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Abstract

Hydrogen is an essential energy carrier for a successful ecological and energy transition.
However, most hydrogen is produced by cracking hydrocarbons of fossil origin. Only 1% of
the hydrogen currently produced comes from the electrolysis of water. Hydrogen from elec-
trolysis is too expensive to produce. The objective of this thesis is to study electrogenerated
bubbles in order to identify microfluidic aspects that could contribute to the improvement
of water electrolysis. Bubbles act as an electrical insulator. By covering the electrode, they
reduce the efficiency of electrolysis. Therefore, once they nucleate, they must quickly detach
from the electrode. There is currently no consensus on the phenomena influencing the
growth and detachment of bubbles at the microfluidic scale. Among others, there are still
many uncertainties on how the wettability of the electrodes, and the Marangoni effect of
thermal or solutal origin influence the nucleation, growth and detachment of bubbles. To
this end, the mathematical and numerical basis for the simulation of a two-phase fluid was
reviewed. In order to study such a phenomenon numerically, it is necessary to be able to
simulate the surface tension variations along a liquid-gas interface, to integrate the mass
transfer across the interface from the dissolved species present in the electrolyte to the
gas phase, and to take into account the moving contact line. The use of the continuous
surface force (CSF) model in the volume of fluid (VOF) framework is known to introduce
non-physical velocities, called parasitic currents. The use of an alternative model based
on the height function (HF) approach has been developed and tested. Its use limits the
spurious currents and makes the VOF methodology suitable for the study of Marangoni
currents at the interface of an electrogenerated bubble. A correlation for determining the
growth rate of a bubble by integrating the Marangoni currents and based on the penetration
theory was developed and compared to the Epstein-Plesset relation. A dimensionless study
was conducted to relate the Sherwood number representing interfacial mass transfer to the
Marangoni number. There are too many unknowns to draw definitive conclusions. However,
the implementation of a contact line model in the numerical model could remove many
uncertainties. The work done in this thesis to develop a holistic model is a first step towards
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using an inverse problem to determine the unknowns that need to be removed to optimise
bubble detachment.

Résumé
L’hydrogène est un vecteur énergétique essentiel pour réussir la transition écologique et
énergétique. Cependant, la majeure partie de l’hydrogène est produite par le craquage
d’hydrocarbures d’origine fossile. Seul 1% de l’hydrogène actuellement produit provient de
l’électrolyse de l’eau. L’hydrogène issu de l’électrolyse est trop cher à produire. L’objectif de
cette thèse est d’étudier les bulles électrogénérées afin d’identifier les aspects microfluidiques
qui pourraient contribuer à l’amélioration de l’électrolyse de l’eau. Les bulles agissent comme
un isolant électrique. En recouvrant l’électrode, elles réduisent l’efficacité de l’électrolyse.
Par conséquent, après leur nucléation, elles doivent se détacher rapidement de l’électrode.
Il n’existe actuellement aucun consensus sur les phénomènes influençant la croissance
et le détachement des bulles à l’échelle microfluidique. Entre autres, il existe encore de
nombreuses incertitudes sur la façon dont la mouillabilité des électrodes, et l’effet Marangoni
d’origine thermique ou solutale influencent la nucléation, la croissance et le détachement
des bulles. Dans ce but, les bases mathématiques et numériques nécessaires à la simulation
d’un fluide diphasique ont été passées en revue. Afin d’étudier numériquement un tel
phénomène, il est nécessaire de pouvoir simuler les variations de tension superficielle le long
d’une interface liquide-gaz, d’intégrer le transfert de masse à travers l’interface des espèces
dissoutes présentes dans l’électrolyte vers la phase gazeuse, et de prendre en compte la ligne
de contact mobile. L’utilisation d’un modèle CSF (continuum surface force) dans le cadre
du VOF (Volume of fluid) est connue pour introduire des vitesses non physiques, appelées
courants parasites. L’utilisation d’un modèle alternatif basé sur l’approche des fonctions de
hauteur a été développée et testée. Son utilisation limite les courants parasites et rend la
méthodologie VOF adaptée à l’étude des courants de Marangoni à l’interface d’une bulle
électrogénérée. Une corrélation permettant de déterminer le taux de croissance d’une bulle en
intégrant les courants de Marangoni et basée sur la théorie de la pénétration a été développée
et comparée à la relation de Epstein-Plesset. Une étude sans dimension a été menée pour
relier le nombre de Sherwood représentant le transfert de masse interfacial au nombre
de Marangoni. Il y a trop d’inconnues pour tirer des conclusions définitives. Cependant,
l’implémentation d’un modèle de ligne de contact dans le modèle numérique pourrait lever
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de nombreuses incertitudes. Le travail effectué dans cette thèse pour développer un modèle
holistique est un premier pas vers l’utilisation d’un problème inverse pour déterminer les
inconnues à lever pour optimiser le détachement des bulles.
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Nomenclature

GREC

λelec electrical conductivity [ S · m−1]

α volume fraction

δ1 diffusion layer thickness [m]

ϵ void ratio

ηcathode anode overpotential [V]

ηcathode cathode overpotential [V]

γ surface tension [N · m−1]

κ curvature [m−1]

λ thermal conductivity [W · m−1 · K−1]

ν kinematic viscosity [m2 · s−1]

Φ electric potential [V]

ΦB current efficiency

ρ density [kg · m−3]

ρg mass density of the gas [kg · m−3]

Θ bubble coverage
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ζd supersaturation degree

ζr saturation ratio

ROMAN

ṁ interfacial mass transfer rate [kg · s−1 · m−2]

ṁB growth rate [kg · s−1]

ṁH2 rate of dihydrogen production [kg · s−1]

Ṅb rate of dissolved gas transported to the bubble [mol · s−1]

AI interfacial area [m2]

ce dissolved gas concentration at electrode [mol · m−3]

cp heat capacity [J · kg−1 · K−1]

cbulk bulk concentration [mol · m−3]

csat saturation concentration [mol · m−3]

D diffusion coefficient [m2 · s−1]

Dconv Diffusion coefficient chaotic motion [m2 · s−1]

DH2 Diffusion of H2 in electrolyte [m2 · s−1]

Dth thermal diffusivity [m2 · s−1]

F Faraday constant [C · mol−1]

fG gas evolution efficiency

H Henry’s constant [N · m · mol−1]

helectrolyte thickness of the electrolyte [m]
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J material flow density [mol · m2 · s−1]

j current density [A · m−2]

javg average current density [A · m−2]

jlim limiting current density [A · m−2]

k mass transfert coefficient [m · s−1]

kB Boltzmann constant [J · K−1]

kb bubble induced mass transfert coefficient [m · s−1]

kdiff diffusion induced mass transfert coefficient [m · s−1]

Mg molar mass of gas [kg · mol−1]

MH2 molar mass of dihydrogenn [kg · mol−1]

pb pressure inside the bubble [N · m−2]

pe pressure in the electrolyte [N · m−2]

R bubble radius [m]

Rc critical radius [m]

Rg universal gas constant [J · K−1 · mol−1]

Relectrolyte resistance of the electrolyte [Ω]

Rohm ohmic resistance [Ω]

Sbubble surface covered bubble [m2]

Selec surface area of the electrode [m2]

t duration of the electrolysis [s]
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tc contact time [s]

tr average residence time [s]

Ucell voltage of the electrolysis cell [V]

V bubble volume [m3]

W work [N · m]

welec energy required for the gas to form [J]

Y mass fraction
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Introduction
1

This thesis is the subject of a joint agreement between the University of Canterbury and
the University of South Brittany. The subject is "Study of electrogenerated two-phase and
microfluidic flows". It follows Damien LE BIDEAU’s ADEME (Environment and Energy
Management Agency) thesis which concerned the study of two-phase electrolysis for the
improvement of hydrogen production. While Damien Le Bideau’s thesis focused on macro-
scopic parameters at the scale of an electrolyzer, the aim of this thesis is to investigate
the phenomena involved at the microfluidic scale in the production of electrogenerated
bubbles.

The challenge of the XXI century is to make a successful ecological and energy transition
from a world vision where energy resources are abundant and growth is unlimited to a world
where international tensions to acquire the remaining resources are increasingly felt and
where ecological constraints such as global warming are jeopardizing human development.

There are at least three main areas of research that can influence the success of the energy
transition. The reduction of energy consumption in buildings and industry, the improvement
of renewable energy resources, and the improvement of energy storage.

One of the main obstacles to the use of renewable energies are the spatial and temporal con-
straints related to their production. For example, the day-night cycles impose on photovoltaic
fields a production during the day that reaches its peak at noon. This production is not in
phase with consumption. Thus, the challenge here is to succeed in storing this energy during
the production peaks and to restore it during the consumption peaks. As energy production
is intermittent, its integration into the electricity grid cannot be done effectively. National
electricity grids are not designed to receive large-scale intermittent electricity production.
Production must be in line with consumption in order for the network to remain stable.

It is for this reason that the storage of the electricity produced is necessary, in order to be able
to produce energy according to demand. Some of the main energy storage technologies are as
follows : supracondensator (storage time around 1 second), battery (storage time around a
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week), "Pumped Storage Power Plants" (unlimited storage time, but storage capacity limited,
depends on the capacity of the water reservoirs available in the country), and "Power to
Gas" (P2G). Regarding the inter-seasonal cycles, we observe that consumption decreases
in summer while photovoltaic production increases and vice versa in winter. Batteries
are not adapted to store energy over such long periods. The P2G usually refers to the
combined process of producing dihydrogen with the electrolysis of water from electricity
from renewable energies and then methane from dihydrogen production using the Sabatier
reaction [Gruber et al., 2016]. The storage capacity is potentially unlimited, and the storage
time is more than one month. The problem of self-discharge that we observe in batteries
does not arise in the case of hydrogen. The properties of hydrogen are both an advantage
and a disadvantage. Indeed, the amount of energy produced by the combustion of one
kilogram of hydrogen is equivalent to that of about 3 kilograms of diesel, but the density of
hydrogen at atmospheric pressure is extremely low compared to other fuels. It must therefore
be compressed in order to store energy in an acceptable volume. A pressure of about 700
bar is required to store it in liquid form. This can lead to the transformation of hydrogen
into another more easily storable gas such as methane or ammonia, but results in a loss of
overall energy efficiency due to the additional transformation. The efficiency of electricity
production with hydrogen is 35%, and about 25% for methane transformed from hydrogen.
As far as the alkaline electrolysis process is concerned, it can be observed that no greenhouse
gases are present in the reaction products, which makes it a clean process (and the use only
produces water which does not directly contribute to global warming). Hydrogen can bring
flexibility to energy networks powered by intermittent renewable energies via energy storage,
promote self-consumption of renewable energies by providing a local storage solution, and
can also be considered for use as fuel to decarbonise the transport sector. However, the
energy required as well as the cost of a production unit make hydrogen produced by water
electrolysis currently expensive to be used as a large-scale storage solution. To sum up,
energy efficiency is too low to be an economically competitive solution.

In 2018, the production of hydrogen amounted to 115 million tonnes worldwide, of which 70
million tonnes in pure form was used for petroleum refining and the production of ammonia
for the production of fertilisers and explosives, and 45 million tonnes was used in industry
without prior separation from other gases [IEA, 2019]. Most of it is obtained via the cracking
of hydrocarbons of fossil origin. The products of these reactions are therefore hydrogen and
CO2. The production of this hydrogen contributes therefore to greenhouse gas emissions.
The electrolysis of water makes it possible to obtain hydrogen and oxygen of high purity.
However, its cost, which is about twice as high as that of natural gas reforming, limits its field
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of application. Currently only 1% of hydrogen production is supplied by water electrolysis.
The production of hydrogen produces 830 million tonnes of CO2 per year or 2% of total
world emissions. An example of the application of electrolysis is the Swedish "Hybrit" steel
production project. By using "green hydrogen" as an ingredient and for heat production the
Hybrit project produces only 25 kg of CO2 per tonne of steel instead of 1850 kg. However, to
produce the equivalent of current hydrogen world production through electrolysis would
require an additional 3600 TWh of electricity, which is about the European Union’s electricity
production or 13.5% of the world’s electricity. Thus, there are many issues at stake.

The global project in which this thesis is integrated will support the design of new generation
electrolyzers and fuel cells. The aim is to allow greater production capacity of dihydrogen
(average current density 1 [A · m−2] instead of 0.5 [A · m−2] currently) and a cell voltage of
2[V] i.e. an energy cost of hydrogen produced around 52 [kWh.kg−1] of H2 instead of 55 to
60[kWh.kg−1] currently. The figures quoted here are the European PAA H2020 FCH2 figures
for 2017 (Game changer Water Electrolyser) and of 2018 for the large production water
electrolyser . These European PAA’s serve as references for the ambitions of the Brittany
region.

The aim would be to give to the Brittany region an industrial and technological development
path combining the arrival of new mechanical (3D printers) and electrical (pulsed processes)
technologies in the field of sustainable energy based on hydrogen. In addition to the ethical
aspects linked to energy sobriety and therefore innovative technological development, the
economy and therefore employment, this path of progress is particularly sensitive for the
region which must improve the robustness of its electrical distribution. The IRDL (Institut
de Recherche Dupuy de Lôme) is in contact with off-shore wind turbine companies (Saint-
Brieuc, Ailes Marines), (Groix-Belle Ile and EOLFI), hydroliennes (Naval Group, Naval
Energie, SABELLA), river turbines (Guinard Energie), Photovoltaic (roof of the base of K2
submarines in Lorient with EOLFI). All these Brittany companies have a need of storage
solution or conversion. Intermittent energies must be stored to ease the concerns of EDF
(Électricité de France S.A., French multinationnal electric company), the French electricity
supplier who claims to be "at the end of the network". At the same time Morbihan Energie
acquired in 2017 a hydrogen station for power HYUNDAI cars. The concern is the price of
these acquisitions: 250 kCfor 2 kg/day of "green H2 product".
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Electrogenerated bubbles and
their impact on the
electrochemical process

2

The objective of this first part is to gather knowledge on how the bubbles that are produced
during the electrolytic process can affect its efficiency. This thesis focuses on the microfluidic
aspect and therefore only briefly addresses the influence of macroscopic aspects. The reader
interested in research on larger scale aspects to improve water electrolysis can refer to
the review by Wang et al. [Wang et al., 2014]. There is of course a link between what
happens at the bubble scale and the electrode scale. First, it is necessary to understand
the basic functioning of electrolysis and then to understand the factors that influence it,
by recalling the content of the work that has been done on electrolysis in the past years.
This first step will lead to a detailed study of the mechanisms involved in the nucleation,
growth and detachment of electrogenerated bubbles. This second step introduces the need
to have a better understanding of the transport of species in the vicinity of the bubble and
the interfacial mass transfer that drives the growth of the bubbles. The last section takes
into account all of the micro-fluidic phenomena suspected of influencing the development of
bubbles.

This first part allows us to identify the problematic of the study, and is a prerequisite to
identify the needs that will allow us to carry out a numerical study of an electrogenerated
bubble.

1 The electrolysis process

The history of the electrolysis process begins in 1785 when Martinus van Marum’s static
electricity generator was used to reduce tin and zinc from their salt. The history of water
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electrolysis began in 1800 when William Nicholson and Anthony Carlisle succeeded in
breaking down water into hydrogen and oxygen. It was not until 1836 that Michael Faraday
published his two laws of electrolysis and established the terminology associated with
electrolysis (anode, cathode, electrolyte, etc.). In order to improve the efficiency of the
electrolysis process, it is necessary to recall its basic principles and to know the factors that
hinder its performance.

1.1 Influence of voltage and current density on process efficiency

The products of the electrolysis reaction of water are in gaseous form, which makes this
process a two-phase system. The advantage of two-phase systems is that they promote mass
transfer and heat transfer. Whatever the type of electrolysis studied, alkaline electrolysis
of water, acid electrolysis, high temperature electrolysis, they work on the same principle.
A voltage is imposed between two electrodes located in an electrolyte (liquid or solid).
The energy supplied via electricity causes an oxidation at the anode and a reduction at
the cathode. What differs between these technologies is the half-reactions and the charge
carrier.

In order to understand how the efficiency of the electrolysis process is reduced by the same
bubbles whose production is its purpose, it is advisable to introduce here the notions that
allow to describe its functioning, taking as an example the electrolysis of water.

Energy required
By reducing the energy required to produce hydrogen, the efficiency of the process is
improved. The energy required for the gas to form is governed by the following equation:

welec =
∫ t

0
UcellIdt =

∫ t

0
UcelljSelecdt (2.1)

where welec is the energy required for the gas to form in [J], Ucell is the voltage of the
electrolysis cell in [V], j the average current density in [A · m−2], Selec is the surface area of
the electrode in [m2], t is the the duration of the electrolysis [s]. Taking into account the
previous equation, this amount of energy can be reduced by decreasing the voltage across
the cell, or the current density.
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The current density
The current density is an extensive quantity (it is a flow of charges) which can be defined
at any point of the electrochemical system, i.e. at the surface of the electrodes, but also in
the electrolytic medium. The current density is directly related to the amount of hydrogen
produced via Faraday’s law. The rate of dihydrogen production ṁH2 in [kg · s−1] at the
electrode can be expressed by the following equation:

ṁH2 = j Selec

2 F
MH2 (2.2)

where F is the Faraday constant in [C · mol−1], MH2 is the molar mass of dihydrogen in
[kg · mol−1].

Thus, it is therefore not advisable to decrease the current density, otherwise the hydrogen
production will be reduced. With the current density out of the way, it remains to study the
influence of the voltage.

Difference between theoretical and real cell voltage
The electrolysis of water entails a hydrogen gas release reaction on the cathode and an oxygen
gas release reaction on the anode, respectively. At a temperature of 25°C and an atmospheric
pressure of 1 atmosphere the reaction and standard equilibrium electrode potential E are in
an alkalyne electrolyte:

• Cathode : 2H2O + 2e− = H2 + 2OH− Eanode = −0.83V

• Anode : 2OH− = H2O + 1
2O2 + 2e− Ecathode = 0.4V

By combining the two half-reactions, the total reaction is obtained: H2O = H2 + 1
2O2

To obtain both gaseous emissions, a theoretical electrical voltage of Utheory = Eanode −
Ecathode = 1.23V must be applied between the two electrodes. However, in practice no
reaction occurs when the voltage is less than 1.6 − 1.7V . The practical voltage between the
electrodes is obtained from the following relationship:

Ucell = Utheory + |ηanode| + |ηcathode| + j ×
∑

Rohm (2.3)

Where
∑

Rohm is the total ohmic resistance, ηanode and ηcathode are the two reaction overpo-
tential at the anode and cathode, respectively.
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In the absence of a bubble, the ohmic resistance of the electrolyte can be written as:

Relectrolyte = helectrolyte

σ
(2.4)

where helectrolyte in [m] is the thickness of the electrolyte, and σ is the electrical conductivity in
[S · m−1]. As the bubbles appear, the bubbles act as an electrical insulator and this resistance
increases.

The overpotential can be defined as the difference between the theoretical thermodynamic
voltage required for the half-reaction to take place and the voltage observed experimentally.
It increases with growing current density, as described by the Tafel’s empirical equation
[Wang et al., 2014]:

η = a + b log(j) (2.5)

where boths a and b are Tafel constants. a depends on the properties and surface structure of
electrode materials.

There are two types of overpotential: the activation overpotential, and the concentration
overpotential.

Activation overpotential
The activation overpotential ηact represents the activation energy of the electrochemical
reaction taking place at the cathode and the anode. It is caused by the resistance against the
reaction at the electrolyte-electrode interface. This overpotential increases logarithmically
with the current density as shown in equation (2.5) and is dependent on the electrode
material used. To reduce this overpotential, it is possible to use a suitable electrocatalyst.
An electrocatalyst is a material that offers a low activation path for a given electrochemical
reaction. The catalytic activity depends on the electronic configuration of the catalyst and
the surface structure (nanometric, micrometric structure).

Concentration overpotential
The concentration overpotential can be caused either by a lack of reagent or too high
concentration of products. In the case of a concentration overpotential due to a high
concentration of product, the electrolyte close to the electrode quickly reaches the saturation
of the dissolved gas and largely exceeds it, which makes the electrolyte sursaturated. This
type of overpotential is easily measurable and has been studied in various publications by
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Vogt et al., Dukovic et al., as well as Gabrielli et al. [Vogt, 1990a; Dukovic and Tobias,
1987; Gabrielli et al., 1989]. The concentration overpotential is usually calculated by the
following equation:

ηconc = RgT

neF
ln
(

ce

csat

)
(2.6)

where ce is the dissolved gas concentration gas closest to the electrode in [mol · m−3], csat

is the saturation concentration of the dissolved gas at a pressure of 1 atm in [mol · m−3], Rg

is the universal gas constant in [J · mol−1 · K−1], T is the temperature, and ne is the number
of electrons transferred to form one gas molecule, ne = 2 for dihydrogen and ne = 4 for
dioxygen. Since ce varies with the distance from the adhering bubble, ce can be assimilated
to an average concentration of dissolved gas close to the electrodes and not covered by the
bubbles. Assuming that the number of moles of gas produced at the electrode by the reaction
per unit time and area is equal to that transported from the electrode to the bulk, the current
density can be expressed as a function of the concentration at the electrode:

j

neF
= k(ce − cbulk) (2.7)

cbulk is the concentration in the bulk [mol · m−3], and k is the mass transfert coefficient
in [m · s−1] describing the mass transfer of species near the electrode. The concentration
ce increases until it reaches a maximum at bubble nucleation. When the current density
becomes higher then the bubbles start to participate to the mass transfer. Knowing k ,j , cbulk,
ce can be estimated, which allows to calculate ηconc using equation (2.6). By combining the
two previous equations Vogt et al. obtain [Vogt, 1990a]:

ηconc = RgT

neF
ln
(

j

neFkcsat

+ cbulk

csat

)
(2.8)

Assuming a constant temperature, equation (2.8) shows that the value of this overpotential
is not only a function of the current density, but also of the bulk concentration and the flow
of the electrolyte.

Vogt et al. studied the overpotential for current densities from 1 to 104 A · m−2 [Vogt,
1990a]. The overpotential increases until current density reaches a value around 1000
A · m−2 where the mass transfer is so increased by the agitation of the bubbles that the
concentration of dissolved gas can no longer increase and thus the overpotential reaches
a plateau. Vogt et al. define two regimes, one controlled by macroconvection (convection
induced by the electrolyte flow) and the other controlled by microconvection (convection
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induced by the appearance of bubbles at the electrode). For currents density below 10
A · m−2, macroconvection determines the value of the concentration overpotential because
convection due to bubbles is minimal. Above 1000 A · m−2, microconvection determines the
value of the concentration overpotential.

In the case of a concentration overpotential due to a lack of reactants, the transfer of species
is limited at the electrode and the current density can no longer increase and reaches a limit
value jlim. In this case, the concentration overpotential can be expressed with the following
equation:

ηconc = RgT

neF
ln

(
1 − j

jlim

)
(2.9)

When the transfer of species becomes insufficient, the current density reaches a limit value.
The flux of consumption of species at the electrode becomes equal to the flux of their
transport. Thus, the current density can no longer increase. This limiting current density jlim

can be expressed by the following equation:

jlim = neFkcbulk (2.10)

1.2 Bubble effect, effect of the bubbles on current density and
overpotential

The energy required for the gas to form is proportional to the voltage as shown in equation
(2.1). The higher the voltage to be applied, the greater the energy to be supplied to produce
the same quantity of gas. For this reason, water electrolysis improvement technologies focus
on reducing the overpotentials η and the ohmic drop voltage (j×Rohm). The bubbles produced
during the electrolysis process have a direct impact on η and (j × Rohm). Understanding their
influence on these quantities allows to find a way to improve the electrolysis process.

Bubbles act as an electrical insulator
Generally speaking attached-bubbles are only produced at active sites on the electrode surface
where the gas molecules are supersaturated. Generally speaking, bubbles act as an electrical
insulator. Bubbles attached to the surface of the electrodes disturb current distribution and
isolate active sites from reaction ion during nucleation and growth preventing other bubbles
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from being produced. For an effective electrolysis process, the gas released must be promptly
removed from the active sites in order to provide more space for the gas release reaction.
Consequently, the fast elimination of these bubbles from the electrode is crucial to increase
process efficiency and allow the process to operate at higher currents density, which results
in higher production rates [Wang et al., 2014; Zeng and Zhang, 2010].

In our study we focus only on the bubbles attached to the surface, so we will briefly describe
the impact of bubbles dispersed in the bulk-electrolyte on the overall efficiency of the process.
When water electrolysis occurs, the bubbles are not quickly released from the electrolytic
system and coat the electrode area. The phenomenon is reported to lead to high reaction
overpotential and large ohmic voltage drop, and is commonly referred to as the bubble effect
[Vogt and Balzer, 2005; Vogt, 1980; Sides, 1986].

Influence of the bubbles on the void ratio
A first study by Sides and Tobias experimentally evaluated the effect of attached bubbles on
the conductivity of the electrolyte using insulating particles in contact with the electrode
[Sides and Tobias, 1982]. The experimental results obtained by using spherical insulating
particles simulating the shape of the bubbles showed the relationship between the electrical
conductivity and the void ratio ϵ, which represents the gas volume fraction of the electrolyte
mixture :

σ(ϵ)
σ(ϵ = 0) = 1 − ϵ

1 + 0.5 ∗ ϵ
(2.11)

This relationship is valid for ϵ < 0.5, and was later taken up by Vogt, and Sides et al. [Vogt,
1983a; Sides, 1986]. As the proportion of gas increases, the electrical conductivity decreases.
When the void ratio is higher than 0.5 this model loses its validity and another model called
constriction must be used [Sides and Tobias, 1982]. As shown by equation (2.4), a decrease
in electrical conductivity increases the resistance of the electrolyte closest to the electrode,
decreasing the efficiency of the process.

Main factors
A rigorous theoretical description of the electrical effects of attached bubbles taking into
account the nonuniform distribution of current density and gas supersaturation was led by
later by Dukovic et al. [Dukovic, 1987]. Their results come from the numerical calculation
of current density distributions around truncated spherical bubbles attached to an electrode.
These results show that the effect of attached bubbles on cell voltage depends on:
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• the number of bubbles per unit area of the electrode;

• the contact angles of the attached bubbles;

• the rate of the electrochemical reaction;

• the conductivity of the electrolyte as shown by a previous study [Sides and Tobias,
1982].

Links between overpotential, current density and bubble coverage
The overpotential is a function of the current density as shown by equation 2.5. Understand-
ing how the current density is distributed around the bubble helps to understand how the
overpotential is being impacted.

From their simulation, Dukovic et al. find that the bubbles attached to the electrodes
capture the dissolved gas produced by the electrochemical reaction, thereby decreasing the
concentration overpotential [Dukovic, 1987]. This decrease in concentration overpotential
predicted by calculation has been observed experimentally later by means of advanced
electrochemical techniques quantifying the effects of an isolated bubble generated on a
defect positioned at the edge of an electrode [Gabrielli et al., 1989].

Specifically, Dukovic and Tobias find that when the concentration overpotential is low and
the rate of electrochemical reaction is fast, the calculation indicates that the current density
is relatively lower at the anchor line of the bubble at the electrode [Dukovic, 1987].

Conversely, at the contact line between the bubble and the electrode, the capture of dissolved
gas by the bubble is greater and so is the current density. The depolarisation due to the
decrease in concentration overpotential can outweigh the effects of increased electrolyte
resistance and activation overpotential. When the electrochemical reaction rate is slow the
distribution of current lines is smoothed over the electrode and the current fluctuations at
the foot of the bubble are small.

According to their analysis, in order to take into account the effect of attached bubbles on
the activation overpotential and the concentration overpotential, the relationship between
current density and overpotential must be calculated using a real average current density
javg. They conclude that by considering only the attached bubbles, the impact of the ohmic
effect is small compared to the additional overpotential required for charge transfer with
part of the electrode surface masked by the bubbles, and that a good approximation of the
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Fig. 1: Definition of bubble coverage, the grey surface represents the normal projection of the bubble
on the electrode surface.

addition of tension due to attached bubbles can only be calculated by considering only the
surface coverage Θ they make.

However, it is important to remember that these conclusions were reached under the assump-
tion that the dissolved gas obeys a steady state of diffusion in the concentration boundary
layer.

1.3 The bubble coverage Θ

As pointed out in the previous paragraphs, the covering of the electrode by the bubbles is one
of the main parameters to study the influence of the overpotential on the overall efficiency.
Vogt studies this bubble coverage in more detail [Eigeldinger and Vogt, 2000; Vogt and
Balzer, 2005].

Definition
The bubble coverage of an electrode is the area of the electrode masked by all attached
bubbles.

Θ =
∑

Sbubble

Selec

(2.12)

where Sbubble is the area of the electrode masked by an attached bubble. A commonly used
definition for the fractionnal bubble coverage Θ is the fraction of the electrode area shaded
by normal projection of the bubbles on the electrode surface, Figure 1 . This is a reasonable
approximation of the surface actually in contact with the bubbles because the region under
an adherent bubble does not participate in the electrode’s reaction [Eigeldinger and Vogt,
2000].
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Theoretical relationship between bubble coverage and overpotential
The average current density javg can be estimated as the ratio of the intensity of the current I

applied to the electrodes to their surface exposed to the electrolyte S : javg = I
Selec

. By using
Tafel’s equation we obtain [Wang et al., 2014]:

η = a + b log
(

I

S

)
(2.13)

Since the fraction covered on the electrode surface is electrochemically inactive, the actual
current density jcov of the electrodes is higher than the nominal current density javg. It can
be estimated as a function of bubble coverage:

jcov = I

S(1 − Θ) (2.14)

A large bubble coverage reduces the effectiveness of the active area of the electrode. As a
result, jcov increases and η is also higher according to Equation 2.13 .

η = a + b log

(
I

S(1 − Θ)

)
= η + b log

(
javg

1 − Θ

)
(2.15)

As an example, Wang reports that in a typical device, the bubble coverage generates an
overpotential of 0.4 V ( current density of 300 mA.cm−2), and inexorably raises the energy
requirements for water electrolysis [Wang et al., 2014] . One of the usual ways to reduce
bubble coverage is to have a forced flow of electrolyte. Zhang and Zeng on a vertical electrode
studied the detachment of bubbles in a stagnant electrolyte and then with flow [Zhang and
Zeng, 2012]. Their results showed that for a flow with a Reynolds number of 2500 the
diameter of the bubbles was only slightly reduced.

Estimate
Vogt and Balzer give a relation allowing to obtain a first approximation of the bubble
coverage[Vogt and Balzer, 2005]:

Θ = 2.310−2(javg)0.3 (2.16)

This relationship in accordance with their observation is able to correlate the data points to a
good approximation.
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Parameters influencing bubble coverage
Since the bubbles grow on the electrode surface over a certain period of time, the screened
area is especially time dependent [Vogt, 2012]:

Θ = n

S

∫ tr

0
π

R2
r

tr

dt (2.17)

where n is the number of bubbles in contact with the electrode, tr is the average residence
time of the bubble on the electrode, and Rr is the bubble radius at t = tr. Vogt relates the
bubble coverage to the rate of gas produced, the average residence time of the bubbles and
the average volume of the bubbles when they leave. He demonstrates the interdependence of
these quantities. He establishes a semi-empirical relationship between the ratio of a nominal
current density I/S to the summit value of this nominal current density (I/S)su with the
bubble coverage [Vogt, 2012]:

I/S − j0

(I/S)su

= 3.08Θ1.5(1 − Θ)1.5 (2.18)

where j0 is an exchange current density only effective at small values of Θ only. According to
Vogt, the summit value of this nominal current density (I/S)su is mainly determined by the
surface condition and wettability of the electrode. Large values of (I/S)su are characteristic
of strong wettability and smooth surfaces.

The thermodynamic conditions (temperature, pressure) also play an important role in the
departure of bubbles and thus on the bubble coverage. Temperature decreases the density
of the gas, increases the partial pressure and decreases the solubility of the gas. Pressure
decreases the size of the bubbles and therefore the bubble coverage and temperature increases
it. In order to account for the influence of these thermodynamic parameters on bubble
coverage, Vogt developed the following relationship [Vogt, 2017]:

Θ = πR3
r

2 Vr

Rr
tr

R2 fGΦB
I/S

ne

RgT

F (p − ps)
(2.19)

where Vr is the bubble volume at t = tr, ΦB is the current efficiency, and fG is the gas
evolution efficiency and can be described as the portion of dissolved gas produced at the
electrode and participating in the growth of bubbles, with the remainder of the dissolved
gas dispersed in the bulk of the electrolyte. The above equation requires knowledge of the
temperature and pressure conditions near the electrode, but in addition to this the residence
time and radius of the bubbles. However, there is little data on the residence time and radius
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of bubbles, so it is difficult to use the above equation. What this equation highlights is that in
order to be able to describe bubble coverage it is necessary to have a better knowledge of the
nucleation, growth and departure of the bubbles from the electrode.

1.4 The gas evolution efficiency fG

fG a measure of electrolysis efficiency
The gas is produced at the electrode as a dissolved gas. This dissolved gas is transported
to the core of the electrolyte by diffusion and convection. Some of it participates in the
growth of bubbles. But the rest can leave the electrolysis cell without being captured by the
bubbles, as shown in Fig. 2. For this gas to participate in the germination of new bubbles,
its concentration must be sufficient. There are several competing mechanisms: absorption
and transport by the bubbles of the gas phase, and transport by diffusion and convection
within the electrolyte. To account for this phenomenon, a coefficient expressing the effective
gas production is defined. The gas evolution efficiency fG is the ratio between Ṅb and ·N
[Matsushima et al., 2009; Vogt, 1984a; Vogt, 2011a; Vogt, 2011c].

fG ≡
∫ Y

0 dṄb

Ṅ
(2.20)

where Ṅb is the rate of dissolved gas in [mol · s−1] transported from the electrode to the
bubbles attached to the electrode and participating in their formation by desorption from
the liquid phase into the gas phase and Ṅe is total rate of dissolved substance produced at
the electrode area and entering the electrolyte liquid. The distance Y from the electrode
in the normal direction, is considered equal to δ1 corresponding to the thickness of the
diffusion layer when the bubble average diameter d̄ exceed this diffusion layer thickness, and
Y = d̄ otherwise. The diffusion layer thickness defined in the vicinity of an electrode is the
distance over which the concentrations are different from their value in the bulk solution.
The definition of the thickness of this diffusion layer is arbitrary because the concentration
approaches asymptotically the value in the bulk solution

Bubbles population
A material balance allows us to evaluate the proportion of gas that passes from the electrode
to the core of the electrolyte in the form of dissolved gas. The amount of bubbles at the
electrode is necessary for the calculation of fG and the effects of the attached bubble layer on
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Fig. 2: Extract from [Vogt, 2011b], gas evolution efficiency

the cell voltage. Four parameters are used to represent the population of bubbles attached to
the electrode [Sillen, 1983]:

• the average bubble coverage Θ;

• the volume of gas contained in the attached bubbles per unit area ;

• the average equivalent radius of the attached bubbles ;

• the average number of bubbles per unit area;

Nucleation step is partly responsible for the number and position of bubbles attached to the
electrodes and the value of the dissolved gas concentration at the electrode. The nucleation
frequency fnuc, the coalescence frequency fcoal, and the detachment frequency fdet, allow to
establish the population balance of the bubbles. This population balance allows to describe
the layer of attached bubbles and the population of bubbles in the bulk. This balance is
established locally on the electrode:

dNb

dt
= fnuc − fcoal − fdet (2.21)

Influencing parameters and estimate
In his calculations Vogt emphasises the interrelation between fg and Θ. He establishes several
relations allowing fg to be expressed as a function of several parameters [Vogt, 2011c]:

• the surface of the electrode covered by the bubbles Θ;

1 The electrolysis process 23

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



• a Sherwood number Sh1 simulating the effect of mass transfer to the liquid bulk by
diffusion;

• Sherwood number Sh2 simulating the effect of mass transfer to adhering bubbles;

• the concentration profile in the diffusion layer;

• the average diameter of the bubbles at the time of their departure ddep.

An estimate of the normal concentration profile at the electrode over a distance δ1 can be
obtained from fG[Vogt, 2011c]:

c − cbulk

(ce − cbulk)fg=0
= 1 − y

δ1
− 2

3fG

[
1 −

(
y

δ1

)1.5
]

(2.22)

when y = 0 this relation can be simplified:

c − cbulk

(ce − cbulk)fg=0
= 1 − 2

3fG (2.23)

which coincides with the results of a previous work [Vogt, 1989]. Three models are
established. The first model assumes a linear concentration profile. For big bubbles Sh1 ≡
ddep

δ1
≥ 1.5:

fG =
(

1
3

Sh2
1

ΘSh2
+ 2

3

)−1

(2.24)

For small bubbles Sh1 ≡ ddep

δ1
≤ 1.5:

fG =
1/4 Sh1

ΘSh2

1 − Sh1
3

+ 2
3

−1

(2.25)

The second model assumes a more complex concentration profile taking into account equation
(2.22). For big bubbles Sh1 ≡ ddep

δ1
≥ 1.5:

fG =
(

1
3

Sh2
1

ΘSh2
+ 0.8

)−1

(2.26)

24 Chapter 2

Electrogenerated bubbles and their impact on the electrochemical pro-
cess

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



For small bubbles Sh1 ≡ ddep

δ1
≤ 1.5:

fG =
1 − Sh1

3
1/4 Sh1

ΘSh2
+ 2/3 − 0.145Sh1.5

1
(2.27)

In the third model the assumption of a constant Sh2 number is replaced by a relation obtained
from a sphere in an infinite solution, for big bubbles:

fG =
(

Sh12

6Θ + 0.8
)−1 [

1 + 2.036
(

Pe

Sh1

)0.8 (
1 − 2

3fG

)1.8]
(2.28)

For small bubbles :

fG =
1 − Sh1

1
3 + 1.53( P e

Sh1)0.8(1 − 2
3f 1.8

G )1/Sh1[1 − (1 − 2
3Sh1)2.8]

Sh1
8Θ + 2

3 − 0.145Sh1.5
1

(2.29)

where Pe is the Péclet number which is defined to be the ratio of the flow rate of advection
by the flow rate of diffusion. All three models are subject to assumptions about the diameter
of the bubbles at the time of detachment, their volume, the average concentration and the
concentration profile, but they give a better approximation of what was previously formulated
in the work of Vogt [Vogt, 1990b]. Although difficult to use as is, they highlight the need
to know the bubble coverage Θ and the bubble detachment diameter at the moment of the
departure ddep. Of the three models, a group of adimensional numbers influencing fG was
distinguished

(
Sh2

1 ΘSh2
−1
)
. The Sh1

Sh2 ratio accounts for the competition of the transport
phenomena. This ratio is itself dependent on the concentration profile. Vogt’s work thus
makes it possible to refine the overall view of the phenomena taking place in the boundary
layer in the presence of bubbles. But it also highlights the fact that a better knowledge of the
microfluidic phenomena around the bubble is necessary, hence motivating the work in this
thesis.

2 Bubble development

To sum up, the formation of hydrogen and oxygen bubbles affects electrical efficiency in
three different ways:
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• the dispersed bubbles in the bulk increase the bulk-electrolyte resistivity, based on the
same principle, the attached bubbles also increase the resistivity of the gas-electrolyte
mixture near the electrode ;

• the attached bubbles to the electrode area raise the overpotential by insulating parts of
the electrode surface and crowding the current into the remaining area;

• the attached bubbles modify the overpotential concentration by affecting the level of
gas supersaturation near the electrode (capture of dissolved gases).

It is therefore advisable to speed up the detachment of the bubbles from an electrolytic
system in order to improve its efficiency. To understand how to accelerate the detachment of
bubbles from the electrode, it is necessary to study the physical phenomena that cause their
nucleation, growth and detachment.

There are of course several ways to speed up electrolytic processes, for example by using
different types of electrode materials or by circulating the electrolytic fluid. A non-exhaustive
list of them is described in [Zeng and Zhang, 2010]. However, this study focuses on the
microfluidic aspects. This is why, it is necessaryto have a better knowledge of the main works
on nucleation, growth, and detachment of electrogenerated bubbles. The goal being to know
the phenomena related to their development and to have an overview of the models used to
describe it.

2.1 Nucleation

General principle
In a pure and homogeneous liquid, bubbles can form when overheating. The liquid undergoes
a phase change and the process is mainly controlled by the transfer of heat. In such a system,
the concentration gradient plays no role. Another process for generating bubbles is the
desorption of gas molecules from a liquid to a gas phase. This generation depends on the
rate of supersaturation and is essentially controlled by the concentration gradient assuming
that the heat gradient in the system is negligible [Jones et al., 1999]. A third type of bubble
generation is cavitation and can be caused by reducing the external pressure below the
vapour pressure of the pure liquid.

Another type of bubble generation is that driven by chemical processes such as electrolysis.
Upon supersaturation of the reduced (or oxidised) ions at the liquid-electrode interface, the
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molecular species produced is transformed into gas in the form of bubbles. This phenomenon
begins at specific sites on the electrode called "nucleation sites". These sites are often
imperfections, scratches, and grooves on the electrode surface. After the bubble detaches,
some of the gas remains trapped in these imperfections, which encourages the formation
of a new bubble. As the current density increases, the sites become more and more active,
allowing for an increased gas flow to the electrode. Low current density implies low
supersaturation, which in turn implies a low number of active sites. In addition to the current
density, the temperature and concentration gradients can be locally significant and control
the efficiency of the process. The heat in the system is due to the joule effect and the presence
of gas molecules is due to the chemical reaction. It should be noted as pointed out by Wang
that the theoretical electrical voltage Utheory is a function of temperature and may decrease
by increasing the electrolytic temperature [Wang et al., 2014]. So temperature can also
have an influence on the production of gas molecules. To account for the nucleation process
in the case of electrolysis, the three intensive variables temperature, concentration, and
pressure are to be considered. Although in most electrochemical applications the overall
system pressure can be considered equivalent to atmospheric pressure, at the microscopic
scale the pressure variation is to be taken into account. As reported by Tawfik and Diez if
the growth or detachment of bubbles focus attention in electrolysis publications, there is a
lack of information on nucleation and the prediction of their appearance [Tawfik and Diez,
2014].

Supersaturation
Lubetkin and Blackwell defined a saturation ratio ζr and the supersaturation degree ζd as
[Lubetkin and Blackwell, 1988] :

ζr = ce

cb

ζd = α − 1 (2.30)

where cb is the bulk concentration.

There is no direct experimental means of measuring the supersaturation degree near the
electrode surface. Temperature and interfacial tension are controlled parameters that depend
on the electrolysis conditions and the nature of the electrolyte. On the other hand, the rate
of supersaturation is linked to numerous variables such as the wettability of the electrodes,
the solubility of the gas, the transport of matter and the current density. The rate of
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supersaturation reached at the surface of the electrolyte is therefore a difficult parameter to
predict.

However, Lubetkin distinguishes two approaches for evaluating it [Lubetkin, 2002]. One
is theoretical and based on nucleation theory [Dapkus and Sides, 1986; Lubetkin and
Blackwell, 1988]. The other is experimental. From the kinetic parameters obtained ex-
perimentally, the supersaturation degree is deduced [Westerheide and Westwater, 1961;
Shibata, 1963].

Production and transport of dissolved gas
To know the degree of supersaturation, one needs to know the amount of dissolved gas
produced at the electrode and how it is transported. The number of moles of dissolved
gas generated at the electrode n can be estimated with Faraday’s law and is related to the
electrical current I(t) flowing through the electrodes:

n =
∫

I(t)dt

z F
(2.31)

Where z is the valency number of ions of the substance, and F = 9.648533 104[C · mol−1] is the
Faraday constant. The dissolved gas produced is then partially transported to the nucleation
site. A part of these molecules is transported into the bulk, another part contributes to the
growth of other bubbles, and the rest is involved in the nucleation process. Vogt reports on
the various mode of mass transfers involved [Vogt, 1990a]:

• micro-convection induced by gas bubbles forming and periodically detaching from the
electrode surface;

• forced or natural macro-convection of the electrolyte superimposed on the previous
micro-convection phenomenon;

• diffusion which is governed by Fick’s second law.

These modes act with an intensity that depends on the operating conditions. Vogt then
obtains a general expression of the concentration of the dissolved gas and makes it possible
to obtain an approximation in different regions of the electrolytic device [Vogt, 1990a].
However, it does not allow to deduce a profile of the concentration gradient close to the
wall.

28 Chapter 2

Electrogenerated bubbles and their impact on the electrochemical pro-
cess

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



Methodology based on Fick’s second law
Tawfik and Diez deduced a profile of the concentration gradient by mesuring the nucleation
time [Tawfik and Diez, 2014]. Assuming a mass transfer without convection in a stagnant
electrolyte near the electrode surface and based on Fick’s second law Eq. (2.32), the authors
established a dissolved dihydrogen concentration profile as a function of time and wall
distance.

∂c(x, t)
∂t

= D
∂2c(x, t)

∂x2 (2.32)

Where D is the diffusion coefficient. The distance over which the concentration is greater
than cbulk scale with δ ∼

√
Dt. Over time, ce increases and so does the thickness of this

diffusion layer. By combining the analytical solution of Eq. (2.32) with experimental
measurements of the time of appearance of the first bubbles, the evolution and concentration
profile in the diffusion layer can be estimated . In the case of flowing electrolyte when
convection is taken into account, there is no obvious method to determine the concentration
gradient in the diffusion layer.

Energy state
When the dissolved gas molecules oversaturate the solution, the environment becomes
favourable to the formation of bubbles. Traditionally, it is assumed that instant nucleation
occurs when this environment reaches a sufficient energetic state. Ward et al. describes this
energy state [Ward et al., 1970]. Assuming that a bubble is spherical and as shown on Fig.3,
the work required for a bubble to form corresponds to a critical radius Rc for which a bubble
could exist in thermodynamic equilibrium, although unstable, with the surrounding liquid.

Using Laplace’s theorem Eq. (2.33) and the laws of thermodynamics he deduced the
reversible work W Eq. (2.34) necessary to generate a bubble with a critical radius Rc. The
necessary work must oppose the surface energy, i.e. the pressure created by the surface
tension of the future bubble.

pb − pe = 2 γ

Rc

(2.33)

W = 4π γ R2
c

3 (2.34)

where γ is the surface tension of the liquid-gas interface and pb −pe is the pressure difference
between the pressure inside the bubble and pressure in the electrolyte. This work varies
according to the radius of the expected bubble, as illustrated in Fig. 3.
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Fig. 3: Diagram inspired by [Blander and Katz, 1975] showing the work required to form a spherical
bubble according to its radius. The system seeking to achieve a minimum energy state below
a radius Rc the bubble cannot form, above Rc the bubble can grow.

In their review Blander and Katz take up the basics of classical nucleation theory [Blander
and Katz, 1975]. The distribution of the number of bubbles n with a critical radius Rc per
unit volume containing x molecules is similar to a Boltzmann distribution and in relation to
the reversible work necessary to form the bubble :

n = Ze
− W

kBT (2.35)

where Z is a pre-exponential factor to be determined , kB is the Boltzmann constant. The
addition of a molecule to a bubble with a critical radius is sufficient to trigger the growth.

Henry’s Law is a gas law that stipulates that the concentration of gas molecule dissolved in
the liquid is proportional to its partial pressure kH = p

c
, is called the Henry’s constant. It links

the degree of supersaturation of a gas to its partial pressure.

pb − pe = kH(cb − ce) = pe(
cb

ce

− 1) = peζd (2.36)

From Eq. (2.36), it comes that the higher the degree of supersaturation the higher the
pressure. From Eq. (2.33) and Eq. (2.34), we conclude that the higher the pressure, the
smaller the critical radius of the bubbles, and therefore from Eq. (2.35), the greater the
number of bubbles per unit volume [Jones et al., 1999].

Rate of nucleation
From Eq. (2.34), and Eq. (2.35), the rate of formation of bubbles per unit time per unit

30 Chapter 2

Electrogenerated bubbles and their impact on the electrochemical pro-
cess

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



volume can be estimated. Ward et al. give a general expression of this rate [Ward et al.,
1970].

J = Z exp
[

−4πγR2
c

3kT

]
(2.37)

For a heterogeneous nucleation, Lubetkin gives an expression taking into account the degree
of supersaturation σ [Lubetkin, 2003].

J = Z exp
[

−16πγ3Φ(θ)
3 k T (σP ′)2

]
(2.38)

where Φ(θ) is a function dependent on the contact angle and defined according to the
geometry of the surface (here a flat surface). P ′ is the pressure at which the nucleation takes
place.

The pre-exponential factor Z depends on the operating conditions. According to Lubetkin,the
nucleation rate J is a thousand times less sensitive to a variation in the pre-exponential
factor Z than to a variation in the exponential factor. So its importance is minor compared to
changes in the degree of supersaturation or surface tension. The classical nucleation theory
allows to access the degree of supersaturation from the nucleation rate, the measurement of
the contact angle, the pressure and the temperature.

Flaws in the classical nucleation theory
Usually nucleation is said to be homogeneous when bubbles form in the liquid and heteroge-
neous when they develop in contact with a surface. If the classical nucleation theory makes it
possible to describe the appearance of bubbles for homogeneous nucleation, a gap between
theory and experience has been reported when it comes to heterogeneous nucleation on a
surface.

Dapkus observing electrogenerated hydrogen gas bubbles in aqueous sulfuric acid solutions
at a mercury pool electrode found that they appeared at much lower concentrations than
predicted by classical theory [Dapkus and Sides, 1986]. Nucleation was observed on the
surface of the electrode at degrees of supersaturation at least two orders of magnitude
lower than the values predicted by the theory. Other authors report this same discrepancy
[Lubetkin, 2003; Hemmingsen, 1977; Chen et al., 2014].

Jones et al. points out that the thermodynamic approach to describe systems that are not
in equilibrium is not ideal [Jones et al., 1999]. At very small scales where nucleation
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occurs, the concept of surface tension is no longer valid, this is reported as the capillary
approximation. The liquid-gas interface is not so sharp. Considering the Laplace equation,
enormous pressure differences are necessary between the inside of an embryo of bubble of
a few nanometres radius and the liquid. Finkelstein and Tamir have developed a reliable
method to determine this pressure difference. For different gases they found pressure
differences between 13 and 42MPa [Finkelstein and Tamir, 1985]. According to classical
theory, this value is 142MPa, at least three times higher than that obtained experimentally.
Moreover, the classical theory does not take into account the different types of gases.

Surfaces acting as catalyst
In his review of nucleation from gas cavities, Jones points out that solid surfaces act as
catalysts [Jones et al., 1999]. According to the classical theory in the absence of surfaces or
gaz cavities, the energy required to create a bubble must be higher than that caused by the
surface tension of the liquid-gas interface that opposes it. In the presence of a solid substrate,
the surface area of this interface decreases. Less interfacial free energy is needed for the
bubble to grow to the critical size. Nucleation is facilitated. Lubetkin and Wilt take into
account this action of the solid surface by introducing a function established according to its
geometry [Wilt, 1986; Lubetkin, 2003]. In Eq. (2.38) the Φ(θ) function allows to reduce
the nucleation rate accordingly. In addition, Jones distinguishes between bubbles nucleating
from nothing and those developing from an existing gas cavity. When the bubbles come off,
part of the bubbles remain attached to the solid surface. For bubbles developing on these gas
cavities the required energy is even lower. Therefore, the degree of supersaturation required
is lower. From these reflections Lubetkin hypothesizes that on electrodes containing asperities
with adequate geometry and allowing to retain these gaseous cavities the nucleation would
be greatly facilitated and would allow to improve the global electrolysis process [Lubetkin,
2002] .

Lubetkin suggests that the conditions required to make a flat surface more favorable to
nucleation are those that, on the contrary, make it more difficult to detach the bubbles
once formed [Lubetkin, 2002]. Sakuma experiments under microgravity and demonstrates
that bubbles at the time of their detachment are smaller on a hydrophilic surface than on
a hydrophobic surface [Sakuma et al., 2014]. On hydrophilic surface the contact angle
approaches zero facilitating the detachment of bubbles. However, in this case the nucleation
approaches the conditions of a homogeneous nucleation and makes it more difficult. On
the other hand, on hydrophobic surfaces, the bubble nucleates and spreads more easily, the
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hydrophobic support not being favourable to the electrolyte, the gas covers this surface more
easily. It becomes larger but takes longer to detach as a result. While the bubble remains
attached, it successively blocks neighbouring nucleation sites as it develops.

2.2 Growth

Bubble growth in supersaturated solutions has been studied from a theoretical, experimental,
and numerical point of view. Among the papers adopting the theoretical approach one can
find that of Scriven and Epstein-Plesset [Epstein and Plesset, 1950; Scriven, 1959]. In their
work, Epstein and plesset studied the evolution of the radius of a bubble at different levels
of supersaturation, assuming a spherical bubble in an infinite solution and neglecting the
possible effects of convection surrounding the bubble. Scriven details this work taking into
account all assumptions and limitations. Exact solutions of the equations are obtained for
typical bubble growth conditions. An asymptotic expression of the evolution of the bubble
radius is obtained. These early studies established the first relationships to describe bubble
growth.

Mass balance at the interface
By doing a mass balance in the gas phase and assuming that the bubble is spherical by
deriving, the growth rate of the bubble ṁB[kg · s−1] can be obtained:

ṁB = ρg
d

dt

(4
3πR(t)3

)
= ρg 4πR(t)2 dR(t)

dt
(2.39)

Calculating the same quantity but considering the liquid side this time and assuming
transport by diffusion:

ṁB = Mg 4πR2D
dc

dr

∣∣∣∣∣
R

(2.40)

where r is the radial coordinate in a spherical coordinate system in which the origin coincides
with the centre of the bubble.

In the diffusive regime, the concentration profile at each time and position is defined by the
radially symmetric diffusion equation:

∂c(r, t)
∂t

= D∇2c(r, t) = D

r2
∂

∂r

(
r2 ∂c(r, t)

∂r

)
(2.41)
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Considering a single bubble in a infite domain, the boundary conditions for solving the
equation (2.41) are defined as:

c(r, 0) = c0, r >> R (2.42a)

lim
r−→∞

c(r, t) = c0, t > 0 (2.42b)

c(R, t) = cs, t > 0 (2.42c)

These boundary conditions stablish that, at the beginning of the bubble growth, the solution
has an homogeneous concentration c0 = Hp0 which will depend on the temperature T0

and the pressure p0 at which the saturated solution was prepared Eq. (2.42a); very far
away from the bubble, the concentration remains unaltered at all times Eq. (2.42b); and
finally, the concentration at the bubble boundary remains constant at a value cs = Hps which
depends also on temperature Ts (which usually coincides with T0) and pressure ps at which
experiments are performed Eq. (2.42c). Solving Eq. (2.41) using these boundary conditions
results in: (

∂c

∂r

)
R

= (c0 − cs)
(

1
R

+ 1√
πDt

)
(2.43)

This brings us to the Epstein-Plesset equation which defines the change in the growth of the
bubble with respect to time:

dR

dt
= MD(c0 − cs)

ρg

(
1
R

+ 1√
πDt

)
= MW (c0 − cs)

ρl

√
Dl

πt

(
1 +

√
πDlt

R

)
(2.44)

if cs > c0 the solution is undersaturated, the gas flow goes from the bubble to the bulk. If
cs = c0 equilibrium, if cs < c0 the solution is supersaturated.

Radius of the bubble
In experimental approaches, usually to account for the growth of the bubble a relation of its
radius as a function of time is used.

R(t) = β × tb (2.45)

where β is the growth coeficient principally dependent on the current density according to
Brandon and Kelsall and b is the time coefficient [Brandon and Kelsall, 1985]. These two
parameters vary according to the studies and the different phases of the growth. Several
authors use this model as a basis for presenting their experimental results [Glas and West-
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water, 1964; Fernández et al., 2014; Sakuma et al., 2014; Yang et al., 2015; Liu et al.,
2016; Wang et al., 2016; Van Der Linde et al., 2018].

Processes driving bubble growth
Important aspects of the growth are not yet fully understood. According to Wang in the case
of electrolysis, growth is controlled by 3 processes [Wang et al., 2016] :

• the chemical reaction which is determined by the electrolyte and surface properties;

• the gas molecule transfer process, which is determined, among other things, in a
stagnant electrolyte by the diffusion of the gas molecule and the radial micro-convection
effect due to the expansion of the bubble interface;

• the desorption and the absorption of the gas molecules on the bubble interface.

From these steps, Wang et al. assume that the competition between desorption and adsorption
at the liquid-bubble interface is not the process limiting bubble growth but rather the
combination between mass transfer and chemical reaction rate [Wang et al., 2016]. Its
importance in explaining the dynamics of growth would therefore be minor. Another
phenomenon to be taken into account is the coalescence of small bubbles to large ones.
According to Vogt the validity of Equation 2.45 is restricted to case where bubbles do not
interfere with each other [Vogt, 1983a]. The parameter b takes different values depending
on which process is limiting.

Inertial growth
During the initial tens of microseconds b = 1 the growth is inertia-controlled [Brandon and
Kelsall, 1985]. The growth is described by Rayleigh equation :

R(t) =
(

2∆p

3ρ

)0.5

t (2.46)

where ρ is the electrolyte density. The bubble growth is driven by the high difference of
pressure ∆p determined by the Laplace equation and due to the interfacial tension force.
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Growth by diffusion
When the movement of gas molecules is slow and controlled by diffusion phenomena, Scriven
showed that the radius increase with the square root of time i.e. b = 0.5 and the growth
coefficient is a function of the dissolved gas concentration and the diffusion coefficient
[Scriven, 1959].

R(t) = 2β(D t)0.5 (2.47)

where β can be calculated as follows:

β = ∆c

2πρ

[
1 +

(2πρgaz

∆c

)0.5]0.5

(2.48)

where ∆c is the supersaturation of the species under consideration near the electrode.

Wang extends his theory to the phenomenon of micro-convection due to the spreading of
the bubble using the surface renewal theory to simulate the gas–liquid interfacial mass
transfer[Wang et al., 2016]. To simulate the mass transfer around the bubble they add the
diffusive flow to that caused by the expansion of the bubble. The time coefficient remains
unchanged, but the he finds that the effect due to micro-convection on growth may be 100
times higher than that of diffusion.

Growth limited by the reaction rate
When gas molecules move rapidly in the liquid or when the gas-liquid interface is close to
the electrode, the process limiting the growth is the reaction rate. Some of the generated
molecules are dispersed in the electrolyte while the other contributes to the generation of
bubbles NG[mol.s−1]. Assuming that the bubble is spherical, we obtain:

NG = d

dt

(
4πR3

3Vm

)
(2.49)

where Vm is the molar volume of gas. Wang deducts that b = 1/3 when the bubble growth is
controlled by the surface chemical reaction [Wang et al., 2016].

R(t) =
(3VmNG

4π

)1/3
t1/3 (2.50)

It is almost impossible to study the individual behaviour of bubbles on conventional electrodes
due to the high bubble coverage and void fraction at practical current densities [Massing et
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al., 2019]. This is why most experimental studies on the subject are done on microelectrodes.
These electrodes are about 100 micrometers in diameter and allow the observation of
the development of a single bubble. This facilitates the study of its nucleation, growth
and detachment. However, one of the main differences between a microelectrode and a
conventional electrode is that the bubble completely covers its surface before detachment.
The bigger the bubble gets, the more it blocks the electrode. So there is a high current
densities and high local supersaturation level at the bubble foot. Whereas for a conventional
electrode part of the gas escapes into the liquid, for a microelectrode almost the entire
hydrogen generated diffuses directly into the bubble at its foot. Therefore the behaviour of
a bubble on a micro electrode and a conventional electrode will not be the same, and the
observed growth relationships can be expected to be different.

2.3 Detachment

Break-off diameter
An appropriate analysis of the detachment is essential to determine the bubble coverage and
therefore the overpotential and the efficiency of the electrolysis process. Usually a balance of
forces acting on the bubble is used to determine the diameter that the bubble will have at
the time of detachment and the residence time of the bubble on the electrode surface. These
two parameters are usually used to account for the detachment. They are determined by the
nucleation and growth steps.

Lubetkin notes that nucleation kinetics and detachment kinetics are closely related and that
the classical theory of heterogeneous nucleation is only valid when the detachement is fast
compared to the nucleation rate [Lubetkin, 1989] . Vogt et al. points out that the analogy
between boiling and the evolution of electrolysis bubbles is limited and that the detachement
diameters of electrolysis and boiling bubbles differ greatly [Vogt et al., 2004]. In most of
the relationships established by Vogt and Balzer to determine the mass transfer coefficients,
a term is related to the break-off diameter of the bubble [Vogt and Balzer, 2005]. They use
a force analysis to correlate the bubble coverage with the electrolyte flow.

Study of detachment on microelectrodes
Under normal operating conditions the bubble coverage near the electrodes is very high,
which limits observation and makes it difficult to analyze bubble growth and detachment. In
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addition, bubbles that detach and rise near the surface create turbulence and prevent the
determination of forces on an isolated bubble. This is why many electrolysis experiments
[Fernández et al., 2012; Luo and White, 2013; Chen et al., 2014; Fernández et al.,
2014; Sakuma et al., 2014; Liu et al., 2015; Yang et al., 2015; Baczyzmalski et al.,
2016; Karnbach et al., 2016; Liu et al., 2016; Massing et al., 2019] conducted on bubble
use microelectrodes. In this case the bubble forms on a small surface. Usually before the
detachment takes place, the bubble covers the entire surface of the micro or nanoelectrodes
forcing the current to pass through the corner formed by the base of the bubble and the
contact surface, causing an increase in current density. Its distribution is thus different
compared to larger electrodes.

Force balance
Depending on the experimental conditions, stagnant electrolyte or electrolyte with flow,
vertical or horizontal electrodes, micro or macro electrode, the intensity and direction of the
forces involved in the balance may change. However, the principle remains the same. Their
point of application is assumed to be in the center of the bubble. The bubble is supposed to
be spherical. For a horizontal electrode, detachment is supposed to occur when the sum of
the force projections on the vertical axis is equal to zero. The force balance usually include:

• surface tension force holding the bubble on the electrode;

• the buoyancy, the inertial, and the contact pressure force pushing the bubble away
from the surface;

• the hydrodynamics forces acting in either way depending on the experimental condi-
tions [Hibiki and Ishii, 2007].

Inertial force
The inertial force is due to the growth of the bubble:

Fi = 4πR3

3 ρg
d2R

dt2 (2.51)

Usually neglected because the mass of the bubble is very small and the growth rate of the
bubble is also very small.
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Buoyancy force
The buoyancy force is the resultant of the difference between Archimedes’ thrust and the
force of gravity, it is given by:

Fb = 4πR3

3 (ρg − ρl)g (2.52)

Contact pressure force
The contact pressure force is is due to the pressure difference between the inside and outside
of the bubble (see Laplace equation) and pushing on the solid surface SCP of the electrode
in contact with the bubble.

FCP =
∫

SCP

(pL − pG)ndS ≈ πR2
c

2γ

R
(2.53)

where Rc is the radius of the contact surface.

Surface tension force
The surface tension force depends on the angle θ of contact of the bubble with the surface.

FS = 2πRcγsin(θ) (2.54)

In a stagnant electrolyte on a horizontal microelectrode Chen et al. note that the surface
tension and contact pressure forces are the main forces that influence the balance followed
by the buoyancy force, the inertial and hydrodynamic forces being negligible [Chen et al.,
2018]. This means that the surface tension of the liquid-gas interface is one of the most
sensitive parameters in determining the bubble departure.

A missing force ?
With only these forces taken into account, the force balance usually failed to predict the
bubble departure diameter. Lubetkin reports different bubbles phenomena observed during
electrolysis that cannot be explained by the usual force balance [Lubetkin, 2002] . One of
them is called the "bubble jump-off and return". When 2 bubbles coalesce, the new bubble
comes off the surface. The surface tension force is then zero and the buoyancy force is
supposed to carry the bubble into the bulk. However, the bubble immediately returns to the
electrode surface. Lubetkin deduced from this the evidence of a force created by a Marangoni
effect. The surface energy of a liquid depends on its composition and temperature, among
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other things. Thus, variations in composition or temperature along the surface of a liquid
imply variations in surface tension. Areas of higher tension pull harder, resulting in tangential
stress at the interface, called Marangoni stress. This stress introduces a tangential stress
jump at the interface. This jump is compensated by the viscous stresses of the two fluids.The
two fluids on either side of the interface are therefore carried away by viscosity, generating
Marangoni flows [Scriven and Sternling, 1960].

3 Transport of the diluted species in the vicinity of the
bubble

3.1 Mass transfer Coefficient

Definition
The mass transfer coefficient k is a term that illustrates this effect of agitation in the calcula-
tions of the interfacial mass transfer or the mass transfer in the bulk . It has the dimensions
of a velocity:

k = J

C
(2.55)

with J the material flow density in [mol · m−2 · s−1] , and c the concentration[mol · m−3].

Diffusion induced transport coefficient
In the diffusion layer the mass transfer coefficient can be expressed as :

kdiff = D

δ
(2.56)

with D the diffusion coefficient of the species m2 · s−1, and δ in [m] the thickness of the
diffusion layer. In the absence of gas bubble production, the material transport coefficient
depends solely on the nature of the flow, the characteristics of the fluid (kinematic viscosity)
and the geometry of the cell.
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Expression in terms of the Sherwood number
This coefficient has been measured or calculated for many geometries and flow types. It is
expressed by means of dimensionless number correlations [Reid, 1974; Fahidy, 1985].

These correlations are established between the Sherwood, Reynolds (or Grashof), Schmidt
numbers and dimensional ratios characteristic of the flow.

Sh = A Rea Scb
(

L

d

)c

(2.57)

with A,a, b, c constants,and L/d ratio of characteristic flow dimensions. The Sherwood
number for transport at the electrode is proportional to the transport coefficient:

Sh = kδ

D
(2.58)

The Schmidt number is defined by :
Sc = µ

ρD
(2.59)

The Reynolds and Schmidt numbers are used to characterise the thickness of the electrolyte
layer near the electrodes in which transport takes place mainly due to diffusion. Generally,
the greater the forced convection or agitation, the higher the Reynolds number, the thinner
the layer and the faster the transport.

Bubble induced transport coefficient
When an electrode generates gas, the bubbles cause agitation of the liquid in the vicinity of the
electrode. This bubble-induced convection strongly increases the transport coefficient [Vogt,
1983b; Ward et al., 1986]. The transport coefficient to describe the bubble-induced transport
is denoted kb. Experimental data show that kb increases with the amount of gas produced
[Vogt, 1983b]. There is therefore a relationship between the bubble-induced transport
coefficient kb and the current density kb = p1 jp2. A very large number of experimental
relationships are available as a function of the gas produced, the electrode material, the
temperature, the pressure and the electrolyte, these relationships are collected in [Janssen,
1978; Stephan and Vogt, 1979a]. It is shown that the transport coefficient, at a given
current density, decreases as the size of the bubbles at detachment increases.

Superposition of transport coefficients
It is common practice to superimpose bubble-induced transport coefficient and diffusion-
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induced transport coefficient to describe electrolyte flow. In their study Bisang et al. validate
this practice experimentally by showing the effects of this superposition on the current
density distribution at the surface of an electrode [Bisang, 1993]. The equations Eq. (2.60)
and Eq. (2.61) are usually used to calculate the global transport coefficient kt from the
independently calculated coefficients kdiff and kb [Vogt, 1983a].

kt = kdiff + kb (2.60)

kt =
√

k2
diff + k2

b (2.61)

The choice between one or other of these equations is a choice validated a posteriori with
regard to the results obtained by the model used. Therefore, to calculate kt, a model is
needed to calculate the effect of the movement of the electrolyte in the vicinity of the
electrode kdiff without the presence of the bubbles and a model to describe the effect of the
bubbles produced on kb.

The calculation of kt allows us to evaluate the movement of the electrolyte in the area
around the bubble and the electrode. It allows us to estimate how the dissolved species are
transported and to evaluate the concentration overpotential from equation (2.8).

3.2 Models describing the effect of bubbles on the transport
coefficient

Models estimating the average transport in the vicinity of bubbles
As shown in the diagram in Fig.4 the amount of dissolved gas involved in the growth of the
bubble will depend on three mechanisms: the production of dissolved gas at the electrode,
the transport of it from the electrode to the interface, and its absorption at the interface. The
transport of dissolved species is a key step, yet there is no consensus on how to model it.
Different types of competing models have been developed to describe the effect of bubbles
on the transport coefficient near an electrode. Each model assumes that the phenomenon it
models is sufficient to describe the transport of species. Some authors do not exclude that
different forms of agitation of the diffusion boundary layer can coexist and that consequently
the transport coefficients calculated by the different models can add up [Janssen, 1989].

In the "penetration model", transport is increased by replacing the volume occupied by a
bubble at the time of its detachment by the same volume of liquid from the core of the
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Fig. 4: Local microprocesses at gas-evolving electrodes and their influence on mass transfer

electrolyte just after detachment. The second type of model is "hydrodynamic". This model
considers that the mechanism controlling the transport of material around the electrodes is
the free convection brought by the detached bubbles. This model was initially developed to
describe the material transport in an electrolysis cell in which gas is injected to agitate the
electrolyte. Finally, the last type of model considers that the bubbles increase the transport
of matter by agitating the electrolyte that surrounds them during their growth [Stephan
and Vogt, 1979b; Vogt, 1987]. This model is called "microconvective model" and predicts a
transport of matter described by a correlation built from dimensionless numbers.

microconvective model
The microvonvective model assumes that the overall flow in the electrolyte can be decom-
posed into different microconvection phenomena. Relationships based on the Sherwood
number are established theoretically and experimentally. The mass transfer coefficient is
determined from this Sherwood number [Vogt, 1984b; Vogt, 1987; Vogt and Stephan,
2015].

A first relationship was determined by Wragg, to account for free convection on a horizontal
electrode [Wragg, 1968]. This phenomenon of microconvection taking place in the vicinity
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of the electrode is assumed to be caused by the difference ce which is the concentration of
diluted specie adjacent to the electrode and cbulk which is the bulk concentration:

Sh = kfL

D
= 0.64(Gr Sc)0.25 (2.62)

The Grashof number is :

Gr = ρβ∗ (ce − cbulk) L3

ν2 (2.63)

where β∗ is:

β∗ = −1
ρ

(
ρ

c

)
T,p

(2.64)

According to Vogt, the density difference in equation (2.63) is affected by the temperature
difference between liquid bulk and the electrode-liquid interface in addition to the corre-
sponding concentration differences of all subspecies [Vogt, 1993a]. The author introduces
the term of single-phase free convection emphasising that the origin of this microconvection
is independent of the gas phase, but not its extent, and repeats the previous equation but
focuses on the temperature and concentration gradients that cause the density difference.
The dimensionless mass flux of the dissolved gas is given by:

Sh = kd

D
= 0.72

(
1 − Θ

1 − 2
3 fG

)0.8 (
j ϵαo gL4

2F ν3
L

Sc2
)0.2

(2.65)

where the expansion coefficient αo is :

αo =
(

13 + 71
1 − 2

3 fG

)
× 10−6 (2.66)

The expansion coefficient αo accounts for the difference in density caused by concentration
and temperature gradients.

Another type of microconvection influence the mass transfer of the dissolved substance once
the bubble begins to grow at the electrode surface is the bubble induced microconvection
[Vogt, 1993a; Vogt, 1993b].

Sh = k d

D
= 1.89 (Re fG)0.5 Sc0.487[Θ0.5(1 − Θ0.5)]0.5

1 − 2
3 fG

(2.67)

According to Matsushima et al., the above relationships were later confirmed on the growth
of a single bubble under microgravity [Matsushima et al., 2009].
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4 Interfacial mass transfer

Mass transport within a phase depends directly on the concentration gradient of the species
being transported in that phase. Mass can also be transported from one phase to another,
and this process is called interphase mass transfer.

4.1 General principles

At the liquid-gas interface, the sorption phenomenon can be described as physical, whereas at
the electrode it can be described as chemical. Physical absorption or non-reactive absorption
is a process of mass transfer that does not involve with chemical reaction occurring in liquid
phase. The rate of absorption-desorption at the interface depends on properties of gas-liquid
fluid dynamics, interfacial area between phases, concentration difference, solubility of gas,
temperature, pressure, and its duration time of contact.

Equilibrium at the interface
One of most important factors is the solubility of gas in liquid. It depends on temperature,
pressure and the characteristics of the substance itself. There is an equilibrium between the
gas and the liquid phase. This gas-liquid equilibrium can be described with Henry’s Law with
the assumption of an ideal liquid solution and that the perfect gas law can be applied.

c(T, P ) = p

kH(T ) (2.68)

where T is the temperature , kH(T ) is the Henry’s constant ( dependent on each gas-liquid
couple and a decreasing function of T ) and p is the partial pressure of the gas in the liquid.
In dilute conditions, Henry’s law has good capability to predict the gas-liquid equilibrium.

In any multiphase-multicomponent systems, the chemical species will always move towards
equilibrium. The state of non equilibrium is what causes the mass transfer, as it is the mass
transfer that drives the system towards equilibrium.
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Unsteady mass balance at the interface
The basic theory of mass transfer with absorption is the two-film theory. At the interfaces of
both phases, there are two films, gas film and liquid film connecting to each other. However,
the interfacial mass transfer between the electrolyte and the gas bubble is an unsteady
process. This non-stationary aspect is not taken into account by the film theory.

Usually to model species/mass transfer across an interface a coefficient of mass transfer k is
used. The mass transfer rate through the bubble surface ṁ in [kg · m−2 · s−1] is calculated as
follows:

ṁ = MH2kAI (cH2,I − cH2,sat) = ρk (yH2,I − yH2,sat) (2.69)

where AI is the interfacial area, cI the concentration of hydrogen around the gas bubble,
csat the saturation concentration of dissolved hydrogen, yI and csat are the equivalent values
converted in species mass fraction. In their simulation of the growth of a hydrogen bubble
on the surface of an electrode, Liu et al. used this kind of relationship to model the mass
transfer across the interface [Liu et al., 2016]. The difference (cI − csat) represents the
driving force of the interfacial species transfer.

Estimate from Sherwood number
The species transfer coefficient kH2 can be obtained from the Sherwood number :

Sh = 2kH2R

DH2

(2.70)

where R is the bubble radius, and DH2 is the diffusion coefficient of the diluted H2 in the
bulk.

The Sherwood number is used to describe the ratio of the overall species transfer to pure
species transfer. Empirical or analytical relations that are used to evaluate the mass transfer
through a spherical surface can be adopted to calculate the Sherwood number :

Sh = 2 + 0.6
(

2Rvsρ

µ

)1/2 (
µ

ρD

)1/3

(2.71)

where vs is the liquid velocity around the the sphere surface [Kashchiev and Firoozabadi,
1993], and can be evaluated as vs =dR

dt
;
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By combining Eq. (2.43) and Eq. (2.40) we can obtain an analytical solution of the Sherwood
number [Bird et al., 1961]:

Sh = 2
[
1 + R

(πDt)0.5

]
(2.72)

These correlations depend both on the shape of the bubble and on the operating conditions,
that is why modeling mass transfer on the basis of Sh may lead to erroneous results [Deising
et al., 2018].

4.2 Penetration theory

Principle
The penetration theory was suggested in 1935 by Higbie who was investigating whether or
not transfer resistance existed at the interface when a pure gas was absorbed into a liquid
[Higbie, 1935a]. As shown in Fig. 5, Higbie assumed that each surface element of the liquid
was exposed to the gas for the time required for the gas bubble to pass through it. Vortices
in the fluid bring an element of the fluid to the interface where it is exposed to the second
phase for a defined time interval, after which the element of fluid is mixed back into the
mass of the fluid.

Thus, an element of fluid whose initial composition matches that of the main fluid away from
the interface is suddenly exposed to the gas phase. An unsteady molecular diffusion process
then occurs within the fluid element. Equilibrium is assumed to be reached immediately at
the interface, i.e. transfer across the interface is instantaneous. The element is then displaced
or remixed after a fixed time interval, i.e. each element remains in contact with the gas for
the same period of time.

The existence of a velocity gradient within the liquid element is ignored and the fluid at all
depths of the element is assumed to move at the same speed as the interface.

Expression of the mass transfer coefficient
Under these conditions the convection terms in the transport equation within the fluid
element can be neglected and can be written as :

∂c

∂t
= D

∂c

∂z
(2.73)
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Fig. 5: Penetration Theory

where z is the distance from the interface in the normal direction.

c(z, 0) = c0, z > 0, t = 0 (2.74a)

c(z, t) = ci, z = 0, t > 0 (2.74b)

where c0 is the initial concentration of the fluid element, and ci is the equilibrium concentra-
tion at the interface. Solving this differential equation in the fluid element gives a value for
the mass transfer coefficient:

k(t) =
√

D

πt
(2.75)

The average mass transfer coefficient during a time interval corresponding to the contact
time of the fluid element with the tc interface can be obtained by integrating the previous
equation:

k̄ = 1
tc

∫ tc

0
k(t)dt = 2

√
D

πtc

(2.76)

The mass transfer coefficent is proportional to the square root of the diffusivity.

There are important differences in the implications of the theories when one must consider
the impact of contaminants (surfactants) on gas transfer [Painmanakul et al., 2005].
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5 Microfluidic phenomena in electrolysis

5.1 Theory - surface tension

Surface tension an expression of the bond between molecules
The molecules of condensed phases have strong attractive interactions between them. The
molecules located at the interface have fewer neighbours and therefore form fewer interac-
tions, which creates a energy deficit. In order to decrease this energy deficit, a force pulls
tangentially on the interface to reduce its area. The interfaces of the condensed phases are
therefore subjected to a tension, called surface tension.

We note γ the value of this tension, which is expressed in [N · m−1]. It also corresponds to
the energy deficit per unit area and can therefore also be expressed in [J · m−2].

In a liquid, the molecules are constantly changing neighbours due to thermal agitation. The
interaction energy between molecules is therefore of the order of the thermal energy kB T ,
where kB is the Boltzmann constant and T the temperature. The order of magnitude of the
surface energy of a liquid can be estimated by relating this thermal energy to the average
surface occupied by a molecule a2 :

γ ∼ kB T

a2 ≈ 25mN · m−1

where a is the average distance between molecules, about 4Ȧ. This calculation gives a value
of 25mN · m−1, which is the right order of magnitude for ethanol, silicone oils or alkanes.
Due to their strong polarity, water molecules bind to each other by stronger interactions than
van der Waals, called hydrogen bonds. The surface energy of water is higher and is about
73mN/m at 20°C.

Pressure jump
By describing the surface tension balance at the edges of a curved interface element, Young
deduced that this resulted in a pressure jump on both sides of the interface [Young, 1805].
This pressure jump is called Laplace’s pressure in honour of a contemporary scientist of
Young’s, Pierre-Simon de Laplace, who provided a more precise formalism:

∆p = pinside − poutside = γκ (2.77)
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where κ [m−1] is the curvature of the interface. Depending on the sign of the curvature, the
Laplace pressure jump can be positive or negative.

Marangoni stress
The curvature of a plane interface is zero, so the Laplace pressure is also zero. However,
the surface tension balance is not necessarily so. The surface energy of a liquid depends on
its composition and temperature, among other things. Thus, variations in composition or
temperature along the surface of a liquid imply variations in surface tension. Areas of higher
tension pull harder, resulting in tangential stress at the interface, called Marangoni stress.
This stress introduces a tangential stress jump at the interface. This jump is compensated
by the viscous stresses of the two fluids. The two fluids on either side of the interface are
therefore carried away by viscosity, generating Marangoni flows [Scriven and Sternling,
1960]. Thus, in the general case of a curved and heterogeneous interface, the surface tension
balance on an elementary surface can be broken down into two terms, a normal stress, the
Laplace pressure, and a tangential stress, the Marangoni stress. Due to the surface tension
gradient the fluid near the interface moves from areas where the surface tension is low to
areas where it is higher. In electrolysis surface tension can be found as a function of:

• the temperature, the marangoni effect is referred to as the thermocapilary effect;

• voltage, the marangoni effect is referred to as the electrocapilary effect;

• concentration of surfactants, the marangoni effect is referred to as the solutocapilary
effect.

5.2 Marangoni motion near electrolytic gas bubbles

Observations
In his review, Lubetkin reports the existence of bubble-related phenomena that cannot be
explained by classical theories [Lubetkin, 2002]. He suspects the existence of a Marangoni
effect at the interface between the electrolyte and the bubble. Based on this hypothesis, he
provides an explanation for these phenomena which include :

• a phenomenon of radial adhesion, a larger bubble attracts other smaller bubbles;
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• bubbles following oscillating trajectories along a vertical electrode [Janssen and
Hoogland, 1970];

• oscillations of bubbles attached to the electrode.

The Marangoni effect is a transient effect. Lubetkin assumes that these bubble shifts or
oscillations are due to a force caused by the soluto-Marangoni effect. This force varies with
the concentration of dissolved species. As the bubbles absorb the dissolved gases, the force
varies. As a result, the bubbles leave a low concentration area after absorption and move
towards the higher concentration areas, which creates an oscillatory movement if the bubble
does not coalesce. According to his reasoning the soluto-Marangoni effect is more important
than the themo-Marangoni effect created by a temperature gradient, but it has a shorter
range than the thermo-capillary effect.

A more significant phenomenon was reported by Lubetkin [Lubetkin, 2002]. When two
bubbles of similar size are adjacent to each other on the horizontal surface of the electrode,
and they meet and merge, the centre of the new bubble is higher than the position of either
of the two original smaller bubbles. A normal impulse at the surface of the electrode is
produced and may in some cases force the bubble to leave the electrode. What is interesting
in this case is that the bubble subsequently returns to the electrode. This phenomenon was
first observed by Westerheide and Westwater in 1964, who hypothesised that the return
could be due to surface voltage gradients or electrostatic interactions [Westerheide and
Westwater, 1961]. Lubetkhin’s reasoning rejects the impact of drag and electrostatic forces,
leaving only Marangoni forces to explain the phenomenon. Lubetkin hypothesises that this
phenomenon was not suspected earlier because it suffers from interface masking phenomena
due to surfactants.

Using Particle Tracking Velocimetry (PTV) Yang et al. were able to observe convective vortices
around the bubble. An example of a result is shown in Fig. 6. From these results Yang et
al. deduced that the convection movement of the electrolyte was caused by the Marangoni
effect.

Origin of the surface tension gradient
However, it is still unclear whether this Marangoni effect is due to a variation in temperature,
concentration of dissolved species, potential, or by pollution from surfactants. Lubetkin
originally seemed to favour the soluto-Marangoni effect. Yang et al. assumed that the solutal
and thermal effect were of the same order of magnitude. By comparing the experimental
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Fig. 6: Extract from [Yang et al., 2018], particle trajectories and corresponding velocities around
the growing bubble at a potential of −8V .
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results with detailed numerical simulations, Massing et al. concluded that the Marangoni
flow was the result of thermocapillary convection induced by Joule heating of the electrolyte
[Massing et al., 2019]. In their simulations Massing et al. report a hot spot that causes the
thermocapillary effect. The variation of the temperature along the interface creates a stress
that causes a circular fluid movement. The simulated fluid motions show good agreement
with the experimental observations near the foot of the bubble. However, above the central
half of the bubble, the numerical results are in contradiction with the observation. These
discrepancies were assumed to be the result of other surface tension effects such as the
electrocapillary effect. In their analysis, Massing et al. exclude the solutocapillary effect.

In their work, Meulenbroek et al. show that Marangoni convection in the vicinity of electro-
chemically generated bubbles is the result of thermo and solutocapillary effects at the bubble
interface [Meulenbroek et al., 2021]. Unlike Lubetkin, they do not attribute this Marangoni
effect to dissolved species but to other surfactants present and adsorbed on the liquid-gas
interface. Meulenbroek et al. include the electrocapillary effect in their study. This appears
to be of minor importance compared to the other effects.

The Marangoni force
Marangoni flow around a growing bubble at an electrode surface is known to delay detach-
ment of bubbles. By examining the motion of a gas bubble at a distance z from a heated
surface, and by solving the linearised Navier–Stokes equation, with appropriate boundary
conditions, it was shown that the thermal Marangoni effect was linearly dependent on a
temperature gradient [Young et al., 1959; Hardy, 1979; Morick and Woermann, 1993;
Lubetkin, 2002]. The shear stress on the interface induced by the thermal Marangoni effect
is:

τMT = dγ

dT

dT

dz
(2.78)

The thermal Marangoni force FMT acting on the bubble attached to an electrode can be
approximated by calculating the area integration of the shear stress over the entire spherical
surface of the bubble, giving the following expression [Lubetkin, 2002; Chen et al., 2018]:

FMT =
∣∣∣∣∣ dγ

dT

∣∣∣∣∣∆TπR (2.79)
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where ∆T represents the difference in concentration between the surface of the electrode and
the liquid bulk. By analogy it is possible to obtain a similar expression for the solutocapillary
effect:

FMC =
∣∣∣∣∣dγ

dc

∣∣∣∣∣∆cπR (2.80)

Assuming that the two effects are independent of each other it is possible to obtain a general
expression for this force:

FM = FMT + FMC =
∣∣∣∣∣ dγ

dT

∣∣∣∣∣∆TπR +
∣∣∣∣∣dγ

dc

∣∣∣∣∣∆cπR (2.81)

Both dγ
dT

and dγ
dc

are negative, so the combined Marangoni force pushes the bubble towards
the electrode surface.

Stagnant cap model
Meulenbroek et al. used a stagnant cap model that describes the transport of the contaminants
along the interface [Levich and Krylov, 1969; Griffith, 1962; Sadhal and Johnson, 1983;
He et al., 1991; Hosokawa et al., 2018; Shmyrov et al., 2019]. The competition of the
Marangoni effects results in the formation of a stagnant cap at the top of the bubble. The
surfactants cover the top of the bubble and prevent the Marangoni effect from taking place,
while the bottom part of the bubble interface is mobile and drives a Marangoni flow. The
interface is stiffened by the surfactants and prevents more minor surface tension variations
such as that caused by a temperature or dissolved species gradient.

Effect of electrode size
The particularity of the previous studies is that they are conducted on microelectrodes.
Hossain et al. performed several numerical simulations of the thermocapillary effect at
the level of electrogenerated bubbles on electrodes of varying size [Hossain et al., 2020].
Depending on the size of the electrode, the hot spot described earlier by Massing et al. moves.
As the size of the electrode changes, the bubble covers the electrode to a greater or lesser
extent, which changes the current density profile. The Joule effect is thus modified, which
moves the hot spot. In the case of microelectrodes, the hot spot is close to the electrode.
As the surface area of the electrode increases the hot spot moves upwards. This reveals a
double vortex structure of the thermocapillary flow, which has not been taken into account
before because the lower vortex is small at the microelectrode. When several bubbles develop
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simultaneously, the electric current must flow through the inter-bubble space. This causes
an increase in the maximum current density near the inter-bubble equatorial region. The
temperature hotspot is located near the equator and thus an almost symmetrical double
vortex structure is generated near the bubble interface.

5.3 Influence of surface tension on electrogenerated bubbles

Surface tension as a parameter influencing nucleation
As a general rule, surface tension is an essential parameter to understand the formation
of electrogenerated bubbles. Surface tension is a function of temperature , concentration
of different surfactants, pressure and voltage. These empirically determined relationships
are assumed to be linear and independent of each other [Lubetkin, 2002; Massoudi and
King, 1974; Weissenborn and Pugh, 1996; Zhang and Zeng, 2012]. Starting from the fact
that Lubetkin pointed out that the increase in the concentration of different gases dissolved
in water lowers the surface tension (including dihydrogen and oxygen), the nucleation
phenomenon can be interpreted as follows:

• The concentration of dissolved gases increasing, the surface tension of the liquid gas
interface decreases, which reduces the work required Eq. (2.34) and allows nucleation;

• After the nucleation event the concentration of dissolved gases decreases rapidly and
the surface tension increases.

This brief reasoning need to be validated but shows the dependence of the evolution of
surface tension on nucleation.

Surface tension as a parameter influencing growth
In the same register as shown in Fig. 7, the evolution of the surface tension influences
the growth of the bubble. Surface tension is a function of temperature and concentration,
among other things. As these two quantities vary at the interface, a variation of the surface
tension is created. This variation has two plausible consequences. Firstly, it will generate a
Marangoni effect which will modify the temperature and concentration gradients. Secondly it
will modify the contact angle which will change the microconvection phenomenon generated
by the spreading of the bubble. These two microconvection phenomena will affect the
distribution of dissolved species around the bubble, thus modifying its growth.

5 Microfluidic phenomena in electrolysis 55

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



Fig. 7: Influence of surface tension variation on mass transfer

Contact angle
In the studies conducted on the nucleation, the growth, and the detachment of electrogen-
erated bubbles, only the surface tension of the gas-liquid interface is taken into account.
The resultant forces due to the surface tension of the 3 interfaces are estimated from a
measurement of the contact angle. The problems of contact angles hysteresis are rarely
addressed [Brussieux et al., 2011], which prevents a distinction from being made between
the wettability of the material used and the roughness of the surface. With regard to the
impact of surface tension on bubble formation, there is a need to specify its use in models on
the formation of electrogenerated bubbles. As described above the dynamic contact angle
cannot be predicted, and therefore must be considered as an input parameter of the model.
The contact angle depends on the wettability of the electrode and on the surface tension of
the hydrogen-electrolyte interface. The measurement of the contact angle requires particular
attention and great rigour in the setting up of the experimental device. Any form of pollution
that could affect the measurements must be avoided. The surface of the electrode must
be clean and free of all forms of asperity that could affect the contact line [De Gennes
and Brochard-Wyart, 2015]. The contact angle could be defined as the angle between the
tangent to the interface at the point of triple contact with the solid surface. However, this
measurement depends on the zoom with which the contact line is observed.

Yang et al. defined the contact angle according to geometrical parameters of the bubble, as
it is shown on Fig. 8 . They measure the contact angle for one configuration in which the
platinum electrode is embedded in a hydrophilic surface (glass) and another in which it is
embedded in a hydrophobic surface (epoxy). The results are shown in the Fig. 9.
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Fig. 8: Extract from [Yang et al., 2015], bubble geometry

Fig. 9: Extract from [Yang et al., 2015], Comparison of the contact angle evolution of the H2 bubble
between the glass and the epoxy cell.
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Fig. 10: Extract from [Sakuma et al., 2014], bubble growth model for the absorption of the dissolved
oxygen gas on (A) hydrophobic and (B) hydrophilic electrode surfaces

Wettability
Similarly, the wettability of the surface will influence the phenomenon of microconvection
due to the spreading of the bubble modifying the dynamics of its growth. What is the
right balance? Sakuma is one of the few to study the impact of surface wettability on
electrogenerated bubbles [Sakuma et al., 2014]. He studied the nucleation and growth on
three types of surfaces in microgravity conditions but without speaking of their detachment.

As shown by the study conducted by Sakuma , the wettability of the surface will influence the
effectiveness of the microconvection effect. A bubble on a hydrophobic surface will spread
more easily, thus modifying the dynamic of growth. For oxygen electrogenerated bubbles
Sakuma et al. observed initial sizes in the range of 10 − 30 µm depending on whether the
electrode surface is hydrophobic or hydrophilic. During these first moments the degree
of supersaturation of the liquid as close as possible to the bubble varies greatly. The time
coefficient does not vary from one electrode to another (hydrophilic or hydrophobic), so
this means that in Eq. (2.45) β depends on the wettability of the surface. Consequently, the
contact angle is another parameter to consider when considering bubble growth.
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Fig. 11: Figure and comments extracted from [Wilt, 1986] - "Definition of geometrical parameters
for heterogeneous nucleation in the cases of conical and spherical cavities and projections."

6 How to improve electrodes?

In the theoretical overview of the nucleation, growth and detachment of a bubble described
in the previous section, it should be noted that because of the connection between these 3
steps, they must be studied together in order to be able to predict the detachment of the
bubble. The conditions required to make an electrode surface more favorable to nucleation
are those that, on the contrary, make it more difficult to detach the bubbles once formed.

Wilt gives several relationships to determine the nucleation rate for different surface geome-
tries Fig. 11 [Wilt, 1986]. These relationships have been established within the framework
of the classical theory of heterogeneous nucleation. The discrepancy between the experience
and the results provided by classical theory discourages its use as it stands. However, it
makes it possible to understand that modifying the geometry makes it possible to modify
the contact surface of the bubble with the electrode, to modify the ratio of the radius of
curvature of the bubble with respect to its volume and thus the pressure difference and thus
can make it easier to nucleate and detach it. By modifying the contact surface, we modify
the contact pressure force FCP and the surface tension force FS, which are the main forces
involved in the force balance [Chen et al., 2018].

Using these two levers to facilitate detachment (wettability, and design of the electrode),
Lubetkin imagines an electrode design that allows rapid nucleation and detachment of
dihydrogen bubbles from the electrode surface, see Fig. 12. However, he suggests that
another type of design could be more efficient and that this sophistication is not necessary
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to achieve what he calls the phenomenon of "rapid-fire emission". This phenomenon has
been observed by [Weissenborn and Pugh, 1996]. He assumes that the rapid departure of
a first bubble could cause sufficient disruption and reduce the concentration gradient, thus
minimizing the marangoni effect.

Most current nucleation models do not take into account the contribution of the Marangoni
effect or the impact of surface wettability and often focus on only one of its stages, so they
are not able to predict the bubble detachment. A holistic approach is required. Most of
the studies on the subject are experimental and require the use of high-speed cameras and
microelectrodes to be able to observe the vortex flow of the fluid around the bubble which is
characteristic of the marangoni effect. On the other hand, there are no numerical studies
that model the development of an electrogenerated bubble and include the Marangoni effect
on the liquid-gas interface of the bubble.

7 Integration into an inverse resolution problem

From the previous sections several questions emerge:

• How to understand the growth of a bubble with the Marangoni effect? Hypotheses
about microconvection currents have been formulated, but there is no direct way to
measure them. Based on this observation, other methods should be used to access
information on bubble development that is not available through experiments. The
presence of a Marangoni effect invalidates the hypothesis of transport of dissolved
species by diffusion from the electrode to the bubble. Vogt et al. hypothesise that
there are several microconvection currents influencing the development of bubbles.
He mentions, among others, a transport of species by diffusion, a microconvective
current due to the growth of the bubble, and a microconvective current created by
the departure of bubbles [Vogt and Stephan, 2015]. The author does not mention
Marangoni currents, which are a valid hypothesis in view of the experiments carried
out by Yang et al. There are therefore uncertainties to be resolved concerning the
transport of dissociated species from the electrode to the bubble interface [Yang et al.,
2018].

• What is the origin of this Marangoni effect? Through experiments it is possible to
measure: the diameter of the bubble, or the velocity of the fluid around the bubble.
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Fig. 12: Figure and comments extracted from [Lubetkin, 2002] : "A hypothetical composite conical
or crack-like nucleation site. The region A is hydrophobic, possibly as a result of capillary
condensation of a volatile organic material. This deposition mechanism would restrict its
presence to the narrowest region of the pore. Nucleation is easy in this environment, with
its high contact angle. As the nascent bubble grows past the hydrophobic region, and into
the hydrophilic region B, a small remnant may be detached, remaining in the hydrophobic
region. This residual gas would promote the instantaneous growth of the next bubble. As
it grows, it will be shot out of the conical site, its zero contact angle ensuring the absence
of friction. The rapidity of its departure might cause sufficient stirring in the vicinity C,
to disrupt the Nernst layer, thus eliminating the concentration Marangoni effect, which
would otherwise tend to hold the bubble near the electrode until it was larger. Alternatively,
the rapid growth of the first bubble during its rise, and the immediate following of others
might cause depletion of the Nernst layer in a narrow bubble chimney, again destroying the
concentration gradient."
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However, it is not possible to access the concentration gradient of dissolved species,
temperature, or to identify the presence of surfactant. From this point of view it is
impossible to distinguish between a Marangoni effect of thermal solutal or surfactant
origin.

• The Marangoni effect delays the detachment of the bubbles, but to what extent? While
the presence of a Marangoni effect has been proven, it is currently impossible to
measure the impact on bubble growth and bubble detachment. The diameter of the
bubble at the time of detachment is an essential parameter for predicting the efficiency
of the electrolytic process. However, the uncertainties on the phenomena influencing
the evolution of this diameter cannot be resolved with the current state of theory and
the available experimental techniques.

One of the solutions proposed in this thesis to answer the questions mentioned above is to
pose an inverse problem. The objective here is to present quickly the inverse methodologies
and how they can be used in the work related to this thesis. Inverse problems are problems
whose formulation is incorrect. The calculated "solutions" are often quite different from the
real solution. Nevertheless, the need to solve inverse problems is becoming more and more
necessary.

Usually, in order to analyse the behaviour of a system as well as possible, it is necessary
to build models to represent reality. These are determined from equations derived from
physical laws and allow the behaviour of a system to be predicted under the effect of a
known stimulus. A characteristic of these models is their causality: subsequent conditions
depend on previous ones. When the input data and parameters are assumed to be known,
solving the modelling equations is used to predict the output of the model.

To validate a model it is usual to compare the experimental results ymes with the modelling
results ymod. If both fit, the assumptions are considered validated.

Inverse problems are the opposite of these direct problems. They are non-causal problems.
They describe the situation in which one tries to determine the causes of a phenomenon from
experimental observations of its effects. In other words, the objective may be to identify one
or more of the elements that define the model.
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The principle of an inverse methodology is to test several sets of parameters x in a model
A to find those for which the results obtained by the model A(x) best fit the experimental
results ymes:

A(x) ≈ ymes (2.82)

Without going into the details of an inverse methodology it is necessary to discuss the
measurable quantities in the case of an electrogenerated bubble on a micro-electrode and
the unknown or supposedly known parameters. As described above, the experiments of Yang
et al. allowed the observation of the temperature and velocity field around the bubble [Yang
et al., 2018]. The temperature field is one of the quantities that can be used to determine
the solutocapillary effect. The velocity field in a stagnant electrolyte is the result of the
Marangoni effect. The other measurable quantity is the evolution of the bubble radius. These
three quantities are the only ones that can be measured. The local concentration and the
current density are determined by the model. One of the unknown parameters of the model
is the presence of surfactants. This parameter is a priori very sensitive as it influences both
the interfacial mass transfer and the surface tension gradient by inhibiting a large part of the
bubble interface. As described above there is no certainty about the value of ∂γ

∂T
, ∂γ

∂Φ , or ∂γ
∂cS

the nature of the surfactant being unknown. The uncertainty in these parameters makes it
impossible to determine the surface tension gradient correctly.

Usually in the framework of an inverse methodology it is advisable to carry out a sensitivity
study on each of the parameters taken independently, as a small error on one parameter
can strongly modify the output values. The diagram in Fig. 13 provides a non-exhaustive
inventory of the sources of error that can occur in the process. In the spirit, beyond being an
optimisation problem, the problem of an inverse methodology is to estimate the sources of
error as well as possible, and their influence on the result. The aim of this section on inverse
methods is to illustrate that one of the objectives of this thesis has been to build some of the
necessary components of the inverse problem.

8 Overview of the chapter and objectives of the thesis

It has been shown in the previous sections that the major lever for improving the efficiency
of the electrolysis process is to limit the coverage of bubbles on the electrode surface. For
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Fig. 13: Diagram showing the errors that can influence the inverse process.
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this it is necessary to accelerate the departure of the bubbles from the electrode. Conse-
quently, a literature review on bubble nucleation, growth, and detachment was conducted
in order to evaluate the phenomena involved at the microfluidic scale in the production of
electrogenerated bubbles. It was found that the hypothesis of a Marangoni effect should be
taken into account in order to understand the development of bubbles and thus be able to
facilitate their detachment. However, several questions remain. It is impossible to determine
the origin of the Marangoni effect. Is it solutal, thermal or due to surfactants? Furthermore,
how can we understand the growth of a bubble with the Marangoni effect? In the course
of the literary research carried out, it became clear that the experimental means are not
sufficient to resolve these uncertainties. This is why the research track proposed in this thesis
is to use inverse methods.

The work presented in this thesis is part of the inverse problem approach. Therefore, the
objectives of this thesis are the following:

• To provide a mathematical or numerical model

• Present and discuss the assumptions and choice of structure of the model

• Evaluate and reduce the errors of this model (spurious currents)
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Numerical modeling
3

To model an electrogenerated two-phase fluid at the microfluidic scale, it is necessary to
take into account the marangoni effect and mass transfer at the interface and to include the
problem of the contact lines with the electrode. For this, multiphase microfluidic modeling
ingredients are needed, in particular to model phases, mass transfer and the marangoni
effect at interfaces. A review on the subject was done by [Wörner, 2012]. There are several
types of methods for modelling a multiphase fluid. They all have their advantages and
disadvantages. Some are more suitable for microfluidic flows.

The first objective of this chapter is to describe these methods and to evaluate their suitability
for the problem at hand. Then, the mathematical basis for the development of the numerical
model is given. Finally, the numerical model created and the reasons for the choices made
during its design will be presented.

1 Toward a direct numerical simulation of the
phenomenum

In order to explain the reasons that led to the choice of the specific numerical method, it is
appropriate first to give a brief description of all the methods for modelling a multiphase
system and then to state the necessary requirements of the model.

1.1 Overview of the numerical methodology

To model an electrogenerated two-phase fluid at the microfluidic scale, it is necessary to
take into account the marangoni effect and mass transfer at the interface and to include the
problem of the contact lines with the electrode. For this, multiphase microfluidic modeling
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ingredients are needed, in particular to model phases, mass transfer and the marangoni
effect at interfaces. A review on the subject was done by [Wörner, 2012]. There are several
types of methods for modelling a multiphase fluid. They all have their advantages and
disadvantages. Some are more suitable for microfluidic flows. The aim here is to describe
these methods and to assess their suitability for the problem at hand.

Modelling an interface
Reproducing and following an interface with complex shape and dynamics that can develop
large deformations, singularities and topological changes is a numerical challenge. The
interface to be described (gas-liquid) has material properties, i.e. it changes the flow
behaviour, as is the case with surface tension. There is a zone of discontinuity for pressure
and properties between the two phases. If the interface has material properties, there may
be diffusion of these properties along the interface, or transfer between phases. Several
difficulties must be overcome when dealing with the numerical simulation of interfaces:

• the domain of each phase is unknown;

• the deformation of the interface is governed by a discontinuous pressure jump condi-
tion;

• the very shape of the interface has a direct influence on the action of surface tension;

• in the case of the phenomena of adsorption-desorption of dissolved species on the
interface or coalescence, we are at the limit of the validity of macroscopic description.

Interface characteristics
Tryggvason et al. point out that in order to simulate gas-liquid multiphase flows it is necessary
to make several hypotheses [Tryggvason et al., 2011]:

• the length scale of the problem is much larger than the mean free path of the molecules,
so the continuum hypothesis is valid and the flow equations take the classical form;

• the interface separating two or more fluids, which in fact has a finite thickness of the
order of a nanometer and constitutes a transition zone for the properties of the fluid, is
assumed to be sharp with a negligible thickness;
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• the intermolecular forces, which determine the dynamics of the interface, are modelled
on a continuum scale as a force localised at the interface which is proportional to
a surface tension coefficient, which represents the rate of change of the excess free
surface energy produced by a unitary increase in the surface area of the interface
resulting from the deformation.

Explicit or implicit representation of the interface
An overview of the methods for simulating a multiphase fluid is shown in Fig. 14 [Wörner,
2012]. There are two main classes of interface processing methods: Lagrangian methods and
Eulerian methods (volume tracking). The choice of an efficient and robust method to take
into account the interface depends on the physical problem to be studied, as each method
has its strengths and weaknesses. The difference between these two classes of methods lies
in the representation of the interface: explicit or implicit.

In Lagrangian methods the interface is explicitly tracked. Indeed, in these methods, the
mesh adapts over time so as to merge with the interface. While Eulerian methods use a fixed
mesh, with an interface that is not explicitly tracked but reconstructed from a phase indicator
function or color function. Lagrangian methods maintain the interface as a discontinuity, and
explicitly track its evolution. No modeling is required to define the interface or its effects on
the flow. Moreover, boundary conditions can be applied exactly to the interface. However,
these methods require a remeshing at each time step. It should be noted that in case of strong
distortions of the interface the mesh may be strongly altered and not uniformly distributed,
which may degrade the accuracy of the resolution methods. The main disadvantage of these
methods lies in their difficulty to take into account topological changes and in particular the
ruptures or coalescence.

Eulerian methods, also called fixed grid methods, front capturing methods or volume tracking
methods, require modelling where additional equations are needed to obtain information
on the location of phases and discontinuities. Indeed, unlike the Lagrangian methods, the
interface is not explicitly tracked in the Eulerian methods. To locate the different phases and
impose the interfacial conditions, a phase indicator function or color function is introduced.
This phase indicator function is defined over the whole computational domain and allows to
locate the different phases. At each time step, the interface can be located and reconstructed
from this phase indicator function. The phase-indicator function allows boundary conditions
to appear in the flow equations, but these boundary conditions are altered. Indeed in these
methods the interface is diffuse and of non-zero thickness. Therefore the information on the
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interface is smooth, leading to a spreading and dispersion of the information. Eulerian meth-
ods have the advantage of not needing remeshing procedures. In addition, these methods
automatically take into account topology changes such as coalescence and fragmentation.
However, due to the smoothing of the interface, the physical phenomena related to the
interface are not described precisely, as the interface is not explicitly represented.

Eulerian methods
Eulerian methods include: Volume Of FLuid (VOF), Level-set (LS). These are the most
common methods used in CFD software (FLUENT, COMSOL, OpenFOAM). VOF methods
naturally ensure the conservation of volume and mass in incompressible flows and, with
some improvements, in compressible flows. However, the description of the interface is
not precise, which makes it difficult to evaluate the curvature of the interface and impose
boundary conditions. The level-set method, like the VOF methods, automatically takes into
account topological changes. It describes the interface implicitly using a signed distance
function which gives a more precise definition of the interface than in standard VOF methods.
But the signed distance function has to be reset frequently alterating mass conservation.
Finally the Lagrangian methods are very precise with a thickness free interface and boundary
conditions that are imposed exactly on the interface. However, changes in topology and
highly deformed interfaces are not easily accessible by this type of methods because the
remeshing procedure which allows to preserve the adequate mesh size can become very
complicated in this case.

1.2 Requirements of the simulation

Towards a holistic approach
Numerical models to simulate the Marangoni effect along the wall of an electrogenerated
bubble have already been presented[Massing et al., 2019]. But these consider the interface
as fixed, and assume that the bubble does not grow by considering only a small time
interval during its development. Liu et al. have modeled the growth and detachment of an
electrogenerated bubble [Liu et al., 2016]. But they point out that their numerical results
do not match the experimental results, partly because the marangoni effect is not modelled.
The real added value of a numerical model is to combine bubble growth with the marangoni
effect.
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Fig. 14: Illustration of the different continuum methods for describing the evolution of deforming
interfaces extract from [Wörner, 2012]
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Dealing with numerical errors
The model must be reliable, and must, among other things, limit problems related to mass
conservation and spurious currents. Spurious currents are proportional to capillary effects,
and in this case, in a simulation where the capillary effects are at the origin of the main
forces governing the evolution of the system, they compete directly with the currents caused
by the Marangoni effect, thus distorting the results. It is therefore important, if it is not
possible to eliminate them completely, to at least know their importance and to reduce their
effects. The spurious currents depend, among other things, on surface tension, viscosity,
and discretization techniques used. They increase proportionally with decreasing capillary
number Ca = µv0

γ
[Ren and E, 2005; Herrmann, 2008; Dupont and Legendre, 2010] . In

the simulation we want to run, the capillary effects are predominant. The problem is that
most of the CFD software available uses models close to the Brackbill model [Brackbill et al.,
1992].

Choice of a numerical method
Choosing an appropriate numerical method turned out to be complex because of the difficul-
ties in modelling an interface at the microfluidic scale. There are a multitude of choices and
several criteria to consider. If it is possible to express the qualities required for a simulation
in terms of equations, the choice of a numerical method calls for another type of knowledge.
What is needed is a numerical method capable of "reasonably" simulating the problems we
are interested in. It is not simply a question of modeling an interface but of being able to
simulate the marangoni effect with mass transfers while managing the problems related
to contact angles. The growth and detachment of a bubble from the wall of an electrode
involves large deformations and a change of topology, which excludes moving mesh methods.
The final choice was a VOF method. The advantage of this method is that it limits errors
due to volume conservation. Even if the curvature calculations are not very accurate, there
are solutions to improve it and thus limit the spurious currents. Combining the methods
described by Guo et al. with those of Ivana Seric et al. provides a good method of mass
conservation (VOF) with a means of accurately calculating the curvature (Height function),
while being able to model the growth of a bubble with the Marangoni effect [Guo et al.,
2015; Seric et al., 2018]. This is a first step towards a holistic model.
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2 Mathematical model

In order to understand the choices of the numerical methodology used, it is necessary to
recall the foundations of the mathematical model. In a mono-fluid system the Navier–Stokes
equations and boundary conditions make it possible to describe the whole flow, however in a
two-phase liquid-gas system, it is necessary to reapply the principle of conservation of mass
and momentum to be able to describe what happens at the interface.

2.1 Mathematical operators

Before the conservation principle can be applied to the two-phase system, a jump operator
and a surface gradient operator must first be defined. The Reynolds transport theorem must
also be developed for systems with mass transfer at the interface.

Jump operator

The jump operator, as shown in Fig. 15, describes the passage of a quantity Q through an
interface between two distinct volumes. Assuming that Q has a limit on each side of the
interface I, we define for any point x belonging to I, the jump relation for Q by :

JQK = lim
h7→0+

[
Ql(x + h · n) − Qg(x + h · n)

]
(3.1)

where n is the vector normal to the interface. The direction of the vector n is chosen here
arbitrarily from gas to liquid.

Surface gradient operator
The surface gradient operator ∇sQ is defined as the projection of the gradient ∇Q onto the
surface :

∇sQ = ∇Q − n(n · ∇Q) (3.2)

The diagram in the fig.16 gives a geometric representation of this operator. The gradient ∇Q

is projected onto the tangent at the interface.
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Fig. 15: The jump operator describes the passage of a quantity Q through an interface between two
distinct volumes.

Fig. 16: Diagram of the surface gradient operator ∇sQ. It is defined as the projection of the gradient
∇Q onto the surface.
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Two-phase particle
The Fig.17 shows a fluid particle consisting of a liquid phase and a gas phase (e.g. liquid
l, gas g). The two phases are separated by an interface I. In order to show the boundary
conditions at the interface, the reynolds transport theorem is first applied to this bi-fluid
volume. The total volume is divided into two sub-volumes:

V(t) = Vg(t) + V l(t) (3.3)

Green-Ostrogradsky bi-fluid theorem
For a fluid particle the Green-Ostrogradsky theorem allows to link the flux of a vector field
E(x, t) to the divergence of this field.∫

∂V(t)
E(x, t) · n∂VdS =

∫
V

∇ · E(x, t) dV (3.4)

The surface integral applied on the boundary ∂V of the scalar product of E with n∂V can be
decomposed. The Green-Ostrogradsky theorem can then be applied to the two boundaries of
the gas and liquid volumes. This decomposition into two fluids reveals a jump relationship at
the interface :∫

∂V(t)
E(x, t) · n∂VdS =

∫
∂Vg

E · n∂VgdS −
∫

I
Eg · (−n)dS +

∫
∂Vl

E · n∂VldS −
∫

I
El · nIdS

=
∫

Vg+l
∇ · E dV +

∫
I
JEK · n dS

(3.5)

Two-phase reynolds transport theorem with mass transfer at the interface
For a volume V with a single-phase fluid, the time derivative of the volume integral of a scalar
field Q over V(t), dependent on the time t, is equal to the sum of the volume integral of the
time partial derivative of Q and the surface integral over the integration volume boundary
∂V(t) , which is time-dependent, of the product of Q with the normal displacement velocity
of the boundary v∂V · n∂V :

d

dt

(∫
V(t)

Q(x, t)dV
)

=
∫

V(t)

∂Q(x, t)
∂t

dV +
∫

∂V(t)
Q(x, t) v∂V · n∂VdS (3.6)
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Fig. 17: Diagram of a fluid particle. The two gaseous Vg and liquid V l volumes are separated by an
interface I.

Then using Eq. (3.6) on the two separate volumes we obtain:

d

dt

(∫
V(t)

Q(x, t)dV
)

= d

dt

(∫
Vg(t)

Q(x, t)dV
)

+ d

dt

(∫
Vl(t)

Q(x, t)dV
)

(3.7)

d

dt

(∫
V(t)

Q(x, t)dV
)

=
∫

Vg(t)

∂Q(x, t)
∂t

dV

+
∫

Vl(t)

∂Q(x, t)
∂t

dV

+
∫

∂Vg(t)
Q(x, t) v∂Vg · n∂VgdS

+
∫

∂Vl(t)
Q(x, t) v∂Vl · n∂VldS

(3.8)

A surface integral on the interface I between the two phases appears knowing that :

∂V(t) = ∂V l(t) − I(t) + ∂Vg(t) − I(t) (3.9)
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The vectors n∂Vl and n∂Vg are directed outwards from the volumes V l and Vg, and are normal
to both surfaces ∂V l and ∂Vg . At the interface level they are opposite. The previous equation
becomes:

d

dt

(∫
V(t)

Q(x, t)dV
)

=
∫

Vg+l(t)

∂Q(x, t)
∂t

dV

+
∫

∂V(t)
Q(x, t) v∂V · n∂VdS

+
∫

I(t)
Q(x, t)g v∂Vg · n∂VgdS

+
∫

I(t)
Q(x, t)l v∂Vl · n∂VldS

(3.10)

The speed of movement of an interface is generally identical to the speed of movement of
adjacent continuous media. However, when there is mass transfer or phase change at its
location, the interface no longer moves at the same speed as the surrounding continuous
media, so v ̸= vI ,where v is the speed of the continuous media, and vI is the speed of the
interface. Locally at the closest to the interface the following equalities apply:

v∂Vg = v∂Vl = v − vI (3.11)

Elsewhere the velocity of the volume boundary is the same as that of the continuous medium.
Thus we have v = v∂Vl, v = v∂Vg , v = v∂V . The vector n is defined as being normal to the
interface and being directed from the liquid phase to the gaseous phase:

n∂Vl = −n∂Vg = n (3.12)

From the Eq. (3.10) we get:

d

dt

(∫
V(t)

Q(x, t)dV
)

=
∫

Vg+l(t)

∂Q(x, t)
∂t

dV

+
∫

∂V(t)
Q(x, t) v · n∂VdS

+
∫

I(t)
Q(x, t)l (v − vI) · nIdS

−
∫

I(t)
Q(x, t)g (v − vI) · nIdS

(3.13)
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The Green-Ostrogradsky’s theorem applied to the surface integral yields, i.e. the second right
hand term of Eq. (3.13):∫

∂V(t)
Q(x, t) v · n∂VdS =

∫
V(t)

∇ · (Q(x, t) v)dV (3.14)

Then the jump relationship for Q(x, t) (v − vI) is formed with the surface integrals applied
to the interface:

d

dt

(∫
V(t)

Q(x, t)dV
)

=
∫

V(t)

(
∂Q(x, t)

∂t
+ ∇ · (Q(x, t) v)

)
dV +

∫
I(t)

JQ(x, t) (v − vI)K · n dS

(3.15)

2.2 Conservation principle

Mass conservation
In the same way as in the single-phase case, the mass of a small volume element is preserved,
it is considered that there is no mass source term in the volume or on the surfaces:

d

dt
[m(t, x)] = d

dt

(∫
V(t)

ρ(x, t)dV
)

= 0 (3.16)

The equation (3.15) then implies that:

d

dt

(∫
V(t)

ρ(x, t)dV
)

=
∫

V(t)

(
∂ρ

∂t
+ ∇ · (ρ v)

)
dV +

∫
I(t)

Jρ (v − vI)K · n dS = 0 (3.17)

The localization principle states that a null integral for any volume V (t) implies that its
integrand is null. This establishes the principle of local conservation of the mass. For the
volume V(t) we obtain :

∂ρ

∂t
+ ∇ · (ρ v) = 0 (3.18)

And at the interface I(t) for mass conservation the jump relation is :

Jρ (v − vI)K · n = 0 (3.19)
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This last relation reflects the equality of the mass flows on each side of the interface. By this
means an input parameter of the model is introduced, the mass flow rate of mass transfer at
the interface ṁ in [kg.m−2.s−1].

ṁ = ρg (vg − vI) · n = ρl (vl − vI) · n (3.20)

Momentum conservation
The temporal variation in the momentum mv of a fluid particle results from the forces acting
on this particle. As in the single phase, the forces affecting the particle are divided into
surface forces Fs and volumic forces Fv . However, a new type of force is added, the linear
forces Fl , which are exerted exclusively on the edge of the interface ∂I. By defining the
surface tension γ, we obtain for the three forces:

Fl =
∫

∂I
γ n∂I dL (3.21)

Fs =
∫

∂V
T · n∂V dS (3.22)

Fv =
∫

V
ρ fv dV (3.23)

With T the stress tensor, and fv the density of the volume forces. Before establishing the
law of conservation, the linear force is rewritten as a surface integral. By applying Stokes’
theorem, which is the surface version of Green-Ostrogradsky’s theorem, we transform the
linear integral into a surface integral :

Fl =
∫

I
(n × ∇) × (γ n) dS (3.24)

Then , the operators surface gradient ∇s, surface divergence ∇s· and the definition of the
curvature of the interface κ such as κ = ∇s · (−n) allow to write the linear force as :

Fl =
∫

I
∇s γ + γκnI dS (3.25)

This expression gives rise to the Marangoni term ∇s γ which is expressed in the case of spatial
variations in surface tension, and the term γκnI which is the Laplace pressure responsible
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for the pressure difference between the two phases. Now that the linear force is expressed as
a surface integral, Newton’s second law is applied to the fluid particle :

d

dt

(∫
V(t)

ρ(x, t) v(x, t)dV
)

=
∫

∂I
γ n∂I dL +

∫
∂V

T n∂V dS +
∫

V
ρ fv dV (3.26)

Then, the Eq. (3.15) is applied to the left-hand term, the linear force term is rewritten, and
the Eq. (3.5) is applied to the surface force term:

d

dt

(∫
V(t)

ρ(x, t)v(x, t)dV
)

=
∫

V(t)

(
∂ρv
∂t

+ ∇ · (ρ v ⊗ v) − ∇ · (T) − ρfv

)
dV

+
∫

I(t)
(Jρv ⊗ (v − vI)K · n − JTK · n − γ κn − ∇sγ) dS

(3.27)

Locally in each phase we have:

∂ρv
∂t

+ ∇ · (ρ v ⊗ v) = ∇ · (T) + ρfv (3.28)

And at the interface :

Jρv ⊗ (v − vI)K · n − JTK · n − γ κn − ∇sγ = 0 (3.29)

The stress tensor can be decomposed into a pressure component and a viscous stress tensor:

T = −pI + 2µD (3.30)

where µ is the dynamic viscosity, and D =
(
∇v + (∇v)T

)
/2. As a reminder getting mass

conservation at the interface Jρ (v − vI)K · n = 0 and so Jρv ⊗ (v − vI)K · n can be expressed
as ṁJvK. At the interface by displaying the mass flow rate and developing the stress tensor
we finally obtain:

ṁJvK + JpIK · n − J2µDK · n = γκn + ∇sγ (3.31)

Projections along a normal axis and an axis tangential to the interface results in:

ṁJvK · n + JpK − J2µD · nK · n = γκ (3.32)

ṁJvK · t − J2µD · nK · t = ∇sγ · t (3.33)

As shown in Eq. (3.32) and Eq. (3.33) the flow at the interface is influenced by surface
tension, the Marangoni effect, and mass transfer. The term ṁJvK refers to the consequences
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of mass transfer across the interface on the tangential and normal stress balance. This means
that it is possible to have slippage at the interface caused by the mass transfer.

3 From continuous to discrete model

Having laid the foundations of the mathematical model, it is necessary to describe how the
transition from the mathematical model to the numerical model is made.

3.1 FVM - volume of fluid

Averaging of continous quantities on a finite volume
In order to move from a mathematical model to a discrete model, it is necessary to transform
the partial differential equations representing the conservation laws into discrete algebraic
equations. In the finite volume method the continuous quantities (or functions of space and
time in mathematical terms) are averaged over each volume represented by the cells of the
mesh.

β = 1
Vcell

∫
Vcell

βidV (3.34)

The dynamics and continuity equations resulting from the conservation principle are adapted
to the single field approach using a weighted average of the quantities followed by these
equations. In the process of calculating the weighted average, the operation carried out
for the calculation of the weighted average on the divergence and gradient operators is
not simple and straightforward. The integrals and derivatives can not be interchanged in
volumes that contain the interface I. The spatial volume averaging theorem has to be used
[Whitaker, 1999]:

∇βi = ∇βi + 1
Vcell

∫
AI,cell

βindA (3.35)

∇ · βi = ∇ · βi + 1
Vcell

∫
AI,cell

βi · ndA (3.36)

where AI is the part of the surface of the interface in the cell.
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Volume fraction
Instead of considering two fluids (gas-liquids), the the Volume Of Fluid (VOF) method
assume a single fluid, and solve a single conservation equation for mass and momentum. A
continuous indicator function 1i is used to distinguish the phase i from the others. It takes
the value 1 when phase i is present at a given point in the system and 0 otherwise. In the
VOF methodology the integral on the cell of the function defines the volume fraction αi:

αi = 1
Vcell

∫
Vcell

1idV (3.37)

In the cells that contain the phase i αi = 1, and 0 otherwise. A notable consequence of this
kind of multiphase modelling is that the interface I is diffuse and spans several cells of the
mesh.

Transport of the volume fraction
A transport equation is added to the Navier Stokes equations to track the volume fraction of
phase i, which makes it possible to distinguish the phases and identify their interface :

∂α(t)
∂t

+ ∇ · (α(t) v) = 0 (3.38)

In cells crossed by the interface I, we get 0 < αi < 1. This equation is common in CFD
and is routinely solved. This allows precise control of the volume of each phase in each cell
of the mesh at a lower computational cost. Therefore, the VOF methodology is known to
have good volume conservation properties. Several immiscible fluids are considered as one
effective fluid throughout the domain. This is referred to in the literature as a one-fluid
formulation. A notable consequence of this modelling is that the interface I is diffuse and
spreads over several cells of the mesh. This diffusivity of the interface is a handicap of the
VOF methodology. Surface tension is a local force whose points of application are directly
on the interface and which varies along the interface. In this context, it may be considered
counter-intuitive and inacurate to choose a multiphase model that diffuses the interface to
account for the impact of surface tension on it.
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3.2 Continuum surface force formulation

There are several formulations for modelling surface tension. In a literature review Popinet
describes the recent development of the Eulerian surface tension formulations [Popinet,
2018]. One of the most common formulation of surface tension for VOF was first introduced
by Brackbill et al., and is called "Continuum Surface Force" (CSF) [Brackbill et al., 1992].
The formulation adopted in this thesis is based on it. It is therefore necessary to describe it
first to understand its shortcomings and to understand the modifications made to overcome
them.

Surface tension expressed as a volumetric force
In this formulation, the surface tension force is modified into a volumetric force and intro-
duced into the momentum equation. This surface tension source term can be calculated from
the values of the volume fraction and the surface tension coefficient. There are different
models. One of the most commonly used is the continuum surface force model CSF. By using
a Dirac delta function, the surface integral from Eq. (3.25) taking into account the surface
tension becomes a volume integral :

Fl =
∫

I
∇s γ + γκndS =

∫
V

(∇s γ + γκn) δS dV (3.39)

This volumetric formulation makes it possible to integrate surface tension as a source term in
the momentum equation Eq. (3.28):

fγ = (∇s γ + γκn) δS (3.40)

∂ρv
∂t

+ ∇ · (ρ v ⊗ v) = ∇ · (T) + ρfv + fγ (3.41)

Interface density
The operator δS represents the interface density present in the cell. V ∩ I is the proportion of
the interface present in the volume V:

V ∩ I =
∫

(V∩I)
dS =

∫
V

|∇α|dV (3.42)
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In three spatial dimensions this volume integral gives the interface area, in two dimensions
the corresponding area integral gives the interface length. |∇α| being constant within each
cell of the mesh, Vcell the previous integral is transformed into :∫

Vcell

|∇α|dV = Vcell|∇α| = Vcell ∩ I = Icell (3.43)

Icell represents the part of the interface present in the cell. In each cell of index (i, j),
|∇α(i,j)| = Icell

Vcell
represents the interface density of the cell and so:

δS = |∇α| (3.44)

Normal and curvature
The geometrical properties of the interface, the normal vector and the curvature can be
calculated from the gradient of α.

n = ∇α

|∇α|
(3.45)

κ = ∇ · n = ∇ ·
(

∇α

|∇α|

)
(3.46)

The volume surface tensionforce fγ can be expressed using the CSF formulation (neglecting
the Marangoni term), that is, using |∇α| :

fγ = γκ n δS = γ κ
∇α

|∇α|
|∇α| = γκ∇α (3.47)

CSF Marangoni effect
Very often authors seeking to model the effects of surface tension assume that it is constant.
And consequently, they do not express the marangoni effect, and remove the expression
∇s γ from the Eq. (3.40). Surface tension is a function dependent on temperature and
concentration, amongs other things. A value of the surface tension can thus be calculated
in each cell of the mesh. In other words, a value of the surface tension coefficient can be
calculated in each cell of the mesh even if the interface does not pass through it. One can
thus calculate a gradient of surface tension. From the definition of surface tension we get:

∇sγ = ∇γ − n(n · ∇γ) = ∇γ − ∇α

|∇α|

(
∇α

|∇α|
· ∇γ

)
(3.48)
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The CSF is one of several methods to model surface tension. However, whatever the chosen
method, several difficulties have to be overcome :

• appearance of spurious currents;

• failure to preserve mass;

• contact line limitations.

4 Numerical errors

In order to properly assess the errors that could be generated by the model, it is necessary to
state in this section the common errors encountered in multiphase fluid modelling: parasitic
currents, and conservation of volume. This description helps to confirm the choices made in
the design of the model.

4.1 Spurious currents

Observation
Spurious currents are currents observed in a numerical simulation that have reached a steady
state of equilibrium when no energy is injected into the system. These currents result from
errors in the discretization of the surface tension and have serious consequences on the
results of the calculations. The first consequence is that they make certain calculations
impossible [Popinet and Zaleski, 1999; Popinet, 2003; Popinet, 2009; Abadie et al.,
2015; Abu-Al-Saud et al., 2018]. When discretizing and choosing the surface tension model,
one must make sure of :

• the existence of mechanical equilibrium when the fluids are at rest;

• the normal and curvature are estimated accurately;

• the consistency of the discretization operators.
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Fig. 18: Example of a 2D simulation with Ansys Fluent of a bubble within a stagnant liquid in a
zero-gravity system. The classical CSF formulation was used to calculate the surface tension
forces. Spurious currents appear at the interface.

Starting from Eq. (3.32), and assuming v = 0 on either side of the interface, we get the
Young–Laplace equation −JpK = γκ . This corresponds to the case of a bubble or drop in
zero gravity in a stagnant fluid. By applying the hypotheses related to this systems, the
Navier–Stokes equations are simplified: Newtonian, considered incompressible, no mass
transfer at the interface, no gravity, constant surface tension, the flow is isothermal. The
volumetric forces term cancels out in the momentum equation. Since there is no mass
transfer at the interface, the velocity of the two fluids on either side of the interface is equal
to that at the interface. The two phases are in equilibrium, which theoretically means that
the velocity is zero on both sides of the interface. This means that if the fluid is moving near
the interface it can only be due to a numerical error. As shown in fig.18, spurious currents
appear when the CSF formulation is used and they can be significant.

Well-balanced relation
It is assumed that there is a discretized interface geometry such that a zero velocity field is the
solution to the Navier–Stokes equations. The mechanical equilibrium of the discrete system
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at zero velocity is characterized by the momentum equation where all velocity-dependent
terms are removed .

∂ρv
∂t

+ ∇ · (ρ v ⊗ v) + ∇p − ∇ · (2µD) = fγ (3.49)

−→ ∇p = fγ (3.50)

This leaves a balance between the discrete pressure gradient, and the surface tension term.
In the absence of gravity and for a constant surface tension , we obtain [Popinet, 2018] :

−∇p + γκnIδI = −∇p + γκ∇α = 0 (3.51)

Assuming a constant curvature we obtain :

−∇∗(p − γκα) = 0 (3.52)

where ∇∗ is a numerical approximation of the gradient. The exact discrete numerical solution,
which guarantees exact balance between surface tension and pressure in the case of constant
curvature and surface tension, is then simply :

p − γκα = constant (3.53)

In the case of a numerical simulation of a static bubble in a liquid in a zero gravity environ-
ment and giving the curvature (which is constant) as an input parameter of the simulation
rather than trying to calculate it, this relationship should be logically verified. If this is not
the case, an imbalance is created by the discretization system.

Popinet specifies that for the equilibrium condition to be met, the pressure gradient should
be estimated using the same discrete operator as that used to estimate the gradient of
the indicator function used in the volumetric surface tension force calculation [Popinet,
2018].

He points out that Brackbill et al. in the original CSF article uses two different operators to
calculate the pressure gradient whose values are taken from the centre of the faces and the
gradient of the volume fraction whose values are taken from the centre of the cells [Brackbill
et al., 1992]. They calculate the surface tension force at the center of the faces by averaging
the values taken at the center of the cell to perform the force balance. The values used to
calculate the discretized gradient of pressure and volume fraction must be taken at the same
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location in the mesh in order to get a well-balanced relation. If this is not the case, the
discrete operators used to calculate the pressure gradient and volume fraction are not the
same and an imbalance is created. However, the use of this discrete operator does not give a
sufficient approximation of the gradient of the volume fraction to be able to estimate the
interface normal and the curvature accurately. Popinet suggests calculating the curvature
using another method than the one appearing in the CSF method, i.e. without using the
gradient of the volume fraction[Popinet, 2018].

Abadie et al. point out that any discrete vector field is not the gradient of a scalar field
[Abadie et al., 2015]. Its curl operator must be null. Looking at Eq. (3.50), the curl of the
second member must be equal to 0 (i.e. ∇ × (fγ + ρg) = 0 ) in order to be exactly equal to the
discrete gradient pressure which is a scalar field. This mathematical condition is a prerequisite
for equilibrium. However, it is not fulfilled if we combine the approaches mentioned in the
CSF model to calculate fγ . However, the gravity term ρg is not the gradient of a scalar, even
in the discrete sense. Only the sum fγ + ρg is written as a gradient at equilibrium. These two
terms must therefore be discretized together in order to hope to achieve a balance of the
discrete system. Some authors have addressed this issue and implemented well-balanced
algorithms in the VOF, Level-set, front-tracking framework [Francois et al., 2006; Popinet,
2009; Denner and Wachem, 2014; Ghidaglia, 2016; Mahady et al., 2016; Abu-Al-Saud
et al., 2018].

Time step condition
For explicit schemes to ensure that spurious currents do not develop over time, a stability
condition on the time step introduced by Brackbill et al. must be applied [Brackbill et al.,
1992]:

∆t <

√
ρavg(∆x)3

2 πγ
(3.54)

where ∆x is the grid spacing, γ the surface tension, ρavg is the average density of the both
phases. The physical reason given by Brackbill et al. is that the time step must be small
enough to resolve the fastest capillary waves. The value of the time step is limited by the
size of the mesh. As shown by Eq. (3.54) there is a proportional relationship between the
time step and the grid spacing, ∆t ∝ (∆x)3/2. See [Popinet, 2018] for a detailled discussion
on the subject.
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4.2 Volume conservation

Transporting materials by an incompressible flow results in the conservation of volume
and mass. This property is a very important stake for the VOF method. By nature, the
VOF method has good volume conservation properties, but some steps of the algorithm are
approximate and the conservation is inaccurate in most existing algorithms [Aulisa et al.,
2003] .

A natural definition of mass conservation is a method which conserves the total area at each
time step so that: ∑

ij

A αn
ij =

∑
ij

A αn+1
ij

The advection of the interface requires the calculation of cell boundary fluxes. The use of
volume of fluid data and fluxes should lead directly to exact mass conservation but it is in
fact not so.

Moreover, interface advection algorithms may produce some systematic errors, such as
volume fractions that do not satisfy :

0 ≤ αn
ij ≤ 1

The above-mentioned inconsistencies are difficult to correct: it is not obvious where the
excess or missing mass should be disposed of, or retrieved. Code writers then routinely
redistribute it in the surrounding cells with some diffusion algorithm or reset the volume
fraction to 1 or 0 thus destroying mass conservation.

Various attemps have been made in order to assure boundedness and conservativeness of
the phase fraction [Scardovelli and Zaleski, 1999; Cummins et al., 2005; Afkhami and
Bussmann, 2008].

The error on the volume balance has important consequences on the simulation of bubble
growth on walls. Even if the error is smaller, the growth time and the diameter at detach-
ment can be poorly predicted. Therefore, the accuracy of the phase volume balance is an
indispensable ingredient of the numerical method.

By nature, the VOF method has good volume conservation properties, but some steps in the
algorithm are approximate and conservation not satisfied in most existing algorithms .
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5 Surface tension model

The first challenge to overcome in the context of multiphase fluids is the modelling of the
pressure jump at the interface. After having described in the previous section the methods
usually used to manage this discontinuity at the interface and the spurious currents they can
generate, it is appropriate to present here the method that has been chosen to carry out the
simulations of chapter 4 and 5.

The objective of this section is to calculate γκn by an alternative and more efficient method
than the CSF methodology. For this purpose a first method based on height functions has
been described. The use of this methodology allows to determine the curvature, the normal
and the tangent at the interface. However, the use of the height function methodology is not
straightforward. A first necessary step is to define local coordinate systems to retrieve the
data needed to calculate the height functions, as described in subsection 5.2. Furthermore,
the height function method loses accuracy when the slope of the interface is too steep
compared to the local coordinate system. The methodology for choosing between the vertical
or horizontal local coordinate system is described in subsection 5.3. Despite a good choice of
the coordinate system the use of a second method based on a polynomial fit described in
subsection 5.4 is necessary to obtain an accurate calculation of the curvature. The choice of
the transition from one method to the other is not straightforward and requires tests which
will be described in chapter 4. Finally, the last subsection describes how the term γκn is
integrated into the Navier–Stokes equations.

5.1 Height definition

Definition of the height
The height function method method makes the calculation of normal and curvature more
accurate, thus reducing parasitic currents [Poo and Ashgriz, 1989; Cummins et al., 2005;
Popinet, 2009; Guo et al., 2015; Magnini, 2016a; Owkes and Desjardins, 2015]. It can
be integrated into surface tension models such as the Brackbill’s model. An interface can
always be described locally as a graph of a function. The principle of the height function
method is to use a local coordinate system to be able to find the curvature of the interface.
By calculating the integral of this function and dividing it by the interval over which it has
been integrated we obtain the mean value or height of this function over the interval.
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Fig. 19: Methodology of height functions. The sum of the volume fractions present in a column is
equal to the average value of a function f on an interval ∆x of which the curve represents
the interface.
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As shown in Fig.19 the integral is represented by the air under the curve. Typically on a
mesh crossed by an interface this value is given exactly by the volume fraction. The volume
fraction gives the part of the cell area occupied by a phase. A stencil of several cells around
the cell through which the interface passes and for which the curvature is to be calculated
is used as the basis for a coordinate system. In each cell of width ∆x and height ∆y, we
have the value of the volume fraction occupied by one of the phases. Summing the volume
fractions of a column of the stencil and multiplying it by the width of the cells makes it
possible to carry out a calculation equivalent to the calculation of an integral of a function
whose graph is represented by the interface in a local coordinate system represented by the
stencil :

f(x0) = H(x0) =
∫ x0+ ∆x

2

x0− ∆x
2

f(x)/∆x dx (3.55)

H(x0) = H(i) =
j=+∞∑
j=−∞

αij · ∆y (3.56)

Curvature calculation
From this quantity we can obtain an approximation of the first and second derivative of the
function in the ith-column by using the value of the heigh in left (i − 1) and the right (i + 1)
column of the stencil.

H ′(i) = H(i + 1) − H(i − 1)
∆x

(3.57)

H ′′(i) = H(i + 1) − 2H(i) + H(i − 1)
∆2

x

(3.58)

An estimation of the tangential, the normal vector, and the curvature can be obtained from
there :

t = 1√
1 + H ′(i)2

 1
H ′(i)

 (3.59)

n = 1√
1 + H ′(i)2

 H ′(i)
1

 (3.60)
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The curvature is calculated as the negative of the divergence of the normal vector :

κ = −∇n = − H ′′(i)
(1 + H ′(i)2)3/2 (3.61)

The key to the success of this method is having access to sufficiently accurate discrete values
of the height function [Francois and Swartz, 2010]. So the smaller the cell width, the better
the approximation.

An issue arises when the slope of the interface tends to infinity. In mathematical terms the
function is no longer defined. In a more general way according to the Popinet analysis, the
error on the calculation of the curvature increases with the magnitude of H(i)′ . For each cell
the coordinate system is oriented so that H(i)′ ≤ 1. Usually a vertical stencil and a horizontal
stencil are used. The stencil used is the one in which the interface is represented by the
function graph with the lowest slope.

5.2 Definition of a local coordinate system

The use of the height function methodology is not straightforward. A first necessary step is to
define local coordinate systems to retrieve the data needed to calculate the height functions.
The goal here is to capture the interface to be able to assimilate it to a mathematical function.
By using stencils the data necessary to calculate the curvature of the interface in each cell
can be retrieved. However, it is necessary to adapt the size and direction of the stencil, and in
some cases modify the data to fit the mathematical formalism of the analytical calculation.

To be able to use Eq. (3.58), it is necessary to retrieve the values of the volume fractions of
the cells allowing to calculate 3 contiguous heights. This is why the stencil is usually made
up of 3 cells in width. For the choice of the number of cells to be considered in height, the
choices differ according to the authors. Guo et al. chose to start on a 3 × 7 stencil base.
Popinet adapts the height of the number of cells of each column according to the need. The
essential thing is to be able to get the integral of the interface in each column correctly. The
volume fraction of the lower cell must be equal to 1 and the volume fraction of the upper
cell must be zero, as shown on Fig. 20.

One of the problems to take into account when switching from an interface to the graph of a
function is that for one x-coordinate the interface can have several y-coordinates. Two cases
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Fig. 20: Stencil adapted according to the interface

Fig. 21: Extracted from [Guo et al., 2015], correction of the volume fraction field

may arise. The first is illustrated in Fig.21, two interfaces pass through the stencil cells. The
solution is to correct the value of the volume fractions by replacing them with zero or one.
One solution is to limit the height of the stencil as shown in Fig.22. One of the advantages of
the height function method is that the sum of the volume fractions of each column is exactly
equal to the integral of the function whose curve is represented by the interface. When we
consider the right-hand column we are not able to obtain the exact value of this integral.
Calculating an integral by summing the volume fractions of the column of this truncated
stencil (green stencil) has introduced an error. Taking into account the cells on top is not
a good solution either. The solution is to orient the stencil according to the need. When
considering this example the best option for calculating the curvature is to choose a stencil
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Fig. 22: Extracted from [Guo et al., 2015],the stencil is not extended upward due to a change in the
direction of the slope.

oriented horizontally with respect to the mesh, i.e. a stencil for which the height is calculated
along the x-axis of the mesh.

Offset procedure
The interface extends over several cells. Each cell for which the interface density is not zero
must be taken into account. In other words, as long as ∇γ ̸= 0, a source term is calculated
for the cell. Since the interface is diffuse in the VOF method, the volume fraction gradient
represents the portion of the interface present in the cell. In cells where the volume fraction
is equal to 0 or 1 and its gradient is not zero, the calculation of the height does not fall within
the cell concerned. For example, in the diagram in Fig. 19 the gradient of the volume fraction
of the cells in the top row is different from zero, so the source term needs to be calculated.
However, the volume fraction is zero. When the height is calculated the value is outside
the cell concerned. The calculation of the curvature is then false. To overcome this defect
it is necessary to recover the calculation of the curvature of another nearby cell. An offset
procedure originally thought up by Magnini can be used to recover this value in one of the
cells of the stencil column [Magnini, 2016b]. However this target cell sometimes can be 4
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Algorithm 1: Calculation of the curvature of the cells with α = 0 or 1
Result: return κ(i,j)
num(i,j) = 0;
den(i,j) = 0;
if ∇ α(i,j) > 0 then

if α(i,j) = 0 or 1 then
for k1 = −1 to 1 do

for k2 = −1 to 1 do
if (k1 ̸= 0 and k2 ̸= 0) and ∇α(i+k1,j+k2) > 0 and (α(i+k1,j+k2) ̸= 0 or 1)
then

num(i,j) = num(i,j) + κ(i+k1,j+k2) × ∇α(i+k1,j+k2);
den(i,j) = den(i,j) + ∇α(i+k1,j+k2);

end
end

end
end

end

κ(i,j) = num(i,j)

den(i,j)
;

cells away from the original cell (usually when the interface is diagonal to the mesh). Results
can be misleading when testing the code on a stagnant bubble in a zero-g environment. The
curvature on a circle is constant. So when the algorithm retrieves data from a remote cell, it
looks better. But this does not work for an arbitrary interface. This is why another procedure
averaging the curvature weighted by the gradient of the volume fraction of the cells adjacent
to the original cell has been used, as shown in Alg. 1.

5.3 Orientation of the local coordinate system

As mentioned above, the HF method loses accuracy when the interface slope is too steep in
relation to the local coordinate system. The approximation of the first and second derivatives
becomes weaker. This is why, it is necessary to use two types of local coordinate systems, one
horizontal and the other vertical, and whose axes are parallel to those of the mesh, and then
to switch from one to the other as needed. According to the mesh coordinate system, the
value of the components of the volume fraction gradient allows to estimate a first orientation
of the interface. This orientation estimation allows the selection of the most favourable
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Fig. 23: Extracted from [Owkes and Desjardins, 2015] , example of mesh-decoupled columns and
heights used to compute the interface curvature.

stencil for the calculation of the heights. In other words, the one in which the interface will
be oriented most parallel to the abscissa axis of the local coordinate system. However, when
the interface is diagonal to the mesh axes, another method must be used.

As shown in Fig. 23 one solution is to used a mesh decoupled method and computes heights
within columns not aligned with the computational mesh but rather aligned with the interface
normal vector [Ito et al., 2014; Owkes and Desjardins, 2015]. The problem is that these
methods need a first computation of the interface normal, and thus of the volume fraction
gradient. Another point to emphasize is that these methods cut the cells of the mesh to
compute the integrals. Data from several columns of the mesh are used to reconstruct the
integral under the curve. Thus the equality relationship between the volume fraction and the
integral demonstrated in Fig.19 under the interface is lost. The heights are approximated by
relying on the volume fraction gradient. The approximation of the volume fraction gradient
is the first source of error in the calculation of the curvature in more traditional methods
such as CSF. The advantage of the HF method is to be able to calculate the curvature without
using this gradient. The disadvantage is that its usage is restricted to rectangular meshes.
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Fig. 24: Diagram showing the interface. In the columns and rows of the mesh the height functions
are estimated.The local coordinate is identified by the two vectors n and

5.4 Calculation of the curvature by a polynomial fit

Selection of the heights
In the previous step, heights were calculated for the horizontal and vertical stencil. These
heights will define points in a local coordinate system to be determined in which the interface
will be approximated by curvature of a second degree polynomial. It is not clear which
method is preferable between using height functions directly to determine the curvature and
using a polynomial fit. The answer to this question will be discussed in a later chapter, as
it requires a special numerical study. It should be noted that the polynomial fit technique
is more complex and computationally intensive than the one based on height functions.
In a way, the heights are used to reconstruct the interface. The diagram in Fig.24 shows
a representation of the interface. In the two vertical and horizontal stencils a total of six
heights were calculated, each stencil having 3 columns. However, four heights were retained,
i.e. four points representing the interface. One of the tools to help select these points is the
normal to the interface n. This was calculated previously using the gradient of the volume
fraction. Stencil columns in which the interface is too sharp are excluded. An orthonormal
system whose origin O is the median of the two points closest to the centre of the cell and
whose ordinate is directed along the normal to the interface (O, i′, n). Then the coordinates
of each point P are computed in the new sytem xm, ym.

98 Chapter 3

Numerical modeling

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



Fit of a parabola
The parameters (a0, a1, a2) of the equation of a parabola are estimated from the minimisation
of an objective function:

fpol(ai, xm) = a0x
2
m + a1xm + a2 (3.62)

Fobjective =
∑
m

[ym − fpol(ai, xm)]2 (3.63)

The curvature is estimated from these estimated parameters:

κ = 2 a0

(1 + a2
1)3/2 (3.64)

As pointed out by Popinet, while the least-square minimisation is not particularly complex or
computationally expensive, the difficulty is to select the good points [Popinet, 2009]. In
a more general way, the main difficulty of an HF algorithm is for the programmer to adapt
to the many particular cases, which can make the code with many conditional statement to
implement.

Identification of parameters
Two types of methodologies were used to identify the parameters. One based on the direct
minimisation of Eq. (3.63), and the other based on the Levenberg-Marquardt algorithm. The
second method is more flexible and can be adapted to both linear and non-linear problems.
The coding of this second methodology was done firstly with the intention of validating the
two methodologies by comparing their results, and secondly with the objective of making a
tool for minimising quantities for testing purposes.

The objective function reaches a minimum when F ′
objective = 0. This corresponds to solving

the following system of equations:

∑
m

y = a2m + a1
∑
m

x + a0
∑
m

x2 (3.65)∑
m

xy = a2
∑
m

x + a1
∑
m

x2 + a0
∑
m

x3 (3.66)∑
m

x2y = a2
∑
m

x2 + a1
∑
m

x3 + a0
∑
m

x4 (3.67)

Where m is the number of coordinates considered. The methodology of Levenberg-Marquardt
is shown in Alg. 2.
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Algorithm 2: Determination of parameters - Levenberg-Marquardt
dLM is the direction of descent of the algorithm J is the Jacobian matrix

Result: return critquad

niter = 0;
while niter < cste do

critquad = 0
for i = 0; i < m; i + 1 do

dev[i] = ym[i] − fpoly(xm, a0, a1, a2)
critquad = dev2[i] + critquad

end
if niter == 0 then

λ = cste; λrec = λ
critquad,rec = critquad

a2,rec = a2, a1,rec = a1, a0,rec = a0
else

if critquad < critquad,rec then
λ = 0.1λ; λrec = λ
critquad,rec = critquad

a2,rec = a2, a1,rec = a1, a0,rec = a0
else

λ = 10λ
a2 = a2,rec, a1 = a1,rec, a0 = a0,rec

end
end
dLM = (J tJ + λΩ)−1 (J t [y − fpoly(x)])
for i = 0; i < m; i + 1 do

a[i] = arec[i] + dLM [i]
critquad = dev2[i] + critquad

end
niter = niter + 1

end
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5.5 Insertion in the Navier–Stokes equations

Averaging of physical properties at the interface

The physical properties of each fluids are calculated as weighted averages based on the
distribution of a phase volume fraction, thus being equal to the properties of each fluid in
their corresponding occcupied regions and varying only across the interface. Single-field
quantity are defined all over the computational domain. In the case of a system with two
fluids gas and liquid, in each cell we get :

β = αgβg + αlβl (3.68)

β = (1 − αl)βg + αlβl (3.69)

To simplify the reasoning a single variable α is considered such that :

α = αl = 1 − αg (3.70)

Thus density is considered a function of volume fraction::

ρ(α) = (ρl − ρg) α + ρg (3.71)

However, in order to correctly capture the viscosity term at the interface µ
(
∇v + (∇v)T

)
,

an average of the dynamic viscosity µ performed as for the density can be approximative. At
the interface, gross and abrupt changes in viscosity take place. An accurate evaluation of µ is
crucial to reproduce the correct free surface. The use of an arithmetic mean actually causes
an artificial acceleration of the fluid in the less dense phase, resulting in speeds that are too
high due to a non-physical viscous term. According to Kothe et al., the relative interface/cell
face orientation must be taken into account [Kothe, 1998].

µ = η [(1 − α)µg + αµl] + (1 − η)
[

1 − α

µg

+ α

µl

]−1

η = |n · nF |
(3.72)

where nF is a unit vector normal to the face cell. The formulations of the averaged quantities
vary from one model to the other to ensure code stability and reduce discretization errors.
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Density shift procedure
In the original CSF method the final momentum source is defined as shown in the equation
below

fγ
′ = ρ̃

1
2(ρg + ρl)

fγ (3.73)

Surface tension should act uniformly, regardless of the instantaneous liquid fraction and
density in the cell. It may be argued that the force should act on the mass in a shifted cell,
which is ∆x/2 thick on both sides of the interface. In this cell, the density is constant and
equal to the mean density ρ̃ = 1

2(ρg + ρl). By dividing by ρ̃ rather than ρ(i,j), spurious currents
can indeed be reduced.

Guo et al. used modified a density shifting procedure to improve the stability of the momen-
tum sources [Guo et al., 2015]:

f(γ,i,s)
′ = N(i,s)ρ̃f(γ,i,s) (3.74)

N(i,s) =
∫

Vcell
f(γ,i,s)∫

Vcell
ρ̃f(γ,i,s)

(3.75)

where i = x, y denotes the coordinates, s = ps, ns denotes the positive and negative sources.
This shifting procedure causes the surface tension force to be applied more to the phase with
the higher density and therefore improves the numerical stability. ρ̃ is the bulk density and
N(i,s) is is a normalisation factor used to conserve the source. The shifting for positive and
negative sources needs to be kept separate otherwise a negative value of the normalisation
factor may occur and therefore cause the signs of the local source values to be reversed.

The problem with Eq. (3.73) is that it may not strictly conserve the source in the com-
putational domain although it can improve the numerical stability compared to the direct
implementation of fγ. However, by using the normalisation factor, the density shifting
procedure shown by Eq. (3.74) achieves accurate source conservation.

6 Marangoni model

Having described in the previous section how the pressure jump at the interface was calcu-
lated, it is appropriate to describe how ∂γ̃

∂s
t, i.e. the Marangoni stress, can be calculated.
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The methodology presented here is based on height functions. The calculations use the data
collected by the part of the algorithm presented in section 5.2.

6.1 Deficiency of the surface gradient operator

It is underlined by Seric et al. that using the surface gradient operator as it is defined in
Eq. (3.48) can result in inaccuracies when implemented in the VOF method [Seric et al.,
2018].

This definition of the surface gradient can result in inaccuracies when implemented in the
VOF method for general variable surface tension for two reasons. First, the discontinuities of
the material properties across the interface represented by Eq. (3.1) can result in Q having
a large jump across the interface: for example, in the case of surface tension dependence
on the temperature where the fluids on each side of the interface have large difference in
the conductivity. The second reason is that, in general, surface tension can depend on the
concentration: for example, in the case of the mixing of two liquids with different surface
tension, or in the case of surface tension dependent on the surfactant concentration.

The Marangoni effect is caused by a tangential stress located on the interface due to a
variation in surface tension. Surface tension is a concept that only makes physical sense at
the interface and its variation only makes sense along that interface. An estimation of the
surface tension gradient is necessary to be able to calculate the surface gradient operator. The
surface tension is a function of, among other things, the temperature and the concentration of
chemical species. However, these quantities generally vary abruptly when they are considered
on either side of the interface.

Therefore in VOF and similar methods the gradient of surface tension is a vector whose
direction is close to the normal of the interface, which makes no physical sense. The
surface gradient operator subtracts its interface normal component to recover its tangential
component. This approximation constructed from data from few cells (depending on how
the gradient operator is calculated) is very sensitive to errors.
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6.2 Calculation Marangoni term with HF

Seric et al. propose to implement the variation of surface tension using a method inspired by
height functions [Seric et al., 2018]. The algorithm for implementing ∇sγ(x) in the VOF
method starts with the approximation of the interfacial values of the surface tension in each
cell containing an interface segment. More precisely, the idea of constructing the columns of
cells inspired by the computation of interfacial curvature and normals using height functions
is used.

In this method the derivative along the interface of the surface tension is calculated directly:

fst = ∂γ̃

∂s
δst (3.76)

where s is the arc length. The derivative ∂γ̃
∂s

, δs, and t are evaluated using the cell-centers
values. Firstly the surface tension values are defined at the interface, then the derivatives of
γ are computed along the interface.

In this method the tangential component at the interface of the surface tension gradient is
directly obtained which avoids the projection along the tangent to the interface thus avoiding
the calculation errors generated by the surface gradient operator. Its other advantage is that
the diffuse data due to the VOF method are averaged in a direction close to the normal to
the interface, the columns of the stencil being oriented in the direction most perpendicular
to the interface.

6.3 Calculation of the average surface tension coefficient in each
cell

The first step is to determine the surface tension evaluated from the concentration at the
center of all interfacial cells γ(pos, ch2), with the volume fraction αpos. Where pos is the the
coordinate of the targetted cell center. The surface tension in each column, denoted by
γx(posx, ch2), is defined so that it has only one value in each column, regardless of how many
interfacial cells are contained in that column. The superscripts x, y represent the column
direction.
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For columns with only one interfacial cell , the surface tension of the interfacial cells is not
averaged among the neighbouring cells. The value is directly taken from the surface tension
of the cell.

If there is more than one interfacial cell in the column, then γx(posx, ch2) is approximated by
the volume weighted average of the suface tension values belonging to the same column.

γ̃xi
(posx, ch2) = αi,j γi,j + αi,j+1 γi,j+1 + · · ·∑

j αi,j

(3.77)

γ̃yj
(posy, ch2) = αi,j γi,j + αi+1,j γi+1,j + · · ·∑

i αi,j

(3.78)

In this implementation γ̃xi
(posx, ch2) is first defined for all interfacials cells. For certain

coordinate , it is posible to define γ̃ for more than just one interfacial cell.

The direction of the column as to be determined along whit the computation of the surface
forces. The choice of the direction is based on the interface orientation: x or y is chosen to
be the same as the largest component of the normal vector to the interface. The same choice
is made for computing curvature and the interface normal using height functions.

6.4 Derivative of surface tension

The next step is to evaluate the derivative along the interface ∂γ
∂s

.

The derivative of the surface tension along the interface, ∂γ
∂s

, is approximated by the derivative
of the interfacial value, γ̃ in the column which is formed in the direction x or y.

The derivative is computed as :(
∂γ

∂s

)
i,j

= γ̃(i + 1) − γ̃(i − 1)
ds

(3.79)
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γ̃(i) is the weighted average of the values taken by the surface tension for the cells of column
i. Therefore the same value of surface tension will be used in the calculation of the derivative
for the cells of the same column of the stencil.

γ̃(i) =

j=+∞∑
j=−∞

∇αij × γi,j

j=+∞∑
j=−∞

∇αij

(3.80)

In each interfacial cell, the derivative is computed along the interface using central difference,
i.e. the finite difference of the ~γ̃ in the two neighboring columns.

(
∂γx

∂s

)
i,j

= γ̃j+1 − γ̃j−1

ds
(3.81)

γ̃j is the interfacial value of the surface tension in the column j constructed in the x

direction.

6.5 Derivative of the arc length

Then the derivative of the arc length is calculated from the derivative of the height function:

ds = 2∆x

√
1 + H ′(i) (3.82)

The arc length ds is computed from height function in the same direction as ∂γx

∂s
. For the

example given previous equation , the arc length is :

ds = 2∆y

√
1 + H ′(j) (3.83)

where H ′(j) is the derivative of the height function and ∆y is the cell size. The next part of
the surface gradient implementation is the choice of the tangent vector, t, which is computed
so that it satisfies t · n = 0.
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Fig. 25: a : example gradient of ∂γ
∂s , when switching from one to another direction the values of ∂γ

∂s
have to be continous, b: value of MGx, c: value of MGy

6.6 Orientation of the Marangoni force

The direction of t depends on the direction used for computing ∂γ
∂s

. points in the direction
of the positive component orthogonal to the x, y direction. As an example, t points in the
positive x direction if column is built in the y direction.

An intermediate value as to be considerate when choosing the tangent vector.

MGx = ∂γ

∂s
sgn(tx) (3.84)

MGy = ∂γ

∂s
sgn(ty) (3.85)

The Fig.25 show an examples ∂γ
∂s

, MGx and MGy respectively, are computed in all interfacial
cells, where a positive uniform gradient of the surface tension is imposed in the y direction.
On the left figure ∂γ

∂s
changes sign in the first and third quadrant at the angles, defined from

the positive x axis, of π/4 and 5π/4, respectively. At these points the direction of the columns
used in gradient computation changes. Hence, the two neighboring cells have opposite sign
of ∂γ

∂s
. However, once the correct sign of the tangent vector components is included and each

component is considered separately, as in the two previous equations , this inconsistency in
the sign is corrected.

The numerical expression of the component of the surface force are then :

Fst,x = MGx|tx|δs (3.86)
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Fst,y = MGy|ty|δs (3.87)

where δs is the dirac function defined previously , which represent from the numerical
point of view the part of the cell present in the interface The two values MGx and MGy

have to be evaluated in all the cells where δ ̸= 0 . The same approach as the one used to
define the curvature of the cells neighboring the interface is used. The values in the cells
neighboring the interfacial cells are defined by averaging the values in the direct neighbors
that already have the curvature value defined. This procedure is repeated twice, insuring
that the curvature values for the corner neighbors to the interfacial cells are defined as well.
We use an identical approach for defining the x and y components of MG in the cells around
the interface which are subsequently used in the two previous equation.

7 Numerical model mass transfer across the interface

Firstly, this section presents how interfacial mass transfer is modelled and why it is necessary
to perform an accurate calculation of the interfacial area to ensure mass conservation on
both sides of the interface. Then in a second step the numerical method used to calculate
this area is presented.

7.1 Conservation of dissolved species

Capturing the fluid behavior of a multiphase and multicomponent system composed of a
gas phase and a liquid phase with the gas diluted in the liquid requires the modeling of its
multiphase and multicomponent characteristics. From a numerical point of view, the multi-
phase behavior can be captured by solving the VOF equations and the multicomponent aspect
by solving the species transport equations. However, certain considerations must be taken
into account in order to develop a numerical and holistic model simulating simultaneously
multiphase and multicomponent physics.

Firstly the dissolved species must be tracked only within the phase it exists in, i.e. the solution
to the species transport equation for dissolved concentration must only have non-zero values
within the liquid phase and not the gas phase. Otherwise, having a non-zero solution in
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the gas phase would imply the existence of dissolved gas species within the gas phase itself,
which is non-physical.

Secondly the mass must be preserved for the species studied during mass transfer. For
example, to capture the absorption of dissolved species in the gas phase, a source/sink term
Sα,sp−trsft should be added to the VOF equation, and a source/sink term SY,sp−trsft should be
added to the species transport equation:

∂α(t)
∂t

+ ∇ · (α(t) v) = Sα,sp−trsft (3.88)

∂ρYi

∂t
+ ∇ · ρ (vYi − Di∇Yi) = SY,sp−trsft (3.89)

where Yi is the mass fraction of species i, Di is the diffusion coefficient of species i.

The mass transfer rate must be determined by the interface jump conditions so that there is a
chemical equilibrium between the species.

In the bulk of each phase, these source terms must be equal to 0, and must have an influence
only at the interface. These source terms are volumetric and from a numerical point of view
will be applied to the centre of each cell of the mesh. However, interfacial mass transfer
is a phenomenon that occurs on a surface and is localised at the interface. It is therefore
necessary to ensure from a numerical point of view that the species are well conserved.

In a multiphase, multi-component system the chemical species will move to bring the system
to equilibrium. The state of non-equilibrium is at the origin of mass transfer. It is the mass
transfer that pushes the system towards equilibrium. In many numerical simulations the rate
required for the system to reach equilibrium is used as the basis for formulating the rate
of mass transfer across the interface. The objective of the mass transfer is to calculate the
coefficient ṁ of the mass transfer flow rate.

7.2 Interfacial area calculation

For the mass transfer rate to be calculated accurately AI must be evaluated correctly [Soh
et al., 2016; Schlottke and Weigand, 2008]. The gradient of α gives a biased representation
of the interface. At the local level, |∇α| can have non-zero values in cells of the mesh where
in the continuous model the interface is not present. These cells are adjacent to the interface
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Algorithm 3: Calculation of AI in 2D
Result: return AI
niter = 0
AI = 0
stepx = |x2−x1|

nL
xa = 0, xb = xa + stepx

while niter < nL do
L = 0
ya = fpol(xa)
yb = fpol(xb)
L =

√
(xb − xa)2 + (yb − ya)2

AI = AI + L
xa = xa + stepx

xb = xb + stepx

niter = niter + 1
end

cells, |∇α| is computed using the α values of the neighboring cells, including the interface
cells. Thus |∇α| may not be zero for cells where α = 0 and α = 1. These cells can generate
an artificial mass transfer and after the transfer phase the calculation can result in a value of
α negative or greater than unity.

With the developments made previously on the height functions it is possible to calculate AI

without using the gradient of the volume fraction. For a 2D simulation, by determining the
coordinates of the points where the interface crosses the axes of the mesh and knowing fpol

the length of the interface can be determined by using the alg. 3 allowing estimation of the
length of the curve of a function. The prerequisite is to know the intersection points of the
parabola with the cell boundaries named here arbitrarily Pa(xa, ya) and Pb(xb, yb). Meier et
al. used a similar method [Meier et al., 2002]. The calculation of AI can be extended to a
3D simulation [Soh et al., 2016]. The use of such a computational method is necessary to
be able to integrate a mass transfer model across the interface [Soh et al., 2017].

8 Integration of the code in Fluent

This section presents how the numerical methods described above have been integrated into
the Ansys Fluent code.
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8.1 User Defined Function

The commercial software Ansys Fluent 2020 R2 was used to perform the numerical simula-
tions. The model was coded and implemented using User-Defined Functions (UDFs).

The coding was done in C language. The code was inserted within a DEFINE ADJUST macro.
This macro is executed by Fluent just before solving the mass, momentum, volume fraction
and species transport equations. The main function of the macro code is to calculate the
source terms that can be added to the conservation and transport equations. Fluent allows
its users to calculate the surface tension terms with different types of methodology through
a graphical interface and in particular with the CSF method. For comparison and testing
purposes this module was used, but disabled in the general case so as not to interfere with
the calculations done by the DEFINE ADJUST macro.

The code has been adapted to parallel calculation, in order to reduce the calculation time.
One of the main difficulties of the coding was to adapt the custom-made calculations to
Fluent’s calculation system. Fluent offers a turnkey CFD solution, which means that the
user can customise the software to his needs but is not expected to replace an entire
computing system. In order to identify each cell Fluent uses its own referencing system. The
calculations performed on the height functions require an exact knowledge of the position of
the coordinates of each cell. This is why one of the first functions of the DEFINE ADJUST is
to establish its own coordinate and referencing system different from that of fluent, and to
establish the correspondence between the two systems if necessary. This explains the use of a
particular mesh. The DEFINE ADJUST code can only work with this type of mesh. The mesh
consists of square and orthonormal cells as shown on fig. 26. Different mesh sizes were used
for the simulation: 40 × 40 , 80 × 80, 120 × 120, 160 × 160. Increasing the mesh size increases
the computation time. To make the calculation of surface tension forces more accurate at
the interface it is interesting to refine the mesh size locally. Fluent provides macros for local
refinement of the mesh size. However, this has the effect of changing the cell referencing
system, which makes it difficult to transfer the information to the DEFINE ADJUST macro
referencing system. From a coding point of view, the simplest solution is to globally refine
the mesh to obtain the desired level of accuracy of the surface tension force calculation.
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Fig. 26: 40 × 40 structured mesh used for the simulation

8.2 Discretisation

The gradients of scalars are calculated as cell centroid values from the centroid values of
faces surrounding the cell. The Green–Gauss node-based method is used for this calculation.
The PRESTO scheme is used for pressure interpolation. The QUICK scheme is used for the
discretisation of the momentum and the energy equations. The Piecewise-Linear Interface
Calculation (PLIC) scheme is used for the discretisation of the volume fraction equation.
When simulations are made using the CSF method, the default node based smoothing of the
volume fraction field prior to calculation of the curvature was enabled. No smoothing of the
calculated curvatures was performed. A first order implicit scheme is used for the temporal
discretisation of the transient terms. Finally, for the pressure–velocity coupling, the SIMPLE
algorithm is used.

9 Presentation of the code used in the simulations

The numerical methods presented above are part of the puzzle pieces that were used to code
the DEFINE ADJUST macro used in the simulations presented in this thesis. The diagram in
Fig.27 describes how the DEFINE ADJUST macro is integrated into the Fluent algorithm. The
source term fγ Eq. (3.90) is calculated at each iteration before the Navier–stokes equations
are solved.

fγ =
(

∂γ̃

∂s
t + γκn

)
δs (3.90)
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Fig. 27: Algorithm used by Fluent to solve the Navier–Stokes equations. Integration of the DEFINE
ADJUST macro to calculate the source term fγ

Fig. 28: Presentation of the algorithm used to code the DEFINE ADJUST macro

The diagram in Fig.28 shows the algorithm used to code the DEFINE ADJUST macro. It
clarifies and summarises the work done and presented in this chapter. This algorithm is
used at each iteration to compute the source term fγ. Each part of this algorithm has been
described in the previous sections. The page numbers of these parts are referenced in the
diagram. To build the code the work of different authors has been used as reference. The
names of the authors who inspired the code for each of these parts are shown in the diagram
in Fig.28 [Renardy and Renardy, 2002; Popinet, 2003; Popinet, 2009; Magnini and
Pulvirenti, 2011; Guo et al., 2015; Seric et al., 2018]. The main difficulty was to ensure the
compatibility of these different methodologies. This algorithm allows to calculate precisely
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the source term fγ and to limit the spurious currents. The tests carried out to validate the
reliability and accuracy of this algorithm are presented in the next chapter.
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Suitability of the VOF
approach to model
electrogenerated bubble with
Marangoni micro-convection
flow

4

In order to disentangle the effects of spurious currents from Marangoni currents, the overall
approach presented in this chapter is to evaluate spurious currents when there is no simulated
Marangoni effect. First, the error in the curvature calculation is evaluated. Then tests on
bubbles in stagnant fluids are performed. These allow the evaluation of spurious currents as
theoretically no current should be generated in the case of a stagnant bubble. These tests are
performed for different mesh resolutions, the errors generated being dependent on the mesh
resolution. The objective of this chapter is to evaluate the errors generated by the algorithm
presented in the previous chapter, to compare it with the CSF methodology, and to evaluate
its suitability to model electrogenerated bubble with Marangoni micro-convection flow.

1 Curvature calculation errors

Choice of curvature calculation method
It has been shown by Cummins et al. that starting from an exact volume fraction value, cal-
culations with the standard method of height functions estimate the curvature asymptotically
with second order accuracy [Cummins et al., 2005]. But, as previously mentioned, the
height function method loses its effectiveness when the interface approaches the diagonal of
the mesh axes, in which case a polynomial fit method is more appropriate.
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However, from a theoretical point of view there is no obvious way to decide whether to
switch from one of these methods to the other. An orientation angle θswitch of the interface
must be determined to know when to switch from one method to another. Numerical tests
are needed. A first step is to evaluate the performance of each method. Then by comparing
the errors of each method the most suitable angle θswitch can be chosen.

Study parameter and evaluation criteria
The first parameter to take into account is the size of the mesh, several tests have been
performed for different spatial resolutions. The curvature calculation tests were performed on
circular interfaces. The ratio 1

κ ∆ is used to compare the mesh size to the curvature. Another
criterion to consider is the theoretical position of the interface within the cell. Depending on
this position the value of the volume fraction is modified. This can have an influence on the
curvature results provided.

To prevent the curvature calculation from being interfered with by errors in the numerical
calculation of the volume fraction, the curvatures have to be evaluated from analytically
calculated exact volume fractions, so that only the curvature calculation method is evaluated.
In this study the interface is made up of arcs. The exact volume fraction can be determined
from the integral of the function representing these arcs of circles. The circles have as their
centre the origin of the reference frame for determining the coordinates of the mesh and
have the function: x2 + y2 = R2. In this trivial case, the exact curvature is the inverse of the
radius of the circle. The evaluated curvature is compared with the exact curvature:

∆κerror = 1
κexact

|κ − κexact| (4.1)

The quantity ∆κerror is used to determine the accuracy of the numerical algorithm for
calculating the curvature.

Calculation of the exact volume fraction
As shown in Fig. 29, each cell of the mesh is used as a basis for determining a local

coordinate system whose centre on the diagram has the coordinates (x0, y0).This gives the
circle equation in the local system:

(x + x0)2 + (y + y0)2 = R2 (4.2)
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Fig. 29: Calculation of the exact volume fraction

In order to calculate the integral of the function, the coordinates are expressed in an explicit
form:

y =
√

R2 − (x + x0)2 − y0 (4.3)

x =
√

R2 − (y + y0)2 − x0 (4.4)

To simplify the following calculations only the cases where x > 0 and y > 0 are considered.
The calculations and reasoning remain equivalent to the nearest sign in the other cases. As
shown in Figure 1, the arc of the circle intersects the y-axis at my and the x-axis at mx in the
local coordinate system:

mx =
√

R2 − y2
0 − x0 (4.5)

my =
√

R2 − x2
0 − y0 (4.6)

In Fig. 29 the surface Ac, allowing to determine the volume fraction, is the intersection of
the surface of the cell of the mesh with the surface represented by the integral of the curve
and satisfying the equation: Ac = A0 − A1 − A2. The integral under the curve A0 is cut into
three areas, in order to determine the area representing the volume fraction. By determining
A0, and the two surfaces A1 and A2, the surface Ac is obtained:

A0 =
∣∣∣∣∫ mx

0
y dx

∣∣∣∣ (4.7)
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A1 =


0 if |mx| < |∆x|∣∣∣∣∫ mx

∆x

ydx
∣∣∣∣ |mx| > |∆x|

(4.8)

A2 =


0 if |my| < |∆y|∣∣∣∣∣
∫ my

∆y

xdy

∣∣∣∣∣ |my| > |∆y|
(4.9)

In the case where |mx| < |∆x| or |my| < |∆y|, the surfaces A1 and A2 do not exist. This is
why it is necessary to include a condition in Eq. (4.8) and Eq. (4.9). From these areas, Ac

can be determined, which makes it possible to find the volume fraction by taking up the
definition in Eq. (3.37):

α = A0 − A1 − A2

∆x∆y

= Ac

∆x∆y

(4.10)

Determination of θswitch

Beyond a certain angle of inclination θ the height function method becomes less efficient. The
polynomial fit method is more expensive to compute. A system of equations must be solved
for each cell of the mesh. There is the computational cost and precision to consider. An angle
to define when to switch from using one methodology to another to calculate curvature must
be determined. A suitable angle value that assures that the results will not diverge has to be
found. The choice of this angle is more a question of safety than of optimization.

Curvatures are evaluated for interfaces with a tangent inclined at an angle θ of 0 to 45° with
respect to the horizontal axis of the mesh. The usual height function method as mentioned
before presents good results for interfaces whose inclination is close to the axes of the mesh.
However, from a certain inclination, the results obtained diverge from the real value of
the curvature, as shown in Fig. 30. As the inclination of the interface increases, the error
increases. The choice of the alternative method of polynomial fit is to be considered. In view
of the results obtained, the transition from one method to the other is to be considered for
an interface tilt around θswitch = 22.5°. The main difficulty of the polynomial fit method is to
choose the interface points to use. When θ is less than θswitch, the height function method is
used. The transition to the polynomial fit method is made for θ greater than θswitch. With
regard to the results presented in Fig. 31 for resolutions where the radius of the circular
interface considered has a length equivalent to 5 cell widths of the mesh, it appears that the
use of the two techniques used is inconsistent. The points approximating the position of the
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Fig. 30: Relative curvature errors with the height function methodology along the circular interface
as a function of the interface inclination angle with respect to the horizontal.

interface are not close enough to be able to correctly estimate the polynomial parameters.
On the other hand, when the spatial resolution becomes finer and for θ greater than θswitch

the fitting method gives better results.

These tests on the curvature allowed us to establish suitable value for θswitch. The center of
the circular interface was moved to test the robustness of the methodology. In general this test
has no influence on the results obtained. However, in cases where the part of the interface
present in the cell is too small, the calculation error on the curvature diverges. The choice
of the weighted average calculation of the curvatures on the adjacent cells was considered
instead. This choice allows much better results to be obtained. The electrogenerated bubbles
having almost circular interfaces so the choice of an average seems coherent. Generally
speaking, for resolutions for which the interface radius is equivalent to 15 times the width of
the mesh, calculation errors of less than 0.3% are obtained. This preliminary test allows us
to be confident about the curvature calculation methodology.
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Fig. 31: Relative curvature errors along the circular interface as a function of the interface inclination
angle with respect to the horizontal for two interface resolutions.
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Fig. 32: Comparison between analytically calculated Young–Laplace pressure , and numerically
evaluated pressures around the bubble for the continuous surface force (CSF) model and
the height function (HF) model. The points represent the average pressure at the center of
the cells and the x-axis represents the distance from the center of the bubble.

2 Static bubble test case

Pressure jump at the interface
The analytical solution for the simulation of a stationary bubble in a zero velocity field, and
the analytical curvature can be easily obtained from the bubble radius. A circular interface
with surface tension should remain at rest, with the pressure jump at the interface exactly
balancing the surface tension force (Laplace’s law). The velocity field being zero, Eq. (3.28)
reduces to:

−∇ · (p̃I) = 0 (4.11)

In this test case within each fluid the pressure is constant. The jump relation Eq. (3.31)
which is applicable only at the interface reduces to the mathematically exact formulation:

JpIK · nI + γκnI = 0 (4.12)

This brings us back to the relation of Laplace. In each phase the pressure is constant and a
pressure jump occurs at the interface. As shown in Fig.32 the pressure jump created by the
CSF model at the interface is less direct, which deviates from the real conditions, while the
height function methodology gives a better approximation.
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Time to reach equilibrium

In practice, depending on the method used to discretize the pressure gradient and the surface
tension force, parasitic currents appear. The exact numerical balance is difficult to obtain
[Popinet, 2018]. The numerical imbalance created is at the origin of these currents.
Similar to what was done by Popinet, it is appropriate to first test the model by imposing the
exact curvature in the entire domain for the calculation of fγ [Popinet, 2009]. This tests
the adequacy of the model by excluding the curvature calculation, and thus verifies that
the balance calculation between the pressure term and the surface tension term is indeed
achieved. The time required for the momentum to diffuse over a distance L is proportional
to tν , where

tν ∝ L2

ν
(4.13)

and ν is the kinematic viscosity of the liquid. As noticed by Popinet, the time scale needed
to reach the numerical equilibrium solution is comparable with the time scale of viscous
dissipation tν , as expected from physical considerations [Popinet, 2009]. In practice, this
means that test cases designed to evaluate the accuracy of a given surface tension model (for
a stagnant bubble equivalent problem) must ensure that simulations are run for time scales
comparable with tν . In our case tν is close to 2 ms. The other quantity to consider is the
velocity associated with the capillary wave uγ.

uγ ∝
√

γ

ρ L
(4.14)

It can be interpreted as the scale of the velocities associated with a capillary wave of wave-
length comparable with L. As shown in Fig. 33, the average velocity obtained decays for
a time equivalent to the viscous dissipation time. The velocity and time have been scaled
using uγ and tν . Thus, the numerical calculation verifies the theoretical equilibrium and
the spurious currents observed in the following can be attributed to errors in the curvature
calculation.

Errors caused by spurious currents

In this second test the curvature is calculated by the model. In order to evaluate the impact
that spurious currents could have on a simulation with Marangoni effect, the maximum
speed of the spurious currents umax,spurious currents obtained are scaled using an average speed
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Fig. 33: Evolution of the maximum intensity of the spurious currents observed around the bubble.
With the use of an exact curvature for the simulation, the equilibrium is reached for a time
tν .
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Fig. 34: Convergence with spatial resolution of maximum spurious currents speed. The maximum
speed of the spurious currents umax,spurious currents obtained are scaled using an average
speed of Marangoni currents observed in experiments uaverage, Marangoni = 25 mm · s−1.
u∗ = umax,spurious currents

uaverage, Marangoni
. Several simulations were performed for different mesh resolutions

for each of the two tested models: CSF and and HF the algorithm based on height functions
presented in section 3.9. The simulations were carried out for a time equivalent to the
experimentally observed growth time of a bubble.
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Fig. 35: Spurious current generated using two mesh densities. On the left R/∆x = 10 on the right
R/∆x = 20

of Marangoni currents observed in experiments uaverage, Marangoni = 25 mm · s−1 [Yang et al.,
2018].

u∗ = umax,spurious currents

uaverage, Marangoni

(4.15)

As shown in Fig. 34 and in Fig. 35, for the CSF method the spurious currents increase when
∆x decreases .

This is consistent with the analysis presented by Harvie et al. [Harvie et al., 2006]. The
CSF method is therefore clearly not suitable for the simulation that is the objective of this
study. This validates the use of a more efficient interface representation method. The error
generated using HF decreases with the reduction of the grid spacing. The results obtained in
this section show that the method used is balanced and allows estimation of the curvature
sufficiently accurate to obtain a solution close to the exact equilibrium (for the velocity). The
numerical equilibrium obtained is very close to the theoretical equilibrium. Even for coarse
resolutions the error generated on the final simulation is less than 1 %.

3 Interfacial area error calculation

In order to evaluate the accuracy of the calculation of the interfacial area of each cell of
the mesh, several simulations were conducted. The calculated value is compared to the
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exact value of the interface AI,exact. The test case of a static bubble as described below was
used. The interface being circular the exact value of the interfacial area in each cell can
be calculated analytically. As the position of the interface in each cell can influence the
calculated numerical value, the values of all cells through which the interface passes were
averaged, as described by the following equation:

E(AI) =
N∑|AI,exact − AI |

N
(4.16)

where N is the number of cells for which the calculation was performed. The results are
shown in the graph in Figure 36. The calculations were performed as a function of the
parameter nL, which determines the accuracy of Alg.3, and as a function of the ratio R/∆x,
which determines the accuracy of the mesh. The graph in Fig.37 shows the maximum error
found, as described by the following equation:

Emax(AI) = max|AI,exact − AI | (4.17)

The error decreases with a finer mesh, and by increasing the value of the parameter nL.

4 Surface gradient error calculation

Next, the efficiency of the surface tension gradient calculation should be tested, as shown
in Eq. (3.79). The static bubble is subjected to different temperature gradients over a
given distance as shown in Fig.38. The objective here is to expose the interface of the
bubble to variations in surface tension similar to what it might encounter as it grows, the
bubble is exposed to surface tension variations ranging from 0.1N · m−2 to 50N · m−2. As
the interface is circular the exact value of the surface tension gradient can be calculated.
For each cell crossed by the interface the length of the interface is known and every two
cells the temperature difference can be calculated. For each simulation the surface tension
gradient is averaged along the interface in order to compensate for uncertainties concerning
the influence of the position of the interface within the cell. The relative error found is
calculated according to the following equation:

E(∇sγ) =
N∑|∇sγexact − ∇sγ|/|∇sγexact|

N
(4.18)
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Fig. 36: Relative interfacial area errors averaged along a circular interface as a function of nL and
the mesh refinement.
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Fig. 37: Maximal relative interfacial area errors along a circular interface as a function of nL and the
mesh refinement.
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Fig. 38: Surface gradient calculation. The interface of the bubble is exposed to a temperature
difference along the interface. The value calculated with Eq. (3.79) is compared with the
exact value.

where N is the number of cells used for the calculation. The maximum errors found are also
recorded, and calculated using the equation:

Emax(∇sγ) = max|∇sγexact − ∇sγ|
|∇sγexact|

(4.19)

The errors found are counted and plotted in Fig.39. The finer the mesh, the smaller the error.
As shown in the graph in Fig.39, the calculated errors are not very sensitive to the value of
the surface tension gradient, but they decrease rapidly as the mesh is refined. The maximum
errors are mainly due to cells where the interface share is small compared to the total cell
volume.

5 Translating bubble test case

While the case of a stagnant bubble allows us to test the equilibrium of the model by referring
to an exact solution of the velocity field, it does not allow us to evaluate the combined
accuracy of the interface advection and surface tension model. As proposed by Popinet, the
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Fig. 39: Relative error of the surface tension gradient as a function of mesh resolution. The maximum
Emax and average Eavg error are calculated for two values of the surface tension gradient,
0.1N · m−2 and 50N · m−2.
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Fig. 40: Non-dimensionnal spurious currents velocity as a function of spatial resolution. Several
simulations were performed for different mesh resolutions with the model based on HF. The
simulations were carried out for a time equivalent to the experimentally observed growth
time of a bubble [Yang et al., 2015; Yang et al., 2018; Massing et al., 2019].

horizontal translation of a bubble carried by a uniform flow field is a more robust and realistic
test [Popinet, 2009]. In the case of electrogenerated bubbles, when the bubble grows, the
interface translates at a vertical speed of a few millimeters per second. This is a preliminary
test before testing mass transfer models across the interface. A uniform horizontal velocity
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u0 is imposed in the whole domain with periodic boundary conditions on lateral sides and
symmetry boundary conditions on the top and bottom. As already reported by Popinet, the
absolute error on the velocity does not depend on u0 and is weakly dependent on the Laplace

number La = ρLγ

µ
. It is thus the transport scheme of the interface that is directly tested

and therefore the impact of the spatial resolution. In our study the Laplace number varies
between 5, 000 and 20, 000. A new time scale is introduced, to account for the time needed
for the bubble to cross a length L, and is given by:

tu0 ∝ L

u0
(4.20)

The velocity has been scaled with uM and the time with tu0 . The Laplace number was fixed at
12, 000. The results presented here as an example reflect a general trend in the evolution of
the spurious velocity over time as observed by Abadie et al. [Abadie et al., 2015]. Popinet
notes that these oscillations are proportional to u0/∆x. The advection errors of the models
continuously disturb the calculations related to the interface [Popinet, 2009].

As shown in Fig.40, the model has similar behavior to the previous studies [Popinet, 2009;
Abadie et al., 2015]. The drastic drop in performance can be noticed. Even if the height
function method allows accurate curvature calculations, the flaw of the method comes
essentially from the advection method. The previous simulation was repeated for different
mesh resolutions. The dimensionless quantity used in the abscissa is R/∆x. As for the
static case the method converges when the mesh is refined. We obtain an error of 2.5% for
R/∆x = 70.

6 Conclusion of the chapter

As shown in the example in Fig. 41, the use of the height function method greatly reduces the
error rate due to spurious currents. The objective of this simulation is to visually represent
the impact that spurious currents could have on a solutal Marangoni type effect on an
electrogenerated bubble attached to an electrode. The interface is fixed, the contact line
model is not implemented and so the bubble is not in contact with any edge. To replicate
what might exist in an electrode-generated bubble, a gradient of dissolved species is initiated
along the interface, where the Marangoni effect takes place as shown in Fig.42.
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The gradients of scalars are calculated as cell centroid values from the centroid values of
faces surrounding the cell. The Green–Gauss node-based method is used for this calculation.
The PRESTO scheme is used for pressure interpolation. The QUICK scheme is used for the
discretisation of the momentum and the energy equations. The Piecewise-Linear Interface
Calculation (PLIC) scheme is used for the discretisation of the volume fraction equation.
When simulations are made using the CSF method, the default node based smoothing of
the volume fraction field prior to calculation of the curvature was enabled. No smoothing
of the calculated curvatures was performed. A first order implicit scheme is used for the
temporal discretisation of the transient terms. Finally, for the pressure–velocity coupling,
the SIMPLE algorithm is used. Globally scaled residuals are used and the residual targets
for all the equations are set to 1 × 10−6. The mesh consists of square and orthonormal cells.
The mesh with R/∆x = 20 ratio is shown in Fig.42. The properties of the electrolyte and
the gas considered (H2) are shown in the Table 4.1. As noticed by Lubetkin the surface

Tab. 4.1: Physical parameters used

ρl [kg · m−3] ρg [kg · m−3] µl [kg · m−1 · s−1] µg[kg · m−1 · s−1]
1000 0.0899 1.2 × 10−3 8.79 × 10−6

tension varies with the concentration of dissolved gases [Lubetkin, 2002]. To be consistent
with the experiments performed on microelectrodes, the initial surface tension was set at
0.075 [N · m−1] [Glas and Westwater, 1964; Liu et al., 2016].

The work of Massoudi et al. [Massoudi and King, 1974] has been able to establish
relationships between the variation in partial pressure of gas and surface tension . At low
pressures, the concentration of dissolved hydrogen and the partial hydrogen pressure can be
related through Henry’s law:

ch2 = p KH (4.21)

where KH the constant of proportionality is dependent on the temperature and pressure, but
in our case can be estimated as [Wiebe and Gaddy, 1934; Sander, 2015]:

KH = 7.8 × 10−6 [mol · m−3 · Pa−1] (4.22)

As a result, the variation of surface tension as a function of concentration can be obtained:

∂γ

∂cH2

= 1
KH

∂γ

∂p
= −3.2 × 10−5 [N · m3 · m−1 · mol−1] (4.23)
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A concentration gradient was initially applied along the bubble interface as shown in Fig.42.
From this concentration gradient results a surface tension gradient along the bubble interface
which generates a Marangoni current as shown in Fig.41 .

This artificial situation is only intended to illustrate visually the impact of spurious currents
on a simulation, and the improvement that can be made by modelling the surface tension
with height functions as described in the previous chapters. In the image on the left with
the CSF method, spurious currents appear along the interface, which disrupt the Marangoni
currents. This is not the case on the left image with the height function method.

In order to disentangle the effects of spurious currents from Marangoni currents, the overall
approach presented in this chapter has been to evaluate spurious currents when there is
no simulated Marangoni effect as described earlier in the case of the static bubble. This
last simulation of this chapter tends to illustrate the error that spurious currents could have
generated on the calculation of Marangoni currents if a generic methodology such as the
CSF methodology had been used. Overall, the surface tension variation part does not create
spurious currents if the curvature calculation is correct in the first place.
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Fig. 41: Numerical modelling made with Ansys Fluent of a bubble exposed to a surface tension
gradient. The image on the left shows the velocity vectors of the current generated by the
Marangoni effect using the method described in this thesis. The Marangoni currents in the
image on the right are obtained using the CSF methodology.
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Fig. 42: Gradient of a dissolved species initiated along the interface and the origin of the soluto
capillary effect shown in Fig.41. The mesh is represented by the grey grid with R/∆x = 20.
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Model and hypothesis
5

This chapter first seeks to answer the question posed above: How can we understand
the growth of electrogenerated bubbles in the presence of a Marangoni effect? Then the
assumptions of a holistic model to simulate electrogenerated bubbles are discussed. The
couplings and uncertainties of this model are presented. The amplitude of the different types
of Marangoni effects depending on their origin is evaluated and discussed. A new relation
allowing to evaluate the growth of electrogenerated bubbles as a function of the amplitude
of the Marangoni effect is established. A dimensionless study to evaluate the interfacial
mass transfer based on the penetration theory in the presence of a Marangoni effect was
conducted.

1 The Marangoni effect as an alternative to diffusive
transport

1.1 Alternative to the concept of diffusion in the Nernst’s layer

The Marangoni effect is a transient phenomenon, but in the case of electrogenerated bubbles
it is sustained by the Joule effect and the production of gas at the electrode. The observation
of vortices by Yang et al. is most likely due to the Marangoni effect as hypothesised by
Lubetkin [Lubetkin, 2002; Yang et al., 2018]. This calls into question the hypothesis of
transport by pure diffusion of the species produced at the electrode towards the bubble
interface.

The microscopic chaotic motions that take place in the viscous sublayer adjacent to the
surface of an electrode have long been regarded as diffusive motion. Moreover the bubble
growth laws assuming a pure diffusive motion give a relatively good approximation to what
is observed. The work of Amatore et al. sheds light on this interpretation [Amatore et al.,
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2001]. In particular, they introduce a diffusion coefficient Dconv that depends on the species
flux and the convective movement over a given distance:

Dconv = v < ∆ > (5.1)

where < ∆ > is the length over which the dissolved species travel during a time interval,
and v is the average velocity of chaotic motion that develops over this length. The difference
with a classical diffusion coefficient obeying the Nernst relationships is that this diffusion
coefficient is spacially dependent. On the basis of this analysis and without the possibility
of observing the currents in the vicinity of the bubble, it is understandable that chaotic
movements that were in fact generated by a Marangoni effect could have been interpreted in
the past on the basis of a diffusive phenomenon. Yang et al. observed vortex flows around
the bubble as shown in Fig.6 and the only possible interpretation is the presence of stress on
the interface caused by a variation in the surface tension [Yang et al., 2018].

The presence of a Marangoni effect around electrogenerated bubbles is still a recent discovery.
While the vortex currents resulting from the Marangoni effect can be visualised, it is not
yet clear how they can affect the growth and detachment of a bubble on a conventional
electrode. There is also no consensus on their origins.

1.2 Existence of interfacial gradients

The Marangoni effect is due to a variation of the surface tension. This variation as a
function of temperature and concentration of different surfactants or pollutants, is essential
to understand the formation of electrogenerated bubbles [Lubetkin, 2002; Massoudi and
King, 1974; Weissenborn and Pugh, 1996; Zhang and Zeng, 2012].

The interfacial gradients of these physical properties vary the surface tension along the
interface. Therefore, due to the unbalanced forces at the interface, fluid elements experience
a net shear stress there and move to regions of the interface where the interfacial tension is
higher. The assumptions made about the strength of the Marangoni effects depend directly on
the knowledge of the gradients of the quantities involved. The important physical prerequisite
is the presence of a sufficiently long-lasting gradient to allow observation of the resulting
motion. If the presence of these gradients at the interface is proven, their magnitudes remain
a model hypothesis.

138 Chapter 5

Model and hypothesis

Study of electrogenerated two-phase and microfluidic flows Florent Struyven 2022



The convection generated by these ends very quickly, as it promotes rapid equilibration of
the temperature or concentration distribution along the interface. To sustain convection for
a long time, a mechanism must be provided to maintain the surface tension gradient.

In the case of the thermocapillary effect, the Joule effect maintains the phenomenon. A
distinction must then be made between the solutal capillary effect caused by pollutants or
surfactants and that caused by dissolved gas species. In the first case, the surfactants present
in the electrolyte only modify the value of the surface tension of the interface when they are
adsorbed. There are no sources of surfactants that could maintain the phenomenon over the
long term. In the second case, dissolved gas species are generated at the electrode and then
absorbed by the bubble as it grows. There is therefore a driving force here that could sustain
the Marangoni effect over the long term.

To understand how temperature or concentration gradients occur it is worth mentioning the
couplings that take place, as they highlight the complexity of the competing phenomena and
their influence on the Marangoni effect. The couplings between the model equations are
shown in Fig. 43. The implications of Fig. 43 are explained in section 3. Before commenting
on this diagram and as a pre-requisite, the heat equation and the transport equation for
dissolved species must be stated here.

2 Heat, transport, and surfactant models

2.1 Heat equation

As the surface tension is a function of the temperature, in order to study this variation it
is necessary to include in the model the heat equation Eq. (5.2) as well as the Laplace
equation Eq. (5.3) to calculate the Joule effect Eq. (5.5), and the source term ST of the heat
equation:

ρCp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (λ∇T ) + ST (5.2)

∇2Φ = 0 (5.3)

j = λelec∇Φ (5.4)

ST = |j|2/λelec (5.5)
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Fig. 43: Diagram representing the different couplings between the different relationships involved in
the production of electrogenerated bubbles.
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Fig. 44: Diagram extract from Hossain et al. showing the flows around the bubble as a function of
electrode size [Hossain et al., 2020].The red lines to the left of each bubble represent the
electrical current lines. The narrowing of these electrical current lines makes it possible
to determine the position of a hot spot which is at the origin of a temperature gradient
and consequently of a surface tension gradient. The black lines to the right of the bubbles
represent the lines of fluid movement generated by the surface tension gradient.

where j is the curent density in A · m−2. As shown in Fig. 43, at the interface, as the
temperature varies, the value of the surface tension will be modified. This generates the
Marangoni effect. The velocity at the interface is modified which changes the temperature
profile around the bubble.

ṁJvK + JpIK · nI − J2µDK · nI = γκnI + ∇sγ(T, c) (5.6)

The Marangoni effect will therefore depend on the Joule effect. The conductivity of the
electrolyte and the size and shape of the electrode will therefore have a direct influence on
the fluid currents around the bubble. It is worth recalling here the study by Hossain et al.
on the influence of electrode size on the thermo-Marangoni effect [Hossain et al., 2020].
Fig.44 summarises a key point of this study. The temperature gradient along the interface
depends on a hot spot created by the Joule effect. The more the electric current lines tighten
around the bubble, the greater the Joule effect. The profile of the electric current lines will
depend on the size of the electrodes. For micro electrodes the hot spot is at the foot of the
bubble. For larger electrodes the point where the current lines narrow is near its equator.
Around this hot spot two vortices form. The hot spot reduces the surface tension. The
fluid along the interface moves from areas of low surface tension to areas of high surface
tension. The results obtained by Hossain et al. exclude other sources of the Marangoni effect
[Hossain et al., 2020]. Although these results do not capture the complexity of the real
phenomenon, they clarify the influence of the Joule effect on the Marangoni effect, and allow
to put into perspective the experimental results obtained from a microelectrode compared to
those obtained from a larger electrode.
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2.2 Transport of dissolved species

In order to evaluate the interfacial mass transfer it is necessary to know the concentration
near the interface, to do this the transport equation of dissolved species must be introduced:

∂c

∂t
+ v · ∇c = ∇ · (D∇c) + Selectrode + Sinterface (5.7)

Two source terms are to be taken into account in this equation: the production of dissolved
species at the electrode Selectrode and their absorption at the interface Sabs. The source term
at the electrode can be calculated by Faraday equation

ṁelectrode = |j|M
Fv

(5.8)

where ṁelectrode [kg · m−2 · s−1] is the production rate of dissolved species at the electrode.
The second source term will depend on ṁ which is found in the jump relation established
from the conservation of mass at the interface:

ṁ = ρg (vg − vI) · nI = ρl (vl − vI) · nI (5.9)

This transfer rate will depend on the assumptions made about interfacial mass transfer and
the concentration of dissolved species closest to the interface. As the bubble grows, the
interface is supersaturated on average. It is the difference between the interface concentration
and the saturation concentration of the dissolved gas that drives this growth. This changes
the transport equation, which in turn changes the value of the surface tension. As with the
thermo-capillary effect, this variation in surface tension creates a Marangoni effect which
modulates the flow and thus the transport of dissolved species.

2.3 Presence of contaminants

The presence of surfactants/pollutants in the electrolyte is a very likely hypothesis. Their
impact on the surface tension cannot be neglected. Levich et al. show that the adsorption
of an insoluble surfactant stiffens the interface [Levich and Krylov, 1969]. Such a rigid
interface is unable to transfer tangential stress, which of course blocks the effects of the
surface tension gradient at the interface. The surfactants move along the interface and clump
together to form this stiffened area. A first modelling approach is to consider two zones on
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Fig. 45: Diagram of an electrogenerated bubble on a microelectrode, coated with surfactants. The
angle θS is used to define the free surface of surfactants. Surfactants bind to the top of the
bubble and prevent interfacial mass transfer.

the interface, one stiffened by the surfactants and a mobile one where other sources of surface
tension variation are not inhibited by the surfactant influence. The conclusions are limited
to the surfactant distribution for a fixed bubble size whose diameter corresponds to a stage
in the bubble cycle. The proportion of the surface covered by surfactants is unknown and
can only be estimated a posteriori by comparing the modelling results with the experimental
results. As shown in Fig. 35, in the case of a hydrogen bubble growing on the surface of
a microelectrode, Meulenbroek et al. assume that the surface stiffened by the surfactants
covers the top of the bubble and forms a cap [Meulenbroek et al., 2021]. They define a
stagnation angle θS to give the position of the surfactant stagnation point on the interface,
below which the interface is free of surfactant. Using the contact angle θc, the area for which
surface tension changes are not inhibited can be calculated.
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3 Couplings

3.1 Model uncertainties

The Marangoni effect is a phenomenon generated at the interface that has an influence on
what happens in the bulk. Including it in the analysis of the development of electrogenerated
bubbles profoundly changes the way in which bubble behaviour should be interpreted. In
view of what has been written above, the diagram in Fig. 43 contains all the elements for a
holistic direct numerical simulation. Four equations must be solved in the electrolyte, and
two jump relations at the interface. To this must be added a model to take into account
the presence of surfactants on the interface. In the case of electrogenerated bubbles the
surface tension of the bubble can be affected by either the temperature, the concentration
of any surfactants and the concentration of dissolved gases. For the sake of completeness,
the electrocapillary effect should be added. The electrocapillary effect is a phenomenon that
occurs at the gas-liquid interface due to the presence of a surface charge. The electrocapillary
effect can cause currents [Johnson, 2003]. However, compared to the thermocapillary and
solutocapillary effects, the electrocapillary effect is less well understood. It is well known that
bubbles can carry a surface charge, but the origin of this charge remains controversial [Vácha
et al., 2007; Creux et al., 2009; Beattie et al., 2014; Carnie et al., 2019]. Moreover, in
the case of an electrogenerated bubble on a microelectrode, the first studies seem to show
that the electrocapillary effect can be neglected in view of the importance of the other effects
[Massing et al., 2019; Meulenbroek et al., 2021].

It should also be added here that no indication of the presence of surfactants within the
electrolyte can be measured. It remains an unknown which can only be deduced a posteriori
from the experimental results [Sellier and Panda, 2017]. This leaves temperature and
dissolved gas concentration for which the uncertainties in the equations for monitoring them
are smaller. The quantities involved in these equations are known. However, as previously
mentioned, solutions for monitoring the Marangoni effect on a free interface are not common.
Numerical studies of the Marangoni effect on an electrogenerated bubble assume that the
interface is fixed, i.e. that the growth of the bubble is negligible with respect to the time
interval of study considered [Massing et al., 2019; Hossain et al., 2020; Meulenbroek
et al., 2021]. These studies study the bubble at one stage of its growth and aim to reproduce
the velocity and temperature field observed experimentally. In this context, it is legitimate to
question the initial conditions used.
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3.2 Fixed interface hypothesis

A first consideration is to examine the time scales considered. The time corresponding to
the bubble cycle varies according to the studies from 2 to 5s [Sakuma et al., 2014; Yang
et al., 2015; Guo et al., 2015; Yang et al., 2018; Massing et al., 2019]. This time must be
compared with the evolution of the temperature and velocity profile near the interface, which
evolve quite rapidly in less than a second. Data on the thermal properties of the electrolyte
when growing an electrogenerated bubble on a microelectrode according to the experiments
by Massing et al. are given in Tab. 5.1 [Massing et al., 2019]. The value of the radius
R = 560 µm chosen by these authors for their numerical simulations and corresponding to an
advanced stage of the bubble’s development serves as a basis for the following reasoning.

Tab. 5.1: Thermal properties of the electrolyte in the experiments of [Massing et al., 2019]

Symbol Descritpion Value

ρ [kg · m−3] Density 1000
cp [J · kg−1 · K−1] Heat capacity 4182
λ [J · kg−1 · K−1 · s−1] Thermal conductivity 0.58

Taking the radius of the bubble as the characteristic length, and starting from the first
instant when the Joule effect starts to modify the temperature of the electrolyte, theoretically
close to the ambient temperature, the heat will diffuse within the electrolyte for a time
tth = R2ρcp

λ
≈ 2.2 s. The heat is thus diffused slowly with respect to the bubble cycle.

However, heat is also advected by the thermocapillary movement of the electrolyte at the
interface. The ratio of convective to diffusive heat transfer is expressed by the Péclet number.
Based on the results of Yang et al. a mean velocity u = 10 mm s−1 is a good compromise for
estimating the convective motions within the electrolyte. The Péclet number is expressed
as:

Pe = u R

Dth

≈ 40 (5.10)

where Dth = k
ρ cp

is the thermal diffusivity. Convective heat transport is therefore much more
important than diffusive transport. Another time scale to consider is the recirculation time
of the electrolyte within the vortex near the bubble. A characteristic size of this vortex of
200 µm seems to be a good approximation in view of the observations made by Yang et
al. [Yang et al., 2018]. By assimilating this vortex to a circle, we obtain a a characteristic
recirculation time within the vortex of 0.12 s.
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The argument developed by the above authors is that the temperature and velocity field
evolve rapidly enough to consider that the steady solution of a numerical simulation assuming
a fixed interface can account for the development of an electrogenerated bubble from a
microelectrode in a real situation. The assumption made here is that the parameter that can
make the numerical system evolve is the growth of the bubble. By deriving the relationship
of bubble diameter versus time for reaction rate limited bubble growth Eq. (2.50), it can
be shown that for long times at the end of the bubble’s development the growth rate of the
bubble becomes less and less important:

d R

dt
= β

1
3t2/3 (5.11)

Using a value of β = 360 found experimentally by Massing et al. and from a bubble radius of
R = 560 µm, a characteristic bubble growth time in the experiment can be expressed:

t(growth,r=560 µm) = R

dR/dt
≈ 6.7s (5.12)

By comparing this time with the recirculation time within the vortex of 0.12s, it can be
concluded that the flow field will grow rapidly relative to the bubble growth rate. In other
words, it is possible to neglect the bubble growth rate by using a fixed bubble size. However,
this assumption is only valid at the end of the bubble’s growth, in the first few moments,
for example, for a bubble radius of 50µm, we obtain a characteristic bubble growth time of
about 1s. The growth rate of the bubble is thus no longer negligible. Massing et al. made
these assumptions and simulated a temperature and velocity field around the bubble that is
close to that observed experimentally [Massing et al., 2019]. Meumenbroek et al. by taking
into account the covering of the interface by surfactants obtained a better agreement with
the experimental observation [Meulenbroek et al., 2021]. In this context, the hypothesis of
a fixed interface is therefore valid.

3.3 Mass transfer and surface tension variation

Concerning the transport of dissolved species it is appropriate to examine the corresponding
Peclet number:

Pe = u R

DH2

≈ 758 (5.13)
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Microconvection movements clearly dominate diffusive phenomena in the case of an electro-
generated bubble on a microelectrode. One of the objectives of a model based on the diagram
in Fig. 43 is to be able to determine the growth rate of the bubble. This growth rate depends
on the interfacial mass transfer. This depends on the transport of dissolved species in the
electrolyte which is a result of microconvection currents. To perform a direct simulation it is
necessary to be able to associate the interfacial mass transfer to the microconvective currents
in the vicinity of the bubble, i.e. to the Marangoni effect. As previously discussed, from
a numerical point of view, it is necessary to be able to combine mass transfer and surface
tension variation at the interface and more particularly at the contact line between the solid,
liquid and gaseous phase where the problem of a moving contact line must be taken into
account. At the level of the contact line, deformations are important and it is probable
that the hypothesis of a spherical interface does not hold anymore. This deformation could
influence the velocity profile and the pressure distribution. In addition, it has been observed
that a mat of microbubbles is formed under the detaching large bubble, which could also
significantly influence the detachment and the force balance [Bashkatov et al., 2019].
Solving these problems, in the form of simulations with a growing and deformable bubble
interface, is a crucial step in understanding bubble detachment.

4 Competing Marangoni effect

The other emerging issue is the competition between the different Marangoni effects. Lu-
betkin assumed that the magnitude of the solutal Marangoni force is greater than thermal
marangoni [Lubetkin, 2002]. Yang et al. found that the thermal and solutal effect had an
amplitude of the same order of magnitude [Yang et al., 2018]. Massing with a microelec-
trode in a 1 MH2SO4 solution found that the solutal effect was negligible [Massing et al.,
2019]. The study by Meulenbroek et al. also excludes the soluto-Marangoni effect caused by
dissolved gases but introduces that caused by surfactants not being absorbed by the bubble
but on the contrary remaining fixed on the interface and partially blocking the interfacial
mass transfer [Meulenbroek et al., 2021]. This uncertainty cannot be resolved if the effects
are not studied simultaneously.
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A first approach to assess the competition between the different effects is to estimate and
compare the different surface tension gradients ∇sγ along the interface according to their
source. The surface tension gradient of the thermocapillary effect can be approximated by:

(∇sγ)T ≈ ∂γ

∂T

∂T

∂z
(5.14)

As shown in Tab. 5.2, the value of ∂γ
∂T

varies according to the references considered [Young
et al., 1959; Hardy, 1979; Prigogine and Bellemans, 1980; Morick and Woermann,
1993; Vazquez et al., 1995]. The low value and the typical value were reported as low
and typical by Lubetkin in his review [Lubetkin, 2002]. The high value comes from the
work of Vazquez et al. [Vazquez et al., 1995]. This value was cited by Yang et al. and
then adopted by other authors [Yang et al., 2018; Massing et al., 2019; Hossain et al.,
2020; Meulenbroek et al., 2021]. The temperature gradient will depend on the size of the

Tab. 5.2: Comparaison of some key references

Quantity Unit Low Typical High

− ∂γ
∂T N · K−1 · m−1 5.5 × 10−5 6.5 × 10−5 1.6 × 10−4

electrode (micro or conventional electrode), the bubble coverage, and the current density.
The observations of Yang et al. allow to estimate ∆T ≈ 10[K] for a microelectrode [Yang
et al., 2018]. In their work Hossain et al. obtained similar results for a microelectrode.
By carrying out a numerical simulation for a conventional electrode the authors obtain
∆T ≈ 1.5K for Θ = 0.87 and ∆T ≈ 0.5K for Θ = 0.31. The greater the bubble coverage,
the greater the Joule effect. The temperature difference between a microelectrode and an
electrode decreases by a factor of 10. By taking into account the length at the interface for
which this temperature difference can be observed, we can obtain an approximation of the
temperature gradient. The surface tension gradient can then be calculated:

(∇sγ)T [N · m−2] Low High

Microelectrode 6 22
Regular electrode 0.1 0.4

The surface tension gradient of the solutocapillary effect of dissolved gas can be approximated
by:

(∇sγ)c ≈ ∂γ

∂c

∂c

∂z
(5.15)
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As shown in Tab. 5.3, Massoudi established how the surface tension of water varies as a
function of the partial pressure of different dissolved gases [Massoudi and King, 1974]. At

Tab. 5.3: Linear approximation of the surface tension variation for different gases, γ = γ0 + bp +
cp2 + dp3 with γ in mN/m, p in bar, and γ0 = 71.98 mN/m

Gases b c d

H2 −0.025 - -
O2 −0.0779 +0.000104 -

CO2 −0.7789 +0.00543 −0.000042

low pressures, the concentration of dissolved hydrogen and the partial hydrogen pressure
can be related through Henry’s law:

ch2 = p kH (5.16)

Where kH the constant of proportionality is dependent on the temperature and pressure, but
in our case can be estimated as kH = 7.8 × 10−6mol m−3Pa−1 [Wiebe and Gaddy, 1934;
Sander, 2015]. As a result we obtain :

∂γ

∂cH2

= 1
kH

∂γ

∂p
= −3.2 × 10−5N m3 m−1 mol−1 (5.17)

As shown in Tab.5.4, the value of ∂c
∂z

varies according to the references considered [Westerheide
and Westwater, 1961; Shibata, 1963; Glas and Westwater, 1964; Sides, 1985; Dapkus
and Sides, 1986; Liu et al., 2016].

Tab. 5.4: Comparaison of some key references

Quantity Unit Low Typical High

−∂c
∂z mol · m−4 4 × 103 4 × 105 2 × 107

The surface tension gradient can then be calculated:

(∇sγ)c [N · m−2] Low typical High

0.1 14 500
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In view of the values obtained for the surface gradients, it is difficult to say which capillary
effect may dominate. By examining the ratio (∇sγ)c/(∇sγ)T it can vary from 0.5 10−3 to 5 103.
The dominant effect will be determined essentially from the experimental conditions.

5 Bubble growth rate with Marangoni Flow

There is currently no model to simulate the growth of a bubble in conjunction with the
Marangoni effect. It is therefore not possible to establish a relationship of radius growth as
a function of time R(t). On the other hand, there are data on the velocity field around the
bubble created by the Marangoni effect for a given bubble size. Based on the velocity field
observed by Massing et al. and numerically recovered by Meulenbroek et al. it is possible
to establish a relationship that allows the growth rate dR(t)

dt
to be recovered [Massing et al.,

2019; Meulenbroek et al., 2021].

5.1 Growth with the diffusion hypothesis

To close the bubble growth model it is necessary to express a value for interfacial mass transfer.
Indirectly it is necessary to be able to estimate the interfacial mass transfer coefficient k

[m · s−1]. The equation Eq. (2.43) modelling a bubble with no contact with the electrode
allow the variation of the concentration as a function of radius to be obtained. Under this
assumption, and by combining this equation with Eq. (2.40), it is possible to obtain an
expression for interfacial mass transfer ṁdiff,hyp by dividing by the area of a sphere:

ṁdiff,hyp = MD

(
∂c

∂r

)
R

= M(c0 − cs)
D

R

(
1 + R√

πDt

)
(5.18)

Then the mass transfer coefficient k can be estimated by:

k = D

R
+
√

D

πt
(5.19)
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This mass transfer coefficient is used to express the mass transfer rate ṁ appearing in the
interfacial mass transfer equation, thus closing the model:

ṁ = Mk(ci − cs) (5.20)

This relationship was used by Lui et al. to simulate the growth of a hydrogen bubble in
a numerical simulation on the surface of an electrode [Liu et al., 2016]. The authors do
not include in this study the Marangoni effect. However the results concerning the growth
of a bubble can be considered to be in poor agreement with the measurements made by
Glas and Westwater[Glas and Westwater, 1964]. The mass transfer coefficient here can
be considered as a global variable determined at the bubble scale. The assumptions made
here are strong and vary greatly from reality. The bubble is considered as a sphere. The
analytical solution of the equation starts from the assumption that the bubble is in the middle
of an infinite electrolyte of homogenous concentration c0 in which the transport of dissolved
species takes place only by diffusion. In contrast to this theoretical value c0, the interfacial
concentration ci is not homogeneous along the interface.

5.2 Growth with the penetration theory

The penetration theory was suggested by Higbie who was investigating whether or not a
resistance to transfer existed at the interface when a pure gas was absorbed in a liquid
[Higbie, 1935b]. In the penetration theory, the mass transfer coefficient of the fluid element
with the residence time is expressed by the following equation:

k = 2
√

D

πtc

(5.21)

where tc is the contact time of a fluid element containing the dissolved species with the
bubble interface.

On the electrolyte side we can evaluate the growth rate of the bubble ṁB[kg · s−1] from k:

ṁB = Mk(ci − cs)Sinterface (5.22)
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Where Sinterface is the surface on which the mass transfer is performed. In other words, it is
the surface not covered by the surfactants. As shown in Fig. 45 the assumption of a stagnant
surfactant cap prevents interfacial mass transfer.

By combining this relationship with what is happening on the gas side Eq. (5.23):

ṁB = ρg 4πR(t)2 dR(t)
dt

[kg · s−1] (5.23)

we can determine the growth rate of the bubble:

dR(t)
dt

= M

ρg

2
√

D

πtc

(ci − cs)
Sinterface

4πR(t)2 (5.24)

This relationship is close to that of the Eq. (2.44), and helps to validate the reasoning that
the use of the penetration theory is appropriate.

The objective here is to establish that Eq. (5.24) is suitable to study of bubble growth. With
the experimental protocol used by Yang et al. it is possible to measure the fluid velocity as
close to the interface as possible[Yang et al., 2018]. Similarly, this value can be deduced
from a numerical simulation such as that of Meulenbroek et al.[Meulenbroek et al., 2021].
Using the data from this study an average velocity along the interface can be calculated
vi,avg = 12[m · s−1]. The transfer area Sinterface can be calculated from the bubble radius, the
contact angle θc = 4.2° and the stagnation angle θS = 57° estimated by the same authors.
The time tc is the contact time of the fluid with the interface. This contact time can be
deduced from the average velocity along the interface. From these data we can estimate
an average contact time along the interface of tc ≈ 0.0414s. Tab. 5.5 shows the other data
used. The main unknown here is the average concentration at the interface ci,avg. The

Tab. 5.5: Parameters common to both equations, Eq. (2.44) and Eq. (5.24)

Quantity Unit Estimate

R m 5.6 · 10−4

DH2 m2 · s−1 7.38 · 10−9

ρH2 kg · m−3 0.09
MH2 kg · mol−2 0.002

growth rate of the bubble measured by Massing et al. is dR(t)
dt

≈ 84 [µm s−1]. Using this
value it is possible to find ci,avg = 37.5 [mol · m−3] from Eq. (5.24). Which is a plausible
value [Westerheide and Westwater, 1961; Shibata, 1963; Vogt, 1980]. However, many
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parameters are approximated. Eq. (5.24) needs to be tested with more experimental results
to be validated. This relationship is thus a new tool to better understand what is happening
around the bubble.

6 Non-dimensional study

6.1 Simplification of the model

There are few studies that relate the Marangoni effect to interfacial mass transfer. The
aim of this dimensionless study is to evaluate the interfacial mass transfer by means of a
Sherwood number from an estimated or measured Marangoni effect as in the Yang et al.
experiment [Yang et al., 2018]. In a previous section we were able to estimate the errors of
the numerical model, which will allow us to obtain a reliable evaluation of the Sherwood
number. The main assumption used here is the use of the penetration theory. The other
assumption made here is that the quantity influencing the value of the surface tension at the
interface can be compared to a temperature, i.e. the coupling between the absorption of
dissolved species at the interface and the resulting change in surface tension is not taken into
account. The surface tension gradient is generated from the temperature profile deduced
from the heat equation. The variable of interest here is the surface tension along the interface.
This type of study is thus in line with the hypotheses made by Massing et al. Meulenbroek et
al. and Hossain et al. which neglect the soluto Marangoni effect due to absorbed dissolved
species [Hossain et al., 2020; Massing et al., 2019; Meulenbroek et al., 2021]. This
assumption greatly simplifies the model. The assumptions outlined above are shown in the
graph in Fig. 46. The model will take into account 3 input parameters :

• Linterface the length of the interface over which the interfacial mass transfer and the
Marangoni effect take place;

• κ the curvature of this interface;

• ∇sT the temperature gradient along the interface. From this temperature surface
gradient can be deduced the surface tension gradient, the surface tension in this model
being a function of temperature only.
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Fig. 46: Simplified model of the dimensionless study. The model depends on 3 input parameters, the
interface length Linterface over which the interfacial mass transfer and the Marangoni effect
takes place, the curvature of the interface κ, and the surface temperature gradient∇sT .

The interfacial mass transfer coefficient k is deduced from the fluid velocity v via the
penetration theory. Locally in each cell of the mesh the fluid velocity allows to deduce the
local contact time tc of the fluid with the calculated interface length within the cell.

6.2 Dimensionless equations

A surface tension is a force per unit length, so the resulting stress must scale as ∆γ/L , while
the viscous stress scales as µu/L, for u the speed of the Marangoni flow. Equating the two
we have a flow speed u = ∆γ/µ. As Ma is a type of Péclet number, it is a velocity times a
length, divided by a diffusion constant D. The Marangoni number can be defined as :

Ma = vcharLchar

D
≈ |∇sγL2

char|
µDT

≈ |∆γLchar|
µDT

(5.25)

Ma = advective transport rate due to surface tension gradient
diffusive transport rate of the quantity of interest

(5.26)
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In order to make the Marangoni number appear, the Navier–Stokes and transport equations
and the corresponding jump relations are made dimensionless.

x̃ = x
Lchar

ṽ = v
vchar

∇̃ = Lchar ∇

t̃ = t

Lchar/vchar

p̃ = p Lchar

ρl,g v2
char

κ̃ = κ

1/Lchar

Ca = µvchar

γ
(5.27)

The Marangoni number is thus found in the transport equation and in the momentum jump
relation:

˜̇mJṽK + Jp̃IK · nI − 1
Re

J 2µl,gD̃K · nI = 1
Re Ca

κnI + Ma

Re
tI (5.28)

Ma

(
∂T̃

∂t̃
+
(
ṽ · ∇̃

)
T̃

)
= ∇̃ · (∇̃T̃ ) (5.29)

6.3 Expression of the mass transfer coefficient and the Sherwood
number as a function of the Marangoni number

As illustrated in Fig. 47 and Fig. 48, the aim here is to expose the perimeter of the bubble to
different gradient values to generate a Marangoni effect. Due to blocking by surfactants, only
a portion of the interface will participate in the surface tension gradient, and interfacial mass
transfer. The objective of this study is to create a tool to relate a surface tension gradient
through a Marangoni number to the interfacial mass transfer through a Sherwood number,
the common characteristic length of these two dimensional numbers is the surfactant free
interface length Linterface. Locally in an experiment it is possible to estimate this length. As
mentioned earlier the Marangoni effect is intermittent, so the transfer of interfacial mass
is only retained when the velocity of the Marangoni effect is highest. The graph in Fig. 47
details the correspondence between the observation that can be made experimentally and
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Fig. 47: Diagram explaining the correspondence between the experimental observation and the
numerical modelling carried out. In each case the interface is exposed to the same assumed
surface tension gradient.

the numerical study performed. The interface is assumed to be exposed to a temperature
gradient over a length of interface.

Mass transfer is only simulated along the length Linterface. It is assumed that Surfactants
block interfacial mass transfer, covering the bubble interface, which prevents interfacial mass
transfer of dissolved species. A condition has been added so that interfacial mass transfer
is blocked outside the length Linterface. In Fig.47 the diagram on the left shows a bubble
attached to an electrode. However, the numerical model presented in Chapter 3 does not
include a contact line module. Therefore, the choice was made to perform a simulation on a
bubble in a stagnant liquid. The idea here is to simulate a surface tension variation along
the interface to obtain local information on the interfacial mass transfer. As suggested by
Hossain et al. the surface tension variation along the interface is not necessarily uniform, nor
linear [Hossain et al., 2020]. The interface can be divided into several sections where the
surface tension stresses are different. The Marangoni currents can be of opposite direction
depending on the portion of the interface considered as suggested in Fig.44. The objective of
this dimensionless study is to develop a tool to determine the local interfacial mass transfer
as a function of the interface section considered.

Fig. 48 shows the result of one of the simulations carried out to produce the graphs in Fig.
49 and Fig. 50. In each cell of the mesh the fluid will be exposed to the interface for a time
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Fig. 48: Numerical modelling made with Ansys Fluent of a bubble exposed to a gradient of an
extensive quantity (∆T = 0.1K). The first image on the left shows the initial gradient
applied. The second image shows the evolution of this gradient due to the Marangoni effect.
The image on the right shows the velocity vectors of the current generated by the Marangoni
effect.

tc(cell).

tc(cell) = l(cell)
v(cell) (5.30)

This time depends on the Marangoni currents in each cell of the mesh v(cell). Using the
penetration theory, the interfacial mass transfer coefficient is calculated:

klocal = 2
√

D

π tc(cell) (5.31)

Then a local Sherwood number is obtained:

Shlocal = klocall(cell)
D

(5.32)

This local Sherwood number is then integrated to get the global Sherwood number:

Sh =
∮

Shlocaldl

Linterface

(5.33)
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The graphs in Fig.49 and Fig.50 show the results of many simulations. As an example, the
Tab.5.6 shows the data of the point indicated by the label data in Fig.49 and Fig.50. The
Sherwood numbers and the mass transfer coefficient are calculated as with the methodology
indicated just above. The Marangoni number is calculated from the input parameters as
indicated by Eq. (5.25).

Tab. 5.6: Data from the point identified on the graphs in Fig.49 and Fig.50

Symbol Descritpion Value

Ma Marangoni number 8070
Sh Sherwood number 50.5
k [m · s−1] Coefficient of mass transfer 9.65 · 10−4

L/R Ratio of interface length to radius of curvature 0.7
DT [m2 · s−1] Thermal diffusivity 1.39 · 10−7

µ [kg · m−1 · s−1] Dynamic viscosity 1.02 · 10−3

∆γ ≈ ∂γ
∂T

∆T [N · m−1] Surface tension change 2.84 · 10−3

Marangoni currents were generated along a spherical interface over a distance Linterface.
These graphs allow to obtain local information on the interfacial mass transfer, and can
be used accordingly for experimental observations. In accordance with the observations
made by Golovin, the Sherwood number increases as a function of the Marangoni number
[Golovin, 1992]. The graph in Fig. 49 shows the Sherwood number as a function of the
Marangoni number. In the framework of a simulation made on a fixed liquid-bubble interface
this allows to estimate the Sherwood number describing the interfacial mass transfer. The
graph in Fig. 50 shows the mass transfer coefficient as a function of the Marangoni effect.
The three curves allow to distinguish different ratios of bubble length to bubble radius. The
overall objective here was to provide a tool to better understand the mass transfer due to the
Marangoni effect.

7 Conclusion of the chapter and discussion of model
uncertainties

The models described above do not confirm the real situation of interfacial mass transfer at
the bubble interface. There are too many unknowns to form definite conclusion. However,
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the implementation of a contact line model in the numerical model could remove many
uncertainties. At this stage it is appropriate to list the main quantities for which these
uncertainties exist:

• Concentration gradients around the bubble, i.e. the local value of the concentration of
dissolved species along the interface;

• the value of the surface tension gradient along the interface;

• local value of the interfacial mass transfer coefficient;

• presence and impact of surfactants;

• contact angle.

A direct numerical simulation of a holistic model such as the one shown in Fig. 43 would
provide a microscopic approach to the problem. One of the major objectives of this thesis
has been to develop a model to address these uncertainties. In most models, the interfacial
mass transfer coefficient remains an input parameter of the model. The advantage of the
penetration theory is to integrate the mass transfer coefficient as a local value calculated
directly by the model, and not as an average quantity calculated a priori. The validity of the
penetration theory in the case of electrogenerated bubbles would remove the uncertainty
regarding the mass transfer coefficient. The coupling between dissolved species transport,
interfacial mass transfer and the momentum jump relation would remove the uncertainty
in the concentration gradient around the bubble. Removing this uncertainty would provide
a value for the soluto Marangoni effect, which could distinguish its importance from other
effects, and thus provide a value for the surface tension gradient along the interface. With
the development of a holistic model, however, the value of the contact angle and the impact
of surfactants would remain unknown. There is currently no agreement on the theory to
predict the evolution of the contact angle. The impact of surfactants can only be assessed
after an analysis of the results of a model with regard to the experimental results.
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Conclusion
6

1 Perspective: integration of a moving contact line
model

As previously stated, in order to simulate a holistic model like the one shown in Fig.43, a
moving contact line model must be included. As such it is consistent to introduce the problem
of simulating these moving contact lines, and how this can be integrated into the numerical
model presented in this thesis through height functions. The contact line is a singularity
of an even higher order than the interfaces: it is a linear singularity located at the edge
of a surface singularity. Not only are the physical quantities not continuous, which poses
numerical problems, but even a simple physical model is not always available to describe
them [Legendre and Maglio, 2015].

Experience shows that the behaviour of contact lines depends on a large number of factors,
few of which are controlled in practice (wall roughness, surface condition and chemical
contamination, composition of the fluid and possible contamination by surfactants, etc).
These lines of contact play a crucial role in the phenomenon we want to study. If we want to
study the influence of a hydrophobic surface compared to a hydrophilic surface, it is essential
that the model used can account for their differences. The Navier–Stokes equations include
some aspects of intermolecular forces. Viscosity, pressure or surface tension are all quantities
that result directly from the interactions between the molecules of the fluid. The application
of these interactions to the contact lines leads very naturally to the surface energy of the
Young–Dupré relationship and the link with the equilibrium contact angle is obvious.

γlg cos θE = γsg − γsl (6.1)

where θE is the stactic contact angle and can be defined as the angle that the interface makes
with the wall when the contact line is stationary. Unfortunately, , this relationship is only
relevant for a static contact line without mass transfer. In the presence of mass transfer,
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not only is the contact angle modified, but the balances and exchanges are modified by the
presence of the wall.

It is easy to find theoretical studies on the dynamics of contact lines and contact angle.
These studies are based on classical continuous medium mechanics and their two essential
ingredients are the Navier–Stokes equation and the Laplace relationship. There are also
other approaches to model contact lines, where the microscopic aspects are more emphasized
[Hadjiconstantinou, 1999; Gouin, 2001; Gouin, 1998; Pomeau, 2002]. Experiments
on the subject often use perfect surfaces (usually glass, sometimes coated to modify its
wettability) and equally ideal fluids. In [Gennes, 2003], de Gennes draws a particularly
complete panorama of the different aspects of wetting by incorporating a very large number
of physical ingredients. Studies of contact angle hysteresis are rarer.

The common feature of these models is the calculation of the liquid-gas interface profile
from a simplified solution of the Stokes flow near the contact line. This flow gives rise to a
non-integrable singularity [Hocking, 1977] which is solved by introducing a cut-off scale
and a physical mechanism at the molecular scale to close the system of equations. When a
contact line moves at a velocity Ucl along a wall and a non-slip condition is imposed, a stress
is generated:

τsingularity ≈ µ
Ucl

∆ (6.2)

where ∆ is the grid spacing and µ is the fluid viscosity. When ∆ tends towards zero this
constraint τsingularity diverges. Refining the mesh makes the calculations diverge. To deal
with the singularity several authors introduce the navier slip condition in their model. In fact,
many models can be interpreted as variants of the Dussan model [Dussan, 1976], where
microscopic phenomena are summarized by a microscopic contact angle and a slip length.

In such model the tangential component to the wall of the velocity is estimated using the
following relation:

Uw = λN

(
∂u

∂nw

)
(6.3)

where Uw is the fluid velocity at the wall, nw is the normal to the wall, and λN is the slip
length, which is usually estimated to be of nanometer scale. Convergence of the grid is then
achieved by solving the complete hydrodynamic problem within the moving contact line
region.
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However, λN values are unrealistic in most simulations, they are too large. The reason for
this is the limited refinement of the grid. So in practice λN becomes an adjustable parameter
for the simulation. The calculations converge but the slip condition becomes unphysical.

This boundary condition for the velocity field is used in conjunction with a dynamic contact
angle model. The first step is to determine the dynamic contact angle. One of the solution is
to assume the dynamic contact angle to be constant and equal to the static contact angle.

Then in the VOF framework, the idea is to impose on the contact line a normal to the interface
depending on the contact angle.

nI = sinθnw,∥ + cosθnw,⊥ (6.4)

where nw,∥ and nw,⊥ are the components of the normal vector, parallel and normal to the
wall. This value is used into the surface tension model. Then it is imposed as a boundary
condition .

Most models vary depending on how the contact angle is determined and the description
of the slip condition. However the solution in this type of model depends on the size of the
mesh [Afkhami et al., 2009]. Afkhami et al. based on the theory of [Cox, 1986] proposed
the following expression for modeling the contact angle[Afkhami et al., 2009; Sheng and
Zhou, 1992] :

cos(θnum) = cos(θapp) + 5.63Ca ln( K

∆/2) (6.5)

where θnum is an angle defined according to the mesh. They point out that there is a linear
dependance of cos(θnum) − cos(θapp) on Ca ln( K

∆/2) when applying both no-slip and Navier-
slip boundary conditions. Ca is the capillary number, Ca = µUcl/γ (Ucl is the contact line
velocity, µ the fluid viscosity ). K is a constant which can be determined by fitting numerical
data to data obtained experimentally. The big advantage of this method is that it eliminates
the stress singularity at the contact line; the solutions converge with mesh refinement. A
shown on Fig. 51, in order to model the numerical contact angle, Afkhami et al. used
a methodology based on height functions [Afkhami and Bussmann, 2008]. This model
implemented in the VOF framework has been used in a more recent publication [Afkhami
et al., 2018].
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Fig. 51: Figure extracted from [Afkhami and Bussmann, 2008], using phantom cells below the
electrode position it is possible to calculate the curvature at the contact line from height
functions.

2 Conclusion of the work

This work was carried out with the aim of gathering the knowledge necessary to model
bubbles generated from electrolysis cells.

The work started with a thorough literature review of the behaviour of bubbles in electrolysis
cells and the effect of these bubbles on the efficiency of the process. The outgassing produced
in electrolysis cells has been studied extensively by several generations of researchers. This
study revealed that knowledge of outgassing characteristics, such as size at detachment,
growth rate or bubble movement, is fragmentary. The aim of this literature review is twofold,
we have sought to describe the knowledge needed to model an electrolysis cell but also
to highlight aspects that could improve the electrochemical process. The covering of the
electrode by the bubbles is an essential parameter in the calculation of the efficiency of the
electrolysis process. Therefore, without knowledge of the residence time of the bubbles on
the electrode, their growth rate, and their diameter at the moment of detachment, it is not
possible to model the electrolysis process correctly. It turned out that a better understanding
of the transport of dissolved species, the interfacial mass transfer, and the Marangoni effect
contributing to delay the detachment of bubbles from the electrode, would allow to elucidate
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the behaviour of bubbles in certain experimental cases. The desire to produce a holistic model
of an electrogenerated bubble following this bibliographical study stems from the observation
of the gaps concerning these three points. Without the implementation of a model capable
of simulating a Marangoni effect on a free surface, an essential simulation tool is missing.
In this manuscript, the mathematical model to simulate two-phase flows with a Marangoni
effect and interfacial mass transfer has been presented. Then, the numerical methods needed
to apply this model have been outlined. An algorithm based on VOF methodology and height
functions was detailed. Finally, it was shown that this tool successfully reduces parasitic
currents on a static and moving isolated bubble and is suitable for the study of the Marangoni
effect around an electrogenerated bubble. This tool is proving to be a first step towards a
holistic model. The couplings necessary to perform a direct simulation of the phenomenon
were presented. In order to achieve this objective, the implementation of a moving contact
line module is missing. However, a parametric study to account for the interfacial mass
transfer as a function of the Marangoni effect was carried out using the numerical model. In
the absence of a direct holistic simulation, an equation giving the growth rate of a bubble,
based on the penetration theory, allowing the Marangoni effect to be taken into account, as
well as the covering of the bubble by surfactants, was established. This relationship is close to
the Eptein-Plesset equation, and gives comparable results. It was pointed out that the amount
of experimental data is still insufficient to validate a numerical model of an electrogenerated
bubble including the Marangoni effect. The work carried out in this manuscript has laid
the theoretical and numerical foundations for an improved understanding of dissolved gas
transport, interfacial transfer and the Marangoni effect around an electrogenerated bubble.

As mentioned earlier, the work presented in this thesis is part of an approach based on inverse
problems. In this perspective, among all the sources of errors mentioned in the diagram in
Fig.13 , this thesis has focused on reducing three of them:

• Errors in hypothesis and models: They have been extensively discussed in this thesis.
Different models have been presented to account for the transfer of species from the
electrode to the bubble interface, interfacial mass transfer, surface tension variation at
the interface, bubble growth and detachment. The model shown in the diagram in Fig.
43 presents the elements necessary to correctly describe an electrogenerated bubble.

• Errors due to assumed known parameters: it was noted that depending on the ref-
erences considered ∂γ

∂T
could vary by a factor 10. From this point of view, it is likely

that the thermocapillary effect is badly evaluated. This is why evaluating the surface
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tension variation on the interface excluding other sources of effect may lead to a wrong
interpretation.

• Errors in direct or numerical calculations: in order to limit the direct calculation errors,
several numerical methods have been tested (height functions), the aim being to
estimate these errors and their impact on the simulation result. The aim has been to
limit these errors due to numerical calculation. As a reminder, in the case of a moving
bubble, the error due to parasitic currents was limited to 2.5% for a ratio R/∆x = 70.

In conclusion, this thesis :

• presented and discussed the assumptions and structural choices of a holistic model for
simulating electrogenerated bubbles;

• provided a numerical model for simulating the Marangoni currents around an electro-
generated bubble;

• evaluated and reduced the errors (spurious currents) of this model using innovative
methodologies;

• established a new relation allowing to evaluate the growth rate of a bubble as a function
of the intensity of the Marangoni effect around this bubble;

• provided a tool allowing to evaluate the interfacial mass transfer through a mass
transfer coefficient as a function of a Marangoni number.
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