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t for three-layered silicone
composites with: a) serial (⊥) stacking, Ee f f = 21.8 kPa, ÊNL = 145.6 kPa and
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F uni-axial force N

σ stress Pa

ε deformation strain [–]

E Young’s modulus kPa

Ee f f effective Young’s modulus kPa

Pu upstream pressure Pa

POn threshold pressure Pa

f0 fundamental frequency Pa

zr displacement of the top surface of the replica Pa

Spatial Parameters

x left - right axis

y posterior - anterior axis

z inferior - superior axis
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⊥∥ combined serial and parallel stacking

o( j, j+1) stacking orientation between adjacent layers

M mass mixing ratio

n total number of layers in a composite

R coefficient of determination

x̂ indicates modelled value of parameter x
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CHAPTER 1

Introduction

1.1 Context of the study

The vocal apparatus is a sophisticated system that enables the production of voice sounds.
This system is comprised of numerous sections of the human body, with three key components:
an airflow system (the lungs and trachea), a vibration source (the vocal folds in the larynx), and a
group of resonators in the vocal tract (different cavities between the vocal folds and the lips and
nostrils).

The human larynx, situated between the trachea and the vocal tract, is a complex organ with
major functions such as airway protection and speech sound production [1]. For phonation or
voiced speech sound production, the presence of two apposed vocal folds (VF) within the larynx,
depicted in Fig. 2.1, is crucial. The fluid-structure interaction between airflow coming from the
lungs and the deformable multi-layer (ML) VF tissues on each side of the glottal constriction
can result in sustained VF auto-oscillation which is the major sound source for voiced speech [1,
2]. This oscillation will modulate airflow and generate an acoustic wave that travels through the
vocal tract. The vocal tract, which is articulated by a number of muscles, modifies the spectrum
of the acoustic wave to produce a voiced sound (vowels, sonorous consonants) that is ultimately
emitted from the lips. As a consequence, the role of normal (healthy) and abnormal (pathologi-
cal) VF structural properties on the fluid-structure interaction underlying VF auto-oscillation and
sound production is an ongoing and multi-disciplinary research subject [1, 3–11].

Mechanical VF replicas for which the structural properties can be altered are thus of major
benefit for physical studies since systematic, and preferably controlled, structural changes allow
to mimic not only the normal elasticity regulating function of the vocal ligament and vocalis
muscle but also to explore the influence of structural abnormalities, either within a single VF or
related to left-right asymmetries, on VF auto-oscillation [15–18].

The aim of this thesis is to consider and validate an analytical model for the effective elasticity
of ML silicone composites from its layers properties, i.e. Young’s modulus Ee f f and geometry.
A validated analytical model predicting Ee f f of ML moldings is of interest for the (a-priori)
mechanical characterisation, and the design of ML VF representations, for normal as well as
for abnormal VF structures. Indeed, in the long term, such a model is of particular interest

1
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(a) ex-vivo observation (b) a multi-layer representation

Figure 1.1: Illustration of the (micro-)anatomical structure of a left human VF in the medio-
frontal plane [1]: a) coronal section (adapted from [12]), b) example of a simplified multi-layer
representation [13, 14].

for physical studies (using deformable silicone-based molded replicas) involving a systematic
elasticity variation mimicking either intra- and inter-speaker diversity (voice type, morphology,
aging etc. [9]) or a structural pathology (scar, nodule, carcinoma, cyst etc. [1]).

1.2 Objective and organisation of the thesis

In the context of physical investigations on vocal folds auto-oscillation, this thesis aims to
make four main contributions.

Firstly, to consider and validate an analytical model for the effective Young’s modulus Ee f f
of ML silicone composites from its layers properties, i.e. Ee f f and geometry. Additionally,
The model is to be extended to account for an arbitrary-shaped inclusion of any size embedded
somewhere within a single or multiple layers.

Secondly, extending the characterisation of the stress-strain behaviour of such ML silicone
composites to account for the non-linear strain range with two-parameter relationships. It is then
of interest to show that the parameters can be a priori modelled as a constant or as a linear
function of the effective low-strain Young’s modulus. In addition, analytical expressions of the
linear high-strain Young’s modulus and the linear high-strain onset, again as a function of the
effective low-strain Young’s modulus, are formulated as well.

Thirdly, apply the validated models to silicone replicas based ML specimens for estimating
their low-strain and high-strain moduli, as well as quantifying the stress-strain behaviour of a
pressurised latex tube replica.

And finally, an experimental study of the influence of a structural inclusion on the fluid-
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structure interaction underlying the VFs auto-oscillation is realised. Therefore, the objective is
to quantify at first the structural properties of the normal and the abnormal designed VFs replicas
in order to investigate its influence on the vibration.





CHAPTER 2

The vocal folds apparatus

2.1 Human voice production

Vocal communication plays the most important role in social interactions [19]. Speech, which
is a unique attribute of humans, is our primary mode of communication and voice can be con-
sidered the most used musical instrument [20]. Physically, the production of speech involves
two operations, which are known as the source-filter decomposition of speech [21]. Firstly,
generating an acoustic wave either by the quasi-periodic vibration of the vocal folds (VFs) that
modulates airflow in voiced speech or by turbulent airflow constricted by the vocal tract in un-
voiced speech, e.g., fricatives. Secondly, filtering of the generated signals by the amplification
or attenuation of different frequencies in the vocal tract.

(a) in-vivo observation
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(b) schematic overview

Figure 2.1: Illustration of the larynx during VF auto-oscillation or phonation: a) in-vivo
videostroboscopic observation (top view) (adapted from [1]), b) schematic overview of the time-
varying glottal constriction area Ac(t) and main VF characteristics (dimensions Lx, Ly, Lz and
mass mV F ).

The generation of voiced speech in the larynx by the fluid-structure interaction induced vibra-
tions of the VFs is called phonation [22]. Although they act as a protector of the lungs from the
aspiration of food through the trachea, VFs play a primary function in the production of speech.

5



6 Chapter 2. The vocal folds apparatus

The physical process of phonation is governed by the principles of fluid-structure interactions,
where the characteristics of the VFs and the airflow can significantly alter the output voice. Al-
though healthy VFs already produce complex voice signals, any presence of VFs pathology can
considerably enhance the complexity and the nonlinear behaviour of the dynamics of phona-
tion [22].

2.2 Deformable mechanical VF replicas

Given the complexity of a human VF, physical studies of the VF auto-oscillation commonly
rely on deformable mechanical VF replicas which simplify the anatomical VF structure and
functionality in order to ensure the reproducibility, quantifiability, controllability and thus
interpretability of findings [8, 23–31]. A first type of deformable VF replicas consists of silicone
molded VF replicas. These replicas focus on maintaining, up to some degree, the anatomical ML
structure so that each layer has an appropriate, but constant elasticity. At first, a two-layer (2L)
VF approximation was made consisting of a soft outer layer, representing the vocal fold mucosa
covering a stiffer muscle-like layer [28]. This 2L approach was mainly motivated by the mucosal
wave theory or body-cover theory of normal VF vibration, which situates vibration within the
mucosal layers only [32, 33]. Recent studies consider more complex ML approximations in
order to represent the micro-anatomical structure of a normal VF in more detail [8, 16, 17,
29]. Nevertheless, whereas elasticity values of each VF layer are reported in literature [3, 4,
6, 7, 34–36], the rigidity of a human VF is not constant as one of the functions of the vocal
ligament and vocalis muscle is to vary its stiffness. Therefore, a second type of deformable
VF replica consists of pressurised latex tubes. These VF replicas intend to mimic the elasticity
regulating function of the vocal ligament and vocalis muscle and not its ML structure [27, 30, 31].

Physical studies using these deformable mechanical VF replicas have shown that both
VF replica types allow to reproduce sustained VF auto-oscillation following a fluid-structure
interaction [8, 16, 27, 28, 30, 37]. Nevertheless, observed major flow and vibration properties,
such as the auto-oscillation frequency and required minimum upstream pressure (phonation
onset threshold) etc., differ between replicas [17]. These differences are partly due to elasticity
differences as explicitly shown for pressurised latex tube replicas (second type) [18, 30].

Silicone molded VF replicas (M5, MRI and EPI) of the first type, mimicking the ML repre-
sentation of the (micro-)anatomical VF structure, are detailed in Section 2.2.1. A pressurised
latex tube VF replica (PLT) of the second type, mimicking the elasticity regulating VF function,
is outlined in Section 2.2.2. An overview of right-left length Lx, posterior-anterior length Ly,
inferior-superior length Lz, VF volume V F and mass mV F is given in Table 2.1. As a reference,
typical values observed for a human male adult are indicated as well [3, 10, 38].
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Table 2.1: Overall geometrically based VF properties: right-left length Lx, posterior-anterior
length Ly, inferior-superior length Lz, volume V F and mass mV F .

Lx [mm] Ly [mm] Lz [mm] V F [mm3] mV F [g]

M5 7.9 17.0 10.7 1025 0.96
MRI 13.1 18.0 10.0 1707 1.57
EPI 8.5 17.0 10.2 1079 1.01

PLT⋆ 11.0 42.0 12.0 3531 3.71

human† 7-8 15-25 4-8 610-830 0.61-0.82
⋆ values at PPLT = 0 Pa
† male adult [3, 10, 11, 38] and soft tissue density 1.03 g/cm3 [9, 39]

2.2.1 Anatomical ML VF representation: silicone replicas M5, MRI and
EPI

Silicone VF replicas mimic the ML (micro-)anatomical VF structure as an overlap of silicone
molding layers with constant elasticity following the methodology outlined in [8, 16, 17, 29,
40]. Fig. 2.2 illustrates three molded deformable ML silicone VF replicas labelled M5, MRI
and EPI. The layer thicknesses lt and overall dimensions Lx and Lz are indicated (in mm). The
M5 replica is a two-layer (2L) reference model following the body-cover theory of phonation
representing thus the vocalis muscle and superficial layer, respectively [26]. The MRI replica
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(b) MRI
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(c) EPI

Figure 2.2: Coronal section (dimensions in mm) of a molded silicone VF replica indicating
thickness lt of each layer (right VF) and its schematic ML representation with overall dimensions
Lx and Lz (left VF): a) two-layer M5, b) three-layer MRI and c) four-layer EPI. For visualisation,
each layer is molded (right VF) with a different colour.
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Table 2.2: Layer properties for a male adult [3, 4, 6, 7, 34–36] and silicone VF replicas (M5⋆,
MRI†, EPI‡ [14, 17, 40]): Young’s modulus E , layer thickness lt , mixture (Mix) TE (Thinner-
Ecoflex) or TD (Thinner-Dragonskin), mass mixing ratio M , normalised layer thicknesses lt/Lx
and normalised volumes /V F .

Male adult Silicone VF replicas
Layer E [kPa] lt [mm] E ⋆⋆ [kPa] Mix M [-] lt/Lx [%] /V F [%]

Muscle 8-29 6.0 14.4⋆ 4.0† 23.4‡ TE 2:2⋆ 4:2† 1:2‡ 81.0⋆ 76.3† 75.2‡ 50.0⋆ 68.5† 38.1‡

Ligament 10-45 0.8 4.0‡ TE 4:2‡ 11.8‡ 7.6‡

Superficial 2-9 0.6 4.0⋆ 2.2†,‡ TE 4:2⋆ 8:2†,‡ 19.0⋆ 22.9† 11.8‡ 50.0⋆ 27.5† 50.3‡

Epithelium
◦

40-60 0.1 64.7†,‡ TD 1:2†,‡ 0.8† 1.2‡ 4.0†,‡

⋆ M5: muscle and superficial
† MRI: muscle, superficial and epithelium
‡ EPI: muscle, ligament, superficial and epithelium
⋆⋆ E measured from uni-axial tensile test with precision loading [14]
◦

also used for backing layer

has a three-layer (3L) structure by adding a third thin surface layer representing the epithelium
to the 2L structure of the M5 replica [16, 29]. The EPI replica is a four-layer (4L) structure
obtained by inserting an extremely soft deep layer, representing the ligament, between the
muscle and the superficial layer of the 3L structure of the MRI replica [8]. Each VF is mounted
on a stiff backing layer.

Briefly, each molding layer consists of a different mixture of silicone Thinner and Ecoflex
(TE, silicone Thinner and two-part A&B Ecoflex 00-30, Smooth-On, Inc., Easton, PA) or
silicone Thinner and Dragonskin (TD, two-part A& fast B Dragon Skin 10, Smooth-On, Inc.,
Easton, PA). The mass mixing ratio M = rT : rE(D) for each TE (or TD) mixture expresses
the relative mass of silicone thinner to Ecoflex (or Dragonskin). The relative mass portion of
silicone thinner rT is varied between 1 and 8 whereas the relative mass portion of two-part
Ecoflex (or Dragonskin) is held constant to rE(D) = 2 (1 part A and 1 part B). Layer properties
are given in Table 2.2 [13, 14, 17]. Measured (uni-axial tensile test [14]) low-strain Young’s
moduli E for TE or TD mixtures of the molding layers (up to 65 kPa) are consistent with values
(up to 60 kPa) reported for VF’s of male adults [3, 4, 6–8, 41]. Note that the Young’s modulus E
of the molded ligament layer is underestimated as no tension is accounted for in the deep layer.
In general, both the Young’s modulus E as well as the density of TE mixtures decreases as the
mixing ratio M (and hence rT ) increases [14].
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2.2.2 Elasticity regulation function: PLT replica

A VF replica with variable elasticity is obtained by representing each VF as a pressurised
latex tube (PLT) [13, 15, 31]. Each VF consists of a latex tube (diameter 11 mm, thickness
0.2 mm, low-strain Young’s modulus 1.8 MPa and density 1635 kg·m−3 [40]) enveloping a
hollow rigid metal support (diameter 12 mm, posterior-anterior length 42 mm) as depicted in
Fig. 2.3(a). The latex tube is pressurised by filling it with distilled water at room temperature
(temperature 22± 2 C◦, density ρL = 998 kg·m−3, dynamic viscosity coefficient µL = 1.0×
10−3 Pa·s). The water inlet (internal diameter 4 mm) is connected to a water column whose
height determines the internal pressure PPLT within each latex tube. Overall PLT VF properties
Lx, Ly, Lz, V F and mV F at PPLT = 0 Pa are given in Table 2.1. The elasticity of the PLT VF replica
varies with the imposed PPLT and thus with the height of the water column [42]. Concretely, in
this work PPLT is varied between 450 Pa and 6500 Pa (with steps of at most 500 Pa) corresponding
to a water column range of about 60 cmH2O.

PPLT w
ater

colu
m
n

water inlet

closed end

metal support

latex tube

single PLT VF
42

12

110.2

46

1

(a) single PLT VF
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(b) right VF positioning and view angles

Figure 2.3: Overview pressurised latex tube (PLT) VF replica (dimensions in mm): a) single PLT
VF, b) spatial positioning of right VF and camera view angles (side and top).

The PLT VF is then positioned in a rigid frame, as depicted in Fig. 2.3(b), in the same way
as during fluid-structure interaction experiments [13, 15, 31]. The metal support part of the
PLT VF is fixed whereas the unconstrained deformable portion faces the medio-sagittal plane
as schematically shown in Fig. 2.3(b). The frame allows simultaneous observation of the VF
along the sagittal plane (side view angle in Fig. 2.3(b), Nikon AF-S Nikkor 18-70 mm, shutter
time 2 ms, aperture 4.3 mm, 0.037 mm/px) and along the transverse plane (top view angle in
Fig. 2.3(b), Motion Blitz Eosens Cube 7, shutter time 726 µs, aperture 11 mm, ≤ 0.049 mm/px).
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silicone specimens

3.1 Introduction

Physical studies [16, 17] have shown that deformable mechanical VF replicas allow one
to reproduce sustained VF auto-oscillation. Nevertheless, major flow and vibration properties,
such as their auto-oscillation frequency and required minimum upstream pressure (phonation
onset threshold), vary between replicas. These differences are partly attributed to the elasticity
of the replicas, which depend on the adopted VF representation and the layer molding. Despite
its role in the fluid-structure interaction, and hence on observed feature values and physical
model validation, the effective elasticity of silicone VF replicas is rarely considered, instead the
elasticity of the individual molding layers is mentioned.

FF
A

l ∆l

1

Figure 3.1: Elastic material with cross-section A , length l and elongation ∆l following an uni-
axial force F .

Each molding layer composition within the silicone VF replicas is assumed to be an elas-
tic and isotropic solid material consisting of a single constituent or of a mixture of multiple
constituents. The layers elasticity is then characterised by Young’s modulus E for a single con-
stituent (or component) and by effective Young’s modulus Ee f f for a mixture of constituents
(or components). Considering a material portion with length l and cross-section A depicted in
Fig. 3.1, Young’s modulus E(e f f ) relates stress σ ,

σ =
F

A
, (3.1)

exerted by an uni-axial force F , to its relative linear deformation strain ε ,

ε =
∆l
l
, (3.2)

expressing a linear stress-strain relationship

E(e f f ) =
σ

ε
, (3.3)

with ∆l ≥ 0 denoting the elongation along the force F direction.

The aim of this work is to consider and validate an analytical model for the effective Young’s
modulus Ee f f of ML silicone composites from its layers properties, i.e. Ee f f and geometry.
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Figure 3.2: Layer stacking about the force direction (full arrows) in ML composites with the
stacking orientation o j, j+1 ∈ {⊥,∥} of adjacent layers: a) 2L parallel (∥) with o(1,2) =∥

, b) 2L serial (⊥) with o(1,2) =⊥, c) 3L combined (⊥∥) with o(1,2) =⊥ and o(2,3) =∥.

The model is also extended to account for an arbitrary-shaped inclusion of any size embedded
somewhere within a single or multiple layers.

3.2 Analytical model of the effective linear Young’s modulus

ML composites are considered which consist of n elastic, isotropic and perfectly bounded
layers, which are themselves composed of one or more constituents. The linear stress-strain
behaviour of a ML composite is then described in the same way as for each individual layer by
attributing an effective Young’s modulus Ee f f describing the linear stress-strain behaviour for
an equivalent homogeneous elastic composite. It follows that Eq. (3.3) holds for each layer and
for the equivalent homogeneous ML composite. An analytical model is sought predicting Ee f f
for the equivalent homogeneous composite for which adjacent layers are stacked either parallel
(∥) or serial (⊥) with respect to the force or stress direction. Stacking orientations between
adjacent layers are denoted o( j, j+1) ∈ {⊥,∥} with j = 1 . . .n− 1. The stacking orientation is
assumed to remain similar during all deformation stages. Thus, besides parallel (Fig. 3.2(a)) or
serial (Fig. 3.2(b)) stacked composites, both stacking orientations (∥ and ⊥) can be combined to
describe more complex ML composites (combined, ⊥∥) as illustrated in Fig. 3.2(c). Each layer
i = 1 . . .n is characterised by its length li (parallel to the force direction), height hi (transverse to
the force direction) and Young’s modulus Ei. The effective Young’s modulus Ee f f for parallel or
serial stacked layers is then modelled applying the theory of linear elasticity (Eq. (3.3)) to each
layer and to the equivalent homogeneous composite.

For n parallel stacked layers the force is distributed over the layers (F = ∑
n
i=1 Fi) so that the

strain ε in the equivalent homogeneous composite and the strain εi=1...n in each layer is constant,
i.e. εi=1...n = ε . The effective Young’s modulus of the equivalent homogeneous composite with
transverse height h = ∑

n
i=1 hi is then modelled using the Voigt hypothesis [43] of homogeneous
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silicone specimens

deformation as

E
∥
e f f =

n
∑

i=1
hi ·Ei

n
∑

i=1
hi

. (3.4)

Thus, E
∥
e f f is computed as the weighted arithmetic mean (WAM) of the layers Young’s moduli

Ei. The arithmetic mean is weighted with transverse layer heights hi, which amounts to applying
the rule of mixtures.

For n serial stacked layers the stress σ in the equivalent homogeneous composite and the
stress σi=1...n in each layer is constant, i.e. σi=1...n = σ . The effective Young’s modulus of the
equivalent homogeneous composite with parallel length l = ∑

n
i=1 li is then modelled using the

Reuss hypothesis [44] of homogeneous stress as

E ⊥
e f f =

n
∑

i=1
li

n
∑

i=1

(
li
Ei

). (3.5)

Thus, E ⊥
e f f is obtained as the harmonic mean of the layers Young’s moduli Ei weighted with their

parallel lengths li. It is noted that applying the rule of mixtures would results in the weighted
arithmetic mean of Ei instead of the weighted harmonic mean (WHM) expressed in Eq. (3.5).

Both Eq. (3.4) and Eq. (3.5) result in E
⊥,∥
e f f = E1 when n = 1. Eq. (3.4) and Eq. (3.5) do

not account for the stacking order so that modelled E
∥
e f f and E ⊥

e f f remain unaffected when
layers are permuted or splitted as long as the overall composition and orientation of the stack
is maintained. It is well established that WAM values are larger than WHM values. Therefore,
layers with large Ei tend to mask layers with lower Yi for modelled E

∥
e f f (WAM in Eq. (3.4))

whereas this is less the case for modelled E ⊥
e f f (WHM in Eq. (3.5)).

The equivalent Young’s modulus E
⊥∥
e f f of more complex ML composites with combined (⊥∥)

stacking, composed of both serial and parallel layers as illustrated in Fig. 3.2(c), is modelled
using a two-step approach. Firstly, Eq. (3.4) is used to homogenise parallel stacked layers.
Secondly, Eq. (3.5) is applied to the resulting stack of serial layers. As WAM (Eq. (3.4)) and
WHM (Eq. (3.5)) value layers with large Ei differently, the layer order might affect the model
value of E

⊥∥
e f f , which is not the case for ML composites consisting of serial or parallel layers only.
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Figure 3.3: Bone-shaped specimens: a) design (superscript d) for uni-axial stress testing (black
arrows), end terminations for clamping and the test section (shaded) with ld = 80 mm, hd =

10 mm and wd = 15 mm, b) molded parallel (∥) and serial (⊥) 2L composites (colours) for
stacking dimension ratios H d

(1,2) = h1/h2 and L d
(1,2) = l1/l2.

3.3 Design of specimens without inclusion

3.3.1 Model analysis and selected designs of specimens without inclusion

In this section the Ee f f model approach outlined in Section 3.2 is analysed for bone-shaped
ML composites with two or three layers stacked parallel (Eq. (3.4), WAM), serial (Eq. (3.5),
WHM) or combined (Eq. (3.4) followed by Eq. (3.5), WAM followed by WHM). The model
analysis is then used to select and motivate the designs of bone-shaped specimen suitable to
validate the model approach outlined in Section 3.2 against experimental values obtained from
uni-axial stress testing outlined in Section 3.5. Design values are indicated with superscript d.
Model analysis is then assessed for bone-shaped specimen designs containing a test section with
dimensions ld = 80 mm, hd = 10 mm, wd = 15 mm and volume V d = 12 cm3 as depicted in
Fig. 3.3(a). Layers are indicated with indexes i = 1 . . .n and j = 1 . . .n− 1. The layer width is
held constant so that wd

i = wd for all designs layers regardless of the stacking orientation. The
geometrical specimen designs are then characterised from the height dimension ratio H d and
the length dimension ratio L d between adjacent stacked layers:

H d
( j, j+1) =

hd
j

hd
j+1

, (3.6a)

L d
( j, j+1) =

ld
j

ld
j+1

. (3.6b)

For two adjacent parallel stacked layers (o( j, j+1)=∥ and ld
j = ld

j+1), the layers geometry is charac-
terised by the height stacking dimension ratio H d

( j, j+1) since L d
( j, j+1) = 1 is constant. Similarly,

for two adjacent serial stacked layers (o( j, j+1) =⊥ and hd
j = hd

j+1), the layers geometry is charac-
terised by the length stacking dimension ratio L d

( j, j+1) as H d
( j, j+1)= 1 is constant. Consequently,
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Table 3.1: 1L specimen design: label, mixture, mixing ratio M , reference E re f
e f f [17, 40].

Specimen mixture ratio M E re f
e f f [kPa]

I1 TD 1:2 52.0
I2 TE 2:2 10.4
I3 TE 4:2 4.9

the stacking geometry of ML specimens is fully defined by the series of stacking dimension ratios
∇d
( j, j+1) ∈ {H d

( j, j+1), L
d
( j, j+1)} associated with the stacking orientation between adjacent layers

o( j, j+1). It follows that for ML composites composed solely with either parallel or serial stacked
layers, the series reduces to ∇d

( j, j+1) = H d
( j, j+1) or ∇d

( j, j+1) = L d
( j, j+1), respectively. Moreover,

the design of ML composite specimens must satisfy 0.1 ≤ ∇d
( j, j+1) ≤ 6.4 in order to match the

order of magnitude associated with the ratio of adjacent layer thicknesses for the silicone VF
replicas outlined in Section 2.2. The specimen designs composition is characterised from the
composition ratio between the Young’s moduli of adjacent layers as:

Bd
( j, j+1) =

(
E d

e f f

)
j(

E d
e f f

)
j+1

. (3.7)

Each layer must contain one of the mixtures pertinent to silicone VF replicas described in
Section 2.2. Therefore, model analysis of E d

e f f is assessed for 0.2 ≤ B( j, j+1) ≤ 5 within the
range pertinent for silicone VF replicas. In the following, first (Section 3.3.1.1) three single
layer compositions are detailed resulting in three one-layer (1L, n = 1) specimen designs, next
(Section 3.3.1.2) model analysis motivates the designs of six two-layer (2L, n = 2) specimen
and finally (in Section 3.3.1.3) the designs of seven three-layer (3L, n = 3) specimens is justified.

3.3.1.1 1L specimen design

One-layer specimens, labelled I, are designed in order to address the reproducibility of TD
and TE mixtures compared to reference values E re f

e f f in [17, 40] as literature values (Table 2.2)

of Ee f f for similar moldings vary considerable, e.g. 67% for ES M = 4 : 2 as E re f
e f f = 4.9 kPa

in [17, 40] compared to Ee f f = 1.6 kPa in [8]. Single layer design dimensions of a 1L specimen
match the dimensions of the test section, i.e. ld

1 = ld , hd
1 = hd and wd

1 = wd . An overview of 1L
specimen designs is given in Table 3.1. The three 1L specimens, and hence their layer mixtures,
are selected for three reasons: 1) there frequent use in ML silicone replicas (Table 2.2), 2)
known reference E re f

e f f from [17, 40] and 3) the resulting E re f
e f f -range (4.9 ≤ E re f

e f f ≤ 52 kPa)
overlaps most of the E -range associated with anatomical VF layers (E ≤ 60 kPa, Table 2.2).
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Table 3.2: 2L specimen design: label, stacking orientation o(1,2), layer composition, stacking
composition ratio Bre f

(1,2), stacking dimension ratio H d
(1,2) or L d

(1,2), modelled E ·,d
e f f .

Specimen o(1,2)
composition

Bre f
(1,2) H d

(1,2), L d
(1,2)

model
layer 1 layer 2 E ·,d

e f f

II1,∥ ∥ as I2 as I3 2.1 H d = 5.0 9.5 kPa
II2,∥ ∥ as I2 as I3 2.1 H d = 1.0 7.7 kPa
II3,∥ ∥ as I1 as I2 5.0 H d = 1.0 31.2 kPa
II1,⊥ ⊥ as I2 as I3 2.1 L d = 5.0 8.8 kPa

II2,⊥ ⊥ as I2 as I3 2.1 L d = 1.0 6.7 kPa
II3,⊥ ⊥ as I1 as I2 5.0 L d = 1.0 17.3 kPa

Indeed, reported E re f
e f f in Table 3.1 represent values reported for the muscle (I2), superficial (I3)

and epithelium (I1) layer of a human VF in Table 2.2.

These three mixtures are then used in the model analysis and resulting designs of the 2L and
3L composite specimens outlined hereafter. The layer mixtures (and associated E d

e f f = E re f
e f f in

Table 3.1) for these ML specimens are indicated referring to the corresponding 1L specimen,
i.e. as I1, as I2 or as I3.

3.3.1.2 2L specimen design

Two-layer composite specimens, labelled II, consist of two parallel (o(1,2) =∥ in Fig. 3.2(a))
or two serial (o(1,2) =⊥ in Fig. 3.2(b)) stacked layers. The geometrical design is fully charac-
terised considering the stacking dimension ratio between both layers given as ∇d

(1,2) = H d
(1,2)

for parallel (∥) stacking and ∇d
(1,2) = L d

(1,2) for serial (⊥) stacking. This is illustrated for
colour-molded specimens in Fig. 3.3(b). An overview of the 2L specimen designs and its
characteristics is given in Table 3.2.

Modelled curves for E
∥,d
e f f (from Eq. (3.4)) and for E ⊥,d

e f f (from Eq. (3.5)) as a function of
their stacking dimension ratio are plotted in Fig. 3.4(a) and Fig. 3.4(b), respectively. Modelled
values for three different 2L composition ratios Bre f

(1,2) are shown, i.e. Bre f
(1,2) = 2.1 for mixtures

(as I2, as I3), Bre f
(1,2) = 5 for mixtures (as I1, as I2) and Bre f

(1,2) = 10.6 for mixtures (as I1, as I3).

As a reference, E re f
e f f for 1L specimens are indicated (horizontal dashed lines annotated I1,2,3).

The shown stacking dimension ratio ranges (0 < H d
(1,2) ≤ 700 and 0 < L d

(1,2) ≤ 90) are adapted
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(a) 2L, parallel (∥) (b) 2L, serial (⊥)

(c) 2L, WAM (∥) minus WHM (⊥)

Figure 3.4: Modelled E ·,d
e f f for 2L stacking for different Bre f

(1,2) as a function of dimension ratio.

2L specimen design values (symbols) are annotated (II·,∥ or II·,⊥): a) H d
(1,2) for parallel (∥), b)

L d
(1,2) for serial (⊥). Horizontal dashed lines indicate E re f

e f f of individual layers (I·), c) averaging

(WAM (∥) or WHM (⊥)) induced difference E
∥,d
e f f −E ⊥,d

e f f .
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so that modelled E ·,d
e f f vary in the range between single layer values (E re f

e f f )i=2 and (E re f
e f f )i=1.

For similar dimension ratios (L d
(1,2) = H d

(1,2)) and composition ratios Bre f
(1,2), modelled E ·,d

e f f
values for serial and for parallel stacking differ only due to the applied averaging, i.e. arithmetic
(WAM) for parallel stacking in Eq. (3.4) and harmonic (WHM) for serial stacking in Eq. (3.5).
The resulting inter-model difference, E

∥,d
e f f − E ⊥,d

e f f ≥ 0, due to the stacking orientation is
plotted in Fig. 3.4(c). The curves exhibit a maximum for dimension ratios in the range of
interest (0.1 ≤ ∇d

( j, j+1) ≤ 6.4) and tend to zero for very small or very large ratios for which

E ·,d
e f f ≈ (E re f

e f f )2 and E ·,d
e f f ≈ (E re f

e f f )1, respectively. The difference increases with composition

ratio Bre f
(1,2) reflecting the increasing impact of layers with large E re f

e f f to modelled E
∥,d
e f f values.

This is also seen from Fig. 3.4(a) and Fig. 3.4(b), e.g. comparing dimension ratios at which E ·,d
e f f

increases from its lowest value (E re f
e f f )i=2.

Modelled curves show that stacking dimension ratios ∇d
(1,2) = {1, 5} are suitable for 2L

specimen design as modelled E ·,d
e f f differ between both stacking orientations o(1,2) ∈ {∥,⊥}, vary

with dimension ratio ∇d
( j, j+1) and differ from layer values (E re f

e f f )i for all Bre f
(1,2). Model curves

for Bre f
(1,2) ∈ {2.1, 5.0} (dashed and full curve in Fig. 3.4) enclose the curve for Bre f

(1,2) = 10.6

(dotted curve in Fig. 3.4) so that the influence of the stacking composition on E d
e f f is larger

considering Bre f
(1,2) ∈ {2.1, 5.0} for 2L specimen design. The 2L specimens are thus designed

so that for each stacking orientation o(1,2) ∈ {∥,⊥} the influence of stacking composition
Bre f

(1,2) ∈ {2.1, 5.0} (II2,· versus II3,·) and stacking dimension ratio ∇d
(1,2) ∈ {1, 5} (II1,· versus

II2,·) on the modelled E ·,d
e f f can be evaluated. The influence of stacking orientation o(1,2) on

modelled E ·,d
e f f can be assessed as well (II·,∥ versus II·,⊥). Modelled values E ·,d

e f f for 2L specimen
designs are reported in Table 3.2 and indicated (symbols annotated with the specimen label II·,·)
in Fig. 3.4.

3.3.1.3 3L specimen design

Three-layer composite specimens, labelled III, consist of three layers with 2 or 3 different
mixtures. Adjacent layers are stacked either parallel or serial so that o(1,2),o(2,3) ∈ {∥,⊥}.
Dimension ratios are chosen within the range of interest 0.1 ≤ ∇d

(1,2), ∇d
(2,3) ≤ 6.4. The 3L

composition is characterised by composition ratios Bre f
(1,2) and Bre f

(2,3). An overview of the 3L
specimen designs is given in Table 3.3.
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Table 3.3: 3L specimen design: label, stacking orientation o, layer composition, stacking com-
position ratios Bre f , stacking dimension ratio ∇d ∈ {H d , L d }, modelled E ·,d

e f f .

Specimen
o( j, j+1) layer i composition Bre f

( j, j+1) H d
( j, j+1), L d

( j, j+1) model

(1,2) (2,3) 1 2 3 (1,2) (2,3) (1,2) (2,3) E ·,d
e f f

III1,⊥ ⊥ ⊥ as I2 as I3 as I2 2.1 0.47 L d = 0.50 L d = 2.0 6.7 kPa
III2,⊥ ⊥ ⊥ as I1 as I2 as I1 5.0 0.2 L d = 0.50 L d = 2.0 17.3 kPa

III3,⊥ ⊥ ⊥

as I1 as I2 as I3 5.0 2.1

L d = 0.66 L d = 1.0 8.5 kPa
III4,⊥ ⊥ ⊥ L d = 4.2 L d = 1.0 16.2 kPa
III1,∥ ∥ ∥ H d = 0.50 H d = 1.0 16.5 kPa
III1,⊥∥ ⊥ ∥ L d = 0.14 H d = 1.5 8.7 kPa
III2,⊥∥ ⊥ ∥ L d = 2.1 H d = 1.5 14.4 kPa

Two 3L composite specimens (III1,⊥ and III2,⊥) with serial stacking (o( j, j+1) =⊥) are
designed in order to evaluate the model property that layer splitting and layer permutation do
not affect modelled E ⊥,d

e f f . These specimens have the same overall composition as 2L specimens

II2,⊥ and II3,⊥ respectively, so that modelled E ⊥,d
e f f ∈ {6.7, 17.3} kPa in Table 3.3 and Table 3.2

match. Both 3L specimens are obtained by permuting half of the first layer (i = 1) of the 2L
specimens to form a third layer (i = 3) on top of the second layer (i = 2) so that the dimension
ratio L d

1,2 = 0.5 of the resulting 3L specimens amounts to half of the 2L specimens value

and L d
2,3 =

(
L d

1,2

)−1
. It follows that (E re f

e f f )1 = (E re f
e f f )3 so that Bre f

(1,2) =
(
Bre f

(2,3)

)−1 with

Bre f
(1,2) ∈ {2.1, 5} as for the 2L specimens in Table 3.2. Serial (⊥, WHM in Eq. (3.5)) and not

parallel (∥, WAM in Eq. (3.4)) stacked specimens are considered as modelled E ⊥,d
e f f are less

affected by layers with large E re f
e f f than modelled E

∥,d
e f f , so that the potential influence of layer

permutation in a parallel stack is more likely to go unnoticed.

Different stacking orientations (o(1,2),o(2,3) ∈ {∥,⊥}) and dimension ratios (∇d
(1,2) and

∇d
(2,3)) are considered for the design of five 3L composite specimens (III3,⊥, III4,⊥, III1,∥, III1,⊥∥

and III2,⊥∥) with three different layer mixtures. The same mixtures (as I1 in layer i = 1, as I2

in layer i = 2, as I3 in layer i = 3) are considered, so that
(
E re f

e f f

)
i=1

>
(
E re f

e f f

)
i=2

>
(
E re f

e f f

)
i=3

result in constant composition ratios Bre f
(1,2) = 5 from mixtures (as I1, as I2) and Bre f

(2,3) = 2.1
from mixtures (as I2, as I3). The specimens are stacked either parallel (o(1,2),o(2,3) =∥,
∇d
( j, j+1) = H d

( j, j+1)), serial (o(1,2),o(2,3) =⊥, ∇d
( j, j+1) = L d

( j, j+1)) or combined (o(1,2) =⊥,

o(2,3) =∥, ∇d
(1,2) = L d

(1,2), ∇d
(2,3) = H d

(2,3)) as schematically illustrated in Fig. 3.2(c).

Modelled curves for E
∥,d
e f f (from Eq. (3.4)), E ⊥,d

e f f (from Eq. (3.5)) and E
∥⊥,d
e f f (from Eq. (3.4)
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(a) 3L, parallel (∥) (b) 3L, serial (⊥)

(c) 3L, combined (⊥∥)

Figure 3.5: Modelled E ·,d
e f f for 3L stacking with Bre f

(1,2) = 5 and Bre f
(2,3) = 2.1 as a function of

dimension ratio ∇d
(1,2) for three different dimension ratios ∇d

(2,3). 3L specimen design values

(symbols) are annotated (III·,∥, III·,⊥ or III·,⊥∥): a) parallel, o( j, j+1) =∥ and ∇d
( j, j+1) = H d

( j, j+1),

b) serial, o( j, j+1) =⊥ and ∇d
( j, j+1) = L d

( j, j+1) and c) combined o(1,2) =⊥ and o(2,3) =∥ so that

∇d
(1,2) = L d

(1,2) and ∇d
(2,3) = H d

(2,3). Horizontal dashed lines indicate E re f
e f f of individual layers

(I·).



22
Chapter 3. Low-strain effective Young’s modulus model and validation for multi layered

silicone specimens

followed by Eq. (3.5)) as a function of dimension ratio ∇d
(1,2) are plotted in Fig. 3.5(a),

Fig. 3.5(b) and Fig. 3.5(c), respectively. Modelled values for three different dimension ratios
0.3 ≤ ∇d

(2,3) ≤ 3 are shown. As a reference, E re f
e f f for 1L specimens are indicated (horizontal

dashed lines annotated I1,2,3). The shown stacking dimension ratio range (0 < ∇d
(1,2) ≤ 1000) is

adapted so that modelled E ·,d
e f f vary within the range spanned between the smallest

(
E re f

e f f

)
i=3

and largest
(
E re f

e f f

)
i=1

single layer values. For large dimension ratios ∇d
1,2 modelled E ·,d

e f f

approximate the largest single layer value
(
E re f

e f f

)
i=1

so that E ·,d
e f f ≈

(
E re f

e f f

)
i=1

. However, for

small dimension ratios ∇d
1,2, the 3L specimen behaves as a 2L specimen composed of layers

i = 2 and i = 3 so that modelled values depend on ∇d
(2,3) (and implied orientation o(2,3)).

Concretely, modelled values for small ∇d
1,2 vary in the range

(
E re f

e f f

)
i=3

< E ·,d
e f f <

(
E re f

e f f

)
i=2

as

E ·,d
e f f increases towards

(
E re f

e f f

)
2

with ∇d
(2,3).

The layer stacking orientation influences the weighted average accounted for in the model
for parallel (∥, WAM), serial (⊥, WHM) or combined (⊥∥, WAM followed by WHM) stacked
3L specimen designs. The influence of stacking orientations on modelled values is evaluated
considering inter-model differences for similar dimension ratios (and composition ratios as these
are held constant) so that inter-model discrepancies are solely due to the applied averaging:
E
∥,d
e f f − E ⊥,d

e f f > 0 in Fig. 3.6(a), E
∥,d
e f f − E

⊥∥,d
e f f > 0 in Fig. 3.6(b) and E

⊥∥,d
e f f − E ⊥,d

e f f > 0 in
Fig. 3.6(c). All plotted curves exhibit a maximum for dimension ratios 0.1 < ∇d

(1,2) < 11 which

is within or near the range of interest (0.1 < ∇d
(1,2) ≤ 6.4). As for small dimension ratios ∇d

(1,2)

each 3L specimen conducts itself as a 2L specimen characterised by ∇d
(2,3), plotted inter-model

differences in this range are governed by ∇d
(2,3). Therefore, 3L specimens with combined

stacking (⊥∥) perform as 2L specimens with parallel stacking (∥) so that in this range: 1)
inter-model differences obtained comparing either “∥ versus ⊥” or “(⊥) ∥ versus ⊥” are similar
(so for small ∇d

(1,2) Fig. 3.6(c) zooms in on Fig. 3.6(a)) and 2) inter-model comparison “∥
versus (⊥) ∥” (Fig. 3.6(b)) reduces to comparing ∥ with itself yielding negligible inter-model
differences regardless of ∇d

(2,3). For very large ∇d
(1,2) the influence of stacking orientation is

small as for all stacking conditions E ·,d
e f f approximates single layer value I1. Within the range

of interest 0.1 < ∇d
(1,2) < 6.4, inter-model differences mostly increase with ∇d

(1,2). Inter-model
differences between serial (⊥) and combined (⊥∥) stacking (Fig. 3.6(c)) remain limited to less
than 2 kPa whereas inter-model comparisons involving parallel (∥) stacking (Fig. 3.6(a) and
Fig. 3.6(b)) amounts to larger (by a factor ≈ 10) inter-model differences up to 23 kPa. This
illustrates again the impact of a layer with large E re f

e f f , such as layer i = 1 (by a factor 5 or more),
when it is accounted for using WAM averages associated with parallel stacking (o(1,2) =∥)
instead of WHM averages associated with serial or combined stacking (o(1,2) =⊥).
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(a) 3L, ∥ versus ⊥ (b) 3L, ∥ versus ⊥∥

(c) 3L, ⊥∥ versus ⊥

Figure 3.6: Differences in modelled E ·,d
e f f due to 3L layer stacking (parallel (∥), serial (⊥) or

combined (⊥∥)) with Bre f
(1,2) = 5 and Bre f

(1,2) = 2.1 as a function of dimension ratio ∇d
(1,2) for

three different dimension ratios ∇d
(2,3). 3L specimen design values (symbols) are annotated (III·,∥,

III·,⊥ or III·,⊥∥): a) E
∥,d
e f f −E ⊥,d

e f f , b) E
∥,d
e f f −E

⊥∥,d
e f f , c) E

⊥∥,d
e f f −E ⊥,d

e f f .
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Table 3.4: Molded 2L and 3L specimens: stacking dimension ratio ∇s ∈ {H s, L s}, modelled
E ·,s−re f

e f f , relative model discrepancy ξEe f f between E s−re f
e f f and E d

e f f associated with molded and
designed specimen dimensions, respectively.

2L specimen 3L specimen

Label
H s, L s model

Label
H s

( j, j+1), L s
( j, j+1) model

(1,2) E
∥,⊥,s−re f
e f f ξEe f f (1,2) (2,3) E ·,s−re f

e f f ξEe f f

II1,∥ H s = 2.3 8.8 kPa -7.4% III1,⊥ L s = 0.56 L s = 1.8 6.8 kPa 1.5%
II2,∥ H s = 1.2 7.9 kPa 2.6% III2,⊥ L s = 0.45 L s = 2.0 17.1 kPa - 1.2%
II3,∥ H s = 1.0 31.6 kPa 1.3% III3,⊥ L s = 0.68 L s = 0.91 8.3 kPa - 2.4%
II1,⊥ L s = 6.6 9.1 kPa 3.4% III4,⊥ L s = 4.2 L s = 1.1 16.8 kPa 3.7%
II2,⊥ L s = 1.0 6.7 kPa 0.0% III1,∥ H s = 0.51 H s = 0.74 15.3 kPa -7.3%
II3,⊥ L s = 0.93 16.9 kPa -2.3% III1,⊥∥ L s = 0.11 H s = 1.3 8.4 kPa -3.4%

III2,⊥∥ L s = 2.1 H s = 1.3 14.2 kPa -1.4%

Curves in Fig. 3.5 and in Fig. 3.6 show that dimension ratios ∇d
(2,3) near unity

(∇d
(2,3) ∈ {1, 1.5}) are suitable for 3L specimen designs. These ratios are then associated

with both smaller (0.1 < ∇d
(1,2) < 1) and larger (1 < ∇d

(1,2) < 6.4) design dimension ratios

∇d
(1,2) since modelled E ·,d

e f f curves for larger ∇d
(1,2) are more sensitive to the stacking orientation

combination (∥, ⊥ or ⊥∥) and to the exact value of ∇d
(1,2). The 3L specimens (Table 3.3)

with constant composition ratios Bre f ∈ {5, 2.1} are thus designed with the aim of assessing
the influence of geometrical design parameters as the stacking orientation on modelled E ·,d

e f f

(“III1,∥ versus III3,⊥” and “III1,∥ versus III1,⊥∥”) and the influence of ∇d
(1,2) for different stacking

combinations (“III3,⊥ versus III4,⊥” and “III1,⊥∥ versus III2,⊥∥”).

3.3.2 From designed to molded ML specimen: E d
e f f versus E s−re f

e f f

Designed specimens are molded with a bone-shaped horizontal or vertical mold (volume
23.7 cm3 and 3D printed, Stratasys ABS-P430, accuracy 0.33 mm) for parallel (∥) and serial (⊥)
stacked layers respectively, following the mixture procedure outlined in [17, 40]. All together,
selected ML specimen designs contain 13 layers with parallel orientation and 24 layers with
serial orientation. As specimens are molded layer by layer, the thickness of each molded layer
along the molding direction is measured with a laser transceiver (Panasonic HL-G112-A-C5,
wavelength 655 nm, accuracy 8 µm). Measured layer dimensions are indicated with superscript
s. The dimensional accuracy of each molded layer is obtained as the difference between the
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(a) ∆h, ∆l [mm] (b) ∆Ee f f [kPa]

Figure 3.7: Boxplots with median (full line), mean (dotted line), interquartile range between the
first and third quartile (box), extrema (whiskers) of molding accuracies (molded minus design
values) of: a) parallel (∆h) and serial (∆l) stacked layer dimensions, b) modelled ∆Ee f f for 2L
(II) and 3L (III) specimens.

measured and designed dimension denoted ∆h and ∆l for a parallel and serial layer orientation,
respectively. The repartition of dimensional molding accuracies −2.8 mm ≤ ∆h, ∆l ≤ 2.8 mm is
represented by a boxplot in Fig. 3.7(a). Overall, accuracies are characterised by their mean plus
minus their standard deviation as ∆h = 0.00± 0.65 mm and ∆l = 0.12± 1.46 mm, so that ∆h
and ∆l are distributed around a small mean value near 0 mm. The overall dimensional molding
accuracy from both ∆h and ∆l yields ±1.5 mm.

Dimension ratios H s and L s of molded specimens (superscript s) are given in Table 3.4.
Modelled E s−re f

e f f values of molded specimens are obtained using for each layer the measured

specimen dimensions and reference values E re f
e f f given in Table 3.1. The relative molding

accuracy ξEe f f for 2L and 3L specimens expresses then the relative model discrepancy of
the Young’s modulus due to layer molding dimension accuracy as ξEe f f = ∆Ee f f /E

d
e f f with

molding accuracy ∆Ee f f = E s−re f
e f f −E d

e f f , where E d
e f f indicates as before the Young’s modulus

associated with the design dimensions of the specimen. The repartition of molding accuracies
−1.2 kPa ≤ ∆Ee f f ≤ 0.6 kPa is shown for 2L (II) and 3L (III) specimens by a boxplot in
Fig. 3.7(b). Overall, ∆Ee f f is characterised by their mean plus minus their standard deviation as
∆E II

e f f = −0.03±0.43 kPa for 2L specimens and ∆E III
e f f = −0.43±0.81 kPa for 3L specimens.

Thus, ∆Ee f f of the molded 2L specimens are distributed around a small mean value near 0 kPa
as ±0.5 kPa whereas ∆Ee f f of the molded 3L specimens are distributed around a negative mean
value (-0.20 kPa) as −0.20± 0.56 kPa. From the relative accuracies ξEe f f in Table 3.4 is seen
that for all 2L specimens |ξEe f f | ≤ 7.5% and for all 3L specimens |ξEe f f | ≤ 7.4%. The absolute

difference between modelled E d
e f f for designed specimens and E s−re f

e f f for molded specimens
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remains limited to |∆Ee f f | ≤ 1.2 kPa. Thus molded specimens are suitable to validate the model
and to assess potential influences on modelled Ee f f such as stacking orientation, dimension ratio
or composition ratio.

3.4 Design of specimens with inclusion

3.4.1 Molded specimens with inclusion

Silicone mixtures, mixing ratios M and measured E commonly used to represent the muscle
(Mu), superficial (Su) and epithelium (Ep) layer in ML silicone vocal fold replicas are given in
Table 3.5 [8, 14, 16, 17, 29, 45–48]. The measured Young’s modulus E of molded layers varies
between 4 kPa and 65 kPa, which corresponds to the range associated with anatomical layers in
a normal adult male human vocal fold [3, 4, 6, 7, 34–36].

Specimens are obtained from a three-layer reference specimen (labelled A0.0) to which a

Table 3.5: Molded layer properties: mixture (Mix) TE (Thinner-Ecoflex) or TD (Thinner-
Dragonskin), mass mixing ratio M , measured Young’s modulus E , ratio between E and the
value of the inclusion E In.

Molded layer Mix M [-] E [kPa] E In/E [-]

Muscle (Mu) TE 1:2 23 13.0
Superficial (Su) TE 4:2 4 74.5
Epithelium (Ep) TD 1:2 65 4.6
Inclusion (In) TD 0:2 298⋆ 1.0

⋆ E of the inclusion material is denoted E In.

Figure 3.8: Molded bone-shaped three-layer reference specimen A0.0 with serial stacking (⊥)
without inclusion (dimensions in mm). The force F direction during uni-axial tension testing is
shown (black arrows).
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silicone inclusion (In) is inserted with constant elasticity E In given in Table 3.5. The reference
specimen without inclusion is depicted in Fig. 3.8. It consists of three serial (⊥) stacked layers
with a composition similar to the muscle, superficial and epithelium layer indicated in Table 3.5.
The length li of each layer i = 1 . . .n in the force (F ) direction, with n = 3 serial stacked layers,
is set so that the volume ratios for the muscle, the superficial and the epithelium layer with
respect to the test section’s volume match the volume ratios of a three-layer silicone vocal fold
replica (MRI-replica [16, 17, 47, 48]), i.e. 69% (Mu, i = 1), 27% (Su, i = 2) and 4% (Ep, i = 3)
respectively. Varying the size, the position or the orientation of the inclusions allows us to extent
the model validation to more complex ML composites. From the ratio E In/E in Table 3.5 is
seen that E In is about 4.5 up to 75 times greater than E associated with the layers in A0.0. The
presence of a stiffer portion somewhere within the vocal fold structure is commonly reported
in case of a vocal fold abnormality or pathology [1, 49–51]. Fig. 3.9 schematically illustrates
the different positions of beam-shaped inclusions with varying height hin and length lin inserted
(striped region) in the test section of the reference specimen A0.0 with serial layer stacking (⊥)
depicted in Fig. 3.8. All inclusions have constant width win = 15 mm, which matches the width
of the test section (win = w with w = 15 mm) as illustrated for two specimens with inclusions in
Fig. 3.10. Thus, the inclusion size is fully characterised by its height hin and its length lin and
its position is fully defined by the side views provided in Fig. 3.9. Six different ML composite
specimen types – A, B, C, D, E and F – are considered based on the position and size of the
inclusion. Concretely, the size, in terms of height hin and length lin, of experimentally assessed
inclusions is summarised in Table 3.6:

(A) specimens Ahin/h (Fig. 3.9(a)) are obtained for 5 inclusions with constant length lin = l2 and
varying height 0.1 ≤ hin/h ≤ 1 placed at the side of the superficial layer (Su, i = 2) of A0.0.
In general, these specimens have four layers (n = 4) with combined stacking (⊥∥) as the
inclusion in the superficial layer results in two adjacent layers with parallel stacking. This
is illustrated for A0.3 (hin/h = 0.3) in Fig. 3.10(a). In the extreme case, that the inclusion
replaces the superficial layer (hin/h = 1.0), a three-layer (n = 3) specimen A1.0 with serial
stacking (⊥) is obtained as illustrated in Fig. 3.10(b).

(B) specimens Bhin/h (Fig. 3.9(b)) are obtained for 3 of the 5 inclusions with constant length
lin = l2 and varying height 0.1 ≤ hin/h ≤ 0.6 considered in type A, but now translated (in
the transverse direction) to the centre of the superficial layer (Su, i = 2) in A0.0. Comparing
the elasticity of Ahin/h and Bhin/h allows to assess the influence of the transverse inclusion
position (side versus centre) within the superficial layer of A0.0. These specimens are com-
posed of five layers (n = 5) with combined stacking (⊥∥) as the inclusion in the superficial
layer results in three adjacent parallel stacked layers.

(C) specimen Chin/h (Fig. 3.9(c)) is obtained using the inclusion with constant length lin = l2
and height hin/h = 0.8 positioned in both the superficial and the muscle layer of A0.0. This
specimen can be considered as a seven-layer (n = 7) specimen with combined stacking
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(a) type A (b) type B (c) type C

(d) type D (e) type E (f) type F

Figure 3.9: Side view of molded ML composite types with inclusions (striped region) of size hin,
lin and constant width win = 15 mm (dimensions in mm). In a,b,c,f) lin = l2. In d,e) lin < l2. The
clamping ends are dashed.

(⊥∥) as the inclusion has parallel stacking with respect to the adjacent portions of the
superficial layer and the muscle layer.

(D) specimens Dlin/l2
hin/h (Fig. 3.9(d)) are obtained for 5 inclusions with varying length 0.2 ≤

lin/l2 ≤ 0.6 and varying height 0.3 ≤ hin/h ≤ 0.8 placed at the side of the superficial layer
and at the interface with the muscle layer. These specimens are considered to have five
layers (n = 5) with combined stacking (⊥∥) as the inclusion has a parallel stacking with
respect to the adjacent portion of the superficial layer with the same height. Thus, the
inclusion length is reduced so that comparing type A and type D allows one to assess the
influence of the inclusion length.

(E) specimen E lin/l2
hin/h (Fig. 3.9(e)) is obtained by inclining the inclusion with angle α (α = 46◦

is experimentally assessed). The inclined inclusion is placed in the superficial layer at the
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interface with the epithelium layer. Due to the inclination, the stacking in the superficial
layer is arbitrary (Arb) and it is neither serial (⊥) nor parallel (∥) with respect to the adja-
cent superficial layer portion. The equivalent length leq of the inclusion corresponds to its
length in the force direction and leq < lin due to the inclination.

(F) specimen Fhin/h (Fig. 3.9(f)) is obtained by bending the inclusion with length lin = l2 and
placing it in the muscle layer. As for type E, the stacking orientation within the muscle
layer is arbitrary (Arb) since the bent portion of the inclusion is stacked neither serial (⊥)
nor parallel (∥) with respect to the adjacent muscle layer portion. Again, the equivalent
length leq of the inclusion corresponds to its length in the force direction and leq < lin due
to the bending.

A total of 15 silicone specimens are molded following the mixture procedure outlined in [14,
40]. The size and position of the inclusion and the resulting ML specimen type (Fig. 3.9) and
associated layer stacking – serial (⊥), combined (⊥∥) or arbitrary (Arb) – is summarised in Ta-
ble 3.6. Firstly, inclusions are molded using horizontal 3D-printed specimen molds (Stratasys
ABS-P430, accuracy 0.33 mm), which are filled with the inclusion silicone mixture indicated in
Table 3.5 up to each inclusion’s height hin whereas their width is determined by the width of the
mold so that win = 15 mm. The molded inclusion sheets are then cut to match the desired inclu-
sion length lin. Next, vertical 3D-printed specimen molds are used to build the ML specimens
layer-by-layer with the appropriate silicone mixture detailed in Table 3.5. Inclusions are inserted
during the molding process so that they are fully embedded. The length of each molded layer
is measured with a laser transceiver (Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy
8 µm) whereas the inclination angle is derived from the spatial position of the inclined mold
(accuracy 0.1 mm) using trigonometry. The overall molding accuracy for all 45 molded layers
with lengths l1 ≈ 55 mm (muscle), l2 ≈ 22 mm (superficial) and l3 ≈ 3 mm (epithelium) results
in a mean and a standard deviation of 0.1± 0.8 mm, which is within the molding accuracy of

(a) A0.3 (b) A1.0

Figure 3.10: Molded ML bone-shaped specimens (dimensions in mm) with inclusion (In) in-
serted in the superficial (Su) layer of the reference specimen A0.0 depicted in Fig. 3.8: a) four-
layer specimen A0.3 with combined stacking (⊥∥), b) three-layer specimen A1.0 with serial stack-
ing (⊥). The force F direction during uni-axial tension testing is shown (black arrows).
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Table 3.6: Inclusions geometry (constant width win = 15 mm): hin , lin, ratios hin/h and lin/l2
with h ≈ 10 mm and l2 ≈ 22 mm. ML molded specimens with these inclusions and their layer
stacking: serial (⊥), combined (⊥∥) and arbitrary (Arb). Reference specimen A0.0 corresponds
to hin/h = 0.

Inclusion geometry Dimension ratios Specimens & stacking

hin [mm] lin [mm] hin/h [-] lin/l2 [-] (⊥) (⊥∥) Arb

0.0 − 0.0 0.0 A0.0
1.3 22.0 0.1 1.0 A0.1 B0.1
2.6 22.0 0.3 1.0 A0.3 B0.3 F0.3
5.8 22.0 0.6 1.0 A0.6 B0.6
7.8 22.0 0.8 1.0 A0.8 C0.8

10.0 22.0 1.0 1.0 A1.0
2.6 5.0 0.3 0.2 D0.2

0.3
7.8 5.0 0.8 0.2 D0.2

0.8
4.6 13.4 0.5 0.6 D0.6

0.5 E0.6
0.5

±1.5 mm previously reported in Section 3.3.2.

3.4.2 Serial, parallel and combined layer stacking effective Young’s mod-
ulus Êe f f model

For the composite specimens in Table 3.6 and in Fig. 3.9 with serial (⊥) or combined (⊥∥)
stacked layers – i.e. of type A (Fig. 3.9(a)), type B (Fig. 3.9(b)), type C (Fig. 3.9(c)) or type D
(Fig. 3.9(d)) – the effective Young’s modulus Êe f f is modelled considering an equivalent homo-
geneous composite as outlined in Section 3.2 for serial, parallel or combined stacked layers.

Inclusions associated with type A, type B, type C and type D in Fig. 3.9 result in serial (⊥)
or combined (⊥∥) stacked layers as summarised in Table 3.6. The effective Young’s modulus
Êe f f of the molded specimens from these types are thus modelled as Êe f f = Ê ⊥

e f f or Êe f f =

Ê
⊥∥
e f f . Following this model approach, shifting the same inclusion from the side to the center

of the superficial layer does not affect the model outcome. Thus Êe f f for type A and type B
specimens containing an inclusion with the same height ratio hin/h have equal value. Indeed as
Ei are similar, modelled Êe f f depend solely on the height ratio 0 ≤ hin/h ≤ 1 and length ratio
0 ≤ lin/l2 ≤ 1 of the inclusion and not on its position. The influence of hin/h and lin/l2 on Êe f f is
illustrated in Fig. 3.11. Model values for molded specimens are indicated (symbols). Extending
the size of the inclusion in the superficial layer increases modelled Êe f f from Êe f f = 10 kPa
for the reference specimen A0.0 without inclusion up to about Êe f f = 33 kPa for specimen A1.0,
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(a) varied lin/l2 and hin/h (b) constant lin/l2 or hin/h

Figure 3.11: Influence of the height ratio 0 ≤ hin/h ≤ 1 and length ratio 0 ≤ lin/l2 ≤ 1 of an
inclusion in the superficial layer on modelled Êe f f . Values for molded specimens (⃝, □) are
shown: a) specimens type A (or B) (⃝) and type D (□), constant length ratio lin/l2 = 1.0 (hori-
zontal dashed line) and constant height ratio hin/h = 0.3 (dashed vertical line), b) detail for these
constant length and height ratios.

for which the inclusion occupies the entire superficial layer. Nevertheless, Fig. 3.11(a) shows
that Êe f f increases more rapidly with lin/l2 than with hin/h. In particular, this is the case for
hin/h≥ 0.2. This is due to the arithmetic mean associated with parallel stacked layers in Eq. (3.4),
which tends to mask low Ei in favour of the large Ei of the inclusion (Table 3.5) which is not the
case for the harmonic mean associated with serial stacking in Eq. (3.5). Therefore, it is mainly the
length ratio lin/l2 of the inclusion in the superficial layer what affects the mean value Ê

∥
e f f of the

equivalent homogenised superficial layer and hence Êe f f of the homogenised specimen. This is
further illustrated for lin/l2 = 1 in Fig. 3.11(b) as an increase of hin/h from 0.1 to 1 only increases
Êe f f 27%, from 26 kPa up to 33 kPa, whereas for constant hin/h > 0.2 (hin/h = 0.3 is plotted) an
increase of lin/l2 from 0.1 to 1 increases Êe f f with about 270% from 11 kPa up to 30 kPa. Thus
the most notable variation of Êe f f for the molded specimens plotted in Fig. 3.11(a) is predicted
to occur for specimens with different inclusion lengths lin/l2 ∈ {0.0,0.2,0.6,1} associated with
Êe f f ∈ {10,12,17,30} kPa.

3.4.3 Arbitrary layer stacking Êe f f model

Specimens of type E with an inclined inclusion (α > 0◦) in the superficial layer (Fig. 3.9(e))
or of type F with a bent inclusion in the muscle layer (Fig. 3.9(f)) are not serial or parallel
stacked with respect to adjacent layers. Instead, their stacking is arbitrary (Arb). However, using
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the model outlined in Section 3.2 for serial, parallel and combined stacking, two approaches are
proposed to model the effective Young’s modulus Êe f f for arbitrary stacked layers either based on
spatial discretisation along the force direction (Section 3.4.3.1) or on geometrical approximation
(Section 3.4.3.2). A comparison of modelled values with both approaches for molded specimens
with arbitrary stacking E0.6

0.5 and F0.3 is provided in Section 3.4.3.3.

3.4.3.1 Discretisation

The model approach outlined in Section 3.2 is extended to arbitrary stacking by discretising
the specimen portion containing the inclusion with equivalent length leq into multiple shorter
layers with discretisation step length l j. The inclusion within each discretised layer is then ap-
proximated by a rectangle with height h j set either to height hU

j of the largest rectangle enveloped
within the inclusion or to height hO

j of the smallest rectangle enveloping the inclusion in that
discretised layer as schematically depicted in Fig. 3.12 for specimens of type E and type F.
Consequently, each discretised layer with rectangular inclusion approximation is represented as
parallel stacked layers so that Êe f f , j of each homogenised discretised layer is modelled using
Eq. (3.4). The sought Êe f f , j of each discretised layer with length l j is thus underestimated (U)
as Ê j,U = Ê

∥
e f f using height hU

j or overestimated (O) as Ê j,O = Ê
∥
e f f using height hO

j . Following
this discretisation, the equivalent homogenised specimen portion with inclusion and therefore the

(a) type E, specimen E0.6
0.5 (b) type F, specimen F0.3

Figure 3.12: Illustration of discretisation along the force direction (step length l j) for inclusions
(striped region) with arbitrary stacking: a) type E (specimen E0.6

0.5 ), b) type F (specimen F0.3).
Rectangular inclusion portion approximations with height hO

j (light gray shade) and hU
j (dark

gray shade) overestimating (O) and underestimating (U) the inclusion, respectively.
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(a) Specimen E0.6
0.5 (b) Specimen F0.3

(c) Eq. layer leq = 16.6 mm of E0.6
0.5 (d) Eq. layer leq = 10.2 mm of F0.3

(e) Specimen E0.6
0.5 (f) Specimen F0.3

Figure 3.13: Effect of discretisation step length l j for molded ML specimens E0.6
0.5 and F0.3 on a,b)

mean rectangle heights hO
j (l j) and hU

j (l j), c,d) modelled effective Young’s modulus ÊO(l j,hO
j )

and ÊU(l j,hU
j ) and the difference ÊO − ÊU for the homogenised specimen portion with inclusion

of length leq, e,f) modelled effective Young’s modulus ÊO(l j,hO
j ) and ÊU(l j,hU

j ) and the differ-

ence ÊO − ÊU for the homogenised specimen. Values of ÊO,U for l j = 0.2 mm are indicated (•).

equivalent homogenised specimen consists of a stack of serial layers, so that Êe f f is modelled
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using Eq. (3.5) resulting in overestimation ÊO = Ê ⊥
e f f for Ê j,O or in underestimation ÊU = Ê ⊥

e f f

for Ê j,U . The overall difference ÊO − ÊU ≥ 0 for the equivalent homogenised specimen por-
tion with inclusion of length leq (Fig. 3.13(c) and Fig. 3.13(d)) as well as for the equivalent
homogenised specimen (Fig. 3.13(e) and Fig. 3.13(f)) decreases with discretisation step length
l j. Consequently, the sought model value Êe f f of the homogenised specimen is found for small
enough discretisation step length l j. The influence of the discretisation step length l j is illustrated
in Fig. 3.13 for molded specimen E0.6

0.5 containing an inclined inclusion with leq = 15.7 mm (type
E in Fig. 3.9(f)) and for molded specimen F0.3 containing a bent inclusion with leq = 10.2 mm
(type F in Fig. 3.9(e)). For these specimens, Êe f f of both the equivalent homogeneous inclusion
layer (with length leq) and of the specimen is approximated when the discretisation step length
l j ≤ 0.2 mm as ÊO − ÊU ≤ 0.5 kPa for both homogenised specimens. For l j = 0.2 mm, the dis-
cretisation of leq corresponds to splitting leq into 78 (E0.6

0.5 ) and 51 (F0.3) equi-length layers. It is
seen from Fig. 3.13(a) and Fig. 3.13(b) that also the mean of rectangle heights for all discretised
layers hO

j and hU
j converges as l j decreases.

3.4.3.2 Geometrical approximation

Besides the discretisation approach outlined in Section 3.4.3.1, the quasi-analytical model
approach outlined in Section 3.2 can be applied when the inclusion of height hin and length
lin with arbitrary stacking can be treated as an equivalent beam-shaped inclusion of length leq
and height heq with serial, parallel or combined layer stacking. The length leq corresponds to
the equivalent length of the inclusion in the force direction as illustrated for type E and type
F specimens in Fig. 3.9 and in Fig. 3.12. The height heq of the equivalent inclusion is obtained
when imposing area conservation and exploiting the model property that neither serial (Eq. (3.5))
or parallel (Eq. (3.4)) layer stacks depend on the stack order so that layers in both stacks can be
split or permuted. The area conservation condition is defined as hinlin = heqleq so that

heq =
hinlin

leq
. (3.8)

The dimensions of the equivalent inclusions heq and leq can then be expressed in terms of geo-
metrical parameters such as inclusion dimensions hin and lin.

For specimens of type E, such as E0.6
0.5 containing an inclined inclusion as depicted in Fig. 3.9(e),

leq and heq are expressed as:

leq =
hin +hcos(α)

sin(α)
,

heq =
linhin sin(α)

hin +hcos(α)
. (3.9)
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Figure 3.14: Modelled Êe f f as a function of inclination angle α (0◦ ≤ α ≤ 90◦) for specimens

with an embedded inclusion of diagonal
√

l2
in +h2

in ≤ h as schematically depicted (left). Curves

Êe f f (α) are plotted for lin/l2 = 0.2 and either hin/h = 0.3 (dashed line) or hin/h = 0.8 (full line).

For specimens of type F, such as F0.3 containing a bent inclusion as depicted in Fig. 3.9(f), leq
and heq are given as:

leq =
lin +h

2
− π(h−hin)

4
,

heq =
4hinlin

2lin +πhin − (π −2)h
. (3.10)

Analytical expressions of the geometry of equivalent inclusions, such as Eq. (3.9) and Eq. (3.10),
are of interest when considering the influence of geometrical inclusion parameters on Êe f f . As
an additional example (not molded), expressions of the equivalent length leq and height heq of
an inclusion with inclination angle α fully embedded in the superficial layer, i.e. with a diago-

nal shorter than the total specimen height h so that
√

l2
in +h2

in ≤ h as schematically depicted in
Fig. 3.14, are,

leq = lin cos(α)+hin sin(α),

heq =
linhin

lin cos(α)+hin sin(α)
. (3.11)

Modelled Êe f f for two fully embedded inclined inclusions from Table 3.6, with length lin =

5.0 mm (or lin/l2 = 0.2) and height hin ∈ {2.6 mm,7.8 mm} (or hin/h ∈ {0.3,0.8}), as a func-
tion of inclination angle 0◦ ≤ α ≤ 90◦ are plotted in Fig. 3.14. Although the overall tendency
of Êe f f (α) is similar, plotted curves show e.g. that angles associated with the minimum and
maximum of the curves depend on the height ratio hin/h.
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3.4.3.3 Êe f f of molded specimens with arbitrary stacking

For the molded specimens with arbitrary stacking, both the discretisation approach (in Sec-
tion 3.4.3.1 with step length l j = 0.2 mm) and the geometrical approximation approach (in Sec-
tion 3.4.3.2) result in the sought Êe f f as their difference is less than 0.9 kPa (or ≤ 4.8%) for
specimen E0.6

0.5 and less than 0.1 kPa (or ≤ 1.0%) for specimen F0.3. Hereafter, Êe f f obtained
with the geometrical approximation are reported for specimens with arbitrary stacked inclusions
(E0.6

0.5 and F0.3) since in this case Êe f f does not depend on the applied discretisation step length
l j.

3.5 Uni-axial tension testing

3.5.1 Molded specimens without inclusion

Two different stress test methods are used to induce stress σ along the vertical x-axis either
with a mechanical press (MP, Section 3.5.1.2) or with precision loading (PL, Section 3.5.1.3).
Both methods result in experimental force-elongation curves F (∆l) as their elongation ∆l is
obtained for different loads F (PL) or vice-versa (MP) so that both methods can be cross-
validated on the same specimens. Specimens are positioned vertically by clamping its end
terminations depicted in Fig. 3.3(a). Regardless of the applied stress test, additional geometrical
measurements are gathered as outlined in Section 3.5.1.1.

3.5.1.1 Geometrical measurements

Geometrical measurements on 3L specimens with different stacking are illustrated in
Fig. 3.15. The length li +∆li of each layer i = 1 . . .n is measured (ruler with accuracy 1 mm)
for different loads F (or elongations ∆l), where li (i = 1 . . .n) denotes the initial layer length
measured for the unloaded (F = 0 N) but vertically clamped specimen. As each clamped
specimen is subjected to its own weight (25.2±2.1 g), li ≥ ls

i holds, where ls
i indicates the layer

length of the molded specimen. The sought total elongation ∆l of each specimen as a function
of F is then obtained from the measured layer elongations ∆li. For 1L specimens or ML
specimens with parallel (∥) stacking (Fig. 3.15(a)), ∆l = ∆l1 holds since all layers have equal
length regardless of F . For ML specimens with serial (⊥) stacking (Fig. 3.15(b)), ∆l = ∑

n
i=1 ∆li

holds as the elongation of each layer depends on its molding composition and associated (Ee f f )i.
For 3L specimens with combined serial and parallel (⊥∥) stacking (Fig. 3.15(c)), ∆l = ∆l1 +∆l2
holds as parallel stacked layers (i = 2 and i = 3) have equal lengths for all F .
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(c) combined, ⊥∥

Figure 3.15: Measurement of layer lengths li + ∆li and cross-sectional areas Ax· at different
positions x· along the test section following an uni-axial force F (full arrows) on 3L (n = 3)
specimens with different stacking: a) parallel (∥) with l1 +∆l1 = . . .= ln +∆ln, b) serial (⊥), c)
combined stacking (⊥∥) with l2 +∆l2 = l3 +∆l3.

The specimens cross-sectional area A perpendicular to the force or vertical x-direction is
likely to reduce with F as schematically depicted in Fig. 3.1. It follows that A ≤A s holds with
A s the initial cross-sectional area of the unloaded (F = 0 N) but vertically clamped specimen.
The sought area A of each specimen is obtained from cross-sectional areas Ax· (caliper Mitutoyo
500-196-30, accuracy 0.01 mm) measured at two or three different vertical positions x· along its
test section subjected to a constant load (F ≥ 0 N). For 1L specimens and ML specimens with
parallel (∥) stacking (Fig. 3.15(a)), three area measurements Ax1 , Ax2 and Ax3 are taken at 25%,
50% and 75% of the test section with length l1 +∆l1. The sought cross-sectional area A is then
obtained from their mean value,

A ∥ =
Ax1 +Ax2 +Ax3

3
, (3.12)

so that the measurement accuracy between different positions can be assessed. For serial (⊥)
stacked ML specimens (Fig. 3.15(b)), the cross-sectional area or each layer (Axi with i = 1 . . .n)
is measured midway. The sought cross-sectional area A is then obtained from the weighted
arithmetic mean as

A ⊥ =
∑

n
i=1(li +∆li)Axi

l +∆l
. (3.13)

For 3L specimens with combined serial and parallel (⊥∥) stacking (Fig. 3.15(c)), two cross-
sectional areas Ax1 and Ax2 are measured midway of the serial (i = 1) and of the parallel (i = 2 or
i = 3) stacked layers. The sought cross-sectional area A is thus given as the weighted arithmetic
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mean of the serial and one of the parallel layers (taken as i = 2) as

A ⊥∥ =
∑

2
i=1(li +∆li)Axi

l +∆l
. (3.14)

3.5.1.2 Mechanical press

An electro-mechanical press (3369, Instron Corp.) with 50 kN force sensor (2530-
445/71212, Instron Corp., accuracy 0.2%) is used for uni-axial stress testing of specimens along
the parallel x-axis (as depicted in Fig. 3.15) with typical forces F up to 8 N. The mechanical
press (MP) was set for displacement control imposing four maximum elongations ∆l of 25,
50, 100 and 150 mm, respectively. The deformation rate was set to 1 mm/s for the 25, 50 and
100 mm elongations and to 2 mm/s for the 150 mm elongation. Force and elongation time
series (sampling rate of 10 Hz) were measured during loading of the specimens so that for each
specimen four MP datasets are obtained, i.e. one for each imposed maximum elongation. No
plastic deformation was observed following their unloading (at 5 mm/s).

Due to the relative softness of the tested specimens (F ≤ 8 N compared to the 50 kN force
sensor range), a moving-average filter with variable window size and 1 sample shift is applied to
denoise the raw force sensor data in order to enhance the linearity in the force-elongation curves.
Resulting smoothed MP force-elongation curves matches well with a linear fit of smoothed MP
data as the coefficient of determination yields R2 ≥ 80 % with a mean value of 88 % and a
standard deviation of 6 %. Raw and smooth MP datasets for maximum elongation ∆l = 100 mm
are illustrated in Fig. 3.16 for 2L specimens II2,⊥ and II3,⊥. Overall, the window size in terms
of elongation ranges from 0.3 mm up to 6.5 mm (or 2 up to 65 samples), where larger window
sizes are used for softer specimen (with lower Ee f f ) as illustrated in Fig. 3.16 for II2,⊥ (window
size 6.5 mm or 65 samples, modelled E ⊥,s−re f = 6.7 kPa) and II3,⊥ (window size 0.7 mm or
7 samples, modelled E ⊥,s−re f = 16.9 kPa). The overall window elongation size corresponds
to a mean plus minus standard deviation of 2.1± 1.9 mm (or 19± 17 samples), which is in
accordance with the constant window size of 2.0 mm (or 20 samples) proposed in [40] for 1L
specimens resulting in E re f

e f f . In the following sections, smoothed MP force-elongation curves
are considered.

Additional geometrical measurements described in Section 3.5.1.1 are made for each
clamped specimen without loading (∆l = 0 mm) and once each of the maximum elongations
is reached. Cross-sectional areas A of the specimens are then obtained as outlined in Sec-
tion 3.5.1.1, so that A (F ) contains 5 data points obtained at imposed maximum elongations
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(a) II2,⊥ (b) II3,⊥

Figure 3.16: Linear behavior (dashed line) of measured force-elongation curves F (∆l) with
the mechanical press (MP, raw and smooth) for maximum elongation ∆l = 100 mm and with
precision loading (PL) for 2L specimens: a) II2,⊥, modelled E ⊥,s−re f = 6.7 kPa, MP smooth
with 6.5 mm (or 65 samples) window, PL for m ≤ 52 g, b) II3,⊥, modelled E ⊥,s−re f = 16.9 kPa,
MP smooth with 0.7 mm (or 7 samples) window, PL for m ≤ 196 g.

∆l ∈ {0, 25, 50, 100, 150} mm. Elongations ∆l deduced from geometrical measurements of
layer lengths li +∆li as outlined in Section 3.5.1.1, matches the imposed maximum elongations
to within 1 mm (or ≤ 4% difference for ∆l ≥ 25 mm), which corresponds to the ruler accuracy. It
follows that the estimated accuracy of elongations ∆l obtained from geometrical measurements
yields ≥ 96% for ∆l ≥ 25 mm. The accuracy increases with ∆l.

3.5.1.3 Precision loading

Uni-axial stress testing (along the parallel x-axis) of a specimen by means of precision
loading (PL) is performed by clamping its end terminations so that its upper end is fixed
while a weight m is added to the lower end. The weight is incremented with 5 up to 10 g
(calibrated scale, Vastar 500G X 0.01G, accuracy 0.01 g). The load force F for added mass
m yields F = m · g0 with gravitational constant g0 = 9.81 m/s2. For each weight increment,
the specimens elongation ∆l is deduced from geometrical measurements of its layer lengths
li +∆li, as outlined in Section 3.5.1.1, with an estimated accuracy (Section 3.5.1.2) of ≥96% for
∆l ≥ 25 mm. Depending on the specimen, the assessed total elongation varies between 55 mm
and 255 mm, corresponding to a total added weight between 71 g and 416 g. The cross-sectional
area A of tested specimens is measured as outlined in Section 3.5.1.1 whenever the elongation
increment due to added weights yields about 20 ± 5 mm so that A (F ) contains between 6
and 18 data points depending on the total elongation. A single PL force-elongation dataset per
specimen is gathered without data smoothing as illustrated in Fig. 3.16 for II2,⊥ (m ≤ 52 g) and
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II3,⊥ (m ≤ 196 g). The PL force-elongation curves matches well with a linear PL data fit as the
coefficient of determination yields R2 ≥ 90 %.

3.5.2 Molded specimens with inclusion

In order to experimentally estimate the linear or low-strain effective Young’s moduli Ee f f
of the 15 molded composite specimens, uni-axial tension tests using precision loading (PL) are
performed [14]. Firstly, the tested specimen is placed vertically and fixed from one clamping
end. Then, a weight of mass m (Vastar 500G X 0.01G, accuracy 0.01 g) is added to the other
clamping end in order to control the force increment. The weight is increased at a single rate
for each specimen. Overall, i.e. considering all specimens, the weight is incremented with
10.9 ± 6.9 g. Total added weight ranges from 46.8 g to 425.9 g resulting in a total applied
loading force F ranging from 0.5 N to 4.2 N. The applied force F causes an elongation ∆ls of
each equivalent serial stacked layer with initial length ls. The total elongation ∆l = ∑

k
s=1 ∆ls is

then measured at every added weight increment with an accuracy of 0.05 mm where k indicates
the number of equivalent serial stacked layers. Total elongation measured for all specimens
ranges from 23.0 mm up to 131.0 mm. From these measurements, force-elongation relationship
F (∆l) can be obtained. Examples of two force-elongation diagrams for two different specimens
A0.0 and A0.8 are plotted in Fig. 3.17(a). Additionally, the midway cross-sectional area of each
equivalent serial stacked layer Axs perpendicular to the forcing direction is measured with an
accuracy of 0.02 mm as illustrated in Fig. 3.15. For each specimen, cross-sectional areas Axs are
measured at a constant weight increment amounting to 26.7± 15.9 g for all specimens, which
corresponds to an elongation increment of 10.6±4.5 mm. The specimen cross-sectional area A
is then calculated from the arithmetic mean of its measured cross-sectional areas weighted by
their respective lengths as

A =
∑

k
s=1(ls +∆ls)Axs

l +∆l
. (3.15)

A quadratic fit (coefficient of determination R2 ≥ 99%) to the area-elongation data A (∆l) is then
used in order to have a continuous approximation of the area-elongation relationship A q(∆l) for
each specimen. An example of resulting data points A (∆l) and their continuous fit A q(∆l) for
two different specimens A0.0 and A1.0 is plotted in Fig. 3.17(b).
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(a) F (∆l) (b) A (∆l)

Figure 3.17: Examples of uni-axial tension testing data: a) force-elongation data F (∆l) for
specimens A0.0 and A0.8 with m ≤ 102 g and m ≤ 231 g, respectively, b) area-elongation data
A (∆l) and quadratic fits A q(∆l) with R2 = 99% (lines) for specimens A0.0 and A1.0.

3.6 Model validation

3.6.1 Molded specimens without inclusion

Force-elongation curves F (∆l) and geometrical test section characteristics obtained during
MP or PL testing allow to obtain experimental stress-strain curves for each tested specimen. As
the test sections geometry was shown to vary (e.g. cross-sectional area A in Section 3.5.2), the
true stress σt and true strain εt are assessed. The true stress σt is then obtained as in Eq. (3.1)
using instantaneous area A q (or alternatively A ∗) so that

σt =
F

A q. (3.16)

Similarly, the true strain εt =

ˆ
δ l
l

is obtained using instantaneous length l so that

εt = ln

(
l
l0

)
. (3.17)

The experimental elastic Young’s modulus of each specimen from either MP (E MP
e f f ) or PL (E PL

e f f )
testing is then obtained as the slope of a linear fit to the elastic region in which stress σt is
proportional to the strain εt so that

E ·
e f f =

σt

εt
(3.18)
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(a) II2,⊥ and II3,⊥ - MP (b) II2,∥ - MP and PL

Figure 3.18: Examples of stress-strain curves σt(εt) from MP (•) or PL (×) testing, data within
the linear elastic region (fitted MP or PL) and linear fit (dashed line) whose slope (R2 ≥ 90%)
corresponds to the elastic Young’s modulus E MP

e f f or E PL
e f f : a) MP results for specimens II2,⊥ and

II3,⊥, b) MP and PL results for specimen II2,∥.

Figure 3.19: Young’s moduli E MP
e f f (mean (•) and standard deviation (bar)) and E PL

e f f (×) for 1L

(I·), 2L (II·) and 3L (III·) specimens. E re f
e f f from Table 3.1 ([17, 40]) are plotted for I·.

in accordance with Hooke’s law of linear elastic deformation. The elastic region 0 ≤ εt ≤ 0.2 is
extended to εt > 0.2 as long as the linear fit accuracy R2 increases until at least R2 ≥ 90%. The
mean and standard deviation of the overall upper limit of the linear region yields εt = 0.3±0.1
which corresponds to an elongation of 31± 9 mm for PL testing (R2 ≥ 97%) and an elonga-
tion of 29± 13 mm for MP testing (R2 ≥ 90%). Examples of experimental MP and PL stress-
strain curves, their linear elastic regions and associated linear stress-strain data fits are illus-
trated in Fig. 3.18. Sought slopes E MP

e f f and E PL
e f f for each of the tested specimen are plotted in

Fig. 3.19. For each of the MP tested specimens, the mean and standard deviation (≤ 4.1 kPa)
are plotted as four values are obtained, one for each of the imposed maximum elongations
∆l ∈ {25, 50, 100, 150} mm. For the 1L specimens (I·), literature values E re f

e f f reported in Ta-
ble 3.1 [17, 40] are plotted as well.
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Table 3.7: 1L specimen and single layer composition: reference E re f
e f f [17, 40] and measured E MP

e f f
and E PL

e f f from MP and PL tests.

Specimen E re f
e f f [kPa] E MP

e f f [kPa] E PL
e f f [kPa]

I1 52.0 57.5 64.7
I2 10.4 12.7 14.4
I3 4.9 4.7 4.0

Values for 1L specimens (I·) E re f
e f f , E MP

e f f and E PL
e f f are detailed in Table 3.7. Although refer-

ence values E re f
e f f are of the same order or magnitude as E MP

e f f and E PL
e f f for all three specimens,

E re f
e f f underestimates measured E MP

e f f and E PL
e f f for I1 (with 5.5 kPa for MP and 12.7 kPa for

PL) and for I2 (with 2.3 kPa for MP and 4 kPa for PL) whereas all E ·
e f f -values (MP, PL and

reference from literature) match to within 1 kPa for I3. Therefore, model validation for molded
ML specimens is assessed using layer values given by E re f

e f f (as for the modelled design values

of molded ML specimens E s−re f
e f f in Table 3.4) and by the measured E MP

e f f and E PL
e f f for which

modelled values are denoted E s−MP
e f f and E s−PL

e f f , respectively. It is further noted that since all
2L (II·) and 3L (III·) specimens are composed of a combination of the composition of the 1L
specimens, all measured E MP

e f f and E PL
e f f are within the range spanned between the softest (I3) and

most rigid (I1) 1L specimen.

The mean and standard deviation of the overall difference between mean E PL
e f f and E MP

e f f for all
specimens yields −0.8±3.5 kPa. Thus the overall difference is of the same order of magnitude
as the standard deviation ≤ 4.1 kPa observed between different MP tests on the same specimen so
that both MP and PL tests provide accurate measurements of Ee f f for all specimens. Therefore,
most of the 3L specimens are subjected only to PL testing as PL testing provides the highest
fit accuracy (R2 ≥ 97%) of the linear elastic region with slope E PL

e f f . Obtained E PL
e f f for 2L and

3L specimens with similar compositions match as the difference is limited to 0.4 kPa between
II2,⊥ and III1,⊥ and to -0.4 kPa between II3,⊥ and III2,⊥. This confirms the model assumption
that changing the layer order, in this case due to layer splitting and layer permutation, in ML
specimens does not affect the Young’s modulus when the overall composition remains similar.

The effective Young’s modulus for each of the molded ML specimens is modelled as outlined
in Section 3.2 while the stacking composition ratio B j, j+1 between adjacent layers is calculated
using the single layer compositions E ·

e f f associated with 1L specimens summarised in Table 3.7.

Thus layer compositions are either taken from literature (E re f
e f f ) as during specimens design

(Table 3.4), or obtained from the measured MP (E MP
e f f ) and PL (E PL

e f f ) tests on 1L specimens.
The corresponding modelled effective Young’s modulus of the homogeneous elastic specimen
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Figure 3.20: Measured and modelled Ee f f for 2L (II·) and 3L (III·) specimens.

Figure 3.21: Boxplots with median (full line), mean (dotted line), interquartile range between
the first and third quartile (box), extrema (whiskers) of the overall difference for ML molded
specimens between E PL

e f f from PL tests and E β

e f f set to: a) measured E MP
e f f from MP tests, b)

modelled E ·,s−re f
e f f , c) modelled E ·,s−MP

e f f , d) modelled E ·,s−PL
e f f .

yields E ·,s−re f
e f f , E ·,s−MP

e f f and E ·,s−PL
e f f , respectively. Modelled E ·,s−re f

e f f , E ·,s−MP
e f f and E ·,s−PL

e f f
and measured E MP

e f f and E PL
e f f for ML specimens (II· and III·) are plotted in Fig. 3.20. Overall

measured and modelled values are of the same order of magnitude so that the intended variation
– reflecting the impact of stacking orientation, stacking dimension ratios and stacking composi-
tion underlying the ML specimens design – is observed for both the measured and modelled Ee f f .

The repartitions of the differences between the measured E PL
e f f for each ML specimen and

each of the model values E ·,s−re f
e f f , E ·,s−MP

e f f and E ·,s−PL
e f f is assessed by boxplots in Fig. 3.21. As

a comparison, also the difference between measured E PL
e f f and measured E MP

e f f for ML specimens
subjected to both PL and MP testing is shown as well. It is noted that model differences
and measured differences are of the same order of magnitude so that the model approach is
validated. In Fig. 3.20 is seen that E PL

e f f is slightly underestimated by E ·,s−re f
e f f , so that the mean

(1.7 kPa) and median (1.2 kPa) differences with respect to E ·,s−re f
e f f are positive. The overall
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model accuracy improves for E ·,s−MP
e f f and for E ·,s−PL

e f f compared to E ·,s−re f
e f f as the range spanned

between the extrema reduces from [−2.2 5.3] kPa to within [−3.0 3.0] kPa for E ·,s−MP
e f f and

even further to within [−2.2 1.7] kPa for E ·,s−PL
e f f . Consequently, the overall model accuracy in

terms of these extrema yields ±3 kPa for E ·,s−MP
e f f and ±2.2 kPa for E ·,s−PL

e f f . Both repartitions

of the differences between E PL
e f f and either E ·,s−MP

e f f or E ·,s−PL
e f f are characterised by a mean and

median value near zero (< 1 kPa) and a standard deviation which is less than ±2.4 kPa, which is
the same as the standard deviation obtained for the difference between experimental values E PL

e f f
and E MP

e f f . Consequently, the overall model accuracy in terms of the standard deviation yields
±2.4 kPa. It is noted that for the soft specimen with E PL

e f f ≤ 15 kPa, this accuracy increases to
±1.5 kPa.

3.6.2 Molded specimens with inclusion

The sought Ee f f is obtained by fitting the low-strain region of the stress-strain curves to a
linear model whose slope equals Ee f f . For each specimen, the low-strain region is determined
as the range for which R2 is maximum, where R2 ≥ 98% expresses the goodness of fitting a
linear model to the stress-strain curve with a lower bound at εt = 0. For all specimens tested,
the mean and standard deviation of the upper bound of the low-strain region is εt = 0.26±0.02,
which corresponds to a total elongation of 24.5±1.7 mm. Examples of fitting a linear model to
a low-strain region are plotted in Fig. 3.22 for three different specimens. Fig. 3.22(a) shows the
different fits, and hence slopes Ee f f , obtained for two specimens A0.0 and A0.6, without and with
an inclusion, respectively. Fig. 3.22(b) shows similar fits, and hence slopes Ee f f , obtained for
two specimens A0.6 and B0.6 with the same inclusion (hin/h = 0.6 and lin/l2 = 1) but positioned
at either the side (A0.6) or the centre (B0.6) of the superficial layer in A0.0.

The model approach outlined in Section 3.4 is next used to predict the low-strain Êe f f of each
of the 15 molded specimens. Modelled Êe f f and measured Ee f f values are plotted in Fig. 3.23(a).
The difference Ee f f − Êe f f between measured and modelled values is plotted in Fig. 3.23(b).
The absolute value |Ee f f − Êe f f | for specimens with inclusions corresponds to a model error
ranging from 1.0 kPa up to 7.1 kPa, which amounts to 7.4% up to 18.3% of the measured Ee f f .
Overall Ee f f − Êe f f of molded specimens is characterised by a mean and standard deviation of
2.7± 2.7 kPa. Compared to the overall model accuracy of 0.0± 2.4 kPa obtained for two and
three layer specimens reported in [14], the overall model accuracy for specimens with inclusions
is thus shifted due to the non-zero mean to the range from 0.0 kPa up to 5.2 kPa. The posi-
tive non-zero mean of 2.7 kPa indicates that the model tends to underestimate measured values.
From Fig. 3.23 is seen that the underestimation (with 2.7 kPa up to 7.1 kPa) is associated with
specimens of type A and type B for which the influence of the inclusion on the Young’s modu-
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(a) Size (b) Position

Figure 3.22: Experimental stress-strain curves σt(εt) for three specimens and linear fits (lines) to
the low-strain region (R2 ≥ 98%) with slope Ee f f : a) specimens A0.0 and A0.6 (low-strain region
εt ≤ 0.25 and εt ≤ 0.27), b) specimens A0.6 and B0.6 (low-strain region εt ≤ 0.27).

lus is most prominent as their measured effective Young’s modulus (Ee f f ≥ 30.6 kPa) is at least
tripled compared to Ee f f = 10.2 kPa, measured for the reference specimen without inclusion
A0.0. Despite this underestimation, the measured Ee f f and modelled Êe f f values exhibit the same
tendencies so that the experimental data validate the model approach for all specimen types (in-
cluding the ones with arbitrary stacking) and also the model properties discussed in Section 3.4.2
such as:

• Comparing measured Ee f f for specimens of type A (inclusion at the side) and type B
(inclusion at the centre) confirms that the transverse position of the inclusion within the
superficial layer does not affect the effective Young’s modulus of the specimen as the
difference between Ee f f measured for Ahin/h and Bhin/h is less than 1.6 kPa for all three
assessed hin/h ratios (0.1, 0.3, 0.6).

• Comparing measured Ee f f for specimens of type A (inclusion with lin/l2 = 1) and type D
(inclusion with lin/l2 = 0.2) confirms the influence of the inclusion size (length lin/l2 and
height hin/h ratios) on the modelled Êe f f shown in Fig. 3.11 so that in particular the length
of the inclusion in the force direction (lin/l2) affects the effective Young’s modulus Ee f f
for these specimens.

• Comparing measured Ee f f for specimens A0.8 (type A, inclusion in the superficial layer)
and C0.8 (type C, inclusion in both the superficial and the muscle layer) confirms that
the influence of the inclusion on measured Ee f f increases with the Young’s modulus ratio
E in/E , which for the molded specimens (Table 3.5) reduces from 74.5 in the superficial
layer to 4.6 in the muscle layer.
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(a)

(b)

Figure 3.23: Low-strain Young’s moduli for molded ML specimens: a) measured Ee f f (×) and
modelled Êe f f (◦). b) difference Ee f f − Êe f f (∗) with the overall mean (dashed line) and standard
deviation (shaded area).
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(a) Êe f f (γ) (gray scale), Êe f f for γ = 1 (◦)

(b) mean and standard deviation of Êe f f − Êe f f (γ)

Figure 3.24: Effect of scaling the Young’s modulus of the inclusion E In with a scalar 0.2 ≤
γ ≤ 5 on modelled Êe f f for all 14 ML composite types with inclusion: a) Êe f f (γ) for increasing
0.2 ≤ γ ≤ 5 (gray scale) and Êe f f for γ = 1 (◦), b) overall mean (full line) and standard deviation
(std, shaded region) of Êe f f − Êe f f (γ). As a reference, dotted lines indicate zero difference
(horizontal) and γ = 1 (vertical).

The influence of the ratio E In/E is further explored using the model. The Young’s modulus
of the inclusion E In, and the Young’s modulus ratio E In/E of the superficial and muscle layer
given in Table 3.5, are scaled as γE In. The scalar γ is varied between 0.2 (E In divided by 5) and
5 (E In multiplied by 5) so that unscaled model values Êe f f for E In are obtained for γ = 1. In
particular, the scaled Young’s modulus of the inclusion γE In ranges from 60 kPa up to 1.49 MPa
so that the associated Young’ modulus ratios E In/E for the superficial layer (ratio from 14.9 up
to 372) and for the muscle layer (ratio from 2.6 up to 65) containing the inclusion remain greater
than 1 (so an inclusion is embedded in a softer layer). Modelled Êe f f (γ) for all 14 composite
types with inclusion are plotted in Fig. 3.24(a). Values Êe f f (circles) for γ = 1 obtained for the
molded specimens are indicated as a reference. For each composite type, Êe f f (γ) increases with
γ . Values of Êe f f (γ) for γ ∈ {0.2,1.0,5.0} and the relative maximum difference (in %) of Êe f f (γ)
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Table 3.8: Influence of scaling inclusions Young’s modulus E In with scalar γ ∈ {0.2,1,5} on
modelled Êe f f (in kPa) for all 14 composite types with inclusion and the relative maximum
difference D (in %) with respect to Êe f f for γ = 1.

γ A0.1 B0.1 A0.3 B0.3 A0.6 B0.6 A0.8 A1.0 D0.2
0.3 D0.2

0.8 C0.8 D0.6
0.5 E0.6

0.5 F0.3

0.2 18.4 18.0 22.3 22.6 26.4 26.3 27.8 29.2 11.6 11.7 16.8 16.6 17.3 10.4
1.0 27.3 27.2 30.0 29.8 31.3 31.0 31.7 32.8 11.9 11.8 18.1 18.0 19.3 10.7
5.0 31.7 31.8 32.6 32.2 32.6 32.2 32.7 33.6 12.0 11.8 18.4 18.4 19.8 10.7

D 49 51 34 32 20 19 15 13 3 1 9 10 13 3

with respect to Êe f f for γ = 1

D =
Êe f f (5)− Êe f f (0.2)

Êe f f
(3.19)

are summarised in Table 3.8. The relative maximum difference D ranges from 1% up to 51%.
As observed in Fig. 3.24(a), the influence of scaling the Young’s modulus of the inclusion on
Êe f f depends on the composite type. The overall (for all composite types) mean and standard
deviation (std) of the difference Êe f f − Êe f f (γ) as a function of γ is plotted in Fig. 3.24(b). Both
the mean and std become zero at γ = 1 for which the difference is zero by definition (since
Êe f f = Êe f f (γ = 1)). As Êe f f (γ) increases with γ , the overall mean of Êe f f − Êe f f (γ) decreases
monotonically as γ increases. Thus, the overall mean difference is positive for γ < 1 and negative
for γ > 1 since Êe f f > Êe f f (γ < 1) and Êe f f < Êe f f (γ > 1). The rate at which the overall mean
difference decreases slows down with γ . The model suggests that, for the assessed composite
types, Êe f f becomes less sensitive to the exact value of E In for large E In/E ratios. The overall
standard deviation of Êe f f − Êe f f (γ) increases with |γ −1|, which expresses that the influence of
scaling E In on Êe f f differs between composite types.

3.7 Conclusion

In this chapter, the effective low-strain elastic Young’s modulus of silicone ML composites
is measured on 31 molded bone-shaped specimens using uni-axial stress testing. ML specimens
were designed so that the stacking orientation (serial, parallel, combined or arbitrary) and the
range of composition and dimension ratios affect the specimens effective elastic Young’s mod-
ulus Ee f f . Concretely, the specimens Ee f f varies between 4 kPa and 65 kPa, which overlaps
the range associated with normal human VF’s (up to 60 kPa). The Ee f f of six 2L and two 3L
specimens is experimentally determined from MP and from PL testing so that both methods are
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cross-validated as their difference yields less than 3.5 kPa, which is of the same order of mag-
nitude as the difference (≤ 4.1 kPa) associated with multiple MP testing on the same specimen.
More complex ML composite types with at least 4 layers are obtained by embedding a stiffer
(298 kPa) inclusion with variable size, position and stacking in the superficial or/and muscle
layer of a reference specimen that is obtained from a three-layer vocal fold anatomical repre-
sentation of the muscle, superficial and epithelium layers. Measured effective Young’s moduli
of all molded ML composite specimens are compared to modelled values describing equivalent
homogenised specimens based on the geometry of its layers, Young’s moduli and stacking. For
ML specimens consisting solely out of serial and/or parallel stacked layers an analytical model
approach is applied, which exploits the hypothesis of homogeneous strain for parallel stacked
layers and the hypothesis of homogeneous stress for serial stacked layers. The model approach
is extended to specimens for which the inclusion results in arbitrary stacking, first using spa-
tial discretisation along the force direction of the portion with arbitrary stacking and then using
area conservation to propose a geometrical approximation for inclined or bent inclusions with
arbitrary stacking. Modelled effective Young’s moduli are validated against measured values
resulting in an overall model accuracy between 0.0 kPa and 5.2 kPa.

The quasi-analytical model proposed in this chapter allows one to explore the influence of
its parameters on the predicted effective Young’s modulus. Concretely, the influence of the
dimensions of an inclusion in the superficial layer and of the influence of scaling the Young’s
modulus of the inclusion for different ML composite types are discussed. In the first case, the
length of the inclusion in the force direction is shown to determine the modelled effective Young’s
modulus, whereas in the latter case it was found that the rate at which the effective Young’s
modulus increases with the inclusions slows down, so that eventually for stiff inclusions the exact
value of its Young’s modulus becomes less important. It is expected, that the proposed model and
subsequent model parameter studies are of interest for the a-priori characterisation and design
of silicone ML composite vocal fold replicas mimicking the complex ML anatomical vocal fold
structure without or with inclusion, as in the case of a structural pathology or abnormality.

As this chapter contributes to the mechanical characterisation of multi-layer silicone com-
posites, used to mold silicone vocal fold replicas, the next chapter extends this characterisation
by studying non-linear models to accurately provide continuous fits of the stress-strain data.
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4.1 Introduction

As it is well established [52, 53] that biological soft tissues, and thus human VF tissues [4, 6,
34, 54, 55], are characterised by small stresses in response to relatively large strains εt , greater
than one and thus deformations larger than 100% as shown in Fig. 4.1(a), it is of interest to
assess how the stress-strain relationship of silicone ML composites behaves beyond the linear
range and how the non-linear behaviour compares to the one typically observed in biological
soft tissues. The structural mechanics of the silicone ML composites as well as the pertinence
of these composites to represent biological soft tissues (in the context of VF replicas) is further
investigated. In the present study, 63 measured stress-strain curves on 40 molded specimens
from uni-axial stretching at room temperature described in Chapter 3 are further analysed in
order to characterise and model the stress-strain curves for εt > εl . We aim at proposing a
phenomenological continuous model of the elastic stress-strain curves valid within and beyond
the low-strain range. The total strain range of interest is limited to εt ≤ 1.5. This corresponds
to a degree of deformation ∆l/l0 up to 350% (see Fig. 4.1(a)), or about 10 times the maximum
elongation of 35% associated with the overall mean low-strain upper limit εl = 0.3. The
measured maximum strain max(εt) depends on the specimen and is limited to max(εt) ≤ 1.36.
An overview of max(εt) as a function of E(e f f ) is given in Fig. 4.1(b). Respectively, 52 and
25 of the measured stress-strain data curves satisfy max(εt) ≥ 0.4 and max(εt) ≥ 0.77, which
corresponds to an extension of the strain range of about 33% and 156% beyond the upper limit
of the low-strain region εl ≈ 0.3.

εt ≤ εl

1

(a) (b)

Figure 4.1: a) Degree of deformation ∆l/l0 for true strain 0 ≤ εt ≤ 1.5. The overall low-strain
range εt ≤ εl with εl ≈ 0.3 is indicated. b) Measured maximum strain max(εt) as a function
of low-strain Young’s modulus E(e f f ). The linear low-strain upper limit εl ≈ 0.3 is indicated
(dashed line).
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4.2 Continuous elastic stress-strain relationships and a priori
modelled parameter expressions

The typical stress-strain data curve plotted in Fig. 4.2(a) shows that the elastic linear low-
strain range εt ≤ εl , expressed with Hooke’s law using the low-strain effective Young’s modulus
E(e f f ) as

σt(εt) = E(e f f ) εt , (4.1)

transitions to a more rapid increase of stress σt with strain εt indicating elastic non-linear stress-
strain behaviour for ε > εl . In accordance with models proposed for soft biological tissues
accounting for the rapid non-linear increase of stress with strain for εt > εl [4, 52, 53, 56–58], the
following exponential and third order polynomial (cubic) non-linear continuous two-parameter
relationships with C 1 continuity are assessed in order to model the measured σt(εt) curves:

exponential : σt(εt) = A(eBεt −1), (4.2a)

cubic : σt(εt) = aε
3
t +bεt , (4.2b)

with (A,B) and (a,b) their respective two parameter sets. Fig. 4.2 illustrates the linear fit of

(a) Linear model (b) Non-linear models

Figure 4.2: Experimental stress-strain data curve σt(εt) (symbols) and stress-strain models
(lines) with fit accuracy R2 ≥ 99.5% for a five-layer (n = 5) specimen with combined (∥⊥)
stacking: a) linear (full line) low-strain (εt ≤ εl) fit with slope Ee f f = 36 kPa, b) continuous
non-linear cubic (dotted line) and exponential (dashed line) fits.

Eq. (4.1) (in Fig. 4.2(a)) to the low-strain region εt ≤ εl and the continuous exponential and
cubic fits of Eq. (5.2) (in Fig. 4.2(b)) to a typical stress-strain data set. For each measured stress-
strain curve, best fit parameter sets (Â, B̂) and (â, b̂) are estimated by minimising the root mean
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square error (rmse),

rmse =

√
1
N

N

∑
i=1

[
(σ̂t)i − (σt)i

]2 (4.3)

between measured σt and fitted σ̂t stresses with N the number of strain data points within the
analysis range and i the index of individual data points. The goodness of fit, expressed by the
coefficient of determination R2, yields R2 > 99.5% for each continuous model to the measured
stress-strain curves, obtained using either MP or PL uni-axial tensile testing. Therefore, both
continuous two-parameter relationships can be used to represent the measured stress-strain
curves.

4.2.1 Linear low-strain behaviour of continuous stress-strain models

The first order derivatives of Eq. (4.2a) and Eq. (4.2b) with respect to εt become

exponential :
dσt

dεt
= ABeBεt , (4.4a)

cubic :
dσt

dεt
= 3aε

2
t +b. (4.4b)

The linear low-strain behaviour for εt ≤ εl of the exponential Eq. (4.2a) and cubic Eq. (4.2b)
relationship is then obtained from the first order Taylor expansion near εt ≈ 0 as:

exponential : σt(εt ≈ 0) = ABεt , (4.5a)

cubic : σt(εt ≈ 0) = bεt , (4.5b)

where it is used that both the exponential and cubic models have no residual stress at zero strain
so that σt(εt ≈ 0) ≈ 0 kPa. Consequently, the elastic low-strain (effective) Young’s modulus
E(e f f ), describing the linear stress-strain behaviour in the low-strain range εt ≤ εl (Eq. (4.1)) is
expressed in terms of the continuous model fit parameters as:

exponential : E(e f f ) = AB, (4.6a)

cubic : E(e f f ) = b. (4.6b)

4.2.2 Non-linear behaviour of continuous stress-strain models

Using A = E(e f f )/B (Eq. (4.6a)) and b = E(e f f ) (Eq. (4.6b)) and assuming that E(e f f ) is a
known quantity, the continuous models in Eq. (4.2a) and Eq. (4.2b) can be rewritten depending
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on the low-strain linear Young’s modulus E(e f f ), which yields the two continuous one-parameter
relationships

exponential : σt(εt) =
E(e f f )

B
(eBεt −1), (4.7a)

cubic : σt(εt) = aε
3
t +E(e f f ) εt , (4.7b)

with the unknown parameters B and a (already in Eq. (5.2)) determining the non-linear behaviour
in the range εt > εl .

From the first order expansion of the non-linear continuous relationships in Eq. (5.2) it fol-
lows that the local linear slopes ENL associated with their linear approximations near any εt are
expressed as:

exponential : ENL = E(e f f ) eBεt , (4.8a)

cubic : ENL = 3aε
2
t +E(e f f ). (4.8b)

At low-strain (for εt ≈ 0), these expressions reduce to ENL(εt ≈ 0) ≈ E(e f f ) in accordance with
the linear low-strain behaviour described in Section 4.2.1. As both the exponential (Eq. (4.7a))
and cubic (Eq. (4.7b)) relationship fit the measured data for the assessed strain range, estimated
stresses are assumed to match. Equating Eq. (4.7a) and Eq. (4.7b) for any matching strain value
εm

t and making use of Eq. (4.8a) and Eq. (4.8b) results in the following relationship between ENL
and the low-strain Young’s modulus E(e f f ),

ENL ln
( ENL

E(e f f )

)
+2E(e f f ) ln

( ENL

E(e f f )

)
−3ENL +3E(e f f ) = 0. (4.9)

The solution ENL(E(e f f )) is accurately approximated as ENL = 8.58E(e f f ) (R2 = 99.9%) as il-
lustrated in Fig. 4.3 for E(e f f ) ∈

[
0.1, 350

]
, which includes the values of interest indicated in

Table 3.5. Consequently, the parameter sets (A,B) and (a,b) associated with the local linear be-
haviour of the non-linear exponential and cubic functions at strain εm

t are given in terms of E(e f f )
as,

exponential : B =
1

εm
t

ln
( ENL

E(e f f )

)
, A =

εm
t E(e f f )

ln
(

ENL
E(e f f )

) , (4.10a)

cubic : b = E(e f f ), a =
ENL −E(e f f )

3(εm
t )2 . (4.10b)

Using the ratio ENL/E(e f f ) ≈ 8.58, the two-parameter sets of Eq. (5.2) can be expressed as a
function of E(e f f ) since

exponential : B ≈ 2.15
1

εm
t
, A ≈ 0.47E(e f f ) ε

m
t , (4.11a)

cubic : b ≈ E(e f f ), a ≈ 2.53E(e f f )
1

(εm
t )2 . (4.11b)
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Figure 4.3: Solutions ENL from Eq. (4.9) as a function of E(e f f ) (thick full line) and superimposed
linear fit (light dotted line) with R2 = 99.9%.

(a) (b)

Figure 4.4: For the exponential (superscript e) and cubic (superscript c) relationship: a) relative
difference (%) between modelled true stresses σt as a function of normalised strain εt/εm

t , b)
strain energy density function W normalised by low-strain Y(e f f ).

These (positive) model parameter approximations respect the low-strain behaviour in Eq. (4.6a)
and Eq. (4.6b) as AB ≈ E(e f f ) and b ≈ E(e f f ). Beyond the low-strain region, the cubic parameter
a and the exponential parameter A are proportional to E(e f f ). In addition, the cubic parameter a
and exponential parameters (A,B) not only depend on E(e f f ), but also on the considered strain
εm

t at which the cubic and exponential model are imposed to match. For εm
t = 1, this gives

B ≈ 2.15, A/E(e f f ) ≈ 0.5 and a/E(e f f ) ≈ 2.5. For εm
t ̸= 1, the model parameters B, A and a will

decrease or increase with respect to their value at εm
t = 1, depending on εm

t < 1 or εm
t > 1, since

B ∝ ε
−1
t , A ∝ εt and a ∝ ε

−2
t .

The relative difference (in percentage) between the modelled true stresses from the exponen-
tial (σ e

t ) and cubic (σ c
t ) relationships as a function of the normalised strain εt/εm

t is plotted in
Fig. 4.4(a). The difference is zero at εt/εm

t ∈ {0, 1} as for these strains the stresses match. For
intermediate stresses 0≤ εt/εm

t ≤ 1, the difference is less than the maximum of 12.6% associated
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with εt/εm
t = 0.28. For εt/εm

t > 1, the difference increases since σ e
t (exponential) increases

more rapidly than σ c
t (cubic). Overall, the stress-difference remains less than 12.6% when

fulfilling the condition εt/εm
t ≤ 1.55 and increases thereafter. Thus εm

t should be at least 65%
of the maximum assessed strain max(εt) to ensure this accuracy between the curves obtained
with the model parameters. For 0.77 ≤ εm

t ≤ 1.36, which is reasonable considering the variation
of the maximum strain (max(εt) ≤ 1.36) in the measured stress-strain curves (see Fig. 4.1(b)),
we get using Eq. (4.11) the model parameter ranges 1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E(e f f ) ≤ 0.64,
1.36 ≤ a/E(e f f ) ≤ 4.27 and b = E(e f f ).

Introducing the elongation parameter λ = l/l0 so that λ = eεt and λ ≥ 1, the strain energy
density function expressing the strain energy per unit volume of the deformed material is obtained
as the work done by the load

W (λ ) =

ˆ
λ

1

σt(λ )

λ 2 dλ . (4.12)

Inserting the exponential σ e
t and the cubic σ c

t stress relationship with parameter values for εm
t =

1, W normalised by the linear low-strain modulus E(e f f ) becomes,

exponential :
W e(λ )

Ee f f
≈ 0.47

(
λ 1.15

1.15
+

1
λ
−1.87

)
, (4.13a)

cubic :
W c(λ )

Ee f f
≈− 1

λ

(
2.53 ln3(λ )+7.59 ln2(λ )+16.18 ln(λ )+16.18

)
. (4.13b)

W e and W c are plotted in Fig. 4.4(b) as a function of εt/εm
t . As observed, the curves are similar

within the range 0 ≤ εt/εm
t ≤ 1.55 because the normalised difference (W e−W c)/W e is limited

to within 12.6% with a single maximum at εt/εm
t = 0.39.

4.3 Results

4.3.1 Parameter values: best fit, best fit approximation and modelled

Parameters obtained by minimising the rmse (Eq. (4.3)) between the continuous exponential
(â and b̂) or cubic (Â and B̂) fits for σ̂t(εt) and the measured stress-strain curves σt(εt) for the
complete strain range up to max(εt) are plotted in Fig. 4.5 as a function of the low-strain Young’s
modulus E(e f f ). As detailed in Section 4.2.2, the best fit accuracy yields R2 > 99.5% for each
stress-strain data set. Thus, both the exponential and cubic two-parameter relationships provide
accurate fits of the measured data sets.
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(a) Â (b) B̂

(c) â (d) b̂, Â B̂

Figure 4.5: Exponential (Â, B̂) and cubic (â, b̂) best fit (R2 > 99.5%) parameters to measured
stress-strain curves in the range εt ≤ max(εt) as a function of E(e f f ): a) Â for max(εt) ≥
{0.40, 0.77}, b) B̂ for max(εt) ≥ {0.40, 0.77}, c) â for max(εt) ≥ {0.40, 0.77} and d) b̂, Â B̂
and E(e f f ). In a,b,c) shaded regions indicate modelled parameter ranges for 0.77 ≤ εm

t ≤ 1.36,
dashed lines show fitted parameter approximations for max(εt) ≥ 0.77. In d) the identity func-
tion (full line) and linear fits (dashed and dotted line) are plotted.

As the rmse-minimisation is a constraint optimisation, resulting estimations of Â (Fig. 4.5(a)),
B̂ (Fig. 4.5(b)) and â (Fig. 4.5(c)), mainly determining the non-linear stress-strain behaviour
for εt > εl with εl ≈ 0.3, depend on the extent of the strain range εt ≤ max(εt) and thus on
max(εt). Therefore, parameter estimations on data sets with max(εt) ≥ 0.40 (light gray dots)
and max(εt)≥ 0.77 (dark gray dots) are different. Best fit parameter estimations Â, B̂ and â for



4.3. Results 59

data sets with max(εt)≥ 0.77 can be approximated (dashed black lines) as :

Â ≈ 0.33 E(e f f ), (fit accuracy R2 = 84%), (4.14a)

B̂ ≈ 2.21, (mean with standard deviation±0.52), (4.14b)

â ≈ 1.78 E(e f f ), (fit accuracy R2 = 83%). (4.14c)

In accordance with the modelled parameter expressions (A,B) in Eq. (4.11a) and a in Eq. (4.11b),
approximations of best fit parameters Â and â depend linearly on the low-strain Young’s modulus
E(e f f ) whereas B̂ is approximately constant. For comparison, modelled parameter ranges for
0.77 ≤ εm

t ≤ 1.36 (1.58 ≤ B ≤ 2.79, 0.36 ≤ A/E(e f f ) ≤ 0.64, 1.36 ≤ a/E(e f f ) ≤ 4.27) are
indicated (shaded regions). It is seen that the best fit parameters and their approximations are of
the order of magnitude of the modelled parameters.

Following the model expressions in Eq. (4.6), the linear low-strain stress behaviour regardless
of max(εt) is determined by the cubic parameter b (Eq. (4.6a)) or the exponential parameter
product AB (Eq. (4.6b)). Therefore, the best fit parameter b̂ (light gray dots), the product ÂB̂
(dark gray dots) as well as the low-strain Young’s modulus E(e f f ) (full line, identity function)
are plotted as a function of E(e f f ) for all data sets in Fig. 4.5(d). It is seen that b̂ and ÂB̂ can be
approximated as

b̂ ≈ 0.92 E(e f f ), (fit accuracy R2 = 95%), (4.15a)

Â B̂ ≈ 0.79 E(e f f ), (fit accuracy R2 = 94%). (4.15b)

As the slopes 0.92 and 0.79 are smaller than one, b̂ and ÂB̂ underestimate the measured
low-strain Young’s modulus E(e f f ) with 8% and 21% respectively. Note that for the exponential
best fit parameters Â and B̂ a trade-off can be observed from Fig. 4.5(a) and Fig. 4.5(b) since e.g.
for E(e f f ) ≈ 32 kPa large values of Â are compensated by low values of B̂ and vice-versa. This
trade-off between Â and B̂ partly explains the slightly reduced performance of the exponential
best fit compared to the cubic one within the low-strain region in order to predict E(e f f ). The
mean and standard deviation between the measured E(e f f ) and best fit estimations (b̂ and Â B̂)
mounts to 3.7±2.8 kPa (exponential) and 1.9±1.8 kPa (cubic). The accuracies mentioned for
the measurement (3.5 kPa, see Section 3.6.1) and the model (5.2 kPa, see Section 3.6.2) of the
low-strain Young’s modulus E(e f f ) are of the same order of magnitude so that, in particular, the
cubic best fit parameter b̂ to the full strain range provides an estimation of E(e f f ). Note that in
this case, the linear low-strain domain and hence its upper limit, εl , is not quantified.

Three different parameter sets for the cubic and exponential continuous curve fits can be
distinguished. Besides the best fit parameters sets (exponential (Â, B̂) or cubic (â, b̂)), best fit
parameter approximations are obtained combining Eq. (4.14) and Eq. (4.15a) whereas modelled
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(a) (b)

Figure 4.6: Examples of measured stress-strain data (symbols) and Ee f f (in kPa), resulting cubic
(C-·) and exponential (E-·) fits with the best fit approximation parameter sets (·-A) and the mod-
elled parameter sets (·-M) for three-layered silicone composites with: a) serial (⊥) stacking and
b) combined (∥⊥) stacking. The fit accuracy (R2, rmse) with R2 (in %) and root mean square
error rmse (in kPa) is indicated for each fit.

parameters are obtained using Eq. (4.11) at εm
t = 1. This value is chosen for convenience since it

ensures that εt/εm
t ≤ 1.55 for each data set (Section 4.2.2 and Fig. 4.4). As the best fit parameter

approximations and the modelled parameters depend on the low-strain Young’s modulus, the
fit accuracy might vary when either measured Ee f f or modelled Êe f f (as outlined in Chapter 3)
effective Young’s modulus values for ML silicone composites are used. Examples of cubic (C-·)

Table 4.1: Mean and standard deviation of the accuracy (R2 in %) of cubic and exponential two-
parameter relationships to stress-strain data using either best fit parameters (dark dots in Fig. 4.5),
best fit approximated parameters (Eq. (4.14) and Eq. (4.15a)), or modelled parameters at εm

t = 1
(Eq. (4.11)) for data sets with max(εt)≥ {εl, 0.40, 0.77}.

Best fit Approximations Modelled at εm
t = 1

Cubic Exponential Cubic Exponential Cubic Exponential

max(εt)≥ εl 99.9±0.1 99.9±0.1
98±2a 98±2a 92±10a 87±12a

95±5b 94±5b 91±13b 87±19b

max(εt)≥ 0.40 99.8±0.2 99.8±0.1
98±2a 98±2a 90±11a 86±13a

95±5b 94±5b 91±16b 89±16b

max(εt)≥ 0.77 99.8±0.2 99.8±0.1
97±3a 98±3a 88±12a 85±14a

95±4b 95±4b 89±16b 87±18b

a using measured low-strain Ee f f .
b using modelled low-strain Êe f f .
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and exponential (E-·) fits for three-layered specimens with the best fit parameter approximation
sets (·-A) and the modelled parameter sets (·-M) are plotted in Fig. 4.6. An overview of the
exponential and cubic fit accuracies for the different parameter sets is given in Table 4.1 where
the mean and standard deviation of R2 are reported. Overall, both the cubic and exponential fits
exhibit similar tendencies. The overall mean fit performance is at least R2 ≥ 85% illustrating
that all parameter sets can be used to obtain a continuous fit of the measured stress-strain curves.
Nevertheless, best fit parameter approximations with the modelled Êe f f results in mean R2

values of at least 94% and a standard deviation of 5% at most. Consequently, these relationships
in combination with the model of the low-strain effective Young’s modulus outlined in Chapter 3
can be used to obtain an a priori, and hence measurement free, characterisation of stress-strain
curves up to εt ≤ 1.5 for the ML silicone composites. Nevertheless, modelled parameter sets
can be used as well since the reduced fit performance (expressed by a decrease of the mean
and an increase of the standard deviation of R2) is reasonable considering that, in contrast to
the data-based approximations in Eq. (4.14) and Eq. (4.15a), no experimental data are used to
obtain Eq. (4.11). Indeed, Eq. (4.11) is obtained using the assumption that cubic and exponential
curves provide similar stress estimations when εt/εm

t ≤ 1.55. This assumption was motivated
(Fig. 4.4 in Section 4.2.2) as well as supported by the accuracy (R2 > 99.5% in this section) of
the cubic and exponential best fits.

4.3.2 High-strain elastic Young’s modulus

Fit accuracies reported in Table 4.1 for the continuous exponential and cubic relationships, in-
spired on stress-strain models proposed for soft biological tissues, suggest that ML silicone com-
posites behave, at least partly, in a similar manner. For soft tissues, the continuous stress-strain
behaviour is generally described as consisting of an exponential strain range, which includes the
linear low-strain elastic range, followed by a linear elastic high-strain range. Eq. (4.9), for which
the solution is plotted in Fig. 4.3, suggests that the high-strain elastic Young’s modulus ENL can
be expressed as a linear function of the low-strain elastic Young’s modulus E(e f f ) with slope
8.58. Since this relationship ENL = 8.58E(e f f ) underlies the modelled parameters for which the
mean fit accuracy amounts to R2 ≥ 85%, the high-strain elastic Young’s modulus is investigated.
Concretely, two additional parameters are introduced to characterise the linear high-strain region
εt ≥ εNL

t , i.e. onset strain εNL
t and high-strain Young’s modulus ENL. In the range εt ≤ εNL

t , the
stress is again described using the continuous two-parameter exponential and cubic relationships
given in Eq. (5.2). Best fit parameter estimations are again obtained by minimising the rmse
given in Eq. (4.3). Overall, it is found that the best fit accuracy is slightly improved, at the cost
of two additional parameters, from R2 ≥ 99.5% to R2 ≥ 99.6 % for the cubic and R2 ≥ 99.7%
for the exponential relationship, respectively. An example of best fits with (EO) and without (E)
high-strain linear elastic range is plotted in Fig. 4.7. When accounting for a linear high-strain
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(a) (b)

Figure 4.7: Examples of measured stress-strain data (symbols) and low-strain linear slope Ee f f
(in kPa) and resulting exponential best fits without (E) and with (EO) linear high strain range
with slope ÊNL and onset εNL

t for three-layered silicone composites with: a) serial (⊥) stacking,
Ee f f = 21.8 kPa, ÊNL = 145.6 kPa and εNL

t = 0.98, b) combined (∥⊥) stacking, Ee f f = 7.4 kPa,
ÊNL = 60.1 kPa and εNL

t = 0.92. The fit accuracy (R2, rmse) with R2 (in %) and root mean square
error rmse (in kPa) is indicated for each fit.

stress behaviour, expressions in Eq. (4.14) and Eq. (4.15) become, respectively,

Â ≈ 0.40 E(e f f ), (fit accuracy R2 = 87%), (4.16a)

B̂ ≈ 2.07, (mean with standard deviation±0.67), (4.16b)

â ≈ 1.60 E(e f f ), (fit accuracy R2 = 74%) (4.16c)

and

b̂ ≈ 0.92 E(e f f ), (fit accuracy R2 = 98%), (4.17a)

Â B̂ ≈ 0.81 E(e f f ), (fit accuracy R2 = 98%). (4.17b)

Thus, the cubic and exponential best fit parameters can again be approximated as a constant
or linear function of the low-strain elastic Young’s modulus E(e f f ). Comparing expressions of
b̂ and Â B̂ in Eq. (4.15) with those in Eq. (4.17) shows that these parameter approximations,
describing the linear low-strain behaviour (εt ≤ εl), remain similar since the slopes vary 0% or
2.5%, respectively. The change to best fit parameter approximations â, Â and B̂, determining
the non-linear stress-strain behaviour for εt ≤ εNL

t , remains limited, as well as the slopes
in Eq. (4.16), which respectively differ in 11%, 18% and 10% from those in Eq. (4.14).
Parameters ÊNL and εNL

t determining the linear high-strain behaviour are plotted in Fig. 4.8.
From Fig. 4.8(b) it is seen that the ratio between the estimated high-strain and low-strain
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(a) ÊNL (b) εNL
t

(c) εNL
t

Figure 4.8: Linear high-strain elastic parameters (ÊNL, εNL
t ) for εNL

t ≥ {0.40, 0.77, 0.90}: a)
estimated high-strain Young’s modulus ÊNL as a function of low-strain Young’s modulus E(e f f )

with shaded region [1, 8.58]E(e f f ), linear fits (R2 = 87%, R2 = 88% and R2 = 91%) are indicated
(lines), b) normalised high-strain lower limit εNL

t /max(εt) as a function of the ratio between
high-strain and low-strain Young’s moduli ÊNL/E(e f f ), mean values (horizontal lines) are indi-
cated (standard deviation of 10%, 7% and 4%), c) εNL

t as a function of max(εt), linear fit (dashed
line) (R2 = 96%) and identity function (full line).

Young’s moduli ÊNL/E(e f f ) is mostly smaller than 5 for εNL
t < 0.77 and smaller than 7 for

εNL
t < 0.90, whereas the ratio is greater than 7 for εNL

t ≥ 0.90. This implies, as plotted for
εNL

t ≥ {0.40, 0.77, 0.90} in Fig. 4.8(a), that the slopes characterising the linear fits (R2 = 87%,
R2 = 88% and R2 = 91%) of ÊNL(E(e f f )) increase with εNL

t . For εNL
t ≥ 0.9, the resulting slope

of 8.55 (ÊNL = 8.55E(e f f )) is within 1% of the slope of 8.58 (left border of the shaded region
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Table 4.2: Mean and standard deviation of the accuracy (R2 in %) of non-linear cubic and ex-
ponential two-parameter and linear two-parameter high-strain relationships to stress-strain data
using either best fit parameters, best fit approximated parameters or modelled parameters at
εm

t = εNL
t and εNL

t = 0.85 max(εt) for data sets with max(εt)≥ {εl, 0.40, 0.77, 0.90}.

Best fit Approximations Modelled at εm
t = εNL

t

Cubic Exponential Cubic Exponential Cubic Exponential

max(εt)≥ εl 99.9±0.1 99.9±0.1
98±2a 98±2a 28±37a 27±36a

89±13b 87±17b 31±36b 32±36b

max(εt)≥ 0.40 99.9±0.1 99.9±0.1
98±2a 98±2a 32±38a 31±37a

92±7b 91±10b 39±36b 37±36b

max(εt)≥ 0.77 99.9±0.1 99.9±0.1
98±2a 98±2a 52±39a 54±39a

94±4b 94±7b 64±31b 62±32b

max(εt)≥ 0.90 99.9±0.1 99.9±0.1
98±2a 98±2a 71±33a 69±33a

94±5b 94±7b 61±37b 60±37b

a using measured Ee f f , ENL and εNL
t .

b using modelled Êe f f , ENL and εNL
t .

in Fig. 4.8(a)) underlying modelled parameters, i.e. ENL = 8.58E(e f f ) is found as the solution
of Eq. (4.9) (see Fig. 4.3). This suggests that although augmenting the number of parameters
increases the best fit accuracy, high-strain linear behaviour is only retrieved for εNL

t ≥ 0.9 in
which case the high-strain Young’s modulus is about 8.55 times the low-strain Young’s modulus.
From Fig. 4.8(c) it is seen that the onset of the high-strain region is approximated as a linear fit
(R2 = 96%) of max(εt), namely εNL

t ≈ 0.82 max(εt), with max(εt)≤ 1.36 for the assessed data
sets.

An overview of the exponential and cubic fit accuracies for different parameter sets
accounting for a high-strain linear range for εt ≥ εNL

t is given in Table 4.2 where the mean and
standard deviation of R2 are reported. Comparing these values with those in Table 4.1 shows
that best fit accuracies are similar, whereas fits obtained with the approximated parameter sets
or the modelled parameter sets are either similar or deteriorate. Consequently, accounting for
a linear high-strain range does not significantly improve the fit accuracy. Moreover, using the
approximated or modelled parameter results in the most accurate a priori, i.e. measurement
free, stress-strain characterisation of ML silicone composites when a high-strain linear range is
not explicitly accounted for. Note that in this case ÊNL can still be estimated as Êmax denoting
the slope of the stress-strain curves near max(εt) as a linear high-strain region implies a constant
slope for εt ≥ εNL

t . The relative difference ∆ÊNL (in percentage) between Êmax and ENL is plotted
in Fig. 4.9 for max(εt) ≥ {0.4, 0.77, 0.9}. It is seen that the mean (7.2%, 3.4% and 0.8%) and
standard deviation (12.3%, 8.3% and 7.9%) of ∆ÊNL decreases for increasing max(εt). This
supports the previous observation that a linear high-strain range does not occur for all measured
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Figure 4.9: Relative difference ∆ÊNL between the linear stress-strain slope Êmax estimated near
max(εt) and ENL near εNL

t for max(εt)≥ {0.4, 0.77, 0.9}. The shaded region indicates the mean
(0.8%, dotted line) plus and minus the standard deviation for max(εt)≥ 0.9.

stress-strain curves.

4.4 Conclusion

In agreement with polynomial and exponential stress-strain models for soft biological
tissues, best fits (in terms of root mean square error) of two-parameter cubic and exponential
relationships are shown to provide an accurate (R2 > 99.5%) and continuous description of
measured low-strain (up to ≈0.3) and subsequent (up to a maximum of 1.36) non-linear
stress-strain behaviour of 6 single-layer and 34 ML silicone composites, commonly used to
mimic the ML structure of human vocal folds. These composites are characterised by their layer
stacking (serial, parallel, combined or arbitrary), measured effective low-strain Young’s modulus
E(e f f ) up to 40 kPa, and some contain a stiff (E = 298 kPa) inclusion as observed in certain
structural vocal fold pathologies. Best fit parameter sets, minimising the root mean square error
between the fitted and measured data (mean fit accuracy R2 ≥ 99.8%), can be approximated
as a constant or linear function of E(e f f ) with a very limited accuracy loss regardless of the
assessed maximum strain (mean fit accuracy R2 ≥ 97% with measured E(e f f ) and R2 ≥ 94%
with modelled E(e f f )). Besides, the best fit parameter sets and resulting approximated best fit
parameter sets, modelled parameter sets are considered as well. The modelled parameter sets
depend on E(e f f ) in the same way as the best fit approximated parameters. Contrary to the
best fit parameter sets and subsequent best fit approximated parameters, no data are used to
derive the modelled parameter sets so that the found accuracy (mean fit accuracy R2 ≥ 85%
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with measured or modelled E(e f f )) supports the model approach which uses the assumption that
the cubic and exponential relationship match at a strain-value corresponding to at least 64% of
the maximum strain. This ensures that both relationships as well as their strain energy density
functions agree to within 12.6% for the full strain range. Thus for a matching strain value
of 1.0, the cubic and exponential relationships, and hence the modelled two-parameter sets,
can be applied for strains up to 1.55, which is about 4.5 times the low-strain limit. Modelled
parameter sets can be interpreted in terms of the low-strain elastic Young’s modulus E(e f f ). In
addition, a modelled expression for the high-strain elastic Young’s modulus ENL, characterising
a linear high-strain stress behaviour, is obtained as 8.58E(e f f ). Consequently, for the sought ML
silicone composites, it is is seen that both best fit approximated parameter sets and the modelled
parameter sets can be used to characterise the linear and non-linear stress-strain relationship
once E(e f f ) is known. Moreover, for these composites it is shown that using modelled instead
of measured E(e f f ) values does not significantly affects the mean fit accuracy. Therefore,
combining the previously proposed low-strain Young’s modulus model discussed in Chapter 3
with the cubic or exponential stress-strain characterisation and approximated or modelled two-
parameter sets as a function of E(e f f ) results in an a priori stress-strain characterisation. This is
of particular benefit to the design of experimental studies of the normal or abnormal vocal fold
structure as these studies often rely on ML silicone vocal fold replicas. The assessed maximum
strains and deformation degrees are pertinent for normal vocal folds auto-oscillation. In future,
it is of interest to further investigate stress-strain curves with strains up to 1.55 or more in
order to study the linear high-strain behaviour as well as the proposed non-linear model approach.

Whereas this chapter (and the previous chapter) focused on extensive model validation in
terms of layer stacking and composition, the next chapter will focus on using the validated
models to predict the stress-strain behaviour of deformable mechanical VFs replicas.
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On the elasticity of deformable vocal folds
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5.1 Introduction

In this chapter, the aim is to contribute to the overall characterisation and prediction of me-
chanical properties of deformable mechanical VF replicas with constant (first type, silicone
molded replicas) as well as with variable (second type, pressurised latex tube replicas) elas-
ticity. A systematic characterisation and a validated analytical model predicting the elasticity of
deformable VF replicas is of interest for the (a-priori) mechanical characterisation and hence the
design of deformable VF replicas.

This is of particular interest for physical studies requiring a systematic variation of the
VF elasticity either due to intra- and inter-speaker diversity (voice type, morphology, aging,
breathing etc. [9]) or due to a structural pathology (scar, nodule, carcinoma, cyst etc. [1]). In the
long term, results are of potential interest (as a predictive or training tool) for personalised VFs
health care.

5.2 Methods: replica-based ML silicone specimens

Bone-shaped ML silicone specimens with serially stacked layers are designed based on the
ML composition of the silicone VF replicas (M5, MRI and EPI) described in Section 2.2.1.
Specimens are designed as 2L (label IIM5 for M5-based), 3L (label IIIMRI for MRI-based) or
4L (label IVEPI for EPI-based) serially stacked composites with layer compositions given in
Table 2.2. Consequently, each layer has constant width (15 mm) and constant height (10 mm).
The layer lengths li on the other hand are set so that for each replica either layer length ratios
li/l match corresponding layer thickness ratios lt/Lx (specimens denoted with subscript L) or
so that Vi/Vtest matches the corresponding layer volume ratio V /VV F (specimens denoted with
subscript V ). Thus, two different specimens are designed based on the composition of each
replica, i.e. IIM5,L and IIM5,V for the M5 replica, IIIMRI,L and IIIMRI,V for the MRI replica and
IVEPI,L and IVEPI,V for the EPI replica.

The six molded specimens are depicted in Fig. 5.1. Layer lengths (laser transceiver,
Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy 8 µm) are indicated (in mm). For
convenience, low-strain Young’s modulus E (in kPa) of each layer is given as well (see also
Table 2.2).
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(a) IIM5,L, IIM5,V (b) IIIMRI,L, IIIMRI,V (c) IVEPI,L, IVEPI,V

Figure 5.1: Molded length (subscript L) and volume (subscript V ) based serial stacked silicone
specimens with layer lengths li (in mm) following the silicone VF replicas. Each legend specifies
layers E (in kPa) with Muscle-Mu, Ligament-Li, Superficial-Su and Epithelium-E following in
Table 2.2 and Fig. 2.2 for: a) M5, b) MRI and c) EPI.

5.2.1 Stress-strain measurements

The stress-strain behaviour of the molded silicone ML specimens is measured at room
temperature (21 ± 2◦C) from uni-axial stress tests by means of precision loading [14, 59].
Briefly, the force-elongation relationship F (∆l) along the force direction, is measured on
vertically placed specimens by fixing the upper clamping end and adding a known weight m
(calibrated scale, Vastar 500G X 0.01G, accuracy 0.01 g) to the lower clamping end. The
weight is incremented with 2.3±1.9 g. The load force F for added mass m is F = m ·g0 with
gravitational constant g0 = 9.81 m/s2. For each weight increment, the specimens elongation
∆l is obtained as ∆l = ∑

n
i=1 ∆li with ∆li the measured elongation of each layer (ruler, accuracy

0.05 mm). Depending on the specimen, the assessed total elongation varies between 44 mm
and 198 mm, corresponding to a total added weight between 14.5 g and 125.8 g. Measured
force-elongation data are illustrated in Fig. 5.2(a).
The area-elongation relationship A (∆l) for each specimen is obtained from measuring the layers
midway cross-sectional area perpendicular to the force Ai (caliper Vernier, accuracy 0.02 mm).
The cross-sectional area A results from the weighted arithmetic mean. The specimens
cross-section area A is measured whenever the elongation increment yields 12.6 ± 5.2 mm,
corresponding to a weight increment of 6.0 ± 5.0 g, so that A (∆l) contains between 5 and
12 data points depending on the total elongation. A quadratic fit (coefficient of determination
R2 ≥ 98%) is applied to the measured A (∆l) data for each specimen resulting in a continuous
approximation A q(∆l). Measured area-elongation data A (∆l) and fitted curves A q(∆l) are
illustrated in Fig. 5.2(b).

Experimental true stress-strain curves σt(εt) are then obtained from the instantaneous
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(a) F (∆l) (b) A (∆l) (c) σt(εt)

Figure 5.2: Examples of uni-axial stress tests data for M5-based specimens IIM5,L (×) and IIM5,V
(+): a) measured force-elongation data F (∆l), b) measured area-elongation data A (∆l) and
quadratic fits A q(∆l) with R2 = 99% (lines) and c) stress-strain curves σt(εt) with linear fits
(lines) to the linear low-strain range εt ≤ 0.32 with R2 > 96% with slope 8.0 kPa (dashed, IIM5,L)
and slope 7.2 kPa (full, IIM5,V ).

force-elongation F (∆l) and area-elongation curves A q(∆l). Stresses are measured for strains
εt ≈ 1.08 for specimens IIM5,·, εt ≈ 0.49 for specimens IIIMRI,· and εt ≈ 0.44 for specimens
IVEPI,·. The effective low-strain elastic Young’s modulus Ee f f of each ML specimen is then
obtained experimentally as the slope of the linear best fit to the strain range up to upper low-strain
limit εl , i.e. the elastic low-strain region εt ≤ εl , in which the stress σt is proportional to the
strain εt .‘ in accordance with Hooke’s law of linear elastic deformation. The mean and standard
deviation of the overall upper limit of the linear low-strain region yields εl = 0.28±0.03 which
corresponds to an elongation of 37± 7 mm. Examples of experimental stress-strain data σt(εt)

and associated linear fits (R2 > 99%) to the linear low-strain region εt ≤ εl are illustrated in
Fig. 5.2(c).

5.2.2 Stress-strain model approach

5.2.2.1 Low-strain model: effective low-strain Young’s modulus Êe f f

Hooke’s law of linear elastic deformation (Eq. (5.6)) holds in the low-strain range so that the
stress-strain relationship is characterised by the low-strain Young’s modulus. As each specimen
consists out of n serial stacked layers, Reuss’s hypothesis [44] of homogeneous stress can be
applied. This implies that the stress σt in an equivalent homogeneous composite and the stress
σt,i=1...n in each layer is assumed constant so that σt,i=1...n = σt . The effective low-strain Young’s
modulus of the equivalent homogeneous composite with length l = ∑

n
i=1 li is then modelled as
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(a) best fits σ e
t (εt) (b) best fits σ c

t (εt)

Figure 5.3: Illustration of measured stress-strain data for specimens IIM5,L (×) and IIM5,V (+)
and non-linear continuous best fits (dashed lines) with R2 ≥ 99.9% and rmse < 0.3 kPa using
two-parameter relationships: a) exponential σ e

t (εt), b) cubic σ c
t (εt). Linear strain limit εl is

indicated.

the harmonic mean of the layers Young’s moduli Ei weighted with their lengths łi as

Êe f f =

n
∑

i=1
li

n
∑

i=1

(
li
Ei

). (5.1)

This model approach is validated (accuracy 2.4 kPa) on 15 composite specimens (2L, 3L and
4L) with layer Young’s moduli Ei ≤ 65 kPa as is the case in this work (Table 2.2) [14, 59].

5.2.2.2 Continuous non-linear stress-strain model for strains up to 1.55

In [60], it was shown that the linear and non-linear stress-strain data σt(εt) for silicone com-
posites can be approximated for εt ≤ 1.55 using either an exponential (superscript e) or cubic
(superscript c) two-parameter relationship

exponential: σ
e
t (εt) = A(eBεt −1), (5.2a)

cubic: σ
c
t (εt) = aε

3
t +bεt , (5.2b)

with (A,B)e and (a,b)c their respective two-parameter sets.

The best fit using these relationships is obtained for parameter sets minimising the root
mean square error (rmse in kPa) between the fitted and measured data. For the silicone
specimens, depicted in Fig. 5.1, the accuracy associated with the best fits yields R2 ≥ 99.9% and
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rmse < 0.3 kPa. This is illustrated in Fig. 5.3 for specimens IIM5,L and IIM5,V for the exponential
σ e

t (εt) (Fig. 5.3(a)) or cubic σ c
t (εt) (Fig. 5.3(b)) relationship.

Besides these best fit parameter sets (suffix -fit), two pairs of generic parameter sets in the
strain range εt ≤ 1.55 are recently proposed in [60]. Generic parameter sets are expressed as a
function of the effective low-strain Young’s modulus Ee f f , so that the exponential (superscript e)
and the cubic (superscript c) relationships in Eq. (5.2) constitute continuous stress-strain models,
comprising the linear low-strain range (εt ≤ εl with εl ≈ 0.28) as well as the non-linear stress-
strain range (εl < εt ≤ 1.55) thereafter. Generic parameter sets were either modelled analyti-
cally (suffix -M) or estimated as an overall approximation (suffix -A) of the best fits parameters
for stress-strain curves measured on 40 silicone composite specimens. Resulting generic two-
parameter sets (A,B)e and (a,b)c as a function of the effective low-strain Young’s modulus Ee f f
are thus either expressed analytically (suffix -M) as

modelled exponential (A,B)e – E-M: (Ee f f /2.15, 2.15)e, (5.3a)

modelled cubic (a,b)c – C-M: (2.53Ee f f , Ee f f )
c (5.3b)

or as the overall best fit parameter sets approximation (suffix -A) as

approximated exponential (A,B)e – E-A: (Ee f f /3.03, 2.21)e, (5.4a)

approximated cubic (a,b)c – C-A: (1.78Ee f f , 0.92Ee f f )
c. (5.4b)

The accuracy of the exponential and cubic fits with the generic parameter sets is R2 ≥ 85%
for the modelled parameter sets (E-M and C-M) and R2 ≥ 94% for the best fit parameter
approximations (E-A and C-A) [60]. Note that this accuracy holds regardless how the specimens
effective low-strain Young’s modulus Ee f f is obtained, i.e. either modelled using Eq. (5.1)
(Section 4.2) or measured as the slope of the linear low-strain region (Section 3.5). From
Eq. (5.3) follows that modelled generic parameter sets relate to Ee f f as b = Ee f f and AB = Ee f f ,
whereas for the generic best fit approximation parameter sets follows from Eq. (5.4) that
b = 0.92Ee f f and AB = 0.73Ee f f . In addition, a linear fit of the best fit parameter product AB as
a function of Ee f f resulted in the relationship AB = 0.79Ee f f [60].

5.2.2.3 High-strain model: effective high-strain Young’s modulus ENL

Linear stress-strain behaviour might occur at sufficiently large strains as e.g. observed for
biological materials [52, 57]. The stress-strain behaviour in a linear high-strain range εNL

t ≤ εt ≤
1.55 is thus again characterised by an effective high-strain Young’s modulus ENL with ENL >

Ee f f . Consequently, ENL can be estimated as the slope of the linear fit to the stress-strain curves
in the high strain range (suffix -fit). In [60] was shown that for the specimens of interest ENL is
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linearly proportional to Ee f f . Analytical reasoning showed that the ratio ENL/Ee f f at εNL
t = 1

yields ENL/Ee f f = 8.58. In addition, it is shown that ENL/Ee f f can be expressed analytically as a
function of the linear high-strain range onset εNL

t as the local slope to either the exponential and
cubic two-parameter stress-strain relationships, which is modelled as:

exponential (A,B)e – E- ·: ENL/Ee f f = eBεNL
t , (5.5a)

cubic (a,b)c – C- ·: ENL/Ee f f = 3k (εNL
t )2 +1, (5.5b)

with generic exponential parameter B either modelled following E-M (B = 2.15, Eq. (5.3a))
or approximated E-A (B = 2.21, Eq. (5.4a)) and constant k = a/Ee f f obtained from generic
parameter a ∝ Ee f f , which is modelled following C-M (k = 2.53, Eq. (5.3b)) or approximated
following E-A (k = 1.78, Eq. (5.4b)).

5.3 Results: replica-based ML silicone specimens

5.3.1 Linear low-strain effective Young’s modulus Ee f f

For each of the six composite replica-based specimens depicted in Fig. 5.1, either length-
based (subscript L) or volume-based (subscript V ), the linear low-strain effective Young’s modu-
lus in the range εt ≤ εl is measured (Ee f f ) as outlined in Section 3.5 and modelled (Êe f f ) follow-
ing Eq. (5.6). Measured Ee f f (crosses) and modelled Êe f f (empty symbols) plotted in Fig. 5.4
are between 3 kPa and 10 kPa. Measured Ee f f -values are summarised in Table 5.1.

Measured Ee f f for MRI-based (around 5.0 kPa) and EPI-based (around 5.4 kPa) are of
similar value, whereas higher Ee f f are observed for M5-based specimens (around 7.6 kPa).

Figure 5.4: Measured Ee f f (×, +) and modelled Êe f f (◦, □) for specimens IIM5,·, IIIMRI,· and
IVEPI,· using either the thickness (·,L) or volume (·,V) ratio of silicone VF replicas.
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Table 5.1: Measured low-strain Young’s moduli Ee f f .

Ee f f [kPa]
Specimen L-based† V -based‡

IIM5,· 8.0 7.2
IIIMRI,· 5.4 4.5
IVEPI,· 5.7 5.0
† specimens IIM5,L, IIIMRI,L, IVEPI,L.
‡ specimens IIM5,V , IIIMRI,V , IVEPI,V .

Measured E·,L for length ratio based specimens (subscript L, symbol × in Fig. 5.4) are up to
0.9 kPa greater than E·,V observed for volume ratio based specimens (subscript V, + symbol
in Fig. 5.4). The absolute difference |Ee f f − Êe f f | between measured and modelled Young’s
moduli yields between 1.0 kPa and 2.8 kPa. Except for IIIMRI,L, the difference is positive
for length-based specimens and negative for volume-based specimens. Overall, values and
tendencies observed for modelled Êe f f agree with those observed for measured Ee f f .

The impact (IIM5,., IVEPI,.) or lack thereof (IIIMRI,.) of the imposed ratio (thickness L or
volume V) on modelled Êe f f is understood considering the harmonic mean in Eq. 5.1. The mean
depends on layer lengths li and layer Young’s moduli Ei indicated in Fig. 5.1 and in Table 2.2.
For all replicas, Yi is larger in the muscle layer than in the superficial layer so that shortening
the muscle layer, corresponding to imposing the volume ratio instead of the length ratio, results
in reducing Êe f f . The decrease is significant for M5-based (3.4 kPa) and EPI-based (4.7 kPa)
replicas. For MRI-based specimens the decrease is not significant (0.1 kPa) as the muscle layer
is shortened with less than ≤ 15% (or ≤ 5.6 mm) and in addition Ei of the muscle (4.0 kPa) and
superficial (2.2 kPa) layer are of the same order of magnitude.

From the model approach outlined in Section 5.2.2 follows that exponential (E-·) parameter
product AB and cubic (C-·) parameter b are proportional to the low-strain Young’s modulus
Ee f f . Therefore, the ratios AB/Ee f f and b/Ee f f are plotted in Fig. 5.5. Overall, ratios associated
with best fit parameters (E-fit, C-fit) vary between specimens from 0.6 up to 0.92. The ratios
are constant applying either of the generic parameter sets (E-M, C-M and E-A, C-A). The unity
value, associated with modelled parameter sets (E-M and C-M) provides an upper limit. Ratios
associated with best fit parameter approximations AB/Ee f f = 0.73 (E-A) and b/Ee f f = 0.92
(C-A) and best fit parameters are in good agreement given that their absolute difference is
limited (1% up to 33%, mean 8%, median 5%).
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5.3.2 Non-linear continuous stress-strain model

The exponential and cubic continuous two-parameter relationships with generic modelled
parameter sets (·-M) and with generic best fit approximation parameter sets (·-A) are applied to
model the non-linear stress-strain behaviour in the range εt ≤ 1.55. This is illustrated for the
cubic model approach with parameters obtained using measured Ee f f (Table 5.1) in Fig. 5.6 for
specimens IIM5,L, IIM5,V , IIIMRI,V and IVEPI,V . The cubic best fit (C-fit) to the measured data for
each specimen is plotted as well. The model accuracy of each curve with respect to the measured
data is indicated (R2 in percentage, rmse in kPa) as is low-strain upper limit εl . For specimens
IIIMRI,V and IVEPI,V , the measured strain range yields up to about twice εl since εt ≤ 0.49.
Within this range, both C-M and C-A curves provide accurate estimates of the measured data as
rmse ≤ 0.39 kPa and R2 ≥ 95.6%. This is in particular the case for the C-M curves for which the
associated accuracies approximate the best fit accuracies (R2 ≥ 99.9% and rmse ≤ 0.03 kPa).
For specimens IIM5,L and IIM5,V the measured strain-range is extended, up to about thrice εl

(a) exponential relationship: AB/Ee f f

(b) cubic relationship: b/Ee f f

Figure 5.5: Ratios a) AB/Ee f f for the exponential (E-·) relationship and b) b/Ee f f for the cu-
bic (C-·) relationship for length-based (left) and volume-based (right) specimens from modelled
(·-M, ×, dashed unity line), best fit (·-fit, 2734) and best fit approximation (·-A, , dotted line) pa-
rameters. In a) ratio AB/Ee f f = 0.79 (dash-dotted line) is indicated [60].
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(a) IIM5,L (b) IIM5,V

(c) IIIMRI,V (d) IVEPI,V

Figure 5.6: Illustration of measured (×) stress-strain data σt(εt) and their cubic best fit (C-fit):
a) IIM5,L, b) IIM5,V , c) IIIMRI,V and d) IVEPI,V . Modelled cubic curves (εt ≤ 1.55) with generic
modelled (C-M) and best fit approximation (C-A) parameter sets from measured Ee f f . Data fit
accuracies (R2 in %, rmse in kPa) and low-strain upper limit εl are indicated.

since εt ≤ 1.08. The C-A curve (R2 = 99.6% and rmse = 0.71 kPa) agrees best with measured
data for specimen IIM5,L whereas the C-M curve (R2 ≥ 99.6% and rmse ≤ 0.89 kPa) provides
the best estimate for specimen IIM5,V .

The stress-strain behaviour of the specimens is assessed beyond the measured range consid-
ering the modelled continuous non-linear stress-strain behaviour up to εt ≤ 1.55. Modelled cubic
curves using the generic modelled parameter sets (C-M) for the length-based and volume-based
specimens are plotted in Fig. 5.7. Parameter sets depend on Ee f f summarised in Table 5.1. It
follows that modelled curves for specimens with similar low-strain Young’s modulus Ee f f are in
close agreement. This is the case for specimens IVEPI,L and IIIMRI,L (Ee f f -difference of 0.3 kPa
or 5%) and for specimens IVEPI,V and IIIMRI,V (Ee f f -difference of 0.5 kPa or 10%). Modelled
stresses increase with Ee f f so that stress curves for IIM5,· are increased compared to curves for
IIIMRI,· and IVEPI,·. For the same reason, stresses associated with length-based specimens are
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(a) L-based (b) V -based

Figure 5.7: Modelled cubic stress-strain curves σt(εt) with the generic modelled parameter set
(C-M) using measured Ee f f for a) length-based specimens (IVEPI,L, IIIMRI,L, IIM5,L), b) volume-
based specimens (IVEPI,V , IIIMRI,V , IIM5,V ). The mean low-strain upper limit is εl = 0.28.

increased compared to volume-based specimens.

5.3.3 High-strain effective Young’s modulus ENL and onset strain εNL
t

The linear high-strain range is characterised by its effective high-strain Young’s modulus
ENL and onset strain εNL

t (Section 4.3.2). For the modelled exponential and cubic curves as-
sociated with each specimen, this slope can be estimated from a linear fit to the strain interval
[εNL

t 1.55]. The influence of onset strain εNL
t on the estimated slope and the linear fit accuracy

(R2) is illustrated in Fig. 5.8 for specimen IVEPI,L. Linear fits to the interval [εNL
t 1.55] of mod-

elled exponential curves with generic parameter sets, either modelled (E-M) or obtained as best
fit approximation (E-A), are plotted for four onset strain εNL

t ∈ {1.00, 1.20, 1.27, 1.35}. Linear
slope ENL is indicated for each parameter set whereas the minimum linear fit accuracy R2 for
both parameter sets is given. Regardless of εNL

t , slope ENL for curves E-M is 26% greater than
those found for curves E-A. From Fig. 5.8 is seen that ENL and R2 increase with εNL

t , i.e. when
the fit interval is shortened. Concretely, slopes ENL increase with 30% for both E-M and E-A
while minimum accuracy R2 increases from 97.62% to 99.68%.

A systematic overview of effective high-strain Young’s modulus ENL normalised with effec-
tive low-strain Young’s modulus Ee f f as a function εNL

t is provided in Fig. 5.9. Plotted high-
strain to low-strain effective Young’s modulus ratios ENL/Ee f f depend on the applied model
(exponential or cubic), and thus also on the applied generic parameter set (modelled -M or best
fit approximation -A), but not on the specimen.

The slopes obtained from linear fits to intervals [εNL
t 1.55] of the modelled cubic and expo-
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nential curves, for each of the two generic parameter sets (C-M-fit, C-A-fit, E-M-fit and E-A-fit)
as illustrated for the exponential curve in Fig. 5.8, are plotted (symbols) for seven discrete εNL

t -
values between 1 and 1.5. For each value of εNL

t , the overall minimum linear fit accuracy, which
corresponds to values obtained for exponential curves, is indicated between brackets. The min-
imum fit accuracy R2 ≥ 97.62% (or R2 ≥ 98.97% for cubic curves) is sufficiently high to argue
that linear fits provide a good approximation of modelled non-linear stress-strain curves in the
intervals [εNL

t 1.55] with εNL
t ≥ 1. Nevertheless, in order to potentially extend the linear range

continuously beyond the validated non-linear model range εt = 1.55, a fit accuracy of R2 ≤ 99%
seems more appropriate considering the fitted linear high-strain curves in Fig. 5.8, e.g. compar-
ing plotted linear approximations for εNL

t = 1 (R2 ≥ 97.62%) and εNL
t = 1.27 (R2 ≥ 99.37%).

Fitted slopes ENL are further compared to the modelled local slopes (at εNL
t ) of the non-

(a) εNL
t = 1.00, R2 ≥ 97.62% (b) εNL

t = 1.20, R2 ≥ 98.96%

(c) εNL
t = 1.27, R2 ≥ 99.37% (d) εNL

t = 1.35, R2 ≥ 99.68%

Figure 5.8: Influence of high strain onset εNL
t ∈ {1.00, 1.20, 1.27, 1.35} (subplots) on slope ENL

(in kPa) and accuracy (min(R2) in %) of linear fits (gray lines) to intervals [εNL
t 1.55] of modelled

exponential stress-strain curves σt(εt) using generic modelled (E-M) or best fit approximation
(E-A) parameter sets for specimen IVEPI,L (Ee f f = 5.7 kPa). Measured (×) stress-strain data and
their exponential best fit (E-fit) are plotted. Model and fit accuracies (R2 in %, rmse in kPa) and
low-strain limit εl are indicated in the legends.
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Figure 5.9: High-strain to low-strain effective Young’s modulus ratio ENL/Ee f f (ε
NL
t ) with ENL

obtained for both generic parameter sets (modelled -M and best fit approximation -A) as the
slope of linear fits (min(R2) in %, symbols) to exponential and cubic model curves (C-A-fit,
C-M-fit, E-A-fit, E-M-fit) in intervals [εNL

t 1.55] for εNL
t ∈ {1, 1.1, 1.2, 1.27, 1.35, 1.44, 1.5} or

modelled local slopes (C-A, C-M, E-A, E-M) from Eq. (5.5) (continuous lines). Reference ratio
8.58, best match between fitted and modelled slopes (frames) and selected values (shaded frames)
following the ‘first-decimal-criterion’ (local and fitted slopes match until the first decimal place)
are indicated.

linear models using Eq. (5.5). Normalised local slopes ENL/Ee f f for the exponential and cubic
model depend again on the applied generic parameter set (C-M, C-A, E-M and E-A). Local
modelled slopes ENL/Ee f f are plotted (lines) as function of εNL

t in Fig. 5.9. Modelled curves C-
M and E-M match at εNL

t = 1 for which ENL/Ee f f = 8.58 confirming the reference ratio indicated
in Section 4.3.2). Fitted (symbols) as well as local (lines) ENL/Ee f f increase with εNL

t in a
range which spans from ENL/Ee f f ≈ 8.58 for εNL

t = 1 up to about thrice this value (ENL/Ee f f ≈
25) at εNL

t = 1.5. The best matches between the fitted and local slopes ENL/Ee are indicated
(frames) in Fig. 5.5. For the cubic model, fitted and local slopes correspond until the first decimal
place for εNL

t ≈ 1.5 for both generic parameter sets. This results in ENL/Ee f f ≈ 13.2 holds for
the generic best fit approximation parameter set (C-A-fit vs C-A) and ENL/Ee f f ≈ 18.5 for the
generic modelled parameter set (C-M-fit vs C-M). For the exponential model, fitted and local
slopes only agree until the first decimal when the generic best fit approximation parameter set
(E-A-fit vs E-A) is applied for which ENL/Ee f f ≈ 16.7 at εNL

t ≈ 1.27. An overview of the high-
strain onset εNL

t and associated normalised high-strain Young’s modulus ENL/Ee f f following this
criterion is given in Table 5.2. Satisfying this ‘first-decimal-criterion’, i.e. requiring that fitted
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Table 5.2: High strain onset εNL
t and normalised high-strain Young’s modulus ENL/Ee f f for

which local and fitted slopes match until the first decimal (‘first-decimal-criterion’).

ENL/Ee f f εNL
t

C-A vs C-A-fit 13.2 1.5
C-M vs C-M-fit 18.5 1.5
E-A vs E-A-fit 16.7 1.27
E-M vs E-M-fit - -

and modelled local slopes match until the first decimal, ensures that linear fits are a continuous
extension of modelled non-linear curves as observed in [52, 53, 57]. From the overview in
Table 5.2 is seen that selected εNL

t ≥ 1.27, which ensures a high-strain linear fit accuracy of
R2 > 99% to the modelled non-linear curves in the high-strain range.

From Table 5.2 is seen that the exponential model approach with generic best fit approx-
imation parameter set (E-A) is associated with the largest, and hence most meaningful, high-
strain interval within the range associated with the non-linear model. Moreover, resulting ratios
are within the range associated with cubic model approaches (C-M and C-A). Finally, the E-A
model resulted in the best overall model accuracy (R2 = 98± 3%) [60]. Therefore, the E-A
model is used to consider high-strain Young’s moduli ENL for all specimens. Resulting ENL are
summarised in Table 5.3.

Table 5.3: High-strain Young’s moduli ENL ≈ 16.7Ee f f .

ENL [kPa]
Specimen L-based† V -based‡

IIM5,· 134 120
IIIMRI,· 90 75
IVEPI,· 95 84
† specimens IIM5,L, IIIMRI,L, IVEPI,L.
‡ specimens IIM5,V , IIIMRI,V , IVEPI,V .
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5.4 Methods: PLT VF

5.4.1 Measured stress-strain curves and low-strain Young’s modulus Ee f f

Increasing (or decreasing) the internal water pressure PPLT expands (or shrinks) the radius
of the PLT replica with respect to the posterior-anterior y-axis defined in Section 2.2.2. For
each imposed PPLT , a top view image within the x–y plane and a side view image within the
y–z plane of the replica are gathered from the camera positions indicated in Fig. 2.3(b). The
characteristic lengths Lx(y) (top view) and Lz(y) (side view) correspond to the distances between
the replica’s edges as indicated in Fig. 5.10. The internal pressure PPLT is systematically in-
creased (↑) or decreased (↓) between 450 Pa and 6500 Pa with steps of about 100 Pa. Extracted
edges for top and side view images as a function of y/Ly (with Ly = 42 mm) are illustrated in
Fig. 5.11(a) and in Fig. 5.11(b) for increasing PPLT . For each image, and hence imposed PPLT ,
mean Lx (top view) and Lz (side view) are quantified for different y/Ly ranges, i.e. overall mean
(0 ≤ y/Ly ≤ 1 or interval length ∆y/Ly = 1, standard deviation less than 2.5%) or local mean
values (standard deviation less than 0.2%) for a 4 mm range (interval ∆y/Ly = 0.1) with centre
values 2.4 mm apart at y/Ly = 0.5 (centre, 0.45 ≤ y/Ly ≤ 0.55), y/Ly = 0.4 (towards the water
inlet, 0.35≤ y/Ly ≤ 0.45) or y/Ly = 0.6 (away from the water inlet, 0.55≤ y/Ly ≤ 0.65). Result-
ing Lx(PPLT ) (top view) and Lz(PPLT ) (side view) and standard deviations (bars) are illustrated in
Fig. 5.11. Increasing (or decreasing) PPLT also increases (or decreases) the mean characteristic

(a) top view (b) side view

Figure 5.10: Illustration of edge detection from PLT replica imaging and extracted Lx(y) (a: top
view) and Lz(y) (b: side view) for different PPLT (Pa).
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(a) Lx(y/Ly), top view (b) Lz(y/Ly), side view

(c) Lx(PPLT ), top view (d) Lz(PPLT ), side view

Figure 5.11: Characteristic lengths characterisation of PLT replica from imaging: a,b) Lx(y/Ly)

(top view) and Lz(y/Ly) (side view) for increasing PPLT (lighter in colour) and c,d) mean (sym-
bols) and standard deviation (vertical bars) of Lx(PPLT ) (top view) and Lz(PPLT ) (side view) for
4 y/Ly-ranges. Dashed line indicates reference values for PPLT = 0 Pa associated with either the
latex tube outer radius of 11.2 mm (in a,c) or the metal support diameter of 12.0 mm (in b,d).

lengths Lz (side view) and Lx (top view) associated with expansion (or shrinking) of the PLT VF.
For each imposed PPLT , Lx and Lz of different y/Ly-intervals agree to within 0.25 mm and this
discrepancy reduces further to within 0.1 mm for the local y/Ly intervals (∆y/Ly = 0.1 or 4 mm).

The PLT replica can be considered as an inhomogeneous material consisting of both latex
and water. Consequently, the relationship between the changing pressure PPLT and the replica’s
deformation is, as for the silicone composites, governed by an effective Young’s modulus Ee f f
characterising the stress-strain behaviour. The strain εx

t (or ε
z
t ) along the x (or z) direction from

top (or side) view imaging is then obtained from Eq. 3.17 with l = Lx (or l = Lz) at PPLT ≈ 450 Pa
(lowest assessed PPLT ) and elongation ∆l(PPLT ) = Lx(PPLT )− l (or ∆l(PPLT ) = Lz(PPLT )− l).
The stress σt along both radial directions is set by the imposed internal pressure so that σt = PPLT
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(a) σt(ε
x
t ), top view () (b) σt(ε

z
t ), side view

Figure 5.12: Image-based stress-strain curves σt(ε
·
t ) (symbols) and their linear fits (lines) for the

PLT replica (increasing PPLT , subscript ↑): a) σt(ε
x
t )↑ (top view), b) σt(ε

z
t )↑ (side view). Different

y/Ly intervals (symbols) used to quantify Lx or Lz are indicated as well as the fit accuracy (R2 in
percentage).

holds. Resulting stress-strain curves σt(ε
x
t ) (top view) and σt(ε

z
t ) (side view) for the PLT replica

are plotted in Fig. 5.13. Different curves are obtained as εx
t (Lx) and ε

z
t (Lz) depend on the y/Ly

interval (indicated in the legend) used to quantify mean values Lx and Lz. Thus, strain ranges
εx

t ≤ 0.15 and ε
z
t ≤ 0.12 are observed for stresses σt up to 6.5 kPa.

Linear fits (lines) of the stress-strain curves and their accuracies R2 (in %) are illustrated in
Fig. 5.13. For each curve, the fit accuracy yields R2 > 98%. Therefore, it is reasonable to assume
that measured strains are within the elastic low-strain range for both the x and the z direction.
The effective elastic low-strain Young’s moduli E x

e f f and E z
e f f is then estimated experimentally

following Eq. (5.6) as the slope of the linear fit (fit accuracy R2 > 98%) to the measured σt(ε
x
t )

and σt(ε
z
t ), respectively.

5.5 Results: PLT VFs replica

5.5.1 Measured effective low-strain Young’s moduli

Linear fits (lines) to the stress-strain curves and their accuracies (coefficient of determination
R2 in %) are illustrated in Fig. 5.13. For each curve, the fit accuracy yields R2 > 98%. The
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(a) σt(ε
x
t ), top view (b) σt(ε

z
t ), side view

Figure 5.13: Image-based stress-strain curves σt(ε
·
t ) (symbols) and their linear fits (lines) for the

PLT replica (increasing PPLT , subscript ↑): a) σt(ε
x
t )↑ (top view), b) σt(ε

z
t )↑ (side view). Different

y/Ly intervals (symbols) used to quantify Lx or Lz are indicated as well as the fit accuracy (R2 in
%).

effective elastic Young’s moduli E x
e f f and E z

e f f are then estimated experimentally as the slope of
the linear fit to the measured σt(ε

x
t ) and σt(ε

z
t ) following Hooke’s law of linear elastic deforma-

tion [61]

E
x(z)
e f f =

σt

ε
x(z)
t

. (5.6)

Therefore, it is reasonable to assume that measured strains, up to εx
t ≤ 0.15 εx

t ≤ 0.12, are within
the linear elastic range [61] for both the x and the z direction.

Measured effective Young’s moduli E x
e f f and E z

e f f are plotted in Fig. 5.14. Values obtained
for increasing and decreasing internal pressure (σt(ε

z
t )↑, σt(ε

z
t )↓, σt(ε

x
t )↑ and σt(ε

x
t )↓) for each

of the assessed y/Ly intervals (legend) are shown. For each y/Ly interval, it is seen that the
influence of increasing (↑) or decreasing (↓) the water pressure PPLT is negligible as estimated
E x

e f f and E z
e f f are affected with less than 1.5%. This confirms the hypothesis of linear elastic

deformation expressed in Eq. 5.6 for the assessed strain range.

The influence of the exact position of the small (4 mm) intervals centred around y/Ly ∈
{0.4,0.5,0.6} is limited to less than 2% with respect to the value at y/Ly = 0.5. It is noted
that both E x

e f f and E z
e f f systematically increase with y/Ly, i.e. away from the water inlet. The

means and standard deviations for these intervals yield E x
e f f = 44±1 kPa (≤ 2.3% variation) and

E z
e f f = 49± 1 kPa (≤ 2.1% variation). Consequently, E z

e f f is increased with 11% compared to
E x

e f f . The influence of the boundary conditions at the extremities on Ee f f is notable considering
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Figure 5.14: Effective elastic Young’s modulus E x
e f f (and E z

e f f ) estimated as the linear slope to
curves σt(ε

x
t )↑ and σt(ε

x
t )↓ (and σt(ε

z
t )↑ and σt(ε

z
t )↓). Different y/Ly intervals (symbols) used to

determine εx
t and ε

z
t are indicated. Overall mean values, excluding values for y/Ly ∈ [0 1], for

σt(ε
x
t ) and σt(ε

z
t ) are indicated (dashed lines).

the whole y-range (0 ≤ y/Ly ≤ 1) as compared to the discussed mean values E x
e f f decreases with

7% (to 41 kPa) and E z
e f f increases with 12% (to 55 kPa). So that the difference between E z

e f f
and E x

e f f for the whole y-range is increased to 34% (compared to 11% for the short intervals).

5.5.2 Equivalent multi-layer composite representation

Equivalent multi-layer (ML) composite representations of the deformable portion of the PLT
replica are considered. Three different equivalent composite representations are assessed by fit-
ting two (2L), three (3L) or four (4L) layers within the rectangle enveloping the coronal section
of the PLT replica without internal stress (PPLT = 0 kPa). Assessed representations are illus-
trated in Fig. 5.15. The rigid non-deformable part (dark-shaded in Fig. 5.15) of the PLT replica,
corresponding to the metal support in Fig. 2.3(a), is excluded from the equivalent composite so
that its lengths along the transverse (x) and the streamwise (z) direction yield l = 6.6 mm and
h = 11.4 mm, respectively. The deformable portion of the PLT replica (water and latex envelop)
is thus represented as a ML material composed of a layer with unknown Young’s modulus (ques-
tion mark in Fig. 5.15) adjacent to one (for the 2L representation), two (for the 3L representation)
or three (for the 4L representation) thin latex (natural rubber [40]) outer layers for which Young’s
modulus Er = 1.1 MPa and layer thickness 0.2 mm (l2, h1 and h3 in Fig. 5.15). Remaining dimen-
sions yield h2 = 11.0 mm a l2 = 6.4 mm. All layers in the assessed composite representations
are stacked either serial (⊥) or parallel (∥) with respect to the force (F ) direction, which is either
along the transverse (Fx) or streamwise (Fz) direction. For such stacks, the relationship between
the effective Young’s modulus of the homogenised composite and layer Young’s moduli Ei of the
different layers can be expressed analytically [14, 59]. For k serial (⊥) stacked layers with re-
spect to the force direction, the effective Young’s modulus E ⊥

e f f of the homogenised composite
is obtained as the harmonic mean of the layers Young’s moduli Ei weighted with their lengths in
the force direction following the Reuss hypothesis of homogeneous stress [14, 44, 59]. For Fx
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Figure 5.15: Coronal (medio-frontal) section (dimensions in mm) of the right deformable PLT
VF replica without internal stress (PPLT = 0 kPa) (top) and equivalent multi-layer (light-shaded)
composite representation (bottom) with effective Young’s modulus E x

e f f = 44 kPa and E z
e f f =

49 kPa excluding the non-deformable rigid portion (dark-shaded): a) two-layer (2L), b) three-
layer (3L), c) four-layer (4L). The mutual layer orientation for a transverse Fx or streamwise
Fz force is indicated. Young’s moduli E x

· =? and E z
· =? of the equivalent inner layer (texture,

question mark) are sought. For the latex thin outer layer(s) (light-shaded) Er = 1.1 MPa holds.
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and Fz this becomes respectively

E ⊥,x
e f f =

∑
k
i=1 li

∑
k
i=1

(
li
Ei

) and E ⊥,z
e f f =

∑
k
i=1 hi

∑
k
i=1

(
hi

Ei

). (5.7)

with l = ∑
k
i=1 li, h = ∑

k
i=1 hi. For k parallel (∥) stacked layers with respect to the force direction,

the effective Young’s modulus E
∥
e f f of the homogenised composite is obtained as the arithmetic

mean of the layers Young’s moduli Ei weighted with their heights perpendicular to the force
direction following the Voigt hypothesis of homogeneous strain [14, 43, 59]. For Fx and Fz this
becomes respectively

E
∥,x
e f f =

∑
k
i=1 hi Ei

∑
k
i=1 hi

and E
∥,z
e f f =

∑
k
i=1 li Ei

∑
k
i=1 li

. (5.8)

When layers are stacked both parallel and serial, i.e. combined (∥⊥), with respect to the force
direction, firstly adjacent parallel stacked layers are homogenised using Eq. (5.8) and then the
remaining serial stack is homogenised using Eq. (5.7) [14, 59].

Analytical expressions of effective Young’s moduli of each homogenised representation are
then set to match E x

e f f = 44 kPa (for Fx) and E z
e f f = 49 kPa (for Fz) measured for the PLT

replica. This way, analytical expressions of the effective Young’s modulus of each homogenised
composite (2L, 3L or 4L) subjected to a transverse force Fx (or streamwise force Fz) reduce
to first-order linear equations whose unknown is the Young’s modulus E x

· (or E z
· ) of the equiv-

alent inner layer (texture, question mark in Fig. 5.15). As the layers of the 2L representation
(Fig. 5.15(a)) are stacked serial for a force along the x-dimension and parallel for a force along
the z-dimension, the unknowns E x

2L and E z
2L are expressed as

E x
2L =

l1 α1,x

1− l2
Er

α1,x

and E z
2L =

α1,z

l1
− l2 Er

l1
(5.9)

with α1,x = E x
e f f /l, α1,z = E z

e f f l and l = l1 + l2.

Also, the layers of the 3L representation (Fig. 5.15(b)) are stacked parallel for a force along
the x-dimension and serial for a force along the z-dimension so that unknowns E x

3L and E z
3L are

expressed as

E x
3L =

α2,x

h2
− 2h1 Er

h2
and E z

3L =
h2 α2,z

1− 2h1 α2,z

Er

(5.10)

with α2,x = E x
e f f h, α2,z = E z

e f f /h and h = 2h1 +h2 since h1 = h3.
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Table 5.4: Young’s modulus E x
· and E z

· of the inner layer of the equivalent 2L (E x
2L and E z

2L),
3L (E x

3L and E z
3L) and 4L (E x

4L and E z
4L) composite representation. Measured effective Young’s

moduli E x
e f f and E z

e f f for the PLT replica (Section 5.5.1) and Er for the outer latex layer(s)
(natural rubber [40]) are given.

E x
· [kPa] E z

· [kPa]

inner layer, 2L E x
2L = 42.7† E z

2L = 15.1
inner layer, 3L E x

3L = 4.1 E z
3L = 47.4†

inner layer, 4L⋆ E x
4L = 4.3 E z

4L = 14.5
outer latex, ML Er = 1100

homogenised‡, ML E x
e f f = 44 E z

e f f = 49
† general representation (Er-variation), serial (⊥) stack.
⋆ design representation (known Er), combined (∥⊥) stack.
‡ set to match E x

e f f and E z
e f f measured on the PLT replica.

Additionally, the layers of the 4L representation (Fig. 5.15(c)) are stacked parallel and serial
for both force directions so that unknowns E x

4L and E z
4L are obtained combining using expressions

in Eq. (5.9) and in Eq. (5.10) as

E x
4L =

h
h2

 l1α1,x

1− l2
Er

α1,x

− 2h1Er

h

 and E z
4L =

l
l1

 h2 α2,z

1− 2h1 α2,z

Er

− l2 Er

l

 . (5.11)

The values of E x
· and E z

· for 2L (E x
2L and E z

2L), 3L (E x
3L and E z

3L) and 4L (E x
4L and E z

4L) represen-
tations are presented in Table 5.4. As a reference, effective Young’s moduli E x

e f f and E z
e f f of the

PLT replica are indicated as well.

Resulting E x
e f f and E z

e f f , from measurements on the PLT VF replica (Section 5.5.1), as
well as E x

· and E z
· for the equivalent ML composite representations in Table 5.4 are within the

range (up to 65 kPa) reported for the anatomical layers of a normal VF of a male adult [3, 4, 6,
7, 34–36], i.e. muscle, vocalis ligament, superficial layer and epithelium. Therefore, Young’s
moduli associated with the homogenised (E x

e f f and E z
e f f ) and the inner layer (E x

· and E z
· ) of

the equivalent ML composite representations are also within the range characterising molded
silicone ML VF replicas as their composition is chosen in order to mimic the Young’s modulus
of the different anatomical VF layers [8, 16, 17, 29, 45, 59]. Note, that Young’s modulus Yr
of the latex outer layer is out of this range as its value is much greater (factor 17) than 65 kPa
corresponding to the upper limit of the range associated with anatomical layers.
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(a) with l2 = h1 = h3 = 0.2 mm (b) with Yr = 1100 kPa

Figure 5.16: Influence of outer thin latex layer characteristics on E x
· (black symbols) and E z

·
(gray symbols) on the equivalent 2L (◁), 3L (◦) and 4L (+) composite representations of the
PLT replica for which Yr = 1100 kPa and l2 = h1 = h3 = 0.2 mm (dotted vertical lines) and
homogenised effective Young’s moduli E x

e f f = 44 kPa and E z
e f f = 49 kPa (dashed horizontal

lines): a) for variation of Young’s modulus Yr, b) for variation of layer dimension l2, h1, h3.

5.5.3 Influence of outer layer characteristics

From Table 5.4 is seen that for all assessed equivalent ML composite representations of
the PLT replica, Er associated with the outer latex layer(s) is much larger (factor 20 up to
270) than E x

· and E z
· of the inner layer. Since the arithmetic mean for parallel layer stacking

(Eq. (5.8)) is more affected by layers with high Young’s modulus than to the harmonic mean for
serial layer stacking (Eq. (5.7)), serial layer stacks are expected to be some what robust with
respect to variations to the outer latex layer dimensions (l2, h1, h3) and its Young’s modulus Er.
From Fig. 5.15 is seen that purely serial layer stacking occurs only for the 2L representation
in the case of transverse force Fx (E x

2L, Fig. 5.15(a)) and for the 3L representation in the
case of streamwise force Fz (E z

3L, Fig. 5.15(a)). Consequently, these representations, and
thus resulting E x

2L and E z
3L, are robust with respect to outer latex layer characteristics. This is

further illustrated in Fig. 5.16 where E x
· and E z

· (from Eq. (5.9), Eq. (5.10) and Eq. (5.11)) are
plotted as a function of Er (Fig. 5.16(a)) and as a function of outer layer dimension l2, h1, h3
(Fig. 5.16(b)). Values of the experimentally assessed PLT VF replica, i.e. Yr = 1.1 MPa and
l2 = h1 = h3 = 0.2 mm, are indicated (dotted vertical lines). Young’s modulus Er is varied
between 0.4 MPa and 2.0 MPa, which spans a range reported for natural rubber [62, 63] (Piercan
Ltd.) and outer layer dimensions (l2, h1, h3) are varied from 0.01 mm up to 1 mm. It is seen
that E x

2L and E z
3L are indeed least affected (with less than 10 kPa) by variation of the outer layer

characteristics (Er and l2, h1, h3) as their value remains near E x
e f f and E z

e f f characterising the
homogenised composite representations. It follows that the E x

2L and E z
3L are robust to changes
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of the latex outer layer(s) characteristics. For all other representations, E x
· and E z

· decrease
rapidly when Yr or outer layers dimension (l2, h1, h3) are increased until eventually negative
values are reached due to the increase of the second term (with minus sign) on the right-hand
side in E z

2L (Eq. (5.9)), E x
3L Eq. (5.10), E x

4L and E z
4L in Eq. (5.11). These representations, such

as the 4L representation, are thus limited to the range for which E x
· > 0 kPa and E z

· > 0 kPa
since negative values are not physical and do not allow a comparison with the human VF or
other mechanical deformable VF replicas such the molded silicone ML replicas mentioned in
Section 5.5.2. For the 4L representation E x

4L < E z
4L (difference ≈ 10 kPa) holds so that the inner

layer reflects the imposed anisotropy of the homogenised equivalent composite (E x
e f f < E z

e f f ,
difference 5 kPa). Furthermore, it is observed in Fig. 5.16 (and in Table 5.4) that E x

3L ≈ E x
4L

and E z
2L ≈ E z

4L. This is due to the similar transverse 3L and 4L parallel layer stacks and the
similar streamwise 2L and 4L parallel layer stacks (as depicted in Fig. 5.15) whereas the
remaining serial stacking part for the 4L representation is, again due to the harmonic mean,
only marginally affected by the thin latex outer layer with high Er. Overall, for E x

4L > 0 and
E z

4L > 0 as for the used PLT replica (Table 5.4), the equivalent 4L composite representation is
most elegant since the representation is applied to both the transverse and streamwise force
directions and reflects the associated anisotropy (E x

4L < E z
4L) observed for the PLT VF replica

E x
e f f < E z

e f f . Moreover, since the inner layer of the 4L representation only concerns the water
portion of the PLT replica, found E x

4L and E z
4L might be exploited in order to vary the latex

outer layers characteristics (Er or/and its length) in order to approximate a prescribed effective
Young’s moduli for the homogenised equivalent 4L composite. This way, the 4L represen-
tation might potentially contribute to PLT replica design. On the other hand, representations
associated with E x

2L and E z
3L are of interest when latex outer layer characteristics are either

not accurately known or out of the working range of the 4L representation (E x
4L ≤ 0 and E z

4L ≤ 0).

5.6 Conclusion

In this chapter, the elastic linear low-strain stress-strain behaviour of each molded multi-layer
serial stacked composite specimen is characterised by its effective low-strain Young’s modulus
Ee f f which is both modelled and measured at room temperature. The low strain range extends up
to 0.28 and measured Ee f f range between 4.5 kPa and 8 kPa. This low-strain Young’s modulus
allows then to model the non-linear stress-strain behaviour (up to 90 kPa) of each specimen for
strains up to 1.55 using two-parameter exponential and cubic relationships using generic param-
eter sets. The modelled Ee f f -dependence of the generic parameter sets is confirmed for estimated
best fit parameters (fit accuracy of R2 ≥ 99.9%). Although that no experimental validation is as-
sessed, it is noted that modelled non-linear stress-strain curves with generic parameter sets are in
good agreement with measured data for both M5-based specimens gathered for strains up to 1.08.
Next, a ‘first-decimal-criterion’ is proposed in order to define the strain onset of a linear high-



5.6. Conclusion 91

strain region and its effective high-strain Young’s modulus, valid within and potentially beyond
the strain range up to 1.55 for which the non-linear model approach was validated in Chapter 4.
This criterion requires that at the high-strain onset, local slopes to the non-linear curves and fitted
slopes to strains above the high-strain onset match until the first decimal place. The modelled
linear high-strain range using this criterion, is thus a continuous continuation of the non-linear
stress-strain model. Moreover, this criterion implies that the high-strain linear behaviour is an
accurate alternative (R2 > 99%) for the non-linear stress-strain curves.

Additionally, the effective elastic Young’s modulus of the PLT VF replica is measured
along the transverse right-left (x) and the streamwise inferior-superior (z) direction. Measured
E x

e f f = 44 kPa and E z
e f f = 49 kPa show an anisotropy of 11% with respect to E x

e f f characterising
the main auto-oscillation direction. These values are within the range, up to 65 kPa, reported
for anatomical layers of a male adult human VF, which illustrates the relevance of this type of
mechanical VF replicas from a mechanical point of view. Next, equivalent 2L, 3L and 4L com-
posite representations are assessed consisting of an inner layer to which one, two or three latex
outer layers are added. The effective Young’s modulus of the homogenised representation is set
to match E x

e f f = 44 kPa and E z
e f f = 49 kPa observed for the PLT replica and the Young’s modulus

of the latex outer layer(s) is also known. The unknown Young’s moduli E x
· and E z

· of the inner
layer are then obtained analytically. The assessed 4L representation is most elegant considering
both force directions. Associated E x

4L = 4.3 kPa and E z
4L 14.5 kPa reflect the anisotropy observed

for the effective Young’s moduli of the PLT replica. It is argued that this representation might
be exploited for PLT replica design where the outer latex layer characteristics can be adapted
in order to prescribe an overall effective Young’s modulus. On the other hand, the transverse
2L (E x

4L = 42.7 kPa) and streamwise 3L (E z
4L = 47.4 kPa) serial stack representations are robust

to changes of the outer layer characteristics, so that these representations remain valid in case
that outer layer characteristics are not accurately known or changed. Regardless of the applied
representation, found Young’s moduli for the inner layer are within the range pertinent to hu-
man VF layers. This might contribute to the comparison between the Young’s moduli associated
with the PLT replica and with other types of deformable VF replicas such as molded silicone VF
replicas. So far, the comparison between replicas is indirect as it is limited to auto-oscillation
features, whereas current results might allow to account directly for the Young’s moduli or linear
elasticity.

In the next chapter, the validated model to estimate the effective Young’s modulus is used to
design a newly silicone VF replica without and with an embedded structural inclusion, in order
to assess the influence of such structural change on the fluid-structure interaction underlying VFs
auto-oscillation.
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6.1 Introduction

The vocal folds vibration, and hence acoustic source properties of voiced speech sounds, rely
on the vocal folds elasticity which is therefore a crucial part of the underlying fluid-structure in-
teraction for healthy as well as pathological conditions. The human vocal folds are an extremely
complex structure, and systematically studying the influence of varying structural properties of
the human VFs on voice quality is not feasible without invasive muscular stimulation. Therefore,
physical studies often rely on simplified mechanical vocal folds replicas. Several VFs patholo-
gies can alter the material properties of the vibratory tissue, e.g., the presence of an inclusion or
a scar. In this work, it is aimed to characterise the structural properties of deformable mechanical
silicone VFs replicas in order to be able to further systematically investigate and quantify the
effect of structural VFs pathologies like inclusions.

6.2 Rectangular silicone VFs replicas

In order to assess the influence of structural properties, i.e. the effective Young’s modulus,
on the fluid-structure interaction of VFs replicas, a replica with simplified geometry inspired by
the EPI model introduced in Chapter 2 is built. The newer replica has a rectangular cross-section
in the medio-frontal plane. Therefore, each layer has constant thickness Lz = 10.2 mm along
the inferior-superior direction. The layers are stacked on top of each other in the left-right (x)
direction as shown in Fig. 6.1(a). The overall dimensions Ly = 17.0 mm along the posterior-
anterior direction and Lx = 8.5 mm (excluding the backing layer of a thickness lt = 4.0 mm)
along the left-right direction rest unchanged from the original design of the EPI replica. The
thickness of each layer in the left-right direction, lt , is designed so that the normalised volume
of each layer Vi/VV F corresponds to the appropriate value of the original EPI model, as given
in Table 6.1. Each layer thickness lt and Young’s modulus values are indicated as well. The
fabrication process of the rectangular VFs replicas follows the same steps used to build the ML

Table 6.1: Design of molded rectangular replica layers: measured Young’s modulus E , layer
thickness lt , mixture (Mix) TE (Thinner-Ecoflex) or TD (Thinner-Dragonskin), mass mixing
ratio M , and the normalised volumes V /VV F of the EPI replica that the design of the rectangular
replica is based on.

Layer E [kPa] lt [mm] Mix M [-] V /VV F [%]

Muscle 23.4 3.2 TE 1:2 38.1
Ligament 4.0 0.7 TE 4:2 7.6
Superficial 2.2 4.3 TE 8:2 50.3
Epithelium 64.7 0.3 TD 1:2 4.0
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Table 6.2: Effect of embedding a structural inclusion in the superficial layer of the rectangular
VFs replica on its elasticity: measured Young’s modulus of the inclusion E In, measured in-
clusion dimensions lx, ly, and lz, the equivalent length of the inclusion homogenised layer leq
(as defined in Section 3.4.3.1, modelled Young’s modulus in the x direction of the inclusion
equivalent homogenised layer Ê x

eq, modelled effective Young’s modulus in the x direction of the
rectangular replica Ê x

e f f , modelled Young’s modulus in the z direction of the inclusion equivalent

homogenised layer Ê z
eq, modelled effective Young’s modulus in the z direction of the rectangular

replica Ê z
e f f .

Inclusion E In [kPa] lx [mm] ly [mm] lz [mm] leq [mm] Ê x
eq [kPa] Ê x

e f f [kPa] Ê z
eq [kPa] Ê z

e f f [kPa]

No inclusion - 0 0 0 0 - 3.7 - 12.5
Serial inclusion 298 2 10 4 2 70.4 6.1 3.6 12.9
Parallel inclusion 298 4 10 2 4 36.3 15.1 2.7 12.8

silicone specimens, detailed in Chapter 3. Each fold is built layer-by-layer using 3D-printed
molds with the appropriate silicone mixture given in Table 6.1. Each molded layer thickness lt
is measured using a laser transceiver (Panasonic HL-G112-A-C5, wavelength 655 nm, accuracy
8 µm). The thickness of all layers molded has an accuracy of ± 0.3 mm, which falls well within
the reported accuracy in Section 3.4.1. Figure 6.1(b) shows an example of two folds of the
rectangular VFs replica in their fixation.

6.3 Structural inclusion design

As the presence of a stiffer region somewhere within the vocal fold structure is commonly
reported in case of a vocal fold abnormality or pathology [1, 49–51, 64–66], a structural inclu-
sion is embedded in the superficial layer of the rectangular replica as depicted in Fig. 6.2. The
inclusion has a fixed length of 10 mm, fixed width of 4 mm, and a fixed thickness of 2 mm. De-
pending on the stacking of the inclusion with respect to the layers of the replica, the dimensions lx
in the left-right direction and lz in the inferior-superior direction will change. The length ly in the
posterior-anterior direction remains constant, however. As it is shown in Fig. 6.2, the inclusion is
either stacked in serial (Fig. 6.2(a)) or in parallel (Fig. 6.2(d)) with respect to the direction of the
layers. Both Fig. 6.2(b) and Fig. 6.2(e) show a side view (medio-sagittal plane) of the rectangular
replica (with transparent top layers) to visualise the constant length ly = 10 mm of the inclusion,
regardless of which way it is stacked. It is noted that the centre of the inclusion is intersected with
the centre of the layers in the medio-sagittal plan, as can be seen from Fig. 6.2(b) and Fig. 6.2(e),
so that the inclusion dimensions ly and lz are centred within the replica dimensions Ly and Lz.
The inclusion, however, is inserted directly on top of the ligament layer, regardless of stacking,
so that the inclusion is not centred withing the superficial layer in the left-right direction. Ta-
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(b) In fixation

Figure 6.1: Rectangular VFs replica: a) overview of the four-layer replica dimensions given
in mm, where lt is a layer thickness and Lx, Ly and Lz are the overall dimensions b) top view
(superior-inferior) of two rectangular folds in their acrylic fixation.

ble 6.2 gives the dimensions of the inclusion in the case of either serial or parallel stacking, and
as the Young’s modulus of the inclusion is known E In = 298 kPa, the effective Young’s modulus
of the inclusion’s equivalent, homogenised layer can be calculated and thus the overall effective
Young’s modulus of the replica can be calculated as well, for either the left-right direction Ê x

e f f
(assuming the uniaxial forces applied are in the x direction) or the inferior-superior direction
Ê x

e f f (assuming the uniaxial forces applied are in the z direction). In line with the previously

validated results, the value of the effective Young’s modulus in the x direction Ê x
e f f is indeed

larger for the parallel stacking of the inclusion compared to the serial stacking. Both values are
larger than the value of the effective Young’s modulus of the replica with no inclusions by factors
of 4.1 and 1.7, respectively. Evidently, the values for the effective Young’s modulus along the
z direction Ê z

e f f possess less variability, due to the fact that the layers now are considered stacked
in parallel, where the low values of the effective Young’s modulus of the inclusion’s equivalent,
homogenised layer Ê z

eq tend to be masked in calculating the WAM of each parallel layer. The
value of the effective Young’s modulus E x

e f f of one rectangular replica (without inclusion) was
experimentally validated (using a modified setup as shown in Appendix D) against the model
value with a difference of 0.5 kPa, which is in line with the accuracy of the models reported in
Chapter 3.
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Figure 6.2: Embedded structural inclusion design. The first row shows a serially-stacked inclu-
sion, while the second row shows a parallelly-stacked inclusion: a) and d) medio-frontal view
(front view), b) and e) medio-sagittal view (side view), c) and f) medio-frontal view (front view)
of a molded replica with serial and parallel inclusion, respectively. Dimensions are in mm. It
is noted that the placement of the replica in figures c) and f) are only for illustration, with the
replicas rotated with respect to the fixation in order to visualise the inclusion.
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6.4 Fluid-structure interaction experiments

6.4.1 Setup

In order to produce a fluid-structure interaction that results in auto-oscillation, VFs replicas
are fixed as shown in Fig. 6.1(b). Using silicone adhesive (Sil-Poxy, Smooth-On, Inc., Easton,
PA), each fold was fixed to an acrylic mounting plate. All remaining space between the two
mounting plates is filled with glue (Pattex) to prevent air leakage. The models are dusted with
talcum powder to minimise surface adhesion between the two folds. As illustrated in Fig. 6.3,
below the mounting plate, an upstream tube (diameter 25 mm, constant area 491 mm2, length
130 mm) representing the trachea is then connected to a pressure reservoir (volume ± 0.22 m3)
representing the lungs, which is supplied by an air compressor (Atlas Copco GA5 FF-300-8,
GA15 FF-8). To prevent parasitic acoustic resonances, the reservoir has been filled with acoustic
foam. The continuous steady airflow is controlled by a valve (Norgren, 11-818-987). In order
to measure upstream pressure Pu(t), a pressure transducer (Endevco 8507C-5, accuracy ± 5 Pa
given in Appendix B.2) is positioned in a pressure tap 35 mm upstream of the replicas. The
airflow is gradually increased till vibration was produced in order to detect the onset of oscillation
and hence quantify the threshold pressure. Replicas vibration amplitude in the streamwise z-
direction zr is also measured by a laser transceiver (Panasonic HLG112AC5, 655 nm wavelength,
accuracy 80 µm) placed 110 mm downstream of the replicas, as shown in Fig. 6.3(a) for setup
(a), or using two lasers as shown in Fig. 6.3(b) for setub (b). The lasers are installed at a distances
of 95 mm and 155 mm for measuring the right and the left folds, respectively. The position of
the lasers can be freely adjusted in both the x and y directions for measuring the inferior-superior
(z direction) displacement of any point on the top surface of the VFs replica in the transverse plan.
A data acquisition card (National Instruments BNC-2110 input/output card) are used to acquire
all signals, and Labview software programs are used to process them with a sample frequency
of 10 kHz. Experiments are performed for rectangular replicas introduced in Section 6.2 as
well as original silicone replicas introduced in Section 2.2.1. Table 6.3 gives an overview of the
measurements recorded and analysed and the replicas used for the upcoming analysis and results
sections. For setup (b), only the measurements from the laser (positioned at z = 95 mm on top of
the right fold of the replicas) will be considered since the results from both lasers (at indicated
measured points) are similar due to symmetry.

6.4.2 Auto-oscillation analysis

As upstream pressure Pu(t) drives vocal folds oscillation, its analysis is essential. The onset
pressure POn, also known as the threshold pressure, is the minimal upstream pressure Pu(t) nec-
essary to maintain the auto-oscillation of the vocal folds. It corresponds to the offset pressure
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Figure 6.3: Overview of the setup (not to scale) used for auto-oscillation experiments. Di-
mensions given are in mm. Setup (b) is an updated setup (a) with an added second laser
transceiver. For setup (a), the distance in the x direction between the laser point and the two
folds centre-line La ∈ {3.0, 5.0}. The laser point has the same y coordinate as the point O, ex-
actly in the centre of the folds, for setup (a), while for setup (b), the position of the laser point
∈ {−6.0,−4.0,−2.0, 0.0, 2.0, 4.0, 6.0} with respect to the point O.



100
Chapter 6. Experimental study of the influence of structural properties on the

fluid-structure interaction

Table 6.3: Vocal folds replicas used and main quantities analysed.

Setup Pressure sensor Laser(s) Microphone(s)
Replica a b Recorded Analysed Recorded Analysed Recorded Analysed

Rectangular
— —

(no inclusion)
Rectangular

— —
(serial inclusion)
Rectangular

— —
(parallel inclusion)

EPI — —
MRI — —
M5 — —

PO f f , which is the minimum upstream pressure before oscillation stops. Due to the nonlinearity
of the fluid-structure interaction, hysteresis occurs between the threshold pressures, such that POn
is greater than PO f f .

During experiments, no airflow is provided until measurements start. However, before mea-
surements, the auto-oscillation of the VFs replicas is searched. Airflow is thus provided and is
regulated carefully to search for the onset of the oscillation. Once vibration starts, airflow is cut
off and the upstream pressure is released to atmospheric pressure. It is noted that the airflow
is considered incompressible, laminar, and quasi-steady during oscillations. Measurements then
start in order to record the threshold of oscillation in an uninterrupted way as can be seen in
Fig. 6.4. As the airflow starts, the upstream pressure Pu starts to increase, and the VFs replicas
will start to oscillate as its value reaches the threshold pressure POn, as shown in the left zoomed-
in view in Fig. 6.4. The replicas are left to vibrate for at least 20 s to make sure the self-sustained
oscillations reach a steady-state as shown in the middle zoomed-in view. After, the airflow is
cut, therefore the upstream pressure Pu starts to decrease and the VFs replicas oscillations cease
at the offset pressure PO f f , as shown in the right zoomed-in view. Fig. 6.5 shows an example of
an upstream pressure Pu signal time series (left) and spectrogram (right) for a rectangular replica
with a serial inclusion. In Fig. 6.5(a), the measured upstream pressure as well as its mean value
Pu (in black) are plotted. The extracted values for comparison between replicas, the onset POn
and offset PO f f pressures, are plotted as well. The value of the mean peak to peak amplitude
of oscillations Ppp is calculated and shown in the figure. It is noted that the standard deviation
is less than 5% on average. For every measured pressure or displacement signal, fundamental
frequency is calculated. The extracted fundamental frequency is found to be exactly the same
between pressure and displacement signals. From Fig. 6.5(b), it can be seen that the fundamen-
tal frequency through the time of oscillations f0(t) is almost constant, with the frequency at the
onset fOn and offset fO f f of oscillations slightly differs from the steady-state oscillation mean
frequency f0. Both fOn and fO f f are extracted as well as f0 (with a standard deviation less than
5%). As can be seen on both the left and right figures, there are temporary vibrations that start
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Figure 6.4: Time series of the measured upstream pressure Pu(t) signal for a rectangular replica
with a parallel inclusion. The pressure values at oscillation onset POn and offset PO f f are indi-
cated (square). A zoomed-in view of Pu(t) around oscillation onset (left), steady-state oscillation
(centre), and oscillation offset (right) is presented for clarification.

(a) Time series (b) Spectrogram

Figure 6.5: The pressure signal from the auto-oscillation of a rectangular replica with a serial
inclusion: a) time series Pu(t) with the values at onset POn and offset PO f f of oscillation detected
and plotted (upward and downward pointing triangles, respectively) as well as the peak to peak
amplitude mean value during oscillations Ppp (arrow). The mean pressure Pu(t) is also plotted.
b) a spectrogram of the pressure signal showing the fundamental frequency f0 and the first three
harmonics ( f1, f2, and f3) as well.
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Figure 6.6: Overview of the manner how the rectangular replicas deform due to airflow, with
the epithelium layer being rotated 90

◦
, where vibrations circled around show a semi-open replica

compared to the steady-state part where the replica is fully open. Both the pressure Pu(t) (top)
and displacement zr(t) (bottom) time series are presented. The associated onset and offset values
are plotted (upward and downward pointing triangles, respectively) as well.
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and cease very quickly before the steady-state oscillations. This occasionally happens with some
rectangular replicas. In Fig. 6.6, the time signals of both the measured upstream pressure Pu(t)
and the displacement zr(t) are shown for a rectangular replica. As can be observed from the pres-
sure signal, and more prominently from the displacement signal, an abrupt change in amplitude
accompanied with temporary vibrations occurs due to the fact that the last layer (epithelium) of
rectangular replicas being rotated 90

◦
by the airflow. For steady-state oscillations, the last layer

of each fold rotate before both start self-oscillating. Occasionally, one fold has its last layer fully
rotated before the other, hence the sudden change in both Pu(t) and zr(t) as well as the occurrence
of temporary vibrations. The onset of steady-state oscillations is determined when both folds vi-
brate, and the offset is determined when the oscillations of both folds cease, as can be seen in
Fig. 6.6. For the rectangular replicas, the distance, along the y axis, between the laser measured
point and the point O, situated at the centre of the replicas, is fixed. The laser measured point
is at the centre of the replica, as was shown in Fig. 6.3(a). For the EPI, M5, and MRI models,
more than one point, along the y axis, were measured for different experiments. The distances
of the laser measured points range from 6 mm away from the centre of the replica (point O) in
the negative y direction to 6 mm in the positive y direction, with a step of 2 mm. For comparison
between the displacement measurements of different points, the displacement mean value during
oscillations zr is calculated.

6.4.3 Results

For the rectangular replicas tested, the presence of an embedded structural inclusion does
indeed affect the fluid-structure interaction, as shown in Table 6.4. Starting with the fundamental
frequency of oscillation during the time the replica vibrates f0(t), the frequency does increase
for the case of an embedded serial or parallel inclusion compared to the value of the oscillations
frequency for the rectangular replica with no inclusion embedded. Although the mean value of
the fundamental frequency during oscillations 0 for the case with a parallel inclusion increases
by slightly more than 1%, it increases by more than 6% for the case of an embedded serial in-
clusion. The fundamental frequency at oscillations onset fOn and offset fO f f increase as well. It
is noted though that fOn for the case of a serial inclusion is less than fO f f . Secondly, both the
upstream pressure at the onset of oscillation POn and at the offset PO f f increase for the case of
an embedded serial inclusion compared to the case of a rectangular replica with no inclusion,
with an increase of 35% and 16%, respectively. The peak to peak amplitude mean value during
oscillations Ppp also increases by 79%. However, for the case of a parallel inclusion, it is ob-
served that the pressure values for onset POn, offset PO f f , as well as the peak to peak amplitude
Ppp are lower than the case of a serial inclusion and also decrease compared to the case of no
inclusion. This is most probably due to the fact that the replicas with an embedded parallel inclu-
sion can get easily damaged during fluid-structure interaction experiments compared to replicas
with no embedded inclusions and also compared to replicas with a parallel inclusion embedded.
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Table 6.4: Results of main quantities analysed: upstream pressure Pu(t), inferior-superior dis-
placement of the top surface of the replicas zr(t), and the fundamental frequency of oscillation
during the fluid-structure interaction experiments f0(t). Subscripts On and O f f denote oscilla-
tions onset and offset values, subscript pp denotes a peak to peak amplitude, and the over-line
denotes a mean value during the time of oscillations.

Pu(t) [Pa] zr(t) [mm] f0(t) [Hz]
Replica POn PO f f Ppp zOn zO f f zpp fOn fO f f f0

Rectangular
1187 1004 1393 5.3 5.2 1.6 97 97 96

(no inclusion)
Rectangular

1599 1160 2493 3.8 3.7 1.8 99 105 102
(serial inclusion)
Rectangular

1040 954 1095 1.0 0.9 1.1 103 99 97
(parallel inclusion)

EPI 378 278 700 0.3 0.2 0.5 78 78 76
MRI 692 556 617 1.8 1.6 0.6 83 82 82
M5 1241 984 2290 1.5 1.2 2.4 105 94 91

This is mainly due to the manner how the replicas oscillate, where the last layer (epithelium)
rotates upward by a 90

◦
angle before the replica starts vibrating. For the case of an embedded

parallel inclusion, it is more difficult for the replica to have its epithelium layer rotated without
the superficial layer (containing the inclusion) separating from the ligament layer that precedes
it. This is more evident when observing the displacement signals, where at both onset zOn and
offset zO f f the inferior-superior displacement decrease for the case of the parallel inclusion com-
pared to the values for the replica with no inclusion by 81% and 83%, respectively. For the case
of an embedded serial inclusion, both zOn and zO f f decrease, but the decrease is by 28% and
29%, respectively. As all replicas had to have their last layer rotated before vibration, replicas
with parallel inclusions were damaged by having their superficial layer partly separated from the
preceding ligament layer, compared to the other two cases where the superficial layer stretches,
although at a lower value for the case of a serial inclusion compared to the case of a rectangular
replica with no inclusion embedded. It is observed also that the the peak to peak amplitude Ppp
decreases for the case of embedding a parallel inclusion by 32%, where it increases by 13% for
the case of a serial inclusion.

The investigated parameters are indeed of higher values compared to the measured values for
the EPI VFs replica model, which the rectangular replica design is inspired from. Table 6.4 also
shows the extracted parameters for both the M5 and MRI VFs replica models. It is noted that the
hysteresis between onset and offset values are observed for the extracted quantities.

Table 6.5 shows different values of the displacement mean value during oscillations zr for the
EPI, M5, and MRI replicas. As the setup (b) shown in Fig. 6.3(b) allows for a precise laser point
positioning (with a 0.01 mm accuracy), seven different positions for measuring the displacement
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Table 6.5: Displacement mean value during oscillations zr of the EPI, M5, and MRI VFs replicas
models for different laser point positions along the y axis with respect to the point O at the centre
of the replica.

Distance to the point O along y [mm]
Replica -6 -4 -2 0 2 4 6

EPI 0.19 0.26 0.27 0.30 0.26 0.26 0.18
M5 1.54 1.63 1.67 1.71 1.55 1.41 1.35
MRI 2.51 2.54 2.17 1.38 1.25 0.94 0.60

of the top surface of the replicas zr(t) are chosen, from near the posterior edge with a distance of
6 mm from the centre point O up to 6 mm from the centre, near the anterior edge of the replica.
For the EPI and M5 models, zr is indeed maximum at the centre point (with a distance of 0 mm
from point O) and it decreases as it the measuring point move away from the centre reaching the
edges. However, due to the triangular shape of the MRI VFs replica model, it is observed that
the maximum value of the displacement amplitude is not at the centre of the replica, but near the
posterior edge.

6.5 Conclusion

Silicone VFs replicas with a simplified rectangular cross-section are proposed. The design
of theses replicas are inspired from the layers of the EPI model. The effect of an embedded
structural inclusion on the auto-oscillation of these rectangular vocal fold replicas is investigated
experimentally. The spectral characteristics of the oscillations (fundamental frequency) and up-
stream threshold pressures (oscillation onset and offset) as well as the inferior-superior displace-
ment of the top surface of the replicas are assessed. Clearly, the characteristics of the vocal folds
replica auto-oscillation are altered. Both the oscillation threshold pressures and fundamental fre-
quency increase for the case of an embedded serial inclusion, while the displacement amplitude
at oscillations onset and offset decreases. These observed findings (increase in threshold pres-
sure and fundamental frequency) correspond well to those reported in clinical research on vocal
folds structural pathologies (vocal folds scarring as an example). The case of a parallel inclu-
sion is more challenging to quantify, with the current replica design, the effect of the embedded
inclusion on the fluid-structure interaction.





CHAPTER 7

Conclusion and perspectives

In the context of physical investigations on vocal folds auto-oscillation presented in the first
chapter, using silicone artificial vocal folds replicas introduced in the second chapter, this re-
search has aimed to investigate the effect of structural inclusion on the elasticity and vibration
behaviour of artificial vocal fold replicas. Through the development and validation of models
for predicting the elasticity of silicone multi-layer composites, as well as the analysis of fluid-
structure interaction experiments, we were able to gain a better understanding of how structural
inclusions affect these properties. Overall, this thesis aimed to make four main contributions that
can be concluded as follows:

In the third chapter, the focus was on validating a model for estimating the effective Young’s
modulus of silicone multi-layer composites with different stacking conditions and in the case of
a structural inclusion presence. The model could successfully account for an arbitrary-shaped
inclusion of any size embedded somewhere within a single or multiple layers. The specimens
effective Young’s modulus varied between 4 kPa and 65 kPa, which overlaps the range associated
with normal human vocal folds’ (up to 60 kPa). An in-house developed test bench was developed
and measurements from the new method and a standard mechanical press method were cross-
validated as their difference yields less than 3.5 kPa, which is of the same order of magnitude
as the difference (≤ 4.1 kPa) associated with multiple mechanical press testing on the same
specimen. Modelled effective Young’s moduli were validated against measured values resulting
in an overall model accuracy between 0.0 kPa and 5.2 kPa.

In the fourth chapter, the model validation was extended and two models of two parameters
were proposed that accounted for the non-linear stress-strain behavior of the silicone multi-layer
composites. In agreement with polynomial and exponential stress-strain models for soft biologi-
cal tissues, best fits (in terms of root mean square error) of two-parameter cubic and exponential
relationships were shown to provide an accurate (R2 > 99.5%) and continuous description of
measured low-strain (up to ≈0.3) and subsequent (up to a maximum of 1.36) non-linear stress-
strain behaviour of six single-layer and thirty four multi-layer silicone composites. Modelled
parameter sets could also be interpreted in terms of the low-strain elastic Young’s modulus. In
addition, a modelled expression for the high-strain elastic Young’s modulus ENL, characterising
a linear high-strain stress behaviour, was obtained as 8.58E(e f f ). Consequently, for the sought
multi-layer silicone composites, it was seen that both best fit approximated parameter sets and the
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modelled parameter sets can be used to characterise the linear and non-linear stress-strain rela-
tionship once E(e f f ) is known. Moreover, for these composites it was shown that using modelled
instead of measured values does not significantly affects the mean fit accuracy. Therefore, com-
bining the previously proposed low-strain Young’s modulus model discussed in the third chapter
with the cubic or exponential stress-strain characterisation and approximated or modelled two-
parameter sets as a function of E(e f f ) resulted in an a priori stress-strain characterisation. In
order to characterise and design silicone multi-layer composite vocal folds replicas that mimic
the intricate anatomical vocal fold structure without or with inclusion, as in the case of a struc-
tural pathology or abnormality, the proposed model and subsequent model parameter studies are
anticipated to be useful.

In the fifth chapter, the validated models were applied to molded multi-layer serial stacked
composite specimens based on the layers of three silicone vocal folds replicas: M5, MRI, and
EPI. Additionally, the effective elastic Young’s modulus of the pressurised latex tube vocal folds
replica was measured along the transverse right-left (x) and the streamwise inferior-superior
(z) direction. Measured E x

e f f = 44 kPa and E z
e f f = 49 kPa showed an anisotropy of 11% with

respect to E x
e f f characterising the main auto-oscillation direction. These values are within the

range, up to 65 kPa, reported for anatomical layers of a male adult human vocal folds, which
illustrates the relevance of this type of mechanical vocal folds replicas from a mechanical point
of view. Next, equivalent two-layer, three-layer and four-layer composite representations were
assessed consisting of an inner layer to which one, two or three latex outer layers are added.
Regardless of the applied representation, found Young’s moduli for the inner layer were within
the range pertinent to human vocal fold layers. This might contribute to the comparison between
the Young’s moduli associated with the pressurised latex tube replica and with other types of
deformable vocal folds replicas such as molded silicone replicas.

Finally, in the sixth chapter, an experimental study on the fluid-structure interaction of a
newly designed and built artificial vocal folds replicas was presented. The aim of the study is
to determine the influence of an embedded structural inclusion on the auto-oscillation of sili-
cone vocal folds replicas with simplified geometries that were influenced by the EPI model in
relation to the change in elasticity quantified by the effective Young’s modulus. The spectral
characteristics of the oscillations (fundamental frequency) and upstream threshold pressures (os-
cillation onset and offset) as well as the displacement of the top surface of the replica due to
vibrations were evaluated. Evidently, the artificial vocal folds’ natural auto-oscillation proper-
ties had changed. Both the fundamental frequency and the oscillation threshold pressures were
observed to increase, while the displacement underlying the vibration amplitude was decreased.
While the case of a parallel inclusion the parameters extracted were not in line with their coun-
terparts from the case of a serial inclusion, the auto-oscillation was altered nonetheless compared
to the case of a rectangular artificial replica with no inclusion.

Overall, the research findings has shown that the presence of a structural inclusion could
significantly affect the behaviour of silicon multi-layer composites. The specific type and size of
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the inclusion, as well as the location and orientation of the inclusion within the composite, can
all have a major influence on its elasticity and hence the fluid-structure interaction behaviour.

In terms of future research, there are several directions that could build upon the findings of
this study. One potential direction is to investigate the effect of structural inclusion on the vibra-
tion behavior of other types of vocal fold replicas, such as those with different geometries like the
M5, MRI, and EPI models, or those made from different materials like the pressurised latex tube
replica. This could help to identify the optimal design and material parameters for improving
the performance of artificial vocal fold replicas and potentially lead to the development of novel
vocal rehabilitation technologies.

Another direction for future research is to study the effect of structural inclusion on the acous-
tic properties of the vocal folds, such as the pitch and intensity of the sound produced during
phonation. This could help to understand how structural inclusion affects the production of dif-
ferent vowel and consonant sounds and could potentially be used to improve the performance of
vocal fold prosthetics or enhance the abilities of singers and other vocal performers.

Finally, further research could focus on the potential applications of predicting the elasticity
(for linear or non-linear stress-strain behaviour) of artificial vocal fold replicas, such as improving
the durability and performance of vocal fold prosthetics or developing novel vocal rehabilitation
technologies. By better understanding the effect of structural abnormalities on the elasticity and
vibration behaviour of artificial vocal fold replicas, we can identify new ways to improve the
performance of these devices and potentially enhance the communication abilities of individuals
with vocal impairments.
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APPENDIX A

Axes and planes

In order to describe the point of view of the different figures, the medical planes and axes
used, illustrated in Figure A.1, are:

Medical planes:

• Medio-frontal or coronal plane,

• Transverse or horizontal plane,

• Medio-sagittal or longitudinal plane.

Axes:

• Posterior - anterior,

• Inferior - superior,

• Right - left.

Figure A.1: Illustration of the different planes and axes used [40].
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APPENDIX B

Sensors calibration

B.1 Scale calibration

A digital scale (Vastar 500G X 0.01G) shown in Fig. B.1(a) is used to weigh the silicone
mixtures used in building silicone VFs replicas and silicone specimens used in validating Young’s
modulus estimation model. It is also used in measuring the weights added in the PL experiments.
The scale is calibrated by measuring the weights of calibrated masses shown in Fig. B.1(b)
between 1 g and 20 g with a step of 1 g, between 20 g and 100 g with a step of 10 g, and between
100 g and 200 g with a step of 20 g, where the first range [1:20] g covers the range of the weight
of silicon mixtures used in building the replicas (mean = 9.1 g, std. = 2.7 g) as well as the loads
added in PL experiments (m ≤ 20 g). Fig. B.2(a) shows the calibration curve obtained for this
scale for the first range, where a linear model is fitted. Fig. B.2(b) shows the fitting residuals,
where they are close to the scale accuracy (0.01 g) for almost all points. In addition, Fig. B.2(c)
and Fig. B.2(d) show the calibration curve with the linear fit and the fitting residuals for the
bigger range [1:200] g. Linear fits have an R2 > 99 %.

(a) Vastar scale (b) Calibrated mass

Figure B.1: (a) The digital scale weighing a calibrated mass (50 g). (b) Calibrated masses used
for the scale calibration and adding weights during PL experiments.
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(a) (b)

(c) (d)

Figure B.2: (a) Calibration curve obtained for the scale for a range of [1:20] g with a linear
model fitted to the measurements (R2 > 99 %). (b) Fitting residuals (in bars) compared to the
scale accuracy (in dashed lines) for the range up to 20 g. (c) Calibration curve for a bigger range
[1:200] g with a linear fit (R2 > 99 %). (d) Fitting residuals for the range up to 200 g.

B.2 Pressure sensor calibration

The piezoresistive pressure transducer 8507C-5 are utilized for measuring pressure. These
sensors are calibrated with respect to a liquid column manometer Kimo MG80 (accuracy 5 Pa).
Flows in a tube of uniform cross-section (25 mm in diameter) with a constriction at its end
are measured to obtain pressures greater than atmospheric pressure. The uniform cross-section
includes a wall pressure tab (diameter 0.4 mm). Fig. B.3 depicts the calibration curve with a
sensibility of 672.6 Pa/V (R2 > 99%).
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Figure B.3: Calibration curve obtained for the pressure sensor for a range of [0:2942] Pa with a
linear model fitted to the measurements (R2 > 99 %).





APPENDIX C

Silicone molding

C.1 Molding of bone-shaped silicone specimens

Silicone molded bone-shaped specimens are used for tensile testing. In the production of
the silicone multi layer specimens, we utilise 3D-printed molds to achieve the desired shape and
dimensions of the specimen, given in Fig. C.1. The molds were designed and then printed using
a high-resolution 3D printer (Stratasys ABS-P430) with a resolution of 0.33 mm.

To begin the molding process, we first prepared the 3D-printed molds by cleaning them to
remove any excess residue or contaminants. Next, we mixed the different silicones according to
the desired mixture, ensuring that the proper ratio was used.

Once the silicones were mixed, they were then placed in a vacuum chamber to remove any
trapped air and ensure a smooth surface on the finished specimens. It is then poured into the
3D-printed molds, taking care to avoid introducing any air bubbles.

After the silicone mixture had cured, the molds were carefully removed to reveal the finished
specimens.

An example of the measurements performed with either MP or PL are presented for either
one-layer specimens in Fig. C.3, two-layer specimens in Fig. C.4, or three-layer specimens as in
Fig. C.3.
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(a) Specimen dimension (b) Specimen trials

(c) Vertical mold (d) Horizontal mold (e) Laser vertical
mold

Figure C.1: 3D-printed molds and specimens moldings.

(a) 2-layer specimens (b) MP (c) PL

Figure C.2: Example of molded specimens, during tensile test using either MP or PL.
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(a) Force-elongation (b) Cross-section area

Figure C.3: a,b) PL .

(a) Force-elongation (b) Cross-section area

(c) Force-elongation (d) Cross-section area

Figure C.4: a,b) PL and c,d) MP
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(a) Force-elongation (b) Cross-section area

(c) Force-elongation (d) Cross-section area

Figure C.5: a,b) PL and c,d) MP

(a) Stress-strain behaviour 2L (b) Stress-strain behaviour 3L

Figure C.6: MP



APPENDIX D

Effective Young’s modulus of rectangular
replicas

As introduced in Chapter 6, new silicone replicas with a rectangular cross section were
built. In order to measure the effective Young’s modulus of these rectangular silicone vocal
folds replica, a modified precision loading (PL) setup is developed in order to account for the
smaller replica size compared to the previously tested specimens, as well as to have the ability to
measure smaller elongation steps due to smaller applied uni-axial forces.

Fixation

Plate

Wire

Holder

Precision loads

(a) Modified setup overview (b) Replica under loading

Figure D.1: Modified PL setup.

D.1 Modified PL setup and protocol

Figure D.1 shows the new modified setup. The setup consist of a rigid steel plate (Young’s
modulus of 210 GPa) to which the rectangular silicon replica is fixed with a superglue. A light
and thin steel plate (mass of 0.1 g, thickness of 0.3 mm) is then glued to the other surface of the
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Table D.1: Effect of embedding a structural inclusion in the superficial layer of the rectangular
VFs replica on its elasticity: measured Young’s modulus of the inclusion E In, measured inclusion
dimensions lx, ly, and lz, the equivalent length of the inclusion homogenised layer leq (as defined
in Section 3.4.3.1, experimental Young’s modulus in the x direction of the rectangular replica
E x

e f f , modelled effective Young’s modulus in the x direction of the rectangular replica Ê x
e f f ,

modelled Young’s modulus in the z direction of the rectangular replica E z
e f f , modelled effective

Young’s modulus in the z direction of the rectangular replica Ê z
e f f .

Inclusion E In [kPa] lx [mm] ly [mm] lz [mm] leq [mm] E x
e f f [kPa] Ê x

e f f [kPa] E z
e f f [kPa] Ê z

e f f [kPa]

No inclusion - 0 0 0 0 1.4 3.7 31.2 29.2
Serial inclusion 298 2 10 4 2 2.4 6.1 29.0 29.5
Parallel inclusion 298 4 10 2 4 5.5 15.1 30.8 29.4

replica, this plate is connected to a holder to add precision loads, and is cut from the middle to
allow a laser transceiver beam (Panasonic HLG112AC5, 655 nm wavelength, accuracy 80 µm)
placed 130 mm below the replica. The elongation ∆l is measured either from the readings of the
laser or with using a vernier caliper (accuracy 0.02 mm), while the applied uni-axial force F is
calculated from the added precision loads m (Vastar 500G X 0.01G, accuracy 0.01 g).

D.2 Measurement and results

To be able to estimate the low-strain effective Young’s moduli Ee f f of the three rectangu-
lar replicas, both the force-elongation data as well as the area-elongation data calculated from
volume conservation of the replica under deformation are used to calculate stress-strain σt(εt)

curves as detailed in Chapter 3. Regarding to the force-elongation data, total added weights are
up to 260 g, with elongations up to 22 mm, as can be seen in Figure D.2. As for the stress-strain
curves, the low-strain ranges is chosen when εt ≈ 0.3 as validated before, where the resulting
goodness of fitting a linear model R2 ≥ 90%. The stress-strain curves for the three rectangular
silicone replicas are given in Figure D.3. The resulting experimental effective Young’s moduli
Ee f f , as well as the modelled values, can be found in Table D.1. For modelled moduli, the back-
ing layer is not taken into account for values calculated for the x direction, while it is taken into
account for estimating the moduli values for the z direction.
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R , x

(a) Rφ

R , x

(b) R⊥

RII, x

(c) R∥

R , z

(d) Rφ

R , z

(e) R⊥

RII, z

(f) R∥

Figure D.2: Force-elongation data F (∆l) for three rectangular replicas configurations: without
an inclusion Rφ (a, d), with a serial R⊥ (b, e), or with a parallel inclusion R∥ (c, f), where the
forcing is applied either in the x (a, b, c) or in the z direction (d, e, f).
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R , x

(a) Rφ

R , x

(b) R⊥

RII, x

(c) R∥

R , z

(d) Rφ

R , z

(e) R⊥

RII, z

(f) R∥

Figure D.3: Experimental stress-strain curves σt(εt) for the three rectangular replicas configura-
tions: without an inclusion Rφ (a, d), with a serial R⊥ (b, e), or with a parallel inclusion R∥ (c, f),
where the uni-axial forcing is applied either in the x (a, b, c) or in the z direction (d, e, f).





Résumé —

L’interaction fluide-structure entre le flux d’air pulmonaire et les tissus multicouches dé-
formables des cordes vocales entraîne une auto-oscillation soutenue. Cette thèse vise à apporter
trois contributions à la recherche sur l’auto-oscillation des cordes vocales. Tout d’abord, pro-
poser et valider un modèle analytique pour le module d’Young effectif des composites silicone
multicouches connaissant la rigidité et la géométrie de ses couches. Le modèle doit également
prendre en compte les inclusions de forme arbitraire de toute taille incorporées dans des couches
individuelles ou multiples. Deuxièmement, caractériser le comportement contrainte-déformation
des composites silicone multicouches avec des relations à deux paramètres pour tenir compte de
la gamme de déformation non linéaire. Des expressions analytiques du module d’Young linéaire
à forte déformation et du début de déformation linéaire à forte déformation sont également for-
mulées. Troisièmement, une étude expérimentale de l’influence d’une inclusion structurelle sur
l’auto-oscillation des cordes vocales est réalisée. L’influence des paramètres structurels de ré-
pliques de cordes vocales normales et anormales sur la vibration est quantifiée. En effet, une
telle contribution est particulièrement importante à long terme pour les expériences physiques
(utilisant des répliques moulées déformables à base de silicone) présentant une variation sys-
tématique de l’élasticité simulant soit la variabilité intra et inter-speaker, soit une pathologie
structurelle. Mots clés : Élasticité, Relations contraintes-déformations non linéaires, Interaction
fluide-structure, Mesures expérimentales in-Vitro, Modelisation théorique, Parole

Abstract —

The fluid-structure interaction between lung airflow and deformable multi-layer vocal folds
tissues results in sustained auto-oscillation. This thesis intends to make three contributions to
vocal fold auto-oscillation research. Firstly, propose and validate an analytical model for the
effective Young’s modulus of multi-layer silicone composites knowing its layers’ stiffness and
geometry. The model must also account for arbitrary-shaped inclusions of any size embedded
in single or multiple layers. Secondly, characterising the stress-strain behaviour of multi-layer
silicone composites with two-parameter relationships to account for non-linear strain range. An-
alytical expressions of the linear high-strain Young’s modulus and the linear high-strain onset are
also formulated. Thirdly, an experimental study of the influence of a structural inclusion on vocal
folds auto-oscillation is performed. The influence of the structural parameters of normal and ab-
normal vocal folds replicas on vibration is quantified. Indeed, such a contribution is of particular
importance in the long term for physical experiments (using deformable silicone-based molded
replicas) featuring systematic elasticity variation simulating either intra- and inter-speaker vari-
ability or structural pathology. Keywords: Elasticity, Nonlinear stress strain relations, Fluid-
structure interaction, In-Vitro experimental measurements, Theoretical modeling, Speech
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