36), (2.372.37) is equivalent to the modification to the damping rate of
a radiating dipole, the solution of which can be found purely by classical electrodynamics,
which would be a more friendly approach for the numerical simulation.

A classical dipole’s radiation field in the presence of a conducting surface can be expressed
as the sum of the radiation of the dipole itself and that of its image dipole (the electric image
method). A dipole parallel to the surface has its image dipole in phase opposition, and a
dipole normal to the surface has its image dipole in the same phase. In between a capacitor,
the dipole’s radiation reflects successively between the two surfaces, corresponding to the
radiation from the image dipoles and images of the image dipoles. This concept is illustrated
in Fig. 2.142.14.

The electric image method in the capacitor problem allows also the treatment of resistive
loss on the capacitor surfaces. This can be modeled as the attenuation in the amplitude
and shift in the phase from each image dipole (each bouncing of the field). The destructive
interference of the images are then not perfect, and the sharp cutoff in Fig. 2.122.12 is replaced
by a smooth drop towards lower frequency [8686].

In the simulations we perform, instead of a damping dipole with ever decreasing energy,
we model the total radiated power (TRP) in a frequency spectrum of a radiating dipole
with an excitation source. The obtained TRP thus corresponds to how much power we need
to supply to a radiating dipole in order to prevent it from damping. And the ratio of the
dipole’s TRP in a structure to that in free space can give us the structure’s damping rate
modification to a classical dipole, or equivalently the decay rate modification to a CRA.

In Fig. 2.152.15 (a), we demonstrate the simulated σ transition modification factor Cσ for
the transition 48C ↔ 47C in the inhibition regime. The simulation studies the TRP of a
very small dipole antenna in the center of two square slabs with very high conductivity (
4.55 × 109Ω−1m−1, corresponding to gold at 1 K [9898]). We have also performed similar
simulations with perfect conductor slabs, and the results are very similar. Therefore the
deviation between the solid and the dashed lines we show in Fig. 2.152.15 (b) demonstrates
mainly the finite size effect of the capacitor. Note that the multiple resonances in the blue
dashed lines are not the same as the resonances in Fig. 2.122.12, since the plot span does not
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Fig. 2.14 Principle of the electric image method for calculating the damping rate
of a radiating dipole in the center of a capacitor. The zero energy damping of a
transversely oriented dipole below the cutoff is understood as the perfect destructive
interference of the radiations produced by the collection of phase-opposite dipoles
(on the left). And the enhancement of energy damping of a vertically oriented
dipole is because its radiation field constructively interferes with its image dipoles
oscillating in phase.

include the second order ideal capacitor modes which appear at ≃ 150 GHz. The multiple
resonances then are to be attributed to the extra modes that cannot exist in an ideal capacitor
(e.g. propagation modes in a finite capacitor do not have to travel perfectly parallel to the
capacitor plates). These irregular features however do not appear below the cutoff. For the
inhibition of 48C ↔ 47C transition shown in the panel (a), the better inhibition is always
found at larger capacitor size a and smaller capacitor L (higher cutoff frequency).

The lifetime of 48C at 0.4 K simulated from this capacitor model is ≃ 2500 s without
considering other loss channels (e.g. collisions with background gas).
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(⇡) and parallel (�) to the mirrors at the center of a cavity made of gold at 1 K
(4.55 ⇥ 109⌦/m for gold at 1 K at 50 GHz). The calculations were done by taking
the ratio of the radiated power by both the dipole in the cavity and in free space. The
CST results are shown in Figure II.11. In the left we plot the CST calculation for
the dipole placed orthogonal (�) to the plates. The capacitor is taken to have square
plates of size a spaced by a distance L. The dipole emission frequency chosen for this
plot is that of the transition dominating the atomic population losses in free space
(⌫48c!47c =61.407 GHz). The vertical dashed line corresponds to L = c/2⌫48c!47c.
The white dot at a =13 mm and L =2 mm represents the choice for the experimental
realization. On the right we show the CST calculation (dashed lines) done as a function
of frequency for the chosen capacitor size together with the analytic result (full lines)
for the ideal plates.

Figure II.11 On the left we plot the CST calculation for the inhibition of the real capacitor.
On the right we plot the power ratio as a function of frequency for both dipole orientations for
the chosen capacitor geometry. The full lines correspond to the ideal capacitor and the dashed
lines correspond to the CST calculation. The dominant transition frequencies are marked with
arrows. The black arrow corresponds to the frequency of the n = 48,⇡ " (57.69 GHz) transition
and the red arrow corresponds to the frequency of the n = 50,⇡ " (51.099 GHz) transition.

We find that the now limiting transition (n = 48,⇡ " at 57.69 GHz) has an inhi-
bition factor which is identical to the ideal capacitor case (black arrow). Regarding
level |50ci, the inhibition for the � # is even more efficient than for level |48ci since
⌫48c!47c > ⌫50c!49c. The next leading transition (n = 50,⇡ " at 51.099 GHz) is
actually less enhanced (red arrow) for the resistive capacitor. This is due to resonances
arising from its finite size. Then, the lifetime estimate turns out to be longer using the
more realistic capacitor. As a pessimistic approximation, we have focused our analysis
on the ideal capacitor. The estimation for the radiation lifetime of a single |48ci atom
at 0.4 K is then ⇠ 2500 s.

II.2.5 Lifetime for a pair of cRy atoms

We have so far addressed the cRy lifetime in the case of non-interacting atoms. In the
case of the quantum simulator we discuss, the atomic interaction is important. We
now develop the considerations made to assess how the lifetime of the cRy atoms in
the linear chain is modified in the presence of the levels mixing due to their interaction.

(b)(a)

Fig. 2.15 CST simulation of the Cσ in a capacitor of finite size [2626]. The capaci-
tor plates are high-conductivity slabs having the sides of length a. The capacitor
spacing is L. (a) The Cσ at 61.407 GHz (48C ↔ 47C transition frequency) as a
function of a and L is plotted on the left. A white dot in the plot corresponds
to a = 13 mm and L = 2 mm. (b) The simulated Cσ and Cπ in the white dot
configuration are plotted in dashed lines. The corresponding solid lines are plotted
with the analytical Eqs. (2.362.36), (2.372.37) to show the rate modifications in an ideal
capacitor of the same L = 2 mm.



Chapter 3

The Experiment: Cold CRAs
Between Two Parallel Plates

This chapter discusses the experiment setup and its operation.
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Fig. 3.1 An artist view of the vapor cell setup. The MOT cloud is prepared
in between a capacitor comprised of a transparent top electrode and a reflective
bottom electrode that enables a mirror MOT configuration. The MOT atoms are
then to be excited to a low-ℓ Rydberg state by a three-stage laser excitaion (arrows).
The four transverse electrodes (in yellow) then produce a σ+-polarized rf field to
prepare the CRA. For the end detection, the CRAs are ionized and pushed through
a detection hole in the bottom electrode and into the channel electron multiplier
below.

In Fig. 3.13.1, we show the defining feature of the experiment, a transparent glass cell no
larger than the palm of the hand. This cell essentially isolate in space a small volume of
vacuum filled with rubidium vapor with complete optical access. The lasers and magnetic
field needed for cooling and Rydberg excitation go straight through its glass walls. Inside

39
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this small cell, we fit in an assortment of electrodes, wrapping the slow atoms in their center,
a spot where we have full control of the electric field. We then juggle atomic transitions
ranging from optical (hundreds of THz) to microwave (tens of GHz) to radio frequency
(hundreds of MHz), leading up to the preparation of the long-lived CRAs inside a 4 mm
spacing plane-parallel capacitor in a room temperature environment.

In section 3.13.1, we give a complete description of all the aspects of the experiment setup.
In section 3.23.2, we explain how the cold CRAs are prepared in the setup.

3.1 Experiment Setup Description

In this section we describe the complete experimental system that allows us to create an
Ultra High Vacuum (UHV), in which we generate and then slow and trap the rubidium
atoms inside a cold cloud, from which we finally prepare, manipulate, and detect the CRAs.

Subsection 3.1.13.1.1 presents the non-optical components of our vapor cell experiment. Sub-
section 3.1.23.1.2 introduces the Rydberg excitation lasers. The elements for the creation of the
MOT are detailed in subsection 3.1.33.1.3. At last, in subsection 3.1.43.1.4, we present a series of
simulation studies of the inhibition capacitor, which is the heart of the experiment.

3.1.1 A Room Temperature Vapor Cell Setup

The energy difference between two neighboring Rydberg manifolds is typically in the range
of microwaves. Therefore, at room temperature, a Rydberg atom’s lifetime is always severely
limited by the 300 K blackbody radiation thermal photons in the microwave range, which
cause a population redistribution across the adjacent Rydberg manifolds.

For a low-ℓ Rydberg atom, since its many spontaneous emission channels limit its room
temperature lifetime as much as the stimulated decays caused by the BBR, the benefit
of suppressing the number of MW thermal photons is noticeable but may not be enough to
justify the need for a costly and high-maintenance cryostat. In fact, before the demonstration
by Gallagher and Cooke [8080] of a factor of three’s reduction, caused by the 300 K BBR, in
the radiative lifetime of the 17 P and 18 P states of sodium, the lifetime reduction effect of
the room temperature BBR on the low-ℓ Rydberg atoms had been, according to their report,
“ignored”.

For the CRA however, since it has only one relatively weak spontaneous emission channel,
at room temperature the BBR induced transfer rates are absolutely dominant, and typically
surpass the spontaneous emission rate by a factor of 100 to 200. As a result, it is conventional
to experiment with the CRA in a cryogenic temperature environment. In a 4He cryostat,
the lifetime of the |52C⟩ is measured to be 3.7 ms [4848], a huge factor of ≃ 30 higher than
its corresponding theoretical lifetime of 133 µs at 300 K. This measured lifetime at low
temperature is moreover limited by the modest 10 K cryostat temperature. A 10 ms-lived
|52C⟩ is expected in a 4 K environment.

In this work, our CRAs are prepared in a room temperature environment. The motivation
is to demonstrate that, instead of a room-sized cryogenic system, we can use a thumb-sized
plane-parallel capacitor to attain the same goal: to prepare a long-lived CRA. With the same
result achieved by a far more economical system, we demonstrate a factor of six’s increase
in the CRA’s radiative lifetime, reaching a millisecond-lived CRA at room temperature.
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3.1.1.1 The Vacuum

Being a room temperature experiment, our setup can be made compact in size, as shown on
the right in Fig. 3.23.2(a). In this full vacuum setup view, several 316L stainless steel tubes
connected via CF40 flanges extend along the y direction. Horizontally, their full length in y
is ≈ 500 mm. Vertically, the height of the setup in z is ≈ 400 mm. Below the glass cell on
top, a few obviously larger flanges are of size CF63 to allow room for enclosing the electronic
components and their supporting structure.

The vacuum in the setup is maintained by a turbo pump (HiPace 80, pumping speed
67 L s−1 for N2 ) with its associated forepump pumping from the +y end of the setup. The
constantly operating turbo pump maintains the vacuum pressure at typically ≃ 3×10−9 mbar
as measured by a BA gauge immediately before the turbo pump inlet. This is one order of
magnitude higher than the ideal datasheet final pressure 5 × 10−10 mbar of our turbo pump.
This UHV is achieved after a full setup bake-out at 150 ◦C for three days.

We do not have any pressure gauge close to the glass cell to directly measure the residual
gas pressure inside. But the pressure difference between the cell and the turbo pump can be
estimated given the pipe conductance in between. While the conductance of a vacuum pipe
construct is often obtained via computer simulation, for a rough estimation, we use the well-
known empirical formula by S. Dushman for estimating the room temperature conductance
of a cylindrical tube of air in the molecular flow regime. With this formula, we estimate the
effective pumping speed of the turbo pump to be S = 22 L s−1 and the pipe conductance
from the pump to the cell to be C = 8 L s−1. Given the measured pressure at the turbo pump
inlet pinlet = 3 × 10−9 mbar, the gas throughput is Q = pinlet × S = 66 × 10−9 mbar L s−1.
With the above values, the pressure difference ∆p = pcell − pinlet between the cell and the
pump inlet is given by Ohm’s law ∆p = Q/C ≃ 8 × 10−9 mbar. This puts the cell pressure
at pcell ≃ 1.1 × 10−8 mbar. Knowing that the Dushman formula tends to overestimate the
conductance, the pressure in the cell should be very well in the 10−8 mbar regime.

The feedthroughs in the UHV are necessary for the generation, manipulation, and detec-
tion of the atoms. These three functions are fulfilled by the following electronic components
inside the vacuum:

1. The electrodes (four rf electrodes and two capacitor plates) for rf-driven circularization,
Stark field control, and field ionization.

2. The channeltron (also called channel electron multiplier) for atomic signal detection.

3. The rubidium dispenser for rubidium vapor generation.

These feedthroughs into the vacuum are connected to the outside via the SMA ports on
the different flanges as shown in Fig. 3.23.2(a). We also summarize all the electronic components
inside the UHV and their respective feedthroughs in the table below.

Components in UHV Feedthroughs
4 rf electrodes 4 coaxial cables (potential control)
2 capacitor plates 2 coaxial cables (potential control)
1 channeltron 1 high voltage (-2.3 kV) input

1 signal output (anode)
1 voltage divider output

2 dispensers 2 thin copper rods (DC supply)
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Fig. 3.2 (a) On the right: the vacuum system. Its size is ≈ 500 mm in the y
direction and ≈ 400 mm in the z direction. On the left: with the glass cell and its
attached CF63 tube set opened, we can see the copper supporting structure for the
inhibition capacitor on top and the channeltron below it. This copper support is
screwed on the CF63 flange at its bottom. The hole in the center of this bottom
flange allows the access of all the feedthroughs (coaxial cables and copper rods),
which are not shown in this figure but can be seen in Fig. 3.53.5. In both views
(left and right), the flange screws and screw holes are omitted for clarity. (b) The
schematic of the electronic connections to the two capacitor plates and the four rf
electrodes. The four 50Ω resistors are installed to match the 50Ω port impedance
of the AWG. The AWG’s outputs are DC-biased via four bias-tees. Regarding the
3D components: They are simplified in shape for clarity. The capacitor spacing
has been greatly exaggerated. The capacitor plate on top is a transparent piece of
glass, but with a conductive bottom surface (to be discussed in subsection 3.1.43.1.4),
which is emphasized by a fake tint in purple.
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The items listed above are either commercial products designed to work in the UHV
(Allectra coaxial cables, Saes Getter dispensers, Sjuts channeltron), or metal and glass pieces
thouroughly cleaned beforehand. The cleaning procedure includes four ultrasound baths in
the following sequence: an acetone bath, an ethanol bath, a 10% RBS cleaning agent bath,
and a de-ionized water bath. Each ultrasound bath lasts 15 minutes, and the pieces are
blow-dried with N2 afterwards.

3.1.1.2 The glass cell

At the very top of the vacuum setup in Fig. 3.23.2(a) is a rectangular glass cell with its glassless
bottom glued to a size-matched rectangular hole drilled through the very topside CF63 flange.
This CF63 flange is made of Titanium, which has a thermal expansion coefficient close to
that of the glass. The glass cell is made of optical glass (Hellma) transmitting wavelengths
between 360 nm to 2500 nm. This cell has outer dimensions 55 mm × 25 mm × 53 mm and
inner dimensions 50 mm × 25 mm × 50 mm, making its glass plates’ thickness 2.5 mm at four
transverse sides and 3 mm on the top side.

The epoxy glue (EPO TEK® H70E-2) applied on the cell-flange interface guarantees
the airtight connection between the two. After mixing and sufficient stirring of the two
components of the glue, we use a roughing pump to outgass the residual air in the mixture.
Afterwards we apply a 1 mm layer of the mixture on the cell-flange interface. The curing of
the glue consists in putting the whole cell-flange structure into an oven, taking 30 minutes
to linearly reach 150 ◦C and then baking at this temperature for one hour.

It is our experience that multiple (5 or more) cylclings of the experiment between UHV
and ambient pressure (e.g. for opening and changing the setup inside) would cause the glued
cell-flange interface to gradually develop tiny crackings and eventual leaking. Therefore we
note that this setup is ill-suited to experiments involving frequent vaccum breakings. The
final data of this thesis is acquired from a setup that has been under the UHV non-stop for
two years.

3.1.1.3 The electric field control

The glass cell houses, close to its top, the inhibition capacitor. In the center of the capacitor
we trap the atoms (see subsection 3.1.33.1.3). The essential geometry of this capacitor is shown
in Fig. 3.23.2(b), together with all its electronic connections.

All electrodes (capacitor plates included) have independent DC voltage control. The four
rf electrodes are distributed transversely around the center of the capacitor. With such a
layout these electrodes’ DC offsets can be tuned to have the zero of the transverse electric
field in the center (see subsection 3.2.23.2.2). Afterwards the quantization axis field is exclusively
controlled by the capacitor’s DC voltage.

The capacitor is truly versatile in this experiment, its inhibition asset is to be discussed in
subsection 3.1.43.1.4. Aside from that, the capacitor plates are used to apply an electric field with
fixed direction defining the quantization axis Oz at the different stages of the experiment (see
section 3.23.2): a static field of a few to a few tens of V/m for Stark switching; a decreasing ramp
across 100 V/m for adiabatic passage circularization; and an increasing ramp that shoots to
more than 200 V/cm for state-selective field ionization. This field control is achieved by two
waveform generators (Keysight 33522B), which we term “WFG1” and “WFG2” in Fig. 3.23.2(b).
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In any single experimental sequence, before the final ionization detection, it is the WFG2
that applies a symmetrical pair of positive and negative potentials respectively on the top
and the bottom plates, up to an independent voltage offset on the bottom plate. The 16 bits
voltage resolution and the 20 V Vpp of WFG2, after a low-distortion 2-channel ×5 amplifier
(Keysight 33502A), result in a potential control precision of 1.5 mV on each capacitor plate.
Given the 4 mm spacing of the capacitor, we estimate the resulting granular change in the
quantization axis field to be 0.75 V/m, corresponding to a stepwise change in the WFG2’s
symmetrical output.

A finer field adjustment is provided by a 100 kΩ resistance connected in series to the
internal 50Ω resistance of the channel 2 in the WFG2. A computer controlled 12-bit DAC
(output range ±10 V) connected to the other end of the 100 kΩ resistance can then finely
offset the channel 2’s output voltage. In practice with this DAC field control we are able to
tune any sequence’s field globally by less than 0.1 V/m, and see its effect by the resonance
of the rf with the CRA (see subsection 3.2.2.23.2.2.2). It is by this resonance that we detect the
daily field’s slow drift (if any), which is then to be compensated by the DAC field control.
In this way it is assured that the same field condition is reproduced from day to day.

In addition to the small field control, the large field generation is also needed, first
for ionizing the Rydberg states, subsequently for pushing the ions through the ø0.2 mm
diameter hole drilled on the bottom plate [see Fig. 3.23.2(b)] to the channeltron below for
detection. The 0.2 mm diameter is one order of magnitude smaller than the atomic decay
transition wavelengths of the CRAs with n > 50 (wavelengths >5 mm). In this sense our
drilled bottom plate is no different from a holeless mirror, both providing the same microwave
mode structures for the CRAs prepared in this work.

The large field generation by the WFG2 is limited by its corresponding ×5 amplifier, the
output of which is bounded at ±25 V. This limit of 50 V potential drop across the capacitor
creates a max field of 125 V/cm. The lowest circular state this field can ionize in theory is
|52C⟩, but in practice we find the lowest in our setup to be |53C⟩, |52C⟩’s detection efficiency
being too low. This field is thus not enough for ionizing all the populated circular states in
our experiment which can be as low as |46C⟩. Nevertheless we use the WFG2 for fast partial
ionizations during the CRA preparation, as the WFG2 has a bandwidth of 30 MHz and can
retract to a stable small field within a few µs after a large ionization field 1.

This stronger ramp is provided by the WFG1 in Fig. 3.23.2(b). The ramp waveform from
the WFG1 is amplified by a factor of 50 (Falco Systems WMA-300) and applied on the top
capacitor plate. This high voltage ramp overrides the low voltage signal from the WFG2 via
a fast home-made high-low voltage switch [100100]. The timing for switching to high voltage is
controlled by a TTL signal that simultaneously triggers the WFG1 ramp. The final detection
ramp we use as measured by the voltage drop between the capacitor increases from 0 V to
125 V in 75 µs. An ionization signal produced with such a ramp is shown in Fig. 3.193.19.

1This lack of ionization power was not intended for this experiment by design. Initially we worked with
a 2 mm spacing capacitor (as proposed in [2626]), inside which an ionization field twice as strong as in the
current 4 mm capacitor could be achieved under the same setting. However, the rf field from the four
transverse electrodes was heavily screened by the 2 mm capacitor and could not reach the atoms in the center
well, making CRA preparation impossible. In addition, the close distance between the atomic cloud and the
capacitor surfaces clearly worsened the electric field homogeneity as felt by the atoms. These difficulties could
potentially be overcome in a future experiment (see chapter 55), but in our current setup, they forced us to
double the capacitor spacing, after which we need a stronger ramp for field ionization in order to detect all
the final states.
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3.1.1.4 The rf field generation
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Fig. 3.3 The illustration of the circular-polarized rf generation. The four rf elec-
trodes are viewd from the top. The x′y′ is a Cartesian frame, different from the
xyz coordinate convention elsewhere, with the x′ axis chosen to coincide with the
linear rf polarization generated by the channel 1 of the AWG. The AWG’s chan-
nel 1 applies sinusoidally oscillating voltage on both electrodes lying on the x′ axis.
These two diagonally opposite electrodes’ signals are π out of phase, creating in
the center a linear polarized field Fch1 sin(ωt+ ϕ) in the x′ direction. In the same
fashion, the channel 2 generates in the center a linear polarized field Fch2 sinωt
but rotated by an angle φ. These two linear polarizations are shown by the blue
arrows in the figure. To give perfectly circular polarized rf field in the center (the
red arrows), the two channels’ phase difference ϕ is found to be π−φ, and the two
blue arrows’ magnitudes have to be the same, i.e. Fch1/Fch2 = 1. Note that the
resulting magnitude of the circular polarization is always less than those of the two
linear polarizations, because the latter are not normal to each other.

The four rf electrodes around the atoms in Fig. 3.23.2(b) are designed to create a circular-
polarized rf field with respect to the quantization axis in the z direction. This is an essential
procedure for our Rydberg circularization process [7070]. Physically, it is the circular-polarized
rf that provides the σ+-polarized photons, which keep increasing the angular momentum
along Oz of the initial low-m Rydberg state until it reaches the circular state, which by
definition has the highest magnetic quantum number within one n-manifold, i.e. m = n− 1.

The rf generation and waveform shaping is achieved by a high bandwidth Arbitrary
Waveform Generator (Active Technologies AT-AWG-GS 2500). This AWG’s 2.5 GS/s sam-
pling rate is more than enough for generating our typically used rf frequencies (no more than
300 MHz). Within the 2 V Vpp limit, the rf envelope is freely programmable. As a result,
this one device saves us the need for the complex mixing schemes involving rf synthesizers
and low bandwidth AWGs, such as those found in other similar 4-electrode rf circularization
setups in our group [5959, 6969].

The AWG has two channels, each channel has two analog outputs designed to be always
opposite in polarity. The two channels’ four rf outputs are DC-biased through four bias-
tees before connecting to the four electrodes, as shown in Fig. 3.23.2(b). The four DC biases
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are set to cancel out any stray electric field in the transverse directions, as introduced in
subsection 3.1.1.33.1.1.3.

The two channels then essentially each generates in the center of the electrodes a linear
polarized rf in two different transverse directions, as shown in Fig. 3.33.3. These two linear
oscillations have the general forms Fch1 sin(ωt+ ϕ) and Fch2 sinωt, in which Fch1,ch2 is the
electric field amplitude of the linear rf, ω the angular frequency of the rf, and ϕ the phase
difference between the two channels. The angle φ between the two polarizations is determined
by the geometry of the electrodes. To combine the two linear rf’s into a perfectly circular
polarized rf with amplitude Fσ+ , the following equality is to be satisfied:

Fσ+

(
cosωt
sinωt

)
=
(

1 cosφ
0 sinφ

)(
Fch1 sin(ωt+ ϕ)
Fch2 sinωt

)
(3.1)

Based on Eq. (3.13.1), one finds that the two channels’ linear polarizations should have
a constant phase difference ϕ = π − φ, and should have equal magnitudes Fch1/Fch2 = 1.
Experimentally, the purest σ+-polarized rf is found by tuning ϕ and Fch1,ch2 to minimize the
population transferred to the elliptical state |n,m = n− 2, k = 1⟩ after an adiabatic rapid
passage (see subsection 3.2.33.2.3). One thus never needs to know the electrodes’ geometry
parameter φ a priori.

We note that the two linear polarized rf (the two blue arrows in Fig. 3.33.3) can be as well
generated with only two electrodes (e.g. by suppressing the “ch1 +” and “ch2 +” electrodes
in Fig. 3.33.3). The benefit of using all four electrodes in our experiment is twofold:

1. It improves the homogeneity of the rf field as felt by the atoms in the center.

2. The induced parasitic rf oscillations on the capacitor plates by any one rf electrode is
largely canceled out by the other with the opposite polarity.

At the AWG’s power limit (2 V Vpp), with optimized σ+-polarized rf, we find a resonant
rf Rabi frequency of 9.2 MHz along the lowest diagonal in the 52 manifold, as shown in
Fig. 3.43.4. This corresponds to a Fσ+ of 1.47 V/m.

3.1.1.5 The source of the atoms

The vapor cell MOT experiments [101101] such as ours have the luxury of loading a MOT
directly from the low velocity class atoms in a low-pressure alkali vapor, without the need
for atom pre-slowing (e.g. by a Zeeman slower).

Our source of rubidium atoms is the commonly used alkali metal dispenser from Saes
Getters. This dispenser contains within a chromate of rubidium Rb2 Cr O4 and two reducing
agents Zr and Al. At high temperature and in vacuo, the reduction reaction generates
pure rubidium2, which vaporizes into the vacuum. Moreover, the reducing agents are also
getters: at high temperature they are capable of absorbing common gases [102102]. This getter
property should at least partly explain the observed decrease in our UHV’s pressure (from
6 × 10−9 mbar to 3 × 10−9 mbar ) when the dispenser is being heated.

2For example, with the reducing agent Zr, pure Rb is obtained by:

4 Rb2CrO4 + 5 Zr −→ 2 Cr2O3 + 5 ZrO2 + 8 Rb
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Fig. 3.4 The σ+-polarized radio frequency Rabi oscillation starting from
|52,m = 2⟩ along the lowest diagonal in the 52-manifold. The plot shows the
amount of the |50C⟩ transferred by a two-photon microwave π-pulse from the |52C⟩
at the end of a resonant rf Rabi pulse in the 52-manifold as a function of the du-
ration of this rf pulse. This oscillation gives a Rabi frequency of 9.2 MHz. The
obtained |50C⟩ has been normalized by a concurrent ionization signal to mitigate
the shot-to-shot fluctuation, hence the “arbitray unit”.
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Fig. 3.5 (a) The exposed inside of the experiment before closing the setup. This
view is focused on the two rubidium dispensers installed below the channeltron
case (the grounded case screens the undesirable large electric field generated by the
channeltron). (b) After closing the setup, a close view at the inhibition structure
and other visible parts through the glass cell.
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We installed two Rb dispensers immediately below the channeltron case, as shown in
Fig. 3.53.5(a). The two dispensers have independent current supplies. At all times, only one
dispenser is active, and the other serves as a backup. The DC current through the dispenser
heats it up, first to start the reduction reaction, subsequently to evaporate the generated
pure rubidium. The deposition of the rubidium vapor on surfaces such as those of the cell
glass, the capacitor, and the electrodes is not visible to the eyes. However the deposition’s
effect can be observed from two aspects:

1. The loss of reflected laser beam power: The bottom capacitor plate is a gold-plated
mirror. As shown in Fig. 3.103.10(b), a 780 nm laser beam (one of the cooling beams)
incident at 45◦ from the top of the cell will be reflected at 45◦ and come out from the
top of the cell. The reflectivity given by these two beams drops from 83% to 54% after
one day’s use of the dispenser, given a new cell and a new capacitor to start with. The
reflectivity however stablizes at the low value afterwards, implying the saturation of
the Rb deposition on the series of surfaces (glass, ITO coating, and gold) in the way
of the laser beam.

2. The change in the electric field: A change of 0.1 A to 0.2 A in the dispenser current,
hence the Rb dispensing rate, leads to the immediately noticeable field drift of ap-
proximately 1 V/m per hour. If the dispenser current is to be kept constant after the
initial change, this field drift slows down after one or two days. Greater change in the
dispenser current would naturally lead to a more dramatic drift in the electric field.

Due to the second effect above, our dispenser’s current is kept constant at all times,
unless the atom dispensing rate drops noticeably (the cold cloud becomes dilute, less atoms
detected, etc.). The constant DC current we apply on a new dispenser gradually increased
from 2.8 A to 3.2 A over the course of 10 months. The highest current applied corresponds
to a dispenser temperature of 450 ◦C, according to the dispenser’s manual.

3.1.2 Laser System
The laser system used for the Rydberg excitation and the MOT creation is mostly inherited
from the previous works in our group. While many details and discussions regarding the
system’s previous states can be found in [103103–106106], this subsection explains the parts relevant
to this thesis’ work in their current states.

3.1.2.1 The three-stage excitation

To reach a low-ℓ Rydberg state, we use a well established three-stage excitation scheme [107107]
to bring the atoms from the ground state 52S1/2 to the 58 F state of 85Rb. The three laser
wavelengths used are (in the order of the three stages):

780 nm 52S1/2, F = 3 −→ 52 P3/2, F
′ = 4

776 nm 52 P3/2, F
′ = 4 −→ 52D5/2, F

′′ = 5
1257 nm 52D5/2, F

′′ = 5 −→ 58 F,m = 2
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The first stage transition serves at the same time as the MOT cooling transition. In
addition, for the MOT a repumper is used to prevent the atoms from accumulating in the
ground state hyperfine level 52S1/2, F = 2 (see the level scheme in Fig. 3.63.6). In other words
we use the common rubidium D2 line for cooling and trapping.

3.1.2.2 The frequency stabilization

All three excitation lasers are locked by the Pound-Drever-Hall technique [110110], which entails
a phase modulation (equivalent to frequency modulation) applied to the laser in order to
create an error signal for the frequency stabilization. This modulation is applied as shown in
Fig. 3.73.7 by EOM (Electro-Optic Modulator) #1~#3 respectively on the 780 nm, 776 nm and
1257 nm laser beams. Before leaving the table, these three excitation lasers have their AOM
(Acousto-Optic Modulator) diffracted beams coupled into the output fibers. The rf-pulsed
control of the AOM diffraction allows us to apply ≃ 1 µs excitation pulses at the beginning
of each experimental sequence: the 780 and 776 nm lasers are pulsed by the same AOM #3,
the 1257 nm laser by AOM #6.

The 780 nm laser is locked on a saturated absorption spectroscopic signal from Rb vapor
cell #1. The actual frequency of the 780 nm laser after locking is 100 MHz below the first-
stage transition frequency due to the effect of AOM #1 [103103, p.48]. Therefore, when this
red-detuned 780 nm laser co-propagates with the 776 nm laser in Rb vapor cell #2, the
latter laser excites the same velocity class as the former, and finds itself locked at the same
detuning, i.e. 100 MHz red-detuned from the second-stage transition. Excitation beams at
780 nm and 776 nm have their red detunings with respect to their target excitations fully
compensated by AOM #3 (+100 MHz) before being sent into the experiment. The bottom
right branch of the 780 nm laser in Fig. 3.73.7 is under-compensated by AOM #2 (+80 MHz),
allowing at the output fiber a beam detuned by δ ≃ −20 MHz, a few times the natural line
width (≃ 6 MHz [111111]) of the D2 transition, to be fed into a fiber port cluster, and then to
be further separated into the four mirror MOT beams (see subsection 3.1.3.13.1.3.1).

The final Rydberg excitation laser at 1257 nm is locked on a tunable standard, such that
this laser can reach its target Rydberg state shifted in energy at various electric fields. It
also allows the selection of different n-manifolds3. This tunable standard is a Fabry-Pérot
cavity with a tunable length, serving as a transfer cavity. The cavity’s length is stabilized by
an EOM-modulated branch of the 776 nm beam, and once stabilized, the cavity itself is used
as a standard for locking the final 1257 nm laser. In addition, the 776 nm branch for cavity
stabilization goes through a “double pass” AOM configuration (AOM #5 in fig. 3.73.7) before
reaching the cavity. This allows the fine-tuning of the 776 nm laser frequency by several tens
of MHz, which, through the transfer cavity, can be used to tune the stabilized 1257 nm laser
frequency by the same order of magnitude, a useful feature we use to overcome small laser
frequency drifts.

The repumper laser, unlike all other ones, is not locked on an EOM-modulation-generated
error signal, but on one that is generated by a light wave beat between the 780 nm and the
repumper lasers. For this reason, the beams at these two wavelengths, separated by ≃ 3 GHz
when both correctly locked, co-propagate before entering a high frequency photodiode used

3For the result of this thesis, we consistently operate the Rydberg excitation laser at 1257.1 nm. But
in practice, we made many other studies operating at 1258.4 nm, 1257.1 nm, 1256.1 nm, etc. to reach
respectively 52 F, 58 F, 65 F, etc.
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Fig. 3.6 Level scheme of 85Rb. We show as colored arrows the MOT’s cooling and
repumping transitions as well as the three excitation stages to reach the Rydberg
level |58 F,m = 2⟩ at a small Stark switching field. The transition values are taken
from [108108, 109109]. The hyperfine level splittings are exaggerated.
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Fig. 3.7 Laser (optical table) scheme. In ascending order of the wavelength, the
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scheme Fig. 3.63.6 show these lasers’ corresponding transitions. The cyan text blocks
mark positions of output laser fibers and their usage in experiment.
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to register this beat (photodiode #1 in Fig. 3.73.7). Once the 780 nm laser is locked, scanning
the repumper laser will cause their beat frequency to also scan relative to a YIG frequency
standard. The final mixing of the beat and the YIG frequencies produces the error signal
for the repumper laser, for details see [106106, p.104].

All lasers introduced above, after shaping and locking, are coupled into polarization-
maintaining optical fibers that connect to the six output beam collimators around the glass
cell (see Fig. 3.103.10). Among these six beams, four are for MOT cooling (see subsection 3.1.3.13.1.3.1),
two are for Rydberg excitation (see subsection The excitation beamsThe excitation beams).

3.1.2.3 The excitation beams

<latexit sha1_base64="b80LSSkZ9DSBwWA8Hcon5l2l2ek="></latexit>
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780 nm & 776 nm

1257 nm

Fig. 3.8 The isometric configuration of the two exication beams around the ca-
pacitor. The surface of the laser beams is chosen to be at the FWHM of the beams’
transverse Gaussian intensity profile. The 780 nm and the 776 nm lasers copropa-
gate in one single beam (orange) in the xy plane. The 1257 nm laser beam (red)
shoots from the top, making a ≃ 35◦ angle with the Oz axis in the xz plane. The
two exictation beams overlap in the center of the capacitor where their Gaussian
diameters coincide within the atomic cloud region, which is represented by a orange
sphere with a 1 mm radius.

The 780 nm and the 776 nm lasers, responsible for the first and second stage excitations,
exit as one single beam from the collimator aiming at the capacitor spacing and arrive at
the atoms following a horizontal path in the xy plane. This horizontal beam is polarized
in the z direction, parallel to the quantization axis, and therefore both the 780 nm and
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the 776 nm lasers carried within are π-polarized. The 1257 nm beam, responsible for the
last-stage excitation, exits from a collimator positioned above the cell. The resulting beam
makes a ≃ 35◦ angle with respect to the Oz axis and lies in the xz plane. This top beam is
circular polarized in an attempt to create as much σ+-polarized excitation as possible, which
can in turn excite the most |58 F,m = 2⟩ and the least |58 F,m = −2⟩, the former being the
starting level of our circularization by a rapid adiabatic passage (see subsection 3.2.33.2.3). The
aforementioned ≃ 35◦ tilting angle of the 1257 nm beam is necessary to have an unblocked
beam path to reach the atoms. Making the top beam completely vertical in the Oz direction
would create the purest σ+-polarized 1257 nm light possible, but unfortunately in our setup
this ideal beam path is blocked by the MOT coil above the cell (the blue coil in Fig. 3.113.11).

We note that the above polarizations of the excitation lasers are not pure due to our
setup limitations. However since our circularization procedure selects only |58 F,m = 2⟩,
atoms not excited to this state cannot connect to the circular states in the end, and can thus
be cleared by a partial ionization that finally removes all but the CRAs.

The horizontal beam’s Gaussian diameter is measured to be ≃ 250 µm. In this beam, the
780 nm and 776 nm laser powers are maintained respectively at 250 µW and 600 µW. The
1257 nm beam from the top has a Gaussian diameter of 500 µm and laser power of 3 mW.
The stepwise increase in three lasers’ power is to compensate for the decrease in dipole matrix
elements coupling increasingly higher atomic levels. In the end, the two beams are set to
converge to their Gaussian diameters in the center of the capacitor, where they overlap and
define in the atomic cloud an excitation volume of approximately 250 × 500 × 250 µm3 up
to a rotation.

3.1.3 Magneto-Optical Trap
A Magneto-Optical Trap (MOT) is used in this experiment to allow the measurement of the
lifetime of the CRAs in situ within a ≃ 1 ms time scale. Technically, this means the atoms
need to be slow enough so that the Rydberg atoms prepared from these slow atoms during
the ≃ 100 µs CRA preparation time and the following ≃ 1 ms decay time do not diffuse
considerably. In practice, a hard upper limit also exists on the velocity of an atom initially
centered in the capacitor: it should not escape from the effective detection region limited by
the ø0.2 mm hole [see Fig. 3.23.2(b)] through the center of the bottom mirror. For 85Rb, such
a travel distance of 0.2 mm within 1 ms approximately translates into a MOT temperature
of half a milli-Kelvin, well within the cooling capability of a typical MOT. As a result, we
choose to create a MOT directly in the geometric center of the inhibition capacitor.

In Fig. 3.93.9 we show some typical sizes of the atomic cloud. The conditions that differ in
these images include the rubidium dispensing rate (the dispenser current), the quality of the
vacuum, and the intensity of the cooling beams. The magnetic gradient however stays the
same across all the images. From these images we estimate that the diameter of our atomic
cloud ranges from 1 mm to 2 mm. In all scenarios, the cloud is to be kept in the center of
the gap, from which the CRAs are prepared and detected.

3.1.3.1 The MOT beams

In a conventional plane parallel capacitor, to allow 3 pairs of counter-propagating MOT
beams access to the atomic cloud region, holes need to be drilled on the capacitor. These
holes ideally should be millimeter-sized to preserve the integrity and hence the inhibition
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Fig. 3.9 The atomic cloud trapped in a Magneto-Optical Trap in the center of the
inhibition capacitor as viewed by a CCD camera aiming at the gap of the capacitor.
From left to right we showcase three different sizes of the atomic cloud from small
to big. We typically work with the size in the center, where we have labeled the
inhibition capacitor’s visible components and the 4 mm spacing between the two
conductive planes.

asset of the capacitor. However, reducing the MOT beams’ diameter (twice their Gaussian
beam waist) to millimeter proves challenging, due to fast decrease of the number of trapped
atoms in this small-beam regime [112112]. Experimentally we were able to create a millimeter-
size-beam 3D MOT in freespace (without the capacitor) in our glass cell setup, however the
time and effort involved to find and maintain such a small MOT, on a daily basis, practically
left no room for other experimental activities.

To work with thick MOT beams, we use as the top piece of our plane parallel capacitor
a glass plate with a conductive surface coating of Indium-Tin-Oxide(for its discussion see
subsection 3.1.43.1.4). Since ITO is optically transparent, there is no size limit for beams passing
through the top of the capacitor. In addition, we use a standard mirror MOT configuration
[see Fig. 3.103.10 (b)]: In the xz plane, we apply two MOT beams incident at 45º with respect
to the mirror plane. The result is that each one of the 45° MOT beams, after reflection on
the mirror, counter-propagates with the other incident beam. We thus obtain, in the overlap
region between the incident and reflected beams, two pairs of counter-propagating beams,
orthogonal to each other, in the xz plane. One last pair of counter-propagating beams goes
across the spacing between the capacitor along the y axis, fulfilling all the 6 MOT beams
required.

We show in Fig. 3.103.10 the configuration of the mirror MOT beams. All optical components,
together with the MOT coils and the imaging cameras are installed on a 30 cm × 30 cm
breadboard, which is screwed at the level of the cell flange. The one cooling laser beam at
the bottom right of Fig. 3.73.7 is divided through a fiber port cluster (Schäfter + Kirchhoff FPC-
069) into four beams which are led by polarization-maintaining fibers into four collimators
(Thorlabs F810APC-780), labeled by numbers #1 through #4 in Fig. 3.103.10(a). These four
collimators provide the four thick MOT beams (Gaussian beam diameter 7.5 mm). All the
collimators and the beam deflecting mirrors in their light paths are installed on the 2-axis
mounts, this ensures that there are enough adjustable degrees of freedom to make relevant
light beams completely overlap as well as pass through any designated point within the
capacitor. Considering the symmetry of the setup, the natural choice is to make the 45°
beams from collimator #1 and #2 overlap and target the center of the bottom mirror, then
make the beams from collimator #3 and #4 (in the xy plane) overlap and pass through the
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middle of the capacitor. With the help of the diaphragms before all the four collimators, we
are able to constrain the MOT beams’ size to millimeter, and perform the beam alignment
with precision.

The power balance between the counter-propagating beams are ensured by direct mea-
surement through an optical power meter. The four cooling beams’ exact power values are
often tuned by a small amount for MOT position maintenance, but in general, the two 45°
cooling beams have their powers close to the saturation intensity of the rubidium’s D2 cy-
cling transition ( 1.67 mW/cm2 ), while the two cooling beams in the xy plane have powers
at half of this saturation intensity.

After the above procedures for cooling beam alignment and power balancing, the only
cooling beam adjustment we perform is via the fiber port cluster to control the power balance
between all cooling beams. The cluster provides enough degrees of freedom for us to move
the atomic cloud by a few millimeters in all three directions merely by adjusting the relative
cooling beam powers.

3.1.3.2 The MOT coils

Fig. 3.113.11 shows the six coils we use to generate the quadrupole field for the MOT. In addition
to creating the magnetic gradient, the more than usual number of coils allow them to double
as compensation coils: they provide complete degrees of freedom for moving the quadrupole
field in space. To simulate the quadrupole field, we record the dimensions, the relative
distances, and the applied current values of the real coils, and create in the simulation similar
coil geometries bearing these parameters as shown in Fig. 3.113.11(a). Then we perform a finite
element simulation [113113] to obtain the spatial distribution of the magnetic field generated by
them, using the coil current values shown in the cyan text boxes in Fig. 3.113.11(a). These current
values are experimentally found to make the MOT optimally centered in the capacitor. They
are also the persistent current values used during the collection of the data published in [4949].

In Fig. 3.113.11(a), the origin of the coordinate frame is set to coincide with the geometric
center point of the capacitor, around which the MOT should ideally reside. The two yellow
coils are in a Helmholtz configuration, generating a magnetic field in the −x direction at
the origin. On the other hand, the top blue coil generates at the origin a field in the +x
direction. The cancellation of these two fields creates a quadrupole field with its zero point
around the origin, and its largest magnetic gradient in the xz plane. The two red coils are
in an anti-Helmholtz configuration, they create the magnetic fields equal in magnitude and
opposite in direction at the origin, where their largest gradient is along the y direction. We
note that the two yellow coils are connected in series and thus always have to bear the same
current from the same current source. The two red coils however have independent current
sources and can bear different currents. The fact that these two red coils coincide in their
current values when the MOT is optimally centered is a consequence of the symmetry of the
setup.

By fine-tuning the currents in these coils, we can adjust the zero point of the quadrupole
field, hence the MOT’s position, in all directions. The competition between the blue and
the yellow coils lead to a controlled displacement of the zero field point along the z axis; the
imbalance between the two red coils’ currents lead to an adjustable displacement along the y
axis. The last adjustment along the x axis is provided by the green coil, which corresponds
to the one that is wired closely around the bottom of the glass cell.
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Fig. 3.10 The laser beam configuration around glass cell. (a) The isometric model
showing only essential laser components with all other parts removed. The Always-
on MOT cooling and repumping beams are respectively represented by the orange
and the green lines, the pulsed excitation beams by colored straight arrows. Four
white arrow loops give the polarizations of the four MOT cooling beams traveling
towards the cell. Note that thinner-than-real-beam lines are used to help clearly
trace the cooling and repumping beams. (b) Shown in the xz plane is the capaci-
tor illuminated by the MOT beams represented in their 7.5 mm diamater Gaussian
beam sizes. Two 45° beams are in the xz plane, two horizontal beams travel per-
pendicularly in and out of the page. The four beams’ overlapping defines the region
where the MOT can reside. (c) A photograph of the laser components around the
cell. On a small 30 cm × 30 cm breadboard, only MOT-related components are in-
stalled (no Rydberg excitation beams). In the geometric center of the bread board,
a circular hole (traced by white dashed line) is made to allow the insertion of the
glass cell. The MOT cooling beam paths are shown in orange lines, with green bor-
der when copropagating with repumper beam. Lines are dashed when line paths
are blocked from direct view. (d) A photograph of the final setup with excitation
beam collimators installed. Shown in colored arrows are the paths of excitation
beams.
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Fig. 3.11 The configuration of the MOT coils. (a) Isometric view of the current
carrying geometries used in the magnetic field simulation. The current directions
are given by the black arrows, the current values and number of wire turns are
given by the cyan text boxes. The center of the capacitor (not shown in figure)
is defined as the origin of the coordinates. (b) A photograph showing the coils
from the same view angle. Each coil has been labeled by their corresponding color
with respect to (a). The distances between the Helmholtz coils (yellow) and the
anti-Helmholtz coils (red) are given. The thick blue coil above the glass cell is made
with a multi-strand, 6 gauge copper wire capable of carrying a maximum current
of 100 A. The bottom part of the blue coil has been stripped of the thick wire skin
and stretched down in order to be as close to the cell as possible (≃ 2 mm away
from the top of the glass cell and ≃ 13 mm away from the center of the capacitor).
The rest of the coils are made with single-strand copper wires with a diameter of
1.25 mm.

We show the resulting simulated quadrupole field with no free parameters in Fig. 3.123.12.
While the current values given in 3.113.11(a) produce in the experiment an optimally centered
atomic cloud, we see that they do not reproduce a quadrupole field centered precisely at the
origin of coordinates in the simulation. However the size of our atomic cloud is typically in
the range of 1 mm to 2 mm (see Fig. 3.93.9), such a cloud if assumed to be centered perfectly
at the zero point of the quadrupole field in Fig. 3.123.12 can still include in its volume’s span
the origin of coordinates. In other words, the MOT’s position obtained from this simulation
would in reality bring atoms to the x,y ∈ [−0.1 mm, 0.1 mm] range delimited by the ion inlet
hole at the bottom mirror, and hence yield non-zero ion counts upon ionization. Experi-
mentally this is a critical criterion for us to determine whether the MOT is centered in the
xy plane. The simulation thus represents a good enough agreement with the experiment. In
practice, the quadrupole field’s discrepancy from the origin in such a sub-millimeter scale can
easily arise from the imperfect shapes and positions of the real coils. Earth’s magnetic field
(0.25 Gauss to 0.65 Gauss) also can lead to a sub-millimeter shift to the magnetic zero [see
panel (b) and (e) of Fig. 3.123.12]. Moreover, it is common for the atomic cloud to be located
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Fig. 3.12 The simulated quadrupole field. (a) The magnetic field lines and mag-
nitude in the xz plane that includes the origin of the frame in Fig. 3.113.11. The black
and blue dashed lines intersect at the center of the quadrupole field and are orthog-
onal to each other, as the cooling beams should be in this plane. (b) The magnetic
fields along the black (the weak axis) and the blue (the strong axis) dashed lines.
The corresponding positive directions are indicated by the color-matching arrows in
(a). (c) The corresponding magnetic field gradient. (d) The simulated quadrupole
field in the yz plane that cuts at the intersection of the dashed lines in (a). (e)
The magnetic field along the black dashed line (the second strong axis). (f) The
corresponding magnetic field gradient.
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away from the absolute zero point of the quadrupole field, due to the imbalance between the
intensities of the counter-propagating MOT beams.

The panel (c) and (f) of Fig. 3.123.12 show the simulated magnetic gradient along the three
major gradient axes of the MOT. The strongest axis is the blue axis in the panel (a). The
gradient along this axis at the quadrupole center is 5 Gauss/cm. The other two axes, the
black axes in the panel (a) and (d), have respectively the gradient values 2 Gauss/cm and
3 Gauss/cm at the quadrupole center. From the sum of the gradients along the two weaker
axes one obtains the gradient along the strong axis. To estimate the Zeeman shift in our
experiment, assuming an unlikely bad scenario when the atom is located 1 mm away from the
magnetic zero along the strongest gradient axis. For two states separated by ∆m = 1, the
Zeeman shift between them is given by µB/h = 1.4 MHz/Gauss. The assumed bad scenario
then brings a mere 0.7 MHz Zeeman shift per ∆m = 1, negligible compared to the linear
Stark shift at hundreds of MHz per ∆m = 1 that we apply in the experiment.

3.1.4 Inhibition Capacitor
This subsection focuses on the numerical simulation of the lifetimes of the in-capacitor CRAs
under various conditions.

We first explain the numerical simulation model capacitor (subsection 3.1.4.13.1.4.1), with which
we simulate the lifetimes of the CRAs we prepare in the experiment capacitor.

The transparent top capacitor electrode is a important feature of this work, we introduce
its properties in subsection 3.1.4.23.1.4.2 and investigate the influence of its resistivity on the
lifetimes of the CRAs in the capacitor.

The lifetimes of the in-capacitor CRAs can also depend on its vertical position in between
the two surfaces. The simulation of this position dependence is analyzed in subsection 3.1.4.33.1.4.3.

Finally, we see through simulations that the measured lifetimes of the CRAs have a large
tolerance to the potential skewness of the parallel plates.

3.1.4.1 The modeled experiment capacitor

The inhibition capacitor shown in Fig. 3.53.5 (b) is produced from the same 3D design with
which we numerically simulate of the atomic decay rates modification. The principles of the
simulation was introduced in subsection 2.4.4.32.4.4.3.

We carry out the TRP simulation with the commercial software CST Studio Suite®,
which is a multiphysics simulation software capable of numerically solving for the GHz field
in the presence of lossy materials. Other similar software include COMSOL® and Ansys
HFSS®.

The simulation model is shown in Fig. 3.133.13. In this 3D model, the bottom capacitor and
the four transverse electrodes are set to have the room temperature conductivity of gold,
corresponding to the gold plating applied to the real components. The bulk glass plate is
assigned the dielectric properties of the lead glass. At the bottom surface of the glass plate,
we set an ohmic sheet to mimic the conductive ITO coating (see subsection 3.1.4.23.1.4.2) applied
on the corresponding real glass plate. In our simulations, the sheet resistance is either set
as 8Ω/square or 10Ω/square. The former is our measured number, the latter is the typical
number given in the datasheet. However, we found this difference in resistivity produces at
most a few percent of difference in the simulated lifetimes of the inhibited circular states.
This lifetime difference is no larger than the errorbars of our measured lifetimes, therefore
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Fig. 3.13 The 3D capacitor model realized in the CST Studio. With this model we
perform all the relevant simulations. The capacitor is comprised of a transparent
top plate electrode and an opaque bottom plate electrode (gold). In between the
capacitor, four transverse rf electrodes (gold and no contact with the capacitor)
surround a central mirror platform. In the very center of the capacitor is a small
dipole antenna as the source of the radiation field in the simulation. From the gold
surface below the antenna to the glass surface above it, the distance is 4.10 mm.

the resistivity of the ITO does not stand as a very sensitive parameter within a reasonable
range.

The field source of our TRP simulation is a small dipole antenna in the center of the
capacitor. The two antenna rods are set to be perfect conductors and have a combined
length of 0.1 mm. Other arbitrary small length l can be equally chosen as long as the
limit kl ≪ 1 (k is the wave number of the emission field) is ensured so that the antenna
approximates a Hertzian dipole. As a side note: real experiments with large antennas that
do not approximate well the dipole limit have been performed, but the measured radiation
power from the antenna in between two plates still reproduces the essential inhibition and
enhancements features [114114].

The 3D model in Fig. 3.133.13 evidently leaves many screw holes open. For example, the
glass plate and the four transverse electrodes are floating in the vacuum without the screw
supports we apply in the real setup. However, we have modeled a more detailed 3D structure
in an effort to resemble the experiment capacitor as much as possible down to the screws
and nuts. The simulations with the more detailed model produce only marginal differences
compared to the ones with the gross structure model in Fig. 3.133.13. Therefore the gross
structure model is enough to produce the main mode structures in the capacitor, and all the
simulations we present come from this simpler model4.

4However, we note that if we try to moderately exaggerate some details in the model, which do not
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The spacing of the real capacitor was measured by a vernier caliper to be 4.10 mm, a fixed
parameter in the simulation (see appendix CC). This spacing corresponds to a sudden cutoff
at 36.56 GHz in an ideal capacitor that can inhibit the σ decay channels of the CRAs with
n ≥ 57. The simulated decay modification factors Cσ and Cπ for a CRA in the geometric
center of the capacitor are shown in Fig. 3.143.14.
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Fig. 3.14 The Cσ and Cπ of from the simulated capacitor (solid) in Fig. 3.133.13 and
the ideal capacitor (dashed). Both are set to have the same spacing of 4.1 mm.
The simulated ITO sheet resistance is 8Ω/square. The vertical dotted lines give
the circular-to-circular transition frequencies relevant in this work. The simulation
curves are in steps of 1 GHz. A wide frequency range is chosen to reveal both the
first and the third order cutoffs.

In this figure, the simulated Cσ and Cπ are obtained with the dipole antenna oriented
transversely and vertically, respectively. These two TRP ratios clearly restore the main
features of the ideal capacitor, including the two cutoffs corresponding to the first and third
propagation modes of the capacitor, and the enhancement of the TEM mode below the
cutoff.
exist in the real setup, such as adding extra screws and teflon spacers very close to the dipole (but not
invading the central 10 mm × 10 mm square mirror region), we can obtain a much greater enhancement at
the cutoff resonance, which in magnitude is similar to the experimentally measured enhancement that the
simple model can not produce. This suggests, for this compact capacitor design, some mode structures can
be highly sensitive to the in-capacitor components. Inside the real capacitor, some modes could indeed be
fairly different from the ones in the simulation, which in the end can only approximate the reality.
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3.1.4.2 The Indium-Tin-Oxide coating

The Indium-Tin-Oxide (ITO) is one of the most used conductive coating for the trans-
parent electrodes. It is a doped semiconductor with a very high density of mobile charge
carriers. The transparency of ITO coating is due to its relatively low plasma frequency
(250 THz to 300 THz [115115]) than the common metallic conductors. In our experiment, this
transparency is essential, allowing the optical access of a pair of mirror MOT laser beams
(see subsection 3.1.33.1.3). The ITO coating is also central in other proposed plans using exclu-
sively transparent capacitor electrodes to inhibit the decays of the CRAs, while allowing the
access of the optical tweezers to trap single CRAs at the same time [4646].

The conductivity of ITO can be modeled by the Drude theory, which expresses the optical
conductivity σ(ω) of a good conductor in the following general form:

σ(ω) = σdc
1 − iω/Γ

(3.2)

where σdc is the conductor’s DC conductivity, ω is the circular frequency of the electromag-
netic wave incident on the conductor, Γ is the Drude relaxation rate characterizing how
frequently a charge carrier is scattered in the solid. For the ITO, Γ is in the 10 THz range
[116116]. Therefore in Eq. (3.23.2), the ratio ω/Γ would be negligible if ω/2π is in the range of
tens of GHz, corresponding to our CRA’s decay transition frequencies. This allows us to
treat the response of the ITO in our MW simulations as frequency-independent: σ(ω) ≈ σdc,
an assumption we use throughout the whole of subsection 3.1.43.1.4. Beyond this simple Drude
model argument, the ITO’s frequency independence in the tens-of-GHz regime has also been
experimentally tested [4646].

The ITO coated glass plate we use in the experiment is a customized product man-
ufactured by Techinstro. The bulk plate has the dimensions 40 mm × 10 mm × 1.1 mm.
The ITO coating has a thickness of 180 nm to 200 nm, allowing an optical transmittance of
≥ 90%. The conductivity of this coating inferred from the thickness and sheet resistance is
0.5 × 106 S/m to 0.7 × 106 S/m. For comparison, the conductivity of the gold plating for the
other electrodes is 44 × 106 S/m (room temperature), and a potential Rb desposit layer [117117]
(conductivity 8.3 × 106 S/m) on the ITO would make its surface more conductive. Finally,
the microwave reflectivity of the ITO coating in the range of 45 GHz to 65 GHz is estimated
to be 86%~93%. This value is inferred from the finesse of a cavity comprised of the ITO
glass plate and a spherical copper mirror.

To understand the effect of the ITO resistance to the lifetime of the CRA, we survey
the simulated 300 K in-capacitor lifetimes of the relevant CRAs assuming an exaggerated
variation of tens of Ω/square in the sheet resistance of the ITO. This simulation is shown
in Fig. 3.153.15. In panel (a), we see that the lifetimes for any sufficiently inhibited CRA have
a moderate dispersion of ≃ 10% under the different ITO resistance values. In the inset we
highlight the lifetime of 60C as a function of the chosen resistance values.

It is interesting to observe that the lifetime of 60C peaks at ≃ 20Ω/square, while the
intuitive expectation is that the lower the resistance, the more the approximation to an ideal
capacitor, and the better the lifetime under the inhibition. The cause of this peak lifetime
resistance is explained by the competition between the σ+ and the π transitions of 60C (2σ
decays play a minor role in this particular case). For this highly inhibited circular state,
its σ+ decay rates is almost equal to its π + 2σ decay rates, modification to the latter rates
then brings appreciable change in the resulting lifetime. The detail of this competition is
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Fig. 3.15 The dependence of the simulated lifetimes of the CRAs on the sheet
resistance of ITO coating. (a) The lifetimes of 54C to 62C simulated with the
capacitor in Fig. 3.133.13 with varying sheet resistance of the ITO coating. (b) The
simulated TRP ratios with the varying ITO resistance. Solid lines are the simulated
Cπ, dashed lines the simulated Cσ. Inset is a log scale plot of Cσ focused on the
σ+ transition frequencies of 60C. The color code between (a) and (b) is shared.

shown in panel (b), which gives the simulated Cσ and Cπ modifications for the surveyed
resistance values. In this TRP ratio plot, we mark the two transition frequencies of the
two σ+ decay channels of the 60C, knowing that under a moderate Stark shift the two
π transitions (60C → 61e1/61e′

1) would only be ≃ 100 MHz away from the 60C ↔ 61C
transition frequency and therefore can be represented by the same vertical mark line. From
1Ω/square to 20Ω/square, we see in the main plot of (b) a 25% decrease of π transition rates
(equal to the TRP ratio), while in the inset of (b), the corresponding σ+ transition rates
barely increase in this resistance range. We thus observe from 1Ω/square to 20Ω/square a
≃ 15% increase in the simulated lifetime of 60C. This case study shows us the complication
incurred in the transition from the simple σ+-dominated lifetime to the lifetime determined
by multiple comparable decay channels.

In reality, the ITO coating of our transparent electrode has a batch-to-batch dispersion
of at most 7Ω/square to 12Ω/square. We further confirmed the DC sheet resistance of our
sample by the Van der Pauw method (a four-terminal measurement). The measured sheet
resistance is 7.9Ω/square as shown in Fig. 3.163.16.
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Fig. 3.16 The Van der Pauw method measurement of the sheet resistance of the
sample of our transparent electrode. The four corners of the sample plate are
numbered (inset) and attached to four terminal wires. The notation R12,34 ≡
V34/I12 is a resistance quantity defined as the ratio of the voltage measured between
the terminals 3, 4 to the current applied between the terminals 1, 2. The measured
sheet resistance Rs is found when the Van der Pauw equation (e−πR12,34/Rs) +
(e−πR23,41/Rs) − 1 = 0. For the measurement curve in the plot: V12 = 93.33 mV,
I34 = 53 mA, V41 = 92.85 mV, I23 = 53 mA.

3.1.4.3 A dipole not in the center of the capacitor

Inside an ideal capacitor, there are well defined propagation modes. For the several low
order modes, their node structures have only a few transverse electric nodes and antinodes
across the two capacitor surfaces. Thus as a transversely positioned dipole is moved from
one surface to the other, it switches between the max coupling and the zero coupling to
the low order modes, the resulting dipole damping rate changes drastically as a function of
the dipole’s vertical position in the capacitor. This was demonstrated in subsection 2.4.4.12.4.4.1.
In the simulation with the experiment model capacitor, this position dependent decay rate
modification is also evident.

In Fig. 3.173.17, we show the simulated Cσ and Cπ for a dipole in the center and shifted by
±1 mm from the center. Although the experiment capacitor model does not have up-down
symmetry, the simulation results from the +1 mm and −1 mm configurations appear to be
very similar. In particular, we see in panel (a) the expected emergence of the second order
resonance at twice the first order cutoff frequency for the ±1 mm configurations.

The panel (b) in log scale focuses on the inhibition cutoff of panel (a). The most striking
feature in plot (b) is that: by simply raising or lowering the dipole by 1 mm, it experiences
a uniform reduction of Cσ by half in the whole regime of the cutoff resonance peak, from
the enhanced to the inhibited frequency regions. This is clearly the behavior of the dipole
coupling with the first order capacitor modes. And unlike in the case of the ideal capacitor,
the first order modes do not abruptly disappear, but gradually weaken towards low frequen-
cies, resembling the resonator mode of a highly damped cavity. In the ideal capacitor model,
the first order modes have only one transverse antinode across the height L of the capacitor



3.1 EXPERIMENT SETUP DESCRIPTION 65

20 40 60 80 100 120

0

1

2

3

TR
P

 ra
tio

n 
(li

ne
ar

)

frequency (GHz)

TR
P

 ra
tio

n 
(d

B
)

30 35 40 45 50

-25

-20

-15

-10

-5

0

5

51

50

52

51

53

52

54

53

55

54

56

55

57

56

58

57

59

58

60

59

61

60

frequency (GHz)

 Cσ centered
 Cσ +1 mm
 Cσ -1 mm
 Cπ centered
 Cπ centered
 Cπ +1 mm
 Cσ difference: black - green

2.9 dB
4.1 mm 0

1 mm

-1 mm

(a) (b)

Fig. 3.17 The TRP ratios simulated with the model in Fig. 3.133.13 as the vertical
position of the in-capacitor dipole antenna is varied. The two panels show the
same curves with the same color code plotted only in different scale and range. (a)
The Cσ (solid) and Cπ (dashed) generated by three different dipole positions are
plotted: in the center, +1 mm and −1 mm from the center (see inset). (b) The log
view focuses on the inhibition cutoff. The dashed lines mark the frequencies of the
relevant circular-to-circular transition frequencies in this work. The difference of
the black (Cσ centered) and the green (Cσ −1 mm) is plotted as a translucent blue
line. A constant 2.9 dB dashed line is given and matches well the translucent line.
The simulation uses an ITO sheet resistance of 10 Ohm/square.

(see Fig. 2.122.12), a transverse dipole at L/4 or 3L/4 thus couples at exactly the π/4 or 3π/4
position of a half wave, the resulting emission power is half [sin2(π/4) = 1/2] of the power
generated by the dipole at L/2, where the dipole-mode coupling is max. In Fig. 3.173.17 (b), the
slightly less than 3 dB reduction of the Cσ simply reflects the fact that a 1 mm shift from
the center is still slightly less than a perfect L/4 shift in the simulated capacitor with the
spacing of L = 4.1 mm.

In our experiment, although the MOT cloud has a millimeter size, but the CRAs prepared
from the MOT are only localized within a small volume defined by the Rydberg excitation
beams (see subsection 3.1.2.33.1.2.3). The 780 and 776 nm beam defines a Rydberg ensemble region
in the center within ∆L = ±100 µm with respect to the capacitor center, plus a ≈ 100 µm
expansion of the CRA ensemble during the course of one experiment sequence, we do not
expect most of the prepared CRAs to deviate by more than 0.2 mm from the capacitor center
during the course of the experiment. The position dependent rate modification is then not
significant in the experiment, and the CRAs are considered to be centered for all of our
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lifetime measurements.
Although the simulation in Fig. 3.173.17 suggests that a centered CRA (σ+ inhibited) in

the capacitor has the shortest lifetime out of all other positions, it benefits from a large
distance from both capacitor surfaces which in our experiment proves to be important for
a homogeneous field control. We however note that this conceptually easy reduction of Cσ

by moving the atoms up and down could prove useful in other similar experiments when the
target CRA’s σ+ decay channels can not be sufficiently inhibited. It could also be used to
reduce the spurious Cσ cutoff resonance that enhances the 2σ decay rates and therefore limit
the lifetime of the CRAs that could have the σ+ channels already well inhibited.

3.1.4.4 The lifetime sensitivity to imperfect parallel plate configurations

To investigate the efficiency of the CRA decay inhibition given a necessarily imperfect par-
allel plate configuration in reality, we simulate the lifetimes of the relevant CRAs while the
transparent top electrode of the capacitor is rotated or translated differently. The simulation
model is still the one in Fig. 3.133.13, and the simulation result is summarized in Fig. 3.183.18.

In the panel (a) and (b), the possible rotation deviations of the ITO plate are introduced
in the simulation. The simulated lifetimes of the CRAs in between two capacitor plates with
a small angle, compared with the zero angle scenario, are lower for the decay-inhibited CRAs,
and higher for decay-enhanced CRAs. This is simply the consequence of the partial loss of
the first order capacitor modes, which reduces the contrast of the Cσ cutoff. The panels (c)
and (d) show the more mundane consequence as the top plate is gradually slipped away, and
the capacitor modes transition into the free space modes. The encouraging conclusion from
these simulations is the lifetimes’ relative insensitivity to a faulty capacitor plate position:
even at unrealistically large deviation from the perfect parallel plate configuration, such as a
5◦ rotation or a 2 mm translation of the ITO plate, the expected lifetime for a highly inhibited
60C state suffers from at most a ≃ 10% loss in lifetime. Our measured 60C lifetime in the
real capacitor is well below this 10% bound, therefore its shorter than expected lifetime is
not limited by a potentially skewed capacitor plate.

3.2 CRA Preparation

In this section, we detail the main elements of our experimental preparation of the CRAs.
All our experimental activities focus on the manipulation of these atomic states. There-

fore, the successful detection of the states is the prerequisite to the rest of the work. It
is then appropriate to first introduce our detection technique: the state-selective ionization
(section 3.2.13.2.1). All the analyses involving the experimental data are based on the discussion
of the detected ionization signals.

Next, in subsection 3.2.23.2.2, we explain how we prepare a relatively stable electric field
environment for the atoms and for the CRA preparation.

We use an adiabatic rapid passage to prepare the CRAs. The optimizations of this
method are described in subsection 3.2.33.2.3.

Finally, in subsection 3.2.43.2.4, we show the complete sequences and schemes to prepare all
the initial circular states involved in this work.
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Fig. 3.18 The simulated lifetimes of the CRAs in an capacitor with some imper-
fect parallel plates configurations. All the simulations share a common ITO sheet
resistance of 10 Ohm/square. On the top right of each panel is shown an illus-
tration of the type of top plate transformation investigated, with a blue phantom
plate marking the perfect parallel plate position. (a) and (b) are the lifetimes of
the relevant CRAs given the different rotation angles of the top plate around the
Ox and Oy axes; (c) and (d) are the same lifetimes given the different translation
lengths of the top plate along the two axes. The small plot for each panel shows the
lifetime of 60C under the corresponding configurations. The blue horizontal line in
these small plots marks the lifetime of 60C in a perfect parallel plate configuration.
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3.2.1 State-selective ionization of the CRA
This subsection focuses on the detection of the circular atoms.

The principle of the state selective ionization is described in subsection 3.2.1.13.2.1.1. The
technique can effectively resolve the populations of different CRAs.

In subsection 3.2.1.23.2.1.2, we use a simple model to calculate the ionization signals of hydrogen
in a ramp of electric field.

3.2.1.1 The ionization signal and its selectivity

In the experiment, the Rydberg atoms in the end of a sequence are detected by the technique
of state-selective field ionization [9797]: we apply a fast electric ramp across the capacitor to
strip the slow Rydberg atoms of their outer electrons. They become ions and gain momentum
in the ionization ramp field, and subsequently travel through the small detection hole pierced
in the mirror [see Fig. 3.23.2 (b)] and reach the channeltron below, a device which allows
the detection of individual ions. Every counted ion corresponds to one atom detected.
The state selectivity of this approach relies on the different ionization thresholds for the
CRAs of different principal quantum number n. The CRAs of different n’s are ionized at
different field thresholds along the field ramp, and are consequently detected at different
times in the experiment sequence. The counted ions give a typical time-resolved signal as
shown in Fig. 3.193.19. The magnitude of this signal is in the unit of counts (number of ions)
per microsecond per detection. Integrating the signal produces the total number of atoms
detected per detection. In this case the complete signal yields an integration of 0.06858
counts per detection. Considering the 36000 detections performed, this signal is constructed
by 2469 detected ions.

This signal exhibits the multiple BBR populated circular states inside our room temper-
ature capacitor, for the initial state |54C⟩ and a waiting time of 900 µs. In this signal we see
the successive CRA peaks ionized at increasing electric field as the ramp develops in time.
The last discernible ionization peak is that of |46C⟩, however, this is still well below the
ionization limit of this detection ramp that continues up to 75 µs . The loss of peak contrast
at low n is not due to the loss of detection efficiency, but rather caused by the fact that the
corresponding levels are not noticeably populated by the BBR induced transfers during the
experiment.

In the signal, the circular states from different n-manifolds have large difference in their
ionization thresholds, therefore can be well separated. But within the same manifold, Ryd-
berg levels which are close in both their electric number k and magnetic quantum number
m mostly fall into the same detection time window and do not disclose information about
their relative populations. In our experiment, most of the time we benefit from the fact
that the BBR induced thermal transfer predominantly occurs on the circular-to-circular σ+

transition (see subsection 2.4.32.4.3). But the population of the elliptical states e1 and e′
1 (the

“most circular” elliptical states with m = n− 2) becomes significant when the σ+ transition
is sufficiently inhibited. An example of the ionization signal of these elliptical states is shown
in Fig. 3.203.20.

In the figure, we see that the m = n−2 elliptical signals have slightly different ionization
thresholds than that of the circular (m = n − 1). Nevertheless, this difference is much less
than that between two circular states with adjacent n’s. Suppose the ionization peaks shown
in the figure do not correspond to the three separately prepared states, but are one mixture
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Fig. 3.19 The ionization signal (also called the arrival time signal) after preparing
the intial state |54C⟩ and waiting for 900 µs. The bottom axis shows the time
interval from the beginning of the detection ramp. The time bin size is 0.1 µs.
The top axis shows the estimated ionization field values at the corresponding ramp
time. The time of flight delay due to the ions traveling from the capacitor to the
channeltron has already been compensated in this figure. Therefore the signal can
be interpreted as the number of atoms detected immediately after their ionization
at the corresponding field.

to be detected as a whole, we would then detect a slightly broadened single peak (dashed
line), without being able to tell the exact proportion of the three states. The three states,
however, have different linear Stark shifts. Taking advantage of this difference, when we need
to resolve the three different states, we use an extra MW π-pulse before the final detection
to selectively transfer the population in one state to a different manifold. The single peak
then becomes two resolved peaks (or not, if the MW selected state has zero population). A
typical application of this MW selection technique is to detect and minimize the elliptical
impurities in the CRA preparing sequence, see subsection 3.2.3.23.2.3.2.

When we do not need to discriminate the three states, the detection windows shown in
Fig. 3.193.19 that separate the nC peaks are often enough to also divide well the corresponding
ne1 and ne′

1 peaks by their different n’s. This is useful, because in our work the BBR-induced
transfers can often produce a sizeable amount of m = n− 2 elliptical states. Knowing that
the detection windows set for different nC states (such as those in Fig. 3.203.20) also can group
different ne1 and ne′

1 states, the population distribution in different n-manifolds can be
resolved by one ionization sequence.

In appendix DD, some potential techniques to resolve the elliptical states in different
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Fig. 3.20 The ionization signal of the circular state 60C and the two elliptical
states sharing the next highest m. Their sum is given in dashed line. All the three
states are prepared by MW from a lower manifold. The three states’ ion counts
falls approximately into a common time window.

scenarios are discussed.

3.2.1.2 A simplest model to construct the ionization signal

The ionization signals of the Rydberg states we show in subsection 3.2.1.13.2.1.1 all share a common
asymmetric peak shape. One might intuitively attribute such a shape to the inhomogeneity
and the noise in the ionization field, which certainly does play a part in the broadening
of these signals. However, even with an ideal linear ramp with zero field fluctuations, the
resulting shape of the ionization signal of a CRA is still intrinsically an asymmetric peak
with a finite width. This shape originates fundamentally from the quantum tunneling effect:
in an intense electric field, the combined Coulomb-Stark potential barrier is lowered on one
side [9797], and the electron gains a greatly increased probability to tunnel through the barrier.
The “ionization thresholds” we mention in the experiment context is more of a small field
range given by the signal width, rather than a clearly defined quantity. There is never a
critical “threshold field” across which all the atoms suddenly change into ions, but only a
non-zero ionization rate Γ (F ) as a function of the strong field F .

With a linearly rising ionization ramp F (t), if the form of Γ
(
F (t)

)
is known, the problem

of the arrival time signal can be reduced to a rate equation problem. This simple rate
equation model is originally proposed in the thesis of J. Hare [118118]. It produces ionization
signals which at least semi-quantitatively approximate the real signals, and should resemble
well an ideal ionization signal with zero broadening mechanisms. Below we reiterate this
model and produce some results relevant to the high-n Rydberg states in this work.

We consider there are N(t) atoms all in the same Rydberg level. The only loss mecha-
nism for these atoms is by the field ionization in a ramping field F (t). This assumption is
reasonable given the fast ramp we use in the experiment. Then the standard rate equation



3.2 CRA PREPARATION 71

for the loss of the atoms reads:

dN(t)
dt = −Γ

(
F (t)

)
N(t) (3.3)

Integrating Eq. (3.33.3), given the initial number of atoms N0 at time t0, we get the number of
atoms still not ionized N(t) at any time t:

N(t) = N0 exp
[
−
∫ t

t0
Γ
(
F (t)

)
dt
]

(3.4)

The magnitude of the arrival time signal I(t) in a time slot ∆t is proportional to the number
of atoms ∆N ionized within ∆t, or − dN(t)/dt . We differentiate Eq. (3.43.4) and obtain I(t):

I(t) = −I0
dN(t)

dt = I0Γ
(
F (t)

)
exp

[
−
∫ t

t0
Γ
(
F (t)

)
dt
]

(3.5)

where I0 is a simple normalization parameter (conversion of ion counts to measured signal).
Substituting the perfectly known experiment field ramp for F (t), Eq. (3.53.5) formally

gives the shape of the arrival time peak signal we expect. However, we note that this rate
equation argument and hence the resulting signal I(t) from Eq. (3.53.5) is general for any
possible ionization field pattern F (t).

I(t) is to be obtained numerically. The computation needs a last ingredient: the ion-
ization rate of the concerned Rydberg level Γ (F ). For this we use a semi-emprical formula
proposed by Damburg and Kolosov [6464, equation (6)]. This formula can approximate well
the DC ionization rates of the hydrogen levels. The authors found that for the levels at
n = 7 the formula yields the DC ionization thresholds [artificially defined as the field for
which Γ (F ) reaches 107 Hz] that agree with the exact numerical results within 1.2%. We do
not explicitly write down this formula, since we do not intend to discuss it in details. But we
point out that this formula needs the perturbative Stark shift terms up to the fourth order
[Eq. (2.182.18)] to produce the reported precision. In Fig. 3.213.21 we show the calculated ionization
thresholds for all the hydrogen levels within |k| ≤ 30 and m ≥ 0 in the 60 manifold. The
states with m < 0 have the same thresholds due to the ±m symmetry of the Stark structure.

In this figure, our practical definition of the ionization threshold is the field value matching
the maximum of the obtained ionization signals. The only free parameter used in generating
the figure is the ramp slew rate, which we take from the experimental detection ramp to
be 8.26 V/cm/µs. At this magnitude it does not appear to be a sensitive parameter. A
factor of two’s increase or decrease of the slew rate does not change the obtained ionization
thresholds by more than 1%. In the figure, the general thresholds layout matches the physical
expectation. The low-ℓ states are easier to ionize than the high-ℓ ones. The circular state
has the highest ionization threshold either along the lowest diagonal states, or among all
the levels having zero linear Stark shift (k = 0). The higher ionization thresholds of the
highest diagonal states (n2 = 0) can be intuitively understood from their wave functions
[105105], which exhibit an electron probability distribution polarized away from the direction of
easy ionization. This is exactly opposite to the wave functions of the lowest diagonal states,
which are polarized towards the direction of easy ionization.

In Fig. 3.223.22, we show some selected arrival time peaks calculated with Eq. (3.53.5). The
same ramp slope 8.26 V/cm/µs is used throughout. In panel (a), we obtain respectively for
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Fig. 3.21 The calculated ionization thresholds (peak maxima) of the 60 manifold
of hydrogen during an ionization with a slew rate of 8.26 V/cm/µs (corresponding to
our experimental parameters).For each column of points sharing the same electric
quantum number k, the state with the higher magnetic quantum number m is
always ionized in a higher field. In red points we mark the ionization thresholds
of the circular and the first few states along the lowest diagonal of the manifold.
The circular state has the highest ionization threshold along the lowest diagonal.
In the inset the corresponding ionization peaks are shown. The integration of each
ionization peak gives the same area, corresponding to the complete ionization of
N0 atoms.

the states 51C and 50C the ionization threshold values 128.6 V/cm and 138.8 V/cm. The
two thresholds become lower when the ramp is slower and higher when the ramp is faster.
Nevertheless, as we mentioned above, the change is small: the 128.6 V/cm threshold becomes
129.3 V/cm with a twice faster ramp, and becomes 127.9 V/cm with a twice slower ramp.
This allows us to compare these stable thresholds with the experimentally measured values
of ≈ 134 V/cm and ≈ 145 V/cm [6060]. The resulting difference is only ≈ 5%. This shows that
the simple rate equation model captures the essential physics in the field ionization process.
However, the calculated peak width is clearly smaller than the experimental signal. The
nearest neighbor circular states do not overlap at all in panel (a), while the corresponding
experimental signals have at least a 5% cross-window contamination. This shows that the
calculated peak widths may well represent the ideal limit of the ionization signals. The ramp
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Fig. 3.22 The calculated ionization signals of some seleted circular and elliptical
states during an ionization ramp with a slew rate 8.26 V/cm/µs (the experimental
parameter). (a) Precision of the calculated ionization thresholds: the theoretical
51C and 50C thresholds (marked by dotted lines) do not differ from the experiment
values by more than 5%. (b) Ionization resolution of the calculated signals. All the
circular and elliptical states have the same area. The window dividers are manually
selected. They effectively separate the ionization signals of the states from different
n. Note that in each n-window, the three peaks’ relative separation resembles that
in Fig. 3.203.20.

is ideal and ultimately adiabatic due to the DC ionization rate we use in this model. In panel
(b), we show the detection window resolution of the ideal signals of the high-n circular states
and the two immediate elliptical states. We see that the ideal signals of the states of different
n’s are well separated and have negligible cross-window contaminations. This is certainly
different from what realistically happens (c.f. Fig. 4.14.1), and can only be regarded as an ideal
limit of the resolution of the state-selective field ionization technique using a ramp5.

3.2.2 Electric field optimization and calibration

In this subsection, we describe how we prepare a controlled DC field for the atoms.
Subsection 3.2.2.13.2.2.1 explains how we minimize the undesired transverse DC field and op-

timize the field homogeneity.
5In addition to peak broadening, one other element that could realistically reduce the peak-to-peak spacings

of the state signals is the dispersion in the time of flight of the ions. In an ion trajectory simulation for a cold
CRA experiment at a larger scale than the vapor cell experiment of this work, the CRAs 60C and 50C need
respectively 34.5 µs and 28.7 µs to reach the detector [private communication, Baptiste Muraz, 2022]. The
higher-n CRAs are ionized in a weaker field and the corresponding ions gain less acceleration, taking longer
time to travel to the detector. However this ≈ 6 µs of difference is between two CRAs separated by ∆n = 10.
The effect is totally negligible for neighboring CRAs in our experiment.
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Subsection 3.2.2.23.2.2.2 specifies the calibration we perform to reach a consistent value of the
quantization axis field.

3.2.2.1 Cancellation of the stray DC field

The field defining the quantization axis of the CRA in our lifetime measurement sequence is
applied across the two plates of the inhibition capacitor. Ideally this vertical directing field
should be the only field that the atoms feel, since a tilted quantization axis results in a loss
of the σ+ inhibition. It is then necessary to ensure that the stray DC field in the transverse
directions, partly due to the Rb deposits on the electrodes, is minimized. In our setup, the
four rf electrodes (see figure 3.23.2) provide the means to apply a DC offset in any transverse
direction.

The line shift and linewidth of a high-n, low-ℓ Rydberg level in a laser excitation spectrum
is appropriate for sensing the stray DC field with sub-V/m precision. This follows naturally
from fact that the common low-ℓ Rydberg atoms have large electric dipoles and are easily
polarized.
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Fig. 3.23 Rydberg laser spectrum as a figure of merit of electric field minimization.
(a) Stark shift of the 52 F and the 60 F levels in the field range of tens of V/m. The
two F-multiplicities start from the same reference energy, stop at the field when
the m = 3 level (the highest line in each F-multiplicity) joins the manifold. (b)
Experimental laser spectrum of the 5 D5/2 → 65 F excitation line is compared with
the theoretical Stark shift of the 65F multiplicity in the range values lower than
6 V/m. Note that the precision of the excitation lines are limited by the wavelength
meter used for measurement. It is only meant to demonstrate a field minimization
process.

In Fig. 3.233.23 we show the principle of this field optimization. In panel (a), we show the
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theoretical Stark lines of the 52 F and 60 F multiplicities below 20 V/m. The zero field energy
points of the two multiplicities are artificially overlapped. When we deviate from the zero
field, we see that the 60 F lines are significantly more downwards shifted than those from the
52 F. This is a manifestation of the ∝ n7 scaling of the Rydberg polarizability [9797]. In panel
(b), we take advantage of this DC field sensitivity by exciting the atoms to the high-lying
65 F state. The excitation laser spectrum shows a 65 F peak that exhibits large line shift
and broadening when the residual field is only a few V/m. In this plot, the transverse field
is not significant, the field adjusted is the vertical quantization axis field. The magnitude of
the adjusted field is inferred from the voltage applied across the inhibition capacitor with a
known spacing. The frequency shift of the 65 F excitation line is estimated with a wavelength
meter (Angstrom WS-6IR) with a frequency resolution of a few tens of MHz. The plot is
thus not meant to be a precise field calibration. However, a clear field minimization process
is demonstrated in this plot. A minimized quantization axis field at the position of the
atoms is found when the position of the 65 F as a function of the applied voltage across the
capacitor is stabilized at a highest frequency. At the same time the 65 F peak width also
reaches a minimum.

When this is done, the 65 F peak shape usually still has a noticeable asymmetry, with
a longer tail towards low frequencies. This shows that the detected Rydberg ensemble still
experiences slightly different Stark shifts from one atom to the other. With the vertical field
already minimized, the shifts are mainly caused by the transverse field. We then tune the
DC offsets of the four transverse electrodes to reduce the width and asymmetry of the 65 F
peak. For the transverse field, two DC offsets are already enough to control its direction, the
two extra DC offsets provided by the four electrodes can contribute to the field homogeneity
optimization. Following the systematic procedure described in the thesis of R. G. Cortiñas
[6969], a set of four optimal electrode DC offsets can be found that minimizes the width of
the 65 F peak (we fit the peak shape by an asymmetric Gaussian to obtain the width). The
two capacitor electrodes also offer one more degree of freedom that can be exploited to tune
the field homogeneity in the vertical direction, and their optimal values can be found in the
same way as in the transverse optimization.

By minimizing the width of the sensitive F line, we can find the optimal DC offsets of all
the six electrodes that represent the best zero field and field homogeneity. From this clean
starting point, only the vertical directing field is varied in the experiment sequence, main-
taining a straight and non-rotating quantization axis. We note that the MW spectroscopy
such as of the transition nC → (n+ 1)e1 takes advantage of the sensitive linear Stark shift.
The resulting spectrum peak width is thus a better figure of merit than that of the laser
spectrum [6969]. However, this approach requires already stable experimental conditions for
the preparation of the CRA. In contrast the laser spectrum approach requires only the Ry-
dberg excitation and detection with nothing in between. It is therefore well-suited as a first
order optimization. In our experiment, the field homogeneity is limited by the tightly spaced
electrodes around the atoms and the known Rb deposit on their surfaces [117117].

As a final note, a more concrete way to optimize the field homogeneity is to directly
explore the electric gradient along a spatial axis by exciting and detecting the atoms at a
few closely spaced points along this axis [6969]. This method is not feasible in our setup.
Because only the atoms excited directly above the ø0.2 mm detection hole on the bottom
mirror can be detected.
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3.2.2.2 Calibration of the quantization axis field

The DC field in the capacitor often suffers from a slow daily drift in the order of sub-V/m.
The transverse field drift is not significant given the dominant vertical directing field we
apply (160 V/m). The vertical field itself can be efficiently calibrated by the linear Stark
shift in the 58 manifold.

The calibration starts with a 58C preparation ARP sequence. A good property of the
ARP circularization is its insensitivity to a field drift of a few V/m. Unless the field drift
is large, the ARP sequence can always prepare a reproducible amount of CRAs in the 58
manifold. The prepared population in 58C can be transferred by a subsequent weak σ+-
polarized rf pulse to the low-m states in the lowest diagonal of the manifold. This rf transfer
also produces a corresponding transfer in the arrival time signal. When we perform a rf
spectroscopy of the weak transfer pulse, the maximum transfer appears when the rf pulse
is resonant with the linear Stark shift. If we reproduce the resonance frequency of this rf
spectroscopy, we reproduce the same directing field for the atoms. This procedure is shown
in Fig. 3.243.24.
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Fig. 3.24 rf spectroscopy to measure the field along the quantization axis. The σ+-
polarized rf pulse is a 1 µs square pulse of ampitude 0.15 MHz in terms of Rabi fre-
quency. (a) Series of ionization signals during a rf spectroscopy to transfer the 58C
(highest ionization threshold) to the low-m states with lower ionization thresholds.
The signals are vertically offset for different rf frequencies. The transfer window
delimiters are shown in magenta. (b) The corresponding transfer ratio obtained
from the ionization signals. The rf spectoscopy finds a resonance at 178 MHz. This
linear Stark shift in the 58 manifold corresponds to a field of 160 V/m.

In this figure, panel (a) shows the full series of the ionization signals during a complete
rf spectroscopy. To characterize the change in these signals, we define a transfer ratio, or
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simply a “transfer”. We define the two detection windows A and B and record the number
of atoms NA and NB in these windows, then the transfer ratio from window A to window B
is defined as NB/(NA +NB). The transfer ratio of the signals in panel (a) is shown in panel
(b). The resonance at 178 MHz corresponds exactly to a most shifted ionization signal. This
frequency in the 58-manifold is the linear Stark shift that corresponds to a directing field of
160 V/m. When the field drift causes a deviation from this field, we apply the corresponding
DC offsets on the capacitor to counterbalance the drift. Therefore, a stable directing field
of 160 V/m is ensured during the field-sensitive rf and MW operations, and during the idle
time before CRA detection in the lifetime measurement.

3.2.3 Preparation of the circularization adiabatic rapid passage
In this work, the adiabatic rapid passage (ARP) [119119, 120120] is the only technique we use for
the CRA preparation. The ARP is robust against modest field drifts compared to some
other techniques that would require a stable Stark shift, hence a precise field [7070, 121121]. In
comparison, the main drawback of the ARP, its long duration, is not a limiting factor in our
slow atom experiment. Using it for ≃ 10 µs in our experiment sequences is acceptable.

The principle of the ARP circularization was introduced in section 2.32.3. The experimental
ARP sequence will be detailed in subsection 3.2.43.2.4. In this subsection, we focus on two key
points in the preparation of our ARP.

In subsection 3.2.3.13.2.3.1, we describe the starting point of an ARP, the Rydberg excitation
before the Stark switching.

In subsection 3.2.3.23.2.3.2, we demonstrate how to optimize an ARP in order to improved the
purity of the prepared CRAs.

3.2.3.1 The laser excitation before the ARP

The ARP we use to produce the data in [4949] is exclusively performed in the 58 manifold.
The ideal passage starts from the state |58 F,m = 2⟩, ends in the state 58C. The initial
|58 F,m = 2⟩ state is reached by a direct laser excitation in a small Stark field of typically
5 V/m to 10 V/m. This Stark field should not be too large, so that the 58F multiplicity
does not join the 58 manifold. At a given laser frequency, an optimal Stark field during laser
excitation is one that allows the most |58 F,m = 2⟩ excited and the most 58C prepared. This
is demonstrated in Fig. 3.253.25.

In this figure, the 1257 nm laser frequency is stabilized at ≈ −150 MHz below the zero
field excitation frequency of 5 D5/2 ↔ 58 F. The Stark field during laser excitation (a small
vertical directing field) is varied in the range of ≈ 10 ± 5 V/m. In this small field range, the
sensitive 58F multiplicity partially reveals its structure in the detection signals. The black
curve shows the 58F atoms detected immediately after the excitation. The separation of the
m = 3 line from the rest of the lines is evident and desirable, since the state |nF,m = 3⟩ in
a circularization ARP connects to the state 58e1, which is an impurity in a circularization
process. The rest of the lines m = 2,1,0 have poor resolution. However, it is not critical
to resolve these three states during the ARP. The states |nF,m = 0⟩ and |nF,m = 1⟩ have
large detunings from the rest of the lowest diagonal states. Therefore they do not join the
ARP at all, and stay as the low-ℓ states which can be well separated from the circular state
in the ionization signal. This fact is manifest in the red curve. The red curve plots the
resulting amount of CRAs prepared after the ARP when the initially excited 58F states
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Fig. 3.25 Detected low-ℓ (black, ARP off) and circular (red, ARP on) Rydberg
atoms in the 58 manifold as a function of the Stark field during laser excitation. The
CRAs are selectively detected after a MW probe. The probe performs a 58C → 56C
two-photon transfer. The resulting 56C population is detected to produce the red
curve. The field scale on the x axis is estimated by the voltage applied on the inhi-
bition capacitor with a known spacing. The inset shows the same data, overlapped
with the theoretical Stark shift (transluscent blue) of the 58F multiplicity.

differ in their m’s. The CRA signal in the detection is separated from contamination by
other spurious high-m states by applying a MW probe pulse to transfer the 58C population
to 56C, which has a higher ionization threshold. The red curve clearly shows that the
maximum number of CRAs is reached when the ARP starts from a situation in which the
population of |58 F,m = 2⟩ is maximal. And if we compare the black and the red curves,
it is evident that if an unfortunate drift in the laser frequency or the Stark field causes the
excitation to produce mostly |58F,m = 0⟩ and |58F,m = 1⟩, we would observe a sharp drop
in the detected CRAs. We also see that a small amount of CRAs can be prepared starting
from |58F,m = 3⟩, this may be due to the imperfection of the adiabatic passage (e.g. if the
ARP is too fast and partially loses its adiabaticity). However, as we noted before, the m = 3
line is well separated from that of the m = 2. In our experiment, a drift large enough to
cause an excitation to |58F,m = 3⟩ would cause many other problems that cannot escape
our noticing.

3.2.3.2 Optimization of the ARP

In subsection 3.2.3.13.2.3.1 we touched on the topic of the imperfection in an ARP and the resulting
impurities in the prepared CRAs. The impurities after a circularization ARP are the non-
circular states unintentionally prepared at the same time. They can come from two main
sources.
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1. An impurity in the σ+-polarization of the rf dressing field

2. An imperfection in the adiabaticity of the ARP

The first defect produces an unwanted σ− component in the rf dressing field, which
couples the Stark levels with n1 ̸= 0. This can be pictured as the population “leaking out”
from the lowest diagonal states during an ARP. The second defect results in an infidelity in
the (ideally) one-to-one connections by the ARP for the states within the lowest diagonal.
The small amount of CRAs prepared from |nF,m = 3⟩ in Fig. 3.253.25 is an example of the
second imperfection.

Experimentally, these two possible imperfections of the ARP can be reduced by minimiz-
ing the populations in the states ne1 and ne′

1. The individual detection of the populations in
these two states in addition to that of the circular state is achieved by a MW spectroscopy
taking advantage of the differential Stark shift. This is a common optimization procedure.
Other descriptions of this technique adopted in different experimental contexts can be found
in [5959, 104104, 105105, 122122] (thermal beam), [6969] (MOT in cryostat), and [9393, 106106] (atomic fountain).

The linear Stark shift [Eq. (2.152.15)] is the dominant Stark shift in a moderate electric field.
This shift has a dependence on n. The two-photon transition ne1 ↔ (n + 2)e1 hence to
first order has a transition frequency that is detuned by −3ea0F from the nC ↔ (n + 2)C
transition. For the transition ne′

1 ↔ (n + 2)e′
1, this detuning is 3ea0F . These differential

Stark shits are dependent on F while independent of n. See Fig. 3.263.26 for a diagram of the
transitions mentioned.

The differential Stark shifts of the three transitions differ in frequency by a few MHz
under a typical quantization axis field we apply to the atoms, allowing them to be resolved
in a MW spectroscopy. An example of such a MW spectrum is shown in Fig. 3.273.27.

The figure shows the minimization process of the population in 58e′
1. The minimiza-

tion of 58e1 (not shown) is similar. A two-photon MW π-pulse of duration ≈ 1 µs is first
calibrated to optimize the 58C → 56C transfer. Since all the three transitions shown in
Fig. 3.263.26 have similar transition matrix elements, scanning the frequency of the calibrated
π-pulse constitutes a MW spectroscopy in which we can also observe the efficiently trans-
ferred population impurities in 58e1 and 58e′

1. The prominent 58e′
1 → 56e′

1 peak shown in
the red spectrum in panel (a) is proportional to the 58e′

1 population prepared after the ARP.
It is a clear sign of a non-negligible σ− component in the rf dressing field, which can be
minimized by tuning the phase difference ϕ between the two independent channels of the rf
source (see subsection 3.1.1.43.1.1.4). The ϕ tuning process is shown in panel (b). We plot as a
function of ϕ the transferred 58C and 58e′

1 populations. The optimal value of ϕ minimizes
the unwanted 58e′

1 population while maximizing that of 58C. With this optimal ϕ, we ob-
tain the green spectrum in panel (a). It is worth noting that the optimal ϕ also reduces the
spurious 58e′′

1 → 56e′′
1 transfer. This is expected, since all the blue-detuned differential Stark

transfers are caused by the spurious σ− component in the rf (imperfection 1). On the other
hand, the 58e1 → 56e1 transfer is not affected before and after the optimization of ϕ. The
corresponding impurity is caused by the inefficiency of the ARP (imperfection 2). Other
parameters, typically the shape, amplitude, timing, and frequency of the rf dressing, need
to be adjusted to minimize the red-detuned differential Stark transfers.

Finally, with the ionization signals of Fig. 3.283.28, we show the 58C → 60C π-pulse transfer
ratio before and after the optimization shown in Fig. 3.273.27. The transfer is estimated by
comparing the counts on both sides of the central divider set in the figure. The maximum
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Fig. 3.26 Illustration of the differential Stark shifts. The energies are relative.
The electric quantum number k is proportional to the linear Stark shift of each
level. The transitions shown in the figure are 58C → 56C, 58e1 → 56e1, and
58e′

1 → 56e′
1. They have respectively differential Stark shifts of 0, −3ea0F , and

3ea0F . This figure presents also the MW probing scheme used in Fig. 3.273.27.

transfers before and after the ϕ optimization are respectively 50% and 65%. These can be
regarded as a coarse estimation of the purity of 58C prepared after the ARP (the real purity
should be a few percent higher, since it is visible from the plot that some initially prepared
58C decays to 57C, the latter failed to be transferred by the MW). This improved purity
is still far from the state of the art of the ARP circularization in a lower manifold [7070, 7171].
However, this is somewhat expected due to the relatively high-nmanifold in which we perform
the ARP. The ARP circularization certainly cannot be extrapolated to an arbitrarily high n
manifold. As n increases, the neighboring manifolds cross at increasingly small Stark field.
The same rf dressing field we use at n = 58 was tested to produce purer CRAs at n = 52,
and less pure CRAs at n = 60. The less efficient ARP at n = 58 thus may represent a
midpoint in the gradual process towards the total breakdown of the ARP at a very high n.
In our experiment, the ARP at n = 58 is preferred to that at a lower n, because the prepared
58C is a decay-inhibited CRA with a measured lifetime of 800 µs. This gives sufficient time
for the subsequent rf and MW operations used to distill a more pure circular population in
other multiplicities. While there could still be room to improve the efficiency of the ARP in
the 58 manifold (see section 5.25.2), we turn to simply use the partial ionization techniques to
remove the non-circular states after the ARP (see subsection 3.2.43.2.4).
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Fig. 3.27 MW spectroscopy for the optimization of the purity of the σ+ polariza-
tion of the dressing rf field during a circularization ARP in the 58 manifold. (a)
Two MW spectrums obtained after the ARP are compared. The MW is a π-pulse
with a duration of ≈ 1 µs. The peak in the center corresponds to the circular-to-
circular transfer. Before optimization (red), a peak appears at the detunning of
the 58e′

1 → 56e′
1 transition, indicating a sizable population impurity in 58e′

1. This
58e′

1 population is minimized after the opimization (green). (b) The optimization
process in between the red and the green. The parameter tuned is the phase ϕ in
Eq. (3.13.1), which is the phase difference between the two channels of the rf source
(AWG).

3.2.4 Sequences for preparing the CRAs from 60C to 54C

We prepare seven initial circular states, from 60C to 54C, for the lifetime measurement.
The lifetimes of the CRAs from 56C to 60C serve to exhibit the gradual increase in the
σ+ inhibition below the cutoff, while those of the 55C and 54C demonstrate the great σ+

enhancement of the cutoff resonance. The CRAs with lower n’s are not prepared, but the
circular states down to at least 51C can be sufficiently populated by the BBR transfers
during the longest measurement sequences. Therefore our data processing (see chapter 44)
also yields well characterized lifetimes with small errors for these unprepared circular states.

Starting from 58C prepared by an ARP, a series of MW transfer pulses and rf decircu-
larization pulses, together with several partial ionization ramps are designed to prepare and
purify all the concerned CRAs. The sequences are summarized in Fig. 3.293.29.

The figure shows two sequences, both sharing the same laser excitation, ARP, and first
partial ionization (sweeper 1) stage (the sweeper 2 appears shared in the figure, but is
technically different in slew rate for different circular states prepared). After a 1 µs laser
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Fig. 3.28 Ionization signals before and after the ARP optimization in Fig. 3.273.27.
The black signal corresponds to the atoms prepared after the ARP, before the π-
pulse.

excitation (see subsection 3.2.3.13.2.3.1) and before the ARP, a Stark switching6 increases the field
from a few V/m to 195 V/m in 1 µs. After this high field is reached, it is then ramped down
in 6 µs to 95 V/m. During the ramping down, the σ+-polarized rf dressing field is ramped up
in 2.5 µs, reaches and maintains a max Rabi frequency (amplitude) of ≈ 6 MHz for 3 µs, and
then during another 2.5 µs is ramped down to zero. The precise parameters of this trapezoid
dressing field may be subject to changes from time to time. The thesis of A. Larrouy [122122]
explains the experimental optimization of this dressing field.

The sweeper 1 is calibrated to remove the low-ℓ populations that either do not join the
ARP, or are falsely connected to some non-circular states by the imperfect ARP. At the end
of the sweeper 1, the 58C and some spurious high-m elliptical states are prepared. Starting
from here, a circular state n′C with n′ < 58 can be straightforwardly prepared by one or
more MW π pulses followed by a second partial ionization ramp (sweeper 2) to remove any
non-circular impurities left in all the manifolds with n > n′.

The amplitude calibration of these sweepers guarantees that they do not ionize the n′C,
but do ionize any state with a lower ionization threshold. This calibration is typically done
by varying the sweeper’s amplitude while monitoring the population transferred from n′C
to a lower n′′C. For instance, we monitor the counts of 55C transferred from 57C by a two-

6The terminology was originally introduced in the theoretical proposal of Freeman and Kleppner [123123] as a
way to reach high-ℓ Rydberg states. The scheme was soon realized experimentally to prepare a doubly excited
autoionizing Rydberg state of Sr [124124]. In these early works, the switching refers to a decrease from high field
to zero field. A Stark level in this process adiabatically connects to a high nL level not accessible by laser at
zero field. In the context of our work, the switching refers to an increase from low field (during laser excitation)
to high field [120120]. The |nF, m = 2⟩ state in this process adiabatically connects to the |m = 2, n1 = 1⟩ Stark
level, the starting level of the following circularization ARP.



3.2 CRA PREPARATION 83

laser MW t1 t2 t3 t4 r (detection ramp zero delay time)

101

102

103

104

105

Qu
an

tiz
at

io
n 

Ax
is 

Fie
ld

 (V
/m

)

sw
ee

pe
r1

sw
ee

pe
r2

detection ramp

sequence for preparing 54C, 55C, 56C, 57C, 60C

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

time (µs)

0
250
500
750

rf
am

pl
itu

de
(m

V)

ARP rf decircularization
(only for 60C preparation)

laser MW t1 t4 t5 r (detection ramp zero delay time)

101

102

103

104

105

Qu
an

tiz
at

io
n 

Ax
is 

Fie
ld

 (V
/m

)

sw
ee

pe
r1

sw
ee

pe
r2

sw
ee

pe
r3

detection ramp

sequence for preparing 58C, 59C

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

time (µs)

0
250
500
750

rf
am

pl
itu

de
(m

V)

ARP
rf decircularization

Fig. 3.29 Sequences for preparing the purified CRAs. The field is estimated from
the voltage applied across the capacitor and from the rf spectrum field calibration.
The rf amplitude shows the output voltage of the rf source. 1 V translates to a
rf Rabi frequency of 10.3 MHz in the 58 manifold. The gray areas are the partial
ionization stages (“sweepers”) and the final detection stage. In a lifetime measure-
ment session, the final detection ramp starts at regular time delays τr, τr + ∆t,
τr + 2∆t,. . . . The red and blue bars label the laser excitation and MW operation
windows, respectively. For the preparation of any specific nC, only part of the
blue windows are used (see table 3.13.1). Note that for the sequence on top, the rf
decircularization pulse exists only for the prepration of 60C.
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photon π pulse when we calibrate the sweeper 2 that prepares the pure 57C. The optimal
amplitude of the sweeper is found when it is high enough to start reducing the transferred
55C, indicating that all the states with the ionization thresholds higher than that of 57C
were already eliminated.

All the MW π pulses we use share a common duration of 1 ± 0.2 µs. The MW pulses are
triggered, depending on the specific target state, at five possible time points marked from t1
to t5 in Fig. 3.293.29. The specific MW transfers involved in the preparation of all the nC’s are
listed in table 3.13.1.

Table 3.1: MW transfer scheme for the prepration of all the initial circular states involved
in our lifetime measurement. Note that for 54C and 55C there is for each an alternative
MW scheme for very short time evolution detection. The data prepared by the alternative
schemes are shown in (a) and (d) in Fig. 4.24.2.

CRA to prepare MW t1 MW t2 MW t3 MW t4 MW t5

54C 58C → 56C 56C → 54C
54C (alt.) 58C → 56C 56C → 54C
55C 58C → 57C 57C → 55C
55C (alt.) 58C → 57C 57C → 55C
56C 58C → 56C
57C 58C → 57C
58C 58C → 60C 60C → 58C
59C 58C → 60C 60C → 58C 58C → 59C
60C 58C → 60C

For the preparation of 57C and 56C, only one MW transfer is needed. The transfer takes
place at time t3, immediately before the purifying sweeper 2. This ensures that the prepared
57C and 56C, not possessing enough σ+ inhibition, do not decay too much in the 300 K
thermal field before the final detection ramp (for the zero delay signals in the whole lifetime
evolution). For the preparation of 55C and 54C, they are prepared by one additional two-
photon MW transfer from 57C and 56C, respectively. The two consecutive MW transfers
are triggered at the closely spaced t2 and t3 and also immediately before the sweeper 2. But
since these two states suffer from the enhanced σ+ decay rates, both their lifetimes are less
than 50 µs. For these two states we thus use an alternative session, in which the second MW
transfer is at t4. These most short-lived states are thus prepared later in one session by
t4 − t3 = 11 µs before the detection. This gives us more information about their fast early
evolution, and helps us in measuring their lifetime more precisely.

For the preparation of 60C, one difficulty is that the sweeper technique cannot immedi-
ately clean the impurities in the 58 manifold after the 58C → 60C MW transfer. A sweeper
that ionizes the high-m impurities at n = 58 must first ionize the prepared 60C with a lower
ionization threshold. We solve this problem by using a weak σ+-polarized rf decirculariza-
tion pulse to tranfer the residual high-m populations to the low-m states, which have a lower
ionization thresholds than that of 60C. This decircularization process is shown in Fig. 3.303.30.

The rf decircularization pulse applied in the figure has an estimated Rabi frequency
of only 0.4 MHz in the 60 manifold. At the same time, the rf pulse is resonant with the
58 manifold and thus detuned from the 60 manifold by more than 6 MHz. This efficient
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Fig. 3.30 The rf decircularization for the prepration of 60C. The bottom half
shows the 60C prepared after a 58C → 60C MW transfer. A sizable high-m impu-
rities remain at a later arrival time. The top half shows the same ionization signal
in dashed line. It also shows the resulting ionization signal after the application
of an rf decircularization pulse. The undesirable high-m impurities are effectively
moved to an earlier arrival time, accessible to the partial ionization technique. The
simple illustrations on the right are only qualitative (e.g. the non-circular popula-
tions can reside in Stark levels with n1 > 0).

decircularization pulse in the 58 manifold does not perturb the purity of the prepared 60C
by more than a few percent. Following this rf pulse, the impurity populations are open to a
partial ionization sweeper, leaving the prepared pure 60C untouched.

The 60C prepared in this way is also the starting point for the preparation of the 58C
state (with a higher purity than that prepared by only the initial ARP) and the 59C state.
The preparation sequence of these two states is shown in the bottom half of Fig. 3.293.29. 58C
is prepared by a 60C → 58C MW transfer at t4. Afterwards, a calibrated sweeper 3 clears
the residual population in the 60 manifold before the final detection. Ideally, 59C should
also be prepared in exactly the same way, simply with instead a 60C → 59C MW transfer.
However, the corresponding MW frequency at 31.2 GHz turns out to be below the cutoff
(31.391 GHz) of our MW waveguide. Therefore the 59C preparation is performed at the end
of a 58C preparation session by a 58C → 59C MW transfer at t5, immediately before the
final detection.

Finally, after a CRA preparation sequence is set up, a lifetime measurement session
consists in delaying the beginning of the final detection ramp at regular time steps τr, τr+∆t,
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τr +2∆t, . . . . The corresponding ionization signals then represent a series of snapshots taken
at different time points of the evolution of the initially prepared CRAs. We see in these
snapshots the BBR-induced population redistribution among different ionization windows.
One can immediately appreciate from these snapshots the stark contrast between the decay-
inhibited and the decay-enhanced CRAs. In a comprehensive data analysis in chapter 44, the
lifetimes of the prepared CRAs can be inferred from all the transfers in these snapshots.



Chapter 4

The Data: Determination of Lifetime

In chapter 22 we presented the properties of the Rydberg atoms with a strong focus on the
theoretical lifetime of the circular Rydberg state. In particular, we discussed that the CRAs
are expected to have ideally milliseconds of room temperature lifetime in between a plane-
parallel capacitor. In chapter 33, we detailed our vapor cell experiment and the capacitor
structure. We concluded by showing the preparation sequences for seven different circular
states inside the capacitor.

In this chapter, we present the results obtained by following the time evolutions of the
initially prepared CRAs for ≈ 1 ms.

In section 4.14.1, we present the ionization signal datasets, the snapshots of the CRA’s
population distribution. In section 4.24.2, these datasets are analyzed through a comprehensive
rate equation fitting, based on which we report the millisecond-lived CRAs in our room
temperature setup. Section 4.34.3 shows our efforts in the reduction of the GHz environment
noise, which negatively affect the lifetime of the CRAs. Finally, in section 4.44.4, two alternative
rate equation models are compared with the one we used in section 4.24.2 and [4949].

4.1 Arrival Time Data

The arrival time signals of the initial circular states (zero detection delay) prepared by the
sequences introduced in subsection 3.2.43.2.4 are shown in Fig. 4.14.1. The ion counts for each curve
are normalized by their sum over the whole curve, so that an integration of any curve yields
an area of one. This makes the purity of the initially prepared circular states immediately
comparable between different n’s. From the heights of these zero-delay detection signals,
we see the evident increase of the σ+ transfer rate as n decreases. The states 55C and
54C, for example, populate their neighboring circular states so fast that it is not possible
to prepare them with a high purity. In this figure, the most long-lived and most short-lived
states are respectively 60C and 54C. For these two states, we also give in dashed lines the
corresponding ionization signals after 900 µs.

The signals shown in Fig. 4.14.1 are chosen from the arrival time data collection in Fig. 4.24.2.
This full collection of data is used for the rate equation data fitting (section 4.24.2). The
collection contains 16 datasets: a 300 µs evolution and a 900 µs evolution for each of the
prepared circular states from 54C to 60C. In addition, for the very short-lived 54C and
55C, a 150 µs short time evolution dataset is acquired using the alternative MW transfer
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Fig. 4.1 Normalized ionization signals of all the circular states prepared in this
work. Solid lines show the zero detection delay signals chosen from (c), (f), (h), (j),
(l), (n), (p) in Fig. 4.24.2. Dashed lines show the selected 900 µs delay signals from
(c) and (p). All the signals have a time bin size of 0.1 µs. The detection window
selections used in the data fitting in Fig. 4.44.4 are shown on top of the frame. The
inset is an enlarged view of the low signals of the BBR populated circular states.
The bottom panel shows in squares the manually chosen ionization peak positions
in the arrival time. The black line is a fit of the points using the scaling of the
classical ionization field.
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scheme shown in table 3.13.1 to reduce the time between their preparation and detection by
11 µs. These two datasets are shown in plots (a) and (d) of the figure. The two 150 µs
heatmaps at zero delays have higher residual populations at early arrival time than the
corresponding 300 µs and 900 µs versions. This is caused by the lack of a partial ionization
sweeper before the final detection. On the other hand, the two maps have a slightly better
contrast at zero delay between the prepared nC and the BBR populated (n − 1)C due to
the earlier detection without the sweeper.

Two constraints cause us to collect the data in such a combination:

1. The field waveform generator is limited to store a max of 31 different delays for the
detection ramp. Therefore, using all available scan points, the delay scans up to 900 µs,
300 µs, and 150 µs correspond to increasingly finer delay step sizes of 30 µs, 10 µs, and
5 µs. Starting from zero delay, the 900 µs datasets allow us to observe the corresponding
population distribution at a very late time, a regime where the BBR induced redistri-
bution has slowed down and a fine time scan in detection is not necessary. The 300 µs
and 150 µs datasets, on the other hand, can take frequent snapshots of the fast initial
thermal transfer dynamics.

2. Given certain peculiarities of our measurement sequence and program, it is more fault-
tolerant to change the time steps than to change the zero-delay detection time τr in
Fig. 3.293.29. If setting τr was an easy operation, we could imagine collecting segmented
evolutions and combining them afterwards. This could reduce some redundancy in the
data collection (e.g. the zero-delay ionization signal for each nC does not need to be
acquired multiple times). But for practical convenience, all our datasets start from
zero detection delay.

The ionization signals presented in Fig. 4.24.2 are already normalized at each detection delay
by the signal sum. This is the same normalization as in Fig. 4.14.1. After this normalization, it is
as if we detected one and only one atom at each delay. The lost information is the fluctuation
of the total atom number, which is an irrelevant input for the rate equation fitting procedure.
The BBR induced inter-level transition rates cause only relative population transfers among
the levels. They do not lead to a change in the magnitude of the total population.

Note that, without the normalization, we observe in all the datasets a gradual loss of
the total atom number as the detection delay increases. This is an expected behavior in
our setup. When the ground state atoms are turned into the CRAs, they are not slowed by
the cooling beams anymore. Therefore the prepared CRA ensemble starts to expand. The
expansion eventually leads to an incomplete detection of the ensemble, since the outer rim of
the ensemble at long times extends to outside of the detection diameter. These expansion-
induced losses are not the only ones. In each session, the fast repetition of excitation and
ionization rapidly removes atoms from the MOT cloud, which does not have time to replenish
from the surrounding vapor at the beginning of a session. As the session progresses, the atom
loss rate, being proportional to the decreasing atom number in the MOT, would eventually
become equal to the MOT replenishment rate to reach an equilibrium. From the beginning
of a session to the equilibrium, the typical time scale is a few seconds, during which we would
have scanned through a few delay points already. For this reason, the “MOT depletion loss”,
just like the expansion loss, becomes more significant at larger detection delays. However,
unlike the expansion loss, this is not a true delay dependency, but rather a concurrence of
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(e) 55C in 300 µs
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(i) 57C in 300 µs
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(m) 59C in 300 µs
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Fig. 4.2 Arrival time signals of all the prepared CRAs at linearly spacely detection
delays. The same 31 delay points are used for all the datasets. The vertical axis,
the ionization time, always has a bin size of 0.1 µs. The zero point of the vertical
axis is the onset of the final detection ramp. For each heatmap, the color scale is
normalized to the maximum value on the map. The center positions of the circular
states’ ionization peaks, whether they are visible or not in a map, are marked on
the right side of each map (one tick every n, one label every two n’s). During the
data acquisition, a 6 dB attenuation was applied to a known source of GHz noise
(analysis of this noise is in section 4.34.3). Note that (a) and (d) are prepared by the
alternative MW schemes in table 3.13.1.
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MOT depletion and delay increments. This effect is experimentally tested to contribute to
30% of loss factor in all the datasets. The 900 µs datasets naturally see the greatest atom
loss, the loss factors varying in the range from 2.88 (j) to 4.36 (n). From these, we deduce
the expansion-only loss factors to be around 2 to 3, for 900 µs.

We give a brief statistical profile of this data collection. For the zero detection delay,
we detect per ionization at most 0.295 atoms (o), at least 0.129 atoms (n). For the final
detection delay of the 900 µs datasets, these two numbers are respectively 0.0946 (j) and
0.0296 (n). We perform more detections for the sessions with a longer time evolution, in
order to even out the effects of low counts at long times. The 150 µs, 300 µs, and 900 µs
datasets are obtained respectively after 9000, 18000, and 36000 detections at every delay. If
we pick from this data collection a random ionization signal, i.e. a random column in any
plot in Fig. 4.24.2, it is constructed by at least 1066 detected atoms [the end delay of (n)], at
most 9812 detected atoms [the zero delay of (j)].

Without any post analysis, we can already appreciate visually from these raw data maps
the clear contrast between the long-lived and the short-lived CRAs. The 54C is the most
short-lived circular state (lifetime 43 µs) in our inhibition capacitor (in free space at 300 K, the
circular state with a comparable lifetime is 30C ). It is experimentally challenging to prepare
a large initial 54C population without considerable BBR-induced transfers to the neighboring
55C and 53C states. In heatmap (c), the population visibly diffuses consecutively down to
as low as 48C, but the same trend does not extend to the upward transitions. The circular
state windows beyond 58C stay dark, indicating an increasingly weakened σ+ transfers at
high n. This relative lack of upward transfers does not improve when the initial CRA is a
56C (h) or a 57C (j). Starting from the initial state 58C, the population diffusion in time
becomes much less conspicuous. The 60C barely reveals in the heatmaps any downward
transfers. Throughout all these heatmaps, the inhibition cutoff region above 58C appears
as an inaccessible zone when the initial population is prepared outside, and an inescapable
zone when the initial population is prepared inside.

4.2 Fitting Data with Rate Equations
The 300 K BBR-induced transfers shown in the ionization data presented in section 4.14.1 are
governed by the physically well-defined inter-level decay rates. The nature of these constant
rates was developed in section 2.42.4. Consequently, the observed population redistributions
can be fully described by a set of coupled rate equations.

————————– 2

Γ21

yxΓ12

————————– 1

Fig. 4.3 A two level rate equation model.

As a concrete example, we consider a minimal two-level rate equation model, described
in Fig. 4.34.3. The populations of level 1 and level 2 as a function of time are denoted by p1(t),
p2(t), respectively. The population transfers can only be in directions 1 → 2 and 2 → 1, the
corresponding constant transition rates are denoted by Γ12, Γ21, respectively. The system’s
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coupled rate equations then take the form:

d
dt

(
p2(t)
p1(t)

)
=
(

−Γ21 Γ12
Γ21 −Γ12

)(
p2(t)
p1(t)

)
(4.1)

A diagonalization of the square matrix above decouples the homogeneous system, then
the evolution of the populations, given the initial p1(0), p2(0), is known at any time t. For
a larger system with more levels, one simply diagonalizes a bigger matrix.

Above we described how we can obtain the population evolution with a set of known input
rates. In the experiment, we face the inverse problem: we measure as ionization signals the
population evolutions, from which we want to extract a set of decay rates to characterize the
lifetimes of the CRAs. This can be achieved by firstly building a rate equation model with
the rates to be determined, and secondly using this model to directly fit the evolution data
to obtain the set of least squares rates.

For performing the rate equation model fitting, the raw ionization signal data in Fig. 4.24.2
need to be grouped into well divided time windows. The ions summed up in different windows
represent the populations detected in different manifolds. The borders of these windows are
naturally chosen to be at the minimum counts positions in Fig. 4.14.1, and shown in the figure
as the top ticks. The states above 60C and below 50C are not significantly populated during
the time scale of the experiment. We hence do not try to discriminate the inter-level transfers
for the states with n ≥ 61 and n ≤ 49, and instead set two wide detection windows (the
high-n and low-n slots) for their signals. The windowed ion counts plotted as a function of
detection delays are shown in Fig. 4.44.4. The solid curves are the corresponding rate equation
fit.

In this figure, we see a high level of agreement between the data points and the fit curves.
It is even more remarkable to realize that the 16 plots are showing the results of not 16 fits,
but one fit. From one plot to the other, the same set of window-to-window transfer rates
are shared. Only the initial populations are varied. The excellent fit is a demonstration of
the validity of the rate equation model in our problem. A pictorial explanation of the rate
equation model used in Fig. 4.44.4 is shown in Fig. 4.54.5.

The first thing we have to take note of is that the transfers in our model are to be
interpreted as inter-window transfers, rather than inter-level transfers. This follows from the
limitation of our detection by state-selective ionization (see subsection 3.2.13.2.1). In Fig. 4.54.5
(a), we show the breakdown of the concept of levels vs. windows. In our data, different nC
states are well separated in time windows as shown in Fig. 4.14.1. The elliptical states ne1 and
ne′

1 have similar ionization thresholds to that of the nC, therefore they both fall into the
nC window during a detection. In free space, the BBR induced dynamics is limited to a
chain of circular levels, due to the dominant σ+ decay rates between the neighboring circular
states. In this situation, the difference between a window and a level is not critical, since by
detecting the ions in one window, we detect the population in one level. However, when the
σ+ decays are inhibited by the capacitor, from an initially prepared nC, the non-inhibited
π and 2σ upward decay rates become comparable with the inhibited upward σ+ rate. As a
consequence, by detecting the ions in the (n+ 1)-window in Fig. 4.54.5 (a), we detect a sizable
non-circular populations.

At room temperature, there are hundreds of thermal photons per mode in the transition
frequency range of the circular states we consider (tens of GHz). As a result, the spontaneous
emission contributes to less than 1% difference between the transition rates of nC → (n+1)C
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Fig. 4.4 Windowed ion counts from Fig 4.24.2. The 16 datasets are fitted as a whole
with the balanced model as illustrated in Fig. 4.54.5 (b). The error bars are poissonian
errors based on the raw counts of each point. They represent the statistical fluctu-
ations, but are not used to weight the fit. The green highlighted sections are used
to obtain the short time exponential t1 points in Fig. 4.74.7. In panel (n), the black
dashed line gives the long time exponential decay using an optimistic t1 plotted in
Fig. 4.74.7 (the highest green empty ball).
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Fig. 4.5 Rate equation model used in Fig. 4.44.4. (a) The gray arrows show all the
300 K decay channels with decay rates ≫ 1 Hz (c.f. Fig. 2.112.11) starting from a
circular state. The big green and blue triangles represent the global inter-window
transfers included in the model. The empty triangle represents a global transfer
from the initial nC to the two next windows combined. This transfer is not modeled
in the blanced model in (b). These triangle styles are reused to indicate the transfer
types in Fig. 4.64.6. (b) Transfer scheme of the “balanced” rate equation model (more
models are discussed in section 4.44.4). The detection windows are shown as the black
levels and the gray balls. Every arrow, single or double headed, represents one
fitting parameter in the model.

and (n + 1)C → nC. This is less than our measurement errorbars, allowing us to ignore
the spontaneous emission. Therefore, when there is no strong σ+ inhibition, the transfer
rates on the nC → (n + 1)C and (n + 1)C → nC transitions are considered equal. We
can safely call these window transfer rates the nC ↔ (n + 1)C transition rates, for we are
essentially observing the stimulated emission and absorption between in a two level system.
However, when there is an effective σ+ inhibition, we have to take into consideration that
the n-window → (n+ 1)-window decay rate is physically the sum of multiple rates combined
[nC → (n + 1)C, nC → (n + 1)e1, and nC → (n + 1)e′

1], which has to be noticeably larger
than the observed (n + 1)-window → n-window rate. The determination of the latter rate
in our rate equation fitting relies predominantly on the initially prepared (n + 1)C, which
exhibits a (n+ 1)-window → n-window transfer rate that is the same as the (n+ 1)C → nC
decay rate, a single-channel σ+ rate.
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In Fig. 4.54.5 (a), starting from a prepared nC in the n-window, the inter-window transfers
are labeled with big triangles, while the inter-level transfers are labeled with gray arrows. In
panel (b) we show the rate equation fitting model that we shall call the “balanced model”
in the following text. The arrows in this scheme only stand for the inter-window transfers,
as we have discussed above. However, outside of the effective σ+ inhibition regime (Cσ <
1/5), the population redistribution is predominantly confined in the chain of circular levels.
Consequently, the inter-window transfers below n = 57 are effectively nC ↔ (n + 1)C
transfers. For each of these transfers we use a double-headed arrow to represent the only one
rate parameter needed: the value of the identical stimulated emission and absorption rates
between the neighboring circular levels. For the neighboring windows above n = 57, the σ+

circular-to-circular transition rate does not overwhelm the non-inhibited π rate anymore. For
these transfers, we use the single-headed arrows to represent the two separate upward and
downward rate parameters. Finally, the wide detection windows, the high-n and low-n slots
in Fig. 4.14.1, are represented by the two gray ellipses. We set different rate parameters for the
transfers into and out from these slots for the model to be consistent. But the return rates
from these slots, represented by the gray arrows, are not needed for the lifetime calculation.
The return rates from these high and low states, too difficult to resolve individually, are
simplified into one total return rate.

We have so far omitted the 2σ decay rate. If we consider it to be non-negligible, the
total upward transfer rate should physically be the sum of the rates from the n-window to
the combined two windows upwards (the big empty triangle). However, without considering
this, our balanced model shown in Fig. 4.54.5 (b) already yields a good fit as shown in Fig. 4.44.4,
which might be an indication that for the most σ+-inhibited CRA we have prepared, the
upward σ+ and π rates combined are still larger than the sum of the 2σ rates. Moreover,
as we will mention, the 2σ can be taken into consideration in a more complex model, which
agrees with the balanced model for the measured lifetimes.

The shared set of rates that fit the 16 evolutions in Fig. 4.44.4 is plotted in Fig. 4.64.6. The
data points (with errorbars) are the balanced model’s input rates that best describe the
whole data collection. These data points have a one-to-one correspondence with the arrows
in Fig. 4.54.5 (b), the latter give the directions of these transfer rates. The rest of the points
show the theoretical rates, these are connected by lines. The line-connected gray points are
the theoretical 300 K free space inter-window transfer rates, which for our concern have only
one rate value for every point. If we try to discriminate the different upward and downward
transfer rates, we find that their difference in this plot is smaller than the size of the gray
points. The line-connected colorful points are the capacitor-modified inter-window transfer
rates obtained using the Cπ and Cσ parameters in Fig. 3.143.14. We recall that the upward rates,
denoted by the green and the red triangle points, refer to the sum of rates from multiple
decay channels, which is illustrated in Fig. 4.54.5 (a). Since it is impossible to plot against a
single transition frequency an upward transition rate which results from the sum of multiple
decay channels, we use a complex bottom axis for this figure. However, to focus on the
main effect, the modification to the σ+ decay rates among those between an n-window and
an (n+1 )-window, we put on the top axis the corresponding σ+-polarized nC ↔ (n + 1)C
transition wavelengths and frequencies. Note that these transition parameters on top do
associate uniquely with the matching downward rates (blue triangles), since only one channel
(circular-to-circular) contributes to any downward decay from an initially prepared circular
state.
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Fig. 4.6 Plot of the rates. The model rates, determined by the fit as shown in
Fig. 4.44.4, are given by markers with errorbars. The other markers are theoretical.
The rate points are plotted against the corresponding n ↔ n+ 1 window transfers
they are responsible for (n → n+ 1 &n+ 2 for the empty red triangle points). The
filled green and filled blue triangles (both with or without errorbars) and the empty
red triangle stand for different inter-window transfer rates as illustrated in Fig. 4.54.5.
Outside of the effective σ+ inhibition regime, the purple diamonds stand for the
common rate for n → n + 1 and n + 1 → n transfers. The small gray points are
the theoretical 300 K free space decay rates from (n+ 1)C to nC. On the top, we
show the corresponding nC ↔ (n+ 1)C transition wavelengths and frequencies. A
vertical solid line is put at the cutoff wavelength of an ideal 4.1 mm capacitor.
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The first feature we notice in Fig. 4.64.6 is a drop of the obtained rates towards the right
of the plot. A technical inhibition is already reached after the ideal cutoff line at 2L/λ = 1:
the 56 ↔ 57 transfer rate is lower than the corresponding theoretical rate in free space by a
factor of two. For the next pair of windows, 57 ↔ 58, the inhibition increases to a factor of
4.2. However this is still not enough to make transitions other than the σ+ ones dominant.
The obtained 57 → 58 rate is 714 ± 39 Hz, and the 58 → 57 transfer rate is 712 ± 19 Hz.
We specifically discriminate in this balanced model the independent upward and downward
transfer rates at 57 ↔ 58 to demonstrate that this is the critical point where the σ+ is
still dominating. For the next pair of windows, 58 ↔ 59, the non-reciprocity between the
up and down rates emerges. The 58 → 59 and 59 → 58 transfers have respectively rates
of 517 ± 15 Hz and 368 ± 20 Hz. The lower rate gives the measured σ+ transition rate.
Compared with the theoretical free space rate, this 58C ↔ 59C transition rate at 300 K has
been inhibited by a factor of 7.9. We hence deduce that a σ+ inhibition factor of ≈ 5 is
necessary to observe the emergence of the usually σ+-overwhelmed π transitions. We note
that this “effective inhibition threshold” could be setup-specific, since the Cπ enhancement
varies greatly from one capacitor design to another. For example, the Cπ of an ideal capacitor
is always an enhancement factor (> 1) below the cutoff, but the Cπ of a real capacitor could
be an inhibition factor (< 1) under the same condition (see Fig. 3.143.14).

The initial break of the up-down reciprocity at 58 ↔ 59 is also observed in the simulated
theory points. However, it is also at this point that the data rates deviate noticeable from the
theory points. The higher rates obtained from the data could be due to the limitation of the
longest evolution time (900 µs only): it is less than the lifetime of the 59C and 60C obtained
from these rates (observing longer evolution proved too time consuming to undertake due to
the greatly reduced detection efficiency caused by the expansion of the Rydberg ensemble).
The errorbars produced from the Levenberg-Marquardt fitting algorithm appear significantly
larger for these most inhibited transfer rates at 58 ↔ 59 and higher. As a result, we turn
to use a more sensible type of errorbar for the rate points: a simple standard error. As we
mentioned in section 4.14.1, each of the 16 evolution datasets is acquired after 9000, 18000, or
36000 repetitions. We divide these repetitions into 5 equal subsets. The balanced model by
fitting these subsets generates 5 sets of rates. The unbiased standard errors calculated from
these subset rates provide the errorbars in Fig. 4.64.6. Since the complete data acquisition took
a few days, the errorbars produced in this way are an indication of the reproducibility of our
measurement. The other reason for the disagreement between the inhibited data rates and
theory rates could be the imperfections of the CST simulation. In particular, the simulation
results show that the inclusion of the transverse electrodes into the capacitor increases Cσ

(a reduction in the σ+ inhibition). The increased ∆Cσ also keeps increasing towards low
frequency. For the 58C ↔ 59C transition, this increase is ≈ 3 dB, with which we calculate the
corresponding theoretical rates. If the electrode effect is underestimated, the real electrodes
may result in a higher ∆Cσ, the theory rates would be in better agreement with the data
rates. Finally, we note that a large data-theory disagreement also happens for the 54 ↔ 55
transfer. At this cutoff resonance point, both the data and the theory correctly find their
highest points, however the former is a factor of 1.6 that of the latter. Given that this rate is
outside of the effective σ+ inhibition regime, there is no complication involved in measuring
the simple circular-to-circular transfer rate. It is hence more likely that the CST simulation
underestimates the cutoff resonance. The increased resonance can also be attributed to the
lowered ITO resistance due to Rb deposits, or to the heated disperser operating at 750 K,
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which increases the temperature of the BBR.
The fitted rates we show in Fig. 4.64.6 characterize the departure rates, either through single

channel or through multiple channels, from the initial circular states we prepare. We can
thus obtain the lifetime of an nC by calculating the inverse of the sum of two transfer rates:
n → n + 1 and n → n − 1 . The corresponding lifetimes of the circular states are shown in
Fig. 4.74.7.

60C59C58C57C56C55C54C53C52C51C
circular state
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Fig. 4.7 Lifetimes of the CRAs from 51C to 60C. In each nC slot there are at
least 5 different lifetime points: theoretical 300 K free space lifetime (gray square),
CST simulation predicted lifetime (green square), the lifetimes calculated from
three different data fitting models (filled balls), in which the green filled balls are
calculated from the rates in Fig. 4.64.6. The blue and red balls are side shifted to
prevent overlapping. For n ≥ 57, we give in green empty balls a sixth lifetime
estimation: the t1 of the short time exponential fit (y0 = 0) of the initially prepared
population.

In this figure, we plot the lifetimes of all the prepared CRAs from 60C to 54C. We
also include the lifetimes of 53C, 52C and 51C, because the uninhibited BBR-induced σ+

transfers can populate sufficiently these levels starting from the states we prepare. The 900 µs
evolution time also allows us to monitor their population redistribution over the course of
multiple lifetimes, during which only the simple circular-to-circular transfers take place.
Hence we can determine their lifetimes well.

In the figure, we plot as green filled balls the lifetimes calculated from the balanced
model rates of Fig. 4.64.6. The lifetime errorbars are propagated from the statistical errors
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of the rates. The values of these lifetimes are also given in table 4.14.1. For comparison, we
plot also the lifetimes obtained from two additional rate equation fitting models. We will
cover these two other models in section 4.44.4. For now the comparison only serves to leave
a clear impression that the obtained lifetime values do not change drastically as we add
reasonable corrections to the fitting model. The measured lifetimes follow the trend of the
CST-predicted lifetimes well. The disagreements of lifetimes at 60C, 59C, 55C, and 54C
follow from the corresponding disagreements in the transfer rates, as we discussed above.

Table 4.1: Lifetimes obtained from the balanced rate equation fitting model. The corre-
sponding data points are shown in green filled balls in Fig. 4.74.7.

CRA lifetime from balanced model
60C 1109 ± 48 µs
59C 1078 ± 27 µs
58C 813 ± 27 µs
57C 437 ± 5 µs
56C 137 ± 3 µs
55C 49 ± 1 µs
54C 43 ± 1 µs
53C 68 ± 1 µs
52C 91 ± 2 µs
51C 94 ± 3 µs

For the circular states from 57C to 60C, due to their long lifetimes, we can prepare
their initial states without the significantly BBR-populated neighboring windows. It is then
possible to obtain from their single window evolution a short time exponential decay, with a
time constant t1, which in principle is not significantly impacted by the repopulations from
the neighboring windows. We choose the short time durations that correspond to a 10%
drop in the initially prepared circular population. The chosen data points in this range are
highlighted in green in Fig. 4.44.4. We then fit these highlighted points with an exponential
Ae−t/t1 , with the free parameters A and t1. The t1 obtained for 60C, for instance, is the
weighted average of the two t1’s from (o), and (p). In the same way, the t1 for 59C is from
(m) and (n), the t1 for 58C is from (k) and (l). The 57C is an exception, its t1 is obtained
from a single fit in (i). (j) is not used, because by fitting a drop of less than 10% of initial
population in this plot, we only fit two points. The four short time exponential t1’s obtained
without the rate equation model corroborate the lifetimes obtained from the model. They
are shown as green empty balls in Fig. 4.74.7. These t1’s reproduce the same trend as the
corresponding rate equation lifetimes. However, the t1 of 59C is evidently too optimistic.
To show this, in Fig. 4.44.4 (n), we explicitly plot in a black dashed line the 900 µs exponential
decay using the optimistic short time exponential t1. This dashed line is above all the 59C
population points at long times, indicating that the short time fit of only a few points fail
to give a better lifetime characterization than a full rate equation that takes into account
all the data points. The imprecision of the short time t1 of 59C is also evident by the fact
that it should ideally predict a faster decay rather than a slower decay at long times when
the repopulation process slows down the loss of the population from the 59-window. The
fluctuations of the first few points can thus lead to a large uncertainty in these t1’s, as shown



100 CHAPTER 4. THE DATA: DETERMINATION OF LIFETIME

in their large errobars. This also suggests that the rate equation could equally benefit from
fitting evolutions longer than 900 µs.

4.3 Transfer Rate Sensitivity to non-BBR Noise
The rather small uncertainties in the lifetimes in table 4.14.1 come from the equally small
uncertainties of the rates in Fig. 4.64.6. These simple statistical uncertainties demonstrate
the ability of a comprehensive rate equation fitting to overcome local noise in the data
collection. With these precisely measured rates, we are able locate a non-BBR noise source
in our experiment.

The noise source is a MW frequency multiplier (millitech AMC-19-RFH00), which is a
powered frequency mixer. For generating the CRA preparation MW pulses, the mixer has to
stay operational even when no MW pulse is triggered. The GHz white noise from the mixer
outputs through the MW waveguide pointing at the glass cell, adding to the background
300 K BBR. This noise leads to a global increase in the observed inter-window transfer
rates. The reduction of this noise, on the hand, leads to a global decrease of the observed
rates.

Using a tunable, direct reading MW attenuator (millitech DRA-19-C), we are able to
quantitatively reduce the mixer noise. The precision of the attenuator is first tested by
attenuating a MW Rabi pulse at 40.7 GHz, resonant with the 55C ↔ 54C Rabi oscillations.
We incrementally set a series of MW attenuation values from −3 dB to −25 dB, and record the
corresponding Rabi frequency before (Ωbefore) and after (Ωafter) each attenuation increment.
The squared ratio (Ωafter/Ωbefore)2 gives us the reduction in the MW power as felt by the
atoms. The atom-felt attenuation values are plotted against the hand-set attenuation values
in Fig. 4.84.8. We see in this figure that the attenuator can impose a precise attenuation to the
MW output towards the atoms.

We then prepare the same complete data collection as in Fig. 4.24.2, but at different hand-
set MW attenuation values of 0 dB, −1.25 dB, −3 dB, −6 dB, and −18 dB. At each value,
the MW source power is increased accordingly to compensate for the attenuation, in order to
still prepare the CRAs using the MW transfer schemes introduced in subsection 3.2.43.2.4. At the
same time, the mixer noise at different attenuations experiences a reduction of respectively
0%, 25%, 50%, 75%, until almost 100%.

The only data collection we show in this manuscript (Fig. 4.24.2), thouroughly discussed
in the previous sections, was acquired under an attenuation of −6 dB. For the other data
collections, we show only the resulting rates from the rate equation data fitting. The rates
under different mixer noise attenuations are compared in Fig. 4.94.9. In this figure, we plot
the n ↔ n + 1 transfer rates from 51 ↔ 52 to 57 ↔ 58. Lower windows are not sufficiently
populated, higher windows correspond to lower transition frequencies, which are outside of
the attenuator’s working range1. In addition, as the upward and downward rates are equal
within errorbars for 57 ↔ 58, we can use less rate points to make a clear comparison.

In the figure, we see clearly that the obtained inter-window rates are consistently lower
when a larger attenuation is applied. This is certainly the expected behavior, well picked up

1However, the mixer noise does not affect the lifetimes of the inhibited CRAs with n ≥ 58. In this high-n
regime, the small transition frequencies are close to the cutoff of the output waveguide. The mixer noise in
this frequency range is heavily attenuated, and does not reach the atoms.
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Fig. 4.8 The reduction of MW power caused by a tunable MW attenuator. At
each increase of the hand-set attenuation, the attenuation value displayed in the
reading window of the attenuator is the x value of the data point (also shown in
decibel numbers inside the plot). The attenuation inferred from the reduction in
the 55C ↔ 54C Rabi frequency is the y value. The errobars are propagated from
the fitting uncertainties of the Rabi frequencies. A diagonal line when the hand-set
and the atom-felt attenuations perfectly agree. The attenuator’s working range is
40 GHz to 60 GHz (U band), the attenuated frequency in the figure is 40.7 GHz.

through the rate equation fitting. It shows that any noise source inducing a change larger
than the experiment fluctuations, characterized by the rates’ statistical errorbars, can be
detected globally in all the inter-window transfers. The rates we obtain by fitting all these
transfers are thus precise within the statistical errorbars. This is especially evident when we
notice the excellent linear drop of rate points at 55 ↔ 56 and 56 ↔ 57. This is because,
given the linearly spaced the attenuation values, when the statistical errorbars are sufficiently
smaller than the rate decrease caused by each linear increase of the attenuation, the drops
in the detected rates appear as linear steps.

Ideally, the attenuation should be applied in its full, removing the non-BBR mixer noise
in its whole. However, this attenuation also applies to the MW transfer pulses we use
to prepare the circular states. At a global attenuation of −18 dB, the MW pulse at low
frequencies become too weak in power to induce enough transfer within reasonable time
in an experiment sequence. Therefore, we choose a MW attenuation of −6 dB to acquire
the main data presented in section 4.14.1. With this attenuation, we can reduce most of the
non-BBR noise induced spurious rates. Further spurious rates reduction at −18 dB would
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Fig. 4.9 Response of the measured rates to the controlled attenuation of a MW
noise source. The rates obtained under different attanuations are side shited dif-
ferently to prevent overlapping. Only the −6 dB rates have the statistical errors
calculated by fitting multiple data subsets. The other rates should have comparable
statistical erros.

be marginal.

4.4 Alternative Rate Equation Models
The balanced rate equation model we show in Fig. 4.54.5 (b) is the main model we analyzed
in section 4.24.2. There are two other rate equation models we used to fit the data in Fig. 4.24.2,
and their corresponding lifetimes were shown in Fig. 4.74.7. The transfer schemes of these two
models are shown in Fig. 4.104.10.

The basic model is actually the complete rate equation model needed for a free space
CRA. The model considers only the 300 K BBR-induced stimulated emission and absorption,
equal in value, between the neighboring circular states. Hence one rate parameter is enough
between any two neighboring windows. This model is valid for a CRA experiment time
scale of at least 10 ms in a cryostat [4040], or below 3 ms to 5 ms at 300 K. The BBR-induced
population redistribution in the end always extends outside of the circular level chain, but
the untrapped CRAs cannot reach such a high experiment time scale. In our longest 900 µs
evolution, the basic rate equation model would also be enough in the absence of the σ+

inhibition.
However, the balanced model found a higher upward transfer rate when the σ+ transition

is effectively inhibited. This drove us to add more physical decay channels on top of the
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Fig. 4.10 The transfer schemes of two other rate equation models. The basic
model ignores the non-σ+ transitions. The complex model considers the π (green)
and the 2σ (red) transfers.

balanced model. We then reach the complex model. This model is only more complex than
the balanced model, but actually less complex than the real physical process. From window
59 to window 62, in addition to the circular level chain of the basic model, we explicitly
add one single elliptical level which accepts the BBR-stimulated π and 2σ transfers from
the prepared circular levels. At 59 and above, the population in the detection window is
the sum of the “elliptical” and the “circular” populations. For the window 63 and above,
we use again a wide detection window to maintain a population-conserving rate equation.
Making an exact physical model to consider both of the m = n−2 elliptical states is possible,
but this model would be overfitting the data when the detected ionization signals cannot
resolve these elliptical states. Besides, we did not see the complex model producing different
lifetimes than the balanced model.

When we compare the fits performed on the same data collection using the different
models, we see that the basic model has the highest χ2, the balanced model has a relative χ2

reduction of 18%, and the complex model shows no further reduction in χ2. This suggests
that the balanced model has already captured the essential dynamics that can be resolved
from the inter-window transfers in the ionization signal. The discrepancies among these
three models appear only at the 58-window and above. The relevant fitting comparisons are
shown in Fig. 4.114.11.

In the figure, the datasets (j), (l), (n), and (p) are selected from Fig. 4.44.4. They correspond
to the 900 µs evolutions of the initially prepared 57C, 58C, 59C, and 60C. The fit curves of
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Fig. 4.11 Discrepancies of the three models. The (j), (l), (n), and (p) frames show
the same data as the corresponding plots in Fig. 4.44.4. The fit curve comparison
is focused on the windows from 56 to 60. Data points from the other windows
are grayed out, without the corresponding fit curves. The inset enlarges the low
populations and the corresponding fit curves. The complex model (dotted) has a
58 → 60 2σ channel, hence finds the best fit for the slow but steady rise of the 60.
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the three models are plotted respectively as dashed, dotted, and solid lines. The comparison
is limited to the windows from 56 to 60, because for the windows below, all the models have
the same transfer scheme. The plot (j) shows the excellent agreement of all three models.
This corroborates our observation in Fig. 4.64.6 that the 57 → 58 and 58 → 57 transfers are the
last pair of reciprocal transfers with equal rates before the effective σ+ inhibition regime.

In plot (l), small discrepancies between the three models can be noticed. In particular
we see that the complex model fits the low-lying 60-window population (blue) much better
than the other two models. This shows that the complex model correctly registers the 2σ
transfers from the initially prepared 58C, which directly populates the 60-window at short
delays. The other two models require the 59-window to be sufficiently populated first to start
transferring noticeable population to the 60-window. They therefore fail to fit correctly the
slight rise of the low-lying n = 60 population. The complex model obtains a series of 2σ
transfer rates: 58C → 60, 59C → 61, 60C → 62 transfers have respectively the rates of
120 Hz, 115 Hz, and 200 Hz. These fitted rates agree qualitatively with the corresponding
simulation predictions of 89 Hz, 104 Hz, and 119 Hz. Here each simulated rate is the sum of
the two 2σ rates [nC → (n+ 1)e1 and nC → (n+ 1)e′

1].
In the next plots (n) and (j), the basic model cannot fit the data points well anymore,

while the balanced and complex models can still maintain a relatively decent fit. In the end,
the balanced model is preferred for its lower number of fitting parameters.

The three very different models produce similar lifetimes in Fig 4.74.7. We give a qualitative
explanation to this outcome. To obtain the least squares fit, a model has to prioritize a
good fit of the evolution of the dominant initial population. In plot (p), for example, the
basic model clearly overestimates the 60 → 59 rate. However, this is compensated by an
underestimated 60 → 61 rate (fit curve not shown in plot). In this way, the decrease of the
60-window population, the greatest population change during this 900 µs, can be fit well by
the model. The calculated lifetime of 60C then stays relatively stable given an increased
decay rate through one channel and an decreased one through the other.
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Chapter 5

Conclusion and Prospective

5.1 Conclusion
The main result of this work is the inhibition of the BBR-induced 300 K emission and absorp-
tion from a circular Rydberg state. As we discussed in section 2.42.4, our inhibition mechanism
is identical to that of the inhibition of spontaneous emission proposed and demonstrated in
some early pioneering works [5050, 5151]. However, our experiment is realized inside a small-
scaled vapor cell with laser-cooled atoms in between a centimeter-sized capacitor. In this
compact and economical setup, millisecond-lived CRAs are observed and carefully charac-
terized. The observed maximum lifetimes are one order of magnitude larger than in free
space and comparable to those observed in a cryogenic environment [4848].

The ITO-coated transparent electrode (subsection 3.1.4.23.1.4.2) as the top capacitor plate
proves to be instrumental in this work. In this experiment, it not only maintains the
structural integrity of a parallel plate waveguide, but also let through thick laser beams
to easily create a MOT inside the plates. This would be a difficult task inside two opaque
capacitor plates spaced necessarily millimeters away to enable practical inhibition. Our
proof-of-principle experiment shows that transparent, conductive electrodes provide a large
inhibition while offering a wide optical access to the atoms. One can thus envision circular
atoms laser-trapped [4040] in complex arrangements of optical tweezers [4646, 4747] inside an in-
hibition capacitor made up of two transparent electrodes. These results thus open the way
for a widespread use of circular atoms in existing and future Rydberg experiments.

5.2 Limitations and Solutions
This experiment suffers from limited circularization efficiency. We estimate at least 30%
high-ℓ impurities that could not connect to the circular state after the ARP (see the residual
population in the 58 window in Fig. 3.283.28). It is worth noting that these impurities have
a random long-term fluctuation in magnitude, and could generally not be further reduced
by the common optimization techniques we introduced in subsection 3.2.3.23.2.3.2. However, we
use the partial ionization and rf decircularization techniques to remove most of the spurious
population before the final detection. Furthermore, the remaining non-circular impurities
are mostly in the high-ℓ Stark levels. As a result, they introduce negligible bias in the rate
equation fitting procedure due to their similar transition matrix elements to those of the
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circular states.
Nevertheless, in hindsight, the circularization efficiency could possibly have been im-

proved by two ways without any setup modification. First, if the ARP efficiency is limited
by a non-reducible σ− rf component, we could apply a vertical magnetic field. This field is
easily implementable by the green coil in Fig. 3.113.11. The field would introduce m-dependent
Zeeman shifts to the Stark levels to lift the degeneracy of the σ+ and σ− rf transitions within
a Stark manifold. In our setup we estimate the Zeeman-induced energy difference between
these two transitions could easily reach a few MHz (The controlled competition between the
magnetic gradient and the cooling beam intensity could dislodge the atomic cloud from the
quadrupole center by a few millimeters to experience a magnetic field of a few Gauss). In
the ARP, this reduces the parasitic σ− rf coupling, which transfers population away from
the ARP-related levels. In fact, even without any controllability in the polarization of the
rf, a magnetic field of ≈ 20 Gauss alone is already enough to select only the σ+ couplings
in a circularization ARP [120120]. Second, if the ARP efficiency is limited by its adiabaticity
which tends to deteriorate at a high n, we could possibly improve it by switching to a lower
rf dressing frequency, as suggested in section 2.32.3.

A few realistic upgrades could considerably improve the field conditions of this experi-
ment. The large residual field gradients in the capacitor likely originate from rubidium or
impurity deposits [117117] emanating from the nearby atom dispensers. They could be removed
in a setup using a slow atomic beam to load the MOT (see section 5.35.3). In such a low-field
environment [4848, 125125], state of the art fidelity (above 99%) can be reached by a careful opti-
mization of the circularization process [7070, 7171]. The preparation fidelity could be improved
by a better control of stray fields and the use of advanced quantum control techniques for the
circularization process [7171]. Field-ionization detection could be replaced by a direct optical
detection of the circular atoms through a transfer back to the ground state or through the
use of the optically active electron of an alkaline earth circular state.

5.3 A New Experiment: Inhibition of Spontaneous Emission of
Single Atoms

After the first demonstration of the decay inhibition of the CRA [5050], the community has been
constantly reminded of this powerful tool, which frequents numerous experiment proposals
[2626, 4646, 4747, 126126]. However, up until now, the relevant experimental realizations are few. This
makes new experiments in this direction interesting.

A new inhibition setup is planned in our lab. It operates in a cryostat with an optical
system to load individual atoms into the inhibition capacitor. The plan of the new experiment
is shown in Fig. 5.15.1.

The cryostat is a historical one capable of reaching a BBR temperature of 0.8 K [9292].
At this temperature and for CRAs with n ≈ 50, nth ≪ 1, thus the spontaneous emission
becomes the main decay mechanism. The CRAs at 0.8 K already possess a free space lifetime
in the millisecond range. With an ideal 100% σ+ inhibition, the theoretical lifetime limit of
the CRA is in the ≃ 10 second range. This limit is mainly set by the non-zero π transitions
(the 2σ transitions become less significant in this low temperature regime). To reach this
π-dominated regime, the σ+ transitions need to be reduced by a factor of 1000.

The new experiment also features a clean scheme for atom supply. The Rb atom source is
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Fig. 5.1 Concept of the new inhibition experiment. The atoms are generated
from an upward 2D MOT stream. They are captured in a 3D MOT. Two counter-
propagating laser beams form standing wave dipole potentials to trap single atoms
inside. The conveyor belt beam translates the trapped atoms from free space into
the inhibition capacitor. Upon detection, the Rydberg atoms are ionized by the
capacitor. The ions are sent through a 0.2 mm diameter hole at the top.

a 2D MOT, which produces a stream of atoms into a 3D MOT above for further cooling. Two
counter-propagating beams of wavelength 820 nm are far-detuned from the D2 transition
(780 nm). They form standing wave dipole traps, which not only can load a prescribed
number of individual atoms from the MOT [127127], but also can adiabatically transport the
loaded atoms along the dipole trap beams by adjusting the mutual detuning between the two
beams. This technique is known as the optical conveyor belt [128128], and can be combined with
individual site imaging [129129]. In practice the conveyor belt technique has a limited range
(millimeters), therefore it is assisted with focus-tunable lenses [130130] to achieve the required
centimeters of translation (the characteristic size of the capacitor).

After an atom is placed in the capacitor, the dipole trap is switched off transiently. The
atom is excited to the Rydberg state. The subsequent circularization is performed with four
electrodes surrounding the capacitor, in a similar fashion to the work of this thesis. Since the
Rydberg state is too far-detuned from the optical frequency, the dipole trap has to be change
to a ponderomotive trap, where the CRA is trapped in the light field minimum. To trap the
CRA, the original dipole trap beam (after a fringe shift) is switched back on to confine the
atoms in the direction of the beam. An additional Laguerre-Gauss hollow beam [4040] overlaps
with the dipole trap beam, to provide the confinement in the transverse directions.

The < 1 K cryogenic environment would potentially allow a CRA to live for seconds. The
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individually trapped CRAs are well localized, minimizing the spurious field gradient effect.
In the long term, this inhibition experiment could be developed into a spin model simulation
platform based on the proposal in [2626].
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Appendix A

Obtain Spontaneous Emission
Rates from Fermi’s Golden Rule

Starting from Eq. (2.272.27), i.e. the spontaneous emission rate expressed in a FGR format in
the dipole approximation limit, the spontaneous emission rates in two ideal scenarios are
obtained in this appendix: a dipole in free space; a transversely oriented dipole in the center
of an ideal plane-parallel capacitor.

A.1 Spontaneous Emission Rate in Free Space
In free space the field eigenmodes have the plane wave form, each mode is identified by a
unique pair of (k, ε), where k is the wave vector, and ε = 1,2 is an index to denote the
two orthogonal polarizations for an electromagnetic field mode. We choose a random cube
volume V = L3 in space to set the periodic boundary conditions. These boundary conditions
lead to the quantization of the k vector according to:

klL = 2πnl, l ∈ {x,y,z}, (A.1)

where kl is the wave vector projections on the three Cartesian axes, and nl = 1,2, . . . gives
the number of the periods repeated along the axis l.

The possible combinations of (nx, ny, nz) thus form a regular 3D lattice in the reciprocal
space where each node (nx, ny, nz) with twofold polarization degeneracy represents one mode
for ε = 1 and another for ε = 2. It follows that a volume in the “n-space” is equal to
the number of nodes (modes) contained in this volume. We then consider the number of
modes for a certain ε in a small volume ∆nx∆ny∆nz, which with Eq. (A.1A.1) is evaluated to
∆nx∆ny∆nz = ∆kx∆ky∆kz ×V/(2π)3. Represented in a spherical frame in the k-space, the
number of modes dn is dn(k, θ, φ, ε) = k2 sin θdθdφdk×V/(2π)3, where k = |k|, and θ, φ are
the polar and azimuthal angles of the spherical frame, respectively. Knowing the free space
dispersion relation kc = ω, the number of modes of photon frequency ω in an azimuth circle
(θ fixed φ varying) is dn(ω, θ, ε) = ω2 sin θdθdω × V/(2π)2c3 ≡ ρ(ω,θ,ε)dθdω. The mode
spectral density ρ(ω, θ, ε) is the density of the plane wave modes of the polarization family
ε which fall within the circular frequency continuum interval ω → ω + dω and polar angle
interval θ → θ + dθ:

ρ(ω, θ, ε) = V

(2π)2c3ω
2 sin θ (A.2)

113
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For sanity check, integrating ρ(ω, θ, ε)dθ× 2 (factor of 2 for two polarizations)with θ from 0
to π yields the familiar free space mode density ρfs(ω)/V = ω2/π2c3.

The dipole interaction we consider has the dipole matrix element Dij pointing to the +z
direction. Dij couples to all the free space plane wave eigenmodes, each reads:

αk,ε(r) = 1√
V

α̂k,εe
ik·r (A.3)

where α̂k,ε is the unit vector giving the direction of polarization of the plane wave. The two
polarizations ε = 1,2 can always be chosen so that one is always perpendicular to the dipole
Dij and has zero coupling, as shown in Fig. A.1A.1. We thus only need to consider the non-zero
coupling mode with polarization index ε = 1, the corresponding coupling term has the form:∣∣Dij · αk,ε=1(r = 0)

∣∣2 = D2
ij cos2

(
π

2 − θ

) 1
V

(A.4)

where Dij = |Dij |, and the atomic dipole is chosen to be at r = 0.
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Fig. A.1 The coupling between a dipole Dij and two plane wave modes αk,ε=1,2
sharing an arbitrary k in free space. We choose the plane containing Oz and k
as the yOz plane of a Cartesian fame. At the frame origin, field mode direction
αk,ε=1(r = 0) can be chosen to be in the yOz plane, the other orthogonal field
mode direction αk,ε=2(r = 0) then has to be along the x axis. With this choice,
the mode αk,ε=2 always has zero coupling to the dipole: Dij · αk,ε=2 = 0.

Plugging the θ-dependent single dipole-mode coupling term Eq. (A.4A.4) and the corre-
sponding azimuth circle mode density Eq. (A.2A.2) into the spontaneous emission rate evalua-
tion equation (2.272.27), finally, the free space spontaneous emission rate A(fs)

ij is the sum of rates
contributed by dipole coupling to all the plane wave modes, with the modes’ propagation
direction’s polar angle θ varying from 0 to π:
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A
(fs)
ij = πωij

ℏϵ0

∑
ε

∫ π

0

∣∣Dij · αk,ε(r = 0)
∣∣2ρ(ωij , θ, ε)dθ

=
ω3

ijD
2
ij

2πℏϵ0c3

∫ π

0
cos2

(
π

2 − θ

)
sin θdθ

=
ω3

ijD
2
ij

3πℏϵ0c3 (A.5)

where there is only the ε = 1 term in the sum, because we imposed that the ε = 2 term is
zero. Assuming random polarizations will not change the above result.

A.2 Spontaneous Emission Rate Between Two Ideal Mirrors: a
Limited Example

In between two ideal mirrors, a field eigenmode is either a TE mode or a TM mode. For the
parallel plate waveguide, the acronym TE(TM) stands for the transverse electric (magnetic)
mode which has the electric (magnetic) component exclusively parallel to the plates, so that
the electric (magnetic) component normal to the plates is always zero. Since the transverse
directions are not confined, each TE/TM mode can propagate transversely with a wave
vector k that can only be parallel to the mirrors.

The considered mirror spacing is L, we choose in between the mirrors a rectangular
volume V = a × a × L with a random length a for transverse sides to impose periodic
boundary conditions. We then set the origin of the Cartesian frame at the bottom mirror,
and set the Oz axis pointing perpendicular to the top mirror. In this frame the transverse
boundary conditions read:

kla = 2πnl, l ∈ {x,y} (A.6)

where kl is the wave vector projections on the x,y axes, and nl = 1,2,3, . . .. This is simply
the free space case (see section A.1A.1) reduced to 2D.

To obtain the mode spectral density, we write down the dispersion relation for a parallel
plate waveguide:

ω2 = m2ω2
0 + k2c2 (A.7)

ω0 = cπ/L (A.8)

where k =
√
k2

x + k2
y, and ω is the mode’s circular frequency. m = 0,1,2, . . . is the order of

the transverse TE/TM modes, both sharing the same dispersion relation Eq. (A.7A.7) and the
same first order cutoff frequency ω0. The dispersion relation Eq. (A.7A.7) written in a different
form is:

k = 1
c

√
ω2 − (mω0)2, (A.9)

from which it is clear that the transverse modes TEm, TMm have the (degenerate) cutoff
frequency at mω0, below which the m-th order transverse electric/magnetic modes disappear.

In this limited example we are to examine the spontaneous emission rate caused only by
the coupling between the modes TE1, TM1 and a transversely oriented dipole in the center
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of the mirrors. However, these are already all the possible couplings for such a dipole below
the frequency 3ω0, below which the full spontaneous emission rate can be obtained in this
limited example. For the the complete result, the equations (2.362.36) and (2.372.37) in the main
text give the spontaneous emission rate modifications for both transversely and vertically
oriented dipoles, positioned at any height between the mirrors, coupling all modes at any
frequency.

In a parallel plate waveguide, for any mode family ε = TEm or TMm, the mode density
always has the same form, because the differential dispersion relation [differentiate both
sides of Eq. (A.7A.7)] ωdω = c2kdk does not depend on the choice of ε. But the modes of
different orders have different cutoff frequencies, because Eq. (A.9A.9) has a m dependence.
We follow the same reasoning as in the free space argument, and find that the number
of modes dn in the family ε represented in the polar frame coordinates (k, φ) of the 2D
k-space is dn(ω,φ,ε) = ωdωdφ × V/(2πc)2L ≡ ρ(ω,φ,ε)dφdω, where we have used the
dispersion relation Eq. (A.7A.7) to convert k to ω. The corresponding mode density ρ(ω, φ,ε)
then represents the mode density contributions from the ε modes of photon frequency ω
propagating transversely in direction of φ:

ρ(ω, φ, ε) = Θ

(
ω

ω0
−m

)
V

L

( 1
2πc

)2
ω = Θ

(
ω

ω0
−m

)
V ω0
4π3c3ω (A.10)

where we used the Heaviside function1 Θ to impose the cutoff frequency.
We use αkφ,TEm(z,ϱ) and αkφ,TMm(z,ϱ) to denote the eigenmode functions of the cor-

responding TEm and TMm modes. The positional arguments (z,ϱ) are respectively the
vertical displacement z ranging from 0 to L between the two mirrors, and the transverse
position ϱ along the mirrors. These eigenmode functions for any order m are [8686]:

αkφ,TEm(z,ϱ) =
√

2
V

sin mπz
L

φ̂ × ẑeikφ̂·ϱ (A.11)

αkφ,TMm(z,ϱ) =
√
βm

V

(
ck

ω
cos mπz

L
ẑ − i

mω0
ω

sin mπz
L

φ̂

)
eikφ̂·ϱ (A.12)

The unit vectors φ̂ and ẑ are respectively in the k direction (always parallel to the mirrors
with an azimuthal angle φ) and the Oz direction. The normalization factor βm satisfies:

βm = 1 if m = 0, else βm = 2

From Eq. (A.11A.11) and Eq (A.12A.12) we obtain the eigenmode functions we need: αkφ,TE1(z =
L/2,ϱ = 0) and αkφ,TM1,(z = L/2,ϱ = 0), which are evaluated at the position of the dipole
(z = L/2,ϱ = 0) and at the considered emission frequency ωij :

αkφ,TE1(z = L/2,ϱ = 0) =
√

2
V

φ̂ × ẑ (A.13)

αkφ,TM1(z = L/2,ϱ = 0) =
√

2
V

(
−i ω0
ωij

)
φ̂ (A.14)

The above modes are coupled with a dipole Dij chosen to point in the +x direction, as
shown in Fig. A.2A.2, the resulting coupling terms read:

1Θ is equal to one if its argument is strictly positive, to zero otherwise.



A.2 SPONTANEOUS EMISSION RATE BETWEEN TWO IDEAL MIRRORS 117

|Dij · αkφ,TE1(z = L/2,ϱ = 0)|2 = D2
ij

2
V

cos2
(
π

2 − φ

)
(A.15)

|Dij · αkφ,TM1(z = L/2,ϱ = 0)|2 = D2
ij

2
V

(
ω0
ωij

)2

cos2φ (A.16)
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L/2

Fig. A.2 The coupling between a transversely positioned, centered dipole Dij and
two propagation modes. The two modes are a TE1 mode and a TM1 mode between
two ideal mirrors. They share the same wave vector k.

Plugging into the spontaneous emission rate evaluation equation (2.272.27) the φ-dependent
single dipole-mode coupling terms Eqs. (A.15A.15), (A.16A.16) and the corresponding mode den-
sity Eq. (A.10A.10) for modes propagating in φ̂, the corresponding spontaneous emission rate
A

(capacitor)
ij,TE1+TM1 is the sum of rates contributed by the dipole couplings with all the TE1 and

TM1 modes, while the modes’ propagation direction angle φ varying from 0 to 2π:

A
(capacitor)
ij,TE1+TM1 = πωij

ℏϵ0

∑
ε=TE1,TM1

∫ 2π

0
|Dij · αkφ,ε(z = L/2,ϱ = 0)|2ρ(ωij , φ,ε)dφ
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ωij

ω0
− 1

)
ω2

ijω0D
2
ij

2π2ℏϵ0c3

∫ 2π

0

cos2
(
π

2 − φ

)
+ cos2φ

(
ω0
ωij

)2
dφ
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(
ωij

ω0
− 1

)
ω2

ijω0D
2
ij

2πℏϵ0c3

1 +
(
ω0
ωij

)2
 (A.17)

The emission frequency ωij has to be below 3ω0 for Eq. (A.17A.17) to produce the complete
spontaneous emission rate; above 3ω0, more modes are to be coupled, TE1 and TM1 are not
enough.
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Dividing Eq. (A.17A.17) by the free space rate Eq. (A.5A.5), and making the substitution
ωij/ω0 = 2L/λ, we obtain the exact form of the n = 1 term in the sum of Eq. (2.362.36).
When the emission frequency is at the cutoff frequency: ωij = ω0, Eq. (A.17A.17) produces a
factor of three’s spontaneous emission rate enhancement relative to that of the free space,
this is the greatest enhancement that can be produced on a transverse dipole by two ideal
mirrors, as shown in Fig. 2.122.12. This enhancement is caused by only the TE1 and TM1 modes.

We stop at the first order waveguide modes only to make a terse and clear example.
Evidently, rates caused by higher order modes and hence the complete result given in
Eqs. (2.362.36), (2.372.37) can be found in exactly the same way.



Appendix B

Global Mode Spectral Density in
Two Ideal Models

In free space, given the dispersion relation ω = c|k| and the photon frequency range ω →
ω + dω, one can find in this range the associated number dn(ω) of the available plane wave
modes. The number dn(ω) is twice (for the two orthogonal polarizations of light) of the
number of all possible wave vectors k’s in a spherical shell |k| → |k + dk| in the k-space.
These concepts allow us to formally introduce the global mode spectral density per volume
ρ(ω)/V as the number of all existing photonic modes per frequency interval per unit volume:

ρ(ω)/V = V −1 dn(ω)
dω (B.1)

In this thesis, for simplicity, the word mode density or mode spectral density are used without
discrimination to refer to both ρ(ω) and ρ(ω)/V , but there is no ambiguity in the notation,
in the analytical discussions the distinction is always clear.

By the definition in Eq. (B.1B.1), the global free space mode density can be readily worked
out through the textbook approach of assuming the periodic boundary conditions in a cube
of random volume V . The resulting free space mode density ρfs(ω)/V , independent from the
choice of V , reads:

ρfs(ω)/V = ω2

π2c3 (B.2)

In this appendix, the global mode spectral densities are obtained and compared with
the free space value [Eq. (B.2B.2)] in two infinite waveguide structures: the circular waveguide
(infinite in 1D) and the parallel plate waveguide (infinite in 2D).

B.1 Global Mode Density in Circular Waveguide
The mode density shown in Fig. 2.92.9 is given in this section.

Consider a zero-resistivity circular waveguide in the vacuum, its length is infinite and its
radius is r. The dispersion relation of the fundamental mode in this ideal waveguide reads
k =

√
ω2 − ω2

0/c. In this expression, k is the wave vector along the length of the waveguide,
ω is the circular frequency associated with the wave vector, and ω0/2π the cutoff frequency
of the fundamental waveguide mode (TE11). As in the free space case, the dispersion relation
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plus the periodic boundary condition kL = 2πn allow one to express as a function of ω the
number of allowed photonic modes n(ω) below frequency ω. Afterwards, by using directly the
definition Eq. (B.1B.1) and taking the random volume as a cylindrical section V = πr2 ×L, the
mode density ρ0(ω)/V , independent from the choice of section length L, of the fundamental
waveguide mode is found to be:

ρ0(ω)/V = 2ω2
0

ζc3
ω√

ω2 − ω2
0

(for ω > ω0) (B.3)

The equation above gives the ρ0(ω) for ω > ω0. As for ω < ω0, it is simply the case of below
cutoff, where ρ0(ω) = 0. The singularity at cutoff frequency ω = ω0 is a feature of the ideal
waveguide, but would not appear for real waveguides with finite size and conductivity. In
Eq (B.3B.3), ζ = (χ′

11π)2 = 33.4 . . . is a dimensionless constant [the χ notation is introduced
shortly below in Eq (B.5B.5)]. The geometry information is contained in the cutoff frequency
ω0, which depends on the transverse radius of the waveguide.

To obtain the total mode density ρg(ω) of all allowed waveguide modes, it consists only
in adding the contributions of all the waveguide modes together:

ρg(ω)/V = 2ω2
0

ζc3

∑
j

ω√
ω2 − ω2

j

(B.4)

In Eq. (B.4B.4), ωj is the cutoff frequency of the j-th waveguide mode. And just like in Eq. (B.3B.3),
when below the j-th cutoff frequency, ω < ωj , the contribution of the corresponding j-th
term in the sum is zero. For an ideal circular waveguide in vacuum, all possible ωj ’s are
given by:

ωTE
mn = χ′

mnc/r (B.5)
ωTM

mn = χmnc/r (B.6)

where ωTE,TM
mn represents the cutoff frequency of the corresponding TEmn, TMmn modes, r

is the radius of the cross-section of the circular waveguide. χmn and χ′
mn are the positions

of the n-th zero point of the m-th order Bessel function and Bessel function derivative,
respectively.

With all the ωj ’s given by Eq. (B.5B.5) and Eq. (B.6B.6), the mode density ρg(ω) in an ideal
circular waveguide can be obtained via Eq (B.4B.4). To examine its inhibition and enhancement
relative to the free space mode density ρfs(ω), it helps to calculate the ratio Rg(ω/ω0) of the
two quantities (the random volume V then are assumed to be identical in both cases):

Rg

(
ω

ω0

)
= ρg(ω)
ρfs(ω) = 2π2

ζ

(
ω

ω0

)−1∑
j

[(
ω

ω0

)2
−
(
ωj

ω0

)2
]−1/2

(B.7)

Because we parametrize ω/ω0 as the independent variable of Rg(ω/ω0), its radius dependence
contained in ω0 is lost, therefore the mode density modification Rg(ω/ω0) is general and
applies to an ideal circular waveguide of arbitrary size.

The plots of Rg(ω/ω0) is shown in Fig. 2.92.9, which reproduces the only figure in the
Kleppner paper. Panel (a) plots the mode density up until 2.5ω0. In this range, distinct
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enhancement peaks appear at the onsets of the low order waveguide modes, which we label
on the top. It is then clear, for instance, that the mode density at 1.1ω0 is associated only
with photons in TE11 mode, whereas the mode density at 2ω0 has the contributions of three
modes: TE11, TM01, and TE21. In panel (b) we plot the mode density up until 20ω0, twice
as high as in the original figure of Kleppner. We did not apply any singularity truncations as
Kleppner did, it is because with our choice of plotting points in (b), i.e. linearly spaced 1001
points in the range of ω ∈ [0,20ω0], it so happens that we do not encounter any enhancements
≫ 1.To see the reduced significance of singularities at ω ≫ ω0, we consider the mode density
value of the j-th waveguide mode at a small normalized frequency ∆x = ∆ω/ω0 to the right
of the j-th singularity at xj = ωj/ω0, we keep the terms to first order in ∆x/xj , and find
that the mode density yielded by the j-th waveguide mode at a fixed ∆x/xj away from the
j-th singularity scales as x−2

j . This means that the singularity peaks will become increasingly
narrower at higher frequencies, as a result, very high enhancements will only be localized in
fleetingly small frequency zones.

B.2 Global Mode Density in Parallel Plate Waveguide
We follow the same parallel plate structure described in section A.2A.2.

From the dispersion relation Eq. (A.9A.9), we see that the m-th order modes belonging to
the TEm and TMm families exist only above their mutual cutoff frequency mω0. At the
frequency ω, the number of propagation mode families between the plates are:

1 + 2
⌊
ω

ω0

⌋
(B.8)

where any number in the floor brackets is evaluated to its integer part, e.g. ⌊1.1⌋ = ⌊1⌋ = 1.
The one always existing mode family is the TM0 that cuts off at DC. Going up in frequency
ω, after each frequency interval of ω0 [Eq. (A.8A.8)], one new TE family and TM family add to
the number of propagation families.

Differentiating both sides of the dispersion relation Eq. (A.7A.7), we get the relation ωdω =
c2kdk independent from the order m, the mode number counted in k-space is thus converted
to the frequency spectrum by the same relation for any mode family TXm (a TEm or TMm),
the corresponding single mode spectral density ends up being always Eq. (A.10A.10). Each mode
family TXm thus has the single family mode density V ω0ω/2π2c3 which is the integral of
Eq. (A.10A.10) over 2π. The global mode density ρp(ω) in between the plates is the single family
mode density multiplied by the number of families given in Eq. (B.8B.8):

ρp(ω)/V = ω0ω

2π2c3

(
1 + 2

⌊
ω

ω0

⌋)
(B.9)

The parallel plate mode density can then be compared with the free space mode density
by the ratio of Eq. (B.9B.9) to Eq. (B.2B.2):

Rp(ω/ω0) = ρp(ω)
ρfs(ω) = 1

2

(
ω

ω0

)−1 (
1 + 2

⌊
ω

ω0

⌋)
(B.10)

Rp(ω/ω0) is plotted in Fig. 2.102.10.
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Appendix C

Lifetime Sensitivity to Capacitor
Spacing

We show in this appendix that, based on the comparison between the measured and simulated
300 K lifetimes of the CRAs, the real capacitor spacing respects well the measured value of
4.10 mm.

In subsection 3.1.43.1.4, the presented simulation results are based on a 4.10 mm capacitor
spacing obtained by the direct measurement with a vernier caliper. The measurement instru-
ment itself has a minimum reading of 0.01 mm. However, a slight capacitor spacing shift in
this magnitude is already enough to induce a 5% difference for the σ decay rate modification
factor Cσ along the simulated cutoff. If the manual error involved in the measurement of
the real capacitor spacing is a few tens of microns, the simulated lifetime then should not be
directly comparable to the measured lifetime.

To dismiss this concern, we simulate the lifetimes of a series of the CRAs with their σ+

transition frequencies distributed along the cutoff of the capacitor in Fig. 3.133.13, varying the
spacing of the capacitor from 3.9 mm to 4.3 mm in 0.1 mm steps. We compare these simulated
lifetimes with the measured lifetimes in Fig. 4.74.7 (the balanced model). The comparison is
shown Fig. C.1C.1.

In this comparison, it is clear that the measured lifetimes of the 56C, 57C, and 58C,
having their σ+ decay rates varying successively from barely inhibited (similar to the free
space values) to effectively inhibited (σ+ decays rates reduced by more than a factor of 5),
match well only with the simulated lifetimes in a 4.1 mm capacitor. The measured lifetimes of
the lower-n CRAs 51C, 52C and 53C also match well with those from the 4.1 mm simulation
(shown in Fig. 4.74.7 in the main text), representing a good agreement on the high frequency
side of the cutoff resonance. Therefore, the measured lifetimes of these circular states prove
to be a good reflection of the sharp features of the cutoff enhancement for a capacitor of
4.1 mm. A deviation of more than 0.01 mm is unlikely.

As for the disagreement between the measured and the simulated lifetimes of the rest of
the CRAs, some possible reasons have been discussed in the main text.

123



124 APPENDIX C. LIFETIME SENSITIVITY TO CAPACITOR SPACING
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Fig. C.1 The comparison between the measured lifetimes (those of the balanced
model in Fig. 4.74.7) and the simulated lifetimes of the CRAs that transition suc-
cesively from decay-enhanced to decay-inhibited. In the simulation, the capacitor
spacing is varied by ∆L = ±0.2 mm from the measured value of 4.1 mm. The
optimal match is found at 4.1 mm for the successive states 56C, 57C, and 58C,
which undergo the gradual transition from under-inhibited to effectively-inhibited,
corresponding to the sharp feature of the capacitor cutoff which can be sensitive to
a deviation of 0.01 mm in spacing.



Appendix D

Potential Elliptical-State-Selective
Techniques in Field Ionization
Detection

In Fig. 3.203.20, the three states’ ionization peaks have a large overlapping, indicating their
similar ionization thresholds. However, we notice that the separation between the tips of
e1 and e′

1 is comparable to the width of the circular state peak. This means when the
circular state’s population is not dominant, the sum of the three peaks, comparable in their
widths, would define a lumped shape with double the width of the circular only signal. The
ionization thresholds of different “lumps” are not different enough to separate them well in
a ramped ionization field. Just imagine the circular state only signal in Fig. 3.193.19, with every
peak broadened by a factor of two.

The ne1 peak is more separated from the nC peak than the ne′
1 peak in both the theory

(see Fig. 3.223.22) and the detection (see Fig. 3.203.20, see also the thesis of E. K. Dietsche [5959,
Figure 2.8]). As a result, the long tail of the ne1 peak towards the left would cause a
considerable contamination in the n + 1 detection window located at earlier arrival time.
This signal merging between (n + 1)C and ne1 becomes inignorable when the populations
in these two levels are comparable. A situation like this can happen in a capacitor when
the BBR transfers become π and 2σ dominated (see subsection 2.4.42.4.4). Experimentally, after
900 µs evolution of an initially prepared 60C (the blue dashed line in Fig. 4.14.1), we observe the
peak shaped ionization signal to the right of 60C , but lumped signal to the left. This is an
indication that the elliptical populations in the 61 manifold and above may have surpassed
that of the circular.

When one wishes to clearly identify the decay rates of the three upward decay channels
(σ+, π, 2σ), it is desirable to further resolve the ne1, ne1, and nC populations from the
lumped signal. Two potential techniques are discussed in the child sections. With these
techniques used singularly or combined, when the BBR dynamics is limited only to the cir-
cular and a few high-m elliptical states, in principle it is possible to unequivocally determine
the Rydberg level populations at any detection time. The overlapping between the circular
and the elliptical level signals and the cross-window contaminations do not seem to impose
an insurmountable challenge in the selectivity of the ramp detection1.

1Experimentally we also tried to program a step-shaped ionization ramp to gain a controllable time
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D.1 RF De-Circularization
The rf-decircularization was already demonstrated in the main text (Fig. 3.243.24 and Fig. 3.303.30).
This technique transfers a high-m state, circular or elliptical, to a low-m state within the
same manifold. In the ionization signal, the corresponding ion counts are moved from a high-
field window to a low-field one. This type of transfer could have an application in resolving
the 2σ populated (n + 2)e(′)

1 states2 and the π populated (n + 1)e(′)
1 states by an initially

prepared nC under heavy σ inhibition.
The heavy σ inhibition means that the thermal transfer populates the m = n− 2 states

in the next two manifolds as much as it populates the (n + 1)C state, if not more. The
e

(′)
1 states, as mentioned in the parent section, have an ionization threshold difference that

is enough to make their ionization peaks difficult to resolve. As a result, at long times the
BBR-transferred (n+1)C, (n+1)e(′)

1 , and (n+2)e(′)
1 , comparable in their populations, would

appear as a merged whole in the ionization signal (e.g. the blue dashed line in Fig. 4.14.1, in
the high-n slot). In this scenario, an rf decircularization resonant with the n + 1 or n + 2
manifold could move the corresponding state signals to an earlier arrival time for separate
detection. The previously blurred manifold resolution is regained.

We did not implement this technique in the experiment, because we initially wrote a rf
control software capable of only one waveform per sequence. The two rf pulses in Fig. 3.293.29
are implemented as one 60 µs long waveform with zero amplitude between the two pulses.
To add one additional rf de-circularization pulse after ≃ 1 ms before detection, we would
need a millisecond long waveform, which is beyond the hardware limit. We could upgrade
the rf control software to allow several different waveforms per sequence, but this was not
done due to the project time limit.

D.2 MW Redistribution Pulses
In subsection 3.2.1.13.2.1.1, we mentioned the method of resolving the ne1, ne′

1, and nC populations
by MW π-pulse selection. If we use a two-photon MW pulse to transfer, for example, ne1
to (n + 2)e1, the transferred population ne1 is immediately known only when the initial
populations in (n + 2)e1, (n + 2)e′

1, and (n + 2)C are all negligible. If initially there is a
mixture of the three states, without any MW selection we already have a lumped signal in
the (n+2)-window during ionization. After the ne1 → (n+2)e1 MW pulse, we get a different
lumped signal in (n+ 2)-window. How much ne1 is transferred is not immediately known.

Situations like the above can realistically arise in this work. It would be useful to resolve
the population in a specific circular or elliptical state after a long time of BBR-induced
population redistribution. However the thermal field leads in the end to a wide spread of

separation of peak signals. It appears effective for the CRAs of different n’s and thus different enough
ionization thresholds. However for the CRAs a simple ramp already provides a good enough signal separation
without the time consuming threshold field calibration. Moreover, the stair ramp is not very promising for
separating the high-m elliptical signals. A good separation of ne1 from nC is experimentally challenging. The
DC ionization field needs to be in a precise range: high enough to ionize all the ne1 within a few microseconds
in a room temperature experiment, but also low enough to at most ionize a few percent of the nC during
this time. The separation of ne′

1 from nC by DC ionization steps is not feasible due to their very similar
ionization thresholds.

2e
(′)
1 means e1 and e′

1.



D.2 MW REDISTRIBUTION PULSES 127

population in the circular states, and in the m = n−2 elliptical states too in the σ inhibition
regime. It becomes difficult to find a clean manifold to transfer the population to in order
to be resolved individually during the field ionization. However one could use before the
detection a few carefully planned MW π-pulses to intentionally redistribute the ion counts
in different detection windows, followed by some post analysis comparing the signals before
and after the redistribution pulses to infer the original population distribution.

To give a toy example of such an analysis, we consider a BBR redistribution dynamics
limited to four levels. However the four levels fall into only two detection windows: we can
only detect the population sum of level 1, 2 in window 1, and the population sum of level
3, 4 in window 2. We assume, at the end of an experimental sequence, the BBR causes
among the four levels a reproducible final population distribution of

(
p1 p2 p3 p4

)T
, a

vector we do not know and will set out to find out. Our partial information is the detected
window populations P1 = p1 + p2 and P2 = p3 + p4. To gain another half of the information,
we conduct the same experiment, but at the end apply a π-pulse between level 1 and level
3 to exchange their population, and obtain a different set of detected window populations
P ′

1 = p3 + p2, P ′
2 = p1 + p4. A transformation between the detected window populations and

the individual level populations can then be given below:
P1
P2
P ′

1
P ′

2

 =


1 1 0 0
0 0 1 1
0 1 1 0
1 0 0 1



p1
p2
p3
p4

 (D.1)

It is straightforward to introduce the cross-window population contaminations into the equa-
tion above. To this end, we assume the populations in level 1 and 4 are well separated in
the two detection windows. But for the population in level 2, a small proportion ϵ12 escapes
window 1 and is detected in window 2. For level 3, a small proportion ϵ21 is detected in
window 1. The transformation Eq. (D.1D.1) then becomes:

P1
P2
P ′

1
P ′

2

 =


1 1 − ϵ12 ϵ21 0
0 ϵ12 1 − ϵ21 1
ϵ21 1 − ϵ12 1 0

1 − ϵ21 ϵ12 0 1



p1
p2
p3
p4

 (D.2)

Assuming the detection window contamination coefficients ϵ12, ϵ21 to be constant, they could
be experimentally estimated. An inverse of the matrix in Eq. (D.2D.2) can then lead to the
desired Rydberg level distribution

(
p1 p2 p3 p4

)T
.

In our experiment, for the high-n CRAs in the heavy σ+ inhibition regime, their inter-
manifold transition frequencies are < 30 GHz, which lies below the operating range of our
MW instruments (waveguide cutoff, frequency multiplier bandwidth, and the inhibition ca-
pacitor cutoff). We detect the Rydberg levels in the 61 manifold and above as a whole, and
do not try to resolve the transfers among these levels.
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Sujet : Atomes de Rydberg Circulaires Vivant plus d’une Milliseconde
dans une Expérience à Température Ambiante

Résumé : Les états de Rydberg circulaires sont des outils idéaux pour les technologies quantiques,
avec d’énormes interactions mutuelles et des durées de vie extrêmement longues de l’ordre de
quelques dizaines de millisecondes, deux ordres de grandeur plus grandes que celles des états de
Rydberg accessibles au laser. Cependant, de telles durées de vie ne sont observées qu’à température
nulle. À température ambiante, les transferts induits par le rayonnement du corps noir annihilent
cet atout essentiel des états circulaires, qui ont donc été principalement utilisés jusqu’à présent dans
des expériences cryogéniques spécifiques et complexes. Dans ce travail, nous démontrons, sur un
échantillon atomique refroidi par laser, une durée de vie d’état circulaire de plus d’une milliseconde
à température ambiante pour un nombre quantique principal de 60. La structure d’inhibition est un
simple condensateur plan parallèle qui inhibe efficacement le rayonnement du corps noir. -transferts
induits. L’une des électrodes du condensateur est entièrement transparente et offre un accès optique
complet aux atomes, une caractéristique essentielle pour les applications. Cette expérience ouvre
la voie à une large utilisation des atomes circulaires de Rydberg pour la métrologie quantique et la
simulation quantique.

Mots clés : mécanique quantique, atomes froids, atome de Rydberg, atome de Rydberg circulaire,
émission spontanée, simulation quantique, métrologie quantique

Subject : Millisecond-lived Circular Rydberg Atoms in a Room
Temperature Experiment

Abstract: Circular Rydberg states are ideal tools for quantum technologies, with huge mutual in-
teractions and extremely long lifetimes in the tens of milliseconds range, two orders of magnitude
larger than those of laser-accessible Rydberg states. However, such lifetimes are observed only
at zero temperature. At room temperature, blackbody-radiation-induced transfers annihilate this
essential asset of circular states, which have thus been used mostly so far in specific, complex
cryogenic experiments. In this work we demonstrate, on a laser-cooled atomic sample, a circular
state lifetime of more than one millisecond at room temperature for a principal quantum num-
ber 60. The inhibition structure is a simple plane-parallel capacitor that efficiently inhibits the
blackbody-radiation-induced transfers. One of the capacitor electrodes is fully transparent and
provides complete optical access to the atoms, an essential feature for applications. This experi-
ment paves the way to a wide use of circular Rydberg atoms for quantum metrology and quantum
simulation.

Keywords : quantum mechanics, cold atoms, Rydberg atom, circular Rydberg atom, spontaneous
emission, quantum simulation, quantum metrology
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