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minutieuse relecture de ce manuscrit et son soutien sur la librarie Codac sans quoi la majorité
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d’abord mes parents qui m’ont toujours soutenu dans chacun de mes choix, remonté le
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CHAPTER 1. INTRODUCTION

1.1 Context

1.1.1 An unknown environment ...

Oceans remain rather unknown to humankind despite they cover over seventy percent of
our planet. According to the National Oceanic and Atmospheric Administration (NOAA),
more than 80% of it are yet to be explored. One may even read that with the previous moon
observations and current Mars exploring missions, we got more acquainted with these two
extraterrestrial territories during the last 70 years than with the oceans of our own mother
planet. However, the study of the maritime environment is nothing new. In the late 19th

century, expeditions were already carried out to measure the depth in different areas using
probes attached to a surface vessel. It is during one of these operations that the deepest
point one Earth, Challenger Deep, was discovered. It was named after the expedition and
vessel name that performed the survey, the HMS Challenger. However if the first idea of
what is nowadays called submarines can be found in the Antiquity (mainly for military
purposes), humankind started using them for deep-sea exploration in the beginning of the
1930s with the Bathysphere. Since then an astonishing amount of progress has been made
in the field leading to the development of nuclear submarines, considered as one of the most
advanced human achievement.

Figure 1.1: The original Bathysphere that was used by William Beebe and Otis Barton to
set the first record of deep sea dive at 245m in 1930 [44].
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1.1. CONTEXT

1.1.2 ... we still need to work with

With the ever growing need for energy and more communications between the different
continents we started the exploitation of this unknown environment.

Concerning energy production, we first encouraged the development of offshore plants to
collect petroleum and fossil resources. However, with the dramatic increase of the demand,
the quantity of this non-renewable energy extracted now exceeds by far the quantity slowly
produced leading to non avoidable future shortages. Moreover, the use of such energy is at
the expense of great environmental costs by affecting the atmosphere, with greenhouse gases,
the fauna and flora. Thus our civilisation is progressively turning to renewable sources of
energy. The main sources of renewable energy are of the count of three, namely hydropower,
solar power and wind (both onshore and offshore). In the last decade, the share of renewable
energy produced has been steadily increasing in OECD Europe according to the Interna-
tional Energy Agency. Among them, the coastal and offshore power are subject to a lot of
investments with the development of wind farms or hydro turbines. If the latter is lesser
known, the use of tidal streams is heavily studied in order to benefit from the enormous
source of power the ocean can provide.

Figure 1.2: Evolution of energy production from different sources in OECD from 2010 to
2020 [56].

On the communication aspect, continents have been linked together with a vast network
of cables lying on the seabed for quite a long time now. It first started with telegraphs
cables, but this network now enables the tremendous exchange of data between continents
through the Internet. They are of vital importance in an era where countries are perpetually
interconnected, from a military, economic or social point of views.
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Figure 1.3: Map of the submarine cables in March 2022 [114].

All these offshore infrastructures require more maintenance and inspection than their on-
shore counterparts. Indeed, they suffer from additional sources of threat to their integrity
such as corrosion, pressure or simply marine life. For a long time, highly skilled divers were
in charge of these operations alone. They are now assisted by Remotely Operated Vehicle
(ROV)s, which are robots deployed from the plant itself or from a surface vessel linked with a
tether to the surface and remotely piloted by a trained technician. However, this is not ideal
in terms of safety because of the risks of deep diving, especially in an industrial environment
with multiple potential sources of accident. In addition, the need for a surface vessel, and
as a consequence more technicians to operate, increases the cost of such operations. Thus,
the monitoring of such structures is not permanent, multiplying the risks of undetected and
potentially critical failures. With offshore plants flourishing around the globe, the need for
a cheaper and safer monitoring and maintenance solution came quickly.

1.2 Towards the development of low costs autonomous un-
derwater robots: a great challenge

1.2.1 Getting rid of the tether

As mentioned in Section 1.1.2, maintenance operations are now handled with the help
of ROVs. These robots linked to the surface with a tether providing both power and
communication to the surface are of great help when it comes to work in restrained area.
Indeed the size of the zone of operations is limited by the length of the cable it is attached
to. If this limitation is not a real problem when dealing with an oil and gas offshore plant as
the surface it covers is relatively limited, it becomes a critical issue when dealing with wind
farms that cover a few square kilometres or monitoring thousand kilometres long cables. To
perform the work efficiently, one would need many vessels to cover the area which means
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1.2. TOWARDS THE DEVELOPMENT OF LOW COSTS AUTONOMOUS
UNDERWATER ROBOTS: A GREAT CHALLENGE

numerous crew members and hence a dramatic increase of safety risks and costs. Therefore
the need for a wireless solution.

1.2.2 Why autonomous?

A wireless solution does not mean that it should be autonomous. In the same way it is
possible to control an aerial drone with a joystick, one may envision some kind of radio
signal to control the robot from distance. Unfortunately, radio signals do not travel through
water, therefore we need another way to communicate with our vehicle.

Acoustic waves propagate very well underwater. They can cover long distances up to
hundreds of kilometres depending on their wavelength. The higher the latter is, the greater
the distance. However, a higher wavelength means a lower frequency. Which leads us to
the main drawback of this technology which is the particularly low data throughput. For
a range of a hundred metres, the data rate is around 5 Kbps [67] which is far from enough
to operate a robot especially when doing complex manoeuvres where a live visual feed is
essential for the operator.

Another solution might be optical communications. If acoustic communications under-
water have been studied for decades, this field is relatively new and is currently the subject
of a lot of research. It emerged in the late 90s but has been significantly pushed during
the last decade. This is due to the development of underwater sensor fields which are often
deployed in strategic areas, such as energy-related offshore plants, to monitor them. As
they gather heavy loads of data, there is a need for a fast mean of communications un-
derwater. It has been proven that this technology outperforms acoustic communication by
far in terms of data rate with an average rate around a hundred Mbps and some systems
going up to 1 Gbps [51]. However, such systems do not reach more than a few dozen metres
in terms of range in the best conditions, which means clear water without particles. As
soon as turbidity comes in the way, this kind of system gets quickly inefficient. Moreover
the range achievable depends on both the colour of the light emitted and the colour of the
medium. Hence this technology is not suitable for our application where the robot might be
travelling in clear blue water between the plants and manoeuvre in a greenish water when
coming around the structures where algae develop easily.

With no efficient solutions to control a robot wirelessly, the Autonomous Underwater
Vehicle (AUV) has been designed. This particular type of vehicle has been investigated
to perform missions where no real time communication can be set up. They can achieve
particular tasks without any kind of supervision. They have been involved in wide range of
applications such as hydrography, oceanography, exploration [75] but also military related
operations or even archaeology [73]. With the development of offshore wind farms and sensor
fields, one of their basic mission is data muling as envisioned in the USMART project [92]
(see Figure 1.4). It consists in gathering data from a certain point and bring it back to some
mother station where the data will be analysed. This data can come from a sensor attached
to floating wind turbine that measures salinity, pressure or any kind of parameter.

As they need to evolve unsupervised, these robots are equipped with numerous sensors
themselves in order to sense their environment and then act accordingly to achieve their
task. These can be cameras [77], sonars, pressure sensor, magnetic sensors or even electric
sensors [15] To perform successfully, one of the critical points to address is the localisation
of such vehicles. Indeed if the mission is to gather data from a particular sensor, the robot
must be able to reach the defined sensor.
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Figure 1.4: Data muling scheme of operations (USMART
https://research.ncl.ac.uk/usmart).

This thesis has been funded by Kopadia, a French Start-up company based in Nantes
France, which is specialised in AUV operations. The robot we will consider and work with,
is one of theirs: the Folaga presented in Figure 1.5. The Folaga is a low cost robot that
is only equipped with an inertial measurement unit and a magnetic compass. This robot
being highly modular, it is easy to add new sensors under the form of mountable payload.
However, each new payload will have to be powered and adds to the system weight and
length. Therefore we may avoid to use multiple payloads at the same time.

Figure 1.5: The Folaga
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1.3. THE LOCALISATION PROBLEM

1.3 The localisation problem

As mentioned in the previous section, the challenging problem of localisation in the field
of AUVs is crucial. Indeed, as we have seen just before, radio signals do not travel though
water. As they are usually used to carry information in the robotics world, a whole class of
sensors and communication devices are not available to tackle our problem. Especially, any
variant of Global Navigation Satellite System (GNSS) system, among them the American
Global Positioning System (GPS) is not available as reliable source of positioning. This
is similar to the situation of a robot navigating indoors with the added constraint that
underwater robots are also deprived from the classic radio communications. These can be
of great help for the vehicle to gather information on its current localisation. Therefore
other approaches have been investigated to face the lack of information induced by the
unavailability of this class of devices.

1.3.1 Dead reckoning

The first method that does not rely on external measurements is to measure the forces
applied on the system. By a simple mean of integration it is possible to estimate the dis-
placement of the vehicle between two measurements. This particular method is called dead
reckoning. Numerous sensors are available to perform these measurements. Accelerome-
ters are designed to measure the linear acceleration while gyroscopes return the angular
acceleration. In addition to these two, the gyrocompass, which is a magnetic sensor returns
the north direction. Fusing the information coming from these three types of sensors, it
is possible to compute an estimation of the 3D orientation of the vehicle. Data fusion is
often performed by one of the non linear flavour of the Kalman Filter, such as the Extended
Kalman Filter (EKF) or the Unscented Extended Kalman Filter (UEKF). This machinery
forms the Attitude and Heading Reference System (AHRS). Usually, unmanned vehicles
embark an upgraded version of the AHRS which is called an Inertial Navigation System
(INS). As in the AHRS, the INS is equipped with sensors for all 6 degrees of freedom (i.e.
3 accelerometers and 3 gyroscopes) and a gyrocompass. But in addition to returning an
estimation of the vehicle orientation, it also gives an estimation of the position of the robot
and its velocities. This kind of system comes in wide range of prices and therefore quality.
The main drawback of such systems is that biases are introduced during the integration
step. Depending on the quality of the INS, these biases may be quite significant; resulting
in speed and position values with a large uncertainty and/or false results. This phenomenon
is called drift.

To counter this drifting effect, several options have been investigated. The first one is
to ascend back to the surface periodically in order to recalibrate the INS using the GNSS
system. Depending on the quality of the INS and the margin of precision one would like
to keep, the length of the period underwater can vary greatly. Creating bathymetric maps
demands a precision of 2m in its highest rank (special order S-44). Even a military grade
INS would not meet the requirements for more than an hour. However the price of such
grade A equipment is not affordable for multitude of robots. Therefore it is not suitable
for offshore plants monitoring. Moreover these systems are huge and do not fit with small
AUVs.

A second option is to add a Doppler Velocity Log (DVL). This equipment measures the
speed over ground of the vehicle based on the Doppler effect. It sends four acoustic beams
toward the ground to calculate the Doppler effect appearing when it receives the bounces
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back. Then data fusion is used with the data given by the INS, using again a flavour of
Kalman filter, to get a better estimation of the displacement and thus current position of
the robot. When an INS and a DVL are coupled together, the system becomes an Aided
Inertial System (AINS)

Lastly, the position computed by an INS is always based on a known initial position.
Therefore every computed estimation is made relatively to it. Hence if no absolute coordi-
nates are known for this initial position we do not get an absolute localisation of the robot.
In the context of monitoring, if the robot detects a leak on a pipe for instance, without
absolute reference, it will not be able to place it on a geographical map to solve the issue
quickly. Moreover one major problem is, because of the drift effect mentioned earlier, error
on this estimation never stops growing with time. Hence navigating using this system alone
cannot be considered for long missions. Some examples of AUVs using this navigation sys-
tem can be found in [16, 105, 122]. But it is always complemented with another method
to correct the position estimation error due to the drifting effect and sometimes provide an
absolute reference for positioning.

1.3.2 Acoustic positioning

In the previous section, we investigated navigation using only sensors measuring propriocep-
tive characteristics. Another method to localise an autonomous vehicle is to use an external
system. In the scope of AUVs such systems are acoustic beacons. In this area, two different
configurations have been thoroughly investigated.

1.3.2.1 Ultra Short Baseline

The first one is the Ultra Short Baseline (USBL) positioning system based on four hy-
drophones to listen to acoustic signals and a transmitter that has to be mounted on a surface
vehicle (see Figure 1.6 for a schematic). The transmitter sends pings to the transponder
mounted on the underwater vehicle to emit. This emission will be received by the four
hydrophones, allowing the USBL system to locate the vehicle in its coordinate frame. The
surface vehicle having access to a GNSS system and an INS, it is then possible to calculate
the absolute position of the AUV we want to locate. This system is quite convenient to use
and relatively cheap but has two major drawbacks:

• It needs a surface vehicle with the ability to have a precise position measurement.

• The underwater vehicle never knows its position with the USBL system alone, as
everything is calculated on the surface vehicle after receiving the response from the
transponder. Thus another communication system must be used to send the position
back to the AUV if required.

Moreover, the range of such a system can be low depending on the mission that has to
be performed. On average, a maximum distance of 5km can be obtained. In the case of
distributed underwater robotics where the aim is to cover a maximum space for exploration,
this range limitation can become an issue.
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Figure 1.6: USBL configuration [43].

1.3.2.2 Long Baseline

The second configuration is the Long Baseline (LBL) system. Unlike the USBL system, the
LBL system uses several transponders with a precisely known position, either fixed on the
seabed or in more recent systems, attached to buoys with or without an anchor as shown
in Figure 1.7. Each fixed transponder waits for an emission coming from the underwater
vehicle. When it receives one it transmits a response with its position. Using the time
elapsed between the moment it sends a call and the time it receives an answer, the AUV
is able to measure the distance between itself and the beacon. Using measurements from
several beacons, the AUV is then able to calculate its position and can use it for navigation.
This is called triangulation or trilateration.

At least three responses are needed to have a precise position in 2D; at least four responses
for a 3D position. That is why there are usually more than four beacons deployed to ensure
that the AUV will not be blind because of the geometry of the environment. Moreover,
redundant information gives better results in case the number of responses received is higher
than the one needed. This method allows a better range and is generally more robust, but
it is far more costly as the beacons have to be fixed on the seabed and possibly gathered
at the end of the mission. Several variants have been investigated to reduce the number of
beacons needed such as Sparse-LBL and Virtual-LBL [76].

In the context of constant monitoring, the USBL and its need for a surface vessel is
not ideal. On the other hand, placing beacons on already positioned plant seems feasible.
Therefore, the LBL system will be preferred. Moreover, Kopadia developed a system of
floating beacons which embark a GNSS antenna on its air side and an acoustic beacon on
the end that stays underwater. Hence, it can get its absolute position while communicating
with an AUV navigating underwater. Using multiple of these we can create a mobile LBL
system.
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(a) Classical LBL system (b) Mobile LBL system

Figure 1.7: LBL systems configurations [43]

1.4 Research approach

1.4.1 Solving the localisation problem

The main objective of this work will be to solve the localisation problem in the case of a low
cost AUV as the Folaga presented earlier. Its INS being a low price one, it is highly sensitive
to the drift mentioned in Section 1.3.1. Therefore to help it estimating the robot position,
we will use its dynamical model with numerical integration. Moreover such systems need to
have a precise initial condition to work properly. However this is very unlikely in an on-field
operation. Therefore there will already be an error at the initialisation of the estimation
algorithm. Hence this work will aim at producing a method that is robust to the uncertainty
we can have on the initial condition of the system. Moreover we will consider that we may
have during the course of operations, some range measurements with the floating beacons
that the robot vehicle may come close to. This sums up all the information we may have
with our robot.

1.4.2 Constraint Satisfaction problem

Each new information on the system in the localisation problem can be written under the
form of an equation. Its dynamics can be rewritten under the form of a state equation (see
Section 2.2.1), the different range measurements are simple distance calculations. All these
pieces are information on where the vehicle may be but also constraints on where it cannot
be. This set of equations forms what is called a Constraint Satisfaction Problem (CSP) (see
Section 2.3.4). Therefore solving the localisation problem comes down to solving a CSP.

This particular class of problem has been studied in various context, using several type
of algorithms [70]. In this thesis, we will use a set-membership approach which has been
proven suitable to solve this kind of problems.
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1.4.3 Set-Membership methods

Most of the methods we can find in the literature when it comes to position estimation will
be based on probabilities. These probabilistic methods will return a result and a covariance
matrix which shows how reliable the result is and what is the error to be expected. Among
them we can cite the Kalman Filter (KF) and its different variants, the Particle Filter (PF)
and so on . . . . These methods are only probabilistic and the results are not guaranteed.
This can be a major issue when notions of safety arise. When dealing with complex systems
such as robots and critical systems like energy plants, safety is essential. Therefore the need
for a guarantee in our computations. To face it, we have chosen to use set-membership
methods. This kind of approach has shown strong abilities to deal with non linear problems
and uncertainties. Unlike probabilistic methods, the result obtained is a solution set that the
actual solution is part of. Therefore all computations made will not remove feasible solutions,
which guarantee our result. The shortcoming of this, is that it may induce pessimism. This
means that the solution set may contain a large number of feasible solutions in addition to
the actual one. One other major difference of set-membership methods with the probabilistic
approach, is that all computations are deterministic. Thus, if the input is unchanged the
output stays the same, if the computation steps are identical, which is not necessarily the
case with probabilistic methods.

1.4.4 Thesis outline

This thesis comes within the scope of Kopadia’s development. Hence, it focuses on im-
proving the localisation of a low-cost AUV equipped with cheap sensors. Therefore their
performances are relatively low compared to the actual standards. This thesis is at the cross-
roads of three different fields of work which are interval analysis, guaranteed integration and
Lie groups. The three chapters following this introduction cover their presentation.

After introducing some tools to study dynamical systems, from which robots are part of,
Chapter 2 focuses on interval analysis. After presenting the basics of this set-membership
approach, the different methods provided by interval analysis to handle dynamical systems
problems are exhibited.

Then Chapter 3 presents the notion of guaranteed integration. The different conventional
methods to perform it are shown. In this chapter, is also presented a small contribution of
this thesis which is the integration of one of the most efficient guaranteed integration tool
into the library used to perform the different computations throughout this work.

To end this first part, Chapter 4 introduces the field of Lie groups. We will intentionally
stay on the edges of this field and only present the tools needed later in this work. Though
being extremely powerful, Lie groups are very abstract, thus we will present them in the
context of differential equations. In this chapter is presented one of the main contributions
of this thesis named the transport function. As the reader may not be acquainted with one
or more of these fields, the different notions covered are illustrated with many examples and
some pieces of codes are given and explained for the readers to try the different tools used
in this thesis by themselves.

Chapter 5 brings the main contribution of this thesis. Using the different elements intro-
duced in the previous chapters, a new integration method has been developed. It is designed
to be robust to the uncertainties mentioned earlier. It is illustrated through four examples
from the simplest theoretic one to a problem closer to robotics.
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Chapter 6, then shows different areas where the method developed in Chapter 5 could be
applied with examples. Finally, Chapter 7 concludes this work by summarising the different
contributions of this thesis and presenting the trails one may follow to pursue it.
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3.4 Löhner’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.1 Rigorous integration . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Taylor-Lagrange expansion . . . . . . . . . . . . . . . . . . . . . . 46
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CHAPTER 2. MODELLING ROBOTS AND SET-MEMBERSHIP METHODS

2.1 Introduction

We recall that the objective of this work is the planning of a mission of a robot and its
localisation after the operation. To reach such goals, we will need a model of our system
in order to study its evolution through time given an initial state. We tackle the subject
in section Section 2.2. However, as accurate as our model can be, we still have to deal
with uncertainties coming from different sources. Among them, external perturbations that
could occur while our system is in operation. An example, in our case, could be a water
current applied to our robot during a mission. Another source of uncertainty is the accuracy
of our sensors. As good as they can be, none is perfect and will introduce uncertainties in
our model. Lastly, the computational power available and the representation of numbers in
computers will hinder the efficiency of our model.

The main contribution of this thesis presented in Chapter 5 is at the crossroads of three
different mathematical fields, interval analysis and tubes presented in Section 2.3 and Sec-
tion 2.4 respectively, guaranteed integration explained in Chapter 3 and Lie theory developed
in Chapter 4. To keep this presentation concise, and help the reader understanding, we will
focus on the different tools needed from each field. Hence a lot of pointers to references will
be made to more exhaustive explanations throughout these chapters.

2.2 Modelling a mobile robot

A mobile robot is an unmanned mechanical system able to move in its environment may it
be ground, air, water or even space. It can be autonomous or remotely operated but must
be able to sense its surroundings using sensors, act on it with its actuators and embark some
kind of intelligence to link both. As it is a mechanical system, it is subject to the laws of
physics and thus can be described with mathematical equations

2.2.1 Dynamical System

Mathematically speaking, a mobile robot can be seen as a dynamical system following a set
of equations describing its evolution in time. A general definition of a dynamical system
can be found in [42, Chapter 1]

Definition 2.1 (Dynamical system). A dynamical system is a function φ : T × S → S
which follows the properties below:

1. T is either N,Z,R or R+. t ∈ T will be the evolution parameter and T the time set;

2. S is a non empty set. It is the state space set;

3. φ(0, .) is the identity function, i.e. ∀x ∈ S, φ(0,x) = x;

4. For any x ∈ S, and t, τ ∈ T, φ(t, φ(τ,x)) = φ(t+ τ,x).

Remark 2.1. From point 3 of the definition above, we can notice that it is impossible for
the system to evolve in its state space instantaneously.

Remark 2.2. Coming from item 4, the future state of the system always depends on its
current state and it is assumed that the system dynamics stays the same during its evolution.
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There exist three different types of dynamical systems, continuous, discrete and hybrid.
In this thesis we will only deal with continuous time systems. Hence only this type will be
developed further. The interested reader can refer to [106] for discrete systems and [40, 41,
109] for information on hybrid ones.

Let us introduce some notations and vocabulary that we will use throughout this work:

1. When T is equal to R or R+ the system is called continuous-time, on the contrary to
discrete-time systems where T = N or Z.

2. The state vector of the system will be called x.

3. We will denote the initial condition by x0 the state of the system at time t = 0.

2.2.2 Continuous-time system

The subclass of dynamical systems we will deal with gathers continuous-time systems. Also
called smooth dynamical systems, a definition of them can be found in the books of Hirsch
[53, Chapter 7] and Grass [49, Chapter 2].

2.2.2.1 Definition

Definition 2.2 (Continuous-time system). A smooth dynamical system on Rn is a contin-
uously differentiable function φ : R× Rn, where φ(t,x) satisfies the following properties:

1. φ(0, .) is the identity function, i.e. ∀x ∈ Rn, φ(0,x) = x

2. For any x ∈ Rn, and t, τ ∈ R, φ(t, φ(τ,x)) = φ(t+ τ,x)

The careful reader will have noticed that if we have an analytical expression for φ and an
initial condition x0, it is trivial to compute the state x(t) at time t ∈ T . Unfortunately, in
most cases, there is no such expression available.

Remark 2.3. In the rest of this thesis, we will often simplify φ(t, x) by φx(t) if x is a fixed
parameter or by φt(x) if t is a fixed parameter.

2.2.2.2 Relationship between ordinary differential equations and continuous
time systems

Since the introduction of differential and integral calculus by Newton and Leibniz, dynamical
systems have been studied in many different fields from physics [115] to chemistry, from
engineering to biology [57] and even economics [125] or sociology [111] to describe various
types of phenomena. If the systems described are very different from one another, they
all have in common the use of differential equations (partial or ordinary) to represent such
systems. In the case of a robot, one would use classical mechanical work which would lead
to Equation (2.1)

ẋ(t) = f(x(t)), (2.1)
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where f ∈ Ck(Rn), t ∈ R represents the time and the vector x ∈ Rn is the state of the
system. This equation describes the systems behaviour and only depends on the current
state of the system. This type of differential equation is called autonomous which means
that the independent variable t does not occur explicitly in the expression of f . Thus the
expression is often simplified into:

ẋ = f(x). (2.2)

In numerous robotic examples, f also depends on a variable u(t) ∈ Rm which is an external
input that often represents, in a robotics context, an actuator command.

However, if Equation (2.1) alone describes the general behaviour of a system, it fails to
give a particular solution. This is the reason why it is usually associated with an initial
condition to form the system 2.3

{
ẋ(t) = f(x(t)), t ∈ [t0, tf ]

x(t0) = x0 ∈ Rn
(2.3a)

(2.3b)

The system (2.3) is called an Initial Value Problem (IVP). A definition can be found in [49,
Chapter 2].

Definition 2.3 (Ordinary Differential Equation (ODE), IVP, Solution). The Equation (2.3a)
is called an ODE and the System (2.3) is called an IVP for the initial condition given by
Equation (2.3b).
The function x : [t0, tf ] → R is called a solution to the IVP (2.3) if x(t) satisfies (2.3a) for
all t ∈ [t0, tf ] and x(t0) = x0.

The use of IVPs is widely spread among the field of dynamical systems, especially for
autonomous systems. In such a configuration, the Picard-Lindelöf theorem proves the exis-
tence and the unicity of the solution φ(t, x0) [53, Chapter 7].

Theorem 2.1 (Picard–Lindelöf). Consider the IVP{
ẋ = f(x)

x(t0) = x0 ∈ Rn
. (2.4)

Suppose that f ∈ C1(Rn), then there exists a solution for this IVP and this solution is
unique

The interested reader can find a proof of this theorem in [53, Chapter 17]. The solution
φ(t, x0) obtained predicts the future state of the system initialised at x(t0) = x0 ∈ Rn for a
time t ∈ [t0, tf ].

Remark 2.4. As mentioned earlier, the analytical expression of the flow φ is not always
available. In this case, there exist numerous methods to compute numerical solutions, (the
simplest one being Euler method which is rarely used nowadays as it is very weak) and even
guaranteed ones as we will see in Chapter 3. These methods are used to evaluate φt at a
specific time t for a defined initial condition x0.

Remark 2.5. In some particular situation, the calculated solution may only be valid locally,
in that case we deal with local dynamical systems.
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Example 2.1 (Continuous time system). We will end this section with a short example of
continuous dynamical system. Let us take the system defined in [54] as follows:

ẋ = f(x) =

(
ẋ1

ẋ2

)
=

(
−x3

1 − x1x
2
2 + x1 − x2

−x3
2 − x2

1x2 + x1 + x2

)
. (2.5)

It is possible to represent Equation (2.5) as a vector field in the state space, here R2, with a
time set being R. Throughout this work, for ease of understanding, we will not differentiate
the state equation ẋ = f(x) and its associated vector field f . In Figure 2.1, the vector
field associated with Equation (2.5) is drawn. The flow φ associated with f also has a
geometrical representation. It can be interpreted as a trajectory going through a specific
point, the initial condition for instance. Several trajectories have be added with different
conditions at t = 0 on Figure 2.1. The careful reader may notice different notations. φ(t,xi)
denotes the trajectory (the curve), passing through the initial condition xi, when φ(3,xi),
denotes the point of the trajectory at time t = 3 for a given initial condition xi.

Figure 2.1: Vector field associated with Equation (2.5). A few trajectories passing though
different initial conditions are represented
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2.3 Interval Analysis

The previous section provided us a formalism to model our robot thanks to dynamical
systems study. We will use them later in this work. We now need a way to handle the
uncertainties that may appear when dealing with it. Indeed, as correct and close to the
true system our model is, there will still be uncertainties coming from different sources, the
model itself, external perturbations, computing errors to name a few. In this thesis, interval
analysis will be used to tackle this issue.

2.3.1 Background

2.3.1.1 Origins

The mathematical field of interval analysis has been originally developed to address the
problem coming from rounding errors when calculating with computers [33, 113]. In a
machine, there is only a finite set of numbers available to the user. We will call this set Scomp
where Scomp ⊂ R. The reason for this, is the representation of numbers in computers memory
under the form of bytes which have a finite size (64 bits for most computers nowadays). A
simple way to verify this, is to open a simple Python interpreter in the console and try
perform a simple calculation for instance 2.1+2.7. One would expect the result to be 4.8.
Unfortunately for us, it is not as you can see in Figure 2.2.

Figure 2.2: Round-off error

Hence we have an issue when trying to compute models using numbers in R. This
rounding error can lead to huge numerical error when it is carried from one computation to
another (see [91]). To address this problem, interval analysis represents a real number x as
a combination of two bounds a and b such that

x ∈ [a, b], a, b ∈ R.

We often denote the interval [a, b] as [x] since it encloses the value of x. a and b are called
lower bound and upper bound respectively. It is now possible to represent x as the closest
interval containing it using

x ∈ [a, b], a, b ∈ Scomp,
where a and b are the values immediately below and immediately above x respectively when
x 6∈ Scomp. If x ∈ Scomp then a = b = x. In [90], Moore extended the concept of interval
analysis to bound the effect of errors from all sources, including approximation errors and
errors in data.

Remark 2.6. This approach is called set-membership approach as values are enclosed in a
set to deal with them. It has been widely used to solve nonlinear problems [31, 58, 74, 87].
This is opposed to the widely used probabilistic approach, which represents uncertainties as
a probabilistic functions. This other method may be less computationally expensive and its
results easier to understand. However it lacks the guarantee in the results we will later need
in this work.
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2.3.1.2 Applying interval analysis in a robotics context

Interval analysis comes in handy when addressing robotic problems. When dealing with
this kind of systems, we often want to prove, for safety reasons, that it is located at one
place, that it will reach some state or avoid one, whatever the perturbations. Hence the
need for guaranteed computation that interval analysis can handle [116]. Indeed, if we
represent the different components of the state vector and the parameters related to the
problem as intervals then it is possible to perform guaranteed computation. Therefore one
can use numerical results as proof. Interval analysis has been used for various problems in
robotics for instance research of stability sets [14], localisation [68],reachability analysis [86]
or finding basins of attraction [29].

2.3.2 Interval arithmetic

In the following section we will introduce the different concepts and notations used later in
this work related to interval analysis. Most of them are derived from [63, Chapter 2]

Definition 2.4 (Interval). An interval denoted [x] is a closed and connected subset of R.
We denote by IR the set of all intervals.

Example 2.2. Here are a few examples of intervals:

1. [1, π] is an interval,

2. {1} is an interval. It is called a degenerate interval,

3. ∅ is an interval,

4. [−∞,∞] is an interval.

As mentioned earlier, an interval possesses a lower bound lb([x]) and an upper ub([x])
bound. The former is often denoted x or x− and the latter x or x+ in the literature. We
will use the second notation throughout this work. Those are defined as follows:

x− = lb([x]) , sup {a ∈ R ∪ {−∞,∞} |∀x ∈ [x] , a ≤ x}
x+ = ub([x]) , inf {b ∈ R ∪ {−∞,∞} |∀x ∈ [x] , x ≤ b}

(2.6a)

(2.6b)

Remark 2.7. The symbol ”,” means ”is defined to be” throughout this work

2.3.2.1 Sets operations

As intervals are sets, the different set operations can be applied such as intersections and
unions. The intersection operation can be directly extended to intervals and is defined by:

[x] ∩ [y] , {z ∈ R|z ∈ [x] and z ∈ [y]} (2.7)

One should be careful when applying the union operation. When using sets the union is
defined as follows:

[x] ∪ [y] , {z ∈ R|z ∈ [x] or z ∈ [y]} (2.8)
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To be consistent with Definition 2.4, the result of the operation Equation (2.8) should be
connected. That is why the interval hull of a subset X, denoted [X] has been defined. It is
the smallest interval containing X. For instance the interval hull of [−4,−2]∪ [1, 6] (written
[[−4,−2] ∪ [1, 6]]) is equal to [−4, 6]. Whence the interval union denoted by [x] t [y] has
been defined as

[x] t [y] , [[x] ∪ [y]] (2.9)

In the same way interval deprivation has also been defined as [\]:

[x][\][y] = [[x] \ [y]] = [{x ∈ [x]|x 6∈ [y]}] (2.10)

Example 2.3 (Sets operations). Here are a few examples of extended sets operations applied
to intervals

• [2, 6] ∩ [4, 9] = [4, 6] is an interval

• [−4,−2] ∪ [1, 6] is not an interval

• [−4,−2] t [1, 6] = [−4, 6] is an interval

• [4, 7][\][5, 9] = [4, 5]

• [2, 10][\][5, 8] = [2, 10]

2.3.2.2 Extension of classical operators

As the primary objective of intervals is to represent values of R, all arithmetic operations
have also been extended to intervals. For each classical binary operator � ∈ {+,−,×, /}:

[x] � [y] = [{x � y|x ∈ [x], y ∈ [y]}]. (2.11)

For addition and subtraction, it only consists in applying the operator on the bounds.
When dealing with multiplication and division, one should be careful especially if {0} is
included in one of the terms. For further information on implementation, the reader may
refer to [63].

Example 2.4 (Arithmetic of R). A few examples of classical operations extended to inter-
vals are given below

1. [1, 3] + [2, 6] = [3, 9]

2. [1, 3]− [2, 6] = [−5, 1]

3. [1, 3] ∗ [2, 6] = [2, 18]

4. [1, 3] ∗ [−2, 6] = [−6, 18]

5. [1, 3]/[2, 6] = [1
6 ,

3
2 ]

6. [1, 3]/[−2, 6] = [−∞,∞]
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Complex operators such as trigonometry operators, exponential, logarithm and so on
have also been extended to intervals. Therefore they are not limited to linear operations
and can be used when addressing non linear problems.

Remark 2.8. It is possible to stack intervals to form interval vectors often called boxes
denoted [x]. The latter denomination will be used throughout this work. These boxes
are called axis-aligned as each interval of the box is a subset of one dimension of Rn (see
Figure 2.3) All operations presented in Section 2.3.2.1 and Section 2.3.2.2 can be applied to
boxes. In this case, they are applied dimension-wise.

Remark 2.9. The state of a robot will be often encapsulated in a box [x], each dimension
representing a state component.

Example 2.5 (boxes). We introduce two boxes [x] = [0, 3]× [2, 4] and [y] = [2, 5]× [1, 3]

1. [x] + [y] =

(
[2, 8]
[3, 7]

)

2. [x] ∩ [y] =

(
[2, 3]
[2, 3]

)
(see Figure 2.3)

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0
0.0

1.0

2.0

3.0

4.0

[x]

[y]

[x] ∩ [y]

[x] t [y]

Figure 2.3: Sets operations applied on boxes.
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2.3.3 Inclusion functions

2.3.3.1 Extension of functions to intervals

In the previous section, we have seen that classical operators of R (Rn in case of boxes)
could be extended to intervals. In the same way, interval functions are the extended form
of real functions to this field.
Consider a box [x] ∈ IRn and a function f : Rn → Rm. The image of [x] by f is given by:

f([x]) = {f(x)|x ∈ [x]}. (2.12)

The image set obtained may be an axis-aligned box especially with elementary functions
but generally it is not the case (see Figure 2.4). Hence an interval counterpart has been
defined, called inclusion function.

Definition 2.5. [f ] : IRn → IRm is an inclusion function for f : Rn → Rm if

∀[x] ∈ IRn, f([x]) ⊆ [f ]([x]). (2.13)

An inclusion function returns a box enclosure of the image of [x] by f . It is usually easier
to compute as it can be made combining the interval operators presented in the previous
sections. Moreover the image is a box, thus the results can be used again for interval
computations. However, because the inclusion function returns a box, some elements of
[f ]([x]) may not have a preimage by f . This phenomenon is called the wrapping effect [34,
88]. An inclusion function can have several properties presented below:

• An inclusion function is said thin if the image of any degenerate box [x] = x is also
degenerate i.e [f ](x) = {f(x)}

• It can be inclusion monotonic if: [x] ⊂ [y]⇒ [f ]([x]) ⊂ [f ]([y])

• It is minimal if ∀[x], [f ]([x]) is the smallest box enclosing f([x]). In that case it is
denoted [f ]*. For a given function f , there exists an infinity of inclusion functions,
but only one can be minimal. By definition the minimal inclusion function is the one
inducing the least wrapping effect.

• [f ] is natural if each variable xi of f is substituted by an interval variable such that
xi ∈ [xi] and each real operator by its interval counterpart to create [f ]. The natural
inclusion function is the simplest one to find but may not be minimal.

Example 2.6. (Natural inclusion function) Consider the function f : R → R such that
f(x) = x3 − x4. The natural inclusion function associated with it is

[f ] : IR → IR
[x] 7→ [x]3 − [x]4

(2.14)

Example 2.7. (wrapping effect) As shown in Figure 2.4, there is an infinity of inclusion
functions for one given function and some will yield better enclosure than other. This
induced pessimism has been studied, and it has been noted that different analytical expres-
sions often lead to far different performances in terms of sharpness of the enclosure when
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turned into inclusion functions. The simplest example that comes to mind is the function
f(x) = x− x = 0. If we consider its associated natural inclusion function we obtain:

[x]− [x] = [{x1 − x2|x1 ∈ [x], x2 ∈ [x]}]
= [x− − x+, x+ − x−]

If the interval is not degenerate, it is easy to figure out that the result is far from the one
expected. For instance if we set [x] = [−1, 1], then we obtain [x]− [x] = [−2, 2]

It has been shown that this problem appears when a variable appears several times in
the analytical expression. Different factorisation techniques have been developed to find an
analytical expression that limits the wrapping effect [3, 17, 107].

Figure 2.4: Here is represented a box [x] and its image set by function f . In addition, the
image by the natural inclusion function of the latter is represented as a doted box. Then the
minimal enclosure obtained thanks to the minimal inclusion function is drawn as a dashed
box.

2.3.3.2 Centred form

We will now introduce the notion of centred form of an interval function as they will be
of use in Section 3.4.5. This notion has been introduced in [90] and Ratschek provided an
explicit formula for them in [100]. A general defintion can be found in [8].

Definition 2.6. Consider a function f : Rn → R and a vector x ∈ Rn. Let us introduce
L : IRn × Rn → Rn, a Lipschitz function for f over [x] i.e

∀x, c ∈ [x], f(x)− f(c) ∈ L([x], c)(x− c) (2.15)

Then a centred form [fc] of f on [x] with a centre c is given by:

[fc]([x]) = f(c) + L([x], c)([x]− c) (2.16)

Proposition 2.1. A centred form [fc] of f is an inclusion function for f , i.e

∀[x] ∈ IRn, f([x]) ⊂ [fc]([x]) (2.17)
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Proof.
∀[x] ⊂ IRn, ∀x ∈ [x], f(x) = f(c) + f(x)− f(c)

∈ f(c) + L([x], c)(x− c)

Thus,
f([x]) ⊂ f(c) + L([x], c)([x]− c)

⊂ [fc]([x])

It should be noticed that the performances, i.e the sharpness of the resulting enclosure,
of a centred form [fc] heavily depends on the choice of c as shown in [8].

Example 2.8. Consider f : R→ R such that f(x) = x(1− x), L([x]) = 1− 2[x]. Then

[fc]([x]) = c(1− c) + (1− 2[x])([x]− c) .

Let us define c1, c2, c3 such that

c1 = mid([x])

c2 = mid([x])− width([x])/2 = x−

c3 = mid([x]) + width([x])/2 = x+

where mid([x]) is the midpoint of [x].
Consider [x] = [0, 4], we obtain:

[fc1 ]([x]) = [−16, 12]

[fc2 ]([x]) = [−28, 4]

[fc3 ]([x]) = [−16, 16]

Thus the choice of c is of importance when using a centred form. A method to compute an
optimal c is given in [8].

Now Definition 2.6 is a general case. In the rest of this thesis when dealing with centred
form we will use the definition given in [63].

Definition 2.7. Consider a function f : Rn → Rn such that f is differentiable over Rn.
Then its centred form [fc] is given by:

[fc]([x]) = f(c) + [Jf ]([x]) · (x− c) (2.18)

where c = mid([x]) and Jf is the Jacobian of f

The main advantage of the centred form is, as the width of [x] tends toward 0, the
enclosure provided by the centred form gets closer to the one given by the minimal inclusion
function. Thus it induces very little wrapping effect provided the input box [x] is small
enough. Mathematically speaking, this corresponds to:

lim
width([x])→0

width([fc]([x]))

width([f ]∗([x]))
= 1 (2.19)
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2.3.4 Constraint Satisfaction Problems

In robotics many problems can be presented under the form of a CSP. For instance, in a
localisation problem, we will look for a position that satisfies all the measurements made
with the different sensors our robot is equipped with[59].

A mathematical formalism for CSPs is given in [104, Chapter 2]. A CSP 〈t is defined by
a triple 〈t = 〈X ,D, C〉, where X is a n-tuple of variables, D is the set of domains on which
these variables are defined and C is the set of constraints that are applied to these variables.
Each element c of the latter set is called a constraint and is composed of a pair 〈scope,rel〉
where scope denotes the variables concerned by the constraint c and rel the relation linking
this variables together, constraining them.

Originally, CSPs where studied over discrete domains [23, 118] and then extended to
continuous situations [28, 22, 55]. In this work we will focus on the continuous case.

Proposition 2.2. It is possible to represent the constraints c ∈ C as a multidimensional
function f . In that case the formalism comes as follows:

〈t =

{
x ∈ [x]

f(x) = 0
, (2.20)

with x ∈ Rn and f : Rn → Rm where m is the number of constraints of the problem

Proof. Let us prove that this form of 〈t defines a CSP:

• x is the vector of all elements of X

• [x] represents the domain D

• We introduce ci, i ∈ 1 . . .m such that:

∀i, ci = 〈domain(fi), fi(x) = 0〉 .

were domain(fi) represents the sets of values on which fi can be applied. If we define
C = {c1, c2, . . . cm}, we have 〈t = 〈X ,D, C〉. Therefore 〈t is a CSP.

From now on the formalism used in this work to describe CSPs will be the one given in
Equation (2.20). We also denote by S the solution set of 〈t such that:

S = {x ∈ [x]|∀i ∈ {1 . . .m}, fi(x) = 0} . (2.21)

Hence, solving 〈t comes down to finding S. Computing the solution set is recognized as a
NP-hard problem in the general case, but for some classes of problems, CSPs can be solved
using inference and search methods. One may find more information in [104, Chapter 2]

Remark 2.10. If S is found empty, i.e there exists no element x satisfying all constraints,
then the CSP is unsatisfiable. In that case, one might be interested in the relaxed version
of this CSP [38].
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Example 2.9 (Localisation: CSP). To illustrate the use of CSP, let us introduce a simple
range-only localisation problem. Suppose that we have an AUV and 3 buoys as presented
in Figure 2.5a. The AUV is equipped with acoustic sensors able to ping the buoys and
receive their response with their position. The distances (r1, r2 and r3) to the buoys can
be computed providing that the clocks are synchronised. The sensors are not perfect so the
measurements are enclosed in intervals [r1], [r2], [r3] (see Figure 2.5b). It is possible for the
AUV to determine its position.

One can formalise this problem into a CSP:

• Let us denote x, y the position of the robot in the plane. We can set x = (x, y, r1, r2, r3)

• We now set the domain for x such that [x] = [−∞,∞]× [−∞,∞]× [r1]× [r2]× [r3]

• Lastly, given (x1, y1), (x2, y2), (x3, y3) the positions of the buoys, let us define the
following constraints:

ci : fi(x) =
√

(xi − x)2 + (yi − y)2 − ri = 0 i ∈ {1, 2, 3} (2.22)

(a) Initial setup (b) Initial setup with sensors measurements

Figure 2.5: Range-only problem using an AUV and three beacons

Sometimes computing the solution set is not achievable. Nevertheless, one might be able
to compute an enclosure [v] of S such that S ⊂ [v] ⊂ [x]. To do so, one could use tools called
contractors coming with interval analysis to remove elements of [x] that do not satisfy the
constraints of the CSP.

2.3.5 Contractors

In this section we present the tools used in interval analysis to contract CSPs. The following
definition is extracted from [19].
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Definition 2.8. A contractor associated with a constraint ci of a CSP 〈t with a solution
set S is an operator Ci : IRn → IRn such that:

1. ∀[x] ∈ IRn, Ci([x]) ⊆ [x] (contractance)

2.

(
Ci(x)

x ∈ [x]

)
⇒ x ∈ Ci([x]) (consistency)

Now let us detail what the different properties of the contractor imply:

• The contractance property ensures that no element outside of our input [x] can belong
to the output.

• The consistency property guarantees the result, i.e if x satisfies the constraint ci then
it will not be removed from our enclosure of the solution set

Example 2.10 (Contractor). Let us illustrate Definition 2.8 with a simple, graphic example.
Let us introduce the set S painted yellow in Figure 2.6 and its associated contractor CS. By
associated contractor we mean the the constraint applied is

c : x ∈ S. (2.23)

The input box [x] is painted black on the figure and the result after contraction CS([x])
is painted red. In this case the contractor is minimal, which means that the result of the
contraction CS([x]) is the smallest box that contains S∩ [x] without eliminating any solution
[30].

Remark 2.11. This example also illustrates one of the limit of contractors which is the
wrapping effect. Indeed, the set we are trying to characterise is rarely a perfect box which
leads to an over-approximation that can be quite large, especially when the set is not convex.
To overcome this obstacle one can use pavings which will be seen in Section 2.3.7

Figure 2.6: Example of contraction of a box [x] with a contractor CS over a set S.
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One of the main advantages of contractors is the fact that they can be combined together
(union, intersection...) to get a better (smaller) approximation of the solution set.

Example 2.11 (Localisation: contractor). Let us come back to our localisation problem
introduced in Section 2.3.4. Let us see how contractors can be used to approximate our
solution set. We introduce C1, C2, C3 the contractors associated with the distances measured
to the three beacons. Figure 2.7 displays the results of C1([x]), C2([x]), C3([x]) in red, blue
and green respectively. The intersection is also displayed giving us an approximation of the
true position of the robot. This enclosure could be even better by applying each contractor
successively, until the result of the contraction stagnates , i.e for i ∈ {1, 2, 3}, Ci([x]) = [x].
The result of this operation is called the fix point. An animation of this is available here1

(a) Estimation for each measurement.

beacon 1

beacon 2

beacon 3

x

y

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

Cb1([x])

Cb2([x])

Cb3([x])

Cb1 ∩ Cb2 ∩ Cb3([x])

(b) Final estimation after intersection.

Figure 2.7: Contractors applied to the localisation problem.

2.3.6 Separators

When using contractors, we compute an over-approximation of our solution set. But we
could also call it an outer approximation. The latter name could make one think of other
methods from other mathematical fields where the enclosure of the solution is given by both
an outer and an inner approximation such as numerical integration with rectangles. In our
case that would mean starting from an empty set and adding new solutions to inflate our
inner approximation. However, doing so would imply that we can easily and quickly compute
our set S which is not the case. Instead, we are going to turn the problem around and look
for the complementary set of S, S̄. We will denote the contractor associated CS̄. From
Section 2.3.5, this complementary contractor guarantees that the obtained result contains
every non-solution (and some solutions). The pair composed of the two contractors CS and
CS̄ is called a separator [61].

This new operator SS takes as input a box [x] and yields two boxes [xin], [xout] such that:

1http://codac.io/tutorial/02-static-rangeonly/index.html
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[x] \ [xin] ⊂ S
[x] \ [xout] ∩ S = ∅

(2.24a)

(2.24b)

Remark 2.12. The contractors CS and CS̄ are often denoted Cout and Cin as CS([x]) = [xout]
and CS̄([x]) = [xin].

Remark 2.13. Here, we are using the notations defined in [61]. It may seem counter-intuitive
at first but one should keep in mind that instead of checking that solutions satisfy a con-
straint a contractor removes solutions that do not satisfy a constraint. Therefore the con-
straint is equivalent to ”belongs to a set S”, a contractor Cin will remove elements that
belongs to S. Hence the result given in Equation (2.24a). In the same manner a contractor
Cout will remove elements that do not belong to S. This is illustrated in Figure 2.8. This
notation is also the one used to implement separators in Interval Based Explorer (IBEX),
that is why we will keep it to help the reader understand pieces of codes presented later in
this work.

Example 2.12 (Separator). We introduce the set S and a box [x] as presented in Figure 2.8.
The application of the separator SS on [x] yields two boxes [xin], [xout] painted blue and
pink respectively. As it is shown, [xin] ∩ [xout] 6= ∅. This area is called the remainder [61].

S

[x]

S

[x][xin][xout]

S

[x][xout]

S

[x][xin]

Cout([x]) Cin([x])

SS

[xin] ∩ [xout]

Figure 2.8: Application of a separator on a box
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2.3.7 Pavings

As mentioned in Section 2.3.5, to limit the pessimism induced by the wrapping effect, one
may use a paving algorithm to increase the accuracy of the result obtained with contractors
or separators. This method consists in dividing the search space into non overlapping smaller
boxes to increase the accuracy of the result. The set gathering these boxes is called a paving.
This allows better enclosure of complex sets. The paving method is often used when trying
to perform set inversion (see Section 2.3.8). An example of paving method coupled with set
inversion is given in Figure 2.9.

Remark 2.14. This technique should be used as a last resort because of the complexity of
the paving algorithm. Indeed adding a new dimensions of the problem means adding a new
dimension to pave. Therefore the number of boxes to be considered increases, leading to a
greater need in computational power and processing time. Hence limiting the efficiency of
the method.

2.3.8 Set inversion

In numerous cases, especially in robotics, the sets we would like to characterise are not
observable, i.e we cannot measure them directly. Nevertheless, an observation of the images
of these sets is available. Mathematically speaking, this means that we are looking for a set
X which is the preimage of a set Y by a function f such that f(X) = Y. Thus the solution
set we are looking for is S = {x ∈ Rn|f(x) ∈ Y}. A CSP is a set inversion problem by
definition. Solving a CSP comes down to characterizing a set S such that its image by a
function f belongs to a set of constraints Y. Thus interval analysis is well equipped to solve
this kind of problem even in non linear situations [85].

We can illustrate this with Example 2.9. The set we want to characterise is the set
of possible positions X ⊂ R2 of our robot. However, the only information we have are
the range measurements, defining a set Y ⊂ R3. We have a function f : R2 → R3 (see
Equation (2.22)), linking X to Y. It is thus possible to compute the set S of positions from
which the measurements could have been made.

An approximation of this set can be computed using the Set Inversion via Interval Analysis
(SIVIA) algorithm [62]. This algorithm combines both paving method and set inversion.
It takes as input the search space and returns three distinct lists of boxes (or subpavings).
The boxes belonging to the outer approximation, the ones in the inner approximation and
a list of indeterminate boxes, on which it cannot assert whether they belong to one or the
other approximation. The algorithm works as follows:

1. It takes a box [x] as input

2. It computes the image [y] of [x] by f

3. It checks whether this image belongs to our constraint set Y

4. Depending on the results it can be placed either in the inner or outer list or considered
uncertain.

5. If the box is noted as uncertain it checks if its maximum width is inferior to a para-
meter ε set by the user
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6. If it is not, the box is bisected along its wider dimension and the same process is
applied from step 1 to the two resulting sub-boxes. Otherwise the box is placed in the
uncertain boxes list

The formalised algorithm is given in [62]. Naturally the smaller the parameter ε, the
more accurate the result will be however it will require a longer processing time.

Example 2.13 (Localisation: set inversion). The result of the SIVIA algorithm applied to
our localisation problem is given in Figure 2.9

Figure 2.9: SIVIA algorithm applied to the localisation problem

Remark 2.15. In a guaranteed context, one should consider both the inner approximation
and the boundary if the result is meant to be used as proof.

Remark 2.16. Computing an inner and an outer approximation is of primary importance
for certain situations such as reachability analysis [72] or viability problems [5]. One may
also use these to design or validate controllers for dynamical system [79].

Remark 2.17. For all interval computations made throughout this thesis using intervals, we
will use the IBEX library [18]. This library implements generic contractors and separators
and also allows us to work with inclusion functions. It is based on the low-level library
GAOL [46] which handles the floating point computations and basic operators.
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2.4 Tubes

In the localisation example developed from Section 2.3.4 to Section 2.3.8 the situation anal-
ysed is a static one. However, when it comes to mobile robotics, the whole trajectory of the
robot is of greater interest than a sole position at a defined time t. Moreover, the different
range measurements made by the sensors rarely come in a synchronised manner and the
system evolves between each new acquisition. Hence the need for a tool that can deal with
all these constraints even in non-linear cases and with strong uncertainties.

Example 2.14 (Localisation: trajectory). Let us extend the static localisation example.
We will now consider the following state estimation problem represented by the IVP:{

ẋ(t) = f(x(t),u(t))

ri = g(x(ti)) ∀i ∈ {1, 2, 3}
(2.25a)

(2.25b)

We now have a new constraint which is the evolution constraint given by Equation (2.25a),
represented by a differential equation as seen in Section 2.2, in addition to the measurements
constraints represented by Equation (2.25b). The careful reader will have noticed that the
measurements are also asynchronous in this case. This problem is depicted in Figure 2.10.

beacon 1

beacon 2

beacon 3

x

y

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0 5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

5.0

r1

r2

r3

Figure 2.10: Range only localisation problem in a dynamical context. The trajectory of the
robot is depicted in blue. The three black lines show the range measurements made at t1, t2
and t3
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To handle such problem, the concept of constraint programming has been extended to
differential constraints. The subject has first been studied in [78] and [9] before being
explored thoroughly in [103]. In this section we will define and introduce the different
notations used in this field derived from [103, Chapter 2].

2.4.1 Definitions

We introduce the notion of trajectory which is a single variable function depending only on
the independent evolution variable t. The image of t is the trajectory value representing
a system state, an observation and so on. Mathematically, a trajectory can be written as:
x(·) : R→ R. Then x(t) is the evaluation of the trajectory x(·) at time t ∈ R.

The concept of tube first appeared in the field of ellipsoidal estimation in [71, 35]. It can
be defined as an envelope of trajectories x(·) : R → R defined over a time domain [t0, tf ].
It is called an envelope as there may exist trajectories enclosed in the tube that are not
solutions of the problem considered. The notations used in the latter part of this work will
be the ones introduced in [78, 9] where a tube is denoted [x](·) : R → IR. It is an interval
of two trajectories [x−, x+] such that ∀t ∈ [t0, tf ], x−(t) ≤ x+(t). In the same manner as
the empty set, the empty tube is denoted by ∅(·). A trajectory x(·) is considered enclosed
in the tube [x](·) if ∀t ∈ [t0, tf ], x−(t) ≤ x(t) ≤ x+(t).

Remark 2.18. We often represent the tube only on what is called its time domain [t0, tf ] ⊂
R(see Figure 2.11). However, the tube is defined on all R. As shown on Figure 2.12,
∀t ∈ R[\][t0, tf ], [x](t) = [−∞,∞].

Remark 2.19. Trajectories and tubes can be stacked in the same manner intervals are. In
that case, we speak about trajectory vectors and tube vector denoted x(·) : R → Rn and
[x(·)] : R→ IRn respectively.

Figure 2.11: A one dimensional tube [x](·) enclosing a trajectory x∗(·),∀t ∈ [t0 = 0, tf = 6].
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2.4.2 Implementation of tubes

Mathematically, tubes are continuous objects w.r.t time. However as mentioned at the
beginning of Section 2.3, a computer cannot represent all numbers of R. Therefore choices
have been made to represent such an object in a computer. For all computations with tubes,
we will use Catalog Of Domains And Contractors (Codac) [102]. In this library, tubes are
represented as a sequence of slices as shown in Figure 2.12. Consider a real n-dimensional
tube [x](·). In its computer representation, each slice over a time domain [kδ, kδ + δ] is a
box enclosing the evaluation of [x](·) on this time domain. Thus [x](t)computer is constant
for t ∈ [kδ, kδ + δ] is constant on each slice. The width δ is usually fixed but tubes with
slices of different width are available.

We give below a short piece of C++ code (see Listing 2.1) which creates the tube and
trajectory presented in Figure 2.12. Throughout this thesis, we will provide chunks of C++
code for the reader to test the library by himself/herself. It has to be noted that Codac is
also available in Python. One can find all needed information for installation here2

Listing 2.1 Implementing a tube and a trajectory with Codac V1 in C++.

#include "codac.h" // import the library

using namespace codac;

int main()

{

// Time domain on which the tube is defined

Interval time_domain(0,6);

// Time step used to create the tube or trajectory

double delta = 0.1;

// analytic expression of the tube [x](.)_computer

TFunction f("((sin(3*t)+cos(2*t))+[0,0.5])");

//Creating the tube

Tube x(time_domain,delta,f);

// analytic expression of the trajectory x*(.)

TFunction f_traj("((sin(3*t)+cos(2*t))+0.2)");

//Creating the trajectory

Trajectory x_star(time_domain,f_traj,delta);

// Graphic part

// ...

}

2http://codac.io/install/01-installation.html
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t

x

0.0 1.0 2.0 3.0 4.0 5.0 6.0

−1.0

0.0

1.0

2.0

Figure 2.12: Representation of a tube [x](·) in Codac. The two grey boxes at the endpoints of
the time domain represent the value of the tube such that ∀t ∈ [−∞, t0[∪]tf ,∞], [x](t) = IR.

2.4.3 Operators

Numerous operators can be applied to our newly introduced tube object. They can be di-
vided into two categories: operators extended from interval analysis and operators dedicated
to tubes as they are linked to the dynamical aspect of them.

2.4.3.1 Operators extended from interval analysis

The first category of operators gathers all the operators extended form interval analysis.
Hence the classical binary operators can be applied along with the union and intersection.
Contractors and inclusion functions are also operators applicable. Unlike regular intervals,
separators cannot be developed for tubes. Some examples of operators extended from in-
terval analysis are available in Figure 2.13. The code to generate these tubes is also given
in Listing 2.2.

(a) [x](t) = sin(t) + c, c = [0, 0.2]. (b) [y](t) = t ∗ [−0.2, 0.2]
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(c) [z](·) = [x](·) + [y](·) (d) [d](·) = |[y](·)|

Figure 2.13: Examples of basic operators applied on tubes

Listing 2.2 Implementation of basic operators

// Define time domain, time step ...

// Creating the tube [x](.)

TFunction fx("((sin(t)+[0,0.2])");

Tube x(time_domain,delta,fx);

// Creating the tube [y](.)

TFunction fy("(t*[-0.2,0.2])");

Tube y(time_domain,delta,fy);

//Computing [z](.)

Tube z = x+y;

// Computing [d](.)

Tube d = abs(y);

2.4.3.2 Temporal operators

This second category is composed of two types of operators

• evaluations (interval evaluation and tube inversion),

• temporal contractors.

Let us begin with the evaluation operators.

Definition 2.9 (tube evaluation). The interval evaluation of a tube [x](·) over a bounded
domain [t] is given in [10]:

[x]([t]) = [{x(t)|x(.) ∈ [x](t), t ∈ [t]}]

=
⊔
t∈[t]

[x](t)

(2.26)

(2.27)

where [x](t) is the smallest box enclosing all solutions for x(t) such that x(·) ∈ [x](·), t ∈ [t].
An example of evaluation is given in Figure 2.14.
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Figure 2.14: Example of the evaluation of [x](·) on the time interval [t]

Definition 2.10 (tube inversion). The tube inversion, denoted by [x]−1([y]), is defined by:

[x]−1([y]) =
⊔
y∈[y]

{t|y ∈ [x](t)} (2.28)

As shown in Figure 2.15, the resulting interval encloses all the preimages of [y] by [x](·).

Let us move on to the last operators we will present here, the tube-dedicated contractors.
We will focus on two of them, the one associated with the derivative constraint and the one
dedicated to the evaluation constraint presented in [103].

Differential contractor for the constraint c d
dt

: ẋ(·) = v(·)

Consider two trajectories, x(·) and v(·), approximated by the tubes [x](·) and [v](·) re-
spectively on a domain [t0, tf ]. These two trajectories are linked through the constraint
c d
dt

: ẋ(·) = v(·). We would like to reduce these tubes using this differential constraint in a

guaranteed way, i.e without loosing any trajectory enclosed in [x](·) and [v](·) that satisfies
the constraint. A dedicated contractor, denoted C d

dt
has been developed to contract the

tubes w.r.t this constraint [103, Chapter 3].

Proposition 2.3. The operator C d
dt

is a contractor for the constraint c d
dt

and is defined by:

(
[x](t)
[v](t)

) C d
dt7−→


tf⋂

t1=t0

(
[x](t1) +

∫ t

t1

[v](τ)dτ
)

[v](t)

 , (2.29)

where [t0, tf ] is the definition domain of both [x](·) and [v](·).

37



CHAPTER 2. MODELLING ROBOTS AND SET-MEMBERSHIP METHODS

Figure 2.15: Example of the inversion of [y] by the tube [x](·)

To be a contractor, the operator C d
dt

defined above must satisfy both the contractance

and consistency properties seen in Section 2.3.5. The proof can be found in [103, Chapter
3].

Example 2.15 (C d
dt

). Consider the tubes [x](·), [v](·) such that:

[x](t) = t ∗ [−0.5, 0.5],

[v](t) = [0.2, 0.3],

for t ∈ [0, 10] and [ẋ](·) = [v](·) We apply the C d
dt

to [x](·) and [v](·). The result is shown

in Figure 2.16. The piece code uses to generate this tubes and apply the contractor is also
given in Listing 2.3

Remark 2.20. As one can see on Figure 2.16, only the tube [x](·) has been contracted.
This was anticipated from the contractor definition in Equation (2.29). Indeed, it is not
possible to bound the evolution of a trajectory enclosed in the tube [x](·), unless the tube
is degenerate i.e it encloses only one trajectory. Thus the derivative ẋ(·) ∈ [v](·) can take
any arbitrary value. Therefore we cannot propagate information from [x](·) to [v](·) as it
is possible from [v](·) to [x](·). An example of such a trajectory x*(·) has been drawn on
Figure 2.16 to illustrate this.

This contractor is really convenient in a robotics context. Indeed, as we have seen in
Section 2.2, we often model a dynamical system using its evolution function of the form
ẋ = f(x) as we have more information on the way it evolves,i.e its derivatives, than its actual
trajectory. Thus, a tube enclosing an approximation of the trajectory of a robot, obtained
through measurements, can be contracted using this derivative, reducing its envelope and
giving us a more accurate idea of the real trajectory.
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(a) [x](·) (b) [v](·)

Figure 2.16: C d
dt

contractor applied to [x](·) and [v](·) knowing that ẋ(·) = v(·). The tubes

painted in light grey are the tubes before contraction and the ones in darker grey are the
one after contraction.

Listing 2.3 Using the contractor C d
dt

.

// Define time domain, time step ...

TFunction fx("t*[-0.5,0.5]");

TFunction fv("[0.2,0.3]");

Tube x(time_domain,time_step,fx);

Tube v(time_domain,time_step,fv);

// Creating the derivative contractor

CtcDeriv c_deriv;

// Applying the derivative contractor to [x](.) and [v](.)

c_deriv.contract(x,v);

Measurement contractor for the constraint ceval : z = x(t)

Consider a tube [x](·) enclosing a trajectory x(·) over time domain [t0, tf ]. Consider also
an interval [z] which encloses an observation z of x(·) at time t. Again, t is also enclosed in
[t]. We would like to contract [x](·), [z] and [t] knowing that z = x(t). Hence, the set we
are trying to characterise is the following one:

Seval : (t, z, x(.)), t ∈ [t], z ∈ [z], x(·) ∈ [x](·)|z = x(t) (2.30)

The contractor we need will aim at intersecting the tube [x](·) with the minimal tube
enclosing all the trajectories that satisfy the measurement i.e that go through the box [t]×[z]
as shown in Figure 2.17. One should keep in mind that a compliant trajectory does not
need to be contained in [z] over the whole time interval [t]. Thus the contractor must take
into account the evolution of the trajectory. To achieve this, the operator will require the
knowledge of the derivative ẋ(·) = v of x(·). A generic contractor called Ceval as been defined
in [103] for such an application.
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Proposition 2.4. A contractor Ceval([t], [z], [x](·), [v](·)) appliying ceval on intervals and
tubes is defined by:


[t]
[z]

[x](·)
[v](·)

 Ceval7−→


[t] ∩ [x]−1([z])
[z] ∩ [x]([t])

[x](.) ∩
⊔
t1∈[t]

(
([x](t1) ∩ [z]) +

∫ .
t1

[ẋ](τ)dτ
)

[ẋ](t)

 (2.31)

Example 2.16. Consider a tube [x](·) representing the evolution of the yaw of a vehicle
given by a model. We also have it derivative given represented by [v](·)

[x](t) = sin(t) + [−0.5, 0.5]

[v](t) = cos(t)

At some time t1 ∈ t = [6, 7], an observation is made using a compass. This measurement
is enclosed in the interval [z] = [0.8, 1.5]. The careful reader may have noticed that the exact
moment of observation is not known. Let us apply the contractor Ceval on [x](·), [v](·), [z]
and [t]. The piece of code to perform these operation is given in Listing 2.4.

Figure 2.17: Ceval contractor applied to [x](·),[z] and [t]

One can notice that [x](·), [z] and [t] have been contracted. Hence giving us a better
approximation of the time of the observation, the observation itself, and the yaw computed
by the model.

Again this contractor fits perfectly in a robotics context. For instance, in a localisation
problem, we may have an idea of the trajectory of the vehicle. We represent it as a tube
enclosing the true trajectory with some uncertainty. At some time t, an observation z is
made by one of the sensors the robot is equipped with. As both the sensor and the clock
are not perfect t and z are enclosed in [t] and [z] respectively. This problem will be detailed
and treated in Chapter 6.
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Listing 2.4 Using the contractor Ceval.

// Define time domain, time step ...

TFunction fx("sin(t)+[-0.5,0.5]");

TFunction fv("cos(t)");

Tube x(time_domain,time_step,fx);

Tube v(time_domain,time_step,fv);

Interval t(6,7);

Interval z(0.8,1.5);

CtcEval c_eval;

c_eval.contract(t,z,x,v);
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3.1 Introduction

In the previous sections (Section 2.2, Section 2.3, Section 2.4), we stumbled upon the
equation ẋ(t) = f(x(t)) or its extended version ẋ(t) = f(x(t),u(t)). We mentioned in
Section 2.2.1, that using this equation and an initial condition in a numerical integration
scheme, one could compute the trajectory of a robot. Nonetheless, the conventional Euler
integration scheme or the bit more complex Runge-Kutta scheme were designed to work
with a precise initial condition (a defined point) without any uncertainties. In our case
we would like our integration scheme to take into account uncertainties on both the initial
condition but also system parameters. In Section 2.3 we presented the tool used to handle
uncertainties, i.e. interval analysis. In this section we will give brief review of algorithms
developed to perform a guaranteed numerical integration, taking these uncertainties into
account, i.e such that all feasible solutions are enclosed in a reliable set. We will roughly
explain their method as we will use one of them but especially underline their main draw-
backs, which were the motivation of the work presented in Section 3.4.5. For a far more
exhaustive review presentation, the reader may refer to [14].

3.2 Origins

Currently, the issue of computing a guaranteed envelope of the integral of a function is
nothing new. Krückeberg and Moore already addressed it in the 60’s [69, 89, 90]. They
both presented methods to solve an IVP in a guaranteed way. However their main drawback
was, again when it comes to interval analysis, the wrapping effect induced when working with
axis-aligned boxes. This leads to a bloating phenomenon after a few steps of computation.
Since then, most algorithms developed focused on tackling this issue using various methods,
to give a better (smaller) enclosure of the solution.

3.3 The basic method

Let us come back to Equation (3.1) that motivated this research with an arbitrary initial
condition x0

ẋ(t) = f(x(t)). (3.1)

From here, we added that our initial condition was rarely precisely known but uncertain.
Therefore, we will encapsulate our uncertain initial state in a box [x0]. Moreover, our
evolution function f will probably depend on the system characteristics and its interactions
with its environment. For instance, its mass, frictions, currents and so on ... These different
parameters are rarely known over time but they can be bounded. Hence, it is possible to
represent them as intervals. With all this we can transform our original differential equation
3.1 into a differential inclusion given in Equation (3.2)

ẋ ∈ [f ]([x]). (3.2)

Remark 3.1. The tools used later in this thesis can work with differential inclusions with
the limit that the uncertain parameters are constant over the time of integration. This is
due to the fact that they need to differentiate f with respect to time. Therefore, if the
uncertain parameters are not constant, these methods would need an enclosure of their
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derivatives during computation. Unfortunately, there is very little chance that even one of
them is available in a robotics context. Hence we will limit ourselves to work with differential
inclusions that contain, at most, constant uncertain parameters.

Example 3.1 (localisation: dynamical context). Once again we will use our localisation
example. This time, instead on focusing on the distance constraints relatively to the buoys,
we will focus on the evolution constraint, introduced in our extended Example 2.14. The
state x of our vehicle is now represented by a tripletons such that x = (x, y, θ)T . Its evolution
is modelled by the following equation

ẋ = f(x) =

vp · cos(θ)
vp · sin(θ)

ωp

 , (3.3)

where vp and ωp are constant tangential and rotational speed parameters enclosed in
intervals. The naive solution would be to integrate our differential equation using an Euler
scheme with the inclusion function counterpart of f , [f ], which means solving the equation
below in a numerical way.

[x](t+ dt) = [x](t) +

∫ t+dt

t
[f ]([x](τ))dτ (3.4)

Then applying an Euler scheme to Equation (3.4) would yield:

[x](t+ dt) = [x](t) + [0, dt][f ]([x]([t, t+ dt])) (3.5)

Hence we would need a box [x]([t, t+ dt]) such that its encloses all the trajectories coming
from [x](t) and evolving during dt. This box [χ] is called the global enclosure and its is
not directly available as there is no available formula but is computed through an iterative
process.

However, the Euler scheme is quickly limited and one might need a better one to obtain
acceptable results. Thus better guaranteed integration algorithms were developed. Most
can be classified into one of the two following groups:

1. Algorithms based on the Taylor expansion method (see [34, 39, 69, 82, 88, 120, 124])

2. Algorithms based on the Hermite-Obreshkov expansion method [93]

In this thesis, we will use the library Computer Assisted Proof in Dynamic groups (CAPD)
[50] which algorithm is based on an enhanced Löhner algorithm. We will compare ourselves
to it, but also to the Löhner algorithm implemented in Codac. There exists numerous of
other solvers such as VNODE ([94]), DynIbex ([1]) or Valencia-IVP ([101])

3.4 Löhner’s algorithm

As mentioned in the previous section, we will use CAPD based on the Löhner algorithm
to compute guaranteed integration and also to compare it to the method presented in
Chapter 5. In this section we will present briefly the method developed by Löhner in [82].
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3.4.1 Rigorous integration

We aim at solving the IVP defined by Equation (3.6) where f ∈ Cp(Rn). We denote by
φ(t,x) the associated flow function.

{
ẋ = f(x)

x(0) = x0
(3.6)

Löhner’s algorithm was designed to perform guaranteed integration of Equation (3.6) in
the same manner as the simple Euler scheme but in a rigorous way. Hence the result will
be a gathering of successively computed intervals ([xk])k∈N, where k denotes the integration
time tk such that ∀x0 ∈ [x0], φ(tk,x0) ∈ [xk]. An illustration of this is given in Figure 3.1

Figure 3.1: Rigorous integration of an IVP.

3.4.2 Taylor-Lagrange expansion

As in most integration schemes, each interval [xk] is computed using the value of [xk−1].
To compute each step from the previous one, Löhner based his algorithm on the Taylor-
Lagrange expansion. Let x(t) be the solution of the IVP such that x(0) = x0 ∈ [x0] where
[x0] = x0 + [z0]. Let xk denote x(tk) and h the integration step tk+1− tk. As f ∈ Cp(Rn) we
can apply the Taylor-Lagrange expansion to the pth order to the dynamical system related
to φ(t,x0). Doing so at time tk, we obtain:

φx0(tk + h) = φx0(tk) +

p−1∑
i=1

hi

i!

∂iφx0

∂ti
(tk) + zk+1, (3.7)

where zk+1 denotes the Lagrange remainder. It is also called the discretisation error as it
corresponds to the difference between the true solution and the Taylor series approximation.
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To simplify the reading, Equation (3.7) can be rewritten:

xk+1 = xk +

p−1∑
i=1

hi

i!
x

(i)
k + zk+1. (3.8)

Now, the expression given in Equation (3.8) yields an exact solution. Our goal is to find
an enclosure [xk+1] such that xk+1 ∈ [xk+1]. An enclosure of the sum must be computed
but will not be detailed here. The reader may refer to [14, Chapter 2.4.5] for further details.

xk

xk+1h
∂φx0

∂t (tk)

h2

2

∂2φx0

∂t2 (tk)

zk+1

x1

x2

Figure 3.2: Taylor-Lagrange expansion to the third order.

3.4.3 Löhner’s algorithm steps

The algorithm is based on two main steps [25]. A first one that can be seen as a prediction
step. It consists in finding a coarse enclosure [x̃k] which is an enclosure of x(t) over the
time [tk, tk+1]. This coarse enclosure is called global enclosure and satisfies the following
properties [124]:

• x(t; [xk]) (which means x(·) passing through [xk]) is guaranteed to exist for all t ∈
[tk, tk+1],

• x(t; [xk]) ⊆ [x̃k] for all t ∈ [tk, tk+1],

• the step-size h = tk+1− tk > 0 is as large as possible while keeping a correct accuracy
(defined by the user) and existence proof of the IVP solution.

Then a second step is performed which comes down to using the latter enclosure to compute
a local enclosure [xk+1] of xk+1, such that x(tk+1; [xk]) ⊆ [xk+1]. This second step could be
considered as the correction step as it contracts the enclosure [x̃k]. Indeed by computing a
local enclosure of [xk+1] at time tk+1 we have a constraint on [x̃k] as by definition [xk+1] ∈
[x̃k], which allows us to contract it. These two steps can be repeated again and again until
reaching a fixed point to obtain a better enclosure [x̃k]. Figure 3.3 illustrates these steps.
We will only detail the first step in the next section to underline one main drawback of such
a method. The second part is straightforward using Equation (3.8), again the reader may
refer to [14] for a detailed reasoning.
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(a) Initial setup
(b) Step 1, a global enclosure [x̃k] is
computed (see Section 3.4.4).

(c) Step 2, computation of a local enclo-
sure [xk+1].

(d) Step 3, the global enclosure [x̃k] is
contracted.

Figure 3.3: The different steps of Löhner’s algorithm.

3.4.4 Global enclosure

Let us suppose that we are able to compute the solution up to time tk, then we have every-
thing needed to compute [xk+1] as it depends only on [xk] except zk+1. This discretisation
error due to the Taylor-Lagrange expansion, depends on the true solution x(·) evaluated
at an unknown time τ ∈ [tk, tk+1]. As it is not possible to evaluate this quantity directly,
Löhner proposes to compute a global enclosure of x(t), x̃k over the time interval [tk, tk+1],
i.e

[x̃k] = [{x(t)|t ∈ [tk, tk+1],x(tk) ∈ [xk]}] (3.9)

This notion of global enclosure has been introduced by Moore in [90] before being further
developed in [91, Chapter 10]. This method called First Order Enclosure (FOE), is based
on the application of the Banach fixed point theorem [6] and the Picard-Lindelöf operator
that we recall below.

Theorem 3.1 (Banach fixed-point theorem). Let (K, d) a complete metric space and let g :
K → K a contraction that is for all x, y ∈ K there exists c ∈]0, 1[ such that d(g(x), g(y)) ≤
c ∗ d(x, y), then g has unique fixed-point in K
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Definition 3.1 (Picard-Lindelöf operator). Consider the system defined by ẋ = f(x) with
f ∈ C1(Rn) and let us denote xk = x(tk) the solution of Equation (3.6) at time tk, then its
Picard-Lindelöf operator is defined as:

pf xk
(t) = xk +

∫ t

tk

f(x(u))du (3.10)

This operator being associated with the integral form of Equation (3.6), if it is a con-
traction operator then its solution is unique and is solution of Equation (3.6). It is possi-
ble to define the interval counterpart of the Picard-Lindelöf operator using a simple first
order integration scheme (hence the name FOE). Let [x̂k,t] be a candidate enclosure of
x(τ),∀τ ∈ [tk, t], then we have:∫ t

tk

f(x(u))du ∈ (t− tk)f([x̂k,t]). (3.11)

Now let [x̃0
k] be a first candidate enclosure of [x̃k] (Equation (3.9)). We try to minimise the

candidate enclosure [x̂k,tk+1
], thus

[x̂k,tk+1
] ⊆ [x̃0

k]. (3.12)

Applying Equation (3.11) on the Picard-Lindelöf operator at t = tk+1 we obtain

pf xk
(tk+1) = xk +

∫ tk+1

tk
f(x(u))du

(3.11)
∈ [xk] + (tk+1 − tk)f([x̂k,tk+1

])du
(3.12)

⊆ [xk] + (tk+1 − tk)f([x̃0
k])du

⊆ [xk] + [0, h]f([x̃0
k]) = [x̃1

k]

(3.13)

where h = tk+1 − tk is the step-size.

Now, from the Banach fixed-point theorem, if [x̃1
k] ⊆ [x̃0

k] then it exists a trajectory
φxk

(·) such that φxk
(t) ∈ [x̃1

k] for all t ∈ [tk, tk+1] and all xk ∈ [xk]. In addition, the
theorem ensures that this solution is unique. Now the question is: ”How do we choose [x̃0

k]
?”. To answer it, Löhner proposes a simple algorithm presented in Algorithm 1. It consists
in defining [x̃0

k] = [xk] during the first iteration and computing [x̃1
k]. If [x̃1

k] 6⊆ [x̃0
k] then [x̃0

k]
is inflated by a factor α and the process is repeated until [x̃1

k] ⊆ [x̃0
k]. Now, this method

might not work depending on the value of h. If it is too large, a global enclosure might not
be found. Thus the algorithm proposed also reduces the step-size h by a factor ν ∈]0, 1[ if
a global enclosure could not be found after a number N of iterations.

3.4.5 Löhner’s algorithm limits

From what was presented in Section 3.4, we can underline some limits to the algorithm
Lohner proposed.

1. The first one being the conventional step-by-step structure. Indeed, if one wants to
compute the trajectory φ[x0](t) up to time tf , one might need to compute numerous
steps from t0 to tf . If one has to perform guaranteed integration for multiple [x0]
this can take a tremendous amount of time and potentially require a huge amount of
computational power.
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[xk] = [x̃0
k]

[x̃1
k] = [0, h] ∗ f([x̃0

k])

x1

x2

(a) [x̃1
k] 6⊂ [x̃0

k], we need at least another iteration

[xk]

[x̃0
k]

[x̃1
k] = [0, h] ∗ f([x̃0

k])

x2

x1

(b) [x̃1
k] ⊂ [x̃0

k], the algorithm terminates

Figure 3.4: Global enclosure algorithm

Algorithm 1 GlobalEnclosure(in: [xk], h, N, ν, out: [x̃k], h)

[x̃0
k]← [xk]

[x̃1
k]← [xk] + [0, h]f([x̃0

k])
n← 0
while [x̃1

k] 6⊆ [x̃0
k] do

n← n+ 1
if n ≥ N then

n← N
h← νh

[x̃0
k]← [xk]

[x̃1
k]← [xk] + [0, h]f([x̃0

k])
end if
[x̃0
k]← (1 + α)[x̃1

k]− α[x̃1
k]

[x̃1
k]← [xk] + [0, h]f([x̃0

k])
end while
return [x̃0

k], h

2. Then as mentioned at the beginning of this section, the use of axis-aligned boxes
induces some wrapping effect. This phenomenon can quickly become an issue after
just a few steps of computations as it is shown in Figure 3.5 which presents the example
of the rotation of a box.

3. The third limit is the computation of the global enclosure. This step is the source of
two problems. Firstly, if a global enclosure cannot be found then the whole guaranteed
integration fails. Then, the algorithm may repeat the same operations several times in
order to compute the global enclosure, increasing greatly the need for computational
power and time.

4. The last one is the use of the centered form of f presented in Section 2.3.3.2. If this
form has the advantage of getting close to the minimal inclusion function of f , its
efficiency is heavily dependent on the size of the interval/box computed. Hence, if the
interval/box is too large, one can experience a bloating effect (see Figure 3.6) or the
algorithm might not be able to compute the global enclosure thus failing completely in
performing the guaranteed integration. This greatly limits the size of the box taken as
initial condition, which is, in a robotics context, a major drawback as our uncertainties
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may be quite important.

Figure 3.5: Wrapping induced when integrating the rotation of a box. In blue is represented
the true result, in pink the guaranteed enclosure computed and in orange the enclosure of
the previous step after application of the rotation

3.4.6 Enhance Löhner’s algorithm

In order to enhance the efficiency of the algorithm presented by Löhner, some strategies
have been developed, they tackle two main issues.

1. The first group focuses on keeping the step-size as large as possible, thus reducing the
number of steps needed to perform the integration. To do so, they improve the global
enclosure research method as it is the one that affects the step-size, reducing it. Most
of them are based on using a high-order enclosure (as opposed to FOE) as presented
in [25, 95]

2. The second one addresses the wrapping effect problem. Indeed as shown in Figure 3.5,
the pessimism induced can quickly become an issue when performing the integration.
If the initial condition at time t0 we have and the final result we want at time tf may be
axis-aligned boxes, the representation of the sets during the computation steps can be
different. Several representations have been developed, namely parallelepipeds [69, 89],
cuboids [82], doubletons [82] or tripletons [50, 66]. When choosing a representation,
one should consider the trade-off between efficiency and computational power required.
An exhaustive review of this different representations is available in [14].

3.5 Perform guaranteed integration with Codac

Codac provides two tools to perform guaranteed integration. The first one is based on a
simplified Löhner algorithm turned into a contractor on a tube. The full details of this
contractor implementation are given in [14]. The other method is one small contribution
of this thesis. In order to benefit from the years of development and improvements made
by the CAPD team, a binding has been made in Codac to perform guaranteed integration
with CAPD and have a Codac Tube (or TubeVector) object as output. This enables us to
use tools presented in Chapter 2 while benefiting from the speed and accuracy of CAPD
computations. Let us present them in an example

Example 3.2 (Guaranteed integration with Codac). Consider the system defined by(
ẋ1

ẋ2

)
= f(x) =

(
1
−x2

)
. (3.14)

51



CHAPTER 3. INTRODUCTION TO GUARANTEED INTEGRATION

Figure 3.6: Bloating effect: We decided to perform a guaranteed integration with CAPD
and the system presented in Equation (2.5), using as initial condition the box [x] =
[0.4, 0.6] × [−0.1, 0.1] (painted pink) over the time interval [0, 5]. This results in very pes-
simistic enclosure (painted black) after a few steps (the algorithm stops at time t = 0.7).
However when using as initial condition the corners of the box, the algorithm performs well,
with sharp enclosures of the trajectories represented in gold. They converge towards the
unit circle painted green. Thus the size of the initial box is a critical parameter when using
this kind of algorithm.

We have as initial condition the box [x0] = [x](0) =

(
[0, 0.1]
[2, 2.1]

)
. We would like to compute

[x](5). We first did it using the integrated Löhner contractor first. The piece of code to
do it is provided in Listing 3.1. We then performed the same operation using the binding
with CAPD (Listing 3.2). The results of both integration are displayed in Figure 3.7. One
can notice that the tube enclosing the possible trajectories obtained with CAPD is thinner
than the one obtained with the Löhner contractor as expected. Not only the result obtained
with CAPD is more accurate, it is also faster to compute. It only takes 3 ms to perform the
integration with CAPD when the Löhner contractor takes 319 ms i.e it is a hundred times
slower. Of course this result gets worse with the complexity of the system to integrate and
the length of the time domain we are integrating on. The computer used processor used is
an Intel I7 8650U @ 1.90GHz.
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x1

x2

0.0 1.0 2.0 3.0 4.0 5.0
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1.0

2.0
CAPD

Löhner

[x0]

Figure 3.7: Result of guaranteed integration using CAPD or the Löhner contractor

Listing 3.1 Perform guaranteed integration using the Löhner algorithm integrated in Codac
V1

Interval time_domain(0,5); // Integration time

double h = 0.01; // Time step for the integration scheme

IntervalVector x_0({{0,0.1},{2,2.1}}); // Initial condition

Function f("x1","x2","(1; -x2)"); // Evolution function to integrate

/*

* Creation of a default tube: tube(time domain, time step, nb of dimensions)

* For each dimension [a][i](.)(t)= [-inf,inf]

*/

TubeVector a_Lohner(time_domain,h,2);

// Creation of the Lohner contractor for the system defined by f

CtcLohner c_Lohner(f);

// Setting the initial condition: a.set(box, time)

a_Lohner.set(x_0,0.);

// Performing the integration

c_Lohner.contract(a_Lohner);

Listing 3.2 Perform guaranteed integration using the binding with CAPD (Codac V1)

Interval time_domain(0,5); // Integration time

double h = 0.01; // Time step for the integration scheme

IntervalVector x_0({{0,0.1},{2,2.1}}); // Initial condition

Function f("x1","x2","(1; -x2)"); // Evolution function to integrate

// Generating the output tube of the integration using CAPD

TubeVector a_capd = CAPD_integrateODE(time_domain,f,x_0,h);
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4.1 Lie Group Theory

We have seen in the previous section that the existing tools dedicated to guaranteed inte-
gration struggle when the dynamical system we are considering is highly non linear and the
initial condition is rather large. To tackle this problem, in the next chapter, we will use Lie
symmetries. This section will introduce the basics of Lie group theory and serve as a crash
course for the rest of this thesis.

4.1.1 Lie group: a smooth manifold ...

The first element needed to have a lie group is a smooth manifold (also called differentiable
manifold). It is a topological space that locally resembles a linear space. To ease the reader
understanding, an example is provided in Figure 4.1. It is a curved, smooth space, with
no spikes or discontinuities of any kind, embedded in a space of higher dimensions. In
Figure 4.1, it is the unit circle embedded in C. The unit circle locally resembles R. The
differentiability of the space ensures that there exists a unique tangent space at each point
of the manifold. This tangent space is linear and it is possible to perform calculus on it.

Figure 4.1: The unit circle is a smooth manifold of C

4.1.2 ... following group axioms

Lie groups are strongly related to the mathematical notion of groups, let us recall the latter
through definitions and examples.

Definition 4.1 (Group). A group denoted (G, ◦) is composed of a set G, associated with
a binary operation ◦ defined on G which satisfies the following rules:

• Closure: ∀g1, g2 ∈ G, g1 ◦ g2 ∈ G.

• Associativity: ∀g1, g2, g3 ∈ G, g1 ◦ (g2 ◦ g3) = (g1 ◦ g2) ◦ g3.
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• There exists an identity element e ∈ G such that ∀g ∈ G, g ◦ e = e ◦ g = g.

• ∀g ∈ G there exists g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

To clarify this notion we will use the example of the group (S3, ◦) composed of the set of
all permutations on a 3-element set and the composition rule. Let us recall the definition of
a permutation first.

Definition 4.2 (Permutation). A permutation σ on a set E is a bijection E → E. It can
be seen as a mapping of the elements of E on themselves.

Example 4.1 (Permutation). Let E be a set composed of 3 elements E = {a, b, c}. Let σ
be a permutation on E such that

σ =

(
a b c
a c b

)
.

Hence σ(a) = a, σ(b) = c and σ(c) = b.
We can also take all the elements of E in a particular order for example (a,b,c) and apply
the permutation σ. In that case, σ(a, b, c) = (a, c, b). For the rest of this chapter we will
write permutations of 3 elements in the following manner σ : abc→ acb.

Example 4.2 (Group). We will show that (S3, ◦) satisfies all the characteristics of the
group.
Firstly:

S3 =

{
σ1 : abc→ abc, σ2 : abc→ acb, σ3 : abc→ bac,
σ4 : abc→ cba, σ5 : abc→ bca, σ6 : abc→ cab

}

• Closure: It is easy to demonstrate that ∀σ1, σ2 ∈ S3, σ1 ◦ σ2 ∈ S3. Any composition
of two sortings of three elements will give a sorting of three elements. For example
σ2 ◦ σ3 = σ5.

• Associativity: ∀σi, σj , σk ∈ S3, (σi ◦ σj) ◦ σk = σi ◦ σj ◦ σk = σi ◦ (σj ◦ σk).

• ∀σi ∈ S3, σ1 ◦ σi = σi ◦ σ1 = σi Thus there exists a neutral element here denoted σ1.

• ∀i ∈ {1, 2, 3, 4}, σi ◦ σi = σ1 and σ5 ◦ σ6 = σ6 ◦ σ5 = σ1. Hence each element of S3 has
an inverse element in S3 by ◦.

Therefore, the set S3 of all permutations in a set of 3 elements, associated with the
composition rule ◦ forms a group (S3, ◦).

4.1.3 Definitions

With the notions of manifold and group introduced, it is now possible to define Lie Groups.

Definition 4.3 (Lie Group). A Lie group is a group G which also carries the structure of
a smooth manifold such that the group operations are differentiable maps on this manifold.
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Definition 4.3 means that the set M of the Lie group (M, �) is a smooth manifold and
that the group axioms are valid on this set using the operator � . Thus it exists an identity
element E ∈ M and for all X ∈M, there exists X−1 ∈M such that X �X−1 = X−1�X = E .
The closure and associativity properties are also satisfied. To ease the notation, a Lie group
(M, �) is generally shortened to the name of its manifold M.

As the Lie group encapsulates the notion of smooth manifold, for each element X of a Lie
group M, there exists a tangent linear vector space at this element denoted TXM. Among
all these tangent vector spaces, the one at the identity element E , TEM, is called the Lie
algebra of the Lie group M and is denoted m. The main interest of such tangent spaces is
that their linear structure allows easier computations.

To go from the Lie group to its associated algebra and inversely, two operators exist. On
the one hand, the exponential map, links all elements of the Lie algebra to the elements of
the group, exp : m → M. On the other hand the log map transforms elements of the Lie
group into elements of the Lie algebra log :M→ m.

Example 4.3 (Lie group). A simple example often used to illustrate Lie groups is the unit
complex numbers group equipped with complex multiplication S1 [110]. Each element of
this group can be written under the form z = cos(θ) + isin(θ).

• Group properties:

– (closure) Let u, v be two unit complex numbers, u · v ∈ S1,

– (identity) 1 is the identity element,

– (inverse) u ∈ S1 and its complex conjugate u∗, u · u∗ = u∗ · u = 1,

– (associativity) u, v, w ∈ S1, (u · v) · w = u · (v · w).

• Manifold properties: we have seen in Section 4.1.1 that the unit circle was a smooth
manifold in the complex plane.

• Group action (see Section 4.1.4): Consider z ∈ S1. Each vector x of the form x = x+iy
is rotated in the plane by an angle θ through complex multiplication x′ = zx.
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Figure 4.2: The Lie group S1
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4.1.4 Group action

Lie groups are mainly used for their ability to transform elements of other sets, for instance
rotations, translations, scalings or combinations of them. These operations are performed on
a daily basis in the robotic field as they describe a robot trajectory in 2D and 3D. However,
the use of this theory in the robotics field is quite recent [7, 36, 110, 112].

Definition 4.4. (Group action) Consider a group (M, �) and a set F , the left group action
of X ∈M on f ∈ F is the operation denoted X • f .

• :
M×F → F
(X , f) 7→ X • f (4.1)

The operator • also satisfies the axioms:

1. (Identity) Consider E the identity element of (M, �) then ∀f ∈ F , E • f = f

2. (Compatibility) Consider X ,Y ∈M then ∀f ∈ F , (X � Y) • f = X • (Y • f)

Remark 4.1. The right group action also exists, denoted f • X but will not be of use here.

Example 4.4. Consider a set A = a, b, c and F the set of all applications from A to A. Let
us pick f ∈ F such that f(a) = a, f(b) = a, f(c) = b. Then ∀σi ∈ S3 (see Example 4.2)
define the action of σi on f as:

σi • f = f ◦ σi. (4.2)

It is trivial to check the identity property such that that σ1 • f = f . Then let us verify that
it satisfies the compatibility axiom.

(σi ◦ σj) • f = f ◦ (σi ◦ σj)
= (f ◦ σi) ◦ σj
= (σi • f) ◦ σj
= σj • (σi • f).

Thus the compatibility property holds. For instance, let us define the action of σ5 on f such
that g = σ5 • f = f ◦ σ5. Then g(a) = σ5 • f(a) = f ◦ σ5(a) = f(c) = b. Hence the action
of σ5 converts the transformation f into another one. Figure 4.3 depicts this conversion.
The transformation f is represented as a dynamical graph as we will consider dynamical
systems later in this thesis.

Figure 4.3: A permutation σ5 of S3 acting on an object f ∈ F
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Example 4.5. In a robotic context, the main Lie groups of interest, associated with trans-
formations mentioned in Definition 4.4 above, are the groups of rotation matrices denoted
SO(n) and the group of rigid motions SE(n) with n being the dimension of the problem
(usually 2 or 3). In this cases, there group actions on a state vector x ∈ Rn can be defined
as follows:

• Consider R ∈ SO(n),x ∈ Rn, n ∈ {2, 3}, then R • x = Rx.

• Consider H ∈ SE(n),x ∈ Rn, n ∈ {2, 3}, then H • x = Rx + t (t represents a
translation and not time.).

With group actions presented, we introduce two other notions linked to them used in the
Section 4.3.

Definition 4.5 (Orbit, [96]). Consider a group G acting on a set F. The orbit of an element
f ∈ F is G(f) = {g •f |g ∈ G}, the minimal subset of F that contains all the transformations
of f by g ∈ G.

Definition 4.6 (Stabiliser). Consider an element f ∈ F. We define the stabiliser subgroup
SymG(f) of G with respect to f the set of all elements of G for which f remains unchanged,
i.e.:

SymG(f) = {σ ∈ G|σ • f = f}. (4.3)

Any element of SymG(f) is called a stabiliser of f .

Example 4.6. (Stabiliser) Let us consider again the elements introduced in Example 4.4.
As σ1(a, b, c) = (a, b, c), σ1 • f = f , hence σ1 ∈ SymG(f). From Example 4.4, we can
conclude that σ5 6∈ SymG(f). Applying the group action on f using σ2, σ3, σ4 and σ6, it is
easy to check that apart from σ1 only σ3 • f = f . Therefore:

SymG(f) = {σ1, σ3}. (4.4)

4.2 General idea of the new integration method

The idea behind the work developed in this chapter and the next one is the following. Let us
suppose we have an object, here a car c1, as shown in Figure 4.4a. This object moves, during
one second, following the trajectory depicted by the black arrow in Figure 4.4b. Let us move
this situation in the mathematical domain saying that the first car is at some position c1(0) .
The evolution function f associated with our object is available and we perform a guaranteed
integration. The result obtained, denoted φ1(c1(0)), is the one expected and the different
4 steps of the integration schemes are depicted by coloured arrows in Figure 4.4c. Now we
would like to know the final position of another object placed at c2(0) depicted in green on
Figure 4.4d.
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c1(0)

(a) initial position

c1(0)

(b) position after 1 second

c1(0)

(c) Guaranteed integration steps

?

c2(0)

c1(0)

(d) Second initial position

Figure 4.4: Illustration of the integration principle

This second car c2 is an exact copy of the first one. It moves in the same way, provided
there is no perturbation as it is the case here. Knowing this, the final position we think
about is the one drawn in Figure 4.5a. And with a guaranteed integration scheme we can
verify that our hypothesis is valid (Figure 4.5b). However, when looking for an a priori
result, your mind probably followed these steps:

1. ”Well it is a copy of the first object” (orange arrow in Figure 4.5c)

2. ”So it should move the same way” (black arrow in Figure 4.5c)

3. ”And thus the result obtained by following the same pattern is this one” (blue arrow
in Figure 4.5c)
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c1(0)

c2(0)

(a) A priori final position in the 2nd case

c1(0)

c2(0)

(b) Guaranteed integration steps
2ndcase

Figure 4.5: Illustration of the integration principle (continued)

(c) Work of mind

g−1

g
Φc1(0)(t)

(d) Mathematical representation

Figure 4.5: Illustration of the integration principle (continued)

If one translates this work of mind from english to maths, the result obtained is something
like this:

1. There exists a function g such that g(c2(0)) = c1(0)

2. The image of c1(0) is given by φ1(x1(0))

3. Using the inverse g−1 we can compute φ1(x2(0))

The main interest here, is that provided the image φ1(x1(0)) is known, then computing
φ1(x2(0)) is done in three steps instead of 4 (or more if more steps are needed when using
a classic integration scheme). In this chapter, we will show how such functions g can be
found using Lie groups and how to apply this principle to guaranteed integration.
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4.3 Lie Symmetries applied to differential equations

4.3.1 Origins

The research on transformation groups applied to differential equations is an old field. It
started when the Norwegian mathematician Sophus Lie (from which Lie groups are named)
decided to investigate continuous transformation groups leaving differential equations in-
variant [121]. With his work, a new field called symmetry analysis for differential equations
appeared. Lie developed it in [80, 81]. Unfortunately, the concept disappeared a bit and
only the Lie groups were kept until the middle of the 20th century. It came back with the
work of Birkhoff [11] and has been the subject of numerous research since then [12, 96, 97,
108].

4.3.2 Actions and stabilisers

In this section, we will define the different objects and operations we will use to perform
the guaranteed integration. Most of them are derived from the definitions presented in
Section 4.1, adapted to the context of differential equations. Hence, in the following, the
set A which was previously a set of three elements {a, b, c} will now correspond to the state
space Rn in which the state x of our moving object evolves. Moreover, the set F now gathers
all the differential state equations of the form ẋ = f(x). In addition, we assume that f is
locally Lipschitz in the rest of this thesis so that the flow function φt : Rn → Rn is defined
(see Section 2.2.2.2). This flow function associates to all initial vector x0 the solution φt(x0)
of the state equation.

Remark 4.2. As seen in Example 2.1, an evolution function can be seen as a vector field.
To ease the reader understanding, we will voluntarily use f to denote both the evolution
function and the vector field associated with it.

Remark 4.3. We denote by diff(Rn) the set of diffeomorphisms from Rn to Rn.

We have defined in Section 4.1 the left group action. In the context of differential equa-
tions, our group action is defined as follows:

Definition 4.7. (Action of diffeomorphisms) Consider a state equation ẋ = f(x), x ∈ Rn
and g ∈ diff(Rn). We define the action of g on f as:

g • f =

(
dg

dx
◦ g−1

)
· (f ◦ g−1). (4.5)

Geometrically, this action transforms a vector field f into another one. To prove that the
action defined in Equation (4.5) is a group action we first need to prove that (diff(Rn),◦) is
a group. This is done through Proposition 4.1 and Proposition 4.2.

Proposition 4.1. Assume that ẋ = f(x) and y = g(x) where x ∈ Rn and g ∈ diff (Rn).
Then, we have ẏ = g•f(y). Equivalently, the action of g generates from the system ẋ = f(x)
the new system ẏ = g • f(y).

Proof. During a given amount of time dt , infinitely small, x(t) has moved of dx = dt ·f(x(t))
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as a first order approximation. Therefore we have:

y(t+ dt) = g(x(t+ dt))

= g(x(t)) + dg
dx(x(t)) · dxdt (t) · dt+ o(dt)

= g(x(t)) + dg
dx(x(t)) · f(x(t)) · dt+ o(dt)

= y(t) + dt · dgdx(g−1(y(t))) · f(g−1(y(t))) + o(dt)
= y(t) + dt · (g • f)(y(t)) + o(dt).

Therefore, due to the unicity of the first order Taylor expansion, we get ẏ = g • f(y)

Proposition 4.2. The structure G(diff(Rn), ◦) composed of the set of diffeomorphisms from
Rn to Rn and the composition operator ◦ is a group and the action •, as defined in Defini-
tion 4.7, a left group action of G.

Proof. We first need to check that G is a group.

1. (closure) If g1,g2 ∈ diff(Rn) then g1 ◦ g2 ∈ diff(Rn),

2. (associativity) The associativity requirement is satisfied as for all g1,g2,g3,∈ diff(Rn),
(g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3),

3. (identity) The identity function is the identity element of diff(Rn),

4. (inverse) As for each element g ∈ G, g ∈ diff(Rn) by definition it is bijective thus
there exists an inverse g−1 ∈ G.

Now let us see if • satisfies the identity and compatibility properties. We consider the state
equation ẋ = f(x).

1. (identity) Denote by i the identity element of G and p = i(x). From Proposition 4.1,
we have:

ṗ = i • f(p)

=

(
di

dp
◦ i−1

)
·
(
f ◦ i−1

)
(p)

= (1 ◦ i) · (f ◦ i)(p)

= 1 · f(p)

= f(p).

Thus i • f = f , the identity property is satisfied.

2. (compatibility) We introduce g,h ∈ G, y = g(x) and z = h ◦ g(x).

(i) On the one hand, from Proposition 4.1 :

ż = ((h ◦ g) • f)(z),

(ii) On the other hand, since z = h(y) and ẏ = g•f(x), we have from Proposition 4.1:

ż = (h • (g • f))(z),

Therefore
(h ◦ g) • f = h • (g • f),

and the compatibility property is satisfied.
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Remark 4.4. From now on, we will denote by G the group (diff(Rn),◦) (regardless of the
value of n ∈ N∗) and by • the action defined in Definition 4.7.

Example 4.7 (Group action on vector field). Consider the dynamical system defined in
Example 2.1. We recall its state equation:

ẋ = f(x) =

(
ẋ1

ẋ2

)
=

(
−x3

1 − x1x
2
2 + x1 − x2

−x3
2 − x2

1x2 + x1 + x2

)
(4.6)

We introduce h ∈ G such that:

h :
R2 → R2(
x1

x2

)
7→

(
2x1

x2

)

Figure 4.6 illustrates the effect of the action of h on f .

(a) f (b) h • f

Figure 4.6: Effect of the action of h on f . The vector field f is turned into another vector
field (here h is a scaling operation).

As seen in Definition 4.6, a transformation g ∈ G is a stabiliser of f if g • f = f . In our
current case g is a stabiliser if it satisfies the partial differential equation

g • f =

(
dg

dx
◦ g−1

)
· (f ◦ g−1) = f . (4.7)

We recall that the subset of stabilisers of f included in diff(Rn) is a subgroup of G (see
Definition 4.6) with the composition rule. This subgroup is denoted SymG(f).

Remark 4.5. Equation (4.7) is equivalent to(
dg

dx

)
· f = f ◦ g. (4.8)
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When g is linear, we get g◦f = f◦g. This means that both f and g commute by composition.
This is known as the equivariance property [45].

Example 4.8. (Stabiliser on vector field) Once again we consider the dynamical system
defined in Example 4.7. This time we introduce r ∈ G such that

r :
R2 → R2(
x1

x2

)
7→

(
cos
(
π
4

)
x1 − sin

(
π
4

)
x2

cos
(
π
4

)
x2 + sin

(
π
4

)
x1

)
which corresponds to a rotation of π

4 . The action of r on f is depicted in Figure 4.7.

(a) f (b) r • f

Figure 4.7: Effect of the action of r on f .

As one can notice in Figure 4.7, the action of r on f leaves the vector field unchanged.
Therefore r is a stabiliser of f .

The stabilisers defined above will be a key tool for our new guaranteed integration method.
However, if we know which properties must be satisfied, finding the corresponding stabilisers
is not always easy. The three following properties will show how to find stabilisers based on
the knowledge of only one.

Proposition 4.3. If φt : Rn → Rn is the flow associated with the state equation ẋ = f(x),
then we have

g • f = f ⇐⇒ φt ◦ g = g ◦ φt. (4.9)

Proof. Suppose y = g(x) and x0 ∈ Rn. For the corresponding trajectory x(t) = φt(x0), we
have:

g ◦ φt(x0) = φt ◦ g(x0),∀t ⇐⇒ g(x(t)) = φt(g(x0)), ∀t
⇐⇒ y(t) = φt(y(0)), ∀t
⇐⇒ ẏ = f(y)

⇐⇒ g • f = f .
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The last equivalence comes from Proposition 4.1 which states that ẏ = g • f(y). On the one
hand we have : {

ẏ = f(y)

ẏ = g • f(y)
=⇒ g • f = f .

And on the other hand: {
g • f = f

ẏ = g • f(y)
=⇒ ẏ = f(y).

The last proposition brings a vital property for the rest of this work. If we consider
the known solution t 7→ φt(x0) of the state equation ẋ = f(x), for x(0) = x0, and setting
x1 = g(x0), where g is a stabiliser of f , we get from Proposition 4.3:

φt(x1) = φt ◦ g(x0)
(4.9)
= g ◦ φt(x0). (4.10)

One can notice that we get an expression of the solution of the state equation corre-
sponding to the initial condition x(0) = x1 depending on the known solution for the initial
condition for x(0) = x0. Hence, if we have a family of stabilisers, it is then possible to
generate a family of solutions from the unique known solution φt(x0).

Example 4.9. (One parameter flow symmetry) Consider t1 ∈ R. Since we have

φt ◦ φt1 = φt1 ◦ φt = φt+t1 , (4.11)

from Proposition 4.3 we have φt1 • f = f , therefore φt1 is a stabiliser of f . The function φt1
is called the one-parameter flow symmetry

Proposition 4.4. Consider a state equation ẋ = f(x) and g a stabiliser of f . In a new
coordinate system y = h(x), where h is bijective and smooth, the action h ◦ g ◦ h−1 is a
stabiliser.

Proof. In the y space, the flow is defined by:

ψt(y) = h ◦ φt ◦ h−1(y). (4.12)

Since g is a stabiliser for the state equation ẋ = f(x), we have:

φt(x) = g ◦ φt ◦ g−1(x) ⇐⇒ φt ◦ h−1(y) = g ◦ φt ◦ g−1 ◦ h−1(y)

⇐⇒ h ◦ φt ◦ h−1(y)︸ ︷︷ ︸
ψt(y)

= h ◦ g ◦ φt︸︷︷︸
h−1◦ψt◦h

◦ g−1 ◦ h−1(y)

⇐⇒ ψt(y) = (h ◦ g ◦ h−1) ◦ ψt ◦ (h ◦ g−1 ◦ h−1)(y)

⇐⇒ ψt ◦ (h ◦ g−1 ◦ h−1)(y) = (h ◦ g ◦ h−1) ◦ ψt(y).

From the last equivalence and Proposition 4.3, h ◦ g−1 ◦ h−1 is a stabiliser for the system
in the y coordinates.
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4.4 Transport function

This section is dedicated to a new tool that we will call transport function. It will be a key
element of the new method of integration developed in the next chapter.

4.4.1 Moving between trajectories

As mentioned in the previous section, stabilisers will be the ground on which our method
will be built. Let us introduce the first of the four test-cases, Test-Case 1 (TC1), that will
be studied throughout this work. We consider the system:(

ẋ1

ẋ2

)
= f(x) =

(
1
−x2

)
(4.13)

Its vector field is depicted in Figure 4.8. As it can be easily seen in the figure, the mirror-
symmetry w.r.t the abscissa axis Ox1 is a stabiliser for the system as the vector field does
not change. Let us denote it by g1. Moreover, the horizontal translation along the abscissa,
denoted g2 is also a stabiliser. Finally, coming from Proposition 4.3, and seen in Example 4.9,
for all t1 ∈ R, we have

φt ◦ φt1 = φt1 ◦ φt

thus φt1 is a stabiliser. Whence, g1, g2, φt1 all belong to Sym(f).

In Figure 4.8, a,b, c,d, e,h are fixed points in the state space to illustrate how it is
possible to move along the trajectories using stabilisers. On the figure, the trajectory painted
in red on which b and c are located is one solution we know. We call it the reference. All
the other are not known to us. Let us compute φt(a). We have:

φt(a) = g1 ◦ φt ◦ g−1
1 (a) = d.

This means that we first move from a to b (change in the coordinate system) following
g−1. Then as we are on the reference, we get c = φt(b). Finally we move back to our
initial coordinate system using g to get d = g(c) = φt(a). In the same manner, since
φt(h) = g2 ◦ φt ◦ g−1

2 (h), we can compute e = φt(h), using the knowledge we have of the
reference and the symmetry g2. If we assume that we can compute accurately the solution
φt, called the reference, for a specific initial state, then we will be able to move precisely
forward and backward in time from every reachable point with the symmetries from the
reference.

4.4.2 Lie group of symmetries

To move between the different trajectories as seen in Section 4.4.1, we need to find sym-
metries. And to do so from everywhere in the state space, we need a group of them so we
can link any point of the state space to the reference. Moreover, we need complementary
symmetries, i.e symmetries that make us move along each axis of the state space. In TC1,
they are Ox1 and Ox2. In the context of differential equations, these groups are called Lie
Groups of symmetries.
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Figure 4.8: Test-case 1: The system has an x1 translation symmetry and an Ox1 mirror-
symmetry.
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Definition 4.8 (Lie group of symmetries). Consider a state equation ẋ = f(x) and an
manifold P. A Lie group Gp of symmetries is a family of diffeomorphisms gp ∈ diff (Rn)
parameterised by p ∈ P such that:

• Gp is a Lie group with respect to the composition ◦,

• ∀p ∈ P,gp • f = f .

The different Lie Symmetries are usually found from the physics and intuition of the
system. For instance, from the vector field f presented in Example 4.8, we can feel that
any rotation by an angle θ will yield an identical vector field. Thus, the rotations will
be stabilisers of the state equation ẋ = f(x). Nevertheless, for many systems such as the
chaotic Lorenz attractor, such symmetries probably do not exist [117]. For such chaotic
systems, there is probably no diffeomorphism that transforms one trajectory into another.

Example 4.10 (Lie group of symmetries). Let us consider the system of TC1. To be able
to move everywhere in the state space we need to find at least one group of symmetry to
move along Ox1 and one for Ox2. We noticed that we have a translation symmetry along
Ox1. This can be written as

gα :

(
x1

x2

)
7→
(
x1 + α
x2

)
(4.14)

with α ∈ R. Let us show that gα is a stabiliser for any α ∈ R.

gα • f(x) =

(
dgα
dx
◦ g−1

α

)
·
(
f ◦ g−1

α

)
(x)

=

(
dgα
dx
· f
)
◦ g−1

α (x)

=

((
1 0
0 1

)
·
(

1
−x2

))
◦
(
x1 − α
x2

)
=

(
1
−x2

)
= f(x)

Therefore gα is a stabiliser of f for any α ∈ R. Secondly, we have a mirror symmetry w.r.t
the Ox1 axis. This will be written as function gβ such that

gβ :

(
x1

x2

)
7→
(
x1

βx2

)
. (4.15)

Then again, let us prove that gβ is a stabiliser of f for any β ∈ R.

gβ • f(x) =

(
dgβ
dx
◦ g−1

β

)
·
(
f ◦ g−1

β

)
(x)

=

(
dgβ
dx
· f
)
◦ g−1

β (x)

=

((
1 0
0 β

)
·
(

1
−x2

))
◦
(
x1
x2
β

)
=

(
1
−x2

)
= f(x)
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Hence gβ is a stabiliser of f for any β ∈ R. Now let us define gp with p ∈ R2 such that:

gp :

(
x1

x2

)
7→
(
x1 + p1

p2x2

)
. (4.16)

We have already proven that gp is a stabiliser of f whatever the value of p. Indeed for any
value of p,

gp = gα ◦ gβ = gβ ◦ gα, (4.17)

with α, β ∈ R. As gα and gβ ∈ Sym(f) and Sym(f) is a group by composition rule, then
gp ∈ Sym(f) (closure property).

Let us denote by Gp the group composed of the set of diffeomorphisms gp as defined
in Equation (4.16) with p ∈ R2 and the composition rule. Gp is a Lie group w.r.t the
composition rule. In addition, for all p ∈ R2,gp • f = f . Thus Gp is a lie group of
symmetries.

4.4.3 The transport function

This section will introduce a tool which will be fundamental in the rest of this work. We call
it the transport function. Consider a Lie group of symmetries Gp as presented in the previous
section. We assume that Gp is transitive, i.e it has only one orbit (see Definition 4.5). In this
case, there is a function h : Rn×Rn → P such that h(x,a) corresponds to the displacement
p to be chosen so that the point a is moved to x by gp, which means:

gh(x,a)(a) = x. (4.18)

This new transport function object is related to what is called the moving frame method.
For more information on it, the reader is advised to read [13]. The main difference from
what is presented in [13] is the fact that we assume that there is only one orbit which allows
us to avoid the introduction of cross-section (see [119]).

Remark 4.6. The transport function is not necessary unique.

Remark 4.7. From now on, the function h will always represent the transport function.
Moreover, for the rest of this thesis, a (or a, a(·),a(·), [a], [a], [a](·), [a](·)) will represent the
reference, may it be a vector, an interval, a tube . . .

Example 4.11 (Transport function). Let us introduce the second test-case, Test-Case 2
(TC2). The system considered follows the state equation:(

ẋ1

ẋ2

)
= f(x) =

(
1

sin(x1)

)
. (4.19)

Its associated vector field is given in Figure 4.9. From this vector field, we can see that there
is a translation symmetry along the Ox2 axis. Furthermore, if we perform a translation of
p2 = ±k2π along Ox1, the field does not change either. However, p2 belongs to a discrete
set, which is not compatible with a Lie symmetry as it requires a continuous manifold. We
thus introduce the transformations gp such that

gp(x) =

(
0
p1

)
+ φp2(x). (4.20)

Now let us prove that these transformations are Lie symmetries for the system of TC2.
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Proof. If we define

g1
p1 :

(
x1

x2

)
7→
(

x1

p1 + x2

)
, p1 ∈ R, (4.21)

and

g2
p2 :

(
x1

x2

)
7→ φp2(x), p2 ∈ R, (4.22)

then we have gp = g1
p1 ◦ g2

p2 . If we manage to check that both are stabilisers then gp will
be a stabiliser.

• We know that g1
p1 is linear and we have

(
dg1

p1

dx
· f

)
(x) =

(
1 0
0 1

)
·
(

1
sin(x1)

)
=

(
1

sin(x1)

)
, (4.23)

and

f ◦ g1
p1(x) =

(
1

sin(x1)

)
◦
(

x1

p1 + x2

)
=

(
1

sin(x1)

)
, (4.24)

Thus (
dg1

p1

dx

)
· f = f ◦ g1

p1 .

From the equivariance property seen in Remark 4.5, g1
p1 is a stabiliser.

• Secondly, we have seen in Example 4.9 that φp2 is a stabiliser for all p2 ∈ R. Thus g2
p2

is a stabiliser.

Hence the transformations gp with p ∈ R2 as described in Equation (4.20) are stabilisers of
the system considered in TC2.

Figure 4.9: Test-case 2 vector field. It is possible to move from the red dot on the red curve
to the magenta dot on the magenta curve using a translation along Ox2. We can also move
from the red dot to the blue dot using a ±k2π translation along Ox2.
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Now let us find a transport function h associated with these symmetries.

gp(a) = x ⇐⇒
(

0
p1

)
+ φp2(a) = x

⇐⇒
(

0
p1

)
+

(
φp2,1(a)
φp2,2(a)

)
=

(
x1

x2

)
⇐⇒

(
0
p1

)
+

(
a1 + p2

φp2,2(a)

)
=

(
x1

x2

)
⇐⇒

(
p2

p1 + φx1−a1,2(a)

)
=

(
x1 − a1

x2

)
⇐⇒

(
p1

p2

)
=

(
x2 − φx1−a1,2(a)

x1 − a1

)
︸ ︷︷ ︸

h(x,a)

·

Therefore, one possible transport function is

h(x,a) =

(
x2 − φx1−a1,2(a)

x1 − a1

)
· (4.25)

Figure 4.10: Using the transport function we can find the value of p which sends a on x by
using gp

Example 4.12 (Transport function TC1). To ease the reader understanding, we will repeat
the process and try to find a transport function using the symmetries of TC1. We ended
with functions of the form

gp :

(
x1

x2

)
7→
(
x1 + p1

p2x2

)
· (4.26)

Applying the same principle as in Example 4.11, we have:

gp(a) = x ⇐⇒
(
a1 + p1

p2a2

)
= x

⇐⇒ p =

(
x1 − a1

x2
a2

)
·

Therefore, one possible transport function is

h(x,a) =

(
x1 − a1

x2
a2

)
· (4.27)
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Remark 4.8. We will show in the next chapter how this tool has a fundamental role in
the combination of Lie groups applied to differential equations with interval methods for
guaranteed integration. In what follows, we will assume that we have a closed form for
h(x,a). However, in practice, it is derived from the symmetries of the problem as shown in
Example 4.11 and Example 4.12.
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CHAPTER 5. A NEW GUARANTEED INTEGRATION METHOD

This chapter is dedicated to the main contribution of this thesis, the development of a
new guaranteed integration method. We present here how an inclusion of the flow function
is found using the mathematical tools presented in the three previous chapters. Then the
different steps of the integration are explained in Section 5.2 and illustrated through TC1
and TC2. Comparisons of the results with existing methods will be presented in Section 5.4.
A more complicated test case will then be treated in Section 5.5 to show the efficiency of
the method. Lastly, we will apply our method on a robot model to show its practicality in
this context.

Remark 5.1. One purpose of this work is to encourage the use of the method presented in
this chapter. We think that it can be of great help in the robotic field. Thus we will, once
again, present and explain some pieces of C++ code. These can be downloaded here for the
reader to try (with the installation guidelines). However, if the reader is more acquainted
with Python, a python version of the examples is available. Moreover, if one only wants to
”see” the computations online without the need to install anything some repls have been
prepared for test cases 1, 2, 3 and 4. However the time needed to compute them can be
very long due to the use of Python and the server response.

Remark 5.2. All computation have been done with a computer equipped with an Intel I7
8650U@1.90GHz to compare the time needed to compute results between the new method
and existing ones.

5.1 Towards a new integration method

5.1.1 Guaranteed integration with an uncertain initial vector: a set in-
version problem

As we have seen in Chapter 3, performing a guaranteed integration with an initial condition
x0 comes down to enclosing an evaluation of the flow function Φt(x) where Φ0(x) = x0.
Now consider a box [x0] which is known to enclose the initial vector x0. Let us denote by
Xt the set of all states xt such that:{

Φt(x) = xt
Φ0(x) = x0 ∈ [x0]

. (5.1)

We want to characterise the sets Xt for t ∈ T . T can be a continuous interval T = [0, tmax],
or a discrete set T = {t1, t2, . . . , tm}.

Proposition 5.1. If Φt is the flow associated with f , then we have

Xt = Φ−1
−t ([x0]). (5.2)

Proof. We have:
x ∈ Xt ⇐⇒ ∃x0 ∈ [x0],x = Φt(x0)

⇐⇒ ∃x0 ∈ [x0],x0 = Φ−t(x)

⇐⇒ Φ−t(x) ∈ [x0]

⇐⇒ x ∈ Φ−1
−t ([x0])

Hence

Xt = Φ−1
−t ([x0]).

78

https://github.com/JulienDamers/Lie_Group
https://replit.com/@JulienDamers/Lie-symmetries-test-case-1-discrete
https://replit.com/@JulienDamers/Lie-symmetries-test-case-2-discrete
https://replit.com/@JulienDamers/Lie-symmetries-test-case-3-discrete
https://replit.com/@JulienDamers/Lie-symmetries-test-case-4-discrete


5.1. TOWARDS A NEW INTEGRATION METHOD

The consequence of Proposition 5.1 is that characterising Xt is a set inversion problem.
If an inclusion function for Φ−t is available for a given t, it is possible to compute an inner
and an outer approximation for the different sets Xt with t ∈ T . This can be done using an
algorithm such as SIVIA as presented in Section 2.3.8. As mentioned in Remark 2.16, the
computation of these inner and outer approximations is of great importance but also a com-
plicated task, especially for the inner approximation. Some methods have been developed
to do so [48], but this new formulation allows us to compute it in a much simpler way.

5.1.2 An inclusion function for the flow

We have just shown that performing a guaranteed integration was equivalent to solving a
set inversion problem. If it makes the use of algorithm such as SIVIA possible to solve
it we still need a tool, an inclusion function for the flow. But, as seen since the begin-
ning of this work, this flow function is not available in general . Hence the development of
the tools seen in Chapter 3. The transport function presented in Section 4.4.3, will be of use.

Let us suppose we have, thanks to the tools presented in Chapter 3, an accurate and
guaranteed enclosure [a](t) for a reference a(t) = Φt(a0), with a(0) = a0. This reference
satisfies the equation ẋ = f(x), as it is the one used to get [a](t) in the first place. From
this reference, let us show that it is possible to find an inclusion function for Φt(x).

Proposition 5.2. If h(x,a) is a transport function for ẋ = f(x), then we have:

Φt(x) = gh(x,a0) ◦ a(t), (5.3)

where gp is a symmetry of the system.

Proof. Since gp is a symmetry, we have for all p ∈ P,

Φt(x) = gp ◦Φt ◦ gp
−1(x). (5.4)

Taking p = h(x,a), we get

Φt(x) = gh(x,a0) ◦Φt ◦ g−1
h(x,a0)(x)

= gh(x,a0) ◦Φt(a0) (from the transport function, see Equation (4.18))

= gh(x,a0) ◦ a(t).

Hence, provided that the reference is known, we have an analytical expression for the
flow.

Corollary 5.1. An inclusion function for Φt(x) is thus

[Φ][t]([x]) = [g][h]([x],a0)([a]([t])), (5.5)

where [g], [h] are inclusion functions for g,h and [a](t) encloses the reference a(t). In
addition the point a0 is exactly known.
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Proof. Equation (5.5) is obtained by applying the fundamental theorem of interval arith-
metic [90] on Equation (5.4)

This inclusion function is illustrated in Figure 5.1. It computes a box [y] enclosing
y = Φt(x),x ∈ [x], t ∈ [t]. We recall that a closed form expression is available for gp and
h. We also have a thin enclosure of the reference [a](·) under the form of a tube.

Figure 5.1: Graphical representation of the flow function on the left and its inclusion coun-
terpart on the right

5.2 Integration method

With an inclusion function for the flow function, we now have every tools we need to solve
the set inversion problem presented in Section 5.1.1. To do so, we propose the following
method:

Step 1: Define a reference a(·) and enclose it in a tube [a](·). The initial vector a0 is perfectly
known.

Step 2: Find a Lie group of symmetries Gp and give an expression for the transport function
h(x,a).

Step 3: Solve the set inversion problem of Proposition 5.1 with the SIVIA algorithm using
the inclusion function found in Equation (5.5).

To perform Step 1, we will either use the analytical expression of a(t) if there is one
available to create the tube enclosing the trajectory using Codac as done in Listing 2.1.
Otherwise we will use a guaranteed integration method like one presented in Chapter 3.
The group of symmetries and transport functions are for now found by hand using the
intuition we have on the system. To implement our integration method, we will use Codac
as it gathers all the tools we need. Now let us illustrate the method on several examples.

5.2.1 Integration of a single set at a finite time

Integration schemes first aim at finding a solution at a finite time. For instance, we may
want to compute the position of an object after some time telapsed knowing its evolution
function. But what is happening in between time t = 0 and t = telapsed may not be of
interest. This particular case is presented in Example 5.1.
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Example 5.1 (test case 1, guaranteed integration). Let us come back to TC1. We recall
that the system is defined by (

ẋ1

ẋ2

)
= f(x) =

(
1
−x2

)
. (5.6)

We would like to characterise X3 = Φ−1
−3([x0]) where the initial condition is [x0] = [0, 1] ×

[2, 3].

Preliminary work

Following the steps described above we have:

Step 1: We will take as initial condition for the reference a0 = (0, 1)ᵀ. Hence, we get as
analytical expression for a(t),

a(t) =

(
t
e−t

)
(5.7)

Step 2: Concerning the second step, we found in Section 4.4.3, that a transport function for
Equation (5.6) was

h(x,a) =

(
x1 − a1

x2
a2

)
(5.8)

Step 3: Now, using Proposition 5.2 and the transport function we obtain the following flow
function:

Φt(x) = gh(x,a0) ◦ a(t)

= gx1,x2 ◦
(
t
e−t

)
=

(
t+ x1

x2 · e−t
)
.

To obtain an inner and an outer approximation of X3 we will use a separator in the
SIVIA algorithm given below. It takes as input the search space to explore M, the
separator associated with Φ−3, SΦ−3 , and the precision we want for the SIVIA ε.
The separator SΦ−3 will aim at differentiating the two sets S, S̄ such that:

S =

{
y = Φ−3(x),x ∈M

y ∈ [x0]

}
= X3 and S̄ =

{
y = Φ−3(x),x ∈M

y 6∈ [x0]

}
. (5.9)

Indeed, we are using Φ−3 as the only thing we are sure of is the initial condition
[x0]. Thus a vector x will belong to X3 only if its image when going 3 units back in
time belongs to [x0].

Implementation
The code used to compute the result illustrated in Figure 5.2 is given in Listing 5.1. It
takes about 329 ms and 658 bisections to compute the three different subpavings (outer,
inner and remainder) with an accuracy of 0.01. But the real advantage of such a method is
that both inner and outer approximation are available with the use of separators when the
conventional tools only give an enclosure i.e an outer approximation of the result.
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Algorithm 2 SIVIA(M,SΦ−t ,ε)

s← ∅ . Initialise an empty stack e to store boxes to be treated by SIVIA
s←M . Add the search space to the stack
Kin,Kout, δK = ∅ . Three empty subpavings to store inner boxes, outer boxes and
remainder
while s is not empty do

[x]← pop(s) . Remove the last element from the stack s and store it in [x]
[xin], [xout] = SΦ−t([x]) . Apply the separator on [x]
if [xin] is empty then

Kin ← Kin ∪ [x] . [x] is added to the list of inner boxes
else if [xout] is empty then

Kout ← Kout ∪ [x] . [x] is added to the list of outer boxes
else

if width([x])≥ ε then . Compare the largest dimension of [x] to ε
p1, p2 = bisect([x]) . bisect [x] along its largest dimension and store the two

boxes
s← p1

s← p2

else
δK← δK ∪ [x] . [x] is added to the list of remainder boxes

end if
end if

end while
return Kin,Kout, δK

Listing 5.1 Characterising X3 using the Lie integration method

1 // The uncertain initial condition

2 IntervalVector x_0({{0,1},{2,3}});

3

4 // The space to explore for the set inversion

5 IntervalVector m({{-0.1,6.5},{-0.2,3.5}});

6

7 double epsilon = 0.01; // define accuracy of paving

8

9 // define transformation function

10 Function phi("x1","x2","t","(x1+t;x2*exp(-t))");

11

12 // Create the general separator on phi_t with [x_0] as constraint

13 SepFwdBwd SepPhi(phi,x_0);

14

15 // Define the time for which we want to perform the integration

16 Interval t(-3,-3);

17

18 // Create the projected separator object

19 SepProj sepProj(SepPhi,t,epsilon);

20

21 // Perform the set inversion algorithm

22 vector<vector<IntervalVector>> pavings = sivia(m,sepProj,epsilon);
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As one can see in Listing 5.1, as we already have an analytical expression for a(t), we
do not need to use a guaranteed integration tool to compute an enclosure of the reference.
Everything is inside the expression of Φ−t(x) but it will be of use later in this work.

Results
The result of the integration is presented in Figure 5.2. In this figure and all the other
depicting results of SIVIA algorithms the inner approximation is painted in white, the outer
approximation is painted blue when the remainder is in pink. In addition the reference
trajectory is painted black evolving towards green. The initial condition is painted in light
green. One should notice that the initial condition a0 of the reference does not need to be
contained in the initial box we want to integrate for the method to work.

X0

X3

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0

Figure 5.2: Guaranteed integration method applied to TC1.

5.2.2 Integration of multiple discrete sets

In the previous section we presented the method applied on the case of the search of one
finite set. However, in most cases, especially in robotics, one wants to know the evolution
through time of the system considered. This may be done in a discrete or continuous way.
This can be easily done with the new method. We mentioned in Section 2.3.6, that it was
possible to combine separators, using union or intersection. We have seen in the previous
section that to characterise a set Xt we were using a separator SΦ−t . Hence, if we want to
characterise different sets Xti , i ∈ {1, . . . ,m} we can do so by creating another separator

S =
⋃

i∈{1...m}

SΦ−ti
, (5.10)

where each SΦ−ti
is the separator used to approximate Xti .

Example 5.2 (Integration TC2: discrete case). Consider the system defined in TC2 seen
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in Example 4.11: (
ẋ1

ẋ2

)
= f(x) =

(
1

sin(x1)

)
. (5.11)

Preliminary work

Once again, let us perform the three different steps of our integration method.

Step 1: We take as initial condition for the reference a0 = (0, 0)ᵀ. From this, we have as
analytical expression for a(t):

a(t) =

(
t

1− cos t

)
. (5.12)

Step 2: We found a valid transport function for Equation (5.11) in Example 4.11. We recall
it here:

h(x,a)

(
x2 −Φx1−a1,2(a)

x1 − a1

)
. (5.13)

Step 3: Lastly, from the two first steps, we can determine the flow function Φt(x). On the
one hand, we have Φt(0) = a(t) (no displacement from the reference). Therefore
Φx1(0) = a(x1). Thus

h(x,0)
(5.13)

=

(
x2 −Φx1,2(0)

x1

)
=

(
x2 − a2(x1)

x1

)
. (5.14)

On the other hand:

gp(x) =

(
0
p1

)
+ Φp2(x) (5.15)

Hence,

gp ◦ a(t) =

(
0
p1

)
+ Φp2(a(t))

=

(
0
p1

)
+ a(t+ p2)

=

(
a1(t+ p2)

p1 + a2(t+ p2)

)
.

Combining both part we obtain:

Φt(x) = gh(x,0) ◦ a(t)

=

(
a1(t+ x1)

x2 − a2(x1) + a2(t+ x1)

)
=

(
t+ x1

x2 + cosx1 − cos(t+ x1)

)
.

(5.16)

(5.17)

(5.18)

With this analytical formulation of Φt(x), we can easily build one separator Sti for each
set Xti we want to characterise as done in Example 5.1. Then the final separator is simply
the union of all the Stis. The result of the integration for an initial condition [x0] = [0, 1]2

is given in Figure 5.3.

84



5.2. INTEGRATION METHOD

Implementation
We will not display the full code of the example here as it is very similar to what have
been presented in Listing 5.1. One needs to change the value of the initial condition, the
search space explored and the expression of Φt. Here we will only focus on creating the
final separator S which is the union of the different Sti . The lines presented in Listing 5.2
should replace the ones presented in Listing 5.1 starting at line 17.

Results
The computed solution sets are depicted in Figure 5.3. One might have a hard time to figure
out the continuity between the different sets computed, that is why in Figure 5.4 we added
the full trajectories of the corners of the initial box. A video of the full set displacement is
available here1.

X0

X2

X4

X6

X8

x1

x2

−1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
−1.0

0.0

1.0

2.0

3.0

4.0

Figure 5.3: Result of integration for TC2 for a discrete time set. Here is computed the
different Xti for ti ∈ {0, 2, 4, 6, 8}.

X0

X2

X4

X6

X8

x1

x2

−1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
−1.0

0.0

1.0

2.0

3.0

4.0

Figure 5.4: Explanation of the set flow: We represented the full trajectories of the four
corners of the initial box. One should notice that the solution sets are always contained in
the upper and lower trajectory boundaries

1Youtube: Visualising set flow with Lie Groups by Julien DAMERS
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Listing 5.2 Performing integration for several discrete sets

1 /*

2 * Define the initial condition

3 * Define the search space m

4 * Give the desired time step

5 * Indicate the analytic form of phi_t

6 * Create the general separator S associated with phi_t with the constraint on x_0

7 */

8 // Define the different times on which we want to integrate

9 vector<Interval*> t_s{

10 new Interval(0.),

11 new Interval(-2.),

12 new Interval(-4.),

13 new Interval(-6.),

14 new Interval(-8.)};

15

16 vector<Sep*> seps;

17

18 // Generate the separator for each individual time and store them in seps

19 for (size_t i=0;i<projections.size();i++)

20 {

21 SepProj *sepProj = new SepProj(*SepPhi,*(t_s[i]),epsilon);

22 seps.push_back(sepProj);

23 }

24

25 //Create the union of all the seprators

26 Array<Sep> ar_sep(seps);

27 SepUnion usep (ar_sep);

28

29

30 // Perform the set inversion algorithm

31 vector<vector<IntervalVector>> pavings = sivia(m, usep, epsilon);
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5.2.3 Continuous integration

In the previous sections, we focused on computing discrete sets. However, if this is most
of the time less computationally heavy, it might not be enough, and one might want to
compute an inner and outer approximation for the complete trajectory. Thus instead of
computing:

X =
⋃

ti∈{t1...tm}

Xti , (5.19)

one needs to compute:

X =
⋃

t∈[t0,tmax]

Xt, (5.20)

This can be done with our new method using a particular tool called the projection of
separators presented in the next section.

5.2.3.1 Projection of sets

The system considered in TC2 (or TC1), when presented under the state equation form is a
bi-dimensional problem. However, when integrating the system, a new variable comes into
place, the time t. In both previous examples, t was fixed as we were considering a discrete
case, hence it could be considered as a fixed parameter and not a variable, our problem was
still in two dimensions. Nevertheless the set X we want to characterise in Equation (5.20)
is bi-dimensional thus we will need to project our new 3D problem into a 2D one. We
introduce the set S such that:

S = {(x, t),x ∈ R2, t ∈ [t0, tf ]|Φ−t(x) ∈ [x0]}. (5.21)

Obviously, S gathers all the points of trajectories satisfying both the state equation and the
initial condition. The projection of S on R2 is

SR2 = {x ∈ R2|∃t ∈ [t0, tf ],Φ−t(x) ∈ [x0]} = X. (5.22)

Therefore, we need a tool to compute an approximation of our desired set X and solve our
problem. This tool is the projection of separators developed in IBEX inspired by [64]. The
projection algorithm can be seen as a SIVIA algorithm where the element of R2 is fixed and
the variable t is the one dimension along which the SIVIA is performed.

5.2.3.2 Continuous integration: an example

Let us come back to TC2 that we left in Section 5.2.2. We will now perform the integration
in a continuous manner.

Example 5.3 (Integration TC2: continuous case). Once again consider the system defined
in TC2.
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Preliminary work

Obviously, the preliminary work is exactly the same as the one done in Example 5.2.
Hence the analytic form of the flow function is the same, thus the general separator SΦ−t

stays unchanged. What is different now is the implementation.

Implementation

The careful reader will have noticed that in Listing 5.1 and Listing 5.2, we were already
using the projection of separator but not at its full potential only for ease of use. Indeed we
were using degenerate intervals (i.e a scalar value) to project our 3D problem with x1, x2, t
to a 2D map using x1, x2 coordinate system. Here we will use an interval as input for our
projector object. The lines 12 to 31 of Listing 5.2 will be substituted by the ones presented
Listing 5.3.

Listing 5.3 Performing integration on a continuous time interval (Codac V1)

1 #import "codac.h"

2

3 int main()

4 {

5 /*

6 * Define the initial condition

7 * Define the search space m

8 * Give the desired time step epsilon

9 * Indicate the analytic form of phi_t

10 * Create the general separator S associated with phi_t with the constraint on x_0

11 */

12

13 // Define the time interval on which we want to integrate

14 Interval t(-8,0);

15

16 // Create the separator object

17 SepProj sepProj(SepPhi,t,epsilon);

18

19 // Perform the set inversion algorithm

20 vector<vector<IntervalVector>> pavings = sivia(m,sepProj,epsilon);

21

22 // Graphics ...

23 }
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Results

The result of the continuous integration with an initial condition [x0] = [0, 1]2 over a time
interval [0, 8] is depicted in Figure 5.5.

X0

x1

x2

−1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
−1.0

0.0

1.0

2.0

3.0

4.0

Figure 5.5: Continuous integration in TC2

5.3 Contraction of tubes

In the previous sections, we applied the SIVIA algorithm on a search space in both discrete
and continuous case. When solving the latter, and considering the union of the remainder
∂X and the inner approximation X−, we basically compute an outer enclosure of all possible
trajectories that satisfy the state equation and start from a point contained in the initial
box. These trajectories could be enclosed in a tube instead of their projection in a union of
subpavings. Thus, extending the work presented in the Section 5.2, we apply our integration
method to tubes. This time, only an outer approximation will be computed as separators
cannot be applied in the scope of tube theory.

Example 5.4 (Integration TC1: Tube). In this example, we will consider the system
defined in TC1. Again, all the preliminary work made in Example 5.1 still holds, especially
the analytical form of Φt. What differs is, instead of generating a separator from Φt, we
will only create the contractor CΦ−t on the inner set i.e the contractor that removes non
solutions. As a tube is composed of slices, which are boxes, we will apply the contractor
on each slice, using as parameter t of Φt, the interval [k ∗ dt, (k + 1) ∗ dt] where k is the
index of the slice, and dt the width of the time domain for each slice. This is illustrated in
Listing 5.4.

One may notice that the expression for Φt is slightly different in Listing 5.4 compared
to the one used in Listing 5.1. Indeed, in Listing 5.1, it was possible to indicate negative
values for the time. In this format, we use the time encapsulated in the tube object which is
always positive. Thus, t is replaced by −t in the expression of Φt. The result obtained with
this piece of code is presented in Figure 5.6. We added the continuous integration using the
method presented in Section 5.2.3 as a background to prove the efficiency.
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Listing 5.4 Performing integration with tubes (Codac V1)

1 #import "codac.h"

2

3 int main()

4 {

5 // Define time domain of integration and the time step

6 Interval time_domain(0,5);

7 double timestep = 0.01;

8

9 // Create a generic tube

10 TubeVector x_lie(time_domain, timestep, 2);

11

12 // Indicate the initial condition and the phi_t function

13 IntervalVector x_0({{0,1},{2,3}});

14 Function phi_t("t","x1","x2","(x1-t;x2*exp(t))");

15

16 // Create the contractor associated with phi_t on a box with initial condition x_0

17 CtcFwdBwd c_phi(phi_t,x_0);

18

19 /*

20 * Make the contractor applicable to a tube (tell it to apply ctc_phi on each

21 * slice of the tube)

22 */

23 CtcStatic c_phi_tube(c_phi, true);

24

25 // Contract

26 c_phi_tube.contract(x_lie);

27

28 // Graphics ...

29 }
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[x0]

x1

x2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

0.0

1.0

2.0

3.0

(a) Output of Listing 5.4

[x0]

x1
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(b) Comparison of the tube computed with the use of the SIVIA algorithm

Figure 5.6: Integration method applied on a tube: Figure 5.6a depicts the output of the code
presented in Listing 5.4. Figure 5.6b, shows the same tube as Figure 5.6a with a background
computed using the SIVIA algorithm to approximate

⋃
t∈[0,5]

Xt. One should notice that the

computed tube is equal to the outer approximation of the solution step i.e, the union of the
inner approximation and the remainder.
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5.4 Comparisons with Löhner contractor, CAPD, Flow*

We compare this integration method to the already existing ones in order to assess its
efficiency. There are several key aspects that we will analyse here: computer processing time
and robustness regarding the size of the initial condition. In this section, we will compare
our method to CAPD and the Löhner contractor integrated in Codac already presented in
Chapter 3 and Flow* [20], a reachability analysis tool using guaranteed integration. We
would like to thank Dr. Chen who kindly helped us with the use of Flow*. Also, we will
compare our method when contracting tubes (denoted Lie (tubes)) to the others. But we
recall that our method is able to return both an inner and an outer approximation when
the others only provide an outer approximation.

5.4.1 Comparing computer processing time

First let us consider the system of TC1. We will use as initial condition for the integration
the singleton a0 used for the reference. We will integrate over the time interval T = [0, 5]
with a time step dt = 0.1. The results obtained with each tool are presented in Table 5.1.

Experiment: TC1, [x0] = {a0 = (0, 1)}, T = [0, 5], dt = 0.01, Taylor expansion order= 5

Tool computer processing time (average)

Löhner 25 ms

CAPD 3.7 ms

Flow* 164 ms

Lie (tube) 4.4 ms (3.7 ms reference computation + Lie integration 0.7 ms )

Table 5.1: Experiment parameters to measure computer processing time on TC1

As it can be seen in Figure 5.7, all methods compute the same results with the same
accuracy. As expected, out of the conventional integration tools, CAPD obtains the best
results by far in terms of processing time. This was not surprising as it is considered as
the state of the art in the field. However, our method manages to compute the same result
in almost five times faster, provided we have a reference. This shows that not having to
process step by step is a real advantage. However, in this small case the full processing
time should take into account that we need to compute the reference before applying our
method. Thus CAPD performs the best when considering a single point as initial condition.
It is even possible to increase the speed of CAPD (and thus the one of Lie integration) using
one particular feature of CAPD which is the adaptive time step. This allows the solver to
choose the time step for each step in order to increase the speed of the algorithm (without
loosing in enclosure sharpness). In this particular experiment the processing time is almost
divided by two, with an average processing time of 1.9 ms.
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(a) Löhner integration
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(b) CAPD integration
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(c) Flow* integration
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(d) Lie integration method

Figure 5.7: Comparison of outputs when integrating a single point in TC1

We also did the same experiment using the system defined in TC2. The results are
presented in Table 5.2 below. Again the results computed are the same for all methods in
terms of sharpness but the processing times differ.

Experiment: TC2, [x0] = {a0}, T = [0, 15], dt = 0.01, Taylor expansion order= 5

Tool computer processing time (average)

Löhner 173 ms

CAPD 21 ms

Flow* 700 ms

Lie (tube) 27 ms (reference computation 21 ms + Lie integration 6 ms )

Table 5.2: Experiment parameters to measure computer processing time on TC2

5.4.2 Robustness

This second comparison will be a major one, more than computer processing time, as it is
one that motivated this research. By robustness, we mean the ability to compute a sharp
enclosure of the trajectory when the uncertainty on the initial condition increases. This will
be done by measuring the evolution of the volume of the box at each step of the computation.
When dealing with intervals, the volume of the box is the multiplication of the width of the
interval on each of its dimension. The computer processing time is a second criterion. If a
method is not robust enough, then the bloating effect seen in Section 3.4.5 might appear.
As mentioned in Chapter 2, in robotics, the initial condition of the system is, in general,
uncertain. Thus having a guaranteed integration tool that is robust to the increase of the
size of the initial condition is of great interest. Once again we will use TC1 and TC2. The
parameters of both experiments are given in Table 5.3 and Table 5.4.
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Experiment: system from TC1, [x0] = [0, 1]× [2, 3], T = [0, 5], dt = 0.01

Tool computer processing time (average) volume max

Löhner 173 ms 1.48

CAPD 3.7 ms 1.035

Flow* 200 ms 1.04

Lie (tube) 4.4 ms (reference computation 3.7 ms + Lie integration 0.7 ms ) 1.030

Lie (SIVIA) 140 ms X

Table 5.3: Robustness measurements on TC1

There is a slight increase in the processing time for all methods. We also indicated the
processing time when applying the SIVIA algorithm, thus obtaining an inner approxima-
tion. One can notice that, if we cannot beat CAPD we are still getting better results that
Flow* and the Löhner contractor while having an inner and outer approximation which
the other two cannot provide. Figure 5.8 shows the results of the different tools. One can
directly notice that the Löhner contractor is the one that is the less robust when all other
methods return almost the same enclosure. The Lie integration method gives the sharpest
one followed by CAPD and then Flow* Overall, in this simple case, all methods are quite
robust against the increase of the volume of the initial condition.
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−1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0
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3.5

Löhner

CAPD, Lie, Flow*

(a) Enclosure of the trajectory of system TC1 using different methods ( Löhner (red), CAPD (blue),
Flow* (green), Lie (yellow) )
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(b) Evolution of the volume of the enclosures computed with different methods

Figure 5.8: Robustness comparison on TC1

We then performed the same kind of experiment but on the second test case. This time,
the simple Löhner contractor could not return an enclosure of the trajectory, over the 15 s of
integration. The different tubes computed by the other methods are presented in Figure 5.9
and the associated processing times are displayed in Table 5.4. The bloating effect starts
appearing with CAPD. Flow* and the Lie integration methods are far more robust in this
case. This is expected as Flow* is designed to perform reachability analysis. In this field,
large initial conditions are more frequent hence the tool is implemented such that it can
handle this problem. In addition, the reader probably noticed that the enclosure of Flow* is
sharper than the one returned by the Lie integration method at the beginning of the tube.
This is due to the interval manipulation which adds pessimism. Performing a SIVIA solve
this problem as we have already seen in Figure 5.5.

Experiment: system from TC2, [x0] = [0, 1]× [0, 1], T = [0, 15], dt = 0.01

Tool computer processing time volume max

Löhner Cannot compute, too much bloating effect X

CAPD 27 ms 6.13

Flow* 1.2 s 2.84

Lie (tube) 26 ms (reference computation 21 ms + Lie integration 5 ms ) 2 .46

Lie (SIVIA) 7.8 s X

Table 5.4: Robustness measurements on TC2
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X0

x1

x2

−1.0 4.0 9.0 14.0
−1.0

0.0

1.0

2.0

3.0

4.0

Lie

Flow*

CAPD

(a) Enclosure of the trajectory of system TC2 using different methods (CAPD (green), Flow* (or-
ange), Lie (yellow)). One can notice that the Lie integration method does not fit exactly the initial
condition depicted in green. This is due to multiple occurrences in the flow function (Equation (5.16))
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(b) Evolution of the volume of the enclosures computed with different methods

Figure 5.9: Robustness comparison on TC2

5.4.3 Scaling

One other aspects on which the different methods can be compared is the ability to perform
guaranteed integration repeatedly that we will denote by scaling. Indeed when working
with simulations, we may have to compute the evolution of a system many times. Thus the
ability to do it within a minimum time becomes interesting. We compared the performances
of the different methods on both TC1 and TC2 with a thousand particles. Each particle was
contained in the box used for the robustness test done previously. The results are summed
up in Table 5.5 and Table 5.6. One can notice that this is one main advantage of using
Lie groups for guaranteed integration. As it does not need to integrate step by step but
only transforms a reference, computing the solution requires less operations thus a lower
processing time. Hence the Lie integration method suits well when working on a greater
scale. One can envision to use the Lie integration method in other area rather than with
interval analysis. We believe this can be a great interest for particle filters where numerous
integrations need to be performed to localise a robot. It could probably help in the case of
real time applications.
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Experiment: system from TC1, 1000 particles in [x0] = [0, 1]× [2, 3], T = [0, 5], dt = 0.01

Tool Computer processing time (average)

Löhner 25 s

CAPD 3.7 s

Flow* 164 s

Lie (tube) 703 ms

Table 5.5: TC1 scaling ability comparison

Experiment: system from TC2, 1000 particles in [x0] = [0, 1]× [0, 1], T = [0, 15], dt = 0.01

Tool Computer processing time (average)

Löhner 173 s

CAPD 21 s

Flow* 164 s

Lie (tube) 6 s

Table 5.6: TC2 scaling ability comparison

5.4.4 Computing an inner approximation

In this last section we will compare the ability to provide an inner approximation of the
result set. If CAPD, Flow* and the Löhner contractor are not designed to do so, it is
possible to do it using a bisect and integrate method. It works like the SIVIA algorithm.
The difference is in the action performed when treating a box from the stack. Instead
of applying the separator as done in Algorithm 2 line 6, we will perform the guaranteed
integration backward and check if the result belongs to the initial box [x0]. If it does, then
the box is put in the list of inner boxes, if the intersection with the initial box is empty, it
goes into the list of outer boxes. It is bisected (or put in the boundary list) otherwise. We
used CAPD to compute the approximation of an inner set using the bisect and integrate
method. Our metrics for this last comparison will be the computer processing time and the
number of bisections.

Experiment: system from TC2, [x0] = [0, 1]× [0, 1], T = 8

Tool comp. time (average) bisections

CAPD 1364 ms 193

Lie (SIVIA) 8 ms 162

Table 5.7: Comparisons of inner set approximation computation

We have seen in previous sections why the computation time is lower for the Lie integra-
tion method. However, one can notice that the number of bisections required is also higher
when using CAPD. This can be explained with the result obtained when we were studying
the robustness. As we have seen, CAPD is less robust to the increase of the size of the
initial condition. Hence when performing the integration back in time, the chance of the
result to be part of the constraint set is lower. Thus CAPD needs to bisect smaller chunks
than the Lie integration method, leading to more bisections. The two different outputs are
presented in Figure 5.10. One can notice that CAPD needs to bisect in smaller boxes in
order to check to which approximation the box belongs to.
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(a) Set approximations returned with CAPD.
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(b) Set approximations returned with Lie integration method.

Figure 5.10: Comparison of the outer and inner approximations computed between CAPD
and the Lie integration method.

5.5 Another example

5.5.1 Introduction to test case 3

Since the beginning of this chapter we have considered two systems, in TC1 and TC2 for
which computing an analytical expression of the flow was easy. Moreover finding enough
symmetries, i.e independent symmetries for each dimension, was no difficult task. In this
section we introduce a new system that we will denote by Test-Case 3 (TC3). This system
is defined by

ẋ = f(x) =

(
−x3

1 − x1 ∗ x2
2 + x1 − x2

−x3
2 − x2

1 ∗ x1 + x1 + x2

)
. (5.23)

The question of integrating this system is treated in [54, Chapter 1] and [24]. As already
shown in Example 4.7, the vector field associated with this system is the one presented in
Figure 5.11
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Figure 5.11: Vector field associated with Equation (5.23).

One can notice that all trajectories will converge towards the unit circle painted blue in
Figure 5.11. Moreover, we have already figured out that any rotation would be a symme-
try for the system. But, as there are two degrees of freedom, we need, at least, another
symmetry.

5.5.2 Finding symmetries

In the previous section we have shown that the vector field was converging towards a circle
and that one symmetry was the rotation. However this kind of symmetry acts on both
axes of our Cartesian coordinate system. Hence, from intuition, one can feel that polar
coordinates might suit better to deal with this system. Let us convert our system in these
new coordinates. We have:

(
x1

x2

)
= r

(
cos θ
sin θ

)
(
ẋ1

ẋ2

)
=

(
−r sin θ cos θ
r cos θ sin θ

)
·
(
θ̇
ṙ

)

Therefore
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(
θ̇
ṙ

)
=

(
−r sin θ cos θ
r cos θ sin θ

)−1

·
(
ẋ1

ẋ2

)
=

(
− sin θ

r
cos θ
r

cos θ sin θ

)
·
(
−x3

1 − x1 ∗ x2
2 + x1 − x2

−x3
2 − x2

1 ∗ x1 + x1 + x2

)
=

(
− sin θ

r
cos θ
r

cos θ sin θ

)
·
(
−r3 cos3 θ − r3 cos θ sin2 θ + r cos θ − r sin θ
−r3 sin3 θ − r3 cos2 θ sin θ + r cos θ + r sin θ

)
=

(
1

−r3 + r

)

With the last equality, we observe that the evolution of θ and r are decoupled. Thus we
need to find one symmetry for each parameter. As seen in TC1 and TC2 with the parameter
x1, a stabiliser for θ̇ = 1 is a translation of the form:

g1(θ) = θ + p1. (5.24)

Converted into the Cartesian coordinate system, this corresponds to the rotation of the
field.

We now need to find a stabiliser g2 for the equation ṙ = −r3 + r. We know from
Section 4.3.2 that for g2 to be a stabiliser, it needs to satisfy

dg2
dr (r) · r(1− r2) = (r(1− r2)) ◦ g2(r)

= g2(r)(1− g2
2(r)).

(5.25)

Hence we obtain the differential equation:

dg2

dr
(r) =

g2(r)(1− g2
2(r))

r(1− r2)
, (5.26)

which is a Bernoulli equation. Using a solver such as Wolfram Alpha we obtain a solution
of the form:

g2(r) =
r√

p2 + r2(1− p2)
, (5.27)

where p2 is a parameter. From g1 and g2, we can define gp such that

gp

((
θ
r

))
=

(
θ + p1

r√
p2+r2(1−p2)

)
, (5.28)

which is a stabiliser for Equation (5.23) in the polar coordinates. To get its equivalent into
the Cartesian coordinate system, we apply Proposition 4.4 with

w

(
θ
r

)
= r

(
cos θ
sin θ

)
.
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Therefore the stabiliser is

w ◦ gp ◦w−1

(
x1

x2

)
= w ◦ gp

(
atan2(x2, x1)√

x2
1 + x2

2

)
= w ◦

atan2(x2, x1) + p1√
x21+x22√

p2+(x21+x22)(1−p2)


=

√
x21+x22√

p2+(x21+x22)(1−p2)

(
cos(atan2(x2, x1) + p1)
sin(atan2(x2, x1) + p1)

)
= 1√

p2+(x21+x22)(1−p2)
·Rp1 ·

(
x1

x2

)
.

(5.29)

In order to keep the same notations, we will also denote by gp the stabiliser in the Cartesian
coordinate system. The action of gp is depicted in the following example.

Example 5.5 (TC3: group action). Let us test the symmetry we found above with a
trajectory a(·). If a(·) is solution of Equation (5.23) then every gp(a(·)) is a solution as
gp is a symmetry. However one can wonder if gp is always defined as we have a square
root in its expression. To illustrate this, we will arbitrarily take as initial condition for a(·),
a(0) = (1

2 , 0). Then, we will compute solutions for various values of p:

p ∈ {(1, 1), (0,−1), (1,−1), (π, 1)}

Computing the different trajectories using a Runge-Kutta scheme, we obtain Figure 5.12.
The reference a(t) is painted black when the other solutions found after the action of gp

are painted red if there was an error during the computation of the trajectory or in another
colour if there was no problem. Indeed when calculating the trajectories obtained with the
action of gp, some points could not be computed for some t due to the fact that the quantity
gp(a(t)) was not defined because of the square root. From Figure 5.12, we have a hint that
it may be related to the fact that the initial condition of the transformed trajectory is out
of the unit circle. Hence singularities appear when:

p2 + (a2
1 + a2

2)(1− p2) ≤ 0 (5.30)

5.5.3 The transport function

Now that we have two independent symmetries, following the steps presented in Section 5.2,
we need to find the transport function. To do this we use the following:

gp(a) = x.

However, in Example 5.5 we noticed that the transformation was not always defined due to
the quantity in the square root. Thus we need to find the singularities to check in which
case, the symmetries are complete. By complete, we mean:

∀x, ∀a ∈ R2, ∃p ∈ R2,x = gp(a). (5.31)

If the symmetries are complete, we can move from any point of the state space to any other
point using the symmetry. Otherwise, the pair (x,a) may be singular.

Proposition 5.3. Given the symmetries from Equation (5.29) and the system described in
Equation (5.23), the pair (x,a) is singular if ‖a‖ = 1 or ‖x‖ = 0.
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Figure 5.12: Computation of several trajectories. The reference is painted in black, when
the trajectories computed using the action gp using different values of p are in colour.
Trajectories where there was some error for some points due to the square root are painted
red.

Proof. We would like to check for which pair (x,a), we have:

∃p|x = gp(a).

It is trivial to check the existence of p1, we need to verify the existence of p2 due to the
square root. Thus, we need to verify

∃p2| ‖x‖ =
1√

‖a‖2 + (1− ‖a‖2)p2

‖a‖

This is equivalent to

∃p2| ‖x‖ =
1√

‖a‖2 + (1− ‖a‖2)p2

‖a‖ ⇐⇒ ∃p2|
√
‖a‖2 + (1− ‖a‖2)p2 · ‖x‖ = ‖a‖

⇐⇒ ∃p2|
{
‖a‖2 + (1− ‖a‖2)p2 · ‖x‖2 = ‖a‖2

‖a‖2 + (1− ‖a‖2)p2 > 0

⇐⇒ ∃p2|

{
p2 = ‖a‖2−‖a‖2·‖x‖2

(1−‖a‖2)·‖x‖2

‖a‖2 + (1− ‖a‖2)p2 > 0

⇐⇒ ‖a‖2 + (1− ‖a‖2)
‖a‖2 − ‖a‖2 · ‖x‖2

(1− ‖a‖2) · ‖x‖2
> 0,
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which is always true except for ‖a‖ = 1 or ‖x‖ = 0. If the pair is not singular, p2 is given
by:

p2 =
‖a‖2 − ‖a‖2 · ‖x‖2

(1− ‖a‖2) · ‖x‖2

Now that we have characterised the singularities, we can move on to the transport func-
tion. Indeed, we know that if we make sure that ‖a0‖ 6= 1 and that ‖x0‖ 6= 0 ⇐⇒ x0 6= 0
the transport function will be defined. In that case we already have

p2 =
‖a‖2 − ‖a‖2 · ‖x‖2

(1− ‖a‖2) · ‖x‖2
.

We now need to compute p1:

gp1(a) = x ⇐⇒ Rp1(a) = x

⇐⇒
(

cos p1 · a1 − sin p1 · a2

cos p1 · a2 + sin p1 · a1

)
= x

⇐⇒ p1 = atan2(a1x2 − a2x1, a1x1 + a2x2)

Finally,

h(x,a) =

(
atan2(a1x2 − a2x1, a1x1 + a2x2)

1
1−‖a‖2

(
‖a‖2

‖x‖2 − ‖a‖
2
) )

. (5.32)

5.5.4 The flow function

Before getting the analytic function of Φt(x) in function of a(t), we need to choose an initial
condition for our reference trajectory a(·). We already have one constraint. Indeed, from
our previous work on singularities, we know that ‖a0‖ must not be 1. We tried to integrate
the system backward in time, as we will need to do, for different a0. When doing so, we
noticed that when a0 was outside of the unit disk we systematically encountered an error
at some time t = terror < 0. But the value of terror seems to be dependent on the value of
a0. We thus need to investigate the problem in order to find a suitable initial condition for
our reference.

5.5.4.1 Divergence in a finite time

Finite time divergence is a common concept in the field of ODEs. One classical example to
illustrate it is to use the state equation ẋ = x2. A solution for this equation is

x(t) =
1

1
x0
− t

,

where x0 is the initial condition. This diverges in a finite time. Indeed, when t = t∞ = 1
x0

the system as reached infinity. The flow of the system is given by:

Φ(x0, t) =
1

1
x0
− t

,
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and its domain is then

domΦ = {(x0, t)|t <
1

x0
}.

This phenomenon may occur when the system is locally but not globally Lipschitz as it is
the case for the system considered in TC3.

5.5.4.2 Backward divergence of the system of test case 3

We will show here that the system diverges backward in a finite time. If we define r =√
x2

1 + x2
2 we get from the work done in Section 5.5.2, ṙ = −r3 + r. A solution for this ODE

is

r(t) =
et√

1
r20
− 1 + e2t

This mean that the divergence is obtained for time t∞ which satisfies

1
r20
− 1 + e2t∞ = 0

⇐⇒ t∞ = 1
2 log

(
1− 1

r20

)
Hence, the finite time divergence is obtained only if 1− 1

r20
> 0 i.e when r2

0 > 1 which means,

when the system is initialised outside of the unit circle. This is illustrated in Figure 5.13.
The arrows shows the direction of the integration backward. We can see that for the purple
and orange curves are diverging towards infinite. And the numerical integration scheme
quickly throws an error. In this case t∞ < 0. Thus the finite divergence appears when we
integrate backward in time. In the end, to be certain that we will be able to compute the
reference correctly, we choose a0 such that it belongs to the inside of the unit disk.

5.5.4.3 Getting the flow function

From both constraints, we conclude that in order to compute the flow, we should choose a
value of a0 for which ‖a0‖ < 1 in order to avoid backward finite divergence and singularities.
Here we choose a0 = (1

2 , 0)ᵀ. It obviously satisfies, ‖a0‖ < 1. From this we have:

Φt(x) = gh(x,a0) ◦ a(t)

=

(
x1 −x2

x2 x1

)(
a0

1 a0
2

−a0
2 a0

1

)
· a(t)

‖a0‖2
√

1−‖a(t)‖2

1−‖a0‖2
+
(
‖a(t)‖2

‖a0‖2
− 1−‖a(t)‖2

1−‖a0‖2

)
‖x‖2

.

Hence for a0 = (1
2 , 0)ᵀ:

Φt(x) =

√
3

(
x1 −x2

x2 x1

)
· a(t)√

1− ‖a(t)‖2 + (4 ‖a(t)‖2 − 1) ‖x‖2
. (5.33)
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x2

x1

Figure 5.13: Finite divergence when integrating backward.

5.5.5 Solving the constraint satisfaction problem

To illustrate and compare our integration method, we will use the example considered in
[24], where the initial set is a disk with centre (1.5,1.5) and a radius 0.2. We will denote this
set by D = {x|(x1−1.5)2 +(x2−1.5)2 ≤ 0.22}. For a defined time t, we want to characterise
the set

Xt = {x|Φ−t(x) ∈ D}. (5.34)

To approximate the inside of Xt using our contractor-based approach, we need to characterise
X̄t also. We have

Xt = {x|Φ−t(x) 6∈ D or (x, t) 6∈ domΦ}. (5.35)

One should notice that Φ−t is not always defined, (x, t) ∈ domΦ may be false for some
t < 0.

5.5.5.1 Approximation using CAPD to compute the reference

We performed the integration for multiple sets Xt, t ∈ T = {0, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5, 6}.
The result is shown in Figure 5.14. As in previous test cases, the inner approximations are
painted white when the outer approximations are painted blue. The boundary is still in
pink. The code used to compute the approximations can be found here2. As, for now, we

2TODO
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do not have an analytical expression for a(t), a sharp enclosure of it is computed as a tube
using a conventional guaranteed integration tool (here CAPD) and stored in a tube. The
reader of the example code may have noticed that to build the separator, a new object, the
ContractorNetwork, has been used. This is, for now, a workaround for IBEX inability to
compute with tubes but not its intended use. This issue will be solved in a future release
of Codac. This new tool will be presented in Chapter 6. As already done in TC1 and TC2,
we can compute the forward reach set. This time we will do it for t ∈ [0, tmax = 6].

Xt = {x,∃t ∈ [0, tmax]|Φ−t(x) ∈ D} (5.36)

and

Xt = {x,∃t ∈ [0, tmax]|Φ−t(x) 6∈ D or (x, t) 6∈ domΦ}

The result of the computation is shown in Figure 5.15. A summary of the computations
results is available in Table 5.8 at the end of the section.

X0X0.1

X0.25X0.5X0.75X1

X2

X3

X4

X5

X6

x1

x2

−2.0 −1.0 0.0 1.0 2.0
−2.0

−1.0

0.0

1.0

2.0

Figure 5.14: Integration of multiple discrete sets for TC3, using CAPD to compute the
reference.
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X0

x1

x2

−2.0 −1.0 0.0 1.0 2.0
−2.0

−1.0

0.0

1.0

2.0

Figure 5.15: Continuous integration applied on TC3 using CAPD to compute the reference.
The thickness of the frontier is due to two factors. The first one is the fact that we perform
a guaranteed integration to compute the reference instead of using an analytical expression
which adds pessimism on the reference. And thus reduces the volume of the inner approxi-
mation. This is solved in Section 5.5.5.2 The second one is the use of projection algorithm
over time.

5.5.5.2 Approximation using the analytical expression of the reference

It is actually possible to get an analytical expression for the reference a(t). From the
expression we have for θ̇ and ṙ in Section 5.5.2, we obtain

θ(t) = θ(0) + t

r(t) =
et√

1
r20
− 1 + e2t

.
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Hence

Φ(t,x(0)) =
et√

1 + (e2t − 1) ‖x(0)‖2

(
cc cos t − sin t

sin t cos t

)
· x(0). (5.37)

With our initial condition a0 = (1
2 , 0)ᵀ, we thus have:

a(t) =
1√

3e−2t + 1

(
cos t
sin t

)
. (5.38)

With this formulation for the reference, we obtain similar results as the previous formulation
but 26 times faster in the continuous case and more than 200 times in the discrete case.
The results of computation are displayed in Appendix A, in Figure A.1 and Figure A.2 This
was expected as getting a value from a tube object at a defined interval of time [t] takes
longer than computing the value of the analytic expression of the reference for this interval
of time. Moreover as shown in Table 5.8, we need less bisections as the enclosure of the
reference is sharper because we are not performing integration but analytic computation to
get it. This leads to a significant improvement in terms of processing time.

Experiment:

Reference tool
continuous discrete

nb bisections processing time nb bisections processing time

CAPD 8631 2315 s 4584 964 s

analytic expression 6737 90.8 s 4036 4.5 s

Table 5.8: Summary of TC3 computations

5.6 A robotic test case

5.6.1 Presentation of test case 4

To conclude this chapter, we will consider one last test case denoted Test-Case 4 (TC4),
coming from robotics. The system we are going to consider is called the Dubins’ car [32,
60] and is defined by the following state equation:

ẋ = f(x,u(t)) =

u1(t) · cosx3

u1(t) · sinx3

u2(t)

 , (5.39)

where u1 and u2 are both time dependent. In order to make the system autonomous and
avoid the time dependency in u, we can rewrite the system into:

ẋ = f(x,u) =


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)
1

 , (5.40)

where x4 will denote the clock variable.
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5.6.2 Finding symmetries

Due to the fact that our system depends on u, the vector field associated with f varies when
u evolves thus we will not use it to intuitively find the symmetries. Instead we will use the
other meaning of f . Indeed, f describes how the system evolves through time. Taking back
the example used in Section 4.2, we can easily determine the symmetries with intuition. We
recall the operation done in Section 4.2 in Figure 5.16a.

Consider now that our black character is a Dubins car. If there is no perturbation
whatsoever, the path followed by our green car, which is a copy of the black one, should be
the same, only the initial condition changes. And we have here two translation symmetries,
along Ox1 and Ox2. Now let us suppose that our green car is, at his initial position, rotated
sixty degrees to the right. Again, if it does not come across any disturbances, our green car
will follow the same path rotated by ninety degree (see Figure 5.16b). This gives us one

g

g−1

φx1
0
(t)

(a) Translation symmetries along Ox1 and Ox2

φx1
0
(t)

g

g−1

(b) Rotation symmetry illustration

Figure 5.16: Available spatial symmetries for the Dubins car

rotation symmetry. We already have three independent symmetries for the first 3 degrees of
freedom x1, x2 and x3. The last symmetry we will use is the one parameter flow symmetry,
presented in Example 4.9 and used in TC2. This leads us to the following proposition.

Proposition 5.4. The transformations

gp


x1

x2

x3

x4

 =


(
p1

p2

)
+ Rp3 ·

(
x1

x2

)
x3 + p3

x4

 ◦Φp4(x) (5.41)

where Rp3 is the rotation matrix in 2D, are Lie symmetries for the system defined in Equa-
tion (5.40).

This transformation corresponds to the translation along Ox1 and Ox2 (parameterised by
p1 and p2 respectively) and the rotation (parameterised by p3). The three first components
of the symmetry gp corresponds to the direct Euclidean group SE(2) (see Example 4.5).
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Proof. We have already seen that the one parameter flow symmetry is a symmetry. It is
denoted by Φp4 . Let us now introduce:

gp1


x1

x2

x3

x4

 =


p1 + x1

x2

x3

x4

 , (5.42)

gp2


x1

x2

x3

x4

 =


x1

p2 + x2

x3

x4

 , (5.43)

and

gp3


x1

x2

x3

x4

 =

Rp3 ·
(
x1

x2

)
p3 + x3

x4

 . (5.44)

Firstly, let us check that gp1 is a symmetry. On the one hand we have:(
dgp1
dx

)
· f(x) = I4×4 · f(x) = f(x).

And on the other hand:

f(x) ◦ gp1(x) = f(x) ◦


p1 + x1

x2

x3

x4

 = f(x)

Hence: (
dgp1
dx

)
· f = f ◦ gp1 .

From the equivariance property, we can conclude that gp1 is a symmetry for Equation (5.40).
It corresponds to the translation along the Ox1 axis. In the exact same way we can show
that gp2 is also a symmetry corresponding to the translation along the Ox2 axis.
Finally,

(
dgp3
dx

)
· f(x) =

(
Rp3 02×2

02×2 I2×2

)
·


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)
1



=


u1(x4) · cos(x3 + p3)
u1(x4) · sin(x3 + p3)

u2(x4)
1

 ,

and

f ◦ gp3 =


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)
1

 ◦


cos p3 · x1 − sin p3 · x2

sin p3 · x1 + cos p3 · x2

x3 + p3

x4



=


u1(x4) · cos(x3 + p3)
u1(x4) · sin(x3 + p3)

u2(x4)
1

 .
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Again, with the equivariance property, we get that gp3 is a symmetry. Thus, as gp =
gp1 ◦ gp2 ◦ gp3 ◦Φp4 , gp is a stabiliser as a composition of stabilisers.

5.6.3 The transport function

Now that we have complete symmetries, it is possible to compute the transport function.
To do this, we will once again use

gp(a) = x,

to obtain an equation of the form

p = h(x,a).

Hence

gp = h(x,a) ⇐⇒




(
p1

p2

)
+ Rp3 ·

(
y1

y2

)
y3 + p3

y4

 =


x1

x2

x3

x4


y = Φp4(a)

· (5.45)

Now, from Section 5.6.3 we have x4 = y4 = φp4(a) = a4 +p4 as x4 corresponds to the system
clock. Thus

p4 = x4 − a4.

Therefore,

gp = h(x,a) ⇐⇒


(
p1

p2

)
+ Rp3 ·

(
φp4,1(a)
φp4,2(a)

)
p3

p4

 =


x1

x2

x3 − φp4,3(a)
x4 − a4



⇐⇒


p1

p2

p3

p4

 = x−

Rx3−φx4−a4,3(a) ·
(
φx4−a4,1(a)
φx4−a4,2(a)

)
φx4−a4,3(a)

a4

 = h(x,a).

5.6.4 The flow function

We have done most of the preliminary work. It remains to choose an initial condition for
our reference. Here we choose a0 = (0, 0, 0, 0)ᵀ. We can now compute the transport function
in our particular case. We have Φt(0) = a(t) (no displacement from the reference), hence,
Φx4(0) = ax4 . Thus:

h(x,0) = x−

Rx3−a3(x4) ·
(
a1(x4)
a2(x4)

)
a3(x4)

0

 . (5.46)
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Moreover,

gp ◦ a(t) =


(
p1

p2

)
+ Rp3 ·

(
x1

x2

)
x3 + p3

x4

 ◦Φp4(a(t))︸ ︷︷ ︸
a(t+p4)

=


(
p1

p2

)
+ Rp3 ·

(
a1(t+ p4)
a2(t+ p4)

)
a3(t+ p4) + p3

a4(t+ p4)

 .

(5.47)

Combining Equation (5.46) and Equation (5.47), we obtain:

Φt(x) = gh(x,0) ◦ a(t)

=


(
h1(x,0)
h2(x,0)

)
+ Rh3(x,0) ·

(
a1(t+ h4(x,0))
a2(t+ h4(x,0))

)
a3(t+ h4(x,0)) + h3(x,0)

a4(t+ h4(x,0))


=


(
x1

x2

)
+ Rx3−a3(x4) ·

(
a1(t+ x4)− a1(x4)
a2(t+ x4)− a2(x4)

)
x3 + a3(t+ x4) + a3(x4)

a4(t+ x4)

 .

(5.48)

5.6.5 Applying the Lie integration method on the robotic test case

5.6.5.1 Problem presentation

Now that we have an analytical expression of Φt(x), we illustrate it on an example. From
Equation (5.40), we see that we need an expression for u(t). We will use the following,

u(t) =

(
sin(0.4 ∗ t)

1

)
, (5.49)

where u1(t) represents the control given for the yaw of the Dubins car and u2(t) its speed,
here set as a constant. We will use as initial condition for our reference, a0 = (0, 0, 0, 0)ᵀ

and our objective is to compute the trajectory of the system over 15 s. Using CAPD, we
obtain the reference trajectory depicted in Figure 5.17. The beginning of the curve at t = 0
is black and the end is in green when t = 5.
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x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

(a1(0), a2(0))

(a1(tf ), a2(tf ))

Figure 5.17: Reference trajectory computed using CAPD on TC4.

The uncertain initial condition for which we would like to compute the trajectory is given
by [x0] = [−0.1, 0.1]2×[−0.4, 0.4]×[0, 0]. We first computed the tubes obtained using CAPD
and Flow*. Both results are depicted in Figure 5.18. The tube obtained with CAPD is in
blue when the one obtained with Flow* is in red. One can notice that, once again, Flow*
is more robust to the uncertain initial condition than CAPD. In terms of processing time,
CAPD is faster with 71 ms when Flow* takes 4.2 s to compute its results. But considering
the trade-off sharpness of enclosure vs processing time, Flow* is the one that performs the
best.

5.6.5.2 Simplification

To compute the tube using the Lie integration method, we will contract each slice [x] of
the tube using the constrain cphi : Φ−t(x) ∈ [x0]. Hence, from the last component of
Equation (5.48), for x to be solution, we must have

a4(−t+ x4) ∈ [0, 0] ⇐⇒ a4(−t+ x4) = [0, 0]
⇐⇒ x4 − t = 0

. (5.50)
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x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

[x0]

(a) Integration with CAPD.

x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

[x0]

(b) Integration with Flow*.

Figure 5.18: Solution obtained for TC4 using CAPD and Flow*.
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Therefore it is possible to simplify Equation (5.48) into

Φ−t(x) =


(
x1

x2

)
+ Rx3−a3(x4) ·

(
a1(x4 − t)− a1(x4)
a2(x4 − t)− a2(x4)

)
x3 + a3(x4 − t) + a3(x4)

a4(x4 − t)


=


(
x1

x2

)
+ Rx3−a3(x4) ·

(
a1(0)− a1(x4)
a2(0)− a2(x4)

)
x3 + a3(0) + a3(x4)

a4(0)


=


(
x1

x2

)
+ Rx3−a3(x4) ·

(
0− a1(x4)
0− a2(x4)

)
x3 + 0 + a3(x4)

0



, (5.51)

and thus obtaining a 3D problem:

Φ−t(x) =

(x1

x2

)
+ Rx3−a3(x4) ·

(
−a1(x4)
−a2(x4)

)
x3 + a3(x4)

 . (5.52)

Our initial condition for this 3D problem is [x0] = [−0.1, 0.1]2×[−0.4, 0.4]. The reason for
which we need to simplify this problem is that, in order to get an inner approximation using
our method, the constraint set on each parameter, must not be a single value but an interval.
Otherwise, as we are computing with intervals, the result obtained with [x4]− [t] will be an
enclosure for the singular set {0} but not the set itself, even if [x4] = [t]. Therefore, there
could not be any element [y] = [Φ][−t]([x]) such that [y] ⊂ [x0]. With the change made, we
obtain the tube painted yellow in Figure 5.19. The lie integration method is, again, more
robust than the two other solvers. In terms of processing time, the tube is computed in 3.2 s
which is faster than Flow*. Thus Lie integration method is more efficient than the other
two solvers on this test case.

Finally, as we did for with the previous test cases, we computed the inner and outer
approximation for multiple sets Xti with ti ∈ T = {1, 2, 3, 4, 14, 15} and the full forward
reach set Xt with t ∈ [0, 15]. The results after projection on the x1 and x2 coordinates
are depicted in Figure 5.20 and Figure 5.21. When comparing the enclosure obtained in
Figure 5.21 and the one obtained with the tube in Figure 5.19, we can notice that the SIVIA
algorithm improves the finesse of the outer enclosure (white + pink) and of course we can
compute easily an inner approximation of the solution set.
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x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

[x0]

CAPD

Flow*

Lie

Figure 5.19: Comparison of the tube obtained with the Lie integration method with the
results of CAPD and Flow*.
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X0 X1 X2

X3

X4

X14 X15

x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0

1.0

2.0

3.0

4.0

Figure 5.20: Result of TC4 for multiple discrete time sets: Proj
(x1,x2)

⋃
ti∈T

Xti .
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X0

x1

x2

−4.0 −3.0 −2.0 −1.0 0.0 1.0 2.0 3.0 4.0
−4.0

−3.0

−2.0

−1.0

0.0
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2.0

3.0

4.0

Figure 5.21: Result of TC4 for a continuous time set: Proj
(x1,x2)

⋃
t∈[0,15]

Xt.
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5.6.5.3 Lawnmower pattern

One may have noticed in the different figures presented throughout this last test case that
the volume of the tubes was shrinking when the trajectory was coming back close to the
initial condition, no matter which solver was used. This is a bit counter-intuitive if we
consider that the error should increase from one step to the following. This phenomenon
can be explained by the fact that when the systems comes back to its initial position,
the error computed is inverted compared to the one computed when the robot was going
away from its initial position. Hence previous errors are compensated on the way back
which increases the accuracy of the result. This is demonstrated in Appendix A.2 with
the help of Alain Betholom engineer at ENSTA Bretagne. This phenomenon is observed
with many inertial systems often equipped with a variation of the Kalman filter as in [84,
Figure 6]. This the reason why special patterns have been developed when exploring a zone
with a robot equipped with an INS, especially the lawnmower pattern which is depicted
in Figure 5.22. This pattern uses the property described above to limit the error increase
during the mission, which allows a better estimation of the position by the INS.

Figure 5.22: The lawnmower pattern: the robot is set to follow the lawnmower pattern from
the green point to the pink one following the black trajectory. In orange is depicted the
estimation of the position made by the INS. One can notice that this error decreases when
the robot is coming closer to its initial position.
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5.7 Prospects

Throughout this chapter, we applied the symmetries on the state space, i.e when changing
the initial condition we were moving along the axes Ox1, . . . , Oxn, not the time domain.
Therefore, to perform a guaranteed integration on a time domain T , we need first to compute
a reference on the whole time interval T . However, we believe that in the case of autonomous
systems, it could be possible to use a reference computed only on a sub part of T and apply
the symmetries several times with some kind of shifting window on the entirety of the time
domain T . This process is illustrated in Figure 5.23.

x1

x2

0.0 5.0 10.0 15.0
−0.5

0.5

1.5

2.5

3.5

Shift 1 Shift 2 Shift 3

x0

[xf1 ]

[xf2 ]

Figure 5.23: Envisioned shifting window method.

The reader should notice that the trajectory is depicted in R2, the time dimension is not
represented. A reference, depicted in black, is computed on a short time domain (t ∈ [0, 4])
with an initial condition a0 = (0, 0). Using the Lie integration method, we can compute
the solution for an initial condition x0 = (0, 1) on the time domain [0, 4] as we have done
throughout this chapter. Let us denote by [xf1 ] the final box computed at t = 4 using the
Lie integration method.

Then to compute the solution on the time domain [4, 8], we use [xf1 ] as initial condition
before applying the Lie integration method. This is Shift 1. The application of the symme-
tries is depicted by orange arrows. [xf1 ] is transported to a0. Moving along the reference
trajectory and returning in the frame of [xf1 ], we obtain [xf2 ]. This [xf2 ] will be used as
initial condition for the second shift. For each step, the initial condition of the step is equal
to the final condition computed at the previous one. Repeating this pattern for each shift,
it is possible to integrate on the whole time domain T .

This shifting method could be useful to increase the speed of calculations when performing
guaranteed integration. If one want to perform a guaranteed integration over fifty seconds,
One may compute a reference using a conventional integration tool for let us say one second.
Then use a shifting window to compute the result for the forty-nine following seconds.

Now, one may say that we can choose an infinitely small time domain for the reference.
This would limit the pessimism on it. However there is probably a trade-off between the
pessimism induced by the Lie integration method and the one induced by the computation of
the reference. Moreover, this would be coming back to a conventional step-by-step method
applied to the Lie integration method. This could increase the processing time. It would
be interesting to investigate this issue in the future.
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5.8 Limits of the method

If the new method presented in this chapter can bring a lot of improvements in terms of pro-
cessing time, enclosure sharpness and allows an easy computation of an inner approximation
of the solution set, it still comes with a few limitations.

1. The first one is the need to compute the symmetries beforehand. For now, this pro-
cess is not automated when in most conventional integration tools, the differentiation
process to perform the integration is done in the background. One only needs to give
the differential equation as input for the solver to compute an enclosure. Moreover as
mentioned in Chapter 4, there may not be any (or enough) symmetries in the problem
to move from any point to any other in the state space. Hence, this method is not
applicable to every problem. However for most robotic systems as the one considered
here the symmetries can be obvious (translations, rotations).

2. As the method needs a reference, if no analytic expression of it is available, it must
be possible for a conventional tool to compute it. If no reference is available, then the
method cannot be applied. This is one of the main drawbacks of the method when it
comes to robotics. For instance, in the last example we used an analytical expression
of the command u(t) to have an ODE to solve. However, most of the time, in robotics,
instead of an analytical expression, we would have a tube enclosing the command in
function of time. This transform the problem into a differential inclusion. Up to now,
there are not so many methods to solve differential inclusions. Some work has been
done using CAPD [65], but it is far from easy to use and implement, hence limiting
the scope of the method. But we believe that with the recent progress in this field,
this will not be a problem in the coming years.
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6.1 Motivations

Let us recall the objectives that motivated this research. As stated in the beginning, we need
a method to increase the precision of the prediction we could make of a robot trajectory
and a better correction of its localisation without using the GNSS which is not available
underwater. All this done in a guaranteed manner for safety and cost reasons. To do so,
we worked on developing a new integration method which is more robust than the existing
tools to the uncertainties on the initial condition. This was done because when dealing with
a robotic system, its initial state is rarely exactly known, if even barely. In this chapter we
will present different use cases of the method presented in the previous one. The first one
could be seen as mission planning and study the feasibility of a mission. The second one is
a localisation problem mixing both the Lie integration method and external measurements.
But before diving straight up we will introduce briefly the concept of constraint network.

6.2 Constraint network

6.2.1 A new notation

In Section 2.3.4 we presented the notion of CSP which is one way to formalise a problem.
With this, we can introduce the concept of Constraint Network (CN). Indeed, it is possible
to represent our CSP under the form of a CN [83]. We will use the notation [103]. Let us
bring from Section 2.3.4 the localisation problem we had. The three measurements from the
different beacons gave us 3 constraints on the possible position of the robot. If we denote by
bi the vector (xi, yi) associated with the position of the buoy i, we can rewrite our problem
under the form of the following CN:

Variables: x,b1,b2,b3, r1, r2, r3

Constraints:

1.
√

(x1 − b1,1)2 + (x2 − b1,2)2 − r1 = 0 distance constraint

2.
√

(x1 − b2,1)2 + (x2 − b2,2)2 − r2 = 0 distance constraint

3.
√

(x1 − b3,1)2 + (x2 − b3,2)2 − r3 = 0 distance constraint
Domains: [x], [b1], [b2], [b3], [r1], [r2], [r3]

(6.1)

This new notation allows us to write our problem mixing different constraints. In the
example above, we have a distance constraint. We have seen in the Chapter 5 that perform-
ing a guaranteed integration could also be seen as a CSP. Thus it could be integrated as
another kind of constraint in our CN as we will see in the following sections. Actually the
distance constraint itself could be seen as a CN. It is possible to decompose the distance
constraint into several primitive constraints which gives us:

√
(x1 −m1,1)2 + (x1 −m1,2)2 − r1 = 0 decomposed in



a = x1 −m1,1

b = x2 −m1,2

c = a2

d = b2

e = c+ d
f =
√
e

g = f − r1

g = 0

(6.2)
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Figure 6.1: Localisation problem setup.

Fortunately for us, with IBEX and Codac, it is possible to write the provided formula
directly when implementing, the decomposition is made in the background.

6.2.2 The contractor network

In an effort to make the computation of the solution set for problems written under the CN
form easy to implement, a tool named the ContractorNetwork is available in Codac. Its
implementation being out of the scope of this work, we will present it as a list of contractors
to be executed, each contractor being associated with a constraint. However, the different
test-cases and user cases presented in this thesis, have been used to test the capabilities and
possibilities offered by such a tool throughout its development. We believe it is of great
interest for the robotics community to solve a various range of problems. This is why an
example of its usage is given in Example 6.1.

Example 6.1 (Contractor network implementation). We will use the localisation problem
to show how easy and straight forward the implementation is. We recall the different beacons
position and associated range measurements, the graphical representation of the problem is
given in figure 6.1.

• b1 = (3, 4), [r1] = [3, 4],

• b2 = (2,−3), [r2] = [4, 5],

• b3 = (−3, 1), [r3] = [3.5, 4.5].

Finally we introduce a new graphical representation for the contractor network associ-
ated with the problem (see Figure 6.2). Each contractor (associated with a constraint) is
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[x]

[b1]

[b2]

[b3]

[r1]

[r2]

[r3]

Cdist Cdist Cdist

Figure 6.2: Contractor network graph.

represented under the form a of a square while domains are depicted using cables. Here we
have one generic distance contractor named Cdist which is used three times and the variables
x the position of the robot, bis position of the buoys and ris the range measurements. We
define a colour scheme to distinguish the different types of variables. It will be be progres-
sively introduce as we encounter new types of variables. In Figure 6.2, there is only one
type, in light blue the variables that are not embedded in the contractor network but can
be modified by it. This electric-circuit like representation will help the interested reader in
the understanding of the piece of code to solve the localisation problem given in Listing 6.1.

As the reader can see in Listing 6.1, the contractor network is really simple to implement
and pretty straightforward. This new tool allows us to encapsulate rather complex con-
straints inside one object. In order to provide a full demonstrative example, the distance
function and its contractor have been redefined so that the reader can adapt the code to
his/her own situation. Nevertheless there exists a predefined distance contractor object
named CtcDist. Along with the distance contractor, Codac provides a few basic contrac-
tors associated with different types of measurements regularly encountered in robotics. For
more examples the reader is advised to visit the tutorial section of the website dedicated to
Codac.

6.2.3 Contractor on the contractor network

In Example 6.1, we solved the localisation problem for a unique search space, denoted ”x”
in Listing 6.1. One can notice that if we had to change the value of this search space, we
would have to create a new contractor network associated with this new search space. Doing
this would be very inefficient in terms of memory usage if we kept each contractor network
but also in terms of computer processing time as we need to create all the new objects and
connections. However changing the search space considered is a very common action. For
instance, if we would like to perform the SIVIA algorithm for the localisation problem as
we did in Example 2.13 we would have to change the considered search space after each
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Listing 6.1 Solving the localisation problem with the ContractorNetwork object (Codac
V1)

1 // Initialise the search space for the robot position

2 IntervalVector x(2);

3

4 // Beacons known positions

5 IntervalVector b_1({{3},{4}});

6 IntervalVector b_2({{2},{-3}});

7 IntervalVector b_3({{-3},{1}});

8

9

10 // range measurements

11 Interval r_1(3,4);

12 Interval r_2(4,5);

13 Interval r_3(3.5,4.5);

14

15 // Create the generic distance contractor

16 Function f_dist("x[2]","m[2]","r","sqrt((x[0]-m[0])^2+(x[1]-m[1])^2)-r");

17 CtcFunction C_dist(f_dist);

18

19 // Initialising the contractor network object

20 ContractorNetwork cn;

21

22 // Adding each contractor (i.e each constraint)

23 // Equivalent to drawing wires on the graph

24 cn.add(C_dist,{x,b_1,r_1});

25 cn.add(C_dist,{x,b_2,r_2});

26 cn.add(C_dist,{x,b_3,r_3});

27

28 // Apply the constraints

29 cn.contract();

30

31 // Displaying results

32 cout << "Contracted search space: "<< x <<endl;

33

34 // Graphics

35 // ...
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bisection. To solve this issue, a small contribution of this thesis is the development of the
Contractor on the Contractor Network (CtcCN). The idea came from what we have seen
in Equation (6.2). The distance constraint for which we had an analytical formula could
be rewritten under the form of a CN. As it has an analytical formula, Codac could easily
decompose this complex constraint into primitive constraints in the background. However
in our case we have three complex constraints and Codac cannot process them in one go.
With the CtcCN it is possible to make one contractor on a set of complex constraints which
are embedded in a ContractorNetwork object. Here is how it works:

1. We first create a basic contractor network and an abstract box.

2. Then we attach to the contractor network the different contractors applied to the
abstract box. We thus have a generic contractor network

3. We generate a CtcCN using our generic contractor network, and the abstract box

4. When wanting to apply the different constraint on a specific box, the CtcCN replaces
the abstract box by the considered search space.

This is all illustrated in Example 6.2.

Example 6.2 (CtcCN). In this example we will show how to us the CtcCN on the locali-
sation example to perform the SIVIA algorithm and obtain the result of Example 2.13.

The graph of the CtcCN associated with the problem is given in Figure 6.3. As one can
notice, it encapsulates the previous contractor network presented. The variable x is now
the abstract box (depicted in pink) that will be replaced by the value of the box M at each
iteration while performing the SIVIA.
The piece of code to solve the problem is given in Listing 6.2. In this one, we used the
distance contractor provided by Codac to show its usage. The attentive reader may have
noticed a change in the declaration of the measurements and buoys positions.
This time the initial domains for theses variables are stored in the ContractorNetwork object.
Indeed when using the contractor on the distance, the position of the robot, the distance
measurement and the buoys position domains may be contracted. Hence when performing
the set inversion, we may encounter cases where either of the last two may be contracted
to the empty set if the search space considered is out of the solution. Thus we need to
store these initial domains to reset them when considering a new search space. This type of
variables will be represented as orange wires. The result obtained is displayed in Figure 6.4.

There is no inner approximation as a contractor only computes an outer approximation.
To have one, we need to build the complementary contractor and use both of them to build
a separator. This newly created separator used with the SIVIA algorithm will allow us to
compute both the inner and outer approximation of the solution set. The code and figures
are available on the web page associated with this thesis at the section static localisation.
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Figure 6.3: CtcCN graph for the localisation problem.
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Figure 6.4: SIVIA algorithm on the localisation using the CtcCN.
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Listing 6.2 Using the CtcCN on the localisation problem (Codac V1)

1 // Create the generic distance contractor

2 CtcDist C_dist;

3

4 /*

5 * Generating the generic localisation ContractionNetwork

6 */

7

8 // Initialising the contractor network object

9 ContractorNetwork cn;

10 // Create an abstract box of the size of the search spaces we will be considering

11 IntervalVectorVar x(2);

12

13 /*

14 * Measurements and beacons position are now stored in the ContractorNetwork

15 * They will be reset to their initial value when the contract() method of

16 * the CtcCN will be called before performing the contraction

17 */

18 IntervalVector& b_1 = cn.create_interm_var(IntervalVector({{3},{4}}));

19 IntervalVector& b_2 = cn.create_interm_var(IntervalVector({{2},{-3}}));

20 IntervalVector& b_3 = cn.create_interm_var(IntervalVector({{-3},{1}}));

21 Interval& r_1 = cn.create_interm_var(Interval(3,4));

22 Interval& r_2 = cn.create_interm_var(Interval(4,5));

23 Interval& r_3 = cn.create_interm_var(Interval(3.5,4.5));

24

25 // Adding each contractor (i.e each constraint) using the abstract box

26 cn.add(C_dist,{x,b_1,r_1});

27 cn.add(C_dist,{x,b_2,r_2});

28 cn.add(C_dist,{x,b_3,r_3});

29

30 // Creating the contractor on the contractor network

31 CtcCN C_cn(&cn,&x);

32

33

34 //Initialise search space to be explored by the SIVIA

35 IntervalVector M({{-5,5},{-5,5}});

36

37 double epsilon = 0.1; // SIVIA accuracy

38 // Perform the set inversion algorithm

39 vector<vector<IntervalVector>> pavings = sivia(M,C_cn,epsilon);

40

41 // Graphics ...
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6.2.4 Using a reference encapsulated in a tube

In Section 5.5.5.1, we mentioned that when using a reference obtained under the form of a
tube using a conventional integration tool, we could not directly use a regular contractor
or separator of Codac. This is due to the fact that for now, regular contractors cannot
decompose the evaluation of a tube at a certain time as a primitive constraint. In this
section we will show how this can be done using our CtcCN. Let us consider the formula we
had for the flow function when working with TC3. It was:

Φt(x) =

√
3

(
x1 −x2

x2 x1

)
· a(t)√

1− ‖a(t)‖2 + (4 ‖a(t)‖2 − 1) ‖x‖2
.

When performing the guaranteed integration, we were working with the constraint:

Φ−t(x) = x0 (6.3)

Our problem was to get the value of a(t) which is done by evaluating the tube which
encloses the reference trajectory. This complex constraint can be decomposed in a CN of
two constraints:

Φ−t(x) = x0 ⇐⇒
{

w = a(−t)
Φw(x) = x0

, (6.4)

where

Φw(x) =

√
3

(
x1 −x2

x2 x1

)
·w√

1− ‖w‖2 + (4 ‖w‖2 − 1) ‖x‖2
(6.5)

With this new formulation we can build our contractor network and the CtcCN to get the
outer approximation of the solution set. We need to precise that there is one more constraint
as the initial condition was under the form of a disk. The graph associated with the CtcCN
named CCN is provided in Figure 6.5. It introduces a new type of variable depicted in green.
These variables are not embedded in the contractor network and will not be modified by it.
It consists mainly in tubes that will be evaluated at a certain time t. In Listing 6.3, we focus
only on the creation the contractor network for the outer approximation. This is another
proof that multiple constraints can be gathered in the contractor network. The full piece of
code used to generate Figure 5.14 or Figure 5.15 in the previous chapter is available here1.

1code
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Figure 6.5: Graph of the CtcCN to perform the guaranteed integration for TC3 (Codac
V1).

Listing 6.3 Contractor network evaluating the value of a tube at an instant t in TC3
(Codac V1)

1 // Create contractor for phi_w

2 Function phi_w("x1", "x2","t", "w1", "w2", "r1", "r2",

3 "((sqrt(3)*(x1*w1-x2*w2))/sqrt(1-(w1^2+w2^2)+(4*(w1^2+w2^2)-1)*(x1^2+x2^2)) - r1;\

4 (sqrt(3)*(x2*w1+x1*w2))/sqrt(1-(w1^2+w2^2)+(4*(w1^2+w2^2)-1)*(x1^2+x2^2)) - r2)");

5 CtcFwdBwd c_phi_w(phi_w);

6

7 // Constraint on the initial condition to be a disk of radius 0.2

8 // centred on (1.5,1.5)

9 Function f_circle ("i1","i2","( (i1-1.5)^2 + (i2-1.5)^2)");

10 CtcFwdBwd c_init(f_circle, Interval(0, 0.04));

11

12 // Initialise evaluation of tube contractor

13 CtcEval c_eval;

14 ctc_eval.set_fast_mode(true);

15

16

17 ContractorNetwork cn;

18 IntervalVectorVar x(3); // abstract_box for x=(x_1,x_2,t)

19 IntervalVector& w = cn_out.create_interm_var(IntervalVector(2));

20 IntervalVector& x_init = cn_out.create_interm_var(IntervalVector(2));

21 cn.add(c_eval,{x[2],w,a}); // Constraint w = a(t)

22 cn.add(c_phi_w, {box,w, x_init}); // Constraint phi(-t,x)=x0

23 cn.add(c_initial, {x_init}); // Constraint x0 in the disk

24 CtcCN c_cn(&cn, &box);
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6.3 Reachability analysis

6.3.1 Introduction

One of the field in which guaranteed integration is usually performed is reachability analysis.
It is the study of the set of states a system can reach given a set of initial states and the
model of its evolution through time [47, 99]. A formal definition for this is given in [2].

Definition 6.1 (Reachable set at a point in time). Consider a dynamical system following
a state equation of the form ẋ(t) = f(x(t),u(t)). The set of initial states and inputs are
bounded i.e x(0) ∈ X0,u ∈ U . The reachable set at a certain point of time tr is defined as
the union of the possible system states at t = tr:

R(tr) =

{
z ∈ R|z =

∫ tr

0
f(x(t),u(t))dt,x(0) ∈ X0,u([0, tr]) ∈ U

}
(6.6)

where u([0, tr]) =
⋃

t∈[0,tr]

u(t)

This definition can easily be extended to the case of a time interval with Definition 6.2:

Definition 6.2 (Reachable set over a time interval). The reachable set over a time interval
[t1, t2] is the union of reachable sets at points in time within the interval t ∈ [t1, t2],

R([t1, t2]) =
⋃

t∈[t1,t2]

R(t) (6.7)

The study of reachable sets is motivated first by safety considerations. Indeed, one may
find among the set of reachable states insecure or unsafe sets which one wants to avoid. For
instance, in a mobile robotics context, one may want to make sure that the robot will never
reach an unsafe area or on the contrary that it will go through a mandatory location. Here
is a short list of possible applications for reachability analysis [2]:

• Performance assessment of control strategies: by carrying out reachabilty analysis, one
can check if the system can actually perform the mission it is supposed to perform.

• Scheduling: One may want to determine what is the best schedule in order to optimise
a system. This is particularly used in the industry to increase yields of production
[123]

• Controller design: In order to find the best parameters to control a system, one may
use reachability analysis to ensure that the controller will not lead the system to an
unsafe state.

• Deadlock: It is possible to determine if a system will not stay stuck in an unwanted
certain state or set of states [98]

To carry out the different tasks presented here, numerous algorithms and methods have
been developed aiming at determining either the exact reachable set in some special cases
[37, 52] or an over approximation of it [4, 21].
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6.3.2 Applying Lie integration method for reachability analysis

We propose here to present the use of the Lie integration method in the case of performance
assessment. Staying in our mobile robotics context we will check if our system is either
reaching a given area or that it will never enter a forbidden one. This reachability problem
can be turned into a CSP. Indeed, setting as a constraint that our system is never inside a
defined region we want to reach, if the latter is not satisfied this means that the system will
reach the desired area. To illustrate this approach we consider TC4 one more time. We will
also consider the initial condition of the system x0 ∈ X0 = [−0.1, 0.1]2 × [−0.4, 0.4]× {0, 0}
and that the interval of time on which we study the system is T = [0, 15]. In Figure 6.6 are
depicted two coloured areas. The green one, denoted G, represents a zone we have to go
through during our mission (disk centred on (0.1, 1)ᵀ with radius

√
0.75) The red one, R,

is a forbidden area the system has to avoid (disk centred on (1.2, 1.3)ᵀ with radius 0.1). In
black is depicted the outer approximation of set of positions the system can have over the
considered time interval T obtained in Figure 5.21 (considering only Constraint (i) in the
list below).

The three constraints considered to solve our reachability problem are the following:

(i) ẋ = f(x),x(0) ∈ X0

(ii) ∀t ∈ [0, 15],x(t) 6∈ G

(iii) ∃t ∈ [0, 15],x(t) ∈ R

• (i) claims that the system is initialised in the box [x0] and that it satisfies the state
equation,

• (ii) claims that the trajectory of the system avoids the green area G to be reached,

• (iii) claims that the trajectory enters the red area R we want to avoid at least once
at some time tR ∈ T .

To prove that the green area G will be reached we have to show that (i) and (ii) cannot
be both satisfied. Let us consider the CN composed of (i) and (ii).

Variables: x(·), t
Internal variables: xp(·)
Constraints:
1. xp(t) = f(x(t)) (i)
2. x(0) ∈ [x0] (i)
3. x(t) 6∈ G (ii)
Domains: [x](·), [t], [xp](·)

. (6.8)

Now, satisfying Constraint (i) is equivalent to satisfy

φ−t(x(t)) ∈ [x0], (6.9)

where φ−t(x) is the flow function associated with the state equation of TC4 found in Sec-
tion 5.6.4. Hence, it is possible to replace Constraints 1 and 2 of Equation (6.8) by Equa-
tion (6.9). This replacement is done as we have seen how to apply this constraint on a
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tube using a contractor network and a tube encapsulated reference obtained with CAPD in
Section 6.2.4. The CN becomes

Variables: x(·), t
Constraints:
1. φ−t(x(t)) ∈ [x0] (i)
2. x(t) 6∈ G (iii)
Domains: [x](·), [t]

. (6.10)

Using the different tools presented in Section 6.2, we can apply this CN along the tube
enclosing the trajectory of the system. The reader can find the circuit representation in the
appendix (Figure B.1). Moreover, the piece of code used is available here2. As expected,
the tube returned after contraction is empty. This means that both constraints cannot be
satisfied at the same time, therefore, the trajectory of the system will reach the green area
over the time interval considered.

In the same manner, by applying the CN formed by the constraints (i) and (iii) given
below, we also obtain an empty tube as a result. We can conclude that the trajectory of
the system will never cross the forbidden region.

Variables: x(·), t
Constraints:
1. φ−t(x(t)) ∈ [x0] (i)
2. ∃t ∈ [t],x(t) ∈ R (ii)
Domains: [x](·), [t]

. (6.11)

This example shows how the contraction-based approach to perform the guaranteed in-
tegration allows us to pair it easily with other kinds of constraints to carry out for instance
a reachability analysis.

2code
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Figure 6.6: Reachability problem setup: We want to show that the green area will be
reached in the considered time and that the red forbidden area will be avoided. The black
shape encloses all the position the robot can have during the time interval T . It has been
computed using its dynamic model (see Figure 5.21)
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6.4 Localisation

Since the beginning of this work, we used the localisation example of a robot with three
beacons in a static way to illustrate the different concepts presented. We considered that
at a finite time all three measurements were available, which allowed us to locate the robot
easily. However, in real conditions, these range measurements are often gathered in an
asynchronous way. In this case, the problem we are dealing with is not static anymore and
becomes a dynamic one.

6.4.1 Presentation of the problem

The problem we are going to consider is the localisation of a mobile robot which is able to
communicate with a beacon when it gets close enough to it. At each time t = k ∗0.5, k ∈ N∗
the robot tries to reach any beacon. If a response is received, a range measurement is made.
The situation is presented in Figure 6.7. The true trajectory of the system is painted black.
The reader will have recognised the trajectory of TC4 for which we have a state equation.
An AUV is painted each time a range measurement is made. The interval for the range
measurement associated with an AUV is depicted as a pair of two circles of the same colour
representing the inner and upper bound.
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Figure 6.7: Dynamic localisation example setup
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6.4.2 Localisation using range measurements only

The first, naive, idea one could have in this new situation is to use the range measurement
and the time at which it has been made. Let us denote an observation by the vector

m =


(
bx
by

)
r
t

 , (6.12)

where b is the position of the beacon detected, r is the range measured and t the time
associated with it. Using a mathematical object that can handle this time variable, for
instance tubes, we may be able to reconstruct the trajectory of the robot using the range
and the time constraint. This can be written using the CN form:

Variables: x(·),mi

Internal variables: xi
Constraints:
1. xi = x(ti)
2. dist(xi,bi) = ri
Domains: [x](·), [mi]

(6.13)

Using these information only, the tube enclosing the trajectory of the robot has not been
contracted at all. This is due to the fact that we have no idea of the evolution of the
trajectory between each measurement. Hence the robot could have moved from any point
of the search space at time ti − dt to the area compliant with the range measurement ri
made at time ti and go to any other point right after at time ti+dt where dt 7→ 0. Therefore
we need another information to solve our problem. This new piece of information will be
the state equation of the system which is the one of TC4.

6.4.3 Adding the state equation as a constraint

As our range measurement constraint was not enough to get a sharp enclosure of our trajec-
tory, we need to add a constraint which reflects the evolution of the vehicle through time.
This dynamical constraint will be the state equation associated with the system which is
the one of TC4 recalled below.

ẋ = f(x,u) =


u1(x4) · cosx3

u1(x4) · sinx3

u2(x4)
1

 .

In addition we suppose that we have an enclosure of the initial state of the system denoted
[x0]. Therefore the CN associated with this new case is the following:

Variables: x(·),mi

Internal variables: xi
Constraints:
1. ẋ = f(x)
2. x(0) ∈ [x0]
3. xi = x(ti)
4. dist(xi,bi) ∈ [ri]
Domains: [x](·), [mi]

(6.14)
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The issue of using Constraint 1 has been addressed throughout this work using different
integration methods. Using this CN to implement its contractor network counterpart, we
obtain the results depicted in Figure 6.8a and Figure 6.8b. The enclosures go from red
(beginning of the trajectory) to green (end of the trajectory). As the reader has probably
noticed, the enclosures obtained are sharper than the ones in Section 5.6.5.2 when we were
comparing the tubes resulting from integration only. As expected the result obtained with
the Lie integration method is far better than the one achieved using CAPD. The enclosure
of the trajectory using only the dynamical constraint was already sharper in Section 5.6.5.2.
However there is one reason that makes Lie integration method even more interesting in this
constraint-based scheme. It allows us to propagate constraints both forward and backward
in time when the other methods can only propagate them forward. Thus measurements
done during the mission can be used to get a better enclosure of the initial condition using
constraint propagation backward in time. Then using this new and more precise initial
condition we can integrate forward in time and get a better enclosure of the trajectory. We
will explore this last property in the upcoming section.
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(a) Localisation using the trajectory predicted by CAPD corrected
with range measurements
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(b) Localisation using the Lie integration method coupled with range
measurements
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(c) Evolution of the volume of tube enclosing the robot trajectory using
prediction from dynamic model and range measurements

Figure 6.8: Enclosures computed using both the dynamics of the system and the measure-
ments
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6.4.4 Advantage of the Lie method

6.4.4.1 Estimating the initial condition

In the previous section, we supposed that we had a mildly uncertain initial condition. This
allowed us to use conventional guaranteed integration tools in order to make a prediction
on the robot’s trajectory which is then corrected by the range measurements made during
the mission in order to get an as sharp as possible enclosure of the real trajectory. However
in this case the calculation of the prediction does not benefit from the range measurements
made as we cannot propagate the constraint backward. We will show that with the Lie
integration method it is possible, using only range measurements and the robot’s dynamics,
to estimate what was its initial state and use it to determine its location. Let us introduce
some notations we will use throughout this section.

• First the distance function g which computes the range between the robot and the
beacon detected at time ti.

• Then Φt the flow function of the system.

• ri the distance measured at time ti between the vehicle and the beacon detected.

• Zi, the set of states which are compliant with the measurement ri, Zi = {zi ∈
R3|gi(zi) = ri}

• Qi the set of possible initial conditions from which it is possible to reach Zi. We have
Qi = {qi ∈ R3|Φti(qi) ∈ Zi} ⇐⇒ Zi = Φti(Qi) but also Zi = {zi ∈ R3|Φ−ti(zi) ∈
Qi} ⇐⇒ Qi = Φ−ti(Zi).

• Q the estimation of the initial condition which is compatible with all measurements
performed: Q =

⋂
i
Qi.

• Xt, the estimation of the state of the robot at time t, Xt = {x ∈ R3|Φ−t(x) ∈ Q}, we
also have Q = {q ∈ R3|Φt(q) ∈ Xt}.

To help the reader understand how the approximation of the initial state Q is computed,
we will proceed step by step. Each new step starts when a new piece of information is
available to us. Let us summarise the different pieces of information we have at time t = 0.
We know that the state of the robot could be anywhere in the state space. The dynamics
of the system is known. If we let the system evolve, until the first measurement at time t1
depicted as the pink AUV in the top left corner in Figure 6.7, we do not gather any new
information we could use to locate the system.

Now at time t1 a new range measurement r1 is available. With it, we can compute an
approximation of the position of the robot Zt1 as z1 = g(r1). This approximation projected
on the first two dimensions (x1, x2) is depicted in Figure 6.10. We recall that the inner
approximation is composed of the white part and the outer approximation gathers the
white and pink parts. For this figure and the following, the interval range measurement is
depicted by two black circles (lower and upper bounds). The position of the robot when
the measurement is performed is painted black. Finally the true trajectory of the system
is painted black. As expected, the approximation we get is a ring as we only have a range
measurement. With this approximation of Z1, it is then possible to compute an enclosure for
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Q1 as we know the vehicle dynamics. We recall that Q1 is the set of all possible initial states
for which the measurement r1 could have been made after the system evolution between
0 and t1. This second approximation is presented in Figure 6.11. The true initial state is
represented by the yellow AUV. Using Q1, it is possible to compute the estimation of the
initial state, Q. As we only have one measurement for now, Q1 = Q. This full process can
be summarised by the following CN with i ∈ {1}:



Variables: ri,q
Internal variables: zi,qi,
Constraints:
1. zi = g(ri) ∀i
2. qi = Φ−ti(zi) ∀i
3. zi = Φti(qi) ∀i
4. q = qi ∀i
Domains: [q], [ri], [qi], [zi]

(6.15)

This CN stays valid in case of multiple measurements. As we have done in the reachability
example we can create a CtcCN on this CN that we will denote Cq. Its circuit representation
is given in Figure 6.9 We have used all of our pieces of information available for now, we
can wait until the next measurement.

[r1]

[z1]

[q1]

[q]

[rn]

...

[zn]

[qn]

...

...

Cg Cg

CΦt1

CΦ−t1

C=

. . .

. . .

. . .

. . .

CΦtn

CΦ−tn

q = qi

C=
q = qi

M

Cq

[r1]

[z1]

[q1]

[q]

[rn]

...

[zn]

[qn]

...

...

Cg Cg

CΦt1

CΦ−t1

C=

. . .

. . .

. . .

. . .

CΦtn

CΦ−tn

q = qi

C=
q = qi

M

Cq
Figure 6.9: Circuit representation of Cq
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Figure 6.10: Robot position approximation Z1 at time t1.
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Figure 6.11: Robot initial position approximation Q1 at time t1.

The next measurement at time t2 allows us to compute the approximations for both sets
Z2 and Q2. With the latter, we get a new constraint on Q as it is the intersection of the
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Qis. As one can see on Figure 6.13, the enclosure does not get much better. This is due
to the fact that we are detecting the same beacon. Hence the system can still come from
anywhere around the beacon.
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Figure 6.12: Robot initial position approximation Q2 at time t2.

At time t3 we detect a new beacon. As done with the two previous measurements, we
compute both approximations for Z3 and Q3. We only represent the approximation of the
set Q3 in Figure 6.14. With this last figure, one can already feel that the sharpness of
the approximation for Q will be greatly increased with this new measurement. The new
estimation for Q is given in Figure 6.15.

Repeating the same operations for each measurements, we obtain at time t = 15 the
approximation for Q displayed in Figure 6.16. We get a rather precise estimation compared
to the mildly uncertain initial box we used in the previous version of the problem. This
shows the true power of the Lie method. This ability to propagate constraints both backward
and forward allows us to estimate the initial state which, we recall, was not known at the
beginning of the problem.
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Figure 6.13: Robot initial position approximation Q after 2 measurements.
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Figure 6.14: Robot initial position approximation Q3 at time t3.
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Figure 6.15: Robot initial position approximation Q after 3 measurements.
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Figure 6.16: Robot initial position approximation Q after 9 measurements.
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6.4.4.2 Using our initial condition estimation to solve the localisation problem

The capability to estimate the initial state of the vehicle is of great interest in our localisation
problem with an unknown initial state. Indeed, if we were to estimate the robot’s state over
time using conventional integration techniques, having an entirely unknown initial condition
would have us unable to solve the problem. As we have seen in Chapter 3, the bloating effect
would appear quickly and we would not be able perform the integration. With this new
estimation, we can now propagate the dynamics constraint forward to get an approximation
of the system at time t. Using the fact that{

Xt = Φt(Q),
Q = Φ−t(Xt),

, (6.16)

we can enhance the CN presented in Equation (6.15) in order to compute the approximation
of Xt. It becomes: 

Variables: ri,q,x
Internal variables: zi,qi,
Constraints:
1. zi = g(ri) ∀i
2. qi = Φ−ti(zi) ∀i
3. zi = Φti(qi) ∀i
4. q = qi ∀i
5. q = Φ−t(x)
6. x = Φt(q)
Domains: [ri], [q], [x], [qi], [zi]

. (6.17)

The circuit representation of the CtcCN, Cloc associated can be found in Figure 6.17. One can
notice that it is an extension of the graph in Figure 6.9, where we added the relationships
between x and q Of course for a defined time t ∈ [0, tf ] the only range measurements
considered to compute the approximation are the ris made at time ti < t. Hence the more
range measurements we have, the better the approximation of Xt gets as the sharpness of
the enclosure for Q increases as seen in the previous section. The reader may be confused by
the fact that at each time ti when a measurement is made, both Zi and Xti are sets gathering
the possible states of the vehicle at time ti. The difference between these two sets is that
for all i > 1, Xti takes into account all the previous measurements, when Zi does not. This
is due to the fact that Q ”stores” the information given by each new measurement as it is
the intersection of all initial state approximation made thanks to each measurement. Some
results using this method are displayed below. One can notice that the approximation gets
better as the number of range measurements increases. It is even better when the beacon
detected is not the same between two consecutive measurements. As seen in Chapter 5, it
is possible to compute both discrete and continuous sets. A video showing the evolution
of the approximation of Xt is available here3. The upper part shows the evolution of the
enclosure of Xt when the lower part depicts the evolution of the approximation of Q.

3https://youtu.be/AC2HxxmgaE8
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Figure 6.17: Circuit representation of Cloc
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Figure 6.18: Xt1
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Figure 6.19: Xt2
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Figure 6.20: Xt3
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Figure 6.21: Xt9
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CHAPTER 7. CONCLUSION AND ENVISIONED FUTURE WORK

7.1 Conclusion

This research has been motivated by the need to improve the localisation of low-cost un-
derwater robots in the context of offshore infrastructures monitoring. Being deprived of
high-end sensors, the robot has to navigate relying on dead-reckoning mainly. However, as
seen in the introduction, the results returned by the INS alone are not sufficient to perform
long missions. Especially when it is a low-cost one. Therefore we aimed at developing a new
method that would enhance the results, based on the extraction of symmetry properties
from the dynamic model of the system.

In a first part, Chapter 2, Chapter 3 and Chapter 4 present the different mathematical
concepts used throughout this thesis.

After introducing the field of dynamical systems and their link with differential equations,
the first one focuses on the set-membership approach we chose to handle our variables. The
basics of interval analysis and the tubes to deal with dynamical problems are introduced.

Then Chapter 3 addresses the problem of guaranteed integration. As we have to ensure the
safety of the system we need to guarantee our results when performing computations. The
different existing methods are presented in this chapter. We demonstrate their functioning
processes and limits induced by them when it comes to handling the large uncertainties
occurring in a robotic context.

Finally, Chapter 4 introduces the concept of Lie Groups and especially Lie symmetries.
The process to find such symmetries is explained and the new notion of transport function
is detailed. We have shown how Lie symmetries can applied to differential equations to find
solutions for different initial conditions from a previously computed one.

Then in a second part, the new Lie Integration method associating the different tools
presented in the previous chapters is explained in Chapter 5. We also demonstrated how
the guaranteed integration can be seen as a set inversion problem. We applied our new
method onto four different test cases and compared the results with already existing tools
to assess its efficiency when dealing with uncertainties on the initial condition.

The last piece of this work demonstrates the efficiency of the Lie integration method
by solving first a reachability problem and then the localisation problem defined in the
introduction that motivated this research.

7.2 Contributions

The main contributions of this thesis are presented below.

First the notion of ”transport function” that allows to find solutions of differential equa-
tions for any initial condition in the state space using a known reference. This notion is
essential in the development of a new integration method.

Using the previously introduced tool we developed a new integration method that is able
to handle large uncertainties provided the system has enough symmetries. We demonstrated
its efficiency in both robustness and computer processing time. Moreover, while we applied
this method in a set-membership context, it is not limited to it. Thus other works might
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7.3. PROSPECTS

benefit from it. These two contributions were initially introduced at SWIM 2019[26] and
are the subject of a journal paper [27]:

• Julien Damers, Luc Jaulin, Simon Rohou ”Guaranteed interval integration for large
initial boxes” In: Summer Workshop on Interval Methods, 2019

• Julien Damers, Luc Jaulin, Simon Rohou ”Lie Symmetries applied to Interval Inte-
gration” In:Automatica, 2022

.

This work has also contributed to the development of the Codac library. It added the
ability to easily use CAPD tools which are the state of the art in terms of guaranteed
integration. A section is dedicated to the use of the work produced in this thesis This allows
an easier use of contractor tools with the results returned by CAPD which helped us in the
resolution of the localisation problem. In addition, the contractor on the ContractorNetwork
allows the use of complex sets of constraints on particular objects in Codac.

7.3 Prospects

Solve differential inclusions. As mentioned at the end of Chapter 5, it is only possible
for now to solve analytical differential equations with the Lie method integration method.
Therefore a compromise has to be done when dealing with real applications. We have
seen with the fourth test case that, for now, we need to have an analytic expression of
the command of the robot over time. However in the future being able to generate sharp
enclosure for the reference using the real command sent during the mission could help
improving the results in the post-processing of the operation.

Handling both space and time displacement. In the examples presented throughout
this work we demonstrated how symmetries could be used to compute solutions using any
point of the state space as initial condition using a reference. However, as stated in the
conclusion of Chapter 5 nothing prevents us from using a reference with a short time domain
and use it as a sliding window to compute the solution of the integration on large time
domain. This could be useful when computing the reference is computationally expensive.
It is a subject to be explored.

Apply the symmetries with other filters. We used the symmetries in the context of
guaranteed integration to increase the speed of calculation but also to compute both an inner
and an outer approximation of the solution set easily. However, numerical integration is
rather common in numerous fields. As we quickly mentioned it in the comparisons section of
Chapter 5, it could be very efficient in the case of particle filters where multiple simulations
need to be performed. As it is not computationally heavy, the speed of simulations could be
greatly increased but it may also be usable with less high-end hardware. This means that
it may be used in embedded systems in the future.

Compute the transport function automatically. In Chapter 4, we have shown how
to find the expression of the transport function. Up to now this step still has to be performed
by hand before getting to the implementation. One of the key points to address for this
method to be easier to use and thus expand, is the development of a tool able to generate
the transport function using a reference provided as input and the state equation. This last
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CHAPTER 7. CONCLUSION AND ENVISIONED FUTURE WORK

prospect is probably the most ambitious one but the one that most people working with the
contributions of this thesis would benefit from.
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APPENDIX A

ADDITIONS TO CHAPTER 5: A NEW GUARANTEED
INTEGRATION METHOD

A.1 Figure: Integration of TC3 using the analytic expression
of the reference
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Figure A.1: Integration of multiple discrete sets for TC3, using the analytic expression to
compute the reference

157



APPENDIX A. ADDITIONS TO CHAPTER 5: A NEW GUARANTEED
INTEGRATION METHOD

X0

x1

x2

−2.0 −1.0 0.0 1.0 2.0
−2.0

−1.0

0.0

1.0

2.0

Figure A.2: Continuous integration applied on TC3 using analytic expression to compute
the reference
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A.2. LAWNMOWER PATTERN ERROR EVOLUTION

A.2 Lawnmower pattern error evolution

Consider the system of TC4:

ẋ = f(x,u) =

u1(t) · cosx3

u1(t) · sinx3

u2(t)


The first two coordinates at time T from the last know position at time tk can be written
as

x1(T ) =

∫ T

tk

u1(t) cos(x3(t))dtx2(T ) =

∫ T

tk

u1(t) sin(x3(t))dt

The estimated state x̂ when considering a scale factor k close to 1 from the DVL and a
constant bias b close to 0 on the angle measurement is:

x̂1(T ) =

∫ T

tk

ku1(t) cos(x3(t) + b)dt

x̂2(T ) =

∫ T

tk

ku1(t) sin(x3(t) + b)dt

Using trigonometry we obtain:

x̂1(T ) = k cos(b)x1(t)− k sin(b)x2(t)
x̂2(T ) = k sin(b)x1(t) + k cos(b)x2(t)

(A.1)

Then the navigation (or position) error is :

e(t) =
√

(x̂1(t)− x1(t))2 + (x̂2(t)− x2(t))2.

Thus,

e2(t) = [k cos(b)x1(t)− k sin(b)x2(t)− x1(t)]2 + [k sin(b)x1(t) + k cos(b)x2(t)− x2(t)]2,

which is equivalent to

e2(t) = [x2
1(t) + x2

2(t)][k2 + 1− 2k cos(b)].

We denote by d(t), the distance from the last known point at time tk, then:

e(t) = d(t)[k2 + 1− 2k cos(b)]. (A.2)

We simulated the system obtaining the ”true” trajectory in blue in Figure A.3. We
then proceeded to compute the estimate using Equation (A.1). As one can see the error is
increases when we get further from the starting point and decreases when we get close to it.

We can then compare the error point to point from the true trajectory and the one
estimated, and the error computed using the formula given by Equation (A.2). In Figure A.4,
one can see that both errors are the same and evolves linearly with the distance from the
last known point.
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Figure A.3: A simulated trajectory of the system (in blue ) and the estimate computed
using Equation (A.1) in orange
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APPENDIX B

ADDITIONS TO CHAPTER 6: LIE INTEGRATION IN A
ROBOTICS CONTEXT

B.1 Circuit representation for the reachability example

[x](·)

CG CLie
(x1, x2) 6∈ G

Figure B.1: Circuit representation of the constraint network that checks if an area will be
reached given an uncertain initial condition
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CONTEXT
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Figure B.2: Description of the Clie presented in Figure B.1
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[116] S. Tornil, T. Escobet, and L. Travé-Massuyès. “Robust Fault Detection Using Inter-
val Models”. In: 2003 European Control Conference (ECC). 2003 European Control
Conference (ECC). Sept. 2003, pp. 1003–1008. doi: 10.23919/ECC.2003.7085090.

[117] Warwick Tucker. “The Lorenz Attractor Exists”. In: Comptes Rendus de l’Académie
des Sciences - Series I - Mathematics 328.12 (June 15, 1999), pp. 1197–1202. issn:
0764-4442. doi: 10.1016/S0764-4442(99)80439-X. url: https://www.sciencedirect.
com/science/article/pii/S076444429980439X (visited on 12/20/2021).

[118] David L. Waltz. “Generating Semantic Descriptions From Drawings of Scenes With
Shadows”. In: (Nov. 1, 1972). url: https://dspace.mit.edu/handle/1721.1/6911
(visited on 12/16/2021).

[119] R A Wijsman. “Cross-Sections of Orbits and Their Application to Densities of Max-
imal Invariants”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability. Vol. 1. University of California press, 1967, pp. 389–400.
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