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Abstract
The first arrival traveltime for the propagation of a wave, in the high frequency approxima-
tion, is described by the eikonal equation, or possibly a variant with coefficients depending
on the medium properties. We present numerical schemes for the computation of the solu-
tion to such eikonal equations. These numerical schemes are based on the Fast Marching
method (FMM), generalized to complex and non-Riemannian anisotropy settings in 3D
media. The FMM is a single pass method, in which the propagation front is discretized
and followed throughout the medium, leading to fast computation time. We also explore
an opposite paradigm for high performance computation, based on a massively parallel
GPU solver.

In particular, we consider the case of seismic pressure waves propagating inside a
geophysical medium, with a propagation speed defined by an anisotropic Hooke tensor.
In this context of geophysics, we propose two numerical schemes, generalizing ideas from
previous schemes and referred to as “semi-Lagrangian” scheme and “Eulerian” scheme.

The semi-Lagrangian scheme can handle anisotropy of fully general shape, but with
a limitation based on the strength of the anisotropy, defined as the ratio between the
fastest and slowest speed achievable depending on the orientation. A review of the known
and tabulated anisotropy properties of geological materials suggests that the method is
applicable in most scenarios of interest. We also consider how the limitation of the semi-
Lagrangian scheme can be removed in 2D by designing geometric 2D stencils adapted to
the anisotropy, and we study the worst case and average case for the cardinality of the
stencils designed by this algorithm.

On the other hand, the Eulerian scheme is limited to anisotropy coming from a Tilted
Transversely Isotropic (TTI) medium and cannot handle more complex elastic parame-
ters, but it does not have any limitation on the strength of the anisotropy. It works by
expressing the TTI eikonal equation as a maximum or minimum of a family of Rieman-
nian eikonal equations, for which efficient discretizations are known. We also consider an
implementation of the Eulerian scheme to massively parallel architectures, leading to a
computation fifty times faster than the sequential FMM implementation, using a single
GPU node. Besides, leveraging similar numerical methods in a different context, we study
an application of the Eulerian scheme to an inverse problem involving motion planning
for the optimization of the configuration of a radar network.
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Abstract (en français)
Le temps de première arrivée pour la propagation d’une onde, dans l’approximation haute
fréquence, est décrit par l’équation eikonale, ou éventuellement une variante dont les
coefficients dépendent des propriétés du milieu. Nous présentons des schémas numériques
pour le calcul de la solution de ces équations eikonales. Ces schémas numériques reposent
sur la méthode du Fast Marching (FMM), généralisée à des contextes complexes mettant
en jeu de l’anisotropie non riemannienne dans des milieux 3D. La FMM est une méthode
en une seule passe, dans laquelle le front de propagation est discrétisé et suivi dans tout le
milieu, ce qui permet un temps de calcul rapide. Nous explorons également un paradigme
opposé pour un calcul de haute performance, qui repose sur un solveur GPU massivement
parallèle.

En particulier, nous considérons le cas d’ondes de pression sismiques se propageant
dans un milieu géophysique, avec une vitesse de propagation définie par un tenseur
de Hooke anisotrope. Dans ce contexte de géophysique, nous proposons deux sché-
mas numériques, généralisant les idées des schémas précédents et appelés schéma “semi-
lagrangien” et schéma “eulérien”.

Le schéma semi-lagrangien peut traiter une anisotropie de forme complètement générale,
mais avec une limitation liée à la force de l’anisotropie, définie comme le rapport entre la
vitesse la plus rapide et la plus lente réalisable en fonction de l’orientation. Un examen
des propriétés d’anisotropie connues et répertoriées des matériaux géologiques suggère
que la méthode est applicable dans la plupart des scénarios d’intérêt. Nous examinons
également comment la limitation du schéma semi-lagrangien peut être supprimée en 2D
en concevant des stencils géométriques 2D adaptés à l’anisotropie, et nous étudions le pire
cas et le cas moyen pour la cardinalité des stencils conçus par cet algorithme.

D’autre part, le schéma eulérien est limité à l’anisotropie provenant d’un milieu TTI
(Tilted Transversely Isotropic) et ne peut pas gérer des paramètres élastiques plus com-
plexes, mais il n’a aucune limitation sur la force de l’anisotropie. Il fonctionne en ex-
primant l’équation eikonale TTI comme un maximum ou un minimum d’une famille
d’équations eikonales riemanniennes, pour lesquelles des discrétisations efficaces sont con-
nues. Nous considérons également une mise en œuvre du schéma eulérien sur des archi-
tectures massivement parallèles, conduisant à un calcul cinquante fois plus rapide que la
mise en oeuvre séquentielle de la FMM, en utilisant un seul noeud de GPU. Enfin, en
utilisant des méthodes numériques similaires dans un contexte différent, nous étudions
une application du schéma eulérien à un problème inverse impliquant la planification du
mouvement pour l’optimisation de la configuration d’un réseau radar.
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Résumé (en français)

Equation eikonale et temps de première arrivée

L’équation eikonale est une équation aux dérivées partielles non linéaire, qui a été consid-
érée pour la première fois en optique géométrique [Bru95]. Dans ce contexte, elle constitue
une généralisation de la loi de Snell pour la propagation d’un rayon de lumière dans un
milieu continu avec indice de réfraction variable. L’équation eikonale peut être considérée
dans un contexte plus général, pour décrire n’importe quelle sorte d’onde qui se propage
dans un domaine muni d’une métrique (i.e. d’une notion de vitesse). Cette équation carac-
térise, pour une propagation d’onde, le temps de première arrivée de cette onde à chaque
endroit du domaine. Les trajets les plus courts au sein du domaine, depuis la source vers
n’importe quelle position, peuvent aussi s’en déduire en se déplaçant perpendiculairement
aux lignes de niveaux du temps de première arrivée.

En géophysique, une équation eikonale peut être obtenue à partir de l’approximation
haute fréquence de l’équation des ondes élastiques, et la métrique correspondante est
définie à partir des propriétés élastiques du milieu géologique. La solution de cette équa-
tion eikonale correspond au temps de première arrivée de l’onde sismique. Comparée
à l’équation eikonale, l’équation des ondes élastiques fournit une plus grande quantité
d’informations sur le phénomène de propagation d’onde : en effet, la solution de l’équation
des ondes élastiques décrit l’amplitude du champ vectoriel de déplacement à chaque in-
stant et à chaque position, et il est possible d’en déduire les temps de première arrivée
comme étant, pour chaque position, le premier instant à partir duquel l’amplitude est non
nulle (voir Figure 1 pour une illustration). Cependant, le calcul de la solution de l’équation
des ondes dans des milieux complexes en trois dimensions a un coût numérique élevé :
l’échelle de la grille de discrétisation doit être significativement plus petite que la longueur
d’ondes des oscillations pour éviter la dispersion numérique, et le pas de temps est majoré
par la condition de stabilité de Courant-Friedrichs-Levy. En revanche, l’équation eikonale
est une équation aux dérivées partielles statique, dont la solution est non-oscillante. Ainsi,
le calcul des solutions de l’équation eikonale peut être effectué pour un coût bien inférieur.

Dans le cadre de cette thèse, je m’intéresse à des équations eikonales pour des métriques
anisotropes, i.e. pour lesquelles la vitesse de propagation de l’onde dépend non seulement
de la position, mais aussi de l’orientation du front d’onde. L’implémentation de solveurs
numériques pour les équation eikonales anisotropes est un problème mathématique délicat.

Etude de milieux anisotropes

Il existe différents modèles pour représenter le sous-sol comme un milieu élastique, avec
des degrés de complexité variables. Du modèle le plus simple au modèle le plus complexe,
on peut citer :

• Milieu élastique isotrope, défini par exemple à partir des deux paramètres de Lamé,

• Milieu elliptique (aussi appelé riemannien),

9



Figure 1: Superposition de la solution de l’équation des ondes élastiques (en noir et blanc)
et de la solution de l’équation eikonale (en rouge), où l’arrière-plan représente la vélocité de
l’onde. Les différents aperçus ont été obtenus aux temps de propagation t = 1.5s (haut),
t = 2s (milieu) and t = 2.5s (bas), pour une source localisée au centre du domaine.

• Milieu transversalement isotrope, qui possède un axe de symétrie par rotation qui
est le plus souvent vertical (VTI), ou bien incliné (TTI),

• Milieu orthorhombique, qui possède trois plans de symétries mutuellement perpen-
diculaires, verticaux ou inclinés,

• Milieu triclinique, qui est la forme d’anisotropie la plus complexe pour les modèles
étudiés dans le cadre des milieux élastiques en géophysique.

10



Pour des ondes sismiques qui se propagent à l’intérieur de la Terre, l’anisotropie doit
être prise en compte pour une meilleure modélisation [BC91]. On identifie deux origines
principales de cette anisotropie :

• Anisotropie intrinsèque : L’anisotropie peut venir naturellement de la forme des
minéraux, en particulier de la structure des cristaux à l’échelle atomique. Par ex-
emple, le cristal d’olivine peut être trouvé dans la partie supérieure du manteau sous
les océans et conduit à une direction préférée jusqu’à 25% plus rapide que les autres
directions, avec un profil de vitesse correspondant à une anisotropie orthorhombique
[Hes64].

• Anisotropie extrinsèque : des structures fines de matériaux isotropes, telles que
les couches sédimentaires, peuvent également affecter le front d’onde de la même
manière que le ferait un milieu anisotrope. Pour les couches sédimentaires, ce pro-
cessus d’homogénéisation conduit généralement à un milieu présentant une symétrie
de rotation le long de l’axe de la couche, ce qui mène à un milieu transverse isotrope.
Les couches sont généralement horizontales, ce qui conduit à un milieu VTI. Cer-
tains déplacements de l’axe de symétrie peuvent également se produire avec les
mouvements tectoniques, conduisant à un milieu TTI. Dans le cas de fractures ou
de sitations tectoniques complexes, l’anisotropie équivalente dérivée du processus
d’homogénéisation peut être encore plus complexe, conduisant à des milieux or-
thorhombiques ou même tricliniques [CC18].

Pour décrire l’anisotropie d’une métrique, on introduit dans cette thèse deux concepts
:

• Force de l’anisotropie : à une position donnée, la force de l’anisotropie est le rapport
entre la vitesse la plus élevée et la vitesse la plus faible en fonction de l’orientation.

• Complexité de l’anisotropie: il s’agit du nombre de paramètres nécessaires pour car-
actériser la métrique : 1 paramètre est nécessaire pour les métriques isotropes, 3
paramètres pour les métriques elliptiques (6 paramètres en cas d’inclinaison pour
définir la rotation), 5 paramètres pour les métriques transverses isotropes (7 si incli-
naison), 9 paramètres pour les métriques orthorhombiques (12 si inclinaison), et 21
pour les milieux tricliniques qui constituent la forme d’anisotropie la plus générale
pour les milieux élastiques.

Ces deux concepts posent des défis distincts pour la réalisation de solveurs eikonaux :
la plupart des solveurs numériques sont limités à une complexité particulière (jusqu’aux
milieux transverses isotropes pour la plupart des schémas numériques existants), et peu-
vent également échouer si la force de l’anisotropie est trop prononcée. En outre, ces deux
concepts de force et de complexité sont indépendants : une anisotropie de forme ellip-
tique peut être plus forte qu’une anisotropie de forme orthorhombique, bien que moins
complexe.
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Etat de l’art

Des algorithmes efficaces pour résoudre l’équation eikonale ont été développés à partir du
concept de “level sets” [Set96]. Les méthodes numériques qui en résultent peuvent être
divisées en deux classes : méthodes itératives et méthodes en une passe, qui généralisent
respectivement les algorithmes de Bellman-Ford et de Dijkstra pour le calcul du temps de
première arrivée dans les graphes.

La méthode itérative la plus connue est sans doute la méthode de Fast Sweeping
(FSM). Initialement introduite dans un cadre isotrope [Zha05], le FSM a été étendu à
l’anisotropie elliptique 2D [TCOZ03]. Dans le contexte de la géophysique, la FSM a été
étendue aux métriques 2D transverse isotrope inclinée [LCZ14], 3D transverse isotrope in-
clinée [PWZ17] avec un schéma de type Lax-Friedrich du troisième ordre, 3D orthorhom-
bique inclinée [WYF15] en la traitant comme un problème itératif sur de l’anisotropie
elliptique, et plus récemment [LBLM] pour la métrique 3D orthorhombique inclinée avec
une précision d’ordre élevé par une méthode Galerkin discontinue. Récemment, des méth-
odes itératives pouvant tirer parti d’une architecture de calcul massivement parallèle, no-
tamment les GPU, ont été proposées dans le cadre isotrope [JW08], et pour l’anisotropie
elliptique [GHZ18].

D’autre part, la méthode en une passe la plus connue est sans doute la méthode
de Fast Marching (FMM) [Tsi95, Set96], mais l’extension de la FMM aux géométries
anisotropes s’est avérée plus difficile. Les premières études [KS98, SV01, AM12] im-
pliquent des schémas numériques avec de larges stencils, ce qui entraîne une augmen-
tation des temps de calcul et une réduction de la précision, et annule donc les avan-
tages de la FMM. Plus récemment, dans [Wah20], un algorithme utilisant la FMM a été
développé pour l’anisotropie 3D transverse isotrope inclinée : son principe de base repose
sur l’interprétation de cette anisotropie comme une correction d’une anisotropie elliptique,
et un algorithm de point fixe est proposé pour implémenter cete correction. Bien que les
auteurs illustrent numériquement que l’algorithme peut converger lorsque l’anisotropie
considérée est proche d’une anisotropie elliptique verticale, il n’y a pas de preuve formelle
de la convergence de l’itération du point fixe qu’ils mettent en œuvre.

Ces dernières années, des extensions de la FMM à l’anisotropie elliptique 2D ont été
proposées [Mir14b]. D’autres améliorations ont été apportées à l’anisotropie elliptique 3D
[Mir14a, Mir19], et à divers types d’anisotropie anelliptique dégénérée liée à la pénalisation
de la courbure [Mir18]. Grâce aux techniques issues de la géométrie des réseaux, la taille
du stencil de discrétisation est sous contrôle, évitant ainsi toute perte de temps de calcul et
de précision, même dans le cas d’une très forte anisotropie (avec une vitesse de propagation
potentiellement dix fois plus rapide dans la direction rapide par rapport aux directions
lentes).
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Contributions

Dans cette thèse, nous généralisons les outils utilisés dans ces schémas numériques pour
développer des solveurs pour l’équation eikonale basés sur la FMM, qui peuvent être ap-
pliqués dans le cadre de l’anisotropie rencontrée en géophysique. La prise en compte de
l’anisotropie est nécessaire pour produire des modèles réalistes de l’intérieur de la Terre.
La force et la complexité de l’anisotropie apportent cependant des difficultés techniques
pour la conceptions de schémas numériques qui vérifient les propriétés de monotonie et
de causalité, qui sont nécessaires pour l’utilisation de la FMM.

Le premier schéma numérique, présenté en Section 6 [DCC+21], repose sur la méth-
ode semi-lagrangienne. Il permet de prendre en compte une anisotropie qui provient
d’un tenseur de Hooke 3D triclinique, ce qui constitue la forme d’anisotropie la plus
générale pour des milieux élastiques. Cependant, il y a une contrainte liée à la force de
l’anisotropie, avec une limitation qui dépend du stencil utilisé dans le schéma de discréti-
sation numérique aux différences finies : les stencils doivent vérifier une propriété dite
d’angle aigu par rapport à la métrique pour que le schéma numérique correspondant soit
causal, et donc puisse être résolu en une passe par la FMM. Des exemples de stencils util-
isés sont présentés en Figure 2. Dans le cadre d’une anisotropie trop forte pour être traitée
par ces stencils, l’utilisation de stencils encore plus larges pourrait être considérée, mais
augmenterait notablement les temps de calcul de la FMM. Dans ce cas, il est préférable
de se reporter sur une méthode itérative telle que la FSM, ce qui perd les garanties liées à
la FMM mais permet de calculer la solution à partir d’un stencil plus simple. Cependant,
nous avons vérifié que la plupart des matériaux usuellement rencontrés en géophysique
peuvent être traités par les stencils présentés en Figure 2.

Pour l’utilisation de la méthode semi-lagrangienne dans le cadre de la géophysique,
une difficulté technique est liée au calcul de la métrique locale. En effet, celle-ci est na-
turellement écrite comme la maximisation d’une forme linéaire soumise à une contrainte
non convexe. Pour pouvoir calculer efficacement sa valeur, on reformule la contrainte sous
une forme fortement convexe, plus simple à manipuler.

Figure 2: 3D stencils de complexité croissante, utilisés dans le schéma aux différences
finies pour l’équation eikonale utilisant la méthode semi-lagrangienne.
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Dans le cadre de la dimension 2, on montre comment la limitation du schéma précé-
dent, liée à la force de l’anisotropie, peut être surmontée. On présente en Section 7
[DMM22] un algorithme pour calculer efficacement des stencils 2D strictement aigus par
rapport à une métrique. Grâce à l’utilisation de stencils strictement aigus, il est possi-
ble de garantir que le schéma numérique correspondant est monotone et causal, même
pour des petites perturbations du schéma potentiellement causées par la factorisation à
la source ou la recherche d’un ordre élevé de convergence. Dans ce travail, on calcule
la cardinalité des stencils construits par l’algorithme en fonction de l’anisotropie de la
métrique, en moyenne et dans le pire des cas selon les rotations de la métrique par rap-
port à la grille de discrétisation.

Figure 3: Raffinement d’un triangle (gauche). Stencil 2D initial (centre gauche). Premiers
niveaux de raffinement récursifs de T1 (centre droit). Stencil défini par un raffinement de
profondeur 5 (droite).

En Section 8 [DMM22], on présente un autre schéma numérique, qui repose sur une
méthode eulérienne, pour résoudre l’équation eikonale dans le cadre de la géophysique.
Cette fois, l’anisotropie considérée ne peut pas être plus complexe que celle des mi-
lieux transverses isotrope inclinés. Cependant, il n’y a aucune limitation sur la force
de l’anisotropie comme dans la méthode semi-lagrangienne. De plus, grâce à la simplic-
ité de la structure eulérienne, le schéma peut aussi être implémenté avec une accélération
GPU. Ce schéma numérique repose sur des propriétés géométriques des surfaces de lenteur
des milieux transverses isotropes inclinés, qui sont des représentations locales de l’inverse
de la vitesse en fonction de l’orientation. On montre que la surface de lenteur d’une
métrique TTI peut toujours être représentée localement comme une enveloppe d’ellipses,
voir Figure 4. Or, une surface de lenteur elliptique correspond à une métrique rieman-
nienne, pour laquelle l’équation eikonale correspondante peut être résolue efficacement
grâce aux outils de la méthode eulérienne. Le schéma numérique pour résoudre l’équation
eikonale dans le cas transverse isotrope incliné peut alors s’écrire localement comme un
problème d’optimisation sur les métriques riemanniennes qui correspondent aux ellipses
de l’enveloppe.

L’implémentation GPU est présentée en Section 9 [MGB+21]. La FMM n’est pas
adéquate pour le calcul GPU à cause de sa nature séquentielle, et on utilise plutôt un
schéma itératif sur des blocs de points définis sur la grille numérique discrète. Les dif-
férents blocs sont traités dans un ordre qui suit l’évolution du front, de manière semblable
à la FMM, mais sans avoir la garantie de calcul en une seule passe. L’accélération GPU
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Figure 4: Surfaces de lenteur (en rouge). Le schéma numérique utilise une approximation
de ces surfaces par une intersection d’ellipses (gauche) ou une union d’ellipses (droite),
représentée en bleues.

permet des temps de calcul 50 fois plus rapides que pour une implémentation séquentielle,
avec l’utilisation d’un noeud GPU.

Enfin, on présente une application dans un autre contexte liée à la planification de
mouvement, avec un algorithme qui calcule la configuration optimale d’un réseau de radars
contre les trajectoires menaçantes au sein de ce réseau, voir Figure 5. Le problème est
vu comme un jeu à deux joueurs entre l’attaquant et le réseau de radar. Les trajec-
toires optimales sont déterminées par l’équation eikonale, qui est définie par une métrique
anisotrope liée à la probabilité de détection par le réseau de radars. Ce cadre fournit un
exemple de problème inverse lié à une métrique anisotrope : le choix de la configuration
optimale du réseau de radars correspond à l’optimisation de paramètres qui définissent la
métrique.

Perspectives

Plusieurs extensions du travail réalisé en thèse sont en considération. Tout d’abord, une
extension de la méthode eulérienne pour l’anisotropie orthorhombique semble possible,
alors que l’anisotropie qu’on peut actuellement considérer doit être transverse isotrope in-
cliné ou moins complexe. En effet, les coupes 2D d’un tenseur de Hooke orthorhombique
sont des tenseurs transverses isotropes inclinés. En généralisant le procédé, il faudrait
alors résoudre à chaque point de la grille un problème d’optimisation qui est soit une
minimisation en 2D, une maximisation en 2D, ou un problème de point-selle en min-max,
à la place de l’actuel problème de maximisation ou de minimasation en 1D.

Il est aussi possible d’utiliser notre solveur eikonale pour des applications dans des
problèmes inverses en imagerie sismique. L’anisotropie joue un rôle crucial dans la croûte
terrestre, et des solveurs eikonaux anisotropes peuvent être utilisés dans le cadre de la to-
mographie des temps de première arrivée et d’algorithmes de stéréotomographie [Nol08],
pour prendre en compte l’anisotropie non seulement dans la modélisation, mais aussi dans
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Figure 5: En bleu, position des radars. En rouge, trajectoire la plus menaçante (par
rapport à la probabilité de détection le long de la trajectoire) parmi toutes les trajectoires
depuis l’anneau extérieur à l’anneau intérieur. La Figure de gauche montre la carte
d’élevation de la région, et la Figure de droite montre la probabilité de détection par le
réseau de radars.

le problème d’inversion. De plus, l’implémentation GPU réduit grandement les temps de
calcul pour le solveur eikonal, ce qui peut permettre de résoudre plusieurs problèmes
inverses simultanément, et aller vers l’étude des propriétés statistiques telles que les esti-
mations d’incertitudes pour le problème inverse [TBM19a].

Enfin, un schéma numérique aux différences finies complètement original pour l’équation
des ondes élastiques est en considération. Il repose sur la décomposition de Selling du
tenseur de Hooke, qui permet de séparer le tenseur en une somme de termes pour lesquels
une approximation aux différences finies est possible, de manière similaire à la façon
dont la décomposition de Selling a été utilisée dans le cadre de la méthode eulérienne
pour décomposer une matrice qui définit une métrique riemannienne. Des tenseurs de
Hooke avec une anisotropie complètement générale peuvent être considérés, sans limita-
tion. Des algorithmes pour l’équation des ondes élastiques anisotrope sont déjà consid-
érablement étudiés, mais ce nouveau schéma numérique peut être intéressant en tant que
premier schéma aux différences-finies pour la prise en compte de l’anisotropie générale
dans l’équation des ondes élastiques.
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Preamble
This PhD manuscript is based on several publications which have been written during
my PhD training. Some are already published, while some are still under review. For the
reader to have an idea of the general content of this work, this manuscript is structured
as follows: we start with a general overview of the work performed during the PhD,
including a state-of-the-art on numerical solvers for the eikonal equations and applications
in geophysics, and a summary of my contributions, before presenting conclusions and
perspectives. The detail of my contribution is presented afterwards in dedicated chapters
based on the different publications which were realized.
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Notations and abbreviations
In the physical space, we use the following notations:

• E := Rn is the ambient space (usually with n = 3).

• Ω ⊆ E is the physical domain in which the wave propagation occurs, with a subset
S ⊆ Ω corresponding to the source of the propagation (and usually S = {0}).

• Letters x, y ∈ Ω are used for the position in the physical domain.

• Letters v, w ∈ E are used for the velocity vector (or the orientation in case of a
normalized vector) in the physical domain.

• u : E→ [0,+∞] is the first arrival traveltime of the wave.

In the discretized space, we use the following notations:

• X ⊆ hZn, with h > 0, is the discretized domain corresponding to Ω, and ∂X is a
discretization of S corresponding to the set of source points for the propagation.

• Letters p, q ∈ X are used for the position in the discretized domain.

• Λ : RX → RX is the update operator, considered in the finite-difference setting as
ΛU = U , see (22).

• F is a scheme, considered for the finite-difference setting FU = 0.

• U : X → [0,+∞] is the numerical approximation of the first arrival traveltime of
the wave, see (31).

We also use the following mathematical notations:

• Sn denotes the set of n × n symmetric matrices, S+
n for symmetric semi-definite

matrices, and S++
n for symmetric positive definite matrices.

• ‖v‖M :=
√
〈Mv, v〉 is the Riemannian norm of a vector v with respect to M ∈ S++

n ,
with 〈., .〉 being the Euclidean scalar product.

• ‖v‖2 :=
√∑

i

v2
i is the L2 norm of a vector v.

In the context of geophysics, we use the following notations:

• cijkl, with i, j, k, l ∈ {1, 2, 3} is the Hooke tensor and ρ is the density, defining the
elastical properties of a 3D medium, see (11).
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• We define the matrix mc(v) ∈ S3, with c a Hooke tensor and v ∈ R3, by mc(v)ik :=∑
j,l

cijklvjvl, see (14).

In addition, we use the following abbreviations:

• FMM: Fast Marching method

• FSM: Fast Sweeping method

• GPU: Graphics Processing Unit

• TI: transversely isotropic

VTI: vertically transversely isotropic

TTI: tilted transversely isotropic

• TOR: tilted orthorhombic
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1 Generalities on the eikonal equation

1.1 Eikonal equation

The eikonal equation is a non-linear partial differential equation which has been first
considered in geometric optics [Bru95]. In that context, it represents a generalization of
Snell’s law for the propagation of a light ray in a continous medium with varying refractive
indices. The eikonal equation can be considered in more general settings, for any kind of
wave propagation inside a domain equipped with a metric (i.e. a notion of speed). With
this equation, one can calculate the first arrival traveltime of the wave everywhere in the
domain. The shortest path from the origin of the propagation to another position can also
be deduced by moving perpendicularly to the level sets of the first arrival traveltime. In
this work, we consider metrics that are anisotropic, meaning that the path length they de-
fine depends not only on the position, but also on the orientation of the path at each time.

Before writing the eikonal equation in its general form, we present and discuss some
useful mathematical definitions:

• A gauge is a 1-homogenous, convex and lower semi-continuous application F : E→
[0,∞], with F (0) = 0 and positive otherwise. A gauge is the association of a travel
cost to a velocity. In applications to seismic models, all the considered gauges are
finite and symmetric (i.e. F (−x) = F (x)). In contrast, infinite and non-symmetric
gauges are encountered in Section 10 for vehicle models.

• The unit ball for a gauge F is the compact convex set B := {v ∈ E, F (v) ≤ 1}.
The unit ball is the set of all possible velocities for a cost less than or equal to 1.
A gauge is said isotropic if its unit ball is a disc, meaning that all directions are
equivalent. Otherwise, it is anisotropic if there are preferential directions. Some
examples are presented in Figure 6 in the isotropic, Riemannian and transverse
isotropic cases, and Figure 7 for a non-symmetric gauge and a gauge related to
vehicle models.

• A metric on Ω is an application F of the form:

F =

{
Ω× E→ [0,∞]
(x, v) 7→ Fx(v)

(1)

such that Fx is a gauge for all x ∈ Ω, with the corresponding unit balls varying
continuously with x according to the Hausdorff distance1.

• A path from x ∈ Ω to y ∈ Ω is a locally Lipschitz application γ : [0, 1] → Ω with
γ(0) = x and γ(1) = y.

1The Hausdorff distance dH between two non-empty subsets X and Y of a metric space (M,d) is
defined as:

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)}
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• The cost of the path γ is defined as

C(γ) :=

∫ 1

0

Fγ(t)(γ
′(t))dt. (2)

• The distance dF between x and y corresponds to the minimal cost to travel from x
and y: dF(x, y) := min{C(γ), γ path from x to y}. The paths which correspond to
this minimum are the shortest paths from x to y. Formally, dF is a quasi-distance:
it is homogenous and satisfies the triangular inequality, but is not necessarily sym-
metric and can have infinite values. In this work, the non-symmetry and infinite
cost issues only occur for the vehicle models in Section 10.

• The first arrival traveltime, starting from the origin subset S ⊂ Ω, is the function:

u :

{
Ω→ [0,∞]
x 7→ dF(S, x)

(3)

We often choose S = {0}. In other words, the propagation front starts from a single
point 0, which is the origin of the coordinate system.

The first arrival traveltime u is not always differentiable, even for smooth metrics.
In particular, u is non-differentiable if there are several optimal paths going to the same
position, and this position is called “cut-locus”, see Figure 8 for an example with a smooth
isotropic metric.

The eikonal equation, however, is not written with the metric F , but with what we
can define as the dual F∗ of the metric, defined as:

• The dual of a gauge F is the gauge F ∗ defined by:

F ∗(v) = sup{〈v, w〉 , w ∈ E, F (w) ≤ 1} (4)

The dual gauge is the association of a travel cost to a slowness (i.e. the inverse of a
velocity).

• The dual of a metric F is the metric F∗ which associates the dual gauge at each
position.

This notion of duality can be seen as a special case of Legendre-Fenchel duality2. Note
also that this is an involution: F ∗∗ = F .

2The Legendre-Fenchel dual of a convex function f : E →]−∞,∞] is defined as

f∗LF (x) = sup
y
〈x, y〉 − f(y).

The relation with norm duality, considered in (4) and applicable only to 1-positively-homogeneous F , is
that

1

2
F ∗(x)2 = sup

y
〈x, y〉 − 1

2
F (y)2.
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Figure 6: Examples of unit balls of gauges in the isotropic and Riemannian cases, and
one corresponding to the dual gauge in the transverse isotropic case (see Section 2.3).

Figure 7: Examples of unit balls of gauges for a non-symmetric gauge, and for a gauge
taking infinite values related to vehicle model in a 3D space with the vertical axis repre-
senting the orientation of the vehicle (see Section 10).

Figure 8: Left: visual representation (in a 2D physical space) of an isotropic metric
through a color map, with the color indicating the radius of the unit ball of the gauge
at each position, i.e. the isotropic velocity of the wave (for a cost equal to 1). Right:
corresponding first arrival traveltime in this physical space, with a source point to the
left. A cut-locus can be observed behind (relative to the source point) the area with low
velocity, and corresponds to the location in which two distinct shortest paths are possible,
as represented by the two example of shortest paths.

We can now present the eikonal equation: the first arrival traveltime u is solution
to the eikonal equation (in the sense of viscosity solutions [CEL84]), which is a partial
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Figure 9: Example of viscosity solution u in blue, with test-functions ψ ∈ C2(Ω) in green
(from below) and φ ∈ C2(Ω) orange (from above), considering here the isotropic metric
F∗x(v) = ‖v‖2.

differential equation of Hamilton-Jacobi-Bellman type, static and of first-order, and is
written through the dual metric

F∗x(∇u(x)) = 1, (5)

for all x ∈ Ω \ S, where S is the collection of source points. The point source boundary
conditions u(x) = 0 is applied at the sources points x ∈ S, and outflow boundary condi-
tions are used on ∂Ω.

We briefly present the concept of viscosity solutions: it represents a way to apply a dif-
ferential operator to a non-differentiable function, through the use of smooth test-functions
approaching the solution from below and from above. u is solution of F∗x(∇u(x)) = 1 in
the sense of viscosity solutions should be understood as follows: let φ ∈ C2(Ω) arbitrary.
If u−φ attains its minimum at q ∈ Ω, then F∗q (∇u(q)) ≥ 1. If φ−u attains its minimum
at q ∈ Ω, then F∗q (∇u(q)) ≤ 1. Illustrations of these two cases (approach from below and
from above) are presented in Figure 9 for an isotropic metric. With these requirements,
local minima are not allowed (except for source points, which we consider as part of the
boundary of the domain), and the solution must be continuous.

In Table 1, we present a characterization of the various concepts (gauge, unit ball of
the gauge, metric, dual metric and eikonal equation) in specific settings (isotropic, Rie-
mannian and general cases).

An essential property of the first arrival traveltime is the fact that a subpath of an
optimal path is also an optimal path, which is called the Bellman’s optimality principle
and is helpful to establish the Lagrangian numerical scheme as in Section 3.2. It can be
written as such:

u(x) = inf
y∈∂V(x)

(dF(y, x) + u(y)), (6)

for V(x) any neighbourhood of x which does not intersect the starting area ∂Ω.
From the knowledge of the first arrival traveltime, it is also possible to deduce the

shortest paths by backtracking, i.e. by performing a gradient descent with respect to the
metric, which is an ordinary differential equation of the form:

γ′(t) = dF∗γ(t)(∇u(γ(t))), (7)

26



Isotropic Riemannian General
Gauge F (v) = 1

c
‖v‖2 F (v) = ‖v‖M F (v) gauge

Unit ball of the gauge Disk with radius c Ellipse defined from M B compact convex
Metric Fx(v) = 1

c(x)
‖v‖2 Fx(v) = ‖v‖M(x) Fx(v) metric

Dual metric F∗x(v) = c(x) ‖v‖2 F∗x(v) = ‖v‖M−1(x) F∗x(v)

Eikonal equation ‖∇u(x)‖2 = 1
c(x)

‖∇u(x)‖M−1(x) = 1 F∗x(∇u) = 1

Table 1: Characterization of the isotropic and Riemannian metrics, and a general one. For
the isotropic case, we define: c(x) ∈ R∗+, and for the Riemannian case, we define: M(x)
symmetric definite matrix (and the ellipse defined from M is the ellipse with semi-axes
of direction Xλ and length λ−

1
2 , where Xλ and λ are the eigenvectors and corresponding

eigenvalues of M).

where dF∗ is denoting the differential of the dual metric (x, v) 7→ F∗x(v) with respect to
v.

1.2 Applications of the eikonal equation

Computing the first arrival traveltime, as well as the corresponding optimal paths, is a
task of interest in various domains, such as: medical image segmentation [Mir14b], model-
ing of bio-physical phenomena [SKD+07] and motion planning control problems [AM12].
This latter case is studied in Section 10, for the computation of threatening trajectories
for vehicles trying to move undetected in a zone monitored by a radar network. Illustra-
tions are presented in Figure 10. We study the best configuration of this radar network
against the threatening trajectories.

Several applications also exist in the context of geophysics: eikonal solvers can be used
for earthquake hypocenter relocation through backpropagation of the data recorded at
the surface by seismic stations[MvN92], asymptotic approximation of Green’s functions
for Kirchhoff migration to build high resolution images in seismic exploration [Bey87,
Ble87, LOP+03], tomographic inversions to determine seismic wave velocities from global
and regional scale [Nol08] to exploration and near surface scale targets [BL98, TNCC09,
LVF13]. An example of application in seismic tomography is shown in Figure 11: the
Earth interior cannot be known physically, but it can be understood through the study
of seismic waves propagating inside the Earth. From that, the position and properties of
the different layers of the Earth have been assessed.

Computing first arrival traveltimes for wave propagation as in the subsurface leads
naturally to consider anisotropic metrics. These applications are the main motivation for
the work performed during this PhD, which is presented afterwards.

1.3 State-of-the-art of eikonal solvers

We propose a short review of existing strategies to compute numererically first arrival
traveltimes. First, we mention an alternative option to the solution of the eikonal equa-
tions: the ray-tracing method [Cer05], which consists in directly computing optimal paths
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Figure 10: Most threatening trajectory in a radar network. In blue, the location of radars.
In red, the most threatening trajectory (with regard to the probability of detection along
the path) among all paths from the outside ring to the inner ring. Left Figure shows
the elevation map of the region, and right Figure shows the probability of detection from
the radar network. In Section 10, we study how to optimize the parameters of the radar
network against the most threatening trajectories.

Figure 11: Simplified view of the Earth interior with examples of seismic phases (with
names relative to to the phase types P and S, and the number of reflections at disconti-
nuities: inner/outer core, core/mantle, surface), from [SW09].

in the domain. However, several drawbacks have been identified: one ray does not neces-
sarily correspond to the first arrival traveltime, the computation time increases strongly
when many travel paths to many points are needed, and calculations can be difficult in
shadow zones which can occur even in smooth media. These issues no longer occur when
considering numerical schemes for the eikonal equation. On the other hand, computing
later arrival traveltimes with an eikonal solver is a difficult problem [RS04], and the ray
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method is better suited in that case.

For the eikonal equation, the first finite-difference scheme has been developed by Vi-
dale [Vid88]. It works only for isotropic metrics, and with first-order accuracy. This solver
works by induction on the boundary of a square expanding from the source point. It has
later been extended to anisotropy [Lec93]. However, the correct solution is not necessarily
computed if the anisotropy is too strong, or in case of heterogeneities: causality cannot
be guaranteed whenever a ray goes back into the expanding square.

In [OS91], the isotropic eikonal equation is solved by treating it as a dynamic (time-
dependent) Hamilton-Jacobi equation, with an “essentially non-oscillatory” (ENO) scheme.
This approach has been extended to VTI metrics and high order accuracy in [DS97],
with the “down & out” (DNO) strategy. A post-treatment (PS) is added in [KC99], with
second-order accuracy, resulting in the ENO-DNO-PS scheme, which was extended to TTI
metrics in [Kim99]. However, the method is computationally expensive, and algorithms
for the static (no time dependency) eikonal equation have been found to be more efficient.

More efficient algorithms for the static eikonal equation have been developed thanks
to the level-set framework [Set96]. The resulting numerical methods can be divided into
two classes: iterative methods and single pass methods, which respectively generalize the
algorithms of Bellman-Ford and of Dijkstra for the computation of the first arrival trav-
eltime in graphs.

The best known iterative method is presumably the fast sweeping method. Originally
introduced in isotropic settings [Zha05], the fast sweeping method (FSM) has been ex-
tended to 2D elliptic anisotropy [TCOZ03]. In the context of geophysics (with metrics
detailed in the next section), the FSM has been extended to 2D TTI metrics [LCZ14], 3D
TTI metrics [PWZ17] with a third-order Lax-Friedrich fast sweeping scheme, 3D TOR
metric [WYF15] by treating it as an iterative problem on elliptic anisotropy, and more
recently [LBLM] for the 3D TOR metric with high-order accuracy with a discontinuous
Galerkin method. Other iterative methods include the adaptive Gauss-Seidel iteration
[BR06], or the buffered fast marching method [Cri09]. Recently, iterative methods which
can take advantage of massively parallel computational architecture, GPU in particular,
have been proposed in the isotropic settings [JW08], and for elliptic anisotropy [GHZ18].

On the other hand, the best known single pass method is presumably the fast marching
method (FMM) [Tsi95, Set96], but the extension of the FMM to anisotropic geometries
has proved more difficult. Early studies [KS98, SV01, AM12] involve numerical schemes
with wide stencils, leading to increased computation times and reduced accuracy, and
therefore negating many of the advantages of the FMM. More recently in [Wah20], an
algorithm using the FMM has been developed for the 3D TTI anisotropy: it works by
solving a fixed point problem on non-tilted elliptic anisotropy. While the authors illus-
trate numerically that the algorithm can converge when the considered anisotropy is close
from a non-tilted elliptic anisotropy, there is no formal proof of convergence of the fixed
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point iteration they implement.

In the recent years, extensions of the FMM to 2D anelliptic anisotropy have been
proposed [Mir14b]. Other improvements have been done with 3D elliptic anisotropy
[Mir14a, Mir19], and for various types of degenerate anelliptic anisotropy related with
curvature penalization [Mir18]. With techniques from lattice geometry, the size of the
discretization stencil is kept under control, thus preventing any loss in computation time
and accuracy, even in case of a very strong anisotropy (with propagation speed potentially
ten times faster in the fast direction compared with the slow directions), see Section 7. In
this thesis, we generalize the tools used in this later numerical scheme to develop numeri-
cal schemes based on the FMM for metrics with different types of anisotropy, encountered
in geophysics.

2 Eikonal equation in the frame of geophysical applica-
tions

2.1 First arrival traveltime

In the context of geophysics, an eikonal equation can be obtained as the high-frequency
approximation of the elastic wave equation, with the underlying metric defined by the
elastic properties of the geological medium. The solution to this eikonal equation corre-
sponds to the first arrival traveltime of the wave. Compared with the eikonal equation,
the elastic wave equation gives more information on the behaviour of a seismic wave.
Indeed, the solution to the elastic wave equation gives the amplitude of the wave at any
time and any position, and the first arrival traveltime can be deduced from it as, for each
position, the first time that the amplitude is non-zero, see Figure 12 & 13 for illustrations.
However, computing the solution to the wave equation in three dimensional complex me-
dia can be numerically expensive: the scale of the discretization grid must be significantly
smaller than the oscillation wavelength to prevent numerical dispersion, and the time step
is bounded by the Courant-Friedrichs-Levy stability condition. In contrast, the eikonal
equation is a static partial differential equation, with a non-oscillatory solution. For these
reasons, solutions to the eikonal equation can typically be computed at a much lower cost.

The elastic properties of a medium are usually characterized by the density ρ(x) and a
fourth-order elasticity tensor, called Hooke tensor and denoted by cijkl(x), where i, j, k, l ∈
{1, 2, 3}. We present the properties of the Hooke tensor in more details in Section 2.3.

The amplitude displacement vector of a seismic wave is denoted by Ui(x, t) (along the
i-th coordinate axis). First, from Newton’s law, we have:

ρ∂ttUi = Fi +
∑
j

∂jσij, (8)

where F is the source field and σ is the stress tensor. From Hooke’s law, we also have

σij =
∑
k,l

cijklεkl, (9)
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Figure 12: Superposition of the solution to the elastic wave equation (in black and white)
and the solution to the eikonal equation (in red), with the background representing the
velocity of the wave. The different snapshots are obtained at time: t = 1.5s (top), t = 2s
(middle) and t = 2.5s (bottom), for a propagation starting from the middle of the domain.
Details on the numerical simulation can be found in Section 6.

where ε is the strain tensor, related to the amplitude displacement vector by

ε =
1

2
(∇U +∇U>). (10)

This relation between the stress tensor and the strain tensor (9) is a behavioral law, in
the context of linear elastodynamic.

31



Figure 13: Example of seismogram, with the indication of the first arrival traveltime.

From these equations, we deduce the elastic wave equation, which is an equation for
the displacement vector U , of the form

ρ∂ttUi −
∑
j,k,l

∂j(cijkl∂lUk) = Fi, (11)

The eikonal equation can be obtained from a high-frequency approximation of the
elastic wave equation (following [Sla03]). First, we consider the time Fourier transform,
for an angular frequency ω, as

U(x, t) := Ũ(x, ω),

which gives the elastic wave equation in the frequency domain

ρω2Ũi +
∑
j,k,l

∂j(cijkl∂lŨk) = 0,

considered away from any external source field, i.e. F = 0.
We then consider the ray ansatz:

Ũ(x, ω) = eiωu(x)

+∞∑
n=0

A(n)(x)(iω)−n,

where A(n)(x) denotes the vectorial amplitude coefficients and u(x) is the phase function.
In the context of high-frequency approximation, we consider only the first term, which
means

Ũ(x, ω) = A(x)eiωu(x),

for a vectorial amplitude coefficient A := A(0).
Note that u(x) = t represents the moving wavefront at time t, and therefore u(x) is

the traveltime of the propagating wave.
When inserting the ray ansatz into the elastic wave equation, we get(∑

j,k,l

cijkl∂ju∂luAk − ρAi
)

+(iω)−1
(∑
j,k,l

cijkl∂ju∂lAk +
∑
j,k,l

∂j(cijkl∂luAk)
)

+(iω)−2
(∑
j,k,l

∂j(cijkl∂lAk)
)

= 0, (12)
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which must be satisfied for any frequency ω. In the high-frequency approximation, we
can consider only the first term in (12), which gives∑

j,k,l

cijkl∂ju∂luAk − ρAi = 0,

which can also be written as an equation on the vectorial amplitude coefficient A as∑
k

(∑
j,l

cijkl∂ju∂lu− ρ Id
)
Ak = 0. (13)

A necessary condition for (13) is the Christoffel equation: the first arrival traveltime
of the seismic wave, still denoted by u(x), is solution to

det(ρ Id−mc(∇u)) = 0, where mc(p)ik :=
∑
j,l

cijklpjpl (14)

However, not only the first arrival traveltime is solution of (14), but also later arrival
traveltimes corresponding to arrival traveltimes of qS-waves.

Note that by setting the second term of (12) to zero as well, we recover a transport
equation for the amplitude. The third term in (12) can also be taken into account for
a better consideration of the effect of a finite frequency for the traveltime in the high-
frequency approximation.

We present an alternative writing of the Christoffel equation. This particular formu-
lation will not be used afterwards, but is still interesting to understand its relation to the
first arrival traveltime. The Christoffel equation can be factored as (see [Sla03]):

(‖p‖2
2 −

1

v2
1(x, p

‖p‖2
)
)(‖p‖2

2 −
1

v2
2(x, p

‖p‖2
)
)(‖p‖2

2 −
1

v2
3(x, p

‖p‖2
)
) = 0, (15)

where p := ∇u is the slowness vector, and v1, v2, v3 correspond to the velocities of the
three types of waves propagating in anisotropic media.

This factoring requires a positivity assumption on the Hooke tensor: v1, v2, v3 must be
real and positive. The separability assumption is also required for our numerical schemes,
to distinguish the fastest velocity from the others: max{v1, v2} < v3, where by convention
v1 ≤ v2 ≤ v3. See Section 8 for more details on positivity and separability. All three
velocities correspond to eikonal equations, of the form:

‖p‖2 =
1

vi(x,
p
‖p‖2

)
.

The fastest velocity corresponds to the propagation of qP-wave (quasi-pure pressure wave)
and consequently the first arrival traveltime, which is the equation of interest in our case.
The other two velocities corresponds to qSV and qSH-waves (quasi-pure vertical and
horizontal shear waves), with later arrival traveltimes. It is usually possible to factorize
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the part corresponding to the qSH-wave, see (19) and Figure 14 for a presentation in the
TTI case.

Following the framework of Section 1, we may rephrase this equation using the dual
metric F∗x(p; i) := vi(x,

p
‖p‖2

). It is known that the dual metric F∗x(p; 3), corresponding
to the fastest velocity, is a convex function of p. However, F∗x(p; 1) and F∗x(p; 2) are in
general non-convex with regard to p, in such a way that the framework of viscosity so-
lutions to eikonal equations does not apply (the viscosity solution then corresponds to a
non-physical convexified metric; in constrast, ray-tracing methods can still apply).

We can select only the first arrival traveltime (of the qP-wave) by considering a spec-
tral norm instead of the determinant in the Christoffel equation (14): the first arrival
traveltime u(x) is the unique viscosity solution of the eikonal equation of the form

F∗x(∇u(x)) = 1, (16)

with u(x) = 0 for x ∈ ∂Ω, where

F∗x(v) :=
√
‖mc(v)‖, (17)

with ‖.‖ denoting the spectral norm of the matrix mc(v) (i.e. its highest eigenvalue)
defined in (14). Note that this eikonal equation could be written without the square
root, but the square root is required to define a 1-homogenous metric. Also, F∗x is the
dual of the metric Fx, and Fx can be deduced from F∗x by the duality relation: Fx(v) =
sup{〈v, w〉, F∗x(w) ≤ 1}. The metric Fx(v) does not admit a closed form expression
in general. The efficient numerical computation of the metric is in itself a non-trivial
problem, addressed in Section 6.

2.2 Origin of the anisotropy in geophysics

The velocity of a wave can depend not only on its position, but also on its orientation:
the medium of propagation is then called anisotropic. For seismic waves propagating in
the Earth interior, anisotropy must be taken into account for a proper modeling [BC91].
However, implementing numerical solvers for the eikonal equation with anisotropic met-
rics is a technical challenge.

Different models of the Earth exist, with varying complexity. The simplest model
corresponds to an isotropic metric defined with Lamé parameters. More complex models
exist, with anisotropic metrics such as elliptic anisotropy (or Riemannian anisotropy),
transverse isotropy, orthorhombic anisotropy and triclinic anisotropy. Details on the dif-
ferent models can be found in Section 2.3.

We identify two main origins for the anisotropy in the Earth interior:

• Intrinsic anisotropy: anisotropy can naturally occur from the shape of minerals,
and in particular from the layout of crystals at the atomic scale. For example, the
olivine crystal can be found in the uppermost mantle under oceans and leads to
a preferred direction up to 25% faster than other directions, with a speed profile
corresponding to orthorhombic anisotropy [Hes64].
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• Extrinsic anisotropy: thin structures of isotropic materials, such as sedimentary
layers, can also affect the wavefront in the same way that an anisotropic medium
would affect them: if the wavelength of the seismic wave is larger than the typical
length of the heterogeneities, they are seen as part of an equivalent anisotropic
medium by the wavefield. Note that this happens at all scales, as the typical size
of the wavelength depends on the application at hand: it can vary from a few
meters when studying near-surface propagations, to hundreds of kilometers when
considering the totality of the Earth. For sedimentary layers, this homogenization
process usually leads to a medium with a rotational symmetry along the layer axis,
called “transverse isotropy” (TI). The layers are usually horizontal, leading to a
medium with vertical rotational symmetry axis, called “vertical transverse isotropy”
(VTI). Some shifts of the symmetry axis can also occur with tectonic movements,
leading to “tilted transverse isotropy” (TTI). In case of fractures or in other complex
geophysical locations, the equivalent anisotropy derived from the homogenization
process can be even more complex, leading to orthorhombic or even triclinic media
[CC18].

Before going further, we want to precise some vocabulary to describe the anisotropy
of a metric, with a distinction between two concepts:

• Strength of the anisotropy: at a given position, the strength refers to the ratio
between the highest and the lowest achievable velocity depending on the orientation.

• Complexity of the anisotropy: it refers to the number of parameters needed to
characterize the metric, i.e. the velocity profile: 1 arameter is needed for isotropic
metrics, 3 parameters for Riemannian metrics also referred to as elliptic isotropy
(6 parameters in case of a tilt to define the rotation), 5 parameters for TI metrics
(7 if tilted), 9 parameters for orthorhombic metrics (12 if tilted). For triclinic media,
corresponding to the most general setting for elastic parameters, 21 parameters are
required. Note that in the context of geophysics, the metric for the eikonal equation
is usually deduced from the Hooke tensor, but sometimes it does not require the use
of all the elastic parameters. Indeed, the Hooke tensor describes not only the qP-
wave but also the qS-wave propagation, which can require additional parameters.
For example, an isotropic Hooke tensor is described by 2 parameters (called Lamé
parameters), while 1 parameter is enough for an isotropic metric.

These two concepts both give specific challenges for the design of numerical solvers for
the eikonal equation: most numerical solvers are limited to a particular complexity (up
to VTI for most existing numerical schemes), and could also fail if the strength of the
anisotropy is too pronounced. Besides, these two concepts of strength and complexity
are independent, as can be seen in Figure 14: in this example, the metric with elliptic
anisotropy has a much stronger anisotropy than the VTI metric even though it has a less
complex form of anisotropy, as can be seen through a visual representation of metrics
(called slowness surface, see Section 2.3).
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Figure 14: Examples of 2D cross-sections of metrics (represented by their slowness surface,
i.e. the unit ball of the dual gauge, see Section 2.3) : for each orientation from the origin,
the red curve indicates the slowness (inverse of the speed) of the wave. Left: elliptic
anisotropy (low complexity), with high strength. Right: transversely isotropy (higher
complexity), with low strength.

2.3 Properties of the Hooke tensor

A 3D geological medium is described by a fourth-order elasticity tensor, referred to as
the Hooke tensor and denoted by c = (cijkl), where i, j, k, l ∈ {1, 2, 3}, and by the density
ρ of the medium. When studying the first-arrival traveltime, only the ratio c

ρ
actually

matters, and so it is possible to set ρ = 1 without loss of generality, by taking it into
account in the Hooke tensor.

The Hooke tensor is subject to the symmetry relations cijkl = cjikl = cklij. Therefore,
it only has 21 independent components, allowing it to be represented as a 6×6 symmetric

matrix C using Voigt notation: Cvij ,vkl := cijkl, with v defined as: v :=

1 6 5
6 2 4
5 4 3


Some additional symmetries are often considered for a geological medium.

• First, an isotropic Hooke tensor, for which slowness surfaces are circles, is of the
form:

cijkl = λδijδkl + µ(δikδjl + δilδjk)

with Lamé parameters λ and µ. With the Voigt notation, it leads to a matrix of

the form: C =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

.

• A transversely isotropic medium is a geological medium whose local elasticity prop-
erties are invariant by rotation around a specific axis. It is called vertically trans-
versely isotropic (VTI) in case of invariance around the vertical axis, and tilted
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transversely isotropic (TTI) otherwise. In the case of VTI symmetry, the Hooke
tensor (in Voigt notation) only has 5 independent elastic parameters and can be
written as [Tho86]:

CV TI =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

 .

• An orthorhombic medium is a medium with three mutually orthogonal planes of
symmetry, which leads to a Hooke tensor with 9 independent elastic parameters. In
Voigt notation, the corresponding elasticity matrix is:

Corthorhombic =


c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

 .

• A triclinic medium is a medium with no plane of symmetry, which leads to a Hooke
tensor with 21 independent elastic parameters, which is the most general form of
anisotropy. In Voigt notation, the corresponding elasticity matrix is:

Ctriclinic =


c11 c12 c13 c14 c15 c16

c21 c22 c23 c24 c25 c26

c31 c32 c33 c34 c35 c36

c41 c42 c43 c44 c45 c46

c51 c52 c53 c54 c55 c56

c61 c62 c63 c64 c65 c66

 .

In the following, we focus on the TTI symmetry. A Hooke tensor with TTI symmetry
can be obtained from a Hooke tensor with VTI symmetry CV TI and a 3 × 3 rotation
matrix R defining the axis of rotation, through the change of variables formula:

cTTIi′j′k′l′ =
∑
i,j,k,l

cV TIijkl Rii′Rjj′Rkk′Rll′ . (18)

Besides, since the VTI Hooke tensor has one rotational axis of symmetry, only two angles
are enough to define the rotation for a TTI Hooke tensor.

Conversely, a (non-convex) projection procedure allows to reconstruct a VTI tensor
and a rotation R from a given Hooke tensor [CMA+20], up to some accuracy loss if the
latter only has approximate TTI symmetry.
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Figure 15: Example of slowness surfaces for the TTI anisotropy, with the inner surfaces
corresponding to the qP-wave, and the outer surfaces corresponding to the qSV-wave.

We now consider the Christoffel equation, presented in (14), in the context of a TTI
metric. Define the slowness vector as (px, py, pz) := R∇u, and let p2

r := p2
x + p2

y. Then
the Christoffel equation for a TTI symmetry can be algebraically factored as follows:

(
c11 − c12

2
p2
r + c44p

2
z − 1)× (19)

(c11c44p
4
r + c33c44p

4
z − (2c13c44 + c2

13 − c11c33)p2
rp

2
z − (c11 + c44)p2

r − (c33 + c44)p2
z + 1) = 0.

(20)

The first factor of this equation characterizes the arrival traveltime of the SH (horizontal
shear wave) propagation. This factor defines a Riemannian eikonal equation, which can
be solved numerically [Mir19], but is of no interest for the computation of the first arrival
traveltime. The second factor corresponds to the coupling P-SV, between the qP (quasi-
pure pressure wave) and the qSV (quasi-pure vertical shear wave), and is the factor we
need to consider for the first arrival traveltime. Obtaining the fully factored Christoffel
equation such as in (15) is however not straightforward.

The P-SV equation for a TTI symmetry, henceforth referred to as the TTI eikonal
equation, is a non-Riemannian anisotropic eikonal equation of degree four, mathematically
more complex than the SH equation. It can be summarized as

ap4
r + bp4

z + cp2
rp

2
z + dp2

r + ep2
z = 1, where (px, px, pz) = R∇u and p2

r := p2
x + p2

y, (21)

with coefficients (a, b, c, d, e) derived from the Hooke tensor as above. For the Hooke
tensors considered in geophysics, the TTI equation has two distinct surfaces that are so-
lutions. In the (px, py, pz) coordinate system, these solutions are called slowness surfaces,
and are invariant by the rotation R. The inner surface corresponds to the slowness of the
P wave (that is, the inverse of its velocity), whereas the outer surface corresponds to the
slowness of the S wave, see Figure 15.

Thomsen’s elastic parameters (Vp, Vs, ε, δ) correspond to another approach to obtain
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the TTI eikonal equation (21), with the conversion formula [Tho86]:

Vp =

√
c33

ρ
, Vs =

√
c44

ρ
, ε =

c11 − c33

2c33

, δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
.

Thomsen’s parameters have physical interpretations in a weakly anisotropic setting: in
particular, Vp approximates the speed of the qP-wave, and Vs of the qS-wave. Nevertheless
this is only an approximation in a special asymptotic setting, and in general both the P
and S slowness surfaces depend on the four Thomsen’s parameters. For this reason we do
not use here the convention Vs = 0, which has sometimes been considered to simplify the
PDE (21) such as in [LBMV18], when one is only interested in the first arrival traveltime
computation corresponding to the qP-wave.

3 Contributions: Fast Marching solvers for anisotropic
media

3.1 Fast Marching method

Among the numerical methods to compute the shortest paths, we make a distinction
between causal schemes and non-causal schemes. In the discrete formulation, causality
(defined in Section 3.2.1) represents the deterministic nature of the underlying optimal
control problem. It is equivalent, for a problem on graphs, to the positivity of the length
of the edges, which enables the fast computation of shortest paths by the Dijkstra algo-
rithm. Causal numerical schemes can be solved by the Fast Marching algorithm.

The Dijkstra algorithm has been published in 1959 by E. Dijkstra [D+59]. It can cal-
culate the shortest paths in a discrete oriented graph, with positive weights on the edges.
For a graph with n vertices, the complexity of the Dijkstra algorithm is in n log(n): the
computation can be done in a single-pass in the graph, by updating the propagation front
from the source point.

Graph based methods cannot have a high degree of consistency, since the front is
constrained to travel along the edges, and so the Fast Marching algorithm has been devel-
opped to overcome this constraint [Tsi95, Set96]. This algorithm is similar to the Dijkstra
algorithm and uses the fact that the information propagates from the source point, but
it considers that the front can travel with any orientation locally, and not only along the
edges.

The discretized eikonal equation, whose solution is an approximate distance map,
usually takes the form of a fixed point problem

ΛU = U, (22)

for all U ∈ X \ ∂X, where the unknown is U : X → R with U = 0 on ∂X, with X a
discretization of the domain Ω, ∂X a discretization of the source S, and Λ : RX → RX
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Algorithm 1 Fast Marching
Require: X, ∂X, Λ, V
Label ∂X as Front, and other points as Far.
Initialize U with value +∞ on X, and boundary conditions on ∂X.
While Front is not empty Do
Find a point q of Front which minimizes U .
Label q as Accepted.
For all neighbour p ∈ V (q) labelled as Front or Far Do
If p is Far, label p as Front.
Modify U(p) as ΛU(p).

End For
End While
Return U

an operator. Outflow boundary conditions are natural in the discretized eikonal equa-
tion, and require no special treatment. For this reason, and at the price of possibly some
inconsistency of notation with the continuous case, we denote by ∂X the set of source
points for the propagation in the discrete case, where the boundary condition U = 0 is
applied.

If Λ is monotonous and causal (see Section 3.2.1 for definitions), then (22) can be
solved in a single pass using the FMM. If Λ is monotonous but (possibly) not causal, then
iterative methods such as FSM can be used to solve (22) We also define the stencil Vx at
each point x ∈ X, as the set of all points in the neighbourhood of x used in the numerical
evaluation of ΛU(x).

The algorithm for the FMM is presented in Algorithm 3.1. We use the labels Far,
Front and Accepted: each point of the domain is labelled as Accepted only once, and the
value of the numerical solution U does not change any longer afterwards, which is why
this method is a single-pass method. During the algorithm, the points labelled as Front
can be seen as a discretization of the propagation front of the wave.

It is also possible to use pre-processing and post-processings when considering each
point to enhance the performance of the algorithm, in particular by using a source fac-
torization, or for higher-order numerical methods.

The use of FMM was first limited to isotropic metrics, but has been extended to deal
with strong Riemannian anisotropy with work from [Mir14a]. In the next sections, we show
generalizations of this work to obtain operators Λ and stencils V for numerical schemes
which can be solved by the FMM. Two methods are presented: the “semi-Lagrangian”
method and the “Eulerian” method. Even though both methods give numerical solutions
to the eikonal equation, they are based on different discretized formulations, with vari-
ous advantages and drawbacks depending on the use-case. The generalizations of these
methods in the context of geophysics are the main contributions of this PhD, leading to
associated publications presented in Section 6 and Section 8.
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3.2 Semi-Lagrangian scheme for the eikonal equation

3.2.1 Semi-Lagrangian scheme

First, we define two properties for operators Λ : RX → RX :

• An operator is called “monotonous” if

∀U1, U2 ∈ RX , U1 ≤ U2 =⇒ ΛU1 ≤ ΛU2.

• An operator is called “causal” if

∀U1, U2 ∈ RX , t ∈ R, U<t
1 = U<t

2 =⇒ (ΛU1)≤t = (ΛU2)≤t,

where U<t(p) = (U(p) if U(p) < t, +∞ otherwise).

The FMM computes the exact solution of (22) if the operator Λ is both monotonous
and causal. Iterative schemes can solve (22) using monotony only, but are generally slower
than the FMM.

Besides, by considering the convergence of the viscosity solution for optimal control
problems, we can show that the solution of ΛhUh = Uh (on a grid with scale h) converges
towards the solution of the eikonal equation when h→ 0.

Semi-Lagrangian methods for the computation of the first arrival traveltime are based
on an identity satisfied by the solution and known as Bellman’s optimality principle,
presented in Equation 6 and that we recall here:

u(x) = inf
y∈∂V(x)

(dF(y, x) + u(y)),

for V(x) a neighbourhood of x which does not intersect the starting area ∂Ω.

Semi-Lagrangian numerical schemes translate this principle in a discrete space: denote
by X and ∂X discrete domains representing Ω and ∂Ω, and for all p ∈ X, V (p) a polytope
containing p and whose vertices belong to X, called the stencil. For the discretization
of Bellman’s optimality principle, we define Λ : RX → RX as, for U : X → [0,∞] and
p ∈ X \ ∂X:

ΛU(p) = inf
q∈∂V (p)

Fp(p− q) + IV (p)U(q). (23)

The distance dF is approximated by the local metric Fp(p − q), and the values U at
positions q ∈ V (p) that are not vertices are approximated by the linear interpolation
IV (p)U(q) on the faces of the stencil V (p). The discrete counterpart of Bellman’s optimality
principle takes the form of the fixed point equation:

ΛU = U, (24)

with U(p) = 0 for all p ∈ ∂X.

The operator Λ defined from (23) is a monotonous operator, but it is not always causal.
For Λ to be causal, the stencils have to verify a geometric property of acute angles with
regard to the gauges of the metric.
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• (F -acute angle) We introduce a generalized measure of angle, associated with a
gauge. Let F be a gauge, which is differentiable except at the origin, and let
p, q ∈ R2 \ {0}. We say that p, q form an F -acute angle if 〈∇F (p), q〉 ≥ 0.

• (F -acute stencil) A stencil V is called acute with respect to a gauge F if for all p, q
in a common facet of V , p and q form an F -acute angle.

If all stencils are acute with regard to the gauges of the metric, the operator Λ from
(23) is causal and the FMM can solve the fixed point problem of (22) in a single pass.
For an isotropic metric, it simply corresponds to the stencil having acute Euclidian an-
gles, when considering each angle between two neighbouring vertices measured from the
center of the stencil. Therefore, even the simplest octahedron stencil is always acute in
an isotropic setting.

However, for an anisotropic metric, the stencil needs to be more refined in directions
in which the anisotropy is stronger, and a precise geometric study of the relation between
the anisotropy and the shape of the stencils is required. On the other hand, we also want
to keep the stencils with a minimal size, to improve accuracy and reduce computation
time. If the stencils grow too large, the advantages of the FMM are negated and the
use of iterative schemes with simpler stencils could lead to a better result. Examples of
stencils with increasing complexity are presented in Figure 16.

In the case of Riemannian metrics, very efficient acute stencils can be constructed
[Mir14a], by considering a Minkowski-reduced basis of vectors for the symmetric definite
matrix defining the Riemannian metric. However, for more general types of anisotropy,
building acute stencils is a challenging problem. In the next section, we consider the
use of fixed stencils to solve the eikonal equation in the context of geophysics with the
semi-Lagrangian method.

Figure 16: 3D stencils of increasing complexity, used in the finite-difference scheme for
the eikonal equation using the semi-Lagrangian method (octahedron, cut-cube, cube and
spiky-cube).
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3.2.2 Semi-Lagrangian scheme for geophysics

In [DCC+21] (shown in Section 6), the eikonal equation is considered with a geological
medium defined with the most complex form of anisotropy considered in geophysics, i.e.
a triclinic medium, with a fully general Hooke tensor (21 independent parameters). The
numerical scheme can handle this complex anisotropy, but it has a (known) limitation
based on the strength of the anisotropy, which can be directly linked to the 3D stencils
that we choose to use in the numerical scheme. Using more refined 3D stencils than the
spiky-cube from Figure 16 could allow to handle stronger anisotropy, but the numerical
cost of the FMM would become prohibitive as it is proportional to the number of points of
the stencil, and would destroy its competitive advantage over the FSM. Besides, building
adaptative stencils V (p), i.e. locally adapted to the metric Fp to be as small as possible, is
a difficult problem for non-Riemannian metrics, and we only consider fixed stencils chosen
from Figure 16.

The stencils are chosen before solving the eikonal equation, and we can check that
they verify the acuteness property with regard to the gauge, as defined in Section 3.2.1.
Once the stencils are chosen, they do not need to be updated anymore during the Fast
Marching algorithm or in case of a change of source point with the same medium.

The strength of the anisotropy is usually not too pronounced in geophysics, and we
show that the cut-cube stencil (see Figure 16) is good enough to be acute for most ge-
ological media. The cube or spiky-cube stencils can handle anisotropy of even greater
intensities, and are required for crystallographic media. Alternatively, if the stencils are
not acute, an iterative method such as the FSM may be used instead of the FMM.

The limitations of this algorithm can be expressed from the anisotropy ratio of a gauge
F , defined as

µ(F ) := max
|u|=|v|=1

F (u)

F (v)
. (25)

In Table 2, we present the condition on µ(F ) under which each stencil from Figure 16 is
guaranteed to be F -acute, and so provide a causal numerical scheme that can be solved
from the FMM.

In Figure 17, we illustrate these limitations in the case of TTI media, accounting
for the worst possible rotation of the metric. We consider the TI examples presented in
[Tho86], and observe that almost all of them can be solved with the cut-cube stencil,
and only a few require the cube or spiky-cube. Note that the numerical method can also
handle anisotropy more complex than TTI.

In the rest of this section, we present the technical difficulty that is encountered when
trying to apply the semi-Lagrangian scheme to metrics from geophysics. Indeed, the
FMM requires the computation of the update operator Λ of (23). This operator is used
to compute the first arrival traveltime at any position as a minimization problem over
first arrival traveltimes estimated on the facets of the stencil at this position. However,
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Figure 17: Acuteness property for TTI metrics. The Figure shows whether a given stencil
is acute with respect to a TTI metric determined by Thomsen parameters (ε, δ), with
Vp = 1 and Vs = 0, while taking into account the worst possible rotation of the metric.
The domain labelled for the spiky-cube also contains the domain labelled for the cube,
which also contains the domain labelled for the cut-cube. Red dots show all examples of
TI metrics presented in [Tho86].

Octahedron Cut-cube Cube Spiky-cube
Elliptic iff µ = 1 iff µ ≤

√
3 iff µ ≤ (1 +

√
3)/
√

2 iff µ ≤ 1 +
√

2

Anelliptic iff µ = 1 if µ ≤ 2/
√

3 if µ ≤
√

3/2 if µ ≤
√

2

Table 2: Condition under which a stencil V satisfy the acuteness property for a gauge.
Note that the bound is sharp for elliptic norms (if and only if), but only sufficient for
anelliptic gauges (except for the octahedron). Stencils illustrated in Figure 16. Numerical
values for the first two lines: (1, 1.73, 1.93, 2.41) and (1, 1.15, 1.22, 1.41).
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the computation of Λ involves the computation of the primal metric F . In the context
of geophysics, the primal gauge F can only be expressed from the dual gauge F ∗ by the
duality relation, which is a maximization of a linear form subject to a non-linear convex
constraint:

F (p) = sup{〈p, q〉 , q ∈ E, F ∗(q) ≤ 1} (26)

with
F ∗(q) :=

√
‖mc(p)‖,

for a Hooke tensor cijkl, with ‖.‖ denoting the spectral norm of the matrix mc(p) (i.e its
highest eigenvalue) defined by

mc(p)ik :=
∑
j,l

cijklpjpl.

We rely on sequential quadratically-constrained quadratic programming to address
this problem numerically. For this method, the constraint needs to take the form “f ≤ 1”
where the function f is both:

• Strongly convex.

• Efficiently evaluated numerically, as well as its gradient and Hessian.

The constraint F ∗ ≤ 1 in (26) does not satisfy any of these properties. We consider an
alternative expression of the constraint, for α ≥ 0, of the form

exp[−αfc] ≤ 1. (27)

where fc(p) := det(Id−mc(p)).

We show that the function exp[−αfc] is smooth, defined over the whole of Rd, strongly
convex in the domain of interest, and easy to evaluate, thus complies with all the require-
ments. We can then replace the highly non-linear constraint F ∗ ≤ 1 with the constraint
(27).

3.2.3 Stencil construction in 2D

In the case of dimension two, the construction of acute stencils is possible for all forms
of anisotropy, with an algorithm presented in [Mir14b] and based on the Stern-Brocot
tree. A 2D acute stencil is obtained by starting from a simple stencil and successively
refining it in the directions in which the causality is not verified due to the strength of
the anisotropy, see Figure 18. With that, we obtain an algorithm to provide 2D stencils
locally adapted to the metric at all positions, and the resulting size of the stencils can
be compared with the strength of the anisotropy. Such a construction cannot be easily
generalized to dimension three, which is why we have to restrict ourselves to fixed 3D
stencils in the numerical scheme presented in Section 6.

In [MD20] (presented in Section 7), we study a stronger requirement of acuteness,
called “strict acuteness”. Strict acuteness leads to a stricter version of causality in the
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numerical scheme, and it is helpful to ensure that the numerical scheme remains causal
even after small perturbations, with such perturbations potentially arising from source
factorization or methods for high-order accuracy. We study the size and number of ver-
tices for 2D stencils built with this algorithm, in the worst case and in average case over
rotations of the anisotropic gauge (referred to as asymmetric norm in Section 7).

We present a few definitions to finally arrive at the concept of (F, α)-acute stencil, for
a gauge F and α ∈]0, π/2].

• (unoriented Euclidean angle) We denote by ](u, v) ∈ [0, π] the unoriented Euclidean
angle between two vectors u, v ∈ R2 \ {0}, which is characterized by the identity

cos](u, v) =
〈u, v〉
‖u‖ ‖v‖

.

• (F -angle) We define the F -angle ]F (u, v) ∈ [0, π/2] ∪ {∞} by

cos]F (u, v) := 〈∇F (u), v〉/F (v) (28)

if u, v form an F -acute angle. Otherwise we let ]F (u, v) := +∞. If F is isotropic,
i.e. if F (x) = c ‖x‖ with c > 0, then the F -angle is simply the Euclidian angle.

• (2D stencil) A 2D stencil is a finite sequence of pairwise distinct vectors u1, · · · , un ∈
Z2, n ≥ 4, such that

det(u, v) = 1, 〈u, v〉 ≥ 0,

for all u = ui, v = ui+1, 1 ≤ i ≤ n, with the convention un+1 := un.

• ((F, α)-acute stencil) A stencil is said (F, α)-acute, where F is a gauge and α ∈
]0, π/2], iff with the same notations one has

]F (u, v) ≤ α, ]F (v, u) ≤ α. (29)

We let N(F, α) denote the minimal cardinality of an (F, α)-acute stencil.

The cardinality of (F, α)-acute stencils is directly proportional to the algorithmic com-
plexity of our eikonal PDE solver, hence it is important to choose them as small as possible.
When α = π/2, we recover the typical acute stencils considered before in Section 3.2.1.

In pratice, we choose α = π/3, which allows to keep the acute angle property under
reasonably small perturbations, while not increasing too much the number of points of
the stencil.

The main result is the following estimate of the cardinality N(F, α) of an (F, α)-acute
stencil, both in the worst case and in the average case over random rotations of the gauge
F . For any gauge F and any α ∈]0, π/2], one has

N(F, α) ≤ C
µ

α2
ln
( lnµ

α2

)
,

∫ 2π

0

N(F ◦Rθ, α) dθ ≤ C
ln(µ)

α2
ln
( µ
α2

)
. (30)
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Figure 18: Examples of unit balls for 2D anisotropic gauges, with the corresponding acute
stencils by the algorithm from [Mir14b] based on the Stern-Brocot tree.

Figure 19: Refinement of a triangle (left). Mesh T0 (center left). First levels of the
binary tree (center right) defined by the recursive refinements of T1. Mesh defined by a
refinement of depth 5 (right).

where µ = max{µ(F ), 12}, Rθ denotes the rotation of angle θ ∈ R, and C is an absolute
constant.

With α = π/3 considered in practice, we get O(µ ln(lnµ)) in the worst case, which is
essentially linear in anisotropy, and only O((lnµ)2) in the average case.

We explain the refinement process for a stencil. An elementary triangle T is defined
as a triangle satisfying the following properties:

• One of the vertices of T is the origin (0, 0), and the other two belong to Z2.

• Denoting by u, v the non-zero vertices of T , one has | det(u, v)| = 1 and s(T ) :=
〈u, v〉 ≥ 0.

A 2D stencil (with center set to the origin) can be seen as an union of such triangles.
The refinement of an elementary triangle T of non-zero vertices u, v consists of the two
elementary triangles T ′ and T ′′ of non-zero vertices (u, u+ v), and (u+ v, v), respectively,
which are referred to as its children.

Based on this refinement principle, we establish an algorithm to successively refine
triangles of a stencil, and we can set a stopping criterion based on the angular size of
the triangle defined from s(T ). To count the elements of the resulting stencil, we make
a one to one correspondance between stencils and finite sub-forests of the Stern-Brocot
tree, an infinite binary tree labeled with rationals, which we interpret as a subdivision of
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the interval [0, 2π] into unequal parts whose endpoints have rational tangents. With this
angular partition, this choice of subdivision yields an efficient construction of (F, α)-acute
stencils with minimal cardinality.

3.3 Eulerian scheme for the eikonal equation

After the “semi-Lagrangian” scheme, we now present another numerical scheme, referred
to as the “Eulerian” scheme, which also computes the solution to the eikonal equation.
However, while the semi-Lagrangian scheme is based on a discretization of Bellman’s
optimality principle, the Eulerian scheme is a direct discretization of the eikonal equation,
which can lead to totally different numerical methods for anisotropic metrics.

3.3.1 Eulerian scheme

A scheme on a finite space X is an application F of the form:

F(p, U(p), (U(p)− U(q))q∈X\{p}),

for p ∈ X and u : RX → R+. We also use the notation

FU(p) := F(p, U(p), (U(p)− U(q))q∈X\{p}).

• A scheme F is called “monotonous” if F is increasing in its second and third variables.

• A scheme F is called “causal” if F only depends on the positive part of its third
variable.

In the Eulerian scheme, the eikonal equation is discretized as

FU(p) = 0, (31)

for all p ∈ X, with boundary conditions U = 0 on ∂X. Again, X and ∂X are discretized
sets for the approximation of the domain Ω with boundary ∂Ω.

The properties of a scheme F can be directly linked with the properties of the operator
Λ considered in the semi-Lagrangian scheme as in Section 3.2.1: for F a scheme, we can
define Λ by:

ΛU(p) = λ such that F(p, λ, (λ− U(q))q∈X\{p}) = 0.

If F is monotonous (resp. causal), then Λ is also monotonous (resp. causal). Similarly to
the semi-Lagrangian scheme, the computation of the solution to (31) requires F to be a
monotonous scheme, and the FSM can be used. Besides, if F is a causal scheme, then
(31) can be solved in a single pass with the FMM.

The Eulerian scheme uses a direct discretization of the eikonal equation, which usually
gives a different numerical scheme than the semi-Lagrangian scheme based on a discretiza-
tion of Bellman’s optimality principle.
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Examples of monotonous and causal schemes F includes all schemes which can be
expressed as:

FU(p) = mix
α∈A

∑
β∈B

ραβ(p) max{0, U(p)− U(p± heαβ)

h
} (32)

where mix ∈ {max,min}, A and B are finite sets, ραβ(p) ≥ 0 and eαβ(p) ∈ Zd. In that
case, the numerical solution to the eikonal equation can be computed from (31) using the
FMM.

In the specific case of Riemannian metric, we show how the corresponding scheme can
be written in the form respecting the formulation of (32):

• A Riemannian metric in dimension n is locally characterized by a continuous field
of symmetric positive definite matrixM : Ω→ S++

n , with the corresponding eikonal
equation: ‖∇u(x)‖D(x) = 1, where D(x) := M−1(x).

• Assume that we have the decomposition: D =
d∑
i=1

ρieie
>
i , with ρi > 0 and ei ∈ Zn.

Such a decomposition can be obtained in dimension 3 with the Selling decomposi-
tion.

• Then we can consider the numerical scheme on the Cartesian grid with grid size h:

‖∇u(x)‖2
D(x) =

d∑
i=1

ρi max{0, u(x)− u(x± hei)
h

}2 +O(h), (33)

which is of the form required for the Eulerian scheme. The scheme involves stencils
with vertices x± hei.

However, not all numerical schemes for the eikonal equation can be easily written in
the way required for the Eulerian scheme. In the next section, we show how to obtain
this formulation in the case of TTI anisotropy.

3.3.2 Eulerian scheme for geophysics

In [DMM22] (shown in Section 8), we use the framework from the Eulerian scheme to
solve the eikonal equation in a geophysical setting. In this case, only anisotropy up to
TTI complexity can be tackled, but there is no longer any limit based on the strength of
anisotropy. In comparison, the previous algorithm presented in Section 3.2.2 and based
on the semi-Lagrangian scheme can handle even the most complex form of anisotropy
in the context of geophysics, but suffers from a limitation based on the strength on the
anisotropy, even for the TTI case. Besides, thanks to the simplicity of the Eulerian struc-
ture, a GPU implementation of the numerical scheme has been made, and is presented in
more details in Section 3.3.3. The GPU acceleration leads to computation time up to 50
times faster compared with the algorithm based on the semi-Lagrangian method, using a
single GPU node.
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Figure 20: Slowness surfaces (red) defined by (21), in the (pr, pz) plane. The coefficients
(a, b, c, d, e) are derived from the supplied Hooke parameters (Vp, Vs, ε, δ). Only the inner
slowness surface is considered, and our numerical method involves its approximation by
an intersection of ellipses (left) or a union of ellipses (right), shown blue.

In this algorithm based on the Eulerian scheme, the slowness surface of a TTI metric
is represented as an envelope of ellipses, as can be seen in Figure 20, with each ellipse
corresponding to a Riemaniann metric. From that, we can write the update operator as a
maximum or minimum of update operators from the Riemannian case, which can each be
computed efficiently with the framework from the Eulerian numerical scheme presented
in Section 3.3.1.

The first arrival traveltime is solution to the P-SV equation presented in (21). We first
need to disambiguate the PDE by distinguishing the role of the inner slowness surface,
relative to the qP-wave (the fastest). For that purpose, we introduce given coefficients
σ = (a, b, c, d, e) ∈ R5 the quadratic function Qσ and the set Bσ defined as follows

Qσ(r, z) := ar2 + bz2 + crz + dx+ ez, (34)
Bσ := CC0{(px, py, pz) ∈ R3;Qσ(p2

x + p2
y, p

2
z) ≤ 1}. (35)

By considering only the connected component of the origin, denoted by CC0 in (35), we
obtain that ∂Bσ is the inner slowness surface defined by Qσ.

The objective is now to write ∂Bσ as an envelope of ellipses. For that, we consider
the change of variables hr = p2

r = p2
x + p2

y and hz = p2
z, and we define the following set,

illustrated in Figure 21

Aσ := CC0{(hr, hz) ∈ R2
+; Qσ(hr, hz) ≤ 1}, (36)

We show that Aσ is either a union or an intersection of triangular regions: for σ ∈ R5

admissible, there exists 0 < α∗ ≤ α∗ < 1 and µ ∈ C∞([α∗, α
∗], ]0,∞[) such that one of

the following “max” and “min” cases holds:

(max) µ is convex, and Aσ = {(hr, hz) ∈ R2
+; ∀α ∈ [α∗, α

∗], (1− α)hr + αhz ≤ µ(α)}.
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(min) µ is concave, and Aσ = {(hr, hz) ∈ R2
+; ∃α ∈ [α∗, α

∗], (1− α)hr + αhz ≤ µ(α)}.

We deduce that the TTI unit ball (35) can be obtained as a union or an intersection
of ellipses, depending on the alternative above and as illustrated in Figure 21: denoting
E(α) := {(1− α)(p2

x + p2
y) + αp2

z ≤ µ}

(max) : Bσ =
⋂

α∈[α∗,α∗]

E(α), (min) : Bσ =
⋃

α∈[α∗,α∗]

E(α) (37)

As a consequence, we obtain a new expression of the operator F∗σ(R ·) for the TTI
eikonal equation, as an extremum of Riemannian norms: let σ ∈ R5 be admissible, and
let R ∈ GL3(R), then for any p ∈ R3

F∗σ(Rp) = mix
α∈[α∗,α∗]

µ(α)−
1
2‖p‖D(α), where D(α) := R>

1− α
1− α

α

R, (38)

denoting by mix ∈ {max,min} the corresponding case at hand.

In (38), for a fixed α ∈ [α∗, α
∗], we recognize a Riemannian eikonal equation

F∗σ(Rp) = µ(α)−
1
2‖p‖D(α),

for which we define a numerical scheme Fα from the Eulerian method presented in Section
3.3.

We then have the following scheme F corresponding to (38):

F := mix
α∈[α∗,α∗]

Fα, (39)

where Fα denotes the Riemannian scheme shown in (33, right), applied to the matrix
µ(α)−1D(α).

However, solving the maximum or minimum in (39) is non-trivial: it corresponds
to a 1D-optimization problem that is neither globally convex nor globally concave. We
consider two methods to solve it:

• Newton-like algorithm: From studying the stencils required in the numerical scheme
based on the Eulerian scheme, we prove that the optimization problem can be
divided into a finite number of intervals with at most one optimum in each interval.
Therefore, a Newton-like search algorithm is possible in each of these intervals.
An illustration is presented in Figure 20, with the red vertical lines indicating the
different sections.

• Exhaustive grid-search: We can also consider the optimum over k ellipses only.
This method is much less precise compared with the previous algorithm, but can
be done much faster. Besides, it is more suited to GPU implementation. This is
an advantage of the Eulerian framework, as a GPU implementation of the semi-
Lagrangian framework would be more difficult due to the sequential nature of the
algorithm.
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Figure 21: The set Aσ ⊂ R2
+ (resp. Bσ ⊂ R2 as defined from (pr, pz)), in yellow, is

bounded by a conic curve (resp. a quartic curve), in red. Tangent lines to ∂Aσ correspond
to tangent ellipses to ∂Bσ, in blue. If the conic curve defines a convex (resp. concave)
boundary, in case (max) see left (resp. case (min) see right) then the ellipses are exterior
(resp. interior) tangent.

Figure 22: Mapping α ∈ [α∗, α
∗] 7→ f(α) := Λαu(q) obtained for some TTI parameters

σ, R, a point q ∈ hZd, and an arbitrary mapping u : Ωh → R. The vertical red lines
correspond to the abscissas α0 ≤ · · · ≤ αK at which the stencils in the numerical scheme
require a modification of their offsets in the Selling decomposition, here with K = 3.
Left (resp. right) Figure illustrates case (max) (resp. case (min)), where the function f is
quasi-convex (resp. quasi-concave) on each sub-interval [αk, αk+1], 0 ≤ k ≤ K, and must
be minimized (resp. maximized).
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3.3.3 GPU implementation

In [MGB+21] (shown in Section 9), we present how a numerical solver for the eikonal
equation, also based on the Eulerian scheme, can be used with a GPU implementation.
Due to the intrinsically sequential nature of the FMM, it is not possible to adapt the FMM
for GPU. Instead, we consider iterative algorithms to solve the discretized problem.

We consider a looser version of the propagation front, which does not increase point
by point anymore such as the FMM, but block by block instead. An iterative method is
used to compute the numerical solution in each block. This algorithm is more suited for
parallelization and use of GPU.

In this work, we consider settings that can be solved with the Eulerian method, with
in particular the computation of paths globally minimizing an energy involving their cur-
vature. Several models for the curvature penalization have been considered, see Figure
23. The efficiency and robustness of the method is illustrated in various contexts, ranging
from motion planning to vessel segmentation and radar configuration, presented in details
in Section 3.3.4 corresponding to the article of Section 10. Accelerations by a factor 30
to 120 are obtained when comparing it with a sequential implementation.

The method is presented in Algorithm 2, Algorithm 3. The assignment of a value
val to a scalar (resp. array) variable var is denoted by var ← val (resp. var ⇐ val).
Illustrations of the procedure are presented in Figure 24. Algorithm 2 is very similar
to the FMM, with the difference that the propagation front is made of blocks of points,
instead of points. The update of each block is presented in Algorithm 3. It uses the
Eulerian scheme, for which stencils can be precomputed, as well as the weights and offsets
used for the stencils at each point. The update is then done at the block in an iterative
way (R iterations), and uses the update operator Λ coming from the Eulerian scheme.

Algorithm 2 Parallel iterative solver (Python)
Variables:

u : Xh → [0,∞] (The problem unknown)
active, next : Bh → {0, 1}. (Blocks marked for current and next update)

Initialization:
u⇐∞; active, next ⇐ 0.
u[p∗]← 0; active[b∗]← 1. (Set seed point value, and mark its block for update)

While an active block remains:
For all active blocks b in parallel: (CUDA kernel lauch)

For all p ∈ Xb
h in parallel: (Block of threads)

BlockUpdate(u, next , b, p)
active ⇐ next ; next ⇐ 0.
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Figure 23: Planar projections of minimal geodesics for the Reeds-Shepp, Reeds-Shepp
forward, Elastica and Dubins models (left to right). Seed point (0, 0) with horizontal
tangent, regularly spaced tip point with random tangent (but identical for all models).
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Figure 24: Left: Decomposition of the Cartesian grid Xh into tiles Xb
h, with block index

b ∈ Bh. Grayed blocks are tagged active. Center: Updating a block b ∈ Bh requires
loading the unknown values u : Xh → R, both within Xb

h and at some neighbor points.
Right: Several local updates are performed within a block (two here).

Algorithm 3 BlockUpdate(u, next, b, p), where p ∈ Xb
h (CUDA)

Global variables: u : Xh → [0,∞], next : Bh → {0, 1}, ρ : Xh → R (the r.h.s).
Block shared variable: ub : Xb

h → [0,∞].
Thread variables: αi ≥ 0, ei ∈ Zd, ui ∈ R, for all 1 ≤ i ≤ I.

ub(p)← u(p); __syncthreads() (Load main memory values into shared array)
Load or compute the stencil weights (αi)

I
i=1 and offsets (ei)

I
i=1.

ui ← u(p+ hei), for all 1 ≤ i ≤ I such that p+ hei /∈ Xb
h. (Load the neighbor values)

For r from 1 to R:
ui ← ub(p+ hei), for all 1 ≤ i ≤ I such that p+ hei ∈ Xb

h. (Load shared values)
ub(p)← Λ(ρ(p), αi, ui, 1 ≤ i ≤ I) (Update ub(p), unless p is the seed point)
__syncthreads() (Sync shared values)

u(p)← ub(p) (Export shared array values to main memory)
If appropriate, next [b]← 1 and/or next [b′]← 1 for each neighbor block b′ of b. (Thread
0 only)
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3.3.4 Optimization of the metric in the context of a two-players game

In [DDBM19], presented in Section 10, we provide another application of the FMM, in
the context of motion planning: we consider the trajectories of vehicles inside a domain
protected by a radar network, where the goal is to optimize the configuration of the radar
network. The optimization of the radars is an inverse problem, with the forward problem
being the computation of the threatening trajectories with the eikonal solver.

More precisely, the goal is to maximize the probability of detection of the most dan-
gerous trajectory integrated along its path between a given origin and a place to protect.
We see it as a non-cooperative zero-sum game: a first player chooses a setting ξ for the
radar detection network Ξ, and the other player chooses a trajectory γ from the admissible
class Γ assuming full information over the network. The players’ objective is respectively
to maximize and minimize the path cost:

C(Ξ,Γ) = sup
ξ∈Ξ

inf
γ∈Γ

Θξ(γ) (40)

where Θξ(γ) is the detection probability (integrated along the path) of the trajectory γ
in the network ξ. Minimization over γ ∈ Γ (given ξ ∈ Ξ) is performed using a variant of
the FMM. In this work, we rely on the CMA-ES algorithm [VAB+18] for the subsequent
optimization over ξ ∈ Ξ, which is rather difficult (non-convex, non-differentiable).

We also consider that the trajectories have a lower bound in their turning radius, due
to the vehicle high speed. This leads to a model with curvature penalization, presented
in [MD17] and similar to the one considered in Section 3.3.3, and which can be solved by
the FMM with Eulerian scheme from [MP19].

For the modeling of the radar, we consider the ambiguity map, which accounts for
the probability of detection of a generic target by a radar, depending on the distance
and the radial speed of the target relatively to the radar, see Figure 25. There are blind
speed areas, due to sampling repetition interval and pulse duration causing blind radial
distances and blind radial speeds. The positions of the blind areas are periodical and
depend on internal parameters of the radar that can be optimized: signal wavelength,
and pulse repetition interval.

One interesting behaviour is that in a non-optimized network, when considering all
the most threatening trajectories starting from several points in a circle around the target
as in Figure (26, left), we observe that all the trajectories concentrate along a single
path, a “blind spot” for the network. However, for an optimized network as in Figure (26,
right), we see that there are several instances of most threatening trajectories: they all
correspond to “local blind spots” as well, but the probability of being detected along these
paths is much greater than the most dangerous trajectories from the previous case, which
is the goal of this optimization.
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Figure 25: Ambiguity map for a selected waveform waveform

Figure 26: Threatening trajectories in a non-optimized network (left) and an optimized
network (right).

4 Conclusion and perspectives

4.1 Conclusion

Taking anisotropy into account is necessary to produce realistic models of the Earth
interior, and we present efficient schemes using the FMM to solve the eikonal equation in
that context for the first time. Strong and complex anisotropy, however, brings technical
challenges for the conception of numerical schemes, and a careful design is needed to
satisfy the monotony and causality properties, which are prerequisite of the FMM and
ensure the convergence of the method.

We focus on complex forms of anisotropy, with a “semi-Lagrangian scheme” able to
tackle triclinic media, the most complex form of anisotropy in the context of geophysics,
and an “Eulerian scheme”, specifically adapted to TTI media.

The first scheme presented is based on the semi-Lagrangian method, and can tackle
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anisotropy coming from a fully general Hooke tensor in 3D media. However, it suffers
from a limitation on the strength of the anisotropy, with a known limit depending on
the stencil used in the discretization scheme. In the event where this condition fails, the
correct solution to our scheme can nevertheless be computed using an iterative method
such as the FSM, although we lose advantages of the FMM.

In 2D, this limitation can be removed, and we provide an algorithm to compute strictly
acute stencils in the most efficient way. With this strict acuteness, we ensure that the
numerical scheme is monotonous and causal, even with small perturbations potentially
caused by source factorization or modifications for high-order accuracy. However, this is
difficult to generalize such stencils to 3D problems.

We present another numerical scheme, based on the Eulerian scheme, to solve the
eikonal equation in the context of geophysics. In this case, only anisotropy up to TTI com-
plexity can be tackled, which is more specific compared with the previous semi-Lagrangian
scheme. However, the limitation on the strength of anisotropy is no longer present. Be-
sides, thanks to the simple Eulerian structure, the scheme can also be implemented with
GPU acceleration, which makes it more than fifty times faster compared with the semi-
Lagrangian scheme, using a single GPU node.

We present the GPU implementation for the Eulerian scheme in details. The FMM is
not adequate due to its sequential nature, and we use an iterative solver on blocks, still
mimicking the evolution of the propagation front in a looser way.

Last, we consider an application to motion planning, with an algorithm to compute
the optimal configuration of a radar network against threatening trajectories, seen as a
two-player game between the attacker and the radar network. It provides an example
of an inverse problem, as the choice of the optimal radar network corresponds to the
optimization of parameters for the metric defining the eikonal equation.

4.2 Perspectives

Several extensions of this work are under consideration.
First, an extension of the Eulerian method to orthorhombic anisotropy seems possi-

ble, whereas it can only handle anisotropy up to TTI complexity for now. Indeed, every
2D cross-section of an orthorhombic tensor results in a TTI Hooke tensor. This general-
ization would involve a two-dimensional minimization, maximization, or min-max saddle
point optimization problem at each grid point, instead of the current one-dimensional
optimization problem.

It is also possible to use our eikonal solver in applications to inverse problems in seismic
imaging. Anisotropy plays a crucial role in the crust and shallow crust, and anisotropic
eikonal solvers can be used in the frame of first arrival tomography and stereotomography
algorithms [Nol08], to account for anisotropy not only in the modeling but also in the
inversion. Besides, the GPU implementation greatly reduces the computation time of the
eikonal solver, which can allow to solve several inverse problems simultaneously, and study
statistical results such as uncertainty estimations for the inverse problem [TBM19a].

Last, a completely original finite-difference numerical solver for the elastic wave equa-
tion is in consideration. It is based on the Selling decomposition of the Hooke tensor,
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which breaks down the Hooke tensor into a sum of terms for which a finite-difference
approximation can be done, similarly to how the Selling decomposition has been used for
matrices defining Riemannian metrics in the Eulerian scheme for the eikonal equation.
Hooke tensor with fully general anisotropy can be tackled, with no limitation. Algo-
rithms for the elastic wave equation are already studied extensively, but this numerical
solver would be of interest as the first finite-difference scheme to handle general anisotropy
for the elastic wave equation.

5 Outline of the PhD thesis
The remainder of the thesis is now divided into two main Parts, related to the “semi-
Lagrangian” and “Eulerian” schemes, which are two different methods of computing so-
lutions to the eikonal equation. Each Section within these two Parts corresponds to a
publication which has been written and at least published during my PhD training.

• Part II is dedicated to the semi-Lagrangian scheme and its extension to the eikonal
equation in geophysics. Within this framework, a numerical solver has been devel-
oped to solve the eikonal equation in geophysics with a Hooke’s tensor of general
anisotropy, and presented in Section 6 [DCC+21]. However, there is a (known) limit
based on the strength of the anisotropy, due to the difficulty of obtaining suitable
3D stencils. This limit on the strength of anisotropy does not exist in dimension 2,
and a precise description of 2D stencils able to handle any kind of anisotropy is also
presented in Section 7 [MD20].

• Part III is dedicated to the Eulerian scheme and its extension to the eikonal equation
in geophysics. With that framework, a numerical solver has been developed to solve
the eikonal equation in geophysics with a Hooke’s tensor, and presented in Section
8 [DMM22]. Only anisotropy up to TTI complexity can be tackled, but there is no
limit based on the strength of anisotropy such as in the previous scheme. Besides,
a GPU implementation has been done, which leads to a much faster computation
time, and we present it in Section 9 [MGB+21]. Finally, this algorithm can be used
to solve inverse problems, i.e. the optimization of parameters in the metric, which
has been done in a particular use-case related to the configuration of a radar network
for the detection of threatening trajectories, and presented in Section 10 [DDBM19].
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6 Single pass computation of first seismic wave travel
time in three dimensional heterogeneous media with
general anisotropy [DCC+21]

This section corresponds to the paper (with minor modifications):

• François Desquilbet, Jian Cao, Paul Cupillard, Ludovic Métivier, and Jean-Marie
Mirebeau. Single pass computation of first seismic wave travel time in three dimen-
sional heterogeneous media with general anisotropy. Journal of Scientific Comput-
ing, 89(1):1–37, 2021

Abstract

We present a numerical method for computing the first arrival travel-times of
seismic waves in media defined by a general Hooke tensor, in contrast with previous
methods which are limited to a specific subclass of anisotropic media, such as "tilted
transversally isotropic" (TTI) media or "tilted orthorhombic" (TOR) media. Our
method proceeds in a single pass over the discretized domain, similar to the fast
marching method, whereas existing methods for these types of anisotropy require
multiple iterations, similar to the fast sweeping method. We introduce a new source
factorization model, making it possible to achieve third-order accuracy in smooth
media. We also validate our solver by comparing it with the solution of the elastic
wave equation in a 3D medium with general anisotropy.

6.1 Introduction

The eikonal equation characterizes the first arrival travel-time of a front, propagating
inside a domain at a speed dictated by a given metric. In geophysics, an eikonal equa-
tion can be obtained as the high frequency approximation of a wave equation, with the
underlying metric defined by the properties of the geological medium.

Computing the solution of the wave equation in three dimensional complex media can
be expensive. Indeed, the scale of the discretization grid needs to be substantially smaller
than the oscillation wavelength, while the time step is itself bounded by the Courant-
Friedrichs-Levy stability condition. In contrast, the eikonal equation is a static (no time
dependency) partial differential equation, with a non-oscillatory solution. For this reason,
efficient schemes for the eikonal equation have been developed along the years, with sev-
eral applications in mind: earthquake hypocenter relocation through backpropagation of
the data recorded at the surface by seismic stations [MvN92], asymptotic approximation
of Green’s functions for Kirchhoff migration to build high resolution images in seismic ex-
ploration [Bey87, Ble87, LOP+03], or tomographic inversions to determine seismic wave
velocities from global and regional scale [Nol08] to exploration and near surface scale tar-
gets [BL98, TNCC09] .

However, the metrics from geophysics are often anisotropic, which has been a tech-
nical challenge for the numerical solvers designed for the eikonal equation. Anisotropy
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can occur from the shape of minerals, with for example the olivine that can be found in
the uppermost mantle under oceans [Hes64] and can lead to a preferred direction up to
25% faster than other directions. Besides, thin sedimentary layers of isotropic materials
can also be treated as an anisotropic medium in order to smooth strong heterogeneities.
It usually leads to a homogenized medium with a faster horizontal speed compared with
vertical speed, which is called "vertical transverse isotropy" (VTI) in terms of symmetry
in the Hooke tensor. Some shifts can also occur with tectonic movements, leading to the
"tilted transverse isotropy" (TTI). More complex types of anisotropy have been consid-
ered in the case of fractures, leading to "tilted orthorhombic" (TOR) symmetry or a fully
general Hooke tensor.

One option to compute first arrival travel-time is the well-established ray-tracing
method [Cer05]. However, several drawbacks have been identified: one ray does not nec-
essarily correspond to the first arrival travel-time, the computation cost increases strongly
when many travel paths to many points are needed, and calculations can be difficult in
shadow zones which can occur even in a smooth medium. These issues no longer occur
when solving the eikonal equation with finite-difference schemes. Note that, conversely,
computing second or later arrival travel-times with an eikonal solver is a non-trivial prob-
lem [RS04], which is not further discussed in this paper.

The first finite-difference scheme for the eikonal equation has been developed by Vi-
dale [Vid88], in the isotropic case only and with first-order accuracy. It has later been
extended to anisotropy [Lec93]. This solver works by induction on the boundary of a
square expanding from the source point, but it has no guarantee of success in the case
of strong heterogeneities or anisotropy: causality cannot be guaranteed as soon as a ray
goes back into the expanding square. This method lacks the robustness and guarantees
of an approach based on strong theoretical foundations.

In [OS91], the isotropic eikonal equation is solved by treating it as a dynamic
(time-dependent) Hamilton-Jacobi equation, with an "essentially non-oscillatory" (ENO)
scheme. This approach has been extended to VTI anisotropy and high order accuracy
in [DS97], with the "down & out" (DNO) strategy. A post-treatment (PS) is added
in [KC99], with second-order accuracy, resulting in the ENO-DNO-PS scheme, which
was extended to TTI anisotropy in [Kim99]. However, the method is computationally
expensive. Some other algorithms have been considered to solve the dynamic eikonal
equation, but algorithms for the static (time-independent) eikonal equation have been
found to be more efficient [LBMV18].

More efficient algorithms have then been developed thanks to the level-set framework
[Set96], and the numerical solution of the static eikonal equation as considered in this
paper. These numerical methods can be divided into two classes: iterative methods and
single pass methods, which respectively generalize the algorithms of Bellman-Ford and of
Dijkstra for graph distance computation. The best known iterative method is presum-
ably the fast sweeping method. Originally introduced in isotropic settings [Zha05], the
fast sweeping method has been extended to 2D elliptic anisotropy [TCOZ03], 2D TTI
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symmetry [LCZ14], 3D TTI symmetry [PWZ17] with a third-order Lax-Friedrich fast
sweeping scheme. It also got extended to 3D TOR symmetry [WYF15] treated as an iter-
ative problem on elliptic anisotropy, and more recently [LBLM] for the 3D TOR symmetry
with high order accuracy. Other iterative methods include the adaptive Gauss-Seidel iter-
ation [BR06], or the buffered fast marching method [Cri09], which can both handle some
amount of anisotropy. Recently, iterative methods which can take advantage of massively
parallel computational architecture, graphics processing units (GPU) in particular, have
been proposed in the isotropic settings [JW08], and for elliptic anisotropy [GHZ18].

On the other hand, the best single pass method is presumably the fast marching
method (FMM) [Tsi95, Set96], but the extension of the FMM to anisotropic geometries
proved more difficult. Early studies [KS98, SV01, AM12] involve wide stencil numerical
schemes, leading to increased computation times and reduced accuracy, and therefore
negating many of the advantages of the FMM. More recently [Wah20], an algorithm us-
ing the FMM has been developed for the 3D TTI anisotropy: it works by solving a fixed
point problem on VTI elliptic anisotropy. While the authors illustrate numerically that
the algorithm can converge when the considered anisotropy is close from an elliptic VTI
anisotropy, there is no formal proof of convergence of the fixed point iteration they im-
plement.

In the past years, one of the authors has proposed extensions of the FMM to 2D anel-
liptic anisotropy [Mir14b], and 3D elliptic anisotropy [Mir14a, Mir19], as well as various
types of degenerate anelliptic anisotropy related with curvature penalization [Mir18]. In
these studies, techniques from lattice geometry make it possible to keep the size of the
discretization stencil under tight control, thus preventing any loss in computation time
and accuracy, even for a very strong anisotropy (with propagation speed ten times faster
in the fast direction than in the slow directions). In this paper, we propose a numerical
solver using the FMM to solve the eikonal equation with an anelliptic anisotropy defined
by a general Hooke tensor. Such a general anisotropy is usually mildly pronounced in ab-
solute terms (with propagation speed at most twice faster in the fast direction compared
with the slow directions), but it nevertheless raises a number of specific computational
challenges. The method we develop here can be implemented up to third-order accuracy,
as illustrated in the numerical experiments in §6.4.

When discussing about the anisotropy of a metric, we make a distinction between two
concepts: its “strength” and its “complexity”. The strength of the anisotropy refers to the
ratio between the highest and lowest achievable speed, depending on the orientation at
a given position. The complexity of the anisotropy refers to the number of parameters
needed to characterize the metric: for three-dimensional media, 1 parameter is needed for
isotropic metrics, 6 parameters for Riemannian metrics (elliptic anisotropy), 8 parameters
for TTI metrics, 12 parameters for orthorhombic metrics, and finally 21 parameters for
metrics defined by a fully general Hooke tensor. For two-dimensional media, 1 parameter
is needed for isotropic metrics, 3 for Riemanian metrics, 5 for TTI metrics and 6 for a fully
general Hooke tensor. Our numerical scheme can handle the most complex metrics with
all 21 parameters from the Hooke tensor. Such fully general Hooke tensors can arise from
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homogenization procedures, see [CC18] and §6.4.2. However, we still have a limitation on
the strength of the anisotropy that we can handle: the fast marching method is applicable
to our scheme as long as the strength of anisotropy is lower than a given bound, depend-
ing on the discretization stencils, see §6.2.3 (in the event where this condition fails, the
correct solution to our scheme can nevertheless be computed using an iterative method
such as fast sweeping, see Appendix 6.D). Yet, we have verified that we could tackle the
strength of anisotropy from most cases found in seismical media, see Table 3 and Figure 28.

Throughout this paper, Rd denotes the usual Euclidean space, where d ∈ {2, 3} is the
ambient dimension. A closed, bounded and connected subset Ω ⊂ Rd is fixed, representing
the physical domain. It is equipped with a positive density field ρ : Ω → R, as well as a
field of Hooke 4th-order tensors c(x) = (cijkl(x)), where i, j, k, l ∈ {1, · · · , d}, describing
the elastic properties of the medium, with the usual symmetry assumptions (minor and
major symmetries). For any point x ∈ Ω and any p ∈ Rd, regarded as a co-vector, we
define

mx(p)ik :=
1

ρ(x)

∑
j,l

cijkl(x)pjpl, N∗x(p) =
√
‖mx(p)‖. (41)

Thus mx(p) is a d × d symmetric matrix, and N∗x(p) is the square root of its spectral
norm. Note the homogeneity relations mx(λp) = λ2mx(p) and N∗x(λp) = |λ|N∗x(p) for any
λ ∈ R. Unless stated otherwise, summation as in (41) over the indices i, j, k, or l is from
1 to d. We assume that the Hooke tensor c(x) is strictly elliptic, ensuring that mx(p) is
positive definite for all p 6= 0 and that N∗x is a norm on Rd, see Definition 6.8 and Remark
6.12 in §6.3.1.

In this paper, we present an efficient numerical method for computing the unique
viscosity solution u : Ω→ R, see [BCD08], of the generalized eikonal equation

N∗x(∇u(x)) = 1, (42)

for all x ∈ int(Ω) \ {x0}, where x0 is a prescribed source point. This equation is com-
plemented with the boundary condition u(x0) = 0 at the source, and outflow boundary
conditions on ∂Ω. One can rewrite (42) under the following classical form [Sla03] which
stems from the high frequency analysis of elastic waves

det
(∑

j,l

cijkl(x)∂ju(x)∂lu(x)− ρ(x)δik

)
= 0, (43)

where δik denotes Kronecker’s symbol. Equation (42) contains the additional information
that only the fastest propagation speed is considered. Note that lower propagation speeds
formally yield an eikonal equation similar to (42) but involving a non-convex Hamiltonian
in general instead of (41, right). Therefore their viscosity solution does not correspond
to a travel time of the P-SV modes in the elastic wave equation, but yields non-physical
values corresponding to the convex envelope of the Hamiltonian.
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We introduce a discretization of the PDE (42), which is solved in a single pass over the
domain, using a variant of the FMM. As the algorithm progresses, the successive values
u(x0) ≤ u(x1) ≤ u(x2) ≤ · · · of the numerical solution on Ωh are computed and then
frozen, one by one and in increasing order. The algorithm is strictly causal, in the sense
that the numerical value u(xn) computed at a given point only depends on already frozen
and strictly smaller values of the solution u(xm) < u(xn), m < n. This property of the
discretized system reflects the deterministic nature of the wave front motion: a present
arrival travel-time only depends on the earlier ones, and not on the future ones.

In comparison with iterative methods, such as fast sweeping [TCOZ03], adaptive
Gauss-Seidel iterations [BR06], or buffer based methods [Cri09], the FMM used here
has a number of appealing properties:

• Robustness. The FMM does not require setting any stopping criterion, and is
deterministically guaranteed to terminate in a finite number of steps. In addition it
is able to tackle general anisotropy associated with a general Hooke tensor cijkl(x).

• Speed. The computational complexity of the FMM is in O(N lnN) (where N is
the total number of degrees of freedom), independently of the problem instance, in
contrast with sweeping methods which require a variable number of sweeps depend-
ing on the medium complexity (dozens in a complex seismic medium, hundreds in
some applications to medical imaging [Mir14a]). A variant of the FMM [Tsi95, RS09]
achieves O(N) complexity, and some level of parallelism, but due to the large hidden
constant in the complexity estimate it is rarely used.

• Accuracy. Simple enhancements to the FMM allow to formally achieve second
and third-order accuracy [Set99], which is confirmed in the numerical experiments
presented in §6.4. Such high order schemes are required to estimate the elastic wave
amplitudes, or the curvature of the front, as their computations involve second-order
spatial derivatives of the arrival travel-times.

• Differentiability. The Jacobian matrix of the FMM has a sparse and upper tri-
angular structure, allowing for efficient inversion by direct substitution [MD17].

• Extensibility. Dynamic fast marching methods modify the numerical scheme on-
line, as the front propagation proceeds, depending on various properties of the min-
imal paths such as their curvature [LRW13]. In the context of seismic imaging, this
flexibility could be used to take into account non-linear effects due to amplitude
[VN18].

On the negative side, setting up the FMM for non-isotropic metrics requires substantial
work, depending on the geometrical properties of the equation solved [KS98, SV01, AM12,
Mir14b, Mir14a, Mir18, Mir19]. In the present state, our numerical method complies to
the following restrictions:

• Parallelism. The FMM is intrinsically sequential, and thus cannot take advantage
of parallel or massively parallel architectures such as [JW08, GHZ18].
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• Stencil construction and size. The discretization stencils need to obey specific
angular properties, depending on the nature and the strength of the anisotropy.
Since the overwhelming majority of materials encountered in seismology exhibit
rather mild anisotropy in absolute terms, our generalized fast marching method can
be usually instantiated with a compact stencil known as the cut-cube, see Figures 27
and 28. However, for crystals such as mica, which are some of the most anisotropic
materials encountered in seismology, more extended stencils must be used, see Figure
27 (right), at the possible expense of speed and accuracy. In addition, extending
our approach from Cartesian grids to unstructured grids would require substantial
effort, in the spirit of [KS98, LFH11].

Outline: An overview of the proposed numerical scheme is presented in §6.2. Imple-
mentation details for the critical routines are detailed in §6.3. Numerical experiments
presented in §6.4 illustrate the method accuracy and computational efficiency. Finally,
we present a conclusion with future perspectives in §6.5.

6.2 The fast marching method

This section describes (a generalization of) the fast marching method [Tsi95], which is
used in this paper to solve the generalized eikonal equation (42). The discussion in this
section applies to general anelliptic metrics, see Definition 6.6, and the implementation
details related with the specific algebraic form (43) of the equation encountered in seismic
imaging are postponed to §6.3. The first two subsections §6.2.1 and §6.2.2 introduce
classical mathematical tools, that are at the foundation of our approach. The main
contributions of this section lie in the angular distortion estimates of §6.2.3, and the
choice of source factorization (60) in §6.2.4. A summary of the method is presented in
§6.2.5.

The physical domain Ω is discretized on a Cartesian grid of scale h > 0,

Ωh := Ω ∩ hZd, (44)

and we assume for simplicity that the source x0 ∈ Ωh.

6.2.1 Geometrical formulation of the eikonal equation.

The generalized eikonal equation (42) is written in terms of a norm N∗x , at each point
x ∈ Ω, on the space of co-vectors3. Following [BCD08] we characterize its unique solution
in geometrical terms, involving a norm Nx on vectors, and a distance map between points.
For any v ∈ Rd, regarded as a vector, define

Nx(v) := max{〈p, v〉; p ∈ Rd, N∗x(p) ≤ 1}. (45)

In the context of seismic imaging, the norm Nx has no closed form expression, but is
defined by the above optimization problem in terms of the dual norm N∗x which is itself

3In this paper, the distinction between vectors and co-vectors is kept at an informal level, and we do
not distinguish between the spaces Rd and (Rd)∗
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Figure 27: Stencils used, in dimension 2 (square) and 3 (cut-cube, cube and spiky-cube)

the root of a third-order polynomial (41, right). Our numerical scheme depends on the
efficient numerical computation of Nx(v) and of its gradient, which is discussed in §6.3.

Denote by Γ := Lip([0, 1],Ω) the set of all paths within the domain closure, with
locally Lipschitz regularity. The length of a path γ ∈ Γ, and the distance between two
points x, y ∈ Ω, are defined as

L(γ) :=

∫ 1

0

Nγ(t)(γ
′(t)) dt, d(x, y) := min{L(γ); γ ∈ Γ, γ(0) = x, γ(1) = y}.

The unique viscosity solution to the eikonal equation (42) is the distance from the source
point [BCD08]

u(x) = d(x0, x). (46)

From this characterization, one can derive Bellman’s optimality principle, stating that for
any x ∈ Ω \ {x0}, and any neighborhood V ⊂ Ω of x not containing the source point x0,
one has

u(x) = min
y∈∂V

u(y) + d(y, x). (47)

6.2.2 Discretization of the eikonal equation

Following [KS98, SV01, BR06, Mir14a, Mir14b], our discretization of the eikonal equation
(42) mimics and discretizes Bellman’s optimality principle (47). For that purpose, we
introduce for each x ∈ Ωh a polygonal neighborhood Vxh , with vertices in hZd (recall that
Ωh := Ω ∩ hZd), referred to as the stencil, along with a piecewise linear interpolation
operator Ixh on its facets. Given u : Ωh → R, we approximate the right-hand side of
(47) by interpolating the arrival travel-times between the vertices of the stencil, and
approximating the distance function with the local norm as

Λhu(x) = min
y∈∂Vxh

Ixh u(y) +Nx(x− y). (48)

The function u is extended by +∞ on hZd \ Ωh in (48), which naturally implements
outflow boundary conditions on ∂Ω. The numerical computation of (48), which accounts
for the bulk of the computation time of our numerical method, is detailed in §6.3.3.
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In this paper, the stencil Vxh is obtained by rescaling and translating one of the instances
shown in Figure 27. This is adequate because the types of anisotropy encountered in
seismology are rather mild in absolute terms, even for crystal materials; in contrast, a
data adaptive construction is preferred for applications involving much stronger types
of anisotropy [Mir14b, Mir14a]. The discretization principle (48) is often referred to as
semi-Lagrangian, in contrast with purely Eulerian finite-difference approximations of the
eikonal equation such as [Set96, Mir18, Mir19].

The numerical approximation of the arrival travel-time (46) is defined as the unique
solution u : Ωh → R to the discrete system

u(x) = Λhu(x) (49)

for all x ∈ Ωh \{x0}, and u(x0) = 0 at the source point. Both the eikonal equation and its
discretization (48) benefit from comparison principles, see Proposition 6.31 for the latter
case. From these, and under mild technical assumptions, one proves that there exists a
unique discrete solution uh to (49) on Ωh, for each h > 0, which converges uniformly as
h→ 0 to the unique viscosity solution of (42). This approach is standard and not detailed
here, see [BR06].

The solution to the discrete non-linear system (49) may be computed using fixed point
iterations, see Proposition 6.32, or using any of the iterative methods considered in the
introduction, such as the fast sweeping method [TCOZ03]. However, in this study, we are
interested in using the fast marching method [Tsi95] (see Algorithm 4), which benefits
from a number of advantages listed in the introduction. This requires a careful choice of
the stencil Vxh , as described in the next subsection.

Algorithm 4 The fast marching method (FMM)
Initialize: u(x0) = 0, and u(x) = +∞ for all x ∈ Ωh \ {x0}. Tag all points as non-
accepted.
While a non-accepted point remains: 1.

Denote by y the non-accepted point minimizing u(y). 2.
Tag y as accepted. (Optionally, for e.g. higher order methods: PostProcess(y) ). 3.
For each non-accepted point x such that y ∈ Vxh : 4.

u(x)← Λ̃u(x) (modified operator using only the values from accepted points). 5.

6.2.3 Acuteness and causality

In this subsection, we establish a property of the numerical scheme, known as causality.
It can be informally rephrased as follows: the arrival travel-times (i.e. the values of the
solution to (49)) smaller than some value τ dictate the arrival travel-times smaller than
τ + δ1, where δ1 is a positive constant. An abstract formulation of causality is presented
in Proposition 6.30, following [SV01, AM12, Mir14a, Mir14b, Mir19]. We show in Propo-
sition 6.32 that with causality, the system (49) can be solved in finitely many fixed point
iterations; see [Mir19, Proposition A.2] for the proof that this system is correctly solved
by the FMM (Algorithm 4). In the literature related to fast sweeping methods, causality
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is often given a different (non-equivalent) meaning, related to upwindness, stability, and
to the monotony property in Proposition 6.30.

Following [SV01], the causality principle we conder here is derived from a geometrical
acuteness property of the norms and discretization stencils, see Proposition 6.3. Finally,
we discuss whether this property holds for various choices of norms and stencils. For that
purpose, we introduce the central object of this section, which could be described as the
angular width of the facets of a stencil measured with respect to a norm. The unoriented
angle ^(u, v) ∈ [0, π] between two vectors u, v ∈ Rd \ {0} is defined as

^(u, v) := arccos
( 〈u, v〉
‖u‖‖v‖

)
. (50)

Definition 6.1. Let N be a norm on Rd, differentiable on Rd \ {0}, and let V be a
polygonal neighborhood of the origin. We let

Θ(N,V) := max{^(∇N(v), w); v, w in a common facet of ∂V}.

The differentiability assumption in Definition 6.1 is not essential, and could be removed
as in [Mir14b]. It is however not restrictive for the application considered in this paper,
which does involve differentiable norms, see Lemma 6.15.

The next definition accounts for the distortion of lengths by an anisotropic norm, thus
completing Definition 6.1 which is related to the distortion of angles. The length distortion
of a norm is also referred to as the strength of its anisotropy, and corresponds to the ratio
between the highest and lowest value of the norm with respect to the orientation.

Definition 6.2 (Length distortion). For any norm N on Rd, define

µ∗(N) := min
v 6=0

N(v)

‖v‖
, µ∗(N) := max

v 6=0

N(v)

‖v‖
, µ(N) :=

µ∗(N)

µ∗(N)
.

The following proposition, which has numerous variants to be found in [Tsi95, KS98,
SV01], governs the applicability of the fast marching method.

Proposition 6.3 (Acuteness implies causality). Let N and V be as in Definition 6.1. Let
IV be the linear interpolation operator on ∂V, and let u be a map defined at the vertices
of V. Define

λ = min
y∈∂V

IV u(y) +N(x− y) (51)

and assume that the minimum is attained at a point y = α1y1 + · · · + αdyd ∈ ∂V, where
y1, · · · , yd are the vertices of a common facet of V, and α1, · · · , αd are the barycentric
coordinates. If Θ(N,V) ≤ π/2, then for any 1 ≤ i ≤ d such that αi > 0, one has

λ ≥ u(yi) + ‖x− yi‖µ∗(N) cos Θ(N,V). (52)

A proof of Proposition 6.3 is presented in §6.3.3. If Θ(N,V) < π/2, then the update
value λ is strictly larger than the neighbor values u(yi) which play an active role in its
computation (in the sense that αi > 0). Adopting the notation of (48), assume that

Θ(Nx,Vxh ) < π/2, (53)
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for each x ∈ Ωh. Then the system (49) is strictly causal, a property that is reformulated
in an abstract manner in Proposition 6.30. This makes it possible to apply the FMM.
Note that multi-pass iterative methods such as fast sweeping remain applicable even if
(53) fails, see Section 6.D for more discussions.

The next definition and proposition bound the angle Θ(N,V) in terms of the norm
and stencil separately. When the strength of the anisotropy in a medium is sufficiently
mild, as in the case of geological media, it is possible to select an adequate discretization
stencil for the fast marching method, see Tables 3 and 4. In contrast, more pronounced
types of anisotropy as considered in [Mir14b, Mir14a, MD20] call for a data-adaptive and
anisotropic stencil construction.

Definition 6.4. Let N and V be as in Definition 6.1. Define the angular distortion of
the norm as

Θ(N) := max
v 6=0

^(∇N(v), v), (54)

and the angular width of the stencil as

Θ(V) := max{^(v, w); v, w in a common facet of ∂V}.

In the next proposition we denote by Od the group of d×d orthogonal matrices, which
are characterized by the identity R−1 = RT. Given a norm N and R ∈ Od, we define a
rotated norm by N ◦R(x) := N(Rx) for all x ∈ Rd.

Proposition 6.5. Let N and V be as in Definition 6.1. Then

Θ(N,V) ≤ Θ(N) + Θ(V). (55)

Besides, there exists R ∈ Od such that Θ(N ◦R,V) = Θ(N) + Θ(V).

Proof. Given u, v ∈ Rd \ {0}, one has ^(∇N(u), v) ≤ ^(∇N(u), u) + ^(u, v). Thus
Θ(N,V) ≤ Θ(N) + Θ(V) by definition. Besides, observing that Θ(N ◦R) = Θ(N) for any
R ∈ Od, one obtains the relation: Θ(N ◦R,V) ≤ Θ(N) + Θ(V).

Then, let u ∈ Rd \ {0} be such that Θ(N) = ^(∇N(u), u), and let v, w in a common
facet of ∂V be such that Θ(v) = ^(v, w). Up to replacing N with N ◦ R, for some
R ∈ Od, we may assume that u = v. Up to replacing V with its image R′(V) by a
rotation R′ ∈ Rd, we may assume that w lies in the plane generated by u and ∇N(u),
such that ^(∇N(u), w) = ^(∇N(u), u) + ^(u,w). This shows that Θ(N ◦ R ◦ R′T ,V) =
Θ(N ◦R,R′(V)) = Θ(N) + Θ(V), and concludes the proof.

The angular width Θ(V) of several stencils is given in Table 3, as well as the angular
distortion Θ(N) of the norm associated with some geological media, numerically computed
from their Hooke elasticity tensor as given in [BC91] and a fine sampling of (unit) vectors
v in (54). In two dimensions, the square stencil is suitable for all geological media of
interest, since Θ(N) + Θ(V) < π/2. In three dimensions, the cut-cube stencil can be used
with olivine and stishovite media, while the more anisotropic mica medium requires the
refined spiky-cube stencil, see Figure 27 and Table 4.

The angular distortion Θ(N) can also be estimated in terms of the length distortion
µ(N) of a norm, as shown in the next proposition. Two estimates are presented: a worst
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Square Cut-cube Cube Spiky-cube
Θ(V) π/4 = 0.785 . . . π/3 = 1.047 . . . acos(1/

√
3) = 0.955 . . . π/4 = 0.785 . . .

Olivine Stishovite Mica
Θ(N) 0.265 . . . 0.341 . . . 0.753 . . .

Table 3: Angular width of the stencils illustrated in Figure 27, and angular distortion of
the norm associated with several geological media. For completeness, the corresponding
Hooke tensors (in GPa units, using Voigt notation) and densities are reproduced below
from [BC91].

323.7 66.4 71.6 0 0 0
66.4 197.6 75.6 0 0 0
71.6 75.6 235.1 0 0 0

0 0 0 64.6 0 0
0 0 0 0 78.7 0
0 0 0 0 0 79.0

 , ρ = 3.311g/cm3 (Olivine)


453 211 203 0 0 0
211 453 203 0 0 0
203 203 776 0 0 0
0 0 0 252 0 0
0 0 0 0 252 0
0 0 0 0 0 302

 , ρ = 4.29g/cm3(Stishovite)


178 42.4 14.5 0 0 0
42.4 178 14.5 0 0 0
14.5 14.5 54.9 0 0 0

0 0 0 12.2 0 0
0 0 0 0 12.2 0
0 0 0 0 0 12.2

 , ρ = 2.79g/cm3 (Mica)
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Square Cut-cube Cube Spiky-cube
Elliptic iff µ ≤ 1 +

√
2 iff µ ≤

√
3 iff µ ≤ (1 +

√
3)/
√

2 iff µ ≤ 1 +
√

2

Anelliptic if µ ≤
√

2 if µ ≤ 2/
√

3 if µ ≤
√

3/2 if µ ≤
√

2
Minerals∗ XXX XX× XX× XXX

Table 4: Condition under which a norm N and stencil V satisfy Θ(N) + Θ(V) ≤ π/2, in
terms of the length distortion µ = µ(N). Note that the bound is sharp for elliptic norms
(if and only if), but only sufficient for anelliptic norms, see Proposition 6.7. Stencils
illustrated in Figure 27. Numerical values for the first two lines : (2.41, 1.73, 1.93, 2.41)
and (1.41, 1.15, 1.22, 1.41). Minerals∗: anisotropy corresponding to the olivine, stishovite
and mica minerals respectively.

case estimate in the anelliptic case in §6.B.1, and a sharp estimate in the elliptic case.
Note that, strictly speaking, norms defined by a Hooke tensor are anelliptic, but their
anellipticity is not always very pronounced.

Definition 6.6 (Norms and elliptic norms). A norm is a function N : Rd → R such
that for all v, w ∈ Rd, (i) N(v + w) ≤ N(v) + N(w), (ii) N(λv) = λN(v) for all λ ≥ 0,
(iii) N(−v) = N(v), and (iv) N(v) ≥ 0 with equality iff v = 0. It is said elliptic if
N(v) =

√
〈v,Mv〉 for all v ∈ Rd, where M ∈ S++

d is a positive definite matrix, and
anelliptic otherwise.

Proposition 6.7. For any elliptic (resp. anelliptic) norm N one has

(µ(N) + µ(N)−1) cos Θ(N) = 2 (resp. µ(N) cos Θ(N) ≥ 1).

The results presented in this subsection also apply if the symmetry assumption (iii)
is removed in Definition 6.6. Norms lacking symmetry, often referred to as quasi -norms,
define quasi-distances which can also be characterized by an eikonal equation and nu-
merically computed using the fast marching method or another iterative method, with
straightforward applications of the formalism presented in this paper, see [Mir14b] for
two-dimensions applications.

Causality for TTI metrics with the use of fixed stencils. We illustrate the causal-
ity property for our stencils on the specific case of TTI anisotropy. However, we keep in
mind that our method can similarly handle anisotropy associated with a general Hooke
tensor.

The Thomsen parameters [Tho86] are Vp (pressure wave velocity), Vs (shear wave
velocity), ε and δ, complemented with a rotation R. We define the TTI eikonal equation
as

ap4
r + bp4

z + cp2
rp

2
z + dp2

r + ep2
z = 1, (56)

where p2
r = p2

x + p2
y and (px, py, pz) = R∇u, with parameters (a, b, c, d, e) defined from the
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Thomsen parameters as

a = −(1 + 2ε)V 2
p V

2
s ,

b = −V 2
p V

2
s ,

c = −(1 + 2ε)V 4
p − V 4

s + (V 2
p − V 2

s )(V 2
p (1 + 2δ)− V 2

s ),

d = V 2
s + (1 + 2ε)V 2

p ,

e = V 2
p + V 2

s .

The PDE (56) suffers from an ambiguity, similar to (43), in the sense that two propa-
gation speeds are solution, in each direction. In this paper, we only consider the fastest
propagation speed, corresponding to pressure waves. From Thomsen parameters and the
rotation, one can define a Hooke tensor such that (43) is equivalent to (56).

We use the criterion of Proposition 6.3 to determine whether our fixed 3D stencils
provide a causal scheme depending on the Thomsen parameters. With Proposition 6.5, we
make our criterion independent from the rotation chosen for the TTI metric. Therefore, we
only need to determine the length distortion for a set of Thomsen parameters (Vp, Vs, ε, δ).

We set Vs = 0 for an easier visualization of the results4. Besides, we can set Vp = 1
with no loss of generality. Results are shown in Figure 28, depending on parameters (ε, δ).
We also represent the (ε, δ) values from 58 examples of media presented in [Tho86]. Out
of the 58 media, only 4 of them are such that the cut-cube stencil does not guarantee a
causal scheme: these four media are the “Muscovite crystal”, “Biotite crystal”, “Gypsum-
weathered material” and “Aluminum-lucite composite”. From these 4 media, only the
“Biotite crystal” is such that the spiky-cube stencil does not guarantee a causal scheme.
We conclude that the cut-cube stencil suffices to enable the FMM with most practical
cases of seismic anisotropy.

6.2.4 Source factorization, and high order finite-differences

We describe enhancements of the numerical scheme (48), aimed at achieving higher ac-
curacy, through an additive factorization of the source singularity, and the use of higher
order upwind finite-differences, in the spirit of [LQ12, TH16] and [Set99] respectively. For
that purpose, we rely on an infinitesimal variant of Bellman’s optimality principle (47):

0 = min
y∈∂V
〈∇u(x), y − x〉+Nx(x− y), (57)

where V is a neighborhood of a point x ∈ Ω. This property can be derived from (47), or
alternatively from the eikonal equation (42) and the relationN∗x(p) = max{〈p, v〉; Nx(v) ≤
1} which follows from (45) and Legendre-Fenchel duality. In general, (57) should be
understood in the sense of viscosity solutions [BCD08], but for the sake of simplicity we
assume in this discussion that u is differentiable at x.

4Note that the Thomsen parameter Vs does not exactly correspond to the physical speed of the S-wave,
and so Vs does have an impact on the value of the first arrival travel-time, as well as the geometry and
anisotropy of the equivalent Hooke tensor. However, on usual values for geophysical media, the impact
of Vs is very small so the visualisation of Figure 28 is not significantly altered.
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Figure 28: Acuteness property for TTI metrics. The figure shows whether a given stencil
is acute with respect to a TTI metric determined by Thomsen parameters (ε, δ), with
Vp = 1 and Vs = 0, while taking into account the worst possible rotation of the metric.
The domain labelled for the spiky-cube also contains the domain labelled for the cube,
which also contains the domain labelled for the cut-cube.

Equation (57) is discretized in a similar fashion as (48) and (49):

0 = min
y∈∂Vxh

IxhD(u, x, y − x) +Nx(x− y), (58)

where D(u, x, y − x) is a finite-difference approximation of 〈∇u(x), y − x〉, defined for
x, y ∈ Ωh. Recall that Ixh denotes, as in (48), the linear interpolation operator on
the polygonal stencil boundary ∂Vxh , with vertices in Ωh. For convenience, we also let
Dx
hu(v) := D(u, x, hv)/h, where v = (y − x)/h, which approximates the directional gra-

dient 〈∇u(x), v〉. The original scheme (48) is recovered by letting

Dx
hu(v) =

u(x+ hv)− u(x)

h

(
equivalently D(u, x, y − x) := u(y)− u(x)

)
. (59)

Substantial improvements in accuracy can however be obtained using more complex finite-
difference schemes which (i) factor the solution singularity at the source point x0, and (ii)
increase the finite-difference order. Note that increased accuracy is suggested by a con-
sistency analysis, and observed numerically §6.4. However, from a theoretical standpoint,
we cannot guarantee that these modifications improve numerical accuracy, but only that
they do not significantly degrade it, see Section 6.D.

Additive source factorization. The solution to the eikonal equation (42) is non-
differentiable at the source point x0. As a result, the finite-difference approximation of
its derivatives, as in (59), is inaccurate for x close to x0, which degrades the accuracy
of the numerical results. Source factorization methods [LQ12] subtract to the unknown
u a known function u∗ which has same singularity as the solution, but with values and
derivatives that can be numerically evaluated to machine precision at a modest cost. The
following choices are considered: assuming without loss of generality that x0 = 0

u1(x) := N0(x), u2(x) :=
1

2
(N0(x) +Nx(x)). (60)
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The factor u2 is considered for the first time in this paper. As illustrated in the numerical
experiments §6.4, it is more accurate than u1, and is required to achieve third-order
accuracy.

Following the additive source factorization method [LQ12], and denoting by u∗ the
chosen factor (u1 or u2), we introduce the corrected finite-difference operator

Dx
hu(v) =

u(x+ hv)− u(x)

h
+

(
〈∇u∗(x), v〉 − u∗(x+ hv)− u∗(x)

h

)
. (61)

The resulting modified scheme (58) is only a small perturbation of the original one (49),
featuring corrective terms (61, right) of magnitude O(h2/‖x−x0‖). If the original scheme
is strictly causal (53), then this perturbation also is, except possibly on a neighborhood
of radius O(h) of the source x0 where (60) is in any case an excellent approximation of
the solution u. As a result, the modified scheme can be solved in a single pass, using the
fast marching algorithm, see Proposition 6.33 and the discussion below.

High order finite-differences. High order finite-differences advantageously replace
first order ones (59, left) in places where the solution is smooth. These differences should
be upwind, i.e. one sided, so as to respect the causality principle underlying the eikonal
equation. Second-order upwind finite-differences for instance read

Dx
hu(v) =

u(x+ hv)− u(x)

h
− u(x+ 2hv)− 2u(x+ hv) + u(x)

2h
, (62)

and third-order differences incorporate the additional term

u(x+ 3hv)− 3u(x+ 2hv) + 3u(x+ hv)− u(x)

3h
. (63)

Note that this approach requires a Cartesian grid discretization, such that x + 2hv and
x+ 3hv are points of the discretization grid hZd, in addition to x and x+hv. Alternative
approaches to high order finite-differences also exist, see e.g. [BLZ10]. Source factorization
can easily be combined with high order finite-differences: similarly to (61), symbolically
compute the directional gradient 〈∇u∗(x), v〉 of the factor (60), and remove its finite-
difference approximation Dx

hu∗(v).
In contrast with source factorization, the use of high order finite-differences breaks

the fundamental result of Proposition 6.3 on causality, as well as discrete comparison
principles (the modified scheme is not monotone). For this reason, they should be used
with caution. In practice, following [Set99], we introduce them in the post processing
step of the fast marching method, see Line 3. of Algorithm 4. At this stage the numerical
scheme is re-evaluated at the accepted point y using high order finite-differences, provided
they (i) only involve accepted values, and (ii) are close enough to the standard first-order
differences. This avoids introducing instabilities in the FMM, and guarantees that the
accuracy is not worse than the first-order scheme, see Proposition 6.34 and the discussion
above.
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6.2.5 Summary of the numerical method

This paper defines a numerical method, designed to solve the eikonal equation in a geologi-
cal medium defined with a fully general Hooke tensor (21 parameters). In this subsection,
we present a summary of each of its steps. The computer code which implements the
method in this study can also be found at: https://github.com/Mirebeau, with illus-
trative Python Notebooks.

Choice of discretization stencils. In order to make it possible to use the FMM, the
stencils need to be acute with respect to the metric, see (53). The results presented in
this paper make it possible to infer the choice of stencils from possibly known geometric
properties of the metric: the angular distortion in Proposition 6.5, and the length distor-
tion in Proposition 6.7. More specific examples are also considered: materials described
in terms of Thomsen parameters in Figure 28, and a selection of minerals in Table 4.
Typically, the cut-cube stencil is acute for most metrics from geological media.

Numerical solver. Once acute stencils are set, the discrete system (49) can be solved
in a single pass by the FMM. The implementation of the FMM is detailed in Algorithm
4 (alternatively, if the stencils are not acute, an iterative method such as fast sweeping
may be used, see Section 6.D). For better accuracy, we also use a source factorization, as
well as high order finite-differences, see Section 6.2.4.

Computation of the update operator. The FMM requires the computation of the
update operator Λ from Definition 48, which is used to compute the arrival travel-time at
any position as a minimization problem over arrival travel-times estimated on the facets of
the stencil at this position. The computation of the update operator is the most expensive
aspect of our numerical method. The minimum is computed on the vertices, edges and
faces of the stencil: details of the implementation can be found in §6.3.4.

6.3 Numerical computation of the norm and update operator

We provide in this section the implementation details for the numerical computation
of the norm associated with a given Hooke tensor, which is a basic ingredient of our
numerical solver of the eikonal equation (42). We also establish Proposition 6.3 in §6.3.3,
on causality property of the update operator, and discuss its numerical evaluation in
§6.3.4. Throughout this section, we fix a Hooke tensor c, and define mc(p) ∈ Sd and
N∗(p) for all p ∈ Rd

mc(p)ik :=
∑
j,l

cijkl pj pl, N∗c (p) :=
√
‖mc(p)‖, (64)

where the spectral norm (largest eigenvalue) is used in (64, right). This definition is similar
to (41), except for the density which is ignored for simplicity, without loss of generality
up to rescaling the Hooke tensor. The primal norm Nc is defined as maximization of a
linear form subject to a non-linear convex constraint, similar to (45): for all v ∈ Rd

Nc(v) := max{〈p, v〉; N∗c (p) ≤ 1}. (65)
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We rely on sequential quadratically-constrained quadratic programming (SQCQP) to
address this problem numerically, see Section 6.C. A variant of the SQCQP also arises
in the evaluation of the update operator (48), see §6.3.4. For this method, the constraint
needs to take the form “f ≤ 0” (resp. “f ≥ 0”) (or another constant bound) where the
function f is both:

(a) Strongly convex (resp. strongly concave), see Definition 6.11.

(b) Efficiently evaluated numerically, as well as its gradient and Hessian.

The constraint N∗c ≤ 1 in (65) does not satisfy any of these properties. Considering
(N∗c )2 ≤ 1 fixes (a), see Theorem 6.10, but not (b) since N∗c (p) involves the spectral norm
‖mc(p)‖ which is itself the root of a third-order polynomial. We thus consider alternative
expressions of the constraint, and denote

B∗c := {p ∈ Rd;Nc(p) ≤ 1}, fc(p) := det(Id−mc(p)). (66)

We prove in Proposition 6.14 below, under suitable assumptions, that B∗c is the connected
component of the origin in the set {fc ≥ 0}.

We can thus replace the highly non-linear constraint N∗c (p) ≤ 1 with the constraint
fc(p) ≥ 0. Since fc is a polynomial (of 2d order in d variables, inhomogeneous), it complies
with (b). However, fc is in general not concave, thus fails (a), see nevertheless Remark
6.18. For this reason we consider yet other alternative expressions of the constraint

f
1
d
c ≥ 0, (67)

and, for α ≥ 0,
exp[−αfc] ≤ 1. (68)

The function f
1
d
c used in (67) is a barrier function for the set B∗c : it is strictly positive in

its interior, cancels on its boundary, and is strongly concave, see Theorem 6.10. However,
it is not defined outside of B∗c , hence its use is restricted to optimization procedures using
only interior points, which is not the case of SQCQP. Even so, it is natural to consider
this expression of the constraint before moving to (68), see proof of Theorem 6.10.

On the other hand, the function exp[−αfc] is smooth, defined over the whole of Rd,
and easy to evaluate, thus complies with (b). The main result of this section, Theorem
6.10, establishes that it is strongly convex on a neighborhood of B∗c , thus also complies
with (a), when α is sufficiently large. See Remark 6.18 on the effective choice of this
constant α. This reformulation of the constraint is thus suitable for applying the SQCQP
optimization routine to compute Nc(v), see Section 6.C. For numerical stability, the
exponential is taken into account in the optimization via Remark 6.29.

In order to state our results, we need to introduce some definitions. Recall that a
Hooke tensor is a 4th-order tensor c = (cijkl), i, j, k, l ∈ {1, · · · , d}, obeying the symmetry
relations cijkl = cklij = cjikl. Given two symmetric matrices m1,m2, we write m1 � m2

(resp. m1 � m2) if m1−m2 is positive semi-definite (resp. positive definite); this is known
as the Loewner order.
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Definition 6.8. A Hooke tensor c is said elliptic (resp. strictly elliptic) iff mc(p) is
positive semi-definite (resp. positive definite) for each p ∈ Rd \ {0}.

We let cell be the largest constant such that mc(p) � cell Id ‖p‖2 for all p ∈ Rd, and
note that cell ≥ 0 (resp. cell > 0) if c is elliptic (resp. strictly elliptic).

Definition 6.9. A Hooke tensor c is said separable iff the largest eigenvalue of mc(p)
has multiplicity one for all p 6= 0.

A Hooke tensor is separable, in the sense of Definition 6.9, iff the pressure waves are
strictly faster than the other modes of propagation (e.g. P-SV-waves), which is typical of
the materials encountered in seismology. The notion of Hooke tensor ellipticity is further
discussed in Remark 6.12, and is unrelated with elliptic anisotropy, see Definition 6.6.

Theorem 6.10. Let c be a strictly elliptic Hooke tensor. Then (i) N∗c is a norm, and
(N∗c )2 is 2cell-convex, (ii) f

1
d
c is 2cell-concave in B∗c , (iii) if in addition c is separable, and

α is large enough, then exp[−αfc] is strongly convex in a neighborhood of B∗c

A property closely related to point (i) is established in [Mus03], with a different proof.

Definition 6.11. A function f , defined on a convex domain Ω ⊂ Rd, is said δ-convex iff
for all p, q ∈ Ω and all t ∈ [0, 1] one has

f((1− t)p+ tq) ≤ (1− t)f(p) + tf(q)− δ

2
t(1− t)‖p− q‖2. (69)

A 0-convex function is simply said convex, and a δ-convex function for some δ > 0
is said strongly convex. A function f is said δ-concave iff −f is δ-convex. If f is twice
continuously differentiable, then δ-convexity is equivalent to the property ∇2f � δ Id. If
f1 and f2 are δ-convex, then f = max{f1, f2} also is.

The following variant of the parallelogram identity, which has obvious ties to (69), is
used twice in the proof of Theorem 6.10: for any quadratic form A, any points p, q, and
any t ∈ R

A((1− t)p+ tq) = (1− t)A(p) + tA(q)− t(1− t)A(p− q). (70)

Remark 6.12 (Hooke tensor positivity). Following [BST83], a Hooke tensor is said el-
liptic (resp. positive) if for all p, q ∈ Rd (resp. m ∈ Sd) one has∑

i,j,k,l

cijkl pi qj pk ql ≥ 0
(
resp.

∑
i,j,k,l

cijklmijmkl ≥ 0
)
.

This notion of ellipticity is clearly equivalent with Definition 6.8. Note also that positivity
implies ellipticity, as already observed in [BST83], by choosing mij = 1

2
(piqj + pjqi).

Remark 6.13 (Gradient of Nc(v)). Let c be a strictly elliptic Hooke tensor, let v ∈
Rd \{0}, and let p be optimal in (65). Then ∇Nc(v) = p by the envelope theorem [Car01].
This observation allows to numerically implement source factorization, see (60) and (61).

We conclude the introduction of this section with a description of the constraint set
B∗c in terms of the level sets of fc. Denote by CCx(X) the connected component of a
point x in a set X.
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Proposition 6.14. If c is elliptic and separable, then B∗c = CC0{fc ≥ 0}.

Proof. For all p ∈ Rd, denote by λ1(p) ≥ · · · ≥ λd(p) the eigenvalues of mc(p), which
depend continuously on p. Note that λd(p) ≥ 0 since c is elliptic, and that λ1(p) > λ2(p)
for all p 6= 0 since c is separable. Note also that Nc(p) =

√
λ1(p) and fc(p) = (1 −

λ1(p)) · · · (1− λd(p)).
Proof of the direct inclusion: if p ∈ B∗c , then 1 ≥ λ1(p). Therefore fc(σp) = (1 −

σ2λ1(p)) · · · (1− σ2λd(p)) ≥ 0 for all σ ∈ [0, 1], thus p ∈ CC0{fc ≥ 0} as announced.
Proof of the reverse inclusion: the sets B∗c = {λ1 ≤ 1} and E := {λ2 ≥ 1} are closed,

and disjoint by separability. Since {fc ≥ 0} ⊂ B∗c t E, any connected component of
{fc ≥ 0} is entirely contained in either B∗c or E. It follows that CC0{fc ≥ 0} ⊂ B∗c which
concludes.

6.3.1 Convexity and smoothness of the dual norm N∗c

We establish point (i) of Theorem 6.10, and also discuss the smoothness and uniform
convexity properties of N∗c . Let c be an elliptic Hooke tensor. Then for any p, q ∈ Rd one
has,

‖q‖2
mc(p) =

∑
i,j,k,l

cijkl qi pj qk pl = ‖p‖2
mc(q),

where ‖q‖m :=
√
〈q,mq〉. Therefore

N∗c (p) :=
√
‖mc(p)‖ = max

|q|=1
‖q‖mc(p) = max

|q|=1
‖p‖mc(q). (71)

Proof of point (i) of Theorem 6.10. The function p ∈ Rd 7→ ‖p‖m is convex if m is a
symmetric positive semi-definite matrix, and is a norm if m is positive definite. In the
latter case, p 7→ ‖p‖2

m is δ-convex with parameter δ = 2λmin(m), as follows from the
parallelogram identity (70). The announced result follows from (71), the stability of
these properties under the max operation, and the observation that λmin(mc(q)) ≥ cell if
‖q‖ = 1.

Lemma 6.15. Let c be an elliptic and separable Hooke tensor. Then N∗c is C∞ smooth
on Rd \ {0}.

Proof. By construction, N∗c (p)2 is the largest root of the polynomial λ 7→ det(λ Id−mc(p)),
which by assumption is positive and simple (i.e. of multiplicity one). The result immedi-
ately follows from the regularity of a polynomial’s simple roots with respect to variations
in the coefficients.

The strong convexity of (N∗c )2 and its C∞ smoothness on Rd \ {0}, see Theorem 6.10
and Lemma 6.15, imply the same properties of the norm Nc by Legendre-Fenchel duality.

6.3.2 Convexity of the alternative barriers for the dual unit ball

We conclude in this subsection the proof of Theorem 6.10.
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Proof of point (ii) of Theorem 6.10. Each component of p 7→ mc(p) is a quadratic form
by (64, left), hence by the parallelogram identity (70) one has for any p, q ∈ Rd and any
t ∈ [0, 1]

mc((1− t)p+ tq) = (1− t)mc(p) + tmc(q)− t(1− t)mc(p− q). (72)

Recall that det
1
d is concave5 over the cone S+

d . By homogeneity, this implies super-
additivity: det(A + B)

1
d ≥ det(A)

1
d + det(B)

1
d for all A,B ∈ S+

d . Using successively
(72), the super-additivity and the concavity of det

1
d on S+

d , we obtain for any p, q ∈ B∗c ,
t ∈ [0, 1], and denoting M [p] := Id−mc(p)

det(M [(1− t)p+ tq])
1
d = det

(
(1− t)M [p] + tM [q] + t(1− t)mc(p− q)

) 1
d

≥ det
(
(1− t)M [p] + tM [q]

) 1
d + t(1− t) det

(
mc(p− q)

) 1
d

≥ (1− t) det(M [p])
1
d + t det(M [q])

1
d + t(1− t)cell‖p− q‖2.

Given a twice continuously differentiable function f , and constants α, β ∈ R, we recall
the expression of the composite Hessians,

∇2 exp(−αf) =
(
α∇f∇fT −∇2f

)
µ1, ∇2(fβ) =

(β − 1

f
∇f∇fT +∇2f

)
µ2, (73)

only defined where f > 0 for (73, right). We denote µ1 := α exp(−αf) and µ2 := βfβ−1.
Proposition 6.17 below and (73, left) together imply point (iii) of Theorem 6.10. Recall
that the comatrix co(M) has polynomial entries in a matrix M , and satisfies M−1 =
co(M)T/ det(M) when M is invertible.

Lemma 6.16. Let M ∈ Sd and v ∈ Rd. Assume that 〈w,Mw〉 ≥ c‖w‖2 for all w ∈
v⊥, where c > 0. Then M + αvvT � 0 iff α > α∗ := − det(M)/〈v, co(M)v〉. (Also,
〈v, co(M)v〉 ≥ cd−1.)

Proof. Up to a linear change of coordinates, we may assume that v = (1, 0, · · · , 0). Denote
by M̃ ∈ Sd−1 the matrix extracted from M by omitting the first line and first column,
which by assumption satisfies M̃ � c Id. Then 〈v, co(M)v〉 = det M̃ ≥ cd−1 as announced.
Also det(M+αvvT ) = det(M)+α det(M̃) = det(M)+α〈v, co(M)v〉 is positive iff α > α∗.

Assume for contradiction that there exists a sequence (wn)n≥0 such that ‖wn‖ = 1 and
〈wn, (M + nvvT )wn〉 ≤ 0 for all n ≥ 0. Up to extracting a subsequence, we may assume
that wn → w∗ as n → ∞, where ‖w∗‖ = 1. Noting that 〈wn, v〉2 ≤ −〈wn,Mwn〉/n → 0
as n → ∞, we obtain that 〈w∗, v〉 = 0. Then 0 ≥ 〈wn, (M + nvvT )wn〉 ≥ 〈wn,Mwn〉 →
〈w∗,Mw∗〉 > 0, as n → ∞, which is a contradiction. We conclude that there exists n∗
such that M + n∗vv

T � 0.
The set I = {α ∈ R; M + αvvT � 0} is the connected component of n∗ in the set

J = {α ∈ R; det(M + αvvT ) > 0}. Noting that J =]α∗,∞[, we conclude the proof.
5There are countless proofs of this fact, related to the Brunn-Minkowski theorem. For instance, a

reduction shows that one can suppose that one matrix is the identity and the other is diagonal, in which
case the inequality follows from the convexity of t ∈ R 7→ ln(1 + et).
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Proposition 6.17. Let c be a strictly elliptic and separable Hooke tensor. Then there
exists a constant α ≥ 0 such that g(α, p) := α∇fc(p)∇fc(p)T −∇2fc(p) is positive definite
for all p in a neighborhood of B∗c .

Proof. Let p ∈ int(B∗c ). By point (ii) of Theorem 6.10 and (73, right) one has g(α(p), p) �
0 with α(p) := (1− 1/d)/f(p).

Let p ∈ ∂B∗c , and let λ1 ≥ · · · ≥ λd be the eigenvalues of mc(p). One has λ1 = 1 since
p ∈ ∂B∗c , and λ2 < 1 by separability. Therefore fc((1 + ε)p) = det(Id−(1 + ε)2mc(p)) =
−2ε(1 − λ2) · · · (1 − λd) + O(ε2), which shows that v := ∇fc(p) is non-zero. On the
other hand, the strong convexity of (N∗c )2, and the fact that the level sets N∗c = 1 and
fc = 0 coincide, implies that 〈w,∇2fc(p)w〉 < 0 for all w ∈ v⊥. From these properties
and Lemma 6.16, we obtain that g(α(p), p) � 0 for sufficiently large α(p).

The announced result follows from the compactness of B∗c , the continuity of ∇fc and
∇2fc and openness of S++

d , and the existence of a suitable α = α(p) at each p ∈ B∗c =
int(B∗c ) ∪ ∂B∗c as shown above.

Remark 6.18 (Effective value of α). Proposition 6.17 produces the constant α by a com-
pactness argument, which is not quantitative. We numerically approximate this constant,
using Lemma 6.16 and a fine sampling of B∗c , for a variety of materials, and found for
example that α = 40 is suitable for the Hooke tensor derived from the mica material, and
α = 62 is suitable for the Hooke tensor derived from the stishovite material (as defined in
Table 3).

Numerical computation of Nc(v) = max{〈p, v〉; exp[−αfc(p)] ≤ 1} is implemented us-
ing the SQCQP method, described in Section 6.C and using Remark 6.29 to avoid overflow
and underflow error associated with the evaluation of exp[−αfc]. Our experiments even-
tually led to the observation that SQCQP is robust and rather insensitive to the parameter
α. In particular and to our surprise, no failure of this iterative optimization procedure
was observed when letting α→ 0, which amounts to applying SQCQP with the constraint
fc ≥ 0: the point p = 0 appears to remain in the basin of attraction of the solution,
even though the constraint function is non-concave. Explaining this fortunate behavior is
beyond the scope of the current work.

6.3.3 Proof of the causality property

This subsection is devoted to the proof of Proposition 6.3, which relates a geometrical
property of the stencils with a causality of the update operator (48) of the fast marching
method. For that purpose, let us recall that this operator is defined as a minimization
problem over a triangulated surface: the boundary ∂Vxh of the discretization stencil, see
(48). For each k-dimensional facet of this surface, we thus solve an optimization problem
of the following form

λ = min
ξ∈Ξk
〈l, ξ〉+N(V ξ), where Ξk := {ξ ∈ [0,∞[k+1; 〈ξ,1k〉 = 1}, (74)

where 1k := (1, · · · , 1) ∈ Rk+1. We denote by N a norm on Rd, assumed to be differ-
entiable on Rd \ {0}, and by V a matrix of shape d × (k + 1). Note that the norm N
and the set Ξk are convex, hence this problem is amenable to numerical optimization, see

83



§6.3.4. In the context of (48), N = Nx, the matrix V collects the vertices of the k-facet
of interest of ∂Vhx , and the vector l collects the values of the unknown u at the vertices of
the facet.

Lemma 6.19. Assume that the minimum (74, left) is attained at a point ξ of the relative
interior of Ξk. Then denoting p = ∇N(V ξ), one has

λ1k = l + V Tp, N∗(p) = 1 (75)

Proof. Equation (75, right) follows from p = ∇N(V ξ) and Legendre-Fenchel duality. The
Karush-Kuhn-Tucker relations for the optimization problem (74), given that the non-
negativity constraints are inactive, yield (75, left) with an arbitrary Lagrange multiplier
λ′. The equality of λ′ with the value λ of the optimization problem (74) is established as
follows:

λ′ = λ′〈ξ,1k〉 = 〈ξ, l + V Tp〉 = 〈l, ξ〉+ 〈p, V ξ〉 = 〈l, ξ〉+N(V ξ) = λ.

The next result links the acuteness of the stencil with the causality of the numerical
scheme, following [Tsi95, KS98, SV01]. For that purpose we denote, for each matrix V of
shape d× (k + 1)

Θ(N, V ) := max
ξ,ξ′∈Ξk

^(∇N(V ξ), V ξ′). (76)

Proposition 6.20 (Acuteness implies causality, single facet version). Assume that the
minimum (74, left) is attained at a point ξ in the relative interior of Ξk, and that
Θ(N, V ) ≤ π/2. Denote by l0, · · · , lk the components of l, and by v0, · · · , vk the columns
of V . Then for any 0 ≤ i ≤ k

λ ≥ li + ‖vi‖µ∗(N) cos Θ(N, V ) (77)

Proof. Considering (75, left) componentwise, we obtain λ = li + 〈vi, p〉. Since vi and V ξ
belong to the same facet of the stencil, one obtains using the angle condition and Lemma
6.23

〈vi, p〉 = 〈vi,∇N(V ξ)〉 ≥ ‖vi‖‖∇N(V ξ)‖ cos Θ(N, V )

≥ ‖vi‖µ∗(N) cos Θ(N, V ).

Proof of Proposition 6.3. Up to renumbering the vertices, and eliminating those for which
the barycentric coordinate vanishes, we assume that the minimum of (51) is attained at a
point y = α0y0 + · · ·+αkyk, where αi > 0 for all 0 ≤ i ≤ k, and y0, · · · , yk are the vertices
of minimal facet of ∂V containing y (the dimension of this facet is k, with 0 ≤ k < d).
Denote by V the matrix of columns y0 − x, · · · , yk − x, and let l = (u(y0), · · · , u(yk)).
Then (77) yields (52), since in view of Definition 6.1 one has Θ(N, V ) ≤ Θ(N,V). This
concludes the proof.
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6.3.4 Numerical computation of the update operator

The core of our numerical solver of the eikonal equation is devoted to the numerical
computation of the update operator (48), defined by the minimization problem

min
y∈∂Vxh

Ixh u(y) +Nx(x− y).

Since the stencil boundary ∂Vxh is a triangulated surface, see Figure 27, we can minimize
over each facet separately. Optimization over a single given facet takes the form (74),
which is a mathematically well posed problem: the minimization of a convex functional
over a simplex. However, efficient numerical implementation bears importance, as it
dominates the computational cost of our method. A first optimization, specific to the
FMM, is to consider only the facets of Vxh containing the point y that was last accepted,
and triggered the update see Algorithm 4. Indeed, the values of u associated with the
other vertices of Vxh have not changed since the previous update at x.

We discuss here the key ingredients of the implementation of (74), for a norm N = Nc

associated with a Hooke tensor c. We focus on the case of a three dimensional stencil
(d = 3) and distinguish cases depending on the dimensionality k of the sub-facet: a vertex
(0-facet), an edge (1-facet), or a face (2-facet) which must be a triangle.

Vertex (k=0). The optimization problem (74) associated with a vertex v0 is simplified
into the trivial expression λ = Nc(v0)+l0. The edge length Nc(v0) is numerically evaluated
as described in the introduction of this section.

Edge (k=1). The optimization problem (74) associated with an edge [v0, v1], can be
rephrased as the minimization over the interval [0, 1] of the smooth and convex function

f(t) := (1− t)l0 + tl1 +Nc((1− t)v0 + tv1).

Our first step is to numerically evaluate f ′(0) = l1 − l0 + 〈∇Nc(v0), v1 − v0〉, and likewise
f ′(1), see Remark 6.13 for the numerical computation of ∇Nc(v). If f ′(0) ≥ 0 (resp.
f ′(1) ≤ 0), then the convex function f reaches its minimum at 0 (resp. at 1), and the
problem is solved.

Otherwise, recall that the value to be computed reads

min
ξ∈Ξ1

〈l, ξ〉+Nc(V ξ) = min
ξ∈Ξ1

max
N∗c (p)≤1

〈l, ξ〉+ 〈p, V ξ〉.

Exchanging the min and max, and using the optimality relation (75, left), we rephrase
(74) as

max{λ; (λ, p) ∈ R× Rd, λ11 = l + V Tp, N∗c (p) ≤ 1}. (78)

This problem has the same structure as the primal norm Nc(v) computation, see (65), up
to the additional linear equality constraint which raises no particular issue. It is solved
using the same approach, namely a reformulation of the contraint as (67, right), and
SQCQP, see Appendix 6.C (i.e. we repeatedly solve, in closed form, the approximate
problem where the non-linear constraint is replaced with a second-order expansion). For
best efficiency, an initial guess for (λ, p) is constructed from the norm gradients at v0 and
v1, and a quadratic model.
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Face (k=2). We turn to the optimization problem (74), posed on a triangle of vertices
(v0, v1, v2). The first step is to minimize (74) over the edges [v0, v1], [v1, v2], and [v2, v0]
as described in the previous paragraph. Examining the norm of the gradients at these
minimizers, one can decide whether the minimum of the convex optimization problem
(74) is attained on the boundary of Ξ, in which case the problem is solved.

Otherwise, since V is a square invertible matrix, we can invert (75, left) into p =
V −T(λ1− l), and turn (75, right) into an univariate polynomial equation of 2d order with
respect to λ ∈ R

det(Id−mc(V
−T(λ1− l))) = 0. (79)

A Newton method is used to solve this equation, with a suitable initial guess based on the
result of the minimization over the three edges [v0, v1], [v1, v2], [v2, v0], and a quadratic
model.

6.4 Numerical experiments

In this section, we present numerical experiments to illustrate the properties of the numer-
ical solver introduced in this study. We first perform convergence order and computational
complexity analysis. To do so, we make use of particular 3D metrics computed from the
conformal transformation of constant metrics. This conformal transformation makes it
possible to determine an analytical solution of the eikonal equation in a 3D anisotropic
medium presenting heterogeneities (spatial variations of its elastic properties).

In a second experiment, we consider a 3D general anisotropic medium coming from the
homogenization of the 3D SEG/EAGE overthrust benchmark model, which is widespread
in the seismic exploration community. For this model, no analytical solution to the eikonal
equations exists. Therefore, we validate our approach by comparing our computed first-
arrival travel-time with the wavefront of the 3D elastic wave equation solution computed
in the same medium, using a volumetric method (spectral element strategy).

These two experiments also illustrate the ubiquity and various causes of anisotropy in
seismic data. Indeed, the design of the first experiment involves Hooke tensors associated
with crystals, with anisotropy originating from the atomic layout at the nanometer scale
[BC91]. In contrast, the second experiment illustrates the apparent anisotropy arising
from homogeneization at the interfaces of kilometer wide structures [CMA+20]. Let us
also acknowledge that a central assumption of homogeneization techniques is that the
seismic waves have a limited frequency spectrum, in apparent contradiction with the
eikonal equation formalism which is derived from the high frequency approximation; this
point deserves investigation in its own right, both theoretical and numerical, but is outside
the scope of this paper.

6.4.1 Convergence order and computational complexity

In order to validate the convergence order of the proposed method, we generate a non-
trivial test case with an explicit solution, obtained as the conformal transformation of a
constant material. We refer to §6.A for details, and simply mention here that the test
is parametrized with a (single) Hooke tensor c and a vector b ∈ R3. It features a fully
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Figure 29: Edges of the domain Ω̃ =]− 1, 1[3 (a cube) and of its image Ω = φ(Ω̃) by the
special conformal transformation (80). See §6.4.1 and §6.A.

Figure 30: Cross-section at Z = 0 of the arrival travel-time for a non-trivial metric on
Ω̃ (left), which corresponds to a constant metric on the transformed domain Ω = φ(Ω̃)
(right). See §6.4.1 and §6.A.

non-trivial metric on Ω̃ :=]− 1, 1[3, and admits the following explicit solution:

ũ(x) = Nc(φ(x)− x∗), with φ(x) :=
x− b‖x‖2

1− 2〈b, x〉+ ‖b‖2‖x‖2
. (80)

For the numerical tests, we consider the Hooke tensors for both the olivine and mica
media as defined in Table 3. The olivine medium has orthorhombic symmetry, and an
anisotropic length distortion of approximately 0.265. The mica medium has hexagonal
symmetry, and an anisotropic length distortion of approximately 0.753. We use our
numerical scheme with three different 3D geometrical stencils (cut-cube, cube and spiky-
cube), see Figure 27.

We have already shown in §6.2.3 that all three stencils give a causal scheme for the
length distortion of the olivine. Indeed we can see in Figure 31 that the L2-error decreases
with the expected order (2 or 3) with the step size of the grid, whereas the computation
time is proportional to the total number of grid points.

However, for the mica, only the spiky-cube stencil guarantees a causal scheme. As can
be expected, we see in Figure 32 that the cut-cube and cube stencils give poor results
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Figure 31: Convergence orders for the olivine, comparison between stencils

here, with a systematic error coming from the scheme being non causal. Conversely, the
spiky-cube stencil provides the expected order of convergence. An alternative approach
to ensure convergence, not illustrated here, would be to use the non-causal cut-cube or
cube stencils in combination with an iterative solver such as the fast sweeping method.

Remark 6.21. The complexity of the fast marching method is O(C0N lnN+C1N), where
the first term accounts for the cost of maintaining a priority queue of the non-accepted
points, and the second term accounts for the numerical evaluation of the update operator
(48), see Lines 2. and 5. respectively in Algorithm 4 in §6.2.2. The structure of the
norm involved in the update operator of this study is rather complex since it is defined
implicitly, see Equation (45), from an already complex algebraic expression, see Equation
(41). As a result, one has C1 � C0 and the second contribution O(C1N) to the complexity
is dominant in our numerical experiments (see Fig 31 and Fig 32), typically accounting
for 90% of the CPU time. Therefore, the computation times related to the second and
third-order schemes appear linear and are very close: most of the CPU time is taken
by evaluations of the update operator (similar in both cases) as opposed to e.g. memory
accesses (which are slightly more numerous when using third-order finite differences, see
Equation (63)).

These numerical experiments on non-trivial 3D metrics confirm that our numerical
solver achieves third-order convergence and a quasi-linear computation complexity.

6.4.2 Numerical validation in a 3D fully anisotropic medium

We consider here a 3D model with a fully anisotropic Hooke tensor (21 independent
coefficients). This model is obtained through the homogenization (equivalent medium
theory) of a fine scale isotropic model, known as the SEG/EAGE overthrust model.

The SEG/EAGE overthrust model is a 3D exploration scale benchmark subsurface
model designed in the 1990s to foster the development of wave propagation modeling
and inversion tools. It covers an area of 20 km × 20 km × 4 km. It represents an
onshore structure affected by erosion, in which can be identified faults, a salt layer, and
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Figure 32: Convergence orders for the mica, comparison between stencils

superficial lateral velocity variations induced by buried topography, channels and lenses.
More details can be found in [ABK97].

The initial SEG/EAGE overthrust model is an isotropic model described by pres-
sure and shear wave velocities, and density. Recently, as an illustration of non-periodic
two-scale homogenization for elastic media, an upscaled version of the SEG/EAGE over-
thrust model has been presented [CMA+20]. This branch of homogenization, derived
from micro-mechanics [BLP11], aims at computing effective subsurface elastic models for
seismic waves propagating at finite-frequency. The leading idea is that subsurface hetero-
geneities smaller than the propagated wavelengths lead to apparent anisotropy. Effective
subsurface media for a given frequency range thus correspond to smooth fully anisotropic
media. This theory has now been well established (see [CC18] and references therein). The
interest is to reduce the computational cost for volumetric wave propagation method, the
computation in a smooth anisotropic medium making it possible to use a coarse Cartesian
grid instead of the fine unstructured mesh which would be required in the corresponding
isotropic fine scale model. Homogenization also starts to be looked at for better constrain-
ing the solution space of seismic imaging problems [CM18].

In this study, we use the homogenized version of the 3D SEG/EAGE overthrust model
presented in [CMA+20], therefore a fully anisotropic medium with 21 independent coeffi-
cients, and a density model. These models are described on a Cartesian grid containing
534× 534× 107 points. This makes it possible for us to access a realistic and physically
meaningful fully anisotropic stiffness tensor. To assess and illustrate the accuracy of our
fast marching based eikonal solver, we compare the first-arrival travel-times we compute
with a 3D wavefront propagating from a source located in the middle of the medium at
the surface at x = 10 km, y = 10 km, z = 0 km.

The 3D wave propagation problem is solved using the spectral-element based modeling
and inversion code SEM46 [TBM+19b, CBM20]. The simulation is performed using a 10
Hz Ricker vertical force source, on a Cartesian-based mesh using 560 × 560 × 110 elements
with P 4 Lagrange polynomial. The final time for simulation is set to 2.5 s leading to 10000
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time steps with a time sampling ∆t = 0.00025 s. The computation has been performed on
the Univ. Grenoble Alpes HPC Dahu platform on 6 nodes of 32 cores (192 cores in total)
benefiting from the domain-decomposition algorithm implemented in SEM46. Each node
is equipped with two xeon Skylake Gold Intel processors, each featuring 16 cores clocked
at 2.1 GHz, and 192 GO of RAM. The elapsed time for the computation in such settings
is approximately 3.5 hours.

For the eikonal solver, the anisotropic length distortion is sufficiently small so that
the cut-cube stencil is causal. Compared to the full wave modeling using SEM46, the
computation of the eikonal solution on the 534 × 534 × 107 grid on a single core of a
laptop (with Intel architecture comparable to the one from the Univ. Grenoble Alpes
cluster) took approximately 1600s (less than half an hour).

We present in Figure 33 a 3D view of the superposition of the isochrones for the first-
arrival travel time computed through our eikonal solver with the wavefront computed
using SEM46, at time t = 1.5 s, t = 2 s, and t = 2.5 s. The P-wave velocity model
appears in the background. As can be seen, the isochrone contours (in red) accurately
follow the elastic wavefront (in black and white) for the different snapshots. Noticeable
irregularities of the wavefront can be identified close to the fastest variations of the P-wave
velocity model, which are reproduced accordingly using our eikonal solver. Of course, due
to finite-frequency effect of the 3D wave propagation problem, the correspondence is not
expected to be perfect, however the qualitative match we observe is a validation of our
approach on a realistic 3D example.

We complete this comparison with the presentation of a seismogram in Figure 34.
The seismogram is extracted on a receiver line at the surface, in the place of the source,
from x=0 to x = 20 km. On this seismogram, we superpose the first-arrival travel-time
computed through our eikonal solver. Again, we can identify a qualitative match between
our eikonal solver solution and the first-break of the synthetic seismogram extracted from
the wave propagation simulation.

6.5 Conclusion

We presented a numerical solver for the 3D eikonal equation with anisotropy coming from
a general Hooke tensor. It uses a single pass method similar to the fast marching method
and features a source factorization, which leads to a quasi-linear complexity and up to
third-order accuracy.

The scheme features one parameter, which is the choice of discretization stencil, see
Figure 27. For the overwhelming majority of materials encountered in seismology, the
compact cut-cube stencil provides best results in terms of both accuracy and computation
time. However if strongly anisotropic crystalline materials are considered, such as mica,
and if one insists in using the single pass fast marching method (as opposed to e.g. the fast
sweeping iterative method) to solve the discretized PDE, then a wider stencil is needed
to ensure consistency.

Future research will be devoted to (i) applications to seismic imaging by tomographic
inversion, (ii) extensions of the method (to take into account the topography, multiple
arrivals, amplitude effects, ...), and (iii) optimizations of the scheme for special classes of
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Figure 33: Elastic wavefield (black and white) computed in the 3D fully anisotropic
medium coming from the homogenization of the SEG/EAGE overthrust model. The
background corresponds to

√
C33

ρ
, that is the P-wave velocity of this model if it had a

VTI symmetry (which is not the case here, but it still gives a good approximation for
illustrative purposes). The red contour corresponds to the isochrone computing through
our fast marching eikonal solver. The different snapshots are obtained at t = 1.5 s (top),
t = 2 s (middle) and t = 2.5 s (bottom).
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Figure 34: Seismogram recorded along a receiver line located on the surface (z = 0 km),
in the source plane (y = 10 km) along the x-axis (from x = 0 km to x = 20 km). The
vertical displacement is recorded. The vertical displacement intensity is represented in
black and white. The first-arrival travel-time computing through our eikonal solver for
each receiver position is superposed to the seismogram in red. The resulting red-contour
matches the synthetic first-arrival travel-time corresponding to the 3D spectral-element
simulation.
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Hooke tensors such as tilted transversly isotropic materials.
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6.A Construction of the synthetic test

We describe the synthetic test used in §6.4.1 to validate the convergence order of the pro-
posed numerical scheme. For that purpose, we need to introduce the following notations.

Definition 6.22. Let Ω ⊂ Rd be a domain, equipped with a metric Nx(v) (resp. dual-
metric N∗x(p)), x ∈ Ω, p, v ∈ Rd. Their pull-back by a diffeomorphism φ : Ω̃ → Ω, with
Jacobian matrix denoted by Φ, is defined as

Ñx(v) := Nφ(x)

(
Φ(x)v

)
,

(
resp. Ñ∗x(p) := N∗φ(x)

(
Φ−T (x)p

)
.
)

By construction, the geometrical quantities defined in §6.2.1 and associated with the
metrics Nx and Ñx are closely related: the path-length L̃(γ) = L(γ ◦ φ), and distance
d̃(x, y) = d(φ(x), φ(y)), where x, y ∈ Ω̃ and γ : [0, 1] → Ω. Likewise, if u : Ω → R obeys
the eikonal equation (42), then so does u◦φ : Ω̃→ R with respect to the pulled-back dual-
metric Ñ∗x , with the appropriate seed point and boundary conditions. In our experiments,
we use for simplicity a metric Nx = Nc defined by a constant field of Hooke tensors c,
and a star-shaped domain Ω with respect to the origin, which is chosen as the seed point;
the eikonal equation on Ω (resp. Ω̃) therefore admits the following explicit solution, as
announced in (80):

u(x) = Nc(x),
(
resp. ũ(x) = Nc

(
φ(x)

)
.
)
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In general, the pull-back of a metric defined by a Hooke tensor is not defined by a
Hooke tensor alone, and one has in addition to keep track of the Jacobian matrix both
symbolically and numerically. A special case of interest arises however for conformal
transformations, for which the Jacobian is a scaled rotation, and which thus preserves the
metric structure. More precisely, let x ∈ Ω̃ be fixed, assume that N∗φ(x) is defined as in
(41) by a Hooke tensor c, and that Φ(x) = λR is the product of a scaling λ > 0 and of a
rotation R. Then Ñ∗x is defined by the Hooke tensor of components

c̃i′j′k′l′ = λ−2
∑
i,j,k,l

cijklRii′Rjj′Rkk′Rll′ .

Another benefit of conformal transformations is that they leave invariant the length dis-
tortion and angular width of the metric, µ(Ñx) = µ(Nφ(x)) and µ(Ñx) = µ(Nφ(x)), see
Definitions 6.2 and 6.4. Three dimensional conformal transformations include dilations,
translations, rotations, the inversion x ∈ R3 \ {0} 7→ x/‖x‖2, and compositions of these.

In our experiments we use a "special conformal transformation", see (80, right) and
Figure 29, which is smooth except for a singularity at b/‖b‖2, where b ∈ R3 is a parame-
ter. It is obtained as the composition of an inversion, a translation by −b, and another
inversion. More precisely, we choose b = (1/6, 1/9, 1/18) and let Ω̃ :=] − 1, 1[3 with seed
at the origin, so that the singular point b/‖b‖2 /∈ Ω̃, and the image domain Ω := φ(Ω̃) is
star shaped with respect to the origin, see Figure 29. Besides, we use the Hooke tensors of
the olivine and mica as defined in Table 3, with a constant rotation of Euler axis (2, 1, 3)
and angle 3π/5.

6.B Proof of proposition 6.7

We estimate in this appendix the quantity Θ(N), which measures the angular distortion
associated with a norm N on Rd, in terms of its length distortion, as announced in
Proposition 6.7. Different proof techniques are used in the elliptic and anelliptic cases.

6.B.1 Anelliptic norms

The announced estimate, established in Corollary 6.24, follows from upper and lower
bounds on the gradient of a norm, presented in the next lemma.

Lemma 6.23. Let N be a norm on Rd, differentiable at v ∈ Rd \ {0}. Then

µ∗(N) ≤ ‖∇N(v)‖ ≤ µ∗(N).

Proof. Since N is 1-homogeneous, one has 〈∇N(v), v〉 = N(v) by Euler’s identity, and
therefore

µ∗(N) ≤ N(v)

‖v‖
=
〈∇N(v), v〉
‖v‖

≤ ‖∇N(v)‖.

On the other hand, for any vector w, one obtains using successively the convexity of N
and the triangular inequality

〈∇N(v), w〉 ≤ N(v + w)−N(v) ≤ N(w).
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Choosing w := ∇N(v) yields the announced upper estimate and concludes the proof:

µ∗(N) ≥ N(∇N(v))

‖∇N(v)‖
≥ 〈∇N(v),∇N(v)〉

‖∇N(v)‖
= ‖∇N(v)‖.

Corollary 6.24. For any norm N on Rd, differentiable on Rd\{0}, one has µ(N) cos Θ(N) ≥
1.

Proof. Using Lemma 6.23 we obtain as announced

cos Θ(N) =
〈v,∇N(v)〉
‖v‖‖∇N(v)‖

=
N(v)

‖v‖
1

‖∇N(v)‖
≥ µ∗(N)/µ∗(N) = 1/µ(N).

6.B.2 Elliptic norms

The announced estimate, established in Corollary 6.26, follows from a classical inequality
in analysis, which proof is recalled in the next lemma.

Lemma 6.25 (Weighted Pólya-Szegö inequality). Let (λi)
d
i=1 be positive numbers, and

(µi)
d
i=1 be non-negative, let λ∗ = min{λ1, · · · , λd} and let λ∗ := max{λ1, · · · , λd}. Then√∑

1≤i≤d

µiλi

√∑
1≤i≤d

µi
λi
≤ 1

2

(√
λ∗

λ∗
+

√
λ∗
λ∗

) ∑
1≤i≤d

µi.

Proof. Without loss of generality, we may assume that
∑

1≤i≤d µi = 1, and denote E[γ] :=∑
1≤i≤d µiγi for any sequence (γi)

d
i=1. Observing that E[(λ∗ − λ)(1/λ∗ − 1/λ)] ≥ 0, and

developping, we obtain

λ∗

λ∗
+ 1 ≥ E

[
λ∗

λ

]
+ E

[
λ

λ∗

]
≥ 2

√
E

[
λ∗

λ

]
E

[
λ

λ∗

]
.

The second inequality follows from the arithmetic-geometric mean inequality a+b
2
≥
√
ab,

∀a, b ≥ 0. The announced result follows.

Corollary 6.26. For any elliptic norm N one has 1
2
(µ(N) + µ(N)−1) cos Θ(N) = 1.

Proof. Without loss of generality, up to a rotation, we may assume that for all v ∈ Rd

N(v)2 =
∑

1≤i≤d

λiv
2
i , thus N(v)∇N(v) = (λivi)

d
i=1,

where λ1, · · · , λd > 0. Denote λ∗ = min{λ1, · · · , λd} and λ∗ = max{λ1, · · · , λd}, so that
µ(N) =

√
λ∗/λ∗. Then letting µi := λiv

2
i one obtains by Lemma 6.25

‖∇N(v)‖‖v‖
〈∇N(v), v〉

=

√∑
i λ

2
i v

2
i

√∑
i v

2
i∑

i λiv
2
i

=

√∑
i µiλi

√∑
i µi/λi∑

i µi
≤ 1

2

(√
λ∗

λ∗
+

√
λ∗
λ∗

)
.

(81)
This proves 1

2
(µ(N) + µ(N)−1) cos Θ(N) ≥ 1. Adequately choosing v turns (81) into

an equality, which concludes the proof. More precisely, we may assume without loss of
generality that λ∗ = λ1 and λ∗ = λ2, and then choose v = (

√
λ2,
√
λ1, 0, · · · , 0).
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6.C Sequential quadratically constrained programming

The numerical implementation of our eikonal equation solver involves the solution to
optimization problems of the form

max{〈p, v〉; f(p) ≤ 0}, (82)

where f is smooth and strongly convex, and the vector v is fixed. They arise in the
definition of the norm (65), which is used in the source factorization (60), as well as in
evaluation of the update operator on vertices and edges (78), with an additional linear
constraint in the latter case. In order to solve (82), we use an approach known as Sequen-
tial Quadratically Constrained Quadratic Programming (SQCQP) [FLT03], which basic
principle is to solve a sequence of simplified problems obtained by replacing the objective
function and the constraints with their second-order Taylor expansion. We provide two
basic results that are sufficient for our application, and refer to [FLT03] for more details
on this rich theory. Our first observation, which proof is left to the reader, is that the
problem (82) has a closed form solution when f is a suitable quadratic function.

Lemma 6.27 (Maximization of a linear function over an ellipsoid). Let f : Rd → R be a
quadratic function such that the set {f < 0} is a non-empty ellipsoid, and let p, v ∈ Rd.
Then

F (p) := p+M(p)(λ(p)v − V (p)) (83)

is the unique solution to (82), where

V (p) := ∇f(p), M(p) := (∇2f(p))−1, λ(p) :=

√
〈V (p),M(p)V (p)〉 − 2f(p)

〈v,M(p)v〉
. (84)

For convenience, the solution (83) is expressed in terms of the Taylor expansion of
the quadratic function f at a given but arbitrary point p. Note however that, if f is a
quadratic function as assumed in Lemma 6.27, then the matrix M(p) in (84, center) is
independent of p, and the value of F (p) is independent of p since it solves (82). The basic
SQCQP framework consists in repeatedly evaluating (83) with a non-quadratic function f ,
thus generating a sequence of points pn+1 = F (pn), n ≥ 0. This yields an iterative method
for the optimization problem (82), enjoying a quadratic (Newton-like) local convergence
rate, as shown in Proposition 6.28. Variants of this method enjoy a global convergence
guarantee [FLT03] under suitable assumptions, but in our numerical experiments the basic
method was adequate.

Proposition 6.28. Let f : Rd → R be C3 smooth, and let v ∈ Rd. Assume that p∗ ∈ Rd

and λ∗ > 0 are such that

f(p∗) = 0 ∇f(p∗) = λ∗v ∇2f(p∗) � 0. (85)

Then p∗ is an isolated local maximum for the optimization problem (82). In addition there
exists a constant C > 0 such that, for any p0 ∈ Rd close enough to p∗, the sequence defined
by pn+1 = F (pn), see (83), satisfies for all n ≥ 0

‖pn − p∗‖ ≤ C−1(C‖p0 − p∗‖)2n . (86)
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Sketch of proof. We recognize in (85) the second-order optimality conditions for the con-
strained optimization problem (82). A first-order Taylor expansion shows that λ(p∗+h) =
λ∗ +O(h2), and then F (p∗ + h) = p∗ +O(h2). The estimate (86) follows by induction on
n ≥ 0.

Remark 6.29 (Exponential transformation, and numerical stability). Assume that the
constraint in (82) takes the form g ≤ 0, where g = exp(αf) − 1 is a strongly convex
function, defined in terms of a smooth (but non-convex) f and a positive constant α. One
can check that (g,∇g,∇2g) is positively proportional to

f̃ := (1− exp(−αf))/α, ∇f, ∇2f + α∇f∇fT .

Note also that f and f̃ vanish at the same points, and if p∗ is such a point then f̃(p∗+h) =
f(p∗+h)+O(‖h‖2) for small h. In the sequential quadratic iterations, see Proposition 6.28,
one may thus replace (g,∇g,∇2g) with (f,∇f,∇2f + α∇f∇fT ) and preserve the local
quadratic convergence (86). This eliminates all exponentials, to the benefit of numerical
stability.

6.D Monotony and causality in fixed point problems

In this section, we review the properties of the numerical scheme considered in this paper,
and derive the following guarantees: existence and uniqueness of a fixed point, convergence
of an iterative method to find it, and validity of the fast marching method subject to an
acuteness condition. We also discuss how these properties transfer to the source factored
and high order scheme variants. Closely related arguments can be found in the literature
devoted to semi-Lagrangian discretizations of the eikonal equation [Tsi95, SV01, AM12,
BR06, Mir14b, Mir14a]. We fix the grid scale h > 0 in this appendix, and refer to [BR06]
for a convergence analysis to the PDE solution as it is refined. Denote X := Ωh \{x∗} the
discretization set (44) minus the source point, and let U := RX be the set of mappings
from X to R. Recall that the objective is to find u ∈ U such that for all x ∈ X

Λu(x) = u(x), where Λu(x) := min
y∈∂Vxh

Ixh u(y) +Nx(x− y), (87)

where Ixh denotes the piecewise linear interpolation operator, on a polytope Vxh enclosing
x with vertices in the grid hZd, see Section 6.2.2. By convention in (87, right), u ∈ U
is extended to hZd \ X by u(x∗) = 0 and u = +∞ elsewhere. We make the following
connectedness assumption: for any x0 ∈ X, one can find n ≥ 1 and x1, · · · , xn ∈ X, such
that xi+1 is a vertex of Vxih , for all i < n, and x∗ is a vertex of Vxnh . Given u, v ∈ U,
the strict inequality “u < v” stands for “∀x ∈ X, u(x) < v(x)”; and likewise for weak
inequality u ≤ v. Given u ∈ U and τ ∈ R we define

u≤τ (x) :=

{
u(x) if u(x) ≤ τ,

+∞ else.

Proposition 6.30. The operator Λ : U → U defined by (87, right) is continuous and
obeys the following properties, where δ0, δ1 are positive constants, and where u, v ∈ U, and
s, t ≥ 0, τ ∈ R are arbitrary
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• Monotone: if u ≤ v then Λu ≤ Λv.

• Subadditive: Λ(u+ t) ≤ Λu+ t.

• δ0-submultiplicative: Λ[(1 + s)u] ≤ (1 + s)Λu− δ0s.

• Existence of a super-solution: there is u ∈ U such that Λu ≤ u.

If in addition Θ(Nx,Vxh ) < π/2 for all x ∈ X, then the operator Λ is also

• δ1-causal: if u≤τ = v≤τ then (Λu)≤τ+δ1 = (Λv)≤τ+δ1.

Proof. The monotony of Λ follows from the monotony of linear interpolation Ixh . Likewise,
the subadditivitity of Λ follows from the same property of Ixh (actually Λ(u+ t) = Λu+ t
at all points x ∈ X for which the stencil Vxh does not contain the source x∗). Submuti-
plicativity is established as follows, using the 1-homogeneity of the interpolation operator
Ixh

min
y∈∂Vxh

(1 + s) Ixh u(y) +Nx(x− y) ≤ (1 + s)
[

min
y∈∂Vxh

Ixh u(y) +Nx(x− y)
]
− s min

y∈∂Vxh
Nx(x− y),

thus with δ0 = min{Nx(x − y); x ∈ X, y ∈ ∂Vxh}. Consider the directed graph, with an
edge (x, y) of length Nx(x − y) whenever y is a vertex of Vxh . Then the distance from a
given point x0 ∈ X to the source x∗, denoted by u(x0), is finite by assumption and obeys
Λu ≤ u. Finally, Proposition 6.3 establishes δ1-causality with δ1 the minimal value of
‖y − x‖µ∗(Nx) cos Θ(Nx,Vxh ) among all x ∈ X and all vertices y of the stencil Vxh .

In the remainder of this appendix, we do not use the specific form (87, right) of the
operator Λ, but only the properties established in Proposition 6.30. From monotony,
subadditivity, and δ0-submultiplicativity, one derives the discrete comparison principle.

Proposition 6.31 (Discrete comparison principle). Let u, v ∈ U. If u ≤ Λu and Λv ≤ v
then u ≤ v. In addition, if either inequality is strict then u < v.

Proof. Let x ∈ X be such that t := u(x) − v(x) is maximal, so that u ≤ v + t and
u(x) = v(x)+t. Assuming that t ≥ 0 we obtain u(x) ≤ Λu(x) ≤ Λ[v+t](x) ≤ Λv(x)+t ≤
v(x) + t = u(x), by monotony and subadditivity. If either the first or last inequality is
strict, we obtain a contradiction, thus t < 0 and therefore u < v as announced. Otherwise
note that vε := (1 + ε)v obeys vε < Λvε for any ε > 0 by δ0-submultiplicativity, thus
u < vε by the previous argument, hence u ≤ v by letting ε → 0, which concludes the
proof.

Using in addition the continuity of Λ and the existence of a supersolution, one es-
tablishes that the fixed point problem (87, left) can be solved by iterating the operator.
Finitely many iterations are sufficient if the operator is δ1-causal.

Proposition 6.32 (Convergence of the global iterative method). The operator Λ admits
a unique fixed point u, and for any u ∈ U one has Λnu→ u as n→∞. If in addition Λ
is δ1-causal and u > 0, then Λnu = u for all n ≥ max(u)/δ1.
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Proof. Proposition 6.31 yields the uniqueness (but not the existence) of the fixed point
u. The null function u = 0 satisfies Λu ≥ δ0 ≥ 0 = u, by δ0-submultiplicativity. Choose
t ≥ 0 sufficiently large so that v := u − t ≤ u ≤ u + t =: v, and note that v ≤ Λv
and Λv ≤ v by subadditivity of Λ. Thus v ≤ · · · ≤ Λnv ≤ Λnu ≤ Λnv ≤ · · · ≤ v by
monotonicity of Λ, and induction on n ≥ 0. By the monotone convergence theorem, Λnv
and Λnv admit limits as n → ∞. By continuity, these limits are fixed points of Λ, thus
are equal to u by uniqueness. By the squeeze theorem we obtain Λnu→ u as announced.

Finally, assume that Λ is δ1-causal, that u > 0, and note that u ≥ Λu ≥ δ0 > 0. Then
u≤0 = u≤0, and thus by induction (Λnu)≤nδ1 = (Λnu)≤nδ1 = u≤nδ1 for all n ≥ 0. The
result follows.

Global iteration is a poor way to allocate computational ressources in front propagation
problems, and more efficient algorithms concentrate their efforts on a narrow band along
the front. The convergence of iterative methods such as fast sweeping [QZZ07], the AGSI
[BR06], or the FIM [JW08], follows from closely related arguments. The fast marching
method, Algorithm 4 [Tsi95], solves the fixed point problem (87, left) in finitely many
steps with complexity O(N lnN), see [Mir19, Proposition A.2] for a proof based on the
properties established in Proposition 6.30, causality included. We next establish that the
properties of Proposition 6.30 are stable under perturbation.

Proposition 6.33 (Operator perturbation). Let α∗, α∗ ≥ 0, and for all x ∈ X let αx :
X → [−α∗, α∗]. Define Λ̃ : U → U by Λ̃u(x) := Λ[u + αx](x). Then Λ̃ is continuous,
monotone, subadditive, is (δ0 − α∗)-submultiplicative if δ0 > α∗, and admits the super-
solution (1 + α∗/δ0)u. If Λ is δ1-causal with δ1 > α∗, then Λ̃ is (δ1 − α∗)-causal.

Proof. Fix x ∈ X, u, v ∈ U, and s, t ≥ 0. The continuity of Λ̃ immediately follows from
the continuity of Λ. If u ≤ v, then u+αx ≤ v+αx, thus Λ[u+αx] ≤ Λ[v+αx] since Λ is
monotone, therefore Λ̃ is monotone. One has Λ[u+t+αx] ≤ Λ[u+αx]+t by subadditivity
of Λ, thus Λ̃ is subadditive. One has Λ[(1 + s)u + αx] = Λ[(1 + s)(u + αx) − sαx] ≤
Λ[(1 + s)(u + αx) + sα∗] ≤ Λ[(1 + s)(u + αx)] + sα∗ ≤ (1 + s)Λ[u + αx] − δ0s + sα∗,
using successively the monotony, subadditivity, and δ0-submultiplicativity of Λ, thus Λ̃
is (δ0 − α∗)-submultiplicative if δ0 > α∗. One has Λ[(1 + s)u + αx] ≤ Λ[(1 + s)u] +
α∗ ≤ (1 + s)Λu − δ0s + α∗, by subadditivity and submultiplicativity of Λ, thus choosing
s = α∗/δ0 yields a supersolution of Λ̃. Finally, if Λ is δ1-causal and u≤τ = v≤τ , then
(u + αx)

≤τ−α∗ = (v + αx)
≤τ−α∗ and therefore (Λ[u + αx])

≤τ−α∗+δ1 ≤ (Λ[v + αx])
≤τ−α∗+δ1 ,

thus Λ̃ is (δ1 − α∗)-causal.

The first-order source factorization (61) falls in the framework of Proposition 6.33,
with αx(y) := u∗(x) − u∗(y) + 〈∇u∗(x), y − x〉, which satisfies αx(y) = O(h2/‖x − x∗‖),
where u∗ is the source factor and x∗ is the source point. On the other hand, inspection
of the proof of Proposition 6.30 yields that δ0 = δ̂0h and δ1 = δ̂1h where δ̂0 and δ̂1 are
independent of the grid scale h. Thus δ0 ≥ ‖αx‖∞ and δ1 ≥ ‖αx‖∞ when h is sufficiently
small (except for points x in a ball of radius O(h) around the source point x∗), and thus
Proposition 6.33 applies to the factored scheme.

The second and third-order schemes define perturbations (62) and (63) which depend
on the unknown u, and thus do not fall in the framework of Proposition 6.33. This
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is the reason why, following [Set99], we use them in a cautious way: only in the post-
processing step of the fast marching method right before the accepted value is frozen6 see
line 3 of Algorithm 4, and only if their magnitude does not exceed Ch2 where C is an
absolute constant. Together, these limitations ensure that the fast marching algorithm
still terminates in a single pass over the domain, and produces an output obeying Λu =
u + O(h2). Therefore u = u + O(h) where u is the solution of the original scheme, by
Proposition 6.34 below. In other words, we cannot prove that the high order variants of
the scheme improve the solution accuracy, but at least they do not jeopardize first-order
accuracy, and neither substantially increase computation time.

Proposition 6.34. Let u ∈ U and let k∗, k∗ ≥ 0 be such that k∗ ≤ Λu − u ≤ k∗. Then
1− k∗/δ0 ≤ u/u ≤ 1 + k∗/δ0.

Proof. Let s ≥ 0. Then Λ[(1 + s)u] ≤ (1 + s)Λu − δ0s ≤ (1 + s)(u + k∗) − δ0s, by
δ0-submultiplicativity. Choosing s = k∗/(δ0 − k∗) yields Λ[(1 + s)u] ≤ (1 + s)u and
thus (1 + s)u ≥ u by Proposition 6.31. On the other hand, (1 + s)Λ[u/(1 + s)] ≥
Λu + sδ0 ≥ u − k∗ + sδ0, again by δ0-submultiplicativity. Choosing s = k∗/δ0 yields
Λ[u/(1 + s)] ≥ u/(1 + s) and thus u/(1 + s) ≤ u by Proposition 6.31. The result
follows.

6Note that iterative methods, such as fast sweeping, lack the FMM specific concepts of accepted
point, post-processing, and frozen value. For this reason, introducing high order finite differences can
raise additional challenges, such as numerical instability along iterations.
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7 Worst Case and Average Case Cardinality of Strictly
Acute Stencils for Two Dimensional Anisotropic Fast
Marching [MD20]

This section corresponds to the paper (with minor modification):

• J. M. Mirebeau and F. Desquilbet. Worst case and average case cardinality of
strictly acute stencils for two dimensional anisotropic fast marching. In Constructive
Theory of Functions - 2019, pages 157–180. Publishing House of Bulgarian Academy
of Sciences, 2020

Abstract

We study a one dimensional approximation-like problem arising in the discretiza-
tion of a class of Partial Differential Equations, providing worst case and average
case complexity results. The analysis is based on the Stern-Brocot tree of ratio-
nals, and on a non-Euclidean notion of angles. The presented results generalize and
improve on earlier work [Mir14b].

7.1 Introduction

This paper is devoted to the analysis of an approximation-like problem arising in the
discretization of a class of Partial Differential Equations (PDE): eikonal equations, defined
with respect to a possibly strongly anisotropic Finslerian metric. The results presented are
related with the numerical solution of this equation on two dimensional cartesian grids,
and their extension to higher dimension and/or to unstructured domains remains an open
question. The unique viscosity solution to such an equation is a distance map, whose
computation has numerous applications [Set99] in domains as varied as motion planning,
seismic traveltime tomography [LBMV18], image processing [BC11], . . . The construction
studied in this paper is designed is to achieve a geometrical property - strict acuteness
with respect to a given asymmetric norm - ensuring that the resulting numerical scheme
is strictly causal [KS98, SV03, AM12, Mir14b, Mir14a]. This in turn enables efficient
algorithms for solving the numerical scheme, in a single pass over the domain, with linear
complexity, and possibly in parallel [Tsi95, RS09]. In order to better focus on the problem
of interest, further discussion of the addressed PDE and of its discretization is postponed
to §7.A.

We study in this paper a one dimensional approximation-like problem, involved in
the construction of local stencils of minimal cardinality for a numerical solver of eikonal
PDEs, see Definition 7.3 for a formal statement. The efficiency of the procedure is directly
tied to the complexity of the numerical scheme. A few properties of this problem deviate
from the common settings in approximation theory, and deserve to be discussed here.

• The main function ϕF : R →] − π/2, π/2[ considered benefits from regularity and
integrability properties, derived from its geometrical interpretation §7.2.2. However
these are fairly uncommon: −ϕF is one-sided Lipschitz, and tan(ϕF ) is bounded in
the L1([0, 2π]) norm.
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• The approximation-like problem involves an interval subdivision procedure, that is
reminiscent of e.g. dyadic splitting in non-linear approximation based on the Haar
system [DeV98]. However, subdivision is here governed by the Stern-Brocot tree,
and breaks the interval [0, 2π] into unequal parts whose endpoints have rational
tangents, see §7.3.

• We present a uniform “worst case” complexity result, but also an “average case”
result under random shifts, see Theorem 7.4. Because of the peculiarities of the
approximation procedure, a more favorable estimate is obtained in the average case.

In the rest of this introduction, we introduce the notations and concepts necessary
to state our main result. Our first step is to equip the Euclidean space R2 with the
anisotropic geometry defined by a (possibly) asymmetric norm. Here and below, all
asymmetric norms are on R2.

Definition 7.1. An asymmetric norm is a function F : R2 → R+ which is 1-positively
homogeneous, obeys the triangular inequality, and vanishes only at the origin:

F (λu) = λF (u), F (u+ v) ≤ F (u) + F (v), F (u) = 0⇔ u = 0,

for all u, v ∈ R2, λ ≥ 0. The anisotropy ratio of F is defined as µ(F ) := max
|u|=|v|=1

F (u)

F (v)
.

Note that an asymmetric norm is always a continuous and convex function. We denote
by ](u, v) ∈ [0, π] the unoriented Euclidean angle between two vectors u, v ∈ R2 \ {0},
which is characterized by the identity

cos](u, v) =
〈u, v〉
‖u‖‖v‖

.

The next definition introduces a generalized measure of angle, associated with an asym-
metric norm. We only consider acute angles, since obtuse angles will not be needed, and
because their definition raises issues. The notion of F -acute angle is similarly defined in
[Mir14b, Vla08], but the related angular measure is new.

Definition 7.2. Let F be an asymmetric norm, which is differentiable except at the origin,
and let u, v ∈ R2 \ {0}. We say that u, v form an F -acute angle iff 〈∇F (u), v〉 ≥ 0. We
define the F -angle ]F (u, v) ∈ [0, π/2] ∪ {∞} by

cos]F (u, v) := 〈∇F (u), v〉/F (v) (88)

if u, v form an F -acute angle. Otherwise we let ]F (u, v) := +∞.

We show in Lemma 7.7 that the r.h.s. of (88) is at most 1, so that ]F (u, v) is well
defined, with equality if u = v, so that ]F (u, u) = 0. If F is the Euclidean norm, then
one easily checks that the F -angle coincides with the usual Euclidean angle, when the
latter is acute. More generally, if F (u) = ‖Au‖ for some invertible linear map A, then
]F (u, v) = ](Au,Av), when the latter is acute. In general however, one has ]F (u, v) 6=
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]F (v, u), and F -acuteness is not a symmetric relation. The differentiability assumption
in Definition 7.2 can be removed, see Definition 7.5.

The following definition introduces (F, α)-acute stencils, which are at the foundation
of our numerical scheme, see Figure page 119. Their cardinality is directly proportional
to the algorithmic complexity of our eikonal PDE solver, see §7.A, hence it is important
to choose them as small as possible. When α = π/2 one recovers the F -acute stencils of
[Mir14b], and closely related concepts are considered in [KS98, SV03, Vla08, AM12].

Definition 7.3. A stencil is a finite sequence of pairwise distinct vectors u1, · · · , un ∈ Z2,
n ≥ 4, such that

det(u, v) = 1, 〈u, v〉 ≥ 0,

for all u = ui, v = ui+1, 1 ≤ i ≤ n, with the convention un+1 := un. It is said (F, α)-
acute, where F is an asymmetric norm and α ∈]0, π/2], iff with the same notations one
has

]F (u, v) ≤ α, ]F (v, u) ≤ α. (89)

We let N(F, α) denote the minimal cardinality of an (F, α)-acute stencil.

We provide in §7.3.2 a simple and efficient algorithm, based on a recursive refinement
procedure and which is effectively used in our numerical implementation, for producing an
(F, α)-acute stencil of minimal cardinality N(F, α). A similar method appears in [Mir14b]
when α = π/2. The main result of this paper is the following estimate of N(F, α), both
in the worst case and in the average case over random rotations of the asymmetric norm
F . The average case makes sense in view of our application to PDE discretizations §7.A,
since the orientation of the grid can be set and modified arbitrarily.

Theorem 7.4. For any asymmetric norm F and any α ∈]0, π/2], one has

N(F, α) ≤ C
µ

α2
ln
( lnµ

α2

)
,

∫ 2π

0

N(F ◦Rθ, α) dθ ≤ C
ln(µ)

α2
ln
( µ
α2

)
. (90)

where µ = max{µ(F ), 12}, Rθ denotes the rotation of angle θ ∈ R, and C is an absolute
constant.

In the intended applications, one typically has µ(F ) . 100. The most pronounced
anisotropies µ(F ) ≈ 100 are often encountered in image processing methods [BC11,
Mir14a], and this bound is large enough that the asymptotic behavior of (90) w.r.t. µ
is meaningful to our use cases. In contrast, we do confess that it seems pointless to let
α→ 0 in our applications (typically we set α = π/3). If one fixes α0 ∈]0, π/2] then

N(F, α0) ≤ Cµ ln lnµ,

∫ 2π

0

N(F ◦Rθ, α0) dθ ≤ C ln2(µ). (91)

uniformly w.r.t. µ. This improves on [Mir14b], whose arguments are limited to the case
α0 = π/2, and where the sub-optimal bounds µ ln(µ) (resp. ln3(µ)) are obtained for (91,
left) (resp. right).
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Outline. The notion of F -acute angle, see Definition 7.2, is described in more detail
§7.2, where related tools are introduced. The Stern-Brocot tree, an arithmetic structure
underlying concept of stencil in Definition 7.3, is discussed in §7.3. We conclude in §7.4
the proof of Theorem 7.4. Some context on the intended applications of the presented
results is given in §7.A.

7.2 Anisotropic angle

This section is devoted to the study of the anisotropic measure of angle ]F (u, v) of
Definition 7.2, where u, v ∈ R2 \ {0} and F is an asymmetric norm. Some elementary
comparison properties, with the Euclidean angle ](u, v) or with another angle ]F (u,w),
are presented §7.2.1. We prepare in §7.2.2 (resp. §7.2.3) the proof of the average case
(resp. worst case) estimate of Theorem 7.4, by introducing a helper function ϕF (resp.
ψ±F ) for which we show a L1([0, 2π]) norm estimate and a comparison principle with ]F .

In the rest of this section, we fix an asymmetric norm F , assumed to be continuously
differentiable on R2 \ {0}. That is with the exception of the following definition and
proposition, where we briefly consider the case of non-differentiable norms, and show that
the smoothness assumption holds without loss of generality. Closely related arguments
are found in Lemma 2.11 of [Mir14b].

Definition 7.5 (Generalization of ]F (u, v) with no differentiability assumption). Let F
be an asymmetric norm, and let u, v ∈ R2 \ {0}. We say that u, v form an F -acute angle
iff F (u+ δv) ≥ F (u) for all δ ≥ 0. In that case we let α = ]F (u, v) ∈ [0, π/2] denote the
smallest value such that

F (u+ δv) ≥ F (u) + δ cos(α)F (v), (92)

for all δ ≥ 0. If u, v do not form an F -acute angle, then we let ]F (u, v) :=∞.

Proposition 7.6. Definitions 7.2 and 7.5 agree on differentiable norms. Also, if Fn → F
locally uniformly as n → ∞, where (Fn)n≥0 and F are asymmetric norms, and u, v ∈
R2 \ {0}, then

]F (u, v) ≤ lim inf
n→∞

]Fn(u, v). (93)

If Theorem 7.4 holds under the additional assumption F ∈ C1(R2 \ {0}), then it does
without it.

Proof. Under the assumptions of Definition 7.2 one has F (u+δv) = F (u)+δ〈∇F (u), v〉+
o(δ) by differentiability of F at u, and F (u + δv) ≥ F (u) + δ〈∇F (u), v〉 by convexity of
F , for any δ ≥ 0 and any v ∈ R2 \ {0}. Thus Definitions 7.5 and 7.2 agree. The lower
semi-continuity property (93) follows from the fact that (92) is closed under uniform
convergence. Therefore if a given stencil is (Fn, α)-acute for all n ≥ 0, then it is also
(F, α)-acute see Definition 7.3. Thus N(F, α) ≤ lim infn→∞N(Fn, α), and likewise for
the l.h.s. of (90, right). Finally, we observe that any asymmetric norm F is the locally
uniform limit of a sequence of asymmetric norms Fn ∈ C∞(R2 \ {0}), n ≥ 1, defined as

Fn(u) :=

∫
R
F (Rθu) ρn(θ) dθ,
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where ρn(θ) := nρ(nθ), and the mollifier ρ is smooth, non-negative, compactly supported,
and has unit integral. The statement regarding Theorem 7.4 follows, which concludes the
proof.

7.2.1 Elementary comparison properties

This subsection is devoted to elementary comparisons between ]F (u, v) and the angle
between other vectors, see Lemma 7.8, or the Euclidean angle ](u, v), see Proposition
7.9, where u, v ∈ R2 \ {0}. In addition, Lemma 7.7 below was announced and used in the
introduction to show that ]F (u, v) is well defined, and that ]F (u, u) = 0. Throughout
this subsection, F denotes a fixed asymmetric norm, assumed to be differentiable except
at the origin.

Lemma 7.7. For any u, v ∈ R2, with u 6= 0, one has

〈∇F (u), u〉 = F (u), 〈∇F (u), v〉 ≤ F (v). (94)

Proof. Euler’s identity for the 1-homogeneous function F yields (94, left), whereas the
triangular inequality F (u+ δv) ≤ F (u) + δF (v) for all δ ≥ 0 yields (94, right).

The next lemma shows that the F -angle is non-increasing when an angular sector is
split.

Lemma 7.8. Let u, v form an F -acute angle, and let w := αu + βv for some α, β > 0.
Then

max{]F (u,w),]F (w, v)} ≤ ]F (u, v)

Proof. Assume w.l.o.g. that α = 1, and denote λ := cos]F (u, v). By convexity of F one
has

〈∇F (w), v〉 = 〈∇F (u+ βv), v〉 = 〈∇F (u+ βv)−∇F (u), v〉+ 〈∇F (u), v〉 ≥ 0 + λF (v).

On the other hand, one obtains noting that λ ∈ [0, 1] by assumption

〈∇F (u), w〉 = 〈∇F (u), u+βv〉 ≥ F (u)+λβF (v) ≥ λ(F (u)+βF (v)) ≥ λF (u+βv) = λF (w).

The last proposition of this subsection is an upper bound on the F -angle in terms of
the Euclidean angle and of the anisotropy ratio µ(F ) of the asymmetric norm. This upper
bound grows non-linearly and perhaps more quickly than one may expect, namely as the
square root of the Euclidean angle, because we do not make any quantitative assumption
on the smoothness of F . Here and below we denote u⊥ := (−b, a) for any u = (a, b) ∈ R2.

Proposition 7.9. For any u, v ∈ R2 \ {0}, one has assuming µ(F )](u, v) ≤ 1/2

]F (u, v) ≤
√

5µ(F )](u, v). (95)
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Proof. Denote θ := ](u, v), α := ]F (u, v), and µ := µ(F ). Assume w.l.o.g. that v =
u+ tan(θ)u⊥. Then

〈∇F (u), v〉 = 〈∇F (u), u〉+ tan(θ)〈∇F (u), u⊥〉 ≥ F (u)− tan(θ)F (−u⊥).

F (v) = F (u+ tan θu⊥) ≤ F (u) + tan(θ)F (u⊥).

Observing that F (u⊥) ≤ µF (u) and F (−u⊥) ≤ µF (u), we obtain

1− µ tan θ

1 + µ tan θ
≤ F (u)− F (−u⊥) tan θ

F (u) + F (u⊥) tan θ
≤ 〈∇F (u), v〉

F (v)
= cosα =

1− tan2(α/2)

1 + tan2(α/2)
. (96)

This implies tan2(α/2) ≤ µ tan θ. We conclude the proof of (95) observing that tan(α/2) ≥
α/2, and tan θ ≤ (5/4)θ, both estimates by convexity of tan on [0, π/2[ and since θ ≤ 1/2.
Note also that µ tan θ ≤ (5/4)µθ ≤ 5/8 < 1 by assumption, which shows that the l.h.s. of
(96) is positive, and thus excludes the case where ]F (u, v) =∞, see Definition 7.2.

7.2.2 Gradient deviation

We describe and study a function ϕF attached to the asymmetric norm F of interest,
introduced in [Mir14b] and used in the proof of the average case estimate in Theorem 7.4.
More precisely, the quantity ϕF (u) is the oriented Euclidean angle between a given vector
u ∈ R2 \ {0} and the gradient ∇F (u). Note that these two vectors are aligned if F is
proportional to the Euclidean norm. The main results of this section are an L1 estimate
of ϕF , see Lemma 7.13, and a comparison with the F -angle, see Proposition 7.14.

Definition 7.10. For each u ∈ R2 \ {0}, define a signed angle ϕF (u) ∈]− π/2, π/2[ by

〈u⊥,∇F (u)〉 = F (u) tanϕF (u). (97)

For θ ∈ R, we abusively denote ϕF (θ) := ϕF ( (cos θ, sin θ) ).

The next lemma shows, as announced, that |ϕF (u)| is the Euclidean angle between
the given vector u and its image by the gradient of F , and establishes a uniform upper
bound for ϕF .

Lemma 7.11. For any u ∈ R2 \ {0}, one has

|ϕF (u)| = ](u,∇F (u)), | tanϕF (u)| ≤ µ(F ). (98)

Proof. Equality (98, left) follows from Euler’s identity (94, left) and the definition (97).
Estimate (98, right) follows from −F (−u⊥) ≤ 〈u⊥,∇F (u)〉 ≤ F (u⊥) see (94, right),
and from the upper bound F (±u⊥) ≤ µ(F )F (u) which holds by Definition 7.1 of the
anisotropy ratio.

We recall in the next proposition, without proof, two key properties of the function
ϕF established in [Mir14b]: a one-sided regularity property, and an upper bound on the
integral of tan(ϕF ) on any interval. See the plots of ϕF on Figure page 18.
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Proposition 7.12 (Proposition 3.6 in [Mir14b]). The function ϕF : R →] − π/2, π/2[
obeys:

• (Regularity) For all θ ∈ R, one has ϕ′F (θ) ≥ −1.

• (Integral bound) One has |
∫ θ∗
θ∗

tanϕF (θ) dθ| ≤ lnµ(F ) for all θ∗, θ∗ ∈ R.

Combining the one-sided regularity property and the integral bound, one obtains an L1

estimate of tan(ϕF ), as shown in the next lemma, which turns out to be a key ingredient
of the proof of the average case estimate (90, right), see §7.4.2.

Corollary 7.13 (L1 estimate of tanϕF ). One has with C = 2π
√

3∫ 2π

0

| tanϕF (θ)|dθ ≤ C(1 + lnµ(F )) (99)

Proof. In view of Proposition 7.12 (Integral bound), of the continuity of ϕF , and of its
2π-periodicity, there exists α0 ∈ R such that ϕF (α0) = 0. Then inductively for n ≥ 0 let

• βn be the smallest β ≥ αn such that |ϕF (β)| = π/3,

• αn+1 be the smallest α ≥ βn such that ϕF (α) = 0.

The sequences (αn, βn)n≥0 are well defined, thanks to the periodicity of ϕF , except if
|ϕF | < π/3 uniformly, but in that case the announced result (99) clearly holds. If ϕF (βn) =
π/3 for some n ≥ 0 then αn+1 − βn ≥ π/3, whereas if ϕF (βn) = −π/3 one has βn − αn ≥
π/3, by Proposition 7.12 (Regularity). Therefore αn+1 − αn ≥ π/3 for all n ≥ 0, thus
α6 ≥ α0 + 2π, which implies∫ 2π

0

| tanϕF (θ)| dθ ≤
∫ 2π

0

tan(π/3) dθ + 6 lnµ(F ) ≤ 2π
√

3 + 6 lnµ(F ). (100)

On each interval [αn, βn]∩ [0, 2π] we used the upper bound |ϕF (θ)| ≤ π/3, which holds by
definition of βn. On each interval [βn, αn+1] ∩ [0, 2π] we used Proposition 7.12 (Integral
bound) and the fact that ϕF does not change sign, which holds by definition of αn+1.

The last result of this subsection can be regarded as a refinement of Proposition 7.9.

Proposition 7.14 (Estimate of ]F in terms of ϕF ). Let u, v 6= 0 be such that ](u, v) ≤
π/3. Then one has, with C = 32

min{]F (u, v), 2}2 ≤ C](u, v) max{](u, v), | tanϕF (u)|, | tanϕF (v)|, }. (101)

Proof. Denote θ := ](u, v) and α := ]F (u, v). Assuming w.l.o.g. that ‖u‖ = ‖v‖ = 1
and det(u, v) > 0 one has

v = (u+ u⊥ tan θ) cos θ, and u = (v − v⊥ tan θ) cos θ.
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Using linearity in the first line, and convexity in the second line, we obtain

〈v,∇F (u)〉 = 〈u+ u⊥ tan θ,∇F (u)〉 cos θ = F (u)(1 + tanϕF (u) tan θ) cos θ (102)
F (u) = F (v − v⊥ tan θ) cos θ

≥ (F (v)− 〈v⊥,∇F (v)〉 tan θ) cos θ = F (v)(1− tanϕF (v) tan θ) cos θ (103)

Assume for a moment that − tanϕF (u) tan θ ≥ 1/2. Recalling that θ ≤ π/3, thus tan θ ≤
2θ, we obtain − tanϕF (u)θ ≥ 1/4 and the announced result (101) is proved. Likewise if
tanϕF (v) tan θ ≥ 1/2. In particular, if α = +∞ then 〈∇F (u), v〉 ≤ 0 by Definition 7.2,
and therefore − tanϕF (u) tan θ ≥ 1 by (102), so that the result is proved.

In the following, we let tu := tanϕF (u), tv := tanϕF (v). Based on the previous
argument we assume w.l.o.g. that tu tan θ ≥ −1/2, tv tan θ ≤ 1/2 and α 6=∞. We obtain
from (102)

cosα =
〈v,∇F (u)〉

F (v)
=
〈v,∇F (u)〉

F (u)
× F (u)

F (v)
≥ (1 + tu tan θ)(1− tv tan θ) cos2 θ.

Taking logarithms yields with t := max{0,−tu, tv}

− ln cosα ≤ −2 ln(1− t tan θ)− 2 ln cos θ. (104)

An elementary function analysis shows that − ln cosα ≥ α2/2 for α ∈ [0, π/2[, and
− ln cos θ ≤ θ2 for θ ∈ [0, π/3]. In addition tan θ ≤ 2θ for θ ∈ [0, π/3], and− ln(1−x) ≤ 2x
for x ∈ [0, 1/2]. Inserting these bounds in (104) yields the announced result

α2/2 ≤ − ln cosα ≤ 4 max{− ln(1− t tan θ),− ln cos θ} ≤ 4 max{4tθ, 2θ2}.

7.2.3 Regularized gradient deviation

We consider in this subsection two 1-Lipschitz regularizations ψ+
F and ψ−F of the gradient

deviation ϕF . See the plots of ψ±F on Figure page 18. Note that −ϕF is already (but also
only) one-sided 1-Lipschitz, see Proposition 7.12 (Regularity). We extend to ψ±F some of
the results of §7.2.2, namely the L1-norm estimate in Corollary 7.18 and the comparison
with the F -angle in Proposition 7.14, which are used §7.4.1 in the proof of the worst case
estimate in Theorem 7.4. We recall that ϕF : R→]− π/2, π/2[ is 2π-periodic.

Definition 7.15. Define for any θ ∈ R

ψ+
F (θ) := max

η≥0
ϕF (θ + η)− η, ψ−F (θ) := min

η≥0
ϕF (θ − η) + η. (105)

The functions ψ−F and ψ+
F define an upper and lower envelope of ϕF : for any θ ∈ R

−π/2 < inf
R
ϕF ≤ ψ−F (θ) ≤ ϕF (θ) ≤ ψ+

F (θ) ≤ sup
R
ϕF < π/2.

They play symmetrical roles, up to replacing ϕF with θ 7→ −ϕF (−θ), which amounts to
reversing the orientation of the plane R2. Hence results established for ψ+

F automatically
extend to ψ−F .
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Lemma 7.16. The map ψ+
F : R→]− π/2, π/2[ is 1-Lipschitz.

Proof. By design (105, left) the function ψ+
F is one-sided 1-Lipschitz: for all θ ∈ R, h ≥ 0

ψ+
F (θ + h) = sup

η≥h
ϕF (θ + η)− (η − h) ≤ ψ+

F (θ) + h.

On the other hand one has ψ+
F (θ − h) ≤ ψ+

F (θ) + h, for all h ≥ 0, as follows from the
same property of the function ϕF , see Proposition 7.12 (Regularity). Combining these
two estimates, we obtain ψ+

F (θ + h) ≤ ψ+
F (θ) + |h|, for all θ ∈ R and all h ∈ R (positive

or negative), hence ψ+
F is 1-Lipschitz as announced.

The next lemma and corollary are devoted to estimating the L1([0, 2π]) norm of ψ+
F .

We denote by |A| the Lebesgue measure of a measurable set A ⊂ R.

Lemma 7.17. Let θ0, θ1 ∈ R be such that ψ+
F (θ0) = ψ+

F (θ1). Then

|{θ ∈ [θ0, θ1]; ψ+
F (θ) > ϕF (θ)}| ≤ |{θ ∈ [θ0, θ1]; ψ+

F (θ) = ϕF (θ)}|. (106)

Proof. Denote by A0 (resp. A1) the set appearing in (106, left) (resp. (106, right)). Then

0 = ψ+
F (θ1)− ψ+

F (θ0) =

∫ θ1

θ0

d

dθ
ψ+
F =

∫
A0

d

dθ
ψ+
F +

∫
A1

d

dθ
ψ+
F ≥ |A0| − |A1|,

where we used the observation that d
dθ
ψ+
F (θ) = 1 for all θ ∈ A0, whereas d

dθ
ψ+
F (θ) ≥ −1

for a.e. θ ∈ A1. The result follows.

Corollary 7.18 (L1 estimate of ψ+
F ).∫ 2π

0

max{0, tanψ+
F − 1} ≤ 2

∫ 2π

0

max{0, tanϕF − 1}

Proof. As observed in Corollary 7.13 there exists θ0 ∈ R such that ϕF (θ0) = 0. Thus
ϕF (θ) ≤ π/4 for all θ ∈ [θ0− π/4, θ0], and therefore ψ+

F (θ0− π/4) ≤ π/4. As a result, the
level sets

Ψ(λ) := {θ ∈ R; ψ+
F (θ) > λ}, Φ(λ) := {θ ∈ R; ϕF (θ) > λ},

are strict subsets of R for any λ ≥ π/4. They are also 2π-periodic sets, and for that
reason we denote Φ̃(λ) := Φ(λ) ∩ [0, 2π[ and Ψ̃(λ) := Ψ(λ) ∩ [0, 2π[. Applying Lemma
7.17 to the closure [θ0, θ1] of each connected component of Ψ(λ), and using periodicity,
we obtain |Ψ̃(λ) \ Φ̃(λ)| ≤ |Φ̃(λ)|. Thus |Ψ̃(λ)| ≤ 2|Φ̃(λ)|, and therefore, as announced∫ 2π

0

max{0, tanψ+
F − 1} =

∫ π/2

π/4

|Ψ̃(λ)| tanλ dλ

≤ 2

∫ π/2

π/4

|Φ̃(λ)| tanλ dλ

= 2

∫ 2π

0

max{0, tanϕF − 1}
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From Corollaries 7.13 and 7.18 we obtain∫ 2π

0

max{1, tanψ+
F } ≤ C lnµ, (107)

where µ := max{2, µ(F )} and C is an absolute constant. The same result holds for
max{1,− tanψ−F }, by a similar argument, see the comment after Definition 7.15. Finally,
we compare the F -angle of two vectors with such integral quantities.

Proposition 7.19 (Estimate of ]F in terms of ψ±F ). Let u, v ∈ R2 \ {0}, with ](u, v) ≤
π/3. Let Θ ⊂ R be a corresponding angular sector, with |Θ| = ](u, v). Then

min{]F (u, v), 2}2 ≤ C ′
∫

Θ

max{1, tanψ+
F , − tanψ−F }, (108)

where C ′ = 4C and C is from Proposition 7.14.

Proof. By angular sector, we mean that up to exchanging u and v one has Θ = [θu, θv[
where u (resp. v) is positively proportional to (cos θu, sin θu) (resp. (cos θv, sin θv)). By
Proposition 7.14 one has

]F (u, v)2 ≤ C max{|Θ|2, |Θ| | tanϕF (θu)|, |Θ|| tanϕF (θv)|}.

If ]F (u, v)2 ≤ C|Θ|2 then the announced result (108) is proved, since |Θ| ≤ π/3.
Otherwise we may assume w.l.o.g that ]F (u, v)2 ≤ |Θ| | tanϕF (θu)|. Denoting ψF :=
max{ψ+

F ,−ψ
−
F } one has ψF (θu + h) ≥ ϕ∗ − h for all h ≥ 0, where ϕ∗ := |ϕF (θu)|. We

conclude by case elimination:

• If ϕ∗ ≤ π/3, then ]F (u, v)2 ≤ |Θ| tan(π/3), hence (108) holds as announced.

• Otherwise if ϕ∗ + ](u, v) ≥ π/2, we obtain∫
Θ

| tanψF | ≥
∫ π

2
−ϕ∗

0

tan(ϕ∗ − h) dh = ln
(sin(2ϕ∗)

cosϕ∗

)
= ln(2 sinϕ∗)

≥ ln(2 sin(π/3)) =
ln 3

2
.

Thus the r.h.s. of (108) is bounded below by C ln(3)/2 ≥ 22, hence (108) holds as
announced.

• Otherwise if ϕ∗ + ](u, v) ≤ π/2, then we obtain for all θ ∈ Θ

tanψF (θ) ≥ tan(ϕ∗ − (π/2− ϕ∗)) = − cot(2ϕ∗) =
1

2
(tanϕ∗ − cotϕ∗) ≥

1

4
tanϕ∗,

using that ϕ∗ ≥ π/3 in the last inequality. Therefore
∫

Θ
tanψF ≥ 1

4
|Θ| tan(ϕ∗),

which implies (108) and concludes the proof.
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7.3 The Stern-Brocot tree

We describe a variant of the Stern-Brocot tree [Niq07], an arithmetic structure which
allows to effectively construct and study the minimal (F, α)-acute stencil considered in
Definition 7.3. We formally introduce the Stern-Brocot tree in this introduction, and
then we relate it in §7.3.2 with the stencils of Definition 7.3. We estimate in §7.3.3 the
cardinality of a subtree, based on the number of its inner leaves and on a measure of their
depth, for use in the proof §7.4.1 of the worst case estimate of Theorem 7.4.

Let Z collect all elements of Z2 whose coordinates are co-prime, and T all elements
of Z2 with unit determinant and a non-negative scalar product.

Z := {(a, b) ∈ Z2 \ {0}; gcd(a, b) = 1}, T := {(u, v) ∈ Z2; 〈u, v〉 ≥ 0, det(u, v) = 1}.

We often denote T = (u, v) the elements of the set T .

Definition 7.20. For any T = (u, v) ∈ T , we refer to T ′ = (u, u + v) ∈ T and T ′′ =
(u + v, v) ∈ T as its children, and we denote this relation by T C T ′ and T C T ′′. We
also let

S(T ) = 〈u, v〉, ∆(T ) = min{‖u‖2, ‖v‖2}.

By construction one has for any T C T ′ ∈ T

S(T ) ≥ 0, ∆(T ) ≥ 1, S(T ′) ≥ S(T ) + ∆(T ), ∆(T ′) ≥ ∆(T ). (109)

Definition 7.21. A chain in T is a finite sequence T0 C · · · C Tn, where n ≥ 0. We
write T∗ � T ∗ iff there exists a chain T∗ = T0 C · · · C Tn = T ∗ in T for some n ≥ 0.

The next lemma fully describes the graph (T ,C). For that purpose, denoting by
(e1, e2) the canonical basis of R2 we let

T0 := {(e1, e2), (e2,−e1), (−e1,−e2), (−e2, e1)}.

Lemma 7.22 (Lemma 2.3 in [Mir14b]). • Let T = (u, v) ∈ T . The following are
equivalent: (i) T ∈ T0, (ii) ‖u‖ = ‖v‖, (iii) S(T ) < ∆(T ), (iv) T has no parent.

• The graph (T ,C) is the disjoint union of four complete infinite binary trees, whose
roots lie in T0.

The tree rooted in (e1, e2) is isomorphic to the classical Stern-Brocot tree [Niq07], an
infinite binary tree labeled with rationals, via the mapping (u, v) 7→ p/q where (p, q) =
u + v. Each positive rational appears exactly once as a label, in its irreducible form, as
follows from the first statement of the next proposition. See also [Niq07].

Proposition 7.23. For each u ∈ Z with ‖u‖ > 1, there exists a unique (u−, u+) ∈ T
such that u = u− + u+. By convention we let (u−, u+) := (−u⊥, u⊥) if ‖u‖ = 1. For any
u, v ∈ Z

(u, v) ∈ T ⇔ ∃k ≥ 0, v = u+ + ku, (v, u) ∈ T ⇔ ∃k ≥ 0, v = u− + ku.

Furthermore, ‖u± + ku‖ > k‖u‖ for all k ≥ 0. Also, ‖u±‖ ≤ ‖u‖ with equality iff
‖u‖ = ‖u±‖ = 1.
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Proof. See Proposition 1.2 in [Mir16] for the existence and uniqueness of (u−, u+).
The announced properties are obvious if ‖u‖ = 1, hence w.l.o.g. we assume ‖u‖ > 1.

One has ‖u‖2 = ‖u+‖2 + 2〈u+, u−〉 + ‖u−‖2 ≥ ‖u+‖2 + 0 + 1, hence ‖u‖ > ‖u+‖ as
announced, and likewise for u−. One has ‖u+ + ku‖2 = k2‖u‖2 + 2k〈u, u+〉 + ‖u+‖2 ≥
k2‖u‖2 + 0 + 1 for all k ≥ 0, hence ‖u+ + ku‖ > k‖u‖ and likewise for u− as announced.

If (u, v) ∈ T , then det(u, v) = det(u, u+), hence v = u+ + ku for some k ∈ R. Since
u+, v have integer coordinates, and u has co-prime coordinates, one has k ∈ Z. By
definition 0 ≤ 〈u, v〉 = 〈u, u+〉+ k‖u‖2 < (k + 1)‖u‖2, showing that k ≥ 0 as announced.
Likewise for u−, and the reverse implication is obvious.

7.3.1 Angular partitions

To each element T = (u, v) of (our variant of) the Stern-Brocot tree one can associate an
angular sector, whose width and covering properties are the object of this short subsection.

Lemma 7.24. For all (u, v) ∈ T one has (‖u‖‖v‖)−1 ≤ ](u, v) ≤ π
2
(‖u‖‖v‖)−1.

Proof. One has sin(](u, v)) = det(u, v)/(‖u‖‖v‖) = (‖u‖‖v‖)−1. Also, by concavity, one
has 2

π
ϕ ≤ sinϕ ≤ ϕ for all ϕ ∈ [0, π/2], hence t ≤ arcsin t ≤ π

2
t for all t ∈ [0, 1].

Definition 7.25. Given T = (u, v) ∈ T we let Θ(T ) := [θu, θv[, where u is positively
proportional to (cos θu, sin θu) and θu ∈ [0, 2π[, and likewise for v and θv ∈]0, 2π].

If T ∈ T0, then Θ(T ) = [kπ/2, (k + 1)π/2[ for some 0 ≤ k ≤ 3. By construction,
Θ(T ) = Θ(T ′) t Θ(T ′′) if T ′ and T ′′ are the children of T , where t denotes the disjoint
union. In addition |Θ(T )| = ](u, v) for all T = (u, v) ∈ T .

Definition 7.26. • A sub-forest is a set T∗ ⊂ T which contains the parent, if any, of
each of its elements: for all T C T ′ with T ′ ∈ T∗ one has T ∈ T∗.

• An outer leaf of T∗ is an element of T \ T∗ whose parent, if any, lies in T∗. An
inner leaf of T∗ is an element of T∗ whose two children lie outside T∗. Their sets are
respectively denoted

Lo(T∗) ⊂ T \ T∗ Li(T∗) ⊂ T∗.

Said otherwise, an element T ∈ T \ T∗ (resp. T ∈ T∗) is an outer leaf (resp. inner leaf)
of a sub-forest T∗ ⊂ T , iff T∗ ∪ {T} (resp. T∗ \ {T}) also is a sub-forest. In addition one
easily checks that the angular sectors associated with the outer leaves define a partition
of the angular space [0, 2π[, and that the angular sectors associated with the inner leaves
are pairwise disjoint:⊔

T∈Lo(T∗)

Θ(T ) = [0, 2π[,
⊔

T∈Li(T∗)

Θ(T ) ⊂ [0, 2π[. (110)
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7.3.2 Stencil construction

We show in Proposition 7.27 that stencils are in one to one correspondance with finite
sub-forests of T , see Definitions 7.3 and 7.26. This yields an efficient construction of
stencils with minimal cardinality, and a way of counting their elements, see Corollary
7.28.
Proposition 7.27. Let (u1, · · · , un), n ≥ 4, be a stencil in the sense of Definition 7.3,
and let

L∗ := {(ui, ui+1); 1 ≤ i ≤ n}, (111)
collect the pairs of consecutive elements, with αn+1 := αn. Then L∗ is the set of outer
leaves of some finite sub-forest T∗ ⊂ T , and in particular #L∗ = 4 + #T∗. Any finite
sub-forest T∗ of T can be obtained in this way.
Proof. We proceed by induction on the cardinality of L∗. For initialization, we note that
#L∗ ≥ 4, with equality iff L∗ = T0, in which case it collects the outer leaves of the empty
sub-forest T∗ = ∅. Otherwise denote u = ui the element of L∗ with maximal norm, and
observe that ui+1 = u+ and ui−1 = u− by Proposition 7.23. Since L∗ ( T0 one has ‖u‖ > 1,
and therefore (ui−1, ui+1) = (u−, u+) ∈ T , showing that (u1, · · · , ui−1, ui+1, · · · , un) is
also a stencil in the sense of Definition 7.3. Thus by induction L∗ ∪ {(ui−1, ui+1)} \
{(ui−1, ui), (ui, ui+1)} = Lo(T ′∗ ) for some sub-forest T ′∗ of T , and therefore L∗ = Lo(T ′∗ ∪
{(ui−1, ui+1)}) as announced.

Conversely, we observed in (110) that the set of outer leaves of a finite sub-forest of T
defines a partition the angular space, and thus yields a stencil.

Recall that a finite complete rooted binary tree has one more outer leaf than inner
nodes. Since T∗ collects the inner nodes (possibly none) of four such trees, and L∗ their
leaves, one has #L∗ = 4 + #T∗ as announced.
Corollary 7.28. Let F be an asymmetric norm, and let α ∈]0, π/2]. Define

T (F, α) := {(u, v) ∈ T ; ]F (u, v) > α or ]F (v, u) > α}. (112)

Then T (F, α) is a finite sub-forest of T , and N(F, α) = 4 + #T (F, α).
Proof. The set T (F, α) is a sub-forest of T by Lemma 7.8, and is finite by Proposition 7.9.
Denote by Lo(F, α) the collection of its outer leaves, and by u1, · · · , un the corresponding
stencil, see Proposition 7.27. One has (ui, ui+1) ∈ Lo(F, α) ⊂ T \ T (F, α), for any
1 ≤ i ≤ n, implying the (F, α)-acuteness property (89) by definition of T (F, α). This
implies the upper bound N(F, α) ≤ n = #Lo(F, α) = 4 + #T (F, α).

Conversely, let u1, · · · , un be an (F, α)-acute stencil with minimal cardinality, and let
L∗ and T∗ be as in Proposition 7.27. By Lemma 7.8, and recalling Definition 7.21, all
elements of the set

E := {T ′ ∈ T ; ∃T ∈ L∗, T � T ′}
obey the acuteness condition (89), hence E ⊂ T \ T (F, α). On the other hand, one has
E = T \ T∗, hence T (F, α) ⊂ T∗, which yields the lower bound #T (F, α) ≤ #T∗ =
#L∗ − 4 = N(F, α).

Thanks to the tree structure, the set T (F, α) can easily be computed in practice, as
well as the corresponding minimal (F, α)-acute stencil, by e.g. depth first search as in
[Mir14b].
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7.3.3 Cardinality of a sub-forest

We estimate the cardinality of a sub-forest of T based on the number of inner leaves and
on their depth as measured by the function S, see Corollary 7.32 and Definition 7.20. The
proof is based on a decomposition of the sub-forest into a disjoint union of chains. We
state, without proof, a lower bound on the depth of the last element of a chain, which
immediate follows from (109).

Lemma 7.29. If T0 C · · · C Tn is a chain in T , then S(Tn) ≥ n∆(T0).

Definition 7.30. Let T∗ be a finite sub-forest of T . Then T∗ is the union of a finite
family of chains C1, · · · , CI , each denoted Ci = {T i0 C · · · C T ini}, and defined as follows:

• (Main loop, iteration variable: i the chain index) Choose an element T i0 minimizing
S in T∗ \ C0 t · · · t Ci−1. If this set is empty, then the algorithm ends.

• (Inner loop, iteration variable: k the chain element index) Consider the two children
T ′, T ′′ of T ik. If both lie in T∗, then define T ik+1 as the one minimizing S (any in
case of tie). If only one lies in T∗, then define it as T ik+1. If none lies in T∗ then the
inner loop ends.

Lemma 7.31. With the notations and assumptions of Definition 7.30. The chains are
disjoint and their number I is also the number of inner leaves of T∗. Denote by (ui, vi) =
T i0, 1 ≤ i ≤ I, the first element of each chain. Then the vectors {ui; 1 ≤ i ≤ I, ‖ui‖ <
‖vi‖} are pairwise distinct, and likewise {vi; 1 ≤ i ≤ I, ‖ui‖ > ‖vi‖}.

Proof. Assume for contradiction that T ik = T jl for some 0 ≤ i < j ≤ I, k ≤ ni, l ≤ nj,
where (i, j, k, l) is minimal for lexicographic ordering. By construction of the first element
of each chain, one has l ≥ 1. One has k = 0, since otherwise T ik−1 = T jl−1 contradicting
the minimality of (i, j, k, l). Thus S(T j0 ) < S(T jl ) = S(T i0), contradicting the definition of
T i0.

By construction, the chains exhaust T∗, are disjoint as shown in the above paragraph,
and each one ends at an inner leaf. Hence their number is the number of inner leaves, as
announced.

Assume that (u, vi) and (u, vj) are the first element of the chains Ci and Cj, with
‖u‖ < min{‖vi‖, ‖vj‖} and i < j. Then vi = u+ +ku and vj = u+ + lu for some 1 ≤ k < l,
by Proposition 7.23. Since (u, u+) C · · · C (u, u+ + lu), one has (u, u+ + ru) ∈ T∗ for
all 0 ≤ r ≤ l. The two children of T = (u, u+ + ru) are T ′ = (u, u+ + (r + 1)u) and
T ′′ = (u++(r+1)u, u++ru), and satisfy S(T ′′)−S(T ′) = 〈u++(r−1)u, u++(r+1)u〉 > 0
for all r ≥ 1. Hence T j0 ∈ Ci, by construction of Ci, see the inner loop, which is a
contradiction. The result follows.

Corollary 7.32. Let T∗ be a sub-forest of T . Then for some absolute constant C

#T∗ ≤ C
(

1 + max
T∈T∗

S(T )
)

ln max{2,#Li(T∗)}.

Proof. Denote by I := #Li(T∗) the number of inner leaves, and s := max{S(T );T ∈ T∗}
the depth of T∗ as measured by S. By Lemma 7.31, T∗ is the disjoint union of I chains,
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with n1, · · · , ni elements, and whose first element we denote (u1, v1), · · · , (uI , vI). By
Lemma 7.29 one has

#T∗ =
∑

1≤i≤I

ni ≤
∑

1≤i≤I

s+ 1

min{‖ui‖, ‖vi‖}2
≤ (s+ 1)

(
4 + 2

∑
1≤i≤I

1

‖wi‖2

)
, (113)

where (wn)n≥1 is an enumeration of Z2 \ {0} sorted by non-decreasing norm. In (113,
r.h.s.) the constant 4 corresponds to the case ‖ui‖ = ‖vi‖ and thus to chains rooted in T0

by Lemma 7.22. The sum comes from the cases ‖ui‖ < ‖vi‖ or ‖ui‖ > ‖vi‖ and from the
injectivity property of Lemma 7.31. Observing that ‖wI‖ ≤ C

√
I and using (114, left)

below, we conclude the proof.

7.4 Complexity estimates

This section concludes the proof of Theorem 7.4, dealing with the worst case and average
case complexity estimates in §7.4.1 and §7.4.2 respectively. Most of the material has been
prepared in §7.2 and §7.3. The following elementary estimate serves in several occasions.

Lemma 7.33 (Lemma 2.7 in [Mir14b]). For all r ≥ 2, one has with C an absolute
constant ∑

0<‖u‖≤r
u∈Z2

1

‖u‖2
≤ C ln r. (114)

Corollary 7.34. For any r ≥ 2, one has with C an absolute constant

#{(u, v) ∈ T ; ‖u‖‖v‖ ≤ r} ≤ Cr ln r (115)

Proof. We distinguish the cases ‖u‖ = ‖v‖, ‖u‖ < ‖v‖, and ‖u‖ > ‖v‖. In the first
case one has (u, v) ∈ T0, see Lemma 7.22, so that the contribution of these terms is 4.
Otherwise, assuming w.l.o.g. that ‖u‖ < ‖v‖, one has v = u+ + ku for some k ≥ 1, see
Proposition 7.23. Therefore ‖v‖ ≥ k‖u‖, thus k ≤ r/‖u‖2, which is an upper bound for
the number of possible choices of v for a given u. Eventually we conclude the proof using
(114)

#{(u, v) ∈ T ; ‖u‖‖v‖ ≤ r} − 4 ≤ 2
∑
‖u‖∈Z

⌊ r

‖u‖2

⌋
≤ 2

∑
0<‖u‖≤

√
r

r

‖u‖2
≤ Cr ln r.

7.4.1 Worst case

We establish the upper bound on the cardinality N(F, α) of a minimal (F, α)-acute stencil,
announced in Theorem 7.4. The asymmetric norm F and parameter α ∈]0, π/2] are fixed
throughout this section.

Lemma 7.35. T (F, α) has at most C ln(µ)/α2 inner leaves, each obeying S(T ) ≤ 5µ/α2,
where µ := max{2, µ(F )} and C is an absolute constant.

116



Proof. The set T (F, α) is introduced in Corollary 7.28, and the quantity S(T ) in Definition
7.20. Denoting by Li(F, α) the set of inner leaves of T (F, α), see Definition 7.26, we obtain

α2#Li(F, α) ≤
∑

T∈Li(F,α)
T=(u,v)

max{]F (u, v),]F (v, u)}2

≤ C

∫ 2π

0

max{1, tanψ+
F ,− tanψ−F }

≤ C ′ lnµ.

We successively used (i) the inclusion Li(F, α) ⊂ T (F, α) and definition (112) of T (F, α),
(ii) Proposition 7.19 and (110), (iii) the integral upper bound (107). The first announced
point follows.

On the other hand, for each T = (u, v) ∈ T (F, α) one has by (112) and Proposition
7.9

α < ]F (u, v) ≤
√

5µ](u, v),

and therefore since det(u, v) = 1

α2/(5µ) ≤ ](u, v) = arctan(1/〈u, v〉) ≤ 1/〈u, v〉,

implying as announced that S(T ) := 〈u, v〉 ≤ 5µ/α2.

Corollary 7.36. #T (F, α) ≤ C µ
α2 ln( lnµ

α2 ), with µ := max{12, µ(F )} and C an absolute
constant.

Proof. The announced estimate immediately follows from Lemma 7.35 and Corollary 7.32.
Note that lnµ

α2 ≥ ln(12)
(π/2)2

> 1.

7.4.2 Average case

Throughout this section, we denote by F an asymmetric norm, which is continuously
differentiable except at the origin. In the following, χ≥1 : R→ {0, 1} denotes the indicator
function of the set [1,∞[.

Recall that T (F, α) is a family of pairs (u, v) of vectors, playing symmetrical roles,
see (112). Our first lemma breaks this symmetry, and lets u (or v) play a preferred role
through the introduction of auxiliary sets Zσ(F, δ, u), for suitable δ ≥ 0, σ ∈ {+,−}.

Definition 7.37. For each u ∈ Z, σ ∈ {+,−}, δ > 0, let Zσ(F, δ, u) collect all v ∈ Z
such that

| tanϕF (u)| ≥ δ‖u‖‖v‖ 〈u, v〉 ≥ 0, det(u, v) = σ1. (116)

Lemma 7.38. Let δ = α2/C, where C is from Proposition 7.14. Then T (F, α) is a subset
of

{(u, v) ∈ T ;α‖u‖‖v‖ ≤ C} ∪ {(u, v) ∈ T ; v ∈ Z+(F, δ, u)} ∪ {(u, v) ∈ T ;u ∈ Z−(F, δ, v)}.

Therefore for some absolute constant C ′

#T (F, α) ≤ C ′

α
| lnα|+

∑
u∈Z

∑
σ∈{+,−}

#Zσ(F, δ, u). (117)
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Proof. Let (u, v) ∈ T (F, α), so that ]F (u, v) > α or ]F (v, u) > α, see (112). Then by
Proposition 7.14, and recalling that ‖u‖‖v‖](u, v) ≤ 1 see Lemma 7.24, we obtain

‖u‖‖v‖α2 ≤ C max{ 1

‖u‖‖v‖
, | tanϕF (u)|, | tanϕF (v)|}.

The announced inclusion of follows, implying the cardinality estimate by Corollary 7.34.

The next lemma estimates the cardinality of each Zσ(F, δ, u) individually. Recall that
u± is defined in Proposition 7.23.

Lemma 7.39. For each u ∈ Z, σ ∈ {+,−}, δ > 0, one has Zσ(F, δ, u) = ∅ if ‖u‖ >
µ(F )/δ, and else

#Z(F, δ, u) ≤ | tanϕF (u)|
δ‖u‖2

+ χ≥1

( | tanϕF (u)|
δ‖u‖‖uσ‖

)
. (118)

Proof. From definition (116, right) we obtain v = uσ + ku for some k ≥ 0. One has
‖uσ + ku‖ ≥ max{‖uσ‖, k‖u‖}, see Proposition 7.23, hence k ≤ (tanϕF (u))/(δ‖u‖2)
which accounts for the first contribution in (118). The second contribution corresponds
to the case k = 0.

Finally, if ‖u‖ > µ(F )/δ then (116, left) yields | tanϕF (u)| ≥ δ‖u‖‖v‖ > µ(F ), since
‖v‖ ≥ 1, in contradiction with | tanϕF (u)| ≤ µ(F ) see Lemma 98. This concludes the
proof.

In view of (117) and towards the average case estimate of T (F ◦Rθ), where Rθ denotes
the rotation of angle θ ∈ [0, 2π], we consider the following integral. Let 0 < δ ≤ 1 be
fixed.∑
u∈Z

∫ 2π

0

#Zσ(F ◦Rθ, δ, u) dθ ≤
∑

‖u‖≤µ(F )/δ

∫ 2π

0

| tanϕF (Rθu)|
δ‖u‖2

+ χ≥1

( | tanϕF (Rθu)|
δ‖u‖‖uσ‖

)
dθ

=
∑

‖u‖≤µ(F )/δ

∫ 2π

0

| tanϕF (θ)|
δ‖u‖2

+ χ≥1

( | tanϕF (θ)|
δ‖u‖‖uσ‖

)
dθ,

(119)

where implicitly u ∈ Z in each of the sums. Recall that ϕF is defined both on non-zero
vectors and on reals, by taking the argument see Definition 7.10, and that on R it is
2π-periodic.

The first contribution of (119) is separable w.r.t. θ and u, hence can be bounded as
follows:∑
‖u‖≤µ(F )/δ

∫ 2π

0

| tanϕF (θ)|
δ‖u‖2

dθ =
1

δ

∫ 2π

0

| tanϕF (θ)|dθ
∑

0<‖u‖≤µ(F )/δ

1

‖u‖2
≤ C

δ
ln(µ) ln(

µ

δ
),

(120)
where µ := max{2, µ(F )}. We used Corollary 7.13 to upper bound the integral w.r.t. θ,
and Lemma 7.33 for the summation over u.

In contrast, the second contribution in (119) is non-separable, motivating the following
lemma.
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Lemma 7.40. For all r ≥ 2, σ ∈ {+,−}, one has with C an absolute constant∑
u∈Z

χ≥1

( r

‖u‖‖uσ‖

)
≤ Cr ln r. (121)

Proof. For each u ∈ Z one has (u, u+) ∈ T and (u−, u) ∈ T . Hence (121) is bounded by
the cardinality of {(u, v) ∈ T ; ‖u‖‖v‖ ≤ r}, which is estimated in Corollary 7.34.

The second contribution of (119) is bounded as follows, denoting r(θ) := max{2, | tanϕF (θ)|/δ}∑
‖u‖≤µ(F )/δ

∫ 2π

0

χ≥1

[ | tanϕF (θ)|
δ‖u‖‖uσ‖

]
dθ ≤ C

∫ 2π

0

r(θ) ln r(θ)dθ

≤ C

∫ 2π

0

max{2, | tanϕF (θ)|
δ

} ln(
µ

δ
) dθ ≤ C

lnµ

δ
ln(

µ

δ
),

where we used successively (i) Lemma 7.40, (ii) the uniform upper bound | tanϕF (θ)| ≤
µ(F ) see Lemma 7.11, and (iii) the L1 estimate of | tanϕF | established in Corollary 7.13.
Together with (120), this proves that (119) is bounded by C lnµ

δ
ln(µ

δ
). In view of Lemma

7.38, this concludes the proof of Theorem 7.4.

7.A Semi-Lagrangian discretization of Finslerian eikonal equa-
tions

We present an elementary introduction to numerical methods for the computation of gen-
eralized traveltimes and distance maps, focusing on single pass semi-Lagrangian methods
[Tsi95, KS98, SV03, BR06, AM12, Mir14b, Mir14a], at the expense of alternative ap-
proaches such as [LQ12, BR06], which is the context underlying of the problem studied in
this paper. An open source code implementing this method is available on the author’s
webpage github.com/Mirebeau.

The main result of this section is Proposition 7.41 known as acuteness implies causality
[SV03]. It requires that the numerical method be based upon strictly acute stencils, in
the sense of Definition 7.3 with α < π/2. Under this condition, one can compute an
approximate travel time Th(x), at a given discretization point x ∈ Ωh where h is the grid
scale, in terms of suitable neighbor values Th(x+ hui) and Th(x+ hui+1) no greater than
Th(x) − hε, where ε > 0 is uniform over the domain. As a result, Th can be efficiently
computed in a single pass over the domain using the fast-marching algorithm, similar to
Dijkstra’s method on graphs, which deals with vertices in the order of increasing values
of Th. In addition let us mention that uniform causality, a.k.a. ε > 0, is a stable property
which is also satisfied by suitably small perturbations of the numerical scheme, such as
those related to second order accuracy [Set99] and to source factorization [LQ12].

Consider a bounded domain Ω ⊂ R2, equipped with a Finslerian metric F : Ω × R2,
(x, u) 7→ Fx(u). In other words, F is a continuous mapping, and Fx(·) is an asymmetric
norm for each x ∈ Ω in the sense of Definition 7.1. The Finslerian distance from x to
y ∈ Ω is defined as

dF(x, y) := inf
γ∈Γx→y

∫ 1

0

Fγ(t)(γ
′(t)) dt, Γx→y := {γ ∈ Lip([0, 1],Ω); γ(0) = x, γ(1) = y}.
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One is interested in the distance from the boundary, T (x) := min{dF(x, y); y ∈ ∂Ω}
often referred to as the “escape time” from the domain, which under mild assumptions
is the unique viscosity solution [BCD08] to the following (generalized) eikonal Partial
Differential Equation (PDE), written in Bellman form:

inf
u∈S1
Fx(u) + 〈∇T (x), u〉 = 0, ∀x ∈ Ω, T (x) = 0, ∀x ∈ ∂Ω. (122)

Note that the PDE remains equivalent if the unit circle S1 is replaced with any curve
enclosing the origin. In particular, we can consider the closed polygonal line defined by a
stencil, see Definition 7.3, possibly depending on x ∈ Ω and denoted u1(x), · · · , un(x)(x)
where n(x) ≥ 4. In the following, the explicit dependency ui = ui(x) w.r.t. the base point
x ∈ Ω is often omitted readability, and by convention un(x)+1 := u1.

Consider a grid scale h > 0, and introduce the sets Ωh := Ω ∩ hZ2 and ∂Ωh :=
(R2 \ Ω) ∩ hZ2 devoted to the discretization of Ω and ∂Ω. Semi-Lagrangian numerical
schemes for the eikonal equation mimick (122) as follows: find Th : hZ2 → R such that

min
1≤i≤n(x)

min
s∈[0,1]

Fx((1− s)ui + sui+1) +
(1− s)Th(x+ hui) + sTh(x+ hui+1)− Th(x)

h
(123)

equals 0 for all x ∈ Ωh, with again the boundary condition Th(x) = 0 for all x ∈ ∂Ωh.

Proposition 7.41 (Acuteness implies causality [SV03]). Assume that u1(x), · · · , un(x)(x)
is an (Fx, α)-acute stencil, where α ∈]0, π/2[. Assume also that (123) vanishes, and that
the minimum is attained for some 1 ≤ i ≤ n(x) and s ∈]0, 1[. Then

Th(x) ≥ h cos(α)Fx(ui) + Th(x+ hui), Th(x) ≥ h cos(α)Fx(ui+1) + Th(x+ hui+1).

Proof. A standard analysis based on Lagrange’s optimality conditions shows that

hAT∇Fx((1− s)ui + sui+1) +

(
Th(x+ hui)
Th(x+ hui+1)

)
= Th(x)

(
1
1

)
,

where A is the matrix of columns ui and ui+1, see the Appendix of [SV03] or the Appendix
of [Mir14b]. Considering this vector equality componentwise yields the announced result.
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Figure 35: Left: Unit sphere {F = 1} of a norm F , which is asymmetric in the second
and third row. The origin is marked with a point. Center: Minimal (F, α)-acute stencil
for α = π/2 (solid), π/3 (dashed), π/4 (dotted). Right: Function ϕF (solid), ψ+

F (dashed,
above), ψ−F (dotted, below). Vertical bars correspond to the angles of the stencil points.
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8 Single pass computation of first seismic wave travel
time in three dimensional heterogeneous media for
the TTI anisotropy [DMM22]

This section corresponds to the paper, currently submitted and under reviewing:

• François Desquilbet, Jean-Marie Mirebeau, and Ludovic Métivier. Single pass eikonal
solver in tilted transversely anisotropic media. 2022

Abstract

We present a numerical scheme to solve the eikonal equation in a Tilted Trans-
versely Isotropic (TTI) medium. The solution to this equation corresponds to the
first arrival time of seismic pressure waves in the high frequency asymptotic regime,
whose propagation speed is neither isotropic nor elliptic. Instead, the speed profile
is characterized by a fourth degree polynomial equation in a rotated frame, defined
in terms of the Thomsen or Hooke elasticity coefficients of the geophysical medium.

We show that TTI eikonal equations can be expressed as the maximum or mini-
mum of a family of Riemannian eikonal equations, for which efficient discretizations
are known. Based on this observation, we propose an original scheme that is causal,
thus solvable in a single pass over the domain, and Eulerian, hence also mapping well
to massively parallel architectures. Numerical experiments illustrate the method’s
accuracy, speed and robustness, on both a problem with analytical solution and a
realistic synthetic instance, and compare a CPU with a GPU implementation, with
the GPU being fifty times faster than the CPU implementation.

8.1 Introduction

The eikonal Partial Differential Equation (PDE) characterizes the first arrival time of a
front, whose propagation speed is locally dictated by a metric. Classical examples in-
clude isotropic metrics, which define a propagation speed depending only on the position
of the front, as well as Riemannian metrics, whose propagation speed also depends on
the normal to the front according to an ellipsoidal profile. In this paper we focus on the
more complex tilted transversely isotropic (TTI) model, which commonly accounts for the
velocity profiles of seismic pressure waves in complex media [LBMV18]. Such anisotropy
may originate from a variety of causes, at various physical scales: from the atomic layout
in crystals, through the small scale layered structure of rocks produced by sedimentation,
to homogenisation effects along geophysical fault lines [BC91, CMA+20]. We introduce a
numerical scheme to solve the eikonal equation in TTI media, which is both very general
- able to handle anisotropy of arbitrary strength, and to include the effects of topography,
see Remark 8.43 - and highly efficient - solvable in a single pass over the domain, and
efficiently portable to massively parallel accelerators. The scheme requires a Cartesian
discretization grid, involves adaptive discretization stencils designed using algorithmic ge-
ometry for greater efficiency, and relies on a characterization of the TTI speed profile as
a union or an intersection of ellipsoids, depending on the PDE coefficients, see Figure 36.
We establish the wellposedness of the method, including the scheme causality, monotony,
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the quasi-convexity or quasi-concavity of the involved optimization problems, and the
convergence analysis. Numerical experiments illustrate our results, and include a com-
parison of a CPU and a GPU implementation, the validation of second order accuracy
in synthetic test cases achieved using source factorization and multi-scale computations,
and the fast resolution of a large and realistic three dimensional instance.

For concreteness, let us readily state the PDE that is addressed in this paper. Denote
by Ω ⊂ R3 an open connected and bounded domain, by σ = (a, b, c, d, e) ∈ C0(Ω,R5)
some coefficients which are subject to the admissibility condition described in Theorem
8.2, and by R ∈ C0(Ω,GL3(R)) a continuous field of invertible matrices. Our objective is
to numerically compute the viscosity [BCD08] solution u : Ω→ R of the following static
first order Hamilton-Jacobi-Bellman PDE :

ap4
r + bp4

z + cp2
rp

2
z + dp2

r + ep2
z = 1, where (px, px, pz) = R∇u and p2

r := p2
x + p2

y, (124)

on Ω \ {q0}, subject to the additional condition u(q0) = 0 at a point source q0 ∈ Ω, and
to outflow boundary conditions on ∂Ω. The coefficients σ = (a, b, c, d, e) are derived from
the local geophysical properties of the medium, and define an anelliptic (non-Riemannian)
speed propagation profile, see Section 8.A. The model is said tilted in view of the coordi-
nate transformation R, which is usually a rotation, and transversely isotropic in view of
symmetry in px and py. A Riemannian, or elliptic, geometry is recovered in the special
case where the equation is quadratic, i.e. a = b = c = 0. Following the geophysical
terminology, we refer to (124, left) as the P-SV equation and note that it defines two
slowness surfaces, see Figure 36, corresponding to the pressure and vertical shear wave
propagation. Only the inner surface, associated with pressure waves which are the fastest,
is considered in this paper.

Our numerical approach involves rephrasing the highly non-linear eikonal PDE (124),
defined by a fourth degree polynomial, as a maximum or a minimum of a varying family
of Riemannian eikonal PDEs, defined by quadratic polynomials and for which efficient
numerical schemes have been developed [Mir19], see Figure 36 and Figure 8.1.1. For
this reason, this work is related to multi-stencil fast marching methods [HF07], and more
generally to discretizations of Hamilton-Jacobi-Bellman equations written in the Bellman
extremal form [BBM20, BM21], see Section 8.4. For concreteness, we readily state our
numerical scheme, which is presented in more detail in Sections 8.1.1, 8.1.2 and 8.1.3: find
the solution to a finite differences equation denoted Fu = 1, whose unknown u : Ωh → R
is discretized on the Cartesian grid Ωh := Ω ∩ hZd of scale h > 0 with the appropriate
boundary conditions, and where

Fu(q) := mix
α∈[α∗,α∗]

1

µ(α)

∑
1≤i≤I

ρi(α) max
{

0,
u(q)− u(q + hei)

h
,
u(q)− u(q − hei)

h

}2
.

(125)
The notation “mix” stands for the (max) or (min) operator, if the P slowness surface
is obtained as an intersection or as a union of ellipses respectively, see Figure 36. The
optimization interval [α∗, α

∗] and multiplier µ(α) > 0, which are related to the anisotropy
bounds and dilation coefficients of the ellipses respectively, have explicit algebraic expres-
sions presented in Section 8.1.1. The weights ρi(α) ≥ 0 and offsets ei ∈ Zd are obtained
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Figure 36: Slowness surfaces (red) defined by equation (124, left), in the (pr, pz) plane.
The coefficients (a, b, c, d, e) are derived from the supplied Hooke parameters (Vp, Vs, ε, δ).
Only the inner slowness surface is considered, and our numerical method involves its
approximation by an intersection of ellipses (left) or a union of ellipses (right), shown blue.
Subfigures (left) and (right) correspond respectively to the (max) and (min) alternative
cases in (125) and Theorem 8.3.

using Selling’s matrix decomposition [Sel74], similarly to the Riemannian scheme [Mir19],
see Section 8.1.2. The scheme properties, and two strategies for the numerical optimiza-
tion over α ∈ [α∗, α

∗], are investigated in Section 8.1.3. The parameters α∗, α∗, µ(α), ρi(α)
are derived from the coefficients a, b, c, d, e, R of the TTI eikonal PDE (124), and similarly
they implicitly depend on the position q ∈ Ω according to the variations of the medium
in the domain, see Remark 8.1.

The general framework of this study is seismic imaging: inferring the geophysical
properties of the subsurface and its structure from the physical recordings of the seismic
waves. In this context, accessing to travel-times is crucial in many steps of the workflow:
macro-velocity model building through tomography, high resolution reflectivity estimation
through migration techniques, and quality control along different stages of waveform based
inversion techniques to estimate the time-shifts between recorded and simulated data. For
this reason, efficient numerical methods to solve the high frequency asymptotics of the
elastic wave equations in 3D general media are of particular interest for the seismic imaging
community.

Distance maps are ubiquitous in mathematics and their applications, hence a sustained
research effort and a wide variety of methods have been developed for their computation.
The solution to the eikonal PDE (124) falls in this framework, since it admits an inter-
pretation as the geodesic distance map from the source point q0 and with respect to a
metric defined in terms of the parameters (a, b, c, d, e) and R, see Remark 8.5. Graph
based methods can compute distances while avoiding the PDE formalism [CHK13], but
they often lack the stability and high order accuracy required for seismic imaging appli-
cations. Some other approaches exploit indirect connections with different PDEs, such
as the heat method which is based on the small time asymptotics of the heat or Poisson
kernels [CWW13]; however, it is limited to metrics featuring a quadratic structure, and
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does not appear to scale well to three dimensional problems. Yet another approach to the
computation of geodesics and geodesic distances is ray tracing [Sla03].

In the rest of this discussion we limit our attention to numerical methods which solve
directly the eikonal PDE, either the one (124) associated to the TTI geometry, or a variant
defined by another metric structure. We categorize these methods based on two criteria:
causal (single-pass) vs multi-pass solvers, and Eulerian vs semi-Lagrangian approximation
schemes - the method here proposed being causal and Eulerian. The first distinction is
tied to a property, referred to as causality, of the coupled system of non-linear equations
arising from the PDE discretization.

• Causal, single pass methods, are often referred to as fast marching methods (FMM),
see Algorithm 5. The causality property is the translation at the discrete level
of a principle underlying the front propagation: the front arrival time at a given
point only depends on earlier arrival times, see Definition 8.6. Common advantages
of FMMs include faster computation times (on sequential machines), easier back
propagation (thanks to the triangular structure of the Jacobian of the scheme), and
opportunities for modification (adaptive stopping criteria, high order schemes, etc),
see the discussion in [DCC+21]. Originally limited to isotropic eikonal equations
[Set96], FMMs have been generalized to a variety of metrics [SV03, Mir14b, Mir18,
Mir19, DCC+21].

• Multi-pass methods rely on fast sweeping [Zha05], the fast iterative method [FKW13],
or adaptive Gauss-Seidel iterations [BR06], to solve the discretized PDE. These it-
erative methods miss some of the advantages of FMMs, but also avoid the severe
constraints associated with the design of a causal scheme. This shift in compromises
enables a wider variety of numerical approaches, and thus possibly (if properly ex-
ploited) methods with narrower stencils, or addressing more complex geometries.
They are also easier to parallelize.

The second distinction is between Eulerian and semi-Lagrangian PDE discretization
schemes.

• Eulerian discretizations use finite differences (or finite elements, possibly discontin-
uous) to approximate the derivatives of the unknown arrival time function, and to
produce a consistent approximation of the eikonal PDE operator. A variety of Eule-
rian schemes have been developed, for isotropic [Set96, HF07], Riemannian [Mir19],
TTI [LBMV18], and curvature penalized [Mir18] geometry models.

• Semi-Lagrangian schemes mimic Bellman’s optimality principle at the discrete level,
which is derived from the shortest path interpretation of the solution to the eikonal
equation, see e.g. [BR06, SV03, Mir14b, Mir14a]. These methods require maintain-
ing a complex neighborhood structure around each point, and for this reason imple-
menting them on GPUs, while feasible [FKW13], is more cumbersome and usually
less efficient than for Eulerian schemes. In addition, implementing semi-Lagrangian
schemes for TTI and related models in seismology requires solving complicated al-
gebraic equations, due to the high degree of the PDEs (124) or (196), such as an
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optimization problem subject to a polynomial constraint of degree six in three vari-
ables in [DCC+21]. This has a significant computational cost and typically requires
double precision floating point arithmetic for stability.

Note that in the context of Eulerian methods, causality can be rephrased as a structural
constraint on the numerical scheme, see Definition 8.6. Only few Eulerian schemes obey
this condition beyond the standard isotropic one [Set96, Mir19, Mir18] and in particular
the discretization of the TTI eikonal PDE proposed in [LBMV18] is not causal, in con-
trast to the one presented in this paper. For comparison, causality is in the context of
semi-Lagrangian schemes is equivalent to a geometric acuteness property of the stencils
[SV03], which can be ensured by refinement in two dimensions [KS98, Mir14b], but in
three dimensions either requires a Riemannian structure [Mir14a], or poses a limit on the
strength of the anisotropy [DCC+21], or requires impractically large stencils [SV03].

Summary of contributions. We present a causal and Eulerian discretization of the
TTI eikonal PDE. Our approach is based on a new methodology, expressing the TTI
speed profile as a union or an intersection of ellipsoids, established in Theorem 8.3. The
scheme update operator is defined by a one-dimensional optimization problem, which can
be efficiently solved numerically thanks to a quasi-convexity or quasi-concavity property
established in Theorem 8.11. A proof of convergence of the scheme numerical solutions
is presented in Theorem 8.33, together with regularity and growth estimates established
using some fine properties of Selling’s decomposition, which is a tool from discrete geom-
etry involved in the scheme construction. The resulting scheme can be solved in a single
pass over the domain using a CPU solver, but a massively parallel GPU solver is also
demonstrated. Numerical experiments include a smooth synthetic test case for validating
the scheme accuracy, as well as a large realistic instance.

Paper organization. The rest of this introduction is organized as follows: we present in
Section 8.1.1 a reformulation of the TTI metric as an extremum of a family of Riemannian
metrics, we recall in Section 8.1.2 an efficient discretization of the Riemannian eikonal
PDE, and we combine in Section 8.1.3 the previous elements to obtain a discretization
of the TTI eikonal equation (124). Beyond the introduction, the rest of this paper is
organized as follows. Section 8.2 establishes the results, announced in Section 8.1.1,
relating TTI and Riemannian geometry. We prove in Section 8.3 a property of the update
operator of our scheme, announced in Section 8.1.3, which makes it numerically easy
to evaluate. We establish in Section 8.4 some regularity and growth estimates for the
scheme solutions, and prove their convergence to the viscosity solution of the PDE (124).
Numerical experiments are presented in Section 8.5. Section 8.A describes Hooke tensors,
Thomsen’s elastic parameters, and their relation to the coefficients of (124). Section 8.B
describes Selling’s decomposition, a tool from discrete geometry used in the design of our
numerical scheme in Section 8.1.3. Section 8.C discusses various heuristic enhancements
designed to improve the accuracy of the scheme solutions.

Remark 8.1 (Varying material coefficients). For readability, we present in Section 8.1.1,
Section 8.1.2 and Section 8.1.3 the construction of our numerical scheme in the setting
where the coefficients σ = (a, b, c, d, e) and the linear transformation R defining the eikonal
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PDE (124) are fixed over the domain Ω. It must be clear however that, in the intended
applications including the numerical experiments in Section 8.5, the parameters σ : Ω →
R5 and R : Ω → GL3(R) vary over the domain, and the definitions below are applied
independently at each discretization point.

Notations. We denote by CCx(X) the connected component of a point x in the topo-
logical set X. Position variables are usually named q, impulsions named p, and velocities
named v. The set of non-negative reals is denoted R+ := [0,∞[. Let 〈·, ·〉 denote the
Euclidean scalar product, | · | the Euclidean norm. S++

d stands for the set of symmetric
positive definite matrices of shape d× d, and we let ‖v‖D :=

√
〈v,Dv〉 for any D ∈ S++

d ,
v ∈ Rd.

8.1.1 The eikonal equation associated to a TTI model

We study in this subsection the algebraic structure of the TTI eikonal PDE (124): we
characterize in Theorem 8.2 a family of coefficients for which it is physically meaningful
and mathematically well posed, and we reformulate in Theorem 8.3 and Corollary 8.4
the PDE operator in a form related to the Riemannian setting that is amenable to dis-
cretization. Theorem 8.2 and Theorem 8.3 are proved in Section 8.2, and Corollary 8.4 is
established in Section 8.3.2.

Our first step is to disambiguate the PDE (124), by distinguishing the role of the inner
slowness surface. For that purpose we introduce given coefficients σ = (a, b, c, d, e) ∈ R5

the quadratic function Qσ and the set Bσ defined as follows

Qσ(r, z) := ar2 + bz2 + crz + dx+ ez, (126)
Bσ := CC0{(px, py, pz) ∈ R3;Qσ(p2

x + p2
y, p

2
z) ≤ 1}. (127)

By considering only the connected component of the origin, denoted CC0 in (127), we
obtain that ∂Bσ is the inner slowness surface defined by Qσ, as illustrated on Figure 36.
We assume that the coefficients σ are admissible in the sense of Theorem 8.2 below, in
such way that the set Bσ is compact and convex, and therefore this construction is well
posed and physically meaningful. As a result, the eikonal PDE (124) can be reformulated
in an unambiguous way

F∗σ(R∇u) = 1, where F∗σ(p) := min{ν > 0; p/ν ∈ Bσ}, (128)

with F∗σ(0) := 0 by convention. In the geophysical context, the reformulation (128) char-
acterizes the travel-time of the pressure wave (the fastest wave), and disregards the shear
wave. Note that the eikonal PDE (128) is imposed on Ω \ {q0}, similarly to (124), and is
combined with the point source constraint u(q0) = 0 and outflow boundary conditions on
∂Ω. The PDE (128) admits a unique viscosity solution [BCD08], provided7 the parame-
ters σ and R vary continuously over the domain Ω and obey the admissibility condition

7Indeed, these conditions imply that R(z)−1Bσ(z) is a convex and compact neighborhood of the origin,
depending continuously on z ∈ Ω, so that the theory of viscosity solutions for optimal control problems
is applicable.
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described below in equations (130) and (131). The solution u(q) at q ∈ Ω can be charac-
terized as the minimal path length from the source point q0, as measured by the Finsler
metric Fσ dual to F∗σ , see Remark 8.5.

A fundamental special case of TTI geometry is when the equation is derived from the
coefficients (c11, c13, c33, c44) of a Hooke tensor with the appropriate hexagonal symmetry,
see Section 8.A. In this case the eikonal equation (124) reads:

−c11c44p
4
r− c33c44p

4
z + (2c13c44 + c2

13− c11c33)p2
rp

2
z + (c11 + c44)p2

r + (c33 + c44)p2
z = 1, (129)

with p2
r := p2

x + p2
y. In other words, Qσ(p2

r, p
2
z) = 1 where the parameters σ = (a, b, c, d, e)

can be recovered by identification with (124), namely

σ = (−c11c44, −c33c44, 2c13c44 + c2
13 − c11c33, c11 + c44, c33 + c44). (130)

Our first result uses the algebraic properties of Hooke tensors and a criterion on the
coefficients to ensure that the ball Bσ is well shaped. Some limit cases are illustrated on
Figure 40.

Theorem 8.2. Define Cadm ⊂ R4 as the set of Hooke tensor coefficients c11, c13, c33, c44

obeying

c11 > c44, c33 > c44, c44 > 0, c13 + c44 > 0, c11c33 > c2
13, (131)

which is open and convex. The PDE coefficients σ ∈ R5 are said admissible if they take
the form (130) for some (c11, c13, c33, c44) ∈ Cadm, and in that case the ball Bσ is compact
and convex.

Geophysical elasticity properties are also often described through the Thomsen pa-
rameters (VP , VS, ε, δ), but this turns out to be equivalent to specifying (c11, c13, c33, c44),
with explicit conversion formulas between the parameters, see Section 8.A. We checked
that all the material elasticity parameters listed in [Tho86] obey the admissibility con-
dition. In addition, the convexity of the set Cadm means that admissibility is preserved
when one ‘interpolates’ between those materials, hence the criterion of Theorem 8.2 does
not appear to be excessively restrictive for applications in geophysics. As discussed in
Remark 8.24, the eikonal PDE (124) could be studied under weaker assumptions, but in
that case the slowness surfaces may not be separated see Figure 40, the scheme would
need to be adapted and the solution u may have lower regularity. See also Remark 8.20
on the condition c13 + c44 > 0.

In order to design our numerical scheme, we need a description of F∗σ more tractable
than (128, right). For that purpose, we consider the following set, illustrated on Figure
37

Aσ := CC0{(hr, hz) ∈ R2
+; Qσ(hr, hz) ≤ 1}, (132)

which corresponds to the change of variables hr = p2
r = p2

x + p2
y and hz = p2

z in (129). The
following result shows that Aσ is either a union or an intersection of triangular regions.

Theorem 8.3. Let σ ∈ R5 be admissible. Then there exists 0 < α∗ ≤ α∗ < 1 and
µ ∈ C∞([α∗, α

∗], ]0,∞[) such that one of the following “max” and “min” cases holds:

132



Figure 37: The set Aσ ⊂ R2
+ (resp. Bσ ⊂ R2 as defined from (pr, pz)), in yellow, is

bounded by a conic curve (resp. a quartic curve), in red. Tangent lines to ∂Aσ correspond
to tangent ellipses to ∂Bσ, in blue. If the conic curve defines a convex (resp. concave)
boundary, in case (max) see left (resp. case (min) see right) then the ellipses are exterior
(resp. interior) tangent.

(max) µ is convex, and Aσ = {(hr, hz) ∈ R2
+; ∀α ∈ [α∗, α

∗], (1− α)hr + αhz ≤ µ(α)}.

(min) µ is concave, and Aσ = {(hr, hz) ∈ R2
+; ∃α ∈ [α∗, α

∗], (1− α)hr + αhz ≤ µ(α)}.

We deduce that the TTI unit ball (127) can be obtained as a union or an intersection
of ellipsoids, depending on the alternative of Theorem 8.3 and as illustrated on Figure 36
and Figure 37 :

(max) : Bσ =
⋂

α∈[α∗,α∗]

E(α),

(min) : Bσ =
⋃

α∈[α∗,α∗]

E(α),

E(α) := {(1− α)(p2
x + p2

y) + αp2
z ≤ µ}.

The denomination (max) and (min) reflects the expression of the numerical scheme (125)
that we eventually obtain. The treatment of the (max) and (min) cases is remarkably
symmetric in the results presented below, despite some technical differences in the proof
of Corollary 8.4 and more notably in the convergence analysis of Theorem 8.33. In order
to favor a unified treatment, we thus introduce a notation “mix” which stands for either
“max” or “min”, according to the alternative in Theorem 8.3. However, because a number
of mathematical operations (such as negation or Legendre-Fenchel duality) turn a max-
imum into a minimum, and conversely, we also need to introduce a complementary mix
notation. Summarizing, we denote

Case (max): mix := max and mix := min . Case (min): mix := min and mix := max .
(133)

The proof of Theorem 8.3, presented in Section 8.2, relies on the observation that the
boundary ofAσ is defined by a portion of the conic curve Cσ := {(hz, hz) ∈ R2; Qσ(hz, hz) =
1}. The function µ and the bounds α∗ ≤ α∗ admit a simple closed form expression, es-
tablished in (167), which is welcome for implementation purposes, but is not particularly
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enlightening for the mathematical analysis. Denoting α := (1 − α, α) and rewriting the
quadratic function (126) as Qσ(p) = 〈l, p〉+ 1

2
〈p,Qp〉 one has

µ(α) = ε
√
〈α, Q−1α〉(2 + 〈l, Q−1l))− 〈α, Q−1l〉,

{α∗, α∗} = { l2 +Q12x

l1 + l2 +Q11x+Q12x
,

l2 +Q22y

l1 + l2 +Q12y +Q22y
},

where ε := sign(2 + 〈l, Q−1l〉), where x solves l1x + 1
2
Q11x

2 = 1, and l2y + 1
2
Q22y

2 = 1;
both x and y are the smallest root of their defining quadratic equation. An alternative
expression of µ applies when Q is degenerate (168), see Section 8.2.3.

As a consequence of Theorem 8.3, we obtain a new expression of the TTI eikonal equa-
tion (128) operator F∗σ(R ·) as an extremum of Riemannian norms (134). We also derive
its gradient and dual norm (135), which are involved in the shortest path interpretation
of the PDE, see Remark 8.5.

Corollary 8.4. Let σ ∈ R5 be admissible, and let R ∈ GL3(R). Denote by mix ∈
{max,min} the corresponding case of Theorem 8.3. Then for any p ∈ R3

F∗σ(Rp) = mix
α∈[α∗,α∗]

µ(α)−
1
2‖p‖D(α), where D(α) := R>

1− α
1− α

α

R. (134)

Introducing the norm F∗(p) := F∗σ(Rp), we have the following expressions of its gradient
at p 6= 0, and of the dual norm defined as F(v) := max{〈p, v〉; F∗(p) ≤ 1}

∇F∗(p) = µ(α′)−
1
2
D(α′)p

‖p‖D(α′)
, F(v) = mix

α∈[α∗,α∗]
µ(α)

1
2‖v‖D(α)−1 , (135)

where α′ in (135, left) is the optimal parameter in (134, left), and where {mix,mix} =
{min,max}.

Remark 8.5 (Shortest path interpretation of the TTI eikonal PDE). We assume in this
remark that the TTI parameters σ and R vary continuously on the PDE domain. Denote
F∗q (p) := F∗σ(q)(R(q)p) for all q ∈ Ω and p ∈ Rd, and likewise the dual norm F . Then the
unique viscosity solution to the eikonal equation (128) is the geodesic distance map from
the source point q0 [BCD08]:

u(q) = min
{

lengthF(γ); γ(0) = q0, γ(1) = q
}
, lengthF(γ) :=

∫ 1

0

Fγ(t)(γ
′(t))dt,

where the infimum is over Lipschitz paths γ : [0, 1] → Ω with the given endpoints. Con-
versely, the optimal path can be obtained from the value function by solving the backtrack-
ing ODE

γ′(t) = V (γ(t)) where V (q) := ∇F∗q (∇u(q)), (136)

backwards in time, with terminal boundary condition γ(T ) = q where T = u(q). Numeri-
cally the geodesic flow V is estimated in an upwind manner, using (135, left) and adapting
the Riemannian case presented in [MP19, Section 3.2.1].
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8.1.2 Monotony, causality, and the fast marching algorithm

We recall in this subsection the concept of finite difference scheme F, and two key struc-
tural properties known as discrete degenerate ellipticity8 (DDE) and causality that enable
a stable and fast numerical solution, see Definition 8.6. We also introduce Selling’s matrix
decomposition, see Proposition 8.7, a tool from the field of discrete geometry previously
used for the discretization of the Riemannian eikonal PDE [Mir19].

Definition 8.6. Let X,X be finite sets with X ⊂ X. Consider a finite difference scheme
F on X taking the form

Fu(q) := F̂(q, [u(q)− u(r)]r∈X), (137)

where q ∈ X, u ∈ RX , and F̂ : X × RX → R is continuous. The scheme F is said:

• Discrete Degenerate Elliptic (DDE), if F̂ is non-decreasing w.r.t. its second argu-
ment.

• Causal, if F̂ only depends on the positive part of its second argument.

The DDE property implies a comparison principle for the equation Fu = 1, and thus
plays a key role in ensuring the stability and convergence of the scheme solutions, following
techniques introduced in [Obe06]. Causality, on the other hand, enables the Fast Marching
Method (FMM) to solve the system Fu = 1; this property was initially used in [Set96], and
formalized as above in [Mir19]. These consequences are summarized in [Mir19, Theorem
2.3], and also discussed here in Section 8.4.3. Our GPU massively parallel solver, on the
other hand, is based on a variant of the fast iterative method [JW08], which requires the
DDE property but not causality, although it benefits from it.

In order to fully determine the solution, the scheme F is complemented with Dirichlet
boundary conditions, of the form u = ψ on the discrete boundary ∂X := X \ X, where
ψ : ∂X → R is given data. The description of the FMM solver Algorithm 5 involves two
additional objects derived from the scheme F: an update operator Λ defined implicitly,
used to reformulate the system of equations Fu = 1 into the fixed point problem Λu = u,
and a stencil V which describes the scheme local dependency structure, used to guide the
update order. For each q ∈ X and u ∈ RX , the update operator value Λu(x) = λ ∈ R is
defined by the equation

F̂(q, [λ− u(r)]r∈X) = 1. (138)

Note that (138, l.h.s.) is a non-decreasing function of λ under the DDE property. In the
applications of interest, one easily checks that (138) admits a unique solution, as discussed
below in our case, so that the update operator Λ is well defined. On the other hand, for
each q ∈ X, the stencil V(q) ⊂ X is defined as the collection of neighbors r such that the
expression of Fu(q) depends on u(r).

In the following, we fix a grid scale h > 0 for the discretization of the PDE domain Ω,
and we assume w.l.o.g. that the source point is q0 = 0. Consistently with the addressed
problem (128), we can assume that

Ωh := Ω ∩ hZd, X := Ωh \ {q0}, ∂X := {q0},
8This terminology is closely related to monotony, but more precise in our context.
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with boundary data u(q0) = ψ(q0) = 0. Note that alternative boundary conditions
may be considered, such as the null Dirichlet boundary conditions on ∂Ω used in the
convergence analysis Section 8.4 for simplicity. We reproduce in the rest of this section a
DDE and causal scheme for Riemannian eikonal equations originally presented in [Mir19],
which acts as a building block for the construction of our scheme in Section 8.1.3 in
combination with the PDE operator description (134). For that purpose, we introduce a
tool from lattice geometry, known as Selling’s decomposition of positive quadratic forms
[Sel74, CS92], which is particularly convenient for the design of DDE discretizations of
non-linear and anisotropic PDEs on Cartesian grids, both of first [Mir18, Mir19] and
second order [FM14, BBM20]. We gather in the next result two properties of Selling’s
decomposition that are useful for our scheme, consistency (139) and piecewise linearity
(140), and we refer to Section 8.B for the proof and for a more constructive and detailed
presentation. A function is said affine if it is the sum of a constant and of a linear map.

Proposition 8.7 (Selling’s decomposition). Let D ∈ S++
d , where d ∈ {2, 3}. Then

Selling’s decomposition defines weights ρi ≥ 0, and offsets ei ∈ Zd \ {0}, where 1 ≤ i ≤
I = d(d+ 1)/2, such that

D =
∑

1≤i≤I

ρieie
>
i . (139)

In addition, assume that D(α) ∈ S++
d depends in an affine manner of a parameter α ∈

[α∗, α
∗], and let (ρi(α), ei)

I
i=1 be the weights and offsets of Selling’s decomposition9. Then

there exists α∗ = α0 < · · · < αK = α∗, such that for all 0 ≤ k < K and all 1 ≤ i ≤ I,

ρi(α) is affine as α ∈ [αk, αk+1]. (140)

If D is a diagonal matrix, then Selling’s decomposition (139) is particularly simple:
ρ1, · · · , ρd are the diagonal coefficients, ρd+1 = · · · = ρI = 0, and e1, · · · , ed is the canoni-
cal basis of Rd. In contrast, if D is not diagonal, then Selling’s decomposition differs for
the eigenvalue-eigenvector decomposition, and crucially it only involves offsets (ei)

I
i=1 with

integer coordinates. The piecewise linearity of Selling’s decomposition is used in Theorem
8.11 below to establish that the numerical scheme proposed in this paper benefits from
a property, known as quasi-convexity or quasi-concavity, which allows to evaluate it effi-
ciently numerically.

We devote the rest of this subsection to the description and analysis of a discretization
scheme denoted FD for the Riemannian eikonal equation [Mir19], which generalizes the
classical isotropic fast marching scheme [Set96] using Selling’s decomposition. Given
D ∈ S++

d , and u : Ωh → R, q ∈ Ωh \ {q0}, we define

FDu(q) :=
∑

1≤i≤I

ρi max
{

0,
u(q)− u(q + hei)

h
,
u(q)− u(q − hei)

h

}2 (141)

where D =
∑I

i=1 ρieie
>
i is Selling’s decomposition. Since the offsets ei have integer coordi-

nates, the scheme FD only involves values of the unknown u on the Cartesian discretization
9Here I is arbitrary. Yet for each α ∈ [α∗, α

∗], at most d(d+ 1)/2 of the weights ρi(α), 1 ≤ i ≤ I, are
positive.
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Figure 38: (Left) To each point (x, y) of the open unit disk (blue boundary), we attach the
Pauli matrix D =

(
1 + x y
y 1− x

)
∈ S++

2 , and show the ellipse {p ∈ R2; 〈p,D(x, y)p〉 = 1}.
(Center) Offsets ±ei, 1 ≤ i ≤ 3, of Selling’s decomposition (139) of the matrix D(x, y).
(Right) Coefficients and offsets of Selling’s decomposition of (1−α)D0+αD1, as α ∈ [0, 1],
where D0, D1 ∈ S++

2 are randomly chosen. The coefficient associated to a given offset is
piecewise affine (140).

grid: q + εhei ∈ hZd for all 1 ≤ i ≤ I and ε ∈ {−1, 1}. By convention, the terms as-
sociated to points q + εhei /∈ Ωh are discarded10, which implements outflow boundary
conditions. The scheme stencil

VD(q) := {q + εhei; 1 ≤ i ≤ I, ρi > 0, ε = ±1} ∩ Ωh,

is reasonably small since ‖ei‖ ≤ C
√
‖D‖‖D−1‖, by Proposition 8.47 (Offset bounded-

ness).
The DDE property of the scheme FD follows from the non-negativity of the weights

(ρi)
I
i=1, and the observation that s ∈ R 7→ max{0, s}2 is non-decreasing. Causality holds

as well, since by construction FDu(q) only depends on the positive part of the finite dif-
ferences u(q)− u(r), where r ∈ VD(q). Observing that (141) defines a strictly increasing
function of u(q) over the interval [umin,+∞[, where umin := min{u(r); r ∈ V(q)}, we ob-
tain that the corresponding update operator ΛD is uniquely defined by (138). It practice,
solving (138) amounts to computing the roots of I univariate quadratic equations, see
[MGB+21].

Finally, recalling that D :=
∑I

i=1 ρieie
>
i , we obtain for smooth u the consistency

relation

‖∇u(q)‖2
D =

∑
1≤i≤I

ρi〈∇u, ei〉2 =
∑

1≤i≤I

ρi max{0, 〈∇u, ei〉,−〈∇u, ei〉}2 = FDu(q) +O(hr),

(142)

with r = 1 for the straightforward implementation (141). Some scheme modifications im-
prove its accuracy, such as source factorization [LQ12], multiscale computation [WFNBZ20],
and second order finite differences [Set99] which yield r = 2. However they break the DDE
and causality properties, hence must be used carefully, see Section 8.C.

10Formally, we use the boundary condition u = +∞ on hZd \ Ωh.
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Algorithm 5 The Fast Marching algorithm, solving Fu = 1 for a DDE and causal scheme
F.
Input: The update operator Λ and stencils V associated to F. Boundary conditions ψ.
Initialize: u = +∞ on the domain X, and u = ψ on ∂X. Tag all points as
non-accepted.
While a non-accepted point remains: 1.
Denote by q ∈ X the non-accepted point minimizing u(q). 2.
Tag q as accepted. (And optionally, for e.g. higher order methods: PostProcess(q) ).3.
For each non-accepted point r ∈ X such that q ∈ V(r): 4.
u(r)← Λ̃u(r) (modified operator using only the values from accepted points). 5.

8.1.3 Discretization scheme for the TTI model

We combine the description of the TTI norm as an extremum of Riemannian norms
(134), with the Riemannian scheme (141), to obtain a DDE and causal discretization of
the TTI eikonal PDE. We then discuss its efficient numerical implementation, and the
convergence of its solutions as the grid scale h > 0 is refined. Specifically, and consistently
with (125), define for any u : Ωh → R and any q ∈ Ωh, where Ωh := Ω∩hZd is a Cartesian
discretization grid

Fu(q) := mix
α∈[α∗,α∗]

Fαu(q), where Fα :=
1

µ(α)
FD(α). (143)

We used the notations 0 < α∗ ≤ α∗ < 1 and µ(α) > 0 from Theorem 8.3, the matrix
D(α) and extremum operator mix ∈ {min,max} from (134), and the Riemannian scheme
FD defined in (141). For sufficiently smooth u one has

Fσ(R∇u(q))2 = mix
α∈[α∗,α∗]

1

µ(α)
‖∇u(q)‖2

D(α) = Fu(q) +O(hr), (144)

using the consistency relation in the Riemannian case (142), with the same order r ∈
{1, 2}, and the expression of the TTI norm (134).

The proposed scheme F for the TTI eikonal PDE is defined as the maximum or min-
imum of the infinite family of schemes FD(α), α ∈ [α∗, α

∗], hence inherits their DDE and
causality properties as shown in Proposition 8.8 below. The existence and uniqueness of
the scheme solutions, and their convergence as h → 0 to the viscosity solution of (128),
can then be established following a common scheme of proof, see Theorem 8.33 below.
In a similar fashion, a DDE scheme for the second order fully non-linear Monge-Ampere
[BM21] and Pucci [BBM20] PDEs, in two dimensions, is obtained as the maximum of
an infinite family of linear schemes. In the same spirit again, and in the context of fast
marching methods, multi-stencil schemes [HF07] are defined as the maximum of a finite
number of discretizations of the eikonal equation (with identical anisotropy, unlike here).
Note however that considering the minimum of several schemes, as we do in (143) for
case (min) of Theorem 8.3, is uncommon and leads to a few additional difficulties in the
analysis in comparison with the (max) case, see Section 8.4.
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Proposition 8.8. Let A be a compact set and let Fα, for each α ∈ A, be a finite difference
scheme on a finite set X, depending continuously on the parameter α. Define

Fu(q) := max
α∈A

Fαu(q)
(
resp. Fu(q) := min

α∈A
Fαu(q)

)
for all u ∈ RX and all q ∈ X. If Fα is DDE (resp. causal) for all α ∈ A, then so is F.
Furthermore, denoting by Λα the update operator for Fα (which is assumed to exist and
to depend continuously on α ∈ A), one has

Λu(q) = min
α∈A

Λαu(q)
(
resp. Λu(q) = max

α∈A
Λαu(q)

)
. (145)

Proof. A maximum or a minimum over a compact set of a continuously depending family
of functions which are continuous (resp. non-decreasing) (resp. depend only on the positive
part of their arguments), clearly obeys the same property. The first claim follows.

We focus on (145, left) since the other case is proved similarly, and denote λ∗ :=
minα∈A Λαu(q). If λ < λ∗, then F̂α(q, [λ − u(r)]r∈X) < 0 for all α ∈ A by the DDE
property, hence maxα∈A F̂

α(q, [λ− u(r)]r∈X) < 0 by compactness. If λ > λ∗ on the other
hand, then maxα∈A F̂

α(q, [λ − u(r)]r∈X) > 0 by definition. Thus, by continuity, λ∗ is the
unique solution to F̂(q, [λ− u(r)]r∈X), hence λ∗ = Λu(q) as announced.

Proposition 8.8 immediately implies that the TTI scheme (143) is DDE and causal,
and thus solvable using the FMM Algorithm 5. The numerical implementation how-
ever requires to efficiently evaluate the update operator Λ associated with the scheme,
which is defined as an extremum (145) over a continuous set of parameters A = [α∗, α

∗].
We compare in the following two strategies for solving this optimization problem, used
respectively in our GPU and CPU eikonal solver.

Optimization by grid search. In this approach, the maximization or minimization
problem (143) over [α∗, α

∗], is approximated using an exhaustive search over a regular
sampling of this real interval with K + 1 elements, where the integer K ≥ 1 is fixed by
the user. More explicitly, we introduce the scheme FK and update operator ΛK defined
as

FKu(q) := mix
0≤k≤K

Fαku(q), ΛKu(q) := mix
0≤k≤K

Fαku(q), with αk := (1− k

K
)α∗ +

k

K
α∗,

(146)

following the notations of (143). In particular mix ∈ {max,min} is the suitable extremum,
and mix ∈ {min,max} is the opposite extremum, following (133) and Proposition 8.8.
The use of an equispaced sampling of parameters α0 ≤ · · · ≤ αK in the interval [α∗, α

∗] is
quasi-optimal for consistency, see Proposition 8.9, and corresponds to an envelope of the
TTI slowness surface by a family of ellipses with regularly varying aspect ratios, which is
visually pleasing, see Figure 36 and Figure 40.

The eikonal solvers [MP19, MGB+21], originally limited to K = 2 and to the (max)
case, are easily adapted to address the scheme FK , using an exhaustive search over 0 ≤ k ≤
K to evaluate the update operator ΛK . This approach is well suited to massively parallel
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accelerators such as GPUs, since those have (i) enough horsepower to accommodate the
computational cost of exhaustive search, and (ii) a SIMT11 architecture that is not well
suited to the multiple conditional branchings found in more sophisticated optimization
procedures.

Proposition 8.9. For smooth u, one has FKu(q) = Fu(q) +O(hr +K−2).

Proof. By the consistency relation in the Riemannian case (142),

mix
0≤k≤K

g(αk) = FKu(q) +O(hr), where g(α) :=
1

µ(α)
‖∇u(q)‖2

D(α). (147)

The function g : [α∗, α
∗] → R is smooth by (134) and Theorem 8.3. Since α0 = α∗,

αK = α∗, and αk+1 − αk = (α∗ − α∗)/K = O(1/K) for all 0 ≤ k < K, one has
mix{g(αk); 0 ≤ k ≤ K} = mix{g(α);α ∈ [α∗, α

∗]} + O(1/K2). From this point, the
announced result follows from (144).

For numerical efficiency, one usually balances the errors O(hr + K−2) associated to
the discretization scale h and to the consistency of the operator approximation with K
terms. This suggests the parameter choice K ≈ h−

1
2 with a first order scheme (r = 1), and

K ≈ h−1 with a second order scheme (r = 2). For instance, in the synthetic numerical
experiment presented on Figure 45, the TTI scheme needs to be defined as the extremum
of K + 1 = 26 Riemannian schemes to ensure good accuracy. In the second order case,
the evaluation cost of the update operator (146) thus becomes non-negligible, and for this
reason an optimization procedure more efficient than exhaustive search is described in the
next paragraph.

Quasi-convex optimization. This approach relies on a fine property of Selling’s ma-
trix decomposition, namely the piecewise linearity of its coefficients (140) established in
Proposition 8.7, which is used in this paper for the first time in the discretization of a
three dimensional PDE. The same property is exploited in [BM21, BBM20] to obtain a
DDE, second order consistent, and numerically efficient scheme for the Pucci and Monge-
Ampere PDEs in two dimensions. In those previous works, the non-linear PDE operator
can be expressed as the maximum of an infinite family of linear operators, each discretized
using Selling’s decomposition, in a spirit similar to (143); a closed form expression is then
obtained using the piecewise linear property of Selling’s decomposition. We do not obtain
such a closed form here, but nevertheless we derive a property known as quasi-convexity,
allowing for an efficient implementation.

Definition 8.10. A function f : A→ R, where A is a convex subset of a vector space, is
said quasi-convex if for each λ ∈ R the set {x ∈ I; f(x) ≤ λ} is convex.

By construction, the set of minimizers of a quasi-convex function is convex, and in
particular there is at most one isolated local minimum. If A = [a, b] is a segment of R,
as in our application, and if f is continuous and quasi-convex, then the classical golden
search method [PTVF07, Section 10.2] produces an interval of length (b−a)φN containing

11Single instruction multiple threads
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Figure 39: Mapping α ∈ [α∗, α
∗] 7→ f(α) := Λαu(q) obtained for some TTI parameters

σ, R, a point q ∈ hZd, and an arbitrary mapping u : Ωh → R. The vertical red lines
correspond to the abcissas α0 ≤ · · · ≤ αK of Proposition 8.7, here with K = 3. Left
(resp. Right) subfigure illustrates case (max) (resp. case (min)), where by Theorem 8.11
the function f is quasi-convex (resp. quasi-concave) on each sub-interval [αk, αk+1], 0 ≤
k ≤ K, and must be minimized (resp. maximized).

its minimizer using N + 1 evaluations of f , where φ−1 = 1+
√

5
2

is the golden ratio. This is
considerably more efficient than optimization by grid search, considered previously, which
only yields an interval of length 2(b− a)/N for the same numerical cost. A function f is
said quasi-concave if −f is convex, and in that case by the previous discussion it can be
efficiently maximized numerically.

Theorem 8.11. Let α∗ ≤ α0 ≤ · · ·αK = α∗ be such that Selling’s decomposition of the
matrix D(α), see (134, right), is piecewise linear on each interval [αk, αk+1], 0 ≤ k < K,
in the sense of (140). Fix u : Ωh → R, q ∈ Ωh and define f(α) := Λαu(q) for all
α ∈ [α∗, α

∗]. Then the following alternative holds, whose cases match those of Theorem
8.3

(max) f is quasi-convex on each interval [αk, αk+1], 0 ≤ k < K.

(min) f is quasi-concave on each interval [αk, αk+1], 0 ≤ k < K.

This result allows to extremize the function f(α) := Λαu(q) over the interval [α∗, α
∗]

in a numerically efficient manner, and thus to evaluate the update operator (145). A
possible allure of f is illustrated on Figure 39.

8.1.4 Summary of the numerical method

This paper defines a numerical method designed to solve the eikonal equation in a geo-
logical medium with a TTI Hooke tensor. We present a summary of each of its steps.
The computer code which implements the method in this study can also be found at:
https://github.com/Mirebeau, with illustrative Python Notebooks.

Numerical solver. We consider the numerical scheme defined in (134) to solve the
eikonal equation for a TTI metric. First, we need to determine if we are in the
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(max) or (min) case. A criterion is presented in (163), by computing the sign of
det(∇Q(p∗),∇Q(p∗)). Explicit formulas for the computation of the bounds α∗, α∗ from
∇Q(p∗) are also presented in Corollary (8.28) and Corollary (8.29), and for the parameter
µ(α) in (168).

Computation of the maximum or minimum. The computation of (134) for all
α ∈ [α∗, α

∗] leads to an envelope by ellipses (either by the outside or from the outside) of
the P-slowness surface, see Figure 36: each α ∈ [α∗, α

∗] corresponds to a tangent lines to
∂Aσ (and a tangent ellipse to ∂Bσ), as represented in Figure 37.

In Figure 39, we present an example of the minimum and the maximum on α ∈ [α∗, α
∗]

that we need to compute for the update operator. We consider two possibilities to compute
this optimum:

• Quasi-convex optimization, see Theorem 8.11: from studying the stencils required in
the numerical scheme based on the Eulerian scheme, we prove that the optimization
problem can be divided into a finite number of intervals with at most one optimum
in each interval. Therefore, a Newton-like search algorithm is possible in each of
these intervals. An illustration is presented in Figure 39, with the red vertical lines
indicating the different intervals.

• Optimization by grid-search, see (146): we can also consider the optimum over k el-
lipses only. This method is much less precise compared with the previous algorithm,
but can be done much faster, with a GPU implementation.

8.2 Properties and guarantees of TTI models

This section is devoted to the proof of the results announced in Section 8.1.1. We introduce
in Section 8.2.1 several properties of Hooke tensors, known as ellipticity, positivity and
separability, and relate them with the admissibility conditions (131) of the TTI parameters
σ. We establish in Section 8.2.2 that the TTI unit ball Bσ is convex and compact, thus
concluding the proof of Theorem 8.2. We prove Theorem 8.3 in Section 8.2.3, where we
also derive the closed form expression of the weight function µ : [α∗, α

∗]→]0,∞[.

Notations. The TTI parameters σ ∈ R5 are regarded as fixed throughout this section,
and thus for readability the sets Aσ,Bσ, Cσ,Qσ introduced in Section 8.1.1 are simply
denoted A,B, C,Q. The symbol ∝ denotes positive proportionality, i.e. v ∝ w iff v = λw
for some λ > 0.

8.2.1 Admissible coefficients, and properties of Hooke tensors

We relate the TTI eikonal PDE with a two-dimensional Hooke tensor (151), and investi-
gate its algebraic properties as a preliminary step to Theorem 8.2. See Section 8.A and
references therein for a more physically oriented discussion of these elasticity parameters.
A Hooke tensor is a 4-th order tensor, c = (cijkl) where i, j, k, l ∈ {1, · · · , d} in dimension
d, which characterizes the anisotropy properties of a linear elastic material, hence also
the propagation speed of elastic waves through it (196). Hooke tensors are subject to
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the major and minor symmetry relations cijkl = cjikl = cklij, and for this reason a Hooke
tensor c can be represented compactly as a symmetric matrix C of shape 3 × 3 if d = 2
(resp. 6× 6 if d = 3) using Voigt’s matrix of indices denoted v:

cijkl := Cvijvkl where v =

(
1 3
3 2

) (
resp. v =

1 6 5
6 2 4
5 4 3

). (148)

Following [BST83] we recall the notion of a positive or elliptic Hooke tensor in Definition
8.12, and the relation between these properties in Lemma 8.13.

Definition 8.12. A Hooke tensor c is said strictly positive (resp. strictly elliptic) if∑
i,j,k,l

cijklmijmkl > 0
(
resp.

∑
i,j,k,l

cijkl pi qj pk ql > 0
)
, (149)

for all m ∈ Sd \{0} (resp. p, q ∈ Rd \{0}), where the sums implicitly range over i, j, k, l ∈
{1, · · · , d}.

In order to describe further properties of Hooke tensors, we introduce for all p ∈ Rd a
symmetric matrix c(p) ∈ Sd defined as follows: for all j, l ∈ {1, · · · , d}

c(p)jl :=
∑

i,k∈{1,··· ,d}

cijkl pi pk, thus 〈q, c(p)q〉 =
∑
i,j,k,l

cijkl pi qj pk ql. (150)

The following lemma rephrases the positivity and ellipticity properties of Hooke tensors
in terms of usual matrix positive definiteness.

Lemma 8.13. A Hooke tensor c is strictly positive iff C ∈ S++
D with D = d(d + 1)/2,

where C is defined by Voigt’s notation (148). It is strictly elliptic iff c(p) ∈ S++
d for all

p 6= 0. Strict positivity implies strict ellipticity.

Proof. By definition (149, left) a Hooke tensor is strictly positive iff it defines a positive
definite quadratic form over the space Sd of d×d symmetric matrices, which has dimension
D. Noting that C is the matrix of this quadratic form, in the basis E11, E22, (E12 +E21)/2
if d = 2 where Eij is the null matrix except for a single coefficient 1 at position (i, j), and
likewise in the case d = 3, we establish the first point. On the other hand, the definition
(149, right) of ellipticity can be rephrased using the identity (150, right) as 〈q, c(p)q〉 > 0
for all p, q 6= 0, in other words c(p) ∈ S++

d for all p 6= 0, as announced. Finally, given a
strictly positive Hooke tensor and p, q ∈ Rd \ {0}, define m ∈ Sd by mij = piqj + qjpi,
equivalently m = pq> + qp>, and note that Tr(m2) = 2(〈p, q〉2 + ‖p‖2‖q‖2) > 0. Thus
m 6= 0 and therefore 0 <

∑
i,j,k,l cijklmijmkl = 4

∑
i,j,k,l cijklpiqjpkql, showing that c is

strictly elliptic as announced.

We introduce in Definition 8.14 a non-degeneracy property of Hooke tensors referred
to as separability [DCC+21]. This property ensures that the slowness surfaces of the
pressure and shear waves are topologically separated from each other, see Figure 36 and
Figure 37 for examples and Figure 40 for counter-examples.
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Definition 8.14. A Hooke tensor c is said separable iff the largest eigenvalue of c(p) has
multiplicity one, for all p ∈ Rd \ {0}.

In the rest of this section, we limit our attention to the following two dimensional
Hooke tensor, whose coefficients are assumed to belong to the admissible set Cadm, and
are related to the TTI coefficients σ by (130):

c :=

c11 c13 0
c13 c33 0
0 0 c44

 ,


c11 > c44, c33 > c44,

c44 > 0, c13 + c44 > 0,

c11c33 > c2
13.

(151)

We establish in Proposition 8.15 that c is strictly positive, hence strictly elliptic by Lemma
8.13. We also prove that admissible coefficients form a convex set, as announced in
Theorem 8.2.

Proposition 8.15. The following sets of coefficients (c11, c13, c33, c44) ∈ R4 are open and
convex:

C1
adm := {c11 > 0, c33 > 0, c11c33 > c2

13, c44 > 0},
C2

adm := {c11 > c44, c33 > c44, c13 > −c44},

thus also their intersection Cadm = C1
adm ∩ C2

adm. In addition the Hooke tensor c defined
by (151, left) is strictly positive for any (c11, c13, c33, c44) ∈ C1

adm ⊃ Cadm.

Proof. The openness properties follow from the definition of C1
adm and C2

adm by strict
inequalities. Recall that [c11 > 0, c33 > 0 and c11c33 > c2

13] iff
(
c11 c13
c13 c33

)
∈ S++

2 . Thus C1
adm

characterizes the positive definiteness of the block matrix (151, left), as announced. This
also shows that C1

adm is in linear bijection with S++
2 ×]0,∞[, hence is a convex set. The

set C2
adm is convex since it is defined by linear inequalities.

The rest of this subsection is devoted to the proof that c is separable, which is concluded
in Corollary 8.19. For that purpose, we introduce the quadratic function F : R2 → R
defined as

F (x, z) := 1+c11c44x
2+c33c44z

2−(2c13c44+c2
13−c11c33)xz−(c11+c44)x−(c33+c44)z. (152)

The next identity (153, left) relates the function F with the Hooke tensor c, whereas
(153, right) links it with the TTI eikonal equation (128). For all p = (px, pz) ∈ R2 and all
x, z ∈ R

det(c(p)− Id) = F (p2
x, p

2
z), F (x, z) = 1−Q(x, z). (153)

Note that the quadratic function Q defined in (126) is based on the admissible coefficients
(130).

Remark 8.16 (Validation of the polynomial identities). Checking polynomial identi-
ties such as (153) by hand is simultaneously trivial, tedious, and error prone. For this
reason, a companion notebook is provided containing those verifications in the Wolfram
Mathematica® language.
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Proposition 8.18 below, which is the most technical result of this subsection, establishes
that the function F vanishes exactly twice in each direction of the positive quadrant. In
the following, the letter r is used to denote a radius in the two-dimensional (x, z) plane.
This usage is distinct from the three dimensional cylindrical coordinates considered in
Section 8.1.

Lemma 8.17. Define the polynomial P (r) := ar2 + br+ c, for all r ∈ R. If a > 0, b < 0,
c > 0, and the discriminant ∆ := b2−4ac > 0 is positive, then P has two distinct positive
roots.

Proof. Noting that 0 < ∆ < b2 we obtain
√

∆ < |b| = −b, and thus (−b ±
√

∆)/(2a) >
0.

Proposition 8.18. For any θ ∈ [0, π/2], the quadratic polynomial r ∈ R 7→ F (r cos θ,
r sin θ) has two distinct positive roots. Denoting by R(θ) the smallest root, one has R ∈
C∞([0, π/2], ]0,∞[).

Proof. By symmetry, we may assume that 0 ≤ θ < π/2. Using the change of variables
r′ = r/ cos θ, and denoting α := tan θ ≥ 0, we can limit our attention to the following
polynomial:

Fα(r) := F (r, αr) =

1 + r2(c11c44 + α2c33c44 − 2αc13c44 − αc2
13 + αc11c33)− r(c11 + c44 + αc33 + αc44).

One has Fα(0) = 1 > 0 and F ′α(0) = −(c11 + c44 + αc33 + αc44) < 0. The coefficient of r2

in Fα(r) reads
c44(c11 + α2c33 − 2αc13) + α(c11c33 − c2

13)

which is positive, by the admissibility conditions c44 > 0 and c11c33 > c2
13. Indeed one has

(c11 + α2c33)/2 ≥
√
c11α2c33 ≥ α|c13|, by the arithmetic geometric mean inequality. The

discriminant of Fα(r) reads (after suitably grouping the terms)

∆(α) = α2(c33 − c44)2 + (c11 − c44)2 + 2αc∗,

c∗ := 2c2
13 − c11c33 + c44(c11 + 4c13 + c33 + c44).

Distinguishing two cases, depending on the sign of c∗, we establish below that ∆(α) > 0.

• Case c∗ ≥ 0. Then ∆(α) ≥ (c11 − c44)2 > 0 for any α ≥ 0, as announced.

• Case c∗ < 0. Then we consider the discriminant of the polynomial α 7→ ∆(α), which
reads

16× (c13 + c44)2(c∗ − (c13 + c44)2) (154)

(after factorization), and is thus negative since c13 +c44 > 0 by admissibility. There-
fore ∆(α) 6= 0 for all α ∈ R, and thus ∆(α) has the same sign as ∆(0) = (c11−c44)2 >
0.

By Lemma 8.17, the polynomial Fα admits two positive roots, as announced. Finally
we note that the smallest root (−b −

√
∆)/(2a) of a polynomial of degree two P (r) =

a+br+cr2 is a smooth function of its coefficients so long as the discriminant ∆ = b2−4ac
and the dominant coefficient a remain positive. By composition the smallest root of Fα
depends smoothly on α ∈ [0,∞[, which concludes.
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Corollary 8.19. The Hooke tensor c is separable.

Proof. Fix an arbitrary p = (px, pz) ∈ R2 \ {0}. Then for any r > 0, one has

F (rp2
x, rp

2
z) = det(c(

√
rp)− Id) = det(rc(p)− Id) = r2 det(c(p)− r−1 Id). (155)

By Proposition 8.18, the polynomial r 7→ F (rp2
x, rp

2
z) admits two positive roots 0 <

r1 < r2, and thus the matrix c(p) admits two positive eigenvalues 0 < r−1
2 < r−1

1 , which
concludes.

Remark 8.20 (The condition c13+c44 > 0). Consider a material obeying the admissibility
conditions Cadm, except that c13 + c44 < 0 rather than the opposite. Define c′13 := −c13 −
2c44, in such way that c′13 + c44 = −(c13 + c44) > 0.

The modified Hooke tensor coefficients (c11, c
′
13, c33, c44) yield the same eikonal PDE as

(c11, c13, c33, c44), since c2
13 + 2c13c44 − c11c33 = (c13 + c44)2 − c2

44 − c11c33 only depends on
(c13 + c44)2 and the other terms of (129) are independent of c13. The modified coefficients
also meet the totality of the admissibility conditions (131), noting that c′213 = c2

13+4c44(c44+
c13) ≤ c2

13.
On the positive side, this discussion shows that our numerical method can handle

(hypothetical) materials such that c13 + c44 < 0, through modified coefficients. On the
negative side, this phenomenon illustrates an invariance of the TTI eikonal PDE, which
therefore cannot be used to reconstruct the sign of c13 + c44 in a tomography context.

In the degenerate case where c13 + c44 = 0, the eikonal equation factors as F (x, z) =
(1− c44x− c33z)(1− c11x− c44z). Subject to the other admissibility conditions, the conic
C is then a union of two lines intersecting at the point (c33 − c44, c11 − c44)/(c11c33 − c2

13)
of the positive quadrant, as illustrated on Figure 40 (right).

8.2.2 Region delimited by a conic

In this section we conclude the proof of Theorem 8.2, which describes the shape of slowness
profile B of the pressure waves, see Corollary 8.23. The ellipticity and separability of
Hooke tensors defining TTI models, established in Section 8.2.1, are the key ingredient of
the first result Proposition 8.21. In this section, we assume that (c11, c13, c33, c44) ∈ Cadm

are admissible TTI parameters, see Theorem 8.2, and that c and σ are the corresponding
Hooke tensor (151) and coefficients (130) of the eikonal equation. The quadratic form
Q = Qσ and set B = Bσ are defined in (127). The regions A, B, and conic C are
illustrated on Figure 41.

Proposition 8.21. The set B′ := CC0{(px, pz) ∈ R2; Q(p2
x, p

2
z) ≤ 1} is compact and

convex.

Proof. Define Nc(p) :=
√
|||c(p)||| for all p ∈ R2, where |||m||| denotes the spectral norm of

a matrix m, which is also the largest eigenvalue if m ∈ S++
2 . Since c is a strictly elliptic

Hooke tensor, as shown in Proposition 8.15, the function Nc defines a norm over R2, by
[DCC+21, Theorem 3.3]. As a result, the set Bc := {p ∈ R2; Nc(p) ≤ 1} is compact and
convex.

Since c is separable, as shown in Corollary 8.19, one has Bc = CC0{p ∈ R2; det(c(p)−
Id) ≥ 0}, by [DCC+21, Proposition 3.7]. Recalling the identity (153) we conclude the
proof.
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We present in Lemma 8.22 a simple criterion for the convexity of axisymmetric sets,
which is applied to the slowness profile B in Corollary 8.23, thus concluding the proof of
Theorem 8.2.

Lemma 8.22. Let E,F be normed vector spaces, and let K ⊂ R×F be convex and such
that (−s, z) ∈ K for all (s, z) ∈ K. Then {(x, z) ∈ E × F ; (|x|, z) ∈ K} is convex.

Proof. Let (x1, z1), (x2, z2) ∈ E × F , and let t ∈]0, 1[. Define

s :=
|(1− t)x1 + tx2|

(1− t)|x1|+ t|x2|
∈ [0, 1],

α = (1− t)1 + s

2
, β = (1− t)1− s

2
, γ = t

1 + s

2
, δ = t

1− s
2

,

choosing s ∈ [0, 1] arbitrarily if |x1| = |x2| = 0. Then α, β, γ, δ ≥ 0, α + β + γ + δ = 1,
and(
|(1− t)x1 + tx2|, (1− t)z1 + tz2

)
= α(|x1|, z1) + β(−|x1|, z1) + γ(|x2|, z2) + δ(−|x2|, z2),

which establishes the announced convexity property.

Corollary 8.23. The set B := CC0{(px, py, pz); Q(p2
x + p2

y, p
2
z) ≤ 1} is compact and

convex.

Proof. The closedness and boundedness of B, hence compactness, follow immediately from
the same properties of B′, established in Proposition 8.21. Convexity follows from Lemma
8.22 applied to the set K = B′ from Proposition 8.21, choosing E = R2 equipped with
the Euclidean norm, and F = R.

Remark 8.24 (Positivity without separability). If one weakens the admissibility condition
for the TTI coefficients (131), assuming only that (c11, c13, c33, c44) ∈ C1

adm, see Proposition
8.15, then the Hooke tensor (151, left) remains positive but may not be separable. As a
result, the P and SH slowness surfaces may intersect each other, see Figure 40. Under
these weaker assumptions, the open TTI unit ball CC0{(px, py, pz) ∈ R3; Qσ(p2

x+p2
y, p

2
z) <

1} is bounded and convex but may have a non-smooth boundary, and likewise the solution
u of the eikonal PDE (128) has lower regularity. Since no common geophysical material
appears to fail the stronger Cadm conditions, see Section 8.A, we limit our attention to
those, eliminating a few mathematical technicalities in the process.

The rest of this section is a preparation for the proof of Theorem 8.3, achieved in
Section 8.2.3. In particular, the alternative between the (max) and (min) cases arises
in Corollary 8.26 from the fact that a (connected component of a non-degenerate) conic
curve has no inflexion point, and therefore has a convex side and concave side. We recall
from Section 8.1.1 that

A := CC0{(x, z) ∈ R2
+; Q(x, z) ≤ 1}, C := {(x, z) ∈ R2;Q(x, z) = 1}. (156)

The set C is a conic, in other words an algebraic set of degree two - which can thus be
an ellipse, a hyperbola, a parabola, the union of two lines, etc, depending on the choice
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Figure 40: Examples where coefficients (c11, c13, c33, c44) fail the admissibility conditions
in such way that the Hooke elasticity tensor remains positive, but is not separable. As
a result the inner slowness surface, associated with pressure waves, is non-smooth and
intersects the outer slowness surface, associated with shear waves. Coefficients : (2, 0, 1, 1)
for subfig. (i,ii), and (2,−1, 2, 1) for subfig. (iii,iv). Subfigures (i,iii): slowness surfaces
(red) and tangent ellipsoids (blue). Subfigures (ii,iv): root domain with the conic C (red),
its tangent lines (blue), and normal vectors of Lemma 8.25 (black arrows).

of Q. A portion of this conic bounds the domain A, which is the image of the set B′ of
Proposition 8.21 by a square root transformation.

Our first lemma describes two extremal points of the set A, lying on the coordinate
axes.

Lemma 8.25. Define p∗ := (1/c11, 0) and p∗ := (0, 1/c33). Then p∗, p∗ ∈ A ∩ C and

∇Q(p∗) =
(
c11(c11 − c44), (c13 + c44)2 + (c11 − c44)c44

)
/c11,

∇Q(p∗) =
(
(c13 + c44)2 + (c33 − c44)c44, c33(c33 − c44)

)
/c33.

If follows that ∇Q(p∗),∇Q(p∗) ∈]0,∞[2.

Proof. By symmetry and w.l.o.g., we limit our attention to p∗. The polynomial 1 −
Q(x, 0) = c11c44x

2−(c11+c44)x+1 admits the two roots 1/c11 and 1/c44. Since c11 > c44, by
admissibility, one has Q(x, 0) ≤ 1 iff x ∈]−∞, 1/c11]∪ [1/c44,∞[ and thus (1/c11, 0) ∈ A.
A direct computation yields the announced expression of ∇Q(p∗), and the positivity of
its components follows again from the admissibility conditions c11 > c44, c33 > c44 and
c44 > 0.

Corollary 8.26. If I ≥ 0 then A is convex, and if I ≤ 0 then R2
+ \ A is convex, where

I := c11c33 − c2
13 − c11c44 − 2c13c44 − c33c44, I ∝ det(∇Q(p∗),∇Q(p∗)). (157)

Proof. By Proposition 8.18 one has A = {r(cos θ, sin θ); 0 ≤ θ ≤ π/2, 0 ≤ r ≤ R(θ)}.
Therefore the boundary ∂A is the union of the two segments [(0, 0), p∗] and [(0, 0), p∗], and
of the portion of conic A ∩ C = {R(θ)(cos θ, sin θ); 0 ≤ θ ≤ π/2}. Likewise ∂(R2

+ \ A) =
[p∗, (∞, 0)[∪[p∗, (0,∞)[∪(A∩C) is the union of two half lines (with the obvious notation)
and of the same portion of conic.

A direct computation yields the determinant of∇Q(p∗) and∇Q(p∗), which are normal
vectors to C oriented outwards of A, at the endpoints p∗ and p∗ of A∩ C. More precisely

det(∇Q(p∗),∇Q(p∗)) = IJ , where J := ((c13 + c44)2 + c11c33 − c2
44) /(c11c33) > 0.
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Figure 41: (Left) Quartic slowness surfaces, and xz-slice B′ of the anelliptic ball B. (Cen-
ter) Region A and curve C in the root domain. (Right) Normal cones, shown gray, to a
convex set.

In order to establish the announced convexity properties, we distinguish two cases:

• Case of a degenerate conic C (the union of two lines). Then A ∩ C = [p∗, p
∗] is a

straight segment. Indeed, by Proposition 8.18, either the two lines are parallel, or
their intersection lies outside [0,∞[2. As a result I = 0 (since the normal along a
line is constant) and both A and R2

+ \ A are convex, as announced.

• Case of a non-degenerate conic (ellipse, hyperbola, parabola). Since a conic is a
curve of degree two, it has no inflection point. Therefore the sign of the curvature
is constant along C, and thus either A or R2

+ \ A is convex, recalling the endpoint
normals ∇Q(p∗),∇Q(p∗) ∈]0,∞[2. Since the normal vectors along the boundary
of a convex set are ordered trigonometrically in clockwise order, we obtain that
det(∇Q(p∗),∇Q(p∗)) ≥ 0 if A is convex (resp. det(∇Q(p∗),∇Q(p∗)) ≤ 0 if R2 \ A
is convex), which concludes the proof.

8.2.3 Properties and computation of µ(α)

We establish Theorem 8.3 which describes the set A as an intersection or a union of
triangles, and thus B as an intersection or a union of ellipses see Figure 37, whose size is
determined by a function µ : [α∗, α

∗] →]0,∞[. We also prove that µ is either convex or
concave. The argument relies on Proposition 8.27 which is an elementary result on the
support function of a convex set, see [BL10] for more detail on this rich subject. In the
second part of this subsection, we establish that µ is smooth and provide expressions of
µ, α∗, α

∗ suitable for numerical implementation.

Proposition 8.27. The support function µK : Rd →] −∞,∞], of a closed and convex
set K ⊂ Rd, is defined for all v ∈ Rd as

µK(v) := sup
p∈K
〈v, p〉.

This function is convex and lower semi-continuous (l.s.c.), and furthermore

K = {p ∈ Rd; ∀v ∈ V, 〈v, p〉 ≤ µK(v)}, (158)

149



provided the set V ⊂ Rd contains a generator of each extreme ray of each normal cone to
K.

The proof of Proposition 8.27 is postponed to the end of this section. We obtain in
Corollary 8.28 and Corollary 8.29 two descriptions of the set A, announced in Theorem
8.3, concluding its proof except for the smoothness of the function µ which follows from
the explicit expression (167) below. They are deduced from the description (158) of convex
sets as half-space intersections, and from the fact established in Corollary 8.26 that A
is either convex or the complement of a convex set. The endpoints p∗, p∗ of the portion
of conic A ∩ C are defined in Lemma 8.25. We denote by Cone(E) = {

∑I
i=1 λiei; I ≥

0, λ1, · · · , λI ≥ 0, e1, · · · , eI ∈ E} the convex cone generated by non-negative linear
combinations within a set of vectors E.

Corollary 8.28. Assume that A is convex, which corresponds to the case (max). Define
0 < α∗ ≤ α∗ < 1 by ∇Q(p∗) ∝ (1 − α∗, α∗) and ∇Q(p∗) ∝ (1 − α∗, α∗), and let µ(α) :=
µA(1− α, α). Then µ is convex and A = {p ∈ R2

+; ∀α ∈ [α∗, α
∗], 〈(1− α, α), p〉 ≤ µ(α)}.

Proof. Denote ∇Q∗(p∗) = (v1, v2), and note that v1, v2 > 0 by Lemma 8.25. Then
the positive proportionality relation ∇Q∗(p∗) ∝ (1 − α∗, α∗) admits the unique solution
α∗ := v2/(v1 + v2) ∈]0, 1[. Likewise α∗ ∈]0, 1[, and furthermore by Corollary 8.26 we
obtain as announced

0 ≤ det
(
∇Q(p∗),∇Q(p∗)

)
∝
[
(1− α∗)α∗ − α∗(1− α∗)

]
= α∗ − α∗. (159)

The function µ(α) := µA(1 − α, α) is convex since it is the composition of µA, which
is convex by Proposition 8.27, with an affine mapping. Observing that A is closed and
convex, we obtain

A = {p ∈ R2; ∀v ∈ V, 〈v, p〉 ≤ µA(v)},
with V := {(−1, 0), (0,−1)} ∪ {(α, 1− α);α∗ ≤ α ≤ α∗}.

by Proposition 8.27, which implies the announced expression of A. To show that V obeys
the assumption of Proposition 8.27, we describe the normal cones to A, illustrated on
Figure 41, for all points of the boundary ∂A = [(0, 0), p∗] ∪ [(0, 0), p∗] ∪ (C ∩ A). At the
corners one has NA(0, 0) = R2

− = Cone{(−1, 0), (0,−1)}, NA(p∗) = Cone{(−1, 0), (1 −
α∗, α∗)}, and NA(p∗) = Cone{(−1, 0), (1 − α∗, α∗)}. On the straight segments NA(p) =
Cone{(−1, 0)} for all p ∈](0, 0), p∗[, and NA(p) = Cone{(0,−1)} for all p ∈](0, 0), p∗[.
Finally for p ∈ (A∩ C) \ {p∗, p∗} one has NA(p) = Cone{∇Q(p)} = Cone{(1− α, α)} for
some α∗ ≤ α ≤ α∗, since (1, 0) � ∇Q(p∗) � ∇Q(p) � ∇Q(p∗) � (0, 1) in the circular
trigonometric ordering of vectors, by convexity of A. The result follows.

Corollary 8.29. Assume that R2
+ \A is convex, which corresponds to case (min). Define

0 < α∗ ≤ α∗ < 1 by ∇Q(p∗) ∝ (1 − α∗, α∗) and ∇Q(p∗) ∝ (1 − α∗, α∗), and let µ(α) :=

−µAc(−(1 − α, α)) where Ac := R2
+ \ A. Then µ is concave and A = {p ∈ R2

+; ∃α ∈
[α∗, α

∗], 〈(1− α, α), p〉 ≤ µ(α)}.

Proof. Similarly to the proof of Corollary 8.28, one has α∗, α∗ ∈]0, 1[ by positivity of the
gradient coordinates, see Lemma 8.25, and 0 ≥ det(∇Q(p∗),∇Q(p∗)) ∝ (α∗ − α∗). The
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function µ is concave since it is the opposite of µAc , which is convex by Proposition 8.27,
composed with an affine mapping. In addition

Ac = {p ∈ R2; ∀v ∈ V, 〈v, p〉 ≤ µAc(v)}, (160)
R2 \ Ac = {p ∈ R2; ∃v ∈ V, 〈v, p〉 > µAc(v)}, (161)

with V = {(−1, 0), (0,−1)} ∪ {−(1 − α, α); α∗ ≤ α ≤ α∗}. Equation (160) follows from
Proposition 8.27, where the assumption on V is checked as in Corollary 8.28 since ∂Ac =
[p∗, (∞, 0)[∪[p∗, (0,∞)[∪(A ∩ C). Equation (161) is obtained by taking the complement.
Noting that A = R2

+ ∩ (R2 \ Ac) we conclude the proof.

Explicit formulas for implementation. In the rest of this section, we obtain explicit
formulas for the function µ and the bounds α∗ and α∗, suitable for implementing our
numerical scheme, and announced below Theorem 8.3. For that purpose, we rewrite the
quadratic function Q defining the eikonal equation (126) in the following form:

Q(p) = 〈l, p〉+ 1
2
〈p,Qp〉, hence ∇Q(p) = l +Qp, (162)

where l ∈ R2 and Q ∈ S2 is a symmetric matrix. Indeed, our numerical implementation
relies on the linear and quadratic forms defined by l and Q, rather than the coefficients
(c11, c13, c33, c44) which lead to expressions more complicated and of higher algebraic de-
gree, and also restrict the generality. We nevertheless assume that all the guarantees
derived previously apply.

By computing the smallest root x∗ of the quadratic equation 1 = Q(x, 0) = l1x +
Q11x

2/2, we obtain the endpoint p∗ = (x∗, 0) of A ∩ C. Likewise we obtain the second
endpoint p∗, and then ∇Q(p∗) and ∇Q(p∗) by (162, right). The cases (max) or (min) of
Theorem 8.3 can be distinguished by computing the sign of

det(∇Q(p∗),∇Q(p∗)). (163)

Also α∗ and α∗ are trivially obtained from ∇Q(p∗) and ∇Q(p∗), as in Corollary 8.28 and
Corollary 8.29.

In the rest of this section, we fix α ∈]α∗, α
∗[ and we denote α := (1−α, α). Then one

has

µ(α) = max
p∈A∩C

〈α, p〉
(
resp. µ(α) = min

p∈A∩C
〈α, p〉

)
, (164)

in case (max) (resp. (min)). Indeed, the formula (164) is equivalent to the definitions
presented in Corollary 8.28 and Corollary 8.29 involving the support function of the set A
(resp. R2 \ A), because α (resp. −α) is proportional their exterior normal at some point
of the boundary A ∩ C. In addition, since α ∈]α∗, α

∗[, the extremum (164) is attained at
a point p ∈ A ∩ C distinct from the endpoints p∗ and p∗, hence to which the method of
Lagrange multipliers is applicable (as opposed to the more complex KKT relations). As
a result, and recalling that C = {Q = 1}, there exists a Lagrange multiplier λ ∈ R such
that

∇Q(p) = λα, Q(p) = 1. (165)
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Rewriting (165, left) as as l +Qp = λα, yields

p = Q−1(λα− l). (166)

We assume here that Q is an invertible matrix, which actually is not ensured by our
admissibility assumptions (131). Further discussion of the case where Q is not invertible
is postponed to the end of this section. Rewriting (132, right) as 1 = 〈l, p〉+ 1

2
〈p,Qp〉 and

inserting (166) yields

1 = 〈l, Q−1(λα− l)〉+ 1
2
〈(λα− l), Q−1(λα− l)〉 = 1

2
λ2〈α, Q−1α〉 − 1

2
〈l, Q−1l〉.

Therefore,

λ2 =
2 + 〈l, Q−1l〉
〈α, Q−1α〉

.

By (165, left), the scalar λ is the proportionality coefficient between the gradient ∇Q(p),
which has positive components for all p ∈ A ∩ C, and the vector α = (1 − α, α) which
is likewise positive. Thus λ > 0, and the Lagrange multiplier λ is fully determined.
Therefore

µ(α) := 〈α, p〉 = λ〈α, Q−1α〉 − 〈α, Q−1l〉 = ε
√
〈α, Q−1α〉(2 + 〈l, Q−1l〉)− 〈α, Q−1l〉.

(167)
We denoted by ε ∈ {−1, 1} the sign of 〈α, Q−1α〉, which by (165) is also the sign of the
expression

〈∇Q(p), Q−1∇Q(p)〉 = 〈Qp+ l, Q−1(Qp+ l)〉 = 〈p,Qp〉+2〈p, l〉+ 〈l, Q−1l〉 = 2+ 〈l, Q−1l〉.

In particular, ε is independent of α, and can be determined in advance from the coefficients
Q and l of the PDE. From (167) we obtain that µ has C∞ regularity, as announced in
Theorem 8.3, and is computable in a straightforward manner. We also recover the fact
that it must be convex or concave, by an immediate application of the following lemma
to the polynomial P (α) := 〈α, Q−1α〉.

Lemma 8.30. Let P (t) := at2 + bt+ c be a second degree polynomial, with discriminant
∆ := b2 − 4ac. If ∆ ≥ 0 (resp. ∆ ≤ 0) then

√
P is concave (resp. convex) on each

connected component of {t ∈ R;P (t) > 0}.

Proof. This follows from a direct computation: assuming P (t) > 0 one obtains

d2

dt2

√
P (t) =

2P ′′(t)P (t)− P ′(t)2

4P (t)
3
2

=
2× 2a(at2 + bt+ c)− (2at+ b)2

4P (t)
3
2

= − ∆

4P (t)
3
2

.

Case of a singular matrix Q. We denote by J the adjugate matrix of Q, and let
δ := detQ and ε′ = sign(2δ + 〈l, Jl〉). Note that Q−1 = J/δ if δ 6= 0. We obtain
from (167) and after straightforward manipulations (namely, the multiplication by the
conjugate root) the following alternative expression of µ. Its numerical evaluation is
usually more stable than (167) when Q is singular or almost singular, since it does not
involve Q−1

µ(α) =
det(α, l)2 + 2〈v, Jv〉

ε′
√
〈α, Jα〉(2δ + 〈l, Jl〉) + 〈α, Jl〉

. (168)
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One still needs to handle separately the degenerate case, at the intersection of the (max)
and (min) cases, where α∗ = α∗ (in that case the conic C is a union of two lines, and the
TTI ball B is an ellipsoid rather than a quartic surface).

Proof of Proposition 8.27. The function µK is convex (resp. l.s.c.) since it is defined as the
supremum of a family of linear functions, which are convex (resp. continuous hence l.s.c.)
by definition. In the following, we denote by PK : Rd → K the orthogonal projection,
and by NK(p∗) ⊂ Rd the normal cone at a point p∗ ∈ K, illustrated on Figure 41, which
admits the following equivalent characterizations:

v ∈ NK(p∗) ⇔ ∀p ∈ K, 〈v, p∗ − p〉 ≥ 0 ⇔ µK(v) = 〈v, p∗〉 ⇔ PK(p∗ + v) = p∗. (169)

Denote (158, r.h.s.) by K̃, and note that K ⊂ K̃ by definition of the support function.
In the following, we consider p /∈ K, and denote p∗ := PK(p) and v := p − p∗. For any
q ∈ K one has 〈p − p∗, p∗ − q〉 ≥ 0 by general properties of the orthogonal projection,
therefore 〈v, p〉 ≥ ‖v‖2 + 〈v, q〉 by rearranging terms, and thus by taking the supremum
over q ∈ K

〈v, p〉 ≥ ‖v‖2 + µK(v) > µK(v). (170)

Since PK(p∗ + v) = PK(p) = p∗, one has v ∈ NK(p∗) by (169). By the Krein-Milman
theorem, the cone NK(p∗) is the convex hull of its extreme rays, and thus by assumption
there exists λ1, · · · , λN ≥ 0 and v1, · · · , vN ∈ V ∩ NK(p∗) such that v =

∑N
n=1 λnvn, for

some N ≥ 0. Then, assuming for contradiction that p ∈ K̃ we obtain:

〈v, p〉 =
∑

1≤n≤N

λn〈vn, p〉 ≤
∑

1≤n≤N

λnµK(vn) =
∑

1≤n≤N

λn〈vn, p∗〉 = 〈v, p∗〉 = µK(v). (171)

We used successively (i) linearity, (ii) the assumption p ∈ K̃, (iii) the normal cone char-
acterization (169), (iv) linearity again, and (v) again (169). Noting that (171) contradicts
(170), we must have p /∈ K̃. We have shown that p /∈ K ⇒ p /∈ K̃, which establishes the
reverse inclusion K ⊃ K̃, and concludes the proof.

8.3 Quasi-convexity or quasi-concavity of the update operator

We present two constructions of quasi-convex and quasi-concave functions in Section 8.3.1.
By an adequate choice of parameters, they encompass the update operator associated to
our finite differences discretization of the TTI eikonal PDE, which establishes Theorem
8.11. We study the primal metric associated to a TTI model using a similar strategy in
Section 8.3.2, thus establishing Corollary 8.4. Interestingly, the proof differs in the (max)
and (min) cases, a discrepancy also encountered in the convergence analysis Section 8.4.

8.3.1 Two constructions of quasi-convex and quasi-concave functions.

We show that quasi-convex and quasi-concave functions, introduced in Definition 8.10,
can be obtained as ratios of suitable functions in Lemma 8.31, and as implicit functions
in Proposition 8.32.

For that purpose, we fix a convex subset A of a vector space, and recall from Definition
8.10 that a map f : A → R is quasi-convex iff {x ∈ A; f(x) ≤ λ} is a convex set for
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all λ ∈ R. Likewise we say that f is quasi-concave if −f is convex, equivalently iff
{x ∈ A; f(x) ≥ λ} is a convex set for all λ ∈ R.

Lemma 8.31. If f : A → [0,∞[ is convex, and g : A →]0,∞[ is concave, then f/g is
quasi-convex. Likewise if f : A →]0,∞[ is convex, and g : A → [0,∞[ is concave, then
g/f is quasi-concave.

Proof. We only prove the first statement, since the second one is similar. Let λ ∈ R. If
λ < 0, then {f/g ≤ λ} = ∅ is convex. Otherwise λ ≥ 0 and {f/g ≤ λ} = {f − λg ≤ 0} is
convex since f − λg is convex.

Proposition 8.32. Let F : A×R→ R be such that (i) α ∈ A 7→ F (α, λ) is quasi-convex
(resp. quasi-concave) for all λ ∈ R, and that (ii) λ ∈ R 7→ F (α, λ) is non-decreasing for
all α ∈ A. Assume also that (iii) F (α,Λ(α)) = 0 admits for all α ∈ A a unique solution
Λ(α), thus defining a mapping Λ : A→ R. Then Λ is quasi-concave (resp. quasi-convex).

Proof. We limit our attention to the case where α 7→ F (α, λ) is quasi-convex, since the
second case is similar. By (ii) and (iii) one obtains Λ(α) ≥ λ ⇔ F (α, λ) ≤ 0, for any
α ∈ A, λ ∈ R. Thus

{α ∈ A; Λ(α) ≥ λ} = {α ∈ A;F (α, λ) ≤ 0},

for any λ ∈ R. Noting by (i) that the r.h.s. is a convex set, we obtain that Λ is quasi-
concave, which concludes the proof.

Proof of Theorem 8.11, on the update operator quasi-convexity or quasi-
concavity. We proceed to apply Proposition 8.32 to a function of the following form,
defined in view of the expression (143) of the numerical scheme for the TTI eikonal PDE,

F (α, λ) =
1

µ(α)

∑
1≤i≤I

ρi(α) max{0, λ− ui}2. (172)

Specifically using the notations of Proposition 8.7 and (141), we fix q ∈ hZd and 0 ≤ k <
K, define A = [αk, αk+1] which is a segment of R, and let ui = min{u(q+heik), u(q−heik)},
for all 1 ≤ i ≤ I where u : hZd →] − ∞,∞] is the unknown of the finite difference
scheme. (Recall that u is finite on Ωh and extended by +∞ elsewhere.) Then F (α, λ) =
F̂α(q, [λ−u(r)]r∈X) is the numerical scheme (143) with the base point value u(q) replaced
with the unknown λ, consistently with the formulation of the update operator (138).

By Theorem 8.3 the function µ : A →]0,∞[ is convex in case (max) (resp. concave
in case (min)). By Proposition 8.7 the functions ρi : A → [0,∞[ are affine. For any
given λ ∈ R the sum f(α) :=

∑I
i=1 ρi(α) max{0, λ− ui}2 is thus non-negative and affine

w.r.t. α ∈ A, thus simultaneously convex and concave. Lemma 8.31 therefore yields that
α ∈ A 7→ F (α, λ) is quasi-concave in case (max) (resp. quasi-convex in case (min)).

The partial mapping λ ∈ R 7→ F (α, λ) is non-decreasing, for any α ∈ A, since
the weights ρi(α) are non-negative and since λ 7→ max{0, λ}2 is non-decreasing. As
already observed in Section 8.1.2 there is a unique solution Λ : A → R to the equation
F (α,Λ(α)) = 1 (one has Λ(α) := Λαu(q) with the notations of Theorem 8.11). Applying
Proposition 8.32 to F − 1, we obtain that the update operator Λ is quasi-convex in case
(max) (resp. quasi-concave in case (min)), which concludes the proof of Theorem 8.11.
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8.3.2 Expression of the norm value, gradient, and dual.

Given admissible TTI parameters σ ∈ R3, and a co-vector p = (px, py, pz) ∈ R3 \ {0}, we
obtain

F∗σ(p) := min{ν > 0; p/ν ∈ Bσ}
= min{ν > 0; (p2

x + p2
y, p

2
z)/ν

2 ∈ Aσ}
= min{ν > 0; ∀α ∈ [α∗, α

∗], (1− α)(p2
x + p2

y) + αp2
z ≤ ν2µ(α)} (173)

= max
α∈[α∗,α∗]

√
(1− α)(p2

x + p2
y) + αp2

z

µ(α)
, (174)

assuming case (max) of Theorem 8.3 in (173). We used successively (i) the norm definition
(128, right), (ii) the definitions (132) and (127) of the sets Aσ and Bσ, (iii) Theorem 8.3
in case (max), and (iv) a direct algebraic computation. Alternatively, in case (min) of
Theorem 8.3, the universal quantifier ∀ of (173) is replaced with an existential quantifier
∃, and as a result the max operator in (174) is replaced with the min operator. The
announced expression (134) of F∗(p) := F∗σ(Rp) follows. The expression (135, left) of the
gradient ∇F∗(p) then follows from the envelope theorem [Car01, Theorem 6.1], on the
differentiation of functions defined as an extremum.

We turn to the computation of the dual norm (135, right), which is obtained as follows

1

2
F(v)2 = max

p

(
〈p, v〉 − 1

2
F∗(p)2

)
= max

p
mix

α∈[α∗,α∗]

(
〈p, v〉 − 1

2µ(α)
‖p‖2

D(α)

)
= mix

α∈[α∗,α∗]
max
p

(
〈p, v〉 − 1

2µ(α)
‖p‖2

D(α)

)
(175)

= mix
α∈[α∗,α∗]

µ(α)

2
‖v‖2

D(α)−1 .

We used successively, (i) Legendre-Fenchel duality, which is a generalization of norm
duality, (ii) the explicit expression of F∗, recalling that {mix,mix} = {min,max}, see
(133), (iii) an interversion of the extremum operators max and mix, discussed in more
detail below, and (iv) the known explicit expression of the Legendre-Fenchel dual of the
positive quadratic form p 7→ 〈p,D(α)p〉/µ(α).

As announced, we discuss in more detail the interversion of max and mix in (175),
and in this occasion we need to distinguish the treatment of the (min) and (max) case,
associated with Theorem 8.3. If mix = max, then (175) amounts to a maximization
over the joint variable (p, α) ∈ R3 × [α∗, α

∗], hence the order of the maximizations is
irrelevant and the result is proved. On the other hand, if mix = min, then we invoke
Sion’s minimax theorem [Kom88] to exchange the ordering of the min and max operators,
whose assumptions are checked below. Define, for α ∈ [α∗, α

∗] and p ∈ R3

F (α, p) := 〈p, v〉 − 1

2
F0(α, p), where F0(α, p) :=

1

µ(α)
‖p‖2

D(α).
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Then p 7→ F0(α, p) is a positive quadratic form, hence is a convex function. On the other
hand α 7→ F0(α, p) is quasi-concave by Lemma 8.31, since it is the ratio of the non-negative
and affine (hence concave) function ‖p‖2

D(α) = (1 − α)‖p‖2
D0

+ α‖p‖2
D1
, divided by µ(α)

which is convex by Theorem 8.3 in case (max) (recall that we assume mix = min here,
and see (133)). The function F thus matches the assumptions of Sion’s minimax theorem,
as announced: F is quasi-convex w.r.t. α, concave w.r.t. p (hence also quasi-concave), and
in addition we note that F is continuous, that [α∗, α

∗] is convex and compact, and that
R3 is convex. This completes the proof.

8.4 Convergence analysis

We prove that the solutions to our discretization of the TTI eikonal PDE, obey a Lipschitz
regularity property in the (max) case, and a weaker growth estimate in the (min) case,
from which we deduce their convergence as the grid scale is refined, see Theorem 8.33.
This discrepancy between the (max) and (min) cases illustrates the fact that PDE oper-
ators presented in (generalized) Bellman form, i.e. as a maximum of simpler monotone
operators, are usually more easily amenable to analysis than those presented as a mini-
mum. Such Bellman forms are at the foundation of multistencil fast marching methods
[HF07], and of discretizations of second order PDEs with general coefficients [Kry05], as
well as the special cases of the Monge-Ampere [BM21] or Pucci [BBM20] PDEs. In the
case of the TTI eikonal PDE, we only obtain a Bellman form in the (max) case, and by
Theorem 8.3 this depends on the model coefficients.

We believe that the difference between the (max) and (min) cases, both in the proof
technique and in the obtained regularity results (177) and (178), is interesting since it
departs from the symmetrical treatment of these two cases in the introduction. Never-
theless, we do establish in both cases the convergence to the viscosity solution of the TTI
eikonal PDE as the grid scale is refined, at least in the simplified setting of null Dirichlet
boundary conditions on ∂Ω (as opposed to the point source and outflow boundary con-
ditions often considered in applications), see Theorem 8.33. Let us also mention that,
empirically, our numerical experiments in Section 8.5 do not show a difference in behavior
between the (max) and (min) cases.

We fix an open and bounded domain Ω ⊂ Rd, where d ∈ {2, 3}, with a smooth
boundary. Given h > 0 we let Ωh := Ω ∩ hZd, and ∂Ωh := hZd \ Ωh. The notation
C = C(Ω, σ, R) means that the constant C only depends on the specified parameters.

Theorem 8.33. Consider continuous TTI coefficients σ ∈ C0(Ω,R5) obeying the ad-
missibility conditions (131) pointwise, and a continuous field of invertible matrices R ∈
C0(Ω,GLd(R)). Then there exists a unique solution u : hZd → [0,∞[, to

Fu(q) = 1, ∀q ∈ Ωh, u(q) = 0, ∀q ∈ ∂Ωh, (176)

where F stands for the proposed finite differences discretization of the TTI eikonal PDE
(143). In addition, there exists a constant C = C(Ω, σ, R) such that for any h > 0
sufficiently small and for all q, r ∈ hZd.

• If the parameters σ fall in the (max) case of Theorem 8.3 over the whole Ω, then

|u(q)− u(r)| ≤ C|q − r|. (177)
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• For arbitrary parameters σ, possibly mixing of the (max) and (min) cases over Ω,
one has

u(q) ≤ max{u(r′); r′ ∈ hZd, |r′ − r| ≤ Ch}+ C|q − r|. (178)

In both cases, one has ‖uh − u‖L∞(Ωh) → 0 as h → 0, where uh : Ωh → R denotes the
discrete solution to (176), and u : Ω→ R denotes the unique viscosity solution of the TTI
eikonal PDE

F∗q (∇u(q)) = 1, ∀q ∈ Ω, u(q) = 0, ∀q ∈ ∂Ω, (179)

where we denoted F∗q (v) := F∗σ(q)(R(q)v), for all q ∈ Ω.

Before turning to the proof, we recall the definition of a sub-solution or super-solution
to a numerical scheme, whereas the corresponding PDE notions are briefly evoked below
(194).

Definition 8.34. We say that u : hZd → R is a sub-solution to a scheme F on Ωh if

Fu(q) ≤ 1, ∀q ∈ Ωh, u(q) = 0, ∀q ∈ ∂Ωh. (180)

Likewise, we define the notions of strict sub-solution, solution, super-solution, and strict
super-solution, by replacing the comparison operator with <, =, ≥, >, in (180, left)
respectively.

Notations. Selling’s decomposition is denotedD =
∑

e∈Zd ρ(e;D)ee>, consistently with
Section 8.B and (201); this notation avoids introducing an arbitrary indexing (ei)

I
i=1 of

the active offsets {e ∈ Zd; ρ(e;D) > 0}, and is thus more convenient for discussing the
regularity of the weights D 7→ ρ(e;D), see Proposition 8.47. Throughout this section, the
quantities associated in Theorem 8.3 to admissible TTI parameters define the following
functions pointwise on Ω:

α∗, α
∗ ∈ C0(Ω, ]0, 1[), µ ∈ C0(A, ]0,∞[),

where A := {(α, q) ∈]0, 1[×Ω; α∗(q) ≤ α ≤ α∗(q)}. For all α ∈]0, 1[ and q ∈ Ω we let

D(q, α) := R(q)>

1− α
1− α

α

R(q). (181)

8.4.1 Lipchitz property in case (max)

The main result of this subsection is a Lipschitz regularity property for sub-solutions to
the numerical scheme FD discretizing the Riemannian eikonal PDE (141), see Proposition
8.36. The Lipschitz estimate (177) in case (max) of Theorem 8.33 is then deduced.
Note that the weaker growth estimate (178), valid in all cases, suffices for the proof of
convergence in Section 8.4.3. We nevertheless present the Lipschitz estimate since it is
simple, expected, and since the proof exploits a number of properties of Selling’s matrix
decomposition, gathered in Proposition 8.47, which is central in the method. A similar
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Figure 42: Left: In the (max) case, one can exploit consistency in the scheme stencils, and
use the fact that they span Zd, so as to join two neighbor points using a chain of offsets.
Right: In the (min) case, the active stencils at the different points may be uncorrelated.
Their offsets can be used to move toward a given target, up to some radius, but not to
reach it exactly in general.

Lipschitz regularity result is proved in [Mir14a, Lemma 2.7] for a different discretization
of the Riemannian eikonal PDE.

A preliminary technical lemma defines, between any two neighbor points on the grid,
a chain whose length is bounded above, and such that successive points are connected by
offsets of Selling’s decomposition of a given matrix field, see Figure 42 (left).

Lemma 8.35. Given a field of symmetric positive definite matrices D ∈ C0(Ω, S++
d ),

there exists h0 > 0, ρ0 > 0 and N0 such that the following holds. Let 0 < h < h0, and
let q∗, q∗ ∈ hZd be such that |q∗ − q∗| = h. Then there exists a chain q0, · · · , qN ∈ hZd of
length N ≤ N0, whose endpoints are q0 = q∗ and qN = q∗, and signs ε1, · · · , εn ∈ {−1, 1},
such that

ρ
(
(qn+1 − qn)εn/h; D(qn)

)
≥ ρ0, for any 0 ≤ n < N such that qn ∈ Ωh. (182)

Proof. Since the matrix field D is pointwise positive definite and continuous, it is bounded
over the compact set Ω, as well as its inverse and condition number, which fits the as-
sumptions of Proposition 8.47 on the properties of Selling’s decomposition. We can assume
q∗ ∈ Ωh, since otherwise the condition (182) is empty for n = 0, and the trivial chain of
length N = 1 complies.

By Proposition 8.47 (spanning property), there exists a direct basis e1, · · · , ed of Zd
such that ρ(ei;D(q∗)) ≥ 2ρ0 for all 1 ≤ i ≤ d, where ρ0 = ρ0(D). By Proposition 8.47
(Lipschitz weights), the functions q ∈ Ω 7→ ρ(ei;D(q)) are continuous, hence there exists
r0 = r0(D) > 0 such that:

ρ(ei;D(q)) ≥ ρ0, for all 1 ≤ i ≤ d, and all q ∈ Ω s.t. |q − q∗| ≤ r0. (183)

By Proposition 8.47 (bounded offsets), one has |ei| ≤ R0 for all 1 ≤ i ≤ d, where R0 =
R0(D). Defining the matrix G := [e1, · · · , ed], and noting that det(G) = det(e1, · · · , ed) =
1, we obtain that G−1 has integer coefficients bounded in absolute value by R1 = R1(D).
Denote e := (q∗−q∗)/h, recall that this vector or its opposite belongs to the canonical basis
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of Rd by assumption, and let (λ1, · · · , λd) = G−1e, in such way that e = λ1e1 + · · ·λded,
|λ1|, · · · , |λd| ≤ R1 and λ1, · · · , λd ∈ Z. Assuming w.l.o.g. that λ1, · · · , λd ≥ 0 we define
for all n ≤ N := λ1 + · · ·+ λd:

qn = q∗ + h(λ1e1 + · · ·+ λrer + λer+1), where n = λ1 + · · ·+ λr + λ,

with λ integer such that 1 ≤ λ ≤ λr+1. Observe that N ≤ N0 where N0 = N0(D) := dR1,
and that |qn − q∗| ≤ hN0R0 is smaller than r0 provided h ≤ h0 where h0 = h0(D) =
r0/(N0R0), for any 0 ≤ n ≤ N . This construction of q0, · · · , qN satisfies in view of (183)
the announced properties, which concludes the proof.

Proposition 8.36. Let D ∈ C0(Ω, S++
d ), and let u : hZd → [0,∞[ obey

FD(q)u(q) ≤ 1, ∀q ∈ Ωh, u(q) = 0, ∀q ∈ ∂Ωh. (184)

Then |u(q) − u(r)| ≤ C|q − r| for all q, r ∈ hZd, where h > 0 is small enough and
C = C(D).

Proof. It suffices to prove that |u(q) − u(r)| ≤ C|q − r| when |q − r| = h are neighbors
on the grid hZd (up to multiplying C by

√
d). It also suffices to prove the one sided

inequality u(q) ≤ u(r) + C|q − r|, by symmetry.
Assumption (184, left) at a point q ∈ Ωh can be rewritten as∑

e∈Z

ρ
(
e;D(q)

)
max{0, u(q)− u(q − he), u(q)− u(q + he)}2 ≤ h2,

in view of the Riemannian scheme definition (141). Therefore u(q) ≤ u(q + he) +

hρ(εe;D(q))−
1
2 for any e ∈ Zd and any sign ε ∈ {−1, 1}, with the convention 0−

1
2 = ∞.

Let q = q0, · · · , qN = r be a chain as described in Lemma 8.35, joining the points of
interest. Then

u(qn) ≤ u(qn+1) + hρ
− 1

2
0 , (185)

for all 0 ≤ n < N . Indeed this follows from (182) and the previous estimate when
qn ∈ Ωh, and otherwise u(qn) = 0 by the boundary condition satisfies the bound since
u is non-negative. Accumulating these inequalities we obtain u(q) ≤ u(r) + hN0ρ

− 1
2

0 , as
announced.

Proof of (177) in Theorem 8.33, using Proposition 8.36. Assume that Fu(q) ≤ 1 for all
q ∈ Ωh, and u(q) = 0 for all u ∈ ∂Ωh. Define D(q) := D(q, α∗(q))/µ(q, α∗(q)), and note
thatD ∈ C0(Ω, S++

d ). Since the TTI scheme (143) is defined as a maximum of Riemannian
schemes parameterized by α ∈ [α∗(q), α

∗(q)], we obtain that 1 ≥ Fu(q) ≥ FD(q)u(q). Thus
Proposition 8.36 applies and (177) is proved.

8.4.2 Growth estimate in case (min)

The main result of this subsection is a growth estimate for sub-solutions to a minimum
of discretized eikonal PDEs, established in Proposition 8.38. The growth estimate (178)
is then deduced. The proof strategy differs from Section 8.4.1 since we cannot exploit
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any local consistency between the active stencils of close discretization points. Instead,
Lemma 8.37 below shows that we can use Selling offsets whose weights are positive to
move in the general direction (186) of a given point, assumed to be far enough, see Figure
42 (right).

Lemma 8.37. Given a compact set D ⊂ S++
d , there exists ρ0 > 0, r0 > 0 and R0 such

that the following holds. For any D ∈ D and any v ∈ Rd with |v| ≥ R0, there exists an
offset e ∈ Zd and a sign ε ∈ {−1, 1} such that

ρ(εe;D) ≥ ρ0 and |v − e| ≤ |v| − r0. (186)

Proof. Since D is compact, its elements are bounded, and likewise their inverses and
condition numbers. Let D ∈ D and v ∈ Rd, then

λ0|v|2 ≤ ‖v‖2
D =

∑
e∈Zd

ρ(e;D)〈v, e〉2 ≤ I max
e∈Zd

ρ(e;D)〈v, e〉2, (187)

where we used successively (i) a lower bound λ0 = λ0(D) on the eigenvalues of D ∈ D,
(ii) Selling’s formula (198), and (iii) the fact that Selling’s decomposition involves at most
I := d(d + 1)/2 positive weights. Thus there exists e ∈ Zd, a maximizer of (187, right),
such that ρ(e;D)〈v, e〉2 ≥ |v|2λ0/I. Observing that |e| ≤ R1 = R1(D) by Proposition 8.47
(bounded offsets), we obtain ρ(e;D) ≥ ρ0 where ρ0 = ρ0(D) := λ0/(R

2
1I).

On the other hand ρ(e;D) ≤ ρ1 where ρ1 = ρ1(D) := max{Tr(D);D ∈ D}, since
ρ(D) ≤ ρ(D)‖e‖2 ≤

∑
e∈Zd ρ(e;D)‖e‖2 = Tr(D). Therefore |〈v, e〉| ≥ 2r0|v| with r0 =

r0(D) = 1
2

√
λ0/Iρ1. Then, assuming w.l.o.g. that 〈v, e〉 ≥ 0, we obtain

‖v‖ − ‖v − e‖ ≥ 〈e, v〉
|v|
− |e|

2

2|v|
≥ 2r0 −

R2
1

2R0

,

using successively (i) [Mir19, Lemma 2.10], and (ii) the upper bounds on 〈v, e〉 and |e|,
and the lower bound on |v|. Defining R0 = R0(D) := R2

1/(2r0) we conclude the proof.

Proposition 8.38. Let D ⊂ S++
d be a compact set, and let u : hZd → [0,∞[ obey

min
D∈D

FDu(q) ≤ 1,∀q ∈ Ωh, u(q) = 0,∀q ∈ ∂Ωh. (188)

Then for any q, r ∈ hZd, one has with R = R(D) and C = C(D)

u(q) ≤ max{u(r′); |r′ − r| ≤ Rh}+ C|q − r|. (189)

Proof. We claim that the announced result holds with the constants R = R0 and C =

r−1
0 ρ

− 1
2

0 , where R0, r0 and ρ0 are from Lemma 8.37. For that purpose, we fix the point
r ∈ hZd, and prove the announced result for all q ∈ hZd, by induction on |(q − r)/h|2
which is a positive integer. Note that if q /∈ Ωh, then u(q) = 0 by the boundary condition,
and (189) holds. Also (189) clearly holds if |q − r| ≤ Rh.

The assumption (188, left) at q ∈ Ωh such that |q − r| ≥ Rh, can be rewritten as∑
e∈Z

ρ(e;D) max{0, u(q)− u(q − he), u(q)− u(q + he)}2 ≤ h2, (190)
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for some D ∈ D, in view of the Riemannian scheme definition (141). Denoting v :=
(q − r)/h, and noting that |v| ≥ R, we find by Lemma 8.37 an offset e ∈ Zd such that
q′ := q − he satisfies,

u(q) ≤ u(q′) + hρ
− 1

2
0 , |q′ − r| ≤ |q − r| − hr0,

using (190) for the first estimate. The announced result follows by induction.

Proof of the growth estimate (178). Define the set of positive definite matrices

D :=
{
D(q, α)/µ(q, α); q ∈ Ω, α ∈ [α∗(q), α

∗(q)]
}
, (191)

which is compact since the functions D,µ, α∗, α∗ are continuous over a compact domain.
Then (176, left) implies (188, left), and the announced growth estimate (178) is established
in (189).

8.4.3 Proof of convergence

We follow a standard proof strategy [BR06] to establish the uniform convergence of the so-
lutions to the proposed discretization scheme of the TTI eikonal PDE, henceforth denoted
Fh where h > 0 is the grid scale, towards the continuous solution as h → 0. Note that
alternative proof strategies exist which may yield stronger quantitative results, including
convergence rates, see Remark 8.40.

As a first step, in Lemma 8.39, we establish the existence of a sub-solution and of a
super-solution to Fh, which are bounded independently of h, as well as an approximation
property of super-solutions by strict super-solutions.

Lemma 8.39. The proposed discretization scheme Fh of the TTI eikonal PDE (143)
satisfies:

• (Explicit sub-solution) The null function u = 0 satisfies Fhu = 0 identically on hZd.

• (Explicit super-solution) Let a ∈ R, b ∈ Rd be such that a+ 〈b, q〉 > 0 for all q ∈ Ω,
and F∗q (b) ≥ 1 for all q ∈ Ω. Let u(q) := a + 〈b, q〉 on Ω, and u = 0 on Rd \ Ω.
Then Fhu ≥ 1 on Ωh, for any sufficiently small h > 0.

• (Approximation of super-solutions) One has Fh[λu(q)] = λ2Fhu(q) for any u :
hZd → R, λ ≥ 0, and q ∈ Ωh. In particular, if u is a super-solution of Fh, then
(1 + ε)u is a strict super-solution for any ε > 0, converging to u as ε→ 0.

Proof. The 2-homogeneity property, announced in the last point, is obvious in view of
the definition of the Riemannian (141) and TTI (143) schemes. The points (Explicit
sub-solution) and (Perturbation of sub-solution) follow; for instance if Fhu ≥ 1 then
Fh[(1 + ε)u] = (1 + ε)2Fhu > 1 for any ε > 0.

The constants a ∈ R, b ∈ Rd, of the second point exist by compactness of Ω and
continuity and definiteness of the the norms F∗q , q ∈ Ω. Define v(q) = a + 〈b, q〉 on Rd,
and note that v(q + he) ≥ 0 for any point q ∈ Ω and offset ‖e‖ ≤ R0, where R0 is a
bound on the scheme stencil radius, by continuity and provided the discretization scale h
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is small enough. It follows under these conditions that u(q + he) ≤ v(q + he). Then for
any q ∈ Ωh

1 ≤ F∗q (b) = Fhv(q) ≤ Fhu(q), (192)

using successively (i) the assumption on b, (ii) the scheme consistency (144), and (iii) the
DDE property of the scheme, see Definition 8.6, and the observation that u(q + he) ≤
v(q + he) for all offsets e of the scheme stencil, whereas u(q) = v(q) since q ∈ Ω. The
result follows.

By [Mir19, Theorem 2.3] there exists a unique solution uh : hZd → R to the scheme Fh.
For context, uniqueness is established using the comparison principle, whereas existence
is proved by Perron’s method (maximal sub-solution). Both of these classical techniques
require a scheme obeying the DDE property, see Definition 8.6. Since in addition the
scheme Fh is causal, see again Definition 8.6, its solution may be computed using the
single pass FMM on Ωh, see Algorithm 5.

The scheme solution uh : Ωh → R is bounded above and below by any super- and
sub-solution, hence choosing those of Lemma 8.39 we obtain the bounds u ≤ uh ≤ u on
Ωh which are independent of h. This allows us to consider the lower and upper limits
u,u : Ω→ R, defined for all q ∈ Ω as

u(q) := lim inf
h→0, qh→q

uh(qh), u(q) := lim sup
h→0, qh→q

uh(qh), (193)

where implicitly qh ∈ hZd. By construction 0 = u ≤ u ≤ u ≤ u on Ω, and u is lower
semi-continuous whereas u is upper semi-continuous. By the growth estimate (178) one
has 0 ≤ u(q) ≤ u(q) ≤ C dist(q, ∂Ω), hence u and u obey the null Dirichlet boundary
condition on ∂Ω. By the DDE property of the scheme Fh, and by consistency (144),
passing to the limit one obtains that in the sense of viscosity solutions12 [BCD08]

F∗q (∇u(q)) ≥ 1, F∗q (∇u(q)) ≤ 1, (194)

for all q ∈ Ω, with the notation F∗q of (179). By the continuous comparison principle
[BCD08, Theorem 5.9], we obtain that u ≤ u. Hence u = u = u is a viscosity solution
to (179), and one has uh → u uniformly as h → 0 by (193). This concludes the proof of
Theorem 8.33.

Remark 8.40. A quantitative convergence rate ‖uh − u‖L∞(Ωh) = O(
√
h) as h → 0,

improving on the uniform convergence result of Theorem 8.33, can likely be established by
following the same scheme of proof as [Mir19, §2.1], and by assuming Lipschitz regularity
for the TTI parameters σ and R. However this would introduce a number of technicalities,
such as the doubling of variables argument [Eva10], that we have chosen to avoid here since
they are not specifically related to the models of interest.

12In the sense of viscosity solutions, (194) should be understood as follows: let ϕ ∈ C2(Ω) be arbitrary.
If u−ϕ attains its minimum at q ∈ Ω, then F∗q (∇ϕ(q)) ≥ 1. If ϕ− u attains its minimum at q ∈ Ω, then
F∗q (∇ϕ(q)) ≤ 1.
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8.5 Numerical experiments

In this section, we present numerical experiments on three-dimensional test cases so as to
evaluate the cost and accuracy of our TTI eikonal solver.

First, we consider a TTI medium with a semi-analytical solution to determine the
convergence order and computation time of our numerical scheme. In the numerical
experiments, we compare the two versions of our scheme to solve the underlying 1D-
optimization problem: quasi-convex optimization (with CPU implementation), and op-
timization by grid search (with GPU implementation), see Section 8.1.3. In the latter
case, we also study the influence of the sampling rate, denoted K in (146), on the solu-
tion accuracy. We find that the GPU implementation is fifty times faster than the CPU
implementation in this test-case.

We then consider two alternative eikonal solvers, able to handle speed propagation
profiles either (i) less or (ii) more general than TTI anisotropy. (i) A standard isotropic
fast marching solver [Set96], enhanced with source factorization and second order finite
differences, addresses isotropic (spherical) speed profiles. (ii) The state of the art CPU
eikonal solver [DCC+21], referred to as the “general scheme”, handles anisotropy associated
with a full Hooke tensor, of which TTI anisotropy is a special case, see Section 8.A.
The comparison is done on a medium with orthorhombic anisotropy, with an analytical
solution to the eikonal equation, and its projections to the closest TTI medium and
isotropic medium. This experiment allows to quantify and compare the discretization
error, associated to the grid scale, with the consistency error, related to the approximation
of the anisotropic speed propagation profile. We also compare the computation time and
accuracy of the different schemes.

Last, we consider an application to a realistic synthetic test-case which comes from
the homogenization of an isotropic medium. The resulting anisotropy is fully general,
but is expected to be close to TTI anisotropy because of the sedimentary structure of the
medium. We verify this assumption by considering a projection of the general medium to
a TTI medium and to an isotropic medium, and compare the results of the general scheme,
TTI scheme and isotropic scheme. We also compare the solution to the eikonal equation
with the solution to the elastic wave equation, to verify that the solution to the eikonal
equation indeed is consistent with the first-arrival traveltimes of the wave propagation.

All the computations presented here have been performed on the Univ. Grenoble Alpes
HPC perform. For the numerical scheme in the CPU case as well as for the general scheme,
the computation has been performed on one Intel node equipped with a Xeon Skylake
Gold processor, with a core clocked 2.1 GHz and 192 GO of RAM. For the numerical
scheme in the GPU case as well as for the isotropic scheme, the computation has been
performed using an Nvidia Tesla V100 with 5120 CUDA cores and 96 GO of RAM.

The fast marching method only uses a single CPU core due to its intrinsic sequential
nature. The massively parallel solver presently uses a single GPU card, but its multi-
GPU extension is an opportunity for future work, possibly along the lines of [HJ16] in
the isotropic setting.
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8.5.1 Numerical application on a synthetic case obtained from the conformal
transformation of a TTI metric

We consider a semi-analytical test case, so as to investigate the convergence rate and
numerical error of our numerical scheme. It is a non-trivial heterogeneous TTI metric,
obtained from a conformal diffeomorphic transformation of a homogeneous TI metric. By
design, the exact solution to the eikonal equation is known and easily evaluated numeri-
cally to machine precision.

Conformal transformations are helpful to create non-trivial media with known so-
lutions: indeed, the Jacobian of a conformal transformation φ : Ω ⊂ R3 → R3 is a
scaled rotation, namely Jacφ(x) = α(x)R(x) with scaling parameter α(x) > 0 and rota-
tion matrix R(x). Our test medium is obtained as the pull-back of a homogeneous TI
medium by φ, so that the associated TTI eikonal PDE (124) parameters take the form
( a
α(x)4

, b
α(x)4

, c
α(x)4

, d
α(x)2

, e
α(x)2

) and R0R(x) pointwise, where (a, b, c, d, e) and R0 are fixed.
One can likewise define the pull back by a conformal transformation of an eikonal equation
which is isotropic, or whose anisotropy is defined by a general Hooke tensor [DCC+21,
Appendix A].

Three dimensional conformal transformations include dilations, translations, rotations,
the inversion x ∈ R3 \ {0} 7→ x/‖x‖2, and compositions of these. In our experiments
we use a “special conformal transformation”, defined by: φ(x) := x−b‖x‖2

1−2〈b,x〉+‖b‖2‖x‖2 . It is
smooth except for a singularity at b/‖b‖2, where b ∈ R3 is a parameter. It is obtained as
the composition of an inversion, a translation by −b, and another inversion. We choose
b := (1/6, 1/9, 1/18) and let Ω̃ :=] − 1, 1[3 with seed at the origin, so that the singular
point b/‖b‖2 /∈ Ω̃, and the image domain Ω := φ(Ω̃) is star shaped with respect to the
origin, see Figure 43.

We consider the homogeneous TI metric from the mica medium [BC91], defined by:
178 42.4 14.5 0 0 0
42.4 178 14.5 0 0 0
14.5 14.5 54.9 0 0 0

0 0 0 12.2 0 0
0 0 0 0 12.2 0
0 0 0 0 0 12.2

 , ρ = 2.79g/cm3,

which we rotate by 3π/5 with Euler axis (2, 1, 3), in such way that the transverse isotropy
plane is in a generic position rather than axis aligned (the latter may unfairly advantage
eikonal solvers based on a Cartesian discretization grid such as ours).

The TTI metric from the mica corresponds to a maximization case, see (125). We also
consider the same setting with different materials, such as the stishovite medium [BC91]
which corresponds to a minimization case. Remarkably, in our numerical experiments,
the two different cases yield completely similar computation time and error convergence,
despite the difference in the formulation of the numerical scheme and in the mathematical
proof of convergence Section 8.4. As the results are very close, we only illustrate the case
of the mica medium. A cross-section of the solution to the eikonal equation is presented in
Fig 44, which shows how the solution u relative to the constant metric on a transformed
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domain (right figure) translates to a solution ũ relative to a non-trivial metric on the
regular cube domain (left figure) with the conformal transformation.

Figure 43: Edges of the domain Ω̃ =] − 1, 1[3 (a cube) and of its image Ω = φ(Ω̃) by a
special conformal transformation.

Figure 44: Cross-section at Y = 0 of the solution to the eikonal equation for a non-trivial
TTI metric on Ω̃ (left), which corresponds to a constant metric on the transformed domain
Ω = φ(Ω̃) (right).

In the CPU implementation of our TTI eikonal solver, the 1D optimization problem
underlying our scheme is solved up to machine precision, by taking advantage of its quasi-
convexity, see Theorem 8.11. As a result, the numerical accuracy is directly related to the
scale h of the Cartesian discretization grid, and thus to the number of points N ≈ |Ω|/h3.
Second order O(h2) convergence rates are observed on Fig. (45, right), as expected since
we use second order finite differences, see Section 8.C.

In the GPU implementation, there is an additional source of approximation, related
to the sampling parameter K in the optimization by grid search of the 1D optimization
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problem underlying our scheme, see (146). As illustrated on Figure 36, this amounts to
approximating the slowness surface of the pressure wave with the union or the intersection
of k := K + 1 ellipses. When k is fixed, the numerical error of the scheme first decreases
as the grid scale is refined, until a plateau is reached. This could be expected from the
O(h2+k−2) consistency error of the scheme, with second order finite differences as here, see
Proposition 8.9. The plateau occurs for a number of ellipses k approximately proportional
to the inverse grid scale h−1. This scheme exhibits second-order convergence for small
domain sizes, provided k is large enough, but the convergence rate then slightly degrades
for the finest grid scales h; from the theoretical standpoint, convergence is guaranteed by
Theorem 8.33, but not a specific rate.

In our numerical experiment, we consider from 10 to 26 ellipses. The size of the
medium also goes from 39×39×39 to 217×217×217. This upper limit on the size of the
domain comes from a memory limit on the GPU, rather than a limit on computation time.
The computation time is quasi-linear w.r.t the total number of points for both the CPU
and GPU eikonal solvers, and increases with the number k of ellipses in the latter case.
The CPU implementation is about twice more accurate than the GPU implementation,
for the examples considered in Figure 45, but comes at the cost of a computation time
more than 10 times larger.

Remark 8.41 (Elliptic approximation). For computational efficiency purposes, on can
be tempted to approximate the TTI eikonal equation with a Riemannian eikonal equation,
and thus the algebraic P -wave slowness surface with a single ellipsoid. This corresponds
to a special case of our scheme, with a single ellipse (k = 1), and thus a trivial grid
search. For the test case considered here, the numerical error almost immediately reaches
a plateau, even with the use of ten ellipses (k = 10) as considered in Figure 45: the
scheme converges towards an erroneous solution, which shows the importance of properly
taking into account a TTI anisotropy compared with elliptic anisotropy.

Figure 45: Computation time and error of the numerical scheme, depending on the number
of ellipses for the GPU implementation. For visual interpretation, dotted lines illustrate
linear convergence O(h) and quadratic convergence O(h2).
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8.5.2 Projection error for the orthorhombic anisotropy

Orthorhombic anisotropy is a more general type of anisotropy compared with the TTI
anisotropy, and can be found in some crystalline structures. An orthorhombic medium
does not exhibit the rotational symmetry that is found in TTI media, and corresponds
to a Hooke tensor with nine independent elastic parameters, compared with five for the
TTI anisotropy. The eikonal equation with orthorhombic anisotropy can be solved by the
anisotropic variant of the Fast Marching method presented in [DCC+21], which we refer
to as the “general scheme”.

We consider the projection of an orthorhombic Hooke tensor to the closest Hooke
tensor with TTI anisotropy. We have two goals in mind: first, we want to compare the
computation time and the accuracy of our numerical scheme with the general scheme,
and second, we want to quantify the projection error caused by the approximation in the
anisotropy. Likewise, we consider the projection from the orthorhombic to an isotropic
Hooke tensor, which we solve with an isotropic Fast Marching method implemented on
GPU.

We consider the orthorhombic anisotropy defined from the olivine medium [BC91]:
323.7 66.4 71.6 0 0 0
66.4 197.6 75.6 0 0 0
71.6 75.6 235.1 0 0 0

0 0 0 64.6 0 0
0 0 0 0 78.7 0
0 0 0 0 0 79.0

 , ρ = 3.311g/cm3,

Similarly to the previous subsection, we use a conformal transformation to create a
non-trivial heterogeneous metric with a known solution. The projection of the Hooke
tensor and the pull-back of the metric by the conformal transformation can be done in
any order, so the TTI and isotropic settings also correspond to a conformal transformation
of a homogeneous metric, with known solution.

We illustrate on Fig 46 the slowness surfaces related to the olivine (orthorhombic
medium) and its TI and isotropic projections. Contrarily to TI and isotropic metrics,
the orthorhombic anisotropy does not possess a rotational symmetry, and so we show two
cross-sections of the corresponding slowness surfaces. For the eikonal equation, we are
only interested in the inner surface, related to the fastest speed.

We show in Table 5 the results of the different numerical schemes on the different
media. The domain size is 77 × 77 × 77. For the GPU case, we consider 10 ellipses for
the optimization by grid search.

We observe that the general scheme and the TTI scheme with CPU have a similar
computation time, and that the TTI scheme with GPU is approximately fifty times faster.
The isotropic scheme with GPU is also fifty times faster compared with the TTI scheme
with GPU. The error due to the numerical scheme is much smaller than the error due to
the approximation in the anisotropy of the medium: indeed, we observe that the numerical
L2-error and the exact L2-error are almost identical. Besides, the L2-error is more than
two times bigger when comparing the TTI projection to the isotropic projection, going
from an error of 2.27% to 5.31%.
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Figure 46: Slowness surfaces for the olivine and its TTI and isotropic projections. The
TTI and isotropic projections have a rotational symmetry along the vertical axis, but
not the olivine which is an orthorhombic medium, so we present two cross-sections of the
slowness surface for the olivine along two vertical plans. Only the inner surfaces are of
interest for the eikonal equation, related to the fastest speed.

With this example, we see that we need to make a choice between the accuracy of
the numerical scheme, the accuracy of the anisotropy model, and the computation time
required to solve the corresponding eikonal equation. It can be interesting to consider
media with fully general Hooke tensors to better encompass the anisotropy of a geophysical
medium, especially for orthorhombic media, as we see that the TTI projection leads to
errors. However, for use-cases in seismic imaging which do not deviate too much from
TTI anisotropy, such as the one presented in the next section, the TTI scheme is a better
choice: the computation time is greatly improved as it is approximately fifty times faster
than the general scheme, which can open the door to efficient applications in seismic
imaging.

8.5.3 Anisotropic media coming from the homogenization of an isotropic
medium

In the case of a medium with a sedimentary structure, the local invariance by rotation
around the normal axis to the layers is expected, which leads to TTI anisotropy. Even
if the materials of the medium are intrinsically isotropic, the medium can be represented
with TTI anisotropy if the typical wavelength of seismic waves is larger than the typ-
ical size of the layers caused by the sedimentation, and this can be done through the
homogenization process.
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Computation L2-error L2-error
time (s) (numeric) (exact)

General scheme on orth. med. 22.6 0.000109 0
TTI scheme (CPU) on TTI med. 10.4 0.0227 0.0226
TTI scheme (GPU) on TTI med. 0.545 0.0227 0.0226

Isotr. scheme (GPU) on isotr. med. 0.0125 0.0531 0.0546

Table 5: Computation on a synthetic test-case of size 77 × 77 × 77, with orthorhombic
anisotropy and its projection to TTI anisotropy and isotropy. The L2-error (num.) cor-
responds to the difference between the numerical solution on the corresponding medium
and the exact solution on the orthorhombic medium. The L2-error (exact) corresponds
to the difference between the exact solution on the corresponding medium and the exact
solution on the orthorhombic medium. All the L2-errors are normalized by the L2 norm
of the exact solution on the orthorhombic medium. The general scheme is the numerical
scheme from [DCC+21], used with second-order accuracy and “cut-cube” setting. The
TTI scheme with GPU is used with 10 ellipses. The isotropic scheme is a Fast Marching
scheme with second-order accuracy using GPU.

In this subsection, we study the application of our numerical scheme on a realistic
dataset, which comes from the homogenization of an isotropic medium into a model with
fully general anisotropy: the Hooke tensor has 21 independent elastic parameters. The
isotropic model is the SEG/EAGE overthrust model, see [ABK97] and Figure 47, and
information on the homogenized model can be found on [CMA+20]. We consider the
projection of the general medium into a TTI medium, with the projection being made
on the Hooke tensor at each point of the domain, see [CMA+20]. We then study the
relevance of this TTI projection by comparing the solution in the medium with general
anisotropy to the solution in the medium with TTI anisotropy, by using the scheme from
[DCC+21] which can handle general anisotropy.

We also consider the projection of the homogenized medium to an isotropic medium,
which is a way to study the strength of the anisotropy coming from the homogenization
process in this medium. We use the Fast Marching isotropic scheme with GPU to solve
the corresponding eikonal equation.

The medium is discretized on a 107×534×534 grid, corresponding to a real medium of
dimensions 4 km × 20 km × 20 km. The source point is placed on the point (0, 267, 267),
which corresponds to the middle of the medium on the surface. In order to use the multi-
scale source factorization described in Section 8.C, we need a finer discretization near the
source. For that purpose, we interpolate the value of the general metric near the source
with a trilinear interpolation on each coefficients of the Hooke tensor, and then we use
the projection to TTI metric again.

First, we use the scheme from [DCC+21], which can solve the eikonal equation with
a Hooke tensor of general anisotropy, and use it with second-order precision. With this
scheme, we get the solution to the eikonal equation on both the general metric and the
TTI metric, and we can consider these two results as the closest we have to the exact
solutions. We also compute the solution on the TTI metric with our numerical scheme,
with both CPU and GPU implementations. For the GPU case, we use 10 ellipses for the
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optimization by grid search, and checked that using a higher number of ellipses does not
significantly change the result.

On Figure 47, we show a superposition of the solution to the eikonal equation with
the solution to the wave equation in the same medium. The elastic wave propagation
problem is solved using the spectral-element based modeling and inversion code SEM46
[TBM+19b, CBM20]. We observe that the isochrones computed from our eikonal solver
properly follows the wavefront of the solution to the wave equation at the corresponding
time, as expected.

Figure 47: Elastic wavefield (black and white) computed in the 3D TTI medium coming
from the homogenization of the SEG/EAGE overthrust model. The background corre-
sponds to the P-wave velocity of this model. The red contour corresponds to the isochrone
computing through our fast marching eikonal solver (with GPU implementation). The
different snapshots are obtained at t = 1.5 s (top), t = 2 s (middle) and t = 2.5 s (bottom).
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Computation time (s) L2-error
General scheme on general medium 1571 -

General scheme on TTI medium 1569 0.00062
TTI scheme with CPU on TTI medium 478 0.0068
TTI scheme with GPU on TTI medium 13 0.0056
Isotr. scheme with GPU on isotr. med. 0.28 0.011

Table 6: Computation time on a realistic synthetic test-case. The L2-error corresponds to
the difference between the numerical solution and the solution computed by the general
scheme on general medium, normalized by the L2 norm of the solution computed by the
general scheme on general medium. The general scheme is the scheme from [DCC+21],
used with second-order accuracy. The TTI scheme with GPU is used with 10 ellipses.
The isotropic scheme is a Fast Marching scheme with second-order accuracy using GPU.

The error due to the TTI projection can be estimated by the L2-error between the
general scheme on general medium and the general scheme on TTI medium as shown in
Table 6, and is around 0.062%. For comparison, it is more than thirty times less than
the projection error in the orthorhombic setting presented Section 8.5.2. The proposed
TTI scheme, and the general scheme [DCC+21], rely on completely different discretiza-
tion principles, and for this reason they produce slightly different numerical solutions even
when applied to the same TTI eikonal PDE. We observe on Table 6 that the L2 error
between the TTI scheme and the general scheme on a general medium is around 0.68%,
which is ten times larger than the error associated with the TTI projection alone, ob-
served with the general scheme on the TTI medium. This validates the assumption that
the anisotropy in the homogenized model is very close to TTI anisotropy, and that the
associated projection error is well below the discretization error, related to the grid scale
and scheme design. Besides, we observe that the computation time is greatly improved
by the TTI scheme with GPU implementation compared with the general scheme, with a
computation time a hundred times faster. On the other hand, the isotropic projection of
the homogenized model leads to an error of around 1.1%, which is seventeen times higher
than the projection error due to the TTI scheme, with a computation again fifty times
faster.

As a conclusion, the anisotropy in this dataset is close to TTI anisotropy, as is expected
from the homogenization process in an isotropic medium with sedimentary structure: the
normal axis to the layers is a natural axis of symmetry. In the case of seismics faults or
complex interactions between the layers, the anisotropy can become more complex and lose
this symmetry axis, but in this realistic instance, the TTI anisotropy seems to be enough
to explain the general anisotropy coming from the homogenization process. Contrast
this with the Olivine medium considered Section 8.5.2, which is an orthorhombic crystal
system with no such rotation invariance, and whose TTI projection error is significant.
Therefore, the TTI scheme is adapted to efficiently compute the first arrival traveltimes
in a realistic medium with sedimentary structure and no intrinsic anisotropy coming from
inner crystal structure.
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8.6 Conclusion

We presented a discretization for the eikonal equation with anisotropy coming from a TTI
Hooke tensor. The scheme is monotone and causal, hence solvable in a single pass using
the fast-marching method, but also has a simple Eulerian structure, hence fits massively
parallel architectures as well; using classical enhancements such as source factorization,
we achieve second order accuracy. Two implementations have been proposed, one for CPU
and one for GPU. The GPU implementation features an additional parameter which must
be correctly tuned, namely the number of ellipses whose envelope approximates the P -
slowness surface, but performs much faster compared with the CPU implementation. The
scheme is more than fifty times faster with a small loss in accuracy compared with the
scheme from [DCC+21], which is a state-of-the-art scheme able to handle media with
Hooke tensors of general anisotropy. In addition, the scheme from [DCC+21] suffers from
a limit on the strength of anisotropy it can tackle (defined as the ratio between the
highest velocity and the lowest velocity at a given position) even for TTI media, whereas
our present scheme does not exhibit such a restriction on TTI media.

Future research will be devoted to applications to seismic imaging by tomographic
inversion. Besides, an extension of the method to orthorhombic Hooke tensors seems
possible, since those are TTI in every cross section. The generalization of our present
scheme would involve a two dimensional - rather than one dimensional in the present TTI
setting - minimization, maximization, or min-max saddle point optimization problem at
each grid point.

8.A Thomsen parameters and Hooke tensor symmetry

In this section, we briefly describe how the TTI eikonal PDE (124) is related to classical
descriptions of an elastic medium, based either on the Hooke elasticity tensor, or on the
Thomsen parameters. A 3D geological medium is described by a fourth-order elasticity
tensor, referred to as the Hooke tensor and denoted c = (cijkl), where i, j, k, l ∈ {1, 2, 3},
and by the density ρ of the medium. The Hooke tensor is subject to the symmetry
relations cijkl = cjikl = cjkij, allowing it to be represented as a 6×6 matrix C using Voigt’s
notation, see Section 8.2.1 and (148).

Some additional symmetries are often considered for a geological medium. A trans-
versely isotropic medium is a geological medium whose local elasticity properties are
invariant by rotation around a specific axis. It is called vertically transversely isotropic
(VTI) in case of invariance around the vertical axis, and tilted transversely isotropic (TTI)
otherwise. In the case of VTI symmetry, the Hooke tensor (in Voigt notation) only has 5
independent elastic parameters and can be written as [Tho86]:

CV TI =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c11−c12

2

 .

172



A Hooke tensor with TTI symmetry can be obtained from a Hooke tensor with VTI
symmetry CV TI and a rotation matrix R, through the usual change of variables formula

cTTIi′j′k′l′ =
∑

i,j,k,l∈{1,2,3}

cV TIijkl Rii′Rjj′Rkk′Rll′ . (195)

Conversely, a (non-convex) projection procedure allows to reconstruct a VTI tensor and
a rotation R from a given Hooke tensor [CMA+20], up to some accuracy loss if the latter
only has approximate TTI symmetry.

We now present the eikonal equation related to a TTI Hooke tensor, starting from
the Christoffel equation (obtained as a high-frequency approximation of the elastic wave
equation) [Sla03]:

det
[ ∑
j,l∈{1,2,3}

cijkl
∂u

∂xj

∂u

∂xl
− ρδik

]
= 0. (196)

Between brackets is a 3 × 3 matrix, of indices i, k, obtained as the difference of (i) a
contraction of the Hooke tensor by the partial derivatives of the arrival time function u,
and (ii) the identity matrix scaled by the density ρ of the medium. For simplicity we
assume in the following that ρ = 1, up to considering the reduced tensor c/ρ.

Define the slowness vector (px, py, pz) := R∇u, and let p2
r := p2

x + p2
y. Then the

Christoffel equation (196) for a TTI symmetry can be algebraically factored as follows:

0 = (
c11 − c12

2
p2
r + c44p

2
z − 1) ×

(c11c44p
4
r + c33c44p

4
z − (2c13c44 + c2

13 − c11c33)p2
rp

2
z − (c11 + c44)p2

r − (c33 + c44)p2
z + 1).

The first factor of this equation characterizes the arrival time of the SH (horizontal shear
wave) propagation. This factor defines a Riemannian eikonal equation, which can be
solved numerically [Mir14a, Mir19], but is of not interest for the computation of the
first travel time. The second factor corresponds to the coupling P-SV, between the qP
(quasi-pure pressure wave) and the qSV (quasi-pure vertical shear wave), and is the factor
we need to consider for the first-arrival time. The P-SV equation for a TTI symmetry
is a non-Riemannian anisotropic eikonal equation of degree four, mathematically more
complex than the SH equation, which is reproduced in (129) and studied in this paper.
Interestingly, the parameter c12 only appears in the SH equation, and the four relevant
parameters (c11, c13, c33, c44) for the P-SV equation can be organized in a 2-dimensional
Hooke tensor (151).

The P-SV equation, henceforth referred to as the TTI eikonal equation, is summarized
as

ap4
r + bp4

z + cp2
rp

2
z + dp2

r + ep2
z = 1, where (px, px, pz) = R∇u and p2

r := p2
x + p2

y, (197)

with coefficients (a, b, c, d, e) derived from the Hooke tensor as above. For the Hooke
tensors considered in geophysics, the TTI equation has two distinct solutions. In the
(px, py, pz) coordinate system, these solutions are called slowness surfaces, and are invari-
ant by the rotation R. The inner surface corresponds to the slowness of the P wave (that
is, the inverse of its velocity), whereas the outer surface corresponds to the slowness of
the S wave. They are illustrated on Figure 36 and Figure 37, and studied in detail in
Section 8.2.
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Remark 8.42. Thomsen’s elastic parameters (Vp, Vs, ε, δ) define another approach to ob-
tain the TTI eikonal equation (197), with the conversion formula [Tho86]:

Vp =

√
c33

ρ
, Vs =

√
c44

ρ
, ε =

c11 − c33

2c33

, δ =
(c13 + c44)2 − (c33 − c44)2

2c33(c33 − c44)
.

The Thomsen parameters have physical interpretations in a weakly anisotropic setting: in
particular, Vp approximates the speed of the P-wave, and Vs of the S-wave. Nevertheless
this is only an approximation in a special asymptotic setting, and in general both the P
and S slowness surfaces depend on the four Thomsen parameters. For this reason we do
not use here the convention Vs = 0, which has sometimes been considered to simplify the
PDE (197) when one is only interested in the first travel time computation, corresponding
to the P-wave.

Remark 8.43. In this paper, and in our numerical method, we only require the matrix R
to be invertible in the definition (197) of the eikonal equation. This may be surprising since
the TTI formalism (195) and (196), based on physical considerations, makes the stronger
assumption that R is a rotation. Our motivation for allowing non-rotations is that the
computational domain is often the image of the physical domain by a diffeomorphism, e.g.
to take into account the topography of the surface. In that case the equivalent eikonal PDE
in the computational domain involves a matrix R defined as the product of the original
rotation R0, associated with the TTI model, and of the Jacobian of the diffeomorphism,
which is usually not a rotation.

Finally, we want to create a criterion based on the coefficients of a TTI metric, to
quantify its anellipticity. We suggest the criterion: canel := α∗−α∗, where 0 < α∗ ≤ α∗ < 1
are defined in Theorem 8.3. It characterizes the difference between the two most extreme
ellipses when doing the enveloppe of the TTI metric, see Figure 48. In the case of an
elliptic metric, we have: canel = 0.

Figure 48: Example of two TTI media from the article [Tho86], represented as in 37,
and with corresponding canel. In blue are shown the two most extreme ellipses in the
optimization problem, which we use to define canel.

In order to evaluate the update operator Λ with the optimization by fine sampling, we
consider a sampling of an interval over K + 1 elements, with K chosen by the user: the
parameter K could reasonably be chosen depending on the criterion canel, as the accuracy
of our approach should depend on how far the TTI metric is from an elliptic metric.
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For illustrative purposes, we consider the article [Tho86], in which there are 58 exam-
ples of TTI metrics, corresponding to real and hypothetical materials, and we show the
histogram of the corresponding canel in Figure 49. The two media with the highest canel
correspond to crystallographic media, which are not usual in geophysics.

Figure 49: Histogram of canel for TTI examples from the article [Tho86].

From this study, we can reasonably assume that the usual TTI metrics do not exhibit
a very strong anellipticity, apart from some crystallographic media. Therefore, for most
real test-cases, the optimization by fine sampling should give a good result even if we use
a small amount of ellipses in the sampling.

8.B Selling’s decomposition

This section is devoted to Selling’s decomposition of positive definite matrices, and to
the proof of Proposition 8.7. Selling’s decomposition is a tool originating from the field
of lattice geometry [Sel74, CS92], which has recently found a number of applications in
the design of anisotropic PDE discretizations, see [FM14, Mir19, BBM20, BM21] and
Section 8.1.2. In the following, we present its definition, basic properties, and practical
construction. For that purpose we introduce the concept of superbase, which is a slightly
redundant coordinates system in Zd.

Definition 8.44. A superbase of Zd is a family (v0, ..., vd) ∈ (Zd)d+1 such that v0+...+vd =
0 and | det(v1, ..., vd)| = 1.

Given a superbase (v0, · · · , vd) of Zd and a matrix D ∈ S++
d , we have Selling’s formula

D = −
∑

0≤i<j≤d

〈vi, Dvj〉eije>ij, (198)

where the offsets are defined by the linear relations 〈eij, vk〉 = δij − δik for all 0 ≤ i <
j ≤ d and 0 ≤ k ≤ d. This decomposition involves I =

(
d+1

2

)
= d(d + 1)/2 terms, and

the offsets have integer coordinates by construction. They admit simple expressions in
small dimension: if d = 2 and {i, j, k} = {0, 1, 2} then vij = ±e⊥k , and if d = 3 and
{i, j, k, l} = {0, 1, 2, 3} then vij = ±vk × vl (where × denotes the cross product). For a
proof of Selling’s formula (198), see [BBM21a, Lemma B.2].
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Selling’s decomposition of D ∈ S++
d , d ∈ {2, 3}, is defined as Selling’s formula (198)

applied to a D-obtuse superbase, defined below, in such way that the weights −〈vi, Dvj〉
are non-negative.

Definition 8.45. A superbase b = (v0, · · · , vd) is said D-obtuse, where D ∈ S++
d , if

〈vi, Dvj〉 ≤ 0 for all 0 ≤ i < j ≤ d. We let Sb := {D ∈ S++
d ; b is D-obtuse}.

Using Pauli matrices in dimension d = 2, one obtains a linear parametrization

D(x, y) =

(
1 + x y
y 1− x

)
, x2 + y2 < 1, (199)

of the set of symmetric positive definite matrices of trace two, by the Euclidean unit ball.
Figure 38 (left) illustrates the anisotropy defined by D(a, b). The domains Sb associated
to superbases b of Z2 appear as triangles in this parametrization, and together they define
an infinite triangulation of the open unit ball {x2 + y2 < 1}, see Figure 38 (center).

In order to conclude the proof of the first part of Proposition 8.7, one needs to show
that a D-obtuse superbase exists, which is the purpose of Selling’s algorithm.

Proposition 8.46 (Selling’s algorithm, [Sel74] or [BBM21a, Proposition B.3]). Let b =
(v0, · · · , vd) be a superbase of Zd, where d ∈ {2, 3}, and let D ∈ S++

d . If b is not D-obtuse,
permute it so that 〈v0, Dv1〉 > 0 and update it as follows

b← (−v0, v1, v0 − v1) if d = 2, b← (−v0, v1, v2 + v0, v3 + v0) if d = 3. (200)

Repeating this operation yields a D-obtuse superbase in finitely many steps.

In order to establish the second part of Proposition 8.7, we normalize Selling’s decom-
position as in [BBM21a, Appendix A], up to replacing some offsets with their opposites:

D =
∑
e∈Zd

ρ(e;D) ee>, where Zd := {e ∈ Zd; e �lex 0}, (201)

where �lex stands for the lexicographic ordering. (Note that exactly one of e �lex 0
or −e �lex 0 holds for each e ∈ Zd \ {0}, and that ee> = (−e)(−e)>.) The weights
[ρ(e;D)]e∈Zd are known as Selling parameters [CS92], and depend on D but not on the
choice of D-obtuse superbase, see e.g. [BBM21b, Remark 2.13] for a proof. In view of
Selling’s formula (198), there exists at most d(d+1)/2 offsets e ∈ Zd such that ρ(e;D) 6= 0,
for any given D ∈ S++

d . With these notations, we summarize in the next result some
properties of Selling’s decomposition: the offsets are bounded, the weights are locally
Lipschitz, and a basis of Zd can be extracted. We denote by µ(D) :=

√
‖D‖‖D−1‖ the

square root of the condition number of a matrix D ∈ S++
d .

Proposition 8.47 (Propositions B.4, B.5 and B.8 in [BBM21a]). The following holds in
dimension d ∈ {2, 3}, denoting C = 2 if d = 2 (resp. C = 2

√
3 if d = 3), and for some

absolute constant c > 0:

• (Offset boundedness) For any e ∈ Zd, D ∈ S++
d s.t. ρ(e;D) 6= 0, one has ‖e‖ ≤

2Cµ(D).
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• (Lipschitz weights) For any e ∈ Zd, the mapping D ∈ S++
d 7→ ρ(e;D) is locally

Lipschitz with constant C2µ(D)2.

• (Spanning property) For any D ∈ S++
d , there exists e1, · · · , ed ∈ Zd such that

det(e1, · · · , ed) = 1, min
1≤i≤d

ρ(ei;D) ≥ c‖D−1‖−1.

For each superbase b = (v0, · · · , vd) of Zd, and each offset e ∈ Z, the mapping D ∈
Sb 7→ ρ(e;D) is linear, where Sb is defined in Definition 8.45. Indeed, in view of Selling’s
formula (198), either e = ±eij for some 0 ≤ i < j ≤ d and thus ρ(e;D) = −〈vi, Dvj〉 is
a linear function of D, or ρ(e;D) = 0 identically on Sb. This linearity property, already
used in the design of the PDE schemes [BBM20, BM21], allows here to conclude the proof
of Proposition 8.7.

Proof of the second part of Proposition 8.7. For concreteness and w.l.o.g. we can assume
that α∗ = 0, α∗ = 1, and thus D(α) := (1 − α)D0 + αD1, α ∈ [0, 1], for some given
D0, D1 ∈ S++

d . Note that µ(D(α)) ≤ max{µ(D0), µ(D1)} for all α ∈ [0, 1].
Denote by B be the collection of all superbases of Zd whose elements are bounded

by 2C max{µ(D0), µ(D1)}, where C is from Proposition 8.47 (offset boundedness). Then
any D(α)-obtuse superbase belongs to B, for any α ∈ [0, 1].

Given a superbase b = (v0, · · · , vd) ∈ B the set Ib = {α ∈ [0, 1]; b is D(α)-obtuse}
is defined by linear inequalities: 〈vi, [(1 − α)D0 + αD1]vj〉 ≤ 0 for all 0 ≤ i < j ≤ d.
Therefore Ib is closed and convex, hence either Ib = ∅, or Ib = [α−b , α

+
b ] is a segment with

0 ≤ α−b ≤ α+
b ≤ 1. The weights of Selling’s decomposition (198) are affine functions of

the parameter α ∈ Ib, with the general form α 7→ −〈vi, [(1 − α)D0 + αD1]vj〉, whereas
the offsets eij are constant over Ib, as announced. Noting that [0, 1] = ∪b∈BIb is a finite
union of such segments, we establish that Selling’s decomposition is piecewise affine (140)
which concludes the proof of Proposition 8.7.

For concreteness and implementation purposes, we present in Algorithm 6 (without
proof) a variant of Selling’s algorithm (Proposition 8.46), which can be regarded as a
constructive implementation of the above proof of the piecewise affine nature of Selling’s
decomposition. For notational simplicity and w.l.o.g. we assume again that D(α) :=
(1−α)D0+αD1 is parametrized over the interval [α∗, α

∗] = [0, 1]. This algorithm produces
some breakpoints 0 = α0 < · · · ≤ αK = 1, and corresponding superbases b0, · · · , bK−1

of Zd, such that bk is D(α)-obtuse for all α ∈ [αk, αk+1], 0 ≤ k < K. Thus Selling’s
decomposition (198) of D(α) is affine on each of these intervals, as required.

8.C Scheme enhancements for higher accuracy

We describe in this subsection some algorithmic enhancements to the finite differences
discretization (125) of the TTI eikonal PDE, meant to improve its accuracy, and we
discuss of their relevance and applicability to the CPU and GPU implementations. The
improvements are validated by a consistency analysis and by numerical experiments in
Section 8.5.1, but not by a formal convergence analysis. The proposed scheme variants
are adapted from the literature, hence are not original in themselves: various approaches
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Algorithm 6 A modification of Selling’s algorithm, producing 0 = α0 ≤ · · · ≤ αK = 1
and b0, · · · , bK−1 superbases, such that bk is [(1 − α)D0 + αD1]-obtuse ∀α ∈ [αk, αk+1],
0 ≤ k < K.
Input : D0, D1 ∈ S++

d .
Initialization : set α0 = 0, k = 0, and compute a D0-obtuse superbase b0using
Proposition 8.46.
Repeat :
Denote bk = (v0, · · · , vd), and let αk+1 ∈ [αk,∞] be the smallest α such that
∃0 ≤ i < j ≤ d, 〈vi, (D1 −D0)vj〉 > 0 and 〈vi, [(1− α)D0 + αD1]vj〉 = 0.
(Up to permuting bk, we assume that i = 0 and j = 1 are the active indices.)

If αk+1 ≥ 1 then set K := k + 1 and exit.
Define bk+1 by applying Selling’s update (200) to bk.
Set k ← k + 1 and proceed to the next iteration.

to source factorization are presented in [LQ12], second order accurate fast marching is
introduced in [Set99], and the use of several discretization scales and coordinate systems
depending on the distance from the source is documented in [WFNBZ20].

The discussion applies to any finite differences scheme of the following form, including
the discretizations of the Riemannian (141) and TTI (143) eikonal PDEs:

Fu(q) = F̂(q, [δehu(q)]e∈E), δehu(q) :=
u(q)− u(q − he)

h
, (202)

where the scheme unknown u is defined over a subset of the Cartesian grid hZd 3 q
of scale h > 0, and where E ⊂ Zd denotes the scheme stencil. We assume that the
scheme F obeys (i) the DDE (discrete degenerate ellipticity) property and (ii) the causality
property, see Definition 8.6. In other words Fu(q) is (i) a non-decreasing function of the
finite difference δehu(q), and (ii) only depends on the positive part max{0, δehu(q)}, for
any e ∈ E. Since some considered scheme modifications may unfortunately break these
properties, we discuss beforehand the extent to which our numerical eikonal solvers need
them.

• The fast marching method, our CPU eikonal solver, requires a causal and DDE
scheme. However a higher order non-DDE scheme can be used in the optional
post-processing step of Algorithm 5, line 3., so as to improve the accuracy of the
accepted value u(q) before it is frozen. Following the principles of the high accuracy
fast marching method (HAFMM) [Set99], this modification is only applied if it is
small enough. Such post-processing is guaranteed not to degrade the convergence
order of the method, by the comparison principle see [DCC+21, Proposition D.5],
and in practice appears to improve it.

• The iterative GPU eikonal solver, only requires a DDE scheme. On the positive
side, the causality property is not needed. On the negative side there is no clear
opportunity to introduce a higher order non-DDE scheme, without the risk to create
instabilities and to compromise the convergence of the solver. A basic fix to restore
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monotony along the solver iterations, without guarantee but with often good empir-
ical results see Section 8.5.1, is to accept an update value only if it is smaller than
the previous one.

The consistency of a finite differences scheme (202) with the corresponding eikonal
PDE, such as (125) with the TTI equation (128), is ultimately based on the finite differ-
ences approximation: ∣∣δehu(q)− 〈∇u(q), e〉

∣∣ ≤ 1
2
‖∇2u(r)‖h, (203)

for sufficiently smooth u and where r ∈ [q, q + he]. This follows from a Taylor expansion,
at a point q ∈ Ω, in a direction e ∈ Rd of differentiation with ‖e‖ = O(1), and with
finite difference scale h > 0. Each of the scheme variants discussed below is based on
introducing in (202, left) a modified finite difference operator δ̃eh whose consistency with
〈∇u(q), e〉 is improved. These scheme variants are easily combined, and all three together
are required to achieve second order convergence rates in Section 8.5.1.

Source factorization. The solution to the eikonal equation (128) has a singularity at
the source point q0, which degrades the accuracy of the finite difference approximation
(203) since ‖∇2u(q)‖ = O(1/‖q−q0‖) explodes as q → q0. Source factorization techniques
[LQ12] rely on the computation of an equivalent u∗ of the solution near the singularity,
which can be easily evaluated and differentiated to machine precision. Typically one
uses u∗(q) = Fq0(q − q0), which is the exact solution in the case of a constant metric,
see Remark 8.5. As a result ‖∇2u(q) − ∇2u∗(q)‖ = O(1) as q → q0, for a metric of
suitable regularity, leading to a corresponding improvement in the scheme consistency
(203). Following the principle of additive source factorization [LQ12], we introduce the
modified finite differences operator

δ̃ehu(q) :=
u(q)− u(q − he)

h
+ ωeh, where ωeh :=

(
〈∇u∗(q), e〉 −

u∗(q)− u∗(q − he)
h

)
.

(204)

The additional corrective term ωeh = O(h2/‖q − q0‖) preserves the DDE property, since
δ̃ehu(q) = δehu(q) + ωeh is a non-decreasing function of δehu(q), but breaks the causality
property, since max{0, δ̃ehu(q)} = max{0, δehu(q) +ωeh} is not a function of max{0, δehu(q)}
when ωeh > 0. As a result, this modification fits well in the iterative GPU solver, but
introduces slight errors in the FMM CPU solver. (Note that there exists a stronger
quantitative variant of the causality property, referred to as δ1-causality where δ1 > 0,
which is preserved under source factorization, see [DCC+21, Proposition D.4]. However
the scheme proposed in this paper is not δ1-causal.)

Multiscale computation. This technique features a preliminary run of the eikonal
solver in a neighborhood Ω1 ⊂ Ω of the source point q0 [WFNBZ20], using a smaller grid
size h1 = h/k1 where k1 ≥ 2 is an integer. In essence, the pre-computation uses the
modified finite difference operator

δ̃eh :=
u(q)− u(q − h1e)

h1

=
u(q)− u(q − (h/k1)e)

h/k1

,
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which is more accurate by virtue of the smaller grid scale, reducing the consistency error
(203) by an approximate factor k1. The dimensions of Ω1 are chosen (at least) k1 times
smaller than Ω, in such way that the refined computational domain around the source
Ω1
h = Ω1 ∩ h1Zd has comparably many points as the global computational domain Ωh =

Ω ∩ hZd. In principle, this approach can be implemented recursively using an increasing
sequence of subdomains q0 ∈ ΩN ⊂ · · · ⊂ Ω1 ⊂ Ω and of grid scales hN | · · · |h1|h, but a
basic two scales approach with h1 = h/4 was found to be appropriate in our experiments,
see Section 8.5.1.

Second order finite differences. The modified finite difference operator

δ̃ehu(x) =
u(q)− u(q − he)

h
+
u(q)− 2u(q − he) + u(q − 2he)

2h
,

is upwind, second order accurate, and is often used in the post-processing step of
fast marching methods [Set99, Mir19], see Algorithm 5, line 3. The consistency error
O(‖∇3u(q)‖h2) is more favorable than (203) in regions where the solution is smooth. This
variant is therefore mostly useful far from the source point, in contrast with the previous
two modifications. The DDE property fails however, because δ̃ehu(q) = 2δehu(q)− 1

2
δ2e
h u(q)

is not a non-decreasing function of δehu(q) and δ2e
h u(q), and for safety the second order

correction is thus rejected if it is too large.

180



9 Massively parallel computation of globally optimal
shortest paths with curvature penalization [MGB+21]

This section corresponds to the paper, currently submitted and under reviewing:

• Jean-Marie Mirebeau, Lionel Gayraud, Rémi Barrère, Da Chen, and Francois Desquil-
bet. Massively parallel computation of globally optimal shortest paths with curva-
ture penalization. 2021

Abstract

We address the computation of paths globally minimizing an energy involving
their curvature, with given endpoints and tangents at these endpoints, according
to models known as the Reeds-Shepp car (reversible or forward only), the Euler-
Mumford elasticae, and the Dubins car. For that purpose, we numerically solve
degenerate variants of the eikonal equation, on a three dimensional domain, in a
massively manner on a graphical processing unit. Due to the high anisotropy and
non-linearity of the addressed PDE, the discretization stencil is rather wide, has
numerous elements, and is costly to generate, which leads to subtle compromises
between computational cost, memory usage, and cache coherency. Accelerations by
a factor 30 to 120 are obtained w.r.t a sequential implementation. The efficiency
and robustness of the method is illustrated in various contexts, ranging from motion
planning to vessel segmentation and radar configuration.

9.1 Introduction

The eikonal Partial Differential Equation (PDE) characterizes the minimal travel time
of an omni-directional vehicle, from a fixed source point to an arbitrary target point,
and allows to backtrack the corresponding globally optimal shortest path. The numerical
solution of the eikonal PDE is at the foundation of numerous applications ranging from
path planning to image processing or seismic tomography [Set99]. Real vehicles however
are usually not omni-directional, but are subject to maneuverability constraints: cars
cannot perform side motions, planes cannot stop, etc. In this paper we focus on the Reeds-
Shepp, Euler-Mumford and Dubins vehicle models, which account for these constraints by
increasing the cost of highly curved path sections, or even forbidding them. The variants
of the eikonal PDE corresponding to these models are non-holonomic (a degenerate form
of anisotropy) and are posed on the three dimensional state space R2 × S1, which makes
their numerical solution challenging. A dedicated variant of the fast marching method is
presented in [Mir18, MP19], and together with earlier prototypes it has found applications
in medical image segmentation [CMC16, CMC17, DMMP18] as well as the configuration
of surveillance systems [MD17, DDBM19]. However, a weakness of the fast marching
algorithm is its sequential nature: the points of the discretized domain are accepted one
by one in a specific order, namely by ascending values of the front arrival times, which
imposes the use of a single CPU thread managing a priority queue.

In this paper, we present a massively parallel solver of the non-holonomic eikonal PDEs
associated with the Reeds-Shepp, Euler-Mumford and Dubins models of curvature penal-
ized shortest paths. We use the same finite difference discretization as [Mir18, MP19], on
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a Cartesian discretization grid, but solve the resulting coupled system of equations us-
ing an iterative method implemented on a massively parallel computational architecture,
namely a Graphics Processing Unit (GPU), following [WDB+08, JW08, FKW13, GHZ18].
Our numerical schemes involve finite difference offsets which are often numerous (30 for
Euler-Mumford), rather wide (up to 7 pixels), and whose construction requires non-trivial
techniques from lattice geometry [Mir18]. This is in sharp contrast with the standard
isotropic eikonal equation addressed by existing GPU solvers, which only requires few and
small finite difference offsets when it is discretized on Cartesian grids [WDB+08, JW08],
and depends on unrelated geometric data when the domain is an unstructured mesh
[FKW13, GHZ18]. Due to these differences, the compromises needed to achieve optimal
efficiency - a delicate balance between the cost of computations and of memory accesses
- strongly differ between previous works and ours, and even between the different models
considered in this paper.

Our study provides the opportunity to inspect these compromises as the stencil of the
finite difference scheme grows in width, number of elements and complexity, from 2 offsets
of width 1 pixel (isotropic model in 2D), to 30 offsets of width up to 7 pixels (elastica
model). Specifically, our observations regarding the models with wider finite difference
stencils are the following: (i) They work best, somewhat counter intuitively, with a more
finely grained parallelization, in our case obtained with smaller tiles and a smaller number
of fixed point iterations within them, see Section 9.2.1 and Table 7. (ii) Precomputing
and storing the stencil weights and offsets offers a significant speedup, up to 40% in our
case, but the memory cost is prohibitive unless one can take advantage of symmetries in
the equation to share this data between grid points, see Section 9.2.2. (iii) The scheme
update operation involves a sort of the solution values fetched at the neighbors defined
by the stencil, whose cost becomes dominant in the wide stencil case unless implemented
in a GPU friendly manner, see Section 9.2.3. We expect our findings to transfer to other
wide stencil finite difference methods, a class of numerical schemes commonly used to
address Hamilton-Jacobi-Bellman PDEs arising in various applications, including deter-
ministic (as here) and stochastic optimal control, optimal transport and optics design via
the Monge-Ampere equation [Obe08], etc. Eventually, our GPU accelerated eikonal solver
is 30× to 120× faster than the CPU fast marching method from [Mir18], see Table 8. In
the numerical experiments Section 9.3, which include applications to medical image seg-
mentation, boat routing and radar configuration, computations times on typical problem
instances are often reduced from 30 seconds to less than one, enabling convenient user
interaction.

Outline. We describe Section 9.1.1 the curvature penalized path optimization problems
addressed, and Section 9.1.2 the eikonal equation formalism and the corresponding finite
difference scheme. Our numerical solver is presented Section 9.2, distinguishing routines
acting at the grid scale Section 9.2.1, the tile scale Section 9.2.2, and the pixel scale
Section 9.2.3, see also Algorithms 7 to 9. Numerical experiments Section 9.3 illustrate
the method’s efficiency in various applications, corresponding to the best case scenario
Section 9.3.1 or to various difficulties such as obstacles Section 9.3.2, strongly inhomoge-
neous cost functions Section 9.3.3, asymmetric perturbations of the curvature penalization
Section 9.3.4, and optimization problems Section 9.3.5.
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Remark 9.1 (Intellectual property). The numerical methods presented in this paper are
available as a public and open source library13, licensed under the Apache License 2.0, and
whose development is led by J.-M. Mirebeau. Accelerations of the same order were first
obtained with an earlier independent GPU implementation of the HFM [MP19] method
(limited to the Dubins model) developed by L. Gayraud with the support of R. Barrere, and
in informal collaboration with J.-M. Mirebeau. The two libraries are written in different
languages (Python/CUDA versus C++/OpenCL), do not share a single line of code, use
different implementation tricks, and offer distinct functionality.

9.1.1 Curvature penalized path models

Throughout this paper we fix a bounded and closed domain Ω ⊂ R2, and a continuous
and positive cost function ρ : Ω× S1 →]0,∞[, where S1 := [0, 2π[ with periodic boundary
conditions. The objective of this paper is to compute paths (x,θ) : [0, L] → Ω × S1 in
the position-orientation state space, which globally minimize the energy

E(x,θ) :=

∫ L

0

ρ(x,θ) C(θ̇) dl, subject to ẋ = eθ, (205)

where we denoted eθ := (cos θ, sin θ) and θ̇ := dθ
dl

and ẋ := dx
dl
. An additional constraint

to (205) is that the initial and final configurations x(0), θ(0) and x(L), θ(L) are imposed,
in other words the endpoints of the physical path and the tangents at these endpoints.
The path is parametrized by Euclidean length in the physical space Ω, and the total
length L is a free optimization parameter. The constraint (205, right) requires that
the path physical velocity ẋ(l) matches the direction defined by the angular coordinate
eθ(l) := (cosθ(l), sinθ(l)), for all l ∈ [0, L]. This constraint is said non-holonomic because
it binds together the some of the first order derivatives of the path (ẋ, θ̇).

The choice of curvature penalty function C(κ), where κ := θ̇ is the derivative of
the path direction in Eq. (205), is limited to three possibilities in our approach, in con-
trast with the state dependent penalty ρ which is essentially arbitrary. The considered
curvature penalties are defined by the following expressions, which correspond to the
Reeds-Shepp14, Euler-Mumford, and Dubins models respectively: we define C(κ), for all
κ ∈ R, as either

√
1 + κ2, 1 + κ2, 1 +∞|κ|>1, (206)

where ∞cond stands for +∞ where cond holds, and 0 elsewhere. The Reeds-Shepp model
penalizes curvature in a roughly linear manner, which allows in-place rotations15. The
quadratic curvature penalty of the Euler-Mumford model corresponds to the energy of
an elastic bar, hence minimal paths follow the rest position of those objects. Finally the

13www.github.com/Mirebeau/AdaptiveGridDiscretizations
14The following description applies to the forward only variant of the Reeds-Shepp model, see Remark

9.3 for a discussion of the reversible variant.
15In full rigor, a parametrization by Euclidean length in the full state space (both physical and angular),

or an arbitrary Lipschitz parametrization, is necessary to ensure the existence of a minimizer of (205)
for the Reeds-Shepp forward model. Indeed, in-place rotations are path sections where the the physical
velocity vanishes, but the angular velocity does not. See [Mir18] for a discussion of well posedness.
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Figure 50: Planar projections of minimal geodesics for the Reeds-Shepp, Reeds-Shepp
forward, Elastica and Dubins models (left to right). Seed point (0, 0) with horizontal
tangent, regularly spaced tip point with random tangent (but identical for all models).

Dubins model forbids any path section whose curvature exceeds that of the unit disk, by
assigning to it the cost +∞. Minimal paths for these models are qualitatively distinct,
as illustrated on Fig. 50. The curvature penalty may also be scaled and shifted, so as to
control its strength and symmetry, see Remark 9.2 and Section 9.3.4.

In the following, we fix a seed point (x∗, θ∗) ∈ Ω×S1 in the state space, and denote by
u(x, θ) the minimal cost of a path from this seed to an arbitrary target (x, θ) ∈ Ω× S1:

u(x, θ) := inf{E(x,θ);L ≥ 0, (x,θ) : [0, L]→ Ω× S1, ẋ = eθ,

x(0) = x∗, θ(0) = θ∗, x(L) = x, θ(L) = θ}. (207)

Once the map u : Ω × S1 → R is numerically computed, as described in Section 9.1.2, a
standard backtracking technique [Mir18] allows to extract the path (x,θ) : [0, L]→ Ω×S1

globally minimizing (205), from the seed state (x∗, θ∗) to any given target (x∗, θ∗) ∈ Ω×S1.

184



Figure 51: Discretization stencils used for the Reeds-Shepp reversible, Reeds-Shepp for-
ward, Euler-Mumford, and Dubins models. Note the sparseness and anisotropy of the
stencils. Model parameters: θ = π/3, ξ = 0.2, ε = 0.1.

Remark 9.2 (Scaling and shifting the curvature penalty). The curvature penalty C(θ̇)
appearing in our path models (205) can be generalized into C(ξ(θ̇ − ϕ)). The parameter
ξ > 0 dictates the intensity of curvature penalization, whereas ϕ ∈ R can introduce
asymmetric penalty. Optionally, ξ = ξ(x, θ) and ϕ = ϕ(x, θ) may depend on the current
state (x, θ) ∈ Ω× S1.

9.1.2 Non-holonomic eikonal equations, and their discretization

The minimal travel cost (207), from a given source point to an arbitrary target, is the
value function of a deterministic optimal control problem. As such, it obeys a first order
static non-linear PDE, a variant of the eikonal equation, of the generic form

Fu(x, θ) = ρ(x, θ) where Fu(x, θ) = F(x, θ, ∇xu(x, θ), ∂θu(x, θ)),

where ∇xu(x, θ) ∈ R2 and ∂θu(x, θ) ∈ R denote the partial derivatives of the unknown
u : Ω×S1 → R w.r.t the physical position x and angular coordinate θ. This PDE holds in
Ω×S1 \{(x∗, θ∗)}, while the constraint u(x∗, θ∗) = 0 is imposed at the seed point (x∗, θ∗),
and outflow boundary conditions are applied on ∂Ω. The detailed arguments and ade-
quate concepts of optimal control, Hamilton-Jacobi-Bellman equations, and discontinuous
viscosity solutions, are non-trivial and unrelated to the object of this paper (which is GPU
acceleration), hence we simply refer the interested reader to [BCD08, Mir18]. For com-
parison, the standard isotropic eikonal equation [RT92, Set99] on Rd, which corresponds
to an omni-directional vehicle not subject to maneuverability constraints or curvature
penalization, is defined by the operator Fu = ‖∇u‖.

The considered variants of the eikonal PDE involve the following non-linear and
anisotropic operators Fu(x, θ), see [Mir18].√

〈∇xu, eθ〉2 + |∂θu|2,
√

max{0, 〈∇xu, eθ〉}2 + |∂θu|2, (208)
1

2
(〈∇xu, eθ〉+

√
〈∇xu, eθ〉2 + |∂θu|2), 〈∇xu, eθ〉+ |∂θu|. (209)

They respectively correspond to the Reeds-Shepp reversible (208, left), Reeds-Shepp for-
ward (208, right), Euler-Mumford (209, left) and Dubins (209, right) models.
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We rely on a finite differences discretization Fu of the operator Fu, on the Cartesian
grid

Xh := (Ω× S1) ∩ hZ3, (210)
where the physical domain is usually rectangular Ω = [a, b] × [c, d] (or padded as such),
and where the grid scale h > 0 is such that 2π/h ∈ N so that the samping of S1 := [0, 2π[
is compatible with the periodic boundary conditions. By convention, the value function u
is extended by +∞ outside Ω, thus implementing the desired outflow boundary conditions
on ∂Ω. For any discretization point p = (x, θ) ∈ Xh, the finite differences operator Fu(p)
is defined as the square root of the following expression, considered in [MP19]

max
1≤k≤K

( ∑
1≤i≤I

αik max
{

0,
u(p)− u(p+ heik)

h

}2
+
∑

1≤j≤J

βjk max
σ=±1

{
0,
u(p)− u(p+ σhfjk)

h

}2
)
,

(211)
where I, J,K are fixed integers, αik, βjk ≥ 0 are non-negative weights, and eik, fjk ∈ Z3

are finite difference offsets, for all 1 ≤ i ≤ I, 1 ≤ j ≤ J , 1 ≤ k ≤ K. The weights
and offsets may depend on the current point p. This framework, which can address the
variants (208) and (209), is a generalization of the standard discretization [RT92] of the
isotropic eikonal equation (Fu = ‖∇u‖), obtained with meta-parameters J = d (and
I = 0, K = 1), choosing unit weights wj1 = 1, 1 ≤ j ≤ d, and letting (fj1)di=1 be the
canonical basis of Rd. Riemannian eikonal PDEs can also be addressed in this framework,
with J = d(d + 1)/2 (and I = 0, K = 1) and using weights and offsets defined by an
appropriate decomposition of the inverse metric tensor, see [Mir19, MP19]. The anisotropy
of the Riemannian metric is not bounded a-priori, but strong anisotropy leads to large
stencils : specifically ‖fj1‖ ≤ C

√
‖M‖‖M−1‖ for all 1 ≤ j ≤ J in dimension d ≤ 3, where

M denotes the Riemannian metric tensor, see [Mir19, Proposition 1.1]. Excessively large
stencils in turn lead to longer execution time due to cache misses, slower convergence of
the iterative method, and less precise boundary conditions.

In the curvature penalized case, the weights and offsets in (211) implicitly depend
on the base point p = (x, θ), at least through the angular coordinate θ in view of the
continuous PDE (208) and (209). They may depend on the physical position x as well
if the strength or symmetry of the curvature penalty varies from point to point, see
Remark 9.2. We refer to [Mir18, MP19] for details on the construction of the weights
and offsets, which involves a relaxation parameter ε > 0 for the non-holonomic constraint
(205, right), and simply report here the meta-parameters for the Reeds-Shepp forward
(I = 3, J = 1, K = 1), Euler-Mumford (I = 30, J = 0, K = 1), and Dubins (I = 6,
J = 0, K = 2) models, see Figure 51.

A fundamental property of discretization schemes of the form Eq. (211) is that they
can be solved in a single pass over the domain, using a generalization of the fast-marching
algorithm [Mir18, MP19, Mir19]. This is highly desirable when implementing CPU solver,
but anecdotical for a GPU eikonal solver whose massive parallelism forbids taking advan-
tage of this property. Nevertheless, those schemes are robust and well tested. Alternative
approaches offering different compromises and possibly more suited to GPUs will be con-
sidered in future works.

Remark 9.3 (Forward and reversible Reeds-Shepp models). The Reeds-Shepp model
comes in two flavors [DMMP18]: the forward variant, presented above, and the (more
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standard) reversible variant, modeling a vehicle equipped with a reverse gear additionally.
The latter is obtained by relaxing the constraint (205, right) into ẋ = ±eθ. In turn the
eikonal PDE (208) is replaced with

√
〈∇xu, eθ〉2 + |∇θu|2, whose discretization (211) uses

the meta-parameters I = 0, J = 4, K = 1.

Remark 9.4 (Monotony and degenerate ellipticity). The discrete operator (211) is de-
generate elliptic: Fu(p) is a non-decreasing function of the finite differences [u(p) −
u(q)]q∈Xh\{p}. This property implies a comparison principle, used in the proof of con-
vergence of the numerical method [Mir18]. In addition, degenerate ellipticity implies a
monotony property of the local update operator implemented in Algorithm 9 below, see
[Mir19, Proposition A.4]. As a result, the sequence of approximate solutions (un)n≥0,
un : Xh → [0,∞], produced along the iterations of our numerical method are pointwise
non-increasing. In the implementation Section 9.2, these properties allow to use a single
array for reading and writing the solution values, as stability is guaranteed independently
of data races.

9.2 Implementation

We describe the implementation of our massively parallel solver of generalized eikonal
PDEs, assumed to be discretized in the form (211). The bulk of the method is split in
three procedures, Algorithms 7 to 9, discussed in detail in the corresponding sections.

For simplicity, Algorithms 8 and 9 are written in the special case where the meta
parameters of the discretization (211) are J = 0 and K = 1, whereas I is arbitrary. The
case of arbitrary J and K is discussed in §9.2.3. The assignment of a value val to a scalar
(resp. array) variable var is denoted var ← val (resp. var ⇐ val).

Algorithm 7 Parallel iterative solver (Python)
Variables:

u : Xh → [0,∞] (The problem unknown)
active, next : Bh → {0, 1}. (Blocks marked for current and next update)

Initialization:
u⇐∞; active, next ⇐ 0.
u[p∗]← 0; active[b∗]← 1. (Set seed point value, and mark its block for update)

While an active block remains:
For all active blocks b in parallel: (CUDA kernel lauch)

For all p ∈ Xb
h in parallel: (Block of threads)

BlockUpdate(u, next , b, p)
active ⇐ next ; next ⇐ 0.

9.2.1 Parallel iterative solver

Massively parallel architectures divide computational tasks into threads which, in the
case of graphics processing units, are grouped into blocks following a common sequence
of instructions, and able to take advantage of shared data, see Remark 9.5. Following
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Algorithm 8 BlockUpdate(u, next, b, p), where p ∈ Xb
h (CUDA)

Global variables: u : Xh → [0,∞], next : Bh → {0, 1}, ρ : Xh → R (the r.h.s).
Block shared variable: ub : Xb

h → [0,∞].
Thread variables: αi ≥ 0, ei ∈ Zd, ui ∈ R, for all 1 ≤ i ≤ I.

ub(p)← u(p); __syncthreads() (Load main memory values into shared array)
Load or compute the stencil weights (αi)

I
i=1 and offsets (ei)

I
i=1.

ui ← u(p+ hei), for all 1 ≤ i ≤ I such that p+ hei /∈ Xb
h. (Load the neighbor values)

For r from 1 to R:
ui ← ub(p+ hei), for all 1 ≤ i ≤ I such that p+ hei ∈ Xb

h. (Load shared values)
ub(p)← Λ(ρ(p), αi, ui, 1 ≤ i ≤ I) (Update ub(p), unless p is the seed point)
__syncthreads() (Sync shared values)

u(p)← ub(p) (Export shared array values to main memory)
If appropriate, next [b]← 1 and/or next [b′]← 1 for each neighbor block b′ of b. (Thread
0 only)

Algorithm 9 Local update operator Λ(ρ, αi, ui, 1 ≤ i ≤ I) (C++)
Variables a← 0, b← 0, c← −h2ρ2, λ←∞.
Sort the indices, so that ui1 ≤ · · · ≤ uiI .
For r from 1 to I:

If λ ≤ uir then break.
a← a+ αir ; b← b+ αiruir ; c← c+ αiru

2
ir

λ← (b+
√
b2 − ac)/a

return λ

0

1

2

3

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

5

6

7

8

6

7

8

9

7

8

9

10

8

9

10

11

9

10

11

12

10

11

12

13

11

12

13

14

4

5

6

7

5

6

7

8

6

7

8

9

7

8

9

10

8

9

10

11

9

10

11

12

10

11

12

13

11

12

13

14

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

8

9

10

11

9

10

11

12

10

11

12

13

11

12

13

14

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

∞

2

3

4

5

3

4

5

6

4

5

∞

∞

5

6

∞

∞

1

1

∞

∞

2

2

∞

∞

3

3

∞

∞

4

4

∞

∞

Figure 52: Left: Decomposition of the Cartesian grid Xh into tiles Xb
h, with block index

b ∈ Bh. Grayed blocks are tagged active. Center: Updating a block b ∈ Bh requires
loading the unknown values u : Xh → R, both within Xb

h and at some neighbor points.
Right: Several local updates are performed within a block (two here).
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[WDB+08, JW08, GHZ18], the main loop of our iterative eikonal equation solver is de-
signed to take advantage of this computational architecture, see Algorithm 7. It is written
in the Python programming language, which is also used for the pre- and post-processing
tasks, and launches Algorithm 8 as a CUDA kernel via the cupy16 library.

The discretization domain Xh, which is a three dimensional Cartesian grid (210), is
split into rectangular tiles Xb

h, indexed by b ∈ Bh, see Figure (52, left). The update of
a tile Xb

h is handled by a block of threads, and the tile should therefore contain no less
than 32 points in view of Remark 9.5. The best shape of the tiles Xb

h was found to be
4 × 4 × 4 for the Reeds-Shepp models (forward and reversible), and 4 × 4 × 2 for the
Euler-Mumford and Dubins models, see Section 9.2.2 and Table 7. One of the findings of
our work is indeed that the schemes featuring wider stencils work best with smaller tile
sizes, see also the discussion in the second paragraph of Section 9.2.2. Some padding is
introduced if the dimensions of the tiles Xb

h do not divide those of the grid Xh.
A boolean table active : Bh → {0, 1} records all tiles tagged for update. Denote by

Nh := #(Bh) the total number of tiles, and by Nb = #(Xb
h) the number of grid points

in a tile, which is independent of b ∈ Bh, so that #(Xh) = NhNb by construction. Let
also Nact = #{b ∈ Bh; active[b]} be the number of active tiles in a typical iteration
of Algorithm 7. Since we are implementing a front propagation in a three dimensional
domain, one generally expects that Nact ≈ N

2/3
h (in d-dimensions, N b

act ≈ N
1−1/d
h ).

In each iteration of Algorithm 7, the active table is checked for emptiness, in which
case the program terminates. More importantly, the indices of all non-zero entries of
the active table are extracted, so as to update only the relevant blocks. The complexity
O(Nh lnNh) of this operation is in practice negligible w.r.t the cost of the block updates
themselves O

(
NactNbRK(I + J)

)
where R is the number of inner loops in Algorithm 8

and I, J,K are the scheme parameters (211). A second boolean table next : Bh → {0, 1},
is used to mark the blocks which are to be updated in the subsequent iteration.

A single array u : Xh → [0,∞[ holds the solution values. Indeed, the block update
operator benefits from a monotony property, see Remark 9.4, which guarantees that the
values of (un)n≥0 of the approximation solution decrease along the iterations of Algo-
rithm 7 toward a limit u∞. As a result, load/store data races in u between the threads
are innocuous.

Remark 9.5 (SIMT architecture). A block of threads is under the hood handled by a GPU
device in a Single Instruction Multiple Threads (SIMT) manner : the same instructions
are applied on 32 threads of a same block (also called a warp) simultaneously. For this
reason, the number of threads within a block should preferably be a multiple of the width of a
warp. For the same reason, thread divergence (threads within a warp going along different
execution paths, due to conditional branching statements, implemented by “muting” the
threads of the inactive branch) should be avoided for best efficiency.

Our numerical solver reflects these properties through the choice of the tile size Xb
h,

and in the choice of an Eulerian discretization scheme on a Cartesian grid (211) whose
solution by Algorithm 9 involves little branching and yields an even load between threads,
as opposed to an unstructured mesh where these properties are by design less ensured
[FKW13].

16A NumPy-compatible array library accelerated by CUDA. https://cupy.dev
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9.2.2 Block update

The BlockUpdate procedure, presented in Algorithm 8, is the most complex part of our
numerical method. It is executed in parallel by a block of threads, each handling a given
point p ∈ Xb

h of a tile of the computational grid, where the tile index b ∈ Bh is fixed.
A array ub : Xb

h → [0,∞] shared between the threads of the block is initialized with the
values of the unknown u : X → [0,∞] at the same positions. Throughout the execution
of the BlockUpdate procedure, the values of ub are updated several times, and then finally
stored by in the main array u. If the number R of updates of ub is sufficiently large, then
this procedure amounts to solving a local eikonal equation on Xb

h, with u|Xh\Xb
h
treated

as boundary conditions. A similar approach is used in [WDB+08, JW08, GHZ18]. We
empirically observe that stencil schemes using a wide stencil work best with small number
R of iterations, and a small tile size, see Table 7. Our interpretation is the following: using
several iterations is meant to propagate the front through the tile Xb

h and stabilize the
local solution ub within the tile [JW08], but this objective loses relevance when the stencil
is so wide that the scheme update at a point x ∈ Xb

h involves fewer values of the local array
ub in Xb

h than of the global array u in Xh \ Xb
h, which is cached and frozen throughout

the iterations in Algorithm 8. In addition, each of the R iterations has a higher cost
when the stencil is wide and has numerous elements, see the description of Algorithm 9
in Section 9.2.3.

The finite difference scheme (211) used for curvature penalized fast marching is built
using non-trivial tools from lattice geometry [Mir18], whose numerical cost cannot be
ignored. Empirical tests show that precomputing the weights and offsets usually reduces
overall computation time by 30% to 50%. If the scheme structure only depends on the
angular coordinate θ of the point, then the precomputed stencils can be shared across
all physical coordinates x and thus have a negligible memory usage, so that these pre-
computations are a pure benefit. On the other hand, if the scheme stencils depend on
all coordinates (x, θ) of the current point, typically for a model whose curvature penalty
function depends on the current point as discussed in Remark 9.2 and Section 9.3.4, then
the storage cost of the weights and offsets significantly exceeds the problem data. (Sten-
cils are defined by N = K(I + J) scalars and offsets per grid point, see (211), where
typically 4 ≤ N ≤ 30. In comparison, the problem data u, ρ and optionally ξ, ϕ consists
of 2 to 4 scalars per grid point, see Remark 9.2.) Stencil recomputation is preferred in
these cases, in order to avoid crippling the ability of the numerical method to address
large scale problems on memory limited GPUs.

The values of the unknown u : Xh → R needed for the evaluation of the scheme (211)
and lying outside Xb

h are loaded once and for all at the beginning of the BlockUpdate pro-
cedure Algorithm 8, and treated as fixed boundary conditions so as to minimize memory
bandwidth usage. Contrary to what could be expected, such boundary values are an over-
whelming majority in comparison with the values located within the tile Xb

h. For instance
the three dimensional isotropic eikonal equation, using standard tiles of 64 = 4 × 4 × 4
points, involves 96 = 6×4×4 boundary values. Boundary values are even more numerous
with the curvature penalization schemes, which involve many wide finite difference offsets,
as illustrated on Figure (52, center).

Each thread of a block, associated to a discretization point p ∈ Xb
h where b ∈ Bh is
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the block index, goes through R iterations of a loop where the local unknown value ub(p)
is updated via Algorithm 9, see §9.2.3. The threads are synchronized at each iteration
of this loop, to ensure that the front propagates through the tile Xb

h. Since the values
of ub : Xb

h → [0,∞] are decreasing along the iterations, by monotony of the scheme see
Remark 9.4, no additional protection of ub against data races between the threads of the
block is required. The number R of iterations is discussed in §9.2.3.

Last but not least, if appropriate, the block b and its immediate neighbors b′ need
to be tagged for update in the next iteration of the eikonal solver Algorithm 7, via the
boolean array next : Bh → {0, 1}. This step is not fully described in Algorithm 8, and
in particular the neighbors of a tile and the appropriate condition for marking them are
not specified. Indeed, a variety of strategies can be plugged in here, and our numerical
solver is not tied to any of them. Good results were obtained using Adaptive Gauss Seidel
Iteration (AGSI) [BR06, GHZ18] and with the Fast Iterative Method (FIM) [JW08], while
other variants were not tested [WDB+08].

Remark 9.6 (Walls and thin obstacles). Our finite differences scheme involves rather
wide stencils, see Figure 51, raising the following issue: the update of a point p may
involve neighbor values u(p + hei) across a thin obstacle. In order to avoid propagating
the front through the obstacles, if any are present, an additional walls array is introduced
in Algorithm 8, as well as and intersection test between the segment [p, p + hei] and
the obstacles. For computational efficiency, the array walls : Xh → {0, · · · , 255} is not
boolean, but walls[p] instead encodes the Manhattan distance in pixels (capped at 255) from
the current point p to the nearest obstacle. If ‖ei‖1 < walls[p], then [p, p + hei] does not
meet the obstacles, and the intersection test can be bypassed.

9.2.3 Local update

This section is devoted to the local update operator presented in Algorithm 9. From the
mathematical standpoint, one defines Λu(p) as the solution to the equation Fu(p) = ρ(p)
w.r.t the variable u(p), regarding all neighbor values as constants, see [Mir19, Appendix
A]. We prove in this subsection that Algorithm 9 does compute this value, and comment
on its numerical complexity and efficient implementation. A related method is used in the
update step of the standard fast marching method for isotropic eikonal equations [Set96],
whose discretization is a special case of (211) as mentioned Section 9.1.2.

For simplicity, and consistently with the presentation of Algorithm 9, we first assume
a numerical scheme of the form

(Fu(x))2 := h−2

I∑
i=1

αi
(
u(x)− u(x+ hei)

)2

+
, (212)

in other words J = 0 and K = 1 in (211). Denote ui := u(x+ hei) for all 1 ≤ i ≤ I, and
let ρ := ρ(p). The update value λ = Λu(x) is by construction the unique root λ ∈ R of

f(λ) :=
∑

1≤i≤I

αi(λ− ui)2
+ − h2ρ2, (213)
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where a+ := max{0, a}. Note that f(λ) = −h2ρ2 < 0 on ] − ∞, λ∗] where λ∗ :=
min{ui; 1 ≤ i ≤ I}, that f increasing on [λ∗,∞[, and that f(λ) → ∞ as λ → ∞.
Thus f does indeed admit a unique root λ, by the intermediate value theorem.

The numerical solution of the non-linear equation (213) takes advantage of its piecewise
quadratic structure. For that purpose, introduce a permutation i1, · · · , iI of {1, · · · , I}
such that ui1 ≤ · · · ≤ uiI . Then for any 1 ≤ r ≤ I on has

f(λ) = arλ
2 − 2brλ+ cr, for all λ ∈ [uir , uir+1 ],

with the abuse of notations [uiI , uiI+1
] := [uiI ,∞[. The coefficients of this quadratic

function are

ar :=
∑

1≤s≤r

αis , br :=
∑

1≤s≤r

αisuis , cr :=
∑

1≤s≤r

αisu
2
is − h

2ρ2.

Algorithm 9 solves the quadratic equations arλ2−2brλ+cr = 0 successively, for increasing
values of 1 ≤ r ≤ I. Only the largest of the two quadratic roots is relevant, denoted
λr := (br +

√
b2
r − arcr)/ar, and it is returned if λr ∈ [uir , uir+1 ], at some rank denoted

r = r∗. By construction, the root λr exists and is real for all 1 ≤ r ≤ r∗, since ar > 0 and
f(uir) < 0.

From the complexity standpoint, Algorithm 9 begins with a sort of I values, followed
by O(I) floating point operations. In standard isotropic fast-marching, the number of
terms is the space dimension I ∈ {2, 3} and the sorting step has a negligible cost, but
wide stencil schemes behave differently, especially the Euler-Mumford model for which
I = 30. In the latter case, a naive bubble sort with complexity O(I2) becomes prohibitive,
whereas an adequate sorting method cuts overall computation time but more than half.
Best results were obtained applying a network sort [Knu98] (an efficient branchless sorting
method) to the 15 first (resp. last) values, followed by a merge operation.

If the numerical scheme has the generic form (211), with arbitrary parameters I, J,K,
then the update λ = Λu(p) is the unique root of f : R→ R defined by

f(λ) := max
1≤k≤K

fk(λ), where fk(λ) :=
∑

1≤i≤I

αik(λ− uik)2
+ +

∑
1≤j≤J

βjk(λ− u′jk)2
+ − ρ2h2,

and where uik := u(p+heik) and u′jk := min{u(p−hfjk), u(p+hfjk)}. For each 1 ≤ k ≤ K
two sums defining fk are grouped into a single one over 1 ≤ l ≤ I + J , and the unique
root λ(k) of fk is computed similarly to (213). The root of f is λ = min1≤k≤K λ

(k). The
complexity of Algorithm 9 is thus O(K(I + J)) overall, up to logarithmic factors due to
the sorting step.

9.3 Numerical experiments

We illustrate our numerical solver of curvature penalized shortest paths in variety of
contexts ranging from motion planning with obstacles or drift, to image segmentation,
and the configuration of radar systems. Some of the test cases are new, whereas others are
closely related to previous works [CMC16, CMC17, DDBM19, DMMP18, MD17, Mir18]
and meant to illustrate the benefits of the GPU solver over an earlier CPU implementation
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Model Nfd Best tile Best R
Isotropic (d=2) 2 24× 24 48
Isotropic (d=3) 3 4× 4× 4 8

Reeds-Shepp (both) 4 4× 4× 4 6
Dubins 12 4× 4× 4 2
− − 4× 4× 2 1

Euler-Mumford 30 4× 4× 2 1

Table 7: Number Nfd = K(I + J) of finite differences terms in (211) for a variety of path
models. Tile shape and number of iterations R in Algorithm 8, producing the smallest
running time, found experimentally. Two sets of parameters are reported for Dubins
model, since the corresponding running times results are close which and one is fastest
depends on the test case. Simple models, whose stencil involves few and short finite
differences, work best with large tile sizes and numerous iterations allowing the front to
propagate within the tile, whereas complex models involving many wide finite differences
and a costly update operator benefit from small tiles and few iterations.

in common use cases. Test data is synthetic except for the medical image segmentation
problem Section 9.3.3.

We report in Table 8 the running times of the GPU eikonal solver presented in this
paper, and of the CPU solver introduced in [Mir18], as well as the GPU/CPU speedup
which varies significantly depending on the experiment. Indeed, the running time of the
GPU eikonal solver, which is an iterative method, depends on the presence and layout of
obstacles or slow regions in the test case as noted in [WDB+08]. This in contrast with
the fast-marching-like method [Mir18] implemented on the CPU, which is guaranteed to
update each discretization point at most Nneigh = K(I + 2J) times where I, J,K are
the scheme parameters (211) (for this reason, slightly abusively, fast-marching is referred
to as a single pass method), and whose complexity O(NneighN lnN) is independent of
the specific test case, where N is the total number of discretization points. However,
fast-marching is limited in speed by its sequential nature.

The numerical experiments presented in the following sections are designed to illustrate
the following features of the eikonal solver introduced in this paper:

1. Geodesics in an empty domain. Illustrates the qualitative properties of the different
path models, and the GPU/CPU speedup in the ideal case.

2. Fastest exit from a building. Illustrates the implementation of walls and thin obsta-
cles, which is non-trivial with wide stencils as described in Remark 9.6.

3. Retinal vessel segmentation. Illustrates a realistic application to image processing,
based on the choice of a carefully designed cost function.

4. Boat routing. Illustrates a curvature penalty whose strength and asymmetry prop-
erties vary over the PDE domain, as described in Remark 9.2.

5. Radar configuration. Illustrates the automatic differentiation of the eikonal PDE
solution u w.r.t the cost function ρ, for the optimization of a complex objective.
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Exp. model GPU(s) CPU(s) accel
Empty RS rev 0.28 34.3 120×

RS fwd 0.25 15.7 62×
EM 1.53 117 76×

Dubins 0.44 46.5 105×
Building RS rev 1.37 50.5 37×

RS fwd 0.59 29 49×
EM 3.21 174 54×

Dubins 1.02 55.4 54×
Boat Dubins 0.52 30.2 59×
MRI RS fwd 0.93 30.8 33×

EM 3.32 275.9 83×
Retina1 RS fwd 0.66 21.1 32×

EM 2.22 171.3 77×
Retina2 RS fwd 0.98 32.8 33×

EM 3.21 256.1 80×
Radar Dubins 0.26 9.57 37×

Table 8: Running time of the CPU and GPU eikonal solver, for the experiments presented
Section 9.3.

Remark 9.7 (Computation time and hardware characteristics). Program runtime is de-
pendent on the hardware characteristics of each machine. The reported CPU and GPU
times were obtained on the Blade® Shadow cloud computing service, using the provided
Nvidia® GTX 1080 graphics card for the GPU eikonal solver, and an Intel® Xeon E5-2678
v3 for the CPU eikonal solver (a single thread was used, with turbo frequency 3.1Ghz).

9.3.1 Geodesics in an empty domain

We compute minimal geodesics for the Reeds-Shepp, Reeds-Shepp forward, Euler-Mumford
elastica and Dubins model, in the domain [−1, 1]2 × S1 without obstacles. The front is
propagated from the seed point (x∗, θ∗) placed at the origin x∗ = (0, 0) and imposing a
horizontal initial tangent θ∗ = 0. Geodesics are backtracked from several tips (x∗, θ∗)
where x∗ is placed at 16 regularly spaced points in the domain, whereas θ∗ is chosen
randomly (but consistently across all models).

This experiment is meant to illustrate the qualitative differences between minimal
geodesic paths associated with the four curvature penalized path models, see Fig. 50.
The Reeds-Shepp car can move both forward and backward, and reverse gear along its
path, as evidenced by the cusps along several trajectories. The Reeds-Shepp forward
variant cannot move backward, but has the ability to rotate in place (with a cost), and
such behavior can often be observed at the endpoints of the trajectories [DMMP18]. The
Elastica model produces pleasing smooth curves, which have a physical interpretation as
the rest positions of elastic bars. Trajectories of the Dubins model have a bounded radius
of curvature, and can be shown to be concatenations of straight segments and of arcs of
circles, provided the cost function is constant as here.
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The generalized eikonal PDE (208) or (209) is discretized on a 300× 300× 96 Carte-
sian grid, following (211), thus producing a coupled system of equations featuring 8.6
million unknowns17. Computation time for the GPU eikonal solver ranges from 0.28s
(Reeds-Shepp forward) to 1.54s (Euler-Mumford elastica), reflecting the complexity of
the discretization stencil, see Fig. 51. A substantial speedup ranging from 60× to 120× is
obtained over the CPU implementation; let us nevertheless acknowledge that, as noticed in
[WDB+08], the absence of obstacles and of a position dependent speed function is usually
the best case scenario for an iterative eikonal solver such as our GPU implementation.

9.3.2 Fastest exit from a building

We compute minimal paths within a museum map, for the four curvature penalized models
under consideration in this paper. Due to the use of rather wide stencils, often 7 pixels
long see Fig. 51, some intersection tests are needed to avoid propagating the front through
the walls, which are one pixel thick only. A careful implementation, as described in
Remark 9.6, allows to bypass most of these intersection tests and limits their impact on
computation time. In contrast with [JW08], we do not consider “slightly permeable walls”,
since they would not be correctly handled with our wide stencils, and since as far as we
know they have little relevance in applications. A closely related experiment is presented
in [DMMP18] for the Reeds-Shepp models, using a CPU eikonal solver.

The front propagation starts from two seed points located at the exit doors, and a
tip is placed in each room for geodesic backtracking, with an arbitrary orientation. The
extracted paths are smooth (Euler-Mumford case) or have a bounded curvature radius
(Dubins case), but minimize a functional (205) which is unrelated with safety and thus
may not be directly suitable for motion planning. Indeed, in many places they are tangent
to the obstacles, walls, and doorposts, without any visibility behind, which is a hazardous
way to move.

The PDE is discretized on a Cartesian grid of size 705 × 447 × 60, where the first
two factors are the museum map dimension, and the third factor is the number of an-
gular orientations, for a total of 19 million unknowns. Computation time on the GPU
ranges from 0.59s (Reeds-Shepp forward) to 3.2s (Euler-Mumford elastica), a reduction
by approximately 50× over the CPU eikonal solver.

9.3.3 Tubular structure segmentation

A popular approach for segmenting tubular structures in medical images, such as blood
vessels on the retinal background in this experiment, is to devise a geometric model whose
minimal paths (between suitable endpoints) are the centerlines of the desired structures.
For that purpose a key ingredient, not discussed here, is the careful design of a cost
function ρ : R2 × S1 →]0,∞] which is small along the vessels of interest in their tangent
direction, and large elsewhere [PKP09]. Curvature penalization, and in particular the
Reeds-Shepp forward and Euler-Mumford elastica models [CMC16, CMC17, DMMP18],

17For this particularly simple problem (with a constant cost function, without walls), results visually
quite similar can be obtained at a fraction of the cost using a smaller discretization grid, eg. of size
100× 100× 64.
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Figure 53: Planar projections of minimal geodesics for the Elastica and Dubins model
(left to right). Two seed points at the exits, with horizontal tangents. Geodesics are
backtracked from one tip point in each room, with a given but arbitrary tangent.
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Figure 54: Segmentation of tubular structure centerlines using the Reeds-Shepp forward
and Euler-Mumford elastica models, following [CMC17]. Left : Blood vessels in Magnetic
Resonance Angiography (MRA) data. Center and right : Blood vessels on an image of
the retina.

helps avoid a classical artifact where the minimal paths do not follow a single vessel but
jump form one to another at crossings.

The test cases have size 512×512×60, 387×449×60 and 398×598×60 respectively, and
the computation time of the GPU eikonal solver ranges from 1s (Reeds-Shepp forward)
to 3s (Euler-Mumford elastica) on the GPU. This is compatible with user interaction, in
contrast with CPU the run time which is 30× to 80× longer, see Table 8. Note that by
construction, the front propagation is fast along the blood vessels, and slower in the rest
of the domain. This specificity plays against iterative methods, which are most efficient
when velocity is uniform [JW08], yet the speedup achieved by the GPU solver remains
very substantial. Computation time could in principle be further reduced, both on the
CPU and the GPU, by using advanced stopping criteria and restriction methods [CCV13]
to avoid solving the eikonal PDE on the whole domain.

9.3.4 Boat routing with a trailer

The Dubins-Zermelo-Markov model [BT13] describes a vehicle subject to a drift, and
whose speed and turning radius as measured before the drift is applied are bounded.
This problem was introduced to us in the context of maritime seismic prospection, where
boats drag long trails of acoustic sensors, and are subject to water currents. Optimal
Dubins-Zermelo-Markov trajectories, with drift defined by the water flow, may help avoid
entangling and damaging these trails, and reduce the prospection times. In this synthetic
experiment we use the drift velocity V (x) = 0.6 sin(πx0) sin(πx1)x/‖x‖ on the domain
[−1, 1]2. Our vehicle has unit speed, and turning radius ξ = 0.3.

From the mathematical standpoint, the Dubins-Zermelo-Markov model can be
rephrased in the form of the original Dubins model, but with a curvature penalty which
is scaled, shifted (asymmetric), and depends on the current point, as described in Re-
mark 9.2. This does not raise particular issues for discretization, except that the weights
and offsets of the numerical scheme (211) depend on the full position (x, θ) ∈ R2 × S1,
rather than the orientation θ ∈ S1 alone.

The boat routing problem is discretized on a grid of size 151×151×96. Computation
time on the GPU is 0.34s if stencils are pre-computed and stored, and 0.52s if they
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Figure 55: Illustration of the Dubins-Zermelo-Markov problem. Let drift velocity (water
current). Center shortest path, between the seed point (0, 0) with horizontal tangent,
and other seed points, such that the radius of curvature in the water referential does not
exceed the prescribed bound.

are recomputed on the fly when needed. The second approach (recomputation) uses
significantly less GPU memory, which is usually a scarce ressource, hence we regard it as
default despite the longer runtime, see the discussion Section 9.2.2; it is nevertheless 59×
faster than the CPU implementation.

9.3.5 Optimization of a radar configuration

We consider the optimization of a radar system, so as to maximize the probability of de-
tection of an intruder vehicle. The intruder has full knowledge of the radar configuration,
and does its best to avoid detection, but is subject to maneuverability constraints as does
a fast plane. Following [MD17, DDBM19] the intruder is modeled as a Dubins vehicle,
traveling at unit speed with a turning radius of 0.2, whose trajectory starts and ends at
a given point x∗ ∈ Ω and which must visit a target keypoint x∗ ∈ Ω in between18. The
problem takes the generic form

sup
ξ∈Ξ

inf
γ∈Γ
E(ξ; γ), (214)

where Ξ is the set of radar configurations, and Γ is the set of admissible trajectories. A
trajectory γ escapes detection from a radar configured as ξ with probability exp(−E(ξ; γ)).
Following (205), a trajectory is represented as a pair γ = (x,θ) : [0, L]→ Ω× S1, and its
cost is defined as

E(ξ; γ) =

∫ L

0

ρ(x,θ; ξ) C(θ̇) dl

where C denotes the Dubins cost (206, right), and ρ(x, θ; ξ) is an instantaneous probability
of detection depending on the radar configuration ξ, and the intruder position x and
orientation θ. We refer to [DDBM19] for a discussion of the detection probability model,
and settle for a synthetic and simplified yet already non-trivial construction. The detection
probability is the sum of three terms ρ(x, θ; ξ) =

∑3
i=1 ρ̃(x, θ; yi, ri, vi), corresponding to

18This is achieved by concatenating a trajectory (x∗, θ0) ∈ Ω×S1 to (x∗, ϕ), with a reversed trajectory
from (x∗, θ1) to (x∗, ϕ+ π), where θ0, θ1, ϕ ∈ S1 are arbitrary, see [MD17].

198



as many radars, each of the form

ρ̃(x, θ; y, r, v) =
1

1 + 2‖x− y‖2
σ
(‖x− y‖

r

)
σ
(〈e(θ), x− y〉

v‖x− y‖

)
. (215)

where y is the radar position, σ(s) = 1 − ((1 + cos(2πs))/2)4 is a function vanishing
periodically, r is the ambiguous distance period, and v is the ambiguous radial velocity
period. The ambiguous periods r and v are related to the pulse repetition interval and
frequency used by the radar, and their product is bounded below. In this experiment,
we choose to optimize the following configuration parameters, gathered into the abstract
variable ξ ∈ Ξ : the position of the first radar x1 within a disk, the position of the second
one x2 within a line, and the blind distances r1, r2, r3, defining the bling velocities as
vi = 0.2/ri for 1 ≤ i ≤ 3.

Minimization over the parameter γ ∈ Γ in (214) is solved numerically using the eikonal
solver presented in this paper, thus defining a function E(ξ) := inf{E(ξ; γ); γ ∈ Γ} de-
pending on the radar configuration alone ξ ∈ Ξ. We differentiate E(ξ) in an automatic
manner as described in [MD17], and optimize this quantity via gradient ascent. Using
these tools, a local maximum of E(ξ) is reached in a dozen iterations approximately.
Computation time is dominated by the cost of solving a generalized eikonal equation in
each iteration, which takes 0.26s on the GPU and 9.6s on the CPU (Dubins model on a
200×100×96 grid). Since the optimization landscape is highly non-convex, obtaining the
global maximum w.r.t ξ would require a non-local optimization method in complement or
replacement of local gradient ascent, thus requiring many more iterations and benefitting
even more from GPU acceleration.

9.4 Conclusion and perspectives

Geodesics and minimal paths are ubiquitous in mathematics, and their efficient numerical
computation has countless applications. In this paper, we present a numerical method
for computing paths which globally minimize a variety of energies featuring their curva-
ture, by solving a generalized anisotropic eikonal PDE, and which takes advantage of the
massive parallelism offered by GPU hardware for computational efficiency. In comparison
with previous CPU implementations, a computation time speed up by 30× to 120× is
achieved, which enables convenient user interaction in the context of image processing
and segmentation, and reasonable run-times for applications such as radar configuration
which solve these problems within an inner optimization loop.

Future work will be devoted to additional applications, to efficient implementations
of wide stencil schemes associated with other classes of Hamilton-Jacobi-Bellman PDEs,
and to the study of numerical schemes based on different compromises in favor of e.g.
allowing grid refinement or using shorter finite different offsets.
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Figure 56: (Top left) Instantaneous detection probability of a vehicle by a radar, de-
pending on the radial distance and radial velocity. Note the blind distance and blind
velocity periods. (Top right) Trajectory minimizing the probability of detection between
two points in the presence of a single radar. It approximates a concatenation of circles,
at a multiple of the blind radial distance, and spirals, corresponding to a multiple of the
blind radial velocity. (Bottom left) Configuration of three radars locally optimized, see
text, to detect trajectories from the left seed point to the right tip and back. Best ad-
verse trajectories. (Bottom right) Objective value, E(ξ) see text, along the iterations of
gradient ascent.
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10
Netted Multi-Function Radars Positioning and Modes

Selection by Non-Holonomic Fast Marching Computa-
tion of Highest Threatening Trajectories & by CMA-ES
Optimization [DDBM19]
This section corresponds to the paper:

• Johann Dreo, François Desquilbet, Frederic Barbaresco, and Jean-Marie Mirebeau.
Netted multi-function radars positioning and modes selection by non-holonomic fast
marching computation of highest threatening trajectories & by cma-es optimization.
In 2019 International Radar Conference (RADAR), pages 1–6. IEEE, 2019

Abstract

We aim at designing a radar network which maximizes the detection probability
of the worst threatening trajectory which can reach a protected area. In game
theory, we represent this problem as a non-cooperative zero-sum game: a first player
chooses a setting for the network, and the other player chooses a trajectory from the
admissible class of trajectories with full information over the network. The players’
objective are respectively to maximize and minimize the path cost which is the
detection probability integrated along the trajectory in the network. In comparison
with previous works, we added ambiguity maps depending on the distance and the
radial speed, which are functions of internal parameters of the radars that can be
optimized: PRI (Pulse Repetition Interval) and frequency. We also take into account
RCS (Radar Cross Section) and a complex geometry with masks deduced from the
DEM (Digital Elevation Map) and Earth curvature. The computation of optimal
trajectories is performed by a specialized variant of the Fast-Marching algorithm,
devoted to computing curves that globally minimize an energy featuring both a
data driven term and a second order curvature penalizing term. The profile of
the cost function with regard to the direction of movement is non-convex, which is
significant only with a curvature penalization: we chose the Dubins model, in which
the curvature radius is bounded. We illustrate results on different Use-Cases.

10.1 Threatening trajectories mitigation for a network of radars

We optimize the configuration of a radar network protecting an area, against an enemy
assumed to have unlimited intelligence and computing power, and yet whose vehicle is
subject to some maneuverability constraints. The goal is to maximize the probability
of detection of the most dangerous trajectory integrated along its path between a given
origin and a place to protect, which will take advantage of any hideout in the terrain, blind
spot or physical limitation in the radar network. The trajectory is only subject to a lower
bound in the turning radius, due to the vehicle high speed. We model this problem as a
non-cooperative zero-sum game: a first player chooses a setting ξ for the radar detection
network Ξ, and the other player chooses a trajectory γ from the admissible class Γ with
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full information over the network. The players’ objective is respectively to maximize and
minimize the path cost:

C(Ξ,Γ) = sup
ξ∈Ξ

inf
γ∈Γ

Θξ(γ) (216)

where Θξ(γ) is the detection probability (integrated along the path) of the trajectory γ
in the network ξ. Minimization over γ ∈ Γ (given ξ ∈ Ξ) is performed using the fast and
reliable techniques of Section 10.2. We rely on the CMA-ES algorithm for the subsequent
optimization over ξ ∈ Ξ, which is rather difficult (non-convex, non-differentiable).

In comparison with earlier works [Bar11], we use the curvature bounded Dubins model
to reject non-physical enemy trajectories, featuring e.g. angular turns or oscillations in
the vehicle direction. We also considerably improve, relative to [MD17], the detection
probability model, used to define Θξ(γ), taking into account the three following factors
respectively related to the radar, the target, and the terrain.

• The ambiguity map accounts for the probability of detection of a generic target by
a radar, depending on the distance and the radial speed of the target relatively to
the radar, see Figure 57. There are blind speed areas, due to sampling repetition
interval and pulse duration causing blind radial distances and blind radial speeds.
The positions of the blind areas are periodical and depend on internal parameters
of the radar that can be optimized: signal wavelength, and pulse repetition interval.

• The radar cross section accounts for the probability of detection of a specific target,
depending on its orientation relatively to the radar (Figure 58). For instance, a
furtive plane often has a low probability of detection if seen from the front, and
a higher one if seen from the side. In our case, we used a simple model with a
dependency on frequency, but a more complex model is possible.

• The elevation map is used to determine blind regions in the terrain due to obstruc-
tion of the radar line of sight. In a mountainous area, a target can take advantage
of valleys to move “under the Radar coverage”. The Earth curvature is also taken
into account.

The profile of the cost function with regard to the direction of movement is typically
non-convex, which is significant only in the presence of a curvature penalization. For that,
we choose the Dubins model, in which the curvature radius is bounded. We showcase the
following three phenomena:

• Trajectories dodging radars through their blind distances (cf. Figure 59). In this
picture, only the positional factor in the cost map is shown in greyscale, and not the
part of the cost depending on the orientation. The red line represents the optimal
trajectory of the target, going from the left to the right of a rectangular domain,
with a radar in the center. It features a circle arc, at a precise blind distance from
the radar, and two spiral arcs.

• Spiraling threatening trajectories, taking advantage of the blind radial speed (cf.
Figure 60). The red line represents the trajectory of the target, going from the left
to the center of the domain where the radar is located, maintaining a constant angle
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Figure 57: Ambiguity map for a selected waveform waveform

Figure 58: Anisotropy of Radar Cross Section

with the radar in order to minimize visibility, except at the end due to the imposed
bound on path curvature. Figure 61 shows the same spiral, along with the zigzag”
trajectory that would be optimal if no curvature constraint was taken into account.

• Hiding in valleys. A digital elevation map, of 50km × 50km in a mountain area,
is used to construct a probability of detection map (cf. Figure 62). Threatening
trajectories tend to concentrate in valleys. The optimized radar positions are close
to the target to be defended, and either on high ground or in alignment with long
valleys.
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Figure 59: Dodging a radar through a blind distance

Figure 60: Spiraling threatening trajectory

Figure 61: In red, degenerated behaviour with no penalization of curvature, and in blue
with curvature constrained solution

10.2 Globally optimal paths with a curvature penalty

This paper deals with planar paths minimizing a specific energy functional, between two
given points and with prescribed tangents at these points. The path energy model features
a low order data-driven term, and a higher order regularization term. A globally optimal
path is found, using optimal control techniques, which involve numerically solving a PDE
on the configuration space of positions and orientations.
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Figure 62: Threatening trajectories, from a circular region towards its center point, with
optimized radar positions, and digital elevation map

Figure 63: Positional factor in the cost map

10.2.1 Path energy models

In the models of interest to us, the cost of a smooth planar path x : [0, T ] → Ω,
parametrized by Euclidean arc length and within a domain Ω ⊂ R, takes the follow-
ing form:

Θ(x) =

∫ T

0

ρ(x(s), ẋ(s))C(‖ẍ(s)‖)ds (217)

We denoted by ρ : Ω × S1 →]0,+∞[ an arbitrary continuous data-driven term, de-
pending on the path position and direction. An example of definition for ρ has been
presented in (215), in a similar setting. The path local curvature κ = ‖ẍ(s)‖ (recall that
‖ẋ(s)‖ = 1) is penalized in (216) by a cost function C(κ), which may be chosen among
the following classical models, here sorted by increasingly stiffness:

• Reeds-Shepp:
√

1 + κ2

• Euler-Mumford: 1 + κ2
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Figure 64: Most threatening trajectories from any point on the limit of coverage to a
radial distance from the site to be protected (with cost map in the back ground)

Figure 65: Most threatening trajectories from any point on the limit of coverage to a
radial distance from the site to be protected (with DEM in the background)

• Dubins:
{

1 if κ ≤ 1
∞ else

They are respectively representative of (i) a wheelchair-like robot, (ii) the bending
energy of an elastic bar, and (iii) a vehicle with a bounded turning radius. In the case
of the Reeds-Shepp model, one must further distinguish between the classical model with
reverse gear, and the forward only variant.

10.2.2 Viscosity solutions, and the Fast marching algorithm

Data-driven path energies, subject to e.g. fixed endpoints, usually possess many local
minima. In order to guarantee that the global minimum is found, path energy mini-
mization must be reformulated as an optimal control problem. The corresponding value
function is the unique viscosity solution to a PDE of eikonal type, and the optimal paths
can be extracted by backtracking once it is numerically computed.
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Only simple first order energies, such as defined by
∫ T

0
ρ(x(s))‖ẋ(s)‖ds could origi-

nally be addressed in the viscosity solution framework, typically using the Fast Marching
Method (FMM) which solves the eikonal PDE in a single pass over the domain. Recent
progress [Mir18] enabled the Anisotropic Fast Marching, in order to solve (217). For that
purpose the path is lifted in the configuration space of positions and orientations, defin-
ing γ(s) = (x(s), θ(s)) subject to the constraint ẋ(s) = (cos θ(s), sin θ(s)). This allows to
reformulate (217) as a first order energy, since ‖ẍ(s)‖ = ‖θ̇(s)‖. See [Mir18] for details
and comparison with alternative approaches.

10.3 Optimization scenario

Digital elevation map is shown in Figure 66, in a domain of 50km × 50km. The radar
coverage is however complex in the area, due to the high relief from the mountains. The
target could fly undetected at a low altitude by hiding in valleys, as in Figure 67. In Fig-
ures 67 & 67, the trajectories are computed from a regular sample of the circular boundary
of the domain, toward a circular boundary close to the point of interest. The optimized
objective function is the smallest probability of detection among all the optimal trajecto-
ries reaching the close boundary (cf. Figure 64 and Figure 65), given a configuration of
the radar network.

Figure 66: Digital Elevation Map of the Use-Case in Moutain Area

10.4 CMA-ES optimization algorithm

The CMA-ES algorithm is one of the most powerful stochastic numerical optimizers to
address difficult black-box problems. Its intrinsic time and space complexity is quadratic
limiting its applicability with increasing problem dimensionality. To circumvent this limi-
tation, different large-scale variants of CMA-ES with sub-quadratic complexity have been
proposed [VAB+18].

For solving black-box optimization problem of this use-case, we have used the CMA-
ES algorithm developed at Paris-Saclay University. The performance of this algorithm on
our problem is estimated via ERT-ECDF (expected running time empirical cumulative
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Figure 67: Threatening trajectories in a non-optimized network, with trajectories difficult
to detect.

Figure 68: Threatening trajectories in an optimized network, with multiple worst threat-
ening trajectories, but much easier to detect compared with Figure 67

density function): over a large number of runs, calculation of the probability to have a
set margin of error, depending on the number of function calls (Figure 69). Difference in
threats between a bad configuration and the best one are shown on Figure 67, 68.

For our Use-Case, 20 parameters have been optimized: 4 parameters for each of the
radars (position (x,y), Pulse Repetition Interval, wavelength). The trajectory search
space has been discretized in the domains: 100 × 100 for spatial variables, 120 angles
for the angular variable. Estimated Computation time for this Use-Case is of a few
seconds per function call (largely dominated by the computation of the highest threatening
trajectory for a configuration of the radars). The number of function calls needed to find a
configuration with a detection probability of 50% in 90% of runs is close to 6 000 (around
a day of computation), as shown on Figure 69.

209



Figure 69: ERT for all scenarios with 150 runs of CMA-ES algorithm.

10.5 Conclusion

We have proved robustness of new algorithms for optimal configuration of netted radars,
to reduce integrated probability of detection along the highest threatening trajectory. We
have illustrated with realistic modelling of generic anistropic cost functions: ambiguity
map, radar cross-section, digital elevation map. . . AFM (Anisotropic Fast Marching)
algorithm can take into account a penalization of curvature in the computation of shortest
path, which is critical in that setting. Other uses cases for the AFM algorithm could be
elaborated:

• configuration of a radar who lost a target,

• use of mobile radars,

• adding passive radars to cover the defects of the network.

Future works will be devoted to further enhancing the model, taking into account
limited knowledge of the ennemy (e.g. due to the use of passive radar receivers), intro-
ducing success criteria more complex than mere detection (e.g. requiring detection early
enough for interception), and adapting optimization solvers to the problem in order to
reach better performances.
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