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Abstract

Digital data is playing crucial role in our daily life in communicating, saving information,
expressing our thoughts and opinions and capturing our precious moments as digital pictures
and videos. Digital data has enormous benefits in all the aspects of modern life but forms also a
threat to our privacy. In this thesis, we consider three types of online digital data generated
by users of social media and e-commerce customers: graphs, transactional, and images. The
graphs are records of the interactions between users that help the companies understand who
are the influential users in their surroundings. The photos posted on social networks are an
important source of data that need efforts to extract. The transactional datasets represent the
operations that occurred on e-commerce services.

We rely on a privacy-preserving technique called Differential Privacy (DP) and its
generalization Blowfish Privacy (BP) to propose several solutions for the data owners to benefit
from their datasets without the risk of privacy breach that could lead to legal issues. These
techniques are based on the idea of recovering the existence or non-existence of any element in
the dataset (tuple, row, edge, node, image, vector, ...) by adding respectively small noise on the
output to provide a good balance between privacy and utility.

In the first use case, we focus on the graphs by proposing three different mechanisms to
protect the users” personal data before analyzing the datasets. For the first mechanism, we
present a scenario to protect the connections between users (the edges in the graph) with a
new approach where the users have different privileges: the VIP users need a higher level of
privacy than standard users. The scenario for the second mechanism is centered on protecting
a group of people (subgraphs) instead of nodes or edges in a more advanced type of graphs
called dynamic graphs where the nodes and the edges might change in each time interval. In
the third scenario, we keep focusing on dynamic graphs, but this time the adversaries are more
aggressive than the past two scenarios as they are planting fake accounts in the dynamic graphs
to connect to honest users and try to reveal their representative nodes in the graph.

In the second use case, we contribute in the domain of transactional data by presenting an
existed mechanism called Safe Grouping. It relies on grouping the tuples in such a way that
hides the correlations between them that the adversary could use to breach the privacy of the
users. On the other side, these correlations are important for the data owners in analyzing the
data to understand who might be interested in similar products, goods or services. For this

reason, we propose a new mechanism that exposes these correlations in such datasets, and we



Abstract

prove that the level of privacy is similar to the level provided by Safe Grouping.

The third use-case concerns the images posted by users on social networks. We propose a
privacy-preserving mechanism that allows the data owners to classify the elements in the photos
without revealing sensitive information. We present a scenario of extracting the sentiments on
the faces with forbidding the adversaries from recognizing the identity of the persons.

For each use-case, we present the results of the experiments that prove that our algorithms
can provide a good balance between privacy and utility and that they outperform existing

solutions at least in one of these two concepts.
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1. Introduction

"Data is the new 0il" is a well-known quote used to express the transition from the industrial
era to the digital age. In the formal, oil was the most critical resource to build wealth. While in
the latter, data is a crucial element to develop and expand any successful business in almost
every sector.

Data and oil also have many similar characteristics. The first one is that we cannot capitalize
any of them in their raw form. Before being consumed by the final customer, the oil needs
to be refined into gasoline, diesel, kerosene, etc. Data also cannot form a valuable asset by
itself. Looking into millions or billions of tuples of a dataset on a screen in front of you will
not help you expand your customer base, increase your profits or make the right decisions in
your business management. You need to analyze these tuples, to search for helpful information
leading to the right decision-making choices.

Amazon is one of the Tech giants with a Market Cap that exceeds the $1.6 Trillion. It was
not about luck but about analyzing the enormous size of data produced by their customers in
the best possible way to recommend to each customer what makes them buy more and more
from that platform. Jeff Bezos, the founder of Amazon, used the term "customer obsession" to
express the company’s most important priority "figure out what they want, what’s important to
them." Many articles and documentaries could be fined that tracked their rise through the prism
of being a data collector. One of the former executives said, "They happen to sell products, but
they are a data company." [79].

The countries producing crude oil might have the possibility of refining, but this is not the
case in many countries, as refining needs significant capital investment. The same could be said
about data analysis. To benefit for the maximum from your raw data, sometimes you need a
team of experts in machine learning, deep learning, or other techniques in Artificial Intelligence,
as well as expensive software solutions. In this case, the data owner prefers to rely on a third
party to complete the complex analysis.

Simultaneously, precisely as the governments try as hard as possible to maintain the
security and the stability of the main arteries for oil transport, the data owners must protect the
individuals from privacy breaches if they are selling, sharing, or publishing data.

Some may ask if data analysis results provided by the data scientist inside the company or
from a third party are the best possible output or better results could be reached. Netflix had
a supposedly good idea of publishing data to the public and rewarding a $1 million prize to
the contestant who develops the best movie recommendations algorithm. The only issue with
that idea is that they think only possible contestants will be interested in the published data,
but some privacy researchers were also excited about this opportunity. The data contained 100
million tuples of users with their movie ratings, and the identifier attributes were removed.
The authors in [121] aimed to prove that eliminating identifier attributes in that dataset is not
enough to protect the privacy of individuals. They exploit some public datasets from the IMDb
website and voter databases to link the tuples to specified individuals breaching their movies’
ratings. This is considered a privacy breach, especially the rating of controversial ones related

to religious, political, or sexual orientation issues.
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1. Introduction

An important revenue for data owners is creating a user-centric business model to sell data
to ad agencies, social studies organizations, or pharmaceutical companies if the data is related
to diseases. Thus, the data owner might share the data with a third party or publish it to the
whole public. Either way, the privacy threats on the individuals represented in the data are the
same, then in this thesis, we will use the terms shared, released, and published interchangeably.

Therefore, questions are raising about the threats of privacy breaches. How can you be sure
that the third party, buyer, or public won't exploit your data to gain unauthorized knowledge
about the individuals represented in the analyzed data?

One big difference between oil and data is that the oil era, sooner or later, will end. In
contrast, the era of data as a valuable asset is here to stay with us for a long time. And, as long

as this asset is very profitable, more issues about data privacy will appear.

1.1 Digital data in international conflicts

We have explained the importance of data economic and business-wise, but the data is even
more vital than that. In war, politics, and diplomatic relations, knowing more about your
enemies, opponents, or even allies makes your position more robust and your decision-making
easier.

From here, we can find a new comparison between oil and data. Both of them could lead
to dangerous international conflicts, especially between the superpowers, because those who
obtain more of these two have more chances to surpass their rivals.

Edward Snowden, a well-known whistleblower who was behind the biggest intelligence
leak in the American National Security Agency’s history that exposed the agency activities in
spying on American people [62], has revealed another document in 2015 proving that China has
hacked 50 Terabytes of top-secret data about some of the most advanced US military equipment
44]: the only two stealth and fifth-generation F-35 joint strike and F-22 Raptor, the only
stealth strategic bomber in the world B-2, in addition to space-based lasers, missile navigation
and tracking systems, as well as nuclear submarine/anti-air missile designs.

This example show the role that data could play in the military and weaponry field. The
political field is also a hugely important domain that needs information about other parties so
you can make your decisions. NSO Group, an Israeli cybersecurity company, has developed
spyware called Pegasus [114} [118] dedicated for the governments to spy on terrorist suspects’
phones as the company claimed. But, as anyone with little political knowledge would imagine,
dozens of governments buy this $50 million product to control and retrieve the data on the
phones of political and human rights activists, journalists, lawyers, activists, foreign leaders,
and of course, their political opponents. The reports say that the leaked list of victims contains
50,000 phone numbers [32], including several presidents, prime ministers, and ministers. This
scandal clarifies how politicians and governments are thirsty to get personal data about other
domestic and foreign politicians.

In many other cases, the victims are not specific individuals but a large portion of the

public. Facebook is the largest online social media service in the world. In 2006, user privacy

19



1. Introduction

concerns started emerging [48], and since that, every one to two years, a new privacy issue
about this company appears. The most massive data breach is the one linking Facebook and a
political data-analytics firm named Cambridge Analytica (CA). CA improperly obtained the
personal data of 87 million Facebook users without their consent [112]. The data-analytics firm,
then, used the data to help two campaigns target election ads using voter data in two major
political events in that period, the US presidential election and Brexit referendum
(a referendum to ask the electorate whether the country should remain a member of, or leave,
the European Union). The results were that the campaigns hiring CA won both the election and
the referendum.

The most apparent evidence these days about the roles that data plays in international
affairs and national security is the conflict between the USA and China about the fifth-generation
technology standard for broadband cellular networks or what is known as the 5G war [67]. The
US has warned its European allies who used communications technology provided by Huawei
in their networks that they put intelligence relationships at risk. Washington has started a
pressure campaign to encourage many countries to stop relying on the Chinese to build their

5G networks. The two most effective efforst were:

¢ Clean Network [8]: to "protect citizens’ privacy and companies’ sensitive information on
5G mobile networks and secures data across the full range of telecommunications and

technology".

¢ Criteria for Security and Trust in Telecommunications Networks and Services [92]:
as a tool to determine trustworthiness and security of telecommunications equipment

suppliers for governments and network owners or operators.

These campaigns succeeded in some countries like the UK and Australia, where the
governments blacklisted the chinese companies from the national 5G networks for security
reasons.

We listed these examples to prove the huge influence digital data could play in such a
crucial domain as the relations between superpowers not to claim that we are trying to solve
these complicated issues. In this thesis, we restrict our scenario on data generated by users on
social media and e-commerce websites, how to benefit from this data and protect the privacy of

the users at the same time.

1.2 Scenario

To talk more about the privacy issues in the data domain, we will present a scenario about
a social network company that adopts the Ad-based business model that needs user-centric
designs to grow. All the services related to the social network are free, and, as the American
sculptor Richard Serra once said, "if something is free, you're the product”. Actually, the real
product is the data generated by the users, and the customers are the parties willing to buy the

results of the analysis, the queries, or the mechanisms applied to the data.
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When using the data in any process, the company faces two main problems:

¢ User privacy: As mentioned previously, sharing the data with a third party to perform
the analysis might pose a real threat to the privacy of the users. Thus, our role in this
company is to provide privacy-preserving mechanisms that could ensure a good balance

between the privacy of the users and the utility of shared data.

* Heterogeneity of the generated data: The data generated by social media users is
very diverse in its types and forms like text, image, video, location, graphs, microdata,

transactional data, etc. In this thesis, we focus on three types of them:

— Graphs: The main type of data that a social media firm could be interested to
exploit is the graphs generated by numerous actions performed by the users: being
friends, following, messaging, tagging, blocking, muting,... Furthermore, the graphs
constructed from these actions could have different types. The static graph presents
the relations between several users in a single time interval. In contrast, a dynamic
graph represents these relations in multiple intervals by modifying its edges and
adding or removing some of its nodes to describe the relationships in every interval.
The solution could be offline, where we already have all the instances of the dynamic
graph. The online solutions are applied when the company demands that every
instance be anonymized approximately in real-time. We cannot wait for all other

instances before publishing the current one.

The attacks also can differ between static and dynamic attacks. In the formal, the
adversaries try to extract personal private data from published datasets relying on
their auxiliary data. Active attacks occur when the adversaries plant fake accounts

and attack the victim till they find their nodes in the published graphs.

- Images: Other type of data generated by the users is the images. The image could

contain a lot of information but extracting data from this type of post is not as easy
as extracting it from a text or the relationships between the users. The gallery images
of a user could reveal everything about them, starting from their preferred clothes,
shoes, watches, sunglasses, and jewelry brands to their favorites restaurants and type
of foods. Even more, the political parties, religious institutions, athletics clubs, and
non-governmental organizations will be very interested in delivering their messages
to people posting images on our social network about these issues.
These are just an example of what we can uncover from the gallery images of a user.
But the problem with the photos is that they don’t contain a simple type of data
that is easy to detect and analyze. For example, a post like "I miss sushi! " or a user
following 14 fast-food restaurants requires simple algorithms to retrieve valuable
data from the post or the user’s connections. On the other hand, an image of a family
having dinner in a restaurant contains many profitable data: What are they wearing,
eating, and drinking, in addition to the type of restaurant that they might prefer and
the cost that they are willing to pay to eat outside.
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Revealing these pieces of information requires a sophisticated and expensive
algorithm. Thus, our company might prefer to send these data to a third party
to perform this analysis on the images at an acceptable price. Here comes our
mission to apply a privacy-preserving algorithm on the images resulting in a trade-
off between privacy where the third party could not identify the faces in the pictures

and the utility where valuable data are preserved.

- Transactional data: The company could adopt a new strategy to benefit from all
the data. Instead of just selling them to interested parties, the company decided to
open its own e-commerce business. This platform targets the users by advertising
their favorite products based on their social network data. Selling the products also
produces what is called transactional data, which by analyzing it, could help us more

and more in recommending the right products to our users.

Tuples form a transactional dataset; each represents one consumer buying process,
containing the consumer id, a number of their quasi-identifiers attributes, the product
id, the price, and at least one attribute considered sensitive about the process or the
customer. Analyzing these tuples will realize the relation between the attributes that
characterize the user, from one side, and the product and its price from the other
side. This data mining can help us anticipate that users with similar attributes will

be interested in similar products with a specific price range.

For the same reasons as the past two analyses we have discussed, this analysis needs

to be done safely without threatening the consumers” data.

In this thesis, instead of applying a different type of privacy definitions on each of these
types of data, we will propose to adopt one privacy definition called Differential Privacy and

one of its extensions called Blowfish Privacy on the heterogeneous data.

1.3 Graph Anonymization

1.3.1 Naive anonymization

A communication graph is a graph where vertices represent individuals, and an edge between
two individuals exists if communication has happened between the individuals corresponding
to the vertices. Social networks and call detail records can be modeled as communication graphs.
One way to anonymize the data of a communication graph is to remove the identifiers at the
vertices. The goal of an adversary is therefore, to discover the individual corresponding to a
node in the graph.

A communication graph G.(V,, E.) can be represented as a database D of size n = |V|
where each tuple of D corresponds to an individual id. The tuple dimension is m = |V,| as well.
The ith attribute of a tuple t is 1 if t._id has communicated with the individual corresponding to

node 7, and 0 otherwise. A row in D represents the ego network of the corresponding vertex.
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1 .
@; id tuple
y B 6 Bob (1) | (0,0,1,1,0,0,0)
- Alice (2) | (0,0,0,1,0,0,0)
£ Adam (3) | (1,0,0,1,1,0,0)
N Carol (4) | (1,1,1,0,0,0,0)
&7 4 Roan (5) | (0,0,0,1,0,0,0)
3 Karl (6) | (0,0,0,0,0,0,1)
:@, Elyse (7) | (0,0,0,0,0,1,0)

Figure 1: Original graph of social network users and their connections

An example of a communication graph and its corresponding database is shown in Figure[T}
Note that we consider a binary communication event (0 or 1). Other models might be explored
in future work, for instance, annotating the edges with call frequency, average duration, call
time, or other meta-data.

One way to anonymize the data of a communication graph is to remove the identifiers at
the vertices. Therefore, the goal of an adversary is to discover the individual corresponding
to a node in the graph. Overlapping this naive anonymization is quite simple, using some
background knowledge about the community.

Let’'s say that the graph in Figure [l| represents a small community and all the
communications that took place between the individuals inside this community. To protect
the individuals’ identities, we have removed the identifier attributes from each vertex like
the account id, the name, the phone number, and the email address and replaced them with
hashed ids. At the same time, we have kept sensitive attributes necessary for the study or the
advertisers.

The challenge is to keep the real identity of each user in the graph hidden. Otherwise,
an adversary can relate the actual user with the sensitive private data of each node and the
communications placed between this user and the other users, which can be considered a
serious privacy breach.

Suppose an adversary has some public or auxiliary knowledge about our community. For
example, Bob, Adam, and Carol communicate with each other every day. As we can see in
Figure 2} this adversary can find the three nodes communicating with each other, then locating
Carol in the graph with 100% accuracy and John and Bob with 50% precision, that’s called
background attack.

1.3.2 Aspects of the graph anonymization

After explaining the failure of the naive anonymization, we will present our own privacy-
preserving mechanisms, but before that, we will list some characteristics of the graphs and their
anonymization.

The graph datasets produced by the relationships of the users have two types:
¢ Static: the published version of the graph is released once, and that'’s it.
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oD

A
(a) Naive anonymization of the graph (b) Exposing the id of 3 nodes.
Figure 2: Naive anonymization failed to protect the users facing a background attack.

¢ Dynamic: The published version is updated at the end of each time interval to represent

the connections in this interval.
The attacks on the graphs could also be divided into two types:

¢ Passive: the adversary waits for the publication of the anonymized graph, then uses their
auxiliary knowledge and some data science techniques to obtain the most achievable

knowledge about the individuals in the graph and their relations.

* Active: the adversary doesn’t wait for the publication. But instead, they take their first
step even before the data owner collects the data from the community to create the graph.
They form one or many fake accounts with specific characters connected to each other
and, most importantly, to the possible attack victims. When the graph is published, these
fake accounts are represented by nodes called Sybil nodes which, connected to each other,
form one or many Sybil subgraphs. The adversary tries to recognize these subgraphs

based on their characters, leading to easy identification of the victim nodes.

passive and active.
Confronting these attacks also takes two possible approaches. Let’s say we are publishing

the call records in a community for two years daily, starting from the first day of 2021.

¢ Offline: this approach means that we already have all the set graphs before releasing the
first anonymized graph. In this approach, we cannot release the first graph before getting
the last graph of the last day of 2022. It means we cannot benefit from these data before
two whole years, which may decrease the value of the published graph. Also, we could

not apply the offline solution on an indefinite stream of graphs.

® Online: the previous two cases show the importance of having an online solution where
it’s possible to publish every morning the private graph of the past day without waiting
for any future graph.

The last characteristic that we will mention about anonymization algorithms is centered

around the nature of their results. Two approaches could be listed:
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* Non-interactive: The output of some of these algorithms is an anonymized version of the
dataset. In this case, the data owner released the result and could not control any query
or analysis done on the published output; for this reason, it’s called the non-interactive

approach.

¢ Interactive: The interactive approach doesn’t release a dataset but a query or a mechanism
result. The data owner receives the query, applies it to the dataset, performs the
anonymization process on the result, verifies that the anonymized output doesn’t breach

the privacy of any individual, and finally, shares or releases the modified result.

These aspects of the nature of the graphs, the attacks and the anonymization processes will
be discussed in the Chapter 3] and we will propose three anonymization mechanisms covering

these aspects.

1.3.3 VIP nodes in the graph

We can notice an essential characteristic of social network users that is not well studied in the
literature. It’s the fact that the accounts have a different level of importance, and there is no
need to provide the same level of privacy for all of them. Thus, we proposed to divide the
nodes into two groups: VIP and Standard. The nodes could be categorized based on how many
problems a privacy breach of their data might cause. These problems could be in the form of
lawsuits by the users, fines by the data privacy commission of a country, or a public relations
crisis.

The concept of the most important nodes in the graph is well known and widely discussed
in the literature [164]], then we are not assuming that we are presenting a new concept.
But, the nodes are categorized as most important based on some graph centralities as degrees,
betweenness, closeness, farness, eigenvector. Usually, a VIP account will be categorized as
important based on one of these characteristics, so there is no need for the data owner to
intervene and label an account as VIP to get higher protection, but it’s not the case in many
scenarios. For example, many influencers or celebrities could have two accounts, one public
and one private, for friends and family. Both accounts should have the same level of protection
because breaching the privacy of the personal account could reveal the same personal data as
the public one. Other type of accounts that could be labeled as VIP are those dedicated to help
and get in touch with victims of domestic violence or any kind of human slavery, the people
suffering from suicidal thoughts, depression, or bullying. This type of accounts might not be
important on the scale of the mentioned centralities, but breaching and sharing the connections
of these accounts may lead to tragic events for these vulnerable individuals and a vast legal and
public relations crisis. For this reason, we urge our company to add a new type of VIP node
based on the nature of the account instead of just the automatically computed centralities.

This concept of the most important nodes is often used to measure the utility of a privacy-

preserving algorithm by comparing the original and the anonymized graph based on these
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nodes. But in our work, we suggest benefiting from the concept to decide how much protection
each node should have.

Before representing our privacy-preserving mechanism [5] for these types of nodes, we will
introduce the Blowfish Privacy and how to apply it on graphs generally. Then, we will benefit
from this privacy definition to execute our technique of higher privacy for privileged nodes.

After explaining Blowfish Privacy, we present our interactive service applied on static
graphs that provide a high level of protection for the VIP nodes and a high level of utility for the
Standard nodes. In this way, we aim to reach a good trade-off between the privacy of VIP nodes
and the utility of Standard nodes. As an interactive service, the mechanism receives queries to
be executed on the graph. The original result is summed with noise computed based on the

Blowfish Privacy process to get the noisy result shared with the inquirer.

1.3.4 Protecting subgraphs in dynamic graphs

Usually, the privacy-preserving techniques are dedicated to protecting the nodes themselves
or their edges. The majority of the mechanisms protecting the nodes provide a high level of
privacy. For this reason, they suffer from a low level of utility in their results. On another side,
the mechanisms giving edge privacy have great utility but are vulnerable against numerous
types of attacks that we will detail later.

Therefore, our two following mechanisms are proposed to deal with two scenarios where
we prove the edge privacy vulnerability and the node privacy’s low utility. Then we propose
our new solutions to deal with these scenarios.

Our second proposed anonymization mechanism [3]] for graphs is applied to dynamic
graphs and adopts the non-interactive approach. But, instead of being dedicated to nodes or
edges, this mechanism protects particular subgraphs.

Applying the DP mechanism on graph datasets is done by adding noise to the edges, as in
or to the nodes to prevent identity and link disclosure
while keeping the dataset suitable for analysis. However, Kifer et al. have proved that an
adversary with background knowledge can still disclose sensitive information from the data
that induces correlations across tuples even if DP is applied.

The limitation of DP can appear in a user-centric design that relies on sharing or publishing
dynamic graphs, since anonymizing each release independently will not be sufficient, because
an attacker can still infer information about the individuals by combining the anonymized
released graphs together. Thus, our goal in this part is to show how a DP mechanism can be

extended to address the dynamic graph anonymization.

A Al A A

Intersection G, Union G,
Flgure 3: Graphs at d1s]01nt time frame
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e R B He R

Intersection G, Union G,

Figure 4: Graphs anonym1zed by an edge-DP mechanism.

To illustrate this scenario in an example, let us consider recording the communications
inside a university community for some statistics and social studies. Let us say that the graphs
in Figure B|are the records of three days: G; for the first day, G for the second, and G for the
third. However, by sharing these graphs as they are, a real threat of privacy could arise even if
no identifiers are associated with the vertices. For example, if the shared graphs fall into the
hands of an adversary possessing background knowledge, such as Doctor Bob and his two
students Alice and John, call each other every day. By intersecting the three graphs, G, G,, and
Gj as in Figure [3|and by projecting the Background Knowledge to this intersection, it becomes

easy to know that vertices 1, 2, and 4 represent Doctor Bob and his two students.

Vertex | Age | Gender | Marital Status | Political View
1 30-40 | Male Divorced Democratic
2 10-20 | Male Single Republican
4 20-30 | Female Married Republican

Table 1: Sensitive data associated to the nodes.

If the sensitive data associated with these nodes is as mentioned in Table [1} thus, it is
effortless to guess that the vertices 1, 2, and 4 represent Bob, John, and Alice, respectively. In this
way, the adversary can discover the three individuals” marital status and political views, which
presents a serious privacy breach. The situation does not improve in Figure[d] despite applying
a DP algorithm to add edges in each graph. These noisy edges cannot change the fact that
just one triangle appears in the Intersection graph. Suppose we even use a privacy-preserving
technique to protect the users’ identity in the three graphs, the adversary still can connect the
individuals with nodes 1, 2, and 4.

We intend to solve a paradox since we need the data to still carry out valid information
about the population represented by the graphs without exposing individuals” privacy. We
can define the utility of the released data as one or more statistical measures that the data
user can compute with a certain degree of confidence. We propose here a new anonymization
technique for a dataset composed of sequential dependent released graphs based on a relaxed
version of Blowfish Privacy under the non-interactive approach. Our goal is to propose a
mechanism that protects the subgraphs that have a specific characteristic (like high occurrences

in the released graphs, for example) by manipulating their existence or absence in each graph.

1.3.5 Node-Detention Differential Privacy

The third anonymization mechanism for graphs is specialized in confronting active attacks on

dynamic graphs [4]. It outputs an anonymized dynamic graph under the online approach. A
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fundamental challenge of an online solution is the active attack on sequentially released graphs.
The adversary plants several Sybil nodes in the graphs, tries to identify them in the published
graphs, then exploits them to identify other nodes called victim nodes. The massive advantage
for the adversary in an online solution is that the data owner could not predict the new nodes,
honest and Sybil, that the adversaries and the genuine users will add to the graphs in the future.

We already know all the nodes in the dataset in an offline solution before releasing the
first graph. Then we can fake the existence of that node in any of the graphs even if its actual
appearance is in a future graph. While in the online solution, we can only know the nodes of
the current and previous graphs. Let’s say that in the first graph, we had 1000 nodes; none
of them is Sybil. In the second graph, 10 nodes were added, including two Sybil nodes. The
adversary has to recognize the two Sybil nodes from the ten new nodes (having ids that don’t
appear in the first graph) instead of 1010 nodes. To make it easier to identify the Sybil ones, the
adversary gives them unique characteristics, like a very high degree, by connecting via his fake
account to many people in that community or a lesser degree, or any other features that are not
very common in that graph. After creating one or many Sybil subgraphs using fake accounts
and retrieving them, the adversary uses them to connect to some individuals and acknowledge
their representative nodes in the graphs.

Let’s say the adversary has successfully identified four individuals in the graph. Thus,
he has the potential to reveal the relationship between these four. Who is calling who, how
often? And several other private information about the relation between these victims. The
data owners must protect these individuals before sharing or publishing their data. This paper
proposes an online solution under Differential Privacy to safeguard individuals from active
re-identification attacks. We prove that our solution provides a high level of protection against

these attacks simultaneously with high utility of the published data.

ARG

Gy G G3

Figure 5: Active Attack on sequentially released graphs.

We can see in Figure[5]a simple example of an active attack happening during three days
where a graph presenting the connections between a number of individuals is published each
day after removing the identifying attributes . An adversary injects a Sybil node (Node 5) in
Gy and Node 3 in G3. They represent the only new individuals in these two days; then, the
adversary had no issue locating them in the published graphs. The adversary is targeting a
couple, Alice and Bob. On Day 2, they get connected with both of them using Node 5. Now, it’s
known that nodes 4 and 6 represent the couple in the graph. On Day 3, Bob is targeted by both
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Sybil nodes. The published graph shows that Node 4 is related to Bob, implying that Node 6
represents Alice. The adversary has found out that the couple didn’t call each other for three

days which might be a severe breach of their privacy.

1.3.6 Challenges and contributions of graph anonymization

In this way, we have covered by our three mechanisms the different characteristics of the
anonymization graphs. We have proposed three different new solutions to help our company
benefit from the generated graphs by a high utility of the graphs and the minimum possible

graph. We can recap the challenges in this use case as follow:

¢ In a real-world scenario, the nodes of social networks have different levels of importance
and need distinct levels of privacy. In contrast, Differential Privacy mechanisms give all

the nodes the same privacy scale.
¢ Edge-Differential Privacy is unable to protect subgraphs in dynamic graphs.

* Edge-Differential Privacy is unable to protect the nodes” identity against active attacks on

dynamic graphs.
¢ Node-Differential Privacy can resolve the past two problems but has a shallow utility.

Based on these challenges, we can list our contributions in this use-case by dividing them

into three parts:
¢ First part:

— Introducing the Blowfish Privacy technique into graph dataset anonymization.
— Proposing the concept of two node privileges in the same graph.
— Presenting the mathematical way of obtaining the Blowfish noise for several graph
queries.
¢ Second part:
— Presenting a passive attack on dynamic graphs that targets the subgraphs instead of
the nodes or the edges.
- Proving that the existing DP algorithms could not defy this type of attack.
- Proposing a flipping mechanism to confront this attack on subgraphs and proving it
complies to the BP requirements.
¢ Third part:
- Suggesting an active attack on dynamic graphs targeting the nodes of the graphs,
especially the new nodes of each instance.
- Proving the high vulnerability of edge-DP in this scenario and the low utility of the

node-DP results.
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- Proposing a new DP technique called Node-Detention Differential Privacy (NNDP)

to deal with active attacks on dynamic graphs.

- Proving the reliability of our new technique in this type of scenario.

1.4 Exposing Safe Correlations in Transactional Datasets

After expanding our company’s business model by opening an online retail business, a large
transactional dataset is being formed and growing with each sale operation. Analyzing this data
will help us better understand our consumers and what they tend to buy based on their gender,
age, nationality, level of education, history of purchases, and much other information, especially
when linking the data generated from their social media profiles with their purchases.

But the same kind of analysis is not limited to transactional datasets but many other types
of microdata. For example, if we expand our business to a video streaming service, watching,
rating, liking, or adding a movie or a series to the watchlist will generate a row in the dataset
that we should study. Other examples generating the same type of data could be online Taxi
service, car rental, ticket or hotel booking, online marketplace for lodging, etc.

For the same reason why removing the identifiers from a node in the graphs is not enough,
also removing them from the row of transactional data is not enough before sharing with a
third party. Therefore, data providers should anonymize not only the identifying values but
also the associations that link individuals to their sensitive values as an adversary may be able
to combine their background knowledge [143] 151] to information in the released dataset to
breach privacy. Hiding the associations between individuals and their sensitive values requires
particular attention and cannot be done fairly straightforwardly.

Several anonymization techniques have been proposed to hide these sensitive associations.
Some are differentially private while others rely on generalization
and/or bucketization 99]], separating what is sensitive from non-sensitive.
(Generalization techniques can also satisfy differential privacy 4e6].)

These techniques have been shown to be effective and useful, but complications do
arise when anonymizing transactional datasets [9, [10]. The above methods largely ignore
these problems, which assume each record corresponds to a single individual. Datasets in
which several tuples relate to the same individual may expose significant correlations between
identifying and sensitive values. An adversary can use their knowledge of such correlations
(80} [159] to breach privacy.

A particularly obvious example is datasets including location as part of the transaction. In
these datasets, correlations provide foreground knowledge and could be used by the adversary
to breach individuals’ privacy. To better illustrate the problem, consider the car rental scenario
given in Figure [pa] where any vehicle can occasionally be rented from a location and returned to
another.

In this example, onlyEl the associations between User ID and Location in the Rental table

1We assume User ID and Vin Number are independent and identically distributed (i.i.d.).
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are sensitive and should therefore be anonymized. One way of anonymizing the dataset is
to use Anatomy [162], a bucketization technique that preserves privacy by
dividing the dataset into sensitive and non-sensitive tables and keeping the values intact
without any alteration to maximize the utility. An anatomized version of table Rental with
attributes separated into Rental_QIT and Rental _SNT is shown in Figure[6b] Tuples in these
tables are divided into groups in such a way that satisfies the privacy constraint requirements.

Anatomy uses /-diversity as its underlying privacy constraint and thus protects the dataset
against attribute disclosure. The anonymized tables in Figure [6b|satisfy the 3-diversity privacy
constraints[110]: each record must have at least three potential sensitive values.

However, given the transactional nature of the dataset, we recognize two types of

correlations [9]:

¢ Inter-group dependencies: occur when an adversary knows certain facts about the

individual (e.g., Roan_Ul1 frequently rents a car from a specific location).

¢ Intra-group dependencies: correlations between values in the same QI-group, which
occur when there are multiple transactions for a single individual within a group; (e.g.,
if all transactions in a group were for the same individual, which results in an inherent
violation of /-diversity.) By considering this separately for transactional data, rather than
simply looking at all tuples for an individual as a single "data instance", we gain some

flexibility.

Dealing with correlations is a severe hurdle; losing them reduces the outsourced data utility
while keeping them poses a threat to privacy. The authors in [9, [10] propose the safe grouping
technique to ensure that each individual’s tuples are grouped in one and only one QI-group that
is at the same time /-diverse, respects a minimum diversity for identifying attribute values, and
all individuals in the same QI-group have an equal number of tuples. The approach is based
on knowing (or learning) the correlations and forming buckets with a common antecedent to
the correlation. This protects against inter-group dependencies. Identifiers are then suppressed
where necessary (in an outsourcing model, this corresponds to encrypting just the portion of
the tuple in the identifier table) to ensure the privacy constraint is met, including protection
against intra-group correlation.

Figure [6c/shows two QI-groups that respect safe grouping for a number of individuals
k = 2 where we assume that there are no other QI-groups containing users U1 and U4. Figure
also shows that four identifying values in the QI-group are anonymizedEl to guarantee that
individuals U2, U3, and U5 have an equal number of tuples.

For the sake of privacy, safe grouping inhibits the ability to learn correlations from the
dataset and, thus, decreasing the utility of the dataset for aggregate analysis and frequent

pattern mining.

2Some data is anonymized/suppressed in order to meet the constraint; this is in keeping with privacy models
that uses partial suppression by replacing individual’s values with a * to preserve privacy as in [151] [108] or
encryption as in the model in where some data is left encrypted, and only “safe” data is revealed.
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User ID | Vin Number Location User ID | Vin Number | GID GID | Location User ID | Vin Number |GID| |GID| Location
Roan Ul [0061d4a8248* |20.09;45.11 Roan_Ul [0061d4a8248* 1 1]20.09:45.11 | [ isa U4 |0e352814d34* 1 1119.60:35.40
Bob U5 |05d7f419496* |19.10;38.13 Elyse_U2 |0038da4dc64* 1 1119723396 | | ica s (000cf44cob3* 1 10.47:43.71
Roan_Ul |0036153c476* |20.09;45.11 ot s o0l | |Lisaua 000cfadcob3* | 1 1/19.60;35.40
Roan Ul [05d7f4f9496* [20.09;45.11 Roan UT 100361530476 5 > 20.09;45'11 Roan_U1 (0061d4a8248* 1 120.09;45.11
Lisa U4 [0e352814d34* [19.60;35.40 Lisaj,M 0e352814d34* 2 2(19.6035.40 Roan_U1 0036153047(1* 1 120.09;45.11
Lisa Ud_[000cfadcon3* [19.47:4371 | jeals oot 5| 2satn, O oo |2 | 2o 103613
Lisa_U4 ]000cf44c9b3* |19.60;35.40 Lisa_U4 [0e352814d34* | 3 3]19.60;35.40 | 0036153c476* | 2 2019.29:36.15
Elyse_UZ 0038dad44c64* |19.72;33.96 Lisa_U4 [000cf44c9b3* 3 3(19.47;43.71 * 0038dad4c64* 2 2119.72:33.96
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Figure 6: Table Rental anonymized

In this use case, we ensure that a dataset can be anonymized at the same level of privacy, as
achieved by safe grouping, but with better utility. We show that a suitable trade-off can be made
for which the privacy constraint is met without losing/suppressing safe correlations. More
specifically, we demonstrate that the grouping can be achieved in a way that allows identifying
and sensitive values to correlate across several QI-groups, exposing their correlations and still
be considered safe [2].

Again, it is not a random grouping of tuples, but instead, we ensure, while anonymizing
the dataset, if k distinct identifying values are grouped together, these same identifying values
remain grouped together across the anonymized dataset. In other words, we preserve a safe
grouping (i.e., given two distinct /-diverse QI-groups, their intersection must yield either
k identifying values or none) with better utility, since the correlations between identifying
and sensitive values are exposed. To achieve this, we follow a divide-and-conquer strategy,
dissecting large QI-groups into smaller ones by finding at least k identifying values that correlate
in the original dataset and spreading them across several QI-groups. These groups are merged

when necessary to preserve /-diversity.

1.4.1 Challenges and contributions of transactional data anonymization

This use case aims to propose a solution for data owners interested in publishing or sharing
their anonymized transactional datasets. But, at the same time, they are concerned about the
correlations in their dataset that could be used to breach the individuals’ privacy, and still, they

don’t want to lose the utility that these correlations present. The challenges of this use case are:

¢ Adversary could benefit from correlated data in transactional dataset to expose the

identities of individuals.

¢ Hiding the correlations restrains the ability of extracting useful information from the

dataset.

Based on this contradiction, we can summarize our contributions as follows:
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¢ An in-depth study of safe grouping showing its strength and weaknesses against two
types of adversaries: the first knows about the correlations, and the second can learn the

correlations from the anonymized dataset.

¢ A correlation anonymization privacy constraint to ensure that only safe correlations are

exposed in an anonymized dataset.

* An elastic safe grouping algorithm to achieve correlation anonymization using a divide-

and-conquer strategy keeping correlated identifying values together across QI-groups.

1.5 Differential Private Image Classification

Many companies like Microsoft and Google provide free cloud storage services for individual
users for limited data size and a paid service for a larger size. Other companies like Amazon are
providing unlimited full-resolution photo storage for all prime customers. Posting images on
social media is also a type of free storage where the user could post hundreds or thousands of
photos for free. The company profits from these posts to know more about the users and their
surroundings. Analyzing the images by a third party or sharing or even publishing the results
of the analysis of images posted on public accounts would not form a real threat of private
data. But, the problem appears when these photos are published on private accounts, stored on
personal accounts on storage services, or when the images contain private information about
individuals without their consent, like the example of the spectators” sentiments. The company
must ensure that this process could not reveal personal data.

There are many scenarios of why images are stored on the cloud and treated. But all of
them lead to the same research question: how do we benefit from the data without harming the
privacy of individuals in the dataset?

Many cloud services that provide private image classification rely on encryption to ensure
the security and privacy of the data. However, encryption does not help preserve privacy in
many cases, like in an adversarial setting. For instance, while using partially homomorphic
encryption to outsource K-Nearest Neighbors [161] classification, the authors show that distance
learning attacks are possible [94]. These approaches are time-consuming as well due to the
performance of encryption and decryption algorithms, and they are vulnerable to the theft of
encryption/decryption keys [147].

In this use case, we propose a cloud-based DP image classification approach [1] that protects
the privacy of individuals in a dataset of images. In fact, in our approach, we assume that the
cloud computing service is semi-trusted. Thus, we should not be able to identify individuals
in the dataset (i.e., images collected from the data owners) and individuals in the requests of
inquirer (i.e., a typical user of the cloud service). Then, as we can see in Figure [/} our mission is
to transform the cloud image classification into a protected process by ensuring the privacy of
images on both sides, the pictures of the training data and those of the queries.

We use a Differential Private mechanism to convert images into noisy vectors, and at the

same time, preserve their utility in a way that they remain useful for analysis. We study the
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Figure 7: Cloud face classification

trade-off between the accuracy and the privacy regarding the global privacy budget, which is
the total allowed leakage as determined by the number of answered queries and the accuracy of
the answers. In fact, we run several classification algorithms such as Support Vector Machines,
Kernel Density Estimation (KDE), and K-NN to evaluate the privacy vs. accuracy trade-off. But
first, we should define privacy and utility in our case. From the privacy side, we should provide
a high rate of correct classifications of emotions on the faces. From the utility side, we present
a scenario where an adversary was able to get, in a way or another, a number of these noisy
vectors and has the needed technique to rebuild the images from the vectors, the adversary

should not be able to recognize the individuals in the images.

1.5.1 Challenges and contributions of image classification anonymization

The challenges of this use case are:

¢ It’s not safe to store vector converted from images on cloud. If an adversary managed to
get the vector, they might be able to reconstruct the image and extract private information

from it.

¢ Encryption approaches are time-consuming due to the performance of encryption and
decryption algorithms, and they are vulnerable to the theft of encryption/decryption
keys.

Therefore, our contributions in this use case is:

* We propose, implement and evaluate a private image classification framework based on a

DP version of the PCA technique.

* We prove that reconstructing the images from the noisy version will not identify the

individuals.

In this way, our company can benefit from the images posted on its social networks, stored
in its free or low-cost storage services, or even provided safe image classification methods to

other companies or organizations.
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2. Differential and Blowfish Privacy

Before discussing our mechanisms, we introduce some basic notions of Differential Privacy
(DP), some of their mechanisms, and what are the drawbacks of DP that motivated He et al.

to propose Blowfish Privacy (BP) as a generalization of DP and how BP solve these drawbacks.

2.1 Differential privacy

In many domains, getting statistical data about a dataset is necessary. However, this data can
turn into a real threat to the privacy of any individual, participating or not, in this dataset.
This breach of privacy is due to two factors; inferring auxiliary data about an individual and
extrapolating statistical data about a community.

Dwork et al. have found a solution by adding noise to the result in a way that preserves
the utility of the result and protects the individuals” privacy. This technique is called Differential
Privacy; it was proposed in 2006 to protect the individuals” rows when releasing statistical
data about a dataset. The basic idea is to add organized random noise to the released data to
protect all the individuals and ensure that the released data still have utility. Then it’s a trade-off
between privacy and utility. Dwork et al. [50] define DP as a privacy mechanism for a curator
holding data of individuals in a database D, where each row represents the data of a single
individual, to provide a sanitized database that allows statistical analysis and simultaneously
protecting the individual rows. Formally speaking, a randomized mechanism M with domain
Nl is (e, §)-Differential Private if for all S C Range(M) and for all D, D’ € N*l such that
ID-D'|l < 1:

Pr[M(D) € S] < e.Pr[M(D’) € S] + 6 1)

where D and D’ are two databases of records from a universe x, which differ by just one
row at most and e€ is always greater or equal to 1 (¢ > 0). DP promises that the probability
of harm for an individual to participate in a survey, for example, is not more significant than
the probability of harm if she does not. By choosing 6 = 0, we ensure that, for every run,
the randomized mechanism (M) returns the same results for D and D’ with roughly the same
probability. In other words, the probability that the output of M(D) is in the range S and the
probability that M(D’) is in the range S too are very close. This closeness is managed by a
privacy factor €.

This factor could have two types of jobs. First, when proposing a new privacy-preserving
algorithm, to prove that it respects DP requirements, the authors could rely on the two
probabilities mentioned in the formal definition by dividing them and trying to demonstrate
the existence of an upper bound ¢¢. If the upper bound is proved, then € is defined, and the
algorithm is DP.

The second job is when the algorithm is based on one of the basic DP algorithms; thus, it’s
already proved to be differentially private. In this case, this factor is a tool in the data owner’s
hand to decide the good balance of utility and privacy for its data. Many studies were done
[73, 82]] to help the data owners chose the right €.
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Database ' Sanitized Database Database | User

(a) Interactive: Multiple Queries, adaptively chosen (b) Non-Interactive: Data are sanitized and released
Figure 8: The two approaches to release the DP and BP outputs: interactive and non-
interactive.

Another parameter is required to generate the DP noisy result called Global Sensitivity AF
or GS. The idea of DP is to add enough noise to cover the removal of any row in the dataset.
AF = D,ren/\a}?D) | M(D) — M(D') | where N'(D) is the set of neighboring datasets (differ bu just
one row) of D. The method that we use practically to calculate AF is:

1. Executing the query on the database to get the result r.

2. Executing the same query on this database but after excluding one row i to get the result

ri.
3. Calculating the absolute difference between r and ;.
4. Considering the largest absolute difference as the sensitivity of the query.

The problems appear when a tiny minority or the rows have much higher sensitivity than the
other. In this case, the noise will be much greater than needed for most of the tuples, affecting
the utility of the result. For this reason, Local sensitivity and Smooth sensitivity were
suggested to provide better utility. But, in a worst-case scenario, a mechanism relying on one
of these two approaches will not be able to protect the tuples with the highest sensitivities.
Therefore, this type of mechanism is not considered as DP.

DP and BP, like many other privacy-preserving algorithms, are divided into two approaches:
interactive and non-interactive. Interactive approach [54] 51] is based on a query that can be
used just once, can serve only one inquirer, and only for one task. Any mechanism that is
based on this approach returns a noisy result to the user, as in Figure Each query has a
budget € = ), €; given by the database owner. Each execution i makes the budget loses €; of its
value. The query cannot be executed anymore when the € budget is less than €;. Hence, this
approach has many restrictions on privacy preservation, especially if the budget is small where
the number of queries could be insufficient. Besides, the data owner should validate the query.
The non-interactive approach 891, as in Figure 8b] returns a noisy synopsis data set. The
inquirer can send queries to this synopsis to get noisy statistical data. This approach has no

limits nor restrictions to the number and the sender of the queries.
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2.1.1 Laplace mechanism

As we have explained, DP was proposed at first as an approach to add restrained noise on
statistical queries. Laplace mechanism is the first and one of the most commonly used to
implement DP. It relies on Laplace distribution to generate a controlled random noise. The

Laplace distribution is:

Pr(x | b) = 21719 x e~ 1xI/b

where b = AF /e.

To prove that the Laplace distribution could be applied as a DP mechanism, we will prove
that it respects the formal definition (inequation) of DP. First, we should clarify that Laplace will
be proved to be a mechanism of the strict version of DP where § = 0. Suppose that a query f is
applied on a dataset D. M is an adding noise algorithm based on Laplace distribution where
its output M(D) = f(D) + x where f(D) is the original output of the query and x is the noise
generated by M. For a neighboring dataset D’, with the same logic we get, M(D’) = f(D’) + x'.
By dividing the two distributions, we seek to prove that ¢ is an upper bound of this division

which complies to the definition of DP. Thus:

Pr[M(D) =+] e l¥lI/b
PrM(D')y =] e I¥I/b
o |F(D)=1|/b
= eI/t
_ olIf(D)=r|=f(D)—rl)/b

< (D) =r=f(D)+11)/b (following the triangle inequality)
— f(D)=f(D))/b

< e81)/% (AF is the upper bound of | f(D') — f(D) |)
:ee,(b:AF/e)

P(x | b) is a randomly generated number between 0 and 1/2b. After getting the random
value of the probability, we can compute the noise x as: x = £ x [n(2b x P(x | b)). In this way,
the Laplace mechanism generates a controlled random noise based on € and AF.

Laplace distribution was first chosen because of its potential to generate a low noise with
high probability. As we can see in Figure [J} to get a noise of &1, for example, the value of
Laplace probability should be approximately 1.84, there is a 63.2% chance that this value Pr is
1.84 < Pr < 0.5. implying a noise x <| 1 |.

For the Normal distribution, to have a noise x <| 1 |, the probability value should be
0.242 < Pr < 0.4, the chance of having the value in this range is just 39.5%. This shows why
Laplace distribution was the choice number one to apply DP on numerical datasets or statistical
queries. It's because it could provide enough privacy based on the two mentioned parameters

and a high level of utility by adding relatively low noise.
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Figure 9: Comparing Normal and Laplace distributions

2.1.2 Exponential Mechanism

Laplace and Gaussian mechanisms were the first to be proposed for Differential Privacy. But
both of them are applied to numerical data. The exponential mechanism was presented as
a solution to use Differential Privacy on non-numerical data. Instead of adding noise on the
numerical data, McSherry and Talwar [116] suggest applying Differential Privacy on non-
numeric valued queries by adding noise on the possibility of choosing each category to be the
result of the query or to be in the output of the mechanism.

Each category is paired with a quality score g(D, r) representing how good this category
could be as an output r for the query of the mechanism applied on the dataset D. The global
sensitivity is the maximum change in the scoring function between two datasets that differ by

just one row.

GS(q) = A =max | q(D,r) —q(D',7) |

where D and D’ differ at most by one row.

The probability of choosing r as the output of the mechanism is

exp (“57)
eq(Dr")

P(exp(D,R,q,€) =1) =
Lrerexp(T—)

where R is the set of all possible outputs and € is the privacy parameter.
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This probability returns the possibility for each value to be the output of the query. For a
value r, we first compute an exponential number formed by € multiplied by the quality of  and
divided by the double global sensitivity. This number is used as the dividend in the probability.
Then we compute similar numbers, each of them related to one of the possible outputs. All
these numbers are summed, and the sum is used as the divisor in the probability. Therefore,
the same divisor in the probability is used for two possible outputs, 1 and r;; nevertheless, the
dividend varies from the exponential number related to the quality of 71 to the one related to
the quality of r,.

In this way, the probability result represents the possibility of a value r to be the output
based on its quality compared to all the qualities aggregated.

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets
differing by one row and a privacy parameter €.

It’s the same for the DP on graphs, but two neighboring datasets are two graphs that differ
by one element. When this element is an edge, we call the approach edge-DP, and when it’s a
node, we call it node-DP [69].

Edge-DP ensures that the noise added to the graph is enough to protect an edge’s existence
or absence in the original graph. In comparison, node-DP ensures that the noise covers a node’s
existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges
affected by adding or removing an element from the graph. For edge-DP, we have just one
scenario; it’s always two neighboring graphs that differ by any edge. Then GS.se. pp = 1.
For node-DP, the worst-case scenario is when the concerned node is related to all other
nodes. In this case, the number of edges affected is equal to the number of all other nodes:
GSyode—pp =| V | —1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more
privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe
drawbacks on the utility side. This paper proposes an approach to get the same privacy level of

node-DP and, at the same time, much better utility.

2.1.3 Differential Privacy on Graphs

The DP formula is based on a privacy-preserving mechanism, two neighboring datasets differing
by one row and a privacy parameter €.

It’s the same for the DP on graphs, but two neighboring datasets are two graphs that differ
by one element. When this element is an edge, we call the approach edge-DP, and when it’s a
node, we call it node-DP [69].

Edge-DP ensures that the noise added to the graph is enough to protect an edge’s existence
or absence in the original graph. In comparison, node-DP ensures that the noise covers a node’s
existence or absence with its whole ego network.

To compute the global sensitivity GS, we must compute the maximum number of edges

affected by adding or removing an element from the graph. For edge-DP, we have just one
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scenario; it’s always two neighboring graphs that differ by any edge. Then GS.4. pp = 1.
For node-DP, the worst-case scenario is when the concerned node is related to all other
nodes. In this case, the number of edges affected is equal to the number of all other nodes:
GSyode—pp =| V | —1, which could be equal to thousands or even millions.

Higher GS leads to a higher injected noise to cover the worst-case scenario implying more
privacy but less utility. Then node-DP surpasses edge-Dp on the privacy side but has severe
drawbacks on the utility side. This paper proposes an approach to get the same privacy level of

node-DP and, at the same time, much better utility.

2.2 Blowfish privacy

A crucial weakness of DP is when dealing with correlated data [81]]. Going back to the example
in Figure [ will clarify how DP has a real problem when dealing with this type of data where
instead of having one graph, we have multiple graphs with the same nodes. The same problem
appears when having multiple tuples related to each other by the same id, for example.

Another limitation of DP is that it aims to protect all the rows in the graph, which, in many
cases, requires a lot of noises added to the graph, which might affect the utility of the released
version. This issue was the motivation to propose another privacy definition called Blowfish
Privacy (BP), considered a generalization of DP and has the same inequation but differs in
defining the neighbor datasets. While in DP, two datasets are neighbors if they differ by just
one row or tuple, BP proposes privacy policies to determine if two graphs are neighbors.

Every policy defines the secrets and the constraints of the graph. If the addition or removal
of any tuple in the dataset is considered a secret and no constraints are listed in the policy,
this is DP. For this reason, BP is considered as a generalization of DP. It relies on the same
inequation but has a privacy policy P as an extension of DP. P = (7, Gs,Zg), where 7 denotes
the domain of all possible tuples, Gs = (Vs, eg) is a discriminative secret graph with Vs C T
and Zg denotes the set of databases that are possible under the constraints Q. Let us say that
in Figure @, we have released noisy graphs that appear as if some professors or students are
communicating from inside the university during some holidays where working is strictly
forbidden, for tradition or religious reasons, or during a strike of the University Teachers Union.
Then, releasing these graphs (showing calls between these phones in one of these days) may
pose a problem for employees, students, or the university. Therefore, any CDR (Call Detail
Records) graph that respects the privacy policy P = (7, Gs,Zg) should not show any call
between phones on these specific days.

While in DP, the discriminative secret graph Gg is always a complete graph, BP may allow
the public to distinguish between specific tuples. Besides, DP does not have any constraint
Q. Since BP is a strong privacy definition, relaxation is needed in many cases to prove that a
mechanism is relaxed BP. The data owner provides the upper bound of this relaxation. Before
releasing the result, we must ensure that the noise is enough that the relaxation does not surpass
the upper bound. The data owners also provide any background knowledge that they possess

about their database. The service takes this knowledge as a constraint and checks if the noisy
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graphs respect them. We will present a detailed explanation of BP while proposing how to

apply it in the graph privacy use case.
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3. Differential and Blowfish Privacy for social networks

3.1 Introduction

Nowadays, data sharing is growing in popularity. It is shaping innovative business models and
creating new marketplaces. Ad-based business models as Social network companies (Facebook,
Twitter, Instagram, etc.) need user-centric designs to grow. Even companies that do not rely
totally on an Ad-based model may also benefit from their users” data to make extra money like
telecommunications corporations, video-on-demand service providers, etc. Then, a user-centric
design benefits from its users and their data to make profits. In addition to that, communication
patterns analysis is becoming crucial for global health security especially with the spread of
epidemics such as COVID-19 by the means of social contact.

While it is bringing benefits to data providers, at the same time, it is putting a significant
risk on the privacy of the users which is considered as an essential human right. This risk
appears because the shared data contains sensitive information and needs to be appropriately
protected. Several privacy breach scenarios have been widely cited, notably, the leaks of the
medical records of the governor of Massachusetts and the AOL search data in 2006
[18], which are typical examples of privacy breaches caused by inappropriate protection of data.

This is the reason, privacy-preserving frameworks were proposed to enable communication
graph analysis within formal privacy guarantees. Several techniques were proposed in the
literature to protect various types of data. In k-anonymity [144], the values of the quasi-identifier
attributes of the tuples are suppressed or generalized until each tuple is identical with at least
(k — 1) other tuples on their quasi-identifier attributes. In I-diversity [111], a group of tuples is
considered /-diverse if it contains at least | "well represented" values for the sensitive attribute.
A table is [-diverse if every group is I-diverse. In t-closeness [96], the distribution of sensitive
attributes in any group is close to its distribution in the full population. The distance between
the distribution in a group and the population distribution should not exceed a distance of .
Differential Privacy (DP) [127] provides a mathematically provable guarantee that, whether
or not, an individual’s private information is included in the input of any DP algorithm, the
output will lead to the same assumption about this individual’s private information. In an
attempt to fortify an individual’s privacy, DP [50] has been proposed and has since garnered
much attention among the privacy policymakers. DP is a privacy definition that aims to
ensure a trade-off between privacy and utility by adding a small amount of noise enough
to hide the adding or dropping of an individual from the database. DP provides ways for
trading-off the privacy of individuals in a statistical database for the utility of data analysis.
Current DP mechanisms have been applied on a variety of data structures such as images [1],
location data [14} 72} [163]], set-valued data [56, 34], relational data [86], and graph-based datasets
7, [142] (representing for instance social networks interactions and call detail records).
In these graphs, vertices represent individuals, sometimes annotated with meta-information.
Edges represent interactions among users and can be labeled as well.

The representation of the activities of individuals on social networks is crucial to benefit

from the data provided by these networks in data analysis, social or health studies, etc. The
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evolution of this representation makes the data more valuable. For this reason, we have seen
progress in networks presentation forms from static graphs to dynamic graphs, then from offline
to online dynamic graphs. This progress leads to more and more concerns about the privacy of
individuals. At the same time, the attacks on graphs have also evolved from passive to active
attacks. In the former, the adversary waits for the publication of the anonymized graph, then
uses their auxiliary knowledge and some data science techniques to obtain the most achievable
knowledge about the individuals in the graph and their relations. In the latter, the adversary
doesn’t wait for the publication. But instead, they take their first step even before the data
owner collects the data from the community to create the graph. They form one or many fake
accounts with specific characters connected to each other and, most importantly, connected
to the possible victims of the attack. When the graph is published, these fake accounts are
represented by nodes called Sybil nodes which, connected to each other, form one or many
Sybil subgraphs. The adversary tries to recognize these subgraphs based on their characters

which could lead to easy identification of the victim nodes.

3.2 RELATED WORK

To our knowledge, no previous work concerning Blowfish Privacy towards graph datasets
has been considered in the literature. However, many differentially private mechanisms were
proposed for graphs. In [69], Hay et al. divide these mechanisms into two types: edge-
differential privacy and node-differential privacy.

Usually, a node in a graph represents a person while an edge represents a connection
between two persons. The purpose of edge-differential privacy is to prevent the usage of
these connections for revealing the identity of a person. On the other hand, node-differential
privacy achieve similar data protection by blurring node appearance in the graph. Node-
differential privacy has much more sensitivity than edge-differential privacy, which is usually
preferable.

In this section, we outline some techniques and algorithms dedicated to protect the graph
datasets. The techniques could be divided into 4 categories: (1) identity and link disclosure
47,165, (2) dK-graph generation model [142]], (3) platforms and programming
languages [117, [131]], (4) static [100] and dynamic graphs anonymization [165} 19} 20],
(5) many types of k-anonymity approahces and finally, (6) anonymization techniques against

active attacks.

3.2.1 Identity and link disclosure

Graph data disclosure can be divided into 3 categories : 1) Identity: the identity of an
individual associated with a node is revealed; 2) Link: the sensitive relationships between
two individuals are disclosed; and 3) Content: the sensitive data associated with each node is

compromised. We can list three privacy definitions to encounter identity disclosure:
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¢ k-Candidate Anonymity [70}[165]: An anonymized graph satisfies k-candidate anonymity
if, for a given structural query, no individual can be identified with a probability higher

1
than .

* k-Degree Anonymity [103]: An anonymized graph satisfies k-degree anonymity if every
node in the graph has the same degree with at least (k — 1) other nodes.

* k-Neighborhood Anonymity [171]: A node is k-anonymous in a graph if there are at
least (k — 1) other nodes such that the subgraphs constructed by the neighbors of each
node are all isomorphic. A graph satisfies k-neighborhood anonymity if all the nodes are

k-anonymous as defined above.

Other approaches can also be listed for the link disclosure:

e Link Reidentification [I70]: Edges here are classified as either sensitive or observed. The goal is to
minimize the probability of predicting sensitive edges based on the observed edges while keeping

the number of observational edges removed small to preserve the utility.

e Privacy-Preserving Link Analysis [47]: This algorithm enables link analysis in dynamic graphs.
Online computation of eigengaps (the difference between the largest and second-largest
eigenvalues) with frequent updates. The algorithms address privacy concerns by applying

encryption.

e Random Perturbation for Private Relationship Protection [165]: Two randomization techniques
were studied. The first is based on adding then deleting edges randomly. The second one relies on
switching two edges, e.g. we delete the two edges (v1,v;) and (v3,v4), then we add the two edges

(v1,v3) and (vo, v4) where v1, 05, v3 and vy are nodes in the graph.

The content disclosure is a significant problem, but, to the best of our knowledge, the

literature does not consider the impact of graph structure on this category of disclosure.

3.2.2 dKgraph Generation model

Another type of DP mechanisms is based on the dK-graph generation model. In these
mechanisms, various parameters are derived from the original graph. DP is applied on these
parameters to create noisy versions, and finally, new dereived graphs are generated using a
generation model. Chen et al. present a method for publishing graphs under DP. They rely
on a community-preserving generative model called CAGM. This model profits from some
properties from the community as parameters to generate the graphs. Some differential private
methods are applied to these properties to create the noisy parameters of CAGM. Another
example is in [142], where the authors propose an edge-DP graph generation mechanism
relying on the dK-graph model. The mechanism generates a noisy graph based on a set of
properties in the single static original graph. Thus, this mechanism cannot ensure the privacy

of individuals in dynamic or multi-released graphs.
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3.2.3 Anonymization of Dynamic graphs

Dynamic graphs are those subjected to changes in their structures or the weights of their
edges. Less work follows the direction of dynamic graphs. The authors in rely on DP for
anonymizing dynamic social networks. Their approach, named DDPA (Dynamic Differential
Privacy Algorithm), adds Laplacian noise to edge weights. DDPA tracks the edge weight
information across the graph iterations and adds the privacy protection budget. However, it
does not consider altering the graph topology. Very similar to our second scenario in this use
case is [153]], in this paper, social network graphs representing a time series of the corresponding
social network’s evolution are anonymized to a sequence of sanitized graphs released for
further analysis. We share the same view that naively applying the existing approaches to each
time-series graph will breach privacy purposes. However, our assumptions are more restricted
since we assume that the attacker has external Background Knowledge about the graphs.

Lietal propose a privacy model k" where k indicates the privacy level and m is a time
period that an adversary can monitor a victim to collect the attack knowledge. A distributed
algorithm is provided that adds nodes to the graph, then generates the noisy version. The
distributed greedy merge noise node algorithm (DGMNNA) reduces the number of nodes added
under satisfying the anonymous model. Qiuyang et al. [134] propose a dynamic algorithm that
satisfies DP and protect social networks against attacks based on semantic information. They
classify the original graph into several subgraphs according to some characteristics of nodes.
The graph is represented as an adjacency matrix. Quad-tree is used to divide the dense area of
each subgraph. DP noise is added to the tree’s leaf nodes, and finally, the adjacency matrix is
reconstructed and published.

Yue et al. proposed local and global anonymity functions and a framework called
APRI to apply sequential online anonymization on a set of graphs. They anonymize the degree
of the node of the current graph locally, then they compare, via APRI using Kolmogorov-
Smirnov Test, the distribution of node degrees of the current graph, and the set of previously
anonymized graphs. When the difference is equal or greater than a given threshold, they restart
the anonymization process for this graph. They use the global anonymity function to ensure
the similarity in the distribution of node degrees between all the anonymized graphs.

Mcwan et al. [113] propose a clustering algorithm to group at least k nodes into k clusters
based on their connectivity and anonymize each cluster for every instance of the graph. The
algorithm supports the addition of nodes in new instances. Each cluster contains the nodes with
close connectivity, and these nodes in the anonymized instance of the graph are assigned with
the same label. Also, Yu et al. propose a grouping mechanism for the nodes based on their
properties. The mechanism guarantees that without a background knowledge, an attacker’s
probability of identifying a node involved in any edge is at most }. Also, the probability that an
attacker identifies an edge between two nodes is at most ;. Therefore, the goal of the mechanism
is to protect edges against attacks without background knowledge dynamically.

All these mechanisms for sequentially released graphs focus on the properties of nodes,

especially degrees of nodes. Thus, two of them [113}[169] might protect dynamic graphs against
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a background knowledge. However, all of them do not aim to protect the dynamic graphs
against the type of background knowledge containing information about the connections or
the relation between two or more individuals. Returning to the example provided in the
Introduction about the Doctor nad his two students, the background knowledge could be that
Alice and John call Dr. Bob daily, especially in exams and project submissions. They do not
usually communicate in summer, but we also know that Alice’s birthday is on the 6th of August
and Doctor Bob’s birthday is on the 24th of August. We doubt that it is possible to prove that
the mechanisms proposed to deal with the background knowledge of nodes could deal with an
adversary having our type of background knowledge and trying to project it into the graphs by
searching for three nodes communicating in the time of academic year especially in the periods
of exams and projects. Then, a period of no communication in summer interrupted by calls on
the 6th and 24th of August. Thus, our work is different from others by addressing the problem
of facing this type of background knowledge and preserving an acceptable level of utility in the

graph’s released instances.

3.2.4 K-anonymity

In [103]], Liu et al. proposed the k-degree anonymization for graphs by manipulating the degree
of the nodes in such a way that the degree of any node in the graph is shared with at least k — 1
other nodes. In their mechanism, they first anonymize the graph’s degree sequence then build a
k-degree anonymous graph based on the noisy degree sequence by adding edges to the original
graph. Lu et al. suggest a faster algorithm that combines the two phases of the previous
algorithm in one stage by simultaneously applying the edge addition and the anonymization of
the degree sequence.

The authors in assume that the previous algorithms are not efficient on large
networks. They presented a polynomial-time algorithm that creates the k-degree graph by
a minimum number of edge modifications. They apply a univariate micro-aggregation to
anonymize the degree sequence. Instead of edge addition, Chester et al. [39] propose a node
addition algorithm to reach k-degree anonymity.

Wu et al. in [160] propose a more general view than k-degree anonymization called k-
symmetry anonymity to cover many properties of the nodes other than degree similarity. Ma
et al. [107] propose the KDVEM algorithm to reach k-degree anonymity while providing high
utility and minimum amount of distortion. The algorithm is formed of two phases, finding
the best target degree of each node and deciding the best nodes candidates to add the edges to
achieve the target.

In [140], the authors propose an algorithm to anonymize the degree sequence of the graph
to maintain its coreness for a better utility. Maintaining the core number sequence assures the
retaining of most of the graph information.

These works were all based on the degree of the nodes. In [171], Zhou et al. propose
a l-neighborhoods algorithm by grouping the nodes having similar neighborhoods and

anonymizing them. The neighborhoods extraction is based on isomorphism tests. In [172], the
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authors proposed k-automorphism to protect the published graphs against many structural
attacks by applying an algorithm called KM. What’s more interesting for us in their work is
their suggested vertex Id generalization algorithm for k-automorphism applied on dynamically
released graphs. This algorithm is applicable on the offline approach, then, we can’t use it in

our case where we are dealing with the online approach.

3.2.5 Dealing with active attack

To explain better the problem of active attack and how some related work in the literature dealt
with it, we will use an example of a traveler aiming to enter a country in the era of the covid-19
pandemic. We list the scenarios proposed by each technique for the authorities to deal with this

passenger.

3.2.5.1 Attacks

In [17], the authors listed several passive and active attacks on static graphs. They propose two
active attacks, the walk-based, and the cut-based. Three main differences between these two

approaches could be listed:
¢ Cut-based attack needs fewer Sybil nodes.
¢ Walk-based has a much more efficient algorithm to retrieve the Sybil subgraph.
¢ It’s harder on the privacy-preserving mechanism to detect the walk-based attack.

Mauw et al. [115] define the robustness of the active attack stages, and they benefit from their
optimized strategy to prove that the attack is robust and resilient to small graph perturbation.

The attack presented in is the type of attack that we intend to encounter in this paper.
The authors develop the attack shown in and propose an attack on dynamic graphs relying
on Sybil subgraphs. In the Subsection[3.5 .3 we present the active attack inspired by with

some modifications that we will encounter by our privacy-preserving approach.

3.2,5.2 SybilGuard

SybilGuard [167] is a protocol to defend against active attacks in a decentralized approach
where each node decides on its own to accept a connection with another node or not without any
interference from a trusted central authority. The idea is to divide the graph into two regions,
the honest and the Sybil. The edge connecting a node from the Sybil region to an honest region
is called an attack edge. The goal of the protocol is to create a random routing table for each
node in a way that limits the possibility of accepting nodes from the Sybil region. SybilLimit
optimizes this guarantee to represents a near-optimal one. Nevertheless, both still have
some drawbacks. The high false negativity of the SybilGuard and the unrealistic assumption
of SybilLimit about the knowledge of the number of honest nodes in the network were the

motivations for Daenzis and Mettal to propose the Sybillnfer algorithm [43]. It relies on a
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Bayesian inference approach that returns potential regions of dishonest nodes with a probability
of certainty for each node.

In the Covid example, these techniques do a PCR test on the traveler, but he’s allowed to
enter the community even if the result is positive. The authorities warn the people to keep a
distance from him because he’s affected. But still, he resides in society and might form a threat.

These techniques guarantee that an honest node could be linked to most other honest
nodes, and it will only accept a bounded number of Sybil nodes. The problem here is that no
noise is added to the graph, then there is no difference between the original and published
graph. So we could not prevent an adversary from locating its Sybil nodes, and the bounded

number of Sybil nodes is enough to attack an honest node.

3.2.5.3 Edge-Differential Privacy

The vast majority of edge-DP mechanisms are dedicated to releases noisy graph properties as
degree distribution [69] 142} 156], frequent graph patterns[146], counting queries for k-triangles
and k-stars [77], or for subgraphs and clustering coefficients [158]. An extension of DP
called Blowfish Privacy [71] also has the ability, when applied on graphs, to provide noisy query
results about these properties. For example, in [? ], the authors provide methods to return
anonymized query results under Blowfish Privacy applied on graphs where some nodes are
more valuable than the others, implying that they should have, with their connections, a higher
level of privacy than other nodes.

Some other works release an anonymized version of the graph. The authors in [125], and
proposed DP edge flipping algorithms based on a linear time algorithm for the first and a
randomized response technique for the second. These two mechanisms, TmF and EdgeFlip,
return an anonymized graph instead of a query result.

Many works propose to generate noisy degree distributions or similar noisy statistics from
graphs under differential privacy. Generative methods are then used to create output graphs
fulfilling noisy input distributions [45]. Qin et al. [133] propose LDPGen for decentralized
social networks. LDPGen collects neighbor lists of the nodes and reconstructs the graph in
two phases under local edge-differential privacy. Finally, Karma et al. [77] presents efficient
algorithms to provide noisy answers tosub graph counting queries under a relaxed version of
edge-differential privacy.

The advantage of edge-DP is that it doesn’t need considerable noise to be achieved. Then,
the results keep a high level of utility.

To explain the disadvantage of edge-DP, let’s go back to our Covid example. Edge-DP
allows an infected passenger from directly entering society. But it tries, for some level, to control
his connections. But this won’t prevent him from infecting other people (the taxi driver driving
him from the airport, the delivery man,...).

Then, this approach cannot protect the individuals in the graph from an active attack.
For example, four nodes are new (didn’t appear in the first release) in the second release of a

dynamic graph. By manipulating the existence and absence of the edges, Edge-DP will affect
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the degrees of the nodes. Table [2] shows the original and the published degrees of the new
nodes.

If the adversary has injected one node of degree 1000 before this release, their goal is to
retrieve that node. It’s evident that ve is the node injected by the adversary as its published
degree is close to the original one while the three others are very far. Therefore, edge-DP cannot

be trusted to face an active attack on a dynamic graph despite its capacity on the utility side.

Original Degree | Published Degree
Deg(vg) = 1000 Deg(vg) = 950
Deg(vy) = 120 Deg(vy) =112

Deg(vg) = 85 Deg(vg) =92
Deg(vg) = 97 Deg(v9) = 101
Table 2: Original and published degree of four new nodes under edge-DP.

3.2.5.4 Node-Differential Privacy

Node-Differential Privacy presents a strictly stronger guarantee than Edge-Differential
Privacy. The guarantee is to provide enough noise to protect the existence or non-existence of a
node in two neighboring graphs that differ, in the worst-case scenario, by a node connected to
all other nodes in the graph where it exists. This technique ensures a high level of privacy but,
on the other hand, might severely damage the utility of the output.

Differential privacy has two approaches, the interactive and non-interactive [49] 51} [89].
All the proposed node-Differential Privacy techniques and algorithms that we have found in
the literature adopt the interactive approach where their objectives are to return a noisy result
of queries. In contrast, our technique adopts the non-interactive setting where the outputis a
noisy dataset instead of a query result. Therefore, we assume that our work will be the first to
present a solution to provide node protection under the non-interactive approach.

The main disadvantage of the node-DP is in the accuracy of the result. Deleting and adding
nodes with their entire ego network is very expensive in the term of utility.

For this reason, many of these algorithms are relied on graph projection technique to apply
node-Differential Privacy. A parameter a is used to transform a graph to be x-degree-bounded.
These graphs have a limit in the number of allowed connections for the nodes. In this way;, it’s
guaranteed that adding or deleting a node has a limited effect on the utility. For example, the
authors in [78] propose several techniques for interactive node-differential private techniques
for degree-bounded graphs and present a methodology to analyze the accuracy of the results.
The main idea in their work is to remove all the nodes with a higher degree than &, which
causes a much higher number of edges to be removed than necessary.

Another way to tackle the problem of low utility was suggested by Blocki et al. in [23]. To
compute how much noise is needed in each case, we have first to calculate the global sensitivity
GS of the query. GS in node-Differential Privacy is the maximum difference in the query result
between the original graph and any neighbor graphs that differ by just one node from the
original one. The authors in [23] propose a Restricted Sensitivity instead of Global Sensitivity.

They achieve that by reducing the set of neighbor graphs to just the ones having a distance
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less than d from the original graph, where d is calculated based on several projection-based
techniques.

Also, based on projection techniques, Day et al. present two approaches to publish
degree histograms and cumulative degree histograms under node-differential privacy. Chen
et al. proposed a node-Differential privacy mechanism supporting equijoins to answer
subgraph counting queries.

Back to our Covid example, Node-DP forbids any person with positive PCR results from
entering the country. While this provides a high level of protection for the citizens, it leads to a
significant economic loss. This person could be a tourist, a businessman, or a skillful person
that might form a high value for the business sector.

On the graph side, the technique gives us the possibility of deleting the new node with its
ego network, adding a fake node and create its ego network, or manipulating the ego network
of the real node. The advantage is that the adversary has a high uncertainty about the new node
appearing in the published graph. Is it the real Sybil node or a fake node and the real one was
deleted?

The disadvantages are:
¢ the need for a very high noise, which keeps us with very little utility,

¢ to the best of our knowledge, no node-DP mechanism was proposed, which adapts the
non-interactive approach providing an anonymized version for the original graph. All

the known mechanisms provide a noisy query result, mainly on the node degrees.

Therefore, we assume that our technique is the first to offer the same level of protection for

the individuals and, at the same time, better utility and adapt the non-interactive approach.
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SUBCHAPTER 3.3.3

Blowfish Privacy for VIP nodes

3.3.1 Introduction

In this subchapter, we present a summary of Blowfish privacy and explore the possibility
of applying it in the context of undirected communication graphs. Communication graphs
represent social contact or call detail records databases. We define the notions of neighborhood,
discriminative secrets, and policies for these graphs. We study several examples of queries and
compute their sensitivity. Even though not addressed in the original blowfish privacy paper,
we explore the idea of having a discriminative secret graph per individual. This allows us to
treat some persons as VIP and put their privacy on top priority, where other persons can have
lower privacy constraints. This may help to offer privacy as a service and increase the utility of
the anonymized communication graph to an appropriate level. Differential privacy has a single
tuning knob, namely €, sometimes two (€ and ¢). For example, increasing € means more utility
and less privacy. The idea of Blowfish privacy is to provide more tuning knobs by introducing
policies [71].

In Blowfish privacy, a policy specifies:

e secrets: information that must be kept secret. Since not all the information has to be secret,

we can increase the utility of the data by lessening the protection of certain properties.

¢ and constraints: known properties about the data. Constraints add protection against an

adversary who knows these constraints.
Therefore, differential privacy can be considered as an instance of Blowfish privacy where:
* every property about an individual’s record is protected,

¢ every individual is independent of all the other individuals in the dataset. There is no

correlations.

Because of its generalized framework and powerful expressiveness of adversarial
knowledge, we expect that DP and BP can solve privacy challenges in graph-based databases.
In this part, we explore the application of these two privacy-preserving techniques to

communication graphs such as social networks and call detail records databases. We model the
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Table 3: Notation of DP and BP, secrets, and discriminative pairs

] Symbol | Description
D Database of n tuples
T = A1 x Ay x Domain of m categorical attributes
X Ay

teT A single tuple

t._id Id of the tuple’s real owner

t.A; Value of the ith attribute in tuple ¢
Ly Set of all possible datasets with size n (|D| = n)

(D1,Dy) € N In DP, D; and D, are neighbors, they differ in the value of one tuple
M A randomized mechanism, for example adding random noise to the
result of a query
S C range(M) | A setof the outputs generated by M
e-differential For every S and every two neighbors (Dy, D;): PriM(D;) € S] <
privacy e X Pr[M(D,) € §]
A function that takes a database as input and returns a vector of real

filn— R numbers as output, for example a countIf query
The global sensitivity of f is the max Manhattan distance between the
S(f) outputs for any two neighbor databases: S(f) = (Dfr,bag(eN ||f(Dy)
f(D2)[lh
The Laplace Mechanism adds 77 € RY to f(D), where 7 is a vector
MEap of independent random variables. Each #; is drawn from the Laplace

distribution with parameter S(f)/e: Pr[n; = z] « e=>¢/5(/)

P = (Py,...,P) | A partitioning of the domain 7

A histogram query. hp(D) outputs for each P; the number of times
values in P; appear in D. The sensitivity of histogram queries is

h’]) . Zn — Zk . .
S(hp) = 2 since replacing a tuple by another one may decrease the
count of a partition and increase the count of another partition.
I The complete histogram query, it outputs for each t € 7 the number of
T

times it appears in D
The expected mean squared error of M: Ey(D) = Y E[(fi(D) —
i

fi(D))?] where f;(D) and f;(D) are the ith components of the true

Em(D) answer and the noisy answer, respectively. For Laplace mechanism and

histogram queries, this error is: £ 1p(D) = [T |.E(Laplace(2/ €))? =
hp

8|7|/€*. A large epsilon means less error, hence more utility.

secrets and the auxiliary knowledge in terms of the Blowfish privacy model and give numerous

examples.

3.3.2 Notation

The Blowfish privacy notation is based on the differential privacy notation as summarized in
Table[3
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Table 4: Notions of secrets
Symbol Description & Examples
An arbitrary statement over the values in the database. Examplel:
t._id = 'Bob’ A t.disease = "cancer’. Example2: t._id = 'Bob’ A t,._id =
"Alice’ A ty.disease = ty.disease
A set of secrets that the data owner would like to protect, e.g. {Examplel,
Example2}
(s,s') € §xS | Apair of secrets, e.g. (Examplel, Example2)
A mutually exclusive pair of secrets. Two statements that cannot be
true at the same time. An adversary must not be able to distinguish
which one is true and which one is false, e.g. (t._id = 'Bob’ At = x,

S

A discriminative
pair of secrets

/
(5,5') t._id = 'Bob’ At = y)
7 . _ _ ’B b’
sk The secret t._id =i ANt = x where x € T, e.g. s(,coancer,,%)
Spairs A set of discriminative pairs of secrets, e.g. Sé‘;lilrs, SS’;?;S, S;Dairs, Sgﬁrs
SG A set of discriminative pairs of secrets based on graph G(V,E), i.e.
patrs {(sk,8) Vi, V(x,y) € E}
Full domain: For‘ every individual, the value is not known to be x or y, ie.
Shalks {(s%s))|Vi,V(x,y) € T x T}

For every individual and every two tuples differing in the value of
only one attribute A where one of them is real, the real tuple is not
Attributes: S;;tirrs known. The privacy definition is weaker than in full domain Sé‘;lilrs since
the real tuple is distinguishable if more than one attribute differs, i.e.

{(sx,5)Vi, 3A, x[A] # y[A] A x[A] = y[A]}
For every individual and every two tuples coming from the same
Partitioned: S”. partition where one of them is real, the real tuple is not known, i.e.
" pairs | { (s, sy)| Vi, 3j, (x,y) € P; x Pj}. This privacy definition is very useful
for location data.

Distance For every individual and every two tuples having their distance less
threshold: S** than or equal to a threshold 6 where one of them is real, the real tuple is
" pairs | not known, i.e. {(s},s;)|Vi, d(x,y) < 6}

3.3.3 Secrets

In addition, Blowfish defines secrets and discriminative pairs of secrets as shown in Table[d] We

give examples of secrets and pairs of secrets over a communication graph in Table

id, to, 1y
Challenger Adversary
Repea Guess
the real ¢
Pick a secret pair — ]

(siﬁ,si‘f) from Spairs b(Oor1)

Figure 10: Discriminative pair of secrets as a game

The discriminative secret graph generalizes the specification of discriminative pairs of secrets.
It is a graph where vertices represent secrets and edges link only the discriminative pairs of
secrets. More formally it is denoted Gs = (Vs, Es) where Vs = T and Es C T x 7. Even

though not addressed in the original blowfish privacy paper, we explore the idea of having a
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Table 5: Examples of notions of secrets for a communication database
Symbol Description - Example
Secret: s Bob has talked to Alice: ¢;._id = "Bob” A t;._id = "Alice’ A t;[j] = t;[i] = 1
A discriminative | Given two communication tuples (ego networks), we cannot distinguish
pair of secrets | which one of them belongs to Bob, for example, (t._id = '‘Bob’ At =

(s,¢) (0,1,1,1), t._id = "Bob’ At = (0,0,0,1))

s; The secret where individual 7 has ego network x, for example, S’(](S)?ll?i,l)

Slf,jlilrs For an individual, all ego networks are discriminative

Sattr For an individual and two vectors that differ in only one communication,
pairs we cannot tell which one is real.

SP. For an individual and two tuples belonging to the same partition, we
pairs cannot tell which tuple is the real one.

Given a distance metric and a threshold. The privacy game is to
challenge the adversary with one individual and two records having

Sldo) their distance less than or equal to threshold. A suitable distance for
pairs communication graphs is the Hamming distance (or the number of
different bits), which is equivalent to the Manhattan distance in this

case.

discriminative secret graph per individual. This allows us to treat some persons as VIP and put
their privacy on top priority, where other persons can have lower privacy constraints. This may
help increase the utility of the communication graph to an appropriate level.

In this direction, the idea of a discriminative secret is very similar to what consists a game
in cryptography. We prefer to call it a privacy game here and represent it as shown in Figure
In this game, a challenger picks an Id (e.g. Bob) and a pair of discriminative secrets at random
(e.g. "Bob has called Alice" or "Bob has not called Alice"). The pair is represented by two tuples,
or an edge in the discriminative secret graph of the Id. The edge vertices identify the two tuples.
The challenger sends the Id and the two tuples to the adversary (e.g. which one does belong to
Bob?). The adversary has to guess which of the two tuples belongs to the id and responds with
only 1 bit b. b = 0 is chosen for ¢ty and b = 1 for t;.

Our goal is to make the probability of the adversary guessing the assumed right tuple not
significantly different than a coin flip.

An important remark about undirected communication graphs is that not all the graphs are
feasible. If Bob has talked to Alice, it means that Alice has talked to Bob. The database matrix is
symmetric. Another constraint is that #;[i] must be 0, and all other entries are either 0 or 1. The
Blowfish privacy framework allows to define constraints about the dataset, and redefines the
notion of neighborhood databases by excluding intermediate, yet infeasible ones. Therefore, we
suggest that Blowfish privacy is a more suitable framework for communication graphs than its

differential privacy predecessor.

3.3.4 Examples of policies

Examples of discriminative secret graphs for a communication graph of three nodes (for

simplicity) and different policies are shown in Table [f} To explain more these policies we
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Figure 12: Example of attribute policy.

present examples of communications graphs neighboring for each policy:

¢ Full policy: a change in the ego network of any vertex is considered as a secret that should
be protected regardless of how many edges has changed in this ego network. For example,
in the graphs in Figure [T} the ego network of vertex 1 has changed, than this is a secret
that should be protected regardless of the number of edges affected by this change.

* Attribute policy: The changes that occur in Figure[I2]to the ego network between the first
and the second graph is not considered as a secret under attribute policy, and therefore
these two graphs are not neighbors, because the ego network of vertex 1 is changed by
two edges, while, to be considered as a secret under attribute policy, an ego network

should be changed by just one edge. Then the first and third graphs are neighbors.

¢ Distance policy: let’s say we aim to protect the connectivity of the graph with a threshold
1. If we have a query asking about the number of components, we have to protect the
edges that might change the result by 0 or by 1. For example, in the first two graphs of
Figure[I3] we have removed two edges which changed the number of components from 2
to 3. Then the adding or removing of these two edges together is a secret that should be
protected, and these two graphs are neighbors. However, removing the two edges in third

graph changes the number of components by 2, then, we are not interested in protecting
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Figure 14: Example of partition policy.

the existence or non-existence of these two edges together. Thus, the first and third graphs

are not neighbors.

¢ Partition policy: For partitioned policy, we take a scenario where the vertices are divided
into two groups. Then the edges are also divided into two partitions: intra-groups which
connect two vertices in the same group and inter-groups which connects a vertex in
the first group with a vertex in the second group. Here we are interested in protecting
the inter-group (orange edges). Then, the first two graphs in Figure [14] that differ by
just on edge are not neighbors because adding or removing an intra-group edge doesn’t
form a secret, while, the first and third graphs are neighbors because they differ by one

inter-group edge which form a secret.

3.3.5 Auxiliary knowledge

Auxiliary knowledge is usually formalized using correlations, for example ¢(R = r1) 4+ ¢(R =
r2) = a; where ¢(r7) is the count of records having the attribute R equal to 71, ¢(2) is the count
of records having the attribute R equal to 5, and a; is known. Blowfish suggests to formalize

auxiliary knowledge in terms of a set of constraints Q that a database D must satisfy. It denotes
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Table 6: Examples of discriminative secret graphs for a communication graph of three
nodes

Policy Graph

full — ~(d=L1,0=2)
G = Gg

attr — ~(d=L1,0=1)
G = Gg

GP
S
The partition is based
on the value of the first
non-ego attribute

Gd=110=3)

No Schallenges @
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Alice
| Bob |—| Eve |
Carol

id tuple
Bob | (0,1,1,1)
Alice | (1,0,1,0)
Eve 1,1,0,1)
Carol | (1,0,1,0)
Figure 15: Communication graph and its corresponding database

ZIg C I, the subset of all possible database instances. In the case of undirected communication

graphs, we have two inherent constraints:
¢ the matrix of D is symmetric: t; = tf.'
e the ego attributes are zero: t! = 0

It is also possible to use directed communication graphs where a directed edge from Bob
to Alice means that Bob has called Alice, or initiated a session. In this case the first constraint
above is not considered.

Additional constraints which are not necessarily inherent to the graph representation can

be considered, for example:
¢ Count queries: the number of individuals that have 5 neighbors.

* Marginal constraints: A marginal is the projection of the database on a given subset of
columns. Rows having the same projection are grouped in one record along with their
count. In our context we project on a subset of nodes. For example let’s project the
database in Figure on Bob and Eve only (columns 1 and 3). Alice and Carol have the
same projection since both have called Bob and Eve. Therefore the projection have 3 rows:
(Bob,1), (Eve,1) and (Alice-Carol,2).

* Meta-node constraints: A meta-node is a node representing a sub-graph or a group of
individuals. Meta-node auxiliary knowledge is for example the number of people calling
a group of individuals, or the number of calls in between two groups of individuals. The
adversary may know that the group Bob-Carol and the group Alice-Eve have three calls
linking them.

* Clique constraints: A clique is a complete graph. The adversary may know that a group of

nodes makes a clique or nearly a clique. For example Bob, Alice and Eve form a clique.

3.3.6 Blowfish policy and privacy definitions

To apply Blowfish privacy, one must define a policy P(7T, Gs, Zo) which is composed of a set of

tuples 7, a discriminative secret graph Gs(Vs, Es) based on sets of discriminative pairs Spairs,
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and a set of possible database instances Zy under the auxiliary knowledge constraints. One also
has to devise a randomized mechanism M that satisfies (e, P)-Blowfish privacy. Concretely,
for every pair of neighboring databases, denoted (D3, D;) € N(P), and every set of outputs
S C range(M), we have:

Pr[M(D;) € §] < e Pr[M(D;) € S]

To see how it differs from differential privacy, let’s consider D; = D U {x} and D, =
D U {y}, two databases that differ in one tuple, and suppose P = (T, Gs,Z,), i.e., no constraints.

D; and D, are not considered neighbors unless (sﬁc,s;) € SG. . Otherwise, having M that

pairs®

satisfies (e, P)-Blowfish privacy means that:
Pr[M(D;) € S] < ¢S4 PrM(D,) € S

since Blowfish privacy is shown to satisfy sequential composition. Similarly to increasing €, the
chance of an attacker to distinguish between pairs farther apart in the graph is higher. We gain
overall utility by scarifying local privacy of some users.

The Laplace mechanism MU ensures (¢, P(T, Gs, Zg))-Blowfish privacy for any query
function, f : Zo — RY, by outputting f(D) + 1 where 7 € R is a vector of independent
random numbers drawn from Lap(S(f, P)/€). S(f, P) is the policy-specific global sensitivity

and is defined as:

D,) — f(D
o X |f(D1) — f(D2)|l4

Following the definition of neighbors in [71]], let T(D;, D;) the set of discriminative pairs
(s;,s;) such as the ith tuples in D; and D, are x and y. Let A(Dy, Dy) = D1\D, U D>\D;. Dy

and D, are neighbors, if:

1. they both comply to the constraints,
2. T#Q,

3. T has the smallest size, there is no feasible database D3 such that T(D;, D3) C T(D;, D;)
or T(Dl, D3) = T(Dl, Dz) & A(Dl, D3) C A(Dl, Dg).

In our communication graph representation, two databases are candidate neighbors if they
differ by the ego network of one individual, and this difference is represented in the security
graph of that individual. Note that this means that one or several edges might be added or
removed between two neighbor communication graphs.

To give an example, the two graphs in Figure[lfare different in three tuples: |A(Dy, D)| =
6. If only one of the different pairs is in the security graph, for instance Bob’s pairs, we have
|T| = 1. There is no database having a non-empty subset of T, and no feasible database with
same T and a subset of A. (To do so, we need to make Alice’s ego network indifferent, or Eve’s
ego network indifferent, which is not possible due to symmetry constraints). We consider that

these two graphs are neighbors.
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id tuple id tuple

Bob 0,0,1,1) Bob 0,1,0,1)
Alice | (0,0,1,0) Alice | (1,0,1,0)
Eve (1,1,0,1) Eve 0,1,0,1)
Carol | (1,0,1,0) Carol | (1,0,1,0)

Figure 16: Two neighboring graphs and their corresponding databases. The ego
network of Bob has changed, and Bob has a G policy.

Under P(T, G, Z), we can obtain two neighbor communication graphs by taking one
vertex and changing its ego network. Any two communication graphs that differ in n 4- 1 tuples
where 7 tuples differ in one bit and one tuple differs in n bits are considered neighbors under
Ggull.

To make the concept of neighbor databases used throughout the paper more straightfor-

ward, we demonstrate the following result:

Theorem 1. Given a communication graph G(V, E), its database/matrix representation M(G) and
the policy P(T,Gs,Ig), where T represents all binary vectors of size |V|, G represents the overall
graph of discriminative secret graphs for all the nodes, and Lq constrains the possible databases to have:
(1) Yi # j,M;j = Mj; = 00or M;j = Mj; = 1and (2) Vi,M;; = 0. If Gs = G¥"" or Gg is any
non-empty subset of G¥'", we have that: Two graphs G and G? are neighbors, i.e., (G, G*) € N(P), if
they differ by one and only one edge e(i, j) = e(j, i) and for at least one vertex of the edge (either i or j)
the discriminative secret pair (s, sly) (where x and y differ at the bit j) or (sh, s{]) (where a and b differ at

the bit i) is in the security graph Gs.

Proof. G3"" means that two tuples form a discriminative secret pair if they differ by only one
attribute. This difference is reflected in the communication graph by the addition or removal of
one edge.

If G! and G? differ by one or more edges that do not correspond to discriminative secret
pairs in the security graph G, then T(G!, G?) = @ and the graphs are not neighbors.

If G! and G2 differ by many edges that affect many secret pairs in G, then we can build a
graph G° that takes only one of these edges that affects one (or two) secret pairs in G to form a
subset of T(Gl, GZ), and therefore the two graphs are not neighbors.

For the case where G! and G2 differ by many edges and for only one of them e(, j) we have
(st, s’y) € G or (s, si) € Gs or both, then T(G?, G?) is the minimal possible set. But we can find
a sub-graph G2 of G? where T(G!, G?) = T(G', G®) by removing the extra edges which do not
have any discriminative secret pairs that belong to the security graph. Then, G! and G? are not

neighbors.
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For the case where G! and G? differ by only one edge e(i, j), and we have (s, szy) € Gg or
(s{,, SL) € Gs or both, then T(G!, G?) is minimal and there is no feasible intermediate database.
Only in this remaining case G! and G? are neighbors.

O]

3.3.7 Blowfish with individualized security graphs

We consider the possibility that different individuals may have different security graphs. For
example, we can divide the users into two extreme sub-groups: VIP and Standard. The
discriminative secret graph for a VIP user is complete (i.e. full protection) or attribute-based.
The discriminative secret graph for a standard user has 0 edges (i.e. null protection).

The application of Theoremto the case where standard nodes’ security graph is Gg v
and VIP nodes’ security graph is G3"" can be explained as follows. Take two communication

graphs that differ by only one edge:

e Case I: If the vertices of the edge are standard nodes, then T(G!, G?) = @ and the two

graphs are not neighbors.

e Case II: If one of the vertices is VIP and the other is standard, then the size of T'is 1 and

the two graphs are neighbors.

* Case III: If the vertices of the edge are two VIP nodes, then the size of T is 2 and the two

graphs are neighbors. Any intermediate database that makes | T |= 1 is infeasible.

3.3 .8 Blowfish with double security graphs

In the previous subsection, we focused on VIP nodes having security graph, while Standard
nodes are left with no protection.But, Standard nodes might need some level of protection even
if it’s less than the VIP nodes protection. Thus, in this subsection, we propose using a security
graph for each type of nodes, i.e., Full Policy for VIP and Attribute Policy for Standard.

Let Tyrp and Tstp be the sets of discriminative pairs under the policies applied on VIP and
Standard nodes respectively. The two graphs G! and G? are neighbors under Duo Policy of
Blowfish Privacy if:

1. they both comply to the constraints,

2. Tyip # D, Tstp # @
3. Tyip U Tstp has the smallest size,it means that each of the two sets has a size of 1.

Theorem 2. Given a communication graph G(V, E), its database/matrix representation M(G) and
the policy P(T, Gs,,p, Gserpr Lo ), where T represents all binary vectors of size |V|, Gs,,,, and Gs,,,,
represent the overall graph of discriminative secret graphs for the VIP and Standard nodes respectively,
and Lg constrains the possible databases to have: (1) Vi # j,M;; = M;; = 0or M;j = M;; = 1 and
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(2)Vi,M;; = 0. If Gs,,, = f;”” and Ggg,, = G¥" or Gs,,,, and Gs,,,, are non-empty subsets of Gé””
and G respectively, we have that: Two graphs G' and G* are neighbors, i.e., (G', G*) € N(P), if they

differ by

* one or more edges that form the ego network of one and only one node z, we have (s, s;) (where a

and b differ at the bit t and t is a node connected to z in G or G?) is in the security graph Gé””.

e in addition to one edge e(i, j) = e(j, i) connecting two Standard nodes and for at least one vertex
of the edge (either i or j) the discriminative secret pair (s, sly) (where x and y differ at the bit j) or
(s{l, s]b) (where a and b differ at the bit i) is in the security graph G&"".

id tuple id tuple

Bob 0,0,1,1) Bob |(0,1,0,1)
Alice | ( 0,1,0) Alice | ( 0,1,0)
Eve ( 0,1) Eve ( 0,0)
Carol | ( 0) Carol | ( 0)

Figure 17: Two neighboring graphs and their corresponding databases. The ego
network of Bob has changed, and Bob has a Ggull policy.

In Figure[I7] we consider Bob as a VIP node and the three others as Standards. We consider
two policies to protect these graphs, the Full Policy for VIP nodes and Attribute Policy for
Standard nodes. The two graphs shown are neighbors because just one ego network of a VIP
node (Bob) has changed and one edge between two Standard nodes (Carol-Eve) has changed.

Take two communication graphs that differ by only one ego network of vy p, and one edge

egist connecting vgrp, to another node:

¢ Case I: If the node ¢,;5; connects vstp, to a VIP node other than vy p,, than two VIP ego

networks are changed, | Typ |= 2 then the two graphs are not neighbors.

¢ Case II: If the node ¢4, connects vstp, to vy p,, in other words, just the ego network of

vyip, has changed, | Ty;p |= 1 and | Tstp |= 0, then the two graphs are not neighbors.

* Case III: If the node ey connects vgrp, to another Standard node, | Typ |= 1 and

| Tstp |= 1, then the two graphs are neighbors.

3.3.9 Global Sensitivities of graph queries and measures

To apply Blowfish privacy given a query or a function f over the protected database D, one has

to determine first the global sensitivity of f, based on the privacy policy P = (T,Gs,Zg):
SU,P) = , max |1f(D1) = f(D2)h

(D1,D2)EN(P
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Once the global sensitivity S( f, P) is identified, outputting f(D) + 7 ensures (€, P)-Blowfish

privacy if 7 € R is a vector of independent random numbers drawn from Lap(S(f, P)/€).

3.3.9.1 Histogram graph queries

In the coming examples, we compute the global sensitivity of four histogram queries to compare
their values under Full and Attribute policies, and in flat graph and graph containing VIP and
Standard nodes.

3.3.9.1.1 Example 1: Complete histogram query for degrees of vertices

Under Pay, two graphs Gl and G? are neighbors if G:=Glu {e}. Assume DV = dvy, ..., dv|DV|
is the set of all possible degrees for the vertices in these graphs.

If the edge e is added between node a having degree dv; and node b with degree dv;, i # j,
then the count of dv; and dv; will decrease each by 1 while dv; 1 and dv;, 1 will increase each by
1, as shown in Figure 18]

If the edge e is added between two nodes both having the same degree dv;, then the count
of dv; will decrease by 2 and dv;; will increase by 2, as shown in Figure

Taking both cases into account, the global sensitivity is S( feompletes Par) = 4.

Under Pg;, two graphs G! and G? are neighbors if they differ by the ego network of one
vertex. In the worst case, the vertex passes from degree 0 to degree n — 1, where 7 is the number
of vertices in the graph. All the other vertices have their degrees shifted by +1. In total, 21 bins

are affected and the sensitivity is 2n.

Alice

| Bob | | Eve | | Bob
Carol
degree 01 2 3|01 2 3
count 1 21 00 3 0 1
cumulativecount |1 3 4 4|0 3 3 4

Figure 18: Counts and cumulative counts of node degree for graphs G! and G2, the
added edge e connects two nodes of different degrees.

Alice

|Bob| |Eve|
Carol
degree 2 3|2 3
count 2 210 4

cumulativecount | 2 4| 0 4
Figure 19: Counts and cumulative counts of node degree for graphs G! and G2, the
added edge e connects two nodes of the same degree.
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3.3.9.1.2 Example 2: Cumulative histogram query for degrees of vertices

Under Payr, adding edge e between two nodes a of degree dv; and b of degree dv; decreases the
cumulative count of dv; (respectively dv;) by 1, yet the cumulative count of dv; | (respectively
dvj, 1) stays unchanged, as shown in Figure

Adding edge e between two nodes of the same degree dv; decreases the cumulative count
of dv; by 2, yet the cumulative count of dv; 1 stays unchanged, as shown in Figure[19] In both
cases, the global sensitivity of a cumulative histogram query is S( feumulatives Pattr) = 2.

Under Py, and a worst case scenario, n vertices change their degrees and move from one

bin to another, however the receptive bin does not change its count. The sensitivity is 7.

3.3.9.1.3 Example 3: Histogram of degrees of vertices for standard nodes

In this exercise, we divide the communication graph vertices into two groups: VIP nodes and
standard nodes. The discriminative secret graph for a VIP node is built as follows: There is
no edge between two tuples if they differ by more than one attribute (i.e. G&""). In addition,
we consider only attributes that belong to a VIP vertex. Two tuples differing by an attribute

corresponding to a standard node are not connected in the discriminative secret graph. We

attr, VIP
Spairs

Consider the following query: "Histogram of degrees of vertices for standard nodes". To

denote this set of secret pairs:

compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the histogram

of the query,

2. the edge we add/remove is between one VIP node and one standard node: one of the
bins in the histogram will decrease by 1 and its right-hand neighbor will increase by 1, as

we can see in Figure R0 where we count the degrees of just the standard nodes,

3. the edge we add/remove is between two standard nodes. This edge does not correspond
to a secret pair. It means that this case will not occur for two neighbor graphs and can

therefore be ignored.

attr,VIP
Spairs

by 50% in comparison to the full histogram query. By limiting the privacy focus to the VIP

It follows that the sensitivity of this query under is only 2. The sensitivity is reduced

nodes, we gain in terms of utility for queries over the standard nodes.
3.3.9.1.4 Example 4: Histogram of the number of connections between VIP nodes and
standard nodes

A similar query is the "Histogram of the number of connections between a VIP node and
standard nodes" or "Histogram of the number of connections between a standard node and VIP

nodes" . To compute their sensitivity we examine the three cases:

1. the edge we add/remove is between two VIP nodes: nothing will change in the query’s

result,
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_r ﬂ e A

Count of nodes for 6§
Count of nodes for G5 2 1 1

Difference 1 1 0

VIP Standard
Figure 20: Example of changes in histogram of degrees of vertices for standard nodes.

-lIﬂ

Count of nodes for 6§
Count of nodes for 6§ 0 3 2

Difference 1 1 0

VIP Standard

Figure 21: Example of changes in histogram of the number of connections between VIP
nodes and standard nodes.

2. the edge we add/remove is between one VIP node and one standard node: two of the
bins in the histogram will vary by 41, as we can see in Figure 21 where we take into

consideration just the inter-group edges,

3. the edge we add/remove is between two standard nodes. This edge does not correspond

to a secret pair and does not change the query result in the same time.

The sensitivity of these queries under S;;rrsv s 2.

These queries are useful in a graph where the standard nodes are the members of a
company’s support team and the VIP nodes are the customers. The calls between a support
team member and the customers are the target. We aim to study, for example, if a load balancing
strategy works well, or how many clients a support member is serving in average. At the same

time, we are protecting the privacy of the customers.

3.3.9.2 Gilobal and Local Clustering Coefficient

The clustering coefficient is a major descriptive statistics and one of the most important
properties in graphs. It quantifies how well connected are the neighbors of the nodes in
the graph. In this subsection we will compute the global sensitivity for three types of clustering

coefficient.
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Alice

(a) First case. (b) Second case.

Cases || Ty Ti|ATa[[T3 T3] ATs
First 1 2 1 3 3 0
Second || 0 2 2 1 3 1
Figure 22: Two cases for G!and G? as neighbors under Pygistance-

3.3.9.2.1 Local clustering coefficient

This coefficient is the likelihood that the neighbours of vy p are connected between each others.
Let vy p be the only VIP node in a graph G! while all other nodes are labeled as standard. Let

lec(vyip) be the proportion of neighbors of vy p that are also connected to each other.

Ta(vyip)

lec(vyrp) = 71_3(0‘”1))

where Ta(vyp) is the number of triangles formed by vyp and two of its neighbors, and
T3(vyp) is the number of triplets in which node vy p is the middle node.

Therefore, we propose an attribute policy where the tuples of the discriminative graph
represent the relation between the vy p and all other nodes. In case the attribute indicates that
the node is a neighbor of vy;p, then sub-attributes exist to represent the relation between this
neighbor and all other neighbors. Two tuples are discriminative secrets pair if just one of their
attributes or sub-attributes are different. By making the relation between vy p and its neighbors
a secret, we are protecting the real value of T3(vy;p). In addition, by making also the relation
between neighbors a secret, we are protecting the real value of T (vy;p).

Let G! and G?> = G! U {ey;} be two graphs that have one VIP node each and differ in
one edge eg;5;. G' and G2 are neighbors, if ej;5; connects vy p to another node, or connects two
neighbors of vy p.

Because we have two cases for distinct edge e;;s; between G! and G?, then we have to
compute the sensitivity of each case. In the first case, where e;;;; connects two neighbors nodes
of vyrp, the number of triplets Té in G! and T% in G2 are similar while the number of triangles
increments by 1.

7 Tl
S(fices Pattr)1 = ng - ?2 |
TA+1 T
LERE
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In Figure in the first case where node Bob is the VIP node and edge(Carol, Eve) is

the distinct edge between G! and G?, we can see that AT, is 1 and T% = T% = 3, then

1
S(flccr Pattr)l = 5

In the secor?d case, egjs; connects vy p to a standard node. It means that the degree and the
number of triplets for vyp will increment between G! and G2. When adding eg;s; to vyp, this
new edge will form a new triplet with each of the other adjacent edge connected to vyp. Then,
by adding one edge, the number of triplets will increment by deg where deg is the degree of
vyp in G1. Thus, T% = T% + deg.

On another hand, the number of new triangles created by adding e4;5; that connects vy p to
Ustq i the number of common neighbors Ny (vs) of vy rp and vg,. For example, in the second
case in Figure 22| where Bob is the VIP node and edge(Bob, Carol) is the distinct edge between
G! and G?, Alice and Eve are two common neighbors for Bob and Carol, thus, T% = T}) + 2.

Therefore, the sensitivity is:

T2 Tl
S(flCCrPattr)Z :‘ A _ A
T3 T
1
- Ta+ Noaveom Ty
TL + deg ]
where Nyaxcom = max  (Neom(vsrq)) and Ni is the number of standard nodes in G! except the

std=1,...,N;
number of vy p neighbors.

In the second case of Figure by applying the sensitivity on that example, we get

0+2 0 2
S(flccrpattr>2 = m - I = 3
Finally, as a result of having two sensitivities in two cases that differ by the type of nodes

connected by ey;s, the sensitivity of local clustering coefficient for a VIP node is:

S(flccr Pattr) =
max(s(flccr Pattr)lr S(flccr Pattr)Z)

To ensure that T} is never equal to 0, the degree of vy p should be greatest or equal to 2, as a

constraint Q applied on the communication graph.

3.3.9.2.2 Global Clustering Coefficient

The global clustering coefficient gcc is the number of closed triplets (3 x triangles) over the total

number of triplets (both open and closed).

where T, is the total number of triangles in the graph and T3 is the total number of triplets.
In this subsection, we compute the global sensitivity of average local clustering coefficient

of two neighbors graphs G! and G? = G! U {ey;;} under Attribute Policy Payy. Adding or

removing an edge between two nodes v; and v, will affect the number of open and closed

triplets containing at least one of these nodes or one of their neighbors.
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vy, v; and each of their common neighbors represents an open triplet. By adding an edge
between v; and v, in G2, these open triplets turn into triangles. Therefore, The number of
triangles in G2 increments by Neom (vt, v2), the number of common neighbors for v; and v..

Each neighbor of just one of the two nodes v; and v, in G! creates an open triplet, with
both of them, in G?. Thus, the number of triplets in G? increases by Nyjs;(vt, v2) + Nyist (02, 0t),
the number of distinct neighbors for v; and v, in Gl

The difference in global clustering coefficient between G! and G2, if e;5; = (v, v;) is

| 3xT3 3xTh =] 3 % (T3 + Neom(vt,v:)) 3 Th * @
T3 LE T3+ Naist (01,02) + Naot (02,01) T}

Therefore, the global sensitivity of global clustering coefficient in a graph under Full Policy is:

3 x (TlA + Neom(0t,02)) 3 x T1 ’
T% + Ndist(vt/ Uz) + Ndist(vz/ Ut) Tl

©)

P = max
(fgcc/ full) t2€E gy

where Ej;; is the set of all possible edges of e;js;, in other words, E ;s is the set of nodes in G!
that don’t form an edge: VG'(V4, E1), Egis; = {(v,02) € E1 | v, 02 € Vi }.

3.3.9.2.3 Average Local Clustering Coefficient

Adding or removing an edge between two nodes will affect their local clustering coefficient in
addition to their neighbors’. In this subsection, we compute the average local sensitivity of two
neighbors graphs G! and G = G' U {ey; }, relying on an attribute policy similar to the one
used in the Global Clustering Coefficient.

By adding one edge e;;5; connecting v; and v,, the number of triangles for each of the
two nodes increased by Neop (01, v2), and the number of triplets for each of them increases by
Ngis(vt,v;) and Ny (02, v¢) respectively.

The local clustering coefficients of the neighbors of v; and v, are also affected by e ;;. These
neighbors are two types, common and distinct neighbors. For each common neighbor, e ;s will
form a new triangle, while for a distinct neighbor, it will form a new open triplet. Therefore, by
adding this edge, the average local clustering coefficient will differ between G! and G? by:

Aalcc(vt/ Uz) -

‘ A+Ncom Ot, Uz) ng
T + Nyis (v1,02) T31

Ti‘i’Ncom (vhvz) _ Li

Neom (Ut:vz) 4
T31+Ndis(vz/vt) T?} | T ( )

+ | 7

T _ T
* ((Ndis(vffvz) + Nais(vz,01)) X (737 — TTQ)

where N is the number of nodes in the graph.

Finally, the global sensitivity of average local clustering coefficient is:

S(falcm Pfull) = max Aalcc(vt/ Uz) (5)

(vt,02) €Egist
Computing the sensitivities for a flat graph or for a graph containing VIP and Standard

nodes are similar but the number of nodes is reduced from N to Nyp. In the experiments,
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we extract subgraphs containing the VIP nodes, then we compute and compare the global

sensitivities of the complete graphs and the VIP subgraphs.

3.3.9.3 AQueries of shortest paths in graphs

We present in this subsection the calculations of global sensitivities for some shortest paths
queries which will help in calculating the sensitivities for some Centralities queries in the next

subsection.

3.3.9.3.1 Length of shortest-paths of two VIP nodes

Let vl,,p and %, be the only VIP nodes in a graph G!. The query in this example is to
compute the length between the two VIP nodes in the graph. We use an attribute policy
Py = (T, G”ttr,ZQ), where 7 is the universe of tuples containing attributes that represent
all the possible edges in the communication graph G!. G&" = (V,E) where V = T and
every edge in E connects two tuples that have just one attribute flipped. In this way, we
ensure that G! and G2 = G! U {ey;; } are always neighbors regardeless of the nodes connected
by eyist- Let sp'(vl,;p,v%;p) be the length of shortest-path between v}, and v%;, in GI,
S( fslp,Pattr) = spl(v%,lp, v%,lp) — 1 because the largest possible reduction of shortest path
between v, and v, is realised by adding an edge connecting these two nodes which makes

their shortest-path equal to 1.

3.3.9.3.2 Sum of Lengths of shortest-paths between all VIP nodes

In this example, the query is to compute the sum of lengths of shortest-paths between all the
VIP nodes. Under the same attribute policy Py defined in Subsection (3.3 .9.3.1} the length of

shortest-path in G? between two VIP nodes v; and v, is :

sp*(vs,v;) = min(sp* (v, v,),
spt (v, v;) + spl(vj, v;) +1,
spt(vt, vj) + sp' (vi,v2) +1)

where spl (v;, U]') is the length of shortest-path between v; and v; in G! and e ;s connects v; and

v; in G2. The sensitivity of the query is:

2 _ Nyp—1 Nyip

)

3.3.9.4 Graph Centralities

In this subsection, we present the global sensitivities under Attribute Policy for some graph

centralities.
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3.3.9.4.1 Farness and Closeness of v, to other VIP nodes

Let G! be a graph composed of VIP nodes, standard nodes and a node vg. The Farness of vy is
to compute the sum of shortest-paths between vy and all VIP nodes under Blowfish Privacy,
while the closeness is the reciprocal of the Farness. We compute the sensitivity of Farness and
Closeness for node vy under the same policy in Subsection[3.3 .9.3.1]

Let ey be (v;, vj), the length of shortest-path in G? between vy and v, is :

sp*(vo, v.) = min(sp*(vo, v2),
SP1 (UOI Ul') + SP1 (vjl UZ) + 1/
sp'(vo, vj) +sp*(v;,v2) +1)

because sp?(v;, vj) = 1

Therefore the sensitivity of Farness under P, is:

S(ffameSS/ Pdistance)(UO) = i m]fllx 1<
=4, Nvip—

max (zfvif’ (sp* (v0,0:) = sp?(v0, ) ))

j:i+1 ,,,,, Nyip

where Ny p is the number of VIP nodes in G! and sp!(v;, v;) = 0.
As closeness is the reciprocal of farness, then its sensitivity is the reciprocal of the minimal

sum of differences between lengths of shortest-paths in G! and G*:

S(fclosenessz Pattr) (UO) = (i_l,..r?,izéi‘},p—1

-1
(]'i+q1ian1P < ZSIZ‘/{P (Sp1 (UOI vZ) N SPZ(UO’ UZ)> > > )

.....

3.3.9.4.2 Closeness Centrality for VIP nodes

In Subsection 3.3 .9.4.1] we have found the sensitivity of closeness for one node vy. In this
subsection, we compute the sensitivity of closeness for each VIP node in the same way of
Subsection (3.3 .9.4.1| then, the sensitivity of Closeness Centrality for VIP nodes in a graph G!

under Py, is the maximum of all sensitivities of VIP nodes:

S (fcloseness_centmlityr Puttr) (UO) =
max (S (fclosenessr Puttr) (Um))

m=1,..., Nv[p

3.3.9.4.3 Graph Degree Centrality

The degree centrality of nodes could be extended to measure the degree centrality of the whole
graph known as the graph centralization. Let us say that G! and G*> = G' U {e ;s } are neighbors
under an Attribute Policy Py, Let the query be to compute the graph centralization of G!

based on just the VIP nodes under P,,. The formula of the graph centralization of Glis

i [deg(vx) — deg(v:)]

Cp(Gh) =
p(G) N‘Z/H)—3ijp+2

(6)
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where vx is the VIP node with the highest degree.

To compute the global sensitivity, we have to find the case of largest possible difference
between Cp(G!) and Cp(G?). The denominators of the two centralizations are obviously the
same in all the cases because the number of VIP nodes does not change in the two neighbor

graphs. Thus, we will focus on the difference of their numerators. We can list four cases for e jq;:

¢ The two nodes of e;;s; are standards, the degrees of VIP nodes are the same in both graphs.
Thus, CD(Gl) — CD(GZ) =0.

* The two nodes of ¢;js; are both VIP (v; and v; but not vx).
| Cp(G!) = Cp(G?) |=

| 2 deg(vx) —deg(v;) —deg(v;)] —[2xdeg(vx) — (deg (vi) +1) — (deg(v;) +1)] |
NZ,,—3Nyp+2

_ 2
N‘Z/IP—3NV[p+2

e ¢4i: connects a VIP node v; to a Standard node.
| Cp(G') = Cp(G?) |=

| [deg(v+) —deg(v;)]—[deg(v*) —(deg(vi)+1)] |
NZ,,—3Nyp+2

_ 1

- N%IP—SNVIP-FZ

® ¢, connects vx to a VIP node v;.

| Cp(G') = Cp(G?) |=

N -1
| deg(vx)—deg(v;)+1L; " [deg(vx) —deg(v})]
N\Z/IP*?)NVIPJFZ

(deg(v%)+1)—(deg(v7)+1)+ T, 4P [(deg(vx)+1)—deg (v;)]
NZ,,—3Nyp+2 ‘

— Nyp—1
NZ,,—3Nyp+2

® ¢4+ connects vx to a Standard node.

| Cp(G') = Cp(G?) |=

N
| P [deg(vx) —deg(v))]
NZ,,—3Nyp+2

L7 [(deg(vx)+1) —deg (0))] |
N‘%-,p*3NV[p+2

— Nyip
N‘2/1P73Nv1p+2
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Then ey;5; produce the largest difference in centralization between the two neighbors when

it connects v* to a standard node. Therefore, the global sensitivity of graph centralization is

Nyip @)

S(feentratizations Pattr) = NXZ/IP —3Nvip +2

3.3.9.5 Efficiency

The efficiency measure is divided to three types [41]: nodal, local and global.
Nodal efficiency is a measure of the efficiency of information transfer between one VIP

node v; and all other VIPs.

1 Nyp—1 1

(8)

E —
"0 Nyp— 1 = sp(o,02)

Local Efficiency is a measure of the efficiency of information transfer for the VIP neighbors

Nypg of v, excluding v;.

Nipe—1

1 8 1
Elocal = N

_— 9
nbg(Nnbg_l