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0Abstract
The evolution of computer science in research on vascular networks has revealed

interest in the reconstruction and interpretation of these complex structures. The

robust and automatic segmentation of the vessels can be used for many applications

such as the resection of the liver in sub-regions. This definition of Couinaud

segments was a good initialization for the researchers to solve several problems

related to liver diseases, and also to facilitate the interpretation of images by

radiologists. The exploration of the liver vessels in medical images is based on the

correct acquisition during an examination. Nowadays, deep learning is providing

new solutions for medical image segmentation problems and becomes a key point

for future clinical application. The study of vascular structures is a challenging

task due to the extremely small size of the vessel structure, low Signal to Noise

Ratio (SNR), and varying contrast in medical image data. Since the arrival of deep

learning, several methods based on pixel intensity have been tested to reduce more

segmentation errors, but these intensity information were still not sufficient to

preserve connectivity within branches, and may give poor segmentation outcomes

in bifurcations. This is mainly due to the complexity of these structures and

inhomogeneous contrast throughout the vascular network in medical images.

This thesis is dedicated to develop novel 3-D deep learning methods based on

topological information for liver vessel segmentation from CT (Computerized

Tomography) scans, which can help in improving segmentation decisions from vas-

cular patterns. These approaches integrate both pixel wise intensity and topological

signatures of vessel shapes by training a 3-D model with a specific topological loss

function, which calculates the similarity between the likelihood map predicted by

the 3-D model of segmentation and the ground-truth vessels. Our 3-D topolog-

ical deep learning model gives better segmentation in terms of bifurcations and

topology.

The first part of the work presents our different approaches used for vessel

extraction. More precisely, 3-D U-Net, Dense U-Net, and MultiRes U-Net are pitted

against each other in the vessel segmentation task on the CT scan public dataset

from IRCAD. For each model, three alternative setups that allow adapting the

selected architectures to volumetric data are tested. Namely, full 3-D, slab-based,

and box-based setups are considered. These methods enable detecting bifurcations,
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this comparison of 3-D models allows to choose the best approach based on the

intensities of the image.

In the second part, a vesselness based method is introduced into the deep learning

architecture to segment liver vessel in 3-D images. This approach enhances vessel

in the whole 3-D volume of images in order to obtain more accurate segmentation.

several vesselness filters were used and compared.

The third part of the thesis is devoted to introduce the topological signature. This

information can help improve segmentation decision. The hierarchical study of the

skeleton allows giving a graphic description of the hepatic vascular network. The

incorporation of graph convolutions in the U-Net provides nodes in the graph with

information that is based on node connectivity. Another topological approach is

proposed to segment accurately liver vessel based on continuous-valued loss func-

tion, which can help in improving segmentation decisions from vascular patterns.

It integrates both pixel wise intensity and topological structure of vessel shapes

by training a 3-D U-Net with this specific topological loss function, by calculating

the similarity between the likelihood map predicted by the 3-D U-Net and the

ground-truth vessels.

Thus the complete processing pipeline developed leads to a precise 3-D recon-

struction of the liver vascular network. It allows a better understanding of the

hepatic vessel structure and provides the possibility to radiologists to better inter-

pret medical images and liver desease.

Finally, we expose a comparative evaluation of the results with the state of the

art methods, by a quantitative and qualitative assessment for clinical validation of

the 3-D segmentation and reconstruction of hepatic vessels.
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0Resumé

L’évolution de l’informatique dans la recherche sur les réseaux vasculaires a per-

mis d’améliorer la reconstruction et l’interprétation de ces structures complexes.

L’extraction robuste de ces structures sur des images biomédicales nécessite une

bonne acquisition lors d’un examen d’imagerie.

La segmentation des vaisseaux peut être utilisée pour de nombreuses applica-

tions telles que la division du foie en sous-régions. Cette définition des segments

de Couinaud a été une bonne initialisation pour les chercheurs pour résoudre plu-

sieurs problèmes liés aux maladies du foie, faciliter l’interprétation des images par

les radiologues et même pour des planifications chirurgicales. L’exploration des

vaisseaux hépatiques repose sur la bonne acquisition lors d’un examen. Le deep

learning apporte de nouvelles solutions aux problèmes de segmentation des images

médicales et devient une méthodologie de pointe pour de futures applications

cliniques. L’étude des structures vasculaires est une tâche difficile en raison de la

taille extrêmement petite de la structure du vaisseau, du faible SNR (Signal to Noise

Ratio) et du contraste variable des données d’imagerie médicale. L’étude des struc-

tures curvilignes est une tâche difficile, en particulier compte tenu des applications

d’imagerie médicale telles que la reconstruction des vaisseaux. Depuis l’arrivée

des methodes d’apprentissage profond, plusieurs approches basées sur l’intensité

des pixels ont été proposées pour réduire les erreurs de segmentation, mais ces

informations ne sont toujours pas suffisantes pour préserver la connectivité au

sein des branches et peuvent donner de mauvais résultats de segmentation dans

les bifurcations. Ceci est principalement dû à la complexité de ces structures et au

contraste inhomogène dans tout le réseau vasculaire des images médicales.

Cette thèse est consacrée au développement d’une nouvelle méthode d’apprent-

issage en profondeur 3-D basée sur des informations topologiques pour la seg-

mentation des vaisseaux hépatiques à partir des images médicales, qui peut aider

à améliorer les décisions de segmentation à partir des modèles vasculaires. Ces

approches intègrent à la fois l’intensité du pixel et la structure topologique des

vaisseaux en developpant des modèles 3-D avec une fonction de perte topologique

spécifique, qui calcule la similarité entre la carte de vraisemblance prédite par un

modèle 3-D de segmentation et les vaisseaux de vérité de terrain. Notre modèle

d’apprentissage topologique profond 3-D est une technique prometteuse avec une

meilleure qualité de segmentation sur les bifurcations notamment.
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Dans une première partie, des modèles de segmentation U-Net 3-D sont revisités

et comparés. Plus précisément, 3-D U-Net, Dense U-Net et MultiRes U-Net sont

opposés les uns aux autres dans la tâche de segmentation des vaisseaux sur le jeu

de données scanner public de l’IRCAD. Pour chaque modèle, trois configurations

alternatives permettant d’adapter les architectures du réseau neuronal convolutif

adaptées aux données volumétriques sont testées. À savoir, les configurations 3-D

complètes, basées sur des groupes de coupes (slabs) et sur des patches 3-D sont

prises en compte. Ces méthodes permettent de mieux détecter les bifurcations.

Cette comparaison des modèles 3-D permet de choisir la meilleure approche basée

sur les intensités de l’image.

Dans une seconde partie, une méthode basée sur la combinaison des modèles

d’apprentissage profond avec des filtres de rehaussement est introduite pour seg-

menter les vaisseaux hépatiques sur des images 3-D. Cette approche améliore les

resultats de segmentation. Plusieurs filtres de rehaussement ont été utilisés et

comparés.

Enfin la troisième partie de la thèse est consacrée à introduire les signatures topo-

logiques. Ces informations peuvent aider à améliorer la décision de segmentation.

L’étude hiérarchique du squelette (sous forme de graphe) permet de donner une

description graphique du réseau vasculaire hépatique. L’incorporation de convolu-

tions de graphe dans le U-Net fournit grâce aux nœuds du graphe des informations

basée sur la connectivité des nœuds. Une autre approche topologique est proposée

pour segmenter avec précision les vaisseaux hépatiques basée sur une fonction de

perte, ce qui peut aider à améliorer encore les décisions de segmentation. Il intègre

à la fois l’intensité au niveau des pixels et la structure topologique des vaisseaux en

combinant un 3-D U-Net avec cette fonction de perte topologique spécifique, qui

calcule la similarité entre la carte de vraisemblance prédite par le 3-D U-Net et les

vaisseaux de vérité de terrain.

Ainsi, le pipeline proposé conduit à une reconstruction 3D précise du réseau

vasculaire hépatique. Il permet une meilleure compréhension de la structure des

vaisseaux hépatiques et offre la possibilité aux radiologues de mieux interpréter les

images médicales et les maladies du foie.

Enfin, une étape de comparaison des résultats avec les approches proposées dans

la littérature est effectuée, en proposant une analyse quantitative et qualitative pour

la validation des resultats de segmentation 3-D obtenus.
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1 Introduction

1.1 Working framework

This doctoral thesis entitled "Robust Liver vessel segmentation in biomedical im-

ages using 3-D deep learning approach" is carried out as part of the research

work of the R-Vessel-X project funded by the French National Research Agency

(ANR). The R-Vessel-X project proposes original and robust developments of image

analysis and machine learning algorithms integrating strong mathematical frame-

works, e.g. digital geometry and topology, mathematical morphology, or graphs

for reconstructing vessels of the liver beyong medical image content. Another

objective of R-Vessel-X is to diffuse research works in an open-source way, with

the developments of plug-ins compatible with the ITK and VTK librairies largely

popularized by the KITWARE company. This project also include benchmarks com-

posed of images, associated ground-truth and quality metrics, so that researchers

and engineers evaluate their novel contributions. The consortium of R-Vessel-X

is composed of the following laboratories: Institut Pascal (coordinator, Le Puy-en-

Velay/Clermont-Ferrand), LIRIS (Lyon), CReSTIC (Reims), working together with

the KITWARE company (Lyon). This is a highly pluridisciplinary group composed

of researchers in computer science-related topics (biomedical image processing,

numerical simulation and analysis), applied mathematics (digital geometry and

topology, mathematical morphology), working with medical doctors (radiologists,

hepatologists) and young researchers and developers enrolled for the project.

1.1.1 The National Research Agency "ANR"

The National Research Agency (ANR) is a public administrative institution, placed

under the supervision of the Ministry of Education, Research and Innovation. The

Agency implements the financing of research on projects, for public operators in

cooperation with each other or with companies.

The ANR was created in 2005 to promote French research on projects, and to

stimulate innovation by promoting the emergence of multidisciplinary collaborative

projects and by encouraging "public-private" collaborations. It is also a question of

strengthening the positioning of French research at European and global level.
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1.1.2 Pascal institute

The Institut Pascal, UMR 6602, is a joint research and interdisciplinary training

unit of 400 people placed under the supervision of the University of Clermont

Auvergne (UCA) and the CNRS. The Clermont-Ferrand University Hospital is the

unit’s secondary guardianship. Institut Pascal is a member of Clermont Auvergne

INP, which brings together three engineering schools ISIMA, POLYTECH Clermont

and SIGMA Clermont.

The Pascal Institute was born from the successive merger (2012, 2017, 2021) with

a structuring vocation of seven laboratories covering the disciplines of Engineer-

ing Sciences and Systems of the Clermont site: Process Engineering, Mechanics,

Robotics, Physics of Sciences Information, Health.

The laboratory develops knowledge and technologies contributing to three areas

of application: the factory (including ecosystems), transport and the hospital of the

future.

Institut Pascal is a member of FACTOLAB, a joint laboratory with MICHELIN. It

is the bearer of the IMobS3 laboratory of excellence and a member of the CNRS

EquipEx ROBOTEX network and of the LabEx GaNeX (PIA1) and PRIMES. The

unit is a member of the CIMES competitiveness cluster, and of the AXELERA,

MINALOGIC, POLYMERIS and XYLOFUTUR clusters through a partnership with

UCA. The Institut Pascal is a member of the Institut Carnot MECD.

1.2 Technical context

Liver vessel disorders are increasing worldwide 5/10000 patients are affected, ac-

cording to the “European Association of the Study of Liver”. The visualization and

the segmentation of liver vessels is a difficult task because of their very variable,

tortuous and small shapes. The evolution of computer science in research on vas-

cular networks has revealed interest in the reconstruction and interpretation of

these complex structures. Their robust extraction from biomedical images requires

good acquisition during an imaging examination. Liver blood vessel disorders are

usually due to poor blood flow, either to the liver or leaving the liver. Extracting

topological and geometric information from the data can provide an alternative

perspective on the problems of segmentation of complex structures such as hepatic

vessels. Topological data analysis methods allow us to obtain information, usually

in the form of graphical representations of topological features. Moreover, these

topological signatures are very little used in most machine learning techniques

for segmentation problems. Graphs are structures used for modeling problems in
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many fields (such as the representation of complex structures). Network analysis

has experienced a new boom over the past twenty years, which has produced

significant results, both in the analysis of specific cases and in terms of modeling

large graphs. However, graphs bring a complexity that classic learning data does

not have. Indeed, if the order of the pixels in an image is fixed and immutable, there

is, for example, no natural order to traverse the neighbors of a node in a graph.

Architectures based on convolution cannot be used directly and must be adapted.

Various techniques have recently been developed to overcome these obstacles, start-

ing with learning representations for each node "embeddings" [73]. They evolved

into Graph Convolutional Networks [37] and Graph Neural Networks [74].

Since the hepatic vascular network is highly complex, the interpretation of liver

disease is a difficult task that may last several hours. A prior knowledge of network

structure is thus indispensable for a successful treatment development and surgical

planning.

Deep learning has shown in recent years an impressive efficiency in solving

many problems in medical imaging. Extracting topological information from the

data can provide an alternative perspective on segmentation issues of complex

structures such as hepatic vessels.

In this study we will propose a framework with the aim of developing a method-

ology for reconstructing the hepatic vascular network from medical images using

deep learning techniques based on knowledge of shape. Our main objective is to

find a new deep learning approach based on topological and morphological knowl-

edge to have a correct and robust segmentation of the vascular structures of the

liver in order to help experts in the exploration of liver diseases. We can deduce that

the missions of radiologists and biomedical engineers are complementary, because

engineers facilitate the interpretation of images and pathologies by radiologists,

but they cannot validate their methods without taking advantage of the medical

and anatomical knowledge of clinicians (see Figure 1.1).

1.3 Clinical context
Among the essential activities of a radiologist is to visualize organs and structure

and also identify tumors on different medical images to define a treatment given

his diagnosis knowledge, but the interpretation by a radiologist of data acquired

by different modalities in order to detect tumors or some deep structure such as

vessel and small tumors that are hardly or not visible in raw data is very difficult.

Also, the interpretation of medical data is hard because of the large amount of data,

and here is why the biomedical engineers interfere to facilitate the exploration of
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images by analysing data, develop automatic algorithms to deal with problem of

data quantity, and to detect automatically tumors structures and organs. From all

that we can deduce that the collective effort not only allows to transfer diagnostic

knowledge from radiologists to engineers but also to facilitate the interpretation of

raw medical data by radiologists (see Figure 1.1).

Figure 1.1: Diagram shows the complementary missions between biomedical engineers

and radiologists

1.4 Organization of manuscript
This thesis consists of seven chapters:

Chapter 1 “Basic concepts: Binary segmentation and deep learning”: in this

chapter, we are interested in the basic notions of the two main concepts of our

thesis: Segmentation and deep learning. We first present a general view of segmen-

tation problems: their characteristics, definition, objectives and the presentation of

standard methods proposed in the literature. Secondly, we expose the techniques

of machine learning, focusing mainly on aspects related to deep learning: archi-

tectures, their efficiency, ..., then we will present the notion of graphs and their

integration into deep learning architectures.

Chapter 2 "Liver anatomy and hepatic imaging": in this chapter, we present

the liver functional and structural anatomy including liver Couinaud classification,

and also liver vessel anatomy. This chapter presents also the hepatic vascular
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pathology’s and several hepatic imaging modalities. Finally we present the vessel

enhancement filters existing in the literature that we will use later in this thesis.

Chapter 3 “State of the art": Segmentation of vascular tree using different deep

learning approaches”: This chapter presents a state of the art on the integration

of topological signature in models based segmentation to improve the liver vessel

extraction. It also presents studies works using machine learning techniques for the

detection of liver vessel tree from different medical images as well as the different

methods based on machine learning and the topology of vessels. Finally, we will

deal with the methods of evaluating the results obtained by some segmentation

methods.

Chapter 4 “Segmentation of liver vessel by combining 3-D U-Net approaches":

This chapter studies algorithms based on deep learning for hepatic vessel segmen-

tation from CT scan sequences. We present in the first part of this chapter the

steps of the construction of a standard 3-D U-Net model allowing the segmentation

of the vascular network of the liver on raw CT scan images. In the second part,

we develop models on the base of this model which will be more robust, and we

compare the results of the three models obtained on three 3-D configurations (full

liver volume, slabs, boxes).

Chapter 5 “Robust deep 3-D architectures based on vascular patterns for liver

vessel segmentation": this chapter will be devoted to the presentation and evaluation

of the methodological contribution made by this work. For this, we will present a

first approach applied to the segmentation of the vascular network of the liver in

3-D CT scan images, by developing an architecture based on vascular filters for the

segmentation of these structures. We will then detail the comparative approach that

we have implemented to validate the best combination filter + deep learning (DL)

model to extract liver vessels in 3-D medical image. This approach significantly

improves the approaches proposed in the literature.

Chapter 6 “Liver vessel extraction in CT scans using 3-D topological deep

learning approach": This chapter is dedicated to introduce the topological signature

into our DL model. This information can help improving segmentation decision.

The incorporation of graph convolutions in the U-Net provides information that are

based on node connectivity. Based on the “GNN” architecture, we present a novel

U-Net GNN based segmentation for liver vessel segmentation. We will also present

a novel 3-D deep learning method based on topological information for liver vessel

segmentation. To do so, we employed a continuous-valued loss function, which

can help in improving segmentation decisions from vascular patterns, the results

will be compared with state of art approaches.

Chapter 7 “Conclusion and perspectives": We will discuss the results obtained

using the methods presented above, to demonstrate the contribution of the in-
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tegration of vascular filters and topological information into DL models. This

thesis ends with a general conclusion on our work including our contributions and

perspectives.

1.5 The Deep learning

Deep learning is a field of machine learning (ML) and artificial intelligence (AI)

that mimics the way humans acquire certain types of knowledge (see Figure 1.2).

Deep learning is an important part of data science, which includes statistics and

predictive modeling. It is extremely useful for scientists responsible for collecting,

analyzing and interpreting large amounts of data; Deep Learning makes this process

faster and easier.

In its simplest form, Deep Learning can be thought of as a way to automate

predictive analytics. While traditional machine learning algorithms are linear,

deep learning algorithms are stacked in a hierarchy of increasing complexity and

abstraction.

Figure 1.2: Deep Learning definition [29]
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Deep learning has proven particularly effective in medical imaging, thanks to

the availability of high-quality images and the ability of convolutional neural

networks to classify images. For example, deep learning can be as effective (or even

more effective) than a dermatologist at classifying skin cancers. Several vendors

have already received FDA approval to use deep learning algorithms to perform

diagnostics, including image analysis for oncology and retinal diseases. Deep

learning is also making major advances in improving the quality of healthcare

services by anticipating medical events through electronic medical records.

1.5.1 Neural networks
A type of advancedmachine learning algorithm, known as artificial neural networks,

is the basis of most deep learning models. Therefore, Deep Learning can sometimes

be referred to as deep neural learning or deep neural network.

Neural networks (see Figure 1.3) come in several different forms, including

recurrent neural networks, convolutional neural networks (CNN), artificial neural

networks (ANN), and feedforward neural networks (FNN), and each has advantages

for specific use cases. However, they all work quite similarly, feeding in the data

and letting the model determine for itself whether it made the correct interpretation

or decision about a given piece of data.

Figure 1.3: Neural network representation [14]

This kind of network is defined by layers of neurons, these being interconnected.

– Each neuron in the network is assigned a coefficient. – Each input data will be

multiplied by this coefficient and will apply a certain function to this result. – If

the sum obtained is negative, the neuron does not activate, because the data is not

interesting.
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If this sum is positive, then the neuron will send the information to the neuron

of the next layer (hidden layer), until the ultimate data reaches the last neuron. We

will then have a final result "output" (see Figure ??).

1.6 Segmentation based models
In image processing, segmenting an image corresponds to the action of dividing it

into a set of disjoint domains whose union is equal to the complete domain. This

division is carried out according to one or more criteria defined on or between

these regions. This division operation can be performed using many approaches.

All these methods, whether low level such as thresholding methods or high level

such as methods using an atlas or a deformable model, formalize this concept of

criteria. Ideally, these criteria should make it possible to characterize the regions in

an unambiguous way.

1.6.1 Binary segmentation
Binary images are images whose pixels have only two possible intensity values.

They are normally displayed as black and white. Numerically, the two values are

often 0 for black, and either 1 or 255 for white. Binary images are often produced

by thresholding a grayscale or color image, in order to separate an object in the

image from the background. The color of the object (usually white) is referred to

as the foreground color. The rest (usually black) is referred to as the background

color. However, depending on the image which is to be thresholded, this polarity

might be inverted, in which case the object is displayed with 0 and the background

is with a non-zero value. Binary image segmentation is the process of classifying

the pixels of an image into two categories: pixels belonging to the foreground

objects of an image and pixels belonging to the background objects of an image.

Image segmentation is an important problem in image processing and computer

vision with many application ranging from background substraction and removal

to object tracking, etc.

1.6.2 What is U-Net
U-Net is a neural network model dedicated to computer vision tasks and more

particularly to semantic segmentation problems. There are different computer

vision tasks. One of the most common applications is image classification. It

consists of letting the computer identify the main object of an image and assigning
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it a label to classify this image. It is also possible to let the computer locate the

location of the object on the image. It does this by surrounding the object with a

“bounding box” that can be identified by numerical parameters relating to the edges

of the image. Object classification is limited to one object per image. More complex,

object detection goes further and requires the computer to detect and locate all

the different objects within the same image. Semantic segmentation consists of

labeling each pixel of an image with a class corresponding to what is represented.

It is also called "dense prediction", because each pixel must be predicted. Unlike

other computer vision tasks, semantic segmentation does not just produce labels

and bounding boxes. It generates a high definition image, on which each pixel is

classified. One of the most used neural networks for image segmentation is U-Net.

It is a Fully Convolutional Neural Network Model (FCN). This model was initially

developed by Olaf Ronneberger [69] in 2015 for medical image segmentation.

The architecture of U-Net is composed of two “paths”. The first is the contraction

path, also called the encoder. It is used to capture the context of an image. It is in

fact an assembly of convolution layers and “max pooling” layers allowing to create

a map of characteristics of an image and to reduce its size to decrease the number

of network parameters. The second path is that of symmetric expansion, also called

decoder. It also allows precise localization thanks to the transposed convolution

Figure 1.4: U-Net architecture [69]
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1.7 The Graph Neural Network

1.7.1 Graph definition
Graph is a mathematical representation of a network and it describes the relation-

ship between objects of interest such as concepts, graphical elements, etc. A graph

consists of points (vertices or nodes) and lines (edges) between them.

Figure 1.5: Illustration of graph representation [24]

A graph G is a set of vertices V which are connected by edges E. Thus

𝐺 = (𝑉 , 𝐸) (1.1)

(see Figure 1.5). A node v is an intersection point of a graph. It denotes a location

such as a city, a road intersection, or a transport terminal (stations, harbours, and

airports). An edge e is a link between two nodes. A link denotes the connections

between the nodes. It has a direction that is generally represented as an arrow. If

an arrow is not used, it means the link is bi-directional.

1.7.2 Graph Neural Network GNN
Graph Neural Network (GNN) has a very specific meaning in deep learning litera-

ture. Thus, we will first talk about the difference between Graph Neural Networks

GNNs [37] and Convolutional Neural Networks (CNN).
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Convolutional Neural Networks (CNNs) were developed for grid-like data (es-

sentially image) data where the images can be seen as pixels arranged in a grid-like

structure. An image can be thought of as a graph where each pixel is a node and is

connected to all its neighboring pixel. However, this graph has certain special char-

acteristics - 1) It is nearly regular, that is all nodes have same amount of neighbors

except those which are at boundary and 2) There is order in the arrangement of

these nodes. Both of these characteristics are exploited by CNNs for learning good

representations.

However, general graphs present certain challenges: 1) They are not always

regular as in grids, i.e. they are irregular and 2) There is no ordering to the neigh-

boring nodes and even if ordered, they do not really carry any semantic meaning.

Consequently, traditional CNNs cannot be directly used in this case. Therefore, a

generalization was needed to make CNNs work for general graphs. This gave rise

to Graph Neural Networks or GNNs.

There are technical differences in CNNs and GNNs. CNNs are spatial convolution

models, that is, loosely speaking, convolution operation is done on the spatial

representation of the image. As discussed earlier, general graphs do not have a

canonical spatial representation, thus GNNs perform convolution on the spectrum

of the graph, given by the eigenvectors of its Laplacian. However, this convolution

operation on the spectrum can be expensive. A first order approximation of this

convolution was proposed in [20].

Figure 1.6: Example of GNN architecture [65]

If one looks at this approximated model GCN, it looks very similar to a CNN.
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Indeed, every node information is learnt by aggregating weighted information from

its neighbors. The only difference is that in CNNs, one learns a node-agnostic filter

where the same filter matrix is applied to all nodes regardless of its position in the

graph. However, in GCNs, we get node-specific filters governed by the Laplacian,

it can also be learnt (see Figure 1.6).

Second difference is related to the concept of convolution: in CNN, convolution is

similar to a sliding window to move through the images then the convolving process

(multiply and sum the values pixel by pixel) makes the feature map. Afterward,

it depends on the architecture to have pooling, normalization, dropout,..., after

convolution layers. While this is totally distinct in GCN. As we mentioned above

we have nodes and edges in GCN to generate them and then train them but in

GCN, convolution is applied before all the actions because we plan to discover

each pixel and then their edges and gradually all neighbors that are connected to a

specific node. According to this, the role of convolution is summarised to cover the

neighborhood of each node.

1.8 State of the art
Medical imaging systems such asMagnetic Resonance Imaging (MRI) and Computed

Tomography (CT) provide useful information on the liver. Extraction of the organ

and its vessels from images is essential for analysing disease and planning surgical

operations.

Segmentation of the complete liver can be performed manually on images CT

(2-D slices), moreover the division of liver volumes into eight sub-segments is

crucial because it mainly requires visualization (3-D), it is important to explore the

Couinaud segments. In the literature there are several articles on the segmentation

of the whole liver. Gao et al. (1996) [21] used thresholding and morphological

operations (morphological closure). Xu et al. (2010) [83] used the local entropy

method to delineate the liver contour and tumor. Badakhshannoory and Saeedi

(2011) [22] used principal component analysis (PCA) to segment the kidneys and

the liver in each 2-D image section, and the results were combined to form a

hepatic volume in 3-D. Oliveira et al 2011, [63] have also used an active contour

method (levels sets) with parameters optimized by GA (Genetic Algorithm). Abdel-

Massieh et al. (2010) [61] used a statistical model in the first part of their hepatic

segmentation, followed by an active contour to improve the result. More recently,

Chitsanupong Butdee et al. 2016 [7] used a region-based growth segmentation

method. In all these previous methods they had good results but still need to be

improved.
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The manual segmentation is a long and tedious process, and becomes impossible

with a large quantity of biomedical images. The automatic extraction of this

information requires a very precise segmentation, which is difficult on medical

images due to their low contrast and low signal to noise ratio. Classic methods are

hardly reproducible or reach a low accuracy when confronted to more complex than

limited private data sets. For the segmentation of the hepatic vessels, Lesage et al.

[50], published a large and relevant overview. Some interesting techniques are the 3-

D multiscale line filter of Sato et al. [72] improved locally adaptive region growing

algorithm from Yi Ra et al. [85], Kawajiri et al. [34] proposed a thresholding

segmentation approach after contrast enhancement steps, but this method lead to

lot of false and negative segmentation. Oliveira et al. [63] used a region growing

method based on a Gaussian mixture model for the segmentation of the vessels

and nodules but the bifurcations or parts of vessels were not detected, especially

when the nodules or the veins are close to the edge of the liver. Recently, Butdee

et al. [7] proposed a 3-D segmentation method by region growing, they selected

two seed points, some enhancement of the gray values was realized for optimal

visualization, then a pixel within the hepatic vein in any slice was selected as a

seed point for the 3-D region growing algorithm to extract the hepatic vein, it was

selected at the main branch of the hepatic vein. The same process was repeated for

segmentation of the portal vein to give vessels of liver at the end of processing.

All these methods failed to give a good reconstruction of hepatic vessels because

they all used as information image intensities, which is generally not sufficient.

Exploration of vascular images should consider the geometry and topology of

vessels, the use of local appearance of the pixel is not sufficient, as illustrated by

the methods we have described so far. Recently, deep learning architectures have

been successfully applied to liver vessel segmentation challenges by automatically

learning the hierarchies of relevant attributes directly from medical images.

1.9 Motivation of this work
The hepatic vascular network shape is very complex, the exploration of these struc-

tures by a radiologist is a difficult task and may last over time. A prior knowledge

of network structure is essential for a successful treatment and surgical planning.

Especially for vessel lesions detection, the required information include the precise

position of the liver vessels, the identification of the veins and arteries, and the

geometrical and topological parameters of the vessels.

From a practical perspective, the processing of data in medical images allows the

clinician to observe on the same reconstructed image the different information from
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each of the sources. This richer visualization provides the practitioner with more

information on which he can rely in order to improve the quality of his diagnosis.

From the point of view of image processing, this pooling makes it possible to make

the numerical methods more robust by exploiting the available redundancy. Our

work focused on the design of a relevant method to exploit the vessel. This approach

allows each of them to bring their specificity while being enriched by that of the

others.

1.9.1 Technical objectives

As we know segmentation of hepatic vessels is a difficult task. In the current state

of the art, no method has been able to perform accurate segmentation, especially on

CT images, due to acquisition issues such as: low spatial resolution, low contrast,

the variability of acquisition parameters (acquisition is not reproducible for each

patient). The reason why we are trying to solve this problem by providing a solution

to help clinicians and radiologists in their diagnosis.

The main objectives of this work is to :

Develop accurate solution for hepatic vessels reconstruction on abdominal medical

images using topological deep learning.

Train our models on CT scan images to predict a binary image of liver vessels tree.

1.9.2 Clinical objectives

Among the essential activities of a radiologist is the visualization of organs and

structures, but also the identification of tumors on different medical images to define

a treatment taking into account his medical knowledge. But the interpretation

by a radiologist of data acquired by different modalities in order to detect tumors

or certain deep structures such as vessels and small tumors which are hardly or

not visible in the raw data is a very difficult task. We intervene to facilitate the

exploration of data by analyzing them to develop automatic algorithms to deal with

problems of large quantities of data, for example.

In this work, the focus is on the automatic detection of liver vessels from imaging

data. The goal is to help the clinician detect liver tumors to reduce the need for

biopsies.

Accurate segmentation of hepatic vessels helps radiologists interpret the data

more easily and will help detect not only hepatic vessel diseases, but also most liver

abnormalities that can be detected automatically using hepatic vessels.
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1.10 Contribution
The main contributions presented in this thesis are as follows:

1. The proposal of a comparative study which considered three alternative setups

that allow adapting popular encoder-decoder U-Net architectures to volumetric

data. These setups, referred to as full 3-D, slab-based, and box-based, are depicted.

The most methods on literature build their models on box especially to study

3-D images. In our case we test these three setups in order to validate the best

model/configuration and then use them in further scientific studies to improve

results of segmentation process.

2. The main contribution in this thesis : we proposed a complete framework with

the aim of developing a methodology for detecting the hepatic vascular network

from abdominal CT, in a 3-D approach, using topological deep learning techniques

based on a priori knowledge of shape. Our main objective is to find a new deep

learning approach based on vessel topology to obtain an accurate segmentation of

the liver vascular network.

3. We proposed a novel approach which coupled a 3-D Dense U-Net with accurate

weighted Dice loss function (focal weighting), and then we compare the results

with ClDice [75]. This loss function is used and tested for segmentation tasks on

2-D images. Here we have created a loss function for binary segmentation in 3-D

images instead of multi-class segmentation. The proposed topological model will

be tested on preprocessed data using some vesselness filters to enhance the vascular

structures prior to their segmentation, and to remove non vascular structures. This

can give more accurate segmentation and can also eliminate the noise and positive

false in results.
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2 Clinical context and hepatic imaging

2.1 Liver anatomy

We can describe the anatomy of the liver using two principal aspects, morphological

and functional anatomy. The morphological anatomy describes the shape of the

liver and we can observe any internal features as vessels and nodules for example,

that have an obvious importance in hepatic surgery. For the functional anatomy,

the French anatomist Claude Couinaud [13] was the first who divided the liver into

eight functionally segments allowing resection of segments without damaging any

others in surgical transplantation for example.

Figure 2.1: Detailed liver anatomy [6].
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2.1.1 Structural anatomy of the liver
The liver is the largest solid organ in the body, it represents about 3 % of total

body weight. It is in the part of the digestive system (see Figure 2.2), it has 2 lobes

typically described in two ways, by morphological anatomy and functional anatomy.

It is located under the diaphragm, in the upper right part of the abdominal cavity.

It is above stomach and its weight is about 1.5 kg. The liver has the capacity to

regenerate itself if it is damaged. This property makes it possible to carry out liver

and resections. A healthy person can give a part of his liver to a relative who has a

damaged part.

The liver is divided into four unequal lobes; the right hepatic lobe is the largest,

the left hepatic lobe is the narrowest part of the organ. Between these two major

lobes, we distinguish the square lobe and the caudate lobe. The gallbladder is

attached to the liver at the border of the square lobe and the right hepatic lobe (see

detailed anatomy in Figure 2.1).

Figure 2.2: Liver position in humain body [70].

The square lobe and the caudate lobe are separated by a groove called the liver

hilum. It is at the level of the hilum that the portal vein and the hepatic artery enter

the liver, and that the major bile ducts pass.

The study of its vascular structures is essential when one wants to understand

the functional anatomy of the liver, because the vascularization of the liver makes

it possible to distinguish sectors which themselves are divided into segments: it is

the segmentation of Couinaud. This segmentation allows the division of the liver
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into 8 segments which are distributed, according to their localization, in the level

of the right liver or the left liver and which are separated by the branches of the

portal and hepatic veins.

The field of liver surgery has progressed recently, in the last years liver trans-

plantation has become very essential for us to understand the vascular inflows in

the liver. Consequently, it allowed the evolution of the concept of the functional

anatomy of the liver.

2.1.2 Liver vessel anatomy
The blood vessels conveying blood to the liver are: the hepatic artery (30 %), and the

portal vein (70 %). The hepatic artery brings oxygenated blood to the liver and the

portal vein brings venous blood rich in the end products of digestion, which have

been absorbed from the gastrointestinal tract. The venous blood is drained by two

hepatic veins which drain into the inferior vena cava. The hepatic artery and portal

vein terminate by dividing into right and left primary branches to the corresponding

lobe of the liver. On penetrating the liver, these vessels divide until they form a

very dense network of extremely fine vessels (see Figure 2.3). Depending on the

person, the anatomy varies. The liver can have one to three arteries: the middle

hepatic artery which arises from the celiac trunk, the right hepatic artery which

arises from the superior mesenteric artery, the left hepatic artery which originates

from the left gastric artery (see Figure 2.3).

2.2 The segments of Couinaud
Couinaud’s liver resection is used in order to facilitate their identification, whether

for a follow-up, a biopsy, an interventional procedure or surgical removal. The

problem arises when the lesion is at the edge of different segments, where the

precision is poor. In case of doubt in the CT imaging, the use of thick MIP (maxi-

mum intensities projection) or slices projection, 3-D reconstructions imaging are

of great help. In fact, projection and 3-D reconstructions of vessels may provide a

good segment localization of the lesions in liver than simple axial images. The liver

resection described by Claude Couinaud is based on the identification of the hepatic

and the portal veins. Today, Couinaud’s definition is the most used classification

since it is better suited for surgery and more accurate for the localization of lesions.

Comprehension of the anatomy of the venous system is essential. Exact informa-

tion is required both in the location of the lesions and to estimate the segments

volumes, to determine the best therapeutic, radiological or surgical treatment. Any
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Figure 2.3: Detailed liver vessel anatomy [23].

venous or portal vascular anatomic variant should be exactly described, so as to let

the interventional radiologist or surgeon plan their procedure in advance and, if

necessary, modify their technique, by greatly reducing the inter and post-surgical

difficulties and complications [19].

The anatomist Couinaud separated the liver into 8 functional segments, each

containing, at its periphery, a branch of hepatic vein. For segments II, III and IV, left

liver and segments V, VI, VII and VIII to the right liver as described in Figure 2.4:

The Couinaud classification of liver anatomy divides the liver into eight functionally

independent segments. Each segment has its own vascular inflow, outflow and

biliary drainage. In the centre of each segment there is a branch of the portal vein,

hepatic artery and bile duct. In the periphery of each segment there is vascular

outflow through the hepatic veins.

Right hepatic vein divides the right lobe into anterior and posterior segments.

Middle hepatic vein divides the liver into right and left lobes. This plane runs from

the inferior vena cava to the gallbladder fossa. The falciform ligament divides the

left lobe into a medial (segment IV) and a lateral part (segment II and III). The portal

vein divides the liver into upper and lower segments. The left and right portal veins

branch superiorly and inferiorly to project into the center of each segment.
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Figure 2.4: Diagram showing the segments (numbered 1 to 8) of the liver as described by

Couinaud. [6]

2.3 Main vascular pathologies

Venous thrombosis constitutes the majority of vascular diseases of the liver. One

or more risk factors for thrombosis - in particular a primary myeloproliferative

syndrome - are often involved. Recent portal vein thrombosis, suspected in cases

of abdominal pain, is recognized by imaging. The severity is linked to the distal

involvement of the superior mesenteric vein, which increases the risk of intestinal

infarction. The initiation of anticoagulant treatment is urgent. In the absence of

reversal, a cavernoma develops, a late stage where the disease is sometimes only

recognized, resulting in portal hypertension. Hepatic vein thrombosis can present

as severe acute liver disease, such as cirrhosis, or be completely asymptomatic [64].

The diagnosis is made by imaging the hepatic veins and the inferior vena cava.

Blood thinners are strongly recommended. In the absence of rapid improvement,

percutaneous venous angioplasty, placement of a transjugular intrahepatic portosys-

temic shunt (TIPS), and finally liver transplantation are discussed. Portosinusoidal

vascular disease corresponds to damage to the small hepatic vessels. It should be

considered in case of unexplained liver test abnormalities, or portal hypertension

without cirrhosis, and established by liver biopsy. It is often associated with general

illnesses. Vascular diseases of the liver are divided into three main types depending
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on the location of the attack: portal vein thrombosis, Budd-Chiari syndrome and

portosinusoidal vascular disease [16].

2.3.1 Portal vein thrombosis

Extrahepatic portal vein thrombosis is characterized by the development of a

thrombus in the trunk of the portal vein and/or one of its two branches, or by the

permanent obliteration of the portal vein following a old thrombus [64].

2.3.2 Budd-Chiari Syndrome

Primary Budd-Chiari syndrome is a rare condition due to an obstacle to hepatic

venous return unrelated to compression or neoplastic invasion. This obstruction,

usually caused by thrombosis, can occur at any level from the small hepatic veins

to the termination of the inferior vena cava at the level of the right atrium. Pri-

mary Budd-Chiari syndrome is closely associated with prothrombotic states. In a

prospective and multicenter European study, at least one risk factor for thrombosis

was identified in 84 % of patients [46].

2.3.3 Portosinusoidal vascular disease

Portosinusoidal vascular disease (PSVD) is a rare disease of the small vessels inside

the liver. This term includes various disorders previously named from a histological

point of view "nodular regenerative hyperplasia", "obliterating portal venopathy",

"hepatoportal sclerosis", "incomplete septal fibrosis", "non-cirrhotic portal fibrosis"

and from a clinical “idiopathic portal hypertension”, or “non-cirrhotic intrahepatic

portal hypertension”. Indeed, there is a strong overlap between all these entities

and to date no practical consequence to discriminate between them [46].

2.4 Vessel enhancement filters
Image filtering is one of the most fundamental operations in image processing and

can improve image quality and provide a good visualization of pixels that are less

enhanced in the image. Note that some filters are known to detect or preserve

edges, while others are used for smoothing or denoising. You should also note that

the performance of the filter depends on both the input image and the parameters

selected for filtering, such as kernel shape and size, iterations, and interpretation.
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To enhance the vascular structures prior to their segmentation and visualization,

and to suppress non-vascular structures and image noise, several filters enhancing

vascular structures are proposed.

In our case, we assume vessel enhancement as a filtering process that looks for

geometric structures that can be considered tubular. The filters presented below

were all tested for liver vessel enhancement by Lamy et al. [44].

2.4.1 Frangi filter

The Frangi filter [17] is typically used to detect vessel or tubular structures in

volumetric image data. Most of Hessian-based vessel enhancement filters use

eigenvalues extracted from the Hessian matrix to derive geometrical structures

which can be regarded as tubular. Since vessels in the liver have different radius

it is important to study these features in a multi-scale framework. This vessel

enhancement filter was developed to improve the visualization of vessels which can

reduce false positives during segmentation process, to obtain better segmentation

results in vessel detection and airway wall exclusion.

2.4.2 Jerman filter

Jerman’s filter [31] is a Hessian based tubular (vessel/vesselness) and spherical

enhancement filters. It is an enhancement filter based on ratio of multiscale Hessian

eigenvalues, which yields a close-to-uniform response in all vascular structures and

accurately enhances the border between the vascular structures and the background.

2.4.3 Sato filter

It is a 3-D line enhancement filter which is developed in order to discriminate line

structures from other structures and recovering line structures of various widths.

The 3-D Sato filter [72] is based on a combination of the eigenvalues of the 3-D

Hessian matrix. Multi-scale integration is formulated by taking the maximum

among single-scale filter responses, and its characteristics are examined to derive

criteria for the selection of parameters in the formulation.

2.4.4 Zhang filter

In the specific context of hepathic vascular networks, Zhang et al. [90] further

proposed to improve Jerman vesselness by identifying the liver tissues and vessels
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Figure 2.5: Illustration of the enhancement filters applied for liver vessel enhancement by

[44].

mean intensity. A K-means classification was combined with a sigmoid filter

dedicated to enhance the vessels whereas suppressing other tissues.
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2.4.5 RORPO filter

Ranking the Orientation Responses of Path Operators is a non linear filter proposed

by Merveille et al. [57] to deal with curvilinear structures. RORPO, unlike most

methods in the literature, is a non-local, non-linear method and better adapted

to the integrated anisotropy of curvilinear structures. This method is based on

a recent notion of mathematical morphology: path operators. RORPO can be

used directly to filter images containing curvilinear structures, in order to present

them and preserve them, but also to reduce noise. But the two characteristics of

RORPO can also be used as a priori information on curvilinear structures, in order

to be integrated into a more complex method of image analysis. In a second step,

the authors present a regularization term intended for variational segmentation,

using the two characteristics of RORPO. The information transmitted by these

two characteristics make it possible to regularize curvilinear structures only in the

direction of their main axis. In this way, these structures are better preserved, and

certain curvilinear structures disconnected by noise can also be reconnected.

2.5 Hepatic imaging modalities

2.5.1 Magnetic resonance imaging

The liver MRI protocol consists of several sequences before and post contrast. Post-

contrast phases contain arterial phase, portal venous phase, delayed phase, and

later delayed phase. The specific hepatobiliary contrast agents used in liver MRI are

mangafodipir trisodium, gadobenate dimeglumine and gadoxetic acid. These con-

trast agents have specific characteristics such as specific receptors and transporters

for absorption, different excretion percentage by biliary and renal routes, mode of

administration and side effects. These hepatocyte-specific contrasts can help better

identify and characterize small liver injury, especially well-differentiated hepatocel-

lular adenoma (HCC). Contrast agents that are secreted into the bile can be used to

differentiate hepatocellular adenoma (HCA) by early heterogeneous enhancement

in the arterial phase MRI with fat suppression, then portal vein washout contrast.

Because HCA has no bile ducts, biliary-specific contrast uptake is minimal in the

delayed phase [4].

The standard method to evaluate the presence of inflammatory and early fibrotic

changes is a liver biopsy [36]. However, a new technique called MR elastography

is an MRI with low frequency vibration which measures liver. MR elastography

does not have the possible bias of sampling present in liver biopsy. It has better
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sensitivity and specificity compared to US elastography, which has limitations in

obese patients and the presence of ascites.

2.5.2 Ultrasound imaging
Ultrasound is the main liver imaging technique to describe focal and diffuse liver

injury due to its availability and low cost. It may exhibit different patterns in

different liver lesions, malignant lesions, generalized hyperechogenicity, as seen

in diffuse fatty liver disease, and lesions hyperechoic as seen in various benign

and malignant lesions. Benign hyperechoic lesions contain hemangioma, hepatic

adenoma, focal nodular hyperplasia, and focal fatty changes. Ultrasound has certain

limitations because the proximity of the diaphragm to the liver makes it difficult

to image the entire liver, inter-observer variability, less precision especially for

patients suffering from obesity [4].

2.5.3 Tomographic nuclear imaging
Positron emission tomography (PET) and single-photon emission computed to-

mography (SPECT) are the nuclear imaging techniques used more frequently for

diagnosis of liver malignancy and evaluation of response to treatment metastasis,

recurrence, and prognosis. F-fluorodeoxyglucose (FDG)-PET and C-acetate PET

are more common nuclear imaging modalities in diagnosing liver malignancy. Al-

though it has high sensitivity, the false positive rate is high due to the detection of

any focal hypermetabolism area. The sensitivity is low in the detection of lesions

smaller than 1 cm.

2.5.4 Computed tomography imaging (CT scan)
CT of the liver can be done with different protocols, including unenhanced, single-

phase, dual-phase, and triphasic contrast-enhanced. Each of these liver CT protocols

is important in the evaluation of different liver pathologies. The single-phase

contrast-enhanced CT is generally the modality of choice in the portal venous

phase that is typically 70 seconds after intravenous contrast injection, the liver

has the maximum enhancement. It can mainly provide information about diffuse

liver pathologies, such as liver cirrhosis and hypovascular metastatic liver disease.

The dual-phase contrast-enhanced CT is the primary imaging modality conducted

in the portal venous phase and the late arterial phase, which can be obtained

approximately 35 seconds after injection and might provide better information

about hypervascular lesions [36]. This protocol can help hypervascular metastatic
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lesions like renal cell carcinoma, breast cancer, melanoma, and endocrine tumors

and preoperative evaluation for partial hepatic resection. It can provide information

about liver anatomy and its vasculature to the surgeon.

Triphasic contrast-enhanced CT is non-enhanced, arterial and portal venous

phase. Arterial phase enhancement begins approximately 20 to 25 seconds after

contrast injection. Hypervascular pathologies, like most benign and malignant

hepatic lesions, can be appreciated in this phase. Triphasic protocols are usually

used for patients with possible cirrhosis [4]. HCC is a hypervascular lesion that

enhances during the arterial phase, and it has a fast wash-out during the portal

venous phase. Cholangiocarcinoma is one of the liver pathologies that can be

appreciated better in triphasic CT, with non-enhanced, portal venous phase and

delayed phase (10 to 15 minutes) hyperenhancement on the delayed phase because

of the presence of plenty amount of fibrous tissue (see Figure 2.6).

Figure 2.6: In portal venous phase CT image shows strong enhancement of portal vein

branches and hepatic veins [6].

2.6 Acquisition phases in hepatic imaging
Timing of CT-series is important in order to grab the right moment of maximal

contrast differences between a lesion and the normal parenchyma. In the early
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arterial phase: we clearly see the arteries, but we only see some irregular enhance-

ment within the liver (see arterial phase in Figure 2.6). Portal venous phase is a

post-contrast injection in which images have the following characteristics: Portal

veins are very good enhanced. Hepatic veins are enhanced too (see Figure 2.6). In

the late arterial phase, tumors are clearly observed (same figure).

2.7 Multimodal approaches in hepatic imaging
The good characterization of hepatic nodules and early diagnosis of liver disease

such as HCC are very important steps. However, computed tomography (CT) and

magnetic resonance (MR) imaging are the most useful modalities for the detection

of new nodules detected after ultrasonography (US). Many studies presented the

successful integration of contrast material-enhanced US into a multimodal approach

for diagnosis of liver cancer HCC. Contrast-enhanced US also provides dynamic

real-time assessment of tumor vascularity so that contrast enhancement can be

identified regardless of its timing or duration, allowing for detection of arterial

hypervascularity and portal venous washout. The purely intravascular nature of

US contrast agents is valuable as the rapid washout of nonhepatocyte malignancies

is highly contributory to their differentiation from HCC [4].
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3 Segmentation and visualiza-
tion of hepatic vascular network

3.1 Machine learning approaches for liver and
vessels segmentation

Different architectures of DL are developed in order to segment precisely the liver

vessels on different types and modalities of medical imaging. We will expose these

approaches according to image types.

In recent years, Deep Learning (DL) has been increasingly applied in different

areas such as object detection, medical images segmentation, classification, vessel

extraction, [41, 42, 77, 89]. In particular, deep neural models have been proposed

in order to segment the hepatic anatomy [3, 11, 59]. From this literature, the U-Net

model proposed by Ronneberger et al. [69] and its extensions stand out as the most

relevant for this task. In particular, the 3-D U-Net captures the volumetric features

of the organs within medical images. This model is an extension of the 3-D FCN [55]

(Fully Convolutional Neural network), which suffers from high computational cost

and GPUmemory consumption. To address these issues, the 3-D U-Net architecture

was proposed, and is effective even with a limited image dataset. In the Table 3.1

we present the relevant reviewed vessel segmentation methods proposed in the

literature.

3.1.1 Deep learning approaches
Liver segmentation

In recent years, many researchers developed DLmethods to solve liver segmentation

problems. Among the most widely used methods, various Convolutional Neural

Networks (CNNs) have been proposed to learn feature representations for liver or

lesions liver segmentation. Bencohen et al. [1] proposed to use a Fully Convolutional

Neural networks (FCN) for liver segmentation and liver metastasis detection. They

used three adjacent CT image slices to form a three-channel image service as

input. Zhang et al. [92] train also a FCN for liver segmentation; then they make

a comparative study on the post-processing step to refine their results. Christ et

al. [10] proposed two cascaded FCNs to segment liver and tumors simultaneously.

The final output was refined using a 3-D conditional random field. Sun et al. [80]
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designed a multi-channel FCN to segment liver tumors. The probability maps were

generated by the feature fusion from different channels. Lu et al. [56] used a 3-D

CNN and a graph cut to refine their results. Qin et al. [66] proposed a super-pixel-

based CNN which divides the CT-image into super-pixel by aggregating pixels

according to their intensity. They classified them into three classes, liver boundary,

and non-liver background and utilized the CNN to predict the liver boundary.

Kushnure et al. [40] proposed to introduce multi-scale features in the CNN that

extract global and local features at a more granular level. Chlebus et al. [8] use a

U-Net in two models and filtered the false positives of tumor segmentation results

by a random forest classifier. In Liu et al. [54], the authors proposed an improved U-

Net model with a graph cutting. Jin et al. [32] present a basic architecture as U-Net

with the extraction of contextual information which combines low-level feature

maps with high-level ones. A hybrid method namely H-Dense U-Net presented by

Li et al. [52], combined 2-D and 3-D models to segment livers and liver tumors.

Rafiei et al. [68] also used 3-D and 2-D U-Net networks to segment livers. The 3-D

encoding phase is for capturing 3-D surfaces while 2-D decoding phase reduces the

complexity of the process.

Liver vessel segmentation

In this category the researchers tested their methods on CT scan data. Zeng et al.

[87] proposed solution for liver vessel segmentation based on extreme learning

machine (ELM) tested on 3-D CT scan images. They used an anisotropic filter to

remove noise and to preserve vessel boundaries. Then, based on the knowledge

of vessel shapes, 3 filters are introduced: Sato, Frangi and offset medialness filters

to extract features of the vessel. Then the ELM is applied to extract liver vessels

voxels from background voxels. Kitrungrotsakul et al. [38] proposed Multi Deep

Convolution Network for robust hepatic vessel extraction from 2-D and 3-D (CT)

images. It consists of three deep convolution neural networks to extract features

from coronal, sagittal and transversal planes of CT data. The three networks

have shared features at the first convolution layer, but will separately learn their

own features on the second one. All three networks will join again at the top

layer. Ibragimov et al. [27] proposed to combine DL with anatomical analysis

for automatic segmentation of the liver portal vein. They applied CNN to learn

the consistent appearance patterns of the portal veins using a training set with

reference annotations. Yu et al. [84] presented a method of 3-D Residual U-Net

for liver vessel segmentation on CT scan images. They introduced a residual block

structure in the ResNet into the 3-D U-Net, and construct a new 3-D Residual U-Net

architecture to segment the hepatic and portal veins from abdominal CT volumes.
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To deal with the challenge of pixel imbalance they developed a weighted Dice loss

function, which allows vessel boundary segmentation and small vessel detection.

The scientist tried also to segment hepatic vessels in images acquired by different

modalities, but there are not many articles because they are generally less used

in the clinical analysis and they are more complicated to explore. Thomson et al.

[81] introduced a reduced filter 3-D U-Net for hepatic vessel reconstruction in 3-D

ultrasound (US) images proposed to achieve accurate vessel segmentation in true

3-D and stuck 2-D US images. Recently Kitrungrotsakul et al. [38] proposed an

automatic vessel segmentation approach that uses a multipathways DL network.

The proposed framework learns a deep network for binary classification based on

extracted training patches in 3 planes (sagittal, coronal, and transverse planes) of

MRI scan images. It provides a good recognition performance on 3-D volumes.

Their solution, VesselNet, products a vessel probability map for voxels to generate

the final segmentation of liver blood vessels using a multi-scale method. Their

results obtained on IRCAD data confirm that the solution improves previous works

presented in the literature.

Table 3.1: Comparison of the main reviewed vessel segmentation methods, CTA: Computer

Tomography Angiography. AP : average precisions. A: Accuracy. D: Dice

Method Year Modality Region Dimension DL model Precision
Butdee et al [7] 2016 CT Liver 2D/3D - D=0.96

Sato et al [72] 1998 CT Liver 3D - -

Fu et al [18] 2016 – Retina 2D CNN’s/CRF A=0.95

Oleivera et al [63] 2018 – Retina 2D FCN A=0.96

Laibacher et al [43] 2019 – Retina 2D M2U-Net A=0.78

Liskowski et al [53] 2016 – Retina 2D DNN A=0.97

Zeng et al [87] 2016 CT Liver 3D – A=0.9

Kitrungrotsakul et al [38] 2017 CT Liver 3D CNN D=0.83

Ibragimov et al [27] 2017 CT Liver 3D CNN D=0.83

Yu et al [86] 2019 CT Liver 3D 3D ResU-NET D=0.73

Thomson et al [81] 2019 US Liver 2D/3D 3D UNet D=0.78

Kitrungrotsakul et al [39] 2019 CT/MRI Liver 3D CNN D=0.9

Shin et al [75] 2019 CTA Retina 2D CNN-GCN AP=0.9

Yan et al [84] 2020 CT Liver 3D 3D Residual U-Net D=0.92

Zhai et al [88] 2019 CT Lungs 3D GCN-CNN –
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3.2 Machine learning approaches for other vessel
segmentation

3.2.1 Deep learning approaches
Many DL methods have been introduced to reconstruct retinal vessel on 2-D images.

Fu et al. [18] used the CNNs in combination with Conditional Random Field (CRF)

to generate a vessel probability map. They developed this map to separate the

vessels from the background even in the inadequate contrast regions, and is not

sensitive to the presence of tumours. They tested their method on 2-D DRIVE and

STARE public data sets. Oliveira et al. [63] proposed Fully Convolutional Neural

Networks combining the multiscale analysis provided by the wavelet transform

with a multiscale CNN to deal with the varying width and direction of the vessel

structure in the retina. Their approach overtakes the results obtained by Fu et al.

[18]. Liskowski et al. [53] proposed a supervised segmentation technique that uses a

deep neural network tested on DRIVE and STAR public data sets their method solve

the problem of the branch vessel disconnection. Laibacher et al. [43] presented a

novel neural network architecture, called M2U-Net. This is a new encoder-decoder

architecture that is inspired from the U-Net. It introduces pre-trained components

in the encoder and contractive blocks in the decoder that are combined with bilinear

up-sampling, the model was tested on the DRIVE data set. All existing methods

using CNNs for retinal vessel segmentation are mainly based on local appearances

learned on the image patches, without taking into account the topology and the

shape of the vessels.

3.2.2 Topological deep learning approaches
Methods based on graph topology

GCN and GNN are used for segmentation problems especially for multi class

segmentation (classification tasks), such as Shin et al. [75] who incorporated a GCN

into a CNN architecture, where the final segmentation is inferred by combining

the different types of features. They proposed a method that can be applied to

expand any type of CNN-based retinal vessel segmentation method on 2-D images

to enhance their performance. Zhai et al. [88] proposed a GCN-CNN by linking a

CNN with GCN for pulmonary artery-vein separation in chest CT scan images. For

binary segmentation, to the best of our knowledge, only one study was found in

Juarez et al. [33]; they proposed a joint 3-D U-Net-Graph Neural Network-based

method for airway segmentation from chest CTs. The dense feature maps at this
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level are transformed into a graph input to the GNN module. The incorporation

of graph convolutions in the U-Net provides nodes in the graph with information

that is based on node connectivity.

Methods based on topological loss function

Another work based on loss functions such as Hu et al. [25] also proposes a

topology-preserving loss function incorporated into end-to-end training of a deep

neural network to improve segmentation results. They illustrate the effectiveness

of their proposed method on a broad spectrum of natural images. Other approaches

used loss functions to improve the multi class segmentation such as Banerjee et

al. [5] who proposed a coupled 2-D U-Net architecture that allows training with

topological priors and losses for segmentation of street scenes in adverse weather

conditions with a neural network trained on images in good weather. Sudre et al.

[78] investigated and compared the behavior of several loss functions and their

sensitivity to learning rate tuning in the presence of different rates of label imbalance

across 2-D and 3-D segmentation tasks. Clough et al. [12] used a topological loss

function for deep learning based image segmentation using persistent homology;

a CNN with loss function was used for semantic segmentation. Ngoc et al. [62]

introduced the boundary-aware loss for deep image segmentation using CNNmodel

for semantic segmentation. Sugino et al. [79] and Kervadec et al. [35] proposed

loss weightings for improving imbalanced brain structure segmentation using

fully convolutional networks. Finally, Hu et al. [26] developed a topology-aware

segmentation by using discrete Morse theory for 2-D neuron image segmentation

task. The closest method to our project is proposed by Shit et al. [76], where

they presented a centerlineDice loss function that measures the similarity between

skeleton of ground truth and the skeleton of likelihood map obtained by CNN

network to segment tubular structures such as vessels, neurons, or roads. At the

best of our knowledge, no studies propose to elaborate the topological approach

for hepatic vessel segmentation, especially by a 3-D approach.
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4 Models based on 3D U-Net approaches

4.1 Resume
Accurate liver vessel segmentation is crucial for the clinical diagnosis and treatment

of many hepatic diseases. After the in-depth study of the state of the art in the

previous chapter, hereafter, we focus on the hepatic vessel segmentation task for

improving the results obtained in the literature. To the best of our knowledge, no

comparative evaluation has been proposed to compare deep learning methods for

the liver vessel segmentation task. Moreover, most research works do not consider

the liver volume segmentation as a preprocessing step, in order to keep only inner

hepatic vessels.

This chapter is dedicated to carry out a comparative study of 3-D deep learning

method based segmentation for liver vessel segmentation from CT (Computerized

Tomography) scans, to find an optimal method that can help in improving seg-

mentation decisions. More precisely, 3-D U-Net, Dense U-Net, and MultiRes U-Net

are pitted against each other in the vessel segmentation task on the public IRCAD

data set. For each model, three alternative setups that allow adapting the selected

CNN architectures to volumetric data are tested. Namely, full 3-D, slab-based, and

box-based setups are considered.

The results showed that the most accurate setup is the full 3-D process, providing

the highest Dice score for most of the considered models. However, concerning the

particular models, the slab-based MultiRes U-Net provided the best score. With our

accurate vessel segmentations, several medical applications can be investigated,

such as the automatic and personalized Couinaud zoning of the liver.

First, wewill start with themethodology, including the description of the different

models with their parameters, then we will present the results obtained, and finally

a discussion of the results and a general conclusion will be described.

4.2 Introduction
Hepatic blood vessel disorders usually result from inadequate blood flow, whether

into or out of the liver, induced by cirrhosis and other liver diseases (HCC, for

example). To help experts in diagnosis and treatment planning related to these
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diseases, accurate segmentation methods of the liver and inner vessels are highly

demanded in the clinical practice, whatever the image modalities used such as CT,

MRI, or US for instance. The evolution of computer science in research on image

segmentation has revealed interest in the reconstruction and interpretation of these

complex organic structures [11, 89]. Their robust extraction from biomedical images

requires good acquisition during an imaging examination and advanced image

analysis developments.

In recent years, Deep Learning (DL) has been increasingly applied in different

areas, for higher accurate segmentation, several automated methods have been

based on neural networks. However, the used convolutional layers bring to a

higher computational complexity. Particularly, the DL-based methods have always

belonged to the studies providing higher liver vessel segmentation performances

[3, 11, 59] compared to classic segmentation methods. Their architectures are based

on convolution blocks that have ensured extracting vessel features even with the

complicated details of hepatic vascular tree. They have provided higher accuracy

rates that exceed 0.9 when performed with IRCAD database images. Moreover,

the permanent rise of fundus image resolution allows illustrating a large gap of

vessels details. Hence, DL models will be heavily needed with the aim of obtaining

accurate results.

The famous U-Net model proposed by Ronneberger et al. [69] and its extensions

stand out as the most relevant for segmentation tasks. The 3-D U-Net captures

the volumetric features of the structures and organs in biomedical images. This

architecture is the extension of the 3-D FCN proposed by Long et al. [55] (Fully

Convolutional Neural network), which suffers from high computational cost and

GPU memory consumption. To address these issues, the 3-D U-Net models were

proposed, and they are pertinent even with a few image dataset.

Currently in the literature, no comparative evaluation has been found, in order

to develop the best 3-D U-Net-based approaches for segmenting the liver volume

and hepatic vessels. In general, authors focus either on the liver for future diagnosis

analysis (e.g. tumor detection) or on the vessels, without taking the parenchymal

volume as a region of interest. This question is however of high importance for

several compter-aided medical applications, involving the Couinaud representation

of the liver for instance [47, 48]. As a consequence, we first use an efficient Dense

U-Net algorithm in order to segment the liver vessel. Hence, our study proposes to

construct the optimal segmentation pipeline for the liver anatomy by comparing

the accuracy of three 3-D DL architectures: 3-D U-Net, 3-D Dense U-Net, and 3-D

Multi-res U-Net [60].
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4.3 Input data preparation

This study considered three alternative setups that allow adapting popular encoder-

decoder U-Net architectures to volumetric data. These setups, referred to as full

3-D, slab-based, and box-based, are described in detail in the following subsections.

In all the considered setups, leave one out cross-validation was used to assess the

model.

4.3.1 Data

The performance of the studied U-Net-based models in the three considered set-ups

were tested on the IRCAD dataset [30]; a popular and publicly available benchmark

for liver vessel segmentation. The IRCAD dataset is composed of 20 CT-scans (10

women and 10men), in DICOM format with a variable number of slices (512×512×𝑍
voxels) with hepatic tumors in 75% of cases. Binary masks of the venous system

ground truth, done by radiologists, are available within a dataset (see Figure 4.1).

For training, 𝑍 was set to 120, which relates to the maximum number of slices

within the considered liver volumes. Volumes with the number of slices smaller

than 120 were extended to fix this size by zero paddings.

Particularly, the models were trained on 19 volumes (with 3 volumes used for

validation) and tested on the remaining one from public IRCAD dataset. The

training-testing procedure was repeated 20 times, with different volumes used for

testing. In our case the data augmentation were not performed because we tried

and the results were not accurate.

4.3.2 Data preprocessing and analysis

Depending on the medical imaging technique, the available GPU plays an important

role in 3-D segmentation. For example, with standard computer hardware, it is not

possible to fully fit a whole CT-scan with a size of 512× 512×𝑍 into CNN or U-Net

models due to the enormous GPU memory requirements; we thus decided to resize

the data to 256 × 256 × 𝑍 . Therefore, the 3-D medical imaging data can be either

sliced into batches with little chunks of images, also called slabs, of 512 × 512 × 10

slices with higher batch size, hence, the 3-D batches analysis can be used to test

the three models. It should be noted that we did not use any data augmentation

process in our study.
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Figure 4.1: The 3-D-IRCADb-01 database. The 20 folders correspond to 20 different patients,
which can be downloaded individually or conjointly.

4.3.3 Cross validation K-Fold
With this approach we divide the data into K partitions of the same size. For each

partitioning i, we train the model on K-1 partitions, and we evaluate it on the

partition i which has been excluded from the training, our final score is then the

average of the K scores obtained. This method is useful when the performance of

the models varies significantly depending on the partitioning chosen between the

training set and the test set as for the validation with a single data set excluded.

Full 3-D approach

In the full 3-D setup, the models were trained using complete 3-D liver volumes (cf.

Figure 4.2) to predict a vessel probability map for each input image. Each time 19

volumes of size 512 × 512 × 120 voxels were used, 15 for training and three ones

used for validation and one volume for test. Volumes with the number of slices

smaller than 120 were extended to fix this size by adding zeros (zero paddings).

A full 3D approach allows taking advantage of complete spatial information

contained in a volume. However, it also results in limited train data and requires
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Figure 4.2: Full volumetric setup used for training and testing the considered U-Net-based

CNN models.

the heaviest computational workload. Both the slab-based setup and the box-based

setup diminish these limitations at the cost of limiting spatial information to selected

sub-volumes.

Slab-based approach

In the slab-based setup, the models were trained with slabs, i.e., sub-volumes

comprising neighboring slices (cf. Figure 4.3). At the prediction stage, the trained

models were applied to consecutive overlapping slabs. The resulting model outputs

in the overlapping regions were next averaged to produce the seamless vessel

probability map.

In the experiments we used 240 slabs in total. The slab size was 512 × 512 × 10

voxels. Slabs for training were sampled equally from the 19 train volumes, resulting

on average in 120 slabs per train volume. For prediction, slabs overlapping by 2

slices were considered.

Box-based approach

The box-based setup is somehow similar to a slab-based one. However, the sub-

volumes used for training the model comprise neighboring and connected voxels

composing a box (cf. Figure 4.4). The trained models were next applied to con-

secutive overlapping boxes at the prediction stage to produce a continuous edge

probability map by averaging the model’s output in the overlapping regions. In our

experiments we used 320 000 train boxes of size 32 × 32 × 32 voxels. The boxes for

training were sampled randomly from the 19 train volumes, resulting on average
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Figure 4.3: Slabs volumetric setup used for training and testing the considered U-Net-based

CNN models.

in 17 000 boxes per volume. For prediction, boxes overlapping by 8 voxels in each

direction were considered.

4.4 Models architecture

In this study, we compared three popular U-Net-based architectures, namely the

basic U-Net as proposed by [69], Multi-res U-Net [28], and Dense U-Net [60]. The

original models, after extending them to the third dimension (see Figure. 4.5), were

used in the full 3-D and slab-based setup. The details of the models are given

in the following subsections, and the models’ hyperparameters are summarised

in Table 4.1. Particularly, depth relates to the number of resolutions (poolings)

implemented in the model. While dropout mentions dropout rate. These layer

randomly sets input units to 0 with a frequency of rate at each step during training

time, which helps prevent overfitting. The remaining parameters relate to the

model training stage, and their names are self-explanatory.

For the box-based setup, the considered models needed to be reduced in terms

of both depth and the number of filters in each layer. Such a change was imposed

by the reduced input size. All amendments made to the considered U-Net-based

models are also detailed in the following subsections. Models’ hyperparameters

used in the box-based setup for each of the considered models are summarised in

Table 4.2.
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Figure 4.4: Box volumetric setup used for training and testing the considered U-Net-based

CNN models.

Table 4.1: Models parameters on slabs and full volumes

Parameters U-Net MultiRes U-Net Dense U-Net
Depth 4 4 4

Dropout 0.2 0.2 –

Epochs 100 100 100

Batch size (slabs) 8 8 8

Batch size (full) 1 1 1

Batch normalization True True True

Loss Dice loss Dice loss Dice loss

Optimizer Adam Adam Adam

Momentum 0.99 0.99 0.99

Learning rate 0.0001 0.0001 0.0001

4.4.1 3-D U-Net model

The 3-D U-Net model used for the full 3-D and the slab-based setup comprises nine

convolutional step blocks (see Figure 4.5a). Each convolutional step block contains

two 3-D convolutions of size 3×3×3 followed by the ReLU activation and a dropout

layer with a rate of 20% between them to reduce overfitting. The contracting path

consists of four convolutional step blocks, each followed by max-pooling 3-D of

size 2×2×1. The expanding path also consists of four step blocks, each followed

by upsampling 3-D of size 2×2×1. The feature maps outputted by upsampling

operation are concatenated with the corresponding ones from the contracting path.
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Finally, the last convolutional step block is applied, followed by a convolution 3-D

of size 1×1×1. A sigmoid activation is used to produce a final probability map.

To adapt the model to the box-based setup, the size of max-pooling and upsam-

pling operations was changed from 2×2×1 to 2×2×2 to adapt the model to smaller

input resolutions. Also, in the expanding path, the number of filters was reduced

by half. Finally, the dropout rate was set to 25% to facilitate training.

4.4.2 3-D Dense U-Net model
3-D Dense U-Net is based on the original U-Net and 3-D U-Net version. The

architecture adds residual and dense interconnections between layers processed

in convolutional step blocks (see Figure. 4.5b). A single step block contains the

3-D convolution of size 3×3×3 followed by the ReLU activation and the batch

normalization layer with a momentum of 0.99. The output of this operation is

concatenated with an input. Then the process is repeated for the result of the

previous concatenation. The contracting and expanding paths look the same as

in the 3-D U-Net model. The contracting path consists of four convolutional step

blocks, each followed by max-pooling 3-D of size 2×2×1. The expanding path

also consists of four step blocks, each followed by upsampling 3-D of size 2×2×1.

The produced feature maps by upsampling operation are concatenated with the

corresponding ones from the contracting path. Finally, the last convolutional step

block is applied, followed by a convolution 3-D of size 1×1×1. A sigmoid activation

is used to produce a final probability map.

Again, the model as above was used for two set-ups - the full 3-D and the slab-

based one. Also, it was used for the liver volume segmentation in the preprocessing

step. In the box-based set-up, a shallow version of the Dense U-Net was used to

adapt the model to the smaller resolution of inputs. Particularly, both the number

of filters and the depth of the model were reduced. The latter was reduced from

four to three. The number of filters for the contracting and the expanding path was

reduced from (6; 12; 24; 48; 96; 48; 24; 12; 6) to (2; 4; 8; 16; 8; 4; 2) respectively.

4.4.3 3-D MutliRes U-Net model
3-D MultiRes U-Net is based on the original U-Net and 3-D U-Net version. However,

the architecture is more complex. The model consists of nine resolution blocks and

ten resolution paths.

The resolution path consists of two 3-D convolutions with eight filters each. The

first is of size 1×1×1, the second has a size of 3×3×3 and is followed by the ReLU

activation. Then, the result of both operations is added, and sigmoid activation
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followed by batch normalization is performed. The resolution block consists of

three connected 3-D convolutions of size 3×3×3 each, followed by the ReLU and

dropout with a rate of 20% to reduce overfitting. The first convolution has 32 filters,

and the next two have 16. Then the result of those three operations is concatenated,

and after batch, normalization is added to the 3-D convolutions of 1×1×1 with 64

filters which are performed on the original input of the resolution block. Finally,

sigmoid activation followed by batch normalization is performed. The contracting

path consists of four resolution blocks, each followed by max-pooling of size 2×2×1

and resolution paths. The expansion also consists of four resolution blocks, each

followed by upsampling of size 2×2×1. The output feature maps by upsampling

operation are concatenated with the corresponding results of the resolution path

from the contracting one. Finally, the last resolution block is applied, followed

by a convolution 3-D of size 1×1×1. A sigmoid activation is used to produce final

probability maps.

Similar to previous architectures, 3-D Multi-res U-Net model as described above

was used in the full 3-D and slab-based setup but needed to be adapted to the box-

based setup. Particularly, the number of filters in a resolution block was reduced to

a quarter from (32; 16; 16; 64) to (8; 4; 4; 16).

Table 4.2: Models parameters on boxes

Parameters U-Net MultiRes U-Net Dense U-Net
Depth 4 4 3

Dropout 0.25 0.2 –

Epochs 10 10 10

Steps per epoch 1000 1000 1000

Boxes per step 32 32 32

Batch normalization False True True

Loss

Binary

crossentropy

Binary

crossentropy

Binary

crossentropy

Momentum – 0.99 0.99

Optimizer Adam Adam Adam

Learning rate 0.0001 0.0001 0.0001

4.5 Post-Processing
Post-processing removes imperfections, noisy pixels or corrects them through im-

age processing operations. It uses simple image processing operations to remove
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errors resulting from the segmentation process. Automatic thresholding with mor-

phological operations such as morphological closure are used to reduce noise and

false negatives in the image. Thresholding is a method for finding the threshold(s)

to segment the image into region(s), in order to make the analysing easier. In

thresholding, we convert an image from colour or grayscale into a binary image.

To continue the segmentation process, it is necessary to know the opening and

closing operations. Although erosion and dilation are very useful, these operations

tend to change the size of the mask. The opening and closing morphological

operations were used to solve this problem by keeping the same size of the objects

in the mask. In our case, we used the close operation (see Figure 4.6). Morphological

closure is a dilation followed by an erosion (which is the reverse of the operations

for an opening). So the impact of the close operation is to remove background

voxels, and this can help removing false negatives in images, also closing tends to

fill in gaps in the image.

4.6 Results

4.6.1 Training convergence

In Figure. 4.7, we depict the learning of the tested models, by considering the Dice

coefficient that we obtained for slab-based approaches, and the binary-crossentropy

loss for box-based ones (with a different sliding window averaging). For a sake

of clarity, we have chosen these configurations to evaluate the accuracy and loss

curves and to validate the best setup configuration.

The 3-D U-Net stands as the less efficient architecture of our study, with the

lowest Dice increase during training (approximately 0.4) and the highest loss (0.08)

at the end of the training process. Moreover, its validation is the worst, without any

significant increase during the optimization. The two other architectures lead to

similar outcomes, with a better performance for the MultiRes U-Net, which reaches

a Dice accuracy at 0.8 and loss value lower than 0.05. Validation accuracy is also

optimized in a better way for this model.

4.6.2 Liver vessel segmentation results

The assessment of the vessel segmentation results was performed by means of the

Dice score. The performance of each model was evaluated using the test set (one

CT-scan following our distribution). Dice coefficient was used as an evaluation

measure, which is written as:
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𝐷𝑖𝑐𝑒 = 2

|𝐴 ∩ 𝐵 |
|𝐴| + |𝐵 | , (4.1)

where 𝐴 is the segmented vessel image and 𝐵 is the ground truth vessel mask.

Models are designed for the largest possible input images that can fit the GPU

memory. We used an NVIDIA GeForce GTX 1650 (12Gb) with 256 Gb of RAM,

available on our local server.

The vessel probability maps output by the considered models were binarised

with a global threshold of 0.5, cropped to the liver region, and then compared to the

ground truth results provided within the IRCAD dataset. The average Dice scores

resulting from the leave-one-out cross-validation are summarised in Table 4.3. Best

scores (greater than 70%) are highlighted in bold face.

Table 4.3: Dice score results on slabs and full volumes.

Set-up U-Net MultiRes U-Net Dense U-Net
Full 3D 0.734 0.863 0.838

Slabs-based 0.700 0.880 0.775

Box-based 0.551 0.764 0.625

Sample visual results of the first partient of the IRCAD data set using the full

3-D setup is presented in Figure 4.9. Presented results were obtained from the

first patient of the IRCAD dataset using the full 3-D setups. The latter set-up was

selected for presentation, since it performed best. A comparaison of the results

obtained using the three developed models on different configuration setup are

presented in Figure 4.8, were the best results are obtained using 3-D MultiRes U-Net

on full liver volume.

Particularly, the top panel (see Figure 4.9 a) presents the ground truths provided

within the IRCAD dataset, while the vessels provided by the considered U-Net-based

models are presented below (see Figure 4.9b-d).

4.7 Discussion
The experimental results clearly show the differences between the performance of

the considered models and the setups in which they were applied. The numerical

results presented in Table 4.3 show clearly that the most accurate results were

obtained when using a full 3-D setup. This manifests itself by the highest Dice

scores obtained for each of the considered models. On the other hand, the box-

based setup seems to be less accurate, with the lowest Dice scores. It is somehow
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surprising since the amount of the training data was the largest in the box-based

setup. However, these experiments show that the completeness of the information

contained in the smaller amount of the whole volumes is more beneficial to the

model than a large number of pieces of information sliced in the boxes. Probably

for these reasons, the full 3-D setup performed visibly better than the competitive

frameworks.

When the U-Net-based models are considered, the Multi-Res U-Net is the leader.

This model performed best for all the considered setup, resulting in the most

accurate segmentation for the slab-based approach. On the other hand, the original

U-Net model performs worst, with the lowest Dice scores obtained for each of the

considered frameworks. The training behavior observed in Figure 4.7 confirm the

best performance of Multi-Res U-Net.

The above observations are also confirmed by the visual results presented in

Figures 4.9 and 4.8. Mainly, the results of the U-Net model are visibly the most

noisy, with many small regions distant and not connected to the main vessels

(see Figure. 4.9b). On the other hand, the visually best representation of the liver

vessels is obtained from the MultiRes U-Net. From Figures 4.9 and 4.8, we can see

that that the resulting vessels are larger and more continuous, with the lowest

amount of noise. Also, the MultiRes U-Net provides the best segmentation of the

largest branches. This latter fact is a significant advantage to build automatically

the Couinaud representation of the liver, which is commonly used by clinicians of

various specialties to describe locations of the hepatic lesions.

The MultiRes U-Net is however the most expensive to train in terms of the

computer resources. In all considered setups the time per epoch for this model, was

about twice as much as in the case of the U-Net model, and slightly longer than the

time required by the Dense U-Net.

4.8 Conclusions
In this chapter, we deal with the segmentation of hepatic vessels in 3D CT scan

images. Three models based segmentation on three alternatives setup are proposed.

Firstly, a standard 3-D U-Net model based segmentation is developed. Secondly,

this model were tested on 3-D full liver volume images and, boxes and slabs to

compare results and validate the best combination model/ volumetric setup

The obtained results with 3-D U-Net demonstrate the efficiency of this archi-

tecture that allows the reconstruction of the liver vascular structure with a good

results especially on full volume but still gives poor response on small regions and

bifurcations. After that, we proposed to use the modified 3-D Dense U-Net and 3-D
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MultiRes U-Net which are new approaches to improve segmentation decision. Nev-

ertheless, it is difficult to avoid the segmentation vessel issue with a simple U-Net

model, especially when the propagation criterion is an intensity-based condition.

For this reason, more performant models are expected. To provide a good extraction,

a post-processing smoothing operation is necessary after the segmentation.

We have performed a comparative analysis of the three U-Net-based models

in the liver vessel segmentation task. The analysis results clearly show that the

leader in the considered task is a Multi-Res U-Net which provides the most accurate

results in terms of the Dice coefficient.

When the 3-D setups used for liver vessel segmentation are considered, the better

is a full 3-D approach, which provided the highest Dice scores for three out of two

considered U-Net-based models. However, in our experiments, the slab-based setup

used with the Multi-Res U-Net performed the best.

The results of the liver vessel segmentation using the Multi-Res U-Net are good

and promising. However, they still probably could be improved. The possible ways

of the improvement include adaptive thresholding applied for post-processing of

the predicted vessel probability maps. Also, in the following chapter we will try

to improve the segmentation results of Multi-Res U-Net using preprocessed data

(vessel enhancement) to deal with segmentation errors.
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(c) 3-D Mutli-res U-Net model

Figure 4.5: The U-Net-based models considered in this study for full 3-D and slab-based

setup.
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Figure 4.6: Steps of hepatic vessel segmentation and post-processing to improve segmen-

tation results
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(a) 3-D U-Net Dice coefficient (b) 3-D U-Net binary-crossentropy loss

(c) 3-D Mutli-res U-Net Dice coefficient (d) 3-D Mutli-res U-Net binary-crossentropy

loss

(e) 3-D Dense U-Net dice coefficient (f) 3-D Dense U-Net binary-crossentropy loss

Figure 4.7: Training and validation Dice values per epoch for slab-based models (a,c,e)

and loss optimization for the box-based models with a sliding-window averaging (b,d,f).
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(a) Box

(b) Slabs

(c) Full

Figure 4.8: 3-D views of segmentations obtained from the first patient of IRCAD dataset,

with the full 3-D volume and box and slabs based segmentation. The first column : Results

obtained using 3-D U-Net, the second column: results obtained using 3-D Dense U-Net, the

last column: results obtained using 3-D MultiRes U-Net.
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(a) Ground-truth

(b) U-Net

(c) Dense U-Net

(d) MultiRes U-Net

Figure 4.9: 3-D views of segmentations obtained from the first patient of IRCAD dataset,

with the full 3-D volume approach. The upper part of the visualization is also zoomed.
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Hepatic vessel extraction using vesselness filters





5 Models based on vascular patterns

5.1 Resume
In the previous chapter we have carried out a comparative study of three U-Net

architectures for the segmentation of the hepatic vascular network in order to

validate the best model/configuration combination which will be useful in the

following chapters to increase the performance of the segmentation process.

In this chapter, we will present an end-to-end deep learning segmentationmethod

relying on the integration of vessel enhancement filters inside a 3-D U-Net based

architecture described previously. In particular, the raw data used in the learning

process or used as input, are preprocessed using enhancement filters. We assume

that the use of these vesselness filters can significantly improve the vascular contrast

in raw images, this step can also help to improve segmentation decision on small

regions and bifurcations that are generally very hard to detect during segmentation

process.

First of all, The 3-DU-Net, Dense U-Net andMultiRes U-Net presented in previous

chapter are pitted against each other in the vessel segmentation task with the

public IRCAD dataset. Considering the integration of vesselness filters, the model

parameters were optimized in order to identify the optimal configuration for fully

automatic segmentation of hepatic vessels tree.

Secondly, we propose an original comparative study of several deep learning

models combined with vesselness filters (Jerman, Frangi, Sato and RORPO algo-

rithms) as preprocessing step. 3-D U-Net, 3-D Dense U-Net, and 3-D MultiRes

U-Net have been tested on CT-scans to extract the vascular networks with and

without preprocessing on full liver volumes and on slabs (stacks of 2-D slices) that

are validated in the previous chapter as better configurations compared to boxes.

The models were evaluated on publicly available database, and the 3-D Dense U-Net

achieved the best Dice score on preprocessed data with Jerman filter in particular,

compared to raw data.

The results showed that the most accurate setup is the full 3-D process, providing

the highest Dice for most of the considered models, however the 3-D Dense U-Net

gives the best results compared to other models with or without vessel enhancement

filters, and this model improve segmentation results compared to outcomes obtained

in the previous chapter where we did not use vesselness filters.
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5.2 Introduction
Blood vessel segmentation is crucial for many diagnostic and research applications.

In recent years, CNN-based models have leaded to breakthroughs in the task of

segmentation, hence, these approaches usually lose important information on

object boundaries and small regions of complex structures which are useful in

vessel segmentation process.

Enhancement and denoising are problems in the field of image processing, vas-

cular enhancement as well as noise reduction with preservation of the structure of

medical images is important for clinicians to diagnose vascular diseases, by reduc-

ing noise level and by enhancing some features in the image, some preprocessing

techniques are adopted.

To enhance the vascular structures prior to their segmentation, and to remove

positive false and image noise, the vesselness filters enhancing vascular structures

are used in the literature. Even though several enhancement filters are widely

used, the responses of these filters are typically not optimal especially on vessels

of different radius and, compared to the response in the central part of vessels,

their response is lower in the presence of vascular pathologies. In parallel, from

the early age of medical image processing, vessel enhancement algorithms (or

vesselness filters) have been very important techniques to improve the results

of vessel segmentation. Recently, a benchmark from [44] has compared seven

vesselness filters published the last 20 years in the literature on CT images for liver

vessel exploration.

At the best of our knowledge, no comparative study has been proposed to

elaborate the best combination between 3-D DL networks and vessel enhancement

algorithms for vessel segmentation. In this chapter, we propose to combine the

most useful and accurate U-Net architectures (3-D U-Net, 3-D Dense U-Net and 3-D

MultiRes U-Net) with the four best vesselness filters of the benchmark mentioned

above (Jerman, Sato, Frangi and RORPO algorithms), for the segmentation of liver

vessels in CT-scans. For a better comparison, we also consider full volume analysis

and with slabs (stacked 2-D slices). Thanks to this comparative study, we show that

the use of these filters as a preprocessing steps improves significantly the accuracy

of DL models for this task.

5.2.1 Vesselness filters
We propose to test the three 3-D U-Net architectures presented in chapter above

with different parameters which are optimized in this case for hepatic vessel seg-

mentation using different vessel enhancement filters (presented previously ) as a
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preprocessing step. We choose four filters that improve vessel contrasts, evaluated

in study [45]. A variety of enhancement filters exists in the literature, but they are

often difficult to compare as the applications and datasets differ from a study to

another and the method is not totally described or the codes are rarely available.

The Zhang, Sato, Jerman and RORPO filters were selected in this case, the choice

of these filters was after testing the seven filters proposed in this article and after

visual evaluation of the results we decided to select these four filters. In addition,

we have different results of these filters, with different algorithm settings (see

Table 5.1). One of these filters is specifically optimized for binary segmentation

of vessels (see Table 5.2). Next, we compare the results obtained for three 3-D

U-Net models on full liver volume CT images and on slabs (see Figure 5.1). We

have tested Sato filter [72], Frangi filter [17] and Jerman filter [31], which are based

on Hessian matrix analyses. Then Zhang filter [91] is an extension of Jerman’s

method for CT data with an improved fuzzy affinity function. Also, Merveille et al,

[57] proposed RORPO (Ranking the Orientation Responses of Path Operators) filter

using orientation-based path opening outcomes, combined with a voting policy.

This benchmark showed that all these filters may be useful to improve liver vessel

segmentation and especially on bifurcations.

5.2.2 Data generation
The data for this experiment where obtained using the benchmark framework

from [45]. This framework allows to apply vesselness filters over a dataset and

compute metrics in user defined regions of interest (ROI). In more details, the

vesselness outputs are successively thresholded in the same way we would proceed

to compute a ROC curve (Receiver Operating Characteristic). For each threshold,

the MCC (Matthews Correlation Coefficient), Dice and usual metrics derived from

the confusion matrix are evaluated. This framework make possible an automated

optimization of the filters parameters over a dataset for a specific area of interest.

Several vesselness filters (Jerman, Sato, Zhang, RORPO) where computed over

two optimization schemes. A first version use the results of the benchmark pre-

sented in [45]. In this version the optimization is set up to find the best parameters

sets maximizing the mean MCC over the entire dataset. In practice, for the organ

ROI and for each tested parameter set 𝑃𝑖 , the mean MCC for all binary volumes

would be computed for each threshold. Then the best parameter 𝑃𝑏𝑒𝑠𝑡 is selected

as the parameter set with the highest mean MCC. In the second version, the opti-

mization is done differently. For each parameter set, we chose to optimize the MCC

per volume (𝑀𝐶𝐶𝑣). Then we chose the parameter set maximizing the mean over

𝑀𝐶𝐶𝑣 .
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In terms of clinical usage, the first strategy represents a use case in which a seg-

mentation algorithm is set up once. In the second strategy, the vessels enhancement

is fine tuned by the operator for each volume.

Table 5.1: MCC score and vesselness parameters for the first optimization strategy

Filters MCC Parameters

Zhang 0.356 ± 0.079
𝜎𝑚𝑖𝑛 = 1.4 𝜎𝑚𝑎𝑥 = 2.4 𝑛𝑏𝑆𝑐𝑎𝑙𝑒𝑠 = 4

𝑡𝑎𝑢 = 1.0

Sato 0.275 ± 0.066
𝜎𝑚𝑖𝑛 = 1.4 𝜎𝑚𝑎𝑥 = 2.4 𝑛𝑏𝑆𝑐𝑎𝑙𝑒𝑠 = 4

𝑎𝑙𝑝ℎ𝑎1 = 0.3 𝑎𝑙𝑝ℎ𝑎2 = 1

Jerman 0.318 ± 0.081 𝜎𝑚𝑖𝑛 = 1.4 𝜎𝑚𝑎𝑥 = 3.0 𝑛𝑏𝑆𝑐𝑎𝑙𝑒𝑠 = 4 𝑡𝑎𝑢 = 0.2

RORPO 0.384 ± 0.077
𝑠𝑐𝑎𝑙𝑒𝑚𝑖𝑛 = 60 𝑓 𝑎𝑐𝑡𝑜𝑟 = 1.2 𝑛𝑏𝑆𝑐𝑎𝑙𝑒𝑠 = 3

𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 0

Table 5.2: MCC score and vesselness parameters for the second optimization strategy

Filters MCC Parameters

Jerman 0.350 ± 0.081
specific scale space per volume

𝑡𝑎𝑢 = 0.1

5.3 Methodology
This section is organised as follows: First, we present our material. Then, we

compare the results of three different models presented before, with or without

vessel enhancement as preprocessing step. A discussion of the results follows.

Finally, we conclude and give some directions for further work.

We propose to test three 3-D U-Net architectures presented in the pervious

chapter for hepatic vessel segmentation using different vessel enhancement filters

as a preprocessing step. We choose four filters that improve vessel contrasts,

evaluated in study [45], the Zhang, Sato, Jerman and RORPO filters. In addition, we

have different results of these filters, with different algorithm settings (see Table 5.1).

One of these filters is specifically optimized for binary segmentation of vessels (see

Table 5.2). Next, we compare the results obtained for three 3-D U-Net models on

full liver volume CT images and on slabs (as presented in pipeline of Figure 5.1).

The models were implemented with the open source neural network libraries Keras

[9] and Tensorflow [2]. Parameters were optimized to obtain the most accurate

segmentation outcomes (see Table 5.3).
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Figure 5.1: Pipeline proposed to carry out the comparative study

Table 5.3: Model parameters on slabs and full volume

Parameters U-Net MultiRes U-Net Dense U-Net
Number of filters 256 256 256

Epochs 20 20 20

Dropout 0.25 0.25 –

Batch size (slabs) 8 8 8

Batch size (full) 1 1 1

Depth 4 4 4

Batch normalization True True True

Momentum 0.99 0.99 0.99

5.3.1 Evaluation method

We evaluated our models by randomly selecting the data (preprocessed or not and

coming from the IRCAD database) into the training, validation and testing sets

in the ratio of 70%-20%-10% respectively in a cross-validation manner. For each
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method, all data are performed to collect experimental results with a different

training set.

Figure 5.2:Maximum intensities projection of liver vessel enhancement using the selected

filter.
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5.4 Results

Generally, vessel segmentation is more accurate on full volumes than on slabs (see

Figure 5.4). We also note that they are more precise after using the Jerman filter

with an improvement in the Dice coefficients (see Table 5.4).

Table 5.4: Results of the Dice coefficient calculated on full volumes and slabs.

Volume Full volume
Preprocessing U-Net Dense U-Net MultiRes U-Net
Without filter 0.784 0.853 0.811

Jerman filter 0.727 0.942 0.913

RORPO filter 0.417 0.521 0.492

Sato filter 0.719 0.814 0.731

Zhang filter 0.434 0.642 0.629

Volume Slabs
Preprocessing U-Net Dense U-Net MultiRes U-Net
Without filter 0.518 0.789 0.771

Jerman filter 0.658 0.936 0.921

RORPO filter 0.410 0.456 0.411

Sato filter 0.713 0.800 0.689

Zhang filter 0.456 0.714 0.611

With data preprocessed using Zhang and RORPO filters, performance decreases

especially on slabs (see Figure 5.5), and this may be due to the creation of noise

when applying these filters, false positives appear especially using RORPO filter .

In addition, we can note that the 3-D Dense U-Net gives a Dice score on the whole

volume and slabs respectively of 0.853 and 0.789 without preprocessing; 0.814 and

0.800 using the Sato filter, 0.942 and 0.936 using a Jerman filter; these are the best

scores compared to all other experiments with 3-D U-Net and 3-D MultiRes U-Net.

We can deduce that the 3-D Dense U-Net gives the best results compared to other

models with or without vessel enhancement filters. This can be justified by the fact

that the 3-D MultiRes U-Net model is sensitive to noise generated by enhancement

filters.

Our deep learning and vesselness filters based method significantly outperforms

methods without preprocessing in accuracy. We have observed that our approach

demonstrates more consistency in terms of bifurcations of liver vessels. It correctly

segments liver vessel, in the other hand other models without preprocessing seg-

ments liver vessel but they generate positives false and negatives false especially

on small regions.
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(a) 3-D U-Net Dice coefficient (b) 3-D U-Net Dice loss

(c) 3-D Mutli-res U-Net Dice coefficient (d) 3-D Mutli-res U-Net Dice loss

(e) 3-D Dense U-Net Dice coefficient (f) 3-D Dense U-Net Dice loss

Figure 5.3: Training and validation Dice loss per epoch for slab-based models (a,c,e) and

loss optimization for the full volume-based models with a sliding-window averaging (b,d,f),

using the Jerman filter for vascular enhancement.
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Figure 5.4: Results of 3-D models on full liver volume optimized for the segmentation of

liver vessels using the Jerman filter for vascular enhancement

5.4.1 Comparison of our method with state of the art
approaches

In this section, we compare the proposed 3 U-Net models with other vessel seg-

mentation models on processed and raw data, the results and Dice are presented in

Table 5.5.

Table 5.5: Quantitative results for different models in state-of-the-art on IRCAD public

datasets for vessel segmentation.

Method Datasets Model Dice
Kitrungrotsakul et al., [38] Processed data DenseNet 0.903
Kitrungrotsakul et al., [39] Processed data 3-D CNN 0.879

Long et al., [55] Raw data FCN 0.624

Ronneberger et al., [69] Raw data 3-D U-Net 0.723

Milletari et al.,[58] Raw data V-Net 0.689

Zhou et al., [93] Raw data U-Net++ 0.817

Yan et al., [84] Raw data LVSNet 0.904
Our method Processed data Our MultiRes U-Net 0.913
Our method Processed data Our U-Net 0.727

Our method Processed data Our Dense U-Net 0.942

For this experiment, we listed most methods, which has previously been tested on
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IRCAD public datasets. Our proposed models, 3-D Dense U-Net and 3-D MultiRes

U-Net, processed using Jerman filter achieved higher Dice coefficients of 0.942,

0.913 respectively. Though there is no significant difference between our 3-D

U-Net results and the model of the article [69], Dice coefficients are 0.727, 0.723

respectively. To conclude our Dense U-Net combined with Jerman filter achieved

the best results.

We presented a combination of three Deep learning based segmentation with

vesselness filters to extract liver vessel from abdominal CT scans. By introducing

a vesselness filters into a 3-D U-Net architectures, the proposed approach shows

significant improvement segmentation results with the reputed IRCAD dataset

especially using Jerman filter, which indicates that the proposed model can segment

more complete vascular trees. The Figure 5.6 shows a comparison between the

results of 3-D U-Net obtained using Jerman filter, and we can see that the best

combination was Jerman with 3-D Dense U-Net which gives a suitable outcomes

especially on small regions and bifurcation and principal liver vessel branche. As

presented in this study, without prepossessing the model ignored the small regions,

while the Sato and Jerman filter is able to reduce the segmentation errors, the

RORPO and Zhang gived poor response and this was maybe due to the important

noise that these filters add to the original image compared to others.

5.5 Discussion and conclusion

We present in this chapter a joint 3-D U-Net based segmentation and vesselness

filter method with an application to extract liver vessel segmentation from hepatic

CT scans. By introducing enhancement filters, the proposed models are able to

learn and segment vessel better than with raw images. The proposed 3-D Dense

U-Net model shows a significant improvement in the false negative measure over

the baseline 3-D U-Net. This indicates that the proposed combination can segment

more complete liver vessel trees. Further, this is achieved with fewer trainable

parameters.

To have an objective validation of the best vesselness filter to be employed in our

pipeline, we have selected four filters that enhance contrast of the vessels, originally

evaluated with a relevant performance in [45]: Zhang, Sato, Jerman and RORPO

filters. Then, we have compared results obtained by three 3-D U-Net models on the

full liver CT-scans and on image slabs, with and without the application of these

filters as a preprocessing step.

As you can see for all three models, the training loss decreases at each epoch,

72



Discussion and conclusion Section 5.5

and the training accuracy increases at each epoch. but the curves obtained on the

slabs are less precise compared to the complete volume (see Figure 5.3).

The prediction accuracy curve during validation seems smoother for using 3-D

Dense U-Net on the full volume, we can see a significant improvement over the

state of the art models. It should be noted that the loss curve does not show real

improvements, what is displayed is an average of the point loss values but what is

important for the accuracy of the prediction is the distribution of the loss values

and not their average, because the accuracy of the prediction is the result of a

binary thresholding of the probability per class predicted by the model, so that this

model can continue to improve even if it is not reflected in the average loss. And

in our case, we clearly see that our 3-D Dense U-Net model combined with the

Jerman enhancement filter, has the best distribution compared to the other models

even if the distribution was really not perfect, especially the distribution loss of

validation. The segmentation results of (Figure 5.4 and Figure 5.5) and the Dice

score of Table 5.5 confirm that our 3-D Dense U-Net is the most accurate. We show

that the Dense U-Net with Jerman filter is the most suitable for extracting hepatic

vessels on CT-scans. This is a promising result to promote vesselness filtering in DL

pipelines for vascular segmentation. Furthermore, based on our results, it is possible

to extract different biomarkers and use them for clinical experiments, especially

for detecting liver’s and hepatic vessels disorders. The proposed architecture can

also be applied on other organs or vessels. The results of comparison between

the results of 3-D U-Net obtained using jerman filter on full liver volume and the

ground truth vessel, showed that the 3-D Dense U-Net segment more accuretly the

liver vessel tree and reduce the noise and false negative in segmentation masks

(see Figure 5.6).

In the next chapter, we will test our method using topological signature to

improve segmentation results. Moreover, we would like to study the combination

of DL models with other image features to enhance response in vessel bifurcations

and to reduce the false positive and negative detection’s.
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(a) Sato filter

(b) RORPO filter

(c) Zhang filter

Figure 5.5: Results of 3-D models on full liver volume optimized for the segmentation

of liver vessels using the Sato, Zhang, Roropo filters for vascular enhancement, the first

column: using 3-D U-Net, the second column : using 3-D MultiRes U-Net, and the last

column: using 3-D Dense U-Net
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Figure 5.6: Comparison between the results of 3-D U-Net obtained using Jerman filter on

full liver volume and the ground truth vessel.
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6 Liver vessel extraction in CT scans
using 3-D topological DL methods

6.1 Resume
DL for vessel extraction is currently an active research area since segmentation of

these structures is becoming more mature, it is time to face the different challenges

that will allow us to enhance it and make it more effective. The main purposes of

the following chapter is to analyze the existed methods based on vessel topology

that can be used for accurate hepatic vessel tree extraction.

In the previous chapters we presented the different methods proposed in the state

of the art for segmentation problems, the aim was to realize a study of DL for liver

vessel segmentation and to investigate and identify the methods which reconstruct

the complex structure accurately. Then we proposed a pipeline that can perform

segmentation of liver vessel by combining 3-D U-Net approaches. Results reveal

that some of them need to be considered and others need to be improved. These

approaches were not sufficient enough to reduce segmentation errors, especially

on vessel bifurcations and small vessels.

We deducted that methods based on the shape and topology of complex data

must be included to obtain more better segmentation outcomes. In this part, we

proposed three topological approaches, the first one consists of combining feature

map of a graph convolutional network with the feature map obtained using U-Net

architecture. The second approach is a 3-D U-Net-GNN based method, where the

convolutional layers at the deepest level of the 3-D Dense U-Net are replaced by a

GNN module with a series of graph convolutions. In the third approach we propose

to use the W-ClDice loss function with the 3-D Dense U-Net based segmentation

method that can improve liver vessel segmentation.

The results obtained showed that the topological information can improve the

segmentation of the vessels and reduce the noises and the false positives and the

false negatives, a better segmentation of the vessels of the liver is obtained.

6.2 Introduction
The liver has a complex vascular structure, the analysis of the topology of this

structure can help radiologist in surgical planning and other clinical practices.
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But the study of liver vessel is a challenging task due to the extremely small size

of the vessel structure, low SNR, and varying contrast in biomedical image data.

Deep learning has shown in recent years an impressive efficiency in solving many

problems in medical imaging. Extracting topological information from the data can

provide an alternative perspective on segmentation issues of complex structures

such as hepatic vessels.

The segmentation of tree structures is an essential problem in many fields, such

as clinical and biological domain (segmentation of vascular networks and cells

from microscopic images), real-time object detection applications (segmentation

of the road network from satellite images). In the domains mentioned above, a

topologically precise segmentation is necessary to guarantee obtaining adequate

results without error in the small poorly enhanced regions.

In this chapter, we describe three topological approaches, the first one consists

of the incorporation of a GCN into a standard U-Net architecture, where the final

segmentation is obtained by combining the different types of features [88]. The

second approach consist of coupling 3-D U-Net-GNN, where the convolutional

layers at the deepest part of the U-Net architecture are changed by a GNN module

[33], in the third approach we propose a coupled W-ClDice loss function with the

3-D Dense U-Net based segmentation method to improve hepatic vessel extraction

fromCT images. A focal weight were integrated into a topological Dice loss function

to reduce segmentation errors on small regions.

6.2.1 Topology study
Topological data analysis methods allow us to obtain information, usually in the

form of graphical representations of topological features. Furthermore, these topo-

logical signatures are very rarely used in most machine learning methods especially

for segmentation problems. Graphs are structures used for modeling problems in

many fields [76]. Graph analysis has experienced a new boom over the past twenty

years, which has produced significant results, both in the analysis of specific cases

and in terms of modeling large graphs. However, graphs offer complex discrete

structures that classic machine learning data does not have basically. Indeed, if the

order of the pixels in an image is fixed and immutable, there is, for example, no

natural order to parse the neighbors of a node in a graph. Architectures based on

convolution cannot be used directly and must be adapted for segmentation tasks

Recently, Graph Neural Network (GNN) architectures have been developed to

accurately analyze complex-structured data such as vessel. Information that graphs

contain can be formulated, by conditioning the learning models both on such data

and the adjacency matrices of the underlying graphs. For retinal vessel detection,
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graph convolution was first proposed by Shin et al [75] by an architecture, where

the final segmentation is inferred by combining the different types of features.

Their method can be applied to expand any type of CNN-based vessel segmentation

method to enhance the performance.

As reviewed in the state of the art chapter, there has been significant recent

interest in incorporating high-level shape and topological features within CNN, U-

Net training, including the development of specialised segmentation loss functions.

A fundamental obstacle is that this loss function must be differentiable with respect

to the class probabilities assigned to each pixel, which is challenging when the

presence or absence of particular global features is a poor quantity.

The topological study consists of transformation of segmented vascular net-

work to a related graph representing it with different topological and geometrical

descriptors. Multiple advantages can then be addressed for employing symbolic

representation as a post-processing technique. This chapter gives a better visual-

ization of the structure information, and the information is much more simplified,

and exactly what the radiologist requires.

6.2.2 Skeletonization
Skeletonization is a morphological operation which represents an object by its

central lines while preserving the initial shape of the object. It provides very

important features in medical imaging for the analysis of curvilinear structures.

Thinning is a morphological operation used to eliminate foreground pixels in

images, it is used in several fields of application, on the other hand it is useful for

the calculation of central line or what is called the skeleton. So it is generally used

for edge detection by reducing all lines to the thickness of a single pixel. Thinning

must be applied to binary images and also output another binary image [15].

Topological thinning consists of gradually removing the points from the contour

of the shape, while preserving its topological characteristics. The skeletal points

are added progressively when a corner is formed "the contour curve becomes

discontinuous" or when the contour points meet.

Thinning transforms objects in a binary image into a set of center lines, which

run along the objects, the midline. The algorithm recursively removes edge points

that have more than one neighbor. With this algorithm, thin ends are not removed.

6.2.3 Losses that deal with class imbalance
Class imbalanced is a frequent problem experienced when trying to train segmenta-

tion models. This is a common problem encountered in most image segmentation

81



Chapter 6 Liver vessel extraction in CT scans using 3-D topological DL methods

tasks, where the background class is much larger than the other classes. In this part,

we will go through the techniques used to deal with class imbalanced problems and

why the W-Cldice loss might be the best option for us.

Dice coefficient

The Dice coefficient, given at Equation 4.1, is well-known for being the go-to

evaluation metric for image segmentation, but it can also serve as a loss function.

Although not as widely used as other loss functions like binary cross entropy, the

Dice coefficient does wonders when it comes to class imbalance. Dice coefficient

only considers the segmentation class and not the background class.

The Dice coefficient is a measure of overlap of the predicted mask and the ground

truth. Since it does not account for the background class, it cannot dominate over

the smaller segmentation class. The Dice coefficient outputs a score in the range

[0,1] where 1 is a perfect overlap. However, (1-Dice) can be used as a loss function.

Tversky Index

The Tversky Index is a asymmetric similarity measure that is a generalisation of

the Dice coefficient and the Jaccard index [82].

𝑇 𝐼 =
|𝑇𝑃 |

|𝑇𝑃 | + |𝛼𝐹𝑁 | + |𝛽𝐹𝑃 | , (6.1)

where 𝑇𝑃 is the true positive and 𝐹𝑁 is the false negative and 𝐹𝑃 is the false

positive .

The Tversky index adds two parameters, 𝛼 and 𝛽 where 𝛼+ 𝛽= 1. The case 𝛼 =

𝛽= 0.5 simplifies into the dice coefficient. It simplifies to the Jaccard index if 𝛼 =

𝛽 = 1.

Although the Tversky index is only a simple improvement over the Dice coeffi-

cient, it can prove useful in edge cases where one need a finer level of control.

The Focal Tversky Loss

The Focal Tversky Loss (FTL) is a generalisation of the Tversky loss. The non-linear

nature of the loss gives you control over how the loss behaves at different values of

the Tversky index obtained [82].

𝐹𝑇𝐿 = (1 −𝑇 𝐼 )𝛾 (6.2)

82



Proposed method Section 6.3

𝛾 is a parameter that controls the non-linearity of the loss. The gradient of the

loss tends to∞ as the Tversky Index (TI) tends to 1. As 𝛾 tends to 0, the gradient of

the loss tends to 0 as TI tends to 1.

Essentially, with a value of 𝛾 < 1, the gradient of the loss is higher for examples

where TI > 0.5, forcing the model to focus on such examples. This behaviour can

be useful towards the end of training as the model is still incentivised to learn

even though TI is nearing convergence. However, at the same time, it will weight

easier examples higher during the early stages of training, which can lead to poor

learning.

Loss functions play an essential role in determining the model performance. For

complex objectives such as segmentation, it is not possible to decide on a universal

loss function. The majority of the time, it depends on the datasets properties used

for training [82].

6.3 Proposed method
In the previous chapters the 3D Dense U-Net was validated as the best architecture

for liver vessel segmentation compared to 3D MultiResU-Net and 3D U-Net; that is

why we will use this models for following experimentation.

This section is organised as follows. First, we present our material, and we

describe describe three topological methods: 3-D GNN U-Net, 3D U-Net GCN, 3D

Dense U-Net with W-ClDice loss function applied for liver vessel segmentation.

Then we will realize a comparative analysis of results. Finally, we will discuss

results to validate the best approach for liver vessel extraction.

6.3.1 3-D U-Net GCN for liver vessel segmentation
In this section, we present a novel 3D U-Net architecture, which jointly learns

the global structure of liver vessel shape together with local appearances. This

novel architecture comprises three components, 1) a U-Net module for generating

pixelwise features map and vessel probabilities, 2) a Graph Convolutional Network

(GCN) that generates a topological features map learnt on graphs of liver vessel

constructed using Skel2Graph (a Matlab framework), which constructs graph from

skeletons constructed on liver vessel ground truth using standard parallel thinning

algorithm, and 3) an inference module to produce the final segmentation.

This approach incorporates a GCN into a unified 3-D Dense U-Net architecture,

where the final segmentation is inferred by combining the different types of features

(see Figure 6.1).
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6.3.2 Our contributions
Our work is based on the article of Shin et al [75] who proposed 2-D CNN GCN

combination for retinal vessel segmentation on 2-D images, in our case we replaced

the 2-D CNN by a 3-D Dense U-Net to deal with binary segmentation problems,

and not for classification. We also modified the loss function of their method using

a weighted Dice instead of Cross-Entropy, which can improve segmentation results,

but this implementation did not work yet due to feature maps generated which can

not be combined.

Figure 6.1: Schematic of the combined U-Net-GCN network

6.3.3 GNN-U-Net for vessel extraction
We also propose an extension of the article of [33]. They propose a joint 3D U-Net-

Graph Neural Network-based method for airway segmentation from chest CTs, the

deepest convolutionnal layer are replaced using two GNN layers.

The proposed 3-D U-Net-GNN architecture is described as follows: This approach

puts a GNN module instead of the deepest layers of our 3-D U-Net (see Figure 6.2).

The GNN module uses a graph structure obtained from the dense feature maps

resulting from the contraction path of our U-Net. Each node of this graph will be

considered as a supervoxel from the undersampled regions with the corresponding

feature vector. The connectivity of nodes in the graph is described by the adjacency

matrix and determines the neighborhood of each node when performing graph
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Figure 6.2: Schematic of the U-Net-GNN network

convolutions. The GNN module learns combinations of the input feature maps

depending on the graph topology and results the same graphwith the corresponding

vector of learned features for each node. This output consists of feature maps that

are fused to the oversampling path of our U-Net.

Graph Neural Network GNN

GNN module is composed of a series of graph convolutional layers, this operation

can be seen as a generalisation of the Cartesian convolution to a graph setting [33].

A graph has been constructed and given as input for the GCN module. We

assume a U-Net has been pretrained to generate the probability feature map , on

which the following operations are performed:

1) Post-processing (thresholding).
2) Centerline extraction using standard parallel thinning algorithm [49].

3) Vertex generation by equidistant sampling, on the skeleton together with

skeletal junctions and endpoints.

4) Edge generation between generated vertices based on geodesic distances on

the vessel probability map.

The GNN uses these graph structures obtained from the dense feature maps

resulting from the U-Net contraction path as previously described. The connectivity

of nodes in the graph is described by the adjacency matrix. The GNN trains on
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these input feature maps based on the graph topology and generates a learned

feature vector for each node that will be merged to the U-Net up-sampling path.

Each node in the output graph updates its features with information from higher

order neighbourhood, which can improve the segmentation decisions (see Figure

6.3), The module will be integrated into the segmentation network (Decoder ) as a

multi-task branch, which we called the Embedding mode as presented in [67] and

[71].

Figure 6.3: Combinaison of GNN and U-Net networks

Node connectivity was calculated during training based on nearest neighbors

in node feature space. Aggregating multiple GNN layers allows nodes to access

information beyond the initial neighborhood, which can improve segmentation

results because features that include relevant information from distant nodes in

the volume can be used.

Contributions

In our case we used our proposed 3-D Dense U-Net presented above, and we

replaced the deepest layer using four GNN layers as presented in the Figure 6.2,

and we used 3-D images instead of 2-D. We also modified the loss function by using

Focal Tversky Loss and the way to calculate the skeletons and graphs compared to

the method of the article [33].
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6.3.4 Topological loss functions to improve liver vessel
segmentation

In this section, we present a novel 3-D deep learning method based on topological

information for liver vessel segmentation from CT scans. To do so, we employed a

continuous-valued loss function, which can help in improving segmentation deci-

sions from vascular patterns. It integrates both pixel wise intensity and topological

structure of vessel shapes by training a 3-D U-Net with this specific topological

loss function, by calculating the similarity between the likelihood map predicted

by the 3-D U-Net and the ground-truth vessels. This approach was tested to the

task of segmenting the hepatic vessel tree from CT scans provided by the IRCAD

dataset. Our 3-D topological deep learning model inducing better segmentation

in terms of bifurcations and topology. We show its accuracy by comparing with a

baseline 3-D U-Net and 3-D U-Net-GNN models.

The objective of this part is to identify an efficient and intuitive loss function

that allows the preservation of shape and topology after the segmentation step of

vascular structures. We modify a connectivity-sensitive similarity measure named

clDice [76] for the analysis of vascular structure segmentation algorithms by adding

a focal weight. Importantly, we provide theoretical guarantees for the topological

correctness of clDice for 3D binary segmentation. Due to its formulation based on

morphological skeletons, our measure pronounces the topology of the network and

allows to equally weight each voxel.

Proposed pipeline

Most loss functions proposed in literature are for binary classification (foreground /

background) using CNN and FCN, they allow the quantification of class imbalance.

Here, in our study, we introduce a weighted loss function for binary segmentation

problems. To deal with this issue, a weighting strategy of Dice loss function has

been proposed. We investigate the behavior of this loss functions in the presence of

different rates of label imbalanced 3-D segmentation tasks. The proposed approach

is based on 3-D Dense U-Net coupled with novel weighted Dice loss functions

called W-ClDice for liver vessel segmentation on CT images (See Figure. 6.4). The

loss function is designed for topological structure segmentation and to deal with

common issue of connectivity within branches, and poor segmentation outcomes

in bifurcations.
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Figure 6.4: The pipeline proposed to carry out the proposed study, soft-skeletonization

[76] was used to generate skeletons.
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Loss weighting strategy

In highly imbalanced segmentation tasks a severe class imbalance is likely to occur

between candidate labels, thus resulting in poor performance, U-Net can ignore

small size vessel voxels in the training process, which results poor segmentation

accuracy on small regions and bifurcations. This problem can be solved by weight-

ing the loss of small size foreground voxels. In this study, we used a loss weighting

strategy based on focal weighting coupled with a 3-D Dense U-Net.

Focal weighting

Focal weighting [79] is a method for increasing more focus on hard-to-classify class

voxels based on predictive probability. The focal weighting is defined by :

WFocal

𝑝 = (1 − V𝑝)𝛾 (6.3)

where V𝑝 is a predicted segmentation probability, and 𝛾 is called a focusing

parameter. In this study, we used 𝛾 = 1 for Dice loss function as in the article [51].

Weighted ClDice loss function (W-ClDice)

In this part we have modified the ClDice proposed by [76] using the focal weighting

presented in [79]. The ClDicemeasures the similarity termed centerlineDice (clDice),

which is calculated on the intersection of the segmentation masks and their skeleton.

We add the focal weight, which gives higher weight to class voxels with lower

prediction confidence and reduces the loss assigned to well classified voxels during

the training process.

We consider two binary masks: the ground truth mask V𝑙 and the predicted

segmentation masks V𝑝 . First, the skeletons S𝑝 and S𝑙 are extracted from V𝑝 and

V𝑙 respectively. We calculate the fraction of S𝑝 that lies within V𝑙 , which called

Topology Precision or T𝑝𝑟𝑒𝑐 (S𝑝 , V𝑙 ), and Conversely we obtain Topology Sensitivity

or T𝑠𝑒𝑛𝑠 (S𝑙 , V𝑝 ) as presented bellow:

T𝑝𝑟𝑒𝑐 (S𝑝 ,V𝑙 ) =
|S𝑝

⋂
V𝑙 |

|𝑆𝑝 |
; T𝑠𝑒𝑛𝑠 (S𝑙 ,V𝑝) =

|S𝑙
⋂

V𝑝 |
|𝑆𝑙 |

(6.4)

Where V𝑝 and V𝑙 are predicted segmentation mask, and ground truth mask

respectively. S𝑝 and S𝑙 are predicted mask skeleton, and ground truth skeleton.

The weighted Dice loss function W-ClDice where we added a focal weight to the
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standard ClDice is defined as :

W-ClDice = 1 −
2 ×∑𝐶

𝑐=1

∑𝑁
𝑖=1W

Focal

𝑖,𝑐 × (T𝑝𝑟𝑒𝑐 (𝑖,𝑐) × T𝑠𝑒𝑛𝑠 (𝑖,𝑐) )∑𝐶
𝑐=1

∑𝑁
𝑖=1W

Focal

𝑖,𝑐
(T𝑝𝑟𝑒𝑐 (𝑖,𝑐) + T𝑠𝑒𝑛𝑠 (𝑖,𝑐) )

(6.5)

Where N and C are the numbers of pixels and classes in images for a training

dataset, respectively. Note that W-ClDice formulation is not defined for T𝑝𝑟𝑒𝑐 = 0

and T𝑠𝑒𝑛𝑠 = 0, but can easily be extended continuously with the value 0.

6.4 Train and validate the model
In the binary segmentation tasks, we trained the 3-D Dense U-Net presented previ-

ously on each training dataset using Dice loss functions with the loss weightings.

Our model was trained with 20 epochs and the Adam optimization algorithm 𝛼 =

1𝑒 − 5 (learning rate), and a batch size of 1 in each training process the images size

were (256x256x100). We used Keras with Tensorflow librairies designed for largest

possible input images that can fit the GPU memory. The training and prediction

were performed on a local server by a GPU NVIDIA GeForce GTX 1650 (12Gb) with

256 Gb of RAM, available for deep learning experiments.

We evaluated our models by randomly selecting the data distributed from IRCAD

database [30] into the training, validation and testing sets in the ratio of 70%-

20%-10% respectively in a cross-validation manner. For each method, all data

are performed to collect experimental results with a different training set. The

performance of each model was evaluated using the test set (one CT-scan following

our distribution).

The result of our proposed W-ClDice for the 3-D Dense U-Net is compared to

the segmentation of a baseline 3-D U-Net [69] and the 3-D Dense U-Net, and 3-D

U-Net GNN [33], and CIDice [76] approaches in order to validate the best method.

6.4.1 Contributions
In this section we have presented a pipeline with the aim of developing a method-

ology for detecting the hepatic vascular network from abdominal CT in a images,

in a 3-D approach, using topological deep learning techniques based on a priori
knowledge of shape. Our main objective was to find a new deep learning approach

based on vessel topology to obtain an accurate segmentation of the liver vascular

network. To deal with this, we proposed a novel approach which coupled a 3-D

Dense U-Net with accurate weighted Dice loss function (focal weigthing), and then

we compared the results with ClDice [76]. This loss function is used and tested
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for segmentation tasks on 2-D images, here we have created a loss function for

3-D images for binary segmentation instead of multi class segmentation. In the

literature most methods used baseline U-Net, FCN or standard CNN for segmen-

tation of curvilinear structures, in our study we used 3-D Dense U-Net for more

accuracy and we couple this architecture with a new weighted Dice loss function.

This method is applied on CT scan images for liver vessel segmentation.

6.5 Results

6.5.1 Results of the GNN-UNet approach

The 3-D U-Net-GNN give poor segmentation compared to standard 3D U-Net, with

the lowest Dice score of 0.471. Moreover, its validation loss is the worst, without any

improvement and there were no significant decrease during the optimization. The

standard U-Net architectures lead to similar outcomes, with a better performance

(see Figure 6.5). Our proposed 3-D U-Net reaches a Dice accuracy of 0.727. The

prediction accuracy curve during validation looks much smoother (see Figure 6.5),

we can see an improvement over the U-Net GNN model. Note that the loss curve

does not show real improvements but still better than our proposed approach 3-D

U-Net GNN.

Figure 6.5: Results obtained using standard U-Net and U-Net GNN model
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6.5.2 Results of the Loss function based segmentation
method

Our method significantly outperforms existing methods in topological accuracy

compared to the three topological models of the state of the art. Figure 6.6 shows

qualitative results. Our approach demonstrates more consistency in terms of shape

and topology of liver vessels. It correctly segments hepatic vascular tree, while

other methods segments liver vessels but with more false positives and negatives,

especially the 3-D U-Net GNN model.

Figure 6.6: Results of 3-D topological models designed for the segmentation of liver vessels.

(a) using standard 3-D U-Net, (b) U-Net-GNN, (c) ClDice loss function, (d) our proposed

W-Cldice function with Dense U-Net.

The 3-D U-Net used ClDice of [76] gives good results also, but the use of focal

weight to strengthen our model increases segmentation accuracy especially on

small regions. Also the use of 3-D Dense U-Net instead of baseline 3-D U-Net

helped us to have the most accurate results compared to the state of the art.

To explain more the rationale of W-ClDice, we first present the segmentation

results and the loss function curves in Figure 6.7. Within a short period, the

likelihood map and the segmentation are stabilized globally, mostly thanks to

the focal weighting process. After epoch 20, topological errors are fixed by our

proposed topological loss. For most vessels voxels, the network learns to make
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correct prediction. However, for a small amount of data, it is much harder to learn

and predict correctly, even with more annotated training images. Topological loss

essentially identifies these vessel voxels during training at the expense of overfitting

and consequently slightly compromised per-voxel accuracy. On the other hand,

we notice that topological loss cannot succeed alone without focal weight. Focal

weighting finds a correct likelihood map so that the topological loss can improve

segmentation results.

Figure 6.7: Training and validation loss optimization for the models presented in Table

6.1. (a) results obtained using standard 3-D U-Net, (b) U-Net-GNN, (c) with the ClDice loss

function, (d) with our proposed W-Cldice with Dense U-Net.

6.5.3 Qualitative and quantitative comparison of results
The 3-D U-Net-GNN stands as the less efficient architecture of our study, with the

lowest Dice score during training. Moreover, its validation loss is the worst, without

any significant decrease during the optimization. The two other architectures lead
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Table 6.1: Quantitative results for different models in state-of-the-art we have test on

IRCAD public datasets for liver vessel segmentation with diffrent loss functions presented

above.

Method Weight Loss function Dice
3-D U-Net No Dice loss 0.727

3-D U-Net GNN [33] No Dice loss 0.527

3-D Dense U-Net No Dice loss 0.727

3-D Dense U-Net No BCE 0.702

3-D Dense U-Net No TI 0.676

3-D Dense U-Net No TFL 0.794

3-D Dense U-Net No ClDice 0.813
3-D Dense U-Net Focal Weight W-ClDice 0.892

to similar outcomes, with a better performance for our proposed 3-D Dense U-Net

with W-ClDice loss, which reaches a Dice accuracy of 0.892.

The prediction accuracy curve during validation looks much smoother for our

approach (d) in Figure 6.7, we can see a significant improvement over the state-

of-the-art models. Note that the loss curve does not show real improvements,

what is displayed is an average of the point loss values, but what is important

for the accuracy of the prediction is the distribution of the loss values not their

average, because the prediction accuracy is the result of a binary thresholding of the

probability per class predicted by the model, so this model can continue to improve

even if this is not reflected in the average loss. And in our case, we can clearly see

that our method (d) has the best distribution compared to the other approaches

(a, b, c) in Figure 6.7 especially for validation loss. And the segmentation results

of Figure. 6.7 and Dice score in Table 6.1 confirm that our approach is the most

accurate.

We compared our proposed pipeline to most methods , which has been tested on

IRCAD public datasets. Our coupled 3-D Dense U-Net W-ClDice achieved higher

Dice score of 0.892, compared to U-Net++ [93], V-Net [58], 3-D CNN [39] , and FCN

[55] models, their Dice score was respectively 0.817, 0.689, 0.879, 0.624.

The proposed W-ClDice loss function were also compared with different loss

functions proposed in litterature and presented above, results of 3-D Dense U-Net

model designed for the segmentation of liver vessels using different loss functions

presented in Figure 6.9, quantitative results are also presented in Table 6.1. The

proposed W-ClDice achieved also better results compared to the standard ClDice

of [76] (see Figure 6.8).

To evaluate the impact of focal weighting strategy we have multiplied all the

loss functions presented above by the focal weight and we compared the results
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Figure 6.8: Results of 3-D topological models designed for the segmentation of liver vessels.

(a) using standard ClDice loss function, (b) our proposed W-Cldice function with Dense

U-Net.

before and after (see Figure 6.10). The results claim that the focal weight improved

segmentation in most cases compared to the results presented in the Figure 6.9, but

our W-ClDice and since it is based on the topology of the hepatic vessels. We can

see that it give always the best outcomes in term of reduction of false positives and

which gives the best segmentation especially on bifurcations (see Figure 6.10) .

6.6 Discussion and conclusion

We presented a joint W-ClDice with the 3-D Dense U-Net based segmentation

method with an application to extract liver vessels from abdominal CT scans. By

introducing a focal weight into a Dice loss function, the proposed method is able to

learn and combine information from a larger region of the image. Our proposed

approach shows significant improvement segmentation results with the IRCAD data

set, which indicates that the proposed model can segment more complete vascular

trees. Further our method was tested on few quantity of data, the performance

can be more better on large amounts of data. As presented in this chapter, the
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Figure 6.9: Results of 3-D Dense U-Net model designed for the segmentation of liver

vessels using different loss functions on the first patient of the IRCAD dataset.

Figure 6.10: Results of 3-D Dense U-Net model designed for the segmentation of liver

vessels using different weighted loss functions on the first patient of the IRCAD dataset.

standard loss function Dice ignores the small regions and loses a large amount of

information. Consequently, the CT scan image has the characteristics of fewer and
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smaller vessels regions. Our improved loss function can make the model focus on

the vessel bifurcations and overcome the problem of the unbalanced distribution

of the positive and negative samples in a single sample of the CT scan images.

Our proposed loss function considerably improves the accuracy of the liver vessel

segmentation compared to the state of the art approaches.

For the 3-DU-Net GNNwhich introduces a GNNmodule with graph convolutions

at the deepest level of the U-Net, where the proposed method is able to learn and

combine information from a larger region of the image. This model showed poor

segmentation and significant appearance of false negative compared to the baseline

U-Net. Several problems that can limit the performance of the 3-D U-Net-GNN

model, such as 1) the GNN module was placed only at the deepest level of the

U-Net, while the image underwent four downsampling operations. A more capable

U-Net GNN model can be robust if it replaces all skip connections in 3-D U-Net

with GCN. However, this model was not tested due to the large memory required

for this task, which exceeded the GPU resources available on our local server, 2) we

used a standard methods to build skeletons and this may reduce the performance

of this model, 3) the calculated feature map on graph node based on neighborhood

must also limit the performance especially when the GNN module try to select the

exact number of significant neighbor’s for each node.

For the 3-D U-Net GCN constructed of three modules, there were problems

when we tried to build the inference module, more precisely when combining the

feature maps obtained from the two architectures (U-Net, GCN) which are two

different vectors where we could not resize or normalize them. This method could

be improved in future works.

Our work focused on the design of a robust method to exploit shape information

and integrate it during the segmentation process. This approach makes it possible

to bring its specificity to correct segmentation errors. Classically in the literature,

improving the robustness of segmentation algorithms requires defining methods

designed specifically for a modality and/or using priors from databases carried

out on a set of patients. Except that due to the great variability of the acquisition

parameters, it is really difficult to define quantitative parameters because the acqui-

sition is not reproducible for each patient. We seek to use topological signatures to

develop which will be robust and work on CT scan images but also on liver MRI

images (in our future works).

Finally, the classic approaches in the literature may solve this problem by vascular

enhancement methods. Then come up against problems of disconnection in the

small regions and especially the problem of noise which occurs by using these

filters and since the dynamics describing the elements of anatomy are different. Our

97



Chapter 6 Liver vessel extraction in CT scans using 3-D topological DL methods

approach, on the contrary, uses the shape of the vessels as a means of correction

and is therefore immune to this type of problem.
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7.1 Contributions
During these three years of thesis, we worked on the problem of segmentation

of the vascular network of the liver applied to CT scans. This work was part of

the R-Vessel-X project funded by ANR which aimed to work on robust extraction

of hepatic vessels. To do so during this manuscript, we have drawn up a state of

the art of the methods of segmentation of complex structures as well as applied

pre-processing techniques to enhance vessel contrast in raw images.

As part of this work and unlike common state-of-the-art models, we have chosen

to use topological information which can improve the performance of the model

and the segmentation decisions. To achieve this task we started by proposing a

comparative study between three DL models for segmentation on three types of

inputs (3-D full volume, 3-D slabs, 3-D patches), these models succeeded in seg-

menting the vascular network of the liver but the results obtained on the complete

volume of the liver were better compared to slabs and boxes. And the improved ver-

sions of standard 3-D U-Net (3-D Dense U-Net and MultiRes U-Net ) gave the best

segmentation compared to the basic model, except that we got some disconnections

in small regions and in bifurcations that need to be corrected.

For this, we have proposed a second comparative analysis based on a pre-

processing step (vascular enhancement), in order to be able to distinguish the

vessels from the liver, this step will improve the vascular structures before their

segmentation and their visualization, and to remove the structures not vascular and

image noise. We propose to test three 3-D U-Net architectures for hepatic vessel

segmentation using different vessel enhancement filters as a preprocessing step.

We choose four filters that improve the vascular contrasts, namely the Zhang, Sato,

Jerman and RORPO filters. Then, we compared the results obtained for three 3-D

U-Net models on the CT scan images hepatic whole volume and on image slabs

which gave the best segmentation in the first part, the models in this stage were

more efficient given the modification of their architectures compared to the first

part taking into account the memory capacity which was higher. We have shown

that the 3-D Dense U-Net with Jerman filter is the most suitable for the extraction

of hepatic vessels on CT images. This is a promising result to promote vessel en-

hancement in DL pipelines for hepatic vasculature segmentation. Moreover, based
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on our results, it is possible to extract different biomarkers and use them for clinical

experiments, especially to detect disorders of the liver and hepatic vessels and

even for the division of the liver into eight Couinaud regions previously presented,

which will allow radiologists to locate HCC-like tumors within the segments.

The results obtained highlighted limitations that led us to the major contribution

of this manuscript. We have proposed an approach where we have introduced

several improvements to the proposed models, the first approach which is based

on a combination of characteristics from two different models 3-D U-Net and GCN.

This model was not functional, because the GCN can be combined with a CNN but

not with a U-Net architecture because of their output vectors that are not the same

so no solution has been found to solve this kind of problem. But a similar solution

were proposed which is based on GNN module, where the convolutional layers

at the deepest level of the U-Net are replaced by a GNN-based module, the dense

feature maps was transformed into a graph input to the GNN module to improve

segmentation of liver vessels. Here we noticed that the outcomes were not good and

this may be due to the GNN module who operating only on the deepest level of the

U-Net, where the image have undergone four downsampling operations. Outcomes

of this architecture were poor compared to the baseline 3-D U-Net and this confirm

that all skip connections must be replaced using GNN modules. What prevented

us from carrying out this step is that it requires a very high RAM memory and is

costly in terms of calculation time.

To remain within the same concept, and take advantage of the topological in-

formation of the hepatic vessels, we have proposed a joint W-ClDice with the 3-D

Dense U-Net based segmentation method. By introducing a focal weight into a

Dice loss function, this loss function measured the similarity which is calculated

on the intersection of the segmentation masks and their skeleton. We add the focal

weight, which gives higher weight to class voxels with lower prediction confidence.

This proposed approach was able to learn and combine information from a larger

region of the image. Our proposed approach gave very good results on IRCAD

data set, which indicates that the proposed model can segment more complete

hepatic vascular trees. Our improved loss function made the model focus on the

vessel bifurcations and overcome the problem of the unbalanced distribution of the

positive and negative samples and considerably improved the accuracy of the liver

vessel segmentation compared to the state of the art approaches.

Our proposed framework shows that the results are promising for clinical appli-

cations such as the automatic diagnosis of liver tumors based on imaging data, (see

Figures 8.1, 8.3, and Figures 8.4, 8.5).

The liver vessel can be used to divide the liver into Couinaud regions, the aim is

to localize the tumors on segments and to reduce the need for taking liver biopsies
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to diagnose the fibrosis stage of liver. This method allows the localization of the

tumors which facilitate the precocious treatment of liver cancer HCC.

7.2 Perspectives
In perspective, several solution for liver vessel reconstruction can be identified.

Firstly the extension of our method to work on more CT scan images but also on

MRI images where the detection of hepatic vascular tree is more difficult. We will

try to adapt our models to deal with MRI data acquired thanks to the R-Vessel-X

project.

Another solution is to try to replace not only the deepest part of 3-D U-Net GNN

by a GNN module, but all the skip connections of 3-D U-Net using a GNN. This

step requires a large RAM memory which were not available for our case, we can

then couple this architecture with W-ClDice which can improve the extraction of

the hepatic vascular network in MRI and CT scan images and then use them for

several clinical applications.

We desire to make it possible to employ the direction of liver vessel for the

reconstructions of Couinaud segments to develop a method for automatic tumor

detection as radiologists do with visually. Couinaud representation serves as the

validation step and will help us to realize the clinical objective presented above.

We also would like to make all the codes developed in this thesis open source,

and we will try to integrate them into medical image processing software such as

3-D Slicer (as a plug-in) for example.

We desire also to combine all the developed approaches presented above together

using the W-ClDice with enhanced images using vesselness filters (mostly Jerman

because it is the most robust according to our results on IRCAD data set).
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(a) U-Net

(b)MultiRes U-Net

(c) Dense U-Net

Figure 8.1: 3-D ImageJ views of segmentations obtained from a patient of IRCAD dataset,

with the full 3-D volume approach on abdominal CT scan before liver vessel cropping, the

results are obtained using Jerman filter and W-ClDice loss function.
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(a) U-Net

(b)MultiRes U-Net

(c) Dense U-Net

Figure 8.2: 3-D ImageJ views of segmentations obtained from an other patient of IRCAD

dataset, with the full 3-D volume approach, the results are obtained before preprocessing

step .
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(a) U-Net

(b)MultiRes U-Net

(c) Dense U-Net

Figure 8.3: 3-D ImageJ views of segmentations obtained from an other patient of IRCAD

dataset, with the full 3-D volume approach, the results are obtained using Jerman filter as

preprocessing step .

106



Appendix Chapter 8

(a) U-Net

(b)MultiRes U-Net

(c) Dense U-Net

Figure 8.4: 3-D ImageJ views of segmentations obtained from an other patient of IRCAD

dataset, with the full 3-D volume approach, the results are obtained using Jerman filter as

preprocessing step and our proposed W-ClDice as post-processing step.
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(a) 3-D U-Net

(b) 3-D MultiRes U-Net

(c) 3-D Dense U-Net

Figure 8.5: 3-D ImageJ views of segmentations and their zoom on bifurcations obtained

from an other patient of IRCAD dataset, with the full 3-D volume approach, the results

are obtained using Jerman filter as preprocessing step and our proposed W-ClDice as

post-processing step.
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