
HAL Id: tel-04114475
https://theses.hal.science/tel-04114475

Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel algorithms for clustering large datasets on
CPU-GPU heterogeneous architectures

Guanlin He

To cite this version:
Guanlin He. Parallel algorithms for clustering large datasets on CPU-GPU heterogeneous archi-
tectures. Data Structures and Algorithms [cs.DS]. Université Paris-Saclay, 2022. English. �NNT :
2022UPASG062�. �tel-04114475�

https://theses.hal.science/tel-04114475
https://hal.archives-ouvertes.fr


T
H
E
S
E
D
E
D
O
C
T
O
R
A
T

N
N
T
:
2
0
2
2
U
PA

S
G
0
6
2

Parallel algorithms for clustering large
datasets on CPU-GPU heterogeneous

architectures
Algorithmes parallèles de clustering de grands ensembles

de données pour architectures hétérogènes CPU-GPU

Thèse de doctorat de l’Université Paris-Saclay

École doctorale n◦ 580 : Sciences et technologies
de l’information et de la communication (STIC)

Spécialité de doctorat : Informatique
Graduate school : Informatique et sciences du numérique

Référent : CentraleSupélec

Thèse préparée dans l’unité de recherche
Laboratoire interdisciplinaire des sciences du numérique

(Université Paris-Saclay, CNRS),
sous la direction de Professeur Stéphane VIALLE

et le co-encadrement de Professeur Marc BABOULIN

Thèse soutenue à Paris-Saclay, le 19 octobre 2022, par

Guanlin HE

Composition du jury
Céline HUDELOT Présidente
Professeure, CentraleSupélec
Pierre FORTIN Rapporteur & Examinateur
Maître de conférences (HDR), Université de Lille
Masha SOSONKINA Rapporteur & Examinatrice
Professeure, Old Dominion University
Sandrine MOUYSSET Examinatrice
Maîtresse de conférences, Université de Toulouse 3
Stéphane VIALLE Directeur de thèse
Professeur, CentraleSupélec
Marc BABOULIN Co-encadrant de thèse
Professeur, Université Paris-Saclay



Titre : Algorithmes parallèles de clustering de grands ensembles de données pour architectures
hétérogènes CPU-GPU.
Mots clés : clustering spectral, algorithme des k-moyennes, calcul haute performance, calcul sur GPU,
optimisation de codes parallèles, évaluation de performances.

Résumé : Clustering, qui consiste à réaliser des
groupements naturels de données, est une tâche
fondamentale et difficile dans l’apprentissage au-
tomatique et l’exploration de données. De nom-
breuses méthodes de clustering ont été proposées
dans le passé, parmi lesquelles le clustering en k-
moyennes qui est une méthode couramment util-
isée en raison de sa simplicité et de sa rapidité.

Le clustering spectral est une approche plus
récente qui permet généralement d’obtenir une
meilleure qualité de clustering que les k-moyennes.
Cependant, les algorithmes classiques de cluster-
ing spectral souffrent d’un manque de passage à
l’échelle en raison de leurs grandes complexités en
nombre d’opérations et en espace mémoire néces-
saires. Ce problème de passage à l’échelle peut être
traité en appliquant des méthodes d’approximation
ou en utilisant le calcul parallèle et distribué.

L’objectif de cette thèse est d’accélérer le
clustering spectral et de le rendre applicable à
de grands ensembles de données en combinant
l’approximation basée sur des données représenta-
tives avec le calcul parallèle sur processeurs CPU
et GPU. En considérant différents scénarios, nous
proposons plusieurs chaînes de traitement parallèle
pour le clustering spectral à grande échelle. Nous
concevons des algorithmes et des implémentations
parallèles optimisés pour les modules de chaque
chaîne proposée : un algorithme parallèle des k-
moyennes sur CPU et GPU, un clustering spec-
tral parallèle sur GPU avec un format de stock-
age creux, un filtrage parallèle sur GPU du bruit
dans les données, etc. Nos expériences variées at-
teignent de grandes performances et valident le
passage à l’échelle de chaque module et de nos
chaînes complètes.

Title: Parallel algorithms for clustering large datasets on CPU-GPU heterogeneous architectures.
Keywords: spectral clustering, k-means algorithm, high performance computing, GPU computing,
parallel code optimization, performance evaluation.

Abstract: Clustering, which aims at achieving
natural groupings of data, is a fundamental and
challenging task in machine learning and data min-
ing. Numerous clustering methods have been pro-
posed in the past, among which k-means is one
of the most famous and commonly used methods
due to its simplicity and efficiency.

Spectral clustering is a more recent approach
that usually achieves higher clustering quality than
k-means. However, classical algorithms of spec-
tral clustering suffer from a lack of scalability due
to their high complexities in terms of number of
operations and memory space requirements. This
scalability challenge can be addressed by applying
approximation methods or by employing parallel
and distributed computing.

The objective of this dissertation is to accel-
erate spectral clustering and make it scalable to
large datasets by combining representatives-based
approximation with parallel computing on CPU-
GPU platforms. Considering different scenarios,
we propose several parallel processing chains for
large-scale spectral clustering. We design opti-
mized parallel algorithms and implementations for
each module of the proposed chains: parallel k-
means on CPU and GPU, parallel spectral cluster-
ing on GPU using sparse storage format, parallel
filtering of data noise on GPU, etc. Our various
experiments reach high performance and validate
the scalability of each module and the complete
chains.



Acknowledgement

First of all, I would like to express my deep gratitude to my dissertation su-
pervisor, Professor Stéphane Vialle. During nearly four years, from my application
to the completion of this dissertation, Stéphane was always very supportive of me.
Although Stéphane often had a hectic schedule, he ensured regular meetings and
discussions with me and brought me help as soon as possible whenever I needed
it. I would never have completed this dissertation without his guidance and help.
Moreover, Stéphane introduced me to the fascinating field of High Performance
Computing and taught me in many ways how to conduct scientific research. His
rigorous and critical approach to research has greatly influenced me. I am also very
grateful for his valuable advice on my future career. It was a wonderful time to be
his student!

Secondly, I would like to thank my dissertation co-advisor, Professor Marc
Baboulin. Marc was always responsive to my need and gave me much help. He
provided a lot of useful advice on my dissertation. I have benefited greatly from
his expertise in many areas including mathematics and academic writing. I really
enjoyed working with Marc!

Also, many thanks to my homeland China and the China Scholarship Council
for funding my study in France (No. 201807000143), and thanks to ParSys group,
LISN laboratory, STIC doctoral school, CentraleSupélec, Université Paris-Saclay
for providing me with a high-quality research platform and a comfortable working
environment. Special thanks to the SAMI staff of the LISN laboratory for giving
me a lot of IT services with kindness and patience.

Besides, thanks to my friends especially Baojie Li, Tianjiao Dai, Junjie Yang,
Wenbo Zhou, Yifei Sun for their help and company. Thanks to my girlfriend
Zengxian Tian for always being by my side and supporting me. Thanks to my
parents and relatives for their continuous love and support.

Finally, thanks to all Jury members for evaluating my dissertation!

ii



Contents

List of Figures vi

List of Tables ix

List of Algorithms xi

List of Code xii

List of Symbols xiii

Introduction (English version) 1

Introduction (French version) 4

1 Related Works and Objectives 7
1.1 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Algorithms and taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 k-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.1 Classical algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Better seeding with k-means++ . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Theoretical basis and algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Advantages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.3.3 Drawbacks and approaches for improvement . . . . . . . . . . . . . . . . . . . . . 19

1.4 Approximate spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5 Parallel spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5.1 Strengths and challenges of CPU vs. GPU . . . . . . . . . . . . . . . . . . . . . . 25
1.5.2 GPU-accelerated spectral clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2 Parallel and Accurate k-means Clustering 34

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2 Numerical accuracy issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Parallel and accurate k-means on the CPU . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 Parallelization of the ComputeAssign step . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Parallelization of the Update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Parallel and accurate k-means on the GPU . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Global approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Parallelization of the ComputeAssign step . . . . . . . . . . . . . . . . . . . . . . 40

iii



2.4.3 Parallelization of the Update step . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Testbed and compilation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.2 Experiments on a synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.5.3 Experiments on real-world datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.4 Comparison with others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3 Scalable Data Formats and Algorithms for Spectral Clustering 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Spectral clustering using dense data format . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.1 Similarity matrix and Laplacian matrix construction . . . . . . . . . . . . . . . . . 62
3.2.2 Eigen-decomposition using cuSOLVER library . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Normalization and final k-means(++) clustering . . . . . . . . . . . . . . . . . . . 63

3.3 Construction of the similarity matrix in sparse format . . . . . . . . . . . . . . . . . . . . 67
3.3.1 Sparsification and choice of a storage format . . . . . . . . . . . . . . . . . . . . . 67
3.3.2 Difficulties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.3 Algo CSR-1: straightforward CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Algo CSR-2: Ellpack-to-CSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.5 Algo CSR-3: chunkwise dense-to-CSR . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.6 Comparison of the three algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Spectral graph partitioning using nvGRAPH . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.5 Tuning of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5.1 Auto-tuning of the number of clusters . . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.2 Tuning of the parameters for similarity matrix construction . . . . . . . . . . . . . 81
3.5.3 Tuning of the parameters for eigensolvers and k-means . . . . . . . . . . . . . . . 82

3.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.1 Experimental framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.2 Datasets and parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.3 Performance of spectral clustering using dense data format . . . . . . . . . . . . . 85
3.6.4 Performance of CSR format similarity matrix construction . . . . . . . . . . . . . . 86
3.6.5 Performance of nvGRAPH’s LOBPCG-embedded algorithm . . . . . . . . . . . . . 94
3.6.6 Global performance of spectral clustering using CSR format . . . . . . . . . . . . . 95

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Parallel and Efficient Noise Filtering for Spectral Clustering 98

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.2 Noise filtering based on nnz per row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.3 Noise filtering based on vertex degree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.4 Noise robust spectral clustering on GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.5 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.1 Datasets and parameter settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5.2 Effect of noise filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

iv



4.5.3 Time overhead of noise filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5 Large-scale Representative-based Spectral Clustering on CPU-GPU Platforms 112
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.2 Extraction of representatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Using random sampling vs. k-means vs. k-means++ . . . . . . . . . . . . . . . . 113
5.2.2 Impact of the tolerance of k-means . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.3 Representative-based spectral clustering on CPU-GPU platforms . . . . . . . . . . . . . . 120
5.3.1 Different scenarios and adapted parallel processing chains . . . . . . . . . . . . . . 120
5.3.2 Global experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Conclusion and Perspectives 130

Appendix A Benchmark datasets 135

Appendix B Testbed features 139

Appendix C GPU implementation for Algo CSR-1 141

Appendix D GPU implementation for Algo CSR-2 145

Appendix E GPU implementation for Algo CSR-3 151

Appendix F GPU implementation for noise filtering algorithm 153

Appendix G Parallel implementation for the seeding step of k-means++ 157

Bibliography 161

Publications 179

v



List of Figures

1.1 Main computation steps in spectral clustering . . . . . . . . . . . 17
1.2 k-means++ (left: a, c, e, g) vs. spectral clustering (right: b, d, f,

h) on four datasets (Spirals, Smile2, Aggregation, Complex9) . . . 18
1.3 Success and failure of the eigengap heuristic on S-sets . . . . . . . 21
1.4 Data flow of a CPU-GPU parallel processing chain for large-scale

approximate spectral clustering . . . . . . . . . . . . . . . . . . . 32
2.1 Two-level summation method for the Update step . . . . . . . . . 35
2.2 Multithreading for the ComputeAssign step . . . . . . . . . . . . . 36
2.3 Multithreading for the two-level summation in the Update step . . 38
2.4 Array of Structure (AoS) vs. Structure of Array (SoA) . . . . . . . 40
2.5 Grid and block configuration for the ComputeAssign kernel . . 40
2.6 Combined use of dynamic parallelism and multiple streams . . . . 43
2.7 Grid and block configuration for Update_S1_Child kernel . . . 45
2.8 Use of each block in the Update_S1_Child kernel . . . . . . . 45
2.9 Impact of block size on the performance of the Update step with

the Syn4D-50M dataset (using single precision) . . . . . . . . . . 49
2.10 Impact of GPU code optimizations on the performance of the Up-

date step with the Syn4D-50M dataset (using single precision) . . 49
2.11 Speedup of k-means steps and iterations with the Syn4D-50M

dataset (using kc = 4, single precision) . . . . . . . . . . . . . . . 50
2.12 Changes in cluster size with the use of packages in the Update step

on the HPO dataset (using kc = 4, single precision) . . . . . . . . 51
2.13 Average time per iteration of k-means steps on the USC dataset

(using single precision, 100 packages) . . . . . . . . . . . . . . . . 54
2.14 Impact of block size on the performance of Update with the USC

dataset (using kc = 256, single precision, 100 packages) . . . . . . 54
2.15 Speedup of k-means steps and iterations with the HPO dataset

(using kc = 4, single precision, 100 packages) . . . . . . . . . . . 55
2.16 Speedup of k-means steps and iterations with the USC dataset

(using single precision, 100 packages) . . . . . . . . . . . . . . . . 55
3.1 An example of COO format storing an mr × nc matrix . . . . . . 67
3.2 An example of CSR format storing an mr × nc matrix . . . . . . . 68
3.3 An example of CSC format storing an mr × nc matrix . . . . . . . 69
3.4 An example of Ellpack format storing an mr × nc matrix . . . . . 69
3.5 Spectral clustering on GPU using dense data format . . . . . . . . 86
3.6 Block size impact on the kernels of GPU CSR-1 with MNIST-120K 87

vi



3.7 Block size impact on the fullPass kernel of GPU CSR-2 with
MNIST-120K . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.8 Block size impact on the kernel of GPU CSR-3 with MNIST-120K 88
3.9 Performance comparison of GPU CSR-1 vs. GPU CSR-2 on MNIST-

120K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.10 Performance evolution of GPU CSR-3 . . . . . . . . . . . . . . . 91
3.11 Speedup of the CSR format similarity matrix construction on GPU

vs. CPU CSR-1 using 40 threads . . . . . . . . . . . . . . . . . . 93
3.12 Scalability of the similarity matrix construction in CSR format . . . 94
3.13 Performance of spectral clustering on GPU using CSR format . . . 96
4.1 Histogram examples obtained on the Cluto_t7 dataset . . . . . . 100
4.2 Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 1) . 104
4.3 Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 2) . 105
4.4 Spectral clustering (abbr. SC) on the Cluto_t8 dataset . . . . . . 106
4.5 Spectral clustering (abbr. SC) on the Cure_t2 dataset . . . . . . 107
4.6 Spectral clustering (abbr. SC) on the Compound dataset . . . . . 108
4.7 Impact of the threshold for noise filtering (tholdNF ) on spectral

clustering quality on Cluto_t7 and Cluto_t8 datasets . . . . . . . 109
4.8 Impact of the threshold for noise filtering (tholdNF ) on spectral

clustering quality on Cure_t2 and Compound datasets . . . . . . 110
5.1 kr representatives extracted from the Spirals-75M dataset by 3 dif-

ferent methods (1st column: random sampling; 2nd column: k-
means with tolerance = 0.01; 3rd column: k-means++ with toler-
ance = 0.01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 kr representatives extracted from the Smile2-100M dataset by 3
different methods (1st column: random sampling; 2nd column: k-
means with tolerance = 0.01; 3rd column: k-means++ with toler-
ance = 0.01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3 kr representatives extracted from Aggregation-78.8M dataset by
3 different methods (1st column: random sampling; 2nd column:
k-means with tolerance = 0.01; 3rd column: k-means++ with
tolerance = 0.01) . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 kr representatives extracted from Complex9-303M dataset by 3 dif-
ferent methods (1st column: random sampling; 2nd column: k-
means with tolerance = 0.01; 3rd column: k-means++ with toler-
ance = 0.01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5 100 representatives extracted from each benchmark dataset by us-
ing k-means with different tolerances (1st row: Spirals-75M; 2nd
row: Smile2-100M; 3rd row: Aggregation-78.8M; 4th row: Complex9-
303M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

vii



5.6 Three scenarios and associated parallel processing chains for large-
scale spectral clustering using representatives . . . . . . . . . . . . 122

5.7 Global workflow for large-scale representative-based spectral clus-
tering on CPU-GPU platforms (blue box: on CPU; green box: on
GPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

A.1 2D small-scale datasets . . . . . . . . . . . . . . . . . . . . . . . 136
A.2 Large-scale datasets generated by amplifying small-scale datasets

with random fluctuations (a denotes amplification factor, f denotes
fluctuation factor) . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1 Grid and block configuration of the CUDA kernels for CSR format
similarity matrix construction . . . . . . . . . . . . . . . . . . . . 142

viii



List of Tables

1.1 Investigation of some GPU-accelerated libraries with eigensolvers . 30
2.1 CPU k-means on the Syn4D-50M dataset with (n, d, kc) = (50M, 4, 4) 48
2.2 GPU k-means on the Syn4D-50M dataset with (n, d, kc) = (50M, 4, 4) 48
2.3 CPU k-means on two real-world datasets (using single precision,

100 packages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.4 GPU k-means on two real-world datasets (using single precision,

100 packages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.5 Performance comparison with recent parallel k-means implementa-

tions on our CPU& GPU testbed . . . . . . . . . . . . . . . . . . 59
2.6 Performance comparison with parallel k-means implementations on

other architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.1 Comparison of four sparse matrix formats . . . . . . . . . . . . . 70
3.2 Comparison of our three GPU algorithms for constructing the sim-

ilarity matrix in CSR format . . . . . . . . . . . . . . . . . . . . . 76
3.3 Parameters related to spectral clustering . . . . . . . . . . . . . . 80
3.4 Datasets and parameter settings of our benchmarks . . . . . . . . 84
3.5 Quality of spectral clustering on GPU using dense format . . . . . 85
3.6 Time (ms) of spectral clustering on GPU using dense format . . . 86
3.7 Characteristics of the constructed sparse similarity matrices . . . . 87
3.8 Optimal block size configuration of our CUDA kernels for the CSR

format similarity matrix construction . . . . . . . . . . . . . . . . 89
3.9 Performance of the similarity matrix construction in CSR format . 92
3.10 Clustering quality and elapsed time of nvGRAPH’s LOBPCG-embedded

graph partitioning algorithm (based on 10 runs) . . . . . . . . . . 94
4.1 Datasets and parameter settings . . . . . . . . . . . . . . . . . . 102
4.2 Time (ms) of spectral clustering on GPU with noise filtering based

on nnz per row . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.3 Time (ms) of spectral clustering on GPU with noise filtering based

on vertex degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.1 Elapsed time of kr representatives extraction on Spirals-75M (n, d, kc) =

(75M, 2, 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Elapsed time of kr representatives extraction on Smile2-100M (n, d, kc) =

(100M, 2, 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.3 Elapsed time of kr representatives extraction on Aggregation-78.8M

(n, d, kc) = (78.8M, 2, 7) . . . . . . . . . . . . . . . . . . . . . . 117

ix



5.4 Elapsed time of kr representatives extraction on Complex9-303M
(n, d, kc) = (303.1M, 2, 9) . . . . . . . . . . . . . . . . . . . . . 118

5.5 Elapsed time of extracting 100 representatives using k-means with
different tolerances . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Settings of connectivity parameters . . . . . . . . . . . . . . . . . 125
5.7 Performance of representative-based spectral clustering on Spirals-

75M (n, d, kc) = (75M, 2, 3) . . . . . . . . . . . . . . . . . . . . 127
5.8 Performance of representative-based spectral clustering on Smile2-

100M (n, d, kc) = (100M, 2, 4) . . . . . . . . . . . . . . . . . . . 127
5.9 Performance of representative-based spectral clustering on Aggregation-

78.8M (n, d, kc) = (78.8M, 2, 7) . . . . . . . . . . . . . . . . . . 128
5.10 Performance of representative-based spectral clustering on Complex9-

303M (n, d, kc) = (303.1M, 2, 9) . . . . . . . . . . . . . . . . . . 128
A.1 Features of small-scale benchmark datasets . . . . . . . . . . . . . 135
A.2 Features of medium-scale and large-scale benchmark datasets . . . 138
B.1 Software features of our john3 server . . . . . . . . . . . . . . . . 139
B.2 Hardware features of our john3 server . . . . . . . . . . . . . . . 140

x



List of Algorithms

1 k-means algorithm [122] . . . . . . . . . . . . . . . . . . . . . . . 13
2 k-means++ algorithm [13] . . . . . . . . . . . . . . . . . . . . . . 13
3 Spectral clustering algorithm [188] . . . . . . . . . . . . . . . . . . 17
4 Straightforward construction of the CSR format similarity matrix

(Algo CSR-1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5 Construction of the CSR format similarity matrix based on an Ellpack-

to-CSR approach (Algo CSR-2) . . . . . . . . . . . . . . . . . . . 73
6 Construction of the CSR format similarity matrix based on a chunk-

wise dense-to-CSR approach (Algo CSR-3) . . . . . . . . . . . . . 75
7 Noise robust spectral clustering . . . . . . . . . . . . . . . . . . . . 101

xi



List of Code

2.1 CPU implementation for the ComputeAssign step . . . . . . . . . 37
2.2 CPU implementation for the Update step . . . . . . . . . . . . . . 39
2.3 ComputeAssign kernel for the ComputeAssign step . . . . . . . 41
2.4 Host code of GPU implementation for the Update step . . . . . . 43
2.5 Update_S1_Parent kernel for the Update step . . . . . . . . . 43
2.6 Update_S1_Child kernel for the Update step . . . . . . . . . . 44
3.1 Host code of GPU implementation for spectral clustering in dense

data format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.2 constructSimDegMat kernel (part 1) . . . . . . . . . . . . . . 65
3.3 constructSimDegMat kernel (part 2) . . . . . . . . . . . . . . 66
3.4 computeLapMat kernel . . . . . . . . . . . . . . . . . . . . . . 66
3.5 Usage of the nvGRAPH spectral graph partitioning API . . . . . . 79
C.1 Host code of GPU implementation for Algo CSR-1 . . . . . . . . . 141
C.2 1stPass kernel for Algo CSR-1 . . . . . . . . . . . . . . . . . . 143
C.3 2ndPass kernel for Algo CSR-1 . . . . . . . . . . . . . . . . . . 144
D.1 Host code of GPU implementation for Algo CSR-2 . . . . . . . . . 146
D.2 fullPass kernel (part 1) for Algo CSR-2 . . . . . . . . . . . . . 147
D.3 fullPass kernel (part 2) for Algo CSR-2 . . . . . . . . . . . . . 148
D.4 fullPass kernel (part 3) for Algo CSR-2 . . . . . . . . . . . . . 149
D.5 ellpackToCSR kernel for Algo CSR-2 . . . . . . . . . . . . . . 150
D.6 supPass kernel for Algo CSR-2 . . . . . . . . . . . . . . . . . . 150
E.1 Host code of GPU implementation for Algo CSR-3 . . . . . . . . . 152
F.1 Host code of GPU implementation for noise filtering algorithm . . 154
F.2 findNoise kernel for noise filtering algorithm . . . . . . . . . . 155
F.3 markNoiseInCSRCol kernel for noise filtering algorithm . . . . 156
F.4 mapLabels kernel for noise filtering algorithm . . . . . . . . . . 156
G.1 Host code of GPU implementation for the seeding step of k-means++

(single precision version) . . . . . . . . . . . . . . . . . . . . . . . 157
G.2 Devide code of GPU implementation for the seeding step of k-

means++ (single precision version) . . . . . . . . . . . . . . . . . 158
G.3 CPU implementation for the seeding step of k-means++ (single

precision version) . . . . . . . . . . . . . . . . . . . . . . . . . . 159
G.4 Host code of GPU implementation for the seeding step of k-means++

(mixed precision version) . . . . . . . . . . . . . . . . . . . . . . 160
G.5 Devide code of GPU implementation for the seeding step of k-

means++ (mixed precision version) . . . . . . . . . . . . . . . . . 160
G.6 CPU implementation for the seeding step of k-means++ (mixed

precision version) . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xii



List of Symbols

n Number of data instances/points/objects
d Number of dimensions/features/attributes
kc Number of clusters
kcmax Maximum number of clusters
kr Number of representatives
xi Data instance of index i

vi Vertex of index i

sij Similarity between instances xi and xj
wij Edge weight between vertices vi and vj
degi Degree of vertex vi
ui Eigenvector of index i

λi Eigenvalue of index i

γi Eigengap between λi+1 and λi

ε Neighborhood radius
σ Scaling parameter of Gaussian similarity function
X Dataset
G Graph
V Vertex set
E Edge set
S n× n similarity/Affinity/Adjacency matrix
D n× n degree matrix
L n× n graph Laplacian matrix
Lsym n× n normalized symmetric L

Lrw n× n normalized L related to a random walk
U n× kc eigenvector matrix
Σ kc × kc eigenvalue matrix
nnz Number of nonzero elements in S

maxNnzRow Maximum number of nonzeros in a row of S
hypoMaxNnzRow Hypothetical maximum number of nonzeros in a row of S
spMaxNzPct Supposed maximum percent of nonzeros in S

memUseRate Usage rate of GPU RAM for storing a chunk of S
tholdNF Threshold for noise filtering

xiii



Introduction (English version)

Motivation

In today’s era of explosive data growth, the need for High-Performance Data
Analytics (HPDA) is becoming increasingly prominent. Classification and cluster-
ing are two fundamental tasks in data analysis. Both aim at dividing data instances
into different groups through a learning process. The essential difference is that the
former trains a predictive model on labeled data (a.k.a. supervised learning) while
the latter involves only unlabeled data (a.k.a. unsupervised learning) [91]. We
concern ourselves with clustering in this dissertation. Various clustering methods
have been proposed in the literature, e.g. k-means [122], DBSCAN [53], and spec-
tral clustering [136]. Although the time complexities of clustering algorithms vary
considerably, clustering large-scale datasets is computationally expensive and even
prohibitive! Moreover, some algorithms also have high memory space complexities.

Many scientific and technological endeavors have been made to address the
scalability challenges of clustering algorithms. A major approach is to reduce their
computational complexities by using approximation, which is the essence of many
fast variants of traditional clustering algorithms. For example, an effective approx-
imation method [203] is to perform a clustering algorithm on some representatives
carefully extracted from the original dataset, and then approximate the global clus-
tering solution by the clustering result of the representatives.

On the other hand, High Performance Computing (HPC) [49] can provide im-
pressive speedups and scalability for computational tasks. It has developed rapidly
in recent decades due to technological advances in computer hardware and software.
For example, the advent of modern GPU architectures and CUDA programming
has opened up the active field of general-purpose GPU computing and has led to
a proliferation of GPU-accelerated applications. Thus, it seems very appealing to
accelerate clustering algorithms by high performance computing. However, achiev-
ing it requires efficient algorithmic design and parallel programming with various
optimizations on modern computer architectures.

In this dissertation, we mainly consider classical algorithms of spectral clus-
tering, which usually produce higher quality clustering results than the k-means
algorithm, but require cubic time and quadratic memory w.r.t. the number of
data instances in the worst case. We are mainly motivated in accelerating spectral
clustering and in making it scalable to large-scale datasets by combining the ap-
proximation approach with high performance computing on CPU-GPU platforms.
Note that we basically regard a dataset containing a million instances and over
(n ≥ 106) as a “large-scale dataset”, in view of: (1) the O(n3) time complexity
and O(n2) space complexity of spectral clustering; (2) the limited computing and
memory resources of single node CPU-GPU heterogeneous architectures. In fact,

1



most of the public clustering datasets we found1 contain only thousands to hun-
dreds of thousands of data instances, which we usually consider as small-scale or
medium-scale datasets.

Dissertation overview

This dissertation consists of five chapters.
In Chapter 1, we introduce the background knowledge, related works, and the

objectives of this dissertation. More specifically, we first introduce clustering by
reviewing its notion, taxonomy of algorithms, and evaluation metrics. Then we
expound the two clustering methods mainly involved in this dissertation: k-means
clustering and spectral clustering, including their algorithms, advantages, disad-
vantages and existing approaches to improvement. Furthermore, related works
on approximate spectral clustering and parallel spectral clustering are particularly
reviewed. Finally, we introduce the possibility to combine representative-based ap-
proximate spectral clustering with parallel computing on CPU-GPU architectures.

In Chapter 2, we present optimized parallel implementations for k-means clus-
tering on CPU and GPU, which can be used either independently or be used to
extract representatives for spectral clustering. Particularly, we address the numer-
ical accuracy issue caused by the propagation of rounding errors in the k-means
algorithm. Experiments on large datasets demonstrate both numerical accuracy
and parallelization efficiency of our k-means implementations.

In Chapter 3, we focus on the parallelization of spectral clustering on GPU.
Essentially, several algorithms and associated optimized parallel implementations
are proposed for matrix construction in Compressed Sparse Row (CSR) format on
GPU. This can achieve significant performance acceleration while reducing substan-
tial memory space requirements of spectral clustering. Then, we leverage NVIDIA’s
GPU-accelerated nvGRAPH library for remaining computations of spectral cluster-
ing. Finally, experimental results show the high performance and the scalability to
large datasets of our spectral clustering implementation on GPU.

In Chapter 4, we address the noise sensitivity issue of spectral clustering by
incorporating noise filtering into the spectral clustering implementation presented
in Chapter 3 and exploiting some particular features of this implementation. Ex-
periments show that our noise filtering implementation on GPU is efficient and
significantly improves the performance of spectral clustering on noisy data.

In Chapter 5, we adopt the representative-based approximation method to
further advance the scalability of spectral clustering. Several methods for rep-
resentatives extraction are first investigated. Then, several processing chains on
CPU-GPU platforms are proposed according to different scenarios. Finally, exper-
imental results exhibit the validity and good scalability of our proposed chains.

1Clustering basic benchmark: http://cs.joensuu.fi/sipu/datasets/
UCI ML Repository: https://archive-beta.ics.uci.edu/ml/datasets

2

http://cs.joensuu.fi/sipu/datasets/
https://archive-beta.ics.uci.edu/ml/datasets


The benchmark datasets and testbed features are detailed in Appendix A and
B, respectively. Our code is available at https://github.com/guanlin-
he/clustering-release.

3

https://github.com/guanlin-he/clustering-release
https://github.com/guanlin-he/clustering-release


Introduction (French version)

Motivation

À l’époque de la croissance explosive des données, le besoin de l’analyse de don-
nées à haute performance (HPDA) se fait de plus en plus saillant. La classification
et le clustering sont deux tâches fondamentales de l’analyse des données. Tous les
deux visent à diviser les données en différents groupes par le biais d’un processus
d’apprentissage. La différence essentielle réside dans le fait que la première tâche
entraîne un modèle prédictif sur des données étiquetées (apprentissage supervisé),
tandis que la seconde ne concerne que des données non étiquetées (apprentissage
non supervisé) [91]. Nous nous intéressons au clustering dans cette thèse. Di-
verses méthodes de clustering ont été proposées dans la littérature, par exemple
les k-moyennes [122], le DBSCAN [53], et le clustering spectral [136]. Bien que
les complexités temporelles des algorithmes de clustering varient considérablement,
le clustering d’ensembles de données à grande échelle est coûteux en termes de
calcul, voire prohibitif ! De plus, certains algorithmes présentent également des
complexités élevées en termes d’espace mémoire.

De nombreux efforts scientifiques et technologiques ont été faits pour relever
les défis de passage à l’échelle des algorithmes de clustering. Une approche majeure
consiste à réduire leurs complexités de calcul en utilisant l’approximation, qui est
l’essence de nombreuses variantes rapides des algorithmes de clustering tradition-
nels. Par exemple, une méthode d’approximation efficace [203] consiste à exécuter
un algorithme de clustering sur certains représentants soigneusement extraits de
l’ensemble de données original, puis à approximer la solution de clustering globale
par le résultat du clustering des représentants.

D’autre part, le calcul haute performance (HPC) [49] peut fournir des ac-
célérations impressionnantes et un passage à l’échelle pour les tâches de calcul.
Il s’est développé rapidement au cours des dernières décennies grâce aux progrès
technologiques réalisés dans le matériel et les logiciels informatiques. Par exemple,
l’avènement des architectures GPU modernes et de la programmation CUDA a ou-
vert le champ actif du calcul GPU à usage général et a conduit à une prolifération
d’applications accélérées par le GPU. Ainsi, il semble très intéressant d’accélérer
les algorithmes de clustering par le calcul haute performance. Cependant, pour y
parvenir, il faut une conception algorithmique et programmation parallèle efficaces
avec diverses optimisations sur les architectures informatiques modernes.

Dans cette thèse, nous considérons principalement les algorithmes classiques
de clustering spectral, qui produisent généralement des résultats de clustering de
meilleure qualité que l’algorithme des k-moyennes, mais nécessitent un temps cu-
bique et une mémoire quadratique par rapport au nombre d’instances de données
dans le pire des cas. Nous nous sommes principalement intéressés à l’accélération

4



du clustering spectral et à son passage à l’échelle en combinant l’approche d’approximation
avec le calcul haute performance sur des plateformes CPU-GPU. Notez que nous
considérons essentiellement un ensemble de données contenant un million d’instances
et plus (n ≥ 106) comme un « ensemble de données à grande échelle », compte
tenu de : (1) la complexité temporelle O(n3) et la complexité spatiale O(n2) du
clustering spectral ; (2) les ressources de calcul et de mémoire limitées des archi-
tectures hétérogènes CPU-GPU à nœud unique. En fait, la plupart des ensembles
de données de clustering publics que nous avons trouvés2 ne contiennent que des
milliers à des centaines de milliers d’instances de données, que nous considérons
généralement comme des ensembles de données à petite ou moyenne échelle.

Aperçu de la thèse

Cette thèse se compose de cinq chapitres.
Dans le chapitre 1, nous présentons les connaissances de base, les travaux con-

nexes et les objectifs de cette thèse. Plus précisément, nous présentons d’abord
le clustering en passant en revue sa notion, la taxonomie des algorithmes et les
mesures d’évaluation. Ensuite, nous exposons les deux méthodes de clustering prin-
cipalement impliquées dans cette thèse : le clustering en k-moyennes et le cluster-
ing spectral, y compris leurs algorithmes, leurs avantages, leurs inconvénients et les
approches existantes pour les améliorer. En outre, les travaux connexes sur le clus-
tering spectral approximatif et le clustering spectral parallèle sont particulièrement
examinés. Enfin, nous présentons la possibilité de combiner le clustering spectral
approximatif basé sur les représentants avec le calcul parallèle sur les architectures
CPU-GPU.

Dans le chapitre 2, nous présentons des implémentations parallèles optimisées
pour le clustering en k-moyennes sur CPU et GPU, qui peuvent être utilisées soit in-
dépendamment, soit pour extraire des représentants pour le clustering spectral. En
particulier, nous abordons le problème de la précision numérique causé par la prop-
agation des erreurs d’arrondi dans l’algorithme des k-moyennes. Des expériences
sur de grands ensembles de données démontrent à la fois la précision numérique
et l’efficacité de la parallélisation de nos implémentations de k-moyennes.

Dans le chapitre 3, nous nous concentrons sur la parallélisation du clustering
spectral sur GPU. Essentiellement, plusieurs algorithmes et implémentations paral-
lèles optimisées associées sont proposés pour la construction de matrices au format
CSR (Compressed Sparse Row) sur GPU. Cela permet d’obtenir une accélération
significative des performances tout en réduisant considérablement l’espace mémoire
nécessaire au clustering spectral. Ensuite, nous utilisons la bibliothèque nvGRAPH
de NVIDIA qui accélère sur GPU les calculs restants du clustering spectral. Enfin,
les résultats expérimentaux montrent la haute performance et l’extensibilité à de

2Clustering basic benchmark: http://cs.joensuu.fi/sipu/datasets/
UCI ML Repository: https://archive-beta.ics.uci.edu/ml/datasets

5

http://cs.joensuu.fi/sipu/datasets/
https:// archive-beta.ics.uci.edu/ml/datasets


grands ensembles de données de notre implémentation du clustering spectral sur
GPU.

Dans le chapitre 4, nous abordons le problème de la sensibilité au bruit du
clustering spectral en incorporant le filtrage du bruit dans l’implémentation du
clustering spectral présentée dans le chapitre 3 et en exploitant certaines carac-
téristiques particulières de cette implémentation. Les expériences montrent que
notre implémentation du filtrage du bruit sur GPU est efficace et améliore signi-
ficativement les performances du clustering spectral sur des données bruyantes.

Dans le chapitre 5, nous adoptons la méthode d’approximation basée sur les
représentants pour faire progresser le passage à l’échelle du clustering spectral.
Plusieurs méthodes d’extraction des représentants sont d’abord étudiées. Ensuite,
plusieurs chaînes de traitement sur des plateformes CPU-GPU sont proposées en
fonction de différents scénarios. Enfin, les résultats expérimentaux démontrent la
validité et le passage à l’échelle des chaînes proposées.

Les ensembles de données de benchmark et les caractéristiques du banc d’essai
sont détaillés en annexe A et B, respectivement. Notre code est disponible sur
https://github.com/guanlin-he/clustering-release.

6

https://github.com/guanlin-he/clustering-release


1 - Related Works and Objectives

1.1 . Clustering

Data clustering [91, 73, 168, 54], also known as cluster analysis, refers to an
automatic process that discovers the natural groupings (i.e. clusters) of a set of
unlabeled data points, instances, or objects. As one of the most important and
challenging tasks in data analysis and unsupervised machine learning, clustering has
been actively studied for decades with interdisciplinary endeavor [91]. It has a wide
range of applications, such as market and customer segmentation [52, 98], image
and video segmentation [21, 103], network analysis [64], recommender systems
[1], document clustering [93], bibliometrics analysis [191], bioinformatics analysis
[72, 216], disease analysis [217], crime analysis [2].

Generally, the clustering process seeks to maximize intra-cluster similarity and
minimize inter-cluster similarity. However, neither the notion of a “cluster”, nor the
measure of “similarity”, nor the realization way are precisely defined. Moreover,
there are various data distributions and the data to be clustered can be low or
high dimensional, small or large scale, noiseless or noise-laden, quantitative or
categorical, static or dynamic, homogeneous or heterogeneous, etc. Due to these
facts, a large number and variety of clustering algorithms have been proposed in
the past.

1.1.1 . Algorithms and taxonomy
Clustering has been continuously surveyed and resurveyed over time, e.g. [102]

in 1990, [92] in 1999, [91] in 2010, [73] in 2011, [4] in 2014, [201] in 2015, [168]
in 2017, [62] in 2020, [54] in 2022. The number of published clustering algorithms
is overwhelming and continues to grow. Early clustering algorithms can usually be
categorized into partitional clustering and hierarchical clustering. Later some new
categories of clustering algorithms have emerged, such as density-based clustering,
grid-based clustering, distribution-based clustering, graph-based clustering, and
deep learning-based clustering. Some clustering algorithms combine the methods
of at least two categories. Here we call them cross-category clustering.

Partitional clustering aims at dividing n data instances into kc partitions
(clusters) such that instances within the same cluster are as close to each other
as possible and instances in different clusters are as far apart from each other
as possible [73]. As hinted, partitional algorithms are usually based on distances
and lead to spherical partitions as clusters. Each partition/cluster is characterized
by its cluster center (also called centroid). Hence partitional algorithms are also
known as centroid-based algorithms. Dedicated surveys on partitional clustering
include References [160, 31, 108]. Representative algorithms include the k-means
algorithm (1967) [122] and its variants, e.g. k-medoids (1987) [101], CLARA

7



(1986) [100], CLARANS (1994) [137], k-modes (1997) [86], k-prototypes (1997)
[85], X-means [151] (2000), k-means++ (2006) [13].

Hierarchical clustering forms a cluster hierarchy (nested clusters) either in an
agglomerative or divisive manner [91]. Agglomerative hierarchical clustering uses
a bottom-up approach, which starts with each data instance as a cluster and then
recursively merges similar clusters into larger clusters. In contrast, divisive hierar-
chical clustering uses a top-down approach, which starts with all data instances
as one cluster and then recursively splits each cluster into smaller clusters. The
merging or splitting operations in hierarchical clustering can be based on distances,
densities, links, model probabilities, etc. However, once a merging or splitting op-
eration has been completed, it usually cannot be undone even if it was a wrong
decision, which is a drawback of hierarchical clustering [73]. Dedicated surveys
on hierarchical clustering include References [131, 160, 138, 132]. Most hierarchi-
cal clustering algorithms are agglomerative. Representatives include SAHN (1973)
[175], AGNES (1990) [102], BIRCH (1996) [213], CURE (1998) [67], and ROCK
(2000) [68]. Divisive hierarchical clustering algorithms include DIANA (1990) [102]
and DHCC (2012) [200].

Density-based clustering defines clusters as high-density regions separated
by low-density regions [91], where the density is computed as the number of points
within the neighborhood of a given radius. In contrast to partitional clustering
which typically cannot find non-spherical clusters, density-based clustering can find
clusters of arbitrary shapes. Moreover, density-based clustering is usually good at
filtering noise and outliers which have low densities. Dedicated surveys on density-
based clustering include References [105, 29, 20]. Representative algorithms include
DBSCAN (1996) [53], DENCLUE (1998) [84], OPTICS (1999) [12], DENCLUE
2.0 (2007) [83], HDBSCAN (2013) [30], and density peaks clustering (2014) [162].

Distribution-based clustering, a.k.a. model-based clustering or probabilistic
clustering, models the data with a mixture of distributions and defines clusters
as the instances that are most likely to belong to the same distribution [4]. The
user needs to assume a model, e.g. Gaussian mixture model. The parameters of
the model are usually initialized randomly and need to be optimized iteratively to
better fit the dataset. However, the model may converge to a local optimum or
suffer from overfitting. Dedicated surveys on distribution-based clustering include
References [26, 123]. Representative algorithms include EM (1977) [43, 206] and
DBCLASD (1998) [202].

Grid-based clustering divides the data space into a finite number of cells
to form a grid structure in which clustering is then performed according to the
density of each cell [73]. The number of cells is usually significantly smaller than
the number of data instances. A major advantage of grid-based clustering is that it
greatly reduces the computational complexity, because it clusters the neighborhood
around each cell instead of directly clustering all data instances [4]. Dedicated
surveys on grid-based clustering include Reference [36]. Representative algorithms

8



are STING (1997) [193], WaveCluster (1998) [172], and CLIQUE (1998) [5].
Graph-based clustering models the data as a graph and converts the data

clustering problem into the graph partitioning/clustering problem. The data-to-
graph modeling process is crucial to both the quality and the scalability of clus-
tering. The graph partitioning/clustering process groups vertices of the graph into
clusters in such a way that many edges exist within each cluster and relatively
few edges exist between clusters [169]. Dedicated surveys include Reference [169]
on graph clustering, and References [188, 133] on spectral clustering. Represen-
tative algorithms include spectral clustering (2001) [136], PIC (2010) [118], and
Chameleon 2.0 (2019) [17].

Deep learning-based clustering, a.k.a. deep clustering, uses prevalent deep
learning methods to tackle the clustering problem. Essentially, it transforms the
data into more clustering-friendly representations by employing deep neural net-
works, e.g. Autoencoder (AE), Variational Autoencoder (VAE), Generative Adver-
sarial Network (GAN) [125]. Dedicated surveys on deep learning-based clustering
include References [125, 6]. Representative algorithms include DEC (2016) [199],
VaDE (2016) [95], simultaneous deep learning and clustering (2017) [205], and
DEPICT (2017) [63].

Cross-category clustering algorithms include the bisecting k-means (2000)
[176] (partitional and divisive hierarchical), Chameleon (1999) [99] (hierarchical
and graph-based), BHC (2005) [80] (distribution-based and hierarchical), HDB-
SCAN (2013) [30] (hierarchical and density-based), graph clustering based on deep
learning (2014) [182] (graph-based and deep learning-based). Other well-known
clustering algorithms that cannot be categorized in the above way include Support
Vector Clustering (2001) [19] and Affinity Propagation (2007) [61].

Besides, clustering algorithms can also be classified into hard clustering (i.e.
each data instance is assigned to a single cluster) and soft clustering (i.e. each data
instance can belong to multiple clusters, a.k.a. fuzzy clustering) [91]. Dedicated
surveys on soft clustering include References [128, 57].

1.1.2 . Evaluation
The quality or accuracy of the results of a clustering algorithm can be evalu-

ated by various metrics. This evaluation procedure is also known as cluster valid-
ity. Dedicated surveys on this topic include References [189, 161]. According to
whether the evaluation relies on the ground truth clustering (i.e. authentic cluster
labels), the metrics can be divided into external and internal. Let us denote Ce as
the clustering to be evaluated and Cg as the ground truth clustering.

External metrics assume Cg is known and measure how well Ce matches Cg.
They include RI, ARI, MI, AMI, NMI, purity [161], V-measure [163], and Fowlkes-
Mallows index [60]. Here we only explain RI-based and MI-based ones which are
very commonly used in the literature and will also be used in this dissertation.

• Rand Index (RI), Adjusted Rand Index (ARI). RI [159] measures the

9



similarity between Ce and Cg, or it can be regarded as the percentage of
correct decisions made by the algorithm. Assume a positive decision repre-
sents that a pair of instances are grouped into the same cluster, otherwise
it is a negative decision. Assume a true decision represents that a pair of
instances are grouped in the same cluster or separated in different clusters
like in Cg, otherwise it is a false decision. Then RI can be calculated using
the following formula:

RI(Ce, Cg) =
TP + TN

TP + TN + FP + FN
(1.1)

where TP is the number of true positive decisions, TN is the number of
true negative decisions, FP is the number of false positive decisions,
FN is the number of false negative decisions. The range of RI is [0, 1].
A higher RI often indicates a better Ce. However, RI does not guarantee
that a random Ce will get a score close to 0. Moreover, RI is often close to
1 even if Ce differs significantly from Cg !

To avoid such problems, the ARI metric [87] is defined based on RI but
adjusted against chance. It is calculated as follows:

ARI(Ce, Cg) =
RI(Ce, Cg)− E[RI(Ce, Cg)]

max(RI(Ce, Cg))− E[RI(Ce, Cg)]
(1.2)

where E[RI] denotes the expected1 RI, and max(RI) denotes the maximum
RI (i.e. 1 for Ce = Cg). The range of ARI is [−1, 1]. A higher ARI indicates
a better Ce, and a random Ce has an ARI close to 0.

• Mutual Information (MI), Normalized Mutual Information (NMI),
Adjusted Mutual Information (AMI). MI [39] measures the statistical
information shared between Ce and Cg. NMI is normalized MI, with two
slightly different formulations: NMI1 [178] and NMI2 [8]. AMI [187] is
an adjusted version of MI. They are defined as follows, respectively.

MI(Ce, Cg) =

|Ce|∑
i=1

|Cg |∑
j=1

P (i, j) log(
P (i, j)

P (i)P (j)
) (1.3)

NMI1(Ce, Cg) =
MI(Ce, Cg)√
H(Ce)H(Cg)

(1.4)

NMI2(Ce, Cg) =
MI(Ce, Cg)

(H(Ce) +H(Cg))/2
(1.5)

1In probability theory, the expected value (a.k.a. expectation, mean, average) is the
weighted average of all possible outcomes of a random variable. Source: https://en.
wikipedia.org/wiki/Expected_value

10

https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Expected_value


AMI(Ce, Cg) =
MI(Ce, Cg)− E[MI(Ce, Cg)]√
H(Ce)H(Cg)− E[MI(Ce, Cg)]

(1.6)
where |Ce| and |Cg| are the number of clusters in Ce and Cg respectively,
P (i) is the probability that a randomly chosen instance belongs to cluster
i in Ce, P (j) is the probability that a randomly chosen instance belongs to
cluster j in Cg, P (i, j) is the probability that a randomly chosen instance be-
longs to both cluster i in Ce and cluster j in Cg, E[MI] is the expected value
of MI, H(Ce) is the entropy of Ce (i.e. H(Ce) = −

∑|Ce|
i=1 P (i) log(P (i))

[8], where P (i) is the probability that a randomly chosen instance belongs
to cluster i in Ce), H(Cg) is the entropy of Cg. The range of NMI is [0, 1]

(for both NMI1 and NMI2), where 1 means that Ce and Cg are identical
and 0 means that Ce and Cg are independent. Similarly, AMI equals 1 when
Ce and Cg are identical. However, AMI equals 0 means that the mutual
information between Ce and Cg equals the expected mutual information.
Similar to ARI, the AMI of a random Ce is close to 0 (i.e. AMI is adjusted
against chance), however, MI and NMI are not.

Internal metrics do not require the knowledge of Cg and therefore the evalua-
tion is performed based on the clustering itself. They include Silhouette Coefficient
[164], Calinski-Harabasz Index [28], and Davies-Bouldin Index [42]. We do not ex-
plain them more because they will not be used in this dissertation.

In practice, the scikit-learn2 [150] provides fast and easy-to-use APIs for most
of the metrics (external and internal) mentioned above. In our experiments, we use
scikit-learn (version 0.22.2.post1 and version 1.1.1) to compute the scores of ARI,
AMI, and NMI (more precisely NMI2, which is the default option in the versions
of scikit-learn that we use).

1.2 . k-means clustering

1.2.1 . Classical algorithm
The k-means algorithm is one of the most well-known and widely used cluster-

ing algorithms. The essential method used in the k-means algorithm was proposed
independently by several people over time: Hugo Steinhaus in 1956 [177], Stu-
art Lloyd in 1957 (although not published as a journal article until 1982) [121],
Geoffrey H. Ball in 1965 [16], James MacQueen in 1967 [122]. So the k-means
algorithm is also referred to as Lloyd’s algorithm, although the term “k-means”
was first used by James MacQueen.

As stated in Section 1.1.1, the k-means algorithm belongs to partitional clus-
tering. Given a dataset X = {x1, ..., xn} where each instance xi have d dimensions

2https://scikit-learn.org/stable/modules/clustering.html#
clustering-performance-evaluation

11

https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation
https://scikit-learn.org/stable/modules/clustering.html#clustering-performance-evaluation


and the desired number of clusters is kc (kc ≤ n), the k-means algorithm parti-
tions X into kc clusters C = {C1, ..., Ckc} with the objective of minimizing the
sum of within-cluster variances ϕ (i.e. the sum of squared Euclidean distances
between each instance and the centroid of the cluster to which it belongs). The
mathematical formulation is:

argmin
C

kc∑
i=1

∑
x∈Ci

∥ x− µi ∥2 = argmin
C

ϕ (1.7)

where µi is the centroid of Ci, i.e. the mean of instances in Ci. In fact, finding
the optimal solution to the problem 1.7 is NP-hard even for kc = 2 [7]. The k-
means algorithm adopts an iterative refinement approach, as briefly summarized in
Algorithm 1. It first chooses kc instances uniformly at random from the dataset X
as initial cluster centroids (i.e. seeding step). Then the algorithm iterates two steps
which we call: ComputeAssign and Update, until reaching the stopping criterion.

• The ComputeAssign step computes the Euclidean distance between each
instance and each centroid. For each instance, the algorithm compares
the distances3 related to different centroids and assign the instance to the
nearest centroid. In addition, the algorithm tracks the number of instances
that have different cluster labels over two consecutive iterations.

• The Update step calculates the means of all instances that are assigned to
the same centroid and updates the centroids.

• The stopping criterion can be a maximum number of iterations, or a rela-
tively stable result, i.e., when the proportion of data instances that change
labels is below a predefined tolerance.

The time per iteration of the k-means algorithm is O(n · kc · d). The number of
iterations varies with the nature of data, the initial positioning of centroids and
the chosen stopping criterion.

The k-means algorithm is simple and efficient, but it has several drawbacks:
(1) It usually forms spherical or convex clusters even if they do not really exist
[91]; (2) It is sensitive to the initialization of centroids and may converge to local
optima if the initial centroids are not properly chosen [92], actually it can yield
arbitrarily bad clusterings with random initialization [13]; (3) It suffers from the
curse of dimensionality because the Euclidean distance metric will lose sensitivity
in high-dimensional space [89, 46]; (4) It requires the knowledge of kc.

3In practice, we can compute and compare squared Euclidean distances to avoid
square root operations.

12



Algorithm 1: k-means algorithm [122]
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Number of clusters kc
Output: Cluster labels of n data instances

1 Seeding step;
2 repeat
3 ComputeAssign step ;
4 Update step ;
5 until stopping criterion satisfied;

1.2.2 . Better seeding with k-means++
There are many works that address the drawbacks of k-means, e.g. methods

for finding better initial centroids [209, 13, 3], methods for choosing the number
of clusters [71, 154, 126]. In this dissertation, we are particularly interested in
the k-means++ algorithm [13], which was proposed by Arthur and Vassilvitskii in
2006 and has become probably the most well-known and widely used method for
improving the seeding step of k-means.

Algorithm 2: k-means++ algorithm [13]
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Number of clusters kc
Output: Cluster labels of n data instances

1 Seeding step:
1.1 choose the first centroid uniformly at random from X;

1.2 choose an instance x from X with probability D(x)2∑
x∈X D(x)2

as the next
centroid, where D(x) is the shortest distance from an instance x to
the previously chosen centroids;

1.3 repeat Step 1.2 until kc centroids have been chosen.
2 Proceed as with the standard k-means algorithm.

Unlike k-means which simply uses random sampling, k-means++ uses sequen-
tial adaptive sampling in the way that the chosen initial centroids are likely to
be well scattered. Algorithm 2 describes the steps of k-means++. It chooses kc
initial centroids one by one. The first centroid is chosen uniformly at random from
the dataset X. Then from the second centroid to the kc-th centroid, each one
is chosen from the dataset X with probability D(x)2∑

x∈X D(x)2
, where D(x) denotes

the shortest distance between a data instance x and the centroids that have been
chosen previously (i.e. the distance between x and the nearest centroid). There-
fore, an instance farther from the previously chosen centroids has a higher chance

13



of being chosen as the next centroid. This probabilistic sampling way is also re-
ferred to as D2 weighting. The steps after seeding are identical with the k-means
algorithm.

Thanks to careful seeding, the k-means++ algorithm can improve, often sig-
nificantly, both the speed and the accuracy of k-means. In fact, Arthur and Vas-
silvitskii [13] proved that the sum of within-cluster variances ϕ satisfies: E[ϕ] ≤
8(ln kc + 2)ϕOPT , which means k-means++ is O(log kc)-competitive with the
optimal clustering.

1.3 . Spectral clustering

Spectral clustering is a more recent clustering method than k-means. Es-
sentially, it embeds data into the sub-eigenspace of graph Laplacian (where the
cluster-properties in the data is enhanced), and then finds the clusters in the em-
bedded representation (often by k-means). Based on spectral graph theory (see
Section 1.3.1), spectral clustering has several fundamental advantages over k-
means (see Section 1.3.2). However, it also has several disadvantages which need
to be addressed (see Section 1.3.3).

Let us start by briefly reviewing the history of spectral clustering. Broadly
speaking, spectral clustering refers to methods that cluster data instances using
eigenvectors of matrices derived from the data. It is closely related to spectral
graph partitioning, for which the interesting links between spectral and cluster
properties of graphs were first discovered in 1973 by Donath and Hoffman [47],
and Fiedler [58]. Since then, many works have deepened the study on spectral
partitioning and clustering, e.g. References [156, 25, 69, 66]. From 1990s to early
2000s, a number of algorithms [171, 38, 153, 173, 136] for spectral clustering have
been proposed, but they differ in three ways [194, 136]: which matrix to compute,
which eigenvectors to use, how to derive clusters from the chosen eigenvectors.
The version proposed by Shi and Malik [173] in 2000 and the version proposed by
Ng, Jordan, and Weiss [136] in 2001 have gained the most popularity over the last
two decades. They are usually considered as the classical algorithms for spectral
clustering. Meanwhile, spectral clustering has been actively studied in many non-
standard settings. Particularly, Ulrike von Luxburg [188] provided in 2007 a very
nice and comprehensive tutorial on spectral clustering, covering the related graph
theory, algorithms, perspectives, history, practical details, etc. This Section 1.3 is
mainly based on the tutorial [188].

1.3.1 . Theoretical basis and algorithms
Given a set of data instances X = {x1, ..., xn} with xi in Rd and the number

of clusters kc, the goal of clustering is to divide the n instances into kc clusters
according to pairwise similarities, such that instances inside the same clusters are
similar and instances in different clusters are dissimilar. This can be interpreted,
in spectral graph theory, as splitting a graph into kc partitions such that the graph

14



cut is minimized and balanced.
Specifically, let G = (V,E) represent an undirected weighted graph with a

vertex set V = {v1, ..., vn} and an edge set E = {(i, j, wij)}i,j∈1,...,n. Each vertex
vi in the graph G corresponds to the instance xi in the given dataset. The edge
(i, j, wij) (representing the connection between vertices vi and vj with weight wij)
corresponds to the similarity sij between the data instances xi and xj . Note that
wij ≥ 0 and sij ≥ 0. In case of no connection/edge between vi and vj , we have
sij = wij = 0. Therefore, the graph G can be represented algebraically by the
similarity matrix S (a.k.a. affinity matrix or adjacency matrix or kernel matrix in
the literature) defined by

S = [sij ]i,j=1,...,n, with sij =

{
wij , if i ̸= j and (i, j, wij) ∈ E

0, otherwise.
(1.8)

Note that by definition sij = 0 if i = j, i.e. the diagonal elements of the similarity
matrix are always 0. Since the graph is undirected, we have sij = sji and S is
symmetric.

The first step of spectral clustering is to construct the similarity graph and
generate the corresponding similarity matrix. Two things are worth noting as they
can essentially affect the final clustering result. (1) How to measure the distance
or similarity between two instances? There are a number of metrics, such as
Euclidean distance, Gaussian similarity, and cosine similarity. The choice of metric
should depend on the domain the data comes from and no general advice can be
given [188]. The most commonly used metric seems to be the Gaussian similarity
function (see Eq. 1.9), where the Euclidean distance is embedded, the parameter σ
controls the width of neighborhood and the similarity is bound to (0, 1]. However,
the cosine similarity metric (see Eq. 1.10) appears to be more effective for data in
high-dimensional space [89]. (2) How to construct the similarity graph? There
are several common ways, such as full connection, ε-neighborhood and k-nearest
neighbor [188]. The first way generates a dense matrix. The last two ways yield
typically a sparse similarity matrix by setting the similarity sij to 0 if the distance
between instances xi and xj is greater than a threshold (ε) or xj is not among
the nearest neighbors of xi, respectively. However, the k-nearest neighbor seems
more computationally expensive as it requires sorting operations.

Gaussian similarity metric: sij = exp (−
∥xi − xj∥22

2σ2
) (1.9)

Cosine similarity metric: sij =
xi · xj

∥ xi ∥∥ xj ∥
(1.10)

A vertex may have connections with other multiple vertices. The degree of
a vertex vi is defined as degi :=

∑n
j=1wij =

∑n
j=1 sij , and the degree matrix

15



D of graph G is defined as a diagonal matrix with the degrees deg1, ..., degn on
the diagonal. The (unnormalized) graph Laplacian is then defined as L := D − S

and can be further normalized as the symmetric matrix Lsym := D−1/2LD−1/2

or the non symmetric matrix Lrw := D−1L which is closely related to a random
walk [188]. It can be proved[188] that L, Lsym and Lrw are all positive semi-
definite and have n non-negative real eigenvalues with the smallest one being 0.
Particularly, the graph Laplacian does not depends on the diagonal elements of the
similarity matrix and its eigenvalues and eigenvectors (together called eigenpairs)
are associated with many properties of the graph [188].

As mentioned before, clustering on a dataset X corresponds to partitioning a
graph G into kc partitions by finding a minimum balanced cut. Ratio cut and nor-
malized cut are the two most common ways to measure the balanced cut, however
minimizing ratio cut or normalized cut is an NP-hard optimization problem. Fortu-
nately, if we relax one of its constraints, the problem can be approximately solved
through the smallest kc eigenvectors (associated with the smallest kc eigenvalues)
of the unnormalized graph Laplacian (standard eigenproblem) or of the normalized
graph Laplacian (generalized eigenproblem) [188, 135]. In the unnormalized case
we have then

L U = U Σ, (1.11)
where U is the n×kc matrix composed of the kc eigenvectors u1, ..., ukc as columns,
and Σ is the diagonal kc × kc matrix with the kc eigenvalues λ1, ..., λkc on the
diagonal. In order to achieve good clustering in broader cases, it is argued and
advocated [188] to use normalized instead of unnormalized graph Laplacian, and
in the two normalized cases to use Lrw instead of Lsym. Obviously, choosing
a Laplacian matrix and its properties impacts the choice of solvers that can be
used to calculate its eigenvectors (e.g. choosing Lrw will not allow the use of the
dense symmetric eigensolver syevdx in the cuSOLVER library [143]). Solving an
eigenvalue problem has a time complexity of O(n3) in general [203]. The computed
kc eigenvectors can be considered as the embedded representation of the original
n data instances in the kc-dimensional eigenspace of graph Laplacian. Or, each
row of U can be regarded as the embedded representation in Rkc of the original
data instance in Rd with the same row number.

The computed kc eigenvectors are the continuous solution to the above relaxed
problem. To finally get the clustering, it needs to be transformed into a discrete
solution. This is usually undertaken by the k-means algorithm. We just need to
apply the k-means on the embedded representation by considering each row of the
matrix U as a kc-dimensional point, which therefore allows to find kc clusters of
original n data instances. In addition, to further improve the clustering result, it
is customary to scale each row of matrix U to unit length before performing the
k-means.

As summarized in Algorithm 3 and illustrated in Figure 1.1, spectral clustering
involves several data transformation steps. A similarity matrix is first computed

16



Algorithm 3: Spectral clustering algorithm [188]
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Number of clusters kc
Output: Cluster labels of n data instances

1 Construct the similarity graph and generate the similarity matrix S;
2 Derive the graph Laplacian (L, Lsym, or Lrw);
3 Compute the smallest kc eigenvectors of graph Laplacian which form the

columns of the matrix U ;
4 Normalize each row of matrix U to have unit length;
5 Perform the k-means on the points defined by the rows of U .

Figure 1.1: Main computation steps in spectral clustering

to model the connectivity of similarity graph based on the input data. Then
a Laplacian matrix is deduced, highlighting some information about the graph
topology and the desired clustering. Eigenvectors are extracted, transcribing the
information from the Laplacian matrix and allowing to form a n×kc matrix where
the n input data are encoded in the eigenspace of the first kc eigenvectors. In
this space, a simple k-means can then group the input data into kc clusters.
Therefore, spectral clustering may also be regarded as the combination of a heavy
preprocessing step (including main computations) and a classical k-means step.

1.3.2 . Advantages
Spectral clustering has several important advantages:

1. It does not make strong assumptions on the form of clusters [188]. Con-
trary to k-means and k-means++ clustering which can only form convex
clusters, spectral clustering can also discover non-convex or linearly non-
separable clusters and is more likely to find the global minimum owing to
the embedding step. Examples are shown in Figure 1.2.

2. As the embedding step projects data from Rd to Rkc , it can play a role of
dimensionality reduction for high-dimensional data that has d dimensions
and kc clusters with d > kc, which will benefit the following k-means step.

17



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.2: k-means++ (left: a, c, e, g) vs. spectral clustering (right: b, d,
f, h) on four datasets (Spirals, Smile2, Aggregation, Complex9)

3. Spectral clustering algorithms have the potential to be efficiently imple-
mented on HPC platforms because they require substantial linear algebra

18



computations which can be processed using existing libraries.

4. When kc is unknown, the eigenvalues and eigenvectors calculated in spectral
clustering can be exploited to estimate the natural kc [188, 210, 198].

1.3.3 . Drawbacks and approaches for improvement
Although spectral clustering is attractive with the advantages mentioned in

Section 1.3.2, its classical algorithms have three serious disadvantages: (1) scal-
ability challenge; (2) importance and difficulty in tuning several parameters; (3)
sensitivity to noise and outliers. In the following we explain each of them and
summarize the existing approaches to address them. This dissertation will mainly
focus on solving the scalability challenge of spectral clustering, while additionally
we will address the noise sensitivity problem by proposing a noise filtering algorithm
in Chapter 4.

Scalability challenge

The time complexity4 of classical spectral clustering algorithms is O(n3) [203],
mainly due to the construction of the similarity matrix (O(n2d)) and the calcu-
lation of eigenvectors (O(n3) when using direct methods). Moreover, storing the
similarity matrix and the graph Laplacian matrix requires O(n2) memory space.
Therefore, the high complexities in terms of number of operations and memory
space requirements lead to a great challenge when processing large datasets with
spectral clustering.

We surveyed existing methods for addressing this scalability issue and broadly
classify them into the following two classes.

• Reduce the time and space complexities using approximation, a.k.a.
Approximate Spectral Clustering. The basic idea is to first solve the
clustering problem for a relatively small subset of data and then extrapolate
the solution to the entire dataset by approximation. By doing this, one
can avoid the expensive construction and eigendecomposition of the original
n × n matrices. Popular approximation methods include Nyström-based
[59], representative-based [203], landmark-based [34], and EFM-based [79]
methods. We will introduce them in more detail in Section 1.4.

• Accelerate spectral clustering using parallel and distributed comput-
ing, a.k.a. Parallel Spectral Clustering. Modern parallel and distributed
architectures provide powerful computing capabilities. With efficient parallel
implementations on these architectures, algorithms can often be accelerated
considerably, e.g. by tens to hundreds of times or even more. We will review
the related works on parallel spectral clustering in Section 1.5.

4People in different domains may have different understandings of the term “time
complexity”. In this dissertation, we consider it as the number of operations required by
an algorithm.

19



Importance and difficulty in tuning several parameters

The proper functioning of classical spectral clustering algorithms relies on the
appropriate setting of several parameters5, such as the number of clusters kc, and
connectivity parameters ε, k, σ for similarity graph construction (see Section 1.3.1).
These parameters are usually not easy to tune.

The number of clusters kc is required as input in spectral clustering. How-
ever, for datasets for which we know little about their distribution or characteristics,
it would be difficult to know kc in advance. There are many methods that can be
used to automatically determine kc for spectral clustering. They can be roughly
divided into two categories: (1) generic methods that can be used for any cluster-
ing algorithm, e.g. based on evaluating cluster validity indexes (e.g. gap heuristic
[183], data depth difference [149]), based on deep learning [51]; (2) methods dedi-
cated to spectral clustering, e.g. based on analyzing eigenvalues [188, 148], based
on analyzing eigenvectors [210, 198]. In case of generic methods, a wide variety
of cluster validity indices for determining kc have been implemented in several R
packages such as cclust [45], clusterSim [190], NbClust [32].

Here we introduce a simple and interesting method based on analyzing eigen-
values [188]. Considering the eigenvalues of a matrix in ascending order (λ1 ≤
... ≤ λn), the eigengap (also called spectral gap) is defined as γk = |λk − λk+1|.
Uniquely for spectral clustering, there exists an eigengap heuristic for determining
kc: for a dataset with kc distinctly separated clusters, the smallest kc eigenvalues
λ1, ..., λkc of its associated graph Laplacian matrix (L, Lsym or Lrw, see Sec-
tion 1.3.1) are close to 0, but the (kc + 1)-th eigenvalue λkc+1 is distinctly larger
than 0. An example of such eigengap heuristic is shown in Figure 1.3 (a). However,
the eigengap heuristic is less effective when the clusters are not well separated, e.g.
more noisy or overlapping clusters in Figure 1.3 (b), as in that case all eigengaps
tend to be approximately the same and it would be more difficult to detect the
number of clusters.

In 2007, Von Luxburg [188] summarized some theoretical results and gave some
rules of thumb regarding choosing the values for connectivity parameters (e.g. k
for k-nearest neighbor graph, ε for ε-neighborhood graph, σ for Gaussian similarity
function). Essentially, it is suggested that the connectivity parameters should be
chosen such that the constructed similarity graph is connected, or is composed of
only few connected components. To guarantee such connectivity in the limit of
sample size n→∞, k should be chosen in the order of log(n), ε should be chosen
as (log(n)/n)d. However, these theoretical results may not work on a finite sample.
Another way to achieve a safely connected ε-neighborhood graph is to choose ε as
the longest edge length in a minimal spanning tree of the fully connected graph.
However, ε will be chosen too large if the data contains outliers or contains several
tight and significantly separated clusters. For the Gaussian similarity function,

5In fact, this is also a common issue for many machine learning algorithms.

20



(a) On the S1 set with 15 clusters

(b) On the S4 set with 15 clusters

Figure 1.3: Success and failure of the eigengap heuristic on S-sets

the rules of thumb are to choose σ in the order of the average of k-th nearest
neighbor distance where k is chosen in the order of log(n), or to choose σ = ε

where ε is determined by the minimal spanning tree heuristic. Nonetheless, the
above suggestions and rules of thumb might not work at all depending on the data
distribution [188]. In 2004, Zelnik-Manor and Perona [210] proposed to compute a
local scaling parameter σi for each data instance xi instead of using a single σ for
all instances. The similarity between a pair of instances can then be formulated as
sij = exp(−dist2(xi,xj)

σiσj
). The parameter σi can be chosen as the distance between

instance xi and its k-th nearest neighbor xk, i.e. σi = dist(xi, xk). The interest
of local scaling is that it can capture the respective neighborhood information of
data instances and therefore the resulting spectral clustering can handle data of
multiple scales/densities. However, local scaling can be computationally expensive
and introduces another parameter k. Other related works on the tuning of σ

include [129, 130].

Sensitivity to noise and outliers

Classical algorithms of spectral clustering often fail to achieve satisfactory cluster-
ing on noisy data, mainly because the block structure of the similarity matrix is
destroyed by noise [117]. Besides, Hennig et al. [81] strongly recommended that
outliers should be detected and removed before performing eigendecomposition
in spectral clustering, because outliers would introduce spurious information into

21



eigenvalues and eigenvectors. Note that the two terms “noise” and “outlier” are
often used imprecisely and interchangeably in the literature.

Many methods have been proposed for noise or outlier robust spectral cluster-
ing. In 2007, Li et al. [117] used a data warping model to map data into a new
space where each cluster becomes more compact and different clusters (including
the noise cluster formed by noise points) become well separated. Then spectral
clustering is applied in the new space. In 2015, Hennig et al. [81] suggested that
the easiest way to eliminate outliers is by removing all points whose corresponding
vertex degrees are under a small threshold w.r.t. the average degree. In 2017, Ina
et al. [89] discovered mathematically and confirmed experimentally that outliers
can form a cluster during the process of spectral clustering if the outlier cluster
is counted into the number of clusters kc. Essentially, this is because similarities
between outliers have a low variance. After eigendecomposition of the graph Lapla-
cian, all outliers will have similar coefficients of the first kc eigenvectors, and thus
tend to form a cluster. Their experiments further indicated that the more outliers
the data contain, the more stable the outlier cluster formation. Based on the idea
that the similarity graph can be decomposed into clean data and sparse corrup-
tions, Bojchevski et al. [24] proposed to jointly learn the latent corruptions and
the spectral embedding of clean data to improve spectral clustering performance
on noisy data. Other related works include References [15, 195].

1.4 . Approximate spectral clustering

Following the indication in Section 1.3.3, we introduce some influential methods
for (non-parallel) approximate spectral clustering.

Nyström-based approximation

The Nyström method was initially proposed by E. J. Nyström in 1928 [146] for
finding numerical approximations to integral equations. It can also be used to
efficiently generate a low-rank approximation of a matrix from a sampled subset
of matrix columns [107].

In 2004, Fowlkes et al. [59] applied the Nyström method to spectral cluster-
ing. Essentially, they randomly choose m samples from the dataset, compute the
similarities between the m samples and all n data instances to form a narrow strip
of the full similarity matrix, then use the Nyström method to approximate the full
similarity matrix S and the leading eigenvectors of D−1/2SD−1/2. The time and
memory space complexities are thus substantially reduced to O(n ·m2) +O(m3)

and O(n · m), respectively [111]. However, the work of Fowlkes et al. [59] has
several drawbacks according to Reference [203]: (1) the random sampling does
not incorporate any information about the similarity matrix; (2) the work does not
provide theoretical guarantees of performance (although an empirical quantitative
analysis of performance is provided); (3) the working memory requirements can

22



still be high, e.g. 6GB for data of size n = 105, 17GB for data of size n = 106; (4)
if the dataset is unbalanced, small clusters may be missed and numerical stability
problems may occur.

In 2010, Zhang and Kwok [212] analyzed how the choice of landmark points
(i.e. samples) affect the approximation quality of the Nyström method, and based
on their error analysis, they proposed to use the k-means clustering centers as
the landmark points. In 2011, Li et al. [111] further reduced the time and mem-
ory space complexities of Nyström-based spectral clustering by directly computing
a rank-k approximation of D−1/2SD−1/2 and avoiding storing the sampled sim-
ilarity matrix. In 2012, Kumar, Mohri, and Talwalkar [107] analyzed a variety
of fixed and adaptive sampling techniques for the Nyström method and found
experimentally that the k-means algorithm was the state-of-the-art adaptive sam-
pling technique, producing the most accurate approximations in nearly all settings
while taking about the same time as other adaptive techniques. Nevertheless, the
k-means-based sampling is more expensive than random sampling and will be time-
consuming if the data size or the sample size is large. In 2013, Choromanska et al.
[37] applied the Nyström approximation to the normalized graph Laplacian matrix
Lsym for fast spectral clustering and provided performance guarantees through
theoretical analysis.

Representative-based approximation

In 2009, Yan, Huang, and Jordan [203] proposed a general framework6 for fast
approximate spectral clustering, in which a preprocessor first reduces the data to
a relatively small number of representative points (data reduction/preprocessing
step), then spectral clustering is performed on the representatives, and finally the
original data points are assigned cluster memberships based on the representatives.
Through a theoretical analysis that establishes a quantitative relationship between
the distortion in the input and the mis-clustering rate in the output, the authors
argued that the goal of a preprocessor should be to minimize distortion so that the
effect of data reduction on spectral clustering is minimized. The authors provided
two examples of such preprocessors: the first is the classical k-means algorithm, the
second is the random projection tree. They showed experimentally that their fast
approximate spectral clustering algorithms can achieve significant speedups with
little degradation in clustering accuracy compared to classical spectral clustering
algorithms, and their algorithms run several times faster than Nyström-based ap-
proximate spectral clustering, with comparable accuracy and significantly smaller
memory footprint.

6The authors admitted that their approach is not fundamentally new since using pre-
processing techniques to overcome computational bottlenecks is a tradition in the data
mining community.

23



Landmark-based approximation

Inspired by the works on sparse coding [110] and large graph construction [120],
Chen and Cai [34] proposed in 2011 a scalable spectral clustering method, called
Landmark-based Spectral Clustering (LSC). It first generates p (p≪ n) landmark
points (i.e. representatives) using random sampling or the k-means algorithm,
and builds a p × n sparse representation matrix Z to represent the original n

data points as the linear combinations of the p landmarks. Then it performs the
eigendecomposition on the landmark-based representation ZZT to get the first kc
eigenvectors (denoted by A ∈ Rp×kc) and finally derives the first kc eigenvectors
of ZTZ (i.e. n × n similarity matrix) from A. Their experiments showed that
compared to original spectral clustering, LSC can reduce significantly the running
time with comparable and sometimes even better clustering accuracy.

EFM-based approximation

In 2018, He et al. [79] proposed a fast spectral clustering method via Explicit
Feature Mapping (EFM), named FastESC, which reduces the complexity of classical
spectral clustering algorithms in a different manner than Nyström-based methods.
FastESC first employs random Fourier features to explicitly represent data in kernel
space (i.e. EFM). Let Y denote the kernel mapped data with dimension dm
(dm ≪ n), K = Y TY denote the n × n kernel matrix, J = Y Y T denote the
dm×dm matrix. Then, similarly to LSC, FastESC builds J and solves the eigenvalue
problem of J (instead of building K and running eigendecomposition on K), and
finally approximate eigenvectors of K by those from J using a correlation equation.
Their experiments showed that, with a large enough dm, FastESC can achieve
similar clustering accuracy to Nyström methods while running two times faster.

Summary

Finally, we point out that there are still many other methods that we have not
covered here, e.g. References [174, 18, 167, 192, 152, 119, 186, 115, 113, 35, 196].
In 2020, Tremblay and Loukas [185] reviewed existing sampling-based methods
for approximate spectral clustering, focusing particularly on their approximation
guarantees. Interestingly, they concluded that: “the most scalable methods are only
intuitively motivated or loosely controlled, whereas those that come with end-to-
end guarantees rely on strong assumptions or enable a limited gain of computation
time.”

1.5 . Parallel spectral clustering

From the hardware side, there are various parallel and distributed architectures,
such as multi-core CPU architectures, many-core GPU architectures, CPU-GPU

24



heterogeneous architectures, multi-CPU architectures, multi-GPU architectures,
FPGA architectures, computer clusters, and supercomputers. From the software
side, various parallel programming models/languages are available, such as POSIX
threads, OpenMP, CUDA, OpenACC, MPI, MapReduce, and Julia.

In this dissertation, we will parallelize spectral clustering on GPU architectures
and CPU-GPU heterogeneous architectures (see objectives in Section 1.6) using
OpenMP and CUDA programming models. Parallelization of spectral clustering
on other architectures or using other programming models can be found in, e.g.
References [33, 96, 204, 88]. A survey on parallelization of various clustering
methods can be found in Reference [41].

1.5.1 . Strengths and challenges of CPU vs. GPU
Modern CPU architectures

Modern CPU architectures feature several levels of parallelism: a CPU can have
multiple processors, each processor has multiple physical cores (dozens at most),
each physical core has several Arithmetic Logic Units (ALUs). Moreover, each
physical core can typically be virtualized as two logical cores which share the vector
units and the cache memory, so the operating system can run simultaneously two
threads on each physical core. The parallelism among vector units is usually referred
to as SIMD (Singe Instruction Multiple Data), which can be realized by explicit
vectorization using intrinsics [90], or by the compiler’s auto-vectorization. However,
in order to enable auto-vectorization, we need to be careful that the code is written
in a way that facilitates the compiler to achieve vectorization, and the pertinent
compilation flags are specified (e.g. -O3/-Ofast, -march=native). The
parallelism among multiple cores is realized by multithreading using, e.g. POSIX
threads [27], OpenMP [147], or by multiprocessing using, e.g. MPI [124].

Besides the hierarchy of computing resources, modern CPU architectures also
have a memory hierarchy: registers→ L1 cache→ L2 cache→ L3 cache→ RAM
→ hard disk. They are listed in descending order of memory access speed, and
in ascending order of memory size. Each core has and accesses its own registers
and L1 cache (on-chip memory), while multiple cores per processor share the L2
cache (on-chip memory) and L3 cache (when it exists). For best performance,
programs should maximize cache utilization and minimize cache misses. All cores
of all processors share RAM and hard disk (a.k.a. shared memory model), but
there is a problem called NUMA effect (Non-Uniform Memory Access): for each
processor, the time to access data in the RAM attached to another processor is
much longer than the time to access data in the RAM attached to itself. Therefore,
the relative location of data and threads has an impact on program performance.

As can be seen, developing efficient code on modern CPUs is not easy. It
requires special care and various optimizations.

25



Modern GPU architectures

A GPU (short for Graphics Processing Unit) is a type of computer hardware spe-
cialized in processing graphics and images, acting as a coprocessor or device to
a CPU. Modern GPUs7 feature massively parallel architectures and are especially
suited to large fine-grained parallel problems. Therefore, modern GPUs can also
be used for GPGPU (short for General-purpose computing on GPUs) and can be
regarded as accelerators for CPUs. The microarchitecture of NVIDIA GPUs have
been continuously evolving over time, but some fundamental features remain.

An NVIDIA GPU consists of a number of Stream Multiprocessors (SMs). Each
SM usually has 32 or 64 processing units called CUDA cores. Basically, a GPU
SM can be compared to a CPU core, and a CUDA core can be compared to a
CPU ALU. A modern GPU usually has tens of SMs, resulting in thousands of
CUDA cores. Recent NVIDIA GPUs also have Tensor cores, which are hardware
implementations of matrix operators and enable mixed-precision computing. In
terms of memory, GPUs have a similar hierarchy to CPUs. Each SM has its own
registers, shared memory, and cache (shared memory is a programmable L1 cache).
They all have much faster access speed and much smaller size than GPU global
memory which is shared by all SMs. Nevertheless, GPU global memory usually
have several times higher peak bandwidth and several times smaller size than CPU
RAM. The CPU and GPU can communicate across a standard PCIe or a fast
NVLink, but the bandwidth is still much lower than RAM access speed. Therefore,
programs should minimize data transfers between CPU and GPU. Besides, GPUs
also have other special-purpose memory, including local memory, constant memory,
and texture memory.

GPGPU programming interfaces include CUDA, OpenACC, OpenCL, OpenMP,
and Julia. The most influential one is CUDA (short for Compute Unified Device
Architecture) [141]. NVIDIA has been actively developing, extending, and enriching
the CUDA framework since its initial release in 2007. CUDA can support running
hundreds of thousands of threads on modern GPUs. These threads are organized
into grids, blocks, and warps in descending order. A warp typically consists of 32
consecutive threads running on 32 consecutive CUDA cores of a SM, which is called
the SIMT (Single Instruction Multiple Threads) execution model. A block usually
consists of multiple warps of threads, but is typically limited to 1024 threads.
Similarly, a grid usually consists of multiple blocks of threads. Both blocks and
grids can have one to three dimensions (X, Y, Z). Depending on GPU architectures,
there are different characteristics of hardware resources and different constraints
on thread programming. A scheduler is responsible for scheduling warps and blocks
to run on SMs. Threads within the same block can communicate with each other
through the shared memory of that block, while threads from different blocks can

7We mainly refer to NVIDIA GPUs as NVIDIA is the leading GPU company and
provides a rich development environment for GPU programming.

26



only communicate through GPU global memory.
As can be seen, CUDA programming on GPU is complicated. It is an art to

take full advantage of the GPU while respecting various constraints. The CUDA
C++ Best Practices Guide [140] provides a nice tutorial to help GPGPU develop-
ers achieve the best performance from NVIDIA GPUs. It presents various paral-
lelization and optimization techniques, such as memory optimizations, execution
configuration optimizations, and instruction optimizations.

CPU vs. GPU

To summarize, the CPU can run a few dozen heavy threads in parallel, while the
GPU can run thousands of light threads in parallel and achieve a higher overall
instruction rate and memory bandwidth. Thus, the GPU is specialized for large fine-
grained parallel computations. Due to the high computation cost of constructing
the similarity matrix and computing the eigenvectors, it appears more interesting
to exploit the massively parallel nature of the GPU. However, the GPU has limited
global memory (at most tens of GB). How to store the memory-demanding sim-
ilarity matrix and the graph Laplacian matrix on the GPU remains an important
concern.

1.5.2 . GPU-accelerated spectral clustering
This section introduces the related works on GPU-accelerated spectral cluster-

ing and graph partitioning, and the existing works on the parallel implementation
related to the three constituent steps of spectral clustering (i.e. similarity graph
construction, partial eigendecomposition, and final k-means clustering).

GPU-accelerated spectral clustering and graph partitioning

The first paper that we found on this topic [215] was published in 2008, shortly
after CUDA came out. It parallelizes spectral clustering algorithm on multi-core
CPU and on GPU. However, their GPU implementation cannot scale to large
datasets because dense matrices are constructed and stored on GPU. In fact, their
benchmark datasets contain only thousands of instances.

Then, an example of video segmentation through spectral clustering in pixel
level has been implemented on a cluster of GPUs [179], but unfortunately the
authors introduced too briefly their parallelization details and did not give perfor-
mance analysis of their parallel implementation.

Another work [97] proposes a parallel implementation for spectral clustering on
CPU-GPU hybrid platforms. It constructs a sparse representation of the similarity
graph, but it assumes the neighborhood information is given beforehand by an edge
list, which facilitates the construction process. Their benchmark datasets are of
medium size, with n at most in the order of 105. Besides, speedup limitations are
reported for the eigen-decomposition step.

27



NVIDIA has developed efficient implementations of spectral graph partitioning
on the GPU [135, 56, 55], and released the products in the nvGRAPH library [139]
and RAPIDS cuGraph library [181]. However, since these works are oriented to
graph analytics, they typically assume the edge list or the adjacency list of a graph
is available, thus do not consider the graph construction process which would take
O(n2d) arithmetical operations in the general sense of spectral clustering.

Similarity graph/matrix construction on GPU

To the best of our knowledge, most existing works on graph construction [48,
70, 10, 11] target k-nearest neighbor graph. We found a single work [97] on the
construction of ε-neighborhood graph in sparse format on the GPU. It constructs
sparse similarity matrix in Coordinate (COO) format but on the assumption that the
neighborhood information is given by an edge list. However, in data clustering, it is
generally assumed that the neighborhood information is not available in advance.
Consequently, similarity matrix construction becomes harder especially in sparse
format (see Section 3.3).

Interestingly, in the literature we identified a close connection between similarity
graph/matrix construction and another field called similarity search [9] or similarity
query [157]. However, again most studies in the field concern k-nearest neighbor
search [158, 114, 112, 214, 65].

Partial eigendecomposition on GPU

Based on the work [180] that Nicolas Sylvestre did during his master internship
under our direction, we briefly summarize three well-known methods for the cal-
culation of the first few eigenpairs of a matrix. They include new matrix trans-
formations to facilitate the eigenvectors extraction and are not specific to spectral
clustering.

• Arnoldi’s method [166]: it takes any input matrix (like L, Lsym or Lrw,
see Section 1.3.1) and transforms it into an Hessenberg matrix, then calls
an eigensolver (usually based on the QR algorithm). This is a generic but
computationally expensive method.

• Lanczos method [166]: similar to Arnoldi’s method but requires a real and
symmetric (or Hermitian) input matrix (like L or Lsym) which is transformed
into a tridiagonal matrix, before calling an eigensolver (like QR). It is con-
sidered as an efficient method but it suffers from numerical instabilities and
cannot handle eigenvalues with multiplicity (which often happens in spectral
clustering) [135].

• LOBPCG method [104]: requires a symmetric input matrix (like L or Lsym)
or a pair of matrices with one symmetric and one symmetric positive def-
inite (like (L,D)), then starts extracting the smallest kc eigenpairs. The

28



LOBPCG method performs some transformations of the matrices and calls
other eigensolvers on smaller internal submatrices. LOBPCG is more recent
(released in 2000) than the previous two methods. Compared to Lanczos
method, LOBPCG can handle eigenvalues with multiplicity and is more sta-
ble numerically. [135].

Implementations of these methods exist in different libraries. They require input
matrices in dense or sparse format and are sometimes improved to be more robust
to numerical instabilities. Mainly interested in GPU-accelerated implementations
for large sparse matrices, we have surveyed the sparse eigensolvers of several GPU-
accelerated libraries including cuSOLVER8, nvGRAPH9, cuGraph10, MAGMA11,
AmgX12, and ViennaCL13. Table 1.1 summarizes our survey results from different
aspects.

The cuSOLVER library [143] is a GPU-accelerated library from NVIDIA provid-
ing LAPACK-like features (decompositions and linear system solutions) for both
dense and sparse matrices. Based on the cuBLAS and cuSPARSE libraries, the cu-
SOLVER library contains several dense eigensolvers (e.g. gesvd, syevd, syevdx,
syevj) and one sparse eigensolver (csreigvsi). As will be explained in Sec-
tion 3.2.2, the syevdx eigensolver is the most appropriate for the computation
of the smallest kc eigenvectors regarding a symmetric Laplacian matrix stored in
dense format. The sole sparse eigensolver csreigvsi is dedicated to sparse
matrices defined in CSR storage format. However, it solves the simple eigenvalue
problem by shift-inverse power method which requires an initial guess of eigenvalue
and calculates only one eigenpair at a time. Thus it appears unsuitable for our
need to automatically find the first few eigenpairs.

The nvGRAPH library [139] is dedicated to graph analytics with a set of graph
algorithms optimized for the GPU. It was first released in 2017 with NVIDIA CUDA
8.0. The library contains three eigensolver-embedded (specifically Lanczos solver
and LOBPCG solver) algorithms for spectral graph partitioning, which can satisfy
our need. We will show in Section 3.4 the usage of these algorithms. However,
since the last release in November 2019 with CUDA 10.2, NVIDIA does not actively
develop the nvGRAPH product any more although the legacy version is still avail-
able14. We found in practice that the nvGRAPH library is backed by the cuBLAS,
cuSPARSE and cuSOLVER libraries, because with more recent versions of CUDA
we always encounter compilation warnings indicating that older versions of the
backing libraries needed by nvGRAPH may conflict with more recent versions of
those libraries. In place of nvGRAPH, NVIDIA has been actively developing the

8https://docs.nvidia.com/cuda/cusolver/index.html9https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf10https://github.com/rapidsai/cugraph11https://icl.utk.edu/magma/index.html12https://github.com/NVIDIA/AMGX13http://viennacl.sourceforge.net14https://github.com/rapidsai/nvgraph

29

https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf
https://github.com/rapidsai/cugraph
https://icl.utk.edu/magma/index.html
https://github.com/NVIDIA/AMGX
http://viennacl.sourceforge.net
https://github.com/rapidsai/nvgraph


Ta
bl

e
1.

1:
In

ve
st

ig
at

io
n

of
so

m
e

G
P
U

-a
cc

el
er

at
ed

lib
ra

rie
s

w
ith

ei
ge

ns
ol

ve
rs

cu
SO

LV
E
R

nv
G

R
A

P
H

cu
G

ra
ph

M
A
G

M
A

A
m

gX
V

ie
nn

aC
L

A
pp

lic
at

io
n

fie
ld

Li
ne

ar
al

ge
br

a
G

ra
ph

an
al

yt
ic

s
G

ra
ph

an
al

yt
ic

s
Li

ne
ar

al
ge

br
a

So
lv

er
Li

ne
ar

al
ge

br
a

So
ur

ce
N

V
ID

IA
N

V
ID

IA
N

V
ID

IA
P
ub

lic
do

m
ai

n
N

V
ID

IA
P
ub

lic
do

m
ai

n

La
st

re
le

as
e

un
ti
lF

eb
.

20
22

C
U

D
A

11
.6

in
Ja

n.
20

22
C
U

D
A

10
.2

in
N

ov
.

20
19

R
A

P
ID

S
22

.0
2

in
Fe

b.
20

22
M

A
G

M
A

2.
5.

4
in

O
ct

.
20

20
A

M
G

X
v2

.2
.0

in
A

pr
.

20
21

V
ie

nn
aC

L
1.

7.
1

in
Ja

n.
20

16

O
rie

nt
ed

ar
ch

it
ec

tu
re

s

Si
ng

le
G

P
U

,
si
ng

le
no

de
m

ul
ti-

G
P
U

Si
ng

le
G

P
U

Si
ng

le
G

P
U

,
m

ul
ti-

G
P
U

M
ul

tic
or

e
+

m
ul

ti-
G

P
U

hy
br

id
sy

st
em

s

Si
ng

le
G

P
U

,
m

ul
ti-

G
P
U

M
an

y-
co

re
ar

ch
ite

ct
ur

es
(G

P
U

s,
M

IC
),

m
ul

ti-
co

re
C
P
U

s

Su
pp

or
te

d
la

ng
ua

ge
s

C
U

D
A

C
U

D
A

P
yt

ho
n

(e
nc

ou
ra

ge
d)

,
C
+

+
C
U

D
A

,
H

IP
C

C
U

D
A

,
O

pe
nC

L,
O

pe
nM

P

E
ig

en
so

lv
er

s

D
en

se
so

lv
er

s:
Q

R
,J

ac
ob

i,
...

Sp
ar

se
so

lv
er

:
sh

ift
-in

ve
rs

e
po

w
er

ite
ra

tio
n

La
nc

zo
s,

LO
B

P
C
G

La
nc

zo
s

D
en

se
so

lv
er

s:
Q

R
,

di
vi

de
-a

nd
-

co
nq

ue
r,

...
Sp

ar
se

so
lv

er
:

LO
B

P
C
G

Po
w
er

ite
ra

tio
n,

su
bs

pa
ce

ite
ra

tio
n,

A
rn

ol
di

,
La

nc
zo

s,
LO

B
P
C
G

,.
..

Po
w
er

ite
ra

tio
n,

La
nc

zo
s

O
ur

te
st

s
on

ei
ge

ns
ol

ve
rs

Ye
s

Ye
s

Ye
s

Ye
s

N
ot

ye
t

N
ot

ye
t

30



cuGraph library for a few years. It is very similar to the nvGRAPH library as it
contains most nvGRAPH algorithms (including only two graph partitioning algo-
rithms). However, the nvGRAPH is used in the CUDA environment while the
cuGraph, as part of RAPIDS [181], is mainly used through Python interfaces with
CUDA source code hidden behind. Despite this fact, we have built with efforts
the cuGraph library (version associated with CUDA 11.5) from source15 on our
machine, and we succeeded in using the C++/CUDA API of cuGraph’s graph
partitioning algorithms. However, according to our experiments we found that
the LOBPCG-eigensolver-embedded algorithm that exists in nvGRAPH seems to
be missing in cuGraph, which is adverse for our use. So we conclude that the
nvGRAPH library fits better our need than the current cuGraph library.

The MAGMA library [184] is a public domain linear algebra library optimized
for “multi-core + multi-GPU” hybrid architectures. It contains a variety of dense
eigensolvers and one sparse eigensolver. We did not try the dense eigensolvers of
MAGMA because the cuSOLVER library already satisfies our need and we focus
more on the eigenvalue problem of large sparse matrices. The sole sparse eigen-
solver of MAGMA is a GPU implementation of the LOBPCG method. We tried it
(with MAGMA 2.5.4 installed) to calculate the eigenvectors of the graph Laplacian
matrix, but unfortunately we were blocked by a “floating point exception” error.

The Algebraic Multigrid Solver (AmgX) library [134] is a GPU-accelerated core
solver library from NVIDIA that accelerates computationally intense linear solver
portion of simulations. It possesses multiple eigensolvers such as power iteration
solver, subspace iteration solver, Arnoldi solver, Lanczos solver, LOBPCG solver,
etc. The ViennaCL library [165] is an open-source linear algebra library designed
for many-core architectures (GPUs, MIC) and multi-core CPUs. It includes eigen-
solvers based on power iteration and Lanczos methods.

We have yet to test the eigensolvers of AmgX and ViennaCL libraries for spec-
tral clustering but it would be interesting as future work. In this dissertation we will
mainly rely on the sparse eigensolvers embedded in nvGRAPH’s graph partitioning
algorithms.

Final parallel k-means

Recall that the k-means algorithm has a time complexity of O(n · kc · d · nbIters)
(see Section 1.2.1), which is usually much smaller than the time complexities of
similarity matrix construction and partial eigendecomposition. Nonetheless, it can
still be time-consuming if any element of O(n ·kc ·d ·nbIters) becomes very large.
This can be addressed by designing efficient parallel implementations.

There are a large number of works on the parallelization of the k-means algo-
rithm on different platforms. We mainly surveyed those published in recent years

15https://github.com/rapidsai/cugraph/blob/branch-22.04/
SOURCEBUILD.md

31

https://github.com/rapidsai/cugraph/blob/branch-22.04/SOURCEBUILD.md
https://github.com/rapidsai/cugraph/blob/branch-22.04/SOURCEBUILD.md


and meanwhile related to CPU and GPU. For example, in 2015, Bhimani, Leeser,
and Mi [22] parallelized k-means on three different platforms: shared memory using
OpenMP, distributed memory using MPI, and CPU-GPU heterogeneous platform
using CUDA. However, their OpenMP implementation only parallelizes the Com-
puteAssign step, leaving the Update step sequential; their CUDA implementation
involves many transfers between CPU and GPU during the k-means iterations,
which is generally recommended to be avoided in best practice. In 2017, Böhm,
Perdacher, and Plant [23] proposed a highly optimized parallel implementation of
k-means on multi-core CPU, named Multi-core K-Means (MKM), which is multi-
threaded with OpenMP and explicitly vectorized using intrinsics. In 2019, Cuomo
et al. [40] proposed a GPU-accelerated implementation of the k-means algorithm
aimed at clustering large datasets. However, their implementation performs the
ComputeAssign step on GPU while conducting the Update step on CPU, causing
many data transfers between CPU and GPU at each iteration (similar to [22]).
Other CPU and GPU implementations for k-means can be found in, e.g. Refer-
ences [109, 106].

1.6 . Objectives

Motivated by k-means-based approximate spectral clustering [203] and emerg-
ing heterogeneous computing [197], we propose a completely parallel processing
chain for large-scale approximate spectral clustering on CPU-GPU heterogeneous
architectures, as shown in Figure 1.4. The purpose of this dissertation is the
efficient parallelization of this complete chain.

Figure 1.4: Data flow of a CPU-GPU parallel processing chain for
large-scale approximate spectral clustering

• The first step of the data flow (upper left part) allows to reduce significantly
the volume of data for subsequent intensive computations, extracting kr
representatives from n data instances. Each instance is then attached to
its nearest representative. The k-means algorithm appears an interesting
method to achieve this goal, with limited impact on final clustering quality

32



[203]. However, determining an appropriate kr on unknown data requires
some experiments.

• Then the kr representatives are transferred from CPU to GPU and the
spectral clustering algorithm is performed on GPU on these representatives
to find the kc clusters (right part). Typically, we have kc ≪ kr ≪ n. The
eigenvector computations can be performed using existing GPU libraries, e.g.
cuSOLVER [143], nvGRAPH [139].

• The clustering result for the kr representatives is then sent back to CPU,
and finally we set the cluster labels of n data instances according to the
attachment relationships in the first step (bottom left part).

Note that the input dataset may require more memory space than the GPU RAM
and the extraction of representatives consumes even more memory, this should be
done on the CPU rather than the GPU. Moreover, as shown in Step 3 in Figure 1.4,
adopting representatives approach does not prevent the use of heuristic methods
for kc estimation (e.g. based on eigenvalue or eigenvector analysis [188, 198, 210]).

33



2 - Parallel and Accurate k-means Clustering

2.1 . Introduction

In this chapter, we focus on designing two optimized parallel implementations
of the k-means algorithm on CPU and GPU, respectively. They can either be used
independently for large-scale k-means clustering, or they can serve as two impor-
tant steps of our CPU-GPU processing chain for large-scale approximate spectral
clustering (see Figure 1.4). Specifically, in the second scenario, the CPU imple-
mentation can be used for the preprocessing step which extracts representatives
while the GPU implementation can be used for the last step of the classical spectral
clustering algorithm.

As described in Section 1.2.1, the k-means algorithm (Algorithm 1) adopts
an iterative strategy, and each iteration consists of the ComputeAssign step and
the Update step. The ComputeAssign step exhibits a natural parallelism, leading
to a relatively straightforward parallel implementation both on CPU and GPU.
However, the Update step appears more difficult to be efficiently parallelized and
is a source of rounding error accumulation due to reduction operations. This
accumulation of rounding errors is trivial when processing small datasets or using
double precision arithmetic for floating-point numbers, however it can become
nontrivial and spoil the clustering accuracy when processing large datasets using
single precision arithmetic. To our knowledge, there is no specific study on this
numerical accuracy issue in existing related works on parallel k-means (described
in Section 1.5.2). We will particularly address this issue in Section 2.2 and design
optimized parallel k-means implementations in Sections 2.3 and 2.4. Finally, we will
evaluate the numerical accuracy and performance of our implementations through
experimental campaigns on synthetic and real-world large datasets in Section 2.5.

The work presented in this chapter has been first published as a workshop
paper of Euro-Par 2020 [76] (initial version) and then published as a journal ar-
ticle in CCPE [75] (extended version). Our CPU code and GPU code for par-
allel k-means implementation are available at https://gitlab-research.
centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans.

2.2 . Numerical accuracy issue

In the Update step of the k-means algorithm, we need to calculate the sum
of data instances in each cluster and then divide the sum by the number of in-
stances in the cluster. For both CPU and GPU implementations of the Update
step, we encountered the accumulation of rounding errors when a large number of
instances are added together one by one naively in single precision (32-bit arith-
metic). Essentially, rounding errors (a.k.a. round-off errors) are caused by the finite

34

https://gitlab-research.centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans
https://gitlab-research.centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans


representation capacity of floating-point numbers and are particularly significant
when adding two numbers of different magnitudes (see [94] for more explanation).
The accumulation/effect of rounding errors in the Update step led to an issue of
numerical accuracy and finally spoiled the clustering quality. On the other hand,
using double precision (64-bit arithmetic) can significantly reduce the accumula-
tion of rounding errors and reach a satisfying level of numerical accuracy because
double precision has a higher representation capacity of floating-point numbers.
However, the computational cost using double precision is typically higher than
using single precision [14].

We intend to preserve the performance of single precision computations while
minimizing the effect of rounding errors. Some special summation methods exist,
but require many extra calculations, e.g. summation methods requiring data sort-
ing, or Kahan’s compensated summation with extra additions (see [82], Chapter
4). We designed a simple and effective two-level summation/reduction method for
the Update step, as shown in Figure 2.1. The idea is to split data instances into a
certain number of packages of similar size, first calculate the sum per cluster within
each package (1st level summation), and then compute the sum per cluster of all
packages (2nd level summation). By choosing a sufficient number of packages, we
can avoid adding floating-point numbers of significantly different magnitudes and
achieve a satisfactory numerical accuracy.

Figure 2.1: Two-level summation method for the Update step

In fact, our experiments in Section 2.5.2 show that satisfying numerical ac-
curacy can be achieved in case of using up to 5 × 105 instances per package on
the Syn4D-50M dataset (n = 5 × 107, 100 packages). Hence, our two-level up-
date scheme can theoretically scale up to at least 5× 105 packages with 5× 105

instances per package while having the guarantee of numerical accuracy, which
leads to a huge dataset with 250 billion instances (n = 2.5 × 1011) requiring at
least 2.5 × 1011 × 4 ÷ 1012 = 1 TB memory (far beyond both our GPU RAM

35



and CPU RAM). Therefore, the two-level update scheme is sufficient for our need,
while using more summation levels would not improve accuracy further but would
complicate parallel implementation.

Although our two-level summation method looks simple, parallelizing it effi-
ciently on multi-core CPU and GPU requires efforts and special care. Fortunately,
the implementation of the 2nd level summation can rely on OpenMP reduction
mechanism on multicore CPU, and can rely on CUDA atomicAdd operations on
GPU (which have become faster on modern GPUs). Unfortunately, these efficient
implementations do not allow to control the reduction scheme (e.g. to ensure the
pairwise summation [82]).

2.3 . Parallel and accurate k-means on the CPU

We parallelize the k-means algorithm on CPU using OpenMP multithreading
and auto-vectorization. The random selection of initial centroids is implemented
with the rand_r function (which is a thread-safe version of the rand function).
The parallelization of the ComputeAssign step and the Update step is described
in the following two sections.

2.3.1 . Parallelization of the ComputeAssign step
Figure 2.2 shows our multithreading approach for the ComputeAssign step.

We parallelize distance computations among multiple threads (say nt threads). In
other words, each thread calculates the distances between n

nt
consecutive instances

and kc centroids.

Figure 2.2: Multithreading for the ComputeAssign step

Listing 2.1 presents our CPU code for the ComputeAssign step. We use the
#pragma omp for directive of OpenMP to parallelize distance computations

36



(lines 3-12). Furthermore, with the -Ofast1 and -march=skylake-avx512

compilation flags2 and the number of dimensions defined as a constant, we optimize
GCC code generation for our dual-skylake CPU, enable AVX units usage and auto-
vectorization mechanisms to vectorize the distance calculation of each instance-
centroid pair across all dimensions (lines 11-12). In practice we only need to
calculate the square of the Euclidean distance instead of the distance itself. Then
the nearest centroid for each instance can be found and recorded (lines 14-16).
The cluster label of each instance is updated according to its nearest centroid, and
the changes of labels are counted into the private variable track of each thread
(lines 19-22). Finally, the reduction directive of OpenMP sums the private
track of all threads (line 3). Note that we avoid storing and accessing an n× n

distance matrix by integrating distance computation and instance assignment in
the ComputeAssign step.

1 #define d ... // Nb of dimensions is a constant
2 #pragma omp parallel {
3 #pragma omp for reduction(+: track)
4 for (int i = 0; i < n; i++) {
5 int min = 0;
6 T_real sqDist, minSqDist = FLT_MAX; // T_real: float or double
7 for (int k = 0; k < kc; k++) {
8 sqDist = 0.0f;
9 // Calculate the squared distance between instance i and
10 // centroid k across d dimensions
11 for (int j = 0; j < d; j ++)
12 sqDist += (data[i*d+j]-cent[k][j])*(data[i*d+j]-cent[k][j]);
13 // Find the nearest centroid to instance i
14 bool a = (sqDist < minSqDist);
15 min = (a ? k : min);
16 minSqDist = (a ? sqDist : minSqDist);
17 }
18 // Change the label if necessary and count this change into track
19 if (labels[i] != min) {
20 labels[i] = min;
21 track++;
22 }
23 }
24 }

Listing 2.1: CPU implementation for the ComputeAssign step

2.3.2 . Parallelization of the Update step
Recall that we use a two-level summation method in the Update step (see

Section 2.2). Figure 2.3 presents our multithreading approach for the summation
process. Consider splitting n instances into p packages of similar size, we parallelize
the processing of p packages among nt threads, i.e. each thread processes p

nt

packages. The local summation results are first computed within each package

1The -Ofast flag of GCC introduces strong optimizations in floating-point computa-
tions (like the -ffast-math flag) but they are supported by our code.2Or we use the -march=native flag when compiling the code on the target machine.

37



Figure 2.3: Multithreading for the two-level summation in the Update step

(1st level), then the global summation results are computed with the local results
of all packages (2nd level).

Listing 2.2 displays our CPU code for the Update step. The starting index (i.e.
offset) and length of each package is first computed (lines 9-10, 15-16). Then we
use the #pragma omp for directive to parallelize the processing of packages
among multiple threads (lines 12-13). For each package of instances, a thread
counts the number of instances assigned to each cluster into the thread private
count[] array, and accumulates the values of instances related to each cluster
into the thread private pkg[] array (lines 14, 17-22). This is the 1st level sum-
mation. Then a thread accumulates the pkg[] results of the p

nt
packages (that it

is responsible for) into the thread private cent[] array (lines 23-25). This is the
2nd level local summation. Finally, the reduction directive of OpenMP sums
the thread private count[] and cent[] results of all threads into the global
count[] and cent[] array, respectively (lines 12, 26-27). This is the 2nd level
global summation. With the global sum of each cluster, we then calculate the new
centroids by averaging, which is parallelized using the #pragma omp for direc-
tive (lines 30-33). Note that the inner loops (lines 20-21, 24-25, 32-33) are com-
pliant with the main requirements of auto-vectorization, i.e. accessing contiguous
array indices and avoiding divergences, engaged with -O3 or -Ofast compilation
flag (cooperating with -march=skylake-avx512 or -march=native flag
on our dual-skylake CPU).

38



1 #define d ... // Nb of dimensions
2 #define p ... // Nb of packages
3 int count[kc]; // Storing the nb of instances in each cluster
4 T_real pkg[kc][d]; // Storing the (local) sum per cluster in a package
5 T_real cent[kc][d]; // Storing centroids
6
7 #pragma omp parallel {
8 ... // Declare variables, reset count[] and cent[] to zeros
9 q = n / p; // Quotient
10 r = n % p; // Remainder
11 // Sum the contributions to each cluster
12 #pragma omp for private(pkg) reduction(+: count, cent)
13 for (int a = 0; a < p; a++) { // Process by package
14 ... // Reset pkg[] to zeros
15 ofs = (a < r ? ((q + 1) * a) : (q * a + r)); // Offset
16 len = (a < r ? (q + 1) : q); // Length
17 for (int i = ofs; i < ofs + len; i++){// 1st level local summation
18 int k = labels[i]; // - Count nb of instances in
19 count[k]++; // OpenMP reduction array
20 for (int j = 0; j < d; j++) // - Reduction in thread
21 pkg[k][j] += data[i*d + j]; // private array
22 }
23 for (int k = 0; k < kc; k++) // 2nd level local summation
24 for (int j = 0; j < d; j++) // - Reduction in local
25 cent[k][j] += pkg[k][j]; // OpenMP reduction array
26 } // 2nd level global summation
27 // - Final reduction by OpenMP in global cent[] array
28
29 // Final averaging to get new centroids
30 #pragma omp for
31 for (int k = 0; k < kc; k++) // Process by cluster
32 for (int j = 0; j < d; j++)
33 cent[k][j] /= count[k]; // - Update global cent[] array
34 }

Listing 2.2: CPU implementation for the Update step

2.4 . Parallel and accurate k-means on the GPU

2.4.1 . Global approach
We parallelize the k-means algorithm on GPU using CUDA. Specifically, the

data instances to be clustered are first transferred from CPU to GPU, then a series
of CUDA kernels and library functions are launched from CPU to perform k-means
clustering on GPU, finally the cluster labels are transferred to CPU.

Data transfers between CPU and GPU are minimized. They mainly occur at
the beginning and end of our program. In order to check the stopping criterion,
we also need to transfer the quantity of instances that change labels (i.e. track in
listings) from GPU to CPU at each iteration, but the price of this single integer
transfer is negligible. Moreover, we use pinned memory for faster transfers.

For coalesced access to GPU global memory, we use the d × n transposed
data matrix (SoA, i.e. Structure of Array) instead of the n× d data matrix (AoS,
i.e. Array of Structure), as shown in Figure 2.4. Note that when the n × d

matrix of data instances is loaded into CPU RAM, it can be directly stored into a

39



Figure 2.4: Array of Structure (AoS) vs. Structure of Array (SoA)

transposed d × n matrix and then transferred to GPU RAM. Besides, we use the
centroid matrix in the ComputeAssign step, but the transposed centroid matrix in
the Update step. Thus we need to transpose the transposed centroid matrix to get
the centroid matrix on GPU at each iteration, but the overhead is trivial since the
two matrices are typically small and the efficient geam function of cuBLAS library
is employed to perform the transposition.

The random selection of initial centroids is implemented on GPU using the
cuRand library [142]. The parallelization details of the ComputeAssign and Update
steps are described in the following two sections.

2.4.2 . Parallelization of the ComputeAssign step

Figure 2.5: Grid and block configuration for the ComputeAssign kernel

As presented in Figure 2.5, we create a 1D grid containing 1D blocks of threads.
The transposed matrix of data instances is used for the coalescence of memory
access. Each block accesses some instances by going through d dimensions, and

40



computes the distances between these instances and kc centroids.

1 #define BSXN ... // Block size in x axis related to n
2 __global__ void ComputeAssign (T_real *GPU_dataT, T_real *GPU_cent,
3 int *GPU_labels,
4 unsigned long long int *AdrGPU_track)
5 {
6 int idx = blockIdx.x * BSXN + threadIdx.x;
7 __shared__ unsigned long long int shTrack[BSXN];
8 shTrack[threadIdx.x] = 0;
9
10 if (idx < n) {
11 int min = 0;
12 T_real diff, sqDist, minSqDist;
13 for (int k = 0; k < kc; k++) {
14 sqDist = 0.0f;
15 // Calculate the squared distance between instance idx and
16 // centroid k across d dimensions
17 for (int j = 0; j < d; j++) {
18 diff = GPU_dataT[j*n + idx] - GPU_cent[k*d + j];
19 sqDist += (diff*diff);
20 }
21 // Find the nearest centroid to instance idx
22 if (sqDist < minSqDist || k == 0) {
23 minSqDist = sqDist;
24 min = k;
25 }
26 }
27 // Change the label if necessary
28 if (GPU_labels[idx] != min) {
29 shTrack[threadIdx.x] = 1;
30 GPU_label[idx] = min;
31 }
32 }
33
34 // Count the changes of label into GPU_track: two-part reduction
35 // 1 - Parallel reduction of shared array shTrack[*] into shTrack[0]
36 if (BSXN > 512) {
37 __syncthreads();
38 if(threadIdx.x<512) shTrack[threadIdx.x]+=shTrack[threadIdx.x+512];
39 else return; // kill useless threads
40 }
41 ... // # of remaining threads per block: 512 --> 256 --> 128 --> 64
42 if (BSXN > 32) {
43 __syncthreads();
44 if(threadIdx.x<32) shTrack[threadIdx.x]+=shTrack[threadIdx.x+32];
45 else return; // kill useless threads
46 }
47 if (BSXN > 16) {
48 __syncwarp(); // avoid races between threads within the same warp
49 if(threadIdx.x<16) shTrack[threadIdx.x]+=shTrack[threadIdx.x+16];
50 else return; // kill useless threads
51 }
52 ... // # of remaining threads per block: 16 --> 8 --> 4 --> 2
53 if (BSXN > 1) {
54 __syncwarp(); // avoid races between threads within the same warp
55 if(threadIdx.x<1) shTrack[threadIdx.x]+=shTrack[threadIdx.x+1];
56 else return; // kill useless threads
57 } // only thread 0 survives
58 // 2 - Final reduction into a global array
59 if (shTrack[0] > 0) atomicAdd(AdrGPU_track, shTrack[0]);
60 }

Listing 2.3: ComputeAssign kernel for the ComputeAssign step

41



Listing 2.3 shows our GPU code for the ComputeAssign step. Each block
has BSXN threads and computes the distances between BSXN instances and kc
centroids (lines 11-19). Again, we compute practically the square of distance.
Then the nearest centroid for each instance can be found and recorded (lines 21-
24). The cluster label will be changed if necessary, and the change will be marked
with 1 in the shared 1D block array shTrack[] (lines 27-30). Finally, we count
the changes of labels by a two-part reduction. The first part reduction (lines 36-57)
sums rapidly the values of shTrack[] into the first element shTrack[0] in
shared memory, then the second part reduction (line 59) accumulates the sum into
the global variable GPU_track by only one atomicAdd operation.

Our reduction is based on the classical method recommended by NVIDIA3,
but we kill the useless threads step by step by return instructions so that only
the first thread survives at the end, which reduces working warps in the first part
reduction and eliminates the check of thread index at the end of the second part
reduction. Moreover, our nonzero check of the sum avoids many unnecessary
atomicAdd operations when no change of label occurs in a block, especially in
the last iterations of k-means.

2.4.3 . Parallelization of the Update step
Based on our two-level summation method (see Section 2.2), we implement

the Update step on GPU by two substeps: the first substep Update_S1 computes
the sum of instances related to each cluster within each package and the number of
instances in each cluster across all packages, then the second substep Update_S2
computes new centroids. Our GPU implementation for the Update step exploits
dynamic parallelism (i.e. CUDA threads launching child grids), multiple streams
and shared memory to optimize performance (see CUDA C++ Programming Guide
[141]). As illustrated in Figure 2.6, child grids launched on different streams run
concurrently. In our case, this allows to maximize the utilization of GPU hardware
resources independently of the number and size of packages. Thus, the number of
packages is determined only based on the effect of rounding errors.

A GPU implementation usually consists of host code and device code. By using
dynamic parallelism, the host code is simplified to two parent kernel launches, as
shown in Listing 2.4. Specifically, we launch the first parent kernel Update_-
S1_Parent with a grid of ns1 threads to complete the first substep Update_S1,
where each thread creates its own working stream (i.e. ns1 streams in total) and
launches its child grids on the stream. Similarly, we launch the second parent kernel
Update_S2_Parent with a grid of ns2 threads to complete the second substep
Update_S2, where each thread creates its own working stream (i.e. ns2 streams
in total) and launches its child grids on the stream.

3Mark Harris, NVIDIA Developer Technology. Optimizing Parallel Reduction in
CUDA. Source: http://developer.download.nvidia.com/compute/cuda/
1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf

42

http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf
http://developer.download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/reduction/doc/reduction.pdf


Figure 2.6: Combined use of dynamic parallelism and multiple streams

1 cudaMemset(...); // Reset GPU_count, GPU_pkg to zeros
2 // ns1: nb of threads (or streams) used in the Update_S1_Parent kernel
3 // ns2: nb of threads (or streams) used in the Update_S2_Parent kernel
4 Update_S1_Parent<<<1,ns1>>>(GPU_labels, GPU_pkg, GPU_dataT, GPU_count);
5 Update_S2_Parent<<<1,ns2>>>(GPU_pkg, GPU_centT, GPU_count);

Listing 2.4: Host code of GPU implementation for the Update step

1 #define p ... // Nb of packages
2 // Parent kernel of Update_S1
3 __global__ void Update_S1_Parent (...) {
4 int tid = threadIdx.x;
5 if (tid < p) {
6 ... // Declare variables and stream
7 cudaStreamCreateWithFlags(&s, cudaStreamDefault);
8 q = n / p; // Quotient
9 r = n % p; // Remainder
10 np = (p - 1) / nS1 + 1; // Nb of packages for each stream
11 Db.x = BSXP; // BSXP: Block X-size for package
12 Db.y = BSYD; // BSYD: Block Y-size for dim
13 Dg.y = (d - 1) / BSYD + 1;
14 for (int i = 0; i < np; i++) {
15 pid = i * nS1 + tid; // Package ID
16 if (pid < p) {
17 ofs = (pid < r ? ((q + 1) * pid) : (q * pid + r)); // Offset
18 len = (pid < r ? (q + 1) : q); // Length
19 Dg.x = (len - 1) / BSXP + 1;
20 // Launch a child kernel on a stream to process a package
21 Update_S1_Child<<<Dg,Db,0,s>>>(pid, ofs, len, GPU_labels,
22 GPU_pkg, GPU_dataT, GPU_count);
23 }
24 }
25 cudaStreamDestroy(s);
26 }
27 }

Listing 2.5: Update_S1_Parent kernel for the Update step

43



Listing 2.5 exhibits the device code of the Update_S1_Parent kernel. Each
thread creates its own stream (created on line 7), and processes several packages
by launching a 2D child grid for each package (lines 10-23). Each 2D child grid
is composed of 2D blocks of threads (as shown in Figure 2.7), resulting in about
n
p ×d working threads where n

p is about the number of instances per package. The
cudaStreamDestroy (line 25) ensures that this stream will not be reused to
launch other threads, while the parent thread will not end until all its child threads
have finished. As expected, the combined use of dynamic parallelism and multiple
streams proved to be efficient in our case (see Figure 2.10 in Section 2.5.2).

1 // Child kernel of Update_S1
2 __global__ void Update_S1_Child (int pid, int ofs, int len,
3 int *GPU_labels, T_real *GPU_pkg,
4 T_real *GPU_dataT, int *GPU_count)
5 {
6 __shared__ T_real shTabV[BSYD][BSXP]; // Table of instance values
7 __shared__ int shTabL[BSXP]; // Table of labels (cluster Id)
8 // Index initialization
9 int baseRow = blockIdx.y * BSYD; // Base row of the block
10 int row = baseRow + threadIdx.y; // Row of child thread
11 int baseCol = blockIdx.x * BSXP + ofs;// Base column of the block
12 int col = baseCol + threadIdx.x; // Column of child thread
13 int cltIdx = threadIdx.y * BSXP + threadIdx.x; // 1D cluster index
14 // Load the values and cluster labels of instances into sh mem tables
15 if (col < (ofs + len) && row < d) {
16 shTabV[threadIdx.y][threadIdx.x] = GPU_dataT[row*n + col];
17 if (threadIdx.y == 0) shTabL[threadIdx.x] = GPU_labelss[col];
18 }
19 __syncthreads(); // Wait for all data loaded into the sh mem
20
21 // Compute partial evolution of centroid related to ’cltIdx’
22 if (cltIdx < kc) {
23 #define BlND (d<BSYD ? d:BSYD) // BlND: nb of dims stored by block
24 T_real Sv[BlND]; // Sum of values in BlND dimensions
25 for (int j = 0; j < BlND; j++) Sv[j] = 0.0f; // Init Sv to zeros
26 int count = 0; // Init the counter of instances
27 // - Accumulate contributions to cluster number ’cltIdx’
28 for (int x = 0; x < BSXP && (baseCol + x) < (ofs + len); x++) {
29 if (shTabL[x] == cltIdx) {
30 count++;
31 for (int y = 0; y < BSYD && (baseRow + y) < d; y++)
32 Sv[y] += shTabV[y][x];
33 }
34 }
35 // - Save the contrib. of block into global contrib. of the package
36 if (count != 0) {
37 if (blockIdx.y == 0) atomicAdd(&GPU_count[cltIdx], count);
38 int BlND_max = (blockIdx.y == d/BSYD ? d%BSYD : BSYD);
39 // BlND_max: nb of dims managed by a block
40 for (int j = 0; j < BlND_max; j++)
41 atomicAdd(&GPU_pkg[(baseRow+j)*kc*p + kc*pid + cltIdx], Sv[j]);
42 }
43 }
44 }

Listing 2.6: Update_S1_Child kernel for the Update step

Listing 2.6 exhibits the device code of the Update_S1_Child kernel. Each

44



Figure 2.7: Grid and block configuration for Update_S1_Child kernel

Figure 2.8: Use of each block in the Update_S1_Child kernel

2D block first loads some dimension values and cluster labels of some instances
into fast shared memory (lines 6-18). Then the first kc threads in each 2D block

45



are used as a 1D block (as illustrated in Figure 2.8) to perform local reductions
in shared memory (lines 22-43). Specifically, they sum the dimension values of
instances per cluster (line 32), and perform atomicAdd operations only one time
per cluster (lines 37-41) instead of one time per loaded instance. Therefore, the
number of expensive atomicAdd operations in global memory is significantly
reduced. Nevertheless, this kernel has several limitations. A number of expensive
atomicAdd operations in global memory are still performed to avoid conflicts
between blocks. Some losses of coalescence occur when each thread accesses its
own array in local memory (lines 25 and 32). Only kc threads per block work after
line 22. The number of clusters that can be processed is currently limited to 1024
which is the maximum size of a block (lines 13 and 22).

The second substep Update_S2 is implemented using a strategy similar to that
used for Update_S1. Each thread of the parent grid processes several packages,
and creates child grids on its own stream. Each child grid is in charge of updating
the kc×d centroid values with the contribution of its package. So, it contains kc×d
working threads, each one executing only few operations and one atomicAdd

operation (shared memory is not used in Update_S2). Again, using dynamic
parallelism and multiple streams has allowed to speed up the execution.

2.5 . Experimental results

Experimentally, we evaluate our parallel k-means implementations on one syn-
thetic and two real-world datasets, and we compare the performance of our code
with some existing parallel k-means implementations.

2.5.1 . Testbed and compilation settings
The testbed is our john3 server consisting of two Intel Xeon Silver 4114 pro-

cessors as CPU and a NVIDIA GeForce RTX 2080 Ti as GPU. More information
about the testbed is provided in Appendix B. The CPU code is compiled with gcc
(with -fopenmp, -Ofast, -march=skylake-avx512, -funroll-loops
flags) to have thread parallelization using OpenMP, auto-vectorization using AVX-
512 instructions and various optimizations. The GPU code is compiled with nvcc
in CUDA. Particularly, to use dynamic parallelism in CUDA, we need to adopt the
separate compilation mode: generating and embedding relocatable device code
into the host object, before calling the device linker.

2.5.2 . Experiments on a synthetic dataset
We first experiment on a synthetic 4D dataset called Syn4D-50M which con-

tains 50 million instances uniformly distributed in 4 convex clusters (12.5 million
instances in each cluster). Each cluster has a radius of 9 and the centroids are
supposed to be (40, 40, 60, 60), (40, 60, 60, 40), (60, 40, 40, 60) and (60, 60, 40,
40), respectively. However, due to the intrinsic errors of generating pseudo-random
numbers and the rounding errors of floating-point numbers, it appears the calcu-

46



lated centroids could have a deviation of order 10−4 from the ideal ones. Note
that the dataset is created in the way that the k-means algorithm would not be
sensitive to the initialization of centroids and would not be trapped in local optima.
More information about the dataset is available in Appendix A.

Generally, we select kc initial centroids uniformly at random from n data in-
stances with rand_r function on CPU and cuRAND library on GPU. This one-time
random selection step usually takes little time. Since the number of iterations can
vary with the selected initial centroids, we are more interested in the elapsed time
per iteration than the overall time. However, for the sake of comparison, we intend
to achieve the same number of iterations on CPU and GPU by setting the same
initial centroids. We execute the algorithm until all cluster labels of data instances
remain unchanged (tolerance = 0, see Section 1.2.1). The most important results
in our tables are highlighted in boldface.

Numerical accuracy & performance on CPU

In Table 2.1, we evaluate the k-means clustering on CPU in terms of numerical error
and average time per iteration by varying the number of threads, the arithmetic
precision and the number of packages. The numerical error is defined as the average
absolute error of the final calculated centroids with respect to the ideal theoretical
ones. It derives from the accumulation of rounding errors during summation of a
large number of instance coordinates (see explanation in Section 2.2).

The column “Full iter.” represents one k-means iteration mainly consisting of
the ComputeAssign step and the Update step. We observe that using a certain
number of packages in the Update step reduces the numerical error in single preci-
sion and consequently decreases the number of iterations from 7 to 5. In our case,
using 100 packages is enough for achieving the same level of numerical accuracy
as in double precision. Moreover, using single precision instead of double precision
decreases the elapsed time. Parallelization with 20 CPU threads (distributed over
20 physical cores including AVX units) has been found to be the most efficient
compared to other numbers of threads.

Numerical accuracy & performance on GPU

We give in Table 2.2 the accuracy and performance results of k-means clustering on
GPU. The numerical error is decreased by our two-level summation method using
multiple packages. The first level is performed within each package. It is imple-
mented using a local reduction in the shared memory of each block of threads, and
with a minimal number of atomicAdd operations in global memory. The second
level sums the contributions of all packages using atomicAdd operations. Due to
the expensive atomicAdd operations and other limitations (see Listing 2.6 and
explanations in Section 2.4.3), the Update step appears the most time-consuming

47



Table 2.1: CPU k-means on the Syn4D-50M dataset with
(n, d, kc) = (50M, 4, 4)

Threads Precision Nb of
packages

Numerical
error

Init
time
(ms)

Average time per iteration (ms) Nb of
iters.

Overall
time
(ms)ComputeAssign Update Full iter.

1 thread

double 1 0.000741 0.002 242.21 182.16 424.37 5 2121.85

single

1 3.009794 0.003 153.22 149.36 302.58 7 2118.06
10 0.244048 0.002 155.83 151.22 307.05 5 1535.25
100 0.000745 0.002 150.34 151.33 301.67 5 1508.35
1000 0.000745 0.003 154.52 154.59 309.11 5 1545.55

20 threads
(20 physi-
cal cores)

double 1a 0.000741 0.083 51.23 192.37a 243.60 5 1218.08

single

1a 3.009794 0.099 34.34 152.71a 187.05 7 1309.45
10b 0.244048 0.091 34.24 24.43b 58.67 5 293.44
100 0.000745 0.100 32.95 19.44 52.39 5 261.95
1000 0.000746 0.126 32.80 19.43 52.23 5 261.28

40 threads
(40 logical
cores)

double 1a 0.000741 0.207 60.18 226.55a 286.72 5 1433.81

single

1a 3.009794 0.174 39.50 165.86a 205.36 7 1437.69
10b 0.244048 0.144 35.84 31.95b 67.79 5 339.09
100 0.000745 0.155 35.31 27.62 62.93 5 314.81
1000 0.000747 0.175 31.20 21.07 52.28 5 261.58

a 1 package −→ 1 task during main computations −→ only 1 working thread
b 10 packages −→ 10 tasks during main computations −→ only 10 working threads

Table 2.2: GPU k-means on the Syn4D-50M dataset with
(n, d, kc) = (50M, 4, 4)

Precision Nb of
packages

Numerical
error

Overhead time (ms) Init
time
(ms)

Average time per iteration (ms) Nb of
iters.

Overall
time
(ms)Transfer Transpose ComputeAssign Update Full iter.

double 1 0.000741 81.13 0.14 2.65 8.98 34.49 43.47 5 301.27

single

1 0.000992 81.15 0.15 2.64 1.96 12.94 14.90 5 158.44
10 0.000760 81.13 0.12 2.75 1.96 12.04 14.00 5 154.00
100 0.000739 81.18 0.19 2.74 1.97 12.72 14.69 5 157.56
1000 0.000741 81.11 0.29 2.65 1.98 13.47 15.45 5 161.30

step on GPU while the ComputeAssign step represents a small proportion of the
running time.

In our GPU implementation, we experimentally optimize the configuration of
grids and blocks of threads. Figure 2.9 shows an example of how the block size on
x-axis (BSXP in listings) affects the performance of the Update step when the block
size on y-axis (BSYD) is set to 4 (the number of dimensions of the Syn4D-50M
dataset) in our 2D-blocks.

The random initialization of centroids and most of data transfers are performed
only one time, hence their impact on the whole runtime decreases with the number
of iterations. The elapsed time for regular transpositions of the centroid matrix
appears negligible.

Figure 2.10 demonstrates the impact of GPU optimization on the running

48



Figure 2.9: Impact of block size on the performance of the Update step
with the Syn4D-50M dataset (using single precision)

Figure 2.10: Impact of GPU code optimizations on the performance of the
Update step with the Syn4D-50M dataset (using single precision)

time of the Update step. Compared to our naïve implementation with many
atomicAdd operations, using shared memory reduces significantly the execution
time for different number of packages. The dynamic parallelism also improves the
performance in the case of 100 packages and 1000 packages but it degrades the
performance for 10000 packages. This is because the GPU hardware resources are
not fully concurrently exploited when there are a large number of small packages
to be processed on the default stream. Therefore, introducing multiple streams
could contribute to the concurrent use of hardware resources and consequently
reduce the execution time, which is clearly demonstrated in the case of 10000
packages. We use 16 streams and 32 streams for the first and second substeps
of the Update step, respectively, to minimize the execution time. The combined
use of shared memory, dynamic parallelism and multiple streams always achieves
optimal performance.

49



Performance comparison: GPU vs. CPU

Figure 2.11 displays the speedup of the two steps of k-means iterations and of the
resulting full iterations. Here we consider 20 CPU threads instead of 40 threads
since the former achieves the best performance on the Syn4D-50M dataset. The
speedup of the k-means iteration is summarized as follows:

• Compared with the CPU mono-thread auto-vectorized implementation, the
best speedup obtained on CPU is almost ×6 running 20 threads with auto-
vectorization.

• Compared with the CPU mono-thread auto-vectorized implementation, the
best speedup obtained on GPU is about ×20.

• Finally, our GPU implementation appears about ×3.5 faster than our best
parallel CPU implementation (running 20 threads with auto-vectorization).

Figure 2.11: Speedup of k-means steps and iterations with the Syn4D-50M
dataset (using kc = 4, single precision)

In fact, the ComputeAssign step on GPU is over ×16 faster than the best
parallel CPU version, while the Update step on GPU is only about ×1.5 faster.
Thus, it seems that the ComputeAssign step is more suited to the GPU architecture
than the Update step.

2.5.3 . Experiments on real-world datasets
In the following we evaluate our parallel k-means implementation on two real-

world datasets:

• Household power consumption dataset (HPO for short): n = 2049 280,
d = 7

• US census 1990 dataset (USC for short): n = 2458 285, d = 68

50



They are described in more detail in Appendix A. As their ground truth clusterings
are unavailable, we impose kc to specific values in the subsequent evaluation.

Numerical accuracy

To reveal the effect of rounding errors and the improvement of numerical accuracy
with the use of packages in the Update step, we observe the changes of the number
of instances assigned to each cluster.

(a) On CPU using 20 threads

(b) On GPU

Figure 2.12: Changes in cluster size with the use of packages in the Update
step on the HPO dataset (using kc = 4, single precision)

51



Household power consumption (HPO) dataset: Figure 2.12 displays the
changes in cluster size with the number of packages on the HPO dataset by im-
posing kc = 4. The following results emerge:

• On CPU, the distribution of instances in each cluster is evidently different
between the use of 1 package and multiple packages. Note that the use of
1 package means in fact no use of package, or the entire dataset is regarded
as 1 package. Hence, we infer that the effect of rounding errors arises in
the Update step when calculating the sum of instances directly without the
use of multiple packages, and this negative effect impairs significantly the
clustering accuracy.

• On GPU, the effect of rounding errors with 1 packages appears less evident
owing to the local reductions using shared memory in our implementation.
Nevertheless, it can be seen from the specific numbers in the chart that,
using multiple packages still procures some improvement in clustering accu-
racy.

• With 100 packages, the sizes of the 4 clusters are almost identical on CPU
and GPU.

US census 1990 (USC) dataset: Similarly we checked the number of instances
assigned to each cluster on the USC dataset. In this case we observed few dif-
ferences when using one package and multiple packages for all values of kc. We
reckon it is because the values in the USC are all integers. Thus there is little accu-
mulation of rounding errors in the Update step even with only 1 package. Despite
this fact, this dataset is suitable for evaluating the computational performance of
our k-means implementation.

Performance of each step

Tables 2.3 and 2.4 present the performance of our k-means implementation using
100 packages on CPU and GPU respectively, for the above two datasets. We set
the tolerance = 10−4 as the stopping criterion of k-means iterations. For each
benchmark, we set the same initial centroids for k-means on CPU and on GPU,
thus reasonably resulting in an identical number of iterations. We observe that:

• The execution time of the ComputeAssign step is always more significant
than the time of the Update step on CPU, but not on GPU.

• For k-means on CPU, parallelization running 20 threads (on 20 physical
cores including AVX units) was found to be the most efficient for the HPO
dataset, while running 40 threads (on 40 logical cores including AVX units)
achieves the best performance for the USC dataset.

52



• The ComputeAssign step on GPU is always considerably faster than on CPU,
while the Update step on GPU can be either faster or slower than on CPU
(using multithreading) depending on the test cases.

As there are tens of iterations, the elapsed time of data transfers between
CPU and GPU is insignificant compared to the whole runtime of k-means
on GPU.

Finally, note that the elapsed time for selecting initial centroids randomly is negli-
gible and not shown in the tables.

Table 2.3: CPU k-means on two real-world datasets (using single precision,
100 packages)

Dataset kc
Nb of Average time per iteration (ms) Nb of

threads ComputeAssign Update Full iter. iters.

HPO
(n, d) = (2 049 280, 7)

4
1 9.51 8.62 18.13 29
20 1.54 1.26 2.80 29
40 1.59 1.43 3.02 29

USC
(n, d) = (2 458 285, 68)

16
1 278.02 54.79 332.81 39
20 34.88 13.55 48.43 39
40 21.29 19.86 41.15 39

64
1 1099.71 53.74 1153.45 35
20 121.91 17.64 139.55 35
40 70.74 19.88 90.62 35

256
1 4501.31 57.31 4558.62 82
20 329.89 10.59 340.48 82
40 274.61 15.17 289.78 82

Table 2.4: GPU k-means on two real-world datasets (using single precision,
100 packages)

Dataset kc
Transfer Average time per iteration (ms) Nb of

time (ms) ComputeAssign Update Full iter. iters.

HPO
(n, d) = (2 049 280, 7)

4 5.41 0.17 2.71 2.88 29

USC
(n, d) = (2 458 285, 68)

16 55.91 1.71 9.09 10.80 39

64 55.89 5.99 11.21 17.20 35

256 55.88 25.53 15.60 41.13 82

Impact of kc on performance

It can be seen more intuitively in Figure 2.13 that, when augmenting the number of
clusters on the US census benchmark, the time of the ComputeAssign step grows
approximately linearly both on CPU using 40 threads and on GPU, which is normal

53



because the ComputeAssign step calculates n×kc distances at each iteration. The
time of the Update step on GPU increases quite slowly with kc and appears not
very sensitive to kc. This is reasonable because the main calculation is composed
of n×d additions independently of kc, but is organized in kc reductions. However,
the time of the Update step on CPU using 40 threads slowly decreases when kc
becomes larger (parallelization on larger loops).

(a) On CPU using 40 threads (b) On GPU

Figure 2.13: Average time per iteration of k-means steps on the USC
dataset (using single precision, 100 packages)

Figure 2.14: Impact of block size on the performance of Update with the
USC dataset (using kc = 256, single precision, 100 packages)

Impact of block size on performance

Again, we experimentally optimize the block size for all CUDA kernels since it can
have a significant impact on the performance. An example of this impact is given

54



in Figure 2.14. Note that the block size (BSXP×BSYD) cannot exceed 1024 and
meanwhile it should be no less than the number of clusters. The optimal block
size in that case is BSXP= 64 and BSYD= 4 on our GPU (GeForce RTX 2080
Ti).

Performance comparison: GPU vs. CPU

Figure 2.15: Speedup of k-means steps and iterations with the HPO
dataset (using kc = 4, single precision, 100 packages)

Figure 2.16: Speedup of k-means steps and iterations with the USC
dataset (using single precision, 100 packages)

Figure 2.15 and Figure 2.16 present the speedup of our k-means steps and
iterations on the two real-world datasets, respectively. Globally, the ComputeAssign
step on GPU is from ×9 up to ×12.5 faster than on CPU running optimal number
of threads with auto-vectorization (20 threads for the HPO dataset, 40 threads

55



for the USC dataset), while the Update step on GPU is from ×2 slower to ×2
faster than on CPU running optimal number of threads with auto-vectorization.
The resulting full iteration on GPU is comparable or up to ×7 faster than the
full iteration on CPU running optimal number of threads with auto-vectorization,
depending on the benchmark dataset and the desired number of clusters kc. When
increasing kc on the USC dataset, the two steps as well as the full iteration on CPU
using 40 threads obtain increasing speedups (compared to the CPU mono-thread
implementation). Similarly, the acceleration effect of k-means iterations on GPU
is greater with a larger kc.

Despite our efforts, the Update step remains difficult to be further accelerated
both on GPU and CPU. Significant differences in terms of speedup on GPU vs.
CPU can be observed between the ComputeAssign and the Update steps. On
the one hand, the ComputeAssign step has much more computations and natural
parallelism than the Update step. On the other hand, the GPU kernel of the
Update step suffers from three losses of performance (see Section 2.4.3): many
atomicAdd operations, some loss of coalescence, and only kc threads per block
doing the summation.

Similar behaviour on synthetic & real-world datasets

According to the performance achieved on the Syn4D-50M dataset (see Fig-
ure 2.11) and on the two real-world datasets (see Figure 2.15 and Figure 2.16),
we conclude that in all cases:

• Our k-means implementation on CPU running optimal number of threads
with auto-vectorization (20 or 40 threads depending on the benchmark
datasets) is significantly faster (from ×6 up to ×16) than our CPU mono-
thread auto-vectorized implementation.

• Our GPU implementation generally outperforms our multithreaded auto-
vectorized CPU implementation (up to ×7 for the average time of k-means
iterations).

• The obtained speedups come mainly from the ComputeAssign step.

2.5.4 . Comparison with others
As shown in Table 2.5 and Table 2.6, we compare the performance of our k-

means implementations with five other parallel k-means implementations developed
between 2016 and 2021.

Benchmarking approach

We chose to impose the same initial centroids for the same benchmark dataset in
the comparative experiments on our CPU & GPU testbed. The performance results

56



in Table 2.5 represent the average time per iteration over the first 10 iterations
before satisfying the criterion of convergence, while the results in Table 2.6 are
the average time per iteration over all iterations until convergence. This is why
some results of our GPU implementation in Table 2.5 are mildly different from
those corresponding results in Table 2.4 and Table 2.6. Finally, considering the
fluctuations of elapsed time, every time measurement above is the average of 5
runs.

Comparison with the MKM of Böhm, et al [23] on CPU

The MKM code is multithreaded with OpenMP (like ours) and explicitly vectorized
with AVX 1 / AVX 2 intrinsic operations (while our code relies on auto-vectorization
with the -Ofast and -march=skylake-avx512 compilation flags). Accord-
ing to the paper [23], the MKM code compiled by gcc 4.7 for a corei7-avx archi-
tecture worked regardless of the number of data dimensions. However, when it
was recompiled on our dual-Skylake CPU by gcc 9.3, it only worked for a number
of dimensions that was a multiple of 4 (even when adjusting the options of com-
pilation). Moreover, the MKM code computes only in double precision, while our
code can work in single or double precision. Therefore, the comparison on CPU
was done in double precision in Table 2.5. Since the MKM code was designed
for a corei7-avx architecture but is now run on our dual-skylake CPU, we measure
both the performance with -march=corei7-avx flag and the performance with
-march=native flag for the MKM code, and we present the best performance in
the table (other flags lead to less performance). Moreover, we also tested replacing
-O3 with -Ofast for the MKM code compilation, but this did not achieve higher
performance.

Based on successful runs on some benchmarks on our dual-CPU, our multi-
threaded auto-vectorized implementation run on 20 physical cores was sometimes
×1.3 slower and sometimes ×3.6 faster, and run on 2×20 logical cores was some-
times ×1.2 to ×2 slower and sometimes ×2.5 faster, depending on the benchmark.
It is certain that before performing new tests, it would be necessary to solve the
problems encountered by the MKM code at runtime on our architecture, for certain
problem sizes.

Comparison with the cuda-kmeans of Kruliš, et al [106] on GPU

The cuda-kmeans code offers several algorithms and two data layouts (SoA & AoS)
to choose from, but some algorithms did not accept certain numbers of points,
numbers of dimensions or numbers of clusters of our benchmarks. For example,
the use of one of the fastest algorithms (named cuda_best) requires the number
of clusters to be a multiple of the shmK constant, and the number of dimensions
to be a multiple of the shmDim constant. So in order to compare our code with
cuda_best, we intervened in the cuda-kmeans code to tune the shmK and shmDim

57



constants (while our code does not require this kind of tunning). Additionally, the
SoA layout was adopted because it was experimentally more efficient.

Since the time of data transfers is not included in the native measurements of
cuda-kmeans code, neither it is counted in our average measured time per iteration
in Table 2.5. The experiments on RTX 2080Ti shows that our GPU code appears
sometimes slower and sometimes faster, depending on the benchmark, as previously
with our CPU code.

Comparison with the KMeans of RAPIDS framework [181] on GPU

Developped by a community and incubated by NVIDIA, RAPIDS provides a suite of
GPU-accelerated libraries and APIs (including the KMeans API in the cuML library)
exploitable via user-friendly Python interfaces. As the KMeans API embeds both
data transfers and program execution, the performance comparison of our code
against the API in Table 2.5 also considers both transfers and execution time.

Although the KMeans API is supposed to be highly optimized and fast, it turns
out that our GPU code appears ×1.4 to ×9.3 faster than the KMeans of RAPIDS
v0.19 on RTX 2080Ti. We guess this significant difference is mainly induced by
the wrapper overhead of Python interface (as our tests do not last long) and by
the youth of RAPIDS (v0.19 in April 2021).

Comparison with the k-means of Yu, et al [208] on 1 node of Sun-
way TaihuLight supercomputer

The SW26010 manycore processor offers 260 cores and has a significantly differ-
ent design from other multicore and manycore processors [208]. This processor
appeared in 2016 as part of the Sunway TaihuLight supercomputer which was at
that time ranked #1 in the Top500 list from 2016 to 2018.

The performances in Table 2.6 show that our k-means implementation in single
precision on GeForce GTX 1080 (also appeared in 2016) is ×1.6 to ×2.8 faster
than the single-node implementation for the SW26010 processor, considering the
average execution time per iteration. As expected, our implementation is even
faster on the more recent RTX 2080Ti GPU device (launched in 2018).

Comparison with the k-means of Li, et al [116] on an FPGA board

The Xilinx ZC706 FPGA board with an xc7z045ffg900-2 FPGA was available in
2015. The performances in Table 2.6 show that our k-means implementation in
single precision, run on a GeForce GTX 1080 (appeared in 2016, just one year after
the FPGA) is ×4.8 faster than the FPGA implementation, regarding the average
execution time per iteration. As previously, our implementation is even faster on a
more recent GPU device appeared in 2018.

58



Main results of the comparisons

To summarize, our comparative experiments on real-life datasets show that:

• Our implementation running on a GPU that appeared in 2016 is more ef-
ficient than implementations on a FPGA and on a manycore appeared in
2015 and 2016, respectively (see Table 2.6).

• Compared to state-of-the-art implementations (Böhm, et al [23] and Kruliš,
et al [106]) run on our classic CPU and GPU, our implementations are some-
times faster and sometimes slower, depending on the benchmark (see Table
2.5). However, our more generic source code has not required adaptations
to run the different benchmarks.

• Moreover, in order to guarantee the numerical accuracy in case of rounding
error accumulations with large-scale datasets, our code supports to split the
numerous summations of the centroid updating without losing significant
performances. All experiments of our implementations in Tables 2.5 and 2.6
have been done with 100 packages split.

Table 2.5: Performance comparison with recent parallel k-means
implementations on our CPU&GPU testbed

Our testbed Precision Authors or API Language Measured
time

Average measured time (ms)
per iteration over 10 iters

HPO
(n, kc) = (2 049 280, 4)

USC
(n, d) = (2 458 285, 68)

d = 4 d = 7 kc = 16 kc = 64 kc = 256

Intel Xeon 4114
20 physical cores Double

Böhm, et al
[23]

C++ &
Intrinsics &
OpenMP Execution

13.39 Segfault 56.32 152.37 450.70

Ours (100 pkgs) C & OpenMP 3.75 5.74 73.99 202.14 580.27

Intel Xeon 4114
40 logical cores Double

Böhm, et al
[23]

C++ &
Intrinsics &
OpenMP Execution

11.64 Segfault 41.16 88.33 328.31

Ours (100 pkgs) C & OpenMP 4.58 7.05 82.89 139.31 406.33

Nvidia GeForce
RTX 2080 Ti

Single

Kruliš, et al [106] C++ & CUDA
Execution

1.73 1.81 14.57 19.49 36.67

Ours (100 pkgs) C & CUDA 1.12 2.88 12.09 19.28 44.66

KMeans in RAPIDS
[181] cuML Python & CUDA Transfers

+
Execution

13.60 15.21 26.15 35.82 120.43

Ours (100 pkgs) C & CUDA 1.46 3.42 17.68 24.87 50.25

59



Table 2.6: Performance comparison with parallel k-means implementations
on other architectures

Testbed Precision Authors Measured
time

Average execution time (ms)
per iteration over all iterations

HPO
(n, d, kc) =

(2 049 280, 4, 4)

USC
(n, d, kc) =

(2 458 285, 68, 64)

1 node of Sunway TaihuLight
supercomputer with 1 SW26010

260-core manycore (2016)
N/A Yu, et al [208] Execution 2.84 ≈ 110

Xilinx ZC706 FPGA board with
an xc7z045ffg900-2 FPGA (2015) Single Li, et al [116] Execution 8.50 N/A

Nvidia GeForce GTX 1080 (2016)
Single Ours (100 pkgs) Execution

1.76 38.97

Nvidia GeForce RTX 2080Ti (2018) 1.11 17.20

2.6 . Summary

In this chapter, we have proposed parallel implementations on CPU and GPU
for the k-means clustering algorithm, which can be used independently or serve as
two components in our computational chain for spectral clustering when processing
large amount of data (see Section 1.6). Through a two-level summation method
with package processing, we have addressed the numerical accuracy issue in the
phase of updating cluster centroids due to the effect of rounding errors. To our
knowledge, we are the first to consider and address the numerical accuracy issue
in the k-means algorithm.

Our CPU implementation relies on thread parallelization using OpenMP and
on auto-vectorization using AVX-512 instructions. Our CUDA implementation
on GPU employs dynamic parallelism, multiple streams and shared memory to
achieve optimal performance. Experiments on synthetic and real-world datasets
demonstrate both numerical accuracy and parallelization efficiency of our k-means
implementations on CPU and GPU.

60



3 - Scalable Data Formats and Algorithms
for Spectral Clustering

3.1 . Introduction

As explained in Section 1.3.3, traditional spectral clustering algorithms have
high time complexity due to O(n2d) complexity for similarity matrix construction
and O(n3) complexity for eigen-decomposition. The storage of similarity matrix
and Laplacian matrix in dense format requires O(n2) memory space. Together,
the huge calculation cost and the huge memory space requirements constitute the
barrier to large-scale spectral clustering.

In this chapter, we address the scalability issue of spectral clustering on the
GPU. Most importantly, we propose in Section 3.3 three optimized GPU algo-
rithms for constructing similarity graph and matrix in Compressed Sparse Row
(CSR) format. This can achieve significant performance improvement compared
to sequential algorithm, and meanwhile reduce substantial memory space require-
ments on the GPU compared to using dense data format. Then, in Section 3.4
we leverage the Spectral Clustering API of NVIDIA’s GPU-accelerated nvGRAPH
library for subsequent computations including Laplacian matrix calculation, eigen-
decomposition, and final k-means clustering (see Figure 1.1). Although called
“Spectral Clustering API” by nvGRAPH, its function is essentially equivalent to
spectral graph partitioning in the field of graph analytics, and it requires the CSR-
format similarity graph to be provided as input.

Finally, extensive experiments in Section 3.6 demonstrate the high performance
and scalability of our GPU implementation for spectral clustering.

The work presented in this chapter has been first published as a conference
paper of NPC 2021 [78] (initial version) and then submitted as a journal article to
IJPP [77] (extended version).

3.2 . Spectral clustering using dense data format

In this section, we start from parallelizing spectral clustering algorithm (Al-
gorithm 3 in Section 1.3.1) on the GPU using dense data format. Globally, the
similarity matrix and Laplacian matrix construction steps are parallelized using
optimized CUDA kernels (see Section 3.2.1), then the eigen-decomposition step
is implemented by leveraging the cuSOLVER library (see Section 3.2.2), finally
the normalization and k-means steps are also parallelized using optimized CUDA
kernels (see Section 3.2.3). The host code is presented in Listings 3.1 and the
CUDA kernels are shown in Listings 3.2, 3.3 and 3.4. They are explained below
and can provide some basis for understanding more complicated CUDA kernels of

61



Section 3.3.

3.2.1 . Similarity matrix and Laplacian matrix construction
As mentioned in Section 1.3.1, the similarity graph can be constructed in several

ways (e.g. full connection, ε-neighborhood, k-nearest neighbor), resulting in either
dense or sparse similarity matrix S. However, in this section we just consider the
simple case of storing all matrices in dense format.

We first launch a 2D grid with 2D blocks of threads (Listing 3.1 lines 10-16)
to compute the similarity matrix S and the diagonal degree matrix D. Basically,
each thread calculates one element of similarity matrix and stores the value into the
global memory array (Listing 3.2 lines 14-54). Moreover, the similarity value is also
stored into a shared memory array of block size, so that a classic parallel reduction
within the shared memory array is performed and the per-block contribution to a
degree is accumulated with an atomicAdd operation (Listing 3.3).

We highlight several points regarding the above kernel:

• We choose to construct full connected graph and ε-neighborhood-like graph
(see definition in Section 3.3.1) instead of k-nearest neighbor graph, because
the last one requires expensive sorting operations and usually need to be
symmetrized.

• The kernel is generic in the sense that it supports multiple similarity metrics
and thresholds, such as uniform similarity with threshold for squared distance
(Listing 3.2 lines 16-25), Gaussian similarity with threshold for squared dis-
tance (Listing 3.2 lines 27-32) or with threshold for similarity (Listing 3.2
lines 34-39), cosine similarity with threshold for similarity (Listing 3.2 lines
41-51), and the kernel can also be extended to support other metrics.

• We ensure most of the global memory accesses are coalesced (e.g. List-
ings 3.2, lines 19 & 44).

• We use the __expf() function instead of the expf() function for Gaus-
sian similarity computation (line 20) because the former maps directly to
the hardware level, thus it is faster (but provides lower accuracy) than the
latter [140].

• For Gaussian similarity, if the threshold for squared distance is infinitely great
or the threshold for similarity is equal to 0, then the similarity graph will be
full connected and the similarity matrix will be dense theoretically, however,
practically tiny similarity values that result from distant instance pairs may
be stored as 0 due to the underflow of floating-point numbers.

• We pay special attention to the implementation of the cosine similarity with
threshold checking (Listing 3.2 lines 47-49), since different implementation
ways can lead to varied performance and precision, the selected way can limit
the propagation of rounding errors and meanwhile provide good performance.

62



Some aspects related to scaling and memory space are also worth mentioning.
(1) It is possible that the value of Dg.y exceeds the upper limit (65535 for RTX
3090) if the number of data instances n is too large, but in this case the storage of
similarity matrix would also exceeds the GPU memory. (2) It is also possible that
the element index of similarity matrix exceeds the integer limit (about 2 billion) if
n2 exceeds the integer limit, in this case it would be necessary to extend the index
representation capacity by using, e.g., size_t. (3) We only need to allocate an
array of size n to store the diagonal elements of degree matrix.

Next we launch likewise a 2D grid with 2D blocks of threads (Listing 3.1
lines 17-18) to compute the normalized Laplacian matrix Lsym = D−1/2SD−1/2

(Listing 3.4). In practice we use the same array to store S and Lsym so as to
save GPU memory. Note that we choose to compute the symmetric matrix Lsym

instead of the non-symmetric normalized Laplacian matrix Lrw = D−1S, because
the eigensolver in the cuSOLVER library that we want to use afterwards requires
the input matrix to be symmetric.

3.2.2 . Eigen-decomposition using cuSOLVER library
To compute the first kc eigenvectors (associated with the smallest kc eigenval-

ues) of Lsym, we leverage the dense symmetric eigensolver syevdx of NVIDIA’s
GPU-accelerated cuSOLVER library [143] (Listing 3.1 lines 21-36). It can compute
all or a selection of the eigenvalues and eigenvectors of a symmetric (or Hermi-
tian) matrix, solving the standard symmetric eigenvalue problem through the QR
algorithm [155]. For output, the first kc eigenvectors will be stored in the input
matrix Lsym by rewriting its first kc × n elements.

There are also other dense symmetric eigensolvers in the cuSOLVER library,
but they either compute all eigenpairs (e.g. syevd, sygvd, syevj, sygvj), or
require the matrix D to be an array of size n × n when targeting the generalized
eigenvalue problem LU = DUΣ (e.g. sygvd, sygvdx, sygvj). Therefore we
choose the syevdx solver rather than others.

3.2.3 . Normalization and final k-means(++) clustering
After obtaining the first kc eigenvectors stored in the form of kc×n, we regard

them as the transposed matrix UT and launch a CUDA kernel to normalize each
column of UT (i.e. each row of U) to unit length. We use 1D grid with 1D blocks
of threads (Listing 3.1 lines 39-42) for the kernel so that each thread normalizes
one column of UT by going through all kc elements of that column. The kernel is
too simple so we do not show its content in the listings.

Finally, we apply our GPU implementation of k-means (see Section 2.4) or
k-means++ (see Appendix G Listings G.1 & G.2) on the points represented by the
normalized rows of U and obtain the cluster labels of data instances (Listing 3.1
lines 45-47).

63



1 // Declaration, memory allocation, initialization
2 float *GPU_sim, *GPU_deg, *GPU_lap, *GPU_eigVects;
3 cudaMalloc((void**) &GPU_sim, (sizeof(float)*n)*n);
4 cudaMalloc((void**) &GPU_deg, sizeof(float)*n);
5 cudaMemset(GPU_deg, 0, sizeof(float)*n);
6 GPU_lap = GPU_sim; // Use the same memory
7 GPU_eigVects = GPU_lap; // Use the same memory
8
9 // Launch CUDA kernels to compute similarity, degree, Laplacian matrices
10 dim3 Dg, Db;
11 Db.x = BSX; Db.y = BSY;
12 Dg.x = n/Db.x + (n%Db.x > 0 ? 1 : 0);
13 Dg.y = n/Db.y + (n%Db.y > 0 ? 1 : 0);
14 size_t shMemSize = (sizeof(float)*Db.y)*Db.x;
15 constructSimDegMat<<<Dg,Db,shMemSize>>>(..., // input
16 GPU_sim, GPU_deg); // output
17 computeLapMat<<<Dg,Db>>>(GPU_sim, GPU_deg, ..., // input
18 GPU_lap); // output
19
20 // Configure eigensolver parameters
21 cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;
22 cusolverEigRange_t range = CUSOLVER_EIG_RANGE_I;
23 int il = 1; int iu = kc; // Selection from 1st to kc-th eigenpairs
24 int lwork = 0; // Size of work
25 // Calculate the sizes needed for working space (lwork)
26 CUSOLVERDN_SYEVDX_BUFFERSIZE(jobz, range, il, iu, // input
27 GPU_lap, ..., // input
28 GPU_eigVals, &lwork); // output
29 // Allocate memory for working space (d_work)
30 cudaMalloc((void**)&d_work, sizeof(float)*lwork);
31 // Compute the first kc eigenpairs of Laplacian & store them in GPU_lap
32 CUSOLVERDN_SYEVDX(jobz, range, il, iu, // input
33 d_work, lwork, ..., // input
34 GPU_lap, // input & output
35 GPU_eigVals); // output
36 cudaFree(d_work); // Free working space
37
38 // Launch a CUDA kernel to normalize the eigenvector matrix
39 Db.x = BSX; Db.y = 1;
40 Dg.x = n/Db.x + (n%Db.x > 0 ? 1 : 0); Dg.y = 1;
41 normalizeEigenvectorMatrix<<<Dg,Db>>>(GPU_lap, ..., // input
42 GPU_eigVects); // output
43
44 // Apply k-means++ on points spanned in the first kc-dim eigenspace
45 d = kc; // Set the # of dims equal to the # of clusters
46 kmeanspp(GPU_eigVects, ..., // input
47 GPU_labels, ...); // output
48
49 ... // Memory deallocation

Listing 3.1: Host code of GPU implementation for spectral clustering
in dense data format

64



1 // Starting address for dynamic allocation of shared memory
2 extern __shared__ float shBuff[];
3
4 __global__ void constructSimDegMat (...) {
5 // 2D blocks, 2D grid
6 int row = blockIdx.y * blockDim.y + threadIdx.y;
7 int col = blockIdx.x * blockDim.x + threadIdx.x;
8 int tidPerBlock = threadIdx.y*blockDim.x + threadIdx.x;
9 // Declaration & initialization of a shared memory array
10 float *shTabSim = shBuff;
11 shTabSim[tidPerBlock] = 0.0f;
12
13 // Calculation of similarity matrix S (1 elt/thread)
14 if (row < n && col < n) {
15 // Uniform similarity with threshold for squared distance
16 #ifdef UNI_SIM_WITH_SQDIST_THOLD
17 float diff, sqDist = 0.0f;
18 for (int j = 0; j < d; j++) {
19 diff = GPU_dataT[j*n + row] - GPU_dataT[j*n + col];
20 sqDist += diff*diff;
21 }
22 if (sqDist < tholdSqDist && row != col)
23 shTabSim[tidPerBlock] = 1.0f;
24 GPU_sim[row*n + col] = shTabSim[tidPerBlock];
25 #endif
26 // Gaussian similarity with threshold for squared distance
27 #ifdef GAUSS_SIM_WITH_SQDIST_THOLD
28 ... // Calculate squared distances (sqDist)
29 if (sqDist < tholdSqDist && row != col)
30 shTabSim[tidPerBlock]=__expf((-1.0f)*sqDist/(2.0f*sigma*sigma));
31 GPU_sim[row*n + col] = shTabSim[tidPerBlock];
32 #endif
33 // Gaussian similarity with threshold for similarity
34 #ifdef GAUSS_SIM_WITH_THOLD
35 ... // Calculate squared distances (sqDist)
36 float sim = __expf((-1.0f)*sqDist/(2.0f*sigma*sigma));
37 if (sim > tholdSim && row != col) shTabSim[tidPerBlock] = sim;
38 GPU_sim[row*n + col] = shTabSim[tidPerBlock];
39 #endif
40 // Cosine similarity with threshold for similarity
41 #ifdef COS_SIM_WITH_THOLD
42 float elm1, elm2, dot = 0.0f, sq1 = 0.0f, sq2 = 0.0f;
43 for (int j = 0; j < d; j++) {
44 elm1 = GPU_dataT[j*n + row]; elm2 = GPU_dataT[j*n + col];
45 dot += elm1*elm2; sq1 += elm1*elm1; sq2 += elm2*elm2;
46 }
47 float sqSim = (dot*dot)/(sq1*sq2);
48 if (sqSim > tholdSim*tholdSim && row != col)
49 shTabSim[tidPerBlock] = SQRT(sqSim);
50 GPU_sim[row*n + col] = shTabSim[tidPerBlock];
51 #endif
52 // Other metrics
53 #ifdef ... #endif
54 }
55
56 ... // Part 2
57 }

Listing 3.2: constructSimDegMat kernel (part 1)

65



1 __global__ void constructSimDegMat (...) {
2 ... // Part 1
3
4 // Calculation of degree array: two-part reduction
5 // 1 - Parallel reduction of the shared memory array
6 // shTabSim[tidPerBlock] into shTabSim[threadIdx.y*blockDim.x]
7 // (i.e. from the 2D view: shTabSim[*][*] --> shTabSim[*][0])
8 if (BSX > 512) {
9 __syncthreads();
10 if (threadIdx.x < 512)
11 shTabSim[threadIdx.y*blockDim.x + threadIdx.x]
12 += shTabSim[threadIdx.y*blockDim.x + threadIdx.x + 512];
13 else return; // kill useless warps
14 }
15 ... // # of remaining threads per block: 512 --> 256 --> 128 --> 64
16 if (BSX > 32) {
17 __syncthreads();
18 if (threadIdx.x < 32)
19 shTabSim[threadIdx.y*blockDim.x + threadIdx.x]
20 += shTabSim[threadIdx.y*blockDim.x + threadIdx.x + 32];
21 else return; // kill useless warps
22 } // only the 1st warp survives
23 if (BSX > 16) {
24 __syncwarp(); // avoid races between threads within the same warp
25 if (threadIdx.x < 16)
26 shTabSim[threadIdx.y*blockDim.x + threadIdx.x]
27 += shTabSim[threadIdx.y*blockDim.x + threadIdx.x + 16];
28 }
29 ... // # of working threads in the 1st warp: 8 --> 4 --> 2
30 if (BSX > 1) {
31 __syncwarp(); // avoid races between threads within the same warp
32 if (threadIdx.x < 1)
33 shTabSim[threadIdx.y*blockDim.x + threadIdx.x]
34 += shTabSim[threadIdx.y*blockDim.x + threadIdx.x + 1];
35 }
36 // 2 - Final reduction into the global array
37 if (threadIdx.x == 0 && row < n) {
38 if (shTabSim[threadIdx.y*blockDim.x] > 0.0f)
39 atomicAdd(&GPU_deg[row], shTabSim[threadIdx.y*blockDim.x]);
40 }
41 }

Listing 3.3: constructSimDegMat kernel (part 2)

1 __global__ void computeLapMat (...) {
2 // 2D blocks, 2D grid
3 int row = blockIdx.y * blockDim.y + threadIdx.y;
4 int col = blockIdx.x * blockDim.x + threadIdx.x;
5
6 if (row < n && col < n) {
7 float deg = GPU_deg[col];
8 float degL = RSQRT(GPU_deg[row]); // 1.0/sqrt()
9 float degR = RSQRT(deg);
10 float sim = GPU_sim[row*n + col];
11 float lap;
12 if (row != col) lap = - sim;
13 else lap = deg - sim;
14 GPU_lap[row*n + col] = degL * lap * degR;
15 }
16 }

Listing 3.4: computeLapMat kernel

66



3.3 . Construction of the similarity matrix in sparse format

The previous section handles the high time complexity of spectral clustering
through GPU computing, however it uses dense data format. As the number of
data instances n grows over the order of 104, it will become impossible to store
the dense-format square matrices with limited GPU memory.

In this section we propose efficient GPU algorithms for constructing the simi-
larity matrix in CSR format, which play an important role in handling the scalability
challenge of spectral clustering in terms of both calculation cost and memory re-
quirements.

3.3.1 . Sparsification and choice of a storage format
The similarity matrix associated with ε-neighborhood graph or k-nearest neigh-

bor graph generally has a sparse pattern, i.e. containing numerous zeros. Even
for the similarity matrix associated with fully connected graph, we observe that
usually a significant portion of elements are very close to zero. By setting a small
threshold for similarity (e.g. 0.01) and regarding those below-threshold similarities
as zeros, we are likely to obtain a sparse similarity matrix. We think this sparsifi-
cation way is reasonable since it resembles the way of ε-neighborhood graph. The
difference is that the former sets below-threshold similarities to zeros and while
the latter sets similarities associated with over-threshold distances to zeros. For
simplicity, we call both of the related graphs as ε-neighborhood-like graph in this
dissertation. Storing the similarity matrix in a sparse format can save typically
most of the memory needed for dense format storage, thus increase significantly
the scale of datasets able to be processed on the GPU.

There are various sparse formats for storing a sparse matrix. Here we do not
try to enumerate all but introduce several commonly used sparse formats in many
linear algebra libraries: Coordinate format (COO), Compressed Sparse Row format
(CSR), Compressed Sparse Column format (CSC), and Ellpack format. Note that
we use nnz to represent the total number of nonzero elemnts in a matrix.

Coordinate format (COO)

Figure 3.1: An example of COO format storing an mr × nc matrix

The COO format of a sparse matrix consists of three arrays. We call them
cooVal[], cooRow[], cooCol[]. Figure 3.1 gives a COO example with an

67



mr × nc matrix. The three arrays cooVal[], cooRow[] and cooCol[] store
the values, row indexes, and column indexes of all nonzero matrix elements in
row-major format, respectively. Clearly, the memory requirement for COO format
is 3× nnz.

In graph analytics, the COO representation of similarity graph corresponds to
an edge list. Let (vi, vj , wij) denote a directed edge from vertex vi to vertex vj
with weight wij . The edge list is composed of a list of couples (vi, vj) or triples
(vi, vj , wij) for all edges. Note that undirected edges are represented in both
directions.

Compressed Sparse Row format (CSR)

Figure 3.2: An example of CSR format storing an mr × nc matrix

The CSR format of a sparse matrix consists of three arrays. We call them
csrVal[], csrCol[], csrRow[]. Figure 3.2 gives a CSR example with the
mr × nc matrix. Similar to COO format, csrVal[] and csrCol[] store the
values and column indexes of all nonzero matrix elements in row-major format,
respectively. However, unlike COO format, csrRow[] considers the first nonzero
element in each row of the matrix (i.e. the circled red numbers in the figure)
and holds their indexes that count in csrVal[] (i.e. the blue numbers circled
by red ellipses), and in the end contains the total number of nonzero elements of
the matrix. In other words, csrRow[] considers the number of nonzeros (in row-
major order) before the first nonzero element of each row and stores it in row-major
order. Therefore, the memory requirement for CSR format is 2 × nnz +mr + 1

(see annotations on right side of Figure 3.2).
In graph analytics, the CSR representation of similarity graph corresponds to

an adjacency list, where for each vertex vi, all its neighbours (e.g. vj , ..., vk) and
optionally the corresponding edge weights (e.g. wj , ..., wk) are recorded in one row
for that vertex.

Compressed Sparse Column format (CSC)

The CSC format of a sparse matrix consists of three arrays. We call them cscVal[],
cscCol[], cscRow[]. Figure 3.3 gives a CSC example with the mr × nc ma-
trix. The CSC format is similar to the CSR format except that the latter stores

68



Figure 3.3: An example of CSC format storing an mr × nc matrix

the matrix in row-major format while the former stores it in column-major format.
Specifically, cscVal[] and cscRow[] store the values and row indexes of all
nonzero matrix elements in column-major format, respectively. cscCol[] con-
siders the first nonzero element in each column of the matrix (i.e. the circled red
numbers in the figure) and holds their indexes that count in cscVal[] (i.e. the
blue numbers circled by red ellipses), and in the end contains the total number of
nonzero elements of the matrix. In other words, cscCol[] considers the num-
ber of nonzeros (in column-major order) before the first nonzero element of each
column and stores it in column-major order. Therefore, the memory requirement
for CSC format is 2× nnz + nc + 1.

Ellpack format

Figure 3.4: An example of Ellpack format storing an mr × nc matrix

The Ellpack format of a sparse matrix consists of two arrays. We call them
elpVal[] and elpCol[]. Figure 3.4 gives an Ellpack example with the mr×nc

matrix. Let maxNnzRow denote the maximum number of nonzero elements in
a row, i.e. the number of nonzeros in the densest row. For each row, a segment
of maxNnzRow size is reserved respectively in elpVal[] and elpCol[] for
storing the values and column indexes of nonzero elements of that row in row-major
order. If a row has fewer nonzeros than maxNnzRow, then the superfluous space
will be wasted, as marked ‘*’ in the figure. Therefore, the memory requirement for
Ellpack format is 2×mr ×maxNnzRow.

69



Comparison and our choice

Table 3.1: Comparison of four sparse matrix formats

COO CSR CSC Ellpack

Arrays
cooVal
cooRow
cooCol

csrVal
csrRow
csrCol

cscVal
cscRow
cscCol

elpVal
elpCol

Storage
order

Row-major Row-major Column-major Row-major

Memory
require-
ment

3× nnz 2× nnz +mr + 1 2× nnz + nc + 1
2×mr ×

maxNnzRow

Advantages

(1) Natural and easy
to understand;
(2) Support fast
conversions from/to
other sparse formats;
(3) Suited to all
sparsity patterns.

(1) Generally less
memory consumption
than COO and Ell-
pack;
(2) Support efficient
row slicing;
(3) Support efficient
matrix-vector compu-
tations;
(4) Suited to all
sparsity patterns.

(1) Generally less
memory consumption
than COO and Ell-
pack;
(2) Support efficient
column slicing;
(3) Support efficient
matrix-vector compu-
tations;
(4) Suited to all
sparsity patterns.

(1) Only 2 arrays;
(2) Efficient row
slicing;
(3) Suited to regu-
lar sparsity pattern.

Drawbacks

(1) Generally more
memory consumption
than CSR and CSC
due to redundancy of
information;
(2) Does not support
efficient slicing.

Does not support effi-
cient column slicing.

Does not support effi-
cient row slicing.

(1) Generally more
memory consumption
than CSR and CSC
due to imbalance
in the number of
nonzeros per row;
(2) Unsuited for
power law sparsity
pattern.

Table 3.1 compares the four sparse formats. Among them, we prefer the
CSR format for storing sparse similarity matrix. Because it is well suited to both
regular and irregular (e.g. power law distribution) sparsity patterns [55] and usually
requires less memory than COO and Ellpack formats. Moreover, the CSR format
is efficient for matrix-vector computations1. Additionally, we will also show in
Chapter 4 that the CSR format can support efficient row slicing (while COO and
CSC cannot). With these advantages, the CSR format has been widely used and
supported in most libraries. Finally, we intend to use the spectral graph partitioning
algorithms for the nvGRAPH library and they support only the CSR format for graph
representation.

1According to the SciPy API reference for scipy.sparse.csr_matrix

70

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html


3.3.2 . Difficulties
Recall that we want to address the memory space bottleneck of large-scale

spectral clustering by storing the similarity matrix in CSR format. Hence it makes
no sense to first construct the similarity matrix using a dense format storage and
then transform it from dense to CSR format. It seems that the construction of
similarity matrix should be directly performed in CSR format. However, several
restrictions make it difficult to be efficiently implemented in parallel especially
on the GPU. First, the total number of nonzero elements is unknown, so we
cannot allocate memory for csrVal[] and csrCol[]. Moreover, the number of
nonzeros per row is unknown, thus we cannot know in advance in which segment
of csrVal[] and csrCol[] we should store the value and column index of
each nonzero entry, respectively. Besides, although GPU threads can compute
similarities and check nonzeros in parallel, they are unable to store nonzeros (values
and column indexes) at the right places of csrVal[] and csrCol[], since each
thread does not know the number of nonzeros ahead of it. In contrast, the Ellpack
format, which we use for intermediate storage, will cause us fewer problems (see
Section 3.3.4).

We point out that in this dissertation only ε-neighborhood-like graph construc-
tion is considered for generating sparse similarity matrix. The k-nearest neighbor
graph does not have the first two issues stated above, but it requires expensive
sorting operations. We will also show in Chapter 4 that the ε-neighborhood-like
graph is more informative than k-nearest neighbor graph in terms of filtering noise.

In the following we propose 3 different algorithms and their associated GPU im-
plementations for the parallel construction of ε-neighborhood-like similarity graph
and matrix in CSR format, always avoiding storing the full similarity matrix in dense
format.

3.3.3 . Algo CSR-1: straightforward CSR
Algorithm

Algorithm 4 describes the construction of the CSR format similarity matrix in the
straightforward way. It is mainly composed of two full passes across all the elements
of similarity matrix. The first pass (1stPass kernel) is dedicated to count the
number of nonzeros per row into nnzPerRow[], so that we can get the total
number of nonzeros (nnz) and allocate exact size of memory for csrVal[] and
csrCol[]. Moreover, csrRow[] can be derived from nnzPerRow[] with
an exclusive scan, which allows to know the location of nonzeros related to each
row in csrVal[] and csrCol[]. With all these information, the second pass
(2ndPass kernel) can then parallelly store the nonzeros into csrVal[] and
csrCol[] after re-finding them. Additionally, we find from nnzPerRow[] the
minimum and maximum number of nonzeros in a row, which will be used for
filtering noise in Chapter 4.

71



Algorithm 4: Straightforward construction of the CSR format similarity
matrix (Algo CSR-1)
Inputs:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Similarity metric and connectivity parameters, e.g. σ, threshold
Outputs:

(1) Similarity matrix in CSR format: csrVal[], csrRow[],
csrCol[]
(2) Number of nonzeros per row: nnzPerRow[]
(3) Minimum and maximum number of nonzeros in a row:
minNnzRow, maxNnzRow
(4) Total number of nonzeros: nnz

1 Conduct the first pass (1stPass kernel) that:
- computes similarities and find nonzeros satisfying threshold;
- counts the number of nonzeros per row and stores in
nnzPerRow[].

2 Find minNnzRow and maxNnzRow from nnzPerRow[].
3 Perform an exclusive scan on nnzPerRow[] to obtain csrRow[].
4 Get nnz from csrRow[] and allocate memory for csrVal[] and

csrCol[].
5 Conduct the second pass (2ndPass kernel) that:

- recomputes similarities and find nonzeros satisfying threshold;
- stores the values and column indexes of nonzeros into csrVal[]
and csrCol[], respectively.

GPU implementation

Our GPU implementation for Algo CSR-1 is detailed in Appendix C. Essentially, it
consists in two optimized CUDA kernels: the 1stPass kernel and the 2ndPass
kernel.

3.3.4 . Algo CSR-2: Ellpack-to-CSR
Algorithm

Algorithm 5 describes the construction of the CSR format similarity matrix based
on an Ellpack-to-CSR approach. The basic idea is to try to first store the
similarity matrix in Ellpack format and then convert it into CSR format. So
we need to make a hypothesis for the maximum number of nonzeros in a
row (hypoMaxNnzRow), and allocate two temporary arrays of Ellpack format
(csrValMax[] and csrColMax[]) with the size of n × hypoMaxNnzRow

(n is the number of instances).
The algorithm is primarily composed of a single full pass across all the elements

in similarity matrix, and if necessary a supplementary pass across a part of similarity
matrix. The full pass (fullPass kernel) undertakes multiple tasks:

72



Algorithm 5: Construction of the CSR format similarity matrix based on
an Ellpack-to-CSR approach (Algo CSR-2)
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Similarity metric and connectivity parameters, e.g. σ, threshold
(3) Hypothetical maximum number of nonzeros in a row:
hypoMaxNnzRow

Output:
(1) Similarity matrix in CSR format: csrVal[], csrRow[],
csrCol[]
(2) Number of nonzeros per row: nnzPerRow[]
(3) Minimum and maximum number of nonzeros in a row:
minNnzRow, maxNnzRow
(4) Total number of nonzeros: nnz

1 Allocate two arrays csrValMax[] and csrColMax[] with each of
n× hypoMaxNnzRow size for storing the values and column indexes
of nonzeros in Ellpack format, respectively.

2 Conduct a full pass (fullPass kernel) across the similarity matrix that:
- computes similarities and find nonzeros satisfying threshold;
- counts the number of nonzeros per row and stores in
nnzPerRow[];

- accumulates the values and column indexes of nonzeros for each row
into csrValMax[] and csrColMax[] until the number of
nonzeros in a row reaches hypoMaxNnzRow;

- records restart indexes that may be used for a supplementary pass
for storing remaining nonzeros.

3 Find minNnzRow and maxNnzRow from nnzPerRow[].
4 Perform an exclusive scan on nnzPerRow[] to obtain csrRow[].
5 Get nnz from csrRow[] and allocate memory for csrVal[] and

csrCol[].
6 Launch the ellpackToCSR kernel to fill csrVal[] and csrCol[]

with accumulated nonzeros stored in csrValMax[] and
csrColMax[].

7 if maxNnzRow > hypoMaxNnzRow then
8 Conduct a supplementary pass (supPass kernel) across a part of

similarity matrix that:
- recomputes similarities from restart indexes and find remaining
nonzeros satisfying threshold;

- complete csrVal[] and csrCol[] by storing the values and
column indexes of remaining nonzeros.

9 end

1. it computes all similarities and counts the number of nonzeros per row into
nnzPerRow[];

73



2. it stores as many nonzeros as possible in the Ellpack arrays;

3. it records the restart places in each row for the possible supplementary pass
in case that the hypothesis (hypoMaxNnzRow) is too small.

With nnzPerRow[], we can easily get the real maximal number of nonzeros in
a row (maxNnzRow), the csrRow[] array, and the total number of nonzeros
(nnz) which allows to allocate memory for csrVal[] and csrCol[].

If our hypothesis is large enough (i.e. maxNnzRow <= hypoMaxNnzRow),
indicating the constructed Ellpack arrays contain the information of all nonzeros,
then it just remains to fill the CSR arrays (csrVal[] and csrCol[]) by an
Ellpack-to-CSR copy (ellpackToCSR kernel). However, if our hypothesis is
too small (i.e. maxNnzRow > hypoMaxNnzRow), indicating the constructed
Ellpack arrays miss some nonzeros, then besides the Ellpack-to-CSR copy we also
need to conduct a supplementary pass (supPass kernel) to find the missing
nonzeros and store them at the right places in csrVal[] and csrCol[]. Note
that the supplementary pass does not traverse all elements of similarity matrix, but
only starts the work from the restart indexes recorded by the first pass.

Additionally, we also find the minimum number of nonzeros in a row
(minNnzRow), which will be used, together with maxNnzRow, for filtering
noise in Chapter 4.

GPU implementation

Our GPU implementation for Algo CSR-2 is detailed in Appendix D. Essen-
tially, it consists in three optimized CUDA kernels: the fullPass kernel, the
ellpackToCSR kernel, and the supPass kernel.

3.3.5 . Algo CSR-3: chunkwise dense-to-CSR
Algorithm

Algorithm 6 describes the construction of the CSR format similarity matrix based
on a chunkwise dense-to-CSR approach. As mentioned in Section 3.3.2, it makes
no sense to first construct the similarity matrix with dense format storage and
then transform it from dense to CSR format, since for datasets with large number
of instances (n) it would be impossible to store the n × n similarity matrix in
dense format with limited GPU memory. However, it is feasible to construct only
a chunk of similarity matrix in dense format at a time so that we can convert each
part into CSR format and finally merge the CSR results of all parts to obtain the
CSR representation of the whole similarity matrix. We consider partitioning the
similarity matrix horizontally into chunks of similar size. The horizontal partitioning
can facilitate merging the CSR results of different chunks since the CSR format is
stored in row-major order. The number of chunks can be determined automatically
in the way that only one chunk can fit into the available GPU memory or the percent

74



of free GPU memory that we want to use. However, the total number of nonzeros is
still unknown in advance. We need to assume the maximum percentage of nonzeros
in the matrix so that we can allocate memory for CSR arrays. Additionally, we
derive the number of nonzeros per row from csrRow[], then find the minimum
and maximum number of nonzeros in a row, which will be used for filtering noise
in Chapter 4.

Algorithm 6: Construction of the CSR format similarity matrix based on
a chunkwise dense-to-CSR approach (Algo CSR-3)
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Similarity metric and connectivity parameters, e.g. σ, threshold
(3) Supposed maximum percentage of nonzeros: spMaxNzPct
(4) Usage rate of free GPU RAM for storing a chunk of similarity
matrix: memUseRate

Output:
(1) Similarity matrix in CSR format: csrVal[], csrRow[],
csrCol[]
(2) Number of nonzeros per row: nnzPerRow[]
(3) Minimum and maximum number of nonzeros in a row:
minNnzRow, maxNnzRow
(4) Total number of nonzeros: nnz

1 Allocate memory for csrVal[] and csrCol[] according to
spMaxNzPct.

2 Consider the horizontal partitioning of similarity matrix into chunks of
similar size, and calculate the desired amount of memory (based on the
size of free GPU RAM and memUseRate) used for storing a chunk of
similarity matrix.

3 Determine automatically the number of chunks in the way that only one
chunk can fit into the allocated GPU memory.

4 For each chunk of the similarity matrix:
- launch the chkPass kernel to compute the similarity elements and
store them in dense format;

- perform the denseToCSR step to transform the matrix chunk from
dense to CSR format and accumulate the number of nonzeros into
nnz.

5 Perform the mergeCSR step to merge the CSR results of all chunks and
obtain the CSR format of the whole similarity matrix.

6 Derive nnzPerRow[], minNnzRow and maxNnzRow from
csrRow[].

75



GPU implementation

Our GPU implementation for Algo CSR-3 is detailed in Appendix E. Essentially, it
consists in one optimized CUDA kernel: the chkPass kernel, and the use of some
functions of NVIDIA’s cuSPARSE library.

3.3.6 . Comparison of the three algorithms

Table 3.2: Comparison of our three GPU algorithms for constructing the
similarity matrix in CSR format

Algo CSR-1 Algo CSR-2 Algo CSR-3

Method
feature

Straightforward Ellpack-to-CSR Chunkwise
dense-to-CSR

Additional
input No

hypoMaxNnzRow
(hypo)

spMaxNzPct (spp),
memUseRate

# of
computed
similarities

2n2 n2 to 2n2 n2

Supported
sparsity
pattern

All
All but regular sparsity
patterns are preferred All

GPU
implement-

ation

1stPass kernel +
2ndPass kernel +
Thrust exclusive_scan

fullPass kernel +
ellpackToCSR kernel +
supPass kernel +
Thrust exclusive_scan

chkPass kernel +
cuSPARSE APIs +
Thrust transform

Size of
arrays stored

in GPU
RAM

Input data arr.: n · d
CSR arr.: 2 · nnz + n+ 1
nnzPerRow arr.: n+ 1

Input data arr.: n · d
CSR arr.: 2 · nnz + n+ 1
nnzPerRow arr.: n+ 1
Ellpack arr.: 2n · hypo
Restart. idx arr.: 2n

Input data arr.: n · d
CSR arr.:

2n2 · spp+ n+ 1
Chunk of matrix:
n · nbRowPerChunk

cuSPARSE workspace
Max

required
shared

memory per
block (in
bytes)

sizeof(float) ·Db.y ·Db.x
+
sizeof(int)·Db.y·(Db.x+1)

sizeof(float)·Db.y·(Db.x+
hypo)
+
sizeof(int) ·Db.y · (Db.x+
hypo+ 3)

Unknown (due to the
use of cuSPARSE)

Table 3.2 compares in many aspects our three algorithms for constructing the
similarity matrix in CSR format on the GPU. Each algorithm has its own advantages
and drawbacks compared to other two algorithms. Most importantly, Algo CSR-1
needs the most similarity computations but requires the least amount of GPU global
memory and no extra parameter, while Algo CSR-3 needs the fewest similarity
computations but may require most of the GPU global memory, and surely requires
more than 2n2 accesses to global memory and two extra parameters. Algo CSR-2
can be regarded as a trade-off algorithm between the two previous algorithms, but

76



it requires the most efforts to be efficiently implemented. Besides, although it can
support all kinds of sparsity patterns like the other two algorithms, it prefers regular
sparsity patterns that are favorable to Ellpack format. Finally, it can require too
much shared memory per block if the hypoMaxNnzRow or the block y dimension
is great.

Based on the above analysis and our experimental results in Section 3.6.4, we
give some advice on how to choose among the three algorithms in practice:

• If the dataset has many dimensions (large d), which means it is expensive
to compute each similarity based on the values of all dimensions, then we
recommend using Algo CSR-3 or Algo CSR-2 as they compute much fewer
similarities than Algo CSR-1.

• If the dataset has a huge number of instances (large n), then we suggest
using Algo CSR-2, because it computes much fewer similarities than Algo
CSR-1 and meanwhile requires much fewer accesses to global memory than
Algo CSR-3.

• If the user does not want to tune any extra parameters, or if the user wants to
acquire some initial knowledge of the similarity matrix (e.g. minNnzRow,
maxNnzRow, nnz, sparsity) before running any faster algorithms, then
Algo CSR-1 is the very choice.

We point out that we have considered whether it would be possible to exploit
the symmetry property of similarity matrix to halve the similarity computations.
Unfortunately, none of the above algorithms seem suitable to utilize the symmetry
due to the complicacy of CSR format. Besides, we have also considered whether
it would be easier and faster to first construct the similarity matrix in COO format
and then convert it into CSR format. However, we found that similar restrictions
and difficulties (see Section 3.3.2) would exist when using COO format. Moreover
it would require an extra COO-to-CSR conversion and also more memory space
for storing both COO and CSR results. Nevertheless, all our three algorithms
above can be readily generalized to COO-format similarity matrix construction if
necessary.

3.4 . Spectral graph partitioning using nvGRAPH

The previous section presents our optimized GPU algorithms for constructing
CSR format similarity graph and matrix, which is an important step for scaling
up spectral clustering. In this section, we concentrate on the graph partitioning
step of spectral clustering. This step takes the similarity matrix as input graph
and aims at partitioning the graph into balanced subgraphs (equivalent to data
clusters) with minimum cut. This is known to be an NP-hard problem, but a
relaxed and approximated solution is to compute the first few eigenvectors of the

77



graph Laplacian matrix and extract the partitioning information from the calculated
eigenvectors.

In Section 1.5.2 we have investigated some eigensolver methods and GPU-
accelerated libraries with eigensolvers. We are particularly interested in using
NVIDIA’s nvGRAPH library for spectral graph partitioning on the GPU. With the
CSR format similarity matrix constructed in Section 3.3, the remaining steps of
spectral clustering can be completed on the GPU by calling the “Spectral Clustering
API” of the nvGRAPH library. The API supports two graph partitioning algorithms
based on balanced cut minimization with embedded eigensolvers.

• Minimization of the balanced cut with Lanczos method. The balanced
cut refers to the volume of inter-cluster connections relative to the size of
clusters. The algorithm constructs the Laplacian matrix and then calls the
Lanczos solver to calculate the smallest eigenpairs.

• Minimization of the balanced cut with LOBPCG method. Similar to
the first algorithm, but it utilizes the LOBPCG eigensolver to handle the
constructed Laplacian matrix.

Compared to Lanczos method, LOBPCG can handle eigenvalues with multiplicity
[135] which often happens in spectral clustering. Moreover, the NVIDIA implemen-
tation of LOBPCG is able to restart the computation when it encounters numerical
instabilities. Thus nvGRAPH’s LOBPCG-embedded algorithm has appeared to be
the most reliable on our benchmarks.

We emphasize that despite its name called by nvGRAPH, the API does not
take care of similarity graph/matrix construction. It actually takes the similarity
graph in CSR topology (equivalent to similarity matrix in CSR format) as input
graph and performs spectral graph partitioning which includes several steps like
Laplacian matrix computation, eigen-decomposition, and final k-means clustering
(see Section 1.3.1 and Figure 1.1). Note that the nvGRAPH documentation [139]
does not report which type of Laplacian matrix is constructed in the above algo-
rithms. Besides, the API has also a modularity maximization algorithm for graph
partitioning, which constructs a modularity matrix and finds its largest eigenpairs
(while the balanced cut minimization algorithms construct the Laplacian matrix
and find its smallest eigenpairs).

Besides, the API also offers a function for measuring the clustering quality
with three supported metrics: modularity, edge cut, and ratio cut. The modularity
metric tells how good the clustering is versus random assignments. The edge cut
metric counts the total number of edges across clusters. The ratio cut metric
accumulates for all clusters the ratio of the number of edges going outside of a
cluster to the number of vertices inside the cluster. For the first metric, higher is
better, while for the last two metrics, lower is better.

Listing 3.5 shows the usage of the API. Before invoking the
nvgraphSpectralClustering function, we should first conduct some

78



preparation steps in sequence (lines 2-22): initialize the nvGRAPH library,
create a graph descriptor, upload graph data in CSR format, and specify the
parameters. The tolerance and the maximal number of iterations should be
given appropriate values for both eigensolver and final k-means. They can affect
the clustering quality and elapsed time. With all settings done, we call the
nvgraphSpectralClustering function which partitions the similarity graph
using spectral technique and returns cluster assignments of all vertices as well
as the kc smallest or largest eigenpairs (lines 25-26). Finally we can call the
nvgraphAnalyzeClustering function to measure clustering quality (lines
29-31).

1 #include <nvgraph.h>
2 ... // Omitted declarations
3 nvgraphHandle_t nvgHandle; // Declare a handle of nvGRAPH library
4 nvgraphGraphDescr_t descrG; // Declare a graph descriptor
5 nvgraphCreate(&nvgHandle); // Initialize nvGRAPH library
6 nvgraphCreateGraphDescr(nvgHandle, &descrG); // Create graph descriptor
7
8 // Upload CSR-topology similarity graph
9 nvgraphCSRTopology32I_st CSR_input = {n, nnz, GPU_csrRow, GPU_csrCol};
10 nvgraphSetGraphStructure(nvgHandle, descrG, (void*)&CSR_input, ...);
11 nvgraphAllocateEdgeData(nvgHandle, descrG, ...);
12 nvgraphSetEdgeData(nvgHandle, descrG, (void*)GPU_csrVal, ...);
13
14 // Initialize parameters
15 struct SpectralClusteringParameter SC_params;
16 SC_params.n_clusters = kc; // Nb of clusters
17 SC_params.n_eig_vects = kc; // Nb of eigenvectors
18 SC_params.algorithm = NVGRAPH_BALANCED_CUT_LOBPCG;
19 SC_params.evs_tolerance = 0.0001; // Tolerance for eigensolver
20 SC_params.evs_max_iter = 4000; // Max nb of eigensolver iter.
21 SC_params.kmean_tolerance = 0.0001; // Tolerance for k-means
22 SC_params.kmean_max_iter = 200; // Max nb of k-means iterations
23
24 // Perform spectral graph partitioning
25 nvgraphSpectralClustering(nvgHandle,descrG,...,&SC_params, //input
26 GPU_labels,GPU_eigVals,GPU_eigVects);//output
27
28 // Measure clustering quality according to a metric (e.g. modularity)
29 nvgraphAnalyzeClustering(nvgHandle, descrG, ..., // input
30 GPU_labels, NVGRAPH_MODULARITY, // input
31 &md_score); // output

Listing 3.5: Usage of the nvGRAPH spectral graph partitioning API

We point out that the API also has some limits: (1) it does not support
directed graphs; (2) it supports only the CSR format for graph representation; (3)
the supported maximum number of edges equals the maximum value for int type,
which is about 2 billion in case of using 32 bits for int; (4) it only scales to single
GPU. The first two limits have little effect on our current work, but the last two
limits really prohibit us from advancing spectral clustering to even larger scale.
The same limits exist for the corresponding APIs in cuGraph library.

79



3.5 . Tuning of parameters

Spectral clustering has the potential to produce high-quality clustering results.
However, as summarized in Table 3.3, multiple parameters are introduced in the
algorithms and implementations for spectral clustering. These parameters may
affect the clustering quality or the algorithm performance and thus need to be
tuned properly.

Some related works on the tuning or auto-tuning of spectral clustering pa-
rameters have been mentioned in Section 1.3.3. In this section, we describe our
implementation for the auto-tuning of the number of clusters kc based on the
eigengap heuristic, and give some suggestions on the tuning of other parameters
based on our practical experience.

Table 3.3: Parameters related to spectral clustering

Parameter Origin Impact on
clustering
quality

Impact
on algo
perf.

Tuning
difficulty

# of clusters (kc) Spectral clustering High Low High

Threshold for sparsifi-
cation

Construction of
the similarity
matrix in CSR
format

High Medium High

k for k-nearest neigh-
bor graph

High High High

σ for Gaussian simi-
larity

High Low High

hypoMaxNnzRow
in Algo CSR-2

No High Medium

spMaxNzPct in
Algo CSR-3

No Low Medium

memUseRate in
Algo CSR-3

No Medium Low

Tolerance Iterative eigen-
solver

High Medium Medium

Max # of iter. High Medium Low

Tolerance Final k-means or
k-means++

High Medium Low

Max # of iter. High Medium Low

3.5.1 . Auto-tuning of the number of clusters
We have implemented the eigengap heuristic [188] (introduced in Section 1.3.3)

for kc auto-tuning as follows.

1. Define a maximal number of clusters denoted by kcmax (kcmax > kc).

80



2. Leverage the nvGRAPH library (see Section 3.4) to calculate the kcmax

smallest eigenvalues and eigenvectors of graph Laplacian. Note that in this
case the k-means step embedded in nvGRAPH’s partitioning algorithms is no
longer necessary. Thus we set the maximum number of k-means iterations
to 1 (if this value is ≤ 0, nvGRAPH will use the default value 200).

3. Automatically determine kc based on the eigengap heuristic.

Finally we run our own GPU implementation of the k-means++ algorithm to obtain
kc clusters.

3.5.2 . Tuning of the parameters for similarity matrix construction
Despite the related works presented in Section 1.3.3, the auto-tuning of con-

nectivity parameters (e.g. k for k-nearest neighbor graph, ε for ε-neighborhood
graph, σ for Gaussian similarity function) is difficult and remains an open issue.
In this dissertation we manually tune connectivity parameters. Nevertheless, we
suggest that performing min-max feature scaling (as formulated in Equation 3.1)
before spectral clustering can facilitate the tuning of the parameters ε and σ,
because it helps knowing in what range to choose the parameters.

Let X l be a numeric feature containing n values xl1, ..., x
l
n (column l of data

matrix X), the min-max scaling transforms each value xli of X l as follows:

xli ←−
xli − xlmin

xlmax − xlmin

(3.1)
where xlmax and xlmin are the maximum value and minimum value of X l, respec-
tively. It can be found that the min-max scaling actually rescales the values of
every feature/dimension to the same range [0, 1].

We have introduced other parameters in the algorithms that have been pro-
posed previously for constructing the similarity matrix in CSR format, including
hypoMaxNnzRow in Algo CSR-2, spMaxNzPct and memUseRate in Algo
CSR-3. These three parameters have no effect on clustering quality, but have
different degrees of impact on algorithm performance.

hypoMaxNnzRow

We suggest that hypoMaxNnzRow in Algo CSR-2, which represents the hypo-
thetical maximum number of nonzeros in a row of the similarity matrix, should be
neither too small nor too large. As demonstrated experimentally in Section 3.6.4, a
value of a few tens to a few thousands for hypoMaxNnzRow would be acceptable
in terms of performance.

81



spMaxNzPct

The cuSPARSE library [144] targets matrices with zero elements representing over
95% of the total entries (i.e. matrices with sparsity > 95%). We consider it as
a reference and suggest that spMaxNzPct in Algo CSR-3, which represents the
supposed maximum percent of nonzero elements in the similarity matrix, should be
< 5%. In fact, our experiments in Section 3.6.4 show that the constructed similarity
matrices typically have > 99% sparsity, and larger similarity matrices are usually
more sparse. Moreover, too much memory would be required if spMaxNzPct is
not small enough for large matrices. Thus, for datasets with a large number of
instances, a small value under 1% for spMaxNzPct is generally preferable.

memUseRate

The memUseRate parameter in Algo CSR-3 refers to the usage rate of free GPU
RAM for storing a chunk of similarity matrix in dense format. If memUseRate is
too small (e.g. under 10%), the chunk size would be too small; if memUseRate is
too large (e.g. over 90%), other steps of the algorithm may lack RAM. Our experi-
ments in Section 3.6.4 show that a value in the range [50%, 80%] for memUseRate

is generally a nice choice, while a value in the range [10%, 50%] or [80%, 90%]
also works well for some datasets.

3.5.3 . Tuning of the parameters for eigensolvers and k-means
Since we use nvGRAPH’s LOBPCG-embedded algorithm which contains the

LOBPCG eigensolver and the k-means algorithm (see Section 3.4), we need to
specify the approximation tolerance and the maximum number of iterations for both
the eigensolver and the k-means. It is declared in the nvGRAPH documentation
[139] that:

• The smaller the tolerance, the better the approximation.

• For the tolerance related to eigensolvers, the default value is 0.001 while
values between 0.01 and 0.0001 are generally acceptable, however setting a
value of less than 0.0001 may result in divergence due to numerical roundoff.

• For the tolerance related to the k-means, the default value is 0.01 while
values between 0.01 and 0.001 are usually acceptable.

• For the maximum number of iterations, the default value is 4000 for eigen-
solvers and 200 for the k-means.

Experimentally, we found that the tolerance for the LOBPCG eigensolver can have
a significant impact on the clustering quality and therefore needs to tuned with
special care, while it is generally good to use the default values for the other
parameters.

82



3.6 . Experimental results

In this section, we experiment and evaluate our GPU implementation for spec-
tral clustering. Specifically, Section 3.6.1 introduces the experimental framework
including hardware and software, Section 3.6.2 describes the benchmark datasets
and parameter settings, Section 3.6.3 presents the results of spectral clustering
using dense data format, Section 3.6.4 shows the performance of the CSR format
for the similarity graph/matrix construction, Section 3.6.5 shows the performance
of nvGRAPH’s LOBPCG-embedded algorithm for graph partitioning, and finally
Section 3.6.6 gives the global performance of spectral clustering using CSR for-
mat.

3.6.1 . Experimental framework
Apart from the GPU algorithms and implementations for CSR graph/matrix

construction, we have also developed a well optimized CPU implementation related
to Algo CSR-1 as a baseline for performance comparison. It is parallelized with
OpenMP for multi-threaded execution and has been designed to facilitate auto-
vectorization with gcc for AVX units. To differentiate each implementation, we
call them “CPU CSR-1”, “GPU CSR-1”, “GPU CSR-2” and “GPU CSR-3” in this
section.

We take advantage of the LOBPCG-embedded algorithm from nvGRAPH for
the graph partitioning step on GPU, as explained in Section 3.4. For performance
comparison, we tried to find a CPU implementation of the LOBPCG eigensolver
that could be used through C/C++ interface for spectral clustering2, but unfor-
tunately we could not find one until April 2022.

All experiments are performed on our john3 server which consists of two In-
tel Xeon Silver 4114 processors as CPU and a NVIDIA GeForce RTX 3090 as
GPU. The CPU code is compiled by gcc 9.3.0 with -Ofast -funroll-loops

-march=native optimization flag and -fopenmp flag. The GPU code is com-
piled by nvcc of CUDA Toolkit 11.53 with -gpu-architecture=sm_86. More
information about our testbed john3 can be found in Appendix B. Computations
are in single precision.

3.6.2 . Datasets and parameter settings
Table 4.1 summarizes the datasets and algorithmic parameter settings used in

our experiments. The datasets can be divided into two groups according to their
use cases:

2The Spectral Clustering API of scikit-learn [150] has a LOBPCG eigensolver, but the
usage interface is in Python.3A compilation warning reports that “libcusolver.so.10, needed by /usr/lib/gcc/x86_-
64-linux-gnu/../libnvgraph.so, may conflict with libcusolver.so.11” since the latest nv-
GRAPH library comes from CUDA 10.2 (see Section 1.5.2). Nonetheless, there is no
runtime error and the results are correct.

83

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html


Table 3.4: Datasets and parameter settings of our benchmarks

Dataset (n, d, kc) Similarity metric Threshold

Supposed
max. % of
nonzeros
for CSR-3

Tolerance
for eigen-
solver

Jain (373, 2, 2) Gaussian(σ = 0.03) 0 (sim.) N/A N/A
Aggregation (788, 2, 7) Gaussian(σ = 0.02) 0.02 (sq. dist.) N/A N/A
S1 (5K, 2, 15) Gaussian(σ = 0.03) 0 (sim.) N/A N/A
Spirals (7.5K, 2, 3) Gaussian(σ = 0.01) 0 (sim.) N/A N/A

MNIST-60K (60K, 784, 10) Cosine 0.8 (sim.) 1% 0.005
MNIST-120K (120K, 784, 10) Cosine 0.8 (sim.) 1% 0.005
MNIST-240K (240K, 784, 10) Cosine 0.8 | 0.84*(sim.) 1% 0.005
Syn4D-1M (1M, 4, 4) Gaussian(σ = 0.01) 0.0008 (sq. dist.) 0.01% 0.001
Syn4D-5M (5M, 4, 4) Gaussian(σ = 0.01) 0.0004 (sq. dist.) 0.001% 0.0001
* To obtain acceptable clustering quality, the threshold 0.8 is good for MNIST-60K and MNIST-

120K, while a higher threshold (0.84) is required for MNIST-240K.

• 2D small datasets: Jain, Aggregation, S1 and Spirals. Each of them con-
tains only hundreds or thousands of points. They are used in Section 3.6.3
for spectral clustering using dense data format.

• Large datasets: MNIST-based sets (MNIST-60K, MNIST-120K and
MNIST-240K) and 4D synthetic sets (Syn4D-1M and Syn4D-5M). The for-
mer sets contain tens to hundreds of thousands of instances in 784 dimen-
sions, while the latter sets contain millions of instances in 4 dimensions.
They are used in Sections 3.6.4, 3.6.5 and 3.6.6 for evaluating the perfor-
mance of spectral clustering using CSR format.

More information about the benchmark datasets can be found in Appendix A.

In the beginning we perform feature scaling on the 2D sets and the 4D synthetic
sets to transform every dimension into [0, 1], which facilitates the tuning of σ and
thresholds. The feature scaling is efficiently implemented on GPU and its time
overhead is negligible compared to the computations of spectral clustering.

We adopt the cosine similarity metric for the MNIST-based datasets because
it is more effective than the Gaussian similarity for high-dimensional data (as intro-
duced in [89] and as we verified empirically). In contrast, we use Gaussian similarity
for other low-dimensional datasets.

We impose a lower bound threshold on the similarity value or an upper bound
threshold on the squared distance to construct the ε-neighborhood-like graph and
associated sparse similarity matrix (see Section 3.3.1). For comparison, we set
the same threshold (0.8) on the similarity for all MNIST-based datasets. Using
this threshold can result in good enough clustering quality for MNIST-60K and
MNIST-120K, but a higher threshold (0.84, marked with *) is needed for MNIST-

84



240K to achieve similar clustering quality. For Syn4D-1M and Syn4D-5M, we set
a threshold (0.0008 and 0.0004 respectively) on the squared distance.

Regarding GPU CSR-3, we suppose that the maximum percentage of nonzeros
in the associated similarity matrix (in contrast to sparsity) is 1% for the MNIST-
based datasets, 0.01% for Syn4D-1M and 0.001% for Syn4D-5M, based on some
quick preliminary experiments. After allocating enough memory for the CSR arrays,
we query the amount of remaining free GPU RAM via cudaMemGetInfo and
allocate 80% of it for storing a chunk of similarity matrix.

For nvGRAPH’s LOBPCG-embedded algorithm, several parameters need to be
specified (see Listing 3.5). We simply set the maximal number of iterations to
the nvGRAPH default value, i.e. 4000 for the LOBPCG eigensolver and 200 for
the final k-means. However, we found that the approximation tolerance for the
eigensolver needs to be tuned with care because it has a significant impact on the
clustering quality and the execution time. Based on some preliminary experiments,
we set it to 0.005 for the MNIST-based datasets, 0.001 for Syn4D-1M and 0.0001
for Syn4D-5M. Besides, the tolerance for the k-means algorithm is set to 0.0001
for all benchmarks.

3.6.3 . Performance of spectral clustering using dense data format
Figure 3.5 and Table 3.5 show respectively the result and quality of spectral

clustering using dense data format. As expected, spectral clustering can well dis-
cover different shapes of clusters (including non-convex ones) and yield satisfying
clustering on the four shape sets. Table 3.6 presents the elapsed time breakdown
in milliseconds. Since the datasets are small, we simply set the block size of all
related kernels to (BSX, BSY)=(128, 2). The time of eigensolver includes the time
to initialize the cuSolverDN library. It turns out that the eigensolver dominates
the running time, while the matrix construction and the normalization consume
little time. Other parts including CPU-GPU data transfers take some time but not
much. The total time of spectral clustering is less than 1 second for all the four
datasets.

Additionally, we find that the results of the syevdx eigensolver (i.e. eigenval-
ues and eigenvectors) are not exactly the same for each run with the same Laplacian
matrix and input parameters. This sometimes leads to unstable clustering when
using the k-means algorithm in the final step. However, using the k-means++
algorithm can usually handle this instability.

Table 3.5: Quality of spectral clustering on GPU using dense format

Dataset ARI AMI NMI

Jain 1.000 1.000 1.000
Aggregation 0.987 0.982 0.982
S1 0.989 0.989 0.989
Spirals 1.000 1.000 1.000

85



(a) Jain (b) Aggregation

(c) S1 (d) Spirals

Figure 3.5: Spectral clustering on GPU using dense data format

Table 3.6: Time (ms) of spectral clustering on GPU using dense format

Dataset
Data
trans-
fers

Sim.
Lap.

constr.

Eigensolver
syevdx

Norm.
Final

k-means++*

<# of iters>
Total

Jain 0.78 0.01 92.36 0.01 0.57 <2> 93.73
Aggregation 0.84 0.02 110.82 0.01 1.10 <3> 112.79
S1 2.91 0.02 441.71 0.01 5.84 <2> 450.49
Spirals 11.98 0.02 896.92 0.02 5.69 <2> 914.63
* The GPU implementation for the seeding step of k-means++ is displayed in Appendix G

Listings G.1 & G.2.

3.6.4 . Performance of CSR format similarity matrix construction
Table 3.7 shows the characteristics of the similarity matrices constructed by

any of our algorithms with the previously specified settings. It turns out that all the
similarity matrices are extremely sparse (with sparsity greater than 99%) although
they contain tens or hundreds of millions of nonzeros.

Tuning of the grid and block configuration

The configuration (i.e. dimension and size) of the grid and blocks of threads for
a CUDA kernel can have a significant impact on the kernel performance. One of

86



Table 3.7: Characteristics of the constructed sparse similarity matrices

Dataset Max nnz
in a row

Avg. nnz
per row

Total
nnz

Sparsity
(% of 0)

MNIST-60K 2196 251 15.1M 99.581%
MNIST-120K 3310 299 35.9M 99.751%
MNIST-240K 5552 478 114.8M 99.801%
MNIST-240K* 3520 199 47.8M 99.917%
Syn4D-1M 54 23 23.4M 99.998%
Syn4D-5M 64 29 149.9M 99.999%

the suggestions [140] is that a grid should have sufficient number of blocks so that
all multiprocessors of the GPU are kept busy, and meanwhile each multiproces-
sor should have multiple active blocks and sufficient number of active warps so
as to hide latencies and keep the hardware busy. Although these suggestions are
provided, it requires experiments to determine the optimal grid and block configu-
ration of each kernel and for each dataset. Instead of creating only 1D grids with
1D blocks for all our CUDA kernels [78], now we choose to create 2D grids with
2D blocks for the 1stPass kernel of GPU CSR-1 and the chkPass kernel of
GPU CSR-3, and create 1D grids with 2D blocks for the other kernels (see details
in Sections 3.3.3, 3.3.4 and 3.3.5).

We illustrate in Figures 3.6, 3.7 and 3.8 the impact of block size on kernel
performance. Essentially, block sizes close to the optimal ones are often sub-
optimal choices, while block sizes far from the optimal ones may lead to about ×2
to ×5 lower kernel performance.

(a) 1stPass kernel (optimal: x=32, y=16) (b) 2ndPass kernel (optimal: x=64, y=4)

Figure 3.6: Block size impact on the kernels of GPU CSR-1 with
MNIST-120K

87



(a) fullPass kernel with hypo = 512
(optimal: x=64, y=2)

(b) fullPass kernel with hypo = 1024
(optimal: x=128, y=4)

(c) fullPass kernel with hypo = 2048
(optimal: x=128, y=1)

Figure 3.7: Block size impact on the fullPass kernel of GPU CSR-2
with MNIST-120K

(a) chkPass kernel (optimal: x=32, y=16)

Figure 3.8: Block size impact on the kernel of GPU CSR-3 with
MNIST-120K

88



Table 3.8: Optimal block size configuration of our CUDA kernels for the
CSR format similarity matrix construction

Dataset GPU CSR-1
(BSX, BSY)

GPU CSR-2
(BSX, BSY) <hypo>

GPU CSR-3
(BSX, BSY)

1stPass
kernel

2ndPass
kernel

fullPass
kernel

supPass
kernel

chkPass
kernel

MNIST-60K (32, 16) (64, 4)
(64, 2) <512>

(128, 4) <1024>
(128, 1) <2048>

(128, 2) <512>
(128, 2) <1024>
(N / A) <2048>

(32, 16)

MNIST-120K (32, 16) (64, 4)
(64, 2) <512>

(128, 4) <1024>
(128, 1) <2048>

(128, 2) <512>
(128, 2) <1024>
(128, 2) <2048>

(32, 16)

MNIST-240K (32, 16) (64, 4)
(64, 2) <512>

(128, 4) <1024>
(128, 1) <2048>

(128, 4) <512>
(128, 2) <1024>
(128, 2) <2048>

(32, 16)

MNIST-240K* (32, 16) (64, 4)
(64, 2) <512>

(256, 4) <1024>
(128, 1) <2048>

(128, 2) <512>
(128, 2) <1024>
(128, 2) <2048>

(32, 16)

Syn4D-1M (32, 8) (32, 4)
(32, 4) <16>
(32, 4) <32>
(32, 4) <54>

(128, 1) <16>
(128, 1) <32>
(N / A) <54>

(32, 16)

Syn4D-5M (32, 8) (32, 4)
(32, 4) <16>
(32, 4) <32>
(32, 4) <64>

(128, 1) <16>
(128, 1) <32>
(N / A) <64>

(32, 16)

1 BSX and BSY represents the block size in x and y dimensions, respectively.
2 (N / A), short for Not Applicable or Not Available, represents that with the given hypo, the
supPass kernel consumes little time regardless of the block size, or the supPass kernel is not
involved in the computation.

Table 3.8 shows the optimal block size in x and y dimensions that we found
experimentally for each kernel and each benchmark. It can be observed from the
table that:

• Although the optimal block sizes are different for different kernels, they are
similar for datasets of the same category (which is quite user-friendly), and
all have at least 128 threads per block.

• As expected, we need to reduce the size of block y dimension for the
fullPass kernel when hypoMaxNnzRow (abbr. hypo) becomes large
leading to proportionally more shared memory consumption per block (see
Section 3.3.5 for explanation).

• Due to the hypoMaxNnzRow parameter, it requires more efforts to find
the optimal block size configuration for the kernels of GPU CSR-2 than for
the other two CSR algorithms. However, as will be presented later, these
efforts will be rewarded with superior performance in many benchmarks.

89



• Particularly, the optimal block size for the chkPass kernel of GPU CSR-3
is constant (BSX=32, BSY=16) for all benchmarks.

Tuning of the hypo parameter for GPU CSR-2

Figure 3.9: Performance comparison of GPU CSR-1 vs. GPU CSR-2 on
MNIST-120K

As shown in Figure 3.9, we consider the MNIST-120K benchmark as an example
for studying the performance of each kernel of GPU CSR 1 and 2, especially the
impact of hypoMaxNnzRow on the performance of GPU CSR-2. Note that the
hypoMaxNnzRow is irrelevant to the 1stPass and 2ndPass kernels of GPU
CSR-1. The optimal block sizes for the fullPass and supPass kernels of GPU
CSR-2 vary gradually with hypoMaxNnzRow, so the performance presented in
the figure for each value of hypoMaxNnzRow is obtained with the corresponding
optimal block size. Besides, the ellpackToCSR kernel of GPU CSR-2 consumes
so little time compared to the other kernels that we have omitted it in the figure.

The fullPass kernel of GPU CSR-2 always computes the n2 similarities re-
gardless of the hypoMaxNnzRow parameter. The computation of similarities is
the most time-consuming part of the kernel, so its execution time should remain
constant as seen in Figure 3.9 up to a hypothesis of 512. However, this kernel allo-
cates shared memory in a quantity proportional to the hypothesis. For hypotheses
higher than 512, the amount of shared memory required by each block limits the
number of blocks residing simultaneously in a Stream Multiprocessor, and causes
an increase in the computation time, as shown in Figure 3.9. In particular, we ob-
serve two sudden increases of time when the hypothesis grows from 2942 to 2943
and from 3998 to 3999. On the contrary, the supPass kernel recomputes on each
row only the similarities beyond the hypothesis and its execution time decreases
when the hypothesis increases. Finally, there is a range of hypothesis values for

90



which the total time of GPU CSR-2 is lower than GPU CSR-1 ([180-2942] on our
measurements in Figure 3.9). GPU CSR-2 can therefore run faster but requires
some tests to identify the interesting hypothesis range.

(a) MNIST-60K (b) MNIST-240K

(c) Syn4D-1M (d) Syn4D-5M

Figure 3.10: Performance evolution of GPU CSR-3

Tuning of the dense matrix chunk size for GPU CSR-3

As shown in Figure 3.10, we investigate the performance breakdown of GPU CSR-3
on four representative benchmarks, and the impact from the usage rate of free GPU
RAM allocated for a chunk of similarity matrix (see explanation in Section 3.6.2).
Note that we consider only the range from 10% to 90% for the free memory
usage rate because it is meaningless to use a too small rate and it is necessary
to leave some memory for other uses (e.g. the workspace needed by cuSPARSE
functions). Recall that GPU CSR-3 consists of some initialization steps, a loop of
the chkPass kernel and the denseToCSR step, and finally the mergeCSR step
(see Section 3.3.5). For all benchmarks, the initialization steps take only 0.34
second and the mergeCSR step costs little time compared to the global time, so
they are not presented in the figure.

91



It is normal to see that the number of chunks decreases with more memory us-
age rate, while the number of chunks increases with datasets of large size n. For the
MNIST-based datasets, the performance of GPU CSR-3 (including its chkPass
kernel and denseToCSR step) is very stable when the memory usage rate varies.
The elapsed time is dominated by the chkPass kernel while the denseToCSR
step consumes little time. For Syn4D-1M and Syn4D-5M, the kernel performance
is also very stable as the memory usage rate changes. However, the execution time
of the denseToCSR step becomes significant and less stable on Syn4D-1M and
makes the time of GPU CSR-3 less stable. This instability becomes more severe
on Syn4D-5M. Specifically, the performance deteriorates when the memory usage
rate decreases under 30% for Syn4D-1M, and under or over 80% for Syn4D-5M.
This performance deterioration in case of decreasing memory usage rate is due to
the growing initialization overhead in the denseToCSR step (implemented by cuS-
PARSE functions), since the number of chunks grows rapidly and the denseToCSR
step is performed once for each chunk. In any case, a free memory usage rate of
80% seems to be the best choice, while a rate between 50% and 80% is also a
fairly good choice.

GPU vs. CPU performance of CSR matrix construction

Table 3.9: Performance of the similarity matrix construction in CSR format

Dataset
CPU CSR-1 (s) GPU

CSR-
1 (s)

GPU CSR-2 (s) GPU
CSR-
3 (s)1 thr. 20 thr. 40 thr. <1st hypo> <2nd hypo> <3rd hypo>

MNIST-60K 1815 146 74 5.53 3.91 <512> 4.49 <1024> 5.42 <2048> 3.04
MNIST-120K 7427 590 301 22.27 17.12 <512> 19.05 <1024> 21.09 <2048> 11.09
MNIST-240K 28293 2502 1266 91.47 77.78 <512> 83.07 <1024> 85.29 <2048> 43.84
MNIST-240K* 29520 2650 1244 91.05 62.71 <512> 59.03 <1024> 72.52 <2048> 43.56
Syn4D-1M 2845 194 151 14.01 7.71 < 16> 5.71 < 32> 5.66 < 54> 17.62
Syn4D-5M too long 5772 3928 363.69 242.69 < 16> 176.06 < 32> 145.89 < 64> 435.76

Table 3.9 compares the performance of CPU and GPU algorithms on different
datasets. Each result on GPU is the average time of 5 consecutive runs, while each
result on CPU is the rounded time of a single run as it takes much longer. Since
our CPU has 20 physical cores (40 logical cores), we measured the performance of
CPU CSR-1 running 1, 20 and 40 threads. In particular, the time of CPU CSR-1
using 1 thread is too long (over 20 hours) on the Syn4D-5M dataset so we did not
get the final time. Figure 3.11 visualizes the speedup of GPU algorithms versus
the best performance of CPU CSR-1 (using 40 threads and auto-vectorization).

Globally, it can be seen that multi-threading accelerates significantly CPU CSR-
1, however, it is still much slower than any of the GPU algorithms. Compared

92



(a) MNIST-60K (b) MNIST-120K

(c) MNIST-240K (d) MNIST-240K*

(e) Syn4D-1M (f) Syn4D-5M

Figure 3.11: Speedup of the CSR format similarity matrix construction on
GPU vs. CPU CSR-1 using 40 threads

to the best performance of CPU CSR-1, GPU CSR-1 is ×10.8 to ×13.8 faster,
depending on hypoMaxNnzRow GPU CSR-2 can be ×13.6 to ×26.9 faster, and
GPU CSR-3 is ×8.6 to ×28.9 faster.

With the chosen values for hypoMaxNnzRow, GPU CSR-2 can outperform
GPU CSR-1 and this superiority is especially significant on MNIST-240K*, Syn4D-
1M and Syn4D-5M benchmarks. This is because the gain from reducing similarity
computations surpasses the cost of recording restart indexes for GPU CSR-2 (see
Section 3.3.4).

Compared to the other GPU algorithms, GPU CSR-3 is around ×2 faster on the
MNIST-based datasets but is significantly slower on Syn4D-1M and Syn4D-5M. In
fact, GPU CSR-3 computes relatively much fewer similarities (n2 instead of 1× to
2×n2), but requires many extra global memory accesses (n2 writes and n2 reads).
On the MNIST-based datasets which have numerous dimensions leading to long

93



(a) (b)

Figure 3.12: Scalability of the similarity matrix construction in CSR format

similarity computations, GPU CSR-3 achieves a speedup. However, on Syn4D-
1M and Syn4D-5M datasets which have only 4 dimensions and million-scale n, it
reaches less performance than the other GPU algorithms.

With logarithmic scales for both axes t and n, Figure 3.12 shows straight lines
with slopes close to 2, meaning that the elapsed time varies quadratically with n

for all the CPU and GPU algorithms. Hence all the algorithms follow the O(n2d)

time complexity of similarity matrix construction, although in CSR format. They
are all scalable to large datasets, but our GPU algorithms on a GeForce RTX 3090
are considerably faster than the parallelized and auto-vectorized CPU algorithm on
a dual Xeon Silver 4114.

3.6.5 . Performance of nvGRAPH’s LOBPCG-embedded algorithm

Table 3.10: Clustering quality and elapsed time of nvGRAPH’s
LOBPCG-embedded graph partitioning algorithm (based on 10 runs)

Dataset Clustering quality Time of nvGRAPH (s)

ARI AMI NMI Min. Max. Average

MNIST-60K 0.44 0.66 0.66 2.30 3.34 2.88
MNIST-120K 0.50 0.67 0.67 3.48 4.59 3.95
MNIST-240K* 0.56 0.73 0.73 4.41 5.90 5.01
Syn4D-1M 1.00 1.00 1.00 3.63 5.18 4.08
Syn4D-5M 1.00 1.00 1.00 17.67 19.15 18.25

After obtaining the CSR format similarity matrix, we leverage the LOBPCG-
embedded graph partitioning algorithm of the nvGRAPH library to fulfill the re-
maining steps of spectral clustering on the GPU (see Section 3.4). Table 3.10

94



presents the elapsed time of the nvGRAPH algorithm and the final clustering quality
measured by three commonly used metrics: Adjusted Rand Index (ARI), Adjusted
Mutual Information (AMI), Normalized Mutual Information (NMI) (introduced in
Section 1.1.2). All three metrics return a score less or equal to 1, and a score
closer to 1 indicates a better clustering. The results in the table are based on 10
runs.

For the MNIST-based datasets which are gray-scale digit images of 28× 28 =

784 pixels, the ARI, AMI, and NMI scores achieved by our spectral clustering
implementation are around 0.5, 0.7, 0.7, respectively. Although kind of far from
1, they are normal results that can be achieved by traditional spectral clustering
algorithms on high-dimensional image datasets. In fact, the NMI score is close to
that obtained in [207] by traditional spectral clustering algorithm and is better than
that obtained by the k-means algorithm. The clustering quality on Syn4D-1M and
Syn4D-5M is perfect since they are formed by convex clusters and are easy to be
correctly clustered by spectral clustering.

For all benchmarks we observed a certain degree of performance fluctua-
tions, but globally we are satisfied with the performance of nvGRAPH’s LOBPCG-
embedded algorithm. Although the theoretical time complexity of eigenvector
computation is O(n3) in the worst case, our experiments exhibit a low time com-
plexity close to O(log(n)) on the MNIST-based datasets and close to O(n) on
Syn4D-1M and Syn4D-5M datasets. We infer there are two reasons for this good
performance. First, the constructed similarity matrices are extremely sparse and
the numerous matrix-vector multiplications of the LOBPCG eigensolver are effi-
ciently performed in CSR format. Second, the LOBPCG solver adopts an iterative
and approximate method instead of expensive direct methods. Note that the time
of initializing the nvGRAPH library takes about 0.7 to 1 second with CUDA 11.5,
and it is not included in the performance measurements.

Additionally, our experiments in Section 5.3.2 show that NVIDIA’s LOBPCG-
embedded graph partitioning algorithm (on GPU) runs significantly faster than
that of scikit-learn (on CPU) when the number of instances to be processed is
large enough, e.g. a speedup from ×8 to ×28 when processing 104 instances.

3.6.6 . Global performance of spectral clustering using CSR format
Figure 3.13 presents the global performance of spectral clustering on the GPU,

consisting in the best performance of CSR-format similarity matrix construction
(achieved by one of the three algorithms) and the performance of nvGRAPH’s
LOBPCG-embedded algorithm. The similarity matrix construction appears to be
the most time-consuming part of spectral clustering especially on MNIST-120K,
MNIST-240K* and Syn4D-5M, mainly due to its O(n2d) time complexity. The
elapsed time consumed by the LOBPCG-embedded algorithm appears to take the

95



Figure 3.13: Performance of spectral clustering on GPU using CSR format

second place4. Data transfers between the CPU and the GPU are performed with
pinned memory to achieve higher bandwidth and they occur only at the beginning
and end of the program. Their elapsed time is negligible (less than 0.2 s) for all
benchmarks and is therefore not included in the figure.

Globally, with our optimized algorithms for CSR graph/matrix generation and
nvGRAPH’s graph partitioning algorithm, we obtain a parallel implementation of
spectral clustering that is able to process large datasets entirely on the GPU in just
a few seconds to a few minutes.

3.7 . Summary

In this chapter we have addressed the scalability of spectral clustering on GPU
architectures. We have proposed three different algorithms and optimized parallel
implementations for the construction of the sparse similarity graph/matrix in CSR
format. Storing this matrix in CSR format enables us to save a large amount of
memory space compared to the dense format storage, which is crucial on the GPU
since it usually provides much less memory than the CPU. Furthermore, our GPU
implementations of these algorithms are deeply optimized by applying various high-
level and low-level good practices of CUDA programming (e.g. coalesced access to
global memory, full exploitation of the shared memory, maximization of hardware
utilization, minimization of warp divergence, use of fast arithmetic instructions,
etc).

Moreover, our matrix generation in CSR format is ideally suited to the graph
partitioning algorithms provided by nvGRAPH which require the input graph to
be in CSR format. These algorithms possess built-in and adapted eigensolvers
(including Lanczos and LOBPCG) and a k-means implementation, so they can be
leveraged to accomplish the remaining steps of spectral clustering. We particularly
favor the LOBPCG-embedded algorithm because the LOBPCG solver can handle

4However, experiments in Section 5.3.2 show that the LOBPCG-embedded algorithm
takes more time than the similarity matrix construction on other benchmark datasets.

96



eigenvalues with multiplicity which often occur in spectral clustering, and it is
numerically more stable then the Lanczos solver.

With our algorithms for CSR graph/matrix construction and nvGRAPH’s
eigensolver-embedded partitioning algorithm, we have obtained a parallelized end-
to-end spectral clustering implementation on a single GPU. Finally, experiments
show that our GPU implementation on a GeForce RTX 3090 succeeds in scaling
up to millions of data instances.

97



4 - Parallel and Efficient Noise Filtering for
Spectral Clustering

4.1 . Introduction

As stated in Section 1.3.3, spectral clustering is sensitive to noise points (in-
cluding outliers) which are widely present in many datasets. Their existence can
destroy the block structure of the similarity matrix [117] and thus have a significant
negative impact on the clustering quality.

To address this problem, we propose two simple and effective noise filtering
approaches in Sections 4.2 and 4.3, which exploit the ready-made similarity matrix
in CSR format constructed by the algorithms of Section 3.3. One filtering approach
is based on the number of nonzeros per row, and the other is based on vertex
degree. We point out that although we independently devised both approaches
on our own, we found afterwards that our second approach is actually equivalent
to the idea suggested by Hennig et al. [81]. However, we provide a strategy to
help find the optimal filtering threshold. Moreover, our filtering implementation is
parallel and works on the CSR format of similarity matrix. In Section 4.4, we give
an algorithm for noise robust spectral clustering which exploits either of the two
noise filtering approaches, and we present our efficient GPU implementation for
this algorithm. Finally, experiments in Section 4.5 demonstrate the effectiveness
and efficiency of our noise filtering implementation.

4.2 . Noise filtering based on nnz per row

According to the background introduced in Section 1.3.1, the nonzeros in row
i of the similarity matrix (associated with ε-neighborhood graph) can be regarded
as the similarities between instance i and other instances within its neighborhood
of radius ε. So the number of nonzeros per row (nnzPerRow[]) can be regarded
as the number of ε-neighborhood neighbors per instance. We assume that noise
instances usually have much fewer ε-neighborhood neighbors than non-noise in-
stances. Therefore, with an appropriate threshold on nnzPerRow[], it is feasible
to separate noise instances from non-noise instances.

This filtering approach should be effective if the neighborhood radius ε is not
too large. Otherwise noise instances may have as many neighbors as non-noise
instances and the filtering approach will lose its effectiveness. Obviously this fil-
tering approach is inapplicable to the similarity matrix associated with k-nearest
neighbor graph where every instance has k neighbors.

Interestingly, we found that our noise filtering approach based on nnz per row

98



has a connection with a famous density-based clustering method called DBSCAN1.
With two predefined parameters: ε (neighborhood radius) and MinPts (a minimum
number of points in ε-neighborhood), DBSCAN [53] finds each point that has at
least MinPts neighbors in its ε-neighborhood as a core point, and forms clusters
based on the connectivity of core points and the reachability to non-core points.
The points that do not belong to any cluster are identified as noise. Thus each
noise point has fewer than MinPts neighbors in its ε-neighborhood, but note that
a point with fewer than MinPts neighbors in its ε-neighborhood is not necessarily
a noise point because it may be a border point of a cluster. Nevertheless, our
noise filtering approach based on nnz per row assumes that most border points of
a cluster still have more neighbors than noise points.

4.3 . Noise filtering based on vertex degree

Recall that a data instance corresponds to a graph vertex, and the similarities
between different instances correspond to the connections/edges between different
vertices. Each similarity value equals an edge weight. As defined in Reference [188],
the degree of a vertex is the weight sum of all the edges connected to the vertex,
i.e. the sum of similarities in the corresponding row of the similarity matrix2. We
assume that noise vertices usually have much fewer edges and probably smaller
edge weights than non-noise vertices, which means noise vertices generally have
much smaller degrees than non-noise vertices. Therefore, given an appropriate
threshold on the degrees of vertices (deg[]), we can separate noise vertices from
non-noise vertices.

Unlike the previous filtering approach which is based on nnzPerRow[] and
only applicable to ε-neighborhood similarity graph, this filtering approach based
on deg[] is suitable to both ε-neighborhood and k-nearest neighbor graphs. In
case of ε-neighborhood graph, this filtering approach should be less sensitive to a
large value of ε than the previous approach because farther vertex neighbors should
have smaller edge weights and thus less impact on the vertex degree.

4.4 . Noise robust spectral clustering on GPU

Algorithm

Algorithm 7 describes our noise robust spectral clustering that incorporates noise
filtering either based on nnz per row (see Section 4.2) or based on vertex degree
(see Section 4.3). First we construct the similarity matrix in CSR format via the

1Also, an interesting relationship between spectral clustering and DBSCAN have been
discovered in References [127, 170]2Note that this definition given by Reference [188] is different from the general defini-
tion in graph theory [44], where the degree of a vertex is generally defined as the number
of edges connected to the vertex. Nevertheless, we use the former in this dissertation.

99



algorithms proposed in Section 3.3. Then we get the number of nonzeros per
row (nnzPerRow[]) or compute the degrees of vertices (deg[]) depending on
the employed approach for noise filtering. As the values of nnzPerRow[] or
deg[] can vary considerably with different datasets, we transform them into the
bounded range [0, 1] by min-max scaling (introduced in Section 3.5.2) and reveal
their distribution in [0, 1] by a histogram.

Two examples of the histogram are shown in Figure 4.1. It is generally reason-
able to assume that noise instances are small in quantity compared to non-noise
instances and they have relatively few neighbors or small degrees. Hence it is likely
to find a distinct boundary between noise and non-noise instances in the histogram.
For example, in Figure 4.1 (a), the “hill” in the small upper area of the histogram
are actually formed by noise instances as they have small values of scaled nnz per
row, while the “mountain” in the large middle and lower area of the histogram are
formed by non-noise instances with relatively high values of scaled nnz per row.
Thus the optimal threshold for filtering noise are usually located at the “valley”
area between the “hill” and the “mountain”. Such feature also exists in the his-
togram of scaled degrees of vertices in Figure 4.1 (b). We developed a method
that tries to automatically estimate the optimal threshold for noise filtering (de-
noted by etholdNF ) based on the feature of the histograms, however our current
auto-estimation method is not mature and generic enough to handle various cases
and remains to be improved in future work. Nonetheless, we can easily choose a
good threshold based on the observation of the histogram in interactive mode.

(a) Histogram of scaled nnz per row (b) Histogram of scaled degrees of vertices

Figure 4.1: Histogram examples obtained on the Cluto_t7 dataset

Let us denote by tholdNF the noise filtering threshold that is finally used
on the scaled nnzPerRow[] or deg[]. Based on tholdNF , we can readily

100



identify noise instances and label them with “-1”. Then we remove all similarity
elements (in both row and column directions) that are related to noise instances
from the CSR format similarity matrix and we obtain the noise-free similarity matrix
in CSR format. We regard all noise instances as one cluster and assume the defined
number of clusters (kc) has counted the noise cluster. So, with the obtained noise-
free similarity matrix in CSR format and the number of noise-free clusters kc − 1,
we can continue the spectral clustering process (e.g. spectral graph partitioning
using nvGRAPH in Section 3.4) to find the clusters labels (from 0 to kc − 2) of
non-noise instances. Note that the indexes of non-noise instances associated with
the noise-free similarity matrix differ from their original indexes associated with the
original n× n similarity matrix. Therefore, we need to finally recover the labels of
non-noise instances that are associated with the original instance indexes.

Algorithm 7: Noise robust spectral clustering
Input:

(1) A set of data instances X = {x1, ..., xn} with xi in Rd

(2) Number of clusters kc (including 1 noise cluster)
(3) Parameters needed for similarity matrix construction

Output: Cluster labels of n data instances with the “-1” label for noise
1 Construct the similarity matrix in CSR format by one of the algorithms

proposed in Section 3.3.
2 if filter noise based on nnz per row then
3 Get the number of nonzeros per row (nnzPerRow[]).
4 Scale the elements of nnzPerRow[] into the range [0, 1] and

compute the histogram of scaled nnzPerRow[].
5 else if filter noise based on vertex degree then
6 Compute degrees of vertices (deg[]), i.e. sum of elements in each

row of the similarity matrix (see Section 1.3.1).
7 Scale the elements of deg[] into the range [0, 1] and compute the

histogram of scaled deg[].
8 Automatically estimate the optimal threshold for noise filtering

(etholdNF ) based on the histogram (ONGOING work).
9 if automatic mode then
10 Use etholdNF as the final threshold for filtering noise (tholdNF ).
11 else if interactive mode then
12 Print the histogram and etholdNF , let the user determine the final

threshold for filtering noise (tholdNF ).
13 Identify noise based on tholdNF and set their cluster labels to “-1”.
14 Remove noise-related elements from the similarity matrix in CSR format.
15 Perform the subsequent steps of spectral clustering on the noise-free

similarity matrix and find kc − 1 noise-free clusters.
16 Find the labels of non-noise instances indexed in the original dataset.

101



GPU implementation

Our GPU implementation for Algorithm 7 is detailed in Appendix F. Essentially,
the noise filtering part consists in some CUDA kernels and the use of some Thrust
APIs, while other parts use the implementations presented in Chapter 3.

4.5 . Experimental results

In this section, we experimentally evaluate the performance of our noise robust
spectral clustering algorithm on GPU.

4.5.1 . Datasets and parameter settings
The benchmark datasets are four noisy 2D datasets: Compound, Cure_t2,

Cluto_t8, Cluto_t7. Their features and associated algorithmic parameter settings
are presented in Table 4.1. Note that noise points are regarded together as one
noise cluster in each of the four datasets. The experiments are performed on our
john3 server which consists of two Intel Xeon Silver 4114 processors as CPU and
a NVIDIA GeForce RTX 3090 as GPU. More information about the benchmark
datasets and our testbed john3 can be found in Appendix A and B, respectively.
Computations are in single precision.

In the beginning we perform min-max feature scaling on each dataset to facili-
tates the tuning of σ and similarity threshold. Then, the Gaussian similarity metric
with σ = 0.02 is used for all datasets, and a lower bound threshold is imposed
on the similarity value to construct the ε-neighborhood-like graph and associated
sparse similarity matrix (see explanation in Section 3.3.1). Besides, except that
the tolerance for eigensolver is set to 0.001 for all datasets, other parameters of
nvGRAPH’s LOBPCG-embedded algorithm are set to the same values as in Sec-
tion 3.6.2.

Table 4.1: Datasets and parameter settings

Dataset (n, d, kc) Similarity metric Threshold Tolerance for
eigensolver

Compound (399, 2, 6) Gaussian(σ = 0.02) 0.02 (sim.) 0.001
Cure_t2 (4.2K, 2, 7) Gaussian(σ = 0.02) 0.1 (sim.) 0.001
Cluto_t8 (8K, 2, 9) Gaussian(σ = 0.02) 0.2 (sim.) 0.001
Cluto_t7 (10K, 2, 10) Gaussian(σ = 0.02) 0.2 (sim.) 0.001

4.5.2 . Effect of noise filtering
Cluto_t7

Let us first take the Cluto_t7 dataset as an example. As displayed in Figure 4.2
(a), this dataset contains 9 closely distributed shape clusters surrounded by 1
noise cluster. Thus the number of clusters kc = 9 + 1 = 10. Such dataset with

102



close clusters and many noise points is a great challenge for classical algorithms of
spectral clustering despite the tuning of parameters, as shown in Figure 4.2 (b).
In contrast, our noise robust spectral clustering algorithm based on either nnz

per row or vertex degree can successfully identify noise and distinguish different
shape clusters (Figure 4.2 (e) and (f)) on condition that an appropriate threshold
tholdNF for noise filtering is chosen. The choice of tholdNF can be aided by
observing the histogram of scaled nnz per row or scaled degrees (Figure 4.2 (c)
and (d)). Good choices of tholdNF are often located at the valley between the
“hill” related to noise points and the “mountain” related to core points. However,
since some shape clusters are very close to each other in Cluto_t7, a little higher
value is set for tholdNF to filter out more border points as noise and reduce the
connections between extremely adjacent clusters, otherwise these border points can
hinder spectral clustering from distinguishing some adjacent clusters (Figure 4.3
(a) and (b)). Therefore, the tuning of tholdNF is delicate on Cluto_t7.

Similarly, the results of spectral clustering on the Cluto_t8, Cure_t2, and
Compound datasets are presented in Figures 4.4, 4.5, and 4.6, respectively.

Cluto_t8

In the Cluto_t8 dataset (Figure 4.4), the vertical cluster and the inverted Y-
shaped cluster on the right are too close to be distinguished by spectral clustering,
so are the inverted Y-shaped cluster and the lower pie-shaped cluster. Unlike the
case of Cluto_t7, using a higher tholdNF cannot solve this issue, because the
vertical cluster has a significantly lower density than the other clusters and it can be
easily destroyed when our algorithm tries to filters out noise between the clusters
mentioned above using a higher tholdNF . Nonetheless, spectral clustering with
noise filtering produces a much better result than without noise filtering.

Cure_t2

For the Cure_t2 dataset (Figure 4.5), the ground truth clustering regards the point
distributions in the upper area as two oval clusters plus one strip-shaped cluster.
However, they are actually connected and spectral clustering cannot identify them
as three clusters correctly. Hence, we consider them as a whole cluster instead
when imposing the number of clusters kc for spectral clustering. Moreover, as
the single large oval cluster appears to have the lowest density compared to other
shape clusters, the histograms using 20 bins can no longer expose the valleys for
choosing tholdNF . Instead we draw the histograms using 50 bins but show only
the first half parts containing the valleys in Figure 4.5 (c) and (d). By choosing a
small threshold tholdNF = 0.02, our algorithm can successfully obtain satisfying
clusterings as shown in Figure 4.5 (e) and (f) (except that several points near
clusters are not identified as noise), while spectral clustering without noise filtering
cannot work well, as shown in Figure 4.5 (b).

103



(a) Ground truth clustering (kc = 10, noise
cluster in gray)

(b) SC (kc = 10, without filtering noise)

(c) Histogram of scaled nnz per row (d) Histogram of scaled degrees of vertices

(e) Noise robust SC (kc = 10, noise filtering
based on nnz per row, tholdNF = 0.39,

noise cluster in gray)

(f) Noise robust SC (kc = 10, noise filtering
based on vertex degree, tholdNF = 0.31,

noise cluster in gray)

Figure 4.2: Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 1)

104



(a) Noise robust SC (kc = 10, noise filtering
based on nnz per row, tholdNF = 0.38,

noise cluster in gray)

(b) Noise robust SC (kc = 10, noise filtering
based on vertex degree, tholdNF = 0.30,

noise cluster in gray)

Figure 4.3: Spectral clustering (abbr. SC) on the Cluto_t7 dataset (part 2)

Compound

For the Compound dataset (Figure 4.6), our noise filtering algorithm can perfectly
identify the noise points in the right area, but unfortunately the outer points with
lower densities of the two clusters in the upper left area are also identified as noise
by our algorithm.

Figures 4.7 and 4.8 present the impact of tholdNF on the clustering quality
measured by ARI and NMI scores3 for the above four noisy datasets. There are
some missing values in Figure 4.7 (d) and Figure 4.8 (a) and (b), because in
these cases the nvGRAPH API fails in execution (probably due to eigensolver
failure). Nevertheless, it can be clearly seen that our noise filtering algorithm can
significantly improve the ARI and NMI scores of spectral clustering in a wide range
of tholdNF for Cluto_t7, Cluto_t8, and Compound datasets. In contrast, for the
Cure_t2 dataset, the ARI scores of spectral clustering without noise filtering are
higher than those with noise filtering and the NMI scores without noise filtering
are close to those with noise filtering, as shown in Figure 4.8 (a) and (b). This
is because the ARI and NMI scores are calculated based on the ground truth
clustering, which favors the partitioning of the point distributions into three clusters
in the upper area of Figure 4.5 (a). However, by comparing Figure 4.5 (b), (e) and
(f), it is obvious that spectral clustering with noise filtering achieves better results
than without noise filtering.

3The AMI scores are not displayed because they are usually equal to or very close to
the NMI scores in our experiments.

105



(a) Ground truth clustering (kc = 9, noise
cluster in gray)

(b) SC (kc = 9, without filtering noise)

(c) Histogram of scaled nnz per row (d) Histogram of scaled degrees of vertices

(e) Noise robust SC (kc = 9, noise filtering
based on nnz per row, tholdNF = 0.15,

noise cluster in gray)

(f) Noise robust SC (kc = 9, noise filtering
based on vertex degree, tholdNF = 0.15,

noise cluster in gray)

Figure 4.4: Spectral clustering (abbr. SC) on the Cluto_t8 dataset

106



(a) Ground truth clustering (kc = 7, noise
cluster in gray)

(b) SC (kc = 5, without filtering noise)

(c) Histogram of scaled nnz per row (d) Histogram of scaled degrees of vertices

(e) Noise robust SC (kc = 5, noise filtering
based on nnz per row, tholdNF = 0.02,

noise cluster in gray)

(f) Noise robust SC (kc = 5, noise filtering
based on vertex degree, tholdNF = 0.02,

noise cluster in gray)

Figure 4.5: Spectral clustering (abbr. SC) on the Cure_t2 dataset

107



(a) Ground truth clustering (kc = 6) (b) SC (kc = 6, without filtering noise)

(c) Histogram of scaled nnz per row (d) Histogram of scaled degrees of vertices

(e) Noise robust SC (kc = 6, noise filtering
based on nnz per row, tholdNF = 0.15,

noise cluster in gray)

(f) Noise robust SC (kc = 6, noise filtering
based on vertex degree, tholdNF = 0.10,

noise cluster in gray)

Figure 4.6: Spectral clustering (abbr. SC) on the Compound dataset

108



(a) On Cluto_t7 (with noise filtering based
on nnz per row)

(b) On Cluto_t7 (with noise filtering based
on vertex degree)

(c) On Cluto_t8 (with noise filtering based
on nnz per row)

(d) On Cluto_t8 (with noise filtering based
on vertex degree)

Figure 4.7: Impact of the threshold for noise filtering (tholdNF ) on
spectral clustering quality on Cluto_t7 and Cluto_t8 datasets

Table 4.2: Time (ms) of spectral clustering on GPU with noise filtering
based on nnz per row

Dataset Data
transfers

CSR sim.
constr.

Noise
filtering

nvGRAPH
API Total

Compound 0.58 0.46 0.69 1115.41 1117.13
Cure_t2 0.74 1.06 1.28 1533.20 1536.27
Cluto_t8 0.70 3.70 1.28 1138.15 1143.82
Cluto_t7 0.69 5.56 1.73 1121.68 1129.66

109



Table 4.3: Time (ms) of spectral clustering on GPU with noise filtering
based on vertex degree

Dataset Data
transfers

CSR sim.
constr.

Noise
filtering

nvGRAPH
API Total

Compound 0.59 0.45 0.80 1205.59 1207.44
Cure_t2 0.70 1.03 1.41 1456.39 1459.53
Cluto_t8 0.74 3.80 1.43 1201.67 1207.62
Cluto_t7 0.74 5.55 1.77 1404.72 1412.78

(a) On Cure_t2 (with noise filtering based
on nnz per row)

(b) On Cure_t2 (with noise filtering based
on vertex degree)

(c) On Compound (with noise filtering
based on nnz per row)

(d) On Compound (with noise filtering
based on vertex degree)

Figure 4.8: Impact of the threshold for noise filtering (tholdNF ) on
spectral clustering quality on Cure_t2 and Compound datasets

4.5.3 . Time overhead of noise filtering
Tables 4.2 and 4.3 give the running time breakdown of spectral clustering on

GPU with the respective noise filtering method. For simplicity, BSX=128 and
BSY=2 are set for all the CUDA kernels related to CSR format similarity matrix

110



construction (using Algorithm 4 in Section 3.3.3) and noise filtering (see Sec-
tion 4.4). The tholdNF is set with the appropriate values given previously for
each dataset.

Obviously, the nvGRAPH API accounts for the vast majority of the total run-
time. The noise filtering takes more time than the CSR similarity matrix construc-
tion on the Compound (with n = 399) and Cure_t2 (with n = 4200) datasets.
However, it is the opposite situation on the Cluto_t8 (with n = 8000) and Cluto_-
t7 (with n = 10000) datasets, due to the high time complexity (O(n2d)) of
similarity matrix construction. Moreover, we observed that noise filtering based
on vertex degree takes a little more time than that based on nnz per row, and
so does the following nvGRAPH API. Essentially, the time overhead of our GPU
implementation for noise filtering is insignificant for spectral clustering.

4.6 . Summary

In this chapter we have proposed an efficient noise robust spectral clustering
algorithm based on two noise filtering approaches and provided its parallel imple-
mentation on GPU. Experiments on various noisy datasets show that our noise
filtering implementation can significantly improve the quality of spectral clustering
while introducing low time overhead. However, the tuning of the noise filtering
threshold can be tricky in some cases and an auto-tuning method remains to be
developed.

111



5 - Large-scale Representative-based Spec-
tral Clustering on CPU-GPU Platforms

5.1 . Introduction

In the previous Chapter 3, due to optimized parallel computations with sparse
data storage format, we have succeeded in scaling spectral clustering up to millions
of data instances on a single GPU. However, it would be difficult to move forward
to an even larger scale mainly because of two issues: (1) the similarity matrix con-
struction would be too time-consuming considering the O(n2d) time complexity;
(2) the maximum number of edges that the nvGRAPH eigensolver-embedded API
can handle is about 2 billion.

To address the above issues, we incorporate the use of representatives in this
chapter, where representatives are assumed to be some existing or calculated points
that can reflect the distributional characteristics of a dataset. The basic idea is
to first extract some representative points from the original dataset (preprocessing
step), then perform spectral clustering on the representatives (spectral processing
step), and finally obtain the clustering result of the original dataset by assigning
each instance to its nearest representative (postprocessing step). The goal of using
representatives is to reduce the amount of data on which the computationally
expensive spectral clustering is performed, while retaining the clustering quality
with little degradation compared to spectral clustering on the original dataset.

In fact, the idea of using representatives is not new in the field of cluster
analysis. For example, in 1998, Guha, Rastogi, and Shim [67] proposed an algo-
rithm called CURE (short for Clustering Using Representatives), which produces
some representative points for each cluster and then conducts hierarchical clus-
tering on the representatives. In 2009, Yan, Huang, and Jordan [203] proposed
a general framework for fast approximate spectral clustering based on the use of
representatives, and they suggested two methods for extracting representatives:
the k-means algorithm and the random projection tree. More information can be
found in Section 1.4, where other approximation methods are also introduced.

In this chapter, we adopt the general framework proposed by Yan et al. and
combine it with parallel computing to achieve large-scale spectral clustering on
CPU-GPU platforms. Three methods for extracting representatives are considered:
random sampling, k-means algorithm (see Section 1.2.1), and k-means++ algo-
rithm (see Section 1.2.2). In Section 5.2 we empirically study the performance of
each extraction method. Then, in Section 5.3, we consider three different usage
scenarios and propose associated parallel processing chains for representative-based
spectral clustering on CPU architectures, GPU architectures, or CPU-GPU hetero-
geneous architectures. As expected, the work presented in Chapter 2 (parallel

112



k-means on CPU and GPU) and the work presented in Chapter 3 (parallel spec-
tral clustering on GPU) can serve as modules in the proposed processing chains.
Finally, experiments on large-scale datasets demonstrate the high scalability and
performance of the proposed spectral clustering chains.

5.2 . Extraction of representatives

5.2.1 . Using random sampling vs. k-means vs. k-means++
We consider three methods for extracting representatives: random sampling, k-

means, and k-means++. Their performance is experimentally investigated with our
testbed john3 using four synthetic large-scale 2D datasets: Spirals-75M, Smile2-
100M, Aggregation-78.8M, Complex9-303M. These datasets consist of clusters
with highly dense point distributions. More information about the datasets and
the testbed can be found in Appendices A and B, respectively.

Benchmarking settings

The following settings are used in our experiments:

• 40 OpenMP threads are created for the parallelization of each method on
CPU, because using 40 threads allows hyperthreading which often results in
better performance.

• The tolerance is set to 0.01 for the k-means and k-means++ algorithms
(see explanation in Section 1.2.1).

• Two-level summation with 1000 packages are used in the Update step of
k-means and k-means++ to handle the effect of rounding errors (see expla-
nation in Section 2.2).

• Our parallel CPU implementation for the seeding step of k-means++ is dis-
played in Appendix G Listing G.6. Essentially it utilizes OpenMP directives
and some Thrust functions (reduce, inclusive_scan, exclusive_-
scan) but does not change the high-level sequential nature of seeding, i.e.
select initial centroids one by one (see Section 1.2.2).

• Computations are mainly in single precision, except that double precision is
used for the Thrust functions exploited in the seeding step of k-means++
to handle the effect of rounding errors.

Distributions of the extracted kr representatives

Figures 5.1, 5.2, 5.3, 5.4 show the distributions of kr representatives extracted by
each method on the four test datasets, respectively. It can be observed that:

• When kr is relatively small (e.g. kr = 100 or 500), the kr representatives
extracted by k-means or by k-means++ have much better distributions than

113



those extracted by random sampling. In fact, since the number of clusters
in each benchmark dataset is relatively small (kc = 3 to 9) and all clusters
are in 2D space, extracting a relatively small number of representatives by
k-means or k-means++ is usually sufficient to capture the distributional
features of all 2D clusters.

• When kr is relatively small, it is difficult or even impossible to correctly clus-
ter the kr representatives extracted by random sampling since their distribu-
tions are irregular. To obtain acceptable distributions of representatives with
random sampling, kr needs to be large enough (e.g. kr = 2500). However,
the calculation cost of spectral clustering on representatives would increase
with kr, at least quadratically.

• Compared to the representatives extracted by k-means, those extracted by
k-means++ have slightly more uniform distributions, and therefore are more
likely and easier to be correctly clustered, especially when kr is small.

Elapsed time of extraction

Tables 5.1, 5.2, 5.3 and 5.4 present the elapsed time of kr representatives extraction
using each method on the four datasets, respectively. It can be seen that:

• The representatives extraction by random sampling is much faster than k-
means and k-means++. Note that it consists of not only the selection of kr
representatives by random sampling, but also the attachment of each data
instance to its nearest representative. The former takes little time, while the
latter consumes the same time as one iteration of the ComputeAssign step.

• k-means++ needs fewer iterations than k-means, but the former still takes
significantly more time due to the expensive seeding step. The Update step
per iteration takes little time, while the elapsed time of the ComputeAssign
step per iteration is much higher and grows approximately linearly with kr,
due to the O(n× kr × d) time complexity.

Strategy for choosing an extraction method

In summary, extracting more representatives generally better captures the distribu-
tional features of each cluster, but increases both the calculation cost of extracting
representatives and the calculation cost of spectral clustering on representatives.
After weighing the distribution quality of representatives against the cost of ex-
traction, we found that k-means seems to be the best choice for extracting a
relatively small number of representatives, while random sampling seems to be a
preferable choice for extracting a large number of representatives. Particularly,
k-means++ may be necessary to achieve better clustering results than k-means in
case of extracting a very small number of representatives.

114



(a) kr = 2500, r. s. (b) kr = 2500, k-means (c) kr = 2500, k-means++

(d) kr = 500, r. s. (e) kr = 500, k-means (f) kr = 500, k-means++

(g) kr = 100, r. s. (h) kr = 100, k-means (i) kr = 100, k-means++

Figure 5.1: kr representatives extracted from the Spirals-75M dataset by 3
different methods (1st column: random sampling; 2nd column: k-means
with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Table 5.1: Elapsed time of kr representatives extraction on Spirals-75M
(n, d, kc) = (75M, 2, 3)

kr Method
Time (s)

Initialize
centroids

ComputeAssign
per iter.

Update
per iter.

Nb of
iters.

Total

2500 r.s. 0.0002 12.49 N/A 1 12.49
km 0.0002 12.24 0.04 24 294.72

km+ 1083.48 12.32 0.02 20 1330.28

500 r.s. 0.0002 2.66 N/A 1 2.66
km 0.0002 2.50 0.03 20 50.63

km+ 225.32 2.52 0.02 15 263.41

100 r.s. 0.0003 0.63 N/A 1 0.63
km 0.0003 0.53 0.02 21 11.54

km+ 49.40 0.51 0.02 16 57.91

115



(a) kr = 2500, r. s. (b) kr = 2500, k-means (c) kr = 2500, k-means++

(d) kr = 500, r. s. (e) kr = 500, k-means (f) kr = 500, k-means++

(g) kr = 100, r. s. (h) kr = 100, k-means (i) kr = 100, k-means++

Figure 5.2: kr representatives extracted from the Smile2-100M dataset by 3
different methods (1st column: random sampling; 2nd column: k-means
with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Table 5.2: Elapsed time of kr representatives extraction on Smile2-100M
(n, d, kc) = (100M, 2, 4)

kr Method
Time (s)

Initialize
centroids

ComputeAssign
per iter.

Update
per iter.

Nb of
iters.

Total

2500 r.s. 0.0003 16.60 N/A 1 16.60
km 0.0004 16.38 0.05 35 574.91

km+ 1417.81 16.42 0.04 20 1747.11

500 r.s. 0.0003 3.57 N/A 1 3.57
km 0.0004 3.36 0.04 31 105.20

km+ 293.86 3.36 0.02 22 368.27

100 r.s. 0.0003 0.83 N/A 1 0.84
km 0.0002 0.71 0.03 27 19.89

km+ 63.60 0.69 0.02 16 74.98

116



(a) kr = 2500, r. s. (b) kr = 2500, k-means (c) kr = 2500, k-means++

(d) kr = 500, r. s. (e) kr = 500, k-means (f) kr = 500, k-means++

(g) kr = 100, r. s. (h) kr = 100, k-means (i) kr = 100, k-means++

Figure 5.3: kr representatives extracted from Aggregation-78.8M dataset by
3 different methods (1st column: random sampling; 2nd column: k-means
with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Table 5.3: Elapsed time of kr representatives extraction on
Aggregation-78.8M (n, d, kc) = (78.8M, 2, 7)

kr Method
Time (s)

Initialize
centroids

ComputeAssign
per iter.

Update
per iter.

Nb of
iters.

Total

2500 r.s. 0.0003 13.09 N/A 1 13.09
km 0.0003 12.91 0.04 30 388.32

km+ 1132.37 12.90 0.03 21 1403.78

500 r.s. 0.0003 2.77 N/A 1 2.77
km 0.0002 2.69 0.03 23 62.48

km+ 231.21 2.63 0.01 18 278.83

100 r.s. 0.0002 0.67 N/A 1 0.67
km 0.0003 0.56 0.02 19 11.16

km+ 48.49 0.52 0.01 17 57.63

117



(a) kr = 2500, r. s. (b) kr = 2500, k-means (c) kr = 2500, k-means++

(d) kr = 500, r. s. (e) kr = 500, k-means (f) kr = 500, k-means++

(g) kr = 100, r. s. (h) kr = 100, k-means (i) kr = 100, k-means++

Figure 5.4: kr representatives extracted from Complex9-303M dataset by 3
different methods (1st column: random sampling; 2nd column: k-means
with tolerance = 0.01; 3rd column: k-means++ with tolerance = 0.01)

Table 5.4: Elapsed time of kr representatives extraction on
Complex9-303M (n, d, kc) = (303.1M, 2, 9)

kr Method
Time (s)

Initialize
centroids

ComputeAssign
per iter.

Update
per iter.

Nb of
iters.

Total

2500 r.s. 0.0004 50.21 N/A 1 50.21
km 0.0003 49.44 0.18 25 1240.64

km+ 4220.51 49.51 0.13 20 5213.32

500 r.s. 0.0003 10.74 N/A 1 10.74
km 0.0003 10.13 0.13 20 205.10

km+ 844.16 10.08 0.06 18 1026.66

100 r.s. 0.0003 2.67 N/A 1 2.67
km 0.0002 2.12 0.11 14 31.13

km+ 186.23 2.06 0.07 11 209.65

118



5.2.2 . Impact of the tolerance of k-means
For the results in previous figures and tables, the tolerances of k-means and

k-means++ are directly set to 0.01. Nevertheless, the tolerance actually plays an
important role in the performance of extracting representatives.

(a) tolerance = 0.1 (b) tolerance = 0.01 (c) tolerance = 0.001

(d) tolerance = 0.1 (e) tolerance = 0.01 (f) tolerance = 0.001

(g) tolerance = 0.1 (h) tolerance = 0.01 (i) tolerance = 0.001

(j) tolerance = 0.1 (k) tolerance = 0.01 (l) tolerance = 0.001

Figure 5.5: 100 representatives extracted from each benchmark dataset by
using k-means with different tolerances (1st row: Spirals-75M; 2nd row:
Smile2-100M; 3rd row: Aggregation-78.8M; 4th row: Complex9-303M)

Figure 5.5 displays the distributions of 100 representatives extracted by k-
means using different tolerances, and Table 5.5 presents the associated elapsed
time. It can be found that:

119



• With decreasing tolerance, the representatives extracted by k-means have
improved distributions, i.e. better capture the distributional characteristics
of each cluster. However, the number of iterations required to achieve con-
vergence increases significantly, thus leading to a considerable augmentation
of elapsed time.

• Generally, setting the tolerance of k-means to 0.01 seems to be a good
compromise on various datasets, i.e. achieving relatively good distributions
of representatives in an acceptable amount of time.

Table 5.5: Elapsed time of extracting 100 representatives using k-means
with different tolerances

Dataset Tolerance
Time (s)

Initialize
centroids

ComputeAssign
per iter.

Update
per iter.

Nb of
iters.

Total

Spirals-75M 0.1 0.0002 0.54 0.02 3 1.67
0.01 0.0003 0.53 0.02 21 11.54
0.001 0.0002 0.51 0.02 108 57.01

Smile2-100M 0.1 0.0003 0.75 0.08 3 2.48
0.01 0.0002 0.71 0.03 27 19.89
0.001 0.0003 0.69 0.02 194 138.42

Aggregation-78.8M 0.1 0.0003 0.59 0.02 3 1.81
0.01 0.0003 0.56 0.02 19 11.16
0.001 0.0002 0.53 0.02 69 38.06

Complex9-303M 0.1 0.0003 2.29 0.11 3 7.21
0.01 0.0002 2.12 0.11 14 31.13
0.001 0.0002 2.06 0.07 80 170.29

5.3 . Representative-based spectral clustering on CPU-GPU plat-
forms

5.3.1 . Different scenarios and adapted parallel processing chains
To achieve large-scale high-performance representative-based spectral cluster-

ing on modern CPU-GPU platforms, we need to design adapted parallel processing
chains by considering the following aspects:

• Strengths and limitations of modern CPU vs. GPU architectures.
Basically, the GPU is specialized for large fine-grained parallel computations
but usually has much less RAM than the CPU. See Section 1.5.1 for more
description.

120



• Advantages and disadvantages of different methods for kr represen-
tatives extraction. Random sampling is a fast but naive method. Getting a
good distribution of representatives using random sampling usually requires
kr to be large enough. In contrast, k-means is a high-quality method that
preserves cluster properties well even when kr is relatively small, but the
calculation cost is nontrivial especially for large kr. See Section 5.2.1 for
illustration.

• Dataset characteristics. The size of a dataset (n×d elements) may exceed
the size of GPU RAM, in which case the data cannot be entirely loaded onto
the GPU. Besides, a dataset may have only a few clusters in low-dimensional
space, thus extracting a small number of representatives may be sufficient
to represent the properties of all clusters; or a dataset may have a large
number of clusters or dimensions, thus a large number of representatives (at
least kr ≫ kc) can be required.

Depending on whether the GPU RAM is sufficient with respect to the data
size and whether the number of representatives to be extracted is small or large,
we propose an associated parallel processing chain for each scenario, as shown in
Figure 5.6.

Scenario I: sufficient GPU RAM

Let us first consider the scenario where there is sufficient GPU RAM to store
the entire dataset but direct spectral clustering would still take too much time.
Figure 5.6 (a) presents our parallel processing chain in this case. After reading
data instances from a disk file to CPU RAM, we suggest transferring all data
from CPU to GPU, and then performing representative-based spectral clustering
entirely on GPU. This is because computations on GPU are usually faster than
computations on CPU according to the experimental results presented in Chapter 2
and Chapter 3. If the number of representatives to be extracted (kr) is relatively
small, then we suggest using k-means as the extraction method, otherwise random
sampling for large kr should be a better choice in terms of execution time.

Scenario II: insufficient GPU RAM + small kr

Secondly, we consider the scenario of lacking GPU RAM to store the entire dataset.
In this case, the representatives extraction has to be done on the CPU. Suppose
that only a small number of representatives (kr) needs to be extracted, then as
shown in Figure 5.6 (b), k-means should be adopted for representatives extraction
because of its ability to obtain a good representation of data. Moreover, spectral
clustering on just a few kr representatives can remain on CPU (e.g. using scikit-
learn [150]) and so does the input data attachment. Therefore the GPU becomes
unnecessary.

121

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html


(a) Chain I for Scenario I: sufficient GPU RAM (+ small/large kr)

(b) Chain II for Scenario II: insufficient GPU RAM + small kr

(c) Chain III for Scenario III: insufficient GPU RAM + large kr

Figure 5.6: Three scenarios and associated parallel processing chains for
large-scale spectral clustering using representatives

Scenario III: insufficient GPU RAM + large kr

Finally, if GPU RAM is insufficient with respect to the data size and meanwhile
a large number of representatives are required, we propose a CPU-GPU hetero-
geneous processing chain, as exhibited in Figure 5.6 (c). The representatives ex-

122



traction has to be done on the CPU and should use random sampling instead of
k-means, because the former is much faster and can get a good distribution of
representatives as long as kr is large enough. However, spectral clustering on a
large number of representatives is computationally intensive and thus performing
it on the GPU is preferable.

The above three scenarios and associated processing chains can be integrated
into a global workflow as shown in Figure 5.7.

Figure 5.7: Global workflow for large-scale representative-based spectral
clustering on CPU-GPU platforms

(blue box: on CPU; green box: on GPU)

123



5.3.2 . Global experiments
We experimented with the proposed processing chains (see Figure 5.6) for

representative-based spectral clustering on the four large-scale datasets mentioned
in Section 5.2 (Spirals-75M, Smile2-100M, Aggregation-78.8M, Complex9-303M).
The testbed is our john3 server consisting of two Xeon Silver 4114 processors as
CPU (20 physical cores in total) and a GeForce RTX 3090 as GPU (24GB RAM).
More details about the datasets and the testbed are available in Appendix A and
B. Note that the size of each benchmark dataset does not exceed the GPU RAM
yet, but they can be used to evaluate the performance of each proposed chain.

Benchmarking approach & experimental settings

Our benchmarking approach and its experimental settings are described as follows:

• For the extraction of representatives using k-means or k-means++, the
tolerance is always set to 0.01. Besides, when n

kr
> 104, the two-level

summation method using 1000 packages will be activated for the Update
step of k-means and k-means++, in order to handle the effect of rounding
errors (see explanation in Section 2.2). Otherwise, when n

kr
≤ 104, the

Update step does not activate the two-level summation method.

• For the similarity matrix construction on kr representatives, the Gaussian
similarity is used and the values of connectivity parameters (σ, upper bound
threshold for squared distance, lower bound threshold for similarity) are set
as shown in Table 5.6. The similarity matrix construction in the proposed
chain I and chain III is performed using our Algo CSR-1 (see Section 3.3.3).

• After the similarity matrix construction, the remaining steps of spectral clus-
tering are conducted using the LOBPCG-embedded algorithm of the nv-
GRAPH library (see Section 3.4) for the proposed chain I and chain III. The
tolerance for the LOBPCG eigensolver is always set to 1E-5. Other param-
eter settings of the nvGRAPH’s algorithm are the same as in Section 3.6.2.

• For the proposed chain II, spectral clustering on kr representatives is im-
plemented using scikit-learn [150] version 1.1.1. Specifically, the similar-
ity matrix construction is implemented using the pairwise_kernels

function1 (with parameter settings: metric=‘rbf’ i.e. Gaussian similar-
ity, gamma=1/(2σ2)), then spectral clustering based on the precomputed
similarity matrix is implemented using the SpectralClustering func-
tion2 (with parameter settings: eigen_solver=‘lobpcg’, eigen_-
tol=1E-5, random_state=1, n_init=1).

1https://scikit-learn.org/stable/modules/generated/sklearn.
metrics.pairwise.pairwise_kernels.html2https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.SpectralClustering.html

124

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.pairwise_kernels.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html


Particularly, although both functions include the parameter n_jobs to de-
fine the number of jobs for parallel computing, we found in practice that it
is difficult to control parallelization through this parameter. In fact, defining
multiple jobs accelerated the pairwise_kernels function, but decel-
erated significantly the SpectralClustering function, which led to a
decrease of overall performance. Also, defining multiple jobs only for the
pairwise_kernels function did not change the situation. Nevertheless,
we found practically that, without defining the parameter n_jobs, exe-
cuting each of the two functions involved automatically a combination of
mono-core computing and multi-core computing. Therefore, we decided not
to interfere with the computations through n_jobs.

Finally, the input data attachment of chain II is implemented using the
Numpy library [74].

• Our CPU implementations for the representatives extraction step and the
input data attachment step always use 40 OpenMP threads, which equals
the number of logical cores of our CPU. The block size configurations for
our CUDA kernels are mainly set as BSX=128 and BSY=2.

• Computations are mainly in single precision, except that double precision is
used for the Thrust functions exploited in the seeding step of k-means++
to handle the effect of rounding errors (see Appendix G).

Table 5.6: Settings of connectivity parameters

Chain kr
Extract.
method

Sprials-75M Smile2-100M Aggregation-78.8M Complex9-303M

σ Threshold σ Threshold σ Threshold σ Threshold

I 102 km+ 0.1 0.01 (sq. dist.) 0.1 0.007 (sq. dist.) 0.1 0.009 (sq. dist.) 0.1 0.01 (sq. dist.)
102 km 0.1 0.006 (sq. dist.) 0.1 0.008 (sq. dist.) 0.1 0.009 (sq. dist.) 0.1 0.01 (sq. dist.)
103 r.s. 0.1 0.001 (sq. dist.) 0.1 0.003 (sq. dist.) 0.1 0.005 (sq. dist.) 0.1 0.005 (sq. dist.)
104 r.s. 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.002 (sq. dist.)
105 r.s. 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.)
106 r.s. 0.1 0.0001 (sq. dist.) N/A N/A N/A N/A N/A N/A

II 102 km+ 0.1 0.01 (sim.) 0.1 0.01 (sim.) 0.1 0 (sim.) 0.1 0 (sim.)
102 km 0.1 0.01 (sim.) 0.1 0.01 (sim.) 0.1 0 (sim.) 0.1 0 (sim.)
103 r.s. 0.01 0.0005 (sim.) 0.01 0.0005 (sim.) 0.01 0.0001 (sim.) 0.01 0.0001 (sim.)
104 r.s. 0.01 0.001 (sim.) 0.01 0.001 (sim.) 0.01 0.001 (sim.) 0.01 0.001 (sim.)

III 102 km+ 0.1 0.008 (sq. dist.) 0.1 0.005 (sq. dist.) 0.1 0.007 (sq. dist.) 0.1 0.01 (sq. dist.)
102 km 0.1 0.007 (sq. dist.) 0.1 0.008 (sq. dist.) 0.1 0.008 (sq. dist.) 0.1 0.01 (sq. dist.)
103 r.s. 0.1 0.002 (sq. dist.) 0.1 0.002 (sq. dist.) 0.1 0.003 (sq. dist.) 0.1 0.005 (sq. dist.)
104 r.s. 0.1 0.001 (sq. dist.) 0.1 0.002 (sq. dist.) 0.1 0.002 (sq. dist.) 0.1 0.002 (sq. dist.)
105 r.s. 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.) 0.1 0.001 (sq. dist.)

1 N/A (short for Not Available): we tried some parameter settings but always got the execution failure of the nvGRAPH’s algorithm.
2 km+: k-means++; km: k-means; r.s.: random sampling.

125



Performance comparison of the proposed processing chains

Tables 5.7, 5.8, 5.9 and 5.10 present the performance of our parallel processing
chains for representative-based spectral clustering on the four large-scale datasets,
respectively. Globally, the achieved clustering quality (measured by ARI and NMI
scores introduced in Section 1.1.2)3 and the elapsed time basically validate our
strategy for the choice of representatives extraction methods according to the
value of kr (see Section 5.2.1).

In terms of running time comparison, it can be observed that:

• When the GPU RAM is sufficient to store the entire dataset (which is the
case for the four benchmark datasets), then chain I (computations entirely
on the GPU) should be adopted because it runs significantly faster than
chain II (computations entirely on CPU) and chain III (computations on
CPU+GPU).

• When the number of representatives to be extracted (kr) is small (< 104),
chain II achieves similar global performance to chain III, which validates the
reasonability of staying on CPU for spectral clustering of kr representatives.

• When kr becomes large (≥ 104), spectral clustering on kr representatives
takes much more time on CPU than on GPU, hence chain III becomes
preferable to chain II.

Besides, the spectral graph partitioning consumes more time than the similarity
matrix construction, which is contrary to the results achieved on other datasets
in Section 3.6.6. It seems that the LOBPCG eigensolver takes more iterations to
converge on datasets with nonconvex clusters. The elapsed time of CPU-GPU
data transfers in chain I and chain III is insignificant, and the input data attach-
ment consumes little time regardless of the processing chain and the number of
representatives.

Globally, our experiments validate the reasonability, high performance and good
scalability of our parallel processing chains on CPU-GPU platforms for large-scale
representative-based spectral clustering.

3Some scores of clustering quality achieved with a better extraction method or with
more representatives do not appear to be higher, because we did not find better settings
for connectivity parameters due to lack of time. Besides, the AMI scores are not displayed
in the tables because they are usually equal to or very close to the NMI scores in our
experiments.

126



Table 5.7: Performance of representative-based spectral clustering on
Spirals-75M (n, d, kc) = (75M, 2, 3)

Chain kr
Reps

extract.
method

Quality Time (s)

ARI NMI Reps
extract.

CPU-GPU
transfers

SC on kr reps Attach. Total
Constr. Partition.

I 102 km+ 0.156 0.300 1.26 0.27 0.0004 1.06 0.0009 2.59
102 km 0.301 0.399 0.61 0.28 0.0005 1.07 0.0009 1.96
103 km 1.000 1.000 5.86 0.28 0.0007 1.34 0.0009 7.48
104 r.s. 1.000 1.000 1.92 0.27 0.007 1.64 0.0009 3.84
105 r.s. 1.000 1.000 19.29 0.27 0.40 3.39 0.001 23.35
106 r.s. 1.000 1.000 199.55 0.28 19.90 293.80 0.002 513.53

II 102 km+ 0.010 0.009 55.66 N/A 0.003 0.08 0.38 56.12
102 km 0.011 0.010 11.33 N/A 0.004 0.08 0.38 11.79
103 km 1.000 1.000 115.98 N/A 0.06 1.55 0.32 117.91
104 r.s. 1.000 1.000 48.99 N/A 3.31 42.31 0.38 94.99

III 102 km+ 0.938 0.927 55.66 0.03 0.0005 1.05 0.01 56.75
102 km 0.599 0.631 11.33 0.03 0.0005 1.03 0.01 12.40
103 km 1.000 1.000 115.98 0.03 0.001 1.35 0.01 117.37
104 r.s. 1.000 1.000 48.99 0.03 0.01 1.50 0.02 50.55
105 r.s. 1.000 1.000 487.42 0.03 0.43 3.00 0.02 490.90

1 Constr.: similarity matrix/graph construction; Partition.: spectral graph partitioning; Attach.: input data attachment.
2 N/A: short for Not Applicable, because chain II is entirely on CPU.

Table 5.8: Performance of representative-based spectral clustering on
Smile2-100M (n, d, kc) = (100M, 2, 4)

Chain kr
Reps

extract.
method

Quality Time (s)

ARI NMI Reps
extract.

CPU-GPU
transfers

SC on kr reps Attach. Total
Constr. Partition.

I 102 km+ 1.000 1.000 1.75 0.35 0.0004 1.19 0.001 3.29
102 km 0.727 0.811 1.01 0.35 0.0004 1.11 0.001 2.47
103 km 1.000 1.000 10.18 0.34 0.0006 1.66 0.001 12.18
104 r.s. 1.000 1.000 2.56 0.34 0.007 2.73 0.001 5.64
105 r.s. 1.000 1.000 25.78 0.35 0.49 18.73 0.002 45.35

II 102 km+ 0.535 0.597 72.15 N/A 0.004 0.07 0.46 72.68
102 km 0.011 0.010 19.13 N/A 0.004 0.07 0.44 19.64
103 km 1.000 1.000 200.36 N/A 0.07 0.98 0.50 201.91
104 r.s. 1.000 1.000 65.33 N/A 3.43 16.24 0.51 85.51

III 102 km+ 1.000 1.000 72.15 0.03 0.0005 1.11 0.01 73.30
102 km 0.732 0.814 19.13 0.03 0.0006 1.21 0.01 20.38
103 km 1.000 1.000 200.36 0.03 0.001 1.78 0.02 202.19
104 r.s. 1.000 1.000 65.33 0.03 0.008 1.87 0.02 67.26
105 r.s. 1.000 1.000 650.01 0.03 0.51 15.83 0.03 666.41

127



Table 5.9: Performance of representative-based spectral clustering on
Aggregation-78.8M (n, d, kc) = (78.8M, 2, 7)

Chain kr
Reps

extract.
method

Quality Time (s)

ARI NMI Reps
extract.

CPU-GPU
transfers

SC on kr reps Attach. Total
Constr. Partition.

I 102 km+ 0.989 0.983 1.32 0.28 0.0005 1.08 0.0009 2.68
102 km 0.990 0.986 0.66 0.28 0.0005 1.10 0.0009 2.04
103 km 0.990 0.986 7.51 0.27 0.001 1.09 0.0009 8.87
104 r.s. 0.991 0.987 2.03 0.27 0.006 1.79 0.0009 4.09
105 r.s. 0.989 0.984 20.35 0.27 0.40 2.94 0.001 23.96

II 102 km+ 0.984 0.978 59.74 N/A 0.004 0.08 0.38 60.20
102 km 0.011 0.010 10.52 N/A 0.004 0.09 0.38 10.99
103 km 1.000 1.000 131.43 N/A 0.06 0.92 0.37 132.78
104 r.s. 1.000 1.000 51.64 N/A 3.07 15.06 0.43 70.20

III 102 km+ 0.994 0.991 59.74 0.03 0.0006 1.08 0.02 60.87
102 km 0.984 0.978 10.52 0.03 0.0006 1.07 0.02 11.64
103 km 0.992 0.988 131.43 0.03 0.001 1.12 0.02 132.60
104 r.s. 0.994 0.991 51.64 0.03 0.007 1.22 0.02 52.92
105 r.s. 0.993 0.991 512.05 0.03 0.41 2.56 0.02 515.08

Table 5.10: Performance of representative-based spectral clustering on
Complex9-303M (n, d, kc) = (303.1M, 2, 9)

Chain kr
Reps

extract.
method

Quality Time (s)

ARI NMI Reps
extract.

CPU-GPU
transfers

SC on kr reps Attach. Total
Constr. Partition.

I 102 km+ 0.470 0.726 4.82 1.01 0.0004 1.27 0.003 7.10
102 km 0.557 0.780 1.83 1.03 0.0006 1.16 0.003 4.02
103 km 0.454 0.715 24.40 1.05 0.001 1.44 0.003 26.89
104 r.s. 0.563 0.811 7.74 1.04 0.007 1.90 0.003 10.69
105 r.s. 0.699 0.874 79.30 1.04 0.38 4.22 0.004 84.94

II 102 km+ 0.321 0.597 213.59 N/A 0.003 0.10 1.62 215.31
102 km 0.341 0.617 30.72 N/A 0.004 0.08 1.61 32.41
103 km 1.000 1.000 461.82 N/A 0.07 1.45 1.55 464.89
104 r.s. 1.000 1.000 197.94 N/A 3.22 21.38 1.64 224.18

III 102 km+ 0.433 0.734 213.59 0.03 0.0005 1.29 0.09 215.00
102 km 0.383 0.670 30.72 0.03 0.0006 1.27 0.11 32.13
103 km 0.521 0.764 461.82 0.03 0.001 1.45 0.10 463.40
104 r.s. 0.660 0.850 197.94 0.03 0.010 1.52 0.07 199.57
105 r.s. 0.840 0.930 1969.35 0.04 0.39 6.76 0.09 1976.63

128



5.4 . Summary

In this chapter, we have proposed three parallel processing chains on CPU-GPU
platforms for representative-based spectral clustering on large-scale datasets. Our
processing chains cover several scenarios depending on whether the GPU RAM is
sufficient to store the entire dataset and on the number of representatives to be
extracted. For each scenario, one of the chains makes the best use of the differ-
ent hardware and different methods for representatives extraction. Experiments
demonstrates the performance and scalability of the proposed chains.

129



Conclusion and Perspectives

In this dissertation, we have studied the efficient parallelization of some clus-
tering algorithms on CPU and GPU platforms and succeeded in making them run
significantly faster and being able to handle large-scale datasets. Our main contri-
butions are summarized as follows.

A bibliographic study on clustering, especially on k-means clustering and
spectral clustering. First of all, we provided an overview of clustering, cover-
ing its concept, applications, categorization of algorithms, typical algorithms in
each category, and evaluation metrics. Then, we reviewed k-means clustering and
spectral clustering from several aspects such as foundation, classical algorithms,
strengths, weaknesses, and approaches to improvement. Particularly, we found
that approximation and parallelization are two main approaches to address the
scalability challenge of spectral clustering, and we conducted a dedicated survey
of each approach.

Parallel, scalable and accurate k-means clustering: a CPU version and a
GPU version. When applying k-means to large datasets using single precision
arithmetic, we observed the numerical accuracy issue which results from the accu-
mulation of rounding errors in the summation step of updating centroids. Thus,
we proposed a two-level summation method based on the use of packages, which
can reduce the accumulation of rounding errors and achieve satisfactory numerical
accuracy without using double precision arithmetic. Then, we designed two opti-
mized parallel implementations of the numerically accurate k-means algorithm on
CPU and on GPU, respectively. Our CPU version employs OpenMP multithreading
and auto-vectorization, while our GPU version exploits dynamic parallelism, mul-
tiple streams and shared memory. Finally, experimental results on large datasets
demonstrate the numerical accuracy and high performance of our k-means imple-
mentations.

Parallel scalable spectral clustering on GPU. Classical algorithms of spectral
clustering suffer from O(n3) calculation cost and O(n2) memory space require-
ments, where n is the number of data instances. Essentially, we exploit massively
parallel GPU computing to deal with the high calculation cost, while performing
matrix sparsification and using sparse storage format to reduce most of the mem-
ory space requirements. Specifically, we designed three different algorithms (named
Algo CSR-1, Algo CSR-2, Algo CSR-3) and their optimized parallel implementa-
tions to construct the similarity matrix in CSR format on GPU. Our implementa-
tions mainly consist of home-made CUDA kernels with various optimizations and
the use of some functions of NVIDIA’s GPU-accelerated libraries (Thrust, cuS-
PARSE). Then, we take advantage of the spectral graph partitioning algorithms of

130



NVIDIA’s nvGRAPH library to conduct the remaining steps of spectral clustering
on GPU (including Laplacian matrix computation, eigenvectors computation, and
final k-means clustering). In particular, the CSR format is used for all partitioning
algorithms, but the algorithm with the LOBPCG eigensolver is preferred in our use.

Not surprisingly, experimental results demonstrate that our GPU implemen-
tations for the CSR matrix construction can run ×8.5 to ×28.8 faster than an
optimized parallel CPU implementation of Algo CSR-1, while NVIDIA’s LOBPCG-
embedded algorithm (on GPU) can run ×8 to ×28 times faster than scikit-learn’s
LOBPCG-embedded algorithm (on CPU).

Finally, our global GPU implementation for spectral clustering is scalable to
millions of data instances in just a few seconds to a few minutes!

Parallel noise filtering on GPU for spectral clustering. The effectiveness of
traditional spectral clustering algorithms can be easily corrupted by noise instances
in the dataset. We independently designed two noise filtering methods for spectral
clustering: one based on the number of nonzeros per row in the similarity matrix,
and the other based on the degrees of vertices in the associated similarity graph.
They both leverage the previously constructed similarity matrix in CSR format.
We integrated them into a noise robust spectral clustering algorithm and devel-
oped an efficient parallel implementation on GPU. Experiments on various datasets
show that our noise filtering implementation can greatly improve the robustness of
spectral clustering to noise with small time overhead.

Representative-based spectral clustering on CPU-GPU architectures. Al-
though our spectral clustering implementation on GPU can handle million-scale
datasets in just a few seconds to a few minutes, it would start to be too time-
consuming to address datasets larger than the million scale (n ≥ 107). To break
this bottleneck, we adopted the representative-based approximation framework for
spectral clustering and integrated it with parallel computing on CPU-GPU plat-
forms. We compared three methods for representatives extraction: random sam-
pling, k-means, and k-means++. Then, we considered three possible scenarios
and proposed an adapted parallel processing chain for each scenario. As expected,
our preceding works (i.e. parallel k-means on CPU and GPU, parallel spectral
clustering on GPU) readily serve as modules in the proposed chains. Finally, global
experiments exhibit the high performance and scalability of our spectral clustering
chains on CPU-GPU platforms. For example, spectral clustering on hundreds of
millions (instead of millions) of data instances also takes only a few seconds to a
few minutes!

131



Finally, we suggest several research directions that seem most relevant to ex-
tending our work:

• Our spectral clustering implementation on GPU relies heavily on the
eigensolver-embedded algorithms of NVIDIA’s nvGRAPH library. Unfor-
tunately, NVIDIA is no longer actively developing the nvGRAPH product
since its last release in November 2019. Thus, it would be better to find
some alternative sparse eigensolvers (especially LOBPCG) that are opti-
mized for the GPU. For instance, the AmgX library [134] contains multiple
GPU-accelerated eigensolvers including the LOBPCG solver, but their effec-
tiveness of being used for spectral clustering remains to be tested.

• It would be interesting to study the parallelization of clustering algorithms
on other parallel architectures such as multi-GPU machines. For spectral
clustering, we think our CSR algorithms for similarity matrix construction
can be easily adapted to multi-GPU architectures by going through some
consecutive rows of the similarity matrix on each GPU, however we cannot
find a multi-GPU implementation of the LOBPCG eigensolver. Neverthe-
less, we can at least transfer the results of all GPUs to a single GPU and
then call nvGRAPH’s LOBPCG-embedded API on that single GPU. The
data transfers between multiple GPUs can be achieved using the NVIDIA
Collective Communication Library (NCCL). For k-means clustering, we can
parallelize the ComputeAssign step on multiple GPUs by performing the dis-
tance computations between some data instances and kc centroids on each
GPU. Then the local summation per cluster on some packages of instances
can be performed on each GPU. Finally, the summation results of all GPUs
can be transferred to a single GPU, where the global summation results are
computed and the centroids are updated (Update step).

• We have adopted the representative-based approximation for spectral clus-
tering. It is also attractive to try other approximation methods, such as
Nyström-based [59] and landmark-based [34] methods, and study their effi-
cient parallelization on modern parallel architectures.

• For a given dataset, tuning multiple parameters to achieve good clustering
quality or optimize code performance is usually a complex task in practice,
requiring a lot of experimental attempts. It would be very useful to reduce
the number of parameters that need to be carefully tuned, or to develop
some efficient methods for automatic tuning, or to find some practical rules
of thumb from experiments.

• k-means and spectral clustering are just two of the countless clustering algo-
rithms. Therefore, a broad area of research is to explore parallel acceleration
of other effective but computationally intensive clustering algorithms, such
as density-based algorithms [53] and affinity propagation [61].

132



On the other hand, we did not concern ourselves with the energy consumption
of our computations. Nevertheless, this issue has become very important during
recent years. A possibility would be to adapt our clustering algorithms to FPGA
processors, in order to achieve better energy efficiency rather than only high com-
putation speed [211]. Some research efforts within the ParSys team of LISN are
also starting to explore this way for other types of parallel computations.

133



Appendices

134



A - Benchmark datasets

In this dissertation, we experimented on a variety of datasets ranging from syn-
thetic to real-world datasets, from small-scale to large-scale datasets, from 2D to
high-dimensional datasets, from convex shape datasets to arbitrary shape datasets,
and from noise-free to noise-laden datasets. Except some home-made synthetic
datasets (HMSD), most benchmark datasets are from the following open sources:
Clustering Basic Benchmark (CBB)1, GitHub Clustering Benchmarks (GCB)2, UC
Irvine Machine Learning Repository (UCI)3, The MNIST Database of Handwritten
Digits (MNIST)4, The Infinite MNIST Datasets (InfiMNIST)5, Lancaster Univer-
sity (LU)6.

Table A.1 gives an overview of the 2D small-scale benchmark datasets, and
Figure A.1 exhibits their ground truth clusterings.

Table A.1: Features of small-scale benchmark datasets

Dataset
# instances

(n)
# dims

(d)
# clusters

(kc)
.txt file

size Source

Jain 373 2 2 5 KB CBB
Compound 399 2 6 5 KB CBB
Aggregation 788 2 7 9 KB CBB
Smile2 1 000 2 4 20 KB GCB
S1 5 000 2 15 74 KB CBB
S4 5 000 2 15 74 KB CBB
Spirals 7 500 2 3 189 KB LU
Cure_t2 4 200 2 7 82 KB GCB
Complex9 3 031 2 9 49 KB GCB
Cluto_t7 10 000 2 10 217 KB GCB
Cluto_t8 8 000 2 9 180 KB GCB

1http://cs.joensuu.fi/sipu/datasets/2https://github.com/deric/clustering-benchmark3https://archive.ics.uci.edu/ml/index.php4http://yann.lecun.com/exdb/mnist/5https://leon.bottou.org/projects/infimnist6https://www.lancaster.ac.uk/pg/hyder/Downloads/downloads.
html

135

http://cs.joensuu.fi/sipu/datasets/
https://github.com/deric/clustering-benchmark
https://archive.ics.uci.edu/ml/index.php
http://yann.lecun.com/exdb/mnist/
https://leon.bottou.org/projects/infimnist
https://www.lancaster.ac.uk/pg/hyder/Downloads/downloads.html
https://www.lancaster.ac.uk/pg/hyder/Downloads/downloads.html


(a) Jain (b) Compound (c) Aggregation

(d) Smile2 (e) S1 (f) Spirals

(g) Cure_t2 (h) Cluto_t8 (i) Cluto_t7

Figure A.1: 2D small-scale datasets

Table A.2 specifies the medium-scale and large-scale benchmark datasets. They
can be divided into four types depending on how the data is produced.

• Synthetic 4D datasets: Syn4D-1M, Syn4D-5M, Syn4D-50M. They are
produced by our data generator7. The generated n instances are uniformly
distributed in 4 convex clusters (n4 instances in each cluster). Each cluster
has a radius of 9 and the centroids are supposed to be (40, 40, 60, 60), (40,
60, 60, 40), (60, 40, 40, 60) and (60, 60, 40, 40), respectively.

• Synthetic 2D datasets: Spirals-75M, Smile2-100M, Aggregation-
78.8M, and Complex9-303M sets. They are produced by our data am-
plifier8 which amplifies small-scale 2D datasets by incorporating random
fluctuations, as shown in Figure A.2. Let a denote the amplification fac-
tor and f denote the fluctuation factor. For each point of a small-scale

7https://gitlab-research.centralesupelec.fr/Stephane.
Vialle/cpu-gpu-kmeans8https://github.com/guanlin-he/clustering-release

136

https://gitlab-research.centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans
https://gitlab-research.centralesupelec.fr/Stephane.Vialle/cpu-gpu-kmeans
https://github.com/guanlin-he/clustering-release


2D dataset, we create a − 1 new points that randomly lie in its f -related
neighborhood, thus the amplified dataset has a times the size of its original
dataset. We control the value of f such that the clusters of the amplified
dataset are similarly separated compared to the original dataset.

• MNIST-based datasets: MNIST-60K, MNIST-120K, MNIST-240K.
The first one is the training set of the well-known MNIST database of hand-
written digits9, while the other MNIST-based sets are produced using the
InfiMNIST code10. They all have 784 dimensions and 10 clusters.

• Real-world datasets: Household power consumption (HPO), US cen-
sus 1990 (USC). They come from the UCI Machine Learning Repository
[50] and their ground truth clusterings are unavailable.

The Household power consumption (HPO) dataset contains 2 075 259 mea-
surements of electric power consumption in a household over a period of
nearly 4 years. Each measurement has 9 attributes. We remove the mea-
surements containing missing values and also remove the first 2 attributes
that record the date and time of measurements. The remaining set that
we use for evaluation contains 2,049,280 measurements with 7 numerical
attributes, i.e. n = 2049 280, d = 7.

The US census 1990 (USC) dataset contains 2 458 285 instances with 68
categorical attributes (i.e. n = 2458 285, d = 68). It is actually a simplified
and discretized version of the USCensus1990raw dataset which contains one
percent sample drawn from the full 1990 US census data.

9http://yann.lecun.com/exdb/mnist/10https://leon.bottou.org/projects/infimnist

137

http://yann.lecun.com/exdb/mnist/
https://leon.bottou.org/projects/infimnist


Table A.2: Features of medium-scale and large-scale benchmark datasets

Dataset
# instances

(n)
# dims

(d)
# clusters

(kc)
.txt file

size Source

Spirals-75M 75 000 000 2 3 1.4 GB HMSD
Smile2-100M 100 000 000 2 4 1.9 GB HMSD
Aggregation-78.8M 78 800 000 2 7 1.5 GB HMSD
Complex9-303M 303 100 000 2 9 6.4 GB HMSD

Syn4D-1M 1 000 000 4 4 30 MB HMSD
Syn4D-5M 5 000 000 4 4 181 MB HMSD
Syn4D-50M 50 000 000 4 4 1.77 GB HMSD

HPO* 2 049 280 7 Unknown 56 MB UCI
USC 2 458 285 68 Unknown 326 MB UCI

MNIST-60K 60 000 784 10 104 MB MNIST
MNIST-120K 120 000 784 10 210 MB InfiMNIST
MNIST-240K 240 000 784 10 421 MB InfiMNIST
* This dataset is made available under the “Creative Commons Attribution 4.0 Interna-

tional (CC BY 4.0)” license.

(a) Spirals-75M based on Spirals
(a = 104, f = 1%)

(b) Smile2-100M based on Smile2
(a = 105, f = 5%)

(c) Aggregation-78.8M based on
Aggregation (a = 105, f = 2%)

(d) Complex9-303M based on
Complex9 (a = 105, f = 1%)

Figure A.2: Large-scale datasets generated by amplifying small-scale
datasets with random fluctuations (a denotes amplification factor, f

denotes fluctuation factor)

138



B - Testbed features

All experiments in this dissertation have been carried out on a server named
john3 located at the Metz Campus of CentraleSupelec. The hardware and software
features of john3 are presented in Tables B.2 and B.1, respectively. Essentially,
john3 consists of two Intel Xeon Silver 4114 processors as CPU and one NVIDIA
GeForce RTX as GPU. Particularly, we upgraded the GPU hardware, the CUDA
version, and the OS during the preparation of this dissertation. For this reason,
the experimental results in Chapter 2 were obtained with RTX 2080 Ti, CUDA
10.2, and Ubuntu 18, while those in Chapters 3, 4 and 5 were obtained with RTX
3090, CUDA 11.5, and Ubuntu 20. The CPU and GPU are always connected by a
PCIe 3.0 x16 bus.

Table B.1: Software features of our john3 server

Operating system Ubuntu 18 (for Chapter 2) →
Ubuntu 20.04.3 (for Chapters 3, 4, 5)

CPU code compiler gcc 9.3.0
CPU parallelization tool OpenMP
Python version 3.8.10
scikit-learn version 0.22.2.post1 → 1.1.1 (only for Section 5.3.2)

CUDA version 10.2 (for Chapter 2) 11.5 (for Chapters 3, 4, 5)

139



Table B.2: Hardware features of our john3 server

CPU 2 Intel Xeon Silver 4114 Processors
Launch date July 2017
Architecture Skylake
# of physical cores per processor 10
Processor base frequency 2.20 GHz
Hyper-threading Yes
Instruction set extensions SSE4.2, AVX, AVX2, AVX-512
# of AVX-512 FMA units per processor 1
L3 cache size per processor 13.75 MB
RAM size 96 GB
Max. memory speed 2.40 GHz
SGEMM perf. per processor 619.2 GFLOPSa

PCIe bus PCI Express 3.0 x16
Launch date November 2010
Bandwidth x16 16 GB/s (theoretical), 12.5 GB/s (experimental)

GPU*
1 NVIDIA GeForce
RTX 2080 Ti (for
Chapter 2)

1 NVIDIA GeForce
RTX 3090 (for
Chapters 3, 4, 5)

Launch date September 2018 September 2020
Architecture Turing Ampere
Compute capability 7.5 8.6
GPU max clock rate 1.65 GHz 1.70 GHz
Stream Multiprocessors (SM) 68 82
CUDA cores per SM 64 128
CUDA cores 4352 10496
Peak single precision (FP32) perf. 14.2 TFLOPSb 35.6 TFLOPSc

Memory clock rate 7 GHz 9.75 GHz
Memory bus width 352-bit 384-bit
Total # of registers per block 65536 65536
Total shared memory per block 48 KB 48 KB
Total shared memory per SM 64 KB 100 KB
L2 cache size 5.5 MB 6 MB
GPU global memory 11 GB 24 GB
Warp size 32 32
Max. # of threads per block 1024 1024
Max. # of threads per SM 1024 1536
Max. dim. size of a block (x, y, z) (1024, 1024, 64) (1024, 1024, 64)
Max. dim. size of a grid (x, y, z) (231 − 1, 65535, 65535) (231 − 1, 65535, 65535)
* We upgraded the GPU from RTX 2080 Ti to RTX 3090 during the dissertation preparation.

Only one GPU was present on john3 at a time.
a Source: https://gadgetversus.com/processor/dual-intel-xeon-silver-
4114-specs/

b Source: https://wccftech.com/review/nvidia-geforce-rtx-2080-ti-
and-rtx-2080-review/2/

c Source: https://www.sie.es/wp-content/uploads/2021/02/GPU_
Evaluation_report_IFIC.pdf

140

https://gadgetversus.com/processor/dual-intel-xeon-silver-4114-specs/
https://gadgetversus.com/processor/dual-intel-xeon-silver-4114-specs/
https://wccftech.com/review/nvidia-geforce-rtx-2080-ti-and-rtx-2080-review/2/
https://wccftech.com/review/nvidia-geforce-rtx-2080-ti-and-rtx-2080-review/2/
https://www.sie.es/wp-content/uploads/2021/02/GPU_Evaluation_report_IFIC.pdf
https://www.sie.es/wp-content/uploads/2021/02/GPU_Evaluation_report_IFIC.pdf


C - GPU implementation for Algo CSR-1

Listings C.1, C.2 and C.3 show the host code and two optimized CUDA kernels
of our GPU implementation for Algo CSR-1 (Algorithm 4 in Section 3.3.3).

1 #include <thrust/...> // Include Thrust library functions
2 ... // Declaration, memory allocation & initialization
3
4 // Launch the first-pass kernel
5 Db.x = BSX; Db.y = BSY;;
6 Dg.x = n/Db.x + (n%Db.x > 0 ? 1 : 0);
7 Dg.y = n/Db.y + (n%Db.y > 0 ? 1 : 0);
8 shMemSize = sizeof(int)*Db.y;
9 1stPass<<<Dg,Db,shMemSize>>>(..., // input
10 GPU_nnzPerRow); // output
11
12 // Find the minimum and maximum number of nonzeros in a row
13 thrust::device_ptr<int> d_nnzPerRow(GPU_nnzPerRow);
14 thrust::pair<...> extrema =
15 thrust::minmax_element(..., d_nnzPerRow, d_nnzPerRow + n);
16 minNnzRow = *extrema.first;
17 maxNnzRow = *extrema.second;
18
19 // Compute csrRow by an exclusive scan on nnzPerRow
20 thrust::device_ptr<int> d_csrRow(GPU_csrRow);
21 thrust::exclusive_scan(..., d_nnzPerRow, d_nnzPerRow + n+1, d_csrRow);
22
23 // Get the nnz of sim. matrix and allocate memory for csrVal & csrCol
24 nnz = d_csrRow[n];
25 cudaMalloc((void**) &GPU_csrCol, sizeof(int)*nnz);
26 cudaMalloc((void**) &GPU_csrVal, sizeof(float)*nnz);
27
28 // Launch the second-pass kernel
29 Db.x = BSX; Db.y = BSY;
30 Dg.x = n/Db.y + (n%Db.y > 0 ? 1 : 0); Dg.y = 1;
31 shMemSize = sizeof(float)*Db.y*Db.x + sizeof(int)*(Db.y*Db.x + Db.y);
32 2ndPass<<<Dg,Db,shMemSize>>>(GPU_csrRow, ..., // input
33 GPU_csrVal, // output
34 GPU_csrCol); // output

Listing C.1: Host code of GPU implementation for Algo CSR-1

For the 1stPass kernel, we choose to create a 2D grid with 2D blocks of
threads (Listings C.1, lines 5-7). As shown in Figure C.1 (a), the grid covers all the
elements of similarity matrix. Thus each thread takes care of one matrix element,
and count it as a nonzero if the predefined threshold is satisfied (Listings C.2, lines
17-25). Then the number of nonzeros is first accumulated within each block into
shared memory using the atomicAdd_block operation (Listings C.2, line 28).
Finally we accumulate the results of blocks of the same row to get the number of
nonzeros per row into global memory using classic atomicAdd operation (List-
ings C.2, lines 34-36). Although the design of this kernel is typical, it should be
noted that the maximum y-dimension of a grid (65535) is far smaller than the
maximum x-dimension of a grid so the calculated number of blocks in y dimension

141



(Listings C.1, line 7) may exceed the limit if n is large enough. In this case, we
consider the horizontal partitioning of the similarity matrix into chunks as large as
possible and launch one grid for each chunk.

(a) 2D grid with 2D blocks for the
1stPass kernel of Algo CSR-1

(b) 1D grid with 2D blocks for the
2ndPass kernel of Algo CSR-1 & for

all the kernels of Algo CSR-2

Figure C.1: Grid and block configuration of the CUDA kernels for CSR
format similarity matrix construction

For the 2ndPass kernel, we choose to create a 1D grid with 2D blocks (List-
ings C.1, lines 29-30). Several points need to be noted:

1. As shown in Figure C.1 (b), each block of threads processes some rows of
the similarity matrix in an iterative fashion, i.e. moving forward segment
by segment, so that each block knows its own sections for storing nonzeros
in csrVal[] and csrCol[] (according to csrRow[]) and meanwhile
different blocks can work independently in parallel.

2. In each iteration, each block of threads parallelly computes a segment of
similarity matrix, finds threshold-satisfied nonzeros and stores them into
shared memory arrays (Listings C.3, lines 23-38). Then only the threads
in the first column of each block copy the nonzeros from shared to global
memory (Listings C.3, lines 42-51).

3. Since usually only a fraction of elements are nonzeros, we count the number
of nonzeros per iteration into a shared memory array (Listings C.3, line 32)
and check whether there are nonzeros in each iteration before proceeding
(Listings C.3, line 42), which should avoid many unnecessary operations.

4. Particularly, when testing whether an element in shared memory is nonzero
or not (Listings C.3, line 44), we choose to check its column index (vs.
-1) instead of its similarity value (vs. 0) because there is a risk that the
floating-point underflow may occur for the similarity value if it is too small.

142



5. Again considering the maximum y-dimension of a grid (65535) may be
insufficient in case of large n while the maximum x-dimension of a grid
(231 − 1 = 2 147 483 647) is usually sufficiently large, we choose to cre-
ate the 1D grid in x dimension (Listings C.1, line 30) but regard it as in y
dimension (Listings C.3, line 5).

For the other steps, we leverage some easy-to-use APIs of NVIDIA’s Thrust
library [145]. Based on the number of nonzeros per row obtained in the first pass,
the minmax_element API is used to find the minimum and maximum number
of nonzeros in a row (Listings C.1, lines 13-17) and the exclusive_scan API
is used to derive csrRow[] (Listings C.1, lines 20-21).

1 // Starting address for dynamic allocation of shared memory
2 extern __shared__ float shBuff[];
3
4 __global__ void 1stPass (...)
5 {
6 // 2D blocks, 2D grid
7 int col = blockIdx.x * blockDim.x + threadIdx.x;
8 int row = blockIdx.y * blockDim.y + threadIdx.y;
9
10 // Declaration & initialization
11 int nnzThread = 0;
12 int *shNnz = (int*)shBuff;
13 if (threadIdx.x == 0) shNnz[threadIdx.y] = 0;
14 __syncthreads();
15
16 if (col < n && row < n) {
17 // Uniform or Gaussian sim. with threshold for squared distance
18 #ifdef defined(UNI_SIM_WITH_SQDIST_THOLD) ||
19 defined(GAUSS_SIM_WITH_SQDIST_THOLD)
20 ... // Calculate squared distances (sqDist)
21 if (sqDist < tholdSqDist && row != col) nnzThread++;
22 #endif
23
24 // Other similarity metrics with threshold
25 #ifdef ... #endif
26
27 // Accumulate the results within a block
28 if (nnzThread > 0) atomicAdd_block(&shNnz[threadIdx.y], nnzThread);
29 }
30
31 __syncthreads();
32
33 // Store the final result into global memory
34 if (threadIdx.x == 0 && row < n)
35 if (shNnz[threadIdx.y] > 0)
36 atomicAdd(&GPU_nnzRow[row], shNnz[threadIdx.y]);
37 }

Listing C.2: 1stPass kernel for Algo CSR-1

143



1 __global__ void 2ndPass (...)
2 {
3 // 1D block in x-axis, 1D grid in x-axis but regarded as in y-axis
4 int col = threadIdx.x;
5 int row = blockDim.y * blockIdx.x + threadIdx.y;
6
7 // Declaration & initialization
8 int maxCol = ((n - 1)/blockDim.x + 1) * blockDim.x;
9 int yofs = threadIdx.y * blockDim.x;
10 int nnzOffset;
11 // Pointers to dynamic shared memory arrays (must be 1D)
12 float *shValIter = shBuff; // size: blockDim.y*blockDim.x
13 int *shColIter = // size: blockDim.y*blockDim.x
14 (int*)&shValIter[blockDim.y*blockDim.x];
15 int *shNnzIter = // size: blockDim.y
16 &shColIter[blockDim.y*blockDim.x];
17 if (threadIdx.x == 0) shNnzIter[threadIdx.y] = 0;
18 if (row < n) nnzOffset = GPU_csrRow[row];
19 __syncthreads();
20
21 // Each block finds & records the nonzeros of 1 row in a loop fashion
22 while (col < maxCol && row < n) {
23 if (col < n) {
24 // Gaussian similarity with threshold for squared distance
25 #ifdef GAUSS_SIM_WITH_SQDIST_THOLD
26 ... // Calculate squared distances (sqDist)
27 shColIter[yofs + threadIdx.x] = -1;
28 if (sqDist < tholdSqDist && row != col) {
29 shValIter[yofs + threadIdx.x] =
30 __expf((-1.0f)*sqDist/(2.0f*sigma*sigma));
31 shColIter[yofs + threadIdx.x] = col;
32 atomicAdd(&shNnzIter[threadIdx.y], 1);
33 }
34 #endif
35
36 // Other similarity metrics with threshold
37 #ifdef ... #endif
38 }
39 __syncthreads();
40
41 // Store nonzeros into global CSR arrays
42 if (shNnzIter[threadIdx.y] > 0 && threadIdx.x == 0) {
43 for (int i = 0; i < blockDim.x && col + i < n; i++) {
44 if (shColIter[yofs + i] != -1) {
45 GPU_csrVal[nnzOffset] = shValIter[yofs + i];
46 GPU_csrCol[nnzOffset] = col + i; // i.e. shColIter[yofs + i]
47 offset++;
48 }
49 }
50 shNnzIter[threadIdx.y] = 0;
51 }
52 __syncthreads();
53
54 col += blockDim.x;
55 } // End of while
56 }

Listing C.3: 2ndPass kernel for Algo CSR-1

144



D - GPU implementation for Algo CSR-2

Listings D.1, D.2, D.3, D.4, D.5, D.6 show the host code and three optimized
CUDA kernels of our GPU implementation for Algo CSR-2 (Algorithm 5 in Sec-
tion 3.3.4). For each kernel, we choose to create a 1D grid with 2D blocks of
threads (Listings D.1, lines 5-6, 35-36, 48-49) so that each block is in charge of a
few rows of the similarity matrix. The points 1, 4 and 5 related to the 2ndPass
kernel of Algo CSR-1 (see Section 3.3.3) also apply to the kernels of Algo CSR-2.

For the fullPass kernel, we declare several shared memory arrays for storing
similarities in dense format, storing nonzeros in Ellpack format, and some other
uses (Listings D.2, lines 18-28). Note that 2D blocks will demand too much shared
memory if hypoMaxNnzRow is large, so to support larger hypothesis we need to
reduce block y dimension (e.g. use 1D blocks). In each iteration, each block of
threads parallelly computes a segment of similarity matrix, finds threshold-satisfied
nonzeros and stores all similarities of the segment into shared memory arrays in
dense format (Listings D.3, lines 7-21). Then the nonzeros stored in the dense-
format shared arrays are found and accumulated into Ellpack-format shared arrays
by only the threads in the first column of each block (Listings D.3, lines 29-36).
Meanwhile these threads also record the restart column indexes (aligned to mul-
tiples of 32 memory words for performance concern) and corresponding restart
nonzero element indexes in each row in case the number of nonzeros per row
exceeds hypoMaxNnzRow (Listings D.3, lines 30 & 40). Since usually only a
fraction of elements are nonzeros, we also record the number of nonzeros found per
iteration so that we can avoid the accumulating and recording operations in case
no nonzero is found in an iteration (Listings D.3, lines 16, 25 & 44). This helps
to reduce warp divergence. Similarly, we set a flag once the hypoMaxNnzRow

is reached so as to avoid unnecessary operations (Listings D.3, lines 28 & 37).
Additionally, the number of nonzeros per iteration is accumulated into the number
of nonzeros per row. After finishing the outermost loop, a fraction of threads up-
date the restart indexes in case the number of nonzeros in a row is no more than
hypoMaxNnzRow (Listings D.4, lines 8-11). Now since the nonzeros are contigu-
ously stored in shared Ellpack arrays, each block of threads parallelly and iteratively
copy the nonzeros into global Ellpack arrays with coalescence (Listings D.4, lines
18-24). Finally, a fraction of threads store the number of nonzeros per row and
the restart indexes into global memory arrays (Listings D.4, lines 27-31).

For the ellpackToCSR kernel, each block of threads first loads its global
starting offsets and per-row ending offsets for storing nonzeros (Listings D.5, lines
8-12). Then the nonzeros that have been successfully recorded in global Ellpack
arrays are iteratively copied into global CSR arrays with coalescence (Listings D.5,
lines 15-20). Finally a fraction of threads record the global restart index (for
storing nonzeros) by adding the global starting offsets and per-row ending offsets

145



(Listings D.5, lines 23-25).

1 #include <thrust/...> // Include Thrust library functions
2 ... // Declaration & memory allocation
3
4 // Launch the full-pass kernel
5 Db.x = BSX; Db.y = BSY;
6 Dg.x = n/Db.y + (n%Db.y > 0 ? 1 : 0); Dg.y = 1;
7 shMemSize = sizeof(float)*(Db.y*Db.x + Db.y*hypoMaxNnzRow) +
8 sizeof(int)*(Db.y*Db.x + Db.y*hypoMaxNnzRow + Db.y*3);
9 fullPass<<<Dg,Db,shMemSize>>>(hypoMaxNnzRow, ..., // input
10 GPU_nnzPerRow, // output
11 GPU_csrValMax, // output
12 GPU_csrColMax, // output
13 GPU_idxNzRowRestart, // output
14 GPU_colRestart); // output
15
16 // Find the minimum and maximum number of nonzeros in a row
17 thrust::device_ptr<int> d_nnzPerRow(GPU_nnzPerRow);
18 thrust::pair<...> extrema =
19 thrust::minmax_element(..., d_nnzPerRow, d_nnzPerRow + n);
20 minNnzRow = *extrema.first;
21 maxNnzRow = *extrema.second;
22
23 // Compute csrRow by an exclusive scan on nnzPerRow
24 thrust::device_ptr<int> d_csrRow(GPU_csrRow);
25 thrust::exclusive_scan(..., d_nnzPerRow, d_nnzPerRow + n+1, d_csrRow);
26
27 // Get the nnz of sim. matrix and allocate memory for csrVal & csrCol
28 nnz = d_csrRow[n];
29 cudaMalloc((void**) &GPU_csrCol, sizeof(int)*nnz);
30 cudaMalloc((void**) &GPU_csrVal, sizeof(float)*nnz);
31
32 // Launch a kernel to fill csrVal and csrCol
33 // with valid nonzeros stored in csrValMax and csrColMax
34 int *GPU_idxNzTotalRestart = GPU_idxNzRowRestart;
35 Db.x = BSX; Db.y = BSY;
36 Dg.x = n/Db.y + (n%Db.y > 0 ? 1 : 0); Dg.y = 1;
37 ellpackToCSR<<<Dg,Db>>>(GPU_csrRow, // input
38 GPU_idxNzRowRestart, // input
39 hypoMaxNnzRow, // input
40 GPU_csrValMax, // input
41 GPU_csrColMax, // input
42 GPU_csrVal, // output
43 GPU_csrCol, // output
44 GPU_idxNzTotalRestart); // output
45
46 if (maxNnzRow > hypoMaxNnzRow) {
47 // Launch the supplementary-pass kernel
48 Db.x = BSX; Db.y =BSY;
49 Dg.x = n/Db.y + (n%Db.y > 0 ? 1 : 0); Dg.y = 1;
50 shMemSize = sizeof(float)*Db.y*Db.x + sizeof(int)*(Db.y*Db.x+Db.y);
51 supPass<<<Dg,Db,shMemSize>>>(GPU_csrRow, // input
52 GPU_idxNzTotalRestart, // input
53 GPU_colRestart, // input
54 hypoMaxNnzRow, ..., // input
55 GPU_csrVal, // output
56 GPU_csrCol); // output
57 }
58
59 ... // Memory deallocation for auxiliary arrays

Listing D.1: Host code of GPU implementation for Algo CSR-2

146



The supPass kernel (Listings D.6) is similar to the 2ndPass kernel of Algo
CSR-1. However, the difference is that each block of threads in the supPass

kernel starts the work from the restart indexes recorded before (Listings D.6, lines
6-12) while in the 2ndPass kernel of Algo CSR-1 each block of threads starts the
work from the beginning of each row.

Similar to Algo CSR-1, we leverage some easy-to-use APIs of NVIDIA’s Thrust
library to implement the other steps of Algo CSR-2, i.e. the minmax_element
API is used to find the minimum and maximum number of nonzeros in a row
(Listings D.1, lines 17-21) and the exclusive_scan API is used to derive the
csrRow array (Listings D.1, lines 24-25).

1 // Starting address for dynamic allocation of shared memory
2 extern __shared__ float shBuff[];
3
4 __global__ void fullPass (...)
5 {
6 // 2D block, 1D grid in x-axis but regarded as in y-axis
7 int col = threadIdx.x;
8 int row = blockDim.y * blockIdx.x + threadIdx.y;
9 // Declaration & initialization
10 int maxCol = ((n - 1)/blockDim.x + 1) * blockDim.x;
11 int flagReachHypo = 0;
12 int idxNzRowRestart = 0;
13 int colRestart = n;
14 int yofs = threadIdx.y*blockDim.x;
15 int ymofs = threadIdx.y*hypoMaxNnzRow;
16
17 // Pointers to dynamic shared memory arrays (must be 1D)
18 float *shValIter = shBuff; // size: blockDim.y*blockDim.x
19 float *shNzValMax = &shValIter[blockDim.y*blockDim.x];
20 // size: blockDim.y*hypoMaxNnzRow
21 int *shColIter = (int*)&shNzValMax[blockDim.y*hypoMaxNnzRow];
22 // size: blockDim.y*blockDim.x
23 int *shNzColMax = &shColIter[blockDim.y*blockDim.x];
24 // size: blockDim.y*hypoMaxNnzRow
25 int *shNnzIter = &shNzColMax[blockDim.y*hypoMaxNnzRow];
26 // size: blockDim.y
27 int *shNnzRow = &shNnzIter[blockDim.y]; // size: blockDim.y
28 int *shIdxNzRowRestart = &shNnzRow[blockDim.y]; // size: blockDim.y
29
30 if (threadIdx.x == 0) {
31 shNnzIter[threadIdx.y] = 0;
32 shNnzRow[threadIdx.y] = 0;
33 }
34 __syncthreads();
35
36 ... // Part 2 of the kernel
37 ... // Part 3 of the kernel
38 }

Listing D.2: fullPass kernel (part 1) for Algo CSR-2

147



1 __global__ void fullPass (...)
2 {
3 ... // Part 1 of the kernel
4
5 // Each block processes some rows in a loop fashion
6 while (col < maxCol && row < n) {
7 if (col < n) {
8 // Gaussian similarity with threshold for squared distance
9 #ifdef GAUSS_SIM_WITH_SQDIST_THOLD
10 ... // Calculate squared distances (sqDist)
11 shColIter[yofs + threadIdx.x] = -1;
12 if (sqDist < tholdSqDist && row != col) {
13 shValIter[yofs + threadIdx.x] =
14 __expf((-1.0f)*sqDist/(2.0f*sigma*sigma));
15 shColIter[yofs + threadIdx.x] = col;
16 atomicAdd(&shNnzIter[threadIdx.y], 1);
17 }
18 #endif
19
20 #ifdef ... #endif // Other similarity metrics with threshold
21 } // End of if (col < n)
22 __syncthreads();
23
24 // Copy nonzeros to shared Ellpack arrays & records restart indexes
25 if (shNnzIter[threadIdx.y] > 0 && threadIdx.x == 0) {
26 int idxNzRow = shNnzRow[threadIdx.y];
27 int i = 0;
28 if (flagReachHypo == 0) {
29 for (; i<blockDim.x && idxNzRow<hypoMaxNnzRow && col+i<n; i++){
30 if (i%32==0) {idxNzRowRestart=idxNzRow; colRestart=col+i;}
31 if (shColIter[yofs + i] != -1) {
32 shNzValMax[ymofs + idxNzRow] = shValIter[yofs + i];
33 shNzColMax[ymofs + idxNzRow] = col + i; //shColIter[yofs+i]
34 idxNzRow++;
35 }
36 } // End of for loop
37 if (idxNzRow == hypoMaxNnzRow) flagReachHypo = 1;
38 } // End of if (flagReachHypo == 0)
39 for (; idxNzRow==hypoMaxNnzRow && i<blockDim.x && col+i<n; i++){
40 if (i%32==0) {idxNzRowRestart=hypoMaxNnzRow; colRestart=col+i;}
41 if (shColIter[yofs + i] != -1) idxNzRow++;
42 } // End of for loop
43 shNnzRow[threadIdx.y] += shNnzIter[threadIdx.y];
44 shNnzIter[threadIdx.y] = 0;
45 } // End of if (*shNnzIter > 0 && threadIdx.x == 0)
46
47 __syncthreads();
48 col += blockDim.x;
49 } // end of while
50
51 ... // Part 3 of the kernel
52 }

Listing D.3: fullPass kernel (part 2) for Algo CSR-2

148



1 __global__ void fullPass (...)
2 {
3 ... // Part 1 of the kernel
4 ... // Part 2 of the kernel
5
6 // Update restart indexes
7 if (threadIdx.x == 0 && row < n) {
8 if (shNnzRow[threadIdx.y] <= hypoMaxNnzRow) {
9 idxNzRowRestart = shNnzRow[threadIdx.y];
10 colRestart = n;
11 }
12 shIdxNzRowRestart[threadIdx.y] = idxNzRowRestart;
13 }
14 __syncthreads();
15
16 // Each block of threads parallelly store nonzeros from shared
17 // Ellpack arrays into global Ellpack arrays in the coalesced way
18 col = threadIdx.x;
19 while (col < shIdxNzRowRestart[threadIdx.y] && row < n) {
20 size_t csrMaxIdx = (size_t)row*(size_t)hypoMaxNnzRow + (size_t)col;
21 GPU_csrValMax[csrMaxIdx] = shNzValMax[ymofs + col];
22 GPU_csrColMax[csrMaxIdx] = shNzColMax[ymofs + col];
23 col += blockDim.x;
24 }
25
26 // Store nnz per row and restart indexes into global memory
27 if (threadIdx.x == 0 && row < n) {
28 GPU_nnzRow[row] = shNnzRow[threadIdx.y];
29 GPU_idxNzRowRestart[row] = idxNzRowRestart;
30 GPU_colRestart[row] = colRestart;
31 }
32 }

Listing D.4: fullPass kernel (part 3) for Algo CSR-2

149



1 __global__ void ellpackToCSR (...)
2 {
3 // 2D block, 1D grid in x-axis but regarded as in y-axis
4 int col = threadIdx.x;
5 int row = blockDim.y * blockIdx.x + threadIdx.y;
6
7 // Read nnz offset and restart index per row from global memory
8 int nnzOffset, idxNzRowRestart;
9 if (row < n) {
10 nnzOffset = GPU_csrRow[row];
11 idxNzRowRestart = GPU_idxNzRowRestart[row];
12 }
13
14 // Copy nonzeros from Ellpack arrays to CSR arrays in coalesced way
15 int idxOffset = row*hypoMaxNnzRow;
16 while (row < n && col < idxNzRowRestart) {
17 GPU_csrVal[nnzOffset + col] = GPU_csrValMax[idxOffset + col];
18 GPU_csrCol[nnzOffset + col] = GPU_csrColMax[idxOffset + col];
19 col += blockDim.x;
20 }
21
22 // Store the global restart index into global memory
23 if (threadIdx.x == 0 && row < n) {
24 GPU_idxNzTotalRestart[row] = nnzOffset + idxNzRowRestart;
25 }
26 }

Listing D.5: ellpackToCSR kernel for Algo CSR-2

1 __global__ void supPass (...)
2 {
3 // 2D block, 1D grid in x-axis but regarded as in y-axis
4 int row = blockDim.y * blockIdx.x + threadIdx.y;
5 int yofs = threadIdx.y*blockDim.x;
6 int col, colRestart, maxCol, nnzOffset;
7 if (row < n) {
8 colRestart = GPU_colRestart[row];
9 col = colRestart + threadIdx.x;
10 maxCol = colRestart+((n-colRestart-1)/blockDim.x+1)*blockDim.x;
11 nnzOffset = GPU_idxNzTotalRestart[row];
12 }
13
14 ... // Similar to the 2ndPass kernel of Algo CSR-1
15 }

Listing D.6: supPass kernel for Algo CSR-2

150



E - GPU implementation for Algo CSR-3

Listing E.1 shows the host code of our GPU implementation for Algo CSR-3
(Algorithm 6 in Section 3.3.5). The number of chunks is determined based on
the size of free GPU memory to use (lines 6-12). For each chunk of the similarity
matrix, we launch a typical kernel called chkPass to construct the matrix chunk in
dense format (lines 28-30) and we leverage the cusparseDenseToSparse_-
xxx functions of NVIDIA’s GPU-accelerated cuSPARSE library [144] to convert it
into CSR format (lines 33-41). Note that the chunks should be constructed and
converted one by one in order, so that we can accumulate the number of nonzeros
(lines 38-39) and continuously update csrRow[] using the transform API of
Thrust library (lines 45-50). After the loop, we exploit the cusparseXcsrsort
and cusparseSgthr functions of the cuSPARSE library to merge the CSR results
obtained from each chunk so that we obtain the CSR format of the whole similarity
matrix (lines 56-59). Finally we derive other necessary results from csrRow[]

(lines 63).

151



1 #include <cusparse.h> // Include cuSPARSE library
2 #include <thrust/...> // Include Thrust library functions
3 ... // Declaration & memory allocation
4
5 // Auto-tuning of nbChunks
6 cudaMemGetInfo(&freeGPUMem, &totalGPUMem);
7 useGPUMem = (size_t)((double)freeGPUMem*(double)memUsePercent/100.0);
8 maxNbRows = useGPUMem / (sizeof(float)*((size_t)n));
9 if (maxNbRows > ((size_t)n))
10 nbChunks = 1;
11 else
12 nbChunks = n/((int)maxNbRows) + (n%((int)maxNbRows) > 0 ? 1 : 0);
13
14 // Initialization
15 q = n/nbChunks; // quotient
16 r = n%nbChunks; // remainder
17 nnz = 0; nnzOffset = 0;
18 Db.x = BSX; Db.y = BSY;
19 Dg.x = n/Db.x + (n%Db.x > 0 ? 1 : 0);
20
21 // Chunkwise similarity matrix construction on the GPU
22 for (int b = 0; b < nbChunks; b++) {
23 chunkOffset = (c < r ? ((q + 1) * c) : (q * c + r));
24 chunkSize = (c < r ? (q + 1) : q);
25 Dg.y = chunkSize/Db.y + (chunkSize%Db.y > 0 ? 1 : 0);
26
27 // Compute the similarity matrix in a chunkwise fashion
28 chkPass<<<Dg,Db>>>(chunkOffset, chunkSize, // input
29 ..., // input
30 GPU_simChunk); // output
31
32 // Transform the chunk of similarity matrix from dense to CSR format
33 cusparseCreateDnMat(...); // initialize dense mat. descriptor
34 cusparseCreateCsr(...); // initialize sparse mat. descriptor in CSR
35 cusparseDenseToSparse_bufferSize(...); // return workspace size
36 cusparseDenseToSparse_analysis(...); // update sparse mat. descr.
37 cusparseSpMatGetSize(...); // get the number of nonzeros
38 if (c > 0) nnzOffset += ((int)nnzChunk[c - 1]); // update nnzOffset
39 nnz = nnzOffset + ((int)nnzChunk[c]); // update nnz
40 cusparseCsrSetPointers(...); // reset CSR pointers
41 cusparseDenseToSparse_convert(...); // dense-to-sparse conversion
42
43 // Add nnzOffset to all values from "d_csrRow + chunkOffset"
44 // to "d_csrRow + chunkOffset + chunkSize"
45 if (c < nbChunks - 1)
46 thrust::transform(..., d_csrRow + chunkOffset,
47 d_csrRow + chunkOffset + chunkSize, ...);
48 else
49 thrust::transform(..., d_csrRow + chunkOffset,
50 d_csrRow + chunkOffset + chunkSize + 1, ...);
51
52 ... // Destroy matrix descriptors and deallocate memory
53 }
54
55 // Merge CSR format
56 cusparseXcsrsort_bufferSizeExt(...); // allocate buffer
57 cusparseCreateIdentityPermutation(...); // set permutation vector
58 cusparseXcsrsort(...); // sort the column indices of CSR format
59 cusparseSgthr(...); // gather sorted csrVal
60
61 ... // Destroy matrix descriptors and deallocate memory
62
63 ... // Derive nnzPerRow, minNnzRow, maxNnzRow from csrRow

Listing E.1: Host code of GPU implementation for Algo CSR-3

152



F - GPU implementation for noise filtering
algorithm

We mainly present our GPU implementation for the noise filtering part of
Algorithm 7, which consists in our CUDA kernels and some APIs of the Thrust
library. The host code is shown in Listing F.1, and the CUDA kernels are shown in
Listings F.2, F.3 and F.4.

The beginning part for determining the threshold for noise filtering (tholdNF )
is uncomplicated and therefore omitted (Listing F.1, lines 4-15). Then we identify
noise instances by launching the findNoise kernel using a 1D grid with 1D
blocks of threads (Listing F.1, lines 18-22). Each thread accesses one element of
the scaled nnzPerRow or the scaled degrees, and checks whether the element
value is under or equal to tholdNF (Listing F.2, lines 13-23). If the checked
condition is satisfied, then the thread marks the corresponding instance as noise
with GPU_isNoise[*]=1, records the index of the noise instance, and set the
cluster label to “-1”. In addition, the kernel counts the total number of identified
noise instances (Listing F.2, lines 25-32). So the number of non-noise instances
becomes clear (Listing F.1, lines 23-24).

To remove noise-related elements from the CSR format similarity matrix, we
choose to first mark them as “-1” in csrCol[] (Listing F.1, lines 27-37) and then
separate them from noise-unrelated elements (Listing F.1, lines 40-49). Specifically,
we use the exclusive_scan API to derive the number of noise instances in
front of each instance (d_nbNoiseFront[]) from the array that marks whether
an instance is noise (d_isNoise[]). We use the stable_partition API
to separate, in d_idxNoise[], the indexes of noise instances from those of
non-noise instances while preserving their relative order. With these prepared,
we launch the markNoiseInCSRCol kernel using a 1D grid with 1D blocks of
threads. Each block processes one row of the similarity matrix in an iterative and
progressive way. Considering the maximum y-dimension of a grid (65535) may be
insufficient for large number of instances while the maximum x-dimension of a grid
(231−1 = 2 147 483 647) is sufficiently large, we choose to create the 1D grid in x
dimension (Listings F.1, line 31) but regard it as in y dimension (Listings F.3, line
4). For the rows related to noise instances (Listings F.3, lines 12-20), the blocks
of threads simply set the associated segment of csrCol[] to “-1”, then the first
thread of each block accumulates the number of noise-related nonzeros in that row
into global memory and set the corresponding element in nnzPerRow[] to 0. For
the rows related to non-noise instances (Listings F.3, lines 22-43), the blocks of
threads update the elements of csrCol[] for noise-unrelated nonzeros, set the
elements of csrCol[] to “-1” for noise-related nonzeros, then the first threads
of each block accumulates the number of noise-related nonzeros in that row into

153



global memory and update the corresponding element in nnzPerRow[].

1 #include <thrust/...> // Include Thrust library functions
2 ... // Declarations, memory allocations, initialization
3 ... // CSR format similarity matrix construction
4 switch (filterApproach) {
5 case 0 :
6 ... // Get nnz per row, minimal and maximal # of nonzeros in a row
7 break;
8 case 1 :
9 ... // Compute degrees of vertices, get minimal and maximal degree
10 break;
11 }
12 ... // Min-max scaling on nnzPerRow or degrees, compute the histogram
13 ... // Estimate the optimal threshold for filtering noise (ONGOING work)
14 ... // Print the histogram and the estimated optimal threshold
15 scanf("%f", &tholdNF); // Let the user finalize the value of tholdNF
16
17 // Identify noise based on tholdNoise
18 Db.x = BSX; Db.y = 1; Dg.x = n/Db.x + (n%Db.x > 0 ? 1:0); Dg.y = 1;
19 shMemSize = sizeof(int)*Db.x;
20 findNoise<<<Dg,Db,shMemSize>>>(GPU_scaledMetric, tholdNF, // input
21 GPU_nbNoise, GPU_isNoise, // output
22 GPU_idxNoise, GPU_labels); // output
23 cudaMemcpy(&nbNoise, GPU_nbNoise, ..., cudaMemcpyDeviceToHost);
24 nNF = n - nbNoise; // # of non-noise instances
25
26 // Mark noise as -1 in the CSR format of similarity matrix
27 thrust::device_ptr<int> d_...(GPU_...);
28 thrust::exclusive_scan(..., d_isNoise, d_isNoise + n, d_nbNoiseFront);
29 thrust::stable_partition(..., d_idxNoise, d_idxNoise + n,
30 is_not_minus_one());
31 Db.x = BSX; Db.y = 1; Dg.x = n; Dg.y = 1;
32 markNoiseInCSRCol<<<Dg,Db>>>(GPU_csrRow, GPU_labels, nbNoise,// input
33 GPU_nbNoiseFront, GPU_idxNoise, // input
34 GPU_nnzNoise, GPU_nnzPerRow, // output
35 GPU_csrCol); // output
36 cudaMemcpy(&nnzNoise, GPU_nnzNoise, ..., cudaMemcpyDeviceToHost);
37 nnzNF = nnz - nnzNoise; // # of noise-free nonzeros
38
39 // Get in place the noise-free similarity matrix in CSR format
40 thrust::stable_partition(..., d_nnzPerRow, d_nnzPerRow + n + 1,
41 is_nonzero());
42 thrust::stable_partition(..., d_csrVal, d_csrVal + nnz, d_csrCol,
43 is_not_minus_one());
44 thrust::stable_partition(..., d_csrCol, d_csrCol + nnz,
45 is_not_minus_one());
46 thrust::exclusive_scan(..., d_nnzPerRow, d_nnzPerRow + nNF + 1,
47 d_csrRowNF);
48
49 int kcNF = kc - 1; // # of noise-free clusters
50 ... // Spectral graph partitioning using nvGRAPH, find kcNF clusters
51
52 // Get the labels of non-noise instances indexed in the original set
53 thrust::copy_if(..., d_nbNoiseFront, d_nbNoiseFront + n,
54 d_isNoise, d_nbNoiseFrontNF, is_zero());
55 Db.x = BSX; Db.y = 1;
56 Dg.x = nNF/Db.x + (nNF%Db.x > 0 ? 1 : 0); Dg.y = 1;
57 mapLabels<<<Dg, Db>>>(nNF, GPU_labelsNF, GPU_nbNoiseFrontNF, // input
58 GPU_labels); // output

Listing F.1: Host code of GPU implementation for noise filtering
algorithm

154



After completing the markNoiseInCSRCol kernel, we call the stable_
partition API to get the noise-free version of nnzPerRow[], csrVal and
csrCol (Listings F.1, lines 40-45). Then we derive the noise-free csrRow[] from
the noise-free nnzPerRow[] via the exclusive_scan API (Listings F.1, lines
46-47). Now we have the noise-free similarity matrix in CSR format, on which we
perform spectral graph partitioning using the nvGRAPH library (see Section 3.4)
to find kc − 1 clusters (excluding a single cluster for noise instances).

Finally, we copy the elements of d_nbNoiseFront that are associated with
non-noise instances into d_nbNoiseFrontNF (Listings F.1, lines 53-54), and
launch the mapLabels kernel to map the labels of non-noise instances onto the
original indexing structure (Listings F.1, lines 55-58). We use a 1D grid with
1D blocks of threads for the kernel. Each thread reads an element of GPU_-
nbNoiseFrontNF and copies the cluster label from the noise-free indexing array
GPU_labelsNF into the original indexing array GPU_labels (Listing F.4, lines
6-9).

1 // Starting address for dynamic allocation of shared memory
2 extern __shared__ int shBuff[];
3 __global__ void findNoise(...)
4 {
5 // 1D block in x-axis, 1D grid in x-axis
6 int tid = blockIdx.x * blockDim.x + threadIdx.x;
7
8 // Pointers to dynamic shared memory arrays
9 int *shFlagNoise = shBuff; // size: blockDim.x
10 shFlagNoise[threadIdx.x] = 0;
11
12 // Identify noise instances
13 if (tid < n) {
14 float scaledMetric = GPU_scaledMetric[tid];
15 GPU_isNoise[tid] = 0;
16 GPU_idxNoise[tid] = -1;
17 if (scaledMetric <= tholdNF) {
18 shFlagNoise[threadIdx.x] = 1;
19 GPU_isNoise[tid] = 1;
20 GPU_idxNoise[tid] = tid;
21 GPU_labels[tid] = -1;
22 }
23 }
24
25 // Count the number of noise into GPU_nbNoise: two-part reduction
26 // 1 - Classic reduction of the shared array shFlagNoise[*]
27 ... // into shFlagNoise[0], kill useless warps step by step,
28 ... // only the 1st warp survives at the end.
29 // 2 - Final reduction into the global variable GPU_nbNoise
30 if (threadIdx.x == 0)
31 if (shFlagNoise[0] > 0)
32 atomicAdd(GPU_nbNoise, shFlagNoise[0]);
33 }

Listing F.2: findNoise kernel for noise filtering algorithm

155



1 __global__ void markNoiseInCSRCol (...)
2 {
3 // 1D block in x-axis, 1D grid in x-axis but regarded as in y-axis
4 int row = blockIdx.x; int col = threadIdx.x;
5 int nnzOffset = GPU_csrRow[row];
6 int nnzRow = GPU_csrRow[row + 1] - nnzOffset;
7 int label = GPU_labels[row];
8
9 // Pointers to dynamic shared memory arrays
10 int *shNnzNoise = shBuff;
11
12 if (label == -1) { // For noise instances
13 while (col < nnzRow) {
14 GPU_csrCol[nnzOffset + col] = -1;
15 col += blockDim.x;
16 }
17 if (threadIdx.x == 0) {
18 atomicAdd(GPU_nnzNoise, nnzRow);
19 GPU_nnzPerRow[row] = 0;
20 }
21
22 } else { // For non-noise instances
23 if (threadIdx.x == 0) *shNnzNoise = 0;
24 __syncthreads();
25 while (col < nnzRow) {
26 int oldColIdx = GPU_csrCol[nnzOffset + col];
27 int nbNoiseFront = GPU_nbNoiseFront[oldColIdx];
28 int newColIdx = oldColIdx - nbNoiseFront;
29 for (int i = 0; i < nbNoise; i++) {
30 if (oldColIdx == GPU_idxNoise[i]) {
31 newColIdx = -1;
32 atomicAdd_block(shNnzNoise, 1);
33 }
34 }
35 GPU_csrCol[nnzOffset + col] = newColIdx;
36 col += blockDim.x;
37 }
38 __syncthreads();
39 if (threadIdx.x == 0) {
40 atomicAdd(GPU_nnzNoise, *shNnzNoise);
41 GPU_nnzPerRow[row] -= *shNnzNoise;
42 }
43 }
44 }

Listing F.3: markNoiseInCSRCol kernel for noise filtering
algorithm

1 __global__ void mapLabels (...)
2 {
3 // 1D block in x-axis, 1D grid in x-axis
4 int tid = blockIdx.x * blockDim.x + threadIdx.x;
5
6 if (tid < nNF) {
7 int nbNoiseFrontNF = GPU_nbNoiseFrontNF[tid];
8 GPU_labels[tid + nbNoiseFrontNF] = GPU_labelsNF[tid];
9 }
10 }

Listing F.4: mapLabels kernel for noise filtering algorithm

156



G - Parallel implementation for the seeding
step of k-means++

Listings G.1 and G.2 display our GPU implementation for the seeding step of
the k-means++ algorithm (see Algorithm 2), while Listing G.3 shows our CPU
implementation. All of them use only single precision arithmetic.

Particularly, the thrust functions used in our implementations suffer from the
effect of rounding errors when processing large-scale datasets using single precision
for floating-point numbers. To handle this issue, we provide a mixed precision
version for each CPU and GPU implementation (as presented in Listings G.4, G.5
and G.6), where double precision is used in some lines of code.

Other steps of k-means++ are the same as k-means (see Chapter 2).

1 #include <thrust/...> // Include Thrust library functions
2 void gpu_seeding (float *data, unsigned int seedbase, ..., // input
3 float *cent) // output
4 { unsigned int seed = seedBase; int centIdx, *GPU_centIdx;
5 float randValue, *GPU_d2, *GPU_d2Sum;
6 float *GPU_prob, *GPU_inScanSum, *GPU_exScanSum;
7 ... // Memory allocation
8 Db.x = BSXN; Db.y = 1; Dg.x = n/Db.x + (n%Db.x > 0 ? 1:0); Dg.y = 1;
9 shMemSize = sizeof(float)*Db.x + sizeof(float)*d;
10
11 // Select initial centroids one by one
12 for (int k = 0; k < kc; k++) {
13 // Get the idx of an initial centroid
14 if (k == 0) { centIdx = rand_r(&seed)/(float)RAND_MAX * n; }
15 else {
16 randValue = rand_r(&seed)/(float)RAND_MAX;
17 findCentIdx<<<Dg,Db>>>(randValue, ..., // input
18 GPU_inScanSum, GPU_exScanSum, // input
19 GPU_centIdx); // output
20 cudaMemcpy(&centIdx, GPU_centIdx, sizeof(int), ...DeviceToHost);
21 }
22 // Calculate GPU_d2 and GPU_d2Sum
23 cudaMemset(GPU_d2Sum, 0, sizeof(float));
24 calculateD2Sum<<<Dg,Db,shMemSize>>>(k, centIdx, GPU_cent, // input
25 GPU_dataT, ..., // input
26 GPU_d2, GPU_d2Sum); // output
27 // Calculate sampling probabilities
28 calculateProbability<<<Dg,Db>>>(GPU_d2, GPU_d2Sum, ..., // input
29 GPU_prob); // output
30 // Calculate the results of inclusive scan & exclusive scan
31 thrust::device_ptr<float> d_prob(GPU_prob), d_inSS(GPU_inScanSum),
32 d_exSS(GPU_exScanSum);
33 thrust::inclusive_scan(thrust::device,d_prob,d_prob+n,d_inSS);
34 thrust::exclusive_scan(thrust::device,d_prob,d_prob+n,d_exSS,0.0f);
35 }
36 ... // Memory deallocation
37 }

Listing G.1: Host code of GPU implementation for the seeding step of
k-means++ (single precision version)

157



1 __global__ void findCentIdx (...)
2 {
3 // 1D block in x-axis, 1D grid in x-axis
4 int tid = blockIdx.x * blockDim.x + threadIdx.x;
5
6 // Find the idx of a new initial centroid
7 if (tid < n) {
8 float exSS = GPU_exScanSum[tid], inSS = GPU_inScanSum[tid];
9 if (randValue >= exSS && randValue < inSS) *GPU_centerIdx = tid;
10 }
11 }
12
13 // Starting address for dynamic allocation of shared memory
14 extern __shared__ float shBuff[];
15
16 __global__ void calculateD2Sum (...)
17 {
18 // 1D block in x-axis, 1D grid in x-axis
19 int tid = blockIdx.x * blockDim.x + threadIdx.x;
20 int dimIdx = threadIdx.x;
21
22 // Declare shared memory arrays and initialize them
23 float *shD2 = shBuff; // blockDim.x floats
24 float *shCentDim = &shD2[blockDim.x]; // d floats
25 if (k > 0) shD2[threadIdx.x] = (tid < n ? GPU_d2[tid] : 0.0f);
26 else shD2[threadIdx.x] = (tid < n ? FLT_MAX : 0.0f);
27 while (dimIdx < d) {
28 shCentDim[dimIdx] = GPU_dataT[dimIdx*n + idx];
29 GPU_cent[k*d + dimIdx] = shCentDim[dimIdx];
30 dimIdx += blockDim.x;
31 }
32 __syncthreads();
33
34 // Calculate d2
35 if (tid < n) {
36 float diff, sqDist = 0.0f;
37 for (int j = 0; j < d; j++) {
38 diff = GPU_dataT[j*n + tid] - shCentDim[j]; sqDist += diff*diff;
39 }
40 if (sqDist < shD2[threadIdx.x]) {
41 shD2[threadIdx.x] = sqDist; GPU_d2[tid] = sqDist;
42 }
43 }
44
45 // Calculate d2Sum
46 ... // Recursive reduction of shD2[*] into shD2[0]
47 if (threadIdx.x == 0) atomicAdd(GPU_d2Sum, shD2[0]);
48 }
49
50 __global__ void calculateProbability (...)
51 {
52 // 1D block in x-axis, 1D grid in x-axis
53 int tid = blockIdx.x * blockDim.x + threadIdx.x;
54
55 // Declare a shared memory variable and intialize it
56 __shared__ float shD2;
57 if (threadIdx.x == 0) shD2 = *GPU_d2Sum;
58 __syncthreads();
59
60 // Calculate probability
61 if (tid < n) GPU_prob[tid] = GPU_d2[tid] / shD2;
62 }

Listing G.2: Devide code of GPU implementation for the seeding step
of k-means++ (single precision version)

158



1 #include <thrust/...> // Include Thrust library functions
2 void cpu_seeding (float *data, unsigned int seedbase, ..., // input
3 float *cent) // output
4 {
5 // Declaration
6 unsigned int seed = seedbase; int centIdx;
7 float randValue, *d2, d2Sum, *prob, *inScanSum, *exScanSum;
8 omp_lock_t lock; omp_init_lock(&lock); // Initialize the lock
9 ... // Memory allocation for d2, prob, inScanSum, exScanSum
10
11 #pragma omp parallel
12 {
13 for (int k = 0; k < kc; k++) {// Select initial centroids one by one
14 // Get the idx of an initial centroid
15 #pragma omp single
16 {
17 if (k == 0) centIdx = rand_r(&seed)/(float)RAND_MAX * n;
18 randValue = rand_r(&seed)/(float)RAND_MAX; d2Sum = 0.0f;
19 }
20 if (k > 0) {
21 #pragma omp for
22 for (int i = 0; i < n; i++) {
23 float exSS = exScanSum[i], inSS = inScanSum[i];
24 if (randValue >= exSS && randValue < inSS) {
25 omp_set_lock(&lock); // necessary due to -Ofast flag
26 centIdx = i;
27 omp_unset_lock(&lock); // necessary due to -Ofast flag
28 }
29 }
30 }
31 // Store the initial centroid
32 #pragma omp for
33 for (int j = 0; j < d; j++) cent[k*d + j] = data[centIdx*d + j];
34 // Calculate d2[]
35 #pragma omp for
36 for (int i = 0; i < n; i++) {
37 float diff, sqDist = 0.0f;
38 float minDistSq = (k > 0 ? d2[i] : FLT_MAX);
39 for (int j = 0; j < d; j++) {
40 diff = data[i*d + j] - data[centIdx*d + j];
41 sqDist += diff*diff;
42 }
43 if (sqDist < minDistSq) d2[i] = sqDist;
44 }
45 // Calculate d2Sum
46 #pragma omp single
47 { d2Sum = thrust::reduce(thrust::host, d2, d2 + n, 0.0f); }
48 // Calculate sampling probabilities
49 #pragma omp for
50 for (int i = 0; i < n; i++) prob[i] = d2[i] / d2Sum;
51 // Calculate the results of inclusive scan & exclusive scan
52 #pragma omp single
53 {
54 thrust::inclusive_scan(thrust::host,prob,prob+n,inScanSum);
55 thrust::exclusive_scan(thrust::host,prob,prob+n,exScanSum,0.0f);
56 }
57 } // end for
58 } // end pragma omp parallel
59
60 omp_destroy_lock(&lock); // Destroy lock
61 ... // Memory deallocation
62 }

Listing G.3: CPU implementation for the seeding step of k-means++
(single precision version)

159



1 #include <thrust/...> // Include Thrust library functions
2 void gpu_seeding (float *data, unsigned int seedbase, ..., // input
3 float *cent) // output
4 {
5 ... // Same as the single precision version except the following code
6 // To avoid the effect of rounding errors when processing
7 // large-scale datasets, the following code uses
8 // double instead of float, and 0.0 instead of 0.0f
9 double randValue, *GPU_d2, *GPU_d2Sum;
10 double *GPU_prob, *GPU_inScanSum, *GPU_exScanSum;
11 if (k == 0) centIdx = rand_r(&seed)/(double)RAND_MAX * n;
12 randValue = rand_r(&seed)/(double)RAND_MAX;
13 cudaMemset(GPU_d2Sum, 0, sizeof(double));
14 thrust::device_ptr<double> d_prob(GPU_prob);
15 thrust::device_ptr<double> d_inSS(GPU_inScanSum);
16 thrust::device_ptr<double> d_exSS(GPU_exScanSum);
17 thrust::exclusive_scan(thrust::device,d_prob,d_prob+n,d_exSS,0.0);
18 }

Listing G.4: Host code of GPU implementation for the seeding step of
k-means++ (mixed precision version)

1 ... // Same as the single precision version except the following code
2 // To avoid the effect of rounding errors when processing
3 // large-scale datasets, the following code uses
4 // double instead of float
5 double exSS = GPU_exScanSum[tid]; // in findCentIdx kernel
6 double inSS = GPU_inScanSum[tid]; // in findCentIdx kernel
7 __shared__ double shD2; // in calculateProbability kernel

Listing G.5: Devide code of GPU implementation for the seeding step
of k-means++ (mixed precision version)

1 #include <thrust/...> // Include Thrust library functions
2 void cpu_seeding (float *data, unsigned int seedbase, ..., // input
3 float *cent) // output
4 {
5 ... // Same as the single precision version except the following code
6 // To avoid the effect of rounding errors when processing
7 // large-scale datasets, the following code uses
8 // double instead of float, and 0.0 instead of 0.0f
9 double randValue, *d2, d2Sum, *prob, *inScanSum, *exScanSum;
10 if (k == 0) centIdx = rand_r(&seed)/(double)RAND_MAX * n;
11 randValue = rand_r(&seed)/(double)RAND_MAX; d2Sum = 0.0;
12 double exSS = exScanSum[i], inSS = inScanSum[i];
13 d2Sum = thrust::reduce(thrust::host, d2, d2 + n, 0.0);
14 thrust::exclusive_scan(thrust::host,prob,prob+n,exScanSum,0.0);
15 }

Listing G.6: CPU implementation for the seeding step of k-means++
(mixed precision version)

160



Bibliography

[1] Z. Abbasi-Moud, H. Vahdat-Nejad, and J. Sadri. Tourism recommendation
system based on semantic clustering and sentiment analysis. Expert Systems
with Applications, 167:114324, 2021.

[2] J. Agarwal, R. Nagpal, and R. Sehgal. Crime analysis using k-means clus-
tering. International Journal of Computer Applications, 83(4), 2013.

[3] A. Aggarwal, A. Deshpande, and R. Kannan. Adaptive sampling for k-means
clustering. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, pages 15–28. Springer, 2009.

[4] C. C. Aggarwal and C. K. Reddy. Data clustering. Algorithms and appli-
cations. Chapman&Hall/CRC Data mining and Knowledge Discovery series,
Londra, 2014.

[5] R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace
clustering of high dimensional data for data mining applications. In Proceed-
ings of the 1998 ACM SIGMOD international conference on Management
of data, pages 94–105, 1998.

[6] E. Aljalbout, V. Golkov, Y. Siddiqui, M. Strobel, and D. Cremers. Clus-
tering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648, 2018.

[7] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean
sum-of-squares clustering. Machine learning, 75(2):245–248, 2009.

[8] L. F. Ana and A. K. Jain. Robust data clustering. In 2003 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2003. Pro-
ceedings., volume 2, pages II–II. IEEE, 2003.

[9] D. C. Anastasiu and G. Karypis. L2ap: Fast cosine similarity search with
prefix l-2 norm bounds. In 2014 IEEE 30th International Conference on Data
Engineering, pages 784–795. IEEE, 2014.

[10] D. C. Anastasiu and G. Karypis. L2knng: Fast exact k-nearest neighbor
graph construction with l2-norm pruning. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management,
pages 791–800, 2015.

[11] D. C. Anastasiu and G. Karypis. Parallel cosine nearest neighbor graph
construction. Journal of Parallel and Distributed Computing, 129:61–82,
2019.

161



[12] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander. OPTICS: Ordering
points to identify the clustering structure. ACM Sigmod record, 28(2):49–60,
1999.

[13] D. Arthur and S. Vassilvitskii. k-means++: The advantages of careful
seeding. Technical report, Stanford, 2006.

[14] M. Baboulin, A. Buttari, J. J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, and S. Tomov. Accelerating scientific computations with mixed
precision algorithms. Comput. Phys. Commun., 180(12):2526–2533, 2009.

[15] S. Balakrishnan, M. Xu, A. Krishnamurthy, and A. Singh. Noise thresholds
for spectral clustering. Advances in Neural Information Processing Systems,
24, 2011.

[16] G. H. Ball. Data analysis in the social sciences: What about the details?
In Proceedings of the November 30–December 1, 1965, fall joint computer
conference, part I, pages 533–559, 1965.

[17] T. Barton, T. Bruna, and P. Kordik. Chameleon 2: an improved graph-based
clustering algorithm. ACM Transactions on Knowledge Discovery from Data
(TKDD), 13(1):1–27, 2019.

[18] M.-A. Belabbas and P. J. Wolfe. Spectral methods in machine learning and
new strategies for very large datasets. Proceedings of the National Academy
of Sciences, 106(2):369–374, 2009.

[19] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik. Support vector
clustering. Journal of machine learning research, 2(Dec):125–137, 2001.

[20] P. Bhattacharjee and P. Mitra. A survey of density based clustering algo-
rithms. Frontiers of Computer Science, 15(1):1–27, 2021.

[21] A. H. Bhatti, A. Rahman, and A. A. Butt. Video segmentation using spectral
clustering on superpixels. In 2016 IEEE International Conference on Image
Processing (ICIP), pages 869–873. IEEE, 2016.

[22] J. Bhimani, M. Leeser, and N. Mi. Accelerating k-means clustering with par-
allel implementations and GPU computing. In 2015 IEEE High Performance
Extreme Computing Conference, HPEC 2015, Waltham, MA, USA, 2015.

[23] C. Böhm, M. Perdacher, and C. Plant. Multi-core k-means. In Proceedings
of the 2017 SIAM International Conference on Data Mining, pages 273–281,
2017.

[24] A. Bojchevski, Y. Matkovic, and S. Günnemann. Robust spectral clustering
for noisy data: Modeling sparse corruptions improves latent embeddings. In

162



Proceedings of the 23rd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 737–746, 2017.

[25] M. Bolla. Relations between spectral and classification properties of multi-
graphs. Technical report, No. DIMACS-91-27, Center for Discrete Mathe-
matics and Theoretical Computer Science, 1991.

[26] C. Bouveyron and C. Brunet-Saumard. Model-based clustering of high-
dimensional data: A review. Computational Statistics & Data Analysis,
71:52–78, 2014.

[27] D. R. Butenhof. Programming with POSIX threads. Addison-Wesley Pro-
fessional, 1997.

[28] T. Caliński and J. Harabasz. A dendrite method for cluster analysis. Com-
munications in Statistics-theory and Methods, 3(1):1–27, 1974.

[29] R. J. Campello, P. Kröger, J. Sander, and A. Zimek. Density-based cluster-
ing. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
(2), 2019.

[30] R. J. Campello, D. Moulavi, and J. Sander. Density-based clustering based
on hierarchical density estimates. In Pacific-Asia conference on knowledge
discovery and data mining, pages 160–172. Springer, 2013.

[31] M. E. Celebi. Partitional clustering algorithms. Springer, 2014.

[32] M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. Nbclust: an R package
for determining the relevant number of clusters in a data set. Journal of
statistical software, 61:1–36, 2014.

[33] W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Parallel spectral
clustering in distributed systems. IEEE Trans. Pattern Anal. Mach. Intell.,
33(3), 2011.

[34] X. Chen and D. Cai. Large scale spectral clustering with landmark-based
representation. In Twenty-fifth AAAI conference on artificial intelligence,
2011.

[35] X. Chen, F. Nie, J. Z. Huang, and M. Yang. Scalable normalized cut with
improved spectral rotation. In IJCAI, pages 1518–1524, 2017.

[36] W. Cheng, W. Wang, and S. Batista. Grid-based clustering. In Data clus-
tering, pages 128–148. Chapman and Hall/CRC, 2018.

[37] A. Choromanska, T. Jebara, H. Kim, M. Mohan, and C. Monteleoni. Fast
spectral clustering via the Nyström method. In International Conference on
Algorithmic Learning Theory, pages 367–381. Springer, 2013.

163



[38] J. Costeira and T. Kanade. A multi-body factorization method for motion
analysis. In Proceedings of IEEE International Conference on Computer
Vision, pages 1071–1076. IEEE, 1995.

[39] T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

[40] S. Cuomo, V. De Angelis, G. Farina, L. Marcellino, and G. Toraldo. A GPU-
accelerated parallel K-means algorithm. Computers & Electrical Engineering,
75:262–274, 2019.

[41] Z. Dafir, Y. Lamari, and S. C. Slaoui. A survey on parallel clustering algo-
rithms for big data. Artificial Intelligence Review, 54(4):2411–2443, 2021.

[42] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE trans-
actions on pattern analysis and machine intelligence, (2):224–227, 1979.

[43] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39(1):1–22, 1977.

[44] R. Diestel. Graph Theory. Springer Berlin, Heidelberg, 2010. Fourth edition.

[45] E. Dimitriadou and K. Hornik. cclust: Convex clustering methods and clus-
tering indexes (version 0.6-23), November 2021. URL: https://cran.r-
project.org/web/packages/cclust/index.html.

[46] P. Domingos. A few useful things to know about machine learning. Com-
munications of the ACM, 55(10):78–87, 2012.

[47] W. Donath and A. Hoffman. Lower bounds for the partitioning of graphs.
IBM Journal of Research and Development, 17(5):420–425, 1973.

[48] W. Dong, C. Moses, and K. Li. Efficient k-nearest neighbor graph construc-
tion for generic similarity measures. In Proceedings of the 20th international
conference on World wide web, pages 577–586, 2011.

[49] K. Dowd and C. Severance. High performance computing. 2010.

[50] D. Dua and C. Graff. UCI machine learning repository, 2017. URL: http:
//archive.ics.uci.edu/ml.

[51] L. Duan, C. Aggarwal, S. Ma, and S. Sathe. Improving spectral clustering
with deep embedding and cluster estimation. In 2019 IEEE International
Conference on Data Mining (ICDM), pages 170–179. IEEE, 2019.

[52] P. D’Urso, L. De Giovanni, M. Disegna, and R. Massari. Bagged clustering
and its application to tourism market segmentation. Expert Systems with
Applications, 40(12):4944–4956, 2013.

164

https://cran.r-project.org/web/packages/cclust/index.html
https://cran.r-project.org/web/packages/cclust/index.html
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


[53] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for
discovering clusters in large spatial databases with noise. In kdd, volume 96,
pages 226–231, 1996.

[54] A. E. Ezugwu, A. M. Ikotun, O. O. Oyelade, L. Abualigah, J. O. Agushaka,
C. I. Eke, and A. A. Akinyelu. A comprehensive survey of clustering al-
gorithms: State-of-the-art machine learning applications, taxonomy, chal-
lenges, and future research prospects. Engineering Applications of Artificial
Intelligence, 110:104743, 2022.

[55] A. Fender. Parallel solutions for large-scale eigenvalue problems arising in
graph analytics. PhD thesis, Université Paris-Saclay, Dec. 2017.

[56] A. Fender, N. Emad, et al. Accelerated hybrid approach for spectral problems
arising in graph analytics. Procedia Computer Science, 80:2338–2347, 2016.

[57] M. B. Ferraro and P. Giordani. Soft clustering. Wiley Interdisciplinary Re-
views: Computational Statistics, 12(1):e1480, 2020.

[58] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak mathematical
journal, 23(2):298–305, 1973.

[59] C. C. Fowlkes, S. J. Belongie, F. R. K. Chung, and J. Malik. Spectral
grouping using the Nyström method. IEEE Trans. Pattern Anal. Mach.
Intell., 26(2), 2004.

[60] E. B. Fowlkes and C. L. Mallows. A method for comparing two hierarchical
clusterings. Journal of the American statistical association, 78(383):553–
569, 1983.

[61] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. science, 315(5814):972–976, 2007.

[62] G. Gan, C. Ma, and J. Wu. Data clustering: theory, algorithms, and appli-
cations. SIAM, 2020.

[63] K. Ghasedi Dizaji, A. Herandi, C. Deng, W. Cai, and H. Huang. Deep
clustering via joint convolutional autoencoder embedding and relative en-
tropy minimization. In Proceedings of the IEEE international conference on
computer vision, pages 5736–5745, 2017.

[64] A. Gonzalez-Pardo, J. J. Jung, and D. Camacho. Aco-based clustering for
ego network analysis. Future Generation Computer Systems, 66:160–170,
2017.

[65] M. Gowanlock. Hybrid knn-join: Parallel nearest neighbor searches exploiting
CPU and GPU architectural features. Journal of Parallel and Distributed
Computing, 149:119–137, 2021.

165



[66] S. Guattery and G. L. Miller. On the quality of spectral separators. SIAM
Journal on Matrix Analysis and Applications, 19(3):701–719, 1998.

[67] S. Guha, R. Rastogi, and K. Shim. CURE: An efficient clustering algorithm
for large databases. ACM Sigmod record, 27(2):73–84, 1998.

[68] S. Guha, R. Rastogi, and K. Shim. ROCK: A robust clustering algorithm for
categorical attributes. Information systems, 25(5):345–366, 2000.

[69] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partitioning
and clustering. IEEE transactions on computer-aided design of integrated
circuits and systems, 11(9):1074–1085, 1992.

[70] K. Hajebi, Y. Abbasi-Yadkori, H. Shahbazi, and H. Zhang. Fast approximate
nearest-neighbor search with k-nearest neighbor graph. In Twenty-Second
International Joint Conference on Artificial Intelligence, 2011.

[71] G. Hamerly and C. Elkan. Learning the k in k-means. Advances in neural
information processing systems, 16, 2003.

[72] E. Han, P. Carbonetto, R. E. Curtis, Y. Wang, J. M. Granka, J. Byrnes,
K. Noto, A. R. Kermany, N. M. Myres, M. J. Barber, et al. Clustering of
770,000 genomes reveals post-colonial population structure of north america.
Nature communications, 8(1):1–12, 2017.

[73] J. Han, J. Pei, and M. Kamber. Data mining: concepts and techniques.
Elsevier, 2011.

[74] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser,
H. Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy.
Nature, 585(7825):357–362, Sept. 2020. doi:10.1038/s41586-020-
2649-2.

[75] G. He, S. Vialle, and M. Baboulin. Parallel and accurate k-means algo-
rithm on CPU-GPU architectures for spectral clustering. Concurrency and
Computation: Practice and Experience, page e6621, 2021. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6621.

[76] G. He, S. Vialle, and M. Baboulin. Parallelization of the k-means algorithm in
a spectral clustering chain on CPU-GPU platforms. In Euro-Par 2020: Par-
allel Processing Workshops, volume 12480, LNCS, pages 135–147, Warsaw,
Poland, 2021. Springer.

166

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6621
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6621


[77] G. He, S. Vialle, and M. Baboulin. Scalable spectral clustering on GPU.
International Journal of Parallel Programming, page (Submitted), 2022.

[78] G. He, S. Vialle, S. Nicolas, and M. Baboulin. Scalable algorithms using
sparse storage for parallel spectral clustering on GPU. In 18th Annual IFIP
International Conference on Network and Parallel Computing (IFIP NPC),
volume 13152, LNCS, pages 40–52, Paris, France, 2021. Springer.

[79] L. He, N. Ray, Y. Guan, and H. Zhang. Fast large-scale spectral clustering
via explicit feature mapping. IEEE transactions on cybernetics, 49(3):1058–
1071, 2018.

[80] K. A. Heller and Z. Ghahramani. Bayesian hierarchical clustering. In Pro-
ceedings of the 22nd international conference on Machine learning, pages
297–304, 2005.

[81] C. Hennig, M. Meila, F. Murtagh, and R. Rocci. Handbook of cluster anal-
ysis. CRC Press, 2015.

[82] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM,
Philadelphia, 2002. Second edition.

[83] A. Hinneburg and H.-H. Gabriel. DENCLUE 2.0: Fast clustering based on
kernel density estimation. In International symposium on intelligent data
analysis, pages 70–80. Springer, 2007.

[84] A. Hinneburg, D. A. Keim, et al. An efficient approach to clustering in large
multimedia databases with noise. In KDD, volume 98, pages 58–65, 1998.

[85] Z. Huang. Clustering large data sets with mixed numeric and categorical val-
ues. In Proceedings of the 1st pacific-asia conference on knowledge discovery
and data mining,(PAKDD), pages 21–34. Citeseer, 1997.

[86] Z. Huang. A fast clustering algorithm to cluster very large categorical data
sets in data mining. Dmkd, 3(8):34–39, 1997.

[87] L. Hubert and P. Arabie. Comparing partitions. Journal of classification,
2(1):193–218, 1985.

[88] Z. Huo, G. Mei, G. Casolla, and F. Giampaolo. Designing an efficient parallel
spectral clustering algorithm on multi-core processors in Julia. Journal of
Parallel and Distributed Computing, 138:211–221, 2020.

[89] T. Ina, A. Hashimoto, M. Iiyama, H. Kasahara, M. Mori, and M. Minoh. Out-
lier cluster formation in spectral clustering. arXiv preprint arXiv:1703.01028,
2017.

167



[90] Intel. Intel Intrinsics Guide v3.6.2, Apr. 2022. URL: https:

//www.intel.com/content/www/us/en/docs/intrinsics-

guide/index.html.

[91] A. K. Jain. Data clustering: 50 years beyond k-means. Pattern recognition
letters, 31(8):651–666, 2010.

[92] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
computing surveys (CSUR), 31(3):264–323, 1999.

[93] R. Janani and S. Vijayarani. Text document clustering using spectral clus-
tering algorithm with particle swarm optimization. Expert Systems with
Applications, 134:192–200, 2019.

[94] F. Jézéquel, S. Graillat, D. Mukunoki, T. Imamura, and R. Iakymchuk. Can
we avoid rounding-error estimation in HPC codes and still get trustful re-
sults? working paper or preprint, 2020. URL: https://hal.archives-
ouvertes.fr/hal-02486753.

[95] Z. Jiang, Y. Zheng, H. Tan, B. Tang, and H. Zhou. Variational deep embed-
ding: An unsupervised and generative approach to clustering. arXiv preprint
arXiv:1611.05148, 2016.

[96] R. Jin, C. Kou, R. Liu, and Y. Li. Efficient parallel spectral clustering
algorithm design for large data sets under cloud computing environment.
Journal of Cloud Computing: Advances, Systems and Applications, 2(1):1–
10, 2013.

[97] Y. Jin and J. F. JáJá. A high performance implementation of spectral clus-
tering on CPU-GPU platforms. In 2016 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops, Chicago, IL, USA, pages 825–
834, 2016.

[98] T. Kansal, S. Bahuguna, V. Singh, and T. Choudhury. Customer segmen-
tation using k-means clustering. In 2018 international conference on com-
putational techniques, electronics and mechanical systems (CTEMS), pages
135–139. IEEE, 2018.

[99] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering
using dynamic modeling. Computer, 32(8):68–75, 1999.

[100] L. Kaufman and P. J. Rousseeuw. Clustering large data sets. Pattern Recog-
nition in Practice, pages 425–437, 1986.

[101] L. Kaufman and P. J. Rousseeuw. Clustering by means of medoids. In Proc.
Statistical Data Analysis Based on the L1 Norm Conference, Neuchatel,
1987, pages 405–416, 1987.

168

https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://hal.archives-ouvertes.fr/hal-02486753
https://hal.archives-ouvertes.fr/hal-02486753


[102] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction
to cluster analysis. John Wiley & Sons, 1990.

[103] W. Kim, A. Kanezaki, and M. Tanaka. Unsupervised learning of image
segmentation based on differentiable feature clustering. IEEE Transactions
on Image Processing, 29:8055–8068, 2020.

[104] A. V. Knyazev. Toward the optimal preconditioned eigensolver: Locally
optimal block preconditioned conjugate gradient method. SIAM Journal on
Scientific Computing, 23(2):517–541, 2001.

[105] H.-P. Kriegel, P. Kröger, J. Sander, and A. Zimek. Density-based cluster-
ing. Wiley interdisciplinary reviews: data mining and knowledge discovery,
1(3):231–240, 2011.

[106] M. Kruliš and M. Kratochvíl. Detailed analysis and optimization of CUDA
k-means algorithm. In 49th International Conference on Parallel Processing-
ICPP, pages 1–11, 2020.

[107] S. Kumar, M. Mohri, and A. Talwalkar. Sampling methods for the Nyström
method. The Journal of Machine Learning Research, 13(1):981–1006, 2012.

[108] U. Kutbay et al. Partitional clustering. Recent Applications in Data Clus-
tering, 2018.

[109] G. Laccetti, M. Lapegna, V. Mele, D. Romano, and L. Szustak. Performance
enhancement of a dynamic K-means algorithm through a parallel adaptive
strategy on multicore CPUs. Journal of Parallel and Distributed Computing,
2020.

[110] H. Lee, A. Battle, R. Raina, and A. Ng. Efficient sparse coding algorithms.
Advances in neural information processing systems, 19, 2006.

[111] M. Li, X.-C. Lian, J. T. Kwok, and B.-L. Lu. Time and space efficient
spectral clustering via column sampling. In CVPR 2011, pages 2297–2304.
IEEE, 2011.

[112] S. Li and N. Amenta. Brute-force k-nearest neighbors search on the GPU.
In International Conference on Similarity Search and Applications, pages
259–270. Springer, 2015.

[113] T. Li, Y. Zhang, D. Li, X. Liu, and Y. Peng. Fast compressive spectral
clustering. In 2017 IEEE International Conference on Data Mining (ICDM),
pages 949–954. IEEE, 2017.

[114] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and X. Lin. Ap-
proximate nearest neighbor search on high dimensional data—experiments,

169



analyses, and improvement. IEEE Transactions on Knowledge and Data
Engineering, 32(8):1475–1488, 2019.

[115] Y. Li, J. Huang, and W. Liu. Scalable sequential spectral clustering. In
Thirtieth AAAI conference on artificial intelligence, 2016.

[116] Z. Li, J. Jin, and L. Wang. High-performance k-means implementation based
on a simplified map-reduce architecture. arXiv preprint:1610.05601, 2016.

[117] Z. Li, J. Liu, S. Chen, and X. Tang. Noise robust spectral clustering. In
2007 IEEE 11th International Conference on Computer Vision, pages 1–8.
IEEE, 2007.

[118] F. Lin and W. W. Cohen. Power iteration clustering. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), June 21-24,
2010, Haifa, Israel, pages 655–662, 2010.

[119] J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale spectral cluster-
ing on graphs. In Twenty-Third International Joint Conference on Artificial
Intelligence. Citeseer, 2013.

[120] W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-
supervised learning. In ICML, 2010.

[121] S. Lloyd. Least squares quantization in pcm. IEEE transactions on informa-
tion theory, 28(2):129–137, 1982.

[122] J. MacQueen. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathemat-
ical statistics and probability, volume 1(14), pages 281–297, 1967.

[123] P. D. McNicholas. Model-based clustering. Journal of Classification,
33(3):331–373, 2016.

[124] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard version 4.0, June 2021. URL: https://www.mpi-forum.org/
docs/mpi-4.0/mpi40-report.pdf.

[125] E. Min, X. Guo, Q. Liu, G. Zhang, J. Cui, and J. Long. A survey of clustering
with deep learning: From the perspective of network architecture. IEEE
Access, 6:39501–39514, 2018.

[126] B. Mirkin. Choosing the number of clusters. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, 1(3):252–260, 2011.

[127] S. Miyahara, Y. Komazaki, and S. Miyamoto. An algorithm combining spec-
tral clustering and DBSCAN for core points. In Knowledge and Systems
Engineering, pages 21–28. Springer, 2014.

170

https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf
https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf


[128] S. Miyamoto, H. Ichihashi, K. Honda, and H. Ichihashi. Algorithms for fuzzy
clustering. Springer, 2008.

[129] S. Mouysset, J. Noailles, and D. Ruiz. Using a global parameter for gaus-
sian affinity matrices in spectral clustering. In International Conference on
High Performance Computing for Computational Science, pages 378–390.
Springer, 2008.

[130] S. Mouysset, J. Noailles, D. Ruiz, and C. Tauber. Spectral clustering: inter-
pretation and gaussian parameter. In Data Analysis, Machine Learning and
Knowledge Discovery, pages 153–162. Springer, 2014.

[131] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Dis-
covery, 2(1):86–97, 2012.

[132] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview, ii. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 7(6):e1219, 2017.

[133] M. C. Nascimento and A. C. De Carvalho. Spectral methods for graph
clustering–a survey. European Journal of Operational Research, 211(2):221–
231, 2011.

[134] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, et al. Amgx: A library for
GPU accelerated algebraic multigrid and preconditioned iterative methods.
SIAM Journal on Scientific Computing, 37(5):S602–S626, 2015.

[135] M. Naumov and T. Moon. Parallel spectral graph partitioning. Technical
report, NVIDIA Technical Report, NVR-2016-001, 2016.

[136] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems
14 [Neural Information Processing Systems: Natural and Synthetic, NIPS
2001, December 3-8, 2001, Vancouver, British Columbia, Canada], pages
849–856, 2001.

[137] R. T. Ng and J. Han. Efficient and effective clustering methods for spatial
data mining. In Proceedings of VLDB, pages 144–155. Citeseer, 1994.

[138] F. Nielsen. Hierarchical clustering. In Introduction to HPC with MPI for
Data Science, pages 195–211. Springer, 2016.

[139] NVIDIA. NVGRAPH Library User’s Guide (DU-08010-001_v10.2),
November 2019. URL: https://docs.nvidia.com/pdf/nvGRAPH_
Library.pdf.

171

https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf
https://docs.nvidia.com/pdf/nvGRAPH_Library.pdf


[140] NVIDIA. CUDA C++ Best Practices Guide (DG-05603-001_v11.6),
2022. URL: https://docs.nvidia.com/cuda/cuda-c-best-

practices-guide/index.html.

[141] NVIDIA. CUDA C++ Programming Guide (PG-02829-001_v11.7),
2022. URL: https://docs.nvidia.com/cuda/cuda-c-

programming-guide/index.html.

[142] NVIDIA. cuRAND Library (PG-05328-050_vRelease), 2022. URL: https:
//docs.nvidia.com/cuda/curand/index.html.

[143] NVIDIA. cuSOLVER Library (DU-06709-001_v11.6), 2022. URL: https:
//docs.nvidia.com/cuda/cusolver/index.html.

[144] NVIDIA. cuSPARSE Library (DU-06709-001_v11.6), 2022. URL: https:
//docs.nvidia.com/cuda/cusparse/index.html.

[145] NVIDIA. Thrust Quick Start Guide (DU-06716-001_v11.6), 2022. URL:
https://docs.nvidia.com/cuda/thrust/index.html.

[146] E. J. Nyström. Über die praktische auflösung von integralgleichungen mit an-
wendungen auf randwertaufgaben. Commentationes Physico-Mathematicae,
4(15):1–52, 1928.

[147] OpenMP Architecture Review Board. OpenMP API Specification Version
5.2, Nov. 2021. URL: https://www.openmp.org/wp-content/

uploads/OpenMP-API-Specification-5-2.pdf.

[148] T. J. Park, K. J. Han, M. Kumar, and S. Narayanan. Auto-tuning spectral
clustering for speaker diarization using normalized maximum eigengap. IEEE
Signal Processing Letters, 27:381–385, 2019.

[149] C. Patil and I. Baidari. Estimating the optimal number of clusters k in a
dataset using data depth. Data Science and Engineering, 4(2):132–140,
2019.

[150] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[151] D. Pelleg, A. W. Moore, et al. X-means: Extending k-means with efficient
estimation of the number of clusters. In Icml, volume 1, pages 727–734,
2000.

172

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/curand/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/thrust/index.html
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf


[152] X. Peng, L. Zhang, and Z. Yi. Scalable sparse subspace clustering. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 430–437, 2013.

[153] P. Perona and W. Freeman. A factorization approach to grouping. In Euro-
pean Conference on Computer Vision, pages 655–670. Springer, 1998.

[154] D. T. Pham, S. S. Dimov, and C. D. Nguyen. Selection of k in k-means
clustering. Proceedings of the Institution of Mechanical Engineers, Part C:
Journal of Mechanical Engineering Science, 219(1):103–119, 2005.

[155] B. Philippe and S. Yousef. Calcul des valeurs propres. 2008.

[156] A. Pothen, H. D. Simon, and K.-P. Liou. Partitioning sparse matrices with
eigenvectors of graphs. SIAM journal on matrix analysis and applications,
11(3):430–452, 1990.

[157] J. Qin, W. Wang, C. Xiao, Y. Zhang, and Y. Wang. High-dimensional
similarity query processing for data science. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages
4062–4063, 2021.

[158] P. Ram and K. Sinha. Revisiting kd-tree for nearest neighbor search. In
Proceedings of the 25th acm sigkdd international conference on knowledge
discovery & data mining, pages 1378–1388, 2019.

[159] W. M. Rand. Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical association, 66(336):846–850, 1971.

[160] C. K. Reddy and B. Vinzamuri. A survey of partitional and hierarchical
clustering algorithms. Data clustering: Algorithms and applications, 87,
2013.

[161] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz. Internal versus
external cluster validation indexes. International Journal of computers and
communications, 5(1):27–34, 2011.

[162] A. Rodriguez and A. Laio. Clustering by fast search and find of density
peaks. science, 344(6191):1492–1496, 2014.

[163] A. Rosenberg and J. Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Proceedings of the 2007 joint confer-
ence on empirical methods in natural language processing and computational
natural language learning (EMNLP-CoNLL), pages 410–420, 2007.

[164] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and valida-
tion of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

173



[165] K. Rupp, P. Tillet, F. Rudolf, J. Weinbub, A. Morhammer, T. Grasser,
A. Jungel, and S. Selberherr. ViennaCL—linear algebra library for multi-
and many-core architectures. SIAM Journal on Scientific Computing,
38(5):S412–S439, 2016.

[166] Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM, 2011.

[167] T. Sakai and A. Imiya. Fast spectral clustering with random projection and
sampling. In International Workshop on Machine Learning and Data Mining
in Pattern Recognition, pages 372–384. Springer, 2009.

[168] A. Saxena, M. Prasad, A. Gupta, N. Bharill, O. P. Patel, A. Tiwari, M. J. Er,
W. Ding, and C.-T. Lin. A review of clustering techniques and developments.
Neurocomputing, 267:664–681, 2017.

[169] S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27–64,
2007.

[170] E. Schubert, S. Hess, and K. Morik. The relationship of DBSCAN to matrix
factorization and spectral clustering. In LWDA, 2018.

[171] G. L. Scott and H. C. Longuet-Higgins. Feature grouping by ‘relocalisation’
of eigenvectors of the proximity matrix. In BMVC, pages 1–6. Citeseer, 1990.

[172] G. Sheikholeslami, S. Chatterjee, and A. Zhang. WaveCluster: A multi-
resolution clustering approach for very large spatial databases. In VLDB,
volume 98, pages 428–439, 1998.

[173] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

[174] H. Shinnou and M. Sasaki. Spectral clustering for a large data set by re-
ducing the similarity matrix size. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation (LREC’08), 2008.

[175] P. H. Sneath and R. R. Sokal. Numerical taxonomy. 1973.

[176] M. Steinbach, G. Karypis, and V. Kumar. A comparison of document clus-
tering techniques. 2000.

[177] H. Steinhaus et al. Sur la division des corps matériels en parties. Bull. Acad.
Polon. Sci, 1(804):801, 1956.

[178] A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework
for combining multiple partitions. Journal of machine learning research,
3(Dec):583–617, 2002.

174



[179] N. Sundaram and K. Keutzer. Long term video segmentation through pixel
level spectral clustering on GPUs. In IEEE International Conference on Com-
puter Vision Workshops, ICCV 2011 Workshops, Barcelona, Spain, 2011.

[180] N. Sylvestre. Résumé de recherches sur le spectral clustering, 2021.

[181] R. D. Team. RAPIDS: Collection of Libraries for End to End GPU Data
Science, 2018. URL: https://rapids.ai.

[182] F. Tian, B. Gao, Q. Cui, E. Chen, and T.-Y. Liu. Learning deep repre-
sentations for graph clustering. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 28, 2014.

[183] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):411–423, 2001.

[184] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear alge-
bra for hybrid GPU accelerated manycore systems. Parallel Computing,
36(5&6):232–240, 2010.

[185] N. Tremblay and A. Loukas. Approximating spectral clustering via sampling:
a review. Sampling Techniques for Supervised or Unsupervised Tasks, pages
129–183, 2020.

[186] N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst. Compressive
spectral clustering. In International conference on machine learning, pages
1002–1011. PMLR, 2016.

[187] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic measures for
clusterings comparison: Variants, properties, normalization and correction
for chance. The Journal of Machine Learning Research, 11:2837–2854, 2010.

[188] U. von Luxburg. A tutorial on spectral clustering. Stat. Comput., 17(4),
2007.

[189] S. Wagner and D. Wagner. Comparing clusterings-an overview. 2007.

[190] M. Walesiak and A. Dudek. clusterSim: Searching for opti-
mal clustering procedure for a data set (version 0.49-2), January
2021. URL: https://cran.r-project.org/web/packages/

clusterSim/index.html.

[191] L. Waltman, N. J. Van Eck, and E. C. Noyons. A unified approach to
mapping and clustering of bibliometric networks. Journal of informetrics,
4(4):629–635, 2010.

175

https://rapids.ai
https://cran.r-project.org/web/packages/clusterSim/index.html
https://cran.r-project.org/web/packages/clusterSim/index.html


[192] L. Wang and M. Dong. Multi-level low-rank approximation-based spec-
tral clustering for image segmentation. Pattern Recognition Letters,
33(16):2206–2215, 2012.

[193] W. Wang, J. Yang, R. Muntz, et al. STING: A statistical information grid ap-
proach to spatial data mining. In Vldb, volume 97, pages 186–195. Citeseer,
1997.

[194] Y. Weiss. Segmentation using eigenvectors: a unifying view. In Proceedings
of the seventh IEEE international conference on computer vision, volume 2,
pages 975–982. IEEE, 1999.

[195] G. Wen. Robust self-tuning spectral clustering. Neurocomputing, 391:243–
248, 2020.

[196] L. Wu, P.-Y. Chen, I. E.-H. Yen, F. Xu, Y. Xia, and C. Aggarwal. Scalable
spectral clustering using random binning features. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 2506–2515, 2018.

[197] R. Wyrzykowski and F. M. Ciorba. Algorithmic and software development
advances for next-generation heterogeneous platforms, 2022.

[198] T. Xiang and S. Gong. Spectral clustering with eigenvector selection. Pattern
Recognit., 41(3):1012–1029, 2008.

[199] J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for cluster-
ing analysis. In International conference on machine learning, pages 478–487.
PMLR, 2016.

[200] T. Xiong, S. Wang, A. Mayers, and E. Monga. Dhcc: Divisive hierarchi-
cal clustering of categorical data. Data Mining and Knowledge Discovery,
24(1):103–135, 2012.

[201] D. Xu and Y. Tian. A comprehensive survey of clustering algorithms. Annals
of Data Science, 2(2):165–193, 2015.

[202] X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. A distribution-based clus-
tering algorithm for mining in large spatial databases. In Proceedings 14th
International Conference on Data Engineering, pages 324–331. IEEE, 1998.

[203] D. Yan, L. Huang, and M. I. Jordan. Fast approximate spectral clustering.
In Proceedings of the 15th ACM International Conference on Knowledge
Discovery and Data Mining, Paris, France, 2009, 2009.

[204] D. Yan, Y. Wang, J. Wang, G. Wu, and H. Wang. Fast communication-
efficient spectral clustering over distributed data. IEEE Transactions on Big
Data, 7(1):158–168, 2019.

176



[205] B. Yang, X. Fu, N. D. Sidiropoulos, and M. Hong. Towards k-means-friendly
spaces: Simultaneous deep learning and clustering. In international confer-
ence on machine learning, pages 3861–3870. PMLR, 2017.

[206] M.-S. Yang, C.-Y. Lai, and C.-Y. Lin. A robust EM clustering algorithm for
gaussian mixture models. Pattern Recognition, 45(11):3950–3961, 2012.

[207] X. Yang, C. Deng, F. Zheng, J. Yan, and W. Liu. Deep spectral clustering us-
ing dual autoencoder network. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4066–4075, 2019.

[208] T. Yu, W. Zhao, P. Liu, V. Janjic, X. Yan, S. Wang, H. Fu, G. Yang, and
J. Thomson. Large-scale automatic k-means clustering for heterogeneous
many-core supercomputer. IEEE Transactions on Parallel and Distributed
Systems, 31(5):997–1008, 2019.

[209] F. Yuan, Z.-H. Meng, H.-X. Zhang, and C.-R. Dong. A new algorithm to
get the initial centroids. In Proceedings of 2004 International Conference
on Machine Learning and Cybernetics (IEEE Cat. No. 04EX826), volume 2,
pages 1191–1193. IEEE, 2004.

[210] L. Zelnik-Manor and P. Perona. Self-tuning spectral clustering. In Advances
in Neural Information Processing Systems 17 (NIPS 2004), December 13-18,
2004, Vancouver, Canada, pages 1601–1608, 2004.

[211] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, and J. Cong. Energy-efficient
CNN implementation on a deeply pipelined FPGA cluster. In Proceedings
of the 2016 International Symposium on Low Power Electronics and Design,
pages 326–331, 2016.

[212] K. Zhang and J. T. Kwok. Clustered Nyström method for large scale manifold
learning and dimension reduction. IEEE Transactions on Neural Networks,
21(10):1576–1587, 2010.

[213] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an efficient data cluster-
ing method for very large databases. ACM sigmod record, 25(2):103–114,
1996.

[214] W. Zhao, S. Tan, and P. Li. Song: Approximate nearest neighbor search
on GPU. In 2020 IEEE 36th International Conference on Data Engineering
(ICDE), pages 1033–1044. IEEE, 2020.

[215] J. Zheng, W. Chen, Y. Chen, Y. Zhang, Y. Zhao, and W. Zheng. Paralleliza-
tion of spectral clustering algorithm on multi-core processors and GPGPU.
In 2008 13th Asia-Pacific Computer Systems Architecture Conference, pages
1–8. IEEE, 2008.

177



[216] Q. Zou, G. Lin, X. Jiang, X. Liu, and X. Zeng. Sequence clustering in
bioinformatics: an empirical study. Briefings in bioinformatics, 21(1):1–10,
2020.

[217] M. Zubair, A. Iqbal, A. Shil, E. Haque, M. Moshiul Hoque, and I. H. Sarker.
An efficient k-means clustering algorithm for analysing covid-19. In Interna-
tional Conference on Hybrid Intelligent Systems, pages 422–432. Springer,
2020.

178



Publications

International conferences

Guanlin He, Stéphane Vialle, and Marc Baboulin. Parallelization of the k-means
algorithm in a spectral clustering chain on CPU-GPU platforms. In Euro-Par 2020
: Parallel Processing Workshops, volume 12480, LNCS, pages 135-147, Warsaw,
Poland, 2021. Springer. ([76])

Guanlin He, Stéphane Vialle, Sylvestre Nicolas, and Marc Baboulin. Scalable algo-
rithms using sparse storage for parallel spectral clustering on GPU. In 18th Annual
IFIP International Conference on Network and Parallel Computing (IFIP NPC),
volume 13152, LNCS, Paris, France, 2021. Springer. ([78])

International journals
Guanlin He, Stéphane Vialle, and Marc Baboulin. Parallel and accurate k-means
algorithm on CPU-GPU architectures for spectral clustering. Concurrency and
Computation: Practice and Experience, page e6621, 2021. ([75])

In submission
Guanlin He, Stéphane Vialle, and Marc Baboulin. Scalable spectral clustering on
GPU. International Journal of Parallel Programming, 2022. ([77])

179


	List of Figures
	List of Tables
	List of Algorithms
	List of Code
	List of Symbols
	Introduction (English version)
	Introduction (French version)
	Related Works and Objectives
	Clustering
	Algorithms and taxonomy
	Evaluation

	k-means clustering
	Classical algorithm
	Better seeding with k-means++

	Spectral clustering
	Theoretical basis and algorithms
	Advantages
	Drawbacks and approaches for improvement

	Approximate spectral clustering
	Parallel spectral clustering
	Strengths and challenges of CPU vs. GPU
	GPU-accelerated spectral clustering

	Objectives

	Parallel and Accurate k-means Clustering
	Introduction
	Numerical accuracy issue
	Parallel and accurate k-means on the CPU
	Parallelization of the ComputeAssign step
	Parallelization of the Update step

	Parallel and accurate k-means on the GPU
	Global approach
	Parallelization of the ComputeAssign step
	Parallelization of the Update step

	Experimental results
	Testbed and compilation settings
	Experiments on a synthetic dataset
	Experiments on real-world datasets
	Comparison with others

	Summary

	Scalable Data Formats and Algorithms for Spectral Clustering
	Introduction
	Spectral clustering using dense data format
	Similarity matrix and Laplacian matrix construction
	Eigen-decomposition using cuSOLVER library
	Normalization and final k-means(++) clustering

	Construction of the similarity matrix in sparse format
	Sparsification and choice of a storage format
	Difficulties
	Algo CSR-1: straightforward CSR
	Algo CSR-2: Ellpack-to-CSR
	Algo CSR-3: chunkwise dense-to-CSR
	Comparison of the three algorithms

	Spectral graph partitioning using nvGRAPH
	Tuning of parameters
	Auto-tuning of the number of clusters
	Tuning of the parameters for similarity matrix construction
	Tuning of the parameters for eigensolvers and k-means

	Experimental results
	Experimental framework
	Datasets and parameter settings
	Performance of spectral clustering using dense data format
	Performance of CSR format similarity matrix construction
	Performance of nvGRAPH's LOBPCG-embedded algorithm
	Global performance of spectral clustering using CSR format

	Summary

	Parallel and Efficient Noise Filtering for Spectral Clustering
	Introduction
	Noise filtering based on nnz per row
	Noise filtering based on vertex degree
	Noise robust spectral clustering on GPU
	Experimental results
	Datasets and parameter settings
	Effect of noise filtering
	Time overhead of noise filtering

	Summary

	Large-scale Representative-based Spectral Clustering on CPU-GPU Platforms
	Introduction
	Extraction of representatives
	Using random sampling vs. k-means vs. k-means++
	Impact of the tolerance of k-means

	Representative-based spectral clustering on CPU-GPU platforms
	Different scenarios and adapted parallel processing chains
	Global experiments

	Summary

	Conclusion and Perspectives
	Appendix Benchmark datasets
	Appendix Testbed features
	Appendix GPU implementation for Algo CSR-1
	Appendix GPU implementation for Algo CSR-2
	Appendix GPU implementation for Algo CSR-3
	Appendix GPU implementation for noise filtering algorithm
	Appendix Parallel implementation for the seeding step of k-means++
	Bibliography
	Publications

