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Abstract
Deep Learning Process Integration on Heterogeneous GPU/FPGA Embedded

Platforms

by Walther CARBALLO-HERNÁNDEZ

Deep Learning (DL) algorithm deployment on edge devices, such as Convolutional Neu-
ral Network (CNN) inference, has established a high computing demand on devices with
limited resources, requiring low execution time and reduced energy consumption. To meet
the requirements with such constraints, hardware systems have adopted unconventional
processors co-located on the same platform. This architectural heterogeneity introduces
many challenges in how these processors interact. A well-defined software-hardware
co-design environment must be carefully built to ensure a high-performance solution.
For this purpose, heterogeneous hardware-awareness must be integrated in the design
workflow.

To avoid hardware-agnostic low performance programming, state-of-the-art literature
incorporates performance profiling models to aid with partition selection on each acceler-
ator. Subsequently, mathematical optimization techniques benefit from these models to
improve workload distribution, specifically tailored for the platform.

This thesis aims to assist the designer by studying the modeling, partitioning and
optimization of embedded heterogeneous platforms in the context of CNN computation
models. The scope of this dissertation mainly covers the coupling topologies between
Graphics Processing Unit (GPU) and Field Programmable Gate Array (FPGA) accelerators
in hybrid systems. The opportunities and limitations of hybrid programmable logic and
Single-Instruction Multiple-Data (SIMD) architectures are analyzed and discussed.
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Résumé
Intégration des Processus d’Apprentissage Profond sur des Plateformes Hétérogènes

Embarquées GPU/FPGA

par Walther CARBALLO-HERNÁNDEZ

Le déploiement d’algorithmes tel que l’inférence de réseaux de neurones convolutifs,
impose des temps d’exécution courts et une consommation électrique maîtrisée sur des
systèmes embarqués disposant de ressources de calculs limitées. De nouvelles électron-
iques spécifiques composées de différentes architectures matérielles ont émergé pour
répondre à ce type de demande. Ce type d’architecture hétérogène impose de nouveaux
défis notamment au niveau de l’interaction entre les différentes composantes. Il est alors
nécessaire de passer par une étape de co-design matérielle/logicielle décrivant au mieux la
plateforme électronique afin d’atteindre un optimum en termes de consommation, latence
et vitesse d’exécution.

Pour éviter une conception agnostique du matériel, la littérature de l’état de l’art
incorpore des modèles en profilant la performance. Celle-ci, dans l’intention d’aider avec
la sélection des partitions sur chaque accélérateur. En suite, des techniques d’optimisation
mathématique profitent de ces résultats pour améliorer encore la distribution des tâches
de travail spécifiquement adaptées à la plateforme.

Cette thèse cible d’assister le développeur en étudiant le modelage, partitionnement et
optimisation pour les plateformes embarquées hétérogènes dans le contexte des modèles
de calcul des CNNs. Le cadre de ce manuscrit couvre principalement des topologies en
couplant des accélérateurs GPU et FPGA dans des systèmes hybrides. En se concentrant
de cette manière, sur les opportunités et limitations de l’intégration d’architecturelle :
logique programmable customisable et SIMD.

Mot clés: Calcul hétérogène, Conception embarquée, Réseau de neurones convolutif, GPU,
FPGA
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Chapter 1

Introduction

This first Chapter introduces the main context and ideas of the presented thesis. First, the
concept of heterogeneous computing is discussed in the domain of embedded design and
the motivation behind it. A plethora of hardware architectures arise from this definition
of heterogeneous platforms. A similar phenomenon can be inferred from the software
implementation of Deep Learning (DL) models. Thus, this thesis focuses on Central
Processing Unit (CPU)-Graphics Processing Unit (GPU)-Field Programmable Gate Array
(FPGA) as emerging embedded technologies for DL applications, specifically for Convolu-
tional Neural Network (CNN) models. As a second stage, the challenges evoked from the
embedded architecture and algorithmic integration are the central topic of this manuscript.
These challenges delimit the scope of this dissertation and establish the problem definition
and hypothesis. The contributions are the result of this problem definition, proposing
the general and specific objectives to further develop a global methodology. Finally, the
manuscript outline is presented to address each individual specific objective. This re-
sulting outline serve as a guide for the thorough content development of the following
Chapters.

1.1 Heterogeneous computing

The demand of computing power has not slowed down since the dawn of the computing
term itself. As a matter of fact, this demand was already present way before the birth of
electronics and even mechanical computers. One can argue, that current processing plat-
forms are only catching up on the most feasible problems that mathematicians, physicians
and scientists have already formalized since centuries. Human innovation through tech-
nology has allowed to profit from this never-ending progress in a more tangible manner.
As a consequence, this pragmatism has led to an environment of problem solving devices
adapted not only for high-end computing centers, but also for our daily life. Perpetuating
this way, the requirements for more capable processing devices. Nevertheless, as it will be
discovered by the reader through this dissertation, this processing scaling is not trivial,
nor inconsequential. After the first CPU conception, the most evident step for scaling was
to increase the number of cores, giving birth to the concept of multiprocessor.

The parallel capabilities and limits of multiple processors against single core processors
was first presented by Gene Amdahl and its well-known Amdahl’s law [Amd67]. This
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work awakened skepticism in the scientific community and extensive discussions between
many experts since the early stage of the multiprocessors era [Gus88]. However, a common
recurrent topic in these debates is the fraction of parallelism and serial execution found in a
given application to benefit from speed-up. The presence of parallelism is a key component
for multiprocessor acceleration or speed-up on hardware [DRPDDP15]. An accelerator is a
processing device capable of instruction execution to perform some computation. This
software parallelism and hardware acceleration co-dependency must be well described to
achieve efficient algorithmic porting into the accelerator architectures. In this manuscript,
this is referred as integration. To attain this level of efficiency, it is essential to describe the
platform in terms of its hardware architecture nature. The first multiprocessor accelerators
were considered as homogeneous. This is because platforms mostly replicated the same
core or processing element with the same architecture capabilities and executing the
same instructions. As more and more developers and users made the transition between
sequential to parallel programming, newer paradigms were adopted.

FIGURE 1.1: Generic heterogeneous architecture [Zah17].

Heterogeneous computing was introduced to address the heterogeneity present in core ca-
pabilities or specific ways to handle instructions [Zah17]. However, the term heterogeneity
has not a formal nor strict definition. Different levels of heterogeneity can be achieved. Ho-
mogeneous multiprocessor architectures can fetch and execute different instructions; like
execution synchronization, while the others are fully dedicated to computing. Therefore
specializing some cores to an specific task. Another level of heterogeneity could be the
type of hardware architectures deployed in our hardware. Heterogeneous architectures
can be composed from three main accelerator groups: symmetric, asymmetric and Uncon-
ventional Core (U-Core) [CMHM10]. Symmetric cores were the first based on identical
core replication, like the first multicore CPUs. Asymmetric focused on specializing some
cores to specific tasks or capabilities. Finally, U-Cores cover a wide spectrum of pro-
grammable custom-logic devices, highly specialized processors or emerging technologies
and how they interact to each other. In this thesis, we focus on the latest one. Figure 1.1
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shows a generic heterogeneous architecture incorporating many symmetric or asymmetric
accelerators, like: CPUs to U-Cores, like: GPUs, FPGAs, Digital Signal Processors (DSPs),
matrix-multiplication accelerators and emerging technologies. However, some heteroge-
neous architecture include more complex memory models, where heterogeneity is also
present in the way these accelerators communicate. For instance, the hybrid accelerator
architectures from Figure 1.2 lacks the interconnection from Figure 1.1. Thus, the commu-
nication is defined by the neighborhood topology and/or visible memory components on
each core. Figure 1.2 shows different multicore accelerator types from [CMHM10]. The
arrows represent a dedicated communication link between cores. Fast cores are usually
single-core processors to execute sequential instructions with their own resources, like
local memory and caches. While the base-core are equivalent to execute parallel portion
of instruction execution. Some multicore topologies, like in 1.2a, include a broadcast
communication style, where all processor can communicate with each other. While some
others have a main sequential processor to orchestrate task execution of similar base cores,
as depicted in 1.2b. Finally, in Subfigure 1.2c, a plethora of Ucores are used to deploy
parallel execution and communicate directly with the main core. These Ucores may vary
in capabilities from each other and include different types of communication links.

(A) Symmetric. (B) Asymmetric.

(C) Heterogeneous.

FIGURE 1.2: Multicore types according to [CMHM10].

The scope of this dissertation is delimited by the type of U-Cores adopted on the
heterogeneous platform architecture. Two individually well-studied accelerators are
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explored. On one hand, the GPU is based on core replication with hundreds (embedded),
thousands (personal computers) or even tenths or hundred of thousands (data centers) of
processing elements. These cores operate in a Single-Instruction Multiple-Data (SIMD)
fashion and each core can have a different workload attributed by a scheduler. This is, that
they execute the same operation over different data chunks or batches, known as warps
or wavefronts, depending on the vendor. At the other hand, the FPGA takes advantage of
its programmable configuration to create custom designs at expense of limited logic and
memory resources.

(A) Intel® NCS2 (B) Nvidia® Jetson family (C) Google® TPU

FIGURE 1.3: Some embedded heterogeneous platforms.

These heterogeneous platforms, as depicted in Figure 1.1, are a well-established en-
vironment paradigm in High Performance Computing (HPC) data centers since the last
decades. This quick adoption has been widely accelerated because of the demand of
current DL algorithms [TAI+20]. In these specific cases, considerations such as energy
consumption, resource utilization or memory transfers; play a lesser role to achieve lower
latency and higher throughput. This is however, not the case for embedded platforms,
where usually a fragile trade-off between system performance, energy efficiency and
resource constraints is crucial [HSKR21]. Figure 1.3 shows some embedded heterogeneous
platforms with U-Cores. Subfigure 1.3a shows the Intel® Neural Compute Stick 2 (NCS2)
[Mov19] with aDSP-GPU microarchitecture. Subfigure 1.3b shows the Nvidia® Jetson
family of embedded GPUs, which some of them include a dedicated Application Specific
Integrated Circuit (ASIC) for DL, named tensor cores. Subfigure 1.3c shows the Google®

Tensor Processing Unit (TPU) [JYP+17]. With the rise of this new generation of hetero-
geneous platforms on the edge, a well-defined development ecosystem must be carefully
organized to find adequate solutions, this is known as Design Space Exploration (DSE).
In the following subsection, the deployment implications of embedded heterogeneous
computing for CNN model inference are discussed as motivation behind this manuscript.

1.2 Challenges and problem definition

In this thesis, the inference process of CNN models for image classification tasks is studied.
In this context, as seen in the upper part of Figure 1.4, a pre-trained CNN model takes
as an input an image and it outputs a class label. Once a CNN model is implemented
in a hardware platform, also known as the system, several computational operations are
performed to generate this class label. The required computation has a cost in terms of
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time, energy and resources. Such metrics are useful to evaluate the efficiency of a given
system, these metrics are commonly known as Key Performance Indicators (KPIs). A KPI
is a quantifiable measurement that illustrates the effectiveness of the system towards a
specific goal. These KPIs depend on several variables, like the dimensions of the CNN
layers, the topology of the network, the internal architecture of the system or the image
patterns. Since it is an overwhelming task to control all these variables, it is desired to
estimate a model from KPI observation from multiple configurations of these CNN layers.

FIGURE 1.4: KPI modeling of a heterogeneous platform as system.

More generally, as it will be slowly introduced during the development of the dis-
sertation, the CNN inference is a computational model that operates over different data
workloads called Feature Mapss (FMs), not only images. Each processing block operates
over an Input Feature Map (IFM) and produces an Output Feature Map (OFM). The details
of these operations are described extensively in the following chapters. Momentarily, it is
relevant how these memory transfers are handled and mapped. This is because, from a
hardware perspective, memory hierarchy is one of the main challenges and bottlenecks in
heterogeneous platforms. Several levels in a memory model like on-chip memory, external
memories, local or global memories, shared or private resources; have a direct impact on
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system performance. The accelerator topology and its interconnection is equally important
[Zah17]. Similarly, selecting the distributed workload on a heterogeneous platform is not
a simple task. Scheduling relies on data dependency and how each individual accelerator
is synchronized. Additionally, some partitions may be well-suited for an specific platform,
but quite inefficient on another. This creates a generalization limitation dependant on the
specific hardware capabilities. All these challenges become more complex considering
the typical embedded design constrains [HBNY19]. Figure 1.5 illustrates the partitioning
of a CNN model of computation. Each resulting partition is mapped to an individual
accelerator on a custom heterogeneous architecture.

FIGURE 1.5: CNN model partitioning and mapping into an embedded heterogeneous platform
with multiple accelerators.

Summarizing, the main challenges covered in this manuscript are listed below:

• Heterogeneous hardware platform performance characterization and evaluation.

• CNN model partitioning, mapping and scheduling.

• Inter-device memory transfers handling.

• Selecting appropriate design solutions considering limited embedded resources.

The following questions are derived from the challenges to guide this thesis and set
the contribution basis:

• How to efficiently deploy a CNN topology on a hybrid platform?

• How can a hardware-aware design solution be evaluated?

• Which KPI metrics should be chosen for evaluation?

• Which CNN configuration features should be selected to characterize the heteroge-
neous platform?
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• How to split the CNN model for a better efficiency?

• How to guarantee optimal solutions and time efficiency?

From these questions, a more formal hypothesis definition is proposed:
For pretrained CNN model inference, an optimal set of mapped partitions can be obtained

from an optimization problem formulation and efficiently deployed on embedded heterogeneous
platforms, where each accelerator is analytically characterized and a set of partitioning rules are
chosen.

1.3 Contributions

The general objective inferred from the hypothesis is the obtainment and mapping of these
optimal accelerated partitions result of the optimization problem. However, to achieve this goal,
three specific tasks must be individually resolved: the modeling, the partitioning and the
optimization. The main content development of this thesis is depicted in Figure 1.6.

FIGURE 1.6: Thesis content development flow.

The contribution outcome of the manuscript is enumerated below:

1. A methodology to obtain a set of analytical models that describe the hardware KPI
efficiency of a heterogeneous platform for CNN workloads.

2. Adapting state-of-the-art partitioning, mapping and scheduling techniques to het-
erogeneous platforms.

3. An optimization problem formulation with an optimal solution that can be efficiently
solved in terms of time and computational complexity for DSE.

4. A software-hardware co-design environment for CNN partition acceleration with
high-level abstraction.

5. A smart camera prototype that benefits from the capabilities of a CPU-GPU-FPGA
embedded heterogeneous accelerators as test platform. This smart camera is named
X-MERA.

1.4 Manuscript outline

This first chapter, served as introduction for the main motivation, challenges and contribu-
tion of this manuscript. The basis for the content of each chapter has also been established.
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The following chapters cover the main body and contributions described above. For the
next three chapters, an introduction and state-of-the-art related works are presented that
set the context and motivation behind each chapter. Additionally, each chapter conclusion
sets a transition between the results and their impact for the subsequent chapters. The
three main body chapters are briefly described as:

• Chapter 2: This chapter focuses on the heterogeneous hardware architecture char-
acterization through performance modeling with analytical mathematical models for
CNN layer configurations. The resulting models are the outcome of a methodology
inspired from a black-box System Identification (SI) approach with random sequence
excitation. The chapter addresses the contribution 1.

• Chapter 3: This chapter covers the mapping and scheduling adapting heterogeneous
partitioning techniques to the already described hardware models for mobile CNN
models from Chapter 2. The experimental results compare the heterogeneous parti-
tioning against homogeneous solutions at a module-level partitioning. The chapter
addresses contribution 2.

• Chapter 4: This chapters formalizes the mathematical CNN model partitioning opti-
mization problem. This problem formulation is elaborated in a context for Geometric
Programming (GP) and Generalized Geometric Programming (GGP) optimization.
This optimization requires some strict specific mathematical formulation, but it
offers some convexity and optimal properties. The chapter address contribution 3.

The Chapter 5 further discusses the obtained results of the thesis. Furthermore, an
analysis of the possible research exploration paths for this dissertation is studied. These
opportunities offer new research question and a new spectrum of hypotheses for embed-
ded heterogeneous platform design. Finally, the Appendix A lists a set of mathematical
properties useful for the GGP problem formulation, such as convexity and posynomial
preserving operations. This is specially useful for 4. Appendix B describes the hybrid soft-
ware development environment and the heterogeneous smart camera prototype X-MERA
used in Chapters 2, 3 and 4. This appendix addresses contributions 4 and 5.

1.5 Publications

• Walther Carballo-Hernández, François Berry, Maxime Pelcat, and Miguel Arias-
Estrada. Towards embedded heterogeneous FPGA-GPU smart camera architectures
for CNN inference. In Proceedings of the 13th International Conference on Distributed
Smart Cameras. ACM, sep 2019

• Walther Carballo-Hernández, Maxime Pelcat, and François Berry. Why is FPGA-
GPU heterogeneity the best option for embedded deep neural networks? Presented
at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heteroge-
neous Architectures (SLOHA 2021), February 2021
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Chapter 2

Flydeling: Performance Models for
Hardware Acceleration of CNNs
through SI

2.1 Chapter abstract

As covered in Chapter 1, DL algorithms, such as CNNs in many near-sensor systems,
opens new challenges in terms of energy efficiency and hardware performance. An
emerging solution to address these challenges is to use tailored heterogeneous hardware
accelerators combining processing elements of different architectural natures such as CPU,
GPU, FPGA or ASIC. In order to progress towards heterogeneity, a great asset would be
an automated design space exploration tool that chooses, for each accelerated partition
of a CNN, the most appropriate architecture. To feed such a design space exploration
process, models are required that provide very fast yet precise evaluations of alternative
architectures or alternative forms of CNNs. Quick configuration estimation could be
achieved with few parameters from representative input sequences. This chapter studies
a solution called flydeling (as a contraction of flyweight modeling) for obtaining these
models by inspiring from the black-box System Identification (SI) domain. We refer to
models derived using the proposed approach as flyweight models (flydels).

In this chapter, a methodology is proposed to generate these flydels, using CNN prop-
erties as predictor features together with SI techniques with a stochastic excitation input
at a feature map dimensions level. For an embedded CPU-FPGA-GPU heterogeneous
platform, it is demonstrated that it is possible to learn these KPIs flydels at an early design
stage and from high-level application features. For latency, energy and resource utilization,
flydels obtain estimation errors varying between 5% and 10% with less model parameters
compared to state-of-the-art solutions, and are built automatically from platform measure-
ments. A special form of these models (monomial and posynomial forms) are employed
in Section 4, in combination with partitioning techniques from Section 3, to characterize
heterogeneous platforms.
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2.2 Introduction

DL models are increasingly integrated into edge devices for a vast set of applications such
as computer vision and speech recognition. To support the strong computing requirements
of DL, heterogeneous architectures with application specific acceleration are the domi-
nating solution for edge DL [VGG+20, TST+19, OHY+18], taking over single-processor
systems. However, when using traditional programming and hardware description lan-
guages, designers are required to build an advanced prototype of their heterogeneous
system before obtaining reliable processing performance estimates of their CNN imple-
mentation in terms of energy, execution time and resource utilization, given the complexity
of such hybrid systems. This constraint leads to a late system performance evaluation and
to relatively blind design choices. This drawback is intensified by the demand of efficient
and quick comparison between different CNN architectures on constrained platforms.

In order to introduce hardware-awareness to the heterogeneous system partitioning
of DL algorithms, many models have been proposed that give an insight on application
performance [VGG+20, TST+19, OHY+18]. Nevertheless, these models require low-level
features which are non-trivial to obtain by the developer, like micro-operations perfor-
mance or per-instruction performance. Furthermore, these architecture-specific models
are only used to analytically describe single-architecture devices. Thus, making it non-
obvious how these can be combined to extend on heterogeneous platforms with hybrid
architectural specifications. A heterogeneous architecture platform is composed of two or
more devices. Where a device, is defined as any processor capable of computing an spe-
cific workload with its own resources; such as memory and its own computing elements.
These local device-specific resources are also commonly known as on-chip resources. Most
modeling techniques are trained on datasets that do not consider variations of internal
memory transfers between these devices. Because modern compilers tend to optimize
memory usage by keeping static variables in device memory, they carefully handle mem-
ory transfers and this optimization creates biased datasets that do not perform well over
applications outside the assumption of keeping static variables in the on-chip memory. As
a solution, a black-box identification technique that builds analytical behavioural models is
proposed, inspired from the domain of System Identification (SI) of control systems, and
adapt it to CNN modeling. To avoid modeling over only memory-optimized applications,
a methodology is proposed to excite the system and extend to a broad application range.
This procedure allows generalization without relying on over-confident models trained on
biased datasets. It is hypothesized that CNN hyper-parameters are sufficient as a represen-
tation of an application activity. Therefore, using these CNN processing block properties
as an application-specific set of features, a measurement-based dataset is obtained for
energy, latency and resource utilization on an embedded CPU-GPU-FPGA platform.

The main contribution of this section consists of a methodological derivation of an
ensemble of lightweight behavioural models (called flydels) from a randomly excited
dataset. The ensemble is composed of single-variable linear and non-linear (logarithmic,
exponential and polynomial) models using Least Squares Error (LSE) minimization for
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each individual computing device modeling. A multi-variable parametric model is de-
rived. Finally, a method to validate the obtained model precision metrics is proposed
using K-fold cross-validation by demonstrating that their numerical variations are the
result of a random process.

In this chapter, three major assumptions are made: 1© It has been demonstrated that,
not only is the convolutional layer the most common operation in CNN models, but
also the most time consuming and parameter intensive operation [CX14]. For instance,
AlexNet convolutional layers with 256 images require around 90.7% of the total processing
time [CX14], while in more recent models, such as ResNet, require up to more than 99%
of processing [HZRS15]. As modeled by Amdahl’s law, enhancing the biggest fraction of
the process is the way to proceed when minimizing the latency of a given task [Amd67].
Efforts are thus focused on obtaining an analytical behavioural model for convolutional
layers. 2© Many heterogeneous acceleration solutions currently aim at speeding up
a chosen partition of a whole CNN pipeline [MCVS20, GKBS20, WXH21]. Therefore,
modeling a variety of these accelerated partitions is a critical task. In the context of this
work, an accelerated partition is defined as a connected graph subset result of a disjoint
decomposition of the original CNN. 3© The Design Space Exploration (DSE) problem
consists in determining the appropriate partition and its configuration selection. Thus, the
efforts are concentrated on each sub-network performance analysis that constitute the DSE.
Moreover, a heterogeneous platform can be analytically represented by a combination
of individual processing and communication models [SSEM19, ZWTD19, VGG+20]. As
a consequence, a composite heterogeneous profiling is affected by the reliability of each
model, which errors shall be confined within application-related acceptable bounds.

This manuscript is organized as follows: Section 2.3 summarizes related works. Section
2.5 gives an overview of the main concepts of linear and non-linear parametric System
Identification (SI). Section 2.4 defines the problem at hand, the CNN operations, and
the ensemble methodology. It also introduces important concepts for single-variable up
to multi-variable profiling using ensembles. The main challenges of system modeling
estimation are highlighted. The experimental methodology description is given in Section
2.6, where also the dataset generation is explained and the experimental results are
evaluated and validated. Finally, Section 2.7 concludes the chapter with a discussion of
main results and contributions.

2.3 Related works

The DSE on embedded systems requires, in most cases, an evaluation of a vast collection
of design points, which are impossible to explore by brute force [Pim17]. Additionally,
the evaluation of such designs points may be complex to realize and therefore quite time
consuming. In [Pim17], Pimentel categorizes design point evaluation methods into 1)
implementation measurements, 2) simulation, and 3) analytical models. Each evaluation
method offers a trade-off between estimation speed and precision, the measurements-
based method being the most precise but slowest of solutions; while analytical models offer
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highest evaluation speed at the cost of a precision loss given the reduced number of degrees
of freedom. Analytical modeling itself is divided into three groups: mechanistic (white-
box) modeling that builds on advanced knowledge of the system structure, empirical
(black-box) modeling that builds on simplified assumptions on the system structure and
hybrid (gray-box) modeling, where only some few parameters of the system are known
[Eec10]. Depending on the a-priori knowledge of the internal mechanics of the system,
different techniques have been proposed to estimate performances. For taking early
design decisions, performance evaluation speed is prioritized over evaluation precision.
Indeed, most system features are subject to further modifications so extreme precision
is in general useless. This work aims at automatically deriving analytical models from
system simulation and implementation measurements. As heterogeneous systems are
getting more architecturally complex over time and many elements are confidential, a
black-box modeling method is proposed to fit learning processing systems performances.

Predictive modeling has been deeply explored as an essential stage for efficient DSE,
and this on multiple devices and KPIs [OB18]. As an example, energy modeling on
embedded heterogeneous processors has been studied by Seewald, et. al in [SSEM19]
by aggregating sets of system measurements. Authors’ system performance modeling
solution is based on an averaging approximation over multiple real-time obtained traces.
As a result of such studies, heterogeneous system design can take advantage of latency
and energy modeling with three different approaches, as proposed by Pimentel : mecha-
nistic (white-box), empirical (black-box) and hybrid (gray-box) [Pim17]. In [GMRRG19],
multiple works over a large number of processors are evaluated with analytical models
and regression techniques. The proposed taxonomy is helpful to understand what is being
modeled and which features are being used to predict performance. The use of the authors’
three modeling levels is chosen:

Mechanistic (white-box) modeling: White-box models use low-level features to ap-
proximate the processor performance. The commonly selected features are extracted
from Performance Monitoring Counters (PMCs) events associated with each (architecture-
specific) instruction. Since the specifications of the hardware and the instructions required
to execute a task are known, it is simpler to determine the performance of the system.
Traditional performance estimation from an architectural perspective uses a mixture of
linear and non-linear regression models with identified features such as main memory
accesses, hierarchical cache events and processing latency [LB06]. These methods reach
extremely high prediction precision but are not meant for generalizing to other instruction
sets, and require millions of instruction-level traces for predicting KPIs over a full applica-
tion. Architectural diversity between processing accelerators and large-scale application
thus limit applicability of such prediction methods. Moreover, the feature selection among
many PMC events remains a challenging issue to feed the proposed models. Some works
on CPUs instruction-level modeling focus on selecting predominant PMCs features for
energy and power performance [SFML19] or resource mapping per micro-instruction
for several tasks, such as Fast-Fourier Transform (FFT) or GEneral Matrix-Multiplication
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(GEMM) [DGB+20]. Leveraging on these models, tests have been proposed for model se-
lection over a variety of features and KPIs with simple models using Linear Programming
(LP) or Integer Linear Programming (ILP). Focusing more on parallel workloads, works
have studied power estimation modeling and simulation on GPUs [BIM16] [NMN+10]
using PMCs on Compute Unified Device Architecture (CUDA) kernel applications with
simple linear regression, and reaching 4.7% of error on processing power estimation.
Other studies discuss the use of traditional regularized linear regression techniques such
as Lasso and non-linear regression techniques such as Random Forest (RF) [OBSK17]. In
[OBSK17], authors select the most important features from a set of PMCs on different
workloads, minimizing Ordinary Least Squares (OLS) and Non-Negative Least Squares
(NNLS).

Empirical (black-box) modeling: Studies at an empirical level rely only on application
measurements to obtain modeling features and thus model the implementation decisions
(architecture design, mapping, scheduling, timing, memory management) as part of the
"black-box". They thus tend to have a reduced capacity of generalization but models tend
to be extremely compact. In [VMFBCGRV20], the performance of most popular CNNs
topologies is modeled when executed on embedded CPU devices, using the CNNs layer
hyperparametes as features with linear regression. If multiple models are built for multiple
design choices, the performance of heterogeneous systems can be evaluated (taking some
strong hypothesis on time and energy additivity). In [JZK+20], a procedure is proposed
to estimate CNN inference time from analytical models for multiple architectures, using
CNN hyperparameters as features. Authors’ solution is based on the Roofline model
[WWP09]. By determining the Multiply and ACcumulate (MAC) and data transfers
requirements on each CNN layer, authors estimate latency with 88% and 98% precision on
AlexNet [KSH12] and LeNet [LHBB99] respectively. This analysis is restricted to layers for
two popular CNN architectures. In this chapter, it is aimed to further extend the generic
CNN performance modeling by proving that it is possible to obtain automatically some
analytical models for general CNN properties sizes, for different devices and different
KPIs.

Hybrid (gray-box) modeling: If a partial number of architectural resources are known
or can be approximated, they can be used as a feature for performance estimation. This is
especially useful for custom logic development on FPGAs or ASICs where KPIs are more
affected by architecture choices than by the algorithm-related transistors activity. Machine
Learning (ML) methods like Artificial Neural Networks (ANNs), Support Vector Machines
(SVMs) and RF applied to modeling resource utilization and throughput estimation of
High-Level Synthesis (HLS) generated hardware have proven to reach 95% accuracy in
favorable cases [MFS+19]. More complex application-specific modeling techniques using
e.g. reinforcement learning have also reached high accuracy for FPGA performance and
resource prediction [WXH21]. While these models reach high precision, they employ
complex models, non suitable for large DSEs for which great numbers of decision com-
binations must be evaluated. When considering the specific case of CNN accelerators
characterization, Ma, et. al [MCVS20] relate the latency and throughput of hierarchical
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memory accesses of a CNNs accelerator to the size of their IFM. This study focuses on
the memory transfers between an external Dynamic Random Access Memory (DRAM)
and the on-chip memory before and after processing with less than 3% error difference.
In [GKBS20], Goel, et. al create a run-time profiler to estimate CNN time execution on
Xilinx® Deep learning Processor Unit (DPU) using regression techniques, and MACs oper-
ations as application-specific features. This model obtains 7% of errors on time execution
estimation with Decision Tree (DT), RF and polynomial models. In [YCS17], the number
of MACs operations is shown not to be sufficient for an efficient energy approximation. It
is discussed how data transfers must also be taken into consideration into the modeling
features. While performance prediction methods mentioned above can be executed fast,
they do not automate the procedure for obtaining KPI estimates, and each study targets
one or a set of specific use cases.

Table 2.1 summarizes the methods of fore-mentioned taxonomy. Although the previ-
ously analyzed state-of-the-art studies cover multiple devices, features and input datasets,
each of these methods focuses on the study of a particular use case. System heterogeneity
has been demonstrated to bring time and energy efficiency to CNN systems. Optimized
architectures combine e.g. FPGA and GPU architectures [VGG+20, TST+19] that exploit
respectively pipeline-level parallelism and data-level parallelism. However, having a
white-box model for a heterogeneous platform with all hardware specifications for all
CNN applications is extremely difficult. Additionally, constantly adding up novel archi-
tectures make use-case specific models fast obsolete and call for automated modeling
procedures, which is one of the biggest drawbacks of white-box modeling. In this work,
a hardware-generic black-box and KPI-generic method for black-box modeling are pro-
posed, and effort are focused on assessing the confidence level of the obtained model. The
method is generic to the three previously defined levels of modeling. Using the proposed
method, one can derive black-box multi-variable lightweight analytical models using SI,
and build them for multiple KPIs with a small number of parameters. The method builds
on ensemble regression to reach this objective [MMSJS12]. The result of such analytical
models, can be further deployed for gray-box modeling. For instance, extrapolating the
energy consumption from resource utilization on a CNN design.
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Approach Features Works Models Platform KPIs

Mechanistic
(White-box)

PMCs
[LB06]

Linear
Non-linear

CPU
Latency

[SFML19] Linear
Energy
Power

[DGB+20]
LP
ILP

Throughput

Instructions
[BIM16]

[NMN+10]
Linear

GPU
Power

[OBSK17]
Linear

Non-linear/RF
Latency

Empirical
(Black-box)

CNN
hyperparemeters

[VMFBCGRV20] Linear CPU
Latency
Energy

[JZK+20] Roofline ASIC Latency
[WWP09] Roofline CPU Latency

Hybrid
(Gray-box)

Resources
[MFS+19] ANNs/SVMs/RF

FPGA

Throughput

[WXH21]
Reinforcement

learning
Throughput

Memory
accesses

[MCVS20]
Non-linear
(Analytical)

Latency
Throughput

MACs
[GKBS20]

DT/RF
Polynomial

Latency

[YCS17] Analytical Energy

TABLE 2.1: Modeling taxonomy according to Pimentel et al. [Pim17] and García-Martin et al.
[GMRRG19]

2.4 Problem definition: Applying Flydeling to CNN KPIs

This section discusses the definition of flydel and the application of flydeling SI to CNN
KPI estimation. The modeled KPIs are power, latency, energy, throughput and hardware
resources. Finally, we describe the ensemble of proposed models and how they are selected
for a specific metric from single-variable to multi-variable regressors for FPGA, CPU and
GPU.

2.4.1 Flydel definition and properties

We define flydel as a combination of many single-variable mathematical model to find
an analytical relation between a KPI and an activity feature. First a single-variable model
m̂(xi) maps all the input activity features to a real-value, m̂ : N → R. Where xi is the
single-variable activity feature. For this dissertation, each activity feature is a natural
number, xi ∈ N since each CNN property can only take positive integer values. While,
m ∈ R to represent the physical values of the KPIs. The following Single Input Single
Output (SISO) analytical models to obtain a flydel are used:

• Polynomial (n-order, n + 1 parameters): m̂(xi) = ∑n
j=0 ajx

j
i
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• Logarithmic (2 parameters): m̂(xi) = a1ln(xi) + a0

• Exponential (3 parameters): m̂(xi) = a2axi
1 + a0

• Reciprocal (2 parameters): m̂(xi) = a1
1
x + a0

where ai is the parameter for feature xi. This function set can easily be extended in
case KPI fitting is not efficient. The n-order polynomial covers the linear and quadratic
models. Using a cost function with the regularization term, the ensemble chooses less
complex (lower order) models rather than over-parameterized models. As demonstrated
in Section 2.6, the logarithmic and exponential models help to discover better non-linear
relations over some KPIs, such as power and throughput.

FIGURE 2.1: Flydel models.

From Sections A.2 and A.3 from Appendix A, it is possible to analyze the curvature
(convex, convex or affine), monotonicity (non-decreasing, non-increasing or monotone)
properties and potential posynomials form (depending if coefficients are all positive)
for flydels. Figure 2.1 the single-variable building-block model selection for flydeling in
Section 2.5. Table 2.2 shows the curvature, monotonicity and if the selected models can be
formulated as posynomials. For more complex aggregation functions, such as function com-
position ( f (x) = h ◦ g = h(g(x))), these properties are extremely helpful to determine the
properties of the resulting function. As for instance, according to monotonicity, function
composition preserves curvature following the rules listed below [BV04, BKVH07]:

• f (x) is convex if h(x) is convex and non-decreasing and g(x) is convex.

• f (x) is convex if h(x) is convex and non-increasing and g(x) is concave.

• f (x) is concave if h(x) is concave and non-decreasing and g(x) is concave.

• f (x) is concave if h(x) is concave and non-increasing and g(x) is convex.

Since the aggregation function h(x) from previous Subsection is an affine function,
which is both concave and convex with non-decreasing curvature, the resulting function
f (x) will depend on the curvature of g(x). This means that all functions from flydels must
be convex, so the aggregation function can also be convex.

In the following subsection, we discuss the concept of feature in the context of CNNs
inference. We further define the covered KPIs.Finally, we explain how we combine
different analytical models to obtain a flydel through a methodology named flydeling.

1Using Taylor expansion approximation.
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Model
(Single variable)

Potential
Posynomial

Curvature Monotonicity

Polynomial (n=1) Yes Affine Non-decreasing

Polynomial
(n=2,. . . )

Yes
Pseudo
Convex

(over trained data)

Pseudo
Non-decreasing

(over trained data)
Reciprocal Yes Convex Non-increasing

Logarithmic No Concave Non-decreasing
Exponential Yes1 Convex Monotonous

TABLE 2.2: Flydel curvature, monotonicity and posynomial properties.

2.4.2 Using CNN properties as application activity

One of the main motivations of the deployment of heterogeneous platforms for CNN mod-
els is the presence of heterogeneity in both computation and communication CNN tasks.
In [LHBB99], the modern concept of CNN is introduced using a gradient-based learning
and parameter sharing over previously defined ANN, inspiring from the biological visual
cortex. In this subsection, we briefly describe the most common computing operations of
CNN models:

• Convolutional layer (Conv): A convolutional layer receives as an input a multidi-
mensional tensor (Input Feature Map (IFM)) I of size HI ×WI × CI from a previous
layer l − 1. This tensor is multiplied and accumulated with a sliding window of a
kernel tensor K of size kh × kw × CI × N. Typically, the kernel matrices are square so
kh = kw. The resulting OFM O on the current layer l is computed as:

O(x, y, n) =
CI

∑
c=1

kh

∑
i=1

kw

∑
j=1

Kn(i, j, c)·I(x + i·sh, y + j·sw, c)
(2.1)

while the OFM dimension are computed as:

⌊HI − kh + 2ph

sh
+ 1
⌋
×
⌊WI − kw + 2pw

sw
+ 1
⌋
× N (2.2)

where sh and sw are the stride in each direction of the 3D IFM [GlLJ18]. Strides
perform downsampling and make the size of the tensors reduce when progressing
into the network. They are particularly used in classification purpose CNNs and in
the first layers of auto-encoders. In many image classification CNNs sh = sw = 1. ph

and pw are the padding on both dimensions used to preserve the border pixels of
the image, so that WO = WI and HI = HO, when ph = pw = b k

2c. When increasing
the stride, the size of the output tensor is reduced.

• Fully Connected Layer (FC): The CNN networks presented in this manuscript
include in the last layers a classification ANN where its kernel filter interconnects all
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the previous layer’s neurons to the output layer. The IFM is squeezed in a vector of
size 1× HIWICI multiplied, accumulated and mapped by the matrix kernel of size
HIWICI × N. Therefore the resulting output vector is obtained with the following
expression:

O(n) =
HIWI CI

∑
x=1

Kn(x, n)·I(x) + b(n) (2.3)

• Pooling layer: The pooling layer serves as a spatial invariant and feature compres-
sion between layers. Pooling layers employ a variety of data downsampling methods
such as max or average pooling windows of size kw = kh with a stride sw = sh of
the size of the pooling filter. Similar to the stride in a convolutional layer, the IFM is
reduced from HI ×WI ×CI to an OFM of

⌊
HI−kw

sw
+ 1
⌋
×
⌊

WI−kh
sh

+ 1
⌋
× N. As a side

effect, inter-device intercommunication is lowered if feature map communication
happens after pooling layers.

• Activation (ReLu and TanH): introduce non-linearities into CNNs. CNNs mostly
use three different activation functions: sigmoid f (x) = 1

1+e−x , hyperbolic tangent
f (x) = tanh(x) and Rectified Linear Units (ReLU) [KSH12] f (x) = max(x).

One of the main challenges for system identification is the selection of input features.
It has been demonstrated in state-of-the-art that the computational and communication
complexity of CNN is strongly linked to the size of IFMs and OFMs [ZWTD19]. As
shown in Equation 2.1 in Section 2.5, these tensor maps depend on the properties of the
convolutional layer. Thus, these properties as application activity features are selected:

• HI ×WI : Input tensor width and height on the IFM.

• CI : Input channel depth of the IFM.

• k: Size of convolution filter kh × kw with k = kh = kw. This variable modifies the size
of the OFM.

• N: Number of convolution filters. This variable modifies the size of the OFM.

The following subsection describes how these application activity features are used
to establish a relation with the KPIs. Expressed differently, for this use case study, the
elements used for the set X in the tuple S are X = {HI , WI , CI , k, N}.

2.4.3 Device Key Performance Indicators (KPI) models

A KPI is a quantifiable measurement that illustrates the effectiveness of the system towards
a specific goal. The objective is to demonstrate the capability of flydeling by finding the
analytical performance models M̂(HI , WI , CI , k, N) of a CNN computation block given a
set of configurations and numerical values. These models estimate a given KPI. This must
be done for each individual device;M̂CPU , M̂GPU and M̂FPGA, so as to characterize each
processing component of the heterogeneous platform. The estimated models M̂, to be
trained from platform measurements, comprise the following KPIs:
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• Power P̂(HI , WI , CI , k, N): Average power dissipation of a CNN layer in W.

• Latency ˆLAT(HI , WI , CI , k, N): Average latency or time execution in ms for the
processing of one IFM.

• Energy Ê(HI , WI , CI , k, N): Average energy consumption in J of the processing of
one IFM. The energy is highly correlated to power consumption and latency. As
a matter of fact, if both the instant power consumption and time execution of a
task can be efficiently modeled, then the energy can be calculated by the integral of
instant power in a time interval (from ti to t f ):

Ê(t) =
∫ t f

ti

P̂(t)dt (2.4)

Moreover, the energy can be approximated by employing the average power con-
sumption:

Ê(t) = P̂(t) · ˆLAT(t) (2.5)

This is useful when the variations of power consumption are due to measurement
noise and the evaluated task remains the same (same configuration and same nu-
meric values of operations).

• Throughput T̂(HI , WI , CI , k, N): Throughput of a task in GB/s. Similar to the energy
model, the throughput can be inferred from the latency model. For instance, for
fully pipelined implementations of n CNN tasks, the throughput can be obtained by
computing the reciprocal of the total execution time:

T̂(HI , WI , CI , k, N) =
1

∑n
ˆLATi(HI , WI , CI , k, N)

(2.6)

On the other hand, for a parallel execution, the throughput depends on the slowest
task allocated on an accelerator:

T̂(HI , WI , CI , k, N) =
1

max(M̂CPU , M̂GPU , M̂FPGA)
(2.7)

• Resources R̂(HI , WI , CI , k, N): Resources mapped on the device accelerator. In the
case of the FPGA, it can describe the number of logic elements like Adaptive Look-
Up Tables (ALUTs), Adaptive Logic Modules (ALMs), Logic Array Blocks (LABs)
or memory components like registers, M20K blocks, memory LABs or Block RAMs
(BRAMs).

• Communication latency ˆLATComm: Inter-device communication latency between
processing elements platform. This KPI is directly proportional to the bit width
precision and number of elements in the OFM tensor to be transferred. The total size
of the data transfers can be computed using Equation 2.2 for each layer.
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Although KPIs are user-defined, they can be dictated by the system requirements.
Depending on the objectives of the system, some KPIs can be obtained as a composition
of more basic KPIs. As for instance, the energy consumption can be calculated by the
element-product of latency and power average, or Ê = ˆLAT · P̂. Similarly, in a non
pipelined implementation with time execution dependency, the throughput is simply the
inverse of the latency, or T̂ = 1

ˆLAT
. In this Chapter, setM in the tuple S is defined with

these KPIs or M̂ = {P̂, ˆLAT, Ê, T̂, R̂} with M̂ ∈ M. The following subsection describes
how these single-device models are obtained and built together to estimate a multi-variable
model for the different KPI using an ensemble technique.

2.4.4 Automated model selection with the competitive ensemble modeling

In previous subsections, it has been stated the objective of predicting KPIs from CNN
hyperparameters used as application activity features, and proposed to use regression
methods to estimate model parameters 2.4. However, the objective is for the designer
not to guess the mathematical relationship between activity and KPIs but rather to let
flydeling find the best function. This multi-variable or multi-predictor model assump-
tion can be difficult in practice but several heuristic-based techniques exist to obtain a
suitable model. The proposition is to use a set of single-feature models, also known as
an ensemble, to find the relation between each activity feature and each KPI individually.
For this purpose, the dimension of M̂ : N5 → R is reduced to m̂(xi) : N → R. In this
dimensionally-reduced model m̂(xi), xi can take the value of any activity feature xi ∈ X
with X = {HI , WI , CI , k, N} while m̂ is an element of M̂ (m̂ ⊂ M̂) targeting any KPI
m̂ ∈ {P̂, ˆLAT, Ê, T̂, R̂}.

In Section 2.3, ensemble learning is motivated by the combination of diverse models to
improve a final prediction. In this chapter, it is proposed to use the single-variable models
defined in the previous subsection as weak learners or weak regressors. As discussed in
[FRW02], for competitive ensembles, low error correlation and model diversity are desired
attributes for the base models. To achieve these purposes, techniques such as dataset
subsampling and multiple regression methods, are used to get a better generalization
[MMSJS12]. To avoid error correlation, each set of weak-regressors is trained with a
different dataset based only on a single feature variable as input, keeping constant the
other features. This implies, for example, that some models will be trained to learn the
relation between the power performance P and the number of kernel filters N, while
others will fit the relation between throughput T and the convolution filter size k, etc.

Competitive ensemble modeling for regression, as many other competitive ensemble
techniques, requires the definition of two stages: selection and aggregation [FRW02].
The first stage, illustrated in Figure 2.2, usually known as selection, is where lies the
core motivation of competitive ensembles. In this first step, a deterministic or stochastic
criterion is defined to choose the best performing models. The extraction of a single model
per activity feature xi is chosen, by taking the model m̂i with the smallest cost function Cm̂i ,
after parameter estimation using both methods from Section 2.5: linear SI for the linear
model and Levenberg-Marquardt Algorithm (LMA) for all the other non-linear models.
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FIGURE 2.2: Competitive ensemble of single-variable models as weak regressors combined to
build a multi-variable strong regressor for a performance model.

m̂(xi) = arg min
m̂i

(Cm̂i) (2.8)

The cost function is defined as a combination of two terms: a loss function and a
regularization term to avoid overfitting, as shown in Equation 2.9. In this work, a loss
function based on the residual Root Mean Square Error (RMSE) is selected. Because it
is more appropriate for dealing with a small dataset of few thousands of samples, as
discussed in Section 2.6.1, regularization is important for reducing overfitting. In this
work a L2 regularization term is used.

Cm̂i = LRMSE
m̂i

+ λ||θm̂i ||2 (2.9)

The hyper-parameter λ penalizes models with a large number of parameters or with
large parameters. Adjusting this value modifies the criterion of selection stage on the
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ensemble. The selected loss function can be computed with the following equation:

LRMSE
m̂i

=

√
||Em̂i ||2

K
(2.10)

The second stage shown in Figure 2.2 is the aggregation or combination. In this step, the
multi-variable model is obtained from a non-linear combination as strong regressor.

M̂(HI , WI , CI , k, N) = ∏
i

m̂i(xi) (2.11)

The resulting model is a non-linear expression, representing the relations with the
different feature variables. Product function in Equation 2.11, was selected arbitrarily to
reflect the multiplicative nature of the resource utilization. It is theorized, that since the
number of hardware resources increases multiplicative with respect of each IFM dimen-
sion, then also do the execution time and energy consumption. Some more traditional
additive aggregation functions in ensemble learning, like averaging and weighted sum
[MMSJS12], were tested with poor estimation results. Furthermore, since the previously
estimated parameters do not consider the influence of the other inputs because of each
feature decorrelation during training, a posterior parameter estimation must be done
again at this stage. On this second identification stage, the entire dataset is used with
no sub-sampling. This re-training is done at the strong-regressor SI stage. The average
parameter values of the single-variable models from selection stage, is used as starting
point. Algorithm 1 shows the pseudo-code for model estimation using the proposed
ensemble.

Algorithm 1: Methodology for dataset generation and SI
Result: Tuple S = 〈M,X , Θ,D〉
Input: KPI modelsM and features X
Output: Estimated parameter Θ and dataset D matrices
# Dataset subsampling d for weak-regressor SI;
for xi in X do # Keep feature xi variable and all others features z as constants

xi←variable;
z←X − xi;
d← D(xi, z, P, LAT, E, T);

end
# Weak-regressor SI with LMA and cost function computing;
for kpi,xi,mi in KPI,X ,M do # For every KPI, feature and model

θ ←LMA(d,xi,mi);
RMSEmi ←RMSE(kpi,xi,mi,θ)+L2(θ);

end
# Strong-regressor SI with competitive ensemble selection and full dataset training;
m← arg min

mi

(RMSEmi);

M←prod(aim);
M← M;
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2.4.5 Heterogeneous model definition

In previous subsections, it has been extensively explained the ensemble-based method-
ology to derive several multi-variable device models from single-variable modeling. In
addition, it has been proposed a similar approach to have communication overhead profil-
ing. In this subsection, the discussion is further extended on how these individual device
behavioural models are combined together to estimate the performance of a heterogeneous
system model M̂Het from M̂CPU , M̂FPGA and M̂GPU .

Heterogeneous KPIs are highly dependant on the selection of the partitioning tech-
niques. The resulting set of task partitions must be offloaded to each accelerator by a
scheduling mechanism. In [OHY+18], a number of heterogeneous models have been
proposed to estimate the total execution time, energy consumption and communication
time on contiguous partitions. In this section, this definition is extended to complement
the previously-defined single-variable models. In [OHY+18], the latency is defined as the
time execution sum of each task on both devices, given by a partition lpart from a finite
number of partitions L. Furthermore, the communication latency for the IFM and OFM
must be considered and added to the heterogeneous model.

ˆLATHet(X, θHet, lpart) = ∑
l=lpart

ˆLAT
l
Device + ∑

L

ˆLAT
l
Comm (2.12)

Where X is the set of all predictor variables and θHet is the resulting superset from
the union of the parameters from the processing devices and communication models.
Using this definition of latency, the total energy consumption is estimated considering
idle power consumption using the following expression:

ÊHet(X, θHet, lpart) = ∑
l=lpart

ˆLAT
l
Device · P̂l

Device +

 ˆLATHet − ∑
l=lpart

ˆLAT
l
Device

 · P̂idle
Device+

∑
l=lpart

ˆLAT
l
Comm · P̂l

Comm +

 ˆLATHet − ∑
l=lpart

ˆLAT
l
Comm

 · P̂idle
Comm

(2.13)
Where P̂l

Device is the active power consumption of a give partition on the device. While
P̂idle

Device is the idle power consumption when the device is not doing any processing. During
this idle time, the device may be transferring feature maps to the another device. Thus,
it is important to consider the total system estimation with the communication latency,

ˆLAT
l
Comm, and also the idle energy consumption of each communication link, This is done

by multiplying by its respective idle active power consumption P̂idle
Comm.
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2.5 Flydeling: randomly-excited system identification applied to
KPI estimation

This section describes the proposed flydeling three-step methodology. A flyweight model
(flydel) is characterized by a very low number of parameters, while its computational
operations may require complex operations. This section covers the concepts of system
stochastic excitation and validation. Furthermore, two techniques for parametric lin-
ear and non-linear SI algorithms are discussed, to be used in Section 2.4 for building
performance models from ensembles.

Most modern compilers are optimized to avoid unnecessary memory transfers so as to
avoid inter-device time overheads [CWV+14]. If some variable values remain unmodified
over time, the communication latency is lowered and less energy is required to execute
computation. This is the case of Nvidia® CuDNN tool, where static variables, such
as weights of IFMs remain in device memory cache. Therefore, models trained over
measurements on these optimized systems may perform well on static applications, where
all weight kernel values are already loaded in memory. However, they are not able to
generalize to non-static use-cases where all transfers do occur, for instance in applications
with high memory transfers and low Computation-to-Communication Ratio (CCR) and
low Bandwidth (BW). A low CCR means that the application spends more execution time
in memory transfers than in realizing actual computing. This is the ratio of the data to
compute divided by the data to transfer. This is usually a consequence of reduced capacity
of data transfers in a band, known as BW. Such a bias toward static use-cases leads to
derived models whose predictions generally become over-optimistic. To avoid bias, in
SI, black-box systems are excited with diverse input sequences that aim at capturing
all the modes of the system. Moreover, the model itself, and its input features, must
be representative enough of the problem to fit this type of phenomena. The frequency
response, in the domain of linear dynamical systems, defines the behaviour space of the
output with respect to different temporal stimuli. Inspired from this principle, a three-
step methodology is presented for modeling embedded processing performance, which
goes from a random system excitation to a cross-validation test for model evaluation. By
randomly-exciting sequence, it is referred to a stream of input-training data that is used
to excite a system model so that stable and accurate estimates can be derived from the
response to the excitation. The flydeling methodology from Figure 2.3 is decomposed as
follows:

1. Dataset generation with a random input sequence that serves as a stochastic exci-
tation input for training model parameters at a structural-level, and IFMs tensors,
weight and bias values are initialized with a random input sequences at a data level.

2. Flydel System Identification (SI): Model parameters are estimated, using ensemble
regression with both linear and non-linear models.

3. Flydel test using K-fold cross-validation for robustness evaluation, where K is a
parameter of the methodology. For this validation step, K = 10.
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The first step of the methodology consists in applying a stochastic excitation to the
system for dataset generation at two different abstraction levels: at a data level and at a
structural level. The data level excitation sequences cover the values of the IFMs, CNN
weights and biases while the structural level samples stochastically the CNN hyperpa-
rameters such as the size of the IFMs, the number of kernel filters and the kernel filter
sizes. In the rest of this section, SI procedures are discussed. They will be used for model
validation in Section 2.4.
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2.5.1 System identification

Following the dataset generation from a randomly excited system, the second step of the
model estimation is executed. SI is a technique that was originally used in control theory
to estimate the parameters of a proposed mathematical expression. These mathematical
expressions are known as models [JP70]. The models are built from measurement-based
dataset samples, as the solutions to an inverse problem. The SI method applied to KPI
prediction can be defined as a 4-tuple, S = 〈M,X , Θ,D〉. WhereM is a set of multiple
system performance models, each adapted to fit a chosen KPI. Each model, M ∈ M, is
a function that maps input features to the given KPI M : R|X| → R. Models of KPIs are
chosen to be well-defined smooth differentiable continuous functions. The application
activity set X contains the independent variables, X = {HI , WI , CI , k, N}, resulting from
the random sequence defined in the previous subsection at a structural-level. For this
purpose, application-specific sets of descriptor variables from the different CNN operation
configurations are used. The set Θ is composed of all coefficients or parameters trained
using the identification techniques described in this section. Depending on the model,
these parameters can be obtained in one-shot, analytically or iteratively by numerical
approximation. The previously defined dataset D contains the measured outputs of the
system to be identified, stochastically-excited at a data level. Section 2.6.1 describes how
this dataset is empirically generated using the excitation methodology from previous
subsection.

FIGURE 2.4: General SI block diagram. M is the system to be identified by model M̂. Values of
IFMs, weights (ω) and biases (b) are randomized at data-level. The CNN activity features (x[k])

are randomized at structural-level.

Figure 2.4 shows a general block diagram for system identification. The system M
and estimated model M̂ ∈ M are fed with the input x[k] ∈ X , for the discrete case, with
k = 1, 2, 3, ..., K samples from previous section. As a response, both the system and model
generate a set of K samples y[k] ∈ D and ŷ[k] ∈ D, respectively. The information is
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extracted in the form of the parameters estimated or updated after comparing the system
against the model. This comparison is done usually by computing the difference or errors
from each instance, or eM[k] = y[k]− ŷ[k]. These error residuals eM[k] are used to estimate
how precise the model is from a LSE perspective.

Models are categorized into linear and non-linear. Depending on whether the number
of parameters is fixed or can vary during optimization, models are also divided into
parametric and non-parametric, respectively. Depending on the chosen optimization
solution, models can be trained using analytical or numerical methods [JP70]. Analytical
methods focus on obtaining an exact solution on a well-defined mathematical expression or
problem. However, in most cases, these solutions are time consuming or non-trivial to find.
In those cases, numerical methods can approach to an acceptable solution by evaluating a
set of relatively simple operations. In this work, linear and non-linear parametric system
identification are used with the objective to train models from small training sets and from
maintaining the number of parameters as low as possible, as explained in Section 2.6. Both
solutions are also described later in this Section.

2.5.2 Stochastic sequence excitation

Response From Excitation (RFE) measurements are required before proceeding with SI.
The excitation input sequences are split into two abstraction levels: structural-level (coarse-
grained) and data-level (fine-grained). The structural-level focuses in the configuration of
the CNN FMs shapes as introduced in Section 2.4. Each layer on a CNN have a different
structural configuration with a number of MAC operations and memory accesses, that
directly impact the deployment performance. Similarly, at a data-level, the individual
element values of the FMs influence the efficiency of both computation and communication.
This is because the compiler optimize for data reuse that directly depend on the intrinsic
patterns of memory accesses and reduced computation. In this Subsection, both abstraction
levels are discussed.

When building black-box system models for design space exploration, a designer aims
at interpolating and extrapolating measured system configurations to unknown system
configurations. Hence, a system must have a rich excitation input, representative of a
wide variety of configurations for a given application. In SI, this is achieved by using a
random sequence, that follows a probability distribution representative of real data in
order to extract the output response [JP70]. A true random sequence cannot be generated
by a deterministic system, but a designer can create a pseudo-random sequence with wide
enough periodicity for exciting the application. Pseudo-random sequence generation can
be efficiently implemented in software by calling random number generators on either
CPU or GPU processing elements to excite the data-level values. Thus, in the case of a
CNN excitation, and without taking hypothesis on the distribution of data and weights, it
is possible to define a random distribution input tensor using random number generation
software tools using, e.g., torch.rand function on PyTorch [PGC+17] with CUDA support
for GPU programming. However, the FPGA case is more complex. Indeed, random
generation tools such as the VHDL math_real package are not synthesizable, making
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them usable for functionality testbenches but not for empirical measurements. For this
reason, a hardware implementation of a Pseudo-Random Binary Sequence (PRBS) is
needed to excite the system and build the desired models. Many techniques have been
proposed to generate on FPGA randomly-distributed sequences [BGCO18]. In [BGCO18],
Linear Feedback Shift-Registers (LFSRs) implementations on FPGAs are studied as normal
random sequence generators. From an implementation perspective, one of the simplest
techniques to achieve these sequences is to instantiate a cascade of delays and select their
outputs through a bit mask. The input of the cascade is fed back using a user-defined
logical function, combining the selected bits from the bit mask. The output of the logical
function is fed back as input of the first delay block. In the Z-transform domain, the z−1

blocks represent the discrete delay of a single sample with a sampling frequency fs. The
length of this delay cascade dictates the period of the LFSR by (2N − 1) · Ts, where N is the
length of the cascade and Ts is the sampling period. Depending on the application and the
number of k = 1, 2, 3, ..., K samples required: N, the bit mask and the combinational logic
function can be chosen in a deterministic way [BGCO18]. As an example, if a designer
needs to create a random sequence with 1K elements to generate an input tensor with
dimensions 32× 32× 1, a delay length N = 11 is selected to ensure a Pseudo-Random
Binary Sequence (PRBS) with the desired periodicity. The periodicity of the sequence
depends on the AND bit mask. For this work, the 9th and 11th delay elements are chosen
and a logic function of the XOR [BGCO18]. Therefore, the input of the first delay would
be x = z−9x ⊕ z−11x, being z−11x the output of the cascade and the sequence used to
excite the systems. Depending on the initial conditions of the N delayed samples of x, it is
possible to add a random seed for variety and reproducibility purposes. The creation of
a randomized input allows us to obtain a measure dataset of the output of each device
and further study their response. This is especially important on custom logic devices like
FPGAs and ASICs. Where, from an electronics perspective of the hardware, the dynamic
power modeling highly depends on the dynamic switching frequency of the transistors
and on their hardware technology [NLPH21]. Figure 2.5 shows the two abstraction levels
at a different granularity. Subfigure 2.5a depicts the internal values of the IFM values,
weight and biases values, while Subfigure 2.5b shows the tensor configuration shapes.
Following subsections discusses both these excitation levels.

2.5.2.1 Structural-level stochastic excitation:

The set X is defined as the set that contains all independent variables or descriptor variables
that feed the models as input, also commonly known as features. The structural configura-
tion of the CNN layer defines these features. Features, also known as predictor variables,
are referred as application activity [PMD+17]. Application activity is an abstraction of
the pressure put by an application on a platform. It can take many forms but aims to
be the minimal application-side information required to compute, with fidelity [JIP10]
or accuracy, the value of a KPI, or of a set of KPIs. The right selection of the descriptor
variables is one of the most critical tasks of the SI problem at a coarse-grain. Depending
on the nature of the system, these variables can be easily chosen, while on other cases,



32
Chapter 2. Flydeling: Performance Models for Hardware Acceleration of CNNs through

SI

(A) Data-level excitation. (B) Structural-level excitation.

FIGURE 2.5: Stochastic excitation abstraction levels.

a deeper correlation understanding is required between dependent and independent
variables. In this section, application-specific sets of descriptor variables from the different
CNN operation configurations are used. These CNN structural properties are shown in
literature to be well related to KPIs due to the embarrassingly concurrent nature of the
applications [VMFBCGRV20], and to the large parallelism of hardware substrates that
make strongly non-smooth behaviors such as timing anomalies [CHO12] non dominating
in practice.

The flydeling procedure includes a model validation step to determine whether the
application activity contains features that are sufficiently representative for the required
modeling task. In particular, the features should be suitable to model the application
workload and to compute target KPIs for a given target platform (the hardware together
with its compilation and synthesis setup) through continuous functions. In this chapter,
each hardware architecture is modeled in isolation. Cross-architecture modeling that
would generalize a unique cross-platform model is kept for future work. It would require
additional features, representing architecture e.g. with a Model of Architecture (MoA)
[PMD+17]. The chosen CNN activity features are the dimension of the IFM, HI ×WI × CI ;
and the dimension of the kernel filters, k× N. This choice is covered in details in Section
2.4. The configuration space is randomly sampled by stochastically selecting from each
feature space.

2.5.2.2 Data-level stochastic excitation:

At a finer-grain, a dataset D from the random structural configuration samples that
contains the sampled outputs of each KPI with each input variable from X is built. The
dataset D comprises information on the system response. In other words, it contains the
values of the IFMs, OFMs, weights and the obtained KPI measurements. Nevertheless,
since these samples are used to train, test a validate the proposed models from a Least
Squares Error (LSE) perspective, it is required that these dataset inputs are randomly
excited at data-level values. Explained differently, the input tensor values, weights and
biases shall be normally randomized to excite the processing elements for the model to



2.5. Flydeling: randomly-excited system identification applied to KPI estimation 33

be generalizable. As previously explained in this Section, this is especially important for
custom logic design.

Algorithm 2 shows the steps for the stochastic input generation on a device platform
at both structure- and data-level. The algorithm take as inputs the desired KPIs to be
modelled with a given set of features (D). A stochastic distribution is generated to excite
the system at two levels: The first for-loop, the structural-level, modifies the shape or
dimensions of the IFM tensor by changing the features of set X which is uniformly-
distributed over the CNN configurations. The second for-loop, the data-level, varies the
values of the IFM elements, weights and biases for K samples with a normally-distributed
sequence. Most trained CNN models follow a normal distribution for kernel weight and
bias values, as shown in Subsection 2.6.2. The innermost loop takes a measurement of
each KPI and averages it by the total number of K samples.

Algorithm 2: Random excitation methodology for dataset generation
Result: Dataset D
Input: Features X and Key Performance Indicator (KPI)
Output: Dataset D matrix from uniformly-distributed sample on X
# D Dataset generation;
# Structural-level stochastic excitation;
X←uniform(HI , WI , C, k, N);
for xi in X do # For every feature

for i← 1 to K do # For K samples
# Data-level stochastic excitation;
IFM←uniform(HI , WI , C);
ω ←normal(k, C, N);
b←normal(N);
for kpi in KPI do # For every KPI

average_kpi←average_kpi+k_measure;
end
average_kpi←average_kpi/K;
D[i]←tuple(xi,average_kpi);

end
end

2.5.3 Linear parametric SI

In control theory systems, the inputs of the system must have a rich frequency response
to ensure an output response representative of the underlying system. Usually, this is
done by supplying a stochastic input signal or a random sequence. SISO linear parametric
model of 0-order (no delay) can be solved by analytically finding optimal parameter vector
θ∗ from θ∗ = U+V.V is the output vector of K samples of the linear model and U is the
input matrix of the inputs. These values are obtained from the residual vector E = V−Uθ.

U+ denotes the Moore-Penrose pseudo-inverse defined as U+ = (UTU)−1UT, where
the number of (linearly independent) samples is greater than the order of the linear model.
In other words, the model must not be over-parameterized, keeping K greater than the size
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of the vector θ, which is a common practice for SI and regression applications. For higher
order linear models with temporal dependencies, the U matrix not only includes current
values of the input, but also previous or delayed information of the output samples of
y[k]. In this case, the maximum delay of y[k] sample determines the order of the SI model.
Furthermore, if SI is extended to the Multiple Input Single Output (MISO) case, then the U
matrix also includes the samples of the different inputs xi[k]. Where xi[k] is the k-th sample
of the i-th input. For the use case of this work, SI is applied on a MISO setup without
temporal dependency (Section 2.4). Nevertheless, in the more general case, dynamical
dependencies may exist and flydeling may require the use of feature sampling over time.
A time-dependency test for a given application before proceeding with model proposal
for the ensemble model is recommended [Kee11].

2.5.4 Non-linear parametric SI

In contrast to the previous method, Levenberg-Marquardt Algorithm (LMA) is a numerical
solution for the Least Squares Minimization (LSM) problem that can be efficiently applied
on continuous non-linear differentiable estimation models [Lev44, Mar63]. The algorithm
convergence is sensitive to the number of parameters, normally suitable to models with
only tenths of parameters. As demonstrated in Section 2.6.2, the use-case is ideal for the
utilization of this algorithm. LMA is often described as a generalization combining both
gradient descent and Gauss-Newton. The i + 1 iteration of traditional gradient descent
follows the path towards the direction of minimum error λ∇ f (y, x, θi). λ regulates the
step size of each iteration. The function f is to be minimized given by the LSE criterion,
usually L2 norm f (E) = 1

2 ||E||2.
Levenberg [Lev44] proposed a combination of both methods by approximating the

curvature using the Hessian H into gradient descent method. However, when λ is larger
than the Hessian, the curvature of the residual function is not taken into consideration.
Marquadt [Mar63] modified the update rule to consider large steps in low curvature and
small steps in steep curvature θi+1 = θi − (H + λdiag(H))−1∇ f (y, x, θi). This is known as
the update rule for LMA. This is one of the most used heuristic-based algorithms for ML,
since it has been demonstrated to perform well on practice. Furthermore, it is a suitable
method for small parametric models with few parameters and samples [Ran04] compared
to other model approximation techniques like kernel-based techniques, such as SVMs.
SVMs for regression may require long training time on big measurements dataset and may
be difficult to tune while choosing a right kernel function [WH05]. Despite the fact that
these models usually perform better for more complex models, it is shown that simple
lightweight model selection can be suitable for some problems. All these observations fit
accordingly to the case of study as described in the following sections.

2.5.5 Model validation

The third and last step of the methodology is the model precision evaluation using
cross-validation. The main objective of this validation is to test that the estimated set of
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model parameters (Θ∗) and an error-based cost function (C), treated as random-variables,
follow a probability distribution with relatively small variance, as a result of a random
evaluation process. To obtain the random-variable distribution, the estimated model must
be evaluated over different subsets of the data set D. In ML context, this is usually done
by splitting the dataset in folds and by training over some fold, while evaluating over
the remaining folds. This procedure is known as k-fold cross-validation. This evaluation
method avoids over-fitting over the whole dataset. Furthermore, the resulting parameters
distribution can then be analyzed as the required random-variable. This distribution can be
visually identified by analyzing multiple graphical illustrations of the obtained Probability
Density Function (PDF) or histogram. A vast number of techniques like: histogram
plotting, box plots, violin plots, probability plots, Q-Q plots, P-P plots, just to mention
some, offer insight into the nature of the random variable distribution. However, statistical
tests can give us a reliable information on the parameter Gaussian nature of the obtained
estimates in some cases these plots are evidence enough [GZ12]. It is demonstrated in
Section 2.6.2, that this is the case for flydeling, as applied to given use cases. It is thus
proven that indeed the parameter variations are result of a Gaussian process. Finally, to
determine if the parameters values of obtained models are suitable, an acceptance criterion
or OK/KO test is defined. In the validation stage, it is proposed an acceptance criterion
based on the statistical second central moment, the variance σ2. A threshold inferior to
10% of the normalized standard deviation is selected for each parameter distribution from
the k-fold cross-validation. Algorithm 3 sums up the integration of these concepts from
ML, statistics and automation for a validation stage.

2.6 Flydeling evaluation and results

In this section, the experimental setup is described for testing flydeling on real CNNs and
platforms, from the dataset generation D to estimation of the target KPIs. In Section 2.4, it
is covered and shown examples of the individual performance for a particular device. At
the end, in Subsection 2.6.2, the results of the homogeneous platform measurements for
different hardware modules are discussed.

2.6.1 Dataset generation

Dataset D is composed from a set of measurements over each KPI, each activity feature
on X and for each device d, or equivalently R|M|×|X |×K×|d|, with K samples and where
| · | is the operator cardinality for a given set. In the given use-case, the heterogeneous
platform has 3 devices; the CPU, GPU and FPGA. Therefore, |d| = 3. These data points
are used by the SI regressors to obtain the CPU, GPU and FPGA device KPIs models
describing the CNN processing block. As depicted in Figure 2.6, for the experimental
setup, a custom heterogeneous platform is employed incorporating an Nvidia® Jetson
TX2® embedded CPU-GPU (green), and an Intel® Cyclone 10 GX FPGA (blue) using
a dataflow Direct Hardware Mapping (DHM) technique [APS+17]. Interconnection is
established by a Peripheral Component Interconnect Express (PCIe) Gen2 x4 (5 GT/s)
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Algorithm 3: Methodology for model validation
Result: Parameter distributions and validation
Input: KPI modelsM and dataset D
Output: Estimated parameter Θ, metric distributions and validation decision val
# 10-fold Cross-validation with shuffled dataset;
for i← 1 to iterations do # Several iterations
D←shuffle(D);
for n← 1 to 10 do # Split dataset in training and validation folds with LMA
Dtrain,Dval←split(D);
Θn ←LMA(Dval ,X ,M);
RMSEM ←RMSE(kpi,X ,M,Θn)+L2(Θn);

end
distΘ ←PDF(Θ);
σval ←NORM_STD(distΘ);

end
# Parameters distributions on test dataset;
for dev in Devices do # For every device

for kpi in KPI do # For every KPI model
dist_RMSEM ←PDF(RMSEM);
for θ in Θ do # For every parameter

distθ ←PDF(θ);
σθ ←NORM_STD(distθ);
# Acceptance criterion (OK/KO Test);
if σθ ≤ 0.1σval then # Acceptance OK criterion

# Accept parameter estimation;
val ←OK(θ);

else
# Reject parameter estimation;
val ←KO(θ);

end
end

end
end

communication channel (gray). The communication link between CPU-GPU lie on the
same System-on-Chip (SoC) die, therefore they share a common external memory. More
details on the prototype experimental setup are described in Appendix B.

Table 2.3 shows the specifications of this particular system. Since this platform incor-
porates a processing element with embedded custom logic, it is important to be specially
careful with the limited design resources. The logic and memory elements utilization will
be inferred by the selected models on the FPGA side. Since this platform incorporates a
processing element with embedded custom logic, it is important to be especially careful
with the limited design resources. The logic elements and memory utilization will be
inferred by the selected models on the FPGA side. The aim is to study in future work
how this flydeling can be help design partitioning at application-level for heterogeneous
platforms.
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PCIe Gen 2.0
x4 Lanes

Nvidia Jetson TX2 SoC Intel Altera Cyclone 10GX

Communication node
Processing element node Processing element node

IFM

OFM IFM

OFM

FIGURE 2.6: Architecture model as for the heterogeneous setup with three computing elements:
A Nvidia® Jetson TX2® CPU-GPU (green) SoC and an Intel® Cyclone10GX FPGA (blue) intercon-
nected through x4 lanes of a PCIe Gen2 link (gray). Each processing element and communication
node has an IFM and a OFM associated to it required for metric performance measuring on each

device. These measurements are used for the flydel data generation and estimation.

Device Frequency Memory Logic Resources

Nvidia® Jetson TX2 ®

CPU
(Denver + Arm® A57®)

2 GHz
LPDDR4 8 GB

Denver
cores

2

eMMC 32 GB
A57®

cores
4

Nvidia® Jetson TX2®

GPU
1300
MHz

Registers 2 MB SMs 2
L1 96 KB SMPs 8

L2 512 KB
CUDA
cores

256

LPDDR4 8 GB Shaders 256

Intel® Cyclone 10 GX®

FPGA
50

MHz

ALM
Registers

321 K LEs 220 K

M20K 11740 Kb ALMs 80 K
MLAB 1690 Kb DSPs 192
DDR3 1 Gb Mult 384

TABLE 2.3: Embedded heterogeneous platform hardware specifications.

2.6.1.1 Power

The first KPI measurements obtained for the dataset is the power efficiency in Watts.
On the Jetson TX2® Module-on-Chip (MoC), a Tegra X2® SoC is incorporated, which
integrates a multi-channel power monitor (INA3221) used to obtain the measurements of
power dissipation on the multi-core ARM® CPU and the Pascal-architecture GPU. The
3-channel power monitor is configured with a 64-sampling average filter. As described
in Section 2.5, SI requires an varied application activity to obtain a system response that
will be used by the ensemble to derive a behavioural model describing the energy KPI. A
random uniformly-distributed sequence is generated for the samples, but for the weight
and bias values a normal distribution is selected. This also helps to preserve application
generalization that the compiler may infer by varying the values. This is the case for
some tools, like Nvidia® CuDNN toolbox, where the compiler avoid redundant data
transfers, but its optimized for a specific data distribution, which may not be exploitable
on other CNN applications. This excitation technique from dynamic SI is incorporated for
the proposed use case. In Figure 2.8, the embedded GPU average power KPI response
in mW is used to estimate the energy by keeping the input image size constant and
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(A) ˆLATCPU vs HI ×WI (B) ˆLATCPU vs k× N (C) ÊCPU vs HI ×WI (D) ÊCPU vs k× N

(E) ˆLATGPU vs HI ×WI (F) ˆLATGPU vs k× N (G) ÊGPU vs HI ×WI (H) ÊGPU vs k× N

(I) ˆLATFPGA vs HI ×WI (J) ˆLATFPGA vs k× N (K) ÊFPGA vs HI ×WI (L) ÊFPGA vs k× N

FIGURE 2.7: Average generated subsampled dataset D on each embedded CPU (top row),
GPU (middle row) and FPGA (bottom row) platform by keeping constant |X | − 2 features
for 3D visualization. Each Subfigures row shows latency and energy KPIs on a single device.
The contour curves represent the relation between a given KPI and a single feature variable.
On Subfigures 2.7a, 2.7e, 2.7c and 2.7g; features k = 11 and N = 512 are kept constant. On
Subfigures 2.7b, 2.7f, 2.7d and 2.7h; features HI = 100, WI = 100 and C = 512 are kept constant.
On Subfigures 2.7i and 2.7k, features k = 5 and N = 10 are constants. Finally, in Subfigures 2.7j

and 2.7l, HI = 12, WI = 12 and C = 10 are kept constant.

sweeping over different operations and number of input channels. This average filtering
in time domain works as a low-pass filter on frequency domain, that is the reason the
measurements show a rounded shape between experiment iterations. The Sigma-Delta
Digital-Analog Converter (ADC) used on the Integrated Circuit (IC) uses a 500KHz
sampling rate following the specifications from manufacturer (Texas Instruments®). For
the measurements, data is retrieved by passing through the OS which introduces an
overhead on the number of samples taken per experiment iteration, however this is the
reason multiple iterations are executed on a single computing task, Conv1× 1 for example,
is averaged over 5000 samples. One program thread is executed on a dedicated CPU core
to read from the GPU power rail. Since shallow layers have less filter kernels, they take
less time to be executed in this example. Therefore, high frequency sampling variations are
taken into consideration for the average accumulator. The Jetson TX2® includes multiple
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performance modes that may vary the CPU core utilization and the operating frequency
of the embedded GPU to save energy. The power mode is set to the Max-N with a GPU
frequency of 1.3GHz and allowing the full use of the multi-core processor for the CPU
dataset generation. Note that multiple models,one per mode, could be generated to cover
the different cases. The software tools used to generate the CNN on the GPU was PyTorch
[PGC+17] version 1.0 with CUDA 8.0® support for the Jetson TX2®. While no state-of-
the-art CNN architecture is selected for the training, the activity features take common
values found on CNN applications from popular model zoos. Thus the obtained models
are likely to extrapolate to newer practical cases of CNN architectures. On the CPU-GPU
side, the IFM, weights and bias of the CNN are generated using the PyTorch function rand,
which generates a random number from a uniform distribution and initializes the tensors,
while randn generates a random normal distribution for kernel weights.

On the FPGA side, the Power Estimation tool® from Intel Quartus Pro Edition® version
17.1 is used targeting multiple convolutional task operations on the Intel® Cyclone 10
GX FPGA. The FPGA CNN synthesis design is based on the DHM technique [APS+17].
DHM maps directly the function on hardware, therefore its power varies rapidly with
the number of processing elements mapped on the device. Using Quartus Pro Edition®

it is also possible to generate a dataset based on the resulting resource utilization after
synthesis considering the LFSR implementation of Section 2.5. In previous work, it has
been demonstrated that DHM technique can outperform SIMD execution [CHPB21] on
the GPU at the cost of a high resource utilization on the FPGA. This effect increases with
the number of kernel filters on a fixed IFM. Nonetheless, this is only true as long as the
design can fit into the FPGA device. Being the Cyclone10GX an embedded FPGA, this
limitation is quickly met for a fixed kernel filter size and feature input map, for example,
at 64 filters for Conv7× 7 with a IFM of size 64×64. This only allows the mapping of small
functions for deeper modules or layers in a typical CNN application. This highlights the
importance and complexity of mobile CNNs deployment on embedded processors.

2.6.1.2 Latency

Using a similar methodology as in the power measurements, a timestamp was included
on the execution of every iteration for all convolution functions in Figure 2.8. This way,
it was possible to track the execution time of a specific task. Similarly, on the FPGA side
the Timer Analyzer tool® on the Quartus Pro Edition® tool is used for FPGA latency
estimation. The latency is dictated by the critical path on the pipelined execution on the
DHM of the last datum to be processed [APS+17]. In some cases, not only the FPGA
clearly outperforms the GPU, but the latency remains almost constant at the expense of
more resources. This is because the compiler tries to reduce the critical path latency for
synthesis, preserving the given operational frequency of around 50MHz for the proposed
platform. This means, that the more intensive the computational workload is, bigger is
also the difference in latency performance between FPGA and GPU devices. Again, this
claim is true as long as the design can be mapped on the device and the critical path is
constant.
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2.6.1.3 Energy

For this case, energy in Joules is calculated by integrating power over the processing
window of one image E(·) = P(·)× LAT(·). Indeed, the current setup does not pipeline
computation over multiple images. The energy efficiency between different substrates
can be increased either by increasing the power efficiency or by reducing latency. The
energy efficiency of a multi-device setup will also depend on communication latency and
communication power, since idling power consumption may be considerable for some use
cases. In Figure 2.8, the solid lines represents the measurements of the element product of
both power and latency KPIs to determine the energy consumption.
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2.6.1.4 Throughput

The last generic metric considered in this work for all the devices is the throughput in
GB/s. Minimum throughput is often the main characteristic put forward for an accelerator.
It can also be expressed as Frames per Second (FPS) in computer vision applications. Many
factors affect the throughput on a GPUs, for example from a hardware perspective, the
number of cores that can be simultaneously launched, or the memory utilization on the
device. In addition, from a computation perspective, the data transfers and redundancy in
memory transfers can also impact the throughput. As more data accesses and operations
are scheduled for the GPU, the throughput is reduced since the communication to host
remains constant while the latency increases. On the FPGA device, the throughput
is also correlated to the latency and the maximal operation frequency dictated by the
critical path. When using DHM, the throughput also depends on the number of data
flows in the last layer of the fused layer. Therefore, the throughput can be obtained as
T = HIWICI fmax×N f lows; where fmax is the maximum operating frequency and N f lows the
number of data buses at the last layer on the FPGA. For this application implementation,
N f lows is the same as kernel filters (N). At the other hand, in the best scenario, fmax is the
operating frequency of the FPGA, 50 MHz in this case. As presented in [APS+17], each
dataflow can process one pixel with all its channels for the IFM. However, since both the
critical path and fmax are obtained after synthesis, modeling them can help preemptively
determine them at design stage. This complexity of KPI inference is a strong motivation for
flydeling, as CNN code generation is now very advanced, making it possible to prototype
and measure KPIs quite easily, but performance is in general difficult to predict for a given
hardware setup.

2.6.1.5 Resources

Custom logic design requires a careful handling of resource utilization. Because of this
resource utilization is highly dependent on the algorithmic implementation, it is helpful
for the designer to estimate the required logic elements for a particular solution. Resource
estimation is specially crucial for embedded design using DHM technique [APS+17]. Since
every weight and operation is directly mapped on hardware in a dataflow fashion, the
available resources can be easily exhausted as more computation is required on the FPGA
platform. Although different resource KPIs can be chosen for different applications, in
this study, it has been identified four relevant KPIs on the Intel® Cyclone 10 GX FPGA
platform: the ALUTs, ALMs, LABs and M20K memory blocks. Similarly to previous
KPIs in this subsection, it is included in dataset D the number of required elements per
configuration sample from the stochastic excitation on Section 2.5. The proposed models
R̂ are defined in the real domain, R̂ ∈ M withM : R4 → R, so they are smooth and
differentiable to use LMA. Nevertheless, the number of logic and memory elements are
positive integers, thus the greater closest integer is taken; changing the codomain from
R̂ : R4 → R to R̂ : R4 →N.
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To alleviate graphic visualization for the multiple KPIs, the number of varying activity
features is reduced. This subsampled dataset can visually help to identify some hidden
relationships between features and KPIs. Figure 2.7 shows a randomly chosen subset
of convolutional operations features on the CPU-GPU-FPGA multi-device target. The
Subfigures 2.7a, 2.7e and 2.7i show the latency; while 2.7c, 2.7g, and 2.7k show the energy
on the CPU, GPU and FPGA, respectively; by keeping the kernel filter size (k) and the
number of filters (N) fixed. Similarly, Subfigures 2.7b, 2.7b and 2.7j show the latency;
while 2.7d, 2.7h and 2.7l show the energy consumption by complementary fixing the
input tensor size (HI ×WI × C). This reduced 3D visualization, shows the variations of
KPIs with respect to the two two features, the input tensor size (H ×W) and the number
of input tensor channels (C). It can be observed that these relationship do not show
strong discontinuities. As an example, it is possible to visually identify a linear relation
between the latency and the number of channel by analyzing the projections of contour
curves in Subfigure 2.7a for the CPU device. Similarly, a quadratic relation is likely (and
logical) using the input tensor size. While this gives us some insight for explainability and
may motivate a manual selection for these models, it is desired that the ensemble could
automatically select the model with statistically support of the aggregation criterion from
Section 2.4.

2.6.2 Resulting experimental models and evaluation

In this subsection, it is presented the single-feature models, or weak regressors, selected
from the competitive ensemble for every studied KPI on each computation node. In Table
2.4, information on the chosen models that were used on the multiple-feature model
M̂(HI , WI , CI , k, N) is shown. As discussed, the RMSE metric is chosen for the given cost
function to estimate the models performance. However, the RMSE depends on the scale
or the units of each KPI. Therefore, Normalized RMSEs (NRMSEs) are compared, dividing
RMSEs by the range of the full dataset.

LNRMSE
M̂ =

LRMSE
M̂

ymax − ymin
(2.14)

Finally, these individual behavioural models are trained on a subsampled dataset by
keeping constant the other application activity features on each weak regressor. This
sub-sampled training dataset is a slice of the full dataset. Therefore, they need to be
retrained with the full training dataset to adjust the parameters of the strong regressor.
This is the case for each KPI on each processing device.

In Figure 2.8, the light-colored solid curves show real-time energy measurements for
different CNN layer configurations on the considered GPU. These KPI measurements are
directly obtained from a stochastic excitation of the platform which generates relatively
small variations in the instrumental readings. The test set measurements are used to
evaluate the obtained analytical models from the ensemble in real-time. The red dashed
curve is the estimated energy consumption obtained from the model ÊCPU , the green
one for ÊGPU and the blue one for ÊFPGA. While the FPGA solution with DHM is the



44
Chapter 2. Flydeling: Performance Models for Hardware Acceleration of CNNs through

SI

Features
Node KPIs HI ×WI CI k N #θ∗ NRMSE

CPU

P̂ Quad Log Poly Log 11 12.5%
ˆLAT Poly Poly Poly Lin 14 7.0%
Ê Quad Lin Poly Quad 12 7.7%
T̂ Poly Reci Reci Poly 12 3.9%

GPU

P̂ Poly Log Quad Quad 13 12.2%
ˆLAT Quad Lin Quad Quad 11 6.6%
Ê Quad Lin Quad Lin 10 7.2%
T̂ Poly Reci Reci Poly 12 7.1%

FPGA

P̂ Poly Quad Poly Lin 13 7.1%
ˆLAT Poly Lin Poly Lin 10 8.1%
Ê Quad Quad Lin Quad 11 7.9%
T̂ Quad Reci Poly Lin 10 3.3%

R̂

ALMs Log Poly Quad Poly 13 9.4%
ALUTs Poly Lin Poly Lin 12 11%
LABs Log Poly Quad Lin 11 11.8%

M20Ks Poly Lin Quad Quad 12 10.1%

TABLE 2.4: Selected single-feature models per KPI and per device using RMSE as loss function
with L2 regularization term. #θ∗ is the number of total parameters chosen for the strong regressor

KPI.

most appealing in terms of energy efficiency, many implementations exhaust quickly the
number of resource elements on the device. Generally, the models are able to interpolate
relatively well on the range of the configuration space where they were trained. However,
as the measurements extend beyond the training dataset the precision degrades quickly.
To address this extrapolation problem, more training measurements shall be added to the
training data. These training samples must be representative enough of the application.

The weak regressor selection highly depends on the subsampled dataset selected
per feature. Therefore, the choice of a representative enough set of samples dictates the
precision of the single-feature selected model, since the relation of the KPI is generalized
from these data points. It has been chosen a random subsampling solution by keeping
some activity features constants, as illustrated in Figure 2.7. However, depending on the
nature of the dataset, it is possible that these relations are not preserved from different
subsamples, which may lead to a bad model selection that may not fully represent the
full dataset. Because of the monotonous growth or reduction of the models in the given
dataset, it is assumed that dataset complies with this relationship preservation. Another
aspect to take into consideration is the interpolation and extrapolation capabilities of the
obtained models. Since the dataset was obtained from typical feature ranges found in
common CNN architectures, the k-fold cross-validation allows a good approximation
to test whether over-fitting occurs and therefore, a good estimation for interpolation.
However, the ensemble may still select a model that overfits training points and prevent
extrapolation. For instance, the latency evaluation of the CPU model ( ˆLATCPU) chooses
a polynomial model for feature CI where a linear model may be more suitable. Even
considering the regularization term on the cost function, this model was obtained from
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(A) Absolute parameter values boxplots on an example of Latency KPIs
on the GPU ( ˆLATGPU).

(B) Centered and scaled parameter values violin plots on an example of
Latency KPIs on the GPU ( ˆLATGPU).

FIGURE 2.9: Obtained parameter distribution using 50 iterations of 10-fold cross-validation.

the aggregation stage. Although the NRMSE is small for the evaluated data points, the
cost function error may start to degrade over extrapolation data points. To alleviate this
problem, the training set may be expanded if possible, but it depends on the availability
of platforms to test the considered cases.

Testing over a validation dataset, the parameter values must have a low relative
standard deviation. It is tested with Gaussian forms on the distributions to give confidence
in the standard deviation and test the white-noise nature of input parameters on each
model, per KPI. As a validation example of a single KPI on a device, in Figure 2.9, it
is shown the respective obtained parameter distribution using K-fold cross-validation
(with K = 10) over the dataset as presented in Section 2.5. It is iterated over 50 times to
extend the obtained parameter and metric validation sample distributions by shuffling the
dataset on each iteration. Subfigure 2.9a, shows the absolute parameter box plot values
over the strong regressor model for latency KPI on the GPU. It can be observed that the
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variance of the model parameters over different fold is relatively low per parameter. On
the other hand, Subfigure 2.9b shows the centered and scaled parameter distributions for
the latency modeling on the same device. It is visually confirmed that the parameters
follow a Gaussian distribution resulting from a random-process. Thus, it can be effectively
confirmed that the defined models are robust to the samples where the models have not
been trained with. However, this measurements samples must have the same properties
and nature that the ones used to generate the original dataset. Nevertheless, because
of the randomly-excited methodology for SI, it is assumed that the generated dataset
is representative enough to cover a wide range of application range. For this purpose,
the excitation input must also cover statistical representative sample of the range of the
system operation.

Up to this point, the flydel performance has only been validated on the proposed
obtained randomly-excited measurement dataset subset. However, in this Section it is
further shown that the performance of flydels can be extended to state-of-the-art CNN
layer models. This is mainly because common CNN architectures use Batch Normalization
(BN) layers that bound the IFM values to a range of a normal distribution with approx-
imately zero mean and unit variance (P(IFM) ≈ N [0, 1]) [SS15]. Similarly, for the case
of many pre-trained CNNs architectures, a considerable amount of kernel weight values
are centered around 0 with a given variance (P(Θ) ≈ N [0, σ2]). The quantization step
increases even further the number of zeros. This has a considerable impact for hardware
implementation of quantized CNN layers on FPGAs using dataflow techniques, such as
DHM [APS+17]. Since weights are directly mapped in hardware, increasing the sparsity
and number of zeros also reduces the quantity of computing components and registers
used for the dataflow execution. As an example, Subfigures 2.10a, 2.10b, 2.10c and 2.10d
from Figure 2.10 show the kernel pre-trained weight distributions of the first 4 layers
of VGG16 CNN [SZ14]. Subfigure 2.10e shows the number of potentially saved multi-
pliers per layer using an 8b quantization over ResNet18 [HZRS15]. Since deeper layers
in ResNet18 also include a higher count of zero-valued weights, these layers save the
most the number of multipliers when directly mapping convolutional layers on hardware
for FPGAs. The pre-trained models were obtained using the torchvision model zoo with
PyTorch [PGC+17] on ImageNet dataset [DDS+09].
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FIGURE 2.10: Weight value distributions of the first four convolutional layers of VGG16 (2.10a-
2.10d). ResNet18 number of zeros per layer 2.10e.
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Finally, Figure 2.11 shows the precision error of the performance estimation using the
obtained flydels on the CPU (red), GPU (green) and FPGA (blue). Solid bars represent the
actual performance measurements of the processing device, while dashed bars represent
the flydel estimation. The flydels (dashed bars) are tested on the first layer of VGG16 (k = 3
and N = 64) [SZ14], InceptionV3 (k = 3 and N = 32) [SVI+15] and SqueezeNet (0.5x)
(k = 3 and N = 64) [IHM+16] as accelerated partitions. Similarly, these CNN models
were pre-trained with ImageNet dataset using BN. Thus, the weight value distributions
are normally distributed, as shown in Subfigures 2.10a, 2.10b, 2.10c and 2.10d. Samples
from ImageNet dataset (3× 224× 224), were randomly selected to feed-forward the IFMs
of each input layer. For InceptionV3, these sample images were adjusted to a size of
3× 299× 299, to match model configuration. For the FPGA, a worst-case scenario is
also shown, where there are no zero nor one values on the kernel weights. This way, the
compiler is forced to map each weight employing DHM. Since the flydels were trained
using a dataset based on normal distribution excitation, validating over a biased worst-
case scenario gives the maximum possible error between estimation and (from 18% to
22%). On normal cases for he FPGA, the error ranges between 6.2% and 6.4%. For the
CPU, the error oscillates between 6% to 8%. On the GPU, the error is around 5%. These
values are not significantly different to those presented in previous validation on Table 2.4.
Thus, validating the efficiency of flydeling on pretrained CNN models on ImageNet.

FIGURE 2.11: Comparison of pretrained CNN models energy performance with ImageNet
against flydel estimation. On each KPI estimation, the percentage error is shown over each bar.



2.7. Conclusions 49

2.7 Conclusions

In this Section, it has been proposed a method called flydeling to generate very lightweight
CNN performance models by applying random system excitation and using black-box
System Identification (SI) from CNN hyperparameters. For an embedded CPU-FPGA-
GPU heterogeneous accelerator platform, it has been demonstrated that it is possible to
compute streamlined models of KPIs, called flyweight models (abbreviated as flydels),
obtaining good KPI modeling accuracy, at an early-stage in development, from high-level
application activity features. For latency, energy and resource utilization, error values
oscillating between 5% and 10% were obtained with less parameters compared to state-
of-the-art solutions. These homogeneous models are especially useful for acceleration
partitioning, scheduling, and Design Space Exploration (DSE) of CNNs at application-
level on heterogeneous platforms. Following Chapters 3 and 4 include the exploitation of
flydels for design automation of heterogeneous systems.
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Chapter 3

Heterogeneous Partitioning
Techniques

3.1 Chapter abstract

As discussed in Chapters 1 and 2, embedded heterogeneous accelerators are rapidly
gaining momentum as a dominating solution for DL on Internet of Things (IoT) devices.
GPUs and FPGAs are common architectures found in these platforms. Time constrained
execution and energy efficiency remain a challenge, given inter-device communication
overheads. In this Chapter, the heterogeneous platform characterization is extended with
a module-level partitioning that exhibits a substantial performance gain over a fully-
homogeneous GPU deployment using a Direct Hardware Mapping (DHM) technique on
FPGA exploiting model irregularities. These irregularities are exhibited as diverse FMs
dimension shapes through different data paths in the CNN model. The FMs are the result
of several different operation configurations of convolutional layers, for instance; different
kernel sizes, number of kernel filters or FM merging like concatenation or addition.

Despite the high-performing design obtainable with DHM, the resource requirement
using this technique is considerable, preventing a full FPGA CNN DHM implementation.
Multiple CNN hybrid partition parameters are evaluated in this chapter. To estimate
platform performance, a heterogeneous analytical model derivation is proposed from
individual computation and communication models. A heterogeneous FPGA-GPU ac-
celeration is achieved for image classification inference task with respect to a fully GPU
implementation over SqueezeNet (21%-28% energy reduction, same latency), MobileNetv2
(12%-30% energy reduction, 4%-26% latency reduction) and ShuffleNetv2 (25% energy
reduction, 21% latency reduction). It is then demonstrated, that the presented partitioning
techniques effectively scale over complex state-of-the-art mobile CNN models with similar
results reported in state-of-the-art solutions. Adapted heterogeneous partitioning methods
will dictate the nature of the optimization problem formulation from Chapter 4.

3.2 Introduction

IoT and the emerging adoption of heterogeneous architectures in edge devices has led
to suitable technologies for DL applications. Furthermore, these applications require a
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well-matured programming methods exploiting parallel distributed systems and parallel
programming techniques [SEP+09, HTL10]. These distributed server approaches have
widely opted for the deployment of multiple hardware architectures, like monolithic SIMD
architectures like GPUs, or custom logic like FPGAs. However, for embedded design,
different considerations on specific constrains are required, i.e. hardware resources, energy
consumption, throughput and latency. Additionally, deploying inference computation
on pre-trained CNN models for edge devices have faced multiple challenges during
this turbulent and hectic phase of DL research. The current state-of-the-art on CNN
models for image classification is still divided on deciding when one solution outperforms
the other and in which cases. Therefore, as a proposed solution, embedded platforms
have widely adopted an heterogeneous architecture approach to keep up with an ever-
growing computing demand. Nevertheless, increasing the complexity of the system’s
architecture rises also the intricacy of application mapping. Because of the latency and
energy performance constraints of each individual node, a hardware-aware NN mapping
methodology must be well defined to increase efficiency.

In this Chapter, the evaluation of a predefined module-wise partitioning based on
common building-blocks tasks on DL processing performance estimation is proposed. In
this case study, the aim is to evaluate the inference deployment of mobile CNN models,
like MobileNetV2 [HZC+17, SHZ+18], ShuffleNetV2 [ZZLS17, MZZS18] and SqueezeNet
[IHM+16], on an embedded FPGA-GPU heterogeneous platform. Although both hard-
ware architectures have been well studied and evaluated on HPC centers, their specific
capabilities are still to be exploited on embedded design. It is shown that some task and
data partitions are more suitable to be assigned and scheduled on an specific device than
others. In this dissertation, estimation is proposed of energy, latency and throughput from
multiple modules used in these CNN models. Furthermore, if a specific layer can not be
fit or may not be efficient to be executed on a device, an heterogeneous version of grouped
or depth-wise convolution partitioning for layer-fusing are proposed, when possible.

The contributions of this Section consist of:

1. adapting module-level partitioning methods of the most popular embedded deep
networks for image classification to heterogeneous platforms.

2. demonstrating that heterogeneous energy and latency models using DHM [APS+17]
can be derived from individual/homogeneous light-weight device computation and
communication modeling.

3. demonstrating that a combination of GPU and FPGA at a DL module-level effectively
outperforms homogeneous solutions, even when inter-systems communication
overheads are considered.

This Chapter is organized with the following structure: Section 3.3 gives an overview
of the main concepts, operations and terms found in the state-of-the-art CNN mobile
models and parallel layer optimization for heterogeneous platforms. Section 3.4 sum-
marizes related works. In section 3.5, not only the main difficulties and limitations for
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heterogeneous solutions adoption are highlighted, but also the motivation behind its
benefits. Section 3.5 describes important concepts for the experimental methodology
description of Section 3.6 where also, the experimental results are evaluated and validated.
Finally, Section 3.7 concludes with a discussion on the benefits and limitations of CNN
heterogeneous processing.

3.3 CNN partitioning on GPU-FPGA platforms

In Chapter 2, the main operations of CNN layers were introduced. In this Section, it is
further extended to the definition to more specific CNNs models. While the background
of the CNN DL has been well-studied in the literature, it is important to be familiarized
with the most common and important computation done on state-of-the-art models.
Multiple acceleration techniques have been proposed in multiple domains even before
the conception of the modern term of DL. The algorithmic parallel optimization have
allowed their implementation on hardware in different ways. In [MV19] an exhaustive
list of techniques has been covered for GPUs. Similarly, [Mit18] expands those techniques
to reduced precision techniques for FPGAs. In [MV15] the challenges of CPU/GPU
heterogeneous platforms have been mentioned and explored on HPC servers. In this
subsection, we formalize three partitioning techniques used on the CNN models as a
combination of basic techniques, such as: loop reordering, loop unrolling, tiling, batching,
pipelining and/or data compression. We also describe the common computing operations
and how the proposed partitioning methods are adapted to GPU-FPGA partitioning for
the main building blocks with the mobile CNN models:

Layer-wise Tiling: Layer-wise tiling is a popular technique to parallelize a CNN that
splits an IFM and creates two or more tensors to be processed individually. Usually,
these split partitions are equally distributed to balance the workload. However, on
heterogeneous platforms, workload balancing is not as easy. When tiling, the features
HI and WI are split and mapped to each device. Figure 3.1 illustrates a partition that
splits the feature HI into two contiguous tensors: One for the GPU (HG) and one for the
FPGA (HF). Therefore, HI = HG + HF. Notice that all other features remain constant;
WI = WF = WG and CI = CG = CF. Additionally, the N kernel filters are also not split.
They are all manipulated in both architectures.

Depth-Wise separable Convolution (DWConv): This technique were first described
in [Cho17] and fully utilized in [HZC+17, SHZ+18]. The main concept relies upon fac-
torization of a traditional convolutional layer. The first of the resulting operations is
a k × k convolution over every single input channel followed by a 1× 1 convolution.
Despite the fact that a DWConv produces the same output, the number of multiplications
operations is reduced by a factor of 1

k2 +
1
N , with k being the size of the kernel filter and N

the number of kernel filters. This factor is multiplied by the number of multiplications
on a traditional convolutional layer. In Figure 3.2, the first operation is done on the GPU
and the second one is done on the FPGA, since 1× 1 has less parameters to be directly
mapped. Additionally, the required memory for weight storage can be also separated
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FIGURE 3.1: Tiling on a heterogeneous platform with a single GPU and a single FPGA with
configuration: HI = HG + HF, WI = WF = WG and CI = CG = CF. The blue tensor is the IFM
partition mapped on the FPGA. While the green tensor is the IFM partition mapped on the GPU.

as indicated in 3.2. For this operation, the device with less storage or with high-latency
memory transfers can handle the 1× 1 convolution layer. For this use-case, because of the
reduced number of on-chip registers, this task is off-loaded on the FPGA. The limitation
of FPGA resources and further details are discussed on Subsection 3.5.2.

FIGURE 3.2: Heterogeneous Depth-wise convolution example where the k× k convolution per
input channel is executed on the GPU and the Conv1× 1 convolution is done on the FPGA. The
partition in blue represents the data and task workload on FPGA, while in green the partition on

the GPU.

Grouped Convolution (GConv): A similar approach was first implemented in [KSH12]
in a homogeneous form, since their hardware architecture was composed of two Nvidia
GTX GPU devices of the same type. This partitioning method divides the computational
load in one or more workflows that can be executed in parallel. However, the main
difference from [KSH12] consists in how the IFM is partitioned, since in GConv there is
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no IFM duplication. In Figure 3.3 both devices execute simultaneously their respective
convolution operation over different IFM and different weights and at the end of the
workflow, both output tensors are concatenated together.

FIGURE 3.3: Heterogeneous Grouped convolution example where the CI input channels and
kernel filters are contiguously and heterogeneously divided on each device. Both resulting
partitions are finally concatenated. The partition in blue represents the data and task workload

on FPGA, while in green the partition on the GPU.

Similar to tiling, the channel-wise loop unrolling also usually found in the grouped
convolution technique splits the IFM and kernels filters along the channel depth. However,
in contrast to tiling, the kernel weights are also split, yielding to a memory requirement
reduction. This is a desired consequence for devices with a limited memory footprint.
Figure 3.3 shows a grouped convolution partition with two contiguous tensors and N × 2
kernel filter partitions. For this instance, CI = CG + CF. Notice that all other features
remain constant; HI = HG = HF and WI = WF = WG.

Fused-Layer: This partitioning was first introduced in [AFM16] as a method to store
intermediate weights and neuron activity in cache from adjacent layers in depth. This
approach handles one of the most common challenges in CNN models, the data transfer
burden. Having a faster memory closer to the processing elements reduces the latency,
avoiding off-chip data transfers. However, this method results in a trade-off on the
use of memory resources inside the accelerator device, scarce resources on embedded
design. Depending on the accelerator capacity, multiple containerized partitions can fit
on a device. In Figure 3.4, layers are internally stored on the FPGA to be executed in a
pipe-lined fashion [ZWTD19]. The OFM of the last layer in the partition is then transferred
to the GPU. Notice that this opens a benefit in inter-device communication, since in most
model architectures, the deeper the layer, less feature map elements require to be moved.

Table 3.1 summarizes the heterogeneous partitioning methods characteristics. Each
method keeps some structural features static while executing the partitioning over the
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FIGURE 3.4: Heterogeneous Fused layer example where a couple or intermediate layers activity
are stored in the internal FPGA RAM memory. Afterwards the output tensor is transferred to the
GPU for deeper layers processing. The partition in blue represents the data and task workload

on FPGA, while in green the partition on the GPU.

remaining features. Methods, such as tiling and grouped convolution, require further op-
erations for synchronization, like merging intermediate results or concatenating resulting
feature maps. As a consequence, one accelerator must be in charge of this synchronization.
It is also important to notice, that some methods are more computational-efficient than
communication-efficient. For instance, the depth-wise separable convolution reduces
the number of multiplications making it more computation-efficient. While, fused-layer
reduces the FM transfers between accelerators, offering a better communication efficiency.
To define a clear winner between these partitioning methods is a difficult task since, what
may be a good choice for one heterogeneous platform, might be a poor choice for another
one. Specifications and limitations such as: internal memory size, communication bottle-
necks and a reduced count of processing elements; play a big role for the choice of the
adequate partitioning method.
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3.4 Related works

Single Chip-based accelerators: A wide variety of architectures are built on with the pur-
pose of CNN inference deployment on edge devices. ASIC based designs, like DaDianNao
style [CLL+14], usually offer a good balance between flexibility and performance with
considerate power dissipation. The small size of an ASIC node opens the possibility of
good scalability on a single die with a small footprint. However, what it gains in effi-
ciency and scalability, it loses it in reconfigurability and flexibility to quickly test designs.
Following a similar approach as DaDianNao, Stripes [JAH+16] accelerates computation
extending the capabilities of DaDianNao by exploiting a dynamic quantization of input
features. Mixed precision training and inference [Cas18, DMM+18] outperform traditional
full precision methods both in training and inference time for general purpose hardware.
Therefore, many works show success exiting from traditional floating point representa-
tions, i.e. 32 bits and 16 bits. A 8 bit floating point hardware engine in [WCB+18] claims
to have a 2×-4× better efficiency with intermediate accumulators of FP16 than whole
FP16 computations, given that multipliers are smaller and smaller accumulator bit width.
Even lower bit representations like ternary weight representation [LZL16], are mapped
using Register Transfer Level (RTL) on both FPGA and ASIC, achieving lower memory
requirements and more efficiency in energy consumption [ALPP17]. Similarly, in this
Chapter, a quantization to reduce logic elements utilization from the FPGA side is used.

Multinational companies have also created their own specialized hardware for convo-
lution acceleration. Google introduces an ASIC based on systolic array techniques with
integer quantized computation for their. The core of TPU [JYP+17] takes a flow of 256 Byte
inputs simultaneously and the partial sums are streamed through deeper computations
to the bottom of the matrix multiply unit. Intel® introduced in 2019 the Intel® Neural
Compute Stick 2 [Mov19], bringing the Vision Processing Unit (VPU) to the edge. Based
on a Movidius Myriad X VPU with 16 programmable cores, it is optimized to execute
inference for vision and imaging tasks on dedicated DSP.

GPU and FPGA based accelerators: Heterogeneous computing has been a trend that
has highly appealed to the interest of hardware accelerators since the last two decades.
These computing nodes have a diversity of capabilities, different ways to execute instruc-
tions or different operation handling [Zah17]. In cases where there is enough parallelism
the cores can take advantage of these scheduling, FPGAs and GPUs can offer a significant
performance improvement on energy efficiency compared to homogeneous platforms
[CMHM10]. In [CMHM10], it is also discussed in which cases it may be better to allocate
applications on custom logic or on FPGAs and GPUs.

A debate has been raised to show when FPGA solutions were able to achieve a similar
or even better performance than other processing nodes. In [SDV+14] traditional image
processing tasks were evaluated in different platforms to compare results in implemen-
tations. However, the developing time and integrateability of the FPGA resulted less
efficient and non-evident. Further work feed the discussion on the subject of embedded vi-
sion applications comparing an ARM57 CPU, a TX2 GPU and a ZCU102 FPGA [QDL+19].
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The FPGA has shown a reduction of 1.2×-22.3× in energy/frame compared to the other
two platforms for vision tasks like background segmentation, colour segmentation, Harris
corner tracking and Stereo block matching. Some works have taken advantage of the
benefits of both worlds creating a hybrid platform for HPC. These platforms are today
built on a host/guest structure and on the Bulk Synchronous Programming (BSP) model
of computation. The host processing system, built from high-end general purpose cores,
drives data movements and requests processing from a guest processing device, retrieving
output data when ready. In current systems, hosts are multi-ARM out-of-order processors
and guests can be either a GPU, and FPGA or both. In [SBD+13] a heterogeneous platform
consisting of two programmable logic devices (Virtex 6 LX240 FPGA) and an Nvidia®

Tesla C2050 are interconnected to be tested on image processing on Histogram Oriented
Gradient (HOG) and machine learning technique SVM using the proprietary tool CUDA.
While some speed-up are achieved, the communication in PCIe bandwidth presented a
reduction of the speed up resulting in a bottleneck given a fine-granularity partitioning.
Therefore, some works [BRF14, TDMP15] try to reduce communication bottleneck issues
by bypassing or skipping data allocation at host memory. In [TDMP15] three setups with
different capabilities and PCIe generations are evaluated. Their throughput performance is
measured with different data sizes to mitigate the communication overhead. This is critical
in order to increase number of layers or parameters to be mapped on the accelerators
and be sent back to another one, as presented in this Chapter. A related work [HBNY19]
uses a platform based on a multicore CPU/GPU Nvidia Jetson TX1 with a Xilinx Zynq
MPSoC (ZCU102). The proposed platform was tested on image processing algorithms like
histogram, dense matrix-vector multiplication and sparse matrix-vector multiplication.
Finally, three works are identified with similar results and architectures using layer-wise
partitioning [OHY+18], IFM as batch partitioning [VGG+20] and two-stage partitioning
for feature extraction and classification [TST+19]. Batch partitioning does not split single
IFMs and it is only used for training, it achieves parallelism by distributing non-duplicate
data from different IFM samples. This partitioning technique is similar in computation to
Grouped convolution. Although the results from these works are evaluated with small
CNN models, they demonstrate that performance gain is also feasible in the case of more
computationally complex models for image classification on embedded devices.

In [NSS+16] the use of Binary Neural Network (BNN) [CHS+16] on FPGAs and ASICs
offer in some cases a better performance and performance per Watt in comparison to CPU
and GPU given the simplicity of the processing elements substituting multiplier units
with XNOR logical gates and adders as popcount with Look-Up Tables (LUTs), an efficient
low-consuming resource on FPGAs and ASICs. Authors tested multiple layers in an
Arria 10 FPGA with 64 and 1024 processing elements and ASICs outperforming with this
hardware-friendly model a GEMM based kernel on an Nvidia Jetson TX1 embedded GPU.
In [UFG+17], FINN is presented. Based on heterogeneous streaming architecture and
binary CNNs, FINN is capable to execute different sized compute arrays with a pipelined
stream. The main core of FINN is the Matrix-Vector-Threshold Unit (MVTU), where
the batch normalization layer is treated as a threshold and the data is handled as a data
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stream by folding Matrix-Vector products, similar to the elemental unit in Stripes. Authors
show results using a Xilinx Zynq-7000 All programmable SoC ZC706, addressing typical
challenges from embedded design. This heterogeneous platform consists of an ARM
CPU and a FPGA. In [AHMSNY18] the work from FINN is extended using a Decision
Making Unit (DMU) based on a Softmax function layer that decides to deploy a high-
accuracy network or keep high throughput depending on the classification error. This
frame-dependant multi-precision CNN preserves accuracy for embedded heterogeneous
platforms.

Partitioning, scheduling and architecture search or exploration: Scheduling and
task partitioning between heterogeneous multiprocessors has been extensively addressed
as one of the main application of constraint programming. In [LSGE11] a two-stage
optimization heuristic is proposed using an ILP technique on a static Synchronous Data
Flow (SDF) to generate a Pareto front for latency and processor cost over a series of
iterations for real-time streaming. For design and synthesis challenges on mobile or
embedded heterogeneous processors, [WPM18] highlights the importance of the software
support to facilitate design exploration. A good compile time strategy can assist the
designer to allocate, on early stage, to an adequate processor a specific kernel. In this work,
it is also brought to the attention of the reader, that techniques of parameter scaling, such
as Dynamic Voltage-Frequency Scaling (DVFS) must also balance the over-working of a
single processing core. As a conclusion, authors add that DVFS can benefit the stability
and load-balance of the system. NasNet [ZL17] started a tendency for more sophisticated
optimization algorithms based on the model architecture known as Neural Architecture
Search (NAS). In traditional NAS, not only the weight parameters are learnt from a given
CNN architecture, but also the topology of the network itself is updated. Based on
this original work, other techniques take into consideration the hardware architecture
and performance, like ChamNet [DZW+18] MNasNet [TCP+19] or FBNet [WDZ+19].
Using these heuristic techniques for design space search, some works like [KLKC19] have
exploited it with gains in speed-up or for a smaller area and energy on ASIC designs
[YYL+20].

As presented in this Section, while many state-of-the-art partitioning methods for
DSE are hardware-aware, they barely consider the capabilities of heterogeneous systems.
This is because aiming for these hybrid platforms requires a partitioning selection with
complex algorithms, such as reinforcement learning. Furthermore, this becomes even
more challenging if the reconfigurable nature of some accelerators like FPGA is considered.
Thus, to improve the motivation of a particular partitioning choice, partitioning methods
must be well-defined aiming towards a hybrid hardware. Most works focus therefore
on dedicated single-chip solutions or solutions where the reconfigurable part is fixed or
pre-programmed and resources are already allocated. Another open issue that divides the
scientific community is the granularity of the partitions. Some works, have demonstrated
an accepted performance with a coarser granularity, preserving partitions with relatively
big data chunks. This coarse-grained partitioning like layer-wise partitions benefit from
memory coherency. On the other hand, fine-grained partitions allow to better handle data
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redundancy and optimize data retrieval. Both partitioning methods have proven to be
efficient for different accelerators.

3.5 Problem definition: Heterogeneous partitions

Performance on a given accelerator is application-, or even, task-dependant. The granular-
ity and heterogeneity of the task profiling play a relevant role for the module deployment
performance. In heterogeneous systems, it is not evident in which cases one platform
outperforms the others, since different architectures exhibit hardly comparable features
and drawbacks. Furthermore, in some cases the OS scheduling and optimization hides
the performance under certain conditions. Decomposition into tasks is, nevertheless, nec-
essary since modern CNN architectures use a combination of elementary building-blocks
or functions. To address the case study of porting a CNN on a FPGA-GPU heterogeneous
platform, we prove that the incorporation of an embedded FPGA with DHM in combina-
tion with a embedded GPU can be a relevant approach to accelerate DL CNN models at a
module-level granularity.

This section describes the CNN modules and scheduling to be considered for a set
of popular CNN models. In addition, some important concepts for the experimental
methodology in Section 3.6 are covered. Also, in Section 3.6, we focus focus our efforts on
partitioning for the hardware architecture of X-MERA (Appendix B). The architecture is
composed of a single CPU-GPU with a communication bus of 4-lanes Gen2 PCIe (5 GT/s
or 2.5 GB/s) with a FPGA. The objective is to reduce execution time latency by adapting
the CNN module partitioning on the given heterogeneous platform. The technical details
of memory hierarchy and transfer speeds can be found in Appendix B.

3.5.1 Mobile CNN modules: partitioning and scheduling

While early CNNs were regular with only layer-shaped elements and systematic pro-
cessing, novel methods are composed from modules. In this subsection, a module-level
representation as a combination of the computation and communications operations for
three popular CNN models is proposed. The three modules data-flows use the operations
described in section 3.3. Data-flows are a well-explored abstraction paradigm to describe
CNN applications as directed graphs, to represent data paths and to characterize com-
putation nodes. This construct allows us to understand and identify data dependency
and a temporal hierarchy execution. Additionally, the inputs and outputs of a node are
observable which is fundamental for communication estimation. The output tensor of
a neuron is then sent to the adjacent neuron through directed edges representing data
communication. For this Chapter, it is proposed the following heterogeneous partitioning
and scheduling for the following modules on state-of-the-art mobile CNN:

Fire Module (SqueezeNet): This architecture was one of the first resource efficient
models [IHM+16]. Its module achieves this high resource efficiency by replacing multiple
3× 3 filters by 1× 1 convolutions as depicted in Figure 3.5. The data path is branched
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using a Grouped Convolution creating two data-flows with the same data workload, as
depicted in Figure 3.5a. However, its heterogeneity is exploited by the fact that the two
data paths are treated differently. One path calls a 3× 3 convolution while the other calls
a 1× 1 convolution and then the resulting output tensors are concatenated as explained
in section 3.3. Additionally, this GConv allows us to split execution in a parallel manner
on both devices as seen in Figure 3.5b. Considering that the filters values are fixed, it is
interesting to have them stored on the FPGA to avoid external memory accesses on the
GPU side (9x less than 1× 1 convolutions). Therefore, the 3× 3 convolution is executed
on the FPGA. This way, global latency of the communication latency could be hidden on
the parallel execution.

(A) Graph partitioning.

(B) Scheduling.

FIGURE 3.5: SqueezeNet’s Fire module (a) graph representation and (b) scheduling. The nodes
from the graph in blue are scheduled on the FPGA while the ones in green are scheduled on the

GPU.

Bottleneck Module (MobileNetv2): Similar to MobileNetv1 [HZC+17], the modules
of MobileNetv2 in Figure 3.6, use the concept of DWConv from section 3.3 as a form
of factorization for convolution layers with less operations [SHZ+18]. Moreover, this
architecture introduces linear bottlenecks connection between module layers, as seen
in Figure 3.6a, to be added element-wise after processing, and a module for 2x spatial
reduction using a stride of 2 on the DWConv, as seen in Figure 3.6c. The linear bottlenecks
do not execute any processing and the features are added at the end of the module.
This way, the features of previous layers are considered for deeper layers. In this case,
differently as in SqueeezeNet’s module, the execution of the graph is done sequentially
and is highly dependant on the communication throughput, as seen in Figures 3.6b and
3.6d. However, because of the spatial reduction, the latency could be less, compared to
bottleneck modules with no spatial reduction, as less data loads are transferred to modules
with smaller OFMs. MobileNetv2 has multiple output sizes as described in [SHZ+18].

Stage Module (ShuffleNetv2 0.5x): ShuffleNetv1 [ZZLS17] introduces a channel shuf-
fle operation and a GConv followed by a DWConv. In ShuffleNetv2 [MZZS18], the channel
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(A) Graph partitioning with no spatial reduction.

(B) Scheduling with no spatial reduction.

(C) Graph partitioning with spatial reduction.

(D) Scheduling with spatial reduction.

FIGURE 3.6: MobileNetv2’s Bottleneck module with no spatial reduction (a) graph representation
and (b) scheduling and with spatial reduction (c) graph representation and (d) scheduling. The
nodes from the graph in blue are scheduled on the FPGA while the ones in green are scheduled

on the GPU.

split is done at the beginning of the module and the shuffle at its end as seen in Figure
3.7. Each stage module consists of one module with spatial reduction from Figure 3.7c
followed sequentially by several modules with no spatial reduction from 3.7a. For the
first stage it is repeated 3 times, then 7 times for the second stage and finally 3 times for
the third and last stage. Because of DWConv and GConv execution in Figure 3.7b and
the branching of GConv data-paths in Figure 3.7d, the same techniques of parallel and se-
quential scheduling from the Fire module and the Bottleneck module, can be respectively
applied. The spatial reduction is done during the DWConv execution over the half of
the input feature channels result of the GConv. This feature reduction, also considerably
relieves some of the overhead for inter-device communication, reducing latency on the
heterogeneous platform.

The three presented modules for mobile CNNs offer different opportunities for parallel
and pipelined execution. For instance, because SqueezeNet’s Fire module includes a
GConv block, it is possible to deploy computation concurrently on different accelerators
(Figure 3.5). On the other hand, although the DWConv computation on the MobileNetV2
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(A) Graph partitioning with no spatial reduction.

(B) Scheduling with no spatial reduction.

(C) Graph partitioning with spatial reduction.

(D) Scheduling with spatial reduction.

FIGURE 3.7: ShuffleNetv2’s Stage module with no spatial reduction (a) graph representation
and (b) scheduling and with spatial reduction (c) graph representation and (d) scheduling. The
nodes from the graph in blue are scheduled on the FPGA while the ones in green are scheduled

on the GPU.

(Figure 3.6) introduces data dependency and can only be executed sequentially. this greatly
reduces the number of MACs and the memory requirements. This memory requirement
reduction is a desired consequence of DWConv aimed for embedded design with limited
memory elements. Finally, the ShuffleNetV2 Stage module, combines characteristics of
both modules aforementioned modules. For this module, the data paths can be executed
concurrently for spatial reduction (similar to the GConv execution), which also reduces
the communication overhead with a stride window of two. Each data path introduces a
DWConv block, therefore each one of them must be executed in a pipelines fashion as
presented in Figure 3.7. In Chapter 4, we demonstrate how to combine these partitioning
methods for automatic accelerated partition selection.

3.5.2 DHM for FPGA synthesis definition

In this Chapter, the architecture of an heterogeneous embedded platform describing both
individual device architecture is covered. While the architecture of a GPU has drawn
the attention of an extensive number of research papers [MV15, MV19], its single-device
hardware architecture based on SIMD with shared memory space and shared control unit
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remains mostly fixed. GPUs focus more on the memory handling patterns, since multiple
metrics like energy consumption and latency heavily depend on the data orchestration
between host and device communication, as to be expected from a SIMD-based device.
On the other hand, FPGAs, as custom-logic reconfigurable devices, offer the benefit of
architecture design flexibility which can benefit from the relative heterogeneity in tasks
scheduling and data partitioning when porting module based CNNs.

A data-driven approach is used that fully exploits the resources in a FPGA to concur-
rently map and execute multiple layers on the device in a pipeline manner. DHM was first
introduced in [APS+17] as a technique to map processing nodes to logical elements or
DSPs. The synthesized accelerators using this methodology take advantage of the fused
layer technique from section 3.3, since the intermediate feature maps are stored internally
in the device, as well as the kernel weights as data streams. This storage avoids the
communication bottleneck of the external memory accesses, increasing energy, latency and
throughput efficiency. This efficiency can be even more considerable if custom fixed-point
logic is implemented. In this manuscript, every operation on the FPGA is done with
an 8bit representation and cast when needed after communication on the host device,
reducing communication requirements by a factor of 4x. Additionally, all weights are
stored closer to the logic elements on on-chip registers, so no external memory accesses
are needed, which in DL applications introduce a considerable overhead. LUT-based
CNN porting [WDCC19] exploits this same idea of direct hardware mapping. Although
this method offers an indisputable high performance efficiency gain, it comes at the cost
of enormous resource requirements. This constrain is only intensified by the fact that
the embedded FPGAs do not have large resources element counts. As a result of this
constraint, only small designs can be mapped to fully exploit this high-throughput benefit.

Taking the opportunities and limitations of DHM into consideration, it may not be
evident if the fitting of a full module on an FPGA device could be feasible. However, the
combination of this technique on a heterogeneous platform with the objective to reduce
memory accesses on a GPU and have a performance gain seems promising at first glance.
As it is further developed in following sections: We show that, in fact, even if the FPGA is
better than the GPU in all evaluation metrics on individual neurons, the complementary
execution and time multiplexing are requested to make the porting of real-life CNNs
feasible.

3.5.3 Inter-device communication modeling

Communication latency have a substantial impact on the hybrid platform for bandwidth
performance estimation. Since communication overheads depend only on the size of the
IFMs and OFMs tensors to be transferred, latency and throughput can be proportionally
estimated by the size of tensors. Thus, we measure the transferred information from the
PCIe channel between FPGA and GPU with several FM data sizes. These measurements
are obtained directly from several data chunks for read, write and simultaneous transfers.
While IFM size depends on the application, the OFM dimensions can be obtained from
Equation 2.2. Figure 3.8 shows the latency 3.8a and throughput 3.8b for different data
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sizes to be transferred between processing blocks. These measurements were obtained
directly from several data sizes for read, write and simultaneous transfers.

(A) Latency.

(B) Throughput.

FIGURE 3.8: (a) Latency and (b) Throughput in communication using PCIe Gen2 with x4 lanes
over multiple transfer sizes for read, write and simultaneous between the Cyclone10GX FPGA

and TegraTX2 GPU.

In the next subsection, it is shown an analysis on how the latency and throughput
performance measurements for the communication modeling has a direct impact on
heterogeneous time execution and energy efficiency. As a step further on hybrid modeling,
these proposed communication nodes must be included on the heterogeneous model
definition. Depending on the size of data chunks to transfer and the divergence between
CCR, this overhead can be considerable or even critical on considered applications.

3.5.4 CUDA microarchitecture comparison of current Nvidia embedded GPUs

Evaluation of heterogeneous implementation solutions are difficult to analyze given the
nature of the development environment and the complex prototyping necessary before
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conducting measurements. As a matter of fact, it is time-consuming to evaluate the
performance of a single design by analyzing each processing device and communication
link and the task is even more complex on multi-chips designs. In Chapter 2, it has
been discussed how ensemble-based methodologies can be used to derive several light-
weight multivariate device models from CNN hyper-parameters. Such a model is useful
to quickly infer heterogeneous performance partitions by simply evaluating a learned
analytical model with a few parameters. In addition, in the previous Subsection, it has
been proposed a similar approach to profile communication overhead.

The performance of a heterogeneous model highly depends also on the architectural
characteristics of the individual processing and communication nodes in the system.
In current state-of-the-art, DL-oriented embedded platforms operate on either integer
or floating-point numerical precision. In some cases, even mixed-precision computa-
tion is employed over dedicated hardware. One of the most well-adopted accelerators
are the Tensor Cores introduced since the Volta microarchitectures on Nvidia® GPUs
[MCL+18]. The inclusion of these accelerators has shown an increment in throughput
and better memory caching for servers [MAMS18, SSB+20] and computing on the edge
[RMJ+19, RMGV+20] in comparison to previous microarchitecture generations. A diver-
sity of precision representation have been proposed ranging from 4bit integers to 8bit
integers and single precision floating point in 32bits to double precision floating point
in 64bits [MEA+19]. Moreover, in [MEA+19], authors have demonstrated that there is
a high-correlation, between quantized low-precision and full-precision weights and fea-
tures. For some tasks, such as classification inference, 8bits quantization from pre-trained
CNNs suffice. Unfortunately, although Tensor Cores offer a clear acceleration for DL
workloads, not all current embedded Nvidia® GPU microarchitectures support integer
computing [HSKR21]. For instance, in [HSKR21] the Nvidia® Jetson Xavier NX offers
50% CUDA cores and supplementary 48 Tensor Cores with the Volta microarchitecture in
comparison to Nvidia® Jetson TX2 with Pascal microarchitecture. Nvidia® results show
that, on ResNet18, Nvidia® Jetson Xavier NX overcomes Nvidia® Jetson TX2 by more
than 50% in terms of average throughput. However, as shown in Figure 3.9, for single
batch or for single classification inference, the performance is heavily reduced, to only
around 15%∼30% gain for common CNNs models. Nvidia® obtained empirical results
from different CNNs models: AlexNet, DenseNet, ResNet18, ResNet50, SqueezeNet and
VGG16. In Subsection 3.6, we show a similar performance gain acceleration and energy
consumption gain using the FPGA with custom DHM architectures without the need
to increase the CUDA cores count on the GPU. Another interesting remark is that this
configuration offers a better performance even with higher-latency off-chip data transfers.

3.6 Partition experimental methodology, evaluation and results

In this section, we describe the experimental methodology measuring proposed metrics. In
subsection 3.6.1, the individual performance for each device is measured and in subsection
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FIGURE 3.9: Performance comparison between the Nvidia® Jetson TX2 with Pascal microarchi-
tecture against Nvidia® Jetson Xavier NX with Volta microarchitecture over many CNNs, as

discussed in [HSKR21].

3.6.2, it is discussed the results of the heterogeneous platform measurements for different
modules with the partitioning from section 3.3.

3.6.1 Measurement-based performance metrics comparison

This subsection compares the KPIs of common individual tasks of popular embedded
CNNs to be used on the estimated heterogeneous platform on both FPGA and GPU
devices. The chosen subset of convolutional filter operations are k ∈ {1, 3, 5, 7, 11}, since
these are the common parameters to be found in state-of-the-art models.

3.6.1.1 Partition latency (KPI)

Using a similar methodology as in the dataset generation from chapter 2, it is possible to
directly compare measurements of accelerated partitions against model prediction. This
can be done on the individual devices of the platform. This way, inter-device comparison
is achievable for case-by-case partition evaluation. In Figure 3.10 it is shown an example
of a comparison between the FPGA using DHM [APS+17] and GPU implementation of
different convolution workloads. In this case, not only the FPGA clearly outperforms
the GPU, but the latency remains almost constant when convolution size increases. This
is because the compiler tries to reduce the critical path latency for synthesis, preserving
the given operational frequency of around 100MHz for the platform and operations are
strongly parallelized. This means, that the more intensive the computational workload
is, greater is also the difference in latency performance between FPGA and GPU devices.
This claim is true as long as the design can be mapped on the device and the critical path
is constant.
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Since communication latency may have a substantial impact on the hybrid platform
performance, the inter-device communication time from the PCIe channel with several
IFM data sizes is measured. These measurements are obtained directly from several data
chunks for read, write and simultaneous transfers. Therefore, it can be observed in Figure
3.14 that the transmission would highly depend on the size of the feature map to be sent
to a device.

FIGURE 3.10: Latency comparison between multiple convolution function sizes on Cyclone10GX
FPGA (blue) and Jetson TX2 GPU (green) for different CNN layers on an input image of
224× 224× 3. Blue bars represent the layers implemented on the FPGA and the green bars
represent the latency on the GPU. Notice that the missing blue bars represent unfeasible tasks to
be mapped on more computational intensive task given the logic or memory element constrains

for the FPGA device.

3.6.1.2 Partition energy (KPI)

On the Jetson TX2 MoC, a Tegra TX2 SoC is incorporated, which at the same time, includes
an integrated multi-channel power monitor (Texas Instrument INA3221) used to obtain the
measurements of power dissipation on the Pascal-based architecture GPU. The 3-channel
monitor is configured with a 64-sampling average filter to compute a reliable average
power. In Figure 3.11 the average filtering in time domain works as a low-pass filter on
frequency domain, that is the reason why the measurements show a "rounded" shape
between experiment iterations. The Sigma-Delta ADC used on the IC uses a 500KHz
sampling rate, following the specifications from the manufacturer (Texas Instruments). For
measurements acquisition, it is passed through the OS to retrieve the data which introduces
an overhead on the number of samples taken per experiment iteration. However, this is
the reason it is iterate multiple times on a single computing task, Conv1× 1 for example,
averaging over 5000 iterations. One mono-threaded program is executed on the CPU cores
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FIGURE 3.11: Power dissipation measurement over multiple experiment iterations on the Nvidia
Pascal GPU architecture of the Jetson TX2 SoC. Common convolution filter sizes are iterated
5000 times on a fixed size input tensor (224× 224×N for this example) with a random uniform
distribution for the input and the kernel values. The number of filters N increases progressively

over time and the resulting observations are averaged.

to read from the GPU power rail. Since shallow layers have less number of filter kernels,
these layers take less time to be executed in this example. Therefore, high frequency
sampling variations are taken into consideration for the average accumulator. The Jetson
TX2 board includes multiple performance modes that vary the operating frequency of
the embedded GPU to save energy. The power mode to the Max-N mode sets a GPU
frequency of 1.3GHz and allowing the full use of the multi-core processor for the sampling.
The software tools used to do the computation on the GPU are Pytorch [PGC+17] version
1.0 with CUDA 8.0 support for the Jetson TX2. The ImageNet pre-trained mobile CNN
models are obtained from the torchvision model zoo.

On the FPGA side, it is used the Power Estimation tool® from Intel Quartus Pro
Edition® version 17.1 targeting multiple convolutional task operations on the Intel® Cy-
clone10GX FPGA. The function synthesis is based on the DHM technique described in
Section 3.5. This estimation is based on the use of logic and memory resources. As dis-
cussed in Section 3.5, DHM maps directly the functions on fully-specialized hardware,
therefore its power varies rapidly with the number of processing elements mapped on the
device. In Figure 3.12, it is shown an example of average power efficiency comparison
between both devices. It can be seen that the FPGA has a better power efficiency that
outperforms the GPU by orders of magnitude. This effect increases with the number
of kernel filters on a fixed IFM. Nonetheless, this is only true as long as the design can
fit on the FPGA device. Being the Cyclone10GX an embedded FPGA, this limitation is
quickly met for a fixed kernel filter size and feature input map, for example, 64 filters for
Conv7x7 do not fit in the device. This only allows the mapping of small functions for
deeper modules or layers in a typical CNN application. This highlights the importance
and interest of mobile CNNs deployment on embedded processors.

The energy is computed by integrating over time the instant power dissipation of a
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FIGURE 3.12: Average power dissipation comparison between multiple convolution function
sizes on Cyclone10GX FPGA (blue) and Tegra TX2 GPU (green) for different CNN layers on
an input image of 224× 224× 3. Blue bars represent the layers implemented on the FPGA and
the green bars represent the power dissipation on the GPU. Notice that the missing blue bars
represent unfeasible tasks to be mapped on more computational intensive task given the logic or

memory element constrains for the FPGA device.

device and its computation consumed (Equation 2.4). Energy can thus be calculated by
multiplying power and average execution latency E(IFM) = P(IFM) · LAT(IFM). In
Figure 3.13, it can be observed that the performance in µJ difference between the FPGA
and GPU implementations is increased. This is the result of having a large performance
increase on both power and latency measurements. Since the energy is a product of both
metrics, the resulting metric performance factor is also multiplied if they are both bigger
than the unitary performance factor.

3.6.1.3 Partition throughput (KPI)

In Figure 3.14 we show a comparison in throughput between the FPGA and the GPU. As
can be observed, the throughput of the GPU decreases when the layer has more kernel
filters, while the efficiency of the FPGA increases as a better mapping of the task to the
hardware resources is implemented. Because this performance difference increases, the
efficiency factor increases as well, similarly to the other metrics. Again, this claim can only
be assured as long as the design is small enough to be entirely deployed on the FPGA.
The dashed red line in Figure 3.14 represents the maximum throughput for inter-device
communication with the technology described in the architecture model in section 3.5.
This is a mayor issue for more workload intensive tasks, since the FPGA processor spends
more time in communication than in processing, creating a bottleneck and increasing
latency. Throughput is an interesting metric to be considered on heterogeneous platforms,
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FIGURE 3.13: Energy comparison between multiple convolution function sizes on Cyclone10GX
FPGA (blue) and Jetson TX2 GPU (green) for different CNN layers on an input image of
224× 224× 3. Blue bars represent the layers implemented on the FPGA and the green bars
represent the energy consumption on the GPU. The performance factor in this measure is

increased result of multiplication on both power and latency metrics.

normally being one of the most constraining variables in design and benefiting from
pipeling several processors. Therefore, similar to latency of PCIe, the throughput is highly
dependant on the size of both IFM and IFM tensors to be sent. Since this effect may reach
the theoretical maximum on higher workloads, it tends to limit real-time applications.

3.6.2 Heterogeneous partitioning results

In previous Chapter 2, we have described the heterogeneous hardware setup from Figure
2.6. Similar to the graph abstraction for software representations in Subsection 3.5.1, both
the processing element nodes and the communication nodes, are treated as a black-box
approach and their KPIs are measured for multiple metrics to compare the heterogeneous
system. The problem definition in the following subsection discusses this procedure,
combining both software model to the hardware architecture abstractions.

Given the measurements on individual devices and the module graphs for the hetero-
geneous platform as a result of the partitioning and scheduling, their efficiency is validated
and evaluated, subject to hardware configurations described in the architecture model of
Section 3.5. In order to have a fairer comparison between the monolithic homogeneous
GPU-only and the heterogeneous FPGA-GPU module estimations, both were tested with
the same configuration parameters and task workloads. The selected CNN models were
pre-trained with ImageNet data-set, therefore all the operations respect the same format
of input and OFMs dimensions.
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FIGURE 3.14: Throughput comparison between multiple convolution function sizes on Cy-
clone10GX FPGA (blue) and Jetson TX2 GPU (green) for different CNN layers on an input
image of 224× 224× 3. Blue bars represent the layers implemented on the FPGA and the green
bars represent the latency on the GPU. The red dashed line represents the maximal theoretical

throughput for the PCIe communication lanes.

Table 3.2 shows the set of operations to be executed on each CNN’s module described
in Section 3.5.1 with its respective input and output parameters. As discussed in Section
3.5.2, because of the resource-intensive mapping technique on the custom logic, it is
infeasible to fully implement CNN models on the FPGA using DHM. This is the case for
the Cyclone 10 family with a maximum number of 220K logic elements. However, the
overall energy consumption and latency can be extrapolated by individually analyzing
single layer executions on each module. From the heterogeneous model, it is possible to
estimate the performance of the hybrid platform and compare it with the homogeneous
solution. Although Table 3.2 also includes the number of parameters of each module, it is
needed to be mindful of the fact that computation-communication complexity actually
relies on the module graph structure. There are some considerations for the validation of
each module estimation that need to be mentioned.

To keep up with a sufficient module precision, the first two dimensions of the IFMs of
the modules, HI and WI , are sampled following the typical architecture tensor sizes factors
of two, i.e. 224× 224, 112× 112 and so on, down to 4× 4. The CI and N dimensions are
iterated as seen in Figure 3.11, SqueezeNet [IHM+16] includes a residual connection inside
its module. This tensor storage is not transferred and it is cached by the host to avoid an
unnecessary communication overhead between devices. This allows us to fully exploit the
dimension reduction of the IFM, as result of the GConv. A similar effect can be noticed
on the module with no spatial reduction on MobileNetv2 [SHZ+18] and after the channel
split on ShuffleNetv2 [MZZS18], as seen in Subsection 3.5.1 from Section 3.5. Because the
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FIGURE 3.15: Average metric performance space of the tested SqueezeNet’s modules with
different workloads on an homogeneous GPU-only platform (green) and the FPGA-GPU hetero-
geneous platform (blue). x-axis represents the average energy and y-axis the average latency.

hardware setup is highly bounded by the PCIe throughput of 2.5GB/s, as observed in
Figure 3.14, these observations are crucial to keep up with a good performance. In this
Chapter, the sparsity on some of the modules of SqueezeNet is not considered, and since
this is the only difference between some modules, they have the same performance for the
analysis.

As an additional partial solution to the burden of data movement, MobileNetv2 and
ShuffleNetv2 include modules with an stride of two (s = 2), which facilitate the objective
of reducing data transfers. However, the KPIs do not take into consideration an explicit
declaration of the stride variable. Nevertheless, this can be easily solved by modifying the
input of each metric model by shifting both dimension, or equivalently HI/s and WI/s.

From Table 3.2, we can be observe a comparison between the energy (E) in mJ and
latency (LAT) in ms from both the GPU that the Fire modules from SqueezeNet have a
significant energy efficiency gain, up to 28%, with no significant impact on the latency,
as can be observed from the metric average in Figure 3.15. This is mostly because the
energy efficiency of the Conv3× 3 task on the FPGA is higher than that on the GPU, or
EFPGA << EGPU . In the case of latency, because both the time spent in communicating
between devices and the processing time on the FPGA are shorter than the execution
of the Conv1× 1 task on the GPU, it is possible to hide its latency during the execution
time of the GPU. This means that if LATFPGA + LATComm < LATGPU , then the max
function as consequence of the heterogeneous model’s parallel execution, max(LATFPGA +

LATComm, LATGPU), will be dominated by the execution time of the GPU. This is highly
beneficial because this sub-task is small enough, thanks to the GConv, to be fully mapped
on the FPGA for every Fire module on the CNN. On the other hand, when latency is
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dominated by inter-device communication, the heterogeneous setup is less effective than
the GPU-only counterpart. These cases cover mostly shallower modules with CNN layers
processing bigger FMs. The impact of higher communication latency can be seen from
example in modules Fire1, Fire5 and Bottleneck2 for instance in Table 3.2.

For the MobileNetv2 CNN, although the partition only considers a sequential execution
of the diverse tasks in the Bottleneck modules, there are both an increased energy and
latency performance. This is a result from the fact, that LATFPGA + LATComm < LATGPU

and EFPGA < EGPU for the DWConv 3× 3 on every module configuration. This speed-up
and energy efficiency factor increases with the size of the IFM as seen in Figure 3.16 up to
23% and 30%, respectively.

FIGURE 3.16: Average metric performance space of the measured MobileNetv2’s modules with
0.5x parameters for different workloads on an homogeneous GPU-only platform (green) and the
FPGA-GPU heterogeneous platform (blue). x-axis represents the average energy and y-axis the
average latency. A zoomed subfigure highlights the performance of the first four modules in a

more detailed way.

Combining the strategies from both previous partitioning and scheduling, Shuf-
fleNetv2 (compressed version with 0.5× parameters from [MZZS18]) profits from a speed-
up factor on both module types, with and without spatial reduction from Figure 3.7. The
first section of the Stage module incorporates a spatial reduction module that profits
from a similar benefit of parallel execution. Therefore, the gain follows the same trend
as the Fire module from SqueezeNet, but with a DWConv 3× 3 instead of a traditional
Conv3× 3. The second section of the Stage module repeats a sequential execution with no
spatial reduction. As a consequence, the result is similar to the Bottleneck modules from
MobileNetv2. Because of this connection, it has the highest speed-up factor of 25% and
energy efficiency of 21% compared to its homogeneous GPU counterpart as seen in Figure
3.17.



76 Chapter 3. Heterogeneous Partitioning Techniques

FIGURE 3.17: Average metric performance space of the measured ShuffleNetv2’s modules with
0.5× parameters for different workloads on an homogeneous GPU-only platform (green) and
the FPGA-GPU heterogeneous platform (blue). x-axis represents the average energy and y-axis

the average latency.

Table 3.3 summarizes the speed-up factors and energy performance with selected
works closest to the platform setup from Section 3.4. As covered in 3.2, different levels of
heterogeneity can be exploited in state-of-the-art CNN models for partitioning. Current
works focus on task partitioning like in [TST+19], where the embedded GPU is used
as a feature extractor and the FPGA deploys classification with a fully-connected layer.
Although, this task-partitioning solution is well suited for platforms with a considerable
communication overhead, this is highly limited to small CNN models like LeNet-5 trained
on MNIST dataset, where the fully-connected layer is relatively small and may under-
utilize the FPGA resources. Additionally, this execution is deployed sequentially, not fully
exploring parallel heterogeneous execution. On the other hand, IFM batching partitioning
offers more flexibility than task partitioning as proven in [VGG+20]. This works has higher
memory constrains, enabling more flexibility but with a greater design-space. Whereas
this work considers memory constrains on each device, it was not tested on embedded
devices, where the infeasibility of storing batches of FMs is likely to occur. This is one
of the biggest limitation of why training remains a challenge for embedded devices on
embedded SIMD devices. Thus, a finer granularity partitioning technique is desired in
some cases. Layer-wise partitioning, like in [OHY+18], delivers this finer granularity, at
the expense of evaluating each layer on each device. This solution explodes in complexity
since the number of combinations grows exponentially with the number of layers and
devices. Nevertheless, it allows to dedicate different workloads to setups with several
devices. Module partitioning offers the flexibility of layer-wise by exploiting smaller
sub-blocks irregular operations and reducing the memory or resources constrains on
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embedded devices.
This Section demonstrates a similar performance to the three works discussed, showing

clear heterogeneity-related gains using a module partitioning. Notice that the evaluated al-
gorithms in this Chapter are more complex than the compared state-of-the-art partitioning
techniques in terms of number of layers and parameters, but still achieving similar results.
Thus, this proves that the use of heterogeneous partitioning to more complex cases can
be extended. Additionally, this module-based partitioning takes into consideration the
mobile-aimed nature of the tested CNN models. Therefore, because of the high parallel
deployment for inference task, the use of FPGA-GPU heterogeneous embedded platforms
also for mobile DL CNN topologies is justified, and shall result in very high gains if GPU
and FPGA substrates are put closer to each other than in the tested multi-board setup.

3.7 Conclusions

In this Chapter, module-level partitioning and scheduling of state-of-the-art pre-trained
mobile CNN architectures on a FPGA-GPU heterogeneous platform have been experi-
mented and evaluated. Experimental results are conducted on a heterogeneous platform
embedding an SoC Nvidia® Jetson TX2 CPU-GPU and an Intel® Cyclone10GX FPGA. The
ShuffleNetv2, SqueezeNet and MobileNetv2 mobile-oriented CNNs are experimented.
It has been shown, that heterogeneous FPGA-GPU acceleration outperforms GPU ac-
celeration for classification inference task over SqueezeNet (21%-28% energy reduction,
same latency), MobileNetv2 (12%-30% energy reduction, 4%-26% latency reduction) and
ShuffleNetv2 (25% energy reduction, 21% latency reduction).

It has been also demonstrated, that an FPGA exploiting DHM outperforms GPU im-
plementation at the cost of high resource requirements. It has been demonstrated that the
considered deep learning workloads all benefit from a heterogeneous FPGA/GPU infras-
tructure at module-level. Indeed, the designed heterogeneous systems all outperform a
homogeneous GPU solution over energy and/or latency on inference for classification
tasks. These results motivate for new fully programmable architectural solutions for
deep learning combining reconfigurable logic and streaming multiprocessor architectures.
Following chapter considers both the modeling of Chapter 2 of each individual device and
the heterogeneous partitioning techniques of this Chapter to formulate the optimization
problem.
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Chapter 4

CNN Model Partitioning
Optimization

4.1 Chapter abstract

CNN processing at the edge opens new challenges by requiring embedded systems to
support strong computational workloads. This rapid evolution fosters more complex hard-
ware architectures comprising interconnected heterogeneous elements. GPU, dedicated
ASIC and FPGA accelerators are currently platforms of choice for porting CNNs, as their
programmability and internal parallelism fit well the concurrency and the customization
needs of modern CNNs. The hardware/software co-design intricacy increases when logic
and memory constraints are taken into consideration concurrently in system DSE with the
objective to optimize energy consumption and throughput.

In this Chapter, an automated CPU-GPU-FPGA partitioning selection is proposed for
a given CNN layer. It is shown that using a Generalized Geometric Programming (GGP)
optimization problem formulation, the CPU-GPU-FPGA partitioning problem can be
modeled by considering a set of system performance metrics and constraints. Each metric
is expressed in a posynomial form depending on CNN hyperparameters and architecture
resource models. As for the partitioning method, the state-of-the-art techniques from
Chapter 3 are covered, these are: tiling, grouped convolution and fused-layer; as presented
in Section 3.3. The proposed analytical formalization is then employed to derive a set
of objective functions and constraints as a GGP problem. It is demonstrated that it is
possible to relax some problem constraints by including a penalization term, and reduce
the problem to multiple simpler GP sub-problems. Experimental results targeting an
embedded FPGA-GPU platform with state-of-the-art CNN layer configurations show that
the simplified problem is solvable in polynomial time with a speed-up gain and energy
reduction of around 20% and 15%, respectively, when compared against an arbitrary
balanced partitioning. If the flydels obtained in Chapter 2 and objective functions from
Chapter 3 are constrained to preserve the posynomial form and log-log convexity, it is
demonstrated that GGP is an efficient optimization solution to the DSE problem.
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4.2 Introduction

CNN inference deployment at the edge with high performance per Watt requires careful
co-design of hardware architecture and algorithm. Systems are currently becoming more
complex on both sides: architecturally and algorithmically. Embedded platforms include
several asymmetrical processing elements and different levels of memory hierarchies.
Thus, design solution selection from DSE requires optimization techniques to choose an
appropriate partition considering available resources and performance goals. To facilitate
DSE on the edge with heterogeneous platforms, an optimization problem formulation
is formalized. The resulting objective and constraint functions have the form of a GGP
problem. This family of optimization problems are mostly non-convex, and thus do not
have a unique optimal point. However, in some cases they can be reduced and solved
as GP problems. Since GP problems are fast solvable, in polynomial time, and ensure
a global optimal solution, it is strongly desired to transform a GGP into a GP problem
when possible. Nevertheless, this is not a trivial task, as it requires a deep expertise on the
nature of the problem at hand. In this Chapter, the following contribution is presented:

Given a system performance objective and constraints, it is shown that a partitioning method
of a CNN layer over a set of heterogeneous processing elements can be analytically described,
expressing objective and constraints in a posynomial form for individual processing elements. A
GGP optimization problem is formulated and a demonstration that the GGP equality constraints
can be relaxed so as to solve the problem in the form of a set of simpler GP problems. This relaxation
preserves the properties of GP problems, such as the existence of a global optimal solution and the
polynomial solving time.

The Chapter is organized as follows: In Section 4.3, an analysis of related state-of-the-
art works is presented, focusing on system modeling for DL, as well as on partitioning,
scheduling and optimization techniques. Section 4.4 explains the context of measurement-
based system performance modeling of CNN inference and introduces the concepts of
monomial and posynomial. In Section 4.5, the theory behind GGP and GP is presented
and explained, how a GGP problem can be relaxed to a GP problem using a penalization
technique based on the condensation solution. In Section 4.6, GP optimization is applied
to common CNN layer configurations and find the optimal partitions. Finally, in Section
4.7, it is discussed the results and observations.

4.3 Related Works

Since the early years of DL-oriented embedded hardware platforms, research has dedi-
cated large efforts on partitioning machine learning efficiently over several edge devices
[ZWTD19]. The partitioning solutions must take into consideration the hardware pro-
filing, partitioning, scheduling and deployment. As explained in Section 3.3 in Chapter
3, Fused-layer is a popular technique permitting two or several layers to be mapped
on a same device, reducing inter-device communication. Similarly, a set of containers,
such as Docker containers, can be instantiated to a model and treat partitions as cloud
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services. In [ZWTD19], a layer-wise containerization of a Deep Neural Networks (DNN)
with fused-layer is proposed by using analytical regression models of different DNN con-
figurations and optimizing analytically with dynamic programming. In [dOB19], a DNN
is partitioned at a finer granularity, mapping individual neurons to different IoT devices.
However, the optimization of [dOB19] is focused on reducing inter-device communication
using a similar heuristic as Kernighan-Lin heuristic [KL70], swapping partition nodes in
a graph abstraction. This solution is tailored to very constrained resources where com-
munication is a dominating bottleneck. In [VGG+20], the previous use case is extended
to heterogeneous platforms with different devices including CPUs, FPGAs and GPUs.
Therefore, communication channels with several latencies and throughputs are considered
in the optimization problem. Vanishree et al., create a Roofline analytical model to choose
the appropriate batch partitioning ratio of each device the platform. In [ZBG18], data
redundancy is exploited on fused-layers for contiguous partitions with the objective to
reduce inter-systems communication overhead. For this purpose, the optimization process
decides when to allow or when to avoid layer fusing. In the same publication [ZBG18], a
discussion on partition size and communication overhead is covered. Extending the work
of [ZBG18], Stahl et al., demonstrate that layer-wise partitioning can be found using ILP
optimization problems considering resource constraints and minimizing communication
[SZMG+19]. Finally, in [BMS+21], an assisting tool solution is introduced for embed-
ded hardware characterization using computation and communication knowledge from
heterogeneous platforms. The estimation precision is increased by introducing detailed
information of the system for different CNN operations. Then, the scheduler uses a greedy
layer-wise mapping as optimization strategy, selecting the most performing device iter-
atively for each layer. While this hardware-awareness is usually known to the designer,
many internal parameters are difficult to acquire in practise or may be hidden to the
designer. This solution from [BMS+21], however, does not require a performance-based
measurement database generation, which in many cases may save some development
time.

Same authors in [SHMG+21] add the consideration of weight-dominated CNN layers
for layer fuse. Their objective functions seeks an even weight distribution on several edge
devices. However, in heterogeneous systems, this may not be a desired property, since
some elements are more efficient with memory access handling or embed more memory.

With respect to this state-of-the-art, the proposed method is less specific to a given
deep learning solution. A resource and objective formulation are proposed for the fast
optimization of multi-system CNN partitioning that combines resource constraints, per-
formance constraints and performance objectives. The embarrassingly parallel nature of
CNNs is exploited to simplify the problem formulation. The proposition is intended to be
widely applicable and adaptable to a large set of CNN partitioning problems.
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4.4 Flydels as monomials and posynomials formulations

From Chapter 2, it was discussed that the convolutional layer is the most common opera-
tion in CNN models, therefore the most time consuming and most parameter intensive
workload [CX14]. The efforts were then focused in Chapter 2 on obtaining an analytical
behavioural model for this operation on given devices, modeled together with a ReLU
activation function. With the selection of the representative structural features, the compu-
tation and communication workloads were described. Afterwards, a dataset was created
by stochastically exciting the heterogeneous system. Finally, a set of performance models
were derived with ensemble modeling from these data points. The obtained flydels are
mostly represented in a monomial or posynomial form. It is discussed why this specific
form is required to be solvable with GGP in Section 4.5. In this Chapter, two KPIs are
considered: processing latency (LAT) and processing energy (E). As many other physical
models in electronic devices, these can represent a system in posynomial form. The same
platform from Chapters 2 and 3 is used as use case. It contains one CPU-FPGA SoC and
one GPU SoC. The CNN mapping to the FPGA is done through Direct Hardware Mapping
(DHM) [APS+17, WDCC19], resulting in an energy-efficient but resource-hungry FPGA
implementation. The results can however be extended to larger architectures and more
constraints, with limited effort.

GP is a an optimization technique that is useful to solve large scale problems by
formalizing them into not-too-restrictive mathematical models. The system performance
models must comply with GP specific analytical formulation based on two forms of
expressions. The first form to consider is the monomial. A monomial has the form presented
in Equation 4.1:

u(X) = c
n

∏
i=1

xai
i (4.1)

Where the function u : Rn → R maps an input feature vector X (such as X in previous
section) to a real value. c is strictly positive c > 0, ai ∈ R and the domain is also strictly
positive D(u) = Rn

++, or explained differently, the input feature vector X must be fully
composed of non-zero positive real values. As a second condition, a posynomial is a linear
combination of monomials as shown in Equation 4.2:

v(X) =
K

∑
k=1

cku(X) =
K

∑
k=1

ck

n

∏
i=1

xaik
ik (4.2)

Where, similarly to Equation 4.1, each element ck is strictly positive, ck > 0. To fully
exploit the posynomials in the GP context, the performance system models for latency
(LAT) and energy (E) must follow these rules. These performance metrics, when evaluated
for CNNs, tend to fit well the GP theory. Indeed, as CNNs layers heavily parallelize, their
cost in terms of energy and time tend to be proportional to the product of their structural
dimensions, leading to monomial formulations. Moreover, the cost of a complete algorithm
will tend to be the sum of individual layers costs, leading to posynomial formulations.
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These intuitions motivate the study of GP for CNN partitioning optimization.

4.5 Optimization Problem Formulation

After selecting analytical modeling and partitioning technique, the methodology further
proceeds with the formal definition of the problem formulation of a CNN layer. The solu-
tion of the optimization problem heavily depends on the nature of the objective function
and constraint choice. Mathematical properties, such as, curvature and monotonicity have
a critical role on the analytical or numerical tools to be exploited. Furthermore, expertise
and a-priori knowledge on the problem is key to mathematically manipulate the problem
and transform it from a non-convex to a convex function [BV04].

In this Section, it is described how the posynomial models of Section 4.4 are used to
formulate the optimization problem as a set of GP problems. Nevertheless, because of
monomial equality GP constraint violation, it is proposed a relaxation technique based on
objective function penalization. The added penalization term is obtained by the transfor-
mation of the equality constraints to posynomials, this technique is known as condensation
[RR82]. This reformulation provides a quick numerical solution in tenths of iterations, be-
ing each iteration solvable in polynomial time with interior-point methods using CVXPY
1.0 library [ADB19]. Interior-point methods approximate a numerical solution by im-
plicitly adding the inequality constraints to the objective function. Some mathematical
transformations are applied to convert the problem to a convex and differentiable one and
solvable by Newton’s method. The solution converges to a set of solutions towards the
optimal solution per each iteration, this trajectory is known as the central path [BV04].

4.5.1 GGP Formulation of the Heterogeneous CNN Layer Partitioning

GP problems are used in multiple domains for their great versatility. Because usually GP
are non-convex but easily transformed into convex problems, they have gained interest in
optimization formulation, since GP convex problems have been proven to be fast solvable
[BV04]. The fact that the GP solution is analytically found makes it highly desirable but
the formulation formulation of the problem can be difficult. The strict mathematical
conditions on the objective and constraint functions require specific analytical forms. A
GP problem has the form of Equation 4.3:

minimize f0(X)

subject to fi(X) ≤ 1; i = 1, 2, · · · , p

hi(X) = 1; i = 1, 2, · · · , m

(4.3)

Where the objective function f0(X) and the inequality constraint functions fi(X) shall
be posynomials (Equation 4.2 from Section 4.4), and the equality constraints hi(X) shall
be monomials (Equation 4.1 from Section 4.4) [BV04]. If the problem is non-convex, it is
possible to perform mathematical transformations to convert it to the convex form [BV04].
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The GGP formulation of the GPU-FPGA partitioning of a CNN layer can be formalized
below in Equation 4.4:

minimize LATHet(X)

subject to ALMF(XF) ≤ ALMmax

ALUTF(XF) ≤ ALUTmax

LABF(XF) ≤ LABmax

M20KF(XF) ≤ M20Kmax

XF + XG = X

(4.4)

Where X is the input feature vector containing the structural features from Section 2.4
in Chapter 2 of a CNN layer. These are HI , WI , C, k and N. XF and XG are the structural
input feature vectors and sub sets of X to be allocated on the FPGA and GPU, respectively.
LATHet(X) is the posynomial model of the execution latency. ALMF(XF), ALUTF(XF),
LABF(XF) and M20KF(XF) are posynomial resource model inequalities for the target
FPGA, respecting the maximum logic and memory element count of the device. In the
experiments (Section 4.6), the Intel® FPGA resources were selected: ALMs, ALUTs, LABs
and M20K memories.

Not only does the objective function directly depend on the taken partitioning strat-
egy, but also the constraints last equality. In Chapter 3, three well-known partitioning
techniques. With the purpose of forcing the algorithm to converge to non-trivial solutions
(e.g. executing nothing), the equality constraint XF + XG = X is added. As an example,
for the grouped convolution, the number of channels on the FPGA (CF) and the number
of channels on the GPU (CG) must match the total number of channels before splitting,
while keeping other features constant, or CF + CG = C. Unfortunately, this equality
constraint is a sum of monomials, therefore a posynomial. For GP, this definition violates
the monomial equality constraint from Equation 4.3. A GP is a particular case of GGP,
which accepts posynomials as equality constraints, but the GGP problem is no longer
convex nor a method to find an optimal solution is known. In this case, multiple heuristics
have been proposed to convert a GGP to a GP using penalization terms [Bur87]. In next
Section, a condensation solution to relax the posynomial equality constraints to the given
use-case is proposed.

4.5.2 GGP Penalization by Equality Constraints Condensation

As discussed in previous section, Equation 4.4 includes equality constraints that violate the
conditions of GP. Nevertheless, these expressions can be transformed from posynomials to
single set of monomials of the following form using the condensation technique proposed
in [RR82] A new function h̄ is computed:

h̄(X, X̂) =
T

∏
t=1

[
ut(X)

εt(X̂)

]εt(X̂)

(4.5)
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Where X̂ is a feasible solution starting point. For example, an a-priori solution X̂ can
be a naive partitioning that respects the problem constraints. ut, t ∈ T are each of the T
monomial terms (Equation 4.1) in all posynomial equality constraints hi (in the form v of
Equation 4.2). Finally, the exponent εt(X̂) = ut(X̂)

hi(X̂)
is the result of the arithmetic-geometric

inequality approximation, transforming any posynomial to a monomial. Since εt is a ratio,
then the basic property h̄(X, X̂) ≤ h(X) of the arithmetic-geometric inequality applies. h̄
is known as a posynomial condensed to a monomial. Notice that, because h̄ has all the
properties of a monomial, these constraints cab be relaxed by including a penalization
term in the objective function, while keeping the posynomial conditions and changing the
equality to inequality constraints:

minimize f0(X) +
m

∑
k=1

αk h̄k(X, X̂)−1

subject to fi(X) ≤ 1; i = 1, 2, · · · , p

hi(X) ≤ 1; i = 1, 2, · · · , m

(4.6)

Where each αk is the penalization weight of the original objective function. Note that
these weights add parameters to be tuned in the optimization process. Now fi and hi

constraint functions are both posynomial inequalities, as a result of the relaxation by
condensation. Although now the problem is GP-compliant, a new problem arises. The
penalization weights αk must be carefully selected for each equality constraint. For this
purpose, several heuristics exist [Bur87]. In simple cases, αk selection can be solved nu-
merically by incrementally changing the weight values, this process is known as tightening
[RR82]. When the tightened condensed constraints approximate the desired value, the
solution is accepted, and that value for αk is selected. This technique is similar to other
primal-dual optimization problems (duality), like Lagragian-based optimization techniques
[BV04]. Where, in order to solve the primal formulation of a possibly non-convex prob-
lem without any modification, the dual problem must be first formulated. These dual
optimization problems incorporate, after some manipulation or transformation, the con-
straints into the objective function as penalization. For dual problem formulation, the
posynomial condensation into a monomial from the penalization is based on the result of
an approximation using the algebraic manipulation of the arithmetic-geometric inequality.
Solving the dual problem is more tractable than solving the primal problem [BKVH07].

In the following Section 4.6, we empirically demonstrate that it is possible to find the
penalization parameters within a few iterations for different CNN layer configurations.
Since each iteration is a GP problem, it is solvable in polynomial time. Thus, the final
solution remains upper-bounded by the polynomial time complexity for the selected
partitioning techniques of Chapter 3.

4.6 Experimental results

In this Section, the results of the optimization problem definition of Section 4.5 with
different CNN layer configurations are presented. The first results presented here consider
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a platform with only an embedded FPGA with a GPU, afterwards the objective function is
easily modified to include more compute elements with different communication links
between a CPU-GPU-FPGA platform. This is also the case for the constraints functions,
which can be extended to include other embedded devices constraints.

4.6.1 Single layer optimization

Exploiting the heterogeneity of an embedded platform with a single FPGA-GPU coupling
and a single communication link, an optimization problem is formulated in the form
of Equation 4.7 with the models of Section 4.4 and the objective function of Chapter 3.
Figure 4.1 depicts the setup test for allocation of the obtained partitions on a single CNN
layer. This setup considers a sequential execution of the FPGA and GPU workloads to
minimize the latency of an individual CNN layer. That is, the objective function is the sum
of processing times on each device, considering the transfer time of the intermediate FMs
from one node to the other (LATComm). Since the host shares the same memory between
the CPU and GPU, but not for theFPGA (Appendix B); the FM with the structural features
XF must be transferred to the FPGA accelerator. Therefore, the communication latency
depends on the shape of this partitioned IFM, or LATComm(XF).

FIGURE 4.1: Setup 1: Single layer setup of a single CNN layer allocation.

In Equation 4.7, the selected partitioning technique is the grouped convolution. There-
fore, the equality constraint only considers the channels on each device (CF and CG ) to
match the total number of channels on the layer (C).

minimize LATF(XF) + LATG(XG) + LATComm(XF)

subject to ALMF(XF) ≤ ALMmax

ALUTF(XF) ≤ ALUTmax

LABF(XF) ≤ LABmax

M20KF(XF) ≤ M20Kmax

CF + CG = C

(4.7)

As discussed in Section 4.5, the posynomial equality constraint violates the requirement
for a GP solution. However, the constraint can be relaxed to an inequality by adding the
penalization term based on the condensed posynomial. By incorporating this penalization
term, the latency objective function increases smoothly when the grouped convolution
constraints are not met. This is, when the solution chosen from the optimization prob-
lem does not compute the number of channels in the convolution layer. If the equality
constraints are relaxed to inequality constraints, some solutions that were not originally
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feasible are now possible, and even optimal. In the case of the grouped convolution, if
a constraint equality is relaxed to a less or equal, the obvious and most trivial solution to
minimize the latency, would simply be processing the fewest number of IFM channels as
possible. Namely, processing one single channel on the FPGA (CF = 1) and one on the
GPU (CG = 1). Evidently, this is not a desired solution, since the IFM tensor is not fully
processed. First, for this purpose, the condensed penalization term h̄(CF, CG, ĈF, ĈG) must
be obtained. Then, the equality constraint on the number of channels is removed. Using
Equation 4.5, with T = 2, since the constraint consists of two monomials, the posynomial
is condensed to a monomial in the following Equation 4.8:

h̄(CF, CG, ĈF, ĈG) =

 CF
C
ĈF

ĈF+ĈG


ĈF

ĈF+ ˆCG
 CG

C
ĈG

ĈF+ĈG


ˆCG

ĈF+ ˆCG

(4.8)

This penalization term is a monomial that includes the channel parameters of each
device. Thus by adding it to the objective function, it preserves its posynomial form.
To incorporate this term in the objective function, it is only necessary to add the penal-
ization with a penalization weight, αh̄. As for an instance, LATF(XF) + LATG(XG) +

LATComm(XF) + αh̄(CF, CG, ĈF, ĈG). For one equality constraint condensation, only one
penalization weight α is required (m = 1 for Equation 4.6). Consequently, it is feasible to
sweep over different values of α and tighten the relaxed inequality constraint, until CF+CG

C

approximates the unity.

FIGURE 4.2: First iterations of a relaxed GGP sequential grouped convolution partitioning of an
input tensor with 16 channels (C = 16) with an increasing α. The problem is solved as a set of
GP problems and he tightening only takes a few iterations (iteration 17 with α = 170) to find
an acceptable solution. Each step is in polynomial time and total optimisation lasts less than a

couple of hundred of milliseconds.
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Figure 4.2, shows an example with an input tensor sequential processing with grouped
convolution partitioning of configuration size of HI = WI = 112, CI = 16, k = 1 and
N = 32 for latency minimization. For a grouped convolution partitioning, all features
equal for each device are kept, except for the number of channels. Resource constraints
are taken into account. Each bar represents a partitioning iteration chosen by the solution
of the GP solver with a given α value. The blue bars are the channels mapped on the
FPGA, while the green bars are mapped to the GPU. By increasing the value of α, the
constraint (red line) is tightened at each iteration, penalizing the objective function until
the normalized relaxed constraint function approximates 1. For this instance, α = 170,
represented by the orange dashed line, is the first value to satisfy the constraint with
CF = 14 and CG = 2. Additionally, for this test a balanced feasible solution is chosen for
the constraint condensation. This is, the number of channels is equally distributed for
both processing devices (ĈF = ĈG = 8). An important observation from Figure 4.2 is that
multiple solutions fulfill the tightened equality constraint. Therefore, there are infinite
feasible solutions after iteration 17. However, as shown in Figure 4.3, since the latency
(solid purple line) has a non-decreasing monotonous nature, the following solutions
perform worse than the first accepted iteration (dashed orange line). The solutions found
on each iteration are found in polynomial time with respect of the inputs X, XF and XG.
As a consequence, the solution of each GP problem remains bounded by polynomial time
and, fixing a step size on α, so is the iterative solution.

FIGURE 4.3: Heterogeneous objective function per iteration (without penalization term) from
problem in Equation 4.7.

The GGP objective function can be easily modified to incorporate several computing
devices with their respective communication bus linked to the other devices. Equation
4.9 shows an example of an objective function reformulation with the CPU latency model
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inclusion (LATC(XC)). Where XC are the features of the CNN layer deployed on the CPU.
Also communication links LATC−G

Comm(XC−G) and LATC−F
Comm(XC−F) are incorporated to

consider the latency of the communication overhead of inter-device FM transfers between
CPU and both the other devices. Additionally, the condensation and penalization term (h̄)
in the objective function must also include the features of the modified equality constrain
(CC + CF + CG = C).

Computation LATC(XC) + LATF(XF) + LATG(XG)+

Communication LATF−G
Comm(XF−G) + LATC−G

Comm(XC−G) + LATC−F
Comm(XC−F)+

Penalization αh̄(CC, CF, CG, ĈC, ĈF, ĈG)

(4.9)

Figure 4.4 shows an example of a partitioning by relaxation and tightening over the
same channel-wise layer partitioning of the Figure 4.2. The red bars represent the partition
hosted in the CPU, the green bars those on the GPU and finally, the blue bars represent the
channels . The found solution fits the partitions mostly on the FPGA, until the equality
constraint is tight enough to fulfill the desired value (C = 16).

FIGURE 4.4: Relaxed GGP sequential grouped convolution partitioning of an input tensor with
16 channels (C = 16) with an increasing α over a CPU-GPU-FPGA network.

4.6.2 Full CNN model optimization

In previous Subsection, the limited size of the problem still allowed greedy methods to
solve single-layer optimization partitioning and scheduling. An approximate solution
can be found by simply mapping the biggest partition to the fastest device with available
resources. In this specific use-case, the FPGA dominates in both execution time and energy
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consumption. Therefore, GGP will find an optimal solution similar to greedy algorithms.
However, this claim does not take into consideration the complexity of partition mapping
in deeper layers. If the algorithm chooses to fit the whole first layer in one device, deeper
layers are not considered to be mapped on that device. Since the device has already
exhausted its resources or at least until it multiplexes in time, it is not available until it
finishes its scheduled workload. Unfortunately, one of the main limitations of DHM is
that layers can not be multiplexed in time. Therefore, each layer on full CNN models
are individually mapped theoretically on several FPGA accelerators, simulating time-
multiplexing with reduced resources. This can be simulated due to the analytical modeling
from Chapter 2 and the presented formulation of layer-wise optimization presented in
this Section. The setup from the Figure 4.5 is analyzed as use-case scenario.

FIGURE 4.5: Setup 2: Multi-layer setup of a full CNN model with several layers allocated. The
heterogeneous architecture is theoretically simulated.

Being L the number of convolutional layers in a CNN model, Equation 4.10 represents
the optimization problem reformulation for a complete network. The objective function
now adds the individual performance model (latency for this example) of each layer l
(l = 1, 2, 3, . . . , L). The resource inequality constraints are also modified to include the
memory and computing elements utilization on each layer.



4.6. Experimental results 93

minimize

Computation︷ ︸︸ ︷
L

∑
l=1

LATD(X l
D) +

Communication︷ ︸︸ ︷
L

∑
l=1

LATComm(X l
D) +

Penalization︷ ︸︸ ︷
L

∑
l=1

αl h̄l(X l
D, X̂ l

D)
−1

subject to
L

∑
l=1

ALMF(X l
F) ≤ ALMmax

L

∑
l=1

ALUTF(X l
F) ≤ ALUTmax

L

∑
l=1

LABF(X l
F) ≤ LABmax

L

∑
l=1

M20KF(X l
F) ≤ M20Kmax

L

∑
l=1

X l
D = X l

(4.10)

As covered in Appendix A, the summation and scaling (linear combination) of posyn-
omial functions is also a posynomial. Thus, the objective and constraint functions are still
posynomial and can be solved with GGP. Additionally, notice that from Equation 4.10, the
number equality constraints also increases linearly with respect to the number of layers in
the CNN model. Therefore, several penalization weights (αl) and penalization function (h̄l)
must be handled to iterative tighten the reformulated objective function. Each parameter
αl can be individually tightened as presented in previous subsection, until each constraint
is fulfilled. Similarly, it is possible to increase simultaneously all the parameters on each
step and individually stop each one when that specific equality constraint is fulfilled.

Although most of partitioning techniques from Chapter 3 are covered with the for-
mulation of Equation 4.10 (tiling, grouped convolution or channel-wise loop unrolling
and depth-wise separable convolution), there is still one that can not be adapted to this
formulation. The fused-layer considers that some FMs are not transferred between de-
vices, in both sequential and concurrent execution. However, in Equation 4.10, every
single layer is considered to output an OFM that is intercommunicated between devices.
The fused-layer technique consists in selecting which OFMs remain on the device to be
computed as IFMs for the next layer, eliminating this way, the need of communication
overhead. Consequently, a strategy must be chosen to reduce some terms of communica-
tion models LATComm(X l

D). Since communication links are usually modelled with linear
functions, ILP is a simple enough solution to explore all the combinations in polynomial
time [SZMG+19, SHMG+21]. In Equation 4.11, each communication term in the hetero-
geneous objective function from Equation 4.10 is multiplied by the Heaviside function
S(x) ∈ B, also known as step function. This way, the optimization technique chooses
between keeping the FM in the device and skip communication (S(x) = 0) or to transfer
the tensor (S(x) = 1) on each layer.
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minimize
L

∑
l=1

LATD(X l
D) +

L

∑
l=1

S(X l
D) · LATComm(X l

D) (4.11)

Although the formulation from Stahl et al. [SZMG+19, SHMG+21] is simple and
solvable with ILP, it does not consider the execution computation time. Therefore, this is
only useful in cases where the CCR is low, result of a hardware platform heavily bounded
by communication. On the other hand, while Equation 4.11, is a generalization and
extension of their work it is, from a GGP perspective, unsolvable. This is because the
formulation from Equation 4.11 presents several drawbacks. The most important being,
that the shifted Heaviside function H(x), from Equation 4.12, is not a smooth differentiable
function. Thus, it can not be solvable using interior-point algorithms, that depend on
iterative gradient evaluation [BKVH07].

H(x) =

{
0 x < 1
1 x ≥ 1

(4.12)

FIGURE 4.6: Communication weight function S(x) = x2k for different values of k.

As a consequence, analytical approximations of the step function must be used. Well-
known sigmoid-like functions, such as the logistic function or trigonometric functions
like arctan and tanh, are suitable candidates [BV04]. Approximation techniques such
as, cubic and spline interpolations are also commonly employed to smooth and clip or
bound the proposed function [AGN07]. Nevertheless, as discussed in Section 4.4, to
preserve the posynomial properties, both terms in the product S(x) and LAT(XD), must
be also posynomials (Appendix A). Furthermore, convexity and monotonicity must be
also preserved to be solvable with GGP. This restricts the number of usable functions for
fused-layer formulation, since they must follow the algebraic form. Thus, in Equation 4.13,
a simple exponential algebraic function is defined as communication weight function.
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FIGURE 4.7: Approximation error function based on L2-Norm

S(x) = x2k, k ∈N (4.13)

Figure 4.6 shows many algebraic communication weight functions (blue solid line)
for different values of k ∈ N. Notice that, the bigger the value of k is, the better the
approximation is to the Heaviside function H(x) (red solid line). Additionally, using
a symmetrical algebraic function (like with an even exponent) k can take also negative
integer values. For simplicity purposes, we restrict k to take only natural numbers, N.
Another important remark is that, this is only true for the interval 0 ≤ x ≤ 1. Therefore,
these newly introduced interval constraints must be also considered on the full CNN
optimization problem formulation.

Although, formulation from Equation 4.13 solves the approximation problem in a
posynomial form that can be solved by GGP, it introduces a new heuristic value k. As
shown in Figure 4.7, the choice of this value has a direct impact on the function approxi-
mation. The L2-Norm is chosen to visually and numerically evaluate the error difference
between the Heaviside function and the communication weight function (||H(x)− S(x)||).
For the full CNN model optimization formulation, a value of k = 100 is selected with an
L2-Norm error of around 0.12. It is important to considerate that a big value of k can cause
numerical issues that complicates convergence with no substantial difference between
solutions.

Finally, the communication weight function S(x) is included in the GGP formulation
for the full model optimization. Equation 4.14 shows the modified objective function with
the interval constraints of the approximation domain of S(x). Since, S(x) is a smooth
differentiable posynomial, the weighted communication terms are still posynomials (A).
Thus, this can be solved with the interior-point techniques, typical of GGP solutions.
Considering that the derivative is mostly 0 for almost any value, except for values close
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to 1, any gradient-based function is heavily penalized by choosing features around 1.
Additionally, the objective function also increases with the number of S(X l

D) for each layer
that the features are transferred to another device.

minimize

Computation︷ ︸︸ ︷
L

∑
l=1

LATD(X l
D) +

Weighted Communication︷ ︸︸ ︷
L

∑
l=1

S(X l
D) · LATComm(X l

D) +

Penalization︷ ︸︸ ︷
L

∑
l=1

αl h̄l(X l
D, X̂ l

D)
−1

subject to
L

∑
l=1

ALMF(X l
F) ≤ ALMmax



FPGA Resource Constraints

L

∑
l=1

ALUTF(X l
F) ≤ ALUTmax

L

∑
l=1

LABF(X l
F) ≤ LABmax

L

∑
l=1

M20KF(X l
F) ≤ M20Kmax

L

∑
l=1

X l
D = X l

}
Partitioning Constraints

0 ≤ X l
D

X l ≤ 1

}
Interval Constraints

(4.14)

To evaluate the full model optimization partitioning, Figure 4.8 shows the resulting
partitions per layer from Equation 4.14 formulation on three CNN model configurations
introduced in Chapter 2. For instance, the partitioning was processed channel-wise
with the heterogeneous GConv partitioning on a full model, presented in Chapter 3.
For visualization purposes, the normalized number of channels computed per device is
presented instead of the actual number of channels per layer. The channel layer-wise
partitioning for AlexNet [KSH12] is presented in Subfigure 4.8a. Subfigure 4.8b shows the
channel distribution for VGG16 [SZ14]. Finally, in Subfigure 4.8c, the resulting partitioning
for ResNet18 [HZRS15] is presented. The latency of each device and the heterogeneous
platform are compared against a single-device solution. The single-device is the CPU
on the embedded platform with neither inter-device communication nor partitioning.
This means, that the results of the dashed gray line represent the full layer execution on
CPU. The solid red line represents the speed-up factor of the heterogeneous platform for
each accelerated layer partition; compared against the single-device with no partition
optimization nor acceleration. The model configurations are based on ImageNet dataset
[DDS+09] with an input image with dimensions 3 × 224 × 224. From these results it
can be observed that, compared against single layer channel optimization from previous
Subsection, the resource utilization on the FPGA is distributed through all layers. Instead
of mapping all channels of the first layers on the custom logic, as greedy-based algorithm,
GGP optimization maps channel through deeper layers. However, as seen in the three
Subfigures from Figure 4.8, the GGP optimization formulation favors the first CNN layers
to be directly mapped on the FPGA, which have a higher CCR. Deeper layers are bound
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by the communication overhead, which is a critical part of inter-device tensor transfers on
heterogeneous platforms. Similarly, as evidence of this high CCR preference scalability,
the three models present a different number of layers, but also a similar result. This
is, smaller partition percentages for deeper layers on FPGA accelerator and a workload
dominated mostly by GPU. It is also important to mention, that in some cases a feasible
solution can not be found if the resource constraints are too strict [SZMG+19, SHMG+21].
Nevertheless, because of the mathematical properties of GGP, when a solution is found,
this one is the optimal solution.

Table 4.1 displays the results from Figure 4.8 using the Setup 2 from Figure 4.5. These
results are compared to state-of-the-art related works addressing partitioning optimiza-
tion for CNNs models on the edge, for both simulated/theoretical and real-world case
scenarios. Many approaches have been proposed for optimization formulation depending
on the objective and constraint functions. Additionally, different partitioning schemes
have an impact on the partition selection. Zhao et al. [ZBG18] propose a workload sharing
and stealing for a Raspberry Pi 3 CPU cluster based on the memory capabilities of each
node. The memory footprint and communication overhead are treated as constraints in the
scheduling problem formulation, achieving a time execution speed-up from 1.7× ∼ 2.5×
for YOLOv2 [RF16]. As seen in Table 4.1, this technique, as many other partitioning
methods, is inspired by the fused-layer from Section 3 [AFM16]. For bigger edge device
networks, Oliveira and Borin [dOB19], proposed the treatment of the hardware architec-
ture network as a graph, taking advantage this way, of graph theory and operations to
modify the graph. The authors demonstrate that their technique is less effective while
using greedy techniques and hand-made layer-wise partitions. The graphs include a
form of communication heterogeneity by allowing different bandwidths on the WIFI link
between nodes. In [dOB19], authors optimize the latency of inference by balancing the
workload on LeNet [LHBB99] with a speed up of 1.8×. Stahl et al. [SZMG+19] present a
convex ILP optimization formulation aiming for communication overhead reduction. The
authors obtained from this formulation a binary selection of layers to fuse for a platform
simulation. Authors test the partitioning on YOLOv2 with a speed-up of 15%. Stahl et
al. [SHMG+21] extended their work for a physical platform consisting of multiple Rasp-
berry Pis 4 on YOLOv2, AlexNet [KSH12], VGG16 [SZ14] and GoogLeNet [SLJ+14] with
a speed-up factor up to 2.8×, 1.2×, 2.4× and 1.7×; respectively Dynamic Programming
(DP). With a similar hardware network on the edge, Zhou et al. [ZSB+19] proposed an
unconstrained DP problem formulation that also includes the computation in the objec-
tive function achieving for YOLOv2 and VGG16a speed-up of around 1.5× ∼ 3.4× and
1.1× ∼ 2.3×, respectively. Relaxing objective and constraint functions are a common
method to accelerate solution evaluation and selection. In [ZCZ+21], Zeng et al. reduce a
ILP to a LP problem by modifying some integer variables to continuous variables. Ap-
proximating this way, to a local minima solution. Additionally, in [ZCZ+21], the authors
address the energy consumption of their heterogeneous platform by integrating direct
energy measurements constrained to latency deadlines.
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(A) AlexNet.

(B) VGG16.

(C) ResNet18.

FIGURE 4.8: Resulting GConv channel-wise optimized partitions for AlexNet 4.8a, VGG16 4.8b
and ResNet 4.8c.
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From Figure 4.8, it has been demonstrated that by relaxing the problem formulation,
similarly to [ZCZ+21]), it is possible to obtain a speed-up gain similar to the state-of-the-
art works. As many of the discussed works [ZBG18, SZMG+19, SHMG+21, ZCZ+21], the
partitioning techniques include a mixture of layer-wise schemes with fused layer selection.
However, the constraint function, for this chapter includes the logic and memory resources
of the programmable logic of the FPGA. These considerations extend the capabilities of
the partitioning optimization for hardware DSE. This custom logic awareness contrasts
to other approaches for heterogeneous platforms. For instance, in the above discussed
solutions, it is mostly focused on a fixed amount of memory resources, which is a com-
mon decision for CPU-GPU edge platforms. Furthermore, since not only latency can be
modeled as a posynomial, but also the energy, the modification of the objective function
is feasible for energy optimization. As observed in Figure 4.8, the optimization solution
tends to map shallower CNN layers on the FPGA for the three models. These layers are not
only the most computational intensive in terms of number of MACs, but also the tensor to
communicate are lighter [dOB19]. This means, that these layers have a high CCR, which
allow a suitable mapping on custom logic. However, since the communication overhead
on heterogeneous systems is substantial, the first memory transfers without layer fusion
introduces a considerable latency in the first layer to FPGA accelerator. Nevertheless, even
considering this slow transfer the optimized heterogeneous partition solution still out-
performs the single-device CPU solution. The speed-up factor is then reduced for deeper
layers with values that ranges between 3.1× ∼ 5.7×, 2.8× ∼ 6.4×, and 2.8× ∼ 6.3× for
AlexNet, VGG16 and ResNet18, respectively.

4.7 Conclusions

This Section has proposed an automated method for CPU-GPU-FPGA partition selection
of a given CNN layer. It has been shown that the partitioning problem can be modeled
within the GGP framework, modeling each system performance metric in a posynomial
form depending on CNN hyperparameters and architecture resource modeling. Well-
known partitioning techniques in the state-of-the-art have been analyzed for layer-wise
partitioning: tiling, grouped convolution, depth-wise separable convolutions and fused
layers. An analytical formalization is then employed to derive a set of objective functions
and constraints as a GGP problem, solvable in polynomial time without requiring a
heuristic. It has been demonstrated that it is possible to relax some equality constraints
by including a penalization term based on posynomial condensation, and reduce it as
multiple simpler GP sub-problems. Experimental results targeting an embedded CPU-
FPGA-GPU platform with state-of-the-art CNN layer configurations have demonstrated
that the simplified problem is solvable in polynomial time.
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Chapter 5

Conclusions and discussion

This manuscript has studied the inference deployment of CNNs models on embedded
heterogeneous platforms. The algorithmic integration was specifically tailored for hybrid
systems with an accelerator topology consisting of: multicore CPUs, SIMD GPUs and
custom configurable logic FPGAs based on Direct Hardware Mapping (DHM). At first,
the challenges and problem definition were evoked to understand the limitations and
difficulties of heterogeneous design. However, during the development of this project, it
has been proven that different hardware-software heterogeneity levels offer opportunities
to accelerate a given set of partitions on a DL context. This was achieved by defining a
three step methodology to overcome previously defined challenges consisting of modeling,
partitioning and optimization.

The modeling in Chapter 2, covered the individual accelerator characterization. This
chapter proposed a modeling method called flydeling to create CNN performance models
by exciting the system with a random sequence using a black-box System Identification
(SI) approach. For an embedded CPU-FPGA-GPU hybrid accelerator platform, it has been
proven that it is possible to obtain quite accurate KPIs flydels. The partitioning in Chapter
3, benefited from these models to evaluate the resulting workloads. In that chapter, it
has been shown that the considered DL accelerated partition workloads benefit from a
heterogeneous FPGA/GPU infrastructure when using module level splitting. Furthermore,
the proposed heterogeneous systems outperform a homogeneous GPU solution in terms
of energy and/or latency KPIs on inference for classification tasks, showing that the
performance gain compensates for communication overhead. Finally, the optimization
in Chapter 4, combines the accelerated partition evaluation from Chapter 2 with the
module-level partitioning rules of Chapter 3 to formulate an optimization problem. An
analytical objective and constraint formalization is derived as a GGP problem. It has been
demonstrated that it is possible to relax and add a penalization term to reduce the problem
to more simple GP sub-problems, solvable in polynomial time.

Hardware specialized DL has been steadily evolving. Newer unconventional architec-
tures have been constantly adopted in the embedded system domain and these hybrid
systems are becoming more and more complex. As expected, during the research and
writing of this thesis, this progress did not stagnate. Many opportunities have arisen with
their own challenges and their own research questions. This phenomenon has opened
many possible research paths that could potentially extend the scope of this project. The
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author has identified the following:

• Heterogeneity- and hardware-aware Neural Architecture Search (NAS): In this
thesis, it has been assumed that the pretrained CNN model architecture was previ-
ously chosen by the designer. This means that the optimization was elaborated over a
static CNN model. Thus, the optimization was carried out in a two stage process: the
model training and the partitioning result of this thesis. Nevertheless, both optimiza-
tion could be performed on a single stage. NAS is a technique that generates and
optimized CNN model topology for a problem. Hardware-awareness is introduced
with profiling tools, in the form of the proposed analytical heterogeneous modeling.
The topology evolution, training and model evaluation are simultaneously executed
per iteration. This iterative improvement is usually achieved with Reinforcement
Learning (RL), but this demands a high offline computation requirement.

• DHM FPGA acceleration through partial reconfiguration: As discussed by the
authors in [APS+17], Direct Hardware Mapping (DHM) offers a high throughput
with low latency at the expense of logic and memory resources. The kernel weights
of CNN layers are directly mapped. Therefore, available resources are quickly
exhausted and cannot be remapped during execution. This means that the com-
munication link must be interrupted for each accelerator reprogramming for the
FPGA. However, as discussed in Chapter 3, the programming time can be hidden in
the execution, since GPU execution is order of magnitudes slower than the FPGA.
Employing partial reconfiguration, communication link can be kept while remap-
ping a different set of kernel weight values. Furthermore, this programming latency
could be considered into the optimization problem formulation. Allowing to choose
in-between which partitions this reprogramming could take place.

• GPU-FPGA memory hierarchy optimization in SoC: Many heterogeneous edge
devices have already adopted shared memory hierarchies between unconventional
accelerators. Some newer architecture generations from GPU vendors have placed
Tensor Processing Unit (TPU) like accelerators close to the processing elements on
the same silicon die. A similar design has been chosen for CPU-FPGA coupling
on embedded SoCs. However, GPU-FPGA memory coupling solutions are yet to
appear. Although, this may look like a pure technical drawback, it has been shown in
Chapters 3 and 4, the huge importance of inter-device communication. At least from
a hypothetical simulation analysis, heterogeneous systems could finally handle one
of the most critical challenges. Applications with more balanced Computation-to-
Communication Ratio (CCR) can be planned ahead and benefit from the appearance
of this theoretical topologies.

The rise of novel unconventional architecture paradigms will always be followed by
an early-phase of heterogeneous adoption with previous accelerators. Embracing this
design heterogeneity in software-hardware co-design environments, will push forward
innovation, unlocking newly capabilities.
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Appendix A

Convexity, monomials and
posynomials

A.1 Convexity definition

Definition: A function f : Rn 7→ R is considered convex over any point x, y ∈ Rn with
0 ≤ λ ≤ 1, if :

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y) (A.1)

Similarly, a function f : Rn 7→ R is considered strictly convex by restricting the inequality:

f (λx + (1− λ)y) < λ f (x) + (1− λ) f (y)

Focusing on this definition it is possible to further derive some properties like linearity
and non-linear function convexity test by composition.

A.2 Convexity properties

A.2.1 Summation

Theorem: Being F a set of convex functions F = { fi : Rn 7→ R, ∀i, i = 1, 2, 3, ..., m}, then
the sum of all elements is also convex.

Proof: If we assume that function g( f1, f2, ..., fm) = ∑m
i=1 fi is also convex, then by

definition:

g(λx + (1− λ)y) ≤ λg(x) + (1− λ)g(y)

g(λx + (1− λ)y) ≤ λ
m

∑
i=1

fi(x) + (1− λ)
m

∑
i=1

fi(y) (A.2)
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Since each single function fi is convex, then from Equation A.1 we can algebraically
rearrange:

λ
m

∑
i=1

fi(x) ≥
m

∑
i=1

fi(λx + (1− λ)y)− (1− λ)
m

∑
i=1

fi(y) (A.3)

By substituting fi(x) from Equation A.3 into Equation A.2, we obtain:

g(λx + (1− λ)y) ≤
m

∑
i=1

fi(λx + (1− λ)y) �

Therefore, it has been demonstrated that function g is also convex.

A.2.2 Scaling

Theorem: Let f : Rn 7→ R be a convex function and α a non-negative real number, then
α f is also convex.

Proof: If f is a convex function then, for 0 ≤ λ ≤ 1, α f can be expressed as:

α f (λx + (1− λ)y) ≤ αλ f (x) + α(1− λ) f (y) (A.4)

Because α is a non-negative real number, the inequality is preserved and by rearranging
terms:

α f (λx + (1− λ)y) ≤ λα f (x) + (1− λ)α f (y) (A.5)

Being f ∗ = α f a newly introduced function then:

f ∗(λx + (1− λ)y) ≤ λ f ∗(x) + (1− λ) f ∗(y) � (A.6)

Which follows the convexity definition from Equation A.1.
It is important to notice, that from scaling and summation, the affine or linear property

for convex function can be inferred, proving that non-negative weighted summation is
also a convex-preserving function. This property is important for Chapter 4 problem
formulation.

A.3 Posynomial properties

In Chapter 4, the definition of monomial and posynomials were introduced in Equations
4.1 and 4.2 for the context of CNN performance modeling. In more general terms a
monomial can be a function with the form:

f (x) = c
n

∏
i=1

xai
i (A.7)
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Where the function f : Rn → R maps an input vector x to a real value. c is strictly
positive c > 0, ai ∈ R and the domain is also strictly positiveD( f ) = Rn

++. From Equation
A.7, the concept of posynomial is defined as the sum of monomials:

f (x) =
K

∑
k=1

ck

n

∏
i=1

xaik
ik (A.8)

As for any monomial, each element ck in Equation A.8 is strictly positive, ck > 0 for
all K monomials. It is important to mention, although a posynomial can be convex, this
is not necessarily case. Therefore, the definition from Section A.1 must be evaluated to
determine if a posynomial is convex or concave. Additionally, some solvers execute a
variable change to convert the posynomials to a convex log− log form [BV04], like CVXPY
[ADB19].

As covered in Chapter 4, the posynomial form is a requirement to efficiently find a
solution with GP. The posynomial forms depend on the modeling approach from Chapter
2. To combine the obtained models for more complex optimization problem formulation,
two main properties of posynomials forms were used. The summation and product.

A.3.1 Summation

In Chapter 4, the objective function was built with the summation of several posynomial.
For this formulation to be solvable with GP, the resulting sum function must also be a
posynomial.

Theorem: Being F a set of posynomial/monomial functions F = { f j : Rn 7→ R, ∀j, j =
1, 2, 3, ..., m} as for Equations A.7 and A.8, then the sum of all terms is also a posynomial.

Proof: The resulting function g(x) is defined by:

g(x) =
m

∑
j=1

f j (A.9)

Since each f j has either the form of Equation A.7 or Equation A.8, by definition, g(x)
can be rewritten as:

g(x) =
m

∑
j=1

K

∑
k=1

cjk

n

∏
i=1

x
aijk
ijk (A.10)

Where K = 1 in case an specific f j is a monomial. By associative property, summa-
tion operands can be grouped into a single one. Therefore, the function g(x) can be
reformulated as:

g(x) =
m×K

∑
l

cl

n

∏
i=1

xail
il � (A.11)

Which has the same form as Equation A.8, proving that g(x) is also a posynomial by
introducing a new set of m× K strictly positive coefficients cl .
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A.3.2 Product

In Chapter 2, from flydeling, it was assumed an aggregation function that combines the
selected single-variable models to a multi-variable function. This function is the product
of all models. For this function to result in the posynomial form, each model must also be
a posynomial.

Theorem: Being F a set of posynomial/monomial functions F = { f j : Rn 7→ R, ∀j, j =
1, 2, 3, ..., m} as for Equations A.7 and A.8, then the product of all terms is also a posyno-
mial.

Proof: The resulting function g(x) is defined by:

g(x) =
m

∏
j=1

f j (A.12)

Which, similar to previous subsection, the expression can be rewritten as:

g(x) =
m

∏
j=1

K

∑
k=1

cjk

n

∏
i=1

x
aijk
ijk (A.13)

By using the commutative property of product the expression can be expanded to:

g(x) =
m×K

∑
l=1

m

∏
k=1

clk

n

∏
i=1

xailk
ilk

n

∏
j=1

x
ajlk
jlk · · · (A.14)

Because it has been assumed that f j are posynomial, it is possible to introduce a new
set of strictly positive coefficients c∗l = ∏m

k=1 clk and group each independent product of
the independent variables as:

g(x) =
m×K

∑
l=1

c∗l
nm

∏
i=1

xail
il � (A.15)

This expression has the same posynomial form as Equation A.8, proving that the
product of posynomial functions is also a posynomial.
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Appendix B

Heterogeneous Smart Camera
Architecture Conception

DL techniques have become in the last decade the de-facto choice for multiple domains,
achieving a similar human performance or event outperforming it in popular and well-
known competitions. During this period of turbulent and continuous maturity with
enough ground-breaking modifications, it has been observed high accuracy in tasks
such as classification, object tracking, feature selection or detection, segmentation, input
generation or input reconstruction in multiple domains like natural language processing or
in vision domains like image processing and video analytic. This broad domain utility and
high performance has reawakened the interest and further adoption of many scientists,
researchers, developers and the industry community with enough data availability and
computing power to solve a desired problem. However, this has restrained the use of
heavily parameterized models of DL for embedded applications or the computing load
in the edge. Smart cameras design has been an active research field in computer vision
architectures, that has taken advantage of the current algorithmic development to further
elaborate in specific and dedicated task architectures.

This appendix proposes the design of a heterogeneous smart camera architecture with
a GPU and a FPGA used in Chapters 2, 3 and 4 for the DSE on multiple DL models
and vision task algorithms for optimized data and task partitioning. It has been decided
to name the platform X-MERA (pronounced CHIMERA: Co-processor Heterogeneity
Integration for smart caMERAs). On the first part of this appendix, the efforts are focused
on the hardware interfaces and description of the platform. Then the focus is reoriented
on the firmware and low-level drivers required to operate the camera. Finally, it is shown
some examples from high-level software tools combining Pytorch and OpenCV to write
and read tensors and deploy CNNs layers on the smart camera; using Intel Quartus® for
Intel Cyclone® 10 GX FPGA and CUDA® for Nvidia Jetson TX2® GPU.

B.1 X-MERA: Co-processor Heterogeneity Integration for smart
caMERAs

The purpose of this platform is to facilitate the testing of the methodologies defined
in Chapters 2, 3 and 4; integrating vision applications, processing and sensors on the
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edge. With this goal in mind, the platform hardware incorporates multiple interfaces to
communicate with several external devices like (but not restricted to): custom camera
sensors, HDMI displays, USB devices, external memories, Ethernet nodes, commercial
MIPI cameras, etc. In this Section the communication and synchronization interfaces are
covered.

B.1.1 Middle Board (MDB) and Bottom Board (BTB)

X-MERA is composed of two main boards: the MiDdle Board (MDB) and BoTtom Board
(BTB). The MDB mostly includes the main connector to the Nvidia® Jetson TX2® System-
on-Module (SoM) (detachable from the board), most of the interfaces connected to it,
power rails and power supply components. While the BTB includes the Intel® Cyclone®

10 GX FPGA (soldered to the board) and most of the interfaces connected to the FPGA.
Both boards have some shared interfaces, specifically the connectors that include the PCIe
interface signals, power supply to the FPGA and the connector custom camera sensor at
the front of the camera. Figure B.1, shows X-MERA MDB (B.1a) and BTB (B.1b).

(A) MDB. (B) BTB.

FIGURE B.1: X-MERA.

The MDB includes all the required interface interconnections for the Nvidia® Jetson
TX2® SoM, including the main connector port for this module. Most important interfaces
from the evaluation board are compatible on this prototype. They were tested under
certain conditions and customized for establishing the communication link. The BTB, in
the other hand, includes all the required interface interconnections for the Intel® Cyclone®

10 GX FPGA (10CX220YF780E5G). The interfaces for the MDB, depicted in Figure B.2 and
Figure B.3 are listed below with a short description:

• Jetson Module Connector: A 400-pin (8x50) compatible with the Nvidia® Jetson
TX2® SoM.

• Mini HDMI: Output connector for HDMI compatible displays and screens.

• USB 3.0: USB port for external devices like memories, cameras, etc.
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• Ethernet RJ45: 10/100/1000 Ethernet port for internet connection, ssh remote con-
nection to the embedded Linux OS (L4T), video streaming, etc.

• MicroSD: SD compatible port for memory interfacing on boot or for storage.

• 6-lanes MIPI CSI-2 x2: 2 camera support with MIPI CSI-2 standard. Driver and
Device Tree must be included on L4T kernel compilation.

• INA3221 serial jumpers: Selects which device has access to the Serial component
INA3221 for power consumption monitoring (either the FPGA or the CPU/GPU).

• User GPIO expander: GPIO expander controlled by I2C serial communication from
the TX2 module.

• JTAG Debugger: Used to debug the multicore ARM® A57 (4x) CPU.

• MDB to BTB PCIe and serial signals connector: The PCIe x4 signal lanes, USB
signals and serial are transferred through this connector. Some enable signals also
included.

Similarly, as shown in Figure B.2, the BTB interfaces are listed below:

• Ethernet RJ45 Port: 10/100/1000 Ethernet interface connected directly to the con-
troller and high-speed transceivers on the FPGA.

• JTAG programmer port: Main programming port interface to transfer configuration
bitstreams to the FPGA.

• 6-lanes MIPI CSI-2 x2: 2 camera support with MIPI CSI-2 standard connected
directly to the FPGA. Designs must be MIPI compliant.

• Custom Camera Connector: 200-pin connector to the custom camera sensor board.
This connector on the BTB contains all the signals to the I/O ports on the FPGA and
the high-speed transceivers. 6 channels of 4-lane transceivers are connected to the
FPGA. All spare pinouts of the FPGA are connected here. 95 pins from different
banks and 20 high-speed transceivers for a total of 115 pins.

• USB2.0 to JTAG connector: JTAG is the main programming interface to the FPGA.
However, the user has the option to use the Arrow® USB-Programmer2 through the
USB2.0 to JTAG connector. This module is based upon FT2232H and is compatible
with Intel® Quartus® Programmer.

• Programming mode selection: This switch selects the configuration scheme. It
supports fast Active Serial (AS 4x), standard AS x1, Passive Serial (PS) and Fast
Passive Parallel (FPP x8). For fast AS, the BTB has a 1Gb QSPI NOR Flash memory
from Micron (MT25QU01GBBB) to store programming files.
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B.1.2 Power measurements and PCIe inter-device communication

As discussed in Chapter 2, for the dataset generation, X-MERA counts with three I2C
serial devices for power monitoring. These are the INA3221 triple-channel voltage mon-
itors. These components are useful to measure energy performance of applications on
different processors with real-time and event control or application limits. X-MERA can
communicate to the monitors with software I2C interfaces, “i2c-tools” for instance, by
changing low-level parameters following the vendor datasheet. A driver has been loaded
for boot and set basic configuration on the device. Therefore, the serial information can
sample energy performance of applications on each accelerator. Depending on the device
address we can obtain information of the three channels of each one of the three INA3221.
The measured rails are the following:

• For the GPU, SoC and WIFI (internal to SoM):

– VDD_SYS_GPU

– VDD_SYS_SOC

– VDD_4V0_WIFI

• For the CPU, general system and DDR memory (internal to SoM):

– VDD_IN

– VDD_SYS_CPU

– VDD_SYS_DDR

• For the FPGA (only for X-MERA):

– C10_0V95 (FPGA core)

– IO_1V8 (pinout)

– 3V3_STB (board)

Figure B.3 shows the interfaces on both accelerator devices described in the two
previous subsections. The power performance measurements are retrieved through the
CPU/GPU SoM using serial communication. While this SoM includes MIPI interfaces
for CSI cameras, the FPGA includes a configurable pinout for a custom CMOS sensor
interfacing. Table B.1 shows the main three interface pinouts for the FPGA, describing the
DDR memory, PCIe and CMOS image sensor communication.
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B.2 Chimera library

Pytorch is a widely adopted and popular library for DL model deployment with support
for different current operations, techniques and acceleration through diverse hardware
platforms for Python [PGC+17]. A pretrained model zoo is also included with Torchvi-
sion software to take full advantage of the capabilities of Pytorch. Nvidia® provides a
compiled Pytorch distribution targeting the Jetson family. Therefore, Pytorch is already
installed in X-MERA. This Subsection covers how to extend the libraries to include custom
C/C++/CUDA code to add support to the defined PCIe Direct Memory Access (DMA) 256
driver communication link. This will allow inter-device communication to the FPGA at a
high-level programming language like Python with powerful libraries such as Pytorch.

Pytorch is built around ATen, a Tensor library that defines the basic object and op-
erations in Torch coded in C++ used in Python. An API extension with C/C++/CUDA
is therefore supported using this fundamental library to link to C/C++ drivers or appli-
cations. Additionally, this wrapper tools can be exploited to generate custom library C
bindings with PCIe DMA driver implementation for FPGA communication with ATen.
This binding library has been named “chimera_lib”. The main source file “chimera_lib.cu”
includes the following important header importing all the required utilities from ATen
and Pybind11 to extend Pytorch functionalities. For this initial release, the wrapper
“chimera_lib.cu” defines the functions using Pybind11 called directly from Pytorch. The
basic functions are the following:

• open: Opens the FPGA device and initializes intermediate buffer variables for data
transfers.

• close: Closes the FPGA devices and frees memory for buffers.

• quantize: Takes as an input a 4-dimension float Tensor (batch × channels × height ×
width) and as output it rounds it to the closest integer and casts it to 8bit format.

• write: Transfers a quantized Tensor (batch × channels × height × width) as input to
FPGA device packed in a 32 bit (4 values of 8b).

• read: Reads from On-Chip memory a Tensor with the same size as the input Tensor
(batch × channels × height × width) from the FPGA. It returns the unpacked Tensor
as output.

“chimera_lib” is a simple, yet useful library to close the gap between high-level and low-
level communication for the processing devices, specially with the complexity of FPGA
design. The implementation takes advantage of the Intel® PCIe Hard IP Core and its driver
to transfer pre- and post-processed tensors as FMs once the driver has been successfully
installed on the (CPU/GPU) host. The FMs are the intermediate tensors of CNNs and
depending on the perspective of a CNN layer, they are divided in IFMs or OFMs. For
heterogeneous system evaluation, we can profit from custom logic from the FPGA to define
the custom accelerator architecture. This flexibility comes with a well-known trade-off
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between complexity and performance. To alleviate the burden of mapping CNN at a high-
level abstraction to a low-level Hardware Description Language (HDL) implementation,
Abdelouahab et al. [APS+17] have created Delirium, a tool to automatically generate
Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)
code from high-level ONNX model declaration based on DHM, as described in Section
3. This VHDL parser is mostly implemented with Python and also including a VHDL
library for different layer types. It is designed with custom fixed precision operations
in mind. Herewith, arithmetic and logic computing elements are also designed in this
way. Furthermore, ONNX is a widely adopted tool to extend the compatibility within
different DL frameworks like Tensorflow [AAB+16], Pytorch [PGC+17], Caffe2 [JSD+14]
or MXNet [CLL+16]; by translating supported CNN models. Although not all operations
on state-of-the-art models are supported, most used functions are automatically generated.
The workflow of how Delirium can be integrated to generate VHDL code on X-MERA is
shown in Figure B.5. After CNN model declaration on the DL framework, one partition or
the entire model can be exported to ONNX and then fed to the Delirium tool to generate
the VHDL files for synthesis with Intel® Quartus®.

After successful VHDL code generation with Delirium from a desired CNN model,
implementation solution can be combined to add to the “chimera_lib” a custom Neural
Processing Unit (NPU) based on the DHM technique from [APS+17]. As depicted in
Figure B.4, the design expects a IFM tensor and processes an OFM layer partition with
preloaded generated weights from Pytorch exported through ONNX and fed to Delirium.

FIGURE B.4: FPGA as NPU accelerator using Delirium.
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FIGURE B.5: General workflow from high-level programming tools to low-level on-device
deployment of CNN models with Delirium and “chimera_lib”.
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Additional deliverables and technical reports

Université Clermont-Auvergne, as part of the ACHIEVE H2020 ITN partner consortium,
collaborated in the elaboration of the following deliverables and technical reports, where
more details on the smart camera development can be found:

• Deliverable D4.1: Description of the Smart Camera Architecture.

• Deliverable D4.2: Survey on Digital Signal Processing Accelerators for DL Inference.

• Deliverable D4.3: Programming Tools for Parallel Processing Architectures.

• Deliverable D4.4: Smart Camera Node.

• Deliverable D6.5: Algorithmic Integration on Hardware.
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