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et pour avoir accepté d’en être directeur. Je le remercie infiniment pour sa présence,

son soutien, ses nombreux conseils et l’encouragement qu’il m’a offert tout au long

de ce travail.

J’adresse ainsi mes plus sincères remerciements à Monsieur Ibrahima Diarrassouba,
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sa confiance en acceptant de co-encadrer cette thèse. Je voudrais le remercier pour
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et le temps conséquent qu’ils m’ont accordés. Je les remercie pour tout cela.

Ces remerciements seraient incomplets sans une mention particulière pour le groupe
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Abstract

In this thesis1, we study a variant of the Routing and Spectrum Assignment problem

(RSA), namely the Constrained-Routing and Spectrum Assignment (C-RSA). The

C-RSA problem is a key issue when dimensioning and managing a new generation

of optical networks, called spectrally flexible optical networks. The C-RSA can be

stated as follows. Given an undirected, loopless, and connected graph G, an optical

spectrum S of available contiguous frequency slots, and a multiset of traffic demands

K between pairs of origins and destinations, the C-RSA consists of assigning for each

traffic demand k ∈ K a path in G between its origin and destination, and an interval

of contiguous frequency slots in S so that some technological constraints are satis-

fied, and some linear objective function is optimized. First, we propose an integer

linear programming formulation for the C-RSA. We identify several families of valid

inequalities for the associated polytope. Some of these inequalities are obtained by

using the so-called conflict graphs. Moreover, we prove that these inequalities are

facet-defining for the associated polytope under some necessary and sufficient con-

ditions. In addition, we develop separation algorithms for these inequalities. Using

these results, we devise a Branch-and-Cut (B&C) algorithm for the problem, and

discuss experimental results. A second part of the sis is devoted to an extended

formulation for the C-RSA. A column generation algorithm is developed to solve its

linear relaxation. We prove that the related pricing problem is equivalent to the

so-called resource constrained shortest path problem, which is well known to be NP-

hard. For this, we propose a pseudo-polynomial time based dynamic programming

algorithm. Using this, we devise Branch-and-Price (B&P) and Branch-and-Cut-and-

Price (B&C&P) algorithms to solve the problem. An extensive experimental study

with comparisons between the different B&C, B&P, and B&C&P algorithms is also

presented.

Finally, we turn our attention to the Spectrum Assignment (SA) sub-problem. This

1This work was supported by the French National Research Agency grant ANR-17-CE25-0006,

FlexOptim Project.
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has been shown to be equivalent of wavelength assignment, interval coloring, and

dynamic storage allocation problems that are well known to be NP-hard. To the

best of our knowledge, a polyhedral approach to the SA problem has not been con-

sidered before, even to its equivalent problems. For this, first, we propose an integer

linear programming compact formulation and investigate the facial structure of the

associated polytope. Moreover, we identify several classes of valid inequalities for

the polytope and prove that these inequalities are facet-defining. We further discuss

the related separation problems. Using this, we devise a Branch-and-Cut (B&C)

algorithm for the SA problem, along with some computational results are presented.

Keywords: optical network, network design, integer programming, polyhedron,

facet, separation, branch-and-cut, branch-and-price, branch-and-cut-and-price, dy-

namic programming.
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Long Résumé

Pour faire face à une croissance continue de la demande de trafic liée à l’augmentation

de la bande passante, les opérateurs de réseaux ont dû faire évoluer l’architecture

de leurs réseaux. En conséquence, une nouvelle génération de réseau de transport

optique flexible appelée ”Spectrally Flexible Optical Networks” (SFONs) a été in-

troduite en 2008 comme une technologie prometteuse en raison de sa flexibilité et

de son efficacité par rapport à l’ancienne technologie connue sous le nom ”Optical

Wavelength Division Multiplexing (WDM)”. Les SFONs ont suscité un intérêt in-

tense de la part des laboratoires de recherche, ainsi que dans l’industrie.

Nous étudions dans cette thèse l’un des problèmes clés lors de dimensionnement et

planification des SFONs, le problème du routage contraint et assignation spectrale,

connue sous le nom ” Constrained-Routing and Spectrum Assignment ” (CRSA)

selon la terminologie anglaise. Il se compose de deux parties: le routage con-

traint (sélectionner pour chaque demande en trafic un chemin optique physique

qui connecte sa source avec sa destination à travers le réseau sans dépasser une

longueur maximale de chemin (en km) fixée pour chaque demande en trafic), et

l’assignation d’un spectre (assigner à chaque demande en trafic un seul intervalle de

”slot” consécutifs (contrainte de contigüıté) au long de son chemin du routage de

sorte que le même intervalle de slots consécutifs doit être utilisé sur tous les liens qui

appartiennent à son chemin optique physique (contrainte de continuité), et les in-

tervalles de slots consécutifs alloués par un ensemble de demandes dont les chemins

ne sont pas des liens disjoints dans le réseau ne peuvent pas partager aucun slot

sur les liens partagés (contrainte de non-chevauchement), tout en optimisant une ou

plusieurs fonctions objectives linéaires. Le problème CRSA est bien connu comme

un problème NP-difficile et très difficile en pratique aussi que de nombreuses études

de recherche ont été menées dans ce contexte depuis sa première apparition en 2010.

Certains des algorithmes de résolution proposés dans la littérature sont basés sur des

formulations mathématiques utilisant la programmation linéaire (mixte) en nombres

entiers qui n’ont pas pu résoudre des instances de grande taille, ainsi que des heuris-
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tiques et métaheuristiques qui ne peuvent pas garantir l’optimalité de solutions. Il

a été jugé approprié de proposer des nouveaux modèles mathématiques plus souples

et efficaces en se basant sur la programmation linéaire en nombres entiers, de con-

cevoir et de développer des algorithmes exacts qui pourraient offrir des améliorations

prometteuses par rapport aux méthodes existantes. À notre connaissance, l’étude

polyédrale n’a pas encore fait l’objet de recherches récentes pour ce problème.

Nous fournissons donc une analyse théorique approfondie et concevons des algo-

rithmes exacts de type coupes, branchements et génération de colonnes pour résoudre

le problème CRSA en considérant des réseaux de taille réaliste. Pour ce faire, notre

contribution consiste à introduire un programme linéaire en nombres entiers basée

sur des coupes, où le nombre de variables n’augmente que de manière polynomiale

avec la taille de l’instance traitée. En outre, nous étudions la structure polyédrale

du polyèdre associé, et dérivons plusieurs classes d’inégalités valides. Nous donnons

quelques conditions nécessaires et suffisantes pour que certaines inégalités valides

soient des facettes pour le polyèdre associé. Nous élaborons ensuite des procédures

de séparation pour ces inégalités valides. Ces inégalités sont ensuite utilisées dans

la relaxation linéaire afin d’obtenir des bornes duales plus serrées. En se basant sur

ça, nous développons un algorithme de coupes et branchements pour le problème

CRSA.

D’autre part, nous avons proposé une nouvelle formulation étendue basée sur des

chemins, où les variables sont associées à tous les chemins possibles pour chaque

demande en trafic induisant donc une explosion de nombre de variables qui croissent

de manière exponentielle et en parallèle avec la croissance de la taille de l’instance

traitée. Nous développons également un algorithme de génération de colonnes pour

la résolution de sa relaxation linéaire. Les inégalités valides de la formulation de

coupes restent aussi valides pour le polyèdre associé à cette formulation étendue.

Nous développons ensuite un algorithme exact qui combine un algorithme de coupes

et branchements avec un algorithme de génération de colonnes pour résoudre le

problème CRSA.

D’autre part, vu la complexité du problème, le problème CRSA peut être décomposé

en deux sous-problèmes de telle sorte que le routage contraint précède l’assignation

du spectre (CR+SA). Nous analysons la structure polyédrale du sous-problème

d’assignation du spectre (SA) lorsque le routage est déjà établi. Tout d’abord, nous

proposons une formulation compacte pour le problème SA. Nous étudions ensuite

la structure du polyèdre associé. Nous définissons quelques classes supplémentaires
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d’inégalités valides et introduire quelques inégalités pour bien gérer la symétrie afin

de supprimer les solutions symétriques obtenues lors de la résolution du problème.

Nous donnons également quelques conditions nécessaires et suffisantes pour que cer-

taines inégalités valides définissent des facettes pour le polyèdre. Des procédures

de séparation sont ensuite proposées pour certaines de ces inégalités valides et qui

seront utilisées par la suite pour obtenir des bornes plus étroites dans la relaxation

linéaire. Nous élaborons ensuite un algorithme de coupes et branchements pour le

sous problème SA.

A la fin de chaque étape, nous examinons plus en profondeur l’efficacité et le com-

portement de nos algorithmes, et augmentons leurs efficacités grâce à plusieurs

améliorations basant sur des heuristiques primales et aussi quelques techniques

de branchement qui pourraient offrir une promesse d’amélioration par rapport aux

méthodes existantes compte tenu des réseaux de taille réaliste de SndLib, et d’autres

de taille réelle. Nous menons aussi une étude comparative d’efficacité entre les

différents algorithmes proposés dans cette thèse.

Mots clés : réseaux optiques flexibles, polytope, inégalité valide, facette, sepa-

ration, algorithme de coupes et branchements, algorithme de génération de colonnes

et branchements.
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Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month

by 2022, up from 194.4 Exabytes per month in 2020 [23]. Optical transport networks

are then facing a serious challenge related to continuous growth in bandwidth ca-

pacity due to the growth of global communication services and networking: mobile

internet network (e.g., 5th generation mobile network), cloud computing (e.g., data

centers), Full High-definition (HD) interactive video (e.g., TV channel, social net-

works) [19], etc... as shown in Figure 1. To sustain the network operators face this

trend of increase in bandwidth, a new generation of optical transport network archi-

tecture called Spectrally Flexible Optical Networks (SFONs) (called also FlexGrid

Optical Networks) has been introduced as promising technology because of their flex-

ibility, scalability, efficiency, reliability, and survivability [17][19] compared with the

traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[92][93]. In

SFONs the optical spectrum is divided into small spectral units, called frequency

slots [102]. They have the same frequency of 12.5 GHz where WDM uses 50 GHz

[108] as recommended by ITU-T [2]. This can be seen as an improvement in resource

utilization.

The concept of slots was proposed initially by Masahiko Jinno et al. in 2008 [57],

and later explored by the same authors in 2010 [113]. We refer the reader to [63] for

more information about the architectures, technologies, and control of SFONs.

The Routing and Spectrum Assignment (RSA) problem plays a primary role when

dimensioning and designing of SFONs which is the main task for the development

of this next generation of optical networks. It consists of assigning for each traffic

demand, a physical optical path, and an interval of contiguous slots (called also

channels) while optimizing some linear objective(s) and satisfying the following con-

straints [50]:

a) spectrum contiguity : an interval of contiguous slots should be allocated to each

demand k with a width equal to the number of slots requested by demand k;
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Figure 1: Historical Evolution of Optical Transport Networks.

b) spectrum continuity : the interval of contiguous slots allocated to each traffic

demand stills the same along the chosen path;

c) non-overlapping spectrum: the intervals of contiguous slots of demands whose

paths are not edge-disjoints in the network cannot share any slot over the

shared edges.

Numerous research studies have been conducted on the RSA problem since its first

appearance. The RSA is known to be NP-hard [107][109], and more complex than

the historical Routing and Wavelength Assignment (RWA) problem [53]. Various

(mixed) integer linear programming (ILP) formulations and algorithms have been

proposed to solve it. A detailed survey of spectrum management techniques for

SFONs is presented in [109] where the authors classified variants of the RSA prob-

lem into: offline RSA which has been initiated in [83], and online or dynamic RSA

which has been initiated in [114] and recently developed in [78][119]. Numerous

aspects are investigated in the tutorial [16]. This work focuses on the offline RSA

problem. There exist two classes of ILP formulations used to solve the RSA problem,

called edge-path and edge-node formulations. The ILP edge-path formulation is ma-

jorly used in the literature where variables are associated with all possible physical

optical paths inducing an explosion of a number of variables and constraints which

grow exponentially and in parallel with the growth of the instance size: number of
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demands, the total number of slots, and topology size: number of links and nodes

[50]. We observe that several papers which use the edge-path formulation as an ILP

formulation to solve the RSA problem, use a set of precomputed-paths without guar-

anty of optimality e.g. in [22], [83], [84], [85], [112], [121], [100]. On the other hand,

column generation techniques have been used by Klinkowski et al. [98], Jaumard et

al. [56], and recently by Enoch [34] to solve the relaxation of the RSA taking into

account all the possible paths for each traffic demand. To improve the LP bounds

of the RSA relaxation, Klinkowsky et al. proposed a class of valid inequalities in-

duced by cliques separable using a branch-and-bound algorithm [87]. On the other

hand, Klinkowski et al. [88] propose a branch-and-cut-and-price method based on

an edge-path formulation for the RSA problem. Recently, Fayez et al. [37], and

Xuan et al. [116], proposed a decomposition approach to solve the RSA separately

(i.e., R+SA) based on a recursive algorithm and an ILP edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-

node formulation has been introduced as an alternative for it. It holds a polynomial

number of variables and constraints that grow only polynomially with the size of

the instance. We found just a few works in the literature that use the edge-node

formulation to solve the RSA problem e.g., [13], [112], [121]. Bertero et al. [10]

present a comparative study between several edge-node formulations and introduce

new ILP ones.

On the other hand, and due to the NP-hardness of the C-RSA problem, several

heuristics [30],[71],[102], and recently in [55], greedy algorithms [65], metaheuristics

as tabu search [46], simulated annealing [88], genetic algorithms [43], [52], [53], [29],

ant colony algorithms [60], and a hybrid meta-heuristic approach [97], have been used

to approach large scale instances of the RSA problem. Furthermore, recent works

start using artificial intelligence [96], see for example [61][62], and deep-learning [18],

and machine-learning [101][120][117][48] to get more perefermonce. Selvakumar et

al. give a survey [106] in which they summarise the most contributions done for the

RSA problem before 2019.

In this thesis, we are interested in the resolution of a complex variant of the RSA

problem, called the Constrained-Routing and Spectrum Assignment (C-RSA) prob-

lem. Here we suppose that the network should also satisfy the transmission-reach

constraint for each traffic demand according to the actual service requirements. To

the best of our knowledge a few related works on the RSA, take into account this

additional constraint so that the length of the chosen path for each traffic demand
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should not exceed a certain length (in kms). Recently, Hadhbi et al. [50][51] intro-

duced a novel tractable ILP based on the cut formulation for the C-RSA problem

with a polynomial number of variables and an exponential number of constraints

that are separable in polynomial time using network flow algorithms. Computa-

tional results show that their cut formulation solves larger instances compared with

those of Velasco et al. [112] and Cai et al. [13]. It has also been used as a basic

formulation in the study of Colares et al. [24], and also by Chouman et al. [20][21]

to show the impact of several objective functions on the optical networks state. Note

that Velasco et al. [112], Cai et al. [13], and Bertero et al. [10], did not take into

account the transmission-reach constraint.

However, so far the exact algorithms proposed in the literature could not solve large-

scale instances. We believe that a cutting-plane-based approach could be powerful

for the problem. To the best of our knowledge, such an approach has not been

yet considered except the works done by Bianchetti et al. [11] for the RSA prob-

lem. For this, the main aim of this work is to investigate thoroughly theoretical

properties of the C-RSA problem. To this end, we aim at providing a deep polyhe-

dral analysis of the C-RSA problem, and based on this, devise branch-and-cut and

branch-and-cut-and-price algorithms for solving large-scale instances of the problem.

So we will introduce a new ILP formulation called cut formulation for the C-RSA

problem which can be seen as an improved formulation for the one introduced by

Hadhbi et al. [50][51]. We investigate the facial structure of the associated poly-

tope. We further identify several classes of valid inequalities to obtain tighter LP

bounds. Some of these inequalities are obtained by using conflict graphs related to

the problem. We then devise separation procedures and give sufficient conditions

under which these inequalities are facet defining. Using this, we develop a Branch-

and-Cut (B&C) algorithm, along with computational results are presented using

large-scale instances. On the other hand, we introduce an extended ILP formula-

tion, called path formulation. A column generation algorithm is proposed to solve

its linear relaxation. We further adapt the valid inequalities proposed for the cut

formulation to obtain also tighter bounds for the path formulation. Based on this,

we develop a Branch-and-Cut-and-Price (B&C&P) algorithm to solve the problem.

Computational results are presented using this algorithm. We finally provide a com-

parative study between the B&C and B&C&P algorithms is presented by using two

types of instances: random and realistic ones. The results show that the B&C&P

algorithm is more efficient. Furthermore, we have studied the influence of the valid

inequalities. The results show that some of them, in particular, clique and cover
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inequalities are quite efficient. Several enhancements are further investigated and

used to speed up and increase the efficiency of our approaches. They are based on

a primal heuristic used to produce feasible solutions from fractional solutions given

at each node of the branching tree. It allows obtaining good primal bounds and

prune some uninteresting nodes of the branching tree. We have also introduced

some symmetry-breaking inequalities to manage the equivalent sub-problems in the

branching tree.

Several concepts are exploited throughout this dissertation. We start this disserta-

tion by presenting the basic notions of combinatorial optimization, complexity, graph

theory, and further give some notations that are used through this manuscript.

In Chapter 2, we present the C-RSA problem. We introduce an integer linear pro-

gramming formulation namely cut formulation. We then carry out an investigation

of the related polytope, the convex hull of all its solutions. Moreover, we describe

the classes of valid inequalities and study their facial structure. In particular, we

introduce symmetry-breaking inequalities.

In Chapter 3, we discuss the separation procedures for the valid inequalities and

describe a Branch-and-Cut algorithm. The comparative study is presented in this

chapter, it shows the impact of the additional valid inequalities using several mixed-

integer linear program solvers.

In Chapter 4, we give the extended ILP formulation. We present the column gen-

eration algorithm to solve its linear relaxation, and the Branch-and-Cut-and-Price

(B&C&P) algorithm, along with some computational results are presented. In this

chapter, we also provide the comparative analysis of performance between the dif-

ferent algorithms.

Chapter 5 is devoted to the Spectrum Assignment (SA) sub-problem. First, we pro-

pose an integer linear programming compact formulation, and investigate the facial

structure of the associated polytope. Fuerthremore, we describe several valid in-

equalities, some of them come from those that are already proposed for the C-RSA.

We also give sufficient conditions under which these inequalities are facet defining.

Based on these results, we develop a B&C algorithm to solve the problem. Fur-

thermore, we describe symmetry-breaking inequalities for the SA, and provide some

lower bounds. Finally, we present an extensive experimental study while showing

the impact of the valid inequalities and symmetry-breaking inequalities on the ef-

fectiveness of the B&C algorithm.
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Chapter 1

Preliminary Notions

In this chapter, we present some basic notions of combinatorial optimization, and

polyhedra approaches.

1.1 Combinatorial Optimization

Operations research is a discipline related to computer science and applied math-

ematics. In this dissertation, we are interested in one of its branches, called com-

binatorial optimization. The optimization problems related to combinatorial opti-

mization can be formulated as follows. Let E = {e1, ..., en} be a finite set, namely

basic set. Suppose that each element ei, it is associated a weight c(ei) ∈ R with

i ∈ {1, ..., n}. Let F denote a family of subsets of E. The problem aims to iden-

tify one subset F from F with the smallest or largest weight given by the sum∑
ei∈F c(ei). Such a problem is called combinatorial optimization problem where

the set F represents the set of all feasible solutions of the problem. In general, the

set F contains an exponential number of solutions. For this, it’s known to be very

hard to solve combinatorial optimization problems by enumerating all its feasible

solutions. To deal with this, various approaches have been developed to approach

combinatorial optimization problems. They use different tools, complexity theory,

combinatorial optimization, graph theory, linear and non-linear programming, inte-

ger programming, mixed integer programming. In the next section, we discuss some

concepts from complexity theory.

1.2 Complexity Theory

Several researchers in computer science and mathematics are interested in working

on the classification of problems into easy or hard problems, and further on the
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algorithmic complexity whose objective is to find the most efficient algorithm. This

has been initiated by Cook [25], Edmonds [33] and Karp [81].

Theory of complexity [Garey and Johnson, 1979] [41] classifies problems into two

essential classes: the class P (polynomial time) class, and the class NP (Non-

deterministic polynomial time). In addition, the problems of the NP class are shared

into two subclasses: the class of NP-complete problems, and the class of NP-hard

problems.

Before defining each class, we first give a general definition of a problem. In gen-

eral, a problem is a question having parameters given in input such that an answer

is needed for it, called solution. A problem is described by giving: a general de-

scription of all its parameters, and certain constraints. An instance of a problem is

obtained by specifying the value of each input parameter of the problem. For this,

one can propose an algorithm to solve the problem. An algorithm for solving a given

problem is a procedure that is decomposable into a sequence of finite operations. It

allows giving a solution for each instance of the problem. In general, the complex-

ity of an algorithm depends on the size of the problem that reflects the number of

parameters needed to describe an instance. The algorithm is said to be polynomial

if the maximum number of its operations necessary to solve an instance of size n is

bounded by a polynomial function f in n (i.e., f(n)). This means that there exists

a scalar c such that the number of its operations necessary is equal to c.f(n). As a

result, the notation big O is appeared to express the complexity of an algorithm.

There exists two types of problems: optimization problems and decision problems.

In optimization problems, we want to minimize (or maximize) a function while satis-

fying a set of constraints. On the other hand, in the a decision problem, the solution

is binary like yes / no or 0/1.

An easy problem that can be solved by a polynomial algorithm with respect to its

size, is called a problem of class P. A problem is NP if one can verify in polynomial

time that a given solution is feasible. A problem is called NP-complete if it belongs

NP, and every other problem in NP can be reduced to it in polynomial time [41].

The Satisfiability Problem (SAT) is the first problem that has been shown to be

NP-complete. This was proved in 1971 by Stephen Cook [25] [42].

NP-hard problems are difficult as the NP-complete ones. If a decision problem asso-

ciated with a optimization problem P is NP-complete then P is said to be NP-hard

[42]. Furthermore, note that every problem of the class P is in NP (P ⊆ NP ).

However, the converse is still open. It constitutes a well-known mathematical prob-

lem which is part of the 7 problems of the millennium prize. The question P = NP?
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Figure 1.1: Relation between P, NP, NP-complete and NP-hard problems.

is one of the most important questions that has not yet been solved. The answer

to this question by ”yes” is to prove that all the problems of the NP class are in

the P class. Cook has proved in [Cook, 1971] that all the problems of the NP class

are reducible to the SAT problem, which means that if someone finds a polynomial

algorithm for this problem, the question P = NP? is then solved ![42], i.e. we will

be able to solve all NP-complete problems in polynomial time.

1.3 Polyhedral Approach and Branch-and-Cut Algorithm

1.3.1 Elements of the Polyhedral Theory

In this section, we will introduce some definitions and properties of polyhedraltheory.

Schrijver [104], Nemhauser and Wolsey [72], Wolsey [115] and Schrijver [105] are the

most useful references [118].

Let x be a vector in Rn, with n a positive integer. x is said to be a linear combination

of vectors x1, x2, .., xk ∈ Rn if there exist k scaler λ1, λ2.., λk such that x =
∑k

ı=1 λixi.

Furthermore, if
∑k

ı=1 λi = 1, then x is said to be affine combination of x1, x2, .., xk.

We say that x is convex combination of x1, x2, .., xk if x is affine combination of

x1, x2, .., xk and λi ∈ R+. The vectors x1, x2, .., xk are affinely independent if λi = 0

for each i ∈ {1, ..., k} , is the unique solution of the system

k∑
ı=1

λixi = 0,

k∑
ı=1

λi = 1,

Given a set S = {x1, ..., xk}, the convex hull denoted by conv(S), is the set of all

the convex combinations of solutions of S that is

conv(S) = {x ∈ Rn|
∑k

i=1 λixi, ∀λi ≥ 0 and
∑

i λi = 1}.
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This definition ensures that S ⊂ conv(S).

Figure 1.2: conv(S) vs S.

A polyhedron P is the set of solutions of a linear system Ax ≤ b. That is P = {x ∈
Rn|Ax ≤ b}. A bounded polyhedron is called a polytope.

The dimension of polyhedron P is one less than the maximum number of solution

in P that are affinely independent.

An inequality ax ≤ α is valid for a polyhedron P if and only if for every solution

x̄ ∈ P , ax̄ ≤ α. It is said to be violated by a solution x̄ if ax̄ > α. A set F ⊂ P is

called face if there exists a valid inequality ax ≤ α for the polyhedron P such that

F = {x ∈ P, ax = α}.

We say that the valid inequality ax ≤ α supports a face F if F ̸= ∅.

A face F is said to be proper face if F ̸= ∅ and F ̸= P . If F is a proper face of P ,

and dim(F ) = dim(P )− 1, then F is called a facet.

A face F of P is a facet if there doesn’t exist any proper face F ′ of P containing F .

If P is full-dimensional polyhedron, then ax ≤ α defines a facet P if and only if F

is a proper face and there exists a facet defining inequalitybx ≤ β and a scalarρ ̸= 0

such that F ⊂ {x ∈ P |bx = β} and b = ρa. If P is not full dimensional polyhedron,

then ax ≤ α defines a facet of polyhedron P if and only if F is a proper face and

there exists a facet of P induced by an inequality bx ≤ β, a scalar ρ ̸= 0 and a vector

λ such that F ⊂ {x ∈ P |bx = β} and b = ρa+ λA=.

A solution x ∈ P is an extreme point of P if x is a face of P of dimension 0.

Furthermore, it cannot be written as a convex combination of other points in P .

Figure 1.3 illustrates the polyhedron P , valid inequality, face, facet and extreme

point.
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Figure 1.3: Geometric interpretation for the polyhedron P , valid inequality, face,

facet and extreme point.

1.3.2 Cutting Plane Method

Let P be a combinatorial optimization problem and S the set of its feasible solutions.

The problem P can be written as min{cx|x ∈ S}, where c denotes the weight vector
associated with the variables x of the problem. Consider the convex hull conv(S) of
the feasible solutions of P. The problem P is then equivalent to the linear program

min{cx|x ∈ conv(S)}.
The polyhedral approach, introduced by Edmonds [33] consists in describing the

polyhedron conv(S) by a set of linear inequalities. This reduces the problem P to

solving a linear program. However, a complete description of the polyhedron may

contain an exponential number of linear inequalities. The optimization problem on

the polyhedron conv(S) can be solved having all its linear inequalities. However,

one can have a partial characterization of the polyhedron conv(S). This may be

sufficient to solve the problem in polynomial time using the so-called cutting-plane

method. This method is based on the so-called separation problem defined as follows.

Let C be a class of valid inequalities for the polyhedron conv(S). The separation

problem associated with C consists in deciding whether a given solution x satisfies

all inequalities of C, and if not to find an inequality of C violated by x. Grötschel,

Losvàsz, and Schrijver [47] have shown that an optimization problem over C can

be solved in polynomial time if and only if the separation problem associated with

C can be solved in polynomial time. This may permit to solve the optimization
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problem in polynomial time as a sequence of linear programs. Each program is

obtained by adding new valid inequalities obtained by solving the related separation

problem. For this, we start by solving a linear program containing a small set of

valid inequalities. Let us denote by x the obtained optimal solution. We solve the

separation problem for C. If x satisfies all the constraints of C, then x i optimal.

Otherwise, at least one constraint violated by x is identified. These should be added

to the current linear program. This process is repeated until an optimal solution is

found.

1.3.3 Branch-and-Cut Algorithm

The cutting-plane method provides only an optimal solution for the linear relaxation

of the problem. This solution may not be integer which means that it is not feasible

for the original problem. In this case, we pass to the branching step which consists

in dividing the problem into two Sub-problems by choosing a fractional variable xi

and setting xi to xi = 1 and xi = 0. We then apply the cutting-plane method

for each of the sub-problem. We continue this process until an optimal solution is

obtained for the problem. This method is known as Branch-and-Cut method since

it combines a branching method with a cutting plane method at each node of the

tree.

1.4 Column Generation and Branch-and-Cut-and-Price

Algorithms

Sometimes mathematical formulations of a problem contain a huge number of vari-

ables that can be exponential. These are known as ”extended formulation”. To

solve such problems, we use column generation based algorithm. We begin the op-

timization with a restricted linear program containning a feasible basis. At each

iteration, the column generation algorithm checks if there exists a missing variable

having a negative reduced cost, and add it to the current restricted linear program.

This is the ”Pricing Problem”. In fact, this consists in determining variables with

negative reduced cost. This procedure is repeated until no new variable with neg-

ative reduced cost is found. The final solution is optimal for the linear relaxation

of the underlaying problem. Furthermore, if it is integral, then it is optimal for

the problem. If not, we create two subproblems called children by branching on

some fractional variables (variable branching rule) or on some constraints using the

Ryan & Foster branching rule [99] (constraint branching rule). Such an algorithm
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is called a Branch-and-Price. A Branch-and-Cut-and-Price algorithm combines a

Branch-and-Price algorithm with a cutting-plane procedure.

1.5 Graph Theory

In this section, we introduce some elementary definitions in graph theory that are

very useful throughout the dessertation, Diestel [28], and Golumbic [45] are the most

useful references on graph theory [118].

A graph is a pair G = (V,E), where V is a finite set of nodes (called also vertices)

linked by a set of edges (called also links) E which can be oriented or not.

A path p in graph G = (V,E) from node a to node b, is a sequence of nodes such

that for each pair of successive nodes vi,vi+1, there exist an edge e (vi, vi+1) ∈ E.

For any subset of nodes X ⊆ V with X ̸= ∅, let δ(X) denote the set of edges having

one extremity in X and the other one in X̄ = V \ X which is called a cut. When

X is a singleton (i.e., X = {v}), we use δ(v) instead of δ({v}) to denote the set of

edges incidents with a node v ∈ V . The cardinality of a set K is denoted by |K|.
A vertex coloring of G is an assignment of colors to the vertices of G so that two

adjacent vertices v and v′ cannot get the same color. Same rule for edges, an edge

coloring of G is an assignment of colors to the edges of G so that two adjacent edges

e and e′ cannot get the same color. We say that graph G is t-colorable if no more

than t different colors assigned in G.

G′ is called a weighted graph if each node in G′ is associated with weight.

An interval t-coloring of a weighted graph G′ = (V,E,w) is a function c : V− >

{1, 2, ..., t} such that c(v)+w(v)−1 ≤ t. We assign an interval [c(v), ..., c(v)+w(v)−1]
of consecutive integers satisfying w(v) of each vertex v that the intervals of colors

assigned to two adjacent vertices do not overlap. If interval t-coloring is feasible for

a graph G′ then G′ is said to be interval t-colorable [107]. The interval chromatic

number of G′, denoted by χ is the least integer number t such that G′ has a interval

t-coloring [107].

1.6 Flexible Optical Networks

The two last decades have seen a big developement in telecommunication networks

with a continuous growth in demands. To face this trend of increase in bandwidth,

network operators have had to make their network architectures and management

evolve. Two significant changes appeared recently in the optical network architec-
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ture. First the bandwidth-greedy FixedGrid architecture for Optical Wavelength Di-

vision Multiplexing (WDM) (called also wavelength routed networks) [92][93] based

on fixed spectrum grid is being replaced by the FlexGrid architecture that is capa-

ble of supporting variable data rate (in Gb/s) through flexible spectrum. In this

concept, the optical spectrum is divided into slots having the same frequency of

12.5 GHz (where FixedGrid networks use 50 GHz, the width of a wavelength) as

recommended by ITU-T [2]. See for example Figure 1.4 which shows a fixed-grid

with 4 wavelengths of 50 GHz to serve 4 demandes of two of 10 Gb/s, one of 40

Gb/s, one of 100 Gb/s. However, in the flex-grid we use just 9 slots of frequency

12.5 GHz to serve these demands.

Figure 1.4: FixedGrid Vs FlexGrid.

The concept of slot was proposed initially by Masahiko Jinno et al. [57], and later

explored and more developed by the same authors in 2010 [113]. In SFONs any

optical path can elastically span as many contiguous slots as needed. This technol-

ogy provides a more efficient use of the spectral domain than the traditional Fixed

Grid WDM. Furthermore, a new generation of transponders is becoming available

namely, bandwidth-variable transponders (BV-Ts) and bandwidth variable wave-

length cross-connects (BV-WXCs) [113]. These can manage data rates up to 400

Gb/s which cannot be accommodated by a 50 GHz wavelength, and restores the

signal which is necessary to re-amplify, re-shape and re-time the passive optical sig-

nal (which is called (3R) signal regeneration rule) when the transmission-reach of

signals is limited which represents the maximum length (in kms) for the routing of

each traffic demand.

The network operators have confronted several optimization problems, in particular

some variants of routing and resource allocation problems that arise when designing

or planning optical networks. The classical Routing and Wavelength Assignment

(RWA) problem is the key issue for design FixedGrid WDM networks. In this prob-

lem, we are given an optical network and a set of demands where each demand has an

origin and destination. The task is to find a path for each demand and a wavelength
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such that a single 50 GHz wavelength is assigned to each demand. It was extended

by Chlamtac et al. [15]. It is known to be a NP-hard problem [15]. It is equiva-

lent to the n-graph-coloring problem where the number n of the colors corresponds

to the number of wavelengths and finding the minimum number of wavelengths to

route all the traffic demands is equivalent to finding the chromatic number of the

conflict graph (where the demands are represented by the nodes and two nodes are

linked by an edge if the path of the associated demands share an edge) when the

paths are already established. It has been considered as a special case of the inte-

ger multicommodity flow (MCF) problem where some specific constraints [12] are

added and should be respected. Several models and algorithms have been proposed

to solve the RWA problem. However, in SFONs, RWA cannot handle the changes

from wavelength to contiguous slots. As a result, a new problem is appeared to

deal with this, called Routing and Spectrum Assignment (RSA) problem. It can be

stated as follows. Given an optical network G and a multiset of traffic demands K,

it aims at determining for each traffic demand k ∈ K a path and an interval of con-

tiguous slots while optimizing some linear objective(s) and satisfying the following

constraints [50]:

1. spectrum contiguity : an interval of contiguous slots should be allocated to each

demand k with width equals to the number of slots requested by demand k;

2. spectrum continuity : the interval of contiguous slots allocated to each traffic

demand stills the same along the chosen path;

3. non-overlapping spectrum: the intervals of contiguous slots of demands whose

paths are not edge-disjoints in the network cannot share any slot over the

shared-edge.

The RSA problem is harder than the RWA problem because of the continuity con-

straint that has not been taken into account when defining the RWA problem. In

our work, we focus on a variant of the RSA problem, called Constrained-Routing

and Spectrum Assignment Problem (C-RSA).
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Chapter 2

Cut Formulation and Polyhedra

for the C-RSA Problem

2.1 The Constrained-Routing and Spectrum Assignment

Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as fol-

lows. We consider an optical spectrum of s̄ ∈ Z+ available contiguous frequency

slots, denoted by S = {1, . . . , s̄}. A SFON topology can be represented by an undi-

rected, loopless, and connected graph G = (V,E), with V is the set of vertices

representing the optical nodes (data centers, users, stations,...), and E the set of

links representing optical-fibers. A length ℓe ∈ R+ (in kms), a cost ce ∈ R+, and

a set of s̄ of contiguous frequency slots are associated with each edge e. Let K be

a set of non-splittable traffic demands. Each demand k ∈ K has an origin node

ok ∈ V , a destination node dk ∈ V \{ok}, a slot-width wk ∈ Z+, and a transmission-

reach ℓ̄k ∈ R+ (in kms). The C-RSA consists in determining for each demand

k ∈ K, a (ok,dk)-path pk in G (non-splittable demands) such that
∑

e∈E(pk)
le ≤ l̄k

(tranmission-reach constraint), and an interval of contiguous frequency slots Sk ⊆ S
of width equal to wk (continuity and contiguity constraint) such that Sk∩Sk′ = ∅ for
each pair of demands k, k′ ∈ K (k ̸= k′) with E(pk) ∩ E(pk′) ̸= ∅ (non-overlapping
constraint). It aims at minimizing the total cost of the paths used for routing the

demands K (i.e.,
∑

k∈K
∑

e∈E(pk)
ce), where E(pk) denotes the set of edges in pk.

Fig. 2.1 provides a feasible solution for an instance of the C-RSA problem containing

4 demands routed in a graph G consisting of 7 nodes and 10 edges. Each edge e is

specified by a triplet [le, ce, s̄] with s̄ = 9.
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Figure 2.1: Set of established paths and spectrums in graph G (Fig. 2(a)) for the

set of demands {k1, k2, k3, k4} defined in Table 2(b).

2.2 Cut Formulation

Here we introduce an integer linear programming formulation for the C-RSA prob-

lem, called formulation. It can be seen as a reformulation of the one introduced by

Hadhbi et al. [50]. For k ∈ K and e ∈ E, let xke be a variable which takes 1 if

demand k goes through edge e and 0 if not, and for k ∈ K and s ∈ S, let zks be a

variable which takes 1 if slot s is the last slot allocated for the routing of demand

k and 0 if not. The contiguous slots s′ ∈ {s − wk + 1, ..., s} should be assigned to

demand k whenever zks = 1.

The C-RSA problem is equivalent to the following linear integer program
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min
∑
k∈K

∑
e∈E

cex
k
e , (2.1)

subject to ∑
e∈δ(X)

xke ≥ 1,∀k ∈ K,∀X ⊆ V , |X ∩ {ok, dk}| = 1, (2.2)

∑
e∈E

lex
k
e ≤ ℓ̄k, ∀k ∈ K, (2.3)

zks = 0, ∀k ∈ K,∀s ∈ {1, ..., wk − 1}, (2.4)

s̄∑
s=wk

zks ≥ 1, ∀k ∈ K, (2.5)

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 3,∀(e, k, k′, s) ∈ Qe,s, (2.6)

0 ≤ xke ≤ 1,∀k ∈ K,∀e ∈ E, (2.7)

0 ≤ zks ≤ 1,∀k ∈ K,∀s ∈ S, (2.8)

xke ∈ {0, 1},∀k ∈ K,∀e ∈ E, (2.9)

zks ∈ {0, 1},∀k ∈ K,∀s ∈ S. (2.10)

where Qe,s denotes the set of all the quadruples (e, k, k′, s) where e ∈ E, k ∈ K, k′ ∈
K, k ̸= k′ and s ∈ S.
Inequalities (2.2) ensure that there is an (ok, dk)-path between ok and dk for each

demand k, and guarantee that all the demands should be routed. They are called

cut inequalities. By optimizing the objective function (2.1), and given that the cost

of all edges are positive, this ensures that there is exactly one (ok, dk)-path between

ok and dk which will be selected as optimal path for demand k. Inequalities (2.3)

express the length limit on the routing paths which is called ”the transmission-

reach constraint”. Equations (2.4) express the fact that a demand k cannot use slot

s ≤ wk − 1 as the last-slot. The slots s ∈ {1, ..., wk − 1} are called forbidden last

slots for demand k. Inequalities (2.5) should normally be equalities ensuring that

exactly one slot s ∈ {wk, . . . , s̄} must be assigned to demand k as last-slot. Here we

relax this constraint. Inequalities (2.6) express the contiguity and non-overlapping

constraints. They capture the fact that every slot s over edge e can be assigned to

at most one demand k ∈ K. Inequalities (2.7)-(2.8) are the trivial inequalities, and

constraints (2.9)-(2.10) are the integrality constraints.

Note that the linear relaxation of the C-RSA can be solved in polynomial time given

that inequalities (2.2) can be separated in polynomial time using network flows.
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2.3 Associated Polytope

Let P(G,K,S) be the polytope, convex hull of the solutions of (2.1)-(2.10).

In this section, we discuss the facial structure of the polytope P(G,K,S). First,

we describe some structural properties. These will be used for determining the

dimension of P(G,K,S).
For each demand k and node v, one can compute a shortest path between each of

the pairs of nodes (ok, v), (v, dk). If the length of the (ok, dk)−paths formed by the

concatenation of the shortest paths (ok, v) and (v, dk) is greater that l̄k then node v

cannot be in a path routing demand k, and we then say that v is a forbidden node

for demand k. Let V k
0 denote the set of forbidden nodes for demand k ∈ K. Note

that using Dijkstra’s algorithm, one can identify in polynomial time the forbidden

nodes V k
0 for each demand k ∈ K. On the other hand and regarding the edges,

for each demand k and edge e = ij, one can compute a shortest path between each

of the pairs of nodes (ok, i), and (j, dk), and (ok, j), and (i, dk). If the length of

the (ok, dk)−path formed by e together with the shortest paths (ok, i) and (j, dk)

(resp. (ok, j) and (i, dk)) greater that l̄k then edge ij cannot be in a path routing

of demand k, and we then say that ij is a forbidden edge for demand k due to

the transmission-reach constraint. Let Ek
t denote the set of forbidden edges due to

the transmission-reach constraint for demand k ∈ K. Note that using Dijkstra’s

algorithm, one can identify in polynomial time the forbidden edges Ek
t for each

demand k ∈ K. Table 2.1 shows the set of forbidden edges Ek
t and forbidden nodes

V k
0 for each demand k in K Fig. 2.1(b).

k ok ⇒ dk wk ℓ̄k V k
0 Ek

t

1 a⇒ c 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
2 a⇒ d 1, 00 4 {g} {cg, dg, df}
3 b⇒ f 2 4 {e, d, g} {cg, dg, de, df, cd, ef}
4 b⇒ e 1, 00 4 {g} {cg, dg, df}

Table 2.1: Sets of V k
0 and Ek

0 of the example of Fig. 2.1(b).

Consider a subset of nodes W in V \ V k
0 with ok ∈W and dk ∈ V \W . Let f be an

edge in a cut δ(W ) such that all the edges e ∈ δ(W ) \ {f} are forbidden for demand

k. As a consequence, edge f is an essential edge for demand k. As the forbidden

edges, the essential edges can be determined in polynomial time using network flows.

Let Ek
1 denote the set of essential edges of demand k, and Ke denote the subset of
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demands in K having e as essential edge. Therefore,

xke = 1, for all k ∈ K and e ∈ Ek
1 . (2.11)

In addition to the forbidden edges thus obtained due to the transmission-reach con-

straints, there may exist edges that may be forbidden because of lack of resources

for demand k. This is the case when, for instance, the residual capacity of the edge

in question does not allow a demand to use this edge, i.e., wk > s̄ −
∑

k′∈Ke
wk′ .

Let Ek
c denote the set of forbidden edges for demand k, k ∈ K, due to the resource

constraints. Let Ek
0 = Ek

t ∪ Ek
c for k ∈ K. Hence,

xke = 0, for all k ∈ K and e ∈ Ek
0 . (2.12)

As a result of the pre-processing stage, a non-compatibility between the demands

may appear due to a lack of resources. For an edge e, two demands k and k′ with

e /∈ Ek
0 ∪ Ek

1 ∪ Ek′
0 ∪ Ek′

1 , are said to be non-compatible if the residual capacity

of edge e does not allow to route the two demands k, k′ together through e, i.e.,

wk +wk′ > s̄−
∑

k”∈Ke
wk”. Let K

e
c denote the set of pairs of demands (k, k′) in K

that are non-compatible for edge e.

On the other hand, a non-compatibility between the edges for a demand may appear

due to the transmission-reach constraint. Consider a demand k. Two edges e = ij /∈
Ek

0 ∩Ek
1 , e

′ = lm /∈ Ek
0 ∩Ek

1 are said non-compatible edges if the length of all (ok, dk)-

paths formed by e = ij and e′ = lm together are greater than l̄k. Note that we are

able to determine the non-compatible edges for each demand k in polynomial time

using shortest-path algorithms.

2.3.1 Dimension

We first describe some properties that are useful to determine the dimension of

P(G,K,S). First the following is easily seen to be true.

Proposition 2.3.1. The follows equation system (2.13) is of full rank
xke = 0, for all k ∈ K and e ∈ Ek

0 ,

xke = 1, for all k ∈ K and e ∈ Ek
1 ,

zks = 0, for all k ∈ K and s ∈ {1, ..., wk − 1}.

(2.13)

The rank of system (2.13) is given by

r =
∑
k∈K

(|Ek
0 |+ |Ek

1 |+ (wk − 1)).
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Let Q denote a matrix associated with the system (2.13) which contains r lines linear

independents.

A solution of the C-RSA problem is given by two sets Ek and Sk for each demand

k ∈ K where Ek is a set of edges used for the routing of demand k, and Sk is a set

of slots assigned to demand k. For the sake of presentaion, we will denote by Ek a

feasible path, and by Sk the last slots assigned to demand k.

Below are some assumptions that will be considered

a) graph G contains at least one feasible path between ok and dk, for all k ∈ K,

b) the number of slots s̄ is largely sufficient to route all the demands,

c) for each demand k ∈ K and e ∈ E \ (Ek
0 ∪Ek

1 ), there exists at least a feasible

route Ek between ok and dk such that
∑

e′∈Ek
ℓe′+ℓe ≤ l̄k, and for each e′ ∈ Ek,

the edges (e, e′) are compatible edges for demand k.

Let Si = (Ei, Si) be a solution of the C-RSA problem such that Ei = (Ei
1, E

i
2, ..., E

i
|K|−1, E

i
|K|)

and Si = (Si
1, S

i
2, ..., S

i
|K|−1, S

i
|K|), and let (xS , zS) be its incidence vector.

Note that when the routing of demands is trivial or already established, one can

find a feasible spectrum assignment Si in polynomial time using some heuristics

and greedy algorithm as the well-known First-Fit algorithm [2]. This will be used

throughout each proof of polyhedron dimension or facial structure of some valid in-

equalities such that the set of demandsK is considered as an ordered set of demands,

i.e., K = {k1, k2, ..., k|K|}.

Proposition 2.3.2. System (2.13) defines a minimal equation system for P(G,K,S).

Proof. Consider an equation µx + σz = λ of P(G,K,S). To prove that µx + σz

is a linear combination of equations system (2.13), it is sufficient to prove that

there exists γ = (γ1, γ2, γ3) ( with γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈

R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such
that (µ, σ) = γQ.

We will show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄}.

Consider a demand k in K and a slot s in {wk, ..., s̄}. Consider the solution S0 =

(E0, S0) given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E0
ki

be the set of edges

involved in a shortest path between oki and dki ,
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b) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I0i given by

I0i = [
⋂

kj∈D0
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄}]∩[{wki , ..., s−wk}∪{s+wki , ..., s̄}]

if E0
ki
∩ E0

k ̸= ∅ or I0i =
⋂

kj∈D0
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D0
i = {kj ∈ {k1, ..., ki−1} : E0

ki
∩ E0

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D0
i ,

• and {ski − wki + 1, ..., ski} ∩ {s − wk + 1, ..., s} = ∅ if E0
ki
∩ E0

k ̸= ∅ ( we
take into account the possibility of adding slot s in the set of last slots

S0
k assigned to demand k in solution S0).

We let S0
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S0 is feasible for the problem, and its incidence vector (xS
0
, zS

0
) belongs to P(G,K,S).

Let S1 = (E1, S1) be the solution obtained from S0 by adding slot s as last slot

to demand k. Solution S1 is feasible for the problem. The corresponding incidence

vector (xS
1
, zS

1
) belongs to P(G,K,S). Hence, solutions S0 and S0 satisfy equation

µx+ σz = λ. We then obtain that

µxS
0
+ σzS

0
= µxS

1
+ σzS

1
= µxS

0
+ σzS

0
+ σk

s .

It follows that σk
s = 0.

In a similar way, we can show that

σk
s = 0, for all k and s ∈ {wk, ..., s̄}

Next, we will show that µk
e = 0 for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Consider the solution

S ′0 = (E′0, S′0) such that

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′0
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select slot sk = wk as last slot for demand k in solution S ′0,

c) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I ′0i given by

I ′0i = [
⋂

kj∈D′0
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]∩[{wki , ..., sk−wk}∪{sk+wki , ..., s̄}]

if E′0
ki
∩ (E′0

k ∪{e}) ̸= ∅ or I ′0i =
⋂

kj∈D′0
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄} if not.
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where D′0
i = {kj ∈ {k1, ..., ki−1} \ {k} : E′0

ki
∩ E′0

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′0
i ,

• {ski − wki + 1, ..., ski} ∩ {sk − wk + 1, ..., sk} = ∅ if E′0
ki
∩ (E′0

k ∪ {e}) ̸= ∅
( we take into account the possibility of adding edge e in the set of edges

E′0
k to route demand k).

We let S′0
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′0 is clearly feasible for the problem, , and its incidence vector (xS
′0
, zS

′0
) belongs

to P(G,K,S). Let S2 = (E2, S2) be the solution obtained from S ′0 by adding edge

e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S ′0 that E2
k = E′0

k ∪ {e},
and remove slot s already selected for demand k as last slot in S ′0 and replaced

it by a new slot s′ such that s′ is the smallest slot index in {wk, ..., s̄} such that

{s′−wk+1, ..., s′}∩{s”−wk′ +1, ..., s”} = ∅ for each demand k′ with E′0
k ∩E′0

k′ ̸= ∅.
S2 is clearly feasible for the problem. The corresponding incidence vector (xS

2
, zS

2
)

belongs to P(G,K,S). Hence, solutions S ′0 and S2 satisfy equation µx+σz = λ. It

follows that

µxS
′0
+ σzS

′0
= µxS

2
+ σzS

2
= µxS

′0
+ µk

e + σzS
′0 − σk

s + σk
s′ .

Since σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄}, µk

e = 0 for demand k and edge e.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).

Therefore all the equations of the polytope P(G,K,S) are given only in terms of the

variables xke with e ∈ Ek
0 ∪ Ek

1 and zks with s ∈ {1, ..., wk}. We distinguish 3 blocks

of lines in the matrix Q associated with the system (2.13)

a) block Q1 corresponds to the equations xke = 0 for all k ∈ K and e ∈ Ek
0 such

that rang(Q1) =
∑

k∈K |Ek
0 |,

b) block Q2 corresponds to the equations xke = 1 for all k ∈ K and e ∈ Ek
1 such

that rang(Q2) =
∑

k∈K |Ek
1 |,

c) blockQ3 corresponds to the equations zks = 0 for all k ∈ K and s ∈ {1, ..., wk−
1} such that rang(Q3) =

∑
k∈K wk − 1.

Note that the 3 blocks of the matrix Q are independents. Let Qk =


Q1

k

Q2
k

Q3
k

 be the

submatrix of matrix Q associated to the equations (2.12) and (2.11) and involving
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variables xke for all e ∈ Ek
0 ∪ Ek

1 , and variables zks with s ∈ {1, ..., wk} for demand

k. Note that a forbidden edge can never be an essential edge at the same time.

Otherwise, the problem is infeasible. Furthermore, there is no dependency between

essential edges for each demand k and also for different demands in K. Same thing

for the forbidden edges. We want to show that µk = γk1Q
1
k + γk2Q

2
k and σk = γk3Q

k
3.

The only solution of these two systems is given by

µk
e = γk,e1 , for all k ∈ K and e ∈ Ek

0 , (2.14)

µk
e = γk,e2 , for all k ∈ K and e ∈ Ek

1 , (2.15)

σk
s = γk,s3 , for all k ∈ K and s ∈ {1, ..., wk − 1}. (2.16)

We conclude at the end that for each k ∈ K and e ∈ E

µk
e =


γk,e1 if e ∈ Ek

0

γk,e2 if e ∈ Ek
1

0 otherwise,

(2.17)

yielding

µk = γk1Q
1
k + γk2Q

2
k for each k ∈ K.

Moreover, for each k ∈ K and s ∈ S

σk
s =

γk,s3 if s ∈ {1, ..., wk − 1}

0 otherwise,
(2.18)

i.e., σk = γk3Q
3
k.

As a consequence, (µ, σ) = γQ as desired.

As a consequence, we have the following result.

Theorem 2.3.1. The dimension of P(G,K,S) is given by

dim(P(G,K,S)) = |K| ∗ (|E|+ |S|)− r.

2.3.2 Facial Investigation

In this section, we describe facets defining inequalities for the polytope P(G,K,S)
from the cut formulation (2.2)-(2.10), and the ones from the valid inequalities. First,

we characterize when the basic inequalities (2.2)-(2.10) define facets.

Theorem 2.3.2. Consider a demand k ∈ K, and an edge e ∈ E \ (Ek
0 ∪Ek

1 ). Then,

inequality xke ≥ 0 is facet defining for P(G,K,S).
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Proof. Let F k
e be the face induced by inequality xke ≥ 0, that is

F k
e = {(x, z) ∈ P(G,K,S) : xke = 0}.

Denote inequality xke ≥ 0 by αx + βz ≤ λ. Let µx + σz ≤ τ be a facet defining

inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}. Suppose

that F k
e ⊆ F . To prove that F k

e is a facet of P(G,K,S), we need to show that there

exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈

R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such
that (µ, σ) = ρ(α, β) + γQ.

First, we will show that σk′
s = 0 for all k′ ∈ K and s ∈ {wk′ , ..., s̄}.

Consider a slot s in {wk, ..., s̄}, and solution S3 = (E3, S3) such that

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E3
ki

be the set of

edges involved in a shortest path between oki and dki ,

b) for demand k, we let E3
k be the set of edges involved in a shortest path between

ok and dk which does not use edge e,

c) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I3i given by

I3i = [
⋂

kj∈D3
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., s−wk}∪{s+wki
, ..., s̄}]

if E3
ki
∩ E3

k ̸= ∅ or I3i =
⋂

kj∈D3
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D3
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E3

ki
∩ E3

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D3
i ,

• and {ski − wki + 1, ..., ski} ∩ {s − wk + 1, ..., s} = ∅ if E3
ki
∩ E3

k ̸= ∅ ( we
take into account the possibility of adding slot s in the set of last slots

S3
k assigned to demand k in solution S3).

We let S3
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S3 is clearly feasible for the problem, and its incidence vector (xS
3
, zS

3
) belongs to

F k
e . Now, let S4 = (E4, S4) a solution obtained from S3 by adding slot s as last slot

to demand k. Solution S4 is feasible for the problem. The corresponding incidence

vector (xS
4
, zS

4
) belongs to F k

e . Hence, solutions S3 and S4 satisfy equation µx +

σz = τ . As a consequence, we have

µxS
3
+ σzS

3
= µxS

4
+ σzS

4
= µxS

3
+ σzS

3
+ σk

s .
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Hence, σk
s = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K and s′ ∈ {wk′ , ..., s̄}.

Next, we will show that µk′
e′ = 0 for all demand k′ ∈ K \{k} and edge e′ ∈ E \ (Ek′

0 ∪
Ek′

1 ), and µk
e′ = 0 for edge e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ {e}).

Consider an edge e′ ∈ E \ (Ek
0 ∪ Ek

1 ∪ {e}) chosen arbitrarily. Let S ′3 = (E′3, S′3)

be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E′3
ki

be the set of

edges involved in a shortest path between oki and dki ,

b) for demand k, we let E′3
k be the set of edges involved in a shortest path between

ok and dk which does not use edge e′,

c) we select slot sk = wk as last slot for demand k in solution S ′3,

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I ′3i given by

I ′3i = [
⋂

kj∈D′3
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E′3
ki
∩(E′3

k ∪{e′}) ̸= ∅ or I ′3i =
⋂

kj∈D′3
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄} if not,

where D′3
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′3

ki
∩ E′3

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′3
i ,

• {ski −wki + 1, ..., ski} ∩ {sk −wk + 1, ..., sk} = ∅ if E′3
ki
∩ (E′3

k ∪ {e′}) ̸= ∅
( we take into account the possibility of adding edge e in the set of edges

E′3
k to route demand k).

We let S′3
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′3 is clearly feasible for the problem, and its incidence vector (xS
′3
, zS

′3
) belongs to

F k
e . Let S5 = (E5, S5) be the solution obtained from S ′3 by adding edge e′ ∈ E\(Ek

0∪
Ek

1 ) for the routing of demand k in solution S ′3 that E5
k = E′3

k ∪ {e′}, and removing

slot s selected for demand k in S ′3 and replaced it by a new slot s′ ∈ {wk, ...,S} (i.e.,
S5
k = (S′3

k \ {s}) ∪ {s′} such that {s′ − wk + 1, ..., s′} ∩ {s”− wk′ + 1, ..., s”} = ∅ for
each k′ ∈ K and s” ∈ S′3

k′ with E5
k ∩E′3

k′ ̸= ∅). S5 is clearly feasible for the problem.
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The corresponding incidence vector (xS
5
, zS

5
) belongs to F k

e . Hence, solutions S ′3

and S5 satisfy equation µx+ σz = τ . As a consequence, we have

µxS
′3
+ σzS

′3
= µxS

5
+ σzS

5
= µxS

′3
+ µk

e′ + σzS
′3 − σk

s + σk
s′ .

Since σk
s = 0, it follows that µk

e′ = 0.

As e′ is chosen arbitrarily, we have that

µk
e′ = 0, for all e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ {e}).

Using similar argument as above, we can show that

µk′
e′ = 0, for all k′ ∈ K \ {k} and e′ ∈ E \ (Ek′

0 ∪ Ek′
1 ).

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

Overall, we obtain that

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ = k and e′ = e,

0 otherwise,

for each k′ ∈ K and e′ ∈ E, and

σk′
s′ =

γk
′,s′

3 if s′ ∈ {1, ..., wk′ − 1}.

0 otherwise,

for each k′ ∈ K and s′ ∈ S.
Clearly, we have (µ, σ) = ρ(α, β) + γQ.

Theorem 2.3.3. Consider a demand k ∈ K, and a slot s ∈ {wk, .., s̄}. Then,

inequality zks ≥ 0 is facet defining for P(G,K,S).

Proof. Let F k
s denote the face induced by inequality zks ≥ 0, that is

F k
s = {(x, z) ∈ P(G,K,S) : zks = 0}.
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Denote inequality zks ≥ 0 by αx + βz ≤ λ. Let µx + σz ≤ τ be a facet defining

inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}. Suppose

that F k
s ⊆ F . To prove that F k

s is a facet of P(G,K,S), it suffices to show that there

exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈

R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such
that (µ, σ) = ρ(α, β) + γQ.

First, we will show that µk′
e′ = 0 for all demand k′ ∈ K and edge e′ ∈ E \ (Ek′

0 ∪Ek′
1 ).

Consider an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S6 = (E6, S6) be the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E6
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select the smallest slot index sk in {wk, ..., s̄} \ {s} as last slot for demand

k,

c) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I6i given by

I6i = [
⋂

kj∈D6
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]∩[{wki , ..., sk−wk}∪{sk+wki , ..., s̄}]

if E6
ki
∩ (E6

k ∪ {e}) ̸= ∅ or I6i =
⋂

kj∈D6
i

{wki
, ..., skj

−wkj
} ∪ {skj

+wki
, ..., s̄} if not,

where D6
i = {kj ∈ {k1, ..., ki−1} : E6

ki
∩ E6

kj
̸= ∅}. This verifies that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D6
i ,

• and {ski−wki +1, ..., ski}∩{sk−wk+1, ..., sk} = ∅ if E6
ki
∩(E6

k∪{e}) ̸= ∅
( we take into account the possibility of adding edge e in the set of edges

E6
k to route demand k).

We let S6
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S6 is clearly feasible for the problem, and its incidence vector (xS
6
, zS

6
) belongs to

F k
s . Based on this, we consider a solution S7 = (E7, S7) obtained from S6 by adding

edge e ∈ E\(Ek
0 ∪Ek

1 ) for the routing of demand k in solution S6 that E7
k = E6

k∪{e}.
S7 is clearly feasible for the problem. The corresponding incidence vector (xS

7
, zS

7
)

belongs to F k
s . Hence, solutions S6 and S7 satisfy equation µx + σz = τ . As a

consequence, we have

µxS
6
+ σzS

6
= µxS

7
+ σzS

7
= µxS

6
+ µk

e + σzS
6
.
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As a result, µk
e = 0 for demand k and edge e.

In a similar way, we can show that

µk′
e = 0, for all k′ ∈ K and e ∈ E \ (Ek′

0 ∪ Ek′
1 ).

Next, we will show that, σk′
s′ = 0 for all k′ ∈ K \{k} and s′ ∈ {wk′ , ..., s̄}, and σk

s′ = 0

for all slots s′ ∈ {wk, ..., s̄} \ {s}.
Consider a slot s′ in {wk, ..., s̄} \ {s}. Let S ′6 = (E′6, S′6) be the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′6
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select the smallest slot index sk in {wk, ..., s̄}\{s, s′} as last slot for demand

k,

c) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I ′6i given by

I ′6i = [
⋂

kj∈D′6
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]∩[{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′6
ki
∩ E′6

k ̸= ∅ or I ′6i =
⋂

kj∈D′6
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D′6
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′6

ki
∩E′6

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., s̃} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′6
i ,

• and {ski − wki + 1, ..., s̃} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′6
ki
∩ E′6

k ̸= ∅ ( we
take into account the possibility of adding slot s′ in the set of last slots

s̃′6k assigned to demand k in solution S ′6).

We let S′6
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′6 is clearly feasible for the problem, its incidence vector (xS
′6
, zS

′6
) belongs to F k

s .

Then consider the solution S8 obtained from S ′6 by adding slot s′ as last slot to

demand k. Solution S8 is clearly feasible for the problem. The corresponding inci-

dence vector (xS
8
, zS

8
) belongs to F k

s . Hence, solutions S ′6 and S8 satisfy equation

µx+ σz = τ . We have so

µxS
′6
+ σzS

′6
= µxS

8
+ σzS

8
= µxS

′6
+ σzS

′6
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K and s′ ∈ {wk′ , ..., s̄} with s ̸= s′ if k = k′.
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By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k′ ∈ K and e ∈ E

µk′
e =


γk

′,e
1 if e ∈ Ek′

0 ,

γk
′,e

2 if e′ ∈ Ek′
1 ,

0 otherwise,

and for each k′ ∈ K and s′ ∈ S

σk′
s′ =



γk
′,s′

3 if s′ ∈ {1, ..., wk′ − 1},

0 if s′ ∈ {wk′ , ..., s̄} and k′ ̸= k,

0 if s′ ∈ {wk′ , ..., s̄} \ {s} and k′ = k,

ρ if s′ = s and k′ = k.

Clearly, we have (µ, σ) = ρ(α, β) + γQ.

Proposition 2.3.3. Consider a demand k ∈ K. Let (e, e′) be a pair of non-

compatible edges for demand k. Then, the inequality

xke + xke′ ≤ 1, (2.19)

is valid for P(G,K,S).

Proof. It is trivial due to the transmission-reach constraint and given the definition

of non-compatible edges for demand k.

Based on the definition of a non-compatible demands for an edge e, we introduce

the following inequality.

Proposition 2.3.4. Consider an edge e ∈ E. Let (k, k′) be a pair of non-compatible

demands for edge e with e /∈ Ek
0 ∪ Ek

1 ∪ Ek′
0 ∪ Ek′

1 . Then, the inequality

xke + xk
′

e ≤ 1, (2.20)

is valid for P(G,K,S).

Proof. It is trivial given the definition of non-compatible demands for edge e.
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Theorem 2.3.4. Consider a demand k ∈ K, and an edge e ∈ E \ (Ek
0 ∪Ek

1 ). Then,

inequality xke ≤ 1 is facet defining for P(G,K,S) if and only if

a) there does not exist a demand k′ ∈ K \ {k} such that the two demands k and

k′ are non-compatible demands for edge e,

b) and there does not exist an edge e′ ∈ E \ (Ek
1 ∪ Ek

0 ∪ {e}) such that the two

edges e and e′ are non-comptible edges for demand k.

Proof. Neccessity.

For demand k and edge e ∈ E \ (Ek
0 ∪ Ek

1 ), if

a) there exists a demand k′ ∈ K \ {k} such that the two demands k and k′ are

non-compatible demands for edge e. Then, inequality xke ≤ 1 is dominated by

inequality (2.20).

b) there exists an edge e′ ∈ E \ (Ek
1 ∪Ek

0 ∪ {e}) such that the two edges e and e′

are non-comptible edges for demand k. Then, inequality xke ≤ 1 is dominated

by inequality (2.19).

As a result, inequality xke ≤ 1 is not facet defining for P(G,K,S).
Sufficiency.

Let F ′k
e denote the face induced by inequality xke ≤ 1, that is

F ′k
e = {(x, z) ∈ P(G,K,S) : xke = 1}.

Denote inequality xke ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a facet defining

inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}. Suppose

that F ′k
e ⊆ F . To prove that F ′k

e is a facet of P(G,K,S), we need to show that there

exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈

R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such
that (µ, σ) = ρ(α, β) + γQ.

First, we will show that σk′
s = 0 for all k′ ∈ K and s ∈ {wk′ , ..., s̄}.

Consider a slot s in {wk, ..., s̄}. Let S9 = (E9, S9) be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E9
ki

be the set of

edges involved in a shortest path between oki and dki ,

b) for demand k, we let E9
k be the set of edges involved in a shortest path between

ok and dk which uses edge e,

c) we select the smallest slot index sk in {wk, ..., s̄} \ {s} as last slot for demand

k in solution S9,
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d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I9i given by

I9i = [
⋂

kj∈D9
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄}]∩[{wki , ..., s−wk}∪{s+wki , ..., s̄}]

if E9
ki
∩ E9

k ̸= ∅ or I9i =
⋂

kj∈D9
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not.

where D9
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E9

ki
∩ E9

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D9
i ,

• and {ski−wki+1, ..., ski}∩{s−wk+1, ..., s} = ∅ ( we take into account the
possibility of adding slot s in the set of last slots S9

k assigned to demand

k in solution S9).

We let S9
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S9 is clearly feasible for the problem, and its incidence vector (xS
9
, zS

9
) belongs

to F ′k
e . Then consider the solution S10 = (E10, S10) obtained from S9 by adding

slot s as last slot to demand k. Solution S10 is feasible for the problem. The

corresponding incidence vector (xS
10
, zS

10
) belongs to F ′k

e . Hence, solutions S9 and

S10 satisfy equation µx+ σz = τ . We then obtain that

µxS
9
+ σzS

9
= µxS

10
+ σzS

10
= µxS

9
+ σzS

9
+ σk

s .

Hence, σk
s = 0.

In a similar way, we can show that

σk′
s = 0, for all k′ ∈ K and s ∈ {wk′ , ..., s̄}

Next, we will show that µk′
e′ = 0 for all demand k′ ∈ K \{k} and e′ ∈ E \ (Ek′

0 ∪Ek′
1 ),

and µk
e′ = 0 for demand k and e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ {e}).

Consider an edge e′ ∈ E \ (Ek
0 ∪ Ek

1 ∪ {e}) chosen arbitrarily. Let S ′9 = (E′9, S′9)

be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E′9
ki

be the set of

edges involved in a shortest path between oki and dki ,

b) for demand k, we let E′9
k be the set of edges involved in a shortest path between

ok and dk which uses edge e, and edge e′ is compatible-edge with all the selected

edges e” ∈ E′9
k in solution S ′9, i.e.,

∑
e”∈E′9

k
le” + ℓe′ ≤ l̄k.
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c) we select the slot sk = wk as last slot for demand k,

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I ′9i given by

I ′9i =
⋂

kj∈D′9
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if E′9

ki
∩ (E′9

k ∪ {e′}) ̸= ∅

or I ′9i =
⋂

kj∈D′9
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D′9
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′9

ki
∩ E′9

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′9
i ,

• and {ski−wki+1, ..., ski}∩{sk−wk+1, ..., sk} = ∅ if E′9
ki
∩(E′9

k ∪{e′}) ̸= ∅
( we take into account the possibility of adding edge e′ in the selected

path E′9
k to route demand k in solution S ′9).

We let S′9
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′9 is clearly feasible for the problem, and its incidence vector (xS
′9
, zS

′9
) belongs

to F ′k
e . Let S11 = (E11, S11) be the solution obtained from solution S ′9 by adding

edge e′ ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S ′9 which means

that E11
k = E′9

k ∪{e}. The last slots assigned to the demands K, and paths assigned

the set of demands K \ {k} in S ′9 remain the same in solution S11, i.e., S11
k = S′9

k

for each k ∈ K, and E11
k′ = E′9

k′ for each k′ ∈ K \ {k}. S11 is clearly feasible for the

problem. The corresponding incidence vector (xS
11
, zS

11
) belongs to F ′k

e . Hence,

solutions S ′9 and S11 satisfy equation µx+ σz = τ . It follows that

µxS
′9
+ σzS

′9
= µxS

11
+ σzS

11
= µxS

′9
+ µk

e′ + σzS
′9
.

Hence, µk
e′ = 0.

In a similar way, we can show that

µk
e′ = 0, for all e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ {e}).

Moreover, we re-do the same procedure for all k′ ∈ K \ {k} and e′ ∈ E \ (Ek
0 ∪Ek

1 ).

We conclude at the end that

µk′
e′ = 0, for all k′ ∈ K \ {k} and e′ ∈ E \ (Ek′

0 ∪ Ek′
1 ),

µk
e′ = 0, for all e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ {e}).
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We know from (2.17) and (2.18) that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k′ ∈ K and e′ ∈ E

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ = k and e′ = e,

0 otherwise,

and for each k′ ∈ K and s ∈ S

σk′
s =

γk
′,s

3 if s ∈ {1, ..., wk′ − 1},

0 otherwise.

Consequently, (µ, σ) = ρ(α, β) + γQ which ends the proof.

Theorem 2.3.5. Consider a demand k ∈ K, and a slot s ∈ {wk, .., s̄}. Then,

inequality zks ≤ 1 is facet defining for P(G,K,S) if and only if there does not exist

a demand k′ ∈ K \ {k} with Ek
1 ∩ Ek′

1 ̸= ∅.

Proof. Neccessity.

For a demand k ∈ K and a slot s ∈ {wk, .., s̄}, if there exists a demand k′ ∈ K \ {k}
with Ek

1 ∩ Ek′
1 ̸= ∅. Then, the inequality zks ≤ 1 is domined by the non-overlapping

inequality (2.6) for each edge e ∈ Ek
1 ∩Ek′

1 . As a result, the inequality zks ≤ 1 is not

facet defining for P(G,K,S).
Sufficiency.

Let F ′k
s be the face induced by inequality zks ≤ 1, that is

F ′k
s = {(x, z) ∈ P(G,K,S) : zks = 1}.

We denote inequality zks ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a facet defining

inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}. Suppose

that F ′k
s ⊆ F . To prove that F ′k

s is a facet of P(G,K,S), we need to show there

exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈

R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such
that (µ, σ) = ρ(α, β) + γQ.

First, we will show that µk′
e = 0 for all demand k′ ∈ K and edge e ∈ E \ (Ek′

0 ∪Ek′
1 ).

Consider an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S12 = (E12, S12) be the solution given by
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a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E12
ki

be the set of

edges involved in a shortest path between oki and dki ,

b) for demand k, we let E12
k be the set of edges involved in a shortest path between

ok and dk which does not use edge e, and edge e′ is compatible-edge with all

the selected edges e” ∈ E12
k , i.e.,

∑
e”∈E12

k
le” + ℓe′ ≤ l̄k.

c) we select slot sk = s as last slot for demand k, and we let S12
k = {s},

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I12i given by

I12i = [
⋂

kj∈D12
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E12
ki
∩(E12

k ∪{e}) ̸= ∅ or I12i =
⋂

kj∈D12
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄} if not,

where D12
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E12

ki
∩ E12

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D12
i ,

• and {ski−wki+1, ..., ski}∩{sk−wk+1, ..., sk} = ∅ if E12
ki
∩(E12

k ∪{e}) ̸= ∅
( we take into account the possibility of adding edge e in the selected path

E12
k to route demand k in solution S12).

We let S12
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S12 is clearly feasible for the problem, its incidence vector (xS
12
, zS

12
) belongs to

F ′k
s . Then consider the solution S13 = (E13, S13) obtained from S12 by adding edge

e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S12 which means that

E13
k = E12

k ∪ {e}. The last slots assigned to the demands K, and paths assigned the

set of demands K \ {k} in S12 remain the same in solution S13, i.e., S13
k = S12

k for

each k ∈ K, and E13
k′ = E12

k′ for each k′ ∈ K \ {k}. S13 is clearly feasible for the

problem. The corresponding incidence vector (xS
13
, zS

13
) belongs to F ′k

s . Hence,

solutions S12 and S13 satisfy equation µx+ σz = τ . It follows that

µxS
12
+ σzS

12
= µxS

13
+ σzS

13
= µxS

12
+ µk

e + σzS
12
.

As a result, µk
e = 0.

In a similar way, we can show that

µk′
e = 0, for all k′ ∈ K and e ∈ E \ (Ek′

0 ∪ Ek′
1 ).
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Next, we will show that, σk′
s′ = 0 for all k′ ∈ K \{k} and s′ ∈ {wk′ , ..., s̄}, and σk

s′ = 0

for all slots s′ ∈ {wk, ..., s̄} \ {s}.
Consider a slot s′ in {wk, ..., s̄} \ {s}. Let S ′12 = (E′12, S′12) be the solution given

by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′12
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select slot sk = s as last slot for demand k, and we let S′12
k = {s},

c) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I ′12i given by

I ′12i = [
⋂

kj∈D′12
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]∩[{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′12
ki
∩ E′12

k ̸= ∅ or I ′12i =
⋂

kj∈D′12
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not.

where D′12
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′12

ki
∩ E′12

kj
̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′12
i ,

• and {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′12
ki
∩ E′12

k ̸= ∅ (
we take into account the possibility of adding slot s′ in the selected last

slots S′12
k to route demand k in solution S ′12).

We let S′12
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′12 is clearly feasible for the problem, its incidence vector (xS
′12
, zS

′12
) belongs to

F ′k
s . Then we derive solution S14 from S ′12 by adding slot s′ as last slot to demand k

in S ′12. Solution S14 is clearly feasible for the problem. The corresponding incidence

vector (xS
14
, zS

14
) belongs to F ′k

s . Hence, solutions S ′12 and S14 satisfy equation

µx+ σz = τ . We have so

µxS
′12

+ σzS
′12

= µxS
14
+ σzS

14
= µxS

′12
+ σzS

′12
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K and s′ ∈ {wk′ , ..., s̄} with s ̸= s′ if k = k′.
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By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

Overall, we obtain that

µk′
e =


γk

′,e
1 if e ∈ Ek′

0 ,

γk
′,e

2 if e′ ∈ Ek′
1 ,

0 otherwise,

for each k′ ∈ K and e ∈ E, and

σk′
s′ =



γk
′,s′

3 if s′ ∈ {1, ..., wk′ − 1},

0 if s′ ∈ {wk′ , ..., s̄} and k′ ̸= k,

0 if s′ ∈ {wk′ , ..., s̄} \ {s} and k′ = k,

ρ if s′ = s and k′ = k,

for each k′ ∈ K and s′ ∈ S.
As a consequence, (µ, σ) = ρ(α, β) + γQ.

Theorem 2.3.6. Consider a demand k ∈ K. Then, inequality (2.5),
∑s̄

s=wk
zks ≥ 1,

is facet defining for P(G,K,S).

Proof. Let F k
S be the face induced by inequality

∑s̄
s=wk

zks ≥ 1, that is

F k
S = {(x, z) ∈ P(G,K,S) :

s̄∑
s=wk

zks = 1}.

Denote inequality
s̄∑

s=wk

zks ≥ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a valid inequality

that defines a facet F of P(G,K,S). Suppose that F k
S ⊆ F . To prove that F k

S is

a facet of P(G,K,S), we show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1 ) such that (µ, σ) = ρ(α, β) + γQ.

First, we will show that µk′
e = 0 for all demand k′ ∈ K and edge e ∈ E \ (Ek′

0 ∪Ek′
1 ).

Consider an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S15 = (E15, S15) be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E15
ki

be the set of

edges involved in a shortest path between oki and dki ,
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b) for demand k, we let E15
k be the set of edges involved in a shortest path

between ok and dk such that edge e is compatible-edge with all the selected

edges e” ∈ E15
k , i.e.,

∑
e”∈E15

k
le” + le ≤ l̄k,

c) we select slot sk = wk as last slot for demand k, and let S15
k = {sk},

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I15i given by

I15i = [
⋂

kj∈D15
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E15
ki
∩(E15

k ∩{e}) ̸= ∅ or I15i =
⋂

kj∈D15
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄} if not,

where D15
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E15

ki
∩ E15

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D15
i ,

• {ski − wki + 1, ..., ski} ∩ {s− wk + 1, ..., s} = ∅ if E15
ki
∩ (E15

k ∪ {e}) ̸= ∅ (
we take into account the possibility of adding edge e in the selected path

E15
k to route demand k in solution S15).

We let S15
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S15 is feasible for the problem, its incidence vector (xS
15
, zS

15
) belongs to F k

S . Then

we derive a solution S16 = (E15, S15) obtained from S15 by adding edge e ∈ E\(Ek
0∪

Ek
1 ) for the routing of demand k in solution S15 which means that E16

k = E15
k ∪{e}.

The last slots assigned to the demands K, and paths assigned the set of demands

K \ {k} in S15 remain the same in solution S16, i.e., S16
k = S15

k for each k ∈ K,

and E16
k′ = E15

k′ for each k′ ∈ K \ {k}. S16 is clearly feasible for the problem. The

corresponding incidence vector (xS
16
, zS

16
) belongs to F k

S . Hence, solutions S15 and

S16 satisfy equation µx+ σz = τ . It follows that

µxS
15
+ σzS

15
= µxS

16
+ σzS

16
= µxS

15
+ µk

e + σzS
15
.

As a result, µk
e = 0.

In a similar way, we can show that

µk′
e = 0, for all k′ ∈ K and e ∈ E \ (Ek′

0 ∪ Ek′
1 ).

Next, we will show that, σk′
s′ = 0 for all k′ ∈ K \ {k} and s′ ∈ {wk′ , ..., s̄}.

Consider a demand k′ in K \ {k} and a slot s′ in {wk′ , ..., s̄} \ {s}. Let S ′15 =

(E′15, S′15) be the solution given by

55



a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′15
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select slot sk = wk as last slot for demand k, and let S′15
k = {sk},

c) we select the smallest slot index sk′ from the set of slots I ′15k′ given by

I ′15k′ = {wki , ..., sk−wk}∩{sk+wki , ..., s̄}\{s′} if E′15
k′ ∩E′15

k ̸= ∅ or I ′15k′ = {wk′ , ..., s̄}\{s′} if not.

d) for each demand ki ∈ K \ {k, k′} with i ∈ {1, ..., |K|}, we select the smallest

slot index ski in the set of slots I ′15i given by

I ′15i = [
⋂

kj∈D′15
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E′15
ki
∩ E′15

k′ ̸= ∅ or I ′15i =
⋂

kj∈D′15
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where D′15
i = {kj ∈ {k1, ..., ki−1} ∪ {k, k′} : E′15

ki
∩E′15

kj
̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′15
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk′ + 1, ..., s} = ∅ if E′15
ki
∩ E′15

k′ ̸= ∅ ( we

take into account the possibility of adding slot s′ in the set of last slots

S′15
k′ to route demand k′ in solution S ′15).

We let S′15
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S ′15 is feasible for the problem. The corresponding incidence vector (xS
′15
, zS

′15
)

belongs to F k
S . Then we derive a solution S17 from S ′15 by adding slot s′ as last slot

to demand k′. Solution S17 is clearly feasible for the problem. The corresponding

incidence vector (xS
17
, zS

17
) belongs to F k

S . Hence, solutions S ′15 and S17 satisfy

equation µx+ σz = τ . We have so

µxS
′15

+ σzS
′15

= µxS
17
+ σzS

17
= µxS

′15
+ σzS

′15
+ σk′

s′ .

Hence, σk′
s′ = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K and s′ ∈ {wk′ , ..., s̄}.

Let prove now that σk
s for demand k and slot s in {wk, ..., s̄} are equivalent.

Consider a slot s′ ∈ {wk, ..., s̄}. Let S̃15 = (Ẽ15, S̃15) be the solution given by
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a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let Ẽ15
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) we select the smallest slot index sk from {wk, ..., s̄}\{s′} as last slot for demand

k,

c) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots Ĩ15i given by

Ĩ15i = [
⋂

kj∈D̃15
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]∩[{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if Ẽ15
ki
∩ Ẽ15

k ̸= ∅ or Ĩ15i =
⋂

kj∈D̃15
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D̃15
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : Ẽ15

ki
∩ Ẽ15

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D̃15
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if Ẽ15
ki
∩ Ẽ15

k ̸= ∅ ( we

take into account the possibility of adding slot s′ in the set of last slots

S̃15
k to route demand k in solution S̃15).

We let S̃15
ki

= {ski} be the set of last slots assigned to each demand ki with

i ∈ {1, ..., |K|}.

S̃15 is clearly feasible for the problem, and its incidence vector (xS̃
15
, zS̃

15
) belongs

to F k
S̃
. Then consider the solution S18 obtained from S̃15 by adding slot s′ as last

slot to demand k′ in S18k and removing the last slot s assigned to k in S̃15
k (i.e.,

S18
k = (S̃15

k \{s})∪{s′} for demand k). Solution S18 is feasible for the problem. The

corresponding incidence vector (xS
18
, zS

18
) belongs to F k

S̃
. Hence, solutions S̃15 and

S18 satisfy equation µx+ σz = τ . We have so

µxS̃
15
+ σzS̃

15
= µxS

18
+ σzS

18
= µxS̃

15
+ σzS̃

15
+ σk

s′ − σk
s .

As a result, σk
s′ = σk

s .

In a similar way, we can show that

σk
s′ = σk

s , for all slots s, s′ ∈ {wk, ..., s̄}.

Consequently, we obtain that σk
s = ρ for demand k and slot s in {wk, ..., s̄}.

We know from (2.17) and (2.18) that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.
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We conclude that for each k′ ∈ K and e ∈ E

µk′
e =


γk

′,e
1 if e ∈ Ek′

0 ,

γk
′,e

2 if e ∈ Ek′
1 ,

0 otherwise,

and for each k′ ∈ K and s ∈ S

σk′
s =


γk

′,s
3 if s ∈ {1, ..., wk′ − 1},

ρ if k′ = k and s ∈ {wk′ , ..., s̄},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

Theorem 2.3.7. Consider a demand k in K and a subset of node X ⊂ V, with |X∩
{ok, dk}| = 1 and δ(X) ∩ Ek

1 = ∅. Then, inequality (2.2),
∑

e∈δ(X) x
k
e ≥ 1, is facet

defining for P(G,K,S).

Proof. Let F k
X denote the face induced by inequality

∑
e∈(δ(X)\Ek

0 )

xke ≥ 1, that is

F k
X = {(x, z) ∈ P(G,K,S) :

∑
e∈(δ(X)\Ek

0 )

xke = 1}.

Let X = {ok}. Denote inequality
∑

e∈(δ(X)\Ek
0 )
xke ≥ 1 by αx + βz ≤ λ. Let

µx + σz ≤ τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈
P(G,K,S) : µx + σz = τ}. Suppose that F k

X ⊆ F . To prove that F k
X is a facet

of P(G,K,S), we need to show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) ( with

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ.

First, we will show that σk′
s = 0 for all k′ ∈ K and s ∈ {wk′ , ..., s̄}.

Consider a slot s in {wk, ..., s̄}. Let S19 = (E19, S19) be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E19
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for demand k, we let E19
k be the set of edges involved in a shortest path between ok

and dk. This guarantees that one edge e from (δ(X)\Ek
0 ) is chosen to route demand

k, i.e., |(δ(X) \ Ek
0 ) ∩ E19

k | = 1,

c) for demand k, we select the smallest slot index sk in {wk, ..., s̄} \ {s} as last slot for
demand k,
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d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I19i given by

I19i = [
⋂

kj∈D19
i

{wki , ..., skj −wkj} ∪ {skj +wki , ..., s̄}] ∩ [{wki , ..., s−wk} ∪ {s+wki , ..., s̄}]

if E19
ki
∩ E19

k ̸= ∅ or I19i =
⋂

kj∈D19
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D19
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E19

ki
∩ E19

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D19
i ,

• {ski − wki + 1, ..., ski} ∩ {s − wk + 1, ..., s} = ∅ if E19
ki
∩ E19

k ̸= ∅ ( we take

into account the possibility of adding slot s in the set of last slots S19
k to route

demand k in solution S19).

We let S19
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S19 is clearly feasible for the problem, and its incidence vector (xS
19
, zS

19
) belongs to

F k
X . Then consider the solution S20 = (E20, S20) obtained from S19 by adding slot

s as last slot to demand k without modifying the paths assigned to the demands K

in S19 (i.e., E20
k = E19

1 for each k ∈ K), and the last slots assigned to the demands

K \ {k} in S19 remain the same in solution S20 i.e., S19
k′ = S20

k′ for each demand

k′ ∈ K \ {k}, and S20
k = S19

k ∪ {s} for demand k. Solution S20 is feasible for the

problem. The corresponding incidence vector (xS
20
, zS

20
) belongs to F k

X . Hence,

solutions S19 and S20 satisfy equation µx+ σz = τ . We then obtain that

µxS
19
+ σzS

19
= µxS

20
+ σzS

20
= µxS

19
+ σzS

19
+ σk

s .

Hence, σk
s = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K and s ∈ {wk′ , ..., s̄}.

Next, we will show that µk
e′ = 0 for all demand k′ ∈ K \{k} and e′ ∈ E \ (Ek′

0 ∪Ek′
1 ),

and µk
e′ = 0 for demand k and e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ δ(X)).

Consider an edge e′ ∈ E \(Ek
0 ∪Ek

1 ∪δ(X)) chosen arbitrarily. Let S ′19 = (E′19, S′19)

be the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E′19
ki

be the set of edges

involved in a shortest path between oki and dki ,
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b) for demand k, we let E′19
k be the set of edges involved in a shortest path between ok

and dk such that edge e′ is compatible-edge with the selected edges e” ∈ E′19
k , i.e.,∑

e”∈E′19
k

le” + ℓe′ ≤ l̄k.

c) we select the slot sk = wk as last slot for demand k, and let S′19
k = {sk},

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′19i given by

I ′19i = [
⋂

kj∈D′19
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E′19
ki
∩ (E′19

k ∪ {e′}) ̸= ∅ or I ′19i =
⋂

kj∈D′19
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D′19
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′19

ki
∩ E′19

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′19
i ,

• {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E′19
ki
∩ (E′19

k ∪ {e}) ̸= ∅ ( we
take into account the possibility of adding edge e′ in the selected path E′19

k to

route demand k in solution S ′19).

We let S′19
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′19 is feasible for the problem. its incidence vector (xS
′19
, zS

′19
) belongs to F k

X . Let

S21 = (E21, S21) be the solution obtained from S ′19 by adding edge e′ ∈ E\(Ek
0∪Ek

1 )

for the routing of demand k in solution S ′19 which means that E21
k = E′19

k ∪{e′}. S21

is clearly feasible for the problem. The corresponding incidence vector (xS
21
, zS

21
)

belongs to F k
X . Hence, solutions S ′19 and S21 satisfy equation µx + σz = τ . It

follows that

µxS
′19

+ σzS
′19

= µxS
21
+ σzS

21
= µxS

′19
+ µk

e′ + σzS
′19
.

Hence, µk
e′ = 0.

In a similar way, we can show that

µk′
e′ = 0, for all k′ ∈ K \ {k} and e′ ∈ E \ (Ek′

0 ∪ Ek′
1 ),

µk
e′ = 0, for all e′ ∈ E \ (Ek

0 ∪ Ek
1 ∪ δ(X)).

Next, we will prove that the µk
e for all edge e ∈ (δ(X) \ Ek

0 ) are equivalent.

Consider an edge e′ ∈ (δ(X) \ Ek
0 ) such that e′ /∈ E19

k . Let S̃19 = (Ẽ19, S̃19) be the

solution given by
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a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let Ẽ19
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for demand k, we let Ẽ19
k be the set of edges involved in a shortest path between ok

and dk. This guarantees that one edge e from (δ(X)\Ek
0 ) is chosen to route demand

k, i.e., |(δ(X) \ Ek
0 ) ∩ Ẽ19

k | = 1,

c) we select the slot sk = wk as last slot for demand k , and let S̃19
k = {sk},

d) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ19i given by

Ĩ19i = [
⋂

kj∈D̃19
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if Ẽ19
ki
∩ (Ẽ19

k ∪ {e′}) ̸= ∅ or Ĩ19i =
⋂

kj∈D̃19
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not.

where D̃19
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : Ẽ19

ki
∩ Ẽ19

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D̃19
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if Ẽ19
ki
∩ (Ẽ19

k ∪ {e}) ̸= ∅ ( we
take into account the possibility of using edge e′ in the selected path Ẽ19

k to

route demand k in solution S̃19).

We let S̃19
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S̃19 is clearly feasible for the problem, and corresponding incidence vector (xS̃
19
, zS̃

19
)

belongs to F k
X . Then consider the solution S22 obtained from S̃19 by modifying the

path assigned to demand k in S̃19 from Ẽ19
k to a path E22

k passed through edge e′

with |(δ(X)\Ek
0 )∩E22

k | = 1, and modifying the last slots assigned to some demands

K̃ ⊂ K from S̃19
k̃

to S22
k̃

for each k̃ ∈ K̃ while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k} in S̃19 remain the same in S22 (i.e.,

E22
k” = Ẽ19

k” for each k” ∈ K \{k}), and also without modifying the last slots assigned

to the demandsK\K̃ in S̃19, i.e., S̃19
k = S22

k for each demand k ∈ K\K̃. Solution S22

is feasible for the problem. The corresponding incidence vector (xS
22
, zS

22
) belongs

to F k
X . Hence, solutions S̃19 and S22 satisfy equation µx+ σz = τ . We have so

µxS̃
19
+ σzS̃

19
= µxS

22
+ σzS

22
= µxS̃

19
+ σzS̃

19
+ µk

e′ − µk
e +

∑
k̃∈K̃

∑
s′∈S22

k̃

σk̃
s′ −

∑
s∈S̃19

k̃

σk̃
s

+
∑

e”∈E22
k \{e′}

µk
e” −

∑
e”∈Ẽ19

k \{e}

µk
e”.
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Since µk
e” = 0 for all e” ∈ E \ (Ek

0 ∪ Ek
1 ∪ δ(X)), and σk′

s = 0 for all k′ ∈ K and

s ∈ {wk′ , ..., s̄}, it follows that µk
e′ = µk

e .

In a similar way, we can show that

µk
e = µk

e′ , for all pairs e, e
′ ∈ (δ(X) \ Ek

0 ).

Consequently, we obtain that µk
e = ρ for all e ∈ (δ(X) \ Ek

0 ).

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k′ ∈ K and e ∈ E

µk′
e =



γk
′,e

1 if e ∈ Ek′
0 ,

γk
′,e

2 if e ∈ Ek′
1 ,

ρ if k = k′ and e ∈ (δ(X) \ Ek
0 ),

0 otherwise,

and for each k′ ∈ K and s ∈ S

σk′
s =

γk
′,s

3 if s ∈ {1, ..., wk′ − 1},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

In what follows, we present several valid inequalities for P(G,K,S), and study

their facial structure.

2.4 Valid Inequalities and Facets

We start this section by introducing some classes of valid inequalities that can be

defined using Chvàtal-Gomory procedure.

2.4.1 Edge-Slot-Assignment Inequalities

Proposition 2.4.1. Consider an edge e ∈ E with Ke ̸= ∅. Let s be a slot in S.
Then, the inequality

∑
k∈Ke

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ 1, (2.21)

is valid for P(G,K,S).
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Proof. Inequality (2.21) ensures that the set of demands Ke cannot share slot s over

edge e, which means that slot s is assigned to at most one demand k from Ke over

edge e. We know from the inequality (2.6) that for each pair of demands k, k′ ∈ Ke

with k ̸= k′

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 1,

given that xke = xk
′

e = 1. After that, we use the Chvàtal-Gomory and recurrence

procedures to prove that (2.21) is valid for P(G,K,S). For any subset of demands

K̃ ⊆ Ke, by using a recurrence procedure, we get that for all demands K ′ ⊆ K̃ with

|K ′| = |K̃| − 1

∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ 1.

By adding the previous inequalities for all subset of demands K ′ ⊆ K̃ with |K ′| =
|K̃| − 1

∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤
∑

K′⊆K̃
|K′|=|K̃|−1

1.

Note that for each k ∈ K̃, the sum
∑min(s+wk−1,s̄)

s′=s zks′ appears (
( |K̃|
|K̃|−1

)
−1) = |K̃|−1

times in the previous sum. This implies that

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(|K̃| − 1)zks′ ≤ |K̃|.

By dividing the two sides of the previous sum by |K̃| − 1, we have

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤

⌊
|K̃|
|K̃| − 1

⌋
⇒

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤

⌊
|K̃|
|K̃| − 1

⌋
.

As a result,

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ 1 given that

⌊
|K̃|
|K̃| − 1

⌋
= 1.

We conclude at the end that inequality (2.21) is valid for P(G,K,S).

Inspiring from inequality (2.21), and based on the non-overlapping inequality

(2.6), we define the following inequality.

63



Proposition 2.4.2. Consider an edge e ∈ E. Let s be a slot in S. Consider a

triplet of demands k, k′, k” ∈ K with e /∈ Ek
0 ∩Ek′

0 ∩Ek”
0 , (k, k′) /∈ Ke

c , (k, k”) /∈ Ke
c ,

and (k′, k”) /∈ Ke
c . Then, the inequality

xke + xk
′

e + xk”e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤ 4,

(2.22)

is valid for P(G,K,S).

Proof. Consider an edge e ∈ E. Let s be a slot in S. Inequality (2.22) ensures that

if the three demands k, k′, k” pass through edge e, they cannot share slot s.

Let show that inequality (2.22) can be seen as Chvàtal-Gomory cuts using Chvàtal-

Gomory procedure. We know from (2.24) that

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ 3,

xke + xk”e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤ 3,

xk
′

e + xk”e +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤ 3.

By adding the three previous inequalities, we get the following inequality

2xke + 2xk
′

e + 2xk”e + 2

min(s+wk−1,s̄)∑
s′=s

zks′ + 2

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ + 2

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤ 9.

By dividing the two sides of the previous inequality by 2, we obtain that

xke + xk
′

e + xk”e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤
⌊
9

2

⌋
.

As a result,

xke + xk
′

e + xk”e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +

min(s+wk”−1,s̄)∑
s”=s

zk”s” ≤ 4.

We conclude at the end that inequality (2.22) is valid for P(G,K,S).

Inequality (2.22) can then be generalized for any subset of demand K̃ ⊆ K under

certain conditions.
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Proposition 2.4.3. Consider an edge e ∈ E, and a slot s in S. Let K̃ be a subset

of demands of K with e /∈ Ek
0 for each demand k ∈ K̃, (k, k′) /∈ Ke

c for each pair of

demands (k, k′) in K̃, and
∑

k∈K̃ wk ≤ s̄−
∑

k”∈Ke\K̃ wk”. Then, the inequality

∑
k∈K̃

xke +
∑
k′∈K̃

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ ≤ |K̃|+ 1, (2.23)

is valid for P(G,K,S).

Let
(
n
k

)
denote the total number of possibilities to choose a k element in a set of

n elements.

Proof. Inequality (2.23) ensures that if the demands k ∈ K̃ pass through edge e,

they cannot share slot s. For this, we use the Chvàtal-Gomory and recurrence

procedures to prove that (2.23) is valid for P(G,K,S). For any subset of demands

K̃ ⊆ K with e /∈ Ek
0 for each demand k ∈ K̃, by recurrence procedures we get that

for all demands K ′ ⊆ K̃ with |K ′| = |K̃| − 1

∑
k∈K′

xke +
∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K ′|+ 1.

By adding the previous inequalities for all subset of demands K ′ ⊆ K̃ with |K ′| =
|K̃| − 1

∑
K′⊆K̃

|K′|=|K̃|−1

∑
k∈K′

xke +
∑

K′⊆K̃
|K′|=|K̃|−1

∑
k∈K′

min(s+wk−1,s̄)∑
s′=s

zks′ ≤
∑

K′⊆K̃
|K′|=|K̃|−1

(|K ′| + 1).

Note that for each k ∈ K̃, the variable xke and the sum
∑min(s+wk−1,s̄)

s′=s zks′ appear

(
( |K̃|
|K̃|−1

)
− 1) times in the previous sum. This implies that

∑
k∈K̃

(

(
|K̃|
|K̃| − 1

)
−1)xke+

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(

(
|K̃|
|K̃| − 1

)
−1)zks′ ≤

(
|K̃|
|K̃| − 1

)
(|K ′|+1)

Given that |K ′| = |K̃| − 1, this is equivalent to say that

∑
k∈K̃

(

(
|K̃|
|K̃| − 1

)
− 1)xke +

∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(

(
|K̃|
|K̃| − 1

)
− 1)zks′ ≤

(
|K̃|
|K̃| − 1

)
|K̃|

Moreover, and taking into account that (
( |K̃|
|K̃|−1

)
− 1) = |K̃| − 1, we found that

∑
k∈K̃

(|K̃| − 1)xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

(|K̃| − 1)zks′ ≤ |K̃|2
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By dividing the two sides of the previous sum by |K̃| − 1, we have

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤

⌊
|K̃|2

|K̃| − 1

⌋
⇒

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤

⌊
|K̃| |K̃|
|K̃| − 1

⌋
.

After some simplifications, we obtain that

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+

⌊
|K̃|
|K̃| − 1

⌋
.

As a result,

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃|+ 1 given that

⌊
|K̃|
|K̃| − 1

⌋
= 1.

We conclude at the end that inequality (2.23) is valid for P(G,K,S).

Inequality (2.23) can be strengthened as follows. For this, and using inequalities

(2.21) and (2.6), we first show that inequality (2.6) can be strengthened without

modifying its right-hand side as follows.

Proposition 2.4.4. Consider an edge e ∈ E. Let s be a slot in S. Consider a pair

of demands k, k′ ∈ K with e /∈ Ek
0 ∩ Ek′

0 and (k, k′) /∈ Ke
c . Then, the inequality

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ +
∑

k”∈Ke\{k,k′}

min(s+wk”−1,s̄)∑
s′=s

zk”s′ ≤ 3,

(2.24)

is valid for P(G,K,S).

Proof. Consider an edge e ∈ E, and a pair of demands k, k′ ∈ K. Let s be a

slot in S. Inequality (2.24) ensures that if the two demands k, k′ pass through

edge e, they cannot share slot s with the set of demands in Ke \ {k, k′}. This

can be seen as a particular case for inequality (2.21) induced by subset of demands

K̃ = {k, k′} ∪Ke.

Let generalize inequality (2.24) for any subset of demand K̃ ⊆ K under certain

conditions.

Proposition 2.4.5. Consider an edge e ∈ E, and a slot s in S. Let K̃ be a subset

of demands of K with e /∈ Ek
0 for each demand k ∈ K̃, (k, k′) /∈ Ke

c for each pair of

demands (k, k′) in K̃, and
∑

k∈K̃ wk ≤ s̄−
∑

k”∈Ke\K̃ wk”. Then, the inequality

∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k′∈Ke\K̃

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ |K̃|+ 1, (2.25)

is valid for P(G,K,S).
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This can be seen as a strengthened version of inequality (2.24).

Proof. Inequality (2.25) ensures that if the demands k ∈ K̃ pass through edge e,

they cannot share slot s with the set of demands in Ke \ K̃. This can be seen be a

particular case inequality (2.23) induced by K̃ ∪Ke for slot s over edge e.

Definition 2.4.1. An interval I = [si, sj ] represents an ordered set of contiguous

slots situated between the two slots si and sj with j ≥ i+1 and sj ≤ s̄ (e.g., interval

I = [1, 6] contains all slots situated between the slots si = 1 and sj = 6).

Theorem 2.4.1. Consider an edge e ∈ E, and a slot s ∈ S. Let K̃ be a subset

of demands in K, and
∑

k∈K̃ wk ≤ s̄ −
∑

k′∈Ke\K̃ wk′. Then, inequality (2.23) is

facet defining for P(G,K,S) if and only if Ke \ K̃ = ∅, and there does not exist an

interval of contiguous slots I = [si, sj ] such that

a) |{si + wk − 1, ..., sj}| ≥ wk for each demand k ∈ K̃,

b) and s ∈ {si +max
k′∈K̃

wk − 1, ..., sj −max
k∈K̃

wk + 1},

c) and wk + wk′ ≥ |I|+ 1 for each k, k′ ∈ K̃,

d) and 2wk ≥ |I|+ 1 for each k ∈ K̃.

Proof. Neccessity.

• if Ke \ K̃ ̸= ∅, then inequality (2.23) is dominated by inequality (2.25) without

changing its right-hand side. As a result, inequality (2.23) is not facet defining for

P(G,K,S).

• if there exists an interval of contiguous slots I = [si, sj ] such that the conditions

a)− d) are verfied. Then inequality (2.23) is dominated by another valid inequality

which will be presented later. Hence, inequality (2.23) is not facet defining for

P(G,K,S).

Sufficiency.

Let F e,s

K̃
be the face induced by inequality (2.23), that is

F e,s

K̃
= {(x, z) ∈ P(G,K,S) :

∑
k∈K̃

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ = |K̃|+ 1}.

Let denote by αx + βz ≤ λ inequality
∑

k∈K̃ xke +
∑min(s+wk−1,s̄)

s′=s zks′ ≤ |K̃| + 1.

Let µx + σz ≤ τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈
P(G,K,S) : µx+ σz = τ}. Suppose that F e,s

K̃
⊆ F . To prove that F e,s

K̃
is a facet of
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P(G,K,S), we need to show that there exists ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ.

Let first show that µk
e′ = 0 for each edge e′ ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K

with e ̸= e′ if k ∈ K̃.

Consider a demand k ∈ K and an edge e′ ∈ E \ (Ek
0 ∪Ek

1 ) with e ̸= e′ if k ∈ K̃. Let

S38 = (E38, S38) be the solution given by

a) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we let E38
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for demand k, we let E38
k be the set of edges involved in a shortest path between ok

and dk which uses edge e such that edge e′ is compatible with all the selected edges

e” ∈ E38
k of demand k in solution S38, i.e.,

∑
e”∈E38

k
le” + ℓe′ ≤ l̄k,

c) for each demand k′ ∈ K̃ \ {k}, we let E38
k′ be the set of edges involved in a shortest

path between ok′ and dk′ which does uses edge e,

d) for one demand k′ ∈ K̃, we select the smallest slot index sk′ in {wk′ , ..., s̄} as last

slot such that s ∈ {sk′ − wk′ + 1, ..., sk′},

e) for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I38i given by

I38i = [
⋂

kj∈D38
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E38
ki
∩ (E38

k ∪ {e′}) ̸= ∅ or I38i =
⋂

kj∈D38
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not.

such that s /∈ {ski−wki+1, ..., ski} if ki ∈ K̃, whereD38
i = {kj ∈ {k1, ..., ki−1}∪{k′} :

E38
ki
∩ E38

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D38
i ,

• and {ski −wki +1, ..., ski}∩{sk−wk +1, ..., sk} = ∅ if E38
ki
∩ (E38

k ∪{e′}) ̸= ∅ (
we take into account the possibility of using edge e′ in the selected path E′38

k

to route demand k in solution S ′38).

We let S38
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S38 is feasible for the problem. its incidence vector (xS
38
, zS

38
) belongs to F e,s

K̃
.

Then consider the solution S39 = (E39, S39) obtained from S38 by adding edge

e′ ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S38 which means that
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E39
k = E38

k ∪ {e′}. The last slots assigned to the demands K, and paths assigned

the set of demands K \ {k} in S38 remain the same in solution S39, i.e., S39
k = S38

k

for each k ∈ K, and E39
k′ = E38

k′ for each k′ ∈ K \ {k}. S39 is clearly feasible for the

problem. The corresponding incidence vector (xS
39
, zS

39
) belongs to F e,s

K̃
. Hence,

solutions S38 and S39 satisfy equation µx+ σz = τ . It follows that

µxS
38
+ σzS

38
= µxS

39
+ σzS

39
= µxS

38
+ µk

e′ + σzS
38
.

As a result, µk
e′ = 0.

In a similar way, we can show that

µk
e′ = 0, for all k ∈ K and e′ ∈ E \ (Ek

0 ∪ Ek
1 ) with e ̸= e′ if k ∈ K̃.

Let show that σk
s′ = 0 for all k ∈ K and s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s+ wk − 1}

if k ∈ K̃.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {s, ..., s+wk − 1} if
k ∈ K̃. Let S ′38 = (E′38, S′38) be the solution given by

a) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we let E′38
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for demand k, we let E′38
k be the set of edges involved in a shortest path between ok

and dk which uses edge e,

c) for each demand k′ ∈ K̃ \ {k}, we let E′38
k′ be the set of edges involved in a shortest

path between ok′ and dk′ which use edge e,

d) for one demand k ∈ K̃, we select the smallest slot index sk in {wk, ..., s̄} as last slot
such that s ∈ {sk − wk + 1, ..., sk},

e) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′38i given by

I ′38i = [
⋂

kj∈D′38
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E′38
ki
∩ E′38

k ̸= ∅ or I ′38i =
⋂

kj∈D′38
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not.

where D′38
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E′38

ki
∩ E′38

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′38
i ,

• s /∈ {ski − wki + 1, ..., ski} if ki ∈ K̃,

• and {ski −wki +1, ..., ski}∩{s′−wk +1, ..., s′} = ∅ if E′38
ki
∩E′38

k ̸= ∅ ( we take
into account the possibility of adding slot s′ in the selected set of last slots

S′38
k to route demand k in solution S ′38).
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We let S′38
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′38 is clearly feasible for the problem. The corresponding incidence vector (xS
′38
, zS

′38
)

belongs to F e,s

K̃
. Then consider the solution S40 obtained from S ′38 by adding slot s′

as last slot to demand k. Solution S40 is feasible for the problem. The corresponding

incidence vector (xS
40
, zS

40
) belongs to F e,s

K̃
. Hence, solutions S ′38 and S40 satisfy

equation µx+ σz = τ . We have so

µxS
′38

+ σzS
′38

= µxS
40
+ σzS

40
= µxS

′38
+ σzS

′38
+ σk

s′ .

It follows that σk
s′ = 0.

In a similar way, we can show that

σk
s′ = 0, for all k ∈ K and s′ ∈ {wk, ..., s̄} with s′ /∈ {s, ..., s+ wk − 1} if k ∈ K̃.

Let prove that σk
s′ for all k ∈ K̃ and s′ ∈ {s, ..., s+wk−1} are equivalent. Consider a

demand k′ ∈ K and a slot s′ ∈ {s, ..., s+wk′ − 1} with k′ ∈ K̃. Let S41 = (E41, S41)

be a solution obtained from S38 by adding slot s′ as last slot to demand k′ with

modifying the paths assigned to a subset of demands K̃ ⊂ K in S38 (i.e., E41
k = E38

k

for each k ∈ K \ K̃, and E41
k ̸= E38

k for each k ∈ K̃), and also the last slots assigned

to the demands K \ {k, k′} in S38 remain the same in S41, i.e., S38
k” = S41

k” for each

demand k” ∈ K \{k, k′}, and S41
k′ = S38

k′ ∪{s′} for demand k′, and modifying the last

slots assigned to demand k by adding a new last slot s̃ and removing the last slot s′ ∈
S38
k with s′ ∈ {si+wk+1, ..., sj} and s̃ /∈ {si+wk+1, ..., sj} for demand k with k ∈ K̃

such that S41
k = (S38

k \{s})∪{s̃} such that {s̃−wk+1, ..., s̃}∩{s′−wk′+1, ..., s′} = ∅
for each k′ ∈ K and s′ ∈ S41

k′ with E41
k ∩ E41

k′ ̸= ∅. Solution S41 is feasible for the

problem. The corresponding incidence vector (xS
41
, zS

41
) belongs to F e,s

K̃
. Hence,

solutions S38 and S41 satisfy equation µx+ σz = τ . We have so

µxS
38
+ σzS

38
= µxS

41
+ σzS

41
= µxS

38
+ σzS

38
+ σk′

s” − σk
s′ + σk

s̃

−
∑
k∈K̃

∑
e′∈E38

k

µk
e′ +

∑
k∈K̃

∑
e′∈E41

k

µk
e′ .

Since σk
s̃ = 0 for s̃ /∈ {s, ..., s + wk − 1} with k ∈ K̃, and µk

e′ = 0 for all k ∈ K and

e′ ∈ E \ (Ek
0 ∪ Ek

1 ) with e′ ̸= e if k ∈ K̃, it follows that σk′
s” = σk

s′ .

In a similar way, we can show that

σk
s′ = σk′

s”, for all pairs (k, k
′) ∈ K̃
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with s′ ∈ {s, ..., s+wk−1} and s′ ∈ {s, ..., s+wk′−1}. We re-do the same procedure

for each two slots s, s′ ∈ {s, ..., s+wk − 1} for each demand k ∈ K with k ∈ K̃ such

that

σk
s′ = σk

s”, for all k ∈ K̃ and s, s′ ∈ {s, ..., s+ wk − 1}.

We will prove that µk
e for all k ∈ K̃ are equivalent. Let S42 = (E42, S42) be the

solution given by

a) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we let E42
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for one demand k from K̃, we let E42
ki

be the set of edges involved in a shortest path

between ok and dk which uses edge e,

c) for each demand k′ ∈ K̃ \ {k}, we let E42
k′ be the set of edges involved in a shortest

path between ok′ and dk′ which does not use edge e,

d) for each demand k ∈ K̃, we select the smallest slot index sk in {wk, ..., s̄}∩{s, ..., s+
wk − 1} as last slot,

e) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I42i given by

I42i = [
⋂

kj∈D42
i

{wki , ..., skj −wkj} ∪ {skj +wki , ..., s̄}] ∩ [{wki , ..., s−wk} ∪ {s+wki , ..., s̄}]

if E42
ki
∩ E42

k ̸= ∅, or I42i = [
⋂

kj∈D42
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] if not,

where D42
i = {kj ∈ {k1, ..., ki−1} ∪ K̃ : E42

ki
∩ E42

kj
̸= ∅}. This ensures that {ski −

wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D42
i .

We let S42
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

Obviously, S42 is feasible for the problem. Moreover, the corresponding incidence

vector (xS
42
, zS

42
) belongs to F e,s

K̃
.

Consider now a demand k′ in K̃ such that e /∈ E42
k′ . We derive a feasible solution

S43 = (E43, S43) for the problem from S42 by

a) the paths assigned to the demands K \ {k, k′} in S42 remain the same in S43 (i.e.,

E43
k” = E42

k” for each k” ∈ K \ {k, k′}),

b) without modifying the last slots assigned to the demands K in S42, i.e., S42
k = S43

k

for each demand k ∈ K,
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c) modifying the path assigned to demand k′ in S42 from E42
k′ to a path E43

k′ passed

through edge e (i.e., e ∈ E43
k′ ) with k′ ∈ K̃ such that {s−wk +1, ..., s} ∩ {s′−wk′ +

1, ..., s′} = ∅ for each k ∈ K and s′ ∈ S42
k′ and s′ ∈ S42

k with E42
k ∩ E43

k′ ̸= ∅,

d) modifying the path assigned to demand k in S42 with e ∈ E42
k and k ∈ K̃ from E42

k

to a path E43
k without passing through edge e (i.e., e /∈ E43

k ) and {s−wk+1, ..., s}∩
{s′ − wk” + 1, ..., s′} = ∅ for each k” ∈ K \ {k, k′} and s′ ∈ S42

k and s′ ∈ S42
k” with

E42
k” ∩ E43

k ̸= ∅, and {s − wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each s′ ∈ S42
k

and s′ ∈ S42
k′ with E43

k” ∩ E43
k ̸= ∅.

The corresponding incidence vector (xS
43
, zS

43
) belongs to F e,s

K̃
. Hence, solutions

S42 and S43 satisfy equation µx+ σz = τ . We then obtain that

µxS
42
+ σzS

42
= µxS

43
+ σzS

43
= µxS

42
+ σzS

42
+ µk′

e − µk
e

+
∑

e”∈E43
k′ \{e}

µk′
e” −

∑
e”∈E42

k′

µk′
e” +

∑
e”∈E43

k

µk
e” −

∑
e”∈E42

k \{e}

µk
e”.

Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪ Ek
1 ) with k ∈ K̃, it follows that

µk′
e = µk

e . In a similar way, we can show that

µk
e = µk′

e , for all pairs (k, k
′) ∈ K̃.

Furthermore, let prove that all σk
s′ and µk

e are equivalent for all k ∈ K̃ and s′ ∈
{s, ..., s+ wk − 1}.
Now let us consider for each demand k′ with k′ ∈ K̃, a solution S44 = (E44, S44)

obtained from S42 as below

a) the paths assigned to the demands K \ {k′} in S42 remain the same in S44 (i.e.,

E44
k” = E42

k” for each k” ∈ K \ {k′}),

b) without modifying the last slots assigned to the demands K \ {k} in S42, i.e., S42
k” =

S44
k” for each demand k” ∈ K \ {k},

c) modifying the set of last slots assigned to demand k′ in S42 from S42
k′ to S44

k′ such

that S44
k′ ∩ {s, ..., s+ wk′ − 1} = ∅.

Hence, there are |K̃| − 1 demands from K̃ that share slot s over edge e (i.e., all the

demands in K̃ \ {k′}), and two demands {k, k′} from K̃ that use edge e in solution

S44. Solution S44 is then feasible for the problem. The corresponding incidence

vector (xS
44
, zS

44
) belongs to F e,s

K̃
. Hence, solutions S42 and S44 satisfy equation

µx+ σz = τ . We then obtain that

µxS
42
+ σzS

42
= µxS

44
+ σzS

44
= µxS

42
+ σzS

42
+ µk′

e − σk′
s′ +

∑
e”∈E44

k′ \{e}

µk′
e” −

∑
e”∈E42

k′

µk′
e”.
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Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪ Ek
1 ) with e ̸= e” if k ∈ K̃, it follows

that µk′
e = σk′

s′ .

In a similar way, we can show that

µk
e = σk

s′ , for all k ∈ K̃ and s′ ∈ {s, ..., s+ wk − 1}.

Based on this, and given that all µk
e are equivalent for all k ∈ K̃, and that σk

s′ are

equivalent for all k ∈ K̃ and s′ ∈ {s, ..., s+ wk′ − 1}, we obtain that

µk
e = σk′

s′ , for all k, k′ ∈ K̃ and s′ ∈ {s, ..., s+ wk′ − 1}.

Consequently,

µk
e = σk′

s′ = ρ, for all k, k′ ∈ K̃ and s′ ∈ {s, ..., s+ wk′ − 1}.

We know from (2.17) and (2.18) that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

Overall, we obtain that

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ ∈ K̃ and e′ = e,

0 otherwise,

for each k′ ∈ K and e′ ∈ E, and

σk
s′ =


γk,s

′

3 if s′ ∈ {1, ..., wk − 1}

ρ if k ∈ K̃ and s′ ∈ {s, ..., s+ wk − 1},

0 otherwise.

for each k ∈ K and s′ ∈ S.
As a consequence, we have (µ, σ) = ρ(α, β) + γQ.

Theorem 2.4.2. Consider an edge e ∈ E, and a slot s ∈ S. Let K̃ be a subset of

demands in K with |K̃| ≥ 3, and
∑

k∈K̃ wk ≤ s̄ −
∑

k′∈Ke\K̃ wk′. Then, inequality

(2.25) is facet defining for P(G,K,S) if and only if there does not exist an interval

of contiguous slots I = [si, sj ] such that
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a) |{si + wk − 1, ..., sj}| ≥ wk for each demand k ∈ K̃,

b) and s ∈ {si +max
k′∈K̃

wk − 1, ..., sj −max
k∈K̃

wk + 1},

c) and wk + wk′ ≥ |I|+ 1 for each k, k′ ∈ K̃,

d) and wk + wk′ ≥ |I|+ 1 for each k ∈ K̃ and k′ ∈ Ke \ K̃,

e) and 2wk ≥ |I|+ 1 for each k ∈ K̃,

f) and 2wk′ ≥ |I|+ 1 for each k′ ∈ Ke \ K̃.

Proof. Neccessity.

Suppose that there exists an interval of contiguous slots I = [si, sj ] such that all the

conditions a)−f) are verified. Then inequality (2.25) is dominated by another valid

inequality which will be presented later. As a result, inequality (2.25) is not facet

defining for P(G,K,S).
Sufficiency.

Let denote F ′e,s
K̃

the face induced by inequality (2.25), that is

F ′e,s
K̃

= {(x, z) ∈ P(G,K,S) :
∑
k∈K̃

xke +
∑
k∈K̃

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑
Ke\K̃

min(s+wk′−1,s̄)∑
s′=s

zk
′

s′ = |K̃|+ 1}.

We denote inequality
∑

k∈K̃ xke+
∑

k∈K̃
∑min(s+wk−1,s̄)

s′=s zks′+
∑

Ke\K̃
∑min(s+wk′−1,s̄)

s′=s zk
′

s′ ≤
|K̃|+1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a facet defining inequality for P(G,K,S)
and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}. Suppose that F ′e,s

K̃
⊆ F . We show

that there exist ρ ∈ R and γ = (γ1, γ2, γ3) (such that γk,e1 ∈ R for all k′ ∈ K and e ∈
Ek′

0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−
1}) such that (µ, σ) = ρ(α, β) + γQ. We re-do the same technique of proof already

detailed to prove that inequality (2.23) is facet defining for P(G,K,S) such that the

solutions S38 − S44 still feasible for F ′e,s
K̃

given that their incidence vector are com-

posed by
∑

k∈K̃ xke+
∑

k∈K̃
∑min(s+wk−1,s̄)

s′=s zks′+
∑

Ke\K̃
∑min(s+wk′−1,s̄)

s′=s zk
′

s′ ≤ |K̃|+1.

We conclude at the end that for each k′ ∈ K and e′ ∈ E

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ ∈ K̃ and e′ = e,

0 otherwise,

74



and for each k ∈ K and s′ ∈ S

σk
s′ =


γk,s

′

3 if s′ ∈ {1, ..., wk − 1},

ρ if k ∈ K̃ ∪Ke and s′ ∈ {s, ..., s+ wk − 1},

0 otherwise.

As a result, we have (µ, σ) = ρ(α, β) + γQ.

2.4.2 Edge-Interval-Capacity-Cover Inequalities

Let now introduce some valid inequalities which can be seen as cover inequalities

using some notions of cover related to the problem.

Definition 2.4.2. For an interval of contiguous slots I = [si, sj ], a subset of de-

mands K ′ ⊆ K is said a cover for the interval I = [si, sj ] if and only if
∑

k∈K̃ wk >

|I| and wk < |I| for each k ∈ K̃. Moreover, it is said to be a minimal cover if∑
k′∈K̃\{k}wk′ ≤ |I| for each demand k ∈ K̃.

Based on these definitions, we introduce the following inequalities.

Proposition 2.4.6. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots in [1, s̄]. Let K ′ ⊆ Ke be a minimal cover for interval I = [si, sj ]

over edge e. Then, the inequality

∑
k∈K′

sj∑
s=si+wk−1

zks ≤ |K ′| − 1, (2.26)

is valid for P(G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K ′| − 1 demands given that

K ′ is a minimal cover for interval I = [si, sj ] over edge e. Otherwise, the non-

overlapping constraint is violated given that there exists at least one slot s ∈ I such

that
∑

k∈K′
∑s+wk−1

s′=s zks > 1.

Inequality (2.26) can be lifted using a sequential lifting procedure [5] to be facet

defining and generate lifted facets for a sub-polytope of P(G,K,S).

Theorem 2.4.3. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let K̃ ⊆
Ke be a minimal cover for interval I = [si, sj ] over edge e. Let Ke \ K̃ = {k1, ..., kq}
be arbitrarily ordred with q = |Ke \ K̃|. Consider the following sequence of knapsack

75



problems defined as 

zi = max
∑
j∈K̃

aj +
i−1∑
j=1

βjaj ,

∑
j∈K̃

wjaj +
i−1∑
j=1

wkjaj ≤ |I| − wki ,

aj ∈ {0, 1},∀j ∈ K̃ ∪ {1, ..., i− 1},

(2.27)

for all i ∈ {1, ..., q} with βj = |K̃| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
k∈K̃

sj∑
s=si+wk−1

zks +

q∑
j=1

sj∑
s′=si+wkj

−1

βjz
kj
s′ ≤ |K̃| − 1, (2.28)

is valid for P(G,K,S). Moreover, inequality (5.13) defines facet of

P(G,K,S, K̃, e, E) = {(x, z) ∈ P(G,K,S) :
∑
k′∈K

Ek′
1 ∩Ek

1 ̸=∅ for all k∈K̃

sj∑
s′=si+wk′−1

zk
′

s′ = 0}.

if there does not exist an interval of contiguous slots I ′ = [s′i, s
′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Proof. It is trivial given that inequality (5.13) can never be dominated in P(G,K,S, K̃, e, E)

if there does not exist an interval of contiguous slots I ′ = [s′i, s
′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Inequality (2.26) can then be generalized over all edges e ∈ E. Moreover, it

should be lifted to be facet definig for the polytope P(G,K,S) as follows.

Proposition 2.4.7. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let

K ′ ⊂ K be a minimal cover for interval I = [si, sj ] such that Ek
1 ∩Ek′

1 ̸= ∅ for each

pair (k, k′) ∈ K ′. Then, the inequality

∑
k∈K′

sj∑
s=si+wk−1

zks ≤ |K ′| − 1, (2.29)

is valid for P(G,K,S).

Proof. The interval I can cover at most |K ′|−1 demands given that K ′ is a minimal

cover for interval I.

Inequality (2.29) can then be lifted using a sequential lifting procedure [5] to

generate several facets for the polytope P(G,K,S).

76



Theorem 2.4.4. Let I = [si, sj ] be an interval of contiguous slots. Let K̃ ⊆ K

be a minimal cover for interval I = [si, sj ] such that Ek
1 ∩ Ek′

1 ̸= ∅ for each pair

(k, k′) ∈ K̃. Let K ′ ⊆ K \ K̃ = {k1, ..., kq} such that Ek
1 ∩ Ek′

1 ̸= ∅ for each pair

(k, k′) ∈ K̃ ∪K ′. Consider the following sequence of knapsack problems defined as

zi = max
∑
j∈K̃

aj +
i−1∑
j=1

βjaj ,

∑
j∈K̃

wjaj +

i−1∑
j=1

wkjaj ≤ |I| − wki ,

aj ∈ {0, 1},∀j ∈ K̃ ∪ {1, ..., i− 1},

(2.30)

for all i ∈ {1, ..., q} with βj = |K̃| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
k∈K̃

sj∑
s=si+wk−1

zks +

q∑
j=1

sj∑
s′=si+wkj

−1

βjz
kj
s′ ≤ |K̃| − 1, (2.31)

is valid for P(G,K,S). Moreover, inequality (2.31) defines facet of P(G,K,S) if

there does not exist an interval of contiguous slots I ′ = [s′i, s
′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Proof. It is trivial given that inequality (2.31) can never be dominated in P(G,K,S)
if there does not exist an interval of contiguous slots I ′ = [s′i, s

′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Inspiring from inequalities (2.26) and (2.29), we define another valid inequality

induced by any subset of demands K̃ defining a minimal cover for any interval I as

follows.

Definition 2.4.3. Consider an inequality αxT ≤ β which is not valid for a poly-

hedron P(G,K,S). It is said to be optimality cut for P(G,K,S) if it is valid for

a semi-polytope of P(G,K,S) which covers at least one optimal solution for the

problem.

Let Q(G,K,S) = {(x, z) ∈ P(G,K,S) :
s̄∑

s=wk

zks = 1,∀k ∈ K} be a semi-polytope

of P(G,K,S). Note that each valid inequality of Q(G,K,S) which is not valid for

P(G,K,S), it defines an optimality cut for P(G,K,S).

Proposition 2.4.8. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots in [1, s̄]. Let K̃ be a minimal cover for the interval I such that
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a)
∑
k∈K̃

wk ≤ s̄−
∑

k′∈Ke\K̃

wk′,

b) e /∈ Ek
0 for each demand k ∈ K̃,

c) (k, k′) /∈ Ke
c for each pair of demands (k, k′) in K̃.

Then, the inequality

∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks ≤ 2|K̃| − 1, (2.32)

is valid for Q(G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K̃| − 1 demands given that K̃

is a minimal cover for interval I = [si, sj ] over edge e. It follows that if demands

K̃ pass together through edge e (i.e.,
∑

k∈K̃ xke = |K̃|), there are at most |K̃| − 1

demands that can share the interval I over edge e. We ensure that inequalities

(2.32) are verified by any feasible solution having an incidence vector in Q(G,K,S).
Otherwise, the non-overlapping constraint is violated such if there exists a solution

S that violates inequality (2.32), this will certainly prove that there exists a slot

s ∈ I over edge e such that
∑

k∈K̃
∑s+wk−1

s′=s zks′ > 1 given that
∑

k∈K̃ xke ≤ |K̃|
and

∑
k∈K̃

∑sj
s=si+wk−1 z

k
s ≤ |K| for any feasible solution S with incidence vector in

Q(G,K,S).

Inequality (2.32) can also be lifted using a sequential lifting procedure [5] to be

facet defining and generate lifted facets for the polytope Q(G,K,S).

Theorem 2.4.5. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let K̃

be a minimal cover for the interval I such that K̃ does not define a minimal cover

for an edge e, where e /∈ Ek
0 for each demand k ∈ K̃. Let Ke \ K̃ = {k1, ..., kq} be

arbitrarily ordred with q = |Ke \ K̃|. Consider the following sequence of knapsack

problems defined as 

zi = max
∑
j∈K̃

aj +

i−1∑
j=1

βjaj ,

∑
j∈K̃

wjaj +

i−1∑
j=1

wkjaj ≤ |I| − wki ,

aj ∈ {0, 1},∀j ∈ K̃ ∪ {1, ..., i− 1},

(2.33)
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for all i ∈ {1, ..., q} with βj = |K̃| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
k∈K̃

xke +
∑
k∈K̃

sj∑
s=si+wk−1

zks +

q∑
j=1

sj∑
s′=si+wkj

−1

βjz
kj
s′ ≤ 2|K̃| − 1, (2.34)

is valid for Q(G,K,S). Moreover, inequality (2.34) defines facet of Q(G,K,S) if

there does not exist an interval of contiguous slots I ′ = [s′i, s
′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Proof. It is trivial given that inequality (2.34) can never be dominated in Q(G,K,S)
if there does not exist an interval of contiguous slots I ′ = [s′i, s

′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

2.4.3 Edge-Interval-Clique Inequalities

Using inequalities (2.32), and based on the set of minimal cover K̃ with cardinality

|K̃| = 2, we introduce the following inequality.

Proposition 2.4.9. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots. Let {k, k′} be a minimal cover for the interval I over edge e such

that e /∈ Ek
0 ∪ Ek′

0 . Then, the inequality

xke + xk
′

e +

sj∑
s=si+wk−1

zks +

sj∑
s=si+wk′−1

zk
′

s ≤ 3, (2.35)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| and 2wk′ >

|I|.

Proof. Inequality (2.35) is a particular case of inequality (2.36) for a minimal cover

K̃ = {k, k′}.

Using this, we introduce the following conflict graph.

Definition 2.4.4. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots in [1, s̄] with si ≤ sj − 1. Consider the conflict graph He
I defined

as follows. For each demand k ∈ K with wk ≤ |I| and e /∈ Ek
0 , consider a node vk

in He
I . Two nodes vk and vk′ are linked by an edge in He

I if wk + wk′ > |I| and
(k, k′) /∈ Ke

c . This is equivalent to say that two linked nodes vk and vk′ means that

the two demands k, k′ define a minimal cover for the interval I over edge e.
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For an edge e ∈ E, the conflict graph He
I is a threshold graph with threshold

value equals to t = |I| such that for each node vk with e /∈ Ek
0 ∪ Ek

1 , we associate a

positive weight w̃vk = wk such that all two nodes vk and vk′ are linked by an edge

if and only if w̃vk + w̃vk′ > t which is equivalent to the conflict graph He
I .

Proposition 2.4.10. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots. Let C be a clique in the conflict graph He
I with |C| ≥ 3, and∑

vk∈C wk ≤ s̄−
∑

k′∈Ke\C wk′. Then, the inequality

∑
vk∈C

xke +

sj∑
s=si+wk−1

zks ≤ |C|+ 1, (2.36)

is valid for Q(G,K,S). Moreover, It is valid for P(G,K,S) if 2wk > |I| for each

vk ∈ C.

Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, inequality (2.36)

ensures that if the set of demands in clique C pass through edge e, they cannot

share the interval I = [si, sj ] over edge e. This means that there are at most one

demand from the demands in C that can be totally covered by the interval I over

edge e (i.e., all the slots assigned to the demand are in I). Inequality (2.36) can be

shown as Chvàtal-Gomory cuts using Chvàtal-Gomory and recurrence procedures.

For all two linked node vk and vk′ in He
I , we know from inequality (2.35)

xke + xk
′

e +

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 3.

By adding the previous inequalities for all two linked node vk and vk′ in the clique

set C, and by recurrence procedure we obtain that for all K ′ ⊆ C with |K ′| = |C|−1

∑
vk∈C′

xke +
∑
vk∈C′

sj∑
s=si+wk−1

zks ≤ |K ′|+ 1.

By adding the previous inequalities for all K ′ ⊆ C with |K ′| = |C| − 1, we get

∑
K′⊆C

|K′|=|C|−1

∑
vk∈C′

xke +
∑
K′⊆C

|K′|=|C|−1

∑
vk∈C′

sj∑
s=si+wk−1

zks ≤
∑
K′⊆C

|K′|=|C|−1

(|K ′| + 1).

Note that for each demand k with vk ∈ C, the variable xke and the sum
∑sj

s=si+wk−1 z
k
s

appear (
( |C|
|C|−1

)
− 1) times in the previous sum. It follows that

∑
vk∈C

(

(
|C|
|C| − 1

)
− 1)xke +

∑
vk∈C

sj∑
s=si+wk−1

.(

(
|C|
|C| − 1

)
− 1)zks ≤

(
|C|
|C| − 1

)
|C|.
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Given that (
( |C|
|C|−1

)
− 1) = |C| − 1, we obtain that

∑
vk∈C

(|C| − 1)xke +
∑
vk∈C

sj∑
s=si+wk−1

(|C| − 1)zks ≤ |C|2.

By dividing the two sides of the previous sum by |C| − 1, we have

∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C|2

|C| − 1

⌋
⇒

∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C|
|C| − 1

⌋

⇒
∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C| − 1 + 1

|C| − 1

⌋
.

By doing the following simplification

∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C| |C| − 1

|C| − 1
+
|C|
|C| − 1

⌋

⇒
∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C|+ |C|

|C| − 1

⌋
.

As a result,

∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤ |C|+
⌊
|C|
|C| − 1

⌋
⇒

∑
vk∈C

xke+
∑
vk∈C

sj∑
s=si+wk−1

zks ≤ |C|+1

given that

⌊
|C|
|C| − 1

⌋
= 1.

We conclude at the end that inequality (2.36) is valid for Q(G,K,S). Moreover, it

is valid for P(G,K,S) if 2wk > |I| for each vk ∈ C.

Moreover, inequality (2.36) can be strengthened as follows.

Proposition 2.4.11. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of

contiguous slots. Let C be a clique in the conflict graph He
I with |C| ≥ 3, and∑

vk∈C wk ≤ s̄−
∑

k′∈Ke\C wk′. Let Ce ⊆ Ke \C be a clique in the conflict graph He
I

such that wk + wk′ ≥ |I|+ 1 for each vk ∈ C and vk′ ∈ Ce. Then, the inequality

∑
vk∈C

xke +
∑
vk∈C

sj∑
s=si+wk−1

zks +
∑

vk′∈Ce

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |C|+ 1, (2.37)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| for each

vk ∈ C ∪ Ce.
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Proof. For each edge e ∈ E and interval of contiguous slots I ⊆ S, inequality (2.37)

ensures that if the set of demands in clique C pass through edge e, they cannot share

the interval I = [si, sj ] over edge e with a subset of demands in Ce. On the other

hand, inequality (2.37) can be seen as a particular case of inequality (2.36) induced

by a clique C ′ = C ∪ Ce given that xke = 1 for all vk ∈ Ce.

Theorem 2.4.6. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of con-

tiguous slots. Let C be a clique in the conflict graph He
I with |C| ≥ 3,

∑
k∈C wk ≤

s̄ −
∑

k′∈Ke\C wk′, and |{si + wk − 1, ..., sj}| ≥ wk for each demand k with vk ∈ C.

Then, inequality (2.36) is facet defining for P(G,K,S) if and only if

a) there does not exist a demand k′ ∈ Ke \ C with wk + wk′ > |I| and wk′ ≤ |I|,

b) and there does not exist an interval I ′ of contiguous slots with I ⊂ I ′ such that C

defines also a clique in the associated conflict graph He
I′.

Proof. Neccessity.

It is trivial given that

• if there does not exist a demand k′ ∈ Ke \ C with wk + wk′ > |I| and wk′ ≤ |I|,
and |{si + wk − 1, ..., sj}| ≥ wk for each demand k with vk ∈ C. Then, inequality

(2.36) can never be dominated by another inequality without changing its right-

hand side. Otherwise, if there exists a demand k′ ∈ Ke \ C with wk + wk′ > |I|
and wk′ ≤ |I| and 2wk′ > |I|, this implies that the inequality is dominated by

(2.37). Moreover, if |{si + wk − 1, ..., sj}| < wk for each demand k with vk ∈ C,

then inequality (2.36) is then dominated by inequality (2.23) for a set of demands

K̃ = {k ∈ K such that vk ∈ C} and slot s = si + min
k∈C

wk + 1 over edge e. Hence,

inequality (2.36) is not facet defining for P(G,K,S).

• if there exists an interval I ′ of contiguous slots with I ⊂ I ′ such that C defines also

a clique in the associated conflict graph He
I′ . This implies that inequality (2.36)

induced by clique C for the interval I is dominated by inequality (2.36) induced by

the same clique C for the interval I ′ given that {si + wk − 1, ..., sj} ⊂ I ′ for each

k ∈ C. As a result, inequality (2.36) is not facet defining for P(G,K,S).

Sufficiency.

Let F
He

I
C denote the face induced by inequality (2.36), that is

F
He

I
C = {(x, z) ∈ P(G,K,S) :

∑
vk∈C

xke +

sj∑
s=si+wk−1

zks = |C|+ 1}.
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Let denote inequality
∑

vk∈C xke +
∑sj

s=si+wk−1 z
k
s ≤ |C| + 1 by αx + βz ≤ λ. Let

µx + σz ≤ τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈
P(G,K,S) : µx+σz = τ}. Suppose that FHe

I
C ⊆ F . In order to prove that inequality∑

vk∈C xke+
∑sj

s=si+wk−1 z
k
s ≤ |C|+1 is facet defining for P(G,K,S), we need to show

that there exists ρ ∈ R and γ = (γ1, γ2, γ3) (such that γk,e1 ∈ R for all k′ ∈ K and e ∈
Ek′

0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−
1}) such that (µ, σ) = ρ(α, β) + γQ.

We first show that µk
e′ = 0 for each edge e′ ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K

with e ̸= e′ if k ∈ C.

Consider a demand k ∈ K and an edge e′ ∈ E \ (Ek
0 ∪Ek

1 ) with e ̸= e′ if k ∈ C. Let

S53 = (E53, S53) be the solution given by

a) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we let E53
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for each demand k ∈ C, we let E53
k be the set of edges involved in a shortest path

between ok and dk which uses edge e,

c) for one demand k′ from C, we select the slot sk′ = si + wk′ − 1 as last slot,

d) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I53i given by

I53i = [
⋂

kj∈D53
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] \ {si, ..., sj} if E53
ki
∩ E53

k′ ̸= ∅,

where D53
i = {kj ∈ {k1, ..., ki−1} ∩ C : E53

ki
∩ E53

kj
̸= ∅}.

e) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I53i given by

I53i = [
⋂

kj∈R53
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., sk−wk}∪{sk +wki , ..., s̄}]

if E53
ki
∩ (E53

k ∪ {e′}) ̸= ∅ or I53i =
⋂

kj∈R53
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R53
i = {kj ∈ {k1, ..., ki−1} ∪ C such that E53

ki
∩ E53

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R53
i ,

• and {ski −wki +1, ..., ski} ∩ {sk −wkj +1, ..., sk} = ∅ if E53
ki
∩ (E53

k ∪ {e′}) ̸= ∅
( we take into account the possibility of using edge e′ in the selected path E53

k

to route demand k in solution S53).

We let S53
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.
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S53 is feasible for the problem. The corresponding incidence vector (xS
53
, zS

53
)

belongs to F
He

I
C . Then we derive a solution S54 = (E54, S54) obtained from S53 by

adding edge e′ ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S53 which

means that E54
k = E53

k ∪ {e′}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S53 remain the same in solution S54, i.e.,
S54
k = S53

k for each k ∈ K, and E54
k′ = E53

k′ for each k′ ∈ K \ {k}. S54 is clearly

feasible for the problem. The corresponding incidence vector (xS
54
, zS

54
) belongs to

F
He

I
C . Hence, solutions S53 and S54 satisfy equation µx+ σz = τ . It follows that

µxS
53
+ σzS

53
= µxS

54
+ σzS

54
= µxS

53
+ µk

e′ + σzS
53
.

As a result, µk
e′ = 0.

In a similar way, we can show that

µk
e′ = 0, for all k ∈ K and e′ ∈ E \ (Ek

0 ∪ Ek
1 ) with e ̸= e′ if k ∈ C.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if vk ∈ C.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if vk /∈ C. Let S ′53 = (E′53, S′53) be the solution given by

a) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we let E′53
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for each demand k ∈ C, we let E′53
k be the set of edges involved in a shortest path

between ok and dk,

c) for one demand k′ from C, we select the slot sk′ = si + wk′ − 1 as last slot,

d) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′53i given by

I ′53i = [
⋂

kj∈D′53
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {si, ..., sj} if E′53

ki
∩ E′53

k′ ̸= ∅,

where D′53
i = {kj ∈ {k1, ..., ki−1} ∩ C : E′53

ki
∩ E′53

kj
̸= ∅}.

e) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′53i given by

I ′53i = [
⋂

kj∈R′53
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′53
ki
∩ E′53

k ̸= ∅ or I ′53i =
⋂

kj∈R′53
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,
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where R′53
i = {kj ∈ {k1, ..., ki−1} ∪ C : E′53

ki
∩ E′53

kj
̸= ∅}.

We let S′53
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′53 is clearly feasible for the problem. Hence, the corresponding incidence vector

(xS
′53
, zS

′53
) belongs to F

He
I

C . Then we derive solution S55 from S ′53 by adding slot

s′ as last slot to demand k in solution S ′53, i.e., S55
k = S′53

k ∪ {s′}. Solution S55 is

feasible for the problem. The corresponding incidence vector (xS
55
, zS

55
) belongs to

F
He

I
C . Hence, solutions S ′53 and S55 satisfy equation µx+ σz = τ . We have so

µxS
′53

+ σzS
′53

= µxS
55
+ σzS

55
= µxS

′53
+ σzS

′53
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj} if vk ∈ C.

Let prove that σk
s for all vk ∈ C and s ∈ {si + wk − 1, ..., sj} are equivalent.

Consider a demand k′ ∈ K and a slot s′ ∈ {si + wk′ − 1, ..., sj} with vk′ ∈ C. Let

S̃53 = (Ẽ53, S̃53) be the solution given by

a) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we let Ẽ53
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for each demand k ∈ C, we let Ẽ53
k be the set of edges involved in a shortest path

between ok and dk which uses edge e,

c) for one demand k” from C, we select the slot sk” = si + wk” + 1 as last slot,

d) for each demand ki ∈ C \ {k”} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ53i given by

Ĩ53i = [
⋂

kj∈D̃53
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]\{si, ..., sj}

if Ẽ53
ki
∩Ẽ53

k′ ̸= ∅ or Ĩ53i = [
⋂

kj∈D̃53
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄}]\{si, ..., sj} if not,

where D̃53
i = {kj ∈ {k1, ..., ki−1} ∩ C : Ẽ53

ki
∩ Ẽ53

kj
̸= ∅},

e) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ53i given by

Ĩ53i = [
⋂

kj∈R̃53
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if Ẽ53
ki
∩ Ẽ53

k′ ̸= ∅ or Ĩ53i =
⋂

kj∈R̃53
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where R̃53
i = {kj ∈ {k1, ..., ki−1} ∪ C : Ẽ53

ki
∩ Ẽ53

kj
̸= ∅}. As a result,
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• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R̃53
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if Ẽ53
ki
∩ Ẽ53

k′ ̸= ∅ ( we take
into account the possibility of adding slot s′ as a last slot in the selected last

slots S̃53
k′ to route demand k′ in solution S̃53).

We let S̃53
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S̃53 is clearly feasible for the problem given that it satisfies all the constraints of

cut formulation (2.2)-(2.10). Hence, the corresponding incidence vector (xS̃
53
, zS̃

53
)

belongs to F
He

I
C . Let S56 = (E56, S56) be a solution obtained from S̃53 by adding

slot s′ as last slot to demand k′ in S̃53, and modifying the last slots assigned to

demand k by adding a new last slot s̃ in S̃53 and removing the last slot s ∈ S̃53
k from

S̃53 with s ∈ {si + wk + 1, ..., sj} and s̃ /∈ {si + wk + 1, ..., sj} for demand k ∈ C

such that {s̃−wk + 1, ..., s̃} ∩ {s′ −wk′ + 1, ..., s′} = ∅ for each k′ ∈ K and s′ ∈ S56
k′

with E56
k ∩ E56

k′ ̸= ∅. Solution S56 is feasible for the problem. The corresponding

incidence vector (xS
56
, zS

56
) belongs to F

He
I

C . Hence, solutions S53 and S56 satisfy

equation µx+ σz = τ . We have so

µxS̃
53
+ σzS̃

53
= µxS

56
+ σzS

56
= µxS̃

53
+ σzS̃

53
+ σk′

s′ − σk
s + σk

s̃ .

Since σk
s̃ = 0 for s̃ /∈ {si + wk − 1, ..., sj} with vk ∈ C, it follows that σk′

s′ = σk
s .

In a similar way, we can show that

σk
s = σk′

s′ , for all pairs (vk, vk′) ∈ C

with s ∈ {si + wk − 1, ..., sj} and s′ ∈ {si + wk′ − 1, ..., sj}. We re-do the same

procedure for each two slots s, s′ ∈ {si +wk − 1, ..., sj} for each demand k ∈ K with

vk ∈ C such that

σk
s = σk

s′ , for all vk ∈ C and s, s′ ∈ {si + wk − 1, ..., sj}.

Let prove now that µk
e for all k ∈ K with vk ∈ C are equivalent. Consider a

demand k′ ∈ K with vk′ in C such that e /∈ E57
k′ . For this, we derive a solution

S”58 = (E”58, S”58) from S53 by we derive a solution S58 = (E58, S58) from S53 by

a) the paths assigned to the demands K \ {k, k′} in S53 remain the same in S58 (i.e.,

E58
k” = E53

k” for each k” ∈ K \ {k, k′}),

b) without modifying the last slots assigned to the demands K in S53, i.e., S53
k = S58

k

for each demand k ∈ K,
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c) modifying the path assigned to demand k′ in S53 from E53
k′ to a path E58

k′ passed

through edge e (i.e., e ∈ E58
k′ ) with vk′ ∈ C such that {s−wk +1, ..., s}∩{s′−wk′ +

1, ..., s′} = ∅ for each k ∈ K and s′ ∈ S53
k′ and s ∈ S53

k with E53
k ∩ E58

k′ ̸= ∅,

d) modifying the path assigned to demand k in S53 with e ∈ E53
k and vk ∈ C from E53

k

to a path E58
k without passing through edge e (i.e., e /∈ E58

k ) and {s−wk+1, ..., s}∩
{s′ − wk” + 1, ..., s′} = ∅ for each k” ∈ K \ {k, k′} and s ∈ S53

k and s′ ∈ S53
k” with

E53
k” ∩E58

k ̸= ∅, and {s−wk +1, ..., s}∩ {s′−wk′ +1, ..., s′} = ∅ for each s ∈ S53
k and

s′ ∈ S53
k′ with E58

k” ∩ E58
k ̸= ∅.

Solution S”58 is feasible for the problem. The corresponding incidence vector (xS”
58
, zS”

58
)

belongs to F
He

I
C . Hence, solutions S53 and S”58 satisfy equation µx + σz = τ . We

then obtain that

µxS
53
+ σzS

53
= µxS

58
+ σzS

58
= µxS

53
+ σzS

53
+ µk′

e − µk
e

+
∑

e”∈E”58
k′ \{e}

µk′
e” −

∑
e”∈E53

k′

µk′
e” +

∑
e”∈E”58k

µk
e” −

∑
e”∈E53

k \{e}

µk
e”.

Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪ Ek
1 ) with vk /∈ C, it follows that

µk′
e = µk

e .

In a similar way, we can show that

µk
e = µk′

e , for all pairs (vk, vk′) ∈ C.

Furthermore, let prove that all σk
s and µk

e are equivalent for all k ∈ C and s ∈
{si + wk − 1, ..., sj}.
Now let us consider a demand k′ ∈ K with vk′ ∈ C, a solution S59 = (E59, S59)

obtained from S53 as below

a) the paths assigned to the demands K \ {k′} in S53 remain the same in S59 (i.e.,

E59
k” = E53

k” for each k” ∈ K \ {k′}),

b) without modifying the last slots assigned to the demands K \ {k} in S53, i.e., S53
k” =

S59
k” for each demand k” ∈ K \ {k},

c) modifying the set of last slots assigned to demand k′ in S53 from S53
k′ to S59

k′ such

that S59
k′ ∩ {si + wk′ − 1, ..., sj} = ∅.

Hence, there are |C| − 1 demands from C that are covered by the interval I (i.e.,

all the demands in C \ {k′}), and two demands {k, k′} from C that use edge e

in solution S59. Solution S59 is then feasible for the problem. The corresponding
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incidence vector (xS
59
, zS

59
) belongs to F

He
I

C . Hence, solutions S̃57 and S59 satisfy

equation µx+ σz = τ . We then obtain that

µxS̃
57
+ σzS̃

57
= µxS

59
+ σzS

59
= µxS̃

57
+ σzS̃

57
+ µk′

e − σk′
s +

∑
e”∈E59

k′ \{e}

µk′
e” −

∑
e”∈Ẽ57

k′

µk′
e”.

Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪Ek
1 ) with e ̸= e” if vk ∈ C, it follows

that µk′
e = σk′

s .

In a similar way, we can show that

µk
e = σk

s , for all vk ∈ C and s ∈ {si + wk − 1, ..., sj}.

Based on this, and given that all µk
e are equivalent for all vk ∈ C, and that σk

s are

equivalent for all vk ∈ C and s ∈ {si + wk′ − 1, ..., sj}, we obtain that

µk
e = σk′

s , for all k, k′ ∈ C and s ∈ {si + wk′ − 1, ..., sj}.

Consequently,

µk
e = σk′

s = ρ, for all k, k′ ∈ C and s ∈ {si + wk′ − 1, ..., sj}.

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k′ ∈ K and e′ ∈ E

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ ∈ C and e′ = e,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1}

ρ if vk ∈ C and s ∈ {si + wk − 1, ..., sj},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.
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Theorem 2.4.7. Consider an edge e ∈ E. Let I = [si, sj ] be an interval of con-

tiguous slots. Let C be a clique in the conflict graph He
I with |C| ≥ 3,

∑
vk∈C wk ≤

s̄−
∑

k′∈Ke\C wk′, and |{si+wk−1, ..., sj}| ≥ wk for each demand k with vk ∈ C∪Ce.

Let Ce ⊆ Ke \C be a clique in the conflict graph He
I such that wk +wk′ ≥ |I|+1 for

each vk ∈ C and vk′ ∈ Ce. Then, inequality (2.37) is facet defining for P(G,K,S)
if and only if

a) there does not exist a demand k” ∈ Ke \Ce with wk +wk” ≥ |I|+1 for each vk ∈ C,

and wk′ + wk” ≥ |I|+ 1 for each vk′ ∈ Ce,

b) and there does not exist an interval I ′ of contiguous slots with I ⊂ I ′ such that

C ∪ Ce defines also a clique in the associated conflict graph He
I′.

Proof. Neccessity.

• if there exists a demand k” ∈ Ke \ Ce with wk + wk” ≥ |I|+ 1 for each vk ∈ C, and

wk′ + wk” ≥ |I| + 1 for each vk′ ∈ Ce. Then, inequality (2.37) is dominated by its

lifted with C ′
e = Ce∪{k”}. Moreover, if |{si+wk− 1, ..., sj}| < wk for each demand

k with vk ∈ C ∪ Ce, then inequality (2.37) is then dominated by inequality (2.25)

for a set of demands K̃ = {k ∈ K such that vk ∈ C} and slot s = si+ min
k∈C∪Ce

wk +1

over edge e. As a result, inequality (2.37) is not facet defining for P(G,K,S).

• if there exists an interval I ′ of contiguous slots with I ⊂ I ′ such that C ∪Ce defines

also a clique in the associated conflict graph He
I′ . This implies that inequality (2.37)

induced by clique C∪Ce for the interval I is dominated by inequality (2.37) induced

by the same clique C ∪Ce for the interval I ′ given that {si +wk − 1, ..., sj} ⊂ I ′ for

each k ∈ C ∪ Ce. As a result, inequality (2.37) is not facet defining for P(G,K,S).

Sufficiency.

Let F
′He

I
C be the face induced by inequality (2.37), that is

F
′He

I
C = {(x, z) ∈ P(G,K,S) :

∑
vk∈C

xke +

sj∑
s=si+wk−1

zks +
∑

vk′∈Ce

sj∑
s′=si+wk′−1

zk
′

s′ = |C|+ 1}.

We denote inequality
∑

vk∈C xke+
∑sj

s=si+wk−1 z
k
s+

∑
vk′∈Ce

∑sj
s′=si+wk′−1 z

k′
s′ ≤ |C|+1

by αx+ βz ≤ λ. Let µx+ σz ≤ τ be a facet defining inequality for P(G,K,S) and
F = {(x, z) ∈ P(G,K,S) : µx+ σz = τ}. Suppose that F

′He
I

C ⊆ F . We use the same

proof of the facial structure done for inequality (2.36) in the proof of theorem 2.4.6 to

prove that inequality
∑

vk∈C xke+
∑sj

s=si+wk−1 z
k
s+

∑
vk′∈Ce

∑sj
s′=si+wk′−1 z

k′
s′ ≤ |C|+1

is facet defining for P(G,K,S). We first prove that F
′He

I
C is a proper face based on

solution S53 defined in the proof of theorem 2.4.6 which stills feasible such that
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its incidence vector (xS
53
, zS

53
) belongs to F

′He
I

C . Furthermore, and based on the

solutions S53 to S59 with corresponding incidence vector (xS
53
, zS

53
) to (xS

59
, zS

59
)

belong to F
′He

I
C , we show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ. For this,

we show that

a) σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with s /∈ {si +wk − 1, ..., sj} if

vk ∈ C ∪ Ce,

b) and σk
s are equivalent for all vk ∈ C ∪ Ce and s ∈ {si + wk − 1, ..., sj},

c) and µk
e′ = 0 for all demand k ∈ K and edge e ∈ E \ (Ek

0 ∪Ek
1 ) with e ̸= e′ if vk ∈ C,

d) and µk
e are equivalent for the set of demands in C,

e) and σk′
s and µk

e are equivalent for all vk ∈ C and vk′ ∈ C ∪ Ce and s ∈ {si + wk′ −
1, ..., sj}.

At the end, we obtain that for each k′ ∈ K and e′ ∈ E

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ ∈ C and e′ = e,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1}

ρ if vk ∈ C ∪ Ce and s ∈ {si + wk − 1, ..., sj},

0 otherwise.

As a result, we have (µ, σ) = ρ(α, β) + γQ.

2.4.4 Interval-Clique Inequalities

We have looked at the definition of inequality (2.36), we detected that there may

exist some cases that we can face which are not covered by inequality (2.36). For

this, we provide the following inequality and its generalization.

Proposition 2.4.12. Consider an interval of contiguous slots I = [si, sj ] in S with

si ≤ sj − 1. Let k, k′ be a pair of demands in K with Ek
1 ∩ Ek′

1 ̸= ∅, and wk ≤ |I|.
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Then, the inequality

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1, (2.38)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| and 2wk′ >

|I|.

Proof. It is trivial given that the interval I = [si, sj ] cannot cover the two demands

k, k′ shared an essential edge with total sum of number of slots exceeds |I|. Further-
more, inequality (2.38) is a particular case of inequality (2.36) for K̃ = {k, k′} over
each edge e ∈ Ek

1 ∩ Ek′
1 . However, it will be used for a generalized inequality using

the following conflict graph.

Definition 2.4.5. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1. Consider the conflict graph HE
I defined as follows. For each demand

k ∈ K with wk ≤ |I|, consider a node vk in HE
I . Two nodes vk and vk′ are linked

by an edge in HE
I if wk + wk′ > |I| and Ek

1 ∩ Ek′
1 ̸= ∅.

Proposition 2.4.13. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and C be a clique in the conflict graph HE
I with |C| ≥ 3. Then, the

inequality ∑
vk∈C

sj∑
s=si+wk−1

zks ≤ 1, (2.39)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| for each

vk ∈ C.

Proof. It is trivial given the definition of clique set in the conflict graph HE
I such

that for all two linked node vk and vk′ in HE
I , we know from inequality (2.38)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1.

By adding the previous inequalities for all two linked node vk and vk′ in the clique

set C, and by recurrence procedure we obtain that for all C ′ ⊆ C with |C ′| = |C|−1∑
vk∈C′

sj∑
s=si+wk−1

zks ≤ 1.

By adding the previous inequalities for all C ′ ⊆ C with |C ′| = |C| − 1, we get∑
C′⊆C

|C′|=|C|−1

∑
vk∈C′

sj∑
s=si+wk−1

zks ≤
∑
C′⊆C

|C′|=|C|−1

1.
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Note that for each demand k with vk ∈ C, the sum
∑sj

s=si+wk−1 z
k
s appears (

( |C|
|C|−1

)
−

1) = |C| − 1 times in the previous sum. It follows that

∑
vk∈C

sj∑
s=si+wk−1

(|C| − 1)zks ≤ |C|.

By dividing the two sides of the previous sum by |C| − 1, we have so

∑
vk∈C

sj∑
s=si+wk−1

zks ≤
⌊
|C|
|C| − 1

⌋
⇒

∑
vk∈C

sj∑
s=si+wk−1

zks ≤ 1 given that

⌊
|C|
|C| − 1

⌋
= 1.

We conclude at the end that inequality (2.39) is valid for Q(G,K,S). Moreover, it

is valid for P(G,K,S) if 2wk > |I| for each vk ∈ C.

Theorem 2.4.8. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and C be a clique in the conflict graph HE
I with |C| ≥ 3, and |{si +

wk−1, ..., sj}| ≥ wk for each demand k with vk ∈ C. Then, inequality (2.39) is facet

defining for P(G,K,S) if and only if

a) C is a maximal clique in the conflict graph HE
I ,

b) and there does not exist an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′

with

• wk + wk′ ≥ |I ′| for each k, k′ ∈ C,

• wk ≤ |I ′| for each k ∈ C.

Proof. Neccessity.

We distinguish two cases

a) if there exists a clique C ′ that contains all the demands k ∈ C. Then, inequality

(2.39) induced by clique C is dominated by another inequality (2.39) induced by

clique C ′. Hence, inequality (2.39) cannot be facet defining for P(G,K,S).

b) if there exists an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′ with

• wk + wk′ ≥ |I ′| for each k, k′ ∈ C,

• wk ≤ |I ′| for each k ∈ C.

This means that inequality (2.39) induced by clique C for the interval I is dominated

by inequality (2.39) induced by clique C for the interval I ′. Hence, inequality (2.39)

cannot be facet defining for P(G,K,S).
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Sufficiency.

Let F
HE

I
C be the face induced by inequality (2.39), that is

F
HE

I
C = {(x, z) ∈ P(G,K,S) :

∑
vk∈C

sj∑
s=si+wk−1

zks = 1}.

Denote inequality
∑

vk∈C
∑sj

s=si+wk−1 z
k
s ≤ 1 by αx+βz ≤ λ. Let µx+σz ≤ τ be a

facet defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx+σz = τ}.
Suppose that F

HE
I

C ⊆ F . In order to prove that inequality
∑

vk∈C
∑sj

s=si+wk−1 z
k
s ≤

1 is facet defining for P(G,K,S), we need to show that there exist ρ ∈ R and

γ = (γ1, γ2, γ3) (such that γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈

K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) =

ρ(α, β) + γQ.

We first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S60 = (E60, S60) be

the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E60
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) for one demand k′ from C, we select the slot sk′ = si + wk′ − 1,

c) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I60i given by

I60i =
⋂

kj∈D60
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} \ {si, ..., sj},

where D60
i = {kj ∈ {k1, ..., ki−1} ∩ C : E60

ki
∩ E60

kj
̸= ∅},

d) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I60i given by

I60i = [
⋂

kj∈R60
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk +wki
, ..., s̄}]

if E60
ki
∩ (E60

k ∪ {e}) ̸= ∅ or I60i =
⋂

kj∈R60
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R60
i = {kj ∈ {k1, ..., ki−1} ∪ C such that E60

ki
∩ E60

kj
̸= ∅}.

We let S60
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.
S60 is feasible for the problem, and its incidence vector (xS

60
, zS

60
) belongs to F

HE
I

C .

Then we derive a solution S61 = (E61, S61) obtained from S60 by adding edge

e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S60 which means that
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E61
k = E60

k ∪ {e}. The last slots assigned to the demands K, and paths assigned the

set of demands K \ {k} in S60 remain the same in solution S61, i.e., S61
k = S60

k for

each k ∈ K, and E61
k′ = E60

k′ for each k′ ∈ K \ {k}. S61 is clearly feasible for the

problem. The corresponding incidence vector (xS
61
, zS

61
) belongs to F

HE
I

C . Hence,

solutions S60 and S61 satisfy equation µx+ σz = τ . It follows that

µxS
60
+ σzS

60
= µxS

61
+ σzS

61
= µxS

60
+ µk

e + σzS
60
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if vk ∈ C.

Consider a demand k ∈ K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if vk ∈ C. Let S ′60 = (E′60, S′60) be the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′60
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) for one demand k′ from C, we select the slot sk′ = si + wk − 1,

c) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′60i given by

I ′60i =
⋂

kj∈D′60
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} \ {si, ..., sj},

where D′60
i = {kj ∈ {k1, ..., ki−1} ∪ C : E′60

ki
∩ E′60

kj
̸= ∅},

d) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′60i given by

I ′60i = [
⋂

kj∈R′60
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′60
ki
∩ E′60

k ̸= ∅ or I ′60i =
⋂

kj∈R′60
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R′60
i = {kj ∈ {k1, ..., ki−1} ∪ C such that E60

ki
∩ E60

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R′60
i ,

• and {ski −wki +1, ..., ski}∩{s′−wk +1, ..., s′} = ∅ if E′60
ki
∩E′60

k ̸= ∅ ( we take
into account the possibility of adding slot s′ as a last slot in the selected last

slots S′60
k to route demand k in solution S ′60).
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We let S′60
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′60 is feasible for the problem. Hence, the corresponding incidence vector (xS
′60
, zS

′60
)

belongs to F
HE

I
C . Then consider the solution S62 obtained from S ′60 by adding slot

s′ as last slot to demand k in S ′60. Solution S62 is feasible for the problem. The

corresponding incidence vector (xS
62
, zS

62
) belongs to F

HE
I

C . Hence, solutions S ′60

and S62 satisfy equation µx+ σz = τ . We have so

µxS
′60

+ σzS
′60

= µxS
62
+ σzS

62
= µxS

′60
+ σzS

′60
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj} if vk ∈ C.

Let prove that σk
s for all vk ∈ C and s ∈ {si+wk−1, ..., sj} are equivalent. Consider

a demand k′ ∈ K and a slot s′ ∈ {si + wk′ − 1, ..., sj} with vk′ ∈ C, and a solution

S̃60 = (Ẽ60, S̃60) given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let Ẽ60
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) for one demand k from C, we select the slot sk = si + wk − 1,

c) for each demand ki ∈ C \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ60i given by

Ĩ60i = [
⋂

kj∈D̃60
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]\{si, ..., sj}

if Ẽ60
ki
∩Ẽ60

k′ ̸= ∅ or Ĩ60i = [
⋂

kj∈D̃60
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]\{si, ..., sj} if not,

where D̃60
i = {kj ∈ {k1, ..., ki−1} ∩ C : D̃60

ki
∩ D̃60

kj
̸= ∅},

d) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ60i given by

Ĩ60i = [
⋂

kj∈R̃60
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk′}∪{s′+wki , ..., s̄}]

if Ẽ60
ki
∩ Ẽ60

k′ ̸= ∅ or Ĩ60i =
⋂

kj∈R̃60
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R̃60
i = {kj ∈ {k1, ..., ki−1} ∪ C such that D̃60

ki
∩ D̃60

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R̃60
i ,
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• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if Ẽ60
ki
∩ Ẽ60

k′ ̸= ∅ ( we take
into account the possibility of adding slot s′ as a last slot in the selected last

slots S̃60
k′ to route demand k′ in solution S̃60).

We let S̃60
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S̃60 is feasible for the problem. Hence, the corresponding incidence vector (xS̃
60
, zS̃

60
)

belongs to F
HE

I
C . Then consider the solution S63 obtained from S̃60 by adding

slot s′ as last slot to demand k′, and modifying the last slots assigned to de-

mand k by adding a new last slot s̃ and removing the last slot s ∈ S̃60
k with

s ∈ {si +wk + 1, ..., sj} and s̃ /∈ {si +wk + 1, ..., sj} for demand k ∈ K with vk ∈ C

such that S63
k = (S̃60

k \{s})∪{s̃} such that {s̃−wk+1, ..., s̃}∩{s′−wk′+1, ..., s′} = ∅
for each k′ ∈ K and s′ ∈ S63

k′ with E63
k ∩ E63

k′ ̸= ∅. Solution S63 is feasible for the

problem. The corresponding incidence vector (xS
63
, zS

63
) belongs to F

HE
I

C . Hence,

solutions S̃60 and S63 satisfy equation µx+ σz = τ . We have so

µxS̃
60
+ σzS̃

60
= µxS

63
+ σzS

63
= µxS̃

60
+ σzS̃

60
+ σk′

s′ − σk
s + σk

s̃ .

Since σk
s̃ = 0 for s̃ /∈ {si + wk − 1, ..., sj} with vk ∈ C, it follows that σk′

s′ = σk
s .

In a similar way, we can show that

σk
s = σk′

s′ , for all pairs (vk, vk′) ∈ C,

with s ∈ {si + wk − 1, ..., sj} and s′ ∈ {si + wk′ − 1, ..., sj}. We re-do the same

procedure for each two slots s, s′ ∈ {si +wk − 1, ..., sj} for each demand k ∈ K with

vk ∈ C such that

σk
s = σk

s′ , for all vk ∈ C and s, s′ ∈ {si + wk − 1, ..., sj}.

Consequently, we obtain that σk
s = ρ for all vk ∈ C and s ∈ {si + wk − 1, ..., sj}.

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k ∈ K and e ∈ E

µk
e =


γk,e1 if e ∈ Ek

0 ,

γk,e2 if e ∈ Ek
1 ,

0 otherwise,
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and for each k ∈ K and s ∈ S

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1}

ρ if vk ∈ C and s ∈ {si + wk − 1, ..., sj},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

Let N(v) denote the set of neighbors of node v in a given graph.

Theorem 2.4.9. Consider an interval of contiguous slots I = [si, sj ], and a pair of

demands k, k′ ∈ K with (vk, vk′) in GE
I . Then, inequality (2.38) is facet defining for

P(G,K,S) if and only if

a) N(vk) ∩N(vk′) = ∅ in the conflict graph HE
I ,

b) and there does not exist an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′

with wk + wk′ ≥ |I ′|, wk ≤ |I ′|, and wk′ ≤ |I ′|.

Proof. Neccessity.

We distinguish two cases:

a) if N(vk)∩N(vk′) ̸= ∅ in the conflict graph HE
I , this means that there exists a clique

C in the conflict graph HE
I of cardinality equals to |C| ≥ 3 with k, k′ ∈ C. As

a result, inequality (2.38) is dominated by inequality (2.39) induced by clique C.

Hence, inequality (2.38) is not facet defining for P(G,K,S).

b) if there exists an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′ with

wk +wk′ ≥ |I ′|, wk ≤ |I ′|, and wk′ ≤ |I ′|. This means that inequality (2.38) induced

by the two demands k, k′ for the interval I is dominated by inequality (2.38) induced

by the same demands for the interval I ′.

Sufficiency.

We use the same proof of theorem 2.4.8 for a clique C = {vk, vk′} in the conflict

graph HE
I .

2.4.5 Interval-Odd-Hole Inequalities

Proposition 2.4.14. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and H be an odd-hole H in the conflict graph HE
I with |H| ≥ 5. Then,

the inequality ∑
vk∈H

sj∑
s=si+wk−1

zks ≤
|H| − 1

2
, (2.40)
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is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| for each

vk ∈ H.

Proof. It is trivial given the definition of odd-hole set in the conflict graph HE
I . We

strengthen the proof as belows. For each pair of nodes (vk, vk′) linked in H by an

edge, we know that
∑sj

s=si+wk−1 z
k
s +

∑sj
s′=si+wk′−1 z

k′
s′ ≤ 1. Given that H is an

odd-hole which means that we have |H| − 1 pair of nodes (vk, vk′) linked in H, and

by doing a sum for all pairs of nodes (vk, vk′) linked in H, it follows that∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |H| − 1.

where E(H) denotes the set of edges in the sub-graph of the conflict graph HE
I

induced by H. Taking into account that each node vk in H has two neighbors in

H, this implies that
∑sj

s=si+wk−1 z
k
s appears twice in the previous inequality. As a

result, ∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ =
∑
vk∈H

2

sj∑
s=si+wk−1

zks ≤ |H| − 1.

By dividing the two sides of the previous sum by 2, it follows that∑
vk∈H

sj∑
s=si+wk−1

zks ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that inequality (2.40) is valid for Q(G,K,S). Moreover, it

is valid for P(G,K,S) if 2wk > |I| for each vk ∈ H.

Inequality (2.40) can be strengthened without modifying its right-hand side by

combining inequalities (2.39) and (2.40) as follows.

Proposition 2.4.15. Consider an interval of contiguous slots I = [si, sj ] ⊆ S with

si ≤ sj − 1. Let H be an odd-hole H in the conflict graph HE
I , and C be a clique in

the conflict graph HE
I with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) and the nodes (vk, vk′) are linked in HE
I for all vk ∈ H and vk′ ∈ C.

Then, the inequality∑
vk∈H

sj∑
s=si+wk−1

zks +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ ≤
|H| − 1

2
, (2.41)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if 2wk > |I| for each

vk ∈ C ∪H.
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Proof. It is trivial given the definition of odd-hole set and clique set in the conflict

graph HE
I such that if

∑sj
s′=si+wk′−1 z

k′
s′ = 1 for vk′ ∈ C, it forces the quantity∑

vk∈H
∑sj

s=si+wk−1 z
k
s to be equal to 0. Otherwise, we know from inequality (2.40)

that the sum
∑

vk∈H
∑sj

s=si+wk−1 z
k
s is always smaller than |H|−1

2 . We strengthen

the proof as belows. For each pair of nodes (vk, vk′) linked in H by an edge, we

know that
∑sj

s=si+wk−1 z
k
s +

∑sj
s′=si+wk′−1 z

k′
s′ +

∑
vk”∈C

∑sj
s”=si+wk”−1 z

k”
s” ≤ 1 given

that all the nodes vk” ∈ C are linked with the nodes vk and vk′ . Given that H is an

odd-hole which means that we have |H| − 1 pair of nodes (vk, vk′) linked in H, and

by doing a sum for all pairs of nodes (vk, vk′) linked in H, it follows that

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ +
∑

vk”∈C

sj∑
s”=si+wk”−1

zk”s” ≤ |H| − 1.

Taking into account that each node vk in H has two neighbors in H, this implies that∑sj
s=si+wk−1 z

k
s appears twice in the previous inequality. The sum

∑
vk”∈C

∑sj
s”=si+wk”−1 z

k”
s”

appears |H| − 1 times in in the previous inequality. As a result,

∑
(vk,vk′ )∈E(H)

sj∑
s=si+wk−1

zks +

sj∑
s′=si+wk′−1

zk
′

s′ + (|H| − 1)
∑

vk”∈C

sj∑
s”=si+wk”−1

zk”s” ≤ |H| − 1

⇒
∑
vk∈H

2

sj∑
s=si+wk−1

zks + (|H| − 1)
∑

vk”∈C

sj∑
s”=si+wk”−1

zk”s” ≤ |H| − 1.

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that∑
vk∈H

sj∑
s=si+wk−1

zks +

⌊
|H| − 1

2

⌋ ∑
vk”∈C

sj∑
s”=si+wk”−1

zk”s” ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
.

We conclude at the end that inequality (2.41) is valid for Q(G,K,S). Moreover, it

is valid for P(G,K,S) if 2wk > |I| for each vk ∈ C ∪H.

Theorem 2.4.10. Let H be an odd-hole in the conflict graph HE
I with |H| ≥ 5 and

2wk > |I| for each vk ∈ H. Then, inequality (2.40) is facet defining for P(G,K,S)
if and only if

a) for each node vk′ /∈ H in HE
I , there exists a node vk ∈ H such that the induced graph

HE
I ((H \ {vk}) ∪ {vk′}) does not contain an odd-hole H ′ = (H \ {vk}) ∪ {vk′},

b) and there does not exist a node vk′ /∈ H in HE
I such that vk′ is linked with all nodes

vk ∈ H,

c) and there does not exist an interval I ′ of contiguous slots with I ⊂ I ′ such that H

defines also an odd-hole in the associated conflict graph HE
I′ .

99



Proof. Neccessity.

We distinguish the following cases:

a) if for a node vk′ /∈ H in HE
I , there exists a node vk ∈ H such that the induced graph

HE
I ((H \ {vk}) ∪ {vk′}) contains an odd-hole H ′ = (H \ {vk}) ∪ {vk′}. This implies

that inequality (2.40) can be dominated by doing some lifting procedures using the

following valid inequalities

∑
vk∈H

sj∑
s′=si+wk−1

zks′ ≤
|H| − 1

2
, and

∑
vk′∈H′

sj∑
s′=si+wk′−1

zk
′

s′ ≤
|H| − 1

2
,

as follows

sj∑
s′=si+wk−1

zks′ +

sj∑
s′=si+wk′−1

zk
′

s′ + 2
∑

vk”∈H\{k,k′}

sj∑
s”=si+wk”−1

zk”s” ≤ |H| − 1.

By adding the sum
∑sj

s′=si+wk′−1 z
k′
s′ to the previous inequality, we obtain

sj∑
s′=si+wk−1

zks′ + 2

sj∑
s′=si+wk′−1

zk
′

s′ + 2
∑

vk”∈H\{k,k′}

sj∑
s”=si+wk”−1

zk”s” ≤ |H| − 1 +

sj∑
s′=si+wk′−1

zk
′

s′ .

Since
∑sj

s′=si+wk′−1 z
k′
s′ ≤ 1, it follows that

sj∑
s′=si+wk−1

zks′ + 2

sj∑
s′=si+wk′−1

zk
′

s′ + 2
∑

vk”∈H\{k,k′}

sj∑
s”=si+wk”−1

zk”s” ≤ |H|.

By dividing the last inequality by 2, we obtain that

sj∑
s′=si+wk−1

1

2
zks′ +

sj∑
s′=si+wk′−1

zk
′

s′ +
∑

vk”∈H\{k,k′}

sj∑
s”=si+wk”−1

zk”s” ≤
⌊
|H|
2

⌋
.

Given that H ′ = (H \ {k}) ∪ {k′} such that |H ′| = |H|, and |H| is an odd number

which implies that

⌊
|H|
2

⌋
= |H|−1

2 . As a result

sj∑
s′=si+wk−1

1

2
zks′ +

∑
vk′∈H′

sj∑
s”=si+wk′−1

zk
′

s” ≤
|H ′| − 1

2
.

That which was to be demonstrated.

b) if there exists a node vk′ ∈ H in HE
I such that vk′ is linked with all nodes vk ∈ H.

As a result, inequality (2.40) is dominated by the following inequality

∑
vk∈H

sj∑
s′=si+wk−1

zks′ +
|H| − 1

2

sj∑
s′=si+wk′−1

zk
′

s′ ≤
|H| − 1

2
.
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c) if there exists an interval I ′ of contiguous slots with I ⊂ I ′ such that H defines also

an odd-hole in the associated conflict graph HE
I′ . This implies that inequality (2.40)

induced by odd-hole H for the interval I is dominated by inequality (2.40) induced

by the same odd-hole H for the interval I ′ given that {si + wk − 1, ..., sj} ⊂ I ′ for

each k ∈ H. As a result, inequality (2.40) is not facet defining for P(G,K,S).

If no one of these two cases is verified, inequality (2.40) can never be dominated by

another inequality without changing its right-hand side.

Sufficiency.

Let F
HE

I
H be the face induced by inequality (2.40), that is

F
HE

I
H = {(x, z) ∈ P(G,K,S) :

∑
vk∈H

sj∑
s=si+wk−1

zks =
|H| − 1

2
}.

We denote inequality
∑

vk∈H
∑sj

s=si+wk−1 z
k
s ≤

|H|−1
2 by αx+βz ≤ λ. Let µx+σz ≤

τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx+

σz = τ}. Suppose that FHE
I

H ⊆ F . In order to prove that inequality
∑

vk∈H
∑sj

s=si+wk−1 z
k
s ≤

|H|−1
2 is facet defining for P(G,K,S), we will show that there exist ρ ∈ R and

γ = (γ1, γ2, γ3) (such that γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈

K and e ∈ Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) =

ρ(α, β) + γQ.

We first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S64 = (E64, S64) be

the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E64
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

c) for each demand ki ∈ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index ski in

the set of slots I64i given by

I64i = [
⋂

kj∈L64
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj}.

where L64
i = {kj ∈ {k1, ..., ki−1} ∪ H̃ : E64

ki
∩ E64

kj
̸= ∅},

d) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I64i given by

I64i =
⋂

kj∈D64
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} \ {si + wki − 1, ..., sj},
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where D64
i = {kj ∈ {k1, ..., ki−1} ∩H : E64

ki
∩ E64

kj
̸= ∅}. We let S64

ki
= {ski} be the

set of last slots assigned to demand ki,

e) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I64i given by

I64i = [
⋂

kj∈R64
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., sk−wk}∪{sk +wki , ..., s̄}]

if E64
ki
∩ (E64

k ∪ {e}) ̸= ∅ or I64i =
⋂

kj∈R64
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R64
i = {kj ∈ {k1, ..., ki−1} ∪ H such that E64

ki
∩ E64

kj
̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R64
i ,

• and {ski −wki + 1, ..., ski} ∩ {sk −wkj + 1, ..., sk} = ∅ if E64
ki
∩ (E64

k ∪ {e′}) ̸= ∅ ( we
take into account the possibility of using edge e′ in the selected path E64

k to route

demand k in solution S64).

We let S64
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S64 is feasible for the problem. Hence, the corresponding incidence vector (xS
64
, zS

64
)

belongs to F
HE

I
H . Then we derive a solution S65 = (E65, S65) obtained from S64 by

adding edge e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S64 which

means that E65
k = E64

k ∪ {e}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S64 remain the same in solution S65, i.e.,
S65
k = S64

k for each k ∈ K, and E65
k′ = E64

k′ for each k′ ∈ K \ {k}. S65 is clearly

feasible for the problem. The corresponding incidence vector (xS
65
, zS

65
) belongs to

F
HE

I
H . Hence, solutions S64 and S65 satisfy equation µx+ σz = τ . It follows that

µxS
64
+ σzS

64
= µxS

65
+ σzS

65
= µxS

64
+ µk

e + σzS
64
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if vk ∈ H.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if vk ∈ H. Let S ′64 = (E′64, S′64) be the solution given by
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a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′64
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

c) for each demand ki from H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′64i given by

I ′64i = [
⋂

kj∈D′64
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] ∩ {si + wki − 1, ..., sj},

where D′64
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E′64

ki
∩ E′64

kj
̸= ∅},

d) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′64i given by

I ′64i =
⋂

kj∈D”64i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} \ {si + wki − 1, ..., sj},

where D”64i = {kj ∈ {k1, ..., ki−1} ∩H : E”64ki ∩ E”64kj ̸= ∅},

e) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′64i given by

I ′64i = [
⋂

kj∈R′64
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′64
ki
∩ E′64

k ̸= ∅ or I ′64i =
⋂

kj∈R′64
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R′64
i = {kj ∈ {k1, ..., ki−1} ∪H such that E′64

ki
∩ E′64

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R′64
i ,

• and {ski −wki +1, ..., ski} ∩ {s′−wk +1, ..., s′} = ∅ if E′64
ki
∩E′64

k ̸= ∅ ( we take into

account the possibility of adding slot s′ as a last slot in the selected last slots S′64
k

to route demand k in solution S ′64).

We let S′64
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′64 is feasible for the problem. Hence, the corresponding incidence vector (xS
′64
, zS

′64
)

belongs to F
HE

I
H . Then consider the solution S66 obtained from S ′64 by adding slot

s′ as last slot to demand k in S ′64. Solution S66 is clearly feasible for the problem.

The corresponding incidence vector (xS
66
, zS

66
) belongs to F

HE
I

H . Hence, solutions

S ′64 and S66 satisfy equation µx+ σz = τ . We have so

µxS
′64

+ σzS
′64

= µxS
66
+ σzS

66
= µxS

′64
+ σzS

′64
+ σk

s′ .
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Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj} if vk ∈ H.

Let prove that σk′
s′ for all vk′ ∈ H and s′ ∈ {si + wk′ − 1, ..., sj} are equivalent.

Consider a demand k′ ∈ K with vk′ ∈ H and a slot s′ ∈ {si + wk′ − 1, ..., sj}. Let

S66 = (E66, S66) be the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E66
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

c) for each demand ki from H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I66i given by

I66i = [
⋂

kj∈L66
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj}.

where L66
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E66

ki
∩ E66

kj
̸= ∅},

d) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I66i given by

I66i =
⋂

kj∈D66
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} \ {si + wki − 1, ..., sj},

where D66
i = {kj ∈ {k1, ..., ki−1} ∩H : E66

ki
∩ E66

kj
̸= ∅},

e) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I66i given by

I66i = [
⋂

kj∈R66
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E66
ki
∩ E66

k′ ̸= ∅ or I66i =
⋂

kj∈R66
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where R66
i = {kj ∈ {k1, ..., ki−1} ∪H such that E66

ki
∩ E66

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R66
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk′ + 1, ..., s′} = ∅ if E66
ki
∩E66

k′ ̸= ∅ ( we take into

account the possibility of adding slot s′ as a last slot in the selected last slots S66
k′ to

route demand k′ in solution S66).

We let S66
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.
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S66 is feasible for the problem. Hence, the corresponding incidence vector (xS
66
, zS

66
)

belongs to F
HE

I
H . Based on this, we construct a feasible solution S67 = (E67, S67)

obtained from S66 as belows

a) without changing the established paths for the demands K \ K̃ in solution S66, i.e.,
E67

k = E66
k for each demand k ∈ K \ K̃,

b) remove the last slot s̃ totally covered by the interval I and which has been selected by

a demand ki ∈ {vk1 , ..., vkq} in solution S66 (i.e., s̃ ∈ S66
ki

and s̃′ ∈ {si+wki+1, ..., sj})
such that each pair of nodes (vk′ , vkj ) are not linked in odd-hole H with j ̸= i,

c) and select a new last slot s̃′ /∈ {si + wki + 1, ..., sj} for demand ki i.e., S67
ki

=

(S66
ki
\ {s̃}) ∪ {s̃′} such that {s̃′ − wki − 1, ..., s̃′} ∩ {s − wk + 1, ..., s} = ∅ for each

k ∈ K and s ∈ S66
k with E67

k ∩ E67
ki
̸= ∅,

d) and add slot s′ to the set of last slots S66
k′ assigned to demand k′ in solution S66,

i.e., S67
k′ = S66

k′ ∪ {s′}.

Solution S67 is feasible for the problem. The corresponding incidence vector (xS
67
, zS

67
)

belongs to F
HE

I
H . Hence, solutions S66 and S67 satisfy equation µx + σz = τ . It

follows that

µxS
66

+ σzS
66

= µxS
67

+ σzS
67

= µxS
66

+ σzS
66

+ σk′
s′ + σki

s̃′ − σki
s̃ .

Since σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with s /∈ {si+wk+1, ..., sj}

if vk ∈ H, it follows that σki
s̃ = σk′

s′ .

In a similar way, we can show that

σk
s = σk′

s′ , for all pairs (vk, vk′) ∈ H.

Consequently, we obtain that σk
s = ρ for all vk ∈ H and s ∈ {si + wk − 1, ..., sj}.

Overall, and using the results (2.17) and (2.18), we obtain that

µk
e =


γk,e1 if e ∈ Ek

0 ,

γk,e2 if e ∈ Ek
1 ,

0 otherwise,

for each k ∈ K and e ∈ E, and

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1},

ρ if vk ∈ H and s ∈ {si + wk − 1, ..., sj},

0 otherwise.

for each k ∈ K and s ∈ S.
As a consequence, (µ, σ) = ρ(α, β) + γQ.
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Theorem 2.4.11. Let H be an odd-hole, and C be a clique in the conflict graph

HE
I with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) 2wk > |I| for each vk ∈ C ∪H,

d) and the nodes (vk, vk′) are linked in HE
I for all vk ∈ H and vk′ ∈ C.

Then, inequality (2.41) is facet defining for P(G,K,S) if and only if

a) for each node vk” in HE
I with vk” /∈ H ∪ C and C ∪ {vk”} is a clique in HE

I , there

exists a subset of nodes H̃ ⊆ H of size |H|−1
2 such that H̃ ∪ {vk”} is stable in HE

I ,

b) and there does not exist an interval I ′ of contiguous slots with I ⊂ I ′ such that

H and C define also an odd-hole and its connected clique in the associated conflict

graph HE
I′ .

Proof. Neccessity.

a) Note that if there exists a node vk” /∈ H ∪ C in HE
I such that vk” is linked with all

nodes vk ∈ H and nodes vk′ ∈ C. This implies that inequality (2.41) is dominated

by the following inequality

∑
vk∈H

sj∑
s=si+wk−1

zks +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ +
|H| − 1

2

sj∑
s”=si+wk”−1

zk”s′ ≤
|H| − 1

2
.

b) if there exists an interval I ′ of contiguous slots with I ⊂ I ′ such that H and C define

also an odd-hole and its connected clique in the associated conflict graph HE
I′ . This

implies that inequality (2.41) induced by odd-hole H and clique C for the interval

I is dominated by inequality (2.41) induced by the same odd-hole H and clique C

for the interval I ′ given that {si + wk − 1, ..., sj} ⊂ I ′ for each k ∈ H.

If these cases are not verified, we ensure that inequality (2.41) can never be dom-

inated by another inequality without modifying its right-hand side. Otherwise,

inequality (2.41) is not facet defining for P(G,K,S).
Sufficiency.

Let F
HE

I
H,C be the face induced by inequality (2.41), that is

F
HE

I
H,C = {(x, z) ∈ P(G,K,S) :

∑
vk∈H

sj∑
s=si+wk−1

zks +
|H| − 1

2

∑
vk′∈C

sj∑
s′=si+wk′−1

zk
′

s′ =
|H| − 1

2
}.

Let denote inequality
∑

vk∈H
∑sj

s=si+wk−1 z
k
s ≤

|H|−1
2 by αx+βz ≤ λ. Let µx+σz ≤

τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) :
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µx + σz = τ}. Suppose that F
HE

I
H,C ⊆ F . To prove that F

HE
I

H,C is a facet of

P(G,K,S), we need to show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ. For this,

we show that

a) σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with s /∈ {si +wk − 1, ..., sj} if

vk ∈ H ∪ C as we did in the proof of theorem 2.4.14,

b) and µk
e = 0 for all demand k ∈ K and edge e ∈ E \ (Ek

0 ∪Ek
1 ) as we did in the proof

of theorem 2.4.14,

c) and σk
s are equivalent for all vk ∈ H and s ∈ {si + wk − 1, ..., sj} as we did in the

proof of theorem 2.4.14.

Solutions S49−S69 still feasible for FHE
I

H,C . We should prove now that σk
s are equivalent

for all vk ∈ C and s ∈ {si + wk − 1, ..., sj}.
Consider a demand k̃′ with vk̃′ ∈ C and a slot s̃′ ∈ {si + wk̃′ − 1, ..., sj}. Let

S70 = (E70, S70) be the solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E70
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

c) for each demand ki ∈ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index ski in

the set of slots I70i given by

I70i = [
⋂

kj∈L70
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj},

where L70
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E70

ki
∩ E70

kj
̸= ∅},

d) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I70i given by

I70i =
⋂

kj∈D70
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} \ {si + wki − 1, ..., sj},

where D70
i = {kj ∈ {k1, ..., ki−1} ∩H : E70

ki
∩ E70

kj
̸= ∅},

e) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I70i given by

I70i = [
⋂

kj∈R70
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s̃′−wk̃′}∪{s̃′+wki
, ..., s̄}]

if E70
ki
∩ E70

k′ ̸= ∅ or I70i =
⋂

kj∈R70
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,
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where R70
i = {kj ∈ {k1, ..., ki−1} ∪H such that E70

ki
∩ E70

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R70
i ,

• and {ski −wki + 1, ..., ski} ∩ {s̃′ −wk̃′ + 1, ..., s̃′} = ∅ if E70
ki
∩E70

k̃′
̸= ∅ ( we take into

account the possibility of adding slot s̃′ as a last slot in the selected last slots S70
k̃′

to

route demand k̃′ in solution S70).

We let S70
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S70 is feasible for the problem. Hence, the corresponding incidence vector (xS
70
, zS

70
)

belongs to F
HE

I
H,C . Then consider the solution S71 obtained from S70 as belows

a) remove all the last slots s̃i totally covered by the interval I and which has been

selected by each demand ki ∈ H̃ in solution S70 (i.e., s̃ ∈ S70
ki

and s̃ ∈ {si + wki +

1, ..., sj}) for each ki ∈ H̃,

b) and select a new last slot s̃′i /∈ {si + wki + 1, ..., sj} for each ki ∈ H̃ i.e., S71
ki

=

(S70
ki
\ {s̃i}) ∪ {s̃′i} such that {s̃′i − wki − 1, ..., s̃′i} ∩ {s − wk + 1, ..., s} = ∅ for each

k ∈ K and s ∈ S70
k with E71

k ∩ E71
ki
̸= ∅ for each ki ∈ H̃,

c) and add slot s̃′ to the set of last slots S70
k̃′

assigned to demand k̃′ in solution S70,
i.e., S71

k̃′
= S70

k̃′
∪ {s̃′},

d) without changing the set of last slots assigned to the demands K \H̃, i.e., S71
k = S70

k

for each demand K \ H̃.

Solution S71 is feasible for the problem. The corresponding incidence vector (xS
71
, zS

71
)

belongs to F
HE

I
H,C . Hence, solutions S70 and S71 satisfy equation µx + σz = τ . We

have so

µxS
70
+ σzS

70
= µxS

71
+ σzS

71
= µxS

70
+ σzS

70
+ σk̃′

k̃′
+

∑
ki∈H̃

σki
s̃′i
−

∑
ki∈H̃

σki
s̃i
.

Since σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with s /∈ {si+wk+1, ..., sj}

if vk ∈ H ∪ C, it follows that
∑

ki∈H̃ σki
s̃i

= σk̃′
s̃′ for vk̃′ ∈ C.

In a similar way, we can show that

σk′
s′ = ρ

|H| − 1

2
, for all vk′ ∈ C and s′ ∈ {si + wk′ + 1, ..., sj}.

As a result,

σk
s = σk′

s′ , for all (vk, vk′) ∈ C and s ∈ {si + wk + 1, ..., sj} and s′ ∈ {si + wk′ + 1, ..., sj}.
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Consequently, we obtain that σk′
s′ = ρ |H|−1

2 for all vk′ ∈ C and s′ ∈ {si + wk′ −
1, ..., sj}.
By (2.17) and (2.18), we know that

µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k ∈ K and e ∈ E

µk
e =


γk,e1 if e ∈ Ek

0 ,

γk,e2 if e ∈ Ek
1 ,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =



γk,s3 if s ∈ {1, ..., wk − 1},

ρ if vk ∈ H and s ∈ {si + wk − 1, ..., sj},

ρ |H|−1
2 if vk ∈ C and s ∈ {si + wk − 1, ..., sj},

0 otherwise.

As a result, we have (µ, σ) = ρ(α, β) + γQ.

2.4.6 Edge-Slot-Assignment-Clique Inequalities

Here, we introduce another conflict graph totally different compared with the conflict

graphs presented previously.

Definition 2.4.6. Let He
S be a conflict graph defined as follows. For each slot

s ∈ {wk, ..., s̄} and demand k ∈ K with e /∈ Ek
0 , consider a node vk,s in He

S. Two

nodes vk,s and vk′,s′ are linked by an edge in He
S if

a) k = k′,

b) or {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} ≠ ∅ if k ̸= k′ and (k, k′) /∈ Ke
c .

Based on this definition, we introduce the following inequalities.

Proposition 2.4.16. Consider an edge e ∈ E. Let C be a clique in the conflict

graph He
S with |C| ≥ 3, and

∑
k∈C wk ≤ s̄−

∑
k′∈Ke\C wk′. Then, the inequality∑

vk,s∈C
(xke + zks ) ≤ |C|+ 1, (2.42)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩
{s′ − wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C.
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Proof. It is trivial given the definition of a clique set in the conflict graph He
S such

that for each two linked nodes vk,s and vk′,s′ in He
S , we have

xke + xk
′

e + zks + zk
′

s′ ≤ 3.

This can be generalized for a triplet of linked nodes vk,s and vk′,s′ and vk′′,s′′ with

wk +wk′ +wk” ≤ s̄−
∑

k̃∈Ke\{k,k′,k”}wk̃, such that for each linked nodes (vk,s, vk′,s′)

and (vk,s, vk′′,s′′) and (vk′,s′ , vk′′,s′′), we have

xke + xk
′

e + zks + zk
′

s′ ≤ 3,

xke + xk”e + zks + zk”s” ≤ 3,

xk
′

e + xk”e + zk
′

s′ + zk”s” ≤ 3.

By adding the three previous inequalities, we get the following inequality using the

chvatal gomory procedure

2xke + 2xk
′

e + 2xk”e + 2zks + 2zk
′

s′ + 2zk”s” ≤ 9

⇒ xke + xk
′

e + xk”e + zks + zk
′

s′ + zk”s” ≤ 4 given that

⌊
9

2

⌋
= 4.

This can be generalized for each clique C with |C| ≥ 4 while showing that inequal-

ity (2.42) can be seen as Chvàtal-Gomory cuts. Using the Chvàtal-Gomory and

recurrence procedures, we obtain that∑
vk,s∈C′

xke + zks ≤ |C ′|+ 1,

for all C ′ ⊂ C with |C ′| = |C| − 1 and |C ′| ≥ 3.

By adding the previous inequalities for all C ′ ⊂ C with |C ′| = |C| − 1, and doing

then some simplification, we get at the end that∑
vk,s∈C

xke + zks ≤
⌊
|C|+ |C|

|C| − 1

⌋
⇒

∑
vk,s∈C

xke + zks ≤ |C| + 1,

given that

⌊
|C|
|C| − 1

⌋
= 1. We conclude at the end that inequality (2.42) is valid for

Q(G,K,S). Moreover, it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩ {s′ − wk′ +

1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C.

Theorem 2.4.12. Consider an edge e ∈ E, and a clique C in the conflict graph He
S

with {s − wk + 1, ..., 1} ∩ {s′ − wk′ + 1, ..., s′} ̸= ∅ for each (vk,s, vk′,s′) ∈ C. Then,

inequality (2.42) is facet defining for P(G,K,S) if and only if C is a maximal clique

in the conflict graph He
S, and there does not exist an interval of contiguous slots

I = [si, sj ] ⊂ [1, s̄] with
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a) [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

b) and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C,

c) and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ C.

Proof. Neccessity.

If C is not maximal clique in the conflict graph He
S , this means that inequality

(2.42) can be dominated by another inequality associated with a clique C ′ such that

C ⊂ C ′ without changing its right-hand side. Moreover, if there exists an interval

of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

a) [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

b) and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C,

c) and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ C.

Then, inequality (2.42) is dominated by inequality (2.36). As a result, inequality

(2.42) cannot be facet defining for P(G,K,S).
Sufficiency.

Let F
He

S
C be the face induced by inequality (2.42), that is

F
He

S
C = {(x, z) ∈ P(G,K,S) :

∑
vk,s∈C

xke + zks = 1}.

Let denote inequality
∑

vk,s∈C xke + zks ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a

facet defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx+σz = τ}.
Suppose that F

He
S

C ⊆ F . In order to prove that inequality
∑

vk,s∈C xke+zks ≤ 1 is facet

defining for P(G,K,S), we need to show that there exist ρ ∈ R and γ = (γ1, γ2, γ3)

(such that γk,e
′

1 ∈ R for all k′ ∈ K and e′ ∈ Ek′
0 , γk,e

′

2 ∈ R for all k′ ∈ K and e′ ∈
Ek′

1 , γk
′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−1}) such that (µ, σ) = ρ(α, β)+γQ.

In a similar way with the proof of theorem 2.4.1, we obtain that

µk′
e′ =



γk
′,e′

1 if e′ ∈ Ek′
0 ,

γk
′,e′

2 if e′ ∈ Ek′
1 ,

ρ if k′ ∈ K(C) and e′ = e,

0 otherwise,

for each k′ ∈ K and e′ ∈ E, and

σk
s′ =


γk,s

′

3 if s′ ∈ {1, ..., wk − 1}

ρ if vk,s ∈ C,

0 otherwise.
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for each k ∈ K and s′ ∈ S, where K(C) = {k ∈ K : ∃s ∈ {wk, ..., s̄} with vk,s ∈ C}.
As a consequence, (µ, σ) = ρ(α, β) + γQ.

2.4.7 Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered

by inequality (2.42) and (2.25) previously introduced. For this, we provide the

following definition of a conflict graph and its associated inequality.

Definition 2.4.7. Let HE
S be a conflict graph defined as follows. For all slot s ∈

{wk, ..., s̄} and demand k ∈ K, consider a node vk,s in HE
S . Two nodes vk,s and

vk′,s′ are linked by an edge in HE
S if and only if

• k = k′,

• or Ek
1 ∩ Ek′

1 ̸= ∅ and {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} ≠ ∅ if k ̸= k′.

Proposition 2.4.17. Let C be a clique in the conflict graph HE
S with |C| ≥ 3.

Then, the inequality ∑
vk,s∈C

zks ≤ 1, (2.43)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩
{s′ − wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C.

Proof. It is trivial given the definition of a clique set in the conflict graph HE
S such

that for each two linked nodes vk,s and vk′,s′ in HE
S , we know from the inequality

(2.6) that

zks + zk
′

s′ ≤ 1,

given that xke = xk
′

e = 1 for all e ∈ Ek
1 ∩ Ek′

1 and {s − wk + 1, ..., s} ∩ {s′ − wk′ +

1, ..., s′} ≠ ∅.
By adding the previous inequalities for all two nodes vk,s and vk′,s′ in C, and by

recurrence procedure we obtain that for all C ′ ⊆ C with |C ′| = |C| − 1∑
vk,s∈C′

zks ≤ 1.

By adding the previous inequalities for all C ′ ⊆ C with |C ′| = |C| − 1, we get∑
C′⊆C

|C′|=|C|−1

∑
vk,s∈C′

zks ≤
∑
C′⊆C

|C′|=|C|−1

1.
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Note that for each demand k and slot s with vk,s ∈ C, the variable zks appears

(
( |C|
|C|−1

)
− 1) = |C| − 1 times in the previous sum. It follows that∑

vk,s∈C
(|C| − 1)zks ≤ |C|.

By dividing the two sides of the previous sum by |C| − 1, we have so

∑
vk,s∈C

zks ≤
⌊
|C|
|C| − 1

⌋
⇒

∑
vk,s∈C

zks ≤ 1 given that

⌊
|C|
|C| − 1

⌋
= 1.

We conclude at the end that inequality (2.43) is valid for Q(G,K,S). Moreover,

it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩ {s′ − wk′ + 1, ..., s′} ̸= ∅ for each

(vk,s, vk′,s′) ∈ C.

Theorem 2.4.13. Consider a clique C in the conflict graph HE
S with {s − wk +

1, ..., 1} ∩ {s′ −wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C. Then, inequality (2.43)

is facet defining for P(G,K,S) if and only if C is a maximal clique in the conflict

graph HE
S , and there does not exist an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄]

with

a) [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

b) and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C,

c) and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ C.

Proof. Neccessity.

If C is not maximal clique in the conflict graph HE
S , this means that inequality

(2.43) can be dominated by another inequality associated with a clique C ′ such that

C ⊂ C ′ without changing its right-hand side. Moreover, if there exists an interval

of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

a) [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

b) and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C,

c) and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ C.

Then, inequality (2.43) is dominated by inequality (2.39). As a result, inequality

(2.43) cannot be facet defining for P(G,K,S).
Sufficiency.

Let F
HE

S
C be the face induced by inequality (2.43), that is

F
HE

S
C = {(x, z) ∈ P(G,K,S) :

∑
vk,s∈C

zks = 1}.
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Let denote inequality
∑

vk,s∈C zks ≤ 1 by αx + βz ≤ λ. Let µx + σz ≤ τ be a facet

defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}.
Suppose that F

HE
S

C ⊆ F . In order to prove that inequality
∑

vk,s∈C zks ≤ 1 is facet

defining for P(G,K,S), we need to show that there exist ρ ∈ R and γ = (γ1, γ2, γ3)

(such that γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈

Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−1}) such that (µ, σ) = ρ(α, β)+γQ.

We first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S72 = (E72, S72) be

the solution given by

1. for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E72
ki

be the set of edges

involved in a shortest path between oki and dki ,

2. for demand k, we let E72
k be the set of edges involved in a shortest path between

ok and dk such that edge e is compatible with all the selected edges e ∈ E72
k , i.e.,∑

e′∈E72
k
ℓe′ + ℓe ≤ l̄k,

3. select one pair of demand k′ and slot s′ from clique C (i.e., vk′,s′ ∈ C), and use slot

sk′ = s′ as last slot,

4. for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I72i given by

I72i = [
⋂

kj∈D72
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., sk−wk}∪{sk+wki , ..., s̄}]

if E72
ki
∩ (E72

k ∪ {e}) ̸= ∅ or I72i =
⋂

kj∈D72
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D72
i = {kj ∈ {k1, ..., ki−1} ∪ {k′} : E72

ki
∩ E72

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D72
i ,

• {ski − wki + 1, ..., ski} ∩ {sk − wkj + 1, ..., sk} = ∅ if E72
ki
∩ E72

k ̸= ∅ ( we take into

account the possibility of using edge e in the selected path E72
k to route demand k

in solution S72).

We let S72
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

S72 is feasible for the problem. Hence, the corresponding incidence vector (xS
72
, zS

72
)

belongs to F
HE

S
C . Then we derive a solution S73 = (E73, S73) obtained from S72 by

adding edge e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S72 which

means that E73
k = E72

k ∪ {e}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S72 remain the same in solution S73, i.e.,
S73
k = S72

k for each k ∈ K, and E73
k′ = E72

k′ for each k′ ∈ K \ {k}. S73 is clearly
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feasible for the problem. The corresponding incidence vector (xS
73
, zS

73
) belongs to

F
HE

S
C . Hence, solutions S72 and S73 satisfy equation µx+ σz = τ . It follows that

µxS
72
+ σzS

72
= µxS

73
+ σzS

73
= µxS

72
+ µk

e + σzS
72
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ C.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with vk,s′ /∈ C. Let S ′72 =

(E′72, S′72) be the solution given by

1. for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′72
ki

be the set of edges involved

in a shortest path between oki and dki ,

2. select one pair of demand k′ and slot s′ from clique C (i.e., vk′,s′ ∈ C), and use slot

sk′ = s′ as last slot,

3. for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′72i given by

I ′72i = [
⋂

kj∈D′72
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E′72
ki
∩ E′72

k ̸= ∅ or I ′72i =
⋂

kj∈D′72
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where D′72
i = {kj ∈ {k1, ..., ki−1} ∪ {k′} : E′72

ki
∩ E′72

kj
̸= ∅}. This satisfies that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′72
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′72
ki
∩ E′72

k ̸= ∅ ( we take into

account the possibility of adding slot s′ in the selected set of last slots S′72
k to route

demand k in solution S ′72).

We let S′72
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′72 is feasible for the problem. Hence, the corresponding incidence vector (xS
′72
, zS

′72
)

belongs to F
HE

S
C . Then consider the solution S74 obtained from S ′72 by adding slot

s′ as last slot to demand k in S ′72. Solution S74 is clearly feasible for the problem.

The corresponding incidence vector (xS
74
, zS

74
) belongs to F

HE
S

C . Hence, solutions

S ′72 and S74 satisfy equation µx+ σz = τ . We have so

µxS
′72

+ σzS
′72

= µxS
74
+ σzS

74
= µxS

′72
+ σzS

′72
+ σk

s′ .
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Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ C.

Let prove that σk
s for all vk,s ∈ C are equivalent.

Consider a node vk′,s′ in C such that s′ /∈ S72
k′ . Let S̃72 = (Ẽ72, S̃72) be the solution

given by

1. for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let Ẽ72
ki

be the set of edges

involved in a shortest path between oki and dki ,

2. select a pair of demand k and slot s from clique C (i.e., vk,s ∈ C) such that slot

sk = s will be used as last slot for demand k,

3. for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ72i given by

Ĩ72i = [
⋂

kj∈D̃72
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if Ẽ72
ki
∩ Ẽ72

k′ ̸= ∅ or Ĩ72i =
⋂

kj∈D̃72
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D̃72
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : Ẽ72

ki
∩ Ẽ72

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D̃72
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk′ + 1, ..., s′} = ∅ if Ẽ72
ki
∩ Ẽ72

k′ ̸= ∅ ( we take into

account the possibility of adding slot s′ in the selected set of last slots S̃72
k′ to route

demand k′ in solution S̃72).

We let S̃72
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

S̃72 is feasible for the problem. Hence, the corresponding incidence vector (xS̃
72
, zS̃

72
)

belongs to F
HE

S
C . Then consider the solution S75 obtained from S̃72 by adding slot s′

as last slot to demand k′ in S̃72, and modifying the last slots assigned to demand k by

adding a new last slot s̃ and removing the last slot s ∈ S̃72
k with vk,s ∈ C and vk,s̃ /∈ C

such that S75
k = (S̃72

k \ {s}) ∪ {s̃} and {s̃− wk + 1, ..., s̃} ∩ {s′ − wk′ + 1, ..., s′} = ∅
for each k′ ∈ K and s′ ∈ S75

k′ with E75
k ∩ E75

k′ ̸= ∅. Solution S75 is clearly feasible

for the problem. The corresponding incidence vector (xS
75
, zS

75
) belongs to F

HE
S

C .

Hence, solutions S̃72 and S75 satisfy equation µx+ σz = τ . We have so

µxS̃
72
+ σzS̃

72
= µxS

75
+ σzS

75
= µxS̃

72
+ σzS̃

72
+ σk′

s′ − σk
s + σk

s̃ .
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Since σk
s̃ = 0 for vk,s̃ /∈ C, and µk

e = 0 for all k ∈ K and e ∈ E \ (Ek
0 ∪Ek

1 ), it follows

that σk′
s′ = σk

s .

In a similar way, we can show that

σk
s = σk′

s′ , for all pairs (vk,s, vk′,s′) ∈ C.

Consequently, we obtain that σk
s = ρ for all pairs vk,s ∈ C.

We know from (2.17) and (2.18) that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

As a result, we obtain that for each k ∈ K and e ∈ E

µk
e =


γk,e1 if e ∈ Ek

0

γk,e2 if e ∈ Ek
1

0 otherwise

and for each k ∈ K and s ∈ S

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1}

ρ if vk,s ∈ C,

0 if vk,s /∈ C.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

2.4.8 Slot-Assignment-Odd-Hole Inequalities

One can strengthen inequality (2.43) by introducing the following inequalities based

on the so-called odd-hole inequalities.

Proposition 2.4.18. Let H be an odd-hole in the conflict graph HE
S with |H| ≥ 5.

Then, the inequality ∑
vk,s∈H

zks ≤
|H| − 1

2
, (2.44)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩
{s′ − wk′ + 1, ..., s′} ≠ ∅ for each pair of nodes (vk,s, vk′,s′) that are linked in H.
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Proof. It is trivial given the definition of the odd-hole in the conflict graph HE
S

such that for each pair of nodes (vk,s, vk′,s′) linked in H by an edge, we know that

zks + zk
′

s′ ≤ 1. Given that H is an odd-hole which means that we have |H| − 1 pair of

nodes (vk,s, vk′,s′) linked in H, and by doing a sum over all pairs of nodes (vk,s, vk′,s′)

linked in H, it follows that ∑
(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ ≤ |H| − 1.

Taking into account that each node vk in H has two neighbors in H, this implies

that zks appears twice in the previous inequality. As a result,∑
(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ =
∑

vk,s∈H
2zks =⇒

∑
vk,s∈H

2zks ≤ |H| − 1.

As a result, ∑
vk,s∈H

zks ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that inequality (2.44) is valid for P(G,K,S).

Note that inequality (2.44) can be strengthened without modifying its right-hand

side by combining inequality (2.44) and (2.43).

Proposition 2.4.19. Let H be an odd-hole, and C be a clique in the conflict graph

HE
S with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) and the nodes (vk,s, vk′,s′) are linked in HE
S for all vk,s ∈ H and vk′,s′ ∈ C.

Then, the inequality ∑
vk,s∈H

zks +
|H| − 1

2

∑
vk′,s′∈C

zk
′

s′ ≤
|H| − 1

2
, (2.45)

is valid for Q(G,K,S). Moreover, it is valid for P(G,K,S) if {s − wk + 1, ..., 1} ∩
{s′−wk′ +1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C and pair of nodes (vk,s, vk′,s′) linked

in H.

Proof. It is trivial given the definition of the odd-hole and clique in HE
S such that

if
∑

vk′,s′∈C
zk

′
s′ = 1 for a vk′,s′ ∈ C ∈ C which implies that the quantity

∑
vk,s∈H zks

is forced to be equal to 0. Otherwise, we know from inequality (2.44) that the sum
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∑
vk,s∈H zks is always smaller than |H|−1

2 . We strengthen the proof as belows. For

each pair of nodes (vk,s, vk′,s′) linked in H by an edge, we know that zks + zk
′

s′ +∑
vk”,s”∈C zk”s” ≤ 1 given that all the nodes vk”,s” ∈ C are linked with the nodes vk,s

and vk′,s′ . Given that H is an odd-hole which means that we have |H| − 1 pair of

nodes (vk,s, vk′,s′) linked in H, and by doing a sum for all pairs of nodes (vk,s, vk′,s′)

linked in H, it follows that∑
(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ +
∑

vk”,s”∈C
zk”s” ≤ |H| − 1.

Taking into account that each node vk,s has two neighbors in H, this implies that

zks appears twice in the previous inequality. The sum
∑

vk”,s”∈C zk”s” appears |H| − 1

times in in the previous inequality. As a result,∑
(vk,s,vk′,s′ )∈E(H)

zks + zk
′

s′ + (|H| − 1)
∑

vk”,s”∈C
zk”s” ≤ |H| − 1

⇒
∑

vk,s∈H
2zks + (|H| − 1)

∑
vk”,s”∈C

zk”s” ≤ |H| − 1.

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that∑
vk,s∈H

zks +

⌊
|H| − 1

2

⌋ ∑
vk”,s”∈C

zk”s” ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
.

We conclude at the end that inequality (2.45) is valid for P(G,K,S).

Theorem 2.4.14. Let H be an odd-hole in the conflict graph HE
S with |H| ≥ 5, and

{s−wk +1, ..., 1}∩ {s′−wk′ +1, ..., s′} ≠ ∅ for each pair of nodes (vk,s, vk′,s′) linked

in H. Then, inequality (2.44) is facet defining for P(G,K,S) if and only if

a) for each node vk′,s′ /∈ H in HE
S , there exists a node vk,s ∈ H such that the induced

graph HE
S ((H \ {vk,s}) ∪ {vk′,s′}) does not contain an odd-hole,

b) and there does not exist a node vk′,s′ /∈ H in HE
S such that vk′,s′ is linked with all

nodes vk,s ∈ H,

c) and there does not exist an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

• [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

] ⊂ I,

• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,

• and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H.
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Proof. Neccessity.

We distinguish the following cases:

a) if for a node vk′,s′ /∈ H in HE
S , there exists a node vk,s ∈ H such that the induced

graph HE
S (H \{vk,s}∪{vk′,s′}) contains an odd-hole H ′ = (H \{vk,s})∪{vk′,s′}. This

implies that inequality (2.44) can be dominated using some technics of lifting based

on the following two inequalities
∑

vk,s∈H zks ≤
|H|−1

2 , and
∑

vk′,s′∈H′ zk
′

s′ ≤
|H′|−1

2 .

b) if there exists a node vk′,s′ /∈ H in HE
S such that vk′,s′ is linked with all nodes

vk,s ∈ H. This implies that inequality (2.44) can be dominated by the following

valid inequality ∑
vk,s∈H

zks +
|H| − 1

2
zk

′
s′ ≤

|H| − 1

2
.

c) if there exists an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

• [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

] ⊂ I,

• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,

• and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H.

This implies that inequality (2.44) is dominated by inequality (2.40).

If no one of these cases is verified, inequality (2.44) can never be dominated by

another inequality without changing its right-hand side. Otherwise, inequality (2.44)

cannot be facet defining for P(G,K,S).
Sufficiency.

Let F
HE

S
H be the face induced by inequality (2.44), that is

F
HE

S
H = {(x, z) ∈ P(G,K,S) :

∑
vk,s∈H

zks =
|H| − 1

2
}.

Denote inequality
∑

vk,s∈H zks ≤
|H|−1

2 by αx+ βz ≤ λ. Let µx+ σz ≤ τ be a facet

defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}.
Suppose that F

HE
S

H ⊆ F . In order to prove that inequality
∑

vk,s∈H zks ≤
|H|−1

2 is

facet defining for P(G,K,S), we will show that there exist ρ ∈ R and γ = (γ1, γ2, γ3)

(such that γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈

Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−1}) such that (µ, σ) = ρ(α, β)+γQ.

We first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪Ek
1 ) for each demand k ∈ K.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S76 = (E76, S76) be

the solution given by
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1. for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E76
ki

be the set of edges

involved in a shortest path between oki and dki ,

2. for demand k, we let E76
k be the set of edges involved in a shortest path between ok

and dk such that edge e is compatible with all the selected edges e ∈ E76
k ,

3. select a subset of nodes H̃76 from H with |H̃76| = |H|−1
2 , and each pair of nodes

(vk,s, vk′,s′) ∈ H̃76 are not linked in the conflict graph HE
S ,

4. for each pair of demand k and slot s with vk,s ∈ H̃76, we select slot sk = s as last

slot for demand k,

5. for each demand ki ∈ K \ H̃76 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I76i given by

I76i = [
⋂

kj∈D76
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E76
ki
∩ (E76

k ∪ {e}) ̸= ∅ or I76i =
⋂

kj∈D76
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D76
i = {kj ∈ {k1, ..., ki−1} ∪ H̃76 : E76

ki
∩ E76

kj
̸= ∅}. This guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D76
i ,

• {ski − wki + 1, ..., ski} ∩ {sk − wkj + 1, ..., sk} = ∅ if E76
ki
∩ E76

k ̸= ∅ ( we take into

account the possibility of using edge e in the selected path E76
k to route demand k

in solution S76).

We let S76
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

S76 is feasible for the problem. Hence, the corresponding incidence vector (xS
76
, zS

76
)

belongs to F
HE

S
H . Then we derive a solution S ′77 = (E′77, S′77) obtained from S76 by

adding edge e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S76 which

means that E′77
k = E76

k ∪ {e}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S76 remain the same in solution S ′77, i.e.,
S′77
k = S76

k for each k ∈ K, and E′77
k′ = E76

k′ for each k′ ∈ K \ {k}. S ′77 is clearly

feasible for the problem. The corresponding incidence vector (xS
′77
, zS

′77
) belongs

to F
HE

S
H . Hence, solutions S76 and S ′77 satisfy equation µx+σz = τ . It follows that

µxS
76
+ σzS

76
= µxS

′77
+ σzS

′77
= µxS

76
+ µk

e + σzS
76
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ).
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Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ H.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with vk,s′ /∈ H. Let S ′76 =

(E′76, S′76) be the solution given by

1. for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′76
ki

be the set of edges involved

in a shortest path between oki and dki ,

2. select a subset of nodes H̃ ′76 from H with |H̃ ′76| = |H|−1
2 , and each pair of nodes

(vk,s, vk′,s′) ∈ H̃ ′76 are not linked in the conflict graph HE
S ,

3. for each pair of demand k and slot s with vk,s ∈ H̃ ′76, we select slot sk = s as last

slot for demand k,

4. for each demand ki ∈ K \ H̃ ′76 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I ′76i given by

I ′76i = [
⋂

kj∈D′76
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′76
ki
∩ E′76

k ̸= ∅ or I ′76i =
⋂

kj∈D′76
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D′76
i = {kj ∈ {k1, ..., ki−1} ∪ H̃ ′76 : E′76

ki
∩ E′76

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′76
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′76
ki
∩ E′76

k ̸= ∅ ( we take into

account the possibility of adding slot s′ in the selected set of last slots S′76
k to route

demand k in solution S ′76).

We let S′76
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′76 is feasible for the problem. Hence, the corresponding incidence vector (xS
′76
, zS

′76
)

belongs to F
HE

S
H . Then consider the solution S78 obtained from S ′76 by adding slot

s′ as last slot to demand k in S ′76. Solution S78 is feasible for the problem. The

corresponding incidence vector (xS
78
, zS

78
) belongs to F

HE
S

H . Hence, solutions S ′76

and S78 satisfy equation µx+ σz = τ . We have so

µxS
′76

+ σzS
′76

= µxS
78
+ σzS

78
= µxS

′76
+ σzS

′76
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ H.

Let prove that σk
s for all vk,s ∈ H are equivalent. Consider a node vk′,s′ in H. we

consider the solution S80 = (E80, S80) defined as follows

122



1. for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E80
ki

be the set of edges involved

in a shortest path between oki and dki ,

2. select a subset of nodes H̃80 from H with |H̃80| = |H|−1
2 , and each pair of nodes

(vk,s, vk”,s”) ∈ H̃80 are not linked in the conflict graph HE
S , and each vk,s ∈ H̃80 is

not linked with node vk′,s′ in HE
S ,

3. for each pair of demand k and slot s with vk,s ∈ H̃80, we select slot sk = s as last

slot for demand k,

4. for each demand ki ∈ K \ H̃80 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I80i given by

I80i = [
⋂

kj∈D80
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E80
ki
∩ E80

k ̸= ∅ or I80i =
⋂

kj∈D80
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not.

where D80
i = {kj ∈ {k1, ..., ki−1} ∪ H̃80 : E80

ki
∩ E80

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D80
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk′ + 1, ..., s′} = ∅ if E80
ki
∩ E80

k′ ̸= ∅ ( we take into

account the possibility of adding slot s′ in the selected set of last slots S80
k′ to route

demand k′ in solution S80).

We let S80
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S80 is feasible for the problem. Hence, the corresponding incidence vector (xS
80
, zS

80
)

belongs to F
HE

S
H . After that, we derive the solution S ′80 = (E′80, S′80) from S80 by

a) and adding slot s′ as last slot to demand k′, i.e., S′80
k′ = S80

k′ ∪ {s′} for demand k′,

b) and modifying the last slots assigned to demand k by adding a new last slot s̃

and removing the last slot s ∈ S80
k with vk,s ∈ H and vk,s̃ /∈ H such that S′80

k =

(S80
k \ {s})∪{s̃} for demand k such that {s̃−wk +1, ..., s̃}∩{s′−wk′ +1, ..., s′} = ∅

for each k′ ∈ K and s′ ∈ S′80
k′ with E′80

k ∩ E′80
k′ ̸= ∅.

The corresponding incidence vector (xS
′80
, zS

′80
) belongs to F

HE
S

H . Hence, solutions

S80 and S ′80 satisfy equation µx+ σz = τ . We have so

µxS
80
+ σzS

80
= µxS

′80
+ σzS

′80
= µxS

80
+ σzS

80
+ σk′

s′ − σk
s + σk

s̃ .

It follows that σk′
s′ = σk

s for demand k′ and a slot s′ ∈ {wk′ , ..., s̄} with vk′,s′ ∈ H

given that σk
s̃ = 0 for vk,s̃ /∈ H.
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By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k ∈ K and e ∈ E

µk
e =


γk,e1 if e ∈ Ek

0

γk,e2 if e ∈ Ek
1

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =


γk,s3 if s ∈ {1, ..., wk − 1}

ρ if vk,s ∈ H,

0 if vk,s /∈ H.

As a result, we have (µ, σ) = ρ(α, β) + γQ.

Theorem 2.4.15. Let H be an odd-hole, and C be a clique in the conflict graph

HE
S with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) and the nodes (vk,s, vk′,s′) are linked in HE
S for all vk,s ∈ H and vk′,s′ ∈ C,

d) {s − wk + 1, ..., 1} ∩ {s′ − wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C and pair of

nodes (vk,s, vk′,s′) linked in H.

Then, inequality (2.45) is facet defining for P(G,K,S) if and only if

a) for each node vk”,s” in HE
S with vk”,s” /∈ H ∪ C and C ∪ {vk”,s”} is a clique in HE

S ,

there exists a subset of nodes H̃ ⊆ H of size |H|−1
2 such that H̃ ∪ {vk”,s”} is stable

in HE
S ,

b) and there does not exist an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

• [ min
vk,s∈H∪C

(s− wk + 1), max
vk,s∈H∪C

] ⊂ I,

• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,
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• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in C,

• and wk + wk′ ≥ |I|+ 1 for each vk ∈ H and vk′ ∈ C,

• and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H,

• and 2wk′ ≥ |I|+ 1 and wk′ ≤ |I| for each vk′ ∈ C.

Proof. Neccessity.

We distinguish the following cases:

a) if there exists a node vk”,s” /∈ H ∪ C in HE
S such that vk”,s” is linked with all nodes

vk,s ∈ H and also with all nodes vk′,s′ ∈ C. This implies that inequality (2.45) can

be dominated by the following valid inequality∑
vk,s∈H

zks +
|H| − 1

2

∑
vk′,s′∈C

zk
′

s′ +
|H| − 1

2
zk”s” ≤

|H| − 1

2
.

b) if there exists an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] satisfying the

conditions of b), this implies that inequality (2.45) is dominated by inequality (2.41).

If no one of these cases is verified, inequality (2.41) can never be dominated by

another inequality without changing its right-hand side. Otherwise, inequality (2.45)

cannot be facet defining for P(G,K,S).
Sufficiency.

Let F
HE

S
H,C denote the face induced by inequality (2.45), that is

F
HE

S
H,C = {(x, z) ∈ P(G,K,S) :

∑
vk,s∈H

zks +
|H| − 1

2

∑
vk′,s′∈C

zk
′

s′ =
|H| − 1

2
}.

Let denote inequality
∑

vk,s∈H zks + |H|−1
2

∑
vk′,s′∈C

zk
′

s′ ≤
|H|−1

2 by αx + βz ≤ λ.

Let µx + σz ≤ τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈
P(G,K,S) : µx+σz = τ}. Suppose that FHE

S
H,C ⊆ F . To prove that F

HE
S

H,C is a facet of

P(G,K,S), it suffices to show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ. For this,

we need to show that

a) σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with vk,s /∈ H ∪ C as done in

the proof of theorem 2.4.14,

b) and µk
e = 0 for all demand k ∈ K and edge e ∈ E \ (Ek

0 ∪ Ek
1 ) as done in the proof

of theorem 2.4.14,

c) and σk
s are equivalent for all vk,s ∈ H as done in the proof of theorem 2.4.14,
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given that the solutions S65−S80 still feasible such that their corresponding incidence

vectors belong to F
HE

S
H,C . In what follows, we prove that σk′

s′ are equivalent for all

vk′,s′ ∈ C. For this, we consider a node vk
′

s′ ∈ C, and a solution S82 = (E82, S82)

given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E82
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of nodes H̃82 from H with |H̃82| = |H|−1
2 , and each pair of nodes

(vk,s, vk”,s”) ∈ H̃82 are not linked in the conflict graph HE
S ,

c) for each pair of demand k and slot s with vk,s ∈ H̃82, we select slot sk = s as last

slot for demand k,

d) for each demand ki ∈ K \ H̃82 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I82i given by

I82i = [
⋂

kj∈D82
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk′}∪{s′+wki , ..., s̄}]

if E82
ki
∩ E82

k ̸= ∅ or I82i =
⋂

kj∈D82
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D82
i = {kj ∈ {k1, ..., ki−1} ∪ H̃82 : E82

ki
∩ E82

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D82
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk′ + 1, ..., s′} = ∅ if E82
ki
∩ E82

k′ ̸= ∅ ( we take into

account the possibility of adding slot s′ in the selected set of last slots S82
k′ to route

demand k′ in solution S82).

We let S82
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S82 is feasible for the problem. Hence, the corresponding incidence vector (xS
82
, zS

82
)

belongs to F
GE

S
H,C . Then we derive solution S83 obtained from S82 by

a) adding slot s′ as last slot to demand k′, i.e., S83
k′ = S82

k′ ∪ {s′} with vk′,s′ ∈ C,

b) and modifying the last slots assigned to each demand k ∈ {k̃ ∈ K with vk̃,s ∈ H̃82}
by adding a new last slot s̃k and removing the last slot sk ∈ S82

k with vk,sk ∈ H

and vk,s̃k /∈ H ∪ C such that S83
k = (S82

k \ {sk}) ∪ {s̃k} for each demand k ∈ {k̃ ∈
K with vk̃,s ∈ H̃82} such that {s̃− wk + 1, ..., s̃} ∩ {s′ − wk′ + 1, ..., s′} = ∅ for each
k′ ∈ K and s′ ∈ S83

k′ with E83
k ∩ E83

k′ ̸= ∅.
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Solution S83 is feasible for the problem. The corresponding incidence vector (xS
83
, zS

83
)

belongs to F
HE

S
H,C . Hence, solutions S82 and S83 satisfy equation µx + σz = τ . We

have so

µxS
82
+ σzS

82
= µxS

83
+ σzS

83
= µxS

82
+ σzS

82
+ σk′

s′ −
∑

(k,sk)∈H̃82

σk
sk

+
∑

k∈KH

σk
s̃k
.

where KH = {k̃ ∈ K with vk̃,s ∈ H̃82}. Since σk
s̃k

= 0 for vk,s̃k /∈ H ∪ C, it follows

that σk′
s′ =

∑
(k,sk)∈H̃82 σk

sk
.

As a result, σk′
s′ = ρ |H|−1

2 given that σk
s are equivalent for all vk,s ∈ H.

Given that the pair vk′,s′ is chosen arbitrarily in clique C, we re-do the same proce-

dure for all vk′,s′ ∈ C. Consequently, we obtain that σk′
s′ = ρ |H|−1

2 for all vk′,s′ ∈ C.

Overall, and using the results (2.17) and (2.18), we obtain that

µk
e =


γk,e1 if e ∈ Ek

0 ,

γk,e2 if e ∈ Ek
1 ,

0 otherwise,

for each k ∈ K and e ∈ E, and

σk
s =



γk,s3 if s ∈ {1, ..., wk − 1},

ρ if vk,s ∈ H,

ρ |H|−1
2 if vk,s ∈ C,

0 otherwise,

for each k ∈ K and s ∈ S.
As a consequence, we obtain that (µ, σ) = ρ(α, β) + γQ.

Let us now introduce some valid inequalities that are related to the routing

sub-problem issus from the transmission-reach constraint.

2.4.9 Incompatibility-Clique Inequalities

Based on inequalities (2.19) and (2.20), we introduce the following conflict graph.

Definition 2.4.8. Let HK
E be a conflict graph defined as follows. For each demand

k and edge e /∈ Ek
0 ∪Ek

1 , consider a node vke in HK
E . Two nodes vke and vk

′
e′ are linked

by an edge in HK
E

a) if k = k′: e and e′ are non compatible edges for demand k.
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b) if k ̸= k′: k and k′ are non compatible demands for edge e.

Proposition 2.4.20. Let C be a clique in HK
E . Then, the inequality∑

vke∈C

xke ≤ 1, (2.46)

is valid for P(G,K,S).

Proof. It is trivial given the definition of a clique set in the conflict graph HK
E . We

know from inequalities (2.19) or (2.20) that for all pairs of nodes (vke , v
k′
e′ ) in a clique

C in HK
E

xke + xk
′

e′ ≤ 1,

By adding the previous inequalities for all two nodes vk,e and vk′,e′ in C, and by

recurrence procedure we obtain that for all C ′ ⊆ C with |C ′| = |C| − 1∑
vk,e∈C′

xke ≤ 1.

By adding the previous inequalities for all C ′ ⊆ C with |C ′| = |C| − 1, we get∑
C′⊆C

|C′|=|C|−1

∑
vk,e∈C′

xke ≤
∑
C′⊆C

|C′|=|C|−1

1.

Note that for each demand k and edge e with vk,e ∈ C, the variable xke appears

(
( |C|
|C|−1

)
− 1) = |C| − 1 times in the previous sum. It follows that∑

vk,e∈C
(|C| − 1)xke ≤ |C|.

By dividing the two sides of the previous sum by |C| − 1, we have so

∑
vk,e∈C

xke ≤
⌊
|C|
|C| − 1

⌋
⇒

∑
vk,e∈C

xke ≤ 1 given that

⌊
|C|
|C| − 1

⌋
= 1.

This ends the proof.

Theorem 2.4.16. Consider a clique C in the conflict graph HK
E . Then, inequality

(2.46) is facet defining for P(G,K,S) if and only if C is a maximal clique in the

conflict graph HK
E .
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Proof. It is trivial given that inequality (2.46) can never be dominated by another

inequality without changing its right-hand side.

Let F
HK

E
C denote the face induced by inequality (2.46), that is

F
HK

E
C = {(x, z) ∈ P(G,K,S) :

∑
vk,e∈C

xke = 1}.

Let denote inequality
∑

vk,e∈C xke ≤ 1 by αx+ βz ≤ λ. Let µx+ σz ≤ τ be a facet

defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}.
Suppose that F

HK
E

C ⊆ F . In order to prove that inequality
∑

vk,e∈C xke ≤ 1 is facet

defining for P(G,K,S), we show that there exist ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ.

We first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪ Ek
1 ) for each demand k ∈ K

with vk,e /∈ C.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ) with vk,e /∈ C. Let

S84 = (E84, S84) be the solution given by

a) select one pair of demand k′ and edge e′ from clique C (i.e., vk′,e′ ∈ C), we let E84
k′

be the set of edges involved in a shortest path between ok′ and dk′ which uses edge

e′,

b) for each pair of demand k” and edge e” with vk”,e” ∈ C \{vk,e}, we let E84
k” be the set

of edges involved in a shortest path between ok” and dk” which uses edge e” which

does not use edge e”,

c) for each demand ki ∈ K \C with i ∈ {1, ..., |K|} \{k}, we let E84
ki

be the set of edges

involved in a shortest path between oki and dki ,

d) for demand k, we select the slot sk = wk as last slot,

e) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I84i given by

I84i = [
⋂

kj∈D84
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., sk−wk}∪{sk+wki
, ..., s̄}]

if E84
ki
∩ (E84

k ∪ {e}) ̸= ∅ or I84i =
⋂

kj∈D84
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D84
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E84

ki
∩ E84

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D84
i ,

• {ski − wki + 1, ..., ski} ∩ {sk − wk + 1, ..., sk} = ∅ if E84
ki
∩ (E84

k ∪ {e}) ̸= ∅ ( we take

into account the possibility of using edge e in the selected path E84
k to route demand

k in solution S84).
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We let S84
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S84 is feasible for the problem. Hence, the corresponding incidence vector (xS
84
, zS

84
)

belongs to F
HK

E
C . Then we derive a solution S85 = (E85, S85) obtained from S84 by

adding edge e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S84 which

means that E85
k = E84

k ∪ {e}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S84 remain the same in solution S85, i.e.,
S85
k = S84

k for each k ∈ K, and E85
k′ = E84

k′ for each k′ ∈ K \ {k}. S85 is clearly

feasible for the problem. The corresponding incidence vector (xS
85
, zS

85
) belongs to

F
HK

E
C . Hence, solutions S84 and S85 satisfy equation µx+ σz = τ . It follows that

µxS
84
+ σzS

84
= µxS

85
+ σzS

85
= µxS

84
+ µk

e + σzS
84
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ) with vk,e /∈ C.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄}. Consider a demand k in K

and a slot s′ in {wk, ..., s̄}, and a solution S ′84 = (E′84, S′84) such that

a) select one pair of demand k′ and edge e′ from clique C (i.e., vk′,e′ ∈ C), we let E′84
k′

be the set of edges involved in a shortest path between ok′ and dk′ which uses edge

e′,

b) for each pair of demand k” and edge e” with vk”,e” ∈ C \{vk,e}, we let E′84
k” be the set

of edges involved in a shortest path between ok” and dk” which uses edge e” which

does not use edge e”,

c) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|} \ {k}, we let E′84
ki

be the set of

edges involved in a shortest path between oki and dki ,

d) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we select the smallest slot index ski in

the set of slots I ′84i given by

I ′84i = [
⋂

kj∈D′84
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E′84
ki
∩ E′84

k ̸= ∅ or I ′84i =
⋂

kj∈D′84
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not.

where D′84
i = {kj ∈ {k1, ..., ki−1} : E′84

ki
∩ E′84

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′84
i ,
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• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′84
ki
∩ E′84

k ̸= ∅ ( we take into

account the possibility of adding slot s′ as a last slot in the set of last slots S′84
k to

route demand k in solution S ′84).

We let S′84
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′84 is feasible for the problem. Hence, the corresponding incidence vector (xS
′84
, zS

′84
)

belongs to F
HK

E
C . Then consider the solution S86 obtained from S ′84 by adding slot

s′ as last slot to demand k in S ′84. Solution S86 is clearly feasible for the problem.

The corresponding incidence vector (xS
86
, zS

86
) belongs to F

HK
E

C . Hence, solutions

S ′84 and S86 satisfy equation µx+ σz = τ . We have so

µxS
′84

+ σzS
′84

= µxS
86
+ σzS

86
= µxS

′84
+ σzS

′84
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ C.

Let prove that µk
e for all vk,e are equivalent. Consider a node vk′,e′ in C such that

e′ /∈ E84
k′ . For this, we derive solution S87 from S84 by

a) modifying the path assigned to demand k′ in S84 from E84
k′ to a path E87

k′ passed

through edge e′ with vk′,e′ ∈ C,

b) modifying the path assigned to demand k in S84 with e ∈ E84
k and vk,e ∈ C from

E84
k to a path E87

k without passing through any edge e” ∈ E \ (Ek
0 ∪ Ek

1 ) such that

vk′,e′ and vk,e” linked in C,

c) modifying the last slots assigned to some demands K̃ ⊂ K from S84
k̃

to S87
k̃

for each

k̃ ∈ K̃ while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k, k′} in S84 remain the same in S87

(i.e., E87
k” = E84

k” for each k” ∈ K \ {k, k′}), and also without modifying the last

slots assigned to the demands K \ K̃ in S84, i.e., S84
k = S87

k for each demand

k ∈ K \ K̃. Solution S87 is feasible for the problem. The corresponding incidence

vector (xS
87
, zS

87
) belongs to F

HK
E

C . Hence, solutions S84 and S87 satisfy equation

µx+ σz = τ . We have so

µxS
84
+ σzS

84
= µxS

87
+ σzS

87
= µxS

84
+ σzS

84
+ µk′

e′ − µk
e +

∑
k̃∈K̃

∑
s′∈S87

k̃

σk̃
s′ −

∑
s∈S84

k̃

σk̃
s

+
∑

e”∈E87
k′ \{e

′}

µk′
e” −

∑
e”∈E84

k′

µk′
e” +

∑
e”∈E87

k

µk
e” −

∑
e”∈E84

k \{e}

µk
e”.
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Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪ Ek
1 ) with vk,e” /∈ C, and σk

s = 0 for

all k ∈ K and s ∈ {wk, ..., s̄}, it follows that µk′
e′ = µk

e .

Given that the pair (vk,e, vk′,e′) are chosen arbitrarily in clique C, we re-do the same

procedure for all pairs (vk,e, vk′,e′) such that we find

µk
e = µk′

e′ , for all pairs (vk,e, vk′,e′) ∈ C.

Consequently, we obtain that µk
e = ρ for all vk,e ∈ C.

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that for each k ∈ K and e ∈ E

µk
e =



γk,e1 if e ∈ Ek
0 ,

γk,e2 if e ∈ Ek
1 ,

ρ if vk,e ∈ C,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =

γk,s3 if s ∈ {1, ..., wk − 1},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

2.4.10 Incompatibility-Odd-Hole Inequalities

Proposition 2.4.21. Let H be an odd-hole in the conflict graph HK
E with |H| ≥ 5.

Then, the inequality ∑
vke∈H

xke ≤
|H| − 1

2
, (2.47)

is valid for P(G,K,S).

Proof. It is trivial given the definition of the odd-hole in the conflict graph HK
E . We

strengthen the proof as belows. For each pair of nodes (vke , v
k′
e′ ) linked in H by an

edge, we know that xke +xk
′

e′ ≤ 1. Given that H is an odd-hole which means that we
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have |H| − 1 pair of nodes (vke , v
k′
e′ ) linked in H, and by doing a sum for all pairs of

nodes (vke , v
k′
e′ ) linked in H, it follows that∑

(vke ,v
k′
e′ )∈E(H)

xke + xk
′

e′ ≤ |H| − 1.

Taking into account that each node vke in H has two neighbors in H, this implies

that xke appears twice in the previous inequality. As a result,∑
(vke ,v

k′
e′ )∈E(H)

xke + xk
′

e′ =
∑
vke∈H

2xke =⇒
∑
vke∈H

2xke ≤ |H| − 1

=⇒
∑
vke∈H

xke ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
since |H| is an odd number.

We conclude at the end that inequality (2.47) is valid for P(G,K,S).

Inequality (2.47) can be strengthened without modifying its right-hand side by

combining inequality (2.47) and (2.46) as follows.

Proposition 2.4.22. Let H be an odd-hole in the conflict graph HK
E , and C be a

clique in the conflict graph HK
E with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) and the nodes (vke , v
k′
e′ ) are linked in HK

E for all vke ∈ H and vk
′

e′ ∈ C.

Then, the inequality ∑
vke∈H

xke +
|H| − 1

2

∑
vk

′
e′ ∈C

xk
′

e′ ≤
|H| − 1

2
, (2.48)

is valid for P(G,K,S).

Proof. It is trivial given the definition of the odd-hole and clique in HK
E such that if∑

vk
′

e′ ∈C
xk

′
e′ = 1 for a vk

′
e′ ∈ C, which implies that the quantity

∑
vke∈H xke is forced to

be equal to 0. Otherwise, we know from inequality (2.47) that the sum
∑

vke∈H xke

should be smaller than |H|−1
2 . We strengthen the proof as belows. For each pair of

nodes (vk,e, vk′,e′) linked in H by an edge, we know that xke +xk
′

e′ +
∑

vk”,e”∈C xk”e” ≤ 1

given that all the nodes vk”,e” ∈ C are linked with the nodes vk,e and vk′,e′ . Given

that H is an odd-hole which means that we have |H| − 1 pair of nodes (vk,e, vk′,e′)
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linked in H, and by doing a sum for all pairs of nodes (vk,e, vk′,e′) linked in H, it

follows that ∑
(vk,e,vk′,e′ )∈E(H)

xke + xk
′

e′ +
∑

vk”,e”∈C
xk”e” ≤ |H| − 1.

Taking into account that each node vk,e has two neighbors in H, this implies that

xke appears twice in the previous inequality. The sum
∑

vk”,e”∈C xk”e” appears |H| − 1

times in in the previous inequality. As a result,∑
(vk,e,vk′,e′ )∈E(H)

xke + xk
′

e′ + (|H| − 1)
∑

vk”,e”∈C
xk”e” ≤ |H| − 1

⇒
∑

vk,e∈H
2xke + (|H| − 1)

∑
vk”,e”∈C

xk”e” ≤ |H| − 1.

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that∑
vk,e∈H

xke +

⌊
|H| − 1

2

⌋ ∑
vk”,e”∈C

xk”e” ≤
⌊
|H| − 1

2

⌋
=
|H| − 1

2
.

We conclude at the end that inequality (2.48) is valid for P(G,K,S).

Theorem 2.4.17. Let H be an odd-hole in the conflict graph HK
E with |H| ≥ 5.

Then, inequality (2.47) is facet defining for P(G,K,S) if and only if

a) for each vk′,e′ /∈ H, there exists a node vk,e ∈ H such that the induced graph HK
E (H \

{vk,e} ∪ {vk′,e′}) does not contain an odd-hole H ′ = H \ {vk,e} ∪ {vk′,e′},

b) and there does not exist a node vk′,e′ /∈ H in HK
E such that vk′,e′ is linked with all

nodes vk,e ∈ H.

Proof. Neccessity.

We distinguish the following cases:

a) if for a node vk′,e′ /∈ H in HK
E , there exists a node vk,e ∈ H such that the induced

graph HK
E (H \{vk,e}∪{vk′,e′}) contains an odd-hole H ′ = (H \{vk,e})∪{vk′,e′}. This

implies that inequality (2.47) can be dominated using some technics of lifting based

on the following two inequalities
∑

vk,e∈H xke ≤
|H|−1

2 , and
∑

vk′,e′∈H′ xk
′

e′ ≤
|H′|−1

2 .

b) if there exists a node vk′,e′ /∈ H in HK
E such that vk′,e′ is linked with all nodes

vk,e ∈ H. This implies that inequality (2.47) can be dominated by the following

valid inequality ∑
vk,e∈H

xke +
|H| − 1

2
xk

′
e′ ≤

|H| − 1

2
.
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If no one of these cases is verified, inequality (2.47) can never be dominated by

another inequality without changing its right-hand side. Otherwise, inequality (2.47)

is not facet defining for P(G,K,S).
Sufficiency.

Let F
HK

E
H denote the face induced by inequality (2.47), that is

F
HK

E
H = {(x, z) ∈ P(G,K,S) :

∑
vk,e∈H

xke =
|H| − 1

2
}.

Denote inequality
∑

vk,e∈H xke ≤
|H|−1

2 by αx+ βz ≤ λ. Let µx+ σz ≤ τ be a facet

defining inequality for P(G,K,S) and F = {(x, z) ∈ P(G,K,S) : µx + σz = τ}.
Suppose that F

HK
E

H ⊆ F . In order to prove that inequality
∑

vk,e∈H xke = |H|−1
2 is

facet defining for P(G,K,S), we show that there exist ρ ∈ R and γ = (γ1, γ2, γ3)

(such that γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈

Ek′
1 , γk

′,s′

3 ∈ R for all k′ ∈ K and s′ ∈ {1, ..., wk′−1}) such that (µ, σ) = ρ(α, β)+γQ.

Let first show that µk
e = 0 for each edge e ∈ E \ (Ek

0 ∪ Ek
1 ) for each demand k ∈ K

with vk,e /∈ H.

Consider a demand k ∈ K and an edge e ∈ E \ (Ek
0 ∪ Ek

1 ). Let S88 = (E88, S88) be

the solution given by

a) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we let E88
ki

be the set of edges

involved in a shortest path between oki and dki ,

b) for demand k, we let E88
k be the set of edges involved in a shortest path between

ok and dk such that edge e is compatible with all the selected edges e ∈ E88
k , i.e.,∑

e′∈E88
k
ℓe′ + ℓe ≤ l̄k,

c) select a subset of nodes H̃88 from H with |H̃88| = |H|−1
2 , and each pair of nodes

(vk′,e′ , vk”,e”) ∈ H̃88 are not linked in the conflict graph HK
E ,

d) for each pair of demand k′ and edge e′ with vk′,e′ ∈ H̃88, we consider a new set of

edges E88
k′ involved in a shortest path between ok′ and dk′ if edge e

′ is not compatible

with all the selected edges e” ∈ E88
k′ , or we add edge e′ in E88

k′ if not, i.e., E88
k′ =

E88
k′ ∪ {e′},

e) for each demand k′ and edge e′ with vk′,e′ ∈ H \ H̃88, we modify the set of edges

E88
k′ if E88

k′ contains some edges e′ that are non compatible with the selected edges

E88
k” with vk”,e” ∈ H̃88. This can be done by selecting a new set of edges E88

k′ which

contains all edges involved in a shortest path between ok′ and dk′ such that edge e′

is compatible with each edge e” and demand k” with vk”,e” ∈ H̃88,
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f) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we select the smallest slot index ski in

the set of slots I88i given by

I88i = [
⋂

kj∈D88
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., sk−wk}∪{sk+wki , ..., s̄}]

if E88
ki
∩ (E88

k ∪ {e}) ̸= ∅ or I88i =
⋂

kj∈D88
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D88
i = {kj ∈ {k1, ..., ki−1} : E88

ki
∩ E88

kj
̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D88
i ,

• {ski − wki + 1, ..., ski} ∩ {sk − wk + 1, ..., sk} = ∅ if E88
ki
∩ (E88

k ∪ {e}) ̸= ∅ ( we take

into account the possibility of using edge e in the selected path E88
k to route demand

k in solution S88).

We let S88
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S88 is feasible for the problem. Hence, the corresponding incidence vector (xS
88
, zS

88
)

belongs to F
HK

E
H . Then we derive a solution S89 = (E89, S89) obtained from S88 by

adding edge e ∈ E \ (Ek
0 ∪ Ek

1 ) for the routing of demand k in solution S88 which

means that E89
k = E88

k ∪ {e}. The last slots assigned to the demands K, and paths

assigned the set of demands K \ {k} in S88 remain the same in solution S89, i.e.,
S89
k = S88

k for each k ∈ K, and E89
k′ = E88

k′ for each k′ ∈ K \ {k}. S89 is clearly

feasible for the problem. The corresponding incidence vector (xS
89
, zS

89
) belongs to

F
HK

E
H . Hence, solutions S88 and S89 satisfy equation µx+ σz = τ . It follows that

µxS
88
+ σzS

88
= µxS

89
+ σzS

89
= µxS

88
+ µk

e + σzS
88
.

As a result, µk
e = 0.

In a similar way, we can show that

µk
e = 0, for all k ∈ K and e ∈ E \ (Ek

0 ∪ Ek
1 ) with vk,e /∈ H.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄}.

Consider a demand k in K and a slot s′ in {wk, ..., s̄}. Let S ′88 = (E′88, S′88) be the

solution given by

a) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we let E′88
ki

be the set of edges involved

in a shortest path between oki and dki ,

b) select a subset of nodes H̃ ′88 from H with |H̃ ′88| = |H|−1
2 , and each pair of nodes

(vk′,e′ , vk”,e”) ∈ H̃ ′88 are not linked in the conflict graph HK
E ,
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c) for each pair of demand k′ and edge e′ with vk′,e′ ∈ H̃ ′88, we consider a new set of

edges E′88
k′ involved in a shortest path between ok′ and dk′ if edge e

′ is not compatible

with all the selected edges e” ∈ E′88
k′ , or we add edge e′ in E′88

k′ if not, i.e., E′88
k′ =

E′88
k′ ∪ {e′},

d) for each demand k′ and edge e′ with vk′,e′ ∈ H \ H̃ ′88, we modify the set of edges

E′88
k′ if E′88

k′ contains some edges e′ that are non compatible with the selected edges

E′88
k” with vk”,e” ∈ H̃ ′88. This can be done by selecting a new set of edges E′88

k′ which

contains all edges involved in a shortest path between ok′ and dk′ such that edge e′

is compatible with each edge e” and demand k” with vk”,e” ∈ H̃ ′88,

e) for each demand ki ∈ K with i ∈ {1, ..., |K|}, we select the smallest slot index ski in

the set of slots I ′88i given by

I ′88i = [
⋂

kj∈D′88
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∩{s′+wki , ..., s̄}]

if E′88
ki
∩ E′88

k ̸= ∅ or I ′88i =
⋂

kj∈D′88
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D′88
i = {kj ∈ {k1, ..., ki−1} : E′88

ki
∩ E′88

kj
̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D′88
i ,

• {ski − wki + 1, ..., ski} ∩ {s′ − wk + 1, ..., s′} = ∅ if E′88
ki
∩ E′88

k ̸= ∅ ( we take into

account the possibility of adding slot s′ as a last slot in the set of last slots S′88
k to

route demand k in solution S ′88).

We let S′88
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

S ′88 is feasible for the problem. Hence, the corresponding incidence vector (xS
′88
, zS

′88
)

belongs to F
HK

E
H . After that, we derive solution S90 obtained from S ′88 by adding slot

s′ as last slot to demand k in S ′88. Solution S90 is clearly feasible for the problem.

The corresponding incidence vector (xS
90
, zS

90
) belongs to F

HK
E

H . Hence, solutions

S ′88 and S90 satisfy equation µx+ σz = τ . We have so

µxS
′88

+ σzS
′88

= µxS
90
+ σzS

90
= µxS

′88
+ σzS

′88
+ σk

s′ .

Hence, σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ H.

Let prove now that µk
e for all vk,e are equivalent. Consider a node vk′,e′ in H such

that e′ /∈ E88
k′ . For this, we derive solution S91 from S88 by
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a) modifying the path assigned to demand k′ in S88 from E88
k′ to a path E91

k′ passed

through edge e′ with vk′,e′ ∈ H,

b) and selecting a pair of demand-edge (k, e) from the set of pairs of demand-edge in

H88 such that vk′,e′ is not linked with any node vk”,e” in H88 \ {vk,e},

c) modifying the path assigned to demand k in S88 with e ∈ E88
k and vk,e ∈ H from

E88
k to a path E91

k without passing through any edge e” ∈ E \ (Ek
0 ∪ Ek

1 ) such that

vk′,e′ and vk,e” linked in H,

d) modifying the last slots assigned to some demands K̃ ⊂ K from S88
k̃

to S91
k̃

for each

k̃ ∈ K̃ while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k, k′} in S88 remain the same in S91

(i.e., E91
k” = E88

k” for each k” ∈ K \ {k, k′}), and also without modifying the last

slots assigned to the demands K \ K̃ in S88, i.e., S88
k = S91

k for each demand

k ∈ K \ K̃. Solution S91 is feasible for the problem. The corresponding incidence

vector (xS
91
, zS

91
) belongs to F

HK
E

H . Hence, solutions S88 and S91 satisfy equation

µx+ σz = τ . We have so

µxS
88
+ σzS

88
= µxS

91
+ σzS

91
= µxS

88
+ σzS

88
+ µk′

e′ − µk
e +

∑
k̃∈K̃

∑
s′∈S91

k̃

σk̃
s′ −

∑
s∈S88

k̃

σk̃
s

+
∑

e”∈E91
k′ \{e

′}

µk′
e” −

∑
e”∈E88

k′

µk′
e” +

∑
e”∈E91

k

µk
e” −

∑
e”∈E88

k \{e}

µk
e”.

Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪ Ek
1 ) with vk,e” /∈ H, and σk

s = 0 for

all k ∈ K and s ∈ {wk, ..., s̄}, it follows that µk′
e′ = µk

e .

Given that the pair (vk,e, vk′,e′) are chosen arbitrarily in odd-hole H, we re-do the

same procedure for all pairs (vk,e, vk′,e′) such that we find

µk
e = µk′

e′ , for all pairs (vk,e, vk′,e′) ∈ H.

Consequently, we obtain that µk
e = ρ for all vk,e ∈ H.

We know from (2.17) and (2.18) that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.
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We then conclude that for each k ∈ K and e ∈ E

µk
e =



γk,e1 if e ∈ Ek
0 ,

γk,e2 if e ∈ Ek
1 ,

ρ if vk,e ∈ H,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =

γk,s3 if s ∈ {1, ..., wk − 1},

0 otherwise.

As a consequence, (µ, σ) = ρ(α, β) + γQ.

Theorem 2.4.18. Let H be an odd-hole, and C be a clique in the conflict graph

HK
E with

a) |H| ≥ 5,

b) and H ∩ C = ∅,

c) and the nodes (vk,e, vk′,e′) are linked in HK
E for all vk,e ∈ H and vk′,e′ ∈ C.

Then, inequality (2.48) is facet defining for P(G,K,S) if and only if for each node

vk”,e” in HK
E with vk”,e” /∈ H ∪ C and C ∪ {vk”,e”} is a clique in HK

E , there exists a

subset of nodes H̃ ⊆ H of size |H|−1
2 such that H̃ ∪ {vk”,e”} is stable in HK

E .

Proof. Neccessity.

If there exists a node vk”,e” /∈ H ∪C in HK
E such that vk”,e” is linked with all nodes

vk,e ∈ H and also with all nodes vk′,e′ ∈ C. This implies that inequality (2.48) can

be dominated by the following valid inequality∑
vk,e∈H

xke +
|H| − 1

2

∑
vk′,e′∈C

xk
′

e′ +
|H| − 1

2
xk”e” ≤

|H| − 1

2
.

As a result, inequality (2.48) is not facet defining for P(G,K,S).
Sufficiency.

Let F
HK

E
H,C be the face induced by inequality (2.48), that is

F
HK

E
H,C = {(x, z) ∈ P(G,K,S) :

∑
vk,e∈H

xke +
|H| − 1

2

∑
vk′,e′∈C

xk
′

e′ =
|H| − 1

2
}.
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Let denote inequality
∑

vk,e∈H xke + |H|−1
2

∑
vk′,e′∈C

xk
′

e′ ≤
|H|−1

2 by αx + βz ≤ λ.

Let µx + σz ≤ τ be a facet defining inequality for P(G,K,S) and F = {(x, z) ∈
P(G,K,S) : µx+σz = τ}. Suppose that FHK

E
H,C ⊆ F . To prove that F

HK
E

H,C is a facet of

P(G,K,S), we need to show that there exists ρ ∈ R and γ = (γ1, γ2, γ3) (such that

γk,e1 ∈ R for all k′ ∈ K and e ∈ Ek′
0 , γk,e2 ∈ R for all k′ ∈ K and e ∈ Ek′

1 , γk
′,s′

3 ∈
R for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}) such that (µ, σ) = ρ(α, β) + γQ. For this,

we show that

a) σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} as done in the proof of theorem

2.4.17,

b) and µk
e = 0 for all demand k ∈ K and edge e ∈ E \ (Ek

0 ∪ Ek
1 ) with vk,e /∈ H ∪ C as

done in the proof of theorem 2.4.17,

c) and µk
e are equivalent for all vk,e ∈ H as done in the proof of theorem 2.4.17,

given that the solutions defined in the proof of theorem 2.4.17, their corresponding

incidence vector belong to F
HK

E
H,C .

Let prove now that µk′
e′ are equivalent for all vk′,e′ ∈ C.

Now let us consider a node vk′,e′ in C such that e′ /∈ E92
k′ . For this, we derive solution

S ′93 from S92 by

a) modifying the path assigned to demand k′ in S92 from E92
k′ to a path E′93

k′ passed

through edge e′ with vk′,e′ ∈ C,

b) and modifying the path assigned to each demand k with vk,e ∈ H92 in S92 with

e ∈ E92
k and vk,e ∈ H from E92

k to a path E′93
k without passing through any edge

e” ∈ E \ (Ek
0 ∪ Ek

1 ),

c) modifying the last slots assigned to some demands K̃ ⊂ K from S92
k̃

to S′93
k̃

for each

k̃ ∈ K̃ while satisfying non-overlapping constraint.

The paths assigned to the demands K \ (K(H92) ∪ {k′}) in S92 remain the same

in S ′93 (i.e., E′93
k” = E92

k” for each k” ∈ K \ {k, k′}), and also without modifying the

last slots assigned to the demands K \ K̃ in S92, i.e., S92
k = S′93

k for each demand

k ∈ K \ K̃. Solution S ′93 is feasible for the problem. The corresponding incidence

vector (xS
′93
, zS

′93
) belongs to F

HK
E

H,C . Hence, solutions S92 and S ′93 satisfy equation

µx+ σz = τ . We have so

µxS
92
+ σzS

92
= µxS

′93
+ σzS

′93
= µxS

92
+ σzS

92
+ µk′

e′ −
∑

vk,e∈H92

µk
e +

∑
k̃∈K̃

∑
s′∈S′93

k̃

σk̃
s′

−
∑
s∈S92

k̃

σk̃
s +

∑
e”∈E′93

k′ \{e′}

µk′
e” −

∑
e”∈E92

k′

µk′
e” +

∑
e”∈E′93

k

µk
e” −

∑
k∈K(H92)

∑
e”∈E92

k

µk
e”.
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Since µk
e” = 0 for all k ∈ K and e” ∈ E \ (Ek

0 ∪Ek
1 ) with vk,e” /∈ H ∪ C, and σk

s = 0

for all k ∈ K and s ∈ {wk, ..., s̄}, it follows that µk′
e′ =

∑
vk,e∈H92

µk
e . As a result,

µk′
e′ = ρ |H|−1

2 .

Given that the pair vk′,e′ is chosen arbitrarily in clique C, we re-do the same proce-

dure for all pairs vk′,e′ ∈ C such that we find

µk′
e′ = ρ

|H| − 1

2
, for all pairs vk′,e′ ∈ C.

As a result, all µk′
e′ ∈ C are equivalent such that

µk′
e′ = µk”

e” = ρ
|H| − 1

2
, for all pairs vk′,e′ , vk”,e” ∈ C.

By (2.17) and (2.18), we know that
µk′
e′ = γk

′,e′

1 for all k′ ∈ K and e′ ∈ Ek′
0 ,

µk′
e′ = γk

′,e′

2 for all k′ ∈ K and e′ ∈ Ek′
1 ,

σk′
s′ = γk

′,s′

3 for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

As a result, we obtain that for each k ∈ K and e ∈ E

µk
e =



γk,e1 if e ∈ Ek
0 ,

γk,e2 if e ∈ Ek
1 ,

ρ if vk,e ∈ H,

ρ |H|−1
2 if vk,e ∈ C,

0 otherwise,

and for each k ∈ K and s ∈ S

σk
s =

γk,s3 if s ∈ {1, ..., wk − 1},

0 otherwise.

As a result, we have (µ, σ) = ρ(α, β) + γQ.

2.4.11 Tranmission-Reach-Cover Inequalities

Inequalities (2.46), (2.47) and (2.48) can be strengthened by defining a minimal

cover related to the transmission-reach constraint.

Definition 2.4.9. Consider a demand k ∈ K. A cover C for demand k related to

the transmission-reach constraint is a subset of edges in E \ (Ek
0 ∪ Ek

1 ) such that
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∑
e∈C ℓe > l̄k −

∑
e′∈Ek

1
ℓe′, and each pair of edges (e, e′) ∈ C are compatible edges

for demand k. Furthermore, it is said minimal cover for demand k if and only if

for each e ∈ C we have
∑

e′∈C\{e} ℓe′ ≤ l̄k −
∑

e”∈Ek
1
le”.

Based on this, we introduce the following inequalities.

Proposition 2.4.23. Consider a demand k ∈ K. Let C be a minimal cover related

to the tranmission-reach constraint for demand k. Then, the inequality∑
e∈C

xke ≤ |C| − 1, (2.49)

is valid for P(G,K,S).

Proof. It is trivial given that C is minimal cover for demand k this means that there

are at most |C| − 1 edges from the set of edges in C that can be used to route

demand k.

Theorem 2.4.19. Consider a demand k in K. Let C be a minimal cover related

to the tranmission-reach constraint for demand k. Then, inequality (2.49) is facet

defining for the polytope P(G,K,S, C, k) where

P(G,K,S, C, k) = {(x, z) ∈ P(G,K,S) :
∑

e′∈E\(Ek
1∪Ek

0 )

xke′ = 0}.

Proof. It is trivial given that inequality (2.49) can never be dominated in P(G,K,S, C, k).

On the other hand, one can use sequential lifting procedure [5] to sequentially

lift the inequality (2.49) and generate lifted valid inequalities that are facet defining

for the polytope P(G,K,S) as follows.

Theorem 2.4.20. Let C be a minimal cover for a demand k ∈ K. Let E \ (Ek
1 ∪

C ∪ Ek
0 ) = {e1, ..., eq} be arbitrarily ordred with q = |E \ (Ek

1 ∪ C ∪ Ek
0 )|. Consider

a sequence of knapsack problems defined as

zi = max
∑
j∈C

uj +

i−1∑
j=1

αjuj ,

∑
j∈C

ljuj +
i−1∑
j=1

ljuj ≤ l̄k −
∑
e′∈Ek

1

ℓe′ − lei ,

uj ∈ {0, 1},∀j ∈ C ∪ {1, ..., i− 1},

(2.50)
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for all i ∈ {1, ..., q} with αj = |C| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
e∈C

xke +

q∑
j=1

αjx
k
ej ≤ |C| − 1, (2.51)

is valid for P(G,K,S). Moreover, it’s facet defining for P(G,K,S).

Proof. It’s trivial given that inequality (2.51) can never be dominated in P(G,K,S).

Definition 2.4.10. Consider a demand k ∈ K. Let p be a sub-path in G such that

each pair of edges (vk,e, vk,e′) ∈ E \(Ek
0 ∪Ek

1 ) are not linked by an edge in the conflict

graph H̃K
E . We say that the path p is infeasible for the demand k if it does not occur

as a subpath in any feasible routing for the demand k, i.e., there does not exist a

feasible path for demand k containning p due to the transmission-reach constraint.

Moreover, it is said to be minimal infeasible if each sub-path p′ of p of cardinality

|E(p′)| = |E(p)| − 1, can be used in a feasible routing for the demand k.

Note that one can verify in polynomial time using Dijkstra algorithm if a sub-

path p in G if it is infeasible or not for a demand k ∈ K.

Proposition 2.4.24. Consider a demand k ∈ K. Let p be a minimal infeasible

sub-path for demand k in G. Then, the inequality∑
e∈E(p)

xke ≤ |E(p)| − 1. (2.52)

is valid for P(G,K,S).

Proof. It is trivial given that p is minimal infeasible sub-path for demand k this

means that there are at most |E(p)|−1 edges from the set of edges in E(p) that can

be used to route demand k.

2.4.12 Edge-Capacity-Cover Inequalities

Let provide now some inequalities related to the capacity constraint over edges.

Proposition 2.4.25. Consider an edge e in E. Then, the inequality∑
k∈K\Ke

wkx
k
e ≤ s̄−

∑
k′∈Ke

wk′ , (2.53)

is valid for P(G,K,S).
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Proof. The number of slots allocated in edge e ∈ E should be less than the residual

capacity of edge e which is equal to s̄−
∑

k′∈Ke

wk′ .

Based on this, we introduce the following definitions.

Definition 2.4.11. For an edge e ∈ E, a subset of demands C ⊆ K with e /∈ Ek
0∩Ek

1

For each demand k ∈ C, is said a cover for edge e if
∑
k∈C

wk > s̄ −
∑

k′∈Ke

wk′.

Moreover, it is said to be a minimal cover if
∑

k′∈C\{k}

wk′ ≤ s̄−
∑

k”∈Ke

wk”.

Proposition 2.4.26. Consider an edge e in E. Let C be a minimal cover in K for

edge e. Then, the inequality ∑
k∈C

xke ≤ |C| − 1, (2.54)

is valid for P(G,K,S).

Proof. If C is minimal cover for edge e ∈ E this means that there are at most |C|−1

demands from the set of demands in C that can use edge e.

Theorem 2.4.21. Consider an edge e in E. Let C be a minimal cover in K for edge

e. Then, inequality (2.54) is facet defining for the polytope P(G,K,S, C, e) where

P(G,K,S, C, e) = {(x, z) ∈ P(G,K,S) :
∑

k′∈K\(C∪Ke)

xk
′

e = 0}.

Proof. It is trivial given that inequality (2.54) can never be dominated in P(G,K,S, C, e).

One can use the sequential lifting procedure [5] to sequentially lift the inequality

(2.54) and generate lifted facets for the polytope P(G,K,S) as follows.

Theorem 2.4.22. Let C be a minimal cover for an edge e ∈ E. Let K \ (Ke ∪C ∪
K̄e) = {k1, ..., kq} be arbitrarily ordred with q = |K \ (Ke ∪ C ∪ K̄e)|. Consider a

sequence of knapsack problems defined as

zi = max
∑
j∈C

uj +
i−1∑
j=1

αjuj ,

∑
j∈C

wjuj +

i−1∑
j=1

wkjuj ≤ s̄−
∑

k′∈Ke

wk′ − wki ,

uj ∈ {0, 1},∀j ∈ C ∪ {1, ..., i− 1},

(2.55)
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for all i ∈ {1, ..., q} with αj = |C| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
k∈C

xke +

q∑
j=1

αjx
kj
e ≤ |C| − 1, (2.56)

is valid for P(G,K,S). Moreover, it’s facet defining for P(G,K,S).

Proof. It’s trivial given that inequality (2.56) can never be dominated in P(G,K,S).

2.5 Symmetry-Breaking Inequalities

We have noticed that several symmetrical solutions may appear given that there

exist several feasible solutions that have the same value of the solution (called equiv-

alents solutions), and they can be found by doing some permutations between the

slots assigned to some demands without changing the selected paths (routing) while

satisfying the C-RSA constraints. There exists several methods to break the symme-

try. See, for example, perturbation method proposed by Margot [66], isomorphism

pruning method by Margot et al. [67][68], orbital branching method by Ostrowski

et al. [75][76], orbital fixing method by Kaibel et al. [80], and symmetry-breaking

constraints by Kaibel and Pfetsch [79] which is applied in our study. We aim to

introduce breaking-symmetry inequalities to remove the sub-problems in the enu-

meration tree that are equivalent due to the equivalency of their associated solutions.

For this, we derive the following inequalities.

Proposition 2.5.1. Consider a demand k, slot s ∈ {1, ..., s̄− 1}. Let s′ be a slot in

{s, ..., s̄}

min(s′+wk−1,s̄)∑
s”=s′

zks” −
∑
k′∈K

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ 0. (2.57)

This ensures that slot s′ can be assigned to demand k if and only if slot s

(which precedes slot s′) is already assigned to at least one demand k′ in K. A

similar idea was proposed by Mendez-Diaz and Zabala [70] to break the symmetry

for the vertex coloring problem. Note that inequalities (5.17) are not valid for the

polytope P(G,K,S) given that they cut off some feasible regions in the polytope

P(G,K,S). In any case, we ensure that there exists at least one optimal solution

from our original problem that remains feasible and belongs to the convex hull of

non-symmetric solutions of the C-RSA problem.
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2.6 Lower Bounds

In this section, we derive some lower bounds for the C-RSA. Let p∗k denote the

minimum-cost path between origin node ok and destination node dk for demand k

with total length smaller than the transmission-reach l̄k. We know in advance that

the optimal path chosen for each demand k ∈ K in the optimal solution, its total

cost is at least equal to the total cost of the minimum-cost path p∗k. Based on this,

we introduce the following inequalities.

Proposition 2.6.1. Consider a demand k ∈ K. Then, the inequality∑
e∈E

cex
k
e ≥

∑
e∈E(p∗k)

ce, (2.58)

is valid for P(G,K,S).

Proof. It’s trivial given that in any feasible solution S in P(G,K,S), the total cost

of the path selected to demand k is greatest than or equal to the total cost of the

minimum-cost path p∗k.

Inequality (2.58) is then used to derive a lower bounds for the C-RSA as follows.

Proposition 2.6.2. The inequality∑
k∈K

∑
e∈E

cex
k
e ≥

∑
k∈K

∑
e∈E(p∗k)

ce, (2.59)

is valid for P(G,K,S).

Proof. It’s trivial given that the optimal value is at least equal to the sum of the

total cost of minimum-cost path over all the demands in K.

The separation problem associated with inequality (2.59) is equivalent to solv-

ing the Resource Constrained Shortest Path (RCSP) Problem for each demand k.

The RCSP is well known to be a NP-hard problem [31]. For this, we propose a

pseudo-polynomial time algorithm using dynamic programming [32] to compute the

minimum-cost path for each demand k while satisfying the transmission-reach con-

straint. For each demand k ∈ K, we associate to each node v ∈ V \ V k
0 in the

graph G a set of labels Lv such that each label corresponds to differents paths from

th origin node ok to the node v, and each label p is specified by a cost equals to∑
e∈E(p) ce, and a weight equals to

∑
e∈E(p) ℓe. We denote by Tv the set of labels

on node v ∈ V . For each demand k and slot s ∈ {wk, ..., s̄}, the complexity of the

algorithm is bounded by O(|E \Ek
0 | ∗ l̄k) [32]. Algorithm 1 summarizes the different

steps of the dynamic programming algorithm.
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Algorithm 1: Dynamic Programming Algorithm for the Computation of

Lower Bounds for the C-RSA
Data: An undirected, loopless, and connected graph G = (V,E), a

spectrum S, a demand k

Result: constrained minimum-cost path p∗k for demand k

1 Set Lok = {(0, 0)} and Lv = ∅ for each node v ∈ V \ (V k
0 ∪ {ok});

2 Set T v = ∅ for each node v ∈ V \ V k
0 ;

3 STOP= FALSE;

4 while ∪v∈V (Lv \ Tv) ̸= ∅ do
5 Select a node i ∈ V \ V k

0 and a label p ∈ Li \ T i having the smallest

value of
∑

e∈E(p) ce;

6 for each e = ij ∈ δ(i) \ Ek
0 such that

∑
e′∈E(p) ℓe′ + ℓe ≤ l̄k do

7 if j /∈ V (p) then

8 Set p′ = p ∪ {e};
9 Update the set of label Lj = Li ∪ {p′} ;

10 end

11 end

12 Set T i = T i ∪ {p};
13 end

14 We select one label p from the labels Ldk of destination node dk and set

p∗ = p;

15 return constrained minimum-cost path p∗k for demand k;
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2.7 Concluding Remarks

In this chapter, we have focused on a complex variant of the Routing and Spec-

trum Assignment (RSA) problem, called the Constrained-Routing and Spectrum

Assignment (C-RSA). We first have proposed a new integer linear programming

formulation based on the so-called cut formulation for the C-RSA. We have inves-

tigated the facial structure of the associated polytope by showing that some basic

inequalities are facet-defining under certain conditions. We have further identified

several families of valid inequalities to obtain tighter LP bounds. Moreover, we have

studied the facial structure of these valid inequalities, and have shown that they

are facet defining for the polytope under certain necessary and sufficient conditions.

We have also introduced some symmetry-breaking inequalities to well manage the

so-called equivalents sub-problems.
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Chapter 3

Branch-and-Cut Algorithm for

the C-RSA Problem

Based on theoretical results presented in chapter (2), we devise a Branch-and-Cut

algorithm to solve the C-RSA problem. Our aim is to study the effectiveness of

the algorithm, and assess the impact of the valid inequalities on the effectiveness of

the Branch-and-Cut algorithm. First, we give an overview of the algorithm. Then,

we describe the separation procedure used for each valid inequality based on exact

algorithms, greedy-algorithms, and heuristics. At the end, we provide a detailed

behavior study of the Branch-and-Cut algorithm.

3.1 Branch-and-Cut Algorithm

3.1.1 Description

In what follows, we describe the Branch-and-Cut algorithm. Consider an undirected,

loopless, and connected graph G = (V,E), which is specified by a set of nodes V ,

and a multiset E of links. Each link e = ij ∈ E is associated with a length ℓe ∈ R+

(in kms), a cost ce ∈ R+ such that each link e ∈ E is divided into s̄ ∈ N+ slots.

Let S = {1, . . . , s̄} be an optical spectrum of available frequency slots with s̄ ≤ 320,

and K be a multiset of demands such that each demand k ∈ K is specified by an

origin node ok ∈ V , a destination node dk ∈ V \ {ok}, a slot-width wk ∈ Z+, and a

transmission-reach ℓ̄k ∈ R+ (in kms). We first consider a restricted linear problem

denoted by LP0 given by inequalities (2.3)-(2.5) and (2.7)-(2.10) such that the cut

inequalities (2.2) and non-overlapping inequalities (2.6) are not included in LP0.
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LP0 is so equivalent to

min
∑
k∈K

∑
e∈E

cex
k
e∑

e∈E

ℓex
k
e ≤ ℓ̄k,∀k ∈ K,

xk
e = 0,∀k ∈ K, ∀e ∈ Ek

0 ,

xk
e = 1,∀k ∈ K,∀e ∈ Ek

1 ,

zks = 0,∀k ∈ K,∀s ∈ {1, ..., wk − 1},
s̄∑

s=wk

zks = 1,∀k ∈ K,

0 ≤ xk
e ≤ 1,∀k ∈ K,∀e ∈ E,

0 ≤ zks ≤ 1,∀k ∈ K,∀s ∈ S.

3.1.2 Test of Feasibility

Given an optimal solution (x̄, z̄) for the relaxation of LP0. It is feasible for the C-

RSA problem if and only if (x̄, z̄) is integral and it satisfies the cut inequalities (2.2)

and non-overlapping inequalities (2.6). Usually, (x̄, z̄) does not satisfy inequalities

(2.2) and (2.6). As a result, (x̄, z̄) is not feasible for the C-RSA problem. For this, we

generate several valid inequalities violated by a solution (x̄, z̄) at each iteration of the

Branch-and-Cut algorithm. This is known under the name of Separation Procedure.

It consists in identifying for a given class of valid inequalities the existence of one

or more inequalities of this class that are violated by the current solution. We

repeat this procedure in each iteration of the algorithm until no violated inequality

is identified. As a result, the final solution is optimal for the linear relaxation of

the cut formulation. Furthermore, if it is integral, then it is optimal for the C-

RSA problem. Otherwise, we create two subproblems called childs by branching

on a fractional variable (variable branching rule) or on some constraints using the

Ryan & Foster branching rule (constraint branching rule). Based on this, we devise

a basic Branch-and-Cut algorithm by combining cutting-plane algorithm based on

the separation of the cut inequalities (2.2) and non-overlapping inequalities (2.6),

and a Branch-and-Bound algorithm.

On the other hand, to make more efficient the Branch-and-Cut algorithm, we already

introduced several classes of valid inequalities used to obtain tighter LP bounds.

Based on this, and at each iteration in each node of the Branch-and-Cut tree, one can

identify one or more than one violated inequality by the current fractional solution

for a given class of valid inequalities. Algorithm 2 summarizes the different steps

of Branch-and-Cut algorithm taking into account additional valid inequalities for a
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given class of valid inequalities.

For this, we study the separation problem of each class of valid inequality introduced

in this dissertation as follows. Consider a fractional solution (x̄, z̄).

3.1.3 Separation of Non-Overlapping Inequalities

Let e be an edge in E and s a slot in S. The separation problem associated with

inequality (2.6) consists in identifying all pairs of demands k, k′ ∈ K such that

x̄ke + x̄k
′

e +

min(s+wk−1,s̄)∑
s′=s

z̄ks′ +

min(s+wk′−1,s̄)∑
s”=s

z̄k
′

s” > 3.

For this, we propose an exact algorithm in O(|E| ∗ s̄ ∗ |K| ∗ log(|K|)) which works as

follows. We select each pair of demands k, k′ ∈ K with xke > 0,
∑min(s+wk−1,s̄)

s′=s zks′ >

0, x̄k
′

e > 0 and
∑min(s+wk′−1,s̄)

s”=s z̄k
′

s” > 0. We then add the following inequality induced

by each selected pair of demands k, k′ for slot s over edge e to the current LP if it

is violated

xke + xk
′

e +

min(s+wk−1,s̄)∑
s′=s

zks′ +

min(s+wk′−1,s̄)∑
s”=s

zk
′

s” ≤ 3.

Otherwise, we conclude that such inequality does not exist for the current solution

(x̄, z̄). On the other hand, given that inequalities (2.5) are taken in format of

equalities when implementing the B&C algorithm (i.e.,
∑s̄

s=wk
zks = 1 for all k ∈ K).

Based on this, and taking into account the non-overlapping inequalities (2.6), we

propose a new non-overlapping inequality (3.1) more efficient compared to the ones

of (2.6).

Proposition 3.1.1. Consider an edge e, and a pair of demands k, k′ ∈ K with

e /∈ Ek
0 ∪ Ek′

0 . Let s be a slot in {wk, ..., s̄}. Then, the inequality

xke + xk
′

e + zks +

min(s+wk′−1,s̄)∑
s”=s−wk+1

zk
′

s” ≤ 3, (3.1)

is valid for Q(G,K,S).

The separation problem associated with inequality (3.1) consists in identifying

for each edge e, demand k ∈ K, and slot s ∈ {wk, ..., s̄}, a demands k′ ∈ K such

that

x̄ke + x̄k
′

e + z̄ks +

min(s+wk′−1,s̄)∑
s”=s−wk+1

z̄k
′

s” > 3.
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Algorithm 2: Branch-and-Cut Algorithm for the C-RSA

Data: An undirected, loopless, and connected graph G = (V,E), a

spectrum S, a multi-set K of demands, and a given class of valid

inequality

Result: Optimal solution for the C-RSA problem

1 LP←− LP0;

2 Stop= FALSE;

3 while STOP==FALSE do

4 Solve the linear program LP;

5 Let (x∗, z∗) be the optimal solution of LP;

6 if there exist inequalities from the cut inequalities (2.2), non-overlapping

inequalities (2.6), and those of the given class that are violated by the

current solution (x∗, z∗) then

7 Add them to LP ;

8 end

9 else

10 STOP = TRUE;

11 end

12 end

13 Consider the optimal solution (x∗, z∗) of LP ;

14 if (x∗, z∗) is integer for the C-RSA then

15 (x∗, z∗) is an optimal solution for the C-RSA;

16 End of the Branch-and-Cut algorithm ;

17 end

18 else

19 Create two sub-problems by branching one some fractional variables or

constraints ;

20 end

21 for each sub-problem not yet solved do

22 go to 3 ;

23 end

24 return the best optimal solution (x∗, z∗) for the C-RSA problem;
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For this, we propose an exact algorithm in O(|E| ∗ s̄∗ |K| ∗ (|K|−1)) which works as

follows. For each demand k and slot s ∈ {wk, ..., s̄} over edge e with xke > 0, zks > 0,

we select each demand k′ ∈ K \ {k} with x̄k
′

e > 0 and
∑min(s+wk′−1,s̄)

s”=s−wk+1 z̄k
′

s” > 0. We

then add the following inequality to the current LP if it is violated

xke + xk
′

e + zks +

min(s+wk′−1,s̄)∑
s”=s−wk+1

zk
′

s” ≤ 3.

Otherwise, we conclude that there does not exist an inequality from the non-overlapping

inequalities (3.1) violated by the current solution (x̄, z̄). Note that, from an efficiency

point of view, inequalities (3.1) replace inequalities (2.6) in the B&C algorithm.

3.1.4 Separation of Cut Inequalities

In this section we discuss the separation problem of the cut inequalities (2.2). Its

associated separation problem consists in identifying a cut inequalities (2.2) that is

violated by (x̄, z̄). For each demand k ∈ K, this can be done in polynomial time [38]

as shown in theorem of Ford and Fulkerson by finding a minimum cut separating

the origin-node ok and destination-node dk. As a result, this can be done exactly

[38] and very effectively in O(|V \ V k
0 |2 ∗

√
|E \ Ek

0 |) for each demand k using an

efficient implementation of minimum cut algorithm based on the so-called preflow

push-relabel algorithm of Goldberg and Tarjan [44]. It consists in computing a

maximum flow/minimum cut in G of demand k by assigning a positif weight x̄ke for

each edge e in G. For this, we use a C++ library proposed by the LEMON GRAPH

library [59] which calls the algorithm of Goldberg and Tarjan for the minimum cut

computation. Based on this, we conclude that the separation of the cut inequalities

(2.2) can be done in O(|V |2 ∗
√
|E| ∗ |K|) in the worst case.

3.1.5 Separation of Edge-Slot-Assignment Inequalities

Consider an edge e ∈ E and a slot s ∈ S. The separation problem associated with

inequality (2.23) consists in identifying a subset of demands K̃∗ ⊂ K such that

∑
k∈K̃∗

x̄ke +

min(s+wk−1,s̄)∑
s′=s

z̄ks′ > |K̃∗|+ 1.

For this, we propose an exact algorithm in O(|K| ∗ |E| ∗ s̄) which works as follows.

The main idea is to iteratively add each demand k ∈ K to K̃∗ if and only if xke > 0

and
∑min(s+wk−1,s̄)

s′=s zks′ > 0. We then add the following inequality induced by K̃∗
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to the current LP if it is violated and satisfies some conditions about validity of

inequality (2.23)

∑
k∈K̃∗

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ |K̃∗|+ 1.

Otherwise, we conclude that such inequality does not exist for the current solution

(x̄, z̄). Moreover, if such violated inequality is identified, it can be easily lifted by

introducing inequality (2.25) induced by K̃∗ and a subset of demands Ke \ K̃∗ as

follows

∑
k∈K̃∗

xke +

min(s+wk−1,s̄)∑
s′=s

zks′ +
∑

k′∈Ke\K̃∗

min(s+wk′−1,s̄)∑
s′=s

≤ |K̃∗|+ 1.

Remark 3.1.1. Inequality (3.1) is a particular case of inequality (2.42) for a clique

C = {vk,s} ∪ {vk′,s′ ∈ He
S such that {s′ − w′

k + 1, ..., s′} ∩ {s− wk + 1, ..., s} ≠ ∅}.

3.1.6 Separation of Edge-Slot-Assignment-Clique Inequalities

Consider an edge e ∈ E. The separation algorithm for inequality (2.42) consists in

identifying a maximal clique C∗ in the conflict graph He
S such that∑

vk,s∈C∗

x̄ke + z̄ks > |C|+ 1.

To do this, we use the greedy algorithm introduced by Nemhauser and Sigismondi

[73] to identify a maximal clique C∗ in the conflict graph He
S given that computing

a maximal clique in such a graph is also NP-hard problem [81]. Based on this, we

first assign a positive weight z̄ks ∗ x̄ke to each node vk,s in the conflict graph He
S . We

then select a node vk,s in the conflict graph He
S having the largest weight compared

with the other nodes in He
S , and set C∗ = {vk,s}. After that, we iteratively add each

node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already assigned

to the current clique C∗ and z̄k
′

s′ > 0 and x̄k
′

e > 0. At the end, we add inequality

(2.42) induced by clique C∗ for edge e to the current LP if it is violated and satisfies

some conditions about validity of inequality (2.42). Hence, we add the following

inequality ∑
vk,s∈C∗

xke + zks ≤ |C|+ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ such that each

vk′,s′ ∈ N∗ is linked with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in He
S . For this,

154



we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to

identify clique N∗ as follows. We first set N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node in

He
S having the largest value of node-degree (i.e., |δ(vk′,s′)|) in He

S and vk′,s′ is linked

with all the nodes vk,s ∈ C∗ in He
S and k′ ∈ Ke. Afterwards, we iteratively add

each node vk”,s” /∈ C∗ ∪N∗ to the current N∗ if it is linked in He
S with all the nodes

already assigned to C∗ and N∗ and k” ∈ Ke. At the end, we add inequality (2.42)

induced by clique C∗ ∪N∗ to the current LP, i.e.,∑
vk,s∈C∗

(xke + zks ) +
∑

vk′,s′∈N∗

zk
′

s′ ≤ 1.

3.1.7 Separation of Edge-Interval-Clique Inequalities

Let discuss the separation problem of inequality (2.32). Consider an edge e ∈ E.

We first construct a set of intervals of contiguous slots I ∈ Ie such that each interval

of contiguous slots Ie is identified by generating two slots si and sj randomly in

S with sj ≥ si + 2maxk∈K\K̄e
wk. Consider now an interval of contiguous slots

I = [si, sj ] ∈ Ie over edge e. The separation problem associated with inequality

(2.32) is NP-hard [82] given that it consists in identifying a cover K̃∗ for the interval

I = [si, sj ] over edge e, such that∑
k∈K̃∗

x̄ke +

sj∑
s′=si+wk−1

z̄ks′ > 2|K̃∗| − 1.

For this, we use a greedy algorithm introduced by Nemhauser and Sigismondi [73]

as follows. We first select a demand k ∈ K having the largest number of requested

slot wk with x̄ke > 0 and
∑sj

s′=si+wk−1 z̄
k
s′ > 0, and then set K̃∗ to K̃∗ = {k}.

After that, we iteratively add each demand k′ ∈ K \ K̃∗ to K̃∗ with x̄k
′

e > 0 and∑sj
s′=si+wk′−1 z̄

k′
s′ > 0, until a cover K̃∗ is obtained for the interval I over edge e with∑

k∈K̃∗ wk > |I|. We further derive a minimal cover from the cover K̃∗ by deleting

each demand k ∈ K̃∗ if
∑

k′∈K̃∗\{k}wk′ ≤ |I|. We then add inequality (2.32) induced

by the minimal cover K̃∗ for the interval I and edge e if it is violated and satisfies

some conditions about validity of inequality (2.32). The following valid inequality

is then added to the current LP∑
k∈K̃∗

xke +

sj∑
s′=si+wk−1

zks′ ≤ 2|K̃∗| − 1.

3.1.8 Separation of Edge-Interval-Clique Inequalities

The separation problem related to inequality (2.36) is NP-hard [77][81] given that

it consists in identifying a maximal clique C∗ in the conflict graph He
I for a given
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edge e and a given interval I = [si, sj ] such that

∑
k∈C∗

x̄ke +

sj∑
s′=si+wk−1

z̄ks′ > |C∗|+ 1.

We start our procedure of separation by constructing a set of intervals of contigu-

ous slots I = [si, sj ] ∈ Ie for a given edge e ∈ E such that each interval of con-

tiguous slots I = [si, sj ] ∈ Ie is identified for each slot si ∈ S and slot sj with

sj ∈ {si +maxk∈K\K̄e
wk, ...,min(s̄, si + 2maxk∈K\K̄e

wk)}. Consider now an inter-

val of contiguous slots I = [si, sj ] ∈ Ie over an edge e, and its associated conflict

graph He
I . We then use a greedy algorithm introduced by Nemhauser and Sigis-

mondi [73] to identify a maximal clique in the conflict graph He
I as follows. We first

associate a positive weight for each node vk in He
I equals to x̄ke ∗

∑sj
s′=si+wk−1 z̄

k
s′ .

We then set C∗ = {k} such that k is a demand in K having the largest number of

slots wk and weight x̄ke ∗
∑sj

s′=si+wk−1 z̄
k
s′ . After that, we iteratively add each demand

k′ having x̄k
′

e > 0 and
∑sj

s′=si+wk′−1 z̄
k′
s′ > 0 such that its corresponding node vk′ is

linked with all the nodes vk with k already assigned to the current C∗. After that,

we check if inequality (2.36) induced by the maximal clique C∗ for the interval I and

edge e is violated or not. If so, we add inequality (2.36) induced by the maximal

clique C∗ to the current LP, i.e.,

∑
k∈C∗

xke +

sj∑
s′=si+wk−1

zks′ ≤ |C∗|+ 1.

One can strengthen this additional inequality by adding inequality (2.37) induced

by the maximal clique C∗ and C∗
e ⊂ Ke \ C∗, i.e.,

∑
k∈C∗

xke +

sj∑
s′=si+wk−1

zks′ +
∑

k′∈C∗
e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |C∗|+ 1,

such that

a) wk′ + wk ≥ |I|+ 1 for each k ∈ C∗ and k′ ∈ C∗
e ,

b) wk′ + wk” ≥ |I|+ 1 for each k′ ∈ C∗
e and k” ∈ C∗

e ,

c) wk′ ≤ |I| for each k′ ∈ C∗
e .

3.1.9 Separation of Interval-Clique Inequalities

Given an interval of contiguous slots I = [si, sj ]. Our separation algorithm for

inequality (2.39) consists in identifying a maximal clique C∗ in the conflict graph
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HE
I such that ∑

k∈C∗

sj∑
s′=si+wk−1

z̄ks′ > 1.

As a result, its associated separation problem is NP-hard given that computing

a maximal clique in a given graph is known to be a NP-hard problem [81]. For

this, we also use the greedy algorithm introduced by Nemhauser and Sigismondi

[73] to identify a maximal clique in the conflict graph HE
I as follows. We first

generate a set of intervals of contiguous slots denoted by IE such that each interval

of contiguous slots I = [si, sj ] ∈ IE is given for each slot si ∈ S and slot sj with

sj ∈ {si + max
k∈K,
|Ek

1 |≥1

wk, ...,min(s̄, si + 2 max
k∈K,
|Ek

1 |≥1

wk)}. We then consider an interval of

contiguous slots I = [si, sj ] ∈ IE and its associated conflict graph HE
I . We associate

a positive weight
∑sj

s′=si+wk−1 z̄
k
s′ for each node vk in HE

I . We select a demand

k having the largest number of slots wk and weight
∑sj

s′=si+wk−1 z̄
k
s′ , and then set

C∗ = {k}. After that, we iteratively add each demand k′ having
∑sj

s′=si+wk′−1 z̄
k′
s′ >

0 such that its corresponding node vk′ is linked with all the nodes vk with k ∈ C∗.

At the end, we consider inequality (2.39) induced by the maximal clique C∗ if it is

violated, i.e., by adding the following inequality to the current LP∑
k∈C∗

sj∑
s′=si+wk−1

zks′ ≤ 1.

Moreover, this additional inequality can be strengthened as follows∑
k∈C∗

sj∑
s′=si+wk−1

zks′ +
∑

k′∈C∗
e

sj∑
s′=si+wk′−1

zk
′

s′ ≤ 1,

where C∗
E ⊂ K \ C∗ such that

a) wk′ + wk ≥ |I|+ 1 and Ek
1 ∩ Ek′

1 ̸= ∅ for each k ∈ C∗ and k′ ∈ C∗
E ,

b) wk′ + wk” ≥ |I|+ 1 and Ek′
1 ∩ Ek”

1 ̸= ∅ for each k′ ∈ C∗
E and k” ∈ C∗

E ,

c) wk′ ≤ |I| for each k′ ∈ C∗
E .

3.1.10 Separation of Interval-Odd-Hole Inequalities

For inequality (2.40), we propose a separation algorithm that consists in identifying

an odd-hole H∗ in the conflict graph HE
I for a given Interval I and a fractional

solution (x̄, z̄) such that ∑
k∈H∗

sj∑
s′=si+wk−1

z̄ks′ >
|H∗| − 1

2
.
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This can be done in polynomial time as shown by Rebennack et al. [94][95]. Based

on this, we use the exact algorithm proposed by the same authors which consists of

finding a minimum weighted odd-cycle in a graph. For this, we should first generate

a set of intervals of contiguous slots IE as we did before in the section 3.1.9. We

then consider a conflict graph HE
I associated with a given interval of contiguous

slots I ∈ IE . We construct an auxiliary conflict graph H ′E
I which can be seen as a

bipartite graph by duplicating each node vk in HE
I (i.e., vk and v′k) and two nodes

are linked in H ′E
I if their original nodes are linked in HE

I . We assign to each link

(va, vb) in H ′E
I a weight equals to

1−
∑sj

s′=si+wa−1
z̄a
s′−

∑sj

s′=si+wb−1
z̄b
s′

2 . We then compute

for each node vk in HE
I , the shortest path between vk and its copy in the auxiliary

conflict graph H ′E
I denoted by pvk,v′k . After that, we check if the total sum of weight

over edges belong this path is smallest than 1
2 ,∑

(va,vb)∈E(pvk,v′
k
)

1−
∑sj

s′=si+wa−1 z̄
a
s′ −

∑sj
s′=si+wb−1 z̄

b
s′

2
<

1

2
.

If so, odd-holeH∗ is composed by all the original nodes of nodes belong the computed

shortest path pvk,v′k , i.e., V (pvk,v′k) \ {v
′
k}. We then add inequality (2.40) induced by

odd-hole H∗ to the current LP, i.e.,

∑
k∈H∗

sj∑
s′=si+wk−1

zks′ ≤
|H∗| − 1

2
.

It can be lifted using the greedy algorithm introduced by Nemhauser and Sigismondi

[73] to identify a maximal clique C∗ in the conflict graph HE
I such that

a) wk′ + wk ≥ |I|+ 1 and Ek
1 ∩ Ek′

1 ̸= ∅ for each k ∈ H∗ and k′ ∈ C∗,

b) wk′ + wk” ≥ |I|+ 1 and Ek′
1 ∩ Ek”

1 ̸= ∅ for each k′ ∈ C∗ and k” ∈ C∗,

c) wk′ ≤ |I| for each k′ ∈ C∗.

For this, we first assign a positive weight equals to the number of slots request wk′

by demand k′ for each node vk′ linked with all the nodes vk ∈ H∗ in the conflict

graph HE
I . We then select the node vk′ linked with all the nodes vk ∈ H∗ in the

conflict graph HE
I having the largest weight, and set C∗ to {k′}. After that, we

iteratively add each demand k” to the current clique C∗ if its associated node vk” is

linked with all the nodes vk ∈ H∗ and nodes vk′ ∈ C∗. As a result, we add inequality

(2.41) induced by odd-hole H∗ and clique C∗ to the current LP, i.e.,

∑
k∈H∗

sj∑
s′=si+wk−1

zks′ +
|H∗| − 1

2

∑
k′∈C∗

sj∑
s”=si+wk′−1

zk
′

s” ≤
|H∗| − 1

2
.
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3.1.11 Separation of Slot-Assignment-Clique Inequalities

Now, we describe the separation algorithm for inequality (2.43). It consists in iden-

tifying a maximal clique C∗ in the conflict graph HE
S such that∑

vk,s∈C∗

z̄ks > 1,

for a given fractional solution (x̄, z̄) of the current LP.

For this, we use the greedy algorithm introduced by Nemhauser and Sigismondi [73]

to identify a maximal clique C∗ in the conflict graph HE
S given that computing a

maximal clique in such a graph is also NP-hard problem [81]. Based on this, we

first assign a positive weight z̄ks to each node vk,s in the conflict graph HE
S . We then

select a node vk,s in the conflict graph HE
S having the largest weight compared with

the other nodes in HE
S , and set C∗ = {vk,s}. After that, we iteratively add each

node vk′,s′ to the current C∗ if it is linked with all the nodes vk,s already assigned

to the current clique C∗ and z̄k
′

s′ > 0. At the end, we add inequality (2.43) induced

by clique C∗ to the current LP if it is violated, i.e., we add the following inequality∑
vk,s∈C∗

zks ≤ 1.

Furthermore, it can be lifted by identifying a maximal clique N∗ such that each

vk′,s′ ∈ N∗ is linked with all the nodes vk,s ∈ C∗ ∪ (N∗ \ {vk′,s′}) in HE
S . For this,

we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to

identify clique N∗ as follows. We first set N∗ = {vk′,s′} with vk′,s′ /∈ C∗ a node

in HE
S having the largest value of node-degree (i.e., |δ(vk′,s′)|) in HE

S and vk′,s′ is

linked with all the nodes vk,s ∈ C∗ in HE
S . Afterwards, we iteratively add each node

vk′,s′ /∈ C∗ ∪ N∗ to the current N∗ if it is linked in HE
S with all the nodes already

assigned to C∗ and N∗. At the end, we add inequality (2.43) induced by clique

C∗ ∪N∗ to the current LP, i.e.,∑
vk,s∈C∗

zks +
∑

vk′,s′∈N∗

zk
′

s′ ≤ 1.

3.1.12 Separation of Slot-Assignment-Odd-Hole Inequalities

The separation algorithm of inequality (2.44) can be performed by identifying an

odd-hole H∗ in the conflict graph HE
S for a given fractional solution (x̄, z̄) such that∑

vk,s∈H∗

z̄ks >
|H∗| − 1

2
.
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This can be done in polynomial time as shown by Rebennack et al. [94][95] by

finding a minimum weighted odd-cycle in the conflict graph HE
S . For this, we first

construct an auxiliary conflict graph H ′E
S which can be seen also as a bipartite graph

by duplicating each node vk,s in HE
S (i.e., vk,s and v′k,s) such that each two nodes

are linked in H ′E
S if their original nodes are linked in HE

S . We assign to each link

(ṽk,s, ṽk′,s′) in H ′E
S a weight equals to

1−z̄ks−z̄k
′

s′
2 . We then compute for each node

vk,s in HE
S , the shortest path between vk,s and its copy v′k,s in the auxiliary conflict

graph H ′E
S denoted by pvk,s,v′k,s . After that, we check if the total sum of weight

over edges belonging to this path is smaller than 1
2 . If so, odd-hole H∗ is composed

by all the original nodes of nodes belong the computed shortest path pvk,s,v′k,s , i.e.,

V (pvk,s,v′k,s)\{v
′
k,s}. As a result, the following inequality (2.44) induced by odd-hole

H∗

∑
vk,s∈H∗

zks ≤
|H∗| − 1

2
,

should be added to the current LP. Moreover, one can strengthen inequality (2.44)

induced by odd-hole H∗ using the greedy algorithm introduced by Nemhauser and

Sigismondi [73] to identify a maximal clique C∗ in the conflict graph HE
S such that

each node vk′,s′ ∈ C∗ should have a link with all the nodes vk,s ∈ H∗, and the

nodes vk”,s” ∈ C∗ \ {vk′,s′} in the conflict graph HE
S . For this, we first assign a node

vk′,s′ /∈ H∗ to clique C∗ (i.e., C∗ = {vk′,s′}) such that vk′,s′ has the largest value of

node-degree (i.e., |δ(vk′,s′)|) in HE
S and vk′,s′ is linked with all the nodes vk,s ∈ H∗

in HE
S . After that, we iteratively add each node vk′,s′ /∈ H∗ ∪ C∗ to the current

clique C∗ if it is linked in HE
S with all the nodes already assigned to odd-hole H∗

and clique C∗. We then add inequality (2.45) induced by odd-hole H∗ and clique

C∗

∑
vk,s∈H∗

zks +
|H∗| − 1

2

∑
vk′,s′∈C∗

zk
′

s′ ≤
|H∗| − 1

2
,

3.1.13 Separation of Incompatibility-Clique Inequalities

Consider now inequality (2.46). Its associated separation algorithm consists in iden-

tifying a maximal clique C∗ in the conflict graph HK
E such that∑

vk,e∈C∗

x̄ke > 1.

The separation problem related to this inequality is NP-hard given that computing a

maximal clique in the conflict graph HK
E is NP-hard problem [81]. For this, we also
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use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to identify a

maximal clique in the conflict graph HK
E taking into account the fractional solution

(x̄, z̄) as follows. We first assign a positive weight x̄ke to each node vk,e in the conflict

graph HK
E . We then select a node vk,e in the conflict graph HK

E having the largest

weight x̄ke , and set C∗ = {vk,e}. After that, we iteratively add each node vk′,e′ to

the current C∗ if it is linked with all the nodes vk,e ∈ C∗ and x̄k
′

e′ > 0. At the end,

the following inequality (2.46) induced by clique C∗

∑
vk,e∈C∗

xke ≤ 1,

should be added to the current LP if it is violated. Furthermore, one can strengthen

the additional inequality (2.46) by identifying a maximal clique N∗ such that each

vk′,e′ ∈ N∗ is linked with all the nodes vk,e ∈ C∗ ∪ (N∗ \ {vk′,e′}) in HK
E . For this,

we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to

identify clique N∗ as follows. We first set N∗ = {vk′,e′} with vk′,e′ /∈ C∗ a node in

HK
E having the largest degree |δ(vk′,e′)| in HK

E and should be also linked with all the

nodes vk,e ∈ C∗ in HK
E . We then iteratively add each node vk′,e′ /∈ C∗ ∪N∗ to the

current N∗ if it is linked in HK
E with all the nodes already assigned to C∗ and N∗.

At the end, we add inequality (2.46) induced by clique C∗ ∪N∗ to the current LP,

i.e., ∑
vk,e∈C∗

xke +
∑

vk′,e′∈N∗

xk
′

e′ ≤ 1.

3.1.14 Separation of Incompatibility-Odd-Hole Inequalities

The separation algorithm related to inequality (2.47) can be done in polynomial

time by finding a minimum weighted odd-cycle in the conflict graph HK
E as shown

by Rebennack et al. [94][95]. For this, our aims is to identify an odd-hole H∗ in the

conflict graph HK
E such that ∑

vk,e∈H∗

x̄ke >
|H∗| − 1

2
,

for a given fractional solution (x̄, z̄) of the current LP.

We start its procedure of separation by constructing an auxiliary conflict graph H ′K
E

by duplicating each node vk,e in HK
E (i.e., vk,e and v′k,e) such that each two nodes

are linked in H ′K
E if their original nodes are linked in HK

E . We assign to each link

(ṽk,e, ṽk′,e′) in H ′K
E a weight

1−x̄k
e−x̄k′

e′
2 . After that, we compute for each node vk,e in

HK
E , the shortest path between vk,e and its copy v′k,e. We denote this shortest path
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by pvk,e,v′k,e . Note that if the total sum of weight over edges belonging to this path is

smaller than 1
2 , this means that there exists odd-holeH∗ composed by all the original

nodes of nodes belong the computed shortest path pvk,e,v′k,s , i.e., V (pvk,e,v′k,s)\{v
′
k,s},

such that its associated inequality (2.47) is violated by the current fractional solution

(x̄, z̄) to the current LP. As a result, we add following inequality (2.47) induced by

odd-hole H∗

∑
vk,e∈H∗

xke ≤
|H∗| − 1

2
.

Moreover, inequality (2.47) induced by odd-hole H∗ can be lifted using the greedy

algorithm introduced by Nemhauser and Sigismondi [73] by identifying a maximal

clique C∗ in the conflict graph HK
E such that each node vk′,e′ ∈ C∗ should have a link

with all the nodes vk,e ∈ H∗, and the nodes vk′”,e” ∈ C∗\{vk′,e′} in the conflict graph

HK
E . For this, we first assign a node vk′,e′ /∈ H∗ to clique C∗ (i.e., C∗ = {vk′,e′})

having the largest degree |δ(vk′,e′)| in HK
E , and vk′,e′ should be linked with all the

nodes vk,e ∈ H∗ in HK
E . After that, we iteratively add each node vk′,e′ /∈ H∗ ∪ C∗

to the current clique C∗ if it is linked in HK
E with all the nodes already assigned to

H∗ ∪ C∗. We then add inequality (2.48) induced by odd-hole H∗ and clique C∗

∑
vk,e∈H∗

xke +
|H∗| − 1

2

∑
vk′,e′∈C∗

xk
′

e′ ≤
|H∗| − 1

2
.

3.1.15 Separation of Transmission-Reach-Cover Inequalities

In this section, we study the separation problem of inequality (2.49). Consider a

demand k ∈ K. The separation problem associated with inequality (2.49) is NP-hard

[82] given that it consists in identifying a cover C∗ related to the transmission-reach

constraint of demand k, such that∑
e∈c∗

x̄ke > |C∗| − 1.

For this, we propose a separation algorithm based on a greedy algorithm introduced

by Nemhauser and Sigismondi [73]. We first select an edge e ∈ E \ (Ek
0 ∪Ek

1 ) having

the largest length ℓe with x̄ke > 0, and set C∗ to C∗ = {e}. After that, we iteratively
add each edge e′ ∈ E \(Ek

0 ∪Ek
1 ∪C∗) to C∗ while

∑
e∈C∗ ℓe ≤ l̄k and e′ is compatible

with the edges already added to the cover C∗, i.e., until a cover C∗ is obtained for the

demand k with
∑

e∈C∗ ℓe > l̄k. We further derive a minimal cover from the cover C∗

by deleting each edge e ∈ C∗ if
∑

e′∈C∗\{e} ℓe′ ≤ l̄k. We then add inequality (2.49)

induced by the minimal cover C∗ for demand k to the current LP if it is violated,
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i.e., ∑
e∈C∗

xke ≤ |C∗| − 1.

Furthermore, inequality (2.49) induced by the minimal cover C∗ can be lifted by

introducing an extended coverinequality as follows∑
e∈C∗

xke +
∑

e′∈E(C∗)

xke′ ≤ |C∗| − 1,

where ℓe′ ≥ ℓe for each e ∈ C∗ and e′ ∈ E(C∗) with e′ /∈ Ek
0 ∪Ek

1 and e′ is compatible

with each edge e ∈ C∗.

3.1.16 Separation of Edge-Capacity-Cover Inequalities

Let now study the separation problem of inequality (2.54). Given an edge e ∈ E.

The separation problem associated with inequality (2.54) is NP-hard [82] given that

it consists in identifying a cover K̃∗ edge e, such that∑
k∈K̃∗

x̄ke > |K̃∗| − 1.

For this, we propose a separation algorithm based on a greedy algorithm introduced

by Nemhauser and Sigismondi [73]. We first select a demand k ∈ K \ Ke having

largest number of requested slot wk with x̄ke > 0, and set K̃∗ to K̃∗ = {k}. After

that, we iteratively add each demand k′ ∈ K \ (Ke ∪ K̃∗) to K̃∗ while
∑

k∈K̃∗ wk ≤
s̄ −

∑
k̃∈Ke

wk̃, i.e., until a cover K̃∗ is obtained for the edge e with
∑

k∈K̃∗ wk >

s̄ −
∑

k̃∈Ke
wk̃. We further derive a minimal cover from the cover K̃∗ by deleting

each demand k ∈ K̃∗ if
∑

k′∈K̃∗\{k}wk′ ≤ s̄ −
∑

k̃∈Ke
wk̃. We then add inequality

(2.54) induced by the minimal cover K̃∗ for edge e to the current LP if it is violated,

i.e., ∑
k∈K̃∗

xke ≤ |K̃∗| − 1.

3.1.17 Primal Heuristic

Here, we propose a primal heuristic to boost the performance of the Branch-and-Cut

algorithm. It is based on a hybrid method between a local search algorithm and a

greedy-algorithm. Given an optimal fractional solution (x̄, z̄) in a certain node of

the B&C tree, our primal heuristic consists in constructing an integral ”feasible”
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solution from (x̄, z̄). For this, we first construct several paths Rk for each demand

k ∈ K based on the fractional values x̄ke such that for each p ∈ Rk∑
e∈δ(X)∩E(p)

x̄ke ≥ 1,∀X ⊂ V s.t. |X ∩ {ok, dk}| = 1 and
∑

e∈E(p)

ℓe ≤ l̄k.

This can be done in polynomial time using network flow algorithms.

Afterwards, we use a local search algorithm. It consists in generating at each iter-

ation a sequence of numeroted demands L (order) with L = 1′, 2′, ..., |K|′ − 1, |K|′.
Based on this sequence of demands, we use a greedy algorithm to select a path p

from Rk′ and a slot s ∈ {wk′ , ..., s̄} for each demand k′ ∈ L with z̄k
′

s ̸= 0 and x̄k
′

e ̸= 0

for each e ∈ E(p), while respecting the non-overlapping constraint with the set of

demands that precede demand k′ in the list L (i.e., the demands 1′, 2, ..., k′ − 1).

However, if there does not exist such pair of path p and slot s for demand k′, we

then select a path p and a slot s ∈ {wk′ , ..., s̄} for demand k′ ∈ L with z̄k
′

s = 0

and x̄ke ̸= 0 for each e ∈ E(p) while respecting the non-overlapping constraint with

the set of demands that precede demand k′ in the list L. The complexity of this

algorithm is bounded by O(|K| ∗ |S| ∗ |P | ∗ log(|K|)) where |P | = maxk∈K Rk.

After that, we compute the associated total cost of the paths selected for the set of de-

mandsK in the final solution S given by the greedy-algorithm (i.e.,
∑

k∈K
∑

e∈Ek
ce).

Our local search algorithm generates a new sequence by doing some permutation of

demands in the last sequence of demands, if the value of the solution given by

greedy-algorithm is smaller than the value of the best solution found until the cur-

rent iteration. Otherwise, we stop the algorithm, and we give in output the best

solution found during the primal heuristic induced by the best sequence of demands

having the smallest value of total cost of the selected path compared with the others

generated sequences.

3.2 Computational Study

3.2.1 Implementation’s Feature

We have used C++ programming language to implement the B&C algorithm under

Linux using three framworks, Cplex 12.9 [26], Gurobi 9.0 [49], and ”Solving Con-

straint Integer Programs” (Scip 7.0) [103] framework using Cplex 12.9 as LP solver.

It has been tested on LIMOS high performance server with a memory size limited to

64 gb while benefiting from parallelism by activating 8 threads when using Gurobi

or Scip (which is not possible when using cutting-plane based method under Cplex).

We limit the CPU time to 5 hours (18000 s).
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3.2.2 Description of Instances

We further present computational results using two types of graphs: real, and other

realistics from SND-Lib [74] with total number of nodes |V | up to 161 and total

number of edges |E| up to 166 as shown in Table 3.1. The demands K are randomly

generated with |K| ∈ {10, 20, 30, 40, 50, 100, 150}, and s̄ up to 320 slots. Note that we

tested 4 instances for each triplet (G,K, s̄) with |K| ∈ {10, 20, 30, 40, 50, 100, 150, 200, 250, 300},
and s̄ up to 320 slots.

Graphs
Number

of Nodes

Number

of Links

Max Node

Degree

Min Node

Degree

Average Node

Degree

German 17 25 5 2 2.94

Nsfnet 14 21 4 2 3

Spain 30 56 6 2 3.73

Conus75 75 99 5 2 2.64

Real

Topology

Coronet100 100 136 5 2 2.72

Europe 28 41 5 2 2.92

France 25 45 10 2 3.6

German50 50 88 5 2 3.52

Brain161 161 166 37 1 2.06

Giul39 39 86 8 3 4.41

India35 35 80 9 2 4.57

Pioro40 40 89 5 4 4.45

Ta65 65 108 10 1 3.32

Realistic

Topology

Zib54 54 80 10 1 2.96

Table 3.1: Characteristics of Different Topologies Used for our Experiments.

3.2.3 Computational Results

We consider 4 criteria in our computational study, average number of nodes in the

B&C tree (Nb Nd), average gap (Gap) which represents the relative error between

the lower bound gotten at the end of the resolution and best upper bound, average

number of violated inequalities added during the algorithm (Nbr Cuts), and average

Cpu time computation (TT).

Based on preliminary results, the cover-based inequalities (2.54) and (2.32) are

shown to be efficient than the clique-based inequalities (2.43), (2.42) and (2.36).

In fact, the B&C algorithm performs very well when adding the cover-based in-

equalities (2.54) and (2.32) under Scip and Gurobi. We notice that adding these

valid inequalities allows solving to optimality some instances that are not solved to
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optimality when using Cplex, Gurobi and Scip. Furthermore, they allow reducing

the average gap, average number of nodes, and the average cpu time. On the other

hand, we observed that the valid inequalities do not work well when using Cplex.

This is due to deactivating the Cplex’s cut generation such that Cplex does not

work well without its proper cut generation even if the valid inequalities are shown

to be efficient when using Gurobi and Scip for the instances tested. The results

also show that several inequalities of the cover-based inequalities (2.54)(2.32), and

clique-based inequalities (2.43), (2.42) and (2.36), are generated along the B&C al-

gorithm. However, the number of clique-based inequalities (2.43) generated is very

less compared with other inequalities. Based on these results, we conclude that

the valid inequalities are very useful to obtain tighter LP bounds using Gurobi and

Scip. On the other hand, the clique-based inequalities (2.46), cover-based inequal-

ities (2.49), and the different families of odd-hole inequalities, are shown to be not

efficient for the instances tested such that the number of their violated inequalities

generated is very less and equal to 0 for several instances. However, they are still

very interesting from a theoretical point of view. Based on this, the separation of

our valid inequalities, is performed along the B&C algorithm (using Cplex, Gurobi

and Scip) in the following order

a) edge-capacity-cover inequalities (2.54),

b) edge-Interval-Capacity-Cover inequalities (2.32),

c) edge-slot-assignment-clique inequalities (2.42),

d) edge-interval-clique inequalities (2.36),

e) slot-assignment-clique inequalities (2.43).

Using this, we provide a comparative study between Cplex, Gurobi and Scip. For

this, we aim to evaluate the impact of the valid inequalities used within the B&C al-

gorithm. Our first series of computational results presented in Tables 3.2, it concerns

a comparaison between the results obtained for the B&C algorithm using Cplex and

Scip (without or with additional valid inequalities). On the other hand, in the sec-

ond series of computational results shown in Table 3.3, we present the results found

for the B&C algorithm using Gurobi and Scip (without or with additional valid in-

equalities). In the third series shown in Table 3.4, we compare the results found by

the B&C algorithm using Cplex (without or with additional valid inequalities) with

those that are found when using Scip (without or with additional valid inequalities).

For each instance, we run
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• Cplex with benefiting of its automatic cut generation and without our addi-

tional valid inequalities (denoted by B&C CPX in the different tables),

• Cplex using our valid inequalities and disabling its proper cut generation (de-

noted by Own B&C CPX),

• Gurobi with benefiting of its automatic cut generation and without our addi-

tional valid inequalities (denoted by B&C GRB),

• Gurobi using our valid inequalities and disabling its proper cut generation

(denoted by Own B&C GRB),

• Scip with benefiting of its automatic cut generation and without our additional

valid inequalities (denoted by B&C SCIP),

• Scip using our valid inequalities and disabling its proper cut generation (de-

noted by Own B&C SCIP).

To make the results and the comparison more readable, we just present some com-

putational results using a subset of instances based on 2 real topologies: German,

Nsfnet, and 2 realistic topologies: India35 and Pioro40.

We first notice that our valid inequalities allows solving several instances to opti-

mality that are not solved to optimality when using B&C CPX, B&C GRB and

B&C SCIP. Furthermore, they enabled reducing the average number of nodes in the

B&C tree, and also the average Cpu time for several instances. On the other hand,

and when the optimality is not proven, adding valid inequalities decreases the aver-

age gap for several instances. However, there exists a few instances in which adding

valid inequalities does not improve the results of B&C algorithm. We further observe

that Own B&C SCIP is shown to be very efficient compared with Cplex and Gurobi

(see for example Table 3.2 and 3.3). However, and looking at the instances that

are solved to optimality by Own B&C GRB and Own B&C SCIP, we notice that

we have less number of nodes and time cpu when using Own B&C SCIP compared

with Own B&C GRB (see for example Table 3.3). Furthermore, Own B&C SCIP

works much betther than SCIP, Cplex and Gurobi even when using their proper cuts

such that Own B&C SCIP is able to solve several instances to optimality that are

not solved when using B&C CPX, B&C GRB and B&C SCIP. This means that we

are able to beat Cplex, Gurobi and Scip using Own B&C SCIP. On the other hand,

and considering large-scale instances with |K| ≥ 200, we noticed that adding valid

inequalities does not improve the effectiveness of the B&C algorithm such that there

exist some instances that are solved to optimality using B&C CPX and B&C GRB
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that are not solved to optimality when using Own B&C CPX, Own B&C GRB and

Own B&C SCIP. Based on these results, we conclude that using the valid inequal-

ities allows obtaining tighter LP bounds. They significantly improve the results

yielded by the B&C CPX, B&C GRB, and B&C SCIP for several instances with

number of demands up to 150.

Given that Own B&C SCIP is able to beat Cplex, Gurobi and Scip, we turn our

attention to the numerical results found when using SCIP. They are shown in the

following Table 3.5.

We can see from Table 3.5 that our B&C algorithm (Own B&C) is able to solve

to optimality more instances than B&C SCIP. Indeed, 137 instances are solved to

optimality when our inequalities are used (Own B&C) while 101 instances are solved

to optimality in run B&C SCIP. Also, when our inequalities are used, the number of

nodes in the B&C tree is decreased in most cases compared to the case where they

are not used. Moreover, the CPU time is, in general, smaller when our inequalities

are used. Finally, when comparing the instances which are not solved to optimality,

we can see that the optimality gap is smaller, for most of the instances, when our

inequalities are used.

3.3 Concluding Remarks

In this chapter, we have devised a B&C algorithm, and conducted some compu-

tational experiments. Our study shows that the valid inequalities are effective for

solving real and realistic instances of the problem. It could be interesting to study

the impact of the symmetry breaking inequalities and the precomputed lower bounds

on the performance of the Branch-and-Cut algorithm.
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Instances B&C SCIP Own B&C SCIP

Graph |K| s̄ Nbr Nd Gap TT Nbr Nd Gap TT

10 15 1310,25 0,00 14,35 59 0,00 0,83

20 45 185956 0,27 3895,5 141 0,00 3,89

30 45 401335,75 1,60 11740,04 160376,50 1,46 8334,95

40 45 315993,66 8,33 16206,36 383058,66 3,70 16624,87

50 55 246146,50 9,62 16675,88 251152,50 13,73 17074,95

100 140 1158,50 0,00 340,10 3014,25 0,00 617,80

150 210 12759 0,01 7329,06 3609 0,00 3057,79

German

200 260 5099,33 0,78 10095,88 3067 0,00 6770,75

10 320 1 0,00 10,37 1 0,00 462,15

20 320 10,50 0,00 19,21 15 0,00 832,22

30 40 66534,75 16,40 18000 11304,25 6,08 5006,31

40 40 81051 3,96 18000 2127 0,00 707,54

50 80 11385,25 0,01 4496,92 19,75 0,00 139,55

100 120 12787,50 13,36 14228,34 8390,25 7,66 10920,70

150 200 4454,50 27,12 13692,63 3165,75 29,13 15527,10

Coronet100

200 280 3579,25 33,35 18000 1 38,97 18000

10 15 13462 0,00 113,64 1 0,00 0,15

20 20 699646 9,51 18000 21586 0,00 192,27

30 30 272065 40,99 18000 281569,66 3,29 11048,71

40 35 225696,67 46,74 18000 119841,66 1,17 5673,46

50 50 247873,25 43,09 18000 148476,50 5,91 17405,09

100 120 56598,50 57,19 18000 1 0,00 40,87

150 160 12663 58,50 18000 1 0,00 136,02

Nsfnet

200 210 7726,50 54,85 18000 710 0,28 9121,79

10 40 1907,25 0,00 87,60 1 0,00 1,80

20 40 9 0,00 4 7 0,00 5,92

30 40 91798 0,00 7821,5 32156,75 0,00 2309,66

40 40 161514 2,42 17486,08 191812 0,18 17333,53

50 80 34 0,00 22,13 69,25 0,00 112,19

100 120 24797 0,32 9137,26 23403,75 0,44 9494,52

150 200 16809 0,21 13739,65 1026 0,00 4101,80

India35

200 280 11197 0,37 13930,35 2027,75 3,69 14516,65

10 40 1 0,00 1,49 1 0,00 1,69

20 40 1,50 0,00 3,44 1 0,00 4,88

30 40 1,50 0,00 5,72 6,25 0,00 10,54

40 40 83597 0,20 8692,5 67151 0,12 8711,30

50 80 14 0,00 15,93 4 0,00 54,39

100 80 21281,75 0,04 9087,52 23785,75 0,04 9916,63

150 160 823,50 0,00 816,89 124,50 0,00 1509,87

Pioro40

200 280 1503,75 0,00 3772,9 423,50 0,00 7424,98

10 40 1 0,00 1,58 1 0,00 1,83

20 40 1,50 0,00 2,92 1 0,00 3,71

30 40 4 0,00 4,50 1 0,00 6,10

40 40 4,50 0,00 7,17 1 0,00 10,15

50 40 54420 0,00 4376,98 52156,75 0,00 4361,26

100 40 55472,50 6,88 17781,71 54675,50 8,38 17802,83

150 120 836 0,00 1050,13 11655,50 0,00 9411,30

Giul39

200 120 10191,25 0,24 13794,32 6518 0,01 9914,02

Table 3.5: The Impact of Valid Inequalities in the Own B&C SCIP Performance

Using Realistic Graphs. 172



Chapter 4

Path Formulation and

Branch-and-Cut-and-Price

Algorithm for the C-RSA

Problem

In this chapter, we first introduce an extended integer linear programming formu-

lation based on the so-called path formulation. All the different valid inequalities

presented in chapter 2, they are still valid for the path formulation. Using this, we

derive a Branch-and-Cut-and-Price algorithm to solve the C-RSA problem. In this

section, we describe the framework of this algorithm. First, we give an overview

of the column generation algorithm. Then, we discuss the pricing problem. We

further present a primal heuristic used to boost the performance of the algorithm.

We give at the end some computational results and a comparative study between

Branch-and-Cut and Branch-and-Cut-and-Price algorithms. We close our chapter

with some concluding remarks.

4.1 Path Formulation

Let P k denote the set of all feasible (ok,dk) paths in G such that for each demand

k ∈ K, we have ∑
e∈E(pk)

ℓe ≤ l̄k, for all pk ∈ P k.

We consider for k ∈ K and p ∈ P k and s ∈ S, a variable ykp,s which takes 1 if slot

s is the last slot allocated along the path p for the routing of demand k and 0 if
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not, such that s represents the last slot of the interval of contiguous slots of width

wk allocated by demand k ∈ K, with s ∈ S and p ∈ P k. Note that all the slots

s′ ∈ {s − wk + 1, ..., s} should be assigned to demand k along the path p whenever

ykp,s = 1. Let P k(e) denote set of all admissible (ok,dk) paths going through edge e

in G for demand k.

In this case, the C-RSA is also equivalent to the following integer linear program

min
∑
k∈K

∑
p∈Pk

∑
e∈E(p)

s̄∑
s=wk

cey
k
p,s, (4.1)

subject to ∑
p∈Pk

wk−1∑
s=1

ykp,s = 0, ∀k ∈ K, (4.2)

∑
p∈Pk

s̄∑
s=wk

ykp,s = 1,∀k ∈ K, (4.3)

∑
k∈K

∑
p∈Pk(e)

s+wk−1∑
s′=s

ykp,s′ ≤ 1, ∀e ∈ E,∀s ∈ S, (4.4)

ykp,s ≥ 0,∀k ∈ K,∀p ∈ P k,∀s ∈ S, (4.5)

ykp,s ∈ {0, 1},∀k ∈ K,∀p ∈ P k,∀s ∈ S. (4.6)

Inequalities (4.2) express the fact that a demand k ∈ K cannot occupy a slot s as

the last slot before her slot-width wk. Inequalities (4.3) express the routing and

spectrum constraints at the same time such that they ensure that exactly one slot

s ∈ {wk, . . . , s̄} is assigned as last slot for the routing of demand k, and exactly one

single path from P k is allocated by each demand k ∈ K. Note that a slot s ∈ S is

said an allocated slot by demand k if and only if
∑

p∈Pk

∑s+wk−1
s′=s ykp,s′ = 1 which

means that s is covered by the interval of contiguous slots allocated by demand k.

Inequalities (4.4) ensure that a slot s over edge e cannot be allocated to at most by

one demand k ∈ K. Inequalities (4.5) are trivial inequalities, and constraints (4.6)

are the integrality constraints.

To benefit from some theoretical results done in chapter 2, we introduce the two

variables xke and zks used in the cut formulation already presented in chapter 2. As a

result, all the valid inequalities for the polytope associated with the cut formulation,

they are still valid for the polytope associated with the path formulation following

the addition of these two variables and the two following constraints

xke −
∑

p∈Bk(e)

s̄∑
s=wk

ykp,s = 0, ∀k ∈ K,∀e ∈ E, (4.7)
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and

zks −
∑
p∈Bk

ykp,s = 0,∀k ∈ K,∀s ∈ S. (4.8)

Therefore, the C-RSA is then equivalent to the extended formulation based on the

following integer linear program

min
∑
k∈K

∑
e∈E

cex
k
e , (4.9)

∑
p∈Pk

wk−1∑
s=1

ykp,s = 0,∀k ∈ K, (4.10)

∑
p∈Pk

s̄∑
s=wk

ykp,s = 1,∀k ∈ K, (4.11)

xke −
∑

p∈Pk(e)

s̄∑
s=wk

ykp,s = 0, ∀k ∈ K,∀e ∈ E, (4.12)

zks −
∑
p∈Pk

ykp,s = 0, ∀k ∈ K,∀s ∈ S, (4.13)

∑
k∈K

∑
p∈Pk(e)

s+wk−1∑
s′=s

ykp,s′ ≤ 1,∀e ∈ E,∀s ∈ S, (4.14)

ykp,s ≥ 0, ∀k ∈ K,∀p ∈ P k, ∀s ∈ S, (4.15)

xke ≥ 0,∀k ∈ K,∀e ∈ E, (4.16)

zks ≥ 0,∀k ∈ K,∀s ∈ S, (4.17)

ykp,s ∈ {0, 1}, ∀k ∈ K,∀p ∈ P k,∀s ∈ S. (4.18)

4.2 Column Generation Algorithm

As it has been mentioned previously, our path formulation contains a huge number

of variables which can be exponentiel in the worst case due to the number of all

feasible paths for each traffic demand. To deal with this, we use a column generation

algorithm to solve its linear relaxation. For this, we begin the algorithm with a

restricted linear program of our path formulation by considering a feasible subset

of variables (columns). For this, we first generate a subset of feasible paths for

each demand k ∈ K denoted by Bk ⊂ P k such that the variables ykp,s for each

k ∈ K, p ∈ Bk and s ∈ S induce a feasible basis for the restricted linear program.

This means that there exists at least one feasible solution for the restricted linear

program. Based on this, we derive the so-called restricted master problem (RMP)
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as follows

min
∑
k∈K

∑
e∈E

cex
k
e ,

subject to

∑
p∈Bk

wk−1∑
s=1

ykp,s = 0,∀k ∈ K,

∑
p∈Bk

s̄∑
s=wk

ykp,s = 1, ∀k ∈ K,

xke −
∑

p∈Bk(e)

s̄∑
s=wk

ykp,s = 0,∀k ∈ K,∀e ∈ E,

zks −
∑
p∈Bk

ykp,s = 0,∀k ∈ K,∀s ∈ S,

∑
k∈K

∑
p∈Bk(e)

s+wk−1∑
s′=s

ykp,s′ ≤ 1,∀e ∈ E,∀s ∈ S,

ykp,s ≥ 0,∀k ∈ K,∀p ∈ Bk,∀s ∈ S,

xke ≥ 0,∀k ∈ K,∀e ∈ E,

zks ≥ 0,∀k ∈ K,∀s ∈ S.

At each iteration, the column generation algorithm checks if there exists a variable

ykp,s with p /∈ Bk for a demand k and slot s having a negative reduced cost using the

solution of the dual problem associated with the constraints of the linear relaxation

(4.1)-(4.5), and add it to Bk. This can be achieved by solving the so-called pricing

problem (PP).

4.2.1 The Pricing Problem

As noted later, we consider an initial restricted master problem denoted by RMP0

which is based on an initial subset of variables induced by a subset of feasible path

Bk ⊂ P k for each demand k ∈ K. The pricing problem consists in finding a feasible

path p for a demand k and slot s having a negative reduced cost using the optimal

solution of the dual problem. For this, we consider the following dual variables

a) α associated with the equations (4.10) such that αk ∈ R for all k ∈ K,

b) β associated with the equations (4.11) such that βk ∈ R for all k ∈ K,

c) µ associated with inequalities (4.14) such that µe
s ≤ 0 for all e ∈ E and s ∈ S,
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d) λ associated with the equations (4.12) such that λk
e ∈ R for all k ∈ K and

e ∈ E,

e) ρ associated with the equations (4.13) such that ρks ∈ R for all k ∈ K and

s ∈ S,

The dual problem of the linear relaxation (4.9)-(4.17) is equivalent to

max−
∑
k∈K

βk +
∑
e∈E

∑
s∈S

µe
s, (4.19)

subject to

βk −
∑

e∈E(p)

(λk
e +

s∑
s′=s−wk+1

µe
s′)− ρks ≥ 0,∀k ∈ K,∀p ∈ P k,∀s ∈ {wk, ..., s̄}, (4.20)

αk −
∑

e∈E(p)

s∑
s′=max(1,s−wk+1)

µe
s′ ≥ 0, ∀k ∈ K,∀p ∈ P k, ∀s ∈ {1, ..., wk − 1}, (4.21)

ce + λk
e ≥ 0,∀k ∈ K,∀e ∈ E, (4.22)

αk + ρks ≥ 0, ∀k ∈ K,∀s ∈ S, (4.23)

µe
s ≤ 0, ∀e ∈ E,∀s ∈ S. (4.24)

As a result, the so-called reduced-cost rcks(p) related to each demand k ∈ K, path

p ∈ P k and slot s ∈ {wk, ..., s̄}, is given by

rcks = βk − ρks + min
p∈Pk

[
∑

e∈E(p)

−λk
e −

s∑
s′=s−wk+1

µe
s′ ], (4.25)

Therefore, for each demand k ∈ K and slot s ∈ {wk, ..., s̄}, the pricing problem aims

at finding a path p∗ of P k such that

rcks(p
∗) = βk − ρks + min

p̃∈Pk
[
∑

e∈E(p̃)

−λk
e −

s∑
s′=s−wk+1

µe
s′ ], (4.26)

Finding such path p∗ can be seen as a separation procedure for the dual constraint

(4.20) which consists in identifying a path p∗ for each demand k ∈ K and slot

s ∈ {wk, ..., s̄} such that

βk − ρks +
∑

e∈E(p∗)

(−λk
e −

s∑
s′=s−wk+1

µe
s′) < 0 and

∑
e∈E(p∗)

ℓe ≤ l̄k.

As a result, the pricing problem consists in solving the Resource Constrained Short-

est Path (RCSP) problem. The RCSP problem is well known to be weakly NP-hard

[31]. Several algorithms have been proposed in the literature to solve this prob-

lem based on dynamic programming algorithms, heuristics and some techniques

related to the lagrangian decomposition. As background references we mention

[14, 32, 35, 58, 64].
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4.2.2 Dynamic Programming Algorithm for the Pricing Problem

In this work, we propose a pseudo-polynomial time based dynamic programming

algorithm [32]. It consists in finding the minimum-cost path for each demand k

and slot s while satisfying the transmission-reach constraint. It is based on the

dynamic programming algorithm proposed by Dumitrescu et al. [32] to solve the

RCSP problem. For each demand k ∈ K and slot s, we associate to each node v ∈ V

in the graph G a set of labels Lv such that each label corresponds to differents paths

from th origin node ok to the node v, and each label p is specified by a cost equals

to
∑

e∈E(p)(−λk
e −

∑s
s′=s−wk+1 µ

e
s′), and a weight equals to

∑
e∈E(p) ℓe. We denote

by Tv the set of labels on node v ∈ V . For each demand k and slot s ∈ {wk, ..., s̄},
the complexity of the algorithm is bounded by O(|E \ Ek

0 | ∗ l̄k) [32].
Algorithm 3 summarizes the different steps of the dynamic programming algo-

rithm.

4.2.3 Initial Columns

The basic subset of paths used to define the restricted master problem, they are

generated using a brute-force search algorithm which creates a search tree that

covers all the feasible paths P k for each demand k. It is then used to pre-compute

an initial subset Bk of feasible paths for each demand k ∈ K taking into account the

transmission-reach constraint to prune some non intersecting nodes in our search

tree of this algorithm.

4.3 Branch-and-Price and Branch-and-Cut-and-Price Al-

gorithms

Based on these features, we derive a Branch-and-Cut-and-Price algorithm for solving

the C-RSA problem.

4.3.1 Description

The main purpose of this algorithm is to solve a sequence of linear programs using

the column generation algorithm at each node of a Branch-and-Bound algorithm.

At each iteration of the algorithm, we solve our pricing problem by identifying one

or more than one new column by solving a RCSP problem for each demand k and

slot s ∈ {wk, ..., s̄} using the dynamic programming algorithm. We repeat this pro-
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Algorithm 3: Dynamic Programming Algorithm

Data: An undirected, loopless, and connected graph G = (V,E), a

spectrum S, a multi-set K of demands, a linear program LP, a

demand k and a slot s ∈ {wk, ..., s̄}, a set Bk of feasible paths

already exists in the current LP for demand k ∈ K and slot s, and

the optimal values of the duals variables (α,β,µ,λ,ρ)

Result: Optimal path p∗ for demand k and slot s

1 Set Lok = {(0, 0)} and Lv = ∅ for each node v ∈ V \ (V k
0 ∪ {ok});

2 Set T v = ∅ for each node v ∈ V \ V k
0 ;

3 STOP= FALSE;

4 while STOP==FALSE do

5 if ∪v∈V (Lv \ Tv) = ∅ then
6 STOP= TRUE;

7 Set p∗ = ∅;
8 We select one label p from the labels Ldk of destination node dk such

that p /∈ Bk with βk − ρks +
∑

e∈E(p)(−λk
e −

∑s
s′=s−wk+1 µ

e
s′) < 0;

9 if such label exists then

10 Set p∗ = p;

11 end

12 end

13 if ∪v∈V (Lv \ Tv) ̸= ∅ then
14 Select a node i ∈ V \ V k

0 and a label p ∈ Li \ T i having the smallest

value of
∑

e∈E(p) ℓe;

15 for each e = ij ∈ δ(i) \ Ek
0 such that

∑
e′∈E(p) ℓe′ + ℓe ≤ l̄k do

16 if j /∈ V (p) then

17 Set p′ = p ∪ {e};
18 Update the set of label Lj = Li ∪ {p′} ;
19 end

20 end

21 Set T i = T i ∪ {p};
22 end

23 end

24 return the best optimal path p∗ for demand k and slot s;
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cedure in each iteration of the column generation until no new column is found (i.e.,

rcks ≥ 0 for all k ∈ K and s ∈ {wk, ..., s̄}. As a result, the final solution is optimal

for the linear relaxation of the path formulation. Furthermore, if it is integral, then

it is optimal for the C-RSA problem. Otherwise, we create two subproblems by

branching on fractional variables (variable branching rule) or on some constraints

using the Ryan & Foster branching rule [99] (constraint branching rule).

Algorithm 4 summarizes the different steps of the Branch-and-Price algorithm.

By combining the Branch-and-Price algorithm with a cutting-plane based algorithm,

we devise a Branch-and-Cut-and-Price which works as follows. Consider a fractional

solution (ȳ, x̄, z̄). At each iteration of the Branch-and-Price algorithm, and for a

given class of valid inequalities, our aim is to identify the existence of one or more

than one inequalities of this class that are violated by the current solution. We

repeat this procedure in each iteration of the algorithm until no violated inequality

is identified.

As mentioned before, the Branch-and-Cut-and-Price algorithm also uses the differ-

ent classes of valid inequalities presented in chapter (2). They are performed in the

order (2.54), (2.32), (2.42), (2.36), (2.43).

Algorithm 5 summarizes the different steps of the Branch-and-Cut-and-Price algo-

rithm for a given class of valid inequalities.

4.3.2 Primal Heuristic

Here, we propose a primal heuristic based on a hybrid method between local search

algorithm and a greedy-algorithm. Given a feasible fractional solution (ȳ, x̄, z̄), our

primal heuristic consists in constructing an integral ”feasible” solution from this

fractional solution. For this, we propose a local search algorithm which consists

in generating at each iteration a sequence of demands L = 1′, 2′, ..., |K|′ − 1, |K|′.
Based on this sequence of demands, our greedy algorithm selects a path p and a

slot s for each demand k′ ∈ L with yk
′

p,s ̸= 0 while respecting the non-overlapping

constraint with the set of demands that precede demand k′ in the list L (i.e., the

demands 1′, 2, ..., k′ − 1). However, if there does not exist such pair of path p and

slot s for demand k′, we then select a path p and a slot s for demand k′ ∈ L with

yk
′

p,s = 0 and s ∈ {wk′ , ..., s̄} while respecting the non-overlapping constraint with

the set of demands that precede demand k′ in the list L. After that, we compute the

associated total length of the paths selected for the set of demands K in the final

solution S given by the greedy-algorithm. Our local search algorithm generates
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Algorithm 4: Branch-And-Price Algorithm for the C-RSA

Data: C-RSA’s inputs, a set Bk of precomputed feasible paths for each

demand k ∈ K

Result: Optimal solution for the C-RSA problem

1 LP←− RMP0;

2 Stop= FALSE;

3 while STOP==FALSE do

4 Solve the linear program LP;

5 Let (y∗, x∗, z∗) be the optimal solution of LP;

6 Consider the optimal values of the duals variables (α∗, β∗, µ∗, λ∗, ρ∗);

7 ADD = FALSE;

8 for each demand k ∈ K do

9 for each slot s ∈ {wk, ..., s̄} do
10 Compute its associated reduced cost rcks ;

11 if rcks < 0 then

12 Consider the optimal path p∗ for demand k and slot s with

rcks(p) < 0;

13 Add the new variable (column) ykp∗,s to the current LP;

14 ADD= TRUE ;

15 end

16 end

17 end

18 if ADD==FALSE then

19 STOP = TRUE;

20 end

21 end

22 Consider the optimal solution y∗ of LP ;

23 if y∗ is integer for the C-RSA then

24 y∗ is an optimal solution for the C-RSA;

25 End of the Branch-and-Price algorithm ;

26 end

27 else

28 Create two sub-problems by branching one some variables or constraints

;

29 end

30 for each sub-problem not yet solved do

31 go to 3 ;

32 end

33 return the best optimal solution (y∗, x∗, z∗) for the C-RSA;
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Algorithm 5: Branch-and-Cut-and-Price Algorithm for the C-RSA

Data: C-RSA’s inputs, and a set Bk of precomputed feasible paths for each

demand k ∈ K, and a given class of valid inequality

Result: Optimal solution for the C-RSA problem

1 LP←− RMP0 and set Stop= FALSE;

2 while STOP==FALSE do

3 Solve the linear program LP, and let (y∗, x∗, z∗) be its optimal solution;

4 Consider the optimal values of the duals variables (α∗, β∗, µ∗, λ∗, ρ∗);

5 for each demand k ∈ K do

6 for each slot s ∈ {wk, ..., s̄} do
7 Compute its associated reduced cost rcks ;

8 if rcks < 0 then

9 Consider the optimal path p∗ for demand k and slot s with

rcks(p) < 0;

10 Add the new variable (column) ykp∗,s to the current LP;

11 end

12 end

13 end

14 if there does not exist a new column to be added to the current LP then

15 if there exist inequalities from the given class that are violated by the

current solution y∗ then

16 Add them to LP ;

17 end

18 else

19 STOP = TRUE;

20 end

21 end

22 end

23 Consider the optimal solution (y∗, x∗, z∗) of LP ;

24 if y∗ is integer for the C-RSA then

25 y∗ is an optimal solution for the C-RSA, and end of the

Branch-and-Cut-and-Price algorithm ;

26 end

27 else

28 Create two sub-problems by branching one some fractional variables;

29 end

30 for each sub-problem not yet solved do

31 go to 2 ;

32 end

33 return the best optimal solution (y∗, x∗, z∗) for the C-RSA;
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a new sequence by doing some permutation of demands in the last sequence of

demands, if the value of the solution given by greedy-algorithm is smaller than the

value of the best solution found until the current iteration. Otherwise, we stop the

algorithm, and we give in output the best solution found during our primal heuristic

induced by the best sequence of demands having the smallest value of total length

of the selected path compared with the others generated sequences.

4.4 Computational Study

4.4.1 Implementation’s Feature

The B&P and B&C&P algorithms described in the current chapter have been im-

plemented in C++ under Linux using the ”Solving Constraint Integer Programs”

framework (Scip 6.0.2), and Cplex 12.9 as LP solver. These have been tested on

LIMOS high-performance server with a memory size limited to 64 Gb while bene-

fiting from parallelism by activating 8 threads, and with a CPU time limited to 5

hours (18000 s).

4.4.2 Computational Results

Throughout this section, we present the performance results of the B&C&P algo-

rithm. Our main goal is to show the effectiveness of the valid inequalities used within

the B&C&P algorithm.

Table 4.1 reports the experiment results for both the Branch-and-Price (B&P) (i.e.,

B&C&P without using our additional valid inequalities) and the B&C&P algorithms.

Each line corresponds to the average results of 4 tested instances. Note that we deac-

tivate the SCIP’s proper cut generation for both the B&P and B&C&P algorithms

given that they may change the dual problem, as well as the calculation of the

reduced-cost. In order to evaluate the impact of the additional valid inequalities

used within the B&C&P algorithm, we consider 5 criteria, the average number of

nodes in the branching tree (Nb Nd), the average optimality gap (Gap) which repre-

sents the relative error between the lower bound and the best upper bound obtained

at the end of the resolution, the average number of generated columns (Nbr Cols),

the average number of violated inequalities added (Nbr Cuts), and the average CPU

time in seconds (TT).

The results show that the B&C&P is able to solve 187 instances to optimality while

147 instances are solved to optimality when using the B&P. Hence, our valid in-

equalities allow solving several instances to optimality within a reasonable amount
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of CPU time. Furthermore, they enable reducing the average number of nodes in the

B&C&P tree, and also the average CPU time for several instances. We also notice

that several instances have been solved to optimality in the root of the B&C&P tree

(i.e., Nb Nd=1) that necessitates a large number of branching nodes when using the

B&P algorithm. On the other hand, and when the optimality is not proven, adding

valid inequalities decreases the gap for several instances. However, there exist a few

instances very rare in which adding valid inequalities have no any impact. Moreover,

some instances are still difficult to solve with both the B&P and B&C&P algorithms.

4.4.3 Comparative Study Between Branch-and-Cut and Branch-

and-Cut-and-Price Algorithms

Based on the Branch-and-Cut, Branch-and-Price and Branch-and-Cut-and-Price al-

gorithms, we present a comparison between theses algorithms using several instances

with number of demands ranges in {10, 20, 30, 40, 50, 100, 150}, and s̄ up to 320 slots.

Our first series of computational results presented in Tables 4.2, 4.3, and 4.2. They

concern the results obtained for the Branch-and-Cut algorithm using Cplex (without

or with additional valid inequalities) compared with those of Branch-and-Price and

Branch-and-Cut-and-Price using SCIP. We denote by B&C CPX the Branch-and-

Cut algorithm when using Cplex with benefiting of its automatic cut generation and

without our additional valid inequalities, and by Own B&C CPX when using Cplex

with our additional valid inequalities and disabling its proper cut generation. On

the other hand, in the second series of computational results are shown in Table 4.3,

we present the results found for the Branch-and-Cut algorithm using Gurobi (with-

out or with additional valid inequalities) compared with those of Branch-and-Price

and Branch-and-Cut-and-Price using SCIP. We denote by B&C GRB when using

Gurobi with benefiting of its automatic cut generation and without our additional

valid inequalities, and by Own B&C GRB when using Gurobi with our additional

valid inequalities and disabling its proper cut generation. Results obtained by the

Branch-and-Cut algorithm using Scip compared with those those of Branch-and-

Price and Branch-and-Cut-and-Price using SCIP, are shown in Table 4.4. Let de-

note by B&C Scip the Branch-and-Cut algorithm when using Scip with benefiting

of its automatic cut generation and without our additional valid inequalities, and

by Own B&C SCIP when using our additional valid inequalities and disabling its

proper cut generation.
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Based on the reported results, we notice that the B&C&P algorithm seems to be

very efficient compared with B&C algorithm such that it is able to provide opti-

mal solutions for several instances, which is not the case for the B&C algorithm

(without or with additional valid inequalities) within the CPU time limit (5 hours).

Furthermore, several instances are solved to optimality by the B&C algorithm using

Cplex, Gurobi, and Scip could also be solved to optimality within the B&C&P algo-

rithm. The average number of explored nodes using the B&C&P algorithm is greatly

reduced for several instances compared with the B&C algorithm. Moreover, the av-

erage CPU time is significantly reduced using the B&C&P algorithm compared with

the B&C algorithm. On the other hand, and when using the B&P algorithm, we

notice that we are able to beat Own B&C SCIP such that B&P is able to provide

optimal solutions for several instances that are not solved to optimality by the B&C

algorithm using Cplex (see Table 4.2), and Gurobi (see Table 4.3). Furthermore, we

noticed that the average number of explored nodes and the average CPU time us-

ing the B&P algorithm are greatly reduced for several instances compared with the

B&C algorithm using Cplex and Gurobi. However, Own B&C SCIP is able to beat

the B&P algorithm. The results in Table 4.4 show that Own B&C SCIP provide

optimal solutions for several instances that are not solved to optimality by the B&P

algorithm. But when the optimality is verified by these two algorithms, we found

that using the B&P algorithm reduces the average number of explored nodes and

the average CPU time for several instances compared with Own B&C SCIP.

4.5 Concluding Remarks

In this chapter, we first have given an extended formulation for the problem, and

solve its linear relaxation using a column generation algorithm. We have discussed

the associated pricing problem. Moreover, we have investigated the polytope as-

sociated with our formulation, and introduced several classes of valid inequalities.

Their separation procedures are further presented. Using this, we have devised

the B&C&P algorithm. Computational experiments have convincingly shown the

strength of the valid inequalities. They significantly improve the results yielded by

the B&P algorithm. Hence, the B&C&P algorithm performs very well compared

with the B&P algorithm. Furthermore, the B&C&P algorithm is shown to be able

to beat the B&C algorithm. A computational analysis is conducted to show the

effectiveness of our approach for solving large-scale instances.
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Instance B&P SCIP B&C&P SCIP

G |K| |S| Nbr Nd Gap Nbr Cols TT Nbr Nd Gap Nbr Cols Nbr Cuts TT

10 15 28 0,00 13,50 0,88 1 0,00 3,25 6,25 0,07

20 45 39 0,00 0 6,31 1 0,00 0 7,75 0,25

30 45 1 0,00 0 0,20 1 0,00 0 0 0,31

40 45 1489,67 0,33 324,67 6000,12 1557,67 0,13 309,67 339 5998,03

50 55 3550,75 0,18 412,50 13506,57 1513 0,14 371 385 9020,19

100 140 1 0,00 0 9,86 2 0,00 0 6,25 64,73

German

150 210 34 0,00 0 417,78 51 0,00 0 24,75 932,25

10 15 11 0,00 41,50 0,37 1 0,00 0 0 0,02

20 20 190,50 0,00 168,50 34,67 1 0,00 165267,25 26,75 4487,61

30 30 3286 1,17 295,25 9032,68 1 0,00 74970,75 7 8926,96

40 35 4673,50 0,47 342 18000 1 0,00 0 16 3,72

50 50 2218 0,54 566 13506,61 1 0,00 108442,50 18,25 8932,48

100 120 2029 2,01 1849 18000 1 0,00 0 0 6,36

Nsfnet

150 160 321,50 11,66 1847,25 18000 1 0,00 0 0 32,48

10 320 1 0,00 867,50 51,36 1 0,00 867,50 0 54,11

20 320 1 0,00 663,50 31,06 1 0,00 663,50 0 37,09

30 40 1504 2,94 2577,50 18000 1545 1 11460,50 861,75 18000

40 40 2969 0,46 1196 9008,08 12 0,00 57205,50 152 8983,29

50 80 771,50 0,01 1282,75 4508,32 28,50 0,00 690,25 14,75 80,28

100 120 333,50 3,69 1931 6836,74 130 4,62 1919 206,25 5182,07

Coronet100

150 200 124 17,25 4272 14131,79 111,50 22,90 2629,50 296 16231,28

10 15 5 0,00 79,75 0,58 1 0,00 78,75 2,50 0,19

20 20 1645 0,00 871,25 3033,88 724,5 0,00 782,50 91 1860,90

30 25 2422 0,77 1586,75 10943,42 3427 0,54 1896 471,75 12332,07

40 30 1545 0,56 1205,50 9000,70 2339,5 0,61 1162,75 619 9001,09

50 35 3117,5 0,79 3172,50 17996,72 2163 0,79 3241,25 700 18000

100 120 977,5 0,15 4870,50 14439,73 389,5 0,08 4885,75 143,25 13897,07

Spain

150 160 127,5 16,84 5562,75 15163,74 122,5 19,77 5539 282,25 17242,74

10 40 2 0,00 0 0,56 1 0,00 0 8,50 0,28

20 40 1 0,00 36 0,66 1 0,00 36 0 0,57

30 40 71,50 0,00 109 49,93 9,50 0,00 34,50 43 9,51

40 40 3975,50 0,38 2046,25 18000 2754,50 0,11 17896,50 737,50 13542,45

50 80 1 0,00 69,50 3,87 1 0,00 69,50 24 6,37

100 120 496 0,01 50,50 9072,59 353,50 0,00 98 356,25 4820,46

India35

150 200 292 0,01 96,50 9831,30 100,50 0,10 96,50 389,25 8155,83

10 40 1 0,00 54,50 0,58 1 0,00 54,50 0 0,42

20 40 1 0,00 188,50 1,41 1 0,00 188,50 2 1,21

30 40 1109,50 0,08 539,75 4499,45 1383,50 0,08 509,50 125,50 4500

40 40 529 0,03 562 4517,43 1,50 0,00 380,25 17,75 9,95

50 40 1591,50 0,08 1131,50 9002,35 596 0,03 991,75 337,25 4540,26

100 80 463 0,14 2179 6683,60 362 0,00 2148,25 248 5566,88

Ta65

150 160 123 2,29 3821,75 5870,91 147,50 0,00 3743,25 232,25 5225,13

10 40 1 0,00 0 0,35 1 0,00 0 0 0,17

20 40 1 0,00 0 0,72 1 0,00 0 0 0,33

30 40 8 0,00 0 8,51 1 0,00 0 1 0,62

40 40 14 0,00 54,75 35,18 2,50 0,00 45,50 9,50 6,77

50 40 5370 0,50 264,33 18000 10326,33 0,40 367 2087,67 18000

100 80 1318 0,81 314 18000 2234,50 0,15 420,25 654,25 18000

Brain161

150 160 113,50 0,00 0 2257,49 85,50 0,00 0 30,25 1645,30

10 40 1 0,00 27 0,40 1 0,00 27 0 0,27

20 40 1 0,00 137,50 1,23 1 0,00 137,50 0 0,70

30 40 670,5 0,09 283,50 4501,18 3 0,00 132,25 10 5,35

40 40 99 0,00 378,75 102,17 1 0,00 275,75 18,75 3,15

50 40 864,5 0,42 761,50 9063,67 840,5 0,13 649 280,75 9015,80

100 80 1104 0,18 1600,50 16751,83 508 0,03 1787,50 343,50 8004,65

Zib54

150 160 101,5 2,28 2911,50 5938,67 125 0,26 2860,75 156,75 5550,35

Table 4.1: Influence of the Valid Inequalities: B&P Vs B&C&P.
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Chapter 5

Compact Formulation and

Polyhedra for the Spectrum

Assignment Sub-problem

In this chapter, we focus on the Spectrum Assignment (SA) sub-problem. First, we

propose an integer linear programming compact formulation, and further investigate

the facial structure of the associated polytope. Moreover, we identify several classes

of valid inequalities for the polytope such that some of them come from those that

are already proposed for the C-RSA. We further prove that these inequalities are

facet-defining, and discuss their separation problems. Based on these results, we

devise a Branch-and-Cut (B&C) algorithm for the SA problem.

5.1 The Spectrum Assignment Sub-problem

The SA problem can be stated as follows. We consider an optical spectrum of s̄ ∈ Z+

available contiguous frequency slots, denoted by S = {1, . . . , s̄}. A spectrally flexible

optical network can be represented by an undirected, loopless, and connected graph

G = (V,E), with V is the set of vertices representing the optical nodes (data centers,

users, stations,...), and E the set of links representing the optical-fibers. A length

ℓe ∈ R+ (in kms), a cost ce ∈ R+, and a set of s̄ of contiguous frequency slots

are associated with each edge e. Let K be a multiset of demands such that each

demand k is specified by an origin node ok ∈ V , a destination node dk ∈ V \ {ok},
a slot-width wk ∈ Z+, and a routing path pk from its origin ok to its destination dk

through G. The SA consists of determining for each demand k ∈ K an interval of

contiguous frequency slots Sk ⊂ S of width equal to wk (continuity and contiguity
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constraints) such that Sk ∩Sk′ = ∅ for each pair of demands k, k′ ∈ K (k ̸= k′) with

paths sharing an edge , i.e., E(pk) ∩ E(pk′) ̸= ∅ , while optimizing the number of

slots allocated in S.
The SA is well known to be NP-hard problem [9]. It is equivalent to the problems

of wavelength assignment, interval coloring, and dynamic storage allocation [9] that

are well known to be NP-hard.

5.2 Compact Formulation

Here we introduce an integer linear programming compact formulation for the SA

problem. For s ∈ S, let us be a variable which takes 1 if slot s is used and 0 if

not, and for k ∈ K and s ∈ S, let zks be a variable which takes 1 if slot s is the

last slot allocated for the routing of demand k and 0 if not. The contiguous slots

s′ ∈ {s−wk +1, ..., s} should be assigned to demand k whenever zks = 1. The SA is

equivalent to the following integer linear program

min
∑
s∈S

us, (5.1)

subject to

zks = 0, for all k ∈ K and s ∈ {1, ..., wk − 1}, (5.2)

s̄∑
s=wk

zks ≥ 1, for all k ∈ K, (5.3)

∑
k∈K̃e

min(s̄,s+wk−1)∑
s′=s

zks − us ≤ 0, for all e ∈ E, and s ∈ S, (5.4)

zks ≥ 0, for all k ∈ K and s ∈ S, (5.5)

us ≤ 1, for all s ∈ S, (5.6)

zks ∈ {0, 1}, for all k ∈ K and s ∈ S, (5.7)

us ∈ {0, 1}, for all s ∈ S. (5.8)

where K̃e denotes the set of demands in K passing through edge e (i.e., K̃e =

{k ∈ K, e ∈ E(pk)}. Equations (5.2) ensure that demand k cannot occupy a slot

s as last slot before her slot-width wk. Inequalities (5.3) ensure than more than

one interval of contiguous slots can be assigned to each demand k ∈ K. It should

normally be an equation form ensuring that exactly one slot s ∈ {wk, . . . , s̄} (one

interval of contiguous slots) must be assigned to demand k as last-slot. Here we relax

this constraint. Optimizing the spectrum-usage objective function, the equality is
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guaranteed at the optimum. Inequalities (5.4) express the fact that the demands

passed through the same edge e, they cannot share a slot s over edge e ∈ E with

s ∈ {1, ..., s̄}. Inequalities (5.5)-(5.6) are the trivial inequalities, and constraints

(5.7)-(5.8) are the integrality constraints.

5.3 Associated Polytope

Let Psa(G,K,S) be the polytope, convex hull of the solutions for the formulation

(5.1)-(5.8). Here we study the facial structure of the polytope Psa(G,K,S).
A solution of the SA problem is based on the variables (u, z) is given by two sets Sk

for each demand k ∈ K and U for the spectrum-usage of S where

a) Sk denotes the set of index of the last slots selected for demand k such that

|Sk| ≥ 1.

b) U denotes the set of slots allocated over the spectrum S such that for each demand

k ∈ K and last slot s ∈ Sk⇒ each slot s′ ∈ {s−wk+1, ..., s} should be in U i.e. s′ ∈
U.

We suppose that the number of slots s̄ is largely sufficient to route all the demands,

and to avoid the existence of some slots s ∈ S such that us = 1 in any feasible

solution S of the SA problem. This means that there does not exist a slot s ∈ S
such that us = 1.

5.3.1 Dimension

Let M denote the matrix associated with the equations (5.2). We ensure that the

matrix M is of full rank given that the demands are independants, and the slots in

S are independents for each demand k ∈ K. As a result, rank(M) =
∑
k∈K

(wk − 1).

Let us denote by r′ the rank of the matrix M .

Proposition 5.3.1. The equation system (5.2) defines a minimal equation system

for Psa(G,K,S).

Proof. To prove that σz + µu = λ is a linear combination of equations (5.2), it’s

sufficient to prove that for each demand k ∈ K, there exists for each demand k ∈ K

a γk ∈ Rwk−1 such that (µ, σ) = γM . Let uS and zS denote the incidence vector of

a solution S of the SA problem.

Let first show that µs = 0 for all s ∈ S. Consider a slot s̃ ∈ S, and solution

S105 = (U105, S105) given by
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a) we select the smallest slot index sk in {wk, ..., s̄} \ {s̃, ..., s̃+ wk − 1} as last slot for
demand k (slot assignment constraint taking into account the possibility of adding

slot s̃ in the set of used slots U105),

b) for each demand ki ∈ K with i ∈ {1, ..., |K|} \ {k}, we select the smallest slot index

ski in the set of slots I105i given by

I105i = [
⋂

kj∈D105
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] \ {s̃, ..., s̃ + wki − 1}

where D105
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj{k1, ..., ki−1} ∪ {k}
with E(pki) ∩ E(pkj ) ̸= ∅,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U105),

We let S105
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

c) we let U105 be the set of slots used in S such that for each demand k and last slot

sk ∈ S105
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U105.

S105 is feasible for the SA problem. Hence, the corresponding incidence vector

(uS
105

, zS
105

) belongs to Psa(G,K,S). Then we derive a solution S106 = (U106, S106)

obtained from S105 by adding slot s̃ as an used slot in U106 without modifying the

last slots assigned to the demands K in S105 which remain the same in solution S106

i.e., S105
k = S106

k for each demand k ∈ K. S106 is feasible for the SA problem. Hence,

the corresponding incidence vector (uS
106

, zS
106

) belongs to Psa(G,K,S). We then

obtain that

µuS
105

+ σzS
105

= µuS
106

+ σzS
106

= µuS
105

+ σzS
105

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Let show now that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄}.

Consider a demand k in K and a slot s in {wk, ..., s̄}. Let S107 = (U107, S107) be

the solution given by

a) we select the smallest slot index sk in {wk, ..., s̄} \ {s} as last slot for demand k,
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b) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I107i given by

I107i = [
⋂

kj∈D107
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s−wk}∪{s+wki , ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I107i =

⋂
kj∈D107

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D107
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D107
i ,

• and {s− wk + 1, ..., s} ∩ {ski − wki + 1, ..., ski} = ∅ if E(pk) ∩ E(pki) ̸= ∅ ( we take

into account the possibility of adding slot s in the set of last slots S107
k assigned to

demand k in solution S107).

We let S107
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) we let U107 be the set of slots used in S such that for each demand k and last slot

sk ∈ S107
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U107.

S107 is clearly feasible for the problem given that it satisfies all the SA constraints

of the compact formulation (5.1)-(5.8). Hence, the corresponding incidence vector

(uS
107

, zS
107

) belongs to Psa(G,K,S). Then consider the solution S108 = (E108, S108)

obtained from S107 by adding slot s as last slot to demand k without modifying the

last slots assigned to the demands K \ {k} in S107 remain the same in solution S108

i.e., S107
k′ = S108

k′ for each demand k′ ∈ K \ {k}, and S108
k = S107

k ∪ {s} for demand

k. Solution S108 is feasible for the SA problem. The corresponding incidence vector

(uS
108

, zS
108

) belongs to Psa(G,K,S). We then obtain that

µuS
107

+ σzS
107

= µuS
108

+ σzS
108

= µuS
107

+ σzS
107

+ σk
s +

∑
s̃∈{s,...,s−wk+1}\U107

µs̃.

Since µs̃ = 0 for each s̃ ∈ S, it follows that σk
s = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄}.

Therefore, we obtain that all the equations of the polytope Psa(G,K,S) are given

only in terms of the variables zks with s ∈ {1, ..., wk} for each demand k ∈ K. We

distinguish |K| blocks of lines in the matrix M associated with the system (5.2)

• block Mk corresponds to the equations zks = 0 for all s ∈ {1, ..., wk − 1} such that

rang(Mk) = wk − 1.
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Note that the |K| blocks of the matrixM are independents. Furthermore, there is no

dependency between slots such that for each demand k, the slots s ∈ {1, ..., wk − 1}
are independants such that

wk−1∑
s=1

σk
s =

wk−1∑
s=1

γk,s ⇒
wk−1∑
s=1

(σk
s − γk,s) = 0,

for each demand k ∈ K. The only solution of this system is σk
s = γk,s for each

s ∈ {1, ..., wk − 1} for demand k. As k is chosen arbitrarily in K, we re-do the same

procedure for all k′ ∈ K \ {k}. We then get that

σk
s = γk,s, for all k ∈ K and s ∈ {1, ..., wk − 1}. (5.9)

As a result, we have (µ, σ) = γM which ends the proof.

Theorem 5.3.1. The dimension of Psa(G,K,S) is given by

dim(Psa(G,K,S)) = |K| ∗ |S| + |S| − r′ = |K| ∗ |S| + |S| −
∑
k∈K

(wk − 1).

Proof. Given the rank of the matrix M which equals to r′ and the results of propo-

sition (5.3.1).

5.3.2 Facial Investigation

Here we study the facial structure of the basic constraints of the compact formulation

(5.1)-(5.8) that are facets defining for the polyhedron Psa(G,K,S) under certain

conditions.

Theorem 5.3.2. Consider a demand k ∈ K and a slot s ∈ {wk, .., s̄}. Then,

inequality zks ≥ 0 is facet defining for Psa(G,K,S).

Proof. Let us denote F̃ k
s the face induced by inequality zks ≥ 0, that is

F̃ k
s = {(u, z) ∈ Psa(G,K,S) : zks = 0}.

We denote inequality zks ≥ 0 by αu + βz ≤ λ. Let µu + σz ≤ τ be a valid in-

equality that defines a facet F of Psa(G,K,S). Suppose that F̃ k
s ⊂ F = {(u, z) ∈

Psa(G,K,S) : µu + σz = τ}. To prove that F̃ k
s is facet defining for Psa(G,K,S),

it sufficient to show that there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1) ) such that

(µ, σ) = ρ(α, β) + γM .

First, let show that µs̃ = 0 for all s̃ ∈ S. Consider a slot s̃ ∈ S, and a solution

S109 = (U109, S109) given by
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a) we select the smallest slot index sk in {wk, ..., s̄} \ [{s̃, ..., s̃+ wk − 1} ∪ {s}] as last
slot for demand k (slot assignment constraint taking into account the possibility of

adding slot s̃ in the set of used slots U109),

b) for each demand ki ∈ K with i ∈ {1, ..., |K|} \ {k}, we select the smallest slot index

ski in the set of slots I109i given by

I109i = [
⋂

kj∈D109
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] \ {s̃, ..., s̃ + wki − 1}

where D109
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj{k1, ..., ki−1} ∪ {k}
with E(pki) ∩ E(pkj ) ̸= ∅,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U109),

Let S109
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

c) we let U109 be the set of slots used in S such that for each demand k′ ∈ K and last

slot sk′ ∈ S109
k and s′ ∈ {sk′ − wk′ + 1, ..., sk′}, we have s′ ∈ U109.

S109 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
109

, zS
109

) belongs to F̃ k
s . Then consider the solution S ′109 = (U ′109, S′109)

obtained from S109 by adding slot s̃ as an used slot in U ′109 without modifying the

last slots assigned to the demands K in S109 which remain the same in solution

S ′109 i.e., S109
k = S′109

k for each demand k ∈ K. Solution S ′109 is feasible for the SA

problem. Hence, the corresponding incidence vector (uS
′109

, zS
′109

) belongs to F̃ k
s .

Solutions S109 and S ′109 satisfy equation µu+ σz = τ . We then obtain that

µuS
109

+ σzS
109

= µuS
′109

+ σzS
′109

= µuS
109

+ σzS
109

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Next, we will show that, σk
s′ = 0 for all s′ ∈ {wk, ..., s̄} \ {s}.

Consider a slot s′ in {wk, ..., s̄} \ {s}. Let S110 = (U110, S110) be the solution given

by

a) we select the smallest slot index sk in {wk, ..., s̄} \ {s, s′} as last slot for demand k,
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b) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I110i given by

I110i = [
⋂

kj∈D110
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I110i =

⋂
kj∈D110

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D110
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D110
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pk) ∩E(pki) ̸= ∅ ( we take

into account the possibility of adding slot s′ in the set of last slots S110
k assigned to

demand k in solution S110),

Let S110
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) we let U110 be the set of slots used in S such that for each demand k′ ∈ K and last

slot sk′ ∈ S10
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ U110.

S110 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
110

, zS
110

) belongs to F̃ k
s . Then we derive a solution S112 = (U112, S112)

obtained from S110 by adding slot s′ as last slot to demand k without modifying

the last slots assigned to the demands K \ {k} in S110k remain the same in solution

S112 i.e., S110
k′ = S112

k′ for each demand k′ ∈ K \ {k}, and S112
k = S110

′ ∪ {s′} for

demand k. Solution S112 is feasible for the SA problem. The corresponding incidence

vector (uS
112

, zS
112

) belongs to F̃ k
s . Hence, solutions S110 and S112 satisfy equation

µu+ σz = τ . We the obtain that

µuS
110

+ σzS
110

= µuS
112

+ σzS
112

= µuS
110

+ σzS
110

+ σk
s′ +

∑
s̃∈{s′−wk+1,...,s′}\U110

µs̃.

Given that µs̃ = 0 for all s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s′ = 0, for all slots s′ ∈ {wk, ..., s̄} \ {s},

σk′
s′ = 0, for all k′ ∈ K \ {k} and s′ ∈ {wk′ , ..., s̄}.

It follows that σk
s = ρ for demand k and slot s in {wk, ..., s̄}.

By (5.9), we know that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.
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Overall, we obtain that µs = 0 for each slot s ∈ S , and for each k′ ∈ K and s′ ∈ S

σk′
s′ =


γk

′,s′ if s′ ∈ {1, ..., wk′ − 1},

ρ if k′ = k and s′ = s,

0 otherwise.

As a consequence, we have (µ, σ) = ρ(α, β) + γM .

Theorem 5.3.3. Consider a slot s ∈ S. Then, inequality us ≤ 1 is facet defining

for Psa(G,K,S).

Proof. Let us denote Fs the face induced by inequality us ≤ 1 given by

Fs = {(u, z) ∈ Psa(G,K,S) : us = 1}.

We denote inequality us ≤ 1 by αu + βz ≤ λ. Let µu + σz ≤ τ be a valid in-

equality that defines a facet F of Psa(G,K,S). Suppose that Fs ⊂ F = {(u, z) ∈
Psa(G,K,S) : µu + σz = τ}. To prove that Fs is facet defining for Psa(G,K,S),
it sufficient to show that there exist ρ ∈ R and γ ∈ R

∑
k∈K(wk−1) ) such that

(µ, σ) = ρ(α, β) + γM .

First, let show that µs′ = 0 for all s′ ∈ S \ {s}. Consider a slot s̃ ∈ S \ {s}, and a

solution S113 = (U113, S113) given by

a) for one demand k′ ∈ K, we select the smallest slot index sk′ ∈ [{wk′ , ..., s
′}∩{s, ..., s+

wk′ − 1}] \ {s̃, ..., s̃+ wk′ − 1} as last slot,

b) for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I113i given by

I113i = [
⋂

kj∈D113
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {s̃, ..., s̃+ wki

− 1},

where D113
i = {kj ∈ {k1, ..., ki−1} ∪ {k′} : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D113
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U113),

Let S113
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

c) we let U113 be the of slots used in S such that for each demand k and last slot

s ∈ S113
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U113.
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S113 is clearly feasible for the SA problem, and its incidence vector (uS
113

, zS
113

)

belongs to Fs. After that, we derive a solution S ′113 = (U ′113, S′113) obtained from

S113 by adding slot s̃ as an used slot in U ′113 without modifying the last slots

assigned to the demands K in S113 which remain the same in solution S ′113 i.e.,

S113
k = S′113

k for each demand k ∈ K. Solution S ′113 is feasible for the SA problem.

The corresponding incidence vector (uS
′113

, zS
′113

) belongs to Fs. Hence, solutions

S113 and S ′113 satisfy equation µu+ σz = τ . We then obtain that

µuS
113

+ σzS
113

= µuS
′113

+ σzS
′113

= µuS
113

+ σzS
113

+ µs̃.

This implies that µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S \ {s}.

Next, we will show that, σk
s′ = 0 for all k ∈ K and s′ ∈ {wk, ..., s̄}.

Consider a demand k ∈ K and a slot s′ in {wk, ..., s̄}. Let S114 = (U114, S114) be

the solution given by

a) for one demand k′ ∈ K \ {k}, we select the smallest slot index sk′ ∈ {wk′ , ..., s
′} ∩

{s, ..., s+ wk′ − 1} as last slot,

b) we select the slot sk in {wk, ..., s̄} \ {s} \ {s′} as last slot for demand k with {sk −
wk + 1, ..., sk} ∩ {sk′ − wk′ + 1, ..., sk′} = ∅ if E(pk) ∩ E(pk′) ̸= ∅,

c) for each demand ki ∈ K \ {k, k′} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I114i given by

I114i = [
⋂

kj∈D114
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I114i =

⋂
kj∈D114

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D114
i = {kj ∈ {k1, ..., ki−1} ∪ {k, k′} : E(pki) ∩ E(pkj ) ̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D114
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pk) ∩E(pki) ̸= ∅ ( we take

into account the possibility of adding slot s′ in the set of last slots S114
k assigned to

demand k in solution S114),

Let S114
ki

= {ski} be the set of last slots assigned to each demand ki with i ∈
{1, ..., |K|}.

d) we let U114 be the set of slots used in S.
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S114 is clearly feasible for the SA problem. The corresponding incidence vector

(uS
114

, zS
114

) belongs to Fs. Then consider the solution S115 = (U115, S115) obtained

from S114 by adding slot s′ as last slot to demand k without modifying the last slots

assigned to the demands K\{k} in S114k remain the same in solution S115 i.e., S114
k′ =

S115
k′ for each demand k′ ∈ K \ {k}, and S115

k = S114
′ ∪ {s′} for demand k. Solution

S115 is feasible for the SA problem. The corresponding incidence vector (uS
115

, zS
115

)

belongs to Fs. Hence, solutions S114 and S115 satisfy equation µu+σz = τ . We the

obtain that

µuS
114

+ σzS
114

= µuS
115

+ σzS
115

= µuS
114

+ σzS
114

+ σk
s′ +

∑
s̃∈{s′−wk+1,...,s′}\U114

µs̃.

Since µs̃ = 0 for all s̃ ∈ S \ {s}, it follows that σk
s′ = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K \ {k} and s′ ∈ {wk′ , ..., s̄}.

It follows that µs = ρ for slot s in S.
We know from (5.9) that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We conclude that

µs′ =

ρ if s′ = s,

0 otherwise,

and for each k′ ∈ K and s′ ∈ S

σk′
s′ =

γk
′,s if s ∈ {1, ..., wk′ − 1},

0 otherwise.

As a consequence, we have (µ, σ) = ρ(α, β) + γM as desired.

Theorem 5.3.4. For a demand k ∈ K, inequality
∑s̄

s=wk
zks ≥ 1 is facet defining

for Psa(G,K,S).

Proof. Let F̃ k
S be the face induced by inequality

s̄∑
s=wk

zks ≥ 1, that is

F̃ k
S = {(x, z) ∈ Psa(G,K,S) :

s̄∑
s=wk

zks = 1}.
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We denote inequality

s̄∑
s=wk

zks ≥ 1 by αu + βz ≤ λ. Let µu + σz ≤ τ be a valid

inequality that defines a facet F of Psa(G,K,S). Suppose that F̃ k
S ⊂ F = {(u, z) ∈

Psa(G,K,S) : µu + σz = τ}. To prove that F̃ k
S is facet defining for Psa(G,K,S),

it sufficient to show that there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1) ) such that

(µ, σ) = ρ(α, β) + γM .

First, let show that µs = 0 for all s ∈ S. Consider a slot s̃ ∈ S, and a solution

S116 = (U116, S116) given by

a) we select the smallest slot index sk in {wk, ..., s̄} \ {s̃, ..., s̃+ wk − 1} as last slot for
demand k (slot assignment constraint taking into account the possibility of adding

slot s̃ in the set of used slots U116),

b) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I116i given by

I116i = [
⋂

kj∈D116
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {s̃, ..., s̃ + wki

− 1}

where D116
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This verifies that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D116
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U116).

We let S116
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) a set of slots U116 is then used in S such that for each demand k′ ∈ K and last slot

s ∈ S116
k′ and s′ ∈ {sk′ − wk′ + 1, ..., sk′}, we have s′ ∈ U116,

S116 is clearly feasible for the SA problem. The corresponding incidence vector

(uS
116

, zS
116

) belongs to F̃ k
S . Next, we derive a solution S ′116 = (U ′116, S′116) ob-

tained from S116 by adding slot s̃ as an used slot in U ′116 without modifying the

last slots assigned to the demands K in S116 which remain the same in solution

S ′116 i.e., S116
k = S′116

k for each demand k ∈ K. Solution S ′116 is feasible for the

SA problem, and its incidence vector (uS
′116

, zS
′116

) belongs to F̃ k
S . Hence, solutions

S116 and S ′116 satisfy equation µu+ σz = τ . We then obtain that

µuS
116

+ σzS
116

= µuS
′116

+ σzS
′116

= µuS
116

+ σzS
116

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.
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Next, we will show that, σk′
s′ = 0 for all k′ ∈ K \ {k} and s′ ∈ {wk′ , ..., s̄}.

Consider a demand k′ in K \{k} and a slot s′ in {wk′ , ..., s̄}. Let S117 = (U117, S117)

be the solution given by

a) we select slot sk = wk as last slot for demand k,

b) we select the smallest slot index sk′ from the set of slots I117k′ given by

I117k′ = {wki , ..., sk − wk} ∩ {sk + wki , ..., s̄} \ {s′} if E(pk′) ∩ E(pk) ̸= ∅

or I117k′ = {wk′ , ..., s̄} \ {s′} if not.

c) for each demand ki ∈ K \ {k, k′} with i ∈ {1, ..., |K|}, we select the smallest slot

index ski in the set of slots I117i given by

I117i = [
⋂

kj∈D117
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk′}∪{s′+wki , ..., s̄}]

if E(pki
) ∩ E(pk′) ̸= ∅ or I117i =

⋂
kj∈D117

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D117
i = {kj ∈ {k1, ..., ki−1} ∪ {k, k′} : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D117
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pk′)∩E(pki) ̸= ∅ ( we take

into account the possibility of adding slot s′ in the set of last slots S117
k′ assigned to

demand k′ in solution S117),

We let S110
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) a set of slots U117 are then used in S such that for each demand k” ∈ K and last

slot s ∈ S117
k” and s” ∈ {sk” − wk” + 1, ..., sk”}, we have s” ∈ U117.

S117 is clearly feasible for the SA problem. The corresponding incidence vector

(uS
117

, zS
117

) belongs to F̃ k
S . Then consider the solution S118 = (U118, S118) obtained

from S117 by adding slot s′ as last slot to demand k′ without modifying the last

slots assigned to the demands K \ {k′} in S117k remain the same in solution S118

i.e., S117
k = S118

k for each demand k ∈ K \ {k′}, and S118
k′ = S117

k′ ∪ {s′} for demand

k′. Solution S118 is feasible for the SA problem. The corresponding incidence

vector (uS
118

, zS
118

) belongs to F̃ k
S . Hence, solutions S117 and S118 satisfy equation

µu+ σz = τ . We the obtain that

µuS
117

+ σzS
117

= µuS
118

+ σzS
118

= µuS
117

+ σzS
117

+ σk′
s′ +

∑
s̃∈{s′−wk′+1,...,s′}\U117

µs̃.
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Since µs̃ = 0 for all s̃ ∈ S, it follows that σk′
s′ = 0.

In a similar way, we can show that

σk′
s′ = 0, for all k′ ∈ K \ {k} and s′ ∈ {wk′ , ..., s̄}.

Let prove now that σk
s for demand k and slot s in {wk, ..., s̄} are equivalent.

Consider a slot s′ ∈ {wk, ..., s̄} such that s′ /∈ S119
k . Let S̃119 = (Ũ119, S̃119) be the

solution given by

a) we select the smallest slot index sk from {wk, ..., s̄} \ {s′} as last slot for demand k,

b) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots Ĩ117i given by

Ĩ117i = [
⋂

kj∈D̃117
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or Ĩ117i =

⋂
kj∈D̃117

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D̃117
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D̃117
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pk′)∩E(pki) ̸= ∅ ( we take

into account the possibility of adding slot s′ in the set of last slots S̃117
k′ assigned to

demand k′ in solution S̃117).

Let S̃117
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) we let Ũ117 be the set of slots used in S such that for each demand k′ ∈ K and last

slot sk′ ∈ S̃117
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ Ũ117.

S̃118 is feasible for the SA problem. Hence, the corresponding incidence vector

(uS̃
118

, zS̃
118

) belongs to F̃ k
S . Based on this, we derive a solution S119 = (U119, S119)

from S̃118 by adding slot s′ as last slot to demand k and removing the last slot

s ∈ S118
k , i.e., S119

k = (S̃118
k \ {s})∪{s̃} for demand k such that {s′−wk +1, ..., s′}∩

{s”− wk′ + 1, ..., s”} = ∅ for each k′ ∈ K and s” ∈ S119
k′ with E119

k ∩ E119
k′ ̸= ∅. The

last slots assigned to the demands K \{k} in S̃118 remain the same, i.e., S̃118
k” = S119

k”

for each demand k” ∈ K \ {k}. Solution S119 is feasible for the SA problem. The

corresponding incidence vector (uS
119

, zS
119

) belongs to F̃ k
S . Hence, solutions S118

and S119 satisfy equation µu+ σz = τ . We then obtain that

µuS̃
118

+ σzS̃
118

= µuS
′119

+ σzS
′119

= µuS̃
118

+ σzS̃
118 − σk

s + σk
s′ −

∑
s̃∈U118\U119

µs̃

+
∑

s̃′∈U119\U118

µs̃′ .
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Since µs̃ = 0 for all s̃ ∈ S, it follows that σk
s′ = σk

s .

In a similar way, we can show that

σk
s′ = σk

s , for all slots s, s′ ∈ {wk, ..., s̄}.

Consequently, we obtain that σk
s = ρ for demand k and slot s in {wk, ..., s̄}.

By (5.9), we know that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We then conclude that µs = 0 for each slot s ∈ S , and for each k′ ∈ K and s ∈ S

σk′
s =


γk

′,s if s ∈ {1, ..., wk′ − 1},

ρ if k′ = k and s ∈ {wk′ , ..., s̄},

0 otherwise.

As a result, we have (µ, σ) = ρ(α, β) + γM as desired.

5.4 Valid Inequalities and Facets

In what follows, we present several valid inequalities for Psa(G,K,S), and prove that

they are facet-defining under certain conditions.

5.4.1 Interval-Capacity-Cover Inequalities

We start this section by introducing some classes of valid inequalities related to the

knapsack constraints. Let us introduce the following conflict graph.

Definition 5.4.1. Consider the conflict graph Hsa defined as follows. For each

demand k ∈ K, consider a node vk in Hsa. Two nodes vk and vk′ are linked by an

edge in Hsa if and only if E(pk) ∩ E(pk′) ̸= ∅. This is equivalent to say that two

linked nodes vk and vk′ means that the routing paths of the demands k, k′ share an

edge in G.

Based on the conflict graph Hsa, we introduce the following inequalities.

Proposition 5.4.1. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let

K ′ ⊂ K be a minimal cover for interval I = [si, sj ] such that K ′ defines a clique in

Hsa. Then, the inequality

∑
k∈K′

sj∑
s=si+wk−1

zks ≤ |K ′| − 1, (5.10)

is valid for Psa(G,K,S).
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Proof. The interval I can cover at most |K ′|−1 demands given that K ′ is a minimal

cover for interval I.

Inequality (5.10) can be strengthened by extending each minimal cover K ′ ⊂ K

for an interval I as follows.

Proposition 5.4.2. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let

K ′ ⊆ K be a minimal cover for interval I = [si, sj ] such that K ′ defines a clique

in Hsa , and Ξ(K ′) be a subset of demands in K \ K ′ such that Ξ(K ′) = {k ∈
K \K ′ such that wk ≥ wk′ and E(pk)∩E(pk′) ̸= ∅ ∀k′ ∈ K ′}. Then, the inequality

∑
k∈K′

sj∑
s=si+wk−1

zks +
∑

k′∈Ξ(K′)

sj∑
s′=si+wk′−1

zk
′

s′ ≤ |K ′| − 1, (5.11)

is valid for Psa(G,K,S).

Proof. The interval I = [si, sj ] can cover at most |K ′|−1 demands from the demands

in K ′ ∪ Ξ(K ′) given that K ′ is a minimal cover for interval I = [si, sj ] and the

definition of the set Ξ(K ′) such that for each pair (k, k′) with k ∈ K ′ and k′ ∈ Ξ(K ′),

the set (K ′ \ {k}) ∪ {k′} stills defining minimal cover for the interval I over edge e.

Furthermore, for each quadruplet (k, k′, k̃, k̃′) with k, k′ ∈ K ′ and k̃, k̃′ ∈ Ξ(K ′), the

set (K ′ \ {k, k′}) ∪ {k̃, k̃′} stills defining minimal cover for the interval I given that

wk + wk′ ≤ wk̃ + wk̃′ .

Theorem 5.4.1. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄]. Let

K̃ ⊂ K be a minimal cover for interval I = [si, sj ] such that K̃ defines a clique in

Hsa. Then, inequality (5.10) is facet defining for the polytope Psa(G,K,S, I) if and
only if there does not exist an interval of contiguous slots I ′ in [1, s̄] with I ⊂ I ′ such

that K̃ defines a minimal cover for the interval I ′ and a clique in Hsa, where

Psa(G,K,S, K̃, I) = {(u, z) ∈ Psa(G,K,S) :
∑

k′∈K\K̃
(vk,vk′ )∈Hr∀k∈K̃

sj∑
s′=si+wk′−1

zk
′

s′ = 0}.

Proof. Necessity

If there exists an interval of contiguous slots I ′ in [1, s̄] with I ⊂ I ′ such that K̃

defines a minimal cover for the interval I ′. This means that {si+wk−1, ..., sj} ⊂ I ′.

As a result, inequality (5.10) induced by the minimal cover K̃ for the interval I, it

is dominated by another inequality (5.10) induced by the same minimal cover K̃ for

the interval I ′. Hence, inequality (5.10) cannot be facet defining for the polytope
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Psa(G,K,S, I).
Sufficiency.

Let F̃ I
K̃

denote the face induced by inequality (5.10), that is

F̃ I
K̃

= {(u, z) ∈ Psa(G,K,S, K̃, I) :
∑
k∈K̃

sj∑
s=si+wk−1

zks = |K̃| − 1}.

Denote inequality
∑

k∈K̃
∑sj

s=si+wk−1 z
k
s ≤ |K̃|−1 by αu+βz ≤ λ. Let µu+σz ≤ τ

be a valid inequality that is facet defining F of Psa(G,K,S, I). Suppose that F̃ I
K̃
⊂

F = {(u, z) ∈ Psa(G,K,S, I) : µu + σz = τ}. In order to prove that inequality∑
k∈K̃

∑sj
s=si+wk−1 z

k
s ≤ |K̃| − 1 is facet defining for Psa(G,K,S, I), we show that

there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1)) such that (µ, σ) = ρ(α, β) + γM .

First, we show that µs = 0 for all s ∈ S.
Consider a slot s̃ ∈ S. Let S120 = (U120, S120) be the solution given by

a) for one demand k′ from K̃, we select the smallest slot index sk′ in [{wk′ , ..., s̄}\ [{si+
wk′ − 1, ..., sj} ∪ {s̃, ..., s̃+wk′ − 1}]] \ {s̃, ..., s̃+wki − 1} (slot assignment constraint

taking into account the possibility of adding slot s̃ in the set of used slots U120),

b) for each demand ki ∈ K̃ \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I120i given by

I120i = [
⋂

kj∈D120
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}][∩{si + wki − 1, ..., sj}] \ {s̃, ..., s̃+ wki − 1},

where D120
i = {kj ∈ {k1, ..., ki−1} ∩ K̃ : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I120i given by

I120i = [
⋂

kj∈D120
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {s̃, ..., s̃ + wki

− 1}

where D120
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D120
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U120).

We let S120
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) let U120 be the set of slots used in S such that for each demand k ∈ K and last slot

sk ∈ S120
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U120.
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S120 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
120

, zS
120

) belongs to F̃ I
K̃
. Then consider the solution S121 = (U121, S121)

obtained from S120 by adding slot s̃ as an used slot in U121 without modifying the last

slots assigned to the demands K in S120 which remain the same in solution S121 i.e.,
S120
k = S121

k for each demand k ∈ K. S121 is feasible for the SA problem. Hence, the

corresponding incidence vector (uS
121

, zS
121

) belongs to F̃ I
K̃
. Hence, solutions S120

and S121 satisfy equation µu+ σz = τ . We then obtain that

µuS
120

+ σzS
120

= µuS
121

+ σzS
121

= µuS
120

+ σzS
120

+ µs̃.

As a result, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if k ∈ K̃.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if k ∈ K̃. Let S122 = (U122, S122) be the solution given by

a) for one demand k′ from K̃, we select the smallest slot index sk′ in {wk′ , ..., s̄} \ {si+
wk′ − 1, ..., sj} as last slot,

b) for each demand ki ∈ K̃ \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I122i given by

I122i = [
⋂

kj∈D122
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj},

where D122
i = {kj ∈ {k1, ..., ki−1} ∩ K̃ : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I122i given by

I122i = [
⋂

kj∈D122
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki) ∩ E(pk) ̸= ∅ or I122i =
⋂

kj∈D122
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where D122
i = {kj ∈ {k1, ..., ki−1} ∪ K̃ : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D122
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pki) ∩E(pk) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S122
k to route demand k in solution S122).

207



We let S122
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) a set of slots U122 are then used in S such that for each demand k′ ∈ K and last

slot sk′ ∈ S120
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ U120.

S122 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
122

, zS
122

) belongs to F̃ I
K̃
. Then we derive a solution S123 = (U123, S123) obtained

from S122 by adding slot s′ as last slot to demand k without modifying the last

slots assigned to the demands K \ {k} in S122, i.e., S122
k′ = S123

k′ for each demand

k′ ∈ K \ {k}, and S123
k = S122

k ∪ {s′} for demand k. Solution S123 is feasible for

the SA problem. The corresponding incidence vector (uS
123

, zS
123

) belongs to F̃ I
K̃
.

Hence, solutions S122 and S123 satisfy equation µu+ σz = τ . We then obtain that

µuS
122

+ σzS
122

= µuS
123

+ σzS
123

= µuS
122

+ σzS
122

+ σk
s′ +

∑
s̃∈U123\U122

µs̃

−
∑

s̃∈U122\U123

µs̃.

Since µs̃ = 0 for all slots s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj} if k /∈ K̃.

Let prove that σk
s for all k ∈ K̃ and s ∈ {si + wk − 1, ..., sj} are equivalent.

Consider a demand k′ ∈ K and a slot s′ ∈ {si + wk′ − 1, ..., sj} with k′ ∈ K̃. Let

S124 = (U124, S124) be the solution given by

a) for one demand k” from K̃, we select the smallest slot index sk” in {wk”, ..., s̄} \
{si + wk” − 1, ..., sj} as last slot,

b) for each demand ki ∈ K̃ \{k”} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I124i given by

I124i = [
⋂

kj∈D124
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj},

where D124
i = {kj ∈ {k1, ..., ki−1} ∩ K̃ : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ K \ K̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I124i given by

I124i = [
⋂

kj∈D124
i

{wki , ..., skj−wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk′}∪{s′+wki , ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I124i =

⋂
kj∈D124

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D124
i = {kj ∈ {k1, ..., ki−1} ∪ K̃ : E(pki) ∩ E(pkj ) ̸= ∅}. Hence,
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• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D124
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pki)∩E(pk′) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S124
k′ to route demand k′ in solution S124).

We let S124
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) let U124 be the set of slots used in S such that for each demand k” ∈ K and last

slot sk” ∈ S124
k” and s” ∈ {sk” − wk” + 1, ..., sk”}, we have s” ∈ U124.

S124 is clearly feasible for the problem given that it satisfies all the constraints of

cut formulation (2.2)-(2.10). Hence, the corresponding incidence vector (uS
124

, zS
124

)

belongs to F̃ I
K̃
. Then consider the solution S125 = (E125, S125) obtained from S125 by

adding slot s′ as last slot to demand k such that the last slots assigned to the demands

K \ {k, k′} in S125 remain the same in S125, i.e., S125
k” = S125

k” for each demand

k” ∈ K \ {k, k′}, and S125
k′ = S125

k′ ∪ {s′} for demand k′, and modifying the last slots

assigned to demand k by adding a new last slot s̃ and removing the last slot s ∈ S125
k

with s ∈ {si + wk + 1, ..., sj} and s̃ /∈ {si + wk + 1, ..., sj} for demand k with k ∈ K̃

such that S125
k = (S125

k \{s})∪{s̃} such that {s̃−wk+1, ..., s̃}∩{s′−wk′+1, ..., s′} = ∅
for each k′ ∈ K and s′ ∈ S125

k′ with E125
k ∩ E125

k′ ̸= ∅. Solution S125 is feasible for

the SA problem. The corresponding incidence vector (uS
125

, zS
125

) belongs to F̃ I
K̃
.

Hence, solutions S124 and S125 satisfy equation µu+ σz = τ . We then obtain that

µuS
124

+ σzS
124

= µuS
125

+ σzS
125

= µuS
124

+ σzS
124

+ σk′
s′ − σk

s + σk
s̃ +

∑
s”∈U125\U124

µs”

−
∑

s”∈U124\U125

µs”.

Since σk
s = 0 for s /∈ {si + wk − 1, ..., sj} with k ∈ K̃, and µs” = 0 for all s” ∈ S, it

follows that σk′
s′ = σk

s .

The pair (k, k′) are chosen arbitrarily in the minimal cover K̃, we then re-do the

same procedure for all pairs (k, k′) such that we find

σk
s = σk′

s′ , for all pairs (k, k
′) ∈ K̃,

with s ∈ {si + wk − 1, ..., sj} and s′ ∈ {si + wk′ − 1, ..., sj}. We re-do the same

procedure for each two slots s, s′ ∈ {si +wk − 1, ..., sj} for each demand k ∈ K with

k ∈ K̃ such that

σk
s = σk

s′ , for all k ∈ K̃ and s, s′ ∈ {si + wk − 1, ..., sj}.
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By (5.9), we know that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

Overall, we obtain that µs = 0 for each slot s ∈ S, and

σk′
s =


γk

′,s if s ∈ {1, ..., wk′ − 1},

ρ if k′ ∈ K̃ and s ∈ {si + wk′ − 1, , ..., sj},

0 otherwise,

for each k′ ∈ K and s ∈ S.
As a consequence, we have (µ, σ) = ρ(α, β) + γM as desired.

Inequality (5.10) can then be lifted using a sequential lifting procedure [5] to be

facet defining and generate several facets for the polytope Psa(G,K,S).

Theorem 5.4.2. Let I = [si, sj ] be an interval of contiguous slots. Let K̃ ⊂ K be

a minimal cover for interval I = [si, sj ] such that K̃ defines a clique in Hsa. Let

K ′ ⊂ K \K̃ = {k1, ..., kq} such that K̃∪{k1, ..., kq} defines a clique in Hsa. Consider

the following sequence of knapsack problems defined as

zi = max
∑
j∈K̃

aj +

i−1∑
j=1

βjaj ,

∑
j∈K̃

wjaj +

i−1∑
j=1

wkjaj ≤ |I| − wki ,

aj ∈ {0, 1}, ∀j ∈ K̃ ∪ {1, ..., i− 1},

(5.12)

for all i ∈ {1, ..., q} with βj = |K̃| − 1 − zj for all j ∈ {1, ..., i − 1}. Then, the

inequality

∑
k∈K̃

sj∑
s=si+wk−1

zks +

q∑
j=1

sj∑
s′=si+wkj

−1

βjz
kj
s′ ≤ |K̃| − 1, (5.13)

is valid for Psa(G,K,S). Moreover, inequality (5.13) defines facet of Psa(G,K,S) if
there does not exist an interval of contiguous slots I ′ = [s′i, s

′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.

Proof. It is trivial given that inequality (5.13) can never be dominated in Psa(G,K,S)
if there does not exist an interval of contiguous slots I ′ = [s′i, s

′
j ] in [1, s̄] with I ⊂ I ′

such that K̃ defines a minimal cover for the interval I ′.
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5.4.2 Interval-Clique Inequalities

Based on the definition of the conflict graph HE
I , we define a new conflict graph

adapted to the SA problem.

Definition 5.4.2. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1. Consider the conflict graph H ′E
I defined as follows. For each demand

k ∈ K with wk ≤ |I|, consider a node vk in H ′E
I . Two nodes vk and vk′ are linked

by an edge in H ′E
I if wk + wk′ > |I| and E(pk) ∩ E(pk′) ̸= ∅.

Let Qsa(G,K,S) = {(x, z) ∈ Psa(G,K,S) :
∑

k∈K
∑s̄

s=wk
zks = 1} be a semi-

polytope of Psa(G,K,S).

Proposition 5.4.3. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and C be a clique in the conflict graph H ′E
I with |C| ≥ 3. Then,

inequality (2.39) is also valid for Qsa(G,K,S). Moreover, it is valid for Psa(G,K,S)
if 2wk > |I| for each vk ∈ C.

Proof. We use the same proof of proposition (2.4.13).

Theorem 5.4.3. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and C be a clique in the conflict graph H ′E
I with |C| ≥ 3, and 2wk > |I|

for each vk ∈ C. Then, inequality (2.39) is facet defining for Psa(G,K,S) if and

only if

a) C is a maximal clique in the conflict graph H ′E
I ,

b) and there does not exist an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′

with

• wk + wk′ ≥ |I ′| for each k, k′ ∈ C,

• 2wk ≥ |I ′|+ 1 and wk ≤ |I ′| for each k ∈ C.

c) and there does not exist a slot s ∈ I such that s ∈ {s′−wk +1, .., s′} for each k ∈ C

and s′ ∈ {si + wk − 1, .., sj}.

Proof. Neccessity.

We distinguish three cases

a) if there exists a clique C ′ that contains all the demands k ∈ C. Then, inequality

(2.39) induced by clique C is dominated by another inequality (2.39) induced by

clique C ′. Hence, inequality (2.39) cannot be facet defining for Psa(G,K,S).

b) if there exists an interval of contiguous slots I ′ in [1, s̄] such that I ⊂ I ′ with
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• wk + wk′ ≥ |I ′| for each k, k′ ∈ C,

• 2wk ≥ |I ′|+ 1 and wk ≤ |I ′| for each k ∈ C.

This means that inequality (2.39) induced by clique C for the interval I is dominated

by inequality (2.39) induced by clique C for the interval I ′. Hence, inequality (2.39)

cannot be facet defining for Psa(G,K,S).

c) if there exists a slot s ∈ I such that s ∈ {s′ − wk + 1, .., s′} for each k ∈ C and

s′ ∈ {si + wk − 1, .., sj}, this implies that inequality (2.39) is dominated by the the

non-overlapping inequality (5.4). Hence, inequality (2.39) cannot be facet defining

for Psa(G,K,S).

Sufficiency.

Let F̃
H′E

I
C be the face induced by inequality (2.39), that is

F̃
H′E

I
C = {(u, z) ∈ Psa(G,K,S) :

∑
vk∈C

sj∑
s=si+wk−1

zks = 1}.

We denote inequality
∑

vk∈C
∑sj

s=si+wk−1 z
k
s ≤ 1 by αu+ βz ≤ λ. Let µu+ σz ≤ τ

be a valid inequality that is facet defining F of Psa(G,K,S). Suppose that F̃
H′E

I
C ⊂

F = {(u, z) ∈ Psa(G,K,S) : µu + σz = τ}. In order to prove that inequality∑
vk∈C

∑sj
s=si+wk−1 z

k
s ≤ 1 is facet defining for Psa(G,K,S), we need to show that

there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1)) such that (µ, σ) = ρ(α, β) + γM .

Let first show that µs = 0 for all s ∈ S.
Consider a slot s̃ ∈ S. Let S127 = (U127, S127) be the solution given by

a) for one demand k′ from C, we select the smallest slot index sk′ = {si+wk′−1, ..., sj}\
{s̃, ..., s̃ − wk′ − 1} as last slot (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U127),

b) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I127i given by

I127i = [
⋂

kj∈D127
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}][∩{si + wki − 1, ..., sj}] \ {s̃, ..., s̃+ wki − 1},

where D127
i = {kj ∈ {k1, ..., ki−1} ∩ C : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I127i given by

I127i = [
⋂

kj∈D127
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {s̃, ..., s̃ + wki

− 1}

where D127
i = {kj ∈ {k1, ..., ki−1} ∩C : E(pki) ∩E(pkj ) ̸= ∅}. This guarantees that
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• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ...skj} = ∅ for each kj ∈ D127
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U127),

We let S127
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) a set of slots U127 are used in S such that for each demand k ∈ K and last slot

sk ∈ S127
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U127.

S127 is feasible for the SA problem. Hence, the corresponding incidence vector

(uS
127

, zS
127

) belongs to F̃
H′E

I
C . Then we derive a solution S128 = (U128, S128) ob-

tained from S127 by adding slot s̃ as an used slot in U128 without modifying the last

slots assigned to the demands K in S127 which remain the same in solution S128 i.e.,
S127
k = S128

k for each demand k ∈ K. Solution S128 is feasible for the SA problem.

The corresponding incidence vector (uS
128

, zS
128

) belongs to F̃
H′E

I
C . Hence, solutions

S127 and S128 satisfy equation µu+ σz = τ . We then obtain that

µuS
127

+ σzS
127

= µuS
128

+ σzS
128

= µuS
127

+ σzS
127

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if vk ∈ C.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if k ∈ C. be the solution given by S129 = (U129, S129) be the solution given by

a) for one demand k′ from C, we select the slot sk′ = si + wk′ − 1 as last slot,

b) for each demand ki ∈ C \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I129i given by

I129i = [
⋂

kj∈D129
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] ∩ {si + wki − 1, ..., sj},

where D129
i = {kj ∈ {k1, ..., ki−1} ∩ C : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I129i given by

I129i = [
⋂

kj∈D129
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki) ∩ E(pk) ̸= ∅ or I129i =
⋂

kj∈D129
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where D129
i = {kj ∈ {k1, ..., ki−1} ∪ C : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that
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• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D129
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pki) ∩E(pk) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S129
k to route demand k in solution S129),

We let S122
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) let U129 be the slot used in S such that for each demand k′ ∈ K and last slot

sk′ ∈ S129
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ U129.

S129 is clearly feasible for the problem, and its incidence vector (uS
129

, zS
129

) belongs

to F̃
H′E

I
C . Then consider the solution S130 = (U130, S130) obtained from S129 by

adding slot s′ as last slot to demand k without modifying the last slots assigned to

the demands K \ {k} in S129, i.e., S129
k′ = S130

k′ for each demand k′ ∈ K \ {k}, and
S130
k = S129

k ∪ {s′} for demand k. Solution S130 is feasible for the SA problem. The

corresponding incidence vector (uS
130

, zS
130

) belongs to F̃
H′E

I
C . Hence, solutions S129

and S130 satisfy equation µu+ σz = τ . We then obtain that

µuS
129

+ σzS
129

= µuS
130

+ σzS
130

= µuS
129

+ σzS
129

+ σk
s′ +

∑
s̃∈U130\U129

µs̃ −
∑

s̃∈U129\U130

µs̃.

Since µs̃ = 0 for all slots s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj} if vk /∈ C.

Let prove that σk
s for all vk ∈ C and s ∈ {si+wk−1, ..., sj} are equivalent. Consider

a demand k′ ∈ K and a slot s′ ∈ {si + wk′ − 1, ..., sj} with vk′ ∈ C, and a solution

S131 = (U131, S131) given by

a) for one demand k from C, we select theslot sk = si + wk − 1 as last slot,

b) for each demand ki ∈ C \ {k}, we select the smallest slot index ski in the set of slots

I131i given by

I131i = [
⋂

kj∈D131
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]\{si, ..., sj}

if E(pki)∩E(pk′) ̸= ∅ or I131i = [
⋂

kj∈D131
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}]\{si, ..., sj} if not,

where D131
i = {kj ∈ {k1, ..., ki−1} ∪ C such that D131

ki
∩D131

kj
̸= ∅},
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c) for each demand ki ∈ K \ C with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I131i given by

I131i = [
⋂

kj∈D131
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E(pki
) ∩ E(pk′) ̸= ∅ or I131i =

⋂
kj∈D131

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D131
i = {kj ∈ {k1, ..., ki−1}∪C such that E(pki)∩E(pkj ) ̸= ∅}. This ensures

that

• {ski − wki + 1, ..., ski} ∩ {s− wkj + 1, ..., s} = ∅ for each kj ∈ D131
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pki)∩E(pk′) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S131
k′ to route demand k′ in solution S131).

We let S131
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) Let U131 be the set of slots used in S such that for each demand k and last slot

sk ∈ S131
k and s” ∈ {sk − wk + 1, ..., sk}, we have s” ∈ U131.

S131 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
131

, zS
131

) belongs to F̃
H′E

I
C . Then consider the solution S132 = (U132, S132) from

S131 by adding slot s′ as last slot to demand k without modifying the last slots

assigned to the demands K \ {k, k′} in S131, i.e., S131
k” = S132

k” for each demand k” ∈
K \ {k, k′}, and S132

k′ = S131
k′ ∪ {s′} for demand k′, and with modifying the last slots

assigned to demand k by adding a new last slot s̃ and removing the last slot s ∈ S131
k

with s ∈ {si+wk+1, ..., sj} and s̃ /∈ {si+wk+1, ..., sj} for demand k ∈ K with vk ∈ C

such that S132
k = (S131

k \{s})∪{s̃} such that {s̃−wk+1, ..., s̃}∩{s′−wk′+1, ..., s′} = ∅
for each k′ ∈ K and s′ ∈ S132

k′ with E(pk) ∩ E(pk′) ̸= ∅. Solution S132 is feasible for

the SA problem. The corresponding incidence vector (uS
132

, zS
132

) belongs to F̃
H′E

I
C .

Hence, solutions S131 and S132 satisfy equation µu+ σz = τ . We then obtain that

µuS
131

+ σzS
131

= µuS
132

+ σzS
132

= µuS
131

+ σzS
131

+ σk′
s′ − σk

s + σk
s̃ +

∑
s”∈U132\U131

µs”

−
∑

s”∈U131\U132

µs”.

Since σk
s̃ = 0 for s̃ /∈ {si + wk − 1, ..., sj} with vk ∈ C, and µs” = 0 for all s” ∈ S, it

follows that σk′
s′ = σk

s .

Given that the pair (vk, vk′) are chosen arbitrarily in clique C, we re-do the same

procedure for all pairs (vk, vk′) such that we find

σk
s = σk′

s′ , for all pairs (vk, vk′) ∈ C,
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with s ∈ {si + wk − 1, ..., sj} and s′ ∈ {si + wk′ − 1, ..., sj}. We re-do the same

procedure for each two slots s, s′ ∈ {si +wk − 1, ..., sj} for each demand k ∈ K with

vk ∈ C such that

σk
s = σk

s′ , for all vk ∈ C and s, s′ ∈ {si + wk − 1, ..., sj},

σk
s = σk′

s′ , for all vk, vk′ ∈ C, s ∈ {si + wk − 1, ..., sj} and s′ ∈ {si + wk′ − 1, ..., sj}.

Consequently, we obtain that σk
s = ρ for all vk ∈ C and s ∈ {si + wk − 1, ..., sj}.

We know from (5.9) that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

As a consequence, we obtain that µs = 0 for each slot s ∈ S , and

σk′
s =


γk

′,s if s ∈ {1, ..., wk′ − 1},

ρ if vk′ ∈ C and s ∈ {si + wk′ − 1, , ..., sj},

0 otherwise,

for each k′ ∈ K and s ∈ S. As a result, we have (µ, σ) = ρ(α, β) + γM as desired.

5.4.3 Interval-Odd-Hole Inequalities

Proposition 5.4.4. Let I = [si, sj ] be an interval of contiguous slots in [1, s̄] with

si ≤ sj − 1, and H be an odd-hole H in the conflict graph H ′E
I with |H| ≥ 5. Then,

inequality (2.40) is valid for Qsa(G,K,S). Moreover, it is valid for P(G,K,S) if

2wk > |I| for each vk ∈ H.

Proof. We use the same proof of proposition (5.4.4).

Theorem 5.4.4. Let H be an odd-hole in the conflict graph H ′E
I with |H| ≥ 5, and

2wk > |I| for each vk ∈ H. Then, inequality (2.40) is facet defining for Psa(G,K,S)
if and only if

a) for each node vk′ /∈ H in H ′E
I , there exists a node vk ∈ H such that the induced

graph H ′E
I ((H \ {vk})∪{vk′}) does not contain an odd-hole H ′ = (H \ {vk})∪{vk′},

b) and there does not exist a node vk′ /∈ H in H ′E
I such that vk′ is linked with all nodes

vk ∈ H,

c) and there does not exist an interval I ′ of contiguous slots with I ⊂ I ′ such that H

defines also an odd-hole in the associated conflict graph HE
I′ .
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Proof. Neccessity.

We use the same proof presented in the proof of theorem (2.4.10).

Sufficiency.

Let F̃
H′E

I
H be the face induced by inequality (2.40), that is

F̃
H′E

I
H = {(u, z) ∈ Psa(G,K,S) :

∑
vk∈H

sj∑
s=si+wk−1

zks =
|H| − 1

2
}.

We denote inequality
∑

vk∈H
∑sj

s=si+wk−1 z
k
s ≤

|H|−1
2 by αu + βz ≤ λ. Let µu +

σz ≤ τ be a valid inequality that is facet defining F of Psa(G,K,S). Suppose that

F̃
H′E

I
H ⊂ F = {(u, z) ∈ Psa(G,K,S) : µu + σz = τ}. To prove that F̃

H′E
I

H is a facet

of Psa(G,K,S), we need to show that there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1)) such

that (µ, σ) = ρ(α, β) + γM .

Let first show that µs = 0 for all s ∈ S.
Consider a slot s̃ ∈ S. Let S134 = (U134, S134) be the solution given by

a) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

b) for each demand ki from H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I134i given by

I134i = [
⋂

kj∈L134
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩[{si+wki

−1, ..., sj}]\{s̃, ..., s̃+wki
−1},

where L134
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E(pki) ∩ E(pkj ) ̸= ∅}.

c) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I134i given by

I134i =
⋂

kj∈D134
i

{wki , ..., skj−wkj}∪{skj+wki , ..., s̄}\[{si+wki−1, ..., sj}∪{s̃, ..., s̃+wki−1}],

where D134
i = {kj ∈ {k1, ..., ki−1} ∩H : E(pki) ∩ E(pkj ) ̸= ∅}. We let S134

ki
= {ski}

be the set of last slots assigned to demand ki,

d) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I134i given by

I134i = [
⋂

kj∈R134
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] \ {s̃, ..., s̃ + wki − 1}

where R134
i = {kj ∈ {k1, ..., ki−1} ∪ H such that E(pki) ∩ E(pkj ) ̸= ∅}. This

guarantees that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R134
i ,
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• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U134).

We let S134
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

e) let U134 be the set of slots used in S such that for each demand k and last slot

sk ∈ S134
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U134, and and s̃ /∈ U134 (slot

assignment constraint taking into account the possibility of adding slot s̃ in the set

of used slots U134).

S134 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
134

, zS
134

) belongs to F̃
H′E

I
H . Then we derive a solution S135 = (U135, S135)

obtained from S134 by adding slot s̃ as an used slot in U135 without modifying the

last slots assigned to the demands K in S134 which remain the same in solution

S135 i.e., S134
k = S135

k for each demand k ∈ K. Solution S135 is feasible for the SA

problem. Hence, the corresponding incidence vector (uS
135

, zS
135

) belongs to F̃
H′E

I
H .

Hence, solutions S134 and S135 satisfy equation µu+ σz = τ . We then obtain that

µuS
134

+ σzS
134

= µuS
135

+ σzS
135

= µuS
134

+ σzS
134

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with s /∈ {si + wk − 1, ..., sj}

if vk ∈ H.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj}
if vk ∈ H. Let S136 = (U136, S136) be the solution given by

a) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

b) for each demand ki from H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I136i given by

I136i = [
⋂

kj∈L136
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ [{si + wki

− 1, ..., sj}],

where L136
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E(pki) ∩ E(pkj ) ̸= ∅}.

c) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I136i given by

I136i =
⋂

kj∈D136
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} \ {si + wki

− 1, ..., sj},
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where D136
i = {kj ∈ {k1, ..., ki−1} ∩H : E(pki) ∩ E(pkj ) ̸= ∅}. We let S136

ki
= {ski}

be the set of last slots assigned to demand ki,

d) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I136i given by

I136i = [
⋂

kj∈D136
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I136i =

⋂
kj∈D136

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D136
i = {kj ∈ {k1, ..., ki−1} ∪H : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D136
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pki) ∩E(pk) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S136
k to route demand k in solution S136).

We let S136
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|},

e) let U136 be the set of slots used in S such that for each demand k′ ∈ K and last slot

s” ∈ S136
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ U136.

S136 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
136

, zS
136

) belongs to F̃
H′E

I
H . After that, we derive a solution S137 = (U137, S137)

from S136 by adding slot s′ as last slot to demand k without modifying the last

slots assigned to the demands K \ {k} in S136, i.e., S136
k′ = S137

k′ for each demand

k′ ∈ K \ {k}, and S137
k = S136

k ∪ {s′} for demand k. Solution S137 is feasible for

the SA problem. The corresponding incidence vector (uS
137

, zS
137

) belongs to F̃
H′E

I
H .

Hence, solutions S136 and S137 satisfy equation µu+ σz = τ . We then obtain that

µuS
136

+ σzS
136

= µuS
137

+ σzS
137

= µuS
136

+ σzS
136

+ σk
s′ +

∑
s̃∈U137\U136

µs̃

−
∑

s̃∈U136\U137

µs̃.

Since µs̃ = 0 for all slots s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s′ = 0, for demand k and s′ ∈ {wk, ..., s̄} with s′ /∈ {si + wk − 1, ..., sj} if vk ∈ H.

We re-do the same procedure for all demand k′ in K \ {k} such that

σk′
s = 0, for all k′ ∈ K \ {k} and s ∈ {wk′ , ..., s̄} with s /∈ {si + wk′ − 1, ..., sj}

if vk′ ∈ H.
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Let prove that σk′
s′ for all vk′ ∈ H and s′ ∈ {si + wk′ − 1, ..., sj} are equivalent.

Consider a demand k′ ∈ K with vk′ ∈ H and a slot s′ ∈ {si + wk′ − 1, ..., sj}. Let

S138 = (U138, S138) be the solution given by

a) select a subset of demands H̃ from H with |H̃| = |H|−1
2 ,

b) for each demand ki from H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I138i given by

I138i = [
⋂

kj∈L138
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] ∩ {si + wki

− 1, ..., sj}.

where L138
i = {kj ∈ {k1, ..., ki−1} ∩ H̃ : E(pki) ∩ E(pkj ) ̸= ∅},

c) for each demand ki ∈ H \ H̃ with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I138i given by

I138i =
⋂

kj∈D138
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} \ {si + wki

− 1, ..., sj},

where D138
i = {kj ∈ {k1, ..., ki−1} ∩H : E(pki) ∩ E(pkj ) ̸= ∅},

d) for each demand ki ∈ K \H with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I138i given by

I138i = [
⋂

kj∈R138
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E(pki) ∩ E(pk′) ̸= ∅ or I138i =
⋂

kj∈R138
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where R138
i = {kj ∈ {k1, ..., ki−1} ∪H : E138

ki
∩ E138

kj
̸= ∅}. Hence,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ R138
i ,

• and {ski − wki + 1, ..., ski} ∩ {s′ − wk′ + 1, ..., s′} = ∅ if E138
ki
∩ E138

k′ ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S138
k′ to route demand k′ in solution S138).

e) a set of slots U138 are used in S such that for each demand k and last slot sk ∈ S138
k

and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U138.

S138 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
138

, zS
138

) belongs to F̃
H′E

I
H . Then we derive a solution S139 from S138 as belows

a) remove the last slot s̃ totally covered by the interval I and which has been selected

by a demand ki ∈ {vk1 , ..., vkq} in solution S139 (i.e., s̃ ∈ S139
ki

and s̃′ ∈ {si + wki +

1, ..., sj}) such that each pair of nodes (vk′ , vkj ) are not linked in odd-hole H with

j ̸= i,
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b) and select a new last slot s̃′ /∈ {si + wki + 1, ..., sj} for demand ki i.e., S139
ki

=

(S138
ki
\ {s̃}) ∪ {s̃′} such that {s̃′ − wki − 1, ..., s̃′} ∩ {s − wk + 1, ..., s} = ∅ for each

k ∈ K and s ∈ S139
k with E139

k ∩ E139
ki
̸= ∅,

c) and add slot s′ to the set of last slots S139
k′ assigned to demand k′ in solution S139,

i.e., S139
k′ = S138

k′ ∪ {s′}.

solution S139 is clearly feasible for the SA problem. The corresponding incidence

vector (uS
139

, zS
139

) belongs to F̃
H′E

I
H . Hence, solutions S138 and S139 satisfy equation

µu+ σz = τ . We have so

µuS
138

+ σzS
138

= µuS
139

+ σzS
139

= µuS
138

+ σzS
138

+ σk′
s′ + σki

s̃′ − σki
s̃ +

∑
s”∈U139\U138

µs”

−
∑

s”∈U138\U139

µs”.

Since σk
s = 0 for all demand k ∈ K and slot s ∈ {wk, ..., s̄} with s /∈ {si+wk+1, ..., sj}

if vk ∈ H, and µs” = 0 for all s” ∈ S, it follows that σki
s̃ = σk′

s′ .

Given that the pair (vk, vk′) are chosen arbitrarily in odd-hole H, we re-do the same

procedure for all pairs (vk, vk′) such that we find

σk
s = σk′

s′ , for all pairs (vk, vk′) ∈ H, s ∈ {si + wk − 1, ..., sj} and {si + wk′ − 1, ..., sj}.

Consequently, we obtain that σk
s = ρ for all vk ∈ H and s ∈ {si + wk − 1, ..., sj}.

Overall, and using the result (5.9), we obtain that µs = 0 for each slot s ∈ S , and

σk′
s =


γk

′,s if s ∈ {1, ..., wk′ − 1},

ρ if vk′ ∈ H and s ∈ {si + wk′ − 1, , ..., sj},

0 otherwise,

for each k′ ∈ K and s ∈ S. As a result, we have (µ, σ) = ρ(α, β) + γM as desired.

5.4.4 Slot-Assignment-Clique Inequalities

On the other hand, we also noticed that there may exist some cases that are not

covered by inequality (2.25). For this, we provide an adapted definition of a conflict

graph HE
S for the SA problem and its associated inequality.

Definition 5.4.3. Let H ′E
S be a conflict graph defined as follows. For all slot s ∈

{wk, ..., s̄} and demand k ∈ K, consider a node vk,s in H ′E
S . Two nodes vk,s and

vk′,s′ are linked by an edge in H ′E
S if and only if
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• k = k′,

• or Ek
1 ∩ Ek′

1 ̸= ∅ and {s− wk + 1, ..., s} ∩ {s′ − wk′ + 1, ..., s′} ≠ ∅ when k ̸= k′.

Based on the conflict graph H ′E
S , we introduced the following inequalities.

Proposition 5.4.5. Let C be a clique in the conflict graph H ′E
S with |C| ≥ 3. Then,

inequality (2.43) is valid for Qsa(G,K,S). Moreover, it is valid for Psa(G,K,S) if

{s− wk + 1, ..., 1} ∩ {s′ − wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C.

Proof. We use the same proof of proposition (2.4.17).

Theorem 5.4.5. Consider a clique C in the conflict graph H ′E
S with {s − wk +

1, ..., 1} ∩ {s′ −wk′ + 1, ..., s′} ≠ ∅ for each (vk,s, vk′,s′) ∈ C. Then, inequality (2.43)

is facet defining for Psa(G,K,S) if and only if

1. C is a maximal clique in the conflict graph H ′E
S ,

2. and there does not exist an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

• [ min
vk,s∈C

(s− wk + 1), max
vk,s∈C

s] ⊂ I,

• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) ∈ C,

• and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ C.

3. and there does not exist a slot s′ ∈ S such that s′ ∈ {s − wk + 1, .., s} for each

vk,s ∈ C.

Proof. Neccessity.

If C is not maximal clique in the conflict graph H ′E
S , this means that inequality

(2.43) can be dominated by another inequality associated with a clique C ′ such that

C ⊂ C ′ without changing its right-hand side. Moreover, if there exists an interval

of contiguous slots I = [si, sj ] ⊂ [1, s̄] satisfying the conditions of the condition 2 of

the theorem. Then, inequality (2.43) is dominated by inequality (2.39). As a result,

inequality (2.43) cannot be facet defining for Psa(G,K,S).
On the other hand, if there exists a slot s′ ∈ S such that s′ ∈ {s−wk+1, .., s} for each
vk,s ∈ C, then inequality (2.43) is dominated by the non-overlapping inequality (5.4).

Hence, inequality (2.43) cannot be facet defining for Psa(G,K,S). Sufficiency.

Let F̃
H′E

S
C be the face induced by inequality (2.39), that is

F̃
H′E

S
C = {(u, z) ∈ Psa(G,K,S) :

∑
vk,s∈C

zks = 1}.
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We denote inequality
∑

vk,s∈C zks ≤ 1 by αu + βz ≤ λ. Let µu + σz ≤ τ be a

valid inequality that is facet defining F of Psa(G,K,S). Suppose that F̃
H′E

S
C ⊂

F = {(u, z) ∈ Psa(G,K,S) : µu + σz = τ}. In order to prove that inequality∑
vk,s∈C zks ≤ 1 is facet defining for Psa(G,K,S), we show that there exist ρ ∈ R

and γ ∈ R
∑

k∈K(wk−1)) such that (µ, σ) = ρ(α, β) + γM .

First, we show that µs = 0 for all s ∈ S. Consider a slot s̃ ∈ S, and a solution

S141 = (U141, S141) given by

a) select one pair of demand k′ and slot s′ from clique C (i.e., vk′,s′ ∈ C), and use slot

sk′ = s′ as last slot with s̃ /∈ {s′ − wk′ + 1, ..., s′} (slot assignment constraint taking

into account the possibility of adding slot s̃ in the set of used slots U141),

b) for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I141i given by

I141i = [
⋂

kj∈D141
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄}] \ {s̃, ..., s̃ + wki − 1},

where D141
i = {kj ∈ {k1, ..., ki−1} ∪ {k′} : E(pki) ∩ E(pkj ) ̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D141
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U141).

We let S141
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) Let U141 be the set of slots used in S such that for each demand k and last slot

sk ∈ S141
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U141.

S141 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
141

, zS
141

) belongs to F̃
H′E

S
C . Then we derive a solution S142 = (U142, S142)

from S141 by adding slot s̃ as an used slot in U142 without modifying the last slots

assigned to the demands K in S141 which remain the same in solution S142 i.e.,

S141
k = S142

k for each demand k ∈ K. S142 is feasible for the SA problem. Hence,

the corresponding incidence vector (uS
142

, zS
142

) belongs to F̃
H′E

S
C . Hence, solutions

S141 and S142 satisfy equation µu+ σz = τ . We then obtain that

µuS
141

+ σzS
141

= µuS
142

+ σzS
142

= µuS
141

+ σzS
141

+ µs̃.

Hence, µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.
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Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ C.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with vk,s′ /∈ C. Let S143 =

(U143, S143) be the solution given by

a) select one pair of demand k′ and slot s′ from clique C (i.e., vk′,s′ ∈ C), and use

slot sk′ = s′ as last slot with {s′ − wk′ + 1, ..., s′} ∩ {s′ − wk + 1, ..., s} = ∅ if

E(pk) ∩ E(pk′) ̸= ∅,

b) for each demand ki ∈ K \ {k′} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I143i given by

I143i = [
⋂

kj∈D143
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I143i =

⋂
kj∈D143

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D143
i = {kj ∈ {k1, ..., ki−1} ∪ {k′} : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D143
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pki) ∩E(pk) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S143
k to route demand k in solution S143).

We let S143
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) a set of slots U143 are then used in S such that for each demand k′ ∈ K and last

slot s” ∈ S143
k′ and s” ∈ {sk′ − wk′ + 1, ..., sk′}, we have s” ∈ U143.

S143 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
143

, zS
143

) belongs to F̃
H′E

S
C . Then we derive a solution S144 = (U144, S144) from

S143 by adding slot s′ as last slot to demand k without modifying the last slots

assigned to the demands K \ {k} in S143, i.e., S143
k′ = S144

k′ for each demand k′ ∈
K \ {k}, and S144

k = S143
k ∪ {s′} for demand k. Solution S144 is feasible for the SA

problem. The corresponding incidence vector (uS
144

, zS
144

) belongs to F̃
H′E

S
C . Hence,

solutions S143 and S144 satisfy equation µu+ σz = τ . We then obtain that

µuS
143

+ σzS
143

= µuS
144

+ σzS
144

= µuS
143

+ σzS
143

+ σk
s′ +

∑
s̃∈U144\U143

µs̃

−
∑

s̃∈U143\U144

µs̃.

Since µs̃ = 0 for all slots s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s = 0, for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ C.
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Let prove that σk
s for all vk,s ∈ C are equivalent. Consider a demand k′ ∈ K and a

slot s′ ∈ {wk′ , ..., s̄} with vk′,s′ ∈ C, and a solution S145 = (U145, S145) given by

a) select a pair of demand k and slot s from clique C (i.e., vk,s ∈ C) such that slot

sk = s will be used as last slot for demand k,

b) for each demand ki ∈ K \ {k} with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I145i given by

I145i = [
⋂

kj∈D145
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk′}∪{s′+wki
, ..., s̄}]

if E(pki) ∩ E(pk′) ̸= ∅ or I145i =
⋂

kj∈D145
i

{wki , ..., skj − wkj} ∪ {skj + wki , ..., s̄} if not,

where D145
i = {kj ∈ {k1, ..., ki−1} ∪ {k} : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D145
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pki)∩E(pk′) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S145
k′ to route demand k′ in solution S145).

We let S145
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

c) let U145 be the slots used in S such that for each demand k” ∈ K and last slot

sk” ∈ S145
k” and s” ∈ {sk” − wk” + 1, ..., sk”}, we have s” ∈ U145.

S145 is feasible for the SA problem. Hence, the corresponding incidence vector

(uS
145

, zS
145

) belongs to F̃
H′E

S
C . After that, we derive a solution S146 = (E146, S146)

from S145 by adding slot s′ as last slot to demand k′ without modifying the last

slots assigned to the demands K \ {k, k′} in S145, i.e., S145
k” = S146

k” for each demand

k” ∈ K \ {k, k′}, and S146
k′ = S145

k′ ∪ {s′} for demand k′, and with modifying the last

slots assigned to demand k by adding a new last slot s̃ and removing the last slot

s ∈ S145
k with s ∈ {si+wk+1, ..., sj} and s̃ ∈ {wk, ..., s̄} for demand k with vk,s̃ /∈ C

such that S146
k = (S145

k \ {s}) ∪ {s̃}. Solution S146 is feasible for the SA problem.

The corresponding incidence vector (uS
146

, zS
146

) belongs to F̃
H′E

S
C . Hence, solutions

S145 and S146 satisfy equation µu+ σz = τ . We then obtain that

µuS
145

+ σzS
145

= µuS
146

+ σzS
146

= µuS
145

+ σzS
145

+ σk′
s′ − σk

s + σk
s̃ +

∑
s”∈U146\U145

µs”

−
∑

s”∈U145\U146

µs”.
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Since σk
s̃ = 0 for vk,s̃ /∈ C, and µs” = 0 for all s” ∈ S, it follows that σk′

s′ = σk
s .

In a similar way, we can show that

σk
s = σk′

s′ , for all pairs (vk,s, vk′,s′) ∈ C,

Consequently, we obtain that σk
s = ρ for all vk,s ∈ C.

Overall, and using the result (5.9), we obtain that µs = 0 for each slot s ∈ S, and

σk
s =


γk,s if s ∈ {1, ..., wk − 1},

ρ if vk,s ∈ C,

0 otherwise,

for each k ∈ K and s ∈ S. As a result, we have (µ, σ) = ρ(α, β) + γM .

5.4.5 Slot-Assignment-Odd-Hole Inequalities

Proposition 5.4.6. Let H be an odd-hole in the conflict graph H ′E
S with |H| ≥ 5,

and {s− wk + 1, ..., 1} ∩ {s′ − wk′ + 1, ..., s′} ̸= ∅ for each pair of nodes (vk,s, vk′,s′)

linked in H. Then, inequality (2.44) is valid for Psa(G,K,S).

Proof. We use the same proof of proposition (2.4.14).

Theorem 5.4.6. Let H be an odd-hole in the conflict graph H ′E
S with |H| ≥ 5, and

{s−wk +1, ..., 1}∩ {s′−wk′ +1, ..., s′} ≠ ∅ for each pair of nodes (vk,s, vk′,s′) linked

in H. Then, inequality (2.44) is facet defining for Psa(G,K,S) if and only if

a) for each node vk′,s′ /∈ H in H ′E
S , there exists a node vk,s ∈ H such that the induced

graph H ′E
S ((H \ {vk,s}) ∪ {vk′,s′}) does not contain an odd-hole,

b) and there does not exist a node vk′,s′ /∈ H in H ′E
S such that vk′,s′ is linked with all

nodes vk,s ∈ H,

c) and there does not exist an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] with

• [ min
vk,s∈H

(s− wk + 1), max
vk,s∈H

] ⊂ I,

• and wk + wk′ ≥ |I|+ 1 for each (vk, vk′) linked in H,

• and 2wk ≥ |I|+ 1 and wk ≤ |I| for each vk ∈ H.

Proof. Neccessity.

We distinguish the following cases:
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a) if for a node vk′,s′ /∈ H in H ′E
S , there exists a node vk,s ∈ H such that the induced

graph H ′E
S (H\{vk,s}∪{vk′,s′}) contains an odd-hole H ′ = (H\{vk,s})∪{vk′,s′}. This

implies that inequality (2.44) can be dominated using some technics of lifting based

on the following two inequalities
∑

vk,s∈H zks ≤
|H|−1

2 , and
∑

vk′,s′∈H′ zk
′

s′ ≤
|H′|−1

2 .

b) if there exists a node vk′,s′ /∈ H in H ′E
S such that vk′,s′ is linked with all nodes

vk,s ∈ H. This implies that inequality (2.44) can be dominated by the following

valid inequality ∑
vk,s∈H

zks +
|H| − 1

2
zk

′
s′ ≤

|H| − 1

2
.

c) if there exists an interval of contiguous slots I = [si, sj ] ⊂ [1, s̄] satisfying the

conditions of c). Hence, inequality (2.44) is dominated by inequality (2.40).

If no one of these cases is verified, inequality (2.44) can never be dominated by an-

other inequality without changing its right-hand side. Otherwise, inequality (2.44)

cannot be facet defining for Psa(G,K,S).
Sufficiency.

Let F̃
H′E

S
H denote the face induced by inequality (2.40), that is

F̃
H′E

S
H = {(u, z) ∈ Psa(G,K,S) :

∑
vk,s∈H

zks =
|H| − 1

2
}.

Denote inequality
∑

vk,s∈H zks ≤
|H|−1

2 by αu + βz ≤ λ. Let µu + σz ≤ τ be a

valid inequality that is facet defining F of Psa(G,K,S). Suppose that F̃
H′E

S
H ⊂

F = {(u, z) ∈ Psa(G,K,S) : µu + σz = τ}. To prove that F̃
H′E

S
H is a facet of

Psa(G,K,S), we need to show that there exist ρ ∈ R and γ ∈ R
∑

k∈K(wk−1)) such

that (µ, σ) = ρ(α, β) + γM .

We first show that µs = 0 for all s ∈ S. Consider a slot s̃ ∈ S, and a solution

S148 = (U148, S148) such that

a) select a subset of nodes H̃148 from H with |H̃148| = |H|−1
2 , and each pair of nodes

(vk,s, vk′,s′) ∈ H̃148 are not linked in the conflict graph H ′E
S , and s̃ /∈ {swk + 1, ..., s}

for each vk,s ∈ H̃148 ,

b) for each pair of demand k and slot s with vk,s ∈ H̃148, we select slot sk = s as last

slot for demand k,

c) for each demand ki ∈ K \H̃148 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I148i given by

I148i = [
⋂

kj∈D148
i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄}] \ {s̃, ..., s̃ + wki

− 1},
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where D148
i = {kj ∈ {k1, ..., ki−1} ∪ H̃148 : E(pki) ∩ E(pkj ) ̸= ∅}. This guarantees

that

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D148
i ,

• and s̃ /∈ {ski − wki + 1, ..., ski} (slot assignment constraint taking into account the

possibility of adding slot s̃ in the set of used slots U148).

We let S148
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) let U148 be the set of slots used in S such that for each demand k and last slot

sk ∈ S148
k and s′ ∈ {sk − wk + 1, ..., sk}, we have s′ ∈ U148.

S148 is clearly feasible for the SA problem. Hence, the corresponding incidence

vector (uS
148

, zS
148

) belongs to F̃
H′E

S
H . Then consider the solution S149 = (U149, S149)

obtained from S148 by adding slot s̃ as an used slot in U149 without modifying the

last slots assigned to the demands K in S148 which remain the same in solution

S149 i.e., S148
k = S149

k for each demand k ∈ K. S149 is clearly feasible for the SA

problem. Hence, the corresponding incidence vector (uS
149

, zS
149

) belongs to F̃
H′E

S
H .

Hence, solutions S148 and S149 satisfy equation µu+ σz = τ . We then obtain that

µuS
148

+ σzS
148

= µuS
149

+ σzS
149

= µuS
148

+ σzS
148

+ µs̃.

It follows that µs̃ = 0.

In a similar way, we can show that

µs̃ = 0, for all slots s̃ ∈ S.

Let show that σk
s = 0 for all k ∈ K and s ∈ {wk, ..., s̄} with vk,s /∈ H.

Consider a demand k in K and a slot s′ in {wk, ..., s̄} with vk,s′ /∈ H. Let S150 =

(U150, S150) be the solution given by

a) select a subset of nodes H̃150 from H with |H̃150| = |H|−1
2 , and each pair of nodes

(vk,s, vk′,s′) ∈ H̃150 are not linked in the conflict graph H ′E
S , ,

b) for each pair of demand k and slot s with vk,s ∈ H̃150, we select slot sk = s as last

slot for demand k,

c) for each demand ki ∈ K \H̃150 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I150i given by

I150i = [
⋂

kj∈D150
i

{wki
, ..., skj

−wkj
}∪{skj

+wki
, ..., s̄}]∩ [{wki

, ..., s′−wk}∪{s′+wki
, ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I150i =

⋂
kj∈D150

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D150
i = {kj ∈ {k1, ..., ki−1} ∪ H̃150 : E(pki) ∩ E(pkj ) ̸= ∅}. This ensures that
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• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D150
i ,

• and {ski −wki + 1, ..., ski} ∩ {s′ −wk + 1, ..., s′} = ∅ if E(pki) ∩E(pk) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S150
k to route demand k in solution S150).

We let S150
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) a set of slots U150 are used in S such that for each demand k” and last slot sk” ∈ S150
k”

and s” ∈ {sk” − wk” + 1, ..., sk”}, we have s” ∈ U150.

S150 is clearly feasible for the problem. Hence, the corresponding incidence vector

(uS
150

, zS
150

) belongs to F̃
H′E

S
H . Then consider the solution S151 = (U151, S151) ob-

tained from S150 by adding slot s′ as last slot to demand k without modifying the

last slots assigned to the demands K \{k} in S150, i.e., S150
k′ = S151

k′ for each demand

k′ ∈ K \ {k}, and S151
k = S150

k ∪ {s′} for demand k. Solution S151 is feasible for

the SA problem. The corresponding incidence vector (uS
151

, zS
151

) belongs to F̃
H′E

S
H .

Hence, solutions S150 and S151 satisfy equation µu+ σz = τ . We then obtain that

µuS
150

+ σzS
150

= µuS
151

+ σzS
151

= µuS
150

+ σzS
150

+ σk
s′ +

∑
s̃∈U151\U150

µs̃

−
∑

s̃∈U150\U151

µs̃.

Since µs̃ = 0 for all slots s̃ ∈ S, it follows that σk
s′ = 0.

In a similar way, we can show that

σk
s′ = 0, for demand k and s′ ∈ {wk, ..., s̄} with vk,s′ /∈ H.

We re-do the same procedure for all demand k′ in K \ {k} such that

σk′
s = 0, for all k′ ∈ K \ {k} and s ∈ {wk′ , ..., s̄} with vk,s′ /∈ H.

Let prove that σk
s for all vk,s ∈ H are equivalent.

Consider a node vk′,s′ in H. Let S152 = (U152, S152) be the solution given by

a) select a subset of nodes H̃152 from H with |H̃152| = |H|−1
2 , and each pair of nodes

(vk,s, vk′,s′) ∈ H̃152 are not linked in the conflict graph H̃ ′E
S ,

b) for each pair of demand k and slot s with vk,s ∈ H̃152, we select slot sk = s as last

slot for demand k,
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c) for each demand ki ∈ K \H̃152 with i ∈ {1, ..., |K|}, we select the smallest slot index

ski in the set of slots I152i given by

I152i = [
⋂

kj∈D152
i

{wki , ..., skj −wkj}∪{skj +wki , ..., s̄}]∩ [{wki , ..., s
′−wk}∪{s′+wki , ..., s̄}]

if E(pki
) ∩ E(pk) ̸= ∅ or I152i =

⋂
kj∈D152

i

{wki
, ..., skj

− wkj
} ∪ {skj

+ wki
, ..., s̄} if not,

where D152
i = {kj ∈ {k1, ..., ki−1} ∪ H̃152 : E(pki) ∩ E(pkj ) ̸= ∅}. As a result,

• {ski − wki + 1, ..., ski} ∩ {skj − wkj + 1, ..., skj} = ∅ for each kj ∈ D152
i ,

• and {ski −wki +1, ..., ski}∩ {s′−wk′ +1, ..., s′} = ∅ if E(pki)∩E(pk′) ̸= ∅ ( we take

into account the possibility of adding slot s′ as a last slot in the selected last slots

S152
k′ to route demand k′ in solution S152).

We let S152
ki

= {ski} be the set of last slots assigned to demand ki with i ∈ {1, ..., |K|}.

d) let U152 be the set of slots used in S such that for each demand k” ∈ K and last

slot sk” ∈ S152
k” and s” ∈ {sk” − wk” + 1, ..., sk”}, we have s” ∈ U152.

S152 is clearly feasible for the problem. Hence, the corresponding incidence vec-

tor (uS
152

, zS
152

) belongs to F̃
H̃′E

S
H . Then consider the solution S153 = (U153, S153)

obtained from S152 such that

a) the last slots assigned to the demandsK\{k, k′} in S152 remain the same in S153, i.e.,
S152
k” = S153

k” for each demand k” ∈ K \{k, k′}, where k is a demand with vk,s ∈ H̃152

and s ∈ S152
k such that vk′,s′ is not linked with any node vk”,s” ∈ H̃152 \ {vk,s},

b) and adding slot s′ as last slot to demand k′, i.e., S153
k′ = S152

k′ ∪ {s′} for demand k′,

c) and modifying the last slots assigned to demand k by adding a new last slot s̃ and

removing the last slot s ∈ S152
k with vk,s ∈ H and vk,s̃ /∈ H such that S153

k =

(S152
k \{s})∪{s̃} for demand k such that {s̃−wk+1, ..., s̃}∩{s′−wk′ +1, ..., s′} = ∅

for each k′ ∈ K and s′ ∈ S153
k′ with E(pk) ∩ E(pk′) ̸= ∅.

Solution S153 is feasible for the SA problem. The corresponding incidence vector

(uS
153

, zS
153

) belongs to F̃
H′E

S
H . Hence, solutions S152 and S153 satisfy equation

µu+ σz = τ . We then obtain that

µuS
152

+ σzS
152

= µuS
153

+ σzS
153

= µuS
152

+ σzS
152

+ σk′
s′ − σk

s + σk
s̃

+
∑

s”∈U153\U152

µs” −
∑

s”∈U152\U153

µs”.
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Since σk
s̃ = 0 for vk,s̃ /∈ H, and µs” = 0 for all s” ∈ S, it follows that σk′

s′ = σk
s .

Consequently, we obtain that σk
s = ρ for all vk,s ∈ H.

By (5.9), we know that

σk′
s′ = γk

′,s′ , for all k′ ∈ K and s′ ∈ {1, ..., wk′ − 1}.

We then conclude that µs = 0 for each slot s ∈ S , and

σk′
s =


γk

′,s if s ∈ {1, ..., wk′ − 1},

ρ if vk′,s ∈ H,

0 otherwise,

As a consequence, we have (µ, σ) = ρ(α, β) + γM as desired.

In the next section, we will derive some symmetry breaking inequalities for the

SA subproblem in which some symmetrical solutions may appeared.

5.5 Symmetry-Breaking Inequalities

In this section, we address some symmetry issues that can appear when solving the

SA problem.

Proposition 5.5.1. We ensure that for all slot s ∈ {1, ..., s̄− 1}

us − us+1 ≥ 0, (5.14)

which means that a slot s+ 1 can be used if and only if slot s is used.

Similar idea was proposed by Mendez-Diaz et al. [69][70] to break the symmetry

for the vertex coloring problem.

To strengthen inequality (5.14), we propose the following inequalities.

Proposition 5.5.2. Consider a slot s ∈ {1, ..., s̄− 1}. Then,

∑
k∈K

min(s+wk−1,s̄)∑
s′=s

2|K|−kzks′ ≥
∑
k∈K

min(s+wk,s̄)∑
s′=s+1

2|K|−kzks′ . (5.15)

Similar idea was proposed by Friedman [40]. However, the coefficient 2|K|−k can

provoques some numerical intractabilities for the computer machine [8]. For this,

we introduce the following inequality.
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Proposition 5.5.3. We ensure that for all slot s ∈ {1, ..., s̄− 1}

∑
k∈K

min(s+wk−1,s̄)∑
s′=s

zks′ ≥
∑
k∈K

min(s+wk,s̄)∑
s′=s+1

zks′ , (5.16)

which means that the number of intervals of contiguous slots allocated which cover

slot s + 1 (cardinality of slot-usage) cannot be greater than the number of channels

allocated which cover slot s.

Similar idea was proposed by Mendez-Diaz et al. [69][70] to break the symmetry

for the vertex coloring problem. Our inequalities and those of Mendez-Diaz et al.

[69][70] differ in their right and left hand sides.

Proposition 5.5.4. Due to inequality (5.14), we ensure that for all k ∈ K, and s0 ∈
{1, ..., s̄− 1} and s ∈ {s0, ..., s̄}

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ us0 , (5.17)

which means that for a slot S0 ∈ {1, ..., s̄− 1}, a demand k can allocate a slot in the

sub-spectrum {S0, ..., s̄} if slot S0 is used.

Similar idea was proposed by Mendez-Diaz et al. [70] for the vertex coloring

problem. Inequalities (5.17)} and those of Mendez-Diaz et al. [70] differ in their left

hand sides.

5.6 Lower Bounds

Here we propose some lower bounds issus from the conflict graph Hsa. They can be

seen as a valid inequalities for the polytope Psa(G,K,S).

Proposition 5.6.1. Consider an edge e ∈ E. Then, the inequality∑
s∈S

us ≥
∑
k∈K̃e

wk, for all e ∈ E, (5.18)

is valid for Psa(G,K,S).

Proof. Inequality (5.18) ensures that the number of slots used in the spectrum S is

greater than the flow over all the edges (the flow for an edge e is equal to the number

of slots that should be used over edge e).

Inequality (5.18) can be generalized as follows using the conflict graph Hsa.
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Proposition 5.6.2. Let C be a clique in Hsa. Then, the inequality∑
s∈S

us ≥
∑
vk∈C

wk, (5.19)

is valid for Psa(G,K,S).

Proof. It’s trivial given the definition of clique C in the conflict graph Hsa such that

we know in advance that the demands in C share an edge in E which means that

they cannot share a slot in S. Hence, the number of allocated slots
∑

s∈S us is at

least equal to the number of requested slots of the demands in C.

5.7 Upper Bounds

Let us introduce the following weighted conflict graph in which a positive integer

called weight is assigned to each node.

Definition 5.7.1. Consider the conflict graph Hr
w defined as follows. For each

demand k ∈ K, consider a node vk in Hr
w. Two nodes vk and vk′ are linked by an

edge in Hr
w if and only if E(pk) ∩ E(pk′) ̸= ∅. Each node vk is associated with a

positive weight which equals to the requested number of slots wk of demand k.

Definition 5.7.2. Let C be a clique in Hr
w. It’s known to be the maximum weight

clique in Hr
w if the total weight of the nodes in C (

∑
vk∈C wk) defines the maximum

total weight over all cliques in Hr
w, i.e.,

∑
vk∈C wk ≥

∑
vk′∈C′ wk′ for all clique C ′

in Hr
w.

Based on these definitions, we introduce the following inequality and showing

that computing the upper bound for the SA is equivalent to solving the Maximum

Weighted Clique Problem (MWC) which is well known to be NP-hard problem [4].

Proposition 5.7.1. Let C be the maximum weighted clique in Hr
w. Then, the upper

bound is defined as follows ∑
s∈S

us ≤
∑
vk∈C

wk, (5.20)

Proof. It’s trivial given the definition of the maximum weighted clique C in the

conflict graph Hr
w such that the maximum number of allocated slots

∑
s∈S us is at

most equal to the number of requested slots of the demands in C.
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Inequality (5.20) is not valid for Psa(G,K,S) given that there exist some feasible

solutions in Psa(G,K,S) which violate inequality (5.20) when for example a slot

s ∈ S is used (i.e., us = 1) but there is no demand k ∈ K which use slot s (i.e.,∑
k∈K

∑min(s+wk−1,s̄)
s′=s zks′). On the other hand, we ensure that all the optimization

algorithms developed to solve the MWC problem can be used to compute the upper

bound based on the conflict graph Hr
w.

Based on inequalities (5.19) and (5.20), we conclude that the minimum number of

slots to be used by the set of demands K while satisfying the SA constraints, it’s

equal to the total weight of the maximum weighted clique in the conflict graph Hr
w.

Based on theoretical results presented in this chapter, we devise a Branch-and-

Bound (B&B) and Branch-and-Cut algorithms to solve the SA problem. Moreover,

we study the effectiveness of these algorithms and assess the impact of the valid

inequalities on the effectiveness of the Branch-and-Cut algorithm.

5.8 Branch-and-Cut Algorithm

5.8.1 Description

Here we describe the Branch-and-Cut algorithm. We consider the following linear

problem which can be seen as a strenghtned formulation for the compact formulation

(5.1)-(5.8)

min
∑
s∈S

us, (5.21)

zks = 0, for all k ∈ K and s ∈ {1, ..., wk − 1}, (5.22)

s̄∑
s=wk

zks = 1, for all k ∈ K, (5.23)

∑
k∈K̃e

min(s̄,s+wk−1)∑
s′=s

zks − us ≤ 0, for all e ∈ E, and s ∈ S, (5.24)

us −
∑
k∈K

min(s+wk−1,s̄)∑
s′=s

zks′ ≤ 0, for all s ∈ S, (5.25)

zks ≥ 0, for all k ∈ K and s ∈ S, (5.26)

0 ≤ us ≤ 1, for all s ∈ S, (5.27)

zks ∈ {0, 1}, for all k ∈ K and s ∈ S, (5.28)

us ∈ {0, 1}, for all s ∈ S. (5.29)
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Inequality (5.25) ensures that if slot s is not used by at least one demand, its

associated variable us is forced to be equal to zero.

On the other hand, and to boost the performance of the B&B algorithm, we already

introduced several classes of valid inequalities to obtain tighter LP bounds. Based

on this, and at each iteration in a certain level of the B&B algorithm, one can

identify one or more than one violated inequality by the current fractional solution

for a given class of valid inequalities. Algorithm 6 summarizes the different steps of

the Branch-and-Cut algorithm taking into account additional valid inequalities for

a given class of valid inequalities.

Note that the separation procedures of the valid inequalities presented in this chapter

are still the same as those presented in chapter (2) for the C-RSA. However, we

need to present the separation procedure for the interval-capacity-cover inequalities

(5.10) as follows. Given a fractional solution (ū, z̄). We first consider an interval

of contiguous slots I = [si, sj ] which is identified by generating two slots si and sj

randomly in S with sj ≥ si+2maxk∈K wk. The separation problem associated with

inequality (5.10) is NP-hard [82] given that it consists in identifying a cover K̃∗ for

the interval I = [si, sj ], such that
∑

k∈K̃∗
∑sj

s′=si+wk−1 z̄
k
s′ > |K̃∗| − 1. For this, we

use a greedy algorithm introduced by Nemhauser and Sigismondi [73] as follows. We

first select a demand k ∈ K having the largest number of requested slot wk with∑sj
s′=si+wk−1 z̄

k
s′ > 0, and then set K̃∗ to K̃∗ = {k}. After that, we iteratively add

each demand k′ ∈ K \ K̃∗ to K̃∗ with
∑sj

s′=si+wk′−1 z̄
k′
s′ > 0 and demand k′ share

an edge with all the demands already added K̃∗, until a cover K̃∗ is obtained for

the interval I over edge e with
∑

k∈K̃∗ wk > |I|. We further derive a minimal cover

from the cover K̃∗ by deleting each demand k ∈ K̃∗ if
∑

k′∈K̃∗\{k}wk′ ≤ |I|. We

then add inequality (5.10) induced by the minimal cover K̃∗ for the interval I if it

is violated, i.e., we add the following valid inequality to the current LP

∑
k∈K̃∗

sj∑
s′=si+wk−1

zks′ ≤ |K̃∗| − 1.

5.8.2 Primal Heuristic

Let us present now a primal heuristic useful to boost the performance of the Branch-

and-Cut algorithm. It is based on a hybrid method between a local search algorithm

and a greedy-algorithm. Given an optimal fractional solution (ū, z̄) in a certain

node of the B&C tree, it consists in constructing an integral solution and ”feasi-

ble” if possible from this fractional solution. For this, we first use a local search

algorithm to generate at each iteration a sequence of demands L numeroted with
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Algorithm 6: Branch-and-Cut Algorithm for the SA

Data: An undirected, loopless, and connected graph G = (V,E), a

spectrum S, a multi-set K of demands, and a given class of valid

inequality

Result: Optimal solution for the SA problem

1 Stop= FALSE;

2 while STOP==FALSE do

3 Solve the linear program LP of the SA;

4 Let (u∗, z∗) be the optimal solution of LP;

5 if there exist inequalities from the given class that are violated by the

current solution (u∗, z∗) then

6 Add them to LP ;

7 end

8 else

9 STOP = TRUE;

10 end

11 end

12 Consider the optimal solution (u∗, z∗) of LP ;

13 if (u∗, z∗) is integer for the SA then

14 (u∗, z∗) is an optimal solution for the SA;

15 End of the Branch-and-Cut algorithm ;

16 end

17 else

18 Create two sub-problems by branching one some variables or constraints

;

19 end

20 for each sub-problem not yet solved do

21 go to 2 ;

22 end

23 return the best optimal solution (u∗, z∗) for the SA;
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L = 1′, 2′, ..., |K|′ − 1, |K|′. Based on this sequence of demands, our greedy algo-

rithm selects a slot s for each demand k′ ∈ L with z̄k
′

s ̸= 0, while respecting the

non-overlapping constraint with the set of demands that precede demand k′ in the

list L (i.e., the demands 1′, 2, ..., k′ − 1). However, if there does not exist such slot

s for demand k′, we then select a slot s for demand k′ ∈ L with z̄k
′

s = 0 with

s ∈ {wk′ , ..., s̄} while respecting the non-overlapping constraint with the set of de-

mands that precede demand k′ in the list L. The complexity of this algorithm can

be bounded by O(|K| ∗ |S| ∗ log(|K|)).
Afterwards, we compute the total number of slots in S used by the set of demands K

in the final solution S given by the greedy-algorithm (i.e.,
∑

s∈S us). Our local search

algorithm generates a new sequence by doing some permutation of demands in the

last sequence of demands, if the value of the solution given by greedy-algorithm is

smaller than the value of the best solution found until the current iteration. Other-

wise, we stop the algorithm, and we give in output the best solution found during

our primal heuristic induced by the best sequence of demands having the smallest

value of the total number of slots in S used compared with the others generated

sequences.

5.9 Computational Study

5.9.1 Implementation’s Feature

We use C++ to implement the B&B and B&C algorithms under Linux using the

”Solving Constraint Integer Programs” framework (Scip 6.0.2) such that Cplex 12.9

is used as LP solver. These have also been tested on LIMOS high-performance server

with a memory size limited to 64 Gb while benefiting from parallelism by activating

8 threads, and with a CPU time limited to 5 hours (18000 s). We use the same

graphs presented in Table 3.1, and the same instances used in the section 3.2.2.

5.9.2 Computational Results

Preliminary results show that introducing some families of valid inequalities al-

lows solving several instances to optimality. Moreover, they enable reducing the

average number of nodes in the B&C tree, and also the average CPU time for sev-

eral instances. On the other hand, the results show that the odd-hole inequalities

(2.40) and (2.44) are efficient compared with those of clique-based inequalities (2.43),

(2.39), and cover-based inequalities (5.10). As a result, their separation is performed

along with the B&C algorithm in the following order
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a) interval-odd-hole inequalities (2.40),

b) slot-assignment-odd-hole inequalities (2.44),

c) interval-clique inequalities (2.43),

d) slot-assignment-clique inequalities (2.43),

e) interval-capacity-cover inequalities (5.10).

We also consider the valid inequalities (5.19) introduced previously that are shown

to be as a precomputed lower bounds for the SA problem. They can be separated

as follows. For each demand k ∈ K, we use a greedy algorithm introduced by

Nemhauser and Sigismondi [73] to generate a maximum clique in Hsa containning

demand k. We first set C̃k to C̃k = {k}. After that, we iteratively add each demand

k′ ∈ K \ C̃k to C̃k such that demand k′ must share an edge with all the demands

already generated in C̃k. We further add inequality (5.19) induced by clique C̃k for

demand k to the compact formulation (5.1)-(5.8)∑
s∈S

us ≥
∑

k′∈C̃k

wk′ .

Based on this, we provide a comparative study between the B&B (without additional

valid inequalities) and the B&C (with additional valid inequalities) algorithms. Our

objective in this study is to show the efficiency of the inequalities we have introduced

for solving the SA problem. We present some computational results using several in-

stances with a number of demand ranges in {10, 20, 30, 40, 50, 100, 150, 200, 250, 300}
and s̄ up to 320 slots. We use two types of topologies: real, and realistic ones from

SND-LIB already described in Table 3.1. We first run our B&C algorithm with

SCIP in which our valid inequalities are used, and all the Scip’s internal cuts are

deactivated. We call this run Own B&C SCIP. Then, we run the B&C algorithm

with SCIP, and activating all the internal cuts we had deactivated prior in run 1.

We call this run B&B SCIP. Tables 5.1 and 5.2 below report the results obtained

for the two runs. For each run and each instance, we report the number of nodes in

B&C tree (Nbr Nd), the optimality gap (Gap), the number of violated inequalities

added during the algorithm (Nbr Cuts), and the total CPU Time (TT) in seconds.

Finally, notice that each line of each table 5.1 and 5.2, corresponds to the average

results of 4 instances.

The results show that Own B&C SCIP is able to solve several instances to optimal-

ity that are not solved to optimality when using the B&B SCIP even if Scip uses

its proper cuts. Furthermore, we noticed that our valid inequalties allow solving to
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optimality more instances than B&B SCIP. Also, they enable reducing the average

number of nodes in the B&C tree for several instances such that there exist some

cases that we are able to solve some instances in the root of the B&C tree which is

not the case when using the B&B. On the other hand, and looking at the instances

that are not solved to optimality (i.e., gap > 0, 00), adding valid inequalities de-

creases the average gap for several instances and much more for the large instances

with a number of demands |K| ≥ 150. However, there exist a few instances very rare,

for example the triplet (German, 300, 320), in which adding valid inequalities does

not improve the results of the B&B algorithm. Based on these results, we ensure

that using the valid inequalities allows obtaining tighter LP bounds and improve the

effectiveness of the B&B algorithm such that the B&C algorithm is able to beat the

B&B algorithm even if Scip use its proper cuts that are shown to be very efficient

for another optimization problems studied in the literature.

5.10 Concluding Remarks

In this chapter, we have studied the Spectrum Assignment sub-problem. We have

introduced an integer linear programming compact formulation, and further investi-

gated the facial structure of the associated polyhedron. Moreover, we have derived

several valid inequalities that are facet-defining under sufficient conditions. Using

the polyhedral results and the separation procedures, we have devised a Branch-

and-Cut (BC) algorithm to solve the problem. We have also presented experimental

results. The results have shown the effectiveness of the valid inequalities such that

the B&C algorithm is shown to be very performant for solving large-scale instances

of the problem. It could be very interesting to study the impact of the symmetry

breaking inequalities on the performance of the Branch-and-Cut algorithm.
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Instances B&B SCIP Own B&C SCIP

Topology |K| |S| Nbr Nd Gap TT Nbr Nd Gap Nbr Cuts TT

10 30 1 0,00 0,03 1 0,00 0 0,02

20 45 1 0,00 0,53 1 0,00 11 0,66

30 70 7 0,00 1,47 1 0,00 5 1,81

40 90 2,5 0,00 1,78 5 0,00 5 15,89

50 110 1 0,00 0,87 1 0,00 2,5 9,34

100 140 1 0,00 12,92 1 0,00 6,25 90,94

150 210 1,75 0,00 43,22 1 0,00 0,75 118,59

200 260 1 0,00 176,01 9,5 0,00 2,5 992,34

250 320 21 0,00 380,74 9 0,00 12 2148,45

German

300 320 6 0,00 2584,40 1 0,00 1 100,62

10 15 1 0,00 0,02 1 0,00 0 0,01

20 40 2,5 0,00 1,83 1,5 0,00 0 0,53

30 30 4 0,00 2,92 2,25 0,00 3,75 4,14

40 70 4,5 0,00 2,13 28,5 0,00 32 16,01

50 50 9 0,00 4,47 4,75 0,00 19,25 12,61

100 120 14469 0,94 4552,24 5090,25 0,00 20,25 1565,48

150 160 10,75 0,00 215,01 66 0,00 6,5 841,26

200 210 37 0,00 986,26 23 0,00 2,75 2035,74

250 285 138 1 6535,05 397,5 0,00 3,75 7999,81

Nsfnet

300 320 20,5 1,81 9932,57 27 1,02 25,5 12712,35

10 40 1 0,00 0,02 1 0,00 0,25 0,03

20 40 1 0,00 0,14 1 0,00 4 0,08

30 40 1 0,00 0,62 1 0,00 1 0,33

40 40 1 0,00 1,27 5,75 0,00 17,5 8,44

50 80 476,25 0,00 34,36 3,75 0,00 10 7,17

100 80 169,5 0,97 4782,16 2359,5 1,09 17,75 4810,79

150 160 106,75 0,84 10722,14 59,5 0,28 37,5 8804,63

200 280 26 1,6 5866,57 652,75 1,20 50,5 5829,44

250 280 1 0,00 3444,44 25 0,00 21,75 6528,09

Spain

300 320 1,25 12,46 14696,38 15,25 5,43 127 17456,46

Table 5.1: Table of Comparison Between: B&B SCIP Vs Own B&C SCIP Using

Real Graphs.
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Instances B&B SCIP Own B&C SCIP

Topology |K| |S| Nbr Nd Gap TT Nbr Nd Gap Nbr Cuts TT

10 40 1 0,00 0,02 1 0,00 0 0,03

20 40 1 0,00 0,53 1 0,00 0 0,1

30 40 1 0,00 3,74 1 0,00 5,5 0,57

40 40 4 0,00 1,32 3 0,00 12,5 5,84

50 80 5 0,00 2,66 1,25 0,00 15,75 13,52

100 80 3 0,00 44,31 18,5 0,00 77,5 2769,13

150 160 56 1,95 9335,82 57 0,00 48,75 9169,93

200 280 1 0,14 4934,59 1,25 0,00 28,5 3023,14

250 280 1 0,00 3782,08 1 0,00 73,5 2580

Pioro40

300 320 4,25 0,18 10548,18 3,25 0,36 96 13502,49

10 80 1 0,00 0,04 1 0,00 0 0,06

20 40 1 0,00 0,08 1 0,00 0 0,14

30 40 2 0,00 3,52 1,25 0,00 12 6,11

40 80 4,5 0,00 4,43 1 0,00 0 3,82

50 160 1 0,00 7,64 9,25 0,00 7 67,06

100 240 13,5 1,55 13278,76 10,5 0,20 64,50 10572,62

150 400 8 4,71 18000 15 5,18 89 18000

200 280 1 10,58 13577,39 1,25 4,11 0,75 8531,99

250 280 1 1,45 18000 1 0,72 61 18000

India35

300 320 1 1,8 16858,2 3 1,97 62,25 18000

10 40 1 0,00 0,08 1 0,00 0,50 0,17

20 40 1 0,00 0,04 1 0,00 0 0,09

30 40 1 0,00 0,36 1 0,00 0 0,47

40 80 6,75 0,00 11,91 5,50 0,00 26 18,12

50 120 9 0,00 25,23 3 0,00 16,25 25,17

100 160 65 0,00 3297,48 6 0,00 35 1009,43

150 320 58,5 0,26 10284,04 43,25 0,27 148,25 12232,16

200 400 8 0,40 12172,23 1,67 0,36 45,67 18000

250 480 1 0,86 13492,92 1,67 0,33 52 18000

Brain161

300 320 1 1,30 18000 1 0,32 11,50 18000

Table 5.2: Table of Comparison Between: B&B SCIP Vs Own B&C SCIP Using

Realistic Graphs.
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Conclusion

In this thesis, we have studied the Constrained-Routing and Spectrum Assignment

(C-RSA) problem related to the dimensioning and designing of Spectrally Flexible

Optical Networks (SFONs). It’s well known to be NP-hard. The main aim of this

thesis was to provide a deep polyhedral investigation and design a cutting plane

method for the problem and handle large-scale instances.

First, we have proposed an integer linear programming formulation namely cut for-

mulation. We have investigated the related polytope defined by the convex hull of

all its solutions. Moreover, we have identified several classes of valid inequalities

for the polytope and studied their facial structure. We further have discussed their

separation problems. We have also proposed a primal heuristic to obtain tighter

primal bounds and enhance the resolution of the problem. These results are used

to devise a Branch-and-Cut (B&C) algorithm for the C-RSA problem, along with

some computational results are presented using two types of instances: random and

realistic ones with |K| up to 300 and |S| up to 320. They are composed of two types

of graphs (topologies): real graphs and realistic ones from SND-LIB with |V | up to

161 and |E| up to |166|. The results have shown the significant improvement allowed

by introducing the valid inequalities on obtaining tighter LP bounds and improving

the effectiveness of the B&C algorithm.

In the second part of thesis, we have discussed an extended formulation based on the

so-called path formulation. It can be seen as a reformulation of the cut formulation

using the so-called path variables. We have developed a column generation algorithm

to solve its linear relaxation. We have shown that the pricing problem is equivalent

to the resource-constrained shortest path problem, which is well known to be NP-

hard. For this, we have developed a pseudo-polynomial algorithm based on dynamic

programming enabled solving the pricing problem in polynomial time. Using this,

we have devised Branch-and-Price and Branch-and-Cut-and-Price algorithms. The

results show that the Branch-and-Cut-and-Price performs very well compared with

the Branch-and-Price. Hence, the significant impact and the power of the introduced
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valid inequalities allowed improving the effectiveness of the B&C&P algorithm. On

the other, we have presented a comparative study between the B&C, B&P, and

B&C&P algorithms. The results have shown that the B&C&P algorithm is able to

provide optimal solutions for several instances, which is not the case for the B&C

algorithm within the CPU time limit (5 hours). Moreover, both B&C and B&P

algorithms perform well. However, some instances are still difficult to solve with

both B&C, B&P and B&C&P algorithms. For this, some enhancements are further

investigated and integrated into our algorithms. They are based on a warm-start

algorithm using some metaheuristics, and a primal heuristic using a hybrid method

between a greedy algorithm and local search algorithm that is shown to be very use-

ful to obtain good primal bounds. Moreover, we introduce some symmetry-breaking

inequalities that allow avoiding the equivalents sub-problems in the different enu-

meration trees of B&C, B&P, and B&C&P algorithms.

Afterward, we have studied the Spectrum Assignment (SA) sub-problem when the

routing is trivial or a routing path is pre-selected for each demand. First, we have

presented a compact formulation for the SA problem. We have carried out an inves-

tigation of the associated polytope. Moreover, we have identified several valid in-

equalities for the polytope, some of them come from those that are already proposed

for the C-RSA. We have proved that they are facet defining under certain necessary

and sufficient conditions. They were further incorporated within a Branch-and-Cut

algorithm. The results have shown the efficiency of the valid inequalities allowed

enhancing the resolution of the SA problem. Hence, the Branch-and-Cut is shown

to be very performant compared with the Branch-and-Bound algorithm.

Finally, it would be interesting to further investigate a combination of the different

algorithms with some machine learning and reinforcement learning algorithms to

well manage the B&C, B&P, and B&C&P trees and particularly for

a) the node selection [27][36],

b) variable selection and branching rule [6][36],

c) column selection [39][111],

d) cut selection [54][110],

e) and provide a deeper comparative study between the algorithms [1].
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[27] Daumé, H.H, and Eisner, H. III. J.: Learning to search in branch-and-bound

algorithms. In: Advances in Neural Information Processing Systems, 2014, pp.

1-11.

[28] Diestel, R.: Graph Theory (Graduate Texts in Mathematics). In: Graduate

Texts in Mathematics Springer, Heidelberg; New York, Fourth edition, 2010.

[29] Dinarte, H.A., Bruno, V.A., Daniel, A.R.C, and Raul, C. A.: Routing and

spectrum assignment: A metaheuristic for hybrid ordering selection in elastic

optical networks. In: Computer Networks Journal, 2020, pp. 108287.

[30] Ding, Z., Xu, Z., Zeng, X., Ma, T., and Yang, F.: Hybrid routing and spectrum

assignment algorithms based on distance-adaptation combined coevolution and

heuristics in elastic optical networks. In: Journal of Optical Engineering 2014,

pp. 1-10.

246



[31] Dror, M.: Note on the Complexity of the Shortest Path Models for Column

Generation in VRPTW. In: Journal of Operations Research 1994, pp. 977-978.

[32] Dumitrescu, I., and Boland, N.: Algorithms for the weight constrained shortest

path problem. In: International Transactions in Operational Research, pp. 15-29.

[33] Edmonds, J.: Covers and packings in a family of sets. In: Bulletin of the

American Mathematical Society, 68(5), 1962, pp. 494–499.

[34] Enoch, J.: Nested Column Generation decomposition for solving the Rout-

ing and Spectrum Allocation problem in Elastic Optical Networks. In:

http://arxiv.org/abs/2001.00066, 2020.

[35] Eppstein, D.: Finding the k shortest paths. In: 35th Annual Symposium on

Foundations of Computer Science, pp. 154-165.

[36] Etheve, M., Alès, Z., Bissuel, C., O. Juan, Kedad-Sidhoum, S.: On Learning

Node Selection in a Branch and Bound Algorithm. In: ROADEF Conference,

April, 2021, pp. 1-3.

[37] Fayez, M., Katib, I., George, N.R., Gharib, T.F., Khaleed H., and Faheem,

H.M.: Recursive algorithm for selecting optimum routing tables to solve offline

routing and spectrum assignment problem. In: Ain Shams Engineering Journal

2020, pp. 273-280.

[38] Ford, L. R., and Fulkerson, D. R.: Maximal flow through a network. In: Cana-

dian Journal of Mathematics 8, pp. 399–404, 1956.

[39] Furian, N., O’Sullivan, M., Walker, C., and Çela, E.: A machine learning-based
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