N
N

N

HAL

open science

The Constrained-Routing and Spectrum Assignment
Problem: Polyhedral Analysis and Algorithms
Youssouf Hadhbi

» To cite this version:

Youssouf Hadhbi. The Constrained-Routing and Spectrum Assignment Problem : Polyhedral Analysis
and Algorithms. Networking and Internet Architecture [cs.NI]. Université Clermont Auvergne, 2022.

English. NNT: 2022UCFACO065 . tel-04114479

HAL Id: tel-04114479
https://theses.hal.science/tel-04114479

Submitted on 2 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-04114479
https://hal.archives-ouvertes.fr

UNIVERSITE CLERMONT AUVERGNE

EcOLE DOCTORALE
SCIENCES POUR L'INGENIEUR DE CLERMONT-FERRAND

These

Présentée par

YOUSSOUF HADHE!

Pour obtenir le grade de

DOGTEURD' UNIVERSITE

SPECIALITE: INFORMATIQUE

The Constrained-Routing and Spectrum Assignment Problem: Polyhedral
Analysis and Algorithms

Soutenue publiquement le 12 juillet 2022 devant le jury :

M. Ali Ridha Mahjoub Directeur de thése
M. Mourad Baiou Président

Mme. Hande Yaman Rapporteur

M. Eduardo Uchoa Rapporteur

Mme. Nancy Perrot Examinatrice

M. Ibrahima Diarrassouba Examinateur






Remerciements

Cette these m’a permis de consolider mes connaissances et de confirmer ma pas-
sion pour le domaine de la Recherche Opérationnelle en général et I’Optimisation
Combinatoire en particulier. Cette expérience fut tres enrichissante et constituera
un atout important pour mon futur parcours professionnel. J’ai eu la chance d’étre
accompagné, conseillé et aidé par plusieurs personnes, de pres ou de loin, qui se
sont vraiment engagées pour m’épauler durant quatre années de travail. Je suis tres

heureux d’avoir ici I'occasion pour leur témoigner toute ma gratitude.

Je voudrais en premier lieu remercier tout particulierement Monsieur Ali Ridha
Mahjoub, Professeur a 1I’Université Paris-Dauphine, pour m’avoir donné cette op-
portunité d’effectuer cette thése sous sa direction. Monsieur Mahjoub m’a apporté
tout son soutien inestimable, scientifique et moral, tout au long de ce travail. Des
acquis essentiels que je n’aurais pas intégrés sans son encadrement, sa patience,
son professionnalisme et la confiance dont il a fait preuve & mon égard. Ce fut un
privilege de travailler sous sa direction. Je le remercie de m’avoir laissé profiter de
sa grande expérience et de sa rigueur scientifique. J’espere aussi le rendre fier de

mes projets de ’avenir et honorer sa tres grande estime de mes capacités.

Je suis aussi trés reconnaissant envers Monsieur Lhouari Nourine, Professeur a
I'Université Clermont Auvergne (UCA), pour lintérét qu’il a porté a cette these
et pour avoir accepté d’en étre directeur. Je le remercie infiniment pour sa présence,
son soutien, ses nombreux conseils et ’encouragement qu’il m’a offert tout au long

de ce travail.

J’adresse ainsi mes plus sinceres remerciements & Monsieur Ibrahima Diarrassouba,
Maitre de conférences a I’Université Le Havre Normandie. Ibrahima m’a accordé
sa confiance en acceptant de co-encadrer cette theése. Je voudrais le remercier pour
son attention de tout instant sur mes travaux, sa rigueur, son sérieux, et sa con-

tribution enrichissante qui ont été prépondérants pour la bonne réussite de cette



these. J’ai eu la chance de mirir scientifiquement en travaillant régulierement avec

lui sur différents sujets. Il m’a surtout transmis son professionnalisme, et son ex-
)

pertise dans le domaine de ’Optimisation Combinatoire. Pour tout cela, je tiens a

témoigner toute ma sincere reconnaissance et mon respect a lui.

Je désire grandement remercier les membres du jury qui me font le grand honneur

d’évaluer ce travail.

Je voudrais remercier Madame Hande Yaman, Professeur & I’Université KU Leuven
NP , . . . a1

pour l'intérét qu’elle a bien voulu porter a ce travail et pour m’avoir fait ’honneur

d’accepter la charge de rapporteur(e). Je la remercie pour sa lecture précise du

manuscrit et pour les commentaires pertinents qu’elle a apportés.

Je suis trés reconnaissant envers Monsieur Eduardo Uchoa, Professeur a I’Université
Federal Fluminense, pour avoir accepté de rapporter cette these. J’ai beaucoup
apprécié les suggestions pertinentes qu’il a proposées, notamment lors de la soute-

nance.

J’adresse mes sinceres remerciements a Madame Nancy Perrot, Ingénieure de recherche
a Orange Labs, pour avoir bien voulu examiner mes travaux de these et accepter de
participer au jury. Je la remercie aussi pour les commentaires intéressants qu’elle a

formulés et sa clairvoyance sur le sujet.

Je voudrais témoigner toute ma reconnaissance a Monsieur Mourad Baiou, directeur
de laboratoire LIMOS, et Monsieur Farouk Toumani, ancien directeur de LIMOS
et actuellement directeur de I'ISIMA, pour leur confiance, leurs disponibilités, leur
écoute et leur accompagnement dont j’ai pu bénéficier pendant 1’élaboration de ma
these. Ils ont été une grande ressource pour le développement personnel et profes-

sionnel durant cette these.

Bien sir, atteindre ces objectifs n’aurait pas été possible sans le soutien de 'UCA
et le LIMOS, qui m’ont permis, grace a une allocation de recherches de 'ANR et
diverses aides financieres durant la crise sanitaire, de me consacrer sereinement a
I’élaboration de cette these. Il est important donc de remercier tout le personnel
de P'UCA et le LIMOS pour m’avoir accueilli chaleureusement. Ils ont tout mis en
ceuvre pour que ma these se déroule dans les meilleures conditions possibles. Merci

pour toutes ces années de guidance.

Je souhaite remercier spécialement Madame Béatrice Bourdieu, responsable admin-



istrative au LIMOS, pour sa sympathie, son aide précieuse et son efficacité dans

I’organisation et la résolution des problemes administratifs.

J’associe a ces remerciements Madame Fatiha Bendali, Enseignante-Chercheuse a
I’Université de Clermont Auvergne, et Monsieur Jean Mailfert, Maitre de conférences
a 'Université de Clermont Auvergne, pour leur gentillesse, leur écoute, leurs conseils

et le temps conséquent qu’ils m’ont accordés. Je les remercie pour tout cela.

Ces remerciements seraient incomplets sans une mention particuliere pour le groupe
POC (Polyedre et Optimisation Combinatoire). Un énorme merci pour les dis-
cussions intéressantes que nous avons pu avoir autour de I’Optimisation Combina-
toire et les approches polyédrales en particulier. Ils ont si généreusement contribué
a la réussites des différents évenements organisés pour les doctorants en France
(JPOC, séminaires, ROADEF,...), et une conférence internationale ISCO qui donne
I'opportunité d’échanger avec des chercheurs tres connus a ’échelle internationale et

de profiter de leurs expériences scientifiques et professionnelles.

Chaque jour, je suis reconnaissant a tous mes anciens professeurs de Master AN-
DROIDE a la Sorbonne Université (ex UPMC- Université Pierre et Marie Curie,
Paris), mes encadrants de stage du Master & EDF (Paris) et ceux de Licence
Recherche Opérationnelle a P'USTHB (Alger), qui par leurs paroles, leurs écrits,
leurs conseils et leurs commentaires m’ont aidé a exceller tout au long de ces années.
Je remercie aussi tous mes enseignants de maternelle au lycée qui ont, avec mes
parents, participé a mon éducation et ont fait de moi ce que je suis aujourd’hui. Je

garderai toujours les souvenirs indélébiles de tous ces professeurs et enseignants.

Je voudrais exprimer ma reconnaissance envers mes amis et collegues qui m’ont ap-

porté leur soutien moral et intellectuel tout au long de ces années.

Enfin, je ne saurais pas clore ces remerciements sans dédier ce travail & toute la
famille HADHBI qui m’a doté d’une éducation digne et son amour inconditionnel
a fait de moi ce que je suis aujourd’hui. C’est grace a eux que je me dis que rien
n’est impossible car je ne serai jamais seul. Remerciements spéciaux a mes tres
chers parents, pour leurs efforts, leurs sacrifices, leurs peines, leurs bénédictions et
pour m’avoir appris a surmonter mes peurs et d’étre la quand cela est nécessaire. Ils
sont une source inépuisable de tendresse. L’amour qu’ils ont porté a moi, la dignité,
I’éducation et le sens de I’honneur me servent de modele. Ils m’ont toujours dit de

prioriser mes études méme ils n’avaient rien dans leurs proches. Ce travail est le fruit



de leurs sacrifices qu’ils ont consenti pour mon éducation et ma formation le long de
ces années. Du plus profond de mon ceoeur, un grand merci a tous mes freres, et & ma
sceur, pour leur soutien moral et matériel qui m’ont permis d’aboutir & ce résultat.
Ils ont pris en charge tous les frais de mes études (inscription, hébergement, vie
privée,...) pendant tout mon cursus universitaire. Il est donc impossible d’exprimer
a quel point je suis reconnaissant pour tout cela. Ce travail soit témoignage de mon
amour sincere et fidele a eux. Cette these est dédiée aussi a leurs épouses (époux),
et a leurs enfants, pour 'amour qu’ils m’ont toujours donné. Un grand merci aussi a

mes beaux parents et beaux freres, pour leur amour inconditionnel qu’ils me portent.

Tous les mots ne sauraient exprimer la gratitude, 'amour infaillible, le respect, la
reconnaissance & ma chere épouse qui a su me soutenir, m’épauler, me supporter,
m’encourager ... tout au long de ces années et plus particulierement durant les mo-
ments difficiles et d’inquiétude qui n’ont pas toujours été des plus agréables. Les
mots sont peu de choses pour la remercier pour tout cela. Merci donc d’avoir fait

de notre vie de couple tout ce dont je révais.

Je ne pourrais pas terminer ces remerciements sans dédier ce travail a mes futurs
enfants qu’ils vont me donner le plus beau role de ma vie : celui d’étre papa. Je leur
promets mon amour infaillible, mon attention sans limite, mon soutien en toutes

circonstances. Je promets surtout de faire mon mieux, méme si parfois j’échoue.



Abstract

In this thesi&El7 we study a variant of the Routing and Spectrum Assignment problem
(RSA), namely the Constrained-Routing and Spectrum Assignment (C-RSA). The
C-RSA problem is a key issue when dimensioning and managing a new generation
of optical networks, called spectrally flexible optical networks. The C-RSA can be
stated as follows. Given an undirected, loopless, and connected graph G, an optical
spectrum S of available contiguous frequency slots, and a multiset of traffic demands
K between pairs of origins and destinations, the C-RSA consists of assigning for each
traffic demand k£ € K a path in G between its origin and destination, and an interval
of contiguous frequency slots in S so that some technological constraints are satis-
fied, and some linear objective function is optimized. First, we propose an integer
linear programming formulation for the C-RSA. We identify several families of valid
inequalities for the associated polytope. Some of these inequalities are obtained by
using the so-called conflict graphs. Moreover, we prove that these inequalities are
facet-defining for the associated polytope under some necessary and sufficient con-
ditions. In addition, we develop separation algorithms for these inequalities. Using
these results, we devise a Branch-and-Cut (B&C) algorithm for the problem, and
discuss experimental results. A second part of the sis is devoted to an extended
formulation for the C-RSA. A column generation algorithm is developed to solve its
linear relaxation. We prove that the related pricing problem is equivalent to the
so-called resource constrained shortest path problem, which is well known to be NP-
hard. For this, we propose a pseudo-polynomial time based dynamic programming
algorithm. Using this, we devise Branch-and-Price (B&P) and Branch-and-Cut-and-
Price (B&C&P) algorithms to solve the problem. An extensive experimental study
with comparisons between the different B&C, B&P, and B&C&P algorithms is also
presented.

Finally, we turn our attention to the Spectrum Assignment (SA) sub-problem. This

IThis work was supported by the French National Research Agency grant ANR-17-CE25-0006,
FlexOptim Project.



has been shown to be equivalent of wavelength assignment, interval coloring, and
dynamic storage allocation problems that are well known to be NP-hard. To the
best of our knowledge, a polyhedral approach to the SA problem has not been con-
sidered before, even to its equivalent problems. For this, first, we propose an integer
linear programming compact formulation and investigate the facial structure of the
associated polytope. Moreover, we identify several classes of valid inequalities for
the polytope and prove that these inequalities are facet-defining. We further discuss
the related separation problems. Using this, we devise a Branch-and-Cut (B&C)

algorithm for the SA problem, along with some computational results are presented.

Keywords: optical network, network design, integer programming, polyhedron,
facet, separation, branch-and-cut, branch-and-price, branch-and-cut-and-price, dy-

namic programming.



Long Résumé

Pour faire face a une croissance continue de la demande de trafic liée a ’augmentation
de la bande passante, les opérateurs de réseaux ont du faire évoluer ’architecture
de leurs réseaux. En conséquence, une nouvelle génération de réseau de transport
optique flexible appelée ”Spectrally Flexible Optical Networks” (SFONs) a été in-
troduite en 2008 comme une technologie prometteuse en raison de sa flexibilité et
de son efficacité par rapport a ’ancienne technologie connue sous le nom ”Optical
Wavelength Division Multiplexing (WDM)”. Les SFONs ont suscité un intérét in-

tense de la part des laboratoires de recherche, ainsi que dans l'industrie.

Nous étudions dans cette these 'un des problemes clés lors de dimensionnement et
planification des SFONs, le probleme du routage contraint et assignation spectrale,

connue sous le nom ”

Constrained-Routing and Spectrum Assignment ” (CRSA)
selon la terminologie anglaise. Il se compose de deux parties: le routage con-
traint (sélectionner pour chaque demande en trafic un chemin optique physique
qui connecte sa source avec sa destination a travers le réseau sans dépasser une
longueur maximale de chemin (en km) fixée pour chaque demande en trafic), et
I’assignation d’un spectre (assigner a chaque demande en trafic un seul intervalle de
"slot” consécutifs (contrainte de contiguité) au long de son chemin du routage de
sorte que le méme intervalle de slots consécutifs doit étre utilisé sur tous les liens qui
appartiennent a son chemin optique physique (contrainte de continuité), et les in-
tervalles de slots consécutifs alloués par un ensemble de demandes dont les chemins
ne sont pas des liens disjoints dans le réseau ne peuvent pas partager aucun slot
sur les liens partagés (contrainte de non-chevauchement), tout en optimisant une ou
plusieurs fonctions objectives linéaires. Le probleme CRSA est bien connu comme
un probleme NP-difficile et tres difficile en pratique aussi que de nombreuses études
de recherche ont été menées dans ce contexte depuis sa premiere apparition en 2010.
Certains des algorithmes de résolution proposés dans la littérature sont basés sur des
formulations mathématiques utilisant la programmation linéaire (mixte) en nombres

entiers qui n’ont pas pu résoudre des instances de grande taille, ainsi que des heuris-



tiques et métaheuristiques qui ne peuvent pas garantir I’optimalité de solutions. Il
a été jugé approprié de proposer des nouveaux modeles mathématiques plus souples
et efficaces en se basant sur la programmation linéaire en nombres entiers, de con-
cevoir et de développer des algorithmes exacts qui pourraient offrir des améliorations
prometteuses par rapport aux méthodes existantes. A notre connaissance, I’étude

polyédrale n’a pas encore fait I’objet de recherches récentes pour ce probleme.

Nous fournissons donc une analyse théorique approfondie et concevons des algo-
rithmes exacts de type coupes, branchements et génération de colonnes pour résoudre
le probleme CRSA en considérant des réseaux de taille réaliste. Pour ce faire, notre
contribution consiste & introduire un programme linéaire en nombres entiers basée
sur des coupes, ou le nombre de variables n’augmente que de maniere polynomiale
avec la taille de 'instance traitée. En outre, nous étudions la structure polyédrale
du polyedre associé, et dérivons plusieurs classes d’inégalités valides. Nous donnons
quelques conditions nécessaires et suffisantes pour que certaines inégalités valides
soient des facettes pour le polyedre associé. Nous élaborons ensuite des procédures
de séparation pour ces inégalités valides. Ces inégalités sont ensuite utilisées dans
la relaxation linéaire afin d’obtenir des bornes duales plus serrées. En se basant sur
¢a, nous développons un algorithme de coupes et branchements pour le probleme
CRSA.

D’autre part, nous avons proposé une nouvelle formulation étendue basée sur des
chemins, ou les variables sont associées a tous les chemins possibles pour chaque
demande en trafic induisant donc une explosion de nombre de variables qui croissent
de maniere exponentielle et en parallele avec la croissance de la taille de I'instance
traitée. Nous développons également un algorithme de génération de colonnes pour
la résolution de sa relaxation linéaire. Les inégalités valides de la formulation de
coupes restent aussi valides pour le polyedre associé a cette formulation étendue.
Nous développons ensuite un algorithme exact qui combine un algorithme de coupes
et branchements avec un algorithme de génération de colonnes pour résoudre le
probleme CRSA.

D’autre part, vu la complexité du probleme, le probleme CRSA peut étre décomposé
en deux sous-probléemes de telle sorte que le routage contraint précede 1’assignation
du spectre (CR+SA). Nous analysons la structure polyédrale du sous-probleme
d’assignation du spectre (SA) lorsque le routage est déja établi. Tout d’abord, nous
proposons une formulation compacte pour le probléeme SA. Nous étudions ensuite

la structure du polyedre associé. Nous définissons quelques classes supplémentaires



d’inégalités valides et introduire quelques inégalités pour bien gérer la symétrie afin
de supprimer les solutions symétriques obtenues lors de la résolution du probleme.
Nous donnons également quelques conditions nécessaires et suffisantes pour que cer-
taines inégalités valides définissent des facettes pour le polyedre. Des procédures
de séparation sont ensuite proposées pour certaines de ces inégalités valides et qui
seront utilisées par la suite pour obtenir des bornes plus étroites dans la relaxation
linéaire. Nous élaborons ensuite un algorithme de coupes et branchements pour le

sous probleme SA.

A la fin de chaque étape, nous examinons plus en profondeur efficacité et le com-
portement de nos algorithmes, et augmentons leurs efficacités grace a plusieurs
améliorations basant sur des heuristiques primales et aussi quelques techniques
de branchement qui pourraient offrir une promesse d’amélioration par rapport aux
méthodes existantes compte tenu des réseaux de taille réaliste de SndLib, et d’autres
de taille réelle. Nous menons aussi une étude comparative d’efficacité entre les

différents algorithmes proposés dans cette these.

Mots clés : réseaux optiques flexibles, polytope, inégalité valide, facette, sepa-
ration, algorithme de coupes et branchements, algorithme de génération de colonnes

et branchements.
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Introduction

The global Internet Protocol (IP) traffic is expected to reach 396 exabytes per month
by 2022, up from 194.4 Exabytes per month in 2020 [23]. Optical transport networks
are then facing a serious challenge related to continuous growth in bandwidth ca-
pacity due to the growth of global communication services and networking: mobile
internet network (e.g., 5th generation mobile network), cloud computing (e.g., data
centers), Full High-definition (HD) interactive video (e.g., TV channel, social net-
works) [19], etc... as shown in Figure |1} To sustain the network operators face this
trend of increase in bandwidth, a new generation of optical transport network archi-
tecture called Spectrally Flexible Optical Networks (SFONs) (called also FlexGrid
Optical Networks) has been introduced as promising technology because of their flex-
ibility, scalability, efficiency, reliability, and survivability [17][19] compared with the
traditional FixedGrid Optical Wavelength Division Multiplexing (WDM)[92][93]. In
SFONs the optical spectrum is divided into small spectral units, called frequency
slots [I02]. They have the same frequency of 12.5 GHz where WDM uses 50 GHz
[108] as recommended by ITU-T [2]. This can be seen as an improvement in resource
utilization.

The concept of slots was proposed initially by Masahiko Jinno et al. in 2008 [57],
and later explored by the same authors in 2010 [113]. We refer the reader to [63] for
more information about the architectures, technologies, and control of SFONs.
The Routing and Spectrum Assignment (RSA) problem plays a primary role when
dimensioning and designing of SFONs which is the main task for the development
of this next generation of optical networks. It consists of assigning for each traffic
demand, a physical optical path, and an interval of contiguous slots (called also
channels) while optimizing some linear objective(s) and satisfying the following con-

straints [50]:

a) spectrum contiguity: an interval of contiguous slots should be allocated to each

demand k with a width equal to the number of slots requested by demand k;
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Figure 1: Historical Evolution of Optical Transport Networks.

b) spectrum continuity: the interval of contiguous slots allocated to each traffic

demand stills the same along the chosen path;

¢) non-overlapping spectrum: the intervals of contiguous slots of demands whose
paths are not edge-disjoints in the network cannot share any slot over the

shared edges.

Numerous research studies have been conducted on the RSA problem since its first
appearance. The RSA is known to be NP-hard [107][109], and more complex than
the historical Routing and Wavelength Assignment (RWA) problem [53]. Various
(mixed) integer linear programming (ILP) formulations and algorithms have been
proposed to solve it. A detailed survey of spectrum management techniques for
SFONSs is presented in [109] where the authors classified variants of the RSA prob-
lem into: offline RSA which has been initiated in [83], and online or dynamic RSA
which has been initiated in [114] and recently developed in [78][119]. Numerous
aspects are investigated in the tutorial [I6]. This work focuses on the offline RSA
problem. There exist two classes of ILP formulations used to solve the RSA problem,
called edge-path and edge-node formulations. The ILP edge-path formulation is ma-
jorly used in the literature where variables are associated with all possible physical
optical paths inducing an explosion of a number of variables and constraints which

grow exponentially and in parallel with the growth of the instance size: number of
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demands, the total number of slots, and topology size: number of links and nodes
[50]. We observe that several papers which use the edge-path formulation as an ILP
formulation to solve the RSA problem, use a set of precomputed-paths without guar-
anty of optimality e.g. in [22], [83], [84], [85], [112], [121], [I00]. On the other hand,
column generation techniques have been used by Klinkowski et al. [98], Jaumard et
al. [56], and recently by Enoch [34] to solve the relaxation of the RSA taking into
account all the possible paths for each traffic demand. To improve the LP bounds
of the RSA relaxation, Klinkowsky et al. proposed a class of valid inequalities in-
duced by cliques separable using a branch-and-bound algorithm [87]. On the other
hand, Klinkowski et al. [88] propose a branch-and-cut-and-price method based on
an edge-path formulation for the RSA problem. Recently, Fayez et al. [37], and
Xuan et al. [116], proposed a decomposition approach to solve the RSA separately
(i.e., R+SA) based on a recursive algorithm and an ILP edge-path formulation.

To overcome the drawbacks of the edge-path formulation usage, a compact edge-
node formulation has been introduced as an alternative for it. It holds a polynomial
number of variables and constraints that grow only polynomially with the size of
the instance. We found just a few works in the literature that use the edge-node
formulation to solve the RSA problem e.g., [13], [112], [121]. Bertero et al. [I0]
present a comparative study between several edge-node formulations and introduce
new ILP ones.

On the other hand, and due to the NP-hardness of the C-RSA problem, several
heuristics [30],[71],[102], and recently in [55], greedy algorithms [65], metaheuristics
as tabu search [46], simulated annealing [88], genetic algorithms [43], [52], [53], [29],
ant colony algorithms [60], and a hybrid meta-heuristic approach [97], have been used
to approach large scale instances of the RSA problem. Furthermore, recent works
start using artificial intelligence [96], see for example [61][62], and deep-learning [1§],
and machine-learning [T01][120][I17][48] to get more perefermonce. Selvakumar et
al. give a survey [106] in which they summarise the most contributions done for the
RSA problem before 2019.

In this thesis, we are interested in the resolution of a complex variant of the RSA
problem, called the Constrained-Routing and Spectrum Assignment (C-RSA) prob-
lem. Here we suppose that the network should also satisfy the transmission-reach
constraint for each traffic demand according to the actual service requirements. To
the best of our knowledge a few related works on the RSA, take into account this

additional constraint so that the length of the chosen path for each traffic demand
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should not exceed a certain length (in kms). Recently, Hadhbi et al. [50][51] intro-
duced a novel tractable ILP based on the cut formulation for the C-RSA problem
with a polynomial number of variables and an exponential number of constraints
that are separable in polynomial time using network flow algorithms. Computa-
tional results show that their cut formulation solves larger instances compared with
those of Velasco et al. [I12] and Cai et al. [13]. It has also been used as a basic
formulation in the study of Colares et al. [24], and also by Chouman et al. [20][21]
to show the impact of several objective functions on the optical networks state. Note
that Velasco et al. [112], Cai et al. [13], and Bertero et al. [10], did not take into
account the transmission-reach constraint.

However, so far the exact algorithms proposed in the literature could not solve large-
scale instances. We believe that a cutting-plane-based approach could be powerful
for the problem. To the best of our knowledge, such an approach has not been
yet considered except the works done by Bianchetti et al. [II] for the RSA prob-
lem. For this, the main aim of this work is to investigate thoroughly theoretical
properties of the C-RSA problem. To this end, we aim at providing a deep polyhe-
dral analysis of the C-RSA problem, and based on this, devise branch-and-cut and
branch-and-cut-and-price algorithms for solving large-scale instances of the problem.
So we will introduce a new ILP formulation called cut formulation for the C-RSA
problem which can be seen as an improved formulation for the one introduced by
Hadhbi et al. [50][5I]. We investigate the facial structure of the associated poly-
tope. We further identify several classes of valid inequalities to obtain tighter LP
bounds. Some of these inequalities are obtained by using conflict graphs related to
the problem. We then devise separation procedures and give sufficient conditions
under which these inequalities are facet defining. Using this, we develop a Branch-
and-Cut (B&C) algorithm, along with computational results are presented using
large-scale instances. On the other hand, we introduce an extended ILP formula-
tion, called path formulation. A column generation algorithm is proposed to solve
its linear relaxation. We further adapt the valid inequalities proposed for the cut
formulation to obtain also tighter bounds for the path formulation. Based on this,
we develop a Branch-and-Cut-and-Price (B&C&P) algorithm to solve the problem.
Computational results are presented using this algorithm. We finally provide a com-
parative study between the B&C and B&C&P algorithms is presented by using two
types of instances: random and realistic ones. The results show that the B&C&P
algorithm is more efficient. Furthermore, we have studied the influence of the valid

inequalities. The results show that some of them, in particular, clique and cover
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inequalities are quite efficient. Several enhancements are further investigated and
used to speed up and increase the efficiency of our approaches. They are based on
a primal heuristic used to produce feasible solutions from fractional solutions given
at each node of the branching tree. It allows obtaining good primal bounds and
prune some uninteresting nodes of the branching tree. We have also introduced
some symmetry-breaking inequalities to manage the equivalent sub-problems in the
branching tree.

Several concepts are exploited throughout this dissertation. We start this disserta-
tion by presenting the basic notions of combinatorial optimization, complexity, graph
theory, and further give some notations that are used through this manuscript.

In Chapter [2] we present the C-RSA problem. We introduce an integer linear pro-
gramming formulation namely cut formulation. We then carry out an investigation
of the related polytope, the convex hull of all its solutions. Moreover, we describe
the classes of valid inequalities and study their facial structure. In particular, we
introduce symmetry-breaking inequalities.

In Chapter [3|, we discuss the separation procedures for the valid inequalities and
describe a Branch-and-Cut algorithm. The comparative study is presented in this
chapter, it shows the impact of the additional valid inequalities using several mixed-
integer linear program solvers.

In Chapter 4] we give the extended ILP formulation. We present the column gen-
eration algorithm to solve its linear relaxation, and the Branch-and-Cut-and-Price
(B&C&P) algorithm, along with some computational results are presented. In this
chapter, we also provide the comparative analysis of performance between the dif-
ferent algorithms.

Chapter [5|is devoted to the Spectrum Assignment (SA) sub-problem. First, we pro-
pose an integer linear programming compact formulation, and investigate the facial
structure of the associated polytope. Fuerthremore, we describe several valid in-
equalities, some of them come from those that are already proposed for the C-RSA.
We also give sufficient conditions under which these inequalities are facet defining.
Based on these results, we develop a B&C algorithm to solve the problem. Fur-
thermore, we describe symmetry-breaking inequalities for the SA, and provide some
lower bounds. Finally, we present an extensive experimental study while showing
the impact of the valid inequalities and symmetry-breaking inequalities on the ef-

fectiveness of the B&C algorithm.
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Chapter 1
Preliminary Notions

In this chapter, we present some basic notions of combinatorial optimization, and

polyhedra approaches.

1.1 Combinatorial Optimization

Operations research is a discipline related to computer science and applied math-
ematics. In this dissertation, we are interested in one of its branches, called com-
binatorial optimization. The optimization problems related to combinatorial opti-
mization can be formulated as follows. Let E = {ey,...,e,} be a finite set, namely
basic set. Suppose that each element e;, it is associated a weight c(e;) € R with
i € {1,...,n}. Let F' denote a family of subsets of E. The problem aims to iden-
tify one subset F from F' with the smallest or largest weight given by the sum
> c,crclei). Such a problem is called combinatorial optimization problem where
the set F' represents the set of all feasible solutions of the problem. In general, the
set I’ contains an exponential number of solutions. For this, it’s known to be very
hard to solve combinatorial optimization problems by enumerating all its feasible
solutions. To deal with this, various approaches have been developed to approach
combinatorial optimization problems. They use different tools, complexity theory,
combinatorial optimization, graph theory, linear and non-linear programming, inte-
ger programming, mixed integer programming. In the next section, we discuss some

concepts from complexity theory.

1.2 Complexity Theory

Several researchers in computer science and mathematics are interested in working

on the classification of problems into easy or hard problems, and further on the
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algorithmic complexity whose objective is to find the most efficient algorithm. This
has been initiated by Cook [25], Edmonds [33] and Karp [&1].

Theory of complexity [Garey and Johnson, 1979] [41] classifies problems into two
essential classes: the class P (polynomial time) class, and the class NP (Non-
deterministic polynomial time). In addition, the problems of the NP class are shared
into two subclasses: the class of NP-complete problems, and the class of NP-hard
problems.

Before defining each class, we first give a general definition of a problem. In gen-
eral, a problem is a question having parameters given in input such that an answer
is needed for it, called solution. A problem is described by giving: a general de-
scription of all its parameters, and certain constraints. An instance of a problem is
obtained by specifying the value of each input parameter of the problem. For this,
one can propose an algorithm to solve the problem. An algorithm for solving a given
problem is a procedure that is decomposable into a sequence of finite operations. It
allows giving a solution for each instance of the problem. In general, the complex-
ity of an algorithm depends on the size of the problem that reflects the number of
parameters needed to describe an instance. The algorithm is said to be polynomial
if the maximum number of its operations necessary to solve an instance of size n is
bounded by a polynomial function f in n (i.e., f(n)). This means that there exists
a scalar ¢ such that the number of its operations necessary is equal to c.f(n). As a
result, the notation big O is appeared to express the complexity of an algorithm.
There exists two types of problems: optimization problems and decision problems.
In optimization problems, we want to minimize (or maximize) a function while satis-
fying a set of constraints. On the other hand, in the a decision problem, the solution
is binary like yes / no or 0/1.

An easy problem that can be solved by a polynomial algorithm with respect to its
size, is called a problem of class P. A problem is NP if one can verify in polynomial
time that a given solution is feasible. A problem is called NP-complete if it belongs
NP, and every other problem in NP can be reduced to it in polynomial time [41].
The Satisfiability Problem (SAT) is the first problem that has been shown to be
NP-complete. This was proved in 1971 by Stephen Cook [25] [42].

NP-hard problems are difficult as the NP-complete ones. If a decision problem asso-
ciated with a optimization problem P is NP-complete then P is said to be NP-hard
[42]. Furthermore, note that every problem of the class P is in NP (P C NP).
However, the converse is still open. It constitutes a well-known mathematical prob-

lem which is part of the 7 problems of the millennium prize. The question P = N P?
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Figure 1.1: Relation between P, NP, NP-complete and NP-hard problems.

is one of the most important questions that has not yet been solved. The answer
to this question by ”yes” is to prove that all the problems of the NP class are in
the P class. Cook has proved in [Cook, 1971] that all the problems of the NP class
are reducible to the SAT problem, which means that if someone finds a polynomial
algorithm for this problem, the question P = N P? is then solved ![42], i.e. we will

be able to solve all NP-complete problems in polynomial time.

1.3 Polyhedral Approach and Branch-and-Cut Algorithm

1.3.1 Elements of the Polyhedral Theory

In this section, we will introduce some definitions and properties of polyhedraltheory.
Schrijver [104], Nemhauser and Wolsey [72], Wolsey [115] and Schrijver [105] are the
most useful references [118].

Let x be a vector in R", with n a positive integer. x is said to be a linear combination
of vectors x1, xa, .., x € R™ if there exist k scaler A1, Aa.., Ap such that x = Zf;l i
Furthermore, if ch:1 Ai = 1, then z is said to be affine combination of x1, 9, .., Tk.
We say that x is convex combination of x1,xs, ..,z if x is affine combination of
x1,x2,..,2; and A\; € Ry. The vectors x1, x2, .., x;, are affinely independent if A\; =0

for each i € {1, ...,k} , is the unique solution of the system

Given a set S = {1, ..., 71}, the convex hull denoted by conv(S), is the set of all

the convex combinations of solutions of S that is

conv(S) = {z € R"| Ele Xz, VA > 0and ), A\ = 1},
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This definition ensures that S C conv(S).

elements of §
conviS)

Figure 1.2: conv(S) vs S.

A polyhedron P is the set of solutions of a linear system Ax < b. That is P = {z €
R™ Az < b}. A bounded polyhedron is called a polytope.

The dimension of polyhedron P is one less than the maximum number of solution
in P that are affinely independent.

An inequality ax < « is valid for a polyhedron P if and only if for every solution
Z € P, ax < «. It is said to be violated by a solution Z if aZ > a. A set F C P is
called face if there exists a valid inequality ax < « for the polyhedron P such that

F={x€ Paxr=a}.

We say that the valid inequality ax < « supports a face F' if F # @.

A face F is said to be proper face if F # @ and F # P. If F is a proper face of P,
and dim(F) = dim(P) — 1, then F is called a facet.

A face F of P is a facet if there doesn’t exist any proper face F’ of P containing F.
If P is full-dimensional polyhedron, then ax < « defines a facet P if and only if F’
is a proper face and there exists a facet defining inequalitybr < 8 and a scalarp # 0
such that F' C {z € P|bx = 8} and b = pa. If P is not full dimensional polyhedron,
then az < « defines a facet of polyhedron P if and only if F' is a proper face and
there exists a facet of P induced by an inequality bz < 3, a scalar p # 0 and a vector
A such that F' C {z € P|bx = §} and b = pa + \A~.

A solution x € P is an extreme point of P if x is a face of P of dimension 0.
Furthermore, it cannot be written as a convex combination of other points in P.
Figure [1.3] illustrates the polyhedron P, valid inequality, face, facet and extreme

point.
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Figure 1.3: Geometric interpretation for the polyhedron P, valid inequality, face,

facet and extreme point.

1.3.2 Cutting Plane Method

Let P be a combinatorial optimization problem and S the set of its feasible solutions.
The problem P can be written as min{cz|x € S}, where ¢ denotes the weight vector
associated with the variables z of the problem. Consider the convex hull conv(S) of
the feasible solutions of P. The problem P is then equivalent to the linear program
min{cz|z € conv(S)}.

The polyhedral approach, introduced by Edmonds [33] consists in describing the
polyhedron conv(S) by a set of linear inequalities. This reduces the problem P to
solving a linear program. However, a complete description of the polyhedron may
contain an exponential number of linear inequalities. The optimization problem on
the polyhedron conv(S) can be solved having all its linear inequalities. However,
one can have a partial characterization of the polyhedron conv(S). This may be
sufficient to solve the problem in polynomial time using the so-called cutting-plane
method. This method is based on the so-called separation problem defined as follows.
Let C be a class of valid inequalities for the polyhedron conv(S). The separation
problem associated with C' consists in deciding whether a given solution z satisfies
all inequalities of C, and if not to find an inequality of C' violated by x. Gro6tschel,
Losvasz, and Schrijver [47] have shown that an optimization problem over C' can
be solved in polynomial time if and only if the separation problem associated with

C can be solved in polynomial time. This may permit to solve the optimization
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problem in polynomial time as a sequence of linear programs. Each program is
obtained by adding new valid inequalities obtained by solving the related separation
problem. For this, we start by solving a linear program containing a small set of
valid inequalities. Let us denote by x the obtained optimal solution. We solve the
separation problem for C. If x satisfies all the constraints of C, then x i optimal.
Otherwise, at least one constraint violated by x is identified. These should be added
to the current linear program. This process is repeated until an optimal solution is

found.

1.3.3 Branch-and-Cut Algorithm

The cutting-plane method provides only an optimal solution for the linear relaxation
of the problem. This solution may not be integer which means that it is not feasible
for the original problem. In this case, we pass to the branching step which consists
in dividing the problem into two Sub-problems by choosing a fractional variable z;
and setting x; to x; = 1 and x; = 0. We then apply the cutting-plane method
for each of the sub-problem. We continue this process until an optimal solution is
obtained for the problem. This method is known as Branch-and-Cut method since
it combines a branching method with a cutting plane method at each node of the

tree.

1.4 Column Generation and Branch-and-Cut-and-Price

Algorithms

Sometimes mathematical formulations of a problem contain a huge number of vari-
ables that can be exponential. These are known as ”"extended formulation”. To
solve such problems, we use column generation based algorithm. We begin the op-
timization with a restricted linear program containning a feasible basis. At each
iteration, the column generation algorithm checks if there exists a missing variable
having a negative reduced cost, and add it to the current restricted linear program.
This is the ”Pricing Problem”. In fact, this consists in determining variables with
negative reduced cost. This procedure is repeated until no new variable with neg-
ative reduced cost is found. The final solution is optimal for the linear relaxation
of the underlaying problem. Furthermore, if it is integral, then it is optimal for
the problem. If not, we create two subproblems called children by branching on
some fractional variables (variable branching rule) or on some constraints using the

Ryan & Foster branching rule [99] (constraint branching rule). Such an algorithm
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is called a Branch-and-Price. A Branch-and-Cut-and-Price algorithm combines a

Branch-and-Price algorithm with a cutting-plane procedure.

1.5 Graph Theory

In this section, we introduce some elementary definitions in graph theory that are
very useful throughout the dessertation, Diestel [28], and Golumbic [45] are the most
useful references on graph theory [118].

A graph is a pair G = (V, E), where V is a finite set of nodes (called also vertices)
linked by a set of edges (called also links) F which can be oriented or not.

A path p in graph G = (V, E) from node a to node b, is a sequence of nodes such
that for each pair of successive nodes v;,v;+1, there exist an edge e (v;, v;11) € E.
For any subset of nodes X C V with X # (), let §(X) denote the set of edges having
one extremity in X and the other one in X = V' \ X which is called a cut. When
X is a singleton (i.e., X = {v}), we use §(v) instead of 6({v}) to denote the set of
edges incidents with a node v € V. The cardinality of a set K is denoted by |K]|.
A vertex coloring of GG is an assignment of colors to the vertices of G so that two
adjacent vertices v and v’ cannot get the same color. Same rule for edges, an edge
coloring of G is an assignment of colors to the edges of G so that two adjacent edges
e and €’ cannot get the same color. We say that graph G is t-colorable if no more
than ¢ different colors assigned in G.

G’ is called a weighted graph if each node in G’ is associated with weight.

An interval t-coloring of a weighted graph G’ = (V, E,w) is a function ¢ : V— >
{1,2,...,t} such that c¢(v)+w(v)—1 < t. We assign an interval [¢(v), ..., ¢(v)+w(v)—1]
of consecutive integers satisfying w(v) of each vertex v that the intervals of colors
assigned to two adjacent vertices do not overlap. If interval t-coloring is feasible for
a graph G’ then G’ is said to be interval t-colorable [I07]. The interval chromatic
number of G’, denoted by x is the least integer number ¢ such that G’ has a interval

t-coloring [107].

1.6 Flexible Optical Networks

The two last decades have seen a big developement in telecommunication networks
with a continuous growth in demands. To face this trend of increase in bandwidth,
network operators have had to make their network architectures and management

evolve. Two significant changes appeared recently in the optical network architec-
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ture. First the bandwidth-greedy FizedGrid architecture for Optical Wavelength Di-
vision Multiplexing (WDM) (called also wavelength routed networks) [92][93] based
on fixed spectrum grid is being replaced by the FlexGrid architecture that is capa-
ble of supporting variable data rate (in Gb/s) through flexible spectrum. In this
concept, the optical spectrum is divided into slots having the same frequency of
12.5 GHz (where FixedGrid networks use 50 GHz, the width of a wavelength) as
recommended by ITU-T [2]. See for example Figure which shows a fixed-grid
with 4 wavelengths of 50 GHz to serve 4 demandes of two of 10 Gb/s, one of 40
Gb/s, one of 100 Gb/s. However, in the flex-grid we use just 9 slots of frequency
12.5 GHz to serve these demands.

S0GHz SOMGHE2 S0GHz S0GHz
A1 ] L
=0 A0 A8
Grid 1’1..__...__.] 10Ghys 40Gb/s

12.5GHz slot 100Gh/s

Figure 1.4: FixedGrid Vs FlexGrid.

The concept of slot was proposed initially by Masahiko Jinno et al. [57], and later
explored and more developed by the same authors in 2010 [II3]. In SFONs any
optical path can elastically span as many contiguous slots as needed. This technol-
ogy provides a more efficient use of the spectral domain than the traditional Fixed
Grid WDM. Furthermore, a new generation of transponders is becoming available
namely, bandwidth-variable transponders (BV-Ts) and bandwidth variable wave-
length cross-connects (BV-WXCs) [113]. These can manage data rates up to 400
Gb/s which cannot be accommodated by a 50 GHz wavelength, and restores the
signal which is necessary to re-amplify, re-shape and re-time the passive optical sig-
nal (which is called (3R) signal regeneration rule) when the transmission-reach of
signals is limited which represents the maximum length (in kms) for the routing of

each traffic demand.

The network operators have confronted several optimization problems, in particular
some variants of routing and resource allocation problems that arise when designing
or planning optical networks. The classical Routing and Wavelength Assignment
(RWA) problem is the key issue for design FixedGrid WDM networks. In this prob-
lem, we are given an optical network and a set of demands where each demand has an

origin and destination. The task is to find a path for each demand and a wavelength
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such that a single 50 GHz wavelength is assigned to each demand. It was extended
by Chlamtac et al. [I5]. It is known to be a NP-hard problem [I5]. It is equiva-
lent to the n-graph-coloring problem where the number n of the colors corresponds
to the number of wavelengths and finding the minimum number of wavelengths to
route all the traffic demands is equivalent to finding the chromatic number of the
conflict graph (where the demands are represented by the nodes and two nodes are
linked by an edge if the path of the associated demands share an edge) when the
paths are already established. It has been considered as a special case of the inte-
ger multicommodity flow (MCF) problem where some specific constraints [12] are
added and should be respected. Several models and algorithms have been proposed
to solve the RWA problem. However, in SFONs, RWA cannot handle the changes
from wavelength to contiguous slots. As a result, a new problem is appeared to
deal with this, called Routing and Spectrum Assignment (RSA) problem. It can be
stated as follows. Given an optical network G and a multiset of traffic demands K,
it aims at determining for each traffic demand k € K a path and an interval of con-
tiguous slots while optimizing some linear objective(s) and satisfying the following

constraints [50]:

1. spectrum contiguity: an interval of contiguous slots should be allocated to each

demand k with width equals to the number of slots requested by demand k;

2. spectrum continuity: the interval of contiguous slots allocated to each traffic

demand stills the same along the chosen path;

3. non-overlapping spectrum: the intervals of contiguous slots of demands whose
paths are not edge-disjoints in the network cannot share any slot over the

shared-edge.

The RSA problem is harder than the RWA problem because of the continuity con-
straint that has not been taken into account when defining the RWA problem. In
our work, we focus on a variant of the RSA problem, called Constrained-Routing

and Spectrum Assignment Problem (C-RSA).
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Chapter 2

Cut Formulation and Polyhedra
for the C-RSA Problem

2.1 The Constrained-Routing and Spectrum Assignment
Problem

The Constrained-Routing and Spectrum Assignment Problem can be stated as fol-
lows. We consider an optical spectrum of § € Z, available contiguous frequency
slots, denoted by S = {1,...,5}. A SFON topology can be represented by an undi-
rected, loopless, and connected graph G = (V,E), with V is the set of vertices
representing the optical nodes (data centers, users, stations,...), and E the set of
links representing optical-fibers. A length ¢, € Ry (in kms), a cost ¢, € R4, and
a set of 5 of contiguous frequency slots are associated with each edge e. Let K be
a set of non-splittable traffic demands. Each demand & € K has an origin node
o € V, a destination node dj, € V'\ {0y}, a slot-width wy € Z, and a transmission-
reach £, € Ry (in kms). The C-RSA consists in determining for each demand
k € K, a (oy,dy)-path py in G (non-splittable demands) such that > c g, le < I
(tranmission-reach constraint), and an interval of contiguous frequency slots S, C S
of width equal to wy (continuity and contiguity constraint) such that S, NSy = 0 for
each pair of demands k, k' € K (k # k') with E(pg) N E(pgr) # 0 (non-overlapping
constraint). It aims at minimizing the total cost of the paths used for routing the
demands K (i.e., D pex D cep(p,) Ce)» Where E(py) denotes the set of edges in py.
Fig. [2.1provides a feasible solution for an instance of the C-RSA problem containing
4 demands routed in a graph G consisting of 7 nodes and 10 edges. Each edge e is
specified by a triplet [l, ¢, 5| with § = 9.
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k| ox = d (Oi-ko—PJ[h S
1| a=¢ a-f-¢ 12
2| a=d |a-f-e-d 3
3| b f b-c-f 34
4| b=e |b-c-d-e 1
(d) |
|
Qutputs

Figure 2.1: Set of established paths and spectrums in graph G (Fig. 2(a)) for the
set of demands {k1, k2, k3, ka} defined in Table 2(b).

2.2 Cut Formulation

Here we introduce an integer linear programming formulation for the C-RSA prob-
lem, called formulation. It can be seen as a reformulation of the one introduced by
Hadhbi et al. [50]. For k € K and e € E, let z¥ be a variable which takes 1 if
demand k goes through edge e and 0 if not, and for k € K and s € S, let 2¥ be a
variable which takes 1 if slot s is the last slot allocated for the routing of demand
k and 0 if not. The contiguous slots s’ € {s — wy + 1, ..., s} should be assigned to
demand k whenever z¥ = 1.

The C-RSA problem is equivalent to the following linear integer program
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min Z Zceazlg, (2.1)
k

€K ecFE
subject to
Y ab>1,Vke KVX CV, [X N {opdi}| =1, (2.2)
e€d(X)
> lexk <, VE € K, (2.3)
eckE

X =0,Vk e K,Vs € {1,...,wy, — 1}, (2.4)
> > 1VkeK, (2.5)

S=wWg

min(s+wi—1,5) min(s+wy—1,5)

a4+ a4 Z 25+ Z K <3,V(e, kK, s) € Qe (2.6)
0<azF<1,Vke K,Ve€ E, (2.7)
0<z2F<1,VkeK,VseS, (2.8)
z¥ € {0,1},Vk € K Ve € E, (2.9)
2k €{0,1},Vk € K, Vs €. (2.10)

where Q. s denotes the set of all the quadruples (e, k, k', s) where e € E,k € K, k' €
K, k+#k and s €S.

Inequalities ensure that there is an (og, di)-path between of and dj, for each
demand k, and guarantee that all the demands should be routed. They are called
cut inequalities. By optimizing the objective function , and given that the cost
of all edges are positive, this ensures that there is exactly one (o, di)-path between
o and di which will be selected as optimal path for demand k. Inequalities
express the length limit on the routing paths which is called ”the transmission-
reach constraint”. Equations express the fact that a demand k cannot use slot
s < wg — 1 as the last-slot. The slots s € {1,...,w; — 1} are called forbidden last
slots for demand k. Inequalities should normally be equalities ensuring that
exactly one slot s € {wg, ..., 5} must be assigned to demand k as last-slot. Here we
relax this constraint. Inequalities express the contiguity and non-overlapping
constraints. They capture the fact that every slot s over edge e can be assigned to
at most one demand k € K. Inequalities — are the trivial inequalities, and
constraints — are the integrality constraints.

Note that the linear relaxation of the C-RSA can be solved in polynomial time given

that inequalities ([2.2]) can be separated in polynomial time using network flows.
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2.3 Associated Polytope

Let P(G, K, S) be the polytope, convex hull of the solutions of —.

In this section, we discuss the facial structure of the polytope P(G, K,S). First,
we describe some structural properties. These will be used for determining the
dimension of P(G, K,S).

For each demand k£ and node v, one can compute a shortest path between each of
the pairs of nodes (o, v), (v,dg). If the length of the (o, d)—paths formed by the
concatenation of the shortest paths (ox,v) and (v, dy) is greater that [ then node v
cannot be in a path routing demand k, and we then say that v is a forbidden node
for demand k. Let Vok denote the set of forbidden nodes for demand k € K. Note
that using Dijkstra’s algorithm, one can identify in polynomial time the forbidden
nodes Vok for each demand k € K. On the other hand and regarding the edges,
for each demand k and edge e = ij, one can compute a shortest path between each
of the pairs of nodes (og,%), and (j,dx), and (og,7), and (i,dg). If the length of
the (og,dy)—path formed by e together with the shortest paths (og,i) and (j,dy)
(resp. (ox,j) and (i,dy)) greater that [ then edge ij cannot be in a path routing
of demand k, and we then say that ij is a forbidden edge for demand k due to
the transmission-reach constraint. Let EF denote the set of forbidden edges due to
the transmission-reach constraint for demand & € K. Note that using Dijkstra’s
algorithm, one can identify in polynomial time the forbidden edges Ef for each
demand k € K. Table shows the set of forbidden edges EF and forbidden nodes
Vi for each demand k in K Fig. (b)

klog=dy| wi | Vok Ef

1| a=c 2 4 | {e,d,g} | {cg,dg,de,df ,cd,ef}
2| a=d |1,00]| 4 {9} {cg,dg,df}

3| b= f 2 | 4 |{ed,g}|{cg,dg,de,df, cd,ef}
4| b=e [1,00]| 4 {9} {cg,dg, df}

Table 2.1: Sets of V¥ and Ef of the example of Fig. (b)

Consider a subset of nodes W in V' \ V¥ with o, € W and dy, € V' \ W. Let f be an
edge in a cut 6(W') such that all the edges e € 6(W)\ {f} are forbidden for demand
k. As a consequence, edge f is an essential edge for demand k. As the forbidden
edges, the essential edges can be determined in polynomial time using network flows.

Let EF denote the set of essential edges of demand k, and K. denote the subset of
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demands in K having e as essential edge. Therefore,
e =1, forall k € K and e € EY. (2.11)

In addition to the forbidden edges thus obtained due to the transmission-reach con-
straints, there may exist edges that may be forbidden because of lack of resources
for demand k. This is the case when, for instance, the residual capacity of the edge
in question does not allow a demand to use this edge, i.e., wy > § — Zk’eKe Wi .
Let E¥ denote the set of forbidden edges for demand k, k € K, due to the resource
constraints. Let Ef = EF U EF for k € K. Hence,

a¥ =0, forall k € K and e € E}. (2.12)

As a result of the pre-processing stage, a non-compatibility between the demands
may appear due to a lack of resources. For an edge e, two demands k and k' with
e ¢ Eé“ U Ef U EOI U Ef/, are said to be mon-compatible if the residual capacity
of edge e does not allow to route the two demands k, k' together through e, i.e.,
Wy + Wy > 5 — Y ep, Wi Let K¢ denote the set of pairs of demands (k, k') in K
that are non-compatible for edge e.

On the other hand, a non-compatibility between the edges for a demand may appear
due to the transmission-reach constraint. Consider a demand k. Two edges e = ij ¢
EENEY ¢ =im ¢ EFNEY are said non-compatible edges if the length of all (o, dy)-
paths formed by e = ij and € = Im together are greater than I;,. Note that we are
able to determine the non-compatible edges for each demand k in polynomial time

using shortest-path algorithms.

2.3.1 Dimension

We first describe some properties that are useful to determine the dimension of

P(G, K,S). First the following is easily seen to be true.

Proposition 2.3.1. The follows equation system (2.13)) is of full rank

:L"g:O,forallkeK andeEE{f,
¥ =1, for allk € K and e € E¥, (2.13)
=0, forallk € K and s € {1,...,wy, — 1}.

The rank of system (2.13)) is given by

r=">Y_(IE§| + |Bf| + (wi — 1)).
keK
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Let @) denote a matrix associated with the system (2.13)) which contains r lines linear

independents.

A solution of the C-RSA problem is given by two sets Ej and Sj for each demand
k € K where E}, is a set of edges used for the routing of demand k, and Si is a set
of slots assigned to demand k. For the sake of presentaion, we will denote by Ej a
feasible path, and by Sy the last slots assigned to demand k.

Below are some assumptions that will be considered
a) graph G contains at least one feasible path between o and dy, for all k € K,
b) the number of slots § is largely sufficient to route all the demands,

c) for each demand k € K and e € E'\ (E} U EF), there exists at least a feasible
route E; between oy, and dj, such that Ze’GEk lo+0, <1, and for each e’ € Ej,

the edges (e, e’) are compatible edges for demand k.

Let S' = (E%, S*) be a solution of the C-RSA problem such that E* = (E%, ES, ... EfK|_1, EFK\)
and S° = (54,55, ..., S|iK|71’ SIiKI)’ and let (2°,2°) be its incidence vector.

Note that when the routing of demands is trivial or already established, one can

find a feasible spectrum assignment S° in polynomial time using some heuristics

and greedy algorithm as the well-known First-Fit algorithm [2]. This will be used
throughout each proof of polyhedron dimension or facial structure of some valid in-
equalities such that the set of demands K is considered as an ordered set of demands,

i.e., K = {kl, kQ, ceey k|K|}
Proposition 2.3.2. System (2.13)) defines a minimal equation system for P(G, K, S).

Proof. Consider an equation ux + oz = X of P(G,K,S). To prove that ux + oz
is a linear combination of equations system , it is sufficient to prove that
there exists v = (y1,72,73) ( with fyf’e € Rforall ¥ € Kande € Eéf/,’yg’e €
R for all ¥’ € K and e € Ef/,vg/’s/ eRforall ¥ € K and s’ € {1,...,wp — 1}) such
that (u,0) =~Q.

We will show that o% =0 for all k € K and s € {wy, ..., 5}.

Consider a demand k in K and a slot s in {w, ...,5}. Consider the solution S =
(EY, S°) given by

a) for each demand k; € K with i € {1,...,|K|}, we let E} be the set of edges

involved in a shortest path between oy, and dy,,
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b) for each demand k; € K with ¢ € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots Ilo given by

I? :[ ﬂ {wki7"'7sk)]‘_wk)]’}u{sk]‘ +wki7"'7§}]m[{wki7"'7S_wk‘}u{s+wki7”'7‘§}]
kjED?

if E,gi NEY#QorI) = ﬂ {wi; s vy Sk
k;eD?

where DY = {k;j € {k1,....,ki-1} : B 0 E,?,j # (}. This guarantees that

— wkj} U {Skj + Wiy oees §} if not,

J

o {sp, —wp, + 1,56,y N {sk; —wi; + 1,88, F = 0 for each k; € DY,
o and {sp, —wi, + 1,...,s,} N{s —wr+1,...,s} =0 if Egi NEY#0 (we
take into account the possibility of adding slot s in the set of last slots

S? assigned to demand k in solution S°).

We let Sl% = {si,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S is feasible for the problem, and its incidence vector (z5°, 25" ) belongs to P(G, K, S).
Let S' = (E!,S!) be the solution obtained from S° by adding slot s as last slot
to demand k. Solution S! is feasible for the problem. The corresponding incidence
vector (28 LS 1) belongs to P(G, K, S). Hence, solutions S and S satisfy equation
ux + oz = A. We then obtain that

S

nx ’ + 0280 = ,u:cs

S S

1 St 0 0 k
+0z° = pux® +o0z° +oy.

It follows that o = 0.
In a similar way, we can show that
ok =0, for all k and s € {wy, ..., 5}

Next, we will show that pu¥ =0 for all k € K and e € E\ (E} U E¥).
Consider a demand k € K and an edge e € E \ (E¥ U EF). Consider the solution
S0 = (E"™, ) such that

a) for each demand k; € K with i € {1,...,|K|}, we let E}) be the set of edges

involved in a shortest path between oy, and dy,,

b) we select slot s = wy, as last slot for demand k in solution S,

c) for each demand k; € K \ {k} with ¢ € {1,...,|K|}, we select the smallest slot
index sy, in the set of slots I/ given by

IZ(O :[ m {wki,...,skj—wkj}u{skj+wki,...,§}]ﬂ[{wki,...,sk—wk}u{sk—l-wk“...,5}]

k,‘EDEO
if BN (ERU{e}) #0or I[° = ﬂ {wi,, ooy Sk, —wi, YU {s%, +wy,, ..., 5} if not.

k; GD;(]
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where D? = {k; € {k1,....,ki—1} \ {k} : E’;S N El’g # (}. As a result,

o {sp, —wp, + 1,85, N {sk; —wp; +1,...,58,} = 0 for each k; € DY,
o {sp, —wp, + 1, 86,3 N {sp —wp+ 1,53 =0 if EYN(EYU{e}) #0
( we take into account the possibility of adding edge e in the set of edges

E}? to route demand k).

We let S,’C? = {sk,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

0 0
25" 25" belongs

S’ is clearly feasible for the problem, , and its incidence vector (
to P(G, K, S). Let S? = (E?,52) be the solution obtained from S by adding edge
e € E\ (E U EY) for the routing of demand k in solution S that EZ = E{° U {e},
and remove slot s already selected for demand k as last slot in S and replaced
it by a new slot s’ such that s’ is the smallest slot index in {wg,...,§} such that
{s —wp+1,...,8}N{s" —wp +1,...,8"} = 0 for each demand k' with E2NE # 0.
S? is clearly feasible for the problem. The corresponding incidence vector (1‘32, 252)
belongs to P(G, K, S). Hence, solutions S’° and S? satisfy equation puz + oz = \. It
follows that

S/

0 10
nx + 02 :uxs

S/

2 2 0 10
+02° = ur +,u]§—i-azs —J§+U§/.

Since 0% =0 for all k € K and s € {wy,...,5}, u¥ = 0 for demand & and edge e.
In a similar way, we can show that

pk =0, forall k € K and e € E\ (E§ U EY).

Therefore all the equations of the polytope P(G, K, S) are given only in terms of the
variables z¥ with e € E§ U E¥ and 2* with s € {1,...,w}. We distinguish 3 blocks
of lines in the matrix @ associated with the system (2.13])

a) block Q' corresponds to the equations a:’; =0forallk € K ande € E{f such
that rang(Q') = Yjex |EG],

b) block Q? corresponds to the equations x’g’ =1forallk € K and e € Ef such
that rang(Q?) = Y |EY],

¢) block @3 corresponds to the equations z¥ = 0 for all k € K and s € {1, ..., wp—
1} such that rang(Q*) = "o wi — 1.
QL
Note that the 3 blocks of the matrix @ are independents. Let Q* = Q% be the
Q}

submatrix of matrix @ associated to the equations (2.12]) and (2.11)) and involving
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variables 2% for all e € Ef U E¥, and variables 2¥ with s € {1,...,w;} for demand

k. Note that a forbidden edge can never be an essential edge at the same time.

Otherwise, the problem is infeasible. Furthermore, there is no dependency between

essential edges for each demand k and also for different demands in K. Same thing

for the forbidden edges. We want to show that u* = ’ny,}r + 75@% and ¥ = fyg,fQ'g.

The only solution of these two systems is given by

,ulg = 'yf’e, for all k € K and e € E[’)“,
,u]; = yg’e, forall k€ K and e € Ef,
ok = 'y:]f’s, forall k € K and s € {1,...,wg — 1}.
We conclude at the end that for each kK € K and e € E
e ife e BE
pE =4k ifee Bk
0 otherwise,
yielding
1 =~A*Q +45Q2 for each k € K.

Moreover, for each k € K and s € S

’yéf“s if se{l,...,w,—1}

w0

0 otherwise,

. kE_ kN3
ie., 0% = v30Q.

As a consequence, (i, 0) = vQ as desired.

As a consequence, we have the following result.
Theorem 2.3.1. The dimension of P(G, K,S) is given by

dim(P(G, K,S)) = |K|* (|E| +|S|) — .

2.3.2 Facial Investigation

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)

In this section, we describe facets defining inequalities for the polytope P(G, K, S)
from the cut formulation (2.2))-(2.10)), and the ones from the valid inequalities. First,

we characterize when the basic inequalities ([2.2))-(2.10|) define facets.

Theorem 2.3.2. Consider a demand k € K, and an edge e € E\ (E§UEY). Then,

inequality x¥ > 0 is facet defining for P(G, K,S).
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Proof. Let Fek be the face induced by inequality :U’e“ > 0, that is

FF ={(z,2) € P(G, K,S) : z¥ = 0}.

e

Denote inequality ¥ > 0 by axz + 82 < X. Let uxr + 0z < 7 be a facet defining
inequality for P(G, K,S) and F' = {(z,2) € P(G,K,S) : ux + oz = 7}. Suppose
that F¥ C F. To prove that F¥ is a facet of P(G, K,S), we need to show that there
exist p € R and v = (71,72,73) ( with vf’e €eRforall ¥ € K and e € E(’f,,’yg’e €
R for all ¥ € K and e € E{“/,'yg/’s/ €Rforall ¥ € K and ' € {1,...,wyy — 1}) such
that (u,0) = p(a, B) +7Q.

First, we will show that 0’§I =0 for all ¥’ € K and s € {wy, ..., §}.

Consider a slot s in {wy, ..., 5}, and solution 83 = (E3,S?) such that

a) for each demand k; € K \ {k} with i € {1,...,|K|}, we let Eli be the set of

edges involved in a shortest path between oy, and d,,

b) for demand k, we let E,Z’ be the set of edges involved in a shortest path between

o, and dj, which does not use edge e,

c¢) for each demand k; € K with ¢ € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots IE’ given by

I} =] ﬂ {wiy, ooy 88, —wr; YU{Sk, FWhy, -, SN [{wp,, ooy s—wi fU{s+wp,, .., 5}]
kjED?

if By NEy#Dor I} = () {w,, ..., sk
kjeD3

where D} = {kj € {k1,...,ki 1} U{k}: E} N E}:’j # (}. This guarantees that

, — W, } U {s, +wg,, ..., 5} if not,

o {sp, —wp;, + 1, 86, N {sk; —wr; +1,..., 58, } = () for each k; € D3,
o and {sg, —wi, + 1,...,s,} N{s —wr+1,...,s} =0 if Egl NE}#0 (we
take into account the possibility of adding slot s in the set of last slots

S3 assigned to demand k in solution &?).

We let S,i = {sk, } be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S3 is clearly feasible for the problem, and its incidence vector (],‘83, zSS) belongs to
FF. Now, let S* = (E*, 5%) a solution obtained from S? by adding slot s as last slot

to demand k. Solution S* is feasible for the problem. The corresponding incidence

vector (25, 25") belongs to F¥. Hence, solutions 3 and S* satisfy equation pz +

oz = 7. As a consequence, we have

S3 s _ St st _ .83 S3 k
pr® + o0z =px® +oz° =pux® +oz° +oy.

42



Hence, 0¥ = 0.

In a similar way, we can show that
o =0, forall ¥ € K and s’ € {wy, ..., 5}.

Next, we will show that ¥ = 0 for all demand &’ € K\ {k} and edge ¢’ € E\ (EF U
EY), and pf, = 0 for edge ¢’ € E\ (EY U EF U {e}).

Consider an edge ¢/ € E\ (E§¥ U E¥ U {e}) chosen arbitrarily. Let S = (E',S")
be the solution given by

a) for each demand k; € K \ {k} with ¢ € {1,...,| K|}, we let E,’S be the set of

edges involved in a shortest path between oy, and dy,,

b) for demand k, we let E,’€3 be the set of edges involved in a shortest path between

or and dj, which does not use edge €,

c) we select slot s; = wy, as last slot for demand k in solution S”,

d) for each demand k; € K \ {k} with i € {1, ..., |K|}, we select the smallest slot
index s, in the set of slots I’® given by

IP =1 () {wk oo 86, —wr, JO{k, Fw, s o, SHO{wr, ooy sp—w3 YU 85wk, ..., 53]
k?jED;3

if BPN(EZU{e'}) #0or I[P = ﬂ {Wh;s -y Sk; — Wi, YU{Sk, +wp,, ..., 5} if not,
k;jeDp?

where D? = {kj € {k1,.... ki1 } U{k} : EP N Ef; # (}. This ensures that

. {Skzi —wg, + 1, ...,Ski} N {Skzj — Wy +1,..., Skj} = () for each k]' S D;S,
. {Skzi —wg;, +1,..., Sk’i} N {Sk —wg+1,..., Sk} =0if E,’s N (E;f’ U {6/}) # )
( we take into account the possibility of adding edge e in the set of edges

E7? to route demand k).

We let S,’S = {sk,; } be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S” is clearly feasible for the problem, and its incidence vector (x‘S,S, 23/3) belongs to
FF. Let S® = (E®, S°) be the solution obtained from &’ by adding edge ¢’ € E\(E§U
EY¥) for the routing of demand k in solution S that E} = E/3 U {¢'}, and removing
slot s selected for demand & in S” and replaced it by a new slot s’ € {wy, ..., S} (i.e.,
Sp=(S2\ {s})U{s'} such that {s' —wp +1,...,8}N{s" —wp +1,...,87} =0 for
each k' € K and s” € Sj3 with Ep N E}3 # (). S5 is clearly feasible for the problem.
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The corresponding incidence vector (ZL“SS, z55) belongs to Fek Hence, solutions S’

and S° satisfy equation pux + 0z = 7. As a consequence, we have

S/

3 13
nx +02° :,ua:S

13 /3
S —l—,u];/ +02° —af + ok

5 35_
+02° =pux p

Since o* = 0, it follows that u¥ = 0.

As € is chosen arbitrarily, we have that
pk, =0, for all & € E\ (ES U EY U {e}).
Using similar argument as above, we can show that
pl =0, forall ¥ € K\ {k} and ¢’ € E\ (EF UEY).

By (2.17) and (2.18]), we know that

pk =A< forall k' € K and ¢ € EY,

= fy;“/’e/ for all ¥’ € K and ¢ € EV

ol = 7§/’S/ for all ¥’ € K and s’ € {1, ..., wpr — 1}.

Overall, we obtain that

( VAN
fyf “ife e EY,

N ,Yg;’,e’ if e/ € B,
Her =
p if ¥ =kand e =e,

0 otherwise,
\

for each k¥’ € K and ¢’ € E, and
k/, / .
K Tt e {1, .., wp — 1}
0 otherwise,

for each k¥’ € K and s’ € S.
Clearly, we have (i, 0) = p(a, ) + Q. O

Theorem 2.3.3. Consider a demand k € K, and a slot s € {wg,..,5}. Then,
inequality z& > 0 is facet defining for P(G, K, S).

Proof. Let F¥ denote the face induced by inequality z¥ > 0, that is

FF ={(z,2) € P(G,K,S) : zF = 0}.
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Denote inequality zf > 0 by ar+ 8z < A. Let ux + oz < 7 be a facet defining
inequality for P(G, K,S) and F = {(z,2) € P(G,K,S) : px + 0z = 7}. Suppose
that F¥ C F. To prove that FF is a facet of P(G, K, S), it suffices to show that there
exist p € R and v = (71,72,73) ( with 'yf’e €cRforall ¥’ € K and e € E(’f/,'yg’e €
R for all ¥’ € K and e € Ef',fy:’,f,’s/ eRforall ¥/ € K and s’ € {1,...,wpr — 1}) such
that (u,0) = p(a, B) +7Q.

First, we will show that ¥ = 0 for all demand &’ € K and edge ¢’ € E\ (B} UEY).
Consider an edge e € E \ (E¥ U E¥). Let 8% = (E%,S%) be the solution given by

a) for each demand k; € K with i € {1,...,|K|[}, we let E,gl_ be the set of edges

involved in a shortest path between oy, and dy,,

b) we select the smallest slot index s in {wg,...,5} \ {s} as last slot for demand
k,

c) for each demand k; € K \ {k} with i € {1,...,| K|}, we select the smallest slot
index sy, in the set of slots IiG given by

I7,6 :[ ﬂ {wki7"'7skj_wkj}u{skj+wki’""g}]m[{wki7"'7Sk'_wk}u{sk+wki7"‘75}]
k:]'GD?

if Egi N(ESU{e}) #DorI? = ﬂ {wi,, .o 88, — wi,; } U {sk; + wg,, ..., 5} if not,

k)jED?

where Df = {k;j € {k1,....,ki_1} : Ef 0 E,?j # (0}. This verifies that

o {sp, —wp, + 1,56,y N {sk; —wi; + 1,88, F = 0 for each k; € DY,

o and {sg, —wp, +1, ..., s, N {sp —wp+1, ..., 56} = 0 if Ef N(ERU{e}) # 0
( we take into account the possibility of adding edge e in the set of edges

E9 to route demand k).

We let Sgi = {si,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S 25%) belongs to

S is clearly feasible for the problem, and its incidence vector (x
F*. Based on this, we consider a solution S” = (E", S7) obtained from S% by adding
edge e € E\ (E§UEY) for the routing of demand k in solution S® that Ef = ESU{e}.
S7 is clearly feasible for the problem. The corresponding incidence vector (1‘37, 257)
belongs to F¥. Hence, solutions S and S” satisfy equation px + oz = 7. As a

consequence, we have

/m:SG + 0256 = ,ux57 + 0287 = u$86 + u’g + 0286.
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As a result, puf = 0 for demand k and edge e.

In a similar way, we can show that
=0, forall ¥’ € K and e € E\ (EY UEY).

Next, we will show that, ¥ = 0 for all ¥’ € K\ {k} and s’ € {wy, ..., 5}, and 0%, =
for all slots s" € {wg,...,5} \ {s}.
Consider a slot s’ in {wg, ..., 5} \ {s}. Let 8’6 = (E%,5’®) be the solution given by

a) for each demand k; € K with i € {1,...,|K|}, we let E}’ be the set of edges

involved in a shortest path between oy, and dy,,

b) we select the smallest slot index sy, in {wg, ..., 5}\ {s, s’} as last slot for demand
k,

c) for each demand k; € K \ {k} with i € {1,...,| K|}, we select the smallest slot
index sy, in the set of slots I{G given by

I8 = ﬂ {wiy s ooy Sp; —wie, JU{ sk, +wi, , -y SHN{wp,, -y 8" —wi JU{s" +wi, ..., 5}

k]‘GD;G
if E,’S NES #0orIl% = m {wi,, ooy 88, — Wi, U {s, +wg,, ..., 5} if not,

kj ED£6

where DS = {kj € {k1,.... ki } U{k}: BN E;f; # (0}. This guarantees that

o {sp, —wp, +1,..,5 N0 {sp, —wy, +1,...,8,} =0 for each k; € DS,
e and {sy, —wg, +1,....8tN{s —wp +1,....,8} =0 if E,’S NEPS £0 (we
take into account the possibility of adding slot s’ in the set of last slots

5% assigned to demand k in solution S').

We let S’? = {sk,} be the set of last slots assigned to each demand k; with
ie{l,...,|K|}.

8’0 is clearly feasible for the problem, its incidence vector (xSIG, zs/ﬁ) belongs to FF.

Then consider the solution S® obtained from S’® by adding slot s’ as last slot to
demand k. Solution S® is clearly feasible for the problem. The corresponding inci-
S8 288)

dence vector (z belongs to F¥. Hence, solutions S’ and S® satisfy equation

px + oz = 1. We have so

S/

6 16
U + 025 :st

8/

8 8 6 16
+025 = prs  + 025 —I—Uf/.

Hence, af, = 0.

In a similar way, we can show that

05 =0, forall ¥ € K and s’ € {wy, ..., 5} with s # &' if k = k'.
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By (2.17)) and (2.18)), we know that
= ﬁlﬁl for all k' € K and ¢’ € Ef,
,u];’}/ = fy;“/’e/ forall ¥ € K and € € Ef,,
ol = %l)f/’s/ for all ¥’ € K and s’ € {1, ..., wp — 1}.
We conclude that for each &’ € K and e € E
vf/’e if e € BY,
,ulecl = ’75/’6 if e € Elf”
0 otherwise,

and for each ¥ € K and s’ € S

! o
ks

V3 if ' € {1,...,wp — 1},

, 0 if ' € {wyr,...,5} and k' # k,

0 if ' € {wgr, ..., 51\ {s} and k' =k,
P if ¥ =sand k' =k.

Clearly, we have (u,0) = p(a, 5) + Q.
O

Proposition 2.3.3. Consider a demand k € K. Let (e,e') be a pair of non-
compatible edges for demand k. Then, the inequality

ak ok <1, (2.19)
is valid for P(G, K, S).

Proof. 1t is trivial due to the transmission-reach constraint and given the definition

of non-compatible edges for demand k. O

Based on the definition of a non-compatible demands for an edge e, we introduce

the following inequality.

Proposition 2.3.4. Consider an edge e € E. Let (k, k") be a pair of non-compatible
demands for edge e with e ¢ EE U EF U EE UEF . Then, the inequality

ok 4+t <1, (2.20)
is valid for P(G, K, S).
Proof. 1t is trivial given the definition of non-compatible demands for edge e. [
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Theorem 2.3.4. Consider a demand k € K, and an edge e € E\ (E¥ UEY). Then,
inequality x¥ < 1 is facet defining for P(G, K,S) if and only if

a) there does not exist a demand k' € K \ {k} such that the two demands k and

k' are non-compatible demands for edge e,

b) and there does not exist an edge ¢’ € E\ (E¥ U EF U {e}) such that the two

edges e and €' are non-comptible edges for demand k.

Proof. Neccessity.
For demand k and edge e € E\ (E} U E}), if

a) there exists a demand &’ € K \ {k} such that the two demands k and k" are

non-compatible demands for edge e. Then, inequality z¥ < 1 is dominated by

inequality (2.20)).

b) there exists an edge ¢’ € F \ (E¥ U EX U {e}) such that the two edges e and ¢’

are non-comptible edges for demand k. Then, inequality xlg < 1 is dominated
by inequality ([2.19)).

As a result, inequality 2% < 1 is not facet defining for P(G, K, S).
Sufficiency.
Let F’* denote the face induced by inequality =¥ < 1, that is

F* ={(z,2) € P(G,K,S) : 2 = 1}.

Denote inequality zF < 1 by az + 82z < \. Let ux + 0z < 7 be a facet defining
inequality for P(G, K,S) and F' = {(z,2) € P(G,K,S) : ux + 0z = 7}. Suppose
that F’* C F. To prove that F* is a facet of P(G, K, S), we need to show that there
exist p € R and v = (71,72,73) ( with vf’e eRforal ¥ € K and e € E(’fl,véc’e €
R for all ¥ € K and e € Ef/,ﬁyé‘,’s/ eRforall ¥ € K and ' € {1,...,wy — 1}) such
that (u,0) = p(a, B) +7Q.

First, we will show that 0¥ = 0 for all ¥’ € K and s € {wy, ..., 5}.

Consider a slot s in {wy, ..., 5}. Let 8° = (E?,S%) be the solution given by

a) for each demand k; € K \ {k} with i € {1,...,|K|}, we let Egi be the set of

edges involved in a shortest path between oy, and d,,

b) for demand k, we let Eg be the set of edges involved in a shortest path between

o, and di which uses edge e,

c) we select the smallest slot index s in {wg, ..., 5} \ {s} as last slot for demand

k in solution S,
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d) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot
index s, in the set of slots I? given by

=] ﬂ {wi,, ooy 88, —wr, YU{Sk, FWhy, -0, SHN[{wp,, ooy s—wi fU{s+wp,, .., 5}]
k]'ED?
if E,i NE)#(Qor I = ﬂ {wi; s .-y Sk
k; €D}

i~ wkj} U {Skj + wg,, ..., 8} if not.

where D} = {k;j € {k1,....ki 1} U{k}: E} 0 Egj # (}. This ensures that

o {sp, —wp; + 1, sk, y N sk —wi; + 1,88} = 0 for each k; € DY,

o and {sp, —wy,+1,..., sk, }N{s—wr+1, ..., s} = 0 ( we take into account the
possibility of adding slot s in the set of last slots S,% assigned to demand

k in solution S?).

We let Sgi = {sg,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S? is clearly feasible for the problem, and its incidence vector (9359,239)

to F'¥. Then consider the solution S'© = (E'9, §19) obtained from S? by adding

slot s as last slot to demand k. Solution S' is feasible for the problem. The
xslo 2510)

belongs

corresponding incidence vector ( belongs to F’F. Hence, solutions S? and

S'0 satisfy equation pux + o0z = 7. We then obtain that

S

9 9 1
nx +025 = ,ua:‘s S

0 10 9 9
+02° = ur +02° —l—af.

Hence, 0% = 0.

In a similar way, we can show that
O‘fl =0, forall ¥ € K and s € {wy, ..., 5}

Next, we will show that ¥ = 0 for all demand &' € K\ {k} and ¢’ € E\ (Ef UEY),
and ¥, = 0 for demand k and ¢’ € E\ (E§ U Ef U {e}).
Consider an edge ¢’ € E\ (E¥ U E} U {e}) chosen arbitrarily. Let S = (E",5")

be the solution given by

a) for each demand k; € K \ {k} with i € {1,...,|K|}, we let Eﬁj be the set of

edges involved in a shortest path between oy, and d,,

b) for demand k, we let E,’f’ be the set of edges involved in a shortest path between
or, and dj, which uses edge e, and edge €’ is compatible-edge with all the selected

edges e” € E’;Cg in solution S8, i.e., Ze”eE,’f lor + Lo < .
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c) we select the slot s = wy as last slot for demand £,

d) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot

index s, in the set of slots I{g given by

_[;9 = m {’wki, oy Sky — wk],} U {Skj + wg;, ...75} if Eg N (E]lcg U {6/}) # ()
k)jEDgg

or I = ﬂ {wi;y ooy 88, — Wi, U {s, +wg,, ..., 5} if not,

kj ED£9

where D = {k;j € {k1,.... ki1 } U{k} : E}) N Eﬁi # (0}. As a result,

o {sp, —wp, +1,...,85,} N {sk; —w,; +1,...,58,} = 0 for each k; € D,

o and {sg, —wp, +1, ..., s, } N {sp —wp+1, .., 81} = 0 if B0 (EPU{e'}) # 0
( we take into account the possibility of adding edge ¢’ in the selected

path E}? to route demand k in solution S").

We let S,’g = {sg,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S is clearly feasible for the problem, and its incidence vector (:L‘Slg, 25,9)
to F'F. Let S = (E'!,S') be the solution obtained from solution S” by adding
edge ¢/ € E\ (Ef U EY) for the routing of demand & in solution S’ which means
that El! = E? U{e}. The last slots assigned to the demands K, and paths assigned
the set of demands K \ {k} in & remain the same in solution S, i.e., S{' = S
for each k € K, and E}! = E for each k' € K \ {k}. S! is clearly feasible for the

problem. The corresponding incidence vector (a:sn,zsu) belongs to F'*. Hence,

belongs

solutions S” and S satisfy equation px + oz = 7. It follows that

S/

9 19 1
ur + 02 :uxs

S/

1 11 9 19
+ 02 = ux +u'§,+azs .

Hence, M];/ = 0.

In a similar way, we can show that
E _ / k k
e =0, forall e’ € E'\ (Ej U EY U {e}).

Moreover, we re-do the same procedure for all & € K \ {k} and ¢’ € E\ (E§ U E}).
We conclude at the end that

pl =0, forall ¥’ € K\ {k} and ¢’ € E\ (E} UE}),
pk =0, for all ¢ € E\ (E5 U EY U {e}).
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We know from ([2.17) and (2.18]) that
,u';// = ,Yf’,e’ for all ¥ € K and € € E(’)“/,
u';; = ygl’el for all ¥ € K and € € Ef/,
K _

ok = ryéfl’sl for all ¥ € K and s’ € {1,...,wp — 1}.

We conclude that for each k' € K and e’ € F

(

'yfl7e/ if ¢ € Bf,
o 'ygl’e/ if e € Ef/,
lue’ =
p if ¥ =kand e =e,
0 otherwise,
and for each ¥ € K and s € §
o 'y:’,f/’s if se{l,..,wp —1},
oy =
0 otherwise.
Consequently, (i, 0) = p(a, f) + vQ which ends the proof. O

Theorem 2.3.5. Consider a demand k € K, and a slot s € {wg,..,5}. Then,
inequality z& < 1 is facet defining for P(G, K,S) if and only if there does not erist
a demand k' € K\ {k} with E¥ 0 EF # 0.

Proof. Neccessity.

For a demand k € K and a slot s € {wg, .., 5}, if there exists a demand k¥’ € K \ {k}
with E{“ N Ef, # (. Then, the inequality z¥ < 1 is domined by the non-overlapping
inequality for each edge e € E¥ N E¥. As a result, the inequality z¥ < 1 is not
facet defining for P(G, K, S).

Sufficiency.

Let F’F be the face induced by inequality z¥ < 1, that is

F¥ = {(z,2) € P(G,K,S) : 2¥ = 1}.

We denote inequality z¥ < 1 by ax + Bz < A. Let ux 4+ 0z < 7 be a facet defining
inequality for P(G, K,S) and F' = {(z,2) € P(G,K,S) : ux + 0z = 7}. Suppose
that F’* C F. To prove that F!* is a facet of P(G, K,S), we need to show there
exist p € R and v = (71,72,73) ( with vf’e eRforal ¥ € K and e € E(’f,,vg’e €
R for all ¥ € K and e € Ef/,ﬁygl’sl eRforall ¥ € K and ' € {1,...,wy — 1}) such
that (u,0) = p(a, B) +7Q.

First, we will show that % = 0 for all demand k' € K and edge e € E\ (Ef UE}).
Consider an edge e € E'\ (E} U EF). Let S'2 = (E'2, 512) be the solution given by
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a) for each demand k; € K \ {k} with ¢ € {1,...,|K]|}, we let E,i? be the set of

edges involved in a shortest path between oy, and d,,

b) for demand k, we let E,? be the set of edges involved in a shortest path between
o and d which does not use edge e, and edge €' is compatible-edge with all

the selected edges e’ € Eiz, ie., Ze”eE,ﬁQ lor + Ll <.

c) we select slot s, = s as last slot for demand k, and we let S}? = {s},

d) for each demand k; € K \ {k} with i € {1, ..., |K|}, we select the smallest slot
index sy, in the set of slots Ii12 given by

Ii12 = ﬂ {Wg; s ooy Sk; —wkj}U{skj—i—wki, oy SHN{wgy s -y Sp—wp FU{ s +wp, , .., 5}
k?jEDi12
if BR2N(ER2U{e}) #0or I* = () {wk,, .o, 56, —wr, }U{sk, +wi,, ..., 5} if not,
kjED%Q

where Dj? = {kj € {k1,...., ki 1} U{k}: 2N E,f # (0}. As a result,

o {sp, —wg, + 1,85} N {sk; —w; +1,...,5,} = 0 for each k; € D}?

o and {sg, —wk, +1, ..., sp, fN{sp—wr+1, ..., s} = 0 if E,i?ﬂ(E,?U{e}) # 0
( we take into account the possibility of adding edge e in the selected path

E}? to route demand k in solution S'2).

We let S,f = {sg,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S'2 is clearly feasible for the problem, its incidence vector (a5, 25")
F'*. Then consider the solution S'3 = (E13, §13) obtained from S'? by adding edge
e € B\ (Ef U EY) for the routing of demand k in solution S'2 which means that
EéS = E,? U{e}. The last slots assigned to the demands K, and paths assigned the
set of demands K \ {k} in §'? remain the same in solution §'3, i.e., S}3 = S}? for
each k € K, and E[} = E[? for each k' € K \ {k}. S' is clearly feasible for the

problem. The corresponding incidence vector (;USB,ZSIS) belongs to F'¥. Hence,

belongs to

solutions S'2 and 813 satisfy equation px + oz = 7. It follows that

12 12 1 1
,ua:S +02° :,ux‘s S

3 13 2 12
+02° = ux +u§—|—azs.

As a result, pu¥f = 0.

In a similar way, we can show that

pF =0, forall ¥’ € K and e € E\ (EY UEY).
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Next, we will show that, 0% = 0 for all ¥’ € K\ {k} and s’ € {wy, ..., 5}, and 0% =0
for all slots s’ € {wy, ..., 5} \ {s}.

Consider a slot s’ in {wg, ...,5} \ {s}. Let S'*2 = (E"2,5'?) be the solution given
by

a) for each demand k; € K with ¢ € {1,...,|K|}, we let El’éz be the set of edges

involved in a shortest path between oy, and dy,,

b) we select slot s = s as last slot for demand k, and we let S}1? = {s},

c) for each demand k; € K \ {k} with i € {1,...,| K|}, we select the smallest slot
index sy, in the set of slots I/'? given by

A ﬂ {wiy s ooy Sp; —wi, YU sk, +wie,, -y SHN{w, , -y 8’ —wi JU{s" +wi,, .., 5}
kj€D§12
if E,’le NE? 40 or I = m {wi,, .oy 88, — Wi, } U {s, + wg,, ..., 5} if not.
k)jEDélz

where Di'? = {kj € {k1, ... ki1} U{k} : B> N E,’clf # (}. This guarantees
that

o {sp, —wp;, + 1,856, N {sy; —wy; +1,...,5,} = () for each k; € D2
o and {sg, —wi, +1,...,85,} N{s —wr +1,....8} =0 if E,’JZQ NE2 £ (
we take into account the possibility of adding slot s’ in the selected last

slots S}1? to route demand k in solution &''2).

We let S,’clf = {si, } be the set of last slots assigned to each demand k; with

ied{l,...,|K|}.
82 is clearly feasible for the problem, its incidence vector (mslu, 25/12)

F!*. Then we derive solution S'* from &’'? by adding slot s’ as last slot to demand &

belongs to

in S"'2. Solution S™ is clearly feasible for the problem. The corresponding incidence

14 14
S S )

vector (z° ,z belongs to F'*. Hence, solutions &’'? and S satisfy equation

px + oz = 1. We have so

712 112 1
xS +0z8 = S

4 14 712 712
= px® + 0% = /ws +02°

12 +O'§/

Hence, Jf, = 0.

In a similar way, we can show that

ol =0, forall ¥’ € K and s’ € {wy, ...,5} with s # &' if k = k',
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By (2.17)) and (2.18} , we know that
,u,k,/ = fyf/’e/ for all ¥’ € K and € € E¥,
pk =A< forall ' € K and ¢ € EV,
ol = 73 for all ¥ € K and ¢’ € {1,...,wp — 1}.
Overall, we obtain that
Ve ifee BY,
ne = ife e B,
0 otherwise,

for each ¥’ € K and e € E, and

(’yéfl St € {1, .., wgr — 1},

0 if ' € {wyr,...,5} and K # k,

0 if ' € {wy,...,5} \ {s} and ¥ =k,
P if ¥ =sand k' =k,

k/
Oy =

for each ¥’ € K and s’ € S.
As a consequence, (i, 0) = p(a, 8) + Q.

Theorem 2.3.6. Consider a demand k € K. Then, inequality (2.5)), Zi:wk 2>,
is facet defining for P(G, K, S).

Proof. Let Fsk be the face induced by inequality Zi’:wk zf > 1, that is

F¥ = {(z,2) € P(G, K,S) : Zz =1}.

sS=wg

Denote inequality Z zf > 1by ax+ 8z < A. Let px+o0z < 7 be a valid inequality
S=wpg

that defines a facet F' of P(G, K,S). Suppose that FSIC C F. To prove that FSk is

a facet of P(G, K,S), we show that there exist p € R and v = (7y1,72,73) ( with
“cRforallk’ € Kande € Eg/,vg’e € Rforall ¥ € K and e € Ef/,véfl’sl €

R for all ¥ € K and s’ € {1,...,wpr — 1) such that (u,0) = p(«, 8) + Q.

First, we will show that % = 0 for all demand &’ € K and edge e € E\ (EY UEF).

Consider an edge e € E \ (EY¥ U E¥). Let S'® = (E'%, 5'%) be the solution given by

a) for each demand k; € K \ {k} with i € {1,...,|K|}, we let E,S’ be the set of

edges involved in a shortest path between oy, and d,,
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b) for demand k, we let E’%E’ be the set of edges involved in a shortest path
between o and di such that edge e is compatible-edge with all the selected
edges e’ € B}, ie., Ze”eEE lor + 1o < g,

c) we select slot s, = wy, as last slot for demand k, and let S5 = {s},

d) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot
index sy, in the set of slots I!® given by

Ii15 — [ ﬂ {wkm wey Sk *wkj}U{Skj FwWg, s ..y 5}]ﬂ[{wk“ . Skf’u}k}U{Sk%*’wk“ ey 5}}
ijDil‘s

if Ey°N(EN{e}) #0or I}° = ﬂ {Wey oy Sk, —wi, JU{sk, +wy,, ..., 5} if not,
k‘]‘GD}E’

where D}® = {k; € {ki,...,ki—1} U {k}: E,S’ N E,g’ # (}. This ensures that

. {Skzi —wg, + 1, ...,Ski} N {Skzj — W, +1,..., Skj} = () for each kj S Dil5,

o {sp, —wp, +1, sk N{s—wp+1,...,8} =0if BN (EP U{e}) #0 (
we take into account the possibility of adding edge e in the selected path

E}5 to route demand k in solution S17).

We let S,f = {sg,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S' is feasible for the problem, its incidence vector (xsls, 2315) belongs to FS’“. Then
we derive a solution S'6 = (E'5, 1) obtained from S'° by adding edge e € E\ (E5U
EY) for the routing of demand k in solution S'® which means that E[5 = E1° U {e}.

The last slots assigned to the demands K, and paths assigned the set of demands

corresponding incidence vector (

K\ {k} in 8 remain the same in solution S, ie., S}6 = S} for each k € K,
and B9 = E}} for each k' € K \ {k}. S'° is clearly feasible for the problem. The

msm, 2516) belongs to FSk Hence, solutions S and

S'6 satisfy equation pux + oz = 7. It follows that

15 15 1 1
,ua:S +02° :,uxs S

6 16 5 15
+02° = ux +u§—|—azs.

As a result, p¥ = 0.

In a similar way, we can show that

pt =0, forall ¥’ € K and e € E\ (EY UEY).

Next, we will show that, 0% = 0 for all ¥ € K \ {k} and &' € {wy, ..., 5}.

Consider a demand k' in K \ {k} and a slot s’ in {wy,...,5} \ {s}. Let S"° =

(E"5,8"5) be the solution given by
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a) for each demand k; € K with ¢ € {1,...,| K|}, we let El’glf’ be the set of edges

involved in a shortest path between oy, and d,,

b) we select slot s, = wy, as last slot for demand k, and let S}1° = {s;},

c¢) we select the smallest slot index s from the set of slots I;3® given by

I35 = {wy,, ooy sSp—wi Y0 {sp 4wy, , ..., SP\{s'} if EZPNEL # 0 or 1) = {wy, ..., 5}\{s'} if not.

d) for each demand k; € K \ {k,k'} with i € {1,...,|K|}, we select the smallest
slot index sy, in the set of slots I/1® given by

I = ﬂ {wiy s ooy Sg,—wi, YU sk, +wie,, -y SHN{w, , -y 8" =i YU{s +wy,, , ..., 5}]
ijDgl‘r)

if E,’Clb5 NE #0or I = m {wi,, ooy 88, — Wi, } U {s,; +wg,, ..., 5} if not,
kjEDéls
where D' = {k;j € {k1, ... ki1 } U{k, K} : BN E,’le # (}. This guarantees
that

. {Ski —wg, + 1, ~-75ki} N {Skj — W, +1,..., Sk].} = () for each kij S D;ls,
o {sp, —wp, + 1,55, N{s —wp +1,.,s} =0if E,’€125 NEY #£0 (we
take into account the possibility of adding slot s’ in the set of last slots

S;%5 to route demand &’ in solution S'1°).

We let S,;lf = {si, } be the set of last slots assigned to each demand k; with
ie{l,...,|K|}.

S'' is feasible for the problem. The corresponding incidence vector (xslls,zslls)
belongs to L. Then we derive a solution S'7 from &'*® by adding slot s as last slot
to demand k’. Solution S'7 is clearly feasible for the problem. The corresponding
incidence vector (25", 25"") belongs to F¥. Hence, solutions 8" and S'7 satisfy

equation ur + oz = 7. We have so

115 115 17 17 /15 /15 /
,uwS +025 = ,u:JcS +025" = ,u:cs +0257 + afl.
/
Hence, O'L]:, =0.
In a similar way, we can show that

fol =0, for all ¥ € K and s’ € {wy, ..., 5}.

Let prove now that 0¥ for demand & and slot s in {wy, ..., 5} are equivalent.
Consider a slot s’ € {w, ..., 5}. Let S = (E'®, 5'%) be the solution given by
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a) for each demand k; € K with i € {1,...,|K|}, we let EN',S be the set of edges

involved in a shortest path between oy, and d,,

b) we select the smallest slot index s, from {wy, ..., 5} \{s'} as last slot for demand
k,

c) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot
index s, in the set of slots I} given by

1115 = ﬂ {Wk; s ey skjfwkj}u{skﬁrwk“ ey SHNHwg, y ooy 8" —wi JU{s"+wp, ..., 5}
k?jEEils
if E,;E’ NEP #Qor I° = ﬂ {wi; s ey Sk
k)jED}S

where D}° = {k; € {k1, ..., ki1 } U {k} : E,if N E,%f # (0}. As a result,

— wy,; } U {sg; + wy,, ..., 5} if not,

J

o {sg, —wp, + 1,85} N {sk; —wy,; +1,...,5¢,} = 0 for each k; € D,

o {sp, —wy, + 1,8, N{s —wp+1,..8=0if E,f NEP #0 (we
take into account the possibility of adding slot s’ in the set of last slots

5’,};5 to route demand k in solution S'°).

We let 5%15 = {si,} be the set of last slots assigned to each demand k; with
ie{l,..,|K|}.

S™ is clearly feasible for the problem, and its incidence vector (xg S ") belongs

to F g . Then consider the solution S'® obtained from S'° by adding slot s’ as last
slot to demand k£’ in 8,%8 and removing the last slot s assigned to k in 5’,15 (i.e.,

Si® = (SI°\ {s})U{s'} for demand k). Solution S'® is feasible for the problem. The

. .. 18 18 . ~
corresponding incidence vector (xs , 25 ) belongs to Fg Hence, solutions S'° and

S8 satisfy equation px + oz = 7. We have so

31

5 315 18 18 315 315
/ﬂ;s +025 = uxs +025 = ,uxs +025 + Ufl — U’;-

k

s

As a result, af/ =0

In a similar way, we can show that

af/ = af, for all slots s, s" € {wy, ..., 5}.

Consequently, we obtain that ¢* = p for demand k and slot s in {wy, ..., 5}.

We know from (2.17) and ([2.18]) that
= 'yf/’el for all k' € K and ¢’ € Ef,
= fy;“/’el for all k' € K and ¢’ € BV,

E

oy = ’ygl’s/ for all ¥ € K and ¢’ € {1,...,wp — 1}.

o7



We conclude that for each ¥ € K and e € E
fyfl’e ifee Eé‘/,
P =k e e Y,
0 otherwise,

and for each k¥’ € K and s € S

7§I’S if se{l,..,wp —1},

ot = p if ¥ =k and s € {wy, ..., §},
0 otherwise.
As a consequence, (u,0) = p(a, B) + Q. O

Theorem 2.3.7. Consider a demand k in K and a subset of node X C V, with | XN
{og,di}| = 1 and §(X) N EF = 0. Then, inequality (2.2)), D ees(X) 8 > 1, is facet
defining for P(G, K,S).

Proof. Let F)k( denote the face induced by inequality Z a:if > 1, that is
e€(8(X)\EF)

F% ={(x,2) € P(G,K,S): > ab=1}
e€(8(X)\E})

Let X = {ox}. Denote inequality Zee(a(x)\Eg)xlg > 1by ar + 8z < A Let
pxr + oz < 7 be a facet defining inequality for P(G, K,S) and F = {(z,2) €
P(G,K,S) : ux + oz = 7}. Suppose that F¥ C F. To prove that F% is a facet
of P(G,K,S), we need to show that there exist p € R and v = (v1,72,73) ( with
yf’e € Rforall ¥ € K and e € E(’)“/,vg’e € Rforall ¥ € K and e € E{“/,véfl’sl €
R for all ¥’ € K and s’ € {1,...,wpr — 1}) such that (u,0) = p(a, 8) + Q.

First, we will show that o = 0 for all ¥’ € K and s € {wy, ..., 5}.

Consider a slot s in {wy, ..., 5}. Let S = (B9, S19) be the solution given by

for each demand k; € K\ {k} with i € {1,...,|K|}, we let E,%? be the set of edges

involved in a shortest path between oy, and dy,,

for demand k, we let E,ig be the set of edges involved in a shortest path between oy
and dj,. This guarantees that one edge e from (5(X)\ E§) is chosen to route demand
By i, [(0(X) \ Eg) NER| =1,

for demand k, we select the smallest slot index s in {wg, ..., 5} \ {s} as last slot for
demand k,
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d) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Ii19 given by

9= ﬂ {wi,y ooy 86, —wi, U {sk; +wiy, -, 5 O [{wrgy oy 8 — wi } U {s +wp,y .., 5]
k)]'EDilg
if E,i? NEP £Qor I}° = ﬂ {wi;y oy 88, — Wi, } U {s, +wg,, ..., 5} if not,

kjeD;®
where D} = {k; € {k1,....ki 1} U{k}: E7 N E,g’ # (}. This ensures that
o {sp, —wp; + 1, sk, y N {sk;, —wi; + 1,88} = 0 for each k; € D}?,

o {sp, —wk, + 1,8, N{s—wp+1,...s} =0 if E,%Zg NER £ 0 ( we take
into account the possibility of adding slot s in the set of last slots S,}:g to route

demand k in solution S*?).

We let S,i? = {si, } be the set of last slots assigned to each demand k; with i €
{1,..,|K|}.

S'Y is clearly feasible for the problem, and its incidence vector (xs 19, 2319)
F%. Then consider the solution S? = (E2°,529) obtained from S by adding slot
s as last slot to demand k£ without modifying the paths assigned to the demands K
in S (i.e., E,%O = B} for each k € K), and the last slots assigned to the demands
K\ {k} in 8! remain the same in solution S? i.e., S}? = SZ for each demand

k' € K\ {k}, and S?° = S1% U {s} for demand k. Solution S is feasible for the
xSQO 2520)

belongs to

problem. The corresponding incidence vector ( belongs to F}k( Hence,

solutions S and S?° satisfy equation px + oz = 7. We then obtain that

Sl 319 52 820 Sl 31

9 0 9 9 k
ux +oz = ux +oz = ux +o0z +oy.

Hence, o = 0.

In a similar way, we can show that
afll =0, for all ¥ € K and s € {wy, ..., 5}.

Next, we will show that ¥, = 0 for all demand &' € K\ {k} and ¢’ € E\ (E¥ UEY),
and p¥, = 0 for demand k and ¢’ € E\ (Ef U EY U§(X)).

Consider an edge €/ € E\ (E¥UEFUS(X)) chosen arbitrarily. Let S1% = (E'!9, 5"19)
be the solution given by

a) for each demand k; € K \ {k} with ¢ € {1,...,|K|}, we let E,/gli9 be the set of edges

involved in a shortest path between oy, and dy,,
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b)

for demand k, we let El’€19 be the set of edges involved in a shortest path between oy

and dj, such that edge €’ is compatible-edge with the selected edges e” € Ei!, i.e.

Ze”GEQQ ler + Lo < .

we select the slot s = wy, as last slot for demand k, and let S,’C19 = {sk},

)

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
Sk, in the set of slots I!*? given by

11{19 - [ ﬂ {wkm vy Sky 7wk_j}U{Skj + W, -y 5}] N [{wkm 0y Sk *wk}u{sk T Wy ey 5}]
k‘jGDélg
if B N (B u{e’}) #0or IV = ﬂ {wi,, ..., sk, — wi, } U{sk, + w,, ..., 5} if not,
kjEDélg

where DY = {k; € {ki1, ..., ki—1} U {k} : E,’Cli9 N E,’glj9 # (0}. As a result,
o {sp, —wp;, + 1, 86, N {sk; —wr; +1,..., 5, } = () for each k; € D9

o {sp, —wp, + 1,8, N {s —wp+1,...,8} =0if BN (B U{e}) #0 (we
take into account the possibility of adding edge ¢’ in the selected path E}!Y to

route demand k in solution S"17).

We let S,’Clig = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,..,|K|}.

S"9 is feasible for the problem. its incidence vector (xsllg, zsllg) belongs to FX. Let
S?! = (B, 5?1) be the solution obtained from §''Y by adding edge ¢’ € E\ (EFUEY)
for the routing of demand k in solution S'*Y which means that EZ' = E}PU{e’}. SH
is clearly feasible for the problem. The corresponding incidence vector (x32172521)
belongs to F )k( Hence, solutions &' and S?! satisfy equation puz + oz = 7. It

follows that
uxs/lg + 0.28/19 _ Mmle + 0.2,821 _ ,ux‘sllg + ILL];.I + 0-28/19'

Hence, ulg, = 0.
In a similar way, we can show that
pl =0, forall ¥ € K\ {k} and ¢’ € E\ (EF UE}),
pk =0, for all € € E\ (EF U EY U§(X)).
Next, we will prove that the u# for all edge e € (§(X) \ E¥) are equivalent.

Consider an edge ¢’ € (§(X) \ E}) such that ¢’ ¢ E°. Let S = (£, 5') be the

solution given by
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a)

b)

for each demand k; € K \ {k} with i € {1,...,|K|}, we let E,i? be the set of edges

involved in a shortest path between oy, and dy,,

for demand k, we let E}g be the set of edges involved in a shortest path between oy
and dj,. This guarantees that one edge e from (5(X)\ EF) is chosen to route demand
ke [(6(X) \ EF) N E| =1,

we select the slot s = wy, as last slot for demand & , and let g}ig = {si},

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots 1:1-19 given by

I~Z,19 = [ ﬂ {wki, ces Sk —wkj}U{S/Cj +wy, , ...,5}] N [{wki, very SE —wk}U{sk + wg, , ...,§}]
ijDilg

if BN (EPU{}) #£Dor I} = ﬂ {wk,, .-y Sk,

. — W, U {sk, +wg,, ..., 5} if not.
k;€D}®

where D} = {kj € {k1, ..., ki_1} U {k} : Eéf’ N E,g’ # (}. This guarantees that
o {sp, —wg;, + 1,y sk, y N sy —wiy + 1,088, F = 0 for each k; € Dilg,

o {sp, —wg, + 1,86, tN{s —wr+1,..,8t=0if E,%Zg N(EP U{e}) # 0 ( we
take into account the possibility of using edge €’ in the selected path Elg’ to

route demand k in solution S19).

We let 5%? = {sk, } be the set of last slots assigned to each demand k; with i €
{1,..,|K|}.

S§19 s clearly feasible for the problem, and corresponding incidence vector (mglg, 2519)
belongs to F%. Then consider the solution §?2 obtained from S by modifying the
path assigned to demand k in S from E’,ig to a path E,%Q passed through edge €’
with |(§(X)\ E§) N EZ| = 1, and modifying the last slots assigned to some demands
K C K from 5%9 to SI%Q for each k € K while satisfying non-overlapping constraint.
The paths assigned to the demands K \ {k} in S' remain the same in S?? (i.e.,
EZ = E}Y for each k” € K\ {k}), and also without modifying the last slots assigned
to the demands K\ K in §*, i.e., S}? = S for each demand k € K\ K. Solution S??
257 257

is feasible for the problem. The corresponding incidence vector ( belongs

to F )k( Hence, solutions S and 8§22 satisfy equation pz + 0z = 7. We have so

319 319 322 822 S~19 519 k k ’; ;:
ux® o0z =pz® +o0z° =puz® oz +,ue/—ue—|—z ZUSI_ZO'S

keK s'€S?? seSig
k k
+ Z Mer — Z ey -
e”EEiQ\{e’} e”EE‘ig\{e}
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Since p¥, = 0 for all ¢’ € E\ (Ef U Ef U§(X)), and ¢¥ = 0 for all &’ € K and
s € {wys, ..., 5}, it follows that u’g, = uk.

In a similar way, we can show that

fe = py, for all pairs e, e’ € (6(X) \ Ej).
Consequently, we obtain that ¥ = p for all e € (§(X) \ E}).
By (2.17) and (2.18]), we know that

= fyf/’el for all k' € K and ¢’ € Ef,
,uf// = 75/"‘3, for all ¥’ € K and ¢ € EV

ok = fyg,fl’s/ for all ¥ € K and s’ € {1,...,wp — 1}.

We conclude that for each ¥’ € K and e € E
yf,’e ifee Eg/,
o 75,’6 if e € BV,

) if k=4k"and e € (6(X)\ Eb),

0 otherwise,

and for each ¥ € K and s € S

o 'y:’,f/’s if se{l,..,wp —1},
oy =
0 otherwise.
As a consequence, (i, 0) = p(a, 8) + Q. O

In what follows, we present several valid inequalities for P(G, K,S), and study

their facial structure.

2.4 Valid Inequalities and Facets

We start this section by introducing some classes of valid inequalities that can be

defined using Chvatal-Gomory procedure.

2.4.1 Edge-Slot-Assignment Inequalities

Proposition 2.4.1. Consider an edge e € E with K. # (0. Let s be a slot in S.
Then, the inequality

min(s+wg—1,5)

S k< (2.21)

keKe s'=s
is valid for P(G, K, S).
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Proof. Inequality ensures that the set of demands K, cannot share slot s over
edge e, which means that slot s is assigned to at most one demand k from K. over
edge e. We know from the inequality that for each pair of demands k, k" € K,
with k # &/

min(s+wg—1,3) min(s+w;s—1,5)
Z 25/ + Z Zf// S ].,
s'=s s'=s
given that zF = 2% = 1. After that, we use the Chvatal-Gomory and recurrence

procedures to prove that (2.21)) is valid for P(G, K,S). For any subset of demands
K C K., by using a recurrence procedure, we get that for all demands K’ C K with
K| = K] -1

min(s+wg—1,5)

Z Z zfl <1

keK' s'=s

By adding the previous inequalities for all subset of demands K’ C K with |K’| =
K| -1

K/gf( keK' s'=s K'CK
|K'|=]K|-1 |K'|=]K|-1

Note that for each k € K, the sum ZH}TSSW’“ L9 2k appears ((‘[LI‘(| 1) -1)=|K|-1
times in the previous sum. This implies that

min(s+wg—1,5)

Y Y (K== <K

keK s'=s

By dividing the two sides of the previous sum by |K| — 1, we have

min(s+wg—1,5) ~ min(s+wg—1,5) ~
K K] K K]
G zg < = .
I S R S SR P

heK §'=s keK s'=s
As a result,
min(s+wg—1,5) ~
K
S 2k <1 given that | ol | =
: - K| -1
keK s'=s
We conclude at the end that inequality (2.21)) is valid for P(G, K, S). 0

Inspiring from inequality (2.21), and based on the non-overlapping inequality
(2.6), we define the following inequality.
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Proposition 2.4.2. Consider an edge e € E. Let s be a slot in S. Consider a
triplet of demands k, k', k" € K with e ¢ EENEE NEY, (k,K) ¢ K¢, (k, k") ¢ K¢,
and (k' k") ¢ K. Then, the inequality

min(s+wy—1,3) min(s+w;s—1,5) min(s+wg» —1,5)
k k/ kn k k/ kn < 4
T, +x, +T, + Zg + Zg + Zgp < 4,
s'=s s'=s s”=s

(2.22)
is valid for P(G, K, S).

Proof. Consider an edge e € E. Let s be a slot in S. Inequality ensures that
if the three demands k, k', k” pass through edge e, they cannot share slot s.

Let show that inequality can be seen as Chvatal-Gomory cuts using Chvatal-
Gomory procedure. We know from that

min(s+wg—1,5) min(s+w;s—1,5)
k+ K’ + k + K’ <3
e + x4 Zg zg <3,
s'=s s'=s
min(s+wg—1,3) min(s+wg» —1,3)
k, + k” —I_ k + k” < 3
[L’e [L‘e ZS/ ZS” S 9,
s'=s s’=s
min(s+w;s—1,5) min(st+wg» —1,3)
k/ k” k/ k:: <
T, +x, + Zg + Zg < 3.
3’:3 S”ZS

By adding the three previous inequalities, we get the following inequality

min(s+wg—1,5) min(s+w;s—1,5) min(s+wg» —1,5)
2 k 2 k/ 2 k77 2 k 2 k/ 2 k77 <
T, +2x;, +2x; + Zg + Zg + zg < 9.
s'=s s'=s s"=s

By dividing the two sides of the previous inequality by 2, we obtain that

min(s+wg—1,3) min(s+wys—1,5) min(s+wg» —1,5) 9
k k/ k77 k k/ k:”
T +x, +x, + Z Zg + Z Zg + Z Zgr < {2J
S§'=s S§'=s s’'=s
As a result,
min(s+wg—1,5) min(s+w;s—1,5) min(s+wg» —1,5)
:1:’; + xlé + x’é + Z zfl + Z 25/ + Z zfﬂ’ <A4.
s'=s s'=s s"=s

We conclude at the end that inequality (2.22)) is valid for P(G, K, S). O

Inequality (2.22)) can then be generalized for any subset of demand K C K under

certain conditions.
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Proposition 2.4.3. Consider an edge e € E, and a slot s in'S. Let K be a subset
of demands of K with e ¢ EE for each demand k € K, (k,k') ¢ K¢ for each pair of
demands (k, k') in K, and Dokek Wk <8 = D g Wk Then, the inequality

min(s+w;s—1,5)

doab+ > Yoo <R+, (2.23)

keK KeK s'=s
is valid for P(G, K,S).

Let (Z) denote the total number of possibilities to choose a k element in a set of

n elements.

Proof. Inequality ensures that if the demands k € K pass through edge e,
they cannot share slot s. For this, we use the Chvatal-Gomory and recurrence
procedures to prove that is valid for P(G, K,S). For any subset of demands
K C K with e ¢ E(’f for each demand k € K, by recurrence procedures we get that
for all demands K’ C K with |K'| = |K| -1

min(s+wg—1,3)

b+ > Y <K+l

keK’ keK' s'=s
By adding the previous inequalities for all subset of demands K’ C K with |K’| =
K| -1

min(s+wy—1,3)

oY dr Y Y S k< Y (K + .

K’Qf( keK’ K'gf( keK'’ s'=s K/g!}'
|K'|=|K|-1 |K'|=]K]|-1 |K'|=]K|-1

min(s+wg—1,5) Sk

Note that for each k € K the variable :J: and the sum » zg appear

((l [l(Il(_ll) — 1) times in the previous sum. This implies that

Z(<|K|\K—1> “me(sik 1S)<(u~(‘,f(_'1)—l> <<,K'|K' )<\K'\+1>

ke s'=s
Given that |K’| = | K| — 1, this is equivalent to say that

min(s+wg—1,5)

Z(<|f{|'fq 1> o +Z > (<|f<|\fq 1> — Dz < (uﬁ )!m

keK s'=s

Moreover, and taking into account that ((I Il([f—ll) —1) = |K| — 1, we found that

min(s+wg—1,5)

YUK -Dxg+ > Y (K- < |KP

keK keK s'=s
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By dividing the two sides of the previous sum by |K| — 1, we have

min(s+wg—1,3) |f(|2 min(s+wg—1,3) . ~
Z$§+Z Z ZSSLK\—lJ Z +Z Z zfxﬁbK|K|_

keK keK s'=s keK keK s'=s

0

After some simplifications, we obtain that

min(s+wg—1,3)

SaeY Y S/S\K!erf(‘f_’lJ.

keK keK s'=s

As a result,

min(s+wg—1,3)

N K
Zx +Z Z ¥ <|K|+ 1 given that Lf~f|| |1J =1

keK keK s'=s
We conclude at the end that inequality (2.23)) is valid for P(G, K, S). O

Inequality (2.23)) can be strengthened as follows. For this, and using inequalities
(2.21)) and (2.6, we first show that inequality (2.6) can be strengthened without
modifying its right-hand side as follows.

Proposition 2.4.4. Consider an edge e € E. Let s be a slot in S. Consider a pair
of demands k, k' € K with e ¢ E¥ N EE and (k, k') ¢ KS. Then, the inequality

min(s+wy—1,5) min(s+w;s—1,5) min(s+wyr —1,5)
k K k K k” <
Ty + x5 + Zg + Zg + zg <3,
s'=s s'=s k” €K \{k,k'} s'=s

(2.24)
is valid for P(G, K, S).
Proof. Consider an edge e € E, and a pair of demands k,k’ € K. Let s be a
slot in S. Inequality (2.24]) ensures that if the two demands k, k" pass through
edge e, they cannot share slot s with the set of demands in K. \ {k,k’}. This

can be seen as a particular case for inequality (2.21)) induced by subset of demands
K={kK}UK,. O

Let generalize inequality (2.24]) for any subset of demand K C K under certain

conditions.

Proposition 2.4.5. Consider an edge e € E, and a slot s in'S. Let K be a subset
of demands of K with e ¢ EY for each demand k € K, (kK ¢ K¢ for each pair of
demands (k, k') in K, and Dok Wk < 8= Dpoeg g Wi Then, the inequality

min(s+wg—1,5) min(s+w;s—1,5)
dab+>d > A > Z K< |K|+1, (2.25)
k€K keK s'=s K eKA\K s"=s

is valid for P(G, K, S).
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This can be seen as a strengthened version of inequality ([2.24)).

Proof. Inequality (2.25) ensures that if the demands k € K pass through edge e,
they cannot share slot s with the set of demands in K, \ K. This can be seen be a
particular case inequality (2.23) induced by K UK, for slot s over edge e.

O

Definition 2.4.1. An interval I = [s;, sj] represents an ordered set of contiguous
slots situated between the two slots s; and s; with j > i+1 and s; < § (e.g., interval

I =[1,6] contains all slots situated between the slots s; =1 and s; = 6).

Theorem 2.4.1. Consider an edge e € E, and a slot s € S. Let K be a subset
of demands in K, and ), g wp < 5 — Zk’eKe\f( wy. Then, inequality (2.23)) is
facet defining for P(G, K,S) if and only if K.\ K =0, and there does not exist an

interval of contiguous slots I = [s;, s;] such that

[{si +wy —1,...,5;}| > wy, for each demand k € K,

and s € {s; + maxwy — 1,...,5; — maxwy + 1},
k'eK keK

and wg, + wy > |I| + 1 for each kK € K,

and 2wy, > |I| + 1 for each k € K.

Proof. Neccessity.

if K.\ K # 0, then inequality (2.23) is dominated by inequality (2-25) without
changing its right-hand side. As a result, inequality ([2.23)) is not facet defining for
P(G,K,S).

if there exists an interval of contiguous slots I = [s;, s;] such that the conditions
a) — d) are verfied. Then inequality is dominated by another valid inequality
which will be presented later. Hence, inequality is not facet defining for
P(G,K,S).

Sufficiency.
Let F;(’S be the face induced by inequality ([2.23)), that is

min(s+wg—1,3)
FY ={(z,2) € P(G.K,S): Y ab+ Y b =|K|+1}.
keK s'=s

Let denote by az + fz < X inequality Y, g 2% + Z?i:niﬁwk*l’g) 25 < K|+ 1.

Let px + 0z < 7 be a facet defining inequality for P(G, K,S) and F = {(z,z) €
P(G,K,S) : px + oz = 7}. Suppose that F;(’S C F. To prove that F;{’S is a facet of
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P(G, K,S), we need to show that there exists p € R and v = (71, 72,73) (such that
Ve e Rforall ¥ € Kande € EY 8¢ e Rforall k' € K ande € EV A ¢
R for all ¥’ € K and s’ € {1,...,wp — 1}) such that (u,0) = p(a, B) + Q.

Let first show that u¥, = 0 for each edge ¢’ € E'\ (Ef U E}) for each demand k € K
with e # ¢/ if k € K.

Consider a demand k € K and an edge ¢/ € E\ (E5 U EF) with e # ¢/ if k € K. Let
8§38 = (B3, .9%8) be the solution given by

for each demand k; € K\ K with i € {1,...,|K|}, we let E;zzg be the set of edges

involved in a shortest path between oy, and dy,,

for demand k, we let E;:’B be the set of edges involved in a shortest path between oy
and dj, which uses edge e such that edge €’ is compatible with all the selected edges

e’ e EIZ’S of demand k in solution S38, i.e., ZeneEgg lor + Lo <1y,

for each demand &' € K \ {k}, we let E}® be the set of edges involved in a shortest

path between o, and dr which does uses edge e,

for one demand k' € K, we select the smallest slot index sy in {wys, ..., 5} as last
slot such that s € {sr —wp + 1, ..., 81 },

for each demand k; € K\ {k'} with i € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots I3® given by

11_38 — [ ﬂ {wkm coey Sk 7wk_j}U{Sk]. +wg,, ...,EH N [{wki, .oy Sk 7'LU]C}U{S]€ +wg,, ...,5}]
k]‘GD?S

if BN (B U{e})#0or I}®= ﬂ {wp, s .y Sk,

. — Wg, } U {sk, +wg,, ..., 5} if not.
k]‘ED?S

such that s ¢ {sg, —wp, +1, ..., 81, } if ki € K, where D3® = {k; € {k1, ..., ki_1 JU{K'} :
E¥n Eg’? # (}. This guarantees that

. {Ski —wg, + 1, -~-75ki} N {Sk'j — Wk +1,..., Sk].} = () for each kij S D?S,

o and {sy, —wi, +1, ..., N {sg —wr+1,...,sp} =0 if E,:;S N(EBU{}) #0(
we take into account the possibility of using edge ¢’ in the selected path El’f’s

to route demand k in solution &"%).

We let S;Z’f = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

838 is feasible for the problem. its incidence vector (z5°,25™)
Then consider the solution 8% = (E3,59%) obtained from 8% by adding edge

e € E\ (E U EY) for the routing of demand k in solution S$3* which means that

e,s
belongs to Ff( .
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Ei’g = E,i’g U {e’}. The last slots assigned to the demands K, and paths assigned
the set of demands K \ {k} in S® remain the same in solution §%, i.e., 53 = S
for each k € K, and E3 = E for each k' € K \ {k}. 83 is clearly feasible for the
$339 2339)

problem. The corresponding incidence vector ( belongs to F' ;(’s. Hence,

solutions S3® and 837 satisfy equation px + oz = 7. It follows that

53

8 38 3
urs  + 025" = 1%y S

53

9 39 8 38
+02° = ux +u§/+az3 .

As a result, ,u];, =0.

In a similar way, we can show that
pk, =0, forallk € K and € € E\ (Ef UEY) with e # ¢ if k € K.

Let show that 0% =0 for all k € K and s’ € {wy, ...,5} with s’ ¢ {s,...,s + w — 1}
if k€ K.

Consider a demand % in K and a slot s’ in {wy,...,5} with s’ ¢ {s,...,s +wj — 1} if
ke K. Let 8 = (E8,538) be the solution given by

for each demand k; € K \ K with i € {1,...,|K|}, we let El’i’,8 be the set of edges

involved in a shortest path between oy, and dy,,

for demand k, we let E,’C38 be the set of edges involved in a shortest path between oy
and dj which uses edge e,

for each demand k' € K \ {k}, we let E{3® be the set of edges involved in a shortest
path between o, and dj which use edge e,

for one demand k € K, we select the smallest slot index sy, in {wg, ..., 5} as last slot
such that s € {sp —wp + 1, ..., s},

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
s, in the set of slots I/*® given by

I8 = ﬂ {wiys ooy S8, — Wi, YU LSk, Wi,y o, SHO{wp, ooy 8 —wi  U{s +wy,, ..., 5}]
k?jEDgSB
if E,’C:’;S NEP £ or I’ = ﬂ {wi;y oy 88, — wi; U {8, +wg,, ..., 5} if not.
kjED?S

where DP?® = {k;j € {k1,....ki 1} U{k}: E;® N E,’f;s # ()}. This guarantees that
o {sp, —wp, +1,...,88,} N {sk; —wp,; +1,...,5,} = 0 for each k; € D8,
® s §é {Ski —wg,; +1, ...,Ski} if k; € f(,

o and {sp, —wp, + 1, .., 50, ) N{s' —wp +1,..., '} = 0 if EFPNEP® # 0 (1we take
into account the possibility of adding slot s’ in the selected set of last slots

538 to route demand k in solution 8"3%).
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We let S,’SS = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,...,|K|}.

S"8 is clearly feasible for the problem. The corresponding incidence vector (:CSISS, 25/38)

belongs to F;i(’s. Then consider the solution S*° obtained from S2® by adding slot s’

as last slot to demand k. Solution S%° is feasible for the problem. The corresponding

840 2840)
)

incidence vector (z belongs to F' ES. Hence, solutions S’® and S0 satisfy

equation uxr + oz = 7. We have so

138 138 4 40 138 138
xS zS S S x‘s + UZS

0 k
= ux + oz =L +o

+o o -

1

It follows that af, =0.

In a similar way, we can show that
ok =0, for all k € K and 5" € {wy,...,5} with ' ¢ {s,....,s +w, — 1} if k € K.

Let prove that Uf, forallk € K and &' € {s, ..., s+wy—1} are equivalent. Consider a
demand k' € K and a slot §' € {s, ..., s+wy —1} with ¥’ € K. Let S* = (E*!, §41)
be a solution obtained from S by adding slot s’ as last slot to demand &’ with
modifying the paths assigned to a subset of demands KCKin&® (i.e., E,‘il = Ei’s
for each k € K \ K, and E} £ E3 for each k € K), and also the last slots assigned
to the demands K \ {k, K’} in 83 remain the same in S, i.e., S3¥ = S} for each
demand k7 € K\ {k,k'}, and S} = S U{s'} for demand k', and modifying the last
slots assigned to demand k by adding a new last slot 5 and removing the last slot s’ €
S8 with 8" € {s;+wg+1,...,s;} and 5 ¢ {s;+wy+1,...,5;} for demand k with k € K
such that St = (SP8\ {s})U{5} such that {§—wg+1, ..., 5}N{s'—wp+1,...s} =0
for each k' € K and s € S{! with E} N E} = 0. Solution S is feasible for the
sS4t ’ 2841)

problem. The corresponding incidence vector (z belongs to F' ;(’s. Hence,

solutions S3® and S*! satisfy equation px + 0z = 7. We have so

33 4 83

8 38 1 41 38 8 /
urs  + 0% = ,uxS +025 = ,uxs +0z° + afn — crf/ + a§

YT Y Y
k€K €'€ER® keK e'cEf

Since 0¥ = 0 for 5 ¢ {s,...,s + wy, — 1} with k € K, and p¥, = 0 for all k € K and

¢ € B\ (Ef UEF) with ¢ # e if k € K, it follows that o% = oF,.

In a similar way, we can show that

o = ok for all pairs (k, k') € K
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with ¢ € {s,...,s+wr—1} and s’ € {s, ..., s+wp —1}. We re-do the same procedure
for each two slots s,s" € {s, ..., s +wy — 1} for each demand k € K with k € K such
that

Ufl = o*fn,for all ke K and s,s" € {s,....,s + wj, — 1}.

We will prove that p for all k € K are equivalent. Let S*2 = (E*2, §%?) be the

solution given by

for each demand k; € K\ K with i € {1,...,|K|}, we let Eﬁ? be the set of edges

involved in a shortest path between oy, and dy,,

for one demand k from K, we let E,‘g be the set of edges involved in a shortest path

between o and di which uses edge e,

for each demand &’ € K \ {k}, we let E}? be the set of edges involved in a shortest

path between o and dj which does not use edge e,
for each demand k € K, we select the smallest slot index sy, in {wy, ..., 5} N {s, ..., s+
wg, — 1} as last slot,

for each demand k; € K \ K with i € {1,...,|K|}, we select the smallest slot index
si, in the set of slots IZ-42 given by

2= ﬂ {wi,y ooy 88, — Wiy U sk + Wiy, -, Y O [{wgs oy 8 — wi } U {s +wiy .., 5]
kjED?z
if Ep2NER? #0, or I}? = | ﬂ {wi;s oy S8, — W F U {8, + wp,, ..., 5} if not,
ijD,i-u

where D2 = {k; € {k1, ..., ki 1} UK : E,‘g N E,‘g # (0}. This ensures that {sj, —
wr, + 1,0, 8, 3 N {8k, —wi; +1,..., 8, } = 0 for each k; € D2

We let S;g = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

Obviously, §*? is feasible for the problem. Moreover, the corresponding incidence

42 42
x5, 257)

vector ( belongs to F;:(’S.

Consider now a demand ' in K such that e ¢ E}?. We derive a feasible solution
S*3 = (E*3, 843) for the problem from S*? by

the paths assigned to the demands K \ {k, &’} in S*? remain the same in S*3 (i.e.,
El3 = Ef? for each k7 € K\ {k,k'}),

without modifying the last slots assigned to the demands K in S*?, i.e., S,‘? = Sl‘ig
for each demand k € K,
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c)

modifying the path assigned to demand &’ in S*? from E,‘é? to a path E/,‘Cl,3 passed
through edge e (i.e., e € Ef) with ¥’ € K such that {s —wj, +1,...,s} N {s' —wp +
1,..,s'} =0 for each k € K and s’ € S7 and s’ € S} with E}2 N EL} # 0,

modifying the path assigned to demand k in S*? with e € E,‘§2 and k € K from E,‘f
to a path E}® without passing through edge e (i.e., e € E}®) and {s—wp+1,...,s} N
{s' —wp +1,...,8'} = 0 for each k” € K\ {k,k'} and s’ € S{? and s’ € S with
ERNEB £0,and {s —w, + 1,...,s}N{s —wp +1,...,s'} = 0 for each s’ € S}
and s’ € S with EZ N B3 £ 0.

. . . 43 43 .
The corresponding incidence vector (25, 2°") belongs to F;{’S. Hence, solutions

5% and 8% satisfy equation px + 0z = 7. We then obtain that

S* S*

2 42 43 43 42 2 /
nx +02° :;wcs +02° :;w:‘s +oz +;ng f,u'ef

K k' k k
T me s D med ) ome ) me
e’ EE;;?’\{e} e’ EE}%,2 e’ eEL e’ eEl?\{e}
Since p, = 0 for all k € K and ¢’ € E\ (E§ U Ef) with k € K, it follows that

pF = pk. In a similar way, we can show that
pF =y for all pairs (k, k') € K.

Furthermore, let prove that all af, and u’g are equivalent for all k € K and ¢ €
{8y, s +wg — 1}.
Now let us consider for each demand &’ with & € K, a solution S* = (E*, §%)

obtained from S*? as below

the paths assigned to the demands K \ {k’} in S*? remain the same in S* (i.e.,
Elt = B2 for each k” € K \ {K'}),

without modifying the last slots assigned to the demands K \ {k} in 82, i.e., S{% =
S for each demand k” € K \ {k},

modifying the set of last slots assigned to demand k' in S*? from Sé? to Sﬁfl such
that SN {s,....,s +wp — 1} = 0.

Hence, there are |K| — 1 demands from K that share slot s over edge e (i.e., all the
demands in K \ {k'}), and two demands {k,k’} from K that use edge e in solution

S*. Solution S* is then feasible for the problem. The corresponding incidence

vector (25", 25"") belongs to FES. Hence, solutions §*2 and S* satisfy equation

px + oz = 7. We then obtain that

42 42 44 44 42
/u:‘S + 025 :,uﬁr:‘S +02° :,ua:‘s +oz

ceEi\e)  oeBg
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Since p¥, =0 forall k € K and ¢” € E'\ (E§ U E}) with e £ ¢” if k € K, it follows
that ,uffl = O'f,/.

In a similar way, we can show that

pk = ok forall k € K and ' € {s,...,s + wy — 1}.

Based on this, and given that all p* are equivalent for all k € K, and that Jf, are
equivalent for all k € K and s’ € {s, ..., s + wy — 1}, we obtain that

pk = afl/, for all k,k' € K and s’ € {s,...,s + wy — 1}.

Consequently,

,u]; = Ufll =p, forall k,k' € K and s’ € {s,...,s + wp — 1}.

We know from (2.17) and ([2.18]) that
,UJIQI = fyf/’e/ forall ¥ € K and € € Eé“/,
,u@/ = fyg/’el forall ¥ € K and € € Ef/,
of,/ = fy;fl’sl for all ¥ € K and s’ € {1,...,wp — 1}.

Overall, we obtain that

;

VAN
Vit e e BE
VAN
" A it e e BY,
Her = ~
p if ¥ € K and €' = e,
0 otherwise,

for each ¥’ € K and ¢’ € E, and

N e {1, wp — 1}
05/: P ifkekands/e{s,...,s—i—wk—l},
0 otherwise.

for each k € K and s’ € S.
As a consequence, we have (i, 0) = p(a, 8) +7Q. O

Theorem 2.4.2. Consider an edge ¢ € E, and a slot s € S. Let K be a subset of
demands in K with |K| > 3, and DokeR Wk <5 — Zk’eKe\f( wyr. Then, inequality
(2.25) is facet defining for P(G, K,S) if and only if there does not exist an interval

of contiguous slots I = [s;, s;| such that
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a) {si+wr —1,...,5;} > wy for each demand k € K,

b) andse{sl+maxwk—1 — maxwy + 1},
k'eK keK

¢) and wy, + wy > |I| + 1 for each k, k' € K,

d) and wy, +wyp > [I| + 1 for each k € K and k' € K, \ K,
e) and 2wy, > |I| + 1 for each k € K,

f) and 2wy > |I| +1 for each k' € K.\ K.

Proof. Neccessity.

Suppose that there exists an interval of contiguous slots I = [s;, s;] such that all the
conditions a) — f) are verified. Then inequality is dominated by another valid
inequality which will be presented later. As a result, inequality is not facet
defining for P(G, K, S).

Sufficiency.

Let denote FE’S the face induced by inequality , that is

min(s+wg—1,3) min(s+w;s—1,5)

F2'={(2,2) € P(G,K,S): Y ab+ ) Z Y Z 2 = |K|+1}).

keK keK s'=s K\K s'=s

We denote inequality ),z = +Zk€K Zr?flsﬁwk L3) ok Zg+d k. \E ZH}TSSW’“/ L9 f,/ <
|K|+1by az+pBz < \. Let yz+0z < 7 be a facet defining inequality for P(G, K, S)
and F = {(z,2) € P(G,K,S) : px + 0z = 7}. Suppose that F}?S C F. We show
that there exist p € R and v = (71, 72,73) (such that fyf’e eRforall ¥/ € K and e €
E(’f/,fyg’e €Rforall k¥’ € K and e € Ef ,fy§ * cRforall ¥ € K and §' € {1, ..., wg

1}) such that (u,0) = p(a, B) + vQ. We re-do the same technique of proof already
detailed to prove that inequality is facet defining for P(G, K, S) such that the
solutions S3® — S still feasible for F'&*° given that their incidence vector are com-
posed by >,z 2k +>", & ZH}TSSJFU)’“ L2) SA—ZKF\K ETEISSW’“/ L) 2 < K|+
We conclude at the end that for each k¥’ € K and ¢ € F

'yf, “ife e EY,
" 75, ¢ ife € BV,
Her = ~
P if ¥ € K and ¢ =,
0 otherwise,
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and for each k € K and s’ € S

Vi e {1, wp — 1),
ok = p if ke KUK, and s’ € {s,....,s +w;, — 1},

0 otherwise.

As a result, we have (u,0) = p(a, 8) + Q. O

2.4.2 Edge-Interval-Capacity-Cover Inequalities

Let now introduce some valid inequalities which can be seen as cover inequalities

using some notions of cover related to the problem.

Definition 2.4.2. For an interval of contiguous slots I = [s;,s;j], a subset of de-
mands K' C K is said a cover for the interval I = [s;, s;] if and only if 37, - wi >
1| and wy, < |I| for each k € K. Moreover, it is said to be a minimal cover if

> e (k} Wk < I| for each demand k € K.
Based on these definitions, we introduce the following inequalities.

Proposition 2.4.6. Consider an edge e € E. Let I = [s;,s;] be an interval of
contiguous slots in [1,5]. Let K' C K. be a minimal cover for interval I = [s;, s;]

over edge e. Then, the inequality

.
> ZJ <K' -1, (2.26)

keK' s=s;+wi—1

is valid for P(G, K, S).

Proof. The interval I = [s;,s;] can cover at most |K’| — 1 demands given that
K’ is a minimal cover for interval I = [s;,s;] over edge e. Otherwise, the non-

overlapping constraint is violated given that there exists at least one slot s € I such
that Y, S0 2k > 1. O

/=g
Inequality (2.26]) can be lifted using a sequential lifting procedure [5] to be facet
defining and generate lifted facets for a sub-polytope of P(G, K, S).

Theorem 2.4.3. Let I = [s;,s;] be an interval of contiguous slots in [1,35]. Let K C
K. be a minimal cover for interval I = [s;, sj] over edge e. Let K.\ K = {ki,...,kq}

be arbitrarily ordred with g = |K, \ K\ Consider the following sequence of knapsack
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problems defined as

i—1
z; = max E a; + g Bja;,
i=1

jeK
i—1
E w;a; + E Wi, A < |I’ — Wk,
jEK j=1

a; € {0,1},Vj € KU{1,...,i — 1},

(2.27)

for all i € {1,...,q} with B; = |K| =1 — z; for all j € {1,...,i — 1}. Then, the

inequality

Sy q S
> i: DY i: Bzl < |K| -1, (2.28)

keK s=sitwg—1 7j=1 s':si+wkj—1

is valid for P(G, K,S). Moreover, inequality (5.13|) defines facet of

Sj
P(G,K,S,K,e,E) ={(z,2) € P(G,K,S) : > > =0}
KeK s'=s;+wy —1

E{“/ﬂE’f#@ for all keK

if there does not exist an interval of contiguous slots I' = [s}, s}] in [1,5] with I C I'

such that K defines a minimal cover for the interval I'.

Proof. Tt is trivial given that inequality (5.13)) can never be dominated in P(G, K, 'S, K.,e,E )

if there does not exist an interval of contiguous slots I’ = [s{, s%] in [1, 8] with I C I’

such that K defines a minimal cover for the interval I’. O
Inequality (2.26]) can then be generalized over all edges e € E. Moreover, it

should be lifted to be facet definig for the polytope P(G, K, S) as follows.

Proposition 2.4.7. Let I = [s;, s;] be an interval of contiguous slots in [1,5]. Let
K' C K be a minimal cover for interval I = [s;,s;] such that E¥ N E¥ 40 for each
pair (k,k") € K'. Then, the inequality

.
O SIS (220

keK' s=s;+wi—1

is valid for P(G, K,S).

Proof. The interval I can cover at most |K’| — 1 demands given that K’ is a minimal

cover for interval I. O

Inequality (2.29) can then be lifted using a sequential lifting procedure [5] to
generate several facets for the polytope P(G, K, S).
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Theorem 2.4.4. Let I = [s;,s;] be an interval of contiguous slots. Let K CK
be a minimal cover for interval I = [s;, s;] such that E¥ N EF 0 for each pair
(k,k') € K. Let K' € K\ K = {ki,...,k,} such that Ef 0 EF # 0 for each pair
(kK e K UK'. Consider the following sequence of knapsack problems defined as

i—1
Z; = max E a; + E Bja;,
=1

jekK

i—1
2.30
5w+ 3wy < 1] — (230
jeK Jj=1

La; € {0,1},Vj € KU{1,...,i— 1},

for all i € {1,...,q} with B; = K| —1— zj for all j € {1,...,i — 1}. Then, the

nequality

5 q 5
X AY X BESIRI-L (2:31)
keEK s=s;+wr—1 7j=1 s’:si+wkj—1
is valid for P(G,K,S). Moreover, inequality (2.31) defines facet of P(G,K,S) if
there does mot exist an interval of contiguous slots I' = [s;, s} in [1,8] with I C I'
such that K defines a minimal cover for the interval I'.

Proof. Tt is trivial given that inequality (2.31]) can never be dominated in P(G, K, S)
if there does not exist an interval of contiguous slots I’ = [s{, s%] in [1, 8] with I C I’

such that K defines a minimal cover for the interval I’. O

Inspiring from inequalities (2.26]) and (2.29)), we define another valid inequality
induced by any subset of demands K defining a minimal cover for any interval I as

follows.

Definition 2.4.3. Consider an inequality ax’ < B which is not valid for a poly-
hedron P(G, K,S). It is said to be optimality cut for P(G, K,S) if it is valid for
a semi-polytope of P(G, K,S) which covers at least one optimal solution for the
problem.

Let Q(G, K,S) = {(z,2) € P(G,K,S) : Z z¥ = 1,Vk € K} be a semi-polytope

S=wg

of P(G, K,S). Note that each valid inequality of Q(G, K,S) which is not valid for
P(G, K,S), it defines an optimality cut for P(G, K, S).

Proposition 2.4.8. Consider an edge e € E. Let I = [s;,s;] be an interval of

contiguous slots in [1,3]. Let K be a minimal cover for the interval I such that
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a) Zwk§§— Z W,

keK KeKA\K
b) e ¢ EE for each demand k € K,
¢) (k,k') ¢ K¢ for each pair of demands (k, k') in K.

Then, the inequality

.
doab+ > i: F<2K| -1, (2.32)

keK keK s=sitwp—1

is valid for Q(G, K, S).

Proof. The interval I = [s;, s;] can cover at most |K| — 1 demands given that K
is a minimal cover for interval I = [s;, s;] over edge e. It follows that if demands
K pass together through edge e (i.e., Sreir TE = |K|), there are at most |K| — 1
demands that can share the interval I over edge e. We ensure that inequalities
are verified by any feasible solution having an incidence vector in Q(G, K, S).
Otherwise, the non-overlapping constraint is violated such if there exists a solution
S that violates inequality , this will certainly prove that there exists a slot
s € I over edge e such that 3, o S5 7125 > 1 given that 3, g 2F < |K|

and ), Z?:SZ w1 2% < |K| for any feasible solution S with incidence vector in

Q(G,K,S). O

Inequality (2.32)) can also be lifted using a sequential lifting procedure [5] to be
facet defining and generate lifted facets for the polytope Q(G, K, S).

Theorem 2.4.5. Let I = [s;, ;] be an interval of contiguous slots in [1,5]. Let K
be a minimal cover for the interval I such that K does not define a minimal cover
for an edge e, where e ¢ EE for each demand k € K. Let K.\ K = {ki,...,k,} be
arbitrarily ordred with ¢ = |K, \ I~(| Consider the following sequence of knapsack
problems defined as

i—1
Z; = max E a; + E Bja;,
Jj=1

jeK
i—1
2.33
5w+ 3wy < 1] — (239
jeK Jj=1

Laj € {0,1},Vj € KU{1,...,i—1},

78



for all i € {1,...,q} with B; = K| —1— zj for all j € {1,...,i — 1}. Then, the

nequality

Sj q 55
k. ~
Dowet Y, DL A+Y, > Bird <2K|-1 (2.34)
keK ke K s=sitwg—1 J=1 s'=sitwy;~1

is valid for Q(G, K,S). Moreover, inequality defines facet of Q(G, K,S) if
there does not exist an interval of contiguous slots I' = [s}, s%] in [1,8] with I C I'
such that K defines a minimal cover for the interval I'.

Proof. 1t is trivial given that inequality can never be dominated in Q(G, K, S)
if there does not exist an interval of contiguous slots I' = [s}, s7] in [1, 5] with I C I"
such that K defines a minimal cover for the interval I’. O

2.4.3 Edge-Interval-Clique Inequalities

Using inequalities (2.32), and based on the set of minimal cover K with cardinality

|| = 2, we introduce the following inequality.

Proposition 2.4.9. Consider an edge e € E. Let I = [s;,s;] be an interval of
contiguous slots. Let {k,k'} be a minimal cover for the interval I over edge e such
that e ¢ EXU Egl. Then, the inequality

Sj Sj

b ¥ 4 Z 284 Z <3, (2.35)
s=s;+wr—1 s=s;j+w; —1
is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2wy, > |I| and 2wy >
1]

Proof. Inequality ([2.35)) is a particular case of inequality (2.36)) for a minimal cover
K = {k,k'}. O

Using this, we introduce the following conflict graph.

Definition 2.4.4. Consider an edge e € E. Let I = [s;,s;] be an interval of
contiguous slots in [1,5] with s; < s; — 1. Consider the conflict graph H§ defined
as follows. For each demand k € K with wy, < |I| and e ¢ EE, consider a node vy,
in Hf. Two nodes vy and vy are linked by an edge in Hf if wy + wy > |I| and
(k, k") ¢ KS. This is equivalent to say that two linked nodes vy, and vy means that

the two demands k, k' define a minimal cover for the interval I over edge e.
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For an edge e € E, the conflict graph Hf is a threshold graph with threshold
value equals to t = |I| such that for each node vy with e ¢ E§¥ U E¥, we associate a
positive weight w,, = wj, such that all two nodes v;, and vy, are linked by an edge

if and only if @y, + wy,, >t which is equivalent to the conflict graph H7.

Proposition 2.4.10. Consider an edge e € E. Let I = [s;,s;] be an interval of
contiguous slots. Let C be a clique in the conflict graph H§ with |C| > 3, and
D vec Wk <5 — Zk’eKE\C wyr. Then, the inequality

Sj

Yok Y <o+, (2.36)

v eC s=s;+wr—1
is valid for Q(G, K,S). Moreover, It is valid for P(G, K,S) if 2wy, > |I| for each
v € C.

Proof. For each edge e € F and interval of contiguous slots I C S, inequality
ensures that if the set of demands in clique C' pass through edge e, they cannot
share the interval I = [s;, s;] over edge e. This means that there are at most one
demand from the demands in C' that can be totally covered by the interval I over
edge e (i.e., all the slots assigned to the demand are in I). Inequality can be
shown as Chvatal-Gomory cuts using Chvatal-Gomory and recurrence procedures.
For all two linked node v;, and vy in Hf, we know from inequality

83 83
/ /
ab + 2 + E 2+ E 20 <3
s=s;+wp—1 s'=s;+w; —1

By adding the previous inequalities for all two linked node v, and vy in the clique

set C, and by recurrence procedure we obtain that for all K/ C C with |K'| = |C|—1
5
Sy Y demle
v eC’ vp€C’ s=s;+wi—1

By adding the previous inequalities for all K’ C C with |K'| = |C| — 1, we get

DORED SEAE D DD Z g < ) (K + .

K'CC wvgel’ K'CC wpeC’s=si+wp—1 K'CcC
|K'|=|Cl-1 |K'|=|C]-1 |K'|=|C|-1
Note that for each demand k with v, € C, the variable :L"; and the sum szzsﬁwk—l 2k

S
appear ((| CL‘C_ll) — 1) times in the previous sum. It follows that

S (1) S $ () = (e

vpeC v €C s=s;+wi—1
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Given that ((|C‘~|C,|1) —1) =|C| — 1, we obtain that

Yol - nee o+ >, > (0 - b= < CP2.

v eC v €C s=s;+wi—1

By dividing the two sides of the previous sum by |C| — 1, we have

“ [elk % C]
Sy S ds|gigle T S ds|dghy

<
vpeC v €C s=s;+wi—1 vpeC v €C s=s;+wi—1
Sj
i i IC]—1+1
SO M Ml
v eC v €C s=s;+wi—1

By doing the following simplification

> -1 C
Yot S A< |OGTT

v, €C v €C s=s;j+wp—1
k " C|
:>Z:re+z Z zg < |C|+]C\—1 :
v €C v €C s=s;+wr—1
As a result,

doab+ ) Z]: Z§5|C|+LC||C_|1J:>Z$5+Z i: 2k <0+

v eC v €C s=s;+wi—1 v eC v €C s=s;+wr—1
|
Cl -1

given that {

We conclude at the end that inequality (2.36) is valid for Q(G, K, S). Moreover, it
is valid for P(G, K, S) if 2wy > |I| for each vy € C. O

Moreover, inequality (2.36]) can be strengthened as follows.

Proposition 2.4.11. Consider an edge e € E. Let I = [s;,s] be an interval of
contiguous slots. Let C be a clique in the conflict graph H§ with |C| > 3, and
D vpec Wk < 58— Zk’eKe\C wyr. Let Co € K.\ C be a clique in the conflict graph Hf
such that w + wgr > |I| + 1 for each vy, € C' and vy € C.. Then, the inequality

doab+ ) i: e zj: <o +1, (2.37)

v eC v €C s=s;+wi—1 'Uk/GCe s’:si+wk/71

is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2w, > |I| for each
v € CUC,.
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b)

Proof. For each edge e € E and interval of contiguous slots I C S, inequality
ensures that if the set of demands in clique C pass through edge e, they cannot share
the interval I = [s;, s;] over edge e with a subset of demands in C,.. On the other
hand, inequality can be seen as a particular case of inequality induced
by a clique C’ = C U C, given that a:’; =1 for all v}, € C. ]

Theorem 2.4.6. Consider an edge e € E. Let I = [s;,s;] be an interval of con-
tiguous slots. Let C be a clique in the conflict graph Hf with |C| > 3, Y ;o wi <
5— Zk’eKe\C wyr, and [{s; +wi —1,..., 55} > wy for each demand k with v, € C.
Then, inequality is facet defining for P(G, K,S) if and only if

there does not exist a demand k' € K.\ C with wy + wy > |I| and wy < |I|,

and there does not exist an interval I' of contiguous slots with I C I' such that C

defines also a clique in the associated conflict graph HS,.

Proof. Neccessity.

It is trivial given that

if there does not exist a demand k' € K, \ C with wy + wy > |I| and wy < |1,
and |[{s; + wy —1,...,s;}| > wy, for each demand k with vy € C. Then, inequality
(2.36]) can never be dominated by another inequality without changing its right-
hand side. Otherwise, if there exists a demand k¥’ € K. \ C with wg + wgr > |I|
and wy < |I] and 2wy > |I|, this implies that the inequality is dominated by
([2.37). Moreover, if |{s; + wy — 1,...,s;}| < wy for each demand k with v, € C,
then inequality is then dominated by inequality for a set of demands
K = {k € K such that v, € C} and slot s = s; + géiélwk + 1 over edge e. Hence,
inequality is not facet defining for P(G, K, S).

if there exists an interval I’ of contiguous slots with I C I’ such that C defines also
a clique in the associated conflict graph H¢. This implies that inequality
induced by clique C for the interval I is dominated by inequality induced by
the same clique C' for the interval I’ given that {s; + wy —1,...,s;} C I’ for each
k € C. As a result, inequality is not facet defining for P(G, K, S).

Sufficiency.
Let Fg T denote the face induced by inequality ([2.36]), that is

Fol={(z,2) e P(G,K,S): Y b+ S F=jo+1h

v €C s=s;+w,—1
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Let denote inequality kaeo xk 4 szzsﬁwk_l 2P <|C|+ 1 by ar + Bz < \. Let
pxr + oz < 7 be a facet defining inequality for P(G, K,S) and F = {(z,2) €
P(G,K,S) : px+oz = 7}. Suppose that Fg; C F. In order to prove that inequality
> veC x’;+2j3‘zsi+wk_1 2% <|C|+1 is facet defining for P(G, K, S), we need to show
that there exists p € Rand v = (71,72, 73) (such that vf’e eRforall ¥/ € K and e €
E(’)“/,'yg’e €Rforall ¥/ € K and e € Ef,,fyg,fl’s/ eRforall ¥ € K and ¢’ € {1, ..., wp—
1}) such that (p,0) = p(a, B) + 7Q.

We first show that p¥, = 0 for each edge ¢’ € E\ (E§ U E}) for each demand k € K
with e £ e if k € C.

Consider a demand k € K and an edge €/ € E\ (E¥ U EY) with e # ¢’ if k € C. Let
S5 = (B3, 8%3) be the solution given by

a) for each demand k; € K \ C with i € {1,..,|K|}, we let E® be the set of edges

involved in a shortest path between oy, and dy,,

b) for each demand k € C, we let Egg be the set of edges involved in a shortest path
between o and di which uses edge e,
¢) for one demand k' from C, we select the slot spr = s; + wpr — 1 as last slot,

d) for each demand k; € C'\ {k'} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I?® given by

P = [ () {wke ook, — wey } U {8, + w8\ {80,000, ) 1 BRSOV ERP # 0,
k}jED?S
where D?S = {]4;] € {k‘l, ...,ki_l} NnNC : El‘z? N El‘z’? #* @}

e) for each demand k; € K\ C with i € {1,...,|K|[}, we select the smallest slot index
sk, in the set of slots I?3 given by

1253 — [ m {wki, wey Sk —’wkj}U{Skj + wg;, ...,5}] n [{wk” ey Sk —wk}U{Sk + wg; , ...,g}]
k]'ER?S
if E,Ef N(EPU{}) #Dor I = m {wi;s ooy 88, — Wi, U {s, +wg,, ..., 5} if not,

kjER‘?g
where R = {k; € {ki,...,ki_1} U C such that E}* N Egj # (0}. As a result,
o {sp, —wp, + 1, ..., 88,} N {sk; —wp; +1,...,5¢,} = 0 for each k; € R,

e and {s, —wp, + 1, ..., sk, } N {sk, —wg; +1,..., 8.} = 0 if E;:’f’ N(EBU{e}) #0
( we take into account the possibility of using edge €’ in the selected path E23

to route demand k in solution S°3).

We let S;Z’f’ = {si, } be the set of last slots assigned to each demand k; with i €
{1,..,|K|}.
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S% is feasible for the problem. The corresponding incidence vector (x353,2353)
belongs to FC{{ 7. Then we derive a solution S = (E54, 5%%) obtained from S°% by
adding edge ¢’ € E'\ (E} U E¥) for the routing of demand & in solution $°* which
means that EP* = E23 U {€/}. The last slots assigned to the demands K, and paths
assigned the set of demands K \ {k} in S°® remain the same in solution S*4, i.e.,
Spt = 853 for each k € K, and Et = EX3 for each k' € K \ {k}. &% is clearly
feasible for the problem. The corresponding incidence vector (x354, 2854) belongs to

Fg i Hence, solutions S° and S satisfy equation px + oz = 7. It follows that

S5

3 53 5
uxrs  + 0% = ux S

55

4 54 3 53
+02° = ux +,u]§,+azs .

As a result, ,u]g, =0.

In a similar way, we can show that
pk =0, forall k€ K and ¢ € E\ (EY UEY) with e # ¢ if k € C.

Let show that 0% = 0 for all k € K and s € {wy, ..., 5} with s & {s; + wg — 1,...,5;}
ifvp, € C.

Consider a demand k in K and a slot s" in {wy, ..., 5} with s" ¢ {s; + wy — 1, ..., s;}
if v & C. Let S’ = (E3,8°3) be the solution given by

for each demand k; € K\ C with i € {1,...,|K|}, we let E,’€5Z3 be the set of edges

involved in a shortest path between oy, and dy,,

for each demand k € C, we let E,’f?’ be the set of edges involved in a shortest path
between oy, and dy,
for one demand &’ from C, we select the slot s = s; + wy — 1 as last slot,

for each demand k; € C'\ {k'} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I®® given by

]{53 — [ n {wki7 "'7sk]‘ — wkj} U {Skj + Wi, ...,g}] \ {SZ', ...,Sj} if E;ig n .E]/CS/3 # (Z),
ijD,/isg'
where D;E)S = {kj S {]{11, -~-aki—1} NnC : E,’Sd N E,/CEJB 7£ @}

for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots I/°3 given by

53 = ﬂ {wi, s ooy 88, —wi, Y U{sk, +wr,, ..., SH O [{we,, ... s —wp yU{s +wg,, ..., 5}]
ijRQSS
if B NEP #0or I = ﬂ {wi,, ..., sk, — wi, } U{sk, + w,, ..., 5} if not,
}CjER;ss
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e)

where R = {kj € {ki,...,ki 1} UC : E2*n E,’f]?’ # 0}.

We let S,;f_?’ = {sk, } be the set of last slots assigned to each demand k; with ¢ €
{1,..,|K|}.

83 is clearly feasible for the problem. Hence, the corresponding incidence vector
(:1:8/53, 23/53) belongs to Fé{ 7. Then we derive solution 8% from S/ by adding slot
s’ as last slot to demand k in solution &3, i.e., S35 = S5 U {s'}. Solution S5 is

feasible for the problem. The corresponding incidence vector (x$55, 2355) belongs to

H¢ . . .
F,'. Hence, solutions S’ 3 and 8% satisfy equation pux 4+ 0z = 7. We have so

153 153 5
xS to ZS S

5 55 153 15
= pxt + 0% = ;m:s +02°

122 3—"0'5/.

Hence, O'L]:, =0.

In a similar way, we can show that
o =0, for all k € K and s € {wy, ..., 5} with s ¢ {s; +wy, — 1,...,8;} if vy € C.

Let prove that ¥ for all vy € C and s € {s; +wy — 1, ..., s;j} are equivalent.
Consider a demand k' € K and a slot s’ € {s; + wy —1,...,s;} with vy € C. Let
8% = (E53,55%) be the solution given by

for each demand k; € K \ C with i € {1,...,|K|}, we let E,‘?? be the set of edges
involved in a shortest path between oy, and dy,,

for each demand k € C, we let Eg‘g be the set of edges involved in a shortest path

between o, and di which uses edge e,

for one demand k” from C, we select the slot sp» = s; + wyp» + 1 as last slot,

for each demand k; € C'\ {k”} with i € {1, ..., | K|}, we select the smallest slot index
sk, in the set of slots I~i53 given by

%= ﬂ {wi, s .oy S, —wi, YU sk, Wi, -y SHO{wk, s oy 8" =0 UL +wp, 5 o, SH\ {54, -

kjeﬁfs
if EPSNER #£0or ID? = | ﬂ {Weys oy Sk, — Wiy YU{SK; Wiy, ooy 8F\ {84, ..., 55} if DO,
k;€DF?
where D?3 = {kj S {kl, ...,ki_l} NnC: Eg? N E,Ej’ 75 @},
for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots I~i53 given by

%= ﬂ {wiy s oy 1, — wi, YU s, +wiy s o, SH N {wp,, ooy 8 —wpe UL +wps,, -, 53]
kj R

if EP3NER #£0or ID° = ﬂ {weys oy S, — Wi, } U {5k, +wy,, ..., 5} if not,
kjER‘?g

where R? = {k; € {k1,....,ki_1} UC: Eg? N E,Ef # (0}. As a result,
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o {sp, —wg, + 1,85} N {s; —w; +1,...,5%,} = 0 for each k; € R?3,

o and {sy, —wy, +1,..., 55, N{s —wp +1,....s'} =0 if E,ig NE £ (0 ( we take
into account the possibility of adding slot s" as a last slot in the selected last

slots 5’2? to route demand &’ in solution S§°3).

We let 5';:?? = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K}.

853 is clearly feasible for the problem given that it satisfies all the constraints of
cut formulation —. Hence, the corresponding incidence vector (33353, z‘§53)
belongs to Fg?. Let 8% = (E%,556) be a solution obtained from S% by adding
slot ¢ as last slot to demand ' in 8%, and modifying the last slots assigned to
demand k by adding a new last slot § in S5 and removing the last slot s € 5’23 from
S% with s € {s; + wy + 1,...,5;} and § ¢ {s; + wg + 1,...,s;} for demand k € C
such that {5 —wy +1,...,5 N {s' —wp +1,...,8'} = 0 for each &’ € K and s’ € 5P
with E;Z’G N E/;Z’,6 # (). Solution S50 is feasible for the problem. The corresponding
incidence vector (:L‘SSG, 2556) belongs to Fg i Hence, solutions S°* and S satisfy

equation px 4+ oz = 7. We have so

353 S53 56 56 353 353 /
;m:s +025" = ;m:S +025" = ,u:cs +025" + 05, — af + 0§.

Since 0¥ = 0 for 5 ¢ {s; + wy — 1, ..., 5;} with v, € C, it follows that o% = o¥.

s

In a similar way, we can show that

Gf = afll, for all pairs (vg,vpr) € C
with s € {s; +wp — 1,...,s;} and s’ € {s; + wpy — 1,...,s;}. We re-do the same
procedure for each two slots s, s’ € {s; +wy —1,..., s;} for each demand k € K with

v € C such that

Jf = Ufl,for all vy € C and 5,8 € {s; + w — 1,..., s}

Let prove now that u¥ for all k € K with vy € C are equivalent. Consider a
demand k' € K with vy in C such that e ¢ E}/. For this, we derive a solution

S5 = (E758,57%8) from S5 by we derive a solution S*® = (E8, 5%8) from S° by

the paths assigned to the demands K \ {k,k’} in S remain the same in S°® (i.e.,
E = EJ? for each k7 € K\ {k,k'}),

without modifying the last slots assigned to the demands K in S, i.e., 523 = 528
for each demand k € K,
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c)

modifying the path assigned to demand &’ in S°3 from E,‘Z’,?’ to a path Eg? passed
through edge e (i.e., e € EP®) with vy € C such that {s —wj+1,...,s} N{s’ —wp +
1,..,s} =0 for each k € K and s’ € SP? and s € S7? with Ep3 N EpS # 0,

modifying the path assigned to demand k in S°3 with e € EZ?’ and v € C from E23
to a path Ep® without passing through edge e (i.e., e ¢ Ep®) and {s —wy +1,...,s}N
{s —wpr +1,...,8'} = 0 for each k” € K\ {k,k'} and s € Sp3 and s’ € S} with
EBRNE® £0,and {s—wp+1,...,s}N{s —wp +1,...,s'} = 0 for each s € Sp3 and
s' € Sp? with Ep8 N ERS # 0.

Solution 8”78 is feasible for the problem. The corresponding incidence vector (x

H¢ . : :
belongs to F-'. Hence, solutions S% and 8”58 satisfy equation px + oz = 7. We
then obtain that

53 53 58 58 53 3 /
uxs +02° :uxs +02° :uacs + oz —i—ulé —,uf

LD DR T T S 1

e"cE” 2?\{6} e’ GEzf e’ EEﬁzS e’ EE23\{€}

35

Since pk, = 0 for all k € K and ¢’ € E \ (E} U EY) with vy ¢ C, it follows that
K _ k
He = He-

In a similar way, we can show that

pF = 1 for all pairs (vg, vy) € C.

Furthermore, let prove that all o* and p” are equivalent for all & € C and s €
{Si +w, —1,..., Sj}.
Now let us consider a demand k' € K with vy € C, a solution S = (E%, 5%9)

obtained from S°3 as below

the paths assigned to the demands K \ {k’} in 8°® remain the same in S (i.e.,
E = EJ? for each k7 € K\ {K'}),

without modifying the last slots assigned to the demands K \ {k} in 8%, i.e., 5% =
S for each demand k” € K \ {k},
modifying the set of last slots assigned to demand &’ in S°* from S? to S} such

that Sg? N{s; +wp — 1, ...,Sj} = 0.

Hence, there are |C| — 1 demands from C that are covered by the interval I (i.e.,
all the demands in C' \ {k'}), and two demands {k,%'} from C that use edge e

in solution &°°. Solution S is then feasible for the problem. The corresponding
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.. 59 59 H¢ . & .
incidence vector (25, 2% ) belongs to F". Hence, solutions S%7 and S% satisfy

equation uxr + oz = 7. We then obtain that

Mméw Lo = 'uxssg LS = ,uaréw 405 ,u’;/ _ 05/ n Z ME’: B Z ME’/’-
e’ EEE?\{E} e’ €E2/7

Since ¥ =0 for all k € K and ¢” € E\ (E§ U EY) with e # ¢” if v, € C, it follows

that p¥ = o

In a similar way, we can show that

pk = o for all vy € C and s € {s; +wy, — 1,...,5;}.

Based on this, and given that all ¥ are equivalent for all vx € C, and that ¥ are

equivalent for all v, € C and s € {s; + wir — 1, ..., 5;}, we obtain that
pk = afl, for all k, k' € C and s € {s; + wp — 1,..., 5, }.
Consequently,
pk=o" =p, forall k, k' € C and s € {s; +wp — 1, s Sit

By (2.17)) and (2.18)), we know that

ke

,u@/ = for all ¥ € K and € € E(’f/,
,u';/ = fygl’el for all ¥ € K and € € Ef/,

ok = %])fl’s, for all ¥ € K and ¢’ € {1,...,wp — 1}.

s

We conclude that for each k' € K and ¢’ € E

K e’ if e Ek’
o if e’ € Ey ,
o ’ygl’el if ' € BV,

Her =
p if ¥ € C and ¢ = e,

\O otherwise,
and for each k € K and s € S

st s e {1, ., wp — 1}
Ufz P if v, € Cand s € {s; +w, —1,..., 55},

0 otherwise.

As a consequence, (u,0) = p(a, 8) + Q.
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Theorem 2.4.7. Consider an edge e € E. Let I = [s;,5;] be an interval of con-
tiguous slots. Let C' be a clique in the conflict graph Hf with |C| >3, 3, ccwy <
S=2 wex \c Wk and [{sitwp—1,...,5;}[ = wy, for each demand k with v, € CUCk.
Let C. C K.\ C be a clique in the conflict graph Hf such that wy +wy > [I|+1 for
each vy, € C and v € C.. Then, inequality is facet defining for P(G, K,S)
if and only if

there does not exist a demand k" € K\ Ce with wy, +wy» > |I|+ 1 for each vy, € C,
and wy + wgr > |I| + 1 for each vy € Ce,

and there does not exist an interval I' of contiguous slots with I C I' such that

C U, defines also a clique in the associated conflict graph HY,.

Proof. Neccessity.

if there exists a demand k" € K. \ C, with wy + wy» > |I| + 1 for each v € C, and
wi + wgr > |I| + 1 for each vy € Ce. Then, inequality is dominated by its
lifted with C = C. U{k”}. Moreover, if |{s, +w, —1,...,5;}| < wy, for each demand
k with vy, € C U C,, then inequality (2.37)) is then dominated by inequality ([2.25) -
for a set of demands K = {k € K such that v, € C} and slot s = s;+ min wy, + 1

keCUC,
over edge e. As a result, inequality (2.37) is not facet defining for P(G, K, S).

if there exists an interval I’ of contiguous slots with I C I’ such that C' U C, defines
also a clique in the associated conflict graph H{,. This implies that inequality
induced by clique C'UC, for the interval I is dominated by inequality induced
by the same clique C'U C, for the interval I’ given that {s; +wi —1,...,s;} C I’ for
each k € CUC,. As a result, inequality is not facet defining for P(G, K, S).

Sufficiency.
Let Fg{; be the face induced by inequality (2.37)), that is

Sj

B eP@KS): Yk S A Y S Ao

”L)kEC s=s;+wr—1 vk/EC’e S/ZSZ‘+wk/71

S5

We denote inequality 3, oo ¢ ks sitwp—1 zf#—ZUHEQ Zs,_sﬁwk/ 12 < |C)+1
by ax 4+ 5z < A\. Let ux + oz < 7 be a facet defining inequality for P(G, K,S) and

F={(x,z) e P(G,K,S) : pxr+o0z=r}. Suppose that FéHIe C F. We use the same
proof of the facial structure done for inequality (2.36)) in the proof of theorem

prove that inequality >, - x¢ ks sitwp—1 s+zvk/ece ZS,—Sz+wk’ L2l < ]C|—|—1
is facet defining for P(G, K,S). We first prove that FC T is a proper face based on
solution S®* defined in the proof of theorem which stills feasible such that
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. . 53 53 1H¢

its incidence vector (z°,2°") belongs to F,''. Furthermore, and based on the
. . . . . 53 53 59 59

solutions S% to 8% with corresponding incidence vector (25,25 ) to (25,25 ")

belong to FéH}i , we show that there exist p € R and v = (v1,72,73) (such that

’yf’e € Rforall¥ € K and e € Eg/,'yg’e € Rforall¥ € K and e € Ef/,'y;f/’sl €

R for all ¥’ € K and s’ € {1,...,wp — 1}) such that (u,0) = p(a, B) +vQ. For this,

we show that

ok =0 for all demand k € K and slot s € {wg, ...,5} with s ¢ {s; + wg — 1,...,5;} if
v, € CUC,,

and o* are equivalent for all v, € CUC, and s € {s; + wy — 1,..., s},

and p¥, = 0 for all demand k € K and edge e € '\ (E§ UEY) with e # € if vy, € C,
and p* are equivalent for the set of demands in C,

and 0'5/ and /ﬂg are equivalent for all vy € C and v € CUC, and s € {s; + wy —
1,...,s5}.

At the end, we obtain that for each £’ € K and ¢/ € E

.

VAN
Vit e e BE
VAN
y e it e e BN,
Her =
p if ¥ € C and ¢ = e,
0 otherwise,

and for each k € K and s € S

RS it s e {1, .., wp — 1}
Ufz 0 if vy, e CUC, and s € {s; + w, — 1, ..., 55},

0 otherwise.

As a result, we have (u,0) = p(a, 8) + vQ.

2.4.4 Interval-Clique Inequalities

We have looked at the definition of inequality (2.36|), we detected that there may
exist some cases that we can face which are not covered by inequality (2.36)). For

this, we provide the following inequality and its generalization.

Proposition 2.4.12. Consider an interval of contiguous slots I = [s;, s;] in S with
s; < s;j— 1. Let k, k' be a pair of demands in K with Ef N Ef/ # 0, and wg < |I|.

90



Then, the inequality

Sj Sj

D W § (2.38)

s=s;+wr—1 s'=s;+w, —1
is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2wy > |I| and 2wy >
I1].

Proof. 1t is trivial given that the interval I = [s;, s;] cannot cover the two demands
k, k" shared an essential edge with total sum of number of slots exceeds |I]. Further-
more, inequality is a particular case of inequality for K = {k,K'} over
each edge e € E{“ N Ef/. However, it will be used for a generalized inequality using

the following conflict graph. O

Definition 2.4.5. Let I = [s;,s;] be an interval of contiguous slots in [1,35] with
s;i < 55 — 1. Consider the conflict graph HF defined as follows. For each demand
k € K with wy < |I|, consider a node vy in HIE Two nodes vy, and vy are linked
by an edge in HE if wy, +wp > |I| and EF 0 EF # 0.

Proposition 2.4.13. Let I = [s;, s;] be an interval of contiguous slots in [1,5] with

s; < sj—1, and C be a clique in the conflict graph HF with |C| > 3. Then, the

mequality

> zj: k<, (2.39)

v €C s=s;+wr—1
is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2w, > |I| for each
v € C.

Proof. 1t is trivial given the definition of clique set in the conflict graph H IE such
that for all two linked node vy and vy in HE, we know from inequality (2.38))

S5 S5
!
E zf + E zfl <1
s=s;+wr—1 s’:sﬂrwk/fl

By adding the previous inequalities for all two linked node v and v in the clique

set C, and by recurrence procedure we obtain that for all ¢’ C C with |C'| = |C] -1

s
Z z]: zfgl.

v €C! s=5;+wi—1

By adding the previous inequalities for all C' C C' with |C'| = |C| — 1, we get

SOy 4 3o

C'CC  weC’ s=s;itwi—1 c'cc
IC"=IC|-1 IC"1=IC|-1
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Note that for each demand k with vy, € C, the sum Ziisﬁwwl 2F appears ((|C‘~|C,|1) -

1) = |C| — 1 times in the previous sum. It follows that

Y. Y. (e-n=<iol

v €C s=s;+wi—1

By dividing the two sides of the previous sum by |C| — 1, we have so

Z i zk<{ €] J:Z i <1 iventhat{ €] J—l
s =101 s =08 cl—1] ~

v €C s=s;+wi—1 v €C s=s;+wi—1

We conclude at the end that inequality (2.39) is valid for Q(G, K, S). Moreover, it
is valid for P(G, K, S) if 2wy, > |I| for each v;, € C. O

Theorem 2.4.8. Let I = [s;,s;] be an interval of contiguous slots in [1,5] with
s; < s; — 1, and C be a clique in the conflict graph HE with |C| > 3, and |{s; +
wi—1,...,8;}| > wy for each demand k with vy, € C. Then, inequality (2.39)) is facet
defining for P(G, K,S) if and only if
C is a mazimal clique in the conflict graph HIE,
and there does not exist an interval of contiguous slots I' in [1, 8] such that I C I
with

o wy +wy > |I'| for each k, k' € C,

o wy < |I'| for each k € C.
Proof. Neccessity.

We distinguish two cases

if there exists a clique C” that contains all the demands k& € C. Then, inequality
(2.39) induced by clique C' is dominated by another inequality (2.39)) induced by
clique C’. Hence, inequality (2.39) cannot be facet defining for P(G, K, S).

if there exists an interval of contiguous slots I’ in [1, §] such that I C I’ with
o wy + wy > |I'| for each k, k' € C,
o wy < |I'| for each k € C.

This means that inequality (2.39)) induced by clique C for the interval I is dominated
by inequality (2.39) induced by clique C for the interval I’. Hence, inequality (2.39))
cannot be facet defining for P(G, K, S).
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Sufficiency.
HE . . . .
Let F, " be the face induced by inequality (2.39), that is

E
FT ={(z,2) e P(G,K,S): Y Z k=1,
’UkECS Sitwp— 1

Denote inequality >, ¢ S w1 Zs F<lbyoax+pz<A\ Let uyr+oz<T7hea
facet defining 1nequahty for P(G,K,S) and F = {(z,2) € P(G, K,S) : /w—kaz =T}
Suppose that Fi, 1y C F. In order to prove that inequality ka co S shsitwp 17 2k <
1 is facet defining for P(G, K,S), we need to show that there exist p € R and
v = (71,72,73) (such that vf’e cRforall ¥ € K and e € E(’)“/,vg’e € Rforall ¥ €
K and e € Ef ,’y§ ¥ cRforall ¥ € K and ¢ € {1,...,wp — 1}) such that (u,0) =
pla, B) + Q.

We first show that ¥ = 0 for each edge e € E\ (E} U E}) for each demand k € K.
Consider a demand k € K and an edge e € E \ (E§ U EY). Let S = (E0, §50) be

the solution given by
for each demand k; € K with i € {1,...,|K|}, we let Eg? be the set of edges involved
in a shortest path between oy, and dy,,

for one demand k&’ from C, we select the slot s = s; + wy — 1,

for each demand k; € C'\ {k'} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots IZGO given by

I?O — ﬂ {’wk,” ey Sky — wkj} U {Skj + Wi,y ey §} \ {Si, cery Sj},
k; €D

where D0 = {k; € {k1,....,ki_1} NC: Eg? N Eg? # 0},
for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index

sk, in the set of slots Ii60 given by
I?O — [ m {wki, ces Sk _wkj}U{Skj + wg, , ...,5}] n [{wkl, ceey Sk —wk}U{sk—i—wki, ...75}]
]CJ'ER?O
if Eg? N(ERP U {e}) #0or 1P = ﬂ {wi;y oy 88, — wi; } U {s, +wg,, ..., 5} if not,
kjER?o

where R® = {k; € {k1, ..., ki_1} U C such that E}’ N E,?? #0}.

We let Sg? = {si, } be the set of last slots assigned to each demand k; with i €
{1,..,|K|}.

S0 is feasible for the problem, and its incidence vector
Then we derive a solution S8 = (E6!, 961) obtained from S% by adding edge
e € E\ (Ef U EY) for the routing of demand k in solution S® which means that

E
(25%, 25°) belongs to Fg’
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Egl = Ego U{e}. The last slots assigned to the demands K, and paths assigned the
set of demands K \ {k} in S% remain the same in solution S%, i.e., SP1 = S% for
each k € K, and ES} = EY for each k' € K \ {k}. S% is clearly feasible for the
problem. The corresponding incidence vector (w‘sm,zsm) belongs to Féf r . Hence,

solutions S and SO satisfy equation px + oz = 7. It follows that

60 60 61 61 60 60
pws 4025 = ,u:US +025 = ,u:US —i—,u/; +025".

As a result, pu¥ = 0.

In a similar way, we can show that
pF =0, forallk € K and e € E\ (E§ U EY).

Let show that 0% = 0 for all k € K and s € {wy, ...,5} with s ¢ {s; + w — 1,..., s}
if v, € C.

Consider a demand k € K and a slot s in {wy, ..., 5} with s’ ¢ {s; + w, — 1, ..., s;}
if v, € C. Let 8" = (E'%0, §'60) be the solution given by

for each demand k; € K with i € {1,...,|K|}, we let E,ﬁfo be the set of edges involved

in a shortest path between oy, and dy,,

for one demand k&’ from C, we select the slot spr = s; +wp — 1,
for each demand k; € C'\ {k'} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I/%Y given by
I{GO _ m {wk“ vy Sy wkj} U {Skj +  wg,, ...,5} \ {Si, ...,Sj},
k‘]‘GD;GU

where D50 = {k; € {k1,....ki-1}UC: E,’SO N E,’f;,o £ 0},

for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index
s, in the set of slots I/ given by
I8 = m {wi,, .. Sk, —wi, }U{sk, +wp,s o, SHN {wp,, s 8" —wi ) U{s" +wp,, ..., 53]
k?jER;GO
if E,’SO NESY £ 0 or 1% = ﬂ {wi;s oy 88, — wi; F U s, +wg,, ..., 5} if not,

k'jERéGO
where R/ = {k; € {k1,..., ki_1} U C such that E’ N Eg? # (0}. As a result,
. {Ski —wg, + 1, ~-75ki} N {Skj — W, +1,..., Sk].} = () for each kij S R;GO,

o and {sp, —wp, + 1, .., 80, ) N{s' —wp +1,..., '} = 0 if EFONEDY # 0 (we take
into account the possibility of adding slot s' as a last slot in the selected last

slots ;% to route demand k in solution S%).
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We let S,’SO = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,...,|K|}.
8’9 is feasible for the problem. Hence, the corresponding incidence vector (

E
belongs to Fé[ I'. Then consider the solution S%? obtained from S’°° by adding slot

s’ as last slot to demand k in 80, Solution S% is feasible for the problem. The

/60 160
57 25

. . 62 62 HE .
corresponding incidence vector (25, 2% ) belongs to F" . Hence, solutions S’60

and S%? satisfy equation ux + oz = 7. We have so

160 160 6 62 160 160
x‘s + zS S S 338 —I—crzs

2 k
= ux + o0z =Uu /

v o +og.

Hence, O'L]:, =0.

In a similar way, we can show that
af =0, forall k € K and s € {wy, ...,5} with s ¢ {s; +wp — 1,...,s;} if v, € C.

Let prove that o*f for all v, € C and s € {s;+wy—1,...,5;} are equivalent. Consider
a demand k' € K and a slot s’ € {s; + wy — 1,...,s;} with vpy € C, and a solution
S0 = (E60, §60) given by

for each demand k; € K with ¢ € {1,...,|K|}, we let Eg? be the set of edges involved

in a shortest path between oy, and dy,,

for one demand k from C, we select the slot s = s; +wg — 1,

for each demand k; € C'\ {k} with i € {1,...,| K]}, we select the smallest slot index
sk, in the set of slots 190 given by

f?o = ﬂ {wg; s s Sk, —Wk, }U{sijrwki, oy SHN{wiy s ooy 8 —wi JULS +wiy s oy SH\ {84 s 85}
]CJ'ED?O

if EE?HE,?? # ) or INEO = ﬂ {wiys oy 88, —wi, FU{sk; w0, 5\ {84, ..., 55} if not,
k?jED?O
where D0 = {k; € {ky,....ki1}NC: Dg? N Dg? # 0},

for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots 12260 given by

jiGO = [ ﬂ {wki, wvy Sk 7wk.7.}U{Skj + wg, , ...,5}] n [{wkl, ...,S, fwk/}U{s’+wki, ...,5}]
kjER?O
if EE? NES £ or I = ﬂ {wi; s -y Sk
k)]'ER?D

, — Wy, } U {s, +wg,, ..., 5} if not,

where R = {k; € {ki,...,k;_1} UC such that f),?,? N f)g? # (0}. As a result,
o {sp, —wp, + 1,56,y N {sk; —wi; + 1,88, = () for each k; € R?O,
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o and {sy, —wy, +1,...,s5, 1 N{s' —wp +1,....8} =0 if Egio QEE,O # () ( we take
into account the possibility of adding slot s’ as a last slot in the selected last

slots S to route demand &’ in solution S%).

We let gg‘? = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

S0 is feasible for the problem. Hence, the corresponding incidence vector (3:560, 2560)
belongs to Fé] r . Then consider the solution §% obtained from S% by adding
slot s’ as last slot to demand £/, and modifying the last slots assigned to de-
mand k by adding a new last slot § and removing the last slot s € ggo with
se{si+w,+1,..,s;} and § ¢ {s; +wp +1,...,s;} for demand k € K with v, € C
such that S9 = (S60\ {s})U{5} such that {5 —wg+1,...,5}N{s'—wp +1,..,8} =0
for each k' € K and s’ € S8 with Ef® N ES? # (). Solution 8% is feasible for the
problem. The corresponding incidence vector (a:563, 2563) belongs to Fg r . Hence,
solutions S% and §%3 satisfy equation ux + oz = 7. We have so

36

560 360 S6 560

3 863 0 k! k k
px®  +ozt =prt 4025 =px~ +0z2° +og —0;+0;.

Since U§ =0 for 5¢ {s; +wy —1,...,s;} with v, € C, it follows that af,/ = ok,

S

In a similar way, we can show that

k

oy = af//,for all pairs (vg,vp) € C,

with s € {s; +wp — 1,...,s;} and §" € {s; + wpy — 1,...,s;}. We re-do the same
procedure for each two slots s, s’ € {s; +wy — 1, ..., s;} for each demand k € K with

v € C such that

k

Os

= afl,for all vy € C and s,8" € {s; + wx — 1,..., s }.

Consequently, we obtain that o¥ = p for all vy € C and s € {s; +wy — 1, ..., s;}.
By and , we know that
,u';// = ’yf/’el forall ¥ € K and €' € E(’)“/,
pk =A< forall ' € K and ¢ € EV,
ok = 'ygl’sl for all ¥ € K and s’ € {1,...,wp — 1}.
We conclude that for each k € K and e € E
e ife € EE,
pk =S Ake it e e B,

0 otherwise,
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and for each k € K and s € S
it s e {1, ., wp — 1}
Ufz P if v, € Cand s € {s; +w, —1,..., 55},
0 otherwise.

As a consequence, (u,0) = p(a, B) + Q.

Let N(v) denote the set of neighbors of node v in a given graph.

Theorem 2.4.9. Consider an interval of contiguous slots I = [s;, sj], and a pair of
demands k, k" € K with (vg, vg) in GJIE. Then, inequality (2.38)) is facet defining for
P(G, K,S) if and only if

N(vg) N N(vg) =0 in the conflict graph HE,

and there does not exist an interval of contiguous slots I' in [1,3] such that I C I'
with wg + wgr > ||, wp < |I'|, and wy < |I'].

Proof. Neccessity.

We distinguish two cases:

if N(vg) NN (vgr) # 0 in the conflict graph H¥, this means that there exists a clique
C in the conflict graph H¥ of cardinality equals to |C| > 3 with k,k’ € C. As

a result, inequality (2.38) is dominated by inequality (2.39)) induced by clique C.
Hence, inequality ([2.38)) is not facet defining for P(G, K, S).

if there exists an interval of contiguous slots I’ in [1,3] such that I C I’ with
wg +wgr > |I'], w < ||, and wyy < |I'|. This means that inequality (2.38)) induced
by the two demands k, &’ for the interval I is dominated by inequality ([2.38]) induced

by the same demands for the interval I’.

Sufficiency.
We use the same proof of theorem for a clique C' = {vg, v} in the conflict
graph H }E . O

2.4.5 Interval-Odd-Hole Inequalities

Proposition 2.4.14. Let I = [s;,s;] be an interval of contiguous slots in [1,5] with
s; < sj—1, and H be an odd-hole H in the conflict graph HE with |H| > 5. Then,
the inequality

.
> zj: z§§H|2_1, (2.40)

v EH s=s;+wi—1
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is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2wy > |I| for each
v, € H.

Proof. 1t is trivial given the definition of odd-hole set in the conflict graph H F . We
strengthen the proof as belows. For each pair of nodes (v, vys) linked in H by an
edge, we know that Ziiusrl 2k 4 ZZ{:SH%,_I 2¥ < 1. Given that H is an

odd-hole which means that we have |H| — 1 pair of nodes (v, vx) linked in H, and

by doing a sum for all pairs of nodes (vy, vg/) linked in H, it follows that

Sj Sj

Z Z 2k 4 Z zf//§|H|—1.

(vi,vyr )EE(H) s=sitw,—1 s'=s;+w, —1
where F(H) denotes the set of edges in the sub-graph of the conflict graph H IE
induced by H. Taking into account that each node vy in H has two neighbors in

H, this implies that Zz]: sitwp—1 zf appears twice in the previous inequality. As a

result,
8j 5j 85
k K k
E E zZg + E Zg = E 2 g zg <|H|—1.
(vi,vpr JEE(H) s=sitwi—1 s'=s;+w —1 v€H s=sitwi—1

By dividing the two sides of the previous sum by 2, it follows that

8j
-1 -1
Z Z 2k < V |2 J = | |2 since |H| is an odd number.

v EH s=s;+wr—1
We conclude at the end that inequality (2.40) is valid for Q(G, K, S). Moreover, it
is valid for P(G, K, S) if 2wy > |I| for each vy € H. O

Inequality (2.40) can be strengthened without modifying its right-hand side by
combining inequalities (2.39) and ([2.40|) as follows.

Proposition 2.4.15. Consider an interval of contiguous slots I = [s;,s;] C S with
s;i < sj — 1. Let H be an odd-hole H in the conflict graph HIE, and C' be a clique in
the conflict graph HF with

|H| =5,

and HNC =0,

and the nodes (v, vg) are linked in HIE for all v, € H and vy € C.
Then, the inequality

> i: z§+m2_1 > i: zfg‘H’Q_l (2.41)

v EH s=s;+wp—1 v €C s'=s;+wy —1
is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if 2wy > |I| for each
v, € CUH.
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Proof. 1t is trivial given the definition Of odd-hole set and clique set in the conflict
graph HF such that if >°°/ o/ —si+wy—1 %

D veH S sitwp—1 2 %k to be equal to 0. Otherwise, we know from inequality (2.40} -
|H|-1
2

kK =1 for vy € C, it forces the quantity
that the sum >, p Z?: sitwp—1 2% is always smaller than . We strengthen
the proof as belows. For each pair of nodes (vg,vg) linked in H by an edge, we
know that 307 twp—1 s +>7 ity 1 P +ka o st 1 % < 1 given
that all the nodes vy € C are linked with the nodes vy and v,. Given that H is an
odd-hole which means that we have |H| — 1 pair of nodes (v, vx) linked in H, and

by doing a sum for all pairs of nodes (vg, vg/) linked in H, it follows that

Sj Sj Sj
! b2
E g AR E PR g E 2K < |H| - 1.
(Vi vy )EE(H) s=$itwr—1 s'=s;4+w —1 v €C 8" =s;+wp» —1

Taking into account that each node v in H has two neighbors in H, this implies that

S k appears twice in the previous inequality. The sum P S 2

s=s;+twi—1 Zs 8§87 =s;+wp»—1 “s

appears |H| — 1 times in in the previous inequality. As a result,

Sj Sj Sj
> doooAm+ Y s (HI-D Y Y A <H-1
(Vi vy )EE(H) s=8itw—1 s'=si+w —1 v €C 87 =s;+wp» —1
Sj Sj
=Y 2 > diqH-1 Y Y E<H -1
vp€H s=sitwi—1 v €C 8" =s;+wgr —1

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that

>, i 2F 4+ {|H|—1J 3 Z & < {|H|2— 1J _ |H|2—1‘

v, €H s=s;+wi—1 v €C 8" =s;+wp» —1

We conclude at the end that inequality (2.41)) is valid for Q(G, K, S). Moreover, it
is valid for P(G, K, S) if 2wy, > |I| for each v, € C' U H. O

Theorem 2.4.10. Let H be an odd-hole in the conflict graph HE with |H| > 5 and
2wy > |I| for each vy, € H. Then, inequality (2.40) is facet defining for P(G, K,S)
if and only if

a) for each node vy ¢ H in H}E, there exists a node vy, € H such that the induced graph
HE((H\ {vg}) U {op}) does not contain an odd-hole H' = (H \ {vg}) U {vp'},

b) and there does not exist a node vy ¢ H in HE such that vy is linked with all nodes

v, € H,

¢) and there does not exist an interval I' of contiguous slots with I C I' such that H

defines also an odd-hole in the associated conflict graph Hﬁ
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Proof. Neccessity.

We distinguish the following cases:

if for a node vy ¢ H in H}E, there exists a node v, € H such that the induced graph
HE((H \ {v}) U {vp}) contains an odd-hole H' = (H \ {v3}) U {vp}. This implies
that inequality (2.40)) can be dominated by doing some lifting procedures using the

following valid inequalities

Sy S
Z Zj: zi?/ < ]H]2—1’ and Z i: zfll < |H|2_1,

vp€EH s'=s;+wi—1 v €H' s'=s;+w —1
as follows
55 55 55
! 2
s'=s;+wr—1 s'=s;+w, —1 v €EH\{k,k'} 8" =s;+wp» —1
. Sj k! . . . .
By adding the sum ZS,:SZ_ fwy—1 P to the previous inequality, we obtain
8j 55 55 55
/ el /
s'=s;+twp—1 s'=s;+w—1 v EH\{k,k'} 8" =s;+wp» —1 s'=s;+w, —1
. Sj 1% .
Since Zs,:8i+wk/_1 zg <1, it follows that
5j 8j 55
/ 27
) A2 D A2 D ) 2K < |H|.
s'=s;i+wi—1 s'=s;+w —1 v €EH\{k,k'} 8" =s;+wp» —1

By dividing the last inequality by 2, we obtain that

Sj S35 Sj

R DI R YD kng

s'=s;+wr—1 s'=s;+w; —1 v EH\{k,k'} 8" =s;+wp» —1

Given that H' = (H \ {k}) U {K'} such that |H'| = |H|, and |H]| is an odd number

H _
which implies that L|2|J = # As a result
S5 S /
3 Ly 3 3 wo [H[—1
5'28/ + st S T
s'=s;+wr—1 Uk/GH/ " =s;+w —1

That which was to be demonstrated.

if there exists a node vy € H in H IE such that vy is linked with all nodes vy € H.
As a result, inequality (2.40)) is dominated by the following inequality

i H| -1 i ,|H| -1
DI R = DR Py

vp€EH s'=s;+wi—1 s'=s;+w; —1
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c) if there exists an interval I’ of contiguous slots with I C I’ such that H defines also
an odd-hole in the associated conflict graph H ﬁ . This implies that inequality
induced by odd-hole H for the interval I is dominated by inequality induced
by the same odd-hole H for the interval I’ given that {s; + wy — 1,...,s;} C I’ for
each k € H. As a result, inequality is not facet defining for P(G, K, S).

If no one of these two cases is verified, inequality (2.40)) can never be dominated by
another inequality without changing its right-hand side.
Sufficiency.
HE . . . .
Let Fy;' be the face induced by inequality (2.40), that is
HE Hl -1
Fy' ={(z,2) e P(G,K,S): Y _ Z z§=| |2 b

v €EH s=s;+wp—1

\HI 1

We denote inequality », - S sitwp—1 2k < by ax+pz < A. Let ux+oz <
7 be a facet defining 1nequahty for P(G, K,S) and F={(z,2) € P(G,K,S) : px +
oz = T}. Suppose that F; 17 C F. Inorder to prove that inequality >, g S sitwp—17 2k <
% is facet defining for P(G, K,S), we will show that there exist p € R and

v = (71,72,73) (such that vf’e cRforall ¥ € K and e € E{f/,wg’e € Rforall ¥ €

K and e € Ef ,’yz’f ' cRforall k¥ € K and s’ € {1,...,wp — 1}) such that (u,0) =

pla, B) + Q.

We first show that ¥ = 0 for each edge e € E\ (E} U E) for each demand k € K.
Consider a demand k € K and an edge e € E \ (E} U E¥). Let 8% = (E%*, %) be

the solution given by

a) for each demand k; € K with i € {1,...,|K|}, we let Eg? be the set of edges involved
in a shortest path between o, and dy,,

b) select a subset of demands H from H with |H| = ‘H|2_1,

¢) for each demand k; € H with i € {1,...,| K|}, we select the smallest slot index sy, in
the set of slots Ii64 given by

1 = [ () sy — Wb U sty wk sl 0 (s ok = Lo
kjEL?4
where L% = {k; € {k1, ..., ki—1} U a: ng a Elg;l 7 0},

d) for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots 194 given by

= () {wky sk, — we b U {sk, + wi,n5h \ {si 4+ we, — 1)
ijD?4
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where D% = {k; € {k1,....ki1} N H : ng N Eg;l # 0}. We let Sg? = {s, } be the
set of last slots assigned to demand k;,

for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index
sg, in the set of slots IZ-64 given by

1?4 — [ m {wki, ces Sk _wkj}’U{Skj + wg, , ...,5}] n [{wkl, ceey Sk —wk}U{sk—i—wki, ...75}]
kjER?4
if ERt 0 (ERtU{e}) #0 or I = ﬂ {wi;y oy 88, — wi; F U {s; +wg,, ..., 5} if not,

k;eR$4

where R = {k; € {ki1,...,ki—1} U H such that ng N Eg;l # (}. This guarantees
that

{8k — wr; + 1,81, 3 O {sg; —wy; + 1,85, 1 = 0 for each k; € R%4,

and {sp, —wk, + 1, ..., 0, } N {sp —wp, + 1,8} = 0 if BP0 (ERtU{e’}) # 0 (we
take into account the possibility of using edge €’ in the selected path E24 to route

demand k in solution S%).

We let Sg? = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

S is feasible for the problem. Hence, the corresponding incidence vector (93564, 2364)
belongs to F II{{F . Then we derive a solution S = (£%, §6%) obtained from S% by
adding edge e € E \ (Ef U EY) for the routing of demand k in solution S® which
means that E25 = Eg4 U {e}. The last slots assigned to the demands K, and paths
assigned the set of demands K \ {k} in S% remain the same in solution S%, i.e.,
585 = 89 for each k € K, and ES) = ES! for each k' € K \ {k}. S% is clearly
5657 z865)

feasible for the problem. The corresponding incidence vector (x belongs to

E
F g’ . Hence, solutions S and S% satisfy equation puz 4+ 0z = 7. It follows that

S6 S6 S

nx ! + 02564 = ux ’ + 02865 = ux ! + ,ulff + 02864.

As a result, p¥ = 0.

In a similar way, we can show that
pk =0, forall k€ K and e € E\ (EY UEY).

Let show that 0% =0 for all k € K and s € {wy, ..., 5} with s & {s; + wp — 1,...,5;}
if v, € H.

Consider a demand k in K and a slot s" in {wy, ..., 5} with s" ¢ {s; + wy — 1, ..., s;}
if vp € H. Let 8% = (E64, 8'64) be the solution given by
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a)

for each demand k; € K with i € {1, ..., | K|}, we let E,’S‘L be the set of edges involved
in a shortest path between oy, and dy,,

|H|-1
2 )

select a subset of demands H from H with |H| =

for each demand k; from H with i € {1,...,|K|}, we select the smallest slot index

s, in the set of slots I!%* given by

% = ﬂ {wi,y o8k, — wry b U {sk; + wpy, -, 53] N {si + wr, — 1,85},
k)jGD;EM
where D% = {k; € {ky, ... kia} N H : BP0 ES* # 0},

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I/%% given by

12{64 = ﬂ {wkm...,sk]‘ - wkj} U {Skj + Wryy 50\ {si + wi, — 1""’Sj}’
kj€D” 64
where D" = {k; € {k1, ... ki1 } N H : E”% n E”% # 0},

for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots /%% given by

%4 = ﬂ {wiys ooy Sk, —wi, YU sk, + Wiy, -y SH N [{wi,, oo 8" —wi} U{s" +wp,, ..., 5}
k]‘ERgM
if Bt N ER # 0 or 19 = ﬂ {wi,, ..., sk, — wi, } U{sk, + w,, ..., 5} if not,
k?jERQEA

where R/%* = {k; € {k1,...,ki—1} U H such that E,’£4 N E,’fj4 # (0}. As a result,
{8k, —wr; + 1,81, 3 O {sg; —wp; + 1,85, 1 = 0 for each k; € R4

and {sp, —wr, + 1, ..., 58, Y N {8’ —wp +1,...,8'} = 0 if EZ* N ES* # 0 ( we take into
account the possibility of adding slot s’ as a last slot in the selected last slots 51264

to route demand k in solution &’64).

We let S,’ff = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,..,|K|}.

8’64 is feasible for the problem. Hence, the corresponding incidence vector (J:SIM, 23,64)

E
belongs to ng . Then consider the solution S% obtained from S’%* by adding slot
s" as last slot to demand k in 4. Solution S% is clearly feasible for the problem.
E
The corresponding incidence vector (x566, z‘s%) belongs to F 5’ . Hence, solutions

S’ and 8% satisfy equation px + 0z = 7. We have so

164 164 66 66 164 164
,u:cs +02° :uxs +02° :ums +02° +a§,.
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Hence, af, = 0.

In a similar way, we can show that
ok =0, forall k € K and s € {wy, ..., 5} with s & {s; + wy, — 1, s} if v, € H.

Let prove that af,/ for all vy € H and s’ € {s; + wyr — 1, ..., s} are equivalent.
Consider a demand k' € K with vy € H and a slot s’ € {s; + wy — 1,...,s5;}. Let
S = (B9 §56) be the solution given by

for each demand k; € K with ¢ € {1,...,| K|}, we let Eg? be the set of edges involved
in a shortest path between o, and dy,,

|H|-1
2 )

select a subset of demands H from H with |H| =

for each demand k; from H with i € {1,...,|K|}, we select the smallest slot index

sk, in the set of slots I given by
IzGG = | ﬂ {wki,...,skj — wkj} U {Skj + wg,, .., 5 N {si + wk, — 1,.., 8}
k;eL§s
where L% = {k; € {k1i,....ki-1} N H : E} N ES # 0},

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
s; in the set of slots I9® given by

50 = ﬂ {wi,y oy 88, — wiy b U {8k, + wiyy 8\ {80 4+ wr, — 1,851,
kj €D

where D?6 = {k‘j € {kl, ...,ki_l} NH: Eg? N Eg? =+ (Z)},

for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index
s, in the set of slots Ii66 given by

I?G = [ m {wkw coey Sk _wkj}U{Skj + wg,, ...75}] n [{wki, ...,S/ _wk’}U{S/+wkia ...75}]
]CjER?G
if ng’ NEY £ or I?° = ﬂ {wi;y oy 88, — wi; } U {sy, +wg,, ..., 5} if not,

kjER?G
where R%® = {k; € {k1,...,ki—1} U H such that Eg? N ng # (0}. Hence,
{sk, —wk, +1,...,8,} N {Sk]. —wg; +1, ---,Skj} = () for each k; € R?6,

and {sg, —wy, +1,..., 55, N{s —wp +1,...,5} =0 if Eg? NES £ ( we take into
account the possibility of adding slot s’ as a last slot in the selected last slots S,?? to

route demand k' in solution S%).

We let Sg? = {si, } be the set of last slots assigned to each demand k; with i €
{1,..., KT}
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596 is feasible for the problem. Hence, the corresponding incidence vector (:U866, 2566)
E
belongs to F' 5’ . Based on this, we construct a feasible solution S%7 = (E®7, §67)

obtained from S% as belows

without changing the established paths for the demands K \ K in solution 8% i.e.,

EST = E% for each demand k € K \ K,

remove the last slot s totally covered by the interval I and which has been selected by

ademand k; € {vg,, ..., vk, } in solution S (ie., 5 € S,?? and §' € {s;+wk,+1,...,5;})

such that each pair of nodes (v, vkj) are not linked in odd-hole H with j # 1,

and select a new last slot §& ¢ {s; +wy, + 1,...,s;} for demand k; i.e., SSZ =

(Spo\ {5}) U {8} such that {5 —wy, —1,...,8} N {s —wy + 1,...,5} = 0 for each

ke K and s € S50 with E)' N EJT # 0,

and add slot s’ to the set of last slots 52,6 assigned to demand £’ in solution S%,

fe., 97 — 95U (/).

Solution S97 is feasible for the problem. The corresponding incidence vector (acsm, 2367)
E

belongs to F g’ . Hence, solutions S% and 8% satisfy equation px + oz = 7. It

follows that

566 566 S6 567 566

7 56
nx + oz = ur + oz = ux + oz

6 ! ki k;
+0—§/ +U§/ _0'5.

Since 0¥ = 0 for all demand k € K and slot s € {wy, ..., 5} with s ¢ {s;+wg+1, ..., s}
if vp € H, it follows that 0% = o%.
In a similar way, we can show that

k

oy = O'f;l,fOI' all pairs (vg,vp) € H.

Consequently, we obtain that o¥ = p for all vy € H and s € {s; +wg — 1, ..., s;}.
Overall, and using the results and , we obtain that
e ife € BE,
e = 4 v¢  ife e EF,
0 otherwise,
for each k € K and e € F, and
fy:];’s if se{l,...,wp—1},
oF = p if vy € H and s € {s; + wi — 1,..., 55},
0 otherwise.

for each k € K and s € S.
As a consequence, (u,0) = p(a, 8) + Q. O
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Theorem 2.4.11. Let H be an odd-hole, and C' be a clique in the conflict graph
H}E with

a) [H| =5,

b) and HNC = (),

¢) 2wy > |I| for each vy € CUH,

d) and the nodes (v, vy) are linked in HE for all vy € H and vy € C.
Then, inequality is facet defining for P(G, K,S) if and only if

a) for each node vy in HE with vpr ¢ HUC and C U {vp»} is a clique in HE, there
exists a subset of nodes H C H of size % such that H U {vy} is stable in HE,

b) and there does not exist an interval I' of contiguous slots with I C I' such that
H and C define also an odd-hole and its connected clique in the associated conflict

graph HE.
Proof. Neccessity.

a) Note that if there exists a node vg» ¢ H UC in HE such that vy is linked with all
nodes v € H and nodes vy € C. This implies that inequality (2.41]) is dominated
by the following inequality

S5 S
Z z]: Z§+|H\ Z Z /+|H| Z]: &< |H|2—1'

v €H s=sj+wp—1 v €C s'=s;+wy —1 s =s;+wg»—1

b) if there exists an interval I’ of contiguous slots with I C I’ such that H and C define
also an odd-hole and its connected clique in the associated conflict graph H IE/ . This
implies that inequality induced by odd-hole H and clique C' for the interval
I is dominated by inequality induced by the same odd-hole H and clique C
for the interval I’ given that {s; + wy —1,...,s;} C I’ for each k € H.

If these cases are not verified, we ensure that inequality (2.41)) can never be dom-
inated by another inequality without modifying its right-hand side. Otherwise,
inequality (2.41) is not facet defining for P(G, K, S).

Sufficiency.

Let I - be the face induced by inequality (2.41)), that is

Fuyeo=A{(z,2) e P(G,K,S): Z Z zf+‘H‘2_1 Z ZJ zf/:‘H‘Q_l}.

v, €H s=s;+wr—1 v €C 8'=s;+wy —1

H

Let denote inequality >, S sitwy 178 < |271 by ax+ 5z < A. Let px+oz <
7 be a facet defining inequality for P(G, K,S) and F = {(z,z) € P(G,K,S) :
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px + oz = T}. Suppose that ng C F. To prove that Fg’g is a facet of
P(G, K,S), we need to show that there exist p € R and v = (y1,72,73) (such that
Ve e Rforallk € Kande € EF A8 € Rforall k' € K and e € EV ¥
R for all ¥ € K and s’ € {1,...,wp — 1}) such that (u,0) = p(a, 8) + vQ. For this,

we show that

ok =0 for all demand k € K and slot s € {wg, ..., 5} with s & {s; +wy — 1,...,s;} if
v € HUC as we did in the proof of theorem [2.4.14

and p¥ = 0 for all demand & € K and edge e € E\ (E¥ U E¥) as we did in the proof
of theorem

and o are equivalent for all v, € H and s € {s; + wg, — 1,...,5;} as we did in the

proof of theorem [2.4.14]

Solutions S*? —S% still feasible for F 5 }é We should prove now that o* are equivalent
for all v, € C and s € {s; +wi —1,..., 55}

Consider a demand &' with vz, € C and a slot & € {s; + wy, — 1,...,s;}. Let
S™ = (E™, 87) be the solution given by

for each demand k; € K with i € {1,...,|K|}, we let E,Z? be the set of edges involved

in a shortest path between oy, and dy,,

select a subset of demands H from H with |H| = ‘H|2_1,

for each demand k; € H with i € {1, ..., |K|}, we select the smallest slot index sy, in
the set of slots I70 given by

0 = | m {wi,y 86, — wiy b U {sk, + wp,, ., 5] N {si + wr, — 1,..,55},
kjELZO

where L]% = {k; € {ki,....ki-i} N H : E[’ N E[% # 0},

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots IZ-7 0 given by
I = ﬂ {wr,y sk, — wry b U {sk, + wi,,. 5\ {si + wr, — 1,..,851,
k:jGDZO

where DZO = {k‘j € {kl, u-,ki—l} NH: E]Z? N E]ZJO =+ (Z)},

for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots IZ 0 given by

IZO = ﬂ {wp;, ces Sk _wkj}U{Skj + Wi,y oy S N {wi,, oy & —’wlg/}U{gl—l—wki, oy 5
k;eR]C
if Bf°NER #0or I[° = ﬂ {w; s .-, Sk
k]’GRZO

. — W, } U {sk, +wg,, ..., 5} if not,
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where RT® = {k; € {k1,...,ki—1} U H such that E,Z? N E,Z? # (}. Hence,
o {sp, —wp, + 1, 86, N {sk; —wi; + 1,88, } = () for each k; € R,

o and {sp, —wy, +1,...,s0, 1 N {5 —wp, +1,...,5} =0 if E,Z? ﬂEZ? # () ( we take into
account the possibility of adding slot §" as a last slot in the selected last slots S’Zf) to

route demand &’ in solution S7).

We let S,Z? = {sk, } be the set of last slots assigned to each demand k; with i €
{1,..,|K]|}.
S0 is feasible for the problem. Hence, the corresponding incidence vector (:L'S 70, 2° 70)

E
belongs to F' gIC Then consider the solution S”* obtained from S as belows

a) remove all the last slots §; totally covered by the interval I and which has been
selected by each demand k; € H in solution S (ie., 5 € S,Z? and 5 € {s; + wy, +
1,...,s;}) for each k; € H,

b) and select a new last slot & ¢ {s; +wy, + 1,...,s;} for each k; € H i.e., S,Zzl =
(S{P\ {3:}) U {3} such that {3} —wy, — 1,...,8} N {s —wg +1,...,s} = 0 for each
k € K and s € S/° with E[! ﬂE,ZZI + () for each k; € H,

c) and add slot § to the set of last slots Si:,o assigned to demand k' in solution S,
: 7L _ Q70 [
Le., Sl =S U{s'}

d) without changing the set of last slots assigned to the demands K \IEI , l.e., Sgl = SZD
for each demand K \ H.

Solution 87! is feasible for the problem. The corresponding incidence vector (I871 , 2371)
belongs to F' HIO Hence, solutions S and S™! satisfy equation puzx + oz = 7. We

have so

70 70 71 71 70 70 i k; k;
pa®" + 02" = pa® 4+ 025 = pa® +02° +op, + Z O3 — Z T5; -
kZEI:I kZ'EI:I

Since o = 0 for all demand k € K andslot s € {wy, ..., 5} with s ¢ {s;+wy+1, ..., 5;}
if vy € HUC, it follows that 3, 5 ok

S;

7.l
= ag, for vz, € C.
In a similar way, we can show that

o |H| -1

Og = p

Jor all vy € C and s’ € {s; + wpr + 1,..., 85}

As a result,

k

0g =
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b)

Consequently, we obtain that Uf,/ = p% for all vy € C and §' € {s; + wp —

1,...,85}.
By and , we know that
k= 'yf/’e/ for all k' € K and ¢’ € Ef,
,u];”,/ = fygl’e/ for all ¥’ € K and ¢ € EV,
ok = 'yil)f/’sl for all ¥ € K and ¢’ € {1,...,wy — 1}.
We conclude that for each k € K and e € E
'yf’e ifee E(If,
b = 'yg’e if e € EF,
0 otherwise,

and for each k € K and s € S

fy§’s if se{l,..,wp—1},
o = P if vy € H and s € {s; +wi — 1,..., 5},
p|H|2_1 ifvy, e Candse {si+w,—1,..,5;},
\0 otherwise.
As a result, we have (u,0) = p(a, 8) + vQ. O

2.4.6 Edge-Slot-Assignment-Clique Inequalities

Here, we introduce another conflict graph totally different compared with the conflict

graphs presented previously.

Definition 2.4.6. Let HS be a conflict graph defined as follows. For each slot
s € {wy,...,8} and demand k € K with e ¢ Ef, consider a node vy s in H§. Two
nodes vy s and vy g are linked by an edge in HG if
k=F,
or{s—wr+1,.,stN{s' —wp + 1,8} #0 if k #F and (k, k') ¢ K.

Based on this definition, we introduce the following inequalities.

Proposition 2.4.16. Consider an edge e € E. Let C be a clique in the conflict
graph Hg with |C| >3, and ) cowp < 5 — Zk’eKe\C wy. Then, the inequality

D @+ <o)+ 1, (2.42)
’Uk’SEC
is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if {s —wp +1,...,1} N
{s' —wp +1,....,8'} #0 for each (vy s, v s) € C.
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Proof. 1t is trivial given the definition of a clique set in the conflict graph H such

that for each two linked nodes vy s and vy ¢ in HS, we have

/ !
:c’e“—kx’g +zf+zk <3.

S/

This can be generalized for a triplet of linked nodes vy, and vy ¢ and vgr o With
Wk + W +wgr <5 — Zl%eKe\{k w7y Wi, such that for each linked nodes (Vk,s5 V' ')

and (vks, Vg g) and (Vg o, Uiy g7), We have

/ /
x’g—i—xlg —i—zf—i—zf, <3,
k

e

+ 28K <3,

9

:L‘f—l—x

! ! 2
:1:16€ + x; —|—z§, +sz <3.

By adding the three previous inequalities, we get the following inequality using the

chvatal gomory procedure

2xlg + 2:1:’;, + 21’5” + 2z§ + 225 + 2z§: <9
/ 97 ! 2 9
=ab b ¥ 4k zf/ + zfn < 4 given that {2J =4.
This can be generalized for each clique C' with |C| > 4 while showing that inequal-
ity (2.42) can be seen as Chvatal-Gomory cuts. Using the Chvatal-Gomory and
recurrence procedures, we obtain that
Z a2k <0+ 1,

Uk,SEC’
for all ¢’ C C with |C'| = |C| — 1 and |C’| > 3.
By adding the previous inequalities for all C’ C C with |C’| = |C] — 1, and doing

then some simplification, we get at the end that

C
dooak +F < UC|+|C‘||1J = > ab 4+ < ol + 1,
UIg,sGC Uk’SGC

C
given that { €] J = 1. We conclude at the end that inequality (2.42)) is valid for

1] -1
Q(G, K,S). Moreover, it is valid for P(G, K,S) if {s —wi + 1,...,1} N {s —wp +
1,...,8'} # 0 for each (v, v ) € C. O

Theorem 2.4.12. Consider an edge e € E, and a clique C' in the conflict graph H§
with {s —wi +1,..,1} N{s' —wp +1,...,8'} # 0 for each (v s, v s) € C. Then,
nequality is facet defining for P(G, K,S) if and only if C is a mazimal clique
in the conflict graph HE, and there does nmot exist an interval of contiguous slots

I =[s;,s5] C [1,5] with
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a)

[ min (s —wg + 1), max s] C I,
'Uk7_gec ’U]“SEC

b) and wy, +wy > |I| + 1 for each (vi, vy ) € C,

¢) and 2wy, > |I| + 1 and wy, < |I| for each vy € C.

Proof. Neccessity.

If C is not maximal clique in the conflict graph H§, this means that inequality
can be dominated by another inequality associated with a clique C’ such that
C C C' without changing its right-hand side. Moreover, if there exists an interval

of contiguous slots I = [s;, s;] C [1, 5] with

[vgiienc(s —wy + 1), vf,lsaéXC s| C 1,

and wy + wg > |I| + 1 for each (vg,vp) € C,

and 2wy, > |I| 4+ 1 and wy < |I| for each vy € C.

Then, inequality is dominated by inequality . As a result, inequality
cannot be facet defining for P(G, K, S).

Sufficiency.

Let Fg 5 be the face induced by inequality , that is

Fé]g = {(z,2) € P(G,K,S) : Z a4k =1}

”Uk’SEC

Let denote inequality ka,sec mlg + zi? <lbyar+pGz<A\ Let ur+ 0z <7 bea
facet defining inequality for P(G, K,S) and F' = {(x,2) € P(G,K,S) : px+oz =1}.
Suppose that Fg 5 C F'. In order to prove that inequality ka,sec xﬁ%—zf < 1isfacet
defining for P(G, K, S), we need to show that there exist p € R and v = (1,72, 73)
(such that ’yf’e/ € Rforall ¥ € K and ¢ € Eé“/,vg’e/ € Rforall ¥ € K and ¢ €
Ef/,fyg/’sl eRforall ¥’ € K and s’ € {1,...,wpr—1}) such that (i, o) = p(a, B)+7Q.

In a similar way with the proof of theorem [2.4.1] we obtain that

fyf"e/ ife € E(’)“/,
k' ")’gl’e, lf 6/ S E{Cl,
Her =
p if k¥ € K(C) and €' = e,
0 otherwise,

\

for each ¥’ € K and ¢’ € E, and

'yg’sl if s € {1,...,wp — 1}
ov=4p ifuseC,

0 otherwise.
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for each k € K and s’ € S, where K(C) = {k € K : 3s € {wg, ..., 5} with v, s € C}.
As a consequence, (u,0) = p(a, B) + Q. O

2.4.7 Slot-Assignment-Clique Inequalities

On the other hand, we detected that there may exist some cases that are not covered
by inequality (2.42)) and (2.25) previously introduced. For this, we provide the

following definition of a conflict graph and its associated inequality.

Definition 2.4.7. Let Hg be a conflict graph defined as follows. For all slot s €
{wg, ..., 5} and demand k € K, consider a node vy s in Hg Two nodes vy s and
v are linked by an edge in HSE if and only if

k=F,

or EFOEY 40 and {s —wp +1,....s} N {s' —wp +1,....,8'} 0 if k # k'

Proposition 2.4.17. Let C be a clique in the conflict graph HE with |C| > 3.
Then, the inequality

k<, (2.43)

Uk’sEC

is valid for Q(G, K,S). Moreover, it is valid for P(G,K,S) if {s —wp + 1,...,1} N
{s' —wp +1,...,8'} #0 for each (vj s, v s) € C.

Proof. 1t is trivial given the definition of a clique set in the conflict graph H g such

that for each two linked nodes vy s and vy ¢ in H E , we know from the inequality

(2.6) that

P +25 <1,

Sl

given that ¥ = ¥ = 1 for all e € EF N EF and {s — wy + 1,...,s} N {s' — wp +
1,...,8} #£0.

By adding the previous inequalities for all two nodes vy, and vy ¢ in C, and by

recurrence procedure we obtain that for all ¢ C C with |C'| = |C] — 1

Z zfgl.

’UhSEC/
By adding the previous inequalities for all C" C C' with |C'| = |C| — 1, we get

SO e Y1

C'CC g €0 c'ce
IC"|=|C -1 IC'|=|C1-1
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Note that for each demand k and slot s with v, € C, the variable zf appears

((l C|*|C—‘1) —1) =|C| — 1 times in the previous sum. It follows that

> (ol -1z <|Cl.

vk’SEC

By dividing the two sides of the previous sum by |C| — 1, we have so

C| . |C
koo | koo« _
E z, < LC’ —3 = g z; < 1 given that =1

vk,SEC v;weC

We conclude at the end that inequality (2.43) is valid for Q(G, K,S). Moreover,
it is valid for P(G,K,S) if {s —wg + 1,..,1} N {s —wp + 1,...,8'} # 0 for each
(Uk,mvk’,s’) e C. O

Theorem 2.4.13. Consider a clique C in the conflict graph HS}? with {s — wy +
L., 1}n{s —wp +1,...,8'} # 0 for each (vi s, v ) € C. Then, inequality
is facet defining for P(G, K,S) if and only if C is a mazximal clique in the conflict
graph HE | and there does not exist an interval of contiguous slots I = [s;, s;] C [1, 5]
with

[vgiienc(s —wy + 1), vg}szle)cc s] C I,

and wg, + wy > |I| + 1 for each (vg,vp) € C,

and 2wy, > |I| + 1 and wy, < |I| for each vy, € C.

Proof. Neccessity.
If C' is not maximal clique in the conflict graph H g , this means that inequality
(2.43)) can be dominated by another inequality associated with a clique C’ such that
C c C' without changing its right-hand side. Moreover, if there exists an interval
of contiguous slots I = [s;, s;] C [1, 5] with

i — 1), C I,
[ in (s —wi + 1), max s
and wy + wg > |I| + 1 for each (vg,vp) € C,
and 2wy, > |I| 4+ 1 and wy < |I| for each vy, € C.
Then, inequality (2.43]) is dominated by inequality (2.39)). As a result, inequality
(2.43) cannot be facet defining for P(G, K, S).
Sufficiency.
Let F° be the face induced by inequality (2.43)), that is

FS ={(@,2) e PG, K,8): Y k=1,

’UhSEC
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Let denote inequality ka e zf <1by axr+ Bz < A. Let px + oz < 7 be a facet
defining inequality for P(G, K,S) and F = {(z,z) € P(G,K,S) : pr + oz = 7}.
k <1 is facet

S

Suppose that Fé] § C F. In order to prove that inequality ka,sec z
defining for P(G, K, S), we need to show that there exist p € R and v = (y1,72,73)
(such that ’yf’e € Rforall ¥ € Kande € E§/,7§’€ € Rforallk € Kande €
Ef/,fyg,fl’sl eRfor all ¥’ € K and s’ € {1,...,wpr—1}) such that (u,0) = p(a, 5)+7Q.
We first show that ¥ = 0 for each edge e € E '\ (E} U EF) for each demand k € K.
Consider a demand k € K and an edge e € E\ (E} U E¥). Let S = (E™,5™) be

the solution given by

. for each demand k; € K \ {k} with i € {1,...,| K|}, we let E,Z? be the set of edges

involved in a shortest path between oy, and dy,,

. for demand k, we let EIZQ be the set of edges involved in a shortest path between

o, and d such that edge e is compatible with all the selected edges e € E,ZQ, ie.,
Ze’EE? Ee’ + ge < [k’

. select one pair of demand %" and slot s’ from clique C' (i.e., vir ¢ € C), and use slot
sy = s as last slot,

. for each demand k; € K\ {k'} with i € {1,...,| K|}, we select the smallest slot index
s, in the set of slots I7? given by

Ii72 — [ ﬂ {wki, ces Sk —wkj}U{Skj + wg, , ...,5}] n [{wki, ey SE —wk}U{sk + wg, , ...,5}]
k€D

if B2 N (Ef?U{e}) #0or I]? = ﬂ {weys oy 8, — W, } U {5k, +wy,, ..., 5} if not,
k;eDT?
where D = {kj € {ki,....ki 1} U{K'}: E>N E,Zf # (0}. As a result,
{8k, —wr; + 1,81, 3 N {sk; —wp, +1,..., 88,1 = 0 for each k; € D%
{8k, —wr, + 1,88, N {sp —wi; + 1,0, 8 = 0 if E,Zf N E[? # 0 ( we take into
account the possibility of using edge e in the selected path E,ZQ to route demand k

in solution §72).

We let 57? = {sk, } be the set of last slots assigned to demand k; with i € {1, ..., |K]|}.

S7 is feasible for the problem. Hence, the corresponding incidence vector (z 72, 2872)
belongs to Fg §. Then we derive a solution 87 — (E™,S™) obtained from S by
adding edge e € E \ (Ef U EY) for the routing of demand k in solution S which
means that E,Z3 = E,Zz U {e}. The last slots assigned to the demands K, and paths
assigned the set of demands K \ {k} in S™ remain the same in solution 87, i.e.,

ST3 = 872 for each k € K, and E[? = E[? for each k' € K \ {k}. 8™ is clearly
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feasible for the problem. The corresponding incidence vector (ZL‘573, z573) belongs to

E
Fé{ S . Hence, solutions S™ and 8™ satisfy equation puz + oz = 7. It follows that

ST S7 S7

ux ’ + 02872 = ux : + 02873 = ux ’ + ulg + JZS72.

As a result, p* = 0.

In a similar way, we can show that
pk =0, forall k€ K and e € E\ (E¥ UE).

Let show that 0% =0 for all k € K and s € {wy, ..., 5} with vy, & C.
Consider a demand k in K and a slot s’ in {wg,...,5} with vy ¢ ¢ C. Let S’ =
(E'™,8'™) be the solution given by

. for each demand k; € K with i € {1,...,|K|}, we let E,ZQ be the set of edges involved

in a shortest path between oy, and dy,,
. select one pair of demand %" and slot s’ from clique C' (i.e., vir ¢ € C), and use slot
sy = s’ as last slot,

. for each demand k; € K\ {k'} with i € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots I!™? given by

I = ﬂ {wiys ooy S8, — Wiy YU LSk, Fwhys o, SHO{wp, ooy 8 —wi  U{s +wy,, ..., 5]
k; €D/
if EIZQ NE#Qor I = ﬂ {wi;s oy 88, — wi; } U {sy, +wg,, ..., 5} if not,
k;ED]™

where D[ = {k;j € {k1,....ki 1} U{K'}: B2 0 E,’C? # (0}. This satisfies that
{8k, —wi, + 1,088, } N sk, — w; +1,..., 58, } = 0 for each k; € D2

{sk, —wp, + 1,86, N{s —wr +1,....8} = 0 if E,’Zf N E;? # ) ( we take into
account the possibility of adding slot s’ in the selected set of last slots S,’€72 to route

demand k in solution S'2).

We let S,’czz = {sk, } be the set of last slots assigned to each demand k; with ¢ €
{1,..,|K|}.

S’ is feasible for the problem. Hence, the corresponding incidence vector (xsm, z‘sm)
belongs to Fg § . Then consider the solution S™ obtained from &7 by adding slot
s" as last slot to demand k in S’™2. Solution S™ is clearly feasible for the problem.

. .. 74 74 HE .
The corresponding incidence vector (25, 2°") belongs to F. % . Hence, solutions

S’ and 8™ satisfy equation px + 0z = 7. We have so

172 172 T
scS + O'ZS s

4 74 172 172
= px® + 0% = ux‘s +02°

1% +U§/
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Hence, af, = 0.

In a similar way, we can show that
o =0, for all k € K and s € {wy, ..., 5} with vy, & C.

Let prove that ¥ for all vg,s € C are equivalent.

Consider a node vy o in C such that s’ ¢ S77. Let S™ = (E™,5) be the solution
given by

. for each demand k; € K \ {k} with i € {1,...,|K]|}, we let E,Z? be the set of edges
involved in a shortest path between oy, and dy,,

. select a pair of demand k and slot s from clique C (i.e., vy s € C) such that slot
s = s will be used as last slot for demand k,

. for each demand k; € K \ {k} with ¢ € {1,...,| K|}, we select the smallest slot index
s, in the set of slots 17 2 given by

172 = [ ﬂ {wkw cooy Sk —wk].}U{skj + wg, , ...,§}] N [{’w}gl7 ...,s/ _wk’}U{Sl‘f'wk” ...75}]
k;eDI?
if E,ZQ NEZ#0or I? = ﬂ {wi,, oy 88, — wi, } U {s, + wg,, ..., 5} if not,
k;€DT?

where DI? = {k; € {k1, ..., ki_1} U {k} : E,Z? N E,ZJQ # (}. This ensures that
{8k, —wi, + 1,88, N {sg; — w; +1,..., 58, } = 0 for each k; € EZQ,

{sg, —wi, + 1,8, N{s —wp +1,...,8} =0 if E,Z? N EIZ/Q # () ( we take into
account the possibility of adding slot s’ in the selected set of last slots 572 to route

demand %’ in solution §72).

We let 5’,;2 = {51, } be the set of last slots assigned to demand k; with ¢ € {1, ..., |K|}.
872 is feasible for the problem. Hence, the corresponding incidence vector (acg 72, S 72)
belongs to Fé{ § . Then consider the solution S7 obtained from S72 by adding slot s’
as last slot to demand &’ in §72, and modifying the last slots assigned to demand k by
adding a new last slot § and removing the last slot s € S,ZQ with vy s € Cand vy 5 ¢ C
such that S7° = (S72\ {s}) U {5} and {8 —wg + 1,...,5} N{s' —wp +1,..,8} =0
for each k' € K and s’ € S7? with Ef> N EJ? # 0. Solution S™ is clearly feasible
for the problem. The corresponding incidence vector (x575, 2875) belongs to FC{{ § .

Hence, solutions S7 and 8™ satisfy equation px + oz = 7. We have so

372 G72 75 75 372 372 / k k
st +025" = MCBS +025" = uxs + 025 —i—o'f/ —0g +05.
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Since 0¥ = 0 for vy 5 ¢ C, and p¥ = 0 for all k € K and e € E'\ (E} U E¥), it follows

that af,/ =gk

s

In a similar way, we can show that

k— ok for all pairs (Vk,ss Upr,57) € C.

Us_ s

Consequently, we obtain that af = p for all pairs vy, € C.

We know from (2.17)) and (2.18) that
,u]e“// = yf/’el forall ¥ € K and € € E(’)“,,
,u]e“// = fygl’e/ forall ¥ € K and € € E{“l,
ol = fyé“,’s, for all ¥’ € K and s’ € {1, ...,wp — 1}.
As a result, we obtain that for each kK € K and e € E
e ife e BE
pk={ake it e c ph
0 otherwise

and for each k € K and s € S

RS it s e {1, ., wp — 1}

Os =3P if Vg, s € C?
0 if vg s ¢ C.
As a consequence, (u,0) = p(a, 8) + Q. O

2.4.8 Slot-Assignment-Odd-Hole Inequalities

One can strengthen inequality (2.43]) by introducing the following inequalities based

on the so-called odd-hole inequalities.

Proposition 2.4.18. Let H be an odd-hole in the conflict graph HE with |H| > 5.
Then, the inequality

H| -1
Yo L (2.44)

2
Uk,SEH

is valid for Q(G, K,S). Moreover, it is valid for P(G,K,S) if {s —wp + 1,...,1} N
{s' —wp +1,...,8'} #0 for each pair of nodes (vy s, vy &) that are linked in H.
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Proof. 1t is trivial given the definition of the odd-hole in the conflict graph H g
such that for each pair of nodes (vy s, vg s) linked in H by an edge, we know that
2k 4+ 28 < 1. Given that H is an odd-hole which means that we have |H| — 1 pair of
nodes (v, Vi &) linked in H, and by doing a sum over all pairs of nodes (v, s, Vg s )
linked in H, it follows that

Z z§+z§,l§|H|—1.
('L)hs,vk/’S/)GE(H)

Taking into account that each node vi in H has two neighbors in H, this implies

that z¥ appears twice in the previous inequality. As a result,
Z zf—l—zf//: Z 28 — Z 2% < |H| - 1.
(’Uk’s,’uk/’sl)EE(H) vk,seH 'Uk,seH

As a result,

H|l-1 H|l -1
Z 2k < V ‘2 J = | ‘2 since |H| is an odd number.
Uk,SEH

We conclude at the end that inequality (2.44]) is valid for P(G, K, S). O

Note that inequality can be strengthened without modifying its right-hand
side by combining inequality and .
Proposition 2.4.19. Let H be an odd-hole, and C be a clique in the conflict graph
H g with
|H| >5,
and HNC =0,

and the nodes (vg s, vi.s) are linked in HE for all vy s € H and vy ¢ € C.

Then, the inequality

ko, HI-1 wo_ [HI -1
Z zZe + 5 Z zg < 5 (2.45)
'Uk,SGH vk/YSIEC

is valid for Q(G, K,S). Moreover, it is valid for P(G, K,S) if {s —wr +1,...,1} N
{s'—wp+1,...,s'} # 0 for each (vy s, v 5) € C and pair of nodes (vi s, Vi s) linked
i H.

Proof. 1t is trivial given the definition of the odd-hole and clique in H g such that

if Evk/,s/GC zf,/ =1 for a vy ¢ € C € C which implies that the quantity ZUM&H 2k

S

is forced to be equal to 0. Otherwise, we know from inequality (2.44]) that the sum
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ka,se " 2F is always smaller than |H|2_1. We strengthen the proof as belows. For

each pair of nodes (vgs,vp ¢) linked in H by an edge, we know that 2z + zf,/ +
kav,s” cC zf: < 1 given that all the nodes vy» o» € C are linked with the nodes vy ¢
and vy . Given that H is an odd-hole which means that we have |H| — 1 pair of
nodes (vy s, vy &) linked in H, and by doing a sum for all pairs of nodes (vk,s, Vi s)
linked in H, it follows that

/ 7
> A+ Y A <|H -1
(Ukas’vk’,s’)EE(H) vk”,s”EC

Taking into account that each node vy ¢ has two neighbors in H, this implies that

2F appears twice in the previous inequality. The sum ZW,’S” c sz,’ appears |[H| —1

€
times in in the previous inequality. As a result,

> Al (HI -1 > E <|H[-1

(’Ukys,’vk/’S/)EE(H) Uk”’S”EC
= Y 2F+(HI-1) > 2 <|H[-1.
vk, s €H v o €C

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that

H -1 ” H|l -1 H|l—-1
L IS K P

v, s€H v o7 €C
We conclude at the end that inequality (2.45)) is valid for P(G, K, S). O

Theorem 2.4.14. Let H be an odd-hole in the conflict graph HY with |H| > 5, and
{s—wr+1,..,1}N{s' —wp +1,...,5'} # 0 for each pair of nodes (vg s, vp s) linked
in H. Then, inequality (2.44) is facet defining for P(G, K,S) if and only if

a) for each node vy o ¢ H in HSE, there exists a node v s € H such that the induced

b)

c)

graph HE((H \ {vgs}) U{vr s}) does not contain an odd-hole,

and there does not exist a node vy o ¢ H in HE such that vy ¢ is linked with all

nodes vi s € H,

and there does not exist an interval of contiguous slots I = [s;,s;] C [1,5] with

i — 1), clI,
T
and wy, + wy > |I| + 1 for each (vg,vy) linked in H,

and 2wy, > |I| + 1 and wy, < |I| for each v, € H.
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Proof. Neccessity.

We distinguish the following cases:

if for a node vy ¢ ¢ H in Hg, there exists a node v s € H such that the induced
graph HE (H\ {vs}U{vp }) contains an odd-hole H' = (H\ {vy s})U{vp & }. This
implies that inequality (2.44) can be dominated using some technics of lifting based

!
on the following two inequalities >, LeH 2k < ‘H| L and Zv | el Zk/ < ‘H| L

if there exists a node vy ¢ ¢ H in H g such that vy o is linked with all nodes
vgps € H. This implies that inequality (2.44) can be dominated by the following

valid inequality

ko H =1 4 [H[ -1
Z Zs + Tzs/ S T
’Uk,SEH

if there exists an interval of contiguous slots I = [s;, s;] C [1, 5] with

[vgienH(s —wy + 1), vinseglcq] cl,

and wy, + wy > |I| 4+ 1 for each (vg, vy ) linked in H,
and 2wy, > |I| + 1 and wy < |I| for each vy € H.
This implies that inequality (2.44) is dominated by inequality (2.40)).

If no one of these cases is verified, inequality (2.44]) can never be dominated by
another inequality without changing its right-hand side. Otherwise, inequality ([2.44))
cannot be facet defining for P(G, K, S).
Sufficiency.
HE . . . .
Let Fp;® be the face induced by inequality (2.44), that is
HE |H| —1
Fy® ={(z,2) e P(G,K,S): Y zF= L

kaSGH

Denote inequality Evk en i < ‘Hl L by ax + B2z < A. Let pz + 0z < 7 be a facet

defining 1nequahty for P(G, K,S) and F = {(z,2z) € P(G,K,S) : px + oz = 7}.

Suppose that Fy; 1y C F. In order to prove that inequality Z cH? 2k < |H| !

is
facet defining for P(G, K, S), we will show that there exist p € R and v = (71,72,73)
(such that 4}"* € Rforall ¥ € K ande € Ef 45 € Rforall k' € K and e €
Ef/, § ' cRforall ¥ € K and s € {1,...,wrr—1}) such that (u,0) = p(a, 5)+7Q.
We first show that ¥ = 0 for each edge e € E\ (E§ U E}) for each demand k € K.
Consider a demand k € K and an edge e € E\ (Ef U E¥). Let 876 = (E"%, 57) be

the solution given by
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. for each demand k; € K \ {k} with ¢ € {1,...,|K|}, we let E,Z? be the set of edges

involved in a shortest path between oy, and dy,,

. for demand k, we let E,ZG be the set of edges involved in a shortest path between o
and dj such that edge e is compatible with all the selected edges e € E]ZG,

|H|=1
2

. select a subset of nodes H™ from H with |H™| = , and each pair of nodes

(U5, Ukt s) € HT6 are not linked in the conflict graph Hg,

. for each pair of demand % and slot s with v, € H 76 we select slot s = s as last
slot for demand k,

. for each demand k; € K\ H™ with i € {1, ..., |K|}, we select the smallest slot index
sk, in the set of slots I7% given by

IZG = [ ﬂ {wkm ooy Sk _wk]’}u{sk]‘ + Wk, '~',°§H N [{wkm -y Sk _wk}U{sk + W, "'ag}]
k]’GDZG

if E,Z? N(ES U{e})#0orI[6 = ﬂ {w; s vy Sk,

G wkj} U {Skj + wg,, ...75} if not,
k]‘ED;w

where D6 = {k; € {k1,....,ki 1} UHTS E,ij N E,Zf’ # (0}. This guarantees that
{8k, — wr; + 1,81, 3 O {sg; —wy; + 1,85, 3 = 0 for each k; € DI

{8k —wiy + 1, 80,3 N {sg —wg; + 1,855} = 0 if E,Z? N ET £ 0 ( we take into
account the possibility of using edge e in the selected path E,ZG to route demand k

in solution S7%).
We let S,Z? = {si, } be the set of last slots assigned to demand k; with ¢ € {1, ..., |K]|}.

S76 is feasible for the problem. Hence, the corresponding incidence vector (xS 76, 2576)
belongs to Fgg . Then we derive a solution 8’7 = (E'"7, S'™") obtained from S™® by
adding edge e € E \ (E§ U E¥) for the routing of demand k in solution 87 which
means that E}/" = E7%U {e}. The last slots assigned to the demands K, and paths
assigned the set of demands K \ {k} in S7® remain the same in solution S'’7, i.e.,
ST = S8 for each k € K, and E|)7 = EJS for each k' € K \ {k}. 8" is clearly
s ST

feasible for the problem. The corresponding incidence vector (z belongs

E
to F gs . Hence, solutions S™ and 877 satisfy equation pux + oz = 7. It follows that

57

6 76 177 177 7
[1%4 +02° :;ms + 025" = pa®

= ux ‘ —|—uf§ + 02876.

As a result, p¥ = 0.

In a similar way, we can show that

pk =0, forall k € K and e € E\ (EY U EY).
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Let show that o% =0 for all k € K and s € {wy, ..., 5} with vy s ¢ H.
Consider a demand k in K and a slot s in {wg,...,5} with vy ¢ ¢ H. Let & =
(E'™ S8'™0) be the solution given by

. for each demand k; € K with ¢ € {1,..., | K|}, we let E,’;ﬁ be the set of edges involved

in a shortest path between oy, and dy,,

. select a subset of nodes H'7® from H with |H'™| = |H|271, and each pair of nodes

(Vk,ss Ukt 57) € H'™ are not linked in the conflict graph HE.

. for each pair of demand k and slot s with vy, € H 76 we select slot s = s as last

slot for demand k,

. for each demand k; € K\ H'™ with ¢ € {1, ...,| K|}, we select the smallest slot index

s, in the set of slots I!7® given by
11(76 = ﬂ {Whys ooy S — Wi, FU{LSK; Wiy -, SO [{wg, oo s —wp U{s" +wy,, ..., 5}]
k‘jGD{m
if BN E/ #£Qor II'® = m {wi,s oy sk, — wi, } U {sk, + wi,, ..., 5} if not,
k]’EDfG

where D6 = {k; € {k1,.... ki1 } UH'™® " EIZ-G N ng‘ # (0}. As a result,
Sp —wg, + 1,0, 85 YN sk —wi, + 1, ..., 5.+ = 0 for each k; € DS,
7 7 7 J J J J 7
{sp, —wp, + 1,86, N{s —wr +1,...,8} = 0 if E,’;G N E6 £ ) ( we take into

account the possibility of adding slot s’ in the selected set of last slots S,’ZG to route

demand k in solution S'7%).

We let S,Z_ﬁ = {sk, } be the set of last slots assigned to each demand k; with ¢ €
{1,..,|K|}.

876 is feasible for the problem. Hence, the corresponding incidence vector (ws%, zs%)
belongs to F 55 . Then consider the solution S™® obtained from S’”® by adding slot
s' as last slot to demand k in S’7%. Solution 87 is feasible for the problem. The
corresponding incidence vector (x378, 2378) belongs to Fgg . Hence, solutions S’

and 87 satisfy equation puz + 0z = 7. We have so

176 176 7
ws + O‘ZS S

8 78 176 176
= px® + 02" = ALiL‘S + 025

122 +O'§:/.

Hence, Jf, = 0.

In a similar way, we can show that
o¥ =0, for all k € K and s € {w, ..., 5} with vy, ¢ H.

Let prove that O‘§ for all v, € H are equivalent. Consider a node vy ¢ in H. we

consider the solution S8 = (E8, 580) defined as follows
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. for each demand k; € K with i € {1,...,|K|}, we let E,%? be the set of edges involved

in a shortest path between oy, and dy,,

|H|-1

. select a subset of nodes H® from H with |[H%| = 5—, and each pair of nodes

(s, Uk 57) € H30 are not linked in the conflict graph Hg, and each vy, € HSO ig

not linked with node vy o in Hg,

. for each pair of demand % and slot s with vy, € H 80 we select slot s, = s as last

slot for demand k,

for each demand k; € K \ H®® with i € {1,...,| K|}, we select the smallest slot index
sk, in the set of slots IZSO given by

80 = | ﬂ {w,, ..., Sk, —wi, YU {sk, +wi,, - SO [{wiy s ooy 8" —wi }U{s" +wp, ..., 5}
k]’GD?O

if E,f? NEX £por I = ﬂ {wr,, -y 585

;o wkj} U {Skj + wg,, ...,§} if not.
kjEDiSO

where D0 = {k; € {k1,...,ki_1} U H® ERN E,?? # (}. Hence,
{8k, —wr; + 1,81, 3 O {sg; —wy; + 1,85, 1 = 0 for each k; € D3V

{sp, —wg, + 1,85, N {s —wp +1,...,8} =0 if E,f? NEY # 0 ( we take into
account the possibility of adding slot s’ in the selected set of last slots S£0 to route

demand &’ in solution S%).

We let S,f? = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

S8 is feasible for the problem. Hence, the corresponding incidence vector (3:580, 2880)
belongs to Fgg After that, we derive the solution S0 = (E80, §780) from S¥ by

and adding slot s as last slot to demand ¥/, i.e., S50 = S8 U {5’} for demand &/,

and modifying the last slots assigned to demand k by adding a new last slot §
and removing the last slot s € SSO with vy s € H and v, 3 ¢ H such that S,;SO =
(S§9\ {s}) U{5} for demand k such that {§ —wy+1,...5}N{s' —wp +1,....5} =0
for each k' € K and s’ € S50 with E29 N B30 # 0.

) .. /80 /80 HE .
The corresponding incidence vector (%", 25" ) belongs to F 4;° . Hence, solutions

S8 and S" satisfy equation pux + 0z = 7. We have so

S8 S8

0 80 /80 /80 8
urs  + 0% = ux‘s +02° S

0 0 /
= pux® +oz +a§,—af+0§.

It follows that Uf,/ = oF for demand k' and a slot s’ € {wy,...,5} with vp ¢ € H
given that J§ =0 for v, 5 ¢ H.
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By (2.17)) and (2.18)), we know that

,ule“,/ = yf/’el for all k' € K and ¢’ € Ef,
= 7§I’GI for all ¥’ € K and ¢ € EV
o =" forall k' € K and s’ € {1,...,wp — 1}.

We conclude that for each kK € K and e € E

e ife e BE
pe =4k ifee Bk
0 otherwise,
and for each k € K and s € S

it s e {1, ., wp — 1}

0'5 =43NP if Vk,s € H,
0 if Vk,s ¢ H.

As a result, we have (u,0) = p(a, 8) + Q.
O

Theorem 2.4.15. Let H be an odd-hole, and C be a clique in the conflict graph
HE with

H| > 5,

and HNC =0,

and the nodes (v s, v s) are linked in HE for all vy s € H and vy ¢ € C,
{s—wp+1,..,1}N{s —wp +1,...,5} # 0 for each (vis,vp s) € C and pair of

nodes (vy s, Vg ) linked in H.

Then, inequality (2.45)) is facet defining for P(G, K,S) if and only if

a) for each node vy» ¢ in Hg with vi» o ¢ HUC and C U {vp o} is a clique in Hg,

b)

there exists a subset of nodes H C H of size % such that H U {vg» ¢} is stable
m Hg,
and there does not exist an interval of contiguous slots I = [s;,s;] C [1,3] with

min (s —wy+1), max |CI,
vy, s CHUC Vg, s CEHUC

and wi, + wy > |I| + 1 for each (v, vyr) linked in H,
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b)

)

and wg, +wy > |I| + 1 for each (v, vyr) linked in C,
and wi + wy > |I| + 1 for each v, € H and vy € C,
and 2wy, > |I| + 1 and wy, < |I| for each vy, € H,

and 2wy > |I| + 1 and wy < |I| for each vy € C.

Proof. Neccessity.

We distinguish the following cases:

if there exists a node vy o» ¢ HUC in H éE such that vy ¢ is linked with all nodes
v,s € H and also with all nodes vy ¢ € C. This implies that inequality (2.45]) can
be dominated by the following valid inequality
H|l-1 o |H| =1 ;s Hl-1
v oL s e I ZL e HIZL

2 2 2
Uk,SEH ’l}klys/EC

if there exists an interval of contiguous slots I = [s;,s;] C [, 3] satisfying the
conditions of b), this implies that inequality (2.45)) is dominated by inequality (2.41]).

If no one of these cases is verified, inequality (2.41) can never be dominated by
another inequality without changing its right-hand side. Otherwise, inequality ([2.45|)
cannot be facet defining for P(G, K, S).
Sufficiency.
E
Let Fg + denote the face induced by inequality (2.45)), that is
|H| -1 , |H| =1
Fyo ={(z,2) e P(G,K,S) : Z 2z + 2 Z 2y = ) }-

vhSGH Vgt

Let denote inequality E JEH %5 ko ‘H| ! ka, eC? f,' < |H‘71 by ax + Bz < A.
Let px + o0z < 7 be a facet defining 1nequahty for P(G, K, S) and F = {(z,2) €
P(G,K,S) : pxr+0oz = 7}. Suppose that FHC C F. To prove that F ¢ is a facet of
P(G, K,S), it suffices to show that there exist p € R and v = (7y1, v2,73) (such that

“c€Rforallk’ € Kande € E(’f/,'yQ e Rforallk’ € K ande € EV ,73 €
R for all ¥’ € K and s’ € {1,...,wpr — 1}) such that (u,0) = p(a, 8) +vQ. For this,

we need to show that

k =0 for all demand k € K and slot s € {w, ..., 5} with v, s ¢ HUC as done in
the proof of theorem

and p¥ = 0 for all demand k € K and edge e € E \ (E} U E}) as done in the proof
of theorem [2.4.14

and o¥ are equivalent for all vi,s € H as done in the proof of theorem [2.4.14
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given that the solutions S% — &80 still feasible such that their corresponding incidence
E /

vectors belong to ngc In what follows, we prove that O’I;/ are equivalent for all

vy € C. For this, we consider a node vf,, € O, and a solution S8 = (E82 5%2)

given by
for each demand k; € K with ¢ € {1,...,| K|}, we let E}%? be the set of edges involved

in a shortest path between oy, and dy,,

select a subset of nodes H%? from H with |H%?| = |H‘2_1, and each pair of nodes

(U5, Vg7 57) € H®2 are not linked in the conflict graph Hg,

for each pair of demand £ and slot s with vy, € H 82 we select slot s, = s as last
slot for demand k,

for each demand k; € K \ H®? with i € {1, ...,| K|}, we select the smallest slot index
sk, in the set of slots IS? given by

2 = ﬂ {wiys ooy 81, —wi, YU LS, +wiy s ooy SH N {wpys ooy 8 —wip UL +wy,, ..., 5}
kj€D7§2

if E]E;Q N E’§2 # ) or Ii82 — ﬂ {wp; s s Sk; — wkj} U {Skj + wg,, ..., 8} if not,
kjED?z
where D$? = {k; € {k1,...,ki_1} U H®? E,ff N E,%JQ # (0}. Hence,
{8k, — wr; + 1,81, 3 O {sg; —wp; + 1,85, 1 = 0 for each k; € D¥?
{sp, —wg, + 1,85, N {s —wp +1,...,8} =0 if E,iz NES #£ § ( we take into
account the possibility of adding slot s’ in the selected set of last slots S£? to route

demand &’ in solution S%2).

We let S,?? = {si, } be the set of last slots assigned to each demand k; with i €
{1,...,|K|}.
582 is feasible for the problem. Hence, the corresponding incidence vector (9:382, 2882)

E
belongs to F}(I;SC Then we derive solution S%3 obtained from S by
adding slot s as last slot to demand ¥/, i.e., S5 = S8 U {s'} with vy ¢ € C,

and modifying the last slots assigned to each demand k € {I;: € K with Vi € fI82}
by adding a new last slot S; and removing the last slot s, € 5’22 with vy, € H
and vy 5, ¢ H UC such that S5 = (S82\ {s1}) U {5} for each demand k € {k €
K with v € H®} such that {§ —wy, 4+ 1,...,5} N {s' —wp + 1,...,8'} = 0 for each
k'€ K and s’ € S with E* N ES # 0.
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Solution S8 is feasible for the problem. The corresponding incidence vector (msgs, ngg)

E
belongs to FI{I{SC Hence, solutions S%2 and S¥ satisfy equation px 4+ oz = 7. We

have so

S8 S8

2 82 8
pnxrs  + 0% = nx S

2
+ o0z

S82 K k k
+og — Z Og, T Z 03,

(k,s1,) € H52 keKy

3 83
+02° = nx

where Ky = {k € K with vi . € H®?}. Since o8 =0 for vy 5, ¢ HUC, it follows

S
k' _ k
that O'S/ = E (k,sk)EHS2 O'Sk.

|H|-1

As a result, O'f,/ = p—5— given that J§ are equivalent for all vy, , € H.

Given that the pair vi/ o is chosen arbitrarily in clique C, we re-do the same proce-

dure for all vy o € C. Consequently, we obtain that af,’ = p% for all vy o € C.

Overall, and using the results (2.17)) and (2.18)), we obtain that

*yf’e ifee E(’)“7

pE =~k ifee EF,
0 otherwise,
for each k € K and e € E, and
s it s e {1, ., wp — 1},
i P if Vg,s € H,
Ts = H|-1
p‘ |2_ if Vg,s € C,
0 otherwise,

for each k € K and s € S.
As a consequence, we obtain that (u, o) = p(«, ) + vQ.
O

Let us now introduce some valid inequalities that are related to the routing

sub-problem issus from the transmission-reach constraint.

2.4.9 Incompatibility-Clique Inequalities

Based on inequalities (2.19)) and (2.20]), we introduce the following conflict graph.

Definition 2.4.8. Let Hg be a conflict graph defined as follows. For each demand
k and edge e ¢ EFYUEY, consider a node v¥ in HE. Two nodes v¥ and vf,l are linked

by an edge in Hg

a) if k =K': e and € are non compatible edges for demand k.
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b) if k £k: k and k' are non compatible demands for edge e.

Proposition 2.4.20. Let C' be a clique in Hg Then, the inequality

doab<, (2.46)
vkeC

is valid for P(G, K, S).

Proof. 1t is trivial given the definition of a clique set in the conflict graph H g . We

know from inequalities (2.19) or (2:20) that for all pairs of nodes (v¥,v¥) in a clique
Cin HE

/
¥ —1—1312, <1,

By adding the previous inequalities for all two nodes v, and vy o in C, and by

recurrence procedure we obtain that for all ¢’ C C with |C'| = |C] — 1

Z a:'ggl.

vk,eeC’
By adding the previous inequalities for all C' C C' with |C'| = |C| — 1, we get
> Y ae Yo
C'CC v €C c'co

I’ |=IC|-1 C’|=[C)-1

Note that for each demand k and edge e with vy, € C, the variable mlg appears

((l C|,|C_‘1) —1) =|C| — 1 times in the previous sum. It follows that

> (0 -1ag <c].

’UkyeEC

By dividing the two sides of the previous sum by |C| — 1, we have so

! IC] k : |C| _
er < LC|—1J = ZCEe < 1 given that LC—l =

Q)k,GEC 'UheGC

This ends the proof. O

Theorem 2.4.16. Consider a clique C in the conflict graph Hg Then, inequality
(2.46)) is facet defining for P(G, K,S) if and only if C is a mazximal clique in the
conflict graph Hﬁf
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Proof. 1t is trivial given that inequality can never be dominated by another
inequality without changing its right-hand side.
Let Fé] £ denote the face induced by inequality , that is

FE = {(2,2) e PG, K,S): 3 at

Vg, €C

Let denote inequality Z .eC xk <1 by az+ Bz < A Let uxr + oz < 7 be a facet
defining 1nequahty for P(G K,S) and F = {(z,2) € P(G,K,S) : pr + 0z = 7}.
Suppose that F, 1y C F. In order to prove that inequality Z eC :L‘]’C < 1 is facet
defining for P(G, K, S), we show that there exist p € R and v = (’yl, ~Y2,7Y3) (such that
Ve eRforallk € Kande € Ef 43¢ € Rforall i € K ande € Ef 44 ° €
R for all ¥ € K and s’ € {1,...,wp — 1}) such that (u,0) = p(a, B) + Q.
We first show that p* = 0 for each edge e € E\ (E§ U EY) for each demand k € K
with vy . ¢ C.
Consider a demand k € K and an edge e € E \ (E} U EY) with v, ¢ C. Let
S8 = (E%*, 8%4) be the solution given by

select one pair of demand %" and edge ¢’ from clique C (i.e., vy € C), we let E,§,4
be the set of edges involved in a shortest path between o and di which uses edge
e,

for each pair of demand k” and edge ¢” with vy» v € C\ {vg e}, we let E,ff} be the set
of edges involved in a shortest path between og» and dg» which uses edge e’ which

does not use edge €”,

for each demand k; € K\ C with i € {1,...,|K|}\ {k}, we let Eg? be the set of edges
involved in a shortest path between oy, and dy,,
for demand k, we select the slot s, = wy, as last slot,

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I8 given by

1184 = ﬂ {wg,, cey Sk; —wkj}U{Skj + Wy ooy SHO[{Wky s ooy Sk — Wi U {8k + W,y ...y 5]
kjED?‘L

if B4 N (Eptu{e}) #0or IP* = ﬂ {weys oy S, — W, } U {5k, +wy,, ..., 5} if not,
ijD,iS4

where D = {k; € {ky, ..., ki 1} U{k}: EZ* N EE;L # (}. Hence,
{8k, —wr; + 1,8, 3 N {sk; —wp, +1,..., 88,1 = 0 for each k; € D3
{sk, —wg, + 1, .oy s6, } N {sp —wp + 1, ..., s} = 0 if E,?;l N (B U{e}) # 0 ( we take

into account the possibility of using edge e in the selected path E,§4 to route demand

k in solution S8).
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We let SE? = {si, } be the set of last slots assigned to each demand k; with i €
{1,..,|K]|}.

S8 is feasible for the problem. Hence, the corresponding incidence vector (33584, 2384)
belongs to Féf 5 . Then we derive a solution 8% = (E®, %) obtained from &% by
adding edge e € E \ (E} U EF) for the routing of demand k in solution S which
means that E,§5 = E,§4 U {e}. The last slots assigned to the demands K, and paths
assigned the set of demands K \ {k} in S8 remain the same in solution S%, i.e.,
S85 = 8% for each k € K, and EY = ES! for each k' € K \ {k}. S is clearly
feasible for the problem. The corresponding incidence vector (a:‘585, zSSS) belongs to

K
Fé{ B Hence, solutions S®* and S% satisfy equation pz + oz = 7. It follows that

S8 S8 S8

nx ! + 02884 = ux ’ + 02385 = ux ! + ,uif + 02884.

As a result, p¥f = 0.

In a similar way, we can show that
pk =0, forall k € K and e € E\ (E§ U EY) with v ¢ C.

Let show that 0¥ =0 for all k € K and s € {wy,...,5}. Consider a demand k in K

and a slot s” in {wy, ..., 5}, and a solution &% = (E’8* §’®) such that

select one pair of demand k' and edge €’ from clique C (i.e., vp o € C), we let Ef51
be the set of edges involved in a shortest path between o and dp which uses edge

e,

for each pair of demand k” and edge e” with vg» o+ € C\{vg .}, we let ES* be the set
of edges involved in a shortest path between o> and dp» which uses edge €” which

does not use edge €”,
for each demand k; € K \ C with i € {1,...,|K|} \ {k}, we let E,/S‘l be the set of
edges involved in a shortest path between oy, and dy,,

for each demand k; € K with i € {1, ..., | K|}, we select the smallest slot index s, in
the set of slots I’ given by

11{84 = [ ﬂ {wkm oy Sky 7wk’_7‘}U{Skj + wg;, "'75}] N [{wkm "'35/ 7wk}U{S/+wkm ,,,’5}]
k]‘GD;&L
if EP*NEP # 0 or I = ﬂ {wi,, ..., sk, — wi, } U{sk, + w,, ..., 5} if not.
]CJ'ED284

where D8 = {k; € {k1, ..., ki—1} : E,’S‘l N E,’S‘l # (0}. As a result,

{sk; —wr; + 1,81, 3 O {sg; —wp; + 1,85, 1 = 0 for each k; € D4
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o {sp, —wp, +1,..,s5,1N{s —wp+1,...,8} =0 if E,’S‘l N ESY #£ 0 ( we take into

account the possibility of adding slot s’ as a last slot in the set of last slots S,’€84 to

route demand k in solution S"8).

We let S,’S‘L = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,...,|K]}.
($3184

5’8 is feasible for the problem. Hence, the corresponding incidence vector 23’84)

K
belongs to Fé{ £ Then consider the solution S® obtained from S’® by adding slot

)

s" as last slot to demand k in S’®. Solution 8% is clearly feasible for the problem.
. .. HE .

The corresponding incidence vector ({L‘386, 2886) belongs to F-”. Hence, solutions

S8 and S% satisfy equation pux + 0z = 7. We have so

$S/84 +

28/84 88

6 86 184 184
= pux +02° :;w:‘s +02°7 + 0¥

Iz o Oy

Hence, Uf, =

In a similar way, we can show that
ok =0, for all k € K and s € {wy, ..., 5} with vps & C.

Let prove that M’g for all vy are equivalent. Consider a node vy in C' such that

e’ ¢ ESL. For this, we derive solution 887 from S8 by

modifying the path assigned to demand &’ in S3 from E,ffl to a path E,§,7 passed
through edge €’ with vy o € C,

modifying the path assigned to demand k in S with e € E1§4 and vg . € C from
E¥ to a path B without passing through any edge e” € E \ (E§ U EY) such that

vy e and v e linked in C,

modifying the last slots assigned to some demands K C K from 524 to 527 for each

k € K while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k,k’} in S* remain the same in S%'
(ie., B = EB for each k” € K \ {k,k'}), and also without modifying the last
slots assigned to the demands K \ K in 8%, ie., 524 = 5’27 for each demand
ke K\ K. Solution S%7 is feasible for the problem. The corresponding incidence
vector (ac387, 2387) belongs to Fg £ . Hence, solutions % and S8 satisfy equation

px + oz = 7. We have so

84 84 87 87 84 84 / L 1.
,LL:US +02° :,ua:S +02° :,u:IJS + 02 +,u'§/ f,ul;+ Z Z Ufl — Z a§

Lo Te of 87 84
keEK s GSI~€ SESIE
K K k k
+ E Me» — g Uer + E He» — E e -
¢ €ES\{e/} ¢’ e BB & B & €EM\{e}
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Since ¥, = 0 for all k € K and e¢” € E\ (E§ U EF) with v » ¢ C, and o = 0 for
all k € K and s € {wy, ..., 5}, it follows that u’g,/ = uk.
Given that the pair (vjc, vy ) are chosen arbitrarily in clique C, we re-do the same

procedure for all pairs (vj e, vi ) such that we find
E_ K .
e = fter, for all pairs (vie, v ) € C.

Consequently, we obtain that u* = p for all vge € C.

By (2.17)) and (2.18)), we know that
,uf// = 7{“/’6, for all k' € K and ¢’ € Ef,
pk =A< forall k' € K and ¢’ € EV,
cffl/ = ’y:{fl’sl for all ¥ € K and s’ € {1,...,wp — 1}.
We conclude that for each k € K and e € E
vf’e if e € B},
75"3 if e € EY,

P if Vk,e S C,

0 otherwise,
and for each k € K and s € S

ks
r v3® if s e {1, ... w, — 1},
ol =

0 otherwise.

As a consequence, (u,0) = p(a, B) + Q.

2.4.10 Incompatibility-Odd-Hole Inequalities

Proposition 2.4.21. Let H be an odd-hole in the conflict graph HE with |H| > 5.
Then, the inequality

H|l-1
> x’;§’ | : (2.47)

2
vkeH

is valid for P(G, K,S).

Proof. 1t is trivial given the definition of the odd-hole in the conflict graph H g . We
strengthen the proof as belows. For each pair of nodes (v¥, vf,/) linked in H by an

edge, we know that x* + :clg,/ < 1. Given that H is an odd-hole which means that we
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have |H| — 1 pair of nodes (v*,v% ) linked in H, and by doing a sum for all pairs of

er Vel

nodes (vF,v¥) linked in H, it follows that

Z af o <|H|-1.
(v k) EB(H)

Taking into account that each node vf in H has two neighbors in H, this implies

that 3!:’6C appears twice in the previous inequality. As a result,

Z m§+x’§:222x’§=> Zmengl—l

(vl k)€ B(H) vkeH vkeH

Hl-1 H|l-1
= gH zh < V |2 J = | |2 since |H| is an odd number.
’UE

We conclude at the end that inequality (2.47)) is valid for P(G, K, S). O

Inequality (2.47)) can be strengthened without modifying its right-hand side by

combining inequality (2.47]) and (2.46|) as follows.

Proposition 2.4.22. Let H be an odd-hole in the conflict graph Hg, and C be a
clique in the conflict graph Hﬁf with

|H| > 5,

and HNC =1,

and the nodes (v* vlg,/) are linked in HE for all v¥ € H and vff eC.

e’

Then, the inequality

H| -1 ,H| -1
Z xlg + T Z fﬂlec/ S T, (248)
vEeH vk eC

is valid for P(G, K, S).

Proof. 1t is trivial given the definition of the odd-hole and clique in H ﬁf such that if
Y cc a:’e“/l =1fora vf,/ € C, which implies that the quantity > «c z¥ is forced to

be equal to 0. Otherwise, we know from inequality (2.47) that the sum »_ .y zk
|H|-1
2

nodes (Vg e, Vg o) linked in H by an edge, we know that zk +x'§f + ka” eC x’g <1

should be smaller than

. We strengthen the proof as belows. For each pair of

given that all the nodes vy .» € C are linked with the nodes vy . and vy . Given

that H is an odd-hole which means that we have |H| — 1 pair of nodes (vk.e, Vg’ )
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linked in H, and by doing a sum for all pairs of nodes (vg e, Vi ) linked in H, it
follows that

/ 7
Z Tk + b + E o < |H| - 1.
(Vk,esVpr o )EE(H) Vg o €EC

Taking into account that each node vy . has two neighbors in H, this implies that
z¥ appears twice in the previous inequality. The sum DI ——e x’g appears |H| —1

times in in the previous inequality. As a result,

> wf+al +(H|-1) > ol <|H|-1

(Ukye,vk/’e/)EE(H) Vg o» €C
v €H Vg o» €C

By dividing the two sides of the previous sum by 2, and since |H| is an odd number,

it follows that

Hl -1 ” H -1 H|l -1
Sk [ ML) S | M) S

vp.€H Op o» €C
We conclude at the end that inequality (2.48)) is valid for P(G, K, S). O

Theorem 2.4.17. Let H be an odd-hole in the conflict graph HE with |H| > 5.
Then, inequality (2.47)) is facet defining for P(G, K,S) if and only if

a) for each vy o ¢ H, there exists a node vy, . € H such that the induced graph Hﬁf(H\

b)

{vk,e} U{vp e }) does not contain an odd-hole H' = H \ {vye} U{vp ¢},

and there does not exist a node vy o ¢ H in Hﬁf such that vy o 1s linked with all

nodes vy . € H.

Proof. Neccessity.

We distinguish the following cases:

if for a node v/ oo ¢ H in Hg, there exists a node v, . € H such that the induced
graph HE (H\ {vy}U{vp ' }) contains an odd-hole H' = (H \{vj¢})U{vp’ ¢ }. This
implies that inequality (2.47) can be dominated using some technics of lifting based

. . . K |H|-1 Ko |H'|-1
on the following two inequalities ka,eeH ry < =5—, and kage/eH’ xh < o

if there exists a node vy ¢ H in H ]{3( such that vy o is linked with all nodes
Ve € H. This implies that inequality (2.47) can be dominated by the following

valid inequality

po [HIZ1 e [H[ -1
Z :Ee + Tﬁe/ S T
’UkyeeH
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If no one of these cases is verified, inequality can never be dominated by
another inequality without changing its right-hand side. Otherwise, inequality
is not facet defining for P(G, K, S).

Sufficiency.

Let Fg £ denote the face induced by inequality , that is

FIE = {(@,2) e PG K,S): Y af = ‘H’z_l}.

vk,EGH

|HF1

Denote inequality ka cH xk < by ax + Bz < A. Let px + o0z < 7 be a facet
defining 1nequahty for P(G, K,S) and F = {(z,2z) € P(G,K,S) : px + oz = 7}.
Suppose that F; 1 C F. In order to prove that inequality ka c H:L’ = |H‘ g
facet defining for P(G, K, S), we show that there exist p € R and v = (’}’1,"}/2,’)’3)
(such that 4}"* € Rforall ¥ € K ande € Ef 75 € Rforall k' € K and e €
Ef/, § " cRforall ¥ € K and s € {1,...,wrr—1}) such that (u,0) = p(a, 5)+7Q.
Let first show that u* = 0 for each edge e € E'\ (E§ U E¥) for each demand k € K
with vy . ¢ H.

Consider a demand k € K and an edge e € E'\ (E§ U EY). Let S% = (E®8, 9%) be

the solution given by

for each demand k; € K \ {k} with i € {1,...,|K|}, we let E,ff be the set of edges

involved in a shortest path between oy, and dy,,

for demand k, we let E,fs be the set of edges involved in a shortest path between

o and dg such that edge e is compatible with all the selected edges e € E}zs, ie.,
ZG’EEES ge’ + ee S l_lm

select a subset of nodes H®® from H with |H®8| = |H‘271, and each pair of nodes

(Ut e, Vg 7)) € H® are not linked in the conflict graph HE

for each pair of demand k' and edge €’ with vy o € H®®, we consider a new set of
edges ES, involved in a shortest path between oy and d if edge €’ is not compatible
with all the selected edges e’ € E,f,s, or we add edge €' in E,f, if not, i.e. E,?,s =
EBU{c'},

for each demand k" and edge €' with v o € H \ H38 we modify the set of edges
E,%,B if E,f,g contains some edges ¢’ that are non compatible with the selected edges
E,f?f with v o € H®8. This can be done by selecting a new set of edges EE? which
contains all edges involved in a shortest path between oy and djs such that edge e’

is compatible with each edge €” and demand k" with vy» »» € HB8,
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f) for each demand k; € K with i € {1, ...,|K|}, we select the smallest slot index sy, in
the set of slots IZ-88 given by

I?S — [ m {U}ki, cey Sk —wkj}U{skj + wg,, ,,,75}} M [{U}kl, ety Sk —wk}U{sk + wg, , ...,5}]
k)]'ED?S
if ng N(ERU{e}) #0or IP® = ﬂ {wi;y oy 88, — Wi, } U {8, +wg,, ..., 5} if not,

k;e D8
where DS = {k; € {k1,....ki_1} 1 ER> N E,f? # (0}. As a result,
° {Ski —wg, +1,.., Ski} N {Sk]. — Wk, + 1, ...,Skj} = () for each k; € DZ-88,

o {sp, —wp, + 1,85, N{sp —wr+1,...,s,} =0 if E,%f N(EEU{e}) # 0 ( we take
into account the possibility of using edge e in the selected path E,?S to route demand

k in solution S%%).

We let S,ff = {si, } be the set of last slots assigned to each demand k; with i €
{1,..,|K]|}.

S8 is feasible for the problem. Hence, the corresponding incidence vector (x
belongs to F 5 £ . Then we derive a solution S8 = (E%, 5%9) obtained from S% by
adding edge e € E \ (E} U E¥) for the routing of demand k in solution S% which
means that EY) = E?® U {e}. The last slots assigned to the demands K, and paths

88 88
S ’ZS )

assigned the set of demands K \ {k} in S% remain the same in solution S%, i.e.,
S89 = §%8 for each k € K, and EYY = E for each k' € K \ {k}. 8% is clearly
S89 z589)

feasible for the problem. The corresponding incidence vector (x belongs to

K
FIIjE . Hence, solutions S® and S® satisfy equation ux + oz = 7. It follows that

S8 S8 S8

ux ; + 02588 = ux ’ + 02589 = ux i + ,uff + 02888.

As a result, pu¥ = 0.

In a similar way, we can show that
pk =0, forall k € K and e € E\ (EY U EY) with vy, ¢ H.

Let show that o% = 0 for all k € K and s € {wy, ..., 5}.
Consider a demand k in K and a slot s” in {wy, ..., 5}. Let S’ = (E'®,5%) be the

solution given by

a) for each demand k; € K withi € {1,...,|K|}, we let E,’SS be the set of edges involved

in a shortest path between oy, and dy,,

b) select a subset of nodes H'®® from H with |H'®8| = |H|2_1, and each pair of nodes

(Ut e, U o) € H'®® are not linked in the conflict graph HE
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c)

for each pair of demand &’ and edge €’ with vy o € H'8 we consider a new set of
edges E,ff involved in a shortest path between oy and dj if edge €’ is not compatible
with all the selected edges €’ € Ef3, or we add edge ¢’ in E® if not, i.e., S =
B ufe'},

for each demand £k’ and edge €’ with vy o € H \ H'88 we modify the set of edges
E,’ﬁs if E,’f contains some edges €’ that are non compatible with the selected edges
B8 with vpr o € H'88_ This can be done by selecting a new set of edges E;88 which
contains all edges involved in a shortest path between oy and djs such that edge €’
is compatible with each edge ¢” and demand k” with vy» » € H'S8,

for each demand k; € K with i € {1, ..., | K|}, we select the smallest slot index s, in
the set of slots I/®8 given by

88 = ﬂ {wi,s ooy 58, — Wi, YU LSk, Fwpys o, SHO{wi, ooy 8 —wi} N {s +wy,, ..., 5]
k‘jED;SS
if E,’S8 NES #0or I/% = ﬂ {wi;s ooy 88, — wi; } U sy, +wg,, ..., 5} if not,
k€D

where D*® = {k;j € {k1,....ki_1} : E¥ N E,’SS # (}. This ensures that
{8k, —wr; + 1,8, 3 0 {sg; —wp; + 1,85, 1 = 0 for each k; € D8,

{sk, —wg, + 1,86, N{s —wr +1,....8} =0 if E,’Sg NES #£ 0 ( we take into
account the possibility of adding slot s’ as a last slot in the set of last slots S,/€88 to

route demand k in solution S8%).

We let S,’SS = {si, } be the set of last slots assigned to each demand k; with ¢ €
{1,...,|K|}.

5’3 is feasible for the problem. Hence, the corresponding incidence vector (1:3,88, zs’gg)
belongs to Fg £ . After that, we derive solution S”° obtained from S’®® by adding slot
s" as last slot to demand k in S’®. Solution S is clearly feasible for the problem.
The corresponding incidence vector (xsgo, 2890) belongs to F 5’}5 . Hence, solutions

S8 and S satisfy equation pux + 0z = 7. We have so

:L‘S,SS ZSISS 39

0 90 188 /88
= px® + 025 = ALiL‘S + 02

122 +o0o +O'§/.

Hence, af, =0.

In a similar way, we can show that
o =0, for all k € K and s € {w, ..., 5} with v, ¢ H.

Let prove now that ,ulg for all vy . are equivalent. Consider a node vy s in H such

that € ¢ ES. For this, we derive solution 8! from S8 by
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a)

b)

modifying the path assigned to demand &’ in S®8 from Eg? to a path E}j/l passed
through edge €’ with vy o € H,

and selecting a pair of demand-edge (k,e) from the set of pairs of demand-edge in

Hgg such that vy o is not linked with any node vy > in Hgg \ {vke},

modifying the path assigned to demand k in S® with e € EiS and v, € H from
E to a path EY! without passing through any edge e” € E'\ (Ef U EY) such that

v e and v e linked in H,

modifying the last slots assigned to some demands K C K from SSS to S’%l for each

k € K while satisfying non-overlapping constraint.

The paths assigned to the demands K \ {k,k’} in S® remain the same in S
(i.e., B} = EB for each k” € K \ {k,k'}), and also without modifying the last
slots assigned to the demands K \ K in 8%, ie., 588 = S for each demand
ke K\ K. Solution 8! is feasible for the problem. The corresponding incidence
vector (azsgl,zsgl) belongs to F 55 . Hence, solutions S and S”! satisfy equation

ux + oz = 7. We have so

S88 S88 S91 S91 S88 S88 1% k ’; ];
ux® +o0z° = pz® +o0z° =puz® oz +,ue/—ue+z ZO’S/—ZO’S

L7 o g9l 88
keK s ESI~C sESI~c
14 § : K k k
+ Z He» — He» + Z He» — Z He» -
e’ eE)I\{e'} CHS O e’ eEN e’ eES8\{e}

Since ¥, =0 for all k € K and ¢” € E \ (E§ U E¥) with vy > ¢ H, and o% = 0 for
all k € K and s € {wy, ..., 5}, it follows that ME!I = uk.
Given that the pair (v, vs ) are chosen arbitrarily in odd-hole H, we re-do the

same procedure for all pairs (vke, v ) such that we find
pk = ,u’;,/,for all pairs (v, vi o) € H.

Consequently, we obtain that p* = p for all Vke € H.

We know from (2.17)) and (2.18) that

pkl = forall k' € K and ¢ € EY,
,u]cf’}/ = 75/’6/ forall ¥ € K and € € E{“,,

K _

oy = ’yg)fl’sl for all ¥’ € K and ¢’ € {1,...,wy — 1}.
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We then conclude that for each k € K and e € FE

ke
"1
")/k7€
2
He =
P
0
and for each k € K and s €S
k,s .
A
b= {7
0 ot

ifee E{f,
if e € EY,
if Ve € H,

otherwise,

se{l,...,wp — 1},

herwise.

As a consequence, (i, 0) = p(a, 8) + Q.

O]

Theorem 2.4.18. Let H be an odd-hole, and C' be a cliqgue in the conflict graph

HE with
a) |H| > 5,
b) and HNC =0,

¢) and the nodes (Ve, vk o) are linked in HE for all vy, € H and vy o € C.

Then, inequality (2.48|) is facet defining

for P(G, K,S) if and only if for each node

vpr e in HE with vy oo ¢ HUC and C U {vp» ¢ } is a clique in HE, there exists a

|H|-1

subset of nodes H C H of size " such that H U {vp o} is stable in HE .

2

Proof. Neccessity.

If there exists a node v o» ¢ HUC in H g such that vi» o~ is linked with all nodes
vk € H and also with all nodes vy o~ € C. This implies that inequality (2.48]) can
be dominated by the following valid inequality

Z x§+|H‘2_1 Z

o |H| =1
v ]

[H| -1
e 9 S

k7
.Te” >~ 2

Ve €H Uk/’e/EC

As a result, inequality (2.48]) is not facet defining for P(G, K, S).

Sufficiency.

K
Let F/'E, be the face induced b inequality (12.48)), that is
H,C Y Yy

Fy® ={(z,2) e P(G,K,S): > _

H| -1 ,|H| -1

’UkyeEH fuklye/EC
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|H |1

k' H|-1
kalye/GCxe/ < | |2 by ax +/BZ < A

Let px 4+ 0z < 7 be a facet defining inequality for P(G, K,S) and F = {(z,z2) €
K K

P(G,K,S) : px+oz = 7}. Suppose that Fg% C F. To prove that Fg‘g is a facet of

P(G, K,S), we need to show that there exists p € R and v = (71, 72,73) (such that

Let denote inequality >, .y zk +

“cRforallk € Kande € EF A4° ¢ Rforall ¥ € K and e € EV ,73 €
R for all ¥ € K and s’ € {1,...,wp — 1}) such that (u,0) = p(a, 8) + vQ. For this,

we show that

o% = 0 for all demand k € K and slot s € {wy, ..., 5} as done in the proof of theorem

2.4.17,

and p¥ = 0 for all demand k € K and edge e € E \ (E¥ U E¥) with v, ¢ HUC as
done in the proof of theorem

and p¥ are equivalent for all Vge € H as done in the proof of theorem [2.4.17]

given that the solutions deﬁned in the proof of theorem [2.4.17] their corresponding
incidence vector belong to F H, &

Let prove now that p* e, are equivalent for all vy oo € C.

Now let us consider a node vg o in C such that e’ ¢ Eg?. For this, we derive solution
83 from SP? by

modifying the path assigned to demand &’ in S%2 from Eg? to a path E,fg?’ passed
through edge €’ with vy o € C,

and modifying the path assigned to each demand k with vy, € Hgo in 5% with
e € Egz and vg . € H from E}zz to a path E,’f3 without passing through any edge
e € B\ (BfU B,

modifying the last slots assigned to some demands K C K from SZQ to 51’593 for each

k € K while satisfying non-overlapping constraint.

The paths assigned to the demands K \ (K(Hgz) U {k'}) in 8%2 remain the same
in &' (e, B2 = E}? for each k” € K \ {k,k'}), and also without modifying the
last slots assigned to the demands K \ K in 82, ie., S92 = 593 for each demand
ke K\ K. Solution & is feasible for the problem. The corresponding incidence

3193 3193
,27)

HE . . .
vector (x belongs to F; %. Hence, solutions S92 and S’ satisfy equation

px + oz = 7. We have so

92 92 793 193 92 92 / 7
uars +02° :,uaf‘s +02° :,uazs +02° —i—,u];/— Z ulg—kz Z af,

Vg,e €Ho2 keK 5/65;593
— O-S + /,Leﬂ — l,[,e» —|— #677 — ILLC”'
36522 e’ GE;:)/:;\{B } e’ €E92 e” EEIQS keK(ng) e’ EE}%Q
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Since ¥, =0 for all k € K and ¢’ € E\ (E§ U E¥) with v» ¢ HUC, and 0% =0

for all k € K and s € {wy, ..., 5}, it follows that ,u’;,l = D vp . cHop pk. As a result,
Ko H|-1 ’

Iu’e’ - p 2 N

Given that the pair vi s is chosen arbitrarily in clique C, we re-do the same proce-

dure for all pairs vy o~ € C such that we find

L |H| -1
2

ey =P ,for all pairs vy o € C.

As a result, all ,ulg,/ € C are equivalent such that

el H - 1 .
,U];'/ =k = p| ‘2 ,for all pairs vy s, v oo € C.

By (2.17) and (2.18]), we know that

,u';/ = fyf/’el for all ¥ € K and € € E{f/,
,u';// = fygl’el for all ¥ € K and € € Ef/,

ok = fyil,fl’sl for all ¥ € K and s’ € {1,...,wp — 1}.

As a result, we obtain that for each kK € K and e € E

e if e € EF,
e if e € EF,
,U]; =3P if Uk,e € H,

Py if Vk,e € C,

0 otherwise,
and for cach k € K and s € S

ks -
kL vyt if s e {1, .. wp — 1},
oy =

0 otherwise.

As a result, we have (u,0) = p(a, 8) + vQ.

2.4.11 Tranmission-Reach-Cover Inequalities

Inequalities (2.46[), (2.47) and (2.48)) can be strengthened by defining a minimal

cover related to the transmission-reach constraint.

Definition 2.4.9. Consider a demand k € K. A cover C for demand k related to

the transmission-reach constraint is a subset of edges in E \ (E§ U E¥) such that
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Yoecole > I, — Ze’eEf ler, and each pair of edges (e,e') € C are compatible edges
for demand k. Furthermore, it is said minimal cover for demand k if and only if

for each e € C' we have Ze’eC\{e} by <l — Ze”EEf lor.
Based on this, we introduce the following inequalities.

Proposition 2.4.23. Consider a demand k € K. Let C be a minimal cover related

to the tranmission-reach constraint for demand k. Then, the inequality

Sak<lol-1, (2.49)
ecC

is valid for P(G, K, S).

Proof. 1t is trivial given that C' is minimal cover for demand k this means that there
are at most |C| — 1 edges from the set of edges in C' that can be used to route
demand k. O

Theorem 2.4.19. Consider a demand k in K. Let C be a minimal cover related
to the tranmission-reach constraint for demand k. Then, inequality (2.49) is facet
defining for the polytope P(G, K,S, C, k) where

P(G.K,S,C.k)={(z,2) e P(G,K,S): > zkh =0}

€
e’€E\(EYUEE)

Proof. 1t is trivial given that inequality (2.49)) can never be dominated in P(G, K, S, C, k).
]

On the other hand, one can use sequential lifting procedure [5] to sequentially
lift the inequality (2.49) and generate lifted valid inequalities that are facet defining
for the polytope P(G, K,S) as follows.

Theorem 2.4.20. Let C be a minimal cover for a demand k € K. Let E\ (EF U
C UEE) = {e1,...,eq} be arbitrarily ordred with ¢ = |E \ (E}¥ UC U EF)|. Consider

a sequence of knapsack problems defined as

i—1
Z; = max E uj + 5 g,
J=1

jeC
i—1
Z Liu; + leuj < Zk — Z ler — e, (2.50)
jeo j=1 e'€EY

uj € {0,1},¥j € CU{1,...,i — 1},
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for all i € {1,...,q} with oj = |C] — 1 —z; for all j € {1,....,i — 1}. Then, the

mequality
q
S ak+ Y ageb <01, (2.51)
ecC j=1
is valid for P(G, K,S). Moreover, it’s facet defining for P(G, K,S).

Proof. Tt’s trivial given that inequality (2.51)) can never be dominated in P(G, K., S).
[

Definition 2.4.10. Consider a demand k € K. Let p be a sub-path in G such that
each pair of edges (Vg e, Vi) € E\(EYUEY) are not linked by an edge in the conflict
graph ﬁg We say that the path p is infeasible for the demand k if it does not occur
as a subpath in any feasible routing for the demand k, i.e., there does not exist a
feasible path for demand k containning p due to the transmission-reach constraint.
Moreover, it is said to be minimal infeasible if each sub-path p' of p of cardinality

|E(p")| = |E(p)| — 1, can be used in a feasible routing for the demand k.

Note that one can verify in polynomial time using Dijkstra algorithm if a sub-

path p in G if it is infeasible or not for a demand k € K.

Proposition 2.4.24. Consider a demand k € K. Let p be a minimal infeasible
sub-path for demand k in G. Then, the inequality

> wk <|BE(p)| -1 (2.52)

e€E(p)

is valid for P(G, K, S).

Proof. 1t is trivial given that p is minimal infeasible sub-path for demand k this
means that there are at most |E(p)| — 1 edges from the set of edges in E(p) that can
be used to route demand k. O

2.4.12 Edge-Capacity-Cover Inequalities

Let provide now some inequalities related to the capacity constraint over edges.

Proposition 2.4.25. Consider an edge e in E. Then, the inequality

Z wkx]; <s-— Z Wy, (2.53)

keK\Ke k' eK.

is valid for P(G, K, S).
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Proof. The number of slots allocated in edge e € E should be less than the residual

capacity of edge e which is equal to § — Z W . ]
k'eK.

Based on this, we introduce the following definitions.

Definition 2.4.11. For an edge e € E, a subset of demands C C K withe ¢ E(’fﬂEf

For each demand k € C, is said a cover for edge e if Zwk > 5 — Z W -
keC K eKe
Moreover, it is said to be a minimal cover if Z Wy < §— Z Wy .
k'eC\{k} k€K
Proposition 2.4.26. Consider an edge e in E. Let C be a minimal cover in K for

edge e. Then, the inequality
> k<o) -1, (2.54)
keC

is valid for P(G, K, S).

Proof. If C'is minimal cover for edge e € E this means that there are at most |C|—1

demands from the set of demands in C that can use edge e. 0

Theorem 2.4.21. Consider an edge e in E. Let C' be a minimal cover in K for edge
e. Then, inequality (2.54)) is facet defining for the polytope P(G, K,S, C,e) where

P(G,K,S,Cre) ={(x,2) € P(G,K,S): > ¥ =0}
kK eK\(CUK,)

Proof. 1t is trivial given that inequality (2.54)) can never be dominated in P(G, K, S, C, e).
O

One can use the sequential lifting procedure [5] to sequentially lift the inequality
(2.54) and generate lifted facets for the polytope P(G, K,S) as follows.

Theorem 2.4.22. Let C' be a minimal cover for an edge e € E. Let K\ (K. UC U
K.) = {ki,....,kg} be arbitrarily ordred with ¢ = |K \ (K. UC U K.)|. Consider a

sequence of knapsack problems defined as
i—1

Z2i = maXZuj + Zajuj,
j=1

jel

i—1
E Wit + g Wk uj <5 — E W — Wk,
J=1

jec k'eKe

(

(2.55)

uj € {0,1},Vj € CU{1,...,i — 1},
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for all i € {1,...,q} with oj = |C] — 1 —z; for all j € {1,....,i — 1}. Then, the

mequality

q
S ab Y aged <jC) -1, (2.56)
keC j=1

is valid for P(G, K,S). Moreover, it’s facet defining for P(G, K,S).

Proof. Tt’s trivial given that inequality (2.56)) can never be dominated in P(G, K., S).
[

2.5 Symmetry-Breaking Inequalities

We have noticed that several symmetrical solutions may appear given that there
exist several feasible solutions that have the same value of the solution (called equiv-
alents solutions), and they can be found by doing some permutations between the
slots assigned to some demands without changing the selected paths (routing) while
satisfying the C-RSA constraints. There exists several methods to break the symme-
try. See, for example, perturbation method proposed by Margot [66], isomorphism
pruning method by Margot et al. [67][68], orbital branching method by Ostrowski
et al. [75][76], orbital fixing method by Kaibel et al. [80], and symmetry-breaking
constraints by Kaibel and Pfetsch [79] which is applied in our study. We aim to
introduce breaking-symmetry inequalities to remove the sub-problems in the enu-
meration tree that are equivalent due to the equivalency of their associated solutions.

For this, we derive the following inequalities.

Proposition 2.5.1. Consider a demand k, slot s € {1,...,5—1}. Let s’ be a slot in

{s,...,5}

min(s’+wg—1,3) min(s+w;s—1,5)
k k< 2
st - st ~ O. ( -57)
s"=s’ k'eK s"=s

This ensures that slot s’ can be assigned to demand k if and only if slot s
(which precedes slot s') is already assigned to at least one demand %k’ in K. A
similar idea was proposed by Mendez-Diaz and Zabala [70] to break the symmetry
for the vertex coloring problem. Note that inequalities are not valid for the
polytope P(G, K,S) given that they cut off some feasible regions in the polytope
P(G,K,S). In any case, we ensure that there exists at least one optimal solution
from our original problem that remains feasible and belongs to the convex hull of

non-symmetric solutions of the C-RSA problem.
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2.6 Lower Bounds

In this section, we derive some lower bounds for the C-RSA. Let p; denote the
minimum-cost path between origin node o, and destination node dj for demand k
with total length smaller than the transmission-reach [;,. We know in advance that
the optimal path chosen for each demand k € K in the optimal solution, its total
cost is at least equal to the total cost of the minimum-cost path p;. Based on this,

we introduce the following inequalities.

Proposition 2.6.1. Consider a demand k € K. Then, the inequality
docrs> Y e (2.58)
eck ecE(p})

is valid for P(G, K, S).

Proof. 1t’s trivial given that in any feasible solution S in P(G, K,S), the total cost
of the path selected to demand k is greatest than or equal to the total cost of the

minimum-cost path p;. O

Inequality (2.58)) is then used to derive a lower bounds for the C-RSA as follows.

Proposition 2.6.2. The inequality
)B)IEED b i 259)
keEK ecE keK ecE(p})

is valid for P(G, K, S).

Proof. 1t’s trivial given that the optimal value is at least equal to the sum of the
total cost of minimum-cost path over all the demands in K.
O]

The separation problem associated with inequality is equivalent to solv-
ing the Resource Constrained Shortest Path (RCSP) Problem for each demand k.
The RCSP is well known to be a NP-hard problem [3I]. For this, we propose a
pseudo-polynomial time algorithm using dynamic programming [32] to compute the
minimum-cost path for each demand k while satisfying the transmission-reach con-
straint. For each demand k € K, we associate to each node v € V \ V{¥ in the
graph G a set of labels LY such that each label corresponds to differents paths from
th origin node of to the node v, and each label p is specified by a cost equals to
> ecE(p) Cer and a weight equals to 3 . g, fe. We denote by T, the set of labels
on node v € V. For each demand k and slot s € {wg,..., 5}, the complexity of the
algorithm is bounded by O(|E\ E}| *1;.) [32]. Algorithm (1| summarizes the different

steps of the dynamic programming algorithm.
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Algorithm 1: Dynamic Programming Algorithm for the Computation of
Lower Bounds for the C-RSA

Data: An undirected, loopless, and connected graph G = (V, E), a
spectrum S, a demand k

Result: constrained minimum-cost path p;. for demand &

Set Lo = {(0,0)} and LV = ) for each node v € V' \ (VI U {o}});

Set TV = () for each node v € V' \ V{;

STOP= FALSE;

while U,cy (L, \ T,) # 0 do

5 Select a node i € V \ V¥ and a label p € L\ T® having the smallest

value of }° ¢, Ce

6 for each e = ij € §(i) \ Ef such that Deren(p) be T le < I, do

7 if j ¢ V(p) then

=

N

w

'

s Set p' = p U {e};
9 Update the set of label L7 = L' U {p'} ;
10 end
11 end
12 Set T" = T' U {p};
13 end

14 We select one label p from the labels L% of destination node dj, and set
Pt =p;
15 return constrained minimum-cost path p;. for demand £;
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2.7 Concluding Remarks

In this chapter, we have focused on a complex variant of the Routing and Spec-
trum Assignment (RSA) problem, called the Constrained-Routing and Spectrum
Assignment (C-RSA). We first have proposed a new integer linear programming
formulation based on the so-called cut formulation for the C-RSA. We have inves-
tigated the facial structure of the associated polytope by showing that some basic
inequalities are facet-defining under certain conditions. We have further identified
several families of valid inequalities to obtain tighter LP bounds. Moreover, we have
studied the facial structure of these valid inequalities, and have shown that they
are facet defining for the polytope under certain necessary and sufficient conditions.
We have also introduced some symmetry-breaking inequalities to well manage the

so-called equivalents sub-problems.
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Chapter 3

Branch-and-Cut Algorithm for
the C-RSA Problem

Based on theoretical results presented in chapter , we devise a Branch-and-Cut
algorithm to solve the C-RSA problem. Our aim is to study the effectiveness of
the algorithm, and assess the impact of the valid inequalities on the effectiveness of
the Branch-and-Cut algorithm. First, we give an overview of the algorithm. Then,
we describe the separation procedure used for each valid inequality based on exact
algorithms, greedy-algorithms, and heuristics. At the end, we provide a detailed

behavior study of the Branch-and-Cut algorithm.

3.1 Branch-and-Cut Algorithm

3.1.1 Description

In what follows, we describe the Branch-and-Cut algorithm. Consider an undirected,
loopless, and connected graph G = (V, E), which is specified by a set of nodes V,
and a multiset E of links. Each link e = ij € F is associated with a length ¢, € R
(in kms), a cost c. € Ry such that each link e € F is divided into § € N slots.
Let S={1,...,5} be an optical spectrum of available frequency slots with § < 320,
and K be a multiset of demands such that each demand k& € K is specified by an
origin node oy € V, a destination node di € V' \ {ox}, a slot-width wy € Z,, and a
transmission-reach ¢, € Ry (in kms). We first consider a restricted linear problem

denoted by LP, given by inequalities (2.3)-(2.5) and (2.7)-(2.10) such that the cut
inequalities (2.2) and non-overlapping inequalities (2.6 are not included in LFP.
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LPF, is so equivalent to

ming E ce:v’eC

keEK ecE

Z lex¥ < 0, Vk € K,
eckE

8 =0,Vk € K Ve € Ej,
x¥ =1,Vk € K,Ve € EY,
28 =0,Vk € K,Vs € {1,...,w; — 1},

ZS: 2 =1,Vk €K,

S=Wg
0<azh<1,Vke K,VecE,
0<zF<1,VkeK,VseS.

3.1.2 Test of Feasibility

Given an optimal solution (Z, z) for the relaxation of LFy. It is feasible for the C-
RSA problem if and only if (Z, ) is integral and it satisfies the cut inequalities
and non-overlapping inequalities . Usually, (z, z) does not satisfy inequalities
and (2.6). As aresult, (7, z) is not feasible for the C-RSA problem. For this, we
generate several valid inequalities violated by a solution (Z, z) at each iteration of the
Branch-and-Cut algorithm. This is known under the name of Separation Procedure.
It consists in identifying for a given class of valid inequalities the existence of one
or more inequalities of this class that are violated by the current solution. We
repeat this procedure in each iteration of the algorithm until no violated inequality
is identified. As a result, the final solution is optimal for the linear relaxation of
the cut formulation. Furthermore, if it is integral, then it is optimal for the C-
RSA problem. Otherwise, we create two subproblems called childs by branching
on a fractional variable (variable branching rule) or on some constraints using the
Ryan & Foster branching rule (constraint branching rule). Based on this, we devise
a basic Branch-and-Cut algorithm by combining cutting-plane algorithm based on
the separation of the cut inequalities and non-overlapping inequalities ,
and a Branch-and-Bound algorithm.

On the other hand, to make more efficient the Branch-and-Cut algorithm, we already
introduced several classes of valid inequalities used to obtain tighter LP bounds.
Based on this, and at each iteration in each node of the Branch-and-Cut tree, one can
identify one or more than one violated inequality by the current fractional solution
for a given class of valid inequalities. Algorithm [2| summarizes the different steps

of Branch-and-Cut algorithm taking into account additional valid inequalities for a
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given class of valid inequalities.
For this, we study the separation problem of each class of valid inequality introduced

in this dissertation as follows. Consider a fractional solution (z, ).

3.1.3 Separation of Non-Overlapping Inequalities

Let e be an edge in F and s a slot in S. The separation problem associated with

inequality (2.6 consists in identifying all pairs of demands k, k" € K such that

min(s+wg—1,5) min(s+w;s—1,5)
_ _ ! _ _L/
xlz + a:]cf” + E zfl + E zf > 3.
s'=s s’=s

For this, we propose an exact algorithm in O(|E| x5 x | K| xlog(| K|)) which works as
ollows. We select each pair of demands £, k" € K with x5 > 0, ,; 7’7Z/>
follows. We sel h pair of demands k, k' € K with 2% > 0, Y74 ws=19) ok

0, z¥ > 0and E?iii(sﬁw’“/*l’g) 2k > 0. We then add the following inequality induced

by each selected pair of demands k, %k’ for slot s over edge e to the current LP if it

is violated

min(s+wg—1,5) min(s+w,s—1,5)
k K k K <
Ty +xg + Zg + Zg < 3.
s'=s s"=s

Otherwise, we conclude that such inequality does not exist for the current solution
(Z,z). On the other hand, given that inequalities (2.5) are taken in format of
equalities when implementing the B&C algorithm (i.e., Zi:wk 2P =1forallk € K).

Based on this, and taking into account the non-overlapping inequalities (2.6)), we
propose a new non-overlapping inequality (3.1)) more efficient compared to the ones

of .

Proposition 3.1.1. Consider an edge e, and a pair of demands k,k' € K with
e¢ EFUEY. Let s be a slot in {wg, ...,5}. Then, the inequality
min(s+w;s—1,5)

b ol 4+ > K<, (3.1)

s’ =s—wi+1

is valid for Q(G, K, S).

The separation problem associated with inequality consists in identifying
for each edge e, demand k € K, and slot s € {w,...,5}, a demands k' € K such
that

min(s+w, —1,5)
yal +2b+ > s

8’ =s—wg+1
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Algorithm 2: Branch-and-Cut Algorithm for the C-RSA

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Data: An undirected, loopless, and connected graph G = (V, E), a
spectrum S, a multi-set K of demands, and a given class of valid
inequality

Result: Optimal solution for the C-RSA problem

LP+— LPy;

Stop= FALSE;

while STOP==FALSE do

Solve the linear program LP;

Let (z*, z*) be the optimal solution of LP;

if there exist inequalities from the cut inequalities , non-overlapping

inequalities , and those of the given class that are violated by the
current solution (z*,z*) then
| Add them to LP ;
end
else
| STOP = TRUE;

end

end

Consider the optimal solution (z*, z*) of LP ;

if (x*,2%) is integer for the C-RSA then

(z*, z*) is an optimal solution for the C-RSA;
End of the Branch-and-Cut algorithm ;

end
else
Create two sub-problems by branching one some fractional variables or
constraints ;
end
for each sub-problem not yet solved do
‘ go to 3 ;
end

return the best optimal solution (z*, z*) for the C-RSA problem,;
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For this, we propose an exact algorithm in O(|E| % 5% |K|* (| K| —1)) which works as
follows. For each demand k and slot s € {wy, ..., 5} over edge e with z¥ > 0, 2¥ > 0,
we select each demand &’ € K \ {k} with & > 0 and Z;mfsﬁi’ill S 2k > 0. We

then add the following inequality to the current LP if it is violated
min(s+w;s—1,5)
a:’;—i—x’g/—i—zf—l— Z zf:: < 3.
s =s—wr+1
Otherwise, we conclude that there does not exist an inequality from the non-overlapping
inequalities (3.1]) violated by the current solution (Z, z). Note that, from an efficiency
point of view, inequalities (3.1]) replace inequalities (2.6) in the B&C algorithm.

3.1.4 Separation of Cut Inequalities

In this section we discuss the separation problem of the cut inequalities . Its
associated separation problem consists in identifying a cut inequalities that is
violated by (Z, z). For each demand k € K, this can be done in polynomial time [38]
as shown in theorem of Ford and Fulkerson by finding a minimum cut separating
the origin-node o and destination-node di. As a result, this can be done exactly
[38] and very effectively in O(|V \ V|2 x \/|E\ Ef|) for each demand k using an
efficient implementation of minimum cut algorithm based on the so-called preflow
push-relabel algorithm of Goldberg and Tarjan [44]. It consists in computing a
maximum flow/minimum cut in G of demand k by assigning a positif weight z¥ for
each edge e in G. For this, we use a C++ library proposed by the LEMON GRAPH
library [59] which calls the algorithm of Goldberg and Tarjan for the minimum cut
computation. Based on this, we conclude that the separation of the cut inequalities
can be done in O(|V|2 % \/|E| * | K|) in the worst case.

3.1.5 Separation of Edge-Slot-Assignment Inequalities

Consider an edge e € E and a slot s € S. The separation problem associated with

inequality (2.23) consists in identifying a subset of demands K* C K such that

min(s+wg—1,5)

b+ > A |K 4L
keK* s'=s
For this, we propose an exact algorithm in O(|K| * |E| % §) which works as follows.

The main idea is to iteratively add each demand k € K to K* if and only if zk >0
and me (st+we=13) k > 0. We then add the following inequality induced by K*

'=s
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to the current LP if it is violated and satisfies some conditions about validity of
inequality ([2.23))

min(s+wg—1,3)

me—l— Z & <K'+ 1

keK* s'=s

Otherwise, we conclude that such inequality does not exist for the current solution
(z,z). Moreover, if such violated inequality is identified, it can be easily lifted by
introducing inequality (2.25) induced by K* and a subset of demands K, \ K* as

follows

min(s+wg—1,5) min(s+w;s—1,5)
DRI SRS SIS S SP)
keK* s'=s K eK\K* s'=s

Remark 3.1.1. Inequality (3.1)) is a particular case of inequality (2.42) for a clique
C = {vks} U{vp s € HE such that {s' —w; +1,...,s'} N {s —wi +1,...,s} #0}.

3.1.6 Separation of Edge-Slot-Assignment-Clique Inequalities

Consider an edge e € E. The separation algorithm for inequality (2.42)) consists in
identifying a maximal clique C* in the conflict graph H such that

ozt s|C+1
U EC*
To do this, we use the greedy algorithm introduced by Nemhauser and Sigismondi
[73] to identify a maximal clique C* in the conflict graph Hg given that computing
a maximal clique in such a graph is also NP-hard problem [81]. Based on this, we
first assign a positive weight z¥ x ¥ to each node Vg,s in the conflict graph Hg. We
then select a node vy 5 in the conflict graph H¢ having the largest weight compared
with the other nodes in H§, and set C* = {v, s }. After that, we iteratively add each
node vy ¢ to the current C* if it is linked with all the nodes vy, ¢ already assigned
to the current clique C* and Zf,, > 0 and a’zlg, > 0. At the end, we add inequality
induced by clique C* for edge e to the current LP if it is violated and satisfies
some conditions about validity of inequality . Hence, we add the following

inequality

Z a4k <o)+ 1.

’L)]“SEC*

Furthermore, it can be lifted by identifying a maximal clique N* such that each
vy ¢ € N* is linked with all the nodes vy s € C* U (N*\ {vp ¢ }) in H. For this,
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we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to
identify clique N* as follows. We first set N* = {vp ¢} with vy ¢ ¢ C* a node in
H§ having the largest value of node-degree (i.e., |0(vi &)|) in HG and vy o is linked
with all the nodes vy, € C* in H§ and k' € K.. Afterwards, we iteratively add
each node vy o» ¢ C*UN* to the current N* if it is linked in H§ with all the nodes
already assigned to C* and N* and k” € K.. At the end, we add inequality
induced by clique C* U N* to the current LP, i.e.,

Yooh+h+ >, A<t

v, s€C* Ukl’SIGN*

3.1.7 Separation of Edge-Interval-Clique Inequalities

Let discuss the separation problem of inequality . Consider an edge e € E.
We first construct a set of intervals of contiguous slots I € I, such that each interval
of contiguous slots I, is identified by generating two slots s; and s; randomly in
S with s; > s; + 2maxye e\ g, wi. Consider now an interval of contiguous slots
I = [s4,s5] € I. over edge e. The separation problem associated with inequality
(2.32) is NP-hard [82] given that it consists in identifying a cover K* for the interval
I = [s;, s;] over edge e, such that

Sj

ozby D> >R -1

keK* s'=s;+wr—1
For this, we use a greedy algorithm introduced by Nemhauser and Sigismondi [73]
as follows. We first select a demand k € K having the largest number of requested
slot wy, with ZF > 0 and Zz7:5i+wk—1 zk > 0, and then set K* to K* = {k}.
After that, we iteratively add each demand &’ € K \ K* to K* with Z¥ > 0 and
Z?:sl, w1 Zf,, > 0, until a cover K* is obtained for the interval I over edge e with
> kei+ We > |I]. We further derive a minimal cover from the cover K* by deleting
each demand k € K* if~Zk, e\ [k} Wk < |7]. We then add inequality ([2.32]) induced
by the minimal cover K* for the interval I and edge e if it is violated and satisfies
some conditions about validity of inequality (2.32]). The following valid inequality

is then added to the current LP

Sj
Z ak 4 Z 26 <2IK* - 1.
kEK* s'=s;+wr—1
3.1.8 Separation of Edge-Interval-Clique Inequalities
The separation problem related to inequality (2.36]) is NP-hard [77][81] given that

it consists in identifying a maximal clique C* in the conflict graph Hf for a given
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edge e and a given interval I = [s;, s;] such that

S5
dab+ Y Ao+
keC* s'=sjtwr—1

We start our procedure of separation by constructing a set of intervals of contigu-
ous slots I = [s;,s;] € I for a given edge e € E such that each interval of con-
tiguous slots I = [s;,s;] € I is identified for each slot s; € S and slot s; with
sj € {si + maxye e\ g, Wk, -, MIn(8, s; + 2maxyc g g, wi)}. Consider now an inter-
val of contiguous slots I = [s;,sj] € I. over an edge e, and its associated conflict
graph Hf. We then use a greedy algorithm introduced by Nemhauser and Sigis-

mondi [73] to identify a maximal clique in the conflict graph Hf as follows. We first

sk
=s;twg—1 Ryl

We then set C* = {k} such that k is a demand in K having the largest number of

associate a positive weight for each node vy, in Hf equals to :T:’eC * sz

slots wy, and weight 2% +>"77
k' having :E’e“/ > ( and szzsﬁwk,_l Zf/l > ( such that its corresponding node vy is
linked with all the nodes vy with k already assigned to the current C*. After that,
we check if inequality (2.36)) induced by the maximal clique C* for the interval I and
edge e is violated or not. If so, we add inequality (2.36]) induced by the maximal

clique C* to the current LP, i.e.,

s b1 Zf,. After that, we iteratively add each demand

Sj

leg—l— Z & <ot + 1

keC* s'=s;+wr—1

One can strengthen this additional inequality by adding inequality (2.37) induced
by the maximal clique C* and C¥ C K.\ C*, i.e.,

Sj Sj
!
dawb+ D> D > <0t 41,
keC* s'=s;+wr—1 k'eCy s'=s;+wy —1

such that
a) wy + wg > |I| + 1 for each k € C* and k' € CF,
b) wi + wg > |I| 4+ 1 for each k' € CF and k7 € C},

¢) wy < |I] for each k' € C*.

3.1.9 Separation of Interval-Clique Inequalities

Given an interval of contiguous slots I = [s;,s;]. Our separation algorithm for

inequality (2.39) consists in identifying a maximal clique C* in the conflict graph
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H IE such that

EEC™ s'=s;+wj,—1
As a result, its associated separation problem is NP-hard given that computing
a maximal clique in a given graph is known to be a NP-hard problem [8I]. For
this, we also use the greedy algorithm introduced by Nemhauser and Sigismondi
[73] to identify a maximal clique in the conflict graph H¥ as follows. We first
generate a set of intervals of contiguous slots denoted by Ig such that each interval
of contiguous slots I = [s;,s;] € Ig is given for each slot s; € S and slot s; with

sj € {s;i + max wg,...,min(8, s; + 2 max wy)}. We then consider an interval of
keK keK

) )

|Er[>1 |BF]>1
contiguous slots I = [s;, s;] € Ip and its associated conflict graph HE. We associate
a positive weight Zz',j: sitwp—1 Zf, for each node vy in HE. We select a demand

S5
s'=s;+wr—1

C* = {k}. After that, we iteratively add each demand k' having ZZ? 2 >

=s;+wyr—1 2l

k having the largest number of slots wy, and weight Zf,, and then set

0 such that its corresponding node v is linked with all the nodes v, with k € C*.
At the end, we consider inequality (2.39)) induced by the maximal clique C* if it is
violated, i.e., by adding the following inequality to the current LP

keC* s'=s;+wi—1

Moreover, this additional inequality can be strengthened as follows

DR DRSS SR SN Y

keC* s'=s;+wp—1 k'eC¥ s'=s;+wyr—1

where C}, C K \ C* such that
a) wy +wy > |I|+1 and EF N EF # ( for each k € C* and k' € C%,
b) w4+ wgr > [I|+1 and EF N EF # 0 for each k' € C% and k7 € C%,

¢) wy < |I| for each k' € Cf.

3.1.10 Separation of Interval-Odd-Hole Inequalities

For inequality (2.40]), we propose a separation algorithm that consists in identifying
an odd-hole H* in the conflict graph H IE for a given Interval I and a fractional

solution (Z, z) such that

sj H*| —
> oy &L

keH* s'=s;+wp—1
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This can be done in polynomial time as shown by Rebennack et al. [94][95]. Based
on this, we use the exact algorithm proposed by the same authors which consists of
finding a minimum weighted odd-cycle in a graph. For this, we should first generate
a set of intervals of contiguous slots Ir as we did before in the section We
then consider a conflict graph H IE associated with a given interval of contiguous
slots I € Ig. We construct an auxiliary conflict graph H }E which can be seen as a
bipartite graph by duplicating each node vy in Hj £ (i.e., v and v).) and two nodes

are linked in Hj 'Eif their original nodes are linked i in Hy £ We assign to each link
SJ

b
I=s, itwa—1 5’ Z sl=s; +wb71 5

(Va, vp) in HF a weight equals to . We then compute
for each node vy in H F , the shortest path between v and its copy in the auxiliary
conflict graph H } denoted by p,, oL . After that, we check if the total sum of weight

over edges belong this path is smallest than 2 35

S Za S5 —b
Z 1- Zs’—sﬂrwa 17 — Zs '=s;4+wp—1 Zgl < 1

2

('Un. :Ub)eE(pvk 71,;6 )

If so, odd-hole H* is composed by all the original nodes of nodes belong the computed
shortest path Puy > 1-€, V(pvkm;) \ {v}.}. We then add inequality (2.40)) induced by
odd-hole H* to the current LP, i.e.,

Ny

- po_ [HY[ -1
Yoy st
keH* s'=s;+wp—1

It can be lifted using the greedy algorithm introduced by Nemhauser and Sigismondi
[73] to identify a maximal clique C* in the conflict graph HE such that

a) wy +wy > |I|+1 and EF N EF # 0 for each k € H* and k' € C*,
b) wgr +wgr > |I| + 1 and Ef/ N EF #( for each k' € C* and k” € C*,
c) wy < |I] for each k' € C*.

For this, we first assign a positive weight equals to the number of slots request wg
by demand &’ for each node vy linked with all the nodes vy € H* in the conflict
graph H }5 . We then select the node v linked with all the nodes vy € H* in the
conflict graph H IE having the largest weight, and set C* to {k'}. After that, we
iteratively add each demand k” to the current clique C* if its associated node vy is
linked with all the nodes v, € H* and nodes vir € C*. As a result, we add inequality
induced by odd-hole H* and clique C* to the current LP, i.e.,

S5 *
Z ZJ: ZS/+‘H|*1Z Z Z§::§|IJ|21~

keH* s'=s;+wi—1 k'eC* 8" =s;4w;—1
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3.1.11 Separation of Slot-Assignment-Clique Inequalities

Now, we describe the separation algorithm for inequality . It consists in iden-
tifying a maximal clique C* in the conflict graph H g such that
o oEb>a,
Vg, €C*

for a given fractional solution (Z, z) of the current LP.

For this, we use the greedy algorithm introduced by Nemhauser and Sigismondi [73]
to identify a maximal clique C* in the conflict graph H g given that computing a
maximal clique in such a graph is also NP-hard problem [81]. Based on this, we
first assign a positive weight Zf to each node vy, ¢ in the conflict graph H g . We then
select a node vy, s in the conflict graph H 5}? having the largest weight compared with
the other nodes in H 5}? , and set C* = {vy}. After that, we iteratively add each
node vy ¢ to the current C* if it is linked with all the nodes vy, 5 already assigned
to the current clique C* and Ef,/ > (0. At the end, we add inequality induced
by clique C* to the current LP if it is violated, i.e., we add the following inequality

Z zi?gl.

UkYSEC*

Furthermore, it can be lifted by identifying a maximal clique N* such that each
vp ¢ € N* is linked with all the nodes vy s € C* U (N* \ {vp ¢ }) in HE. For this,
we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to
identify clique N* as follows. We first set N* = {vy ¢} with vy ¢ ¢ C* a node
in HY having the largest value of node-degree (i.e., |§(vyr+)|) in HE and vy ¢ is
linked with all the nodes v, s € C* in H 5E . Afterwards, we iteratively add each node
Vs & C*UN* to the current N* if it is linked in H SE with all the nodes already
assigned to C* and N*. At the end, we add inequality induced by clique
C* U N* to the current LP, i.e.,

Z z§+ Z zﬁ,lgl.

vkaGC* V! S/EN*

3.1.12 Separation of Slot-Assignment-Odd-Hole Inequalities

The separation algorithm of inequality (2.44) can be performed by identifying an
odd-hole H* in the conflict graph H g for a given fractional solution (Z, Z) such that

_ |H*| — 1
=

Uk,SEH*
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This can be done in polynomial time as shown by Rebennack et al. [94][95] by
finding a minimum weighted odd-cycle in the conflict graph H E . For this, we first
construct an auxiliary conflict graph H ng which can be seen also as a bipartite graph
by duplicating each node vy, 5 in Hg (i.e., vgs and ’U;f’s) such that each two nodes

are linked in H ng if their original nodes are linked in H SE . We assign to each link
—zk—z

(U5, Uk 5) in Hng a weight equals to % We then compute for each node
Vg5 in H 5}? , the shortest path between vy, s and its copy vfﬁ . in the auxiliary conflict
graph H gE denoted by oyl - After that, we check if the total sum of weight
over edges belonging to this path is smaller than % If so, odd-hole H* is composed
by all the original nodes of nodes belong the computed shortest path I ie.,
V(pvk,m%s) \{v}. s} As aresult, the following inequality induced by odd-hole
H*
k w
ZEIH 2 <
should be added to the current LP. Moreover, one can strengthen inequality
induced by odd-hole H* using the greedy algorithm introduced by Nemhauser and
Sigismondi [73] to identify a maximal clique C* in the conflict graph HE such that
each node vy ¢ € C* should have a link with all the nodes v, € H*, and the
nodes vg» »» € C*\ {vp ¢} in the conflict graph HE. For this, we first assign a node
v ¢ & H* to clique C* (i.e., C* = {vp ¢ }) such that v o has the largest value of
node-degree (i.e., [6(vy &)|) in Hg and vy ¢ is linked with all the nodes vy, s € H*
in Hg After that, we iteratively add each node vy ¢ ¢ H* U C* to the current
clique C* if it is linked in H g with all the nodes already assigned to odd-hole H*
and clique C*. We then add inequality induced by odd-hole H* and clique
O
e DI e

Vg, s EH* Uk/’SIGC*

3.1.13 Separation of Incompatibility-Clique Inequalities

Consider now inequality (2.46)). Its associated separation algorithm consists in iden-

tifying a maximal clique C* in the conflict graph H g such that
Yoozl
'Uk,eecu<
The separation problem related to this inequality is NP-hard given that computing a

maximal clique in the conflict graph H ]{3( is NP-hard problem [81]. For this, we also
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use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to identify a
maximal clique in the conflict graph H g taking into account the fractional solution
(z,%) as follows. We first assign a positive weight Z¥ to each node Vg, in the conflict

graph H g . We then select a node vy, in the conflict graph H g having the largest
k

e

weight T
the current C* if it is linked with all the nodes v; . € C* and i’;,, > 0. At the end,
the following inequality (2.46)) induced by clique C*

> w <l

’l}k7e€C*

and set C* = {vg}. After that, we iteratively add each node vy o to

should be added to the current LP if it is violated. Furthermore, one can strengthen
the additional inequality by identifying a maximal clique N* such that each
Vg o € N* is linked with all the nodes vg . € C* U (N*\ {vp s }) in HE. For this,
we also use the greedy algorithm introduced by Nemhauser and Sigismondi [73] to
identify clique N* as follows. We first set N* = {vp o} with vy o ¢ C* a node in
HE having the largest degree |§(vg )| in HE and should be also linked with all the
nodes v € C* in Hg We then iteratively add each node vy oo ¢ C* U N* to the
current N* if it is linked in H g with all the nodes already assigned to C* and N*.
At the end, we add inequality induced by clique C* U N* to the current LP,

ie.,

Z 1:];—}— Z x’g,'gl.

vkveGC’* V! E/E]\f*

3.1.14 Separation of Incompatibility-Odd-Hole Inequalities

The separation algorithm related to inequality can be done in polynomial
time by finding a minimum weighted odd-cycle in the conflict graph H g as shown
by Rebennack et al. [94][95]. For this, our aims is to identify an odd-hole H* in the
conflict graph H g such that

H* -1
X et =t
for a given fractional solution (Z, z) of the current LP.
We start its procedure of separation by constructing an auxiliary conflict graph H g(
by duplicating each node vy, in HX (i.e., vy, and vfﬂ’e) such that each two nodes
are linked in H g( if their original nodes are linked in H g . We assign to each link

k_ =
e

. . . 1—zk—zk .
(Vke, Upr ) in HjEK a weight % After that, we compute for each node vy . in

H g , the shortest path between vy, . and its copy v}, .. We denote this shortest path
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by Pogev) - Note that if the total sum of weight over edges belonging to this path is
smaller than %, this means that there exists odd-hole H* composed by all the original
nodes of nodes belong the computed shortest path Pogev), > 1€ V(pvk,evv;’s) \{vk o}
such that its associated inequality is violated by the current fractional solution
(Z,Z) to the current LP. As a result, we add following inequality induced by
odd-hole H*

P H -1

Moreover, inequality induced by odd-hole H* can be lifted using the greedy
algorithm introduced by Nemhauser and Sigismondi [73] by identifying a maximal
clique C* in the conflict graph H g such that each node vy .- € C* should have a link
with all the nodes v, . € H*, and the nodes vy» »» € C*\{vp ¢ } in the conflict graph
HE. For this, we first assign a node vy & H* to clique C* (i.e., C* = {vp¢'})
having the largest degree |§(vg )| in HE, and v o should be linked with all the
nodes v € H* in Hg After that, we iteratively add each node vy o ¢ H* U C*
to the current clique C* if it is linked in H g with all the nodes already assigned to
H* U C*. We then add inequality induced by odd-hole H* and clique C*

\H*| — 1 . HY -1
e = S P

Vg, e CH* Uk’,e’GC*

3.1.15 Separation of Transmission-Reach-Cover Inequalities

In this section, we study the separation problem of inequality . Consider a
demand k € K. The separation problem associated with inequality is NP-hard
[82] given that it consists in identifying a cover C* related to the transmission-reach
constraint of demand k, such that

d oz >|cr -1

ecc*

For this, we propose a separation algorithm based on a greedy algorithm introduced
by Nemhauser and Sigismondi [73]. We first select an edge e € E\ (E} U EY) having
the largest length £, with ¥ > 0, and set C* to C* = {e}. After that, we iteratively
add each edge €’ € E\ (E§UEFUC*) to C* while >, £e < Ii and € is compatible
with the edges already added to the cover C*, i.e., until a cover C* is obtained for the
demand k with ) o le > l;.. We further derive a minimal cover from the cover C*
by deleting each edge e € C* if Ze,ec*\ (e} Ly < l,. We then add inequality

induced by the minimal cover C* for demand k to the current LP if it is violated,
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ie.,

d b <|cr -1

ecC*
Furthermore, inequality (2.49) induced by the minimal cover C* can be lifted by
introducing an extended coverinequality as follows
S Y ab<iel-
ecC* e'cE(C*)

where £ > £, for each e € C* and ¢/ € E(C*) with ¢’ ¢ EfUEY and € is compatible
with each edge e € C*.

3.1.16 Separation of Edge-Capacity-Cover Inequalities

Let now study the separation problem of inequality (2.54). Given an edge e € FE.
The separation problem associated with inequality (2.54)) is NP-hard [82] given that

it consists in identifying a cover K* edge e, such that

>z > |KY -1

keK*
For this, we propose a separation algorithm based on a greedy algorithm introduced
by Nemhauser and Sigismondi [73]. We first select a demand k£ € K \ K. having
largest number of requested slot wy, with Z¥ > 0, and set K* to K* = {k}. After
that, we iteratively add each demand k' € K \ (K. U K*) to K* while Y ke Wk <
5 — Z%eKe wy, i.e., until a cover K* is obtained for the edge e with dokeir We >
5= ke K, Wi,- We further derive a minimal cover from the cover K* by deleting
cach demand k € K* if Zk’ef(*\{k} Wy < 8= Y e, Wi We then add inequality
induced by the minimal cover K* for edge e to the current LP if it is violated,

i.e.,
> b <K -1
keK*

3.1.17 Primal Heuristic

Here, we propose a primal heuristic to boost the performance of the Branch-and-Cut
algorithm. It is based on a hybrid method between a local search algorithm and a
greedy-algorithm. Given an optimal fractional solution (Z,Z) in a certain node of

the B&C tree, our primal heuristic consists in constructing an integral ”feasible”
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solution from (z,z). For this, we first construct several paths Ry for each demand

k € K based on the fractional values z¥ such that for each p € Ry,

Yoz 1LVX Vst XN {opdi}|=1and > L <[
e€d(X)NE(p) ccE(p)

This can be done in polynomial time using network flow algorithms.

Afterwards, we use a local search algorithm. It consists in generating at each iter-
ation a sequence of numeroted demands L (order) with L = 1',2", ..., |K|' — 1, |K/'.
Based on this sequence of demands, we use a greedy algorithm to select a path p
from Ry and a slot s € {wy, ..., 5} for each demand ¥’ € L with 2% # 0 and Z¥ # 0
for each e € E(p), while respecting the non-overlapping constraint with the set of
demands that precede demand k' in the list L (i.e., the demands 1',2,.... k" — 1).
However, if there does not exist such pair of path p and slot s for demand k’, we
then select a path p and a slot s € {wy,...,5} for demand k' € L with Z?l =0
and z¥ # 0 for each e € F(p) while respecting the non-overlapping constraint with
the set of demands that precede demand k' in the list L. The complexity of this
algorithm is bounded by O(|K| * [S|  |P| x log(|K|)) where |P| = maxycx RF.
After that, we compute the associated total cost of the paths selected for the set of de-
mands K in the final solution S given by the greedy-algorithm (i.e., 3y > cep, Ce)-
Our local search algorithm generates a new sequence by doing some permutation of
demands in the last sequence of demands, if the value of the solution given by
greedy-algorithm is smaller than the value of the best solution found until the cur-
rent iteration. Otherwise, we stop the algorithm, and we give in output the best
solution found during the primal heuristic induced by the best sequence of demands
having the smallest value of total cost of the selected path compared with the others

generated sequences.

3.2 Computational Study

3.2.1 Implementation’s Feature

We have used C++ programming language to implement the B&C algorithm under
Linux using three framworks, Cplex 12.9 [26], Gurobi 9.0 [49], and ”Solving Con-
straint Integer Programs” (Scip 7.0) [103] framework using Cplex 12.9 as LP solver.
It has been tested on LIMOS high performance server with a memory size limited to
64 gb while benefiting from parallelism by activating 8 threads when using Gurobi
or Scip (which is not possible when using cutting-plane based method under Cplex).
We limit the CPU time to 5 hours (18000 s).
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3.2.2 Description of Instances

We further present computational results using two types of graphs: real, and other

realistics from SND-Lib [74] with total number of nodes |V| up to 161 and total

number of edges |E| up to 166 as shown in Table The demands K are randomly
generated with |K| € {10, 20, 30, 40, 50, 100, 150}, and $ up to 320 slots. Note that we

tested 4 instances for each triplet (G, K, 5) with | K| € {10, 20, 30, 40, 50, 100, 150, 200, 250, 300},
and § up to 320 slots.

c h Number | Number | Max Node | Min Node | Average Node
raphs
of Nodes | of Links Degree Degree Degree
German 17 25 5 2 2.94
Nsfnet 14 21 4 2 3
Real
Spain 30 56 6 2 3.73
Topology
Conus75 75 99 5 2 2.64
Coronet100 100 136 5 2 2.72
Europe 28 41 5 2 2.92
France 25 45 10 2 3.6
German50 50 88 5 2 3.52
Brainl61 161 166 37 1 2.06
Realistic
Giul39 39 86 8 3 4.41
Topology
India35 35 80 9 2 4.57
Pioro40 40 89 5 4 4.45
Ta65 65 108 10 1 3.32
Zib54 54 80 10 1 2.96

Table 3.1: Characteristics of Different Topologies Used for our Experiments.

3.2.3 Computational Results

We consider 4 criteria in our computational study, average number of nodes in the
B&C tree (Nb_Nd), average gap (Gap) which represents the relative error between
the lower bound gotten at the end of the resolution and best upper bound, average
number of violated inequalities added during the algorithm (Nbr_Cuts), and average
Cpu time computation (TT).

Based on preliminary results, the cover-based inequalities and are
shown to be efficient than the clique-based inequalities , and .
In fact, the B&C algorithm performs very well when adding the cover-based in-
equalities and (2.32)) under Scip and Gurobi. We notice that adding these

valid inequalities allows solving to optimality some instances that are not solved to
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optimality when using Cplex, Gurobi and Scip. Furthermore, they allow reducing
the average gap, average number of nodes, and the average cpu time. On the other
hand, we observed that the valid inequalities do not work well when using Cplex.
This is due to deactivating the Cplex’s cut generation such that Cplex does not
work well without its proper cut generation even if the valid inequalities are shown
to be efficient when using Gurobi and Scip for the instances tested. The results
also show that several inequalities of the cover-based inequalities , and
clique-based inequalities (2.43)), (2.42) and (2.36)), are generated along the B&C al-
gorithm. However, the number of clique-based inequalities generated is very

less compared with other inequalities. Based on these results, we conclude that
the valid inequalities are very useful to obtain tighter LP bounds using Gurobi and
Scip. On the other hand, the clique-based inequalities , cover-based inequal-
ities , and the different families of odd-hole inequalities, are shown to be not
efficient for the instances tested such that the number of their violated inequalities
generated is very less and equal to 0 for several instances. However, they are still
very interesting from a theoretical point of view. Based on this, the separation of
our valid inequalities, is performed along the B&C algorithm (using Cplex, Gurobi

and Scip) in the following order
a) edge-capacity-cover inequalities ,
b) edge-Interval-Capacity-Cover inequalities ,
c¢) edge-slot-assignment-clique inequalities ,
d) edge-interval-clique inequalities ,
e) slot-assignment-clique inequalities .

Using this, we provide a comparative study between Cplex, Gurobi and Scip. For
this, we aim to evaluate the impact of the valid inequalities used within the B&C al-
gorithm. Our first series of computational results presented in Tables[3.2] it concerns
a comparaison between the results obtained for the B&C algorithm using Cplex and
Scip (without or with additional valid inequalities). On the other hand, in the sec-
ond series of computational results shown in Table [3.3] we present the results found
for the B&C algorithm using Gurobi and Scip (without or with additional valid in-
equalities). In the third series shown in Table we compare the results found by
the B&C algorithm using Cplex (without or with additional valid inequalities) with
those that are found when using Scip (without or with additional valid inequalities).

For each instance, we run
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e Cplex with benefiting of its automatic cut generation and without our addi-

tional valid inequalities (denoted by B&C_CPX in the different tables),

e Cplex using our valid inequalities and disabling its proper cut generation (de-
noted by Own_B&C_CPX),

e Gurobi with benefiting of its automatic cut generation and without our addi-
tional valid inequalities (denoted by B&C_GRB),

e Gurobi using our valid inequalities and disabling its proper cut generation
(denoted by Own_B&C_GRB),

e Scip with benefiting of its automatic cut generation and without our additional

valid inequalities (denoted by B&C_SCIP),

e Scip using our valid inequalities and disabling its proper cut generation (de-
noted by Own_B&C_SCIP).

To make the results and the comparison more readable, we just present some com-
putational results using a subset of instances based on 2 real topologies: German,
Nsfnet, and 2 realistic topologies: India35 and Pioro40.

We first notice that our valid inequalities allows solving several instances to opti-
mality that are not solved to optimality when using B&C_CPX, B&C_GRB and
B&C_SCIP. Furthermore, they enabled reducing the average number of nodes in the
B&C tree, and also the average Cpu time for several instances. On the other hand,
and when the optimality is not proven, adding valid inequalities decreases the aver-
age gap for several instances. However, there exists a few instances in which adding
valid inequalities does not improve the results of B&C algorithm. We further observe
that Own_B&C_SCIP is shown to be very efficient compared with Cplex and Gurobi
(see for example Table and . However, and looking at the instances that
are solved to optimality by Own_B&C_GRB and Own_B&C_SCIP, we notice that
we have less number of nodes and time cpu when using Own_B&C_SCIP compared
with Own_B&C_GRB (see for example Table [3.3)). Furthermore, Own_B&C_SCIP
works much betther than SCIP, Cplex and Gurobi even when using their proper cuts
such that Own_B&C_SCIP is able to solve several instances to optimality that are
not solved when using B&C_CPX, B&C_GRB and B&C_SCIP. This means that we
are able to beat Cplex, Gurobi and Scip using Own_B&C_SCIP. On the other hand,
and considering large-scale instances with |K| > 200, we noticed that adding valid
inequalities does not improve the effectiveness of the B&C algorithm such that there

exist some instances that are solved to optimality using B&C_CPX and B&C_GRB
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that are not solved to optimality when using Own_B&C_CPX, Own_B&C_GRB and
Own_B&C_SCIP. Based on these results, we conclude that using the valid inequal-
ities allows obtaining tighter LP bounds. They significantly improve the results
yielded by the B&C_CPX, B&C_GRB, and B&C_SCIP for several instances with

number of demands up to 150.

Given that Own_B&C_SCIP is able to beat Cplex, Gurobi and Scip, we turn our
attention to the numerical results found when using SCIP. They are shown in the
following Table
We can see from Table that our B&C algorithm (Own_B&C) is able to solve
to optimality more instances than B&C_SCIP. Indeed, 137 instances are solved to
optimality when our inequalities are used (Own_B&C) while 101 instances are solved
to optimality in run B&C_SCIP. Also, when our inequalities are used, the number of
nodes in the B&C tree is decreased in most cases compared to the case where they
are not used. Moreover, the CPU time is, in general, smaller when our inequalities
are used. Finally, when comparing the instances which are not solved to optimality,
we can see that the optimality gap is smaller, for most of the instances, when our

inequalities are used.

3.3 Concluding Remarks

In this chapter, we have devised a B&C algorithm, and conducted some compu-
tational experiments. Our study shows that the valid inequalities are effective for
solving real and realistic instances of the problem. It could be interesting to study
the impact of the symmetry breaking inequalities and the precomputed lower bounds

on the performance of the Branch-and-Cut algorithm.
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Instances B&C_SCIP Own_B&C_SCIP
Graph K| 5 Nbr_Nd | Gap TT Nbr_Nd | Gap TT
10 15 1310,25 0,00 14,35 59 0,00 0,83
20 45 185956 0,27 3895,5 141 0,00 3,89
30 45 401335,75 1,60 11740,04 160376,50 1,46 8334,95
German 40 45 315993,66 | 8,33 | 16206,36 383058,66 | 3,70 | 16624,87
50 55 246146,50 | 9,62 | 16675,88 251152,50 | 13,73 | 17074,95
100 | 140 1158,50 0,00 340,10 3014,25 0,00 617,80
150 | 210 12759 0,01 7329,06 3609 0,00 3057,79
200 | 260 5099,33 0,78 10095,88 3067 0,00 6770,75
10 | 320 1 0,00 10,37 1 0,00 | 462,15
20 320 10,50 0,00 19,21 15 0,00 832,22
30 40 66534,75 | 16,40 18000 11304,25 6,08 5006,31
Coronet100 40 40 81051 3,96 18000 2127 0,00 707,54
50 80 11385,25 0,01 4496,92 19,75 0,00 139,55
100 | 120 12787,50 | 13,36 | 1422834 8390,25 7,66 | 10920,70
150 | 200 4454,50 27,12 | 13692,63 3165,75 29,13 | 15527,10
200 | 280 3579,25 33,35 18000 1 38,97 18000
0] 15 13462 | 0,00 | 113,64 1 0,00 0,15
20 20 699646 9,51 18000 21586 0,00 192,27
30 30 272065 40,99 18000 281569,66 | 3,29 | 11048,71
Nsfnet 40 35 225696,67 | 46,74 18000 119841,66 | 1,17 5673,46
50 50 247873,25 | 43,09 18000 148476,50 | 5,91 | 17405,09
100 | 120 56598,50 57,19 18000 1 0,00 40,87
150 | 160 12663 58,50 18000 1 0,00 136,02
200 | 210 7726,50 54,85 18000 710 0,28 9121,79
10 40 1907,25 0,00 87,60 1 0,00 1,80
20 | 40 9 0,00 4 7 0,00 5,92
30 40 91798 0,00 7821,5 32156,75 0,00 2309,66
Ldings 40 | 40 161514 | 242 | 17486,08 191812 | 0,18 | 1733353
50 80 34 0,00 22,13 69,25 0,00 112,19
100 | 120 24797 0,32 9137,26 23403,75 0,44 9494,52
150 | 200 16809 0,21 13739,65 1026 0,00 4101,80
200 | 280 11197 0,37 13930,35 2027,75 3,69 14516,65
10 | 40 1 0,00 1,49 1 0,00 1,60
20 40 1,50 0,00 3,44 1 0,00 4,88
30 40 1,50 0,00 5,72 6,25 0,00 10,54
Piorodo 40 40 83597 0,20 8692,5 67151 0,12 8711,30
50 80 14 0,00 15,93 4 0,00 54,39
100 | 80 21281,75 0,04 9087,52 23785,75 0,04 9916,63
150 | 160 823,50 0,00 816,89 124,50 0,00 1509,87
200 | 280 1503,75 0,00 3772,9 423,50 0,00 7424,98
10 | 40 1 0,00 1,58 1 0,00 1,83
20 40 1,50 0,00 2,92 1 0,00 3,71
30 | 40 4 0,00 4,50 1 0,00 6,10
40 40 4,50 0,00 7,17 1 0,00 10,15
Giul39
50 40 54420 0,00 4376,98 52156,75 0,00 4361,26
100 40 55472,50 6,88 17781,71 54675,50 8,38 17802,83
150 | 120 836 0,00 1050,13 11655,50 0,00 9411,30
200 | 120 10191,25 0,24 | 13794,32 6518 0,01 9914,02

Table 3.5: The Impact of Valid Inequalities in the Own_B&C_SCIP Performance
Using Realistic Graphs. 172



Chapter 4

Path Formulation and

Branch-and-Cut-and-Price
Algorithm for the C-RSA
Problem

In this chapter, we first introduce an extended integer linear programming formu-
lation based on the so-called path formulation. All the different valid inequalities
presented in chapter 2 they are still valid for the path formulation. Using this, we
derive a Branch-and-Cut-and-Price algorithm to solve the C-RSA problem. In this
section, we describe the framework of this algorithm. First, we give an overview
of the column generation algorithm. Then, we discuss the pricing problem. We
further present a primal heuristic used to boost the performance of the algorithm.
We give at the end some computational results and a comparative study between
Branch-and-Cut and Branch-and-Cut-and-Price algorithms. We close our chapter

with some concluding remarks.

4.1 Path Formulation

Let P* denote the set of all feasible (oy,dx) paths in G such that for each demand
k € K, we have
Z e <y, for all p, € PF.
ecE(pr)
We consider for k € K and p € P* and s € S, a variable y]’;’S which takes 1 if slot
s is the last slot allocated along the path p for the routing of demand k and 0 if
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not, such that s represents the last slot of the interval of contiguous slots of width
wy, allocated by demand k € K, with s € S and p € P¥. Note that all the slots
s’ € {s—wi+1,...,s} should be assigned to demand k along the path p whenever
yﬁs = 1. Let P*(e) denote set of all admissible (oy,d},) paths going through edge e
in G for demand k.

In this case, the C-RSA is also equivalent to the following integer linear program

mlnz Z Z Z ceyp’s, (4.1)

keK pc Pk e€ E(p) s=wk

subject to
wi—1
> yp=0VkeK, (4.2)
pepk s=1
S
> b =1VkeK, (4.3)
pEPk s=wy,
s+wg—1

> ) y.<1LVecENVseS, (4.4)

kEK pePk(e) s'=s
Yk, >0,k € K,¥p € P* Vs € S, (4.5)
yr,€{0,1},Vk € K,¥pe P* Vs € S. (4.6)

Inequalities express the fact that a demand k € K cannot occupy a slot s as
the last slot before her slot-width wy. Inequalities express the routing and
spectrum constraints at the same time such that they ensure that exactly one slot
s € {wg, ..., 8} is assigned as last slot for the routing of demand k, and exactly one
single path from PF is allocated by each demand k € K. Note that a slot s € S is
said an allocated slot by demand k if and only if }° pr Sosheet yy o = 1 which
means that s is covered by the interval of contiguous slots allocated by demand k.
Inequalities ensure that a slot s over edge e cannot be allocated to at most by
one demand k € K. Inequalities are trivial inequalities, and constraints
are the integrality constraints.

To benefit from some theoretical results done in chapter [2, we introduce the two
variables ¥ and 2z used in the cut formulation already presented in chapter[2] As a
result, all the valid inequalities for the polytope associated with the cut formulation,
they are still valid for the polytope associated with the path formulation following

the addition of these two variables and the two following constraints

Y ) Yk, =0VkeKVecE, (4.7)
pEBk(e) =Wk
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and
2=y, =0VkeK\VseS. (4.8)
pEBF

Therefore, the C-RSA is then equivalent to the extended formulation based on the

following integer linear program

min Z Z ek, (4.9)

keK eeFE
wi—1
S>> yh =0VkeK, (4.10)
peEPk s=1
5
> b =1VkeK, (4.11)
pEPk s=wg
S
wf— > Y Yy =0VkeK\VecE, (4.12)
pEP¥(e) s=wh
=) Y =0VkeKVseS, (4.13)
pePk
stwi—1

Z Z Z yﬁ,s’ <1,Vee E,Vs € S, (4.14)

kEK pePk(e) s'=s
Yk, >0,vk € K,¥p e P* Vs €S,
aF > 0,Vk € K,Ve € E,
2k >0,Vk € K,Vs €S,
yk, € {0,1},Vk € K,Vp € P* Vs € S.

4.2 Column Generation Algorithm

As it has been mentioned previously, our path formulation contains a huge number
of variables which can be exponentiel in the worst case due to the number of all
feasible paths for each traffic demand. To deal with this, we use a column generation
algorithm to solve its linear relaxation. For this, we begin the algorithm with a
restricted linear program of our path formulation by considering a feasible subset
of variables (columns). For this, we first generate a subset of feasible paths for
each demand k¥ € K denoted by B¥ C P* such that the variables y{;s for each
ke K,pe B¥ and s € S induce a feasible basis for the restricted linear program.
This means that there exists at least one feasible solution for the restricted linear

program. Based on this, we derive the so-called restricted master problem (RMP)
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as follows

ming g ceaf’;,

keK ecE
subject to

wg—1
> yh,=0VkeK,
peBk s=1

5

> yh =1VkeK,
pEBk s=wy,

5
zk — Z Z y;f,s =0,Vke K,Vee E,

pEBF (e) =t

zf — Z y]l,is =0,Vk € K,Vs €S,
peBk
stwi—1

Y Y g <lVeeEVseS,

k€K peBk(e) s'=s
yr,>0,Yk € K,Vp e B* Vs € S,
z¥ > 0,Vk € K Ve € E,
2% >0,Vk € K,Vs €S.

At each iteration, the column generation algorithm checks if there exists a variable
yﬁs with p ¢ B¥ for a demand k and slot s having a negative reduced cost using the
solution of the dual problem associated with the constraints of the linear relaxation
—, and add it to B*. This can be achieved by solving the so-called pricing
problem (PP).

4.2.1 The Pricing Problem

As noted later, we consider an initial restricted master problem denoted by RM Py
which is based on an initial subset of variables induced by a subset of feasible path
B c P* for each demand k € K. The pricing problem consists in finding a feasible
path p for a demand k and slot s having a negative reduced cost using the optimal

solution of the dual problem. For this, we consider the following dual variables
a) « associated with the equations (4.10)) such that aj € R for all k € K,
b) B associated with the equations (#.11)) such that 3% € R for all k € K,

¢) p associated with inequalities (4.14) such that u¢ <0 for alle € E and s € S,
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d) X associated with the equations (4.12) such that \¥ € R for all £ € K and
ee F,

e) p associated with the equations (#.13)) such that p¥ € R for all k¥ € K and
s €S,

The dual problem of the linear relaxation (4.9))-(4.17)) is equivalent to

max— Y BF D Y ug, (4.19)

keK ecl seS

subject to

s

BE— > M+ > ) —pf > 0,Vk e K,¥p € P¥Vs € {uy, ..., 5}, (4.20)

e€E(p) s'=s—wp+1
ab - > ps >0,Vk € K,¥p e P* Vs e {1,..,wp — 1}, (4.21)
e€E(p) s'=max(1,s—wi+1)
e+ M >0VkeK,VeeE, (4.22)
of +pF >0,Vk e K,Vs €S, (4.23)

pg <0,Ve € E,Vs €8S. (4.24)

As a result, the so-called reduced-cost rc¥(p) related to each demand k € K, path
p € P* and slot s € {wy, ..., 5}, is given by

s

k _ pk _ k : _\k_ e
rés = 6 ps + ml%[ Z )‘e Z Ms’]v (425)

peP e€E(p) s'=s—wp+1
Therefore, for each demand k € K and slot s € {wy, ..., §}, the pricing problem aims
at finding a path p* of P*¥ such that

ref(pf) =B —ph+min[ > —AE— > ], (4.26)
p

Finding such path p* can be seen as a separation procedure for the dual constraint
(4.20) which consists in identifying a path p* for each demand k € K and slot
s € {wg, ..., §} such that

S

gE — pk 4 Z (=\F — Z py) < 0 and Z le <y

ecE(p*) s'=s—wr+1 e€E(p*)
As a result, the pricing problem consists in solving the Resource Constrained Short-
est Path (RCSP) problem. The RCSP problem is well known to be weakly NP-hard
[31]. Several algorithms have been proposed in the literature to solve this prob-
lem based on dynamic programming algorithms, heuristics and some techniques
related to the lagrangian decomposition. As background references we mention
[14, 32, [35], B8, [64].
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4.2.2 Dynamic Programming Algorithm for the Pricing Problem

In this work, we propose a pseudo-polynomial time based dynamic programming
algorithm [32]. It consists in finding the minimum-cost path for each demand k
and slot s while satisfying the transmission-reach constraint. It is based on the
dynamic programming algorithm proposed by Dumitrescu et al. [32] to solve the
RCSP problem. For each demand k € K and slot s, we associate to each node v € V
in the graph G a set of labels L” such that each label corresponds to differents paths
from th origin node o to the node v, and each label p is specified by a cost equals
to ZeeE(p)(—/\lg — Y v—s—wy+1 He), and a weight equals to 3° ) e We denote
by T, the set of labels on node v € V. For each demand k and slot s € {wg, ..., 5},
the complexity of the algorithm is bounded by O(|E \ E§| * I;) [32].

Algorithm [3] summarizes the different steps of the dynamic programming algo-

rithm.

4.2.3 Initial Columns

The basic subset of paths used to define the restricted master problem, they are
generated using a brute-force search algorithm which creates a search tree that
covers all the feasible paths P* for each demand k. It is then used to pre-compute
an initial subset B* of feasible paths for each demand k € K taking into account the
transmission-reach constraint to prune some non intersecting nodes in our search

tree of this algorithm.

4.3 Branch-and-Price and Branch-and-Cut-and-Price Al-

gorithms

Based on these features, we derive a Branch-and-Cut-and-Price algorithm for solving
the C-RSA problem.

4.3.1 Description

The main purpose of this algorithm is to solve a sequence of linear programs using
the column generation algorithm at each node of a Branch-and-Bound algorithm.
At each iteration of the algorithm, we solve our pricing problem by identifying one
or more than one new column by solving a RCSP problem for each demand k and

slot s € {wg, ..., 5} using the dynamic programming algorithm. We repeat this pro-
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Algorithm 3: Dynamic Programming Algorithm

1

2

3

4

5

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Data: An undirected, loopless, and connected graph G = (V, E), a
spectrum S, a multi-set K of demands, a linear program LP, a
demand k and a slot s € {wy, ..., 5}, a set B* of feasible paths
already exists in the current LP for demand k& € K and slot s, and
the optimal values of the duals variables (o’ A p)

Result: Optimal path px for demand k and slot s

Set Lo = {(0,0)} and LV = ) for each node v € V' \ (VF U {ox});

Set TV = () for each node v € V \ V{;

STOP= FALSE;

while STOP==FALSE do

if Uyey (Ly \ Ty) = 0 then

STOP= TRUE;

Set p* = (;

We select one label p from the labels L% of destination node dj, such

that p ¢ B* with g* — p¥ + ZQEE@)(—)\IQ =D w1 M) < 0;
if such label exists then
\ Set p* = p;

end

end
if Upey (Ly \ Ty) # 0 then
Select a node i € V' \ V{¥ and a label p € L \ T% having the smallest
value of 3 ¢ i Le;
for each e =ij € §(i) \ EY such that Yeerp le +le < I, do
if j ¢ V(p) then
Set p’ = p U {e};
Update the set of label L7 = L' U {p} ;
end
end
Set T¢ = T* U {p};

end

end

return the best optimal path p* for demand k and slot s;
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cedure in each iteration of the column generation until no new column is found (i.e.,
rck >0 for all k € K and s € {wy,...,5}. As a result, the final solution is optimal
for the linear relaxation of the path formulation. Furthermore, if it is integral, then
it is optimal for the C-RSA problem. Otherwise, we create two subproblems by
branching on fractional variables (variable branching rule) or on some constraints
using the Ryan & Foster branching rule [99] (constraint branching rule).
Algorithm [4] summarizes the different steps of the Branch-and-Price algorithm.

By combining the Branch-and-Price algorithm with a cutting-plane based algorithm,
we devise a Branch-and-Cut-and-Price which works as follows. Consider a fractional
solution (y,Z,Zz). At each iteration of the Branch-and-Price algorithm, and for a
given class of valid inequalities, our aim is to identify the existence of one or more
than one inequalities of this class that are violated by the current solution. We
repeat this procedure in each iteration of the algorithm until no violated inequality
is identified.

As mentioned before, the Branch-and-Cut-and-Price algorithm also uses the differ-
ent classes of valid inequalities presented in chapter . They are performed in the
order [2.54), [2.32), (2.42), (2-36), [.43).

Algorithm [p] summarizes the different steps of the Branch-and-Cut-and-Price algo-

rithm for a given class of valid inequalities.

4.3.2 Primal Heuristic

Here, we propose a primal heuristic based on a hybrid method between local search
algorithm and a greedy-algorithm. Given a feasible fractional solution (g, Z, Z), our
primal heuristic consists in constructing an integral ”feasible” solution from this
fractional solution. For this, we propose a local search algorithm which consists
in generating at each iteration a sequence of demands L = 1,2/, ..., |K| — 1, |K/".
Based on this sequence of demands, our greedy algorithm selects a path p and a
slot s for each demand k' € L with y]’;:S = (0 while respecting the non-overlapping
constraint with the set of demands that precede demand &’ in the list L (i.e., the
demands 1',2, ...,k — 1). However, if there does not exist such pair of path p and
slot s for demand &/, we then select a path p and a slot s for demand k' € L with
y;f:s =0 and s € {wy,...,5} while respecting the non-overlapping constraint with
the set of demands that precede demand £’ in the list L. After that, we compute the
associated total length of the paths selected for the set of demands K in the final

solution S given by the greedy-algorithm. Our local search algorithm generates
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Algorithm 4: Branch-And-Price Algorithm for the C-RSA
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Data: C-RSA’s inputs, a set B¥ of precomputed feasible paths for each

demand k € K
Result: Optimal solution for the C-RSA problem
LP<— RM Py;
Stop= FALSE;
while STOP==FALSE do
Solve the linear program LP;
Let (y*,x*, z*) be the optimal solution of LP;
Consider the optimal values of the duals variables (a*, 8*, u*, \*, p*);
ADD = FALSE;
for each demand k € K do
for each slot s € {wy, ..., 5} do
Compute its associated reduced cost rc’S“;
if rc¥ < 0 then
Consider the optimal path p* for demand & and slot s with
rcs(p) < 0;
Add the new variable (column) y;f*,s to the current LP;
ADD= TRUE ;
end
end
end
if ADD==FALSE then
STOP = TRUE;
end
end
Consider the optimal solution y* of LP ;

if y* is integer for the C-RSA then
y* is an optimal solution for the C-RSA;
End of the Branch-and-Price algorithm ;

end
else
Create two sub-problems by branching one some variables or constraints
end
for each sub-problem not yet solved do
‘ go to 3 ;
end 181
return the best optimal solution (y*,x*, z*) for the C-RSA;




Algorithm 5: Branch-and-Cut-and-Price Algorithm for the C-RSA
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Data: C-RSA’s inputs, and a set B¥ of precomputed feasible paths for each
demand k € K, and a given class of valid inequality

Result: Optimal solution for the C-RSA problem

LP+— RM P, and set Stop= FALSE;

while STOP==FALSE do
Solve the linear program LP, and let (y*, z*, 2*) be its optimal solution;
Consider the optimal values of the duals variables (a*, 5%, u*, \*, p*);
for each demand k € K do
for each slot s € {wg, ..., 5} do
Compute its associated reduced cost rc¥;
if rc¥ < 0 then
Consider the optimal path p* for demand & and slot s with
rck(p) < 0;
Add the new variable (column) ygm to the current LP;
end
end
end
if there does not exist a new column to be added to the current LP then
if there exist inequalities from the given class that are violated by the
current solution y* then
| Add them to LP ;
end
else
| STOP = TRUE;
end
end
end
Consider the optimal solution (y*,z*, 2*) of LP ;
if y* is integer for the C-RSA then
y* is an optimal solution for the C-RSA, and end of the
Branch-and-Cut-and-Price algorithm ;
end
else
‘ Create two sub-problems by branching one some fractional variables;
end
for each sub-problem not yet solved do
‘ go to 2 ; 182
end

return the best optimal solution (y*,x*, 2*) for the C-RSA;




a new sequence by doing some permutation of demands in the last sequence of
demands, if the value of the solution given by greedy-algorithm is smaller than the
value of the best solution found until the current iteration. Otherwise, we stop the
algorithm, and we give in output the best solution found during our primal heuristic
induced by the best sequence of demands having the smallest value of total length

of the selected path compared with the others generated sequences.

4.4 Computational Study

4.4.1 Implementation’s Feature

The B&P and B&C&P algorithms described in the current chapter have been im-
plemented in C++4 under Linux using the ”Solving Constraint Integer Programs”
framework (Scip 6.0.2), and Cplex 12.9 as LP solver. These have been tested on
LIMOS high-performance server with a memory size limited to 64 Gb while bene-
fiting from parallelism by activating 8 threads, and with a CPU time limited to 5
hours (18000 s).

4.4.2 Computational Results

Throughout this section, we present the performance results of the B&C&P algo-
rithm. Our main goal is to show the effectiveness of the valid inequalities used within
the B&C&P algorithm.

Table [4.1| reports the experiment results for both the Branch-and-Price (B&P) (i.e.,
B&C&P without using our additional valid inequalities) and the B&C&P algorithms.
Each line corresponds to the average results of 4 tested instances. Note that we deac-
tivate the SCIP’s proper cut generation for both the B&P and B&C&P algorithms
given that they may change the dual problem, as well as the calculation of the
reduced-cost. In order to evaluate the impact of the additional valid inequalities
used within the B&C&P algorithm, we consider 5 criteria, the average number of
nodes in the branching tree (Nb_Nd), the average optimality gap (Gap) which repre-
sents the relative error between the lower bound and the best upper bound obtained
at the end of the resolution, the average number of generated columns (Nbr_Cols),
the average number of violated inequalities added (Nbr_Cuts), and the average CPU
time in seconds (TT).

The results show that the B&C&P is able to solve 187 instances to optimality while
147 instances are solved to optimality when using the B&P. Hence, our valid in-

equalities allow solving several instances to optimality within a reasonable amount

183



of CPU time. Furthermore, they enable reducing the average number of nodes in the
B&C&P tree, and also the average CPU time for several instances. We also notice
that several instances have been solved to optimality in the root of the B&C&P tree
(i.e., Nb_Nd=1) that necessitates a large number of branching nodes when using the
B&P algorithm. On the other hand, and when the optimality is not proven, adding
valid inequalities decreases the gap for several instances. However, there exist a few
instances very rare in which adding valid inequalities have no any impact. Moreover,

some instances are still difficult to solve with both the B&P and B&C&P algorithms.

4.4.3 Comparative Study Between Branch-and-Cut and Branch-
and-Cut-and-Price Algorithms

Based on the Branch-and-Cut, Branch-and-Price and Branch-and-Cut-and-Price al-
gorithms, we present a comparison between theses algorithms using several instances
with number of demands ranges in {10, 20, 30,40, 50, 100, 150}, and 5 up to 320 slots.
Our first series of computational results presented in Tables and They
concern the results obtained for the Branch-and-Cut algorithm using Cplex (without
or with additional valid inequalities) compared with those of Branch-and-Price and
Branch-and-Cut-and-Price using SCIP. We denote by B&C_CPX the Branch-and-
Cut algorithm when using Cplex with benefiting of its automatic cut generation and
without our additional valid inequalities, and by Own_B&C_CPX when using Cplex
with our additional valid inequalities and disabling its proper cut generation. On
the other hand, in the second series of computational results are shown in Table
we present the results found for the Branch-and-Cut algorithm using Gurobi (with-
out or with additional valid inequalities) compared with those of Branch-and-Price
and Branch-and-Cut-and-Price using SCIP. We denote by B&C_GRB when using
Gurobi with benefiting of its automatic cut generation and without our additional
valid inequalities, and by Own_B&C_GRB when using Gurobi with our additional
valid inequalities and disabling its proper cut generation. Results obtained by the
Branch-and-Cut algorithm using Scip compared with those those of Branch-and-
Price and Branch-and-Cut-and-Price using SCIP, are shown in Table [4.4 Let de-
note by B&C_Scip the Branch-and-Cut algorithm when using Scip with benefiting
of its automatic cut generation and without our additional valid inequalities, and
by Own_B&C_SCIP when using our additional valid inequalities and disabling its

proper cut generation.
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Based on the reported results, we notice that the B&C&P algorithm seems to be
very efficient compared with B&C algorithm such that it is able to provide opti-
mal solutions for several instances, which is not the case for the B&C algorithm
(without or with additional valid inequalities) within the CPU time limit (5 hours).
Furthermore, several instances are solved to optimality by the B&C algorithm using
Cplex, Gurobi, and Scip could also be solved to optimality within the B&C&P algo-
rithm. The average number of explored nodes using the B&C&P algorithm is greatly
reduced for several instances compared with the B&C algorithm. Moreover, the av-
erage CPU time is significantly reduced using the B&C&P algorithm compared with
the B&C algorithm. On the other hand, and when using the B&P algorithm, we
notice that we are able to beat Own_B&C_SCIP such that B&P is able to provide
optimal solutions for several instances that are not solved to optimality by the B&C
algorithm using Cplex (see Table[4.2)), and Gurobi (see Table [4.3). Furthermore, we
noticed that the average number of explored nodes and the average CPU time us-
ing the B&P algorithm are greatly reduced for several instances compared with the
B&C algorithm using Cplex and Gurobi. However, Own_B&C_SCIP is able to beat
the B&P algorithm. The results in Table show that Own_B&C_SCIP provide
optimal solutions for several instances that are not solved to optimality by the B&P
algorithm. But when the optimality is verified by these two algorithms, we found
that using the B&P algorithm reduces the average number of explored nodes and

the average CPU time for several instances compared with Own_B&C_SCIP.

4.5 Concluding Remarks

In this chapter, we first have given an extended formulation for the problem, and
solve its linear relaxation using a column generation algorithm. We have discussed
the associated pricing problem. Moreover, we have investigated the polytope as-
sociated with our formulation, and introduced several classes of valid inequalities.
Their separation procedures are further presented. Using this, we have devised
the B&C&P algorithm. Computational experiments have convincingly shown the
strength of the valid inequalities. They significantly improve the results yielded by
the B&P algorithm. Hence, the B&C&P algorithm performs very well compared
with the B&P algorithm. Furthermore, the B&C&P algorithm is shown to be able
to beat the B&C algorithm. A computational analysis is conducted to show the

effectiveness of our approach for solving large-scale instances.
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Instance B&P_SCIP B&C&P_SCIP
G K] | S| Nbr_Nd | Gap | Nbr_Cols TT Nbr_Nd | Gap | Nbr_Cols | Nbr_Cuts TT
0] 15 28 0,00 13,50 0,88 1 0,00 3,25 6,25 0,07
20 | 45 39 0,00 0 6,31 1 0,00 0 7,75 0,25
30 45 1 0,00 0 0,20 1 0,00 0 0 0,31
German 40 | 45 1489,67 0,33 324,67 6000,12 1557,67 0,13 309,67 339 5998,03
50 | 55 3550,75 0,18 412,50 13506,57 1513 0,14 371 385 9020,19
100 | 140 1 0,00 0 9,86 2 0,00 0 6,25 64,73
150 | 210 34 0,00 0 417,78 51 0,00 0 24,75 932,25
10 15 11 0,00 41,50 0,37 1 0,00 0 0 0,02
20 20 190,50 0,00 168,50 34,67 1 0,00 165267,25 26,75 4487,61
30 | 30 3286 1,17 295,25 9032,68 1 0,00 74970,75 7 8926,96
Nsfnet 40 | 35 4673,50 0,47 342 18000 1 0,00 0 16 3,72
50 | 50 2218 0,54 566 13506,61 1 0,00 108442,50 18,25 8932,48
100 | 120 2029 2,01 1849 18000 1 0,00 0 0 6,36
150 | 160 321,50 11,66 1847,25 18000 1 0,00 0 0 32,48
10 | 320 1 0,00 867,50 51,36 1 0,00 867,50 0 54,11
20 | 320 1 0,00 663,50 31,06 1 0,00 663,50 0 37,09
30 40 1504 2,94 2577,50 18000 1545 1 11460,50 861,75 18000
Coronet100 | 40 40 2969 0,46 1196 9008,08 12 0,00 57205,50 152 8983,29
50 80 771,50 0,01 1282,75 4508,32 28,50 0,00 690,25 14,75 80,28
100 | 120 333,50 3,69 1931 6836,74 130 4,62 1919 206,25 5182,07
150 | 200 124 17,25 4272 14131,79 111,50 22,90 2629,50 296 16231,28
10 15 5 0,00 79,75 0,58 1 0,00 78,75 2,50 0,19
20 | 20 1645 0,00 871,25 3033,88 724,5 0,00 782,50 91 1860,90
30 | 25 2422 0,77 1586,75 10943,42 3427 0,54 1896 471,75 12332,07
Spain 40 | 30 1545 0,56 1205,50 9000,70 2339,5 0,61 1162,75 619 9001,09
50 | 35 3117,5 0,79 3172,50 17996,72 2163 0,79 3241,25 700 18000
100 | 120 977,5 0,15 4870,50 14439,73 389,5 0,08 4885,75 143,25 13897,07
150 | 160 127,5 16,84 5562,75 15163,74 122,5 19,77 5539 282,25 17242,74
10 | 40 2 0,00 0 0,56 1 0,00 8,50 0,28
2 | 40 1 0,00 36 0,66 1 0,00 36 0 0,57
30 | 40 71,50 | 0,00 109 49,03 9,50 0,00 34,50 43 9,51
India35 40 40 3975,50 0,38 2046,25 18000 2754,50 0,11 17896,50 737,50 13542,45
50 | 80 1 0,00 69,50 3,87 1 0,00 69,50 24 6,37
100 | 120 496 0,01 50,50 9072,59 353,50 0,00 98 356,25 4820,46
150 | 200 292 0,01 96,50 9831,30 100,50 0,10 96,50 389,25 8155,83
10 | 40 1 0,00 54,50 0,58 1 0,00 54,50 0 0,42
20 | 40 1 0,00 188,50 141 1 0,00 188,50 2 1,21
30 | 40 1109,50 0,08 539,75 4499,45 1383,50 0,08 509,50 125,50 4500
Ta65 40 | 40 529 0,03 562 4517,43 1,50 0,00 380,25 17,75 9,95
50 | 40 1591,50 0,08 1131,50 9002,35 596 0,03 991,75 337,25 4540,26
100 | 80 463 0,14 2179 6683,60 362 0,00 2148,25 248 5566,88
150 | 160 123 2,29 3821,75 5870,91 147,50 0,00 3743,25 232,25 5225,13
10 40 1 0,00 0 0,35 1 0,00 0 0 0,17
20 40 1 0,00 0 0,72 1 0,00 0 0 0,33
30 | 40 8 0,00 0 8,51 1 0,00 0 1 0,62
Brainl61 40 | 40 14 0,00 54,75 35,18 2,50 0,00 45,50 9,50 6,77
50 | 40 5370 0,50 264,33 18000 10326,33 | 0,40 367 2087,67 18000
100 | 80 1318 0,81 314 18000 2234,50 0,15 420,25 654,25 18000
150 | 160 113,50 | 0,00 0 2257.49 85,50 | 0,00 0 30,25 1645,30
10 40 1 0,00 27 0,40 1 0,00 27 0 0,27
20 40 1 0,00 137,50 1,23 1 0,00 137,50 0 0,70
30 | 40 670,5 0,09 283,50 4501,18 3 0,00 132,25 10 5,35
Zib54 40 | 40 99 0,00 378,75 102,17 1 0,00 275,75 18,75 3,15
50 | 40 864,5 0,42 761,50 9063,67 840,5 0,13 649 280,75 9015,80
100 | 80 1104 0,18 1600,50 16751,83 508 0,03 1787,50 343,50 8004,65
150 | 160 101,5 2,28 2911,50 5938,67 125 0,26 2860,75 156,75 5550,35

Table 4.1: Influence of the Valid Inequalities: B&P Vs B&C&P.
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Chapter 5

Compact Formulation and
Polyhedra for the Spectrum

Assignment Sub-problem

In this chapter, we focus on the Spectrum Assignment (SA) sub-problem. First, we
propose an integer linear programming compact formulation, and further investigate
the facial structure of the associated polytope. Moreover, we identify several classes
of valid inequalities for the polytope such that some of them come from those that
are already proposed for the C-RSA. We further prove that these inequalities are
facet-defining, and discuss their separation problems. Based on these results, we
devise a Branch-and-Cut (B&C) algorithm for the SA problem.

5.1 The Spectrum Assignment Sub-problem

The SA problem can be stated as follows. We consider an optical spectrum of § € Z
available contiguous frequency slots, denoted by S = {1,...,5}. A spectrally flexible
optical network can be represented by an undirected, loopless, and connected graph
G = (V, E), with V is the set of vertices representing the optical nodes (data centers,
users, stations,...), and E the set of links representing the optical-fibers. A length
le € Ry (in kms), a cost ¢, € Ry, and a set of 5 of contiguous frequency slots
are associated with each edge e. Let K be a multiset of demands such that each
demand Fk is specified by an origin node o, € V, a destination node di € V' \ {0y},
a slot-width wy € Z,, and a routing path py from its origin oy to its destination dy,
through G. The SA consists of determining for each demand k& € K an interval of

contiguous frequency slots S C S of width equal to wy (continuity and contiguity
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constraints) such that S; NSk = 0 for each pair of demands k, k' € K (k # k') with
paths sharing an edge , i.e., E(px) N E(py) # 0 , while optimizing the number of
slots allocated in S.

The SA is well known to be NP-hard problem [9]. It is equivalent to the problems
of wavelength assignment, interval coloring, and dynamic storage allocation [9] that

are well known to be NP-hard.

5.2 Compact Formulation

Here we introduce an integer linear programming compact formulation for the SA
problem. For s € S, let us be a variable which takes 1 if slot s is used and 0 if
not, and for k € K and s € S, let z¥ be a variable which takes 1 if slot s is the
last slot allocated for the routing of demand k and 0 if not. The contiguous slots
s' € {s —wp+1,...,s} should be assigned to demand k whenever z¥ = 1. The SA is

equivalent to the following integer linear program

minZus, (5.1)

seS
subject to

k=0, forallke K and s e {1,...,wy — 1}, (5.2)

5
Z £ >1, forallkeK, (5.3)

S=wg

min(s,s+wy—1)

Z Z zf —us <0, foralleec E, and s €S, (5.4)

keK. s'=s
szO, forall k € K and s € S,
us <1, forall s€eS,
2k e{0,1}, forallke K and s €S,
us € {0,1}, for all s €S.

where K, denotes the set of demands in K passing through edge e (i.e., K, =
{k € K,e € E(p;)}. Equations ensure that demand %k cannot occupy a slot
s as last slot before her slot-width wy. Inequalities (5.3) ensure than more than
one interval of contiguous slots can be assigned to each demand k£ € K. It should
normally be an equation form ensuring that exactly one slot s € {wg,...,5} (one
interval of contiguous slots) must be assigned to demand k as last-slot. Here we relax

this constraint. Optimizing the spectrum-usage objective function, the equality is
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guaranteed at the optimum. Inequalities (5.4 express the fact that the demands
passed through the same edge e, they cannot share a slot s over edge e € E with
s € {1,...,5}. Inequalities (5.5)-(5.6) are the trivial inequalities, and constraints

(5.7)-(5.8) are the integrality constraints.

5.3 Associated Polytope

Let Pso(G, K,S) be the polytope, convex hull of the solutions for the formulation
(5.1)-(5.8]). Here we study the facial structure of the polytope Py, (G, K, S).
A solution of the SA problem is based on the variables (u, z) is given by two sets S

for each demand k£ € K and U for the spectrum-usage of S where

a) Sy denotes the set of index of the last slots selected for demand k such that
|Sk| > 1.

b) U denotes the set of slots allocated over the spectrum S such that for each demand
k € K and last slot s € S = each slot s’ € {s—wy+1,..., s} should be in U ie. s’ €
U.

We suppose that the number of slots 5 is largely sufficient to route all the demands,
and to avoid the existence of some slots s € S such that us = 1 in any feasible
solution S of the SA problem. This means that there does not exist a slot s € S
such that us = 1.

5.3.1 Dimension

Let M denote the matrix associated with the equations (5.2)). We ensure that the
matrix M is of full rank given that the demands are independants, and the slots in

S are independents for each demand k € K. As a result, rank(M) = Z(wk - 1).
keK

Let us denote by 7’ the rank of the matrix M.

Proposition 5.3.1. The equation system (5.2) defines a minimal equation system
for Pso(G, K, S).

Proof. To prove that oz + pu = A is a linear combination of equations , it’s
sufficient to prove that for each demand k € K, there exists for each demand k € K
a v* € R¥*~! such that (u,0) = yM. Let uS and z° denote the incidence vector of
a solution S of the SA problem.

Let first show that pus = 0 for all s € S. Consider a slot § € S, and solution
S105 — (7105, §105) given by
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a)

a)

we select the smallest slot index sy in {wg, ..., 5} \ {8, ..., § + wr — 1} as last slot for
demand k (slot assignment constraint taking into account the possibility of adding

slot 5 in the set of used slots U1%%),

for each demand k; € K with i € {1,...,|K|} \ {k}, we select the smallest slot index
s, in the set of slots Ii105 given by
11.105 — [ ﬂ {wki,...,skj — wkj} U {Skj + wki,...,§}] \ {5,,5 + wg, — 1}

k;eD}%

where Dj% = {k;j € {ky,...,ki_1} U{k} : E(pr,) N E(pr;) # 0}. This guarantees
that

{8k, —wr, + 1,80, 3 N {sk; —wr; +1,..., 88,3 = 0 for each kj{k1,...,ki—1} U {k}
with E(pr,) N E(pr,) # 0,

and § ¢ {sg, —wk, + 1,..., S, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U'%%),

We let S,gm = {si,} be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

we let U9 be the set of slots used in S such that for each demand k and last slot

si € S}% and ¢ € {sp —wy + 1, ..., s}, we have s’ € U'%.

S105 s feasible for the SA problem. Hence, the corresponding incidence vector
(uS™, 25™) belongs to Psq(G, K,S). Then we derive a solution S106 = ({7106, §106)
obtained from S'% by adding slot § as an used slot in U'% without modifying the
last slots assigned to the demands K in S'%° which remain the same in solution S'°6
ie., 5’;05 =5 ,iOG for each demand k € K. S'96 is feasible for the SA problem. Hence,
the corresponding incidence vector (uS'™ | 25'™) belongs to Psu(G, K, S). We then
obtain that

105 105
u‘s —i—azs =

106 106 105 105
w4025 =’ 402

H + 3.

Hence, puz = 0.

In a similar way, we can show that
s = 0, for all slots § € S.

Let show now that o% =0 for all k € K and s € {wy, ..., 5}.
Consider a demand &k in K and a slot s in {wy,...,5}. Let 807 = (U7 §197) be

the solution given by

we select the smallest slot index sy in {wg, ..., 5} \ {s} as last slot for demand k,
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b)

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Ii107 given by

107 = | ﬂ {wis ooy sk, —wi, YU {sr, +wp, s oo, SN {wiy, oo s —wi U {s +wp,, ..., 53]
ky € D107
if E(pg,) N E(py) # 0 or I}°7 = m {wr;y oy 88, — wi; F U s, +wg,, ..., 5} if not,
k;€ D107

where D} = {k; € {ki,....ki_1} U {k} : E(py,) N E(pk,) # 0}. This guarantees
that

{8k, — wr; + 1,81, 3 O {sg; —wy; + 1,85, 1 = 0 for each k; € D7,

and {s —wr +1,...,s} N {sk, —wk, + 1, ....8%,} = 0 if E(px) N E(px,) # 0 ( we take
into account the possibility of adding slot s in the set of last slots S,im assigned to

demand k in solution S'07).

We let S,gﬁ = {si, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

we let U7 be the set of slots used in S such that for each demand k and last slot

s € SO and s’ € {sg — wi + 1, ..., 8}, we have s’ € U107,

S'07 is clearly feasible for the problem given that it satisfies all the SA constraints
of the compact formulation —. Hence, the corresponding incidence vector
(uS™, 25"°7) belongs to Peq(G, K, S). Then consider the solution S108 = (E108 5108)
obtained from S'°7 by adding slot s as last slot to demand k without modifying the
last slots assigned to the demands K \ {k} in S'°7 remain the same in solution S'08
ie., SIPT = S)% for each demand k' € K \ {k}, and S{%® = S}07 U {s} for demand
k. Solution S'0® is feasible for the SA problem. The corresponding incidence vector
(usms, 23108) belongs to Ps, (G, K,S). We then obtain that

107 107 108 108 107 107
uus +025 " = ,uus +025 " = uus +025 " + af + Z 3.

5€{s,...,s—wp+1H\UL07

Since pz = 0 for each § € S, it follows that o* = 0.

In a similar way, we can show that
af =0, for all k € K and s € {wg, ..., 5}.

Therefore, we obtain that all the equations of the polytope Py (G, K,S) are given
only in terms of the variables z¥ with s € {1,...,w;} for each demand k € K. We
distinguish |K| blocks of lines in the matrix M associated with the system ([5.2])

block M* corresponds to the equations z¥ = 0 for all s € {1,...,wy — 1} such that
rang(M*) = wy, — 1.
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Note that the | K| blocks of the matrix M are independents. Furthermore, there is no
dependency between slots such that for each demand k, the slots s € {1,...,wp — 1}

are independants such that

wi—1 wi—1 wi—1

dooi= =) (el =0,
s=1 s=1 s=1

for each demand k& € K. The only solution of this system is 0% = +%* for each
s € {l,...,w; — 1} for demand k. As k is chosen arbitrarily in K, we re-do the same

procedure for all ¥ € K \ {k}. We then get that
ok =~k forallke K and s € {1,...,wj, — 1}. (5.9)
As a result, we have (u,0) = vM which ends the proof. O

Theorem 5.3.1. The dimension of Ps(G, K,S) is given by

dim(Psa(G, K,S)) = |K|* |S| + S| = 7' = |K| S| + [S| = D (wy — 1)
keK

Proof. Given the rank of the matrix M which equals to v’ and the results of propo-

sition (5.3.1)). O

5.3.2 Facial Investigation

Here we study the facial structure of the basic constraints of the compact formulation
(5.1)-(5.8)) that are facets defining for the polyhedron Py, (G, K,S) under certain

conditions.

Theorem 5.3.2. Consider a demand k € K and a slot s € {wy,..,5}. Then,
inequality z¥ > 0 is facet defining for Ps(G, K, S).

Proof. Let us denote Fsk the face induced by inequality z¥ > 0, that is
FF = {(u,2) € Psu(G, K,S) : 2F = 0}.

We denote inequality zf > 0 by au+ Bz < A. Let pu+ oz < 7 be a valid in-
equality that defines a facet F' of Py, (G, K,S). Suppose that FF ¢ F = {(u,z) €
Ps(G,K,S) : pu + 0z = 7}. To prove that FF is facet defining for P.q(G, K, S),
it sufficient to show that there exist p € R and v € R kek (We—1) ) such that
(1, 0) = pla, B) + M.

First, let show that us = 0 for all § € S. Consider a slot § € S, and a solution
S109 = (U109, §109) given by
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a)

a)

we select the smallest slot index sy in {wg, ..., 5} \ [{5, ..., 5 + wr — 1} U {s}] as last
slot for demand k (slot assignment constraint taking into account the possibility of

adding slot § in the set of used slots U1%?),

for each demand k; € K with i € {1,...,|K|} \ {k}, we select the smallest slot index

s, in the set of slots Ii109 given by

11.109 — [ ﬂ {wki,...,skj - wkj} U {Skj + wki,...,§}] \ {5,,5 + wg, — 1}
k;eD}%®
where Dj% = {k;j € {ky,...,ki_1} U{k} : E(pr,) N E(pr;) # 0}. This guarantees
that

{8k, —wr, + 1,81, ) N sk, —wr; +1,..., 88,3 = 0 for each kj{k1,...,ki—1} U {k}
with E(pr,) N E(pr,) # 0,

and § ¢ {sg, —wk, + 1,..., S, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U'%?),

Let S,i?g = {si,} be the set of last slots assigned to each demand k; with i €
{1,...,|K]}.

we let U109 be the set of slots used in S such that for each demand k' € K and last

slot s € 539 and &' € {spy — wy + 1, ..., s}, we have s’ € U0,

S99 s clearly feasible for the SA problem. Hence, the corresponding incidence

vector (1S, 25" belongs to F¥. Then consider the solution S'109 = (U109, §7109)

obtained from S'%° by adding slot § as an used slot in U’'% without modifying the

last slots assigned to the demands K in S'% which remain the same in solution

8§19 je., 519 = 5719 for each demand k € K. Solution 8% is feasible for the SA
S109 51109

problem. Hence, the corresponding incidence vector (u® ) belongs to F¥.

Solutions S0 and S'1%9 satisfy equation pu + oz = 7. We then obtain that

109 109 1109 1109
us —1—023 = uS +az$ =

109 109
uS + az‘s

M + 3.

Hence, puz; = 0.

In a similar way, we can show that
s = 0, for all slots § € S.

Next, we will show that, o% = 0 for all s’ € {wy,...,5} \ {s}.
Consider a slot s in {wy,...,5} \ {s}. Let S0 = (U9 §110) be the solution given
by

we select the smallest slot index s in {wg, ..., 5} \ {s, s’} as last slot for demand £,
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b) for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Iino given by

0= ﬂ {wiys ooy sk, —wi, FU sk, Wiy, oo, SH N {wi,, .o 8" —wi }U{s" 4wy, ..., 53]
ky € D110
if E(pr,) N E(py) # 0 or I}° = ﬂ {wi;y ooy 88, — Wi, } U {s, +wg,, ..., 5} if not,
k;eD}10

where DM = {k; € {k1, ..., ki-1} U{k} : E(pr,) N E(pk,) # 0}. This ensures that
o {sp, —wp, + 1,86, N {sg; —wg; +1,...,5¢,} = 0 for each k; € D},

e and {sy, —wi, +1,...,s5,}N{s —wr+1,...,5} =0 if E(pr) N E(py;) # 0 ( we take
into account the possibility of adding slot s" in the set of last slots S;!0 assigned to

demand k in solution S*1Y),
Let S%ilo = {51, } be the set of last slots assigned to demand k; with i € {1, ..., |K]|}.

c) we let U0 be the set of slots used in S such that for each demand &' € K and last

slot s € 5,19 and s” € {sp —wp + 1,..., 51/}, we have 57 € U0,

S1Y is clearly feasible for the SA problem. Hence, the corresponding incidence
uS" 25" belongs to F¥. Then we derive a solution S!12 = (U112, §112)

obtained from S''° by adding slot s’ as last slot to demand &k without modifying

vector (

the last slots assigned to the demands K \ {k} in S}'° remain the same in solution
St2 e, SI}0 = S1? for each demand k' € K \ {k}, and S{!? = SHO U {s'} for
demand k. Solution S'12 is feasible for the SA problem. The corresponding incidence
u$112 28112)

vector ( belongs to F. . Hence, solutions S and S'12 satisfy equation

pu+ oz = 7. We the obtain that

110 110 112 112 110 110
uu‘s +025 = uus +025 " = ,uus +025 + afl + Z Us.

se{s’'—wr+1,...,s/ \UO

Given that p; = 0 for all § € S, it follows that o = 0.

In a similar way, we can show that

ok =0, for all slots 5" € {wy, ..., 5} \ {s},

o =0, forall ¥ € K\ {k} and ' € {wyy, ..., 5}.

It follows that 0¥ = p for demand & and slot s in {wy, ..., 5}.
By (5.9), we know that

af,/ =¥ forall ¥ € K and §' € {1, ..., wpr — 1}.
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Overall, we obtain that us = 0 for each slot s € S , and for each ¥’ € K and s’ € S

,yk’,s’ if ' € {1,...,wp — 1},

o = p if ¥/ =k and s’ = s,

0 otherwise.
As a consequence, we have (u,0) = p(a, 8) + yM. O

Theorem 5.3.3. Consider a slot s € S. Then, inequality us < 1 is facet defining
for Pso(G, K, S).

Proof. Let us denote Fs the face induced by inequality us < 1 given by
Fy={(u,2) € Psa(G, K,S) : uy = 1}.

We denote inequality us < 1 by au + 8z < A. Let pu + 0z < 7 be a valid in-
equality that defines a facet F' of Py, (G, K,S). Suppose that Fs C F = {(u,z2) €
Psa(G, K,S) : pu+ oz = 7}. To prove that F is facet defining for Py (G, K, S),
it sufficient to show that there exist p € R and v € RXrex(Ws—1) ) such that
(s 0) = pla, B) + M.

First, let show that uy = 0 for all s € S\ {s}. Consider a slot § € S\ {s}, and a

solution S'13 = (U113, S113) given by

for one demand k' € K, we select the smallest slot index sgr € [{wyr, ..., s'}N{s, ..., s+
wi — 1\ {8, ..., 5 + wp — 1} as last slot,
for each demand k; € K\ {K'} with i € {1,...,| K|}, we select the smallest slot index

sk, in the set of slots I3 given by

s = ﬂ {wi,, o sk, — wi, } U {sk, + wiy, s 5P\ {5, .0, 8 +wp, — 1},
kyeDh

where D3 = {k; € {k1, ..., ki1 } U{K'} : E(pr,) N E(py;) # 0}. This ensures that
{8k, —wr; + 1,81, 3 O {sg; —wy; + 1,85, 3 = 0 for each k; € D3,

and § ¢ {sg, —wk, +1,..., 5, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U!13),

Let 5,133 = {si,} be the set of last slots assigned to each demand k; with i €
{1, K.

we let UM3 be the of slots used in S such that for each demand k and last slot

s € Si13 and s’ € {sp —wi, + 1,..., s}, we have s’ € U3,
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d)

S'3 is clearly feasible for the SA problem, and its incidence vector (u‘8113 25113)

belongs to Fs. After that, we derive a solution '3 = (UM13, §"113) obtained from

)

S'3 by adding slot 5 as an used slot in U3 without modifying the last slots
assigned to the demands K in S''3 which remain the same in solution &3 i.e.,
Si13 = S8 for each demand k € K. Solution 813 is feasible for the SA problem.

1113 1113
uS 28 )

The corresponding incidence vector ( belongs to Fs. Hence, solutions

S™3 and M3 satisfy equation pu 4+ 0z = 7. We then obtain that

113 113
u‘S +0’Z’S =

7113 7113 113 113
v w402 :uu‘s +02° + 3.

This implies that pz = 0.

In a similar way, we can show that
ps = 0, for all slots § € S\ {s}.

Next, we will show that, o% =0 for all k € K and s’ € {wy, ..., 5}.
Consider a demand k € K and a slot s’ in {wy,...,5}. Let S1* = (U4 S114) be

the solution given by

for one demand k' € K \ {k}, we select the smallest slot index sp € {wy,...,s'} N

{s,...,s + wp — 1} as last slot,
we select the slot sg in {wg,...,5} \ {s} \ {s'} as last slot for demand k with {sj —
wg+1,..., Sk} N {sk/ —wp +1,..., sk/} =0 if E(pk) a E(pk”) 7é Q)v

for each demand k; € K \ {k,k'} with i € {1,...,|K|}, we select the smallest slot
index s, in the set of slots I!1* given by

11.114 = [ ﬂ {wki, vy Sky 7wkj}U{Sk]. +wg,, ..., 5}] N [{wk” ey s’ 7wk}U{S/+wki, . 5}]
kjeDi4
if E(pr,) N E(py) # 0 or I[}* = ﬂ {wi,, .oy 88, — wi, } U {s, +wg,, ..., 5} if not,
kD1t

where DI = {k; € {k1, ..., ki1 } U{k, K’} : E(py,) N E(pk,) # 0}. As a result,
{8k, —wr; + 1,8, 3 O {sg; —wp; +1,..., 85,1 = 0 for each k; € D4,

and {sg, —wg, +1,...,8,}N{s' —wp+1,...,8'} =0 if E(px) N E(px,) # 0 ( we take

into account the possibility of adding slot s’ in the set of last slots S ,i14 assigned to

demand k in solution S'14),

Let 5’154 = {si;} be the set of last slots assigned to each demand k; with i €
{1,...,|Kl}.

we let U4 be the set of slots used in S.
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SM4 is clearly feasible for the SA problem. The corresponding incidence vector
(usm, 28114) belongs to Fy. Then consider the solution S11° = (U!1? §115) obtained
from S'4 by adding slot s’ as last slot to demand k without modifying the last slots
assigned to the demands K \ {k} in S}'* remain the same in solution S*° i.e., S} =
Si5 for each demand k' € K \ {k}, and S}'® = MU {s'} for demand k. Solution
S115 is feasible for the SA problem. The corresponding incidence vector (u° 115, 28 115)
belongs to F,. Hence, solutions S and S'° satisfy equation pu + oz = 7. We the

obtain that

114 114 115 115 114 114
uus +025 " = ,uus +025 7 = ,uuS +025 " + O'l;/ + Z Us.

se{s’—wi+1,...,s' \U114

Since pz = 0 for all § € S\ {s}, it follows that % = 0.

In a similar way, we can show that
o =0, for all k' € K\ {k} and ' € {wy, ..., 5}.

It follows that us = p for slot s in S.
We know from (5.9) that

Of// =~ forall k¥ € K and s’ € {1,...,wp — 1}.

We conclude that

p if s’ =s,
Mg =
0 otherwise,
and for each k¥’ € K and s’ € S
o K it s e {1, .., wg — 1},
Us’ =
0 otherwise.
As a consequence, we have (u,0) = p(a, 8) + yM as desired. O

Theorem 5.3.4. For a demand k € K, inequality Z
for Py, (G, K,S).

k> 1 is facet defining

kas

5
Proof. Let FS’“ be the face induced by inequality Z zf > 1, that is

S=wg

FF ={(z,2) € Pe(G,K,S) : Zz

S=wy
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S
We denote inequality Z zf >1by au+ Bz < A Let pu+ oz < 7 be a valid
S=Wg

inequality that defines a facet F' of Py, (G, K,S). Suppose that F’Sk C F={(uz2) €
Psa(G, K,S) : pu + 0z = 7}. To prove that ¥ is facet defining for Py, (G, K,S),
it sufficient to show that there exist p € R and v € R kex (We—1) ) such that
(,0) = pla, B) + M.

First, let show that us = 0 for all s € S. Consider a slot § € S, and a solution
S16 — (U116, §116) given by

we select the smallest slot index sy in {wg, ..., 5} \ {5, ...,§ + wi — 1} as last slot for
demand k (slot assignment constraint taking into account the possibility of adding
slot 3 in the set of used slots U!16),

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Ii116 given by

Ii116 — [ m {wki,...,Skj — wk].} U {Sk]. + wki,...,g}] \ {57...75 + wg, — ].}
k; €D}

where D% = {k; € {k1, ..., ki1} U{k} : E(pi,) N E(py,) # 0}. This verifies that
{8k, —wr; + 1,8, 3 O {sg; —wp; +1,..., 85,1 = 0 for each k; € DS

and § ¢ {sg, —wk, + 1,..., s, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U!19).

We let S31¢ = {51, } be the set of last slots assigned to demand k; with i € {1,..., |K|}.

a set of slots U116 is then used in S such that for each demand k¥’ € K and last slot

s€ S0 and s’ € {sp —wp + 1, ..., 51/}, we have s’ € U6,

SU6 is clearly feasible for the SA problem. The corresponding incidence vector
(S, 25" belongs to F¥. Next, we derive a solution S"¢ = (U116, §116) ob-
tained from S'6 by adding slot 5 as an used slot in UM% without modifying the
last slots assigned to the demands K in S'6 which remain the same in solution
S™M6 je., S0 = G116 for each demand k € K. Solution S is feasible for the
SA problem, and its incidence vector (uslm, zslm) belongs to FS’“. Hence, solutions

SH6 and S0 satisfy equation pu + 0z = 7. We then obtain that

116 116 1116 1116 116 116
uus +025 " = ,uus +025 " = ,uuS +025 " + Us.

Hence, pz = 0.

In a similar way, we can show that

ws = 0, for all slots § € S.
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Next, we will show that, 0¥ = 0 for all k' € K \ {k} and s’ € {wps, ..., 5}
Consider a demand &’ in K\ {k} and a slot s" in {wy, ..., 5}. Let S''7 = (U7, §117)
be the solution given by

we select slot s = wy, as last slot for demand &,

we select the smallest slot index sj from the set of slots I}'7 given by

I3 = {wg,, ..., 56 — wp} N {8 +wp,, ..., 5} \ {s'} if E(pp) N E(py) # 0
or It'" = {wy, ..., 5} \ {s'} if not.

for each demand k; € K \ {k,k'} with ¢ € {1,...,|K|}, we select the smallest slot

index sy, in the set of slots Ii117 given by
N =] m {wi,s ooy 58, —wi, YU LSk, +wys oo, SHNO{wp,, ooy 8" —wpe UL +wpe,, -, 53]
kjEDi117
if B(pg,) N E(pp) # 0 or IM7 = ﬂ {wi;s ooy 88, — wi; } U sy, +wg,, ..., 5} if not,

kjeD1

where DT = {k; € {k1,...,ki-1} U {k,k'} : E(pr,) N E(pk;) # 0}. This guarantees
that

{sk; —wr; + 1,81, 3 O {sg; —wp; + 1,85, 1 = 0 for each k; € DT,

and {sg, —wg, +1,...,s5,tN{s' —wp +1,...,8} =0 if E(pr) N E(pg,) # 0 ( we take

into account the possibility of adding slot s’ in the set of last slots S ,i,”

demand £’ in solution S'17),

assigned to

We let S,iilo = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

a set of slots U7 are then used in S such that for each demand k” € K and last

slot s € SH7 and 5”7 € {sp» —wpr + 1, ..., 83 }, we have 57 € U7,

SU7 is clearly feasible for the SA problem. The corresponding incidence vector
(uS"", z5"'7) belongs to F¥. Then consider the solution S''8 = (U8, §118) obtained
from S''7 by adding slot s’ as last slot to demand &’ without modifying the last
slots assigned to the demands K \ {k'} in S}!7 remain the same in solution S1!8
i.e., S = SH8 for each demand k € K \ {k'}, and SL}® = SHT U {s} for demand
E'. Solution S'® is feasible for the SA problem. The corresponding incidence
uS"® 25T

vector ( belongs to FS’“. Hence, solutions S7 and S8 satisfy equation

pu + oz = 7. We the obtain that

117 117 118 118
uS +(TZS uS +az$

117 117 /
Ny fo + E 3.
Se{s’—wy+1,...,s' \UT

I = =
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Since puz = 0 for all § € S, it follows that O‘f,l =0.

In a similar way, we can show that
of =0, for all k' € K\ {k} and s’ € {wy, ..., 5}.

Let prove now that 0¥ for demand & and slot s in {wy, ..., 5} are equivalent.
Consider a slot s’ € {wy, ..., 5} such that s’ ¢ S}12. Let S9 = (U9, 5119) be the

solution given by

we select the smallest slot index sy from {wg, ..., 5} \ {s’'} as last slot for demand k,

for each demand k; € K \ {k} with i € {1, ...,|K|}, we select the smallest slot index
sg, in the set of slots I~i117 given by

N = m {wi,, .oy Sk, —wi, YU sk, +wiy, o, SN [{wp,, s 8" —wi }U{s" +wy,, ..., 5}]
kyeDIT
if E(pg,) N E(py) # 0 or [N = ﬂ {wi,, .oy 88, — wi, } U {s, +wg,, ..., 5} if not,
kDT

where DI = {k; € {k1, ..., ki—1} U {k} : E(pr,) N E(py,) # 0}. Hence,
{8k, —wi, + 1,088, } N {8k, — w; +1,..., 88, } = 0 for each k; € Din?’
and {sg, —wg, + 1, ..., 86, N{s' —wp +1,...,8} =0 if E(ppr) N E(pg,) # 0 ( we take
into account the possibility of adding slot s’ in the set of last slots S ,1,17

demand %' in solution S''7).

assigned to

Let 5’,1117 = {sk, } be the set of last slots assigned to demand k; with ¢ € {1,...,|K]|}.

we let U117 be the set of slots used in S such that for each demand k' € K and last

slot s € 5’,1,17 and s” € {sp —wr + 1, ..., sk}, we have s” € U,

S8 ig feasible for the SA problem. Hence, the corresponding incidence vector
(u‘gng, 25118) belongs to F¥. Based on this, we derive a solution S'* = (U9, 5119)
from S8 by adding slot s’ as last slot to demand k and removing the last slot
s € S8 ie., ST = (SP18\ {s}) U {5} for demand k such that {s’ —wy, +1,...,s'} N
{” —wp +1,..,5"} =0 for each k' € K and s” € S} with E['" N E}!? # (. The
last slots assigned to the demands K \ {k} in S'!® remain the same, i.e., Sp® = G119
for each demand k” € K \ {k}. Solution S''¥ is feasible for the SA problem. The
corresponding incidence vector (usng, zsng) belongs to FS’“. Hence, solutions S8

and S satisfy equation pu + o0z = 7. We then obtain that

G118 3118 1119 1119 G118 G118
uus +025 " = ,uuS +025 = uus +025 " — of + af, - Z Us
5€U118\U119
+ E M-
§’€U119\U118
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k

s

Since pz = 0 for all 5 € S, it follows that UE/ =0

In a similar way, we can show that
k _ _k / _
oy = oy, for all slots s, s € {wg,...,5}.

S

Consequently, we obtain that o¥ = p for demand & and slot s in {wy, ..., 5}.
By (5.9), we know that

0'5 =~ forall k¥ € K and ¢ € {1,...,wpr — 1}.
We then conclude that us = 0 for each slot s € S, and for each ¥’ € K and s € S

A if s e {1, wy — 11,

O'fl =9p if ¥ =k and s € {wy, ..., §},
0 otherwise.
As a result, we have (u,0) = p(a, 5) +vM as desired. O

5.4 Valid Inequalities and Facets

In what follows, we present several valid inequalities for Py, (G, K, S), and prove that

they are facet-defining under certain conditions.

5.4.1 Interval-Capacity-Cover Inequalities

We start this section by introducing some classes of valid inequalities related to the

knapsack constraints. Let us introduce the following conflict graph.

Definition 5.4.1. Consider the conflict graph Hs, defined as follows. For each
demand k € K, consider a node v in Hgy. Two modes vy and vy are linked by an
edge in Hgq if and only if E(px) N E(px) # 0. This is equivalent to say that two
linked nodes vy, and vy, means that the routing paths of the demands k,k' share an

edge in G.
Based on the conflict graph Hg,, we introduce the following inequalities.

Proposition 5.4.1. Let I = [s;,5;] be an interval of contiguous slots in [1,5]. Let
K' C K be a minimal cover for interval I = [s;, s;| such that K' defines a clique in

Hy,. Then, the inequality

i
)N DI ST (5.10)

keK’ s=s;+wp—1

is valid for Ps(G, K,S).
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Proof. The interval I can cover at most |K’| — 1 demands given that K’ is a minimal

cover for interval I. O

Inequality ([5.10) can be strengthened by extending each minimal cover K’ C K

for an interval I as follows.

Proposition 5.4.2. Let I = [s;,s;] be an interval of contiguous slots in [1,5]. Let
K' C K be a minimal cover for interval I = [s;,s;] such that K' defines a clique
in Hyg , and Z(K') be a subset of demands in K \ K' such that 2(K') = {k €
K\K' such that wy, > wy and E(px)E(py) #0 VK € K'}. Then, the inequality

> i: 20+ Z Z <K' -1, (5.11)

keK’ s=s;j+wg—1 2(K') s'=s;+w, —1
is valid for Psq(G, K,S).

Proof. The interval I = [s;, s;] can cover at most |K’|—1 demands from the demands
in K" UZ(K’) given that K’ is a minimal cover for interval I = [s;,s;] and the
definition of the set Z(K’) such that for each pair (k, k') with k € K’ and k¥’ € Z(K’),
the set (K’ \ {k}) U {k’} stills defining minimal cover for the interval I over edge e.
Furthermore, for each quadruplet (k, k', k, k') with k, k¥’ € K’ and k, k' € E(K’), the
set (K'\ {k,k'}) U {k, '} stills defining minimal cover for the interval I given that
Wi + wr < wy, + wi,.

O

Theorem 5.4.1. Let I = [s;,s;] be an interval of contiguous slots in [1,5]. Let
K C K be a minimal cover for interval I = [s;, s;] such that K defines a clique in
H,,. Then, inequality is facet defining for the polytope Ps.(G, K, S, I) if and
only if there does not exist an interval of contiguous slots I' in [1, 8] with I C I’ such
that K defines a minimal cover for the interval I' and a clique in Hg,, where
55
PG, K, S, K, 1) = {(u,2) € PsulG, K, S) : > Yoo =0}
KeR\K  s'=sitwy—1
(vgyvp ) EHTVREK

Proof. Necessity

If there exists an interval of contiguous slots I’ in [1,5] with I C I’ such that K
defines a minimal cover for the interval I’. This means that {s; +w,—1,...,s;} C I'.
As a result, inequality induced by the minimal cover K for the interval I, it
is dominated by another inequality induced by the same minimal cover K for
the interval I’. Hence, inequality cannot be facet defining for the polytope
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Sufficiency.
Let FI{( denote the face induced by inequality (5.10|), that is

8j

L={(0,2) € PulG K, S K I): > Y F=|K-1}

ke ic s=sitwy—1
Denote inequality Zkef{ Z‘;j:s#wk_l zf < \f(| —1byau+pz <A Let put+oz<T
be a valid inequality that is facet defining F' of Py, (G, K, S, I). Suppose that F I[( C
F = {(u,2) € Psa(G,K,S,I): pu+ oz = 7}. In order to prove that inequality
Y okei sz:si—f—wk—l 2k < |K| — 1 is facet defining for Py, (G, K, S, I), we show that
there exist p € R and y € RZkex (W1 such that (u,0) = p(a, §) + M.
First, we show that us =0 for all s € S.
Consider a slot § € S. Let 29 = (U120, 5129 he the solution given by

for one demand k' from K, we select the smallest slot index s in [{wp, ..., 53\ [{si +
wy —1,...,81U{S, ..., §+wp — 1]\ {5, ..., 5§ + wg, — 1} (slot assignment constraint
taking into account the possibility of adding slot 3 in the set of used slots U'?Y),

for each demand k; € K\ {k'} with ¢ € {1, ...,| K|}, we select the smallest slot index

sk, in the set of slots I}QO given by

L2 =1 () Awkes oo sk, — we, } U {5k, 4+ wiy o SHINLsi + wr, = 1,851\ {5,000 8 + w0, — 13,

kjE€D120

where D}?° = {k; € {ki, ..., ki_1} N K : E(pg,) N E(px,) # 0},

for each demand k; € K \ K with i € {1,...,|K|}, we select the smallest slot index

120
Iz'

sk, in the set of slots given by

11,120 — [ ﬂ {wki,...,skj — wkj} U {Skj + wki,...,§}] \ {5,,5 + wg, — 1}
k;eD}20
where Dj?0 = {k; € {ky,...,ki_1} U{k} : E(pr,) N E(pr,) # 0}. This guarantees
that
{8k, —wr; + 1,8, 3 N {sg; —wp; +1,..., 85,1 = 0 for each k; € D}?Y

and § ¢ {sg, —wk, + 1,..., g, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U!20).
We let S,i?o = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

let U120 be the set of slots used in S such that for each demand k € K and last slot

s € S}2% and ¢ € {sg —wy + 1, ..., s}, we have s’ € U'?.
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S'29 is clearly feasible for the SA problem. Hence, the corresponding incidence
vector (usuo, 23120) belongs to F}(. Then consider the solution S'2! = (U!2!, §121)
obtained from S'?° by adding slot 3 as an used slot in U'?! without modifying the last
slots assigned to the demands K in S'?° which remain the same in solution S'?! i.e.,
S,%QO = S,?l for each demand k € K. S'™! is feasible for the SA problem. Hence, the
uS'? 8

corresponding incidence vector ( belongs to F I{( Hence, solutions S'29

and S'?! satisfy equation pu + 0z = 7. We then obtain that

120 120 121
S ZS _ uS

uu +o =u + azsm =

120 120
US ZS

+o0o + Us.

As a result, puz = 0.

In a similar way, we can show that
s = 0, for all slots § € S.

Let show that 0% = 0 for all k € K and s € {wy, ..., 5} with s ¢ {s; + wg — 1,...,5;}
if k € K.

Consider a demand k in K and a slot s" in {wy, ..., 5} with s’ ¢ {s; + wy — 1, ..., s;}
if k€ K. Let 8122 = (U'?2, §122) be the solution given by

for one demand &’ from K, we select the smallest slot index s in {wy, ..., 5} \ {s; +
wi — 1, ..., 85} as last slot,

for each demand k; € K\ {k'} with i € {1,...,| K|}, we select the smallest slot index

s, in the set of slots 1322 given by

122 = | m {wiyy ooy 88, — Wi, U LSk, + whys ooy 5 N {85 +wr, — 1,00, 85},
k;eD122

where D}?2 = {k; € {k1,....,ki_1} N K : E(py,) N E(px,) # 0},
for each demand k; € K \ K with i € {1,...,|K|}, we select the smallest slot index

s; in the set of slots I1?? given by
%2 = ﬂ {wis ooy sp, —wi, YU sk, +wiy s oo, SH N [{wi,, .. 8" —wi }ULs" +wp,, .., 53]
k;eD}22
if E(pr,) N E(py) # 0 or I}** = ﬂ {wi,, ooy 88, — Wi, } U {s, +wg,, ..., 5} if not,

k;EDI22

where D}?? = {k; € {ki,...,ki_1} U K : E(pr;) N E(px,) # (}. This ensures that

o {sp, —wp, +1,...; 88,1 N {sp; —wp, +1,...,5¢,} = 0 for each k; € D},

and {sg, —wg, + 1, ..., 85, N{s —wrp+1,....,8} =0 if E(p,) N E(px) # 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots

S{?2 to route demand k in solution S'?2).
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We let 5122 {sk, } be the set of last slots assigned to demand k; with ¢ € {1, ..., |K]|}.

a set of slots U'22 are then used in S such that for each demand k¥’ € K and last

slot sy € 5,1,20 and s” € {sp —wp +1,..., 51}, we have s” € U'%0,

S'22 is clearly feasible for the problem. Hence, the corresponding incidence vector
(uS™*, 25™) belongs to FI Then we derive a solution $123 = (U123, §123) obtained
from S22 by adding slot s’ as last slot to demand k without modifying the last
slots assigned to the demands K \ {k} in 8?2, ie., S}? = S}?3 for each demand
K € K\ {k}, and S}** = S}?2 U {s'} for demand k. Solution S'* is feasible for

the SA problem. The corresponding incidence vector (u5123, 25123) belongs to F ;{

Y

Hence, solutions S™? and S'?3 satisfy equation pu 4+ oz = 7. We then obtain that

8122 3122 3123 3123 5122 8122 k
uu +o0z = uu +o0z = uu +o0z +og + Z Us

seU123\ 122

- Z Hs.

seU122\y123
Since pz = 0 for all slots § € S, it follows that Uf, =0.
In a similar way, we can show that

of =0, forall k € K and s € {wy, ...,5} with s ¢ {s; +wp — 1,...,5;} if k ¢ K.

Let prove that oF for all k € K and s € {s; +wy, — 1,...,s;} are equivalent.
Consider a demand &’ € K and a slot ' € {s; +wj — 1,...,s;} with k' € K. Let
S1# = (U4 §124) be the solution given by

for one demand k” from K, we select the smallest slot index sy in {wy,...,5} \

{si +wp —1,...,s;} as last slot,

for each demand k; € K\ {k”} with i € {1, ...,| K|}, we select the smallest slot index
sk, in the set of slots Ii124 given by
172124: [ ﬂ {wkm'"askj _wkj}u{skj —|—wki,...,§}]m{81‘—|—w;ﬂ _17---7Sj}7
k;E€D}24

where D}** = {k; € {k1,...ki_1} N K : E(py,) N E(pr,) # 0},

for each demand k; € K \ K with i € {1, ..., |K|}, we select the smallest slot index
sk, in the set of slots Ii124 given by

I = ﬂ {wiy s ooy Sk, —wi, YU{Sk, Wy s oo, SHN {wp,, ooy 8 — w0 UL + g, -, 53]
kjeD12s
if E(pr,) N E(py) # 0 or I}** = ﬂ {wi;s oy 88, — Wi, U {s, +wg,, ..., 5} if not,
k €D124

where D}?* = {k; € {k1,....ki_1} UK : E(py,) N E(pg;) # 0}. Hence,
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{8k, —wr; + 1,81, 3 O {sg; —wp; + 1,85, 3 = 0 for each k; € D},

and {sg, —wg, +1,...,85,tN{s' —wp +1,...,8} =0 if E(p,) N E(pxr) # 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots

S124 to route demand £’ in solution S124).
We let 5,54 = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

let U124 be the set of slots used in S such that for each demand k” € K and last

slot sp» € S}24 and 5”7 € {sp» —wpr + 1, ..., 83 }, we have s” € U4,

S'?4 is clearly feasible for the problem given that it satisfies all the constraints of
cut formulation —. Hence, the corresponding incidence vector (uS 124, 28 124)
belongs to F [l( Then consider the solution S'?° = (E125 §12%) obtained from S'2° by
adding slot s’ as last slot to demand & such that the last slots assigned to the demands
K\ {k,k'} in 8125 remain the same in S'%, ie., S2° = S1# for each demand
k€ K\ {k,k'}, and S{? = 5?5 U {s'} for demand k', and modifying the last slots
assigned to demand k by adding a new last slot § and removing the last slot s € S %25
with s € {s; +wg + 1,...,5;} and 5 ¢ {s; +wy + 1,...,s;} for demand k with k € K
such that S{?° = (S}2°\ {s})U{5} such that {§—wx+1,...,5}N{s'—~wp +1,...,8'} =0
for each ¥’ € K and s’ € S,i,% with E,i% N E,i?‘r’ # (. Solution S'?5 is feasible for
the SA problem. The corresponding incidence vector (usm, 23125) belongs to FI[(

Hence, solutions S'?* and S'?° satisfy equation pu 4+ 0z = 7. We then obtain that

124 124 125 125 124 124 /
uu‘s +0257 = uu‘s +025 7 = ,uuS +0257 + 05, - Uf + U§ + Z Hs»

s U125\ 124

- Z Hs” -

§” U124\ 125

Since o = 0 for s ¢ {s; +wy — 1, .8} with k € K, and pg =0 for all s” €S, it
follows that 05 = ok
The pair (k, k') are chosen arbitrarily in the minimal cover K, we then re-do the

same procedure for all pairs (k, k") such that we find

o* = &% for all pairs (k, k') €

with s € {s; +wp — 1,...,s;} and s’ € {s; + wp —1,...,s;}. We re-do the same
procedure for each two slots s, s’ € {s; +wy —1,..., s;} for each demand k € K with
k € K such that

af = Ufl,for allk € K and s, ¢ € {si +wp—1,...,5;}.
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By (5.9)), we know that
af,/ =% forall ¥ € K and s’ € {1,...,w — 1}.
Overall, we obtain that us; = 0 for each slot s € S, and

Ak it s e {1, ..., wgr — 1},
o5 =< p if k' € K and s € {s; +wp — 1,,..., 55},

0 otherwise,

for each k' € K and s € S.
As a consequence, we have (u,0) = p(a, 5) +vM as desired.
O

Inequality ([5.10) can then be lifted using a sequential lifting procedure [5] to be
facet defining and generate several facets for the polytope Py, (G, K, S).

Theorem 5.4.2. Let I = [s;,5;] be an interval of contiguous slots. Let K C K be
a minimal cover for interval I = [s;,s;] such that K defines a clique in Hg,. Let
K' € K\K = {ki1, ..., k,} such that KU{ky, ..., k,} defines a clique in Hy,. Consider

the following sequence of knapsack problems defined as

i—1
Z; = max E a; + E Bja;,
Jj=1

jekK

i—1
5.12
5w+ 3wy < 1]~ 12
jeEK Jj=1

La; € {0,1},Vj € KU{1,...,i— 1},

for all i € {1,...,q} with B; = |K| =1 — z; for all j € {1,...,i — 1}. Then, the

inequality

S5 q Sj
k. ~
)SED SRS SEND SR P R (5.13)
kef{ s=s;+wr—1 j=1 s’:s¢+wkj -1

is valid for Ps.(G, K,S). Moreover, inequality (5.13) defines facet of Ps.(G, K, S) if
there does not exist an interval of contiguous slots I' = [s}, s%] in [1,8] with I C I'
such that K defines a minimal cover for the interval I'.

Proof. 1t is trivial given that inequality ({5.13]) can never be dominated in Py, (G, K, S)
if there does not exist an interval of contiguous slots I = [s}, s7] in [1, 5] with I C I

such that K defines a minimal cover for the interval I’. O
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5.4.2 Interval-Clique Inequalities

Based on the definition of the conflict graph H IE , we define a new conflict graph
adapted to the SA problem.

Definition 5.4.2. Let I = [s;,s;] be an interval of contiguous slots in [1,5] with
s;i < sj — 1. Consider the conflict graph H}E defined as follows. For each demand
k € K with wy < |I|, consider a node vy, in H}E Two nodes vy and vy are linked
by an edge in HE if wy +wy > |I| and E(pr) N E(py) # 0.

Let Qu(G, K,S) = {(z,2) € Psa(G, K,S) : > ek Zi:wk 2% = 1} be a semi-
polytope of Py (G, K, S).

Proposition 5.4.3. Let I = [s;, s;] be an interval of contiguous slots in [1, 5] with
s; < s; — 1, and C be a clique in the conflict graph H/F with |C| > 3. Then,
inequality is also valid for Qs (G, K,S). Moreover, it is valid for Ps.(G, K, S)
if 2wy, > |I| for each vy, € C.

Proof. We use the same proof of proposition (2.4.13)). O
Theorem 5.4.3. Let I = [s;,s;] be an interval of contiguous slots in [1,5] with

s; < sj—1, and C be a clique in the conflict graph HF with |C| > 3, and 2wy, > ||
for each vy € C. Then, inequality (2.39)) is facet defining for Pso(G, K,S) if and
only if

a) C is a mazimal clique in the conflict graph H}E,

b) and there does not exist an interval of contiguous slots I' in [1,3] such that I C I’
with

o wy +wy > |I'| for each k, k' € C,

o 2w, > |I'|+ 1 and wy, < |I'| for each k € C.

¢) and there does not exist a slot s € I such that s € {s' —wp+1,..,5'} for each k € C
and s € {s; + wy — 1, .., 55}

Proof. Neccessity.

We distinguish three cases

a) if there exists a clique C’ that contains all the demands k& € C. Then, inequality
(2.39) induced by clique C' is dominated by another inequality (2.39)) induced by
clique C’. Hence, inequality (2.39)) cannot be facet defining for Py, (G, K, S).

b) if there exists an interval of contiguous slots I’ in [1, §] such that I C I’ with
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e wy +wy > |I'| for each k, k' € C,

o 2wy > |I'| + 1 and wy < |I’| for each k € C.

This means that inequality (2.39) induced by clique C for the interval I is dominated
by inequality (2.39) induced by clique C for the interval I’. Hence, inequality (2.39))
cannot be facet defining for Py, (G, K, S).

if there exists a slot s € I such that s € {s' —w + 1,..,s'} for each k € C and
s' € {s; +wy — 1, ..,s;}, this implies that inequality is dominated by the the
non-overlapping inequality . Hence, inequality cannot be facet defining
for Py (G, K,S).

Sufficiency.
"H’E
Let F,' be the face induced by inequality (2.39), that is

P = {(u,2) € PG K,S) - S Z PN
vk €C s=si+wy—1

We denote inequality >, .o S
be a valid inequality that is facet defining F' of Ps, (G, K, S). Suppose that FC C
F = {(u,z) € Psa(G,K,S) : pu+ oz = 7}. In order to prove that inequality
> veC Z?:s#wk_l 2k < 1is facet defining for Pyo(G, K, S), we need to show that
there exist p € R and v € RZkex(s=1) such that (p,0) = p(e, 8) + v M.
Let first show that us = 0 for all s € S.
Consider a slot § € S. Let S'27 = (U'?7, §'27) be the solution given by

F<1byau+ Bz <A Letuu+az<7'

S§=8;+wg— 1 s

for one demand &’ from C', we select the smallest slot index sy = {s;+wp —1,...,5;}\
{5,...,8§ —wyp — 1} as last slot (slot assignment constraint taking into account the

possibility of adding slot 3 in the set of used slots U'?7),

for each demand k; € C'\ {k'} with i € {1, ...,|K|}, we select the smallest slot index

s; in the set of slots 1?7 given by

LT =1 () Awks s st —wi, }U {8k, +wiy o SHINLs: +wr, — 1,553\ {8, 0 8 + g, — 13,
k;EeDI27

where D}?7 = {k; € {k1,....ki-1} N C : E(pg,) N E(py,) # 0},
for each demand k; € K \ C with ¢ € {1,...,|K|}, we select the smallest slot index

sk, in the set of slots I'?7 given by
1P = [ () Awkeoosk, — wi} U {se, + w5\ {508+ wr, — 1)
k;€D127

where D?" = {k; € {k1,....ki-1} N C : E(py,) N E(pk;) # 0}. This guarantees that
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{8k, —wr; + 1,81, 3 N {sg; —wy; + 1,55, } = 0 for each k; € D},

and § ¢ {sg, —wk, +1,..., 5, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U'?7),

We let 5,37 = {sk, } be the set of last slots assigned to demand k; with ¢ € {1, ..., |K]|}.

a set of slots U7 are used in S such that for each demand k € K and last slot

s € SP2T and s’ € {sg —wi + 1,..., 8}, we have s’ € U?".

S'27 is feasible for the SA problem. Hence, the corresponding incidence vector
(uS™", 25™") Dbelongs to Fg}E. Then we derive a solution S'28 = (U2, §128) ob-
tained from S'27 by adding slot § as an used slot in U?® without modifying the last
slots assigned to the demands K in S which remain the same in solution S'?® i.e.,
8;27 = 8%28 for each demand k € K. Solution S'?® is feasible for the SA problem.
The corresponding incidence vector (usm, 28 128) belongs to Fg }E. Hence, solutions

S'27 and S'?8 satisfy equation pu + 0z = 7. We then obtain that

127 127 128 128 127 127
uus +02° :,uus +02° :uus +02° + 3.

Hence, pz = 0.

In a similar way, we can show that
s = 0, for all slots § € S.

Let show that 0% =0 for all k € K and s € {wy, ..., 5} with s ¢ {s; + wg — 1,...,5;}
if v, € C.

Consider a demand k in K and a slot s" in {wy, ..., 5} with " ¢ {s; + wy — 1, ..., s;}
if k € C. be the solution given by S29 = (U2, §129) be the solution given by

for one demand k&’ from C, we select the slot s = s; +wp — 1 as last slot,

for each demand k; € C'\ {k'} with i € {1, ...,|K|}, we select the smallest slot index
sk, in the set of slots I'*? given by

1% = | ﬂ {wi,, ooy 86, —wi, U {sk, + Wiy oy 53 N {8 +wr, — 1,00, 55},
k;€D}2
where D}? = {k; € {ki,..., ki_1} N C : E(pg,) N E(px,) # 0},
for each demand k; € K \ C with ¢ € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I'?? given by

% = m {wis ooy sk, —wi, FU sk, +w, s .., SH N [{wn,, .o 8" —wi }U{s" +wp,, ..., 53]
kjeDilzy
if B(pg,) N E(py) # 0 or I}* = ﬂ {wi;s oy 88, — wi; F U sy, +wg,, ..., 5} if not,
k;eD}29

where D}* = {k; € {k1, ..., ki-1} UC : E(py,) N E(px,) # 0}. This ensures that
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o {sg, —wp, + 1,81} N {sk; —wy, +1,...,5¢,} = 0 for each k; € D}

o and {sy, —wi, +1,...,s5,}N{s —wr+1,...,8} =0 if E(px,) N E(pr) # 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots

S129 to route demand k in solution S'?),
We let 3% = {1, } be the set of last slots assigned to demand k; with i € {1,..., |K|}.

d) let U'? be the slot used in S such that for each demand k' € K and last slot
S € 5,1,29 and s” € {sp —wp +1,..., 51/}, we have s” € U'%,

S'29 is clearly feasible for the problem, and its incidence vector (usug, 25129) belongs
to Fg " Then consider the solution 830 — (U130 8130y obtained from S by
adding slot s" as last slot to demand k without modifying the last slots assigned to
the demands K \ {k} in 8, i.e., S{? = S}V for each demand k' € K \ {k}, and
SE30 = 5129 U {s'} for demand k. Solution S is feasible for the SA problem. The
corresponding incidence vector (uSlBO, 25130) belongs to Fg }E. Hence, solutions S'2?

and S0 satisfy equation pu + o0z = 7. We then obtain that

129 129
= ,uuS +0257 + fo + Z Uz — Z Hs-

129 129
S P =
FeU130\y129 FeU129\y180

130
JiaTs +o u®

130

+o

Since pgz = 0 for all slots 5 € S, it follows that afl =0.

In a similar way, we can show that
o¥ =0, forall k € K and s € {wy, ..., 5} with s & {s; +wg — 1,...,8;} if vy ¢ C.

Let prove that o¥ for all vy € C and s € {s; +wi —1, ..., s;} are equivalent. Consider
a demand k' € K and a slot s’ € {s; + wy — 1,...,s;} with vy € C, and a solution
5131 — (U13175’131) given by

a) for one demand k from C, we select theslot s; = s; + wi — 1 as last slot,

b) for each demand k; € C'\ {k}, we select the smallest slot index sy, in the set of slots

113! given by

Bl = ﬂ {w, s oy 58, —wi, JU{ sk, +wie, -y SHN{ Wi, -ony 8" —wp UL +wie, o, 5H\ {54, .00 55}
kjEDPl
if E(pka‘,)mE(pk’) 7£ 0 or 11131 = [ m {wki’ wey Sk 7wkj}u{skj FTWh;s e 5}]\{8“ e 'Sj} if not,

kjeD1st

where D}*! = {k; € {k1,...,k;_1} U C such that D’ N D> # 0},
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c)

for each demand k; € K \ C with ¢ € {1,...,| K|}, we select the smallest slot index

sk, in the set of slots Ii131 given by
B3 =| m {wiys ooy Sk, —wi, YU{Sk, Wiy s oo, SN {wp,, ooy 8 —wp YU{s +wps,, .., 53]
k; € D13
if E(py,) N E(pp) # 0 or I3 = ﬂ {wi,, ooy 88, — Wi, U {8, +wg,, ..., 5} if not,
k EDlBl

where D} = {k; € {k1, ..., ki—1} UC such that E(py,) N E(ps,) # 0}. This ensures
that

{8k, —wi, + 1,88, N {s —wy; +1,...,s} = () for each k; € D3,
and {sg, —wg, +1,...,s5,tN{s' —wp +1,...,8'} =0 if E(p,) N E(prr) # 0 ( we take

into account the possibility of adding slot s’ as a last slot in the selected last slots

SI31 to route demand £’ in solution S131).

We let S,S’l = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

Let U3l be the set of slots used in S such that for each demand k and last slot

S € 5131 and s” € {sp —wy +1,..., 5}, we have 57 € UL

S131 is clearly feasible for the problem. Hence, the corresponding incidence vector
(uS™", 25" belongs to Fg}E. Then consider the solution S132 = (U132, §132) from
S'131 by adding slot s’ as last slot to demand k& without modifying the last slots
assigned to the demands K \ {k, K’} in S'3!, i.e., SI3! = 5132 for each demand k” €

K\ {k,K'}, and S}?* = S} U{s'} for demand &, and with modifying the last slots
assigned to demand k by adding a new last slot § and removing the last slot s € S ,i?’l
with s € {s;+wi+1,...,s;} and § € {s;+w+1, ..., s;} for demand k € K with v, € C
such that S}32 = (S}31\ {s})U{5} such that {s—wx+1,...,5}N{s'—wp+1,...,8} =0
for each k' € K and s’ € S}32 with E(pg) N E(pr) # 0. Solution S32 is feasible for

132 132
S S )

the SA problem. The corresponding incidence vector (u belongs to F

Hence, solutions S'3! and S'32 satisfy equation pu 4+ 0z = 7. We then obtain that

8131 8131 3132 5132 8131 8131

J +oz = uu +oz = pu +oz + 05 - Uf + J§ + Z Hs?

5776U132\U131
S S
§” U131\ /132
Since 0§ =0for 5§¢ {s; +wp —1,...,s;} with vy € C, and pg =0 for all s” €S, it
follows that 05 = ok,
Given that the pair (vg,vy) are chosen arbitrarily in clique C, we re-do the same
procedure for all pairs (vg, vx) such that we find

k

o¥ = 0¥ for all pairs (vg, vp) € C,
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with s € {s; +wp — 1,...,s;} and s’ € {s; + wp —1,...,s;}. We re-do the same
procedure for each two slots s, s’ € {s; +wy —1,...,s;} for each demand k € K with

v € C such that

af = Ufl,for all vy € C and s, 8" € {s; + w — 1,..., s},
ok = af,/,for all vg,vp € C,s € {s; +wp — 1,...,8;} and &' € {s; + wp — 1,..., 85}

Consequently, we obtain that ¢¥ = p for all v, € C and s € {s; +wy, — 1, ..., s;}.
We know from ([5.9) that

Uff =~ forall k¥ € K and ' € {1, ..., wp — 1}.
As a consequence, we obtain that us = 0 for each slot s € S, and

AR i s € {1, ..., wpr — 1},
Og =9 p if v € C and s € {s; +wy — 1,,..., 55},
0 otherwise,

for each k' € K and s € S. As a result, we have (u,0) = p(a, 8) + vM as desired.
O

5.4.3 Interval-Odd-Hole Inequalities

Proposition 5.4.4. Let I = [s;,s;] be an interval of contiguous slots in [1, 5] with
s;i <sj—1, and H be an odd-hole H in the conflict graph H}E with |H| > 5. Then,
inequality is valid for Qsq(G, K,S). Moreover, it is valid for P(G,K,S) if
2wy, > |I| for each vy, € H.

Proof. We use the same proof of proposition (5.4.4)). O

Theorem 5.4.4. Let H be an odd-hole in the conflict graph HY with |H| > 5, and
2wy, > |I| for each vy, € H. Then, inequality (2.40) is facet defining for Psq(G, K, S)
if and only if

a) for each node vy ¢ H in HYF, there exists a node vy € H such that the induced
graph H/F ((H\ {vg}) U{vp}) does not contain an odd-hole H' = (H \ {v}) U {vp},

b) and there does not exist a node vy ¢ H in HF such that vy is linked with all nodes

v, € H,

¢) and there does not exist an interval I' of contiguous slots with I C I' such that H

defines also an odd-hole in the associated conflict graph HE .
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Proof. Neccessity.
We use the same proof presented in the proof of theorem ([2.4.10]).
Sufficiency.
~ H'F . . . .
Let F;" be the face induced by inequality (2.40)), that is

e o lH -1
Fy' ={(u,2) € Poul(G,K,S): Y Z 2 ="}
v €EH s=s;twr—1
We denote inequality >, ZS sitwp—1 2k < ‘H|2_1 by au+ Bz < A. Let pu +

oz < 7 be a valid inequality that is facet defining F' of P, (G, K,S). Suppose that
FI?;E C F={(u,z) € Psu(G,K,S) : pu+ oz = 7}. To prove that Fg}E is a facet
of Psa(G, K,S), we need to show that there exist p € R and vy € RZrex(@x=1)) such
that (u,0) = p(a, B) +vM.

Let first show that us = 0 for all s € S.

Consider a slot § € S. Let S'3* = (U134, 5134) be the solution given by

select a subset of demands H from H with |H| = %,

for each demand k; from H with i € {1,...,|K|}, we select the smallest slot index

1134

sk, in the set of slots I;°* given by

[1,134 = ﬂ {Wg; s ooy Sk; — Wk, }U{Skj +wg,, .y SHO[{ 8i4wE, —1, ..., 8]}]\{§, oy SFwg, —1},
kjeL1134

where Lzl34 = {]{Zj S {kl, ey ki—l} NH: E(pkl) N E(pkj) #* @}

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
s, in the set of slots Ii134 given by

11134 — ﬂ {wkw weey Sky _wkj}U{Skj FWg; s -eey 5}\[{si+wki—1, . Sj}U{g, ey §+wki—1}},
k;jeD}34

where D} = {kj € {k1,....ki 1} N H : E(py,) N E(py;) # 0}. We let 533 = {sy,}
be the set of last slots assigned to demand k;,

for each demand k; € K\ H with ¢ € {1,...,|K|}, we select the smallest slot index

7134

sk, in the set of slots I;°* given by

Ii134 = | m {wki,...,skj — wkj} U {Skj + wki,...,E}] \ {5,...,8 + W, — 1}

k; ERI3

where R = {k; € {ki,....,ki-1} U H such that E(py,) N E(py,) # 0}. This

guarantees that

{8k, —wr; + 1,81, 3 O {sg; —wy; + 1,85, 3 = 0 for each k; € R34,
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e and § ¢ {si, —wg, +1,..., 51} (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U'3%).

We let S,%f"l = {sk, } be the set of last slots assigned to demand k; with ¢ € {1,..., |K]|}.

let U be the set of slots used in S such that for each demand %k and last slot
s € S3% and ¢’ € {sp —wg +1,..., 5}, we have s’ € U4, and and § ¢ U3 (slot
assignment constraint taking into account the possibility of adding slot § in the set

of used slots U134).

S134 is clearly feasible for the SA problem. Hence, the corresponding incidence

,.,HIE . .
vector (uS™", 25" belongs to F; 7 . Then we derive a solution S'% = (U135, §135)

S13% by adding slot § as an used slot in U5 without modifying the

8134

obtained from
last slots assigned to the demands K in which remain the same in solution
S je., S,i34 = S,i35 for each demand k € K. Solution S'3° is feasible for the SA
problem. Hence, the corresponding incidence vector (uS 135, 28 135) belongs to Fg}E.

Hence, solutions S'3* and S'3° satisfy equation pu + 0z = 7. We then obtain that

134 134 135 135 134 134
uS +0z3 = uS +ozS = uS +0z8

K + M3

Hence, puz = 0.

In a similar way, we can show that
us = 0, for all slots s € S.

Let show that 0% = 0 for all k € K and s € {wy, ..., 5} with s & {s; + wp — 1,...,5;}
if v, € H.

Consider a demand k in K and a slot s" in {wy, ..., 5} with s ¢ {s; + wy — 1, ..., s;}
if v, € H. Let S'36 = (U136, §136) be the solution given by

|H |1

select a subset of demands H from H with ]f] | = =—,

for each demand k; from H with i € {1,...,|K|}, we select the smallest slot index
s, in the set of slots IZ-136 given by

I3 = ﬂ {wi;y ooy 88, — Wiy b U {sk; + wiyy s 83 N [{80 + wr, — 1,85,
kyeLiso

where L%SG = {kj S {]{1, ey ki—l} NH: E(pkl) N E(pkj) #* @}

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots I13¢ given by

11'136 = n {wkm'“vskj - wkj} U {skj + wkﬂ"'vg} \ {Sl + Wk; — 1""’Sj}’
k]‘GDiISG
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where D% = {kj € {k1,....,ki_1} N H : E(px,) N E(pr;) # 0}. We let 5’5’6 = {si,}

be the set of last slots assigned to demand k;,

for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Ii136 given by
36 = ﬂ {wi,s ooy 58, —wi, FU{sk, +wp,, ..., SH N [{wg,, ... 8" —wp }U{s" +wp,, ..., 5]
k;eD}36
if B(pg,) N E(py) # 0 or I}3 = ﬂ {wi;s ooy 88, — wi; F U s, +wg,, ..., 5} if not,
k;€ D136

where D} = {k; € {k1, ..., ki—1} UH : E(py,) N E(p,) # 0}. This ensures that
{8k, —wr; + 1,8, F O {sg; —wp; +1,..., 85,1 = 0 for each k; € D}35

and {sg, —wg, + 1, ..., s, N {s' —wrp +1,...,8'} =0 if E(pg,) N E(pr) # 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots
5136 to route demand k in solution S139).

We let 5,5’6 = {si, } be the set of last slots assigned to demand k; withi € {1, ..., |K|},
let U136 be the set of slots used in S such that for each demand &’ € K and last slot

s” € Sp% and 87 € {sp — wir + 1, ..., spr }, we have s” € U3,

S136 is clearly feasible for the problem. Hence, the corresponding incidence vector
(uS™, 25" belongs to Fy 1 Atter that, we derive a solution S137 = (U137, §137)
from S'3% by adding slot s’ as last slot to demand k without modifying the last
slots assigned to the demands K \ {k} in S, ie., S} = S}37 for each demand
K € K\ {k}, and S}37 = S136 U {s'} for demand k. Solution S'37 is feasible for
the SA problem. The corresponding incidence vector (uS137 3137) belongs to F H .

Hence, solutions S'36 and S'37 satisfy equation pu 4+ 0z = 7. We then obtain that
136 136 137 137 136 136
uu‘s +02°7 = ,uus +0257 = uus +0257 + O'f:/ + Z 15
FEU13T\ 136

- Z Hs-

§EU136\U137

Since pgz = 0 for all slots 5 € S, it follows that Uf, =0.

In a similar way, we can show that
o¥ =0, for demand k and s’ € {wy, ..., 5} with 8" ¢ {s; +wp — 1,...,s;} if v, € H.
We re-do the same procedure for all demand k" in K \ {k} such that

o =0, forall ¥’ € K\ {k} and s € {wy, ..., 5} with s & {s; +wp — 1,...,5;}
if v € H.
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Let prove that 05 for all viy € H and s’ € {s; + wyr — 1, ..., 5;} are equivalent.
Consider a demand k' € K with vy € H and a slot s’ € {s; + wy — 1,...,s;}. Let
S138 = (U'38, §138) be the solution given by

|H|-1
2 I

select a subset of demands H from H with |H| =

for each demand k; from H with i € {1,...,|K|}, we select the smallest slot index

sk, in the set of slots I!3® given by

11'138 — [ m {wki,...,skj - wkj} U {Skj + wki,...,§}] N {Si + wg, — 1,...,Sj}.
kjeL1s8

where L} = {k; € {k1, ..., ki_1} N H: E(py,)N E(py,) # 0},

for each demand k; € H \ H with i € {1,...,|K|}, we select the smallest slot index

138
Iz'

sk, in the set of slots given by

- ﬂ {wys ooy sk, — wiy b U {sk; + wiyy o0 5) \ {si + wr, — 1,55},
k;eD}38

where DZ~138 = {]{Zj S {kl, . ki—l} NH: E(pkl) N E(pkj) #* @},
for each demand k; € K\ H with i € {1,...,|K|}, we select the smallest slot index

s, in the set of slots Ii138 given by
12,138 = [ ﬂ {wki, coey Sk _wk:j}U{Skj +wg,;y ..y 5}] N [{wki, ey s’ —’wk/}U{S/—l—wki, ey §}]
k;ERI3®
if E(pkz)mE(pk') #0 or 11'138 = ﬂ {wkiv-"askj _wkj}u{skj +wki7"'7§} if not,
k; € R138

where RZ-138 ={kje{ki,.... ki1 }UH : E,if’8 N E,i?s # ()}. Hence,

{8k, —wi, + 1,88, N {sg; — wg; +1,..., 58, } = 0 for each k; € RI38,

and {sy, —wk, +1,...,s6}N{s —wp +1,...,8} =0 if E,g’g NE3S £ 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots

SI38 to route demand £’ in solution S138).

a set of slots U'® are used in S such that for each demand k and last slot s;, € 5%38

and s’ € {s —wy +1,..., 5}, we have s’ € U'38.

S8 is clearly feasible for the problem. Hence, the corresponding incidence vector

138 138 ~ H'E . .
(uS™,2°") belongs to F w7 . Then we derive a solution S139 from S138 as belows

remove the last slot § totally covered by the interval I and which has been selected
by a demand k; € {vy,, ..., vk, } in solution 8™ (i.e., § € S,g’g and § € {s; + wy, +
1,...;85}) such that each pair of nodes (vir,v;) are not linked in odd-hole H with
J# i
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b)

and select a new last slot § ¢ {s; + wg, + 1,...,s;} for demand k; ie., SP* =
(SE3\ {5}) U {3} such that {8’ — wy, LS8N {s—wr +1,...,s} = 0 for each
k€ K and s € S}39 with E[3 N E,iigg =+ @,

and add slot s to the set of last slots Sii? assigned to demand &’ in solution S'39,

5139 138 U {8/}

solution S'3? is clearly feasible for the SA problem. The corresponding incidence
vector (u‘8139 5139) belongs to F 1 . Hence, solutions S™® and S'? satisfy equation

pu + oz = 7. We have so

138 138 139 139 138 138 / k?i k'i
,uuS +02%7 = uus +02° 7 = ,uuS +02° " + Jf, +oy —oz" + Z JR
U39\ 138

- Z Hs” -

§7 U138\ 139

Since 0% = 0 for all demand k € K and slot s € {wy, ..., 3} with s ¢ {s;+wy+1,...,5;}

if v, € H, and puy = 0 for all 7 € S, it follows that algi = Ufll.

Given that the pair (vg, vys) are chosen arbitrarily in odd-hole H, we re-do the same

procedure for all pairs (v, vg) such that we find

af = af,/,for all pairs (vg,vi) € Hys € {si+w, —1,...,s;} and {s; + wir — 1,..., 55}

Consequently, we obtain that af =pforall vy, € H and s € {s; +wy — 1,...,5;}.
Overall, and using the result (5.9), we obtain that ps = 0 for each slot s € S | and

AR it s e {1, wy — 1},
gy =4 p if v € Hand s € {s; +wp — 1,,..., 55},
0 otherwise,

for each k' € K and s € S. As a result, we have (u,0) = p(a, 8) +vM as desired.
O

5.4.4 Slot-Assignment-Clique Inequalities

On the other hand, we also noticed that there may exist some cases that are not
covered by inequality (2.25)). For this, we provide an adapted definition of a conflict
graph H g for the SA problem and its associated inequality.

Definition 5.4.3. Let Hng be a conflict graph defined as follows. For all slot s €
{wg, ..., 5} and demand k € K, consider a node vy s in HgE Two nodes vy s and

v are linked by an edge in H’SE if and only if
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o k=K,
e or EFNEYN 40 and {s —wp +1,....,s} N {s' —wp +1,...,5'} # 0 when k # k'

Based on the conflict graph H ng, we introduced the following inequalities.

Proposition 5.4.5. Let C be a clique in the conflict graph HgE with |C| > 3. Then,
inequality (2.43|) is valid for Qs (G, K,S). Moreover, it is valid for Ps(G, K,S) if
{s—wr+1,..,1}N{s —wp +1,...,8} # 0 for each (vgs,vp ) € C.

Proof. We use the same proof of proposition (2.4.17)). O

Theorem 5.4.5. Consider a clique C in the conflict graph HgE with {s — wi +
L., 1}n{s —wp +1,...,8'} # 0 for each (vy s, v 5) € C. Then, inequality (2.43)
is facet defining for Pso(G, K,S) if and only if

1. C is a mazimal clique in the conflict graph HE,

2. and there does not ezist an interval of contiguous slots I = [s;, s;] C [1,5] with
i - 1 clI
* mino -+ 1), el

e and wi +wy > |I| + 1 for each (vg,vy) € C,

o and 2wy > |I| + 1 and wy < |I| for each vy, € C.

3. and there does not exist a slot s € S such that ' € {s —wy + 1,..,s} for each
Vk,s € C.

Proof. Neccessity.

If C is not maximal clique in the conflict graph H2F, this means that inequality
can be dominated by another inequality associated with a clique C” such that
C C C' without changing its right-hand side. Moreover, if there exists an interval
of contiguous slots I = [s;, s;] C [1, §] satisfying the conditions of the condition 2 of
the theorem. Then, inequality is dominated by inequality . As a result,
inequality cannot be facet defining for Py, (G, K, S).

On the other hand, if there exists a slot s’ € S such that s’ € {s—wy+1, .., s} for each
v,s € C, then inequality is dominated by the non-overlapping inequality .
Hence, inequality cannot be facet defining for Py, (G, K,S). Sufficiency.
Let Fg & be the face induced by inequality , that is

~ ' E
ng = {(u,2) € Ps(G,K,S) : Z 2k =11
'Uk15€C'
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We denote inequality kasec 2 < 1byau+ Bz <\ Let pu+ o0z < 7 be a
’ 1E

valid inequality that is facet defining F' of Ps,(G, K,S). Suppose that Fé] 5 C
F = {(u,2) € Psa(G,K,S) : pu+ oz = 7}. In order to prove that inequality
Do LeC 2k <1 is facet defining for Py (G, K,S), we show that there exist p € R
and ,'y e RXrex(Ws=1)) such that (u,0) = p(a, B) + M.

First, we show that us; = 0 for all s € S. Consider a slot § € S, and a solution
SUI — (U1 §141) given by

select one pair of demand k" and slot s’ from clique C (i.e., vy ¢ € C), and use slot
s = s as last slot with § ¢ {s’ —wy + 1,...,s'} (slot assignment constraint taking

into account the possibility of adding slot 5 in the set of used slots U'41),

for each demand k; € K\ {k'} with ¢ € {1,...,|K]|}, we select the smallest slot index

sk, in the set of slots I*! given by

I = [ () Awkeonse, — wi} U {se, + wiyon 53\ {8008 + we, — 1},
kjeDl4t

where D{*t = {k; € {k1,....ki-1} U{K'} : E(py,) N E(py;) # 0}. As a result,
{8k, —wi, + 1,88, } N {sg; — w; + 1,..., 85, } = 0 for each k; € DL

and § ¢ {sg, —wg, +1,..., sk} (slot assignment constraint taking into account the

possibility of adding slot 3 in the set of used slots U4!).
We let SJ4 = {5y, } be the set of last slots assigned to demand k; with i € {1, ..., | K[}.

Let U be the set of slots used in S such that for each demand k and last slot

s € S} and ¢ € {sg —wy + 1, ..., s}, we have s’ € UL

S is clearly feasible for the SA problem. Hence, the corresponding incidence
vector (uS", 25" belongs to FggE. Then we derive a solution S142 = (U142 §142)
from S'*! by adding slot 5 as an used slot in U? without modifying the last slots
assigned to the demands K in S'™' which remain the same in solution S'4? i.e.,
S,%‘u = 5,142 for each demand k € K. S'? is feasible for the SA problem. Hence,
the corresponding incidence vector (u‘S 142, 28 142) belongs to F‘g gE. Hence, solutions

S™ and S'? satisfy equation pu + 0z = 7. We then obtain that

141 141 142 142 141 141
uS —1—025 = uS +az$ = u"3 —1—025

H + 3.

Hence, puz = 0.

In a similar way, we can show that

ps = 0, for all slots § € S.
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Let show that 0% =0 for all k € K and s € {wy, ..., 5} with v & C.
Consider a demand k in K and a slot s’ in {wy, ..., 5} with v,y ¢ C. Let S113 =

(U143, §143) be the solution given by

select one pair of demand %" and slot s from clique C' (i.e., v ¢ € C), and use
slot sy = s as last slot with {s' —wp + 1,...,8} N {s’" —wr + 1,...,s} = 0 if
E(pr) N E(pr) # 0,

for each demand k; € K\ {k'} with i € {1,...,| K|}, we select the smallest slot index
s, in the set of slots Ii143 given by
I = m {wi,, .oy Sk, —wi, YU sk, +wi,, o, SH N [{wp,, ooy 8" —wi }U{s" +wy,, ..., 5}]
k;E€D14
if B(pg,) N E(py) # 0 or I}3 = m {wi;s oy 88, — Wi, } U {s; +wg,, ..., 5} if not,
k;E€D3

where D}*? = {k; € {k1, ..., ki_1} U{K'} : E(pr,) N E(py;) # 0}. This ensures that
{Ski —wg, +1,.., Ski} N {Sk]. — Wy; +1, ...,Skj} = () for each k}j S Di143’
and {sg, —wg, +1,..., 86t N{s —wr+1,...,8'} =0 if E(p,) N E(pr) # 0 ( we take

into account the possibility of adding slot s’ as a last slot in the selected last slots

S143 to route demand k in solution S'43).

We let S,if)’ = {sk, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

a set of slots U3 are then used in S such that for each demand k' € K and last

slot s” € S} and s” € {spr — wyr + 1, ..., s}, we have s” € U3,

S'3 is clearly feasible for the problem. Hence, the corresponding incidence vector
(uS'™, 5™ belongs to FggE Then we derive a solution S'#* = (U4, §144) from
S'3 by adding slot s as last slot to demand k& without modifying the last slots
assigned to the demands K \ {k} in S143, ie., S} = SIM for each demand k' €
K\ {k}, and S{** = S}13 U {s'} for demand k. Solution S'** is feasible for the SA
problem. The corresponding incidence vector (u3144, 23144) belongs to Fg ISE. Hence,
solutions S'4% and S satisfy equation pu + 0z = 7. We then obtain that

143
+02° 7 + fo + Z M3
§€U144\U143

- Z Hs-

§€U143\U144

143 143 144 144 143
US ZS US ZS US

M +o =pu +o =u

Since pz = 0 for all slots § € S, it follows that Uf, =0.

In a similar way, we can show that

o =0, for all k € K and s € {w, ..., 5} with vy, & C.
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Let prove that O‘§ for all v, s € C are equivalent. Consider a demand k&’ € K and a
slot s" € {wy, ..., 5} with v ¢ € C, and a solution S5 = (U115, 5115) given by

select a pair of demand k and slot s from clique C' (i.e., vy s € C) such that slot

s = s will be used as last slot for demand k,

for each demand k; € K \ {k} with i € {1,...,|K|}, we select the smallest slot index

sk, in the set of slots I!%® given by
I = ﬂ {wis ooy 58, —wi, YU LSk, W,y o, SH N {wp,, ooy 8 —wpe UL +wpe,, .., 53]
k. €D14o
i E(pr,) 0 Ep) £ 0 0r 199 = () {5k, — g, } U {51, + w3} i mt,
k; €D}

where Dj** = {k; € {k1,...,ki-1} U{k} : E(pr,) N E(pk;) # 0}. This ensures that
{8k, —wr; + 1,81, 3 N {sk; —wp, +1,..., 85,1 = 0 for each k; € D5

and {sg, —wg, +1,...,85,tN{s' —wp +1,...,8} =0 if E(p,) N E(pgr) # 0 ( we take
into account the possibility of adding slot s’ as a last slot in the selected last slots

S5 to route demand &’ in solution S149).

We let 5,1215 = {sk, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

let U5 be the slots used in S such that for each demand k” € K and last slot

s € S5 and 5”7 € {spp —wpr + 1, ..., 85 }, we have 57 € U5,

S5 is feasible for the SA problem. Hence, the corresponding incidence vector
(uS"™, 25™) belongs to FglsE. After that, we derive a solution S146 = (F146 §146)
from S5 by adding slot s’ as last slot to demand k' without modifying the last
slots assigned to the demands K \ {k, &'} in S i.e., S = S0 for each demand
k€ K\ {k,k'}, and S0 = Si15 U {s'} for demand k', and with modifying the last
slots assigned to demand k by adding a new last slot § and removing the last slot
s € S with s € {s;+wy+1,...,s;} and § € {wy, ..., 5} for demand k with vy, 5 ¢ C
such that S316 = (S5 \ {s}) U {3}. Solution S¢ is feasible for the SA problem.
The corresponding incidence vector (usm, 25 146) belongs to FC e . Hence, solutions

S5 and S0 satisfy equation pu 4+ 0z = 7. We then obtain that

8145 5145 8146 8146 8145 8145

nu +o0z = [ +oz = uu + o0z + l;//fa +U + Z
§7 U146\ 7145

- Z s

s” €U145\U146
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k

s

Since U§ =0 for vy 5 ¢ C, and pg» = 0 for all s” € S, it follows that af,/ =0

In a similar way, we can show that

k

/ .
o¥ = o for all pairs (vy s, vp¢) € C,

Consequently, we obtain that 0¥ = p for all vgs € C.
Overall, and using the result (5.9), we obtain that s = 0 for each slot s € S, and

yRsif s e {1, .., wp — 1},
=4p if vy, s € C,

0 otherwise,

for each k € K and s € S. As a result, we have (u,0) = p(a, 8) + vM.

5.4.5 Slot-Assignment-Odd-Hole Inequalities

Proposition 5.4.6. Let H be an odd-hole in the conflict graph HF with |H| > 5,
and {s —wip+1,..,1} N{s' —wp +1,...,8'} # 0 for each pair of nodes (vy s, Vi’ 5')
linked in H. Then, inequality (2.44)) is valid for Psq(G, K, S).

Proof. We use the same proof of proposition ([2.4.14)). O

Theorem 5.4.6. Let H be an odd-hole in the conflict graph HF with |H| > 5, and
{s—wr+1,..,1}N{s' —wp +1,...,8'} # 0 for each pair of nodes (vi s, vp s) linked
in H. Then, inequality (2.44) is facet defining for Psq(G, K,S) if and only if

a) for each node vy ¢ ¢ H in Hin, there exists a node vy s € H such that the induced
graph HE ((H \ {vgs}) U {vp & }) does not contain an odd-hole,

b) and there does not exist a node vy ¢ ¢ H in Hng such that vy ¢ is linked with all

nodes v s € H,

¢) and there does not exist an interval of contiguous slots I = [s;, s;] C [1,5] with

in (s — 1), c1,
s Lot D
e and wy +wyr > |I| + 1 for each (vg,vy) linked in H,
o and 2wy, > |I|+ 1 and wy, < |I| for each vy, € H.
Proof. Neccessity.

We distinguish the following cases:
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a)

if for a node vy ¢ ¢ H in HgE, there exists a node vy, s € H such that the induced
graph HF (H\{vg s}U{vy ¢ }) contains an odd-hole H' = (H\ {vys})U{vy s }. This
implies that inequality (2.44]) can be dominated using some technics of lifting based

. . e k |H|—1 / |H'|—1
on the following two inequalities Evk,seH zg < Y5—, and ka@s/eH’ 2y <

if there exists a node vy ¢ ¢ H in H Z.;E such that vy ¢ is linked with all nodes
vgs € H. This implies that inequality (2.44) can be dominated by the following

valid inequality

po [HI=1 0 [H[ -1
Z Zs + TZS/ S T
’Uk“SEH
if there exists an interval of contiguous slots I = [s;,s;] C [, 3] satisfying the

conditions of ¢). Hence, inequality (2.44]) is dominated by inequality ([2.40]).

If no one of these cases is verified, inequality can never be dominated by an-
other inequality without changing its right-hand side. Otherwise, inequality
cannot be facet defining for Py, (G, K, S).

Sufficiency.

~IJ'E
Let F 5 $ denote the face induced by inequality (2.40)), that is
- i/E H| -1
FilS = {(u,2) € Pua(G, K,S) : d o A= | ’2 b

’Uk,SEH

Denote inequality kaseH zf < |H‘271 by au + Bz < A. Let pu+ oz < 7 be a

valid inequality that is facet defining F of Py (G, K,S). Suppose that F géE C
F = {(u,z) € Pst(G,K,S) : uu + oz = 7}. To prove that FggE is a facet of
Pe(G, K,S), we need to show that there exist p € R and v € RXkex(We=1)) guch
that (u,0) = p(a, B) +vM.

We first show that pus = 0 for all s € S. Consider a slot § € S, and a solution
S48 — (U148, §148) such that

select a subset of nodes H'8 from H with |H8| = |H|2_1, and each pair of nodes
(Vs Ukt s) € H'8 are not linked in the conflict graph HZ and ¢ {s,x +1,...,s}

for each vy, € HMS

for each pair of demand £ and slot s with vy, € H 148 " we select slot s = s as last
slot for demand k,

for each demand k; € K\ H'® with i € {1,...,|K|}, we select the smallest slot index
s, in the set of slots ]}48 given by

0% = [ () Awk sk, — wi} U {sk, + wr 53\ {808 + wr, — 1),
kjeDl®
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where D}® = {k; € {k1,....,ki_1} U H™ : E(py,) N E(px,) # 0}. This guarantees
that

{8k, —wi, + 1,88, } N {sg; — w; +1,..., 58, } = 0 for each k; € D},

and § ¢ {sy, —wk, + 1,..., s, } (slot assignment constraint taking into account the

possibility of adding slot 5 in the set of used slots U'48).

We let S,ifg = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

let U8 be the set of slots used in S such that for each demand k and last slot

s € Si® and ¢ € {sy —wy + 1, ..., s}, we have s’ € U8,

S8 is clearly feasible for the SA problem. Hence, the corresponding incidence
~ J'E
vector (uS'™, 25'"") belongs to F}I}IS . Then consider the solution S149 = (U149, §149)

obtained from S'*® by adding slot 5 as an used slot in U*? without modifying the

5148

last slots assigned to the demands K in which remain the same in solution

S je., 5,148 = S,i49 for each demand k € K. S is clearly feasible for the SA

~ J'E
problem. Hence, the corresponding incidence vector (u 149, 28 149) belongs to ng .
Hence, solutions S48 and S satisfy equation pu 4+ 0z = 7. We then obtain that
u8148 + 0_28148 _ Mu3149 +

149 148 148
25 :uus +02°

0 o o + ps.

It follows that uz = 0.

In a similar way, we can show that
s = 0, for all slots § € S.

Let show that o% = 0 for all k € K and s € {wy, ..., 3} with v s ¢ H.
Consider a demand k in K and a slot s’ in {wy,..., 5} with vy ¢ H. Let S0 =
(U130, §150) be the solution given by

select a subset of nodes H' from H with |[H'%0| = |H|2_1, and each pair of nodes
(U5, Ukt s7) € H'0 are not linked in the conflict graph H'Z. |

for each pair of demand £ and slot s with vy, € H 150 " we select slot s, = s as last
slot for demand k,

for each demand k; € K\ H'® with i € {1,...,|K|}, we select the smallest slot index
sk, in the set of slots Ii150 given by

0 = ﬂ {wis ooy 58, —wi, FU{sk, +w,, ..., SH N [{wg,, .., 8" —wp }U{s" +wy,, ..., 5]
k; € D150

if B(py,) N E(py) # 0 or I}°° = ﬂ {weys oy S, — Wi, } U {5k, +wy,, ..., 5} if not,
k; €D

where D} = {k; € {k1,....,ki—1} UHY : E(py,) N E(py,) # 0}. This ensures that
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o {sg, —wp, + 1,81} N {sk; —wy, +1,...,5¢,} = 0 for each k; € D},

o and {sy, —wi, +1,...,s5,}N{s —wr+1,...,8} =0 if E(px,) N E(pr) # 0 ( we take

into account the possibility of adding slot s’ as a last slot in the selected last slots

S1%0 to route demand k in solution S'90).
We let S,g’o = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

a set of slots U0 are used in S such that for each demand k” and last slot s € S0

and s” € {sp» —wp> + 1,..., 537 }, we have 57 € U0,

S99 is clearly feasible for the problem. Hence, the corresponding incidence vector
(uS™, 25" belongs to F;IJISE. Then consider the solution S = (U!%! §151) ob-
tained from S by adding slot s’ as last slot to demand k without modifying the
last slots assigned to the demands K \ {k} in 80, i.e., S}7° = S}P! for each demand
K € K\ {k}, and S}°! = S}50 U {s'} for demand k. Solution S'®! is feasible for
the SA problem. The corresponding incidence vector (u‘s151 , 23151) belongs to FglsE

Hence, solutions S and S'! satisfy equation pu 4+ oz = 7. We then obtain that

150 150
S zS

i Yo . Mu3151 n 023151 _ uuslso n stwo n Uf/ n Z s

seyist \U150

- Z Hs-

§6U150\U151

Since pz = 0 for all slots § € S, it follows that Uf, =0.

In a similar way, we can show that
O‘LI:/ =0, for demand k and s’ € {wy, ..., 5} with vy, ¢ ¢ H.
We re-do the same procedure for all demand k" in K \ {k} such that
o =0, forall ¥ € K\ {k} and s € {wy,..., 5} with vy & H.

Let prove that af for all v, s € H are equivalent.

Consider a node vy ¢ in H. Let S152 = (U152 §152) be the solution given by

select a subset of nodes H'9? from H with |H'%?| = |H|T_1, and each pair of nodes

(Vs Ukt s7) € H'2 are not linked in the conflict graph JEIZgE,

for each pair of demand £ and slot s with vy, € H 152 " we select slot s, = s as last

slot for demand k,

229



¢) for each demand k; € K\ H'"2 with i € {1,...,|K|}, we select the smallest slot index

sk, in the set of slots IZ4152 given by
%2 = m {wiys ooy S8, —wi, FU sk, +wi, s oo, SH N {wi,, .o 8" —wi }U{s" 4wy, .., 53]
;€ D152
if E(pr,) N E(py) # 0 or I}°* = ﬂ {wi;, ooy 88, — Wi, } U {8, +wg,, ..., 5} if not,
k;eD}52

where D}%? = {k; € {k1,....ki_1} UH"? : E(py,) N E(py,) # 0}. As a result,
° {Ski —wg, +1, .., Sk:i} N {Sk]. — wg,; + 1, ...,Skj} = () for each k; e Di152’
o and {sy, —wy, +1,...,s5 }N{s —wp +1,...,'} =0 if E(pg,) NE(pr) # 0 ( we take

into account the possibility of adding slot s’ as a last slot in the selected last slots

S152 to route demand £’ in solution S152).

We let S,ifz = {1, } be the set of last slots assigned to demand k; with i € {1, ..., |K|}.

d) let U'®? be the set of slots used in S such that for each demand k” € K and last

slot sp» € S22 and 87 € {sp» —wpr + 1, ..., ) }, we have 57 € U2,

S152 ig clearly feasible for the problem. Hence, the corresponding incidence vec-
~ f'E . .
tor (u5, 25"™) belongs to Fy,® . Then consider the solution S = (U3, §153)

obtained from S'2 such that

a) the last slots assigned to the demands K\ {k, ¥’} in S'°2 remain the same in S1%3, i.e.,
5122 = S123 for each demand k” € K\ {k, k'}, where k is a demand with v 5 € H152

and s € 5,152 such that vy ¢ is not linked with any node vy o € H152 \ {vk.s}
b) and adding slot s’ as last slot to demand &/, i.e., $}?3 = S}72 U {s'} for demand &/,

c¢) and modifying the last slots assigned to demand k by adding a new last slot § and
removing the last slot s € 5’%52 with v, € H and vy ¢ H such that 5,153 =
(SE52\ {s}) U{5} for demand k such that {5 —wj+1,...,5}N{s' —wp +1,....5} =0
for each k' € K and s’ € SiP® with E(py,) N E(pw) # 0.

Solution S'53 is feasible for the SA problem. The corresponding incidence vector
~ g'E

(uslss,zslsg) belongs to F gs . Hence, solutions S™? and S'3 satisfy equation

pu + oz = 7. We then obtain that

/
—1—0’5/ —U§+O'§

+ Z Hs — Z Hos? -

s7 U183\ 152 §” U152\ 153

152 152 153 153 152 152
,uus +02° :uuS + 025 :,uus +02°
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Since 0¥ = 0 for v,z ¢ H, and pgs = 0 for all s” € S, it follows that o¥ = o¥.

S

Consequently, we obtain that af =pforall v, s € H.
By (5.9), we know that

ok = Vkl’s/, for all ¥’ € K and s’ € {1,...,wp — 1}.
We then conclude that ps = 0 for each slot s € S, and

AR it s e {1, ., wy — 11,

Os =3\p ika’,S€H7
0 otherwise,
As a consequence, we have (u,0) = p(a, f) +yM as desired. O

In the next section, we will derive some symmetry breaking inequalities for the

SA subproblem in which some symmetrical solutions may appeared.

5.5 Symmetry-Breaking Inequalities

In this section, we address some symmetry issues that can appear when solving the
SA problem.

Proposition 5.5.1. We ensure that for all slot s € {1,...,5 — 1}
Us — Ugy1 > 0, (5.14)

which means that a slot s + 1 can be used if and only if slot s is used.

Similar idea was proposed by Mendez-Diaz et al. [69][70] to break the symmetry
for the vertex coloring problem.

To strengthen inequality (5.14)), we propose the following inequalities.

Proposition 5.5.2. Consider a slot s € {1,...,5 — 1}. Then,

min(s+wg—1,3) min(s+wg,3)
)RS SIELENES Shb St LS AN
keK s'=s keK  s'=s+1
Similar idea was proposed by Friedman [40]. However, the coefficient 21KI=k can

provoques some numerical intractabilities for the computer machine [§]. For this,

we introduce the following inequality.
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Proposition 5.5.3. We ensure that for all slot s € {1,...,5 — 1}

min(st+wg—1,5) min(s+wy,3)
DD SIS S St 310
keK s'=s keK s'=s+1

which means that the number of intervals of contiguous slots allocated which cover
slot s + 1 (cardinality of slot-usage) cannot be greater than the number of channels

allocated which cover slot s.

Similar idea was proposed by Mendez-Diaz et al. [69][70] to break the symmetry
for the vertex coloring problem. Our inequalities and those of Mendez-Diaz et al.

[69][70] differ in their right and left hand sides.
Proposition 5.5.4. Due to inequality (5.14), we ensure that for all k € K, and s° €
{1,....,5—1} and s € {s%, ..., 3}

min(s+wg—1,5)

Z PRI (5.17)

s'=s

which means that for a slot S° € {1,...,5—1}, a demand k can allocate a slot in the

sub-spectrum {5, ..., 3} if slot SV is used.

Similar idea was proposed by Mendez-Diaz et al. [70] for the vertex coloring
problem. Inequalities (5.17)} and those of Mendez-Diaz et al. [70] differ in their left
hand sides.

5.6 Lower Bounds

Here we propose some lower bounds issus from the conflict graph Hy,. They can be

seen as a valid inequalities for the polytope Ps, (G, K, S).

Proposition 5.6.1. Consider an edge e € E. Then, the inequality

ZUS > Z wy, foralle € E, (5.18)

sES keK.

is valid for Psq(G, K, S).

Proof. Inequality (5.18) ensures that the number of slots used in the spectrum § is
greater than the flow over all the edges (the flow for an edge e is equal to the number

of slots that should be used over edge e). O

Inequality ((5.18) can be generalized as follows using the conflict graph Hg,.
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Proposition 5.6.2. Let C' be a clique in Hg,. Then, the inequality

D us > > wy, (5.19)

seS v eC

is valid for Ps(G, K,S).

Proof. 1t’s trivial given the definition of clique C in the conflict graph Hg, such that
we know in advance that the demands in C' share an edge in £ which means that
they cannot share a slot in S. Hence, the number of allocated slots »  cus is at
least equal to the number of requested slots of the demands in C'.

O

5.7 Upper Bounds

Let us introduce the following weighted conflict graph in which a positive integer

called weight is assigned to each node.

Definition 5.7.1. Consider the conflict graph H,, defined as follows. For each
demand k € K, consider a node vy in H,,. Two nodes vy and vy are linked by an
edge in H}, if and only if E(pr) N E(pr) # 0. Each node vy, 1is associated with a

positive weight which equals to the requested number of slots wy of demand k.

Definition 5.7.2. Let C be a clique in H,,. It’s known to be the mazximum weight
clique in Hy, if the total weight of the nodes in C (3_,, ccwk) defines the mazimum
total weight over all cliques in H),, i.e., kaec wg > ka/eC’ wy for all clique C’

Y T
in Hy,.

Based on these definitions, we introduce the following inequality and showing
that computing the upper bound for the SA is equivalent to solving the Maximum
Weighted Clique Problem (MWC) which is well known to be NP-hard problem [4].

Proposition 5.7.1. Let C' be the mazximum weighted clique in H,,. Then, the upper

bound is defined as follows
D ous <Y w, (5.20)
s€ES vpeC

Proof. 1t’s trivial given the definition of the maximum weighted clique C in the
conflict graph HJ, such that the maximum number of allocated slots > _qus is at

most equal to the number of requested slots of the demands in C. 0
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Inequality is not valid for Ps, (G, K, S) given that there exist some feasible
solutions in Py, (G, K, S) which violate inequality when for example a slot
s € S is used (i.e., us = 1) but there is no demand k& € K which use slot s (i.e.,
Y ohek Z?Zéﬁwrlg) zk). On the other hand, we ensure that all the optimization

algorithms developed to solve the MWC problem can be used to compute the upper
bound based on the conflict graph H,.

Based on inequalities (5.19)) and (5.20]), we conclude that the minimum number of

slots to be used by the set of demands K while satisfying the SA constraints, it’s
equal to the total weight of the maximum weighted clique in the conflict graph H;,.
Based on theoretical results presented in this chapter, we devise a Branch-and-
Bound (B&B) and Branch-and-Cut algorithms to solve the SA problem. Moreover,
we study the effectiveness of these algorithms and assess the impact of the valid

inequalities on the effectiveness of the Branch-and-Cut algorithm.

5.8 Branch-and-Cut Algorithm

5.8.1 Description

Here we describe the Branch-and-Cut algorithm. We consider the following linear

problem which can be seen as a strenghtned formulation for the compact formulation

E-0-E3

min » ~ u,, (5.21)

seS
k=0, forallke K and s e {1,...,wy — 1}, (5.22)
S
Z =1, forallkeK, (5.23)
S=w
min(s,s+wy—1)
Z Z 2 —u, <0, forallee E, and s €S, (5.24)
keK. s'=s
min(s+wg—1,3)
Ug — Z Z 2k <0, forallses, (5.25)
keK s'=s

>0, forallke K andseS, 5.26

0<us <1, forallseS, 5.27

2k e{0,1}, forallke K and s € S, 5.28

~—~~ o~~~
— ~—  ~— ~—

us € {0,1}, forall s €S. 5.29
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Inequality ensures that if slot s is not used by at least one demand, its
associated variable u; is forced to be equal to zero.

On the other hand, and to boost the performance of the B&B algorithm, we already
introduced several classes of valid inequalities to obtain tighter LP bounds. Based
on this, and at each iteration in a certain level of the B&B algorithm, one can
identify one or more than one violated inequality by the current fractional solution
for a given class of valid inequalities. Algorithm [f] summarizes the different steps of
the Branch-and-Cut algorithm taking into account additional valid inequalities for
a given class of valid inequalities.

Note that the separation procedures of the valid inequalities presented in this chapter
are still the same as those presented in chapter for the C-RSA. However, we
need to present the separation procedure for the interval-capacity-cover inequalities
as follows. Given a fractional solution (u,z). We first consider an interval
of contiguous slots I = [s;, s;] which is identified by generating two slots s; and s;
randomly in S with s; > s; + 2 maxgec g wi. The separation problem associated with
inequality is NP-hard [82] given that it consists in identifying a cover K* for
the interval I = [s;, s;], such that }, . Zi?zs#wk_l 2k > |K*| — 1. For this, we
use a greedy algorithm introduced by Nemhauser and Sigismondi [73] as follows. We
first select a demand k € K having the largest number of requested slot wy with
Zifzs#wrl zk > 0, and then set K* to K* = {k}. After that, we iteratively add
each demand k' € K \ K* to K* with >/

an edge with all the demands already added K*, until a cover K* is obtained for

ity 1 28 > 0 and demand k' share
the interval I over edge e with }, . wy > [I|. We further derive a minimal cover
from the cover K* by deleting each demand k € K* if Zk’ef{*\{k} wy < |I|. We
then add inequality (5.10) induced by the minimal cover K* for the interval I if it

is violated, i.e., we add the following valid inequality to the current LP

y
> i: 25 <|K*) - 1.

keK* s'=sitwg—1
5.8.2 Primal Heuristic

Let us present now a primal heuristic useful to boost the performance of the Branch-
and-Cut algorithm. It is based on a hybrid method between a local search algorithm
and a greedy-algorithm. Given an optimal fractional solution (@, Zz) in a certain
node of the B&C tree, it consists in constructing an integral solution and ”feasi-
ble” if possible from this fractional solution. For this, we first use a local search

algorithm to generate at each iteration a sequence of demands L numeroted with
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Algorithm 6: Branch-and-Cut Algorithm for the SA

=

N

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Data: An undirected, loopless, and connected graph G = (V, E), a
spectrum S, a multi-set K of demands, and a given class of valid
inequality

Result: Optimal solution for the SA problem

Stop= FALSE;

while STOP==FALSFE do

Solve the linear program LP of the SA;

Let (u*, z*) be the optimal solution of LP;

if there exist inequalities from the given class that are violated by the

current solution (u*,z*) then
| Add them to LP ;

end

else

| STOP = TRUE;

end

end

Consider the optimal solution (u*,z*) of LP ;
if (u*,z*) is integer for the SA then

(u*, z*) is an optimal solution for the SA;

End of the Branch-and-Cut algorithm ;

end
else
Create two sub-problems by branching one some variables or constraints
end
for each sub-problem not yet solved do
‘ go to 2 ;
end

return the best optimal solution (u*, z*) for the SA;

236



L =12, .,|K| —1,|K|. Based on this sequence of demands, our greedy algo-
rithm selects a slot s for each demand &’ € L with 25/ = 0, while respecting the
non-overlapping constraint with the set of demands that precede demand %’ in the
list L (i.e., the demands 1,2, ..., k" — 1). However, if there does not exist such slot
s for demand k', we then select a slot s for demand &' € L with z¥ = 0 with
s € {wy, ..., 5} while respecting the non-overlapping constraint with the set of de-
mands that precede demand &’ in the list L. The complexity of this algorithm can
be bounded by O(|K| * [S| * log(|K])).

Afterwards, we compute the total number of slots in S used by the set of demands K
in the final solution S given by the greedy-algorithm (i.e., > g us). Our local search
algorithm generates a new sequence by doing some permutation of demands in the
last sequence of demands, if the value of the solution given by greedy-algorithm is
smaller than the value of the best solution found until the current iteration. Other-
wise, we stop the algorithm, and we give in output the best solution found during
our primal heuristic induced by the best sequence of demands having the smallest
value of the total number of slots in S used compared with the others generated

sequences.

5.9 Computational Study

5.9.1 Implementation’s Feature

We use C++ to implement the B&B and B&C algorithms under Linux using the
”Solving Constraint Integer Programs” framework (Scip 6.0.2) such that Cplex 12.9
is used as LP solver. These have also been tested on LIMOS high-performance server
with a memory size limited to 64 Gb while benefiting from parallelism by activating
8 threads, and with a CPU time limited to 5 hours (18000 s). We use the same
graphs presented in Table and the same instances used in the section [3.2.2]

5.9.2 Computational Results

Preliminary results show that introducing some families of valid inequalities al-
lows solving several instances to optimality. Moreover, they enable reducing the
average number of nodes in the B&C tree, and also the average CPU time for sev-
eral instances. On the other hand, the results show that the odd-hole inequalities
and are efficient compared with those of clique-based inequalities ,
, and cover-based inequalities . As a result, their separation is performed
along with the B&C algorithm in the following order
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a) interval-odd-hole inequalities (2.40)),

b) slot-assignment-odd-hole inequalities (2.44)),

c) interval-clique inequalities ([2.43)),
d) slot-assignment-clique inequalities ([2.43)),
e) interval-capacity-cover inequalities ([5.10]).

We also consider the valid inequalities introduced previously that are shown
to be as a precomputed lower bounds for the SA problem. They can be separated
as follows. For each demand k € K, we use a greedy algorithm introduced by
Nemhauser and Sigismondi [73] to generate a maximum clique in Hg, containning
demand k. We first set C* to C¥ = {k}. After that, we iteratively add each demand
kK e K\ C* to C* such that demand &’ must share an edge with all the demands
already generated in C*. We further add inequality induced by clique C* for

demand k to the compact formulation (5.1))-(5.8])

Zus > Z W -

s€S k' eCk

Based on this, we provide a comparative study between the B&B (without additional
valid inequalities) and the B&C (with additional valid inequalities) algorithms. Our
objective in this study is to show the efficiency of the inequalities we have introduced
for solving the SA problem. We present some computational results using several in-
stances with a number of demand ranges in {10, 20, 30, 40, 50, 100, 150, 200, 250, 300}
and § up to 320 slots. We use two types of topologies: real, and realistic ones from
SND-LIB already described in Table We first run our B&C algorithm with
SCIP in which our valid inequalities are used, and all the Scip’s internal cuts are
deactivated. We call this run Own_B&C_SCIP. Then, we run the B&C algorithm
with SCIP, and activating all the internal cuts we had deactivated prior in run 1.
We call this run B&B_SCIP. Tables and below report the results obtained
for the two runs. For each run and each instance, we report the number of nodes in
B&C tree (Nbr_Nd), the optimality gap (Gap), the number of violated inequalities
added during the algorithm (Nbr_Cuts), and the total CPU Time (TT) in seconds.
Finally, notice that each line of each table and corresponds to the average
results of 4 instances.

The results show that Own_B&C_SCIP is able to solve several instances to optimal-
ity that are not solved to optimality when using the B&B_SCIP even if Scip uses

its proper cuts. Furthermore, we noticed that our valid inequalties allow solving to
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optimality more instances than B&B_SCIP. Also, they enable reducing the average
number of nodes in the B&C tree for several instances such that there exist some
cases that we are able to solve some instances in the root of the B&C tree which is
not the case when using the B&B. On the other hand, and looking at the instances
that are not solved to optimality (i.e., gap > 0,00), adding valid inequalities de-
creases the average gap for several instances and much more for the large instances
with a number of demands |K| > 150. However, there exist a few instances very rare,
for example the triplet (German, 300, 320), in which adding valid inequalities does
not improve the results of the B&B algorithm. Based on these results, we ensure
that using the valid inequalities allows obtaining tighter LP bounds and improve the
effectiveness of the B&B algorithm such that the B&C algorithm is able to beat the
B&B algorithm even if Scip use its proper cuts that are shown to be very efficient

for another optimization problems studied in the literature.

5.10 Concluding Remarks

In this chapter, we have studied the Spectrum Assignment sub-problem. We have
introduced an integer linear programming compact formulation, and further investi-
gated the facial structure of the associated polyhedron. Moreover, we have derived
several valid inequalities that are facet-defining under sufficient conditions. Using
the polyhedral results and the separation procedures, we have devised a Branch-
and-Cut (BC) algorithm to solve the problem. We have also presented experimental
results. The results have shown the effectiveness of the valid inequalities such that
the B&C algorithm is shown to be very performant for solving large-scale instances
of the problem. It could be very interesting to study the impact of the symmetry

breaking inequalities on the performance of the Branch-and-Cut algorithm.
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Instances B&B_SCIP Own_B&C_SCIP
Topology | |K| | |S] Nbr_Nd | Gap TT Nbr_Nd | Gap | Nbr_Cuts TT
10 30 1 0,00 0,03 1 0,00 0 0,02
20 45 1 0,00 0,53 1 0,00 11 0,66
30 70 7 0,00 1,47 1 0,00 5 1,81
40 90 2,5 0,00 1,78 5 0,00 5 15,89
Gorman |20 | 110 1 0,00 | 0,87 1 0,00 2,5 9,34
100 | 140 1 0,00 12,92 1 0,00 6,25 90,94
150 | 210 1,75 0,00 43,22 1 0,00 0,75 118,59
200 | 260 1 0,00 176,01 9,5 0,00 2,5 992,34
250 | 320 21 0,00 380,74 9 0,00 12 2148,45
300 | 320 6 0,00 | 2584,40 1 0,00 1 100,62
10 15 1 0,00 0,02 1 0,00 0 0,01
20 40 2,5 0,00 1,83 1,5 0,00 0 0,53
30 30 4 0,00 2,92 2,25 0,00 3,75 4,14
40 | 70 45 0,00 | 2,13 28,5 0,00 32 16,01
Nefaog |20 | 80 9 0,00 | 447 475 0,00 19,25 12,61
100 | 120 14469 | 0,94 | 4552,24 509025 | 0,00 20,25 1565,48
150 | 160 10,75 | 0,00 | 215,01 66 0,00 6,5 841,26
200 | 210 37 0,00 | 986,26 23 0,00 2,75 2035,74
250 | 285 138 1 6535,05 397,5 0,00 3,75 7999,81
300 | 320 20,5 1,81 | 9932,57 27 1,02 25,5 12712,35
10 | 40 1 0,00 | 0,02 1 0,00 0,25 0,03
2 | 40 1 0,00 | 0,14 1 0,00 4 0,08
30 | 40 1 0,00 | 0,62 1 0,00 1 0,33
40 40 1 0,00 1,27 5,75 0,00 17,5 8,44
) 50 | 80 47625 | 0,00 | 34,36 3,75 0,00 10 7.17
Spain 100 | 80 169,5 0,97 4782,16 2359,5 1,09 17,75 4810,79
150 | 160 106,75 0,84 | 10722,14 59,5 0,28 37,5 8804,63
200 | 280 26 1,6 5866,57 652,75 1,20 50,5 5829,44
250 | 280 1 0,00 | 3444,44 25 0,00 21,75 6528,09
300 | 320 1,25 12,46 | 14696,38 15,25 5,43 127 17456,46

Table 5.1: Table of Comparison Between: B&B_SCIP Vs Own_B&C_SCIP Using
Real Graphs.
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Instances B&B_SCIP Own_B&C_SCIP
Topology | |K| | |S] Nbr_Nd | Gap TT Nbr_Nd | Gap | Nbr_Cuts TT
10 40 1 0,00 0,02 1 0,00 0 0,03
20 40 1 0,00 0,53 1 0,00 0 0,1
30 40 1 0,00 3,74 1 0,00 5,5 0,57
40 40 4 0,00 1,32 3 0,00 12,5 5,84
Piorod0 50 80 5 0,00 2,66 1,25 0,00 15,75 13,52
100 | 80 3 0,00 44,31 18,5 0,00 775 2769,13
150 | 160 56 1,95 | 9335,82 57 0,00 48,75 9169,93
200 | 280 1 0,14 4934,59 1,25 0,00 28,5 3023,14
250 | 280 1 0,00 | 3782,08 1 0,00 73,5 2580
300 | 320 4,25 0,18 | 10548,18 3,25 0,36 96 13502,49
10 80 1 0,00 0,04 1 0,00 0 0,06
20 40 1 0,00 0,08 1 0,00 0 0,14
30 40 2 0,00 3,52 1,25 0,00 12 6,11
40 | 80 45 0,00 | 4,43 1 0,00 0 3,82
indiags |20 | 160 1 0,00 | 764 9,25 0,00 7 67,06
100 | 240 13,5 1,55 | 13278,76 10,5 0,20 64,50 10572,62
150 | 400 8 4,71 18000 15 5,18 89 18000
200 | 280 1 10,58 | 13577,39 1,25 411 0,75 8531,99
250 | 280 1 1,45 18000 1 0,72 61 18000
300 | 320 1 1,8 16858,2 3 1,97 62,25 18000
10 | 40 1 0,00 | 0,08 1 0,00 0,50 0,17
2 | 40 1 0,00 | 0,04 1 0,00 0 0,09
30 | 40 1 0,00 | 0,36 1 0,00 0 0,47
40 80 6,75 0,00 11,91 5,50 0,00 26 18,12
Brainiey |20 | 120 9 0,00 | 2523 3 0,00 16,25 25,17
100 | 160 65 0,00 | 3297,48 6 0,00 35 1009,43
150 | 320 58,5 0,26 | 10284,04 4325 | 027 14825 | 12232,16
200 | 400 8 0,40 | 12172,23 1,67 0,36 45,67 18000
250 | 480 1 0,86 | 13492,92 1,67 0,33 52 18000
300 | 320 1 1,30 18000 1 0,32 11,50 18000

Table 5.2: Table of Comparison Between: B&B_SCIP Vs Own_B&C_SCIP Using
Realistic Graphs.
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Conclusion

In this thesis, we have studied the Constrained-Routing and Spectrum Assignment
(C-RSA) problem related to the dimensioning and designing of Spectrally Flexible
Optical Networks (SFONs). It’s well known to be NP-hard. The main aim of this
thesis was to provide a deep polyhedral investigation and design a cutting plane
method for the problem and handle large-scale instances.

First, we have proposed an integer linear programming formulation namely cut for-
mulation. We have investigated the related polytope defined by the convex hull of
all its solutions. Moreover, we have identified several classes of valid inequalities
for the polytope and studied their facial structure. We further have discussed their
separation problems. We have also proposed a primal heuristic to obtain tighter
primal bounds and enhance the resolution of the problem. These results are used
to devise a Branch-and-Cut (B&C) algorithm for the C-RSA problem, along with
some computational results are presented using two types of instances: random and
realistic ones with | K| up to 300 and |S| up to 320. They are composed of two types
of graphs (topologies): real graphs and realistic ones from SND-LIB with |V| up to
161 and |E| up to |166|. The results have shown the significant improvement allowed
by introducing the valid inequalities on obtaining tighter LP bounds and improving
the effectiveness of the B&C algorithm.

In the second part of thesis, we have discussed an extended formulation based on the
so-called path formulation. It can be seen as a reformulation of the cut formulation
using the so-called path variables. We have developed a column generation algorithm
to solve its linear relaxation. We have shown that the pricing problem is equivalent
to the resource-constrained shortest path problem, which is well known to be NP-
hard. For this, we have developed a pseudo-polynomial algorithm based on dynamic
programming enabled solving the pricing problem in polynomial time. Using this,
we have devised Branch-and-Price and Branch-and-Cut-and-Price algorithms. The
results show that the Branch-and-Cut-and-Price performs very well compared with

the Branch-and-Price. Hence, the significant impact and the power of the introduced
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valid inequalities allowed improving the effectiveness of the B&C&P algorithm. On
the other, we have presented a comparative study between the B&C, B&P, and
B&C&P algorithms. The results have shown that the B&C&P algorithm is able to
provide optimal solutions for several instances, which is not the case for the B&C
algorithm within the CPU time limit (5 hours). Moreover, both B&C and B&P
algorithms perform well. However, some instances are still difficult to solve with
both B&C, B&P and B&C&P algorithms. For this, some enhancements are further
investigated and integrated into our algorithms. They are based on a warm-start
algorithm using some metaheuristics, and a primal heuristic using a hybrid method
between a greedy algorithm and local search algorithm that is shown to be very use-
ful to obtain good primal bounds. Moreover, we introduce some symmetry-breaking
inequalities that allow avoiding the equivalents sub-problems in the different enu-
meration trees of B&C, B&P, and B&C&P algorithms.

Afterward, we have studied the Spectrum Assignment (SA) sub-problem when the
routing is trivial or a routing path is pre-selected for each demand. First, we have
presented a compact formulation for the SA problem. We have carried out an inves-
tigation of the associated polytope. Moreover, we have identified several valid in-
equalities for the polytope, some of them come from those that are already proposed
for the C-RSA. We have proved that they are facet defining under certain necessary
and sufficient conditions. They were further incorporated within a Branch-and-Cut
algorithm. The results have shown the efficiency of the valid inequalities allowed
enhancing the resolution of the SA problem. Hence, the Branch-and-Cut is shown
to be very performant compared with the Branch-and-Bound algorithm.

Finally, it would be interesting to further investigate a combination of the different
algorithms with some machine learning and reinforcement learning algorithms to

well manage the B&C, B&P, and B&C&P trees and particularly for
a) the node selection [27][36],
b) variable selection and branching rule [6][36],
c¢) column selection [39][111],
d) cut selection [54][110],

e) and provide a deeper comparative study between the algorithms [1].
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