
HAL Id: tel-04114469
https://theses.hal.science/tel-04114469

Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Statistical size effects on compressive strength of
concrete

Chi Cong Vu

To cite this version:
Chi Cong Vu. Statistical size effects on compressive strength of concrete. Materials and structures
in mechanics [physics.class-ph]. Université Grenoble Alpes, 2018. English. �NNT : 2018GREAU030�.
�tel-04114469�

https://theses.hal.science/tel-04114469
https://hal.archives-ouvertes.fr


 

THÈSE 

Pour obtenir le grade de 

DOCTEUR DE LA COMMUNAUTE UNIVERSITE 
GRENOBLE ALPES 

Spécialité : Sciences de la Terre et de l’Univers et de 
l’Environnement (CESTUE) 

Arrêté ministériel : 25 mai 2016 

 
 
Présentée par 

Chi Cong VU 
 
 
Thèse dirigée par Jérôme WEISS et  
codirigée par Olivier PLE et David AMITRANO 
 
préparée au sein de l’Institut des Sciences de la Terre  
dans l'École Doctorale Terre, Univers, Environnement 

 
Effets d’échelle statistiques sur la 
résistance à rupture en compression 
du béton 
 
Statistical size effects on compressive 
strength of concrete 

 
Thèse soutenue publiquement le 16 octobre 2018 
devant le jury composé de :  

M. Damien Vandembroucq 
Directeur de Recherche, CNRS-PMMH, ESPCI Paris, Président 

M. Gilles Pijaudier-Cabot 
Professeur, Université de Pau et des pays de l'Adour, Rapporteur 

M. Daniel Bonamy 
Physicien, CEA-SACLAY, Rapporteur 

Mme. Stéphanie Deschanel 
Maître de Conférences, INSA Lyon, Examinatrice 

M. Jérôme Weiss 
Directeur de Recherche, CNRS-ISTerre, Université Grenoble Alpes 
(UGA), Directeur de thèse 

M. Olivier Plé 
Professeur, CNRS-LOCIE, Université Savoie Mont Blanc (USMB),  
Co-directeur de thèse 

M. David Amitrano 
Maître de Conférences, CNRS-ISTerre, Université Grenoble Alpes 
(UGA), Co-directeur de thèse 



 



i 

 

Statistical size effects on 

compressive strength of concrete 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





iii 

 

Acknowledgements 

This thesis reports a research project carried out at Institut des Sciences de la Terre (ISTerre) 

and IUT Grenoble of University of Grenoble Alpes (UGA), and Laboratoire Optimisation de 

la Conception et Ingénierie de l'Environnement (LOCIE) of University of Savoie Montblanc 

(USMB). The financial support provided by the AGIR-POLE-PAGE program from UGA is 

greatly appreciated. 

 First and foremost, I would like to express my appreciation to my advisor Jérôme WEISS 

for his continuous support of my Ph.D. project, for his patience, availability, and immense 

knowledge. His guidance helped me pass every single work in all the time of this study. I am 

also grateful for our valuable scientific and non-scientific conversations that have been driving 

me in the right way during the last three years. I will keep all of them as a pleasant memory. 

Besides, I would like to express my sincere gratitude to my supervisors Olivier PLÉ and David 

AMITRANO who were always available to help me resolve all problems and difficulties 

related to experiments as well as analyzing data. It was a great opportunity for me to work 

under the pleasant, positive and constructive guidance of these three men. They have set 

examples of excellent and very kind researchers, mentors and instructors. Once again, thank 

you so much.! 

I would like to acknowledge and thank the jury members for their interest and 

participation in my thesis. Special thanks go to Mr. Gilles PIJAUDIER-CABOT and Mr. 

Daniel BONAMY for accepting to be the referees of this thesis and for their constructive 

comments, ideas to improve the quality of my thesis script. I am also very grateful to Mrs. 

Stéphanie DESCHANEL and Mr. Damien VANDEMBROUCQ for examining my thesis. 

Thank you Damien for your participation in all “comité de suivi de thèse” meetings during the 

last three years and especially accepting to be the president of my jury. 

I also wish to thank the researchers and students of the team “Mécanique des failles” of 

ISTerre who helped enormously and encourage constantly me as well as my family during all 

the time in Grenoble. I would also like to thank Mrs. Coralie AUBERT, engineer from ISTerre 

in Grenoble and Mr. Vincent WATON, engineer from IUT Chambéry, and other technicians 

of ISTerre and IUT Grenoble for their technical supports throughout all my experiments. 

In the following paragraphs, I would like to thank my family and Vietnamese friends in 

Vietnamese. 



iv 

 

Đầu tiên, tất nhiên rồi, con xin cảm ơn Bố Mẹ, những người đã cho con cuộc sống này, dạy dỗ, 

động viên, ủng hộ con cả vật chất lẫn tinh thần trong suốt 30 năm qua cũng như nhiều chục 

năm về sau nữa. Niềm vui của Bố Mẹ chính là động lực thúc đẩy con cố gắng mỗi ngày. Cảm 

ơn Tâm đã luôn hỗ trợ anh trong suốt quá trình học tập và nghiên cứu, chúc em (ku) luôn thành 

công trên con đường (ku) em đã chọn. 

Em xin chân thành cảm ơn Ban chủ nhiệm, các Thầy Cô giáo Bộ môn Công nghệ và 

Quản lý Xây dựng (bmthicong), Trường Đại học Xây dựng, đã tạo điều kiện và giúp đỡ trong 

suốt thời gian học tập tại Pháp. Cảm ơn Tuấn (TuanVuAnh), đã nhiệt tình giúp đỡ khi tôi vắng 

mặt tại Bộ môn (“sau tất cả, mình lại trở về với nhau…!” ^^). 

Công việc nghiên cứu của bố Bún và cuộc sống của gia đình Bún sẽ không thể dễ dàng 

nếu không có sự giúp đỡ của rất nhiều anh, chị, em và bạn bè tại Grenoble. Bố cháu xin được 

cảm ơn (i) các ISTerriennes: C. Quyên, E. Thu và đặc biệt là C. Vân đã luôn động viên và hỗ 

trợ trong suốt thời gian làm việc tại ISTerre; (ii) chi hội phụ huynh: Lan Anh-Quang (Alexis), 

Linh-Quân (Rơm), Trang-Long (Tết), Uyên-Khôi (Mía), C.Vân-A.Ngọc (Nhi), Hoàn-Bình 

(Louis-Léo), Gđ. Chị Ly (Théo), Gđ. Chị Ngọc-Montpellier (Titi-Hậu Đậu) đã luôn luôn có 

mặt giúp đỡ trong các công việc và đặc biệt đã góp phần làm phong phú vốn ẩm thực của gia 

đình Bún; và (iii) hội 10 chai: a. Kiên, Dũng, Trung và “những cái chai còn sót lại”: Hoàng 

Trần (nam thần …), Thảo-Bảo, Giang-Minh, Thu An-Văn Bình, đã luôn luôn (un peu trop !) 

“motivé” giúp đỡ “Công An” chuyển đồ, xin CAF và đặc biệt là tiêu thụ một lượng lớn thực 

phẩm (bia) của Carré4 cũng như sòng bạc khổng lồ (GéantCasino) - cảm ơn mọi người rất 

nhiều. 

Con cũng muốn cảm ơn Bố Khải, Mẹ Ngọc vì đã luôn động viên vợ chồng con và đặc 

biệt đã tin tưởng (chuyển) giao cho con người con sẽ cảm ơn cuối cùng dưới đây. Trước khi 

làm việc này, xin cảm ơn con gái, Phương Linh (Annie-Bún), cảm ơn con vì đã cho Bố biết 

rằng (i) Ông Bà nội con đã yêu thương Bố vô vàn như thế nào; (ii) một con “Khỉ” nhỏ bé lại 

có thể cung cấp một năng lượng (niềm vui-hạnh phúc) lớn như vậy để Bố Mẹ cố gắng mỗi 

ngày; và (iii) Bố - một con người dù đã tiến hóa rất lâu rồi nhưng vẫn còn một cái “đuôi” - Bố 

yêu con !  

Cuối cùng, tất nhiên rồi, cảm ơn em, Thúy-An, người đã mang đến và chăm sóc cho “thế 

giới nhỏ” của anh. Cảm ơn em vì đã luôn tin tưởng, động viên anh trong mỗi công việc anh 

làm, giúp anh cân bằng (giảm/tăng ?) áp lực sau mỗi ngày làm việc; làm cho cuộc sống của gia 

đình mình dễ dàng hơn, vui hơn và (ồn ào hơn ? ^^). Sẽ còn (nguyên) những khó khăn chờ đón 

gia đình mình khi trở về, nhưng sự tin tưởng và tình thương yêu sẽ giúp chúng ta từ từ vượt 

qua những trở ngại đấy…! 

Sẽ chẳng lời nào để diễn tả đủ và hết sự biết ơn những người đã giúp đỡ gia đình Bún, 

cuối cùng xin chúc tất cả mọi người sức khỏe, may mắn, học tập tốt, lao động tốt, xin hẹn gặp 

lại tại VIỆT NAM.! 

 

Grenoble, November 20th 2018 

Chi-Cong VU 



v 

 

Abstract 

Size effects on mechanical strength, i.e. the fact that larger structures fail under lower stresses 

than smaller ones, already highlighted by Leonardo da Vinci and Edmée Mariotte centuries 

ago, remain nowadays a crucial problem to establish structural design rules and safety 

regulations from an upscaling of laboratory data. These size effects are generally explained 

either from a deterministic energetic approach that predicts a non-vanishing asymptotic 

strength but, by construction, does not account for fluctuations around the mean strength and 

their size dependence, or from a statistical approach based on the weakest-link theory that 

implies a vanishing strength towards large scales.  

Recently, an alternative framework has been proposed based on an interpretation of 

compressive failure of heterogeneous materials as a critical transition from an intact to a failed 

state. This critical interpretation releases the underlying hypotheses of the weakest-link theory, 

pure brittleness and the independence of damage events, while predicting a non-vanishing 

asymptotic mean strength (𝜎∞) but vanishing intrinsic fluctuations at large scales. The 

application this framework to the statistical size effects on compressive strength of concrete, a 

typical quasibrittle material of tremendous importance in civil engineering, is investigated in 

this thesis.  

From an extensive series of uniaxial compression experiments (527 tests) carried out on 

concrete samples with four different sizes and three different microstructures, we demonstrate 

(i) the failure of the weakest-link theory in this case, and instead (ii) the pertinence of the 

critical framework to account for size effects on compressive strength of concrete, in terms of 

average strength, associated fluctuations, and probability of failure. From a detailed analysis 

of the microstructural disorder of our materials, we show that the pore structure, rather than the 

concrete mix, plays a significant role on size effects on strength. In this framework, the 

asymptotic strength (𝜎∞) represents the genuine characteristic compressive strength (𝑓𝑐𝑘) of 

the material, a key property for the dimensioning large-scale structures from an upscaling of 

small-scale laboratory mechanical tests and for the quality control of concrete. 
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As a consequence of the leading role of the pore structure in controlling the size effects 

on compressive strength of low-porosity concretes, when estimating the characteristic 

(asymptotic) strength from a series of tests with a single sample size, a condition on this size 

with respect to the characteristic scale of pore structure is proposed to be fulfilled.  

Keywords: size effect, compressive strength, concrete, autocorrelation function, critical 

transition, finite-size scaling, strength variability, quasibrittle material, characteristic strength. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Résumé 

Les effets d’échelle sur la résistance mécanique des matériaux, i.e. le fait que plus un 

échantillon de matière est grand, plus, en moyenne, sa contrainte à rupture sera faible, déjà 

soulignées par Leonardo da Vinci et Edmée Mariotte il y a des siècles, demeurent de nos jours 

un problème crucial pour établir des règles de sécurité et de conception de grandes structures 

à partir de données de laboratoire. Ces effets d’échelle sont généralement expliqués soit par 

une approche déterministe qui prédit une résistance asymptotique non nulle mais, par 

construction, ne tient pas compte des fluctuations de la résistance moyenne et de leur 

dépendance vis-à-vis de la taille, ou d'une approche statistique basée sur la théorie du maillon 

le plus faible qui implique une résistance nulle pour un système de taille infini.  

Récemment, un cadre alternatif a été proposé sur la base d’une interprétation de la rupture 

en compression des matériaux hétérogènes comme une transition de phase critique entre un 

état intact et un état rompu. Cette interprétation libère les hypothèses de base de la théorie du 

maillon le plus faible comme la fragilité extrême et l’indépendance entre évènements de 

microfracturation et prédit qu’un système de taille infinie conservera une résistance mécanique 

non nulle (𝜎∞) mais une variabilité associée de la résistance nulle. En appliquant ce cadre 

critique, les effets d’échelle statistique sur la résistance en compression du béton, un matériau 

quasi-fragile typique et important en génie civil, sont étudiés dans cette thèse.  

A partir d’une importante série d’expériences de compression uniaxiale (527 essais) qui 

a été réalisée sur des échantillons du béton de quatre tailles différentes et trois microstructures 

différentes, nous démontrons (i) l’échec de la théorie du maillon le plus faible dans ce cas; et 

au lieu de cela (ii) la pertinence du cadre critique pour tenir compte des effets d’échelle sur la 

résistance à rupture en compression du béton, en termes de valeur moyenne, de fluctuation 

associées et de probabilité de défaillance. A partir d’une analyse détaillée de la microstructure 

de nos matériaux, nous montrons que la structure des pores, plutôt que les agrégats, joue un 

rôle important sur les effets d’échelle sur la résistance à rupture en compression. Dans ce cadre, 

la résistance asymptotique (𝜎∞) représente la véritable résistance caractéristique en 
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compression (𝑓𝑐𝑘), qui est une propriété essentielle pour la conception de structures à grande 

échelle et pour le contrôle de la qualité du béton.  

En conséquence du rôle important de la structure des pores sur les effets d’échelle sur la 

résistance en compression des bétons à faible porosité, lors de l'estimation de la résistance 

caractéristique à partir d'une série d'essais avec une seule taille d'échantillon, une condition sur 

cette taille par rapport à la taille caractéristique de la structure des pores est proposée. 

Mot-clés: effet d’échelle, résistance en compression, fonction d’autocorrélation, transition de 

phase critique, lois d’échelle de taille finie, variabilité de résistance, matériau quasi-fragile, 

résistance caractéristique. 
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Chapter 1            

                  

Introduction 

1.1 Context and motivation 

Engineering structures are generally designed on the basis of size-independent hypotheses for 

material strength (as in Eurocode (EN 1992, 2004) for concrete structures), meaning that 

geometrically similar structures of different sizes are assumed to fail at the same applied stress. 

Hence, the failure stress obtained from laboratory mechanical tests on small samples could be 

used to predict the behavior of large structures. However, the size-dependence of material 

strength is one of the oldest mentioned problems of mechanics, already highlighted by 

Leonardo da Vinci in the 1500s: large structures fail under stresses lower (in average) than the 

failure stress of geometrically similar but smaller ones. Since Leonardo, this problem has been 

increasingly and extensively studied for various materials and different loading conditions 

(Bazant and Planas, 1998), because of its great impact for the establishment of safety 

regulations and the assessment of structural integrity. Various theories and models have been 

proposed and developed to explain these size effects of strength, which can be classified into 

two broad, fundamentally different categories: (i) Deterministic size effects and (ii) Statistical 

size effects. 

An energetic, deterministic size effect, caused by the stress redistribution and the 

associated energy released before the complete failure of the structure, has been proposed and 

thoroughly studied by Bazant and co-workers for the so-called quasi-brittle materials such as 

concrete, fiber composites, rocks, tough ceramics, sea ice, etc.,. In these materials, failure is 

preceded by the formation of a fracture process zone (FPZ), and size effects on strength arise 

when the FPZ size becomes non negligible compared with the structure size (Bazant, 1984).  



2 Introduction 

 

 

Corresponding to two kinds of quasi-brittle structure, two types of energetic size effect can be 

distinguished (Bazant, 2004a, 1999; Bazant and Chen, 1997). 

The first type occurs in notched samples or structures where large cracks have grown in 

a stable manner before global failure (i.e. reinforced concrete structures). In this case, the size 

effect of strength was proposed in the form of a size effect law (SEL) (Bazant, 1984) as: 

 𝜎𝑓 = 𝐵𝑓𝑡 (1 +
𝐿

𝐷0
)
−1/2

 (1.1) 

where, 𝜎𝑓 is the nominal stress at failure; 𝑓𝑡 represents the tensile strength of the material; 𝐿 is 

the structure size; 𝐵 (dimensionless constant) and 𝐷0 (transitional size) are constants estimated 

from experiments which are related to the relative size of the Fracture Process Zone (FPZ), and 

to the initial notch (or crack) size in the structure. For 𝐿 ≫ 𝐷0, Eq. (1.1) yields 𝜎𝑓~𝐿−1/2, 

which is the form of size effect arising from linear elastic fracture mechanics (LEFM) (see Fig. 

1.1a). This means that when the size of the structure is very large compared with the size of 

the FPZ, the structure displays a fully brittle behavior. If 𝐿 ≤ 𝐷0, we have 𝜎𝑓 → 𝐵𝑓𝑡, which is 

the value of the nominal stress at failure according to the strength criterion (Bazant and Kazemi, 

1990). This case corresponds to a  non-brittle structure, or plastic materials with no size effect 

of strength (Bazant, 1998). 

The rest type of energetic size effect happens in structures without notches or preexisting 

large cracks (e.g. plain concrete structures), the relationship between the strength (nominal 

stress at failure, 𝜎𝑓) and the structure size 𝐿 was formulated in the form of an un-notched size 

effect law (called USEL below) (Bazant, 1999, 1998; Bazant et al., 2007; Bazant and Yavari, 

2005): 

 𝜎𝑓 = 𝜎∞ (1 +
𝑟𝐷𝑏

𝐿
)
1/𝑟

 (1.2) 

where 𝑟 is a positive constant theoretically bounded between 1 and 2 (Bazant, 1998), 𝐷𝑏 is the 

constant that can be regarded as the thickness of the boundary layer of cracking (see Fig. 1.1b) 

and 𝜎∞ is the strength for a very large structure (𝐿 ≫ 𝐷𝑏). 
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(a)  

(b)  

Fig. 1.1. Illustration of different size effect laws to capture the dependence of nominal stress at 

failure, 𝜎𝑓, on structure size, 𝐿, of beames with (a) initial notches; and (b) no notch. (modified from 

(Bazant, 2004a)). 

In the special case 𝑟 = 2, the USEL (Eq. (1.2)) is similar to the multifractal scaling law 

(MFSL) proposed by Carpinteri and co-workers (Carpinteri, 1994a, 1994b, Carpinteri et al., 

1999, 1995), based on geometrical arguments of a fracture surface at ultimate load: 

 𝜎𝑓 = 𝜎∞ (1 +
𝑙𝑐ℎ
𝐿

)
1/2

 (1.3) 

Where 𝜎∞ and 𝑙𝑐ℎ represent the nominal strength of an infinitely large specimen and an internal 

material length, respectively. In equation (1.3), 𝜎∞ and 𝑙𝑐ℎ are determined from the best fit of 
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the experimental data. The prediction of size effect following to the MFSL is contrary to that 

of the SEL (Eq. (1.1)) which should only be applied for the case of notched structures (see Fig. 

1.2). 

These size effect formulations above have been extensively used to interpret 

experimental data from different quasibrittle materials (rocks, concrete, composites, etc.) and 

structures under various loading conditions (tension, three-/four- point bending, compression, 

splitting failure, etc.) (see the reviews in (Bazant, 2004a, 1999), (Carpinteri et al., 1999, 1995; 

Carpinteri and Pugno, 2005) and (Torrenti et al., 2013)). Some examples of application of SEL 

and MFSL to interpret the experimental size effect of direct or indirect tensile strength data of 

different concrete structures are shown in Fig. 1.2. 

 

(a)                                                                   (b) 

 

(c)                                                                 (d) 

Fig. 1.2. Examples of applications of the SEL (Eq. (1.1)) and the MFSL (Eq. (1.2)) to fit the 

experimental size effect data of different concrete structures (reprinted from (Van Vliet, 2000)). 
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Although established from the experiments of direct or indirect tension loading, the size 

effect formulations above are normally used to predict the size dependence of compressive 

strength of heterogeneous materials (Burtscher and Kollegger, 2004, 2003; Carpinteri et al., 

1999; Ferro and Carpinteri, 2008; Sener et al., 1999). As shown in Fig. 1.3, both SEL (Eq. 

(1.1)) and MFSL (Eq. (1.3)) are in good agreement with the size effect of compressive peak 

stresses of concrete data. These observations are consistent with the fact that the size effect 

laws are not clearly distinguished in the laboratory scale. However, the opposite trends of the 

two curves are evident outside the range of the experimental data. In particular, according to 

the MFSL prediction (or the case of 𝑟 = 2 in USEL (Eq. (1.2)), a plain concrete sample of 

plain concrete infinite size will have a finite value of compressive strength (see Fig. 1.3). The 

existence of a non-zero compressive strength have been also confirmed from an intensive tests 

performed by (del Viso et al., 2008; Muciaccia et al., 2017; Yi et al., 2006). 

In conclusion, beyond the possible pertinence of the underlying theoretical frameworks 

(which are strongly different for USEL and MFSL), this raises important points, namely: (i) 

the role of a characteristic (or internal) length scale related to the presence of material 

inhomogeneities (disorder); and (ii) the existence of an asymptotic strength for very large 

structure sizes (𝜎𝑓 → 𝜎∞ = 𝑐𝑜𝑛𝑠𝑡 for 𝐿 → +∞ in the above scaling laws) (see Fig. 1.1b). We 

will see below that we recover these two characteristics from our dataset, although we will 

propose a fully different theoretical interpretation.  

 

 

 

 

 



6 Introduction 

 

 

 

 

Fig. 1.3. Applications of size effect laws for fitting the size dependence of compressive peak stresses 

of different concrete mixtures and different shapes of sample (after (Carpinteri et al., 1999)). Fig. (a), 

(b) and (c) used the experimental data of (Blanks and McNamara, 1935) for three different concrete 

mixtures. Fig. (d) is after (Xu and He, 1990). 𝑅 is the correlation coefficient, quantifying the error of 

the non-linear fitting. 

A limitation of the aforementioned deterministic size effects is that, by construction, they 

do not give any prediction for a possible size dependence of the strength variability, 𝛿(𝜎𝑓), and 

more generally for the failure probability of the structure under a stress 𝜎, 𝑃𝑓(𝜎). This 

introduces the second broad category of theoretical concepts, i.e. statistical size effects. 

Traditionally, the statistical size effects are modeled with a weakest-link approach. This 

hypothesis was first qualitatively introduced by Mariotte (Mariotte, 1686), and then formalized 

by Weibull (Weibull, 1951, 1939a, 1939b) and several others (Fisher and Tippett, 1928; 

Gumbel, 1958; Tippett, 1925), mainly mathematicians. According to the weakest-link concept, 

a structure is considered as being equivalent to a chain of 𝑁 independent links and the whole 

chain will fail as soon as the “weakest” link occurs to break. Translated to failure mechanics, 

this assumes that the structure contains a population of non-interacting pre-existing defects, 
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and global failure occurs as soon as crack propagation is triggered from the weakest-link, which 

is associated with the largest defect. Combining these two fundamental hypotheses, pure 

brittleness and the absence of mechanical interactions, with linear elastic fracture mechanics 

(LEFM) stating that a crack will initiate from a flaw of size 𝑠 at a stress 𝜎𝑐~𝑠−1/2, one can 

derive the failure probability of the structure under an applied stress 𝜎, 𝑃𝑓(𝜎), from the 

distribution of preexisting defect sizes (Alava et al., 2009; Bazant et al., 1991; Weibull, 1951, 

1939a). Assuming a power law tail for this distribution, 𝑃𝑓(𝜎) is given by (Weibull, 1951, 

1939b): 

 𝑃𝑓(𝜎, 𝑉) = 1 − exp [(−
𝑉

𝑉0
) (

𝜎

𝜎0
)
𝑚

] (1.4) 

, whereas Gumbel statistics (Gumbel, 2004, 1958) are obtained with the assumption that the 

tail of the defect sizes distribution decays faster than a power law: 

 𝑃𝑓(𝜎, 𝑉) = 1 − exp [(−
𝑉

𝑉0
) exp (

𝜎

𝜎0
)] (1.5) 

In the two last equations, 𝑉 is the volume of the structure, 𝑉0 is the representative volume 

element (RVE) for the defect population, 𝜎0 is a reference stress that can be interpreted as the 

mean strength for a volume 𝑉0, and 𝑚 is the so-called Weibull’s modulus. A brief review of 

the weakest-link concept and Weibull theory is described in Appendix A. 

In case of Weibull statistics, the mean value 〈𝜎𝑓〉 and the associated standard deviation 

𝛿(𝜎𝑓) of strength should scale with the system size 𝐿 as (Bazant et al., 1991; Torrenti et al., 

2013; Van Vliet, 2000; Weiss et al., 2014a): 

 〈𝜎𝑓〉(𝐿)~𝛿(𝜎𝑓)(𝐿)~𝐿−𝑛/𝑚 (1.6) 

where 𝑛 is the topological dimension (𝑉~𝐿𝑛). Relation (1.6) implies that a system of infinite 

size will have a vanishing strength (see Fig. 1.1b), a fundamental difference with the 

deterministic size effects mentioned above.  

Weibull statistics have been applied to tensile strength statistics of brittle materials like 

glass fibers (Andersons et al., 2002; Baran et al., 1999; Gurvich et al., 1997; Phani, 1987), 

carbon fibers (Asloun et al., 1989; Wang and Shao, 2014; Weibull, 1951, 1939a), or ceramics 

(Bao and Jin, 1993; VandenBorn et al., 1991). In these cases, the underlying hypotheses of the 

weakest-link theory (brittleness and independence of the breaking events) appear reasonable, 



8 Introduction 

 

 

owing to the aspect ratio of the samples (fibers, i.e. an almost 1D situation) as well as the nature 

of the materials. Indeed, the FPZ size is considered to be negligible compared with the structure 

size, and final failure takes place almost at one point ahead of the crack tip (Bazant et al., 1991). 

Hence, the whole structure displays an elastic behavior until abrupt failure occurs without 

precursory phenomena.  

In contrast, for quasibrittle materials like concrete and/or loading configurations 

inhibiting extensive mode I crack propagation, such as compression, terminal failure results 

from a complex, progressive microfracturing process involving an initiation phase, elastic 

interactions and stress redistributions, as well as friction along rough surfaces (Weiss et al., 

2014a). The presence of such precursors to failure (Alava et al., 2009; Bertalan et al., 2014) 

makes the weakest link theory inappropriate for those (Bazant, 2004a, 2004b, 1998; Bazant 

and Xiang, 1997; Weiss et al., 2014a). In the energetic size effect framework (Eq. (1.2)), this 

progressive microcracking is considered to be confined within a FPZ whose (fixed) size is not 

negligible compared with the structure size and is related to a characteristic length scale of the 

microstructural disorder (Bazant, 1999; Bazant et al., 1991; Bazant and Yavari, 2005). 

However, acoustic emission (Lockner et al., 1991) as well as X-ray tomography (Renard et al., 

2017) measurements during compressive rock failure have shown that the correlation length 

𝜉 of microcracking and damage increases continuously during loading to reach the system size 

(𝜉 ≈ 𝐿) near terminal failure. As proposed recently, this argues for an interpretation of 

compressive failure as a critical phase transition from an intact to a failed state (Weiss et al., 

2014a), allowing to derive finite-size scaling laws for the mean compressive strength as well 

as the associated variability. Unlike deterministic size effects, this critical framework is 

statistical by nature, but, unlike the weakest-link theory, releases the hypotheses of pure 

brittleness and independence, instead takes into account elastic interactions between 

microcracking events and stress redistributions. As detailed in (Weiss et al., 2014a), it predicts 

a non-vanishing asymptotic strength (𝜎∞ > 0) (but a vanishing strength variability 𝛿(𝜎𝑓) 

towards large sizes) as well as a link between a microstructural length scale (the RVE of the 

disorder) and the scales which size effects become significant. Hence, on those respects, our 

framework share superficial similarities with the deterministic size effects mentioned above, 

although the underlying physics strongly differs. 

Following this critical interpretation of compressive failure, we were able to interpret 

numerous published data on the size dependence of the average strength 〈𝜎𝑓〉 of various 

materials including different rocks, coal, ice, and concrete (Weiss et al., 2014a, 2014b). 

However, because the number of identical tests performed on a given material at a given size 
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were generally strongly limited, a thorough analysis of the associated variability 𝛿(𝜎𝑓) and of 

the probability of failure 𝑃𝑓(𝜎) was not possible. In addition, microstructural characterization 

was cursory, not allowing to clarify the role of the microstructural disorder. Those points 

represent important goals of the present study.  

1.2 Objectives and methodology 

This work was designed to address three major objectives as follows: 

1) The first and foremost objective of this work is to get more insight into the role of 

heterogeneities on the statistical size effects of compressive strength as well as the 

critical behavior of compressive failure of heterogeneous materials. 

2) The second one is to experimentally validate the interpretation of compressive failure 

of heterogeneous materials as a critical phase transition from an intact state to a failed 

state. This includes (i) the investigation of the influence of sample size as well as the 

microstructural disorder on the critical behavior of failure under compression loading, 

and (ii) the determination of the critical exponents. 

3) Last but not least, this study aims at reevaluating the concept of the characteristic 

compressive strength of materials, the most valuable property used in structural design, 

by taking into account the statistical size effects on the mean value and associated 

variability of compressive strength. 

In order to achieve these goals, a campaign of compression experiments was carried out on a 

large number of concrete specimens with four different sizes and three different mixtures. 

Concrete is chosen in the present work for the following reasons: 

 As a composite material, concrete has a high degree of heterogeneity and a complex 

microstructure (Carpinteri et al., 1999; Mehta and Monteiro, 2006). 

 In civil engineering, concrete is commonly used to withstand compression loadings as 

its compressive strength much larger than tensile or flexural strengths (Mehta and 

Monteiro, 2006; Neville, 2004). However, in most current building codes, the size 

effect on compressive strength is not taken into account in calculating and designing 

concrete structures (Torrenti et al., 2013). 

 Concrete is an artificial material, normally produced by mixing together Portland 

cement with sand, crushed stone or gravel, and water (Mehta and Monteiro, 2006). 
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Therefore, we can define the desired (input) parameters (e.g. size distribution and type 

of aggregate) in the fabrication stage of our concrete specimens. 

1.3 Organization of the thesis 

After this introduction, the thesis is composed of seven chapters. The contents of each chapter 

are briefly described in the following. 

Chapter 2 deals with the experimental program that has been followed throughout this 

project. In this chapter, detailed descriptions are given in terms of the constituent materials 

used for concrete mixing, the fabrication procedure and the geometry of concrete specimens 

used for this work. We also describe the details of the uniaxial compression test including the 

loading configuration and setup, the testing procedure and the displacement calibration. 

Chapter 3 is devoted to the investigation of the microstructural characteristics of our 

undamaged concrete specimens. For this purpose, an image analysis program is applied to (i) 

quantify the associated characteristic length scales via the Autocorrelation Function analysis 

(ACF) on scanned images of internal sections, and (ii) to characterize the pore structure 

existing in the hardened concrete samples. 

In Chapter 4, the influence of the material microstructure and the sample size on the 

properties of concrete are analyzed. This analysis includes the density, the moisture state and 

the elastic properties of the hardened concrete specimens. 

As the heart of this thesis, the next three chapters address the three main research 

objectives. 

Chapter 5 describes experimental evidences supporting the interpretation of compressive 

failure of concrete as a critical phase transition. This work is done by using Acoustic Emission 

(AE) measurements performed during the compressive loading on tested specimens with 

different concrete mixtures and different sample sizes. From the analysis of AE signal 

parameters, the acceleration of the rate of number and energy released of fracturing events, the 

distributions of AE energies, durations and amplitudes toward the failure, and the divergence 

of the fracturing correlation length and time near failure are exposed. These results enables us 

to (i) confirm the pertinence of the critical interpretation of compressive failure; (ii) determine 

the associated critical exponents; and (iii) examine the influence of sample size as well as of 

the microstructural disorder on the critical behavior of compressive failure of concrete. 



Organization of the thesis 11 

 

 

Chapter 6 presents the results of the uniaxial compressive tests conducted on all of our 

concrete samples with different sizes and different compositions. From those, the statistical 

size effects on the compressive strength of concrete, in terms of average strength, associated 

fluctuations, and probability of failure are explored. In this chapter, the rationality of the finite-

size scaling laws for the mean strength and its associated variability derived from the critical 

interpretation of compressive failure (Chapter 5) is checked with the experimental strength 

data. The role of the microstructural disorder on the statistical size effects of compressive 

strength is also discussed. 

As a consequence of the results of Chapter 6, Chapter 7 revisits some specific aspects in 

classical design rules of concrete structures by taking into account the statistical size effects on 

compressive strength. This work focus on (i) the concept of characteristic compressive strength 

of concrete and (ii) the relationship between the compressive strength and the modulus of 

elasticity. The standards EN 1992 (EN 1992, 2004) and ACI 318 (ACI 318-05, 2005) are 

referenced for this chapter. 

The final chapter gives conclusions and perspectives of the present work. 

Additional theoretical background and experimental results related to previous chapters 

are exposed in the associated appendices.   
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Chapter 2            

                         

Experimental program 

2.1 Outline of experimental program 

The experimental program for this research consists of three major parts. The aims of the first 

part are to examine the mechanical behavior under compression loading and to collect the 

values of compressive failure strength for different concrete samples. For this purpose, a series 

of 527 uniaxial compression tests were performed on concrete specimens with three different 

mixtures and four different sample sizes. In addition, 30 compression tests with the Acoustic 

Emission recording (AE tests) were performed for the second part of the experimental work, 

in order to investigate the critical behavior of compressive failure of concrete samples. The 

third part of the experimental study was to examine the microstructural characteristics of 

hardened concrete samples. This work was done from image analysis performed on the internal 

sections of 12 undeformed concrete samples (one sample for each size and each concrete 

mixture). The details of the image analysis and AE experiments will be described in Chapter 3 

and Chapter 5, respectively.  

In the following sections of this chapter, the details of the constituent materials of the 

concrete mixtures, the manufacturing procedure and the geometry of testing specimens used 

throughout the work are detailed. We also present the details of the uniaxial compression test 

including the loading configuration and setup, the testing procedure and the displacement 

calibration of concrete specimen. 
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2.2 Materials and mix proportions 

The cement used in all mixes was CEM I 52.5N type Portland cement, satisfying the standard 

(NF EN 197-1, 2012). In this study, locally available natural sand was used as the fine 

aggregate, while coarse aggregates were natural gravel. All the aggregates were clean and their 

specific properties conform to the regulation (NF EN 12620, 2008). The size distribution of 

aggregates was investigated from a sieving analysis, following the standard (NF EN 933-1, 

2012). The gradation curves of aggregates used in this work are shown in Fig. 2.1. Ordinary 

potable water available in the laboratory was used for the mixing and curing of concrete. 

Following the French standard (NF EN 206-1, 2004), the weight method was applied to 

prepare three different concrete mixtures based on three different aggregate sizes (see Fig. 2.1 

and Table 2.1). The maximum aggregate size, 𝑑max, were 3.15mm (sand), 16mm (medium 

gravel) and 25mm (coarse gravel). The corresponding abbreviations for identifying each 

concrete group are: Fine aggregate (F), Medium aggregate (M) and Coarse aggregate (C) (see 

Fig. 2.2b). The volume fraction of aggregates for all mixes was kept constant at 0.7m3/m3 of 

concrete and the finesse modulus of aggregates for the three mixtures are reported in Table 2.1. 

The water-to-cement ratio was also set constant for all specimens in each concrete mixture. 

The details of each mixture proportion for 1m3 of concrete are summarized in Table 2.1. 

 

Fig. 2.1. Grading curves of aggregates for three concrete mixtures. 
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Table 2.1. Mixture proportions for 1m3 of concrete 

Concrete 

mixture 

Water 

(kg) 

Cement 

(kg) 
W/C 

Sand 

(kg) 

Medium 

aggregate 

(kg) 

Coarse 

aggregate 

(kg) 

Maximum 

aggregate 

size (mm) 

Finesse 

modulus 

F 225 450 0.50 1350 0 0 3.15 3.24 

M 195 335 0.58 800 1065 0 16 6.95 

C 195 335 0.58 800 0 1065 25 9.21 

2.3 Specimen preparation 

In this work, all concrete specimens were cylinders with a fixed height-to-diameter ratio  

ℎ/𝜙 = 2 and, for each concrete mixture, the diameter (𝜙) ranged as follows: 40, 70, 110 and 

160 mm (see Fig. 2.2b). About 45 samples for each sample diameter (𝜙) and aggregate size 

(𝑑𝑚𝑎𝑥), for a total of 539 concrete specimens, were produced. Among these, 12 samples were 

selected for analyzing the initial microstructure (Chapter 3) and 527 remaining samples were 

used for the compression tests (Chapter 5 and Chapter 6). 

All concrete samples were cast according to the procedure of normal weight concrete 

described in (NF EN 206-1, 2004). During mixing, cement and aggregates were firstly blended 

in dry conditions and water then added in the mixer. To minimize the influence of the casting 

process on strength variability, all samples for each composition were fabricated from the same 

batch of concrete. The concrete mixtures were poured in cylindrical cardboard molds (see Fig. 

2.3a) and compacted by an internal vibrator combined with an external vibrating table to 

improve the consolidation of the samples. 

After casting, all concrete specimens were cured initially for 48 hours by covering the 

molds with a plastic sheet in a moisture room. After demolding, the specimens were continually 

cured in a water basin at a temperature of approximately 20oC for 2 months. 

The compression axis during loading was perpendicular to the direction of casting. To 

ensure planar surfaces when applying loading and avoid flexural stresses, all the specimens 

were cut by diamond grinding discs. Sawing of the concrete specimens was carried out at the 

age of 56 days. After sawing, the concrete specimens were immediately immersed again in the 

water basin for an additional month, then stored in air-dried condition at the laboratory 

temperature until the testing day (Fig. 2.3b). According to the recommendation of the 

regulation (NF EN 12390-3, 2012), loading tests should be performed after a minimum age of 
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28 days. In this work, all the loading tests were carried out five months after concrete 

preparation. 

 

Fig. 2.2. Concrete specimens used for the experimental investigations: (a) Geometries of the four 

different sizes of concrete specimens; (b) Cross sections of the three different concrete mixtures. 
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(a) 

 

(b) 

Fig. 2.3. Different steps in preparing the concrete specimens. (a) Cylindrical cardboard molds with 

different sizes and constituent materials for casting concrete samples; (b) The hardened concrete 

samples during the air-dried curing process. 
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2.4 Uniaxial compression test 

A series of 527 uniaxial compressive tests was carried out under a load control protocol, 

following the procedure recommended by the regulation (NF EN 12390-3, 2012). As the 

samples were very different in size, two load-control uniaxial compression machines (of 

different stiffness and loading capacity), complying with the standard (NF EN 12390-4, 2000), 

were used. Machine A (Fig. 2.4a) with a capacity of 3000kN was used for the three larger 

sample sizes (70x140-mm; 110x220-mm and 160x320-mm cylinders). The stiffness of this 

machine is 2.9 times stiffer than that of the largest samples. For the remaining size (40x80mm-

samples), the uniaxial compression tests were conducted with machine B (Fig. 2.4b). This 

machine has a capacity of 300kN and its stiffness is 3.5 times larger than the stiffness of the 

small samples. 

A constant stress rate of 0.5MPa/s, corresponding to a strain rate ranging from         

2.4x10-5/s to 3.2x10-5/s was applied on the concrete samples placed between two steel-

hardened platens of the compression machine until the specimen failed. Loads were 

continuously measured by the load cell positioned at the top platen (see Fig. 2.4a) and directly 

 

(a) 

 

(b) 

Fig. 2.4. Uniaxial compression testing setups. (a) Compression machine A used for three larger 

concrete specimen sizes (cylinders 70x140mm; 110x220mm and 160x320mm); (b) Compression 

machine B used for the smallest size (cylinders 40x80mm). 
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transmitted to the data acquisition system. When the load fell below 50% of the peak load, 

loading was automatically stopped. While the bottom steel platen was fixed, the top one could 

rotate. This enables the upper platen to adjust to the geometrical imperfections of the 

specimens. 

During loading, the load (𝐹) and the axial displacement (Δ𝑡) were continuously 

monitored and recorded at a 5Hz frequency. The axial displacement of the bottom platen (Δ𝑡) 

was measured by one Linear Variable Differential Transducer (LVDT) attached on the frame 

of the machine. 

2.5 Calibration of the measured displacement 

When a concrete specimen is loaded, both the specimen and the machine deform. As a result, 

the measured displacement (Δ𝑡) generally comprises not only the true axial shortening of the 

specimen (Δ𝑠𝑝), but also the elastic deformation of the loading frame (Δ𝑓𝑟) as a function of 

the applied load. Therefore, to obtain the value of Δ𝑠𝑝, the elastic deformation Δ𝑓𝑟 has to be 

subtracted from the total displacement (Δ𝑡) by using the following equation: 

 Δ𝑠𝑝 = Δ𝑡 − Δ𝑓𝑟 (2.1) 

According to Eq. (2.1), the elastic loading frame deformation (Δ𝑓𝑟) can be determined 

if we know the value of displacement (Δ𝑠𝑝). This is done by performing a compression test on 

the reference sample of known elastic modulus. The value of (Δ𝑓𝑟) can then be calculated as 

follows: 

 Δ𝑓𝑟 = Δ𝑡 −
𝐹. ℎ

𝑌𝑟𝑒𝑓. 𝑆
 (2.2) 

where 𝐹 is the applied load, 𝑌𝑟𝑒𝑓 is the Young’s modulus of the reference sample, ℎ and 𝑆 are 

the height and the cross-sectional area of the reference sample, respectively. Note that Eq. (2.2) 

is only valid in the elastic phase of the reference sample. 

In this study, we used an aluminum cylinder of 110x220 mm and a stainless steel cylinder 

of 40x80 mm to evaluate the elastic deformation of machine A (Fig. 2.4a) and machine B (Fig. 

2.4b), respectively. The properties of these two reference samples are summarized in Table 

2.2. With large elastic limits (> 250MPa), these reference samples remain in the elastic stage 

under loadings applied in this study. In other words, using the reference samples enables us to 
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predict the relationships between the loading frame deformation (Δ𝑓𝑟) and the applied load 

(𝐹). 

The calibration tests were carried out on the reference samples by using the same testing 

configuration as for the compression tests performed on concrete samples (section 2.4). The 

maximum loads at the end of the calibration tests were set up to cover the maximum loads for 

the compression tests of our concrete samples but to be smaller than the elastic limit of the 

reference samples (Table 2.2). Fig. 2.5 shows the relationship between the three displacements 

(Δ𝑡;  Δ𝑟𝑒𝑓 and Δ𝑓𝑟) with the applied load (𝐹) for two calibration tests carried out with two 

compression machines. The true displacement of the reference sample (Δ𝑟𝑒𝑓) was calculated 

by using Hooke’s law as Δ𝑟𝑒𝑓 = 𝐹. ℎ/(𝑌𝑟𝑒𝑓 . 𝑆) and the elastic deformation of loading frame 

(Δ𝑓𝑟) was computed from equation (2.2). 

Table 2.2. Properties of reference samples used for the displacement calibration tests 

Properties 

 

Aluminum 

sample 

Stainless steel 

sample 

Diameter, 𝜙 (mm) 110 40 

Height, ℎ (mm) 220 80 

Modulus of elasticity, 𝑌𝑟𝑒𝑓 (GPa) 75 200 

Strength (MPa) 390 620 

Elastic limit (MPa) 260 310 

Density (kg/m3) 2800 7900 

The applied Δ𝑓𝑟 vs. 𝐹 load data recorded from the calibration tests were then arranged 

into the successive load intervals of width 2000N. We assumed a linear relation Δ𝑓𝑟 − 𝐹 in 

each interval: 

 Δ𝑓𝑟(𝑗) = 𝑘𝑗 . 𝐹 + 𝑚𝑗 (2.3) 

where 𝑘𝑗  and 𝑚𝑗 are constants, extracted from the linear fitting of Δ𝑓𝑟 − 𝐹 data in 𝑗𝑡ℎ load 

interval. Applying Eq. (2.3) for all of the load intervals, we constructed a calibration table 

which consists of the consecutive class intervals of applied load and the corresponding values 

(𝑘𝑗 , 𝑚𝑗). 
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Using this calibration table for the compression tests of concrete specimens, we can 

calculate the elastic deformation of the compression machine (Δ𝑓𝑟) at any applied load and 

correct the true displacement of concrete sample (Δ𝑠𝑝). Fig. 2.6 shows the comparisons of 

stress-strain curves of different samples before and after calibrating the measured 

displacement. In this figure, we also plotted the value of the elastic modulus (𝑌𝑡) approximately 

estimated from the stress-strain curve (see Chapter 4 for more details). It is observed that the 

elastic modulus after calibration, of course, is much larger than before calibration. In particular, 

the value of the estimated elastic modulus for the aluminum sample obtained after the 

correction of measured displacement (𝑌𝑡 = 74.8 GPa) (see Fig. 2.6a) is very close to the 

specified value (reported in Table 2.2), confirming the suitability of the calibration procedure. 

A similar result was obtained for the steel sample and machine B. Note that this calibration 

procedure does not have any impact on the measure of the compressive strength of the samples 

(see Fig. 2.6b). In the rest of this thesis, when mentioning the displacement (or deformation) 

of concrete specimen, it is understood as the value after calibration. 

 

Fig. 2.5. The relationship of the total displacement (Δ𝑡), the displacement of the reference sample 

(Δ𝑟𝑒𝑓), and the elastic deformation of loading machine (Δ𝑓𝑟) with the applied loads for the calibration 

tests carried out with (a) the compression machine A and (b) the compression machine B. 
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Fig. 2.6. Comparisons of stress-strain curves of different samples before and after calibrating the 

measured displacement: (a) for the Aluminum sample; (b) for a 160-mm sample of M-concrete. Dashed 

lines are the curves before calibration and solid lines are the curves after calibration. 
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Chapter 3            

                  

Microstructural characteristics1 

3.1 Introduction 

Concrete is a complex heterogeneous material in which aggregates with a certain size 

distribution are mixed together with cement and water to form a hardened material. The internal 

structure of hardened concrete is hence influenced by various factors, including component 

properties, aggregate size, shape and texture, and preparation conditions (Masad et al., 1999). 

Therefore, studying the mechanical behavior of concrete requires an accurate description of its 

microstructure, as effective elastic properties (Jeulin and Ostoja-Starzewski, 2001; Torquato, 

1991) as well as fracture of heterogeneous materials (Alava et al., 2006) depend on disorder 

characteristics (size, shape and spatial distribution of heterogeneities). 

 In this chapter, we present an image analysis procedure to capture the microstructural 

characteristics of our undamaged concretes from internal sections within specimens of different 

sizes and compositions. To analyze the internal structure of our (undeformed) concretes and 

quantify the associated characteristic length scales, we performed an Autocorrelation Function 

analysis (ACF) on scanned images of internal sections (Kanit et al., 2003). This allowed 

estimating a “global” autocorrelation length, 𝜉𝑔, describing the internal microstructure as a 

whole, as well as an autocorrelation length of pore structure, 𝜉𝑝.  

                                                 

1 The content of this chapter has been presented in the article: 

Vu, C. C., Weiss, J., Plé, O., Amitrano, D., Vandembroucq, D. (2018), Revisiting statistical size effects on 

compressive failure of heterogeneous materials, with a special focus on concrete, Journal of the Mechanics and 

Physics of Solids, 121, p.47–70. doi:10.1016/j.jmps.2018.07.022 
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Following this introduction, the next section recalls the principles of the ACF analysis. 

A brief description of the image analysis procedure used in this study is provided in section 

3.3. Section 3.4 is devoted to determine the global autocorrelation lengths, 𝜉𝑔. The 

characterization parameters of the pore structure of concrete samples are investigated in section 

3.5. Conclusions for this chapter are summarized in section 3.6. 

3.2 Autocorrelation Function analysis 

The two-dimensional autocorrelation function (ACF) of an image statistically characterizes the 

spatial pattern within that image and represents a powerful tool for microstructural analysis 

(Pfleiderer et al., 1993). The main advantage of this method is that the segmentation of the 

images, to extract microstructural features (aggregates, pores, grains, etc.), is not mandatory, 

thus avoiding possible biases associated with the identification of feature boundaries. ACF is 

sensitive to the size, shape, orientation and spatial organization of the features, but not on their 

location. It gives: (i) a quantitative description of the microstructure in general terms, and (ii) 

an objective determination of a representative volume element (RVE) of the material in terms 

of microstructural disorder (Kanit et al., 2003).  

The ACF describes the correlation of an image with itself (Heilbronner, 1992) and is 

defined by: 

 𝑓(𝑥, 𝑦)⨂𝑓(𝑥, 𝑦) = ∫ ∫ 𝑓(𝑥′, 𝑦′). 𝑓(𝑥 + 𝑥′, 𝑦 + 𝑦′)𝑑𝑥′𝑑𝑦′
+∞

−∞

+∞

−∞

 (3.1) 

where 𝑓(𝑥, 𝑦) is the two-dimensional gray value function defining the image, ⨂ is the 

convolution or correlation operator, (𝑥, 𝑦) are the image coordinates, and (𝑥′, 𝑦′) represent the 

distance (or lag) from the corresponding (𝑥, 𝑦) position. 

The ACF is generally introduced in the context of Fourier analysis and Fast Fourier 

Transforms (FFT) which is mathematically equivalent to Eq. (3.1) but computationally more 

efficient (Gonzalez and Woods, 2002; Jahne, 2005). On the image plane, a region of interest 

(ROI), which must be square to allow the use of FFT algorithms, is selected and digitized 

(Heilbronner and Barrett, 2014; Pfleiderer et al., 1993). Following Heilbronner (Heilbronner, 

2002; Heilbronner and Barrett, 2014), we used the following procedure to calculate the ACF:  

1- The ROI is selected and digitized; 

2- The mean gray value is subtracted: 
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 𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦)  − 〈𝑓(𝑥, 𝑦)〉 (3.2) 

3- The two-dimensional discrete Fourier transform is given by: 

 𝑔(𝑢, 𝑣) =
1

𝑁
∑ ∑ 𝑔(𝑥, 𝑦). exp [−2𝜋𝑖(𝑢𝑥 + 𝑣𝑦)]

𝑁−1

𝑦=0

𝑁−1

𝑥=0

 (3.3) 

where 𝑁 is the size of the matrix, 𝑔(𝑢, 𝑣) is the discrete transform, and 𝑢 and 𝑣 are the 

frequencies in x- and y- directions; 

4- The transform is calculated using the theorem of separability, meaning that two consecutive 1D 

FFTs are used to transform the rows and columns of the image matrix; 

5- The Fourier transform of the ACF is obtained by multiplying the Fourier transform of the 

image, 𝑔(𝑢, 𝑣), with its complex conjugate 𝑔∗(𝑢, 𝑣); 

6- The ACF value is finally obtained by a two-dimensional inverse discrete Fourier transform. 

3.3 Image analysis procedure 

One sample was selected from each composition and each size sets of specimens. These 

samples were then cut into four pieces (see Fig. 3.1). In order to obtain good quality images, 

the sample surfaces were first ground flat using hand pressure on a water-cooled wheel topped 

with more and more grit size of metal-bonded diamond plates, and then polished using 

successively finer grit resin-bonded diamond plates. A water rinse was applied after polish to 

thoroughly clean the fresh surface. The quality of polish was considered acceptable as the 

reflectivity of the surface was uniform, without striations from the grinding materials. 

Color images of the sample sections were acquired with a flatbed scanner, using 24-bit 

color (RGB) digital imaging with a resolution of 1200dpi (corresponding to a 21.17μm pixel 

size). The RGB image was split into three gray scale images (corresponding to Red, Green, 

Blue channel), and the ACF was averaged over the three different channels (see Fig. 3.2). 

For circular sections, as FFT algorithms require square ROIs, 90 different square ROIs, 

rotating around the center of the circular image, were examined and their ACF averaged. For 

rectangular sections, two square ROIs were combined to pave to entire image. 

The entire image analysis procedure used to calculate the ACF of each concrete sample 

is summarized in Fig. 3.2. 
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Fig. 3.1. Sectioning of concrete samples with identification of polished surfaces. 

 

 

Fig. 3.2. 2D Autocorrelation function analysis of concretes samples (see text for details). 
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3.4 Global autocorrelation length 

The ACF for 3 different concrete mixtures with the same sample size (𝜙 × ℎ = 110x220 mm) 

are displayed on Fig. 3.3.  

The different microstructures are easily recognizable on the ACF plots, with the extent 

of the central stain clearly correlated with the aggregate graduation (F-, M- and C-concretes). 

We then define the characteristic microstructural length scale as the Autocorrelation length, 

𝜉𝑔, calculated from an integration of the ACF: 

 𝜉𝑔 = ∫ (𝐴𝐶𝐹(𝑟) − 𝐴𝐶𝐹(𝑋0,𝑔)) 𝑑𝑟
𝑋0,𝑔

0

 (3.4) 

where 𝑋0,𝑔 corresponds to the integral range over which the ACF remains positive (Kanit et 

al., 2003; Matheron, 1971), i.e. 𝐴𝐶𝐹(𝑋0,𝑔) (see Fig. 3.2). 

 

Fig. 3.3. Autocorrelation function for 3 different compositions of concrete; (upper) original scanned 

image of concrete ; (lower) digital image of ACF; (a) F-concrete; (b) M-concrete; (c) C-concrete. 
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Owing to the possibly anisotropic shape of the aggregates, the ACF values might be 

slightly anisotropic, especially for large aggregates (C-concrete) and small samples (e.g. Fig. 

3.3c). In this study, we do not quantify this anisotropy. Therefore, the ACL value was estimated 

by averaging the ACL over all directions around the central point. The results are summarized 

on Fig. 3.5, from which we can conclude that: 

 (i) different sections of the same concrete sample show very similar ACF and ACL, 

meaning that there is no segregation of the internal concrete microstructure (Fig. 3.5a), 

(ii) for a given concrete mixture, the ACF and the corresponding 𝜉𝑔-value do not exhibit 

any significant sample size effect (Fig. 3.4 and Fig. 3.5b), 

(iii) as expected, there is a clear correlation between 𝜉𝑔 (reported in Table 3.2) and the 

aggregate size (Fig. 3.5c and Fig. 3.12a), meaning that the latter largely controls the 

microstructural characteristics of the material and, 

(iv) the ACL of the C-concrete (3.5 mm) is about one order of magnitude smaller than 

the diameter of the smallest samples (40 mm). This suggests that, in terms of microstructural 

characteristics, even the smallest samples can be considered as being larger than the RVE of 

the material, whatever the type of concrete. 

 

Fig. 3.4. Global autocorrelation length, 𝜉𝑔, for all concrete specimens. 
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Fig. 3.5. Autocorrelation function of concrete: (a) for different sections of sample M-160x320 mm; 

(b) Different sizes of sample for the F-concrete group; (c) Different compositions of concrete with 

the same sample size (160x320 mm). 
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3.5 Characterization of the pore structure 

The strength of concrete can be significantly affected by the volume of all pores: capillary 

pores, gel pores and air voids (entrained and entrapped air voids) (Neville, 2004). Hence, the 

porosity and size distribution of pores must be quantified (Fonseca and Scherer, 2015). Due to 

their small sizes (ranging from 0.5nm to 1𝜇m), gel and capillary pores are hard to detect by 

optical methods and have little impact on the strength of concrete (Mehta and Monteiro, 2006). 

Thus, we just focus here on air voids (referred as pores in the following). In the present work, 

an image analysis procedure was used to characterize the pore structure of our undamaged 

concrete samples based on the procedure presented in (ASTM C 457/C 457M-16, 2016; 

Jakobsen et al., 2006). 

3.5.1 Image of pore structure 

After the scanning process for color image of cross-section concrete sample (section 3.3), to 

image the pore structure, these sectional surfaces were treated to enhance the contrast between 

the pores and other components (aggregates, cement paste). This work was done by filling the 

depressions with a calcium carbonate paste. After this preparation, the sectional surfaces were 

scanned by a flatbed scanner at a resolution of 1200dpi (equivalent to 21.17μm/pixel). Thanks 

to the white color of the calcium carbonate paste, the pores were easily distinguished from the 

solid phases (aggregates and hardened cement paste) after applying a manual contrast 

enhancement (Fig. 3.6c) and thresholding (Fig. 3.6d). Fig. 3.7 illustrates a comparison of the 

pore structures for three different concrete mixtures. 

 

Fig. 3.6. Image analysis procedure of the pore structure: (a) concrete sample surface after grinding and 

polishing; (c) scanned image of pores after the contrast enhancement operation; (d) binary image of 

pores obtained after thresholding. 
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Fig. 3.7. Comparison of the pore structure for three different concrete mixtures; (a) F-110x220mm; (b) 

M-110x220mm; (c) C-110x220mm. Top figures are the original scanned images and bottom figures are 

the corresponding binary images of pores. 

3.5.2 Pore size distribution and porosity 

Whereas gel and capillary voids are irregular in shape, air voids are generally spherical-like 

(Mehta and Monteiro, 2006; Neville, 2004). This is consistent with the cross-sections of Fig. 

3.7. Therefore, to obtain the three-dimensional (3D) pore size distribution, a stereological 

2D→3D conversion method for a polydispersed system of spheres (Saltykov, 1967; 

Underwood, 1970) was applied in this research. From the binary image of pores (Fig. 3.7), the 

cross-sectional areas of individual pores were calculated and classified into 𝑛 size (diameter) 

intervals. A value of 𝑛 = 14 was chosen to obtain a large enough number of pores in each 

interval. We noted (𝑁𝐴)𝑖  the number of pores per unit area in each size interval 𝑖. The 

corresponding diameter range for the 𝑖𝑡ℎ interval is [𝑑𝑝𝑚 × 10−0.1(𝑖−2), 𝑑𝑝𝑚 × 10−0.1(𝑖−1)], 

where 𝑑𝑝𝑚 is the largest 2D diameter of an equivalent circular pore. Following the Saltykov’s 

method (Saltykov, 1967; Underwood, 1970), we assumed that the largest 2D pore areas 

correspond to the largest spheres. It means that the diameter of the largest 2D pore area is equal 



32 Microstructural characteristics 

 

 

to that of the largest 3D spherical pore in the sample volume. Smaller 2D areas of diameter 

(𝑑𝑝)𝑖 can result from cutting the spheres having a diameter (𝑑𝑝)𝑗 larger than or equal to (𝑑𝑝)𝑖. 

Then, from the geometric probability distribution of the distances from a random cutting plane 

to the centers of spheres, we obtain the expression: 

 (𝑁𝑣)𝑗 =
1

(𝑑𝑝)𝑗
∑𝛼𝑖(𝑁𝐴)𝑖

𝑛

𝑖=𝑗

 (3.5) 

where the 𝑗’s refer to sphere diameters and the 𝑖′s refer to area diameters; 𝑖 and 𝑗 are 

integer values from 1 to 𝑛, and 𝑛 is equal to the total number of diameter class intervals; (𝑁𝑣)𝑗 

is the number of spherical pores per unit volume in the diameter class 𝑗; (𝑑𝑝)𝑖 is the diameter 

of the largest areas observed on the cutting plane, this diameter depends on the number of size 

class intervals, and corresponds to the sphere diameter class 𝑗; ∑ (𝑁𝐴)𝑖,𝑗𝑗  represents the number 

per unit area of pore diameter class (𝑑𝑝)𝑖, which can be obtained from spheres of different 

diameter (𝑑𝑝)𝑗; 𝛼𝑖 is the coefficient corresponding to the area’s diameter class (𝑑𝑝)𝑖, this 

coefficient can be obtained from the probability of a cutting plane intersecting a sphere of 

diameter (𝑑𝑝)𝑗 to yield areas of diameter (𝑑𝑝)𝑖. Using the values of the coefficients 𝛼𝑖 given 

in (Saltykov, 1967; Shen et al., 2006; Underwood, 1970), the 3D pore size distribution was 

determined for each concrete sample.  

Fig. 3.8 presents the (cumulative) probability distribution of pore sizes for different 

concrete samples. We observe: (i) an absence of sample size effect on the pore size distribution 

for a given type of concrete; (ii) that the pore size distributions have a power law shape, 

𝑃(> 𝑑𝑝)~𝑑𝑝
−𝛼𝑝, with an exponent 𝛼𝑝 slightly varying with the material (see Fig. 3.8). 

From these distributions, the average diameter and the total porosity were estimated and 

reported in Table 3.1 for the different concrete samples. We note that the number of pore per 

𝑚3, the mean as well as the maximum pore diameter, and the total porosity, all decrease with 

increasing aggregate size (see Fig. 3.7 and Table 3.1). In this study, the maximum pore 

diameter, 𝑑𝑝,𝑚𝑎𝑥, was calculated by averaging the values of 𝑑𝑝𝑚 of all four different sections 

(Fig. 3.1) of a given size, and of all sections and samples (whatever the size) of a given concrete 

mixture. 

The main cause of porosity present in hardened concretes is due to the presence of free 

water during the mixing of concrete. During the batching procedure, because air and water do 

not mix, air trapped in fresh concrete is in the form of gas bubbles surrounded by a thin liquid 
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film and suspended in the mix water (Mehta and Monteiro, 2006). The more water used for 

preparing concrete, the more free water will remain after complete hydration, thus the more air 

bubbles are trapped when concrete hardens. This explains why the F-concrete, which has the 

largest water-cement ratio, shows the highest pore sizes and porosity (see Fig. 3.7 and Table 

3.1). 

 

 

Fig. 3.8. Size distribution of pores per unit volume for different concrete samples. (a) F-concrete; (b) 

M-concrete; (c) C-concrete and (d) All concrete samples. 
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Table 3.1. Pore structure parameters, averaged over all sections and sample sizes, for the three 

different concrete mixtures. 

Concrete 

mixture 

Mean pore diameter, 

 〈𝒅𝒑〉 (mm) 

Maximum pore diameter, 

 𝒅𝒑,𝒎𝒂𝒙 (mm) 

Porosity, 

 𝒑𝒐 (%) 

Mean SD Mean SD Mean SD 

F 0.33 0.24 6.9 1.8 4.8 1.2 

M 0.31 0.21 6.7 1.2 1.6 0.4 

C 0.28 0.20 5.4 1.3 1.5 0.3 

 

3.5.3 Autocorrelation length of pore structures 

With the same procedure described above for 𝜉𝑔 (section 3.3) but performed on the binary 

images of the pores (Fig. 3.7), the autocorrelation length of the pore structure, 𝜉𝑝, was obtained. 

For the binary image, the value of 𝑔(𝑥, 𝑦) in Eq. (3.2) is equal to 1 for the white phase (pores) 

and 0 for the black phase (aggregates, cement paste) (see Fig. 3.7). In this case, the initial value 

of the ACF of the pore structure is 𝜙𝑎 at 𝑟 = 0 (see Fig. 3.9), where 𝜙𝑎 is the area fraction of 

pore (the white phase in Fig. 3.7), while it reaches the asymptotic limits of 𝜙𝑎
2 for very large 

distance (𝑟 → +∞) (Jiao et al., 2008; Kanit et al., 2003; Moon et al., 2014; Torquato, 1991). 

We define the characteristic length scale of pore structure as the autocorrelation length, 𝜉𝑝, 

computed from an integration of the ACF of pore structure: 

 𝜉𝑝 = ∫ (𝐴𝐶𝐹(𝑟) − 𝐴𝐶𝐹(𝑋0,𝑝))𝑑𝑟
𝑋0,𝑝

0

 (3.6) 

where 𝑋0,𝑝 corresponds to the integral range over which the ACF of pore structure remains 

larger than 𝜙𝑎
2 (Kanit et al., 2003), hence, 𝐴𝐶𝐹(𝑋0,𝑝) = 𝜙𝑎

2 was used in this study. 

Fig. 3.10 shows the values of 𝜉𝑝 for each concrete sample, averaged over 4 different 

sections. For a given concrete mixture, there is no clear trend for the evolution of 𝜉𝑝 with 

sample size, meaning that there is no significant size effect on the characteristic length of the 

pore structure of our concretes (e.g. C-concrete samples (Fig. 3.11b)). Unlike for the global 

autocorrelation length, 𝜉𝑔 (in Fig. 3.4), the F-concrete shows the highest 𝜉𝑝-value (see Fig. 

3.10 and Fig. 3.11c). Moreover, different sections of the same sample display very similar ACF 
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and ACL of pore structure (Fig. 3.11a), meaning that the pore structures were uniformly 

distributed in the volume of hardened concrete sample. The length scale, 𝜉𝑝, and the integral 

range of ACF, 𝑋0,𝑝, of the pore structures for the three different concrete mixtures are 

summarized in Table 3.2. 

 

Fig. 3.9. An example of Autocorrelation function (ACF) of the pore structures; where 𝜙𝑎 is the area 

fraction of pores, the asymptotic value of ACF is equal to the square of the area fraction of pore, 𝜙𝑎
2, 

and 𝑋0, 𝑝 is the integral range where 𝐴𝐶𝐹(𝑋0,𝑝) = 𝜙𝑎
2
. 
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Fig. 3.10. Autocorrelation length of pore structure, 𝜉𝑝, for all concrete specimens. 

 

Table 3.2. The values of the microstructural characteristics length scales, 𝜉
𝑔
 and 𝜉

𝑝
, and integral ranges 

of the ACF, 𝑋0,𝑔 and 𝑋0,𝑝, averaged over all sections and sample sizes, for the 3 different concrete 

mixtures. 

Concrete 

mixture 

𝝃𝒈 (mm) 𝑿𝟎,𝒈 (mm) 𝝃𝒑 (μm) 𝑿𝟎,𝒑 (mm) 

Mean SD Mean SD Mean SD Mean SD 

F 0.6 0.1 7.0 3.7 26.4 7.5 6.9 4.9 

M 2.1 0.3 13.7 4.9 9.8 5.7 4.4 2.2 

C 3.5 0.5 19.0 9.3 8.5 4.4 6.0 3.3 
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Fig. 3.11. Autocorrelation function of pore structure in concrete samples: (a) for different sections of 

sample M-160x320mm; (b) different sizes of sample for the C-concrete group; (c) different composition 

of concrete with the same size (110x220mm). 
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3.6 Conclusion 

In this chapter, the microstructural disorder of our undamaged concretes has been characterized 

from an image analysis conducted on internal sections within concrete samples of different 

sizes and compositions. We have also performed the Autocorrelation Function analysis (ACF) 

on the scanned images of sample surfaces to analyze the internal structure of concretes. This 

work enabled us to estimate two values of the Autocorrelation lengths which were used to 

define the associated characteristic microstructural disorder length scales of our concrete 

specimens. Details are as follows: 

- The global autocorrelation length, 𝜉𝑔, derived from the ACF analysis performed on the 

color image of sample surfaces (section 3.4) can be used to describe the internal 

microstructural disorder as a whole. Moreover, as displayed in Fig. 3.12a, a positive 

correlation of 𝜉𝑔 with the maximum aggregate size, 𝑑max, enables us to indicate that 

the global autocorrelation length, 𝜉𝑔, can also be used to represent the structure of 

aggregates. 

- The autocorrelation length, 𝜉𝑝, estimated from the ACF analysis realized on the binary 

image of pores (section 3.5) is considered as the characteristic length scale of the pore 

structure. As shown in Fig. 3.12c, a clear correlation between 𝜉𝑝 and the product of the 

total porosity, 𝑝𝑜, and the maximum pore diameter, 𝑑𝑝,𝑚𝑎𝑥, is observed. This 

demonstrates that the pore autocorrelation length, 𝜉𝑝, captures both the total numbers 

and the size of pores in hardened concrete sample. 

An important result obtained in this chapter is that both the global, 𝜉𝑔, and the pore, 𝜉𝑝, 

autocorrelation lengths as well as the corresponding integral ranges 𝑋0,𝑔 and 𝑋0,𝑝 are (i) 

independent of the sample size and (ii) much smaller than the smallest sample size, whatever 

the type of concrete. (Kanit et al., 2003) argued that the integral range of a microstructure is an 

adequate measurement of the corresponding RVE size. Hence, our results indicate that all 

samples tested in this work, including the smallest ones, are larger than the RVE of the 

corresponding concrete in terms of microstructure and disorder. 
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Fig. 3.12. Relationship between the autocorrelation length (a) 𝜉𝑔 and the maximum aggregate size, 

𝑑max; (b) 𝜉𝑝 and 𝑑max; and (c) 𝜉𝑝 and the product of the porosity, 𝑝𝑜 (absolute value) and the maximum 

pore diameter, 𝑑𝑝,𝑚𝑎𝑥. Black dashed-lines are the linear fits. 
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Chapter 4              

                   

Properties of hardened concrete samples2 

4.1 Introduction 

As a multiphase heterogeneous material, the response of concrete to applied stress is a result 

of complex interactions and is affected by various factors (Mazars et al., 1991). According to 

(Mehta and Monteiro, 2006), these factors can be classified into four categories: (1) 

characteristics and proportions of materials, (2) curing conditions, (3) loading parameters, and 

(4) specimen parameters. 

Within each concrete mixture, all the samples were produced from the same batch as 

well as using the same casting and curing process (section 2.3). As an identical loading protocol 

was applied for all the tests (section 2.4), we can neglect the influence of the loading parameters 

on compressive strength. Regarding specimen parameters, this includes the sample size, and 

geometry, the microstructural characteristics, the density and the moisture state of hardened 

concrete (Jeulin and Ostoja-Starzewski, 2001; Mehta and Monteiro, 2006; Torquato, 1991). As 

all our cylindrical concrete samples were prepared with a constant of height/diameter ratio 

(ℎ/𝜙 = 2) , the effect of specimen geometry is thus ignored in this study. The microstructural 

characteristics of our concretes have been already investigated in the previous chapter. 

Therefore, in continuation of the characterization of the sample parameters, this chapter is 

devoted to examine the density and moisture state as well as the elastic Young’s modulus of 

                                                 

2 The content of this chapter has been presented in the article: 

Vu, C. C., Plé, O., Weiss, J., Amitrano, D. (2018), Revisiting the concept of characteristic compressive strength 

of concrete, submitted to Cement and Concrete Research. 
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the hardened concrete samples. The influences of sample size and microstructure on these 

properties are also described. 

4.2 Density 

Before each loading test, the dimensions and the weight of the sample were measured. An 

average diameter, 𝜙, was computed from six measures (two for each end of sample and two in 

the middle of the sample length). The average length, ℎ, was obtained from three 

measurements. Following the standard (NF EN 12390-7, 2012), the density, 𝜌, of the hardened 

concrete sample is simply given by: 

 𝜌 =
𝑚

𝑉
  (4.1) 

where 𝑚 is the mass of the concrete sample and V the volume (𝑉 = ℎ
𝜋𝜙2

4
). 

Fig. 4.1a shows the mean density and its standard deviation for all concrete samples. It 

is observed that: (i) for a given concrete mixture, the densities for all sample sizes are similar. 

In other words, there is no significant sample size effect on density; (ii) there is a clear 

correlation between the density and the aggregate gradation (F-, M- and C-concretes) (see Fig. 

4.1a and Table 4.1), with an increasing density when increasing the aggregate size, as expected; 

and (iii) the densities range from 2180kg/m3 to 2400kg/m3, i.e. all our concrete samples comply 

with the definition of normal-weight concrete (EN 1992, 2004; Mehta and Monteiro, 2006; 

Neville, 2004; NF EN 206-1, 2004).  

4.3 Moisture content 

In hardened concrete, water is presented in various states: (i) chemically bounded water within 

the hydration products, (ii) adsorbed or physically bounded water in gel pores (gel water), and 

(iii) free water in capillary pores (capillary water) (Hilsdorf, 1967). These different types of 

water content control the moisture state inside hardened concrete samples and have a 

considerable effect on the mechanical properties of concrete (Bartlett and MacGregor, 1994; 

Mehta and Monteiro, 2006; Neville, 2004). In general, the moisture content, which depends on 

the microstructural characteristics of the material and environmental conditions such as 

temperature, relative humidity, and air velocity (Mehta and Monteiro, 2006), is used to 

quantitatively characterize the moisture state of concrete. 
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In this study, the moisture content, 𝑤𝑐, of the concrete samples was investigated from the 

following procedure: 

1- After loading, 10 deformed concrete samples were collected for each sample size and each 

concrete mixture, and weighted. This weight is noted 𝑚1; 

2- The deformed concrete samples were kept in a drying oven at (105±5)oC for a minimum 

duration of 3 days, according to the regulation (NF EN 12390-7, 2012). After this 3-days period, 

the mass of the dried specimens was measured every 2 hours. When no significant change of 

the mass was detected over three consecutive measurements, the sample was considered as 

totally dry and its weight called 𝑚2; 

3- The moisture content of hardened concrete sample is defined as the mass ratio of water to solid 

phases in the sample (Ifsttar, 1994): 𝑤𝑐 =
(𝑚1−𝑚2)

𝑚2
× 100% 

The mean value and standard deviation of moisture contents for all concrete samples are 

displayed in Fig. 4.1b. For a given concrete group, no significant sample size dependence can 

be observed. In contrast with the density (see Fig. 4.1a), the largest moistures are observed for 

the F-concrete (see Fig. 4.1b and Table 4.1). The moisture content is generally affected by the 

environmental humidity, the cement content and the porosity of the hardened cement paste 

(Mehta and Monteiro, 2006). In our case, all loading tests were performed on the concrete 

samples during a short period (an average of 50 loading tests per day). Hence, the 

environmental conditions can be considered similar for all of concrete samples. The F-concrete 

was prepared with the largest water-to-cement ratio in the mix (see Table 2.1), possibly hold 

the more water free in the hardened sample after the hydration process (see section 3.5). This 

is the main reason to explain why the F-concrete samples show the highest moisture content. 

Compressive strength is known to increase with decreasing moisture in hardened 

concrete (Neville, 2004; Pihlajavaara, 1974). However, owing to the low moisture contents    

(< 5.5%) observed in our concrete samples (see Table 4.1), this factor is not expecting to play 

a significant role on strength in this study (Bartlett and MacGregor, 1994; Neville, 2004). 
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Table 4.1. Density and moisture content of three different concrete mixtures 

Concrete 

mixture 

Density, 𝝆 (kg/m3) Moisture content, 𝒘𝒄 (%) 

Mean SD Mean SD 

F 2184.0 20.5 5.3 0.4 

M 2391.4 14.7 3.2 0.2 

C 2403.8 18.2 3.2 0.3 

 

 

 

Fig. 4.1. Properties of hardened concrete samples as a function of the sample diameter: (a) 

Density; (b) Moisture content. 
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4.4 Elastic Young’s modulus 

As presented in Chapter 3, the internal characteristic length scales are independent of the 

sample size and much smaller than the smallest sample size, regardless of concrete mixture. 

This means that all tested specimens are statistically representative for the microstructure of 

our concretes. Therefore, linear properties, and particularly effective elastic properties, should 

be size-independent (Kanit et al., 2003). We test this idea here from the study on the modulus 

of elasticity, one of the important elastic properties in terms of structural design, quality 

assurance and quality control of concrete structures. This study covers both the static and 

dynamic elastic (Young’s) moduli as well as the relationship between them.  

4.4.1 Static modulus of elasticity 

The static elastic Young’s modulus is defined as the ratio of axial stress to axial strain for a 

material subjected to uniaxial load (Neville, 2004). Various estimation of this static modulus 

from the stress-strain curve have been proposed, such as the secant modulus (ACI 318-05, 

2005; EN 1992, 2004; NF EN 12390-13, 2014), the chord modulus (ASTM C469/C469M-14, 

2014) or the tangent modulus (Fib Mode Code, 2013; Mehta and Monteiro, 2006). In this work, 

both the tangent and secant elastic moduli for all concrete samples were determined. The 

deformation of a concrete specimen is calculated as the ratio of the displacement, Δ𝑠𝑝, (see 

section 2.4) to the specimen height (휀 = Δ𝑠𝑝/ℎ). An example of a stress-strain curve for our 

concrete samples is displayed in Fig. 4.2.  

In order to estimate the tangent elastic modulus of concrete, we defined the tangent 

modulus, (𝑌𝑡)𝑖 at a data point 𝑖 from a differentiation of the stress-strain curve:  

 (𝑌𝑡)𝑖 =
𝜎𝑖+1 − 𝜎𝑖

휀𝑖+1 − 휀𝑖
 (4.2) 

A 40 data points moving average of this (𝑌𝑡)𝑖 curve was then performed, and the maximum 

value of this moving average is taken as the tangent modulus, 𝑌𝑡, of the concrete sample 

examined (see Fig. 4.2). The values of tangent moduli, 𝑌𝑡, for different sizes and compositions 

of concrete are shown in Fig. 4.3. 

In this study, the secant modulus, 𝑌𝑠 was calculated by the slope of a line drawn from the 

origin to 40% of the peak stress (EN 1992, 2004). The variations of secant moduli, 𝑌𝑠, with 

sample size for the three concrete mixtures are presented in Fig. 4.4a. As shown in Fig. 4.4b, 

the secant modulus, 𝑌𝑠, is observed to be approximately equal to the tangent modulus, 𝑌𝑠, 
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regardless of concrete mixture and sample size, meaning that below 40 % of the peak load, all 

our concretes remain essentially in the elastic stage. 

 

Fig. 4.2. Illustration of the methods of estimation of the tangent elastic modulus (𝑌𝑡), where the red 

curve is the stress-strain curve, the blue curve is 5Hz differentiated stress-strain curve (𝑑𝜎/𝑑휀) and 

the solid black curve is the 40-point moving average of the blue curve; and of the secant elastic 

modulus (𝑌𝑠) which is calculated by the slope of a line (dashed green line) drawn from the origin to 

40% of the peak stress 𝜎𝑓. 

 

Fig. 4.3. The values of tangent elastic moduli, 𝑌𝑡, for all of concrete samples. 
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(a) 

 

(b) 

Fig. 4.4. The values of static elastic moduli for all concrete samples: (a) Secant modulus, 𝑌𝑠; and (b) 

The relationship between the secant modulus, 𝑌𝑠, and tangent modulus, 𝑌𝑡. 
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4.4.2 Dynamic modulus of elasticity 

According to (ASTM C597-02, 2002), the dynamic Young’s modulus of concrete can be 

estimated from the P-wave velocity, 𝑉𝑝, of a compression wave travelling through an elastic 

concrete body, the Poisson’s ratio, 𝜐, and the density of the concrete sample, 𝜌: 

 𝑌𝑑 = 𝑉𝑝
2 [

𝜌(1 + 𝜐)(1 − 2𝜐)

1 − 𝜐
] (4.3) 

In this study, based on the principles of ultrasonic testing described in (ASTM C597-02, 

2002), the transit time, Δ𝑡, of the P-wave through the concrete sample was measured by using 

an Acoustic Emission (AE) equipment. The velocity, 𝑉𝑝, was then calculated as 𝑉𝑝 = ℎ/Δ𝑡. 

These non-destructive measurements were carried out on undamaged concrete samples before 

compression testing. Three samples were selected from each size and type of concrete, for a 

series of 36 AE tests performed. A couple of piezoelectric transducers (AE sensors) with a 

frequency bandwidth of 20-1200 kHz was used to detect the P-wave arrival. A sketch of the 

testing equipment is shown on Fig. 4.5. 

 

Fig. 4.5. Testing equipment for the acoustic pulse velocity measurement 

Pulses of longitudinal stress waves were generated by breaking a pencil lead (AE source) 

very close to one of two AE sensors (see Fig. 4.5). The remaining AE sensor, acting as a 

“receiver”, then picked up a signal due to the propagated stress waves at the opposite end of 

the concrete cylinder (see Fig. 4.5). Δ𝑡 was calculated from the difference of arrival time of the 

P-wave between the two sensors. Five different pencil lead break tests were performed around 

each of the AE sensors (see Fig. 4.5 - view A), for a total of 10 values of P-wave velocity 

determined for each concrete sample. As the S-waves were hardly distinguishable from the P-
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waves on the AE waveforms, the measurement of the shear modulus, and so of the Poisson’s 

ratio, was not possible. To estimate the Young’s modulus from Eq. (4.3), a value 𝜐 = 0.18 was 

considered for all concrete samples (in agreement with ASTM standards falling between 0.15 

and 0.20 (ASTM C597-02, 2002; Mehta and Monteiro, 2006; Neville, 2004)) and the measured 

values of density 𝜌 (reported in Table 4.1) were used. P-wave velocities and dynamic elastic 

moduli for different sizes and compositions of concrete specimens are presented in Fig. 4.6a 

and b, respectively. 

As expected, the highest values of both the mean and the associated variability of the P-

wave velocities (Fig. 4.6a), static (Fig. 4.3) and dynamic elastic moduli (Fig. 4.6b) are observed 

for the coarser materials (M- and C-concretes), while the smallest values are obtained for the 

finer ones (F-concrete). The values of these properties for the three different concrete mixtures 

are summarized in Table 4.2. For a given concrete mixture, we did not observe any significant 

size effect on mean elastic moduli or their standard deviations. This absence of sample size 

effect on the elastic properties means that all the concrete samples tested, including the smallest 

ones (40x80mm-samples), are large enough in terms of microstructural characteristics to be 

statistically representative of the linear (e.g. elastic) mechanical properties of the materials. 

Table 4.2. Elastic properties of the three concrete mixtures 

Concrete 

group 

Velocity, 

𝑽𝒑 (m/s) 

Static elastic modulus Dynamic elastic 

modulus, 

 𝒀𝒅 (GPa) 
𝒀𝒕 (GPa) 𝒀𝒔 (GPa) 

Mean SD Mean SD Mean SD Mean SD 

F 3803.0 141.1 17.7 2.3 17.5 2.5 28.7 2.2 

M 4308.1 189.8 22.4 2.5 22.3 2.9 40.4 3.7 

C 4342.5 243.7 22.0 3.1 21.2 3.8 40.9 4.6 
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(a) 

 

(b) 

Fig. 4.6. Size-dependent of the elastic properties of concretes: (a) P-wave velocity; (b) Dynamic 

modulus of elasticity. 
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4.4.3 Static versus dynamic elastic moduli 

On Fig. 4.7, the dynamic elastic modulus, 𝑌𝑑, is observed to be systematically larger than both 

the static moduli 𝑌𝑡 and 𝑌𝑠, regardless of sample size and concrete mixture, with a 

proportionality coefficient of 1.8 (𝑌𝑑~1.8𝑌𝑡,𝑠). Nevertheless, it is noteworthy that the values 

of both static elastic moduli, 𝑌𝑡 and 𝑌𝑠, in this study were obtained from the deformation of the 

whole length of the concrete sample (see section 2.4). As recommended in (RILEM TC 148-

SSC, 2000), the strain should be measured over the central third of the specimen length for a 

proper determination of static moduli 𝑌𝑡,𝑠. On the other hand, (Mansur et al., 1995) 

demonstrated that the static elastic modulus estimated by the strain measured from the central 

region of the concrete specimen is approximately 1.35 times higher than the strain measured 

between the loading platens (as in our case). Hence, if we use the correction factor of 1.35 for 

the all values of 𝑌𝑡,𝑠, the linear relation in Fig. 4.7 becomes 𝑌𝑑~1.33𝑌𝑡,𝑠. This is consistent with 

empirical relationships between static and dynamic moduli presented in (Lydon and Balendran, 

1986; Neville, 2004).  

By means of a nondestructive technique, the dynamic modulus is investigated before 

loading and so without microcraking occurring in the concrete sample during the measurement. 

As a result, the dynamic modulus samples the genuine elastic properties of the material, while 

the static modulus can be affected by permanent non-linear deformations resulting from 

damage and microcracking (Linger, 1963; Neville, 2004). Because of this, the dynamic 

modulus is considered to be approximately equal to the initial tangent modulus determined in 

the static test (Mehta and Monteiro, 2006; Neville, 2004). This explains why the elastic 

dynamic modulus, 𝑌𝑑, (or initial tangent modulus) is generally higher than the elastic static 

modulus, 𝑌𝑡 and/or 𝑌𝑠. 
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(a) 

 

(b) 

Fig. 4.7. The relationship between static and dynamic elastic moduli of concrete. (a) 𝑌𝑡 vs. 𝑌𝑑; and 

(b) 𝑌𝑠 vs. 𝑌𝑑. 
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4.5 Conclusion 

In this chapter, the density and moisture state as well as the elastic Young’s modulus of our 

concrete specimens have been investigated. From the study results of these properties, the 

following conclusions can be drawn: 

- For a given concrete group, the density and moisture content of the hardened samples 

were not affected by the sample size. This allows to conclude that all loading tests for 

each concrete mixture were performed under similar initial conditions. 

- There is no significant dependence of elastic properties including both the static and 

dynamic elastic moduli, as well as the velocity of compression wave (P-wave), on the 

sample size within a given concrete mixture. These results are in full agreement with 

the former expectation that all samples, including the smallest ones, are statistically 

representative of the microstructure of our concretes (Chapter 3), and so are larger than 

the RVE for the linear (elastic) properties. In other words, there is no size effects on 

elasticity. 

- The ratio of the dynamic modulus of elasticity to the static modulus for all specimens, 

regardless of concrete mixture and sample size, is always greater than unity. However, 

this ratio directly depends on the methodologies applied for measuring the deformation 

of specimens during the loading and for estimating the static elastic modulus. This 

means that there is no simple conversion between the dynamic modulus which is known 

as the genuine elastic modulus of the material, and an estimate of the static modulus 

which is used in structural design.  
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Chapter 5            

                    

Compressive failure of concrete as a 

critical phase transition 

Based on 

Vu, C. C., Amitrano, D., Plé, O., Weiss, J. (2018), Compressive failure as a critical transition: 

Experimental evidences and universality, submitted to Physical Review Letters. ArXiv preprint arXiv: 

1807.06386. 

 

Classical fracture and failure theories do not consider material disorder and assume a brutal 

failure without precursors. The role of internal disorder on fracture has been extensively 

analyzed over the last decades, mostly from theoretical and numerical models. Yet, the exact 

nature of the process remains highly debated. Here we show, from experimental data on an 

emblematic disordered material, concrete, that compressive failure can be interpreted as a 

critical transition between an intact and a failed state. The associated critical exponents are 

found to be independent of sample size and microstructural disorder and close to mean-field 

depinning values. Although compressive failure differs from classical depinning in several 

respects, including the nature of the elastic redistribution kernel, an analogy between the two 

processes allows deriving (finite)-size effects on strength that match our extensive dataset. 
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5.1 Introduction 

Historically, fracture and failure theoretical frameworks or criteria, such as Griffith theory or 

the Coulomb failure criterion, do not consider material disorder. Consequently, they predict an 

abrupt global failure, without any precursory phenomenon. In that sense, failure can be 

interpreted as a first-order transition from an intact to a failed state (Alava et al., 2006; Girard 

et al., 2012). Materials heterogeneity has been however considered for a long time, especially 

to account for failure strength variability and associated size effects (Weibull, 1939a). 

Nevertheless, this weakest-link approach is based on strong assumptions such as the absence 

of mechanical interactions between defects and between rupture events, or a global failure 

dictated by the activation of the largest flaw (the weakest-link). These assumptions might 

appear reasonable for weakly disordered materials under tension, especially in the case of a 

pre-existing large crack or notch. However, in case of large enough disorder, the quasi-static 

propagation of such a crack can be interpreted as a dynamical critical transition (Barés et al., 

2013; Bonamy et al., 2008; Bonamy and Bouchaud, 2011). The limitations of these classical 

frameworks appear even clearer for highly disordered un-notched systems and/or loading 

conditions stabilizing crack propagation, such as compression (through the presence of 

friction). In those cases, it is known for a long time that failure is a process, involving the 

nucleation, interaction, propagation and coalescence of many microcracks (Lockner et al., 

1991; Reches and Lockner, 1994), hence characterized by precursory phenomena. The 

presence/absence of precursors to failure and faulting has obvious consequences in terms of 

natural hazards forecasting, for e.g. earthquakes (de Arcangelis et al., 2016; Jaumé and Sykes, 

1999), cliff collapses (Amitrano et al., 2005) or landslides (Crosta and Agliardi, 2003). 

The failure of heterogeneous media has been extensively studied over the last 30 years 

(Alava et al., 2006; Herrmann and Roux, 1990), essentially on the basis of theoretical and 

numerical models such as fiber-bundle (FBM) (Pradhan et al., 2010), random-fuse (RFM), 

random-spring (RSM) (Nukala et al., 2005), or progressive damage (PDM) (Amitrano et al., 

1999; Girard et al., 2012, 2010) models. However, the nature of the associated transition 

remains controversial. In the limit of infinite disorder, fracture can be mapped onto the 

percolation problem (Roux et al., 1988). For bounded disorder, FBM with equal-load sharing, 

corresponding to a mean-field approximation, exhibit a critical behavior with the rate of bundle 

breaking per increasing stress diverging at the critical point (the failure) (Pradhan et al., 2010). 

A critical transition was also reported for a PDM of compressive faulting, with the average 

damage avalanche size, the correlation length of damage (Girard et al., 2010), or the largest 
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damage cluster (Girard et al., 2012), all progressively increasing during the loading history and 

diverging at failure. This interpretation is also consistent with a mapping of the faulting 

problem onto the depinning transition (Fisher et al., 1997). On the other hand, for RFM and 

RSM with large (but finite) disorder, the damage process was found to resemble percolation, 

i.e. to be uncorrelated up to the vicinity of failure, and then to brutally localize at failure, thus 

suggesting instead a first-order transition (Nukala et al., 2005, 2004). Besides the nature of the 

transition, this raises the question of the role of the disorder strength on failure precursors.  

This debate calls for experimental data, which are still sparse and disparate. Power law 

distributions of acoustic emission (AE) energies released by damage and microcracking, 

𝑃(𝐸)~𝐸−𝛽, have been frequently reported and presented as evidences of “criticality” in a 

broad sense. However, for highly porous (Baró et al., 2013; Nataf et al., 2014) or cellular 

(Mäkinen et al., 2015) materials under compression, the AE event rate 𝑑𝑁/𝑑𝑡 or the energy 

distribution do not exhibit significant trends as approaching failure, possibly as the result of a 

transient hardening mechanism (Baro et al., 2018), whereas the (stable) power law 𝑝𝑑𝑓 of 

energies is accompanied by Omori-like aftershocks triggering. In contrast, in low-porosity 

rocks, a progressive localization of damage before faulting under compression has been 

revealed from either AE (Lockner et al., 1991; Schubnel et al., 2007) or X-ray tomography 

(Renard et al., 2018, 2017). In this last case, the damage rate, defined as the rate of increasing 

crack-induced porosity, as well as the size of the largest microcrack, were found to power-law 

diverge as approaching global failure, arguing for an interpretation of compressive faulting as 

a critical transition (Renard et al., 2018). Criticality was also argued for the flexural failure of 

composite materials from a divergence of the AE energy release (Guarino et al., 1998).  

Despite these various hints, experimental studies are still lacking to ascertain this critical 

interpretation of compressive failure, to determine the critical exponents, to check their 

universal character and to precise the role of internal disorder. Finding more experimental 

evidences to support these points is the main purpose of this chapter. 

The rest of this chapter is organized as follows. In section 5.2, a brief description of AE 

technique is presented. Section 5.3 details the experimental set-up including AE equipment and 

setting parameters for the AE measurements used in this study. From the experimental results, 

the critical behavior of compressive failure of concrete is investigated in section 5.4. 

Conclusion of this chapter are summarized in section 5.5. 
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5.2 Acoustic Emission measurement 

5.2.1 Principles of Acoustic Emission technique 

Acoustic Emission (AE) is a natural phenomenon that happens in a wide range of materials 

and structures under various kinds of stimulus (change in load, temperature, pressure, etc.) 

(Grosse and Ohtsu, 2008; Mindess, 2004; Pollock, 1989). According to the (ASTM E1316-

06a, 2006), AE is defined as "the class of phenomena whereby transient elastic waves are 

generated by the rapid release of energy from localized sources within a material, or the 

transient elastic waves so generated". Sources of AE vary from the initiation and growth of 

cracks, frictional sliding, slip and dislocation movements, and phase transformations in metals 

(Grosse and Ohtsu, 2008; Ohtsu, 2010; Ouyang et al., 1991; Vives et al., 1994). Based on the 

theory of elastic waves, the basic principle of AE technique is very similar to that used for 

earthquakes in seismology, but applied on a smaller geometric scale (range from some 

millimeters of sample up to several tenth meters of real structure) (Grosse and Ohtsu, 2008; 

Prosser, 2001), hence to much higher frequencies (hundreds of kHz to MHz for AE, Hz and 

below for earthquakes). 

When a structure is subjected to a sufficiently large stimulus (e.g. stress), the elastic 

waves are released from the sources (e.g. due to cracking). These waves propagate through the 

elastic medium towards its surface and are then recorded by the transducers (AE sensors), 

previously placed on the surface of structure. These AE sensors allow to transform the detected 

stress waves into electrical signals. After pre-amplification, the AE signals are transmitted to 

the acquisition system and finally are stored for the analysis. The basic principle of the AE 

technique is illustrated in Fig. 5.1. 

 

Fig. 5.1. Principle of recording procedure of Acoustic Emission signals (reprinted from (Kocur, 2012)) 
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The AE technique can be considered as a non-destructive testing (NDT) method in the 

case of a material tested under a working load without any additional loads (Grosse and Ohtsu, 

2008). For example, it has been applied as a NDT measurement for investigating the P-wave 

velocity of our concretes in section 4.4.2. However, unlike most other NDT methods (e.g. 

ultrasonic) which are implemented either before or after the damage occurs in the structure 

(Fig. 5.2b), the AE technique is usually applied during loading to track microcrack nucleation 

and propagation in the structure (Fig. 5.2a) (Grosse et al., 2003). If a defect is present but does 

not grow (or grows too slowly to generate inertial effects), no AE is received. The possibility 

of observing the damage process during the entire load history without disturbing the specimen 

is a crucial advantage of the AE technique in comparison with other NDT methods (Grosse et 

al., 2003; Grosse and Ohtsu, 2008).  

 

Fig. 5.2. AE versus other NDT methods (a) Principle of AE technique and (b) Principle of Soundwave-

based NDT methods (e.g. ultrasound method). 

5.2.2 Acoustic Emission signal parameter 

When a waveform of an acoustic event reaches the surface of a structure, the AE signal is 

detected by the AE sensors. Two basic types of AE signals can be generated: continuous and 

burst (transient) signals (Fig. 5.3). Continuous signals may originate from undesired sources 

such as mechanical rubbing in the testing systems, environmental noises, etc. Burst-type 

emissions originate from a variety of sources, but primarily involve some form of damage (e.g. 

crack) growth as observed in a sample (Mindess, 2004). Therefore, the first step in AE 

detection is the setup of a threshold level in voltage amplitude (see Fig. 5.4). Consequently, 
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only signals overcoming the threshold are detected as AE events while the signals below are 

considered as the background noise. 

The AE signal parameters which are extracted from the AE signals with respect to the 

threshold setting are depicted in Fig. 5.4. According to the definitions introduced in (ASTM 

E1316-06a, 2006; Grosse and Ohtsu, 2008; Mistras, 2001), the most widely used AE signal 

parameters are defined as follow: 

 Hit: a signal that exceeds the threshold and causes a system channel to record data. In 

Fig. 5.4, one waveform corresponds to one “hit”; 

 Counts: the number of times the AE signal exceeds a preset threshold during any 

selected portion of a test; 

 Amplitude: the highest peak voltage attained by an AE waveform. The AE amplitudes 

are expressed on a decibel (logarithmic) scales as follow: 

 𝑆𝑖𝑔𝑛𝑎𝑙 𝑝𝑒𝑎𝑘 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 (𝑑𝐵) = 20 log10 (
𝑉𝑚𝑎𝑥

𝑉𝑟𝑒𝑓
) (5.1) 

where: 

  𝑉𝑟𝑒𝑓 = 1𝜇𝑉 is the reference voltage at the sensor output (before amplification) 

𝑉𝑚𝑎𝑥 = the peak voltage of the measured AE signal 

In the present work, peak amplitudes exceeding a defined threshold value are considered 

as AE events, and signals below the threshold are considered as noise. 

 

Fig. 5.3. Continuous and burst AE signal (after (Wevers and Lambrighs, 2009)). 
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 Duration: the elapsed time from the first threshold crossing to the last. The duration is 

directly measured in microseconds; 

 Rise time: the time from the first threshold crossing to the peak amplitude of the AE 

signal. Governed by wave propagation processes between the source and the sensor, 

this parameter can be used for several types of signal qualification or noise elimination; 

 Energy: the total elastic energy released by an emission event. AE energy can be 

measured using two different methods (i) the Measured Area under the Rectified Signal 

Envelope (MARSE) - relative energy (see Fig. 5.4) and (ii) an absolute energy. In the 

MARSE technique, the relative value of energy is proportional to the true measure of 

the total energy of an AE hit. The absolute energy is a true energy of an AE hit measured 

in attoJoule (aJ). This energy is derived from the integral of the squared voltage divided 

by the reference resistance over the duration of the AE waveform packet (Mistras, 

2001; Pollock, 1989). The absolute energy is recorded and used in our analysis 

throughout this study. 

 

Fig. 5.4. Schematic diagram of AE parameters (modified from (Pollock, 1989)). 



62 Compressive failure of concrete as a critical phase transition 

 

 

5.3 Acoustic Emission experimental work 

This section describes the details of the AE experimental work based on the combination of 

uniaxial compression tests with AE measurements. Hereafter, this kind of experiment is 

referred as an AE test. As a part of a total of 527 loading experiments (section 2.4), 30 concrete 

samples with different sizes and compositions were used for the AE tests. For a given concrete 

mixture, four AE tests for 40-mm samples and two tests for 70-, 110- and 160-mm samples, 

were performed in this study. In this section, we firstly explore the specified aspects of the 

main AE equipment, then highlight some noteworthy parameters that need to be set up before 

performing an AE experiment, and finally the testing procedure is introduced. 

5.3.1 Acoustic Emission equipment 

Generally, the main AE instrumentation consists of transducers (AE sensors), a set of 

amplifiers, a signal acquisition-processing device, a personal computer (PC), as well as 

connecting coaxial cables and analysis software (Mistras, 2001). A simple layout of AE 

measurement chain is illustrated in Fig. 5.1. In this research, the AE system used is the 

MISTRAS-2001 AE system manufactured by Physical Acoustics Corporation (PAC). In what 

follow, we describe some specific aspects of the main components of this AE system used 

throughout this study. 

5.3.1.1 Acoustic Emission sensors 

A crucial element in the AE equipment is the transducer (sensor). The main function of AE 

sensors is to convert the surface displacements generated by elastic waves into an electrical 

signal for processing by the measuring equipment. The schematic diagram of a typical AE 

sensor used in AE tests is shown in Fig. 5.5. 



Acoustic Emission experimental work 63 

 

 

 

Fig. 5.5. A cut-away of a typical piezoelectric AE sensor (source: NDT Resource Centre). 

The active element of a AE sensor is a thin disk of piezoelectric material which is 

generally a special ceramic such as lead-zirconate-titanate (PZT) (Grosse and Ohtsu, 2008; 

Ohtsu, 2015; Pollock, 1989). In this study, the wide-band AE sensors of type PICO produced 

by PAC were used. They allow to measure in the frequency range from 10 kHz up to 1.85 MHz 

with a peak frequency of approximately 900 kHz (Fig. 5.7). In particular, their small size (Fig. 

5.6) and light weight (1 gram) make them easy to couple on our small samples (i.e. 40-mm 

samples in our case). 

 

Fig. 5.6. Wide-band AE sensor of type PICO used in this work and its dimensions.  
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Fig. 5.7. Manufacturer’s calibration certificate for an example of AE sensor of type PICO used in this 

research. 

5.3.1.2 Coupling of transducers 

A correct coupling of the AE sensors to the surface of the sample is very important for 

obtaining a good signal transmission. During the test, the long term stability of the couplant 

and the environmental conditions, should be considered to select the right couplant for the AE 

test (ASTM E650–97, 1997). There are several types of couplant used for AE testing such as 

liquid, gel, grease and adhesive glue. Here we used the Silicone adhesive glue (Silcoset 151) 

for coupling the AE sensors with the concrete samples, because it can provide a thin layer and 

easily removes any air gap at the interface between the sensor and the sample surface. This 

kind of couplant allows to obtain an excellent sound transmission which is comparable with 

greased based, but offers an easier sensor removal after the testing (Theobald et al., 2008). 

Moreover, this silicone adhesive glue also works very well on rough surfaces (like lateral 

surface of concrete sample) and has a good resistance to bond failure if surface displacement 

occurs during the test. Hence, it is more suitable than the gel or liquid couplants for vertical 

coupling application in our case.  

In order to ensure a proper coupling, the contacting surface between the AE sensors and 

the sample should be planar, smooth and clean before its application. For this aim, some small 

areas on the lateral surfaces of the samples were ground and polished by an angle grinder with 

less and less grit size of metal-bonded discs. 

For the purpose of recording the AE signals, a set of 2 AE sensors were coupled opposite 

to each other on the smallest samples (40x80 mm) (see Fig. 5.8a), while 4 AE sensors were 
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used for the larger samples (70x140 mm, 110x220 mm and 160x320 mm) (see Fig. 5.8b). The 

coupling position of AE sensors is shown in Fig. 5.8. 

 

Fig. 5.8. Coupling position of AE sensors: (a) for the smallest size (40x80-mm samples) and (b) for 

the larger sizes (70x140-mm, 110x220-mm and 160x320-mm samples). 

5.3.1.3 Acoustic Emission preamplifier 

Because the AE signals detected by AE sensor are weak, they are generally amplified by a 

preamplifier, and then processed by a data acquisition system (Mistras, 2001; Ohtsu, 2015). A 

gain of preamplifier employed for concrete is around 40-60 dB and a band-pass filter 10 kHz 

- 2 MHz is recommended (Ohtsu, 2015). Here we used the 2/4/6 preamplifier produced by 

PAC for our AE tests. This preamplifier has gains of 20 dB, 40 dB and 60 dB and a filter 

frequency range of 10-2000 kHz. A gain of 40 dB was applied in all the experiments. 

5.3.1.4 Data acquisition system 

The AE signals from the loaded specimen are converted into electrical signals by the AE 

sensors, then amplified by preamplifiers and recorded by the Acoustic Emission Digital Signal 

Processor (AEDSP-32/16) cards. This kind of AEDSP board provides a wide bandwidth 

ranging from 10 kHz to 2 MHz. In this study, a sampling rate of 4 MHz was fixed for all the 

tests. A parametric input is an external voltage proportional to test parameter (i.e. external load 

in this study), which is recorded simultaneously with the AE signals. 

The MISTRAS-2001 system is equipped with software packages named AEwin to 

collect and process data. The AEwin runs and records the AE signals while the testing is 
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performed. Before starting an AE experiment, some parameters have to be defined in order to 

provide the AEwin software with the correct information to extract the AE parameters. Further 

details about these specific parameters are given in the following section. 

5.3.2 Acoustic Emission test set-up parameters 

As mentioned above, when recording the AE data using the AEwin software, several specific 

parameters have to be defined so as to provide the hardware setup of software before the 

testing. These hardware set-up parameters were then held into the file called “Layout” file that 

can be read only by the AEwin software. This layout file was used for all AE tests without any 

changes in the present study. 

Hardware settings include the amplitude threshold, gain, sampling rate, pre-trigger, hit 

length, Peak Definition Time (PDT), Hit Definition Time (HDT) and Hit Lock-out Time 

(HLT). These variables can be set individually for each channel.  

The threshold level applied in AE measurements is often 30-50 dB in concrete (Ohtsu, 

2015, 2010), while for an equipment with a high sensitivity, a threshold in the range 25-35 dB 

is recommended (Mistras, 2001). In this work, the AE threshold level was set at 30 dB for all 

the AE tests.  

PDT, HDT and HLT are the time parameters of the signal measurement process. The 

illustration of these parameters can be seen in Fig. 5.9. A proper set of time parameters enables 

a correct identification of individual AE signals. For this reason, we performed some Pencil 

Lead Break (PLB) tests which are similar to Hsu-Nielsen (H-N) pencil test described in (ASTM 

E976-10, 2010), on some concrete specimens to determine the timing parameters. Based on 

the measurement of the transit time ∆𝑡 of the P-wave between two AE sensors placed on the 

two ends of cylindrical sample (see Fig. 4.5), the velocity of P-wave, 𝑉𝑝, is calculated as 𝑉𝑝 =

ℎ/Δ𝑡, where ℎ is the height of sample (more details for this test are described in section 4.4.2). 

The correct value of PDT enables the system to determine the peak time (i.e. the rise 

time) of the signal (see Fig. 5.9). If it is too short, the AEwin software will chose an incorrect 

value of rise time. The value of 𝑃𝐷𝑇 can be determined by dividing the AE sensors spacing 

(the diameter of sample, 𝜙, in our case) by the value of 𝑉𝑝 (Mistras, 2001) as follows: 

 𝑃𝐷𝑇 = 𝜙/𝑉𝑝 (5.2) 

The maximum measured value of 𝑉𝑝, of approximately 4400 𝑚/𝑠 (see Table 4.2 and Fig. 4.6a), 

was observed on the C-concrete sample. For the smallest size (40-mm samples), the value of 
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PDT given by Eq. (5.2) is equal to 9.1 𝜇sec. In the MISTRAS-2001 AE system, the PDT is at 

least 10 𝜇sec (Mistras, 2001). Consequently, we chose a PDT of 10 𝜇sec for all the AE tests.  

The HDT defines the duration that the acquisition system will wait to determine the end 

of a hit (see Fig. 5.9). In most PAC systems, the value of HDT must be at least twice as long 

as PDT and more than 20𝜇sec. However, the HDT should be set as short as possible to reduce 

the risk that two separate events will be treated as a single hit (Mistras, 2001). Therefore, we 

used a HDT of 20𝜇sec in all the AE tests. 

The HLT is the time that the system uses, having recorded a signal, to set itself up and 

be ready to record the following hit. The recommended value of 20𝜇𝑠 for most of AE system 

produced by PAC (Mistras, 2001) was chosen for HLT in this study. 

Following the recommendation in (Mistras, 2001), for the setting of analog filter, the 

high limit is calculated by diving the sampling rate by three. With a sampling rate of 4 MHz 

(section 5.3.1.4), we fixed the filter high to 1.2 MHz and the values of the filter low to 20 kHz. 

During the recording of the data using the AEwin software, all the sensors are automatically 

set up in an independent trigger mode, meaning that each channel has its own trigger. The pre-

trigger values tells the software how long to record the waveform (in 𝜇sec) before the trigger 

point (or the point at which the threshold is exceeded). In this work, a pre-trigger value of 

50 𝜇sec was set up for all the channels. The value of other hardware set-up parameters used in 

this study are summarized in Table 5.1. 

 

Fig. 5.9. The setting parameters of MISTRAS-2001 AE system (modified from (Mistras, 2001)). 
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Table 5.1. Summary of the hardware-setup values for AE testing 

Parameter Value 

Peak definition time (PDT) 10 𝜇𝑠 

Hit definition time (HDT) 20 𝜇𝑠 

Hit lockout time (HLT) 20 𝜇𝑠 

Sampling rate 4 MSPS 

Pre-trigger 50 𝜇𝑠 

Hit length 10 𝑘 

Threshold 30 𝑑𝐵 

Gain 40 𝑑𝐵 

Analog filter 20 kHz - 1.2 MHz 

Time driven rate 10 𝑚𝑠 

5.3.3 Testing setup 

Fig. 5.10 shows the testing system which includes the compression testing system and the AE 

monitoring equipment. As already mentioned in section 2.4, due to the sample size range 

considered in this work, two different compression machines with different stiffness and load 

capacity (Machine A (Fig. 2.2c) and Machine B (Fig. 2.2d), were used in this study. However, 

this did not impact the AE measurements, as the AE equipment worked independently from 

the compression machine. 

During the loading test, the passive AE signals generated within the deformed concrete 

sample were continuously monitored and stored in PC-1 by a MISTRAS-2001 AE system 

while the mechanical data (i.e. load, axial displacement of sample) was saved in PC-2 (see Fig. 

5.10a). Electromagnetic interference noise, resulting from ground loops of AE cables or poorly 

connected ground power, may affect the quality of the AE signal (Pollock, 1989). To suppress 

this kind of noise, layers of aluminum were placed below the testing system and all of the 

testing equipment was electrically isolated (see Fig. 5.10a). 

After the AE sensors are installed and connected to the monitoring equipment, system 

sensitivity is checked before loading begins. This involves the breaking of pencil lead near the 

sensor to verify the response from an acoustic signal (ASTM E976-10, 2010). This test is 

carried out to ensure that all the AE sensors have been properly coupled to the sample prior 
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testing. In our case, an AE sensor that is well coupled should record a signal covering of at 

least 70 dB to display the entire dynamic range of the sensor. Therefore, if a sensor response 

is below 70 dB, it is recoupled and the connection is checked again. 

 

(a) 

 

(b)                                                                      (c) 

Fig. 5.10. Experimental setup used for uniaxial compression tests combined with AE monitoring (AE 

test). (a) Instrumentation setup; (b) Equipment setup on the compression machine A for large specimens 

(70x140 mm, 110x220 mm and 160x320 mm); (c) Equipment setup on the compression machine B for 

small specimens (40x80 mm). 

5.4 Experimental results 

In this section, a critical interpretation of compressive failure of concrete is rationalized based 

on the analysis of the evolutions of AE activities (damage and microcracking events) in terms 

of number, peak amplitude, duration and dissipated energy as approaching catastrophic failure. 
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For this purpose, the evolution of these AE parameters are plotted as a function of the reduced 

control parameter, Δ, defined here as the distance to failure: 

 Δ =
(𝜎𝑓 − 𝜎)

𝜎𝑓
 (5.3) 

where 𝜎𝑓 is the peak/failure stress (see Fig. 5.11). The critical point is therefore identified as 

the peak load. The control parameter varies from Δ = 1 at the beginning of loading to Δ = 0 

at the critical point. 

 

Fig. 5.11. A typical stress-strain curve of uniaxial compression test for the definition of the control 

parameter Δ, where 𝜎𝑓 is the peak stress. 

In this study, the values of the scaling exponents for different AE parameters were firstly 

estimated from an individual AE dataset (1 AE sensor on 1 sample). Then, these exponents 

were averaged over:  

- all AE sensors and all samples to determine the exponents of a given size; 

- all AE sensors and all samples (whatever the size) to determine the exponents of a given 

material disorder (concrete mixture). 

5.4.1 Evolution of AE activity toward failure 

In Fig. 5.12, we show the evolution of the intermittent AE activity as a function of the control 

parameter (Δ) until the peak load (critical point) for a typical uniaxial compression test. It can 

be seen that both the total energy release and the maximum energy of events, 𝐸, seem to 
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accelerate towards failure (Fig. 5.12a). Similar results are also obtained for the AE duration, 

𝑇, number of AE events, 𝑁, and maximum AE amplitude, 𝑉max (see Fig. 5.12b). According to 

(Guarino et al., 1998), the divergences of these AE parameters as approaching failure (Δ → 0) 

can be regarded as a signature of a critical behavior. To examine this apparent criticality, we 

focus here on the evolutions of the AE events rate and AE energy release rate toward the critical 

point. For this aim, we divided the whole AE events recorded until failure into several bins of 

the control parameter Δ. The binning is equally spaced in a log scale and sized to ensure a large 

enough number of AE events in each bin. 

For each bin of Δ: 

- the representative value of the control parameter is calculated as the center of this bin; 

- the AE event rate (𝑑𝑁/𝑑Δ) is computed by dividing the total number of AE events 

(𝑑𝑁) recorded over this bin by the bin width (𝑑Δ); and, 

- the AE energy rate (𝑑𝐸/𝑑Δ) is defined as the total energy released (𝑑𝐸) by all AE 

events in this bin of Δ, normalized by the bin width (𝑑Δ) . 

Fig. 5.13 shows the evolutions of AE event rate (𝑑𝑁/𝑑Δ) up to the failure for different sample 

sizes and different materials. It is observed that 𝑑𝑁/𝑑Δ diverges on approaching the failure as 

a power law dependency of Δ with an exponent 𝑝: 

 
𝑑𝑁

𝑑Δ
~Δ−𝑝 (5.4) 

The value of exponent 𝑝 is estimated from a linear regression on a log-scale plot (Fig. 

5.13) and the error on the slope is given for a 95% confidence level. We find the overall 

exponent 𝑝 = 0.70 ± 0.05 for all of concrete samples regardless of size (Fig. 5.13a) and of 

material disorder (Fig. 5.13b). Such time-reversed Omori’s law (Utsu et al., 1995) has been 

reported for the compressive failure of porous sandstones (14% ≤ 𝑝0 ≤ 24%) (Ojala et al., 

2004; Schubnel et al., 2007), though with a varying 𝑝 − value, possibility depending on the 

strain-rate (Ojala et al., 2004). In our low-porosity quasi-brittle materials (see section 3.5.2), 

under our stress-controlled protocol, the 𝑝 − value was found to be independent of both 

external and internal (disorder-related) scales.  

As shown in Fig. 5.14, we also find that the AE energy rate 𝑑𝐸/𝑑Δ diverging towards 

failure appears to follow a power law scaling of Δ as: 

 
𝑑𝐸

𝑑Δ
~Δ−𝛼 (5.5) 
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An acceleration of the AE energy release rate prior the macro failure according to the 

expression (5.5) has been confirmed by many authors, while the value of power exponent 𝛼 

and its controlling factors are still controversial (see reviews in (Baro et al., 2018)). However, 

a value 𝛼 ≤ 1 is often reported from the results of AE experiments (Baro et al., 2018; Wang et 

al., 2008; Yin et al., 2004). As presented by (Yin et al., 2004), the power-law exponent of AE 

energy rate (similar meaning to 𝛼 in Eq. (5.5)) possibly depends on the loading confinement, 

the applied strain rate or the density of the material. In contrast, from the results of AE tests 

carried out on different natural and artificial porous materials (17% ≤ 𝑝0 ≤ 40%), (Baro et 

al., 2018) have demonstrated that the measured exponent (𝛼 ~ 1) does not depend on the 

materials (porosity and density), the stress rate and the sample sizes. 

In our case, the 𝛼 −value was estimated from a linear fit of data on a log-log scale (Fig. 

5.14) with a 95% confidence interval. The values of 𝛼 for different sample sizes and different 

concrete mixtures are summarized in Table 5.2 and Appendix B. Overall, we find a value 𝛼 =

1.3 ± 0.1, independently of sample size (Fig. 5.14a) and of material disorder (Fig. 5.14b). 

From the equations (5.4) and (5.5), the evolution of the average AE energy per event, 

𝑑𝐸/𝑑𝑁, can be written as follows: 

 
𝑑𝐸

𝑑𝑁
~Δ−𝛼+𝑝 (5.6) 

As mentioned above, both the scaling exponents 𝑝 and 𝛼 are independent of the sample 

sizes and of the concrete mixtures. Therefore, we can deduce that the average AE event energy 

is diverging towards failure as 𝑑𝐸/𝑑𝑁~Δ−0.6 with an exponent 0.6 ± 0.1 independent of 

sample size as well as material disorder. On the other hand, the average value of AE energy 

for each window of Δ can be analyzed from the probability density functions of 𝐸. Therefore, 

the study of the probability distribution of AE energy (𝐸) is necessary to fully characterize the 

evolution of AE activity towards the failure. This analysis is detailed in the following section. 
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Fig. 5.12. Evolution of the AE activity during a stress-controlled compression test on a sample of 

diameter 𝜙 = 160mm of M-concrete. (a) Blue curve: load; black curve: cumulated AE energy; red: 

AE energy release rate, sampled at 100Hz. (b) Blue curve: cumulated AE events; black curve: 

cumulated AE amplitude; red: AE amplitude; pink curve: cumulated AE duration. In this study, the 

value of AE amplitude is converted into Voltage from its value in dB by using Eq. (5.1). 
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Fig. 5.13. Evolution of AE event rate 𝑑𝑁/𝑑Δ for (a) different sample sizes of F-concrete; and (b) 

the three different materials. Curves were averaged over all sensors and all samples of a given 

sample size (a), and on all sensors and samples (whatever the sample size) of a given material (b). 

Other sample sizes for M- and C-concretes give similar results (see Fig. B.4, Table. B.2 and Table. 

B.3 in Appendix B). 
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Fig. 5.14. The AE energy release rate 𝑑𝐸/𝑑Δ for (a) different sample sizes of M-concrete, and (b) 

for three different concrete mixtures. Curves were averaged over all sensors and all samples of a 

given sample size (a), and on all sensors and samples (whatever the sample size) of a given material 

(b). Other sample sizes for F- and C-concretes give similar results (see Fig. B.5 and Table. B.1 and 

Table. B.3 in Appendix B). 
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5.4.2 Probability distribution of AE energy 

We now study the statistical distribution of AE energy, 𝐸, for different values of the control 

parameter Δ before the failure. For this analysis, all the AE events recorded up to the peak 

stress were firstly arranged into ten bins of Δ containing the same number of events. We then 

calculate the AE energy distribution of each bin. In each bin of Δ, (i) the number of AE events 

was not less than 300 events to ensure a good statistical analysis and (ii) the representative 

value of Δ was defined as the median value of this bin. 

Fig. 5.15 shows a progressive evolution of the distribution of AE energies as approaching 

the failure. In the early stages of loading, the energy cumulative distribution (𝑐𝑑𝑓), 𝑃(> 𝐸), 

is clearly truncated towards large energies, but the associated upper cut-off is increasing as 

fracturing goes on. Close to failure (Δ → 0), a power law 𝑐𝑑𝑓 is recovered, 𝑃(> 𝐸)~𝐸−𝛽𝐸+1, 

over ~5 orders of magnitude, without detectable upper cut-off (Fig. 5.16). We therefore 

conjecture an evolution of the probability density function (𝑝𝑑𝑓) as follows: 

 𝑃(𝐸)~𝐸−𝛽𝐸𝑓 (
𝐸

𝐸∗
) (5.7) 

where 𝑓 (
𝐸

𝐸∗) rapidly vanishes for 
𝐸

𝐸∗ > 1, and a cut-off energy, 𝐸∗, diverging at the critical 

point is assumed as a function of Δ according to the following equation: 

 𝐸∗~Δ−𝛾𝐸 (5.8) 

We recover a non-truncated power law distribution at failure, 𝑃(𝐸)~𝐸−𝛽𝐸, while the 

sweeping of an instability (Sornette, 1994) predicts another power law 𝑃(𝐸)~𝐸−𝜃𝐸 for the 

stress-integrated 𝑝𝑑𝑓 (see Fig. 5.16). The relationship between these two last exponents with 

the exponent 𝛾𝐸 (Eq. (5.8)) is given by (Girard et al., 2010): 

 𝜃𝐸 = 𝛽𝐸 +
1

𝛾𝐸
 (5.9) 

, or: 

 𝛾𝐸 =
1

𝜃𝐸 − 𝛽𝐸
 (5.10) 

In this study, for each dataset (1 AE sensor on 1 sample), the power-law exponents 𝛽𝐸 

and 𝛾𝐸 were determined from a maximum likelihood methodology (Clauset et al., 2009). 𝛽𝐸 is 
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estimated such that the Eq. (5.7) fits the AE energy distribution of the AE events closest to the 

failure (i.e. 100 AE events used in this study), while 𝜃𝐸  is estimated from that of the whole AE 

events dataset recorded over the entire failure process, from the onset of loading until the failure 

(Fig. 5.16). Substituting these two exponents into Eq. (5.10), the value of exponent 𝛾𝐸 was then 

determined. With these three estimated exponents, the hypothesis of the evolution for the 

probability density function (𝑝𝑑𝑓) of AE energies (Eq. (5.7)) and the scaling for the cut-off 𝐸∗ 

(Eq. (5.8)) are confirmed from a data collapse analysis (see an example in Fig. 5.15). This data 

collapse was done by plotting all curves of AE energy distributions for different values of Δ 

(Fig. 5.15a) in a rescaled plot with 𝑥 = 𝐸. Δ𝛾𝐸 and 𝑦 = 𝑃(𝐸). Δ−𝛽𝐸.𝛾𝐸 (Fig. 5.15b). Some other 

examples of the evolution of the AE energies distribution for different sample sizes and 

different concrete mixtures are presented in Appendix B. We also find the overall values 𝛽𝐸 =

1.4 ± 0.1, 𝜃𝐸 = 1.75 + 0.1 and 𝛾𝐸 = 3.3 ± 0.9 not varying significantly with the sample size 

and the material disorder (see Table 5.2 and Appendix B).  

Assuming, for the sake of simplicity, a circular rupture of “radius” 𝑟 as the AE source 

model, and an AE energy (𝐸) proportional to the radiated seismic energy, 𝐸, for both mode I 

(Evans, 1979) or shear failure events (Hanks, 1977; Scholz, 2002) should scale as: 

 𝐸~Δ𝜎 × 𝑟3 (5.11) 

Considering further a size-independent stress drop Δ𝜎 (Hanks, 1977), the relation (5.11) 

yields the scaling for the cut-off rupture radius is given by: 

 𝑟∗3~𝐸∗~ Δ−𝛾𝐸   (5.12) 

Further identifying 𝑟∗ with the correlation length 𝜉 of the fracturing/faulting process, one 

gets a divergence 𝜉~Δ−𝜈 with 𝜈 = 𝛾𝐸/3 = 1.1 ± 0.3 when approaching the critical point 

(Δ → 0). 

In the previous section, the rapid increase of AE activity towards the failure has been 

demonstrated by the evolution of both the AE event rate (𝑑𝑁/𝑑Δ) (Fig. 5.13) and the AE 

energy release rate (𝑑𝐸/𝑑Δ) (Fig. 5.14). This is also confirmed by a clear power-law behavior 

of AE energy distribution for the AE events closest to the failure and by the divergence of the 

cut-off, 𝐸∗ as approaching the failure (Fig. 5.15) in this section. We now expect to relate the 

evolution of AE energy rate (𝑑𝐸/𝑑Δ) to the distribution of 𝐸. The average AE energy release, 

〈𝐸〉, can be estimated from the probability density function of 𝐸 as: 
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 〈𝐸〉 = ∫ 𝐸. 𝑃(𝐸)𝑑𝐸
+∞

𝐸𝑚

 (5.13) 

, where 𝐸𝑚 is the minimum AE Energy at a given Δ (lower cut-off). Substituting the relation 

(5.7) into Eq. (5.13), one gets: 

 〈𝐸〉 = ∫ 𝐸1−𝛽𝐸 . 𝑓 (
𝐸

𝐸∗
) 𝑑𝐸

+∞

𝐸𝑚

 (5.14) 

Assuming that 𝑃(𝐸) is brutally truncated at 𝐸∗, we obtain: 

 〈𝐸〉 ~ ∫ 𝐸1−𝛽𝐸 . 𝑓 (
𝐸

𝐸∗
) 𝑑𝐸

𝐸∗

𝐸𝑚

 (5.15) 

When approaching the failure, the cut-off value 𝐸∗ is much larger than 𝐸𝑚, and the exponent 

𝛽𝐸 is always larger than 1. Hence, neglecting the tail, we obtain: 

 〈𝐸〉(Δ→0)~(𝐸∗)2−𝛽𝐸 [1 − (
𝐸𝑚

𝐸∗
)
2−𝛽𝐸

] (5.16) 

Close to the failure where 𝐸∗ ≫ 𝐸𝑚, one thus gets: 

 〈𝐸〉(Δ→0) ~ (𝐸∗)2 −𝛽𝐸 (5.17) 

Combining the relations (5.8) and (5.17), the evolution of the average AE energy can be 

approximated as: 

 〈𝐸〉(Δ→0)~Δ−𝛾𝐸(2−𝛽𝐸) (5.18) 

From the Eq. (5.6) and Eq. (5.18), we obtain the connection between the critical exponents of 

AE energies distribution and the exponents of the evolution AE activities as follows: 

 𝛾𝐸(2 − 𝛽𝐸) = 𝛼 − 𝑝 (5.19) 

Our results are qualitatively consistent with this analysis, with both 
𝑑𝐸

𝑑Δ
 and 𝐸∗ diverging 

towards failure. However, a poor agreement between the two sides of Eq. (5.19)  is obtained, 

with 𝛾𝐸(2 − 𝛽𝐸) = 1.98 ± 0.63 while 𝛼 − 𝑝 = 0.6 ± 0.1. The origin of this discrepancy is 

still partly obscure, and might be related to the impact of the lower cut-off 𝐸𝑚, or to the 

simplifying assumption of a brutal cut-off above 𝐸∗ in the integration above. Nevertheless, our 
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analysis shows that all the signatures of AE activity are power-law diverging towards the 

critical point. 

 

 

Fig. 5.15. (a) Cumulative distribution (𝑐𝑑𝑓) of AE energies at different distances to failure (Δ), for 

a test on a 110-mm sample of M-concrete. (b) Data collapse of the same data in a rescaled plot. 

Other sample sizes and materials give similar results (see Appendix B). 
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Fig. 5.16. Near failure (red diamonds), and stress-integrated (blue circles) cumulative distribution 

of AE energies for a test on a 160 mm sample of M-concrete. Other sample sizes and materials give 

similar results. 

5.4.3 Interpretation of AE duration 

The interpretation of the AE duration, 𝑇, in terms of duration of the fracturing event itself is 

not always straightforward (e.g. (Baro et al., 2018)). Indeed, the duration is typically defined 

as the time over which the envelope of the AE signal 𝑉(t) remains above a chosen threshold 

𝑉𝑡ℎ (see Fig. 5.4). As the result of scattering of the wave generated at the source by internal 

disorder and/or reflections at free surface, a coda can develop after the initial pulse (e.g. 

(Deschanel et al., 2017)). If the material damping is low, this coda will strongly influence the 

measured duration of the event, which hence will lose its physical meaning in terms of genuine 

duration of the source mechanism. In this case, we expect an exponential decay for the 

amplitude of the signal as: 

 𝑉(𝑡) = 𝑉𝑚𝑎𝑥 exp (
𝑡0 − 𝑡

𝜏
) (5.20) 

where 𝜏 is the attenuation time scale, essentially dictated by material properties, and 𝑡0 the 

event arrival time. Assuming a short rise time, i.e. (𝑡 = 𝑡0) ≈ 𝑉𝑚𝑎𝑥 , the relation (5.20) yields: 

 𝑇 = 𝜏(log(𝑉𝑚𝑎𝑥) − log(𝑉𝑡ℎ)) (5.21) 
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From the Eq. (5.21), the conditional average of maximum amplitude, 〈𝑉max|𝑇〉, is given by: 

 〈𝑉max |𝑇〉 = 𝑉𝑡ℎexp (𝑇/𝜏) (5.22) 

In order to examine the link between 𝑇 and 〈𝑉max|𝑇〉, the AE events recorded before the 

failure were firstly sorted in equally log-scaled bins of 𝑇. The values of 〈𝑉max|𝑇〉 and 𝑇 were 

then computed by averaging over all AE events in each bin. It is noted that the value of 

maximum amplitude 𝑉max is expressed in Voltage converted from Eq. (5.1). 

The relationship between the AE duration, 𝑇, and the conditional average maximum AE 

amplitude 〈𝑉max|𝑇〉 for different sample sizes of C-concrete and for different three concrete 

mixtures are shown in Fig. 5.17a and Fig. 5.17b, respectively. Following to the expression 

(5.22), the average maximum amplitude should to be 〈𝑉max 〉 → 𝑉𝑡ℎ for 𝑇 ≪ 𝜏, and grow 

exponentially for 𝑇 > 𝜏. This prediction is recovered for duration below 100𝜇s, but another 

scaling is observed above, 〈𝑉max |𝑇〉 ~ 𝑇𝛿, with 𝛿 = 0.95 ± 0.05 (see Fig. 5.17). This argues 

for an attenuation timescale of about 100𝜇s, and so, for larger timescales, the voltage signal 

𝑉(𝑡) is a good proxy of the seismic moment release rate, or, in other words, of the avalanche 

velocity 𝑣(𝑡) (Baro et al., 2018). Note that the measured value of 𝛿 is in good agreement with 

mean-field depinning (𝛿=1; (Leblanc et al., 2013)). The increasing scatter observed at large 

durations likely comes from (i) poorer statistics for large events and (ii) an increasing 

probability to merge few successive events into an apparently single one when the average AE 

activity becomes very large near failure. The 𝛿 −values of different materials are summarized 

in Table 5.2 and those of different sample sizes for three concrete mixtures are reported in 

Appendix B. 
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Fig. 5.17. Conditional average maximum AE amplitude 〈𝑉max|𝑇〉 for (a) different sample sizes of 

C-concrete, and (b) the three different materials. Curves of data points were averaged over all 

sensors and all samples of a given size (a), and on all sensors and samples (whatever the size) of a 

given material (b). Black dashed lines are the reference curves according to Eq. (5.22), with 𝑉𝑡ℎ =

34𝑑𝐵 and 𝜏 = 100𝜇𝑠. Other sample sizes and materials give similar results (see Fig. B.6, Table. 

B.1 and Table. B.2 in Appendix B). 
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5.4.4 Probability distribution of AE duration and AE amplitude 

According to (Vives et al., 1994; Yu and Clapp, 1987), the peak amplitude, 𝑉max and the 

duration, 𝑇, of an AE signal can provide information about the size and the lifetime of an 

avalanche event (often called an AE hit in specialized AE work). Therefore, an effective way 

to study the associated avalanche distribution is to measure the distributions of AE amplitude 

and AE duration (Papanikolaou et al., 2011). 

We now consider the statistical distributions of AE duration, 𝑇, and maximum AE 

amplitude, 𝑉max, for different values of the control parameter Δ toward the failure. This analysis 

is done by sorting out all AE events recorded before the peak stress into ten bins of Δ. We then 

calculate the distribution of each bin. Noted that the bin values of Δ used here are similar to 

those used for analyzing the distribution of AE Energy. Similar to the distribution of AE energy 

(section 5.4.2), we assume that the distribution for both AE duration and maximum AE 

amplitude is expressed by a scaling as follows: 

 𝑃(𝑥)~𝑥−𝛽𝑥𝑔 (
𝑥

𝑥∗
) (5.23) 

where 𝑥 = 𝑇 or 𝑉max and the cut-off 𝑥∗ is expected to diverge as 𝑥∗~Δ−𝛾𝑥. 

Using the same methodology applied to determine the exponents of AE energies 

distribution (Section 5.4.2), the exponent 𝛽𝑥 is extracted from the power-law fitting of the 

distribution of the AE events very close to the failure (see an illustrated example in Fig. 5.16). 

The value of exponent 𝛾𝑥 is calculated from the following equation: 

 𝛾𝑥 =
1

𝜃𝑥 − 𝛽𝑥
 (5.24) 

in which, 𝜃𝑥 is the exponent estimated from the power-law distribution of the whole AE events 

dataset recorded up to the failure (see Fig. 5.16). As mentioned in the preceding section, at 

smaller timescales (i.e. 𝑇 < 100𝜇s (Fig. 5.17)), the measured AE durations, influenced by 

wave scattering and seismic coda, are not a good proxy of avalanche duration. Therefore, we 

only consider the distribution of the AE durations larger than 100𝜇s in this study. 

A typical cumulative distribution (𝑐𝑑𝑓) of the AE durations, 𝑇, and the peak AE 

amplitudes, 𝑉max for different bins of the control parameter, Δ are shown in Fig. 5.18a and Fig. 

5.19a, respectively. The overall estimated values of exponents for the distribution of: 

- AE duration are 𝛽𝑇 = 2.0 ± 0.3; 𝜃𝑇 = 2.9 ± 0.2 and 𝛾𝑇 = 1.1 ± 0.5, and 
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- Maximum AE amplitude are 𝛽𝑉 = 2.0 ± 0.1; 𝜃𝑉 = 2.9 ± 0.4 and 𝛾𝑉 = 1.2 ± 0.6. 

All the power-law exponents 𝛽𝑥 and 𝜃𝑥 were estimated by using a maximum likelihood 

methodology (Clauset et al., 2009). The exponent values of the distributions of AE duration 

and AE amplitude for all of our concrete mixtures (all sensors and all sample sizes) are 

summarized in Table 5.2. It is observed that these three exponents in both cases are independent 

of the sample sizes and the concrete groups (see Table 5.2 and Appendix B). 

Fig. 5.18b, and Fig. 5.19b show the same data given in Fig. 5.18a, and Fig. 5.19a, 

respectively, after rescaling the vertical axis as 𝑃(𝑥)/Δ𝛽𝑥.𝛾𝑥 and the horizontal axis as 𝑥. Δ𝛾𝑥. 

The collapses of both the maximum AE amplitude and AE duration distributions for different 

Δ are clearly observed with the exponent values reported above. This allows to validate the 

hypotheses of the power law behavior of the probability distribution (Eq. (5.23)) as well as the 

divergence of the cut-off values as the function of Δ near the failure (𝑥∗~Δ𝛾𝑥) for both the AE 

durations and the maximum AE amplitudes. According to (Leblanc et al., 2013), from the 

values of critical exponents obtained on the experimental data presented in this chapter, the 

dynamic exponent of the critical transition could be deduced as 𝓏 = 𝛾𝑇/𝜈 ≈ 1.0 ± 0.5. 
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Fig. 5.18. Cumulative distributions (𝑐𝑑𝑓) of AE durations, 𝑇, for different bins of the control 

parameter Δ for a test on a 40-mm sample of C-concrete. Similar results are observed with other 

sample sizes and materials (see Appendix B). 
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Fig. 5.19. Cumulative distributions (𝑐𝑑𝑓) of maximum AE amplitudes, 𝑉max, for different bins of 

the control parameter Δ for a test on a 40-mm sample of C-concrete. Similar results are observed 

with other sample sizes and materials (see Appendix B). 
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5.5 Discussion and Conclusion 

In this chapter, based on the analysis of AE signal parameters recorded during uniaxial 

compression tests carried out on the three different types of concrete and four different sample 

sizes, we have demonstrated the power law behavior of (i) the distribution of microseismic 

energies, durations and amplitudes near failure; (ii) the divergence of the rate of fracturing 

events, energies released, and of the fracturing correlation length, as well as of the associated 

duration as approaching failure. These results are strong evidences for an interpretation of the 

compressive failure of non-porous disordered materials as a critical transition, where the failure 

stress identifies as the critical point. This is further supported by the universality of the critical 

exponents relatively to sample size and disorder.  

Theoretically, this critical interpretation could be checked from a finite-size scaling 

analysis of the probability density functions (𝑝𝑑𝑓) of energy, duration, and amplitude obtained 

from samples of different sizes. We did not find, however, a fully convincing 𝐿-dependence in 

our data (see Fig. 5.20a; Fig. 5.21a and Fig. 5.22a), most likely because (i) the size range 

explored was limited (𝐿max/𝐿min = 4) and (ii) the necessarily limited experimental data 

statistics make the analysis of extremes difficult. 

 

Fig. 5.20. Probability density functions of AE energy for the whole AE events dataset for (a) four 

different sample sizes of F-concrete and (b) for three different concrete mixtures. The 𝑝𝑑𝑓s were 

normalized by their maximum value. Curves on the left were averaged over all sensors and all samples 

of a given sample size, and on the right on all sensors and samples (whatever the sample size) of a given 

material. Other sample sizes for M- and C-concretes give similar results (see Fig. B.1 in Appendix B). 
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Fig. 5.21. Probability density functions of AE duration of the whole AE events catalog for (a) four 

different sample sizes of C-concrete and (b) for three different concrete mixtures. The functions were 

normalized by their maximum value. Curves on the left were averaged over all sensors and all samples 

of a given sample size, and on the right on all sensors and samples (whatever the sample size) of a given 

material. Other sample sizes for F- and M-concretes give similar results (see Fig. B.2 in Appendix B). 

 

Fig. 5.22. Probability density functions of AE amplitude for (a) four different sample sizes of F-concrete 

and (b) for three different concrete mixtures. The functions were normalized by their maximum value. 

Curves on the left were averaged over all sensors and all samples of a given sample size, and on the 

right on all sensors and samples (whatever the sample size) of a given material. Other sample sizes for 

F- and M-concretes give similar results (see Fig. B.3 in Appendix B). 
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From these results, the nature of the critical transition, and its possible affiliation to a 

particular universality class, can be further discussed. A mapping of the problem of stick-slip 

along an existing fault to the depinning of an elastic interface was proposed 20 years ago 

(Fisher, 1998; Fisher et al., 1997). More recently, a similar analogy was proposed in case of 

compressive failure to account for statistical size effects on strength (Weiss et al., 2014a). 

Indeed, quasi-brittle failure shares fundamental ingredients with the depinning transition, 

including a local threshold mechanism, disorder, and elastic interactions. Our results reveal a 

similar phenomenology of avalanches as approaching the critical point, with experimental 

exponents remarkably close to mean-field depinning ones (Ertas and Kardar, 1994; Leblanc et 

al., 2013; Salje and Dahmen, 2014) (see Table 5.2). On the other hand, several differences 

between the two problems can be stressed. First, the time-reversed Omori’s scaling of the 

avalanche rate (𝑑𝑁/𝑑Δ~Δ−𝑝) is not present in classical depinning, meaning that an additional 

exponent, 𝑝, is required to describe the failure transition. In addition, the nature of the elastic 

interaction kernel differs. Unlike for depinning, it is non-convex in our case (Démery et al., 

2017; Weiss et al., 2014a), allowing localization of damage along a fault, much like for the 

yielding transition in amorphous plasticity (Lin et al., 2014; Tyukodi et al., 2016). It is non-

negative either, meaning that is has unstable modes, differing on this point from the yielding 

transition (Démery et al., 2017). Although these differences preclude a direct affiliation of our 

problem onto the universality class of classical depinning, the scaling of the fracturing 

correlation length, 𝜉~Δ−𝜈, with an exponent (𝜈 = 1.1 ± 0.3) (see Table 5.2) very close to 

mean-field depinning (𝜈𝑀𝐹 = 1) (Ertas and Kardar, 1994), suggests that some theoretical 

results could be tentatively transposed to our problem. 

In the next chapter, based on the critical phase transition interpretation of compressive 

failure, the size effects on compressive strength of concrete (section 6.1) are statistically 

analyzed. We expect that the finite-size scaling laws derived from the critical interpretation 

can provide an accurate prediction of the statistical size effects on compressive strength of 

quasi-brittle materials like concrete. 
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Table 5.2. Summary of the scaling exponents for the distributions of AE durations, of AE energies released, and of AE amplitudes as well as for the rate of AE 

events, and of AE energy release for three different concrete mixtures and comparison with the corresponding values of Mean-Field Depinning/Stick-Slip (Baro 

et al., 2018; Dahmen, 2017; Ertas and Kardar, 1994; Leblanc et al., 2013; Salje and Dahmen, 2014). 

Quantity Form Exponent 

Concrete group 

All groups 
Mean-field 

values 
F-concrete M-concrete C-concrete 

Duration distribution 𝑃(𝑇)~𝑇−𝛽𝑇𝑔(Δ𝛾𝑇𝑇) 

𝛽𝑇 2.1 ± 0.2 2.0 ± 0.3 2.0 ± 0.3 2.0 ± 0.3 2 

𝛾𝑇 1.2 ± 0.5 1.1 ± 0.4 1.1 ± 0.5 1.1 ± 0.5 1 

Stress-integrated duration distribution 𝑃𝑖𝑛𝑡(𝑇)~𝑇−𝜃𝑇 𝜃𝑇 2.9 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 3 

Energy distribution 𝑃(𝐸)~𝐸−𝛽𝐸𝑓(Δ𝛾𝐸𝐸) 

𝛽𝐸 1.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 4/3 

𝛾𝐸 3.2 ± 1.1 3.3 ± 0.8 3.4 ± 0.8 3.3 ± 0.9 3 

Stress-integrated energy distribution 𝑃𝑖𝑛𝑡(𝐸)~𝐸−𝜃𝐸 𝜃𝐸 1.80 ± 0.10 1.75 ± 0.05 1.75 ± 0.05 1.75 ± 0.10 5/3 

Amplitude distribution 𝑃(𝑉)~𝑉−𝛽𝑉𝑔(Δ𝛾𝑉𝑉) 

𝛽𝑉 2.0 ± 0.1 2.0 ± 0.2 2.0 ± 0.1 2.0 ± 0.1 2 

𝛾𝑉 1.2 ± 0.5 1.2 ± 0.8 1.2 ± 0.6 1.2 ± 0.6 1 

Stress-integrated amplitude distribution 𝑃𝑖𝑛𝑡(𝑉)~𝑉−𝜃𝑉  𝜃𝑉 2.9 ± 0.4 2.9 ± 0.5 2.9 ± 0.4 2.9 ± 0.4 3 

Conditional average maximum amplitude 

vs Duration 
⟨𝑉max|𝑇⟩~𝑇𝛿 𝛿 0.95 ± 0.05 0.90 ± 0.05 0.95 ± 0.05 0.95 ± 0.05 1 

Rate of AE event 𝑑𝑁/𝑑Δ~Δ−𝑝 𝑝 0.70 ± 0.05 0.70 ± 0.05 0.65 ± 0.05 0.70 ± 0.05 None 

Rate of AE Energy 𝑑𝐸/𝑑Δ~Δ−𝛼 𝛼 1.2 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 2 

Derived exponents                

Correlation length 𝜉~Δ−𝜈 𝜈          1.1 ± 0.3 1 

Dynamic exponent 𝑇∗~𝜉𝓏 𝓏          1.0 ± 0.5 1 



 

92 

 

 

 

 

 

 

 

 

 



 

93 

 

Chapter 6            

                              

Statistical size effects on compressive 

failure strength of concrete 

Based on 

Vu, C. C., Weiss, J., Plé, O., Amitrano, D., Vandembroucq, D. (2018), Revisiting statistical size effects 

on compressive failure of heterogeneous materials, with a special focus on concrete, Journal of the 

Mechanics and Physics of Solids, 121, p.47–70. doi:10.1016/j.jmps.2018.07.022 

 

The role of microstructural disorder on failure (a strongly non-linear process) and strength is 

fundamentally different from that on linear (elastic) properties. This difference is particularly 

striking when considering the weakest-link approach to failure, ruled by extreme value 

statistics, whereas linear properties average out at scales larger than the disorder correlation 

length (see Chapter 3 and Chapter 4). In this chapter, we show that the weakest-link approach 

fails to describe the compressive failure of a heterogeneous material like concrete, and that the 

average compressive strength saturates at a non-zero value towards large scales. However, this 

does not mean that a RVE can be considered in terms of damage and failure properties, as the 

associated strength variability is scale-dependent over the entire scale range. We rationalize 

these scaling properties of mean strength and associated variability from an interpretation of 

compressive failure as a critical transition (Weiss et al., 2014a). This critical scenario is 

associated with a damage correlation length growing during loading to reach the system size 

near failure (Chapter 5), a behavior actually at the root of the finite-size effects described here. 

In this context, the definition of a RVE for damage becomes meaningless.  
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The structure of this chapter is as follows, section 6.1 presents a brief description the 

uniaxial compressive behavior and the value of the compressive strength of concrete collected 

from the compression tests. Section 6.2 shows the results from the analysis of compressive 

strength distribution of our concretes. The focus of this section is to demonstrate the irrelevance 

of the weakest-link theory to capture the statistical size effects on the compressive strength. 

Derived from the interpretation of compressive failure of concrete as a critical phase transition 

which is validated by the results of Acoustic Emission experiments presented in Chapter 5, the 

finite size scaling laws for both mean value of the compressive strength and its associated 

variability are described in section 6.3. We then apply these scaling laws to account for the 

statistical size effects on the compressive strength of our concretes in section 6.4. The role of 

microstructural disorder on finite-size effects are discussed in section 6.5. Final discussions 

and conclusions is given in section 6.6. 

6.1 Uniaxial compressive behavior of concrete 

The stress-strain curves for four different sample sizes of F-concrete and for three different 

compositions of concrete with the same sample size (𝜙 × ℎ = 110x220 mm) are shown on Fig. 

6.1a and Fig. 6.1b, respectively. As expected, the initial, elastic part of the stress-strain curves 

is steeper for larger aggregate sizes (M and C concrete mixture), following the hierarchy of 

elastic moduli shown in Table 4.2. Overall, the ascending part of the loading curves appears 

more linear towards small sample sizes and large internal (disorder) scales. 

The compressive strength of concrete (𝜎𝑓) is defined as the maximum stress that the 

concrete sample can withstand (ASTM C39/C39M-14, 2014; Mehta and Monteiro, 2006; NF 

EN 12390-3, 2012), hence is calculated by dividing the maximum load, 𝐹𝑚𝑎𝑥, carried by the 

concrete specimen during the test by the average cross-sectional area (𝜎𝑓 = 4𝐹𝑚𝑎𝑥/𝜋𝜙2) (see 

Fig. 6.1a). 

For a specified concrete mixture and each sample size, the mean value and the standard 

deviation of compressive strength were calculated from the approximately 44 tested samples. 

These values are summarized in Table 6.1. We observe that the mean compressive strength, 

〈𝜎𝑓〉, decreases with increasing sample size (diameter of sample, 𝜙) (see Fig. 6.1a and Fig. 6.2) 

and increasing aggregate size, 𝑑𝑚𝑎𝑥 (see Fig. 6.1b and Fig. 6.2). These extrinsic (system size 

related) and intrinsic (internal disorder related) size effects are associated with similar trends 

for the strength variability (standard deviation 𝛿(𝜎𝑓)) (see Fig. 6.2). 
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Fig. 6.1. Stress-strain curves of different concrete specimens: (a) for different specimen sizes of F-

concrete (45 curves for each size); (b) for different concrete mixtures with the same sample size (𝜙 ×

ℎ = 110x220 mm) (42-46 curves for each concrete mixture). 

 

Fig. 6.2. Sample size effect on compressive strength for the different types of concrete. 
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6.2 The failure of weakest-link theory to account for statistical size effects 

on compressive strength 

As stressed in Chapter 1, the weakest-link theory of failure relies on two fundamental 

assumptions, namely the independence of local crack initiation events, as well as pure 

brittleness meaning that the nucleation of any elementary crack at the microscale triggers 

immediately macroscopic failure. In this framework, depending on the hypothesis for the 

distribution of preexisting defect sizes, Weibull (Eq. (1.4)) (Weibull, 1951, 1939a) or Gumbel 

(Eq. (1.5)) (Gumbel, 2004, 1958) statistics are expected for the failure strength distribution 

𝑃𝑓(𝜎𝑓 , 𝐿). Taking 𝐿 = 𝜙 and 𝑉~𝜙3 (as 𝜙/ℎ = 0.5 is kept constant in our samples), we can 

define the rescaled parameter, 𝑊(𝜎𝑓) as follow: 

 𝑊(𝐿, 𝜎𝑓) = ln [− 𝑙𝑛 (1 − 𝑃𝑓(𝜎𝑓))
1

𝐿3
] (6.1) 

Combining Eq. (6.1) in one hand, and Eq. (1.4) or Eq. (1.5) in the other hand, 

𝑊(𝐿, 𝜎𝑓) should scale as 𝑊(𝐿, 𝜎𝑓)~𝑚 × ln(𝜎𝑓) for Weibull statistics, or as 

𝑊(𝐿, 𝜎𝑓)~(
𝜎𝑓

𝜎𝑢
) for Gumbel statistics and, more importantly, should collapse for series of tests 

performed on the same material. The distributions of compressive strength for our three types 

of concrete, rescaled in Weibull or Gumbel diagrams, are shown in Fig. 6.3 and Fig. 6.4, 

respectively. Whatever the material, the compressive strength statistics obtained for different 

sample sizes do not collapse onto a single straight line, either in Weibull or Gumbel rescaled 

plots. This demonstrates the irrelevance of extreme value statistics, and so of the weakest-link 

framework, to account for the compressive failure of heterogeneous quasibrittle materials like 

concrete.  In such double-logarithmic plots, strength distributions might appear roughly linear, 

however with an apparent 𝑚 − (Weibull statistics, Fig. 6.3) or 𝜎𝑢 −value (Gumbel statistics, 

Fig. 6.4) strongly varying with the sample size considered (e.g. 𝑚 − value varying between 7 

and 30 for C-concrete). This is of course in contradiction with the weakest-link approach which 

assumes scale-independent parameters. 

Fig. 6.5 shows the distributions of compressive strength for all sample sizes and all types 

of concrete in a normal probability plot. A clear collapse of the data along a straight line is 

observed for all concrete samples regardless of sample size and concrete mixture. We 

calculated the skewness and kurtosis for each individual distribution (fixed sample size and 

type of concrete) and found always small values (<1), without any specific trend with sample 

size (see Table 6.1). For the same individual distributions, we performed Shapiro-Wilk tests 
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with 𝛼 = 0.01 and found that the assumption of Gaussian statistics was never rejected. This 

demonstrates, with a good confidence and in agreement with previous works (Dayaratnam and 

Ranganathan, 1976; Neville, 2004; Unanwa and Mahan, 2014; Wright, 1954), that compressive 

strengths of concrete are distributed according to Gaussian statistics, at odds with the extreme 

value statistics associated with the weakest-link assumption. This also implies that a knowledge 

of the evolution of the mean strength 〈𝜎𝑓〉 and the associated standard deviation 𝛿(𝜎𝑓) with 

external (sample) and internal (disorder) sizes will be sufficient to fully describe the size effects 

on the distributions of compressive strength (see section 6.6). Please note however that, at this 

stage, Gaussian statistics for strength appear as a robust, but empirical, fact. The theoretical 

framework described below argues for a power law dependence of the mean value of the 

strength and its standard deviation. However, it does not give a hint for a precise form of the 

strength distribution, which may have, particularly in the low strength probability range, a 

strong impact on reliability-based design rules. Hence, understanding the size effects on the 

mean and standard deviation alone might not be always sufficient for such reliability-based 

structural design. 

Table 6.1. Compressive strength of concrete samples 

Concrete 

group 

Specimen size, 

𝝓 × 𝒉 (mm x mm) 

Compressive strength, 𝝈𝒇 (MPa) 

Mean SD Skewness Kurtosis 

F 

40x80 56.4 7.9 -0.21 -0.74 

70x140 49.7 5.3 0.08 -0.88 

110x220 44.3 2.4 -0.12 0.06 

160x320 41.9 2.4 0.29 -0.94 

M 

40x80 49.6 6.2 0.31 -0.73 

70x140 45.2 4.2 -0.58 -0.64 

110x220 41.9 1.9 0.04 -0.62 

160x320 39.2 1.8 -0.14 -0.66 

C 

40x80 39.5 4.6 0.47 -0.27 

70x140 40.0 6.3 -0.05 -0.86 

110x220 37.1 2.7 -0.35 -0.66 

160x320 36.7 1.4 -0.59 -0.05 
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Fig. 6.3. Rescaled Weibull distributions of compressive failure strength of concrete; (a) F-concrete; 

(b) M-concrete ; and (c) C-concrete. 
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Fig. 6.4. Rescaled Gumbel distributions of compressive strength of concrete; (a) F-concrete; (b) M-

concrete; and (c) C-concrete. 



100 Statistical size effects on compressive failure strength of concrete 

 

 

 

Fig. 6.5. Normal probability plot of the distributions of compressive strength for the different sample 

sizes and the three different concrete mixtures. 

6.3 Compressive failure interpreted as a critical transition and associated 

finite size scaling 

Tensile fracture of disordered materials has been widely studied in the context of statistical 

models identifying failure to a critical transition (Alava et al., 2006; Hansen et al., 2015; 

Herrmann and Roux, 1990). In (Weiss et al., 2014a), we argued that the compressive failure of 

heterogeneous materials can also be considered as a critical transition through a mapping onto 

the depinning transition of an elastic manifold. Indeed, the two phenomena share three 

fundamentals ingredients, namely the (i) the presence of initial disorder (aggregates and pores 

in our case), (ii) a local threshold mechanism allowing to bypass an obstacle (depinning 

transition) or to initiate microcracking and damage from local disorder (our current problem), 

and (iii) long-ranged elastic interactions. Closely related approaches have been used to study 

crack propagation in heterogeneous materials (Bonamy and Bouchaud, 2011), plastic and 

brittle deformation in disordered solids (Dahmen et al., 2009; Talamali et al., 2012). However, 

significant differences were stressed recently between the two problems, owing to the nature 

of the elastic interaction kernel, which is convex in the case of classical elastic depinning but 

non-convex for plasticity, damage and failure, hence allowing localization in this last case 
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(Démery et al., 2017; Lin et al., 2014; Tyukodi et al., 2016). Nevertheless, we will see below 

that the analogy proposed in (Weiss et al., 2014a) is strong enough to provide powerful 

predictions in terms of correlation length evolution for damage and finite-size effects on 

failure. 

In this previous work, damage was represented by a scalar field 𝐷 at a mesoscopic scale 

𝜉𝑑, which typically corresponds to the correlation length of the structural disorder of the 

material (see Chapter 3). In the context of compressive failure, the Coulomb criterion sets the 

local threshold mechanism, |𝜏| − 𝜇𝜎𝑁 = 𝜏𝐶, where 𝜏 and 𝜎𝑁 are the shear and normal stress, 

respectively, and 𝜇 is an internal friction coefficient. The heterogeneous nature of the material 

was accounted for by a statistical variability of the cohesion 𝜏𝐶, 𝛿(𝜏𝐶). Once the local 

(Coulomb) threshold is reached locally, a damage event occurs, characterized by a local 

decrease of the elastic modulus over the mesoscopic scale, hence generating a redistribution of 

elastic stresses. This internal stress field induced by progressive damage plays a key role in the 

development of depinning models. To account for interactions between damaged “inclusions” 

in the material, a two-step strategy was developed to compute the internal stress field (see 

(Weiss et al., 2014b) for details). This allowed a complete mapping onto a depinning model, 

with the evolution of the damage field (playing the role of the deformed manifold) being given 

by: 

 𝑀
𝜕𝐷

𝜕𝑡
(𝑟) = ℜ [𝜎𝑠

𝑒𝑥𝑡 + 𝜎𝑠
𝑒𝑙 ({𝐷}, �̅�({𝐷}),

𝑟

𝜉𝑑
) − 2 cos(𝜑) 𝜏𝐶(𝑟, 𝐷)] (6.2) 

where ℜ denotes the positive part, 𝑟 is the position, 𝑀 is a mobility coefficient, 𝜎𝑠
𝑒𝑥𝑡 is the 

external forcing (stress) term, 𝜎𝑠
𝑒𝑙 is the internal stress induced by the damage field 𝐷, �̅� is the 

damage-dependent effective modulus and 𝜉𝑑 is the characteristic length scale of the disorder 

𝜏𝐶.  

From this mapping, several theoretical predictions obtained in the framework of the 

generic depinning transition can be tentatively extended to our problem. First of all, in the 

“thermodynamic limit” corresponding to an infinite system size (𝐿 → +∞), the asymptotic 

strength does not vanish, i.e. 𝜎∞ > 0. In addition, this mapping naturally entails a finite-size 

scaling for both the mean value of the compressive strength, 〈𝜎𝑓〉, and its associated variability, 

𝛿(𝜎𝑓) (Weiss et al., 2014a; Zapperi, 2012): 
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〈𝜎𝑓〉

𝜎∞
= (

𝐿

𝐿𝑚
)
−

1
𝜈𝐹𝑆

+ 1 (6.3) 

 
𝛿(𝜎𝑓)

𝜎∞
= (

𝐿

𝐿𝛿
)
−

1
𝜈𝐹𝑆

 (6.4) 

in which 𝜈𝐹𝑆 is the finite-size exponent. The classical assumption is 𝜈𝐹𝑆 = 𝜈 (Bolech and 

Rosso, 2004), where 𝜈 is the exponent describing the divergence of the correlation length of 

damage as approaching failure, 𝜉~Δ−𝜈, and Δ a reduced control parameter (e.g. Δ =

(𝜎𝑓 − 𝜎)/𝜎𝑓 for a stress-controlled loading). The mean-field (material-independent) prediction 

for depinning models is 𝜈 = 1 (Ertas and Kardar, 1994), in full agreement with simulations 

from a progressive damage model giving 𝜈 = 1.0 ± 0.1 (Girard et al., 2012, 2010). The 

prefactors of the scaling laws (6.3) and (6.4) are here expressed as the length scales 𝐿𝑚 and 

𝐿𝛿  are constants, which are expected to be positively correlated with the microstructural 

disorder following the scaling: 

 𝐿𝑚,𝛿~𝜉𝑑 (
𝛿(𝜏𝑐)

〈𝜏𝑐〉
) (6.5) 

where 𝛿(𝜏𝑐)/〈𝜏𝐶〉 represents the normalized variability of the local disorder (Weiss et al., 

2014b). These length scales define the internal scales below which the fluctuations as well as 

the finite-size corrections become important compared with the asymptotic strength 𝜎∞. 

As both the mean and the standard deviation of the strength distribution are defined, this 

depinning framework implies that the statistical distribution falls within the Gaussian basin of 

attraction, without, however, a precise prediction for the form of the distribution. Numerical 

simulations of the classical depinning transition of an elastic manifold showed that the 

distributions vary between a Gaussian and a Gumbel form, depending on the disorder (Bolech 

and Rosso, 2004). We have demonstrated above very robust Gaussian statistics for the 

compressive strength of concrete, in agreement with previous work (Dayaratnam and 

Ranganathan, 1976; Neville, 2004; Unanwa and Mahan, 2014; Wright, 1954). This is also 

consistent with numerical results obtained for frictional granular media under multiaxial 

compression simulated from a discrete-element model (Weiss et al., 2014a), as well as for the 

yield stress in a depinning model of amorphous plasticity (Talamali et al., 2011). We can 

therefore speculate that the Gaussian form is quite general, showing a “universal” character in 

this failure/yielding context, whose origin, however, remains to be theoretically explained. 



Finite size effects on compressive strength of concrete 103 

 

 

This finite-size scaling above entails (i) an apparent power law decay of the mean 

strength at small sizes (𝐿 ≪ 𝐿𝛿,𝑚), (ii) a non-vanishing strength for a system of infinite size 

(𝐿 → +∞), and (iii) a strength variability vanishing for (𝐿 → +∞) but increasing towards 

small sizes. If the points (i) and (ii) are superficially similar to size effect formulations proposed 

from deterministic approaches (see Chapter 1 and (Bazant, 1998; Carpinteri et al., 1995)), it is 

worth stressing that our approach is fundamentally different, deeply rooted in a generic, 

statistical physics framework (the critical depinning transition), and gives as well predictions 

for the scaling of the strength variability (point (iii)), for the finite-size exponent 𝜈 (which is 

material-independent and not empirical), and for the transition scales 𝐿𝛿 and 𝐿𝑚 in relation 

with the microstructural characteristics of the material. We showed previously an excellent 

agreement between the predicted scale effect on mean strength (Eq. (6.3)) and available 

published data on various materials (different rocks, coal, ice, concrete,..) over a wide range of 

scales (Weiss et al., 2014a). However, it was not possible to test the two other scaling 

predictions (Eqs. (6.3) and (6.4)), owing to the limited statistics for a given material, and an 

absence of detailed microstructural characterization. We show below that our present results 

on concrete are in remarkable agreement with the scaling predictions (Eq. (6.3)) and (Eq. (6.4)), 

and in reasonable agreement with Eq. (6.5), thus providing a complete description of statistical 

extrinsic- and intrinsic-size effects on the compressive strength of concrete. 

6.4 Finite size effects on compressive strength of concrete 

Fig. 6.6 shows the best-fitted finite-size scaling (Eq. (6.3)) for the mean compressive strength 

of our concrete specimens, taking 𝐿 as the sample diameter (𝜙) and using the AE-derived 

exponent 𝜈𝐹𝑆 = 𝜈 = 1.1 (Table 5.2). Hence, non-linear fits were performed to extract the 

asymptotic strength 𝜎∞ as well as the length scale 𝐿𝑚, with values for the three different 

concrete mixtures presented in Table 6.2. Experimental data are in excellent agreement with 

the scaling prediction for the F-concrete (Fig. 6.6a) and the M-concrete (Fig. 6.6b), whereas 

the average strength of the 40x80 mm C-concrete specimens appears anomalously low 

compared with 70x140mm specimens of the same material, inducing a weaker agreement in 

this case. The finite-size scaling of the standard deviation (Eq. (6.4)) is shown on Fig. 6.7. Note 

that the condition 𝛿(𝜎𝑓) → 0 when 𝐿 → +∞ gives an additional constrain for the determination 

of the length scale 𝐿𝛿 (see insets in Fig. 6.7), which was performed using the asymptotic 

strengths 𝜎∞ obtained previously from the fitting of the mean strength. Once again, the 

agreement between the scaling prediction and the experimental data is remarkable for F- and 
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M-concretes, but weaker for C-concrete specimens. This weaker agreement for the C-concrete 

might be partly related to an imperfect casting procedure, owing to the relatively small ratio of 

scales between the maximum aggregate size of 25 mm, and the cardboard mold diameters used 

to prepare the 40x80 mm and 70x140 mm samples. We recall that we obtained slightly 

anomalously low P-wave velocities for the 40x80 mm samples of C-concrete (see Chapter 3 

and Fig. 4.6). On the other hand, we were unable to detect any significant anomaly for these 

samples in terms of microstructural properties (Fig. 3.4 and Fig. 3.10).  

The standard error, 𝛿 (𝛿(𝜎𝑓)), of the standard deviation of compressive strength, 𝛿(𝜎𝑓), 

for each sample size of each concrete mixture shown in Fig. 6.7 was estimated from a bootstrap 

analysis. For this work, the following procedure was applied: 

1- For each sample size of each concrete group (𝜙𝑖), we generated a number of 𝑛 random 

strength values from a normal distribution with a mean and standard deviation given by the 

corresponding values of 〈𝜎𝑓〉 and 𝛿(𝜎𝑓) reported in Table 6.1. We then calculated the 

standard deviation of this generated strength dataset. 𝑛 is taken as the number of strength 

data for each sample size and each concrete mixture obtained from the compression tests 

(𝑛 ≥ 42). 

2- Repeating step 1 𝑛 times, we got a series of 𝑛 values 𝛿(𝜎𝑓). The standard deviation of this 

series was considered as the standard error of 𝛿(𝜎𝑓) for a given concrete sample size of a 

given concrete mixture (𝜙𝑖). 

The values of 𝜎∞ as well as of the two length scales 𝐿𝑚 and 𝐿𝛿 obtained from the fit of 

equations (6.3) and (6.4) on the compressive strength statistics for the three materials are 

summarized on Table 6.2. The results show that, as expected, 𝐿𝑚 and 𝐿𝛿  significantly vary 

with the concrete mixture; the relationship between these length scales and the microstructural 

characteristics of the materials is discussed in more details below. On the reverse, the 

asymptotic strength 𝜎∞ seems to only weakly depend on microstructural disorder. This is once 

again consistent with our depinning-like framework, as long as the average disorder strength 

〈𝜏𝐶〉 remains similar for the three materials: at very large scales, the disorder length scale 

𝜉𝑑  does no longer play any role on strength. Note that, taking 𝑟=1.1 and 𝐷𝑏 = 𝐿𝑚, Eq. (1.2) 

would fit our mean strength data as well. However, the associated deterministic framework 

does not give any prediction for the associated variability 𝛿(𝜎𝑓) and the probability of failure 

at stress 𝜎𝑓, 𝑃𝐹(𝜎𝑓). 
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Assuming an essentially material-independent asymptotic strength 𝜎∞ and 𝜈𝐹𝑆 = 1.1, the 

finite-size effects on both the mean strength (Eq. (6.3)) and the associated variability (Eq. (6.4)) 

should resume to a collapse of all data (all sample sizes, all materials) on a 

[〈𝜎𝑓〉 𝑣𝑠. (𝐿/𝐿𝑚)−1/𝜈𝐹𝑆] or a [𝛿(𝜎𝑓) 𝑣𝑠. (𝐿/𝐿𝛿)
−1/𝜈𝐹𝑆] plot, respectively. Using a material-

independent value of 𝜎∞ ≈ 36.2 MPa, the excellent collapses obtained (Fig. 6.8) are a further 

confirmation of the pertinence of the underlying theoretical framework. 

Using a mean-field prediction for the exponent, 𝜈𝐹𝑆 = 1 (Bolech and Rosso, 2004; Ertas 

and Kardar, 1994; Roux and Hild, 2002), we have also achieved a good agreement between 

our experimental data and the theoretical predictions of mean strength (Eq. (6.3)) and 

associated variability (Eq. (6.4)) (see (Vu et al., 2018b) for more details). 

Table 6.2. Finite-size scaling parameters obtained for the three concrete mixtures 

Concrete 

group 

𝝈∞ (MPa) 𝑳𝒎 (mm) 𝑳𝜹 (mm) 

Mean SD Mean SD Mean SD 

F 36.5 4.0 21.1 0.3 7.5 0.2 

M 35.9 4.3 14.3 0.5 5.8 0.2 

C 36.0 6.2 3.6 2.4 5.7 0.7 
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Fig. 6.6. Finite-size effect on the mean value of uniaxial compressive strength. (a) F-concrete; (b) M-

concrete; (c) C-concrete. Main graphs show the mean compressive strength, 〈𝜎𝑓〉 as a function of 

specimen size. Black symbols are the experimental data obtained from the uniaxial compressive tests, 

with the associated standard deviation 𝛿(𝜎𝑓). Red curve is the fitting by Eq. (6.3). Insets show the 

same data and fits in a [〈𝜎𝑓〉 𝑣𝑠. 𝜙−1/𝜈𝐹𝑆] graph. In this smaller graph, the fitting by Eq. (6.3) becomes 

a straight line and the asymptotic strength 𝜎∞ is determined. 
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Fig. 6.7. Finite-size effect on the standard deviation of uniaxial compressive strength. (a) F-concrete; 

(b) M-concrete; (c) C-concrete. Main graphs show the standard deviation of compressive strength, 

𝛿(𝜎𝑓) as a function of specimen size. Black symbols are the experimental data obtained from the 

uniaxial compressive tests. Red curve is the fitting by Eq. (6.4). Insets show the same data and fits in 

a [𝛿(𝜎𝑓) 𝑣𝑠. 𝜙−1/𝜈𝐹𝑆] graph where Eq. (6.4) is a straight line. 
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Fig. 6.8. Finite-size effects on the uniaxial compressive strength of concrete: (a) for the mean 

strength, 〈𝜎𝑓〉 and (b) for the standard deviation of strength, 𝛿(𝜎𝑓). Main graphs show the 

relationship between 〈𝜎𝑓〉 and 𝛿(𝜎𝑓) with the ratio of sample size (𝜙) to the length scales 𝐿𝑚 and 

𝐿𝛿, respectively. Black dashed-lines are the fits by Eq. (6.3) for the mean strength (a), and Eq. (6.4) 

for the standard deviation of strength (b). Insets show the same data and fits on 

[〈𝜎𝑓〉 𝑣𝑠. (𝜙/𝐿𝑚)−1/𝜈𝐹𝑆] and [𝛿(𝜎𝑓) 𝑣𝑠. (𝜙/𝐿𝛿)−1/𝜈𝐹𝑆] plots where the fits by Eq. (6.3) and Eq. 

(6.4) are the straight lines. 
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6.5 The role of microstructural disorder on finite-size effects 

As explained in section 6.3, we expect, from our theoretical framework (Weiss et al., 2014a), 

the length scales 𝐿𝑚 and 𝐿𝛿  to depend on disorder following Eq. (6.5). As detailed in Chapter 

3, the microstructural disorder of our concrete materials can be decomposed into two main 

categories, the aggregates and sand particles in one hand, pores in the other hand. At first 

glance, one might expect the aggregates/sand, which shape the global autocorrelation length 

𝜉𝑔 (see section 3.4), to control 𝐿𝑚 and 𝐿𝛿  as well, i.e. 𝜉𝑑 ≈ 𝜉𝑔. This would imply a positive 

correlation between 𝐿𝑚 and 𝐿𝛿 in one hand, and 𝜉𝑔 on the other hand. Unexpectedly, Fig. 6.9 

shows instead in both cases an affine dependence with a negative slope: the coarser the 

aggregates, the smaller the length scales 𝐿𝑚 and 𝐿𝛿. This anticorrelation is at odds with our 

initial naive expectation of the role of the concrete mix on the finite size effect.  

We now discuss the role of pores. To consider the possible impact of the pore structure 

on the finite size effects on strength, we first set down 𝜉𝑑 = 𝜉𝑝. The next step would be to 

estimate the variability of the local stress threshold, 𝛿(𝜏𝑐)/〈𝜏𝑐〉. However, we have shown in 

section 3.5 and Fig. 3.6 that pores have a roughly spherical shape. It is well known from 

(Kirsch, 1898) that the stress concentration factor 𝐾𝑡 resulting from the presence of a spherical 

hole in an elastic matrix, which will drive local damage initiation, is independent of hole size, 

as long as the hole diameter is small compared with sample size (a condition fulfilled for our 

samples, see section 3.5). Hence, we can reasonably assume that 𝜉𝑑 (
𝛿(𝜏𝑐)

〈𝜏𝑐〉
) will be essentially 

set by the pore correlation length 𝜉𝑝. Fig. 6.10a and b show the relationship between 𝜉𝑝 and 

the scales 𝐿𝑚 and 𝐿𝛿, respectively. This time, positive correlations are observed in both cases. 

For the size effect on strength variability 𝛿(𝜎𝑓), the data suggest a non-vanishing 𝐿𝛿  for 𝜉𝑝, 

which might be the fingerprint of the experimental scatter, independent of material properties 

but resulting from measurement error, imperfections of the samples geometry, etc.. Overall, 

however, owing to the limited number of different materials analyzed and the simplifying 

assumptions considered for the description of the internal disorder, we can conclude that (i) the 

finite size effects on strength are mainly controlled by the pore structure and (ii) the impact of 

this microstructural disorder is in reasonable agreement with our theoretical framework. An 

extension of this work to other concrete materials with various microstructures would be 

necessary to refine this analysis. Finally, the negative correlation observed between the 

aggregate/sand disorder length scale 𝜉𝑔 and the scales 𝐿𝑚 and 𝐿𝛿 (Fig. 6.9a and b) appears as 
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an indirect consequence of the fact that both the porosity and 𝜉𝑝 decrease with increasing 

aggregate size (see section 3.5), a likely consequence of the casting procedure.  

 

Fig. 6.9. Relationship between the global autocorrelation length, 𝜉𝑔 and the length scales (a) 𝐿𝑚; and 

(b) 𝐿𝛿. Black dashed-lines are the linear fits. 

 

 

Fig. 6.10. Relationship between the autocorrelation length of the pore structure, 𝜉𝑝 and the length 

scales (a) 𝐿𝑚; and (b) 𝐿𝛿. Black dashed-lines are the linear fits. 
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6.6 Discussion and Conclusion  

From an interpretation of compressive failure of heterogeneous materials as a critical transition 

from an intact to a failed state (Amitrano, 2012; Girard et al., 2012; Weiss et al., 2014a), and 

mapping this problem to the depinning transition of an elastic manifold (Weiss et al., 2014a), 

we derived finite-size scaling laws for the mean strength (Eq. (6.3)) as well as the associated 

variability (Eq. (6.4)). Using an extensive dataset of compression tests on four sample sizes 

and three different concretes, we demonstrated the irrelevance of the weakest-link theory to 

account for statistical size effects on compressive strength of quasibrittle materials. We instead 

obtained a remarkable agreement between our experimental results and the predictions of our 

theoretical framework. A combination of Eqs. (6.3) and (6.4) with Gaussian statistics (see 

section 6.2 and Fig. 6.5) gives a complete description of the failure probability under an applied 

stress 𝜎 for a system of size 𝐿 (Weiss et al., 2014a): 

 𝑃𝐹(𝜎, 𝐿) =
1

2

[
 
 
 
 

1 + 𝑒𝑟𝑓

(

 
 

𝜎 − 𝜎∞ (1 + (
𝐿
𝐿𝑚

)
−1/𝜈𝐹𝑆

)

√2 𝜎∞ (
𝐿
𝐿𝛿

)
−1/𝜈𝐹𝑆

)

 
 

]
 
 
 
 

 (6.6) 

, where the two length scales 𝐿𝑚 and 𝐿𝛿 are linked to the correlation length of the 

microstructural disorder (Eq. (6.5)), although the current dataset does not allow to show if the 

associated proportionality constants are material-dependent parameters, or would exhibit some 

sort of universality. We recall however that (i) Gaussian strength statistics is an empirical fact, 

not a prediction of our theoretical framework and (ii) the exact shape of the strength 

distribution, particularly in the low strength probability range, may have a significant impact 

on reliability-based structural design. 

In this framework, the asymptotic strength 𝜎∞ becomes the only relevant, material-

dependent parameter for the dimensioning of large-scale structures from an upscaling of small-

scale laboratory mechanical tests. At those large scales, the intrinsic strength variability is 

expected to vanish, leaving only a variability related to the loading configuration and the 

geometry of the structure, and/or with measurement noise. 

Surprisingly, for the materials studied here (classical concretes made of water, cement, 

sand and aggregates), the concrete mix does not have a significant impact on this asymptotic 

strength 𝜎∞. We also obtained a similar conclusion from applying the scaling (6.3) to describe 

sample size effect on the mean compressive strengths of three different concrete mixtures 
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reported by (Blanks and McNamara, 1935) (see Appendix C for more details). This material-

independent of 𝜎∞ can be interpreted as follows: in such composite material, as long as the 

nature of the matrix and of the inclusions remains the same and the size of the structure/sample 

is much larger than the microstructural disorder correlation length (𝐿 ≫ 𝜉𝑑), the failure stress 

will be mostly insensitive to the mix proportions. However, changing the nature of the matrix 

or of the inclusions (e.g. lightweight (Babu et al., 2006) or high-strength (del Viso et al., 2008) 

concretes) will, of course, significantly modify 𝜎∞. 

In our tests, the concrete mix did not control either the length scales 𝐿𝑚 and 𝐿𝛿 that 

materialize the scales below which finite-size corrections becomes significant relatively to the 

asymptotic mean strength. Instead, our results argue that 𝐿𝑚 and 𝐿𝛿 are mainly set by the pore 

structure. In our theoretical framework where microstructural disorder controls damage 

nucleation within an elastic matrix, this is not entirely surprising, as the contrast of elastic 

stiffness (and so the intensity of stress concentrations (Weiss et al., 2014b)) is obviously much 

larger between the cement matrix and air voids than between the matrix and sand particles or 

aggregates. When large enough, porosity is known to significantly impact the failure strength 

of concrete (Chen et al., 2013; Kolias, 1994; Kumar and Bhattacharjee, 2003; Lian et al., 2011). 

However, as the porosity of our samples always remained below 5% (Table 3.1), its role on 𝜎∞ 

was not significant. Hence, the disordered pore structure only affected the length scales 𝐿𝑚 and 

𝐿𝛿 (see section 6.5). The combination of those effects might lead to some counter-intuitive 

results: At small sizes, the F-concrete, which exhibits the largest porosity (Table 3.1) and the 

lowest Young’s modulus (Table 4.2), is the strongest material under compressive loading (Fig. 

6.11). 

More globally, the results presented here, as well as the consequences of our framework 

in terms of size effects on both the mean strength, the associated variability, and the probability 

of failure at a given stress, of the determination of an asymptotic strength, of the role of the 

microstructural disorder, call for a re-evaluation of classical design rules and of the 

establishment of safety regulations from laboratory tests. 
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Fig. 6.11. Illustration of size effect on the compressive failure strength for the different concrete 

mixtures. 
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Chapter 7                       

                   

Revising the concept of characteristic 

compressive strength of concrete 

Based on 

Vu, C. C., Plé, O., Weiss, J., Amitrano, D. (2018), Revisiting the concept of characteristic compressive 

strength of concrete, submitted to Cement and Concrete Research. 

7.1 Introduction 

In civil engineering, concrete is mostly used under compression loading configurations since 

its compressive strength is much larger than its tensile and/or flexural strengths. Generally, the 

tensile and flexural strengths of concrete are of the order of respectively ~10% and ~15%, of 

the compressive strength (Mehta and Monteiro, 2006). Furthermore, the compressive strength 

is often considered as a marker of the concrete quality because it is directly related to the 

structure of the hydrated cement paste (Neville, 2004). For these reasons, the compressive 

strength is usually used as the basic for taking decisions regarding the strength and 

serviceability of concrete members and structures (Mehta and Monteiro, 2006). 

For the purpose of structural design, concrete is classified into several strength classes 

based on the so-called characteristic compressive strength (𝑓𝑐𝑘) in most of European standards 

(e.g. (EN 1992, 2004) and (NF EN 206-1, 2004)) or on the specified compressive strength (𝑓𝑐
′) 

in the American standard (ACI 318-05, 2005). Hereafter, both  𝑓𝑐𝑘 and 𝑓𝑐
′ are referred as the 

characteristic strength (𝑓𝑐𝑘). For example, in the standard (EN 1992, 2004), the concrete 

strength class ranges from C12/15 to C90/105, meaning that the characteristic strength of 
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cylinders and that of cubic specimens are respectively in a range 12-90MPa and 15-105MPa. 

During the design stage, designers must size the dimensions of the concrete members to resist 

the imposed loads based on some compressive strength classes. These chosen strength grades 

are then used to define the concrete mix to be used for construction. In the construction stage, 

the concrete used must be in conformity with the strength requirements previously specified 

from the characteristic strength by the designers. Therefore, the characteristic strength can be 

considered as a key property for structural design, concrete mix design and quality control of 

concrete. 

Implicitly assuming a normal distribution for the compressive strength of concrete 

samples, in agreement with experimental data (ACI 318-05, 2005; EN 1992, 2004; Mehta and 

Monteiro, 2006; Neville, 2004), the characteristic strength of concrete (𝑓𝑐𝑘) is calculated from 

the corresponding mean value (𝑓𝑐𝑚) and standard deviation (𝑠) as follows: 

 𝑓𝑐𝑘 = 𝑓𝑐𝑚 − 𝜆. 𝑠 (7.1) 

, where the constant 𝜆 sets the acceptable percentage of tests that will fail under a stress 

lower than 𝑓𝑐𝑘 (e.g. a fractile of 5% is used in (EN 1992, 2004)). These two statistical 

parameters (𝑓𝑐𝑚 and 𝑠) are obtained from an adequate number of uniaxial compression tests 

(e.g. ≥ 30 tests recommended in (ACI 318-05, 2005)), carried out on standard concrete 

specimens at a minimum age of 28 days. Different standard samples are used in different 

countries and sometimes even in the same country. For instance, both 150x300-mm (or 6x12-

in.) cylinders and 150-mm (or 6-in.) cubes are used as standard specimens in the United States 

(ACI 318-05, 2005; ASTM C39/C39M-14, 2014; Mehta and Monteiro, 2006) and in most 

European countries (EN 1992, 2004), while 160x320-mm cylinders are used in France (NF EN 

12390-3, 2012; NF EN 206-1, 2004). However, quasibrittle materials in general, and concrete 

in particular, exhibit a size-dependent behavior on the nominal compressive strength (Bazant 

and Planas, 1998). Precisely, the mean compressive strength (𝑓𝑐𝑚 in Eq. (7.1)) decreases with 

increasing specimen size (Bazant, 1999, 1998; Burtscher and Kollegger, 2003; del Viso et al., 

2008; Muciaccia et al., 2017; Ozbolt and Eligehausen, 1995). This has been confirmed from 

our experimental results (see Chapter 6). In addition, we also demonstrate that the strength 

variability of concrete (𝑠 in Eq. (7.1)) decreases with increasing sample size (see Chapter 6). 

These size effects on both 𝑓𝑐𝑚 and 𝑠 imply, from relation (7.1) that the characteristic 

compressive strength (𝑓𝑐𝑘) will depend on the size of tested concrete samples, an effect 

generally not taken into account in concrete mix and structural design. Such size dependence 

implies that 𝑓𝑐𝑘 is actually not a characteristic of the material. 
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In the preceding chapter, we have indicated that (i) a very large system (𝐿 → +∞) will 

have a non-vanishing asymptotic strength (𝑓𝑐𝑚(𝐿→+∞) → 𝜎∞) but a vanishing strength 

variability (𝑠(𝐿→+∞) → 0), and (ii) the pore structure in hardened concrete samples, rather than 

the concrete mix, plays a key role in controlling the size effects on compressive strength. These 

results suggest two important points in terms of estimating the characteristic compressive 

strength of concrete as follows: 

1- In this framework, the asymptotic strength (𝜎∞), which is by construction independent 

of system size, appears as the genuine characteristic compressive strength of concrete; 

2- A laboratory concrete specimen can only be considered as a standard specimen if its 

size is very large compared with the characteristic size of its pore structure. 

Following this statistical size effect analysis of the compressive strength of concrete 

detailed in Chapter 6, we will here revisit the concept of characteristic strength by taking 

account the two points noted above, through a comparison with the classical expressions of 

characteristic strength proposed in concrete design codes ((EN 1992, 2004) and (ACI 318-05, 

2005)). 

From the point of view of the design and behavior of concrete structures, not only the 

compressive strength but also the modulus of elasticity is important (Zhou et al., 1995). While 

the compressive strength is used for calculating structures following the requirements of 

ultimate limit states, the elastic modulus is used for estimating the deformation as well as for 

the design of sections of structural concrete elements according to the serviceability limit state 

(ACI 318-05, 2005; EN 1992, 2004). In most concrete design codes, the modulus of elasticity 

is estimated from empirical expressions that assume a direct dependence of the elastic modulus 

on the compressive strength. According to these expressions, as the compressive strength 

increases, the modulus of elasticity also increases but at a decreasing rate (Neville, 2004). 

Therefore, the sample size dependence of compressive strength implies that the elastic modulus 

will depend on the size of the concrete sample. However, as demonstrated in section 4.4, for a 

given concrete mixture, there is no significant sample size effect on the elastic properties, 

including the static and dynamic elastic moduli. This observation, a consequence of size effects 

on compressive strength, calls for a re-examination of the expressions of elastic modulus in 

terms of compressive strength. 

Before presenting the results and discussion about the characteristic compressive 

strength by taking into account statistical size effects (section 7.3), in the next section, we will 
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discuss the relationship between the compressive strength and elastic modulus of our concretes 

and also compare it with those given by the empirical expressions of EN 1992 and ACI 318 

codes. Some overall conclusions of this chapter are given in section 7.4. 

7.2 Relationship between compressive strength and Young’s modulus 

Current building codes (e.g. (ACI 318-05, 2005); (EN 1992, 2004)) and many authors (see 

reviews in (Mehta and Monteiro, 2006; Neville, 2004; Noguchi et al., 2009; Vilanova et al., 

2011)) proposed several empirical formulas relating the elastic modulus to the compressive 

strength and/or the density of concrete. 

According to (EN 1992, 2004), the static modulus of normal-weight concrete can be 

calculated from: 

 𝑌𝑠 = 22 (
𝑓𝑐𝑚
10

)
0.3

 (7.2) 

where 𝑌𝑠 is the secant modulus of elasticity (in GPa) and 𝑓𝑐𝑚 is given in MPa.  

In the standard (ACI 318-05, 2005), the modulus of elasticity, 𝑌𝑠 (in MPa), can be 

estimated from: 

 𝑌𝑠 = 𝜌1.50.043√𝑓𝑐′ (7.3) 

where 𝜌 is the density (in kg/m3) and 𝑓𝑐
′ (in MPa) is the specified compressive strength 

of cylindrical concrete samples. 

We first note that these empirical formulas are dimensionally inconsistent (e.g. Pa vs. 

Pa0.3 in Eq. (7.2)). Besides this, Fig. 7.1, which shows the correlations between the compressive 

strength, 𝜎𝑓, and the static (𝑌𝑡 and 𝑌𝑠) and dynamic (𝑌𝑑) elastic moduli for all of our concrete 

samples, epitomizes several problems while using such empirical relations. In this figure, we 

compare our experimental results with the expressions (7.2) and (7.3), taking (〈𝜎𝑓〉 = 𝑓𝑐𝑚) and 

(〈𝜎𝑓〉 = 𝑓𝑐
′). From this, we observed that: 

(i) the values of both 𝑌𝑡 and 𝑌𝑠 are systematically much smaller than the empirical 

predictions, whatever the concrete samples. For the dynamic elastic moduli, 𝑌𝑑, experimental 

data are below the empirical predictions for F-concrete but above the predictions for M- and 

C-concretes. 
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(ii) for a given dataset (fixed sample size and material), the correlations of static moduli 

𝑌𝑡 and 𝑌𝑠 with 𝜎𝑓 are either very weak or unsignificant (see Table 7.1). Merging strength data 

for all sample sizes of a given material, the absence of correlation is clear as well (see Fig. 

7.1a, b and c). This is expected, as we observed a size effect on strength (see Chapter 6) but 

not on the elastic modulus (section 4.4). 

(iii) considering now all samples (all sizes, all materials), the disagreement with the 

empirical formulas (7.2) and (7.3) is even more striking (Fig. 7.1d). Indeed, increasing the 

aggregate size implies an increase of the elastic modulus, as expected, while F-concrete 

showed, in average, larger strengths than M- and C-concretes. As explained in more details 

above, this last point is a consequence of the size effects on strength, in relation with the pore 

content of our materials. 

This demonstrates the absence of significant and meaningful link between elastic 

modulus (either static or dynamic) and compressive strength. This, we argue, is not surprising, 

given that the elastic modulus is directly related to elastic (linear) deformation, while the 

compressive strength is affected by the non-linear behavior due to the progressive 

developpement of damage and microcracking (Mehta and Monteiro, 2006; Neville, 2004). For 

a perfect crystalline material without defects, the ultimate (tensile) strength, resulting from pure 

brittle failure, would be proportional to the elastic modulus (Miannay, 1998). For a disordered 

material like concrete under compression, such scenario is unrealistic. 

In many cases (e.g. F-concrete samples in this study), using empirical laws such as Eq. 

(7.2) or Eq. (7.3) to estimate elastic properties from the compressive strength would lead to an 

overestimation (an unsafe result). Therefore, to measure the elastic modulus from the static 

load test, rather than from such empirical relations, appears much safer for concrete structural 

design. 
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                                      (a)                                                                         (b) 

 

                                       (c)                                                                        (d) 

Fig. 7.1. Relationships between the compressive strength and elastic modulus of concrete samples: (a) 

for F-concrete; (b) for M-concrete; (c) for C-concrete and (d) for all of concrete samples. Closed symbols 

are the static elastic moduli (𝑌𝑡), open symbols are the secant moduli (𝑌𝑠) and unfilled symbols with 

error bars are the dynamic elastic moduli (𝑌𝑑). 
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Table 7.1. Correlation coefficient between the compressive strength (𝜎𝑓) and static moduli 

(𝑌𝑡  and 𝑌𝑠) for different concrete samples. 

Concrete 

mixture 

Sample sizes,  

(mm x mm) 
𝝈𝒇 vs. 𝒀𝒕 𝝈𝒇 vs. 𝒀𝒔 

F 

40x80 0.42 0.42 

70x140 0.43 0.43 

110x220 0.19 0.09 

160x320 0.27 0.21 

M 

40x80 0.21 0.21 

70x140 0.38 0.38 

110x220 0.41 0.20 

160x320 -0.06 -0.36 

C 

40x80 0.40 0.40 

70x140 0.48 0.48 

110x220 0.45 0.15 

160x320 0.12 0.03 

7.3 Characteristic compressive strength of concrete 

Concrete design codes evaluate the characteristic compressive strength from subtracting the 

strength variability from the mean compressive strength obtained from a set of tested concrete 

specimens with a unique size (see Eq. (7.1)). However, due to the sample size effects on both 

the mean value and the associated variability of compressive strength (see Chapter 6), this 

traditional estimation necessarily leads to size effects on the characteristic compressive 

strength 𝑓𝑐𝑘 as estimated from Eq. (7.1). This questions the concept of characteristic strength 

itself, which should be representative of the material only and independent of external size. In 

this section, we show that the asymptotic strength, deduced from the external size effects 

towards the limit 𝐿 → +∞, represents the genuine characteristic strength of concrete. We also 

propose some recommendations to determine accurately this asymptotic strength as well as to 

check the conformity of concrete with strength requirements. 
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7.3.1 Asymptotic versus characteristic compressive strength 

Owing to the vanishing strength variability for a system of infinite size (𝐿 → +∞), the 

asymptotic strength 𝜎∞ can be considered as the genuine characteristic strength of concrete to 

be used to design large scale structures. As mentioned in section 7.1, the characteristic strength 

is instead classically calculated from the mean value and the standard deviation of compressive 

strength from the relation (7.1). In (EN 1992, 2004), the characteristic strength (𝑓𝑐𝑘) is defined 

as that strength value below which only 5% of the compression tests are expected to fall. This 

corresponds to 𝜆 = 1.645 in Eq. (7.1) (see Fig. 7.2). In (ACI 318-05, 2005), the tolerance is 

larger (10%), corresponding to 𝜆 = 1.34 (see Fig. 7.2). 

Hence, from the mean strengths 〈𝜎𝑓〉 and standard deviations 𝛿(𝜎𝑓) reported in Table 

6.1, we can compute the characteristic strengths for each concrete mixture and sample size, as 

defined by the EN 1992 and the ACI 318 codes, using respectively 𝜆 = 1.645 and 𝜆 = 1.34 in 

Eq. (7.1). 

Fig. 7.3 shows that the so-defined “characteristic” strength differs for the three different 

concrete mixtures, and is sample size dependent. This is in full contrast with the fact that the 

asymptotic strength 𝜎∞ is, by construction, sample size independent, but also independent of 

the concrete mix for the three materials prepared for this study (of course, this does not mean 

that 𝜎∞ should be the same for all types of concrete) (see Chapter 6). In addition, we note that 

 

Fig. 7.2. Normal distribution curve for the compressive strength of concrete samples (modified from 

(Pillai and Menon, 2009)). 
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for most of the F-concrete and M-concrete dataset (one material, one sample size) the 

characteristic strength (𝑓𝑐𝑘) calculated from the structural design codes are larger than the 

asymptotic strength 𝜎∞, while an opposite result is observed for the C-concrete. This illustrates 

that the use of classical structural design codes and small concrete samples can lead to 

unreliable estimations of the asymptotic strength, relevant for large scale structures. These 

classical methods give sometimes unsafe estimations (e.g. F-and M-concretes) (see Fig. 7.3a 

and b), or occasionally too conservative ones (C-concrete) (see Fig. 7.3c). 

In most structural design codes, 150x300mm cylindrical samples (ACI 318-05, 2005; 

ASTM C39/C39M-14, 2014; EN 1992, 2004) (or 160x320mm in France (NF EN 12390-3, 

2012)) are used as a standard to determine the characteristic compressive strength. Here, even 

though the 160x320-mm samples provide the values of the characteristic strength that are the 

closest to 𝜎∞, the accuracy of the estimation of 𝜎∞ depends on the confidence level chosen (i.e. 

the constant 𝜆 in Eq. (7.1)), as well as on the concrete mix. Taking 𝑓𝑐𝑚 = 〈𝜎𝑓〉, 𝑠 = 𝛿(𝜎𝑓), 

𝜈𝐹𝑆 = 1, a combination of Eq. (6.3) and Eq. (6.4) with Eq. (7.1) yields the following scaling 

for the characteristic strength (𝑓𝑐𝑘): 

 𝑓𝑐𝑘 = 𝜎∞ (
𝐿𝑖

𝐿
) + 𝜎∞ (7.4) 

where 𝐿𝑖 = 𝐿𝑚 − 𝜆𝐿𝛿 . Considering the corresponding strength 𝜎∞ for each concrete 

mixture (Table 6.2), Eq. (7.4) fits well the 𝑓𝑐𝑘 values for all concrete mixtures, and for both the 

EN 1992 and ACI 318 design codes (Fig. 7.3). For a given concrete mixture, the minimum 

sample size (𝐿min) that would allow a correct estimation of the asymptotic strength (𝜎∞ ±

0.01𝜎∞) while using classical design codes are reported in Table 7.2. These sample sizes are 

always larger than 160mm and depend on the concrete mixture as well as the constant 𝜆, i.e. 

on the code. In some cases, e.g. F-concrete, to perform compression tests on samples large 

enough to give a correct estimate of 𝜎∞ would require an unusually large loading capacity for 

laboratory testing (e.g., 36.5
𝑁

𝑚𝑚2 × (𝜋 ×
8972

4
)𝑚𝑚2  ≈ 23.1 × 106𝑁 for F-concrete with the 

ACI 318 code). 

This raises important problems while trying to estimate a reliable characteristic strength 

of concrete for large scales structural design from classical codes and a unique series of tests 

with a single sample size. To avoid sample size effects on strength, the sample size 𝐿 should 

be much larger than 𝐿𝑚 which itself depends on the microstructural characteristics (i.e. pore 

structure) of the hardened concrete. 
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On the other hand, the asymptotic strength (𝜎∞) could be approximately determined by 

the mean strength 〈𝜎𝑓〉 of samples whose the size (𝐿) is much larger than the characteristic size 

of the pore structure (𝐿𝑚) (see Fig. 6.8a and section 6.5). Based on this idea, some 

recommendations for predicting the characteristic strength of concrete are presented in the 

following section. 

Table 7.2. The estimated parameters of the finite-size scaling of characteristic strength expressed 

according to equation (7.4). 

Concrete 

mixture 

EN 1992 ACI 318 

𝑳𝒊 (mm) 𝑳𝐦𝐢𝐧 

(mm) 

𝑳𝒊 (mm) 𝑳𝐦𝐢𝐧 

(mm) Mean SD Mean SD 

F 6.3 2.0 631.0 9.0 1.7 897.0 

M 3.1 2.5 305.0 5.2 2.5 517.0 

C -7.8 6.2 319.0 -5.0 4.7 224.0 
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Fig. 7.3. Comparison between the asymptotic strength, 𝜎∞, determined from the finite-size scaling of 

the mean strength (Eq. (6.3)), and the estimated values of characteristic strength, 𝑓𝑐𝑘, following the 

Eurocode 2 (filled symbols) and ACI-318 (open symbols): (a) F-concrete; (b) M-concrete and (c) C-

concretes. The red and blue curves are the fits by Eq. (7.4) for the 𝑓𝑐𝑘 values of all concrete mixtures 

according to the EN 1992 and ACI 318 design codes, respectively. 
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7.3.2 Recommendations for the determination of the asymptotic compressive 

strength 

As discussed above, the form of the finite-size scaling laws for both the mean strength (Eq. 

(6.3)), with a non-vanishing asymptotic strength (𝜎∞), and the associated variability (𝛿(𝜎)) 

vanishing at large scales, implies that 𝜎∞ can be considered as the genuine characteristic 

strength (𝑓𝑐𝑘) of concrete. We have also stressed that using a single concrete sample size for 

laboratory testing leads to different estimations of the characteristic strength from classical 

codes. Therefore, performing a series of compression tests with different sample sizes is highly 

recommended to reliably estimate the characteristic (asymptotic) compressive strength of 

concrete. We suggest below an experimental procedure: 

1- Prepare cylindrical concrete samples with a length-to-diameter ratio of 2 and at least 

four different sizes. This condition is required to perform a good fit of the finite-size 

scaling laws (Eq. (6.3) and Eq. (6.4)) to the data in order to estimate the length scales 

𝐿𝑚 and 𝐿𝛿 as well as the asymptotic strength 𝜎∞. The number of test specimens in each 

size should be as large as possible, and not less than 30 specimens, following the 

standard ACI 318 (ACI 318-05, 2005). 

2- The diameter of the smallest concrete cylinders should be at least 3 times the nominal 

maximum size of the coarse aggregate, following the regulations (ASTM C31/C31M-

03, 2003), (NF EN 206-1, 2004) and (NF EN 12390-1, 2012). This condition allows to 

reduce the “wall effect” that might happen when the maximum aggregate size is large 

relatively to the size of the mold, and to ensure the quality of the compaction procedure 

and the uniformity of the aggregate distribution in the samples. 

3- The largest sample size should be as large as possible depending on the laboratory 

loading capacity. However, it should not be less than 160mm. 

4- All the concrete samples must be cast, cured and tested under the same conditions. 

5- Using 𝜈𝐹𝑆 = 1 in Eq. (6.3), the asymptotic strength (𝜎∞) is determined by a linear 

regression in a [〈𝜎𝑓〉 vs. 𝐿
−1] graph. The pertinence of the finite-size scaling can then 

be checked by plotting the strength variability 𝛿(𝜎) as a function of 𝐿−1 (see Eq. (6.4)). 

A crucial advantage of such experimental program is that it provides a well-defined value of 

the characteristic (asymptotic) compressive strength of concrete which is no more affected by 

the sample size or the chosen 𝜆-value. However, this requires a larger number of tests with 

samples of different sizes, making this procedure lengthy and costly. To circumvent this 
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problem, a simple analysis of the pore structure of the concrete should be performed. Indeed, 

Eq. (6.3) implies that the asymptotic strength will be correctly estimated from 〈𝜎𝑓〉 if  
𝐿𝑚

𝐿
→ 0. 

In the preceding chapter, we have shown that the length scale 𝐿𝑚 mainly depends on the 

intrinsic characteristic of the pore structure in the hardened concrete. Fig. 7.4 shows the 

positive correlation between 𝐿𝑚 and the the maximum pore diameter (𝑑𝑝,𝑚𝑎𝑥) times the 

porosity (𝑝𝑜 in (%)). A good linear regression (𝑅2 = 0.85) is obtained: 

 𝐿𝑚 = 70 (
𝑝𝑜

100
× 𝑑𝑝,𝑚𝑎𝑥) (7.5) 

This suggests an acceptance criterion for the minimum sample size with respect to the 

pore structure characteristics. Combining Eq. (6.3) with 𝜈𝐹𝑆 = 1 and Eq. (7.5), this condition 

reads: 

 𝐿 ≥
0.7(𝑝𝑜 × 𝑑𝑝,𝑚𝑎𝑥)

𝑘
 (7.6) 

where 𝑘 can be seen as the acceptance constant, corresponding to the expected deviation 

of the average strength 〈𝜎𝑓〉 from the asymptotic strength 𝜎∞. For example, to determine the 

characteristic asymptotic strength of C-concrete with an acceptance constant of 𝑘 = 5%, using 

the values of 𝑝𝑜 and 𝑑𝑝,𝑚𝑎𝑥 reported in Table 3.1, the minimum sample size required is           

𝐿min = 120mm. This means that the mean compressive strength obtained on the cylindrical 

samples with a diameter larger 120-mm can be regarded as an estimation of characteristic 

strength of C-concrete with a confidence level of 95%. On the other hand, with the same 

acceptance constant 𝑘, samples with a diameter of at least 464mm would be needed to 

determine the characteristic strength of F-concrete. Although the asymptotic strength 𝜎∞ is 

very similar for the three different concrete mixtures (see Table 6.2 and Fig. 6.8), the sample 

size required for its estimation with the same accuracy, from a single series of tests, strongly 

varies with the material. This is another illustration of the role of the internal pore structure on 

the size effects on strength, while its impact on the asymptotic strength appears limited in our 

low-porosity concretes (see Chapter 6). Consequently, if one use only one sample size to 

estimate the characteristic strength of the material from laboratory testing, the sample size 

criterion (Eq. (7.6)) should be taken into account. 
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Fig. 7.4. Relationship between the length scale (𝐿𝑚) and the product (𝑝𝑜 × 𝑑𝑝,𝑚𝑎𝑥) where the 

porosity, 𝑝0, is expressed in absolute value. 

Quality control during construction is required to check the conformity of concrete to the 

strength requirements posed at the design stage. Usually, the acceptance strength criterion is 

derived from the characteristic strength determined from standard procedures (ACI 318-05, 

2005; EN 1992, 2004; NF EN 206-1, 2004), without paying attention to sample size effects or 

to the internal pore structure. However, based on the above discussion, we argue that, besides 

the strength criterion, an additional condition on the sample size for laboratory test should be 

examined for the final acceptance decision. Hence, we propose the following step-by-step 

checking procedure: 

1- Assign the strength grade of concrete (𝑓𝑐𝑘), specified at the design stage, to the 

asymptotic strength (𝜎∞) of the considered concrete.  

2- Obtain the mean value 〈𝜎𝑓〉 and the standard deviation 𝛿(𝜎𝑓) of the compressive 

strength of the considered concrete from a series of at least 30 compression tests carried 

out on sample cylinders of diameter 𝐿. 

3- Perform an image analysis of internal sections on virgin concrete samples to estimate 

the porosity (𝑝𝑜) and the pore maximum diameter (𝑑𝑝,𝑚𝑎𝑥). A minimum of three 

sections including one vertical and two horizontal sections (see Fig. 3.1) for each 
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sample are recommended. In the case of concrete samples fabricated from different 

batches, one sample in each batch has to be selected and analyzed. 

4- Calculate the minimum required average strength (𝑓𝑚𝑟) of the considered concrete at 

the sample size 𝐿 from the equations (6.3) and (7.5) with 𝜈𝐹𝑆 = 1, based on the values 

of the required asymptotic strength, 𝜎∞ (step 1), of the porosity, 𝑝𝑜 (step 3) and of the 

pore maximum diameter, 𝑑𝑝,𝑚𝑎𝑥 (step 3), yielding: 

 𝑓𝑚𝑟 = 𝜎∞ [
0.7(𝑝𝑜 × 𝑑𝑝,𝑚𝑎𝑥)

𝐿
+ 1] (7.7) 

where the porosity 𝑝𝑜 is expressed in %. 

5- Compare the experimental mean strength 〈𝜎𝑓〉 (obtained at the step 2) with the 

minimum required average strength 𝑓𝑚𝑟 (calculated by using the Eq. (7.7)). If 〈𝜎𝑓〉 ≥

𝑓𝑚𝑟, we can state that the examined concrete complies with the strength requirements. 

We note that the relation between the length scale 𝐿𝑚 and the characteristics of the pore 

structure (Fig. 7.4) has only been validated for our low-porosity concrete. It is doubtful that it 

would hold for large porosity concretes, for which the pore structure is much more complex 

(non-spherical, interconnected pores) and the direct impact of porosity on strength is strong 

(Chen et al., 2013; Kolias, 1994; Kumar and Bhattacharjee, 2003; Lian et al., 2011).  Therefore, 

the above procedure should be applied only for normal-weight concretes with a total porosity 

of less than 10%. In addition, a smaller sample diameter 𝜙 implies a larger “correcting factor” 

𝑘 in equation (7.6) as well as a larger strength variability 𝛿(𝜎) at this size. We therefore 

recommend using cylindrical samples with a diameter larger than 110mm. Two examples 

illustrating the application of this procedure are presented in Appendix D. 

7.4 Conclusion 

From the experimental studies of the statistical size effects on the compressive strength of 

concrete, in this chapter: we (i) explored the relationship between the compressive strength and 

elastic modulus; (ii) discussed the definition of the characteristic compressive strength of 

concrete; and (iii) proposed to revise the procedures to estimate this characteristic strength and 

to check the conformity of concrete to the strength requirements defined at the design stage. 

The following main conclusions can be drawn: 
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1- There is no significant correlation between the modulus of elasticity and the 

compressive strength of concrete, which precludes an estimation of the elastic modulus 

from strength data. 

2- Owing to the vanishing intrinsic fluctuations of strength at large scales    

(𝛿(𝜎𝑓)𝐿→+∞
→ 0), the asymptotic strength (𝜎∞) can be considered as the genuine 

characteristic compressive strength of concrete. Therefore, an experimental study 

conducted on a series of at least four different sample sizes is strongly recommended 

to allow an accurate determination of the size effects on strength, hence of the 

characteristic compressive strength of concrete.   

3- For low-porosity concretes, the pore structure of the hardened concrete samples plays 

a key role in controlling the size effects on strength but does not have a significant 

impact on the asymptotic compressive strength. A concrete with a lower porosity will 

be less affected by size effects on compressive strength than a concrete with a larger 

porosity. Another important consequence is that, if one wants to estimate the 

characteristic (asymptotic) strength of the material from a series of tests with a single 

sample size, a condition on this size with respect to the characteristic scale of the pore 

structure should be fulfilled.  

4- The characteristic scale of the pore structure in a hardened concrete sample can be 

estimated from the product of the maximum pore diameter and the total porosity. In 

order to determine these two parameters, we proposed a simple image analysis 

procedure on internal sections of concrete samples. This procedure was tested so far 

only on a limited number of different concrete mixtures. An extension of this work to 

other concrete materials with various microstructures would be necessary to refine this 

estimation.
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Chapter 8            

               

Conclusion and perspectives 

8.1 Conclusions and main results 

The research presented in this thesis was undertaken to investigate the statistical size effects 

on the compressive strength of concrete, which is a typical heterogeneous material of 

tremendous importance in civil engineering. To do so, a campaign of different experimental 

programs was carried out on a large number of concrete specimens with four different 

cylindrical sizes and three different microstructures. The main findings from experimentation 

and data analysis of each of the main issues and the links between them have already been 

presented and discussed at the end of the previous chapters. In the following paragraphs, we 

summarize the main conclusions drawn from the experimental studies conducted throughout 

this thesis. 

A first series of conclusions relates to the analysis of microstructural characteristics (Chapter 

3) and elastic properties (Chapter 4) of all our three types of concretes: 

 The associated characteristic length scales of microstructural disorder can be simply 

quantified via two autocorrelation lengths: 𝜉𝑔 for describing the internal microstructure 

as a whole and 𝜉𝑝 for representing the pore structure within the hardened concrete 

sample. The global autocorrelation length, 𝜉𝑔 is strongly affected by the aggregate size, 

while the pore autocorrelation length, 𝜉𝑝 is directly related to the number and the size 

of pores existing in the material. Precisely, 𝜉𝑔 increases, whereas 𝜉𝑝 decreases with the 

increase of aggregate size in our concretes. 
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 For each given concrete group, both the autocorrelation lengths 𝜉𝑔 and 𝜉𝑝 are 

independent of the sample size and smaller than the smallest sample size. This means 

that there is no significant sample size effect on the microstructural characteristics. This 

also allows to confirm that all our tested samples are larger than the RVE of the 

corresponding concrete in terms of microstructure and disorder. 

 The finer concretes have a larger porosity than the coarser ones. However, for each type 

of concrete, both the pore size distribution and porosity are similar for different sample 

sizes. In other words, there is no dependence of the pore structure on the concrete 

sample size. 

 The coarser concrete shows a larger elastic modulus than the finer ones. This is 

consistent with the fact that the elastic modulus of concrete is affected by the modulus 

of elasticity of the aggregate and by the volumetric proportion of aggregate in the 

concrete. However, for a specified concrete mixture, the modulus of elasticity is 

independent of the sample size. 

A second series of conclusions concerning the interpretation of compressive failure as a critical 

phase transition are achieved from the Acoustic Emission (AE) experiments (Chapter 5): 

 The associated durations and energies of AE events released by the fracturing events 

are distributed according to a power law which presents a cut-off diverging as 

approaching the failure. 

 The failure behavior of concrete under compression loading is preceded by an 

acceleration of the rate of fracturing events and of the energy released, and a divergence 

of the fracturing correlation length as well as the associated duration towards failure. 

These results are strong evidences to support an interpretation of the compressive 

failure of low-porosity disordered materials as a critical phase transition between an 

intact state and a failed state. 

 The associated critical exponents, which were found to be independent of sample size 

and of concrete mixture, and very close to mean-field depinning values, provide a 

further confirmation for a critical interpretation and also demonstrate that the critical 

behavior of compressive failure of heterogeneous materials is not affected by either 

system size or microstructural disorder. 

A prominent consequence obtained from the critical interpretation of compressive failure is to 

provide finite-size scaling laws for the mean value of compressive strength and its associated 
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variability. These scaling laws have been used to describe the statistical size effects on 

compressive strength of our concrete in Chapter 6. The main outcomes of this chapter are: 

 The weakest-link approach based on the hypotheses of pure brittleness and the 

independence of damage events is irrelevant to explain size effects on the compressive 

strength of quasibrittle materials like concrete. As a result, for this kind of material, the 

statistical size effects and the failure probability of strength under compression loading 

could not quantify in the framework of extreme value statistics. 

 The compressive strength of concrete exhibits clearly the dependence on both the 

sample size and the associated internal microstructure size. Precisely, (i) the increase 

of both the mean strength and its variability towards small system size follow a power 

law scaling of the sample size with a power-law exponent close to the mean-field 

prediction (𝜈𝐹𝑆 = 1); and (ii) when the sample size increases, the mean strength 

decreases and reaches a non-vanishing asymptotic strength (𝜎∞ > 0) for a system of 

infinite size (𝐿 → +∞), while the associated variability of strength vanishes for 

(𝐿 → +∞). 

 For a low-porosity heterogeneous material like the concretes used in this study, the pore 

structure plays a key role to control the finite size effects on compressive strength, but 

it does not have a significant impact on the asymptotic strength (𝜎∞). 

 Owing to the vanishing strength variability at large-sizes, the non-vanishing asymptotic 

strength 𝜎∞ becomes the most relevant, material-dependent parameter for 

dimensioning large-scale structures from an upscaling of small-scale laboratory 

mechanical tests. 

Finally, Chapter 7 presented a study revisiting the two most popular design codes of concrete 

structures, EN 1992 and ACI-318, by taking into account the statistical size effects on 

compressive strength. This study focus on the concept of characteristic compressive strength 

and the prediction of elastic modulus, that are commonly expressed through the mean 

compressive strength obtained on laboratory-scale concrete samples. The main conclusions of 

this chapter are: 

 There is no direct proportionality between the elastic modulus (linear property) and the 

compressive strength (non-linear property) of concrete. 

 The asymptotic compressive strength 𝜎∞ can be considered as the genuine 

characteristic compressive strength of concrete. Therefore, an experimental program 
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conducted on a range of at least four different sample sizes, rather than on only one 

kind of sample size, is extremely recommended to achieve a highly accurate value of 

the characteristic strength of concrete. 

 For the same targeted characteristic strength, a concrete with a lower porosity will be 

less affected by size effects on compressive strength than a concrete with a larger 

porosity. 

 Besides the strength criteria, an additional condition of sample size much greater than 

the internal length scale of the pore structure must be satisfied in the case of using only 

one sample size for predicting the characteristic strength and examining the conformity 

with the acceptance strength requirement of concrete. 

The two last points are the consequence of the principal role of the pore structure on the 

statistical size effects on compressive strength of concrete.  

Overall, linking these findings above, we can conclude that the three major research objectives 

posed in the introduction of this thesis were met. 

8.2 Perspectives 

Because the critical behavior of failure of heterogeneous materials is not affected by the loading 

condition and microstructural disorder, we thus believe that the finite-size scaling laws, derived 

from the critical interpretation of failure, can provide a powerful formulation to fit the size 

effect of whatever type of strength data for other quasibrittle materials. 

Although the leading role of pore structure for the size effects on compressive strength were 

addressed in the present research, there still remains several possible extensions.  

 The first possible improvement is refining the relationship between the characteristic 

length scales of the pore structure and the associated size effect length scales (𝐿𝑚,𝛿). 

This work can be accomplished by following the same strategy of experimentation used 

in this thesis on other normal weight concrete mixtures (different shape and sizes of 

aggregates). 

 The second refinement could be based on investigating the statistical size effects on 

compressive strength of lightweight and high-strength concretes (HSC). The former are 

highly porous materials, while the latter are very dense materials with a minimal 

volume of pores and very fine aggregate particles (Mehta and Monteiro, 2006; Neville, 
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2004). Therefore, studying these two types of concrete would allow to get more insight 

into the role of (i) pore structure, and (ii) changing the nature of the aggregate or of the 

mortar matrix, for the size effect on compressive strength. 

Concerning the extension of this critical interpretation of failure from the laboratory scale to 

geophysical field scales, an application to seismic signals before a chalk cliff collapse 

(Amitrano et al., 2005) has been presented in (Vu et al., 2018a). In this work, the acceleration 

of the seismic activity and the evolution of the seismic energies are in agreement with our 

critical interpretation. This strongly suggests an extension of our critical framework to large 

scale geophysical situations, and identifies the associated scaling laws as precursory signals of 

catastrophic failure, hence potentially opens the way towards forecasting tools. 
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Appendix A           

                 

Weibull-type size effect 

The weakest link concept assumes that a structure is considered as being equivalent to a chain 

of 𝑁 independent links (Fig. A.1a). All  the elements (or links) have the same distribution of 

strength 𝜎, characterized by the cumulative distribution function (𝑐𝑑𝑓), 𝑃1(𝑠𝑖 < 𝜎), which 

represents the probability of failure of an element 𝑖 whose strength, 𝑠𝑖, is less than the applied 

stress 𝜎. The survival probability of one element  for this stress level is 1 − 𝑃1(𝜎). If the whole 

chain should survive, all of its elements must survive. This condition can be expressed in 

mathematical terms as follows: 

 1 − 𝑃𝑓(𝜎) = ∏(1 − 𝑃1(𝑠𝑖 < 𝜎))

𝑁

𝑖=1

= (1 − 𝑃1(𝜎))
𝑁

 (A.1) 

where 𝑃𝑓(𝜎) is the failure probability of the chain as a whole. Taking natural logarithms of 

these expressions, we have: 

 ln (1 − 𝑃𝑓(𝜎)) = 𝑁. ln(1 − 𝑃1(𝜎)) (A.2) 

Since 𝑃1(𝜎) is extremely small in practical situations, we can approximate it as 

ln(1 − 𝑃1(𝜎)) ≈ −𝑃1. Therefore, after solving for 𝑃𝑓(𝜎), the equation (A.2) reduces to: 

 𝑃𝑓(𝜎) = 1 − 𝑒−𝑁.𝑃1(𝜎) (A.3) 
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Fig. A.1. Various cases on which the weakest-link theory is applied: (a) one-dimensional discrete 

chain; (b) unidimensional bar (after (Bazant and Planas, 1998; Torrenti et al., 2013)). 

The last equation can be extended to a continuous bar as shown in Fig. A.1b by setting 𝑁 =

𝑉/𝑉𝑜, where 𝑉 is the volume of the bar and 𝑉0 is a representative volume of the material.  

Substituting this expression into the equation (A.3), we finally obtain: 

 𝑃𝑓(𝜎) = 1 − exp [−
𝑉

𝑉0
𝑃1(𝜎)] (A.4) 

Equation (A.4) can be regarded as a simple statement of the weakest-link theory. 

(Weibull, 1951, 1939a) introduced an empirical formula for the failure probability 𝑃𝑖(𝜎) as 

follows: 

 𝑃1(𝜎) = (
𝜎 − 𝜎𝑢

𝜎0
)

𝑚

 (A.5) 

where 𝜎𝑢 is the strength threshold, normally assumed to be equal to zero, 𝜎0 is a reference 

strength that can be interpreted as the mean strength for a volume 𝑉0, and 𝑚 is called the shape 

parameter or Weibull’s modulus. With 𝜎𝑢 = 0, substitution of Eq. (A.5) into Eq. (A.4) leads 

to the following statistical probability distribution of strength known as the Weibull 

distribution: 

 𝑃𝑓(𝜎) = 1 − exp [−
𝑉

𝑉0
(
𝜎

𝜎0
)

𝑚

] (A.6) 

From the last equation, the mean failure strength 〈𝜎𝑓〉 on a structure of volume 𝑉 is: 
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〈𝜎𝑓〉 = ∫ 𝜎. 𝑑𝑃𝑓(𝜎)
+∞

−∞

=
𝑉.𝑚

𝑉0𝜎0
𝑚 ∫ 𝜎𝑚

+∞

0

exp(−
𝑉𝜎𝑚

𝑉0𝜎0
𝑚)𝑑𝜎 = 𝜎0Γ (1 +

1

𝑚
)(

𝑉0

𝑉
)
1/𝑚

  (A.7) 

where the integration has been solved by using the substitution 𝑢 = (
𝑉

𝑉0
) (

𝜎

𝜎0
)
𝑚

, and Γ(𝑝) is 

the gamma function: 

 Γ(𝑝) = ∫ 𝑢𝑝−1𝑒−𝑢𝑑𝑢
+∞

0

 (A.8) 

The relation (A.7) clearly shows the dependence of the mean failure strength of a uniformly 

stressed sample on the volume of sample as 〈𝜎𝑓〉~𝑉−
1

𝑚. 

Also based on the equation (A.6), the strength variance is given by: 

 𝑠2 = ∫ [𝜎2. 𝑑𝑃𝑓(𝜎)] − 〈𝜎𝑓〉
2 = Γ (1 +

2

𝑚
)(

𝑉0

𝑉
)

2
𝑚

𝜎0
2 − 〈𝜎𝑓〉

2
+∞

−∞

 (A.9) 

From Eq. (A.7), we have: 

 
𝜎0 =

〈𝜎𝑓〉

Γ (1 +
1
𝑚) (

𝑉0

𝑉 )
1/𝑚

 
(A.10) 

Substituting the last expression into Eq. (A.9), the strength variance is computed as follows: 

 𝑠2 = 〈𝜎𝑓〉
2 [

Γ (1 +
2
𝑚)

Γ2 (1 +
1
𝑚)

− 1] (A.11) 

As mentioned above, the mean failure strength depends on the volume of sample 𝑉, thus, 

following to the equation (A.11), the associated strength variability also depends on 𝑉. 

Considering 𝑉 = 𝐿𝑛 with 𝐿 is the characteristic dimension of the sample, and 𝑛 is the 

topological dimension (1, 2 or 3), the simple form of statistical size effect according to the 

weakest-link and Weibull theories can be finally derived (Bazant et al., 1991) as: 

 〈𝜎𝑓〉(𝐿)~𝑠(𝐿)~𝐿−𝑛/𝑚 (A.12) 
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Appendix B           

               

Results of Acoustic Emission experiments 

In this appendix, several additional tables and figures can be found to give a detailed view on 

the results of Acoustic Emission (AE) experiments which are presented in Chapter 5. 

 

 

Fig. B.1. Probability density functions of AE energy for the whole AE events dataset for four different 

sample sizes of (a) M-concrete and (b) C-concrete. The 𝑝𝑑𝑓s were normalized by their maximum value. 

Curves were averaged over all sensors and all samples of a given sample size. 
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Fig. B.2. Probability density functions of AE duration of the whole AE events catalog for four different 

sample sizes of (a) F-concrete and (b) C-concrete. The functions were normalized by their maximum value. 

Curves were averaged over all sensors and all samples of a given sample size. 

 

 

Fig. B.3. Probability density functions of AE amplitude for four different sample sizes of (a) F-concrete and 

(b) M-concrete. The functions were normalized by their maximum value. Curves were averaged over all 

sensors and all samples of a given sample size. 
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Fig. B.4. Evolution of AE event rate 𝑑𝑁/𝑑Δ for different sample sizes of (a) M-concrete; and (b) 

C-concrete. Curves were averaged over all sensors and all samples of a given sample size. 
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Fig. B.5. The AE energy release rate 𝑑𝐸/𝑑Δ for different sample sizes of (a) F-concrete, and (b) C-

concrete. Curves were averaged over all sensors and all samples of a given sample size. 
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Fig. B.6. Conditional average maximum AE amplitude 〈𝑉max|𝑇〉 for different sample sizes of (a) F-

concrete, and (b) M-concrete. Curves of data points were averaged over all sensors and all samples 

of a given size (a). Black dashed lines are the reference curves according to the equation:  

〈𝑉max|𝑇〉 = 𝑉𝑡ℎ exp(𝑇/𝜏) (Eq. (5.22)), with 𝑉𝑡ℎ = 34𝑑𝐵 and 𝜏 = 100𝜇𝑠.  
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                                         (a)                                                                            (b) 

 

                                       (c)                                                                               (d) 

Fig. B.7. Cumulative distribution (𝑐𝑑𝑓) of AE energies, 𝐸, at different distances to failure (𝛥) for tests on four 

different sample sizes of F-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 mm. 

Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                          (a)                                                                              (b) 

 

                                           (c)                                                                              (d) 

Fig. B.8. Cumulative distribution (𝑐𝑑𝑓) of AE durations, 𝑇, at different distances to failure (𝛥) for tests on 

four different sample sizes of F-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 

mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                         (a)                                                                              (b) 

 

                                           (c)                                                                            (d) 

Fig. B.9. Cumulative distribution (𝑐𝑑𝑓) of peak AE Amplitudes, 𝑉max, at different distances to failure (𝛥) for 

tests on four different sample sizes of F-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 

160x320 mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled 

plot. 
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                                          (a)                                                                            (b) 

 

                                          (c)                                                                            (d) 

Fig. B.10. Cumulative distribution (𝑐𝑑𝑓) of AE energies, 𝐸, at different distances to failure (𝛥) for tests on 

four different sample sizes of M-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 

mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                           (a)                                                                             (b) 

 

                                           (c)                                                                             (d) 

Fig. B.11. Cumulative distribution (𝑐𝑑𝑓) of AE durations, 𝑇, at different distances to failure (𝛥) for tests on 

four different sample sizes of M-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 

mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                          (a)                                                                              (b) 

 

                                          (c)                                                                             (d) 

Fig. B.12. Cumulative distribution (𝑐𝑑𝑓) of peak AE Amplitudes, 𝑉max, at different distances to failure (𝛥) 

for tests on four different sample sizes of M-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and 

(d) 160x320 mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a 

rescaled plot. 
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                                          (a)                                                                            (b) 

 

                                          (c)                                                                            (d) 

Fig. B.13. Cumulative distribution (𝑐𝑑𝑓) of AE energies, 𝐸, at different distances to failure (𝛥) for tests on 

four different sample sizes of C-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 

mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                           (a)                                                                             (b) 

 

                                           (c)                                                                             (d) 

Fig. B.14. Cumulative distribution (𝑐𝑑𝑓) of AE durations, 𝑇, at different distances to failure (𝛥) for tests on 

four different sample sizes of C-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and (d) 160x320 

mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a rescaled plot. 
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                                          (a)                                                                              (b) 

 

                                          (c)                                                                             (d) 

Fig. B.15. Cumulative distribution (𝑐𝑑𝑓) of peak AE Amplitudes, 𝑉max, at different distances to failure (𝛥) 

for tests on four different sample sizes of C-concrete: (a) 40x80 mm; (b) 70x140 mm; (c) 110x220 mm; and 

(d) 160x320 mm. Insets: data collapses of the same data, presented in the corresponding main graph, in a 

rescaled plot. 
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Table. B.1. Summary of the scaling exponents for the distributions of AE durations, of AE energies released, and of AE amplitudes as well as for the rate of AE 

events, and of AE energy release for four different sample sizes of F-concrete and comparison with the corresponding values of Mean-Field Depinning/Stick-

Slip (Baro et al., 2018; Dahmen, 2017; Ertas and Kardar, 1994; Leblanc et al., 2013; Salje and Dahmen, 2014). 

Quantity Form Exponent 

Sample size 

All sizes 
Mean-field 

values 
40x80mm 70x140mm 110x220mm 160x320mm 

Duration distribution 𝑃(𝑇)~𝑇−𝛽𝑇𝑔(Δ𝛾𝑇𝑇) 

𝛽𝑇 2.1 ± 0.2 2.0 ± 0.2 2.1 ± 0.3 2.1 ± 0.3 2.1 ± 0.2 2 

𝛾𝑇 1.2 ± 0.6 1.2 ± 0.4 1.2 ± 0.5 1.1 ± 0.3 1.2 ± 0.5 1 

Stress-integrated duration distribution 𝑃𝑖𝑛𝑡(𝑇)~𝑇−𝜃𝑇 𝜃𝑇 2.9 ± 0.4 2.9 ± 0.2 2.9 ± 0.2 3.0 ± 0.2 2.9 ± 0.2 3 

Energy distribution 𝑃(𝐸)~𝐸−𝛽𝐸𝑓(Δ𝛾𝐸𝐸) 

𝛽𝐸  1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 4/3 

𝛾𝐸 3.5 ± 1.3 3.1 ± 0.8 3.0 ± 0.9 3.1 ± 1.0 3.2 ± 1.1 3 

Stress-integrated energy distribution 𝑃𝑖𝑛𝑡(𝐸)~𝐸−𝜃𝐸 𝜃𝐸 1.7 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 5/3 

Amplitude distribution 𝑃(𝑉)~𝑉−𝛽𝑉𝑔(Δ𝛾𝑉𝑉) 

𝛽𝑉  2.1 ± 0.2 2.0 ± 0.1 1.9 ± 0.1 2.0 ± 0.1 2.0 ± 0.1 2 

𝛾𝑉 1.1 ± 0.5 1.1 ± 0.7 1.1 ± 0.6 1.2 ± 0.4 1.2 ± 0.5 1 

Stress-integrated amplitude distribution 𝑃𝑖𝑛𝑡(𝑉)~𝑉−𝜃𝑉  𝜃𝑉  2.9 ± 0.3 2.9 ± 0.5 2.8 ± 0.4 2.8 ± 0.3 2.9 ± 0.4 3 

Conditional average maximum amplitude 

vs duration 
⟨𝑉max|𝑇⟩~𝑇𝛿 𝛿 1.00 ± 0.05 1.00 ± 0.05 0.85 ± 0.10 1.00 ± 0.05 0.95 ± 0.05 1 

Rate of AE event 𝑑𝑁/𝑑Δ~Δ−𝑝 𝑝 0.7 ± 0.1 0.6 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.70 ± 0.05 None 

Rate of AE Energy 𝑑𝐸/𝑑Δ~Δ−𝛼 𝛼 1.1 ± 0.1 1.0 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.1 2 

Derived exponents                   

Correlation length 𝜉~Δ−𝜈 𝜈             1.1 ± 0.3 1 

Dynamic exponent 𝑇∗~𝜉𝓏 𝓏             1.1 ± 0.5 1 
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Table. B.2. Summary of the scaling exponents for the distributions of AE durations, of AE energies released, and of AE amplitudes as well as for the rate of AE 

events, and of AE energy release for four different sample sizes of M-concrete and comparison with the corresponding values of Mean-Field Depinning/Stick-

Slip (Baro et al., 2018; Dahmen, 2017; Ertas and Kardar, 1994; Leblanc et al., 2013; Salje and Dahmen, 2014). 

Quantity Form Exponent 

Sample size 

All sizes 
Mean-field 

values 
40x80mm 70x140mm 110x220mm 160x320mm 

Duration distribution 𝑃(𝑇)~𝑇−𝛽𝑇𝑔(Δ𝛾𝑇𝑇) 

𝛽𝑇 2.0 ± 0.3 2.0 ± 0.2 2.0 ± 0.4 2.0 ± 0.3 2.0 ± 0.3 2 

𝛾𝑇 1.1 ± 0.3 1.3 ± 0.5 1.1 ± 0.5 1.1 ± 0.4 1.1 ± 0.5 1 

Stress-integrated duration distribution 𝑃𝑖𝑛𝑡(𝑇)~𝑇−𝜃𝑇 𝜃𝑇 2.9 ± 0.1 2.8 ± 0.3 2.9 ± 0.2 2.9 ± 0.2 2.9 ± 0.2 3 

Energy distribution 𝑃(𝐸)~𝐸−𝛽𝐸𝑓(Δ𝛾𝐸𝐸) 

𝛽𝐸  1.4 ± 0.1 1.4 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 1.4 ± 0.1 4/3 

𝛾𝐸 3.3 ± 0.7 3.9 ± 1.2 3.3 ± 1.0 2.6 ± 0.5 3.4 ± 0.9 3 

Stress-integrated energy distribution 𝑃𝑖𝑛𝑡(𝐸)~𝐸−𝜃𝐸 𝜃𝐸 1.7 ± 0.1 1.7 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.75 ± 0.10 5/3 

Amplitude distribution 𝑃(𝑉)~𝑉−𝛽𝑉𝑔(Δ𝛾𝑉𝑉) 

𝛽𝑉  2.0 ± 0.1 2.0 ± 0.2 2.0 ± 0.2 2.1 ± 0.2 2.0 ± 0.1 2 

𝛾𝑉 1.1 ± 0.7 1.1 ± 0.8 1.2 ± 0.8 1.3 ± 0.8 1.2 ± 0.6 1 

Stress-integrated amplitude distribution 𝑃𝑖𝑛𝑡(𝑉)~𝑉−𝜃𝑉  𝜃𝑉  2.9 ± 0.5 2.9 ± 0.6 2.8 ± 0.4 2.9 ± 0.4 2.9 ± 0.4 3 

Conditional average maximum amplitude 

vs duration 
⟨𝑉max|𝑇⟩~𝑇𝛿 𝛿 1.00 ± 0.05 0.85 ± 0.05 0.95 ± 0.05 0.90 ± 0.05 0.95 ± 0.05 1 

Rate of AE event 𝑑𝑁/𝑑Δ~Δ−𝑝 𝑝 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 1.0 ± 0.1 0.65 ± 0.05 None 

Rate of AE Energy 𝑑𝐸/𝑑Δ~Δ−𝛼 𝛼 1.1 ± 0.2 1.3 ± 0.2 1.5 ± 0.1 1.4 ± 0.1 1.3 ± 0.1 2 

Derived exponents                   

Correlation length 𝜉~Δ−𝜈 𝜈             1.1 ± 0.3 1 

Dynamic exponent 𝑇∗~𝜉𝓏 𝓏             1.0 ± 0.5 1 
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Table. B.3. Summary of the scaling exponents for the distributions of AE durations, of AE energies released, and of AE amplitudes as well as for the rate of AE 

events, and of AE energy release for four different sample sizes of C-concrete and comparison with the corresponding values of Mean-Field Depinning/Stick-

Slip (Baro et al., 2018; Dahmen, 2017; Ertas and Kardar, 1994; Leblanc et al., 2013; Salje and Dahmen, 2014). 

Quantity Form Exponent 

Sample size 

All sizes 
Mean-field 

values 
40x80mm 70x140mm 110x220mm 160x320mm 

Duration distribution 𝑃(𝑇)~𝑇−𝛽𝑇𝑔(Δ𝛾𝑇𝑇) 

𝛽𝑇 2.0 ± 0.2 1.9 ± 0.3 2.0 ± 0.4 1.9 ± 0.2 2.0 ± 0.3 2 

𝛾𝑇 1.1 ± 0.4 1.2 ± 0.6 1.1 ± 0.6 1.0 ± 0.3 1.1 ± 0.5 1 

Stress-integrated duration distribution 𝑃𝑖𝑛𝑡(𝑇)~𝑇−𝜃𝑇 𝜃𝑇 3.0 ± 0.2 2.7 ± 0.3 2.9 ± 0.2 2.9 ± 0.1 2.9 ± 0.2 3 

Energy distribution 𝑃(𝐸)~𝐸−𝛽𝐸𝑓(Δ𝛾𝐸𝐸) 

𝛽𝐸  1.4 ± 0.1 1.4 ± 0.1 1.5 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 4/3 

𝛾𝐸 3.2 ± 0.7 3.5 ± 0.8 3.3 ± 0.9 3.5 ± 1.0 3.4 ± 0.8 3 

Stress-integrated energy distribution 𝑃𝑖𝑛𝑡(𝐸)~𝐸−𝜃𝐸 𝜃𝐸 1.7 ± 0.1 1.7 ± 0.1 1.8 ± 0.1 1.8 ± 0.1 1.75 ± 0.05 5/3 

Amplitude distribution 𝑃(𝑉)~𝑉−𝛽𝑉𝑔(Δ𝛾𝑉𝑉) 

𝛽𝑉  2.0 ± 0.1 1.9 ± 0.1 2.0 ± 0.1 2.1 ± 0.2 2.0 ± 0.1 2 

𝛾𝑉 1.1 ± 0.6 1.1 ± 0.2 1.2 ± 0.8 1.2 ± 0.7 1.2 ± 0.6 1 

Stress-integrated amplitude distribution 𝑃𝑖𝑛𝑡(𝑉)~𝑉−𝜃𝑉 𝜃𝑉  2.9 ± 0.5 2.8 ± 0.1 2.8 ± 0.6 2.9 ± 0.5 2.9 ± 0.4 3 

Conditional average maximum amplitude 

vs duration 
⟨𝑉max|𝑇⟩~𝑇𝛿 𝛿 1.00 ± 0.05 0.90 ± 0.05 0.90 ± 0.05 0.90 ± 0.05 0.95 ± 0.05 1 

Rate of AE event 𝑑𝑁/𝑑Δ~Δ−𝑝 𝑝 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.65 ± 0.05 None 

Rate of AE Energy 𝑑𝐸/𝑑Δ~Δ−𝛼 𝛼 1.3 ± 0.1 1.3 ± 0.1 1.4 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 2 

Derived exponents                   

Correlation length 𝜉~Δ−𝜈 𝜈             1.1 ± 0.3 1 

Dynamic exponent 𝑇∗~𝜉𝓏 𝓏             1.0 ± 0.5 1 
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Appendix C           

                

Application to published experimental 

strength data 

In this appendix, we use the finite-size scaling for the mean compressive strength (Eq. (6.3)) 

to fit the experimental strength data reported by (Blanks and McNamara, 1935). In their work, 

different concrete mixtures obtained by simply varying the maximum aggregate size 𝑑max were 

tested for various sizes of the length-to-diameter ratio (ℎ/𝜙 = 2) cylinders. We consider here 

only three concrete mixtures termed B-8, B-9 and B-10 as they were associated with the widest 

range of sample size. The mix data, the geometrical specimen sizes and the corresponding 

mean 28-days compressive strength 〈𝜎𝑓〉 are reported in Table C.1. 

 Fig. C.1 shows the best-fitted finite-size scaling (Eq. (6.3)) for the mean compressive 

strength of the three considered concrete mixtures, taking 𝐿 as the diameter of sample (𝜙). The 

mean-field prediction 𝜈𝐹𝑆 = 1 was used in this work. We performed non-linear fits to extract 

the asymptotic strength 𝜎∞ as well as the length scale 𝐿𝑚 for the three considered concrete 

mixtures. These values are presented in Table C.1. We observe that the scaling prediction (6.3) 

is in remarkable agreement with the published experimental data of (Blanks and McNamara, 

1935). Due to the absence of reported values of strength variability and microstructural 

characteristics, the scaling (6.4) and the role of heterogeneities on size effect compressive 

strength for these concrete mixtures above were not examined.  

Using 𝑣𝐹𝑆 = 1 and the values of 𝐿𝑚 in Table C.1, we plot all strength data on 

[〈𝜎𝑓〉 𝑣𝑠. (𝐿/𝐿𝑚)−1/𝜈𝐹𝑆] plot.  As shown in Fig. C.1d, a good collapse of all data (all sample 

size, all considered concrete mixtures) onto the fit of scaling (6.3) is achieved. From the non-

linear fits, the asymptotic strength 𝜎∞ ≈ 22.4 MPa is found to be independent of sample size 
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and concrete mixture. This observation, consistent with our results (see section 6.4), allows to 

validate the rationality of the underlying theoretical framework. 

 

                                    (a)                                                                       (b) 

  

                                    (c)                                                                        (d) 

Fig. C.1. Finite-size effect on the mean compressive strength. (a) B-8 concrete mixture; (b) B-9 

concrete mixture; (c) B-10 concrete mixture. Main graphs show the mean compressive strength, 

〈𝜎𝑓〉 as a function of specimen size. Black symbols are the experimental data reported by (Blanks and 

McNamara, 1935). Red curve is the fitting by Eq. (6.3). Insets show the same data and fits in a 

[〈𝜎𝑓〉 𝑣𝑠. 𝜙−1/𝜈𝐹𝑆] graph. In this smaller graph, the fitting by Eq. (6.3) becomes a straight line and the 

asymptotic strength 𝜎∞ is determined. 
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Table C.1. Concrete mixture data, geometrical specimen sizes and mean compressive strengths for the 

experiments reported by (Blanks and McNamara, 1935). 

Concrete mix data Cylinders 

(𝒉/𝝓 =  𝟐) 

Compressive strength, 

〈𝝈𝒇〉 (MPa) 

Asymptotic strength, 

𝝈∞ (MPa) 

𝑳𝒎 (mm) 

No. W/C 𝒅𝐦𝐚𝐱 (mm) 𝝓 (mm) Mean SD Mean SD 

B-8 0.53 38.10 

152.4 27.92 

21.8 1.3 40.1 5.2 

203.2 25.72 

304.8 24.75 

457.2 22.89 

609.6 23.44 

914.4 23.30 

B-9 0.55 19.05 

50.8 27.99 

22.5 1.4 14.5 2.1 

76.2 27.72 

152.4 25.86 

203.2 23.92 

304.8 23.30 

457.2 23.17 

609.6 22.13 

B-10 0.54 9.52 

50.8 29.03 

22.9 0.8 13.8 1.3 

76.2 27.10 

152.4 24.48 

203.2 24.89 

304.8 24.34 

457.2 23.03 
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Appendix D           

                 

Examples of application for Chapter 7 

We present here two examples of application of the checking procedure proposed in section 

7.3.2 to verify the conformity of concrete with the strength requirements.  

In the first example (Table D.1), we check the conformity of our three concrete mixtures 

with the strength class C35/45 expressed in the standard (EN 1992, 2004). The values of 

parameters obtained for the 160x320-mm samples are used for this example.  

Table D.1. Example of application of the checking procedure proposed in section 7.3.2 for our three 

concrete mixtures 

Parameter F-concrete M-concrete C-concrete 

Compressive strength class C35/45 𝜎∞ = 𝑓𝑐𝑘 = 35 MPa    

Mean compressive strength (MPa) 〈𝜎𝑓〉 41.9 39.2 36.7 

Sample size (mm) 𝐿 160 160 160 

Porosity (%) 𝑝𝑜 4.8 1.6 1.5 

Maximum pore diameter (mm) 𝑑𝑝,𝑚𝑎𝑥 6.9 6.7 5.4 

Minimum required average 

strength3 (MPa) 
𝑓𝑚𝑟 = 𝜎∞ [

0.7(𝑝𝑜 × 𝑑𝑝,𝑚𝑎𝑥)

𝐿
+ 1] 40.1 36.6 36.2 

Acceptance condition 〈𝜎𝑓〉 ≥ 𝑓𝑚𝑟 passed passed passed 

As shown in Table D.1, all of the three concrete mixtures have an experimental mean 

compressive strength 〈𝜎𝑓〉, which is larger than the minimum required average strength (𝑓𝑚𝑟) 

                                                 

3 The porosity 𝑝𝑜 expressed in %. 
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estimated from the proposed procedure,. Therefore, we can conclude that these three mixtures 

comply with the strength requirements for the strength class C35/45. In this example, the C-

mixture provides the closest mean strength value to the required value of strength class C35/45 

in comparison to the other mixtures. This means that a coarser concrete mixture, having a lower 

porosity in its hardened form, will comply better the target characteristic strength than the finer 

mixtures. 

For the second example (Table D.2), based on the original data of the C-160x320mm 

samples (Case 1), two additional cases are considered after changing either the value of 

porosity (Case 2) or the value of the mean compressive strength (Case 3). 

Table D.2. Example of application of the checking procedure proposed in section 7.3.2 for three 

assumed cases of C-concrete 

Parameter Case 1 Case 2 Case 3 

Compressive strength class C35/45 𝜎∞ = 𝑓𝑐𝑘 = 35 MPa    

Mean compressive strength (MPa) 〈𝜎𝑓〉 36.7 36.7 35.7 

Sample size (mm) 𝐿 160 160 160 

Porosity (%) 𝑝𝑜 1.5 3.5 1.5 

Maximum pore diameter (mm) 𝑑𝑝,𝑚𝑎𝑥 5.4 5.4 5.4 

Minimum required average 

strength4 (MPa) 
𝑓𝑚𝑟 = 𝜎∞ [

0.7(𝑝𝑜 × 𝑑𝑝,𝑚𝑎𝑥)

𝐿
+ 1] 36.2 37.9 36.2 

Acceptance condition 〈𝜎𝑓〉 ≥ 𝑓𝑚𝑟 passed failed failed 

As the results presented in Table D.2, the two last cases do not comply with the strength 

requirement for the strength class C35/45. Although Case 2 has the same mean strength for 

160x320mm samples as experimental Case 1, the strength requirement is not satisfied for Case 

2, owing to a larger porosity. This results from the fact that a larger porosity means stronger 

size effects on strength, hence a larger value of the minimum average strength required at a 

fixed sample size. The production of normal-weight concrete with a porosity as small as 

possible is an important goal to achieve a good quality of concrete as well as to be able to 

correctly estimate the asymptotic strength for laboratory samples. Case 3, characterized by an 

unchanged porosity but a smaller mean strength than Case 1, also fails the strength 

                                                 

4 The porosity 𝑝𝑜 expressed in %. 
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requirement. This illustrates the fact that both the strength and the sample size criteria must be 

examined for the acceptance decision. 
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