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en particulier Aude, Cyril, Grâce et Qiming. J’adresse également mes remerciements aux
nombreux doctorants du laboratoire : Adeline, Alexis, Alice, Antonio, Ariane, Camila, Franceso,
Iqraa, Joseph, Ludovic, Miguel, Nicolas, Pierre, Sébastien. . . et aux permanents qui m’ont
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votre aide et votre amabilité: Corinne, Élise, Fatime, Florence, Louise, Nathalie et Valérie. De
manière générale, je voudrais remercier l’ensemble des collègues du LPSM qui en ont fait un
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Je considère que mes heures de loisir ont été tout aussi importantes que mes heures de travail
dans l’aboutissement de ce manuscrit. Dans ces moments de détente, j’ai pu compter sur mes
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plus que nos parties de FIFA). Guillaume, mon ami de longue date et véritable compagnon
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de mes entreprises et vous êtes investi tout autant que moi dans mes études. Je n’ai eu de
cesse de m’efforcer de vous rendre fiers et je mesure la chance que j’ai d’avoir des parents
aussi aimants. Flavien et Manon, nos moments de rire et de partage ont été d’un réconfort
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Abstract
Modern data analysis provides scientists with statistical and machine learning algorithms
with impressive performance. In front of their extensive use to tackle problems of constantly
growing complexity, there is a real need to understand the conditions under which algorithms
are successful or bound to fail. An additional objective is to gain insights into the design of
new algorithmic methods able to tackle more innovative and challenging tasks. A natural
framework for developing a mathematical theory of these methods is nonparametric inference.
This area of Statistics is concerned with inferences of unknown quantities of interest under
minimal assumptions, involving an infinite-dimensional statistical modeling of a parameter
on the data-generating mechanism. In this thesis, we consider both problems of function
estimation and uncertainty quantification.
The first class of algorithms we deal with are Bayesian tree-based methods. They are based on
a ‘divide-and-conquer’ principle, partitioning a sample space to estimate the parameter locally.
In regression, these methods include BCART and the renowned BART, the later being an
ensemble of trees or a forest. In density estimation, the famous Pólya Tree prior exemplifies
these methods and is the building block of a myriad of related constructions. We propose
a new extension, DPA, that is a ‘forest of PTs’ and is shown to attain minimax contraction
rates adaptively in Hellinger distance for arbitrary Hölder regularities. Adaptive rates in the
stronger supremum norm are also obtained for the flexible Optional Pólya Tree (OPT) prior, a
BCART-type prior, for regularities smaller than one.
Gaussian processes are another popular class of priors studied in Bayesian nonparametrics and
Machine Learning. Motivated by the ever-growing size of datasets, we propose a new horseshoe
Gaussian process with the aim to adapt to leverage a data structure of smaller dimension.
First, we derive minimax optimal contraction rates for its tempered posterior. Secondly, deep
Gaussian processes are Bayesian counterparts to the famous deep neural networks. We prove
that, as a building block in such a deep framework, it also gives optimal adaptive rates under
compositional structure assumptions on the parameter.
As for uncertainty quantification (UQ), Bayesian methods are often praised for the principled
solution they offer with the definition of credible sets. We prove that OPT credible sets
are confidence sets with good coverage and size (in supremum norm) under qualitative
self-similarity conditions. Moreover, we conduct a theoretical study of UQ in Wasserstein
distances Wp, uncovering a new phenomenon. In dimensions smaller than 4, it is possible to
construct confidence sets whose Wp-radii, p ≤ 2, adapt to any regularities (with no qualitative
assumptions). This starkly contrasts the usual Lp theory, where concessions always have to be
made.
Keywords: Bayesian nonparametrics, Tree-based methods, Uncertainty Quantification, Wasser-
stein distance, Gaussian process
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Résumé

L’analyse moderne des données fournit aux scientifiques des algorithmes statistiques et
d’apprentissage automatique aux performances impressionnantes. Face à leur utilisation
intensive pour traiter des problèmes dont la complexité ne cesse de crôıtre, il existe un réel
besoin de comprendre les conditions dans lesquelles ceux-ci fonctionnent ou sont voués à
l’échec. Ainsi, un cadre naturel pour développer une théorie mathématique de ces méthodes
est celui de l’inférence non-paramétrique. Ce domaine de la statistique s’intéresse à l’inférence
de quantités inconnues sous des hypothèses minimales avec la modélisation statistique en
dimension infinie d’une quantité paramétrant la loi des données. Dans cette thèse, nous
étudions les problèmes d’estimation de fonctions et de quantification de l’incertitude.
La première classe d’algorithmes que nous considérons est celle des méthodes bayésiennes
basée sur des structures d’arbres. Elles reposent sur le principe de ’diviser pour mieux régner’,
en partitionnant l’espace des données pour estimer le paramètre localement. En régression, ces
méthodes incluent BCART et BART, cette dernière étant un ensemble d’arbres ou “forêt”. En
estimation de densité, les arbres de Pólya sont un exemple de telles lois a priori et constituent
la base d’une myriade de constructions connexes. Nous proposons une nouvelle extension,
DPA, qui est une ”forêt de Pólya” et permet d’atteindre des vitesses de contraction minimax,
de manière adaptative, en distance de Hellinger pour des régularités de Hölder arbitraires. Des
vitesses adaptatives dans la norme infinie sont également obtenues pour la loi a priori des
arbres de Pólya optionnel (OPT), similaire à BCART en régression, pour des fonctions de
régularité Lipschitz.
Les processus gaussiens (GP) sont une autre classe populaire de lois étudiées en statistique
bayésienne nonparamétrique et en apprentissage automatique. Motivés par la taille toujours
croissante des bases de données, nous proposons un nouveau processus gaussien ’horseshoe’
avec une couche de sélection de variables ’soft’ pour pouvoir tirer parti d’une dimension des
données plus petite que celle de l’espace ambiant. Nous dérivons des vitesses de contraction
optimales pour les loi a posteriori tempérées. Les processus gaussiens profonds sont les
homologues bayésiens des célèbres réseaux neuronaux profonds. Nous prouvons que, en tant
qu’élément de base dans une telle construction, les GP ‘horseshoe’ donnent également des
vitesses adaptatives sous des hypothèses de structure de composition du paramètre.
En ce qui concerne la quantification de l’incertitude (UQ), les méthodes bayésiennes sont
souvent louées pour la solution qu’elles fournissent avec la définition des ensembles de crédibilité.
Nous prouvons que ces ensembles construits sous OPT sont des ensembles de confiance avec
un niveau de confiance exact et une taille optimale (ou quasi-optimale) en norme infinie sous
des conditions qualitatives d’auto-similarité. De plus, nous menons une étude théorique de
l’UQ pour les distances de Wasserstein Wp et mettons en lumière un nouveau phénomène. En
dimensions inférieures à 4, il est toujours possible de construire des ensembles de confiance
dont les rayons en distance Wp, p ≤ 2, s’adaptent à n’importe quelles régularités (sans
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hypothèses qualitatives). Cela contraste fortement avec la théorie habituelle en norme Lp, où
des concessions doivent toujours être faites.
Keywords: Bayésien non-paramétrique, méthodes par arbres, quantification de l’incertitude,
distances de Wasserstein, processus gaussiens
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CHAPTER 1
Introduction

1.1 Statistical framework
1.1.1 Nonparametric Inference
Suppose one observes a random variable X(n), for n ≥ 1 an integer, from a measurable space
(X,A), with A a σ-field over X. The law of this random variable is assumed to belong to a
statistical model {

P
(n)
f , f ∈ F

}
, (1.1)

where the Pf ’s are probability measures on A. If f0 denotes the true unknown value which
has generated the data, the goal is to make inference (i.e., recover or at least ”approximate”,
in a sense to be made precise below) on f0 from X(n), where n quantifies the amount of
information available (we can think of it as a sample size, see below).
As opposed to parametric statistics, one works here with infinite-dimensional parameter spaces
F , i.e. functional spaces. Indeed, one makes the more practical and flexible assumption that
the parameter f cannot be described by a finite-dimensional vector, aiming to capture finer
aspects of the data generating distribution. Two examples of such settings which will be
prominent in this thesis are the following.

Example 1 (Density estimation). The parameter space consists of a subset of the set of
all probability densities on some sample space (X ,A) and the observations can be written
as X(n) = (X1, . . . , Xn), with Xi independent identically distributed (henceforth i.i.d.) as
Pf0 , where Pf0 denotes the absolutely continuous distribution with probability density f0 with
respect to a σ-finite measure λ on A. The model consists of the product measures P (n)

f = P⊗nf
on the measurable space (X,A) = (X⊗n,A⊗n).

Example 2 (Nonparametric Gaussian regression with random design). One observes n inde-
pendent and identically distributed pairs of random variables X(n) = {(X1, Y1), . . . , (Xn, Yn)}
where (Xi, Yi) ∈ X × R and

Yi = f0(Xi) + εi, i = 1, . . . , n.

There, X is a (possibly multidimensional) covariate space, the variables Xi are distributed
given a probability measure µ, the εi are independent centered Gaussian random variables,
independent of the design vector (X1, . . . , Xn). The parameter space is then a subset of the
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1. Introduction

set of regression functions f : X → R and P (n)
f denotes the distribution of the n i.i.d. tuples

of variables (Xi, Yi) under the regression function f .

In the two examples above, F is typically a subset of a functional space, defined via a
qualitative restriction. For instance, we may intersect the set of probability densities or the set
of regression functions on a bounded set such as the cube [−1, 1]d with the Hölder class

Σ(β, L) =
{
f : ‖f‖βi,∞ ≤ L

}
, (1.2)

where L ≥ 0 and, for β ∈ R∗d+ ,

‖f‖βi,∞ := 2r
∑

α:|α|<bβic
‖∂αf‖∞ + 2βi−bβic

∑
α:|α|=bβic

sup
x,y∈[−1;1]r, x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|βi−bβic∞

,

(1.3)
with α = (α1, . . . , αr) ∈ Nr, |α| := |α|1 and ∂α = ∂α1 . . . ∂αr denotes the α-partial
derivative. For increasing regularities β and decreasing radii L, Σ(β, L) contains functions
that are smoother and we will see the consequences in Sections 1.1.2 and 1.1.5.
In this thesis, one focuses on two relevant problems in the recovering of f0:

• the construction of an estimator f̂n : X→ F such that f̂n
(
X(n)

)
is close to f0 when

X(n) ∼ P
(n)
f0 , where the notion of closeness is made precise in the next subsection;

• the construction of confidence sets C(X(n)), containing f0 with high probability under
the law of X(n) ∼ P

(n)
f0 , with C being as small as possible (see Section 1.3.2 for the

explicit requirements).

While building an estimate of the parameter is an important step in inference, from a practical
point-of-view, estimates should preferably always be associated to an evaluation of their
uncertainty. A natural way to quantify this is to account for the variability of the estimate,
with regards to the randomness of the observations. This brings us to the construction of sets
of ‘plausible’ parameter values, and called confidence sets. These contain the true parameter
value with high probability, and thus inform statisticians on the reliability of their estimates.

1.1.2 Convergence rates
In order to evaluate the performance of statistical procedures applied to the above problems,
we use a generalized metric d (e.g., a distance, a squared distance, a divergence...) on F . In
estimation, we would like to measure closeness between our estimator f̂n

(
X(n)

)
and f0, and

to discard trivial estimators with excellent properties for a handful of parameters but poor
performance globally, we define the uniform measure

rn := sup
f∈F

E(n)
f d

(
f̂ , f

)
that is the rate of convergence of the estimator. Then, the question arises as to whether it is
possible to improve upon this rate and to the definition of the minimax rate over the class F

r∗n := inf̂
f

sup
f∈F

E(n)
f d

(
f̂ , f

)
,

2



1.1. Statistical framework

where the infimum is over the set of estimators f̂ : X → F and the expectation is under
the law of X(n) ∼ P

(n)
f . We note in passing that one may also define a notion of minimax

convergence rates in probability, which we use and define in Chapter 4. We should resort to
estimators converging ’as fast as possible’, i.e., whose rate of convergence are of the same
order as r∗n, or the closest possible.
As more data information and information should improve their performance, it is enlightening
and useful for the understanding of statistical procedures to analyze their behaviour in the
limit n → ∞. Such an asymptotic analysis is often easier to conduct and this can help to
classify statistical algorithm given their asymptotic performance. Indeed, it may be possible
that no best algorithm, in a uniform sense, exists. Nonetheless, we note that an algorithm
with optimal asymptotic theoretical guarantees may well be sub-optimal for finite n. Other
procedures that are asymptotically optimal may well have much better performance for small
to moderate n, so that such analysis, though instructive, does not provide a full picture.
Going back to the functional parameter spaces above, equipped with the Lp norm-distance,
1 ≤ p ≤ ∞, if F is a subset defined by the parameters β and L as in (1.2), it is known [71]
that

r∗n = C(β, L)

n
− β

2β+d , p <∞
(n/ log n)−

β
2β+d , p =∞

(1.4)

for C(β, L) > 0.

1.1.3 Bayesian nonparametrics
Bayesian inference adopts the following point-of-view. Since the parameter is unknown, it is
seen as random and one considers the available observations as fixed. A probability distribution
Π on the measurable parameter space (F ,B), called the prior, quantifies this uncertainty
on the parameter, before data are observed. As above, a model (1.1) gathers the potential
distributions of the observations, given the value f ∈ F .
This leads to define a Bayesian model as a probability space

(F × X, B× A, Γ) (1.5)

where Γ = Π ⊗ Pf is the joint distribution of
(
f,X(n)

)
. This gives rise to the conditional

distribution of f | X(n), called the posterior distribution (or simply the posterior). In the
following, we assume that the model is dominated: there exists a σ-finite measure ν on A such
that, for any f ∈ F , P (n)

f is absolutely continuous relatively to ν. This is the case in the density
estimation model, with ν = λ⊗n (as in Sections 2 and 3) and the regression models of Section
5. Under such condition, defining the likelihood of the data p(n)

f (X(n)) := dP
(n)
f /dν(X(n)), a

version of the posterior distribution is obtained from Bayes’ formula, for X = X(n):

Π [B|X] =
´
B
p

(n)
f (X)dΠ(f)´

p
(n)
f (X)dΠ(f)

, B ∈ B. (1.6)

An interpretation is that the posterior quantifies the remaining uncertainty on the parameter,
once data have been observed. The quantity is always well-defined if the observation X(n) is
sampled from the marginal distribution on (X,A) given by the Bayesian model (1.5). Under
a mild condition, namely that the denominator is positive almost surely under P (n)

f0 , the
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1. Introduction

posterior distribution Π [·| X] is also well-defined almost surely under the distribution P (n)
f0 .

This motivates the adoption of a frequentist point-of-view in the use of Bayesian posteriors
and their use as tools for inference. After acquisition of the data, the information it contains
can hopefully be used to decrease our uncertainty about the parameter f0, Bayes’ rule telling
us how to change our ’beliefs’ (i.e., the prior) on the parameter.
Going back to the statistical problems mentioned in Section 1.1.1, estimators of f0 can be
deduced. For instance, central aspects such as the posterior mean or the center of balls with
large posterior mass (see next section) can be used. It is also conceivable to use samples from
the posterior distribution as random estimators. Moreover, these Bayesian methods have an
inherent ability to quantify uncertainty (cf. Section 1.3) via their credible sets, i.e. sets with
prescribed amount of mass under the posterior. This is a reason for the appeal for Bayesian
inference methods: once the posterior distribution has been computed, it contains all the
information we need to provide answers to various statistical questions. Bayes methods are
then full inferential machines. By contrast, note that typical frequentist methods require to
proceed in two steps to perform estimation and uncertainty quantification.

1.1.4 Theoretical analysis of Bayesian posteriors
We recall that one works under the assumptions that X is sampled from P

(n)
f0 , for f0 fixed, so

that the following theory is the one of ‘frequentist Bayes’.

Posterior contraction rates

In order to be able to validate Bayesian inferential methods from the frequentist perspective, a
natural requirement should be for the posterior to allocate a fair share of its mass to elements
of F that are close to f0. Equipping the parameter space with a (pseudo-)distance d, an
asymptotic analysis of the posterior distribution (see Section 1.1.2) motivates the following
definition.

Definition 1 (Posterior contraction rates). A sequence εn is a posterior contraction rate at the
parameter f0 with respect to the metric d if the following convergence holds in P (n)

f0 -probability

Π [f : d(f, f0) ≤Mnεn| X]→ 1, (1.7)

for every Mn →∞, as n→∞.

This essentially means that the posterior concentrates most of its mass on a shrinking ball
of radius (almost) εn and centered on f0, and information from the data should eventually
overcome the prior in the limit of large n. For the same reason that we seek convergence rates
for estimators that hold uniformly on the parameter set, posterior contraction rates should be
uniform. However, in the following, we often omit to write it when it is clear that it holds.
Obtaining a posterior contraction rate εn at f0 implies that the center f̃n of the smallest ball
that contains posterior mass at least 3/4 satisfies d

(
f̃n, f0

)
= OP (εn) in P (n)

f0 -probability, see
[8]. Minimax convergence rates (in probability) corresponding to a certain class of smooth
functions then act as a lower bound on posterior contraction rates around the true function,
assuming it belongs to this given class.
As contraction rates are foremost a feature of the posterior, it seems complicated at first to
determine them in situations where the posterior cannot be explicitly computed. However,
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1.1. Statistical framework

since the seminal works of [64, 152], there is by now a general theory for posterior contraction
rates in terms of ”testing” distances. Those are distances d satisfying the following condition
for any n ≥ 1, ε > 0, f0, f1 ∈ F such that d (f0, f1) > ε, there exists a test ϕn : X→ {0; 1}
such that, for some universal constants ξ,K > 0,

E(n)
f0 ϕn ≤ e−Knε

2
, sup

d(f,f1)<ξε
E(n)
f (1− ϕn) ≤ e−Knε

2
. (1.8)

For instance, if we focus on the density estimation model, the Hellinger distance

h(f0, f) =
√ˆ (

f
1/2
0 − f 1/2

0

)2
dλ

and the L1-norm distance verify (1.8). Under such condition, the following theorem gives
conditions on the prior and the size of the model allowing for the characterisation of pos-
terior contraction rates. The prior mass condition is measured in the Kullback-Leibler di-
vergence K(f0; f) = Ef0 log (f0/f) and the second Kullback-Leibler variation V (f0; f) =
Ef0 (log(f0/f)−K(f0; f))2, and the size of the model to the entropy number of a subset,
that is the logarithm of the covering number N(ε, A, d) of a set A which is the minimal
number of d-balls of radius ε needed to cover A. Below, we define

B2(f0, ε) :=
{
f | K(f0, f) ≤ ε2, V (f0, f) ≤ ε2

}
.

Theorem 1 ([64]). For a distance d on F satisfying (1.8), if there exists a partition F =
Fn,1 ∪ Fn,2 and C > 0 such that

1. Π (B2(f0, εn)) ≥ e−Cnε
2
n ;

2. logN (ξεn, Fn,1, d) ≤ nε2
n;

3. Π (Fn,2) ≤ e−(C+4)nε2n ,

then εn is a posterior contraction rate for the posterior Π[· |X].

Informally, this theorem states that, for the posterior to concentrate at a given rate, the prior
should not be too wrong in the beginning and put a sufficient amount of mass near the true
density f0. Also, the set Fn,1 of limited size should contain the majority of the mass, so that
the prior is not too complex. We note that this last point is crucial in the above theorem as
it allows for the construction of exponentially consistent test functions [15, 98], an essential
element for these arguments. However, while there exist results on lower bounds for posterior
contraction rates showing the necessity to have a control on the small ball probability, it is not
as clear whether the sieve conditions are necessary (see tempered posteriors below). Intuitively,
these conditions ensure that collecting the information from the data is enough to overcome
the prior information and obtain a posterior with good concentration properties.
Outside of the canonical metrics satisfying (1.8), it seems much more difficult to obtain generic
contraction results in ”stronger” distances and these are much sparser in the literature. In
particular, when it comes to the supremum norm, we mention the work of [28] that propose
method to derive minimax optimal sup-norm rates of convergence, assuming a Hölder regularity
of the parameter in density estimation and the Gaussian white noise model for natural families
of nonparametric priors and nonconjugate priors, borrowing techniques from semiparametric
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statistics. Also, [78] derive adaptive supremum norm rates in the Gaussian white noise model
with a sparse prior, the spike and slab prior, as well as rates for more abstract ”sieve” priors
in various models. In density estimation, supremum norm rates for the classical Pólya tree
prior (see Section 2.2.3) were obtained in [29], and adaptive results for a modified prior were
proved in [31].

Tempered posteriors

In the above Theorem 1, we may consider Condition 1 as the most important one. We naturally
expect that a prior concentrated around the true parameter should give a posterior with good
properties. Indeed, with ideas already available in a PAC-Bayesian and Machine Learning
context in [35, 179] and then developed in Bayesian nonparametrics in [10, 93, 65], it has been
shown that this condition is enough for a modified posterior distribution, the ρ-posterior and
some metrics, the Rényi divergences. For 0 < ρ ≤ 1, the ρ-posterior distribution is defined
similarly to (1.6) but with a fractional likelihood:

Πρ [B|X] =
´
B
p

(n)
f (X(n))ρdΠ(θ)´

p
(n)
f (X(n))ρdΠ(θ)

, B ∈ B. (1.9)

Chapters 2 and 5 feature results for such (pseudo-)posterior. For ρ−posteriors, results are
often naturally derived for posterior contraction rates in the Rényi divergence of order β
between densities

Dβ(p, q) := 1
β − 1 log

ˆ
pβq1−βdν.

This involves results for the Hellinger distance as well in ”properly specified settings” as can
be seen from the following inequality

D1/2(p, q) ≥ 2h2(p, q).

The random probability measures (1.9) are appealing because contraction rates εn entirely
depend on the prior concentration, namely on the condition that, for some c > 0,

Π
(
f : K(f0; f) < ε2

n

)
≥ e−cε

2
n .

Compared to Theorem 1, there is no need for the construction of sieves Fn,1 and the verification
of testing conditions. Therefore, it is possible to conduct a theoretical analysis of a much
broader class of priors and models. Notably, condition 3 of Theorem 1 may sometimes impose
conditions on the tail of the prior, while the construction of sieves in Condition 2 may be
nontrivial to verify as well.
Although the tempering of the posterior typically results in a loss in terms of constants for the
convergence rate for fixed ρ, or leads to to credible sets enlarged by roughly ρ−1/2 (as one can
see e.g. in the simple {N (θ, 1)⊗n, θ ∈ R} model, where the ρ-posterior for a N (0, 1) prior
on the θ is N (ρnX̄/(1 + ρn), 1/(1 + ρn)), with X̄ the empirical mean of the observations),
in the nonparametric applications considered in this thesis, their use can be appealing in some
cases as this loss is not too detrimental for rates (this loss appears as a constant factor in the
rates). However, this may be unsatisfactory for a practical use, with finite amount of available
data.
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Shape results / Bernstein-von Mises theorems

While the above results are mostly indicative of the speed of convergence of posterior samples
to the actual sampling parameter, there is more information than just a rate in the posterior.
It is also interesting to investigate the shape of the posterior.
In parametric statistics, in smooth sampling models indexed by a finite-dimensional parameter
and if the prior has positive density, the (random) posterior distribution converges in some
sense to a normal distribution. When the object of inference is θ0 ∈ Θ ⊂ Rd, d ≥ 1, and θ̂n
an asymptotically efficient estimator with asymptotic variance proportional to the inverse I−1

θ0

of the Fisher information matrix, the posterior distribution of θ converges as follows

L
(√

n(θ − θ̂n) |X(n)
)
 N

(
0, I−1

θ0

)
,

where convergence is in total variation, in probability under P (n)
θ0 . Such result is known as

the Bernstein-von Mises (BvM) theorem [98]. From a frequentist point-of-view, this provides
a justification of the use of Bayesian procedures as the limit coincides with the efficient
frequentist one. Indeed, efficient estimators θ̂n, such as the maximum likelihood estimator
under regularity conditions, satisfy

L
(√

n(θ0 − θ̂n)
)
 N

(
0, I−1

θ0

)
,

when the true parameter is θ0. Also, since the limiting distribution does not depend on the
prior, the accumulating information from the data subsumes the information encoded in the
prior.
As for nonparametric models, the obtention of BvM-type theorems is non-straightforward
[32, 33]. However, as explained in Section 1.3.1, such results are of particular interest for the
construction of confidence sets and the development of nonparametric BvM theorems has a
clear appeal for uncertainty quantification purposes. In the Gaussian white noise model [99, 32]
Leahu [2011], and in nonparametric regression and density function estimation [33] obtained
results in this vein. In these last works, the authors build on a parametric BvM theorem
for a finite number of real-valued linear functionals of the infinite-dimensional parameter to
obtain a nonparametric BvM theorem. Finally, we point out that these limiting shape results
can extend to linear functionals of the parameters as well, e.g., Donsker-type theorem for
the cumulative distribution function in the density estimation model (see Theorem 13 of the
present document). In Chapter 3, we use this methodology and develop BvM-type results for
a particular choice of prior on densities.

1.1.5 Adaptation problems
With the Hölder norm defined as in (1.3), it follows that Hölder balls (1.2) are nested (Lemma
10, [59]),

Σ(β′, L) ⊂ Σ(β, L), β′ ≥ β, L ≥ 0.
Minimax estimation rates over these balls (1.4) show that the estimation problem is easier
whenever the target is smoother. Therefore, emphasis should be put on estimators that are able
to leverage the higher regularity of the parameter and attain the faster rates of convergence,
whenever the true underlying parameter belongs to one of these smaller balls.
As smoother signals renders the inference problems easier, we also expect confidence sets to be
more informative under these conditions, that is we expect them to be smaller. In particular,
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we would like them to have radii of the same order as the minimax rate of estimation. While
adaptive estimators exist for most models, adapting to any regularities, the construction of
adaptive confidence sets is a more involved problem and we present some fundamental elements
of theory in Section 1.3.2.
Though an overview of methods for adaptation is out of the scope of this introduction, we
mention Lepski’s method, thresholding estimators as well the natural introduction of layers of
hyperpriors to form hierarchical Bayesian priors.

1.2 Some Machine/Statistical Learning methods
In the recent history of learning and inference algorithms, it is often the case that a boost in
computing power led to a resurgence in the use of previously impracticable methods.
Notably, with the advent of new computational methods in the recent years, e.g. MCMC,
there has been a surge in the use of Bayesian methods. Bayesian counterparts of the original
algorithms of Decision Trees and Random Forests (Section 1.2.2), such as BCART and
BART, rank amongst the best performers in practice but the theoretical understanding of
such achievements is still in its infancy. Another popular class priors on regression surface or
probability densities is the Gaussian Processes (GP) priors and their variants (Section 1.2.1).
Deep Neural Networks (DNN) is another class that has gained much recent popularity. We
briefly draw some links between GPs, forests and DNN in Section 1.2.3.

1.2.1 Gaussian Processes
Gaussian Processes (GP) are stochastic processes that can be viewed as random functions
when they are indexed by a set X . They were first used as priors in regression by [88] and
[169] and in density estimation by [101] and [102]. Aside from Bayesian nonparametrics, these
objects are prominent in Machine Learning as well [138].

Definition 2 (Gaussian process). A Gaussian process W = (Wx : x ∈ X ) is a stochastic
process such that, for any k ≥ 1 and x1, . . . , xk ∈ X , the vector (Wx1 , . . . ,Wxk) is distributed
as a Gaussian random vector.

While this definition takes the viewpoint of GPs as collections of random variables, it is often
possible to consider a version of the process with continuous sample paths x → Wx. As a
consequence, GPs are often seen as maps W : Ω→ B, with Ω the underlying probability space
and B a Banach space, e.g., the space of continuous functions equipped with the supremum
norm.
These processes are completely characterized by their mean and covariance functions, µ :
X → R and K : X × X → R. Most GPs W used as priors in the literature take µ to be
identically equal to zero, so that all of the properties of W are determined by K. A popular
example of such kernel is K(s, t) = min(s, t), for s, t ∈ [0; 1], which is associated to the
Brownian motion on the unit interval. As a random function, we note that its sample paths
are almost surely α-Hölder regular, for 0 ≤ α < 1/2.
A crucial element in the study of these processes as priors on functional parameters is the
reproducing kernel Hilbert space (RKHS) attached to the Gaussian process (or covariance
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kernel). It is defined [164] as the completion H of the linear space of all functions, k ≥ 1,

x→
k∑
i=1

aiK(si, x), (ai, si) ∈ R×X , i = 1, . . . , k. (1.10)

in the euclidean norm induced by the inner product

〈
k∑
i=1

aiK(si, ·),
l∑
l=1

bjK(tj, ·)〉H =
k∑
i=1

l∑
j=1

aibjK (si, tj) .

We note that this definition does not depend on the particular representation of elements of
the RKHS. The set H gets its name from the reproducing formula

f(x) = 〈f, K(x, ·)〉H, x ∈ X , f ∈ H,

which follows for f of the form (1.10) by definition and general f ∈ H by completion. This
allows us to identify this Hilbert space with a functional space. As an example, the RKHS of
the Brownian motion on [0, 1] is the set{

f : [0; 1]→ R, f(0) = 0,
ˆ 1

0
f ′(t)2dt <∞, f absolutely continuous

}
,

equipped with the inner product 〈f, g〉H =
´ 1

0 f
′(t)g′(t)dt.

A general theory of posterior contraction rates for Gaussian process priors has been obtained
in [160, 27, 163]. The RKHS reflects the ”geometry” of the Gaussian measure. Building upon
the theory on rates presented in Section 1.1.4, these rates εn at f0 in canonical distances are
determined as the smallest solution of ϕf0(εn) ≤ nε2

n where the concentration function at f0
is

ϕf0(ε) = inf
h∈H:‖h−f0‖≤ε

1
2 ‖h‖

2
H − logP (‖W‖ < ε) ,

and W is a GP with samples in a Banach space equipped with the norm ‖·‖. The second term,
which we write ϕ0(ε), is the small ball probability and gives a lower bound on contraction
rates, independently from f0. For a Brownian motion viewed as a random element of the space
of continuous functions equipped with the supremum norm, ϕ0(ε) ≡ ε−2 as ε→ 0. The first
term is the decentering function and measures the approximation accuracy of the parameter
f0 with elements of the RKHS. A downside of the Brownian motion W for approximation
purposes is that it is null at 0. So, we may prefer its released version Z +W , Z ∼ N (0.1), to
avoid this shortcoming. It has a slightly smaller RKHS, but the small ball probability is of
the same order. Then, if f0 ∈ Σ(β, L), 0 < β ≤ 1, L ≥ 0, its decentering function is upper
bounded, as ε → 0, by a multiple of ε(2−2β)/β. Therefore, a solution of ϕf0(εn) ≤ nε2

n is
ε ≡ n−(β∧(1/2))/2. This rate is minimax over Σ(β, L) in Hellinger distance, i.e. proportional to
n−β/(2β+1), for β = 1/2 only, which matches the regularity of the sample paths. We note that
this cannot be improved [27].
Different covariance kernels then lead to different modelling choices and this greatly influences
the behaviour of the process as a prior for estimation. Other popular covariance kernels are
the square-exponential kernel SqExp, K(s, t) = e−‖s−t‖

2
2 with ‖ · ‖2 the euclidean norm and

which we study in Chapter 5, and the (α–)Matérn kernel. Both have more regular sample
paths than the Brownian motion (if α > 1/2 for the Matérn kernel), as the SqExp kernel gives
infinitely-differentiable sample paths (and even analytic ones) and the Matérn kernel gives
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α−regular ones, α > 0. We finally note that the RKHS is typically bigger for these smoother
GPs, causing the approximation term in the concentration function (which can be understood
as a bias) to increase. However, the small ball probability (equivalent to a variance term)
decreases. We can then interpret the rate theory of GPs in light of the traditional bias-variance
tradeoff from statistical learning.

1.2.2 Tree algorithms and ensembles
Tree-based algorithms find their roots in the ”divide-and-conquer” strategy for nonparametric
inference. They rely on a recursive partitioning of some relevant space underlying the statistical
model, such as the sample space in density estimation or the covariate space in nonparametric
regression. They then estimate the parameter locally in each of the obtained subsets, fitting a
simple parametric model in those cells, e.g., a constant model. The partitioning pattern can
usually be represented in a tree fashion, hence the name of these methods. It is often the case
that only binary trees are considered (with binary splits dividing each subset into two smaller
ones). Tree ensembles or forests put several trees together.
Tree-based methods and associated ensemble methods rank among the best performers in
statistical learning and are, as such, widely used in practice. In nonparametric regression and
classification problems, popular versions such as CART (Classification and Regression Trees)
[20] and random forests [19] have sparked the interest of numerous researchers. While the
former’s theoretical behavior in an L2-loss context is now quite well understood [16, 52, 63]
and is still at the heart of recent works [90], the latter have been the object of fewer theoretical
results. Indeed, it relies on recursive partitionings of the sample space and piecewise constant
predictions, both data-dependent, which renders their analysis quite difficult. To date, research
has mainly focused on simplified versions of the original algorithm by Breiman (for which results
are scarce [148]) to prove properties such as consistency [3, 11, 48, 82, 89, 118, 150, 168] or
asymptotic normality [118, 167]. We refer the interested reader to the review [13] for a more
comprehensive account of the topic’s literature.
The picture is even more striking with Bayesian versions of these forest estimators, as the
theoretical development has just started to emerge. As for the advantages of these Bayesian
counterparts, we cite their inherent ability to quantify uncertainty through posterior distributions
and their propensity for adaptation. Another noteworthy feature of these methods based on
treed partition is that they include the ability to model a nonstationary parameter (where the
degree of smoothness is changing over the underlying space) [142]. Popular algorithms are
Bayesian CART [40, 49] and BART (Bayesian Additive Regression Trees) [38], the latter being
the prototype of Bayesian tree ensemble models. This motivated a myriad of works applying
and adapting these methodologies in different domains (e.g., genomic studies [111], credit
risk prediction [178], predictions in medical experiments [51], etc.) and to different statistical
problems beyond nonparametric regression (e.g., classification [38, 178], variable selection
[38, 109], estimation of monotone functions [41], causal inference [75], Poisson processes
inference [96], linear varying coefficient models [50], heteroskedasticity [17, 136], etc.). A
thorough presentation of the unified framework underlying BART and its extensions appears
in [154]. The appeal also finds its roots in such algorithms’ competitive practical performance:
their great prediction abilities, robustness to ill-specified tuning parameters, and associated
efficient posterior computation techniques [72, 73, 134, 135].
At the other end of the spectrum, in spite of their wide application in practice, we are still
at the dawn of their theoretical study. We then propose to further the understanding of
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such algorithms, in particular via an asymptotic analysis as proposed above in Section 1.1.4.
Besides, we should adopt a frequentist point-of-view as presented in 1.1.4 since a reasonable
requirement for practical Bayesian procedures is to attain frequentist-optimal posterior rates.
It provides a sanity check and is a first step to explain their empirical success, which may be
surprising given that these priors are not developed via an expert domain-specific analysis. In
very recent years, researchers have come up with results in posterior contraction rate theory
for trees and forests in L2-loss [144, 145], in L∞-loss [34], and uncertainty quantification
[34, 141]. Also, in the context of density estimation, we note that consistency results for
BCART-type methods in [113]. For more details, we refer the interested reader to the recent
reviews [74, 108].
Finally, we note that [108] provides an informal connection between the BART prior and GPs.
According to their heuristic, In the limit of large number of trees in the BART forest, the prior
behaves likes a zero-mean GP with explicit covariance kernel. Indeed, tree ensemble methods
have a close link with kernel-based methods [149, 3].
Another famous prior in Bayesian nonparametrics that relies on recursive partitioning encoded
into a dyadic tree structure is the Pólya tree process. The first related studies date back to
the ’60s [57, 58, 61, 62] while the name appears for the first time in [97, 116] (it originates in
a link with Pólya urns, nicely explained in [65]). As a prior on probability distributions and
densities, it has since been used regularly and has recently inspired a new line of research
coming up with modified versions [76, 127, 173]. Following this trend, we study priors based
on the Pólya Tree construction and their use for inference in Chapters 2 and 3. Lately, posterior
contraction rates in L∞ and Bernstein-von Mises theorems were obtained for Pólya Trees and
spike-and-slab Pólya Trees [29, 31].

1.2.3 Neural Networks
Deep learning (DL) is an area of machine learning based on data modelling with complex
structures, called Deep Neural Networks (DNN), that compose layers of linear applications
and nonlinear transformations based on activation functions, with from hundreds to millions of
parameters [100, 70]. On each of these layers, numerous of these linear/nonlinear operations
(or units) are performed, with the outputs serving as inputs for the subsequent layers. DNNs
have proved to be pretty powerful in many problems and enjoyed a surge in computational
power to develop at a fast pace in the late 2000s and early 2010s. Their flexibility and capacity
to learn feature representations place them among state-of-the-art methods. However, given
the complexity of these underlying data structures, for a long time there has been a general
belief that no or little theory can be developed for modern deep network architectures. Since
tree-based algorithms and Gaussian Processes have a close relationship with DNNs as clarified
below, a theoretical analysis of these is valuable to understand why DL works as well.
The compositional structure of DNN motivates analogies with the more recent composition-
based Deep Gaussian Processes (DGPs) [44, 56], where multiple GPs are sampled and the
output of each one is fed to another layer of GPs. This stochastic process is built from a
network of Gaussian processes and takes the form

Y1 ◦ · · · ◦ Yl, l ≥ 1,

where for i = 1, . . . , l, Yi is a Gaussian process from Rdk to Rdk+1 (dl+1 = 1 by convention).
This extension of GPs provides a richer class of Bayesian priors, as the sample paths of DGPs
can feature more diverse irregularity structures (as in Chapter 5).
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In Bayesian neural networks (BNNs), we define a prior distribution on a functional parameter
with a neural network whose parameters are drawn randomly, often from a Gaussian or a
uniform distribution, and Bayesian inference is done integrating the data likelihood as in (1.6).
[123] shows that a neural network with a single hidden layer and i.i.d. parameters converges
to a Gaussian process prior, in the limit of a large number of units in the layer, under some
conditions ensuring this is well-defined. They also obtain explicit expressions for the limiting
covariance kernel. While we may expect a DNN with wide layers, growing altogether, to tend
to a DGP, it is actually not true. The limit is a still a GP [115], though with a covariance
kernel whose definition is much more involved. In practice, [115] also observed in a simulation
study that BNNs and GPs priors with the corresponding choice of the covariance kernel have
a similar behaviour. However, [59] remarks that fixing the width of some internal layers in
the network composition while the others grow to infinity should lead to a DGP limit. As for
traditional DNNs, before the training of the algorithm on the dataset, it has become standard
practice to initialize the network parameter randomly, as if it was drawn from a BNN prior.
Both BNNs and DGPs offer a probabilistic interpretation and a measure of uncertainty for DL
models with their posteriors.
The success of DL algorithms also aroused interest in the potential connections with random
forest estimators. First, [151, 172] established that sparse shallow networks can realize these
tree-based functions. Then, some recent papers also produced hybrid methods combining
upsides of both, e.g., the representation learning properties of DNNs and the computational
efficiency of random forests. For instance, we mention Deep Neural Decision Forests [91],
conditional networks [81], Deep Neural Decision Trees [175], and Neural Random Forests [14],
for which consistency in nonparametric regression was proved, starting the theoretical study of
these connections.
There is also a surge in the development of the theoretical analysis of DNNs. Nonparametric
methods relying on piecewise linear approximations are traditionally suboptimal with signals of
smoothness α > 2. However DNNs overcome this limitation. Even though sparse DNNs with
ReLU activation function results in piecewise linear maps, [147] showed that, in nonparametric
regression, near minimax rates for arbitrary smoothness are attained.

1.3 Uncertainty Quantification and confidence sets
In the previous section, we focused on the problem of estimation of a parameter in an infinite-
dimensional statistical model. As explained, we should also be interested in the quantification
of the uncertainty associated to such estimate. We now describe in a first step the problem of
uncertainty quantification (UQ) via confidence sets, before briefly recalling the challenges and
limitations in the construction of adaptive honest confidence sets, illustrating results in the
case where Lp-distances are used to measure the quality of inference.

1.3.1 Construction of confidence sets
In order to do some UQ and account for the inherent uncertainty in our estimation due the
randomness of the observations, the typical goal is to produce a sequence of confidence sets
Cn, with confidence level 0 < 1− γ ≤ 1, that is

inf
f∈F

P
(n)
f (f ∈ Cn) ≥ 1− γ. (1.11)
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The asymptotic version has the inequality verified in the limit n→∞ (possibly a with a limit
inferior). These sets allow practitioners to perform inference on the unknown parameter f0 as
their properties are uniform over F .
There are different options to obtain possible values for the parameter and output confidence
set. The most basic construction consists in taking the whole set F as it always contains
the true parameter f0 when the model is well-specified. However, as we explain in the next
Section 1.3.2, we should seek the most informative confidence set possible, that is the smallest
one. The size of the set quantifies the level of uncertainty of the estimator, and the solution
which outputs the whole F is then not satisfactory. Another possible construction is based
on the derivation of the limiting distribution of the estimator under the distribution P

(n)
f0 ,

when n→∞. Yet, the problem of deriving this asymptotic distribution is nontrivial in many
configurations.
As hinted in previous sections, Bayesian posteriors provide an alternative to these methods.
We can indeed define a credible region Cn with level 1− γ that verify

Π[Cn |X] ≥ 1− γ,
or an asymptotic version where the equality is in the limit (possibly the limit inferior) n→∞.
In the above section, we mentioned analogies between Bayesian algorithms (tree-based and
Gaussian processes) with other frequentist methods (kernel-based estimators, Neural Networks,
Random Forests). An advantage of the former is that the posterior distribution they provide
allows for principled uncertainty quantification procedures. Sections 1.2.1 and 1.2.2 were
dedicated to the predictions of the functional parameters that suitable priors could produce
once updated. In addition, these distributions also allow the definition of (credible) confidence
intervals and give the possibility to generate samples, two features that can prove useful in for
UQ purposes.
The question naturally arises whether credible sets can replace confidence sets, i.e., satisfy
(1.11) as well, or are misleading in the UQ they provide. We note that the parametric
Bernstein-von Mises implies that it is the case in smooth parametric models for quantile
credible sets. As for nonparametric inference, in contrast to these, the situation is more
delicate and Bayesian credible sets can fail to have correct coverage, i.e., contain the truth
with high probability.
Castillo and Nickl [32, 33] obtained nonparametric counterparts of the Bernstein-von Mises
theorem in a generic framework, studying as examples the density estimation, nonparametric
regression and Gaussian white noise models, which allows them to produce confidence sets
from posterior distributions, although for weaker norms than usual Lp (p ≥ 1) ones. They
also propose a more complex construction to build sets in usual norms by intersecting with
sets encoding further qualitative information about the parameter. It allowed them to obtain
good frequentist coverage for their sets, coupled with a control of their size in the more usual
norms.
We also mention the works of [153, 143] which obtain good coverage properties for credible
balls with radius inflated by a blow-up factor, and recover these results adaptively under general
qualitative assumptions on the parameter.

1.3.2 Adaptive honest confidence sets
Confidence sets satisfying (1.11) are called honest as their coverage is ensured uniformly over
the parameter set. Since we should be interested in the sets that are the most informative
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possible, a condition on their diameter |Cn|d := sup {d(f, g) : f, g ∈ Cn} of the form

sup
f∈F

Pf (|Cn|d > Lrn) ≤ δ,

where rn is the minimax rate of estimation over F and L > 0, is natural. This condition on
the radius is uniform over the parameter set F , but as noted in Section 1.1.5, sets defined
via regularity conditions contain parameters with different regularities, e.g. F = Σ(β′, L) ∪
Σ(β, L), β′ > β, in the nonparametric regression model. For simplicity of presentation in
this introductory Chapter, we shall consider here only two different regularities, which already
illustrates the main ideas. In this case, the minimax rate of estimation rn(β′) over Σ(β′, L)
is faster than the one, rn(β), on Σ(β, L). Therefore, we should be interested in adaptive
versions of the radius shrinkage condition:

max
t∈{β′,β}

sup
f∈Σ(t,L)

Pf (|Cn|d > Lrn(t)) ≤ δ.

The existence of such sets crucially depends on the geometry induced by the distance d on F .
The examples of the L∞ and the L2 norm distance illustrate this point [105, 112]: for the
former, it is impossible to adapt to any two distinct regularities, while for the latter, adaptation
is possible if and only if the two regularities of interest belong to a small interval of the form
[r, 2r], r > 0.
From an information-theoretical point-of-view, the impossibility to construct adaptive sets
when regularities are two different is linked to an eventual discrepancy between the rates of
estimation and testing rates in a related testing problem. Therefore, whenever one of these
rate is undetermined, it is unclear whether or not one can construct such confidence sets.
Indeed, for this reason, there is an array of distances for which the question of UQ in those
distances is unanswered.
However, we note that more positive results are available in the literature. These concern
weakened programs where the above conditions of honesty and on the radius should be verified
on smaller subsets of the parameter sets, defined via additional qualitative assumptions so that
the functions regularity can be well estimated, e.g., self-similarity conditions as in Chapter 3.
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1.4 Main Questions and outline of the thesis

The present thesis aims at answering some general questions regarding the behaviour of
statistical learning and uncertainty quantification procedures.

• Chapter 2: Are there advantages in the use of tree ensembles over a single tree
in terms of adaptation to smoothness?

• Chapter 3: Do tree-based methods lead to optimal estimation in terms of the
supremum norm? What about uncertainty quantification in terms of confidence
bounds?

• Chapter 4: What are the information-theoretic boundaries for uncertainty quan-
tification in terms of Wasserstein losses?

• Chapter 4: Is it always the case that estimators, adapting to any regularities, do
not translate straightforwardly into adaptive honest confidence sets?

• Chapter 5: How can Gaussian processes be cast into more general frameworks
to tackle more structured parameters?

The following sections provide more insights into these questions.

1.4.1 Bayesian forests
In Chapter 2, we conduct an analysis of some Bayesian forest posteriors, studying their
asymptotic properties. Following the discussion on posterior contraction rates in Subsection
1.1.4, priors of choice should be able to attain (or be as close as possible to) Hellinger rates
n−α/(2α+1), which are minimax under our assumptions on f0, at least if α ≤ 1. Here, we
consider the density estimation model from Example 1, with X = [0; 1), and we assume that
the sampling density has an arbitrary Hölder regularity α > 0.
One limitation of samples from tree posteriors is their lack of smoothness, which diminish their
performance as estimators in context where we typically expect the signal to be smooth. Indeed,
in nonparametric regression, Bayesian histogram estimators on regular partitions and with
independent heights can be shown to be suboptimal for regression functions smoother than
Lipschitz-regular, i.e., when α > 1 above. Consequently, we may conjecture that the piecewise
nature of finite Pólya Tree samples hinders their ability in the estimation of smoother densities
as well. However, concerning forest priors, [37] remarks that, in terms of root mean square
error, the BART posterior mean (estimated with MCMC samples) fares almost as well as a GP
posterior mean on a benchmark simulated regression dataset. This is a seemingly surprising
result given that the BART estimates are piecewise constant as well and the true parameter in
their study is a smooth function. Recalling the link between BART and GPs mentioned in
Section 1.2.2, this suggests that BART samples have a regular underlying structure in spite of
their rough piecewise nature.
The ’tree-aggreggation’ aspect of BART seems to account for this behaviour. On the other
hand, initial work from [3] showed that by aggregating infinitely many randomly shifted
tree estimators in a frequentist forest estimator, one can perform smoothing reminiscent of
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triangular kernel estimators and adapt to regularities α ≤ 2 (for regression and for points that
are ‘far’ from the boundary of the covariate space).
In order to shed light on this potential smoothing effect of aggreggation, in Bayesian forests
this time, we propose in this chapter a new Discrete Pólya Aggregate (DPA) prior. It is
defined as an aggregation of Pólya trees with deterministic shifts and with correlated heights.
Informally, the DPA prior on densities is the distribution of

f = 1
q

q−1∑
i=0

gi,

where each gi is distributed as a finite Pólya Tree of depth L, though they are not independent,
and with suitable priors on the trees depth L and their number q in the forest.
We demonstrate that such priors, with good hyperparameters, are optimal (up to logarithmic
terms) for estimating α-Hölder densities in Hellinger distance for any arbitrary α > 0. Since
the smoothness of the prior is ‘quantified’ by the depth of the trees, adding a hyperprior on
this aspect guarantees adaptivity. The adaptive version of DPA is then optimal for all α > 0
simultaneously. The trees in the above aggregation are defined as ‘suitable shifts’ of the same
Pólya Tree sample, so that they are highly ‘correlated’.
Firstly, this improves on previous results on tree-based methods [3, 121] as they usually assume
that α ≤ 1, as well as on previous results on random forests models that generally assume
α ≤ 2. Forests were proved to have an advantage over single-tree estimators only on the
range 1 < α < 2. As for Pólya tree-like priors in particular, this brings a partial answer to the
question of adaptation and optimality to regularities higher than Lipshitz, a question left open
in [29] for the original tree prior. Secondly, another important novelty of these results is that
DPA carefully handles the boundary of the unit interval in its definition, while previous results
on random forests obtained suboptimal rates at the boundaries when 1 < α ≤ 2. The theory
then illustrates further the smoothing benefits of Bayesian forests and their truncations.
We build our results on the general methodology developed around Theorem 1 and we leverage
similarities between DPA and spline priors on densities. While [149, 3] linked forests to
kernel-based estimators, this link is a further confirmation that ensemble versions of tree-based
methods can possess and benefit from hidden regularity structures, in spite of their piecewise-
constant nature. Also, although we focus on the density estimation model (a reason being
that a goal was to extend results on Pólya Trees in this framework) on the unit interval, the
idea is sufficiently general so that it should extend to sample spaces X in higher dimensions
and to other models, such as nonparametric regression (considered in [3]).

1.4.2 Optional Pólya Trees
The results announced in this section were developed in a joint work with Pr. Ismaël Castillo
(Sorbonne Université).
Establishing a theory of rates in the supremum norm is all the more appealing as scientists
intuitively measure closeness with this distance: when curves are said to be visually close to
each other, we interprete this statement with closeness in supremum norm. While the prior
proposed in the previous chapter is shown to be adaptive optimal in Hellinger distance, the
methodology adopted does not answer the question of supremum norm posterior contraction
rates. Theorem 1 does not apply to this stronger distance and this problem is more delicate
in general. In addition, as explained in Section 1.1.3, a motivation in the use of Bayesian

16



1.4. Main Questions and outline of the thesis

approaches is the construction of confidence regions for the parameter. Chapter 3 considers
the same density estimation model as Chapter 2 and adopts a Bayesian perspective as well.
[29] obtains results in this direction for the original Pólya Tree construction, showing its
nice properties for the estimation of unknown densities. Nonetheless, his construction is
non-adaptive as he tuned hyperparameters based on the known regularity 0 < α ≤ 1 of the
density, and it remained an open question how the methods could be made adaptive.
Given the link between Pólya trees with dyadic splits in the partition and the Haar wavelet
basis, the aforementioned work uses the mutiscale approach introduced in [32, 33] to obtain
rates as well as a Bernstein-von Mises theorem. The idea is that a BvM-type theorem can
be proved to hold in weaker topologies (from multiscale norms) for some priors, and the
resulting credible sets appropriately modified will have asymptotically the correct coverage
and optimal size. In a recent work, [31] obtained L∞-adaptive versions of these theorems for
a ”spike and slab” version of Pólya Trees. While this relies on an adaptive selection of the
wavelet coefficient, this selection is not performed in a tree-fashion and it could be costly in
high-dimension.
The original Pólya Tree algorithm involves dyadic complete binary trees, which may be too
rigid to expect adaptation. In order to answer the above questions, we consider here a more
flexible tree-prior on densities, the Optional Pólya Tree [173], or OPT henceforth: it is a
BCART-type hierarchical prior where trees are distributed as a Galton-Watson process (they
are no longer complete a.s.) and, given a tree, the random densities are defined in Pólya
Tree-like way along the tree. Active coefficients selected in the wavelet basis then depend on
the node in the tree.
[34] studied the BCART prior in the Gaussian white noise and nonparametric regression model,
in which they obtain Bayesian adaptation for the supremum loss, for estimation and UQ
purposes. We remark that the Pólya Tree counterpart of their prior is a specific case of OPT.
We pursue their investigation accordingly, in the density estimation model, and adopt the
multiscale approach of [32, 33]. As we first prove that the OPT prior is conjugate in this
model, we leverage the representation of densities using Haar wavelet expansion to obtain
adaptive supremum norm posterior contraction rates, whenever the density has an α-Hölder
regularity, 0 < α ≤ 1. We also define a frequentist tree-based estimator from a central aspect
of the posterior, the median tree estimator, which is shown to converge at the minimax rate
to the true sampling density f0.
The novelty in this chapter is the validation of tree-based methods in density estimation as a
tool for near-optimal uncertainty quantification in terms of the supremum norm. A first answer
to questions of estimation and UQ for f0 is the proposal of an L∞-ball centered on the median
tree estimator which is shown to be, under self-similarity assumptions, an asymptotic credible
and confidence set with coverage converging to 1 and an adaptive radius, shrinking at the
minimax rate of estimation. A similar construction is proposed for a smooth functional, the
cumulative distribution function associated to f0, this time with exact (credible and confidence)
coverage 1− γ and without self-similarity assumptions. To obtain exact asymptotic coverage
for f0, we derive an adaptive BvM theorem in a weak multiscale distance, along the lines of
[139], which is a key element towards the obtention of confidence bands. The intersection of
the supremum norm ball centred on the median tree with a multiscale credible band of level
1− γ is shown to have exact asymptotic coverage as well as adaptive supnorm radius.
The conjugacy property of the OPT prior in the density estimation model and its sequential
definition is also appealing from a practical point of view. Exact sampling from the posterior
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turns out to be possible using the recursive nature of the tree partitioning, and we conduct a
numerical study on synthetic dataset to illustrate the proposed methodologies for estimation
and UQ and their features, including regularity adaptation, spatial adaptation [142] and the
limitation to Lipschitz-regularity for methods based on single trees (as underlined in Chapter
2).

1.4.3 Uncertainty Quantification with Wasserstein distances
The results announced in this section were developed in a joint work with Neil Deo (Cambridge
University).
In Chapter 4, we focus on the question of the construction of adaptive honest confidence sets
for f0 as presented in Section 1.3. As explained, the theory underlying the possibility for such
sets to adapt to different regularities depends on the geometry induced by the distance used
for inference. In particular, the (non-)existence of adaptive sets is partly determined by the
minimax estimation rates over the smoothness classes of interest and rates in some related
testing problems. Whenever one of these rates is unknown, the question of existence remains
unanswered. We consider here the density estimation model with the d−dimensional torus
as sample space X = Td and assume that the sampling density f0 has a regularity s > 0
(measured on the Besov scale of smoothness, see Section 4.5).
This work focuses on the case of the Wasserstein distance, Wp, 1 ≤ p ≤ 2, between densities
defined as

Wp(f, g) := inf
π∈Π(Pf ,Pg)

(ˆ
X×X

d(x, y)pdπ(x, y)
)1/p

,

with the infimum ranging over the set Π (Pf , Pg) of measures on X × X with marginals Pf
and Pg, that are the distributions on X with Lebesgue densities f and g respectively. While
this distance finds its roots in Optimal Transport problems [120, 87], it recently became quite
popular in several fields such as optimization [131], computer vision [124] or Machine Learning
with the development of Wasserstein GANs [2, 12].
It also has appears in Statistics in several ways, as a tool for inference. In particular, [171]
determined the minimax rates of estimation for Besov-regular densities that are lower and upper
bounded by positive constants. They showed that, under these conditions, the Wasserstein
distance compares with weak Besov norm-distances of negative smoothness −1, extending
the classical Kantorovich-Rubinstein duality formula applied to W1. As a consequence, the
obtained convergence rates n− s+1

2s+d are faster than the usual Lp–rates. However, neither the
question of testing rates in Wasserstein distance nor the construction of honest adaptive
confidence sets were tackled.
Leveraging this comparison with a negative Besov norm, we obtain lower bounds on the testing
rates in arbitrary dimension d, once again much faster than the corresponding Lp ones, which
allows us to discard regularity values for which adaptation is not feasible. When it comes to the
positive results, in all the situations that have not been ruled out by the preceding argument,
we provide a construction of confidence sets. We define these as balls in a sample-splitting
scheme, first constructing an adaptive minimax estimators as a center and using the method
of risk-estimation via U-statistics to determine the radius. For this last point, we indeed use
continuous embeddings of negative Besov spaces in some Hilbert space so that it is possible
to estimate the risk at a very fast rate, allowing for adaptation.
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Our results features a surprising new phenomenon in view of the classical theory for Lp
distances: in small dimension, it is possible to adapt to any regularities. In higher dimensions,
adaptation is possible if and only if regularities of interest are close enough, lying in window
that is still (significantly) larger than the one prescribed for Lp adaptation. This window takes
the form

[
r, 2d−4

d−4 r + d
d−4

]
, as opposed to [r, rp/(p− 1)] (Lp distance, p ≥ 1). We underline

that our findings are not limited to Wasserstein distances: similar results can be proved for
any Besov norm-distances of negative smoothness, granted that Hilbert space embeddings are
possible for the positive results. For the negative results, it transpires that fewer configurations
are ruled out by the theory because, while estimation and testing rates both accelerates, the
later becomes much faster. Regularities r < s to which adaptation is possible simultaneously
are the ones such that n−

r+1
2r+d/2 ≥ n−

s+1
2s+d . Since this effect should also happens for other

weak negative distances, an analogous phenomena should take place.

1.4.4 Deep Horseshoe Gaussian Processes
The following elements are the focus of an ongoing project in collaboration with Pr. Ismaël
Castillo (Sorbonne Université).
In the last chapter, we consider the nonparametric regression model from Example 2, where
we observe n i.i.d, variables (Xi, Yi) ∈ [−1, 1]d × R and

Yi = f0(Xi) + εi, i = 1, . . . , n,

with i.i.d. noise variables εi ∼ N (0, σ2) independent from the design Xi. The parameter
to be recovered there is the regression function f0. We consider the case where f0 veryfies
an additional compositional structural assumption. We place ourself under the framework of
[147, 59] which assume that f0 = hq ◦ · ◦ h0 is the composition of q + 1 applications. Each of
the component hi : [−1, 1]di → [−1, 1]di+1 is assumed to be βi-Hölder and to depend on a
small set of variables ti ≤ di only.
On the one hand, while Gaussian processes proved to be competitive in practice for a wide
range of tasks, theoretical guarantees are nonetheless scarce when it comes to the more
current contemporary applications such as high-dimensional inference, where the signal has
a low-dimensional structure. Hierarchical extensions of GPs are usually adopted to tackle
these situations, performing a rescaling and a stochastic variable selection that allows for an
adaptation to the smoothness and the sparsity of the regression function. [176] propose for
instance an add-GP prior with a Bernoulli selection of active variables and a conditional GP
prior on the selected subset. On the other hand, the presence of a compositional structure
in the regression function motivates the study of DGP priors. [59] proposes to place a prior
on this latent structure, represented as a network graph with edges representing the selected
active variables, and then, conditionally on this graph, they draw the different GPs in the
composition. They also condition individual GPs to be ‘smooth’ enough in order to regularize
the composition and avoid paths with wild behaviour detrimental to the estimation goal.
In both situations, we remark that some sort of ”hard” selection of variables is performed
through a hyperprior on the discrete subset of variables, in a hierarchical prior, ahead of the
draw of the GPs. We propose to replace this with a ”soft” version of this selection, using the
ARD (Automatic Relevance Determination) kernel, akin to the SqExp kernel,

K(s, t) = e−
∑d

i=1 wi(si−ti)
2
.
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Already used in the original paper on DGP [44], it puts different weight wi for each latent
dimension with the aim to “switch off” irrelevant dimensions with small weights. In this
paper, the weights are determined via a variational procedure. We adopt here a fully Bayesian
method and put a hyperprior on these variables. Inspired by the Horseshoe prior [26, 159], the
weights then have a continuous distribution, with a pole at 0 and sufficiently large tails to
simultaneously perform the scaling and the stochastic variable selection. The beneficial effect
of the Horseshoe prior in this context is that it allows for the simultaneous adaptation to the
regularity and the low-dimensional structure of the parameter.
We demonstrate that the ρ-posterior, for this Horseshoe GP prior and the Deep Horsehoe
GP under structural assumptions, achieves minimax contraction rates. For the deep prior, we
note that it replaces the sparse structural graph with a full graph with weighted edges, which
simplifies the definition of the prior as opposed to [59] and should be more convenient for
simulation purposes.
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CHAPTER 2
Smoothing from Bayesian forests

Recently, S. Arlot and R. Genuer have shown that a random forest model outperforms
its single-tree counterpart in estimating α−Hölder functions, 1 ≤ α ≤ 2. This backs up
the idea that ensembles of tree estimators are smoother estimators than single trees.
On the other hand, most positive optimality results on Bayesian tree-based methods
assume that α ≤ 1. Naturally, one wonders whether Bayesian counterparts of forest
estimators are optimal on smoother classes, just as observed with frequentist estimators
for α ≤ 2. We focus on density estimation and introduce an ensemble estimator from
the classical (truncated) Pólya tree construction in Bayesian nonparametrics. Inspired
by the work mentioned above, the resulting Bayesian forest estimator is shown to lead
to optimal posterior contraction rates, up to logarithmic terms, for the Hellinger and L1

distances on probability density functions on [0; 1) for arbitrary Hölder regularity α > 0.
This improves upon previous results for constructions related to the Pólya tree prior,
whose optimality was only proven when α ≤ 1. Also, by adding a hyperprior on the
trees’ depth, we obtain an adaptive version of the prior that does not require α to be
specified to attain optimality.
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2.1 Introduction.
A significant shortcoming of the positive results of (almost-)optimal performances for tree-
based methods (ensemble versions or not) is that they typically assume that the signal
has limited regularity. Indeed, they study functional parameters that either lie in between
step-functions [158] and Lipschitz applications [29, 31] or belong to an additive model with
Lipschitz components [145]. This comes from the fact that tree-based partitioning induces
piecewise-constant estimators, which are usually too rough for efficient inference of smooth
applications. Nevertheless, it has been noted that the aggregation of individual estimates may
have a ”smoothing” effect. This idea is already present in Breiman’s bagging [21]. It thus
seems conceivable that a forest, i.e., a tree ensemble, may be more regular and enjoy optimal
rates with even more restrictive smoothness assumptions. A few years ago, Arlot & Genuer [3]
indeed showed that this could be the case in a regression setting. Their method is described
in more detail in Section 2.2. In addition, some works made links between random forests
and kernel estimators [149, 3]. This similarity was also recently established by [128] in the
context of another tree ensemble model based on the Mondrian process [146], the Mondrian
Forest [95]. The forest models developed there are such that the random construction of
single trees is independent of the observed data. As mentioned above, such simplification has
proved fruitful to come up with theoretical results. These are commonly known as Purely
random forests. They are also interesting for the study of Bayesian tree ensemble methods in
that they too rely on the specification of a probability distribution on sample space recursive
partitionings.
The present work builds upon ideas from [3]. The authors developed a Purely random forest
model that attains minimax convergence rates on the class of twice differentiable functions
on [0; 1], for a modified L2-loss (excluding points near the interval frontier). However, the
related single-tree estimators are shown to be optimal only up to once-differentiable regularity.
In the following, we will see how it is possible to adapt their aggregation of trees to forests to
Pólya trees. We introduce a new prior on probability density functions, the Discrete Pólya
Aggregate (DPA) prior, which is a toy random forest incorporating an aggregation step in its
definition. Our contribution is threefold. First, we prove that the aggregation in DPA induces
smoothing: the corresponding posterior distribution attains the optimal (up to log terms)
Hellinger rates on classes of densities of arbitrary Hölder regularity α (no upper bound). Note
that [3] and [121] achieve this only up to α = 2. We demonstrate this smoothing through
a link between DPA and spline densities. Second, our construction is adaptive: our results
hold without knowledge of the regularity parameter through a hyperprior on the tree depth.
Furthermore, we show how to handle smoothing at the domain’s frontier by slightly modifying
the prior close to the edges. Third, the DPA prior can be seen as a possible ’way’ to smooth
PT priors, a question left open in [29, 31], at least here in terms of Hellinger rates. These
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2.2. Aggregation of a Pólya Tree.

results highlight the benefits that ensemble methods can have in Bayesian nonparametrics,
smoothing the estimator to attain optimality on a broader class of problems and allowing
adaptation. It is worth mentioning that [107] showed that a Bayesian forest made of ’smooth’
decision trees adapts to high regularities in a regression setting. However, their individual ’tree
predictors’ are already smooth, whereas we work with ’hard’ histogram-tree predictors, as in
original random forests.
This chapter outline is as follows: Section 2.2 introduces our study framework and the
aggregation ideas from [3] before presenting the DPA prior. Then, in Section 2.3, we expound
on our results on the DPA posterior and other ones on priors inspired by the study of DPA.
After a short discussion, the article body ends with the proofs of these results in Section 2.5.
Selected proofs, helpful lemmas and elements used to derive our main results and a short
numerical study illustrating our theoretical analysis are deferred to Section 2.6.

2.2 Aggregation of a Pólya Tree.
2.2.1 Framework.
Let’s elaborate on the problem at hand, which is the one of density estimation. Below, Pf
is the probability distribution on Ω := [0; 1) with density f w.r.t. Lebesgue measure λ. In
a full Bayesian framework, one specifies a distribution on a pair (X(n), f), determined by a
prior on probability densities f , denoted Π, and the conditional distribution X(n) | f ∼ P⊗nf .
From this, one obtains the posterior distribution, denoted Π [· |X], omitting the superscript
for conciseness. We adopt a frequentist point of view in the analysis of the Bayesian procedure.
Indeed, we assume that X follows the distribution P⊗nf0 for a given f0 instead of the marginal
distribution of the pair (X, f). Accordingly, we are interested in the asymptotic behaviour of
Π[· |X] under such conditions. In this chapter, we introduce priors on probability densities
such that the associated posteriors concentrate their masses on balls with center f0 at optimal
rates (up to logarithmic factors).

A central assumption for our subsequent analysis is that f0 is α-Hölderian (α > 0), i.e., it
belongs to the Hölder class, with bαc the biggest integer strictly smaller than α,

Σ(α, [0, 1)) :=
{
f : [0, 1) 7→ R | ||f ||Σ(α) := sup

x6=y

|f (bαc)(x)− f (bαc)(y)|
|x− y|α−bαc

< +∞
}
.

In the following, we write, for real positive sequences un, vn, un . vn whenever there exists a
constant C > 0 independent of n such that for any n large enough, un ≤ Cvn (& is defined
likewise). Also, if un . vn and un & vn, we write un � vn, while un ∝ vn means that there
exists a constant C such that un = Cvn. When comparing two quantities a, b ∈ R, we write
a ∨ b := max(a, b) and a ∧ b := min(a, b). For random variables X and Y , X ⊥⊥ Y means
independence. Ef denotes the expectation under P⊗nf , as there will no ambiguity on n in
the following. Also, as pointed out, we denote bac the greater integer strictly smaller than a.
As for the usual floor operator, it is written b·cf. For real univariate maps f, g, f ∗ g is their
standard convolution. The n-dimensional unit simplex is

Sn :=
{

(x1, · · · , xn) ∈ Rn |xi ≥ 0,
n∑
i=1

xi = 1
}

23



2. Smoothing from Bayesian forests

and the ε-covering number N(ε, A, d), for some ε > 0 and A a subset of metric space (V, d),
is the minimum number of ε-balls with centers in V needed to cover A. ‖·‖1 is the L1(Ω)
norm and h is the Hellinger distance.

2.2.2 Smoothing of frequentist forest estimators.
Since they entail piecewise-constant estimators with independent heights, inference methods
that rely on single-tree constructions are usually limited in their performance. They are
generally suboptimal on balls of Hölder classes with regularity α > 1. Nonetheless, there is
hope that their ensemble methods are less prone to such problems and better suited for the
inference of smoother parameters. In this section, we discuss a toy model from [3] which
confirms this intuition.

0 1
A0 A1 A2 A3

U U U U0 1
B0 B1 B2 B3 B4

Figure 2.1: Random shift of a regular partition.

Let’s assume that we are faced with estimating some map f0 : [0; 1)→ R (let it be in density
estimation, regression, Gaussian white noise problem, etc.). Tree-based methods build upon a
recursive partitioning of the interval [0; 1) so that the estimator is piecewise constant on this
given partition. Some data average typically defines the values taken on each cell. Conversely,
any partition in subintervals can be represented by a binary tree. Purely random forests then
rely on the aggregation of random piecewise constant estimators, the cells of the partitions
being random and independent of the observed data.
A particular toy distribution Ptoy on partitions presented in [3] is sketched in Figure 2.1.
Given k ∈ N∗, the partition U is defined starting with a regular partition of step k−1 whose
breakpoints are shifted to the right by U/k, with U ∼ U [0; 1]. A tree estimator averages the
data on the partition P ∼ Ptoy while a q-forest, q ≥ 1, is itself the average of q tree estimators
corresponding to the i.i.d. partitions Pi ∼ Ptoy, i = 1, . . . , q. In the context of nonparametric
regression with a modified L2-loss that only takes into account points far enough from the
frontier of [0; 1], [3] shows that forests with a sufficient amount of trees and a well-chosen
k attain optimal convergence rates in the estimation of twice differentiable functions. An
intuition for this result is that, in the limit q → ∞, the forests actually mimic a triangular
kernel estimator (see Proposition 4 from [3]). On the other hand, even with an optimal k,
single-tree estimators cannot do better than usual histogram estimators and are optimal only
when the function f0 has at best Lipschitz regularity. While the approximation error of a tree is
controlled by the L2-projection of f0 on a linear space of piecewise-constant maps, forests’ one
is controlled by the average of such projections on different spaces (the cells varying between
spaces). It then appears that aggregation allows forests to borrow strength from a smoother
object that enjoys nice approximation properties, bringing about the estimator’s smoothing.
However, aggregating once still only allows the obtention of minimax convergence rates
corresponding to twice differentiable regularity at most. It is unclear how the idea could be
pushed further to adapt to arbitrary regularities in this context. Below, we see that it is
possible to do so with Bayesian estimators.
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2.2. Aggregation of a Pólya Tree.

2.2.3 The DPA prior.
Since we are focusing on density estimation, it is sensible to delve into the Pólya Tree prior,
and more particularly into its finite version where the tree is truncated at a given depth. We
talk about the Truncated Pólya Tree (TPT) prior to refer to the distribution on probability
density functions defined in the following paragraph.

Ω = [0; 1)

I0 = [0; 1/2)

I00 = [0; 1/4)

g(x) = 4Y0Y00

Y00 ∼ Beta (ν00, ν01)

I01 = [1/4; 1/2)

g(x) = 4Y0Y01

Y01 = 1− Y01

Y0 ∼ Beta (ν0, ν1)

I1 = [1/2; 1)

I10 = [1/2; 3/4)

g(x) = 4Y1Y10

Y10 ∼ Beta (ν10, ν11)

I11 = [3/4; 1)

g(x) = 4Y1Y11

Y11 = 1− Y10

Y1 = 1− Y0

Figure 2.2: Truncated Pólya Tree at depth L = 2.

We introduce some notation and illustrate the construction of the TPT prior in Figure 2.2 (see
also Chapters 3.5-3.7 of [65]). For any l > 0 and 0 ≤ k < 2l, the dyadic number r = k2−l
has a binary expansion 0.κ1 . . . κl (possibly padded with 0’s on the right) with κi ∈ {0, 1} for
i = 1, . . . , l, i.e., r = ∑l

j=1 κj2−j . Reciprocally, any κ ∈ {0, 1}l with l > 0 corresponds to the
binary expansion of a dyadic number of the form k2−l for some 0 ≤ k < 2l. Consequently, we
write κ(l, k) ∈ {0, 1}l the sequence of length |κ(l, k)| = l corresponding to the dyadic k2−l
(by convention κ(0, 0) = ∅). Then, for 0 < i ≤ l and κ = κ1 . . . κl ∈ {0; 1}l, κ[i] := κ1 . . . κi.
For any pair (l, k) ∈ N× Z, we introduce Il,k :=

[
k
2l ,

k+1
2l
)

and, whenever l ≥ 0, 0 ≤ k < 2l,
Iκ(l,k) := Il,k. One sees that Iκ = Iκ0 ∪ Iκ1 and Ω = ∪κ: |κ|=lIκ so that the union of the sets
of the form Iκ defines a recursive partitioning of the unit interval. In Figure 2.2, one sees that
this partitioning consists of splitting each interval in its midpoint from one level to another.
We refer to Iκ0 (resp. Iκ1) as the left (resp. right) child of Iκ. Therefore, κ encodes the
sequence of partitioned sets from Ω to Iκ according to this relationship.
Then, for L ∈ N∗ and a set of positive real parameters A =

{
υκ, κ ∈ ∪Ll=1{0, 1}l

}
, we say

that the Lebesgue probability density g follows a Truncated Pólya Tree distribution TPTL (A)
for the above recursive partitioning scheme if there exist random variables 0 ≤ Yκ ≤ 1 for any
0 < |κ| ≤ L such that

• the variables Yκ0 with 0 ≤ |κ| ≤ L − 1 are mutually independent and Yκ0 ∼
Beta(υκ0, υκ1),

• Yκ1 = 1− Yκ0 for 0 ≤ |κ| ≤ L− 1,

• ∀κ s.t. |κ| = L, ∀x ∈ Iκ, g(x) = 2L∏L
l=1 Yκ[l] .

The link between this construction and dyadic trees is illustrated in Figure 2.2 where we see
that L defines the depth of a tree that encodes a partition of Ω. One sees that for any
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2. Smoothing from Bayesian forests

sequence κ as above, Yκ0 = Pg (Iκ0) /Pg (Iκ) = Pg (Iκ0 |Iκ). Subsequently, we always assume
for simplicity that the parameters υκ in the set A verify υκ = a|κ|, so that we rather write
A = (al)0<l≤L.

Setting HL,i := 2L1IL,i , a probability density g defined as above can be written

g =
2L−1∑
i=0

ΘiHL,i, Θi =
L∏
l=1

Yκ(l,bi2l−Lcf), (2.1)

so that it belongs almost surely to

CL :=
{
h : [0, 1) 7→ R+

∣∣∣∣
ˆ
h = 1, h is constant on Iκ, |κ| = L

}
.

As pointed out before, the elements of CL are too rough to approximate efficiently smooth
applications, so we would like to leverage ideas developed in the last section to obtain
”smoother” prior samples.
The TPT prior defined above has samples that are piecewise constant on some dyadic partition
of Ω. However, it would be possible to develop a similar prior so that the samples are piecewise
constant on a different partition. Figure 2.3 illustrates such construction in the case of a
dyadic partition shifted by some quantity S, just like in Section 2.2.2. We point out a slight
difference from what we described in Section 2.2.2: to be encoded in a complete binary tree of
depth l ≥ 0, the recursive partitions need to have 2l elements at level l, while a shifted dyadic
partition has 2l + 1 elements (see Figure 2.1). The way to go here is to merge the external
cells, corresponding to sets B0 et B4 in Figure 2.1 or [0;S) and [3/4 + S; 1) in Figure 2.3.
Following the ideas from Section 2.2.2, for some L > 0, we could then define a new prior
whose samples are the averages of q ≥ 0 independent maps. Each of these maps would
follow an independent TPT prior with depth L, with their underlying partitions that are dyadic
partitions shifted by q independent uniform random variables.
As we will see in the following sections, the priors must allocate some of their mass to subsets
of limited complexity to obtain posterior contraction rates. It is not the case of the construction
we just proposed, as the samples belong to a functional class that is too rich, and the prior
mass is overly spread out. Consequently, we need to impose some correlation between the q
tree maps. We propose a modified prior in which the aggregated trees are not independent
and the shifts of their dyadic partitions are deterministic. Indeed, as we do not want the prior
to have its samples that are much more complex than the ones of the TPT distribution (for a
given L > 0), we would like it to involve just as many Y ’s Beta random variables.
First, for f : R→ R, q ∈ N∗ and s > 0, we define a finite aggregation step as the effect of
the map f → f 1

q,s defined by

f 1
q,s : R→ R

x 7→ 1
q

q−1∑
i=0

f

(
x− is

q

) (2.2)

for any application f : R→ R. If f is the 1-periodic extension of a TPTL sample and s = 2−L,
L > 0, the restriction to [0; 1) of f 1

q,s is the aggregation of q ≥ 0 piecewise constant maps as
described above. More precisely, it is the aggregation on [0; 1) of q maps constructed in the
same way as in Figure 2.3, and that share the same values (the Y ’s variable are identical) on
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[0; 1)

[S; 1/2 + S)

[S; 1/4 + S)

f(x) = 4Y0Y00

Y00

[1/4 + S, 1/2 + S)

f(x) = 4Y0Y01

Y01

Y0

[1/2 + S; 1) ∪ [0;S)

[1/2 + S; 3/4 + S)

f(x) = 4Y1Y10

Y10

[3/4 + S; 1) ∪ [0;S)

f(x) = 4Y1Y11

Y11

Y1

Figure 2.3: Shifted Truncated Pólya Tree at depth L = 2, with shift S.

their respective underlying partitions, which are dyadic partitions shifted by Si = iq−12−L for
i = 0, . . . , q − 1. The resulting map could then be viewed as the sample of a simplified prior
on forests, based on TPTs, which is the pushforward measure of the TPTL measure by the
’aggregating’ map (2.2). However, this restriction on [0; 1) of a 1-periodic map is ’cyclical’
over the frontier of the interval, as most of the trees have the same value near 0 and 1 (cf.
Figure 2.3). We discuss this after the complete definition of our new priors.
Before going further, let’s discuss some aspects of our aggregation scheme and the definition
of the ’Pólya forest’ above. It has the benefit that it can be generalized to higher aggregation
orders via the following recurrence relationship, which involves some weights depending on the
degree of aggregation k ∈ N∗:

fk+1
q,s (·) :=

(
fkq,s

)1

q,s
(·) = 1

(q − 1)(k + 1) + 1

(q−1)(k+1)∑
i=0

∑
(j1,...,jk+1)∈[[0;q−1]]k+1,

j1+···+jk+1=i

f

(
· − is

q

)
.

Aggregating k times, we obtain ”forests of forest”, which are more general forests of weighted
trees, with non-uniform weights. To see the actual effect of this operation, it is useful to have
a look at what is happening in the limit q →∞ (i.e. for an ”infinite forest”). If f is Riemann
integrable on any interval of length s, then letting q →∞ results in f 1

q,s converging pointwise
to

f 1
∞,s : R→ R

x 7→ s−1
ˆ x

x−s
f(t)dt = s−1(χs ∗ f)(x)

where χs(t) := 1[0;1](t/s). For simplicity, we write χ := χ1. This defines a continuous
aggregation that can also be iterated, for l ∈ N∗,

f l+1
∞,s :=

(
f l∞,s

)1

∞,s
= s−(l+1)χ∗(l+1)

s ∗ f (2.3)

with χ∗(l+1)
s the (l + 1)-th iterated convolution of χs with itself. Such an ”infinite forest” (if

f is a tree function) is the continuous aggregation of a continuum of ’tree’ maps, possibly
with non-uniform weights for higher degrees of aggregation. Besides, we take the convention
f 0
q,s := f 0

∞,s := f . Thanks to Lemma 3, for m ≥ 1, we also have the more explicit formula for
the continuous aggregation
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2. Smoothing from Bayesian forests

fm∞,s(·) = s−1 χ∗m(·/s) ∗ f. (2.4)

As we will see later, the weighted aggregation of trees allows obtaining even smoother forests.
Finally, setting, for 0 < i ≤ m+ 1,

ωm,i :=
ˆ i

0
χ∗(m+1) (t) dt, (2.5)

we define our new prior, the Discrete Pólya Aggregation (DPA) distribution. Fixing m ∈ N,
L ∈ N∗ such that 2L−1 > m, q ∈ N∗, U > 0 and a set of hyperparameters A, the samples of
DPA(m,L, q,A, U) are generated sequentially as follows:

1. Trees definition and handling of the frontier

a) Draw g such that g ∼ TPTL (A). One writes

g(·) =
2L−1∑
i=0

ΘiHLi

for some sequence (Θi)2L−1
i=0 whose elements are positive and sum up to 1.

b) Given Θi, 0 ≤ i ≤ 2L − 1,

θi =


Θi if 0 ≤ i ≤ 2L −m− 1,
vi ∼ U

[
0 ∨ Θi−(1−ω

m,2L−i)U
ω
m,2L−i

;U ∧ Θi
ω
m,2L−i

]
if 2L −m ≤ i ≤ 2L − 1,

θi = Θi−m−ωm,2L+m−ivi−m

1−ω
m,2L+m−i

if 2L ≤ i ≤ 2L +m− 1

where the uniform variables above are mutually independent.
c) Define the (2L + m)-periodic sequence (ui)i∈Z such that ui = θj, j ≡ i

mod 2L +m.

2. Aggregation
Set

f =
∑
i∈Z

uiHL,i

as the base tree and output, as the aggregation of shifted trees, the restriction on [0; 1)
of

fmq,2−L/

ˆ
[0;1)

fmq,2−L(v)dv.

Step 1a and Step 2 gather the ideas we have presented up until now, namely the definition
and the aggregation of a finite number of TPT samples, with shifted underlying partitions.
Another related distribution that we name the Continuous Pólya Aggregation (CPA) prior
and denote CPA(m,L,A, U), corresponds to the situation where a continuum of Pólya Tree
samples are aggregated with the operation (2.3). It is defined by a similar algorithm to the
one above, except that Step 2 is replaced by
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2’. Aggregation
Set

f =
∑
i∈Z

uiHL,i

as the base tree and output the restriction of fm∞,2−L on [0; 1) as the aggregation of
shifted trees.

Note that, according to Lemma 7, it is no longer necessary to normalize the output function
as the ui are defined so that fm∞,2−L is almost surely a probability density. Since, as mentioned
before, the external sets of shifted partitions are merged (see Figure 2.3), a ’Pólya forest’ based
on Steps 1a and 2 (or 2’.) only would have the side effect of cycling over the frontier (i.e., it
tends the same limits toward the frontier), as shown in Figure 2.6. It presents a sample from a
’naive’ construction, aggregating shifted trees without treatment on the frontier. That is why
the above definitions of the DPA and the CPA prior also feature Steps 1b and 1c to modify the
frontier behavior. It is possible to appreciate the advantage of this treatment on the frontier
in Figures 2.7 and 2.8, where similar samples are plotted, with and without this modification.
Without it, the samples would not be flexible enough to approximate general densities at a
reasonable rate. The figures we have just mentioned also help understand the role of each
parameter in the definition of DPA and CPA. The L parameter controls the depth of the trees
(i.e., how refined the underlying partitions are), and, along with the degree of aggregation m,
they define the smoothness of the prior. The number of trees q controls the distance between
the samples from DPA and CPA. Indeed, the latter acts as a ’limit’ prior for the former, and
we most naturally found our theoretical analysis on it. As we will see, properties satisfied by
CPA are shared with DPA, up to some discretization effects to be controlled. As one can
observe on the figures, samples from DPA are piecewise constant so that it is still a histogram
prior. However, in Section 2.5, it is shown that these samples are discrete approximations of
spline functions, which are themselves sampled by CPA, and this added structure accounts for
increased posterior performance (see Section 2.3).
Rather useful for adaptive estimation, U is a technical parameter related to our method to
modify the samples on the frontier. A small value of U allows the samples to have limited
complexity. This point is a prerequisite for our approach to derive posterior contraction rate.
It is also the reason for the simplifications highlighted above, with the partitions’ shifts being
deterministic and the trees all derived from a single TPT sample.

2.3 Main results.
2.3.1 Posterior contraction rates for DPA.
We now present our main results on the asymptotic behavior of our density estimation procedure
based on the DPA prior. In the following Theorem 2, we see that for any fixed arbitrary
degree of Hölder regularity of the true density f0, the posterior distribution attains minimax
contraction rates (up to a logarithmic factor). A critical parameter that needs to be adequately
defined to obtain the right degree of smoothness is the trees’ depth L. In the following
theorem setting, when the regularity of the true density f0 is given, we let the depth depend
on the sample size and α. Namely, we use the depth Ln that is the closest integer to the
solution x of

2x =
(

n

log n

) 1
2α+1

.
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2. Smoothing from Bayesian forests

Theorem 2. Suppose f0 ∈ Σ(α, [0, 1)), α > 0 and f0 ≥ ρ for some ρ > 0. Let us endow
f with a DPA (bαc, Ln, n, (al)0<l≤Ln , Un) prior which we write Π, where Un → ∞ is an
arbitrary sequence and such that, for some β > 0, R ≥ 1, δ > 0, for any 0 < l ≤ Ln,

al ∈

δn−β;R
.

Then, for M > 0 depending on ρ, α, ‖f0‖Σ(α), β and R, and d(f, g) = ‖f − g‖1 or d(f, g) =
h(f, g), as n→∞,

Ef0Π
d(f0, f) > M

(
log n
n

) α
2α+1

|X

→ 0.

Through the use of Ln and bαc, this result relies on the assumption that the regularity α is
fixed and known. The issue is that, in practice, we do not know this characteristic of the
problem beforehand. Adding a prior on the depth of the trees L (which will be linked by the
below functional to the degree of aggregation used) allows a new hierarchical prior attaining
the minimax contraction rate, with no requirement for the knowledge of any fine property of
f0 anymore. We introduce the following functional, defined for l, n ∈ N∗,

ξ(l, n) =

1
2

1
l

log2

 n

log n

− 1
 .

For any depth value and sample size, it gives an estimate of the smoothness of the signal to be
recovered. The result below shows that it is possible to define an adaptive prior that leads to
optimal contraction rates for an arbitrary regularity α > 0. The idea is to add a hyperprior on
different models, characterized by the depth l and the corresponding estimated smoothness.

Theorem 3. Suppose f0 ∈ Σ(α, [0, 1)), α > 0 and f0 ≥ ρ for some ρ > 0. Let us endow f
with the following hierarchical prior which we write Π,

l ∼ ΠL

f | l ∼ DPA
(
ξ(l, n), l, vnn log3 n, (al)0<l≤Ln , log n

)
,

vn →∞, and such that for l > 0, ΠL and the sequence (al)l∈N∗ satisfy, for some β > 0, R ≥
1, δ > 0,

ΠL [{l}] ∝ 2−l2l and al ∈

δn−β;R
.

Then, for M > 0 depending on ρ, α, ‖f0‖Σ(α), β and R, and d(f, g) = ‖f − g‖1 or d(f, g) =
h(f, g), as n→∞,

Ef0Π
d(f0, f) > M

(
log n
n

) α
2α+1

|X

→ 0.

The exponential decay of the atom probabilities in ΠL is fast enough so that the prior still
concentrates on a small number of models, but also slow enough so that it selects with high
probability the model specified in Theorem 2 for a given α. From the point-of-view of Theorem
7 in Section 2.6, an essential tool to prove our theorems, this hyperprior is a good tradeoff
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between the requirement that the prior concentrates its mass on a low-dimensional set and
the one that it gives sufficient probability to small balls centered on the signal f0. Therefore,
our hierarchical prior behaves just like our non-adaptive one, attaining optimal contraction
rates for any α > 0.
A slight difference between Theorems 2 and 3 is that the sequence Un is replaced by log n.
Indeed, as we seek to use Theorem 7 to prove the above result, the slow growth of the
logarithmic function ensures that the adaptive prior concentrates its mass on sieves of moderate
complexity. At the same time, neighbourhoods of f0 still have sufficient mass asymptotically.
Also, the number of trees is of a higher order since, in the adaptive setting, some further work
is necessary to handle discretization effects of finite forests.
The novelty in these results is that these are the first tree-based priors that enjoy (almost-
)optimal posterior contraction rates on classes of arbitrary smoothness to the best of our
knowledge. It highlights how incorporating aggregation operations in priors leads to smoother
forest samples when compared with tree priors. Previous results on related constructions were
usually limited to Hölder classes of regularity α ≤ 1 at most. The link between single tree
structures and piecewise constant functions makes them too rough to estimate smooth signals.
In comparison with the original toy model of Arlot et al. [3], we extend the aggregation process
so that the smoothing of the estimator occurs on regularity classes of orders even larger than
2. Also, we have shown that forest aggregation is compatible with the definition of adaptive
priors, as these two aspects do not come at the price of a loss in posterior contraction rate.
All in all, these are the first results of adaptivity and general smoothing for Bayesian forest
estimators. To conclude on the advances made here, we mention that the original results
on forest estimators from [3] put aside the effect of their construction on the frontier. The
frequentist framework let them focus on a localized loss (namely, the mean integrated square
error with integration on an interval strictly included in the unit interval), making the behavior
on the frontier of [0; 1) irrelevant. On the contrary, the constructions we come up with here
deal with those side effects by slightly modifying the samples near the frontier of Ω.

2.3.2 Extension to other priors.
Since the DPA prior is a discretized version of the CPA prior, the results from the previous
section stem from the fact that it is possible to obtain similar ones for the CPA prior. Theorem
4 below is a version of Theorem 3 for CPA.

Theorem 4. Suppose f0 ∈ Σ(α, [0, 1)), α > 0 and f0 ≥ ρ for some ρ > 0. Let us endow f
with the following hierarchical prior which we write Π

l ∼ ΠL

f | l ∼ CPA(ξ(l, n), l, (ai)0<i≤l, log n)

such that for l > 0, ΠL and the sequence (al)l∈N∗ satisfy, for some β > 0, R ≥ 1, δ > 0,

ΠL [{l}] ∝ 2−l2l and al ∈

δn−β;R
.

Then, for M > 0 depending on ρ, α, ‖f0‖Σ(α), β and R, and d(f, g) = ‖f − g‖1 or d(f, g) =
h(f, g), as n→∞,

Ef0Π
d(f0, f) > M

(
log n
n

) α
2α+1

|X

→ 0.
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2. Smoothing from Bayesian forests

The CPA prior is a prior on spline densities which involves a randomized step to define the
sample near the frontier of Ω. It is also possible to apply instead a deterministic correction to
the infinite forest after the aggregation step. We now define the Spline Pólya Tree (SPT) prior
which does so and further highlights the link between forests of Pólya Trees and spline priors.
Let’s assume that g ∼ TPTL (A) for some L > 0. Then, as g has support on Ω, we extend
it on R by 1-periodicity, giving rise to the application g̃. For m ≥ 0, let’s define the map
A1
m,2−L , which operates as a smoothing/aggregation of g, such that

A1
m,2−L(g) := g̃m∞,2−L

∣∣∣
[0;1)

. (2.6)

We now define the correction of this infinite forest. According to Lemma 8, since g̃ is a
piecewise constant map with breaks at dyadic numbers k2−L, k ∈ Z, A1

m,2−L(g) is a spline
function of order m+ 1 and knots

(
k2−L

)
0≤k≤2L

(more about this in Section 2.5). Therefore,
there exists polynomials P1, P2 of degree m such that, for u ∈

[
m2−L; (m+ 1)2−L

)
and

v ∈
[
1− (m+ 1)2−L; 1−m2−L

)
A1
m2−L(g)(u) = P1(u) and A1

m,2−L(g)(v) = P2(v).

As seen with CPA, the samples A1
m,2−L(g) gives good estimates of a density on the interior of

Ω but not near the frontier. An idea could be to modify the samples using only the information
from A1

m,2−L(g) away from the frontier, so that we then define the map

A2
m,2−L(g)(x) :=


A1
m,2−L(g)(x), if x ∈

[
m2−L; 1−m2−L

)
,

P1(x), if x < m2−L,
P2(x), if x ≥ 1−m2−L.

(2.7)

It is a spline function with no undesired continuity/cyclicality property. Finally, for τ > 0, the
following map is a density function

f̃ =
A2
m,2−L(g)+ + τ´ 1

0

(
A2
m,2−L(g)+(t) + τ

)
dt
. (2.8)

To sum up the above construction, if we write SDτ,m,2−L the application that associates the
function f̃ to g, our SPT prior written SPT (m,L,A, τ), is the image prior of a TPTL (A)
prior by this map. Once again, this construction leads to adaptive (almost-)optimal contraction
rate, for any arbitrary Hölder regularity, as is shown in the following theorem. However, the
definition of samples near the frontier are less flexible than in CPA, which leads to an additional
log factor in the rate. Still, it is not clear whether it is a shortcoming of SPT , or simply a
byproduct of our proof.

Theorem 5. Under the same assumptions on f0 as in Theorem 4, for τn =
√
n
−1, let’s endow

f with the following hierarchical prior which we write Π

l ∼ ΠL

f | l ∼ SPT (ξ(l, n), l,A, τn)

such that, for l > 0, ΠL and the sequence (al)l∈N∗ satisfy, for some β > 0, R ≥ 1, δ > 0,

ΠL [{l}] ∝ 2−l3/22l and al ∈

δn−β;R
.
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Then, for M > 0 depending on ρ, α, ‖f0‖Σ(α), β and R large enough and d(f, g) = ‖f − g‖1
or d(f, g) = h(f, g), as n→∞,

Ef0Π
d(f0, f) > Mn−

α
2α+1 log

α
2α+1 +1/2 n |X

→ 0.

2.4 Discussion.
One main take-away message is that a well-chosen histogram prior (in the form of a forest)
achieves adaptation to arbitrary regularities α > 0. We have shown that aggregating in a
suitable way single (truncated) Pólya trees to define a forest prior allows the induced Hellinger
and L1 posterior contraction rates to be optimal on Hölder balls of densities of arbitrary
smoothness coefficient. It then bypasses the apparent limitation to α ≤ 1 of single tree-based
priors in previous works. This result highlights the benefits that aggregation operations have
for Bayesian estimators. This also improves on previous results in the literature on forests
estimators that assumed either α ≤ 2 or α fixed.
This work is a new step in the understanding of the theoretical behavior of Bayesian forest
estimators. As noted above, it is still a ”toy” model as it involves some simplification, in
comparison with usual forest methods such as BART. Here, despite its definition as a sum-of-
tree prior, the different trees in the forest are almost the same Pólya tree sample, with the
difference that their underlying partitions are deterministically shifted. Whether it is possible
to obtain results similar to those in this document with aggregation schemes and Bayesian
forests that are more general is a matter for further investigation. A first extension would be
to allow the shifts to be random. Or, one could allow the tree components to be defined on
deterministic partitions of the sample space but with different values in corresponding cells
across the trees. Our results seem to pertain more particularly to priors on forests of many
well-correlated trees, and it is natural to try to lighten this imposed correlation. Doing so, we
would obtain priors closer to those used in practice.
Here we focused on the density model, but the ideas developed should more generally apply to
other settings, e.g., nonparametric regression, which is left for further work. The framework of
Theorem 7 in Section 2.6 limits our analysis of the Bayesian density estimation to Hellinger and
L1 rates. Other distances require more complex arguments involving additional technicalities.
However, we mention that this framework extends to the L2 distance in regression models.
Then, we expect our construction and the rates we obtained to apply to these models as well.
Another intriguing research direction is extending this work to higher dimensions, where the
sample space is instead [0; 1)d, with d potentially large. Though Pólya Trees in this setting
exist, the definition of forest aggregations is not straightforward. It is necessary to define the
partition shifts carefully so that the ’limiting continuous’ prior on ’continuous forests’ enjoys
good properties. We see in the next section that the elements of a B-spline basis appear
naturally in the limit with our aggregation of piecewise constant maps. In higher dimensions,
with well-defined shifts, it should be possible to recreate a tensor-product basis so that our
analysis applies as well.
Also, we have left aside the question of the computation of the posterior induced by our
new priors. It was not the primary purpose of this article, and consequently, we do not
investigate this further here. Even though the conjugacy property of single Pólya Trees is lost
through aggregation, usual methods such as MCMC should apply. Although we discussed its
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2. Smoothing from Bayesian forests

shortcomings, a simplified prior with no treatment near the frontier of Ω has the convenient
upside that its posterior is explicit. To illustrate the behavior of such a Bayesian forest, we
present some numerical experiments based on this prior in Section 2.6.2.
Finally, in the present work, we adapt ideas developed in the study of frequentist estimators
in [3] to obtain optimal Bayesian posterior rates for arbitrary regularities. Yet, extending
these new optimality results to frequentist random forests is not straightforward. Interestingly,
the Bayesian framework seems more conducive to developing methods that attain optimal
rates for high regularities: for instance, Bayesian mixtures of Gaussians can adapt to arbitrary
regularities (see [92]), even though the Gaussian kernel has order 1. This contrasts with
frequentist Gaussian kernel estimators, which are suboptimal for higher regularities. Therefore,
Bayesian forest posteriors could also have an advantage over frequentist random forests.

2.5 Proofs.
2.5.1 Link with spline spaces.
First, for A a real interval, we denote Πk,t(A) the space of splines of order k and knot sequence
t = (ti)i∈I , with I ⊂ Z such that ∀i, ti ∈ A ⊂ R. Also, we assume i ≤ j =⇒ ti ≤ tj as
well as, inf {ti | i ∈ I} = inf A and sup {ti | i ∈ I} = supA. Πk,t is the subset of maps in
Ck−2(A) whose restriction on any interval of the form [ti; ti+1[ is a polynomial of degree strictly
smaller than k. It coincides with the span of B-splines Bj,k of order k and knots t (see [46] or
[65] for definition and more details on this), with j = 1, . . . , k + #t− 1 if #t <∞, j ∈ Z
otherwise (dropping the dependence on the sequence of tj’s as there will be no ambiguity in
the following). Now, as shown in [5], for L ∈ N, a real sequence (ui)i∈Z and the piecewise
constant map

H̃L : R→ R
x 7→

∑
j∈Z

ujHLj,
(2.9)

we write for m ∈ N, by linearity and from (2.4),

(
H̃L

)m
∞,2−L

(x) =
∑
j∈Z

2Lujχ∗m(2L·) ∗HLj(x)

=
∑
j∈Z

uj22Lχ∗m(2L·) ∗ χ(2L · −j)(x)

=
∑
j∈Z

uj22L
ˆ
R
χ∗m(2Ls)χ

(
2L(x− s)− j

)
ds

=
∑
j∈Z

uj2Lχ∗(m+1)
(
2Lx− j

)
. (2.10)

Also, as shown in [46] (Section 10), the maps {χ∗(m+1)(· − i), i ∈ Z} are the Cardinal
splines of order m + 1, i.e., the B-Splines of order m + 1 corresponding to the biinfinite
knot sequence t = Z. Hence, it is a basis for Πm+1,Z(R) and similarly, one shows that
{2Lχ∗(m+1)(2L · −i) | i ∈ Z} is a basis for Πm+1,2−LZ(R). Therefore, (H̃L)m∞,2−L from (2.10)
belongs to this linear space and (ui)i∈Z is the sequence of its coordinates in this basis.
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We now remark that the map from (2.10) is 1-periodic if and only if (ui)i∈Z is a 2L-periodic se-
quence (see Lemma 6). It follows that Π̃m+1,2−LZ(R) := Πm+1,2−LZ(R)∩{f : R→ R, f 1− periodic}
is a linear space with basisSi,2L,m := 2L

∑
j∈Z

χ∗(m+1)(2L · −2Lj − i) | 0 ≤ i ≤ 2L − 1

 . (2.11)

In Section 2.5.3, we see that this space has good approximation properties, which we use
below in the proofs. Indeed, for each Hölderian density function on Ω, it contains an element
whose restriction to Ω is sufficiently close to the density function in the interior of the interval.
We also stress that, via a modification near the frontier of Ω, we can recover a spline function
that approximates the density well on the whole interval.
This observation accounts for the performance of our priors. Looking back at the algorithmic
definitions of DPA and CPA priors in Section 2.2.3, and setting aside the discretization in
DPA, it is possible to interpret them as follows. The coordinates of an element Π̃m+1,2−LZ(R)
are sampled via a TPT distribution, and uniform random variables transform it into a similar
spline from Πm+1,2−LZ(R) (or rather a restriction to Ω). This point of view underlies the
proofs in the following subsections.

2.5.2 Proofs of main results.
In this subsection, we provide the proofs for the theorems presented in the last section. The
adaptive results involve the derivation of intermediary points that we first demonstrate in the
proof of non-adaptive results (for fixed regularity). Therefore, we first analyze the case of fixed
regularities for CPA and DPA before delving into the proofs of adaptive results. Our arguments
rely on Theorem 7, whose conditions are investigated in lemmas following it. These lemmas
build on the approximation properties of spline functions and their parametric representations
(see Section 2.5.3). Also, we primarily focus on CPA, as the similar properties of DPA only
then require the control of additional discretization terms.

Proof of Theorem 2 (and extension to CPA for fixed regularity). It is sufficient to verify that
the conditions of Theorem 7 are satisfied. One shows that the prior puts sufficient mass in
some Kullback-Leibler neighborhoods of the true density. We use results in Approximation
Theory (see Lemmas 1 and 10) that we develop in Sections 2.5.3 and 2.6. Besides, one also
has to prove that the priors allocate most of their mass to subsets of limited complexity. It
ensues from the priors generating draws that belong to spaces that resemble spaces of splines,
whose dimensions are not too large (see Section 2.5.1 and Lemma 11). In the following, we
write m = bαc and, for c0 a constant to be defined below,

εn = c0

 log n
n

 α
2α+1

. (2.12)

1) Complexity of the prior: Let us define

Hm,l :=

(θi)i∈Z ∈ RZ
+, ∀i ∈ Z, θi = θi+m+2l ,

2l−m−1∑
i=0

θi +
2l−1∑

i=2l−m

(
ωm,2l−iθi + ωm,i−(2l−m−1)θi+m

)
= 1


. (2.13)
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2. Smoothing from Bayesian forests

According to Lemma 7 and the discussion following it, the following sets have probability 1
under the DPA prior (resp. CPA):

Fn :=

 fmn,2−Ln´ 1
0 f

m
n,2−Ln (t)dt

∣∣∣∣∣∣
[0;1)

, f =
∑
i∈Z

θiHLni, (θi)i∈Z ∈ Hm,Ln

 (2.14)

resp. :=

fm∞,2−Ln ∣∣∣[0;1)
, f =

∑
i∈Z

θiHLni, (θi)i∈Z ∈ Hm,Ln


 .

In (2.5), the positivity of χ ensures that inf1≤l≤m+1 ωm,l = ωm,1 = 1/(m+1)! (see Proposition
6.7.1., p.136, in [5]). So, any sequence in Hm,n has its coordinates bounded by (m + 1)!
because of their positivity and the constraint from the definition. Then, from Lemma 11 with
M = (m+ 1)!, q = n and L = Ln, there exists an absolute constant C such that for n large
enough and BRD(0, r) the L2 closed ball in RD of radius r,

N (εn,Fn, h) ≤ N
(
C
(
2Ln +m

)−1/2
ε2n,Hm,n, ‖·‖2

)
≤ N

(
C
(
2Ln +m

)−1/2
ε2n, BR2Ln+m

(
0,
√

2Ln +mω−1
m,1

)
, ‖·‖2

)
.

The first inequality is valid in the discrete case since the remainder term from Lemma 11 is of
the order o(εn) for our values of Ln and the number of trees q = n. It is a general fact that
there exists a universal constant C > 0 such that

N (δ, BRK (0,M), ||.||2) ≤
(
CM

δ

)K
.

Therefore, one concludes that, for any D > c−1
0 and n large enough

N (εn,Fn, h) ≤
(
Cω−1

m,1
2Ln +m

ε2n

)2Ln+m

≤ eDnε
2
n . (2.15)

2) Small ball probability condition: For the last condition of Theorem 7, we introduce the
sequence (ηi)0≤i≤2Ln+m−1 from Lemma 1 such that

1 =
2Ln−1∑
i=m

ηi +
m−1∑
i=0

(ωm,i+1ηi + (1− ωm,i+1)η2Ln+i) .

We define η̃i = ηi for i = m, . . . , 2Ln − 1 and for i = 0, . . . ,m− 1,

η̃i = η̃2Ln+i = ωm,i+1ηi + (1− ωm,i+1)η2Ln+i = (1− ωm,m−i)ηi + ωm,m−iη2Ln+i, (2.16)

this being consistent according to Lemma 5. This guarantees that (η̃i)0≤i≤2Ln−1 ∈ S2Ln .
First, from Lemma 10, for n and c0 large enough and C small enough, depending on ρ, α and
‖f0‖Σ(α), we have the inequality

Π
BKL

f0, εn

 ≥ Π
 max

0≤i≤2Ln+m−1
|ui−m − ηi| ≤ Cεn2−Ln


following from the fact that the terms depending on L = Ln and the number of ’trees’
q = n in Lemma 10 are of order O(ε2n). One controls the different random variables from the
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sequential definition of our prior in Step 1 so that one obtains a lower bound on the above
event probability. With notation from Part 2.2.3 and ι(i) ≡ i+m mod 2Ln , for any r > 0,
on the event{

max
0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ ω2

m,1

8 r ≤ ωm,1
8 r and max

2Ln−m≤i≤2Ln−1
|θi − ηi+m| ≤ ωm,1

r

4

}
,

we have that max
m≤i≤2Ln+m−1

|ui−m − ηi| ≤ r and, using the periodicity of (ui)i∈Z, for i =
0, . . . ,m− 1,

|ui−m − ηi| = |ui+2Ln − ηi|
= |θi+2Ln − ηi|

=
∣∣∣∣∣Θi+2Ln−m − ωm,m−iθi+2Ln−m

1− ωm,m−i
− η̃i − ωm,m−iη2Ln+i

1− ωm,m−i

∣∣∣∣∣
≤ (1− ωm,m−i)−1

(
ωm,1

8 r + ωm,m−iωm,1
r

4

)
≤ r(1/8 + ωm,m−i/4) ≤ r.

This ultimately implies that max
0≤i≤2Ln+m−1

|ui−m − ηi| ≤ r since ωm,1 ≤ ωm,l ≤ 1 for l ≥ 1.
Therefore, it remains to study the factors in the lower bound

Π
BKL

f0, εn

 ≥ Π
 max

0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ C

ω2
m,1

8 εn2−Ln
×

Π
 max

2Ln−m≤i≤2Ln−1
|θi − ηi+m| ≤ Cωm,1

εn
4 2−Ln

∣∣∣∣∣∣ max
0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ C

ω2
m,1

8 εn2−Ln
.

This translates the fact that, to obtain a good prior mass, it is sufficient to control the mass
of the TPT so that the associated forests are close to the density f0 on the interior of Ω, and
then control the behavior near the frontier to extend the result to the whole of Ω.
Now, for 0 ≤ i ≤ 2Ln − 1, we decompose Θi = ∏Ln

j=1 Yκ(Ln,i)[j] and η̃i = ∏Ln
j=1 yκ(Ln,i)[j] where,

for 1 ≤ j < Ln,

yκ(Ln,i)[j]0 :=
∑
s,bs2j+1−Lncf=bi2j+1−Lncf η̃s∑

s,bs2j−Lncf=bi2j−Lncf η̃s
, yκ(Ln,i)[j]1 := 1− yκ(Ln,i)[j]0

belong to [0; 1]. Also, y0 and y1 satisfy the same formula, with j = 0. Withh ej = Yκ(Ln,i)[j]

and tj = yκ(Ln,ι(i))[j] for sake of clarity, then, as for all j = 1, ..., Ln, |ej| ≤ 1 and |tj| ≤ 1, we
have

∣∣∣Θi − η̃ι(i)
∣∣∣ =

∣∣∣∣∣∣
Ln∑
j=1

e1...ej−1(ej − tj)tj+1...tLn

∣∣∣∣∣∣
≤

Ln∑
j=1
|e1...ej−1(ej − tj)tj+1...tLn|

≤
Ln∑
j=1
|ej − tj| .

This finally gives us that, using that the Y ’s variables are independent in the TPT,
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Π
[

max
0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ Cω2

m,1εn

8 ∗ 2Ln

]
≥ Π

 ⋂
0≤i≤2Ln ,
1≤j≤Ln

{∣∣∣Yκ(Ln,i)[j] − yκ(Ln,ι(i))[j]

∣∣∣ ≤ Cωm,1ε
2
n

8Ln2Ln
}

=
Ln∏
j=1

∏
|κ|=j−1

PX∼Beta(aj ,aj)

[
|X − yκ0| ≤ C

ω2
m,1

8Ln
εn2−Ln

]
.

Let’s write ξn = C
ω2
m,1

8Ln εn2−Ln . Since for any j, ajΓ(aj) = Γ(aj + 1) ≤ Γ(R + 1) =: R̃
and Γ is lower bounded by some constant ψ > 0 on the set of real positive numbers,
Γ(2aj)Γ(aj)−2 ≥ ψa2

jR̃
−2 ≥ ψR̃−2δ2n−2β. Also, for n large enough, if R ≥ aj > 1,

ˆ (yκ0+ξn)∧1

(yκ0−ξn)∨0
taj−1(1− t)aj−1dt ≥

ˆ ξn

0
taj−1(1− t)aj−1dt ≥ (1− ξn)R−1 ξ

R
n

R
≥ ξRn

2R−1R
,

while, for aj ≤ 1, the bound can just be replaced by ξn when n is large enough. Finally, for
some C > 0, depending on β, R, and c0,

Π
[

max
0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ Cω2

m,1εn

8∗2Ln

]
≥ ∏Ln

j=1
∏
|κ|=j−1

ψδ2

R̃2

(
1

2R−1R
∧ 1

)
n−2βξR∨1

n

=
(
ψδ2

R̃2

(
1

2R−1R
∧ 1

)
n−2βξR∨1

n

)2Ln−1

≥ e−Cnε
2
n .

(2.17)

Then, for Un large enough, i.e. n large enough, for any 2Ln −m ≤ i ≤ 2Ln − 1, the uniform
random variables θi verify for any C̃ > 0

Π
 |θi − ηi+m| ≤ Cωm,1

εn
4 2−Ln

∣∣∣∣∣∣ max
0≤i≤2Ln−1

∣∣∣Θi − η̃ι(i)
∣∣∣ ≤ C

ω2
m,1
8 εn2−Ln


≥

(
Θi

ωm,ι(i)

)−1
Cωm,1

εn
8 2−Ln

≥ Cω2
m,1εn2−Ln/8 ≥ e−C̃nε

2
n .

The first inequality is due to 0 ≤ ηi+m ≤ ω−1
m,ι(i)+1η̃ι(i) ≤ ω−1

m,ι(i)+1

(
Θi + Cω2

m,1εn2−Ln/8
)

on
the conditioning event, which follows by positivity and (2.16). Finally, we use the conditional
independence of the random variables θi to obtain the lower bound,

Π
BKL

f0, εn

 ≥ e−(C+mC̃)nε2n . (2.18)

We now conclude with Theorem 7 and equations (2.15) and (2.18), recalling that Fn is an
almost sure event under our prior, the constant M > 0 depending on ρ, α, ‖f0‖Σ(α), β and
R.

Proof of Theorems 3 and 4. We proceed as in the proof of Theorem 2, with εn as in (2.12).
The main difference is that the distributions now allocate positive mass to different depth
values L so that we adapt the sieves. Below, we take the union of sieves similar to those
introduced in the above proof, from low resolution L = 1 up to some threshold. To this effect,
we introduce the sequences of depth L1,n and L2,n such that 2Li,n � Ci

(
n

logn

) 1
2α+1 (i.e., it is
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the closest integer to the solution of this equation) for some constants C1 and C2 = 1. The
proof then again uses the Theorem 7 with an additional term to be controlled, corresponding
to the prior mass on the hyperparameter L.
1) Complexity of the prior: Let, for 0 ≤ k ≤ 2Ln − 1,

Ik,n :=

(θi)i∈Z ∈ RZ
+, ∀i ∈ Z, θi = θi+k+2L1,n and 0 ≤ θi ≤ log n,

2L1,n−k−1∑
i=0

θi +
2L1,n−1∑
i=2L1,n−k

(
ωk,2L1,n−iθi + ωk,i−(2L1,n−k−1)θi+k

)
= 1


and define the sieves for the DPA prior (resp. CPA)

Fn :=
L1,n⋃
l=1

f ξ(l,n)
∞,2−l [0; 1), f =

∑
i∈Z

θiHli, (θi)i∈Z ∈ Iξ(l,n),n

 (2.19)
resp. :=

L1,n⋃
l=1

 f
ξ(l,n)
n log3 n,2−l´ 1

0 f
ξ(l,n)
n log3 n,2−l(t)dt

∣∣∣∣∣∣
[0;1)

, f =
∑
i∈Z

θiHli, (θi)i∈Z ∈ Iξ(l,n),n


 .

In the definition of the prior, the sequence (ui)i∈Z lies in [0; log n]Z almost surely for n large
enough. Therefore, following Lemma 7 and the discussion after its proof, we now have, for n
large enough,

Π[F cn] = Π[l > L1,n] ∝
+∞∑

l=L1,n+1
2−l2l . 2−L1,n2L1,n

= e− log(C1n/ logn) 2L1,n
2α+1

≤ e−C1(c20/(4α−2))−1nε2n . (2.20)

Also, using Lemma 11 with M = log n, q = vnn log3 n, m ≤ ξ(1, n) ≤ log(n)/2 and l ≤ L1,n,
we use similar arguments as the ones preceding (2.15) to derive, for C,C ′ absolute constants
and D depending on C1 and c0,

N(εn,Fn, h) ≤
L1,n∑
l=1

(
C(2l + ξ(l, n)) log n

ε2n

)2l+ξ(l,n)

≤
L1,n∑
l=1

(
C(2L1,n + log(n)/2) log n

ε2n

)2l+log(n)/2

.

(
C(2L1,n + log(n)/2) log n

ε2n

)2L1,n+logn

≤ eC
′ logn2L1,n ≤ eDnε

2
n . (2.21)

In particular, we have used that, with the sequences from the theorem, the term depending on
q in Lemma 11 is of order o(εn).
2) Prior mass condition: Since ξ(L2,n, n) = bαc, it is possible to use the same arguments
that led to (2.18), for n large enough, c0 large enough depending on ρ, α and ‖f0‖Σ(α) and C
large enough depending on β, R and c0, to obtain

39



2. Smoothing from Bayesian forests

Π [BKL(f0, εn)] & Π [BKL(f0, εn) | l = L2,n] 2−L2,n2L2,n

≥ e−Cnε
2
ne−(c20/(2α−1))−1nε2n . (2.22)

Indeed, in the argument invoking Lemma 10, the terms controlled with q = vnn log3 n are of
order o(ε2n).

We conclude using Theorem 7 along with equations (2.20),(2.21) and (2.22), since for C1
large enough, C1(c2

0/(4α− 2))−1 > C + (c2
0/(2α− 1))−1 + 4. Then, the theorem is valid for

M large enough, depending on ρ, α, ‖f0‖Σ(α), β and R.

2.5.3 Approximation theory for periodic splines.
In the constructions of CPA and DPA distributions, the aggregating operation we have defined
transforms a TPT sample into a periodic spline density (or a piecewise constant approximation
of it for DPA). It is convenient as these periodic splines have good approximation properties
according to the following lemma. It is the result of (2.10), Lemmas 6 and 8, and the prior
definitions. Below, we prove that it is possible to approximate any Hölder density with such a
spline, as long as we focus on an interval far enough from the frontier of Ω.
In order to extend this result near the frontier of Ω, we also see that we can recover an
approximating spline on the whole of Ω from the periodic spline of Lemma 1. Consequently,
CPA and DPA include a stochastic step to simulate the modifications needed to obtain this
last spline density.
In the end, the link with splines explains why the aggregation part of our priors results in the
almost optimal contraction rates that we obtained in Section 2.3.

Lemma 1. Suppose m+ 1 ≥ α > 0 and L ≥ 1. There exists a constant C depending only
on m and α such that for every f0 ∈ Σ(α, [0, 1)), there exists g ∈ Π̃m+1,2−LZ(R) such that∥∥∥∥f0

∣∣∣
[2−Lm;1−2−Lm)

− g
∣∣∣
[2−Lm;1−2−Lm)

∥∥∥∥
∞
≤ C2−αL

(∥∥∥f (bαc)
0

∥∥∥
∞

+ ‖f0‖Σ(α)

)
for L large enough.
Let f0 be a probability density such that f0 > ρ for some ρ > 0. For L large enough, replacing
the above bound by C2−αL with C a constant depending on m, α,

∥∥∥f (bαc)
0

∥∥∥
∞

and ‖f0‖Σ(α),
we can choose g above of the form, for Si,2L,m as in (2.11),

g =
2L−1∑
i=0

θiSi,2L,m

with θ = (θi)0≤i≤2L in the 2L-dimensional unit simplex S2L , such that there exists

(ηi)0≤i≤2L+m−1 ∈
[
0; 2

(
‖f0‖Σ(α) + 2

∥∥∥f (bαc)
0

∥∥∥
∞

)]2L+m

satisfying

θk =

ηk if m ≤ k ≤ 2L − 1
ωm,k+1ηk + (1− ωm,m−k)η2L+k if 0 ≤ k ≤ m− 1
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and ∥∥∥∥∥∥∥f0 −
2L+m−1∑
k=0

ηk2Lχ∗(m+1)(2L · −(k −m))

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
∞

≤ C2−αL.

Proof. Let’s introduce the B-spline functions of order m+1 on the interval [−m2−L; 1+m2−L]
corresponding to the knots i2−L, −m ≤ i ≤ 2L+m, denoted B1,m+1, . . . , B2L+3m,m+1. Figure
2.4 depicts these basis functions in the particular case L = 3 and m = 3.
The Cox-de Boor recursion formula ensures that B-splines whose supports are far enough from
the edges −m2−L and 1 +m2−L are actually Cardinal splines with suitable scaling. As shown
in [46] (Section 10),

Bk,m+1 = χ∗(m+1)
(
2L · −(k − 2m− 1)

)
, m+ 1 ≤ k ≤ 2L + 2m. (2.23)

Also, Bi,m+1 is supported in an interval of length at most (m+ 1)2−L included in [(i− (2m+
1))2−L; (i−m)2−L], i.e.,

∀x /∈ [(i− (2m+ 1))2−L; (i−m)2−L], Bi,m+1(x) = 0. (2.24)

As f0 ∈ Σ(α, [0, 1)), according to Lemma 16, there exists a map

h : [−(m+ 1)2−L; 1 + (m+ 1)2−L]→ R such that,
h ∈ Σ

(
α, [−m2−L; 1 +m2−L]

)
, ‖h‖Σ(α) = ‖f0‖Σ(α) , h

∣∣∣
[0;1)

= f0.

Also, for L large enough,
∥∥∥h(bαc)

∥∥∥
∞
≤ 2

∥∥∥f (bαc)
0

∥∥∥
∞

by continuity. Using Lemma 9 and (2.24),
there exists C depending only on m and α, and reals θk, m+ 1 ≤ k ≤ 2L + 2m, bounded by
‖f0‖Σ(α) + 2

∥∥∥f (bαc)
0

∥∥∥
∞

, such that for L large enough∥∥∥∥∥∥∥h
∣∣∣
[0;1)
−

2L+2m∑
k=m+1

θkBk,m+1

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
∞

≤ C2−αL
(∥∥∥h(bαc)

∥∥∥
∞

+ ‖h‖Σ(α)

)
≤ C2−αL

(∥∥∥f (bαc)
0

∥∥∥
∞

+ ‖f0‖Σ(α)

)
. (2.25)

In addition, thanks to the small support of χ∗(m+1) (see Lemma 2) and the equality (2.23),
the maps ∑2L+2m

k=m+1 θkBk,m+1 and, with k̃(k) = (k − 2m− 1 mod 2L),
2L+m∑
k=m+1

θk
∑
i∈Z

χ∗(m+1)
(
2L · −(k + i2L − 2m− 1)

)
=

2L+m∑
k=m+1

θk2−LSk̃(k),2L,m(·)

are equal on the interval
[
2−Lm; 1− 2−Lm

)
. The latter map then satisfies the inequality

in the first part of the theorem according to (2.25) and belongs to Π̃m+1,Z/q(R) following (2.11).

Let’s now dwell on the second part of the Lemma. For L large enough, as f0 > ρ > 0, then
h > ρ/2 > 0 by continuity of h on [−m2−L; 1 + m2−L]. Therefore, Lemma 9 also ensures
the existence of a constant c(ρ) such that θk > c(ρ) > 0, m+ 1 ≤ k ≤ 2L + 2m in (2.25)
for L large enough. From (2.23), Lemma 5 and for ωm,l as in (2.5), we see that

2L
ˆ 1

0

2L+2m∑
k=m+1

θkBk,m+1(t)dt =
2L+m∑
i=2m+1

θi +
2m∑

i=m+1
(ωm,i−mθi + ωm,2m+1−iθi+2L) =: Ωm.
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For f0 a density, by integration on [0; 1), the inequality (2.25) gives∣∣∣2−LΩm − 1
∣∣∣ ≤ C2−αL

(∥∥∥f (bαc)
0

∥∥∥
∞

+ ‖f0‖Σ(α)

)
.

Define
θ̃i := θi

2−LΩm

.

The two last displays ensure that the θ̃i’s are all bounded by 2
(
‖f0‖Σ(α) + 2

∥∥∥f (bαc)
0

∥∥∥
∞

)
for L

large enough. From this inequality and (2.25), we now write, for a constant C depending on
m, α,

∥∥∥f (bαc)
0

∥∥∥
∞

and ‖f0‖Σ(α), that

∥∥∥∥∥∥∥f0 −
2L+2m∑
k=m+1

θ̃kBk,m+1

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥∥f0 −
2L+2m∑
k=m+1

θkBk,m+1

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
∞

+

∣∣∣∣1− (2−LΩm

)−1
∣∣∣∣
∥∥∥∥∥∥∥

2L+2m∑
k=m+1

θkBk,m+1

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
∞

≤ C2−αL (2.26)

since f0 is bounded on [0; 1) as a Hölderian density, the bound depending on α and ‖f‖Σ(α)
only (see [157], p. 9). Let’s now define

Θk :=


θ̃k if 2m+ 1 ≤ k ≤ 2L +m,

ωm,k−mθ̃k + (1− ωm,k−m)θ̃2L+k if m+ 1 ≤ k ≤ 2m,
ωm,2L+2m+1−kθ̃k + (1− ωm,2L+2m+1−k)θ̃k−2L if 2L +m+ 1 ≤ k ≤ 2L + 2m.

As pointed out in Lemma 5, ωm,l = 1−ωm,m+1−l and, as a consequence, for m+1 ≤ k ≤ 2m,
Θk = Θ2L+k. Then, by definition,(

2−LΘk

)
2m+1≤k≤2L+2m

∈ S2L .

It remains to introduce the application ∑2L−1
i=0 2−LΘi+2m+1Si,2L,m which satisfies, using once

again the small support of B-splines (see also Section 2.6.1), that

2L−1∑
i=0

2−LΘi+2m+1Si,2L,m

∣∣∣∣∣∣
[2−Lm;1−2−Lm)

=
2L+2m∑
k=m+1

θ̃kBk,m+1

∣∣∣∣∣∣
[2−Lm;1−2−Lm)

,

which, along equation (2.26), finally brings about the conclusion

∥∥∥∥∥∥∥f0

∣∣∣
[2−Lm;1−2−Lm)

−
2L−1∑
i=0

2−LΘi+2m+1Si,2L,m

∣∣∣∣∣∣
[2−Lm;1−2−Lm)

∥∥∥∥∥∥∥
∞

≤ C2−αL.

Therefore, g = ∑2L−1
i=0 2−LΘi+2m+1Si,2L,m satisfies all the conditions from the lemma.
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2.6 Supplementary results.
We present here additional elements used in the derivation of the main results in the above
sections. First, we present results on iterated convolutions of 1[0;1) and spline functions. At
the end of this section, we expound on the link between these functions and recall a classic
result in Approximation Theory for splines. Indeed, our priors involve iterated convolutions in
their definitions, so that a spline approximation theory is helpful here. This allows us to obtain
simpler conditions for the derivation of posterior contraction rates for the prior presented in
the article. This is the object of additional lemmas that build on a classical result from [64]
that we recall, followed by the proof of Theorem 4. Also available, a numerical study of our
results presents simulations, focusing on a simplified version of the priors we introduced. We
end with some technical results and the presentation of a more flexible extension of DPA.

2.6.1 Results on iterated convolutions of the indicator function
and spline functions.

Iterated convolution of the indicator function.

Lemma 2. For m ∈ N∗, ‖χ∗m‖∞ ≤ 1 and

∀x /∈ [0;m], χ∗m(x) = 0.

Proof. For m = 1, it is straightforward. Then, by induction, from the positivity of χ, for any
x ∈ R,

0 ≤ χ∗(m+1)(x) =
ˆ
R
χ∗m(t)χ(x− t)dt

≤
ˆ
R
1[0;m](t)1[x−1;x](t)dt

≤ 1]0;m+1[(x)

which concludes the proof.

Lemma 3. Let m ∈ N∗ and s > 0. Then

χ∗ms = sm−1χ∗m(·/s).

Proof. The result is straightforward for m = 1. Now, by induction, assuming that the property
for a given m is proved, for t ∈ R,

χ∗(m+1)
s (t) =

ˆ
R
χs (u)χ∗ms (t− u) du

= sm−1
ˆ
R
χs (u)χ∗m

(
t− u
s

)
du

= sm
ˆ
R
χ (v)χ∗m

(
t

s
− v

)
dv with v = u/s

= smχ∗(m+1)
(
t

s

)
.
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Lemma 4. Let m ∈ N∗ and s > 0. Then
ˆ
R
χ∗m(t)dt = 1 and s−m

ˆ
R
χ∗ms (t)dt = 1.

Proof. The result is straightforward for m = 1. For m ≥ 2, by positivity of χ and with the
change of variable v = t− u,
ˆ
R
χ∗m(t)dt =

ˆ
R

[ˆ
R
χ(u)χ∗(m−1)(t− u)du

]
dt =

ˆ
R
χ(u)

[ˆ
R
χ∗(m−1)(v)dv

]
du = 1

by induction. Then, from Lemma 3 and with the change of variable u = t/s

s−m
ˆ
R
χ∗ms (t)dt = s−1

ˆ
R
χ∗m(t/s)dt =

ˆ
R
χ∗m(u)du = 1.

Lemma 5. Let m ∈ N∗ and t ∈ R. Then χ∗m(m − t) = χ∗m(t). As a consequence, for
0 ≤ l ≤ m+ 1, ωm,l = 1− ωm,m+1−l.

Proof. For m = 1, χ(1 − t) = 10≤1−t≤1 = 10≤t≤1 = χ(t). By induction, if the theorem is
valid until m ∈ N∗,

χ∗(m+1)(m+ 1− t) =
ˆ
R

χ(u)χ∗m(m+ 1− t− u)du

=
ˆ
R
χ(1− v)χ∗m(v +m− t)dv with the change of variable v = 1− u

=
ˆ
R
χ(v)χ∗m(t− v)dv

= χ∗(m+1)(t).

The second part of the Lemma comes from a change of variable in (2.5) and Lemma 4.

Splines periodicity.

Lemma 6. Let (θi)i∈Z ∈ RZ, h = 1/N, N ∈ N∗ and m ∈ N∗. The map

x→
∑
i∈Z

θiχ
∗(m+1)

(
x

h
− i

)

is 1-periodic if and only if the sequence (θi)i∈Z is N -periodic.

Proof. With r ∈ R and p ∈ Z,
∑
i∈Z

θiχ
∗(m+1)

(
r + p

h
− i

)
=
∑
j∈Z

θj+pNχ
∗(m+1)

(
r

h
− j

)
.
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As
{
χ(m+1)

(
h−1 · −i

)∣∣∣i ∈ Z
}

is a basis for the space Πm+1,hZ (R) (see Section 2.5.1), the
above map satisfies

∑
i∈Z

θiχ
∗(m+1)

( ·
h
− i

)
is 1-periodic ⇐⇒ θi = θi+pN for any i ∈ Z and p ∈ Z.

Lemma 7. Let m ∈ N, L ∈ N and (Θi)2L−1
i=0 be positive real numbers such that

2L−1∑
i=0

Θi = 1

and introduce, for i = 2L −m, . . . , 2L − 1,

θi ∈
[
0; Θi

ωm,2L−i

]

where ωm,i is defined by (2.5). Then, if (ui)i∈Z is an (2L +m)-periodic sequence, such that

ui =


Θi if 0 ≤ i ≤ 2L −m− 1
θi if 2L −m ≤ i ≤ 2L − 1
Θi−m−ωm,2L+m−iθi−m

1−ω
m,2L+m−i

if 2L ≤ i ≤ 2L +m− 1
,

the restriction of the map fm∞,2−L on [0; 1], with f = ∑
i∈Z uiHLi, is a probability density

function on [0; 1].

Proof. From their definition, the ui’s are positive real numbers such that f and fm∞,2−L are
themselves positive as it can be seen in (2.4). It remains to compute the integral. Beforehand,
we recall that for any n ≥ 1, χ∗n is supported on [0;n], so that χ∗n(2L · −i) is supported
on [2−Li; 2−L(i+ n)], for any i ∈ Z. The intersection of this last interval with [0; 1] has its
interior non-empty if and only if −n+ 1 ≤ i ≤ 2L − 1. Hence,
ˆ

[0;1]
fm∞,2−L(v)dv =

ˆ
[0;1]

∑
i∈Z

ui2Lχ∗(m+1)
(
2Lv − i

)
dv according to (2.9) and (2.10),

=
2L−1∑
i=−m

ui2L
ˆ

[0;1]
χ∗(m+1)

(
2Lv − i

)
dv according to the above remark,

=
2L−1∑
i=−m

ui

ˆ
[−i;2L−i]

χ∗(m+1) (r) dr with r = 2Lv − i,

=
−1∑

i=−m
ui

ˆ m+1

−i
χ∗(m+1) (r) dr +

2L−m−1∑
i=0

ui

ˆ m+1

0
χ∗(m+1) (r) dr

+
2L−1∑

i=2L−m
ui

ˆ 2L−i

0
χ∗(m+1) (r) dr

according to the above discussion on the supports,

=
−1∑

i=−m
ui(1− ωm,−i) +

2L−m−1∑
i=0

ui +
2L−1∑

i=2L−m
uiωm,2L−i using Lemma 4,
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2. Smoothing from Bayesian forests

=
2L−m−1∑
i=0

ui +
2L−1∑

i=2L−m
uiωm,2L−i +

2L+m−1∑
i=2L

ui(1− ωm,2L+m−i) by periodicity,

=
2L−m−1∑
i=0

Θi +
2L−1∑

i=2L−m
θiωm,2L−i+

2L+m−1∑
i=2L

(1− ωm,2L+m−i)
Θi−m − ωm,2L+m−iθi−m

1− ωm,2L+m−i

=
2L−1∑
i=0

Θi +
2L−1∑

i=2L−m
θiωm,2L−i −

2L+m−1∑
i=2L

ωm,2L+m−iθi−m

= 1 +
2L−1∑

i=2L−m
θiωm,2L−i −

2L−1∑
j=2L−m

θjωm,2L−j

= 1.

In the above proof, we have also proven that the ui’s from the definition of the DPA and CPA
distributions are such that

2L−m−1∑
i=0

ui +
2L−1∑

i=2L−m

(
ωm,2L−iui + ωm,i−(2L−m−1)ui+m

)
= 1, (2.27)

where we used Lemmas 4 and 5 to express the last terms of the sum.

Definition of spline functions with iterated convolutions.

Lemma 8. Let h > 0 and m ∈ N. Then, if φ : R −→ R is a right continuous piecewise
constant map with breaks at points jh, j ∈ Z, then φm∞,h is a spline function of order m+ 1
with knots t = (jh)j∈Z.

Proof. Propositions 6.7.1 and 6.7.2 from [5] show that χ∗(m+1) is a spline of order m+ 1 with
knots i = 0, . . . ,m+ 1. Also, we write φ = ∑

j∈Z θj1[jh;(j+1)h)(·) for some sequence (θj)j∈Z.
We conclude the proof with (2.4), Subsection 2.5.1 and

φm∞,h(x) =
∑
j∈Z

h−1θj

[
χ∗m(h−1·) ∗ 1[jh;(j+1)h)

]
(x)

=
∑
j∈Z

θjh
−1
[
χ∗m(h−1·) ∗ χ(h−1 · −j)

]
(x)

=
∑
j∈Z

θjh
−1
ˆ
R
χ∗m(h−1s)χ

(
h−1(x− s)− j

)
ds

=
∑
j∈Z

θjh
−1χ∗(m+1)

(
h−1x− j

)
with the change of variable v = h−1s.
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Spline approximation.

Lemma 9. Suppose k ≥ α > 0 and t is a finite knot sequence of step at most T−1, included
in a closed bounded interval I ⊂ R. There exists a constant C depending only on k and
α such that for every f0 ∈ Σ (α, I) and T large enough, there exists θ ∈ Rk+#t−1 with
‖θ‖∞ <

∥∥∥f (bαc)
0

∥∥∥
∞

+ ‖f0‖Σ(α) and
∥∥∥∥∥∥
k+#t−1∑
i=1

θiBi,k − f0

∥∥∥∥∥∥
∞

≤ CT−α
(∥∥∥f (bαc)

0

∥∥∥
∞

+ ‖f‖Σ(α)

)

where the Bi,k’s form the B-spline basis of Πk,t(I). Furthermore, if f0 is strictly positive, for
T large enough, the vector θ can be chosen to have strictly positive coordinates. The θi’s can
indeed be lower bounded by a strictly positive constant depending on the lower bound on f0.

Proof. This is Lemma E.4 from [65].

Plots.

On Figure 2.5, we see (in the particular case L = 3 and m = 3) that on the interval
[2−Lm; 1− 2−Lm), the basis functions Si,2L,m are equal to the basis functions Bi+2m+1,m+1
from Figure 2.4.

Figure 2.4: B-splines of order 4 with knots ti = i/8 for −4 ≤ i ≤ 8 + 4 as introduced in the
proof of Lemma 1.

47



2. Smoothing from Bayesian forests

Figure 2.5: Base functions Si,8,3.

Figure 2.6 depicts a 1-step aggregation of a TPT sample as introduced in Section 2.2.3.
One sees that it smoothes the histogram, as it tends to a piecewise linear density. Even
though it remains a histogram function, this added smoothness accounts for better estimation
performance with the priors introduced in the before.

Figure 2.6: ”Näıve” aggregation f 1
3,2−3 where f is the periodic extension of a sample from

TPT3 (A). The first plots represents the shifted trees. The map in red is f 1
∞,2−3 when q →∞.
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2.6. Supplementary results.

Figure 2.7: Draws from the DPA and CPA priors and their equivalents without the draw of
uniform random variable to modify the behaviour near the frontier of [0; 1), with L = 3 and
m = 2.

Figure 2.8: Draws from the DPA and CPA priors and their equivalents without the draw of
uniform random variable to modify the behaviour near the frontier of [0; 1), with L = 6 and
m = 2.

2.6.2 Numerical simulations.
Though sampling from the CPA or DPA posterior may be possible via usual MCMC methods,
the modification of the samples near the frontier brought by the uniform variables makes
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2. Smoothing from Bayesian forests

it difficult to explicitly express the posterior or to come up with more efficient sampling
algorithms.
However, if we discard the uniform variables from the definition of the prior, it becomes
possible to derive an explicit formula of the prior. Namely, for L > 0, q > 0 and m ≥ 0,
let’s focus on the image prior of the TPTL(A) distribution by the map f → fmq,2−L (using
definitions from Section 2.2.3). Then, observing an i.i.d. sample X ∈ [0; 1)n, n > 0, it is
possible to show that the posterior is the image measure by f → fmq,2−L of a mixture of TPT
distribution, which makes it possible to sample directly from the posterior.
Indeed, for A = (al)0<l≤L and Y = {Yκ0, 0 ≤ |κ| < L}, we have that the posterior on Y is

Π [Y |X] ∝ f (X1, . . . , Xn|Y )
L−1∏
|κ|=0

[Yκ0(1− Yκ0)]a|κ|+1−1 ,

where the likelihood is

f (X1, . . . , Xn|Y ) =
n∏
i=1

q−m ∑
(j1,...,jm)∈[[0;q−1]]m

∑
κ,|κ|=L

1Xi−2−L(j1+···+jm)/q∈Iκ2L
L∏
j=1

Yκ[j]


= q−mn

∑
(j1,1,...,j1,m)∈[[0;q−1]]m,...,

(jn,1,...,jn,m)∈[[0;q−1]]m

n∏
i=1

∑
κ,|κ|=L

1Xi−2−L(j1+···+jm)/q∈Iκ2L
L∏
j=1

Yκ[j] .

For given (j1,1, . . . , j1,m), . . . , (jn,1, . . . , jn,m), all in [[0; q−1]]m, let’s note NX,(j11,...,jn,m) (Iκ) =∑n
i=1 1Xi−2−L(j1+···+jm)/q∈Iκ for any κ, |κ| ≥ 0, so that

n∏
i=1

∑
κ,|κ|=L

1Xi−2−L(j1+···+jm)/q∈Iκ

L∏
j=1

Yκ[j] =

∏
κ,0≤|κ|≤L−1

Y
NX,(j11,...,jn,m)(Iκ0)
κ0 (1− Yκ0)NX,(j11,...,jn,m)(Iκ1).

Finally, the posterior on Y is proportional to

q−mn
∑

(j1,1,...,j1,m)∈[[0;q−1]]m,...,
(jn,1,...,jn,m)∈[[0;q−1]]m

∏
κ,0≤|κ|≤L−1

Y
NX,(j11,...,jn,m)(Iκ0)+a|κ|+1−1
κ0 (1−Yκ0)NX,(j11,...,jn,m)(Iκ1)+a|κ|+1−1.

The distribution on Y is then a mixture of TPTL distributions with parameter setsA(j11,...,jn,m) ={
NX,(j11,...,jn,m) (Iκ) + a|κ| − 1, 1 ≤ |κ| ≤ L

}
(see [65], Chapter 3).

At the end of this section, we present a theoretical result for this posterior, but we present some
simulations first. The density f0 : x ∈ [0; 1) 7→ 1 + 0.5 ∗ sin (2πx) satisfies the assumptions
of the mentioned theorem with α = 1.5. We simulated 104 samples from this density and
drew 10 samples from the posterior, with parameters tuned as in the below theorem. We also
compare these with samples of the TPT posterior with parameters tuned as in [29]. In this
paper, sup-norm posterior contraction rates are proven for α ≤ 1. On Figure 2.9, we can see
that the modified DPA prior is associated with smoother posterior samples and leverage the
larger regularity of the signal.
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2.6. Supplementary results.

Figure 2.9: Posterior samples for the simplified DPA prior and the TPT prior, with sine
sampling density and sample size n = 104.

We also studied what happens with a density f0 whose behavior near the frontier renders
this simplified prior inadequate. Namely, on Figure 2.10, we analyze the situation where the
sampling density f0 is increasing, 3/2-smooth, but has different limits towards 0 and 1 (it was
obtained as the re-scaled exponential of an integrated Brownian motion). With a sample of
size n = 105 from f0 and comparing samples from their posteriors, the simplified forest prior
still outperforms the single-tree prior far for the frontier. However, as we did not include a
modification near the frontier, it behaves badly towards 0 and 1.
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2. Smoothing from Bayesian forests

Figure 2.10: Posterior samples for the simplified DPA prior and the TPT prior, with integrated
Brownian sampling density and sample size n = 105.

As discussed in the paper, this prior is not well-suited for the estimation of general smooth
densities as it behaves badly near the frontier of Ω. However, if we make additional assumptions
on the true densities to be recovered, it is possible to obtain an analog of Theorem 1.

Theorem 6. Suppose f0 ∈ Σ(α, [0, 1)), α > 0, f0 ≥ ρ for some ρ > 0 and f (i)
0 (0) = f

(i)
0 (1−)

for i = 0, . . . , bαc. If Π is the probability distribution of f = g
bαc
qn,2−Ln , g ∼ TPTL

(
(al)0<l≤Ln

)
,

such that for some β > 0, R ≥ 1, δ > 0,

• 2Ln �
(

n
logn

) 1
2α+1 ,

• qn ≥ 2αLn ,

• ∀a ∈ A, a ∈ [r;R] with R > r > 0,

Then, for M > 0 depending on ρ, α, ‖f0‖Σ(α), β and R, and d(f, g) = ‖f − g‖1 or
d(f, g) = h(f, g), as n→∞,

Ef0Π
d(f0, f) > M

(
log n
n

) α
2α+1 ∣∣∣X

→ 0.

The proof is similar to the one we provide for DPA in the previous sections, although quite
simpler as we do not have to take care of what happens near the frontier.
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2.6. Supplementary results.

2.6.3 Contraction rate derivation.

Theorem 7 (Ghosal, Ghosh, Van Der Vaart, 2000). Suppose d is either the Hellinger or the
L1 distance and Π is an a priori probability distribution on the space of probability densities.
Also,

BKL(f0, ε) =
{
f : [0, 1) 7→ R | K(f0, f) :=

ˆ
f0 log f0

f
≤ ε2,

V (f0, f) :=
ˆ
f0

(
log f0

f
−K(f0, f)

)2

≤ ε2
}
.

If the positive sequence (εn)n≥0 satisfies εn → 0, nε2n → +∞ and there exist sets Fn such
that the three following conditions are satisfied for some c > 0, D > 0

1. Π[BKL(f0, εn)] ≥ e−cnε
2
n ,

2. logN (εn,Fn, d) ≤ Dnε2n,

3. Π[F cn] ≤ e−(c+4)nε2n ,

it then follows, for a constant M > 0 sufficiently large, depending on c and D, that the
posterior satisfies, as n→∞,

Ef0Π[d(f0, f) > Mεn|X] −→ 0.

2.6.4 Forest priors DPA and CPA.
Bounds on the Kullback-Leibler divergence.

Lemma 10. Suppose f0 ∈ Σ(α, [0, 1)), α > 0, and f0 ≥ ρ for some ρ > 0. For m ≥ bαc,
take (ηi)0≤i≤2L+m+1 as the sequence from Lemma 1. Then, for (ui)i∈Z a 2L + m-periodic
sequence satisfying (2.27), L ∈ N,

f =
∑
i∈Z

uiHLi,

we have that there exists a constant C depending only on ρ, m, α and ‖f0‖Σ(α) such that,
for m ≥ bαc,

K
(
f0, f

m
∞,2−L

∣∣∣
[0;1)

)
∨ V

(
f0, f

m
∞,2−L

∣∣∣
[0;1)

)
≤ C

(
2−2αL + 22L max

0≤i≤2L+m−1
|ηi − ui−m|2

)

for L large enough and 2L max
0≤i≤2L+m−1

|ηi − ui−m| small enough. Also, if q is a large enough
integer,

V

f0,
fmq,2−L´ 1

0 f
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

 ≤ C

2−2αL + 22L max
0≤i≤2L+m−1

|ηi − ui−m|2 +
(
mω−1

m,12L

q

)2
and

K

f0,
fmq,2−L´ 1

0 f
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

 ≤ C

2−2αL + 22L max
0≤i≤2L+m−1

|ηi − ui−m|2 +
(
mω−1

m,12L

q

)2 .
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Proof. From Lemma 1, the map f̃L0 = ∑2L+m−1
i=0 ηi2Lχ∗(m+1)

(
2L · −(i−m)

)
is such that

∥∥∥∥f0 − f̃L0
∣∣∣
[0;1)

∥∥∥∥
∞
≤ C2−αL (2.28)

with C depending on m, α and ‖f0‖Σ(α). Let’s first write the decomposition, given A and B
exist (it will be shown later),

K
(
f0, f

m
∞,2−L

∣∣∣
[0;1)

)
=
´ 1

0 f0(t) log
(

f0(t)
fm
∞,2−L

(t)

)
dt

=
ˆ 1

0
f0(t) log

(
f0(t)
f̃L0 (t)

)
dt︸ ︷︷ ︸

= A

+
ˆ 1

0
f0(t) log

(
f̃L0 (t)

fm∞,2−L(t)

)
dt︸ ︷︷ ︸

= B

.

Focusing on the first term, we have, as log(1 + u) ≤ u for u > −1,

A ≤
´ 1

0 f0(t)f0(t)−f̃L0 (t)
f̃
L(t)
0

dt

=
´ 1

0
(f0(t)−f̃L0 (t))2

f̃
L(t)
0

dt+ 1−
´ 1

0 f̃
L
0 (t)dt

=
´ 1

0
(f0(t)−f̃L0 (t))2

f̃
L(t)
0

dt+ 1−
[∑2L−1

k=m ηk +∑m−1
k=0

(
ωm,k+1ηk + (1− ωm,m−k)η2L+k

)]
≤ 2

ρ

∥∥∥∥f0 − f̃L0
∣∣∣
[0;1)

∥∥∥∥2

∞
for L large enough,

≤ C
ρ

2−2αL,

where we lower bounded f̃L0 by ρ/2 on [0; 1) for L large enough as f0 is lower bounded by
ρ > 0. On the other hand, since f̃L0 and fm∞,2−L have unit integral on [0; 1) according to their
definitions, we have the upper bound

B ≤
´ 1

0 f0(t)
f̃L0 (t)−fm

∞,2−L
(t)

fm
∞,2−L

(t) dt

=
´ 1

0

(
f̃L0 (t)−fm

∞,2−L
(t)
)(

f0(t)−fm
∞,2−L

(t)
)

fm
∞,2−L

(t) dt

=
´ 1

0

(
f̃L0 (t)−fm

∞,2−L
(t)
)
(f0(t)−f̃L0 (t))

fm
∞,2−L

(t) dt+
´ 1

0

(
f̃L0 (t)−fm

∞,2−L
(t)
)2

fm
∞,2−L

(t) dt

≤ 1
2

´ 1
0

(f̃L0 (t)−f0(t)(t))2

fm
∞,2−L

(t) dt+ 3
2

´ 1
0

(
f̃L0 (t)−fm

∞,2−L
(t)
)2

fm
∞,2−L

(t) dt using that 2ab ≤ a2 + b2 for real numbers.

At this point, we develop from (2.10) and the fact that the maps χ∗(m+1)(2L · −k) make a
partition of the unity (see section E.2 from [65])

∥∥∥∥f̃L0 ∣∣∣[0;1)
− fm∞,2−L

∣∣∣
[0;1)

∥∥∥∥
∞
≤

∥∥∥∥∥∥
2L+m−1∑
i=0

(ηi − ui−m)2Lχ∗(m+1)(2L · −(i−m))

∥∥∥∥∥∥
∞

≤ 2L max
0≤i≤2L+m−1

|ηi − ui−m| .
(2.29)

Therefore, for L large enough and 2L max
0≤i≤2L+m−1

|ηi − ui−m| small enough, we also lower
bound fm∞,2−L by ρ/4. Under such conditions, we finally give the bounds

B ≤ 2
ρ

∥∥∥∥f0 − f̃L0
∣∣∣
[0;1)

∥∥∥∥2

∞
+ 6
ρ

∥∥∥f̃L0 − fm∞,2−L∥∥∥2

∞
≤ C

(
2−2αL + 22L max

0≤i≤2L+m−1
|ηi − ui−m|2

)
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and
K(f0, f

m
∞,2−L) ≤ C

(
2−2αL + 22L max

0≤i≤2L+m−1
|ηi − ui−m|2

)
.

For the discrete version,

K

f0,
fmq,2−L´ 1

0 f
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

 ≤ K(f0, f
m
∞,2−L) +

ˆ
[0;1)

f0 log

 fm∞,2−L

fmq,2−L
(´ 1

0 f
m
q,2−L(t)dt

)−1

 dλ.
It then remains to use Lemma 17 to see that for q large enough, since 0 ≤ f ≤ 2Lω−1

m,1 from
(2.27) and inf

1≤l≤m
ωm,l = ωm,1,

ˆ
[0;1)

f0 log

 fm∞,2−L

fmq,2−L
(´ 1

0 f
m
q,2−L(t)dt

)−1

 dλ

≤
ˆ

[0;1)
f0

(
fm∞,2−L − fmq,2−L

(´ 1
0 f

m
q,2−L(t)dt

)−1
)

fmq,2−L
(´ 1

0 f
m
q,2−L(t)dt

)−1

=
ˆ

[0;1)

f0 − f̃L0 + f̃L0 − fm∞,2−L + fm∞,2−L − fmq,2−L
(ˆ 1

0
fmq,2−L(t)dt

)−1
(
fm∞,2−L − fmq,2−L

(´ 1
0 f

m
q,2−L(t)dt

)−1
)

fmq,2−L
(´ 1

0 f
m
q,2−L(t)dt

)−1 dλ

≤ 4
ρ

∥∥∥f0 − f̃L0
∥∥∥2

∞
+ 4
ρ

∥∥∥f̃L0 − fm∞,2−L∥∥∥2

∞
+ 16

ρ

∥∥∥∥∥∥fm∞,2−L − fmq,2−L
(ˆ 1

0
fmq,2−L(t)dt

)−1
∥∥∥∥∥∥

2

∞

since 2ab ≤ a2 + b2 and (a+ b+ c)2 ≤ 3(a2 + b2 + c2),

≤ C

2−2αL + 22L max
0≤i≤2L+m−1

|ηi − ui−m|2 +
(
mω−1

m,12L

q

)2 ,
where we used that for L, q large enough and 2L max

0≤i≤2L+m−1
|ηi − ui−m| small enough,

fmq,2−L

(ˆ 1

0
fmq,2−L(t)dt

)−1

≥ ρ/8.

On the other hand, f0 belongs to an interval of the form [ρ/2;M ] as f0 is upper bounded
by a constant depending on α and ‖f0‖Σ(α) only since it is a Hölderian density (see [157],
p.9). Also, from equations (2.28) and (2.29), fm∞,2−L ∈ [ρ/4; 2M ] for L large enough and
2L max

0≤i≤2L+m−1
|ηi − ui−m| small enough. We then use Taylor’s inequality to write that

V (f0, f
m
∞,2−L) =

´
f0
(
log f0 − log fm∞,2−L

)2
dλ

.
∥∥∥∥f0 − fm∞,2−L

∣∣∣
[0;1)

∥∥∥∥2

∞

as well as

V

f0,
fmq,2−L´ 1

0 f
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

 .
∥∥∥∥∥∥∥f0 −

fmq,2−L´ 1
0 f

m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

∥∥∥∥∥∥∥
2

∞
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from Lemma 17 and q large enough. We conclude with the triangular inequality, equations
(2.28), (2.29) and Lemma 17.

Bounds on the Hellinger distance.

Lemma 11. Let (θi)i∈Z and (ζi)i∈Z be two
(
2L +m

)
-periodic sequences of real positive

numbers in Hm,L from (2.13), where L ∈ N∗,m ∈ N are such that m < 2L− 1, and verifying

‖θ‖∞ ∨ ‖ζ‖∞ ≤M ∈ R∗+.

If f = ∑
i∈Z θiHLi and g = ∑

i∈Z ζiHLi, then, for q ∈ N∗, q > 2L+1mM ,

h

 fmq,2−L´ 1
0 f

m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

,
gmq,2−L´ 1

0 g
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)


≤ 31/4

(
2L +m

)1/4
‖θ − ζ‖1/2

2 + 61/4

√√√√( 2L+1Mm

q − 2L+1Mm

)
(1 +mM),

as well as
h
(
fm∞,2−L

∣∣∣
[0;1)

, gm∞,2−L
∣∣∣
[0;1)

)
≤
(
2L +m

)1/4
‖θ − ζ‖1/2

2 .

Proof. First, the same computation as in the proof of Lemma 7 shows that
ˆ 1

0
fm∞,2−L(t)dt = 1.

Then, according to Lemma 17, there exists V such that |V | ≤ 2L+1Mm
q

and
ˆ 1

0
fmq,2−L(t)dt = 1 + V

as f takes values in [0; 2LM ]. The same properties are verified with g, which allows us to
write

h

 fmq,2−L´ 1
0 f

m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)

,
gmq,2−L´ 1

0 g
m
q,2−L(t)dt

∣∣∣∣∣∣
[0;1)



=
ˆ 1

0


√√√√√ 1

(1 + V )qm
∑

(i1,...,im)∈[[0;q−1]]m
f

u− i1 + · · ·+ im
q2L



−

√√√√√ 1
(1 + V ′)qm

∑
(i1,...,im)∈[[0;q−1]]m

g

u− i1 + · · ·+ im
q2L




2

du

1/2

≤

 ˆ 1

0

∣∣∣∣∣∣
∑

(i1,...,im)∈[[0;q−1]]m

f
(
u− i1+···+im

q2L
)

(1 + V )qm −
g
(
u− i1+···+im

q2L
)

(1 + V ′)qm

∣∣∣∣∣∣ du
1/2

≤

 1
qm

∑
(i1,...,im)∈[[0;q−1]]m

ˆ 1− i1+···+im
q2L

− i1+···+im
q2L

∣∣∣∣∣∣
f
(
u
)

(1 + V ) −
g
(
u
)

(1 + V ′)

∣∣∣∣∣∣ du
1/2
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≤

 ˆ 1

−m2−L

∣∣∣∣∣∣
f
(
u
)

(1 + V ) −
g
(
u
)

(1 + V ′)

∣∣∣∣∣∣ du
1/2

≤

(1 +m2−L)1/2

ˆ 1

−m2−L

 f
(
u
)

(1 + V ) −
g
(
u
)

(1 + V ′)

2

du

1/21/2

=
(1 +m2−L)1/2

 2L+m−1∑
i=0

2L
(

θi
(1 + V ) −

ζi
(1 + V ′)

)2
1/21/2

≤ 31/42L/4(1 +m2−L)1/4

 2L+m−1∑
i=0

(θi − ζi)2 +
2L+m−1∑
i=0

(
V

1 + V
θi

)2
+

2L+m−1∑
i=0

(
V ′

1 + V ′
ζi

)2
1/4

≤ 31/42L/4(1 +m2−L)1/4

 ‖θ − ζ‖2
2 +

(
V

1 + V

)2
2L+m−1∑

i=0
θi

2

+
(

V ′

1 + V ′

)2
2L+m−1∑

i=0
ζi

2 1/4

≤ 31/42L/4(1 +m2−L)1/4

 ‖θ − ζ‖2
2 + 2

(
2L+1Mm

q − 2L+1Mm

)2

(1 +mM)2

1/4

= 31/4
(
2L +m

)1/4
‖θ − ζ‖1/2

2 + 61/4

√√√√( 2L+1Mm

q − 2L+1Mm

)
(1 +mM).

Above, we have used that, since ωm,l = 1− ωm,m+1−l from Lemma 4,
2L+m−1∑
i=0

θi = 1 +
2L−1∑

i=2L−m

(
ωm,m+1−(2L−i)θi + ωm,2L−iθi+m

)

≤ 1 +
2L−1∑

i=2L−m

(
ωm,m+1−(2L−i) + ωm,2L−i

)
M

≤ 1 +mM.

Also,

h
(
fm∞,2−L

∣∣∣
[0;1)

, gm∞,2−L
∣∣∣
[0;1)

)
=
 ˆ 1

0

√∑
i∈Z

θi2Lχ∗m (2Lu− i)−
√∑
i∈Z

ζi2Lχ∗m (2Lu− i)
2

du

1/2

≤

 ˆ 1

0

∣∣∣∣∣∣
∑
i∈Z

(θi − ζi)2Lχ∗m
(
2Lt− i

)∣∣∣∣∣∣ du
1/2

≤

∑
i∈Z
|θi − ζi| 2L

ˆ 1

0
χ∗m

(
2Lt− i

)
du

1/2

≤

 2L+m−1∑
i=0

|θi − ζi|

1/2

≤
(
2L +m

)1/4
 q+m−1∑

i=0
|θi − ζi|2

1/4

≤
(
2L +m

)1/4
‖θ − ζ‖1/2

2 .
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2.6.5 Spline prior SPT .
Bounds on the Kullback-Leibler divergence.

Lemma 12. Suppose f0 ∈ Σ(α, [0, 1)), for α > 0, is a probability density and f0 ≥ ρ for
some ρ > 0. Define (ηi)0≤i≤2L−1 as the sequence from Lemma 15. Then, for τ > 0 small
enough, L ∈ N∗ large enough, (Θi)0≤i≤2L−1 ∈ S2L and

f = SDτ,bαc,2−L

2Ln−1∑
i=0

ΘiHLi

 ,
we have that there exists a constant C depending only on ρ, α, ‖f0‖∞ and ‖f0‖Σ(α) such
that

K(f0, f) ∨ V (f0, f) ≤ C

(
2−2αL + τ 2 +

(
2Lτ−1 ∨ 22Lτ−2

)2
max

0≤i≤2L−1
|ηi −Θi|2

)

for
(
2Lτ−1 ∨ 22Lτ−2

)
max

0≤i≤2L−1
|ηi −Θi| small enough.

Proof. Let fL0 be the map obtained from Lemma 15, then

fL0 = SDτ,bαc,2−L

2L−1∑
i=0

ηiHLi


for some (ηi)0≤i≤2L−1 ∈ S2L . We now give the decomposition, given A and B exist (it will be
shown later),

K(f0, f) =
´
f0 log

(
f0
f

)
dλ

=
ˆ
f0 log

(
f0

fL0

)
dλ︸ ︷︷ ︸

= A

+
ˆ
f0 log

(
fL0
f

)
dλ︸ ︷︷ ︸

= B

.

Focusing on the first term, the bound log(1 + u) ≤ u for u > −1 results in

A ≤
´ 1

0 f0
f0−fL0
fL0

dλ

=
´ 1

0
(f0−fL0 )2

fL0
dλ+ 1−

´ 1
0 f

L
0 dλ

≤ 2
ρ
||f0 − fL0 ||2∞ for L large enough,

(2.30)

where we used that, by construction,
´ 1

0 f
L
0 (t)dt = 1. Also, we have lower bounded fL0 by

ρ/2 for L large enough and τ small enough, as a consequence from our assumption on f0
and Lemma 15. On the other hand, using once again that fL0 is a density, we have the upper
bound

B ≤
´ 1

0 f0
fL0 −f
f
dλ

=
´ 1

0
(fL0 −f)(f0−f)

f
dλ

=
´ 1

0
(fL0 −f)(f0−fL0 )

f
dλ+

´ 1
0

(fL0 −f)2

f
dλ

≤ 1
2

´ 1
0

(f0−fL0 )2

f
dλ+ 3

2

´ 1
0

(fL0 −f)2

f
dλ using that 2ab ≤ a2 + b2 for a, b real numbers.

(2.31)
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Along with the lower bound on fL0 , Lemma 14 ensures that there exists a constant C depending
on ρ and α only such that, when L is large enough and

(
2Lτ−1 ∨ 22Lτ−2

)
max

0≤i≤2L−1
|ηi −Θi|

is small enough,

B ≤ C

∥∥∥f0 − fL0
∥∥∥2

∞
+
(
2Lτ−1 ∨ 22Lτ−2

)2
max

0≤i≤2L−1
|ηi −Θi|2

.
In the end, (2.30), (2.31) and Lemma 15 lead to the bound

K(f0, f) ≤ C

(
2−2αL + τ 2 +

(
2Lτ−1 ∨ 22Lτ−2

)2
max

0≤i≤2L−1
|ηi −Θi|2

)

where the constant C only depends on α, ρ, ‖f0‖∞ and ‖f0‖Σ(α).

In a second part, we write that

V (f0, f) =
´
f0 log

(
f0
f

)2
dλ

≤ 2
ˆ
f0 log

(
f0

fL0

)2

dλ︸ ︷︷ ︸
= A’

+2
ˆ
f0 log

(
fL0
f

)2

dλ︸ ︷︷ ︸
= B’

.

For the first term, introducing the Lebesgue-measurable event G =
{
x ∈ [0; 1)

∣∣∣∣ f0(x) > fL0 (x)
}

,
we use similar arguments as above to write that

A′ =
´
G
f0 log

(
f0
fL0

)2
dλ+

´
Gc
f0 log

(
fL0
f0

)2
dλ

≤
´
G
f0

(
f0−fL0
fL0

)2
dλ+

´
Gc
f0

(
fL0 −f0
f0

)2
dλ

≤ C
∥∥∥f0 − fL0

∥∥∥2

∞

(2.32)

where C depends on ρ only and the last inequality is valid for L large enough and τ small
enough. Similarly, for the second term, introducing the Lebesgue-measurable event H ={
x ∈ [0; 1)

∣∣∣ fL0 (x) > f(x)
}

and using Lemma 14, it follows that

B′ ≤
´
H
f0
(
f0−f
f

)2
dλ+

´
Hc f0

(
fL0 −f
fL0

)2
dλ

= C
(
2Lτ−1 + 22Lτ−2

)2
max

0≤i≤2L−1
|ηi − θi|2

(2.33)

for some C, which is valid for L large enough and
(
2Lτ−1 ∨ 22Lτ−2

)
max

0≤i≤2L−1
|ηi −Θi| small

enough. Finally, we obtain from (2.32), (2.33) and Lemma 15

V (f0, f) ≤ C

(
2−2αL + τ 2 +

(
2Lτ−1 ∨ 22Lτ−2

)2
max

0≤i≤2L−1
|ηi −Θi|2

)

with C depending on α, ρ, ‖f0‖∞ and ‖f0‖Σ(α).
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Bound on the Hellinger distance.

Lemma 13. Let τ > 0, m ∈ N, L ∈ N∗ and two density functions g1, g2 on [0; 1) which are
piecewise constant on the grid [i2−L; (i+1)2−L), 0 ≤ i ≤ 2L−1. Then, for fi = SDτ,m,2−L(gi),

h (f1, f2) ≤ 2
(

1 +
√

1 + 2 (m+ 1)3 e
√

6(m+1)m
)
τ−1/2 ‖g1 − g2‖1/2

2 .

Proof. By definition,

fi =
A2
m,2−L(gi)+ + τ´

[0;1)(A2
m,2−L(gi)+ + τ)dλ.

Then the triangle inequality, its reversed version and simple algebra give

h (f1, f2) =

∥∥∥∥∥∥∥
√
A2
m,2−L(g1)+ + τ∥∥∥√A2
m,2−L(g1)+ + τ

∥∥∥
2

−

√
A2
m,2−L(g2)+ + τ∥∥∥√A2
m,2−L(g2)+ + τ

∥∥∥
2

∥∥∥∥∥∥∥
2

≤ 2

∥∥∥√A2
m,2−L(g1)+ + τ −

√
A2
m,2−L(g2)+ + τ

∥∥∥
2∥∥∥√A2

m,2−L(g1)+ + τ
∥∥∥

2

.

The numerator on the right hand side is then bounded by∥∥∥A2
m,2−L(g1)+ − A2

m,2−L(g2)+

∥∥∥1/2

1
≤
∥∥∥A1

m,2−L(g1)− A1
m,2−L(g2)

∥∥∥1/2

1

+
∥∥∥(A2

m,2−L(g1)+ − A1
m,2−L(g1)

)
−
(
A2
m,2−L(g2)+ − A1

m,2−L(g2)
)∥∥∥1/2

1

as for any a, b ≥ 0, |√a−
√
b| ≤

√
|a− b|. For the first term, with ḡi the 1-periodic extension

of gi, we develop∥∥∥A1
m,2−L(g1)− A1

m,2−L(g2)
∥∥∥

1
=
´ 1

0

∣∣∣ḡm1,∞,2−L(t)− ḡm2,∞,2−L(t)
∣∣∣ dt

=
´ 1

0 |χ
m
2−L ∗ (ḡ1 − ḡ2)(t)| dt

≤
´ 1

0 χ
m
2−L ∗ (|ḡ1 − ḡ2|)(t)dt

=
´
R χ

m
2−L(x)

´ 1
0 |ḡ1 − ḡ2|(t− x)dtdx

=
´
R χ

m
2−L(x)

´ 1
0 |g1 − g2|(t)dtdx

= ‖g1 − g2‖1 ,

following Lemma 4. Then, according to the link between A1
m,2−L(gi) and A2

m,2−L(gi), the
square of the second term is equal to´

[0;m+1
2L )⋃[1−m−1

2L
;1)

∣∣∣∣∣∣
(
A2
m,2−L(g1)+ − A1

m,2−L(g1)
)
−
(
A2
m,2−L(g2)+ − A1

m,2−L(g1)
) ∣∣∣∣∣∣dλ

≤
∥∥∥A1

m,2−L(g1)− A1
m,2−L(g2)

∥∥∥
1

+
´

[0;m+1
2L )⋃[1−m−1

2L
;1)

∣∣∣∣∣∣A2
m,2−L(g1)− A2

m,2−L(g2)

∣∣∣∣∣∣dλ.
Now, writing P1, P2 the polynomials of degree m such that A1

m,2−L(gi)(t) = Pi(t) for t ∈[
m
2L ; m+1

2L
)

. The polynomials Qi = Pi ◦ (·/m+1
2L ) have degree m and, by definition, we have

the two equalities,
ˆ m+1

2L

0

∣∣∣A2
m,2−L(g1)(t)− A2

m,2−L(g2)(t)
∣∣∣ dt = 2−L (m+ 1)

ˆ 1

0
|(Q1 −Q2)(t)|dt,
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ˆ m+1
2L

m

2L

∣∣∣A2
m,2−L(g1)(t)− A2

m,2−L(g2)(t)
∣∣∣ dt = 2−L (m+ 1)

ˆ 1

m
m+1

|(Q1 −Q2)(t)|dt.

It remains to apply Lemma 18 to obtain
ˆ m+1

2L

0

∣∣∣A2
m,2−L(g1)(t)− A2

m,2−L(g2)(t)
∣∣∣ dt

≤ 2 (m+ 1)3 e
√

6(m+1)m
ˆ m+1

2L

m

2L

∣∣∣A2
m,2−L(g1)(t)− A2

m,2−L(g2)(t)
∣∣∣ dt

≤ 2 (m+ 1)3 e
√

6(m+1)m
ˆ m+1

2L

m

2L

∣∣∣A1
m,2−L(g1)(t)− A1

m,2−L(g2)(t)
∣∣∣ dt

≤ 2 (m+ 1)3 e
√

6(m+1)m ‖g1 − g2‖1 .

Finally, we obtain the bound

h (f1, f2) ≤ 2

(
1 +

√
1 + 2 (m+ 1)3 e

√
6(m+1)m

)
‖g1 − g2‖

1
2
1∥∥∥√A2

m,2−L(g1)+ + τ
∥∥∥

2

≤ 2
(

1 +
√

1 + 2 (m+ 1)3 e
√

6(m+1)m
)
τ−1/2 ‖g1 − g2‖

1
2
2 .

Bounds on sup-norm distance.

Lemma 14. Let L ∈ N and (Θ1,i)0≤i≤2L−1, (Θ2,i)0≤i≤2L−1 be two elements in S2L . Then,
for 0 ≤ m ≤ 2L − 1 and ε > 0, there exists a contant C depending only on m such that

∥∥∥∥∥∥SDτ,m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− SDτ,m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

≤ C
(
2Lτ−1 ∨ 22Lτ−2

)
max

0≤i≤2L
|Θ1,i −Θ2,i| .

Proof. From (2.4) and Lemma 4, it is straightforward that

∥∥∥∥∥∥A1
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− A1
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

≤

∥∥∥∥∥∥
∑

0≤i≤2L−1
Θ1,iHLi −

∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

= 2L max
0≤i≤2L−1

|Θ1,i −Θ2,i| .

(2.34)

Now, we point out that, for J 6= ∅ an interval in [0; 1),

‖f‖∞,J := sup
x∈J
|f(x)|
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defines a norm on the space of polynomials of degree at most m, which is of finite dimension.
Therefore there exist constants C1,m ≥ 1 and C2,m ≥ 1 such that

‖·‖∞,[0;1) ≤ C1,m ‖·‖∞,[0;(m+1)−1) and ‖·‖∞,[0;1) ≤ C2,m ‖·‖∞,[m(m+1)−1;1) .

Also, let’s write Pj (resp. Qj) the polynomial of degree m such that

A1
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi

 = Pj(2L(m+1)−1, ·) resp. Qj

(
2L(m+ 1)−1

(
· −1 + (m+ 1)2−L

))
,

on the interval
[
m2−L; (m+ 1)2−L

)
(resp.

[
1− (m+ 1)2−L; 1−m2−L

)
). These polynomi-

als exist according to Lemma 8. It follows that, by definition,

sup
t∈[0;(m+1)2−L)

∣∣∣∣∣∣A2
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

 (t)− A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

 (t)

∣∣∣∣∣∣
= sup

t∈[0;(m+1)2−L)

∣∣∣P1(2L(m+ 1)−1t)− P2(2L(m+ 1)−1t)
∣∣∣

= sup
t∈[0;1)

|P1(t)− P2(t)|

≤ C2,m sup
t∈[m(m+1)−1;1)

|P1(t)− P2(t)|

= C2,m sup
t∈[m2−L;(m+1)2−L)

∣∣∣P1(2L(m+ 1)−1t)− P2(2L(m+ 1)−1t)
∣∣∣

= C2,m sup
t∈[m2−L;(m+1)2−L)

∣∣∣∣∣∣A2
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

 (t)− A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

 (t)

∣∣∣∣∣∣
= C2,m sup

t∈[m2−L;(m+1)2−L)

∣∣∣∣∣∣A1
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

 (t)− A1
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

 (t)

∣∣∣∣∣∣.
Therefore, using the same arguments on

[
1− (m+ 1)2−L; 1

)
and the fact that

A1
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi


and

A2
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi


are equal on

[
(m+ 1)2−L; 1− (m+ 1)2−L

)
,

∥∥∥∥∥∥A2
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

≤ max (C1,m, C2,m)

∥∥∥∥∥∥A1
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− A1
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

.

(2.35)
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Then, from Lemma 4 and the hypothesis on the (Θj,i)0≤i≤2L−1 sequences, we also notice that∥∥∥∥∥∥A1
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi

∥∥∥∥∥∥
∞

≤ 2L.

Therefore, the same arguments as above gives∥∥∥∥∥∥A2
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi

∥∥∥∥∥∥
∞

≤ 2L max (C1,m, C2,m) .

Finally, denoting

Ij =
ˆ 1

0

A2
m,2−L

 ∑
0≤i≤2L−1

Θj,iHLi


+

+ τ

 dλ,
(2.8) gives∥∥∥∥∥∥SDτ,m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− SDτ,m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

≤ τ−1

∥∥∥∥∥∥A2
m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

∣∣∣∣ 1
I1
− 1
I2

∣∣∣∣
≤
(
τ−1 + 2L max

(
C1,m, C2,m

)
τ−2

)
∥∥∥∥∥∥A2

m,2−L

 ∑
0≤i≤2L−1

Θ1,iHLi

− A2
m,2−L

 ∑
0≤i≤2L−1

Θ2,iHLi

∥∥∥∥∥∥
∞

.

(2.36)

Combining (2.34), (2.35) and (2.36) concludes the proof.

Lemma 15. Let f0 ∈ Σ(α, [0, 1)), for α > 0, be a probability density function such that
f0 ≥ ρ for some ρ > 0. Then, for L ∈ N large enough, there exists (ηi)0≤i≤2L−1 ∈ S2L and a
constant C depending only on α, ‖f0‖∞ and ‖f0‖Σ(α) such that∥∥∥∥∥∥f0 − SDτ,bαc,2−L

2L−1∑
i=0

ηiHLi

∥∥∥∥∥∥
∞

≤ C
(
2−αL + τ

)
for any τ > 0 small enough.

Proof. Let’s write f̃L0 = ∑2L−1
i=0 ηiSi,2L,bαc the application from Lemma 1 such that

∥∥∥∥f0

∣∣∣
[bαc2−L;1−bαc2−L)

− f̃L0
∣∣∣
[bαc2−L;1−bαc2−L)

∥∥∥∥
∞
≤ C2−αL (2.37)

with (θi)0≤i≤2L−1 ∈ S2L . Then, we see, from definitions (2.6), (2.11) and equation (2.10)
that

f̃L0 = A1
bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi
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and we introduce

fL0 = SDτ,bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 .
Besides, by construction (see Subsection 2.3.2) and from (2.7), there exists a polynomial P of
degree bαc such that

∀t ∈
[
0; bαc+ 1

2L

)
, A2

bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 (t) = P

(
2Lt
bαc+ 1

)
. (2.38)

We point out that we also have, for any t ∈
[
bαc
2L ; bαc+1

2L
)

,

A2
bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 (t) = A1
bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 (t). (2.39)

Also, if Rbαc [X] is the space of all polynomials of degree at most bαc, it is well-known fact that
there exists a polynomial Q1 ∈ Rbαc [X] such that ∀t ∈

[
0; bαc+1

2L
)

,
∣∣∣f0(t)−Q1(t)

∣∣∣ ≤ C2−αL,
with C a constant depending only on α and ‖f0‖Σ(α). Let Q(t) = Q1

(
bαc+1

2L t
)

for t ∈ [0; 1).
Let’s define on Rbαc [X], for J an interval in [0; 1), the norm

||g||∞,J := sup
x∈J
|g(x)| .

By equivalence of norms on Rbαc [X], ||g||∞,[0;1) ≤ C||g||∞,[bαc(bαc+1)−1;1), with C a constant
depending on bαc only.
Now, using that, by definition, f̃L0 and Q1 are both close to f0 on some intervals as shown
above, we deduce from the last paragraph, (2.38), (2.39) and the bound (2.37)

||Q− P ||∞,[0;1) = sup
x∈[0;1]

|Q(x)− P (x)|

= sup
t∈[0; bαc+1

2L ]

∣∣∣∣∣∣Q
 2Lt
bαc+ 1

− P
 2Lt
bαc+ 1

∣∣∣∣∣∣
≤ sup

t∈[0; bαc+1
2L )
|f0(t)−Q1(t)|+ sup

t∈[0; bαc+1
2L )

∣∣∣∣∣∣f0(t)− P
(

2Lt
bαc+ 1

) ∣∣∣∣∣∣
≤ C2−αL

where C depends on α, ‖f0‖∞ and ‖f0‖Σ(α) only. Hence, from (2.38),

sup
t∈[0; bαc+1

2L )

∣∣∣∣∣∣f0(t)− A2
bαc,2−L

2L−1∑
i=0

θi2L1[i2−L;(i+1)2−L)

 (t)

∣∣∣∣∣∣ ≤ sup
t∈[0; bαc+1

2L )
|f0(t)−Q1(t)|+

sup
t∈[0; bαc+1

2L )

∣∣∣∣∣∣Q1(t)− P
 2Lt
bαc+ 1

∣∣∣∣∣∣
≤ C2−αL + ||Q− P ||∞,[0;1)

≤ C2−αL
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with C a constant depending only on f0, ‖f0‖∞ (which exists as f0 is a Hölderian density, see
for instance [157], p.9) and ‖f0‖Σ(α). Using the same reasoning to control the distance on[
1− bαc+1

2L ; 1
)

and the equality (2.39), we conclude that∥∥∥∥∥∥f0 − A2
bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

∥∥∥∥∥∥
∞

≤ C2−αL (2.40)

and
∣∣∣∣1− ´ 1

0 A
2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
(u)du

∣∣∣∣ ≤ C2−αL. For L large enough, as f0 is lower

bounded by a strictly positive constant, we thus have that A2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
is

positive for L large enough, leading to the simplification of the definition (2.8) (we remove
the positive parts from the formula)

fL0 = SDτ,bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 =
A2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
+ τ

´ 1
0

A2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
(u) + τ

du
.

We also have that A2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
is upper bounded by a constant depending

only on α, ‖f0‖∞ and ‖f‖Σ(α) as a consequence from (2.40). Finally,

∥∥∥f0 − fL0
∥∥∥
∞
≤ C2−αL + τ+∣∣∣∣∣∣∣∣∣∣∣∣
1− 1
´ 1

0

A2
bαc,2−L

(∑
0≤i≤2L−1 ηiHLi

)
(u) + τ

du

∣∣∣∣∣∣∣∣∣∣∣∣
×

∥∥∥∥∥∥A2
bαc,2−L

 ∑
0≤i≤2L−1

ηiHLi

 (u) + τ

∥∥∥∥∥∥
∞

≤ C
(
2−αL + τ

)
.

2.6.6 Proof of Theorem 4.
Within this proof, let us set, for c0 to be precised,

εn = c0n
− α

2α+1 log
α

2α+1 +1/2 n.

Let’s introduce the sequences of depth L1,n and L2,n such that 2Li,n � Ci
(

n
logn

) 1
2α+1 log1/2 n

for some constants C1 and C2 = 1, and introduce the subsets

Fn = ∪L1,n
l=1 Gl,ξ(l,n),τn

where

Gl,k,τn :=

SDτn,k,2−l(g), g =
2l−1∑
i=0

ΘiHli, (Θi)0≤i≤2l−1 ∈ S2l
 .
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1) Complexity of the prior: On the one hand, we have

Π[F cn] = Π[l > L1,n] . 2−L
3/2
1,n2L1,n

≤ e− log−1/2 2 log3/2(C1n/ logn) 2L1,n
2α+1

≤ e
−

C1c
−2
0

(4α+2)
√

log 2
nε2n
. (2.41)

On the other hand, Lemma 13 implies

N
(
εn, Gl,ξ(l,n),τn , h

)
≤ N

C−2
l,n τnε

2
n,


2l−1∑
i=0

ΘiHli, (Θi)0≤i≤2l−1 ∈ S2l
, h


where Cl,n is the multiplicative constant from Lemma 13 when m = ξ(l, n). For f, g in

2l−1∑
i=0

ΘiHli, (Θi)0≤i≤2l−1 ∈ S2l
,

we see that

h(f, g) =
2l−1∑
i=0

2−l(
√
f(i2−l)−

√
g(i2−l))2

1/2

=
∥∥∥√f −√g

∥∥∥
2

where f ,g ∈ [0, 1]2l are the sequences in S2l defining f and g. It follows that

N
(
εn, Gl,ξ(l,n),τn , h

)
≤ N

(
C−2
l,n τnε

2
n, S

2l , ‖·‖2

)
≤ N

(
C−2
l,n τnε

2
n, BR2l (0, 1), ‖·‖2

)
≤
(

C

C−2
l,n τnε

2
n

)2l

.

This finally gives, since ξ(l, n) ≤ ξ(1, n) ≤ log(n)/2, for C ′ an absolute constant and using
the explicit formula for Cl,n from Lemma 13,

N(εn,Fn, h) ≤
L1,n∑
l=1

N(εn, Gl,ξ(l,n),τn , h)

≤
L1,n∑
l=1


4C

(
1 +

√
1 + 2 (ξ(l, n) + 1)3 e

√
6(ξ(l,n)+1)ξ(l,n)

)2

τnε2n


2l

≤
L1,n∑
l=1

8C
(

1 + (ξ(l, n) + 1)3 e
√

6(ξ(l,n)+1)ξ(l,n)
)

τnε2n


2l

≤
L1,n∑
l=1

9CeC′ log3/2 n log3 n

τnε2n

2l

.

(
CnC

′√logn log3 n

τnε2n

)2L1,n+1
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≤ n2C′
√

logn2L1,n ≤ e2C′C1c
−2
0 nε2n . (2.42)

2) Prior mass condition: Lemma 12 ensures the existence of a sequence (ηi)0≤i≤2L2,n−1 ∈
S2L2,n such that, with Θi the sequence drawn by the TPT distribution as in (2.1), max

0≤i≤2L2,n−1
|ηi −Θi| ≤

(log n)
α+2
2α+1 n−

3α+3
2α+1 and

K

f0, SDτn,bαc,2−L2,n

 2L2,n−1∑
i=0

ΘiHL2,ni

 ∨ V
f0, SDτn,bαc,2−L2,n

 2L2,n−1∑
i=0

ΘiHL2,ni


is smaller than ε2n if c0 is large enough, depending on ρ, α, ‖f0‖∞ and ‖f0‖Σ(α). Indeed,
under this condition, every term in the lemma depending on L = L2,n and τ =

√
n
−1 is of

the right order. Consequently,

Π
BKL

f0, εn

∣∣∣∣l = L2,n

 ≥ Π
[

max
0≤i≤2L2,n−1

∣∣∣∣ηi −Θi

∣∣∣∣ ≤ ( log n
) α+2

2α+1
n−

3α+3
2α+1

∣∣∣∣l = L2,n

]
.

The same arguments underlying (2.17) then ensures that, for some C > 0, depending on β,
R, α and c0, Π

[
BKL

(
f0, εn

)∣∣∣∣l = L2,n

]
≥ e−Cnε

2
n . Therefore,

Π [BKL(f0, εn)] & Π [BKL(f0, εn)|l = L2,n] 2−L
3/2
2,n2L2,n

≥ e−Cnε
2
ne− log3/2 n2L2,n/

√
log 2

= e
−
(
C+ 1

c20
√

log 2

)
nε2n
. (2.43)

We conclude using Theorem 7 along with equations (2.41),(2.42) and (2.43) , since for C1

large enough, C1c
−2
0

(4α+2)
√

log 2 > C + 1
c20
√

log 2 + 4. Then, the theorem is valid for M large enough,
depending on ρ, α, ‖f0‖Σ(α), ‖f0‖∞, β and R.

2.6.7 Miscellaneous.
Extension of Hölderian maps.

Lemma 16. Let E ⊂ R be a non-empty interval and let f0 ∈ Σ (α,E) where α > 0. Then
there exists a function f̃ ∈ Σ (α,R) so that f̃

∣∣∣
E

= f0 and
∥∥∥f̃∥∥∥

Σ(α)
= ‖f0‖Σ(α).

Proof. First, let’s assume that α ≤ 1. We use the fact that

|x1 − x2|α ≤ (|x1 − x3|+ |x2 − x3|)α ≤ |x1 − x3|α + |x2 − x3|α. (2.44)

First, for f0 ∈ Σ (α,E), we have |f0(x)− f0(y)| ≤ ‖f‖Σ(α) |x− y|α for all x, y ∈ E and we
define

h(x) := inf
{
f0(y) + ‖f0‖Σ(α) |x− y|

α : y ∈ E
}
, x ∈ Rn.

If x ∈ E, then taking y = x we get that h(x) ≤ f0(x). To prove that h(x) is finite for every
x ∈ Rn, fix y0 ∈ E. If y ∈ E then, from (2.44),

f0(y)−f0(y0)+‖f0‖Σ(α) |x−y|
α ≥ −‖f0‖Σ(α) |y−y0|α+‖f0‖Σ(α) |x−y|

α ≥ −‖f0‖Σ(α) |x−y0|α,
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and so

h(x) = inf
{
f0(y) + ‖f0‖Σ(α) |x− y|

α : y ∈ E
}
≥ f0(y0)− ‖f0‖Σ(α) |x− y0|α > −∞.

Note that if x ∈ E, then we can choose y0 = x in the previous inequality to obtain h(x) ≥ f (x).
Thus h extends f0. Next we prove that

|h(x1)− h (x2)| ≤ ‖f0‖Σ(α) |x1 − x2|α

for any x1,x2 ∈ R. Given ε > 0, by the definition of h there exists y1 ∈ E such that

h(x1) ≥ f0(y1) + ‖f0‖Σ(α) |x1 − y1|α − ε.

Since h (x2) ≤ f0(y1) + ‖f0‖Σ(α) |x2 − y1|α, we get from (2.44)

h(x1)− h (x2) ≥ ‖f0‖Σ(α) |x1 − y1|α − ‖f0‖Σ(α) |x2 − y1|α − ε
≥ −‖f0‖Σ(α) |x1 − x2|α − ε.

Letting ε→ 0 gives h(x1)− h (x2) ≥ −‖f0‖Σ(α) |x1− x2|α. It remains to reverse the roles of
x1 and x2 to prove that h is Hölder continuous with ‖h‖Σ(α) = ‖f0‖Σ(α).
Now, if α > 1, we have that f0 ∈ Σ (α,E) implies

f
(bαc)
0 ∈ Σ (α− bαc, E) ,

∥∥∥f (bαc)
0

∥∥∥
Σ(α−bαc)

= ‖f0‖Σ(α) .

The above proof ensures that there exist g ∈ Σ (α− bαc,R) such that g
∣∣∣
E

= f
(bαc)
0 . As this

last application as well as g are continuous, it suffices to take the successive primitives of g
(with equality constraint ensuring that these are also derivatives of f0) to obtain the result.

Control of discretization error.

Lemma 17. Let f be a piecewise constant map on the intervals [i/l; (i+1)/l), i = 0, . . . , l−1,
with l ∈ N∗. Let’s assume that f takes values in [0; l′]. Then, if g is the 1-periodic extension
of f on R, we have ∥∥∥gm∞,s − gmq,s∥∥∥∞ ≤ ml′(ls+ 1)

q

for m ∈ N, 0 < s < 1/2.

Proof. If m = 0, the result is straightforward. Otherwise, we start by noting that, as g is
1-periodic, (2.3) gives that gm∞,s, as well as gmq,s, are themselves 1-periodic. It is therefore
sufficient to control

∣∣∣gm∞,s(x)− gmq,s(x)
∣∣∣ for x in [0; 1).

Before going further, let’s first show that for any m ≥ 0, gm∞,s is a function of bounded
variation over any interval [x− s;x], with a bound on its total variation independent of x ∈ R.
This means that there exists a constant V = V (l′, l, s) > 0, such that, for any x ∈ R and
subdivision σ = {x− s = x1 < x2 . . . xn−1 < xn = x |n ≥ 2},

n∑
i=1

∣∣∣gm∞,s(xi+1)− gm∞,s(xi)
∣∣∣ ≤ V.

By assumptions on f , on an interval of length s, g is piecewise constant with at most ls+ 1
discontinuity points and takes values in [0; l′]. Therefore, g has bounded variation at most
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V = l′(ls+ 1). Then we show that the convolution of s−mχ∗ms with g is also a function with
bounded variation on any interval [x − s;x] with x ∈ [0; 1). Indeed, for a subdivision σ of
[x− s;x] and m such that s(m+ 1) < 1, using (2.3) and Lemma 4

n∑
i=1

∣∣∣gm∞,s(xi+1)− gm∞,s(xi)
∣∣∣ =

n∑
i=1

∣∣∣s−mχ∗ms ∗ g(xi+1)− s−mχ∗ms ∗ g(xi)
∣∣∣

≤
ˆ
R

[
n∑
i=1

∣∣∣∣g(xi+1 − u)− g(xi − u)
∣∣∣∣
] ∣∣∣s−mχ∗ms (u)

∣∣∣ du
≤ l′(ls+ 1)

ˆ
R
s−mχ∗ms (u) du (2.45)

= V.

Let’s assume m = 1, in which case g1
q,s(x) is a Riemann sum with converges to g1

∞,s(x) =
s−1 ´ x

x−s g(t)dt as q →∞. More precisely, with the bounded variation property above, it is a
common result that in this case∣∣∣sg1

∞,s(x)− sg1
q,s(x)

∣∣∣ ≤ V
s

q
≤ l′s(ls+ 1)

q
.

This proves the lemma for m = 1.
For the general case, let’s assume that the lemma is true for some m ∈ N∗. We use the same
argument, since the above equation translates in∣∣∣∣∣gm+1

∞,s (x)−
(
gm∞,s

)1

q,s
(x)
∣∣∣∣∣ ≤ l′(ls+ 1)

q
,

according to (2.45). Also, the property at level m ensures that∣∣∣∣∣gm+1
q,s (x)−

(
gm∞,s

)1

q,s
(x)
∣∣∣∣∣ ≤ 1

q

q−1∑
i=0

∣∣∣∣∣gmq,s
(
x− is

q

)
− gm∞,s

(
x− is

q

)∣∣∣∣∣
≤ ml′(ls+ 1)

q
.

Using the triangular inequality on
∣∣∣gm+1
∞,s (x)− gm+1

q,s (x)
∣∣∣ to obtain a bound from the sum of

the two terms above allows to conclude the proof.

Equivalence of norms on spaces of polynomials.

Lemma 18. Let Rn[X] be the space of polynomials of degree at most n and with real
coefficients. For P ∈ Rn[X], let’s write

‖P‖∞,J := max
t∈J
|P (t)|, with J an interval in R.

Then, for all P ∈ Rn[X] and s ∈ [0; 1), we have

‖P‖∞,[0;1] ≤ e
√

6s−1n ‖P‖∞,[0;s]

as well as
‖P‖∞,[0;1] ≤ e

√
6s−1n ‖P‖∞,[1−s;1] .
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It also follows that ˆ
[0;1]
|P (u)| du ≤ e

√
6s−1n2

s
(n+ 1)2

ˆ
[0;s]
|P (u)| du,

ˆ
[0;1]
|P (u)| du ≤ e

√
6s−1n2

s
(n+ 1)2

ˆ
[1−s;1]

|P (u)| du.

Proof. For n = 0, the result is straightforward. Let’s then delve into the case n ≥ 1. First, as

xk − yk = (x− y)
k−1∑
i=0

xiyk−1−i

for any x, y in [−1; 1],
|xk − yk| ≤ k|x− y|.

Then, if P (x) = ∑n
k=0 akx

k, we have

|P (x)− P (y)| ≤
n∑
k=1
|ak||xk − yk| ≤ |x− y|

n∑
k=1

k|ak|.

Before going further, we point out that necessarily ak = P (k)(0)/(k!). Now, let’s recall
Markov’s brother inequality (that can be found in [18] for instance) which states that, for
Q ∈ Rn[X] and any nonnegative integers k

max
−1≤x≤1

|Q(k)(x)| ≤ n2(n2 − 12)(n2 − 22) · · · (n2 − (k − 1)2)
1 · 3 · 5 · · · (2k − 1) max

−1≤x≤1
|Q(x)|.

The constant appearing in the above inequality is equal to T (2k)
n (1), where Tn is the n-th

Chebyshev polynomial. Let’s apply this inequality to Q = P ◦
(
s
2(X + 1)

)
. First, we have

‖P‖∞,[0;s] = max
−1≤x≤1

|Q(x)|.

And then, for x ∈ [−1; 1],

Q(k)(x) =
(
s

2

)k
P (k)

(
s

2(x+ 1)
)
,

so that
max
−1≤x≤1

|Q(k)(x)| =
(
s

2

)k
max
0≤x≤s

|P (k) (x) | ≥
(
s

2

)k
|P (k)(0)|.

Combining these results finally gives us, for 0 ≤ x, y ≤ 1,

|P (x)− P (y)| ≤ |x− y|
n∑
k=1

k|ak|

= |x− y|
n∑
k=1

|P (k)(0)|
(k − 1)!

≤ |x− y|
n∑
k=1

(2
s

)k T (2k)
n (1) ‖P‖∞,[0;s]

(k − 1)! .
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It follows readily that

‖P‖∞,[0;1] ≤

1 +
n∑
k=1

(2
s

)k T (2k)
n (1)

(k − 1)!

 ‖P‖∞,[0;s] .

The multiplicative factor above is then bounded by

1 +
n∑
k=1

6ks−kn2k

(2k)! ≤ 1 +
n∑
k=1

(
√

6s−1n)2k

(2k)!

≤ e
√

6s−1n

as k ≤ (3/2)k, ∀k ≥ 1. This concludes the proof of the first inequality. For the second
inequality, it suffices to remark that for P ∈ Rn[X],

‖P‖∞,[1−s;1] = ‖R‖∞,[0;s] , ‖P‖∞,[0;1] = ‖R‖∞,[0;1] ,

with R(t) = P (1− t) for any t a real number, defining R as an element of Rn[X].

Finally, for the last claim, we introduce the primitive p(·) =
´ ·

0 P (t)dt which is a polynomial
of degree at most n+ 1 verifying

‖p‖∞,[0;s] ≤
ˆ s

0
|P (t)|dt.

With Markov’s brother inequality and rescaling, we have

‖P‖∞,[0;s] ≤
2
s

(n+ 1)2 ‖p‖∞,[0;s]

which allows us to concludeˆ
[0;1]
|P (u)| du ≤ ‖P‖∞,[0;1) ≤ e

√
6s−1n ‖P‖∞,[0;s] ≤ e

√
6s−1n2

s
(n+ 1)2

ˆ s

0
|P (u)|du.

2.6.8 Random shifts for the Pólya forest
As for the question of the addition of random shifts in the DPA prior, it appears that our proof
for the posterior contraction rate doesn’t extend well. It mainly pertains to the difficulty of
defining a low-dimensional sieve on which the prior distribution concentrates its mass. However,
the control of prior mass on KL-balls centered on the true density f0 can be conducted even
with random shifts in the definition of trees in the prior. This naturally leads to a study of
ρ−posterior contraction rates, i.e. for some ρ ≥ 0, a prior Π on densities f and observations
X(n) from P⊗nf0 giving the posterior distribution Πn,

Π(ρ)
n [f ∈ B] =

´
B

∏n
i=1 f

ρ(Xi)dΠ(p)´ ∏n
i=1 f

ρ(Xi)dΠ(p)

Indeed, according to Theorem 8.43 and Example 8.44 in [65], it suffices to show that
Π [f : K(f0, f) < ε2n] ≥ exp(−Cnε2n) for some C ≥ 0 to obtain that the ρ−posterior
concentrates around f0 at rate εn,

Π(ρ)
n [h(f0, f) > Mnεn]→ 0,
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for any Mn →∞ and h the Hellinger distance, whenever ρ ∈ (0, 1). This statement is true
for any sequence εn, but we use r > 0 and

εn(r) =
(

log n
n

) r
2r+1

,

as we assume f0 ∈ Σ(r, [0; 1)), i.e., it has Hölder regularity of degree r.

New prior RDPA.

In this subsection, we define a new prior, similar to DPA, with the exception that the shifts
of the partitions underlying individual trees are random. DPA outputs maps of the form
fmq,2−L , with q > 0, L > 0, m ≥ 0 and f = ∑

i∈Z uiHLi. Instead, RDPA outputs a stochastic
transform of f as is made explicit in the below algorithm defining this new distribution.

1. Fix L > 0, parameters set A, m ≥ 0, q > 0.

2. Draw g such that g ∼ TPTL (A). One writes

g(·) =
2L−1∑
i=0

ΘiHLi(·)

for some sequence (Θi)2L−1
i=0 whose elements are positive and sum up to 1.

3. If m 6= 0, draw independent random variables Uj,i,d ∼ U [0; 1], 1 ≤ j ≤ m, 1 ≤ i ≤
qj−1, 1 ≤ d ≤ q.

4. If m 6= 0, outputs

fq,m(·) =
 ∑

1≤j≤m
qj

−1 ∑
(i1,...,im), ij∈[[1;qj−1]]

∑
(d1,...,dm)∈[[1;q]]m

g
(
· − U1,i1,d1 + · · ·+ Um,im,dm

2L
)
,

(2.46)
otherwise outputs fq,0 = g.

Then, we refer to the law of fq,m
∣∣∣ L,A,m, q as RDPA(L,A,m, q).

N.B.: Above and in the next subsection, the difference in the arguments of maps are to be
considered congruent modulo 1.

ρ−posterior contraction rate.

Theorem 8. Suppose f0 ∈ Σ(r, [0, 1)), r > 0 and f0 ≥ ρ for some ρ > 0. Let us endow f
with a RDPA(Ln,A,m, qn) prior which we write Πn, such that for some β > 0, R ≥ 1, δ > 0,

∀a ∈ A, a ∈

δ ( log n
n

)β
;R
,

Ln � (n/ log n)1/(2r+1), m = brc and qmn = Cn2r/(2r+1) log2r/(2r+1) n for C large enough.Then,
for any Mn →∞ and h the Hellinger distance, as n→∞,

Π(ρ)
n [h(f0, f) > Mnεn(r)]→ 0,

whenever ρ ∈ (0, 1).
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Proof. As stated above, it suffices to control the prior mass of the ball {K(f0, f) < εn(r)2}.
In the following, we simply note εn = εn(r).
According to the proof of Theorem 2, there exists an event Bn, Π [Bn] ≥ exp(−C1nε

2
n), on

which (Θ)i=0,··· ,2Ln is such that

K
(
f0, g

m
∞,2−Ln

)
< cε2n

with c > 0 a small constant and 2LnΘi ≤ Cf0 for any i = 0, · · · , 2Ln , where Cf0 is a constant
depending on the sup-norm and the Hölder norm of f0. Also, replacing

gmq−n,2−Ln´ 1
0 g

m
qn,2−Ln (t)dt

by fqn,m in the proof of Lemma 10, we prove that on Bn, if
∥∥∥fqn,m − gm∞,2−Ln∥∥∥∞ < c′εn for

c′ > 0 small enough, then
K
(
f0, fqn,m

)
< ε2n.

Consequently,

Π
[
f : K(f0, f) < ε2n

]
≥ Π [Bn] Π

[∥∥∥fqn,m − gm∞,2−Ln∥∥∥∞ < c′εn

∣∣∣∣Bn] (2.47)

≥ exp(−C1nε
2
n)Π

[∥∥∥fqn,m − gm∞,2−Ln∥∥∥∞ < c′εn

∣∣∣∣Bn] . (2.48)

Since the law of U1,i1,d1 + · · · + Um,im,dm is the one with density χ∗m, for any x ∈ [0; 1),
fq,m(x) has expectation

Et∼χ∗m
[
g(x− t2−Ln)

]
=
ˆ
R
g
(
x− t2−Ln

)
χ∗m(t)dt = 2−Lnχ∗m(2−Ln·)∗g(x) = gm∞,2−Ln (x).

Then, fqn,m(x) is the expectation of the same quantity as above w.r.t. to the empirical
measure Eqn,m associated to ∑1≤j≤m q

j
n � qmn independent random variables with probability

density χ∗m. Consequently, for the family of maps F =
{
g(x− 2−Ln·), x ∈ [0; 1)

}
,

∥∥∥fqn,m − gm∞,2−Ln∥∥∥∞ = sup
f∈F
|Et∼χ∗m [f ]− Eqn,m[f ]| =: ‖eqn,m‖F ,

where en = Et∼χ∗m − Eqn,m above is the empirical process indexed by F .
Now, we would like to upper bound E [‖en‖F ] by mean of Theorem 10. It is possible to replace
F by 0⋃F as it only increases the expectation of the supremum. An enveloppe F such that
|f | ≤ F, ∀f ∈ F is F (·) = 2Ln supi=0,...,2Ln−1 Θi. Then, for any f = g(x− 2−Ln ·) ∈ F , we
have like above that

Et∼χ∗m
[
f 2(t)

]
= Et∼χ∗m

[
g2(x− t2−Ln)

]
= 2−Lnχ∗m(2−Ln·) ∗ g2(x).

Therefore, using the fact that the Si,2Ln ,m do a partition of the unity, up to a constant,

σ2
n := sup

f∈F
E
[
f 2(X)

]
=

∥∥∥∥∥∥
2Ln−1∑
i=0

Θ2
iSi,2Ln ,m

∥∥∥∥∥∥
∞

& 2Ln sup
i=0,...,2L=1

Θ2
i ,
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where the last inequality comes from Lemma 5 in [65]. This Lemma also proves that
σn ≤ 2Ln/2 supi=0,...,2L=1 Θi ≤ Cf0 . Before concluding, we note that that for τ > 0, Lemma
19 ensures

log
(
2N(F , L2(Q), τ ‖F‖L2(Q))

)
≤ H(τ−1) =

log
(

2Ln+1

τ

)
, if τ−1 > 1

log 2, if τ−1 ≤ 1

for discrete measures Q with finite number of atoms and rational weights and N the covering
numbering of a set. Then, according to Lemma 20 and Theorem 10 with U = Cf0 , for n large
enough and some constant C depending on the sup-norm and the Hölder norm of f0,

E
[
‖eqn,m‖F

]
≤ C

√
H (2Ln/2)√∑

1≤j≤m q
j
n

≤ Cq−m/2n

√
log(223Ln/2) ≤ c′εn/2.

Now, this implies, along with Theorem 9 applied to {f − Et∼χ∗m [f ] : f ∈ F} and the U1,i1,d1 +
· · ·+ Um,im,dm random variables, with U = F defined above,

Π
[
‖eqn,m‖F ≥ c′εn

∣∣∣∣Bn] ≤ Π
[
‖eqn,m‖F ≥ E

[
‖eqn,m‖F

]
+ c′εn/2

∣∣∣∣Bn]

≤ exp
− q2m

n ε2n

4FE
[
‖eqn,m‖F

]
+ 2qmn F 2 + 2qmn εnF/3


≤ exp

(
−Cqmn ε2n

)
→ 0.

We conclude with 2.47.

Lemma 19. For L ≥ 0, (ak)k=0,...,2L−1 ∈ S2L , let

g =
∑

k=0,...,2L−1
ak2L1[k2−L,(k+1)2−L).

Then, for F =
{
g(x− 2−L·), x ∈ [0; 1)

}
and F (·) = 2L sup

k
ak,

N(F , L2(Q), τ ‖F‖L2(Q)) ≤


2L
τ
, if τ < 1

1, if τ ≥ 1

for any discrete measure Q on R with finite number of atoms and rational weights.

Proof. Given the assumptions on the ak’s, it is clear that the set {f} covers F for any measure
Q whenever τ ≥ 1. Otherwise, if τ < 1, let’s define νi = inf

{
ν ∈ [0; 1] : Q

(⋃
n∈Z[n;n+ ν]

)
≥ iτ

}
for i = 0, . . . , bτ−1c. One notes that ∀i, νi < 1 as Q has a finite number of atoms. Then for
x ∈ [0; 1)], take i such that νi = sup{νj : 2−L(b2Lxc+ νj) ≤ x} and y = 2−L(b2Lxc+ νi).
Then, with a2L−1 = a−1 and νbτ−1c+1 = 1,
∥∥∥g(x− 2−L·)− g(y − 2−L·)

∥∥∥2

L2(Q)
≤

∑
0≤k≤2L−1

|ak − ak−1|222LQ
(
(2Ly − k; 2Lx− k]

)

≤ F 2Q

 ⋃
0≤k≤2L−1

(2Ly − k; 2Lx− k]
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= ‖F‖2
L2(Q) Q

 ⋃
0≤k≤2L−1

(2Ly − k; 2Lx− k]


≤ ‖F‖2
L2(Q) Q

 ⋃
0≤k≤2L−1

(2Ly − k; 2Lx− k]


≤ ‖F‖2
L2(Q) Q

⋃
n∈Z

(n+ νi;n+ 2Lx− b2Lxc]


≤ ‖F‖2
L2(Q)

Q
⋃
n∈Z

[n;n+ νi+1)
−Q

⋃
n∈Z

[n;n+ νi]


≤ τ ‖F‖2
L2(Q) .

The last inequality comes from the fact that since Q is discrete with finite number of atoms,
there exists ν < νi+1 such that Q (⋃n∈Z[n;n+ νi+1)) = Q (⋃n∈Z[n;n+ ν]), and by definition,
Q (⋃n∈Z[n;n+ ν]) ≤ (i+ 1)τ ∧ 1. Also, by continuity, Q (⋃n∈Z[n;n+ νi]) ≥ iτ . Therefore,

F̃ =
{
g(2−L(m+ νi)− 2−L·), m = 0, . . . , 2L − 1, i = 0, . . . , bτ−1c

}
is a covering of size 2Lbτ−1c ≤ 2Lτ−1.

Lemma 20. For any A > 2, the application

H : x 7→

log 2, if 0 < x ≤ 1
log (Ax) , if x > 1

satisifies the conditions of Theorem 10 with CH = 1.

Proof. The two first points of Theorem 10 are clear. When it comes to the third one, for
0 < c ≤ 1,
ˆ c

0

√
H(1/x)dx =

ˆ c

0

√
log (A/x))dx

=
ˆ +∞√

log(Ac )
2Au2e−u

2
du with change of variable u =

√
log

(
A

x

)

≤ A

√
log

(
A

c

)ˆ +∞√
log(Ac )

2ue−u2
du

= c

√
log

(
A

c

)
.

Useful results.

Theorem 9 (Talagrand’s inequality, Theorem 3.3.9 of [69, p.156]). Let (S,S) be a measurable
space, and let n ∈ N. Let (X1, . . . , Xn) be independent S−valued random variables. For
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F a countable set of measurable real-valued functions on S such that ‖f‖∞ ≤ U <∞ and
E [f(X1)] = · · · = E [f(Xn)] = 0 for all f ∈ F , let

Sn = sup
f∈F

∣∣∣∣∣
n∑
k=1

f(Xk)
∣∣∣∣∣

and parameters σ2
n and νn be defined by

1
n

n∑
k=1

sup
f∈F

E
[
f 2(Xk)

]
≤ σ2

n ≤ U2

and
νn = 2UE [Sn] + nσ2

n.

Then, for any x ≥ 0,

P [Sn ≥ E[Sn] + x] ≤ exp
(
− x2

2νn + 2xU/3

)
.

In the preceding subsection, we have interest in the empirical process indexed by a set of
functions F defined by

f 7→ en(f) :=
√
n (Pf − Pnf)

where Qf denotes the expectation operator under the distribution Q, P is a probability
measure and Pn := n−1∑n

i=1 δXi is the empirical measure associated to (X1, . . . , Xn) ∼ P⊗n.
Also, in order to apply the preceding theorem to this setting, one needs to bound

‖en‖F = sup
f∈F
|en(f)| .

Theorem 10 (Theorem 3.5.6 of [69, p.189]). Let F be a countable class of functions
with 0 ∈ F and F measurable be such that |f | ≤ F for all f ∈ F . Also, let’s write
σ2 = sup

f∈F
E [f 2(X)] and U = max

1≤i≤n
F (Xi). Then, let H : R+ 7→ R+ be a function such that

• H(x) = log 2 for 0 < x ≤ 1;

• H is nondecreasing for x > 0, and so is x 7→ xH1/2(x) for 0 < x ≤ 1;

• There exists 0 < Ch < +∞ such that
´ c

0

√
H(1/x)dx ≤ CHcH

1/2(1/c) for all
0 < c ≤ 1.

Assume that

sup
Q

log
(
2N(F , L2(Q), τ ‖F‖L2(Q))

)
≤ H

(1
τ

)
, for all τ > 0,

where the supremum is over all discrete measures Q with finite number of atoms and rational
weights. Then,

E
[∥∥∥√n (P − Pn)

∥∥∥
F

]
≤ max

8
√

6CHσ
√
H
(
‖F‖L2(P ) /σ

)
,

21535/2C2
H ‖U‖L2(P )

H
(
‖F‖L2(P ) /σ

)
√
n

.
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CHAPTER 3
Optional Pólya Trees

We consider statistical inference in the density estimation model using a tree–based
Bayesian approach, with Optional Pólya trees as prior distribution. We derive near-
optimal convergence rates for corresponding posterior distributions with respect to the
supremum norm. For broad classes of Hölder–smooth densities, we show that the method
automatically adapts to the unknown Hölder regularity parameter. We consider the
question of uncertainty quantification by providing mathematical guarantees for credible
sets from the obtained posterior distributions, leading to near–optimal uncertainty
quantification for the density function, as well as related functionals such as the
cumulative distribution function. The results are illustrated through a brief simulation
study.
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3.8.1 The classical Pólya tree and T–Pólya trees . . . . . . . . . . . . . 101
3.8.2 Tree posteriors: the Galton–Watson/Pólya tree case . . . . . . . . 102
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3.1 Introduction
Tree–based methods are among the most broadly used algorithms in statistics and machine
learning. This goes from single tree algorithms such as CART [20] or Bayesian CART [39, 49],
to the use of random forests [13, 38], that is ensembles of trees. Due in particular to their
ability to quantify uncertainty, there has been much interest in Bayesian tree–based methods.
While for frequentist methods there is a by now well–established theory in quadratic loss
for CART and related algorithms, advances on the mathematical understanding of Bayesian
counterparts are very recent. In [145, 107], L2–posterior contraction rates are obtained for
both trees and forests in a regression setting. Still in regression, the work [34] addresses
the case of the stronger supremum norm loss for Bayesian CART–type priors. The present
chapter can be seen as a continuation of [34], investigating the density estimation setting. In
Bayesian density estimation, a classical tree–method is that of Pólya trees (henceforth PTs,
see e.g. [65], Chapter 3). For well–chosen parameters, PTs’ samples are random densities, and
contraction rates for the corresponding posterior densities have been obtained in [29]. The
idea behind Pólya tree is to grow a fixed, infinite, tree; this is typically not flexible enough
to address refined statistical goals such as adaptation. Notably, Wong and Ma introduced in
[173] a flexible alternative to standard PTs that they call Optional Pólya Trees (OPTs in the
sequel), which have been successfully extended and applied to a number of settings in e.g.
[114, 83, 113, 110, 42]. Yet, from the theoretical point of view, only posterior consistency
was established in [173] and follow-up works. Not based on (flexible) trees, we also note the
different construction of spike–and–slab Pólya trees introduced in [31].
There are two main goals in the present chapter. The first is to continue the investigations of
[34] for tree–methods in order to obtain inference in the practically very desirable supremum
norm loss, but in the model of density estimation, and the second to elaborate a theory for
rates and uncertainty quantification (henceforth, UQ) for Optional Pólya Trees. In fact, our
methods enable to cover also more general priors, although for simplicity we will mostly stick
to OPTs in this work. We now briefly review a number of related results. While the use of a
general theory based on prior mass and testing [64, 65] made a relatively broad L2–theory
possible [107, 145], results for the supremum norm are typically more delicate, as uniform
testing rates required in [64] appear to be slower [68]. Recent advances on this front include
[28, 78, 125, 122, 177]. The first supremum norm posterior rates for tree methods, optimal
up to a logarithmic factor, were obtained in [34] in regression models; we refer to [34] for
more context and references on rates for tree–based methods.
The main results of this chapter are as follows

1. we prove that Optional Pólya Trees (OPTs) achieve optimal supremum–norm posterior
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contraction rates (up to a logarithmic factor) in density estimation: this provides an
optimal rate–theory for the consistency results of [173], who introduced the OPT prior,
for the computationally efficient case of dyadic splits.

2. we show that tree–based inference with OPTs leads to (near–) optimal uncertainty
quantification in terms of confidence bands, both for the density f and the distribution
function F =

´ ·
0 f , in an adaptive way.

Those constitute the first results, to the best of our knowledge, showing that tree–based
methods in density estimation lead to near–optimal uncertainty quantification in terms of the
supremum norm. Apart from making the consistency results of [173] precise, this work shows
that the programme for inference with tree–priors outlined in [34], who considered regression
settings only, carries over to density estimation; the techniques presented could also be used
for other tree priors beyond OPTs.
The chapter is organized as follows. Section 3.2 introduces a class of tree–based priors on
density functions, of which OPTs are a special case. Section 3.3 states our main result on tree–
based supremum norm contraction, while Section 3.4 focuses on Uncertainty Quantification,
both for the density function and smooth functionals thereof. Section 3.5 illustrates our
findings numerically through a simulation study. Section 3.6 briefly summarises and discusses
the results and future research directions. Proofs are gathered in Sections 3.7 and 3.8.

3.2 Dyadic tree–based random densities and Optional
Pólya trees (OPTs)

3.2.1 Bayesian framework
Adopting a Bayesian point of view, the density estimation model on [0, 1) consists in observing

X = (X1, . . . , Xn) | f ∼ P⊗nf

f ∼ Π,
(3.1)

where Pf is the distribution on [0, 1) with density f with respect to Lebesgue measure:
dPf = fdµ, and where Π is a prior distribution on densities f to be defined below. The
posterior distribution is then the conditional distribution of f given X and is denoted Π[· |X].
Frequentist analysis of Bayesian posteriors. To analyse mathematically the behaviour of the
posterior distribution Π[· |X], once the posterior is formed using the Bayesian model, we
make the frequentist assumption that the data X has actually been generated from a ‘true’
parameter value f0, that is, in the density estimation setting, X ∼ P⊗nf0 . In the sequel, we
thus study the behaviour of Π[· |X] in probability under Pf0 = P⊗nf0 . For more details and
context, we refer the reader to the book [65].
Motivated by recent work [34] on Bayesian CART in regression settings (see e.g. the discussion
in Section 5 of [34]), we introduce a family of tree-based prior distributions on density functions.
For simplicity, we mostly consider the case of densities on the unit interval, but our results
could be extended to higher dimensions up to using slightly more complex notation, which we
refrain to do here – see, though, the discussion in Section 3.6 for more on this –.
Informal prior description. The prior on densities is defined in three steps, which will be more
formally introduced below
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Step 1 a random tree T is sampled from a prior ΠT on trees;

Step 2 given T , a partition IT of the unit interval is produced, built recursively in a tree
fashion ‘along’ T with breakpoints placed at midpoints of the successive intervals;

Step 3 given IT , the output density f is a histogram with random heights whose distribution
follows a Pólya tree–type law.

3.2.2 Priors ΠT on full binary trees

Definition 3. A full binary tree is a set of nodes T =
{

(l, k), l ≥ 0, 0 ≤ k ≤ 2l − 1
}

verifying the condition

(l, k) ∈ T =⇒ if l > 0,
(
l − 1, bk/2c

)
∈ T and

(
l, k + (−1)k

)
∈ T .

One then says that
(
l− 1, bk/2c

)
is the parent node of its children (l, k) and

(
l, k + (−1)k

)
,

and a node with no children is called an external node or leaf; (0, 0) belongs to every non-empty
tree and is called the tree root. We denote by Tint the set of non-terminal – or ‘internal’ –
nodes in T (i.e. those with children), and Text = T \ Tint the set of ‘leaves’ – also called
‘external’ nodes –.

The parent-child relationship of the pairs in a tree gives rise to the tree representation depicted
on Figure 3.1a. This justifies the following terminology as we define the depth of T as the
integer

d(T ) := max
(l,k)∈T

l.

One further denotes by T the set of all binary trees and, putting a slight restriction on the
maximum depth,

Tn := {T ∈ T : d(T ) ≤ Lmax} , with Lmax :=
⌊

log2

(
n/ log2(n)

) ⌋
. (3.2)

The prior distributions considered below put mass 1 to the subset Tn of T.

(0, 0)

(1, 0) (1, 1)

(2, 2) (2, 3)

(a) Tree pairs.

I00 = [0; 1)

I10 = [0; 1/2) I11 = [1/2; 1)

I22 = [1/2; 1/4) I23 = [1/4; 1)

(b) Tree partitioning IT .

Figure 3.1: Tree T = {(0, 0), (1, 0), (1, 1), (2, 2), (2, 3)} .

Next we give two examples of priors ΠT on full binary trees. Both are actually considered in
actual Bayesian CART implementations [40, 49].
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Example 3 (GW(p) Markov process on tree). A random tree is recursively defined by the
following process. First, let us attribute to each possible pair (l, k) a deterministic parameter
plk ∈ [0, 1]. Starting at the root node (0, 0), either the tree with only (0, 0) as node is returned
with probability 1− p00, or there is a split and the tree contains not only (0, 0) but at least
also (1, 0) and (0, 1). The construction process then continues recursively until either there
are no further nodes to split, or a maximum depth Lmax is reached, after which (i.e. for
l ≥ Lmax) we do not further grow the tree. More precisely, the recursion is from up to down
(l grows) and left to right (k grows), as follows: given the tree contains (l, k), with probability
1− plk the node (l, k) is a leaf; and with probability plk, the tree further has a split at (l, k),
i.e. the node (l, k) has (l + 1, 2k) and (l + 1, 2k + 1) as children in the tree.
The process producing such a random tree T is Markov (along the complete dyadic tree) in
the sense that the probability that a node (l, k) further splits only depends on the fact that
the node is present or not and on the parameter plk, but not on the rest of the tree built so
far (above and to the left of (l, k)). By analogy to Galton–Watson processes, with here nodes
having either two or zero children with probabilities plk and 1− plk respectively, we call ΠT as
above a GW(p) prior, with parameters p = (plk) = (pε) (we define the link between ε and
(l, k) below, in Section 3.2.3), pLmaxk = 0.

Example 4 (Conditioning on the number of leaves). In this construction, one samples first a
number K of leaves according to a prior on integers and given K one then samples uniformly
from the set of all full binary trees with K leaves and depth at most Lmax.

3.2.3 Partitioning IT

Let us first introduce notation on dyadic numbers and intervals. For any binary sequence
ε ∈ {0, 1}l, its length is |ε| = l > 0. For any dyadic number r = k/2l in [0, 1) with
0 ≤ k < 2l, l > 0, one writes ε(k, l) = ε1(r) · · · εl(r) ∈ {0, 1}l, such that r = ∑l

k=1 εk(r)2−k,
its unique decomposition in base 2−1 with |ε| = l. Accordingly, one introduces the dyadic
intervals, for ε = ε(k, l),

Iε := Ilk :=
[
k

2l ,
k + 1

2l

)
,

and one sets I∅ = I0,0 = [0, 1). In addition, for any ε and 0 < i ≤ |ε|, one writes ε[i] = ε1 . . . εi.
Also, we introduce E∗ = ∪∞l=0 {0; 1}l where {0; 1}0 = {∅}.

To each full binary tree encoded as above as the collection of its nodes (l, k), we associate a
partition IT of the unit interval given by, with Text the external nodes of T as in Definition 3,

[0, 1) =
⋃

(l,k)∈Text
Ilk.

Such a tree-based recursive partitioning of [0, 1) is illustrated on Figure 3.1b. The deeper
the tree locally, the more refined the corresponding partition becomes. By definition of Ilk,
note that the partition has split-points at dyadic numbers. The final partition IT can also be
seen as being obtained from recursively splitting [0, 1) in halves, continuing to split locally
only if the tree continues further down at that location. For this reason we talk about
splitting at midpoints. Note that, still using full binary trees T , one could make splits at a
different, possibly random, location. Although this makes the construction even more flexible,
we shall not consider this here for simplicity (we note in passing that computationally the
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split–at–midpoint construction appears often to be among the easiest to simulate from, as it
does not require to draw split locations; we refer to [34], Section 4, for more on ‘unbalanced’
splits).

3.2.4 Prior values given tree and partitioning
Once a tree T and partitioning IT are given, we draw a random histogram over the partition
given by IT by sampling heights over each sub-interval in such a way that the overall histogram
is a positive density f (i.e. f > 0 and

´ 1
0 f = 1). To do so, we use a mass–splitting process

along the tree T , which actually coincides with that of Pólya trees – we refer to the Appendix
3.8.1 for more on those –. This choice is for simplicity but we could consider other choices
too (in this vein, the Beta(a, a) law at the end of Definition 4 could be taken to depend on
(l, k) or be a different distribution).

Definition 4 (Prior Π). Let ΠT be a prior on full binary trees. Let (Yε) be a sequence of
independent variables of distribution Beta(aε0, aε1), for some aε0, aε1 ∈ [0, 1], indexed by
ε ∈ E∗ . The prior Π draws a random tree–based histogram f as follows

T ∼ ΠT (3.3)

f | T ∼
∑

ε≡(l,k)∈Text
hε1Ilk , with hε = 2l

l∏
i=1

Yε[i] . (3.4)

The distribution f | T = T for a given T ∈ T is called a T–Pólya tree with parameters (aε).
In the sequel we set aε = a for some fixed a > 0, in which case the distribution is denoted as
T–PT(a).

It results from the definition that the overall prior Π is a mixture of T–Pólya trees. When the
mixing distribution ΠT is a GW(p) prior, it turns out that Π coincides with Optional Pólya
trees introduced in [173], in the case of splits at midpoints.

Proposition 1. Let Π be the mixture distribution induced on densities f constructed as
T ∼ GW(p)

f | T ∼ T –PT(a).

Then Π coincides with the Optional Pólya tree of [173] corresponding to the recursive
partitioning {Iε, ε ∈ E∗} with splits at midpoints and parameters M(Iε) = λ(Iε) = 1, K1(Iε) =
2, stopping probabilities ρ(Iε) = 1 − pε for any ε ∈ E∗ and parameters for mass allocation
α1

1 = α2
1 = a.

The proof of Proposition 1 is presented in Appendix 3.8.2. Our notation differs slightly from
[173] (which does not make the tree connection) for two reasons: first, the tree–setting enables
one to use the framework of [34] and second, although in what follows we stick to OPTs for
simplicity, the same proofs work nearly unmodified for other tree–priors, such as the one in
Example 4.

3.2.5 Posterior distribution
Let us recall that the prior Π in Definition 4 is the mixture

T ∼ ΠT

f | T ∼ Π(· | T ),
(3.5)
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where Π(· | T ) is, given T , a T –Pólya tree. For a given dyadic interval I, let NX(I) denote
the number of points Xi that fall in I. The next result is proved in Appendix 3.8.3.

Proposition 2 (Posterior given T ). Suppose the prior is given by (3.5), where the prior given
T is a T –Pólya tree with parameters (aε). Then, in the density estimation model (3.1), the
posterior Π[· |X, T ] is a T –Pólya tree with parameters (aXε ) given by, for any ε ∈ E∗,

aXε = aε +NX(Iε).

Let us now move on to describe the posterior induced on trees. We denote

NT (X) =
ˆ n∏

i=1
f(Xi)dΠ(f | T = T ) (3.6)

the marginal distribution of X given T = T . It follows from Bayes’ formula that Π[· |X]
induces a posterior distribution on trees given as: for any T ∈ T, and NT (X) as in (3.6),

Π[T = T |X] = ΠT[T = T ]NT (X)∑
T∈T

ΠT[T = T ]NT (X)
. (3.7)

This is in general a fairly complicated distribution with no closed–form expression. In case the
prior ΠT on trees is GW(p), it turns out that the posterior on trees is GW(pX) for updated
parameters pX . Let, for a > 0,

νXε = 2NX(Iε)B(a+NX(Iε0), a+NX(Iε1))
B(a, a) . (3.8)

Let us now consider parameters (pXε ) given by the equations

pXε
1− pXε

(1− pXε0)(1− pXε1) = pε
1− pε

(1− pε0)(1− pε1)νXε , (3.9)

Equations (3.9) together admit a unique solution (pXε ) obtained by a bottom–up recursion
noting that for |ε| = Lmax, pXε = pε = 0. This is verified along the proof of Proposition 3
below.

Proposition 3 (Special case of OPTs). In the setting of Proposition 2, suppose further
that the distribution ΠT on trees is GW(p) with split probabilities (pε). Then the posterior
distribution can be described as

Π[T = · |X] ∼ GW(pXε )
Π[· |X, T ] ∼ T –PT(aXε )

with splits probabilities (pXε ) verifying the recursion (3.9) and aXε as in Proposition 2. In
other words the posterior follows an OPT distribution with corresponding hyperparameters as
specified in Proposition 1.

The proof of this proposition is presented in Appendix 3.8.3.
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3.2.6 Notation and function spaces
Below we shall consider the Hölder class of functions with support in [0, 1) and smoothness
parameter 0 < α ≤ 1, defined as

Cα[0, 1) :=
{
f : [0, 1) 7→ R, sup

x6=y

|f(x)− f(y)|
|x− y|α

< +∞
}

and we similarly define Hölder balls with parameters α > 0 and K ≥ 0 as

Σ(α,K) :=
{
f : [0, 1) 7→ R, sup

x 6=y

|f(x)− f(y)|
|x− y|α

≤ K

}
.

Bounded Lipschitz metric. Let (S, d) be a metric space. The bounded Lipschitz metric βS on
probability measures of S is defined as, for any µ, ν probability measures of S,

βS(µ, ν) = sup
F ;‖F‖BL≤1

∣∣∣∣∣
ˆ
S
F (x)(dµ(x)− dν(x))

∣∣∣∣∣ , (3.10)

where F : S → R and

‖F‖BL = sup
x∈S
|F (x)|+ sup

x 6=y

|F (x)− F (y)|
d(x, y) . (3.11)

This metric metrises the convergence in distribution, see e.g. [55], Theorem 11.3.3.
As shown in [29], it is also useful to introduce the Haar wavelet basis to carry out an analysis
of Pólya tree-like posterior distributions. Indeed, one can relate the inclusion of a node (l, k)
in a tree T to the fact that the coefficient corresponding to the Haar wavelet function ψlk in
the decomposition of f ∼ Π[·|T ] is non-zero almost surely. More precisely, the Haar basis of
L2[0; 1) is the family composed of the mother wavelet φ = 1[0;1) and the functions

ψlk(·) = 2l/2ψ(2l · −k)

for l ≥ 0 and 0 ≤ k < 2l, where ψ = 1[1/2;1) − 1[0;1/2). However, as we consider the problem
of density estimation, maps f under scrutiny all verify 〈f, φ〉 =

´ 1
0 f(t)dt = 1, so that we only

focus on the wavelets ψlk and the corresponding coefficients flk := 〈f, ψlk〉 in the following.
As for the true density, we define f0,lk := 〈f0, ψl,k〉.

3.3 Posterior contraction rates for OPTs
For any α > 0, µ > 0, K ≥ 0, we define the regularity class of densities

F(α,K, µ) :=
{
f ≥ µ,

ˆ 1

0
f = 1, f ∈ Σ(α,K)

}
,

as well as the sequence
εn(α) :=

(
n−1 log2 n

) α
1+2α . (3.12)

Up to a logarithmic factor, this corresponds to the minimax supremum norm rate of estimation
over the class F(α,K, µ), which equals (n/ log n)−α/(1+2α) up to constants [80].
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3.3.1 Supremum norm convergence for the whole posterior
distribution

We now show that the posterior distribution Π[· |X] asymptotically concentrates most of its
mass on a ‖ · ‖∞–ball of optimal radius.

Theorem 11. Suppose that f0 ∈ F(α,K, µ) for some µ > 0, 0 < α ≤ 1 and K ≥ 0. Let Π
be an OPT prior with split probabilities plk = Γ−l, l ≥ 0, 0 ≤ k < 2l, Γ > 0, and parameter
a > 0. Then, for Γ large enough, any sequence Mn →∞, as n→∞, and εn = εn(α) as in
(3.12),

Ef0Π
[
‖f − f0‖∞ > Mnεn |X

]
→ 0.

Theorem 11 shows that an OPT posterior with split probabilities decreasing exponentially fast
with nodes depth concentrates most of its mass in a supremum norm ball of (near–) minimax
optimal radius, whenever the signal has regularity α ≤ 1. Some comments are in order. First,
the regularity requirement α ≤ 1 is typical and expected for ‘hard trees’, which produce
histogram-type estimators. An alternative would be to use ‘soft trees’, where individual learner
are smooth [107, 34], see also the discussion in Section 3.6. Second, the slight loss of a
logarithmic term in the convergence rate can be shown to be intrinsic to trees and is not due
to a possible suboptimality of our rate upper–bounds: this has been formally shown in [34],
Theorem 2, in a regression context; an analogous result could be shown in density estimation
in a similar way.
A consequence of Theorem 11 is that a posterior draw is close with high probability to the
true unknown density function of interest. This settles the estimation problem, but it does
not yet say much about the quantification of uncertainty, i.e. the construction of confidence
sets, a question addressed in Section 3.4.

3.3.2 Convergence rate for the median tree
While Theorem 11 entails convergence in probability of a draw from Π[· |X], one may ask
what happens for aspects of such distribution, e.g. point estimators derived from it. A natural
such estimator from the point of view of tree priors is the median tree estimator defined below,
since there is a natural tree associated to it. Such an estimator will also turn helpful for
uncertainty quantification as considered below.
The median tree is defined as the tree T ∗ whose interior nodes are

T ∗int = {(l, k) : Π[(l, k) ∈ Tint|X] > 1/2} , (3.13)

and which is actually a tree as defined previously (see [34], Lemma 13). One associates to it
the median tree density estimator

f̂T ∗ = 1 +
∑

(l,k)∈T ∗int

2l/2
NX

(
I(l+1)(2k+1)

)
−NX

(
I(l+1)(2k)

)
n

ψlk. (3.14)

Lemma 27 in the appendix shows that this estimator converges in probability to the actual
density f0 at the same almost-minimax rate εn in supnorm as in Theorem 11. In Section 3.5,
examples of T ∗ and f̂T ∗ are presented in Figures 3.2 and 3.3.
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3.4 Uncertainty quantification for OPTs
In nonparametrics the problem of uncertainty quantification is well–known to be more delicate
than the one of estimation: first negative results to the ambitious goal of constructing
confidence sets that both cover the unknown truth and have a diameter that adapts in an
optimal way to the smoothness of the unknown function or density were due to [105] and
[112]. The general picture that emerged in recent years following these early works is that the
difficulty of the problem depends on the considered loss function and on certain testing rates
of separation, see [69], Chapter 8. Notably, for the supremum norm, contrary to L2–losses
for which some ‘window’ of adaptation is possible, constructing adaptive confidence sets in
full generality is impossible unless one restricts the set of possible functions by assuming e.g.
self–similarity conditions. Such conditions can be shown to be essentially necessary; they
are also fairly natural from the practical perspective given that self–similarity is itself quite
wide–spread in natural phenomena.
Let us briefly describe the uncertainty quantification results we derive. A first confidence band
based on the posterior median and using self–similarity is built in Section 3.4.2. Next, we
prove in Section 3.4.3 that the quantile posterior credible set for the cumulative distribution
function leads to optimal UQ; this is a consequence of a more general result, an (adaptive)
nonparametric Bernstein–von Mises theorem, proved in Appendix 3.8.5. Finally in Section
3.4.4 we construct a confidence band integrating further information from some functionals
that is less conservative than the simple band constructed in Section 3.4.2 and achieves a
target confidence level. Our results can be seen as counterparts in density estimation and for
tree priors of the results in [139]. Another approach in density estimation would be to use
spike–and–slab Pólya priors as recently considered by the second author in [31]. Nevertheless,
the latter are expected to be less efficient to compute in high–dimensions (as they, e.g.,
require to explore all wavelet coefficients in the different dimensions), a setting that, while not
investigated in the present chapter, is particularly promising for OPTs, see also the discussion
in Section 3.6.

3.4.1 A self-similarity condition
Here we take the same condition as in [139] (see also [69]). It is fairly simple to state, and
can be only slightly improved (see [22]).
Definition 5 (Set S of self–similar functions). Given an integer j0 > 0 and α ∈ (0, 1], we
say that f ∈ Σ(α,K) is self-similar if, for some constant η > 0,

‖Kj(f)− f‖∞ ≥ η2−jα for all j ≥ j0,
where Kj(f) = ∑

l<j

∑
k〈f, ψlk〉ψlk. The set of such f ’s is denoted S = S(α,K, η).

The condition assumes that at each resolution depth j ≥ j0, the overall ‘energy’ (measured in
terms of supremum norm) of the wavelet coefficients at levels larger than j is lower bounded by
a typical amount for α–Hölder functions. Indeed, for any j ≥ j0, the quantity ‖Kj(f)− f‖∞
is itself also upper–bounded up to a constant by the same quantity (this follows from standard
bounds on the supremum norm and the definition of the Hölder class).

3.4.2 Simple confidence band
A first construction consists in defining a band from a centering function and a radius. A first
and simple possibility consists in defining those using the median tree (3.13): the resulting
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median tree estimator (3.14) can serve as center, while a radius can be defined as

σn = vn

√
log n
n

2d(T ∗)/2, (3.15)

where d(T ∗) is the depth of the median tree T ∗, for some slowly diverging sequence (vn) as
specified below. This allows us to define the confidence band, for f̂T ∗ as in (3.14),

Cn =
{
f :

∥∥∥f − f̂T ∗∥∥∥∞ ≤ σn
}
. (3.16)

Under self–similarity as in Definition 5, the median tree can in particular be shown to have a
depth of the order of the oracle cut–off 2L∗n ≈ n1/(2α+1) (up to a logarithmic factor, see the
Appendix for a precise statement in Lemma 25) which in turn implies desirable properties for
the band Cn as is made explicit in the next theorem.

Theorem 12. Let 0 < α1 < α2 ≤ 1, K > 0, µ > 0 and η > 0. Let Π be the same
prior as in Theorem 11, Cn as in (3.16) with vn/ log1/2 n → ∞, then uniformly on f0 ∈
S(α,K, η) ∩ F(α,K, µ), α ∈ [α1, α2],

|Cn|∞ = OP0

vn
 log n

n

α/(2α+1)


and
P0 [f0 ∈ Cn] = 1 + o(1), Π[Cn |X] = 1 + oP0(1).

For a slowly diverging sequence (vn), the diameter of Cn is then within a logarithmic factor
of the minimax rate of estimation on Σ(α,K) with high probability. It is attained adaptively
(the definition of Cn does not depend on α) for any window [α1;α2]. The set Cn allows to
quantify uncertainty on f0 as it is an asymptotic confidence set, and it is also a credible set of
credibility going to 1.

3.4.3 UQ for functionals: a Donsker–type theorem

OPTs with flat initialisation. Let us introduce a slight modification of the OPT prior where
trees from the prior distribution are constrained to include all nodes of depth less than some
number l0 = l0(n), slowly diverging to ∞.

Definition 6. A prior on densities Π of the type (3.5) is said to have flat initialisation up to
level l0 = l0(n) if the prior on trees ΠT verifies

ΠT

 ⋂
l≤l0(n),k

{(l, k) ∈ T }
 = 1.

The next result considers the behaviour of the induced posterior on F (·) =
´ ·

0 f , that is on
the distribution function for an OPT prior on f . Let us also define, for f̂T ∗ the median tree
estimator,

F̂med
n (t) =

ˆ t

0
f̂T ∗(u)du. (3.17)
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Let us recall that for Q a probability measure on [0, 1] of distribution function H, a Q–
Brownian bridge is a centered Gaussian process Z(t) with covariance function E[Z(s)Z(t)] =
min(H(s), H(t))−H(s)H(t) and 0 ≤ s, t ≤ 1.

Theorem 13 (Donsker’s theorem for OPTs). Let X = (X1, . . . , Xn) be i.i.d. from law P0
with density f0. Let f0 ∈ F(α,K, µ), for some α ∈ (0; 1], K ≥ 0, µ > 0. Let Π be an OPT
prior with flat initialisation up to level l0(n) that verifies

√
log n ≤ l0(n) ≤ log n/ log log n,

and other than that for l > l0(n) with same parameters as the prior in Theorem 11.
Let GP0 be a P0-Brownian bridge GP0(t), t ∈ [0, 1). For F̂med

n as in (3.17), as n→∞,

βC[0,1)
(
L(
√
n(F − F̂med

n ) |X),L(GP0)
)
→Pf0 0.

Furthermore, for Fn the empirical distribution function, as n→∞,

βL∞[0,1)
(
L(
√
n(F − Fn) |X),L(GP0)

)
→Pf0 0.

This implies that the induced posterior distribution L(
√
n‖F − F̂med

n ‖∞ |X) converges weakly
in probability to L(‖GP0‖∞). Furthermore, for 0 < γ < 1, the credible set

Fn = {F : ‖F − F̂med
n ‖∞ ≤ ρXn },

with ρXn chosen such that Π[Fn |X] = 1−γ, is an asymptotically optimal (efficient) confidence
set of level 1 − γ. We refer to [33] for more details on this; note that in the latter paper
the results are for priors of fixed regularity only, whereas here the prior additionally enables
adaptation to the smoothness of f . The behaviour of the credible set Fn is illustrated in
Figure 3.5.

3.4.4 Multiscale confidence band
Here we follow the approach introduced in [32, 33] and first briefly recall the idea. One wishes
to define a ‘multiscale’ space (i.e. defined from wavelet coefficients) with an associated metric
that is weak enough so that convergence of the posterior distribution for f in that space
converges at rate 1/

√
n, instead of the slower nonparametric rate of order n−α/(2α+1). In such

space one can then formulate a convergence of the posterior to a Gaussian limit, namely a
nonparametric Bernstein–von Mises theorem. Below we only define the multiscale space as it
is used in the definition of the credible band and postpone details on the precise statement of
convergence to Appendix 3.8.5.
Let us call the sequence w = (wl)l≥0 ‘admissible’ if wl/

√
l → ∞ as l → ∞. For such a

sequence, let us define

M0 =M0(w) =
{
x = (xlk)l,k, lim

l→∞
max

0≤k<2l

|xlk|
wl

= 0
}
. (3.18)

Equipped with the norm ‖x‖M0 = sup
l≥0

max
0≤k<2l

|xlk|/wl, this is a separable Banach space [33].
In a slight abuse of notation, we write f ∈M0 if the sequence of its Haar wavelet coefficients
(〈f, ψlk〉)l,k belongs to that space.
Let us consider a credible ball in the space M0: recalling the definition (3.14) of the median
tree estimator f̂T ∗ , let us choose Rn = Rn(X) in such a way that

Π[‖f − f̂T ∗‖M0(w) ≤ Rn/
√
n |X] = 1− γ (3.19)
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(or possibly ≥ 1 − γ if the equation has no exact solution, in which case the limit in the
confidence statement of the next proposition is replaced by a liminf and equality by ≥).
Let us define, for Rn as in (3.19), σn as in (3.15) and fT ∗ the median tree estimator (3.14),

CMn =
{
f : ‖f − f̂T ∗‖∞ ≤ σn

} ⋂ {
f : ‖f − f̂T ∗‖M0(w) ≤ Rn/

√
n
}
. (3.20)

The next result states that CMn is under self–similarity asympotically a confidence band of
prescribed level 1− γ.

Proposition 4. Let 0 < α1 < α2 ≤ 1, K > 0, µ > 0 and η > 0. Let CMn be defined by
(3.20), for vn/ log1/2 n → ∞, and Π an OPT prior with flat initialisation up to level l0(n)
that verifies

√
log n ≤ l0(n) ≤ log n/ log log n, and other than that for l > l0(n) with same

parameters as the prior in Theorem 11. First, the set CMn is a (1 − γ)−credible band as,
uniformly on α ∈ [α1, α2] and f0 ∈ S(α,K, η) ∩ F(α,K, µ),

Π[CMn |X] = 1− γ + oP0(1).

Further, under the same conditions,

∣∣∣CMn ∣∣∣
∞

= OP0

vn
 log n

n

α/(2α+1)
 ,

P0
[
f0 ∈ CMn

]
= 1− γ + o(1).

Proposition 4 quite directly follows from combining Theorem 12, which concerns Cn and the
nonparametric BvM Theorem 14 proved in the Appendix, which concerns the second part of
the intersection in (3.20). Compared to Cn the advantage of CMn is that it uses more ‘posterior
information’ by intersecting with theM0(w) credible ball, resulting in a credible ball with both
credibility and confidence close to a given user–specified confidence level 1− γ. By contrast,
Cn was more ‘conservative’ in this respect, having credibility and confidence both going to
1. The behaviour of the credible band CMn , in particular in comparison to Cn from (3.16), is
illustrated in simulations in the following Section 3.5.

3.5 Simulation study
We consider the credible sets Cn and CMn defined in (3.16) and (3.20) respectively and illustrate
their coverage and diameter properties numerically through a simulated study.
We focus on a prior as in Proposition 4, with parameters Γ = 1.1, a = 1 and l0(n) =

√
log n.

We take four fairly different densities f0, illustrating different aspects of inference and UQ
with Optional Pólya trees:

• The triangular density x 7→ (.5 + 2 ∗ x)10≤x<0.5 + (1.5− 2 ∗ (x− .5))10.5≤x<1 that is
Lipschitz regular.

• The density
t 7→ eWt´ 1

0 e
Wsds

where (Wt)t∈[0;1) is a Brownian motion that is almost surely (1/2− δ)–Hölder regular
for any 0 < δ < 1/2.
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• The density
t 7→ C

(
eWt10≤t<0.5 + c10.5≤x<1

}
for (Wt)t∈[0;1) a Brownian motion and C, c real numbers such that this actually defines
a continuous density function. In this case, the regularity is different and of a higher
order on the second half of the interval.

• The sine density t 7→ 1 + 0.5 ∗ sin(2πx) ∈ C∞([0; 1)).

Figure 3.2: Interior nodes T ∗int of the median tree - n = 105.

We first illustrate the behaviour of the median tree T ∗ and the associated estimator f̂T ∗
defined in (3.14) in these different situations. In Figure 3.2, we observe how this tree adapts
to the regularity of the underlying sampling density f0 via the interior nodes it selects. First,
in the case of the smoother sine and triangular densities, fewer nodes are included, while the
tree grows deeper with the other two more irregular signals. Indeed, as mentioned before and
explicited in Lemma 25, the median tree can be shown to have a depth close to the oracle
cut-off L∗n, satisfying 2L∗n ≈ n1/(2α+1). However, although the sine density is even more regular
than the triangular one, their respective median trees have a similar behaviour and grow at the
same pace. Indeed, since we use a piecewise constant tree estimator which relates to the Haar
wavelet basis, our method cannot leverage additional regularities, beyond C1[0, 1). Finally,
when it comes to the mixed density, the median tree has a spatial-dependent behaviour. It
includes much more nodes in regions that corresponds to the first half of the sampling space,
where the target regularity is that of the exp-Brownian density. As for the other half of the
sampling space, it doesn’t get deeper than l0(n). It highlights a desirable feature of tree-based
methods, that is their spatial adaptivity. While we consider adaptation to global regularity in
our theoretical results, one could also consider local adaptation, as was recently considered in
[142], where results on local adaptation for tree–based priors (among others) are obtained in a
regression setting.
In Figure 3.3, for the four sampling densities, we illustrate the estimator f̂T ∗ (orange) and the
bounds of the credible set Cn (red), where we took vn = (log n)0.501 in (3.15). The estimator
(3.14) struggles to approximate the ’spiky’ portions of the most irregular signals. Still, in any
case, the credible band covers the true density f0 as expected.
Then, to illustrate the intersected set CMn , defined in (3.20) via a multiscale condition, we
sampled 10000 draws from the posterior and plotted, in Figure 3.4, 100 of those belonging to

90



3.5. Simulation study

Figure 3.3: Median tree estimator f̂T ∗ and credible set Cn - n = 104

Chosen significance γ 0.99 0.95 0.9 0.85
n = 104

Credibility of CL∞

n 0.99 0.95 0.9 0.85
Credibility of CMn 0.99 0.95 0.8981 0.85
Credibility of CL∞

n ∩ CMn 0.9801 0.9029 0.8108 0.725
Credibility of the intersection if independence 0.9801 0.9025 0.81 0.7225

n = 105

Credibility of CL∞

n 0.99 0.95 0.9 0.85
Credibility of CMn 0.9894 0.9494 0.8994 0.8494
Credibility of CL∞

n ∩ CMn 0.9801 0.9028 0.8118 0.7254
Credibility of the intersection if independence 0.9795 0.9019 0.8095 0.722

Table 3.1: Credibility of sets CL∞
n and CMn for the triangular density f0.

the confidence band (blue), for γ = 0.05. Most of those samples do not seem to lie close to
the bounds of Cn which is consistent with the fact that Cn, resp. CMn , has a posterior mass
close to 1, respectively 0.95. Though our illustrations concern the intersection of CMn with the
support the posterior, via the representation of posterior draws, it appears that CMn is actually
smaller than Cn.
As for the confidence sets Fn on the cumulative distribution function F0(·) =

´ ·
0 f0(t)dt, we

illustrate an example in Figure 3.5 for a smaller sample size of n = 103 and γ = 0.95. The
bounds of Fn follow tightly the true signal and the set covers it, in spite of the fewer number
of observations available compared to previous plots. Indeed, following the discussion after
Theorem 13, Fn has a radius decreasing at the parametric rate √n−1.
We end this section with an illustration of a phenomenon that was noticed and established
in [139] for a spike-and-slab prior in a regression setting. Namely, since we constructed an
adaptive (1− γ)-confidence bands whose diameter in supnorm shrinks at an almost optimal
rate, one may wonder how much it differs from the (1−γ)-credible band in the supremum norm
CL∞
n :=

{
f :

∥∥∥f − f̂T ∗∥∥∥∞ ≤ Qn(γ)
}

, where Qn(γ) is chosen such that Π
[
CL∞
n |X

]
≥ 1− γ.
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Figure 3.4: Posterior sample in the confidence band CMn - γ = 0.05 and n = 104.

Figure 3.5: Posterior samples in the confidence set Fn - n = 103.

In a white noise regression setting, [139] proved that these two sets are asymptotically
independent (see Theorem 5.3 therein), in the sense that Π

[
CL∞
n ∩ CMn |X

] Pf0→ (1− γ)2. As
above, we sampled 104 draws from the posterior to estimate de posterior credibility of the
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different sets, which we present in Table 3.1. The results seem to indicate that the independence
phenomenon of the credible sets as described above still hold in the present density estimation
setting, as the margin of difference observed is of the order of the Monte-Carlo error. Intuitively
speaking, this independence under the posterior if true (at least asymptotically) would mean
that the two credible sets reflect different aspects of the posterior distribution. Although this
result from [139] is seemingly verified in density estimation with an OPT prior, we did not
investigate this question from a theoretical point of view in the present chapter; we expect the
proof to be significantly more involved than in the (conjugate) Gaussian white noise setting
and we leave this point for future work.

3.6 Discussion
In the present work we establish an inference theory for Optional Pólya trees introduced in
[173] by deriving posterior contraction rates as well as confidence bands for the problem
of uncertainty quantification. By contrast, only posterior consistency had been previously
obtained until now for such priors. Although we focus on this class of prior distributions,
we point out that our proofs and results also apply to different tree priors, such as ones
conditioning on the number of leaves as in Example 4. The results and proofs highlight how
beneficial a multiscale approach to study tree-based methods, as introduced in [34], can be.
As for related priors in density estimation, non-adaptive contraction rates were obtained in
[29] for Pólya trees for carefully chosen regularity-dependent parameters of the Beta random
variables. The addition of a hyperprior on the tree structure in OPTs allows for adaptation, so
that the Beta parameters can be set as an arbitrary constant (a similar comment can be done
about Spike-and-slab Pólya trees [31]). The Beta variables in the Pólya-like mass allocation
mechanism could be replaced by another distribution, but we stuck to them for simplicity of
analysis and presentation.
In Section 3.5, we mentioned some further results on OPTs to be investigated. First, tree-
based methods have a natural ability to adapt to the local regularity. While this has been
proved in [142] in a regression setting, this should also be the case with OPTs in density
estimation. Another expected advantage of trees is that in high-dimensional settings, they
induce a ‘tree–structured’ sparsity, which could help in addressing the curse of dimensionality.
As original OPTs [114] have been introduced in arbitrary dimensions, it is natural to further
our theoretical analysis in this direction, Also, the interesting alleged posterior independence
of sets CL∞

n and CMn still needs to be proven and would confirm that the two constructions
rely on somewhat different aspects of the posterior distribution in density estimation too.
Finally, the almost-optimal rates we obtain are valid for Hölder regularities up to 1. This is
related to the fact that samples of OPTs are piecewise constant on some random partition. In
order to achieve faster rates for smoother densities, one possibility explored in [107] consists in
replacing ‘hard’ (histogram) trees with ‘smooth’ trees. Another promising possibility is to look
at forests priors. Indeed, the aggregation of many trees tends to result in estimators that are
more ‘regular’ and thereby more suitable to the estimation of smoother objects: for frequentist
estimators in regression, this was noted in [3, 121] for regularities α ≤ 2. The recent work
[137] establishes that, when an L1 or Hellinger loss on densities is considered, forests of Pólya
trees enable adaptation to arbitrary regularities α. This will be investigated elsewhere.
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3.7 Proof of the main results
Below, the depth Ln = Ln(α) defined as

2Ln = c0(n/ log n)
1

1+2α , (3.21)

for some c0 > 0, will be helpful in our theoretical analysis. Also, in the below proofs, C stands
for a generic constant whose precise value we do not track and can change from line to line.

3.7.1 Proof of Theorem 11
Let’s write Tn = {T | d (T ) ≤ Ln, S(f0, τ) ⊂ T }, S(f0, τ) as in Lemma 22, and En = {f :
∃T ∈ Tn, f piecewise constant on IT }. Moreover, we write, for Ln as in (3.21) and any tree
T ∈ Tn, the following othogonal projections of f0: fT0 onto the span {ψlk | (l, k) ∈ T }, fL

c
n

0
onto {ψlk | l > Ln}, and fT c,Ln0 onto the orthocomplement of the union of the two last spans.
For f0 ∈ Cα[0, 1), 0 < α ≤ 1, we have in particular that

||fL
c
n

0 ||∞ ≤
∑
l>Ln

2l/2 max
0≤k<2l

|f0,lk| .
∑
l>Ln

2−lα .
(
n−1 log n

) α
1+2α , (3.22)

(see for instance [29]). Then, for any density f0, we have the upper bound, for BM as in
Lemma 28,

Π [‖f − f0‖∞ > Mnεn |X]
≤ Π[Ecn |X]1BM + Π [‖f − f0‖∞ > Mnεn, f ∈ En |X]1BM + 1BcM .

On one hand, Lemma 28 guarantees that P0 (BcM) = o(1) for M large enough and Lemmas
21 and 22 ensures that

Ef0 {Πf [Ecn |X]1BM} = o(1).

On the other hand, we also have the inequality ‖f − f0‖∞ ≤
∥∥∥f − fT0 ∥∥∥∞ +

∥∥∥fT c,Ln0

∥∥∥
∞

+∥∥∥fLcn0

∥∥∥
∞

. This allows us to control the last term in the above upper bound by mean of the
Markov inequality:

Π
[
f ∈ En, ‖f − f0‖∞ > Mnεn |X

]
1BM ≤ (Mnεn)−1

ˆ
En
‖f − f0‖∞ dΠ[f, T |X]1BM

≤ (Mnεn)−1
[ˆ
En

∥∥∥f − fT0 ∥∥∥∞ dΠ[f, T |X]1BM

+
ˆ
En

∥∥∥fT c,Ln0

∥∥∥
∞
dΠ[T |X]1BM +

∥∥∥fLcn0

∥∥∥
∞

]
,

(3.23)

and (3.22) ensures that the last term above is o(1). Similarly, for the second term, using the
definition of En and denoting L∗ the largest integer such that 2−L∗(α+1/2) ≥ n−1/2 log n,

||fT
c,Ln

0 ||∞ ≤
∑
l≤Ln

2l/2 max
k:(l,k)6∈T

|f0,lk| .
∑
l≤Ln

2l/2
(

max
0≤k<2l

|f0,lk| ∧ log n /
√
n

)

.
∑
l≤L∗

2l/2 log n√
n

+
∑

L∗<l≤Ln
2l/22−l(1/2+α) . 2L∗/2 log n√

n
+ 2−L∗α . 2−L∗α.
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This allows us to conclude that the second term in the bound (3.23) is also of the order o(1).
It remains to bound the first term in the bound that is also of order o(1) according to Lemma
23. This concludes our proof.

It remains to prove the different lemmas we used to upper bound the different terms above.

Lemma 21. Suppose f0 ∈ F(α,K, µ), for some µ > 0, 0 < α ≤ 1, K > 0, and assume f
follows a prior as in Theorem 11. Then, for any M > 0 as in Lemma 28 and Γ large enough,
on events BM , we have, as n→∞,

Π[d(T ) > Ln |X]→ 0,

where Ln is as in (3.21).

Proof. Let T be a tree of depth Ln < d (T ) = l ≤ Lmax. Then, for

k̃ = min
(2k,l)∈T

k, ε = ε
(
k̃, l − 1

)
,

let T − be the corresponding tree whose nodes (l, 2k̃) and (l, 2k̃ + 1) have been removed, i.e.
T = T − ∪

{
(l, 2k̃), (l, 2k̃ + 1)

}
. From (3.8) and (3.9), we have

Π[T |X] = Π[T − |X] pXε
1− pXε

(
1− pXε0

) (
1− pXε1

)
= Π[T − |X]pε

(1− pε0) (1− pε1)
1− pε

νXε

≤
(
1− Γ−Ln

)−1
Π[T − |X]2

NX(Iε)

Γl+1
B(a+NX(Iε0), a+NX(Iε1))

B(a, a)︸ ︷︷ ︸
=:Q

.

(3.24)

Then, from Lemma 30, we have for ñ0 = NX (Iε0), ñ1 = NX (Iε1) and ñ = NX (Iε), that

Q .
(2a+ ñ1 − 1/2)ñ1 (2a+ ñ2 − 1/2)ñ2

(2a+ ñ− 1/2)ñ︸ ︷︷ ︸
=:Q1

(2a+ ñ1 − 1/2)a−1/2 (2a+ ñ2 − 1/2)a−1/2

(2a+ ñ− 1/2)2a−1/2︸ ︷︷ ︸
=:Q2

.

Under our assumptions on f0, on the event BM and for n large enough,

nX (Il,k) ≥
µ

2n2−l →∞

for any l ≤ Lmax. Under the same conditions,

|ñ1 − ñ2| ≤ n |P0(Iε0)− P0(Iε1)|+ 2MMn,l ≤ nK2−l(1+α) + 2MMn,l.

The last inequality stems from the fact that f0 is α-Hölder regular. Therefore, on BM , for n
large enough, if we note vñ1,ñ2 = ñ1 − ñ2, since ñ = ñ1 + ñ2 and log(1 + x) ≤ x for x > −1,

Q1 = exp
ñ1 log

(
1
2 + ñ1 − ñ2 + 2a− 1/2

2(2a− 1/2 + ñ)

)
+ ñ2 log

(
1
2 −

ñ1 − ñ2 − 2a+ 1/2
2(2a− 1/2 + ñ)

)
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= 1
2ñ exp

(
ñ1 log

(
1 + vñ1,ñ2 + 2a− 1/2

2a− 1/2 + ñ

)
+ ñ2 log

(
1− vñ1,ñ2 − 2a+ 1/2

2a− 1/2 + ñ

))

≤ 1
2ñ exp

(
v2
ñ1,ñ2

2a− 1/2 + ñ
+ ñ(2a− 1/2)

2a− 1/2 + ñ

)
≤ C

2ñ exp
(

8K2n22−2l(1+α)

µn2−l +
16M2M2

n,l

µn2−l

)

≤ C

2ñ exp
((

8K2µ−1c−1−2α
0 + 32M2(µ log 2)−1

)
log n

)
.

The last inequality stems from l > Ln and the definition of Ln. The last factor is even easier
to control as, on BM ,

Q2 .
[
n2−l

]−1/2
. n−

α
1+2α log(n)−

1/2
1+2α .

Finally, this leads us to

Π[T |X] = o

Π[T − |X]n
(8K2µ−1c−1−2α

0 +32M2(µ log 2)−1− α
1+2α)

Γl


uniformly on T such that Ln < d (T ) = l ≤ Lmax. The application T −→ T − defined above
is surjective and is such that each tree T − is the image of at most 2l−1 trees T . Then, the
event of interest verifies for Γ > 2 and C̄ = 8K2µ−1c−1−2α

0 + 32M2(µ log 2)−1 − α
1+2α ,

Π[d(T ) > Ln |X] =
Lmax∑

l=Ln+1
Π[d(T ) = l |X] =

Lmax∑
l=Ln+1

∑
T :d(T )=l

Π[T |X]

= o

 Lmax∑
l=Ln+1

∑
T :d(T )=l

Π[T − |X]n
C̄

Γl

 = o

 Lmax∑
l=Ln+1

∑
T −

Π[T − |X]2
lnC̄

Γl

 = o

(
2LnnC̄
ΓLn

)
(3.25)

which is o(1) whenever {log Γ/ log 2− 1}/(1 + 2α) ≥ C̄, that is, if Γ ≥ 21+C̄(1+2α).

Lemma 22. Under the same assumptions on f0 as in Lemma 21, for Π as in Theorem 11
and on the events BM from Lemma 28, for τ > 0 large enough and Ln as in (3.21), the set

S(f0, τ) :=
{

(l, k) : |f0,lk| ≥ τ
log n√
n

}

satisfies, as n→∞,
Π[{T : S(f0, τ) 6⊂ Tint} |X]→ 0.

Proof. First, since f0 ∈ Σ(α,K) for some α,K > 0, there exists C > 0 such that, for any
l ≥ 0, 0 ≤ k < 2l, |f0,lk| ≤ C2−l(α+1/2). Thus, for τ large enough, (l, k) ∈ S(f0, τ) implies
l ≤ Ln.
Now, let’s take (lS, kS) a node in S(f0, τ). Then, let’s define

Tn,(lS ,kS) := {T ∈ Tn | (lS, kS) /∈ Tint},

the set of trees in the support of our prior distribution on tree structures that do not have
(lS, kS) as an internal node, and ε = ε (kS, lS). To any tree T ∈ Tn,(lS ,kS), it is possible to
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associate the full binary tree T + which is the smallest extension of T with (lS, kS) as an
interior node,

T + = arg min
T ′∈Tn: T ⊂T ′, (lS ,kS)∈T ′int

|T ′| .

This new tree is realized with the completion of the route from the root to the node (lS, kS),
starting from the leaf node (l0, k0) of this route which is included in T . Then, as in (3.24)
and using Lemma 30, we now have for some constant C > 1,

Π[T |X]
Π[T + |X] ≤ C lS

2
lS∏
l=l0

2nX(Iε[l])B
(
a+ nX (Iε[l]0) , a+ nX (Iε[l]1)

)−1

≤ C lS
2
lS∏
l=l0

(2a+ nX (Iε[l])− 1/2)2a−1/2

(a+ nX (Iε[l]0)− 1/2)a−1/2(a+ nX (Iε[l]1)− 1/2)a−1/2︸ ︷︷ ︸
=: Q1

lS∏
l=l0

(2a+ nX (Iε[l])− 1/2)nX(Iε[l])

2nX(Iε[l])(a+ nX (Iε[l]0)− 1/2)nX(Iε[l]0)(a+ nX (Iε[l]1)− 1/2)nX(Iε[l]1)︸ ︷︷ ︸
=: Q2

.

(3.26)

where we recall that ε[l] denotes the l first elements of the sequence ε. On the event BM , for all
l ≤ Ln + 1 and possible k, we have, using that f0 ≥ µ > 0, NX (Il,k) & n2−l & n2−Ln →∞
as n→∞. Since it is also upper bounded (as f0 is a Hölder density), we have NX (Il,k) . n2−l.
Therefore, since these bounds are uniform on l ≤ Ln + 1,

Q1 ≤
lS∏
l=l0

C
(
n2−l

)1/2
≤ C lS

√
n
lS .

Also, in Q2, the factor at index l is equal to, writing ñ0 = NX (Iε[l]0) , ñ1 = NX (Iε[l]1) , ñ =
NX (Iε[l]),

exp
ñ0 log

2a− 1/2 + ñ

2a− 1 + 2ñ0

+ ñ1 log
2a− 1/2 + ñ

2a− 1 + 2ñ1

 .
If we write KL(a; b) the Kullback-Leibler divergence between Bernoulli distributions of param-
eters 0 ≤ a, b ≤ 1, then, for n large enough, on BM , this is bounded by

exp
[
−CñKL

(
a− 1/2 + ñ0

2a− 1 + ñ
; 1/2

)]
exp

[
ñ log

(
1 + 1

4a− 2 + 2ñ

)]
.

The second factor can be bounded by a constant, uniformly on l ≤ Ln + 1. The first
factor can be bounded by 1 for l < lS, while for l = lS, we can use the bound KL(a; b) ≥
‖Be(a)− Be(b)‖2

1 /2 to write

exp
[
−CñKL

(
a− 1/2 + ñ0

2a− 1 + ñ
; 1/2

)]
≤ exp

[
−Cñ−1(ñ0 − ñ1)2

]
.

By definition |f0,lSkS | = 2lS/2
∣∣∣P0(I(lS+1)(2k+1))− P0(I(lS+1)(2k))

∣∣∣, so that on BM , |ñ0 − ñ1| ≥
n |f0,lSkS | 2−lS/2 − 2MMn,lS+1, hence the upper bound for τ large enough:

exp
[
−C(τ log n− 2M

√
lS + 1 + Ln)2

]
≤ exp

[
−Cτ 2 log2 n

]
,
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where we used the definition of S, Mn,lS+1, Ln and lS ≤ Ln.
Finally, for τ large enough and using that lS ≤ Ln ≤ log n, we can conclude that there exists
constants C1, C2 > 0 such that

Π[T |X]
Π[T + |X] ≤ C

l2S
1 n
−(C2τ2−1/2) logn ≤ n−(C2τ2−1/2−logC1) logn. (3.27)

Since any tree verifying (lS, kS) ∈ T is the image of at most lS + 1 trees by the map

Tn,(lS ,kS) → {T ′ ∈ Tn : (lS, kS) ∈ T ′int}
T 7→ T + ,

as it is the length of the path from the root to the node (lS, kS) in a tree T ∈ Tn,

Π[(lS, kS) /∈ T |X] =
∑

T :(lS ,kS)/∈T

Π[T |X]
Π[T + |X]Π[T + |X]

≤ n−(C2τ2−1/2−logC1) logn(lS + 1)
∑

T :(lS ,kS)∈T
Π[T |X]

≤ n−(C2τ2−1/2−logC1) logn log n,

which allows us in conjunction with the definition of Ln to conclude that

Π[{T : S(f0, τ) 6⊂ T } |X] ≤
∑

(l,k)∈S(f0,τ)
Π[(l, k) /∈ T |X]

≤ 2Ln+1n−(C2τ2−1/2−logC1) logn log n
→ 0

as n→∞ for τ large enough.

Lemma 23. Let Tn = {T ∈ Tn : d (T ) ≤ Ln, S(f0, τ) ⊂ T } for Ln as in (3.21), c0 > 0
small enough, and τ > 0 as in Lemma 22. Then, under the conditions of Lemma 21 and
on the event BM for M > 0 large enough, there exists a constant C > 0 such that for n
sufficiently large, uniformly on T ∈ Tn,

ˆ
max

(l,k)∈Tint
|flk − f0,lk| dΠ[f | T , X] ≤ C

√
log n
n

.

Proof. Given a tree T , let us define the map f̄T such that, for each terminal node (l, k) in
Text and x ∈ Ilk,

f̄T (x) = 2l
l∏

i=1
Ȳε[i] , ε = ε (k, l) ,

where
Ȳε = E [Yε |X, T ] = a+NX(Iε0)

2a+NX(Iε)
.

This defines the mean posterior density given the tree structure T . Similarly, for each (l, k) ∈ T ,
with ε = ε (k, l), the mean probability measure of Iε is

P̄ (Iε) =
|ε|∏
i=1

Ȳε[i] =: p̄ε.
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Then, expressing the coefficients of the decomposition in the Haar wavelet basis of this mean
posterior density, we obtain that for each (l, k) ∈ Tint, ε = ε (k, l),

f̄T ,lk := 〈f̄T , ψlk〉 = 2l/2 (p̄ε − 2p̄ε0) = 2l/2p̄ε
(
1− 2Ȳε0

)
,

while f̄T ,lk = 0 for (l, k) 6∈ Tint. When it comes to the true sampling density f0, we obtain the
similar expression, denoting p0,ε := P0(Iε) and yε0 := P0(Iε0)

P0(Iε) ,

f0,lk = 2l/2p0,ε(1− 2yε0),

and, for densities f sampled from the posterior distribution given T , with pε := ∏|ε|
i=1 Yε[i] ,

flk = 2l/2p̃ε (1− 2Yε0)1(l,k)∈Tint .

From now on, for simplicity of notations, ε = ε(k, l) as the context will make it clear what
the pair (l, k) is. For any T ∈ Tn, one can bound |flk − f0,lk| ≤

∣∣∣flk − f̄T ,lk∣∣∣+ ∣∣∣f̄T ,lk − f0,lk

∣∣∣.
Using the above expressions, the second term is rewritten as

∣∣∣f̄T ,lk − f0,lk

∣∣∣ =

∣∣∣∣∣∣f0,lk

[
p̄ε
p0,ε
− 1

]
+ 2l/2+1(yε0 − Ȳε0)

∣∣∣∣∣∣.
Then, as we are on the event BM , we bound the two terms above by means of Lemmas 1 and
2 from [29] (which are valid for some c0 small enough) and the bound p0,ε . 2−|ε| (as f0 is
upper bounded), which give uniformly on T ∈ Tn and (l, k) ∈ Tint,

∣∣∣f̄T ,lk − f0,lk

∣∣∣ . |f0,lk|

a2l
n

+
√
Ln2l
n

+
|f0,lk|

a2l
n

+
√
Ln
n


. |f0,lk|

a2l
n

+
√
Ln2l
n

+
√

log n
n

as Ln . log n.
(3.28)

Since f0 is α-Hölder, |f0,lk| . 2−l(1/2+α), and the last quantity in the above inequality is
smaller (up to a constant) than

√
n−1 log n as l ≤ Ln. It then remains to bound the term

ˆ
max

(l,k)∈Tint

∣∣∣flk − f̄T ,lk∣∣∣ dΠ[f | T , X].

To do so, let’s first define the event

A = ∩
ε:|ε|<Ln

{
|Ȳε0 − Yε0| ≤M ′

√
Ln

nP0(Iε0)

}

for M ′ > 0. By Lemma 29, it follows that, for d a small constant,

Π [Ac | T , X] .
∑
l≤Ln

2l exp(−CM ′2 log n) . 2Ln exp(−CM ′2 log n), (3.29)

which is smaller than (n/ log n)1/(1+2α) n−CM
′2 . Then,

∣∣∣flk − f̄T ,lk∣∣∣ =

∣∣∣∣∣∣2l/2+1p̄ε
(
Ȳε0 − Yε0

)
+
[
pε
p̄ε
− 1

] (
f̄T ,lk + 2l/2+1p̄ε(Ȳε0 − Yε0)

) ∣∣∣∣∣∣.
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Applying Lemmas 2 and 3 from [29] (valid once again for some c0 small enough), on the
events BM and A, uniformly on ε such that |ε| = l for some l ≤ Ln,∣∣∣∣∣pεp̄ε − 1

∣∣∣∣∣ .
l∑

i=1

√
Ln

nP0(Iε[i])
.

√
Ln2l
n

.

Therefore, we directly have that on the events BM and A,

∣∣∣flk − f̄T ,lk∣∣∣ . ∣∣∣f̄T ,lk∣∣∣
√
Ln2l
n

+ 2l/2p̄ε

√ Ln
nP0(Iε0) + Ln

n

√√√√ 2l
P0(Iε0)


.
∣∣∣f̄T ,lk∣∣∣

√
Ln2l
n

+
√
Ln
n
,

(3.30)

where we used that on BM , p̄ε . 2−|ε| for n large enough as f0 is upper bounded, and
P0(Iε0) & 2−|ε|. Finally, with

∣∣∣f̄T ,lk∣∣∣ ≤ ∣∣∣f̄T ,lk − f0,lk

∣∣∣+ |f0,lk| and using the same computation
as for (3.28), we have

∣∣∣flk − f̄T ,lk∣∣∣ . √ logn
n

. This gives

ˆ
max

(l,k)∈Tint
|flk − f0,lk| dΠ [f | T , X] .

√
log n
n

+
ˆ
Ac

max
(l,k)∈Tint

∣∣∣flk − f̄T ,lk∣∣∣ dΠ[f | T , X]

.

√
log n
n

+ 2Ln/2Π[Ac | T , X] .
√

log n
n

+
(

n

log n

) α/2
2α+1

(
n

log n

) 1
1+2α

n−dM
′2

.

√
log n
n

for M ′ large enough,
(3.31)

where the second inequality comes from the fact that, for a density f , |〈f, ψlk〉| ≤ 2l/2. This
concludes the proof as this bound holds uniformly on T ∈ Tn.

3.7.2 Proofs for confidence bands

Proof of Proposition 12. On the event E from Lemma 24, the bound on the median tree
depth implies that for any h, g ∈ Cn,

‖h− g‖∞ ≤ ‖h− fT ∗‖∞ + ‖g − fT ∗‖∞
≤ 2σn

≤ 2A1/2vn

√
log n
n

2Ln/2 . vn

(
log n
n

) α
2α+1

.

Also, Lemma 27 ensures that

‖f̂T ∗ − f0‖∞ = OP0

( log2 n

n

) α
2α+1

 .
Then, according to the proof of Proposition 3 in [77], for any f0 ∈ S(α,K, η) and l1 large
enough

sup
(l,k): l≥l1

|〈f0, ψlk〉| ≥ C2−l1(α+1/2).
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For ∆n > 0 and ζ > 0 such that

ζ

(
n

log2 n

)1/(2α+1)

≤ 2∆n ≤ 2ζ
(

n

log2 n

)1/(2α+1)

,

this implies that
sup

(l,k): l≥∆n

|〈f0, ψlk〉| ≥ Cζ−α−1/2 log n√
n
.

Therefore, if ζ is small enough, there exists l ≥ ∆n and 0 ≤ k < 2l such that |〈f0, ψlk〉| >
A log n/

√
n, and then (l, k) ∈ T ∗ on E according to Lemma 24. As a consequence,

σn ≥ vn

√
log n
n

2∆n/2 ≥ C ′
vn

log1/2 n

(
log2 n

n

)α/(2α+1)

, (3.32)

and since log1/2 n = o(vn), ‖f0 − fT ∗‖∞ ≤ σn/2 for n large enough. This allows us to
conclude that

P0 [f0 ∈ Cn] = P0 [{f0 ∈ Cn} ∩ E ] + o(1) = 1 + o(1).

It remains to determine the credibility level of the set Cn. From Theorem 11 and Lemma 27,
the posterior contracts towards f0 and the f̂T ∗ converges to f0 on an asymptotically certain
event E , both at a faster rate than σn (see (3.32)). Therefore, an application of the triangular
inequality gives

Π [Cn |X] ≥ Π [‖f − f0‖∞ ≤ σn/2 |X]1E + Π [Cn |X]1Ec = 1 + oP0(1).

Proof of Proposition 4. The credibility statement follows from the fact that Cn (respectively
the multiscale ball) has credibility 1 (respectively 1−γ) asymptotically. The diameter statement
follows from the inclusion CMn ⊂ Cn. For coverage, one combines Theorem 12 which gives
that Cn has asymptotic coverage 1, with Theorem 5 in [33] which from the nonparametric
BvM (Theorem 14) enables to deduce frequentist coverage of ‖ · ‖M0(w)–balls (hence the
multiscale ball in the intersection defining CMn has asymptotic coverage 1− γ).

3.8 Supplementary elements
3.8.1 The classical Pólya tree and T–Pólya trees
Let us partition the sample space I∅ = [0, 1) as I1,0 ∪ I1,1, these two subsets being the level-1
elementary regions. These can in turn be partitioned as I1,0 = I2,0 ∪ I2,1 and I1,1 = I2,2 ∪ I2,3,
involving level-2 elementary regions. Continuing this partitioning scheme gives the general
level-k elementary region, k ≥ 1, whose set will be written as Ak. More precisely, we partition
Il,k = Il+1,2k ∪ Il+1,2k+1, l ≥ 0, 0 ≤ k ≤ 2l − 1. From this recursive partitioning scheme, one
defines a random recursive partition of I∅ and an associated random density.
The Pólya Tree prior corresponding to the partitioning ∪∞l=1Al is the distribution on probability
measure on [0; 1), whose samples are defined by the conditional probabilities

ε ∈ E∗, P (Iε0|Iε) = Vε0 ∼ Beta(νε0, νε0). (3.33)
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For an appropriate choice of Beta parameters νε, ε ∈ E∗, samples from this prior actually
extends almost surely to an absolutely continuous measure, so that it can be seen as a prior
on densities. The Beta random variables Vε0 then corresponds to the share of the mass on Iε
that is allocated to Iε0. This mass allocation scheme is illustrated on Figure 3.6: the random
mass of each interval Iε is the product of Beta variables on the edges of the path from the
root to the corresponding node. As a consequence, the random mass on Iε, ε ∈ E∗, is equal
to ∏|ε|i=1 Vε[i] .

I∅ = [0; 1)

I0 = [0; 1/2)

I00 = [0; 1/4)

Y00 ∼ Beta (ν00, ν01)

I01 = [1/4; 1/2)

Y01 = 1− Y01

Y0 ∼ Beta (ν0, ν1)

I1 = [1/2; 1)

I10 = [1/2; 3/4)

Y10 ∼ Beta (ν10, ν11)

I11 = [3/4; 1)

Y11 = 1− Y10

Y1 = 1− Y0

Figure 3.6: Pólya Tree process on the dyadic recursive partitioning, with splits at midpoints.

A simpler related prior on densities, the truncated Pólya Tree prior, stops the splitting of the
mass at some level L <∞ and has sampled densities which are constant on each set Iε in
AL, with value µ (Iε)−1∏|ε|

i=1 Vε[i] . If one introduces the tree T as

T =
{

(k, l), l ≤ L, 0 ≤ k < 2l
}
,

that is the complete binary tree of depth d(T ) = L, it corresponds to a T-Pólya tree distribution
with ΠT = δT .

3.8.2 Tree posteriors: the Galton–Watson/Pólya tree case
As shown in Subsection 3.2.3, the Markov process on trees GW (p) can be seen as a distribution
on partitions. We first show that it corresponds to the distribution introduced in [173].
In the Optional Pólya Tree (OPT) construction, different recursive partitioning mechanism are
allowed: each level-k elementary region A ∈ Ak can be split in M(A) different ways, the j-th
being written as

A = ∪Kj(A)
i=1 Ajk, (3.34)

where the Ajk are level-(k + 1) elementary regions (see Appendix 3.8.1). Then, a random
partition of the sample space [0; 1) is produced recursively. For 0 ≤ ρ([0, 1)) ≤ 1, the partition
is the sample space itself with probability ρ([0, 1)). Otherwise, one of the M([0, 1)) partitions
are drawn according to probability vector λ([0; 1)) =

(
λ1, . . . , λM([0,1))

)
. The partitioning then

continues: each elementary region A stays intact with probability ρ(A), otherwise it is split
(a decision encoded by the variable S(A) ∼ B(ρ(A))) and its partition is chosen according
to probability vector λ(A). Following the discussion in Subsection 3.2.3, the GW (p) is a
particular case, where M(A) = 1, λ(A) = 1 and K1(A) = 2, as the intervals are only ever
split at their midpoints,

Il,k = Il+1,2k ∪ Il+1,2k+1. (3.35)
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The level-k elementary regions are the Iε with |ε| = k. Also, it corresponds to the choice of

ρ(Il,k) = 1− plk, l < Lmax, ρ(ILmax,k) = 0.

Given a partition I, in OPT, a probability measure Q is defined by the conditional probabilities,
for A an elementary region split as in (3.34),(

Q(Aj1|A), . . . , Q(AjKj(A)|A)
)

= Q(A)θ(A), θ(A) ∼ Dir
(
αj1(A), . . . , αjKj(A)(A)

)
,

with Dirichlet random variables θ mutually independent and independent from the variables
S(A′) for A 6⊂ A′, and Q([0, 1)) = 1. For M(A) = 1 and K1(A) = 2, it is similar to the
mass allocation mechanism in (3.33) when α1

1 = α1
2 = a. However, whenever the recursive

partitioning stops and gives a finite partition, these equations do not completely characterize
a measure on Borelians of [0, 1), so that the measure Q is defined on Borelians B as

Q(B) =
∑
A∈I

Q(A)µ (A ∩B)
µ(A) .

This corresponds to the absolutely continuous measure with density constant on the elements
of I. Therefore, the distribution from Proposition 1 is actually a special case of OPT.

3.8.3 The OPT posterior on trees
In the following, we prove Propositions 2 and 3. We first obtain a general formula for the
posterior on trees, which implies an explicit formulation of Π[· |X, T ], and then focus on the
OPT prior. The posterior distribution on trees is given for T ∈ Tn by Bayes’ formula as

Π [T |X] =
´

Π [X,T |f ] dΠ [f ]´
Π [X|f ] dΠ [f ] .

Since Π [X,T |f ] = 1T =T
∏n
i=1 f (Xi), the numerator is equal to

∑
T ′∈Tn

Π [T = T ′]1T =T

ˆ n∏
i=1

f (Xi) dΠ [f |T ′] = Π [T = T ]
ˆ n∏

i=1
f (Xi) dΠ [f |T ] .

Writing NT (X) :=
´ ∏n

i=1 f (Xi) dΠ [f |T ] the marginal likelihood, the denominator can be
expressed as

∑
T ′∈Tn

Π [T = T ′]
ˆ

Π [X, T = T ′|f ] dΠ [f ] =
∑
T ′∈Tn

Π [T = T ′]NT ′(X).

Let’s compute NT (X). By definition, for any i = 1, . . . , n,

f (Xi) =
∏

(l,k)∈Text

 l∏
j=1

2Yε(k,l)[j]

1Xi∈Ilk

,

and

n∏
i=1

f (Xi) =
∏

(l,k)∈Text

 l∏
j=1

2Yε(k,l)[j]

NX(Ilk)
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=
∏

(l,k)∈T\{(0,0)}

(
2Yε(k,l)

)NX(Ilk)

=
∏

(l,k)∈Tint

(
2Yε(k,l)0

)NX(Iε(k,l)0) (2(1− Yε(k,l)0)
)NX(Iε(k,l)1)

.

On the one hand, we obtain that
Π[f |X, T ] = NT (X)−1Π[f,X | T ] = NT (X)−1Π[X | f, T ]Π[f | T ]

= C(X,T )
n∏
i=1

f (Xi)
∏

(l,k)∈Text

l∏
j=1

Y a
ε(k,l)[j]

(
1− Yε(k,l)[j]

)a
= C(X,T )

∏
(l,k)∈Tint

Y
a+NX(Iε(k,l)0)
ε(k,l)0

(
(1− Yε(k,l)0)

)a+NX(Iε(k,l)1)
,

for C(X,T ) a constant depending on X and T only, which proves the claim of Proposition 2.
On the other hand, for any variable Y ∼ Beta(a, a), one obtains

E
[
Y N(1− Y )M

]
=
ˆ 1

0
yN(1− y)M y

a(1− y)a
B(a.a) dy = B(a+N, a+M)

B(a, a) .

Therefore,

NT (X) =
∏

(l,k)∈Tint

2NX(Iε(k,l))B
(
a+NX

(
Iε(k,l)0

)
, a+NX

(
Iε(k,l)1

))
B(a, a) .

Let’s now focus on the special case of the GW(p) tree prior, as in Proposition 3. For any
possible pair (l, k), take T ∈ Tn such that (l, k) ∈ Text and let

T+ = T ∪ {(l + 1, 2k), (l + 1, 2k + 1)} .

Then,
Π[T+] = Π[T ] plk

1− plk
(1− pl+1,2k)(1− pl+1,2k+1), (3.36)

and
Π[T+|X]
Π[T |X] = Π [T = T+]LT+(X)

Π [T = T ]LT (X)
= plk

1− plk
(1− pl+1,2k)(1− pl+1,2k+1)

2NX(Iε(k,l))B
(
a+NX

(
Iε(k,l)0

)
, a+NX

(
Iε(k,l)1

))
B(a, a) .

(3.37)

This last quantity is independent of T and T+ and depends only on (l, k). Therefore, if we
can find pXlk , pXl+1,2k, p

X
l+1,2k+1 such that the last quantity in (3.37) is equal to

pXlk
1− pXlk

(1− pXl+1,2k)(1− pXl+1,2k+1),

for any appropriate (l, k), we obtain a formula similar to (3.36) and the posterior on trees is a
GW (pX) process. This defines a set of equations that has a solution, as for any 0 ≤ k < 2Lmax ,
we necessarily have pLmaxk = 0 and the equations can be solved to obtain pX , starting from
l = Lmax and solving the successive equations in a “bottom–up” way up to the level l = 0.
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3.8.4 Median tree properties

Lemma 24. Under the same prior and assumptions as in Theorem 11, there exists an event E ,
such that P0 [E ] = 1 + o(1), on which the following is true: for some constants A > 0, B > 0,

• 2d(T ∗) ≤ A2Ln � (n/ log n)1/(2α+1), Ln as in (3.21),

• For any (l, k) such that |f0,lk| ≥ Bn−1/2 log n, (l, k) ∈ T ∗int.

Proof. On the event BM from Lemma 28, Lemma 22 shows that the set T(2) of trees satisfying
the second condition in the lemma, for B large enough, is such that Π

[
T(2)| X

]
→ 1. Therefore

the event
Ẽ =

{
Π
[
T(2)| X

]
≥ 3/4

}
⊃ BM

is asymptotically certain.
For any node (l, k) such that |f0,lk| ≥ Bn−1/2 log n, since it belongs to the interior nodes of
any tree in T(2) by definition,

Π [(l, k) ∈ Tint| X] =
∑

T ∈Tn: (l,k)∈Tint

Π [T | X] ≥ Π
[
T(2)| X

]
.

Then, on Ẽ , (l, k) ∈ T ∗ by definition and T ∗ satisfies the second condition of the lemma.
Let’s now turn to the set T(1) of trees satisfying the first condition in the lemma. Using the
same arguments as for (3.25), there exists C > 0 such that for any l such that 2l & 2Ln and
Γ > 0 large enough,

Π
[
d
(
T
)
> l | X

]
≤ nC (2/Γ)l ,

which holds on the event BM . Then, since

Π [(l, k) ∈ Tint| X] ≤ Π [d (T ) > l| X] ,

Markov’s inequality implies

P0
[{
T ∗ /∈ T(1)

}
∩ BM

]
= P0

[{
∃(l, k) : 2l > A2Ln , (l, k) ∈ T ∗

}
∩ BM

]
≤

Lmax∑
l: 2l>A2Ln

∑
0≤k<2l−1

P0
[{

Π[(l − 1, bk/2c) ∈ Tint | X] > 1/2
}
∩ BM

]

≤
Lmax∑

l: 2l>A2Ln
2

∑
0≤k<2l−1

E0 [Π[(l − 1, bk/2c) ∈ Tint | X]1BM ]

= o(1) for Γ large enough.

One concludes by noting that BM is asymptotically certain according to Lemma 28, and
E =

{
T ∗ ∈ T(1)

}
∩ BM satisfies the conditions of the lemma.

Lemma 25. Let 0 < α ≤ 1, K > 0, µ > 0 and η > 0. Let Π be the same prior as in
Theorem 12, then for f0 ∈ S(α,K, η) ∩ F(α,K, µ),

(
n/ log2 n

)1/(2α+1)
. 2d(T ∗) . (n/ log n)1/(2α+1) ,

on an event of probability converging to 1.
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Proof. Using the same argument as above (3.32), we obtain the lower bound. Lemma 24
gives the upper bound.

Lemma 26. Let f0 and `0 be as in Theorem 14, Π as in Proposition 24 and f̂T ∗ as defined
in (3.14). The median tree estimator then satisfies

max
l>`0(n)

max
k
|f̂T ∗,lk − f0,lk| = OP0

(
log n√
n

)
.

Proof. Let Q = maxl>`0(n) maxk |f̂T ∗,lk − f0,lk|. On the event E from Proposition 24, one
has for B as in the proposition,

Q ≤
(
B

log n
n1/2

)
∨ max

(l,k)∈T ∗int,l>`0(n)
|f̂T ∗,lk − f0,lk|.

Indeed, for (l, k) 6∈ T ∗int, we necessarily have f̂T ∗,lk = 0 and |f0,lk| < Bn−1/2 log n on E . From
(3.41), it also follows that for A as in the proposition and Ln defined in (3.21)

max
(l,k)∈T ∗int, l>`0(n)

|f̂T ∗,lk − f0,lk| ≤ max
(l,k), 2`0(n)<2l<A2Ln

|Pnψlk − P0ψlk| =: Qn.

We have that

|Pnψlk − P0ψlk| ≤ 2l/2n−1 (|N(Il+1,2k)− nP0(Il+1,2k)|+ |N(Il+1,2k+1)− nP0(Il+1,2k+1)|) .

Therefore, on the event BM from Lemma 28, for some constant C depending on M,A, c0 and
α only, and any l as in the above supremum,

|Pnψlk − P0ψlk| ≤ C

√
log n
n

. (3.38)

It follows that Q . n−1/2 log n on the event E ∩ BM that is such that P0 (E ∩ BM) =
1 + o(1).

Lemma 27. Let T ∗ as in (3.13) and f̂T ∗ as in (3.14). Then, for f0 ∈ F(α,K, µ),

‖f̂T ∗ − f0‖∞ = OP0

( log2 n

n

) α
2α+1

 .
Proof. Let E as in Lemma 24 and BM as in Lemma 28. On E ∩ BM , for M large enough,

‖f0 − fT ∗‖∞ ≤
∑

l: 2l<A2Ln
2l/2 max

[
max

0≤k<2l, (l,k)∈T ∗int

|〈f0 − fT ∗ , ψlk〉|, max
0≤k<2l, (l,k)/∈T ∗int

|〈f0, ψlk〉|
]

+
∑

l: 2l≥A2Ln
2l/2 max

0≤k<2l
|〈f0, ψlk〉| ,

using the usual inequality for densities h, g, ‖h− g‖∞ ≤
∑
l≥0 2l/2 max

0≤k<2l
|〈h− g, ψlk〉|. Since

f0 ∈ Σ(α,K), the second term is smaller than 2−αLn = O
(
(n/ log n)−α/(2α+1)

)
(up to a

constant depending only on α, K and the constant A from Lemma 24). Then, the first term
can itself be upper bounded by the sum of

∑
l: 2l<A2Ln

2l/2 max
0≤k<2l, (l,k)∈T ∗int

|〈f0 − fT ∗ , ψlk〉| . 2Ln/2
√

log n
n

= o

(( log2 n

n

)α/(2α+1)
)
,
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where we used that the argument of 3.38 can be extended to l ≤ `0(n) on E ∩ BM , and the
term ∑

l: 2l<A2Ln
2l/2 max

0≤k<2l, (l,k)/∈T ∗int

|〈f0, ψlk〉|.

It remains to upper bound this last quantity. Let’s introduce

L∗ = max
{
l : max

0≤k<2l
|〈f0, ψlk〉| ≥ Bn−1/2 log n

}

which is such that 2L∗ �
(
n1/2

logn

)1/(α+1/2)
since max

0≤k<2l
|〈f0, ψlk〉| . 2−l(1/2+α). Then, on the

event E , the term in the above display is bounded by
∑

l: 2l<A2Ln
2l/2

(
B

log n√
n

)
∧ max

0≤k<2l
|〈f0, ψlk〉| ≤

∑
l: l≤L∗

2l/2
(
B

log n√
n

)
+

∑
l: 2L∗<2l<A2Ln

2l/2 max
0≤k<2l

|〈f0, ψlk〉|

.

√
2L∗ log2 n

n
+ 2−αL∗ .

(
log2 n

n

)α/(2α+1)

.

Combining the previous bounds leads to, on E ∩ BM ,

‖f0 − fT ∗‖∞ ≤ C
(
log2 n/n

)α/(2α+1)
.

3.8.5 Nonparametric BvM theorem
Space M0 and limiting Gaussian process N

Recall the definition of the spaceM0 from (3.18), using an ‘admissible’ sequence w = (wl)l≥0
such that wl/

√
l→∞ as l→∞,

M0 =M0(w) =
{
x = (xlk)l,k ; lim

l→∞
max

0≤k<2l

|xlk|
wl

= 0
}
.

Equipped with the norm ‖x‖M0 = sup
l≥0

max
0≤k<2l

|xlk|/wl, this is a separable Banach space. In a
slight abuse of notation, we write f ∈ M0 if the sequence of its Haar wavelet coefficients
belongs to that space (〈f, ψlk〉)l,k ∈M0 and for a process (Z(f), f ∈ L2), we write Z ∈M0
if the sequence (Z(ψlk))l,k belongs to M0(w) almost surely.
White bridge process. For P a probability distribution on [0, 1], following [33] one defines
the P -white bridge process, denoted by GP , as the centered Gaussian process indexed by the
Hilbert space L2(P ) = {f : [0, 1]→ R;

ˆ 1

0
f 2dP <∞} with covariance

E[GP (f)GP (g)] =
ˆ 1

0
(f −

ˆ 1

0
fdP )(g −

ˆ 1

0
gdP )dP. (3.39)

We denote by N the law induced by GP0 (with P0 = Pf0) on M0(w). The sequence
(GP (ψlk))l,k indeed defines a tight Borel Gaussian variable in M0(w), by Remark 1 of [33].
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Admissible sequences (wl). The main purpose of the sequence (wl) is to ensure that
(GP (ψlk))l,k belongs toM0. We refer to [33], Section 2.1 and Remark 1, for more background
on the choice of (wl) in the present multiscale setting, and to [32], Section 1.2, for a similar
discussion in an Hilbert space setting where the targeted loss is the L2–norm.
To establish a nonparametric Bernstein–von Mises (BvM) result, following [33] one first finds a
spaceM0 large enough to have convergence at rate √n of the posterior density to a Gaussian
process. One can then derive results for some other spaces F using continuous mapping for
continuous functionals ψ :M0 → F .
Recentering the distribution. To establish the BvM result, one also has to find a suitable way
to center the posterior distribution. A possible centering is the median tree estimator f̂T ∗ as
in (3.14). Other centerings are possible, typically appropriately ‘smoothed’ versions of the
empirical measure Pn associated to the sample X1, . . . , Xn

Pn = 1
n

n∑
i=1

δXi . (3.40)

Let us now also note that another way to write the median tree estimator (3.14) is

fT ∗ = 1 +
∑

(l,k)∈T ∗int

(Pnψlk) · ψlk, (3.41)

where Pnψlk = n−1∑n
i=1 ψlk(Xi) are the empirical wavelet coefficients, and only terms

corresponding to interior nodes (l, k) in the median tree T ∗ are active in the sum from the
last display. From this we see that the median tree estimator (3.14) can also be interpreted as
a smoothed (or ‘truncated’) version of the empirical measure Pn in (3.40), with truncation
occuring along the median tree T ∗. Note also that if the prior Π has flat initialisation up to
level l0(n), then all nodes (l, k) with l ≤ l0(n) are present in the above sum over (l, k) ∈ T ∗int.

Nonparametric BvM: statement

For the following result, we work with OPTs with flat initialisation as defined in Section 3.4.3.
This is discussed below the next statement.
We have the following Bernstein-von Mises phenomenon for f0 in Hölder balls. For Cn a
function to be specified, we denote by τCn the map τCn : f →

√
n(f − Cn).

Theorem 14. Let N denote the distribution induced on M0(w) by the P0–white bridge GP0

as defined in (3.39) and let Cn = f̂T ∗ the median tree estimator as in (3.14). Let Π be an
OPT prior with flat initialisation with l0(n) that verifies

√
log n ≤ l0(n) ≤ log n/ log log n,

and other than that for l > l0(n) with same parameters as the prior in Theorem 11. Then for
every α ∈ (0, 1], for µ > 0, K ≥ 0 and η > 0,

sup
f0∈F(α,K,µ)

Ef0

[
βM0(w)(Π(·|X) ◦ τ−1

Cn ,N )
]
→ 0,

as n→∞, for the admissible sequence wl = l2+δ for some δ > 0.

Remark 1. Recalling that the typical nonparametric cut–off sequence L verifies 2L � n1/(1+2α),
assuming `0(n) = o(log n) amounts to say that `0(n) does not ‘interfere’ with the nonpara-
metric cut-off L. Similar choices are made in [139], Corollary 3.6. Other choices of sequence
`0(n) would also be possible, up to adjusting the sequence (wl) – one can check that it suffices
to have an increasing sequence (wl) such that wl0(n)/ log n→∞ (see, e.g. Theorem S–3 in
the Supplement of [34]) –; we do not consider these refinements here.
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Theorem 14 states that the posterior limiting distribution is Gaussian after rescaling; note
that, similar to the first such result recently obtained in [139], one slightly modifies the OPT
prior to fit the first levels by assuming a flat initialisation. This is in fact necessary for the
result to hold, as otherwise the posterior would not be tight at rate 1/

√
n in the space

M0(w), as was noted in the white noise model in [139], Proposition 3.7. Let us also briefly
comment on the recentering Cn: as follows from the proof of Theorem 14, one can replace
Cn = f̂T ∗ by another estimator that fits all first wavelet coefficients up to `0(n) and such that
‖Cn − f0‖M0(w̄) = OP0(1/

√
n), for w̄ as in that proof, see also Remark 2 for more on this.

Nonparametric BvM: implications

Using the methods of [33], this result leads to several applications. A first direct implication
(this follows from Theorem 5 in [33]) is the derivation of a confidence set in M0(w). Setting

Dn =
{
f = (flk) : ‖f − Cn‖M0(w) ≤

Rn√
n

}
, (3.42)

where Rn is chosen in such a way that Π[Dn |X] = 1 − γ, for some γ > 0 (or taking the
generalised quantile for the posterior radius if the equation has no solution) leads to a set Dn
with the following properties: it is a credible set by definition which is also asymptotically
a confidence set in M0(w) and the rescaled radius Rn is bounded in probability. Other
applications are BvM theorems for functionals, as given a continuous map ψ :M0(w)→ E
for some metric space E , convergence results in M0(w) can be translated into convergence in
E via the continuous mapping theorem, see [33]. This is also at the basis of the proof of the
Donsker Theorem 13.

3.8.6 Proof of limiting shape results
In this section we prove the nonparametric BvM Theorem 14 and, as a fairly direct consequence
given the results of [33], the Bayesian Donsker Theorem 13.

Proof of Theorem 14. The proof is similar to the corresponding proofs for Pólya trees or
spike–and–slab Pólya trees, so we highlight only the few differences. The proof consists in
two steps. First, proving convergence of finite–dimensional distributions and second, showing
tightness of the rescaled posterior in a slightly smaller space.
Regarding convergence of finite–dimensional distributions, it suffices to note that for a fixed
depth L > 0, the prior on wavelet coefficients of levels l ≤ L (for large enough n so that
`0(n) > L) coincides with the prior induced by a standard Pólya tree, for which the convergence
of finite–dimensional distributions is shown in [29].
Regarding tightness, let w̄ = (w̄l) be the sequence w̄l = wl/l

δ/2 = l2+δ/2. This sequence is
increasing in l and verifies w̄l &

√
l, w̄l = o(wl) as l → ∞, and w̄`0(n) ≥ log n, using the

assumption on `0(n). Now by the same argument as in the proof of Theorem 3 in [31], to
establish the nonparametric BvM it suffices to prove that the distribution L(

√
n(f − Cn) |X)

is tight in M0(w̄), which is true if both laws L(
√
n(f − f0) |X) and L(

√
n(f0 − Cn)) are

tight.
Focusing first on the tightness of L(

√
n(f − f0) |X), we wish to show that for any η ∈ (0, 1),

one can find M = M(η) large enough such that

Ef0Π[‖f − f0‖M0(w̄) > M/
√
n |X] ≤ η. (3.43)

109



3. Optional Pólya Trees

We split, for g = f − f0,

‖g‖M0(w̄) ≤ max
l≤`0(n),k

|glk|/w̄l + max
l>`0(n),k

|glk|/w̄l =: (I) + (II).

For the term (I), as noted above, since the prior has a flat initialisation up to level `0(n), the
induced prior and posterior on the first layers l ≤ `0(n) of wavelet coefficients coincide with
the prior/posterior of a standard Pólya tree, for which the corresponding tightness is proved in
[29] (proof of Theorem 3). For the term (II), it follows from the proof of Theorem 11 (noting
that the proof goes through with a prior with flat initialisation) that for Tn as in that proof
and given l > `0(n), for any T ∈ Tn and on the event BM ,

ˆ
max

k: (l,k)∈Tint
|flk − f0,lk|dΠ(f | T , X) ≤ C

√
log n
n

and
max

k: (l,k)/∈Tint
|f0,lk| ≤ C

log n√
n
.

Since w̄`0(n) ≥ log n as verified above, one deduces that for any T ∈ Tn and on BM the term
(II) above is O(1/

√
n). Putting pieces together what precedes implies, with E = {fT , T ∈ Tn}

as in the proof of Theorem 11,
ˆ
E
‖f − f0‖M0(w̄)dΠ(f |X) = OP0(1/

√
n),

which in turn implies (3.43) using Π[Ec |X] = oP0(1).
It remains to prove tightness of L(

√
n(f0−Cn)) inM0(w̄). Again, one splits along indices: for

l ≤ `0(n), the posterior median tree estimator has same wavelet coefficients as the empirical
measure Pn, and the estimate

EP0 max
l≤`0(n)

max
k
|〈P0 − Pn, ψlk〉|/w̄l ≤ C/

√
n

follows from the proof of Theorem 1 in [33] (see equation (36) there and lines below). For
l > `0(n), one invokes the properties of the median tree estimator, namely

max
l>`0(n)

max
k
|f̂T ∗,lk − f0,lk| = OP0

(
log n√
n

)
, (3.44)

as in Lemma 26, noting that the argument in that proof is unchanged for a prior with flat
initialisation. This gives, using again w̄`0(n) ≥ log n, that

max
l≤`0(n)

max
k
|f̂T ∗,lk − f0,lk| = OP0(1/

√
n),

which gives the desired tightness property and concludes the proof.

Remark 2. It follows from the proof of Theorem 14 that there is quite some flexibility in the
choice of the centering Cn. For instance, the projection Pn(Ln) of the empirical measure Pn
onto the first Ln levels of wavelet coefficients, with Ln the oracle supremum–norm cut–off
(n/ log n)1/(2α+1) can be used. This is because for l ≤ `0(n) the projection Pn(Ln) has by
definition same wavelet coefficients as the empirical measure Pn, while for l > `0(n) equation
(3.44) holds for 〈Pn(Ln), ψlk〉 instead of fT ∗,lk (with the even better bound OP0(

√
log n/n)),

as in the proof of Theorem 1 in [33].
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Proof of Theorem 13. The results follows by applying Theorem 4 in [33]: since the posterior
distribution on f satisfies the nonparametric BvM theorem 14, it suffices to check that the
sequence (wl) satisfies the condition ∑l wl2−l/2 <∞, which clearly holds, and to note that
the centering Cn = fT ∗ belongs to L2. This shows that the Bayesian Donsker holds with
centering F̂med

n =
´ ·

0 fT ∗ . By using remark 2, the same result also holds with F̂med
n replaced

by the primitive, say Zn(·), of Pn(Ln). But as noted in the proof of Corollary 1 in [33] (see
also Remark 9 in [66]), we have ‖Zn − Fn‖∞ = oP0(1/

√
n), which implies the result with

centering at Fn.

3.8.7 Miscellaneous
We quickly remind that

Ȳε = E[Yε |X(n)] = a+NX(Iε0)
2a+NX(Iε)

and we define Ln as in (3.21).

Lemma 28. Let α > 0, K > 0 and P0 be a distribution with a bounded density f0 ∈ Σ(α,K)
w.r.t. Lebesgue density. Then, for any

M >
1
3

(√
log 2

√
18 ‖f0‖∞ + log 2 + log 2

)
,

the event

BM :=
{
∀l ≥ 0, ∀0 ≤ k ≤ 2l − 1,

M−1|NX(Il,k)− nP0(Il,k)| ≤
√
n(l + Ln)

2l ∨ (l + Ln) =: Mn,l

}
is asymptotically certain under the law P0 of the observations, i.e.

P0 (BcM) = o(1).

Proof. According to Bernstein’s inequality, for any l ≥ 0, 0 ≤ k ≤ 2l − 1,

P0 (|NX(Il,k)− nP0(Il,k)| > MMn,l) ≤ 2 exp
(
−

M2M2
n,l/2

nP0(Il,k)(1− P0(Il,k)) +MMn,l/3

)
.

By assumption, P0(Il,k)(1− P0(Il,k)) ≤ ‖f0‖∞ 2−l. Then, whenever Mn,l = l + Ln (which
is equivalent to l + Ln ≥ n2−l) or Mn,l =

√
n(l+Ln)

2l , we can further upper bound the above
quantity as

P0 (|NX(Il,k)− nP0(Il,k)| > MMn,l) ≤ 2 exp
(
− M2

2 ‖f0‖∞ + 2M/3(l + Ln)
)
.

Therefore,

P0 (BcM) ≤ 2
∑
l≥0

2l exp
(
− M2

2 ‖f0‖∞ + 2M/3(l + Ln)
)

= O(2−Ln) = O

(( log n
n

) 1
2α+1

)
,

the latter equality being true whenever
M2

2 ‖f0‖∞ + 2M/3 > log 2,

i.e. M > 1
3

(√
log 2

√
18 ‖f0‖∞ + log 2 + log 2

)
.
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Lemma 29. Suppose f0 ∈ Σ(K,α), with 0 < α ≤ 1. For M ′ > 0, on the event BM from
Lemma 28, the set

A = ∩
ε:|ε|<Ln

{
|Ȳε0 − Yε0| ≤M ′

√
Ln

nP0(Iε0)

}

is such that
Π[Ac |X] .

∑
l≤Ln

2le−M ′
2 logn/4

Proof. This proof comes from Lemmas 4 and 5 of [31]. For completeness, we give here some
details of the proof. We have already explained that

Yε0 ∼ Beta(a+NX(Iε0), a+NX(Iε0)).

We also noticed that on the event BM , NX(Iε)→∞ uniformly for all |ε| ≤ Ln for n→∞.
Therefore, for n sufficiently large, a+NX(Iε0) ∧ a+NX(Iε0) ≥ 8 for |ε| < Ln. Also, under
our assumptions, Lemma [2] from [29] allows us to say that, for n large enough, there exist
µ, ν such that

0 < µ ≤ a+NX(Iε0)
2a+NX(Iε0) +NX(Iε1) ≤ ν < 1

uniformly on all |ε| < Ln. In addition, if i = |ε|, we have that

2a+NX(Iε0) +NX(Iε1) ≥ NX(Iε0) ≥ nP0(Iε0)−M
√

2nLn2−i.

Under our assumptions on f0 and Ln, the last bound is itself lower bounded by nP0(Iε0)/2
for n large enough. As a consequence, an application of Lemma 6 from [29] gives, for
x = M ′L1/2

n /2,

Π
|Ȳε0 − Yε0| > x√

nP0(Iε0)

∣∣∣∣ X
 ≤ De−x

2/4

for some constant D. Finally, a union bound helps us to conclude that

Π[A |X] .
∑
l≤Ln

2le−M ′
2 logn/4.

Lemma 30 (Theorem 1.5 of [7]). For any x > 0,

a

(
x+ 1/2

e

)x+1/2

≤ Γ(x+ 1) ≤ b

(
x+ 1/2

e

)x+1/2

,

where Γ is usual Gamma function, and a =
√

2e and b =
√

2π are the best possible constants.
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CHAPTER 4
Adaptive Wasserstein confidence sets

In the density estimation model, we investigate the problem of constructing adaptive
honest confidence sets with diameter measured in Wasserstein distance Wp, p ≥ 1, and
for densities with unknown regularity measured on a Besov scale. As sampling domains,
we focus on the d−dimensional torus Td, in which case 1 ≤ p ≤ 2, and Rd, for which
p = 1. We identify necessary and sufficient conditions for the existence of adaptive
confidence sets with diameters of the order of the regularity-dependent Wp-minimax
estimation rate. Interestingly, it appears that the possibility of such adaptation of
the diameter depends on the dimension of the underlying space. In low dimensions,
d ≤ 4, adaptation to any regularity is possible. In higher dimensions, adaptation is
possible if and only if the underlying regularities belong to some interval of width at
least d/(d− 4). This contrasts with the usual Lp−theory where, independently of the
dimension, adaptation occurs only if regularities lie in a small fixed-width window. For
configurations allowing these adaptive sets to exist, we explicitly construct confidence
regions via the method of risk estimation. These are the first results in a statistical
approach to adaptive uncertainty quantification with Wasserstein distances. Our analysis
and methods extend to weak losses such as Sobolev norms with negative smoothness
indices.
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4.1 Introduction
The construction of confidence sets is one of the fundamental problems of statistical inference,
along with parameter estimation and hypothesis testing. Consider a model {Pf : f ∈ F},
indexed by a family of functions F , and observe (some quantity n of) data from the true
distribution Pf0 , where f0 ∈ F . For most applications, having a single point estimate f̂n of
the true parameter f0 is not enough, and one desires to evaluate its performance in terms of a
loss function, that is, to know how far it lies from f0. Producing a random set Cn ⊂ F from
the data containing f0 with a prescribed high probability 1− α achieves this aim. In this work,
we investigate the existence of adaptive honest confidence sets. Since f0 is unknown, we must
insist that Cn possesses the previous property not just for f0, but for all f ∈ F : we say that
the confidence set Cn is honest if, at least for all sufficiently large n,

inf
f∈F

Pf (f ∈ Cn) ≥ 1− α.

Furthermore, we desire the diameter of the set Cn to shrink in n as quickly as possible; however,
typically the precise speed of this shrinkage depends on aspects of the unknown density f0
such as its regularity, and so we find ourselves in an adaptation problem.
We work in a density estimation model : consider observations X1, . . . , Xn independent and
identically distributed (i.i.d.) from a probability measure Pf0 with probability density f0. The
sample space of the Xi’s will either be the d−dimensional torus Td or Rd. We then study
procedures in a representative ‘two-class adaptation problem’, where f0 belongs to one of
two classes F(r) and F(s) (to be precisely defined below), indexed by regularity parameters
r < s, such that F(s) ⊂ F(r). An adaptive honest confidence set Cn should satisfy the
above honest coverage condition, and also have a diameter that shrinks at the minimax
estimation rate of whichever class f0 belongs to (typically the rate is faster for the smaller
class F(s)). The construction of such a confidence set involves assessing the accuracy with
which one can estimate f0, which turns out to be more challenging than point estimation, as
qualitative aspects of the parameter need to be identified. This problem has primarily been
studied for Lp or related distances [23, 24, 25, 77, 85, 112, 140]. In L2 loss, adaptive honest
confidence sets exist only if the regularity parameters of interest lie in some ‘small’ interval
([23, 24, 85, 140]). More troublesome is the case of pointwise or L∞ loss, where no such
procedures exist ([77, 112]). This starkly contrasts the situation of adaptive estimation, where
(perhaps at the cost of a logarithmic factor) it is possible to construct estimators which adapt
to any regularity parameter ([53, 103]). Informally, these negative results come from the fact
that, in L2 loss, a related testing problem is easier (admits a faster convergence rate) than
estimation, whereas for L∞ loss, the testing and estimation problems are equally difficult
([23, 77]). This distinction highlights how the existence of adaptive honest confidence sets
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depends on the geometry induced by the loss function (see [69, Chapter 8] for an overview of
these results).
Arising from the ideas of Optimal Transport [87, 120], Wasserstein distances Wp, p ≥ 1,
between probability measures have recently been studied in a wide array of fields such as
optimization, machine learning, and statistics. For p ≥ 1, the p−Wasserstein distance between
µ and ν, probability measures on a metric space (X , d), is defined as

Wp(ν, µ) := inf
π∈Π(ν,µ)

(ˆ
X×X

d(x, y)pdπ(x, y)
)1/p

,

with the infimum ranging over the set Π (ν, µ) of measures on X × X with given marginals ν
and µ. It quantifies the minimal cost, as measured by the metric d, to morph the distribution
µ into ν. For measures Pf and Pg dominated by a common measure and with densities f and
g, this also entails a distance between those densities, with Wp(f, g) := Wp (Pf , Pg).
Not only do these distances possess desirable theoretical properties ([166]), as they take into
account the geometry of the underlying sample space, but recent numerical developments
([131]) have led to increased use in practical applications. They therefore now play a prominent
role in statistics (see, for example, the review [129]). The convergence of the empirical
distribution in Wp-distance is a well-studied problem (it stretches back to [54], with definitive
results on limit theorems for the R sample space in [47]; for state-of-the-art results, see
[60, 170]). In dimensions d ≥ 3, the convergence rate of the empirical distribution (without
further structural assumptions) is n−1/d, demonstrating that convergence in Wp suffers from
the curse of dimensionality. When measures have densities, a result in [171] states that, for
certain classes of densities, Wp compares with Besov norms of smoothness −1, a classical
result for the W1 distance due to the Kantorovich-Rubinstein duality formula. The convergence
rates they obtain for regular densities using this comparison result, which lie closer to the
parametric rate n−1/2, highlight the importance of regularity of the signal in high-dimensional
settings: to some extent, the curse of dimensionality can be mitigated by smoothness.
In addition, these rates are faster than the standard s-smooth nonparametric convergence
rate n− s

2s+d for Lp loss, 1 ≤ p <∞, reflecting the fact that Wasserstein distances are weaker
than Lp distances. In this chapter, we obtain similar quantitative improvements for testing
separation rates of nonparametric statistical hypotheses. From this, on the bounded sample
space Td we deduce new qualitative phenomena regarding the existence and non-existence of
adaptive honest confidence sets when using the loss functions Wp, 1 ≤ p ≤ 2. Surprisingly,
in dimensions d ≤ 4 we construct confidence sets that can adapt to any set of regularities.
This contrasts significantly with the fundamental limitations of adaptive confidence sets in Lp.
In higher dimensions d > 4, adaptation is still possible for regularities belonging to a certain
interval, which is wider than in the Lp case. The reason for this phenomenon is that while
both the testing and estimation rates are faster than for Lp, the testing rate accelerates more,
leaving ‘more space’ for adaptation to occur than in the analogous problem for Lp loss. As for
densities on an unbounded sample space such as Rd, the same phenomenon occurs, though
we currently only have results for the W1 distance.
From the general theory of confidence sets, it is known that such impossibility results may
be circumvented if one is willing to remove certain ‘troublesome’ portions of the parameter
space ([69, Proposition 8.3.7]). Recent works have focused on describing maximal sets of
densities for which adaptation is possible, by introducing further structural constraints on the
model. In [23], an L2-adaptative confidence set is shown to exist if one discards all densities
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within some positive radius of the smoother subclass; this radius converges to 0 as n→∞.
Self-similarity conditions, which roughly speaking describe functions that are as regular at small
scales as at larger scales, have been employed in the regression setting in [126, 132], as well
as in density estimation [22, 36, 67]; see also [4]. In the study of adaptive Bayesian credible
sets, self-similarity conditions were deployed in [139], and slightly more general polished tail
assumptions were used in [143, 153]. We refer the interested reader to the review [117] for a
more complete picture of the literature on uncertainty quantification in density estimation.
In this chapter, we do not pursue such a programme for the Wasserstein distances, instead
leaving this problem for future work.
The chapter is organized as follows. Section 4.2 formalizes our problem on the potential
existence of adaptive honest confidence sets, and states our main results. The construction of
such sets, whenever possible, and non-existence results are presented in Section 4.3 for the
bounded sample space Td and Section 4.4 for the unbounded sample space Rd. Proofs are
deferred to Sections 4.6 and 4.7.

4.2 Main Results
4.2.1 Setting and Definitions
Initially, we assume that f0 is a density on the d-dimensional torus, Td, which may be identified
with (0, 1]d. Our results also apply to the case of the unit cube [0, 1]d (and hence any bounded
rectangular subset of Rd), which is the focus of [171]; see Section 4.5.3 below. For our loss
function, we take the distance W2; as described in Remark 4, this distance dominates Wp for
1 ≤ p < 2, in particular the important case of W1. Later, we consider the situation where
f0 is a density on the whole of Rd; while a study for Wp, p > 1 is beyond the scope of the
present work, we obtain some definitive results for the loss function W1 in Section 4.4.

Parameter Spaces

Here we define the classes of probability densities on Td we consider; definitions for Rd are
similar but deferred to Section 4.4. Let

{
φ ≡ 1, ψlk : l ≥ 0, 0 ≤ k < 2ld

}
be an S-regular

periodised Daubechies wavelet basis of L2(Td); see Appendix 4.5 for further details. We
denote by 〈f, g〉 =

´
Td fg the usual inner product on L2. For any f ∈ Lp(Td), 1 ≤ p <∞,

the wavelet expansion

f = 〈f, 1〉+
∑
l≥0

2ld−1∑
k=0
〈f, ψlk〉ψlk (4.1)

converges in Lp, and if f is continuous then the expansion converges uniformly on Td. We
write Kj(f) for the projection of f onto the first j resolution levels, i.e.

Kj(f) = 〈f, 1〉+
∑
l<j

2ld−1∑
k=0
〈f, ψlk〉ψlk. (4.2)

To define the parameter classes, we use the scale of Besov spaces, Bs
pq, 1 ≤ p, q ≤ ∞, s ≥ 0

as defined in Appendix 4.5. The index s should be interpreted as a smoothness or regularity
parameter. Using the definition of the Besov norm (4.32) and the embedding `q ⊂ `∞, for
f ∈ Bs

pq(Td) we have that

‖〈f, ψl·〉‖p ≤ ‖f‖Bspq2
−l(s+ d

2−
d
p). (4.3)
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Thus f ∈ Bs
pq if its wavelet coefficients decay sufficiently fast as l grows, as measured by s.

The use of subsets of Besov spaces as parameter spaces in nonparametric statistics is well-
established, and the scale contains several of the regularity classes usually considered in
such settings: for example, the Sobolev spaces (Hs = Bs

22) and the Hölder spaces (for
s 6∈ N, Cs = Bs

∞∞, and for s ∈ N, Cs ( Bs
∞∞). See [69, Section 4.3] for further discussion

on this subject.
In standard loss functions such as L2 or L∞, it is typically assumed that f lies in some norm-ball
in Bs

pq, for some choice of s, p, q. Here we slightly restrict the function class, insisting that the
densities under consideration are bounded and bounded away from 0. In particular, the lower
bound condition facilitates the faster minimax estimation rates of Proposition 6; it is shown in
[171] that removing this condition results in slower rates for most parameter configurations.

Definition 7. Let 1 ≤ p, q ≤ ∞, s ≥ 0, B ≥ 1, M ≥ 1 ≥ m > 0. Define the function class

Fs,p,q(B;m,M) =
{
f ∈ Bs

pq :
ˆ
Td
f = 1, ‖f‖Bspq ≤ B, m ≤ f ≤M a.e.

}
; (4.4)

Note that we always have 1 ∈ Fs,p,q(B;m,M), and so the class is non-empty. Henceforth we
fix p = 2 and consider q, B,m,M to be given. Define

F(s) := Fs,2,q(B;m,M).

For large s and smaller values of B ≥ 1, the condition f ≤M is superfluous. However, the
imposition of the uniform lower bound f ≥ m > 0 means that F(s) is a strict subset of the
more typical parameter space {f ∈ Bs

2q : f ≥ 0,
´
f = 1, ‖f‖Bs2q ≤ B}. Also, it is clear from

the definition (4.32) that the continuous embedding Bs
pq ⊂ Br

pq holds with operator norm 1,
so F(s) ⊂ F(r) for r ≤ s.

Notation

For a probability density f , let Pf and Ef denote respectively the probability and expectation
when X1, . . . , Xn

i.i.d.∼ f . For real numbers a, b, we write a ∧ b = min(a, b) and a ∨ b =
max(a, b). Given sequences (an) and (bn), we write an . bn if there exists a constant C > 0
that is independent of n such that for all n, an ≤ Cbn; we also write an ' bn if an . bn and
bn . an. Given any subset A of a metric space (A, d), we write |A|d for the d-diameter of A,
defined by

|A|d := sup
x,y∈A

d(x, y).

Given a subset B ⊂ A and a point a ∈ A, we define the distance of a to B as

d(a,B) := inf
b∈B

d(a, b).

4.2.2 Description of the Problem
Suppose initially that f ∈ F(r) for some given r ≥ 0. We wish to construct a confidence
set Cn for the unknown density f ; informally, we would like Cn to contain f with (some
chosen) high probability. Specifically, given α ∈ (0, 1), we require any confidence set Cn =
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Cn(α,X1, . . . , Xn) to have honest coverage at level 1− α over the class F(s), that is, there
exists n0 ∈ N such that for all n ≥ n0,

inf
f∈F(r)

Pf (f ∈ Cn) ≥ 1− α. (4.5)

The ‘honesty’ refers to the uniformity over F(r). We remark that in the minimax paradigm, one
must necessarily insist on honesty, since the true density f0 is unknown: ‘dishonest’ adaptive
confidence sets exist (see [69, Corollary 8.3.10]), but the index n0 from which coverage is valid
depends on the unknown f , so such procedures produce questionable guarantees in practice.
It is clear that the smaller the set Cn, the more informative it is; otherwise one could just take
Cn to be the whole parameter space F(r). Thus we desire the W2-diameter of our set Cn to
shrink as quickly as possible in n. Suppose Cn satisfies the honest coverage condition (4.5)
for some α ∈ (0, 1), and let rn be a positive sequence such that for some β > α and every
n ≥ n0, we have

inf
f̃n

sup
f∈F(r)

Pf
(
W2(f̃n, f) ≥ rn

)
≥ β. (4.6)

Here, the infimum is taken over all estimators (i.e. measurable functions) f̃n = f̃n(X1, . . . , Xn).
Then by Lemma 2 in [140], the W2-diameter of Cn satisfies, for n ≥ n0,

sup
f∈F(r)

Pf (|Cn|W2 ≥ rn) ≥ β − α;

in particular, its diameter cannot shrink faster than rn with high probability. We define the
minimax estimation rate (in probability) over F(s), denoted r∗n(s), to be the ‘slowest’ sequence
(i.e. the largest such sequence up to a multiplicative prefactor) rn such that (4.6) is satisfied
for some β > 0 and some n0 ≥ 1. Usually this rate depends on the smoothness parameter s.

Remark 3. The term ‘minimax estimation rate’ is often reserved for any sequence r̄n such
that

inf
f̃n

sup
f∈F(r)

EfW2(f̃n, f) ' r̄n.

By Markov’s inequality, we have that r∗n . r̄n. In fact, as shown by Proposition 6 below, in
this problem the rates r∗n and r̄n coincide (possibly up to a logarithmic factor when d = 2).

In general, it is unrealistic to assume that the regularity r is known. Thus we find ourselves
in an adaptation problem, where we wish to construct procedures that do not depend on
the unknown smoothness r, but which result in (near-)optimal performance for a range of
values of r. In order to highlight the main ideas, let us consider the two class adaptation
problem, where for some fixed s > r ≥ 0 we consider the model F(r), but also seek optimal
performance over the smoother subclass F(s) ⊂ F(r). We discuss after Theorem 18 how one
might construct confidence sets adapting to a continuous window of smoothnesses [r, R] or
even all r ≥ 0 simultaneously.

Definition 8. We say that Cn = Cn(α, α′, X1, . . . , Xn) is a near-optimal adaptive W2
confidence set over F(s) ∪ F(r), s > r, if it satisfies the following properties, for given
α, α′ ∈ (0, 1):

i) Honest Coverage: for all n sufficiently large,

inf
f∈F(r)

Pf (f ∈ Cn) ≥ 1− α; (4.7)

118



4.2. Main Results

ii) Diameter Shrinkage: there exists a constant K = K(α′) > 0 such that

sup
f∈F(r)

Pf (|Cn|W2 > KRn(r)) ≤ α′ (4.8)

and
sup
f∈F(s)

Pf (|Cn|W2 > KRn(s)) ≤ α′, (4.9)

for n large enough, where the rate sequences Rn(r) and Rn(s) satisfy

Rn(r) ≤ anr
∗
n(r) and Rn(s) ≤ anr

∗
n(s),

for an some power of log n, and r∗n(r) and r∗n(s) the minimax rates of estimation over
F(r) and F(s) respectively (these are given in Proposition 6 for the case of Td and
Theorem 20 for the case of Rd).

Typically, for optimal adaptive confidence sets one insists that the rates Rn(r), Rn(s) in
(4.8) and (4.9) are equal up to constants to the minimax estimation rates r∗n(r), r∗n(s). Our
definition of ‘near-optimal’ allows for Rn(t) to equal r∗n(t), t = r, s, up to a logarithmic factor
in n, and is thus a slight relaxation. Admitting this relaxation does not alter the (existence
and) non-existence results of [23, 25, 69, 77], since these results are due to a polynomial
discrepancy between minimax estimation and testing rates; see Section 4.3.3 below.
We only consider the problem of adaptation in the smoothness parameter and do not address
the question of adaptation to other parameters in the definition of the class F(s), such as the
Besov norm bound B. See Remark 7 below for a discussion of this issue.

4.2.3 Adaptive W2 Confidence Sets on Td

Our first theorem exhaustively classifies the parameter configurations for which adaptive honest
confidence sets exist for W2 loss; in the cases where such confidence sets do exist, an explicit
construction is given in Theorem 18 below.

Theorem 15. Fix 1 ≤ q ≤ ∞, B ≥ 1, M ≥ 1 ≥ m > 0. Consider the two class adaptation
problem for confidence sets as defined by (4.7)-(4.9).

i) Let d ≤ 4 and s > r ≥ 0. Then for any α, α′ > 0, there exists a near-optimal adaptive
W2 confidence set.

ii) Let d > 4 and 0 ≤ r < s ≤ 2d−4
d−4 r + d

d−4 . Then for any α, α′ > 0, there exists a
near-optimal adaptive W2 confidence set.

iii) Let d > 4 and 0 ≤ r < s with s > 2d−4
d−4 r + d

d−4 . Then for any α, α′ > 0 such that
2α + α′ < 1, no near-optimal adaptive W2 confidence set exists.

Remark 4. We have focussed on the particular choice of W2; by Jensen’s inequality, this
distance dominates Wp for 1 ≤ p < 2. Since the minimax estimation rates in these problems
are independent of p (c.f. Proposition 6), this means that the above existence results hold for
Wp, 1 ≤ p ≤ 2, in particular for the important case of W1. Moreover, in the case of W1, one
may remove the lower bound condition in the definition of F(s); see Remark 5 below.
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Theorem 15 says that in low dimensions, d ≤ 4, there exists a confidence set which adapts
optimally in W2-diameter to any two smoothnesses s > r ≥ 0. As the construction does
not depend on s, in fact adaptation occurs simultaneously for all s ≥ r (strictly speaking,
r ≤ s ≤ S where S is the regularity of the wavelet basis used), where r is a chosen ‘baseline’
smoothness. Contrast this to the case of Lp loss, 2 ≤ p ≤ ∞: for p <∞, in any dimension,
there exists a (near-)optimal adaptive confidence set if and only if s ≤ p

p−1r [23, 25]; for L∞
loss, adaptive confidence sets do not exist for any choice of s > r ≥ 0 [77, 112]. See [69,
Section 8.3] for a complete account of the L2 and L∞ theory.
In higher dimensions d > 4, Theorem 15 (together with the same confidence set as constructed
in the case d ≤ 4) gives a continuous ‘window’ of smoothnesses for which adaptation occurs
simultaneously, in a similar vein to the case of Lp, p <∞. However, for the W2 loss this window
is significantly wider; moreover, regardless of how small we choose the minimal smoothness
r ≥ 0, this window has width at least d

d−4 , whereas for Lp, 2 ≤ p < ∞, the window is of
width r

p−1 ≤ r, which will be very narrow for small values of r.
These results are related to the fact that W2 is a weaker loss function than Lp: specifically,
Proposition 5 and (4.12) show that on the class F(s), W2 is comparable to a Sobolev (or
Besov) norm of smoothness -1. In very low dimensions d = 1, 2, the estimation rate is
independent of the smoothness parameter s, meaning that any confidence set satisfying (4.8)
automatically satisfies the faster shrinkage condition (4.9) (with a possibly enlarged constant
K). In low dimensions d = 3, 4, one finds a very fast minimax testing separation rate, which
is at least as fast as the parametric rate of estimation n−1/2 (this is implied by the above
existence results and Lemma 32 below). Even in higher dimensions, there is a substantial
acceleration in the testing separation rate as compared to L2 loss. Meanwhile, although there
is also some acceleration in the estimation rates, the effect is not so pronounced. This explains
the wider window of adaptation seen in Theorem 15 for W2 loss, as compared to Lp loss: the
greater discrepancy between testing and estimation rates gives more room for adaptation to
take place.
Theorem 15 is proved in Section 4.3; we outline the arguments now. For the existence result,
we use the method of constructing confidence sets via risk estimation as in [24, 85, 140];
see [69, Section 6.4] for a concise summary of these ideas. These methods require the loss
function under consideration to be a Hilbert space norm. Accordingly, we upper bound W2 by
a suitable Sobolev-type norm for which one can perform risk estimation with fast convergence
rates; moreover, the estimation rates for this dominating norm differ from those for W2 by
only a logarithmic factor. In particular, the notions of near-optimal adaptive confidence sets
for these two loss functions are equivalent. The non-existence result is obtained using a testing
argument as in [23], [77] and others, together with a lower bound for the minimax separation
rate in a related testing problem. Moreover, the precise characterisation of the separation
rate identifies a certain small subset of F(r) consisting of ‘problematic’ densities which, once
removed, permit the existence of confidence sets (with honesty relative to a smaller set of
densities), as in the previous two references. We discuss the existence of these more general
confidence sets after Theorem 19. These theoretical results and constructions extends more
generally to the study of adaptive honest confidence sets with negative Sobolev norm distances,
and we discuss them in Section 4.2.5. For p > 2, [25] develops a construction of adaptive
Lp−confidence sets whose radii are selected via testing. Though an extension of these ideas
to Wp-confidence sets should be possible, we do not pursue it here as the methodology greatly
differs from the one used in the present chapter.
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4.2.4 Adaptive W1 Confidence Sets on Rd

The case of densities on Rd is also of great interest; there are several situations in which it is
unrealistic to assume compact support of the density f . Accordingly, let X1, . . . , Xn be an i.i.d.
sample drawn from some unknown density f on Rd. We take the Wasserstein-1 distance W1
to be our loss function. We generalise our methods from the case of Td to produce adaptive
confidence sets for f which adapt over similar function classes G(s), defined in (4.21) below
and involving a constant L which uniformly bounds the exponential moments of the densities
in G(s). The discussion following Theorem 15 is relevant in this context as well: in particular,
since the confidence sets constructed in cases (i) and (ii) do not depend on s, adaptation in
fact takes place for the full range of possible values of s (i.e. s ≥ r when d ≤ 4 and s in some
given window when d > 4).

Theorem 16. Fix 1 ≤ q ≤ ∞, B ≥ 1, M ≥ 1 ≥ m > 0. Consider the two class adaption
problem for confidence sets defined by (4.7)-(4.9), with function classes F replaced by G and
W2 in place of W1.

i) Let d ≤ 4 and s > r ≥ 0. Then for any α, α′ > 0, there exists a near-optimal adaptive
W1 confidence set.

ii) Let d > 4 and 0 ≤ r < s ≤ 2d−4
d−4 r + d

d−4 . Then for any α, α′ > 0, there exists a
near-optimal adaptive W1 confidence set.

iii) Let d > 4, L be large enough and 0 ≤ r < s with s > 2d−4
d−4 r + d

d−4 . Then for any
α, α′ > 0 such that 2α + α′ < 1, no near-optimal adaptive W1 confidence set exists.

The bound L on exponential moments in (4.21) is a technical condition which allows us to
construct adaptive estimators and confidence sets via the method of risk minimization (see
Section 4.4). We are naturally interested in the existence of confidence sets for large L, i.e.
on larger classes of densities. Moreover, small values of L may lead to empty classes (see the
discussion after Definition 10 below) for which the theory of confidence sets is superfluous.

4.2.5 Extension to negative Sobolev norm distances
To better understand the phenomena in Theorems 15 and 16, it is elucidating to consider
negative order Sobolev norm loss, H−t = B−t22 , t > 0 (see Appendix 4.5 for definitions), since
the W2 distance is dominated by such a norm (see (4.12) below). One finds that the minimax
estimation rate for t ≥ d/2 is (up to a log factor) n−1/2, so no meaningful adaptation is
required and one constructs a confidence set which ‘adapts’ over all smoothnesses as in
Proposition 7 below. When t < d/2, computations analogous to those in Section 4.3 show
that the gap between testing and estimation rates are wider for larger t, enabling adaptation
over a larger window of regularities (see Remark 10 below). Here, one finds a continuous
transition as t increases from 0 (which is the L2 case) to d/2, at which point confidence sets
can adapt to any two smoothnesses. However, the specific geometry of the parameter space
induced by the loss function is crucial, rather than how weak the loss function is per se: if
instead we consider B−t∞∞ loss, when t < d/2 the minimax estimation and testing rates can be
shown to coincide; meanwhile, the estimation rate is independent of the smoothness parameter
when t ≥ d/2. So in the case of B−t∞∞ loss, when t < d/2 no adaptive confidence sets exist
for any two smoothnesses by Lemma 32 below, but for t ≥ d/2 they trivially exist.
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Whenever they exist, the construction of confidence sets in Section 4.3 below extends easily
to the case of negative order Sobolev norms H−t, t > 0, and other Besov norms using norm
embeddings as in [69, Section 4.3]; see Remark 10 below.

4.3 Proof of Theorem 15
4.3.1 A Hilbert Norm Upper Bound for W2

We wish to construct confidence sets by performing risk estimation. The inner product
structure of Hilbert space norms makes them particularly amenable to risk estimation, and so
we seek some Hilbert norm which upper bounds the W2 distance.
For this, we introduce the logarithmic Sobolev norm ([69, Section 4.4]; see [32, 33] for another
statistical application of such norms).

Definition 9. Define the H−1,δ norm of f ∈ L2(Td) as

‖f‖H−1,δ = |〈f, 1〉|+
∑
l≥0

2−2l max(l, 1)2δ‖〈f, ψl·〉‖2
2

1/2

.

Note the similarity to the definition of the B−1
22 = H−1 norm given by (4.32); indeed, when

δ = 0 the two norms coincide with the Sobolev norm of regularity -1. We refer to this as
a ‘logarithmic’ Sobolev space because the parameter δ measures the smoothness of f on a
logarithmic scale.

We require the following comparison inequality from [171].

Proposition 5 (Theorem 3, [171]). Let 1 ≤ p <∞. Let f, g be two densities in Lp(Td), and
assume that for almost every x ∈ Td, M ≥ max(f(x), g(x)) ≥ m > 0, for real numbers M
and m. Then

M−1/p′‖f − g‖B−1
p∞
. Wp(f, g) . m−1/p′‖f − g‖B−1

p1
, (4.10)

where 1
p

+ 1
p′

= 1, and the constants depend only on d, p and the wavelet basis. Moreover,
when p = 1, one may choose m = 0 (with the convention 00 = 1).

This result is an extension of the celebrated Kantorovich-Rubinstein duality formula, which
states that for two probability measures µ, ν on Td,

W1(µ, ν) = sup
h∈Lip1(Td)

ˆ
h d(µ− ν), (4.11)

where the supremum is taken over all functions h : Td → R with Lipschitz constant bounded
by 1. We may relate this to (4.10) using the sequence of norm-continuous embeddings ([69,
Section 4.3])

B−1
11 ⊂

(
B1
∞∞

)∗
⊂ BL(Td)∗ ⊂

(
B1
∞1

)∗
⊂ B−1

1∞,

where BL(Td) is the space of bounded Lipschitz functions on Td (note that any Lipschitz
function on Td is bounded, so BL(Td) and Lip1(Td) coincide). However, in order to generalise
this to Wp, p > 1, one must impose that the probability measures have densities which are
bounded and bounded away from zero; indeed, for densities not bounded below, no norm
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provides a similar comparison to Wp ([171, Theorem 7]), and convergence rates are slower
than those in Proposition 6. Thus the restriction from the usual choices of Besov norm-balls
to the classes F(s), s ≥ 0 is necessary.
A simple application of the Cauchy-Schwarz inequality confirms that H−1,δ ⊂ B−1

21 as soon
as δ > 1/2. Thus in conjunction with the upper bound in Proposition 5, we have that, for
r ≥ 0, f ∈ F(r) and f̃n any estimator of f ,

W2(f, f̃n) . ‖f − f̃n‖B−1
21
. ‖f − f̃n‖H−1,δ , (4.12)

where the first constant depends on the parameters of the class F(r), but the second constant
depends only on the wavelet basis and d.

Remark 5. When using W1 loss, one may consider the class F(s) with the choice m = 0,
i.e. densities are not required to be bounded away from zero. Then the H−1,δ norm still
provides an upper bound for W1 for densities in F(s) due to the upper bound in (4.10) and
the sequence of continuous embeddings H−1,δ ⊂ B−1

21 ⊂ B−1
11 , where the second embedding

follows from Jensen’s inequality (with operator norm 1).

For the remainder of this section, we work in H−1,δ risk; as soon as δ > 1/2, this provides a
Hilbert norm upper bound for the W2 risk. In particular, any coverage guarantee for a H−1,δ

ball is automatically inherited by the W2 ball with the same centre and radius scaled by the
embedding constant from (4.12). Of course, by constructing confidence sets for a stronger
loss function, we may not be able to attain near-optimal diameter shrinkage, but we shall see
that this is not the case.

4.3.2 Construction of Confidence Sets
We first give the minimax estimation rates for the problem under consideration. These are
important for two reasons: firstly, they provide the benchmark for the ‘size’ of an optimal
confidence set. Moreover, our confidence sets are centred at a suitable estimator of f , which
must perform well for the resulting confidence set to also have good performance. In the
density estimation problem, the estimation rates for W2 loss are as follows:

Proposition 6. Let s ≥ 0 and let r∗n(s) denote the minimax rate of estimation over F(s).
Then

r∗n(s) .


n−1/2, d = 1,
n−1/2 log n, d = 2,
n−

s+1
2s+d , d ≥ 3,

where the constant depends on the parameters of the class F(s) and the wavelet basis.
Moreover, for any s ≥ 0,

r∗n(s) &

n
−1/2, d = 1, 2
n−

s+1
2s+d , d ≥ 3,

where the infimum is over all estimators f̃n based on a sample of size n.

The upper bounds follow from Theorem 1 in [171] and Remark 3. The lower bounds are
proved as in Theorem 6.3.9 in [69], where one ensures the existence of a suitable W2-separated
set using the lower bound in Proposition 5. See also Theorem 2 in [171].
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We centre our confidence sets at an estimator f̂n of f which has near-optimal convergence
over the classes F(s) and F(r). The theory of adaptive estimation is relatively complete, and
in the vast majority of cases it is possible to construct adaptive estimators which converge
at the minimax estimation rate (perhaps up to a logarithmic factor) over a wide range of
smoothnesses - we mention only the classical references [53] and [103].
The choice of Wasserstein loss adds a minor complication to the usual case of ‘norm-type’
loss functions. The Wasserstein distance Wp(f, f̃n) is only well-defined if f̃n is also a density,
and thus we ought to insist that any estimator we define is indeed a density almost surely. To
achieve this, given any wavelet-based estimator of the form

f̃n = f̃−1 +
∑
l≥0

2ld−1∑
k=0

f̃lkψlk

where f̃lk are the wavelet coefficients of the estimator, we insist that f̃−1 = 1. This ensures
that

´
Td f̃n = 1. The problem of non-negativity is more subtle. In [171], it was addressed

by projecting f̃n onto the class of densities F(r) with respect to the B−1
p1 norm, where r

is the smallest regularity to which we want to adapt. However, this projection step makes
the estimator essentially intractable. Instead, we use the well-known L∞ consistency of the
adaptive estimators considered below (c.f. [53], for example) together with the fact that the
densities in F(r) are uniformly bounded away from 0 to conclude that for sufficiently large n,
with high probability f̃n is in fact a probability density. Whenever f̃n fails to be non-negative,
we simply replace it with an arbitrary choice of density (e.g. uniform); as n→∞, this event
occurs with vanishing probability.

Theorem 17. Let d ≥ 2. Then there exists an estimator f̂n of f such that for all n ≥ n0(B)
and all s ≥ 0,

sup
f∈F(s)

Ef‖f − f̂n‖2
H−1,δ . (log n)2δ

(
n

log n

)− 2(s+1)
2s+d

,

where the constant depends on B, d and the wavelet basis.

The definition of f̂n and proof of Theorem 17 can be found in Appendix 4.6, and follows from
the classical ideas of [53].
Next, we introduce a U -statistic to perform risk estimation. Recall that given any estimator
f̃n of f such that 〈f̃n, 1〉 = 1, the H−1,δ loss can be expressed as

‖f − f̃n‖2
H−1,δ =

∑
l≥0

2−2l(l ∨ 1)2δ
2ld−1∑
k=0
〈f − f̃n, ψlk〉2.

To estimate this loss, we use the approach of sample splitting. Suppose we have a sample
of size 2n which we divide into two subsamples: S1 = (X1, . . . , Xn),S2 = (Xn+1, . . . , X2n).
Denote expectation with respect to sample i by E(i); we denote variances and probabilities
accordingly. We compute our estimator f̃n = f̃n(X1, . . . , Xn) based on S1 and, for j ≥ 0,
define the U -statistic based on the sample S2 as

Un,j(f̃n) = 2
n(n− 1)

∑
i<i′,i,i′∈S2

∑
l<j

2−2l(l∨1)2δ
2ld−1∑
k=0

(
ψlk(Xi)− 〈ψlk, f̃n〉

) (
ψlk(Xi′)− 〈ψlk, f̃n〉

)
.

(4.13)
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Since the sample is i.i.d., we see that

E
(2)
f Un,j(f̃n) =

∑
l<j

2−2l(l ∨ 1)2δ
2ld−1∑
k=0
〈ψlk, f − f̃n〉2 = ‖Kj(f − f̃n)‖2

H−1,δ .

Thus Un,j(f̃n) is an unbiased estimator of the jth resolution level approximation of the loss
‖f − f̃n‖H−1,δ . The key idea behind the U -statistic is that the removal of the diagonal in
the outermost sum in (4.13) eliminates the highest variance terms. Thus by averaging over
O(n2) terms with small variance, we expect the U -statistic to have very small variance (as in
Theorem 6.4.6 of [69]). This is confirmed by the next lemma.

Lemma 31. Assume f ∈ L∞(Td) is a probability density, and f̃n is an estimator for f based
on the subsample S1. Then

Var(2)(Un,j(f̃n)) ≤ 4‖f‖∞
n

(
max
l≥−1

4−l(1 ∨ l)2δ
)
‖Kj(f − f̃n)‖2

H−1,δ

+ 2‖f‖2
∞

n(n− 1)
∑
l≤j−1

2l(d−4)(l ∨ 1)4δ

=: κ2
n,j,δ(f). (4.14)

This result is analogous to Theorem 4.1 in [140]; for completeness, we give a proof in Appendix
4.6.
With the adaptive estimator f̂n and the U -statistic Un,j(f̂n) in hand, we are now ready to give
the construction of optimal confidence sets for the two-class adaptation problem.
We first note that for d = 1, 2, the minimax rates of estimation from Proposition 6 do not
depend on the smoothness parameter s; in particular, the two diameter shrinkage conditions
(4.8) and (4.9) become a single condition. Thus in these dimensions, defining an adaptive
confidence set is very easy; indeed, there is no meaningful adaptation which needs to take
place.
When d = 1, the empirical measure is a minimax optimal estimator of the sampling measure
(see, for instance, [60] or [170]). When d = 2, we centre at the adaptive estimator from
Theorem 17 in place of the empirical measure Pn, as Pn is no longer minimax optimal, and
standard kernel or wavelet projection estimators require choices of tuning parameters depending
on the smoothness parameter to attain optimal rates.

Proposition 7. i) Let d = 1. Consider the two-class adaptation problem over F(s)∪F(r)
where s > r ≥ 0, q ∈ [1,∞], B ≥ 1,M ≥ 1 ≥ m > 0 are all fixed. Then given any
α ∈ (0, 1), the confidence set based on a sample X1, . . . , Xn defined by

Cn =
{
g ∈ F(r) : W2(Pg, Pn) ≤ Dα−1/2n−1/2

}
is an optimal adaptive W2 confidence set, where Pn = n−1∑n

i=1 δXi is the n-sample
empirical measure and the constant D depends on B,m and the wavelet basis.

ii) Let d = 2. Consider the two-class adaptation problem over F(s) ∪ F(r) where
s > r ≥ 0, q ∈ [1,∞], B ≥ 1,M ≥ 1 ≥ m > 0 are all fixed. Then given any
α ∈ (0, 1), the confidence set based on a sample X1, . . . , Xn defined by

Cn =
{
g ∈ F(r) : W2(g, f̂n) ≤ Dα−1/2n−1/2(log n)2+δ

}
125



4. Adaptive Wasserstein confidence sets

is a near-optimal adaptive W2 confidence set, where f̂n is the adaptive estimator from
Theorem 17 and the constant D depends on B,m and the wavelet basis.

The diameter shrinkage conditions are met trivially, while honest coverage follows from
Chebyshev’s inequality in a standard fashion.
When d ≥ 3, the minimax rates depend on the smoothness parameter and so the diameter
shrinkage condition differs between F(r) and F(s), r 6= s. In particular, this precludes any
confidence set Cn with deterministic radius, as used above. Instead, we centre at the adaptive
estimator f̂n from Theorem 17, and use the estimate of its loss provided by the U -statistic
Uj,n(f̂n) as defined in (4.13) to determine the radius. We write Uj := Uj,n(f̂n) in the sequel.

Theorem 18. Let d ≥ 3. Fix B ≥ 1,M ≥ 1 ≥ m > 0, 1 ≤ q ≤ ∞, and let s > r ≥ 0. If
d > 4, assume additionally that s ≤ 2d−4

d−4 r + d
d−4 . Fix α ∈ (0, 1), and δ > 1/2. Consider the

confidence set based on a sample of size 2n, S1 ∪ S2 given by

Cn =
{
g ∈ F(r) : ‖g − f̂Tn ‖H−1,δ ≤

√
zακn,jn,δ(g) + Ujn +G(jn)

}
(4.15)

where f̂Tn is computed on S1, Ujn is computed on S2 and:

• κ2
n,j,δ(g) := 4‖g‖∞

n
‖Kj(g − f̂Tn )‖2

H−1,δ + 2‖g‖2∞
n(n−1)

∑
l≤j−1 2l(d−4)(l ∨ 1)4δ;

• jn is such that 2jn '
(

n
logn

) 1
2r+d/2 ;

• G(jn) = j2δ
n 2−2jn(r+1) log n;

• zα = (α/2)−1/2.

Then for all n ≥ n0(B), Cn satisfies (4.7), as well as (4.8) and (4.9) for a suitable constant
K > 0 depending on r, s, α, α′ and the parameters of the class F(r) with the rates

Rn(r) = (log n)δ+
r+1
2r+dn−

r+1
2r+d , Rn(s) = (log n)δ+

s+1
2s+dn−

s+1
2s+d .

In particular, Cn is a near-optimal adaptive W2 confidence set over F(s) ∪ F(r).

Remark 6 (Adaptation over ranges of classes). Note that the construction of Cn is completely
independent of s, and f̂n adapts simultaneously over all s ≥ 0. So when d ≤ 4, Cn adapts
simultaneously over all s ≥ r, and when d > 4, Cn adapts simultaneously over the full window
of admissible values of s.

Remark 7 (Adaptation to other parameters). We note that the construction of the confidence
set in Theorem 18 does not depend on B or m, and so in fact this particular confidence set is
also adaptive over B ≥ 1 and m > 0, in the sense that any dependence of the minimax rates
r∗n(r), r∗n(s) on B or m are eventually accounted for by the logarithmic term in Rn(r), Rn(s).
(Note however that the constants in our theoretical guarantees explode as B →∞ or m→ 0.)
However, the construction of Cn does depend on M . See [23] for more discussion on the role
of M .
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4.3. Proof of Theorem 15

Remark 8 (Adapting to wider ranges of smoothnesses in high dimensions). In the d > 4
case, following the ideas in [23], one may still obtain adaptation over a window of the form
[0, R] for arbitrary R > 0 at the cost of removing certain troublesome portions of the classes
F(r), r ∈ [0, R]. In this restricted model, one can identify the smoothness of the unknown
density within a window of the form

[
r, 2d−4

d−4 r + d
d−4

]
using tests as in [23] or [126]. Once

this window is identified, in particular the relevant value of r, one can use the associated
confidence set as constructed in Theorem 18.

Remark 9. (Necessity of log-factors) One may ask whether it is possible to remove the log-
factors in the shrinkage rates and construct a confidence set with Rn(r) = r∗n(r), Rn(s) = r∗n(s).
These log factors fundamentally arise from the use of the embedding H−1,δ ↪→ B−1

21 for δ > 1/2.
For confidence sets constructed via risk estimation we conjecture that this is a necessary step,
as it is precisely the accelerated risk estimation for Hilbert space norms which enables the
adaptivity of the confidence set. However, it is conceivable that another approach, such as the
testing method of [25], could be used to construct W2 confidence sets with sharp diameter
shrinkage rates (although such an approach will not generalise beyond the two class problem).

Remark 10 (Weak Sobolev norms H−t, t > 0). Our methods extend to the use of negative
order Sobolev norms H−t = B−t22 , t > 0 as loss functions in place of H−1,δ (see Appendix
4.5 for definitions). The analysis of the estimator f̂n is completely analogous, and one must
suitably augment the U -statistic Un,j to estimate the H−t loss. One finds that the resulting
confidence set C̃n adapts to any two smoothnesses 0 ≤ r < s <∞ when t ≥ d/4; if instead
t < d/4, adaptation is possible over a window of smoothnesses 0 ≤ r < s ≤ d

d−4tt+ 2d−4t
d−4t r.

Moreover, in this latter case, the arguments of Section 4.3.3 below can be augmented to show
that if s does not lie in this window, then no such confidence set can exist.

The proof of this theorem proceeds similarly to that of Proposition 2.1 in [140], and is given
in Appendix 4.6.
The confidence sets constructed above prove statements (i) and (ii) of Theorem 15.

4.3.3 Testing rates and non-existence of Confidence Sets
We turn now to proving the impossibility result (iii) in Theorem 15.
The question of existence of adaptive confidence sets is closely related to a composite hypothesis
testing problem. This connection was identified in the first works on adaptive confidence sets;
for a complete decision-theoretic overview, see [69, Chapter 8]. For ρ ≥ 0 and s > r ≥ 0,
define the separated function class

F̃(r, ρ) := {f ∈ F(r) : W2(f,F(s)) ≥ ρ}

We may have ρ = 0, in which case F̃(r, 0) = F(r). However, if ρ > 0 then F̃(r, ρ) is a strict
subset of F(r), disjoint from F(s). The testing problem we consider is

H0 : f ∈ F(s) vs. H1 : f ∈ F̃(r, ρ). (4.16)

As the usefulness of a test is naturally assessed by the sum of its Type I and Type II errors, the
minimax rate of testing for the problem (4.16) is defined as any sequence (ρ∗n)n≥1 such that
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4. Adaptive Wasserstein confidence sets

• For any β′ > 0, there exists a constant L = L (β′) and a measurable test Ψn :(
Td
)n
→ {0, 1} such that

sup
f∈F(s)

Ef [Ψn] + sup
f∈F̃(r,Lρ∗n)

Ef [1−Ψn] ≤ β′. (4.17)

• There exists some β > 0 such that for all ρn = o (ρ∗n) ,

lim inf
n→∞

inf
Ψn

[
sup
f∈F(s)

Ef [Ψn] + sup
f∈F̃(r,ρn)

Ef [1−Ψn]
]
≥ β, (4.18)

where the infimum ranges over the set of tests Ψn.

The following result characterises the role of the minimax testing rate ρ∗n in the existence and
non-existence of confidence sets. Essentially, it says ρ∗n provides a ‘speed limit’ on how quickly
the confidence set can shrink when f is in the smoother submodel F(s):

Lemma 32 (Proposition 8.3.6, [69]). Let ρ∗n be the minimax testing rate for (4.16), and
r̃n(s), r̃n(r) be two sequences such that r̃n(s) = o (ρ∗n) and r̃n(s) = o (r̃n(r)). Let α, α′ > 0.
Then, for any ρn = o (ρ∗n) and L > 0, there does not exist any set Cn (α,X1, . . . , Xn)
satisfying

• lim infn→∞ inff∈F(s)∪F̃(r,ρn) Pf (f ∈ Cn) ≥ 1− α,

• lim supn→∞ supf∈F̃(r,ρn) Pf
(
|Cn|W2 > Lr̃n(r)

)
≤ α′,

• lim supn→∞ supf∈F(s) Pf
(
|Cn|W2 > Lr̃n(s)

)
≤ α′,

as long as α, α′ are such that 0 < 2α + α′ < β, with β as in (4.18).

This non-existence phenomenon occurs because any Cn satisfying the conditions of the Lemma
induces a test

Ψn = 1{Cn ∩ F̃(r, ρ′n) 6= ∅}

which is uniformly consistent for the separation rate ρ′n in the sense of (4.17) whenever
ρn = o(ρ′n). If we were able to choose ρ′n to be o(ρ∗n), this would contradict the definition of
the minimax testing rate ρ∗n; thus no such confidence set can exist. Note that the argument
works for any rate r̃n(s) = o(ρ∗n), not just the minimax rate of estimation; in particular, we
can multiply the minimax estimation rate by a poly-logarithmic factor so long as there is a
polynomial gap between the testing and estimation rates.
It remains to determine the minimax rate of testing for the problem (4.16); this is done in the
following theorem.

Theorem 19. Assume s > r ≥ 0 and d > 4. Let ρ∗n be the minimax rate of testing for the
problem (4.16). Then there exists a constant c > 0 depending on the parameters of the class
F(s) and the wavelet basis, and n0 = n0(B,M) such that for all n ≥ n0,

ρ∗n ≥ cn−
r+1

2r+d/2 .

Also, (4.18) holds for any β < 1.
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The proof of Theorem 19 is given in Appendix 4.6, and follows a multiple-testing lower bound.
Assume now that d > 4 and s > 2d−4

d−4 r + d
d−4 . Then the minimax rate of testing ρ∗n is slower

than the minimax estimation rate r∗n(s) by a polynomial factor; in light of Lemma 32, this
means there is no near-optimal adaptive W2 confidence set over F(s)∪F(r) for any practical
choice of α, α′ (for such a set to exist, we would require 2α+ α′ ≥ 1). This proves statement
(iii) of Theorem 15. However, this does not rule out the existence of confidence sets satisfying
weaker conditions than those in Definition 8, namely those listed in Lemma 32 for some
ρn ≥ Lρ∗n, L > 0. Such sets actually exists in view of Proposition 8.3.7 of [69] and Theorem
17.
Moreover, the confidence set Cn constructed in Theorem 18 in conjunction with the argument
used to prove Lemma 32 shows that the lower bound of Theorem 19 is sharp up to a
poly-logarithmic factor.

4.4 Extension of the Theory to Rd

Having provided a fairly complete resolution of the problem of adaptive W2 confidence sets
when the sample space is Td, we extend our results to the case of the unbounded sample
space Rd with W1 loss. The key tool is the Kantorovich-Rubinstein duality formula ([86])

W1(f, g) = sup
h∈Lip1(Rd)

ˆ
Rd
h(x)(f(x)− g(x)) dx, (4.19)

where Lip1(Rd) is the set of 1-Lipschitz functions on Rd.
Our techniques do not extend to the distances Wp, p > 1, due to the dependence on the
lower bound m in Proposition 5 (which is the analogue of (4.19) for p > 1): any density on
Rd must decay to 0 at infinity, so using this result yields suboptimal convergence rates, even
under favourable tail conditions.
In this section, it is assumed that we observe X1, . . . , Xn

i.i.d.∼ f0 for some density f0 on Rd,
and we wish to perform inference on f0 using W1 as the loss function.

4.4.1 Parameter Spaces
We use an S-regular tensor product wavelet basis of L2(Rd) of the form{

φk, ψlk : k ∈ Zd, l ≥ 0
}

as introduced in Appendix 4.5 (we index the ψlk using only k, l by a slight abuse of notation).
We write Kj(f) for the projection of f onto the first j resolution layers, as in (4.2). Besov
norms on Rd, also defined in Appendix 4.5, are defined analogously to those on Td, and the
relation (4.3) holds.
Our goal is to construct an adaptive confidence set for the true density f0 using risk estimation,
where the adaptation occurs with respect to the smoothness parameter s. We shall consider
functions in Bs

2q. Unlike our previous classes F(s) on Td, we need not assume that our
densities are bounded away from zero, or something analogous such as sufficiently slow decay
in the tails. However, in order to deal with the unboundedness of the sample space Rd, we
must impose a moment condition.

129
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For α, β > 0, define the α, β-exponential moment of a density f as

Eα,β(f) :=
ˆ
Rd

exp (β‖x‖α)f(x) dx = Ef
(
eβ‖X‖

α
)
. (4.20)

Definition 10. Let 1 ≤ p, q ≤ ∞, s ≥ 0, B ≥ 1,M > 0, α, β > 0 and L ≥ 1. Define the
function class

Gs,p,q(B,M ;α, β, L) =
{
f ∈ Bs

pq(Rd) :
ˆ
Rd
f = 1, ‖f‖Bspq ≤ B, 0 ≤ f ≤M a.e., Eα,β(f) ≤ L

}
.

(4.21)
Henceforth, we fix p = 2 and consider q, B,M, α, β, L to be given. Define

G(s) := Gs,2,q(B,M ;α, β, L).

Observe that for M close to 0 and L close to 1, the class G(s) is empty. We therefore assume
in the sequel that L is sufficiently large (depending on M,B) for G(s) to be non-empty.
The focus on p = 2 is quite natural in view of the material developed in the previous
section, relying on risk estimation to compute the diameter of confidence sets. Combining
the exponential moment condition and the bound on the Bs

2q-norm, we prove in Lemma 38
that densities in G(s) also have their Bs

1q-norm bounded by a constant depending on the class
parameters.

4.4.2 Estimation Upper Bounds for W1

As before, we should insist on our estimator f̃n being a density almost surely. Indeed, the fact
that f̃n has total mass 1 is vital to the proof of Proposition 8 below. However, we note that
there is no intrinsic requirement in (4.19) that f and g should be nonnegative, and so we will
allow our estimators to take negative values. If a genuine density is required, one can just
take the positive part of the estimator and renormalize.
The following proposition gives an upper bound on the W1 distance which is convenient for
wavelet estimators.

Proposition 8. For any probability density f with a finite first moment and any estimator f̃n
of f which has a finite first moment almost surely, we have that

W1(f̃n, f) .
∑
k∈Zd
‖k‖|〈f − f̃n, φk〉|+

∑
l≥0

2−l(
d
2 +1) ∑

k∈Zd
|〈f − f̃n, ψlk〉|, (4.22)

where the constant depends only on the wavelet basis.

Remark 11. Let f̂n be some estimator of f , not necessarily with total mass 1. We obtain
an estimator which integrates to 1 almost surely, which we call f̃n, by renormalising the first
wavelet layer of f̂n, that is, renormalising f̂0 := K0(f̂n). Then we set

f̃n = f̂0´
f̂0(x) dx

+
∑
l≥0

∑
k∈Zd
〈f̂n, ψlk〉ψlk.

Note that while one can perform this procedure for any estimator f̂n, it is particularly
simple for wavelet-based estimators. Assuming L1-consistency of f̂n, f̂0 → K0(f) and thus
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K0(f̃n)→ K0(f) in L1. Moreover, for the wavelet estimators we use below, this convergence
occurs very fast, at the rate n− S

2S+d , where S is the regularity of the wavelet basis. Thus
it suffices to consider the un-normalised estimator f̂n in the decomposition (4.22) whenever
s ≤ S − 1, which we do in the sequel.

We first establish an upper bound for the estimation rate over the class G(s).

Theorem 20. For any s ≥ 0, there exists an estimator f̂n such that for all sufficiently large n,

sup
f∈G(s)

Ef W1(f̂n, f) .

(log n) γd2 +1n−1/2, d = 2,
(log n) γd2 n−

s+1
2s+d , d ≥ 3.

where γ is a constant depending on α and β only, and the constant depends on the parameters
of the class G(s) and the wavelet basis. For d = 1, the empirical measure Pn satisifies

sup
f∈G(s)

Ef W1(Pn, Pf ) . n−1/2.

Remark 12. These rates are sharp up to a logarithmic factor so long as L is sufficiently large:
one uses a reduction to a multiple testing problem as in the proof of the lower bounds in
Proposition 6, and then uses an analogous collection of well-separated densities defined on
some common compact set. For large enough L, the compact support ensures that these
densities have suitable exponential moments and so belong to G(s).

Remark 13. An inspection of the proof reveals that in fact it suffices to assume a suitable
polynomial moment, depending on s; however, for convenience we assume an exponential
moment which works for all s ≥ 0.

The proofs of Proposition 8 and Theorem 20 are given in Appendix 4.7. The estimator f̂n is
simply a wavelet projection estimator which is zero outside of a growing compact set; the risk
outside of the compact is controlled using the moment assumption.
As in the case of Td, we require an adaptive estimator.

Theorem 21. Let d ≥ 2, and let γ > 0 be as in Theorem 20. Then there exists an estimator
f̂n of f such that for all n ≥ n0(B) and all s ≥ 0,

sup
f∈G(s)

Ef W1(f̂n, f) . (log n)
γd
2

(
n

log n

)− s+1
2s+d

,

where the constant depends on the parameters of the class G(s) and the wavelet basis.

The definition of f̂n and proof of Theorem 21 are given in Appendix 4.7.

4.4.3 Construction of Confidence Sets
Let us now concretely state the two-class adaptation problem we wish to solve. Fix two
smoothnesses s > r ≥ 0 and consider the model G(r) = G(r) ∪ G(s). Given α ∈ (0, 1), we
seek a confidence set Cn which has honest coverage at level 1−α, that is, for all n sufficiently
large,

inf
f∈G(r)

Pf (f ∈ Cn) ≥ 1− α, (4.23)
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as well as the two diameter shrinkage conditions: for all α′ > 0 there exists a constant
K = K(α′) > 0 such that

sup
f∈G(r)

Pf (|Cn|W1 > KRn(r)) ≤ α′, (4.24)

sup
f∈G(s)

Pf (|Cn|W1 > KRn(s)) ≤ α′, (4.25)

where Rn(r) and Rn(s) equal the convergence rates in Theorem 20 up to a poly-logarithmic
factor.
As discussed previously, the d = 1 and d = 2 cases are straightforward given the existence
of the estimator from Theorem 21, since here the convergence rates do not depend on the
smoothness r. We thus restrict our attention to the case d ≥ 3.
Let X1, . . . , X2n be an i.i.d. sample from the unknown f ∈ G(r). We split the sample as
before into two equal halves, indexed by S1 = 1, . . . , n and S2 = {n+ 1, . . . , 2n}, and denote
by P (i), E(i) probabilities and expectations taken over S i. We wish to construct a confidence
set via risk estimation, centred at the adaptive estimator f̂n from Theorem 21, which we
compute using S1. Proposition 8 provides a natural upper bound for W1(f, f̂n)2 which we
then decompose into several terms. Define the thresholds κ−1n = κ0n ' (log n)γ, κln = 2lκ0n
for γ chosen as in Theorem 20. Applying the Cauchy-Schwarz inequality several times, we
obtain the bound

W1(f, f̂n)2 ≤3
(log n)γ(d+2)

 ∑
‖k‖∞≤κ−1n

〈f − f̂n, φk〉2 + j
∑
l<j

2−2l ∑
‖k‖∞≤κln

〈f − f̂n, ψlk〉2


+
∑
l≥j

2−l(
d
2 +1) ∑

‖k‖∞≤κln

|〈f − f̂n, ψlk〉|

2

+
 ∑
‖k‖∞>κ−1n

‖k‖|〈f, φk〉|+
∑
l≥0

2−l(
d
2 +1) ∑

‖k‖∞>κln

|〈f, ψlk〉|

2. (4.26)

The final term is controlled using the moment assumption on f ∈ G(r); indeed, from the
proof of Theorem 20 we have that for all f ∈ G(r), this term is bounded above by

∆n := C(d)L2(log n)2γn−1, (4.27)

where C(d) is a constant depending only on d and the wavelet basis.
We next consider the remaining terms in (4.26). We introduce pseudo-distances W̃ (n,j)(f, g)
defined as

W̃ (n,j)(f, g) =
 ∑
‖k‖∞≤κ−1n

〈f − g, φk〉2 + j
∑
l<j

2−2l ∑
‖k‖∞≤κln

〈f − g, ψlk〉2
1/2

+
∑
l≥j

2−l(
d
2 +1) ∑

‖k‖∞≤κln

|〈f − g, ψlk〉|. (4.28)

Observe that for f, g ∈ G(r),

W1(f, g) ≤
√

3(log n)γ(d+2) · W̃ (n,j)(f, g) +
√

3∆n;
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this is true uniformly over r ≥ 0. Since
√

∆n converges (up to a logarithmic factor) at the
parametric rate, this means that any diameter shrinkage condition with respect to W̃ (n,j)

provides an analogous shrinkage condition for W1, with only a slightly worse rate. Moreover,
the first part of W̃ (n,j)(f, g) is well-suited to estimation using a U -statistic. To this end, define
the U -statistic

Vn,j = Vn,j(f̂n) := 2
n(n− 1)

∑
i<i′,i,i′∈S2

 ∑
‖k‖∞≤κ−1n

(
φk(Xi)− 〈f̂n, φk〉

) (
φk(Xi′)− 〈f̂n, φk〉

)

+ j
∑
l<j

2−2l ∑
‖k‖∞≤κln

(
ψlk(Xi)− 〈f̂n, ψlk〉

) (
ψlk(Xi′)− 〈f̂n, ψlk〉

) .
(4.29)

Clearly we have that E(2)
f Vn,j is equal to the square of the first term in (4.28) with f, f̂n in

place of f, g. Analogously to Lemma 31, one shows that Vn,j has small variance.

Lemma 33. For f ∈ L∞(Rd), we have that, for some constant Cd depending only on d and
the wavelet basis,

Var(2)
f (Vn,j) ≤

Cd
2

j2‖f‖2
∞(log n)γd

n(n− 1)
∑
l<j

2l(d−4)

. . .+ ‖f‖∞
n

 ∑
‖k‖∞≤κ−1n

〈f − f̂n, φk〉2 + j2∑
l<j

2−4l ∑
‖k‖∞≤κln

〈f − f̂n, ψlk〉2


≤ Cd

j2‖f‖2
∞(log n)γd

n(n− 1)
∑
l<j

2l(d−4) + W̃ (n,j)(f, f̂n)2


=: λ2

j,n(f).

For the second part of W̃ (n,j)(f, f̂n), we use the concentration arguments from the proof
of Theorem 21 to show that this term is suitably small with high probability uniformly over
f ∈ G(r).
Given a sequence (jn), we write W̃ (n) for W̃ (n,jn), and Vjn for Vn,jn .

Theorem 22. Let d ≥ 3. Fix B ≥ 1,M > 0, α, β, L > 0, 1 ≤ q ≤ ∞, and s > r ≥ 0.
Let γ ≥ 1 be as in Theorem 20. If d > 4, assume additionally that s ≤ 2d−4

d−4 r + d
d−4 . Fix

α ∈ (0, 1). Consider the confidence set based on a sample of size 2n given by

Cn =
{
g ∈ G(r) : W̃ (n)(g, f̂n) ≤ C(d)

√
zαλn,jn(g) + Vjn +Gjn

}
(4.30)

where f̂n is computed on S1, Vjn is computed on S2, C(d) is a constant depending on d and
the wavelet basis, and:

• λn,jn(g) is as in Lemma 33;

• jn is such that 2jn '
(

n
logn

) 1
2r+d/2 ;

• Gjn = (log n)γd+12−2jn(r+1);
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• zα = (α/2)−1/2.

Then for all n ≥ n0(B), Cn satisfies (4.23), as well as (4.24) and (4.25) for a suitable constant
K > 0 with the rates

Rn(r) = (log n)γ(d+1)
(

n

log n

)− r+1
2r+d

, Rn(s) = (log n)γ(d+1)
(

n

log n

)− s+1
2s+d

.

In particular, Cn is a near-optimal adaptive W1 confidence set over F(s) ∪ F(r).

The proof is almost identical to that of Theorem 18; a more detailed argument can be found
in Appendix 4.7. In particular, this proves statements (i) and (ii) of Theorem 16.

4.4.4 Non-Existence of Confidence Sets
We now turn to the non-existence result (iii) in Theorem 16, a consequence of Lemma 32
(which holds in a general decision theoretic framework). We therefore require a lower bound
on the minimax separation rate in the testing problem

H0 : f ∈ G(s) vs. H1 : f ∈ G̃(r, ρ), (4.31)

where the separated alternative G̃(r, ρ) is defined analogously to before:

G̃(r, ρ) := {f ∈ G(r) : W1(f,G(s)) ≥ ρ} .

Theorem 23. Assume that d > 4 and s > r ≥ 0. Let ρ∗n be the minimax rate of testing
for the problem (4.31). Then, for L sufficiently large in (4.21), there exist a constant c > 0
depending on the parameters of the class G(s) and the wavelet basis, and n0 = n0(B,M)
such that for all n ≥ n0,

ρ∗n ≥ cn−
r+1

2r+d/2 .

Also, (4.18) holds for any β < 1.

The proof is given in Appendix 4.7, and is similar to the proof of Theorem 19. As before, this
implies statement (iii) of Theorem 16.

4.5 Wavelets and Besov Spaces
Here we introduce the wavelet bases we use, and define the various norms and spaces used in
our analysis.

4.5.1 Wavelet Bases of Rd and Td

Let S ∈ N. We begin with an S-regular wavelet basis of L2(R) generated by scaling function
Φ and wavelet function Ψ,{

Φk = Φ(· − k),Ψlk = 2l/2Ψ(2l(·)− k) : l ≥ 0, k ∈ Z
}
.

Concretely, we take sufficiently regular Daubechies wavelets: see [45], [69, Chapter 4] , [119]
for details. Such a wavelet basis has the following properties:
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4.5. Wavelets and Besov Spaces

• Φ,Ψ are in CS(R),
´
R Φ = 1, and Ψ is orthogonal to polynomials of degree < S.

• ‖∑k |Φk|‖∞ . 1, and‖∑k |Ψlk|‖∞ . 2l/2 for a constant depending only on Ψ.

• Letting Vj = span(Φk,Ψlk : l < j), for any f ∈ Vj the following Bernstein estimate
holds:

‖∇f‖p . 2j ‖f‖p ,
for a constant depending only on the wavelet basis.

• Φ,Ψ are compactly supported.

We then form a tensor product basis of L2(Rd) as follows. Let I = {0, 1}d \ {0}. Define

φ(x) = Φ(x1) · · ·Φ(xd), x ∈ Rd

and, writing Ψ0 = Φ,Ψ1 = Ψ,

ψι = Ψι1(x1) · · ·Ψιd(xd), ι ∈ I.

Then ([69, Section 4.3.6]){
φk = φ(· − k), ψιlk = 2ld/2ψι(2lx− k) : l ≥ 0, k ∈ Zd, ι ∈ I

}
defines a wavelet basis of L2(Rd). We omit ι from our notation and simply write ψlk with k
now implicitly taking values in Zd × I; any sum over k is to be understood as over all ι ∈ I
as well.

i) φ, ψ are in CS(Td),
´
Rd φ = 1, and ψ is orthogonal to polynomials of degree < S.

ii) ‖∑k |φk|‖∞ . 1, and‖∑k |ψlk|‖∞ . 2ld/2 for a constant depending only on ψ.

iii) φ, ψ are compactly supported.

These properties follow elementarily from the previously stated properties of Φ and Ψ. Property
3) is used crucially in our analysis on Rd. Notably, this precludes certain common choices of
wavelet basis, such as the Meyer basis.
These properties imply the following relationship between Lp-norms of functions and the
`p-norms of their wavelet coefficients (by an abuse of notation we denote both of these norms
by ‖ · ‖p).

Lemma 34. For any l ≥ 0, any p ∈ [1,∞] and any c ∈ RZd , we have that∥∥∥∥∥∥
∑
k∈Zd

ckψlk

∥∥∥∥∥∥
p

' 2ld(1/2−1/p)‖c‖p,

where the constants depend on ψ and p only.

When working on Td, we use the tensor product wavelet basis induced by the periodisations of
Φ,Ψ; see [69, Section 4.3.4] for details. This produces a basis of L2(Td) with the following
properties:
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i) ψ(x) = ∏d
i=1 ψ

(i)(xi) for some univariate functions ψ(i).

ii) Setting ψlk(·) = 2ld/2ψ(· − 2−lk) for l ≥ 0, k ∈ Zd ∩ [0, 2l)d, the set{
φ, ψlk : l ≥ 0, k ∈ Zd ∩ [0, 2l)d

}
forms an orthonormal basis of L2(Td). By an abuse of notation, we re-index in k such
that k ∈ Z varies between 0 ≤ k < 2ld.

iii) ψ is in CS(Td), and is orthogonal to polynomials of degree < S.

iv) ‖∑k |ψlk|‖∞ . 2ld/2, for a constant depending only on ψ.

v) Letting Vj = span(φ, ψlk : l < j), for any f ∈ Vj the following Bernstein estimate
holds:

‖∇f‖p . 2j ‖f‖p ,

for a constant depending only on the wavelet basis.

Again, these are basic consequences of properties of Φ,Ψ, and enable the proof of Proposition
5; compare to Appendix C of [171].

4.5.2 Besov Spaces
In this section, we let (φk, ψlk) denote either the S-regular tensor product Daubechies wavelet
basis of L2(Rd), or the S-regular tensor product periodised Daubechies wavelet basis of L2(Td).
It should be understood that any summation is over the full range of indices, for example∑
k ψlk denotes ∑k∈Zd ψlk in the Rd case and ∑2ld−1

k=0 ψlk in the Td case. We further let D be
either the class of tempered distributions on Rd, or the class of periodic tempered distributions
on Td.
Let 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, s ∈ R, s < S. For f ∈ D, we define the Besov norm

‖f‖Bspq = ‖〈f, φ·〉‖p +
∑
l≥0

[
2ls2ld(

1
2−

1
p) ‖〈f, ψl·〉‖p

]q1/q

, (4.32)

where ‖ · ‖p is the `p-norm. When q =∞, the norm is defined as

‖f‖Bsp∞ = ‖〈f, φ·〉‖p + sup
l≥0

2ls2ld(
1
2−

1
p) ‖〈f, ψl·〉‖p . (4.33)

We then define the corresponding Besov space Bs
pq as

Bs
pq =

{
f ∈ D : ‖f‖Bspq <∞

}
. (4.34)

We will write Bs
pq(Rd) or Bs

pq(Td) to remove any ambiguity over the choice of domain, whenever
it arises.
The definition of Bs

pq is independent of the wavelet basis used, that is, using a different
(sufficiently regular) basis in the definition (4.32) produces an equivalent norm. Moreover,
using a C∞ basis such as the Meyer basis enables us to define Bs

pq concurrently for all s ∈ R.
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4.5.3 The Case of the Unit Cube
We can also define a ‘boundary-corrected’ wavelet basis of L2([0, 1]d) based on Φ,Ψ as in
[43]; see also [69, Section 4.3.5]. Such a basis possesses completely analogous properties
to properties 1)-5) of the periodised basis of L2(Td); moreover, all Besov spaces defined on
Td are defined on the unit cube [0, 1]d by replacing the periodised wavelet basis with the
boundary-corrected wavelet basis (as used in [170]). Thus all of our results for Td hold also
for the case of [0, 1]d.

4.6 Proofs for Section 4.3
We first give the definition of our adaptive estimator. The estimator is based on the empirical
wavelet coefficients, defined as

f̂lk := 1
n

n∑
i=1

ψlk(Xi).

We also write fl· and f̂l· for the vectors of coefficients (flk : 0 ≤ k < 2ld) and (f̂lk : 0 ≤ k < 2ld)
respectively.
Next, define the truncation point lmax such that

2lmax '
(

n

log n

)1/d

,

and for 0 ≤ l ≤ lmax, define the thresholds

τl := τ2 ld
2

(
log n
n

)1/2

,

for some τ > 0 to be chosen below, depending only on B, d,M and the wavelet basis. We
then define

f̂n := 1 +
lmax∑
l=0

1{‖f̂l·‖22>τ2
l }

2ld−1∑
k=0

f̂lkψlk. (4.35)

To prove Theorem 17, we must first collect some results on the expectation and concentration
of the empirical wavelet coefficients f̂lk.

Lemma 35. Let f ∈ F(s) and let f̂lk be the empirical wavelet coefficients of f based on a
sample of n observations. Then for every t ≥ 2 there exists a constant Ct depending only on
t such that for all l ≥ 0 satisfying 2ld ≤ n,

E
∣∣∣f̂lk − flk∣∣∣t ≤ CtM‖ψ‖t−2

∞ n−t/2.

For t = 2, the proof is immediate from the i.i.d. assumption on the data, the orthonormality
of the wavelets and the bound ‖f‖∞ ≤ M . For t > 2, the result follows from the t = 2
case and Hoffmann-Jørgensen’s inequality ([69, Theorem 3.1.22], [79]). We also require a
concentration result for the f̂lk; for this we use Bernstein’s inequality ([69, Theorem 3.1.7]).

Proposition 9. [Bernstein’s Inequality] Let Y1, . . . , Yn be independent centred random vari-
ables which are almost surely bounded by c > 0 in absolute value. Let σ2 = n−1∑n

i=1EY
2
i

and Sn = ∑n
i=1 Yi. Then for all u ≥ 0,

P (|Sn| > u) ≤ 2 exp
(
− u2

2nσ2 + 2cu
3

)
.
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For fixed l, k and f ∈ F(s), the random variables (ψlk(Xi)− flk) are i.i.d., centred, bounded
by 2ld/2‖ψ‖∞ =: cl, and have variance bounded by M . Thus from Bernstein’s inequality, we
deduce that

Pf
(
|f̂lk − flk| > u

)
≤ 2 exp

(
− nu2

2M + 2clu
3

)
. (4.36)

We also need a result on wavelet approximations in the H−1,δ norm to control bias terms.
The following lemma about the error of j-level approximations to Besov functions is standard;
see Propositions 4.3.8 and 4.3.14 in [69], for instance.

Lemma 36. Let 0 ≤ s < S and 1 ≤ q ≤ ∞, δ ∈ R. Then for f ∈ Bs
2q, we have that

‖Kj(f)− f‖H−1,δ ≤ Csup
l≥j

(
2−l(s+1)lδ

)
‖f‖Bs2q , (4.37)

where the constant C depends only on the wavelet basis. In particular, for j ≥ 1 ∨ δ
s+1 , we

have that
‖Kj(f)− f‖H−1,δ ≤ C2−j(s+1)jδ‖f‖Bs2q

Proof of Theorem 17. Fix f ∈ F(s). Define ln(s) such that

2ln(s) ' B
1
s

(
n

log n

) 1
2s+d

;

for all sufficiently large n depending on B, we have that ln(s) < lmax. We then decompose
the risk as follows:

‖f − f̂n‖2
H−1,δ =

ln(s)∑
l=0

2−2l(l ∨ 1)2δ‖〈f − f̂n, ψl·〉‖2
2 +

lmax∑
l=ln(s)+1

2−2ll2δ‖〈f − f̂n, ψl·〉‖2
2

+
∑

l>lmax

2−2ll2δ‖〈f, ψl·〉‖2
2

=: I + II + III. (4.38)

This is a bias-stochastic decomposition, where we have further divided the stochastic term
into terms I and II.
We first deal with the bias term III: a direct application of Lemma 36 gives

III = ‖Klmax(f)− f‖2
H−1,δ

. l2δmax2−2lmax(s+1)

= o

(log n)2δ
(

n

log n

)− 2(s+1)
2s+d


for a constant depending on B and the wavelet basis.
Next, we deal with term I. For any l ≥ 0, by the triangle inequality we have that

‖〈f − f̂n, ψl·〉‖2 ≤ ‖fl· − f̂l·‖2 + ‖f̂l·‖21{‖f̂l·‖2≤τl} ≤ ‖fl· − f̂l·‖2 + τ2ld/2
√

log n
n

.
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Using Lemma 35 to control the expectation of the square of the first term, we see that

Ef (I) .
ln(s)∑
l=0

2−2l(l ∨ 1)2δ
[
2ldn−1 + τ 22ld log n

n

]

. τ 2 log n
n

(ln(s))2δ
ln(s)∑
l=0

2l(d−2),

for n large enough. Note that ln(s) . log n. Thus when d = 2, the sum contributes at most
some power of log n, and so Ef(I) is clearly sufficiently small. For d > 2, the final term
dominates the sum and so using the definition of ln(s),

Ef (I) . τ 2(log n)2δ
(

n

log n

)− 2(s+1)
2s+d

as required.
Lastly, we must analyse term II. Since we consider resolution levels l > ln(s), we have that

‖fl·‖2 ≤ B2−ls < B2−ln(s)s '
(

n

log n

)− s
2s+d

,

for a constant depending only on B. Moreover,

τl = τ2ld/2
(

n

log n

)−1/2

> τ2ln(s)d/2
(

n

log n

)−1/2

≥ τ

(
n

log n

)− s
2s+d

,

and so for τ chosen sufficiently large depending only on B, we have that ‖fl·‖2 ≤ τl/2. Define
events

Al,n :=
{
‖f̂l·‖2 ≤ τl

}
, ln(s) < l ≤ lmax.

Then by the above observations, the triangle inequality, a union bound and the bound (4.36),
we have that

Pf (Acl,n) ≤ Pf (‖f̂l· − fl·‖2 > τl/2)

≤
2ld−1∑
k=0

Pf

|f̂lk − flk| > τ

2

√
log n
n


≤ 2ld · 2 exp

(
− τ 2n log n/4

2Mn+ τcl
√
n log n/3

)

.
n

log n exp (−Cτ log n) , (4.39)

for τ large enough depending on M and the wavelet basis, as l ≤ lmax and so 2l ≤ (n/ log n)1/d.
Here, C is an absolute constant. Note that on the event Acl,n, 〈f̂n, ψlk〉 = f̂lk, whereas on
Al,n, 〈f̂n, ψlk〉 = 0. Thus for ln(s) < l ≤ lmax,

Ef‖〈f̂n − f, ψl·〉‖2
21Al,n ≤ ‖〈f, ψl,·〉‖2

2 . 2−2ls (4.40)

for some constant depending on B, using (4.3). Next, using Cauchy-Schwarz in conjunction
with (4.39) and Lemma 35,

Ef‖〈f̂Tn − f, ψl·〉‖2
21Acl,n =

2ld−1∑
k=0

Ef |f̂lk − flk|21Ac
l,n
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≤
2ld−1∑
k=0

(
Ef |f̂lk − flk|4

)1/2 (
Pf (Acl,n)

)1/2

. 2ld(n log n)−1/2n−Cτ/2. (4.41)

Combining the estimates (4.40) and (4.41), we may bound II as follows:

Ef (II) .
lmax∑

l=ln(s)+1
2−2ll2δ

[
2−2ls + 2ld(n log n)−1/2n−Cτ/2

]

. (log n)2δ

2−2(s+1)ln(s) + (n log n)−1/2n−Cτ/2
∑

l≤lmax

2l(d−2)

 .
By the definition of ln(s), the first term is of the correct order. It remains to consider the
second term. When d = 2 the sum contributes a logarithmic factor and so the second term
is clearly sufficiently small. When d > 2, the sum is dominated by its final term and so the
second term inside the brackets is of order

(n log n)−1/2n−Cτ/22lmax(d−2) ' log n−1/2n
1
2−

2
d
−Cτ2 ;

by choosing τ sufficiently large, we can make this term sufficiently small for all s ≥ 0. This
concludes the proof.

We will also later require the following lemma, which gives control of the Bs
2q norm of the

estimator f̂n.

Lemma 37. Under the hypotheses of Theorem 17, given α ∈ (0, 1) there exists n0 = n0(α)
such that for all n ≥ n0 and any f ∈ F(s), with Pf -probability at least 1− α,

‖f̂n‖Bs2q . B + τBd/2s,

where the constant depends on d, q only.

Proof. Let ln(s), Al,n be as in the previous proof. Further define events Bl,n = {‖f̂l·− fl·‖2 ≤
τl}, and

An =
 ⋂

0≤l≤ln(s)
Bl,n

⋂ ⋂
ln(s)<l≤lmax

Al,n

 .
We have from (4.39), which holds with Bl,n in place of Al,n when l ≤ ln(s), and a union
bound that

Pf (Acn) . lmax
n

log n exp (−Cτ log n) . n exp (−Cτ log n)

and so by choosing τ > 0 sufficiently large (independently of α), we can make this smaller
than α for all sufficiently large n. Then on the event An, using (a+ b)q ≤ 2q−1(aq + bq),

‖f̂n‖qBs2q = 1 +
lmax∑
l=0

2lqs1{‖f̂l·‖2>τl}‖f̂l·‖
q
2

. 1 +
ln(s)∑
l=0

2lqs‖fl·‖q2 +
ln(s)∑
l=0

2lqs‖f̂l· − fl·‖q2
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≤ ‖f‖qBs2q +
ln(s)∑
l=0

2lqsτ ql

= Bq + τ q
(

log n
n

)q/2 ln(s)∑
l=0

2lq(
d
2 +s)

. Bq + τ qBdq/2s,

by choice of ln(s), since the sum is dominated by its largest term.

Proof of Lemma 31. The kernel of the U -statistic is

R(x, y) =
∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0

[
(ψlk(x)− 〈ψlk, f̃n〉)(ψlk(y)− 〈ψlk, f̃n〉)

]

which is symmetric, and so has Hoeffding decomposition (see Section 11.4 of [162])

Un(f̃n)− E(2)
f Un(f̃n) = 2

n

∑
i∈S2

(π1R)(Xi) + 2
n(n− 1)

∑
i<i′,i,i′∈S2

(π2R)(Xi, Xi′)

=: Ln +Dn,

(4.42)

with linear kernel

(π1R)(x) =
∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0

[
(ψlk(x)− 〈ψlk, f〉)〈ψlk, f − f̃n〉

]
and degenerate kernel

(π2R)(x, y) =
∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0

[(ψlk(x)− 〈ψlk, f〉)(ψlk(y)− 〈ψlk, f〉)] .

One checks that Ln and Dn are uncorrelated. It thus remains to bound their variances
separately. For Var(2)(Ln), we use the uncentred version of the kernel π1R and orthonormality
of the wavelet basis

Var(2)(Ln) ≤ 4
n

ˆ  ∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0

ψlk(x)〈ψlk, f − f̃n〉
2

f(x) dx

≤ 4‖f‖∞
n

(
max
l≥−1

4−l(1 ∨ l)2δ
) ∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0
〈ψlk, f − f̃n〉2

= 4‖f‖∞
n

(
max
l≥−1

4−l(1 ∨ l)2δ
)
‖Kj(f − f̃n)‖2

H−1,δ .

We next bound Var(2)(Dn). By the degeneracy of the kernel, the summands are uncorrelated.
So

Var(2)(Dn) ≤ E(2)

 2
n(n− 1)

∑
i<i′,i,i′∈S2

(π2R)(Xi, Xi′)
2

≤ 2
n(n− 1)E

(2)
f

 ∑
l≤j−1

2−2l(l ∨ 1)2δ
2ld−1∑
k=0

[ψlk(Xi)ψlk(Xi′)]
2
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≤ 2‖f‖2
∞

n(n− 1)
∑
l≤j−1

2−4l(l ∨ 1)4δ
2ld−1∑
k=0

(ˆ
ψlk(x)2 dx

)2

= 2‖f‖2
∞

n(n− 1)
∑
l≤j−1

2l(d−4)(l ∨ 1)4δ,

using the orthonormality of the wavelet basis. Combining these two estimates concludes the
proof.

Proof of Theorem 18. We first establish the coverage condition (4.7). By Lemma 37, for all
n sufficiently large we have with Pf -probability at least 1 − α/2 that f̂n is in a Bs

2q-norm
ball of constant radius. Thus for any f ∈ F(r), with Pf -probability at least 1 − α/2, for
n ≥ n0(B,α) we have from (4.37) that

‖Kjn(f − f̂n)− (f − f̂n)‖2
H−1,δ ≤ G(jn).

By conditioning on this event, we have that

Pf (f ∈ Cn) = Pf
(
Un,j(f̂n)− ‖f − f̂n‖2

H−1,δ ≥ −G(j)− zακn,j,δ(f)
)

≥
(

1− α

2

)
P

(2)
f

(
Un,j(f̂n)− ‖Kj(f − f̂n)‖2

H−1,δ ≥ −zακn,j,δ(f)
)

≥
(

1− α

2

)1−
Var(2)

f (Un,j(f̂n))
(zακn,j,δ(f))2


≥
(

1− α

2

)2

≥ 1− α

by Chebyshev’s inequality and Lemma 31.
We now move on to checking the diameter shrinkage conditions (4.8) and (4.9). Writing
Sj := ∑

l<j 2l(d−4)(l∨1)4δ and using the fact that for positive numbers a, b,
√
a+ b ≤

√
a+
√
b,

for g ∈ F(r) we have that κn,jn,δ(g) ≤ 2
√
Mn−1/2‖g−f̂n‖H−1,δ+2M

√
Sjnn

−1 and so g ∈ Cn
if and only if

‖g − f̂n‖H−1,δ ≤
√
zα

2M
n

√
Sjn + Ujn +G(jn) + n−1/4

√
2zα
√
M
√
‖g − f̂n‖H−1,δ .

For positive numbers x, a, b, the inequality x ≤ b + a
√
x implies that x ≤ 2b + 2a2.

Applying this inequality with the values x = ‖g − f̂n‖H−1,δ , a = n−1/4
√

2zα
√
M, b =√

zα
2M
n

√
Sjn + Ujn +G(jn), and further using that for any positive numbers x, y we have

that √x+ y ≤
√
x+√y, one sees that the diameter of Cn is bounded by a multiple of

n−1/2S
1/4
jn +

√
Ujn +

√
Gjn + n−1/2.

We consider each of these terms separately; note that the final term is always sufficiently
small.
First, consider G(jn): this is deterministic, of order

G(jn) . (log n)1+2δ
(

n

log n

)− 2(r+1)
2r+d/2

= o(Rn(s)2) = o(Rn(r)2).
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(When d ≤ 4 this is trivial; for d > 4, it necessitates the assumption on s.)
Next, n−2Sjn is of order

n−2 ∑
l≤jn−1

2l(d−4)(l ∨ 1)4δ.

When d ≤ 4, this contributes at most a logarithmic factor in n times n−2, so this is clearly
o(Rn(s)4) and o(Rn(r)4). When d > 4, the final term dominates the sum and so the
contribution is of order

(log n)4δ− d−4
2r+d/2n−

4(r+1)
2r+d/2 = O(Rn(s)4) = o(Rn(r)4),

again by the assumption on s.
Finally, since Var(Ujn)→ 0 as n→∞, we know that

Ujn = OP (EfUjn) = OP

(
Ef‖Kj(f − f̂n)‖2

H−1,δ)
)

= OP

(
Ef‖f − f̂n‖2

H−1,δ

)
.

As f̂n converges at the rates Rn(s) and Rn(r) uniformly over F(s) and F(r) respectively, Ujn
is of the correct order in probability in both cases. This concludes the proof.

Proof of Theorem 19. For some sequence Ln → ∞, to be defined below, and any ω ∈
{−1; 1}Z

d∩[0,2Ln)d , we define for some ε > 0,

fn,ω := 1 + ε2−Ln(r+d/2) ∑
k∈Z∩[0,2Ln )d

ωkψLn,k.

Provided that B > 1,

‖fn,ω‖Br2q = 1 + 2Lnr
 ∑
k∈Z∩[0,2Ln )d

|〈fn,ω, ψLn,k〉|2


1/2

= 1 + ε2Lnr2−Ln(r+d/2)2dLn/2

= 1 + ε,

ensuring that fn,ω is in the ‖·‖B2
2q

-Besov ball of radius B for ε small enough. Also,
´
Td fn,ω(t)dt =

1 and, as the tensor product wavelet basis is assumed to be S−regular (cf. Appendix 4.5),∥∥∥∥∥∑
k

|ψLn,k|
∥∥∥∥∥
∞

. 2dLn/2,

for some constant depending on the basis only. Therefore,

‖fn,ω − 1‖∞ ≤ εc2−rLn ,

so that, for any M > 1 ≥ m > 0, fn,ω ∈ F(r) for n large enough (or ε small enough if r = 0).
Finally, for any ρn = o

(
n−

1+r
2r+d/2

)
, fn,ω ∈ F̃(r, ρn) if, for any g ∈ F(s), W2 (fn,ω, g) ≥ ρn.

By definition of F(r), F(s) and Proposition 5, we have, for n large enough

W2 (fn,ω, g)2 & ‖fn,ω − g‖2
B−1

2∞

≥ 2−2Ln ‖〈fn,ω − g, ψLn,·〉‖
2
2
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≥ 2−2Ln


 2Lnd−1∑

k=0
|〈fn,ω, ψLn,k〉|2

1/2

−

 2Lnd−1∑
k=0

|〈g, ψLn,k〉|2
1/2


2

≥ 2−2Ln
[
ε2−Lnr −B2−Lns

]2
≥ ε2

2 2−2Ln(1+r).

Therefore, if L∗n is such that 2−2L∗n(1+r) � n−2 1+r
2r+d/2 , it is possible to find Ln > L∗n such that

ρ2
n ≤ ε2

2 2−2Ln(1+r) = o
(
n−2 1+r

2r+d/2

)
. This choice ensures that, for any ω, fn,ω ∈ F̃(r, ρn).

Note also that the density f0 := 1 naturally belongs to F(s).

Re-index {−1; 1}Z
d∩[0,2Ln)d as

{
ω(i) : i = 1, . . . , 22dLn

}
and denote by Pi the distribution

with Lebesgue density fi := fn,ω(i) , Q := 2−2dLn ∑22Lnd

i=1 Pi and P0 the distribution with density
f0. Then, with µ the Lebesgue measure and for any test Ψn,

sup
f∈Σ0

Ef [Ψn] + sup
f∈Σ(ρn)

Ef [1−Ψn] ≥ Ef0 [Ψn] + 2−2dLn
22Lnd∑
i=1

Efi [1−Ψn]

≥
ˆ

(Ψn(x1, . . . , xn) + 1−Ψn(x1, . . . , xn)) n∏
j=1

f0(xj) ∧ 2−2dLn
22Lnd∑
i=1

n∏
j=1

fi(xj)

 dµ⊗n(x1, . . . , xn)

= 1− 1
2
∥∥∥P⊗n0 −Q⊗n

∥∥∥
1

≥ 1− 1
2

√
χ2
(
Q⊗n, P⊗n0

)
.

where χ2(Q,P ) =
´

(dP/dQ− 1)2dQ if P � Q, χ2(Q,P ) = +∞ otherwise. Also, for any
1 ≤ γ, κ ≤ 22dLn , the orthonormality of the wavelet basis gives
ˆ
dP⊗nγ
dP⊗n0

dP⊗nκ
dP⊗n0

dP⊗n0

=
n∏
i=1

ˆ
Td

[
1 + ε2−Ln(r+d/2)∑

k

ω
(γ)
k ψLn,k(xi)

] [
1 + ε2−Ln(r+d/2)∑

k

ω
(κ)
k ψLn,k(xi)

]
dxi

=
(

1 + ε22−Ln(2r+d)∑
k

ω
(γ)
k ω

(κ)
k

)n
.

Then, for γn = nε22−Ln(2r+d) → 0 and Rk, R
′
k i.i.d. Rademacher random variables,

χ2
(
Q⊗n, P⊗n0

)
= 2−2dLn ∑

γ,κ

(
1 + ε22−Ln(2r+d)〈ω(γ), ω(κ)〉

)n
− 1

≤ E
[
exp

(
nε22−Ln(2r+d)∑

k

RkR
′
k

)]
− 1

= E
[
exp

(
nε22−Ln(2r+d)∑

k

Rk

)]
− 1
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= cosh(γn)2Lnd − 1,

where we used that 1 + x ≤ ex for x ∈ R in the second line and that RkR
′
k is distributed as

Rk in the third. Using that cosh(z) = 1 + z2/2 + o
|z|→0

(z2) and 1 + x ≤ ex once again, for
any δ > 0,

(cosh(γn))2dLn − 1 =
(

1 + γ2
n

2 (1 + o(1))
)2dLn

− 1 ≤ exp
(
γ2
n2dLn−1(1 + o(1))

)
− 1 ≤ δ2

for n large enough, since γ2
n2dLn = o(1). We have proven that, for any β < 1 and ρn = o (ρ∗n),

lim inf
n

inf
Ψn

[
sup
f∈F(s)

Ef [Ψn] + sup
f∈F̃(r,ρn)

Ef [1−Ψn]
]
≥ β,

which concludes the proof.

4.7 Proofs for Section 4.4
Proof of Proposition 8. As f and f̃n have the same total mass, we may without loss of
generality take the supremum over functions h ∈ Lip1(Rd) for which h(0) = 0; observe that
x 7→ ‖x‖ is an envelope for this function class. Since both f and f̃n have finite first moments
(almost surely), the wavelet expansion of any h in this class converges in L1(f) and L1(f̃n)
and so ˆ

Rd
h(f − f̃n) =

∑
k∈Zd
〈h, φk〉〈f − f̃n, φk〉+

∑
l≥0

∑
k∈Zd
〈h, ψlk〉〈f − f̃n, ψlk〉.

As the father wavelets φk are compactly supported in some interval about k,

|〈h, φk〉| . |h(k)| ≤ ‖k‖

for some constant depending on the wavelet basis. Moreover, h−K(h) = ∑
l≥0

∑
k∈Zd〈h, ψlk〉ψlk

is in a B1
∞∞-ball of radius depending only on the wavelet basis, and so by (4.3),

sup
k∈Zd
|〈h, ψlk〉| . 2−l(

d
2 +1).

Plugging these uniform estimates for the wavelet coefficients of h into the first equation gives
the result.

Proof of Theorem 20. When d = 1, the empirical measure achieves the stated rate ([60]).
Thus we assume d ≥ 2.
The estimator we use is

f̂n :=
∑

‖k‖∞≤κ−1n

f̂−1kφk +
∑

l≤ln(s)

∑
‖k‖∞≤κln

f̂lkψlk,

where f̂lk are empirical wavelet coefficients and the cutoffs κln, ln(s) are chosen such that

2ln(s) ' n
1

2s+d , κ−1n = κ0n ' (log n)γ, κln = 2lκ0n,
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where γ is to be chosen below. We then use the decomposition in Proposition 8, which we
further split to obtain six terms:

W1(f, f̂n) .
∑

‖k‖∞≤κ−1n

‖k‖|f̂−1k − f−1k|+
∑

‖k‖∞>κ−1n

‖k‖|f−1k|

. . .+
∑

l<ln(s)
2−l(

d
2 +1) ∑

‖k‖∞≤κln

|f̂lk − flk|+
∑

l<ln(s)
2−l(

d
2 +1) ∑

‖k‖∞>κln

|flk|

. . .+
∑

l≥ln(s)
2−l(

d
2 +1) ∑

‖k‖∞≤κln

|flk|+
∑

l≥ln(s)
2−l(

d
2 +1) ∑

‖k‖∞>κln

|flk|

=: I + II + III + IV + V + V I.

We first consider the bias terms II, IV, V I. For term II, we have that
∑

‖k‖∞>κ−1n

‖k‖|f−1k| ≤
ˆ
Rd

∑
‖k‖∞>κ−1n

‖k‖|φk(x)|f(x) dx.

Since each φk is compactly supported in some interval about k, and ∑k∈Zd |φk| is uniformly
bounded on Rd, we have that ∑

‖k‖∞>κ−1n

‖k‖|φk(x)| . ‖x‖

for some constant depending on the wavelet basis. Moreover, the integrand is supported for
all large enough n in ([−κ−1n/2, κ−1n/2]d)c =: Dn. Thus, for n large enough,

II .
ˆ
Dn

‖x‖f(x) dx ≤ Eα,β(f)κ−1n exp
(
−β

(
κ−1n

2

)α)
. (4.43)

Since ∑k∈Zd |ψlk| is uniformly bounded by a constant depending on the wavelet basis times
2ld/2, we analogously have

∑
‖k‖∞>κln

|flk| . 2ld/2Eα,β(f) exp
(
−β

(
κ0n

2

)α)
. (4.44)

Thus
IV + V I . Eα,β(f) exp

(
−β

(
κ0n

2

)α)
.

Choosing γ > 0 sufficiently large depending on α, β, these terms converge faster than n−1/2.
Next, we deal with the final bias term V . By Cauchy-Schwarz and the fact that ‖f‖Bs2q ≤ B,

∑
‖k‖∞≤κln

|flk| ≤
√
κdln‖fl·‖2 . (log n)γd/22l(

d
2−s),

and so
V .

∑
l≥ln(s)

2−l(s+1)(log n)γd/2 ' (log n)γd/22−ln(s)(s+1)

which is of the correct order by the definition of ln(s).
To bound the stochastic terms I and III, we use the expectation bound Lemma 35, whose
proof generalises naturally to the case of Rd. We have for all l ≥ −1 such that 2ld ≤ n and
k ∈ Zd that

Ef |f̂lk − flk| . n−1/2,
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for some constant depending on M and the wavelet basis. So

Ef (I) . (κ−1n)d+1n−1/2

and
Ef (III) . (log n)γdn−1/2 ∑

l<ln(s)
2l(

d
2−1).

When d = 2, the sum contributes an extra log n factor as in the statement. For d ≥ 3, the
final term of the sum dominates, and so

Ef (III) . (log n)γd/2n−
s+1
2s+d

as stated.

Proof of Theorem 21. Define the thresholds κ−1n = κ0n ' (log n)γ, κln = 2lκ0n for γ chosen
as in Theorem 20. As before, let lmax be such that 2lmax ' (n/ log n)1/d; for 0 ≤ l ≤ lmax,
define the thresholds τl via

τ 2
l = τ 2κdln

log n
n

,

where τ > 0 is to be chosen below. For any sequence (ak)k∈Zd , set ‖a·‖2,κln :=
(∑
‖k‖∞≤κln a

2
k

)1/2
.

The thresholded estimator is then defined as

f̂n =
∑

‖k‖∞≤κ−1n

f̂−1kφk +
lmax∑
l=0

1{‖f̂l·‖2,κln>τl}
∑

‖k‖∞≤κln

f̂lkψlk. (4.45)

We perform a decomposition of the risk similar to that in the previous proof:

W1(f, f̂n) .
∑

‖k‖∞≤κ−1n

‖k‖|f̂−1k − f−1k|+
∑

‖k‖∞>κ−1n

‖k‖|f−1k|

+
∑

l≤lmax

2−l(
d
2 +1) ∑

‖k‖∞≤κln

∣∣∣∣1{‖f̂l·‖2,κln>τl}f̂lk − flk
∣∣∣∣

+
∑

l≤lmax

2−l(
d
2 +1) ∑

‖k‖∞>κln

|flk|

+
∑

l>lmax

2−l(
d
2 +1) ∑

‖k‖∞≤κln

|flk|+
∑

l>lmax

2−l(
d
2 +1) ∑

‖k‖∞>κln

|flk|

=: I + II + III + IV + V + V I.

We treat terms I, II, IV and V I identically to before. Term V is also dealt with as in the
previous proof, noting that for all n sufficiently large, 2lmax > n1/(2s+d). It remains to deal
with term III; by Cauchy-Schwarz and the definition of κln, we have that

III . (log n)
γd
2

lmax∑
l=0

2−l
∥∥∥∥1{‖f̂l·‖2,κln>τl}f̂l· − fl·

∥∥∥∥
2,κln

,

where the constant depends on d. By splitting this sum into two parts at ln(s),

2ln(s) ' B1/s(n/ log n)1/(2s+d),

one can bound it exactly as in the proof of Theorem 17
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Proof of Theorem 22. We first establish coverage. Define the thresholds κln as in the previous
proof. Given f ∈ G(s), as in the proof of Theorems 17 and 21, on an event of probability tending
to 1, for all l such that ln(r) ≤ l ≤ lmax, 〈f̂n, ψl·〉 ≡ 0. Note that lmax > jn > ln(s) > ln(r).
So on this event, by Cauchy-Schwarz,∑

l≥jn
2−l(

d
2 +1) ∑

‖k‖∞≤κln

|〈f − f̂n, ψlk〉|

2

. (log n)γd
∑
l≥jn

2−l‖〈f, ψl·〉‖2

2

. (log n)γdB2−2jn(r+1)

≤ Gjn

for all n sufficiently large, i.e. this quantity is OP (Gjn). The other term in W̃ (n)(f, f̂n)2 is
precisely E(2)

f Vjn ; by Chebyshev’s inequality we obtain condition (4.23).
It remains to confirm the diameter conditions (4.24) and (4.25) with the rates Rn(r), Rn(s) as
given in the statement of the result. As the remainder term √rn converges up to a logarithmic
factor at the rate n−1/2, it is dominated by W̃ (n) for diameter considerations. As observed
previously, we may instead prove the diameter conditions for the W̃ (n) distance with the
augmented rates

R̄n(r) = (log n)γd/2
(

n

log n

)− r+1
2r+d

, R̄n(s) = (log n)γd/2
(

n

log n

)− s+1
2s+d

.

By the same argument as in the proof of Theorem 18, the W̃ (n)-diameter of Cn is bounded
by a constant multiple of

(log n)γd/4+1/2n−1/2

∑
l<j

2l(d−4)

1/4

+
√
Vjn +

√
Gjn + n−1/2.

The final term is dominated by the first, and (using the condition on s when d > 4)√
Gjn = O(R̄n(s)) = o(R̄n(r)). One checks the first term is of the correct order as in

Theorem 18. Finally, since Var(2)
f (Vjn)→ 0 (one shows that W̃ (n,jn)(f, f̂n)→ 0 analogously

to the proof of Theorem 17), we have that

Vjn = OPf (EfVjn) ;

as in the proof of Theorem 21, this expectation is of order R̄n(r) or R̄n(s) when f belongs to
G(r) or G(s) respectively.

Proof of Theorem 23. For some α′ > α, D > 0 and α(x) = α′e−1/(‖x‖2−D)1B(0,D)c(x), the
density f defined by

f(x) ∝ e−β‖x‖
α(x)
2

is such that Ef
[
eβ‖X‖

α
]
< +∞. Then, for σ > 0, if X ∼ Pf , σX has density g : x 7→

σ−df(σ−1x) satisfying
Eg
[
eβ‖X‖

α
]

= Ef
[
eσ

αβ‖X‖α
]
< +∞.
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Then, we verify that f ∈ Hm
2 (Rd) ⊂ Bm

2∞(Rd) ⊂ Bs
2q(Rd), for any m ∈ N and s < m. Also,

‖g‖p = σ−d(1−1/p) ‖f‖p and, the moduli of continuity of g satisifies, for t > 0 and an integer
r > s,

ωr(g, t, 2) := sup
0≤‖h‖≤t

∥∥∥∥∥
r∑

k=0

(
r

k

)
(−1)r−kσ−df(σ−1 ·+kσ−1h)

∥∥∥∥∥
2

= σ−d sup
0≤‖h‖≤σ−1t

∥∥∥∥∥
r∑

k=0

(
r

k

)
(−1)r−kσdf(σ−1 ·+kh)

∥∥∥∥∥
2

= σ−d/2ωr(f, σ−1t, 2).

Therefore, with |f |Bspq :=
[´∞

0

∣∣∣∣ωr(f,t,p)ts

∣∣∣∣q dtt
]1/q

, we have

‖g‖Bspq = ‖g‖p + |g|Bspq = σ−d(1−1/p) ‖f‖p + σ−d(1−1/p)−s |f |Bspq , (4.46)

so that ‖g‖Bs2q ≤ B for σ large enough. Also, since f ∈ L∞(Rd), g ≤M for σ large enough.
So, for some large L, g ∈ G(s).

For some sequence Ln →∞, and any ω ∈ {−1; 1}Z∩[0,2
Ln)d×I , we define for some ε > 0,

fnω = g + ε2−Ln(r+d/2) ∑
k∈Z∩[0,2Ln )d,ι∈I

ωk,ιΨι
Lnk.

Assuming that the scaling and mother wavelets functions are compactly supported (as assumed
in Appendix 4.5), the Ψι

Lnk, for k ∈ Z ∩
[
0, 2Ln

)d
, ι ∈ I, are supported on a compact set K

independent of n. Then, since

‖fnω‖Br2q ≤ ‖g‖Br2q + ε2−Ln(r+d/2)

∥∥∥∥∥∥∥
∑

k∈Z∩[0,2Ln )d,ι∈I

ωk,ιΨι
Lnk

∥∥∥∥∥∥∥
Br2q

≤ ‖g‖Br2q + Cε,

for some C > 0 depending on d only, reasoning as for (4.46), and since Bs
2q ⊂ Br

2q, fnω is the
‖·‖Br2q -Besov ball of radius B for ε small enough and σ large enough. Then, by assumption,´
Rd f

n
ω (t)dt = 1 and, since∥∥∥∥∥∥2−Ln(r+d/2) ∑

k∈Rd,ι∈I

∣∣∣Ψι
Lnk

∣∣∣
∥∥∥∥∥∥
∞

. 2−rLn ,

0 < fnω ≤M for n, σ large enough (or ε small enough if r = 0). Indeed, g is lower bounded
by a some positive constant on K, So, fnω actually is a density function.
For these to belong to the alternative hypothesis, it remains to check that these are well
separated from the null hypothesis. For any h ∈ G(s), the reversed triangular inequality gives

W1 (fnω , h) & ‖fnω − h‖B−1
1∞

& 2−Ln(d/2+1) ∑
k∈Z∩[0,2Ln )d,ι∈I

∣∣∣〈fnω − h,Ψι
Lnk〉

∣∣∣
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≥ 2−Ln(d/2+1)

∣∣∣∣∣∣
∑
k,ι

|〈fnω − g,Ψι
Lnk〉| −

∑
k,ι

|〈h− g,Ψι
Lnk〉|

∣∣∣∣∣∣
= 2−Ln(d/2+1)

[
C2−Ln(r−d/2) − C ′2−Ln(s−d/2)

]
& 2−Ln(1+r),

for constants independent of n. Above, we used that s > r and that, for any s > 0,
G(s) ⊂

{
f : ‖f‖Bs1q ≤ B′

}
for some B′ > 0 according to Lemma 4.20.

The last inequality holds for n large enough. Therefore, if L∗n is such that 2−L∗n(1+r) � ξn,
it is possible to take Ln > L∗n such that ρn ≤ C ′2−Ln(1+r) = o(ξn), so that, for any ω,
fnω ∈ G̃(s, ρn).

For Nn = 22dLn(2d−1), let’s index ω ∈ {−1; 1}Z∩[0,2
Ln)d×I =

{
w(m) : m = 1, . . . , Nn

}
and

denote Pm = Pf
ω(m) . Then,

lim inf
n

inf
Ψn

[
sup
f∈H0

Ef [Ψn] + sup
f∈H1(rn)

Ef [1−Ψn]
]
≥ 1− 1

2

√
χ2
(
Q⊗n, P⊗n0

)
,

where Q = N−1
n

∑Nn
m=1 Pm and P0 has density g ∈ H0. Then, for any 1 ≤ m, q ≤ Nn, one

has by properties of the wavelet basis, denoting νm = fω(m) − g,
ˆ
dP⊗nm
dP⊗n0

dP⊗nq
dP⊗n0

dP⊗n0

=
n∏
i=1

ˆ
[0,1]d

g(xi) + ε2−Ln(r+d/2)∑
k,ι

ω
(m)
k,ι Ψι

Lnk(xi)


g(xi) + ε2−Ln(r+d/2)∑
k,ι

ω
(q)
k,ιΨι

Lnk(xi)
 g−1(xi)dxi

=
(

1 +
ˆ
Rd

νm(x)νq(x)
g(x) dx

)n
.

For σ large enough, g is constant on the compact support of νm and νq, equal to g(0). Hence,
following the same arguments as above,

χ2
(
Q⊗n, P⊗n0

)
= (cosh γn)2dLn(2d−1) − 1,

where γn = nε2g(0)−12−Ln(2r+d), and for any δ > 0, χ2
(
Q⊗n, P⊗n0

)
≤ δ2 for n large enough.

This concludes the proof.

Lemma 38. Let B ≥ 1,M > 0, α > 0, β > 0, L > 0, 1 ≤ q ≤ ∞, and s ≥ 0. Then, there
exists a constant B′, depending on the class parameters, the wavelet basis and the dimension
d, such that

Gs,2,q(B,M ;α, β, L) ⊂ Gs,1,q(B′,M ;α, β, L).

Proof. Let f ∈ Gs,2,q(B,M ;α, β, L). All we have to prove is that

‖f‖Bs1q = ‖〈f, φ·〉‖1 +
∑
l≥0

[
2l(s−d/2) ‖〈f, ψl·〉‖1

]q1/q

≤ B′,
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for some B′ as in the lemma. Let κ > 0. Then,

‖〈f, φ·〉‖1 =
∑

‖k‖∞≤κ
|〈f, φk〉|+

∑
‖k‖∞>κ

|〈f, φk〉| .

For the second term, the same arguments as the one used to obtain (4.43) give that it is
bounded by Eα,β(f) exp

(
−β

(
κ
2

)α)
, up to a constant depending on the wavelet basis. The

first term is controlled via the Cauchy-Schwarz inequality

∑
‖k‖∞≤κ

|〈f, φk〉| . (2κ+ 1)d
 ∑
‖k‖∞≤κ

|〈f, φk〉|2
1/2

≤ (2κ+ 1)d ‖〈f, φ·〉‖2 ,

for a constant depending on d only.
Next consider, for l ≥ 0, ‖〈f, ψl·〉‖1. As before, letting κl = 2l/2, we have

‖〈f, ψl·〉‖1 =
∑

‖k‖∞≤κl

|〈f, ψlk〉|+
∑

‖k‖∞>κl

|〈f, ψlk〉| .

Arguing as with (4.44), the second term is bounded by 2ld/2Eα,β(f) exp
(
−β

(
κl
2

)α)
, up to a

constant depending on the wavelet basis. The first term is controlled as above. Then, using
the lq triangular inequality,∑

l≥0

[
2l(s−d/2) ‖〈f, ψl·〉‖1

]q1/q

.

∑
l≥0

2ql(s−d/2)
[
2ld/2Eα,β(f) exp

(
−β

(
κl
2

)α)
+ (2κl + 1)d ‖〈f, ψl·〉‖2

]q1/q

.

∑
l≥0

[
2lsEα,β(f) exp

(
−2−αβ2lα/2

) ]q1/q

+
∑
l≥0

[
2ls ‖〈f, ψl·〉‖2

]q1/q

,

for a constants depending on the wavelet basis and d. The first term is upper bounded by

Eα,β(f)
∑
l≥0

2qls exp
(
−q2−αβ2lα/2

)1/q

. Eα,β(f),

as the series converges.
In the end, following our assumptions on ‖f‖Bs2q ,

‖f‖Bs1q . (2κ+ 1)d ‖〈f, φ·〉‖2 +
∑
l≥0

[
2ls ‖〈f, ψl·〉‖2

]q1/q

+ Eα,β(f) exp
(
−β

(
κ

2

)α)
+ Eα,β(f)

. B + Eα,β(f) ≤ B + L,

where the constants depend on the wavelet basis, d, the arbitrary κ > 0 we took, s, α, β and
q.
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CHAPTER 5
Deep Horseshoe Gaussian Processes

This work is concerned with the study of theoretical properties of deep Gaussian
processes, which have recently been proposed as natural objects to fit, similarly to deep
neural networks, possibly complex features present in modern data samples, such as
compositional structures. Adopting a Bayesian nonparametric approach, it is natural to
use deep Gaussian processes as prior distributions, and to use the corresponding posterior
distributions for statistical inference. We introduce the deep Horseshoe Gaussian process
Deep–HGP, a new prior based on deep Gaussian processes with squared-exponential
kernel, that in particular enables data-driven choices of the key lengthscale parameters.
For nonparametric regression with random design, we show that the associated tempered
posterior distributions recovers the unknown true regression curve optimally in terms
of quadratic loss, up to a logarithmic factor. At the same time, Deep–HGP are
conceptually quite simple to construct. One main idea is that the horseshoe prior
enables simultaneous adaptation to both smoothness and structure.
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5.1 Introduction
5.1.1 Gaussian processes
Gaussian processes (henceforth GPs) are among the most used machine learning methods, with
applications ranging from inference in regression models to classification, see e.g. [138] for an
overview. Due to their flexibility, in recent years GPs have been used as tools for geometric
inference and deep learning.
A particularly natural field of application where there now exists at least partial theory to
explain and validate practical successes of GPs is that of Bayesian nonparametrics, where
the posterior distribution can also be used for the practically essential task of uncertainty
quantification. In regression settings, it is particularly natural to use a GP as a prior distribution
on the unknown regression function. The corresponding posterior distributions can often be
efficiently implemented (in particular for regression with Gaussian noise, for which GPs form a
conjugate class of prior distributions) and come with theoretical convergence guarantees: the
works [163, 160, 27] indeed show that the convergence rate in typical metrics of the posterior
distribution is completely determined (both upper and lower bounds) by the behaviour of its
concentration function. Shortly thereafter, van der Vaart and van Zanten also showed that
statistical adaptation to smoothness was possible with GPs with optimal minimax contraction
rates by simply drawing at random its scaling parameter [165] in fixed design regression; see
[161, 130] for extensions to random design regression and [155] to inverse problems.
Let us mention a few applications of posterior distributions arising from GPs that are related
to the setting considered below.
GPs flexibility: geometric setting. In modern statistical settings, it is frequent that data
naturally sit on a geometric object such as a compact manifold (e.g. a sphere, swissroll
etc.). It is tempting to use GPs in this setting as well, although some care is needed in their
construction. For instance, the celebrated GP with squared–exponential kernel (thereafter
SqExp) has no immediate analog in a manifold setting, as replacing the euclidian metric in the
exponential defining SqExp by the geodesic distance does not form a covariance kernel. This
can be remediated by using a kernel coming from heat equation solutions on the manifold [30],
and this kernel can be shown to be a natural geometric analog of SqExp. Alternatively, one
may put a prior directly on the ambient space equipped with the standard euclidean metric:
the authors in [174] obtain a posterior rate that under some (smoothness) conditions adapts
to the unknown dimension of the manifold with a rescaled SqExp exponential GP, when the
loss function is the quadratic loss but restricted to sit on the manifold.
GPs and adaptation to anisotropy. By drawing independent lengthscale parameters along
different dimensions, [9] show that posteriors arising from SqExp GPs contract at near-optimal
minimax anisotropic rates. A related problem is that of variable selection in (possibly high-
dimensional regression). The unknown regression function may indeed depend only on a few
coordinates (although these are not known in advance).
GPs and variable selection. By considering variable selection type priors and then drawing
lengthscale parameters of SqExp GPs, [176] and [84] provide theory for this setting and
respectively investigate optimal rates and variable selection properties for the corresponding
posterior distributions.
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5.1.2 Deep Gaussian processes
Recent years have seen a number of remarkable applications of so–called deep learning methods,
where ‘deep’ typically refers to a certain (often compositional) structure in terms of a number
of layers (for instance, deep neural networks).
Deep Gaussian processes correspond to iterated compositions of Gaussian processes and broadly
speaking can be seen as (one possible) Bayesian analogue of deep neural networks. There is a
lot of recent activity for providing efficient sampling methods for deep GPs. Yet, theory is just
starting to emerge.
Focusing on compositions of constrained GPs (with bounded sample paths and derivatives),
the recent paper [6] introduced a new concentration function for deep GPs, extending the GP
contraction rate theory. The contraction rates they obtain via this method are shown to be
minimax optimal for a variety of kernel choices and models.
Another recent work by Finocchio and Schmidt–Hieber [59] shows that using a model selection
prior to select variables, and conditioning individual Gaussian process sample paths to verify
certain smoothness constraints, the induced posterior distributions contract nearly optimally
in quadratic loss for compositional structures. This work follows their footsteps and aims at
answering the following question. Is it possible to simplify the prior construction to make
it close to what is actually used in practice, while at the same time keeping similar optimal
theoretical guarantees? While the prior proposed in [59] is completely natural and ‘canonical’
from the theoretical perspective, both the conditioning step (to match smoothness constraints)
and the model selection prior (for which the posterior on submodels is often expensive to
compute) make posterior sampling more involved in view of practical implementation. One
main aim here is to try to simplify the construction of the prior as much as possible while
keeping optimality, and thereby come closer to the practically used deep GPs, for which
lengthscale parameters are often kept free and then adjusted empirically [44].

Figure 5.1: Composition of two Gaussian processes with SqExp covariance kernel K(s, t) =
e−(s−t)2 .
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5.2 The setting and a novel prior
Consider the nonparametric regression problem with random design, where one observes
(X, Y ) := (Xi, Yi)1≤i≤n, with X1, . . . , Xn independent identically distributed design points
sampled from a probability measure µ on [−1, 1]d and

Yi = f0(Xi) + εi, (5.1)

for f0 : [−1, 1]d → R an unknown regression function and εi independent N (0, σ2
0) errors, with

σ0 assumed known for simplicity. We consider estimation of f0 with respect to the integrated
quadratic loss

‖f0 − f‖2
L2(µ) =

ˆ
(f0 − f)2dµ.

For a given regression function f , let Pf denote the distribution of one observation (Xi, Yi)
under model (5.1), which has density

pf (x, y) =
(
2πσ2

0

)−1/2
e
− (y−f(x))2

2σ2
0

with respect to µ⊗ λ, for λ the Lebesgue measure on R.

For a real β > 0 and r an integer, let Cβ[−1, 1]r denote the classical Hölder space equipped
with the norm ‖ · ‖β,∞. It consists of functions f : [−1, 1]r → R whose norm defined as

‖f‖β,∞ = 2r
∑

α:|α|<bβc
‖∂αf‖∞ + 2β−bβc

∑
α:|α|=bβc

sup
x,y∈[−1,1]r, x 6=y

|∂αf(x)− ∂αf(y)|
|x− y|β−bβc∞

is finite, with the multi-index notation α = (α1, . . . , αr) ∈ Nr, |α| := |α|1 and ∂α =
∂α1 . . . ∂αr . We note, for β′ ≤ β, that ‖f‖β′,∞ ≤ ‖f‖β,∞ according to Lemma 10 of [147].

5.2.1 Structural assumptions for multivariate regression
In order to assess the performance of machine learning methods, a popular benchmark is the
regression setting (5.1) equipped with some ‘ structural’ assumptions. In the unconstrained
case where only smoothness is assumed on f0, rates for β–Hölder smooth functions are typically
of the form n−β/(2β+d), and so are prone to the curse of dimensionality (the rate becomes
extremely slow for large d). A common approach is to assume that the multivariate regression
function f0 admits a certain unknown ‘structure’, possibly of ‘dimension d∗’ and possibly much
smaller than d. For instance, in the simplest setting considered below, f0 may only depend
on a small but unknown number of coordinates.The goal is then to find algorithms that are
able to achieve optimal risk bounds that adapt to the unknown underlying structure, and that
therefore scale with d∗ instead of d.

A first basic setting: shallow variable selection. Let us first consider the simple setting where
f0 : [−1, 1]d → R only depends on d∗ ≤ d variables, that is

f0(x1, . . . , xd) = g(xi1 , . . . , xid∗ ),
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for some g ∈ Cβ[−1, 1]d∗ , for some β > 0. The subset of indices i1, . . . , id∗ is unknown to
the statistician and the target convergence rate in quadratic loss is n−β/(2β+d∗), which can be
much smaller than n−β/(2β+d).

Compositional structure. Following [147], suppose that f can be written as a composition

f = hq ◦ · · · ◦ h0,

with hi : [−1, 1]di → [−1, 1]di+1 , for (di) a sequence of integers such that d0 = d and dq+1 = 1.
Since hi takes values in Rdi+1 , one may write hi = (hij), where hij for j = 1, . . . , di+1 are its
1–dimensional components. Let us further assume that these only depend on a subset Si of at
most ti ≤ di variables, and hij restricted to Si belongs to Cβi [−1, 1]ti as defined above and
suppose, for any i, j,

‖hij‖βi,∞ ≤ K,

for some unknown K > 0.

The compositional class F(λ, β,K). In the setting of the previous paragraph, we denote by
λ = (q, d1, . . . , dq, t0, . . . , tq) the parameters describing this compositional structure and, for
β = (β0, . . . , βq), we let F(λ, β,K) denote the set of densities verifying the above conditions.

Minimax optimal rate. The minimax rate of estimation in quadratic loss over this class

(τ ∗n)2 = inf
T

sup
f∈F(λ,β,K)

Ef‖T − f‖2
2,

for T an arbitrary estimator of f , is, up to logarithmic factors, see [147],

τ ∗n � max
i=0,...,q

n
− βiαi

2βiαi+ti , where αi :=
q∏

l=i+1
(βl ∧ 1).

5.2.2 Key ingredients
Posterior distributions: frequentist analysis. Given a prior distribution Π on regression functions,
the posterior distribution is Π[· |X, Y ] is given by Bayes’ formula: this is the next display for
ρ = 1. More generally, one may set, for any ρ ∈ (0, 1) and a measurable set B,

Πρ[B |X, Y ] =
´
B

∏
1≤i≤n pf (Xi, Yi)ρdΠ(f)´ ∏

1≤i≤n pf (Xi, Yi)ρdΠ(f) .

When ρ = 1 this is the usual posterior. If 0 < ρ < 1, this quantity is called ρ–posterior (or
tempered posterior). Its use is very much widespread in machine learning, in particular in
PAC–Bayesian settings. We will use the tempered posterior in our main result, and discuss in
more details its links with the case ρ = 1 in Section 5.4, but already note that computationally
ρ–posteriors do not bring difficulties, and theory is similar (even simpler).
Gaussian process (ρ–) posteriors: theory. For any Gaussian process W on the Banach space
of continuous functions equipped with the ‖·‖∞ norm, the probability measure of any ball
{f : ‖f − g‖∞ < ε} is lower bounded by a quantity depending on the mass of the centered
ball of radius ε and on how well g can be approximated by elements of the RKHS (H, ‖·‖H)
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corresponding to the covariance kernel of the process. More precisely, according to Proposition
11.19 of [65], we have

P [‖W − g‖∞ < ε] ≥ e−ϕg(ε),

ϕg(ε) = inf
h∈H: ‖h−g‖∞≤ε

‖h‖2
H − logP [‖W‖ < ε] . (5.2)

In nonparametric regression with fixed design, [165] proved that adaptive posterior contraction
rates are achievable for stationary Gaussian process priors, with a dilatation parameter of the
sample paths distributed as a Gamma variable. As a particular case, consider the squared
exponential process SqExp defined as the zero-mean Gaussian process with covariance kernel
K(s, t) = exp(−‖t− s‖2) (and ‖ · ‖ the euclidean norm) on [−1, 1]d. Next, for k, θ > 0, one
sets

Ad ∼ Gamma (k, θ)
f
∣∣∣ A ∼ {WAt : t ∈ [0, 1]d

}
.

This construction induces a prior on the Banach space of continuous functions for which the
posterior concentrates as in the empirical L2−norm at rate εn � n−β/(2β+d) (up to a log
factor) whenever f0 is β-Hölder regularity, β > 0.
Although this rate coincides with the minimax estimation rate over a ball in Cβ[0, 1]d, it may be
quite slow for large d. However, if the fixed design is located on a d∗-dimensional Riemannian
manifold, d∗ < d, of the ambient space [0, 1]d, we expect the faster rate n−β/(2β+d∗) to be
attainable. The work [174] achieves it with a dilated Gaussian process as well, the dilatation
factor A being distributed as Ad∗ ∼ Gamma (k, θ). A first remark on this method is that it
needs an estimate of d∗ to be applied. Secondly, the posterior contraction rates are obtained
for local distances on the manifold (such as the empirical L2-norm) only, but not on the
ambient space.
When the regression function f0 depends on a small number of variables d∗ only, a simplified
version of the add-GP prior from [176] gives optimal posterior contraction rates n−β/(2β+d∗)

without the need to estimate d∗. This is achieved by the introduction of an additional layer in
the prior, drawing via Bernoulli random variables in which direction the Gaussian sample paths
have to be dilated (the sample paths being constant in the other directions). From a practical
point-of-view, this ’hard’ selection of variables adds a combinatorial complexity to posterior
sampling.
Below, we introduce the Horseshoe Gaussian process prior to answer the question of variable
selection and posterior contraction rates for the most natural global L2 loss (in contrast to a
loss e.g. restricted only on active directions) via a soft selection of dilated variables.

5.2.3 Deep Horseshoe Gaussian Process prior
We introduce a Gaussian process prior with independent lengthscales distributed following
a half-horseshoe distribution. This distribution possesses two interesting properties for our
goals. Its density has a pole at 0, which allows to ‘select’ irrelevant dimensions, drawing small
lengthscales with high probability. It also has heavy Cauchy-like tails, so that it performs an
adequate scaling on the ambient dimensions with sufficiently large probability. This distribution
is then a favorable one for high-dimensional settings where d can be much larger than n.
Although we do not tackle this setting in this chapter, we keep this for future works and we
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explicit the dependence in the dimension in the proofs of our main results in preparation for
these applications.
The single-layer case. Define the Horseshoe Gaussian Process prior HGP as the prior Π on
regression functions f of the form

Aj
i.i.d.∼ π (5.3)

f | (A1, . . . , Ad) ∼ WA

with π the horseshoe density on R∗+ and WA =
{
W(A1t1,...,Adtd) : t = (t1, . . . , td) ∈ [−1, 1]d

}
for W a squared exponential process.
We set π = πτ as the horseshoe density (see, e.g., [26, 159]), i.e. the density of a random
variable Xτ distributed as

λ ∼ C+(0, 1)
Xτ | λ ∼ N+(0, τ 2λ2),

with C+(0, 1) a standard half-Cauchy distribution and N+(µ, σ2) is the half-normal distribution
of |X|, X ∼ N (µ, σ2).
The multi-layer case.
In order to perform some inference in this model, we introduce a Deep Gaussian Process-
type prior, mixing ideas from [59] and the above introduction of the horseshoe distribution.
We first place a prior Π on some parameters of the compositional structure such that
Π[q, d1, . . . , dq] = Πq[q]Π[d1, . . . , dq|q]. Given these parameters, we define a random regression
function f = gq ◦ · · · ◦ g0 where, for i = 0, . . . , q, j = 1, . . . , di+1, the applications gij are
to 1 ∧ (hij ∨ −1) =: Ψ(hij) with hij independently distributed as in (5.3). Constraining the
sample paths between −1 and 1 ensures that the composition is well-defined.
The Deep Horseshoe Gaussian Process Deep–HGP is defined as the hierarchical prior

q ∼Πq

d1, . . . , dq | q ∼Π[·|q]

Aij | q, d1, . . . , dq
i.i.d.∼ π⊗diτ

gij | q, d1, . . . , dq
i.i.d.∼WAij

f | q, d1, . . . , dq, gij =Ψ(gq) ◦ · · · ◦Ψ(g0).

for τ > 0.

5.3 Main results: deep simultaneous adaptation to
structure and smoothness

5.3.1 Single layer setting: shallow horseshoe GP
The first theorem below is a special case of Theorem 25 and we present it to facilitate the
reading of this chapter. We keep it to better emphasize the ability of HGP the assumption of
smaller dimension than the ambient sampling space and to motivate future works on potential
applications to high-dimensional settings (with d potentially greater than n).
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Theorem 24. Suppose f0 is as in the first setting described in Section 5.2.1, for d∗ ≤ d
fixed. Let Π be the hierarchical distribution (5.3) with π = πτ . Then, there exists κ > 0,
depending on d, such that for any β > 0 and 0 < ρ < 1, Πρ[· |X, Y ] contracts to f0 at the
rate rn = n−

β
2β+d∗ logκ n.

5.3.2 Multilayer setting: deep horseshoe GP
The following results shows that the multilayer version of our prior adapts to the unknown
compositional structure of the regression function. The fractional posterior attains the minimax
rate of contraction, up to some polylog factor.

Theorem 25. Suppose f0 ∈ F(λ, β,K), with unknown parameters λ, β,K. Let Π be the
Deep–HGP prior for arbitrary τ > 0. Then, there exists a constant κ depending on the
model parameters such that, for any 0 < ρ < 1, Πρ[· |X, Y ] contracts to f0 at the rate
rn = τ ∗n logκ n.

5.4 Discussion
The use of fractional posteriors. We obtain our main results for fractional posterior distributions,
where the parameter ρ can be taken to be any constant in (0, 1). Two natural questions are:
a) what is the interest in doing this; and b) what do we lose with respect to the usual posterior
ρ = 1? The answer to a) lies in the need, when using the general theory of [64], to build sieves,
capturing most prior mass, whose entropy or ‘complexity’ is well controlled. However, sieves
are sometimes difficult to construct, especially if the probability of the complement of the sieve
has to have a form of exponentially fast decrease. This difficulty leads [59] to condition sample
paths of Gaussian processes to verify certain smoothness constraints. Although we do not
have an answer to this specific question for ρ = 1, we note that this condition is not present to
guarantee the convergence of the ρ–posterior, so we do not need to condition on boundedness
of derivatives in our prior construction. This is an advantage also computationally, as adding
more conditioning constraints may typically slow down MCMC samplers.
On the other hand, we argue that, at least for the set of applications of Bayesian (possibly
tempered) posteriors considered here, one does not loose much, except perhaps in the constants
in the convergence rate, but the latter is typically stated up to a large enough constant, so
is not a concern at least for the theory. First, regarding sampling algorithms in practice,
most sampling methods such as MCMC are of similar difficulty with the fractional or the
original likelihood, so this is not a major concern computationally. One looses, though, the
interpretation of the posterior as a conditional distribution, as well as the decision–theoretical
back-up that comes with it, but also efficiency for √n–estimable parameters, that comes with
the Bernstein–von Mises theorem, that will not hold as such for ρ–posteriors (this can be
remedied under some conditions though, as investigated in [104]). However, again, this is not
a main concern here, as we are mainly interested in nonparametric convergence rates up to
constants.

Simulations. Although the computational aspect is not the focus of the present work, one main
aim here is to provide (near)–optimal theoretical guarantees for a prior as simple as possible.
We note that the prior distribution considered comes already fairly close to what is used in
practice: indeed, note that given the lengthscale parameters, the deep GP prior corresponds
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to the one considered in the original paper [44], where the kernel is termed ARD (Automatic
Relevance Determination) and the lengthscales are called weights. In [44], the weights are
then calibrated using a variational approach. Adapting this computational approach to the
Deep–HGP is an interesting avenue for future work.

Work in progress and open questions. A natural open question of mathematical nature is
whether the results obtained above carry over to original posteriors ρ = 1. As we have
seen, this has no immediate consequence on simulations, but a positive answer would be
particularly satisfactory. In addition, there is hope that HGP can provide near optimal results
in a high-dimensional setting, with d much larger than n, which is an idea currently under
investigation. Also, regarding the multilayer setting and Deep–HGP, an extension of the
theory presented here to the case where dimensions and at least one of the layer dimensions
are allowed to grow with n is currently work in progress.

5.5 Proof of the main results
Reducing the problem to a prior mass condition.
Let us recall the definition of the α–Rényi divergence

Rα(f, g) := Rα (Pf , Pg) = − log
ˆ
pαf p

1−α
g dµ, α > 0.

By Jensen’s inequality, it follows that

Rα(f, g) = − log
ˆ
e
−α−α

2

2σ2
0

(f−g)2

dµ ≤ α− α2

2σ2
0
‖f − g‖2

L2(µ) .

According to Theorem 3.1. in [93], the discussion below it and Example 8.44 in [65], for
KL(f, g) := KL(Pf || Pg) the Kullback-Leibler divergence between Pf and Pg, it is sufficient
to have

Π
[
f : KL(f, f0) < ε2

n

]
≥ e−Cnε

2
n ,

for some C > 0 to ensure that εn is an Rα-posterior contraction rate for Π(ρ) in the sense that

Ef0Π(ρ)
[
f : Rα(f, f0) ≥Mnεn

∣∣∣∣X, Y ]→ 0

for any Mn →∞. As explained above, this also translates into L2(µ)-contraction rates.
Since the supremum norm is a stronger metric than the Kullback-Leibler divergence and the
standard theory for GPs considers more naturally this metric, we translate the above small
ball condition. Standard arguments (see Section 8.1 of [59] for instance) indeed show that{

f : ‖f − f0‖∞ <
√

2ε
}
⊂
{
f : KL(f, f0) < ε2

}
so that in the following, we aim at finding lower bounds on

Π [f : ‖f − f0‖∞ < εn] .
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5.5.1 Lower bound on the small ball probability.
Denoting by ϕAg the concentration function corresponding to the process WA from Section
5.2.3 and its RKHS HA, we have

Pεn := Π [f : ‖f − f0‖∞ < εn] ≥
ˆ
. . .

ˆ
e
−ϕAf0 (εn)

d∏
i=1

π(Ai)dλ(A1) . . . dλ(Ad).

According to Lemma 40, for Ā := max
i

Ai > 0 large enough, there exists absolute constants
C, ε0 such that whenever ε < ε0,

− logP
[∥∥∥WA

∥∥∥ < ε
]
≤ Cdd11d/2 log1+d(d)

(
log Ā

ε

)1+d ∏
i

(1 ∨ Ai). (5.4)

Also, Lemma 39 ensures that, for f0 β–Hölder, if Ai = a > 0 for i ∈ {i1, . . . , id∗}, for some
absolute constant C > 0, D > 0 depending on α, and any ε ≥ Dd∗a−β and Ai1 , . . . , Aid∗
large enough,

inf
h∈HA:

‖h−f0‖∞≤ε

‖h‖2
HA ≤ Cd

d∏
i=1

Ai ‖f0‖2
2 . (5.5)

Let’s now write, for some T > 0,

a∗i =

T, if i /∈ {i1, . . . , id∗}
n

1
2β+d∗ , otherwise.

Combining (5.4) and (5.5), for some εn to be characterized, we lower bound Pεn by
ˆ 2a∗1

a∗1

. . .

ˆ 2a∗d

a∗
d

e
−ϕAf0 (εn)

d∏
i=1

π(Ai) dλ(Ad) . . . dλ(A1),

and on the domain of integration, (5.4) and (5.5) give, for C absolute constant,

ϕAf0(εn) ≤ (2C)d
∏
i

(1 ∨ a∗i )
d11d/2 log1+d(d)

(
log Ā

εn

)1+d

+ ‖f0‖2
2


≤ (2C)d(1 ∨ T )d−d∗n

d∗
2β+d∗

d11d/2 log1+d(d)
log n

1
2β+d∗

εn

1+d

+ ‖f0‖2
2

 .
for any εn ≥ Dd∗n−

β
2β+d∗ and n large enough.

For d and d∗ fixed, it is possible to take T constant and εn = Mn−
β

2β+d∗ logc n, M, c > 0
large enough, to verify ϕAf0(εn) ≤ nε2

n.

Dimension-dependent upper bounds on the concentration function.
In order to prove posterior contraction rates for the GPs, we need to obtain upper bounds on
the terms in the concentration function (5.2). The results below are essentially corolaries of
Lemmas 4.2 and 4.3 from [9], with explicit constants depending on the ambient dimension
d in the result. We indeed plan to apply the Deep–HGP prior in a high-dimensional setting
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in future works, which requires to explicit the dependency on d of any quantities involved.
As opposed to [9], we do not consider the anisotropic case, in which the function f0 has
different regularities depending on the direction. We focus on the variable selection aspect of
the problem, assuming the same regularity for the directions on which f0 depends.
Let’s take W the squared-exponential stationary Gaussian process with covariance kernel
K(t) =

´
ei〈u,t〉dν(u) and spectral measure ν that is the distribution of d−dimensional

Gaussian random vector, with independent marginals of variance 2. We denote g the density
of a standard random variable. The following lemma deals with the decentering part of the
concentration function.

Lemma 39. Suppose f0 is as in the first setting of Section 5.2.1 and A = (A1, . . . , Ad) is
such that Ai = a > 0 for i ∈ {i1, . . . , id∗}. Let ψ be a higher order kernel such that

•
´
ψ(t)dt = 1;

•
´
tkψ(t)dt = 0 for k = 0, . . . , bβc;

•
´
|t|β|ψ(t)|dt <∞,

and its Fourier transform ψ̂ is compactly supported. Then,

inf
h∈HA:

‖h−f0‖∞≤d∗
´
|s|βψ(s)ds a−β

‖h‖2
HA ≤

d∏
i=1

Ai

∥∥∥∥∥ |ψ̂|2g
∥∥∥∥∥
d

‖f0‖2
2 .

Proof. We follow the lines of the proof of Lemma 4.2 from [9], giving the main elements.
Define Ψ̃ : Rd → C by Ψ(t) = ψ(t1) · · ·ψ(td) and Ψ̃A(t) = Ψ̃A1t1, . . . , Adtd)

∏d
i=1Ai. From

the proof of Lemma 4.3 in [165], on which Lemma 4.2 [9] is based, the convolution ΨA ∗ f0 is
an element of HA with its square norm bounded by ∏d

i=1Ai

∥∥∥∥ |̂̃Ψ|2g

∥∥∥∥ ‖f0‖2
L2 with g the density

of a multivariate standard normal gaussian vector. We note that∥∥∥∥∥∥ |
̂̃Ψ|2
g

∥∥∥∥∥∥ ≤
∥∥∥∥∥ |ψ̂|2g

∥∥∥∥∥
d

<∞

using the compactness of the support of ψ̂. It remains to show that this element approximate
f0 well enough, which follows from

∣∣∣Ψ̃A ∗ f0(t)− f0(t)
∣∣∣ ≤

∣∣∣∣∣∣
d∗∑
j=1

ˆ
ψ(sj)Sij(tij , sij/Aij)dsij

∣∣∣∣∣∣ , t ∈ [0, 1]d,

with
∣∣∣Sij(tij , sij/Aij)∣∣∣ ≤ K

∣∣∣sij ∣∣∣β a−β and K independent from the dimension d, as proved in
the proof of Lemma 4.2 [9]. Then, we have proved that

∥∥∥Ψ̃A ∗ f0 − f0

∥∥∥
∞
≤ d∗

´
|s|βψ(s)ds a−β

which concludes the proof.

We now deal with the small ball probability in the concentration function and bound it. In the
following, we note the ε-covering number N (ε, S,D) of a semimetric space S equipped with
a semimetric D as the minimal number of balls of radius ε needed to cover S.
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Lemma 40. For any Ā = max
i

Ai greater than an absolute constant, there exists an absolute
constant C, ε0 > 0 such that for 0 < ε < ε0,

ϕA0 (ε) := − logP
[∥∥∥WA

∥∥∥ < ε
]
≤ Cdd11d/2 log1+d(d)

(
log 1 ∨ Ā

ε

)1+d ∏
i

(1 ∨ Ai).

Proof. We follow the proof of Lemma 4.6 in [165]. We start with formula (3.25) in [94] which
states that, for any ε, λ > 0,

ϕA0 (2ε) + log Φ
(
λ+ Φ−1(e−ϕA0 (2ε))

)
≤ log N

(
ε,HA

1 , ‖·‖∞
)
,

with HA
1 the unit ball of HA and Φ the standard normal distribution function. For the choice

λ =
√

2ϕA0 (ε) and with the inequality (see Lemma 4.10 in [165]) Φ
(√

2x+ Φ−1(e−x)
)
≥ 1/2,

for any x > 0, we get

ϕA0 (2ε) + log(1/2) ≤ log N
(
ε/
√

2ϕA0 (ε),HA
1 , ‖·‖∞

)
. (5.6)

Before going further, it is necessary to prove a crude bound of the form ϕA0 (ε) . (max
i

Ai/ε)τ ,
for some τ > 0. Let uA be the mapping associated to WA considered in [106] and, as in this
article, set

en (uA) := inf
{
η > 0 : log N

(
η,HA

1 , ‖·‖∞
)
≤ (n− 1) log 2

}
.

Lemma 41 implies that, for ε > 0,

log N
(
ε,HA

1 , ‖·‖∞
)
≤ Cd log

(1
ε

)1+d
(1 ∨ Ā)d,

with C an absolute constant and

Cd = Cdd9d/2 log (d)1+d .

By definition, en (uA) is smaller than the solution η∗ of Cd log
(

1
η∗

)1+d
(1∨Ā)d = (n−1) log 2,

that is
η∗ = e−C

1
1+d n

1
1+dC

− 1
1+d

d
Ā
− d

1+d
.

We rewrite the first equation of [156] as sup
k≤n

kαen (u∗A) ≤ 32 sup
k≤n

kαen (uA) for any n ≥

1, α > 0. Also, for any k ≥ 1, since x→ xe−x
1

1+d is upper bounded by (1 + d)1+de−(1+d) on
R∗+,

kek (uA) ≤ ke−C
1

1+d k
1

1+dC
− 1

1+d
d

(1∨Ā)−
d

1+d

= Cd(1 ∨ Ā)d
C

(
Ck

Cd(1 ∨ Ā)d

)
e−C

1
1+d k

1
1+dC

− 1
1+d

d
(1∨Ā)−

d
1+d

≤ Cd(1 ∨ Ā)d
C

(
1 + d

e

)1+d

.

This implies that, for n ≥ 1,

nen (u∗A) ≤ sup
k≤n

ken (u∗A)
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≤ 32 sup
k≤n

ken (uA)

≤ 32Cd(1 ∨ Ā)d
C

(
1 + d

e

)1+d

.

From Lemma 2.1 [106], itself cited from [133], and this last upper bound, gives the following
upper bound on ln(uA) (defined in Section 2 of [106]): for c1, c2 absolute constants,

ln(uA) ≤ c1
∑
k≥c2n

ek (u∗A) k−1/2 (1 + log k) ≤ CCdĀ
dn−1/2,

for C an absolute constant independent.

From the proof of Proposition 2.4 in [106], we find that, for ε > 0, σ = E[
∥∥∥WA

∥∥∥2

∞
]1/2 and

nA(ε) := max {n : 4ln(uA) ≥ ε} ,

the following bound stands

P
[∥∥∥WA

∥∥∥ < ε
]
≥ 3

4

(
ε

6σnA(ε)

)nA(ε)

,

which implies
ϕA0 (ε) ≤ n(ε) log

(
8σn(ε)
ε

)
. (5.7)

We note that nA(ε) as long as ε is smaller than an absolute constant: indeed, ln(uA) decreases
with n and l1(uA) = σ > E[WA2

0 ]1/2 = 1. The above bound on ln(uA) ensures that
nA(ε) ≤ C

(
Cd(1 ∨ Ā)d

)2
ε−2.

Since σ2 = E[
∥∥∥WA

∥∥∥
∞

]2 +V[
∥∥∥WA

∥∥∥
∞

], we bound these two terms. Since supt∈[0,1]d EW 2
At = 1,

Theorem 2.5.8 [69] gives the bound on the tail probability P
(∣∣∣ ∥∥∥WA

∥∥∥
∞
− E

∥∥∥WA
∥∥∥
∞

∣∣∣ > u
)
≤

2e−u2/2 and then

V[
∥∥∥WA

∥∥∥
∞

] =
ˆ ∞

0
2xP

(∣∣∣ ∥∥∥WA
∥∥∥
∞
− E

∥∥∥WA
∥∥∥
∞

∣∣∣ > x
)
dx ≤ 4

ˆ ∞
0

xe−x
2/2dx = 4.

We control the other term via Theorem 2.3.7 of [69]:

E[
∥∥∥WA

∥∥∥
∞

] ≤ E |X|+ 4
√

2
ˆ M/2

0

√
log (2N(ε, [0, 1]d, D))dε

for X ∼ N (0, 1), D(s, t) = 2
(
1− e−

∑
i
A2
i (ti−si)

2) and M = sup
{
s, t ∈ [−1, 1]d : D(s, t)

}
=

2
(
1− e−4

∑
i
A2
i

)
. We note that ‖s− t‖2 ≤

√
− log(1− ε/2)/Ā implies D(s, t) ≤ ε for ε > 0,

so, for B0(r) the euclidean ball of radius r > 0 around 0,

N
(
ε, [−1, 1]d, D

)
≤ N

(√
− log(1− ε/2)/Ā, B0(

√
d), ‖·‖2

)
≤

 3
√
dĀ√

− log(1− ε/2)

d

by standard arguments (see Proposition C.2 in [65]). The above integral is then bounded by,
with the next inequalities involving absolute constants only,
ˆ 1−e−4dĀ2

0

√
log (2N(ε, [0, 1]d, D))dε .

√
d log(dĀ)

ˆ 1−e−4dĀ2

0

√√√√√log
 1√
− log(1− ε/2)

dε
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.
√
d log(d(1 ∨ Ā)).

We conclude that σ2 . d log(d(1 ∨ Ā)).
Going back to (5.7), we conclude this proof with the bound, for Ā ≥ 1,

ϕA0 (ε) ≤
(
Cd(1 ∨ Ā)d

)2
ε−2 log

(√
d log(d(1 ∨ Ā))

(
Cd(1 ∨ Ā)d

)2
ε−3

)
. Cdd10d(1 ∨ Ā)2d log (d)3+2d log(1 ∨ Ā)ε−3,

which we plug into (5.6) with Lemma 41, and C an absolute constant:

ϕA0 (ε) ≤ Cdd11d/2 log1+d(d)
(

log (1 ∨ Ā)
ε

)1+d ∏
i

(1 ∨ Ai),

for ε > 0.

Lemma 41. For ε > 0 smaller than an absolute constant, and HA
1 the unit ball of HA, there

exists absolute constants C1, C2 > 0 such that

log N
(
ε,HA

1 , ‖·‖∞
)
≤ Cd

1d
d/2
[
d2 ∨ log((C2d)d/ε)

]d (
log (C2d)dd1/4

ε

) ∏
i

(1 ∨ Ai).

Proof. We first note that ν has exponential moments,
´
eδ‖t‖2dν(t) < ∞ for δ > 0. More

precisely,
ˆ
e‖t‖2/2dν(t) =

(
2dπd/2

)−1
ˆ
e‖t‖2/2−‖t‖

2
2/4dλ(t) = 1

2d−1Γ(d/2)

ˆ +∞

0
rd−1er/2−r

2/4dr,

by change of variables in the integration of a radial function. The above integral is equal to

e1/4
ˆ +∞

0
rd−1e−

(r−1)2
4 dr,

and, splitting the domain of the integral, this is bounded by the sum of e1/4 ´ 1
0 r

d−1e−
(r−1)2

4 dr ≤
e1/4 and

e1/4
ˆ +∞

1
rd−1e−

(r−1)2
4 dr ≤ e1/4

ˆ +∞

0
(r + 1)d−1e−

r2
4 dr

≤ e1/4
d−1∑
i=0

(
d− 1
i

)ˆ +∞

0
rie−

r2
4 dr.

The integrals in the above sum are, up to a universal constant factor, equal to the ith absolute
moment of a truncated gaussian. As this distribution has subgaussian tails, these moments
are upper bounded by

(
K
√
i
)i

, for K a universal constant. So, via Stirling’s formula,

C2 :=
ˆ
e‖t‖2/2dν(t) ≤ (K

√
d)d

Γ(d/2) ≤ K̃d
√
d,

where K̃ is a universal constant.
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Let k ∈ N∗. Adapting the proof of Lemma 4.4 in [165], a covering of HA
1 is build in the proof

of Lemma 4.5 in [9], with less than, for c1 an absolute constant,
d∏
i=1

(Ai ∨ 1) (c1d)d/2 kd log (2C/ε)

elements and ‖·‖∞-radii

C
∞∑

l=k+1

ld−1

2l + ε
k∑
l=1

ld−1

2l .

We note that ld−1

2l ≤ (2/3)l if l ≥ (d/ log(4/3))2, so that ∑∞l=k+1
ld−1

2l ≤ 2(2/3)k ≤ 2ε, the
last inequality being true for k ≥ log(3/2)−1 log (ε−1) ∨ (d/ log(4/3))2. Also, ∑k

l=1
ld−1

2l ≤∑∞
l=1(l + 1) . . . (l + d− 1)2−l ≤ (d− 1)!2d, so that, for k as above, we have a covering with

radius, for c2 an absolute constant independent of d,

ε
(
2C + (d− 1)!2d

)
≤ ε

(
2K̃d/2d1/4 + (d− 1)!2d

)
≤ ε(c2d)d.

We conclude that, for ε small enough, and c3 an absolute constant,

log N
(
ε,HA

1 , ‖·‖∞
)
≤ cd3d

d/2
[
d2 ∨ log(c2d)d/ε

]d
log

(
2(c2d)dK̃dd1/4

ε

) ∏
i

Ai,

which proves the assertion in the lemma.

5.5.2 Proof of Theorem 24.
Given the developments at the beginning of Section 5.5 the discussion at the beginning of
Section 5.5.1, it remains to bound the following volume for some T > 0

[ˆ 2T

T

πτ (t)dt
]d−d∗ ˆ 2n

1
2β+d∗

n
1

2β+d∗
πτ (t)dt


d∗

.

A lower bound is obtained with (5.9), which is for n large enough

e−Cd
∗ log(n/τ)

for C an absolute constant. This implies that,

Π [f : ‖f − f0‖∞ < rn] ≥ e
−C
(
d∗n

d∗
2β+d∗ +d∗ log

(
n d

1+c1 logc2 n
d∗

))
≥ e−C̃nr

2
n

which concludes the proof.

5.5.3 Proof of Theorem 25.
We follow the same arguments as in the above proof. When it comes to the prior mass, for
any f0 ∈ F(λ, β,K), we now have

Π [f : ‖f − f0‖∞ < εn] ≥Πq[{q}]Π[{d1, . . . , dq}| q]
Π
[
‖Ψ(gq) ◦ · · · ◦Ψ(g0)− hq ◦ · · · ◦ h0‖∞ < εn | q, d1, . . . , dq

]
.
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Given the arguments from Section 5.5.1 and the fact that according to equation (5.9)

[ˆ 2T

T

π(t)dt
]d−d∗ ˆ 2n

1
2β+d∗

n
1

2β+d∗
π(t)dt


d∗

≥ e−Cd
∗ log(n/τ),

we know that for εn(βi) = Mn
− βi

2βi+ti logκ n, M, c > 0 large enough,

Π
[
gij : ‖Ψ(gij)− hij‖∞ < Mn

− βi
2βi+ti logc n | q, d1, . . . , dq

]
≥ e

−Cn
(
n
− 2βi

2βi+ti

)
log2c n

,

where we used that ‖Ψ(gij)− hij‖∞ ≤ ‖gij − hij‖∞ as ‖hij‖∞ ≤ 1. An application of
Lemma 42 ensures that, for Q large enough,

q∏
i=0

di+1∏
j=1

Π
[
gij : ‖gij − hij‖∞ < Mn

− βi
2βi+ti logc n | q, d1, . . . , dq

]

≤ Π
[
‖gq ◦ · · · ◦ g0 − hq ◦ · · · ◦ h0‖∞ < Q

q∑
i=0

(
n
− βi

2βi+ti logc n
)αi
| q, d1, . . . , dq

]
.

As a consequence, for C, κ large enough,

Π [f : ‖f − f0‖∞ < Cτ ∗n logκ n] ≥ e−Cnτ
∗2
n log2κ n,

and the ρ−posterior achieves minimax posterior contraction rates (up to some logarithmic
factor).

Lemma 42. Let hij : [−1, 1]di → [−1, 1] be a function that depends on a subset Sij
of ti coordinates and such that the restriction hij

∣∣∣
Sij

satisfies
∥∥∥∥hij∣∣∣Sij

∥∥∥∥
βi,∞
≤ K for some

βi > 0, K ≥ 1. Then, the maps hi = (hij)Tj=1,...,di+1
satisfy for any h̃i =

(
h̃ij
)T
j=1,...,di+1

, with
h̃ij : [−1, 1]di → [−1, 1],

∥∥∥hq ◦ . . . h0 − h̃q ◦ . . . h̃0

∥∥∥
L∞[−1,1]d

≤ Kq
q∑
i=0

∥∥∥∣∣∣hi − h̃i∣∣∣∞∥∥∥αi∞
with αi = ∏q

l=i+1 βl ∧ 1 (and αq = 1 by convention).

Proof. We follow the proof of Lemma 11 in [59] and prove the assertion by induction. For
q = 0, this is trivially true. For q = k + 1 > 0, assume that the statement is true for the
positive integer k. We write Hk = hk ◦ . . . h0 and H̃k = h̃k ◦ . . . h̃0 and use the triangle
inequality so that∣∣∣hk+1 ◦Hk(x)− h̃k+1 ◦ H̃k(x)

∣∣∣
∞

≤
∣∣∣hk+1 ◦Hk(x)− hk+1 ◦ H̃k(x)

∣∣∣
∞

+
∣∣∣hk+1 ◦ H̃k(x)− h̃k+1 ◦ H̃k(x)

∣∣∣
∞

≤ K
∣∣∣Hk(x)− H̃k(x)

∣∣∣βk+1∧1

∞
+
∣∣∣hk+1 ◦ H̃k(x)− h̃k+1 ◦ H̃k(x)

∣∣∣
∞
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≤ K

(
Kk

k∑
i=0

∥∥∥∣∣∣hi − h̃i∣∣∣∞∥∥∥
∏k

l=i+1 βl∧1

∞

)βk+1∧1

+
∥∥∥∣∣∣hk+1 − h̃k+1

∣∣∣
∞

∥∥∥
∞

≤ Kk+1
k∑
i=0

∥∥∥∣∣∣hi − h̃i∣∣∣∞∥∥∥
∏k+1
l=i+1 βl∧1

∞
+Kk+1

∥∥∥∣∣∣hk+1 − h̃k+1

∣∣∣
∞

∥∥∥
∞

= Kk+1
k+1∑
i=0

∥∥∥∣∣∣hi − h̃i∣∣∣∞∥∥∥αi∞
where we use that

∥∥∥h(k+1)j

∥∥∥
βk+1∧1,∞

≤ K according to Lemma 10 of [147] and (y + z)α ≤
yα + xα for y, z ≥ 0, α ∈ [0; 1].

5.6 The horseshoe density
Recall that πτ denotes the horseshoe density defined in Section 5.2.3. Then, for any t > 0,

πτ (t) = 2
π

1√
2πτ

ˆ
R+

1
λ(1 + λ2)e

− t2
2λ2τ2 dλ

=
v=λ−2

1√
2π3τ

ˆ
R+

1
v + 1e

− t2
2τ2 vdv

= et
2/(2τ2)
√

2π3τ

ˆ +∞

1

1
v
e−

t2
2τ2 vdv︸ ︷︷ ︸

=E1

(
t2

2τ2

)
.

It is known that (see Chapter 5 in [1]), for x > 0,

1
2e
−x log

(
1 + 2

x

)
< E1(x) < e−x log

(
1 + 1

x

)
,

so that we have the bound, for t > 0,

1
(2π)3/2τ

log
(

1 + 4τ 2

t2

)
< πτ (t) <

1√
2π3τ

log
(

1 + τ 2

t2

)
. (5.8)

We refer to the prior Πτ from (5.3) with π = πτ as the Horseshoe Gaussian process in the
following. From (5.8), we can lower bound, for n large enough and some absolute constant
C > 0, ˆ 2n

1
2β+d∗

n
1

2β+d∗
πτ (t)dt


d∗

≥ e−Cd
∗ log(n/τ). (5.9)
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CHAPTER 6
Conclusion and perspectives

Concerning the questions laid out in 1.4, this thesis brought numerous parts of the solutions.
The theoretical study of Bayesian tree-based methods carried out in Chapters 2 and 3
underlined their potential and flexibility. Despite their seemingly rough piecewise constant
nature, ensembles of trees appear to provide optimal adaptive estimations in Hellinger distance
for any regularities in density estimation. As shown in Chapter 2, forests can potentially
outperform single-tree estimators as previous theoretical results limited themselves to optimality
on classes with at most Lipschitz regularity. We drew a new connection with spline priors
to demonstrate that these aggregation procedures can enjoy ‘hidden’ regularity structures.
In Chapter 3, we showed that the OPT prior, based on a single tree structure, is enough to
obtain optimal adaptive rates in the stronger supremum norm distance. In addition, we also
built adaptive confidence sets of optimal radius in this norm, under additional self-similarity
conditions on the signal. This answer to the question of uncertainty quantification for OPT
posteriors advocates for using tree-based methods as full inferential machines. Then, as opposed
to the supremum norm, we proved in Chapter 4 that the construction of confidence sets
with optimal radius in Wasserstein distance, adapting to any regularities, exists in dimensions
smaller than 4, without the need for additional qualitative assumptions (such as self-similarity).
In higher dimensions, it is necessary to consider only values of regularity that are close enough
but lying in a large window. Chapter 5 focused on Gaussian processes and their deep version
and proved that optimal contraction rates could be achieved under structural assumptions of
the signal.
The perspectives for the projects presented in this thesis include:

• obtaining optimality results on forest priors that are closer to the ones used in practice
(e.g., BART);

• assuming the signal is more regular than Lipshitz, obtaining supremum contraction
rates for forest priors, possibly via the definition of forests of OPTs, and developing
results on uncertainty quantification for these priors;

• developing a construction of adaptive confidence sets in Wasserstein distance via
Bayesian credible sets, as an alternative to the sample-splitting and risk estimation
method;

• identifying the information-theoretic limitations of adaptive confidence sets in Wasser-
stein distances Wp, for p > 2;
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6. Conclusion and perspectives

• extending the results on the (Deep) Horseshoe Gaussian process to high-dimensional
settings.
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Contributions to the theoretical analysis of statistical
learning and uncertainty quantification methods

Thibault Randrianarisoa

Abstract

Modern data analysis provides scientists with statistical and machine learning algorithms with
impressive performance. In front of their extensive use to tackle problems of constantly growing
complexity, there is a real need to understand the conditions under which algorithms are successful
or bound to fail. An additional objective is to gain insights into the design of new algorithmic
methods able to tackle more innovative and challenging tasks. A natural framework for developing
a mathematical theory of these methods is nonparametric inference. This area of Statistics is
concerned with inferences of unknown quantities of interest under minimal assumptions, involving an
infinite-dimensional statistical modeling of a parameter on the data-generating mechanism. In this
thesis, we consider both problems of function estimation and uncertainty quantification.

The first class of algorithms we deal with are Bayesian tree-based methods. They are based on
a ‘divide-and-conquer’ principle, partitioning a sample space to estimate the parameter locally. In
regression, these methods include BCART and the renowned BART, the later being an ensemble of
trees or a forest. In density estimation, the famous Pólya Tree prior exemplifies these methods and is
the building block of a myriad of related constructions. We propose a new extension, DPA, that is a
‘forest of PTs’ and is shown to attain minimax contraction rates adaptively in Hellinger distance for
arbitrary Hölder regularities. Adaptive rates in the stronger supremum norm are also obtained for the
flexible Optional Pólya Tree (OPT) prior, a BCART-type prior, for regularities smaller than one.

Gaussian processes are another popular class of priors studied in Bayesian nonparametrics and
Machine Learning. Motivated by the ever-growing size of datasets, we propose a new horseshoe
Gaussian process with the aim to adapt to leverage a data structure of smaller dimension. First,
we derive minimax optimal contraction rates for its tempered posterior. Secondly, deep Gaussian
processes are Bayesian counterparts to the famous deep neural networks. We prove that, as a building
block in such a deep framework, it also gives optimal adaptive rates under compositional structure
assumptions on the parameter.

As for uncertainty quantification (UQ), Bayesian methods are often praised for the principled solution
they offer with the definition of credible sets. We prove that OPT credible sets are confidence
sets with good coverage and size (in supremum norm) under qualitative self-similarity conditions.
Moreover, we conduct a theoretical study of UQ in Wasserstein distances Wp, uncovering a new
phenomenon. In dimensions smaller than 4, it is possible to construct confidence sets whose Wp-radii,
p ≥ 2, adapt to any regularities (with no qualitative assumptions). This starkly contrasts the usual
Lp theory, where concessions always have to be made.

Keywords: Bayesian nonparametrics, Tree-based methods, Uncertainty Quantification, Wasserstein
distance, Gaussian process
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