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Résumé : Clustering, qui consiste à réaliser des groupements naturels de données, est une tâche fondamentale et difficile dans l'apprentissage automatique et l'exploration de données. De nombreuses méthodes de clustering ont été proposées dans le passé, parmi lesquelles le clustering en kmoyennes qui est une méthode couramment utilisée en raison de sa simplicité et de sa rapidité.

Le clustering spectral est une approche plus récente qui permet généralement d'obtenir une meilleure qualité de clustering que les k-moyennes. Cependant, les algorithmes classiques de clustering spectral souffrent d'un manque de passage à l'échelle en raison de leurs grandes complexités en nombre d'opérations et en espace mémoire nécessaires. Ce problème de passage à l'échelle peut être traité en appliquant des méthodes d'approximation ou en utilisant le calcul parallèle et distribué.

L'objectif de cette thèse est d'accélérer le clustering spectral et de le rendre applicable à de grands ensembles de données en combinant l'approximation basée sur des données représentatives avec le calcul parallèle sur processeurs CPU et GPU. En considérant différents scénarios, nous proposons plusieurs chaînes de traitement parallèle pour le clustering spectral à grande échelle. Nous concevons des algorithmes et des implémentations parallèles optimisés pour les modules de chaque chaîne proposée : un algorithme parallèle des kmoyennes sur CPU et GPU, un clustering spectral parallèle sur GPU avec un format de stockage creux, un filtrage parallèle sur GPU du bruit dans les données, etc. Nos expériences variées atteignent de grandes performances et valident le passage à l'échelle de chaque module et de nos chaînes complètes.

Title: Parallel algorithms for clustering large datasets on CPU-GPU heterogeneous architectures. Keywords: spectral clustering, k-means algorithm, high performance computing, GPU computing, parallel code optimization, performance evaluation.

Abstract: Clustering, which aims at achieving natural groupings of data, is a fundamental and challenging task in machine learning and data mining. Numerous clustering methods have been proposed in the past, among which k-means is one of the most famous and commonly used methods due to its simplicity and efficiency.

Spectral clustering is a more recent approach that usually achieves higher clustering quality than k-means. However, classical algorithms of spectral clustering suffer from a lack of scalability due to their high complexities in terms of number of operations and memory space requirements. This scalability challenge can be addressed by applying approximation methods or by employing parallel and distributed computing.
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Introduction (English version)

Motivation

In today's era of explosive data growth, the need for High-Performance Data Analytics (HPDA) is becoming increasingly prominent. Classification and clustering are two fundamental tasks in data analysis. Both aim at dividing data instances into different groups through a learning process. The essential difference is that the former trains a predictive model on labeled data (a.k.a. supervised learning) while the latter involves only unlabeled data (a.k.a. unsupervised learning) [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. We concern ourselves with clustering in this dissertation. Various clustering methods have been proposed in the literature, e.g. k-means [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], and spectral clustering [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]. Although the time complexities of clustering algorithms vary considerably, clustering large-scale datasets is computationally expensive and even prohibitive! Moreover, some algorithms also have high memory space complexities.

Many scientific and technological endeavors have been made to address the scalability challenges of clustering algorithms. A major approach is to reduce their computational complexities by using approximation, which is the essence of many fast variants of traditional clustering algorithms. For example, an effective approximation method [START_REF] Yan | Fast approximate spectral clustering[END_REF] is to perform a clustering algorithm on some representatives carefully extracted from the original dataset, and then approximate the global clustering solution by the clustering result of the representatives.

On the other hand, High Performance Computing (HPC) [START_REF] Dowd | High performance computing[END_REF] can provide impressive speedups and scalability for computational tasks. It has developed rapidly in recent decades due to technological advances in computer hardware and software. For example, the advent of modern GPU architectures and CUDA programming has opened up the active field of general-purpose GPU computing and has led to a proliferation of GPU-accelerated applications. Thus, it seems very appealing to accelerate clustering algorithms by high performance computing. However, achieving it requires efficient algorithmic design and parallel programming with various optimizations on modern computer architectures.

In this dissertation, we mainly consider classical algorithms of spectral clustering, which usually produce higher quality clustering results than the k-means algorithm, but require cubic time and quadratic memory w.r.t. the number of data instances in the worst case. We are mainly motivated in accelerating spectral clustering and in making it scalable to large-scale datasets by combining the approximation approach with high performance computing on CPU-GPU platforms. Note that we basically regard a dataset containing a million instances and over (n ≥ 10 6 ) as a "large-scale dataset", in view of: [START_REF] Abbasi-Moud | Tourism recommendation system based on semantic clustering and sentiment analysis[END_REF] the O(n 3 ) time complexity and O(n 2 ) space complexity of spectral clustering; [START_REF] Agarwal | Crime analysis using k-means clustering[END_REF] the limited computing and memory resources of single node CPU-GPU heterogeneous architectures. In fact, most of the public clustering datasets we found1 contain only thousands to hundreds of thousands of data instances, which we usually consider as small-scale or medium-scale datasets.

Dissertation overview

This dissertation consists of five chapters. In Chapter 1, we introduce the background knowledge, related works, and the objectives of this dissertation. More specifically, we first introduce clustering by reviewing its notion, taxonomy of algorithms, and evaluation metrics. Then we expound the two clustering methods mainly involved in this dissertation: k-means clustering and spectral clustering, including their algorithms, advantages, disadvantages and existing approaches to improvement. Furthermore, related works on approximate spectral clustering and parallel spectral clustering are particularly reviewed. Finally, we introduce the possibility to combine representative-based approximate spectral clustering with parallel computing on CPU-GPU architectures.

In Chapter 2, we present optimized parallel implementations for k-means clustering on CPU and GPU, which can be used either independently or be used to extract representatives for spectral clustering. Particularly, we address the numerical accuracy issue caused by the propagation of rounding errors in the k-means algorithm. Experiments on large datasets demonstrate both numerical accuracy and parallelization efficiency of our k-means implementations.

In Chapter 3, we focus on the parallelization of spectral clustering on GPU. Essentially, several algorithms and associated optimized parallel implementations are proposed for matrix construction in Compressed Sparse Row (CSR) format on GPU. This can achieve significant performance acceleration while reducing substantial memory space requirements of spectral clustering. Then, we leverage NVIDIA's GPU-accelerated nvGRAPH library for remaining computations of spectral clustering. Finally, experimental results show the high performance and the scalability to large datasets of our spectral clustering implementation on GPU.

In Chapter 4, we address the noise sensitivity issue of spectral clustering by incorporating noise filtering into the spectral clustering implementation presented in Chapter 3 and exploiting some particular features of this implementation. Experiments show that our noise filtering implementation on GPU is efficient and significantly improves the performance of spectral clustering on noisy data.

In Chapter 5, we adopt the representative-based approximation method to further advance the scalability of spectral clustering. Several methods for representatives extraction are first investigated. Then, several processing chains on CPU-GPU platforms are proposed according to different scenarios. Finally, experimental results exhibit the validity and good scalability of our proposed chains.

The benchmark datasets and testbed features are detailed in Appendix A and B, respectively. Our code is available at https://github.com/guanlinhe/clustering-release.

Introduction (French version)

Motivation À l'époque de la croissance explosive des données, le besoin de l'analyse de données à haute performance (HPDA) se fait de plus en plus saillant. La classification et le clustering sont deux tâches fondamentales de l'analyse des données. Tous les deux visent à diviser les données en différents groupes par le biais d'un processus d'apprentissage. La différence essentielle réside dans le fait que la première tâche entraîne un modèle prédictif sur des données étiquetées (apprentissage supervisé), tandis que la seconde ne concerne que des données non étiquetées (apprentissage non supervisé) [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Nous nous intéressons au clustering dans cette thèse. Diverses méthodes de clustering ont été proposées dans la littérature, par exemple les k-moyennes [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF], le DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], et le clustering spectral [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]. Bien que les complexités temporelles des algorithmes de clustering varient considérablement, le clustering d'ensembles de données à grande échelle est coûteux en termes de calcul, voire prohibitif ! De plus, certains algorithmes présentent également des complexités élevées en termes d'espace mémoire.

De nombreux efforts scientifiques et technologiques ont été faits pour relever les défis de passage à l'échelle des algorithmes de clustering. Une approche majeure consiste à réduire leurs complexités de calcul en utilisant l'approximation, qui est l'essence de nombreuses variantes rapides des algorithmes de clustering traditionnels. Par exemple, une méthode d'approximation efficace [START_REF] Yan | Fast approximate spectral clustering[END_REF] consiste à exécuter un algorithme de clustering sur certains représentants soigneusement extraits de l'ensemble de données original, puis à approximer la solution de clustering globale par le résultat du clustering des représentants. D'autre part, le calcul haute performance (HPC) [START_REF] Dowd | High performance computing[END_REF] peut fournir des accélérations impressionnantes et un passage à l'échelle pour les tâches de calcul. Il s'est développé rapidement au cours des dernières décennies grâce aux progrès technologiques réalisés dans le matériel et les logiciels informatiques. Par exemple, l'avènement des architectures GPU modernes et de la programmation CUDA a ouvert le champ actif du calcul GPU à usage général et a conduit à une prolifération d'applications accélérées par le GPU. Ainsi, il semble très intéressant d'accélérer les algorithmes de clustering par le calcul haute performance. Cependant, pour y parvenir, il faut une conception algorithmique et programmation parallèle efficaces avec diverses optimisations sur les architectures informatiques modernes.

Dans cette thèse, nous considérons principalement les algorithmes classiques de clustering spectral, qui produisent généralement des résultats de clustering de meilleure qualité que l'algorithme des k-moyennes, mais nécessitent un temps cubique et une mémoire quadratique par rapport au nombre d'instances de données dans le pire des cas. Nous nous sommes principalement intéressés à l'accélération du clustering spectral et à son passage à l'échelle en combinant l'approche d'approximation avec le calcul haute performance sur des plateformes CPU-GPU. Notez que nous considérons essentiellement un ensemble de données contenant un million d'instances et plus (n ≥ 10 6 ) comme un « ensemble de données à grande échelle », compte tenu de : (1) la complexité temporelle O(n 3 ) et la complexité spatiale O(n2 ) du clustering spectral ; (2) les ressources de calcul et de mémoire limitées des architectures hétérogènes CPU-GPU à noeud unique. En fait, la plupart des ensembles de données de clustering publics que nous avons trouvés 2 ne contiennent que des milliers à des centaines de milliers d'instances de données, que nous considérons généralement comme des ensembles de données à petite ou moyenne échelle.

Aperçu de la thèse

Cette thèse se compose de cinq chapitres. Dans le chapitre 1, nous présentons les connaissances de base, les travaux connexes et les objectifs de cette thèse. Plus précisément, nous présentons d'abord le clustering en passant en revue sa notion, la taxonomie des algorithmes et les mesures d'évaluation. Ensuite, nous exposons les deux méthodes de clustering principalement impliquées dans cette thèse : le clustering en k-moyennes et le clustering spectral, y compris leurs algorithmes, leurs avantages, leurs inconvénients et les approches existantes pour les améliorer. En outre, les travaux connexes sur le clustering spectral approximatif et le clustering spectral parallèle sont particulièrement examinés. Enfin, nous présentons la possibilité de combiner le clustering spectral approximatif basé sur les représentants avec le calcul parallèle sur les architectures CPU-GPU.

Dans le chapitre 2, nous présentons des implémentations parallèles optimisées pour le clustering en k-moyennes sur CPU et GPU, qui peuvent être utilisées soit indépendamment, soit pour extraire des représentants pour le clustering spectral. En particulier, nous abordons le problème de la précision numérique causé par la propagation des erreurs d'arrondi dans l'algorithme des k-moyennes. Des expériences sur de grands ensembles de données démontrent à la fois la précision numérique et l'efficacité de la parallélisation de nos implémentations de k-moyennes.

Dans le chapitre 3, nous nous concentrons sur la parallélisation du clustering spectral sur GPU. Essentiellement, plusieurs algorithmes et implémentations parallèles optimisées associées sont proposés pour la construction de matrices au format CSR (Compressed Sparse Row) sur GPU. Cela permet d'obtenir une accélération significative des performances tout en réduisant considérablement l'espace mémoire nécessaire au clustering spectral. Ensuite, nous utilisons la bibliothèque nvGRAPH de NVIDIA qui accélère sur GPU les calculs restants du clustering spectral. Enfin, les résultats expérimentaux montrent la haute performance et l'extensibilité à de grands ensembles de données de notre implémentation du clustering spectral sur GPU.

Dans le chapitre 4, nous abordons le problème de la sensibilité au bruit du clustering spectral en incorporant le filtrage du bruit dans l'implémentation du clustering spectral présentée dans le chapitre 3 et en exploitant certaines caractéristiques particulières de cette implémentation. Les expériences montrent que notre implémentation du filtrage du bruit sur GPU est efficace et améliore significativement les performances du clustering spectral sur des données bruyantes.

Dans le chapitre 5, nous adoptons la méthode d'approximation basée sur les représentants pour faire progresser le passage à l'échelle du clustering spectral. Plusieurs méthodes d'extraction des représentants sont d'abord étudiées. Ensuite, plusieurs chaînes de traitement sur des plateformes CPU-GPU sont proposées en fonction de différents scénarios. Enfin, les résultats expérimentaux démontrent la validité et le passage à l'échelle des chaînes proposées.

Les ensembles de données de benchmark et les caractéristiques du banc d'essai sont détaillés en annexe A et B, respectivement. Notre code est disponible sur https://github.com/guanlin-he/clustering-release.

-Related Works and Objectives

. Clustering

Data clustering [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF][START_REF] Han | Data mining: concepts and techniques[END_REF][START_REF] Saxena | A review of clustering techniques and developments[END_REF][START_REF] Ezugwu | A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects[END_REF], also known as cluster analysis, refers to an automatic process that discovers the natural groupings (i.e. clusters) of a set of unlabeled data points, instances, or objects. As one of the most important and challenging tasks in data analysis and unsupervised machine learning, clustering has been actively studied for decades with interdisciplinary endeavor [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. It has a wide range of applications, such as market and customer segmentation [START_REF] D'urso | Bagged clustering and its application to tourism market segmentation[END_REF][START_REF] Kansal | Customer segmentation using k-means clustering[END_REF], image and video segmentation [START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Kim | Unsupervised learning of image segmentation based on differentiable feature clustering[END_REF], network analysis [START_REF] Gonzalez-Pardo | Aco-based clustering for ego network analysis[END_REF], recommender systems [START_REF] Abbasi-Moud | Tourism recommendation system based on semantic clustering and sentiment analysis[END_REF], document clustering [START_REF] Janani | Text document clustering using spectral clustering algorithm with particle swarm optimization[END_REF], bibliometrics analysis [START_REF] Waltman | A unified approach to mapping and clustering of bibliometric networks[END_REF], bioinformatics analysis [START_REF] Han | Clustering of 770,000 genomes reveals post-colonial population structure of north america[END_REF][START_REF] Zou | Sequence clustering in bioinformatics: an empirical study[END_REF], disease analysis [START_REF] Zubair | An efficient k-means clustering algorithm for analysing covid-19[END_REF], crime analysis [START_REF] Agarwal | Crime analysis using k-means clustering[END_REF].

Generally, the clustering process seeks to maximize intra-cluster similarity and minimize inter-cluster similarity. However, neither the notion of a "cluster", nor the measure of "similarity", nor the realization way are precisely defined. Moreover, there are various data distributions and the data to be clustered can be low or high dimensional, small or large scale, noiseless or noise-laden, quantitative or categorical, static or dynamic, homogeneous or heterogeneous, etc. Due to these facts, a large number and variety of clustering algorithms have been proposed in the past.

. Algorithms and taxonomy

Clustering has been continuously surveyed and resurveyed over time, e.g. [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] in 1990, [START_REF] Jain | Data clustering: a review[END_REF] in 1999, [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF] in 2010, [START_REF] Han | Data mining: concepts and techniques[END_REF] in 2011, [START_REF] Aggarwal | Data clustering. Algorithms and applications[END_REF] in 2014, [START_REF] Xu | A comprehensive survey of clustering algorithms[END_REF] in 2015, [START_REF] Saxena | A review of clustering techniques and developments[END_REF] in 2017, [START_REF] Gan | Data clustering: theory, algorithms, and applications[END_REF] in 2020, [START_REF] Ezugwu | A comprehensive survey of clustering algorithms: State-of-the-art machine learning applications, taxonomy, challenges, and future research prospects[END_REF] Partitional clustering aims at dividing n data instances into k c partitions (clusters) such that instances within the same cluster are as close to each other as possible and instances in different clusters are as far apart from each other as possible [START_REF] Han | Data mining: concepts and techniques[END_REF]. As hinted, partitional algorithms are usually based on distances and lead to spherical partitions as clusters. Each partition/cluster is characterized by its cluster center (also called centroid ). Hence partitional algorithms are also known as centroid-based algorithms. Dedicated surveys on partitional clustering include References [START_REF] Reddy | A survey of partitional and hierarchical clustering algorithms[END_REF][START_REF] Celebi | Partitional clustering algorithms[END_REF][START_REF] Kutbay | Partitional clustering[END_REF]. Representative algorithms include the k-means algorithm (1967) [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] and its variants, e.g. k-medoids (1987) [START_REF] Kaufman | Clustering by means of medoids[END_REF], CLARA (1986) [START_REF] Kaufman | Clustering large data sets[END_REF], CLARANS (1994) [START_REF] Ng | Efficient and effective clustering methods for spatial data mining[END_REF], k-modes (1997) [START_REF] Huang | A fast clustering algorithm to cluster very large categorical data sets in data mining[END_REF], k-prototypes (1997) [START_REF] Huang | Clustering large data sets with mixed numeric and categorical values[END_REF], X-means [START_REF] Pelleg | X-means: Extending k-means with efficient estimation of the number of clusters[END_REF] (2000), k-means++ (2006) [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF].

Hierarchical clustering forms a cluster hierarchy (nested clusters) either in an agglomerative or divisive manner [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Agglomerative hierarchical clustering uses a bottom-up approach, which starts with each data instance as a cluster and then recursively merges similar clusters into larger clusters. In contrast, divisive hierarchical clustering uses a top-down approach, which starts with all data instances as one cluster and then recursively splits each cluster into smaller clusters. The merging or splitting operations in hierarchical clustering can be based on distances, densities, links, model probabilities, etc. However, once a merging or splitting operation has been completed, it usually cannot be undone even if it was a wrong decision, which is a drawback of hierarchical clustering [START_REF] Han | Data mining: concepts and techniques[END_REF]. Dedicated surveys on hierarchical clustering include References [START_REF] Murtagh | Algorithms for hierarchical clustering: an overview[END_REF][START_REF] Reddy | A survey of partitional and hierarchical clustering algorithms[END_REF][START_REF] Nielsen | Hierarchical clustering[END_REF][START_REF] Murtagh | Algorithms for hierarchical clustering: an overview, ii[END_REF]. Most hierarchical clustering algorithms are agglomerative. Representatives include SAHN (1973) [START_REF] Sneath | Numerical taxonomy[END_REF], AGNES (1990) [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF], BIRCH (1996) [START_REF] Zhang | BIRCH: an efficient data clustering method for very large databases[END_REF], CURE (1998) [START_REF] Guha | CURE: An efficient clustering algorithm for large databases[END_REF], and ROCK (2000) [START_REF] Guha | ROCK: A robust clustering algorithm for categorical attributes[END_REF]. Divisive hierarchical clustering algorithms include DIANA (1990) [START_REF] Kaufman | Finding groups in data: an introduction to cluster analysis[END_REF] and DHCC (2012) [START_REF] Xiong | Dhcc: Divisive hierarchical clustering of categorical data[END_REF].

Density-based clustering defines clusters as high-density regions separated by low-density regions [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF], where the density is computed as the number of points within the neighborhood of a given radius. In contrast to partitional clustering which typically cannot find non-spherical clusters, density-based clustering can find clusters of arbitrary shapes. Moreover, density-based clustering is usually good at filtering noise and outliers which have low densities. Dedicated surveys on densitybased clustering include References [START_REF] Kriegel | Density-based clustering[END_REF][START_REF] Campello | Density-based clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF]. Representative algorithms include DBSCAN (1996) [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF], DENCLUE (1998) [START_REF] Hinneburg | An efficient approach to clustering in large multimedia databases with noise[END_REF], OPTICS (1999) [START_REF] Ankerst | OPTICS: Ordering points to identify the clustering structure[END_REF], DENCLUE 2.0 (2007) [START_REF] Hinneburg | DENCLUE 2.0: Fast clustering based on kernel density estimation[END_REF], HDBSCAN (2013) [START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF], and density peaks clustering (2014) [START_REF] Rodriguez | Clustering by fast search and find of density peaks[END_REF].

Distribution-based clustering, a.k.a. model-based clustering or probabilistic clustering, models the data with a mixture of distributions and defines clusters as the instances that are most likely to belong to the same distribution [START_REF] Aggarwal | Data clustering. Algorithms and applications[END_REF]. The user needs to assume a model, e.g. Gaussian mixture model. The parameters of the model are usually initialized randomly and need to be optimized iteratively to better fit the dataset. However, the model may converge to a local optimum or suffer from overfitting. Dedicated surveys on distribution-based clustering include References [START_REF] Bouveyron | Model-based clustering of highdimensional data: A review[END_REF][START_REF] Mcnicholas | Model-based clustering[END_REF]. Representative algorithms include EM (1977) [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Yang | A robust EM clustering algorithm for gaussian mixture models[END_REF] and DBCLASD (1998) [START_REF] Xu | A distribution-based clustering algorithm for mining in large spatial databases[END_REF].

Grid-based clustering divides the data space into a finite number of cells to form a grid structure in which clustering is then performed according to the density of each cell [START_REF] Han | Data mining: concepts and techniques[END_REF]. The number of cells is usually significantly smaller than the number of data instances. A major advantage of grid-based clustering is that it greatly reduces the computational complexity, because it clusters the neighborhood around each cell instead of directly clustering all data instances [START_REF] Aggarwal | Data clustering. Algorithms and applications[END_REF]. Dedicated surveys on grid-based clustering include Reference [START_REF] Cheng | Grid-based clustering[END_REF]. Representative algorithms are STING (1997) [START_REF] Wang | STING: A statistical information grid approach to spatial data mining[END_REF], WaveCluster (1998) [START_REF] Sheikholeslami | WaveCluster: A multiresolution clustering approach for very large spatial databases[END_REF], and CLIQUE (1998) [START_REF] Agrawal | Automatic subspace clustering of high dimensional data for data mining applications[END_REF].

Graph-based clustering models the data as a graph and converts the data clustering problem into the graph partitioning/clustering problem. The data-tograph modeling process is crucial to both the quality and the scalability of clustering. The graph partitioning/clustering process groups vertices of the graph into clusters in such a way that many edges exist within each cluster and relatively few edges exist between clusters [START_REF] Schaeffer | Graph clustering[END_REF]. Dedicated surveys include Reference [START_REF] Schaeffer | Graph clustering[END_REF] on graph clustering, and References [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Nascimento | Spectral methods for graph clustering-a survey[END_REF] on spectral clustering. Representative algorithms include spectral clustering (2001) [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF], PIC (2010) [START_REF] Lin | Power iteration clustering[END_REF], and Chameleon 2.0 (2019) [START_REF] Barton | Chameleon 2: an improved graph-based clustering algorithm[END_REF].

Deep learning-based clustering, a.k.a. deep clustering, uses prevalent deep learning methods to tackle the clustering problem. Essentially, it transforms the data into more clustering-friendly representations by employing deep neural networks, e.g. Autoencoder (AE), Variational Autoencoder (VAE), Generative Adversarial Network (GAN) [START_REF] Min | A survey of clustering with deep learning: From the perspective of network architecture[END_REF]. Dedicated surveys on deep learning-based clustering include References [START_REF] Min | A survey of clustering with deep learning: From the perspective of network architecture[END_REF][START_REF] Aljalbout | Clustering with deep learning: Taxonomy and new methods[END_REF]. Representative algorithms include DEC (2016) [START_REF] Xie | Unsupervised deep embedding for clustering analysis[END_REF], VaDE (2016) [START_REF] Jiang | Variational deep embedding: An unsupervised and generative approach to clustering[END_REF], simultaneous deep learning and clustering (2017) [START_REF] Yang | Towards k-means-friendly spaces: Simultaneous deep learning and clustering[END_REF], and DEPICT (2017) [START_REF] Ghasedi Dizaji | Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization[END_REF].

Cross-category clustering algorithms include the bisecting k-means (2000) [START_REF] Steinbach | A comparison of document clustering techniques[END_REF] (partitional and divisive hierarchical), Chameleon (1999) [START_REF] Karypis | Chameleon: Hierarchical clustering using dynamic modeling[END_REF] (hierarchical and graph-based), BHC (2005) [START_REF] Heller | Bayesian hierarchical clustering[END_REF] (distribution-based and hierarchical), HDB-SCAN (2013) [START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF] (hierarchical and density-based), graph clustering based on deep learning (2014) [START_REF] Tian | Learning deep representations for graph clustering[END_REF] (graph-based and deep learning-based). Other well-known clustering algorithms that cannot be categorized in the above way include Support Vector Clustering (2001) [START_REF] Ben-Hur | Support vector clustering[END_REF] and Affinity Propagation (2007) [START_REF] Frey | Clustering by passing messages between data points[END_REF].

Besides, clustering algorithms can also be classified into hard clustering (i.e. each data instance is assigned to a single cluster) and soft clustering (i.e. each data instance can belong to multiple clusters, a.k.a. fuzzy clustering) [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]. Dedicated surveys on soft clustering include References [START_REF] Miyamoto | Algorithms for fuzzy clustering[END_REF][START_REF] Ferraro | Soft clustering[END_REF].

. Evaluation

The quality or accuracy of the results of a clustering algorithm can be evaluated by various metrics. This evaluation procedure is also known as cluster validity. Dedicated surveys on this topic include References [START_REF] Wagner | Comparing clusterings-an overview[END_REF][START_REF] Rendón | Internal versus external cluster validation indexes[END_REF]. According to whether the evaluation relies on the ground truth clustering (i.e. authentic cluster labels), the metrics can be divided into external and internal. Let us denote C e as the clustering to be evaluated and C g as the ground truth clustering.

External metrics assume C g is known and measure how well C e matches C g . They include RI, ARI, MI, AMI, NMI, purity [START_REF] Rendón | Internal versus external cluster validation indexes[END_REF], V-measure [START_REF] Rosenberg | V-measure: A conditional entropy-based external cluster evaluation measure[END_REF], and Fowlkes-Mallows index [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF]. Here we only explain RI-based and MI-based ones which are very commonly used in the literature and will also be used in this dissertation.

• Rand Index (RI), Adjusted Rand Index (ARI). RI [START_REF] Rand | Objective criteria for the evaluation of clustering methods[END_REF] measures the similarity between C e and C g , or it can be regarded as the percentage of correct decisions made by the algorithm. Assume a positive decision represents that a pair of instances are grouped into the same cluster, otherwise it is a negative decision. Assume a true decision represents that a pair of instances are grouped in the same cluster or separated in different clusters like in C g , otherwise it is a f alse decision. Then RI can be calculated using the following formula:

RI(C e , C g ) = T P + T N T P + T N + F P + F N (1.1)
where T P is the number of true positive decisions, T N is the number of true negative decisions, F P is the number of f alse positive decisions, F N is the number of f alse negative decisions. The range of RI is [0, 1]. A higher RI often indicates a better C e . However, RI does not guarantee that a random C e will get a score close to 0. Moreover, RI is often close to 1 even if C e differs significantly from C g ! To avoid such problems, the ARI metric [START_REF] Hubert | Comparing partitions[END_REF] is defined based on RI but adjusted against chance. It is calculated as follows:

ARI(C e , C g ) = RI(C e , C g ) -E[RI(C e , C g )] max(RI(C e , C g )) -E[RI(C e , C g )] (1.2)
where E[RI] denotes the expected1 RI, and max(RI) denotes the maximum RI (i.e. 1 for C e = C g ). The range of ARI is [-1, 1]. A higher ARI indicates a better C e , and a random C e has an ARI close to 0.

• Mutual Information (MI), Normalized Mutual Information (NMI), Adjusted Mutual Information (AMI). MI [START_REF] Cover | Elements of information theory[END_REF] measures the statistical information shared between C e and C g . NMI is normalized MI, with two slightly different formulations: N M I 1 [START_REF] Strehl | Cluster ensembles-a knowledge reuse framework for combining multiple partitions[END_REF] and N M I 2 [START_REF] Ana | Robust data clustering[END_REF]. AMI [START_REF] Vinh | Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance[END_REF] is an adjusted version of MI. They are defined as follows, respectively.

M I(C e , C g ) = |Ce| i=1 |Cg| j=1 P (i, j) log( P (i, j) P (i)P (j) ) (1.3) N M I 1 (C e , C g ) = M I(C e , C g ) H(C e )H(C g ) (1.4) N M I 2 (C e , C g ) = M I(C e , C g ) (H(C e ) + H(C g ))/2 (1.5) AM I(C e , C g ) = M I(C e , C g ) -E[M I(C e , C g )] H(C e )H(C g ) -E[M I(C e , C g )] (1.6)
where |C e | and |C g | are the number of clusters in C e and C g respectively, P (i) is the probability that a randomly chosen instance belongs to cluster i in C e , P (j) is the probability that a randomly chosen instance belongs to cluster j in C g , P (i, j) is the probability that a randomly chosen instance belongs to both cluster i in C e and cluster j in C g , E[M I] is the expected value of M I, H(C e ) is the entropy of C e (i.e. H(C e ) = -|Ce| i=1 P (i) log(P (i)) [START_REF] Ana | Robust data clustering[END_REF], where P (i) is the probability that a randomly chosen instance belongs to cluster i in C e ), H(C g ) is the entropy of C g . The range of NMI is [0, 1] (for both N M I 1 and N M I 2 ), where 1 means that C e and C g are identical and 0 means that C e and C g are independent. Similarly, AMI equals 1 when C e and C g are identical. However, AMI equals 0 means that the mutual information between C e and C g equals the expected mutual information. Similar to ARI, the AMI of a random C e is close to 0 (i.e. AMI is adjusted against chance), however, MI and NMI are not.

Internal metrics do not require the knowledge of C g and therefore the evaluation is performed based on the clustering itself. They include Silhouette Coefficient [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF], Calinski-Harabasz Index [START_REF] Caliński | A dendrite method for cluster analysis[END_REF], and Davies-Bouldin Index [START_REF] Davies | A cluster separation measure[END_REF]. We do not explain them more because they will not be used in this dissertation.

In practice, the scikit-learn2 [START_REF] Pedregosa | Scikitlearn: Machine learning in Python[END_REF] provides fast and easy-to-use APIs for most of the metrics (external and internal) mentioned above. In our experiments, we use scikit-learn (version 0.22.2.post1 and version 1.1.1) to compute the scores of ARI, AMI, and NMI (more precisely N M I 2 , which is the default option in the versions of scikit-learn that we use).

. k-means clustering

. Classical algorithm

The k-means algorithm is one of the most well-known and widely used clustering algorithms. The essential method used in the k-means algorithm was proposed independently by several people over time: Hugo Steinhaus in 1956 [START_REF] Steinhaus | Sur la division des corps matériels en parties[END_REF], Stuart Lloyd in 1957 (although not published as a journal article until 1982) [START_REF] Lloyd | Least squares quantization in pcm[END_REF], Geoffrey H. Ball in 1965 [START_REF] Ball | Data analysis in the social sciences: What about the details[END_REF], James MacQueen in 1967 [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF]. So the k-means algorithm is also referred to as Lloyd's algorithm, although the term "k-means" was first used by James MacQueen.

As stated in Section 1.1.1, the k-means algorithm belongs to partitional clustering. Given a dataset X = {x 1 , ..., x n } where each instance x i have d dimensions and the desired number of clusters is k c (k c ≤ n), the k-means algorithm partitions X into k c clusters C = {C 1 , ..., C kc } with the objective of minimizing the sum of within-cluster variances ϕ (i.e. the sum of squared Euclidean distances between each instance and the centroid of the cluster to which it belongs). The mathematical formulation is:

arg min C kc i=1 x∈C i ∥ x -µ i ∥ 2 = arg min C ϕ (1.7)
where µ i is the centroid of C i , i.e. the mean of instances in C i . In fact, finding the optimal solution to the problem 1.7 is NP-hard even for k c = 2 [START_REF] Aloise | NP-hardness of Euclidean sum-of-squares clustering[END_REF]. The kmeans algorithm adopts an iterative refinement approach, as briefly summarized in Algorithm 1. It first chooses k c instances uniformly at random from the dataset X as initial cluster centroids (i.e. seeding step). Then the algorithm iterates two steps which we call: ComputeAssign and Update, until reaching the stopping criterion.

• The ComputeAssign step computes the Euclidean distance between each instance and each centroid. For each instance, the algorithm compares the distances3 related to different centroids and assign the instance to the nearest centroid. In addition, the algorithm tracks the number of instances that have different cluster labels over two consecutive iterations.

• The Update step calculates the means of all instances that are assigned to the same centroid and updates the centroids.

• The stopping criterion can be a maximum number of iterations, or a relatively stable result, i.e., when the proportion of data instances that change labels is below a predefined tolerance.

The time per iteration of the k-means algorithm is

O(n • k c • d).
The number of iterations varies with the nature of data, the initial positioning of centroids and the chosen stopping criterion. The k-means algorithm is simple and efficient, but it has several drawbacks: (1) It usually forms spherical or convex clusters even if they do not really exist [START_REF] Jain | Data clustering: 50 years beyond k-means[END_REF]; [START_REF] Agarwal | Crime analysis using k-means clustering[END_REF] It is sensitive to the initialization of centroids and may converge to local optima if the initial centroids are not properly chosen [START_REF] Jain | Data clustering: a review[END_REF], actually it can yield arbitrarily bad clusterings with random initialization [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF]; (3) It suffers from the curse of dimensionality because the Euclidean distance metric will lose sensitivity in high-dimensional space [START_REF] Ina | Outlier cluster formation in spectral clustering[END_REF][START_REF] Domingos | A few useful things to know about machine learning[END_REF]; (4) It requires the knowledge of k c .

Algorithm 1: k-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] Input:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d 

. Better seeding with k-means++

There are many works that address the drawbacks of k-means, e.g. methods for finding better initial centroids [START_REF] Yuan | A new algorithm to get the initial centroids[END_REF][START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF][START_REF] Aggarwal | Adaptive sampling for k-means clustering[END_REF], methods for choosing the number of clusters [START_REF] Hamerly | Learning the k in k-means[END_REF][START_REF] Pham | Selection of k in k-means clustering[END_REF][START_REF] Mirkin | Choosing the number of clusters[END_REF]. In this dissertation, we are particularly interested in the k-means++ algorithm [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF], which was proposed by Arthur and Vassilvitskii in 2006 and has become probably the most well-known and widely used method for improving the seeding step of k-means.

Algorithm 2: k-means++ algorithm [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF] Input:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d Unlike k-means which simply uses random sampling, k-means++ uses sequential adaptive sampling in the way that the chosen initial centroids are likely to be well scattered. Algorithm 2 describes the steps of k-means++. It chooses k c initial centroids one by one. The first centroid is chosen uniformly at random from the dataset X. Then from the second centroid to the k c -th centroid, each one is chosen from the dataset X with probability 2 , where D(x) denotes the shortest distance between a data instance x and the centroids that have been chosen previously (i.e. the distance between x and the nearest centroid). Therefore, an instance farther from the previously chosen centroids has a higher chance of being chosen as the next centroid. This probabilistic sampling way is also referred to as D 2 weighting. The steps after seeding are identical with the k-means algorithm.

D(x) 2 x∈X D(x)
Thanks to careful seeding, the k-means++ algorithm can improve, often significantly, both the speed and the accuracy of k-means. In fact, Arthur and Vassilvitskii [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF] proved that the sum of within-cluster variances ϕ satisfies: E[ϕ] ≤ 8(ln k c + 2)ϕ OP T , which means k-means++ is O(log k c )-competitive with the optimal clustering.

. Spectral clustering

Spectral clustering is a more recent clustering method than k-means. Essentially, it embeds data into the sub-eigenspace of graph Laplacian (where the cluster-properties in the data is enhanced), and then finds the clusters in the embedded representation (often by k-means). Based on spectral graph theory (see Section 1.3.1), spectral clustering has several fundamental advantages over kmeans (see Section 1.3.2). However, it also has several disadvantages which need to be addressed (see Section 1.3.3).

Let us start by briefly reviewing the history of spectral clustering. Broadly speaking, spectral clustering refers to methods that cluster data instances using eigenvectors of matrices derived from the data. It is closely related to spectral graph partitioning, for which the interesting links between spectral and cluster properties of graphs were first discovered in 1973 by Donath and Hoffman [START_REF] Donath | Lower bounds for the partitioning of graphs[END_REF], and Fiedler [START_REF] Fiedler | Algebraic connectivity of graphs[END_REF]. Since then, many works have deepened the study on spectral partitioning and clustering, e.g. References [START_REF] Pothen | Partitioning sparse matrices with eigenvectors of graphs[END_REF][START_REF] Bolla | Relations between spectral and classification properties of multigraphs[END_REF][START_REF] Hagen | New spectral methods for ratio cut partitioning and clustering[END_REF][START_REF] Guattery | On the quality of spectral separators[END_REF]. From 1990s to early 2000s, a number of algorithms [START_REF] Scott | Feature grouping by 'relocalisation' of eigenvectors of the proximity matrix[END_REF][START_REF] Costeira | A multi-body factorization method for motion analysis[END_REF][START_REF] Perona | A factorization approach to grouping[END_REF][START_REF] Shi | Normalized cuts and image segmentation[END_REF][START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] for spectral clustering have been proposed, but they differ in three ways [START_REF] Weiss | Segmentation using eigenvectors: a unifying view[END_REF][START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF]: which matrix to compute, which eigenvectors to use, how to derive clusters from the chosen eigenvectors. The version proposed by Shi and Malik [START_REF] Shi | Normalized cuts and image segmentation[END_REF] in 2000 and the version proposed by Ng, Jordan, and Weiss [START_REF] Ng | On spectral clustering: Analysis and an algorithm[END_REF] in 2001 have gained the most popularity over the last two decades. They are usually considered as the classical algorithms for spectral clustering. Meanwhile, spectral clustering has been actively studied in many nonstandard settings. Particularly, Ulrike von Luxburg [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] provided in 2007 a very nice and comprehensive tutorial on spectral clustering, covering the related graph theory, algorithms, perspectives, history, practical details, etc. This Section 1.3 is mainly based on the tutorial [START_REF] Luxburg | A tutorial on spectral clustering[END_REF].

. Theoretical basis and algorithms

Given a set of data instances X = {x 1 , ..., x n } with x i in R d and the number of clusters k c , the goal of clustering is to divide the n instances into k c clusters according to pairwise similarities, such that instances inside the same clusters are similar and instances in different clusters are dissimilar. This can be interpreted, in spectral graph theory, as splitting a graph into k c partitions such that the graph cut is minimized and balanced.

Specifically, let G = (V, E) represent an undirected weighted graph with a vertex set V = {v 1 , ..., v n } and an edge set E = {(i, j, w ij )} i,j∈1,...,n . Each vertex v i in the graph G corresponds to the instance x i in the given dataset. The edge (i, j, w ij ) (representing the connection between vertices v i and v j with weight w ij ) corresponds to the similarity s ij between the data instances x i and x j . Note that w ij ≥ 0 and s ij ≥ 0. In case of no connection/edge between v i and v j , we have s ij = w ij = 0. Therefore, the graph G can be represented algebraically by the similarity matrix S (a.k.a. affinity matrix or adjacency matrix or kernel matrix in the literature) defined by

S = [s ij ] i,j=1,...,n , with s ij = w ij , if i ̸ = j and (i, j, w ij ) ∈ E 0, otherwise. (1.8) 
Note that by definition s ij = 0 if i = j, i.e. the diagonal elements of the similarity matrix are always 0. Since the graph is undirected, we have s ij = s ji and S is symmetric.

The first step of spectral clustering is to construct the similarity graph and generate the corresponding similarity matrix. Two things are worth noting as they can essentially affect the final clustering result. (1) How to measure the distance or similarity between two instances? There are a number of metrics, such as Euclidean distance, Gaussian similarity, and cosine similarity. The choice of metric should depend on the domain the data comes from and no general advice can be given [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. The most commonly used metric seems to be the Gaussian similarity function (see Eq. 1.9), where the Euclidean distance is embedded, the parameter σ controls the width of neighborhood and the similarity is bound to (0, 1]. However, the cosine similarity metric (see Eq. 1.10) appears to be more effective for data in high-dimensional space [START_REF] Ina | Outlier cluster formation in spectral clustering[END_REF]. (2) How to construct the similarity graph? There are several common ways, such as full connection, ε-neighborhood and k-nearest neighbor [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. The first way generates a dense matrix. The last two ways yield typically a sparse similarity matrix by setting the similarity s ij to 0 if the distance between instances x i and x j is greater than a threshold (ε) or x j is not among the nearest neighbors of x i , respectively. However, the k-nearest neighbor seems more computationally expensive as it requires sorting operations.

Gaussian similarity metric:

s ij = exp (- ∥x i -x j ∥ 2 2 2σ 2 ) (1.9)
Cosine similarity metric:

s ij = x i • x j ∥ x i ∥∥ x j ∥ (1.10)
A vertex may have connections with other multiple vertices. The degree of a vertex v i is defined as deg i := n j=1 w ij = n j=1 s ij , and the degree matrix D of graph G is defined as a diagonal matrix with the degrees deg 1 , ..., deg n on the diagonal. The (unnormalized) graph Laplacian is then defined as L := D -S and can be further normalized as the symmetric matrix L sym := D -1/2 LD -1/2 or the non symmetric matrix L rw := D -1 L which is closely related to a random walk [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. It can be proved [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] that L, L sym and L rw are all positive semidefinite and have n non-negative real eigenvalues with the smallest one being 0.

Particularly, the graph Laplacian does not depends on the diagonal elements of the similarity matrix and its eigenvalues and eigenvectors (together called eigenpairs) are associated with many properties of the graph [START_REF] Luxburg | A tutorial on spectral clustering[END_REF].

As mentioned before, clustering on a dataset X corresponds to partitioning a graph G into k c partitions by finding a minimum balanced cut. Ratio cut and normalized cut are the two most common ways to measure the balanced cut, however minimizing ratio cut or normalized cut is an NP-hard optimization problem. Fortunately, if we relax one of its constraints, the problem can be approximately solved through the smallest k c eigenvectors (associated with the smallest k c eigenvalues) of the unnormalized graph Laplacian (standard eigenproblem) or of the normalized graph Laplacian (generalized eigenproblem) [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Naumov | Parallel spectral graph partitioning[END_REF]. In the unnormalized case we have then

L U = U Σ, (1.11) 
where U is the n×k c matrix composed of the k c eigenvectors u 1 , ..., u kc as columns, and Σ is the diagonal k c × k c matrix with the k c eigenvalues λ 1 , ..., λ kc on the diagonal. In order to achieve good clustering in broader cases, it is argued and advocated [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] to use normalized instead of unnormalized graph Laplacian, and in the two normalized cases to use L rw instead of L sym . Obviously, choosing a Laplacian matrix and its properties impacts the choice of solvers that can be used to calculate its eigenvectors (e.g. choosing L rw will not allow the use of the dense symmetric eigensolver syevdx in the cuSOLVER library [START_REF]cuSOLVER Library[END_REF]). Solving an eigenvalue problem has a time complexity of O(n 3 ) in general [START_REF] Yan | Fast approximate spectral clustering[END_REF]. The computed k c eigenvectors can be considered as the embedded representation of the original n data instances in the k c -dimensional eigenspace of graph Laplacian. Or, each row of U can be regarded as the embedded representation in R kc of the original data instance in R d with the same row number. The computed k c eigenvectors are the continuous solution to the above relaxed problem. To finally get the clustering, it needs to be transformed into a discrete solution. This is usually undertaken by the k-means algorithm. We just need to apply the k-means on the embedded representation by considering each row of the matrix U as a k c -dimensional point, which therefore allows to find k c clusters of original n data instances. In addition, to further improve the clustering result, it is customary to scale each row of matrix U to unit length before performing the k-means.

As summarized in Algorithm 3 and illustrated in Figure 1.1, spectral clustering involves several data transformation steps. A similarity matrix is first computed Algorithm 3: Spectral clustering algorithm [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] Input:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d Therefore, spectral clustering may also be regarded as the combination of a heavy preprocessing step (including main computations) and a classical k-means step.

. Advantages

Spectral clustering has several important advantages:

1. It does not make strong assumptions on the form of clusters [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] computations which can be processed using existing libraries.

4. When k c is unknown, the eigenvalues and eigenvectors calculated in spectral clustering can be exploited to estimate the natural k c [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF][START_REF] Xiang | Spectral clustering with eigenvector selection[END_REF].

. Drawbacks and approaches for improvement

Although spectral clustering is attractive with the advantages mentioned in Section 1.3.2, its classical algorithms have three serious disadvantages: (1) scalability challenge; (2) importance and difficulty in tuning several parameters; (3) sensitivity to noise and outliers. In the following we explain each of them and summarize the existing approaches to address them. This dissertation will mainly focus on solving the scalability challenge of spectral clustering, while additionally we will address the noise sensitivity problem by proposing a noise filtering algorithm in Chapter 4.

Scalability challenge

The time complexity4 of classical spectral clustering algorithms is O(n 3 ) [START_REF] Yan | Fast approximate spectral clustering[END_REF], mainly due to the construction of the similarity matrix (O(n 2 d)) and the calculation of eigenvectors (O(n 3 ) when using direct methods). Moreover, storing the similarity matrix and the graph Laplacian matrix requires O(n 2 ) memory space. Therefore, the high complexities in terms of number of operations and memory space requirements lead to a great challenge when processing large datasets with spectral clustering.

We surveyed existing methods for addressing this scalability issue and broadly classify them into the following two classes.

• Reduce the time and space complexities using approximation, a.k.a.

Approximate Spectral Clustering. The basic idea is to first solve the clustering problem for a relatively small subset of data and then extrapolate the solution to the entire dataset by approximation. By doing this, one can avoid the expensive construction and eigendecomposition of the original n × n matrices. Popular approximation methods include Nyström-based [START_REF] Fowlkes | Spectral grouping using the Nyström method[END_REF], representative-based [START_REF] Yan | Fast approximate spectral clustering[END_REF], landmark-based [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF], and EFM-based [START_REF] He | Fast large-scale spectral clustering via explicit feature mapping[END_REF] methods. We will introduce them in more detail in Section 1.4.

• Accelerate spectral clustering using parallel and distributed computing, a.k.a. Parallel Spectral Clustering. Modern parallel and distributed architectures provide powerful computing capabilities. With efficient parallel implementations on these architectures, algorithms can often be accelerated considerably, e.g. by tens to hundreds of times or even more. We will review the related works on parallel spectral clustering in Section 1.5.

Importance and difficulty in tuning several parameters

The proper functioning of classical spectral clustering algorithms relies on the appropriate setting of several parameters5 , such as the number of clusters k c , and connectivity parameters ε, k, σ for similarity graph construction (see Section 1.3.1). These parameters are usually not easy to tune.

The number of clusters k c is required as input in spectral clustering. However, for datasets for which we know little about their distribution or characteristics, it would be difficult to know k c in advance. There are many methods that can be used to automatically determine k c for spectral clustering. They can be roughly divided into two categories: (1) generic methods that can be used for any clustering algorithm, e.g. based on evaluating cluster validity indexes (e.g. gap heuristic [START_REF] Tibshirani | Estimating the number of clusters in a data set via the gap statistic[END_REF], data depth difference [START_REF] Patil | Estimating the optimal number of clusters k in a dataset using data depth[END_REF]), based on deep learning [START_REF] Duan | Improving spectral clustering with deep embedding and cluster estimation[END_REF]; (2) methods dedicated to spectral clustering, e.g. based on analyzing eigenvalues [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Park | Auto-tuning spectral clustering for speaker diarization using normalized maximum eigengap[END_REF], based on analyzing eigenvectors [START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF][START_REF] Xiang | Spectral clustering with eigenvector selection[END_REF]. In case of generic methods, a wide variety of cluster validity indices for determining k c have been implemented in several R packages such as cclust [START_REF] Dimitriadou | cclust: Convex clustering methods and clustering indexes (version 0.6-23)[END_REF], clusterSim [START_REF] Walesiak | clusterSim: Searching for optimal clustering procedure for a data set (version 0.49-2)[END_REF], NbClust [START_REF] Charrad | Nbclust: an R package for determining the relevant number of clusters in a data set[END_REF].

Here we introduce a simple and interesting method based on analyzing eigenvalues [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. Considering the eigenvalues of a matrix in ascending order (λ 1 ≤ ... ≤ λ n ), the eigengap (also called spectral gap) is defined as

γ k = |λ k -λ k+1 |.
Uniquely for spectral clustering, there exists an eigengap heuristic for determining k c : for a dataset with k c distinctly separated clusters, the smallest k c eigenvalues λ 1 , ..., λ kc of its associated graph Laplacian matrix (L, L sym or L rw , see Section 1.3.1) are close to 0, but the (k c + 1)-th eigenvalue λ kc+1 is distinctly larger than 0. An example of such eigengap heuristic is shown in Figure 1.3 (a). However, the eigengap heuristic is less effective when the clusters are not well separated, e.g. more noisy or overlapping clusters in Figure 1.3 (b), as in that case all eigengaps tend to be approximately the same and it would be more difficult to detect the number of clusters.

In 2007, Von Luxburg [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] summarized some theoretical results and gave some rules of thumb regarding choosing the values for connectivity parameters (e.g. k for k-nearest neighbor graph, ε for ε-neighborhood graph, σ for Gaussian similarity function). Essentially, it is suggested that the connectivity parameters should be chosen such that the constructed similarity graph is connected, or is composed of only few connected components. To guarantee such connectivity in the limit of sample size n → ∞, k should be chosen in the order of log(n), ε should be chosen as (log(n)/n) d . However, these theoretical results may not work on a finite sample. Another way to achieve a safely connected ε-neighborhood graph is to choose ε as the longest edge length in a minimal spanning tree of the fully connected graph. However, ε will be chosen too large if the data contains outliers or contains several tight and significantly separated clusters. For the Gaussian similarity function, the rules of thumb are to choose σ in the order of the average of k-th nearest neighbor distance where k is chosen in the order of log(n), or to choose σ = ε where ε is determined by the minimal spanning tree heuristic. Nonetheless, the above suggestions and rules of thumb might not work at all depending on the data distribution [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. In 2004, Zelnik-Manor and Perona [START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF] proposed to compute a local scaling parameter σ i for each data instance x i instead of using a single σ for all instances. The similarity between a pair of instances can then be formulated as

s ij = exp(- dist 2 (x i ,x j ) σ i σ j
). The parameter σ i can be chosen as the distance between instance x i and its k-th nearest neighbor x k , i.e. σ i = dist(x i , x k ). The interest of local scaling is that it can capture the respective neighborhood information of data instances and therefore the resulting spectral clustering can handle data of multiple scales/densities. However, local scaling can be computationally expensive and introduces another parameter k. Other related works on the tuning of σ include [START_REF] Mouysset | Using a global parameter for gaussian affinity matrices in spectral clustering[END_REF][START_REF] Mouysset | Spectral clustering: interpretation and gaussian parameter[END_REF].

Sensitivity to noise and outliers

Classical algorithms of spectral clustering often fail to achieve satisfactory clustering on noisy data, mainly because the block structure of the similarity matrix is destroyed by noise [START_REF] Li | Noise robust spectral clustering[END_REF]. Besides, Hennig et al. [START_REF] Hennig | Handbook of cluster analysis[END_REF] strongly recommended that outliers should be detected and removed before performing eigendecomposition in spectral clustering, because outliers would introduce spurious information into eigenvalues and eigenvectors. Note that the two terms "noise" and "outlier" are often used imprecisely and interchangeably in the literature.

Many methods have been proposed for noise or outlier robust spectral clustering. In 2007, Li et al. [START_REF] Li | Noise robust spectral clustering[END_REF] used a data warping model to map data into a new space where each cluster becomes more compact and different clusters (including the noise cluster formed by noise points) become well separated. Then spectral clustering is applied in the new space. In 2015, Hennig et al. [START_REF] Hennig | Handbook of cluster analysis[END_REF] suggested that the easiest way to eliminate outliers is by removing all points whose corresponding vertex degrees are under a small threshold w.r.t. the average degree. In 2017, Ina et al. [START_REF] Ina | Outlier cluster formation in spectral clustering[END_REF] discovered mathematically and confirmed experimentally that outliers can form a cluster during the process of spectral clustering if the outlier cluster is counted into the number of clusters k c . Essentially, this is because similarities between outliers have a low variance. After eigendecomposition of the graph Laplacian, all outliers will have similar coefficients of the first k c eigenvectors, and thus tend to form a cluster. Their experiments further indicated that the more outliers the data contain, the more stable the outlier cluster formation. Based on the idea that the similarity graph can be decomposed into clean data and sparse corruptions, Bojchevski et al. [START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF] proposed to jointly learn the latent corruptions and the spectral embedding of clean data to improve spectral clustering performance on noisy data. Other related works include References [START_REF] Balakrishnan | Noise thresholds for spectral clustering[END_REF][START_REF] Wen | Robust self-tuning spectral clustering[END_REF].

. Approximate spectral clustering

Following the indication in Section 1.3.3, we introduce some influential methods for (non-parallel) approximate spectral clustering.

Nyström-based approximation

The Nyström method was initially proposed by E. J. Nyström in 1928 [START_REF] Nyström | Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben[END_REF] for finding numerical approximations to integral equations. It can also be used to efficiently generate a low-rank approximation of a matrix from a sampled subset of matrix columns [START_REF] Kumar | Sampling methods for the Nyström method[END_REF].

In 2004, Fowlkes et al. [START_REF] Fowlkes | Spectral grouping using the Nyström method[END_REF] applied the Nyström method to spectral clustering. Essentially, they randomly choose m samples from the dataset, compute the similarities between the m samples and all n data instances to form a narrow strip of the full similarity matrix, then use the Nyström method to approximate the full similarity matrix S and the leading eigenvectors of D -1/2 SD -1/2 . The time and memory space complexities are thus substantially reduced to O(n • m 2 ) + O(m 3 ) and O(n • m), respectively [START_REF] Li | Time and space efficient spectral clustering via column sampling[END_REF]. However, the work of Fowlkes et al. [START_REF] Fowlkes | Spectral grouping using the Nyström method[END_REF] has several drawbacks according to Reference [START_REF] Yan | Fast approximate spectral clustering[END_REF]: (1) the random sampling does not incorporate any information about the similarity matrix; (2) the work does not provide theoretical guarantees of performance (although an empirical quantitative analysis of performance is provided); (3) the working memory requirements can still be high, e.g. 6GB for data of size n = 10 5 , 17GB for data of size n = 106 ; (4) if the dataset is unbalanced, small clusters may be missed and numerical stability problems may occur.

In 2010, Zhang and Kwok [START_REF] Zhang | Clustered Nyström method for large scale manifold learning and dimension reduction[END_REF] analyzed how the choice of landmark points (i.e. samples) affect the approximation quality of the Nyström method, and based on their error analysis, they proposed to use the k-means clustering centers as the landmark points. In 2011, Li et al. [START_REF] Li | Time and space efficient spectral clustering via column sampling[END_REF] further reduced the time and memory space complexities of Nyström-based spectral clustering by directly computing a rank-k approximation of D -1/2 SD -1/2 and avoiding storing the sampled similarity matrix. In 2012, Kumar, Mohri, and Talwalkar [START_REF] Kumar | Sampling methods for the Nyström method[END_REF] analyzed a variety of fixed and adaptive sampling techniques for the Nyström method and found experimentally that the k-means algorithm was the state-of-the-art adaptive sampling technique, producing the most accurate approximations in nearly all settings while taking about the same time as other adaptive techniques. Nevertheless, the k-means-based sampling is more expensive than random sampling and will be timeconsuming if the data size or the sample size is large. In 2013, Choromanska et al. [START_REF] Choromanska | Fast spectral clustering via the Nyström method[END_REF] applied the Nyström approximation to the normalized graph Laplacian matrix L sym for fast spectral clustering and provided performance guarantees through theoretical analysis.

Representative-based approximation

In 2009, Yan, Huang, and Jordan [START_REF] Yan | Fast approximate spectral clustering[END_REF] proposed a general framework 6 for fast approximate spectral clustering, in which a preprocessor first reduces the data to a relatively small number of representative points (data reduction/preprocessing step), then spectral clustering is performed on the representatives, and finally the original data points are assigned cluster memberships based on the representatives. Through a theoretical analysis that establishes a quantitative relationship between the distortion in the input and the mis-clustering rate in the output, the authors argued that the goal of a preprocessor should be to minimize distortion so that the effect of data reduction on spectral clustering is minimized. The authors provided two examples of such preprocessors: the first is the classical k-means algorithm, the second is the random projection tree. They showed experimentally that their fast approximate spectral clustering algorithms can achieve significant speedups with little degradation in clustering accuracy compared to classical spectral clustering algorithms, and their algorithms run several times faster than Nyström-based approximate spectral clustering, with comparable accuracy and significantly smaller memory footprint.

Landmark-based approximation

Inspired by the works on sparse coding [START_REF] Lee | Efficient sparse coding algorithms[END_REF] and large graph construction [START_REF] Liu | Large graph construction for scalable semisupervised learning[END_REF], Chen and Cai [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] proposed in 2011 a scalable spectral clustering method, called Landmark-based Spectral Clustering (LSC). It first generates p (p ≪ n) landmark points (i.e. representatives) using random sampling or the k-means algorithm, and builds a p × n sparse representation matrix Z to represent the original n data points as the linear combinations of the p landmarks. Then it performs the eigendecomposition on the landmark-based representation ZZ T to get the first k c eigenvectors (denoted by A ∈ R p×kc ) and finally derives the first k c eigenvectors of Z T Z (i.e. n × n similarity matrix) from A. Their experiments showed that compared to original spectral clustering, LSC can reduce significantly the running time with comparable and sometimes even better clustering accuracy.

EFM-based approximation

In 2018, He et al. [START_REF] He | Fast large-scale spectral clustering via explicit feature mapping[END_REF] proposed a fast spectral clustering method via Explicit Feature Mapping (EFM), named FastESC, which reduces the complexity of classical spectral clustering algorithms in a different manner than Nyström-based methods. FastESC first employs random Fourier features to explicitly represent data in kernel space (i.e. EFM). Let Y denote the kernel mapped data with dimension d m (d m ≪ n), K = Y T Y denote the n × n kernel matrix, J = Y Y T denote the d m ×d m matrix. Then, similarly to LSC, FastESC builds J and solves the eigenvalue problem of J (instead of building K and running eigendecomposition on K), and finally approximate eigenvectors of K by those from J using a correlation equation. Their experiments showed that, with a large enough d m , FastESC can achieve similar clustering accuracy to Nyström methods while running two times faster.

Summary

Finally, we point out that there are still many other methods that we have not covered here, e.g. References [START_REF] Shinnou | Spectral clustering for a large data set by reducing the similarity matrix size[END_REF][START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Sakai | Fast spectral clustering with random projection and sampling[END_REF][START_REF] Wang | Multi-level low-rank approximation-based spectral clustering for image segmentation[END_REF][START_REF] Peng | Scalable sparse subspace clustering[END_REF][START_REF] Liu | Large-scale spectral clustering on graphs[END_REF][START_REF] Tremblay | Compressive spectral clustering[END_REF][START_REF] Li | Scalable sequential spectral clustering[END_REF][START_REF] Li | Fast compressive spectral clustering[END_REF][START_REF] Chen | Scalable normalized cut with improved spectral rotation[END_REF][START_REF] Wu | Scalable spectral clustering using random binning features[END_REF]. In 2020, Tremblay and Loukas [START_REF] Tremblay | Approximating spectral clustering via sampling: a review. Sampling Techniques for Supervised or Unsupervised Tasks[END_REF] reviewed existing sampling-based methods for approximate spectral clustering, focusing particularly on their approximation guarantees. Interestingly, they concluded that: "the most scalable methods are only intuitively motivated or loosely controlled, whereas those that come with end-toend guarantees rely on strong assumptions or enable a limited gain of computation time."

. Parallel spectral clustering

From the hardware side, there are various parallel and distributed architectures, such as multi-core CPU architectures, many-core GPU architectures, CPU-GPU heterogeneous architectures, multi-CPU architectures, multi-GPU architectures, FPGA architectures, computer clusters, and supercomputers. From the software side, various parallel programming models/languages are available, such as POSIX threads, OpenMP, CUDA, OpenACC, MPI, MapReduce, and Julia.

In this dissertation, we will parallelize spectral clustering on GPU architectures and CPU-GPU heterogeneous architectures (see objectives in Section 1.6) using OpenMP and CUDA programming models. Parallelization of spectral clustering on other architectures or using other programming models can be found in, e.g. References [START_REF] Chen | Parallel spectral clustering in distributed systems[END_REF][START_REF] Jin | Efficient parallel spectral clustering algorithm design for large data sets under cloud computing environment[END_REF][START_REF] Yan | Fast communicationefficient spectral clustering over distributed data[END_REF][START_REF] Huo | Designing an efficient parallel spectral clustering algorithm on multi-core processors in Julia[END_REF]. A survey on parallelization of various clustering methods can be found in Reference [START_REF] Dafir | A survey on parallel clustering algorithms for big data[END_REF].

. Strengths and challenges of CPU vs. GPU Modern CPU architectures

Modern CPU architectures feature several levels of parallelism: a CPU can have multiple processors, each processor has multiple physical cores (dozens at most), each physical core has several Arithmetic Logic Units (ALUs). Moreover, each physical core can typically be virtualized as two logical cores which share the vector units and the cache memory, so the operating system can run simultaneously two threads on each physical core. The parallelism among vector units is usually referred to as SIMD (Singe Instruction Multiple Data), which can be realized by explicit vectorization using intrinsics [START_REF]v3.6.2[END_REF], or by the compiler's auto-vectorization. However, in order to enable auto-vectorization, we need to be careful that the code is written in a way that facilitates the compiler to achieve vectorization, and the pertinent compilation flags are specified (e.g. -O3/-Ofast, -march=native). The parallelism among multiple cores is realized by multithreading using, e.g. POSIX threads [START_REF] Butenhof | Programming with POSIX threads[END_REF], OpenMP [START_REF]OpenMP API Specification Version 5.2[END_REF], or by multiprocessing using, e.g. MPI [START_REF]MPI: A message-passing interface standard version 4.0[END_REF].

Besides the hierarchy of computing resources, modern CPU architectures also have a memory hierarchy: registers → L1 cache → L2 cache → L3 cache → RAM → hard disk. They are listed in descending order of memory access speed, and in ascending order of memory size. Each core has and accesses its own registers and L1 cache (on-chip memory), while multiple cores per processor share the L2 cache (on-chip memory) and L3 cache (when it exists). For best performance, programs should maximize cache utilization and minimize cache misses. All cores of all processors share RAM and hard disk (a.k.a. shared memory model), but there is a problem called NUMA effect (Non-Uniform Memory Access): for each processor, the time to access data in the RAM attached to another processor is much longer than the time to access data in the RAM attached to itself. Therefore, the relative location of data and threads has an impact on program performance.

As can be seen, developing efficient code on modern CPUs is not easy. It requires special care and various optimizations.

Modern GPU architectures

A GPU (short for Graphics Processing Unit) is a type of computer hardware specialized in processing graphics and images, acting as a coprocessor or device to a CPU. Modern GPUs7 feature massively parallel architectures and are especially suited to large fine-grained parallel problems. Therefore, modern GPUs can also be used for GPGPU (short for General-purpose computing on GPUs) and can be regarded as accelerators for CPUs. The microarchitecture of NVIDIA GPUs have been continuously evolving over time, but some fundamental features remain.

An NVIDIA GPU consists of a number of Stream Multiprocessors (SMs). Each SM usually has 32 or 64 processing units called CUDA cores. Basically, a GPU SM can be compared to a CPU core, and a CUDA core can be compared to a CPU ALU. A modern GPU usually has tens of SMs, resulting in thousands of CUDA cores. Recent NVIDIA GPUs also have Tensor cores, which are hardware implementations of matrix operators and enable mixed-precision computing. In terms of memory, GPUs have a similar hierarchy to CPUs. Each SM has its own registers, shared memory, and cache (shared memory is a programmable L1 cache). They all have much faster access speed and much smaller size than GPU global memory which is shared by all SMs. Nevertheless, GPU global memory usually have several times higher peak bandwidth and several times smaller size than CPU RAM. The CPU and GPU can communicate across a standard PCIe or a fast NVLink, but the bandwidth is still much lower than RAM access speed. Therefore, programs should minimize data transfers between CPU and GPU. Besides, GPUs also have other special-purpose memory, including local memory, constant memory, and texture memory.

GPGPU programming interfaces include CUDA, OpenACC, OpenCL, OpenMP, and Julia. The most influential one is CUDA (short for Compute Unified Device Architecture) [141]. NVIDIA has been actively developing, extending, and enriching the CUDA framework since its initial release in 2007. CUDA can support running hundreds of thousands of threads on modern GPUs. These threads are organized into grids, blocks, and warps in descending order. A warp typically consists of 32 consecutive threads running on 32 consecutive CUDA cores of a SM, which is called the SIMT (Single Instruction Multiple Threads) execution model. A block usually consists of multiple warps of threads, but is typically limited to 1024 threads. Similarly, a grid usually consists of multiple blocks of threads. Both blocks and grids can have one to three dimensions (X, Y, Z). Depending on GPU architectures, there are different characteristics of hardware resources and different constraints on thread programming. A scheduler is responsible for scheduling warps and blocks to run on SMs. Threads within the same block can communicate with each other through the shared memory of that block, while threads from different blocks can only communicate through GPU global memory.

As can be seen, CUDA programming on GPU is complicated. It is an art to take full advantage of the GPU while respecting various constraints. The CUDA C++ Best Practices Guide [START_REF]CUDA C++ Best Practices Guide[END_REF] provides a nice tutorial to help GPGPU developers achieve the best performance from NVIDIA GPUs. It presents various parallelization and optimization techniques, such as memory optimizations, execution configuration optimizations, and instruction optimizations.

CPU vs. GPU

To summarize, the CPU can run a few dozen heavy threads in parallel, while the GPU can run thousands of light threads in parallel and achieve a higher overall instruction rate and memory bandwidth. Thus, the GPU is specialized for large finegrained parallel computations. Due to the high computation cost of constructing the similarity matrix and computing the eigenvectors, it appears more interesting to exploit the massively parallel nature of the GPU. However, the GPU has limited global memory (at most tens of GB). How to store the memory-demanding similarity matrix and the graph Laplacian matrix on the GPU remains an important concern.

. GPU-accelerated spectral clustering

This section introduces the related works on GPU-accelerated spectral clustering and graph partitioning, and the existing works on the parallel implementation related to the three constituent steps of spectral clustering (i.e. similarity graph construction, partial eigendecomposition, and final k-means clustering).

GPU-accelerated spectral clustering and graph partitioning

The first paper that we found on this topic [START_REF] Zheng | Parallelization of spectral clustering algorithm on multi-core processors and GPGPU[END_REF] was published in 2008, shortly after CUDA came out. It parallelizes spectral clustering algorithm on multi-core CPU and on GPU. However, their GPU implementation cannot scale to large datasets because dense matrices are constructed and stored on GPU. In fact, their benchmark datasets contain only thousands of instances.

Then, an example of video segmentation through spectral clustering in pixel level has been implemented on a cluster of GPUs [START_REF] Sundaram | Long term video segmentation through pixel level spectral clustering on GPUs[END_REF], but unfortunately the authors introduced too briefly their parallelization details and did not give performance analysis of their parallel implementation.

Another work [START_REF] Jin | A high performance implementation of spectral clustering on CPU-GPU platforms[END_REF] proposes a parallel implementation for spectral clustering on CPU-GPU hybrid platforms. It constructs a sparse representation of the similarity graph, but it assumes the neighborhood information is given beforehand by an edge list, which facilitates the construction process. Their benchmark datasets are of medium size, with n at most in the order of 10 5 . Besides, speedup limitations are reported for the eigen-decomposition step.

NVIDIA has developed efficient implementations of spectral graph partitioning on the GPU [START_REF] Naumov | Parallel spectral graph partitioning[END_REF][START_REF] Fender | Accelerated hybrid approach for spectral problems arising in graph analytics[END_REF][START_REF] Fender | Parallel solutions for large-scale eigenvalue problems arising in graph analytics[END_REF], and released the products in the nvGRAPH library [139] and RAPIDS cuGraph library [START_REF] Team | RAPIDS: Collection of Libraries for End to End GPU Data Science[END_REF]. However, since these works are oriented to graph analytics, they typically assume the edge list or the adjacency list of a graph is available, thus do not consider the graph construction process which would take O(n 2 d) arithmetical operations in the general sense of spectral clustering.

Similarity graph/matrix construction on GPU

To the best of our knowledge, most existing works on graph construction [START_REF] Dong | Efficient k-nearest neighbor graph construction for generic similarity measures[END_REF][START_REF] Hajebi | Fast approximate nearest-neighbor search with k-nearest neighbor graph[END_REF][START_REF] Anastasiu | L2knng: Fast exact k-nearest neighbor graph construction with l2-norm pruning[END_REF][START_REF] Anastasiu | Parallel cosine nearest neighbor graph construction[END_REF] target k-nearest neighbor graph. We found a single work [START_REF] Jin | A high performance implementation of spectral clustering on CPU-GPU platforms[END_REF] on the construction of ε-neighborhood graph in sparse format on the GPU. It constructs sparse similarity matrix in Coordinate (COO) format but on the assumption that the neighborhood information is given by an edge list. However, in data clustering, it is generally assumed that the neighborhood information is not available in advance. Consequently, similarity matrix construction becomes harder especially in sparse format (see Section 3.3).

Interestingly, in the literature we identified a close connection between similarity graph/matrix construction and another field called similarity search [START_REF] Anastasiu | L2ap: Fast cosine similarity search with prefix l-2 norm bounds[END_REF] or similarity query [START_REF] Qin | High-dimensional similarity query processing for data science[END_REF]. However, again most studies in the field concern k-nearest neighbor search [START_REF] Ram | Revisiting kd-tree for nearest neighbor search[END_REF][START_REF] Li | Approximate nearest neighbor search on high dimensional data-experiments, analyses, and improvement[END_REF][START_REF] Li | Brute-force k-nearest neighbors search on the GPU[END_REF][START_REF] Zhao | Song: Approximate nearest neighbor search on GPU[END_REF][START_REF] Gowanlock | Hybrid knn-join: Parallel nearest neighbor searches exploiting CPU and GPU architectural features[END_REF].

Partial eigendecomposition on GPU

Based on the work [START_REF] Sylvestre | Résumé de recherches sur le spectral clustering[END_REF] that Nicolas Sylvestre did during his master internship under our direction, we briefly summarize three well-known methods for the calculation of the first few eigenpairs of a matrix. They include new matrix transformations to facilitate the eigenvectors extraction and are not specific to spectral clustering.

• Arnoldi's method [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF]: it takes any input matrix (like L, L sym or L rw , see Section 1.3.1) and transforms it into an Hessenberg matrix, then calls an eigensolver (usually based on the QR algorithm). This is a generic but computationally expensive method.

• Lanczos method [START_REF] Saad | Numerical Methods for Large Eigenvalue Problems[END_REF]: similar to Arnoldi's method but requires a real and symmetric (or Hermitian) input matrix (like L or L sym ) which is transformed into a tridiagonal matrix, before calling an eigensolver (like QR). It is considered as an efficient method but it suffers from numerical instabilities and cannot handle eigenvalues with multiplicity (which often happens in spectral clustering) [START_REF] Naumov | Parallel spectral graph partitioning[END_REF].

• LOBPCG method [START_REF] Knyazev | Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method[END_REF]: requires a symmetric input matrix (like L or L sym ) or a pair of matrices with one symmetric and one symmetric positive definite (like (L, D)), then starts extracting the smallest k c eigenpairs. The LOBPCG method performs some transformations of the matrices and calls other eigensolvers on smaller internal submatrices. LOBPCG is more recent (released in 2000) than the previous two methods. Compared to Lanczos method, LOBPCG can handle eigenvalues with multiplicity and is more stable numerically. [START_REF] Naumov | Parallel spectral graph partitioning[END_REF].

Implementations of these methods exist in different libraries. They require input matrices in dense or sparse format and are sometimes improved to be more robust to numerical instabilities. Mainly interested in GPU-accelerated implementations for large sparse matrices, we have surveyed the sparse eigensolvers of several GPUaccelerated libraries including cuSOLVER8 , nvGRAPH9 , cuGraph10 , MAGMA 11 , AmgX 12 , and ViennaCL13 . Table 1.1 summarizes our survey results from different aspects.

The cuSOLVER library [START_REF]cuSOLVER Library[END_REF] is a GPU-accelerated library from NVIDIA providing LAPACK-like features (decompositions and linear system solutions) for both dense and sparse matrices. Based on the cuBLAS and cuSPARSE libraries, the cu-SOLVER library contains several dense eigensolvers (e.g. gesvd, syevd, syevdx, syevj) and one sparse eigensolver (csreigvsi). As will be explained in Section 3.2.2, the syevdx eigensolver is the most appropriate for the computation of the smallest k c eigenvectors regarding a symmetric Laplacian matrix stored in dense format. The sole sparse eigensolver csreigvsi is dedicated to sparse matrices defined in CSR storage format. However, it solves the simple eigenvalue problem by shift-inverse power method which requires an initial guess of eigenvalue and calculates only one eigenpair at a time. Thus it appears unsuitable for our need to automatically find the first few eigenpairs.

The nvGRAPH library [139] is dedicated to graph analytics with a set of graph algorithms optimized for the GPU. It was first released in 2017 with NVIDIA CUDA 8.0. The library contains three eigensolver-embedded (specifically Lanczos solver and LOBPCG solver) algorithms for spectral graph partitioning, which can satisfy our need. We will show in Section 3.4 the usage of these algorithms. However, since the last release in November 2019 with CUDA 10.2, NVIDIA does not actively develop the nvGRAPH product any more although the legacy version is still available 14 . We found in practice that the nvGRAPH library is backed by the cuBLAS, cuSPARSE and cuSOLVER libraries, because with more recent versions of CUDA we always encounter compilation warnings indicating that older versions of the backing libraries needed by nvGRAPH may conflict with more recent versions of those libraries. In place of nvGRAPH, NVIDIA has been actively developing the cuGraph library for a few years. It is very similar to the nvGRAPH library as it contains most nvGRAPH algorithms (including only two graph partitioning algorithms). However, the nvGRAPH is used in the CUDA environment while the cuGraph, as part of RAPIDS [START_REF] Team | RAPIDS: Collection of Libraries for End to End GPU Data Science[END_REF], is mainly used through Python interfaces with CUDA source code hidden behind. Despite this fact, we have built with efforts the cuGraph library (version associated with CUDA 11.5) from source 15 on our machine, and we succeeded in using the C++/CUDA API of cuGraph's graph partitioning algorithms. However, according to our experiments we found that the LOBPCG-eigensolver-embedded algorithm that exists in nvGRAPH seems to be missing in cuGraph, which is adverse for our use. So we conclude that the nvGRAPH library fits better our need than the current cuGraph library. The MAGMA library [START_REF] Tomov | Towards dense linear algebra for hybrid GPU accelerated manycore systems[END_REF] is a public domain linear algebra library optimized for "multi-core + multi-GPU" hybrid architectures. It contains a variety of dense eigensolvers and one sparse eigensolver. We did not try the dense eigensolvers of MAGMA because the cuSOLVER library already satisfies our need and we focus more on the eigenvalue problem of large sparse matrices. The sole sparse eigensolver of MAGMA is a GPU implementation of the LOBPCG method. We tried it (with MAGMA 2.5.4 installed) to calculate the eigenvectors of the graph Laplacian matrix, but unfortunately we were blocked by a "floating point exception" error.

The Algebraic Multigrid Solver (AmgX) library [START_REF] Naumov | Amgx: A library for GPU accelerated algebraic multigrid and preconditioned iterative methods[END_REF] is a GPU-accelerated core solver library from NVIDIA that accelerates computationally intense linear solver portion of simulations. It possesses multiple eigensolvers such as power iteration solver, subspace iteration solver, Arnoldi solver, Lanczos solver, LOBPCG solver, etc. The ViennaCL library [START_REF] Rupp | ViennaCL-linear algebra library for multiand many-core architectures[END_REF] is an open-source linear algebra library designed for many-core architectures (GPUs, MIC) and multi-core CPUs. It includes eigensolvers based on power iteration and Lanczos methods.

We have yet to test the eigensolvers of AmgX and ViennaCL libraries for spectral clustering but it would be interesting as future work. In this dissertation we will mainly rely on the sparse eigensolvers embedded in nvGRAPH's graph partitioning algorithms.

Final parallel k-means

Recall that the k-means algorithm has a time complexity of

O(n • k c • d • nbIters) (see Section 1.2.1)
, which is usually much smaller than the time complexities of similarity matrix construction and partial eigendecomposition. Nonetheless, it can still be time-consuming if any element of O(n • k c • d • nbIters) becomes very large. This can be addressed by designing efficient parallel implementations.

There are a large number of works on the parallelization of the k-means algorithm on different platforms. We mainly surveyed those published in recent years and meanwhile related to CPU and GPU. For example, in 2015, Bhimani, Leeser, and Mi [START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF] parallelized k-means on three different platforms: shared memory using OpenMP, distributed memory using MPI, and CPU-GPU heterogeneous platform using CUDA. However, their OpenMP implementation only parallelizes the Com-puteAssign step, leaving the Update step sequential; their CUDA implementation involves many transfers between CPU and GPU during the k-means iterations, which is generally recommended to be avoided in best practice. In 2017, Böhm, Perdacher, and Plant [START_REF] Böhm | Multi-core k-means[END_REF] proposed a highly optimized parallel implementation of k-means on multi-core CPU, named Multi-core K-Means (MKM), which is multithreaded with OpenMP and explicitly vectorized using intrinsics. In 2019, Cuomo et al. [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF] proposed a GPU-accelerated implementation of the k-means algorithm aimed at clustering large datasets. However, their implementation performs the ComputeAssign step on GPU while conducting the Update step on CPU, causing many data transfers between CPU and GPU at each iteration (similar to [START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF]). Other CPU and GPU implementations for k-means can be found in, e.g. References [START_REF] Laccetti | Performance enhancement of a dynamic K-means algorithm through a parallel adaptive strategy on multicore CPUs[END_REF][START_REF] Kruliš | Detailed analysis and optimization of CUDA k-means algorithm[END_REF].

. Objectives

Motivated by k-means-based approximate spectral clustering [START_REF] Yan | Fast approximate spectral clustering[END_REF] and emerging heterogeneous computing [START_REF] Wyrzykowski | Algorithmic and software development advances for next-generation heterogeneous platforms[END_REF], we propose a completely parallel processing chain for large-scale approximate spectral clustering on CPU-GPU heterogeneous architectures, as shown in Figure 1.4. The purpose of this dissertation is the efficient parallelization of this complete chain. • The first step of the data flow (upper left part) allows to reduce significantly the volume of data for subsequent intensive computations, extracting k r representatives from n data instances. Each instance is then attached to its nearest representative. The k-means algorithm appears an interesting method to achieve this goal, with limited impact on final clustering quality [START_REF] Yan | Fast approximate spectral clustering[END_REF]. However, determining an appropriate k r on unknown data requires some experiments.

• Then the k r representatives are transferred from CPU to GPU and the spectral clustering algorithm is performed on GPU on these representatives to find the k c clusters (right part). Typically, we have k c ≪ k r ≪ n. The eigenvector computations can be performed using existing GPU libraries, e.g. cuSOLVER [START_REF]cuSOLVER Library[END_REF], nvGRAPH [139].

• The clustering result for the k r representatives is then sent back to CPU, and finally we set the cluster labels of n data instances according to the attachment relationships in the first step (bottom left part).

Note that the input dataset may require more memory space than the GPU RAM and the extraction of representatives consumes even more memory, this should be done on the CPU rather than the GPU. Moreover, as shown in Step 3 in Figure 1.4, adopting representatives approach does not prevent the use of heuristic methods for k c estimation (e.g. based on eigenvalue or eigenvector analysis [START_REF] Luxburg | A tutorial on spectral clustering[END_REF][START_REF] Xiang | Spectral clustering with eigenvector selection[END_REF][START_REF] Zelnik-Manor | Self-tuning spectral clustering[END_REF]).

-Parallel and Accurate k-means Clustering

. Introduction

In this chapter, we focus on designing two optimized parallel implementations of the k-means algorithm on CPU and GPU, respectively. They can either be used independently for large-scale k-means clustering, or they can serve as two important steps of our CPU-GPU processing chain for large-scale approximate spectral clustering (see Figure 1.4). Specifically, in the second scenario, the CPU implementation can be used for the preprocessing step which extracts representatives while the GPU implementation can be used for the last step of the classical spectral clustering algorithm.

As described in Section 1.2.1, the k-means algorithm (Algorithm 1) adopts an iterative strategy, and each iteration consists of the ComputeAssign step and the Update step. The ComputeAssign step exhibits a natural parallelism, leading to a relatively straightforward parallel implementation both on CPU and GPU. However, the Update step appears more difficult to be efficiently parallelized and is a source of rounding error accumulation due to reduction operations. This accumulation of rounding errors is trivial when processing small datasets or using double precision arithmetic for floating-point numbers, however it can become nontrivial and spoil the clustering accuracy when processing large datasets using single precision arithmetic. To our knowledge, there is no specific study on this numerical accuracy issue in existing related works on parallel k-means (described in Section 1.5.2). We will particularly address this issue in Section 2.2 and design optimized parallel k-means implementations in Sections 2.3 and 2.4. Finally, we will evaluate the numerical accuracy and performance of our implementations through experimental campaigns on synthetic and real-world large datasets in Section 2.5.

The work presented in this chapter has been first published as a workshop paper of Euro-Par 2020 [START_REF] He | Parallelization of the k-means algorithm in a spectral clustering chain on CPU-GPU platforms[END_REF] (initial version) and then published as a journal article in CCPE [START_REF] He | Parallel and accurate k-means algorithm on CPU-GPU architectures for spectral clustering[END_REF] (extended version). Our CPU code and GPU code for parallel k-means implementation are available at https://gitlab-research. centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans.

. Numerical accuracy issue

In the Update step of the k-means algorithm, we need to calculate the sum of data instances in each cluster and then divide the sum by the number of instances in the cluster. For both CPU and GPU implementations of the Update step, we encountered the accumulation of rounding errors when a large number of instances are added together one by one naively in single precision (32-bit arithmetic). Essentially, rounding errors (a.k.a. round-off errors) are caused by the finite representation capacity of floating-point numbers and are particularly significant when adding two numbers of different magnitudes (see [START_REF] Jézéquel | Can we avoid rounding-error estimation in HPC codes and still get trustful results?[END_REF] for more explanation). The accumulation/effect of rounding errors in the Update step led to an issue of numerical accuracy and finally spoiled the clustering quality. On the other hand, using double precision (64-bit arithmetic) can significantly reduce the accumulation of rounding errors and reach a satisfying level of numerical accuracy because double precision has a higher representation capacity of floating-point numbers. However, the computational cost using double precision is typically higher than using single precision [START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF].

We intend to preserve the performance of single precision computations while minimizing the effect of rounding errors. Some special summation methods exist, but require many extra calculations, e.g. summation methods requiring data sorting, or Kahan's compensated summation with extra additions (see [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF], Chapter 4). We designed a simple and effective two-level summation/reduction method for the Update step, as shown in Figure 2.1. The idea is to split data instances into a certain number of packages of similar size, first calculate the sum per cluster within each package (1st level summation), and then compute the sum per cluster of all packages (2nd level summation). By choosing a sufficient number of packages, we can avoid adding floating-point numbers of significantly different magnitudes and achieve a satisfactory numerical accuracy. In fact, our experiments in Section 2.5.2 show that satisfying numerical accuracy can be achieved in case of using up to 5 × 10 5 instances per package on the Syn4D-50M dataset (n = 5 × 10 7 , 100 packages). Hence, our two-level update scheme can theoretically scale up to at least 5 × 10 5 packages with 5 × 10 5 instances per package while having the guarantee of numerical accuracy, which leads to a huge dataset with 250 billion instances (n = 2.5 × 10 11 ) requiring at least 2.5 × 10 11 × 4 ÷ 10 12 = 1 TB memory (far beyond both our GPU RAM and CPU RAM). Therefore, the two-level update scheme is sufficient for our need, while using more summation levels would not improve accuracy further but would complicate parallel implementation.

Although our two-level summation method looks simple, parallelizing it efficiently on multi-core CPU and GPU requires efforts and special care. Fortunately, the implementation of the 2nd level summation can rely on OpenMP reduction mechanism on multicore CPU, and can rely on CUDA atomicAdd operations on GPU (which have become faster on modern GPUs). Unfortunately, these efficient implementations do not allow to control the reduction scheme (e.g. to ensure the pairwise summation [START_REF] Higham | Accuracy and Stability of Numerical Algorithms[END_REF]).

. Parallel and accurate k-means on the CPU

We parallelize the k-means algorithm on CPU using OpenMP multithreading and auto-vectorization. The random selection of initial centroids is implemented with the rand_r function (which is a thread-safe version of the rand function). The parallelization of the ComputeAssign step and the Update step is described in the following two sections. (lines 3-12). Furthermore, with the -Ofast1 and -march=skylake-avx512 compilation flags2 and the number of dimensions defined as a constant, we optimize GCC code generation for our dual-skylake CPU, enable AVX units usage and autovectorization mechanisms to vectorize the distance calculation of each instancecentroid pair across all dimensions (lines 11 -12). In practice we only need to calculate the square of the Euclidean distance instead of the distance itself. Then the nearest centroid for each instance can be found and recorded (lines 14-16). The cluster label of each instance is updated according to its nearest centroid, and the changes of labels are counted into the private variable track of each thread (lines [START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF][START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF]. Finally, the reduction directive of OpenMP sums the private track of all threads (line 3). Note that we avoid storing and accessing an n × n distance matrix by integrating distance computation and instance assignment in the ComputeAssign step. Recall that we use a two-level summation method in the Update step (see Section 2.2). Figure 2.3 presents our multithreading approach for the summation process. Consider splitting n instances into p packages of similar size, we parallelize the processing of p packages among n t threads, i.e. each thread processes p nt packages. The local summation results are first computed within each package We parallelize the k-means algorithm on GPU using CUDA. Specifically, the data instances to be clustered are first transferred from CPU to GPU, then a series of CUDA kernels and library functions are launched from CPU to perform k-means clustering on GPU, finally the cluster labels are transferred to CPU.

. Parallelization of the ComputeAssign step

Data transfers between CPU and GPU are minimized. They mainly occur at the beginning and end of our program. In order to check the stopping criterion, we also need to transfer the quantity of instances that change labels (i.e. track in listings) from GPU to CPU at each iteration, but the price of this single integer transfer is negligible. Moreover, we use pinned memory for faster transfers.

For coalesced access to GPU global memory, we use the d × n transposed data matrix (SoA, i.e. Structure of Array) instead of the n × d data matrix (AoS, i.e. Array of Structure), as shown in Figure 2.4. Note that when the n × d matrix of data instances is loaded into CPU RAM, it can be directly stored into a The random selection of initial centroids is implemented on GPU using the cuRand library [START_REF]cuRAND Library[END_REF]. The parallelization details of the ComputeAssign and Update steps are described in the following two sections. ). Again, we compute practically the square of distance. Then the nearest centroid for each instance can be found and recorded (lines [START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF][START_REF] Böhm | Multi-core k-means[END_REF][START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF]. The cluster label will be changed if necessary, and the change will be marked with 1 in the shared 1D block array shTrack[] (lines [START_REF] Butenhof | Programming with POSIX threads[END_REF][START_REF] Caliński | A dendrite method for cluster analysis[END_REF][START_REF] Campello | Density-based clustering[END_REF][START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF]. Finally, we count the changes of labels by a two-part reduction. The first part reduction (lines 36-57) sums rapidly the values of shTrack[] into the first element shTrack[0] in shared memory, then the second part reduction (line 59) accumulates the sum into the global variable GPU_track by only one atomicAdd operation.

. Parallelization of the ComputeAssign step

Our reduction is based on the classical method recommended by NVIDIA3 , but we kill the useless threads step by step by return instructions so that only the first thread survives at the end, which reduces working warps in the first part reduction and eliminates the check of thread index at the end of the second part reduction. Moreover, our nonzero check of the sum avoids many unnecessary atomicAdd operations when no change of label occurs in a block, especially in the last iterations of k-means.

. Parallelization of the Update step

Based on our two-level summation method (see Section 2.2), we implement the Update step on GPU by two substeps: the first substep Update_S1 computes the sum of instances related to each cluster within each package and the number of instances in each cluster across all packages, then the second substep Update_S2 computes new centroids. Our GPU implementation for the Update step exploits dynamic parallelism (i.e. CUDA threads launching child grids), multiple streams and shared memory to optimize performance (see CUDA C++ Programming Guide [141]). As illustrated in Figure 2.6, child grids launched on different streams run concurrently. In our case, this allows to maximize the utilization of GPU hardware resources independently of the number and size of packages. Thus, the number of packages is determined only based on the effect of rounding errors.

A GPU implementation usually consists of host code and device code. By using dynamic parallelism, the host code is simplified to two parent kernel launches, as shown in Listing 2.4. Specifically, we launch the first parent kernel Update_-S1_Parent with a grid of n s1 threads to complete the first substep Update_S1, where each thread creates its own working stream (i.e. n s1 streams in total) and launches its child grids on the stream. Similarly, we launch the second parent kernel Update_S2_Parent with a grid of n s2 threads to complete the second substep Update_S2, where each thread creates its own working stream (i.e. n s2 streams in total) and launches its child grids on the stream. p is about the number of instances per package. The cudaStreamDestroy (line 25) ensures that this stream will not be reused to launch other threads, while the parent thread will not end until all its child threads have finished. As expected, the combined use of dynamic parallelism and multiple streams proved to be efficient in our case (see Figure 2.10 in Section 2.5.2). The second substep Update_S2 is implemented using a strategy similar to that used for Update_S1. Each thread of the parent grid processes several packages, and creates child grids on its own stream. Each child grid is in charge of updating the k c ×d centroid values with the contribution of its package. So, it contains k c ×d working threads, each one executing only few operations and one atomicAdd operation (shared memory is not used in Update_S2 ). Again, using dynamic parallelism and multiple streams has allowed to speed up the execution.

. Experimental results

Experimentally, we evaluate our parallel k-means implementations on one synthetic and two real-world datasets, and we compare the performance of our code with some existing parallel k-means implementations.

. Testbed and compilation settings

The testbed is our john3 server consisting of two Intel Xeon Silver 4114 processors as CPU and a NVIDIA GeForce RTX 2080 Ti as GPU. More information about the testbed is provided in Appendix B. The CPU code is compiled with gcc (with -fopenmp, -Ofast, -march=skylake-avx512, -funroll-loops flags) to have thread parallelization using OpenMP, auto-vectorization using AVX-512 instructions and various optimizations. The GPU code is compiled with nvcc in CUDA. Particularly, to use dynamic parallelism in CUDA, we need to adopt the separate compilation mode: generating and embedding relocatable device code into the host object, before calling the device linker.

. Experiments on a synthetic dataset

We first experiment on a synthetic 4D dataset called Syn4D-50M which contains 50 million instances uniformly distributed in 4 convex clusters (12.5 million instances in each cluster). Each cluster has a radius of 9 and the centroids are supposed to be [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF], [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF], [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF] and [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF], respectively. However, due to the intrinsic errors of generating pseudo-random numbers and the rounding errors of floating-point numbers, it appears the calcu-lated centroids could have a deviation of order 10 -4 from the ideal ones. Note that the dataset is created in the way that the k-means algorithm would not be sensitive to the initialization of centroids and would not be trapped in local optima. More information about the dataset is available in Appendix A.

Generally, we select k c initial centroids uniformly at random from n data instances with rand_r function on CPU and cuRAND library on GPU. This one-time random selection step usually takes little time. Since the number of iterations can vary with the selected initial centroids, we are more interested in the elapsed time per iteration than the overall time. However, for the sake of comparison, we intend to achieve the same number of iterations on CPU and GPU by setting the same initial centroids. We execute the algorithm until all cluster labels of data instances remain unchanged (tolerance = 0, see Section 1.2.1). The most important results in our tables are highlighted in boldface.

Numerical accuracy & performance on CPU

In Table 2.1, we evaluate the k-means clustering on CPU in terms of numerical error and average time per iteration by varying the number of threads, the arithmetic precision and the number of packages. The numerical error is defined as the average absolute error of the final calculated centroids with respect to the ideal theoretical ones. It derives from the accumulation of rounding errors during summation of a large number of instance coordinates (see explanation in Section 2.2).

The column "Full iter." represents one k-means iteration mainly consisting of the ComputeAssign step and the Update step. We observe that using a certain number of packages in the Update step reduces the numerical error in single precision and consequently decreases the number of iterations from 7 to 5. In our case, using 100 packages is enough for achieving the same level of numerical accuracy as in double precision. Moreover, using single precision instead of double precision decreases the elapsed time. Parallelization with 20 CPU threads (distributed over 20 physical cores including AVX units) has been found to be the most efficient compared to other numbers of threads.

Numerical accuracy & performance on GPU

We give in Table 2.2 the accuracy and performance results of k-means clustering on GPU. The numerical error is decreased by our two-level summation method using multiple packages. The first level is performed within each package. It is implemented using a local reduction in the shared memory of each block of threads, and with a minimal number of atomicAdd operations in global memory. The second level sums the contributions of all packages using atomicAdd operations. Due to the expensive atomicAdd operations and other limitations (see Listing 2.6 and explanations in Section 2.4.3), the Update step appears the most time-consuming step on GPU while the ComputeAssign step represents a small proportion of the running time.

In our GPU implementation, we experimentally optimize the configuration of grids and blocks of threads. Figure 2.9 shows an example of how the block size on x-axis (BSXP in listings) affects the performance of the Update step when the block size on y-axis (BSYD) is set to 4 (the number of dimensions of the Syn4D-50M dataset) in our 2D-blocks.

The random initialization of centroids and most of data transfers are performed only one time, hence their impact on the whole runtime decreases with the number of iterations. The elapsed time for regular transpositions of the centroid matrix appears negligible.

Figure 2.10 demonstrates the impact of GPU optimization on the running • Compared with the CPU mono-thread auto-vectorized implementation, the best speedup obtained on CPU is almost ×6 running 20 threads with autovectorization.

• Compared with the CPU mono-thread auto-vectorized implementation, the best speedup obtained on GPU is about ×20.

• Finally, our GPU implementation appears about ×3.5 faster than our best parallel CPU implementation (running 20 threads with auto-vectorization). In fact, the ComputeAssign step on GPU is over ×16 faster than the best parallel CPU version, while the Update step on GPU is only about ×1.5 faster. Thus, it seems that the ComputeAssign step is more suited to the GPU architecture than the Update step.

. Experiments on real-world datasets

In the following we evaluate our parallel k-means implementation on two realworld datasets:

• Household power consumption dataset (HPO for short): n = 2 049 280, d = 7

• US census 1990 dataset (USC for short): n = 2 458 285, d = 68

They are described in more detail in Appendix A. As their ground truth clusterings are unavailable, we impose k c to specific values in the subsequent evaluation.

Numerical accuracy

To reveal the effect of rounding errors and the improvement of numerical accuracy with the use of packages in the Update step, we observe the changes of the number of instances assigned to each cluster. • On CPU, the distribution of instances in each cluster is evidently different between the use of 1 package and multiple packages. Note that the use of 1 package means in fact no use of package, or the entire dataset is regarded as 1 package. Hence, we infer that the effect of rounding errors arises in the Update step when calculating the sum of instances directly without the use of multiple packages, and this negative effect impairs significantly the clustering accuracy.

• On GPU, the effect of rounding errors with 1 packages appears less evident owing to the local reductions using shared memory in our implementation. Nevertheless, it can be seen from the specific numbers in the chart that, using multiple packages still procures some improvement in clustering accuracy.

• With 100 packages, the sizes of the 4 clusters are almost identical on CPU and GPU.

US census 1990 (USC) dataset: Similarly we checked the number of instances assigned to each cluster on the USC dataset. In this case we observed few differences when using one package and multiple packages for all values of k c . We reckon it is because the values in the USC are all integers. Thus there is little accumulation of rounding errors in the Update step even with only 1 package. Despite this fact, this dataset is suitable for evaluating the computational performance of our k-means implementation.

Performance of each step

Tables 2.3 and 2.4 present the performance of our k-means implementation using 100 packages on CPU and GPU respectively, for the above two datasets. We set the tolerance = 10 -4 as the stopping criterion of k-means iterations. For each benchmark, we set the same initial centroids for k-means on CPU and on GPU, thus reasonably resulting in an identical number of iterations. We observe that:

• The execution time of the ComputeAssign step is always more significant than the time of the Update step on CPU, but not on GPU.

• For k-means on CPU, parallelization running 20 threads (on 20 physical cores including AVX units) was found to be the most efficient for the HPO dataset, while running 40 threads (on 40 logical cores including AVX units) achieves the best performance for the USC dataset.

• The ComputeAssign step on GPU is always considerably faster than on CPU, while the Update step on GPU can be either faster or slower than on CPU (using multithreading) depending on the test cases.

As there are tens of iterations, the elapsed time of data transfers between CPU and GPU is insignificant compared to the whole runtime of k-means on GPU.

Finally, note that the elapsed time for selecting initial centroids randomly is negligible and not shown in the tables. 

Impact of k c on performance

It can be seen more intuitively in Figure 2.13 that, when augmenting the number of clusters on the US census benchmark, the time of the ComputeAssign step grows approximately linearly both on CPU using 40 threads and on GPU, which is normal 

Impact of block size on performance

Again, we experimentally optimize the block size for all CUDA kernels since it can have a significant impact on the performance. An example of this impact is given in Figure 2.14. Note that the block size (BSXP×BSYD) cannot exceed 1024 and meanwhile it should be no less than the number of clusters. The optimal block size in that case is BSXP = 64 and BSYD = 4 on our GPU (GeForce RTX 2080 Ti).

Performance comparison: GPU vs. CPU for the USC dataset), while the Update step on GPU is from ×2 slower to ×2 faster than on CPU running optimal number of threads with auto-vectorization. The resulting full iteration on GPU is comparable or up to ×7 faster than the full iteration on CPU running optimal number of threads with auto-vectorization, depending on the benchmark dataset and the desired number of clusters k c . When increasing k c on the USC dataset, the two steps as well as the full iteration on CPU using 40 threads obtain increasing speedups (compared to the CPU mono-thread implementation). Similarly, the acceleration effect of k-means iterations on GPU is greater with a larger k c .

Despite our efforts, the Update step remains difficult to be further accelerated both on GPU and CPU. Significant differences in terms of speedup on GPU vs. CPU can be observed between the ComputeAssign and the Update steps. On the one hand, the ComputeAssign step has much more computations and natural parallelism than the Update step. On the other hand, the GPU kernel of the Update step suffers from three losses of performance (see Section 2.4.3): many atomicAdd operations, some loss of coalescence, and only k c threads per block doing the summation.

Similar behaviour on synthetic & real-world datasets

According to the performance achieved on the Syn4D-50M dataset (see Figure 2.11) and on the two real-world datasets (see Figure 2.15 and Figure 2.16), we conclude that in all cases:

• Our k-means implementation on CPU running optimal number of threads with auto-vectorization (20 or 40 threads depending on the benchmark datasets) is significantly faster (from ×6 up to ×16) than our CPU monothread auto-vectorized implementation.

• Our GPU implementation generally outperforms our multithreaded autovectorized CPU implementation (up to ×7 for the average time of k-means iterations).

• The obtained speedups come mainly from the ComputeAssign step.

. Comparison with others

As shown in Table 2.5 and Table 2.6, we compare the performance of our kmeans implementations with five other parallel k-means implementations developed between 2016 and 2021.

Benchmarking approach

We chose to impose the same initial centroids for the same benchmark dataset in the comparative experiments on our CPU & GPU testbed. The performance results in Table 2.5 represent the average time per iteration over the first 10 iterations before satisfying the criterion of convergence, while the results in Table 2.6 are the average time per iteration over all iterations until convergence. This is why some results of our GPU implementation in Table 2.5 are mildly different from those corresponding results in Table 2.4 and Table 2.6. Finally, considering the fluctuations of elapsed time, every time measurement above is the average of 5 runs.

Comparison with the MKM of Böhm, et al [23] on CPU

The MKM code is multithreaded with OpenMP (like ours) and explicitly vectorized with AVX 1 / AVX 2 intrinsic operations (while our code relies on auto-vectorization with the -Ofast and -march=skylake-avx512 compilation flags). According to the paper [START_REF] Böhm | Multi-core k-means[END_REF], the MKM code compiled by gcc 4.7 for a corei7-avx architecture worked regardless of the number of data dimensions. However, when it was recompiled on our dual-Skylake CPU by gcc 9.3, it only worked for a number of dimensions that was a multiple of 4 (even when adjusting the options of compilation). Moreover, the MKM code computes only in double precision, while our code can work in single or double precision. Therefore, the comparison on CPU was done in double precision in Table 2.5. Since the MKM code was designed for a corei7-avx architecture but is now run on our dual-skylake CPU, we measure both the performance with -march=corei7-avx flag and the performance with -march=native flag for the MKM code, and we present the best performance in the table (other flags lead to less performance). Moreover, we also tested replacing -O3 with -Ofast for the MKM code compilation, but this did not achieve higher performance.

Based on successful runs on some benchmarks on our dual-CPU, our multithreaded auto-vectorized implementation run on 20 physical cores was sometimes ×1.3 slower and sometimes ×3.6 faster, and run on 2 × 20 logical cores was sometimes ×1.2 to ×2 slower and sometimes ×2.5 faster, depending on the benchmark. It is certain that before performing new tests, it would be necessary to solve the problems encountered by the MKM code at runtime on our architecture, for certain problem sizes.

Comparison with the cuda-kmeans of Kruliš, et al [106] on GPU

The cuda-kmeans code offers several algorithms and two data layouts (SoA & AoS) to choose from, but some algorithms did not accept certain numbers of points, numbers of dimensions or numbers of clusters of our benchmarks. For example, the use of one of the fastest algorithms (named cuda_best) requires the number of clusters to be a multiple of the shmK constant, and the number of dimensions to be a multiple of the shmDim constant. So in order to compare our code with cuda_best, we intervened in the cuda-kmeans code to tune the shmK and shmDim constants (while our code does not require this kind of tunning). Additionally, the SoA layout was adopted because it was experimentally more efficient.

Since the time of data transfers is not included in the native measurements of cuda-kmeans code, neither it is counted in our average measured time per iteration in Table 2.5. The experiments on RTX 2080Ti shows that our GPU code appears sometimes slower and sometimes faster, depending on the benchmark, as previously with our CPU code.

Comparison with the KMeans of RAPIDS framework [181] on GPU

Developped by a community and incubated by NVIDIA, RAPIDS provides a suite of GPU-accelerated libraries and APIs (including the KMeans API in the cuML library) exploitable via user-friendly Python interfaces. As the KMeans API embeds both data transfers and program execution, the performance comparison of our code against the API in Table 2.5 also considers both transfers and execution time.

Although the KMeans API is supposed to be highly optimized and fast, it turns out that our GPU code appears ×1.4 to ×9.3 faster than the KMeans of RAPIDS v0.19 on RTX 2080Ti. We guess this significant difference is mainly induced by the wrapper overhead of Python interface (as our tests do not last long) and by the youth of RAPIDS (v0.19 in April 2021).

Comparison with the k-means of Yu, et al [208] on 1 node of Sunway TaihuLight supercomputer

The SW26010 manycore processor offers 260 cores and has a significantly different design from other multicore and manycore processors [START_REF] Yu | Large-scale automatic k-means clustering for heterogeneous many-core supercomputer[END_REF]. This processor appeared in 2016 as part of the Sunway TaihuLight supercomputer which was at that time ranked #1 in the Top500 list from 2016 to 2018.

The performances in Table 2.6 show that our k-means implementation in single precision on GeForce GTX 1080 (also appeared in 2016) is ×1.6 to ×2.8 faster than the single-node implementation for the SW26010 processor, considering the average execution time per iteration. As expected, our implementation is even faster on the more recent RTX 2080Ti GPU device (launched in 2018).

Comparison with the k-means of Li, et al [116] on an FPGA board

The Xilinx ZC706 FPGA board with an xc7z045ffg900-2 FPGA was available in 2015. The performances in Table 2.6 show that our k-means implementation in single precision, run on a GeForce GTX 1080 (appeared in 2016, just one year after the FPGA) is ×4.8 faster than the FPGA implementation, regarding the average execution time per iteration. As previously, our implementation is even faster on a more recent GPU device appeared in 2018.

Main results of the comparisons

To summarize, our comparative experiments on real-life datasets show that:

• Our implementation running on a GPU that appeared in 2016 is more efficient than implementations on a FPGA and on a manycore appeared in 2015 and 2016, respectively (see Table 2.6).

• Compared to state-of-the-art implementations (Böhm, et al [START_REF] Böhm | Multi-core k-means[END_REF] and Kruliš, et al [START_REF] Kruliš | Detailed analysis and optimization of CUDA k-means algorithm[END_REF]) run on our classic CPU and GPU, our implementations are sometimes faster and sometimes slower, depending on the benchmark (see Table 2.5). However, our more generic source code has not required adaptations to run the different benchmarks.

• Moreover, in order to guarantee the numerical accuracy in case of rounding error accumulations with large-scale datasets, our code supports to split the numerous summations of the centroid updating without losing significant performances. All experiments of our implementations in Tables 2.5 and 2.6 have been done with 100 packages split. 

. Summary

In this chapter, we have proposed parallel implementations on CPU and GPU for the k-means clustering algorithm, which can be used independently or serve as two components in our computational chain for spectral clustering when processing large amount of data (see Section 1.6). Through a two-level summation method with package processing, we have addressed the numerical accuracy issue in the phase of updating cluster centroids due to the effect of rounding errors. To our knowledge, we are the first to consider and address the numerical accuracy issue in the k-means algorithm.

Our CPU implementation relies on thread parallelization using OpenMP and on auto-vectorization using AVX-512 instructions. Our CUDA implementation on GPU employs dynamic parallelism, multiple streams and shared memory to achieve optimal performance. Experiments on synthetic and real-world datasets demonstrate both numerical accuracy and parallelization efficiency of our k-means implementations on CPU and GPU.

-Scalable Data Formats and Algorithms

for Spectral Clustering

. Introduction

As explained in Section 1.3.3, traditional spectral clustering algorithms have high time complexity due to O(n 2 d) complexity for similarity matrix construction and O(n 3 ) complexity for eigen-decomposition. The storage of similarity matrix and Laplacian matrix in dense format requires O(n 2 ) memory space. Together, the huge calculation cost and the huge memory space requirements constitute the barrier to large-scale spectral clustering.

In this chapter, we address the scalability issue of spectral clustering on the GPU. Most importantly, we propose in Section 3.3 three optimized GPU algorithms for constructing similarity graph and matrix in Compressed Sparse Row (CSR) format. This can achieve significant performance improvement compared to sequential algorithm, and meanwhile reduce substantial memory space requirements on the GPU compared to using dense data format. Then, in Section 3.4 we leverage the Spectral Clustering API of NVIDIA's GPU-accelerated nvGRAPH library for subsequent computations including Laplacian matrix calculation, eigendecomposition, and final k-means clustering (see Figure 1.1). Although called "Spectral Clustering API" by nvGRAPH, its function is essentially equivalent to spectral graph partitioning in the field of graph analytics, and it requires the CSRformat similarity graph to be provided as input.

Finally, extensive experiments in Section 3.6 demonstrate the high performance and scalability of our GPU implementation for spectral clustering.

The work presented in this chapter has been first published as a conference paper of NPC 2021 [START_REF] He | Scalable algorithms using sparse storage for parallel spectral clustering on GPU[END_REF] (initial version) and then submitted as a journal article to IJPP [START_REF] He | Scalable spectral clustering on GPU[END_REF] (extended version).

. Spectral clustering using dense data format

In this section, we start from parallelizing spectral clustering algorithm (Algorithm 3 in Section 1.3.1) on the GPU using dense data format. Globally, the similarity matrix and Laplacian matrix construction steps are parallelized using optimized CUDA kernels (see Section 3.2.1), then the eigen-decomposition step is implemented by leveraging the cuSOLVER library (see Section 3.2.2), finally the normalization and k-means steps are also parallelized using optimized CUDA kernels (see Section 3.2.3). The host code is presented in Listings 3.1 and the CUDA kernels are shown in Listings 3.2, 3.3 and 3.4. They are explained below and can provide some basis for understanding more complicated CUDA kernels of Section 3.3.

. Similarity matrix and Laplacian matrix construction

As mentioned in Section 1.3.1, the similarity graph can be constructed in several ways (e.g. full connection, ε-neighborhood, k-nearest neighbor ), resulting in either dense or sparse similarity matrix S. However, in this section we just consider the simple case of storing all matrices in dense format.

We first launch a 2D grid with 2D blocks of threads (Listing 3.1 lines 10-16) to compute the similarity matrix S and the diagonal degree matrix D. Basically, each thread calculates one element of similarity matrix and stores the value into the global memory array (Listing 3.2 lines 14-54). Moreover, the similarity value is also stored into a shared memory array of block size, so that a classic parallel reduction within the shared memory array is performed and the per-block contribution to a degree is accumulated with an atomicAdd operation (Listing 3.3).

We highlight several points regarding the above kernel:

• We choose to construct full connected graph and ε-neighborhood-like graph (see definition in Section 3.3.1) instead of k-nearest neighbor graph, because the last one requires expensive sorting operations and usually need to be symmetrized.

• The kernel is generic in the sense that it supports multiple similarity metrics and thresholds, such as uniform similarity with threshold for squared distance (Listing 3.2 lines 16-25), Gaussian similarity with threshold for squared distance (Listing 3.2 lines 27-32) or with threshold for similarity (Listing 3.2 lines 34-39), cosine similarity with threshold for similarity (Listing 3.2 lines 41-51), and the kernel can also be extended to support other metrics.

• We ensure most of the global memory accesses are coalesced (e.g. Listings 3.2, lines 19 & 44).

• We use the __expf() function instead of the expf() function for Gaussian similarity computation (line 20) because the former maps directly to the hardware level, thus it is faster (but provides lower accuracy) than the latter [START_REF]CUDA C++ Best Practices Guide[END_REF].

• For Gaussian similarity, if the threshold for squared distance is infinitely great or the threshold for similarity is equal to 0, then the similarity graph will be full connected and the similarity matrix will be dense theoretically, however, practically tiny similarity values that result from distant instance pairs may be stored as 0 due to the underflow of floating-point numbers.

• We pay special attention to the implementation of the cosine similarity with threshold checking (Listing 3.2 lines 47-49), since different implementation ways can lead to varied performance and precision, the selected way can limit the propagation of rounding errors and meanwhile provide good performance.

Some aspects related to scaling and memory space are also worth mentioning. (1) It is possible that the value of Dg.y exceeds the upper limit (65535 for RTX 3090) if the number of data instances n is too large, but in this case the storage of similarity matrix would also exceeds the GPU memory. (2) It is also possible that the element index of similarity matrix exceeds the integer limit (about 2 billion) if n 2 exceeds the integer limit, in this case it would be necessary to extend the index representation capacity by using, e.g., size_t. (3) We only need to allocate an array of size n to store the diagonal elements of degree matrix.

Next we launch likewise a 2D grid with 2D blocks of threads (Listing 3.1 lines 17-18) to compute the normalized Laplacian matrix L sym = D -1/2 SD -1/2 (Listing 3.4). In practice we use the same array to store S and L sym so as to save GPU memory. Note that we choose to compute the symmetric matrix L sym instead of the non-symmetric normalized Laplacian matrix L rw = D -1 S, because the eigensolver in the cuSOLVER library that we want to use afterwards requires the input matrix to be symmetric.

. Eigen-decomposition using cuSOLVER library

To compute the first k c eigenvectors (associated with the smallest k c eigenvalues) of L sym , we leverage the dense symmetric eigensolver syevdx of NVIDIA's GPU-accelerated cuSOLVER library [START_REF]cuSOLVER Library[END_REF] (Listing 3.1 lines 21-36). It can compute all or a selection of the eigenvalues and eigenvectors of a symmetric (or Hermitian) matrix, solving the standard symmetric eigenvalue problem through the QR algorithm [START_REF] Philippe | Calcul des valeurs propres[END_REF]. For output, the first k c eigenvectors will be stored in the input matrix L sym by rewriting its first k c × n elements.

There are also other dense symmetric eigensolvers in the cuSOLVER library, but they either compute all eigenpairs (e.g. syevd, sygvd, syevj, sygvj), or require the matrix D to be an array of size n × n when targeting the generalized eigenvalue problem LU = DU Σ (e.g. sygvd, sygvdx, sygvj). Therefore we choose the syevdx solver rather than others.

. Normalization and final k-means(++) clustering

After obtaining the first k c eigenvectors stored in the form of k c × n, we regard them as the transposed matrix U T and launch a CUDA kernel to normalize each column of U T (i.e. each row of U ) to unit length. We use 1D grid with 1D blocks of threads (Listing 3.1 lines 39-42) for the kernel so that each thread normalizes one column of U T by going through all k c elements of that column. The kernel is too simple so we do not show its content in the listings.

Finally, we apply our GPU implementation of k-means (see Section 2.4) or k-means++ (see Appendix G Listings G.1 & G.2) on the points represented by the normalized rows of U and obtain the cluster labels of data instances (Listing 3.1 lines 45-47).

. Construction of the similarity matrix in sparse format

The previous section handles the high time complexity of spectral clustering through GPU computing, however it uses dense data format. As the number of data instances n grows over the order of 10 4 , it will become impossible to store the dense-format square matrices with limited GPU memory.

In this section we propose efficient GPU algorithms for constructing the similarity matrix in CSR format, which play an important role in handling the scalability challenge of spectral clustering in terms of both calculation cost and memory requirements.

. Sparsification and choice of a storage format

The similarity matrix associated with ε-neighborhood graph or k-nearest neighbor graph generally has a sparse pattern, i.e. containing numerous zeros. Even for the similarity matrix associated with fully connected graph, we observe that usually a significant portion of elements are very close to zero. By setting a small threshold for similarity (e.g. 0.01) and regarding those below-threshold similarities as zeros, we are likely to obtain a sparse similarity matrix. We think this sparsification way is reasonable since it resembles the way of ε-neighborhood graph. The difference is that the former sets below-threshold similarities to zeros and while the latter sets similarities associated with over-threshold distances to zeros. For simplicity, we call both of the related graphs as ε-neighborhood-like graph in this dissertation. Storing the similarity matrix in a sparse format can save typically most of the memory needed for dense format storage, thus increase significantly the scale of datasets able to be processed on the GPU.

There are various sparse formats for storing a sparse matrix. Here we do not try to enumerate all but introduce several commonly used sparse formats in many linear algebra libraries: Coordinate format (COO), Compressed Sparse Row format (CSR), Compressed Sparse Column format (CSC), and Ellpack format. Note that we use nnz to represent the total number of nonzero elemnts in a matrix. In graph analytics, the COO representation of similarity graph corresponds to an edge list. Let (v i , v j , w ij ) denote a directed edge from vertex v i to vertex v j with weight w ij . The edge list is composed of a list of couples (v i , v j ) or triples (v i , v j , w ij ) for all edges. Note that undirected edges are represented in both directions. and holds their indexes that count in csrVal[] (i.e. the blue numbers circled by red ellipses), and in the end contains the total number of nonzero elements of the matrix. In other words, csrRow[] considers the number of nonzeros (in rowmajor order) before the first nonzero element of each row and stores it in row-major order. Therefore, the memory requirement for CSR format is 2 × nnz + m r + 1 (see annotations on right side of Figure 3.

Coordinate format (COO)

Compressed Sparse Row format (CSR)

2).

In graph analytics, the CSR representation of similarity graph corresponds to an adjacency list, where for each vertex v i , all its neighbours (e.g. v j , ..., v k ) and optionally the corresponding edge weights (e.g. w j , ..., w k ) are recorded in one row for that vertex.

Compressed Sparse Column format (CSC)

The CSC format of a sparse matrix consists of three arrays. We call them cscVal[], cscCol[], cscRow[]. the matrix in row-major format while the former stores it in column-major format. Specifically, cscVal[] and cscRow[] store the values and row indexes of all nonzero matrix elements in column-major format, respectively. cscCol[] considers the first nonzero element in each column of the matrix (i.e. the circled red numbers in the figure) and holds their indexes that count in cscVal[] (i.e. the blue numbers circled by red ellipses), and in the end contains the total number of nonzero elements of the matrix. In other words, cscCol[] considers the number of nonzeros (in column-major order) before the first nonzero element of each column and stores it in column-major order. Therefore, the memory requirement for CSC format is 2 × nnz + n c + 1. (3) Suited to regular sparsity pattern.

Ellpack format

Comparison and our choice

Drawbacks

(1) Generally more memory consumption than CSR and CSC due to redundancy of information;

(2) Does not support efficient slicing.

Does not support efficient column slicing.

Does not support efficient row slicing.

(1) Generally more memory consumption than CSR and CSC due to imbalance in the number of nonzeros per row;

(2) Unsuited for power law sparsity pattern.

Table 3.1 compares the four sparse formats. Among them, we prefer the CSR format for storing sparse similarity matrix. Because it is well suited to both regular and irregular (e.g. power law distribution) sparsity patterns [START_REF] Fender | Parallel solutions for large-scale eigenvalue problems arising in graph analytics[END_REF] and usually requires less memory than COO and Ellpack formats. Moreover, the CSR format is efficient for matrix-vector computations 1 . Additionally, we will also show in Chapter 4 that the CSR format can support efficient row slicing (while COO and CSC cannot). With these advantages, the CSR format has been widely used and supported in most libraries. Finally, we intend to use the spectral graph partitioning algorithms for the nvGRAPH library and they support only the CSR format for graph representation.

. Difficulties

Recall that we want to address the memory space bottleneck of large-scale spectral clustering by storing the similarity matrix in CSR format. Hence it makes no sense to first construct the similarity matrix using a dense format storage and then transform it from dense to CSR format. It seems that the construction of similarity matrix should be directly performed in CSR format. However, several restrictions make it difficult to be efficiently implemented in parallel especially on the GPU. First, the total number of nonzero elements is unknown, so we cannot allocate memory for csrVal[] and csrCol[]. Moreover, the number of nonzeros per row is unknown, thus we cannot know in advance in which segment of csrVal[] and csrCol[] we should store the value and column index of each nonzero entry, respectively. Besides, although GPU threads can compute similarities and check nonzeros in parallel, they are unable to store nonzeros (values and column indexes) at the right places of csrVal[] and csrCol[], since each thread does not know the number of nonzeros ahead of it. In contrast, the Ellpack format, which we use for intermediate storage, will cause us fewer problems (see Section 3.3.4).

We point out that in this dissertation only ε-neighborhood-like graph construction is considered for generating sparse similarity matrix. The k-nearest neighbor graph does not have the first two issues stated above, but it requires expensive sorting operations. We will also show in Chapter 4 that the ε-neighborhood-like graph is more informative than k-nearest neighbor graph in terms of filtering noise.

In the following we propose 3 different algorithms and their associated GPU implementations for the parallel construction of ε-neighborhood-like similarity graph and matrix in CSR format, always avoiding storing the full similarity matrix in dense format.

. Algo CSR-1: straightforward CSR Algorithm

Algorithm 4 describes the construction of the CSR format similarity matrix in the straightforward way. It is mainly composed of two full passes across all the elements of similarity matrix. The first pass (1stPass kernel) is dedicated to count the number of nonzeros per row into nnzPerRow[], so that we can get the total number of nonzeros (nnz) and allocate exact size of memory for csrVal[] and csrCol[]. Moreover, csrRow[] can be derived from nnzPerRow[] with an exclusive scan, which allows to know the location of nonzeros related to each row in csrVal[] and csrCol[]. With all these information, the second pass (2ndPass kernel) can then parallelly store the nonzeros into csrVal[] and csrCol[] after re-finding them. Additionally, we find from nnzPerRow[] the minimum and maximum number of nonzeros in a row, which will be used for filtering noise in Chapter 4. 

Inputs:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d (2) Similarity metric and connectivity parameters, e.g. σ, threshold Outputs:

( 

GPU implementation

Our GPU implementation for Algo CSR-1 is detailed in Appendix C. Essentially, it consists in two optimized CUDA kernels: the 1stPass kernel and the 2ndPass kernel.

. Algo CSR-2: Ellpack-to-CSR Algorithm

Algorithm 5 describes the construction of the CSR format similarity matrix based on an Ellpack-to-CSR approach. The basic idea is to try to first store the similarity matrix in Ellpack format and then convert it into CSR format. So we need to make a hypothesis for the maximum number of nonzeros in a row (hypoM axN nzRow), and allocate two temporary arrays of Ellpack format (csrValMax[] and csrColMax[]) with the size of n × hypoM axN nzRow (n is the number of instances).

The algorithm is primarily composed of a single full pass across all the elements in similarity matrix, and if necessary a supplementary pass across a part of similarity matrix. The full pass (fullPass kernel) undertakes multiple tasks:

Input:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d (2) Similarity metric and connectivity parameters, e.g. σ, threshold (3) Hypothetical maximum number of nonzeros in a row: hypoM axN nzRow Output:

( If our hypothesis is large enough (i.e. maxN nzRow <= hypoM axN nzRow), indicating the constructed Ellpack arrays contain the information of all nonzeros, then it just remains to fill the CSR arrays (csrVal[] and csrCol[]) by an Ellpack-to-CSR copy (ellpackToCSR kernel). However, if our hypothesis is too small (i.e. maxN nzRow > hypoM axN nzRow), indicating the constructed Ellpack arrays miss some nonzeros, then besides the Ellpack-to-CSR copy we also need to conduct a supplementary pass (supPass kernel) to find the missing nonzeros and store them at the right places in csrVal[] and csrCol[]. Note that the supplementary pass does not traverse all elements of similarity matrix, but only starts the work from the restart indexes recorded by the first pass.

Additionally, we also find the minimum number of nonzeros in a row (minN nzRow), which will be used, together with maxN nzRow, for filtering noise in Chapter 4.

GPU implementation

Our GPU implementation for Algo CSR-2 is detailed in Appendix D. Essentially, it consists in three optimized CUDA kernels: the fullPass kernel, the ellpackToCSR kernel, and the supPass kernel.

. Algo CSR-3: chunkwise dense-to-CSR Algorithm

Algorithm 6 describes the construction of the CSR format similarity matrix based on a chunkwise dense-to-CSR approach. As mentioned in Section 3.3.2, it makes no sense to first construct the similarity matrix with dense format storage and then transform it from dense to CSR format, since for datasets with large number of instances (n) it would be impossible to store the n × n similarity matrix in dense format with limited GPU memory. However, it is feasible to construct only a chunk of similarity matrix in dense format at a time so that we can convert each part into CSR format and finally merge the CSR results of all parts to obtain the CSR representation of the whole similarity matrix. We consider partitioning the similarity matrix horizontally into chunks of similar size. The horizontal partitioning can facilitate merging the CSR results of different chunks since the CSR format is stored in row-major order. The number of chunks can be determined automatically in the way that only one chunk can fit into the available GPU memory or the percent of free GPU memory that we want to use. However, the total number of nonzeros is still unknown in advance. We need to assume the maximum percentage of nonzeros in the matrix so that we can allocate memory for CSR arrays. Additionally, we derive the number of nonzeros per row from csrRow[], then find the minimum and maximum number of nonzeros in a row, which will be used for filtering noise in Chapter 4.

Algorithm 6: Construction of the CSR format similarity matrix based on a chunkwise dense-to-CSR approach (Algo CSR-3)

Input:

(1) A set of data instances X = {x 1 , ..., x n } with x i in R d (2) Similarity metric and connectivity parameters, e.g. σ, threshold (3) Supposed maximum percentage of nonzeros: spM axN zP ct (4) Usage rate of free GPU RAM for storing a chunk of similarity matrix: memU seRate Output: -launch the chkPass kernel to compute the similarity elements and store them in dense format; -perform the denseToCSR step to transform the matrix chunk from dense to CSR format and accumulate the number of nonzeros into nnz. 5 Perform the mergeCSR step to merge the CSR results of all chunks and obtain the CSR format of the whole similarity matrix. 

(1) Similarity matrix in CSR format: csrVal[], csrRow[], csrCol[] (2 

GPU implementation

Our GPU implementation for Algo CSR-3 is detailed in Appendix E. Essentially, it consists in one optimized CUDA kernel: the chkPass kernel, and the use of some functions of NVIDIA's cuSPARSE library.

3.3.6 . Comparison of the three algorithms 

sizeof (f loat) • Db.y • Db.x + sizeof (int)•Db.y•(Db.x+1) sizeof (f loat)•Db.y•(Db.x+ hypo) + sizeof (int) • Db.y • (Db.x + hypo + 3)
Unknown (due to the use of cuSPARSE) Table 3.2 compares in many aspects our three algorithms for constructing the similarity matrix in CSR format on the GPU. Each algorithm has its own advantages and drawbacks compared to other two algorithms. Most importantly, Algo CSR-1 needs the most similarity computations but requires the least amount of GPU global memory and no extra parameter, while Algo CSR-3 needs the fewest similarity computations but may require most of the GPU global memory, and surely requires more than 2n 2 accesses to global memory and two extra parameters. Algo CSR-2 can be regarded as a trade-off algorithm between the two previous algorithms, but it requires the most efforts to be efficiently implemented. Besides, although it can support all kinds of sparsity patterns like the other two algorithms, it prefers regular sparsity patterns that are favorable to Ellpack format. Finally, it can require too much shared memory per block if the hypoM axN nzRow or the block y dimension is great.

Based on the above analysis and our experimental results in Section 3.6.4, we give some advice on how to choose among the three algorithms in practice:

• If the dataset has many dimensions (large d), which means it is expensive to compute each similarity based on the values of all dimensions, then we recommend using Algo CSR-3 or Algo CSR-2 as they compute much fewer similarities than Algo CSR-1.

• If the dataset has a huge number of instances (large n), then we suggest using Algo CSR-2, because it computes much fewer similarities than Algo CSR-1 and meanwhile requires much fewer accesses to global memory than Algo CSR-3.

• If the user does not want to tune any extra parameters, or if the user wants to acquire some initial knowledge of the similarity matrix (e.g. minN nzRow, maxN nzRow, nnz, sparsity) before running any faster algorithms, then Algo CSR-1 is the very choice.

We point out that we have considered whether it would be possible to exploit the symmetry property of similarity matrix to halve the similarity computations. Unfortunately, none of the above algorithms seem suitable to utilize the symmetry due to the complicacy of CSR format. Besides, we have also considered whether it would be easier and faster to first construct the similarity matrix in COO format and then convert it into CSR format. However, we found that similar restrictions and difficulties (see Section 3.3.2) would exist when using COO format. Moreover it would require an extra COO-to-CSR conversion and also more memory space for storing both COO and CSR results. Nevertheless, all our three algorithms above can be readily generalized to COO-format similarity matrix construction if necessary.

. Spectral graph partitioning using nvGRAPH

The previous section presents our optimized GPU algorithms for constructing CSR format similarity graph and matrix, which is an important step for scaling up spectral clustering. In this section, we concentrate on the graph partitioning step of spectral clustering. This step takes the similarity matrix as input graph and aims at partitioning the graph into balanced subgraphs (equivalent to data clusters) with minimum cut. This is known to be an NP-hard problem, but a relaxed and approximated solution is to compute the first few eigenvectors of the graph Laplacian matrix and extract the partitioning information from the calculated eigenvectors.

In Section 1.5.2 we have investigated some eigensolver methods and GPUaccelerated libraries with eigensolvers. We are particularly interested in using NVIDIA's nvGRAPH library for spectral graph partitioning on the GPU. With the CSR format similarity matrix constructed in Section 3.3, the remaining steps of spectral clustering can be completed on the GPU by calling the "Spectral Clustering API" of the nvGRAPH library. The API supports two graph partitioning algorithms based on balanced cut minimization with embedded eigensolvers.

• Minimization of the balanced cut with Lanczos method. The balanced cut refers to the volume of inter-cluster connections relative to the size of clusters. The algorithm constructs the Laplacian matrix and then calls the Lanczos solver to calculate the smallest eigenpairs.

• Minimization of the balanced cut with LOBPCG method. Similar to the first algorithm, but it utilizes the LOBPCG eigensolver to handle the constructed Laplacian matrix.

Compared to Lanczos method, LOBPCG can handle eigenvalues with multiplicity [START_REF] Naumov | Parallel spectral graph partitioning[END_REF] which often happens in spectral clustering. Moreover, the NVIDIA implementation of LOBPCG is able to restart the computation when it encounters numerical instabilities. Thus nvGRAPH's LOBPCG-embedded algorithm has appeared to be the most reliable on our benchmarks. We emphasize that despite its name called by nvGRAPH, the API does not take care of similarity graph/matrix construction. It actually takes the similarity graph in CSR topology (equivalent to similarity matrix in CSR format) as input graph and performs spectral graph partitioning which includes several steps like Laplacian matrix computation, eigen-decomposition, and final k-means clustering (see Section 1.3.1 and Figure 1.1). Note that the nvGRAPH documentation [139] does not report which type of Laplacian matrix is constructed in the above algorithms. Besides, the API has also a modularity maximization algorithm for graph partitioning, which constructs a modularity matrix and finds its largest eigenpairs (while the balanced cut minimization algorithms construct the Laplacian matrix and find its smallest eigenpairs).

Besides, the API also offers a function for measuring the clustering quality with three supported metrics: modularity, edge cut, and ratio cut. The modularity metric tells how good the clustering is versus random assignments. The edge cut metric counts the total number of edges across clusters. The ratio cut metric accumulates for all clusters the ratio of the number of edges going outside of a cluster to the number of vertices inside the cluster. For the first metric, higher is better, while for the last two metrics, lower is better.

Listing 3.5 shows the usage of the API. Before invoking the nvgraphSpectralClustering function, we should first conduct some preparation steps in sequence (lines 2-22): initialize the nvGRAPH library, create a graph descriptor, upload graph data in CSR format, and specify the parameters. The tolerance and the maximal number of iterations should be given appropriate values for both eigensolver and final k-means. They can affect the clustering quality and elapsed time. With all settings done, we call the nvgraphSpectralClustering function which partitions the similarity graph using spectral technique and returns cluster assignments of all vertices as well as the k c smallest or largest eigenpairs (lines [START_REF] Bolla | Relations between spectral and classification properties of multigraphs[END_REF][START_REF] Bouveyron | Model-based clustering of highdimensional data: A review[END_REF]. Finally we can call the nvgraphAnalyzeClustering function to measure clustering quality (lines 29-31). We point out that the API also has some limits: (1) it does not support directed graphs; (2) it supports only the CSR format for graph representation; (3) the supported maximum number of edges equals the maximum value for int type, which is about 2 billion in case of using 32 bits for int; (4) it only scales to single GPU. The first two limits have little effect on our current work, but the last two limits really prohibit us from advancing spectral clustering to even larger scale. The same limits exist for the corresponding APIs in cuGraph library.

. Tuning of parameters

Spectral clustering has the potential to produce high-quality clustering results. However, as summarized in Table 3.3, multiple parameters are introduced in the algorithms and implementations for spectral clustering. These parameters may affect the clustering quality or the algorithm performance and thus need to be tuned properly.

Some related works on the tuning or auto-tuning of spectral clustering parameters have been mentioned in Section 1.3.3. In this section, we describe our implementation for the auto-tuning of the number of clusters k c based on the eigengap heuristic, and give some suggestions on the tuning of other parameters based on our practical experience. 

. Auto-tuning of the number of clusters

We have implemented the eigengap heuristic [START_REF] Luxburg | A tutorial on spectral clustering[END_REF] (introduced in Section 1.3.3) for k c auto-tuning as follows.

1. Define a maximal number of clusters denoted by k cmax (k cmax > k c ).

2. Leverage the nvGRAPH library (see Section 3.4) to calculate the k cmax smallest eigenvalues and eigenvectors of graph Laplacian. Note that in this case the k-means step embedded in nvGRAPH's partitioning algorithms is no longer necessary. Thus we set the maximum number of k-means iterations to 1 (if this value is ≤ 0, nvGRAPH will use the default value 200).

3. Automatically determine k c based on the eigengap heuristic.

Finally we run our own GPU implementation of the k-means++ algorithm to obtain k c clusters.

. Tuning of the parameters for similarity matrix construction

Despite the related works presented in Section 1.3.3, the auto-tuning of connectivity parameters (e.g. k for k-nearest neighbor graph, ε for ε-neighborhood graph, σ for Gaussian similarity function) is difficult and remains an open issue. In this dissertation we manually tune connectivity parameters. Nevertheless, we suggest that performing min-max feature scaling (as formulated in Equation 3.1) before spectral clustering can facilitate the tuning of the parameters ε and σ, because it helps knowing in what range to choose the parameters.

Let X l be a numeric feature containing n values x l 1 , ..., x l n (column l of data matrix X), the min-max scaling transforms each value x l i of X l as follows:

x l i ←-

x l i -x l min x l max -x l min (3.1)
where x l max and x l min are the maximum value and minimum value of X l , respectively. It can be found that the min-max scaling actually rescales the values of every feature/dimension to the same range [0, 1].

We have introduced other parameters in the algorithms that have been proposed previously for constructing the similarity matrix in CSR format, including hypoM axN nzRow in Algo CSR-2, spM axN zP ct and memU seRate in Algo CSR-3. These three parameters have no effect on clustering quality, but have different degrees of impact on algorithm performance.

hypoM axN nzRow

We suggest that hypoM axN nzRow in Algo CSR-2, which represents the hypothetical maximum number of nonzeros in a row of the similarity matrix, should be neither too small nor too large. As demonstrated experimentally in Section 3.6.4, a value of a few tens to a few thousands for hypoM axN nzRow would be acceptable in terms of performance.

spM axN zP ct

The cuSPARSE library [START_REF]cuSPARSE Library[END_REF] targets matrices with zero elements representing over 95% of the total entries (i.e. matrices with sparsity > 95%). We consider it as a reference and suggest that spM axN zP ct in Algo CSR-3, which represents the supposed maximum percent of nonzero elements in the similarity matrix, should be < 5%. In fact, our experiments in Section 3.6.4 show that the constructed similarity matrices typically have > 99% sparsity, and larger similarity matrices are usually more sparse. Moreover, too much memory would be required if spM axN zP ct is not small enough for large matrices. Thus, for datasets with a large number of instances, a small value under 1% for spM axN zP ct is generally preferable.

memU seRate

The memU seRate parameter in Algo CSR-3 refers to the usage rate of free GPU RAM for storing a chunk of similarity matrix in dense format. If memU seRate is too small (e.g. under 10%), the chunk size would be too small; if memU seRate is too large (e.g. over 90%), other steps of the algorithm may lack RAM. Our experiments in Section 3.6.4 show that a value in the range [50%, 80%] for memU seRate is generally a nice choice, while a value in the range [10%, 50%] or [80%, 90%] also works well for some datasets.

. Tuning of the parameters for eigensolvers and k-means

Since we use nvGRAPH's LOBPCG-embedded algorithm which contains the LOBPCG eigensolver and the k-means algorithm (see Section 3.4), we need to specify the approximation tolerance and the maximum number of iterations for both the eigensolver and the k-means. It is declared in the nvGRAPH documentation [139] that:

• The smaller the tolerance, the better the approximation.

• For the tolerance related to eigensolvers, the default value is 0.001 while values between 0.01 and 0.0001 are generally acceptable, however setting a value of less than 0.0001 may result in divergence due to numerical roundoff.

• For the tolerance related to the k-means, the default value is 0.01 while values between 0.01 and 0.001 are usually acceptable.

• For the maximum number of iterations, the default value is 4000 for eigensolvers and 200 for the k-means.

Experimentally, we found that the tolerance for the LOBPCG eigensolver can have a significant impact on the clustering quality and therefore needs to tuned with special care, while it is generally good to use the default values for the other parameters.

. Experimental results

In this section, we experiment and evaluate our GPU implementation for spectral clustering. Specifically, Section 3.6.1 introduces the experimental framework including hardware and software, Section 3.6.2 describes the benchmark datasets and parameter settings, Section 3.6.3 presents the results of spectral clustering using dense data format, Section 3.6.4 shows the performance of the CSR format for the similarity graph/matrix construction, Section 3.6.5 shows the performance of nvGRAPH's LOBPCG-embedded algorithm for graph partitioning, and finally Section 3.6.6 gives the global performance of spectral clustering using CSR format.

. Experimental framework

Apart from the GPU algorithms and implementations for CSR graph/matrix construction, we have also developed a well optimized CPU implementation related to Algo CSR-1 as a baseline for performance comparison. It is parallelized with OpenMP for multi-threaded execution and has been designed to facilitate autovectorization with gcc for AVX units. To differentiate each implementation, we call them "CPU CSR-1", "GPU CSR-1", "GPU CSR-2" and "GPU CSR-3" in this section.

We take advantage of the LOBPCG-embedded algorithm from nvGRAPH for the graph partitioning step on GPU, as explained in Section 3.4. For performance comparison, we tried to find a CPU implementation of the LOBPCG eigensolver that could be used through C/C++ interface for spectral clustering2 , but unfortunately we could not find one until April 2022.

All experiments are performed on our john3 server which consists of two Intel Xeon Silver 4114 processors as CPU and a NVIDIA GeForce RTX 3090 as GPU. The CPU code is compiled by gcc 9.3.0 with -Ofast -funroll-loops -march=native optimization flag and -fopenmp flag. The GPU code is compiled by nvcc of CUDA Toolkit 11.53 with -gpu-architecture=sm_86. More information about our testbed john3 can be found in Appendix B. Computations are in single precision.

. Datasets and parameter settings

Table 4.1 summarizes the datasets and algorithmic parameter settings used in our experiments. The datasets can be divided into two groups according to their use cases:

• 2D small datasets: Jain, Aggregation, S1 and Spirals. Each of them contains only hundreds or thousands of points. They are used in Section 3.6.3 for spectral clustering using dense data format.

• Large datasets: MNIST-based sets (MNIST-60K, MNIST-120K and MNIST-240K) and 4D synthetic sets (Syn4D-1M and Syn4D-5M). The former sets contain tens to hundreds of thousands of instances in 784 dimensions, while the latter sets contain millions of instances in 4 dimensions. They are used in Sections 3.6.4, 3.6.5 and 3.6.6 for evaluating the performance of spectral clustering using CSR format.

More information about the benchmark datasets can be found in Appendix A.

In the beginning we perform feature scaling on the 2D sets and the 4D synthetic sets to transform every dimension into [0, 1], which facilitates the tuning of σ and thresholds. The feature scaling is efficiently implemented on GPU and its time overhead is negligible compared to the computations of spectral clustering.

We adopt the cosine similarity metric for the MNIST-based datasets because it is more effective than the Gaussian similarity for high-dimensional data (as introduced in [START_REF] Ina | Outlier cluster formation in spectral clustering[END_REF] and as we verified empirically). In contrast, we use Gaussian similarity for other low-dimensional datasets.

We impose a lower bound threshold on the similarity value or an upper bound threshold on the squared distance to construct the ε-neighborhood-like graph and associated sparse similarity matrix (see Section 3.3.1). For comparison, we set the same threshold (0.8) on the similarity for all MNIST-based datasets. Using this threshold can result in good enough clustering quality for MNIST-60K and MNIST-120K, but a higher threshold (0.84, marked with *) is needed for MNIST-240K to achieve similar clustering quality. For Syn4D-1M and Syn4D-5M, we set a threshold (0.0008 and 0.0004 respectively) on the squared distance.

Regarding GPU CSR-3, we suppose that the maximum percentage of nonzeros in the associated similarity matrix (in contrast to sparsity) is 1% for the MNISTbased datasets, 0.01% for Syn4D-1M and 0.001% for Syn4D-5M, based on some quick preliminary experiments. After allocating enough memory for the CSR arrays, we query the amount of remaining free GPU RAM via cudaMemGetInfo and allocate 80% of it for storing a chunk of similarity matrix.

For nvGRAPH's LOBPCG-embedded algorithm, several parameters need to be specified (see Listing 3.5). We simply set the maximal number of iterations to the nvGRAPH default value, i.e. 4000 for the LOBPCG eigensolver and 200 for the final k-means. However, we found that the approximation tolerance for the eigensolver needs to be tuned with care because it has a significant impact on the clustering quality and the execution time. Based on some preliminary experiments, we set it to 0.005 for the MNIST-based datasets, 0.001 for Syn4D-1M and 0.0001 for Syn4D-5M. Besides, the tolerance for the k-means algorithm is set to 0.0001 for all benchmarks. 3.5 show respectively the result and quality of spectral clustering using dense data format. As expected, spectral clustering can well discover different shapes of clusters (including non-convex ones) and yield satisfying clustering on the four shape sets. Table 3.6 presents the elapsed time breakdown in milliseconds. Since the datasets are small, we simply set the block size of all related kernels to (BSX, BSY)= [START_REF] Miyamoto | Algorithms for fuzzy clustering[END_REF][START_REF] Agarwal | Crime analysis using k-means clustering[END_REF]. The time of eigensolver includes the time to initialize the cuSolverDN library. It turns out that the eigensolver dominates the running time, while the matrix construction and the normalization consume little time. Other parts including CPU-GPU data transfers take some time but not much. The total time of spectral clustering is less than 1 second for all the four datasets.

. Performance of spectral clustering using dense data format

Additionally, we find that the results of the syevdx eigensolver (i.e. eigenvalues and eigenvectors) are not exactly the same for each run with the same Laplacian matrix and input parameters. This sometimes leads to unstable clustering when using the k-means algorithm in the final step. However, using the k-means++ algorithm can usually handle this instability. 

. Performance of CSR format similarity matrix construction

Table 3.7 shows the characteristics of the similarity matrices constructed by any of our algorithms with the previously specified settings. It turns out that all the similarity matrices are extremely sparse (with sparsity greater than 99%) although they contain tens or hundreds of millions of nonzeros.

Tuning of the grid and block configuration

The configuration (i.e. dimension and size) of the grid and blocks of threads for a CUDA kernel can have a significant impact on the kernel performance. One of the suggestions [START_REF]CUDA C++ Best Practices Guide[END_REF] is that a grid should have sufficient number of blocks so that all multiprocessors of the GPU are kept busy, and meanwhile each multiprocessor should have multiple active blocks and sufficient number of active warps so as to hide latencies and keep the hardware busy. Although these suggestions are provided, it requires experiments to determine the optimal grid and block configuration of each kernel and for each dataset. Instead of creating only 1D grids with 1D blocks for all our CUDA kernels [START_REF] He | Scalable algorithms using sparse storage for parallel spectral clustering on GPU[END_REF], now we choose to create 2D grids with 2D blocks for the 1stPass kernel of GPU CSR-1 and the chkPass kernel of GPU CSR-3, and create 1D grids with 2D blocks for the other kernels (see details in Sections 3.3.3, 3.3.4 and 3.3.5). We illustrate in Figures 3.6, 3.7 and 3.8 the impact of block size on kernel performance. Essentially, block sizes close to the optimal ones are often suboptimal choices, while block sizes far from the optimal ones may lead to about ×2 to ×5 lower kernel performance. 
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1 BSX and BSY represents the block size in x and y dimensions, respectively. 2 (N / A), short for Not Applicable or Not Available, represents that with the given hypo, the supPass kernel consumes little time regardless of the block size, or the supPass kernel is not involved in the computation.

Table 3.8 shows the optimal block size in x and y dimensions that we found experimentally for each kernel and each benchmark. It can be observed from the table that:

• Although the optimal block sizes are different for different kernels, they are similar for datasets of the same category (which is quite user-friendly), and all have at least 128 threads per block.

• As expected, we need to reduce the size of block y dimension for the fullPass kernel when hypoM axN nzRow (abbr. hypo) becomes large leading to proportionally more shared memory consumption per block (see Section 3.3.5 for explanation).

• Due to the hypoM axN nzRow parameter, it requires more efforts to find the optimal block size configuration for the kernels of GPU CSR-2 than for the other two CSR algorithms. However, as will be presented later, these efforts will be rewarded with superior performance in many benchmarks.

• Particularly, the optimal block size for the chkPass kernel of GPU CSR-3 is constant (BSX=32, BSY=16) for all benchmarks.

Tuning of the hypo parameter for GPU CSR-2 As shown in Figure 3.9, we consider the MNIST-120K benchmark as an example for studying the performance of each kernel of GPU CSR 1 and 2, especially the impact of hypoM axN nzRow on the performance of GPU CSR-2. Note that the hypoM axN nzRow is irrelevant to the 1stPass and 2ndPass kernels of GPU CSR-1. The optimal block sizes for the fullPass and supPass kernels of GPU CSR-2 vary gradually with hypoM axN nzRow, so the performance presented in the figure for each value of hypoM axN nzRow is obtained with the corresponding optimal block size. Besides, the ellpackToCSR kernel of GPU CSR-2 consumes so little time compared to the other kernels that we have omitted it in the figure.

The fullPass kernel of GPU CSR-2 always computes the n 2 similarities regardless of the hypoM axN nzRow parameter. The computation of similarities is the most time-consuming part of the kernel, so its execution time should remain constant as seen in Figure 3.9 up to a hypothesis of 512. However, this kernel allocates shared memory in a quantity proportional to the hypothesis. For hypotheses higher than 512, the amount of shared memory required by each block limits the number of blocks residing simultaneously in a Stream Multiprocessor, and causes an increase in the computation time, as shown in Figure 3.9. In particular, we observe two sudden increases of time when the hypothesis grows from 2942 to 2943 and from 3998 to 3999. On the contrary, the supPass kernel recomputes on each row only the similarities beyond the hypothesis and its execution time decreases when the hypothesis increases. Finally, there is a range of hypothesis values for which the total time of GPU CSR-2 is lower than GPU CSR-1 ([180-2942] on our measurements in Figure 3.9). GPU CSR-2 can therefore run faster but requires some tests to identify the interesting hypothesis range. 

Tuning of the dense matrix chunk size for GPU CSR-3

As shown in Figure 3.10, we investigate the performance breakdown of GPU CSR-3 on four representative benchmarks, and the impact from the usage rate of free GPU RAM allocated for a chunk of similarity matrix (see explanation in Section 3.6.2). Note that we consider only the range from 10% to 90% for the free memory usage rate because it is meaningless to use a too small rate and it is necessary to leave some memory for other uses (e.g. the workspace needed by cuSPARSE functions). Recall that GPU CSR-3 consists of some initialization steps, a loop of the chkPass kernel and the denseToCSR step, and finally the mergeCSR step (see Section 3.3.5). For all benchmarks, the initialization steps take only 0.34 second and the mergeCSR step costs little time compared to the global time, so they are not presented in the figure.

It is normal to see that the number of chunks decreases with more memory usage rate, while the number of chunks increases with datasets of large size n. For the MNIST-based datasets, the performance of GPU CSR-3 (including its chkPass kernel and denseToCSR step) is very stable when the memory usage rate varies. The elapsed time is dominated by the chkPass kernel while the denseToCSR step consumes little time. For Syn4D-1M and Syn4D-5M, the kernel performance is also very stable as the memory usage rate changes. However, the execution time of the denseToCSR step becomes significant and less stable on Syn4D-1M and makes the time of GPU CSR-3 less stable. This instability becomes more severe on Syn4D-5M. Specifically, the performance deteriorates when the memory usage rate decreases under 30% for Syn4D-1M, and under or over 80% for Syn4D-5M. This performance deterioration in case of decreasing memory usage rate is due to the growing initialization overhead in the denseToCSR step (implemented by cuS-PARSE functions), since the number of chunks grows rapidly and the denseToCSR step is performed once for each chunk. In any case, a free memory usage rate of 80% seems to be the best choice, while a rate between 50% and 80% is also a fairly good choice. Table 3.9 compares the performance of CPU and GPU algorithms on different datasets. Each result on GPU is the average time of 5 consecutive runs, while each result on CPU is the rounded time of a single run as it takes much longer. Since our CPU has 20 physical cores (40 logical cores), we measured the performance of CPU CSR-1 running 1, 20 and 40 threads. In particular, the time of CPU CSR-1 using 1 thread is too long (over 20 hours) on the Syn4D-5M dataset so we did not get the final time. Figure 3.11 visualizes the speedup of GPU algorithms versus the best performance of CPU CSR-1 (using 40 threads and auto-vectorization).

GPU vs. CPU performance of CSR matrix construction

Globally, it can be seen that multi-threading accelerates significantly CPU CSR-1, however, it is still much slower than any of the GPU algorithms. Compared to the best performance of CPU CSR-1, GPU CSR-1 is ×10.8 to ×13.8 faster, depending on hypoM axN nzRow GPU CSR-2 can be ×13.6 to ×26.9 faster, and GPU CSR-3 is ×8.6 to ×28.9 faster.

With the chosen values for hypoM axN nzRow, GPU CSR-2 can outperform GPU CSR-1 and this superiority is especially significant on MNIST-240K * , Syn4D-1M and Syn4D-5M benchmarks. This is because the gain from reducing similarity computations surpasses the cost of recording restart indexes for GPU CSR-2 (see Section 3.3.4).

Compared to the other GPU algorithms, GPU CSR-3 is around ×2 faster on the MNIST-based datasets but is significantly slower on Syn4D-1M and Syn4D-5M. In fact, GPU CSR-3 computes relatively much fewer similarities (n 2 instead of 1× to 2 × n 2 ), but requires many extra global memory accesses (n 2 writes and n 2 reads). On the MNIST-based datasets which have numerous dimensions leading to long With logarithmic scales for both axes t and n, Figure 3.12 shows straight lines with slopes close to 2, meaning that the elapsed time varies quadratically with n for all the CPU and GPU algorithms. Hence all the algorithms follow the O(n 2 d) time complexity of similarity matrix construction, although in CSR format. They are all scalable to large datasets, but our GPU algorithms on a GeForce RTX 3090 are considerably faster than the parallelized and auto-vectorized CPU algorithm on a dual Xeon Silver 4114. After obtaining the CSR format similarity matrix, we leverage the LOBPCGembedded graph partitioning algorithm of the nvGRAPH library to fulfill the remaining steps of spectral clustering on the GPU (see Section 3.4). Table 3.10 presents the elapsed time of the nvGRAPH algorithm and the final clustering quality measured by three commonly used metrics: Adjusted Rand Index (ARI), Adjusted Mutual Information (AMI), Normalized Mutual Information (NMI) (introduced in Section 1.1.2). All three metrics return a score less or equal to 1, and a score closer to 1 indicates a better clustering. The results in the table are based on 10 runs.

. Performance of nvGRAPH's LOBPCG-embedded algorithm

For the MNIST-based datasets which are gray-scale digit images of 28 × 28 = 784 pixels, the ARI, AMI, and NMI scores achieved by our spectral clustering implementation are around 0.5, 0.7, 0.7, respectively. Although kind of far from 1, they are normal results that can be achieved by traditional spectral clustering algorithms on high-dimensional image datasets. In fact, the NMI score is close to that obtained in [START_REF] Yang | Deep spectral clustering using dual autoencoder network[END_REF] by traditional spectral clustering algorithm and is better than that obtained by the k-means algorithm. The clustering quality on Syn4D-1M and Syn4D-5M is perfect since they are formed by convex clusters and are easy to be correctly clustered by spectral clustering.

For all benchmarks we observed a certain degree of performance fluctuations, but globally we are satisfied with the performance of nvGRAPH's LOBPCGembedded algorithm. Although the theoretical time complexity of eigenvector computation is O(n 3 ) in the worst case, our experiments exhibit a low time complexity close to O(log(n)) on the MNIST-based datasets and close to O(n) on Syn4D-1M and Syn4D-5M datasets. We infer there are two reasons for this good performance. First, the constructed similarity matrices are extremely sparse and the numerous matrix-vector multiplications of the LOBPCG eigensolver are efficiently performed in CSR format. Second, the LOBPCG solver adopts an iterative and approximate method instead of expensive direct methods. Note that the time of initializing the nvGRAPH library takes about 0.7 to 1 second with CUDA 11.5, and it is not included in the performance measurements.

Additionally, our experiments in Section 5.3.2 show that NVIDIA's LOBPCGembedded graph partitioning algorithm (on GPU) runs significantly faster than that of scikit-learn (on CPU) when the number of instances to be processed is large enough, e.g. a speedup from ×8 to ×28 when processing 10 4 instances. 4 . Data transfers between the CPU and the GPU are performed with pinned memory to achieve higher bandwidth and they occur only at the beginning and end of the program. Their elapsed time is negligible (less than 0.2 s) for all benchmarks and is therefore not included in the figure .  Globally, with our optimized algorithms for CSR graph/matrix generation and nvGRAPH's graph partitioning algorithm, we obtain a parallel implementation of spectral clustering that is able to process large datasets entirely on the GPU in just a few seconds to a few minutes.

. Global performance of spectral clustering using CSR format

. Summary

In this chapter we have addressed the scalability of spectral clustering on GPU architectures. We have proposed three different algorithms and optimized parallel implementations for the construction of the sparse similarity graph/matrix in CSR format. Storing this matrix in CSR format enables us to save a large amount of memory space compared to the dense format storage, which is crucial on the GPU since it usually provides much less memory than the CPU. Furthermore, our GPU implementations of these algorithms are deeply optimized by applying various highlevel and low-level good practices of CUDA programming (e.g. coalesced access to global memory, full exploitation of the shared memory, maximization of hardware utilization, minimization of warp divergence, use of fast arithmetic instructions, etc).

Moreover, our matrix generation in CSR format is ideally suited to the graph partitioning algorithms provided by nvGRAPH which require the input graph to be in CSR format. These algorithms possess built-in and adapted eigensolvers (including Lanczos and LOBPCG) and a k-means implementation, so they can be leveraged to accomplish the remaining steps of spectral clustering. We particularly favor the LOBPCG-embedded algorithm because the LOBPCG solver can handle eigenvalues with multiplicity which often occur in spectral clustering, and it is numerically more stable then the Lanczos solver.

With our algorithms for CSR graph/matrix construction and nvGRAPH's eigensolver-embedded partitioning algorithm, we have obtained a parallelized endto-end spectral clustering implementation on a single GPU. Finally, experiments show that our GPU implementation on a GeForce RTX 3090 succeeds in scaling up to millions of data instances.

-Parallel and Efficient Noise Filtering for

Spectral Clustering

. Introduction

As stated in Section 1.3.3, spectral clustering is sensitive to noise points (including outliers) which are widely present in many datasets. Their existence can destroy the block structure of the similarity matrix [START_REF] Li | Noise robust spectral clustering[END_REF] and thus have a significant negative impact on the clustering quality.

To address this problem, we propose two simple and effective noise filtering approaches in Sections 4.2 and 4.3, which exploit the ready-made similarity matrix in CSR format constructed by the algorithms of Section 3.3. One filtering approach is based on the number of nonzeros per row, and the other is based on vertex degree. We point out that although we independently devised both approaches on our own, we found afterwards that our second approach is actually equivalent to the idea suggested by Hennig et al. [START_REF] Hennig | Handbook of cluster analysis[END_REF]. However, we provide a strategy to help find the optimal filtering threshold. Moreover, our filtering implementation is parallel and works on the CSR format of similarity matrix. In Section 4.4, we give an algorithm for noise robust spectral clustering which exploits either of the two noise filtering approaches, and we present our efficient GPU implementation for this algorithm. Finally, experiments in Section 4.5 demonstrate the effectiveness and efficiency of our noise filtering implementation.

. Noise filtering based on nnz per row

According to the background introduced in Section 1.3.1, the nonzeros in row i of the similarity matrix (associated with ε-neighborhood graph) can be regarded as the similarities between instance i and other instances within its neighborhood of radius ε. So the number of nonzeros per row (nnzPerRow[]) can be regarded as the number of ε-neighborhood neighbors per instance. We assume that noise instances usually have much fewer ε-neighborhood neighbors than non-noise instances. Therefore, with an appropriate threshold on nnzPerRow[], it is feasible to separate noise instances from non-noise instances.

This filtering approach should be effective if the neighborhood radius ε is not too large. Otherwise noise instances may have as many neighbors as non-noise instances and the filtering approach will lose its effectiveness. Obviously this filtering approach is inapplicable to the similarity matrix associated with k-nearest neighbor graph where every instance has k neighbors.

Interestingly, we found that our noise filtering approach based on nnz per row has a connection with a famous density-based clustering method called DBSCAN1 . With two predefined parameters: ε (neighborhood radius) and MinPts (a minimum number of points in ε-neighborhood), DBSCAN [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] finds each point that has at least MinPts neighbors in its ε-neighborhood as a core point, and forms clusters based on the connectivity of core points and the reachability to non-core points.

The points that do not belong to any cluster are identified as noise. Thus each noise point has fewer than MinPts neighbors in its ε-neighborhood, but note that a point with fewer than MinPts neighbors in its ε-neighborhood is not necessarily a noise point because it may be a border point of a cluster. Nevertheless, our noise filtering approach based on nnz per row assumes that most border points of a cluster still have more neighbors than noise points.

. Noise filtering based on vertex degree

Recall that a data instance corresponds to a graph vertex, and the similarities between different instances correspond to the connections/edges between different vertices. Each similarity value equals an edge weight. As defined in Reference [START_REF] Luxburg | A tutorial on spectral clustering[END_REF], the degree of a vertex is the weight sum of all the edges connected to the vertex, i.e. the sum of similarities in the corresponding row of the similarity matrix2 . We assume that noise vertices usually have much fewer edges and probably smaller edge weights than non-noise vertices, which means noise vertices generally have much smaller degrees than non-noise vertices. Therefore, given an appropriate threshold on the degrees of vertices (deg[]), we can separate noise vertices from non-noise vertices.

Unlike the previous filtering approach which is based on nnzPerRow[] and only applicable to ε-neighborhood similarity graph, this filtering approach based on deg[] is suitable to both ε-neighborhood and k-nearest neighbor graphs. In case of ε-neighborhood graph, this filtering approach should be less sensitive to a large value of ε than the previous approach because farther vertex neighbors should have smaller edge weights and thus less impact on the vertex degree. It is generally reasonable to assume that noise instances are small in quantity compared to non-noise instances and they have relatively few neighbors or small degrees. Hence it is likely to find a distinct boundary between noise and non-noise instances in the histogram. For example, in Figure 4.1 (a), the "hill" in the small upper area of the histogram are actually formed by noise instances as they have small values of scaled nnz per row, while the "mountain" in the large middle and lower area of the histogram are formed by non-noise instances with relatively high values of scaled nnz per row. Thus the optimal threshold for filtering noise are usually located at the "valley" area between the "hill" and the "mountain". Such feature also exists in the histogram of scaled degrees of vertices in Figure 4.1 (b). We developed a method that tries to automatically estimate the optimal threshold for noise filtering (denoted by etholdN F ) based on the feature of the histograms, however our current auto-estimation method is not mature and generic enough to handle various cases and remains to be improved in future work. Nonetheless, we can easily choose a good threshold based on the observation of the histogram in interactive mode. Based on tholdN F , we can readily identify noise instances and label them with "-1". Then we remove all similarity elements (in both row and column directions) that are related to noise instances from the CSR format similarity matrix and we obtain the noise-free similarity matrix in CSR format. We regard all noise instances as one cluster and assume the defined number of clusters (k c ) has counted the noise cluster. So, with the obtained noisefree similarity matrix in CSR format and the number of noise-free clusters k c -1, we can continue the spectral clustering process (e.g. spectral graph partitioning using nvGRAPH in Section 3.4) to find the clusters labels (from 0 to k c -2) of non-noise instances. Note that the indexes of non-noise instances associated with the noise-free similarity matrix differ from their original indexes associated with the original n × n similarity matrix. Therefore, we need to finally recover the labels of non-noise instances that are associated with the original instance indexes. Print the histogram and etholdN F , let the user determine the final threshold for filtering noise (tholdN F ). 13 Identify noise based on tholdN F and set their cluster labels to "-1". 14 Remove noise-related elements from the similarity matrix in CSR format. [START_REF] Balakrishnan | Noise thresholds for spectral clustering[END_REF] Perform the subsequent steps of spectral clustering on the noise-free similarity matrix and find k c -1 noise-free clusters. 16 Find the labels of non-noise instances indexed in the original dataset.
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GPU implementation

Our GPU implementation for Algorithm 7 is detailed in Appendix F. Essentially, the noise filtering part consists in some CUDA kernels and the use of some Thrust APIs, while other parts use the implementations presented in Chapter 3.

. Experimental results

In this section, we experimentally evaluate the performance of our noise robust spectral clustering algorithm on GPU.

. Datasets and parameter settings

The benchmark datasets are four noisy 2D datasets: Compound, Cure_t2, Cluto_t8, Cluto_t7. Their features and associated algorithmic parameter settings are presented in Table 4.1. Note that noise points are regarded together as one noise cluster in each of the four datasets. The experiments are performed on our john3 server which consists of two Intel Xeon Silver 4114 processors as CPU and a NVIDIA GeForce RTX 3090 as GPU. More information about the benchmark datasets and our testbed john3 can be found in Appendix A and B, respectively. Computations are in single precision.

In the beginning we perform min-max feature scaling on each dataset to facilitates the tuning of σ and similarity threshold. Then, the Gaussian similarity metric with σ = 0.02 is used for all datasets, and a lower bound threshold is imposed on the similarity value to construct the ε-neighborhood-like graph and associated sparse similarity matrix (see explanation in Section 3.3.1). Besides, except that the tolerance for eigensolver is set to 0.001 for all datasets, other parameters of nvGRAPH's LOBPCG-embedded algorithm are set to the same values as in Section 3.6.2. 

. Effect of noise filtering Cluto_t7

Let us first take the Cluto_t7 dataset as an example. As displayed in Figure 4.2 (a), this dataset contains 9 closely distributed shape clusters surrounded by 1 noise cluster. Thus the number of clusters k c = 9 + 1 = 10. Such dataset with close clusters and many noise points is a great challenge for classical algorithms of spectral clustering despite the tuning of parameters, as shown in Figure 4.2 (b). In contrast, our noise robust spectral clustering algorithm based on either nnz per row or vertex degree can successfully identify noise and distinguish different shape clusters (Figure 4.2 (e) and (f)) on condition that an appropriate threshold tholdN F for noise filtering is chosen. The choice of tholdN F can be aided by observing the histogram of scaled nnz per row or scaled degrees (Figure 4.2 (c) and (d)). Good choices of tholdN F are often located at the valley between the "hill" related to noise points and the "mountain" related to core points. However, since some shape clusters are very close to each other in Cluto_t7, a little higher value is set for tholdN F to filter out more border points as noise and reduce the connections between extremely adjacent clusters, otherwise these border points can hinder spectral clustering from distinguishing some adjacent clusters (Figure 4.3 (a) and (b)). Therefore, the tuning of tholdN F is delicate on Cluto_t7.

Similarly, the results of spectral clustering on the Cluto_t8, Cure_t2, and Compound datasets are presented in Figures 4.4 

Cluto_t8

In the Cluto_t8 dataset (Figure 4.4), the vertical cluster and the inverted Yshaped cluster on the right are too close to be distinguished by spectral clustering, so are the inverted Y-shaped cluster and the lower pie-shaped cluster. Unlike the case of Cluto_t7, using a higher tholdN F cannot solve this issue, because the vertical cluster has a significantly lower density than the other clusters and it can be easily destroyed when our algorithm tries to filters out noise between the clusters mentioned above using a higher tholdN F . Nonetheless, spectral clustering with noise filtering produces a much better result than without noise filtering.

Cure_t2

For the Cure_t2 dataset (Figure 4.5), the ground truth clustering regards the point distributions in the upper area as two oval clusters plus one strip-shaped cluster. However, they are actually connected and spectral clustering cannot identify them as three clusters correctly. Hence, we consider them as a whole cluster instead when imposing the number of clusters k c for spectral clustering. Moreover, as the single large oval cluster appears to have the lowest density compared to other shape clusters, the histograms using 20 bins can no longer expose the valleys for choosing tholdN F . Instead we draw the histograms using 50 bins but show only the first half parts containing the valleys in 

Compound

For the Compound dataset (Figure 4.6), our noise filtering algorithm can perfectly identify the noise points in the right area, but unfortunately the outer points with lower densities of the two clusters in the upper left area are also identified as noise by our algorithm. Obviously, the nvGRAPH API accounts for the vast majority of the total runtime. The noise filtering takes more time than the CSR similarity matrix construction on the Compound (with n = 399) and Cure_t2 (with n = 4200) datasets. However, it is the opposite situation on the Cluto_t8 (with n = 8000) and Cluto_-t7 (with n = 10000) datasets, due to the high time complexity (O(n 2 d)) of similarity matrix construction. Moreover, we observed that noise filtering based on vertex degree takes a little more time than that based on nnz per row, and so does the following nvGRAPH API. Essentially, the time overhead of our GPU implementation for noise filtering is insignificant for spectral clustering.

. Summary

In this chapter we have proposed an efficient noise robust spectral clustering algorithm based on two noise filtering approaches and provided its parallel implementation on GPU. Experiments on various noisy datasets show that our noise filtering implementation can significantly improve the quality of spectral clustering while introducing low time overhead. However, the tuning of the noise filtering threshold can be tricky in some cases and an auto-tuning method remains to be developed.

-Large-scale Representative-based Spec-

tral Clustering on CPU-GPU Platforms

. Introduction

In the previous Chapter 3, due to optimized parallel computations with sparse data storage format, we have succeeded in scaling spectral clustering up to millions of data instances on a single GPU. However, it would be difficult to move forward to an even larger scale mainly because of two issues: (1) the similarity matrix construction would be too time-consuming considering the O(n 2 d) time complexity;

(2) the maximum number of edges that the nvGRAPH eigensolver-embedded API can handle is about 2 billion.

To address the above issues, we incorporate the use of representatives in this chapter, where representatives are assumed to be some existing or calculated points that can reflect the distributional characteristics of a dataset. The basic idea is to first extract some representative points from the original dataset (preprocessing step), then perform spectral clustering on the representatives (spectral processing step), and finally obtain the clustering result of the original dataset by assigning each instance to its nearest representative (postprocessing step). The goal of using representatives is to reduce the amount of data on which the computationally expensive spectral clustering is performed, while retaining the clustering quality with little degradation compared to spectral clustering on the original dataset.

In fact, the idea of using representatives is not new in the field of cluster analysis. For example, in 1998, Guha, Rastogi, and Shim [START_REF] Guha | CURE: An efficient clustering algorithm for large databases[END_REF] proposed an algorithm called CURE (short for Clustering Using Representatives), which produces some representative points for each cluster and then conducts hierarchical clustering on the representatives. In 2009, Yan, Huang, and Jordan [START_REF] Yan | Fast approximate spectral clustering[END_REF] proposed a general framework for fast approximate spectral clustering based on the use of representatives, and they suggested two methods for extracting representatives: the k-means algorithm and the random projection tree. More information can be found in Section 1.4, where other approximation methods are also introduced.

In this chapter, we adopt the general framework proposed by Yan et al. and combine it with parallel computing to achieve large-scale spectral clustering on CPU-GPU platforms. Three methods for extracting representatives are considered: random sampling, k-means algorithm (see Section 1.2.1), and k-means++ algorithm (see Section 1.2.2). In Section 5.2 we empirically study the performance of each extraction method. Then, in Section 5.3, we consider three different usage scenarios and propose associated parallel processing chains for representative-based spectral clustering on CPU architectures, GPU architectures, or CPU-GPU heterogeneous architectures. As expected, the work presented in Chapter 2 (parallel k-means on CPU and GPU) and the work presented in Chapter 3 (parallel spectral clustering on GPU) can serve as modules in the proposed processing chains. Finally, experiments on large-scale datasets demonstrate the high scalability and performance of the proposed spectral clustering chains.

. Extraction of representatives

. Using random sampling vs. k-means vs. k-means++

We consider three methods for extracting representatives: random sampling, kmeans, and k-means++. Their performance is experimentally investigated with our testbed john3 using four synthetic large-scale 2D datasets: Spirals-75M, Smile2-100M, Aggregation-78.8M, Complex9-303M. These datasets consist of clusters with highly dense point distributions. More information about the datasets and the testbed can be found in Appendices A and B, respectively.

Benchmarking settings

The following settings are used in our experiments:

• 40 OpenMP threads are created for the parallelization of each method on CPU, because using 40 threads allows hyperthreading which often results in better performance.

• The tolerance is set to 0.01 for the k-means and k-means++ algorithms (see explanation in Section 1.2.1).

• Two-level summation with 1000 packages are used in the Update step of k-means and k-means++ to handle the effect of rounding errors (see explanation in Section 2.2).

• Our parallel CPU implementation for the seeding step of k-means++ is displayed in Appendix G Listing G.6. Essentially it utilizes OpenMP directives and some Thrust functions (reduce, inclusive_scan, exclusive_scan) but does not change the high-level sequential nature of seeding, i.e. select initial centroids one by one (see Section 1.2.2).

• Computations are mainly in single precision, except that double precision is used for the Thrust functions exploited in the seeding step of k-means++ to handle the effect of rounding errors. • When k r is relatively small (e.g. k r = 100 or 500), the k r representatives extracted by k-means or by k-means++ have much better distributions than those extracted by random sampling. In fact, since the number of clusters in each benchmark dataset is relatively small (k c = 3 to 9) and all clusters are in 2D space, extracting a relatively small number of representatives by k-means or k-means++ is usually sufficient to capture the distributional features of all 2D clusters.

Distributions of the extracted k r representatives

• When k r is relatively small, it is difficult or even impossible to correctly cluster the k r representatives extracted by random sampling since their distributions are irregular. To obtain acceptable distributions of representatives with random sampling, k r needs to be large enough (e.g. k r = 2500). However, the calculation cost of spectral clustering on representatives would increase with k r , at least quadratically.

• Compared to the representatives extracted by k-means, those extracted by k-means++ have slightly more uniform distributions, and therefore are more likely and easier to be correctly clustered, especially when k r is small.

Elapsed time of extraction

Tables 5.1, 5.2, 5.3 and 5.4 present the elapsed time of k r representatives extraction using each method on the four datasets, respectively. It can be seen that:

• The representatives extraction by random sampling is much faster than kmeans and k-means++. Note that it consists of not only the selection of k r representatives by random sampling, but also the attachment of each data instance to its nearest representative. The former takes little time, while the latter consumes the same time as one iteration of the ComputeAssign step.

• k-means++ needs fewer iterations than k-means, but the former still takes significantly more time due to the expensive seeding step. The Update step per iteration takes little time, while the elapsed time of the ComputeAssign step per iteration is much higher and grows approximately linearly with k r , due to the O(n × k r × d) time complexity.

Strategy for choosing an extraction method

In summary, extracting more representatives generally better captures the distributional features of each cluster, but increases both the calculation cost of extracting representatives and the calculation cost of spectral clustering on representatives. After weighing the distribution quality of representatives against the cost of extraction, we found that k-means seems to be the best choice for extracting a relatively small number of representatives, while random sampling seems to be a preferable choice for extracting a large number of representatives. Particularly, k-means++ may be necessary to achieve better clustering results than k-means in case of extracting a very small number of representatives. 

. Impact of the tolerance of k-means

For the results in previous figures and tables, the tolerances of k-means and k-means++ are directly set to 0.01. Nevertheless, the tolerance actually plays an important role in the performance of extracting representatives. 5.5 presents the associated elapsed time. It can be found that:

• With decreasing tolerance, the representatives extracted by k-means have improved distributions, i.e. better capture the distributional characteristics of each cluster. However, the number of iterations required to achieve convergence increases significantly, thus leading to a considerable augmentation of elapsed time.

• Generally, setting the tolerance of k-means to 0.01 seems to be a good compromise on various datasets, i.e. achieving relatively good distributions of representatives in an acceptable amount of time. To achieve large-scale high-performance representative-based spectral clustering on modern CPU-GPU platforms, we need to design adapted parallel processing chains by considering the following aspects:

• Strengths and limitations of modern CPU vs. GPU architectures.

Basically, the GPU is specialized for large fine-grained parallel computations but usually has much less RAM than the CPU. See Section 1.5.1 for more description.

• Advantages and disadvantages of different methods for k r representatives extraction. Random sampling is a fast but naive method. Getting a good distribution of representatives using random sampling usually requires k r to be large enough. In contrast, k-means is a high-quality method that preserves cluster properties well even when k r is relatively small, but the calculation cost is nontrivial especially for large k r . See Section 5.2.1 for illustration.

• Dataset characteristics. The size of a dataset (n×d elements) may exceed the size of GPU RAM, in which case the data cannot be entirely loaded onto the GPU. Besides, a dataset may have only a few clusters in low-dimensional space, thus extracting a small number of representatives may be sufficient to represent the properties of all clusters; or a dataset may have a large number of clusters or dimensions, thus a large number of representatives (at least k r ≫ k c ) can be required.

Depending on whether the GPU RAM is sufficient with respect to the data size and whether the number of representatives to be extracted is small or large, we propose an associated parallel processing chain for each scenario, as shown in Figure 5.6.

Scenario I: sufficient GPU RAM

Let us first consider the scenario where there is sufficient GPU RAM to store the entire dataset but direct spectral clustering would still take too much time. Figure 5.6 (a) presents our parallel processing chain in this case. After reading data instances from a disk file to CPU RAM, we suggest transferring all data from CPU to GPU, and then performing representative-based spectral clustering entirely on GPU. This is because computations on GPU are usually faster than computations on CPU according to the experimental results presented in Chapter 2 and Chapter 3. If the number of representatives to be extracted (k r ) is relatively small, then we suggest using k-means as the extraction method, otherwise random sampling for large k r should be a better choice in terms of execution time.

Scenario II: insufficient GPU RAM + small k r

Secondly, we consider the scenario of lacking GPU RAM to store the entire dataset. In this case, the representatives extraction has to be done on the CPU. Suppose that only a small number of representatives (k r ) needs to be extracted, then as shown in Figure 5.6 (b), k-means should be adopted for representatives extraction because of its ability to obtain a good representation of data. Moreover, spectral clustering on just a few k r representatives can remain on CPU (e.g. using scikitlearn [START_REF] Pedregosa | Scikitlearn: Machine learning in Python[END_REF]) and so does the input data attachment. Therefore the GPU becomes unnecessary. 

. Global experiments

We experimented with the proposed processing chains (see Figure 5.6) for representative-based spectral clustering on the four large-scale datasets mentioned in Section 5.2 (Spirals-75M, Smile2-100M, Aggregation-78.8M, Complex9-303M). The testbed is our john3 server consisting of two Xeon Silver 4114 processors as CPU (20 physical cores in total) and a GeForce RTX 3090 as GPU (24GB RAM). More details about the datasets and the testbed are available in Appendix A and B. Note that the size of each benchmark dataset does not exceed the GPU RAM yet, but they can be used to evaluate the performance of each proposed chain.

Benchmarking approach & experimental settings

Our benchmarking approach and its experimental settings are described as follows:

• For the extraction of representatives using k-means or k-means++, the tolerance is always set to 0.01. Besides, when n kr > 10 4 , the two-level summation method using 1000 packages will be activated for the Update step of k-means and k-means++, in order to handle the effect of rounding errors (see explanation in Section 2.2). Otherwise, when n kr ≤ 10 4 , the Update step does not activate the two-level summation method.

• For the similarity matrix construction on k r representatives, the Gaussian similarity is used and the values of connectivity parameters (σ, upper bound threshold for squared distance, lower bound threshold for similarity) are set as shown in Table 5.6. The similarity matrix construction in the proposed chain I and chain III is performed using our Algo CSR-1 (see Section 3.3.3).

• After the similarity matrix construction, the remaining steps of spectral clustering are conducted using the LOBPCG-embedded algorithm of the nv-GRAPH library (see Section 3.4) for the proposed chain I and chain III. The tolerance for the LOBPCG eigensolver is always set to 1E-5. Other parameter settings of the nvGRAPH's algorithm are the same as in Section 3.6.2.

• For the proposed chain II, spectral clustering on k r representatives is implemented using scikit-learn [START_REF] Pedregosa | Scikitlearn: Machine learning in Python[END_REF] version 1.1.1. Specifically, the similarity matrix construction is implemented using the pairwise_kernels function 1 (with parameter settings: metric='rbf' i.e. Gaussian similarity, gamma=1/(2σ 2 )), then spectral clustering based on the precomputed similarity matrix is implemented using the SpectralClustering function 2 (with parameter settings: eigen_solver='lobpcg', eigen_-tol=1E-5, random_state=1, n_init=1). Particularly, although both functions include the parameter n_jobs to define the number of jobs for parallel computing, we found in practice that it is difficult to control parallelization through this parameter. In fact, defining multiple jobs accelerated the pairwise_kernels function, but decelerated significantly the SpectralClustering function, which led to a decrease of overall performance. Also, defining multiple jobs only for the pairwise_kernels function did not change the situation. Nevertheless, we found practically that, without defining the parameter n_jobs, executing each of the two functions involved automatically a combination of mono-core computing and multi-core computing. Therefore, we decided not to interfere with the computations through n_jobs.

Finally, the input data attachment of chain II is implemented using the Numpy library [START_REF] Harris | Array programming with NumPy[END_REF].

• Our CPU implementations for the representatives extraction step and the input data attachment step always use 40 OpenMP threads, which equals the number of logical cores of our CPU. The block size configurations for our CUDA kernels are mainly set as BSX=128 and BSY=2.

• Computations are mainly in single precision, except that double precision is used for the Thrust functions exploited in the seeding step of k-means++ to handle the effect of rounding errors (see Appendix G). 

Performance comparison of the proposed processing chains

Tables 5.7, 5.8, 5.9 and 5.10 present the performance of our parallel processing chains for representative-based spectral clustering on the four large-scale datasets, respectively. Globally, the achieved clustering quality (measured by ARI and NMI scores introduced in Section 1.1.2)3 and the elapsed time basically validate our strategy for the choice of representatives extraction methods according to the value of k r (see Section 5.2.1).

In terms of running time comparison, it can be observed that:

• When the GPU RAM is sufficient to store the entire dataset (which is the case for the four benchmark datasets), then chain I (computations entirely on the GPU) should be adopted because it runs significantly faster than chain II (computations entirely on CPU) and chain III (computations on CPU+GPU).

• When the number of representatives to be extracted (k r ) is small (< 10 4 ), chain II achieves similar global performance to chain III, which validates the reasonability of staying on CPU for spectral clustering of k r representatives.

• When k r becomes large (≥ 10 4 ), spectral clustering on k r representatives takes much more time on CPU than on GPU, hence chain III becomes preferable to chain II.

Besides, the spectral graph partitioning consumes more time than the similarity matrix construction, which is contrary to the results achieved on other datasets in Section 3.6.6. It seems that the LOBPCG eigensolver takes more iterations to converge on datasets with nonconvex clusters. The elapsed time of CPU-GPU data transfers in chain I and chain III is insignificant, and the input data attachment consumes little time regardless of the processing chain and the number of representatives. Globally, our experiments validate the reasonability, high performance and good scalability of our parallel processing chains on CPU-GPU platforms for large-scale representative-based spectral clustering. 

. Summary

In this chapter, we have proposed three parallel processing chains on CPU-GPU platforms for representative-based spectral clustering on large-scale datasets. Our processing chains cover several scenarios depending on whether the GPU RAM is sufficient to store the entire dataset and on the number of representatives to be extracted. For each scenario, one of the chains makes the best use of the different hardware and different methods for representatives extraction. Experiments demonstrates the performance and scalability of the proposed chains.

Conclusion and Perspectives

In this dissertation, we have studied the efficient parallelization of some clustering algorithms on CPU and GPU platforms and succeeded in making them run significantly faster and being able to handle large-scale datasets. Our main contributions are summarized as follows.

A bibliographic study on clustering, especially on k-means clustering and spectral clustering. First of all, we provided an overview of clustering, covering its concept, applications, categorization of algorithms, typical algorithms in each category, and evaluation metrics. Then, we reviewed k-means clustering and spectral clustering from several aspects such as foundation, classical algorithms, strengths, weaknesses, and approaches to improvement. Particularly, we found that approximation and parallelization are two main approaches to address the scalability challenge of spectral clustering, and we conducted a dedicated survey of each approach.

Parallel, scalable and accurate k-means clustering: a CPU version and a GPU version. When applying k-means to large datasets using single precision arithmetic, we observed the numerical accuracy issue which results from the accumulation of rounding errors in the summation step of updating centroids. Thus, we proposed a two-level summation method based on the use of packages, which can reduce the accumulation of rounding errors and achieve satisfactory numerical accuracy without using double precision arithmetic. Then, we designed two optimized parallel implementations of the numerically accurate k-means algorithm on CPU and on GPU, respectively. Our CPU version employs OpenMP multithreading and auto-vectorization, while our GPU version exploits dynamic parallelism, multiple streams and shared memory. Finally, experimental results on large datasets demonstrate the numerical accuracy and high performance of our k-means implementations.

Parallel scalable spectral clustering on GPU. Classical algorithms of spectral clustering suffer from O(n 3 ) calculation cost and O(n 2 ) memory space requirements, where n is the number of data instances. Essentially, we exploit massively parallel GPU computing to deal with the high calculation cost, while performing matrix sparsification and using sparse storage format to reduce most of the memory space requirements. Specifically, we designed three different algorithms (named Algo CSR-1, Algo CSR-2, Algo CSR-3) and their optimized parallel implementations to construct the similarity matrix in CSR format on GPU. Our implementations mainly consist of home-made CUDA kernels with various optimizations and the use of some functions of NVIDIA's GPU-accelerated libraries (Thrust, cuS-PARSE). Then, we take advantage of the spectral graph partitioning algorithms of NVIDIA's nvGRAPH library to conduct the remaining steps of spectral clustering on GPU (including Laplacian matrix computation, eigenvectors computation, and final k-means clustering). In particular, the CSR format is used for all partitioning algorithms, but the algorithm with the LOBPCG eigensolver is preferred in our use.

Not surprisingly, experimental results demonstrate that our GPU implementations for the CSR matrix construction can run ×8.5 to ×28.8 faster than an optimized parallel CPU implementation of Algo CSR-1, while NVIDIA's LOBPCGembedded algorithm (on GPU) can run ×8 to ×28 times faster than scikit-learn's LOBPCG-embedded algorithm (on CPU).

Finally, our global GPU implementation for spectral clustering is scalable to millions of data instances in just a few seconds to a few minutes! Parallel noise filtering on GPU for spectral clustering. The effectiveness of traditional spectral clustering algorithms can be easily corrupted by noise instances in the dataset. We independently designed two noise filtering methods for spectral clustering: one based on the number of nonzeros per row in the similarity matrix, and the other based on the degrees of vertices in the associated similarity graph. They both leverage the previously constructed similarity matrix in CSR format. We integrated them into a noise robust spectral clustering algorithm and developed an efficient parallel implementation on GPU. Experiments on various datasets show that our noise filtering implementation can greatly improve the robustness of spectral clustering to noise with small time overhead.

Representative-based spectral clustering on CPU-GPU architectures. Although our spectral clustering implementation on GPU can handle million-scale datasets in just a few seconds to a few minutes, it would start to be too timeconsuming to address datasets larger than the million scale (n ≥ 10 7 ). To break this bottleneck, we adopted the representative-based approximation framework for spectral clustering and integrated it with parallel computing on CPU-GPU platforms. We compared three methods for representatives extraction: random sampling, k-means, and k-means++. Then, we considered three possible scenarios and proposed an adapted parallel processing chain for each scenario. As expected, our preceding works (i.e. parallel k-means on CPU and GPU, parallel spectral clustering on GPU) readily serve as modules in the proposed chains. Finally, global experiments exhibit the high performance and scalability of our spectral clustering chains on CPU-GPU platforms. For example, spectral clustering on hundreds of millions (instead of millions) of data instances also takes only a few seconds to a few minutes! Finally, we suggest several research directions that seem most relevant to extending our work:

• Our spectral clustering implementation on GPU relies heavily on the eigensolver-embedded algorithms of NVIDIA's nvGRAPH library. Unfortunately, NVIDIA is no longer actively developing the nvGRAPH product since its last release in November 2019. Thus, it would be better to find some alternative sparse eigensolvers (especially LOBPCG) that are optimized for the GPU. For instance, the AmgX library [START_REF] Naumov | Amgx: A library for GPU accelerated algebraic multigrid and preconditioned iterative methods[END_REF] contains multiple GPU-accelerated eigensolvers including the LOBPCG solver, but their effectiveness of being used for spectral clustering remains to be tested.

• It would be interesting to study the parallelization of clustering algorithms on other parallel architectures such as multi-GPU machines. For spectral clustering, we think our CSR algorithms for similarity matrix construction can be easily adapted to multi-GPU architectures by going through some consecutive rows of the similarity matrix on each GPU, however we cannot find a multi-GPU implementation of the LOBPCG eigensolver. Nevertheless, we can at least transfer the results of all GPUs to a single GPU and then call nvGRAPH's LOBPCG-embedded API on that single GPU. The data transfers between multiple GPUs can be achieved using the NVIDIA Collective Communication Library (NCCL). For k-means clustering, we can parallelize the ComputeAssign step on multiple GPUs by performing the distance computations between some data instances and k c centroids on each GPU. Then the local summation per cluster on some packages of instances can be performed on each GPU. Finally, the summation results of all GPUs can be transferred to a single GPU, where the global summation results are computed and the centroids are updated (Update step).

• We have adopted the representative-based approximation for spectral clustering. It is also attractive to try other approximation methods, such as Nyström-based [START_REF] Fowlkes | Spectral grouping using the Nyström method[END_REF] and landmark-based [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF] methods, and study their efficient parallelization on modern parallel architectures.

• For a given dataset, tuning multiple parameters to achieve good clustering quality or optimize code performance is usually a complex task in practice, requiring a lot of experimental attempts. It would be very useful to reduce the number of parameters that need to be carefully tuned, or to develop some efficient methods for automatic tuning, or to find some practical rules of thumb from experiments.

• k-means and spectral clustering are just two of the countless clustering algorithms. Therefore, a broad area of research is to explore parallel acceleration of other effective but computationally intensive clustering algorithms, such as density-based algorithms [START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF] and affinity propagation [START_REF] Frey | Clustering by passing messages between data points[END_REF].

On the other hand, we did not concern ourselves with the energy consumption of our computations. Nevertheless, this issue has become very important during recent years. A possibility would be to adapt our clustering algorithms to FPGA processors, in order to achieve better energy efficiency rather than only high computation speed [START_REF] Zhang | Energy-efficient CNN implementation on a deeply pipelined FPGA cluster[END_REF]. Some research efforts within the ParSys team of LISN are also starting to explore this way for other types of parallel computations.

2D dataset, we create a -1 new points that randomly lie in its f -related neighborhood, thus the amplified dataset has a times the size of its original dataset. We control the value of f such that the clusters of the amplified dataset are similarly separated compared to the original dataset.

• MNIST-based datasets: MNIST-60K, MNIST-120K, MNIST-240K.

The first one is the training set of the well-known MNIST database of handwritten digits 9 , while the other MNIST-based sets are produced using the InfiMNIST code 10 . They all have 784 dimensions and 10 clusters.

• Real-world datasets: Household power consumption (HPO), US census 1990 (USC). They come from the UCI Machine Learning Repository [START_REF] Dua | UCI machine learning repository[END_REF] and their ground truth clusterings are unavailable.

The Household power consumption (HPO) dataset contains 2 075 259 measurements of electric power consumption in a household over a period of nearly 4 years. Each measurement has 9 attributes. We remove the measurements containing missing values and also remove the first 2 attributes that record the date and time of measurements. The remaining set that we use for evaluation contains 2,049,280 measurements with 7 numerical attributes, i. For the 1stPass kernel, we choose to create a 2D grid with 2D blocks of threads (Listings C.1, lines 5-7). As shown in Figure C.1 (a), the grid covers all the elements of similarity matrix. Thus each thread takes care of one matrix element, and count it as a nonzero if the predefined threshold is satisfied (Listings C.2, lines [START_REF] Barton | Chameleon 2: an improved graph-based clustering algorithm[END_REF][START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF][START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF][START_REF] Böhm | Multi-core k-means[END_REF][START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF][START_REF] Bolla | Relations between spectral and classification properties of multigraphs[END_REF]. Then the number of nonzeros is first accumulated within each block into shared memory using the atomicAdd_block operation (Listings C.2, line 28). Finally we accumulate the results of blocks of the same row to get the number of nonzeros per row into global memory using classic atomicAdd operation (Listings C.2, lines [START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Chen | Scalable normalized cut with improved spectral rotation[END_REF][START_REF] Cheng | Grid-based clustering[END_REF]. Although the design of this kernel is typical, it should be noted that the maximum y-dimension of a grid (65535) is far smaller than the maximum x-dimension of a grid so the calculated number of blocks in y dimension (Listings C.1, line 7) may exceed the limit if n is large enough. In this case, we consider the horizontal partitioning of the similarity matrix into chunks as large as possible and launch one grid for each chunk. 4. Particularly, when testing whether an element in shared memory is nonzero or not (Listings C.3, line 44), we choose to check its column index (vs.

-1) instead of its similarity value (vs. 0) because there is a risk that the floating-point underflow may occur for the similarity value if it is too small. 5. Again considering the maximum y-dimension of a grid (65535) may be insufficient in case of large n while the maximum x-dimension of a grid (2 31 -1 = 2 147 483 647) is usually sufficiently large, we choose to create the 1D grid in x dimension (Listings C.1, line 30) but regard it as in y dimension (Listings C.3, line 5).

For the other steps, we leverage some easy-to-use APIs of NVIDIA's Thrust library [START_REF]Thrust Quick Start Guide[END_REF]. Based on the number of nonzeros per row obtained in the first pass, the minmax_element API is used to find the minimum and maximum number of nonzeros in a row (Listings C.1, lines [START_REF] Arthur | k-means++: The advantages of careful seeding[END_REF][START_REF] Baboulin | Accelerating scientific computations with mixed precision algorithms[END_REF][START_REF] Balakrishnan | Noise thresholds for spectral clustering[END_REF][START_REF] Ball | Data analysis in the social sciences: What about the details[END_REF][START_REF] Barton | Chameleon 2: an improved graph-based clustering algorithm[END_REF] and the exclusive_scan API is used to derive csrRow[] (Listings C.1, lines 20-21). For the fullPass kernel, we declare several shared memory arrays for storing similarities in dense format, storing nonzeros in Ellpack format, and some other uses (Listings D.2, lines 18-28). Note that 2D blocks will demand too much shared memory if hypoM axN nzRow is large, so to support larger hypothesis we need to reduce block y dimension (e.g. use 1D blocks). In each iteration, each block of threads parallelly computes a segment of similarity matrix, finds threshold-satisfied nonzeros and stores all similarities of the segment into shared memory arrays in dense format (Listings D.3, lines 7-21). Then the nonzeros stored in the denseformat shared arrays are found and accumulated into Ellpack-format shared arrays by only the threads in the first column of each block (Listings D.3, lines [START_REF] Campello | Density-based clustering[END_REF][START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF][START_REF] Celebi | Partitional clustering algorithms[END_REF][START_REF] Charrad | Nbclust: an R package for determining the relevant number of clusters in a data set[END_REF][START_REF] Chen | Parallel spectral clustering in distributed systems[END_REF][START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Chen | Scalable normalized cut with improved spectral rotation[END_REF][START_REF] Cheng | Grid-based clustering[END_REF]. Meanwhile these threads also record the restart column indexes (aligned to multiples of 32 memory words for performance concern) and corresponding restart nonzero element indexes in each row in case the number of nonzeros per row exceeds hypoM axN nzRow (Listings D.3, lines 30 & 40). Since usually only a fraction of elements are nonzeros, we also record the number of nonzeros found per iteration so that we can avoid the accumulating and recording operations in case no nonzero is found in an iteration (Listings D.3, lines 16, 25 & 44). This helps to reduce warp divergence. Similarly, we set a flag once the hypoM axN nzRow is reached so as to avoid unnecessary operations (Listings D.3, lines 28 & 37). Additionally, the number of nonzeros per iteration is accumulated into the number of nonzeros per row. After finishing the outermost loop, a fraction of threads update the restart indexes in case the number of nonzeros in a row is no more than hypoM axN nzRow (Listings D.4, lines [START_REF] Ana | Robust data clustering[END_REF][START_REF] Anastasiu | L2ap: Fast cosine similarity search with prefix l-2 norm bounds[END_REF][START_REF] Anastasiu | L2knng: Fast exact k-nearest neighbor graph construction with l2-norm pruning[END_REF][START_REF] Anastasiu | Parallel cosine nearest neighbor graph construction[END_REF]. Now since the nonzeros are contiguously stored in shared Ellpack arrays, each block of threads parallelly and iteratively copy the nonzeros into global Ellpack arrays with coalescence (Listings D.4, lines [START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF][START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF][START_REF] Böhm | Multi-core k-means[END_REF][START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF]. Finally, a fraction of threads store the number of nonzeros per row and the restart indexes into global memory arrays (Listings D.4, lines [START_REF] Butenhof | Programming with POSIX threads[END_REF][START_REF] Caliński | A dendrite method for cluster analysis[END_REF][START_REF] Campello | Density-based clustering[END_REF][START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF][START_REF] Celebi | Partitional clustering algorithms[END_REF].

For the ellpackToCSR kernel, each block of threads first loads its global starting offsets and per-row ending offsets for storing nonzeros (Listings D.5, lines 8-12). Then the nonzeros that have been successfully recorded in global Ellpack arrays are iteratively copied into global CSR arrays with coalescence (Listings D.5, lines [START_REF] Balakrishnan | Noise thresholds for spectral clustering[END_REF][START_REF] Ball | Data analysis in the social sciences: What about the details[END_REF][START_REF] Barton | Chameleon 2: an improved graph-based clustering algorithm[END_REF][START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF]. Finally a fraction of threads record the global restart index (for storing nonzeros) by adding the global starting offsets and per-row ending offsets

The supPass kernel (Listings D.6) is similar to the 2ndPass kernel of Algo CSR-1. However, the difference is that each block of threads in the supPass kernel starts the work from the restart indexes recorded before (Listings D.6, lines 6-12) while in the 2ndPass kernel of Algo CSR-1 each block of threads starts the work from the beginning of each row.

Similar to Algo CSR-1, we leverage some easy-to-use APIs of NVIDIA's Thrust library to implement the other steps of Algo CSR-2, i.e. the minmax_element API is used to find the minimum and maximum number of nonzeros in a row (Listings D.1, lines 17-21) and the exclusive_scan API is used to derive the csrRow array (Listings D.1, lines 24-25). 

F -GPU implementation for noise filtering algorithm

We mainly present our GPU implementation for the noise filtering part of Algorithm 7, which consists in our CUDA kernels and some APIs of the Thrust library. The host code is shown in Listing F.1, and the CUDA kernels are shown in Listings F.2, F.3 and F.4.

The beginning part for determining the threshold for noise filtering (tholdN F ) is uncomplicated and therefore omitted (Listing F.1, lines 4-15). Then we identify noise instances by launching the findNoise kernel using a 1D grid with 1D blocks of threads (Listing F.1, lines [START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF][START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF]. Each thread accesses one element of the scaled nnzPerRow or the scaled degrees, and checks whether the element value is under or equal to tholdN F (Listing F.2, lines 13-23). If the checked condition is satisfied, then the thread marks the corresponding instance as noise with GPU_isNoise[ * ]=1, records the index of the noise instance, and set the cluster label to "-1". In addition, the kernel counts the total number of identified noise instances (Listing F.2, lines [START_REF] Bolla | Relations between spectral and classification properties of multigraphs[END_REF][START_REF] Bouveyron | Model-based clustering of highdimensional data: A review[END_REF][START_REF] Butenhof | Programming with POSIX threads[END_REF][START_REF] Caliński | A dendrite method for cluster analysis[END_REF][START_REF] Campello | Density-based clustering[END_REF][START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF][START_REF] Celebi | Partitional clustering algorithms[END_REF][START_REF] Charrad | Nbclust: an R package for determining the relevant number of clusters in a data set[END_REF]. So the number of non-noise instances becomes clear (Listing F.1, lines [START_REF] Böhm | Multi-core k-means[END_REF][START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF].

To remove noise-related elements from the CSR format similarity matrix, we choose to first mark them as "-1" in csrCol[] (Listing F.1, lines 27-37) and then separate them from noise-unrelated elements (Listing F.1, lines [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Dafir | A survey on parallel clustering algorithms for big data[END_REF][START_REF] Davies | A cluster separation measure[END_REF][START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Diestel | Graph Theory[END_REF][START_REF] Dimitriadou | cclust: Convex clustering methods and clustering indexes (version 0.6-23)[END_REF][START_REF] Domingos | A few useful things to know about machine learning[END_REF][START_REF] Donath | Lower bounds for the partitioning of graphs[END_REF][START_REF] Dong | Efficient k-nearest neighbor graph construction for generic similarity measures[END_REF][START_REF] Dowd | High performance computing[END_REF]. Specifically, we use the exclusive_scan API to derive the number of noise instances in front of each instance (d_nbNoiseFront[]) from the array that marks whether an instance is noise (d_isNoise[]). We use the stable_partition API to separate, in d_idxNoise[], the indexes of noise instances from those of non-noise instances while preserving their relative order. With these prepared, we launch the markNoiseInCSRCol kernel using a 1D grid with 1D blocks of threads. Each block processes one row of the similarity matrix in an iterative and progressive way. Considering the maximum y-dimension of a grid (65535) may be insufficient for large number of instances while the maximum x-dimension of a grid (2 31 -1 = 2 147 483 647) is sufficiently large, we choose to create the 1D grid in x dimension (Listings F.1, line 31) but regard it as in y dimension (Listings F.3, line 4). For the rows related to noise instances (Listings F.3, lines 12-20), the blocks of threads simply set the associated segment of csrCol[] to "-1", then the first thread of each block accumulates the number of noise-related nonzeros in that row into global memory and set the corresponding element in nnzPerRow[] to 0. For the rows related to non-noise instances (Listings F.3, lines , the blocks of threads update the elements of csrCol[] for noise-unrelated nonzeros, set the elements of csrCol[] to "-1" for noise-related nonzeros, then the first threads of each block accumulates the number of noise-related nonzeros in that row into After completing the markNoiseInCSRCol kernel, we call the stable_ partition API to get the noise-free version of nnzPerRow[], csrVal and csrCol (Listings F.1, lines [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Dafir | A survey on parallel clustering algorithms for big data[END_REF][START_REF] Davies | A cluster separation measure[END_REF][START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF][START_REF] Diestel | Graph Theory[END_REF][START_REF] Dimitriadou | cclust: Convex clustering methods and clustering indexes (version 0.6-23)[END_REF]. Then we derive the noise-free csrRow[] from the noise-free nnzPerRow[] via the exclusive_scan API (Listings F.1, lines 46-47). Now we have the noise-free similarity matrix in CSR format, on which we perform spectral graph partitioning using the nvGRAPH library (see Section 3.4) to find k c -1 clusters (excluding a single cluster for noise instances).

Finally, we copy the elements of d_nbNoiseFront that are associated with non-noise instances into d_nbNoiseFrontNF (Listings F.1, lines 53-54), and launch the mapLabels kernel to map the labels of non-noise instances onto the original indexing structure (Listings F.1, lines [START_REF] Fender | Parallel solutions for large-scale eigenvalue problems arising in graph analytics[END_REF][START_REF] Fender | Accelerated hybrid approach for spectral problems arising in graph analytics[END_REF][START_REF] Ferraro | Soft clustering[END_REF][START_REF] Fiedler | Algebraic connectivity of graphs[END_REF]. We use a 1D grid with 1D blocks of threads for the kernel. Each thread reads an element of GPU_-nbNoiseFrontNF and copies the cluster label from the noise-free indexing array GPU_labelsNF into the original indexing array GPU_labels (Listing F.4, lines 6-9). 
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  in 2022. The number of published clustering algorithms is overwhelming and continues to grow. Early clustering algorithms can usually be categorized into partitional clustering and hierarchical clustering. Later some new categories of clustering algorithms have emerged, such as density-based clustering, grid-based clustering, distribution-based clustering, graph-based clustering, and deep learning-based clustering. Some clustering algorithms combine the methods of at least two categories. Here we call them cross-category clustering.
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 2 Number of clusters k c Output: Cluster labels of n data instances 1 Seeding step;
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 23 Number of clusters k c Output: Cluster labels of n data instances 1 Seeding step: 1.1 choose the first centroid uniformly at random from X; 1.2 choose an instance x from X with probability D(x) 2 x∈X D(x) 2 as the next centroid, where D(x) is the shortest distance from an instance x to the previously chosen centroids; 1.Step 1.2 until k c centroids have been chosen. Proceed as with the standard k-means algorithm.
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 2 Number of clusters k c Output: Cluster labels of n data instances 1 Construct the similarity graph and generate the similarity matrix S; 2 Derive the graph Laplacian (L, L sym , or L rw ); 3 Compute the smallest k c eigenvectors of graph Laplacian which form the columns of the matrix U ; 4 Normalize each row of matrix U to have unit length; 5 Perform the k-means on the points defined by the rows of U .
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 11 Figure 1.1: Main computation steps in spectral clustering
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 12 Figure 1.2: k-means++ (left: a, c, e, g) vs. spectral clustering (right: b, d, f, h) on four datasets (Spirals, Smile2, Aggregation, Complex9)

  (a) On the S1 set with 15 clusters (b) On the S4 set with 15 clusters

Figure 1 . 3 :

 13 Figure 1.3: Success and failure of the eigengap heuristic on S-sets
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 14 Figure 1.4: Data flow of a CPU-GPU parallel processing chain for large-scale approximate spectral clustering
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 21 Figure 2.1: Two-level summation method for the Update step
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 2 Figure 2.2 shows our multithreading approach for the ComputeAssign step.We parallelize distance computations among multiple threads (say n t threads). In other words, each thread calculates the distances between n nt consecutive instances and k c centroids.
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 22 Figure 2.2: Multithreading for the ComputeAssign step

1 # 18 / 22 } 23 } 24 }

 118222324 define d ... // Nb of dimensions is a constant 2 #pragma omp parallel { 3 #pragma omp for reduction(+: track) 4 for (int i = 0; i < n; i++) { 5 int min = 0; 6 T_real sqDist, minSqDist = FLT_MAX; // T_real: float or double 7 for (int k = 0; k < kc; k++) { 8 sqDist = 0.0f; 9 // Calculate the squared distance between instance i and 10 // centroid k across d dimensions 11 for (int j = 0; j < d; j ++) 12 sqDist += (data[i * d+j]-cent[k][j]) * (data[i * d+j]-cent[k][j]); 13 // Find the nearest centroid to instance i 14 bool a = (sqDist < minSqDist); 15 min = (a ? k : min); 16 minSqDist = (a ? sqDist : minSqDist); 17 } / Change the label if necessary and count this change into track 19 if (labels[i] != min) { 20 labels[i] = min; 21 track++; Listing 2.1: CPU implementation for the ComputeAssign step 2.3.2 . Parallelization of the Update step

Figure 2 . 3 :

 23 Figure 2.3: Multithreading for the two-level summation in the Update step (1st level), then the global summation results are computed with the local results of all packages (2nd level).Listing 2.2 displays our CPU code for the Update step. The starting index (i.e. offset) and length of each package is first computed (lines 9-10, 15-16). Then we use the #pragma omp for directive to parallelize the processing of packages among multiple threads (lines 12-13). For each package of instances, a thread counts the number of instances assigned to each cluster into the thread private count[] array, and accumulates the values of instances related to each cluster into the thread private pkg[] array (lines 14,[START_REF] Barton | Chameleon 2: an improved graph-based clustering algorithm[END_REF][START_REF] Belabbas | Spectral methods in machine learning and new strategies for very large datasets[END_REF][START_REF] Ben-Hur | Support vector clustering[END_REF][START_REF] Bhattacharjee | A survey of density based clustering algorithms[END_REF][START_REF] Bhatti | Video segmentation using spectral clustering on superpixels[END_REF][START_REF] Bhimani | Accelerating k-means clustering with parallel implementations and GPU computing[END_REF]. This is the 1st level summation. Then a thread accumulates the pkg[] results of the p nt packages (that it is responsible for) into the thread private cent[] array (lines[START_REF] Böhm | Multi-core k-means[END_REF][START_REF] Bojchevski | Robust spectral clustering for noisy data: Modeling sparse corruptions improves latent embeddings[END_REF][START_REF] Bolla | Relations between spectral and classification properties of multigraphs[END_REF]. This is the 2nd level local summation. Finally, the reduction directive of OpenMP sums the thread private count[] and cent[] results of all threads into the global count[] and cent[] array, respectively (lines[START_REF] Ankerst | OPTICS: Ordering points to identify the clustering structure[END_REF][START_REF] Bouveyron | Model-based clustering of highdimensional data: A review[END_REF][START_REF] Butenhof | Programming with POSIX threads[END_REF]. This is the 2nd level global summation. With the global sum of each cluster, we then calculate the new centroids by averaging, which is parallelized using the #pragma omp for directive (lines[START_REF] Campello | Density-based clustering based on hierarchical density estimates[END_REF][START_REF] Celebi | Partitional clustering algorithms[END_REF][START_REF] Charrad | Nbclust: an R package for determining the relevant number of clusters in a data set[END_REF][START_REF] Chen | Parallel spectral clustering in distributed systems[END_REF]. Note that the inner loops (lines 20-21, 24-25, 32-33) are compliant with the main requirements of auto-vectorization, i.e. accessing contiguous array indices and avoiding divergences, engaged with -O3 or -Ofast compilation flag (cooperating with -march=skylake-avx512 or -march=native flag on our dual-skylake CPU).
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 24 Figure 2.4: Array of Structure (AoS) vs. Structure of Array (SoA)
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 25 Figure 2.5: Grid and block configuration for the ComputeAssign kernel As presented in Figure 2.5, we create a 1D grid containing 1D blocks of threads. The transposed matrix of data instances is used for the coalescence of memory access. Each block accesses some instances by going through d dimensions, and
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 2625 Figure 2.6: Combined use of dynamic parallelism and multiple streams

/

  / Child kernel of Update_S1 __global__ void Update_S1_Child (int pid, int ofs, int len, int * GPU_labels, T_real * GPU_pkg, T_real * GPU_dataT, int * GPU_count) { __shared__ T_real shTabV[BSYD][BSXP]; //
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 2728 Figure 2.7: Grid and block configuration for Update_S1_Child kernel
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 29210 Figure 2.9: Impact of block size on the performance of the Update step with the Syn4D-50M dataset (using single precision)

Figure 2 .

 2 Figure 2.11 displays the speedup of the two steps of k-means iterations and of the resulting full iterations. Here we consider 20 CPU threads instead of 40 threads since the former achieves the best performance on the Syn4D-50M dataset. The speedup of the k-means iteration is summarized as follows:
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 211 Figure 2.11: Speedup of k-means steps and iterations with the Syn4D-50M dataset (using k c = 4, single precision)
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 212 Figure 2.12: Changes in cluster size with the use of packages in the Update step on the HPO dataset (using k c = 4, single precision)

  because the ComputeAssign step calculates n×k c distances at each iteration. The time of the Update step on GPU increases quite slowly with k c and appears not very sensitive to k c . This is reasonable because the main calculation is composed of n × d additions independently of k c , but is organized in k c reductions. However, the time of the Update step on CPU using 40 threads slowly decreases when k c becomes larger (parallelization on larger loops).
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 213214 Figure 2.13: Average time per iteration of k-means steps on the USC dataset (using single precision, 100 packages)

Figure 2 . 15 :Figure 2 . 16 :

 215216 Figure 2.15: Speedup of k-means steps and iterations with the HPO dataset (using k c = 4, single precision, 100 packages)

Figure 2 .

 2 Figure 2.15 and Figure 2.16 present the speedup of our k-means steps and iterations on the two real-world datasets, respectively. Globally, the ComputeAssign step on GPU is from ×9 up to ×12.5 faster than on CPU running optimal number of threads with auto-vectorization (20 threads for the HPO dataset, 40 threads
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 31 Figure 3.1: An example of COO format storing an m r × n c matrix

  Figure 3.1 gives a COO example with an m r × n c matrix. The three arrays cooVal[], cooRow[] and cooCol[] store the values, row indexes, and column indexes of all nonzero matrix elements in row-major format, respectively. Clearly, the memory requirement for COO format is 3 × nnz.
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 32 Figure 3.2: An example of CSR format storing an m r × n c matrix

Figure 3 .

 3 2 gives a CSR example with the m r × n c matrix. Similar to COO format, csrVal[] and csrCol[] store the values and column indexes of all nonzero matrix elements in row-major format, respectively. However, unlike COO format, csrRow[] considers the first nonzero element in each row of the matrix (i.e. the circled red numbers in the figure)
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 3 3 gives a CSC example with the m r × n c matrix. The CSC format is similar to the CSR format except that the latter stores
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 33 Figure 3.3: An example of CSC format storing an m r × n c matrix
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 34 Figure 3.4: An example of Ellpack format storing an m r × n c matrix

Figure 3 .

 3 4 gives an Ellpack example with the m r ×n c matrix. Let maxN nzRow denote the maximum number of nonzero elements in a row, i.e. the number of nonzeros in the densest row. For each row, a segment of maxN nzRow size is reserved respectively in elpVal[] and elpCol[] for storing the values and column indexes of nonzero elements of that row in row-major order. If a row has fewer nonzeros than maxN nzRow, then the superfluous space will be wasted, as marked '*' in the figure. Therefore, the memory requirement for Ellpack format is 2 × m r × maxN nzRow.
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 4 Straightforward construction of the CSR format similarity matrix (Algo CSR-1)

Figure 3 .

 3 Figure 3.5 and Table3.5 show respectively the result and quality of spectral clustering using dense data format. As expected, spectral clustering can well discover different shapes of clusters (including non-convex ones) and yield satisfying clustering on the four shape sets. Table3.6 presents the elapsed time breakdown in milliseconds. Since the datasets are small, we simply set the block size of all related kernels to (BSX, BSY)=[START_REF] Miyamoto | Algorithms for fuzzy clustering[END_REF][START_REF] Agarwal | Crime analysis using k-means clustering[END_REF]. The time of eigensolver includes the time to initialize the cuSolverDN library. It turns out that the eigensolver dominates the running time, while the matrix construction and the normalization consume little time. Other parts including CPU-GPU data transfers take some time but not much. The total time of spectral clustering is less than 1 second for all the four datasets.Additionally, we find that the results of the syevdx eigensolver (i.e. eigenvalues and eigenvectors) are not exactly the same for each run with the same Laplacian matrix and input parameters. This sometimes leads to unstable clustering when using the k-means algorithm in the final step. However, using the k-means++ algorithm can usually handle this instability.
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 35 Figure 3.5: Spectral clustering on GPU using dense data format

  (a) 1stPass kernel (optimal: x=32, y=16) (b) 2ndPass kernel (optimal: x=64, y=4)
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 363738 Figure 3.6: Block size impact on the kernels of GPU CSR-1 with MNIST-120K

Figure 3 . 9 :

 39 Figure 3.9: Performance comparison of GPU CSR-1 vs. GPU CSR-2 on MNIST-120K

Figure 3 . 10 :

 310 Figure 3.10: Performance evolution of GPU CSR-3

Figure 3 . 11 :

 311 Figure 3.11: Speedup of the CSR format similarity matrix construction on GPU vs. CPU CSR-1 using 40 threads

Figure 3 . 12 :

 312 Figure 3.12: Scalability of the similarity matrix construction in CSR format

Figure 3 .

 3 Figure 3.13 presents the global performance of spectral clustering on the GPU, consisting in the best performance of CSR-format similarity matrix construction (achieved by one of the three algorithms) and the performance of nvGRAPH's LOBPCG-embedded algorithm. The similarity matrix construction appears to be the most time-consuming part of spectral clustering especially on MNIST-120K, MNIST-240K * and Syn4D-5M, mainly due to its O(n 2 d) time complexity. The elapsed time consumed by the LOBPCG-embedded algorithm appears to take the

Figure 3 . 13 :

 313 Figure 3.13: Performance of spectral clustering on GPU using CSR format

4. 4 .

 4 Noise robust spectral clustering on GPU Algorithm Algorithm 7 describes our noise robust spectral clustering that incorporates noise filtering either based on nnz per row (see Section 4.2) or based on vertex degree (see Section 4.3). First we construct the similarity matrix in CSR format via the algorithms proposed in Section 3.3. Then we get the number of nonzeros per row (nnzPerRow[]) or compute the degrees of vertices (deg[]) depending on the employed approach for noise filtering. As the values of nnzPerRow[] or deg[] can vary considerably with different datasets, we transform them into the bounded range [0, 1] by min-max scaling (introduced in Section 3.5.2) and reveal their distribution in [0, 1] by a histogram. Two examples of the histogram are shown in Figure 4.1.

  (a) Histogram of scaled nnz per row (b) Histogram of scaled degrees of vertices

Figure 4 . 1 :

 41 Figure 4.1: Histogram examples obtained on the Cluto_t7 dataset

Algorithm 7 : 4

 74 Noise robust spectral clusteringInput:(1) A set of data instances X = {x 1 , ..., x n } with x i in R d (2) Number of clusters k c (including 1 noise cluster) (3) Parameters needed for similarity matrix construction Output: Cluster labels of n data instances with the "-1" label for noise 1 Construct the similarity matrix in CSR format by one of the algorithms proposed in Section 3.3. 2 if filter noise based on nnz per row then 3 Get the number of nonzeros per row (nnzPerRow[]). Scale the elements of nnzPerRow[] into the range [0, 1] and compute the histogram of scaled nnzPerRow[].

  , 4.5, and 4.6, respectively.

Figure 4 .

 4 5 (c) and (d). By choosing a small threshold tholdN F = 0.02, our algorithm can successfully obtain satisfying clusterings as shown in Figure4.5 (e) and (f) (except that several points near clusters are not identified as noise), while spectral clustering without noise filtering cannot work well, as shown in Figure 4.5 (b).

Figure 4 . 2 :

 42 Figure 4.2: Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 1)

Figure 4 . 3 :

 43 Figure 4.3: Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 2)

Figures 4 .

 4 Figures 4.7 and 4.8 present the impact of tholdN F on the clustering quality measured by ARI and NMI scores 3 for the above four noisy datasets. There are some missing values in Figure 4.7 (d) and Figure 4.8 (a) and (b), because in these cases the nvGRAPH API fails in execution (probably due to eigensolver failure). Nevertheless, it can be clearly seen that our noise filtering algorithm can significantly improve the ARI and NMI scores of spectral clustering in a wide range of tholdN F for Cluto_t7, Cluto_t8, and Compound datasets. In contrast, for the Cure_t2 dataset, the ARI scores of spectral clustering without noise filtering are higher than those with noise filtering and the NMI scores without noise filtering are close to those with noise filtering, as shown in Figure 4.8 (a) and (b). This is because the ARI and NMI scores are calculated based on the ground truth clustering, which favors the partitioning of the point distributions into three clusters in the upper area of Figure 4.5 (a). However, by comparing Figure 4.5 (b), (e) and (f), it is obvious that spectral clustering with noise filtering achieves better results than without noise filtering.
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 444546 Figure 4.4: Spectral clustering (abbr. SC) on the Cluto_t8 dataset

Figure 4 . 7 :

 47 Figure 4.7: Impact of the threshold for noise filtering (tholdN F ) on spectral clustering quality on Cluto_t7 and Cluto_t8 datasets

  (a) On Cure_t2 (with noise filtering based on nnz per row) (b) On Cure_t2 (with noise filtering based on vertex degree) (c) On Compound (with noise filtering based on nnz per row) (d) On Compound (with noise filtering based on vertex degree)

Figure 4 . 8 :

 48 Figure 4.8: Impact of the threshold for noise filtering (tholdN F ) on spectral clustering quality on Cure_t2 and Compound datasets

Figures 5 .

 5 Figures 5.1, 5.2, 5.3, 5.4 show the distributions of k r representatives extracted by each method on the four test datasets, respectively. It can be observed that:

Figure 5 . 1 :

 51 Figure 5.1: k r representatives extracted from the Spirals-75M dataset by 3 different methods (1st column: random sampling; 2nd column: k-means with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Figure 5 . 2 :

 52 Figure 5.2: k r representatives extracted from the Smile2-100M dataset by 3 different methods (1st column: random sampling; 2nd column: k-means with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Figure 5 . 3 :

 53 Figure 5.3: k r representatives extracted from Aggregation-78.8M dataset by 3 different methods (1st column: random sampling; 2nd column: k-means with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Figure 5 . 4 :

 54 Figure 5.4: k r representatives extracted from Complex9-303M dataset by 3 different methods (1st column: random sampling; 2nd column: k-means with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Figure 5 . 5 :Figure 5 .

 555 Figure 5.5: 100 representatives extracted from each benchmark dataset by using k-means with different tolerances (1st row: Spirals-75M; 2nd row: Smile2-100M; 3rd row: Aggregation-78.8M; 4th row: Complex9-303M)

Figure 5 . 6 :

 56 Figure 5.6: Three scenarios and associated parallel processing chains for large-scale spectral clustering using representatives

Figure 5 . 7 :

 57 Figure 5.7: Global workflow for large-scale representative-based spectral clustering on CPU-GPU platforms (blue box: on CPU; green box: on GPU)
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  e. n = 2 049 280, d = 7. The US census 1990 (USC) dataset contains 2 458 285 instances with 68 categorical attributes (i.e. n = 2 458 285, d = 68). It is actually a simplified and discretized version of the USCensus1990raw dataset which contains one percent sample drawn from the full 1990 US census data.B -Testbed featuresAll experiments in this dissertation have been carried out on a server named john3 located at the Metz Campus of CentraleSupelec. The hardware and software features of john3 are presented in Tables B.2 and B.1, respectively. Essentially, john3 consists of two Intel Xeon Silver 4114 processors as CPU and one NVIDIA GeForce RTX as GPU. Particularly, we upgraded the GPU hardware, the CUDA version, and the OS during the preparation of this dissertation. For this reason, the experimental results in Chapter 2 were obtained with RTX 2080 Ti, CUDA 10.2, and Ubuntu 18, while those in Chapters 3, 4 and 5 were obtained with RTX 3090, CUDA 11.5, and Ubuntu 20. The CPU and GPU are always connected by a PCIe 3.0 x16 bus.

2 ( 1 # 4 / 12 / 19 / 23 / 28 / 1 :

 214121923281 for Chapter 2) 11.5 (for Chapters 3, 4, 5) C -GPU implementation for Algo CSR-1 Listings C.1, C.2 and C.3 show the host code and two optimized CUDA kernels of our GPU implementation for Algo CSR-1 (Algorithm 4 in Section 3.3.3). include <thrust/...> // Include Thrust library functions 2 ... // Declaration, memory allocation & initialization 3 / Launch the first-pass kernel 5 Db.x = BSX; Db.y = BSY;; 6 Dg.x = n/Db.x + (n%Db.x > 0 ? 1 : 0); 7 Dg.y = n/Db.y + (n%Db.y > 0 ? 1 : 0); 8 shMemSize = sizeof(int) * Db.y; 9 1stPass<<<Dg,Db,shMemSize>>>(..., // input 10 GPU_nnzPerRow); // output 11 / Find the minimum and maximum number of nonzeros in a row 13 thrust::device_ptr<int> d_nnzPerRow(GPU_nnzPerRow); 14 thrust::pair<...> extrema = 15 thrust::minmax_element(..., d_nnzPerRow, d_nnzPerRow + n); 16 minNnzRow = * extrema.first; 17 maxNnzRow = * extrema.second; 18 / Compute csrRow by an exclusive scan on nnzPerRow 20 thrust::device_ptr<int> d_csrRow(GPU_csrRow); 21 thrust::exclusive_scan(..., d_nnzPerRow, d_nnzPerRow + n+1, d_csrRow); 22 / Get the nnz of sim. matrix and allocate memory for csrVal & csrCol 24 nnz = d_csrRow[n]; 25 cudaMalloc((void ** ) &GPU_csrCol, sizeof(int) * nnz); 26 cudaMalloc((void ** ) &GPU_csrVal, sizeof(float) * nnz); 27 / Launch the second-pass kernel 29 Db.x = BSX; Db.y = BSY; 30 Dg.x = n/Db.y + (n%Db.y > 0 ? 1 : 0); Dg.y = 1; 31 shMemSize = sizeof(float) * Db.y * Db.x + sizeof(int) * (Db.y * Db.x + Db.y); 32 2ndPass<<<Dg,Db,shMemSize>>>(GPU_csrRow, ..., // input Host code of GPU implementation for Algo CSR-1

2 Figure C. 1 : 3 .

 213 Figure C.1: Grid and block configuration of the CUDA kernels for CSR format similarity matrix construction

1 //

 1 Starting address for dynamic allocation of shared memory 2 extern __shared__ float shBuff[];

3 4 5 { 6 /

 356 __global__ void 1stPass (...) / 2D blocks, 2D grid 7 int col = blockIdx.x * blockDim.x + threadIdx.x; 8 int row = blockIdx.y * blockDim.y + threadIdx.y;

27 / 37 }

 2737 = (int * )shBuff; 13 if (threadIdx.x == 0) shNnz[threadIdx.y] = 0; < n && row < n) { 17 // Uniform or Gaussian sim. with threshold for squared distance 18 #ifdef defined(UNI_SIM_WITH_SQDIST_THOLD) || 19 defined(GAUSS_SIM_WITH_SQDIST_THOLD) 20 ... // Calculate squared distances (sqDist) 21 if (sqDist < tholdSqDist && row != col) nnzThread++; similarity metrics with threshold 25 #ifdef ... #endif 26 / Accumulate the results within a block 28 if (nnzThread > 0) atomicAdd_block(&shNnz[threadIdx.y], nnzThread); the final result into global memory 34 if (threadIdx.x == 0 && row < n) 35 if (shNnz[threadIdx.y] > 0) 36 atomicAdd(&GPU_nnzRow[row], shNnz[threadIdx.y]); Listing C.2: 1stPass kernel for Algo CSR-1 D -GPU implementation for Algo CSR-2 Listings D.1, D.2, D.3, D.4, D.5, D.6 show the host code and three optimized CUDA kernels of our GPU implementation for Algo CSR-2 (Algorithm 5 in Section 3.3.4). For each kernel, we choose to create a 1D grid with 2D blocks of threads (Listings D.1, lines 5-6, 35-36, 48-49) so that each block is in charge of a few rows of the similarity matrix. The points 1, 4 and 5 related to the 2ndPass kernel of Algo CSR-1 (see Section 3.3.3) also apply to the kernels of Algo CSR-2.

1 //

 1 Starting address for dynamic allocation of shared memory 2 extern __shared__ float shBuff[];

3 4 5 { 6 / 9 /

 3569 __global__ void fullPass (...) / 2D block, 1D grid in x-axis but regarded as in y-axis 7 int col = threadIdx.x; 8 int row = blockDim.y * blockIdx.x + threadIdx.y; / Declaration & initialization 10 int maxCol = ((n -1)/blockDim.x + 1) * blockDim.x; threadIdx.y * blockDim.x; 15 int ymofs = threadIdx.y * hypoMaxNnzRow;

16 17 / 22 / 24 / 26 / 38 }Listing D. 2 :

 1617222426382 / Pointers to dynamic shared memory arrays (must be 1D) 18 float * shValIter = shBuff; // size: blockDim.y * blockDim.x 19 float * shNzValMax = &shValIter[blockDim.y * blockDim.x]; 20 // size: blockDim.y * hypoMaxNnzRow 21 int * shColIter = (int * )&shNzValMax[blockDim.y * hypoMaxNnzRow]; / size: blockDim.y * blockDim.x 23 int * shNzColMax = &shColIter[blockDim.y * blockDim.x]; / size: blockDim.y * hypoMaxNnzRow 25 int * shNnzIter = &shNzColMax[blockDim.y * hypoMaxNnzRow]; / size: blockDim.y 27 int * shNnzRow = &shNnzIter[blockDim.y]; // size: blockDim.y 28 int * shIdxNzRowRestart = &shNnzRow[blockDim.y]; // size: blockDim.y fullPass kernel (part 1) for Algo CSR-2

1 // 4 { 5 /

 145 Starting address for dynamic allocation of shared memory 2 extern __shared__ int shBuff[]; 3 __global__ void findNoise(...) / 1D block in x-axis, 1D grid in x-axis 6 int tid = blockIdx.x * blockDim.x + threadIdx.x;

7 8/ 26 // 1 - 29 // 2 - 30 if 33 }Listing F. 2 :

 726129230332 / Pointers to dynamic shared memory arrays 9 int * shFlagNoise = shBuff; // size: blockDim.x 10 shFlagNoise[threadIdx.x] = 0; the number of noise into GPU_nbNoise: two-part reduction Classic reduction of the shared array shFlagNoise[ * ] 27 ... // into shFlagNoise[0], kill useless warps step by step, 28 ... // only the 1st warp survives at the end. Final reduction into the global variable GPU_nbNoise findNoise kernel for noise filtering algorithm
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Table 1 . 1 :

 11 Investigation of some GPU-accelerated libraries with eigensolvers

	ViennaCL	Linear algebra	Public domain	ViennaCL 1.7.1	in Jan. 2016	Many-core	architectures	(GPUs, MIC),	multi-core CPUs	CUDA, OpenCL,	OpenMP	Power iteration,	Lanczos	Not yet
	AmgX	Solver	NVIDIA	AMGX v2.2.0	in Apr. 2021		Single GPU,	multi-GPU			C	Power iteration,	subspace	iteration,	Arnoldi,	Lanczos,	LOBPCG, ...	Not yet
	MAGMA	Linear algebra	Public domain	MAGMA 2.5.4	in Oct. 2020	Multicore +	multi-GPU	hybrid systems		CUDA, HIP	Dense solvers:	QR, divide-and-	conquer, ...	solver: Sparse	LOBPCG	Yes
	cuGraph	Graph analytics	NVIDIA	RAPIDS 22.02	in Feb. 2022		Single GPU,	multi-GPU		Python	(encouraged),	C++	Lanczos	Yes
	nvGRAPH	Graph analytics	NVIDIA	CUDA 10.2	in Nov. 2019			Single GPU				CUDA	Lanczos,	LOBPCG	Yes
	cuSOLVER	Linear algebra	NVIDIA	CUDA 11.6	in Jan. 2022	Single GPU,	single node	multi-GPU		CUDA	Dense solvers:	QR, Jacobi, ...	Sparse solver:	shift-inverse	power iteration	Yes
		Application	field	Source	Last release	until Feb.	2022		Oriented	architectures		Supported	languages	Eigensolvers	Our tests on	eigensolvers

Table of

 of 

		instance values
	__shared__ int shTabL[BSXP];	// Table of labels (cluster Id)
	// Index initialization	
	int baseRow = blockIdx.y * BSYD;	// Base row of the block
	int row = baseRow + threadIdx.y;	// Row of child thread
	count++;	
	for (int y = 0; y < BSYD && (baseRow + y) < d; y++)
	Sv[y] += shTabV[y][x];	
	}	
	}	
	// -Save the contrib. of block into global contrib. of the package
	if (count != 0) {	
	if (blockIdx.y == 0) atomicAdd(&GPU_count[cltIdx], count);
	int BlND_max = (blockIdx.y == d/BSYD ? d%BSYD : BSYD);
	// BlND_max: nb of dims managed by a block
	for (int j = 0; j < BlND_max; j++)
	atomicAdd(&GPU_pkg[(baseRow+j) * kc * p + kc * pid + cltIdx], Sv[j]);
	}	
	}	
	}	
	Listing 2.6: Update_S1_Child kernel for the Update step

int baseCol = blockIdx.x * BSXP + ofs;// Base column of the block int col = baseCol + threadIdx.x; // Column of child thread int cltIdx = threadIdx.y * BSXP + threadIdx.x; // 1D cluster index // Load the values and cluster labels of instances into sh mem tables if (col < (ofs + len) && row < d) { shTabV[threadIdx.y][threadIdx.x] = GPU_dataT[row * n + col]; if (threadIdx.y == 0) shTabL[threadIdx.x] = GPU_labelss[col]; } __syncthreads(); // Wait for all data loaded into the sh mem // Compute partial evolution of centroid related to 'cltIdx' if (cltIdx < kc) { #define BlND (d<BSYD ? d:BSYD) // BlND: nb of dims stored by block T_real Sv[BlND]; // Sum of values in BlND dimensions for (int j = 0; j < BlND; j++) Sv[j] = 0.0f; // Init Sv to zeros int count = 0; // Init the counter of instances // -Accumulate contributions to cluster number 'cltIdx' for (int x = 0; x < BSXP && (baseCol + x) < (ofs + len); x++) { if (shTabL[x] == cltIdx) { Listing 2.6 exhibits the device code of the Update_S1_Child kernel. Each

  1D block (as illustrated in Figure2.8) to perform local reductions in shared memory (lines. Specifically, they sum the dimension values of instances per cluster (line 32), and perform atomicAdd operations only one time per cluster (lines 37-41) instead of one time per loaded instance. Therefore, the number of expensive atomicAdd operations in global memory is significantly reduced. Nevertheless, this kernel has several limitations. A number of expensive atomicAdd operations in global memory are still performed to avoid conflicts between blocks. Some losses of coalescence occur when each thread accesses its own array in local memory (lines 25 and 32). Only k c threads per block work after line 22. The number of clusters that can be processed is currently limited to 1024 which is the maximum size of a block (lines 13 and 22).

). Then the first k c threads in each 2D block are used as a

Table 2 .

 2 1: CPU k-means on the Syn4D-50M dataset with (n, d, k c ) = (50M, 4, 4)

	Threads	Precision	Nb of packages	Numerical error	Init time (ms)	Average time per iteration (ms) ComputeAssign Update Full iter.	Nb of iters.	Overall time (ms)
			double	1		0.000741		0.002		242.21	182.16	424.37	5	2121.85
					1		3.009794		0.003		153.22	149.36	302.58	7	2118.06
	1 thread	single	10 100		0.244048 0.000745	0.002 0.002		155.83 150.34	151.22 151.33	307.05 301.67	5 5	1535.25 1508.35
					1000		0.000745	0.003		154.52	154.59	309.11	5	1545.55
			double	1 a		0.000741		0.083		51.23	192.37 a	243.60	5	1218.08
	20 threads			1 a		3.009794		0.099		34.34	152.71 a	187.05	7	1309.45
	(20 physi-cal cores)	single	10 b 100		0.244048 0.000745	0.091 0.100		34.24 32.95	24.43 b 19.44	58.67 52.39	5 5	293.44 261.95
					1000		0.000746	0.126		32.80	19.43	52.23	5	261.28
			double	1 a		0.000741		0.207		60.18	226.55 a	286.72	5	1433.81
	40 threads			1 a		3.009794		0.174		39.50	165.86 a	205.36	7	1437.69
	(40 logical cores)	single	10 b 100		0.244048 0.000745	0.144 0.155		35.84 35.31	31.95 b 27.62	67.79 62.93	5 5	339.09 314.81
					1000		0.000747	0.175		31.20	21.07	52.28	5	261.58
	Precision	Nb of packages	Numerical error	Overhead time (ms) Transfer Transpose	Init time (ms)	Average time per iteration (ms) ComputeAssign Update Full iter.	Nb of iters.	Overall time (ms)
	double	1		0.000741		81.13	0.14		2.65	8.98	34.49	43.47	301.27
		1		0.000992		81.15	0.15		2.64	1.96	12.94	14.90	158.44
	single	10 100		0.000760 0.000739		81.13 81.18	0.12 0.19		2.75 2.74	1.96 1.97	12.04 12.72	14.00 14.69	154.00 157.56
		1000	0.000741		81.11	0.29		2.65	1.98	13.47	15.45	161.30

a 1 package -→ 1 task during main computations -→ only 1 working thread b 10 packages -→ 10 tasks during main computations -→ only 10 working threads

Table 2.2: GPU k-means on the Syn4D-50M dataset with (n, d, k c ) = (50M, 4, 4)

Table 2 .

 2 3: CPU k-means on two real-world datasets (using single precision, 100 packages)

			Nb of	Average time per iteration (ms)	Nb of
	Dataset	kc					
			threads	ComputeAssign	Update	Full iter.	iters.
	HPO (n, d) = (2 049 280, 7)	4	1 20 40	9.51 1.54 1.59	8.62 1.26 1.43	18.13 2.80 3.02	29 29 29
			1	278.02	54.79	332.81	39
		16	20	34.88	13.55	48.43	39
			40	21.29	19.86	41.15	39
	USC (n, d) = (2 458 285, 68)	64	1 20 40	1099.71 121.91 70.74	53.74 17.64 19.88	1153.45 139.55 90.62	35 35 35
			1	4501.31	57.31	4558.62	82
		256	20	329.89	10.59	340.48	82
			40	274.61	15.17	289.78	82

Table 2 . 4

 24 

			Transfer	Average time per iteration (ms)	Nb of
	Dataset	kc					
			time (ms) ComputeAssign	Update	Full iter.	iters.
	HPO (n, d) = (2 049 280, 7)	4	5.41	0.17	2.71	2.88	29
		16	55.91	1.71	9.09	10.80	39
	USC (n, d) = (2 458 285, 68)	64	55.89	5.99	11.21	17.20	35
		256	55.88	25.53	15.60	41.13	82

: GPU k-means on two real-world datasets (using single precision, 100 packages)

Table 2 .

 2 

							Average measured time (ms)	
							per iteration over 10 iters	
	Our testbed	Precision	Authors or API	Language	Measured time	HPO (n, kc) = (2 049 280, 4)	USC (n, d) = (2 458 285, 68)
						d = 4	d = 7	kc = 16 kc = 64 kc = 256
	Intel Xeon 4114 20 physical cores	Double	Böhm, et al [23]	C++ & OpenMP Intrinsics &	Execution	13.39	Segfault	56.32 152.37 450.70
			Ours (100 pkgs)	C & OpenMP		3.75	5.74	73.99	202.14	580.27
	Intel Xeon 4114 40 logical cores	Double	Böhm, et al [23]	C++ & OpenMP Intrinsics &	Execution	11.64	Segfault	41.16	88.33	328.31
			Ours (100 pkgs)	C & OpenMP		4.58	7.05	82.89	139.31	406.33
			Kruliš, et al [106]	C++ & CUDA		1.73	1.81	14.57	19.49	36.67
					Execution					
	Nvidia GeForce RTX 2080 Ti	Single	Ours (100 pkgs) KMeans in RAPIDS [181] cuML	C & CUDA Python & CUDA	+ Transfers	1.12 13.60	2.88 15.21	12.09 26.15	19.28 35.82	44.66 120.43
			Ours (100 pkgs)	C & CUDA	Execution	1.46	3.42	17.68	24.87	50.25

5: Performance comparison with recent parallel k-means implementations on our CPU & GPU testbed

Table 2 .

 2 6: Performance comparison with parallel k-means implementations on other architectures

					Average execution time (ms)
	Testbed	Precision	Authors	Measured time	per iteration over all iterations HPO USC
					(n, d, kc) =	(n, d, kc) =
					(2 049 280, 4, 4)	(2 458 285, 68, 64)
	1 node of Sunway TaihuLight					
	supercomputer with 1 SW26010	N/A	Yu, et al [208]	Execution	2.84	≈ 110
	260-core manycore (2016)					
	Xilinx ZC706 FPGA board with an xc7z045ffg900-2 FPGA (2015)	Single	Li, et al [116]	Execution	8.50	N/A
	Nvidia GeForce GTX 1080 (2016)				1.76	38.97
		Single	Ours (100 pkgs) Execution		
	Nvidia GeForce RTX 2080Ti (2018)				1.11	17.20

Table 3 .

 3 1: Comparison of four sparse matrix formats

		COO	CSR	CSC	Ellpack
	Arrays	cooVal cooRow cooCol	csrVal csrRow csrCol	cscVal cscRow cscCol	elpVal elpCol
	Storage order	Row-major	Row-major	Column-major	Row-major
	Memory require-ment	3 × nnz	2 × nnz + m r + 1	2 × nnz + n c + 1	2 × m r × maxN nzRow
			(1) Generally less	(1) Generally less	
			memory consumption	memory consumption	
		(1) Natural and easy	than COO and Ell-	than COO and Ell-	
		to understand;	pack;	pack;	(1) Only 2 arrays;
		(2) Support fast	(2) Support efficient	(2) Support efficient	(2) Efficient row
	Advantages	conversions from/to	row slicing;	column slicing;	slicing;
		other sparse formats;	(3) Support efficient	(3) Support efficient	
		(3) Suited to all	matrix-vector compu-	matrix-vector compu-	
		sparsity patterns.	tations;	tations;	
			(4) Suited to all	(4) Suited to all	
			sparsity patterns.	sparsity patterns.	

  Allocate two arrays csrValMax[] and csrColMax[] with each of n × hypoM axN nzRow size for storing the values and column indexes of nonzeros in Ellpack format, respectively.

		2. it stores as many nonzeros as possible in the Ellpack arrays;
		3. it records the restart places in each row for the possible supplementary pass
		in case that the hypothesis (hypoM axN nzRow) is too small.
	With nnzPerRow[], we can easily get the real maximal number of nonzeros in
	a row (maxN nzRow), the csrRow[] array, and the total number of nonzeros
	(nnz) which allows to allocate memory for csrVal[] and csrCol[].
		1) Similarity matrix in CSR format: csrVal[], csrRow[],
		csrCol[]
		(2) Number of nonzeros per row: nnzPerRow[]
		(3) Minimum and maximum number of nonzeros in a row:
		minN nzRow, maxN nzRow
		(4) Total number of nonzeros: nnz
	1 7 if maxN nzRow > hypoM axN nzRow then
	8	Conduct a supplementary pass (supPass kernel) across a part of
		similarity matrix that:
		-recomputes similarities from restart indexes and find remaining
		nonzeros satisfying threshold;
		-complete csrVal[] and csrCol[] by storing the values and
		column indexes of remaining nonzeros.

2 Conduct a full pass (fullPass kernel) across the similarity matrix that: -computes similarities and find nonzeros satisfying threshold; -counts the number of nonzeros per row and stores in nnzPerRow[]; -accumulates the values and column indexes of nonzeros for each row into csrValMax[] and csrColMax[] until the number of nonzeros in a row reaches hypoM axN nzRow; -records restart indexes that may be used for a supplementary pass for storing remaining nonzeros. 3 Find minN nzRow and maxN nzRow from nnzPerRow[]. 4 Perform an exclusive scan on nnzPerRow[] to obtain csrRow[]. 5 Get nnz from csrRow[] and allocate memory for csrVal[] and csrCol[]. 6 Launch the ellpackToCSR kernel to fill csrVal[] and csrCol[] with accumulated nonzeros stored in csrValMax[] and csrColMax[].

  Determine automatically the number of chunks in the way that only one chunk can fit into the allocated GPU memory.

	) Number of nonzeros per row: nnzPerRow[]
	(3) Minimum and maximum number of nonzeros in a row:
	minN nzRow, maxN nzRow
	(4) Total number of nonzeros: nnz

1 Allocate memory for csrVal[] and csrCol[] according to spM axN zP ct. 2 Consider the horizontal partitioning of similarity matrix into chunks of similar size, and calculate the desired amount of memory (based on the size of free GPU RAM and memU seRate) used for storing a chunk of similarity matrix. 3 4 For each chunk of the similarity matrix:

6

  Derive nnzPerRow[], minN nzRow and maxN nzRow from csrRow[].

Table 3 .

 3 2: Comparison of our three GPU algorithms for constructing the similarity matrix in CSR format

		Algo CSR-1	Algo CSR-2	Algo CSR-3
	Method feature	Straightforward	Ellpack-to-CSR	Chunkwise dense-to-CSR
	Additional input	No	hypoM axN nzRow (hypo)	spM axN zP ct (spp), memU seRate
	# of			
	computed	2n 2	n 2 to 2n 2	n 2
	similarities			
	Supported sparsity pattern	All	All but regular sparsity patterns are preferred	All
	GPU implement-ation	1stPass kernel + 2ndPass kernel + Thrust exclusive_scan	fullPass kernel + ellpackToCSR kernel + supPass kernel + Thrust exclusive_scan	chkPass kernel + cuSPARSE APIs + Thrust transform
				Input data arr.: n • d
	Size of			CSR arr.:
	arrays stored			2n 2 • spp + n + 1
	in GPU			Chunk of matrix:
	RAM			n • nbRowP erChunk
				cuSPARSE workspace
	Max			
	required			
	shared			
	memory per			
	block (in			
	bytes)			

Input data arr.: n • d CSR arr.: 2 • nnz + n + 1 nnzPerRow arr.: n + 1 Input data arr.: n • d CSR arr.: 2 • nnz + n + 1 nnzPerRow arr.: n + 1 Ellpack arr.: 2n • hypo Restart. idx arr.: 2n

Table 3 .

 3 3: Parameters related to spectral clustering

	Parameter		Origin	Impact on	Impact	Tuning
					clustering	on algo	difficulty
					quality	perf.
	# of clusters (k c )		Spectral clustering	High	Low	High
	Threshold for sparsifi-			High	Medium	High
	cation				
	k for k-nearest neigh-			High	High	High
	bor graph				
	σ for Gaussian simi-	Construction of	High	Low	High
	larity		the	similarity	
	in Algo CSR-2 hypoM axN nzRow	matrix in CSR format	No	High	Medium
	spM axN zP ct	in			No	Low	Medium
	Algo CSR-3				
	memU seRate	in			No	Medium	Low
	Algo CSR-3				
	Tolerance		Iterative eigen-	High	Medium	Medium
	Max # of iter.		solver		High	Medium	Low
	Tolerance		Final k-means or	High	Medium	Low
	Max # of iter.		k-means++	High	Medium	Low

Table 3 .

 3 5: Quality of spectral clustering on GPU using dense format

	Dataset	ARI	AMI	NMI
	Jain	1.000	1.000	1.000
	Aggregation	0.987	0.982	0.982
	S1	0.989	0.989	0.989
	Spirals	1.000	1.000	1.000

Table 3 . 6

 36 

	Dataset	Data trans-fers	Sim. Lap. constr.	Eigensolver syevdx	Norm.	<# of iters> Final k-means++ *	Total
	Jain	0.78	0.01	92.36	0.01	0.57 <2>	93.73
	Aggregation	0.84	0.02	110.82	0.01	1.10 <3>	112.79
	S1	2.91	0.02	441.71	0.01	5.84 <2>	450.49
	Spirals	11.98	0.02	896.92	0.02	5.69 <2>	914.63

: Time (ms) of spectral clustering on GPU using dense format * The GPU implementation for the seeding step of k-means++ is displayed in Appendix G Listings G.1 & G.2.

Table 3 .

 3 7: Characteristics of the constructed sparse similarity matrices

	Dataset	Max nnz in a row	Avg. nnz per row	Total nnz	Sparsity (% of 0)
	MNIST-60K	2196	251	15.1M	99.581%
	MNIST-120K	3310	299	35.9M	99.751%
	MNIST-240K	5552	478	114.8M	99.801%
	MNIST-240K *	3520	199	47.8M	99.917%
	Syn4D-1M	54	23	23.4M	99.998%
	Syn4D-5M	64	29	149.9M	99.999%

Table 3 .

 3 8: Optimal block size configuration of our CUDA kernels for the CSR format similarity matrix construction

	Dataset	GPU CSR-1 (BSX, BSY)	GPU CSR-2 (BSX, BSY) <hypo>	GPU CSR-3 (BSX, BSY)
		1stPass	2ndPass	fullPass	supPass	chkPass
		kernel	kernel	kernel	kernel	kernel
				(64, 2) <512>	(128, 2) <512>	
	MNIST-60K	(32, 16)	(64, 4)	(128, 4) <1024>	(128, 2) <1024>	(32, 16)
				(128, 1) <2048>	(N / A) <2048>	
				(64, 2) <512>	(128, 2) <512>	
	MNIST-120K (32, 16)	(64, 4)	(128, 4) <1024>	(128, 2) <1024>	(32, 16)
				(128, 1) <2048>	(128, 2) <2048>	
				(64, 2) <512>	(128, 4) <512>	
	MNIST-240K (32, 16)	(64, 4)	(128, 4) <1024>	(128, 2) <1024>	(32, 16)
				(128, 1) <2048>	(128, 2) <2048>	
				(64, 2) <512>	(128, 2) <512>	
	MNIST-240K * (32, 16)	(64, 4)	(256, 4) <1024>	(128, 2) <1024>	(32, 16)
				(128, 1) <2048>	(128, 2) <2048>	
	Syn4D-1M					

Table 3 . 9 :

 39 Performance of the similarity matrix construction in CSR format

	Dataset	CPU CSR-1 (s) 1 thr. 20 thr. 40 thr.	GPU CSR-1 (s)	GPU CSR-2 (s) <1st hypo> <2nd hypo>	<3rd hypo>	GPU CSR-3 (s)
	MNIST-60K	1815	146	74	5.53 3.91 <512> 4.49 <1024>	5.42 <2048> 3.04
	MNIST-120K	7427	590	301 22.27 17.12 <512> 19.05 <1024> 21.09 <2048> 11.09
	MNIST-240K	28293	2502 1266 91.47 77.78 <512> 83.07 <1024> 85.29 <2048> 43.84
	MNIST-240K *	29520	2650 1244 91.05 62.71 <512> 59.03 <1024> 72.52 <2048> 43.56
	Syn4D-1M	2845	194	151 14.01 7.71 < 16> 5.71 < 32>	5.66 < 54> 17.62
	Syn4D-5M	too long	5772 3928 363.69 242.69 < 16> 176.06 < 32> 145.89 < 64> 435.76

Table 3 .

 3 10: Clustering quality and elapsed time of nvGRAPH's LOBPCG-embedded graph partitioning algorithm (based on 10 runs)

	Dataset	Clustering quality	Time of nvGRAPH (s)
		ARI AMI NMI	Min. Max. Average
	MNIST-60K	0.44 0.66 0.66	2.30 3.34	2.88
	MNIST-120K 0.50 0.67 0.67	3.48 4.59	3.95
	MNIST-240K * 0.56 0.73 0.73	4.41 5.90	5.01
	Syn4D-1M	1.00 1.00 1.00	3.63 5.18	4.08
	Syn4D-5M	1.00 1.00 1.00	17.67 19.15	18.25

  Scale the elements of deg[] into the range [0, 1] and compute the histogram of scaled deg[]. Automatically estimate the optimal threshold for noise filtering (etholdN F ) based on the histogram (ONGOING work).Use etholdN F as the final threshold for filtering noise (tholdN F ).

	5 else if filter noise based on vertex degree then
	6	Compute degrees of vertices (deg[]), i.e. sum of elements in each
		row of the similarity matrix (see Section 1.3.1).
	9 if automatic mode then
	10	
	11 else if interactive mode then
	12	

7 8

Table 4 .

 4 1: Datasets and parameter settings

	Dataset	(n, d, k c )	Similarity metric	Threshold	Tolerance for eigensolver
	Compound (399, 2, 6)	Gaussian(σ = 0.02) 0.02 (sim.)	0.001
	Cure_t2	(4.2K, 2, 7) Gaussian(σ = 0.02) 0.1 (sim.)	0.001
	Cluto_t8	(8K, 2, 9)	Gaussian(σ = 0.02) 0.2 (sim.)	0.001
	Cluto_t7	(10K, 2, 10) Gaussian(σ = 0.02) 0.2 (sim.)	0.001

Table 4 . 2 :

 42 Time (ms) of spectral clustering on GPU with noise filtering based on nnz per row

	Dataset	Data transfers	CSR sim. constr.	Noise filtering	nvGRAPH API	Total
	Compound	0.58	0.46	0.69	1115.41	1117.13
	Cure_t2	0.74	1.06	1.28	1533.20	1536.27
	Cluto_t8	0.70	3.70	1.28	1138.15	1143.82
	Cluto_t7	0.69	5.56	1.73	1121.68	1129.66

Table 4 .

 4 3: Time (ms) of spectral clustering on GPU with noise filtering based on vertex degree

	Dataset	Data transfers	CSR sim. constr.	Noise filtering	nvGRAPH API	Total
	Compound	0.59	0.45	0.80	1205.59	1207.44
	Cure_t2	0.70	1.03	1.41	1456.39	1459.53
	Cluto_t8	0.74	3.80	1.43	1201.67	1207.62
	Cluto_t7	0.74	5.55	1.77	1404.72	1412.78

Table 5 . 1 :

 51 Elapsed time of k r representatives extraction on Spirals-75M (n, d, k c ) = (75M, 2, 3)

				Time (s)		
	k r	Method	Initialize centroids	ComputeAssign per iter.	Update per iter.	Nb of iters.	Total
	2500	r.s.	0.0002	12.49	N/A	1	12.49
		km	0.0002	12.24	0.04	24	294.72
		km+	1083.48	12.32	0.02	20	1330.28
	500	r.s.	0.0002	2.66	N/A	1	2.66
		km	0.0002	2.50	0.03	20	50.63
		km+	225.32	2.52	0.02	15	263.41
	100	r.s.	0.0003	0.63	N/A	1	0.63
		km	0.0003	0.53	0.02	21	11.54
		km+	49.40	0.51	0.02	16	57.91

Table 5 . 2 :

 52 Elapsed time of k r representatives extraction on Smile2-100M (n, d, k c ) = (100M, 2, 4)

				Time (s)		
	k r	Method	Initialize centroids	ComputeAssign per iter.	Update per iter.	Nb of iters.	Total
	2500	r.s.	0.0003	16.60	N/A	1	16.60
		km	0.0004	16.38	0.05	35	574.91
		km+	1417.81	16.42	0.04	20	1747.11
	500	r.s.	0.0003	3.57	N/A	1	3.57
		km	0.0004	3.36	0.04	31	105.20
		km+	293.86	3.36	0.02	22	368.27
	100	r.s.	0.0003	0.83	N/A	1	0.84
		km	0.0002	0.71	0.03	27	19.89
		km+	63.60	0.69	0.02	16	74.98

Table 5 . 3

 53 

				Time (s)		
	k r	Method	Initialize centroids	ComputeAssign per iter.	Update per iter.	Nb of iters.	Total
	2500	r.s.	0.0003	13.09	N/A	1	13.09
		km	0.0003	12.91	0.04	30	388.32
		km+	1132.37	12.90	0.03	21	1403.78
	500	r.s.	0.0003	2.77	N/A	1	2.77
		km	0.0002	2.69	0.03	23	62.48
		km+	231.21	2.63	0.01	18	278.83
	100	r.s.	0.0002	0.67	N/A	1	0.67
		km	0.0003	0.56	0.02	19	11.16
		km+	48.49	0.52	0.01	17	57.63

: Elapsed time of k r representatives extraction on Aggregation-78.8M (n, d, k c ) = (78.8M, 2, 7)

Table 5 . 4

 54 

				Time (s)		
	k r	Method	Initialize centroids	ComputeAssign per iter.	Update per iter.	Nb of iters.	Total
	2500	r.s.	0.0004	50.21	N/A	1	50.21
		km	0.0003	49.44	0.18	25	1240.64
		km+	4220.51	49.51	0.13	20	5213.32
	500	r.s.	0.0003	10.74	N/A	1	10.74
		km	0.0003	10.13	0.13	20	205.10
		km+	844.16	10.08	0.06	18	1026.66
	100	r.s.	0.0003	2.67	N/A	1	2.67
		km	0.0002	2.12	0.11	14	31.13
		km+	186.23	2.06	0.07	11	209.65

: Elapsed time of k r representatives extraction on Complex9-303M (n, d, k c ) = (303.1M, 2, 9)

Table 5 .

 5 5: Elapsed time of extracting 100 representatives using k-means with different tolerances

				Time (s)		
	Dataset	Tolerance	Initialize centroids	ComputeAssign per iter.	Update per iter.	Nb of iters.	Total
	Spirals-75M	0.1	0.0002	0.54	0.02	3	1.67
		0.01	0.0003	0.53	0.02	21	11.54
		0.001	0.0002	0.51	0.02	108	57.01
	Smile2-100M	0.1	0.0003	0.75	0.08	3	2.48
		0.01	0.0002	0.71	0.03	27	19.89
		0.001	0.0003	0.69	0.02	194	138.42
	Aggregation-78.8M 0.1	0.0003	0.59	0.02	3	1.81
		0.01	0.0003	0.56	0.02	19	11.16
		0.001	0.0002	0.53	0.02	69	38.06
	Complex9-303M	0.1	0.0003	2.29	0.11	3	7.21
		0.01	0.0002	2.12	0.11	14	31.13
		0.001	0.0002	2.06	0.07	80	170.29
	5.3 . Representative-based spectral clustering on CPU-GPU plat-
	forms					
	5.3.1 . Different scenarios and adapted parallel processing chains	

Table 5 .

 5 6: Settings of connectivity parameters

	Chain kr	Extract. method	σ	Sprials-75M Threshold	σ	Smile2-100M Threshold	Aggregation-78.8M σ Threshold	σ	Complex9-303M Threshold
	I	km+	0.1	0.01 (sq. dist.)	0.1		0.007 (sq. dist.)	0.1	0.009 (sq. dist.)	0.1	0.01 (sq. dist.)
		km	0.1	0.006 (sq. dist.)	0.1		0.008 (sq. dist.)	0.1	0.009 (sq. dist.)	0.1	0.01 (sq. dist.)
		r.s.	0.1	0.001 (sq. dist.)	0.1		0.003 (sq. dist.)	0.1	0.005 (sq. dist.)	0.1	0.005 (sq. dist.)
		r.s.	0.1	0.001 (sq. dist.)	0.1		0.001 (sq. dist.)	0.1	0.001 (sq. dist.)	0.1	0.002 (sq. dist.)
		r.s.	0.1	0.001 (sq. dist.)	0.1		0.001 (sq. dist.)	0.1	0.001 (sq. dist.)	0.1	0.001 (sq. dist.)
		r.s.	0.1	0.0001 (sq. dist.)	N/A	N/A	N/A	N/A	N/A	N/A
	II	km+	0.1	0.01 (sim.)	0.1		0.01 (sim.)	0.1	0 (sim.)	0.1	0 (sim.)
		km	0.1	0.01 (sim.)	0.1		0.01 (sim.)	0.1	0 (sim.)	0.1	0 (sim.)
		r.s.	0.01	0.0005 (sim.)	0.01		0.0005 (sim.)	0.01	0.0001 (sim.)	0.01	0.0001 (sim.)
		r.s.	0.01	0.001 (sim.)	0.01		0.001 (sim.)	0.01	0.001 (sim.)	0.01	0.001 (sim.)
	III	km+	0.1	0.008 (sq. dist.)	0.1		0.005 (sq. dist.)	0.1	0.007 (sq. dist.)	0.1	0.01 (sq. dist.)
		km	0.1	0.007 (sq. dist.)	0.1		0.008 (sq. dist.)	0.1	0.008 (sq. dist.)	0.1	0.01 (sq. dist.)
		r.s.	0.1	0.002 (sq. dist.)	0.1		0.002 (sq. dist.)	0.1	0.003 (sq. dist.)	0.1	0.005 (sq. dist.)
		r.s.	0.1	0.001 (sq. dist.)	0.1		0.002 (sq. dist.)	0.1	0.002 (sq. dist.)	0.1	0.002 (sq. dist.)
		r.s.	0.1	0.001 (sq. dist.)	0.1		0.001 (sq. dist.)	0.1	0.001 (sq. dist.)	0.1	0.001 (sq. dist.)

Table 5 .

 5 7: Performance of representative-based spectral clustering on Spirals-75M (n, d, k c ) = (75M, 2, 3)

		Reps	Quality			Time (s)		
	Chain k r	extract. method	ARI	NMI	Reps extract.	CPU-GPU transfers	SC on k r reps Constr. Partition.	Attach.	Total
	I	km+	0.156 0.300	1.26	0.27	0.0004	1.06	0.0009	2.59
		km	0.301 0.399	0.61	0.28	0.0005	1.07	0.0009	1.96
		km	1.000 1.000	5.86	0.28	0.0007	1.34	0.0009	7.48
		r.s.	1.000 1.000	1.92	0.27	0.007	1.64	0.0009	3.84
		r.s.	1.000 1.000	19.29	0.27	0.40	3.39	0.001	23.35
		r.s.	1.000 1.000	199.55	0.28	19.90	293.80	0.002	513.53
	II	km+	0.010 0.009	55.66	N/A	0.003	0.08	0.38	56.12
		km	0.011 0.010	11.33	N/A	0.004	0.08	0.38	11.79
		km	1.000 1.000	115.98	N/A	0.06	1.55	0.32	117.91
		r.s.	1.000 1.000	48.99	N/A	3.31	42.31	0.38	94.99
	III	km+	0.938 0.927	55.66	0.03	0.0005	1.05	0.01	56.75
		km	0.599 0.631	11.33	0.03	0.0005	1.03	0.01	12.40
		km	1.000 1.000	115.98	0.03	0.001	1.35	0.01	117.37
		r.s.	1.000 1.000	48.99	0.03	0.01	1.50	0.02	50.55
		r.s.	1.000 1.000	487.42	0.03	0.43	3.00	0.02	490.90

Table 5 .

 5 

			8: Performance of representative-based spectral clustering on	
				Smile2-100M (n, d, k c ) = (100M, 2, 4)		
		Reps	Quality			Time (s)		
	Chain k r	extract. method	ARI	NMI	Reps extract.	CPU-GPU transfers	SC on k r reps Constr. Partition.	Attach.	Total
	I	km+	1.000 1.000	1.75	0.35	0.0004	1.19	0.001	3.29
		km	0.727 0.811	1.01	0.35	0.0004	1.11	0.001	2.47
		km	1.000 1.000	10.18	0.34	0.0006	1.66	0.001	12.18
		r.s.	1.000 1.000	2.56	0.34	0.007	2.73	0.001	5.64
		r.s.	1.000 1.000	25.78	0.35	0.49	18.73	0.002	45.35
	II	km+	0.535 0.597	72.15	N/A	0.004	0.07	0.46	72.68
		km	0.011 0.010	19.13	N/A	0.004	0.07	0.44	19.64
		km	1.000 1.000	200.36	N/A	0.07	0.98	0.50	201.91
		r.s.	1.000 1.000	65.33	N/A	3.43	16.24	0.51	85.51
	III	km+	1.000 1.000	72.15	0.03	0.0005	1.11	0.01	73.30
		km	0.732 0.814	19.13	0.03	0.0006	1.21	0.01	20.38
		km	1.000 1.000	200.36	0.03	0.001	1.78	0.02	202.19
		r.s.	1.000 1.000	65.33	0.03	0.008	1.87	0.02	67.26
		r.s.	1.000 1.000	650.01	0.03	0.51	15.83	0.03	666.41

Table 5 .

 5 9: Performance of representative-based spectral clustering on Aggregation-78.8M (n, d, k c ) = (78.8M, 2, 7)

			Reps	Quality			Time (s)		
	Chain k r	extract. method	ARI	NMI	Reps extract.	CPU-GPU transfers	SC on k r reps Constr. Partition.	Attach.	Total
	I	10 2	km+	0.989 0.983	1.32	0.28	0.0005	1.08	0.0009	2.68
		10 2	km	0.990 0.986	0.66	0.28	0.0005	1.10	0.0009	2.04
		10 3	km	0.990 0.986	7.51	0.27	0.001	1.09	0.0009	8.87
		10 4	r.s.	0.991 0.987	2.03	0.27	0.006	1.79	0.0009	4.09
		10 5	r.s.	0.989 0.984	20.35	0.27	0.40	2.94	0.001	23.96
	II	10 2	km+	0.984 0.978	59.74	N/A	0.004	0.08	0.38	60.20
		10 2	km	0.011 0.010	10.52	N/A	0.004	0.09	0.38	10.99
		10 3	km	1.000 1.000	131.43	N/A	0.06	0.92	0.37	132.78
		10 4	r.s.	1.000 1.000	51.64	N/A	3.07	15.06	0.43	70.20
	III	10 2	km+	0.994 0.991	59.74	0.03	0.0006	1.08	0.02	60.87
		10 2	km	0.984 0.978	10.52	0.03	0.0006	1.07	0.02	11.64
		10 3	km	0.992 0.988	131.43	0.03	0.001	1.12	0.02	132.60
		10 4	r.s.	0.994 0.991	51.64	0.03	0.007	1.22	0.02	52.92
		10 5	r.s.	0.993 0.991	512.05	0.03	0.41	2.56	0.02	515.08
			Table 5.10: Performance of representative-based spectral clustering on
				Complex9-303M (n, d, k c ) = (303.1M, 2, 9)		
			Reps	Quality			Time (s)		
	Chain k r	extract. method	ARI	NMI	Reps extract.	CPU-GPU transfers	SC on k r reps Constr. Partition.	Attach.	Total
	I		km+	0.470 0.726	4.82	1.01	0.0004	1.27	0.003	7.10
			km	0.557 0.780	1.83	1.03	0.0006	1.16	0.003	4.02
			km	0.454 0.715	24.40	1.05	0.001	1.44	0.003	26.89
			r.s.	0.563 0.811	7.74	1.04	0.007	1.90	0.003	10.69
			r.s.	0.699 0.874	79.30	1.04	0.38	4.22	0.004	84.94
	II		km+	0.321 0.597	213.59	N/A	0.003	0.10	1.62	215.31
			km	0.341 0.617	30.72	N/A	0.004	0.08	1.61	32.41
			km	1.000 1.000	461.82	N/A	0.07	1.45	1.55	464.89
			r.s.	1.000 1.000	197.94	N/A	3.22	21.38	1.64	224.18
	III		km+	0.433 0.734	213.59	0.03	0.0005	1.29	0.09	215.00
			km	0.383 0.670	30.72	0.03	0.0006	1.27	0.11	32.13
			km	0.521 0.764	461.82	0.03	0.001	1.45	0.10	463.40
			r.s.	0.660 0.850	197.94	0.03	0.010	1.52	0.07	199.57
			r.s.	0.840 0.930	1969.35	0.04	0.39	6.76	0.09	1976.63

Table B .

 B 1: Software features of our john3 server

	Operating system	Ubuntu 18 (for Chapter 2) → Ubuntu 20.04.3 (for Chapters 3, 4, 5)
	CPU code compiler	gcc 9.3.0
	CPU parallelization tool OpenMP
	Python version	3.8.10
	scikit-learn version	0.22.2.

post1 → 1.1.1 (only for Section 5.

Clustering basic benchmark: http://cs.joensuu.fi/sipu/datasets/ UCI ML Repository: https://archive-beta.ics.uci.edu/ml/datasets

Clustering basic benchmark: http://cs.joensuu.fi/sipu/datasets/ UCI ML Repository: https://archive-beta.ics.uci.edu/ml/datasets

In probability theory, the expected value (a.k.a. expectation, mean, average) is the weighted average of all possible outcomes of a random variable. Source: https://en. wikipedia.org/wiki/Expected_value

https://scikit-learn.org/stable/modules/clustering.html# clustering-performance-evaluation

In practice, we can compute and compare squared Euclidean distances to avoid square root operations.

Spectral clustering algorithms have the potential to be efficiently implemented on HPC platforms because they require substantial linear algebra

People in different domains may have different understandings of the term "time complexity". In this dissertation, we consider it as the number of operations required by an algorithm.

In fact, this is also a common issue for many machine learning algorithms.

The authors admitted that their approach is not fundamentally new since using preprocessing techniques to overcome computational bottlenecks is a tradition in the data mining community.

We mainly refer to NVIDIA GPUs as NVIDIA is the leading GPU company and provides a rich development environment for GPU programming.

https://docs.nvidia.com/cuda/cusolver/index.html

https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf

https://github.com/rapidsai/cugraph

https://icl.utk.edu/magma/index.html

https://github.com/NVIDIA/AMGX

http://viennacl.sourceforge.net

https://github.com/rapidsai/nvgraph

https://github.com/rapidsai/cugraph/blob/branch-22.04/ SOURCEBUILD.md

The -Ofast flag of GCC introduces strong optimizations in floating-point computations (like the -ffast-math flag) but they are supported by our code.

[START_REF] Agarwal | Crime analysis using k-means clustering[END_REF] Or we use the -march=native flag when compiling the code on the target machine.

Mark Harris, NVIDIA Developer Technology. Optimizing Parallel Reduction in CUDA. Source: http://developer.download.nvidia.com/compute/cuda/ 1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

According to the SciPy API reference for scipy.sparse.csr_matrix

end 1. it computes all similarities and counts the number of nonzeros per row into nnzPerRow[];

The Spectral Clustering API of scikit-learn[START_REF] Pedregosa | Scikitlearn: Machine learning in Python[END_REF] has a LOBPCG eigensolver, but the usage interface is in Python.

A compilation warning reports that "libcusolver.so.10, needed by /usr/lib/gcc/x86_-64-linux-gnu/../libnvgraph.so, may conflict with libcusolver.so.11" since the latest nv-GRAPH library comes from CUDA 10.2 (see Section 1.5.2). Nonetheless, there is no runtime error and the results are correct.

However, experiments in Section

5.3.2 show that the LOBPCG-embedded algorithm takes more time than the similarity matrix construction on other benchmark datasets.

Also, an interesting relationship between spectral clustering and DBSCAN have been discovered in References[START_REF] Miyahara | An algorithm combining spectral clustering and DBSCAN for core points[END_REF][START_REF] Schubert | The relationship of DBSCAN to matrix factorization and spectral clustering[END_REF] 

Note that this definition given by Reference[START_REF] Luxburg | A tutorial on spectral clustering[END_REF] is different from the general definition in graph theory[START_REF] Diestel | Graph Theory[END_REF], where the degree of a vertex is generally defined as the number of edges connected to the vertex. Nevertheless, we use the former in this dissertation.

The AMI scores are not displayed because they are usually equal to or very close to the NMI scores in our experiments.

N/A (short for Not Available): we tried some parameter settings but always got the execution failure of the nvGRAPH's algorithm.

km+: k-means++; km: k-means; r.s.: random sampling.

Some scores of clustering quality achieved with a better extraction method or with more representatives do not appear to be higher, because we did not find better settings for connectivity parameters due to lack of time. Besides, the AMI scores are not displayed in the tables because they are usually equal to or very close to the NMI scores in our experiments.

Constr.: similarity matrix/graph construction; Partition.: spectral graph partitioning; Attach.: input data attachment.

N/A: short for Not Applicable, because chain II is entirely on CPU.

http://yann.lecun.com/exdb/mnist/

https://leon.bottou.org/projects/infimnist
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Appendices

A -Benchmark datasets

In this dissertation, we experimented on a variety of datasets ranging from synthetic to real-world datasets, from small-scale to large-scale datasets, from 2D to high-dimensional datasets, from convex shape datasets to arbitrary shape datasets, and from noise-free to noise-laden datasets. Except some home-made synthetic datasets (HMSD), most benchmark datasets are from the following open sources: Clustering Basic Benchmark (CBB) 1 , GitHub Clustering Benchmarks (GCB) 2 , UC Irvine Machine Learning Repository (UCI) 3 , The MNIST Database of Handwritten Digits (MNIST) 4 , The Infinite MNIST Datasets (InfiMNIST) 5 , Lancaster University (LU) 6 .

Table A.1 gives an overview of the 2D small-scale benchmark datasets, and Table A.2 specifies the medium-scale and large-scale benchmark datasets. They can be divided into four types depending on how the data is produced.

• Synthetic 4D datasets: Syn4D-1M, Syn4D-5M, Syn4D-50M. They are produced by our data generator 7 . The generated n instances are uniformly distributed in 4 convex clusters ( n 4 instances in each cluster). Each cluster has a radius of 9 and the centroids are supposed to be [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF], [START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF], [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF] and [START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Fowlkes | A method for comparing two hierarchical clusterings[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF], respectively.

• Synthetic 2D datasets: Spirals-75M, Smile2-100M, Aggregation-78.8M, and Complex9-303M sets. They are produced by our data amplifier 8 which amplifies small-scale 2D datasets by incorporating random fluctuations, as shown in Figure A.2. Let a denote the amplification factor and f denote the fluctuation factor. For each point of a small-scale 

E -GPU implementation for Algo CSR-3

Listing E.1 shows the host code of our GPU implementation for Algo CSR-3 (Algorithm 6 in Section 3.3.5). The number of chunks is determined based on the size of free GPU memory to use (lines 6-12). For each chunk of the similarity matrix, we launch a typical kernel called chkPass to construct the matrix chunk in dense format (lines 28-30) and we leverage the cusparseDenseToSparse_xxx functions of NVIDIA's GPU-accelerated cuSPARSE library [START_REF]cuSPARSE Library[END_REF] to convert it into CSR format (lines [START_REF] Chen | Parallel spectral clustering in distributed systems[END_REF][START_REF] Chen | Large scale spectral clustering with landmark-based representation[END_REF][START_REF] Chen | Scalable normalized cut with improved spectral rotation[END_REF][START_REF] Cheng | Grid-based clustering[END_REF][START_REF] Choromanska | Fast spectral clustering via the Nyström method[END_REF][START_REF] Costeira | A multi-body factorization method for motion analysis[END_REF][START_REF] Cover | Elements of information theory[END_REF][START_REF] Cuomo | A GPUaccelerated parallel K-means algorithm[END_REF][START_REF] Dafir | A survey on parallel clustering algorithms for big data[END_REF]. Note that the chunks should be constructed and converted one by one in order, so that we can accumulate the number of nonzeros (lines 38-39) and continuously update csrRow[] using the transform API of Thrust library (lines 45-50). After the loop, we exploit the cusparseXcsrsort and cusparseSgthr functions of the cuSPARSE library to merge the CSR results obtained from each chunk so that we obtain the CSR format of the whole similarity matrix (lines 56-59). Finally we derive other necessary results from csrRow[] (lines 63). Particularly, the thrust functions used in our implementations suffer from the effect of rounding errors when processing large-scale datasets using single precision for floating-point numbers. To handle this issue, we provide a mixed precision version for each CPU and GPU implementation (as presented in Listings G.4, G.5 and G.6), where double precision is used in some lines of code.

Other steps of k-means++ are the same as k-means (see Chapter 2).