
HAL Id: tel-04112035
https://theses.hal.science/tel-04112035

Submitted on 31 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Hardware-in-the-loop Dynamic Security
Testing For Linux-based Embedded Devices

Paul L. R. Olivier

To cite this version:
Paul L. R. Olivier. Improving Hardware-in-the-loop Dynamic Security Testing For Linux-based Em-
bedded Devices. Embedded Systems. Sorbonne Université, 2023. English. �NNT : 2023SORUS049�.
�tel-04112035�

https://theses.hal.science/tel-04112035
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE
SORBONNE UNIVERSITE

Spécialité « Informatique »

Ecole doctorale EDITE de Paris (ED130)

Présentée par
Paul L. R. OLIVIER

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITE

Sujet de la thèse :

Improving Hardware-in-the-loop
Dynamic Security Testing

For Linux-based Embedded Devices

Soutenue publiquement à Biot, le 22/03/2023
Devant le jury composé de:
Directeur de thèse Prof. Aurélien FRANCILLON EURECOM

Rapporteurs Prof. Guillaume HIET CentraleSupélec
Dr. Vincent ROCA Inria

Examinateurs Prof. Davide BALZAROTTI EURECOM
Dr. Marius MUENCH Vrije Universiteit Amsterdam
Prof. Vincent NICOMETTE INSA Toulouse
Dr. Fabienne WAIDELICH SIEMENS A.G.

Abstract

Dynamic analysis techniques have proven their effectiveness in security as-
sessment. Nevertheless, it is necessary to be able to execute the code to be
analyzed and this is often a challenge for firmware, most of which are deeply
integrated into the hardware architecture of embedded systems. Emulation
allows to execute a large part of the code but is quickly limited when it is
necessary to interact with specialized components. For this, the partial emu-
lation, or hardware-in-the-loop, approach offers several advantages: trans-
ferring access to hardware that is difficult to emulate properly and executing
the firmware in turn on both entities. To date, this approach has been con-
sidered primarily for monolithic firmware, but less so for devices running
advanced operating systems. In this thesis, we explore the challenges of se-
curity testing for processes running in an emulated environment where part
of their execution must be transmitted to their original physical device.

Throughout this thesis, we first review the various techniques for inter-
cepting system calls and their objectives. We highlight the fact that forward-
ing is not a verywell explored technique in depth but is a promising approach
for evaluating the security of embedded applications. We discuss the chal-
lenges of different ways of running a process in two different Linux kernels.
We implement through a framework these transfers for a Linux process with
its system calls and memory accesses between its emulated environment and
its original environment on the physical device. To overcome the challenges
of using physical devices for these security tests, we also present a new test
platform to reproduce hardware-in-the-loop security experiments.

Résumé

Les techniques d’analyse dynamique ont fait la preuve de leur efficacité pour
évaluer la sécurité. Il est en revanche nécessaire de pouvoir exécuter le
code à analyser et c’est souvent un défi pour les firmware dont la plupart
sont profondément intégrés à l’architecturematérielle du système embarqué.
L’émulation permet d’exécuter une grande partie du code mais se retrouve
rapidement limitée lorsqu’il est nécessaire d’interagir avec des composants
spécialisés. Pour cela, l’approche d’émulation partielle, ou hardware-in-the-
loop, offre plusieurs avantages: transférer les accès aux matériels qui sont
difficiles à émuler correctement et exécuter le firmware à tour de rôle sur les
deux entités. Jusqu’à présent, cette approche a été principalement considérée
pour les firmware monolithiques, mais moins pour les dispositifs utilisant
des systèmes d’exploitation avancés. Dans cette thèse, nous explorons les dé-
fis des tests de sécurité pour les processus exécutés dans un environnement
émulé où une partie de leur exécution doit être transmise à leur dispositif
physique d’origine.

Au travers de cette thèse, nous passons d’abord en revue les différentes
techniques d’interception des appels système ainsi que leurs objectifs. Nous
soulignons le fait que le transfert est une technique peu explorée en pro-
fondeur mais une approche prometteuse pour évaluer la sécurité des ap-
plications embarquées. Nous discutons des défis des différentes manières
d’exécuter un processus dans deux noyaux Linux différents. Nous implé-
mentons au travers d’un framework ces transferts pour un processus Linux
avec ses appels système et accès mémoire entre son environnement émulé et
son environnement d’origine sur le dispositif physique. Afin de surmonter
les défis liés à l’utilisation de dispositifs physiques pour ces tests de sécu-
rité, nous présentons également une nouvelle plateforme pour les tests de
sécurité hardware-in-the-loop.

Acknowledgements

I would like to take this opportunity to share my sincerest thankfulness to
those who have supported me throughout my PhD journey.

First and foremost, I want to express my deepest gratitude tomy esteemed
advisor Aurélien, for his invaluable guidance, constructive feedback, and un-
wavering support. As a young scientist and researcher, his mentorship has
been a constant source of inspiration and motivation.

I would also like to thank my colleagues and friends from the S3 group
at Eurecom for providing a stimulating and positive research environment. I
hope that future generations of students will also have the privilege of expe-
riencing such conditions. Additionally, many thanks to the Eurecom admin-
istration for their assistance in navigating the bureaucracy processes that
come with pursuing a PhD.

I would also like to express my sincere appreciation to the members of
the committee for their valuable comments. In particular, I am grateful to
the reviewers, Prof. Guillaume HIET and Dr. Vincent ROCA for their time
and insightful feedbacks, which helped me to improve my research work.
Furthermore, I am glad to extend my gratitude to Siemens for their fundings
towards my research. I am especially grateful fot the opportunity I had to
intern with their team in Munich for two months.

Then, I would like to thank my family for their support and encourage-
ment throughout my studies.

Last but not least, I would like to express my heartfelt gratitude to my
fiancée, Isabelle, for her patience and for having always been by my side
during all these years.

Contents

1 Introduction 1

2 Background 5
2.1 Embedded systems . 5

2.1.1 Firmware . 5
2.1.2 Peripherals . 6

2.2 The Linux kernel . 7
2.2.1 Importance of Linux in embedded devices 7
2.2.2 The process abstraction 7
2.2.3 The memory model 8
2.2.4 Filesystem data structures 8
2.2.5 Character devices . 9
2.2.6 Linux asynchronous I/O 9
2.2.7 Process migration . 10

2.3 Dynamic binary analysis . 10
2.3.1 Hardware-in-the-loop 11
2.3.2 Emulation . 12
2.3.3 The avatar2 framework 12
2.3.4 Rehosting . 13
2.3.5 Fuzzing . 13
2.3.6 Symbolic & concolic execution 14
2.3.7 Multi-variant execution environment 15

3 State of the art 17
3.1 Survey on embedded device security testing using HIL . . . 17

3.1.1 Publications . 17
3.1.2 Published artifacts’ status 21

3.2 Linux firmware rehosting approaches 22
3.2.1 Rehosting user mode applications 23
3.2.2 Summary . 28

3.3 System call interception . 30
3.3.1 Motivation . 30

3.3.2 Main system call interception techniques 34
3.4 Problem statement . 41

4 System call forwarding for Linux processes 43
4.1 Motivation of the approach 43

4.1.1 Motivational example 43
4.1.2 Our Approach . 46

4.2 Challenges . 48
4.2.1 The process duality: between user and kernel mode . 48
4.2.2 Filtering . 49
4.2.3 Classification . 49
4.2.4 Memory forwarding 52
4.2.5 Process resources consistency and synchronization . 54

4.3 System call forwarding . 57
4.3.1 State machines . 57
4.3.2 Filter & Rules . 59
4.3.3 Decisions . 60
4.3.4 Execution order . 60

5 Improving Linux-basedfirmware emulationwith process snap-
shot and syscall forwarding 63
5.1 Design concept . 63

5.1.1 Process migration . 64
5.1.2 The Chestburster Architecture 65
5.1.3 Analysis workflow 66

5.2 Implementation . 68
5.2.1 Enhancing avatar2 for Linux processes 68
5.2.2 Process migration . 70
5.2.3 The QEMU user-mode based tracer 70
5.2.4 Protocol . 71
5.2.5 Executor . 71
5.2.6 Limitations . 72

5.3 Evaluation . 73
5.3.1 Execution correctness 73
5.3.2 Execution overhead 76

5.4 Conclusion . 83

6 Bench of Embedded system Experiment for Reproducible Re-
search 85
6.1 Motivations . 85
6.2 Overview . 87

6.2.1 Computer Testbeds 87

Contents

6.2.2 Architecture . 88
6.2.3 User Workflow . 90

6.3 Implementation . 90
6.3.1 Front Node . 90
6.3.2 Experiment Nodes 91
6.3.3 Physical devices . 92

6.4 Discussion . 93
6.4.1 Infrastructure security 93

7 Conclusion and future work 95
7.1 Distributed operating systems 96
7.2 Performance . 97
7.3 Application . 98

List of Tables 101

List of Figures 103

List of Acronyms 105

Bibliography 109

Chapter 1

Introduction

In their arms race and space conquest, both the Soviet Union and the United
States needed more sophisticated ways to control the movements of their
rockets. With the increase in computing power in the 1960s, it became
possible to replace existing analog and mechanical approaches with digi-
tal computers. This led to the development of the Autonetics D-17 guidance
system [2] and the Apollo Guidance Computer (AGC) [18], two of the ear-
liest digital embedded systems designed. Their missions were critical and
required high reliability. These systems were responsible for processing
measured data and providing accurate information in a specific time frame.
Their weight was considered a crucial factor, as additional weight meant the
need for larger and more expensive rockets. Many of their characteristics
are shared with modern counterparts.

Today, embedded systems can be found in awide range of sectors, includ-
ing industry, consumer, military, health, home automation, and agriculture.
It is difficult to provide an exact number of deployed embedded systems. But
according to some reports [5, 6], their global market in 2022 is estimated to
represent 102.82 billion USD and to reach 130.5 billion by 2027. They are
at the heart of critical systems that can sometimes directly affect the lives
of human beings. Critical incidents such as the one involving the Therac-25
radiotherapy computer, which resulted in patients receiving overdoses of ra-
diation because of a race condition, demonstrate the importance of asserting
error-free software [15].

Therefore, their prevalence in our society and everyday life make them
a key issue regarding security and privacy. And it is likely to continue in
the future. For instance, the automotive sector is undergoing a paradigm
shift with the gradual abandonment of combustion engines in favor of elec-
tric ones. New vehicles incorporate a lot of recent embedded systems for
their advanced driver-assistance systems (ADAS). They help the driver by
providing alerts (e.g., drowsiness detection), driving assistance (e.g., anti-

1

2 2

lock braking system (ABS), cruise control, collision avoidance system) and
environment monitoring (e.g., traffic sign recognition, vehicular communi-
cation systems). Compared to rocket guidance systems, these systems need
to accommodate other moving objects such as cars, bicycles and pedestrians.
Moreover, the importance of embedded systems in various industries, such
as the automotive sector, is highlighted by the ongoing global chip shortage.

As a result, it is also important to accurately assert the risk inherent in
these systems. This led to the adoption of secure software development life cy-
cle (SDLC). This methodology defines best practices that integrate security
measures at every stage of the product development process. Such measures
consist in identifying security concerns, building a threat model, keeping it
up to date during the product’s lifespan, documenting the procedures for ad-
dressing security vulnerabilities, and monitoring for known vulnerabilities.
Additionally, it covers security testing such as static code review, test au-
tomation with continuous integration, product integrity during deployment
and penetration testing on the final product.

However, firmware penetration testing presents additional challenges
when compared to traditional software. A wide range of technologies have
been developed to address the specialized requirements of embedded sys-
tems. This diversity has created a heterogeneous ecosystem in terms of so-
lutions, designs, and architectures. Moreover, the rise of Internet-of-Things
(IoT) has led to an increase in the number of connected devices that can com-
municate with each other and exchange data over the Internet. In addition
to increasing their attack surface, these online services make the task even
more complex for security analysis, as part of the environment is beyond
control and may change continuously over time. Furthermore, the firmware
is often closely integrated with the hardware making it challenging to effec-
tively test the firmware without its hardware.

Modern software testing techniques are fruitful in finding bugs. In par-
ticular, dynamic analysis techniques such as fuzzing and symbolic execu-
tion perform very well and are automatable. These were at the core of the
automatic defensive systems used to identify the vulnerabilities during the
DARPA Cyber Grand Challenge (CGC) [57]. The best competitors employed
a combination of fuzzing and symbolic execution to balance their weak-
nesses [29, 83, 127, 159]. This event sparked dramatic progress in published
research in bug-finding techniques for the following years [111]. However,
it is impractical to run these methods directly on the physical device for sev-
eral reasons. Unlike more traditional computers, embedded systems have
more limited resources in terms of computing power, memory size, network
bandwidth and energy consumption. Additionally, they also provide less in-
trospection into the firmware execution. Symbolic execution requires iden-
tifying branch statements and solving computationally intensive equations.

3

To select the next input to run, fuzzing relies on metrics derived from the
feedback of a program execution trace. Furthermore, running the analysis on
the device make automation and scaling more arduous. To overcome these
challenges, emulation is often used to enhance the observability of system
states and improve control over their execution. This process of moving the
firmware from its original host to an emulated environment is called rehost-
ing [71]. It comes with new challenges regarding the inference of an envi-
ronment suitable for the proper execution of the firmware. Although efforts
have been made to automatically generate these virtualized environments,
the need for accuracy leads to including the original device in the simulation
in a hardware-in-the-loop (HIL) fashion.

Pairing the hardware with the simulation has been a proven technique
in various fields for several decades. It dates back to the early days of rocket
testing [30, 68, 164] and was later employed in the development of fly-by-
wire (FBW)1 systems in aircraft [70]. The hardware-in-the-loop approach is
particularly useful for scenarios involving complex environments that are
difficult to model precisely. In the context of firmware rehosting, using
hardware-in-the-loop offers several advantages. It allows focusing the re-
hosting process on the area of interest while still preserving the interactions
with its original environment. In practice, it reduces the reverse engineering
scope to the understanding of a suitable interface on the device. Further-
more, the hardware-in-the-loop approach leads to feeding more accurate in-
puts in the emulation. Additionally, the scalability of the analysis can be en-
hanced through caching interactions [96] or connecting multiple emulation
instances to the same device [105].

Hardware-in-the-loop security testing has been considered primarily for
monolithic firmware, but less so for devices running advanced operating sys-
tems. Because of their versatility and low cost, Linux-based systems are
a popular choice among embedded systems. Although the kernel security
model is robust, many flaws are discovered every day. This has an impact on
billions of devices around the world and on people relying on them. There-
fore, it is crucial to develop appropriate security testing techniques for them.

1It replaces the traditional mechanical flight controls with electronic signals. It allows
for more precise and responsive control of the aircraft.

4 4

This thesis aims to explore and address the challenges of security testing
with hardware-in-the-loop. In particular, the focus is on Linux-based operat-
ing systems with processes running in an emulated environment where part
of their execution must be transmitted to their original physical device.

In summary, the main contributions of this thesis consist in:

• a state of the art on publications related to embedded device security
testing using hardware-in-the-loop and Linux rehosting firmware ap-
proaches.

• a novel approach to filter and forward system calls between an emula-
tor and a physical device which address the shortcomings of existing
methods.

• a prototype, Chestburster, implementing this previous technique.

• an infrastructure, BEERR, aiming to ease the access to physical devices
used in system security publications and the reproducibility of their
artifacts.

The work of this thesis led to an academic publication “BEERR: Bench of
Embedded system Experiments for Reproducible Research” [132], and a second
on the system call forwarding approach which is going to be submitted soon.

Throughout my graduate studies, I had the pleasure to maintain and ex-
tend the research project avatar2 [123], which was the outcome of the pre-
vious thesis [122, 192].

This thesis is organized into 7 chapters. After having introduced the
context and the general challenges, Chapter 2 provides the necessary back-
ground for the rest of this thesis. Next in Chapter 3, we cover the state of the
art by surveying hardware-in-the-loop security testing publications and ex-
isting approaches for rehosting Linux firmware. Furthermore, we highlight
their current limitations and investigate how system call interception mech-
anisms can improve them. With Chapter 4, we delve into the challenges of
forwarding system calls and propose a novel approach. In Chapter 5, we de-
tail the implementation of our new technique in a prototype: Chestburster.
Afterward, we present a solution to facilitate access to physical devices and
promote artifacts reproducibility in Chapter 6. Finally, we discuss future
work and conclude the thesis with Chapter 7.

Chapter 2

Background

This chapter discusses background information relevant to the rest of the
thesis.

2.1 Embedded systems
Embedded systems are devices designed to perform a specific task within a
larger system. They are optimized and tailored to meet specific requirements
and minimize development and production costs. As a result, these systems
typically have limited resources in terms of computing power, memory size,
network bandwidth and energy consumption. Moreover, these devices often
interact with the physical world and are subject to real-time computing con-
straints. This has led to the creation of a wide variety of technologies to meet
different design choices. For example, it is illustrated by the large number
of different Instruction Set Architectures (ISA) present in embedded devices
(e.g., x86, MIPS, ARM, PowerPC, m68k, AVR, MSP430, RISC-V) where in ad-
dition each can enable extra features via diverse architecture extensions.

2.1.1 Firmware
The software driving an embedded system is commonly called a firmware.
Besides this lexical difference, it presents other distinctions related to its in-
trinsic nature. A firmware is rarely portable across systems because it is
often specific to a particular device and hardware platform. Although some
embedded systems rely on safe languages such as Ada, and other languages
are becoming more popular such as Rust, most are often written in low-level
languages (e.g., C or assembly). It is usually designed to run with minimal
intervention from the user, whereas traditional software often works with
user inputs. Firmware is typically stored in read-only memory (ROM) or

5

6 6

non-volatile memory (flash memory, EEPROM). This makes its update pro-
cess more difficult to perform than traditional software updates. All of these
particularities contribute to the complexity of their security analysis.

In [124], the authors present a classification of firmware based on the type
of operating system they used. This classification is relevant to us because it
takes into account the number of abstraction layers present in the firmware.

Type 0 TheNon-embedded devices category is used to represent traditional
systems used by smartphones, desktops, workstations and servers. Examples
include Unix-like operating systems (e.g., Debian, Android), BSD variants
(e.g., OpenBSD, macOS) or others (e.g., Windows).

Type I. General-Purpose OS-based devices are type 0 systems tailored for an
embedded environment. They only include features needed by the system
with lightweight user-mode applications. Their proximity to traditional op-
erating systems simplifies the use of common analysis techniques. Examples
include Minix and Linux-based systems paired with BusyBox.

Type II. EmbeddedOS-based devices aims to address the resource constraint
some systems face. They are typically characterized by their small footprint,
high performance, and ability to support real-time scheduling requirements.
Despite the absence of advanced processor features such as a Memory Man-
agement Unit (MMU), there still exists, usually, a logical separation between
the kernel and the application code. Examples include real-time OS such as
FreeRTOS, ZephyrOS, VxWorks and QNX which frequently runs on modem
devices.

Type III. Devices without an OS-abstraction represent monolithic firmware
where all components are linked together into one executable which runs
directly on the hardware. This firmware does not have precise OS abstraction
but instead relies on library calls.

2.1.2 Peripherals
Peripherals play an essential role in the composition of a System-on-Chip
(SoC). They provide the majority of the input/output (I/O) for the processors
and connect them to the external environment. Examples include timers,
hardware accelerators (cryptographic primitives, network packet process-
ing, graphics rendering), communication interfaces, memory controllers and
powermanagement units. Peripherals may be located either internally or ex-
ternally to the SoC. In the latter case, a method of communication between

2.2. The Linux kernel 7

the peripheral and the processor must be established. Some common mech-
anisms include:

• Memory-mapped I/O (MMIO): This method of communication in-
volves directly mapping hardware registers of the peripheral in the
firmware address space. This way, the processor can read and write
the peripheral’s status, configuration or any other data.

• Polling: The processor periodically checks the status of a peripheral
to see if the desired condition is satisfied.

• Interrupt requests (IRQ): To avoid wasting the processor’s time in
polling, peripherals can implement interrupts to notify events, such
as when a task is completed. When it happens, the processor stops
its execution, saves its current context and switches to the interrupt
handler corresponding to the raised interrupt.

• Direct memory access (DMA): To continue improving the proces-
sor usage efficiency, a DMA peripheral accesses memory directly to
read or write large amounts of data. On completion, the processor is
notified by issuing an interrupt.

2.2 The Linux kernel

2.2.1 Importance of Linux in embedded devices
The Linux kernel has become so popular that it is now considered an essen-
tial component in the field of embedded systems. It is written in a highly
portable language (C), has been designed to be easily adaptable to a wide
range of hardware architectures and provides a large selection of software
tools and libraries. Its modular design offers developers the ability to tailor
the kernel to the specific needs of an embedded system and its application.
In addition, the kernel has a robust security model to protect the integrity of
the system such as memory protection and access controls. Finally, it has a
large, active and open-source community that ensures continuous support.

2.2.2 The process abstraction
The process abstraction is a fundamental concept that refers to a program
in execution. It is used by the operating system to manage concurrent tasks.
Each process has unique identifiers such as the user ID (UID) and the group
ID (GID). They can communicate with other processes using inter-process
communication (IPC) methods, and in particular with their children. The

8 8

process table organizes processes in a hierarchical structure including parent
and child relationships. Additionally, a process has its own address space
which allows isolating processes from each other.

2.2.3 The memory model
The Linux kernel uses virtual memory management to enable processes to
use more memory than is physically available on the system. This is accom-
plished through the use of paging. The kernel divides the process’s virtual
address space into small chunks, called pages, and swaps them in and out
of physical memory as needed. Furthermore, the kernel maintains a page
table for each process containing the mapping of their virtual addresses to
the physical addresses. When a process accesses a virtual address, the hard-
ware looks into the page table for the corresponding physical address and
retrieves the data at this location. If the page is not present in physical mem-
ory, a page fault is raised. The kernel will then answer this error by loading
the page in memory. The kernel also supports various memory-related fea-
tures. Memory permissions, such as read-write-execute (rwx) permissions,
help to ensure that processes only access memory in an authorized manner.
Memory mapping allows mapping files or devices into processes’ virtual ad-
dress space.

However, it is important to note that different computer architectures
may implement different memory models and management techniques [26].
The Most common types are radix tree for Intel x86, ARM and RISC-V, in-
verted page tables for PowerPC, and software-definedmanagement forMIPS.
It is the job of the kernel to provide a unified interface for processes, regard-
less of the underlying memory model.

2.2.4 Filesystem data structures
The filesystem is responsible for organizing and storing files and directories.
The Linux kernel uses various data structures to manage the filesystem and
enable file operations. A file descriptor is an abstraction that represents the
connection between a process and a file or a device. Inodes are data structures
that store information about files (e.g., size, permissions, location on disk).
The open file tables and the inodes tables are used to keep track of the kernel’s
connections with open files. In contrast, the file descriptor tables are used
to keep track of the connections between processes and files. In addition,
the kernel uses a virtual filesystem (VFS) to abstract the underlying physical
storage and provide a uniform interface for accesses.

Pipes allow processes to communicate with each other by passing data
through a buffer. They can be used to redirect the output of one process as

2.2. The Linux kernel 9

the input of another, creating a chain of processes working together.
Special files, such as block devices and character devices, are used to

abstract input/output (I/O) operations and provide a uniform interface for
access to hardware devices.

2.2.5 Character devices

Character devices create an interface for user applications to interact with
kernel and hardware components. The specificity of character devices is the
way they handle data: the exchange is done through a continuous stream
of characters. Character devices are accessed from user mode through the
filesystem with a defined set of system calls. It is up to the character device
to implement the supported system calls and their operations on the device.

Beyond the typical file operations, such as open, read, write, mmap, llseek
or lock, the character devices support the ioctl system call. Its signature is:
int ioctl(int fildes, int request, ... /* arg */). The request code
specifies the operation to be performed, and the additional arguments pro-
vide its inputs. This design choice grants flexibility to the device on the type
of operations it can handle. However, it brings issues regarding consistency
and portability across the different platforms. As a result, different device
drivers may use different codes to represent the same operation, which can
lead to confusion and difficulty when working with multiple devices.

2.2.6 Linux asynchronous I/O

The Linux asynchronous I/O mechanism emables concurrent processing of
multiple I/O requests in the kernel without blocking the calling thread. It
consists of two main primitives: submitting a message into the pending
queue and consuming an event notifying the completion of the request. the
Submission of a message into the pending queue, and the event notifying the
completion.

The traditional Linux AIO subsystem has five system calls for managing
the I/O contexts: io_setup, io_destroy, io_submit, io_cancel, io_getevents
and io_pgetevents. It relies on a ring buffer internally to manage I/O request
submissions while completion events are stored in an array. However, this
implementation has several limitations such as not working with buffered
I/O.

To address these limitations, a new interface called io_uring was intro-
duced in Linux 5.1. To reduce the number of context switches, it uses two
ring buffers in user space: the submission queue for I/O requests and the
completion queue for events completion. The user space application puts

10 10

new I/O requests at the tail of the submission queue, and the kernel con-
sumes them from the head. In the opposite way, the kernel puts completion
events at the tail of the completion queue while the application consumes
them from the head. As a result, managing diverse operations related to
the queues requires only three system calls: io_uring_setup, io_uring_enter
and io_uring_register.

2.2.7 Process migration
Process snapshotting is a technique used to capture the state of a process,
including its context and memory, at a particular point in time. This allows
the process to be inspected statically, cloned, restarted later or in a different
location.

One use for process snapshotting is cold migration, where the process is
stopped and its state is transferred to another system in order to continue
its execution there. Tools like CRIU [48] (Checkpoint/Restore In Userspace)
are commonly used to migrate Linux containers. Another technique for mi-
grating virtual machines without downtime is hot migration. QEMU uses
the userfaultfd [16] kernel feature to register a special file descriptor to
handle the process’s page faults in user mode. This way, when the migrat-
ing process tries to access a memory location not yet migrated, a page fault
is raised and QEMU fetches the missing pages before restarting it. Instead,
checkpoint-restart involves periodically saving the state of a process during
its execution.

Distributed operating systems make use of these techniques to improve
availability, scalability and load-balancing of applications [107]. For instance,
MOSIX [33, 34] divides the migrating process in two parts. While the user
context composed of the program code, data, stack, memory-maps and regis-
ters is allowed to migrate many times, the system context residing in the ker-
nel stays at the initial nodes. All interactions between these contexts are in-
tercepted and forwarded across the network. Additionally, various resource
sharing algorithms are used to manage the load-balancing of processes be-
tween nodes.

2.3 Dynamic binary analysis
Static analysis is a method for analyzing a program without executing it.
Dynamic analysis, on the other hand, involves executing the program and
instrumenting its behavior while it is running. Both of these two classes of
analysis offer different advantages and drawbacks which depend on the con-
text of the analysis and its objectives [59,161,179]. In general, static analysis

2.3. Dynamic binary analysis 11

can achieve larger coverage and produce sound results by analyzing all possi-
ble execution paths of a program. However, with the lack of runtime context,
it has to make approximations that are often arbitrary and lead to false posi-
tives. In contrast, dynamic analysis is performed in a given environment and
for a given input. It is more precise in what it observes (instructions, content
of registers and memory), but offers a smaller coverage because one program
path is executed at a time. Examples are techniques such as runtime testing,
debugging, profiling, and fuzzing. Static analysis examples include code re-
view, data and control flow analysis, and model checking. For some analysis
techniques, the distinction between the two can be unclear. For instance,
symbolic execution may be considered either static or dynamic analysis de-
pending on how it is implemented [52, 160].

Source code instrumentation leverages high-level semantics (e.g., the vari-
able types) to better reason about the program’s behavior [52, 58, 170]. As a
result, it is easier to discover vulnerabilities due to the increased informa-
tion found in the context available. However, source code instrumentation
may not be always feasible because it requires access to the source code and
the ability to recompile the program. In addition, it does not test exactly all
of what is executed by the processor. From its writing to its execution, the
program source code goes into multiple transformations (e.g., compilation,
linking, loading) where each stage has a chance to introduce new bugs [175].
This is particularly relevant in the current context with the increasing preva-
lence of supply chain attacks [167,172]. Therefore, it is important to also test
the program in its binary form, even when the source code is available.

Both approaches are therefore complementary. Testing at the source
code level is more reasonable during product development because devel-
opers have access to the source code and may require feedback. In contrast,
binary testing can happen before product release or for external audits where
a threat model may not be initially thought of by the developer team.

In light of this, this thesis focuses on dynamic analysis targeting binary-
only programs.

2.3.1 Hardware-in-the-loop
Hardware-in-the-loop (HIL) testing consists of the integration of physical
components within a simulation [52,97,101,105,118,123,133,153,170]. In this
way, the physical devices are fed with inputs from the simulation while their
outputs are monitored. This technique brings the benefit of only requiring
access to the interface with the physical component. This interface is often
standardized (JTAG, I2C, MMIO), which removed the burden to know the
internal structure of the device: it is considered a black box.

For instance, cars are increasingly filled with embedded systems with

12 12

complex and sensitive architectures. The automotive sector has strong in-
centives from regulations to extensively test their systems. HIL helps to build
realistic testbeds to establish the reliability of the system [75, 133].

In the context of system security, HIL gained a lot of interest recently
with rehosting [71,188]. A significant advantage of HIL lies in its high fidelity
of outputs returned to the simulation. In contrast, the approach presents sev-
eral drawbacks. The devices need a debugging access to control their state.
This interface often requires reverse engineering efforts to identify it, and
may be intentionally disabled by the manufacturer. Moreover, the execu-
tion overhead introduced by forwarding accesses can significantly impact
the analysis feasibility because of speed and latency issues [170]. Despite
being limited by the number of physical devices, various optimization tech-
niques such as caching [96] and concurrent execution [105] can be used to
improve the scalability of the analysis.

2.3.2 Emulation
Emulation is the process of mimicking the behavior of a system by using an-
other system. The emulator acts as a translation layer between the software
to execute and the current hardware, allowing the software to be executed
like it was on its original hardware [19, 36].

Emulation is particularly useful for security analysis because the original
environment may not be suitable for deep analysis [64, 87]. It enhances sys-
tem observability and introspection by being able to inspect and modify the
sequence of state the software is passing through. However, the sheer vari-
ety of hardware makes it difficult to create a versatile emulator that would
support all existing devices. This is even more true in the context of embed-
ded system security where peripherals are often custom and proprietary, re-
moving all hope to access any public documentation. For this reason, recent
research focuses on techniques that emulate an appropriate environment for
the execution of a given firmware. This technique is called rehosting [71,188].

2.3.3 The avatar2 framework
The avatar2 framework [123] is the worthy successor of Avatar [193]. It is a
tool developed to facilitate the integration and interoperability between var-
ious binary analysis tools such as debuggers, emulators, disassemblers, sym-
bolic execution engines and fuzzers. The framework is particularly aimed at
analyzing embedded systems and their firmware, as it allows for the com-
bination of physical devices with emulators in a hardware-in-the-loop fash-
ion. This allows the application of traditional software security testing tech-
niques to complex firmware, which would not otherwise be possible. Addi-

2.3. Dynamic binary analysis 13

tionally, avatar2 provides fine-grained control over the program execution.
It allows doing live migration of a program between analysis tools and for-
warding special accesses, such as memory and I/O, to others analysis tools
for hybrid execution. Avatar2 has been used in several security research
works [47, 86, 89, 109, 155, 165].

2.3.4 Rehosting
Firmware rehosting is the process of creating a virtual environment in which
a firmware can be run as if it was in its original physical environment. This
allows the application of general dynamic analysis techniques for security
testing such as debugging, tracing, fuzz testing and symbolic execution.

While there has been significant progress in this area in recent years,
many challenges around obtaining the firmware image and its execution re-
main [71, 188]. The firmware image acquisition process is not consistent
across devices. It may require intercepting updates, exploiting vulnerabil-
ities, de-soldering and dumping memory chips, connecting to a debug in-
terface or being confronted with protections such as an encrypted image or
hardware memory read-protection that require invasive attacks. To proceed,
it is necessary to identify the ISA utilized by the firmware (e.g., ARM, MIPS,
PowerPC, AVR, MSP430). Additionally, the emulator should be able to deter-
mine and model the peripherals utilized by the firmware.

The chosen approach for rehosting a firmware depends on the individual
case, as firmware, peripherals, and environments can vary significantly.

2.3.5 Fuzzing
Fuzz testing, or fuzzing, is a technique used to discover unexpected or er-
roneous behavior in a system by repeatedly feeding modified inputs. It in-
volves executing a large number of inputs and collecting feedback in order
to mutate them.

Early fuzzers [67, 117, 135] used a blackbox testing approach to execute
a target as often as possible. However, their lack of introspection hindered
their ability to thoroughly explore the target code due to conditional state-
ments [80]. This led to the development of novel whitebox [42, 81, 82, 166]
and greybox [156, 168, 194] fuzzers, which instrument the target to collect
feedback and produce better inputs.

Originally developed to find security bugs in software, fuzzing has evolved
into a more general approach that can be used to explore the different pos-
sible states of a system [39, 148].

Fuzzing has experienced considerable interest in software testing and
vulnerability research because of its efficiency in bug finding [74]. Yet estab-

14 14

lishing good methodologies and metrics to compare fuzzing techniques and
algorithms remain a challenge for researchers [73]. For this reason, Google
proposes the FuzzBench [116] service to evaluate and compare fuzzers against
a set of benchmarks.

Embedded systems offer additional challenges for fuzz testing [124, 154,
191]. Their limited resources make it difficult to run efficiently many in-
puts [40]. Furthermore, the lack of introspection into their internals can
hinder the ability to collect data and provide meaningful feedback for select-
ing interesting inputs to mutate. Additionally, embedded systems often have
complex interactions with their environment, making it difficult to correctly
identify their input [72,115,150,155,165]. Testing on real hardware requires
a method to properly reset the system between runs [53]. There is also the
risk to brick the system and potentially posing a danger to the physical world
and humans. Finally, as highlighted by Muench et al. [124], silent memory
corruption can further complicate the detection of crashes.

2.3.6 Symbolic & concolic execution
Symbolic execution is a technique used to explore the possible states of a
program by executing it symbolically. This method involves replacing cer-
tain inputs and variables during execution with symbolic expressions. As the
program is executed, constraints are placed on these symbolic expressions.
Solvers are then used to determine whether all the constraints are satisfiable
and if so, to generate an input that can reach those states in the program.

For each conditional statement in the program, the symbolic engine typ-
ically forks execution to follow both paths. The number of paths to explore
therefore grows exponentially over time and may make the analysis imprac-
tical for larger programs. This problem is referred to as path explosion. To
address this issue, different approaches try to combine symbolic execution
with concrete execution. Concolic execution [81, 157] uses a concrete input
to guide the symbolic execution. This approach was later improved with
the help of fuzz testing [166]. Differently, selective symbolic execution [46]
limits the symbolic execution to a specific part of a program. This is espe-
cially useful when the program is composed of elements not relevant to the
analysis.

Symbolic execution has been used to analyze firmware. Studies such
as [58, 88, 160, 193] have demonstrated its effectiveness in identifying vul-
nerabilities in firmware. In particular, Inception [52] discovered a vulnera-
bility in a bootloader before being written on the Mask ROM. Moreover, the
framework hightlights the challenges to apply symbolic execution to firm-
ware that contains both low-level and high-level code, resulting in different
levels of semantic information.

2.3. Dynamic binary analysis 15

More recently, work has been pushed to improve the execution speed of
the symbolic engine. QSYM [190] brings the idea to replace the symbolic
interpreter by instrumenting the execution with native machine code. Fol-
lowing approaches [50,144,145] include the concolic execution in the binary
code with the help of compilers to drastically improve the execution speed.

2.3.7 Multi-variant execution environment
Multi-Variant eXecution (MVX) systems are used to prevent exploits by ex-
ecuting multiple variants of the same program with the same inputs [37, 55,
90, 100, 182, 183]. The goal is to detect any divergence, discrepancy, or dif-
ference in the execution of the variants, which would indicate that the pro-
gram has been exploited. To do this, variants run on the same machine and
are synchronized at the system call interface. The MVX monitor, responsi-
ble for managing variants, may be implemented as a loadable kernel module
(LKM) [55,182] or run in user mode [37,90] to balance instrumentation con-
text and execution overhead. Themain challenges inmulti-variant execution
are the methods of synchronization and the strategy used to handle variant
discrepancy.

16 16

Chapter 3

State of the art

In this chapter, we present a comprehensive overview of the current state-
of-the-art techniques in hardware-in-the-loop (HIL) security testing and re-
hosting. We begin by examining the various publications that include phys-
ical devices in their security analysis. We then delve into the challenges of
rehosting Linux-based firmware and provide an in-depth examination of the
existing approaches and their shortcomings. Starting from the observation
that current methods are limited in reproducing the original firmware envi-
ronment, we also explore the interception mechanisms for the system call
interface. Finally, we conclude with the promising facts this interface repre-
sents for rehosting processes.

3.1 Survey on embedded device security test-
ing using HIL

In this Section, we survey papers related to embedded device security testing
using hardware-in-the-loop (HIL) methods. Furthermore, we inspect their
artifacts to estimate their reproducibility. Table 3.1 reports all experiments
from the surveyed papers while table 3.2 presents a summary of their arti-
facts’ status.

3.1.1 Publications

Muench et al. [124] address the state of memory corruptions in embedded de-
vices and the lack of mechanisms to mitigate silent memory corruptions. For
this purpose, they insert multiple vulnerabilities with independent trigger
conditions on different classes of embedded systems. They observe different
behavior ranging from crashing, rebooting, hanging, and malfunctioning to

17

18 18

Table 3.1: Experiments description in surveyed papers.

Publication Experiment Hardware Artifact availability
hardware1 source code

Wycinwyc [124]
- study effects of memory corruption
on different class of embedded systems

Beaglebone Black ✓

✗
Linksys EA6300v1 ✗
Foscam FI8918W ✗
STM32 L152RE ✓

- measure mitigation execution overheads with fuzzing STM32 L152RE ✓ ✓

Avatar2 [123]
- reproduce existing study PLC Allen Bradley 1769-L16ER-BB1B

✓ ✓- state transfer between concrete and symbolic execution modes
- record firmware execution STM32 L152RE

Avatar2 examples
- forward memory accesses between emulators

✓ ✓- state transfer between different targets STM32 L152RE
- state transfer & peripheral modeling nRF51-DK

Avatar [193]
- backdoor detection in a masked ROM bootloader Seagate ST3320413AS HDD ✗

✓- vulnerability research in a commercial Zigbee device Redwire Econotag ✗
- helping reverse engineering the GSM stack of a phone Motorola C118 ✓

Charm [170]

- feasibility (how long it takes to port a new driver)

Nexus 5X ✓ ✓

- performance (driver fuzzing with Syzkaller, driver initialization)
- record-and-replay (record bug PoC, measure execution overhead)
- bug finding (fuzzing with Syzkaller, sanitizing with KASAN)
- analyzing vulnerabilities with GDB (CVE-2016-3903,
CVE-2016-2501, CVE-2016-2061)
- build driver exploit using GDB

Prospect [97] - performance impact on forwarding driver accesses using strace 324MHz embedded Linux MIPS
with 16 MiB RAM ✗ ✗

- case study on proprietary fire alarm system (network fuzzing) not disclosed

Surrogates [101] - measure performance impact of MMIO forwarding

Pico Computing E17FX70T
custom JTAG adapter board
custom JTAG breakout / debug board
FriendlyARM Mini2440

✗ ✗

Inception [52]

- measure vulnerability detection via synthetic tests
(Klocwork Test Suite)

✓ ✓
- validation tests (53200 tests) LPC1850-DB1 & STM32 L152RE
- comparison with binary-only approaches Xilinx ZedBoard FPGA

STM32 L152RE

- measure timing overhead
(Dhrystone benchmark and real-world applications)
- compare recovering semantic
from a binary to the source code with libopencm3
- security flaw detection with Juliet Test Suite 1.3 on FreeRTOS
- analysis of products during development phase (bootloader,
chip SDK, payment terminal) not disclosed ✗ ✗

Mousse [105]
- performance evaluation Pixel 3

Nexus 5X
Nexus 5

✓ partially- measure coverage
- bugs and vulnerabilities research

Pretender [86] - generate models for hardware peripherals (record, build and emulate)
STM32 L152RE

✓ ✓STM32 F072RB
Maxim MAX32600MBED

Conware [165] - generate models for hardware peripherals (record, build and emulate) Arduino Due (Atmel SMART SAM3X/A) ✓ ✓

Frankenstein [153] - heap overflow in device inquiry (CVE-2019-11516) CYW20735
CYW20819 ✓ ✓- heap overflow in the reception of BLE PDUs (CVE-2019-13916)

- heap overflow on ACL packets buffer (CVE-2019-18614)

FirmCorn [85]

- accuracy between virtual execution approaches DLink (DIR-816, DIR-629, DIR-859, DIR-823G)
TPLink (WR940N, WR941N)
Ezviz C6CDahua (HFW5238M, HFW3236M)

partially partially- efficiency (benchmark nbench)
- stability
- effectiveness

Incision [174]

- correctness (control flow extraction, region inference, database
improvement and error correction) Huawei LTE R216h (ARMv7)

Renault BCM (Renesas V850ES) ✓ ✗- real-world usability (emulate Renault BCM, analysis the cryptography
of Huawei R216h)
- human effort (qualitative measure of complexity of manual
intervention in database correction)

1. The availability of the devices has been checked on google.com, amazon.com, digikey.com and ebay.com at the
date 2021/12/15.

3.1. Survey on embedded device security testing using HIL 19

no effect. They propose mitigations against these vulnerabilities and mea-
sure their performance costs on fuzz testing.

Emulation facilitates the use of generic dynamic analysis techniques on
firmware but suffers from limited device support and peripheral emulation.
Therefore, many publications explore the idea of dynamically forwarding
I/O operations to the physical device to improve emulation.

Avatar2 [123] is a framework written in Python that aims to facilitate the
interoperability between different dynamic binary analysis tools. In partic-
ular, it offers the power to use HIL techniques to plug devices into an emu-
lator with the help of a debugger. Three use cases are presented within the
publication. The first experiment reproduces the analysis of the HARVEY
rootkit, while the second shows the ability to move the firmware execution
state between concrete and symbolic executionmodes. The third experiment
demonstrates the capabilities of avatar2 to forward peripherals accesses on
the physical device from an emulator. This helps to record traces to replay
and analyze them later without the device.

As an ancestor of avatar2, Avatar [193] shares similar objectives and char-
acteristics. Experiments gather around three case studies: backdoor detec-
tion in amasked ROM bootloader from a hard drive, vulnerability research in
a commercial Zigbee device, the Econotag and helping reverse engineering
the GSM stack of a Motorola C118 phone.

Prospect [97] targets embedded Linux systems by intercepting accesses
to character devices in the filesystem and forwarding them to the physical
device. The performance of the system is evaluated against an unknown
324 MHz embedded Linux MIPS system with 16MiB RAM using strace. In
addition, an undisclosed proprietary fire alarm system is fuzzed as a security
audit. The source code of the Prospect has not been made public.

Charm [170] focuses on device drivers for smartphones. It claims to sup-
port four different device drivers on different smartphones: camera and au-
dio for LG Nexus 5X, GPU for Huawei Nexus 6P and IMU sensors for Sam-
sung Galaxy S7. Experiments try to answer several questions on its feasi-
bility, performance and capability to perform dynamic analysis techniques
such as interactive debugging, fuzzing and record-and-replay on a Nexus 5X
smartphone.

Surrogates [101] leverages specialized hardware to enable low-latency
communication between the emulator and the system under test. It uses a
custom FPGA to bridge the device’s JTAG interface to the host’s PCI Express
bus. The implementation uses a Pico Computing E17FX70T with Xilinx Vir-
tex5 FX70T FPGA because of its included ready-to-use PCI Express card. Un-
fortunately, the tool was never released and the FPGA board is not anymore
commercially available. The experiments measure Surrogates’ performance
impact onMMIO forwarding and its ease to port it to two new target devices.

20 20

Inception [52] introduces symbolic execution to embedded systems. Sim-
ilarly to Surrogates, it includes an FPGA-based debugger to provide high-
speed and low-latency access to peripherals. But it differs in interfacing itself
with the host via USB 3 instead of PCI Express. Experiments focus on vali-
dation of the design, benchmarking the performance, vulnerability detection
and several use cases on proprietary systems.

Mousse [105] brings selective symbolic execution to environments that
are too difficult to emulate because of specific hardware. The proposed sys-
tem is evaluated around three aspects: performance, code coverage and vul-
nerability discovery; and against three smartphones: Pixel 3, Nexus 5X and
Nexus 5.

Pretender [86] and Conware [165] focus on the challenges of automat-
ically modeling hardware peripherals to enable better firmware emulation.
Both follow a similar logic: first record traces of peripheral interactions, then
use these traces to generate a model and finally plug the model into an emu-
lator to allow the firmware to execute. Their contributions differ in the way
of modeling the peripheral behavior from a recorded trace. Pretender uses
machine learning while Conware employs automata representations. Both
firmware datasets focus on the 32-bit ARM Cortex-M processor with a wide
range of peripherals (e.g., timer, button, GPIO, I2C, USART, radio).

Frankenstein [153] takes memory snapshots of the wireless firmware on
the device, mainly for Bluetooth andWi-Fi. These captures are then patched
to ease the emulation and fuzz them efficiently. The framework is used to
discover three heap overflow vulnerabilities in implementations of the Blue-
tooth standard using the CYW20735 evaluation board.

FirmCorn [85] is a framework to fuzz IoT firmware. A collection of dif-
ferent firmware contexts are captured from the physical devices to be used
as starting point for the fuzzing phase. Experiments target seven routers and
three cameras. We evaluate multiple aspects of the proposed system such as
accuracy, efficiency, stability and effectiveness.

Incision [174] tackles the challenge of combining static with dynamic
analysis to help with the task of reverse engineering complex embedded sys-
tems. Execution traces are recorded in order to improve the static firmware
analysis. The evaluation targets two physical devices, an LTE baseband unit
and an automotive Body Control Module. The artifacts are not available. But
at the time of writing, the authors plan to re-implement the source code with
similar functionalities in a new open source framework called Fugue1.

1https://github.com/UoBAutoSec/INCISION

https://github.com/UoBAutoSec/INCISION

3.1. Survey on embedded device security testing using HIL 21

3.1.2 Published artifacts’ status
We observe that most publications release the source code of their proposed
system and collected dataset. However, packaging their artifacts within a
container or virtual machine imagesmay improve their usability. In addition,
scripts used to process generated data and plot figures for papers are rarely
shared within the artifacts.

It is worth noting an initiative has been created to collect monolithic
firmware used in publications:
https://github.com/ucsb-seclab/monolithic-firmware-collection

Table 3.2: Artifacts status in hardware in the loop papers surveyed.
�: source code �: container ±: virtual machine

Publication Artifacts Packaging Hardware
Tool Dataset

Wycinwyc [124] 1 � ± � ± STM32 L152RE

Avatar2 [123] 2 � � � ±
PLC Allen Bradley 1769-L16ER-BB1B
STM32 L152RE

Avatar2 examples 3 N/A �
STM32 L152RE
nRF51-DK

Avatar [193] 4 � � ± �
Seagate ST3320413AS HDD
Econotag development board
Motorola C118

Charm [170] 5 � � Nexus 5X

Inception [52] 6 � � �
Xilinx ZedBoard FPGA
STM32 L152RE
LPC1850-DB1

Mousse [105] 7 � � Pixel 3

Pretender [86] 8 � �
STM32 L152RE
STM32 F072RB
Maxim MAX32600MBED

Conware [165] 9 � � Arduino Due

Frankenstein [153] 10 � �
CYW20735
partially CYW20819

FirmCorn [85] 11 � �
DLink (DIR-816, DIR-629, DIR-859, DIR-823G)
TPLink (WR940N, WR941N)
Ezviz C6CDahua (HFW5238M, HFW3236M)

Incision [174] 12 Huawei LTE R216h (ARMv7)
Renault BCM (Renesas V850ES)

1. https://github.com/avatartwo/ndss18_muench2018you
2. https://github.com/avatartwo/bar18_avatar2
3. https://github.com/avatartwo/avatar2-examples
4. https://github.com/avatarone
5. https://trusslab.github.io/charm
6. https://github.com/Inception-framework
7. https://github.com/trusslab/mousse
8. https://github.com/ucsb-seclab/pretender
9. https://github.com/ucsb-seclab/conware
10. https://github.com/seemoo-lab/frankenstein
11. https://github.com/FIRMCORN-Fuzzing/FIRMCORN
12. https://github.com/UoBAutoSec/INCISION

https://github.com/ucsb-seclab/monolithic-firmware-collection
https://github.com/avatartwo/ndss18_muench2018you
https://github.com/avatartwo/bar18_avatar2
https://github.com/avatartwo/avatar2-examples
https://github.com/avatarone
https://trusslab.github.io/charm
https://github.com/Inception-framework
https://github.com/trusslab/mousse
https://github.com/ucsb-seclab/pretender
https://github.com/ucsb-seclab/conware
https://github.com/seemoo-lab/frankenstein
https://github.com/FIRMCORN-Fuzzing/FIRMCORN
https://github.com/UoBAutoSec/INCISION

22 22

3.2 Linux firmware rehosting approaches

As highlighted in the introduction, testing firmware poses a significant chal-
lenge: the systems are heterogeneous and operate in constrained environ-
ments. A recent trend attempts to rehost firmware to gain better control and
deeper introspection on its execution. However, rehosting an entire system
may not always be practical. Linux-based firmware is composed of various
elements such as the kernel, drivers implemented as loadable kernel modules
(LKM), libraries and applications. Previous research has focused on evaluat-
ing each of these elements as shown in Table 3.3.

Publication Analysis focus Technique

H
ar
dw

ar
e

Ke
rn
el

D
riv

er
Us

er
pr
og

ra
m

Fu
nc
tio

n

Em
ul
at
io
n

H
IL

Sy
m
bo

lic
ex
ec
ut
io
n

RevNIC [45] # # # # #
SymDrive [151] # # # # #
Prospect [97] # # # #
Surrogates [101] # # # #
Firmalice [160] # # # #
Costin’16 [54] # # # # # #
Firmadyne [44] # # # # # #
Charm [170] # # # #
Firm-AFL [198] # # # # # #
FirmAE [98] # # # # #
Mousse [105] # # #
FirmCorn [85] # # # # #
ECMO [94] # # # #
Jetset [95] # # #
FirmGuide [104] # # # # #
EQUAFL [199] # # # # # #
FirmSolo [28] # # # # #

Table 3.3: Publications addressing Linux-based firmware rehosting.

3.2. Linux firmware rehosting approaches 23

3.2.1 Rehosting user mode applications
User mode processes are however a cornerstone for global system security.
They implement most of the application logic and are often on the front line
to parse external inputs. Although defense in-depth mechanisms exist to
mitigate the impact of vulnerabilities in user mode processes, they offer a
large attack surface. Moreover, their code is often proprietary contrary to
what is written in the kernel and drivers, which makes it arduous to assert
their security. This implies the importance of being able to do security testing
and understanding what these applications achieve.

In this regard, we systematically review the existing approaches in liter-
ature focusing on rehosting and testing Linux processes, as well as exposing
their limitations. In the following Figures 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, the el-
ements originating from the embedded system are represented in red while
components participating in the emulation are highlighted in yellow and the
parts located on the analysis workstation are shown in blue.

Costin et al. [54] developed in 2016 an automated framework to analyze
at-scale firmware images, and web service in particular. While their frame-
work describes a pipeline for dynamic analysis, they discuss different ap-
proaches to rehost web services. Specifically, the approach they chose to
implement executes the relevant programs in a chroot environment of the
firmware filesystem. For architectural reasons, everything runs on top of a
full-system emulation using a generic operating system. Those generic op-
erating systems are pre-compiled Debian images composed of the kernel and
its filesystem.

The downside of the approach is an excessive execution overhead gener-
ated by the combination of full-system emulation with a generic operating
system, which is not directly relevant to the analysis. In addition, only the
web interfaces are subject to testing and any interactions with lower abstrac-
tion layers, such as the kernel or the hardware peripherals, do not work as
on the original device.

Firmadyne [44] and later on FirmAE [98] propose to reduce the execu-
tion overhead by booting the firmware filesystem on top of a custom ker-
nel. They argue that a high-level behavior from the web services is suffi-
cient to perform its dynamic analysis properly. Their approach described a
pipeline for dynamically analyzing firmware and their web services at scale.
After extracting the firmware filesystem, an initial emulation phase records
its booting interactions with the network and other system hardware inter-
faces. These records are then used to infer the expected environment. The
firmware is then started in the inferred environment for deeper analysis. The

24 24

Host Kernel (x86_64)

Generic Kernel

Host Full-system Emulation

Generic
Filesystem

Firmware

Filesystem

Chroot

DiskRAM orLocated in:

Process

Figure 3.1: Costin’16 rehosting approach for web services.

main challenge in this approach is the setup of the environment for the ker-
nel to boot correctly. In particular, it is related to improper booting sequence,
network interfaces expected by the firmware, interactions with non-volatile
storage memory (e.g., NVRAM) where configurations are often stored, and
various other kernel issues.

This approach improves upon the state of the art but still suffers from
high execution overhead because of full-system emulation. Furthermore, it
may not always be possible to infer the correct environment for all firm-
ware filesystems. Additionally, the interactions with hardware peripherals
may also not be inferred or supported at all. Despite these limitations, Fir-
mAE has demonstrated encouraging results by improving the original suc-
cess rate of Firmadyne from 16.28% to 79.36% in their dataset. However,
these results may be put into perspective when considering a different data
set [61]. Nonetheless, both studies [61,98] provide valuable insights into the
key instrumentation that contribute themost to the success rate of rehosting,
namely NVRAM, network and boot arbitration. Their success rate is mea-
sured by network reachability, which is tested by launching a ping command
to the network services under test. While their evaluations show their ap-
proach is sufficient to find new vulnerabilities in web services, it is unlikely
to be sufficient to run accurately more complex dynamic analysis, such as
taint analysis, on the different applications. Furthermore, as demonstrated
by Karonte [150], multi-binary services are widely used in applications.

3.2. Linux firmware rehosting approaches 25

Host Kernel (x86_64)

Custom Kernel

Host

Firmware Filesystem

Full-system
Emulation

DiskRAM orLocated in:

Process

libnvram.so

Figure 3.2: Firmadyne rehosting approach for web services.

FirmAFL [198] aims to fuzz processes from a firmware. To improve ex-
ecution speed, they have enhanced Firmadyne by providing the ability to
switch the process between the user and the full-system mode emulation.
They refer to their approach as augmented process emulation. The motiva-
tion behind the idea is to take advantage of the faster execution speed of
process-level emulation while maintaining the accuracy of full-system mode
when necessary. This approach addresses the challenges related to process
synchronization and migration.

Host Kernel (x86_64)

Custom Kernel

Host
Full-system Emulation

Firmware

Filesystem

User Mode
Emulation

Shared

Memory

Syscall Redirection

DiskRAM orLocated in:

Figure 3.3: FirmAFL rehosting approach for web services.

26 26

The work addresses the execution speed problem. Therefore, most lim-
itations regarding environment inferring and accuracy continue to be valid
for FirmAFL.

EQUAFL [199] seeks to further improve the execution speed of fuzzing
by removing the need to switch to full-system emulation. The approach is
twofold. Given a starting fuzzing point in a program, it first records the
system environment setup in full-system using Firmadyne. The recorded
information is then used to replay the same setup in a chroot environment
on the host. Lastly, the target program execution can be resumed in user
mode emulation. The recording process involves intercepting system calls
of interest and collecting their information for the replay phase. The two
most difficult behavior to reproduce are related to generating appropriate
configuration files and handling network interactions.

Host Kernel (x86_64)

Chroot

Firmware Filesystem

DiskRAM orLocated in:

Process
User Mode Emulation

Host

Figure 3.4: EQUAFL rehosting method.

Because the approach builds upon Firmadyne, it inherits similar limita-
tions. In addition, it appears that while the execution speed is improved, the
cost of analyzing at a large scale is incurred. The method requires manu-
ally unpacking the firmware and identifying environment variables using a
decompiler.

3.2. Linux firmware rehosting approaches 27

FirmCorn [85] also focuses on increasing the efficiency of firmware fuzzing.
First, themethod conducts a static analysis of the firmware programs to iden-
tify potentially vulnerable code. This is achieved by measuring the cyclo-
matic complexity2 of all functions and counting the number of times each
function is called. Then, the program is started on the device to capture its
context and migrated to the emulator. Three heuristics are used to further
improve the emulation and fuzzing execution by replacing certain functions.
Unresolved functions define functions that interact with newly dynamically
allocated memory, they are emulated using the uClibc implementation. Un-
necessary functions describe functions not interesting for fuzzing, such as
printing and logging. Hardware-specific functions denote functions interact-
ing with hardware components such as the NVRAM reads and writes.

Host Kernel (x86_64)

Process

Host

CPU Emulation

Heuristics

Optimization

Figure 3.5: FirmCorn rehosting approach.

The main drawback of this approach lies in the fact that it prioritizes
optimization for fuzzing at the expense of neglecting certain areas where
vulnerabilities may reside. The algorithm for identifying vulnerable code is
based on weak metrics. Additionally, the method only considers accesses in
NVRAM but omits other types of hardware interactions such as character
devices. Overall, the application of this rehosting technique is limited to the
specific context of fuzzing andmay not be easily adaptable to other scenarios.

PROSPECT [97] aims to address the limitation of using generic kernels
for rehosting in the absence of hardware peripherals. For this reason, the
paper describes a mechanism for intercepting system calls related to char-
acter devices and forwarding them to the physical device for re-execution.
The reply is then returned to the process in the emulator. Later on, to reduce
the execution overhead caused by forwarding system calls, the approach has
been improved to incorporate caching of peripheral accesses [96].

2The cyclomatic complexity measures the complexity of a code by counting the number
of linearly independent paths. It is calculated with the number of conditional statements
such as if and loops.

28 28

Host Kernel (x86_64)

Host Full-system Emulation

Peripheral HW

Original Kernel

PROSPECT

Server

Character

Device

Generic
Kernel

Process
PROSPECT

Client

Device

Syscall

Figure 3.6: PROSPECT rehosting approach.

However, one of the major limitations of this approach lies in the way in
which system calls are intercepted. The interception happens inside the ker-
nel at the filesystem subsystem layer, and as acknowledged by its authors, it
relies on the FUSE filesystem framework and its supported system calls. This
implies that it is not capable of instrumenting other system calls not related
to character devices. Although this is not the main objective of PROSPECT,
it highlights its limitation in terms of interactions with the environment,
such as those related to inter-process communication. Moreover, choosing
to intercept system calls with a mechanism implemented inside the kernel
prevents from using user mode emulation.

3.2.2 Summary
The choice to rehost certain components is characterized by the increase of
complexity with the number of firmware parts chosen. First, application data
alone presents limited interest. Usually, it is not located at a single point but
spread across the system which makes its extraction more cumbersome. It
can be stored in different memory types (e.g., NVRAM, ROM), files in the
filesystem or even embedded in binaries. This also greatly limits the scope
of analysis and vulnerability research. These are the reasons why current
approaches prefer focusing on more comprehensive solutions.

Processes offer more interest for analysis, but migrating them from the
device to the emulator can be challenging. This is because certain process
resources such as TCP connections and devices are not part of the process

3.2. Linux firmware rehosting approaches 29

itself but a kernel abstraction.
Rehosting the firmware’s filesystem provides a more accurate emulation

of the original environment. This eliminates the need for emulating all pro-
cesses interactions, such as loading dynamic libraries, opening configuration
files or starting new programs.

During the boot process, the kernel is responsible for initializing the
hardware components. Unlike the x86 architectures, which use the ACPI
standard to dynamically discover and configure hardware components, many
other architectures use a static device tree. This means that the kernel parses
this data structure and, if errors are encountered, the kernel fails to boot.
The vast variety of existing hardware components and peripherals makes it
impossible for an emulator to support them all [71]. Therefore, some works
have focused on inferring the expected hardware or guiding the kernel boot-
ing process [28, 94, 95, 104]. Instead, others [44, 54, 98, 198] have chosen to
replace the firmware kernel with one that is compatible with the emulator.
This improves the ability to easily modify the kernel to add instrumentation.
However, this approach presents new challenges as programs expect a spe-
cific environment to execute properly, such as specific network interfaces.

The execution mode balances the trade-off between emulation speed and
accuracy. By statically recompiling the application to the host ISA, the bur-
den of emulating a different ISA is removed, resulting in increased execution
speed as the program runs natively on the host. However, this requires ei-
ther access to the source code of the application and a compatible toolchain
or the ability to correctly decompile the binary. The latter is still an ongo-
ing research problem because it can be difficult for certain ISA to properly
identify the code from the data in the disassembly [27].

User mode emulation allows for the execution of foreign architecture
binaries at the cost of slower execution. It is often used in conjunction with
chroot to recreate the firmware filesystem environment. However, it lacks
most of the hardware interactions.

Full-system emulation, in contrast, emulates the hardware behavior to
enable execution for programs that interact directly with the hardware logic,
such as kernels and drivers. But it is entirely dependent on the emulator sup-
port. For example, QEMU does not support all CPU architectures and does
not implement all existing peripherals and platforms. In addition, peripheral
hardware is often custom designed, and the documentation is rarely pub-
licly available, making emulation more difficult without significant reverse-
engineering efforts [71]. A workaround consists in combining the emulation
with the physical device to forward hardware accesses.

Contrary to rehosting approaches focusing on the kernel, drivers and
peripherals, as presented in Table 3.3, to the best of our knowledge, no firm-

30 30

ware rehosting methods that focus on user programs make use of symbolic
models.

Each of the approaches makes different trade-offs to enable rehosting of
various parts of the embedded system. They are summarized in Table 3.4.

Approach Rehosted Execution Other
element mode characteristics

Pr
oc
es
s

Fi
le
sy
st
em

Ge
ne
ric

ke
rn
el

Cu
st
om

ke
rn
el

CP
U
em

ul
at
io
n

Us
er

m
od

e
em

ul
at
io
n

Ch
ro
ot

Fu
ll-
sy
st
em

em
ul
at
io
n

Sy
st
em

ca
ll
fo
rw

ar
di
ng

Costin’16 [54] # # # # #
Firmadyne [44] # # # # # # Environment inferring
FirmAE [98] # # # # # # Environment inferring
FirmAFL [198] # # # # Shared memory
EQUAFL [199] # # H# # # #
FirmCorn [85] # # # # # # # Process migration
PROSPECT [97] # # # # # System call caching [96]

Table 3.4: Summary of user mode rehosting approaches.

3.3 System call interception
Earlier, we examined various techniques for rehosting programs in usermode.
The primary interface that separates processes from the kernel is system
calls. In this Section, we provide background information and explore moti-
vations for system call interception. In particular, we shed light on the inner
workings of Linux system calls and present reasons for their interception
(i.e., tracing, filtering, instrumentation, and forwarding). Next, we present
in more details the common interception techniques used in Linux-based
systems. Table 3.6 summarizes the main characteristics.

3.3.1 Motivation
A modern computing system typically consists of a kernel and a user space.
The privileged operating system is running in kernel mode, while user pro-
grams reside in user space. Generally, user-mode applications interact with

3.3. System call interception 31

the kernel via the system call interface. Hence, whenever a user program
requires a service provided by the kernel, it initiates a system call.

The Linux kernel follows the “everything is a file” philosophy, and there-
fore many system calls are dedicated to files and filesystem management.
Other examples of services exposed via system calls are address space, pro-
cess management, signal handling, and ISA-specific services. Table 3.5 de-
picts examples of these system calls. User mode applications rarely need
to issue the system calls directly, they are abstracted away by the standard
system libraries (e.g., libc, libstdc++, libm, libpthread).

OS subcomponent Example system calls
Files open, read, write, close
Filesystem mkdir, rmdir, rename
Process management execve, fork, prctl
Address space management mmap, brk
Signal handling rt_sigaction, rt_sigprocmask, rt_sigreturn
Peripheral control ioctl

Architecture specifics arm_set_tls

Table 3.5: Example system calls for various Linux components.

When an application issues a system call, the execution is usually3 trans-
ferred to the kernel via architecture-dependent instructions. For instance,
Linux on x86 architectures uses software interrupts for 32-bit programs (int
0x80), and traps for 64-bit programs (sysenter), while resorting to exceptions
for the ARM (svc) and MIPS (syscall) architectures. The execution context
of the user process is saved. The kernel then determines the number of the
requested system call, usually stored in a pre-defined register. This system
call number is then used as an index to the kernel internal system call ta-
ble, which stores a pointer to the individual system call handlers. Once the
handler finishes, the process context is restored and a single return value is
passed on success. On the opposite, a failure is typically indicated by a return
value of -1 and sets errno, a special variable indicating the type of error.

Tracing

The least invasive form of system call interception is tracing. It is a tech-
nique that logs information about the executed system calls: the arguments,
the return value, the potential errors and sometimes also about the process
context such as the stack trace. Essentially, the resulting traces are record-
ings of the interaction between these programs and the kernel and give deep

3A notorious exception to this are system calls like gettimeofday or clock_gettime,
which are dispatched in user space via the ELF virtual Dynamic Shared Object (vdso).

32 32

insights into the programs’ behavior. Its applications are manifold and range
from simple debugging to the analysis of complex malware and profiling.

While naïve tracers are just logging the executed system calls and their
arguments, the need for more advanced traces is indisputable. A variety
of system calls have pointers to locations in memory in user space as ar-
guments, and without logging those memory contents, information is lost.
Furthermore, additional information about the state of the process, such as
the content of the stack, when issuing the system call may be relevant for
the analysis. However, tracing can lead to considerable overhead in perfor-
mance, as dereferencing and copying memory is slow, and system calls are
frequently issued for most software. As a result, developing system call trac-
ing engines requires trade-offs between performance and granularity of the
retrieved information.

On Linux, the most established system call tracer is probably strace [14],
which uses ptrace, a Unix system call for enabling debugging and tracing of
processes. While strace provides thorough information about the executed
system calls, a process can identify whether it is ptraced by querying the
Linux kernel, and adversarial software, such as malware, typically changes
its behavior if this is the case. Hence, other solutions for system call tracing
are usually used in this context. For instance, the malware analysis frame-
work Ninja [128] uses the Embedded Trace Macrocell, a hardware feature
for ARM CPUs, while Cozzi et al. [56] used a modified version of System-
Tap4 [93] to trace system calls for analysis of Linux malware.

Instrumentation

There are several use cases for the instrumentation of system calls and their
arguments or return values. For instance, modifying the arguments passed
to the kernel can help during debugging and analysis of a program, as it al-
lows the modification of the program’s behavior. More common, however, is
the modification of system call return values. In particular, changing the re-
turn value can exercise different paths in the program, which is useful during
dynamic testing. For instance, the purposeful injection of error return codes
helps for identifying bugs and vulnerabilities in programs [186,195]. Further-
more, instrumentation of system calls is often used by malicious software.
Rootkits are frequently instrumenting system call arguments and return val-
ues, for instance, to modify the behavior of other userland processes, or for
evading malware detection systems.

4SystemTap is a tool to write scripts which collect information of a running Linux sys-
tem.

3.3. System call interception 33

Filtering & Sandboxing

System calls are the main interface for processes to modify the state of the
system. Hence, filtering out malicious or unwanted system calls is a cen-
tral goal in any sandboxing approach. Moreover, filtering system calls can
also be a component in the principle of the least privileges: not all userland
processes require having access to all implemented system calls. Therefore,
by restricting a process to the system calls it is supposed to need, the attack
surface of the kernel is limited.

The seccomp subsystem is a popular mechanism for system call filtering
on Linux. It can be accessed through the prctl system call and allows a
process to be placed in “secure computingmode” which only allows a limited
subset of system calls. The seccomp-bpf extension offersmore precise control
over system calls by specifying policies through Berkeley Packet Filter (BPF)
rules. In addition to actions such as killing a process, this extension allows
for the handling of system call events in user space, through methods such
as sending a signal or via a ptrace-based tracer.

Forwarding

An emerging trend for system call interception is the action of forwarding
system calls from one system to another. As a result, user space applications
do not interact with their native kernel, but insteadwith a foreign one. While
this may appear non-intuitive at first, it is the underlying concept for popu-
lar user-mode emulators, such as qemu-user [36]. Furthermore, an emerging
use case for system call forwarding is the analysis of Linux-based embed-
ded devices as demonstrated with PROSPECT [96, 97] and Firm-AFL [198].
The key idea is that resource-intensive analysis of user space applications
is carried out on an analysis host, while system calls interacting with the
hardware of the device are forwarded.

Another notable example of system call forwarding, although not target-
ing Linux system calls, is a framework written by Martignoni et al. [112]. It
forwards and executes a subset of Windows system calls from a user host
to an analysis host in the cloud for facilitating advanced runtime malware
analysis.

Distributed operating systems rely on forwarding mechanisms to seam-
lessly continue the execution of migrated processes across different nodes
within a cluster [34, 107, 180, 181].

34 34

3.3.2 Main system call interception techniques

The need for observing, instrumenting, filtering, and forwarding system calls
leads to a variety of techniques, each with its advantages and drawbacks.
Although system call interception techniques differ widely in the way they
operate and the capabilities they provide, they all have in common that the
execution of a hook comes alongside the execution of the actual system call.
Hence, we will refer to different interception techniques as hooking tech-
niques for the sake of readability, regardless of the goal and motivation of
the interception.

Generally speaking, hooking techniques usually fall into one of the fol-
lowing three categories:

1. User mode-based. These techniques register and execute their hook
in user space. While some of these techniques require assistance from
the kernel, the core logic of the hook resides in user mode.

2. Kernel-based. In opposition to the user mode-based techniques, the
code of the hook is executed in the kernel context.

3. External. Another option is the insertion and execution of hooks out-
side the operating system. This scenario includes for instance hypervisor-
based hooking or the usage of special debug interfaces.

Whilewewill use this categorization for structuring the remainder of this
section, a variety of other properties can be used to characterize a given sys-
tem call interception technique. For instance, one key property framing the
performance, requirements and accessible information is the hookingmech-
anism, i.e., how execution is transferred from entering or exiting a system
call to the actual hook. Typically, a hook is either reached via a trampoline,
or a trap. The former is a direct transfer of execution to the hook via a jump
instruction, whereas a trap uses some kind of interrupt mechanism during
the execution, which eventually transfers the control flow to the hook.

Other characteristics include whether the hook is inserted statically, e.g.,
during compile time, dynamically during program execution, or whether the
technique needs to be supported by a given kernel.

We will highlight the diversity of system call hooking techniques on
Linux by discussing several different techniques. While the list of presented
techniques is not exhaustive, it will give a good overview of the current state
of the art. Table 3.6 provides a summary of them.

3.3. System call interception 35

Hook Insertion HookName mechanism method location

Tr
ap

Tr
am

po
lin

e

Su
bs
tit
ut
io
n

Br
an
ch

co
nd

iti
on

St
at
ic

D
yn

am
ic

Us
er

Ke
rn
el

Ex
te
rn
al

Library injection # # # # #
Binary rewriting # # # #
ptrace # # # # # #

User

seccomp # # # # # #
Linux tracepoint # # # # # #
Kprobes # # # # #
Uprobes # # # # # #
Character device # # # # #

Kernel

Kernel patching # #
Hypervisor # # # # #
Hardware tracing # # # # # # In

st
ru

m
en

ta
ti
on

lo
ca
ti
on

External
Hardware debugging # # # # # #

Table 3.6: Summary of Linux hooking methods.

User mode-based

Approaches that implement instrumentation using usermode programs have
the advantage of increased stability and portability across different plat-
forms. However, this comes at the cost of reduced stealth, which can be
a significant factor in the context of malware analysis.

Library Injection. The principle of this technique is to inject a shared
library responsible for instrumentation into another process, either during
startup or run-time. Themost famous example for this is probably LD_PRELOAD
based hooking. By exploiting the behavior of the dynamic linker/loader, this
technique overrides the function references in the Global Offset Table (GOT)
to redirect them to other locations. While this does not give full control and
visibility over system calls, it allows the instrumentation of the according
wrapper functions of the standard C library. Although the simplicity of this
approach is remarkable, it is very prone tomiss system calls not issued by the
instrumented libraries, and it is not applicable for statically linked binaries.
Nonetheless, LD_PRELOAD serves as the building block for other techniques,

36 36

such as syscall_intercept [20], which preloads a stub for disassembling the
standard C library and replacing system call instructions with a trampoline.

A similar, butmore sophisticated approach is implemented by Frida [149],
which injects a JavaScript interpreter inside a running process to provide
various dynamic instrumentation capabilities, including system call inter-
ception. The script has full access to memory, and process’ functions and
can instrument its execution. However, the overhead introduced in memory
and CPU time is significant [106].

BinaryRewriting. Essentially, binary rewriting consists of disassembling
the binary code, adding instrumentation, and reassembling themodified code
before execution. This is either performed offline, using static binary rewrit-
ing tools such as Ramblr [184], Retrowrite [63] and ZAFL [126], or online
during program run-time, which can be achieved with frameworks such as
DynamoRIO [41] and PIN [108]. While static rewriting techniques are some-
what limited, as they rely on correct disassembly and can’t cope with obfus-
cated code and packed binaries, dynamic rewriting typically introduces a
significant performance overhead during the process execution, as instru-
mentation code is typically added to every basic block. Hence, some systems
aim to provide lighter solutions, such as VARAN [90], which uses selective
binary rewriting where only system calls instructions are replaced by either
a trap or a trampoline whenever a code page is loaded into memory. While
this beats the performance of more traditional binary rewriting frameworks,
system calls originating from self-modifying code as often seen in malware
can be missed by this approach.

Process Trace. One of the most versatile building blocks for user mode-
based hooking on Linux is process trace, or, in short, ptrace, which is pro-
vided by the kernel via the ptrace system call. Despite its name, ptrace al-
lows one process to introspect and modify the registers and memory con-
tents of another process with the help of the kernel. Additionally, trap han-
dlers for special events such as system calls can be registered. A variety of
standard debugging tools are built on top of this facility, such as strace, GDB
and ltrace, as well as advanced dynamic analysis tools [183, 197].

The main drawback of this approach lies in the multiple context switches
between the tracer and the tracee, resulting in high execution overhead. It
also suffers from TOCTOU attacks [146] which are difficult to resolve due to
the lack of atomicity in this interception mechanism.

Seccomp. Like ptrace, seccomp allows registering hooks for a system call
with the help of the kernel. In particular, it allows a process to register Berke-

3.3. System call interception 37

ley Packet Filter (BPF) 5 rules to match system calls and their arguments. The
kernel will evaluate subsequent system calls against this filter and carry out
an action encoded in the return value of the filter. Possible actions include
termination of the process, returning an error for the system call, passing
control to the program via signals, or notifying a ptrace-based tracer.

Although the interceptionmechanism resides in the kernel, this approach
and the ptrace method are classified as user mode-based due to the execution
of actual system call instrumentation.

Kernel-based

The Linux kernel offers various tracing, hooking, and probing facilities for
all sorts of events, including the execution of system calls. A standard way
to access these functions are Loadable Kernel Modules (LKM), which can be
used for flexible instrumentation of user applications from kernel space. By
running at higher privilege mode, an LKM can manipulate the target process
address space while having access to all kernel data structures and functions,
and perform system call interception transparently to the user program.

However, to build such modules, the toolchain and headers originally
used to compile the kernel are required, which is frequently impossible or
very difficult to obtain [28]. In the following, we describe various APIs and
techniques accessible from LKM to enable system call hooking.

Tracepoints. The Linux kernel allows inserting tracepoints in its source
code. They can later be hooked with handler functions, called probes, at
runtime. A tracepoint can be turned on or off by registering or unregis-
tering the probe. Various tracepoints, including some for system calls, are
already present in the Linux kernel and can be accessed via the API func-
tion trace_tracepointname() and the TRACE_EVENT() macro. Although this
mechanism introduces only minimal overhead, it does not allow intercep-
tion of the system call beyond simple tracing and can be inserted without
recompiling the kernel code.

Kprobes. Dynamic insertion of hooking points can be achievedwithKprobes,
the trap-based dynamic tracing system of the kernel. Kprobes allows plac-
ing a software breakpoint almost anywhere in the kernel code [99] and allows
registration of pre-, post- and fault handler routines. When the breakpoint
is hit, the CPU traps into an interrupt context, saves its state and executes

5The replacement of the traditional BPF virtual machine with the extended BPF (eBPF)
version has been a topic of debate within the community, due to potential security con-
cerns [10]

38 38

the pre-handler instrumentation. Then, it executes the saved instruction and
the post-handler function before returning after the breakpoint.

As trapping and switching to interrupt context usually comes with a sig-
nificant performance penalty, optimized Kprobes replace the software inter-
rupt instruction with a trampoline when a strict set of requirements is met.
The trampoline handler simulates the breakpoint behavior by pushing CPU’s
registers onto the stack. Then, the Kprobe handlers and the copied instruc-
tion are executed, before the state is restored and execution continued at the
original location.

For hooking system calls with Kprobes, two strategies are viable: regis-
tering a Kprobe for every possible system call routine, or registering a single
Kprobe in the system call dispatching function. The former approach is in-
sufficient in the presence of rootkits, as they typically alter the system call
table, while the latter has additional hurdles to overcome: As system call
dispatching is a critical operation, interrupts may be disabled and the code
locations may be excluded from the authorized locations for Kprobes.

Uprobes. Uprobes allow kernel modules to instrument user space appli-
cations by replacing a given instruction with a software breakpoint. The
instructions to instrument are identified by tuples composed of the inode of
the binary and their offset from the start. When the breakpoint is hit, an ad-
ditional filter, specified at uprobe creation, examines additional conditions to
meet before transferring control to the hook or continuing execution in user
space. While this mechanism is especially useful for user mode tracers such
as perf [11] or ftrace [4], it has similar limitations as static binary rewriting
as system call instructions need to be identified before the program starts.

Character device. User space applications often interact with drivers and
hardware using special character devices. Starting from this assumption, a
kernel module can provide a custom character device to co-operating user
mode programs to intercept file-related system calls [97,125]. Although this
method has its benefits when the ultimate goal is forwarding interaction
with device drivers, it has severe limitations as a generic system call hooking
strategy.

Kernel patching. If all the aforementioned methods are not applicable,
a module can always fall back to the most direct hooking technique: over-
writing kernel code—or data—during runtime [43,65,121,169]. For instance,
single entries in the system call table could be changed, the complete system
call table could be replaced, or instructions from the dispatching routines
could be rewritten. However, this method offers the lowest level of porta-

3.3. System call interception 39

bility and usually requires eluding various runtime protections aiming to
prevent kernel memory tampering.

External

System call interception from outside the operating system usually has the
advantage of being undetectable both by the operating system and user space.
Furthermore, it can lead to better performance and full access tomemory and
any low-level machine state information. However, most of the time a se-
mantic gap has to be bridged, as internal details of the kernel, such as data
structures, are lost.

Hypervisor. System call interception at the hypervisor level is deeply cou-
pled with the virtualization approach used. Some hypervisors rely on CPU
hardware virtualization extension to run a guest operating system. When
a sensitive instruction (e.g., software interrupts for system calls) is issued,
the control flow moves to the hypervisor which then decides what action
to take. Indeed, system calls can be intercepted directly by the hypervisor
before reaching the guest kernel. It is particularly useful when the instru-
mentation needs to be undetectable by the program being analyzed, like for
malware analysis [62].

On the other hand, when the hypervisor relies on dynamic binary trans-
lation to provide a different execution environment, it is possible to rewrite
the system calls to include the desired instrumentation. Dedicated hypervi-
sor tools such as PANDA [64], provide hooks for various events on the guest,
including the occurrence of system calls.

A third case is illustrated by approaches based on KVM. Dune [35] and
later ELKM [139] use a library to convert system calls into hypercalls which
are then instrumented by the hypervisor.

Hardware Tracing. Modern CPUs are oftentimes equipped with special-
ized tracing capabilities such as Intel’s Processor Trace (PT), or ARM’s Embed-
ded Trace Macrocell (ETM). Unfortunately, these capabilities do not allow for
any kind of system call hooking outside the scope of tracing on its own, as
the generation of the trace is typically completely decoupled from the exe-
cution of a binary. However, systems like Griffin [77] demonstrate that they
indeed can be used to introduce blocking checks in the event of system calls.
Moreover, tracing system calls with these hardware features is especially
useful for advanced malware analysis, as illustrated by Ninja [128].

One limitation of hardware tracing is its lack of portability. The hardware
and software used for hardware tracing are deeply coupled with the archi-
tecture. This makes it difficult to apply a generic solution or to compare the

40 40

behavior of systems that use different architectures. This is particularly true
given thewide range of architectures employed by embedded systems. A sec-
ond limitation concerns the limited number of events that can be traced at
once. Most tracing solutions have a fixed amount of hardware resources that
are dedicated to tracing. This means that it may not be possible to trace all
the events of interest at a very high frequency without deleting old records.

Hardware Debugging. In comparison to tracing, hardware debugging fa-
cilities can alter CPU state and memory content in a completely transparent
way to the underlying operating system and user space. While this effec-
tively allows large flexibility with system call interception, it requires low-
level knowledge about the target operating system. Nonetheless, the viabil-
ity of this approach for system call interception is shown by OpenST [196],
which performs system introspection for Linux on ARM using JTAG and
OpenOCD. However, retrieving and rebuilding information through a low-
speed debug port can introduce high execution overhead. In addition, debug-
ging ports are not always present, accessible, or simply enabled on devices.

3.4. Problem statement 41

3.4 Problem statement
The previously discussed methods for rehosting processes introduce promis-
ing concepts, but overall offer a best-effort approach to approximate themin-
imum requirements needed to run a program. Although these methods have
been successful in identifying new vulnerabilities via fuzzing, they are not
sufficient for performing more complex analyses on program execution such
as taint tracking and symbolic execution. Furthermore, these methods do
not fully reproduce the context of the embedded system and its comprehen-
sive interactions with the environment. For instance, Firmadyne focuses on
the booting process of the firmware image but does not verify the correct-
ness of the rest of the execution, particularly concerning hardware accesses.
Moreover, the rehosting method is designed to analyze firmware at scale and
efforts are focused to improve the overall success over the dataset. Alterna-
tively, PROSPECT is limited to character device accesses only.

Therefore, it is crucial to continue proposing new approaches to repro-
duce environments and interactions faithful to the original devices. In the
next chapter, we will examine how different methods of system call instru-
mentation can be used to rehost processes.

42 42

Chapter 4

System call forwarding for
Linux processes

Previous research has mainly focused on the ability to boot and run the firm-
ware but with less emphasis placed on its execution accuracy. In this chapter,
we start by highlighting the shortcomings of existing approaches through an
example of an embedded system presenting a variety of interactions with a
rich environment, including local wireless network and cloud services. We
then examine the challenges the process abstraction poses for rehosting and
investigate the solutions to handle them. Finally, we propose a novel ap-
proach for providing partial execution to a process by forwarding its system
calls from an emulator to its original environment on a physical device.

4.1 Motivation of the approach

4.1.1 Motivational example
We observed that existing approaches primarily focus on extracting the pro-
grams from its filesystem and apply best-effort methods to approximate the
minimum required for the program to run. While this is sufficient to identify
some vulnerabilities, it fails to capture the complete context of the embed-
ded system and lacks comprehensive interactions with the environment as
we will see in the following example.

A program rarely runs alone in a Linux-based system. It is indeed the
very point of an operating system to offer the ability to share the execution
time between multiple programs. The rehosting technique implemented via
Firmadyne and FirmAE illustrates this by trying to identify all the firmware
services and start them properly. But that is not always sufficient to capture
all firmware interactions with the rest of its environment. As highlighted be-
fore, the original environment is not reproduced in its accuracy: the kernel

43

44 44

Cloud

Zigbee

Wi-fi

Bluetooth

Low Energy

Motion
sensor

Zigbee
bulb

Switch

Hue
bridge

Mobile

Laptop

Wi-Fi bulb

Bluetooth
& Zigbee

bulb

Smart
speaker

Router

Figure 4.1: Philips Hue devices in the home network.

version is different, which makes it impossible to load kernel modules; some
hardware components may not be supported by the emulator; not all firm-
ware services could be started. Therefore, some key program inputs may be
missing.

A representative example of firmware evolving in a complex environ-
ment is the firmware of the Hue Bridge. Philips Hue is a popular smart home
automation system that offers to control lighting devices wirelessly. It is
composed of different types of light devices: bulbs, light strips, as well as
switches, motion sensors and a bridge. The bridge aims to provide interop-
erability between the local network and the wireless protocols used by the
devices. To enhance user experience, the system integrates with different
cloud services, for instance enabling users to control the lights from their
smartphones when outside their home, or to launch voice commands via
smart speakers. Figure 4.1 shows a typical Philips Hue home network envi-
ronment.

To facilitate interactions, and support different use cases, multiple pro-
tocols are supported: Zigbee Light Link, Bluetooth Low Energy and Wi-Fi.

4.1. Motivation of the approach 45

Cloud

Bluetooth

Low Energy

Ethernet

Wi-Fi

Zigbee

Figure 4.2: Set of protocols used by Philips Hue system.

The core of the system is the Hue Bridge. It connects to the router via Ether-
net and the devices via the Zigbee mesh network. In addition to the Zigbee
Light Link protocol, some devices support the Bluetooth Low Energy proto-
col. This allows sending commands directly to the device without the need
for a bridge. Figure 4.2 illustrates the different protocols involved in the sys-
tem.

In addition to its technological choices, the Philips Hue system presents
security challenges [25,119,152]. Its privacy has also been studied. Thiery et
al. [173] discussed how the state of lights and other sensors within the house
help understand user habits. By cross-referencing these data with those of
their partners, companies can infer broader behavior about their customers.
It is even more true when Philips Hue system is advertised as being well inte-
grated with other home automation systems, in particular Google Assistant,
Amazon Alexa, Apple HomeKit and Microsoft Cortana. In their experiments
with multiple devices, Thiery et al. [173] measures that 75.35% of data is sent
to servers located in the US while the device resides in Europe. This raises
questions about data sovereignty.

Thiery et al. [173] analyzed the traffic from the network. However, most

46 46

of the traffic was encrypted, and it was not always possible to set up a
man-in-the-middle attack. The authors observed recurrent communication
between the bridge and the cloud server (hosted by Google) but because
communications are encrypted they were unable to precisely analyze them.
Nonetheless, they supposed it is used either to notify the light status or as a
keep-alive mechanism. This is why it is interesting to be able to have a deep
insight into the device’s internals. Because the Hue Bridge is at the heart
of the whole system, rehosting and instrumenting its programs would let us
better understand what kind of information is shared with devices and cloud
services.

At the hardware level, the Hue Bridge can be divided into two parts: the
Linux system and the Zigbee modem. Communication between both com-
ponents is handled via a UART and appears as a tty device under the dev

directory: /dev/ttyZigbee. At the software level, the application ipbridge

plays a central role in forwarding the commands to the Zigbee modem, mon-
itoring the status of the lamps and communicating with cloud services.

SPI

SPICPU

MIPS 24Kc

Ethernet Boot ROM
U-boot

Flash NAND

OpenWRT Filesystem

DDR2
RAM 64 kB

UART

Modem

2.4 GHz

Figure 4.3: Hue Bridge block diagram.

This illustrates the fact that rehosting only a part of the system, for in-
stance, the Linux one, is not sufficient for it to function properly. Therefore,
it is crucial for the rehosted application to maintain its relations with its
original environment.

4.1.2 Our Approach
Our approach consists of intercepting system calls, deciding if their execu-
tion should be carried out locally or remotely, invoking them on the chosen
platform, and returning them to the application. For certain system calls that
modify the process structure, we perform additional operations to keep the

4.1. Motivation of the approach 47

representations of the process in the two kernels synchronized. This is par-
ticularly the case for the mmap family which alters the structure of the address
space (Figure 4.4).

Host Kernel (x86_64)

Namespaces

Firmware Filesystem

Process
User Mode
EmulationHost

Original Kernel

Executor

Device

Tracer

Orchestrator

System Call
Forwarding

Filtering

Mount

PID

User

Network

IPC

Rules

Figure 4.4: Proposed system call forwarding approach.

We started by observing the typical composition of Linux-based systems.
We summarize those components in three1 layers: the hardware, the kernel
and the user space. For a user-mode application, the system call interface is
the main point of interaction with the kernel and its hardware resources. It is
a public and stable API and ABI. Unlike low-level hardware accesses happen-
ing between the kernel and the hardware such as I/O operations, the system
call interactions are more general and suffer less from latency issues [170].
Furthermore, many techniques exist for instrumenting system calls as we
saw in Section 3.3: tracing, sandboxing, filtering, forwarding, etc. As a re-
sult, all these characteristics make the system call interface a good candidate
for rehosting programs.

We have chosen to rely on interception methods that are external to
the executing program to avoid the need for modifications in the programs.
Thus, the compatible mechanisms are user mode emulation, ptrace, seccomp
and other kernel-based interceptions. In our implementation described in
Chapter 5, we use QEMU user mode emulation with several Linux names-
paces to reproduce the original firmware environment.

1We do not consider the hypervisor in our case. It would lay down between the hardware
and the kernel.

48 48

4.2 Challenges
As seen in the motivation in 4.1, some existing work has been done to pro-
vide a limited way for forwarding system calls. FirmAFL [198] shares mem-
ory between the two emulators, but system calls are almost always executed
in full-emulation mode. PROSPECT [97] can forward system calls to the
physical device, but its interception mechanism lies in the FUSE filesystem,
limiting it to a certain category of system calls. In this Section we will look
at the different challenges faced when forwarding system calls between two
separate kernels.

4.2.1 Theprocess duality: betweenuser andkernelmode
A process is composed of elements in both user and kernel modes.

The execution is divided between user and kernel mode. In user mode,
application code is executed together with its linked libraries, while in the
kernel a thread is maintained for each user process. When a system call
is invoked, the control flow jumps to its associated thread where the user
context is saved and further operations are executed on behalf of the process.

The kernel maintains several structures for the process. The hierarchy
and relations between processes are stored in the kernel process table. The
kernel maintains multiple tables for file management: the file descriptor ta-
ble, the open file table and the inode table.

Inter-process communication (IPC) mechanisms are partly controlled by
the kernel and the user process. For instance, the process registers handlers
in the kernel to properly receive signals [13]. Shared memory lets processes
create a bridge between different address spaces.

To access user space memory safely, the kernel uses a dedicated API (de-
fined under the usaccess.h files). Table 4.1 shows the main functions of the
interface.

Therefore, from user mode, the process does not have full control over
its state and the kernel resources it uses.

Name Function purpose
clear_user Zero n bytes of memory in user space
access_ok Check whether a pointer is valid for user space access
copy_from_user Copy size bytes of memory from user to kernel space
copy_to_user Copy size bytes of memory from kernel to user space
get_user Macro to copy a variable from user space
put_user Macro to copy a variable to user space
strncpy_from_user Copy a string of count maximun length from user to kernel space
strlen_user Return the size of a string from user space

Table 4.1: Linux user space memory access API

4.2. Challenges 49

4.2.2 Filtering
Forwarding all system calls to the remote kernel is not always necessary, and
provides optimization opportunities. In addition, as we will see in the rest
of the chapter, certain system calls may need to be executed on both kernels
to keep the process structures synchronized. To decide which system call to
execute, and where to execute it, a method for filtering system calls and the
data they carry in their arguments is necessary.

4.2.3 Classification
The two most crucial aspects of forwarding system calls are the informa-
tion that needs to be transferred and the operations required to keep pro-
cesses synchronized. Most existing classifications are based on the function
of the system call, i.e, the type of operations the system call executes and the
subsystem it interacts with. However, these groupings do not consider the
interface in itself and the information transferred between user and kernel
modes.

It exists mainly two types of arguments:

• Direct variables: integers where all the information is contained in its
value (e.g., int option, int pid, uid_t uid, size_t len, off_t offset,
unsigned int fd, int flags, umode_t mode),

• Indirect variables: pointers to memory blocks in user space such as
buffers (char *buf, void *buf), strings (char *filename, const char

*pathname), structures (struct tms *tbuf) and arrays (int *fildes).
These are often associated with a direction for the transfer: is the mem-
ory copied from user space to kernel, or the opposite, or both? In the
kernel, this is reflected by the usage of the user space memory access
API (Table 4.1). In user mode, clues exist in the argument definitions
via the usage of qualifiers such as const and __user.

However, this does not grasp the full range of corner cases offered by
system calls with variable argument lengths such as ioctl() and fcntl().

The mmap system call family is particularly noteworthy. The vma argu-
ment represents an address that is the start of a memory region and could be
misinterpreted as a pointer. But it does not refer to any data in itself, the in-
formation is the address, thus the value of the argument, so it should belong
to the integer category.

Another corner case concerns linked lists via set_robust_list(). The
system call is used to set the robustness of a process’s futexes (fast userspace
mutexes), i.e., the behavior of the mutex when the process terminates. It is a
mechanism used to avoid deadlocks when a process terminates accidentally.

50 50

The system call takes as an argument a pointer to a structure representing
the head of the linked list: struct robust_list_head *head. However, the
kernel only stores the value of the pointer. It is only when the process is
terminated that user memory is accessed to traverse the linked list. Because
the management of the futexes is delegated to the user process, most of the
structures are stored in the user memory space. So the kernel keeps only
pointers to these structures and therefore needs to do many reads to user
memory to set the state of futexes. In our approach, we have set aside this
particular case to handle all the futex management with the local kernel and
avoid any forwarding. As we will further see in the Chapter 5, not all system
calls need to be forwarded and the filtering mechanism helps us achieve that.

Taking these observations into account, we identified four categories of
system calls:

• Category A modifies the structure of the process.

• Category B exchanges information with the kernel via pointers to
user space buffers.

• CategoryC gathers simple functions where all the information is con-
tained in their arguments.

• CategoryD is special because it is the vDSO library that invokes direct
calls to the kernel without any context switches.

We will now, discuss each group with examples.

A. Modifying the address space

These system calls operate directly on the kernel structures of the process
address space. Theymodify it in away that is hard to control from usermode.
However, their number is limited, and it is possible to replicate their effects
to keep both process structures synchronized.

B. Exchange user space data

These system calls are characterized by their interactions with the pro-
cess address space through memory reads and writes. As mentioned in Ta-
ble 4.1, the Linux kernel uses a specific interface that takes the pointer and
the size as arguments. The size of structures is part of the system call ABI.
In order to preserve backward compatibility for user space applications and
libraries [8] [9], the Linux kernel developers are making great efforts to not
change the ABI. In contrast, buffers that are not strings are often followed
by another argument defining their size.

4.2. Challenges 51

1 void *mmap(void *addr , size_t length , int prot , int flags ,
2 int fd, off_t offset);
3 int brk(void *addr);
4 int mlock(const void *addr , size_t len);
5 pid_t fork(void);
6 pid_t vfork(void);
7 int clone(unsigned int flags , void *stack , int *parent_tid ,
8 unsigned long tls , int *child_tid);
9 int execve(const char *pathname , char *const argv[],
10 char *const envp []);

Listing 4.1: Examples of system call prototypes that modify the process
address space.

1 int open(const char *pathname , int flags , mode_t mode);
2 ssize_t read(int fd, void *buf , size_t count);
3 int recv(int s, void *buf , int len , unsigned int flags);
4 int poll(struct pollfd *fds , nfds_t nfds , int timeout);

Listing 4.2: Examples of system call prototypes that exchange user space data.

C. Simple function

These are the simplest system calls to forward as all the information ex-
changed with the kernel and the resulting effects (from the kernel routine)
they trigger are contained in their parameters and the return value. This
means that only the registers must be copied on the system call entry and
exit.

1 pid_t getpid(void);
2 int socket(int domain , int type , int protocol);
3 int flock(int fd, int operation);
4 void sync(void);
5 int kill(pid_t pid , int sig);

Listing 4.3: Examples of system call prototypes that exchange user space data.

D. vDSO - Virtual Dynamic Shared Object

For some system calls, the time spent in the kernel is negligible compared
to the overhead of the context switching. For this reason, the kernel maps

52 52

a shared library in the address space of user space processes to avoid the
interrupt-handling procedure. Hence, invoking those system calls results
in a function call rather than a classic system call. These system calls are
often not intercepted by tracing tools as they use a different interface. This
is usually a minor problem because it mainly concerns time-related system
calls. The implementation of these functions in the vDSO is architecture
specific [17] For example, on ARM andMIPS architecture, only the following
two functions are concerned.

1 int gettimeofday(struct timeval *restrict tv,
2 struct timezone *restrict tz);
3 int clock_gettime(clockid_t clockid , struct timespec *tp);

Listing 4.4: Examples of system call prototypes that exchange user space data.

4.2.4 Memory forwarding
As previously discussed, certain system calls expect to access user space
memory. Hence, a problem arises: which memory blocks must be forwarded
together with the system call? In our research, we have considered seven ap-
proaches, each has drawbacks but remains relevant for particular situations,
thus being complementary to each other. They can be grouped according
to whether the instrumentation happens at runtime or is built into a model
during an upstream analysis. Table 4.2 summarizes them.

Name Use case Limitation
Naive Keep region synchronized Migration time
Ideal Cat. B system calls Identify accesses
Dynamic memory tunneling ioctl() HeuristicAt runtime

Distributed shared memory mmap regions Trace accesses
Record Cat. B system calls Record execution
Selective symbolic execution Cat. B system calls Symbolize kernelModel-based
Static analysis Cat. B system calls Disassemble binary

Table 4.2: Summary of memory forwarding approaches.

At runtime

I. The naive approach is to synchronize the complete process memory at
the entry and exit of each system call. While this method does not require
any knowledge of the type of system call, it is very inefficient as it introduces
a significant delay. Indeed, the embedded system network throughput is

4.2. Challenges 53

often limited to transferring all the process memory. In general, a system
call does not interact with the whole process memory but only a region. It
is often the case when a file is mapped in memory via mmap().

II. In contrast, the ideal approachwould precisely identify and synchronize
the memory regions modified by each system call. This is possible for many
system calls because the size of the structure is known or the size of the
buffer is located in another argument. However, the size of objects referred
to by a parameter will not be known for custom system calls and ioctl()

calls to custom character devices.

III. To handle the limitations of the idealmethodwith ioctl, PROSPECT [97]
proposed a novel mechanism called Dynamic Memory Tunneling. The idea
consists of “always transferring a memory buffer to the target system if the
IOCTL parameter is a possible pointer to a memory location”. To identify if
the argument is a pointer, the technique checks if the value corresponds to a
valid address in the process address space and if the corresponding memory
region has read and write permissions. The pages containing the address,
as well as the surrounding ones, are synchronized. Upon the system call’s
return, the memory is compared to detect modifications, i.e., writes from the
kernel. The number of bytes that were changed is used to decide if the pages
need to be forwarded back. Heuristics are employed to identify the number
of pages that need to be forwarded. The authors have determined empiri-
cally that three pages are usually sufficient in most cases, as structures are
often located at the border of a page.

IV. An alternative method consists of implementing a form of distributed
shared memory. To accomplish this, a mechanism to intercept the memory
writes and reads is needed. On Linux systems, it is possible to take advantage
of the kernel page fault handling mechanism. This is what the libsigsegv

library [7] and the userfaultfd() system call allows doing. However, page
faults are not free: raising and catching them introduces overhead in the
instrumentation execution.

Model-based

V. The proposed method is carried out in two phases. Firstly, the process
is traced under normal use during which system calls and user memory ac-
cesses are recorded. From these recordings, the data structure outlines are
identified and associated with the system call arguments. Secondly, during
emulation, the inferred rules are used to decide which blocks of memory
need to be forwarded with the system call.

54 54

However, it should be noted that tracing system calls and recording their
memory accesses on the original environment can be difficult. Additionally,
the traces may not cover all the program execution paths of interest during
emulation.

VI. Alternatively, selective symbolic execution [46]may be used to identify
the memory regions touched by a given system call. However, it requires
the ability to symbolically execute the relevant kernel codes. For example,
Mousse [105] shows promising results to apply selective symbolic execution
on OS services and kernel routines.

VII. As before, a model is built to determine which memory blocks should
be forwarded during the system call. However, this method uses static ana-
lysis. The approach involves identifying the parts in the system call code
that interact with user space memory and the associated data structures. As
seen in table 4.1, a user space memory access API is often used. Rules can
then be inferred from this information and used at runtime to synchronize
the memory before and after the forwarding.

A similar approach has been demonstrated through DIFUZE [51]. Using
source code, DIFUZE focuses on ioctl system calls to recover the device
driver interface. In particular, it reconstructs the driver filename, the ioctl

commands and the associated data structure exchanged with user space.
It should be possible to generalize this approach to binarieswithout source

code access. In particular for Loadable Kernel Modules because they need to
export their symbols to be properly linked with the kernel.

4.2.5 Process resources consistency and synchronization

It is essential to maintain a minimum level of synchronization between the
emulator and the physical device while the program is executing in a dis-
tributed fashion. This is necessary to ensure that the program runs normally.
This section discusses strategies to manage the process resources consis-
tently. It is not a straightforward task because, as previously discussed in
section 4.2.1, the resources are partially managed by the kernel. Although
it is possible to instrument the kernel on the host [94, 104], we aim at not
modifying the kernel running on the physical device. Moreover, this latter
may not always be feasible in certain cases. Therefore, additional care must
be taken in some cases when managing resources from user mode to ensure
consistency in the program execution.

4.2. Challenges 55

Process creation and identifiers

On the creation of a new process or thread using the fork() or clone() sys-
tem call, the operation must be forwarded to the physical device. In addition,
all identifiers reflecting the process hierarchy must be kept synchronized.
This requires special attention as the choice of identifiers, in particular the
PID, is rarely decided by the user process but imposed by the kernel. To
address this, we chose to copy the identifiers chosen by the kernel on the
remote device and rearrange them in the emulator. This approach is easier
to implement as it provides more control over the emulator state.

On Linux, there are several methods available for setting the PID of a
child process. One method is to repeatedly use the fork() system call until
the desired PID is obtained. Another method, initially used by CRIU, utilizes
the /proc/sys/kernel/ns_last_pid file to assign PIDs. It has the advantage
of not requiring root privileges. From the kernel version 5.5, the set_tid

array in the clone3() system call offers the ability to choose the PID of the
child process. Moreover, these methods can be used within a PID namespace
to prevent interferences from other processes on the host system.

File descriptors

When a file or device is opened, the created file descriptor is only valid within
the kernel where it was generated. As a result, any actions taken on the file
descriptor, such as reading, writing or other system calls (e.g., mmap, lseek,
ioctl, close), must be performed on the same kernel. The filtering system
allows us to modify these rules at runtime.

To reduce the number of context switches introduced by I/O operations,
such as read() and write() system calls, a file can be mapped in the process
memory via mmap(). Doing so allows the process to directly access the file
content without asking the kernel. It is done transparently by the kernel.
Similarly, splice() and vmsplice() system calls remap memory pages inter-
nally without a round trip to user space. They are used to transfer data to
a pipe. Both present different challenges for memory synchronization be-
tween the process memory living in the emulator and the kernel managing
the read and write accesses on the remote device.

For example, a file opened on the remote device is then mapped in the
process memory. Besides allocating the same memory region locally in the
emulator, the accesses must be forwarded otherwise the program will exe-
cute with wrong values. This is similar to a splice() call between a file and
a pipe not living in the same kernel.

56 56

Inter-Process Communication

IPCs are managed by the kernel. Most of them use the system call inter-
face: files, pipes, message queues, sockets and sending signals. Therefore,
for most of them, no further special care needs to be taken. Because it is the
kernel that handles the signal propagation and reception, they need to be
intercepted on the device, returned, and injected into the emulator. Shared
memory with other processes can be handled by intercepting the accesses
and synchronizing them using a distributed shared memory mechanism be-
tween the emulator and the device. Environment variables are stored within
the memory of the process. They can be synchronized at the initialization.
Any environment variable change should be intercepted in the same way as
any other memory region.

Remote events

So far, we have mainly discussed actions initiated by the user mode applica-
tion. However, the kernel may also initiate operations on the process such
as memory accesses or sending signals. In such cases, these actions are ini-
tiated by the remote kernel located on the device and need to be forwarded
to the emulator.

As previously explained in the background in 2.2.6, asynchronous inter-
faces consist of two types of operations: a submission issued by the process
and an event confirming the operation’s status issued by the kernel to the
process. The older asynchronous I/O interface handles both operations via
system calls initiated by the process and can therefore be handled in a sim-
ilar way to other system calls. Instead, the more recent io_uring interface
uses two ring buffers shared between kernel and user space. They present
a challenge because the kernel may read and write or modify pointers re-
lated to the ring buffers whenever it wants. Similarly, when a file located on
the remote device is mapped in the process address space, accesses to this
memory region have to be intercepted for proper synchronization.

Direct Memory Access (DMA) /citemera2021dice allows hardware de-
vices to transfer data directly to and from the memory without involving
the CPU. However, it may be difficult to intercept these accesses from user
space because it is a more privileged operation.

In addition, kernel modules may also implement new mechanisms to ac-
cess user space memory. In this case, it is highly dependent of what the
developer intend to do and may even not follow the kernel guidance.

Finally, special architecture modes may also access the user space mem-
ory. This is typically the case for the System Management Mode (SMM) on
Intel, ARM TrustZone or MIPS VZ (Virtualization Extensions). Althought

4.3. System call forwarding 57

embedded systems are the main scope of this tool, these hardware exten-
sions may not be present.

To monitor accesses to theses regions and propagate the event back to
the tracer, one approach is to use a shared memory. However, it is necessary
to identify in advance the correct memory regions. In practice, the kernel on
the device may not support the correct capabilities to implement this shared
memory, i.e., userfaultfd interface for intercepting the memory accesses.
Furthermore, more privileged accesses may not be possible to intercept from
the user space at all. In such cases, it may be necessary to use a shadow
memory for these regions and a polling mechanism to monitor changes in
their content, to later replicate them in the emulator.

4.3 System call forwarding

4.3.1 State machines

We propose a new approach able to trace and forward system calls from a
running program. As we have seen in 3.3, each use case has different moti-
vations for intercepting system calls at different abstraction layers. To avoid
reinventing the wheel, we have decided to dissociate the interception mecha-
nisms from the tracing instrumentation and focus on the latter. In Chapter 5,
we describe how we have integrated our tracer in QEMU user mode emu-
lation. Another characteristic that influenced our design choices is that the
analysis has to be carried out by different components communicating: the
emulator and the physical devices. To address this, we have created a dis-
tributed system composed of three main components: a tracer, an executor
and an orchestrator. The approach is generic enough for POSIX systems, but
we have focused on Linux in particular. Figure 4.4 describes our approach.

First, the tracer takes over at the next entry to or exit from a system
call. On system call entry, the context is transferred to the orchestrator
which filters according to rules set by the analyst. The decision made is
sent back to the tracer which executes it. On system call exit, the saved de-
cision is checked again before being carried out. The orchestrator operates
over three different events: SEND_SYSCALL_ENTRY, SEND_SYSCALL_EXIT
and RETURN_SYSCALL_EXIT. The first two are linked to the tracer while the
last one is related to the executor. The orchestrator is responsible for instru-
menting system calls and establishing connections between the tracer and
the executor. Finally, the executor works in a loop, waiting for new system
calls to execute and replying with their return values. The state machines
for the three components are illustrated with Figures 4.5, 4.6 and 4.7.

A distributed system implies a mean for elements to communicate. For

58 58

this purpose, we have designed a packet-based protocol with a fixed-length
header and a variable-length payload. More details on its implementation
are described in Section 5.2.4.

Idle ForwardEntry

ReplaceSyscall Terminate

Process

CheckDecision

NotifyExit

ForwardExit

Syscall Entry

Decision
Kill

Decision
NoLocalExecution

Decision

ForwardExit

Decision

Notify

Wait
Decision

Orchestrator

Syscall Exit

Figure 4.5: The tracer state machine.

Idle

Terminate

Process

MakeDecision

ForwardEntry

ReturnExit

CheckDecision

LogSyscall

InstrumentExit

Message
ReturnSyscallExit

Message
SendSyscallEntry

Message
SendSyscallExit

Decision

Kill

Decision

ForwardEntry

Figure 4.6: The orchestrator state machine.

4.3. System call forwarding 59

Forward
Syscall Entry

message

Idle

InvokeSyscall
ReturnSyscall

Exit

Syscall Exit

Figure 4.7: The executor state machine.

4.3.2 Filter & Rules

Because it is not efficient or desirable to forward all system calls to the re-
mote kernel, we have implemented a new filtering mechanism. The filtering
system allows for defining rules for system call interception in a relatively
simple grammar, fully depicted in Listing 4.5.

Each filter consists of a set of rules and aims to return a decision based
on the first matched rule. If no rule is matched, a default decision, which is
often to execute the system call normally, is returned. A rule must at least
define the system call to which it is applied and a decision. Optionally, a rule
can be refined by adding a set of conditions that must be met by the system
call’s arguments before returning a match. For example on the MIPS archi-
tecture, the following rule forwards the openat system call when it opens
any file with the name filename with read and write permissions:
4288: *a2=="filename" and a4==2 -> FWD_ENTRY|FWD_EXIT|NO_EXEC;

In addition, multiple conditions for a single rule can be concatenated with
the "AND" keyword, leading to a logical conjunction of the individual con-
ditions. While a single rule is not able to match multiple mutually exclusive
statements, multiple rules for the same system call can be registered with
different conditions to achieve the same goal. Effectively, this allows the
creation of logical disjunct statements by combining multiple rules, while
keeping the grammar and its parser simple.

60 60

1 digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;
2 digits = digit , {digit}
3 argument = "a1" | "a2" | "a3" | "a4" | "a5" | "a6";
4 parameter = ["*"], argument
5 operator = "==" | "!=" | ">" | "<" | ">=" | "<=";
6 sys_no = digits
7 decision = "CONTINUE" | "FWD_ENTRY" | "FWD_EXIT" | "NOTIFY_EXIT" |

"NO_EXEC" | "KILL" ;
8 decisions = decision , { "|" , decision };
9 condition = parameter , operator , (digits | parameter);
10 conditions = "" | condition , { " and " , condition };
11 rule = sys_no , ": " , conditions , " -> " decisions , ";" ;
12 filter = {rule};

Listing 4.5: Filter grammar in eBNF.

4.3.3 Decisions
Once a rule of a filter is successfully matched, the corresponding decision has
to be carried out. Six different decisions can be made, or a combination of
them. We carefully selected these decisions to ensure it is expressive enough
to cover all use cases. In detail, the decisions are:

1. CONTINUE: This is the default decision, it executes the system call with-
out any further interception.

2. FWD_ENTRY: Execution will be transferred to a callback on system call
entry and allows the modification of system call arguments. This can
be used for system call instrumentation and forwarding.

3. FWD_EXIT: Similar to F_ENTRY, except that the callback is executed on
system call exit and allows for modification of its return value.

4. NOTIFY_EXIT: Notify on system call exit of its return value without any
callback.

5. NO_EXEC: Suppresses the execution of the system call, which results in
an undefined return value being passed to the user space. This deci-
sion is typically selected in combination with F_EXIT to explicitly set a
return value, for instance, to implement system call forwarding.

6. KILL: Terminate the process issuing the system call.

4.3.4 Execution order
When a program issues a system call, it may be executed on one side, the
other side or both sides. It is crucial to consider the order of execution when
executing the system call on both sides to keep both processes synchronized.

4.3. System call forwarding 61

It is also necessary to determine whether the system call behavior needs to
be replicated on the other side or if it can be executed independently.

To illustrate this concept, consider the example of allocating a memory
region through the mmap() system call with the address argument set to NULL.
On success, the kernel returns the starting address of the allocated pages. For
instance, when tracing the ls program, the following system call is invoked:
mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,

0) = 0x77a78000.
It informs the program that the kernel has allocated two pages of memory
with read andwrite permissions located at the address 0x77a78000. The ques-
tion that arises is which kernel should decide the location of the newmemory
block. There may exist some dissimilarities between the kernel versions and
configurations resulting in a different allocation algorithm. The Linux kernel
implements different allocators such as SLOB, SLAB and SLUB. Additionally,
other running programs may also influence the allocation via the allocator
caches. Moreover, it is easier to instrument the kernel running on the host
with the emulator than the device kernel. For these reasons, we chose to first
invoke an anonymous mmap() on the device kernel, so that a second mmap()

call is issued in the emulator with the address argument sets to the former’s
return value.

Other system calls do not always need to implement this ordering mech-
anism resulting from the instrumentation. Typically, system calls from cate-
gory C (i.e., simple routine) can be replaced on the local kernel by a dummy
call without having any impact on the execution flow. Both system calls can
be performed in parallel with a synchronized mechanism on their termina-
tion to substitute the return value.

62 62

Chapter 5

Improving Linux-based
firmware emulation with
process snapshot and syscall
forwarding

In this Chapter, we first describe our implementation of Chestburster before
looking at its performances.

5.1 Design concept
Our approach is based on binary analysis rather than source code instrumen-
tation. We have chosen this approach for several practical reasons related to
the context of conducting security testing on embedded systems.

First, access to the source code is not always possible. Vendors often pre-
fer to protect their software components behind proprietary licenses. Com-
mon examples in Linux-based systems include user-mode applications, bi-
nary kernel modules (e.g., GPU drivers) [110] and peripheral’s firmware (e.g.,
WiFi or Bluetooth peripherals). Obtaining source code for firmware parts
covered by free software licenses (e.g., under GPL) is not always straight-
forward. Although vendors are legally obliged to comply with source code
redistribution when inquired, the process can be cumbersome in practice.

Second, recreating the toolchain and the building process for the target
device can be challenging as it depends on many factors, such as the com-
piler, the kernel configuration, the kernel headers, and the patches.

Finally, hardware protections may prevent flashing the newly compiled
firmware image on the device. For instance, the boot process may check the
image’s integrity before loading the firmware.

63

64 64

Our goal is to maintain the relevance and generality of our approach. To
achieve this, we have chosen to implement our instrumentation at the POSIX
interface without modifying the system itself. By leveraging the stable and
public POSIXAPI, we believewewill be able to extend our analysis to Type-II
firmware such as QNX-based firmware.

Given these considerations, practical analysis for real-world firmware
often relies on binary firmware.

5.1.1 Process migration
Starting a dynamically linked program is made of two main steps. First, the
kernel allocates the system resources and loads the program segments with
its interpreter in memory. For an ELF file, this is the ELF interpreter. Next,
the control flow is transferred to the entry point of the interpreter in user
mode. The interpreter then loads the required shared libraries in memory,
relocates objects and resolves the required symbols. All these steps are com-
plex and lead to significant changes to the process memory layout, using
system calls. Forwarding all these system calls to keep the emulated process
synchronized with the one on the device would incur a significant execution
overhead. Furthermore, the runtime loader of the emulator is significantly
different the one from the kernel used on the device. As previously demon-
strated [158] [31] [176] [130], such a discrepancy can lead to significant vari-
ations in the interpretation and significantly different memory layouts or
symbol resolutions. This could for example lead to missing bugs both in the
kernel runtime loader and the program.

Taking a snapshot of the process state, and allowing it to be transferred
from the device to the emulator, helps to avoid those issues. However, snap-
shotting leads to another challenge: the restoration of the process, and in
particular to identify which type of information needs to be captured and
the how to save it.

We next explore possible techniques and tools for userland capturing the
state and resources of a process running on a Linux-based system. In partic-
ular, we will discuss CRIU, Core dumps and GDBServer.

CRIU The Checkpoint/Restore In Userspace project implements the pro-
cess migration [48] functionality for Linux. It stops a process and all its chil-
dren, capture their states to disk, and later, or in a different place, restores
and restarts them. CRIU captures a lot of different system resources of a pro-
cess: identifiers, sockets, files, pending signals, mount points, namespaces,
cgroups, etc.

CRIU was initially created for snapshotting running containers. Unfor-
tunately, its application to Linux-based embedded systems is problematic.

5.1. Design concept 65

CRIU requires specific kernel features [49] such as CONFIG_CHECKPOINT_RESTORE,
CONFIG_NAMESPACES and CONFIG_UNIX_DIAG to be configured at compile time.
However, kernels found in embedded systems are often stripped of unneces-
sary options to conserve storage and memory usage minimal, making CRIU
unable to run. Furthermore, CRIU does not provide the option to select
which resources to capture, it either captures all resources or aborts. There-
fore, without implementing this selection feature in the project, using CRIU
on embedded systems can be difficult. For instance, we found that the names-
paces and socket monitoring interfaces are rarely enabled. Both are essential
options needed by CRIU during a checkpoint.

Core Dump A core dump is a file that captures the memory content and
CPU context of a process at a specific time. Usually, it happens when the
process receives a certain type of signal such as SIGSEGV, SIGQUIT, although
the exact behavior depends on the kernel configuration. Core dumps are
mainly used for debugging purposes in the context of post-crash analysis.
However, it should be noted that core dumps may provide incomplete in-
formation. Other resources such as file descriptors, identifiers, and mount
points are not included. Moreover, the file /proc/[PID]/coredump_filter

controls which memory segments are written to the core dump.
The Extended Core File Snapshot (ECFS) project [69] enhances the core

file format with additional features to examine processes in the context of
memory forensic analysis. After generating the core dump file, the process
procfs is inspected to extract complete information about it. A utility is
available to continue the process execution from its snapshot. However, the
support is mainly limited to the x86 architectures.

GDBserver A simpler alternative consists of using a debugger such as
gdbserver for remotely starting or attaching to a process. This approach
allows the inspection of various process resources, which can then be easily
copied into the emulator.

5.1.2 The Chestburster Architecture
We now present our solution Chestburster which aims at providing snapshot
and restore for Linux-based embedded devices.

The architecture of Chestburster is presented in figure 5.1. It consists of
three main components: the executor on the physical device, the tracer inside
an emulator, and the orchestrator managing both. This design centralizes the
main features in the orchestrator while targets implement basic operations.
As a result, this design provides the possibility to smoothly manage targets

66 66

and register callbacks for various instrumentation at different stages of the
analysis.

The executor uses a statically compiled gdbserver to create process snap-
shots and execute the system calls remotely. We have developed a new li-
brary sysforward to trace system calls and communicate with the orchestra-
tor in different execution environments. We have integrated this library into
the QEMU user-mode emulator and extended it to load process snapshots.
The avatar2 framework [123] manages both the emulator and the physical
device. Because avatar2 mainly focused on monolithic firmware (Type-III),
we have extended it to include support for processes, system call filtering
and forwarding between targets as described in Secion 4.3.

Executor

DeviceTargetEmulatorTarget

Tracer

QEMU
User-mode

Namespaces

Filter

Avatar2

Physical device

Process

Process

Figure 5.1: Chestburster architecture.

5.1.3 Analysis workflow

The analysis is done in two phases. First, the program is loaded on the physi-
cal device and the process context and memory are captured and transferred
to the emulator. Then, the execution resumes and system calls are filtered to
either be performed locally or forwarded to the device.

5.1. Design concept 67

Process migration

The program is first loaded on the device and then migrated to the emulator
for several reasons. The use of the kernel runtime loader on the embedded
system allows the memory layout to be as close as possible to its original
environment. Moreover, as explained in Section 5.1.1, loading various li-
braries forces extensive instrumentation of symbol resolutions and memory
mapping operations. Additionally, the emulator provides better control over
the process and its environment, making the restoration of the process more
straightforward. Nonetheless, Chestburster is flexible enough to support the
opposite scenario to start the process in the emulator and migrate a copy to
the device.

The gdbserver approach was selected due to its simplicity and versatility.
It is the approach that requires the least amount of additional instrumenta-
tion in comparison to other alternatives which comes with significant chal-
lenges. CRIU needs special kernel configurations to be enabled and does not
allow for partial process snapshots. ECFS is limited to x86 architectures. The
core dump approach requires implementing a suitable loader for the QEMU
emulator.

The choice to stop the execution of the process after its initialization by
the loader, but prior to starting (i.e., the beginning of main() function), sim-
plifies the migration process by only requiring the capture of the memory
mapping and CPU context. This approach eliminates the difficulties associ-
ated with the forwarding of dynamic library loading and the migration of
complex resources, such as network connections, file locks, and devices.

In summary, Chestburster starts a gdbserver and the program to analyze
on the physical device. A breakpoint is set after the loading but early in the
life of the process. For example, a breakpoint near the main function is prefer-
able. From there, the process state is captured via the /proc/[PID]/maps and
/proc/[PID]/stat files and its memory content is dumped into an ELF file.
This file is then transferred to the host in namespaces that replicate the de-
vice environment. The QEMU runtime loader restores the process memory
layout and its gdbstub is used to copy the saved CPU context. The process
execution can now be resumed.

System call forwarding

All system calls are intercepted on their entry. This interception happens in-
side QEMU, before QEMU’s system call instrumentation. The system call
number and its arguments are passed as raw values to the tracer in the
sysforward library, which then sends them to Chestburster. It handles syscall
parameter decoding by assigning a type to each argument and dereferencing
the potential pointers. This facilitates the application of user-defined filters

68 68

to the system call. The filter outputs a decision on the action to carry out.
The decision could be executing the system call locally on the host, remotely
on the device, intercepting the system call exit or terminating the process.
The choice of action is left to the discretion of the user. Figure 5.2 illustrates
on a sequence diagram the flow of events for a typical forwarding decision.

For example, a typical forwarding strategy can be implemented with
the following decision NO_EXEC|FWD_ENTRY|FWD_EXIT. The NO_EXEC decision
means the system call should not be executed by the emulator. This is achieved
by replacing it with a dummy call such as sys_ni_syscall() to keep the op-
portunity to intercept its exits without causing any side effects on the kernel.
The FWD_ENTRY decision copies the arguments to the remote process on the
device, executes the system call there, saves the return value and system
error number and then returns to Chestburster. Finally, FWD_EXIT decision
ensures that both local and remote system calls are synchronized on exit.

5.2 Implementation

To demonstrate our system call forwarding approach, we have implemented
a prototype Chestburster targeting Linux-based systems on the MIPS 32 bits
big-endian architecture. This platformwas selected because of its widespread
use in Linux embedded systems [44], including our case study, the Philips
Hue Bridge. The implementation is generic enough for allowing future ex-
tensions to other architectures and POSIX systems in the future.

5.2.1 Enhancing avatar2 for Linux processes

Chestburster is based on the avatar2 framework [123]. It acts as the central
component of our system and is written in Python for rapid prototyping.
Chestburster can generate and migrate process snapshots, as well as trace,
filter and forward system calls between various analysis tools. To achieve
this, we have extended the avatar2 messaging system to handle new events
related to system calls such as SyscallEntry, SyscallExit, SyscallReturnExit,
SyscallForwardEntry and NewProcess. Additionally, we have implemented
new abstractions to better represent the process and its memory space, as
well as to facilitate the instrumentation of system calls. These instrumen-
tations include argument decoding, filtering and synchronization mecha-
nisms for system calls which modify the process layout (category A from
Section 4.2.3). Filters are implemented as dictionaries with the key corre-
sponding to the system call number and the value storing the rules applied
on this system call.

5.2. Implementation 69

Tracer

Hook Syscall Entry

Return to QEMU

Chestburster

SyscallForwardEntryMessage

SyscallEntryMessage

SyscallExitMessage

SEND_SYSCALL_ENTRY

Executor

FORWARD_SYSCALL_ENTRY

RETURN_DECISION

NOTIFY_SYSCALL_EXIT

Hook Syscall Exit

SyscallReturnExitMessage

RETURN_SYSCALL_EXIT

RETURN_SYSCALL_EXIT
Return to QEMU

RETURN_DECISION: Protocol Message
SyscallEntryMessage: Avatar Message

Figure 5.2: Sequence diagram illustrating the forwarded of a system call
during parallel execution.

70 70

5.2.2 Process migration

We rely on the gdbserver approach to migrate the process running on the
physical device to the emulator on the host. We set a breakpoint at the main()
function to allow the program to load properly on the device. Once the break-
point is reached, the memory mapping and the state of the process are col-
lected through examination of the /proc/[PID]/maps and /proc/[PID]/stats

files. The memory regions are then stored in an ELF file using segments. As
a result, it can be loaded in the QEMU emulator like any program. Finally,
the CPU context is transferred using GDB to resume the execution in the
emulator.

5.2.3 The QEMU user-mode based tracer

We have implemented the tracer component of the state machine presented
in Chapter 4 Figure 4.5 as a C library named sysforward. We have made this
decision to be able to dissociate the interception mechanisms from the tracing
instrumentation. It allows it to be integrated with multiple analysis tools. As
a result, the library can be used in various contexts such as a standalone
tracer based on ptrace, or enhance an emulator like QEMU user-mode.

The libsysforward consists of a tracing thread for each thread being
traced, and a listening thread responsible for communicating with the or-
chestrator. This design enables multiplexing tracing communications over
a single communication link. Furthermore, it implements the forwarding
protocol as described in 5.2.4.

In particular, we havemodified the QEMUuser-mode emulator to include
the sysforward library. We chose this emulator because we are interested in
the execution of the user process part and not the whole operating system.
The kernel part of the execution is performed on the physical device. In
addition, the execution overhead is reduced because no hardware needs to
be emulated. It also removes the burden to rehost all the OS services and their
hardware dependencies, similar to what Firmadyne [44] tries to achieve.

The process is resumed in namespaces to separate the analysis environ-
ment from the rest of the host. The systemd-nspawn command allows starting
a command in a lightweight container. It combines the classic Mount names-
pace from chrootwith others such as PID, User, Cgroup, IPC, Time, UTS and
Network.

The process PID is restored through the combination of the PID names-
pace with the set_tid parameter of the clone() system call.

5.2. Implementation 71

5.2.4 Protocol
The communication protocol corresponds to the implementation of the state
machines from figures 4.5, 4.6, 4.7. Each packet consists of a header with
a fixed size and a payload of variable length. For our prototype, we have
implemented the protocol on top of TCP, but it could be modified to work
on top of any other communication protocol such as UDP.

The header is composed of three main fields:

1. The command.
2. The PID to multiplex multiples process tracings over a single connec-

tion.
3. The length of the payload associated with the header.

The payload is dependent on the command. We define 16 main com-
mands:

• Error to indicate a failure.
• NotifyNewProcess to notify the orchestrator a new process is traced.
• SendSyscallEntry to send the system call number and its arguments.
• NotifySyscallExit to notify the results of a system call.
• ReturnSyscallExit to return to the tracer what should the system call
return value should be.

• ReturnDecision to return the tracer the decision made by the filer.
• NotifySignal is used to inject signals.
• ReadArgs, WriteArgNo and WriteArgs to operates on the system call ar-
guments.

• ReadRegs, WriteRegNo and WriteRegs to interact with CPU registers.
• ReadMemory, ReadString and WriteMemory to interact withmemory con-
tent.

5.2.5 Executor
In order to execute the system calls on the device, we take advantage of the
process attached to the gdbserver from the process migration. GDB is used
to execute each system call in the following manner: the memory and the
CPU context are copied, the system call is executed, its result is saved and
the context is restored.

The clone system call has several options for creating new processes.
Currently, Chestburster only supports creating new threads, using the CLONE_THREAD

72 72

flag. This is because the libsysforward has been designed to handle multi-
ple threads only, because of its communication link with the orchestrator.
In addition, GDB does not permit debugging multiple processes simultane-
ously, it only supports multithreading debugging. However, it is still possible
to catch new process creation for fork and clone and initiate them under a
new debugger and emulator instances. Moreover, execve requires starting
a new process migration from the device to avoid the complicated task of
process loading.

The brk system call either allocates or deallocates memory by adjusting
the program break which represents the data segment size of the process.
Chestburster first executes the system call on the device and retrieves its
return value. It then compares it with the program break present in the em-
ulator to determine if brk should be emulated with a mmap or munmmap system
call in the emulator.

5.2.6 Limitations
At the time of writing, the Chestburster prototype has the following limita-
tions:

• As explained above, it does not support directly the creation of new
processes. However, this can be addressed with additional instrumen-
tations.

• Signals are not yet supported, but they do not pose a significant chal-
lenge. They can be caught and injected by the debuggers.

• Shared memories and memory-mapped files accesses are not inter-
cepted on the device. Therefore, events initiated on the device are not
correctly forwarded to the emulator. This can be improved in the fu-
ture using distributed shared memory.

5.3. Evaluation 73

5.3 Evaluation
In order to evaluate Chestburster, we performed two sets of experiments:

1. We look at the correctness of our approach, and in particular if our
instrumentation influences the execution flow.

2. We analyze the system performance regarding execution time over-
head over synthetic benchmarks.

The experiments are run on a laptop with an Intel i7-8650U CPU (8 cores)
with a clock of 4.2GHz and 32GB of RAM. The embedded system used in
our experiments runs the HUE Bridge 2.X firmware version 1935074050 with
OpenWRT on a Linux kernel 4.4.60 compiled with GCC 4.8.3. The hardware
is composed of the QCA4531 System-on-Chip with a MIPS 24Kc CPU at 650
MHz and 64 MB of RAM. We initially started with the Lima 1 development
board, but for the evaluation we switched to the Philips Hue Bridge board
where we reconstructed a compatible toolchain.

5.3.1 Execution correctness
Our evaluation starts by comparing the system call traces of the forwarded
execution with the native execution on the physical device. Although it does
not guarantee that the programunder test follows exactly the same execution
path as it does on the device, it does confirm the program similarly interacts
with the environment through its boundaries, e.g., the system call interface.
Moreover, the choice to compare execution tracewith system call granularity
is justified by the location of our instrumentation.

To trace the program’s system calls on the device, we have used a stati-
cally compiled strace.

Paxtest suite

The paxtest suite [140] was designed to simulate exploits and test kernel se-
curity features work as intended. PaX is a security patch for the Linux kernel
which implements mechanisms to prevent arbitrary read/write access from
an exploit. The test suite is composed of two sets of tests. The first set of
programs attempts various approaches to writing and running exploit code.
The second set measures the system’s randomization. We are interested in
the first set because the programs test different memory layouts and per-
missions using corner cases. Listing 5.1 illustrates one such program: the
execstack. Running them by forwarding the system calls to the device’s
kernel assures us these corner cases are correctly handled.

1https://www.8devices.com/products/lima

https://www.8devices.com/products/lima

74 74

1 /* execstack.c - Tests whether code on the stack can be
executed

2 *
3 * Copyright (c)2003 by Peter Busser <peter@adamantix.org >
4 * This file has been released under the GNU Public

Licence version 2 or later
5 */
6
7 #include <stdio.h>
8 #include <string.h>
9 #include <stdlib.h>
10 #include "body.h"
11 #include "shellcode.h"
12
13 const char testname [] = "Executable data

";
14
15 char buf[MAX_SHELLCODE_LEN] = { 'A' };
16
17 void doit(void)
18 {
19 fptr func;
20
21 copy_shellcode(buf);
22
23 /* Convert the pointer to a function pointer */
24 func = (fptr)&buf;
25
26 /* Call the code in the buffer */
27 func();
28
29 /* It worked when the function returns */
30 itworked ();
31 }

Listing 5.1: execstack.c source code.

The programs represent combinations of scenarios running in various
memory areas. The memory areas are anonymous mapping, data, heap and
stack. The first scenario imitates a buffer exploit: write data to the memory
area and try to execute it. The second scenario tries to disable the mem-
ory protection using mprotect() before imitating a buffer exploit. The third
scenario tries to overwrite code in the text segments. The fourth scenario
simulates return-to-function attacks using (1) strcpy and (2) memcpy. Both
attacks are performed with RANDEXEC enabled and disabled. The fifth sce-
nario checks shared library BSS (Block Started by Symbol) and data areas
with and without similarly disabling memory protection as before.

We successfully ran the first four scenarios in a way similar to how they

5.3. Evaluation 75

Number of Number of
Identical / Different Identical / Different TestScenario File name

System Calls Memory Mapping Output Result

anonmap.c 2 / 0 26 / 0 Killed ✓

execbss.c 1 / 0 26 / 0 Killed ✓

execdata.c 1 / 0 26 / 0 Killed ✓

execheap.c 3 / 0 26 / 0 Killed ✓

1st

execstack.c 1 / 0 26 / 0 Killed ✓

mprotanon.c 5 / 0 26 / 0 Vulnerable ✓

mprotbss.c 5 / 0 26 / 0 Vulnerable ✓

mprotdata.c 5 / 0 26 / 0 Vulnerable ✓

mprotheap.c 7 / 0 26 / 0 Vulnerable ✓

2nd

mprotstack.c 4 / 0 26 / 0 Vulnerable ✓

3rd writetext.c 5 / 0 26 / 0 Vulnerable ✓

rettofunc1.c 3 / 0 26 / 0 NULL ✓

rettofunc2.c 2 / 0 26 / 0 NULL ✓

rettofunc1x.c 2 / 0 26 / 0 H ✓
4th

rettofunc2x.c 2 / 0 26 / 0 H ✓

mprotshbss.c 14 / 22 29 / 4 BUG ✘5th mprotshdata.c 14 / 22 29 / 4 BUG ✘

Table 5.1: The programs from the paxtest suite are used to verify the
execution correctness.

are executed on the device. However, the fifth scenario, which involved
the mapping of shared libraries, encountered a bug during the forwarding
that prevented their correct loading. Like with the initialization step, a way
around this problem is to migrate the process on the device for the loading.

Table 5.1 presents the number of system calls that are identical between
the execution on the device and in the emulator with forwarding. Further-
more, we manually inspected the memory mapping to ensure they were also
identical. The column test result displays the output of the tests, identical on
the device and during emulation. It confirms that the process migration was
executed correctly and that the various memory mapping operations were
carried out correctly.

Linux kernel selftests

The Linux selftests suite is composed of many tests that focus on specific
code paths in the kernel. The nolibc tests checks system calls issued by the
eponymous kernel libc. It focuses on implementing a minimal C library to
reduce the size of binaries used by the kernel such as mkinitramfs [171].

These tests were compiled using uClibc, which is part of the toolchain
compatible with our Linux firmware. Out of 66 nolibc tests covering 31 sys-
tem calls, 3 failed because of a return address corruption during the forward-
ing. Another test fails (waitpid_min) but not because of our instrumentation.
It fails in the sameway on the device, therefore we consider it as a correct be-

76 76

havior. The tested system calls includes getpid, getppid, getpgid, kill, sbrk,
brk, chdir, chmod, chown, chroot, close, dup, dup2, dup3, execve, gettimeofday,
ioctl, link, lseek, mkdir, open, poll, read, sched_yield, select, stat, symlink,
unlink, wait, waitpid, write. Table 5.2 displays the arguments used with the
system calls and their corresponding return values.

5.3.2 Execution overhead

We have so far evaluated the correct execution of Chestburster, however,
forwarding system calls to a different device have a significant performance
impact.

To evaluate the runtime overhead, we have used multiple scenarios to
determine its origins.

• ScenarioBaseline runs the programwith plain QEMU user-mode ver-
sion 7.2.0.

• Scenario Interception runs the programwith our fork of QEMUwhich
integrate libsysforward.

• Scenario Strace enables the option -strace in plainQEMUwhich prints
the system calls arguments and returns a value between the system call
transitions.

• Scenario Interception-Strace runs the binarywith the option -strace

with our QEMU fork.

• In scenario Tracing, the program is run with Chestburster where all
decisions are to trace and continue the execution in the emulator.

• Instead, scenario Forwarding forwards all system calls to the physical
device where they are executed.

Both scenarios Interception and Interception-Strace do not send informa-
tion to the orchestrator. Scenario Forwarding represents a worst-case sce-
nario where all system calls are forwarded. In its usage, the filtering mecha-
nism helps to decide if the system call should be executed locally or remotely.

All presented values have been normalized with respect to scenario Base-
line. Moreover, each scenario was conducted in a dedicated namespaces us-
ing systemd-nspawn. Finally, we disabled the CPU hyperthreading to mini-
mize variations in all measurements.

5.3. Evaluation 77

No System Call Output Result
0 getpid() 6990 ✓

1 getppid() 6374 ✓

5 getpgid(0) 6990 ✓

6 getpgid(-1) -1 ESRCH ✓

7 kill(getpid(), 0) 0 ✓

8 kill(getpid(), 0) 0 ✓

9 kill(INT_MAX, 0) -1 ESRCH ✓

10 brk(4096) 0 ✓

11 brk(sbrk(0)) 0 ✓

12 chdir("/") 0 ✓

13 chdir(".") 0 ✓

14 chdir("/blah") -1 ENOENT ✓

15 chmod("/proc/self/net", 0555) 0 ✓

16 chmod("/proc/self", 0555) -1 EPERM ✓

17 chown("/proc/self", 0, 0) -1 EPERM ✓

18 chroot("/") 0 ✓

19 chroot("/proc/self/blah") -1 ENOENT ✓

20 chroot("/proc/self/exe") -1 ENOTDIR ✓

21 close(-1) -1 EBADF ✓

22 close(dup(0)) 0 ✓

23 dup(0) 3 ✓

24 dup(-1) -1 EBADF ✓

25 dup2(0, 100) 100 ✓

26 dup2(-1, 100) -1 EBADF ✓

27 dup3(0, 100, 0) 100 ✓

28 dup3(-1, 100, 0) -1 EBADF ✓

29 execve("/", (char*[]) [0] = "/", [1] = NULL , NULL) -1 EACCES ✓

32 gettimeofday(NULL, NULL) 0 ✓

38 ioctl(0, TIOCINQ, &tmp) 0 ✓

39 ioctl(0, TIOCINQ, &tmp) 0 ✓

40 link("/", "/") -1 EEXIST ✓

41 link("/proc/self/blah", "/blah") -1 ENOENT ✓

42 link("/", "/blah") -1 EPERM ✓

43 link("/proc/self/net", "/blah") -1 EXDEV ✓

44 lseek(-1, 0, SEEK_SET) -1 EBADF ✓

45 lseek(0, 0, SEEK_SET) -1 ESPIPE ✓

46 mkdir("/", 0755) -1 EEXIST ✓

47 open("/dev/null", 0) 3 ✓

48 open("/proc/self/blah", 0) -1 ENOENT ✓

49 poll(NULL, 0, 0) 0 ✓

50 poll(&fds, 1, 0) BUG ✘

51 poll((void *)1, 1, 0) -1 EFAULT ✓

52 read(-1, &tmp, 1) -1 EBADF ✓

53 sched_yield() 0 ✓

54 select(0, NULL, NULL, NULL, &tv) BUG ✘

55 select(2, NULL, &fds, NULL, NULL) BUG ✘

56 select(1, (void *)1, NULL, NULL, 0) -1 EFAULT ✓

57 stat("/proc/self/blah", &stat_buf) -1 ENOENT ✓

58 stat(NULL, &stat_buf) -1 EFAULT ✓

59 symlink("/", "/") -1 EEXIST ✓

60 unlink("/") -1 EISDIR ✓

61 unlink("/proc/self/blah") -1 ENOENT ✓

62 wait(&tmp) -1 ECHILD ✓

63 waitpid(INT_MIN, &tmp, WNOHANG) -1 ECHILD != (-1 ESRCH) ✓

64 waitpid(getpid(), &tmp, WNOHANG) -1 ECHILD ✓

65 write(-1, &tmp, 1) -1 EBADF ✓

66 write(1, &tmp, 0) 0 ✓

Table 5.2: The programs from the paxtest suite are used to verify the
execution correctness.

78 78

getpid close(-1) creat open

100

101

102

103

104

105

106

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

Inter. Strace Inter.-Strace Tracing Forwarding

Figure 5.3: Impact of Chestburster on common system calls (a).

System call microbenchmarks

To measure the runtime overhead introduced by the different elements of
Chestburster, we ran microbenchmarks on various system calls. In particu-
lar, we measured the time from the perspective of the user mode process.

The methodology consists in executing each system call 1000 times in a
loop. The monotonic time is measured at the entrance and exit of the loop
using the clock_gettime() system call with the CLOCK_MONOTONIC clock. The
buffer for read and write was set to 256 bytes. The measured values are
then normalized by dividing them with the corresponding ones from sce-
nario Baseline, which involve the execution in plain emulation with QEMU.
Both getpid and close(-1) represent system calls that return rapidly in user
space. The system calls creat, open, write, read, lseek, close and unlink are
representatives of common I/O operations in Linux.

Figures 5.3 and 5.4 present the normalized runtime overhead while fig-
ure 5.5 highlights the composition of the overhead. We can see that the For-
warding scenario adds an extra order of magnitude compared to the Tracing
scenariowhich itself represents 3 orders ofmagnitude compared to the Strace
scenario. In contrast, the native QEMU system call logging adds an overhead
of a factor of 10.

5.3. Evaluation 79

write lseek read close unlink
100

101

102

103

104

105

106
Ru

nt
im

e
Ex

ec
ut

io
n

(n
or

m
al

ize
d,

 lo
g

sc
al

e)

Inter. Strace Inter.-Strace Tracing Forwarding

Figure 5.4: Impact of Chestburster on common system calls (b).

getpid
close(-1)

creat
open

write
lseek

read
close

unlink
101

102

103

104

105

106

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

8.4% 8.4%

8.3%

8.2% 8.2%

8.4%
7.5%

8.4%

8.2%

91.6% 91.6%

91.6%

91.8% 91.8%

91.6%
92.5%

91.6%

91.8%

Interception Strace Tracing Forwarding

Figure 5.5: Composition of overhead for common system calls.

80 80

Total ForwardedProgram System Call Number open close read write ioctl brk

cat 14 1 3 2 1 0 3
csplit 118 13 15 2 23 12 6
wc 20 1 3 2 9 0 2
sha512sum 87 1 3 2 73 1 4
dd 39 2 5 3 16 0 4

Table 5.3: Principal system calls issued by evaluated coreutils programs.

Coreutils

Coreutils programs are essential components in any embedded Linux-based
system. They form a central part of shell scripts that are used for initializing,
updating, and maintaining these systems, in particular for routers.

Using Chestburster, we managed to run 56 out of the 110 binaries from
GNU coreutils. The programs that run focus on operations on file content,
directory listing, file statistics, conditions, file name manipulation, user in-
formation, system and working contexts. The 56 programs are cat, tac, nl,
od, base32, base64, basenc, fmt, pr, fold, head, tail, split, csplit, wc, sum,
cksum, b2sum, md5sum, sha1sum, sha224sum, sha256sum, sha384sum, sha512sum,
sort, uniq, comm, ptx, tsort, cut, ls, dir, dircolors, dd, stat, sync, echo, true,
false, test, expr, basename, dirname, pathchk, realpath, stty, printenv, id,
logname, whoami, groups, who, date, hostid, nice and factor.

We conducted a performance evaluation on five coreutils programs: cat,
csplit, wc, sha512sum, and dd. To obtain accurate results, we calculated the
arithmetic mean of five runs, along with an additional warm-up execution.
Table 5.3 displays the total number of system calls and the most significant
ones related to the filesystem. Figures 5.6, 5.7, 5.8, 5.9 and 5.10 provide a
breakdown of the overhead composition when taking as input a file of 0, 128,
1024, 65k and 1M random bytes. We did not include the 1MB case for dd be-
cause the program execution ends normally before copying all the bytes. We
did not identified the root cause of the issue. No timeout is present and the
trace only contains a succession of read and write system calls. However, in
the experiment environment we observed the bs option has an influence on
the number of bytes copied before exiting. Switching from 512 to 1k makes
dd ends from 130kB to 930kB.

The figures show that the majority of the overhead is caused by the for-
warding which also adds an extra order of magnitude compared to the Trac-
ing scenario. Moreover, we do not observe any strong correlation between
the file size and the runtime execution. This may be explained by the fact,
some of the programs copied a buffer with a fixed length for transfering the
memory with the kernel.

5.3. Evaluation 81

0 128 1k 65k 1M
File size in bytes

100

101

102

103

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

1.9% 1.3% 1.3% 1.2% 1.0%

97.8%
98.5% 98.6% 98.6%

98.8%

Interception Strace Tracing Forwarding

Figure 5.6: Composition of overhead for cat.

0 128 1k 65k 1M
File size in bytes

100

101

102

103

104

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

0.2% 0.2% 0.2% 0.2%

3.3% 3.0% 2.5%
2.6%

2.5%

96.3% 96.7% 97.2%
97.2%

97.4%

Interception Strace Tracing Forwarding

Figure 5.7: Composition of overhead for csplit.

82 82

0 128 1k 65k 1M
File size in bytes

100

101

102

103

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

0.2% 0.2%

0.4%

0.2%

0.2%
0.3%

0.2%

2.9%
2.8%

3.0% 2.0%

0.3%

96.5%
96.8%

96.6% 97.6% 99.4%

Interception Strace Tracing Forwarding

Figure 5.8: Composition of overhead for wc.

0 128 1k 65k 1M
File size in bytes

100

101

102

103

Ru
nt

im
e

Ex
ec

ut
io

n
(n

or
m

al
ize

d,
 lo

g
sc

al
e)

0.2% 0.2% 0.2% 0.2%

3.5% 3.2% 3.4% 3.1%

1.0%

96.3% 96.6% 96.4% 96.6%
98.8%

Interception Strace Tracing Forwarding

Figure 5.9: Composition of overhead for sha512sum.

5.4. Conclusion 83

0 128 1k 65k
File size in bytes

101

102

103

104
Ru

nt
im

e
Ex

ec
ut

io
n

(n
or

m
al

ize
d,

 lo
g

sc
al

e)

0.4% 0.3% 0.3%

1.3% 1.0% 1.4%

2.1%

98.1% 98.5% 98.1%

97.9%

Interception Strace Tracing Forwarding

Figure 5.10: Composition of overhead for dd.

5.4 Conclusion
In conclusion, this Chapter provides insights into various methods for mi-
grating processes from a device to an emulator. We described the imple-
mentation of Chestburster for hybrid execution by filtering system calls and
forwarding memory to the device. Through its evaluation, we examined the
correctness of program execution and measured the performance impact of
decoding, filtering and forwarding system calls in various scenarios. Our
findings showed that memory forwarding plays a significant role in the over-
all overhead, particularly due to the larger file size handled by the programs.

We aim to further examine the execution correctness by utilizing the
Linux Test Project (LTP). It is a comprehensive testsuite to validate the func-
tionality of the Linux kernel and in particular the system call interface. By
using LTP, we hope to provide additional insights into the accuracy of our
forwarding implementation and the robustness of the process migration.

Embedded systems such as routers often include web servers for net-
work services and device management. These systems often use certifi-
cates and cryptographic keys stored in NVRAM and offer web access for
controlling other devices, such as cameras. Therefore, the performance of
Chestburster on these web servers is worth investigating. Another network

84 84

service that runs on an embedded system is the ipbridge application from
the Hue Bridge. This application connects physical devices, such as Zig-
bee lights, to the local network and cloud services. The security and pri-
vacy of these systems are crucial, and it has been shown that they are criti-
cal [25, 119, 152, 173]. The application communicates with a Zigbee modem
that is separate from the Linux system. This typical example illustrates the
difficulty to analyze such system only in an emulator, as this would lack the
context of the environment such as other devices present on the network. As
such, it would be useful to instrument its execution to assess privacy risks
and existing vulnerabilities.

The benefits of our approach could be further demonstrated with fuzzing
and symbolic execution. By leveraging these vulnerability research tech-
niques, it would be possible to expand the scope to applications requiring a
high level of integration with their environment. For instance, more pro-
grams now rely on trusted execution environments (TEE) to protect and
store secrets such as cryptographic keys and certificates which were pre-
viously stored in NVRAM.

Chapter 6

Bench of Embedded system
Experiment for Reproducible
Research

Experiments including physical devices present challenges in terms of acces-
sibility, sharing and reproducibility. In this chapter, wewill see the reasons to
promote the reproducibility of experiments, particularly when physical de-
vices are involved. Additionally, we propose an infrastructure architecture
to address these challenges in the context of firmware security analysis.

6.1 Motivations
A core aspect of the journey to expand knowledge is experimenting. Exper-
iments help to validate or refute hypotheses. One of the experiments’ most
important attributes is reproducibility. The modification of experiment pa-
rameters is crucial in observing the impact of results and improvements. In
this way, the experimenters better understand and study the phenomena at
play. This is part of the reason why Science is an iterative process. By shar-
ing reproducible experiments, other scientists can in turn add their expertise
to them and progress.

In particular, an emphasis has been recently put on making research
more reproducible in computer science, and in system security in particu-
lar [12,22,177,187]. For this purpose, conferences promote the publication of
the code and data used in the research together with the paper. Several con-
ferences now award badges to publications whose artifacts have successfully
been reproduced by an evaluation committee [21, 92, 131, 134, 178]. These
badges characterize the way the artifacts have been audited and how re-
producible they are. For instance, the ACM Artifact Review and Badging

85

86 86

version 2.0 [21] defines three independent types of badges: Artifacts Evalu-
ated, Artifacts Available and Results Validated. Each describes a qualitative
set of requirements applied to the artifacts associated with the research. In
addition, it also provides ACM’s three definitions to clear any confusion:

• Repeatability: the measurement can be obtained with stated precision
by the same team using the same measurement procedure, the same mea-
suring system, under the same operating conditions, in the same location
on multiple trials. For computational experiments, this means that a re-
searcher can reliably repeat her own computation.

• Reproducibility: the measurement can be obtained with stated preci-
sion by a different team using the samemeasurement procedure, the same
measuring system, under the same operating conditions, in the same or a
different location on multiple trials. For computational experiments, this
means that an independent group can obtain the same result using the
author’s own artifacts.

• Replicability: The measurement can be obtained with stated precision
by a different team, a different measuring system, in a different location
on multiple trials. For computational experiments, this means that an
independent group can obtain the same result using artifacts which they
develop completely independently.

According to the type of artifacts the experiment manipulates, different
challenges may arise at the time of publication. First, it is often the source
code that is the most easily published with the paper. This brings trans-
parency to experiments by providing the exact operations executed. How-
ever, source code alone isn’t sufficient to make an experiment reproducible.
Dependencies, compilers, and other toolchain elements have a significant
impact on the binary produced. The second difficulty with reproducibility
is if, and how, to share the data used during an experiment. Data copyright
may raise concerns while malware studies face ethical issues in openly shar-
ing datasets. User privacy also limits the scope of legitimate traffic, behavior
and traces that can be collected and published. More trivially, the size of the
dataset has a direct influence on its ease to be shared.

Third, the environment of the experiment has a great impact on its re-
sults. Thanks to virtualization technologies, sharing the exact environment
for software is often straightforward. In contrast, trade-offs have to be made
with hardware. For dynamic analysis, emulation is the primary solution to
abstract hardware requirements. But it is not always feasible, as shown by
Fasano et al. [71]: the task itself can be onerous, and there is a too broad
variety of devices to support. To circumvent these obstacles, a different ap-
proach is to record the execution into traces that can be replayed later and

6.2. Overview 87

somewhere else [64,174]. It is however impossible to explore new execution
paths with a replay. Both approaches suffer from limitations, highlighting
the importance of using physical devices in the analysis loop.

Fourth, the experiment setup has an essential influence on the measured
results. A wrong configuration can yield a different outcome from the origi-
nal study. It is a crucial aspect for a fair comparison between methodologies.

Experiments interactingwith hardware devices introduce four challenges:

1. The cost of the device: How expensive is it? Is the budget available for
purchasing it?

2. Availability: Is the device still produced and sold? Is the device avail-
able and legal to operate in the user’s region of the world?

3. Storage: Where to keep the device? How to make it accessible to use
it?

4. Safety: Can the device be dangerous when manipulated?

We want to address these last questions by proposing the Bench of Em-
bedded systems Experiments for Reproducible Research, BEERR. It is an infras-
tructure aiming to ease access to physical devices used in system security
publications by making them available remotely. In addition, we want to
congregate and propose a collection of experiment code and data that can be
easily used with these devices. We focus on dynamic firmware analysis with
a strong emphasis on studies looking at interactions with the hardware. We
believe BEERR can help future researchers by simplifying access to published
experiments, removing the burden of hardware management, promoting fair
comparison between studies and being a key to fostering new ideas. BEERR
web interface is accessible at: https://beerr.s3.eurecom.fr.

6.2 Overview

6.2.1 Computer Testbeds
To overcome the difficulties in reproducing, sharing and comparing experi-
ments, scientific communities are building testbeds. They take a wide vari-
ety of forms depending on their objectives and the problems to be studied.
They can be small robots placed in an arena to study swarm intelligence as
done in the Robotarium [142]; a grid of radio transceivers to analyze wire-
less interference and performance on different topology (R2Lab [137]); in-
spect IoT devices interactions within an environment (FIT IoT-LAB [24] and
CorteXLab [113]); or to study distributed systems networking and services

https://beerr.s3.eurecom.fr

88 88

such as Emulab [185], CloudLab [66], PlanetLab [141] and more recently
EdgeNet [163].

To simplify administrative work, andmanagement and to be accessible to
as many people as possible, front-end projects have been created to federate
multiple testbeds [3, 38] and offer a common interface. A recent example
of this case is the Fed4FIRE+ project which ran for 5 years. It gathered 20
different testbeds in Europe and led to many publications [3].

Continuous Integration (CI) helps developers automatically merge their
changes into the main development tree. However, before merging, the
changes need to be tested to minimize new bugs or regressions. Embedded
systems are known to be a very heterogeneous ecosystem. It is therefore
difficult to know upfront if a specific code change would work on all the
hardware the project wants to support. An example of such a case is the
Linaro Automated Validation Architecture (LAVA) [103], which aims to test
deployments on Linux-based systems for the ARM architecture.

In the context of system security, building a testbed is an effective ap-
proach to studying a system [75, 133, 162, 189]. A diverse range of appli-
cations are reasonable: benchmarking [116], training [23, 114], or investi-
gating multi-stage attacks on distributed systems. In other words, in all
situations where the reproduction of the environment is crucial to under-
stand the events that are at stake. Examples of such cases are often related
to networking attacks like DDoS [91], industrial control systems such as
SCADA [23, 114, 118, 147], or Internet-of-Things [162] where physical de-
vices communicate with external services often located on the Internet.

Fuzzing has recently experienced considerable interest in software test-
ing and vulnerability research because of its efficiency in bug finding. Yet
establishing good methodologies and metrics to compare fuzzing techniques
remain a challenge for researchers. For this reason, Google proposes a ser-
vice called FuzzBench [116] to evaluate and compare fuzzers against a set of
benchmarks.

6.2.2 Architecture
BEERR is divided into two parts. The first part is called the front node. It
hosts the website with the scheduler and stores the experiment codes and
data. The website lets the user register an account and submit tasks to the
scheduler. The latter takes care of allocating and setting up the resources as
well as opening the connection to the selected experiment node. Code and
data for experiments are combined in portable container images which are
stored in a local registry.

The second part is composed of independent experiment nodes. Each
of these nodes holds a gateway which is the main access to the experiment

6.2. Overview 89

node for the user. From it, the user can interact with the available devices,
upload files, download container images from the local registry and run its
analysis. Other components such as debuggers and power switches help in
controlling the device state under study.

Node Bravo-1

debugger

USB programmable
surge protector

Node Alpha-1

USB Switchable Hub
 Nucleo-L152RE
board

RPi4

Intel NUC

Nucleo-L152RE
board

jlink
Allan

Bradley
PLC

Ethernet
Switch

USB programmable
surge protector

USB Switchable
Hub

Node Bravo-2

Intel NUC

USB Switchable
Hub

Nucleo-L152RE
board

Internet

nRF51-DK

Faraday cage

EthernetUSB
Power

registrywebsite

Front node

JTAG

Figure 6.1: BEERR architecture.

The initial design is strongly inspired by existing testbeds, in particular,
R2Lab [137] and FIT IoT-LAB [24] because they also target embedded sys-
tems. However, the type of analysis we want to perform is very different.
Unlike R2Lab with its anechoic chamber, we don’t aim to study radio prop-
agation across different nodes in a controlled environment. Similarly, con-
trary to FIT IoT-LAB, there is no need to work with sensor networks, routing
protocols or distributed applications on distinct typologies. As shown in the
survey (Section 3.1), the analysis we target focuses on the firmware and code
closely coupled with low-level hardware rather than across a pool of differ-
ent devices. It may require powerful computing resources to handle a partial
emulation of the system and its analysis. That is the reason we made the
trade-offs to divide the testbed into independent bookable experiment nodes
with a more or less powerful gateway. This design still offers the possibility
to build systems composed of multiple devices behind a single gateway.

90 90

6.2.3 User Workflow
The typical workflow for the user first involves creating an account on the
website and submitting its SSH public key. Then the user has to wait for
the validation of his account from the person in charge of its affiliation. To
create such a group of users (e.g., per university or company), an application
explaining their motivations has to be sent to the administrators. The access
is free of charge and mainly targets scientific activities.

The creation of an experiment requires selecting an experiment node,
selecting a time slot and a duration, selecting an image to boot the gateway
and optionally filling a public link to a git repository. This repository is a
way for the user to prepare the experiment code upstream of its time slot.
The repository may contain a Dockerfile which would be built and stored
in the local registry.

When the booked time comes, the gateway is powered with the selected
image and an SSH connection is opened between the front node and the
gateway. The user can use this access to start a shell on the bare-metal gate-
way with root permissions. He can upload files, and install and configure
the gateway as needed. No direct Internet access is provided on the gate-
way from our infrastructure, users can use SSH tunneling to share their own
Internet connection.

Finally, the front node closes the SSH connection, resets the devices,
cleans up the gateway disk and powers them off. The status of previous
experiments is displayed on the website.

6.3 Implementation

6.3.1 Front Node
The front node hosts the website and the database with user and experiment
data such as credentials, SSH keys, affiliation, experiment scheduled time,
and repository link. The scheduler is integrated into the back end via the
Advanced Python Scheduler library.

A local docker registry stores the experiments in the form of docker im-
ages. They are built locally from the git repository link provided by the user
on the experiment submission.

The gateways boot on the network to facilitate image selection and man-
agement. We use dnsmasq because of its advantage to offer a complete and
lightweight solution with DNS caching, DHCP and TFTP servers and its ease
of configuration. The root filesystem is mounted using a union filesystem,
OverlayFS. The read-only bottom layer is on an NFS server on the front node
while the read-write upper layer is on the local disk. In this way, images are

6.3. Implementation 91

easily added and updated by administrators while users can modify the sys-
tem. Modifications are cleaned at the end of the experiment by removing the
writable upper layer.

6.3.2 Experiment Nodes
Experiments are assembled in individual container images. We chose this
solution because it facilitates the packaging, sharing, setup and resetting of
experiments and parts of their environment. The essential advantage to use
precise software versions from the time of publication offers the possibility
to circumvent the hard task of maintaining experiments in different envi-
ronments. A corner case occurs when a special kernel version is required. In
this case, because the user has root shell access on the bare-metal gateway,
he is free to use a virtual machine. Nevertheless, we did not observe such a
situation in our survey (Section 3.1).

BEERR provides a set of pre-built images in the local registry. This allows
the user to use them directly or use them as a base to build new images.

The first set of experiments we propose to reproduce is from the paper
Avatar2: A Multi-target Orchestration Platform [123]. The second set targets
the paper What You Corrupt Is Not What You Crash: Challenges in Fuzzing
Embedded Devices [124] (see Section 3.1). In addition, we make available the
already existing avatar2 examples [1].

The experiments have been grouped into categories of nodes according
to their nature and the devices they use. A node is composed of a gate-
way where the analysis is executed, and one or multiple devices which are
subjects of the analysis. The user has root shell access on the bare-metal
gateway where he can freely interact with the devices and build and run
container experiments.

The gateways are either a Raspberry Pi 4 Model B 4GB or an Intel NUC
BOXNUC8I5BELS1 with CPU Intel Core i5-8260U (Quad-Core 1.6/3.9 GHz,
8 threads, 6M cache), 16GB DDR4, 250Go NVMe SSD. The Raspberry Pi has
the advantage to be relatively cheap, and space and power efficient. Yet its
processor architecture is based on the ARM instruction set, which might
cause compatibility problems with some experiments. Indeed, most research
experiments work in a limited environment where portability is not always
the main objective. For example, the PANDA emulator only supports host
machines with x86_64 architecture. In this situation, the experiment needs
to be carried out within the second node type using Intel NUC computers.
We, therefore, use two categories of experiment nodes:

• Alpha nodes. The Alpha nodes are designed as low-cost entry nodes.
They also allow new users to familiarize themselves with the envi-

92 92

ronment through a set of basic experiences. Each is composed of a
Raspberry Pi 4 with Nucleo boards and a USB switch.

• Bravo nodes. The Bravo nodes are more powerful and will be used
when rehosting with powerful emulation is needed. Those experi-
ments rely on an Intel NUC (instead of Raspberry Pi). This makes it
possible to run more complex experiments or experiments relying on
tools that are not portable to ARM architecture, e.g., those that rely on
the PANDA emulator.

Jlink
Debugger

Intel NUC

Allen Bradley
PLC

Nucleo L152RE
Board

Nucleo F072RB
Board

USB Switchable
Hub

On-board
Debugger

USB

Power
Debugging
Interface

USB
Programmable
Surge Protector

On-board
Debugger

Figure 6.2: An example layout for a Bravo node.

6.3.3 Physical devices
The following devices are available on the nodes. We refer to Table 3.2 in
Section 3.1 to show which experiments they allow reproducing.

• STM32 Nucleo L152RE (ARM Cortex-M3) and F072RB (ARM Cortex-
M0) boards,

• Nordic Semiconductor nRF51-DK for BLE (ARM Cortex-M3),

6.4. Discussion 93

• Cypress CYW920735Q60EVB-01 BLE Evaluation Kit (SoC CYW20735
with ARM Cortex-M4),

• Allen Bradley 1769-L16ER-BB1B CompactLogix

In addition, other components are present to control the state of devices:

• Yepkit YKUSH, a USB Switchable Hub to turn on and off a USB link,

• a USB programmable surge protector to power devices using a power
plug,

• SEGGER J-Link Debug Probes to interface with JTAG ports

6.4 Discussion

6.4.1 Infrastructure security
BEERR is mainly intended for the scientific community, without excluding
other potential collaborations. The affiliation link makes the user account-
able for their conduct. It is a best-effort approach where we rely on good
behavior from the users. We plan to treat malicious behavior on a case-by-
case basis and terminate the corresponding user or affiliation accesses.

We nevertheless implementedminimal mechanisms to protect fair access
to the service and preserve the integrity of the system. Time spent using
BEERR is divided into 55 minutes time slots and daily quotas to avoid mo-
nopolizing all resources. To preserve a clean state at the start of a session,
we use an overlay filesystem to store modifications.

We do not protect against any attack attending to modify the gateway
bootloader. Systems under test are also not protected against modifications.
This is a desired behavior as the user might need to flash different firmware.
However, nothing prevents permanent modifications such as a blowing fuse.
We have chosen as the first step to giving freedom to the user before restrict-
ing its capabilities. We trust the user to do their best to not intentionally
brick the devices. If users need specific requirements, we encourage them
to contact us to discuss their feasibility. In the future as more expensive or
hard-to-operate devices are incorporated, we might consider implementing
a group policy for access to categories of experimental nodes.

94 94

Chapter 7

Conclusion and future work

Through this thesis, we explored various methods for improving the exe-
cution of firmware in an emulator by including the device in the analysis,
a technique known as Hardware-in-the-loop. This approach addresses the
limitations of emulation support for specific hardware such as peripherals as
well as providing a higher degree of execution fidelity and accuracy close to
that of the original environment. The BEERR testbed aims to tackle the chal-
lenge of hardware accessibility for security analysis and rehosting in partic-
ular. Through Chestburster, we focused on Linux user-mode programs and
examined how the system call interface enables hybrid execution for pro-
cesses between the emulator and the device. This presents numerous chal-
lenges due to the diversity and complexity of the system call interface and
the limited control over the device and its running kernel. Indeed, Linux has
approximately 380 system calls, and we have been able to confirm the func-
tioning of forwarding for a hundred of them. To achieve this, we proposed
a novel technique that can be implemented without making any modifica-
tions to the program or kernel and is versatile enough to be considered for
other POSIX systems. This system call-forwarding method can be further
improved to achieve a more comprehensive hybrid execution drawing in-
spiration from research on distributed operating systems. Moreover, this
distributed execution opens up new perspectives and applications enabling
more sophisticated security analysis usage on firmware devices such as fault
injection, reverse-engineering, fuzzing, taint analysis and symbolic execu-
tion.

95

96 96

7.1 Distributed operating systems

Distributed operating systems aim to provide user programs with a unified
view of a computer cluster. They offer the possibility to migrate processes
and forward system calls to their original kernel.

MOSIX [33, 34, 107] describes a group of mechanisms to convert a UNIX
system into a distributed operating system. It divides the program into two
parts: the user context called remote and the system context called deputy.
It allows the remote to be migrated to any node while the deputy has to stay
in its original home node. Instead, our approach keeps two system contexts
synchronized to allow the possibility to execute certain system calls locally.
Gobelins [107,120,180] insert a middleware between the Linux kernel virtual
and physical layers. This allows for the interception and deviation of vari-
ous events to multiple nodes, enabling process migration. To achieve this,
Gobelins modifies core kernel structures such as task_struct, mm_struct,
vm_area_struct and file_struct. Plan 9 [143, 181] reduces the total num-
ber of system calls by presenting all system resources and services as files.
This way, a remote procedure call (RPC) mechanism named 9P protocol is
used to access both local and remote resources indifferently.

Although distributed operating systems share a lot of interesting tech-
niques suitable for HIL firmware security analysis such as process migration
and system call forwarding, they present significant drawbacks hindering
their reuse as it. These limitations include a main focus on CPU-intensive
workload, a lack of support for certain I/O operations [32, 107], the absence
of a filtering mechanism to choose between local and remote system calls,
and a lack of emulation support for non-x86 architectures. Additionally, the
closed-source nature of available systems makes it difficult to extend their
capabilities. Furthermore, the method of implementing system call forward-
ing through kernel patches is not deemed practical in the context of binary
firmware analysis. Though it appears that MOSIX release 4 has fully re-
implemented its mechanisms in user mode [32].

In our context, process migration is limited by the inability to capture the
entirety of the process resources without instrumenting the kernel. Modi-
fying the kernel on the device is challenging. Debugging ports may not be
available and the necessary toolchain and kernel headers to compile kernel
modules may not be accessible. Generating a toolchain and kernel headers
compatible requires identifying the kernel configuration and accurately re-
constructing the layout of various data structure [136]. While this has been
achieved to some extent for memory forensics profiles, it remains a challenge
for recompiling kernel modules. Therefore, migrating processes in a limited
context where control over the kernel is not available remains a challenge.

7.2. Performance 97

7.2 Performance
Performance plays a critical role in the usability of any system call analysis.
As seen in the state-of-the-art Section 3.3, there is an incentive to mini-
mize the runtime cost of interception and instrumentation techniques. With
Chestburster, we aimed at demonstrating the feasibility of the approach and
exploring its ability to handle various instrumentation scenarios related to
tracing and forwarding. To this end, the architecture is designed with an
orchestrator developed in Python to control simple targets. However, the
evaluation has highlighted the main overheads, and we discuss potential im-
provements to enhance the overall performance.

The general instrumentation of system call tracing, decoding and filter-
ing could benefit from being integrated into the sysforward library. This
would shift decoding and filtering from an interpreted to a compiled exe-
cution in addition to reducing the number of messages exchanged with the
orchestrator.

The implementation of the filtering with a dictionary of rules can be im-
proved with a state-of-the-art filtering mechanism. For instance, Linux uses
eBPF filters to monitor events in the kernel including system calls. This pro-
vides greater flexibility in filtering system calls because filters are small pro-
grams that can perform operations, unlike rule-based systems. These filters
can be supported using a virtual machine or just-in-time (JIT) compilation,
similar to the way seccomp-bpf operates in the kernel. However, it requires
more effort from the analyst to write suitable filters compared to the ease
of using static rules. Therefore, efforts towards automating the creation of
filters through static or dynamic analysis hold potential benefits. Previous
works [60, 78, 79] have aimed for a similar goal to enforce the principle of
least privilege by reducing the number of authorized system calls for an ap-
plication.

The memory forwarding in Chestburster could be enhanced by incorpo-
rating additional techniques discussed in Section 4.2.4. In particular, the use
of userfaultfd and libsigsegv to intercept access to specific memory re-
gions would facilitate synchronization between the device and the emulator.
This is currently a limitation of Chestburster’s design, which has an asym-
metric capacity to initiate interactions between the process and the device
environment. For instance, while a read() system call is an action started by
the process, a write on a shared memory from another process on the device
may not be transmitted to the emulator. Moreover, the ioctl function let
driver programmers create custom interfaces. It can complicate the identifi-
cation of memory blocks to forward during the system call. To address this
challenge, taint tracking and symbolic execution could be applied to driver
binaries to recover the interface and determine which memory blocks to for-

98 98

ward.
To further improve performance and remove the need for continuously

forwarding system calls involving device interactions, a caching mechanism
could be introduced. Kammerstetter et. al. [96] proposed this through run-
time program state approximation. To uniquely identify peripheral access
in the cache, the program state, consisting of the CPU context and stack
memory, is hashed as the key for the cache entry. This approach has the
benefit of considering the state of the program during character device ac-
cess, but it does not fully capture the comprehension of the driver behav-
ior. Execution traces could help build models from recorded data, reducing
the number of interactions with the device and potentially eliminating the
need for forwarding in certain circumstances. Similar works have been done,
but for monolithic firmware [86, 165]. Another option is the augmented pro-
cess emulation [198] method which involves alternating execution between
user mode and full-system emulation to issue system calls not supported
by the host kernel. Enhancing hybrid execution by offering a choice be-
tween the three modes of execution, native on the device, user mode and
full-system emulation, would grants the possibility to benefit from the best of
each. However, similar to the challenge to generate automaticlly filters, there
would need to be a decision-making process to determine when and why to
switch based on the application behavior. Finally, for completeness symbolic
execution could also be used to assist in inferring a peripheral model.

7.3 Application
POSIX systems

Type-II firmware may also implement the POSIX interface, as is the case
for real-time operating systems like FreeRTOS, VxWorks, QNX, and eCos.
While the hybrid execution approach could be beneficial for these systems, a
major challenge lies in the executor component. Currently it is implemented
through the use of a debugger and the ptrace system call that is not part of
the POSIX API. Therefore, alternative methods for replaying system calls
need to be explored.

Security testing techniques

The ability to run the firmware in an emulated environment is just a starting
point for dynamic analysis. This opens up the possibility to conduct binary
security testing techniques such as fuzzing and symbolic execution. Fuzzing
efficiency on bug finding relies on the capacity of executing a large number
of input in a short period of time. However, this can be hindered by the

7.3. Application 99

1 syzkaller/sys/linux/dev_snd_midi.txt
2
3 [...]
4 syz_open_dev$midi(dev ptr[in, string ["/dev/midi #"]], id intptr , flags

flags[open_flags]) fd_midi
5 write$midi(fd fd_midi , data ptr[in, array[int8]], len bytesize[data])
6 read$midi(fd fd_midi , data ptr[out , array[int8]], len bytesize[data])
7 ioctl$SNDRV_RAWMIDI_IOCTL_PVERSION(fd fd_midi , cmd

const[SNDRV_RAWMIDI_IOCTL_PVERSION], arg ptr[out , int32])
8 [...]
9 snd_rawmidi_params {
10 stream flags[sndrv_rawmidi_stream , int32]
11 buffer_size intptr
12 avail_min intptr
13 no_active_sensing int32:1
14 mode int32
15 reserved array[const[0, int8], 12]
16 }
17 [...]
18 define SNDRV_RAWMIDI_IOCTL_STATUS32 _IOWR('W', 0x20 , char [36])
19 [...]

Listing 7.1: Syzkaller interface specification.

overhead of intercepting, filtering, forwarding system call and synchronizing
the memory. It is therefore crucial to focus on improving performance and
scalability.

Additionally, fault injection at the system call level can be used to eval-
uate the responsiveness of user mode applications [76, 186, 195]. Tampering
with system call arguments and return values provide opportunities to exer-
cise error handling code paths [102]. This technique can be used in combina-
tion with fuzzing to improve test coverage [138]. In embedded systems, fault
injection can be utilized to test proprietary peripherals that are challenging
to evaluate through other means.

Recovering semantics

The approach to decoding could be further improved to recover the system
call semantics, leading to a deeper understanding of what the program is
doing.

Syzkaller [84] is a fuzzer developed at Google that targets kernels through
its various interfaces exposed via system calls. To facilitate programmanipu-
lation during the generation, mutation, minimization and validation phases,
a description language called syzlang has been created. The programs are
described as sequences of system calls. Each tested interface requires writ-
ing upstream and manually its specification. Listing 7.1 is an extract taken
from the Linux audio MIDI interface.

The description language does not directly describe system calls, but
rather the operations performed on and the data exchange with the inter-

100 100

face. Thinking at a higher level allows to take into account relationships
within the data. For instance, in the write$midi operation, the relationship
between the second and third arguments is expressed as len bytesize[data].

In this way, it is possible to addmoremeaning to a trace of system calls by
both gathering the sequence of calls to the interface and linking the trans-
ferred data (with the kernel) between calls. This would bring benefits for
both a human being who could read a trace and understandmore easily what
the programs do; but also for a machine program for which it would be more
comfortable to reflect on and operate on the trace similarly to what syzkaller
is already doing for its test program generation. Thus, this would be useful
in the first place to reverse engineering programs dynamically from their
execution traces. For instance, semantics reconstruction from lower traces
always has been a difficult problem as highlighted in [129]. Second, the idea
may enhance the work of forwarding system calls for rehosting by being
able to construct a model behind the interface which would allow removing
the burden of forwarding system calls to the device.

Kernel drivers

Future work could also involve applying a similar hardware-in-the-loop ap-
proach to kernel drivers. The concept remains the same: using remote proce-
dure calls (RPC) to transfer the control flow and copying necessary memory.
Despite the lack of a stable internal API in the kernel, drivers need to ex-
port symbols for linking during loading. If low latency requirements are not
a concern [170], it may be possible to intercept and perform RPC on these
functions. This would enable deeper introspection about kernel driver exe-
cution without the need to boot the entire kernel [94, 104]. This could make
it easier to identify vulnerabilities through fuzzing and symbolic execution.
However, a major challenge would still be executing and replaying the calls
within the kernel on the device.

Testbed

The BEERR testbed aims to address the challenge of hardware accessibility
for hardware-in-the-loop security analysis by providing remote access and
experiment sharing. However, the true advantage of HIL lies in the integra-
tion of the device in an environment. BEERR does not consider this aspect
further than the different component on the same board. There is a signifi-
cant challenge in setting up a full environment consisting of multiple devices
that interact with each other. This raises questions about how to control the
full environment, track its state, take snapshots, restore them, and have vis-
ibility into every aspect of the testbed, including the execution of firmware
and wireless transmissions.

List of Tables

3.1 Experiments description in surveyed papers. 18
3.2 Artifacts status in hardware in the loop papers surveyed. �:

source code �: container ±: virtual machine 21
3.3 Publications addressing Linux-based firmware rehosting. . . 22
3.4 Summary of user mode rehosting approaches. 30
3.5 Example system calls for various Linux components. 31
3.6 Summary of Linux hooking methods. 35

4.1 Linux user space memory access API 48
4.2 Summary of memory forwarding approaches. 52

5.1 The programs from the paxtest suite are used to verify the
execution correctness. 75

5.2 The programs from the paxtest suite are used to verify the
execution correctness. 77

5.3 Principal system calls issued by evaluated coreutils programs. 80

101

102 102

List of Figures

3.1 Costin’16 rehosting approach for web services. 24
3.2 Firmadyne rehosting approach for web services. 25
3.3 FirmAFL rehosting approach for web services. 25
3.4 EQUAFL rehosting method. 26
3.5 FirmCorn rehosting approach. 27
3.6 PROSPECT rehosting approach. 28

4.1 Philips Hue devices in the home network. 44
4.2 Set of protocols used by Philips Hue system. 45
4.3 Hue Bridge block diagram. 46
4.4 Proposed system call forwarding approach. 47
4.5 The tracer state machine. 58
4.6 The orchestrator state machine. 58
4.7 The executor state machine. 59

5.1 Chestburster architecture. 66
5.2 Sequence diagram illustrating the forwarded of a system call

during parallel execution. 69
5.3 Impact of Chestburster on common system calls (a). 78
5.4 Impact of Chestburster on common system calls (b). 79
5.5 Composition of overhead for common system calls. 79
5.6 Composition of overhead for cat. 81
5.7 Composition of overhead for csplit. 81
5.8 Composition of overhead for wc. 82
5.9 Composition of overhead for sha512sum. 82
5.10 Composition of overhead for dd. 83

6.1 BEERR architecture. 89
6.2 An example layout for a Bravo node. 92

103

104 104

List of Acronyms

CGC Cyber Grand Challenge

FBW Fly-by-wire

HIL Hardware-in-the-loop

JIT Just-in-time compilation

RPC Remote Procedure Call

MVX Multi-Variant eXecution

I/O Input/Output

ISA Instruction Set Architecture

CPU Central Processing Unit

GPU Graphics Processing Unit

FPGA Field-Programmable Gate Array

VT Virtualization Technology

SoC System-on-Chip

ROM Read-Only Memory

EEPROM Electrically Erasable Programmable Read-Only Memory

RAM Random Access Memory

NVRAM Non-Volatile Random Access Memory

NAND NOT AND

USART Universal Synchronous/Asynchronous Receiver/Transmitter

UART Universal Asynchronous Receiver/Transmitter

105

106 106

SPI Serial Peripheral Interface

GPIO General Purpose Input/Output

DDR Double Data Rate

I2C Inter-Integrated Circuit

JTAG Joint Action Test Group

MMIO Memory-Mapped Input/Output

IRQ Interrupt Request

DMA Direct Memory Access

PCI Peripheral Component Interconnect

MMU Memory Management Unit

MPU Memory Protection Unit

OS Operating System

POSIX Portable Operating System Interface

ELF Executable and Linkable Format

BSS Block Started by Symbol

GOT Gloabal Offset Table

PID Process IDentifier

TID Thread IDentifier

UID User IDentifier

GID Group IDentifier

IPC Inter-Process Communication

RWX Read-Write-Execute

VFS Virtual FileSystem

LKM Loadable Kernel Module

FUSE Filesystem in Userspace

List of Figures 107

vDSO virtual Dynamic Share Object

QEMU Quick EMUlation

AFL American Fuzzing Lop

BPF Berkeley Packet Filter

eBPF extended Berkeley Packet Filter

CRIU Checkpoint/Restore In Userspace

RTOS Real-Time Operating System

SCADA Supervisory Control and Data Acquisition

PLC Programmable Logic Controller

DNS Domain Name System

DHCP Dynamic Host Configuration Protocol

TCP Transmission Control Protocol

SSH Secure SHell

TFTP Trivial File Transfer Protocol

NFS Network FileSystem

108 108

Bibliography

[1] avatar2 examples repository. https://github.com/avatartwo/
avatar2-examples.

[2] Documents about the D-17(B) guidance system. http:
//www.bitsavers.org/pdf/autonetics/d17/. (accessed:
01.01.2023).

[3] FED4FIRE+ website. https://www.fed4fire.eu/. (accessed:
15.12.2021).

[4] ftrace wiki page. https://www.kernel.org/doc/html/latest/
trace/index.html. (accessed: 01.09.2019).

[5] Global embedded system market (2022 to 2027). https:
//www.globenewswire.com/en/news-release/2022/06/24/
2468712/28124/en/Global-Embedded-System-Market-2022-
to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-
Marvell-Among-Others.html. (accessed: 01.01.2023).

[6] Global embedded systems industry. https://
www.reportlinker.com/p01171466/Global-Embedded-Systems-
Industry.html. (accessed: 01.01.2023).

[7] GNU libsigsegv. https://www.gnu.org/software/libsigsegv/. (ac-
cessed: 01.01.2023).

[8] Kernel ABI readme. https://www.kernel.org/doc/Documentation/
ABI/README. (accessed: 01.01.2023).

[9] Kernel syscall stable ABI. https://www.kernel.org/doc/
Documentation/ABI/stable/syscalls. (accessed: 01.01.2023).

[10] LWN article on eBPF seccomp filters. https://lwn.net/Articles/
857228/.

109

https://github.com/avatartwo/avatar2-examples
https://github.com/avatartwo/avatar2-examples
http://www.bitsavers.org/pdf/autonetics/d17/
http://www.bitsavers.org/pdf/autonetics/d17/
https://www.fed4fire.eu/
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.globenewswire.com/en/news-release/2022/06/24/2468712/28124/en/Global-Embedded-System-Market-2022-to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-Marvell-Among-Others.html
https://www.globenewswire.com/en/news-release/2022/06/24/2468712/28124/en/Global-Embedded-System-Market-2022-to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-Marvell-Among-Others.html
https://www.globenewswire.com/en/news-release/2022/06/24/2468712/28124/en/Global-Embedded-System-Market-2022-to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-Marvell-Among-Others.html
https://www.globenewswire.com/en/news-release/2022/06/24/2468712/28124/en/Global-Embedded-System-Market-2022-to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-Marvell-Among-Others.html
https://www.globenewswire.com/en/news-release/2022/06/24/2468712/28124/en/Global-Embedded-System-Market-2022-to-2027-Featuring-Intel-Renesas-Texas-Instruments-and-Marvell-Among-Others.html
https://www.reportlinker.com/p01171466/Global-Embedded-Systems-Industry.html
https://www.reportlinker.com/p01171466/Global-Embedded-Systems-Industry.html
https://www.reportlinker.com/p01171466/Global-Embedded-Systems-Industry.html
https://www.gnu.org/software/libsigsegv/
https://www.kernel.org/doc/Documentation/ABI/README
https://www.kernel.org/doc/Documentation/ABI/README
https://www.kernel.org/doc/Documentation/ABI/stable/syscalls
https://www.kernel.org/doc/Documentation/ABI/stable/syscalls
https://lwn.net/Articles/857228/
https://lwn.net/Articles/857228/

110 110

[11] perf wiki page. https://perf.wiki.kernel.org/index.php/
Main_Page. (accessed: 01.09.2019).

[12] Sharing expertise and artifacts for reuse through cyber-
security community hub (SEARCCH) project. https:
//searcch.cyberexperimentation.org/about. (accessed:
15.12.2021).

[13] signal - overview of signals. https://man7.org/linux/man-pages/
man7/signal.7.html. (accessed: 01.01.2023).

[14] strace the linux syscall tracer. https://strace.io/. (accessed:
01.01.2023).

[15] Therac-25. https://en.m.wikipedia.org/wiki/Therac-25. (ac-
cessed: 01.01.2023).

[16] userfaultfd - create a file descriptor for handling page faults
in user space. https://man7.org/linux/man-pages/man2/
userfaultfd.2.html. (accessed: 01.01.2023).

[17] vDSO - overview of the virtual ELF dynamic shared object.
https://man7.org/linux/man-pages/man7/vdso.7.html. (ac-
cessed: 01.01.2023).

[18] The virtual AGC project. https://www.ibiblio.org/apollo/. (ac-
cessed: 01.01.2023).

[19] Wind river SIMICS. https://www.windriver.com/products/
simics/, 1998. (accessed: 01.01.2023).

[20] system call intercepting library. https://github.com/pmem/
syscall_intercept/, 2016. (accessed: 18.02.2020).

[21] ACM. Artifact review and badging - version 2.0. https:
//www.acm.org/publications/policies/artifact-review-
badging. (accessed: 15.12.2021).

[22] ACSAC. Paper artifacts. https://www.acsac.org/2020/
submissions/papers/artifacts/. (accessed: 15.12.2021).

[23] Sridhar Adepu, Nandha Kumar Kandasamy, and Aditya Mathur. Epic:
An electric power testbed for research and training in cyber physical
systems security. In Computer Security. 2018.

https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://searcch.cyberexperimentation.org/about
https://searcch.cyberexperimentation.org/about
https://man7.org/linux/man-pages/man7/signal.7.html
https://man7.org/linux/man-pages/man7/signal.7.html
https://strace.io/
https://en.m.wikipedia.org/wiki/Therac-25
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man2/userfaultfd.2.html
https://man7.org/linux/man-pages/man7/vdso.7.html
https://www.ibiblio.org/apollo/
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
https://github.com/pmem/syscall_intercept/
https://github.com/pmem/syscall_intercept/
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acsac.org/2020/submissions/papers/artifacts/
https://www.acsac.org/2020/submissions/papers/artifacts/

Bibliography 111

[24] Cédric Adjih, Emmanuel Baccelli, Eric Fleury, Gaetan Harter, Nathalie
Mitton, Thomas Noel, Roger Pissard-Gibollet, Frédéric Saint-Marcel,
Guillaume Schreiner, Julien Vandaele, and ThomasWatteyne. FIT IoT-
LAB: A Large Scale Open Experimental IoT Testbed. 2015.

[25] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose.
Sok: Security evaluation of home-based iot deployments. In 2019 IEEE
symposium on security and privacy (SP). IEEE, 2019.

[26] Davide Balzarotti Andrea Oliveri. In the Land of MMUs: Multiarchi-
tecture OS-Agnostic Virtual Memory Forensics. ACM Trans. Priv. Se-
cur., 2022.

[27] Dennis Andriesse, Xi Chen, Victor Van Der Veen, Asia Slowinska,
and Herbert Bos. An In-Depth Analysis of Disassembly on Full-Scale
x86/x64 Binaries. InUSENIX Security Symposium, pages 583–600, 2016.

[28] Ioannis Angelakopoulos, Gianluca Stringhini, and Manuel Egele.
FirmSolo: Enabling dynamic analysis of binary Linux-based IoT kernel
modules. 2023.

[29] Thanassis Avgerinos, David Brumley, John Davis, Ryan Goulden,
Tyler Nighswander, Alex Rebert, and Ned Williamson. The mayhem
cyber reasoning system. IEEE Security & Privacy, 2018.

[30] Michelle Bailey and Julie Doerr. Contributions of hardware-in-the-
loop simulations to Navy test and evaluation. In Technologies for syn-
thetic environments: Hardware-in-the-loop testing. SPIE, 1996.

[31] Julian Bangert, Rebecca Shapiro, and Sergey Bratus. Weird
machines and revisiting trusting trust for binary toolchains.
https://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-
trust.pdf, 2013. (accessed: 01.01.2023).

[32] A Barak and A Shiloh. The MOSIX cluster operating system for dis-
tributed computing on Linux clusters, multi-clusters and clouds. 2013.

[33] Amnon Barak, Shai Guday, and Richard G Wheeler. The MOSIX dis-
tributed operating system: load balancing for UNIX. Springer, 1993.

[34] Amnon Barak, Oren La’adan, and Amnon Shiloh. Scalable cluster
computing with MOSIX for Linux. Proc. 5-th Annual Linux Expo,
100:50, 1999.

https://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf
https://www.cs.dartmouth.edu/~sergey/trust/30c3-chain-of-trust.pdf

112 112

[35] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei, David Maz-
ières, and Christos Kozyrakis. Dune: Safe user-level access to privi-
leged CPU features. In 10th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 12), 2012.

[36] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
USENIX annual technical conference, FREENIX Track, 2005.

[37] Emery D Berger and Benjamin G Zorn. DieHard: Probabilistic mem-
ory safety for unsafe languages. Acm sigplan notices, 2006.

[38] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao,
Max Ott, Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar.
GENI: A federated testbed for innovative network experiments. Com-
puter Networks, 2014.

[39] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik
Roychoudhury. Directed greybox fuzzing. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
2017.

[40] Matthias Börsig, Sven Nitzsche, Max Eisele, Roland Gröll, Jürgen
Becker, and Ingmar Baumgart. Fuzzing framework for ESP32 micro-
controllers. In 2020 IEEE International Workshop on Information Foren-
sics and Security (WIFS), 2020.

[41] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An in-
frastructure for adaptive dynamic optimization. In International Sym-
posium on Code Generation and Optimization, 2003. CGO 2003., 2003.

[42] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee: unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In OSDI, 2008.

[43] Amat Cama. Corrupting the ARM exception vector table. https://
doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/. (ac-
cessed: 01.09.2019).

[44] Daming D Chen, Maverick Woo, David Brumley, and Manuel Egele.
Towards Automated Dynamic Analysis for Linux-based Embedded
Firmware. In Network and Distributed System Security Symposium
(NDSS), 2016.

[45] Vitaly Chipounov and George Candea. Reverse engineering of binary
device drivers with RevNIC. In Proceedings of the 5th European confer-
ence on Computer systems, 2010.

https://doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/
https://doar-e.github.io/blog/2014/04/30/corrupting-arm-evt/

Bibliography 113

[46] Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Can-
dea. Selective symbolic execution. In Proceedings of the 5th Workshop
on Hot Topics in System Dependability (HotDep), 2009.

[47] Abraham A Clements, Eric Gustafson, Tobias Scharnowski, Paul
Grosen, David Fritz, Christopher Kruegel, Giovanni Vigna, Saurabh
Bagchi, and Mathias Payer. HALucinator: Firmware Re-hosting
Through Abstraction Layer Emulation. In 29th USENIX Security Sym-
posium (USENIX Security 20), 2020.

[48] CRIU Community. Checkpoint/restart in userspace (CRIU). https:
//criu.org/. (accessed: 01.01.2023).

[49] CRIU Community. CRIU linux kernel options. https://criu.org/
Linux_kernel. (accessed: 01.01.2023).

[50] Emilio Coppa, Heng Yin, and Camil Demetrescu. SymFusion: Hybrid
Instrumentation for Concolic Execution. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineer-
ing, 2022.

[51] Corina, Jake and Machiry, Aravind and Salls, Christopher and Shoshi-
taishvili, Yan and Hao, Shuang and Kruegel, Christopher and Vigna,
Giovanni. Difuze: Interface aware fuzzing for kernel drivers. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Com-
munications Security, 2017.

[52] Nassim Corteggiani, Giovanni Camurati, and Aurélien Francillon. In-
ception: System-wide security testing of real-world embedded sys-
tems software. In USENIX Security Symposium, 2018.

[53] Nassim Corteggiani and Aurélien Francillon. HardSnap: Leveraging
hardware snapshotting for embedded systems security testing. In 2020
50th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN), 2020.

[54] Andrei Costin, Apostolis Zarras, and Aurélien Francillon. Automated
Dynamic Firmware Analysis at Scale: A Case Study on EmbeddedWeb
Interfaces. In ACM Asia Conference on Computer and Communications
Security (ASIACCS), 2016.

[55] Benjamin Cox, David Evans, Adrian Filipi, Jonathan Rowanhill, Wei
Hu, Jack Davidson, John Knight, Anh Nguyen-Tuong, and Jason Hiser.
N-Variant Systems: A Secretless Framework for Security through Di-
versity. In USENIX Security Symposium, 2006.

https://criu.org/
https://criu.org/
https://criu.org/Linux_kernel
https://criu.org/Linux_kernel

114 114

[56] Emanuele Cozzi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Understanding linux malware. In 2018 IEEE symposium on
security and privacy (SP), 2018.

[57] DARPA. Cyber grand challenge (CGC) (archived). https:
//www.darpa.mil/program/cyber-grand-challenge. (accessed:
01.01.2023).

[58] Drew Davidson, Benjamin Moench, Thomas Ristenpart, and Somesh
Jha. FIE on Firmware: Finding Vulnerabilities in Embedded Systems
Using Symbolic Execution. In USENIX Security Symposium, 2013.

[59] Daniele Cono D’Elia, Emilio Coppa, Simone Nicchi, Federico Palmaro,
and Lorenzo Cavallaro. SoK: Using dynamic binary instrumentation
for security (and how you may get caught red handed). In Proceedings
of the 2019 ACM Asia Conference on Computer and Communications
Security, 2019.

[60] Nicholas DeMarinis, KentWilliams-King, Di Jin, Rodrigo Fonseca, and
Vasileios P Kemerlis. sysfilter: Automated System Call Filtering for
Commodity Software. In RAID, 2020.

[61] Sebastian Dietz. Firmware re-hosting, an evaluation and verification
of FirmAE, 2020.

[62] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
malware analysis via hardware virtualization extensions. In Proceed-
ings of the 15th ACM conference on Computer and communications se-
curity, 2008.

[63] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer.
Retrowrite: Statically instrumenting cots binaries for fuzzing and san-
itization. In 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[64] Brendan Dolan-Gavitt, Josh Hodosh, Patrick Hulin, Tim Leek, and
Ryan Whelan. Repeatable reverse engineering with PANDA. In Pro-
gram Protection and Reverse Engineering Workshop, 2015.

[65] dong-hoon you. Android platform based linux kernel rootkit. http:
//www.phrack.org/issues/68/6.html. (accessed: 01.09.2019).

[66] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

https://www.darpa.mil/program/cyber-grand-challenge
https://www.darpa.mil/program/cyber-grand-challenge
http://www.phrack.org/issues/68/6.html
http://www.phrack.org/issues/68/6.html

Bibliography 115

Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation
of CloudLab. In USENIX Annual Technical Conference (USENIX ATC
19), 2019.

[67] Michael Eddington. Peach fuzzer. https://peachtech.gitlab.io/
peach-fuzzer-community/, 2004. (accessed: 01.01.2023).

[68] Hirofumi Eguchi and Tadashi Yamashita. Benefits of HWIL simulation
to develop guidance and control systems for missiles. In Technologies
for Synthetic Environments: Hardware-in-the-Loop Testing V, 2000.

[69] elfmaster. Extended core file snapshot (ECFS). https://github.com/
elfmaster/ecfs. (accessed: 01.01.2023).

[70] Martha B Evans and Lawrence J Schilling. The role of simulation in the
development and flight test of the HiMAT vehicle. Technical report,
1984.

[71] Andrew Fasano, Tiemoko Ballo, Marius Muench, Tim Leek, Alexan-
der Bulekov, Brendan Dolan-Gavitt, Manuel Egele, Aurélien Francil-
lon, Long Lu, Nick Gregory, et al. SoK: Enabling Security Analyses of
Embedded Systems via Rehosting. In ACM Asia Conference on Com-
puter and Communications Security (AsiaCCS), 2021.

[72] Bo Feng, Alejandro Mera, and Long Lu. P2im: Scalable and hardware-
independent firmware testing via automatic peripheral interface mod-
eling. In Proceedings of the 29th USENIX Conference on Security Sym-
posium, 2020.

[73] Andrea Fioraldi, Dominik Christian Maier, Dongjia Zhang, and Da-
vide Balzarotti. LibAFL: A Framework to Build Modular and Reusable
Fuzzers. In Proceedings of the 2022 ACM SIGSAC Conference on Com-
puter and Communications Security, 2022.

[74] Andrea Fioraldi, Alessandro Mantovani, Dominik Maier, and Davide
Balzarotti. Dissecting American Fuzzy Lop–A FuzzBench Evaluation.
ACM Transactions on Software Engineering and Methodology, 2023.

[75] Daniel S. Fowler, Madeline Cheah, Siraj Ahmed Shaikh, and Jeremy
Bryans. Towards a Testbed for Automotive Cybersecurity. In IEEE In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2017.

[76] Alessandro Gario. A BPF-based syscall fault injector. https://
github.com/trailofbits/ebpfault. (accessed: 01.01.2023).

https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://github.com/elfmaster/ecfs
https://github.com/elfmaster/ecfs
https://github.com/trailofbits/ebpfault
https://github.com/trailofbits/ebpfault

116 116

[77] Xinyang Ge, Weidong Cui, and Trent Jaeger. Griffin: Guarding control
flows using intel processor trace. ACM SIGPLAN Notices, 2017.

[78] Seyedhamed Ghavamnia, Tapti Palit, Azzedine Benameur, and
Michalis Polychronakis. Confine: Automated system call policy gen-
eration for container attack surface reduction. In International Sym-
posium on Research in Attacks, Intrusions and Defenses (RAID), 2020.

[79] Seyedhamed Ghavamnia, Tapti Palit, and Michalis Polychronakis.
C2C: Fine-grained configuration-driven system call filtering. In Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Com-
munications Security, 2022.

[80] Patrice Godefroid. Random testing for security: blackbox vs. whitebox
fuzzing. In Proceedings of the 2nd international workshop on Random
testing: co-located with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE 2007), 2007.

[81] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, 2005.

[82] Patrice Godefroid, Michael Y. Levin, and David A. Molnar. Automated
Whitebox Fuzz Testing. In Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2008.

[83] Peter Goodman and Artem Dinaburg. The past, present, and future of
cyberdyne. IEEE Security & Privacy, 2018.

[84] Google. Syzkaller, an unsupervised coverage-guided kernel fuzzer.
https://github.com/google/syzkaller. (accessed: 01.01.2023).

[85] Zhijie Gui, Hui Shu, Fei Kang, and Xiaobing Xiong. Firmcorn:
Vulnerability-oriented fuzzing of iot firmware via optimized virtual
execution. IEEE Access, 2020.

[86] Eric Gustafson, Marius Muench, Chad Spensky, Nilo Redini, Aravind
Machiry, Yanick Fratantonio, Davide Balzarotti, Aurélien Francillon,
Yung Ryn Choe, Christophe Kruegel, et al. Toward the analysis of
embedded firmware through automated re-hosting. In 22nd Interna-
tional Symposium on Research in Attacks, Intrusions and Defenses (RAID
2019), 2019.

https://github.com/google/syzkaller

Bibliography 117

[87] Andrew Henderson, Lok Kwong Yan, Xunchao Hu, Aravind Prakash,
Heng Yin, and Stephen McCamant. Decaf: A platform-neutral whole-
system dynamic binary analysis platform. IEEE Transactions on Soft-
ware Engineering, 2016.

[88] Grant Hernandez, Farhaan Fowze, Dave Tian, Tuba Yavuz, and
Kevin RB Butler. Firmusb: Vetting usb device firmware using domain
informed symbolic execution. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017.

[89] Grant Hernandez, Marius Muench, Dominik Maier, Alyssa Milburn,
Shinjo Park, Tobias Scharnowski, Tyler Tucker, Patrick Traynor, and
Kevin RB Butler. FIRMWIRE: Transparent dynamic analysis for cellu-
lar baseband firmware. In 29th Annual Network and Distributed System
Security Symposium, NDSS, 2022.

[90] Petr Hosek and Cristian Cadar. Varan the unbelievable: An efficient n-
version execution framework. ACM SIGARCH Computer Architecture
News, 2015.

[91] Alefiya Hussain, David DeAngelis, Erik Kline, and Stephen Schwab.
Replicated Testbed Experiments for the Evaluation of a Wide-range
of DDoS Defenses. In 2020 IEEE European Symposium on Security and
Privacy Workshops (EuroS PW), 2020.

[92] IEEE. Submitting a paper to TPDS. https://www.computer.org/
csdl/journal/td/write-for-us/15085. (accessed: 15.12.2021).

[93] Bart Jacob, Paul Larson, B Leitao, and SAMM Da Silva. SystemTap:
instrumenting the Linux kernel for analyzing performance and func-
tional problems. IBM Redbook, 2008.

[94] Muhui Jiang, Lin Ma, Yajin Zhou, Qiang Liu, Cen Zhang, Zhi Wang,
Xiapu Luo, Lei Wu, and Kui Ren. ECMO: Peripheral Transplantation
to Rehost Embedded Linux Kernels. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021.

[95] Evan Johnson, Maxwell Bland, YiFei Zhu, Joshua Mason, Stephen
Checkoway, Stefan Savage, and Kirill Levchenko. Jetset: Targeted
firmware rehosting for embedded systems. In 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[96] Markus Kammerstetter, Daniel Burian, andWolfgang Kastner. Embed-
ded security testing with peripheral device caching and runtime pro-
gram state approximation. In 10th International Conference on Emerg-
ing Security Information, Systems and Technologies (SECUWARE), 2016.

https://www.computer.org/csdl/journal/td/write-for-us/15085
https://www.computer.org/csdl/journal/td/write-for-us/15085

118 118

[97] Markus Kammerstetter, Christian Platzer, and Wolfgang Kastner.
Prospect: peripheral proxying supported embedded code testing. In
ACM symposium on Information, computer and communications secu-
rity (AsiaCCS), 2014.

[98] Mingeun Kim, Dongkwan Kim, Eunsoo Kim, Suryeon Kim, Yeongjin
Jang, and Yongdae Kim. FirmAE: Towards Large-Scale Emulation of
IoT Firmware for Dynamic Analysis. In Annual Computer Security
Applications Conference, 2020.

[99] Russel King. Linux patch: ARM: probes: avoid adding
kprobes to sensitive kernel-entry/exit code. Commit:
c608906165355089a4de3c9133c72e81e011096c. (accessed: 01.09.2019).

[100] Koen Koning, Herbert Bos, and Cristiano Giuffrida. Secure and effi-
cient multi-variant execution using hardware-assisted process virtu-
alization. In 2016 46th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), 2016.

[101] Karl Koscher, Tadayoshi Kohno, and David Molnar. SURROGATES:
Enabling near-real-time dynamic analyses of embedded systems. In
9th USENIX Workshop on Offensive Technologies (WOOT 15), 2015.

[102] Dmitry Levin. Can strace make you fail? strace syscall fault
injection. https://archive.fosdem.org/2017/schedule/
event/failing_strace/attachments/slides/1630/export/
events/attachments/failing_strace/slides/1630/
strace_fosdem2017_ta_slides.pdf. (accessed: 01.01.2023).

[103] Linaro. Linaro automated validation architecture (LAVA). https://
validation.linaro.org/. (accessed: 15.12.2021).

[104] Qiang Liu, Cen Zhang, Lin Ma, Muhui Jiang, Yajin Zhou, Lei Wu,
Wenbo Shen, Xiapu Luo, Yang Liu, and Kui Ren. Firmguide: Boosting
the capability of rehosting embedded linux kernels through model-
guided kernel execution. In 2021 36th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2021.

[105] Yingtong Liu, Hsin-Wei Hung, and Ardalan Amiri Sani. Mousse: a
system for selective symbolic execution of programs with untamed
environments. In Proceedings of the Fifteenth European Conference on
Computer Systems, 2020.

[106] Juan Lopez, Leonardo Babun, Hidayet Aksu, and A Selcuk Uluagac. A
Survey on Function and System Call Hooking Approaches. Journal of
Hardware and Systems Security, 2017.

https://archive.fosdem.org/2017/schedule/event/failing_strace/attachments/slides/1630/export/events/attachments/failing_strace/slides/1630/strace_fosdem2017_ta_slides.pdf
https://archive.fosdem.org/2017/schedule/event/failing_strace/attachments/slides/1630/export/events/attachments/failing_strace/slides/1630/strace_fosdem2017_ta_slides.pdf
https://archive.fosdem.org/2017/schedule/event/failing_strace/attachments/slides/1630/export/events/attachments/failing_strace/slides/1630/strace_fosdem2017_ta_slides.pdf
https://archive.fosdem.org/2017/schedule/event/failing_strace/attachments/slides/1630/export/events/attachments/failing_strace/slides/1630/strace_fosdem2017_ta_slides.pdf
https://validation.linaro.org/
https://validation.linaro.org/

Bibliography 119

[107] Renaud Lottiaux, Pascal Gallard, GeoffroyVallée, ChristineMorin, and
Benoit Boissinot. OpenMosix, OpenSSI and Kerrighed: a comparative
study. In CCGrid 2005. IEEE International Symposium on Cluster Com-
puting and the Grid, 2005., 2005.

[108] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. Pin: building customized program analysis tools with dy-
namic instrumentation. Acm sigplan notices, 2005.

[109] Dominik Maier, Benedikt Radtke, and Bastian Harren. Unicorefuzz:
On the viability of emulation for kernelspace fuzzing. In 13th USENIX
Workshop on Offensive Technologies (WOOT 19), 2019.

[110] Dominik Maier and Fabian Toepfer. BSOD: Binary-only scalable
fuzzing of device drivers. In Proceedings of the 24th International Sym-
posium on Research in Attacks, Intrusions and Defenses, 2021.

[111] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. The art, sci-
ence, and engineering of fuzzing: A survey. IEEE Transactions on Soft-
ware Engineering, 2019.

[112] Lorenzo Martignoni, Roberto Paleari, and Danilo Bruschi. A frame-
work for behavior-based malware analysis in the cloud. In Interna-
tional Conference on Information Systems Security, 2009.

[113] Abdelbassat Massouri, Leonardo Cardoso, Benjamin Guillon, Florin
Hutu, Guillaume Villemaud, Tanguy Risset, and Jean-Marie Gorce.
CorteXlab: An open FPGA-based facility for testing SDR amp; cog-
nitive radio networks in a reproducible environment. In 2014 IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2014.

[114] Aditya P Mathur and Nils Ole Tippenhauer. SWaT: A water treatment
testbed for research and training on ICS security. In 2016 international
workshop on cyber-physical systems for smart water networks (CySWa-
ter), 2016.

[115] Alejandro Mera, Bo Feng, Long Lu, and Engin Kirda. DICE: Automatic
emulation of dma input channels for dynamic firmware analysis. In
2021 IEEE Symposium on Security and Privacy (SP), 2021.

[116] Metzman, Jonathan and Szekeres, László and Maurice Romain Simon,
Laurent and Trevelin Sprabery, Read and Arya, Abhishek. FuzzBench:

120 120

An Open Fuzzer Benchmarking Platform and Service. In ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021.

[117] Barton P Miller, Lars Fredriksen, and Bryan So. An empirical study of
the reliability of UNIX utilities. Communications of the ACM, 1990.

[118] Mocanu, Stéphane and Puys, Maxime and Thevenon, Pierre-Henri. An
open-source hardware-in-the-loop virtualization system for cyberse-
curity studies of scada systems. In C&esar 2019 - Virtualization and
Cybersecurity, 2019.

[119] Philipp Morgner, Stephan Mattejat, and Zinaida Benenson. All your
bulbs are belong to us: Investigating the current state of security in
connected lighting systems. arXiv preprint arXiv:1608.03732, 2016.

[120] Christine Morin, Renaud Lottiaux, Geoffroy Vallée, Pascal Gallard,
Gaël Utard, Ramamurthy Badrinath, and Louis Rilling. Kerrighed: a
single system image cluster operating system for high performance
computing. In Euro-Par 2003 Parallel Processing: 9th International Euro-
Par Conference Klagenfurt, Austria, August 26-29, 2003 Proceedings 9,
2003.

[121] BernhardMueller. Hooking android system calls for pleasure and ben-
efit. https://www.vantagepoint.sg/blog/82-hooking-android-
system-calls-for-pleasure-and-benefit. (accessed: 01.09.2019).

[122] Marius Muench. Dynamic binary firmware analysis: challenges & so-
lutions. PhD thesis, Sorbonne université, 2019.

[123] Marius Muench, Dario Nisi, Aurélien Francillon, and Davide
Balzarotti. Avatar 2: A multi-target orchestration platform. In Proc.
Workshop Binary Anal. Res.(Colocated NDSS Symp.), 2018.

[124] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon, and
Davide Balzarotti. What You Corrupt Is Not What You Crash: Chal-
lenges in Fuzzing Embedded Devices. In NDSS, 2018.

[125] Collin Mulliner and Charlie Miller. Fuzzing the phone in your phone
(Black Hat USA 2009), 2009.

[126] Stefan Nagy, Anh Nguyen-Tuong, Jason D Hiser, Jack W Davidson,
and Matthew Hicks. Breaking through binaries: Compiler-quality in-
strumentation for better binary-only fuzzing. In 30th USENIX Security
Symposium, 2021.

https://www.vantagepoint.sg/blog/82-hooking-android-system-calls-for-pleasure-and-benefit
https://www.vantagepoint.sg/blog/82-hooking-android-system-calls-for-pleasure-and-benefit

Bibliography 121

[127] Anh Nguyen-Tuong, David Melski, Jack W Davidson, Michele Co,
William Hawkins, Jason D Hiser, Derek Morris, Ducson Nguyen, and
Eric Rizzi. Xandra: An autonomous cyber battle system for the Cyber
Grand Challenge. IEEE Security & Privacy, 2018.

[128] Zhenyu Ning and Fengwei Zhang. Ninja: Towards Transparent Trac-
ing and Debugging on ARM. In 26th USENIX Security Symposium
(USENIX Security 17), 2017.

[129] Dario Nisi, Antonio Bianchi, and Yanick Fratantonio. Exploring
Syscall-Based Semantics Reconstruction of Android Applications. In
Symposium on Research in Attacks, Intrusion, and Defenses (RAID),
2019.

[130] Dario Nisi, Mariano Graziano, Yanick Fratantonio, and Davide
Balzarotti. Lost in the Loader: The Many Faces of the Windows PE
File Format. In 24th International Symposium on Research in Attacks,
Intrusions and Defenses, 2021.

[131] NISO. NISO RP-31-2021 reproducibility badg-
ing and definitions. https://groups.niso.org/
apps/group_public/download.php/24810/RP-31-
2021_Reproducibility_Badging_and_Definitions.pdf. (ac-
cessed: 15.12.2021).

[132] Paul Olivier, Xuan-Huy Ngo, and Aurélien Francillon. BEERR: Bench
of Embedded system Experiments for Reproducible Research. In 2022
IEEE European Symposium on Security and Privacy Workshops (Eu-
roS&PW), 2022.

[133] Pradeep Sharma Oruganti, Matt Appel, and Qadeer Ahmed.
Hardware-in-Loop Based Automotive Embedded Systems Cybersecu-
rity Evaluation Testbed. In ACM Workshop on Automotive Cybersecu-
rity, 2019.

[134] OSF. Center for open science badges. https://osf.io/tvyxz/wiki/
1.%20View%20the%20Badges/. (accessed: 15.12.2021).

[135] A. Portnoy P. Amini. Sulley fuzzing framework. https://
github.com/OpenRCE/sulley, 2010. (accessed: 01.01.2023).

[136] Fabio Pagani and Davide Balzarotti. Autoprofile: Towards automated
profile generation for memory analysis. ACM Transactions on Privacy
and Security, 2021.

https://groups.niso.org/apps/group_public/download.php/24810/RP-31-2021_Reproducibility_Badging_and_Definitions.pdf
https://groups.niso.org/apps/group_public/download.php/24810/RP-31-2021_Reproducibility_Badging_and_Definitions.pdf
https://groups.niso.org/apps/group_public/download.php/24810/RP-31-2021_Reproducibility_Badging_and_Definitions.pdf
https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/
https://osf.io/tvyxz/wiki/1.%20View%20the%20Badges/
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley

122 122

[137] Thierry Parmentelat, Mohamed Naoufal Mahfoudi, Thierry Turletti,
and Walid Dabbous. A step towards runnable papers using R2lab,
2019.

[138] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-Fuzz: fuzzing
by program transformation. In 2018 IEEE Symposium on Security and
Privacy (SP). IEEE, 2018.

[139] Florian Pester. ELK Herder. 2014.

[140] Brad Spengler Peter Busser. Paxtest v0.9.13. https://
www.grsecurity.net/~spender/paxtest-0.9.15.tar.gz. (accessed:
01.01.2023).

[141] Larry Peterson, Tom Anderson, David Culler, and Timothy Roscoe.
A blueprint for introducing disruptive technology into the internet.
ACM SIGCOMM Computer Communication Review, 2003.

[142] Daniel Pickem, Paul Glotfelter, LiWang, MarkMote, AaronAmes, Eric
Feron, and Magnus Egerstedt. The robotarium: A remotely accessible
swarm robotics research testbed. In 2017 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2017.

[143] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thomp-
son, Howard Trickey, and Phil Winterbottom. Plan 9 from bell labs.
Computing systems, 1995.

[144] Sebastian Poeplau and Aurélien Francillon. Symbolic execution with
SymCC: Don’t interpret, compile! In 29th USENIX Security Symposium
(USENIX Security 20), 2020.

[145] Sebastian Poeplau and Aurélien Francillon. SymQEMU: Compilation-
based symbolic execution for binaries. In NDSS, 2021.

[146] Niels Provos. Improving Host Security with System Call Policies. In
USENIX Security Symposium, 2003.

[147] Qais Qassim, Norziana Jamil, Izham Zainal Abidin, Mohd Ezanee
Rusli, Salman Yussof, Roslan Ismail, Fairuz Abdullah, Norhamadi
Ja’afar, Hafizah Che Hasan, and Maslina Daud. A survey of SCADA
testbed implementation approaches. Indian Journal of Science and
Technology, 2017.

[148] Hany Ragab, Koen Koning, Herbert Bos, and Cristiano Giuffrida.
BugsBunny: Hopping to RTL Targets with a Directed Hardware-
Design Fuzzer. 2022.

https://www.grsecurity.net/~spender/paxtest-0.9.15.tar.gz
https://www.grsecurity.net/~spender/paxtest-0.9.15.tar.gz

Bibliography 123

[149] Ole André V. Ravnås. frida.re. (accessed: 18.02.2020).

[150] Nilo Redini, Aravind Machiry, Ruoyu Wang, Chad Spensky, Andrea
Continella, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni
Vigna. Karonte: Detecting insecure multi-binary interactions in em-
bedded firmware. In 2020 IEEE Symposium on Security and Privacy
(SP), 2020.

[151] Matthew J Renzelmann, Asim Kadav, and Michael M Swift. SymDrive:
Testing Drivers without Devices. In 10th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 12), 2012.

[152] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT
goes nuclear: Creating a ZigBee chain reaction. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 2017.

[153] Jan Ruge, Jiska Classen, Francesco Gringoli, and Matthias Hollick.
Frankenstein: Advanced wireless fuzzing to exploit new bluetooth es-
calation targets. In USENIX Security Symposium, 2020.

[154] Majid Salehi, Luca Degani, Marco Roveri, Daniel Hughes, and Bruno
Crispo. Discovery and Identification of Memory Corruption Vulner-
abilities on Bare-metal Embedded Devices. IEEE Transactions on De-
pendable and Secure Computing, (01):1–1, 2022.

[155] Tobias Scharnowski, Nils Bars, Moritz Schloegel, Eric Gustafson, Mar-
iusMuench, Giovanni Vigna, Christopher Kruegel, ThorstenHolz, and
Ali Abbasi. Fuzzware: Using Precise MMIO Modeling for Effective
Firmware Fuzzing. In 31st USENIX Security Symposium (USENIX Secu-
rity 22), 2022.

[156] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-Assisted Feedback
Fuzzing for OS Kernels. In USENIX Security Symposium, 2017.

[157] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit
testing engine for C. ACM SIGSOFT Software Engineering Notes, 2005.

[158] Rebecca Shapiro, Sergey Bratus, and SeanW Smith. “WeirdMachines”
in ELF: A spotlight on the underappreciated metadata. In 7th USENIX
Workshop on Offensive Technologies (WOOT 13), 2013.

[159] Yan Shoshitaishvili, Antonio Bianchi, Kevin Borgolte, Amat Cama,
Jacopo Corbetta, Francesco Disperati, Audrey Dutcher, John Grosen,
Paul Grosen, Aravind Machiry, et al. Mechanical phish: Resilient au-
tonomous hacking. IEEE Security & Privacy, 2018.

124 124

[160] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. Firmalice-automatic detection of au-
thentication bypass vulnerabilities in binary firmware. In NDSS, 2015.

[161] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Andrew Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, et al. Sok:(state of) the art of war: Offen-
sive techniques in binary analysis. In 2016 IEEE Symposium on Security
and Privacy (SP), 2016.

[162] Shachar Siboni, Vinay Sachidananda, Yair Meidan, Michael Bohadana,
Yael Mathov, Suhas Bhairav, Asaf Shabtai, and Yuval Elovici. Security
testbed for Internet-of-Things devices. IEEE transactions on reliability,
2019.

[163] Marco Simioni, Pavel Gladyshev, Babak Habibnia, and Paulo
Roberto Nunes de Souza. Monitoring an anonymity network: Toward
the deanonymization of hidden services. Digital Investigation, 2021.

[164] Mitchell E Sisle and Edward D McCarthy. Hardware-in-the-loop sim-
ulation for an active missile. Simulation, 1982.

[165] Chad Spensky, Aravind Machiry, Nilo Redini, Colin Unger, Graham
Foster, Evan Blasband, HamedOkhravi, Christopher Kruegel, andGio-
vanni Vigna. Conware: Automatedmodeling of hardware peripherals.
In Proceedings of the 2021 ACM Asia Conference on Computer and Com-
munications Security, 2021.

[166] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing through
selective symbolic execution. In NDSS, 2016.

[167] Lindsay Sterle and Suman Bhunia. On solarwinds orion platform
security breach. In 2021 IEEE SmartWorld, Ubiquitous Intelligence &
Computing, Advanced & Trusted Computing, Scalable Computing &
Communications, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/IOP/SCI), 2021.

[168] Robert Swiecki. honggfuzz. https://github.com/google/
honggfuzz, 2010. (accessed: 01.01.2023).

[169] Saad Talaat. Intercepting system calls and dispatchers.
https://ruinedsec.wordpress.com/2013/04/04/modifying-
system-calls-dispatching-linux/. (accessed: 01.09.2019).

https://github.com/google/honggfuzz
https://github.com/google/honggfuzz
https://ruinedsec.wordpress.com/2013/04/04/modifying-system-calls-dispatching-linux/
https://ruinedsec.wordpress.com/2013/04/04/modifying-system-calls-dispatching-linux/

Bibliography 125

[170] Seyed Mohammadjavad Seyed Talebi, Hamid Tavakoli, Hang Zhang,
Zheng Zhang, Ardalan Amiri Sani, and Zhiyun Qian. Charm: Facili-
tating dynamic analysis of device drivers of mobile systems. In 27th
USENIX Security Symposium (USENIX Security 18), 2018.

[171] Willy Tarreau. Nolibc: a minimal c-library replacement shipped
with the kernel. https://lwn.net/Articles/920158/. (accessed:
31.01.2023).

[172] Microsoft Defender Security Research Team. Attack inception:
Compromised supply chain within a supply chain poses new risks.
https://www.microsoft.com/en-us/security/blog/2018/07/
26/attack-inception-compromised-supply-chain-within-a-
supply-chain-poses-new-risks/, 2018. (accessed: 01.01.2023).

[173] Mathieu Thiery, Vincent Roca, and Arnaud Legout. Privacy implica-
tions of switching ON a light bulb in the IoT world. 2019.

[174] Sam L Thomas, Jan Van den Herrewegen, Georgios Vasilakis, Zitai
Chen, Mihai Ordean, and Flavio D Garcia. Cutting through the com-
plexity of reverse engineering embedded devices. In IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2021.

[175] Ken Thompson. Reflections on trusting trust. Communications of the
ACM, 1984.

[176] @ulexec. ELF crafting advance anti-analysis techniques for the
linux platform. https://github.com/radareorg/r2con2019/blob/
master/talks/elf_crafting/ELF_Crafting_ulexec.pdf, 2019.
(accessed: 01.01.2023).

[177] USENIX. USENIX security ’20 artifact evaluation informa-
tion. https://www.usenix.org/conference/usenixsecurity20/
artifact-evaluation-information. (accessed: 15.12.2021).

[178] USENIX. USENIX security ’22 call for artifacts. https:
//www.usenix.org/conference/usenixsecurity22/call-for-
artifacts. (accessed: 15.12.2021).

[179] Jayakrishna Vadayath, Moritz Eckert, Kyle Zeng, Nicolaas Weideman,
Gokulkrishna Praveen Menon, Yanick Fratantonio, Davide Balzarotti,
Adam Doupé, Tiffany Bao, Ruoyu Wang, et al. Arbiter: Bridging the
Static and Dynamic Divide in Vulnerability Discovery on Binary Pro-
grams. In 31st USENIX Security Symposium (USENIX Security 22), 2022.

https://lwn.net/Articles/920158/
https://www.microsoft.com/en-us/security/blog/2018/07/26/attack-inception-compromised-supply-chain-within-a-supply-chain-poses-new-risks/
https://www.microsoft.com/en-us/security/blog/2018/07/26/attack-inception-compromised-supply-chain-within-a-supply-chain-poses-new-risks/
https://www.microsoft.com/en-us/security/blog/2018/07/26/attack-inception-compromised-supply-chain-within-a-supply-chain-poses-new-risks/
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://github.com/radareorg/r2con2019/blob/master/talks/elf_crafting/ELF_Crafting_ulexec.pdf
https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
https://www.usenix.org/conference/usenixsecurity20/artifact-evaluation-information
https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts
https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts
https://www.usenix.org/conference/usenixsecurity22/call-for-artifacts

126 126

[180] Geoffroy Vallee, Christine Morin, Renaud Lottiaux, J Berthou, and
Ivan Dutka Malen. Process migration based on gobelins distributed
shared memory. In 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID’02), 2002.

[181] Eric Van Hensbergen and Ron Minnich. Grave Robbers from Outer
Space: Using 9P2000 Under Linux. In USENIX Annual Technical Con-
ference, FREENIX Track, 2005.

[182] Stijn Volckaert, Bart Coppens, Alexios Voulimeneas, Andrei Homescu,
Per Larsen, Bjorn De Sutter, and Michael Franz. Secure and efficient
application monitoring and replication. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16), 2016.

[183] Stijn Volckaert, Bjorn De Sutter, Tim De Baets, and Koen De Boss-
chere. GHUMVEE: efficient, effective, and flexible replication. In In-
ternational Symposium on Foundations and Practice of Security, 2012.

[184] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry,
John Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna.
Ramblr: Making Reassembly Great Again. In NDSS, 2017.

[185] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet
Joglekar. An Integrated Experimental Environment for Distributed
Systems and Networks. In Proc. of the Fifth Symposium on Operating
Systems Design and Implementation, 2002.

[186] William Woodruff. How to write a rootkit without really try-
ing. https://blog.trailofbits.com/2019/01/17/how-to-write-
a-rootkit-without-really-trying/. (accessed: 01.01.2023).

[187] WOOT. WOOT ’19 artifact evaluation information. https:
//www.usenix.org/conference/woot19/artifact-evaluation-
information. (accessed: 15.12.2021).

[188] Christopher Wright, William A Moeglein, Saurabh Bagchi, Milind
Kulkarni, and Abraham A Clements. Challenges in firmware re-
hosting, emulation, and analysis. ACM Computing Surveys (CSUR),
2021.

[189] Muhammad Mudassar Yamin, Basel Katt, and Vasileios Gkioulos. Cy-
ber ranges and security testbeds: Scenarios, functions, tools and ar-
chitecture. Computers & Security, 2020.

https://blog.trailofbits.com/2019/01/17/how-to-write-a-rootkit-without-really-trying/
https://blog.trailofbits.com/2019/01/17/how-to-write-a-rootkit-without-really-trying/
https://www.usenix.org/conference/woot19/artifact-evaluation-information
https://www.usenix.org/conference/woot19/artifact-evaluation-information
https://www.usenix.org/conference/woot19/artifact-evaluation-information

Bibliography 127

[190] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
QSYM: A practical concolic execution engine tailored for hybrid
fuzzing. In 27th USENIX Security Symposium (USENIX Security 18),
2018.

[191] Joobeom Yun, Fayozbek Rustamov, Juhwan Kim, and Youngjoo Shin.
Fuzzing of Embedded Systems: A Survey. ACM Computing Surveys,
2022.

[192] Jonas Zaddach. Development of novel binary analysis techniques for
security applications. PhD thesis, 2015.

[193] Jonas Zaddach, Luca Bruno, Aurelien Francillon, Davide Balzarotti,
et al. AVATAR: A Framework to Support Dynamic Security Analysis
of Embedded Systems’ Firmwares. In Network and Distributed System
Security (NDSS) Symposium, 2014.

[194] Michal Zalewski. American fuzzy lop. https://
lcamtuf.coredump.cx/afl/, 2014. (accessed: 01.01.2023).

[195] Long Zhang, Brice Morin, Benoit Baudry, and Martin Monperrus.
Maximizing error injection realism for Chaos engineeringwith system
calls. IEEE Transactions on Dependable and Secure Computing, 2021.

[196] Chengyu Zheng, Mila Dalla Preda, Jorge Granjal, Stefano Zanero, and
Federico Maggi. On-chip system call tracing: A feasibility study and
open prototype. In 2016 IEEE Conference on Communications and Net-
work Security (CNS), 2016.

[197] Min Zheng, Mingshen Sun, and John CS Lui. DroidTrace: A ptrace
based Android dynamic analysis systemwith forward execution capa-
bility. In 2014 international wireless communications and mobile com-
puting conference (IWCMC), 2014.

[198] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong
Zhu, and Limin Sun. FIRM-AFL: High-Throughput Greybox Fuzzing of
IoT Firmware via Augmented Process Emulation. In USENIX Security
Symposium, 2019.

[199] Yaowen Zheng, Yuekang Li, Cen Zhang, Hongsong Zhu, Yang Liu, and
Limin Sun. Efficient greybox fuzzing of applications in Linux-based
IoT devices via enhanced user-mode emulation. In Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2022.

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/

	Introduction
	Background
	Embedded systems
	Firmware
	Peripherals

	The Linux kernel
	Importance of Linux in embedded devices
	The process abstraction
	The memory model
	Filesystem data structures
	Character devices
	Linux asynchronous I/O
	Process migration

	Dynamic binary analysis
	Hardware-in-the-loop
	Emulation
	The avatar2 framework
	Rehosting
	Fuzzing
	Symbolic & concolic execution
	Multi-variant execution environment

	State of the art
	Survey on embedded device security testing using HIL
	Publications
	Published artifacts' status

	Linux firmware rehosting approaches
	Rehosting user mode applications
	Summary

	System call interception
	Motivation
	Main system call interception techniques

	Problem statement

	System call forwarding for Linux processes
	Motivation of the approach
	Motivational example
	Our Approach

	Challenges
	The process duality: between user and kernel mode
	Filtering
	Classification
	Memory forwarding
	Process resources consistency and synchronization

	System call forwarding
	State machines
	Filter & Rules
	Decisions
	Execution order

	Improving Linux-based firmware emulation with process snapshot and syscall forwarding
	Design concept
	Process migration
	The Chestburster Architecture
	Analysis workflow

	Implementation
	Enhancing avatar² for Linux processes
	Process migration
	The QEMU user-mode based tracer
	Protocol
	Executor
	Limitations

	Evaluation
	Execution correctness
	Execution overhead

	Conclusion

	Bench of Embedded system Experiment for Reproducible Research
	Motivations
	Overview
	Computer Testbeds
	Architecture
	User Workflow

	Implementation
	Front Node
	Experiment Nodes
	Physical devices

	Discussion
	Infrastructure security

	Conclusion and future work
	Distributed operating systems
	Performance
	Application

	List of Tables
	List of Figures
	List of Acronyms
	Bibliography

