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Titre : Descente en théorie de Hodge p-adique et applications
Mots clés : théorie de Hodge p-adique, descente, topos de Faltings, opérateur de Sen, presque-
cohérence.
Résumé :

Nous développons et étudions trois instances de la descente en théorie de Hodge p-adique.
Dans la première partie, nous établissons une descente cohomologique pour la théorie de Hodge p-

adique de Faltings. L’approche de Faltings de la théorie de Hodge p-adique peut être schématiquement
divisée en deux étapes principales : premièrement, une réduction locale du calcul de la cohomologie
étale p-adique d’une variété lisse sur un corps local p-adique à un calcul de cohomologie galoisienne
puis, l’établissement d’un lien entre ce dernier et les différentielles. Ces relations sont organisées au
travers du topos annelé de Faltings dont la définition dépend du choix d’un modèle entier de la variété,
et dont les bonnes propriétés dépendent de la lissité (logarithmique) de ce modèle. Notre résultat de
descente cohomologique pour le faisceau structural du topos de Faltings permet d’étendre l’approche
de Faltings à tout modèle entier, c’est-à-dire sans hypothèse de lissité. Un ingrédient essentiel de
notre preuve est un résultat de descente d’algèbres perfectoïdes en topologie des arcs dû à Bhatt-
Scholze. Comme première application de notre descente cohomologique, en utilisant une variante
du théorème d’altération de de Jong pour les morphismes de schémas due à Gabber-Illusie-Temkin,
nous généralisons le principal théorème de comparaison p-adique de Faltings à tout morphisme propre
et de présentation finie de schémas cohérents sur une clôture intégrale absolue de Zp (sans aucune
hypothèse de lissité) pour des faisceaux étales de torsion (pas nécessairement localement constants
constructibles). Comme deuxième application, nous prouvons une version locale de la filtration
relative de Hodge-Tate comme conséquence de la version globale construite par Abbes-Gros.

Dans la deuxième partie, nous étendons la théorie de Sen aux variétés affines p-adiques admet-
tant des cartes semi-stables. Toute représentation p-adique de dimension finie du groupe de Galois
absolu d’un corps local p-adique à corps résiduel imparfait est caractérisée par ses opérateurs arith-
métique et géométriques de Sen définis par Sen et Brinon. Nous généralisons leur construction au
groupe fondamental d’une variété affine p-adique admettant une carte semi-stable, et donnons une
formulation canonique de la théorie de Sen indépendamment du choix de la carte, ce qui est nouveau
même dans le cas des corps locaux. Notre construction dépend d’un théorème de descente pour la
correspondance de Simpson p-adique développée par Tsuji. Lorsque la représentation provient d’une
Qp-représentation d’un groupe analytique p-adique quotient du groupe fondamental, nous décrivons
l’action de son algèbre de Lie en termes d’opérateurs de Sen. C’est une généralisation d’un résultat de
Sen et Ohkubo. Ces opérateurs de Sen peuvent être étendus continûment à certaines représentations
de dimension infinie. Comme application, nous prouvons que les opérateurs géométriques de Sen
annulent les vecteurs localement analytiques, généralisant un résultat de Pan.

Dans la troisième partie, pour un morphisme propre, plat et de présentation finie entre sché-
mas à faisceaux structuraux presque-cohérents (au sens de Faltings), nous prouvons que les images
directes supérieures de modules quasi-cohérents et presque-cohérents sont quasi-cohérents et presque-
cohérents. Notre preuve utilise une approximation noethérienne dans le contexte de la presque-algèbre
de Faltings, inspirée de la preuve de Kiehl de la pseudo-cohérence des images directes supérieures.
Notre résultat nous permet d’étendre la preuve d’Abbes-Gros du principal théorème de comparaison
p-adique de Faltings dans le cas relatif des morphismes log-lisses projectifs de schémas au cas des
morphismes log-lisses propres, et donc aussi leur construction de la suite spectrale de Hodge-Tate
relative.



Title : Descent in p-adic Hodge theory and applications
Keywords : p-adic Hodge theory, descent, Faltings topos, Sen operator, almost coherence.
Abstract :

We develop and study three instances for descent in p-adic Hodge theory.
In the first part, we establish a cohomological descent for Faltings’ p-adic Hodge theory. Faltings’

approach in p-adic Hodge theory can be schematically divided into two main steps: firstly, a local
reduction of the computation of the p-adic étale cohomology of a smooth variety over a p-adic local
field to a Galois cohomology computation and then, the establishment of a link between the latter
and differential forms. These relations are organized through Faltings ringed topos whose definition
relies on the choice of an integral model of the variety, and whose good properties depend on the
(logarithmic) smoothness of this model. Our cohomological descent result for the structural sheaf of
Faltings topos makes it possible to extend Faltings’ approach to any integral model, i.e. without any
smoothness assumption. An essential ingredient of our proof is a descent result of perfectoid algebras
in the arc-topology due to Bhatt-Scholze. As an application of our cohomological descent, using a
variant of de Jong’s alteration theorem for morphisms of schemes due to Gabber-Illusie-Temkin, we
generalize Faltings’ main p-adic comparison theorem to any proper and finitely presented morphism
of coherent schemes over an absolute integral closure of Zp (without any assumption of smoothness)
for torsion étale sheaves (not necessarily finite locally constant). As a second application, we prove a
local version of the relative Hodge-Tate filtration as a consequence of the global version constructed
by Abbes-Gros.

In the second part, we extend Sen’s theory to p-adic affine varieties with semi-stable charts.
Any finite-dimensional p-adic representation of the absolute Galois group of a p-adic local field with
imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen
and Brinon. We generalize their construction to the fundamental group of a p-adic affine variety with
a semi-stable chart, and give a canonical formation of Sen’s theory independently of the choice of
the chart, which is even new in the case of local fields. Our construction relies on a descent theorem
in the p-adic Simpson correspondence developed by Tsuji. When the representation comes from a
Qp-representation of a p-adic analytic group quotient of the fundamental group, we describe its Lie
algebra action in terms of the Sen operators, which is a generalization of a result of Sen and Ohkubo.
These Sen operators can be extended continuously to certain infinite-dimensional representations.
As an application, we prove that the geometric Sen operators annihilate locally analytic vectors,
generalizing a result of Pan.

In the third part, for a flat proper morphism of finite presentation between schemes with almost
coherent structural sheaves (in the sense of Faltings), we prove that the higher direct images of quasi-
coherent and almost coherent modules are quasi-coherent and almost coherent. Our proof uses a
Noetherian approximation in the context of Faltings’ almost algebra, inspired by Kiehl’s proof of
the pseudo-coherence of higher direct images. Our result allows us to extend Abbes-Gros’ proof of
Faltings’ main p-adic comparison theorem in the relative case for projective log-smooth morphisms of
schemes to proper ones, and thus also their construction of the relative Hodge-Tate spectral sequence.
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Introduction Générale

0.1. Aperçu

0.1.1. Le fil conducteur de cette thèse est celui de la descente en théorie de Hodge p-adique. Nous en
développons et en étudions trois instances correspondant aux trois chapitres de cette thèse :

(1) une descente cohomologique pour le topos annelé de Faltings, ce qui nous permet de libérer
l’approche de Faltings de la théorie de Hodge p-adique de l’hypothèse d’existence de bons
modèles entiers ;

(2) une descente de représentations du groupe fondamental d’une variété p-adique, ce qui nous
permet d’étendre canoniquement la théorie de Sen aux variétés affines p-adique admettant
des cartes semi-stables ;

(3) une approximation noethérienne dans la contexte de la presque-algèbre de Faltings, ce qui
nous permet de prouver la presque-cohérence d’images directes supérieures généralisant un
résultat d’Abbes-Gros.

0.1.2. Commençons par la descente de représentations galoisiennes et la théorie de Sen. Soient K un
corps de valuation discrète complet extension de Qp, K une clôture algébrique de K, K̂ le complété p-
adique de K, G le groupe de Galois de K sur K. Lorsque le corps résiduel de K est parfait, pour toute
K̂-représentation W de G de dimension finie (semi-linéaire et continue), Sen [Sen81] lui associe un
endomorphisme canonique K̂-linéaire de W , appelé l’opérateur (arithmétique) de Sen, qui détermine
la classe d’isomorphisme de la représentation W de G. Lorsque le corps résiduel de K est imparfait
et admet une p-base de cardinal d, Brinon [Bri03] y ajoute d opérateurs géométriques de Sen pour
déterminer la classe d’isomorphisme de la représentation W de G. Cependant, ces opérateurs (y
compris l’opérateur arithmétique) dépendent du choix de la p-base, et ne sont donc pas canoniques
si d ≥ 1.

0.1.3. La construction de Sen et Brinon repose sur un théorème de descente des représentations.
Plus précisément, choisissons t1, . . . , td ∈ OK des relèvements d’une p-base du corps résiduel (que
nous appellerons une système de coordonnées). On fixe également un système compatible de racines
primitives pn-ièmes de l’unité ζ = (ζpn)n∈N et un système compatible de racines pn-ièmes (ti,pn)n∈N
de ti pour tout 1 ≤ i ≤ d. Nous posons également t0,pn = ζpn par souci de cohérence. Pour tous
n,m ∈ N∪{∞}, considérons l’extension de corps Kn,m = K(ζpn , t1,pm , . . . , td,pm) de K contenu dans
K. On pose simplement Kn,0 = Kn et on nomme les groupes de Galois comme indiqué dans le
diagramme suivant

K

K∞,∞

OO

K∞

∆

OO

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(0.1.3.1)

Alors, toute K̂-représentation de dimension finie W de G se descend en une K∞,∞-représentation V
de Γ par un théorème de Sen et Brinon, au sens où il existe une équivalence de catégories

Repproj
cont(Γ,K∞,∞)

∼−→ Repproj
cont(G, K̂), V 7→ K̂ ⊗K∞,∞ V.(0.1.3.2)

Le groupe topologique Γ = Σ⋉∆ est localement isomorphe à Zp⋉Zdp, et son algèbre de Lie Lie(Γ) sur

Qp est donc de dimension 1+ d. L’action infinitésimale de Lie(Γ) sur V s’étend alors K̂-linéairement
en une action (non-canonique) de l’algèbre de Lie Lie(Γ) sur W , qui définit les 1 + d opérateurs de
W construits par Brinon.

9



10 INTRODUCTION GÉNÉRALE

0.1.4. A priori, dès que l’on change le système de cordonnées t1, . . . , td, la sous-représentation V ⊆W
définie par descente change, ainsi que les 1+d opérateurs associés sur W . La première question est de
savoir si on peut définir une action d’algèbre de Lie canonique sur W , qui redonnerait les opérateurs
de Sen définis par Brinon une fois une base choisie. Nous y répondons positivement dans la second
partie (Chapitre II) de cette thèse en considérant l’extension de Faltings de OK définie dans [He21],
c’est-à-dire une suite exacte canonique de K̂-représentations de dimension finie de G,

0 −→ K̂(1)
ι−→ EOK

ȷ−→ K̂ ⊗OK
Ω̂1

OK
−→ 0,(0.1.4.1)

dans laquelle K̂(1) désigne le premier twist de Tate de K̂, EOK = lim←−x 7→px
Ω1

OK/OK
est un K̂-espace de

dimension 1+d ayant une base {(d log(ti,pn))n∈N}0≤i≤d. Cette suite se déduit de la suite fondamentale
des modules des différentielles associés à la tour OK/OK/Zp. En prenant les duaux et les twists de
Tate, on obtient une suite exacte canonique

0 −→ HomOK
(Ω̂1

OK
(−1), K̂)

ȷ∗−→ E ∗
OK

(1)
ι∗−→ K̂ −→ 0(0.1.4.2)

où E ∗
OK

= Hom
K̂
(EOK , K̂). Il existe une structure de K̂-algèbre de Lie canonique sur E ∗

OK
(1) associée

à la forme linéaire ι∗ définie par [f1, f2] = ι∗(f1)f2 − ι∗(f2)f1 pour tous f1, f2 ∈ E ∗
OK

(1). Ce sera
l’algèbre de Lie canonique remplaçant Lie(Γ). Intuitivement, le module EOK

= lim←−x 7→px
Ω1

OK/OK

unifie tous les systémes de cordonnées t1, . . . , td, et si on fixe un système, alors on obtient un iso-
morphisme non-canonique d’algèbres de Lie E ∗

OK
(1) ∼= Lie(Γ). Au Chapitre II, nous construisons une

action de l’algèbre de Lie canonique E ∗
OK

(1) sur chaque K̂-représentation de dimension finie W of G,
ce qui fournit une construction canonique des opérateurs de Sen de W .

0.1.5. Nous étendons en fait la construction des opérateurs de Sen aux variétés p-adiques au Chapitre
II. Tout d’abord, nous avons besoin de l’extension de Faltings pour les variétés p-adiques. Celle-ci a été
construite par Faltings [Fal88] en utilisant la suite fondamentale des modules des différentielles, afin
de relier la cohomologie étale et les différentielles dans sa preuve de la décomposition de Hodge-Tate.
La construction de Faltings s’étend aux variétés logarithmiques. A priori, cela dépend du choix d’une
carte pour la structure logarithmique. Néanmoins, nous prouvons au Chapitre II que la construction
est en fait canonique en se réduisant aux extensions de Faltings canoniques sur les corps locaux, où
l’un des principaux ingrédients est la descente des algèbres perfectoïdes en topologie des arcs due à
Bhatt-Scholze [BS19]. Nous remarquons qu’Abbes-Gros [AGT16] ont utilisé une autre approche
pour une construction canonique de l’extension de Faltings via le torseur de Higgs-Tate. Ensuite, on
construit une action d’algèbre de Lie du dual de l’extension de Faltings sur les représentations du
groupe fondamental d’une variété p-adique par un théorème de Tsuji [Tsu18] (généralisant celui de
Sen et Brinon), dont la canonicité est vérifiée en se réduisant au cas des corps locaux.

0.1.6. La descente d’algèbres perfectoïdes en topologie des arcs est également l’un des ingrédients clés
de la première partie (Chapitre I) de cette thèse. Le but de cette dernière est de rendre l’approche
de Faltings de la théorie de Hodge p-adique « libre des modèles entiers » . Rappelons qu’une pierre
angulaire de l’approche de Faltings est le topos annelé de Faltings, qui est construit pour être un
pont entre la cohomologie étale p-adique et les différentielles d’une variété p-adique. Cependant,
la définition du topos de Faltings dépend du choix d’un modèle entier de la variété, et les bonnes
propriétés du topos de Faltings dépendent de la lissité (logarithmique) de ce modèle. Pour libérer
l’approche de Faltings de l’hypothèse de lissité sur le modèle entier, nous établissons un résultat de
descente cohomologique pour le topos annelé de Faltings en utilisant la descente d’algèbres perfectoïdes
en topologie des arcs. Nous introduisons pour cela une variante du topos de Faltings pour la topologie
v, satisfaisant de bonnes propriétés de descente cohomologique et qui peut être considérée comme un
analogue schématique du topos v d’un espace adique. En particulier, nous établissons un résultat
de descente cohomologique de ce topos au topos de Faltings. C’est un analogue de la descente
cohomologique du topos v au topos pro-étale d’un espace adique établi par Scholze [Sch17].

Nous donnons deux applications de notre résultat de descente cohomologique. Tout d’abord,
nous étendons le principal théorème de comparaison p-adique de Faltings, à la fois dans le cas absolu
et dans le cas relatif, aux modèles entiers généraux sans aucune condition de lissité. Le théorème de
comparaison de Faltings a été généralisé par Scholze aux variétés analytique rigides, d’abord dans le
cas lisse puis dans le cas général. Notre application est un analogue de cette dernière généralisation.
Même dans le cas lisse, le théorème de comparaison de Faltings et la généralisation de Scholze ne
peuvent être directement déduits l’un de l’autre. Deuxièmement, nous prouvons l’existence d’une
version locale de la filtration relative de Hodge-Tate comme conséquence de la version globale con-
struite par Abbes et Gros [AG20] et de notre résultat de descente cohomologique. Nous voudrions
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mentionner une troisième application intéressante de notre résultat à la correspondance de Simpson
p-adique donnée par Xu [Xu22].

0.1.7. La troisième partie (Chapitre III) de cette thèse vise à généraliser un résultat d’Abbes-Gros
sur la presque-cohérence des images directes supérieures par un morphisme projectif de schémas au
cas d’un morphisme propre. Le résultat de presque-cohérence est l’un des ingrédients clés de la
preuve d’Abbes-Gros du principal théorème de comparaison p-adique de Faltings dans le cas relatif
et donc de leur construction de la suite spectrale de Hodge-Tate relative [AG20]. Notre généralisa-
tion nous permet d’étendre leurs arguments aux morphismes log-lisses propres. Notre preuve utilise
l’approximation noethérienne pour ramener le calcul des images directes supérieures au cas noethérien.
Elle est inspirée de la preuve de Kiehl de la pseudo-cohérence des images directes supérieures [Kie72].

0.2. Descente Cohomologique pour le Topos Annelé de Faltings

0.2.1. La preuve de Faltings de la décomposition de Hodge-Tate illustre son approche de la théorie
de Hodge p-adique et le rôle de son topos annelé. Soient K un corps de valuation discrète complet
extension de Qp à corps résiduel parfait, K une clôture algébrique de K, K̂ le complété p-adique de
K. Pour un K-schéma propre et lisse X, Tate a conjecturé qu’il existe une décomposition canonique
GK = Gal(K/K)-équivariante, appelée la décomposition de Hodge-Tate ([Tat67, Remark, page 180]),

Hn
ét(XK ,Qp)⊗Qp K̂ =

⊕
0≤q≤n

Hq(X,Ωn−qX/K)⊗K K̂(q − n),(0.2.1.1)

où K̂(q−n) est le (q−n)-ième twist de Tate de K̂. Cette conjecture a été prouvée indépendamment
par Faltings [Fal88, Fal02], Nizioł [Niz98, Niz08] et Tsuji [Tsu99, Tsu02], et a été généralisée au
cadre analytique rigide par Scholze [Sch13a].

0.2.2. Pour un OK-schéma propre et semi-stable X de fibre générique géométrique Y = XK , Faltings
a introduit un site annelé (Eét

Y→X ,B), appelé le site annelé de Faltings, pour servir de pont entre la
cohomologie étale de Y et les différentielles sur X. Concrètement, ces liens s’établissent à travers des
morphismes naturels de sites

Yét
ψ−→ Eét

Y→X
σ−→ Xét(0.2.2.1)

qui vérifient les propriétes suivante :
(1) (Principal théorème de comparaison p-adique de Faltings, [Fal02, Thm.8, page 223], [AG20,

4.8.13]). Pour tout faisceau abélien localement constant constructible F sur Yét, il existe un
morphisme canonique

RΓ(Yét,F)⊗L
Z OK −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(0.2.2.2)

qui est un presque-isomorphisme, c’est-à-dire que les groupes de cohomologie de son cône
sont annulés par pr pour tout nombre rationnel r > 0.

(2) (Calcul de Faltings de la cohomologie galoisienne, [AG20, 6.3.8]). Il existe un homomor-
phisme canonique de OX ⊗OK OK-modules

ΩqX/OK
(logXs)⊗OK

OK/p
nOK −→ Rqσ∗(B/pnB)(0.2.2.3)

où Xs désigne la fibre spéciale du OK-schéma X, dont le noyau et le conoyau sont annulés
par pr pour tout nombre rationnel r > 2 dim(Y )+1

p−1 .
On remarquera que Z/pnZ = ψ∗(Z/pnZ). Faltings a déduit la décomposition de Hodge-Tate de
la dégénérescence et du caractère scindé de la suite spectrale de Cartan-Leray associée au foncteur
composé RΓ(Xét,−) ◦ Rσ∗, nommée plus tard la suite spectrale de Hodge-Tate par Scholze. En
utilisant le théorème d’altération de de Jong, on peut déduire la décomposition de Hodge-Tate pour
un K-schéma général propre et lisse en se ramenant au cas où il admet un modèle semi-stable (cf.
[Tsu02, A5]).

0.2.3. Afin d’énoncer notre résultat de descente cohomologique, nous commençons par la définition
du site de Faltings associé à un morphisme Y → X de schémas cohérents (i.e. quasi-compacts et
quasi-séparés) (cf. I.7.7). Soit Eét

Y→X la catégorie des morphismes de schémas cohérents V → U
au-dessus de Y → X, c’est-à-dire les diagrammes commutatifs

V //

��

U

��
Y // X

(0.2.3.1)
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tels que U soit étale au-dessus X et que V soit fini étale au-dessus Y ×X U . Nous munissons Eét
Y→X

de la topologie engendrée par les familles de morphismes des types suivants :
(v) {(Vm → U)→ (V → U)}m∈M , où M est un ensemble fini et

⨿
m∈M Vm → V est surjectif ;

(c) {(V ×U Un → Un) → (V → U)}n∈N , où N est un ensemble fini et
⨿
n∈N Un → U est

surjectif.
Considérons le préfaisceau B sur Eét

Y→X défini par

B(V → U) = Γ(UV ,OUV ),(0.2.3.2)

où UV est la clôture intégrale de U dans V . Il s’agit en fait d’un faisceau d’anneaux, le faisceau
structural de Eét

Y→X (cf. I.7.6).

0.2.4. Rappelons que la descente cohomologique de la cohomologie étale le long des hyper-recouvrements
propres peut être généralisée comme suit : pour un schéma cohérent S, nous munissons la catégorie
des S-schémas cohérents Schcoh

/S de la topologie h de Voevodsky, qui est engendrée par des recou-
vrements étales et les morphismes propres surjectifs de présentation finie. Alors, pour tout faisceau
abélien de torsion F sur Sét, notant a : (Schcoh

/S )h → Sét le morphisme naturel de sites, le morphisme
d’adjonction F → Ra∗a

−1F est un isomorphisme.
Ce résultat reste vrai pour une topologie plus fine, la topologie v. Un morphisme de schémas

cohérents T → S est appelé un recouvrement v si pour tout morphisme Spec(A) → S où A est
un anneau de valuation, il existe une extension d’anneaux de valuation A → B et un relèvement
Spec(B) → T . En effet, un recouvrement v est une limite des recouvrements h (cf. I.3.6). Nous
allons décrire la descente cohomologique pour B à l’aide d’un nouveau site construit à partir de la
topologie v, qui peut être considérée comme un analogue schématique du site v des espaces adiques
(cf. [Sch17, 8.1, 14.1, 15.5]).

Définition 0.2.5 (cf. I.3.23). Soit S◦ → S une immersion ouverte de schémas cohérents telle que S
soit intégralement clos dans S◦. Nous définissons un site IS◦→S comme suit:

(1) La catégorie sous-jacente est la catégorie des S-schémas cohérents T intégralement clos dans
S◦ ×S T .

(2) La topologie est engendrée par les familles couvrantes {Ti → T}i∈I pour la topologie v.
Nous appelons IS◦→S le site v des S-schémas cohérents S◦-intégralement clos, et nous appelons
faisceau structural de IS◦→S le faisceau O sur IS◦→S associé au préfaisceau T 7→ Γ(T,OT ).

0.2.6. Soit p un nombre premier, Zp la clôture intégrale de Zp dans une clôture algébrique Qp de Qp.
On pose S◦ = Spec(Qp) et S = Spec(Zp). Considérons un diagramme de schémas cohérents

Y //

��

XY //

��

X

Spec(Qp) // Spec(Zp)

(0.2.6.1)

où XY est la clôture intégrale de X dans Y et le carré est cartésien (nous n’imposons aucune condition
sur la régularité ou la finitude de Y ou X). Le foncteur ε+ : Eét

Y→X → IY→XY envoyant V → U à
UV définit un morphisme naturel de sites annelés

ε : (IY→XY ,O) −→ (Eét
Y→X ,B).(0.2.6.2)

Notre résultat de descente cohomologique énoncé ci-dessous peut être considéré comme un analogue
schématique du résultat de descente cohomologique pour le site pro-étale d’un espace adique (cf.
[Sch17, 8.8, 14.7, 15.5]) :

Théorème 0.2.7 (Descente cohomologique pour les sites annelés de Faltings, cf. I.8.14). Pour tout
faisceau abélien localement constant constructible L sur Eét

Y→X , le morphisme canonique

L⊗Z B −→ Rε∗(ε
−1L⊗Z O)(0.2.7.1)

est un presque-isomorphisme.

Corollaire 0.2.8 (cf. I.8.18). Pour tout hyper-recouvrement propre X• → X, si a : Eét
Y•→X•

→
Eét
Y→X désigne l’augmentation du site simplicial où Y• = Y ×X X•, alors le morphisme canonique

L⊗Z B −→ Ra∗(a
−1L⊗Z B•)(0.2.8.1)

est un presque-isomorphisme.
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L’ingrédient clé de notre preuve de 0.2.7 est la descente des algèbres perfectoïdes en topologie
des arcs (une topologie plus fine que la topologie v) due à Bhatt-Scholze [BS19, 8.10] (cf. I.5.35).
L’analogue en caractéristique p de 0.2.7 est le calcul de Gabber de la cohomologie du faisceau struc-
tural en topologie h (cf. I.4). Le Théorème 0.2.7 nous permet de descendre des résultats importants
pour les sites de Faltings associés aux bons modèles aux sites de Faltings associés aux modèles
généraux.

0.3. Généralisations des Principaux Théorèmes de Comparaison p-adiques de Faltings

0.3.1. Nous utilisons le Théorème 0.2.7 pour généraliser le théorème de comparaison de Faltings dans
le cas absolu. Soit A un anneau de valuation, extension de Zp, de corps des fractions algébriquement
clos. Considérons un carré cartésien de schémas cohérents

Y //

��

X

��
Spec(A[ 1p ])

// Spec(A)

(0.3.1.1)

Théorème 0.3.2 (Principal théorème de comparaison p-adique de Faltings dans le cas absolu, cf.
I.10.17). Supposons X propre et de présentation finie sur A. Alors, pour tout faisceau abélien locale-
ment constant constructible F sur Yét, il existe un morphisme canonique

RΓ(Yét,F)⊗L
Z A −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(0.3.2.1)

qui est un presque-isomorphisme.

On remarque que le morphisme naturel ψ : Yét → Eét
Y→X induit une équivalence des catégories

de faisceaux abéliens localement constants constructibles sur Yét et Eét
Y→X (cf. I.10.3),

LocSys(Yét)
ψ∗ // LocSys(Eét

Y→X).
ψ−1

oo(0.3.2.2)

Dans la continuité des travaux d’Abbes-Gros, le morphisme canonique (0.3.2.1) (appelé le morphisme
de comparaison de Faltings) est construit en utilisant l’acyclicité de ψ pour F, i.e. ψ∗F = Rψ∗F
(donc RΓ(Yét,F) = RΓ(Eét

Y→X , ψ∗F)), qui est une conséquence du résultat d’Achinger sur les schémas
K(π, 1) (cf. I.10.6 et I.10.8). Nous proposons également une nouvelle façon de construire le morphisme
de comparaison de Faltings dans la catégorie dérivée des presque-modules en utilisant notre résultat de
descente cohomologique 0.2.7, qui évite d’utiliser l’acyclicité de ψ. En effet, il existe des morphismes
naturels de sites

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��
IY→XY

ε // Eét
Y→X

(0.3.2.3)

et Ψ est acyclique pour tout faisceau abélien de torsion F sur Yét, i.e. Ψ∗(a
−1F) = RΨ∗(a

−1F),
qui autorise des coefficients plus généraux et dont la preuve est beaucoup plus simple que celle pour
ψ (cf. I.3.27). Nous remarquons que cette nouvelle construction ne nous donnera pas un « vrai
morphisme » (0.3.2.1) mais un morphisme canonique dans la catégorie dérivée des presque modules
(cf. I.11.6).

0.3.3. Expliquons maintenant brièvement la stratégie pour prouver le Théorème 0.3.2 :
(1) Premièrement, nous utilisons le théorème d’altération de de Jong-Gabber-Illusie-Temkin

pour les morphismes de schémas [ILO14, X.3] pour obtenir un morphisme surjectif, propre
et de présentation finie X ′ → X tel que le morphisme X ′ → Spec(A) soit la limite cofiltrée
d’un système de « bons morphismes » X ′

λ → Tλ de « bons modèles » sur OKλ
, où Kλ est

une extension finie de Qp (cf. I.9.11).
(2) Ensuite, on applique le théorème de comparaison de Faltings dans le cas relatif aux « bons

morphismes » X ′
λ → Tλ (formulé par Faltings [Fal02, Thm.6, page 266] et démontré par

Abbes-Gros [AG20, 5.7.4], cf. I.10.13). Par un argument de limite, on obtient le théorème
de comparaison pour X ′.

(3) Enfin, en utilisant notre résultat de descente cohomologique 0.2.8, nous en déduisons le
théorème de comparaison pour X.
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0.3.4. Le site IY→XY est également approprié pour globaliser le théorème de comparaison de Faltings.
Considérons un carré cartésien de schémas cohérents

Y ′ //

��

X ′

��
Y // X

(0.3.4.1)

où Y → X est cartésien sur Spec(Qp)→ Spec(Zp). En particulier, il existe un morphisme naturel de
sites annelés par la fonctorialité de (0.3.2.3),

fI : (IY ′→X′Y ′ ,O ′) −→ (IY→XY ,O).(0.3.4.2)

Théorème 0.3.5 (cf. I.11.11). Supposons X ′ → X propre et de présentation finie. Soient F ′ un
faisceau abélien de torsion sur Y ′

ét et F ′ = Ψ′
∗a

′−1F ′ (cf. (0.3.2.3)). Alors, le morphisme canonique

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(0.3.5.1)

est un presque-isomorphisme.

On remarque que si F ′ = Z/pnZ alors F ′ = Z/pnZ (cf. I.3.27), et que RqfI∗F ′ est le faiseau
de cohomologie étale de Y ′ sur Y à coefficients F ′ en topologie v (cf. I.11.12). Très grossièrement,
les objets de IY→XY sont « localement » des spectres d’anneaux de valuation, et les « fibres » de
(0.3.5.1) sont des morphismes de comparaison de Faltings (0.3.2.1) si F ′ est localement constant
constructible (cf. I.11.5). Le Théorème 0.3.5 peut être considéré comme un analogue schématique
du théorème de comparaison de Scholze pour la cohomologie étale p-adique pour un morphisme de
variétés analytiques rigides [Sch13b, 3.13].

Enfin, nous généralisons le principal théorème de comparaison p-adique de Faltings dans le cas
relatif en utilisant les Théorèmes 0.2.7 et 0.3.5.

Théorème 0.3.6 (Principal théorème de comparaison p-adique de Faltings dans le cas relatif, cf.
I.11.13 et I.11.14). Supposons Y ′ → Y lisse et X ′ → X propre et de présentation finie. Alors, pour
tout faisceau abélien localement constant constructible F′ sur Y ′

ét, il existe un morphisme canonique

(Rψ∗Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
),(0.3.6.1)

qui est un presque-isomorphisme, et où fét : Y ′
ét → Yét et fE : Eét

Y ′→X′ → Eét
Y→X sont les morphismes

naturels de sites. En particulier, il existe un morphisme canonique

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
),(0.3.6.2)

qui est un presque-isomorphisme, pour tout entier q.

0.4. Version Locale de la Filtration Hodge-Tate Relative

0.4.1. Une autre application de notre résultat de descente cohomologique est une généralisation de la
décomposition de Hodge-Tate au cas relatif. Soit K un corps de valuation discrète complet extension
de Qp à corps résiduel algébriquement clos, (f, g) : (X ′▷ → X ′) → (X◦ → X) un morphisme
d’immersions ouvertes de schémas cohérents au-dessus de Spec(K) → Spec(OK). Nous supposons
que les conditions suivantes sont remplies :

(1) Les schémas logarithmiques associés (X ′,MX′), (X,MX) munis des structures logarith-
miques compactifiantes sont adéquats (une condition technique qui est satisfaite si les im-
mersions ouvertes X ′▷ → X ′, X◦ → X sont semi-stables sur OK , cf. I.10.11).

(2) Le morphisme de schémas logarithmiques (X ′,MX′)→ (X,MX) est lisse et saturé.
(3) Le morphisme de schémas g : X ′ → X est propre.
(4) Le schéma X = Spec(R) est affine et il existe un nombre fini de diviseurs non nuls f1, . . . , fr

de R[1/p] tels que le diviseur D =
∑r
i=1 div(fi) sur XK ait pour support XK \X◦

K et qu’à
chaque hensélisation stricte de XK les élements fi contenus dans l’idéal maximal forment
un sous-ensemble d’un système régulier de paramètres (en particulier, D est un diviseur à
croisements normaux sur XK).

Pour tout X◦
K-schéma cohérent Y , on définit un Y -schéma pro-fini étale.

Y∞ = lim
n
Y [T1, . . . , Tr]/(T

n
1 − f1, . . . , Tnr − fr).(0.4.1.1)

Théorème 0.4.2 (cf. I.12.7 et I.8.24). Sous les hypothèses de 0.4.1, soit U un schéma affine pro-
étale sur X et soit V un U◦

K,∞-schéma pro-fini étale (où U◦ = X◦ ×X U) satisfaisant les conditions
suivantes :
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(1) La clôture intégrale de U dans V est le spectre d’une OK-algèbre A qui est presque pré-
perfectoïde au sens de I.5.19.

(2) Pour tous entiers n ≥ 0 et k ≥ 0, l’image inverse (Rnfét∗Z/pkZ)|Vét
est un faisceau constant.

Soit x un point géométrique de V . Alors, pour tout entier n ≥ 0, il existe une filtration décroissante
finie canonique (filq)q∈Z sur Hn

ét(X
′▷
x ,Zp)⊗Zp Â[1/p] et un isomorphisme canonique pour tout q ∈ Z,

grq(Hn
ét(X

′▷
x ,Zp)⊗Zp Â[

1

p
]) ∼= Hq(X ′,Ωn−q(X′,MX′ )/(X,MX))⊗R Â[

1

p
](q − n),(0.4.2.1)

où grq désigne le gradué filq/filq+1. De plus, si U◦ et V sont connexes et si le corps des fractions de
V est une extension galoisienne de celui de U◦ de groupe de Galois Γ, alors la filtration (filq)q∈Z et
les isomorphismes (0.4.2.1) sont Γ-équivariants.

Remarque 0.4.3. Les objets V → U satisfaisant les conditions de 0.4.2 forment une famille topologique-
ment génératrice du site pro-étale de Faltings de X◦

K
→ X (voir la preuve de I.8.24).

0.4.4. Cette filtration de Hodge-Tate relative locale découle de la filtration de Hodge-Tate relative
globale construite par Abbes-Gros [AG20]. Leur filtration se construit via le topos de Faltings associé
à X◦

K
→ X. Dans la première version de leur travail, ils ont posé la question de l’existence d’une

version locale explicite. Scholze et Caraiani [CS17] ont construit indépendamment une filtration
de Hodge-Tate relative pour des morphismes lisses et propres d’espaces adiques lisses, et Scholze
a annoncé qu’il pouvait donner une version locale, répondant à la question d’Abbes-Gros. Notre
construction est obtenue en appliquant notre résultat de descente cohomologique pour le topos annelé
de Faltings à la filtration de Hodge-Tate relative globale d’Abbes-Gros. Dans une nouvelle version de
leur manuscrit, Abbes-Gros ont donné une troisième construction de la filtration locale de Hodge-Tate
dans un cadre un peu plus restrictif, en utilisant un résultat de descente cohomologique qui est un
cas particulier de notre résultat.

0.5. Construction Canonique des Opérateurs de Sen sur les Corps Locaux

0.5.1. Notre stratégie pour construire les opérateurs de Sen sur les variétés p-adiques est de recoller
les opérateurs de Sen définis dans le cas de corps locaux. Nous faisons d’abord un bref rappel sur
la construction des opérateurs de Sen par Brinon. Soient K un corps de valuation discrète complet
extension de Qp dont le corps résiduel est imparfait avec une p-base de cardinal d ≥ 0, K une clôture
algébrique de K, K̂ le complété p-adique de K, G le groupe de Galois de K sur K. Nous choisissons
t1, . . . , td ∈ OK des relèvements d’une p-base du corps résiduel. On fixe un système compatible de
racines primitives pn-ièmes de l’unité ζ = (ζpn)n∈N et un système compatible de racines pn-ièmes
(ti,pn)n∈N de ti pour tout 1 ≤ i ≤ d. Nous posons également t0,pn = ζpn par souci de cohérence.
Pour tous n,m ∈ N ∪ {∞}, considérons l’extension de corps Kn,m = K(ζpn , t1,pm , . . . , td,pm) sur K
contenue dans K. On pose simplement Kn,0 = Kn et on nomme les groupes de Galois correspondants
comme indiqué dans le diagramme suivant

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(0.5.1.1)

Toute K̂-représentation de dimension finie W de G se descend en une K∞,∞-représentation V de
Γ par un théorème de Brinon (cf. II.5.17). On remarque qu’elle peut être descendue en une K∞-
représentation de Γ sur laquelle ∆ agit analytiquement grâce à un théorème de Tsuji (cf. II.5.18). Ici,
agir analytiquement signifie que l’action de tout élément de ∆ est donnée par l’exponentielle de son
action infinitésimale (cf. II.4.14). Le groupe topologique Γ est bien un groupe analytique p-adique,
auquel on peut associer une algèbre de Lie Lie(Γ) sur Qp. L’action infinitésimale de Lie(Γ) sur V
s’étend K̂-linéairement en une action de l’algèbre de Lie (non-canonique) Lie(Γ) sur W , qui définit
les 1 + d opérateurs de W par Brinon (Γ est localement isomorphe à Zp ⋉ Zdp).

0.5.2. Cette action de Lie(Γ) dépend du choix de t1, . . . , td, ce qui empêche sa généralisation aux
variétés p-adiques. La première question est de savoir si on peut définir une action d’algèbre de Lie
canonique sur W , qui donne les opérateurs de Sen définis par Brinon en choisissant une base. Nous y
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répondons positivement en considérant l’extension de Faltings de OK définie dans [He21] (cf. II.5.7),
c’est-à-dire une suite exacte canonique de K̂-représentations de G,

0 −→ K̂(1)
ι−→ EOK

ȷ−→ K̂ ⊗OK Ω̂1
OK
−→ 0,(0.5.2.1)

où K̂(1) désigne le premier twist de Tate de K̂, EOK = lim←−x7→px
Ω1

OK/OK
est un K̂-espace vectoriel

de dimension 1 + d ayant une base {(d log(ti,pn))n∈N}0≤i≤d. En prenant les duaux et les twists de
Tate, on obtient une suite exacte canonique

0 −→ HomOK
(Ω̂1

OK
(−1), K̂)

ȷ∗−→ E ∗
OK

(1)
ι∗−→ K̂ −→ 0(0.5.2.2)

où E ∗
OK

= Hom
K̂
(EOK

, K̂). Il existe une structure de K̂-algèbre de Lie canonique sur E ∗
OK

(1) associée
à la forme linéaire ι∗ défini par [f1, f2] = ι∗(f1)f2 − ι∗(f2)f1 pour tous f1, f2 ∈ E ∗

OK
(1). Ce sera

l’algèbre de Lie canonique remplaçant Lie(Γ), nous servant à obtenir la définition canonique suivante
des opérateurs de Sen.

Théorème 0.5.3 (cf. II.5.35, II.5.38). Soient K un corps de valuation discrète complet extension de
Qp dont le corps résiduel admet une p-base de cardinal fini, G son groupe de Galois absolu. Pour toute
K̂-représentation de dimension finie W de G, il existe un homomorphisme G-équivariant canonique
d’algèbres de Lie K̂-linéaires (où nous considérons l’action adjointe de G sur End

K̂
(W )),

φSen|W : E ∗
OK

(1) −→ End
K̂
(W ),(0.5.3.1)

qui est fonctoriel en W et vérifie les propriétés suivantes :

(1) Soient t1, . . . , te ∈ K muni de systèmes compatibles de racines pn-ièmes (ti,pn)n∈N ⊆ K tels
que dt1, . . . , dte soient K-linéairement indépendants dans Ω̂1

OK
[1/p]. Considérons la tour

(Kn,m)n,m∈N définie par ces éléments de manière analogue à (0.5.1.1), prenons la même
notation pour les groupes de Galois, et supposons qu’il existe une représentation V de Γ

sur laquelle ∆ agisse analytiquement (II.4.14) telle que W = K̂ ⊗K∞ V . Alors, Γ est
naturellement localement isomorphe à Zp⋉Zep, et si on prend la base standard ∂0, . . . , ∂e de
Lie(Γ) ∼= Lie(Zp ⋉ Zep), alors pour tout f ∈ E ∗

OK
(1),

φSen|W (f) =
e∑
i=0

f((d log(ti,pn))n∈N ⊗ ζ−1)⊗ φ∂i |V ,(0.5.3.2)

où φ∂i |V est l’action infinitésimale de ∂i sur V .
(2) Soient K ′ un corps de valuation discrète complet extension de K dont le corps résiduel admet

une p-base de cardinal fini, W ′ = K̂ ′ ⊗
K̂
W . Supposons que K ′ ⊗K Ω̂1

OK
[1/p]→ Ω̂1

OK′ [1/p]

soit injectif. Alors, il existe un diagramme commutatif naturel

E ∗
OK′ (1)

φSen|W ′ //

��

End
K̂′(W

′)

K̂ ′ ⊗
K̂

E ∗
OK

(1)
id

K̂′⊗φSen|W
// K̂ ′ ⊗

K̂
End

K̂
(W )

≀

OO
(0.5.3.3)

De plus, si K ′ est une extension finie de K, alors la flèche verticale gauche est un isomor-
phisme.

La clé de la preuve est de montrer que l’application φSen|W définie par la formule (0.5.3.2) ne
dépend pas du choix de V ou des ti. Pour cela, nous utilisons la variante de la correspondance de
Simpson p-adique développée par Tsuji [Tsu18] sur OK (cf. II.5.31). Un ingrédient est que l’anneau
de périodes utilisé dans cette correspondance est construit comme la colimite filtrée des produits
tensoriels symétriques de l’extension de Faltings (0.5.2.1) (appelée l’anneau de Hyodo, cf. II.5.13).
Nous remarquons que l’hypothèse sur K ′ ⊗K Ω̂1

OK
[1/p] → Ω̂1

OK′ [1/p] pour la fonctorialité est une
condition technique nécessaire pour sa preuve, et nous ne savons pas comment la supprimer (cf.
II.5.38).
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0.6. Construction Canonique des Opérateurs de Sen sur une Variété Affine p-adique

0.6.1. Nous pouvons maintenant généraliser la construction des opérateurs de Sen aux variétés p-
adiques. Soient K un corps de valuation discrète complet extension de Qp à corps résiduel parfait,
π une uniformisante de K. Pour simplifier, on considère un anneau A intègre, noethérien, normal et
plat sur OK avec A/pA ̸= 0 tel qu’il existe un homomorphisme étale d’anneaux pour certains entiers
0 ≤ r ≤ c ≤ d,

OK [T0, . . . , Tr, T
±1
r+1, . . . , T

±1
c , Tc+1, . . . , Td]/(T0 · · ·Tr − π) −→ A.(0.6.1.1)

Ainsi, Spec(A) est muni d’un diviseur à croisements normaux strict défini par T0 · · ·Td. Nous posons
Atr = A[1/T0 · · ·Td]. Nous appellerons (Atr, A) une paire semi-stable, et (0.6.1.1) une carte semi-
stable de celle-ci. Soient K le corps des fractions de A, Kur l’extension maximale non ramifiée de
K relative à (Atr, A), c’est-à-dire l’union des extensions finies de corps K′ sur K dans une clôture
algébrique de K telle que la clôture intégrale A′ de A dans K′ soit finie étale sur Atr. Soit A la
clôture intégrale de A dans Kur. Nous considérons dans le Chapitre II des paires plus générales (ap-
pelées quasi-adéquates) que des paires semi-stables, telles que le système inductif de sous-extensions
finies de Kur/K admette un sous-système cofinal constitué d’éléments K′ tels que la paire (A′

tr, A
′)

soit quasi-adéquate, où A′
tr = Atr ⊗A A′ (cf. II.9.5, II.11.9). Comme précédemment, on consid-

ère également l’extension de Faltings de A (cf. II.9.36), c’est-à-dire la suite exacte canonique de
Â[1/p]-représentations de Gal(Kur/K),

0 −→ Â[
1

p
](1)

ι−→ EA
ȷ−→ Â[

1

p
]⊗A Ω1

(Atr,A) −→ 0,(0.6.1.2)

où Ω1
(Atr,A) désigne le A-module des 1-différentielles logarithmiques de la paire (Atr, A) sur (K,OK),

qui soit fini libre de rang d. Le Â[1/p]-module canonique EA est fini libre de rang 1 + d, et il vérifie
la propriété suivante (cf. II.9.36, II.9.38) : il existe un homomorphisme A[1/p]-linéaire canonique
lim←−x 7→px

Ω1
A/A
→ EA tel que pour tout élément s ∈ A[1/p]∩A×

tr avec un système compatible de racines

pn-ièmes (spn)n∈N ⊆ A[1/p], il existe un élément unique ω ∈ EA tel que l’image de (sp
n−1
pn dspn)n∈N

soit égale à sω (on désigne donc ω par (d log(spn))n∈N). Comme précédemment, on obtient une suite
exacte canonique en prenant les duaux et les twists de Tate,

0 −→ HomA(Ω
1
(Atr,A)(−1), Â[

1

p
])

ȷ∗−→ E ∗
A(1)

ι∗−→ Â[
1

p
] −→ 0,(0.6.1.3)

et on munit E ∗
A(1) de la structure de Â[1/p]-algèbre de Lie canonique associée à la forme linéaire ι∗.

Nous pouvons maintenant énoncer la construction canonique des opérateurs de Sen.

Théorème 0.6.2 (cf. II.11.4, II.11.7, II.11.9). Avec les notations de 0.6.1, pour toute Â[1/p]-
représentation finie projective W d’un sous-groupe ouvert G de Gal(Kur/K), il existe un homomor-
phisme G-équivariant canonique d’algèbres de Lie Â[1/p]-linéaires (où nous considérons l’action ad-
jointe de G sur End

Â[1/p]
(W )),

φSen|W : E ∗
A(1) −→ End

Â[ 1p ]
(W ),(0.6.2.1)

qui est fonctoriel en W et en G, ne dépend que de la paire (Atr, A) et non du choix de la carte
(0.6.1.1), et satisfait les propriétés suivantes :

(1) Soit A′ la clôture intégrale de A dans une extension finie de corps K′ sur (Kur)
G contenue

dans Kur, et soient t1, . . . , te ∈ A′[1/p]∩A′×
tr avec systèmes compatibles de racines pn-ièmes

(ti,pn)n∈N ⊆ A[1/p] tels que dt1, . . . , dte soient K′-linéairement indépendants dans Ω1
K′/K .

Considérons la tour (K′
n,m)n,m∈N définie par ces éléments de manière analogue à (0.5.1.1)

et prenons la même notation pour les groupe de Galois, et soit A′
n,m la clôture intégrale de

A dans K′
n,m, Ã′

∞ = colimn Â′
n. Supposons qu’il existe une Ã′

∞[1/p]-représentation finie

projective V de Γ sur laquelle ∆ agit analytiquement (II.4.14) telle que W = Â ⊗Ã′
∞
V .

Alors, Γ est naturellement localement isomorphe à Zp ⋉Zep, et si on prend la base standard
∂0, . . . , ∂e de Lie(Γ) ∼= Lie(Zp ⋉ Zep), alors pour tout f ∈ E ∗

A(1),

φSen|W (f) =
e∑
i=0

f((d log(ti,pn))n∈N ⊗ ζ−1)⊗ φ∂i |V ,(0.6.2.2)

où φ∂i |V est l’action infinitésimale de ∂i sur V .
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(2) Soient K ′ un corps de valuation discrète complet extension de K à corps résiduel parfait,
(A′

tr, A
′) une paire semi-stable sur OK′ de corps des fractions K′, A → A′ un homomor-

phisme d’anneaux injectif au-dessus de OK → OK′ qui induit un morphisme de paires
(Atr, A) → (A′

tr, A
′), W ′ = Â′ ⊗

Â
W . Supposons que K′ ⊗K Ω1

K/K → Ω1
K′/K′ soit injectif.

Alors, il existe un diagramme commutatif naturel

E ∗
A′(1)

φSen|W ′ //

��

End
Â′[ 1p ]

(W ′)

Â′ ⊗
Â

E ∗
A(1) id

Â′⊗φSen|W
// Â′ ⊗

Â
End

Â[ 1p ]
(W )

≀

OO
(0.6.2.3)

La situation décrite dans 0.5.3.(1) n’est pas très restrictive. En effet, par un théorème de de-
scente de Tsuji [Tsu18, 14.2] développé pour la correspndance de Simpson p-adique pour (Atr, A),
la représentation W de G peut être descendue en V pour certains A′. Nous remarquons que Tsuji a
prouvé le cas où G = Gal(Kur/K), et nous démontrons le cas général en transférant ses arguments à
une classe de paires plus générales (cf. II.10.16). La clé de la preuve de 0.6.2 est encore de vérifier
que l’application φSen|W définie par la formule (0.6.2.2) ne dépend pas du choix de A′, V ou ti. Nous
ramenons ce problème au cas des anneaux de valuation 0.5.3 en localisant en les idéaux premiers de
hauteur 1 contenant p.

Définition 0.6.3. Nous appelons l’image Φ(W ) de φSen|W le module des opérateurs de Sen de W .
Nous noterons Φgeo(W ) l’image de HomA(Ω

1
(Atr,A)(−1), Â[

1
p ]) par φSen|W et l’appellerons le module

des opérateurs géométriques de Sen de W . Nous appellerons l’image de 1 ∈ Â[ 1p ] via φSen|W dans
Φari(W ) = Φ(W )/Φgeo(W ) l’opérateur arithmétique de Sen de W .

Le fait suivant étaie une telle définition de l’opérateur arithmétique de Sen : deux relèvements
quelconques de celui-ci dans End

Â[ 1p ]
(W ) ont le même polynôme caractéristique (cf. II.11.15).

0.7. Action Infinitésimale par les Sous-groupes d’Inertie

0.7.1. Reprenons les hypothèses et notations de 0.6.1 et notons Sp(A) l’ensemble des idéaux premiers
de hauteur 1 de A contenant p. Pour tout q ∈ Sp(A) d’image p ∈ Spec(A), soient Ep le complété p-
adique du corps de valuation discrète Ap[1/p], Eq une clôture algègrique de Ep avec un prolongement
d’anneaux de valuation Aq → OEq

. Soit Iq ⊆ Gal(Kur/K) l’image du sous-groupe d’inertie de
Gal(Eq/Ep). Nous avons la généralisation suivante du résultat de Sen-Ohkubo, qui découle de notre
stratégie de réduction ci-dessus.

Théorème 0.7.2 (cf. II.11.18, II.11.9). Soient G un sous-groupe ouvert de Gal(Kur/K), (V, ρ) une
Qp-représentation de dimension finie de G, W = Â[1/p] ⊗Qp V . Alors,

∑
q∈Sp(A) Lie(ρ(Iq)) est le

plus petit sous-Qp-espace vectoriel S de EndQp(V ) tel que le Â[1/p]-module des opérateurs de Sen

Φ(W ) soit contenu dans Â[1/p]⊗Qp S.

Comme corollaire, on peut promouvoir les opérateurs de Sen des Qp-représentations en un ho-
momorphisme universel d’algèbres de Lie.

Corollaire 0.7.3 (cf. II.11.21, II.11.23). Soit G un quotient d’un sous-groupe ouvert de Gal(Kur/K)
qui soit un groupe analytique p-adique. Alors, il existe un homomorphisme canonique d’algèbres de
Lie Â[1/p]-linéaires φSen|G : E ∗

A(1) → Â[1/p] ⊗Qp Lie(G) rendant le diagramme suivant commutatif
pour toute Qp-représentation de dimension finie V de G,

E ∗
A(1)

φSen|G //

φSen|W

��

Â[ 1p ]⊗Qp Lie(G)

id
Â[ 1

p
]
⊗φ|V

��

End
Â[ 1p ]

(W ) Â[ 1p ]⊗Qp EndQp(V )
∼oo

(0.7.3.1)

où W = Â[1/p] ⊗Qp V est l’objet associé de Repproj
cont(G, Â[1/p]), et φ|V l’action infinitésimale de

l’algèbre de Lie Lie(G) sur V .
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Nous pouvons maintenant donner notre généralisation d’un résultat de Pan [Pan22, 3.1.2].

Théorème 0.7.4 (cf. II.12.22). Soit G un quotient de Gal(Kur/K) qui soit un groupe analytique p-
adique, GH ⊆ G l’image de Gal(Kur/K∞), Φgeo

G ⊆ Â[1/p]⊗QpLie(GH) l’image de HomA(Ω
1
(Atr,A)(−1), Â[1/p])

via φSen|G. Alors, l’action infinitésimale de Φgeo
G annule les vecteurs GH-localement analytiques de

Â[1/p] (voir II.12.18 pour une définition précise).

Pour sa preuve, nous devons étendre les opérateurs de Sen aux représentations de dimension
infinie des fonctions analytiques sur des sous-groupes ouverts suffisamment petits de G. C’est la
raison pour laquelle nous insistons pour considérer des sous-groupes ouverts de Gal(Kur/K) dans les
théorèmes précédents, ce qui nous permet de prouver des propriétés liées aux algèbres de Lie mais
nous conduisent à une classe de paires plus générales que les paires semi-stables.

Auparavant, on travaillait toujous avec des représentations à coefficients rationnels, car une ex-
tension finie A′ de A n’est pas un bon modèle entier pour A′[1/p]. Afin d’étudier la continuité des
opérateurs de Sen sur des représentations de dimension infinie, nous devons considérer les représenta-
tions à coefficients entiers comme des « réseaux » pour borner ces opérateurs. Les bonnes propriétés
des opérateurs de Sen sont préservées par continuité si nous avons une bonne théorie de descente et
de décomplétion pour les représentations entières sur A′. Cela n’a pas encore été bien développé car
A′ n’est pas un bon modèle entier. Cependant, on ne rencontre pas un tel problème si A′ est un
anneau de valuation (au moins pour la partie géométrique)! Nous suivons donc encore la stratégie
précédente : ramener le problème au cas d’anneaux de valuation en localisant en les idéaux premiers
de hauteur 1 de A contenant p ; et pour ce dernier cas, on peut appliquer les résultats de descente pour
les petites représentations à coefficients entiers du groupe fondamental géométrique, développés par
Faltings [Fal05], Abbes-Gros [AGT16, II.14] et Tsuji [Tsu18, §11, §12]. Nous prévoyons d’étudier
à l’avenir si oui ou non l’image ΦG de φSen|G annule les vecteurs G-localement analytiques de Â[1/p].

0.8. Presque-cohérence des Images Directes Supérieures

0.8.1. Un des premiers résultats importants en géométrie algébrique est le fait que la cohérence
pour les modules est préservée par les images directes supérieures par un morphisme propre. Le cas
noethérien est dû à Grothendieck [EGA III1, 3.2.1], et le cas général est dû à Kiehl [Kie72, 2.9’].
Le but du Chapitre III est d’étendre le corollaire suivant au cadre de la presque-algèbre, motivé par
des applications en théorie de Hodge p-adique

Théorème 0.8.2 (Kiehl [Kie72, 2.9’], cf. [Abb10, 1.4.8]). Soit f : X → S un morphisme de
schémas vérifiant les conditions suivantes :

(1) f est propre et de présentation finie, et
(2) OS est universellement cohérent.

Alors, pour tout OX-module cohérent M et tout q ∈ N, Rqf∗M est un OS-module cohérent.

On dit que OS est universellement cohérent s’il existe un recouvrement {Si = Spec(Ai)}i∈I de
S par des sous-schémas affines ouverts tel que l’algèbre polynomiale Ai[T1, . . . , Tn] soit un anneau
cohérent pour tous i ∈ I et n ∈ N. En effet, une telle condition sur OS implique que le OX -module
cohérent M est en fait pseudo-cohérent relativement à S, ce qui signifie grossièrement que si on
plonge X localement comme un sous-schéma fermé de AnSi

, alors M admet une résolution par des
modules finis libres sur AnSi

. Le théorème 0.8.2 est un corollaire direct du résultat de Kiehl [Kie72,
2.9’], prouvant que le foncteur dérivé Rf∗ envoie un complexe pseudo-cohérent relatif à un complexe
pseudo-cohérent.

0.8.3. La presque-algèbre a été introduite par Faltings [Fal88, Fal02] pour développer la théorie de
Hodge p-adique. Le cadre est une paire (R,m) constituée d’un anneau R avec un idéal m tel que
m = m2, et l’idée grossière est de remplacer la catégorie des R-modules par son quotient par des
modules de m-torsion. Un « presque » analogue du Théorème 0.8.2 est nécessaire pour l’approche de
Faltings de la théorie de Hodge p-adique. En effet, sous les mêmes hypothèses de 0.8.2, Abbes-Gros
[AG20, 2.8.14] ont prouvé que Rqf∗ transforme un OX -module quasi-cohérent et presque-cohérent
en un OS-module quasi-cohérent et presque-cohérent, en se réduisant directement à 0.8.2. Ce résultat
joue un rôle crucial dans la preuve du principal théorème de comparaison p-adique de Faltings dans
le cas absolu (cf. [AG20, 4.8.13]), et donc de la décomposition de Hodge-Tate (cf. [AG20, 6.4.14]).
Plus tard, Zavyalov [Zav21, 5.1.6] a étendu le même résultat de presque-cohérence aux schémas
formels.
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Cependant, le résultat de presque-cohérence [AG20, 2.8.14] n’est pas suffisant pour le principal
théorème de comparaison p-adique de Faltings dans le cas relatif (donc pas non plus pour la suite spec-
trale de Hodge-Tate relative), car on rencontre inévitablement la situation où OS est universellement
presque-cohérent mais pas universellement cohérent. Ainsi, sous l’hypothèse

(1) f projectif, plat et de présentation finie, et
(2) OS universellement presque-cohérent,

Abbes-Gros ont prouvé un résultat de presque-cohérence [AG20, 2.8.18] en adaptant les arguments
de [SGA 6, III.2.2], où la condition de projectivité sur f joue un rôle crucial. C’est la raison pour
laquelle le principal théorème de comparaison p-adique de Faltings dans le cas relatif (et donc la
construction de la suite spectrale de Hodge-Tate relative) n’ont été prouvé que pour les morphismes
log-lisses et projectifs dans [AG20, 5.7.4 (et 6.7.5)].

0.8.4. Au Chapitre III, nous généralisons le résultat de presque-cohérence [AG20, 2.8.18] aux mor-
phismes propres, ce qui nous permet d’étendre la preuve d’Abbes-Gros du principal théorème de
comparaison p-adique de Faltings dans le cas relatif aux morphismes log-lisses et propres, et donc
aussi leur construction de la suite spectrale de Hodge-Tate relative (cf. III.8).

Soit R un anneau avec un idéal m tel que pour tout entier l ≥ 1, les l-ièmes puissances des
éléments de m engendrent m. La paire (R,m) sera notre cadre pour la presque-algèbre (cf. III.6). Le
théorème principal du chapitre III est le suivant.

Théorème 0.8.5 (cf. III.7.1). Soit f : X → S un morphisme de R-schémas vérifiant les conditions
suivantes :

(1) f est propre, plat et de présentation finie, et
(2) OX et OS sont presque-cohérents.

Alors, pour tout OX-module quasi-cohérent et presque-cohérent M et tout q ∈ N, Rqf∗M est un
OS-module quasi-cohérent et presque-cohérent.

Notre preuve utilise l’approximation noethérienne, et se rapproche de la preuve de Kiehl de
[Kie72, 2.9], cf. III.7.



CHAPTER I

Cohomological Descent for Faltings’ p-adic Hodge Theory and
Applications

I.1. Introduction

I.1.1. Faltings and Scholze’s approaches to p-adic Hodge theory share several similarities. The most
recent approach, that of Scholze, generalizes Faltings’ main techniques from schemes to adic spaces.
Nevertheless, beyond the analogies, there is no thread connecting the two. The main difficulty stems
from the difference between the nature of their keystones, namely the Faltings topos for Faltings’
approach and the pro-étale topos of an adic space for Scholze’s approach. Faltings’ approach has
the advantage of only using schemes and their classical étale topoi. But it depends on the choice
of an integral model of the p-adic variety, which intervenes in the very definition of Faltings topos
and whose (log-)smoothness seems necessary for the good properties of this one. On the other hand,
Scholze’s approach which uses adic spaces and their pro-étale topoi, does not depend on any integral
model.

The initial goal of this work is to make Faltings’ approach “free of integral models”. For this,
we establish a cohomological descent result for Faltings ringed topos. Along the way, we introduce
a variant for the v-topology which satisfies good cohomological descent properties and which can be
regarded as a scheme theoretic analogue of the v-topos of an adic space. In particular, we establish a
cohomological descent result from this topos to Faltings topos. It is an analogue of the cohomological
descent from the v-topos to the pro-étale topos of an adic space established by Scholze [Sch17]. We
give two applications of our cohomological descent result. Firstly, we extend Faltings’ main p-adic
comparison theorem (which we refer to as “Faltings’ comparison theorem” for short in the rest of
the introduction), both in the absolute and the relative cases, to general integral models without
any smoothness condition. Faltings’ comparison theorem was generalized by Scholze to rigid analytic
varieties, first in the smooth case and then in the general case. Our application is an analogue
of this last generalization. Even in the smooth case, Faltings’ comparison theorem and Scholze’s
generalization cannot be directly deduced from each other. Secondly, we prove a local version of
the relative Hodge-Tate filtration as a consequence of the global version constructed by Abbes and
Gros [AG20] and our cohomological descent result. We would like to mention a third interesting
application of our result to the p-adic Simpson correspondence given by Xu [Xu22].

I.1.2. Faltings’ proof of the Hodge-Tate decomposition illustrates his approach in p-adic Hodge theory
and the role of his ringed topos. Let K be a complete discrete valuation field of characteristic 0 with
algebraically closed residue field of characteristic p > 0. We fix an algebraic closureK ofK and denote
by K̂ the p-adic completion of K. For a proper smooth K-scheme X, Tate conjectured that there is
a canonical GK = Gal(K/K)-equivariant decomposition, now called the Hodge-Tate decomposition
([Tat67, Remark, page 180]),

Hn
ét(XK ,Qp)⊗Qp K̂ =

⊕
0≤q≤n

Hq(X,Ωn−qX/K)⊗K K̂(q − n),(I.1.2.1)

where K̂(q−n) is the (q−n)-th Tate twist of K̂. This conjecture was settled by Faltings [Fal88, Fal02]
and Tsuji [Tsu99, Tsu02] independently, and had been generalized to rigid analytic settings by
Scholze [Sch13a]. There is also a version for non-proper smooth varieties showed by Faltings. Let
X◦ be an open subset of X whose complement is a normal crossings divisor D. Then, there is a
canonical GK-equivariant decomposition

Hn
ét(X

◦
K
,Qp)⊗Qp K̂ =

⊕
0≤q≤n

Hq(X,Ωn−qX/K(logD))⊗K K̂(q − n).(I.1.2.2)
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I.1.3. One of the applications of our main result in this chapter is a generalization of the Hodge-Tate
decomposition to the relative case. Let (f, g) : (X ′▷ → X ′) → (X◦ → X) be a morphism of open
immersions of coherent schemes over Spec(K) → Spec(OK) (“coherent” stands for “quasi-compact
and quasi-separated”). We assume that the following conditions hold:

(1) The associated log schemes (X ′,MX′), (X,MX) endowed with compactifying log structures
are adequate (a technical condition which holds if the open immersions X ′▷ → X ′, X◦ → X
are semi-stable over OK , cf. I.10.11).

(2) The morphism of log schemes (X ′,MX′)→ (X,MX) is smooth and saturated.
(3) The morphism of schemes g : X ′ → X is projective.
(4) The scheme X = Spec(R) is affine and there exist finitely many nonzero divisors f1, . . . , fr

of R[1/p] such that the divisor D =
∑r
i=1 div(fi) on XK has support XK \ X◦

K and that
at each strict henselization of XK those elements fi contained in the maximal ideal form a
subset of a regular system of parameters (in particular, D is a normal crossings divisor on
XK).

For any coherent X◦
K-scheme Y , we define a pro-finite étale Y -scheme

Y∞ = lim
n
Y [T1, . . . , Tr]/(T

n
1 − f1, . . . , Tnr − fr).(I.1.3.1)

Theorem I.1.4 (cf. I.12.7 and I.8.24). Under the assumptions in I.1.3, let U be an affine scheme
pro-étale over X and let V be a pro-finite étale U◦

K,∞-scheme (where U◦ = X◦ ×X U) satisfying the
following conditions:

(1) The integral closure of U in V is the spectrum of an OK-algebra A which is almost pre-
perfectoid in the sense of I.5.19.

(2) For any integers n ≥ 0 and k ≥ 0, the pullback (Rnfét∗Z/pkZ)|Vét
is a constant sheaf.

Let x be a geometric point of V . Then, for any integer n ≥ 0, there is a canonical finite decreasing
filtration (filq)q∈Z on Hn

ét(X
′▷
x ,Zp)⊗Zp Â[1/p] and a canonical isomorphism for each q ∈ Z,

grq(Hn
ét(X

′▷
x ,Zp)⊗Zp Â[

1

p
]) ∼= Hq(X ′,Ωn−q(X′,MX′ )/(X,MX))⊗R Â[

1

p
](q − n),(I.1.4.1)

where grq denotes the graded piece filq/filq+1. Moreover, if U◦ and V are connected and if the function
field of V is a Galois extension of that of U◦ with Galois group Γ, then the filtration (filq)q∈Z and the
isomorphisms (I.1.4.1) are Γ-equivariant.

Remark I.1.5. The objects V → U satisfying the conditions in I.1.4 form a topological generating
family of the pro-étale Faltings site of X◦

K
→ X (see the proof of I.8.24).

I.1.6. This local relative Hodge-Tate filtration stems from the global relative Hodge-Tate filtration
constructed by Abbes-Gros [AG20]. Their filtration takes place on the Faltings topos associated
to X◦

K
→ X. In the first version of their work, they asked for an explicit local version. Scholze

and Caraiani [CS17] constructed independently a relative Hodge-Tate filtration for proper smooth
morphisms of smooth adic spaces, and Scholze announced that he can give a local version, answering
the question of Abbes-Gros. Our construction is obtained by applying our cohomological descent
result for Faltings ringed topos to the global relative Hodge-Tate filtration of Abbes-Gros. In a new
version of their manuscript, Abbes-Gros gave a third construction of the local Hodge-Tate filtration
in a slightly more restrictive framework, using a cohomological descent result which is a special case
of ours.

I.1.7. Faltings ringed topos plays a central role in the proof of the Hodge-Tate decomposition. Let
X◦ → X be an open immersion of coherent schemes over Spec(K) → Spec(OK) such that the
associated log scheme (X,MX) endowed with compactifying log structure is adequate. We set Y =
X◦
K

. The Faltings ringed site (Eét
Y→X ,B) was constructed by Faltings and developed by Abbes-

Gros [AGT16, VI]. Faltings designed it as a bridge between the p-adic étale cohomology of Y and
differential forms of X. Concretely, these links are established through natural morphisms of sites

Yét
ψ−→ Eét

Y→X
σ−→ Xét(I.1.7.1)

which satisfy the following properties:
(1) (Faltings’ comparison theorem, [Fal02, Thm.8, page 223], [AG20, 4.8.13]). Assume that

X is proper over OK . For any finite locally constant abelian sheaf F on Yét, there exists a
canonical morphism

RΓ(Yét,F)⊗L
Z OK −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(I.1.7.2)
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which is an almost isomorphism, that is, the cohomology groups of its cone are killed by pr
for any rational number r > 0.

(2) (Faltings’ computation of Galois cohomology, [AG20, 6.3.8]). There exists a canonical
homomorphism of OX ⊗OK

OK-modules

Ωq(X,MX)/(S,MS) ⊗OK
OK/p

nOK −→ Rqσ∗(B/pnB)(I.1.7.3)

whose kernel and cokernel are killed by pr for any rational number r > 2 dim(Y )+1
p−1 .

Observing that Z/pnZ = ψ∗(Z/pnZ), Faltings deduced the Hodge-Tate decomposition from the degen-
eration and splitting of the Cartan-Leray spectral sequence for the composed functor RΓ(Xét,−)◦Rσ∗,
later named the Hodge-Tate spectral sequence by Scholze. Using de Jong’s alteration theorem, one
can deduce the Hodge-Tate decomposition for a general proper smooth K-scheme by reducing to the
case where it admits a semi-stable model (cf. [Tsu02, A5]).

I.1.8. In order to state our cohomological descent result, we recall now the definition of the Faltings
site associated to a morphism of coherent schemes Y → X (cf. I.7.7). Let Eét

Y→X be the category of
morphisms of coherent schemes V → U over Y → X, i.e. commutative diagrams

V //

��

U

��
Y // X

(I.1.8.1)

such that U is étale over X and that V is finite étale over Y ×X U . We endow Eét
Y→X with the

topology generated by the following types of families of morphisms
(v) {(Vm → U)→ (V → U)}m∈M , where M is a finite set and

⨿
m∈M Vm → V is surjective;

(c) {(V ×U Un → Un)→ (V → U)}n∈N , where N is a finite set and
⨿
n∈N Un → U is surjective.

Consider the presheaf B on Eét
Y→X defined by

B(V → U) = Γ(UV ,OUV ),(I.1.8.2)

where UV is the integral closure of U in V . It is indeed a sheaf of rings, the structural sheaf of Eét
Y→X

(cf. I.7.6).

I.1.9. Recall that the cohomological descent of étale cohomology along proper hypercoverings can be
generalized as follows: for a coherent S-scheme, we endow the category of coherent S-schemes Schcoh

/S

with Voevodsky’s h-topology which is generated by étale coverings and proper surjective morphisms
of finite presentation. Then, for any torsion abelian sheaf F on Sét, denoting by a : (Schcoh

/S )h → Sét

the natural morphism of sites, the adjunction morphism F → Ra∗a
−1F is an isomorphism.

This result remains true for a finer topology, the v-topology. A morphism of coherent schemes
T → S is called a v-covering if for any morphism Spec(A)→ S with A a valuation ring, there exists
an extension of valuation rings A→ B and a lifting Spec(B)→ T . In fact, a v-covering is a limit of
h-coverings (cf. I.3.6). We will describe the cohomological descent for B using a new site built from
the v-topology, which can be regarded as a scheme theoretic analogue of the v-site of adic spaces (cf.
[Sch17, 8.1, 14.1, 15.5]).

Definition I.1.10 (cf. I.3.23). Let S◦ → S be an open immersion of coherent schemes such that S
is integrally closed in S◦. We define a site IS◦→S as follows:

(1) The underlying category is formed by coherent S-schemes T which are integrally closed in
S◦ ×S T .

(2) The topology is generated by covering families {Ti → T}i∈I in the v-topology.
We call IS◦→S the v-site of S◦-integrally closed coherent S-schemes, and we call the sheaf O on IS◦→S

associated to the presheaf T 7→ Γ(T,OT ) the structural sheaf of IS◦→S .

I.1.11. Let p be a prime number, Zp the integral closure of Zp in an algebraic closure Qp of Qp. We
take S◦ = Spec(Qp) and S = Spec(Zp). Consider a diagram of coherent schemes

Y //

��

XY //

��

X

Spec(Qp) // Spec(Zp)

(I.1.11.1)
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where XY is the integral closure of X in Y and the square is Cartesian (we don’t impose any condition
on the regularity or finiteness of Y or X). The functor ε+ : Eét

Y→X → IY→XY sending V → U to UV
defines a natural morphism of ringed sites

ε : (IY→XY ,O) −→ (Eét
Y→X ,B).(I.1.11.2)

Our cohomological descent results are stated as follows, which can be regarded as a scheme theoretic
analogue of the cohomological descent result for the pro-étale site of an adic space (cf. [Sch17, 8.8,
14.7, 15.5]):

Theorem I.1.12 (Cohomological descent for Faltings ringed sites, cf. I.8.14). For any finite locally
constant abelian sheaf L on Eét

Y→X , the canonical morphism

L⊗Z B −→ Rε∗(ε
−1L⊗Z O)(I.1.12.1)

is an almost isomorphism.

Corollary I.1.13 (cf. I.8.18). For any proper hypercovering X• → X, if a : Eét
Y•→X•

→ Eét
Y→X

denotes the augmentation of simplicial site where Y• = Y ×X X•, then the canonical morphism

L⊗Z B −→ Ra∗(a
−1L⊗Z B•)(I.1.13.1)

is an almost isomorphism.

The key ingredient of our proof of I.1.12 is the descent of perfectoid algebras in the arc-topology
(a topology finer than the v-topology) due to Bhatt-Scholze [BS19, 8.10] (cf. I.5.35). The analogue
in characteristic p of I.1.12 is Gabber’s computation of the cohomology of the structural sheaf in the
h-topology (cf. I.4). Theorem I.1.12 allows us to descend important results for Faltings sites with
nice models to Faltings sites associated to general models. On the other hand, its proof shows how to
compute the cohomologies of Faltings ringed sites locally. Using Abhyankar’s lemma, one can treat
the open case which in the generic fibre is the complement of a normal crossings divisor.

Corollary I.1.14 (cf. I.8.24). Under the assumptions in I.1.4 and with the same notation, for any
integer n > 0, the canonical morphism

A/pnA −→ RΓ(Eét
V→U ,B/pnB)(I.1.14.1)

is an almost isomorphism.

Thus, we apply the derived functor RΓ(Eét
V→U ,−) to the global relative Hodge-Tate filtration

defined on the Faltings ringed site by Abbes-Gros, and then we obtain the local version I.1.4.

I.1.15. On the other hand, we use I.1.12 to generalize Faltings’ comparison theorem in the absolute
case. Let A be a valuation ring extension of Zp with algebraically closed fraction field. Consider a
Cartesian square of coherent schemes

Y //

��

X

��
Spec(A[ 1p ])

// Spec(A)

(I.1.15.1)

Theorem I.1.16 (Faltings’ comparison theorem in the absolute case, cf. I.10.17). Assume that X
is proper of finite presentation over A. Then, for any finite locally constant abelian sheaf F on Yét,
there exists a canonical morphism

RΓ(Yét,F)⊗L
Z A −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(I.1.16.1)

which is an almost isomorphism.

We remark that the natural morphism ψ : Yét → Eét
Y→X induces an equivalence of the categories

of finite locally constant abelian sheaves on Yét and Eét
Y→X (cf. I.10.3),

LocSys(Yét)
ψ∗ // LocSys(Eét

Y→X).
ψ−1

oo(I.1.16.2)

As a continuation of the work of Abbes-Gros, the canonical morphism (I.1.16.1) (refered as Faltings’
comparison morphism) is constructed using the acyclicity of ψ for F, i.e. ψ∗F = Rψ∗F (so that
RΓ(Yét,F) = RΓ(Eét

Y→X , ψ∗F)), which is a consequence of Achinger’s result on K(π, 1)-schemes (cf.
I.10.6 and I.10.8). We also propose a new way to construct Faltings’ comparison morphism in the
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derived category of almost modules using our cohomological descent result I.1.12, which avoids using
the acyclicity of ψ. Indeed, there are natural morphisms of sites

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��
IY→XY

ε // Eét
Y→X

(I.1.16.3)

and Ψ is acyclic for any torsion abelian sheaf F on Yét, i.e. Ψ∗(a
−1F) = RΨ∗(a

−1F), which allows
more general coefficients and whose proof is much easier than that of ψ (cf. I.3.27). We remark that
this new construction won’t give us a “real morphism” (I.1.16.1) but a canonical morphism in the
derived category of almost modules (cf. I.11.6).

We briefly explain the strategy for proving I.1.16:

(1) Firstly, we use de Jong-Gabber-Illusie-Temkin’s alteration theorem for morphisms of schemes
[ILO14, X.3] to obtain a proper surjective morphism of finite presentation X ′ → X such
that the morphism X ′ → Spec(A) is the cofiltered limit of a system of “nice” morphisms
X ′
λ → Tλ of “nice” models over OKλ

, where Kλ is a finite extension of Qp (cf. I.9.11).
(2) Then, we can apply Faltings’ comparison theorem in the relative case to the “nice” morphisms

X ′
λ → Tλ (formulated by Faltings [Fal02, Thm.6, page 266] and proved by Abbes-Gros

[AG20, 5.7.4], cf. I.10.13). By a limit argument, we get the comparison theorem for X ′.
(3) Finally, using our cohomological descent result I.1.13, we deduce the comparison theorem

for X.

I.1.17. The site IY→XY is also appropriate to globalize Faltings’ comparison theorem. Consider a
Cartesian square of coherent schemes

Y ′ //

��

X ′

��
Y // X

(I.1.17.1)

where Y → X is Cartesian over Spec(Qp)→ Spec(Zp). In particular, there is a natural morphism of
ringed sites by the functoriality of (I.1.16.3),

fI : (IY ′→X′Y ′ ,O ′) −→ (IY→XY ,O).(I.1.17.2)

Theorem I.1.18 (cf. I.11.11). Assume that X ′ → X is proper of finite presentation. Let F ′ be a
torsion abelian sheaf on Y ′

ét and F ′ = Ψ′
∗a

′−1F ′ (cf. (I.1.16.3)). Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(I.1.18.1)

is an almost isomorphism.

We remark that if F ′ = Z/pnZ then F ′ = Z/pnZ (cf. I.3.27), and that RqfI∗F ′ is the sheafi-
fication of étale cohomologies of Y ′ over Y with coefficient F ′ in the v-topology (cf. I.11.12). Very
roughly speaking, objects of IY→XY are “locally” the spectrums of valuation rings, and the “stalks” of
(I.1.18.1) are Faltings’ comparison morphisms (I.1.16.1) when F ′ is finite locally constant (cf. I.11.5).
Theorem I.1.18 can be regarded as a scheme theoretical analogue of Scholze’s comparison theorem
for p-adic étale cohomology of a morphism of rigid analytic varieties [Sch13b, 3.13].

Finally, we generalize Faltings’ comparison theorem in the relative case using I.1.12 and I.1.18.

Theorem I.1.19 (Faltings’ comparison theorem in the relative case, cf. I.11.13 and I.11.14). Assume
that Y ′ → Y is smooth and that X ′ → X is proper of finite presentation. Then, for any finite locally
constant abelian sheaf F′ on Y ′

ét, there exists a canonical morphism

(Rψ∗Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
),(I.1.19.1)

which is an almost isomorphism, and where fét : Y ′
ét → Yét and fE : Eét

Y ′→X′ → Eét
Y→X are the

natural morphisms of sites. In particular, there exists a canonical morphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
),(I.1.19.2)

which is an almost isomorphism, for any integer q.
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I.1.20. The paper is structured as follows. In section I.3, we establish the foundation of the site
IS◦→S , where proposition I.3.27 discussing the cohomological properties of Ψ : (Schcoh

/S◦)v → IS◦→S is
the key to our new construction of Faltings’ comparison morphism (cf. I.11.6). Sections I.4 and I.5 are
devoted to a detailed proof of the arc-descent for perfectoid algebras following Bhatt-Scholze [BS19,
8.10]. Since we use the language of schemes, the terminology “pre-perfectoid” is introduced for those
algebras whose p-adic completions are perfectoid. In sections I.6 and I.7, we review the definition
and some basic properties of Faltings sites and we introduce a pro-version of Faltings site to evaluate
the structural sheaf on the spectrums of pre-perfectoid algebras. Then, we prove our cohomological
descent result in section I.8. In section I.9, we review de Jong-Gabber-Illusie-Temkin’s alteration
theorem and apply it to schemes over a valuation ring of height 1. Section I.10 is devoted to proving
our generalization of Faltings’ comparison theorem in the absolute case. In section I.11, we give a
new construction of Faltings’ comparison morphism and our generalization of Faltings’ comparison
theorem in the relative case. Finally, we deduce from the global relative Hodge-Tate filtration an
explicit local version in section I.12.

Acknowledgements. This work is part of my thesis prepared at Université Paris-Saclay and
Institut des Hautes Études Scientifiques. I would like to express my sincere gratitude to my doctoral
supervisor, Ahmed Abbes, for his guidance to this project, his thorough review of this work and his
plenty of helpful suggestions on both research and writing.

I.2. Notation and Conventions

I.2.1. We fix a prime number p throughout this paper. For any monoid M , we denote by Frob :
M → M the map sending an element x to xp and we call it the Frobenius of M . For a ring R, we
denote by R× the group of units of R. A ring R is called absolutely integrally closed if any monic
polynomial f ∈ R[T ] has a root in R ([Sta22, 0DCK]). We remark that quotients, localizations and
products of absolutely integrally closed rings are still absolutely integrally closed.

Recall that a valuation ring is a domain V such that for any element x in its fraction field, if
x /∈ V then x−1 ∈ V . The family of ideals of V is totally ordered by the inclusion relation ([Bou06,
VI.§1.2, Thm.1]). In particular, a radical ideal of V is a prime ideal. Moreover, any quotient of V
by a prime ideal and any localization of V are still valuations rings ([Sta22, 088Y]). We remark that
V is normal, and that V is absolutely integrally closed if and only if its fraction field is algebraically
closed. An extension of valuation rings is an injective and local homomorphism of valuation rings.

I.2.2. Following [SGA 4II, VI.1.22], a coherent scheme (resp. morphism of schemes) stands for a
quasi-compact and quasi-separated scheme (resp. morphism of schemes). For a coherent morphism
Y → X of schemes, we denote by XY the integral closure of X in Y ([Sta22, 0BAK]). For an
X-scheme Z, we say that Z is Y -integrally closed if Z = ZY×XZ .

I.2.3. Throughout this paper, we fix two universes U and V such that the set of natural numbers N
is an element of U and that U is an element of V ([SGA 4I, I.0]). In most cases, we won’t emphasize
this set theoretical issue. Unless stated otherwise, we only consider U-small schemes and we denote
by Sch the category of U-small schemes, which is a V-small category.

I.2.4. Let C be a category. We denote by Ĉ the category of presheaves of V-small sets on C. If C is
a V-site ([SGA 4I, II.3.0.2]), we denote by C̃ the topos of sheaves of V-small sets on C. We denote
by hC : C → Ĉ, x 7→ hCx the Yoneda embbeding ([SGA 4I, I.1.3]), and by Ĉ → C̃, F 7→ Fa the
sheafification functor ([SGA 4I, II.3.4]). Unless stated otherwise, a site in this paper stands for a
site where all finite limits are representable.

I.2.5. Let u+ : C → D be a functor of categories. We denote by up : D̂ → Ĉ the functor that
associates to a presheaf G of V-small sets on D the presheaf upG = G ◦ u+. If C is V-small and D is
a V-category, then up admits a left adjoint up [Sta22, 00VC] and a right adjoint pu [Sta22, 00XF]
(cf. [SGA 4I, I.5]). So we have a sequence of adjoint functors

up, u
p, pu.(I.2.5.1)

If moreover C and D are V-sites, then we denote by us, us, su the functors of the topoi C̃ and D̃ of
sheaves of V-small sets induced by composing the sheafification functor with the functors up, up, pu
respectively. As we only consider finite complete sites, we say that the functor u+ gives a morphism
of sites, if u+ is left exact and preserves covering families ([SGA 4I, IV.4.9.2]). Then, we denote by

u = (u−1, u∗) : D̃ → C̃(I.2.5.2)

https://stacks.math.columbia.edu/tag/0DCK
https://stacks.math.columbia.edu/tag/088Y
https://stacks.math.columbia.edu/tag/0BAK
https://stacks.math.columbia.edu/tag/00VC
https://stacks.math.columbia.edu/tag/00XF
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the associated morphism of topoi, where u−1 = us and u∗ = us = up|D̃. If moreover u is a morphism
of ringed topoi, then we denote by u∗ = OD̃⊗u−1OC̃

u−1 the pullback functor of modules. We remark
that the notation here, adopted by [Sta22], is slightly different with that in [SGA 4I] (cf. [Sta22,
0CMZ]).

I.2.6. Let C be an additive category. The catgory of objects of C up to isogeny (cf. [AGT16,
III.6]) is the category CQ with a functor F : C → CQ (called the localization functor) such that
Ob(CQ) = Ob(C) and that

HomCQ(MQ, NQ) = HomC(M,N)⊗Z Q,(I.2.6.1)

where we denote by MQ the image of an object M of C via F in CQ.
For a ringed site (C,O), we denote by O-ModQ the category of O-modules up to isogeny, whose

objects are called OQ-modules. It is an abelian category and the localization functor O-Mod →
O-ModQ sends injective objects to injective objects. We remark that if O is a Q-module, then
O-Mod → O-ModQ is an equivalence. A morphism of ringed sites u : (C,O) → (C ′,O′) induces a
pair of adjoint functors

u∗ : O′-ModQ → O-ModQ, u∗ : O-ModQ → O′-ModQ.(I.2.6.2)

The derived functor Ru∗ commutes with the localization functor.

I.3. The v-site of Integrally Closed Schemes

Definition I.3.1. Let X → Y be a quasi-compact morphism of schemes.
(1) We say thatX → Y is a v-covering, if for any valuation ring V and any morphism Spec(V )→

Y , there exists an extension of valuation rings V → W (I.2.1) and a commutative diagram
(cf. [Sta22, 0ETN])

Spec(W ) //

��

X

��
Spec(V ) // Y

(I.3.1.1)

(2) Let π be an element of Γ(Y,OY ). We say that X → Y is an arc-covering (resp. π-complete
arc-covering), if for any valuation ring (resp. π-adically complete valuation ring) V of height
≤ 1 and any morphism Spec(V ) → Y , there exists an extension of valuation rings (resp.
π-adically complete valuation rings) V → W of height ≤ 1 and a commutative diagram
(I.3.1.1) (cf. [BM20, 1.2], [CS19, 2.2.1]).

(3) We say that X → Y is an h-covering, if it is a v-covering and locally of finite presentation
(cf. [Sta22, 0ETS]).

We note that an arc-covering is simply a 0-complete arc-covering.

Lemma I.3.2. Let Z g−→ Y
f−→ X be quasi-compact morphisms of schemes, π ∈ Γ(X,OX), τ ∈ {h,

v, π-complete arc}.
(1) If f is a τ -covering, then any base change of f is also a τ -covering.
(2) If f and g are τ -coverings, then f ◦ g is also a τ -covering.
(3) If f ◦ g is a τ -covering (and if f is locally of finite presentation when τ = h), then f is also

a τ -covering.

Proof. It follows directly from the definitions. □

I.3.3. Let Schcoh be the category of coherent U-small schemes, τ ∈ {h, v, arc}. We endow Schcoh

with the τ -topology generated by the pretopology formed by families of morphisms {Xi → X}i∈I
with I finite such that

⨿
i∈I Xi → X is a τ -covering, and we denote the corresponding site by Schcoh

τ .
It is clear that a morphism Y → X (which is locally of finite presentation if τ = h) is a τ -covering if
and only if {Y → X} is a covering family in Schcoh

τ by I.3.2 and [SGA 4I, II.1.4].
For any coherent U-small scheme X, we endow the category Schcoh

/X of objects of Schcoh over X
with the topology induced by the τ -topology of Schcoh, i.e. the topology generated by the pretopology
formed by families of X-morphisms {Yi → Y }i∈I with I finite such that

⨿
i∈I Yi → Y is a τ -covering

([SGA 4I, III.5.2]). For any sheaf F of V-small abelian groups on the site (Schcoh
/X )τ , we denote its

q-th cohomology by Hq
τ (X,F).

Lemma I.3.4. Let f : X → Y be a quasi-compact morphism of schemes, π ∈ Γ(Y,OY ).
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(1) If f is proper surjective or faithfully flat, then f is a v-covering.
(2) If f is an h-covering and Y is affine, then there exists a proper surjective morphism Y ′ → Y

of finite presentation and a finite affine open covering Y ′ =
∪n
r=1 Y

′
r such that Y ′

r → Y
factors through f for each r.

(3) If f is an h-covering and if there exists a directed inverse system (fλ : Xλ → Yλ)λ∈Λ of
finitely presented morphisms of coherent schemes with affine transition morphisms ψλ′λ :
Xλ′ → Xλ and ϕλ′λ : Yλ′ → Yλ such that X = limXλ, Y = limYλ and that fλ is the base
change of fλ0 by ϕλλ0 for some index λ0 ∈ Λ and any λ ≥ λ0, then there exists an index
λ1 ≥ λ0 such that fλ is an h-covering for any λ ≥ λ1.

(4) If f is a v-covering, then it is a π-complete arc-covering.
(5) Let π′ be another element of Γ(Y,OY ) which divides π. If f is a π-complete arc-covering,

then it is a π′-complete arc-covering.
(6) If Spec(B)→ Spec(A) is a π-complete arc-covering, then the morphism Spec(B̂)→ Spec(Â)

between the spectrums of their π-adic completions is also a π-complete arc-covering.

Proof. (1), (2) are proved in [Sta22, 0ETK, 0ETU] respectively.
(3) To show that one can take λ1 ≥ λ0 such that fλ1 is an h-covering, we may assume that Yλ0

is affine by replacing it by a finite affine open covering by I.3.2 and (1). Thus, applying (2) to the
h-covering f and using [EGA IV3, 8.8.2, 8.10.5], there exists an index λ1 ≥ λ0, a proper surjective
morphism Y ′

λ1
→ Yλ1 and a finite affine open covering Y ′

λ1
=
∪n
r=1 Y

′
rλ1

such that the morphisms
Y ′
r → Y ′ → Y are the base changes of the morphisms Y ′

rλ1
→ Y ′

λ1
→ Yλ1 by the transition morphism

Y → Yλ1 , and that Y ′
rλ1
→ Yλ1 factors through Xλ1 . This shows that fλ1 is an h-covering by I.3.2

and (1).
(4) With the notation in (I.3.1.1), if V is a π-adically complete valuation ring of height ≤ 1 with

maximal ideal m, then since the family of prime ideals of W is totally ordered by the inclusion relation
(I.2.1), we take the maximal prime ideal p ⊆W over 0 ⊆ V and the minimal prime ideal q ⊆W over
m ⊆ V . Then, p ⊆ q and W ′ = (W/p)q over V is an extension of valuation rings of height ≤ 1. Since
π ∈ m and W ′ is of height ≤ 1, the π-adic completion Ŵ ′ is still a valuation ring extension of V of
height ≤ 1 (cf. [Bou06, VI.§5.3, Prop.5]), which proves (4).

(5) Since a π′-adically complete valuation ring V is also π-adically complete ([Sta22, 090T]),
there exists a lifting Spec(W ) → X for any morphism Spec(V ) → Y . After replacing W by its
π′-adic completion, the conclusion follows.

(6) Let V be a π-adically complete valuation ring of height ≤ 1. Given a morphism Â → V ,
there exists a lifting B →W where V →W is an extension of π-adically complete valuation rings of
height ≤ 1. It is clear that B →W factors through B̂, which proves (6). □

I.3.5. Let X be a coherent scheme, Schfp
/X the full subcategory of Schcoh

/X formed by finitely presented
X-schemes. We endow it with the topology generated by the pretopology formed by families of
morphisms {Yi → Y }i∈I with I finite such that

⨿
i∈I Yi → Y is an h-covering, and we denote the

corresponding site by (Schfp
/X)h. It is clear that this topology coincides with the topologies induced

from (Schcoh
/X )v and from (Schcoh

/X )h. The inclusion functors (Schfp
/X)h

ξ+−→ (Schcoh
/X )h

ζ+−→ (Schcoh
/X )v

define morphisms of sites (I.2.5)

(Schcoh
/X )v

ζ−→ (Schcoh
/X )h

ξ−→ (Schfp
/X)h.(I.3.5.1)

Lemma I.3.6. Let X be a coherent scheme. Then, for any covering family U = {Yi → Y }i∈I in
(Schcoh

/X )v with I finite,
(i) there exists a directed inverse system (Yλ)λ∈Λ of finitely presented X-schemes with affine

transition morphisms such that Y = limYλ, and
(ii) for each i ∈ I, there exists a directed inverse system (Yiλ)λ∈Λ of finitely presented X-schemes

with affine transition morphisms over the inverse system (Yλ)λ∈Λ such that Yi = limYiλ,
and

(iii) for each λ ∈ Λ, the family Uλ = {Yiλ → Yλ}i∈I is a covering in (Schfp
/X)h.

Proof. We take a directed set A such that for each i ∈ I, we can write Yi as a cofiltered limit
of finitely presented Y -schemes Yi = limα∈A Yiα with affine transition morphisms ([Sta22, 09MV]).
We see that

⨿
i∈I Yiα → Y is an h-covering for each α ∈ A by I.3.2.

We write Y as a cofiltered limit of finitely presented X-schemes Y = limβ∈B Yβ with affine
transition morphisms ([Sta22, 09MV]). By [EGA IV3, 8.8.2, 8.10.5] and I.3.4.(3), for each α ∈ A,
there exists an index βα ∈ B such that the morphism Yiα → Y is the base change of a finitely
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presented morphism Yiαβα
→ Yβα

by the transition morphism Y → Yβα
for each i ∈ I, and that⨿

i∈I Yiαβα → Yβα is an h-covering. For each β ≥ βα, let Yiαβ be the base change of Yiαβα by
Yβ → Yβα .

We define a category Λop, whose set of objects is {(α, β) ∈ A × B | β ≥ βα}, and for any two
objects λ′ = (α′, β′), λ = (α, β), the set HomΛop(λ′, λ) is

(i) the subset of
∏
i∈I HomYβ′ (Yiα′β′ , Yiαβ′) formed by elements f = (fi)i∈I such that for each

i ∈ I, fi : Yiα′β′ → Yiαβ′ is affine and the base change of fi by Y → Yβ′ is the transition
morphism Yiα′ → Yiα, if α′ ≥ α and β′ ≥ β;

(ii) empty, if else.
The composition of morphisms (gi : Yiα′′β′′ → Yiα′β′′)i∈I with (fi : Yiα′β′ → Yiαβ′)i∈I in Λop is
(gi ◦ f ′i : Yiα′′β′′ → Yiαβ′′), where f ′i is the base change of fi by the transition morphism Yβ′′ → Yβ′ .
We see that Λop is cofiltered by [EGA IV3, 8.8.2]. Let Λ be the opposite category of Λop. For each
i ∈ I and λ = (α, β) ∈ Λ, we set Yλ = Yβ and Yiλ = Yiαβ . It is clear that the natural functors Λ→ A
and Λ → B are cofinal ([SGA 4I, I.8.1.3]). After replacing Λ by a directed set ([Sta22, 0032]), the
families Uλ = {Yiλ → Yλ}i∈I satisfy the required conditions. □

Lemma I.3.7. With the notation in I.3.5, let F be a presheaf on (Schfp
/X)h, (Yλ) a directed inverse

system of finitely presented X-schemes with affine transition morphisms, Y = limYλ. Then, we have
νpF(Y ) = colimF(Yλ), where ν+ = ξ+ (resp. ν+ = ζ+ ◦ ξ+).

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4I,
I.3.4]

F = colim
Y ′∈(Schfp

/X
)/F

hY ′ .(I.3.7.1)

Thus, we may assume that F is representable by a finitely presented X-scheme Y ′ since the section
functor Γ(Y,−) commutes with colimits of presheaves ([Sta22, 00VB]). Then, we have

νphY ′(Y ) = hν+(Y ′)(Y ) = HomX(Y, Y ′) = colimHomX(Yλ, Y
′) = colimhY ′(Yλ)(I.3.7.2)

where the first equality follows from [Sta22, 04D2], and the third equality follows from [EGA IV3,
8.14.2]. □

Proposition I.3.8. With the notation in I.3.5, let F be an abelian sheaf on (Schfp
/X)h, (Yλ) a directed

inverse system of finitely presented X-schemes with affine transition morphisms, Y = limYλ. Let
τ = h and ν+ = ξ+ (resp. τ = v and ν+ = ζ+ ◦ ξ+). Then, for any integer q, we have

Hq
τ (Y, ν

−1F) = colimHq((Schfp
/Yλ

)h,F).(I.3.8.1)

In particular, the canonical morphism F −→ Rν∗ν
−1F is an isomorphism.

Proof. For the second assertion, the sheaf Rqν∗ν
−1F is the sheaf associated to the presheaf

Y 7→ Hq
τ (Y, ν

−1F) = Hq((Schfp
/Y )h,F) by the first assertion, which is F if q = 0 and vanishes

otherwise.
We claim that it suffices to show that (I.3.8.1) holds for any injective abelian sheaf F = I on

(Schfp
/X)h. Indeed, if so, then we prove by induction on q that (I.3.8.1) holds in general. The case

where q ≤ −1 is trivial. We set Hq
1 (F) = Hq

τ (Y, ν
−1F) and Hq

2 (F) = colimHq((Schfp
/Yλ

)h,F). We
embed an abelian sheaf F to an injective abelian sheaf I. Consider the exact sequence 0 → F →
I → G → 0 and the morphism of long exact sequences

Hq−1
1 (I) //

γ1

��

Hq−1
1 (G) //

γ2

��

Hq
1 (F) //

γ3

��

Hq
1 (I) //

γ4

��

Hq
1 (G)

γ5

��
Hq−1

2 (I) // Hq−1
2 (G) // Hq

2 (F) // Hq
2 (I) // Hq

2 (G)

(I.3.8.2)

If (I.3.8.1) holds for any abelian sheaf F for degree q − 1, then γ1, γ2, γ4 are isomorphisms and thus
γ3 is injective by the 5-lemma ([Sta22, 05QA]). Thus, γ5 is also injective since F is an arbitrary
abelian sheaf. Then, we see that γ3 is an isomorphism, which completes the induction procedure.

For an injective abelian sheaf I on (Schfp
/X)h, we claim that for any covering family U = {(Yi →

Y )}i∈I in (Schcoh
/X )τ with I finite, the augmented Čech complex associated to the presheaf νpI

νpI(Y )→
∏
i∈I

νpI(Yi)→
∏
i,j∈I

νpI(Yi ×Y Yj)→ · · ·(I.3.8.3)
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is exact. Admitting this claim, we see that νpI is indeed a sheaf, i.e. ν−1I = νpI, and the vanishing
of higher Čech cohomologies implies that Hq

τ (Y, ν
−1I) = 0 for q > 0 by I.3.6 ([Sta22, 03F9]), which

completes the proof together with I.3.7. For the claim, we take the covering families Uλ = {Yiλ →
Yλ}i∈I in (Schfp

/X)h constructed by I.3.6. By I.3.7, the sequence (I.3.8.3) is the filtered colimit of the
augmented Čech complexes

I(Yλ)→
∏
i∈I

I(Yiλ)→
∏
i,j∈I

I(Yiλ ×Yλ
Yjλ)→ · · · ,(I.3.8.4)

which are exact since I is an injective abelian sheaf on (Schfp
/X)h. □

Corollary I.3.9. Let X be a coherent scheme, F a torsion abelian sheaf on the site Xét formed by
coherent étale X-schemes endowed with the étale topology, a : (Schcoh

/X )v → Xét the morphism of sites
defined by the inclusion functor. Then, the canonical morphism F → Ra∗a

−1F is an isomorphism.

Proof. Consider the morphisms of sites defined by inclusion functors

(Schcoh
/X )v

ζ−→ (Schcoh
/X )h

ξ−→ (Schfp
/X)h

µ−→ Xét.(I.3.9.1)

Notice that the morphism F → R(µ ◦ ξ)∗(µ ◦ ξ)−1F is an isomorphism by [Sta22, 0EWG]. Hence,
F → Rµ∗µ

−1F is an isomorphism by I.3.8, and thus so is F → Ra∗a
−1F by I.3.8. □

Corollary I.3.10. Let f : X → Y be a proper morphism of coherent schemes, F a torsion abelian
sheaf on Xét. Consider the commutative diagram

(Schcoh
/X )v

aX //

fv

��

Xét

fét

��
(Schcoh

/Y )v
aY // Yét

(I.3.10.1)

where fv and fét are defined by the base change by f . Then, the canonical morphism

a−1
Y Rfét∗F −→ Rfv∗a

−1
X F(I.3.10.2)

is an isomorphism.

Proof. Consider the commutative diagram

(Schcoh
/X )v

ζX //

fv

��

(Schcoh
/X )h

bX //

fh

��

Xét

fét

��
(Schcoh

/Y )v
ζY // (Schcoh

/Y )h
bY // Yét

(I.3.10.3)

The canonical morphism b−1
Y Rfét∗F −→ Rfh∗b

−1
X F is an isomorphism by [Sta22, 0EWF]. It remains

to show that the canonical morphism ζ−1
Y Rfh∗b

−1
X F −→ Rfv∗a

−1
X F is an isomorphism. Let Y ′ be

a coherent Y -scheme and we set g : X ′ = Y ′ ×Y X → X. For each integer q, ζ−1
Y Rqfh∗b

−1
X F is

the sheaf associated to the presheaf Y ′ 7→ Hq
h(X

′, b−1
X′g

−1
ét F) = Hq

ét(X
′, g−1

ét F) by [Sta22, 0EWH],
and Rqfv∗a

−1
X F is the sheaf associated to the presheaf Y ′ 7→ Hq

v(X
′, a−1

X′g
−1
ét F) = Hq

ét(X
′, g−1

ét F) by
I.3.9. □

Lemma I.3.11. Let A be a product of (resp. absolutely integrally closed) valuation rings (I.2.1).
(1) Any finitely generated ideal of A is principal.
(2) Any connected component of Spec(A) with the reduced closed subscheme structure is iso-

morphic to the spectrum of a (resp. absolutely integrally closed) valuation ring.

Proof. (1) is proved in [Sta22, 092T], and (2) follows from the proof of [BS17, 6.2]. □

Lemma I.3.12. Let X be a U-small scheme, y ⇝ x a specialization of points of X. Then, there
exists a U-small family {fλ : Spec(Vλ)→ X}λ∈Λy⇝x of morphisms of schemes such that

(i) the ring Vλ is a U-small (resp. absolutely integrally closed) valuation ring, and that
(ii) the morphism fλ maps the generic point and closed point of Spec(Vλ) to y and x respectively,

and that
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(iii) for any morphism of schemes f : Spec(V ) → X where V is a (resp. absolutely integrally
closed) valuation ring such that f maps the generic point and closed point of V to y and
x respectively, there exists an element λ ∈ Λy⇝x such that f factors through fλ and that
Vλ → V is an extension of valuation rings.

Proof. Let Ky be the residue field κ(y) of y (resp. an algebraic closure of κ(y)). Let py be the
prime ideal of the local ring OX,x corresponding to the point y, and let {Vλ}λ∈Λy⇝x be the set of all
valuation rings with fraction field Ky which contain OX,x/py such that the injective homomorphism
OX,x/py → Vλ is local. The smallness of Λy⇝x and Vλ is clear, and the inclusion OX,x/py → Vλ
induces a morphism fλ : Spec(Vλ) → X satisfying (ii). It remains to check (iii). The morphism f
induces an injective and local homomorphism OX,x/py → V . Notice that OX,x/py → Frac(V ) factors
through Ky and that Ky ∩V is a valuation ring with fraction field Ky. It is clear that Ky ∩V → V is
local and injective, which shows that Ky ∩ V belongs to the set {Vλ}λ∈Λy⇝x constructed before. □

Lemma I.3.13. Let f : Spec(V ) → X be a morphism of schemes where V is a valuation ring.
We denote by a and b the closed point and generic point of Spec(V ) respectively. If c ∈ X is a
generalization of f(b), then there exists an absolutely integrally closed valuation ring W , a prime
ideal p of W , and a morphism g : Spec(W )→ X satisfying the following conditions:

(i) If z, y, x denote respectively the generic point, the point p and the closed point of Spec(W ),
then g(z) = c, g(y) = f(b) and g(x) = f(a).

(ii) The induced morphism Spec(W/p)→ X factors through f , and the induced morphism V →
W/p is an extension of valuation rings.

Proof. According to [EGA II, 7.1.4], there exists an absolutely integrally closed valuation ring
U and a morphism Spec(U)→ X which maps the generic point z and the closed point y of Spec(U)
to c and f(b) respectively. After extending U , we may assume that the morphism y → f(b) factors
through b ([EGA II, 7.1.2]). We denote by κ(y) the residue field of the point y. Let V ′ be a
valuation ring extension of V with fraction field κ(y), and let W be the preimage of V ′ by the
surjection U → κ(y). Then, the maximal ideal p = Ker(U → κ(y)) of U is a prime ideal of W , and
W/p = V ′. We claim that W is an absolutely integrally closed valuation ring such that Wp = U .
Indeed, firstly note that the fraction fields of U and W are equal as p ⊆ W . Let γ be an element of
Frac(W ) \W . If γ ∈ U , then γ−1 ∈W \ p by definition since γ−1 ∈ U \ p and V is a valuation ring,
and then γ ∈ Wp. If γ /∈ U , then γ−1 ∈ p since U is a valuation ring, and then γ /∈ Wp. Thus, we
have proved the claim, which shows that W satisfies the required conditions. □

Proposition I.3.14. Let X be a coherent U-small scheme, X◦ a quasi-compact dense open subset of
X. Then, there exists a U-small product A of absolutely integrally closed U-small valuation rings and
a v-covering Spec(A)→ X such that Spec(A) is X◦-integrally closed (I.2.2).

Proof. After replacing X by a finite affine open covering, we may assume that X = Spec(R).
For a specialization y ⇝ x of points of X, let {R → Vλ}λ∈Λy⇝x be the U-small set constructed in
I.3.12. Let Λ =

⨿
y∈X◦ Λy⇝x where y ⇝ x runs through all specializations in X such that y ∈ X◦.

We take A =
∏
λ∈Λ Vλ and R→ A the natural homomorphism. As a quasi-compact open subscheme

of Spec(A), X◦ ×X Spec(A) is the spectrum of A[1/π] for an element π = (πλ)λ∈Λ ∈ A by I.3.11.(1)
([Sta22, 01PH]). Notice that πλ ̸= 0 for any λ ∈ Λ. We see that A is integrally closed in A[1/π]. It
remains to check that Spec(A)→ X is a v-covering. For any morphism f : Spec(V )→ X where V is
a valuation ring, by I.3.13, there exists an absolutely integrally closed valuation ring W , a prime ideal
p of W and a morphism g : Spec(W )→ X such that g maps the generic point of W into X◦ and that
W/p is a valuation ring extension of V . By construction, there exists λ ∈ Λ such that g factors through
Spec(Vλ)→ X. We see that f lifts to the composition of Spec(W/p)→ Spec(Vλ)→ Spec(A). □

Proposition I.3.15. Consider a commutative diagram of schemes

Y ′ //

��

Z ′ //

��

X ′

��
Y // Z // X

(I.3.15.1)

where Z ′ → Z and X ′ → X are quasi-compact. Assume that Y ′ → Y ×X X ′ is surjective, Y → Z is
dominant, Z → X is separated and Z ′ → X ′ is integral. If X ′ → X is a v-covering, then Z ′ → Z is
also a v-covering.

Proof. Notice that Z ′ → Z ×X X ′ is still integral as Z → X is separated. After replacing
X ′ → X by Z ×X X ′ → Z, we may assume that Z = X. Let Spec(V ) → Z be a morphism of
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schemes where V is a valuation ring. Since Y → Z is dominant, by I.3.13, there exists a morphism
Spec(W ) → Z where W is an absolutely integrally closed valuation ring, a prime ideal p of W such
that W/p is a valuation ring extension of V and that the generic point ξ of Spec(W ) is over the image
of Y → Z. After extending W ([Sta22, 00IA]), we may assume that there exists a lifting ξ → Y of
ξ → Z. The morphism Spec(W ) → Z = X admits a lifting Spec(W ′) → X ′ where W → W ′ is an
extension of valuation rings. We claim that after extending W ′, Spec(W ′)→ X ′ factors through Z ′.
Indeed, if ξ′ denotes the generic point of Spec(W ′), as Y ′ → Y ×X X ′ is surjective, after extending
W ′, we may assume that there exists an X ′-morphism ξ′ → Y ′ which is over ξ → Y . Since Spec(W ′)
is integrally closed in ξ′ and Z ′ is integral over X ′, the morphism Spec(W ′) → X ′ factors through
Z ′ ([Sta22, 035I]). Finally, let q ∈ Spec(W ′) which lies over p ∈ Spec(W ), then we get a lifting
Spec(W ′/q)→ Z ′ of Spec(V )→ Z, which shows that Z ′ → Z is a v-covering. □

I.3.16. Let S◦ → S be an open immersion of coherent schemes such that S is S◦-integrally closed
(I.2.2). For any S-scheme X, we set X◦ = S◦ ×S X. We denote by IS◦→S the category formed
by coherent S-schemes which are S◦-integrally closed. Note that any S◦-integrally closed coherent
S-scheme X is also X◦-integrally closed by definition. It is clear that the category (IS◦→S)/X of
objects of IS◦→S over X is canonically equivalent to the category IX◦→X .

Lemma I.3.17 ([Sta22, 03GV]). Let Y → X be a coherent morphism of schemes, X ′ → X a smooth
morphism of schemes, Y ′ = Y ×X X ′. Then, we have X ′Y ′

= XY ×X X ′.

Lemma I.3.18. Let (Yλ → Xλ)λ∈Λ be a directed inverse system of morphisms of coherent schemes
with affine transition morphisms Yλ′ → Yλ and Xλ′ → Xλ (λ′ ≥ λ). We set Y = limYλ and
X = limXλ. Then, (XYλ

λ )λ∈Λ is a directed inverse system of coherent schemes with affine transition
morphisms and we have XY = limXYλ

λ .

Proof. We fix an index λ0 ∈ Λ. After replacing Xλ0 by an affine open covering, we may assume
that Xλ0 is affine (I.3.17). We write Xλ = Spec(Aλ) and Bλ = Γ(Yλ,OYλ

) for each λ ≥ λ0, and
we set A = colimAλ and B = colimBλ. Then, we have X = Spec(A) and B = Γ(Y,OY ) ([Sta22,
009F]). Let Rλ (resp. R) be the integral closure of Aλ in Bλ (resp. A in B). By definition, we have
XYλ

λ = Spec(Rλ) and XY = Spec(R). The conclusion follows from the fact that R = colimRλ. □

Lemma I.3.19. Let S◦ → S be an open immersion of coherent schemes.
(1) If X is an S◦-integrally closed coherent S-scheme, then the open subscheme X◦ is scheme

theoretically dense in X.
(2) If X is an S◦-integrally closed coherent S-scheme and X ′ is a coherent smooth X-scheme,

then X ′ is also S◦-integrally closed.
(3) If (Xλ)λ∈Λ is a directed inverse system of S◦-integrally closed coherent S-scheme with affine

transition morphisms, then X = limλ∈ΛXλ is also S◦-integrally closed.
(4) If Y → X is a morphism of coherent schemes over S◦ → S such that Y is integral over X◦,

then the integral closure XY is S◦-integrally closed with (XY )◦ = Y .

Proof. (1), (2), (3) follow from [Sta22, 035I], I.3.17 and I.3.18 respectively. For (4), (XY )◦ =
X◦ ×X XY is the integral closure of X◦ in X◦ ×X Y = Y by I.3.17, which is Y itself. □

I.3.20. We take the notation in I.3.16. The inclusion functor

Φ+ : IS◦→S −→ Schcoh
/S , X 7−→ X,(I.3.20.1)

admits a right adjoint

σ+ : Schcoh
/S −→ IS◦→S , X 7−→ X = XX◦

.(I.3.20.2)

Indeed, σ+ is well-defined by I.3.19.(4), and the adjointness follows from the functoriality of taking
integral closures. We remark that X

◦
= X◦. On the other hand, the functor

Ψ+ : IS◦→S −→ Schcoh
/S◦ , X 7−→ X◦,(I.3.20.3)

admits a left adjoint

α+ : Schcoh
/S◦ −→ IS◦→S , Y 7−→ Y.(I.3.20.4)

Lemma I.3.21. With the notation in I.3.16, let φ : I → IS◦→S be a functor sending i to Xi. If
X = limXi represents the limit of φ in the category of coherent S-schemes, then the integral closure
X = XX◦

represents the limit of φ in IS◦→S with X
◦
= X◦.

Proof. It follows directly from the adjoint pair (Φ+, σ+) (I.3.20). □
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It follows from I.3.21 that for a diagram X1 → X0 ← X2 in IS◦→S , the fibred product is
representable by

X1×X0X2 = (X1 ×X0 X2)
X◦

1×X◦
0
X◦

2 .(I.3.21.1)

Proposition I.3.22. With the notation in I.3.16, let C be the set of families of morphisms {Xi →
X}i∈I of IS◦→S with I finite such that

⨿
i∈I Xi → X is a v-covering. Then, C forms a pretopology

of IS◦→S.

Proof. Let {Xi → X}i∈I be an element of C . Firstly, we check that for a morphism X ′ → X

of IS◦→S , the base change {X ′
i → X ′}i∈I also lies in C , where Zi = Xi ×X X ′ and X ′

i = Z
Z◦

i
i by

I.3.21. Applying I.3.15 to the following diagram⨿
i∈I Z

◦
i

//

��

⨿
i∈I X

′
i

//

��

⨿
i∈I Zi

��
X ′◦ // X ′ // X ′

(I.3.22.1)

we deduce that
⨿
i∈I X

′
i → X ′ is also a v-covering, which shows the stability of C under base change.

For each i ∈ I, let {Xij → Xi}j∈Ji be an element of C . We need to show that the composition
{Xij → X}i∈I,j∈Ji also lies in C . This follows immediately from the stability of v-coverings under
composition. We conclude that C forms a pretopology. □

Definition I.3.23. With the notation in I.3.16, we endow the category IS◦→S with the topology
generated by the pretopology defined in I.3.22, and we call IS◦→S the v-site of S◦-integrally closed
coherent S-schemes.

By definition, any object in IS◦→S is quasi-compact. Let O be the sheaf on IS◦→S associated to
the presheaf X 7→ Γ(X,OX). We call O the structural sheaf of IS◦→S .

Proposition I.3.24. With the notation in I.3.16, let f : X ′ → X be a covering in IS◦→S such that f
is separated and that the diagonal morphism X ′◦ → X ′◦ ×X◦ X ′◦ is surjective. Then, the morphism
of representable sheaves haX′ → haX is an isomorphism.

Proof. We need to show that for any sheaf F on IS◦→S , F(X) → F(X ′) is an isomorphism.
Since the composition of X ′◦ → X ′◦ ×X◦ X ′◦ → X ′×XX ′ factors through the closed immersion
X ′ → X ′×XX ′ (as f is separated), the closed immersion X ′ → X ′×XX ′ is surjective (I.3.19.(1)).
Consider the following sequence

F(X)→ F(X ′)⇒ F(X ′×XX ′)→ F(X ′).(I.3.24.1)

The right arrow is injective as X ′ → X ′×XX ′ is a v-covering. Thus, the middle two arrows are
actually the same. Thus, the first arrow is an isomorphism by the sheaf property of F . □

Proposition I.3.25. With the notation in I.3.16, let α : F1 → F2 be a morphism of presheaves on
IS◦→S. Assume that

(i) the morphism F1(Spec(V ))→ F2(Spec(V )) is an isomorphism for any S◦-integrally closed
S-scheme Spec(V ) where V is an absolutely integrally closed valuation ring, and that

(ii) for any directed inverse system of S◦-integrally closed affine schemes (Spec(Aλ))λ∈Λ over
S the natural morphism colimFi(Spec(Aλ)) → Fi(Spec(colimAλ)) is an isomorphism for
i = 1, 2 (cf. I.3.19.(3)).

Then, the morphism of the associated sheaves Fa
1 → Fa

2 is an isomorphism.

Proof. Let A be a product of absolutely integrally closed valuation rings such that X = Spec(A)
is an S◦-integrally closed S-scheme. Let Spec(V ) be a connected component of Spec(A) with the
reduced closed subscheme structure. Then, V is an absolutely integrally closed valuation ring by
I.3.11.(2), and Spec(V ) is also S◦-integrally closed since it has nonempty intersection with the dense
open subset X◦ of X. Notice that each connected component of an affine scheme is the intersection of
some open and closed subsets ([Sta22, 04PP]). Moreover, since A is reduced, we have V = colimA′,
where the colimit is taken over all the open and closed subschemes X ′ = Spec(A′) of X which contain
Spec(V ). By assumption, we have an isomorphism

colimF1(X
′)

∼−→ colimF2(X
′).(I.3.25.1)

For two elements ξ1, ξ′1 ∈ F1(X) with αX(ξ1) = αX(ξ′1) in F2(X), by (I.3.25.1) and a limit argument,
there exists a finite disjoin union X =

⨿r
i=1X

′
i such that the images of ξ1 and ξ′1 in F1(X

′
i) are the

same. Therefore, Fa
1 → Fa

2 is injective by I.3.14. On the other hand, for an element ξ2 ∈ F2(X),
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by (I.3.25.1) and a limit argument, there exists a finite disjoin union X =
⨿r
i=1X

′
i such that there

exists an element ξ1,i ∈ F1(X
′
i) for each i such that the image of ξ2 in F2(X

′
i) is equal to αX′

i
(ξ1,i).

Therefore, Fa
1 → Fa

2 is surjective by I.3.14. □

I.3.26. We take the notation in I.3.16. Endowing Schcoh with the v-topology (I.3.3), we see that the
functors σ+ and Ψ+ defined in I.3.20 are left exact (as they have left adjoints) and continuous by
I.3.15 and I.3.22. Therefore, they define morphisms of sites (I.2.5)

(Schcoh
/S◦)v

Ψ−→ IS◦→S
σ−→ (Schcoh

/S )v.(I.3.26.1)

Proposition I.3.27. With the notation in I.3.26, let a : (Schcoh
/S◦)v → S◦

ét be the morphism of site
defined by the inclusion functor (I.3.9).

(1) For any torsion abelian sheaf F on S◦
ét, the canonical morphism Ψ∗(a

−1F)→ RΨ∗(a
−1F)

is an isomorphism.
(2) For any locally constant torsion abelian sheaf L on IS◦→S, the canonical morphism L →

RΨ∗Ψ
−1L is an isomorphism.

Proof. (1) For each integer q, the sheaf RqΨ∗(a
−1F) is the sheaf associated to the presheaf

X 7→ Hq
v(X

◦, a−1F) = Hq
ét(X

◦, f−1
ét F) by I.3.9, where fét : X◦

ét → S◦
ét is the natural morphism. If X

is the spectrum of a nonzero absolutely integrally closed valuation ring V , then X◦ = Spec(V [1/π])
for a nonzero element π ∈ V by I.3.11.(1) and I.3.19.(1), which is also the spectrum of an absolutely
integrally closed valuation ring (I.2.1). In this case, Hq

ét(X
◦, f−1

ét F) = 0 for q > 0, which proves (1)
by I.3.25 and [SGA 4II, VII.5.8].

(2) The problem is local on IS◦→S . We may assume that L is the constant sheaf with value L.
Then, RqΨ∗Ψ

−1L = 0 for q > 0 by applying (1) on the constant sheaf with value L on S◦
ét. For q = 0,

notice that L is also the sheaf associated to the presheaf X 7→ H0
ét(X,L), while Ψ∗Ψ

−1L is the sheaf
X 7→ H0

ét(X
◦, L) by the discussion in (1). If X is the spectrum of a nonzero absolutely integrally

closed valuation ring, then so is X◦ and so that H0
ét(X,L) = H0

ét(X
◦, L) = L. The conclusion follows

from I.3.25 and [SGA 4II, VII.5.8]. □

I.4. The arc-Descent of Perfect Algebras

Definition I.4.1. For any Fp-algebra R, we denote by Rperf the filtered colimit

Rperf = colim
Frob

R(I.4.1.1)

indexed by (N,≤), where the transition map associated to i ≤ (i+ 1) is the Frobenius of R.

It is clear that the endo-functor of the category of Fp-algebras, R 7→ Rperf , commutes with
colimits.

I.4.2. We define a presheaf Operf on the category Schcoh
Fp

of coherent U-small Fp-schemes X by

Operf(X) = Γ(X,OX)perf .(I.4.2.1)

For any morphism Spec(B)→ Spec(A) of affine Fp-schemes, we consider the augmented Čech complex
of the presheaf Operf ,

0→ Aperf → Bperf → Bperf ⊗Aperf
Bperf → · · · .(I.4.2.2)

Lemma I.4.3 ([Sta22, 0EWT]). The presheaf Operf is a sheaf on Schcoh
Fp

with respect to the fppf
topology ([Sta22, 021L]). Moreover, for any coherent Fp-scheme X and any integer q,

Hq
fppf(X,Operf) = colim

Frob
Hq(X,OX).(I.4.3.1)

Proof. Firstly, we remark that for any integer q, the functor Hq
fppf(X,−) commutes with fil-

tered colimit of abelian sheaves on (Schcoh
/X )fppf for any coherent scheme X ([Sta22, 0739]). Since

the presheaf O sending X to Γ(X,OX) on Schcoh
Fp

is an fppf-sheaf, we have H0
fppf(X,Oa

perf) =

colimFrobH
0
fppf(X,O) = Operf(X). Thus, Operf is an fppf-sheaf. Moreover, Hq

fppf(X,Operf) =

colimFrobH
q
fppf(X,O) = colimFrobH

q(X,OX) by faithfully flat descent ([Sta22, 03DW]). □

Lemma I.4.4. Let τ ∈ {fppf, h, v, arc}. The following propositions are equivalent:
(1) The presheaf Operf on Schcoh

Fp
is a τ -sheaf and Hq

τ (X,Operf) = colimFrobH
q(X,OX) for any

coherent Fp-scheme X and any integer q.
(2) For any τ -covering Spec(B)→ Spec(A) of affine Fp-schemes, the augmented Čech complex

(I.4.2.2) is exact.
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Proof. For an affine scheme X = Spec(A), Hq(X,OX) vanishes for q > 0 and H0(X,OX) = A.
For (1) ⇒ (2), the exactness of (I.4.2.2) follows from the Čech-cohomology-to-cohomology spectral
sequence associated to the τ -covering Spec(B) → Spec(A) [Sta22, 03AZ]. Therefore, (1) and (2)
hold for τ = fppf by I.4.3. Conversely, the exactness of (I.4.2.2) shows the sheaf property for any
τ -covering of an affine scheme by affine schemes, which implies the fppf-sheaf Operf is a τ -sheaf
(cf. [Sta22, 0ETM]). The vanishing of higher Čech cohomologies implies that Hq

τ (X,Operf) = 0 for
any affine Fp-scheme X and any q > 0 ([Sta22, 03F9]). Therefore, for a coherent Fp-scheme X,
Hq
τ (X,Operf) can be computed by the hyper-Čech cohomology of a hypercovering of X formed by

affine open subschemes ([Sta22, 01GY]). In particular, we have Hq
τ (X,Operf) = Hq

fppf(X,Operf) for
any integer q, which completes the proof by I.4.3. □

Lemma I.4.5 (Gabber). The augmented Čech complex (I.4.2.2) is exact for any h-covering Spec(B)→
Spec(A) of affine Fp-schemes.

Proof. This is a result of Gabber, cf. [BST17, 3.3] or [Sta22, 0EWU], and I.4.4. □

Lemma I.4.6 ([BS17, 4.1]). The augmented Čech complex (I.4.2.2) is exact for any v-covering
Spec(B)→ Spec(A) of affine Fp-schemes.

Proof. We write B as a filtered colimit of finitely presented A-algebras B = colimBλ. Then,
Spec(Bλ)→ Spec(A) is an h-covering for each λ by I.3.2. Notice that Bperf = colimBλ,perf , then the
conclusion follows from applying I.4.5 on Spec(Bλ)→ Spec(A) and taking colimit. □

Lemma I.4.7 ([BS17, 6.3]). For any valuation ring V and any prime ideal p of V , the sequence

0 −→ V
α−→ V/p⊕ Vp

β−→ Vp/pVp −→ 0(I.4.7.1)

is exact, where α(a) = (a, a) and β(a, b) = a− b. If moreover V is a perfect Fp-algebra, then for any
perfect V -algebra R, the base change of (I.4.7.1) by V → R,

0 −→ R −→ R/pR⊕Rp −→ Rp/pRp −→ 0(I.4.7.2)

is exact.

Proof. The sequence (I.4.7.1) is exact if and only if p = pVp. Let a ∈ p and s ∈ V \ p. Since p
is an ideal, s/a /∈ V , thus a/s ∈ V as V is a valuation ring. Moreover, we must have a/s ∈ p as p is
a prime ideal. This shows the equality p = pVp.

The second assertion follows directly from the fact that TorAq (B,C) = 0 for any q > 0 and any
diagram B ← A→ C of perfect Fp-algebras ([BS17, 3.16]). □

Lemma I.4.8 ([BM20, 4.8]). The augmented Čech complex (I.4.2.2) is exact for any arc-covering
Spec(B)→ Spec(A) of affine Fp-schemes with A a valuation ring.

Proof. We follow the proof of Bhatt-Mathew [BM20, 4.8]. Let B = colimBλ be a filtered
colimit of finitely presented A-algebras. Then, Spec(Bλ)→ Spec(A) is also an arc-covering by I.3.2.
Thus, we may assume that B is a finitely presented A-algebra.

An interval I = [p, q] of a valuation ring A is a pair of prime ideals p ⊆ q of A. We denote by
AI = (A/p)q. The set I of intervals of A is partially ordered under inclusion. Let P be the subset
consisting of intervals I such that the lemma holds for Spec(B ⊗A AI) → Spec(AI). It suffices to
show that P = I.

(1) If the valuation ring AI is of height ≤ 1, we claim that Spec(B ⊗A AI) → Spec(AI) is
automatically a v-covering. Indeed, there is an extension of valuation rings AI → V of height
≤ 1 which factors through B⊗AAI . As AI → V is faithfully flat, Spec(B⊗AAI)→ Spec(AI)
is a v-covering by I.3.2 and I.3.4.(1). Therefore, I ∈ P by I.4.6.

(2) For any interval J ⊆ I, if I ∈ P then J ∈ P. Indeed, applying ⊗Fp(AJ )perf to the exact
sequence (I.4.2.2) for Spec(B ⊗A AI) → Spec(AI), we still get an exact sequence by the
Tor-independence of perfect Fp-algebras ([BS17, 3.16]).

(3) If p ⊆ A is not maximal, then there exists q ⊋ p with I = [p, q] ∈ P. Indeed, if there is no
such I with the height of AI no more than 1, then p =

∩
q⊋p q, and thus,

Ap/pAp = colim
I=[p,q],q⊋p

AI .(I.4.8.1)

Since Spec(B ⊗A Ap/pAp) → Spec(Ap/pAp) is an h-covering as Ap/pAp is a field (and we
have assumed that B is of finite presentation over A), there exists an interval I in the above
colimit, such that Spec(B ⊗A AI)→ Spec(AI) is also an h-covering by I.3.4.(3). Therefore,
this I lies in P by I.4.6.
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(4) If p ⊆ A is nonzero, then there exists q ⊊ p with I = [q, p] ∈ P. This is similar to (3).
(5) If I, J ∈ P are overlapping, then I ∪ J ∈ P. Indeed, by (2) and replacing A by AI∪J , we

may assume that I = [0, p], J = [p,m] with m the maximal ideal. In particular, AI = Ap,
AJ = A/p, and AI∩J = Ap/pAp. Since for each R = ⊗nAperf

Bperf we have the short exact
sequence (I.4.7.2), we get I ∪ J ∈ P.

In general, by Zorn’s lemma, the above five properties of P guarantee that P = I (cf. [BM20,
4.7]). □

Lemma I.4.9 (cf. [BM20, 3.30]). The augmented Čech complex (I.4.2.2) is exact for any arc-
covering Spec(B)→ Spec(A) of affine Fp-schemes with A a product of valuation rings.

Proof. We follow closely the proof of I.3.25. Let Spec(V ) be a connected component of Spec(A)
with the reduced closed subscheme structure. Then, V is a valuation ring by I.3.11.(2). By I.4.8, the
augmented Čech complex

0→ Vperf → (B ⊗A V )perf → (B ⊗A V )perf ⊗Vperf
(B ⊗A V )perf → · · ·(I.4.9.1)

is exact. Notice that each connected component of an affine scheme is the intersection of some open
and closed subsets ([Sta22, 04PP]). Moreover, since A is reduced, we have V = colimA′, where the
colimit is taken over all the open and closed subschemes Spec(A′) which contain Spec(V ).

Therefore, by a limit argument, for an element f ∈ ⊗nAperf
Bperf which maps to zero in ⊗n+1

Aperf
Bperf ,

as Spec(A) is quasi-compact, we can decompose Spec(A) into a finite disjoint union
⨿N
i=1 Spec(Ai)

such that there exists gi ∈ ⊗n−1
Ai,perf

(B ⊗A Ai)perf which maps to the image fi of f in ⊗nAi,perf
(B ⊗A

Ai)perf . Since we have

⊗nAperf
Bperf =

N∏
i=1

⊗nAi,perf
(B ⊗A Ai)perf ,(I.4.9.2)

the element g = (gi)
N
i=1 maps to f , which shows the exactness of (I.4.2.2). □

Proposition I.4.10 ([BS19, 8.10]). Let τ ∈ {fppf, h, v, arc}.

(1) The presheaf Operf is a τ -sheaf over Schcoh
Fp

, and for any coherent Fp-scheme X and any
integer q,

Hq
τ (X,Operf) = colim

Frob
Hq(X,OX).(I.4.10.1)

(2) For any τ -covering Spec(B)→ Spec(A) of affine Fp-schemes, the augmented Čech complex

0→ Aperf → Bperf → Bperf ⊗Aperf
Bperf → · · ·(I.4.10.2)

is exact.

Proof. We follow closely the proof of Bhatt-Scholze [BS19, 8.10]. (1) and (2) are equivalent by
I.4.4, and they hold for τ ∈ {fppf, h, v} by I.4.3, I.4.5 and I.4.6. In particular,

H0
v(Spec(A),Operf) = Aperf and Hq

v(Spec(A),Operf) = 0, ∀q > 0.(I.4.10.3)

We take a hypercovering in the v-topology Spec(A•)→ Spec(A) such that An is a product of valuation
rings for each degree n by I.3.14 and [Sta22, 094K and 0DB1]. The associated sequence

0→ Aperf → A0,perf → A1,perf → · · ·(I.4.10.4)

is exact by the hyper-Čech-cohomology-to-cohomology spectral sequence [Sta22, 01GY].
Consider the double complex (Aji ) where the i-th row A•

i is the base change of (I.4.10.2) by
Aperf → Ai,perf , i.e. the augmented Čech complex (I.4.2.2) associated to Spec(B ⊗A Ai)→ Spec(Ai)

(we set A−1 = A). On the other hand, the j-th column Aj• is the associated sequence (I.4.10.4) to the
hypercovering Spec(A• ⊗A (⊗jAB)) → Spec(⊗jAB), which is exact by the previous discussion. Since
A•

−1 → Tot(Aji )
j≥0
i≥0 is a quasi-isomorphism ([Sta22, 0133]), for the exactness of the (−1)-row A•

−1,
we only need to show the exactness of the i-th row A•

i for any i ≥ 0 but this has been proved in I.4.9
thanks to our choice of the hypercovering, which completes the proof. □
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I.5. Almost Pre-perfectoid Algebras

Definition I.5.1.
(1) A pre-perfectoid field K is a valuation field whose valuation ring OK is non-discrete, of

height 1 and of residue characteristic p, and such that the Frobenius map on OK/pOK is
surjective.

(2) A perfectoid field K is a pre-perfectoid field which is complete for the topology defined by
its valuation (cf. [Sch12, 3.1]).

(3) A pseudo-uniformizer π of a pre-perfectoid field K is a nonzero element of the maximal
ideal mK of OK .

A morphism of pre-perfectoid fields K → L is a homomorphism of fields which induces an extension
of valuation rings OK → OL.

Lemma I.5.2. Let K be a pre-perfectoid field with a pseudo-uniformizer π. Then, the fraction field
K̂ of the π-adic completion of OK is a perfectoid field.

Proof. The π-adic completion ÔK of OK is still a non-discrete valuation ring of height 1 with
residue characteristic p (cf. [Bou06, VI.§5.3, Prop.5]). If p ̸= 0, then it is canonically isomorphic to
the p-adic completion of OK , so that there is a canonical isomorphism OK/pOK

∼−→ ÔK/pÔK , from
which we see that K̂ is a perfectoid field. If p = 0, then the Frobenius induces a surjection OK → OK
if and only if OK is perfect. Thus, ÔK is also perfect, and we see that K̂ is a perfectoid field. □

I.5.3. Let K be a pre-perfectoid field. There is a unique (up to scalar) ordered group homomorphism
vK : K× → R such that v−1

K (0) = O×
K , where the group structure on R is given by the addition. In

particular, OK \ 0 = v−1
K (R≥0) and mK \ 0 = v−1

K (R>0) (cf. [Bou06, VI.§4.5 Prop.7] and [Bou07,
V.§2 Prop.1, Rem.2]). The non-discrete assumption on OK implies that the image vK(K×) ⊆ R is
dense. We set vK(0) = +∞.

Lemma I.5.4 ([Sch12, 3.2]). Let K be a pre-perfectoid field. Then, for any pseudo-uniformizer π
of K, there exists πn ∈ mK for each integer n ≥ 0 such that π0 = π and πn = un ·πpn+1 for some unit
un ∈ O×

K , and mK is generated by {πn}n≥0.

Proof. If vK(π) < vK(p), since the Frobenius is surjective on OK/p, there exists π1 ∈ OK such
that vK(π− πp1) ≥ vK(p). Then, vK(π) = vK(πp1) and thus π = u · πp1 with u ∈ O×

K . In general, since
vK(K×) ⊆ R is dense, any pseudo-uniformizer π is a finite product of pseudo-uniformizers whose
valuation values are strictly less than vK(p), from which we get a p-th root π1 of π up to a unit.
Since π1 is also a pseudo-uniformizer, we get πn inductively. As vK(πn) tends to zero when n tends
to infinity, mK is generated by {πn}n≥0. □

I.5.5. Let K be a pre-perfectoid field. We briefly review almost algebra over (OK ,mK) for which we
mainly refer to [AG20, 2.6], [AGT16, V] and [GR03]. Remark that mK ⊗OK

mK ∼= m2
K = mK is

flat over OK .
An OK-module M is called almost zero if mKM = 0. A morphism of OK-modules M → N is

called an almost isomorphism if its kernel and cokernel are almost zero. Let N be the full subcategory
of the category OK-Mod of OK-modules formed by almost zero objects. It is clear that N is a Serre
subcategory of OK-Mod ([Sta22, 02MO]). Let S be the set of almost isomorphisms in OK-Mod.
Since N is a Serre subcategory, S is a multiplicative system, and moreover the quotient abelian
category OK-Mod/N is representable by the localized category S−1OK-Mod (cf. [Sta22, 02MS]).
We denote S−1OK-Mod by Oal

K-Mod, whose objects are called almost OK-modules or simply Oal
K-

modules (cf. [AG20, 2.6.2]). We denote by

α∗ : OK-Mod −→ Oal
K-Mod, M 7−→Mal(I.5.5.1)

the localization functor. It induces an OK-linear structure on Oal
K-Mod. For any two OK-modules

M and N , we have a natural OK-linear isomorphism ([AG20, 2.6.7.1])

HomOal
K -Mod(M

al, Nal) = HomOK -Mod(mK ⊗OK
M,N).(I.5.5.2)

The localization functor α∗ admits a right adjoint

α∗ : Oal
K-Mod −→ OK-Mod, M 7−→M∗ = HomOal

K -Mod(Oal
K ,M),(I.5.5.3)

and a left adjoint

α! : Oal
K-Mod −→ OK-Mod, M 7−→M! = mK ⊗OK

M∗.(I.5.5.4)

https://stacks.math.columbia.edu/tag/02MO
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Moreover, the natural morphisms

(M∗)
al ∼−→M, M

∼−→ (M!)
al(I.5.5.5)

are isomorphisms for any Oal
K-module M (cf. [AG20, 2.6.8]). In particular, for any functor φ : I →

Oal
K-Mod sending i to Mi, the colimit and limit of φ are representable by

colimMi = (colimMi∗)
al, limMi = (limMi∗)

al.(I.5.5.6)

The tensor product in OK-Mod induces a tensor product in Oal
K-Mod by

Mal ⊗Oal
K
Nal = (M ⊗OK N)al(I.5.5.7)

making Oal
K-Mod an abelian tensor category ([AG20, 2.6.4]). We denote by Oal

K-Alg the category
of commutative unitary monoids in Oal

K-Mod induced by the tensor structure, whose objects are
called almost OK-algebras or simply Oal

K-algebras (cf. [AG20, 2.6.11]). Notice that Ral (resp. R∗)
admits a canonical algebra structure for any OK-algebra (resp. Oal

K-algebra) R. Moreover, α∗ and α∗
induce adjoint functors between OK-Alg and Oal

K-Alg ([AG20, 2.6.12]). Combining with (I.5.5.5)
and (I.5.5.6), we see that for any functor φ : I → Oal

K-Alg sending i to Ri, the colimit and limit of φ
are representable by (cf. [GR03, 2.2.16])

colimRi = (colimRi∗)
al, limRi = (limRi∗)

al.(I.5.5.8)

In particular, for any diagram B ← A→ C of Oal
K-algebras, we denote its colimit by

B ⊗A C = (B∗ ⊗A∗ C∗)
al,(I.5.5.9)

which is clearly compatible with the tensor products of modules. We remark that α∗ commutes
with arbitrary colimits (resp. limits), since it has a right adjoint α∗ (resp. since the forgetful
functor Oal

K-Alg → Oal
K-Mod and the localization functor α∗ : OK-Mod → Oal

K-Mod commute
with arbitrary limits).

I.5.6. For an element a of OK , we denote by (OK/aOK)al-Mod the full subcategory of Oal
K-Mod

formed by the objects on which the morphism induced by multiplication by a is zero. Notice that for
an (OK/aOK)al-module M , M∗ is an OK/aOK-module. Thus, the localization functor α∗ induces
an essentially surjective exact functor (OK/aOK)-Mod → (OK/aOK)al-Mod, which identifies the
latter with the quotient abelian category (OK/aOK)-Mod/N ∩ (OK/aOK)-Mod.

Let π be a pseudo-uniformizer of K dividing p with a p-th root π1 up to a unit. The Frobe-
nius on OK/πOK induces an isomorphism OK/π1OK

∼−→ OK/πOK . The Frobenius on (OK/π)-
algebras and the localization functor α∗ induce a natural transformation from the base change functor
(OK/π)al-Alg→ (OK/π)al-Alg, R 7→ (OK/π)⊗Frob,(OK/π) R to the identity functor.

(OK/π)al-Alg //

⇓Frob

id

66
(OK/π1)al-Alg

∼ // (OK/π)al-Alg(I.5.6.1)

For an (OK/π)al-algebra R, we usually identify the (OK/π1)al-algebra R/π1R with the (OK/π)al-
algebra (OK/π)⊗Frob,(OK/π)R, and we denote byR/π1R→ R the natural morphism (OK/π)⊗Frob,(OK/π)

R→ R induced by the Frobenius (cf. [GR03, 3.5.6]). Moreover, the natural transformations induced
by Frobenius for (OK/π)-Alg and (OK/π)al-Alg are also compatible with the functor α∗. Indeed,
it follows from the fact that for any (OK/π)-algebra R, the composition of

(OK/π)⊗(OK/π) Hom(mK , R) // Hom(mK , (OK/π)⊗(OK/π) R)
Hom(mK ,Frob) // Hom(mK , R)

(I.5.6.2)

is the relative Frobenius on (Ral)∗ = HomOK -Mod(mK , R).

I.5.7. Let C be a site. A presheaf F of OK-modules on C is called almost zero if F(U) is almost
zero for any object U of C. A morphism of presheaves F → G of OK-modules on C is called an
almost isomorphism if F(U) → G(U) is an almost isomorphism for any object U of C (cf. [AG20,
2.6.23]). Let N be the full subcategory of the category OK-ModC of sheaves of OK-modules
on C formed by almost zero objects. Similarly, N is a Serre subcategory of OK-ModC . Let
DN (OK-ModC) be the full subcategory of the derived category D(OK-ModC) formed by complexes
with almost zero cohomologies. It is a strictly full saturated triangulated subcategory ([Sta22,
06UQ]). We also say that the objects of DN (OK-ModC) are almost zero. Let S be the set of arrows
in D(OK-ModC) which induce almost isomorphisms on cohomologies. We also call the elements of
S almost isomorphisms. Then, S is a saturated multiplicative system ([Sta22, 05RG]), and moreover

https://stacks.math.columbia.edu/tag/06UQ
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the quotient triangulated category D(OK-ModC)/DN (OK-ModC) is representable by the localized
triangulated category S−1D(OK-ModC) ([Sta22, 05RI]). The natural functor

S−1D(OK-ModC) −→ D(Oal
K-ModC)(I.5.7.1)

is an equivalence by [Sta22, 06XM] and (I.5.5.5) (cf. [GR03, 2.4.9]).

Lemma I.5.8. Let K be a pre-perfectoid field with a pseudo-uniformizer π, M a flat OK-module.
We fix a system of pn-th roots (πn)n≥0 of π up to units (I.5.4), then the map∩

n≥0

π−1
n M → (Mal)∗ = HomOK-Mod(mK ,M), a 7→ (x 7→ xa)(I.5.8.1)

where π−1
n M ⊆M [1/π], is an isomorphism of OK-modules. Moreover, for an extension of valuation

rings OK → R of height 1, we have R =
∩
n≥0 π

−1
n R and the above isomorphism coincides with the

unit map R→ (Ral)∗.

Proof. Since mK is generated by {πn}n≥0, any OK-linear morphism f : mK →M is determined
by its values f(πn) ∈ M . Notice that (π/πn) · f(πn) = f(π) and M is π-torsion free, so that f
must be given by the multiplication by an element a = f(π)/π ∈ M [1/π]. It is clear that such a
multiplication sends mK to M if and only if a ∈

∩
n≥0 π

−1
n M , which shows the first assertion. If

OK → R is an extension of valuation rings of height 1, then we directly deduce from the valuation
map v : R[1/π] \ 0→ R (I.5.3) the equality R =

∩
n≥0 π

−1
n R. □

Lemma I.5.9. Let K be a pre-perfectoid field, R an OK-algebra, OK → V an extension of valuation
rings of height 1. Then, the canonical map

HomOK-Alg(R, V ) −→ HomOal
K-Alg(R

al, V al)(I.5.9.1)

is bijective.

Proof. There are natural maps

HomOK -Alg(R, V )→ HomOal
K -Alg(R

al, V al)
∼−→ HomOK -Alg(R, (V

al)∗)
∼−→ HomOK -Alg(R, V ),

(I.5.9.2)

where the middle isomorphism is given by adjunction and the last isomorphism is induced by the
inverse of the unit map V → (V al)∗ by I.5.8. The composition is the identity map, which completes
the proof. □

Definition I.5.10. Let K be a pre-perfectoid field. We say that an Oal
K-module M (resp. an OK-

module M) is flat (resp. almost flat) if the functor Oal
K-Mod → Oal

K-Mod given by tensoring with
M is exact (resp. Mal is flat).

Remark I.5.11. In general, one can define the flatness of a morphism of Oal
K-algebras (cf. [GR03,

3.1.1.(i)]). We say that a morphism of OK-algebras A→ B is almost flat if Aal → Bal is flat.

Lemma I.5.12. Let K be a pre-perfectoid field with a pseudo-uniformizer π. Then, an Oal
K-module

M is flat if and only if M∗ is π-torsion free. In particular, an OK-module N is almost flat if and
only if the submodule of π-torsion elements of N is almost zero.

Proof. First of all, for any Oal
K-modules L1 and L2, we have a canonical isomorphism

HomOal
K -Mod(M ⊗Oal

K
L1, L2) = HomOal

K -Mod(L1,HomOK -Mod(M∗, L2∗)
al)(I.5.12.1)

by (I.5.5.2), (I.5.5.5) and (I.5.5.7). Therefore, the functor defined by tensoring with M admits a right
adjoint, and thus it is right exact. Consider the sequence

0 −→ Oal
K

·π−→ Oal
K −→ (OK/πOK)al −→ 0,(I.5.12.2)

which is exact since the localization functor α∗ is exact. If M is flat, tensoring the above sequence
with M and applying α∗, we deduce that M∗ is π-torsion free since α∗ is left exact (as a right adjoint
to α∗). Conversely, if M∗ is π-torsion free, then it is flat over OK . For any injective morphism
L1 → L2 of Oal

K-modules, L1∗ → L2∗ is also injective, and it remains injective after tensoring with
M∗. Therefore, L1 → L2 also remains injective after tensoring with M since α∗ is exact. This shows
that M is flat.

The second assertion follows from the almost isomorphism N → (Nal)∗ and the fact that (Nal)∗ =
HomOK -Mod(mK , N) has no nonzero almost zero element. □

https://stacks.math.columbia.edu/tag/05RI
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Lemma I.5.13. Let K be a pre-perfectoid field with a pseudo-uniformizer π, M a flat Oal
K-module,

x an element of OK . Then, the canonical morphism M∗/xM∗ → (M/xM)∗ is injective, and for
any ϵ ∈ mK , the image of φϵ : (M/ϵxM)∗ → (M/xM)∗ is M∗/xM∗. In particular, the canonical
morphism

lim←−
n

M∗/π
nM∗ −→ (lim←−

n

M/πnM)∗(I.5.13.1)

is an isomorphism of OK-modules.

Proof. We follow the proof of [Sch12, 5.3]. Applying the left exact functor α∗ to the exact
sequence

0 // M
·x // M // M/xM // 0,(I.5.13.2)

we see that M∗/xM∗ → (M/xM)∗ is injective.
To show that the image of φϵ is M∗/xM∗, it suffices to show that φϵ factors through M∗/xM∗.

We identify (M/xM)∗ with HomOK -Mod(mK ,M∗/xM∗) by (I.5.5.5) and (I.5.5.2) so that M∗/xM∗
identifies with the subset consisting of the OK-morphisms mK →M∗/xM∗ sending y to ya for some
element a ∈ M∗/xM∗. For an OK-morphism f : mK → M∗/ϵxM∗, let b be an element of M∗ which
lifts f(ϵ). Notice that M∗ is π-torsion free by I.5.12. With notation in I.5.8, we have b ≡ (ϵ/πn)·f(πn)
mod ϵxM∗ for n big enough so that the element b/ϵ ∈M∗[1/π] lies in

∩
n≥0 π

−1
n M∗ =M∗. Moreover,

πn · (b/ϵ) ≡ f(πn) mod xM∗ for n big enough. As φϵ(f) is determined by its values on πn for n big
enough, it follows that φϵ(f) = a, where a is the image of b/ϵ in M∗/xM∗.

Finally, the previous result implies that the inverse system ((M/πnM)∗)n≥1 is Mittag-Leffler so
that the “in particular” part follows immediately from the fact that α∗ commutes with arbitrary limits
(as a right adjoint to α∗) ([Sta22, 0596]). □
Definition I.5.14. Let K be a pre-perfectoid field. For any OK-algebra R, we define a perfect ring
R♭ as the projective limit

R♭ = lim←−
Frob

R/pR(I.5.14.1)

indexed by (N,≤), where transition map associated to i ≤ (i+1) is the Frobenius on R/pR. We call
R♭ the tilt of R.

Lemma I.5.15 ([Sch12, 3.4]). Let K be a perfectoid field with a pseudo-uniformizer π dividing p.
(1) The projection induces an isomorphism of multiplicative monoids

lim←−
Frob

OK −→ lim←−
Frob

OK/πOK .(I.5.15.1)

In particular, the right hand side is canonically isomorphic to (OK)♭ as a ring.
(2) We denote by

♯ : (OK)♭ −→ OK , x 7→ x♯,(I.5.15.2)

the composition of the inverse of (I.5.15.1) and the projection onto the first component.
Then vK ◦ ♯ : (OK)♭ \ 0→ R≥0 defines a valuation of height 1 on (OK)♭.

(3) The fraction field K♭ of (OK)♭ is a perfectoid field of characteristic p and the element

π♭ = (· · · , π1/p2

1 , π
1/p
1 , π1, 0) ∈ (OK)♭(I.5.15.3)

is a pseudo-uniformizer of K♭, where π = u · πp1 with π1 ∈ mK and u ∈ O×
K .

(4) We have OK♭ = (OK)♭, and there is a canonical isomorphism

OK♭/π♭OK♭
∼−→ OK/πOK(I.5.15.4)

induced by (1) and the projection onto the first component.

I.5.16. We see that the tilt defines a functor OK-Alg→ OK♭-Alg, R 7→ R♭, which preserves almost
zero objects and almost isomorphisms. For an Oal

K-algebra R, we set R♭ = ((R∗)
♭)al and call it the tilt

of R, which induces a functor Oal
K-Alg → Oal

K♭-Alg, R 7→ R♭. Note that the tilt functor commutes
with the localization functor α∗ up to a canonical isomorphism, and commutes with the functor α∗
up to a canonical almost isomorphism.

Definition I.5.17 ([Sch12, 5.1]). Let K be a perfectoid field, π a pseudo-uniformizer of K dividing
p with a p-th root π1 up to a unit.

(1) A perfectoid Oal
K-algebra is an Oal

K-algebra R such that
(i) R is flat over Oal

K ;

https://stacks.math.columbia.edu/tag/0596
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(ii) the Frobenius ofR/πR induces an isomorphismR/π1R→ R/πR ofOal
K-algebras (I.5.6);

(iii) the canonical morphism R→ lim←−nR/π
nR is an isomorphism in Oal

K-Alg.
We denote by Oal

K-Perf the full subcategory of Oal
K-Alg formed by perfectoid Oal

K-algebras.
(2) A perfectoid (OK/π)al-algebra is a flat (OK/π)al-algebra R such that the Frobenius map

induces an isomorphism R/π1R
∼−→ R. We denote by (OK/π)al-Perf the full subcategory

of (OK/π)al-Alg formed by perfectoid (OK/π)al-algebras.

Lemma I.5.18. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th
root π1 up to a unit. Then, for an OK-algebra R, the following conditions are equivalent:

(1) The almost algebra R̂al associated to the π-adic completion R̂ of R is a perfectoid Oal
K̂

-
algebra.

(2) The OK̂-module R̂ is almost flat, and the Frobenius of R/πR induces an almost isomorphism
R/π1R→ R/πR.

Proof. We have seen that K̂ is a perfectoid field in I.5.2 and π is obviously a pseudo-uniformizer
of K̂. Since the localization functor α∗ : OK-Alg → Oal

K-Alg commutes with arbitrary limits and
colimits (I.5.5), we have a canonical isomorphism R̂al ∼−→ lim←−n R̂

al/πnR̂al. Thus, the third condition
in I.5.17.(1) holds for R̂al. Since there are canonical isomorphisms

R/π1R
∼−→ R̂/π1R̂, R/πR

∼−→ R̂/πR̂,(I.5.18.1)

the conditions (1) and (2) are clearly equivalent. □
Definition I.5.19. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with
a p-th root π1 up to a unit. We say that an OK-algebra is almost pre-perfectoid if it satisfies the
equivalent conditions in I.5.18.

We remark that in I.5.19, if a morphism of OK-algebras R→ R′ induces an almost isomorphism
R/πnR→ R′/πnR′ for each n ≥ 1, then the morphism of the π-adic completions R̂→ R̂′ is an almost
isomorphism since α∗ commutes with limits. In particular, R is almost pre-perfectoid if and only if
R′ is almost pre-perfectoid.

Lemma I.5.20. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra. If R
is almost flat (resp. flat) over OK , then the π-adic completion R̂ is almost flat (resp. flat) over OK̂ .

Proof. For any integer n > 0, there is a canonical isomorphism

R/πnR
∼−→ R̂/πnR̂.(I.5.20.1)

Let x ∈ R̂ be a π-torsion element. Since any π-torsion element of R is almost zero (resp. zero) by
I.5.12, for any ϵ ∈ mK (resp. ϵ = 1), the image of ϵx in R̂/πnR̂ lies in πn−1R̂/πnR̂. Therefore,
ϵx ∈

∩
n>0 π

n−1R̂ = 0, which amounts to say that R̂ is almost flat (resp. flat) over OK̂ . □
Lemma I.5.21. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-th
root π1 up to a unit, R a flat OK-algebra. Then, the following conditions are equivalent:

(1) The Frobenius induces an injection R/π1R→ R/πR.
(2) For any x ∈ R[1/π], if xp ∈ R, then x ∈ R.

Proof. We follow the proof of [Sch12, 5.7]. Assume first that R/π1R→ R/πR is injective. Let
x ∈ R[1/π] with xp ∈ R, k the minimal natural number such that y = πk1x ∈ R. If k ≥ 1, then
yp = πpk1 xp ∈ πR. Therefore, y ∈ π1R by the injectivity of the Frobenius. However, as R is π-torsion
free, we have y′ = y/π1 = πk−1

1 x ∈ R which contradicts the minimality of k.
Conversely, for any x ∈ R with xp ∈ πR, we have (x/π1)

p ∈ R. Thus, x/π1 ∈ R by assumption,
i.e. x ∈ π1R, which implies the injectivity of the Frobenius. □
Lemma I.5.22. Let K be a pre-perfectoid field, π a pseudo-uniformizer of K dividing p with a p-
th root π1 up to a unit, R an OK-algebra which is almost flat. Then, the following conditions are
equivalent:

(1) The Frobenius induces an almost injection (resp. almost isomorphism) R/π1R→ R/πR.
(2) The Frobenius induces an injection (resp. isomorphism) (Ral)∗/π1(R

al)∗ → (Ral)∗/π(R
al)∗.

Proof. We follow the proof of [Sch12, 5.6]. Notice that the Frobenius is compatible with
the functors α∗ and α∗ (I.5.6). (2) ⇒ (1) follows from the almost isomorphism R → (Ral)∗. The
“injection” part of (1) ⇒ (2) follows from the inclusions (I.5.13)

(Ral)∗/π1(R
al)∗ ⊆ ((R/π1R)

al)∗, (R
al)∗/π(R

al)∗ ⊆ ((R/πR)al)∗.(I.5.22.1)
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For the “isomorphism” part of (1) ⇒ (2), notice that (Ral)∗/π1(R
al)∗ → (Ral)∗/π(R

al)∗ is almost
surjective. Let π2 be a p-th root of π1 up to a unit (I.5.4). Then, for an element x of (Ral)∗,
there exist elements y and x′ of (Ral)∗ such that πp2x = yp + πp

2

2 x
′. Thus, x = y′p + πp

2−p
2 x′ where

y′ = y/π2 ∈ (Ral)∗[1/π] (as (Ral)∗ is flat over OK by I.5.12). In fact, y′ lies in (Ral)∗ by I.5.21 and the
“injection” part of (1) ⇒ (2). By applying this process to x′, there exist elements y′′ and x′′ of (Ral)∗

such that x′ = y′′p+πp
2−p

2 x′′. In conclusion, we have x = y′p+πp
2−p

2 (y′′p+πp
2−p

2 x′′) ≡ (y′+πp−1
2 y′′)p

mod π(Ral)∗, which shows the surjectivity of (Ral)∗/π1(R
al)∗ → (Ral)∗/π(R

al)∗. □

Lemma I.5.23. Let K be a pre-perfectoid field, R an almost flat OK-algebra, π, π′ pseudo-uniformizers
dividing p with p-th roots π1, π′

1 respectively up to units. Then, the following conditions are equivalent:
(1) The Frobenius induces an almost injection (resp. almost surjection) R/π1R→ R/πR.
(2) The Frobenius induces an almost injection (resp. almost surjection) R/π′

1R→ R/π′R.
In particular, the definitions I.5.17.(1) and I.5.19 do not depend on the choice of the pseudo-uniformizer.

Proof. Notice that (Ral)∗ is flat over OK by I.5.12. The “injection” part follows from I.5.21 and
I.5.22. For the “surjection” part, we assume that R/π1R → R/πR is almost surjective. Let ϵ ∈ mK .
We can take a pseudo-uniformizer π̃ of K dividing p with π̃p1 = π̃ and vK(π)/3 < vK(π̃) < vK(π)/2.
For any x ∈ R, by the almost surjectivity, we have ϵx = yp + π̃2z for some y, z ∈ R. We also
have π̃z = vp + πw for some v, w ∈ R, then ϵx = yp + π̃vp + π̃πw. Since yp + π̃vp ≡ (y +
π̃1v)

p mod pR, R′/π′
1R→ R/π′R is almost surjective for any pseudo-uniformizer π′ dividing p with

vK(π′) < 4vK(π)/3. By induction, we see that R′/π′
1R→ R/π′R is almost surjective in general. □

Proposition I.5.24. Let K be a pre-perfectoid field of characteristic p with a pseudo-uniformizer
π, R an OK-algebra, R̂ the π-adic completion of R. Then, R is almost pre-perfectoid if and only if
(R̂al)∗ is perfect.

Proof. Note that OK is perfect by definition. If R is almost pre-perfectoid, then R̂ is almost flat
so that (R̂al)∗ is π-adically complete by taking M = R̂al in I.5.13. Moreover, the Frobenius induces an
isomorphism (R̂al)∗/π

n(R̂al)∗ → (R̂al)∗/π
pn(R̂al)∗ for any integer n ≥ 1 by I.5.22 and I.5.23, which

implies that (R̂al)∗ is perfect. Conversely, assume that (R̂al)∗ is perfect. For any π-torsion element
f ∈ (R̂al)∗, we have π1/pnf = 0 for any integer n ≥ 0, which shows that R̂ is almost flat by I.5.12.
Moreover, it is clear that the Frobenius induces an isomorphism (R̂al)∗/π(R̂

al)∗ → (R̂al)∗/π
p(R̂al)∗,

which shows that R is almost pre-perfectoid by I.5.22 and I.5.23. □

Proposition I.5.25. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra
which is almost flat, R′ the integral closure of R in R[1/π]. If the Frobenius induces an almost
injection R/π1R→ R/πR, then R→ R′ is an almost isomorphism.

Proof. Since R → (Ral)∗ is an almost isomorphism, we may replace R by (Ral)∗ so that we
may assume that R = (Ral)∗, R ⊆ R[1/π] by I.5.12 and for any x ∈ R[1/π] such that xp ∈ R, then
x ∈ R by I.5.21 and I.5.22. It suffices to show that R is integrally closed in R[1/π]. Suppose that
x ∈ R[1/π] is integral over R. There is an integer N > 0 such that xr is an R-linear combination of
1, x, . . . , xN for any r > 0. Therefore, there exists an integer k > 0 such that πkxr ∈ R for any r > 0.
Taking r = pn, we get x ∈

∩
n≥0 π

−1
n R = (Ral)∗ = R by I.5.8, which completes our proof. □

Lemma I.5.26. Let R be a ring, π a nonzero divisor of R, R̂ the π-adic completion of R, φ :

R[1/π]→ R̂[1/π] the canonical morphism. Then, φ−1(πnR̂) = πnR for any integer n.

Proof. Remark that R̂ is also π-torsion free by I.5.20. For an element x/πk ∈ R[1/π] (where
x ∈ R, k ≥ 0) such that φ(x/πk) = πny for some y ∈ R̂. After enlarging k, we may assume that
k+n > 0. Thus, we deduce from the canonical isomorphism R/πk+nR→ R̂/πk+nR̂ that x ∈ πk+nR,
which completes the proof. □

Lemma I.5.27. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra such
that its π-adic completion R̂ is almost flat (resp. flat) over OK̂ , R[π∞] the R-submodule of elements of
R killed by some power of π. Then, (R[π∞])∧ is almost zero (resp. zero) and the canonical morphism
R̂→ (R/R[π∞])∧ is surjective and is an almost isomorphism (resp. an isomorphism).

Proof. The exact sequence 0→ R[π∞]→ R→ R/R[π∞]→ 0 induces an exact sequence of the
π-adic completions

0 // (R[π∞])∧ // R̂ // (R/R[π∞])∧ // 0,(I.5.27.1)
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since R/R[π∞] is flat over OK ([Sta22, 0315]). As R̂[π∞] is almost zero (resp. zero) by assumption
(I.5.12), the canonical morphism R[π∞]al → R̂al (resp. R[π∞]→ R̂) factors through 0, and thus so is
the morphism (R[π∞])∧al → R̂al (resp. (R[π∞])∧ → R̂). The conclusion follows from the exactness
of (I.5.27.1). □

Lemma I.5.28. Let K be a pre-perfectoid field. Given a commutative diagram of OK-algebras

B
g // B′

A
f //

OO

A′

OO(I.5.28.1)

we denote by C (resp. C ′) the integral closure of A in B (resp. of A′ in B′). Assume that f and g
are almost isomorphisms. Then, the morphism C → C ′ is an almost isomorphism.

Proof. Since C → C ′ is almost injective as g is so, it remains to show the almost surjectivity.
For any ϵ ∈ mK and x′ ∈ C ′ with identity x′n + a′n−1x

′n−1 + · · · + a′1x
′ + a′0 = 0 in B′ where

a′n−1, . . . , a
′
0 ∈ A′, there exist an−1, . . . , a0 ∈ A and x ∈ B such that f(ai) = ϵn−ia′i (0 ≤ i < n)

and g(x) = ϵx′. Thus, g(xn + an−1x
n−1 + · · · a1x+ a0) = 0. Since g is almost injective, we see that

ϵx ∈ C. It follows that C → C ′ is almost surjective. □

Proposition I.5.29. Let K be a pre-perfectoid field with a pseudo-uniformizer π, A an OK-algebra
such that its π-adic completion Â is almost flat over OK̂ . We denote by B (resp. B′) the integral
closure of A in A[1/π] (resp. of Â in Â[1/π]). Then, the canonical morphism of π-adic completions
B̂ → B̂′ is an almost isomorphism of OK-algebras.

Proof. We take a system of pk-th roots (πk)k≥0 of π up to units (I.5.4). By I.5.27 and I.5.28,
we can replace A by its image A/A[π∞] in A[1/π], so that we may assume that A is π-torsion free
(and thus so is Â). Let φ : A[1/π] → Â[1/π] be the canonical morphism. It suffices to show that φ
induces an almost isomorphism B/πnB → B′/πnB′ for any n > 0.

For any element x′ ∈ B′, there exists r > 0 such that πrx′p
k ∈ Â for any k > 0. We take an

element xki ∈ A such that φ(xki) − πrx′p
i ∈ πrpkÂ for i = 0, k. Thus, φ(xp

k

k0) − φ(πr(p
k−1)xkk) ∈

πrp
k

Â. By I.5.26, we see that xp
k

k0/π
r(pk−1) − xkk ∈ πrA. In particular, (xk0/π

r(pk−1)
k )p

k ∈ A, which
implies that xk0/π

r(pk−1)
k ∈ B. Notice that φ(xk0/π

r(pk−1)
k ) − (π/πp

k−1
k )rx′ ∈ πr(pk−1)Â. Since k is

an arbitrary positive integer, we see that B/πnB → B′/πnB′ is almost surjective.
For any element x ∈ B such that φ(x/πn) ∈ B′, there exists r > 0 such that πrφ(x/πn)p

k ∈
Â for any k > 0. We take y ∈ A such that πrφ(x/πn)p

k − φ(y) ∈ πÂ, and then we see that
πr(x/πn)p

k − y ∈ πA by I.5.26. In particular, (x/πnp
k−r

k )p
k ∈ A, which implies that x/πnp

k−r
k ∈ B.

Since k is an arbitrary positive integer, we see that B/πnB → B′/πnB′ is almost injective. □

Corollary I.5.30. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra
which is almost pre-perfectoid, R′ the integral closure of R in R[1/π]. Then, the morphism of π-adic
completions R̂→ R̂′ is an almost isomorphism. In particular, R′ is also almost pre-perfectoid.

Proof. We consider the following commutative diagram

R //

��

R′ //

��

R[ 1π ]

��
R̂ // R′′ // R̂[ 1π ]

(I.5.30.1)

where R′′ is the integral closure of R̂ in R̂[1/π]. Since R̂ → R′′ is an almost isomorphism by I.5.25,
R′′ is also perfectoid. The conlusion follows from the fact that R̂′ → R̂′′ is an almost isomorphism
by I.5.29. □

Theorem I.5.31 (Tilting correspondence [Sch12, 5.2, 5.21]). Let K be a perfectoid field, π a pseudo-
uniformizer of K dividing p with a p-th root π1 up to a unit.

(1) The functor Oal
K-Perf → (OK/π)al-Perf , R 7→ R/πR, is an equivalence of categories.

(2) The functor Oal
K♭-Perf → (OK♭/π♭)al-Perf , R 7→ R/π♭R is an equivalence of categories,

and the functor (OK♭/π♭)al-Perf → Oal
K♭-Perf , R 7→ R♭ is a quasi-inverse.

https://stacks.math.columbia.edu/tag/0315
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(3) Let R be a perfectoid Oal
K-algebra with tilt R♭. Then, R is isomorphic to Oal

L for some
perfectoid field L over K if and only if R♭ is isomorphic to Oal

L′ for some perfectoid field L′

over K♭.

In conclusion, we have natural equivalences

Oal
K-Perf

∼−→ (OK/π)al-Perf
∼−→ (OK♭/π♭)al-Perf

∼←− Oal
K♭-Perf ,(I.5.31.1)

where the middle equivalence is given by the isomorphism (I.5.15.4) OK♭/π♭OK♭
∼−→ OK/πOK . We

remark that the natural isomorphisms of the equivalence in (2) are defined as follows: for a perfectoid
Oal
K♭ -algebra R, the natural isomorphism R

∼−→ (R/π♭R)♭ is induced by the homomorphism of OK♭ -
algebras R∗ → (R∗/π

♭R∗)
♭ sending x to (· · · , x1/p2 , x1/p, x) (notice that R∗ is perfect by I.5.24);

for a perfectoid (OK♭/π♭)al-algebra R, the natural isomorphism R♭/π♭R♭
∼−→ R is induced by the

projection on the first component (R∗)
♭ → R∗ of OK♭-algebras (cf. [Sch12, 5.17]). Consequently, for

a perfectoid Oal
K-algebra R, the morphism of (OK♭/π♭)al = (OK/π)al-algebras

R♭/π♭R♭ −→ R/πR(I.5.31.2)

induced by the projection on the first component is an isomorphism.

Proposition I.5.32. Let K be a perfectoid field with a pseudo-uniformizer π of K dividing p, B ←
A → C a diagram of perfectoid Oal

K-algebras. Then, the π-adically completed tensor product B⊗̂AC
is also perfectoid.

Proof. We follow closely the proof of [Sch12, 6.18]. Firstly, we claim that (B ⊗A C)/π is flat
over (OK/π)al. Since (B⊗AC)/π = (B♭⊗A♭ C♭)/π♭, it suffices to show the flatness of B♭⊗A♭ C♭ over
Oal
K♭ , which amounts to say that the submodule of π♭-torsion elements of (B∗)

♭⊗(A∗)♭ (C∗)
♭ is almost

zero as B♭⊗A♭ C♭ = ((B∗)
♭⊗(A∗)♭ (C∗)

♭)al. If f ∈ (B∗)
♭⊗(A∗)♭ (C∗)

♭ is a π♭-torsion element, then by
perfectness of (B∗)

♭ ⊗(A∗)♭ (C∗)
♭, we have (π♭)1/p

n

f = 0 for any n > 0, which proves the claim.
Thus, (B ⊗A C)/π is a perfectoid (OK/π)al-algebra. It corresponds to a perfectoid Oal

K-algebra
D by I.5.31 and it induces a morphism B⊗̂AC → D by universal property of π-adically completed
tensor product. We use dévissage to show that (B ⊗A C)/πn → D/πn is an isomorphism for any
integer n > 0. By induction,

(B ⊗A C)/πn
·π //

��

(B ⊗A C)/πn+1 //

��

(B ⊗A C)/π //

��

0

0 // D/πn
·π // D/πn+1 // D/π // 0

(I.5.32.1)

the vertical arrows on the left and right are isomorphisms. By snake’s lemma in the abelian category
Oal
K-Mod ([Sta22, 010H]), we know that the vertical arrow in the middle is also an isomorphism. In

conclusion, B⊗̂AC → D is an isomorphism, which completes the proof. □
Corollary I.5.33. Let K be a pre-perfectoid field, B ← A→ C a diagram of OK-algebras which are
almost pre-perfectoid. Then, the tensor product B ⊗A C is also almost pre-perfectoid.

Proof. Since α∗ commutes with arbitrary limits and colimits (I.5.5), we have (B⊗̂AC)al =

B̂al⊗̂ÂalĈ
al, which is perfectoid by I.5.32. □

Lemma I.5.34. Let K be a perfectoid field, OK → V an extension of valuation rings of height
1. Then, there exists an extension of perfectoid fields K → L and an extension of valuation rings
V → OL over OK .

Proof. Let π be a pseudo-uniformizer of K, E the fraction field of V , E an algebraic closure of
E, V the integral closure of V in E. Let m be a maximal ideal of V . It lies over the unique maximal
ideal of V as V → V is integral. Setting W = V m, according to [Bou06, VI.§8.6, Prop.6], V → W
is an extension of valuation rings of height 1. Since W is integrally closed in the algebraically closed
fraction field E, the Frobenius is surjective on W/pW . Thus, the fraction field of W is a pre-perfectoid
field over K. Passing to completion, we get an extension of perfectoid fields K → L by I.5.2. □
Theorem I.5.35 ([BS19, 8.10]). Let K be a pre-perfectoid field with a pseudo-uniformizer π dividing
p, R→ R′ a homomorphism of OK-algebras which are almost pre-perfectoid. If Spec(R′)→ Spec(R)
is a π-complete arc-covering, then for any integer n ≥ 1, the augmented Čech complex

0→ R/πn → R′/πn → (R′ ⊗R R′)/πn → · · ·(I.5.35.1)

is almost exact.

https://stacks.math.columbia.edu/tag/010H
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Proof. We follow Bhatt-Scholze’s proof [BS19, 8.10]. After replacing OK , R, R′ by their π-
adic completions, we may assume that K is a perfectoid field and that Ral and R′al are perfectoid
Oal
K-algebras such that Spec(R′) → Spec(R) is a π-complete arc-covering by I.3.4.(6). Moreover,

since R→ (Ral)∗ is an almost isomorphism, after replacing R by (Ral)∗ and R′ by (Ral)∗ ⊗R R′, we
may assume further that R = (Ral)∗. Then, the Frobenius induces an isomorphism (resp. almost
isomorphism) R/π1R

∼−→ R/πR (resp. R′/π1R
′ → R′/πR′) by I.5.22, where π1 is a p-th root of π

up to a unit. Thus, we see that the projection on the first component induces an isomorphism (note
that R = (Ral)∗ is π-torsion free by I.5.12)

R♭/π♭R♭
∼−→ R/πR(I.5.35.2)

and an almost isomorphism (by the preceding isomorphism for (R′al)∗ or by (I.5.31.2))

R′♭/π♭R′♭ −→ R′/πR′.(I.5.35.3)

In particular, Spec(R′♭/π♭)→ Spec(R♭/π♭) is an arc-covering as Spec(R′/π)→ Spec(R/π) is so.
On the other hand, since the localization functor α∗ commutes with arbitrary limits and colimits

(I.5.5), (⊗̂kRR′)al = ⊗̂kRalR′al is still a perfectoid Oal
K-algebra by I.5.32 for any k ≥ 0. In particular,

⊗̂kRR′ is almost flat over OK . Then, by dévissage, it suffices to show the almost exactness of the
augmented Čech complex when n = 1, i.e. the almost exactness of

0→ R♭/π♭ → R′♭/π♭ → (R′♭ ⊗R♭ R′♭)/π♭ → · · · .(I.5.35.4)

We claim that the natural morphism X = Spec(R′♭)
⨿

Spec(R♭[1/π♭]) → Y = Spec(R♭) is an
arc-covering. Firstly, we see that X → Y = Spec(R♭/π♭)

∪
Spec(R♭[1/π♭]) is surjective as we have

shown that Spec(R′♭/π♭)→ Spec(R♭/π♭) is an arc-covering. Therefore, we only need to consider the
test map Spec(V )→ Y where V is a valuation ring of height 1. There are three cases:

(1) If π♭ is invertible in V , then we get a natural lifting R♭[1/π♭]→ V .
(2) If π♭ is zero in V , then R♭ → V factors through R♭/π♭ ∼−→ R/π, and thus there is a lifting

R′♭/π♭ → R′/π →W .
(3) Otherwise, OK♭ → V is an extension of valuation rings. After replacing V by an extension

(I.5.34), we may assume that V [1/π♭] is a perfectoid field over K♭ with valuation ring V .
By tilting correspondence I.5.31, it corresponds to a perfectoid field over K with valuation
ring V ♯, together with an OK-morphism R→ V ♯ by I.5.9. Since R→ R′ gives a π-complete
arc-covering, there is an extension V ♯ → W of valuation rings of height 1 and a lifting
R′ → W . After replacing W by an extension (I.5.34), we may assume that W [1/π] is a
perfectoid field over K with valuation ring W . By tilting correspondence I.5.31 and I.5.9,
we get a lifting R′♭ →W ♭ of R♭ → V .

Now we apply I.4.10 to the arc-covering X → Y of perfect affine Fp-schemes. We get an exact
augmented Čech complex

0→ R♭ → R′♭ ×R♭[ 1
π♭

]→ (R′♭ ×R♭[ 1
π♭

])⊗R♭ (R′♭ ×R♭[ 1
π♭

])→ · · · .(I.5.35.5)

Since each term is a perfect Fp-algebra, the submodule of π♭-torsion elements is almost zero, in other
words, each term is almost flat over OK♭ . Modulo π♭, we get the almost exactness of (I.5.35.4), which
completes the proof. □

Definition I.5.36. Let K be a pre-perfectoid field, A→ B a morphism of OK-algebras.
(1) We say that A → B is almost étale if Aal → Bal is an étale morphism of Oal

K-algebras in
the sense of [GR03, 3.1.1.(iv)].

(2) We say that A→ B is almost finite étale if it is almost étale and if Bal is an almost finitely
presented Aal-module in the sense of [GR03, 2.3.10] (cf. [Sch12, 4.13], [AGT16, V.7.1]).

We remark that in I.5.36 if A → B is a morphism of K-algebras, then it is almost étale (resp.
almost finite étale) if and only if it is étale (resp. finite étale).

Proposition I.5.37. Let K be a pre-perfectoid field, C the full subcategory of the category of OK-
algebras formed by those OK-algebras which are almost pre-perfectoid.

(1) The subcategory C is stable under taking colimits and products.
(2) Let A→ B be an almost étale morphism of OK-algebras. If A ∈ Ob(C ), then B ∈ Ob(C ).

Proof. Let π be a pseudo-uniformizer of K dividing p with a p-th root π1 up to a unit.
(1) The subcategory C is stable under taking tensor products by I.5.33. Let (Rλ)λ∈Λ be a directed

system of objects in C and R = colimλ∈ΛRλ. It is clear that the Frobenuis induces an almost
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isomorphism R/π1R→ R/πR. On the other hand, R̂ is the π-adic completion of colimλ∈Λ R̂λ. Since
the latter is almost flat over OK̂ , so is R̂ (I.5.20). Thus, C is stable under taking colimits.

Let (Rλ)λ∈Λ be a set of objects in C . Since R/πR =
∏
λ∈ΛRλ/πRλ, the Frobenius induces

an almost isomorphism R/π1R → R/πR. Moreover, the submodule of π-torsion elements of R̂ =∏
λ∈Λ R̂λ is almost zero, which implies that R̂ is almost flat over OK̂ (I.5.12). We conclude that C

is stable under taking products.
(2) Since B is almost flat over A, it is almost flat over OK and thus B̂ is almost flat over OK̂

(I.5.20). Since B is almost étale over A, the map B/π1B → B/πB induced by the Frobenius is
almost isomorphic to the base change of the map A/π1A → A/πA by A → B ([GR03, 3.5.13]),
which completes the proof. □
Lemma I.5.38. Let K be a pre-perfectoid field with a pseudo-uniformizer π, R an OK-algebra which
is almost flat and almost pre-perfectoid, R′ an R-algebra which is almost finite étale. Then, the
integral closure of R in R′ is almost isomorphic to both R′ and the integral closure of R in R′[1/π].

Proof. Notice that R′ is also almost flat and almost pre-perfectoid by I.5.37. Since R′ is almost
finitely generated over R as an R-module, the elements of mKR

′ are integral over R (cf. [GR03,
2.3.10]). Thus, the integral closure of R in R′ is almost isomorphic to R′. On the other hand, since
R′ is almost isomorphic to its integral closure in R′[1/π] by I.5.25, the integral closure of R in R′ is
almost isomorphic to the integral closure of R in R′[1/π] by I.5.28. □
I.5.39. We recall some basic definitions about affinoid algebras used in [Sch12] in order to prove the
almost purity theorem I.5.41 by reducing to loc.cit. Let K be a complete valuation field of height 1.
A Tate K-algebra is a topological K-algebra R whose topology is generated by the open subsets aR0

for a subring R0 ⊂ R and any a ∈ K×. We denote by R◦ the subring of power-bounded elements
of R, which is thus an OK-algebra. An affinoid K-algebra is a pair (R,R+) consisting of a Tate
K-algebra R and a subring R+ of R◦ which is open and integrally closed in R. A morphism of
affinoid K-algebras (R,R+) → (R′,R′+) is a morphism of topological K-algebras f : R → R′ with
f(R+) ⊆ R′+. Such a morphism is called finite étale in the sense of [Sch12, 7.1.(i)] if R′ is finite
étale over R endowed with the canonical topology as a finitely generated R-module and if R′+ is the
integral closure of R+ in R′.

For a perfectoid field K and an affinoid K-algebra (R,R+), the inclusion R+ ⊆ R◦ is an almost
isomorphism. Indeed, for any ϵ ∈ mK and any power-bounded element x ∈ R◦, we have (ϵx)n ∈ R+

for n ∈ N large enough as R+ is open. Thus, ϵx ∈ R+ as R+ is integrally closed. We remark that
(R,R+) is perfectoid in the sense of [Sch12, 6.1] if and only if R◦ is bounded and almost perfectoid
over OK ([Sch12, 5.5, 5.6]).

I.5.40. There is a typical example for constructing affinoid algebras from commutative algebras (cf.
[And18, Sorite 2.3.1]). Let K be a complete valuation field of height 1 with a pseudo-uniformizer
π, R a flat OK-algebra. The K-algebra R[1/π] endowed with the π-adic topology defined by R is a
Tate K-algebra. Let R be the integral closure of R in R[1/π]. It is clear that any element of R is
power-bounded. Thus, (R[1/π], R) is an affinoid K-algebra.

Let S be a finite R[1/π]-algebra endowed with the canonical topology. More precisely, the topol-
ogy can be defined as follows: we take a finite R-algebra R′ contained in S which contains a family of
generators of the R[1/π]-algebra S; then the canonical topology of S = R′[1/π] is the π-adic topology
defined by R′ (which is independent of the choice of R′). Let R′ be the integral closure of R′ in R′[1/π],
which is also the integral closure of R in R′[1/π]. We remark that (R[1/π], R) → (R′[1/π], R′) is a
finite étale morphism of affinoid K-algebras if and only if R[1/π]→ R′[1/π] is finite étale.

Theorem I.5.41 (Almost purity, [Sch12, 7.9]). Let K be a pre-perfectoid field with a pseudo-
uniformizer π, R an OK-algebra which is almost pre-perfectoid, R′ the integral closure of R in a
finite étale R[1/π]-algebra. Then, R′ is almost pre-perfectoid and the π-adic completion R̂′ is almost
finite étale over R̂.

Moreover, if R is π-torsion free and if (R, πR) is a henselian pair, then R′ is almost finite étale
over R.

Proof. For the first statement, by I.5.27, we can replace R by its image R/R[π∞] in R[1/π]

(which does not change R′), so that we may assume that R is π-torsion free (and thus so is R̂). Let
S (resp. S′) be the integral closure of R̂ in R̂[1/π] (resp. of R′ ⊗R R̂ in R′ ⊗R R̂[1/π]). Then, we
obtain a finite étale morphism of affinoid K̂-algebras (R̂[1/π], S)→ (R′ ⊗R R̂[1/π], S′) by I.5.40.

Since R̂ is almost perfectoid, R̂→ S is an almost isomorphism (I.5.25). Thus, S is bounded and
almost perfectoid over OK̂ . In other words, (R̂[1/π], S) is a perfectoid affinoid K̂-algebra. Then, by
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almost purity ([Sch12, 7.9.(iii)]), the OK̂-algebra S′ is almost perfectoid (thus S′ → Ŝ′ is an almost
isomorphism by definition) and almost finite étale over S.

On the other hand, the two OK̂-algebras R′ and R′ ⊗R R̂ have the same π-adic completion R̂′.
Thus, the π-adic completions of the integral closures of R′ and R′⊗R R̂ in R′[1/π] and R′⊗R R̂[1/π]
respectively are almost isomorphic to that of R̂′ in R̂′[1/π] by I.5.29. In other words, R̂′ → Ŝ′ is an
almost isomorphism. In conclusion, R′ is almost pre-perfectoid, and R̂′ is almost finite étale over R̂.

We assume moreover that R is π-torsion free and (R, πR) is a henselian pair. Recall that the
category of almost OK-algebras finite étale over Ral (resp. over R̂al) is equivalent to that over
(R/πR)al via the base change functor ([GR03, 5.5.7.(iii)]). Hence, there exists an R-algebra R′′

which is almost finite étale over R such that (R′′ ⊗R R̂)al is isomorphic to R̂′al. On the other hand,
recall that the category of finite étale R[1/π]-algebras is equivalent to the category of finite étale
R̂[1/π]-algebras via the base change functor ([GR03, 5.4.53]). Notice that R′′[1/π]⊗R R̂ ∼= R̂′[1/π]

by the construction of R′′ and that R′[1/π]⊗RR̂ ∼= R̂′[1/π] by the almost isomorphisms R̂′ → Ŝ′ ← S′.
Hence, there is an isomorphism R′′[1/π] ∼= R′[1/π]. By I.5.38, we see that R′′ is almost isomorphic
to R′, which completes the proof. □

I.6. Brief Review on Covanishing Fibred Sites

We give a brief review on covanishing fibred sites, which are developed by Abbes and Gros
[AGT16, VI]. We remark that [AGT16, VI] does not require the sites to admit finite limits (I.2.4).

I.6.1. A fibred site E/C is a fibred category π : E → C whose fibres are sites such that for a cleavage
and for every morphism f : β → α in C, the inverse image functor f+ : Eα → Eβ gives a morphism
of sites (so that the same holds for any cleavage) (cf. [SGA 4II, VI.7.2]).

Let x be an object of E over α ∈ Ob(C). We denote by

ι+α : Eα → E(I.6.1.1)

the inclusion functor of the fibre category Eα over α into the whole category E. A vertical covering
of x is the image by ι+α of a covering family {xm → x}m∈M in Eα. We call the topology generated
by all vertical coverings the total topology on E (cf. [SGA 4II, VI.7.4.2]).

Assume further that C is a site. A Cartesian covering of x is a family {xn → x}n∈N of morphisms
of E such that there exists a covering family {αn → α}n∈N in C with xn isomorphic to the pullback
of x by αn → α for each n.

Definition I.6.2 ([AGT16, VI.5.3]). A covanishing fibred site is a fibred site E/C where C is a site.
We associate to E the covanishing topology which is generated by all vertical coverings and Cartesian
coverings. We simply call a covering family for the covanishing topology a covanishing covering.

Definition I.6.3. Let E/C be a covanishing fibred site. We call a composition of a Cartesian covering
followed by vertical coverings a standard covanishing covering. More precisely, a standard covanishing
covering is a family of morphisms of E

{xnm → x}n∈N,m∈Mn(I.6.3.1)

such that there is a Cartesian covering {xn → x}n∈N and for each n ∈ N a vertical covering
{xnm → xn}m∈Mn .

Proposition I.6.4 ([AGT16, VI.5.9]). Let E/C be a covanishing fibred site. Assume that in each
fibre any object is quasi-compact, then a family of morphisms {xi → x}i∈I of E is a covanishing
covering if and only if it can be refined by a standard covanishing covering.

I.6.5. Let E/C be a fibred category. Fixing a cleavage of E/C, to give a presheaf F on E is
equivalent to give a presheaf Fα on each fibre category Eα and transition morphisms Fα → fpFβ
for each morphism f : β → α in C satisfying a cocycle relation (cf. [SGA 4II, VI.7.4.7]). Thus, we
simply denote a presheaf F on E by

F = (Fα)α∈Ob(C),(I.6.5.1)

where Fα = ιpαF is the restriction of F on the fibre category Eα. If E/C is a fibred site, then F is a
sheaf with respect to the total topology on E if and only if Fα is a sheaf on Eα for each α ([SGA 4II,
VI.7.4.7]). Moreover, we have the following description of a covanishing sheaf.

Proposition I.6.6 ([AGT16, VI.5.10]). Let E/C be a covanishing fibred site. Then, a presheaf F
on E is a sheaf if and only if the following conditions hold:

(v) The presheaf Fα = ιpαF on Eα is a sheaf for any α ∈ Ob(C).
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(c) For any covering family {fi : αi → α}i∈I of C, if we set αij = αi ×α αj and fij : αij → α,
then the sequence of sheaves on Eα,

Fα →
∏
i∈I

fi∗Fαi
⇒
∏
i,j∈I

fij∗Fαij
,(I.6.6.1)

is exact.

I.7. Faltings Ringed Sites

I.7.1. Let Y → X be a morphism of U-small coherent schemes, and let EY→X be the category of
morphisms V → U of U-small coherent schemes over the morphism Y → X, namely, the category of
commutative diagrams of coherent schemes

V //

��

U

��
Y // X

(I.7.1.1)

Given a functor I → EY→X sending i to Vi → Ui, if limVi and limUi are representable in the category
of coherent schemes, then lim(Vi → Ui) is representable by limVi → limUi. We say that a morphism
(V ′ → U ′) → (V → U) of objects of EY→X is Cartesian if V ′ → V ×U U ′ is an isomorphism. It is
clear that the Cartesian morphisms in EY→X are stable under base change.

Consider the functor

ϕ+ : EY→X −→ Schcoh
/X , (V → U) 7−→ U.(I.7.1.2)

The fibre category over U is canonically equivalent to the category Schcoh
/UY

of coherent UY -schemes,
where UY = Y ×X U . The base change by U ′ → U gives an inverse image functor Schcoh

/UY
→ Schcoh

/U ′
Y
,

which endows EY→X/Sch
coh
/X with a structure of fibred category. We define a presheaf on EY→X by

B(V → U) = Γ(UV ,OUV ),(I.7.1.3)

where UV is the integral closure of U in V .

Definition I.7.2. Let Y → X be a morphism of coherent schemes. A morphism (V ′ → U ′)→ (V →
U) in EY→X is called étale, if U ′ → U is étale and V ′ → V ×U U ′ is finite étale.

Lemma I.7.3. Let Y → X be a morphism of coherent schemes, (V ′′ → U ′′)
g−→ (V ′ → U ′)

f−→
(V → U) morphisms in EY→X .

(1) If f is étale, then any base change of f is also étale.
(2) If f and g are étale, then f ◦ g is also étale.
(3) If f and f ◦ g are étale, then g is also étale.

Proof. It follows directly from the definitions. □

I.7.4. Let Y → X be a morphism of coherent schemes. We still denote by Xét (resp. Xfét) the site
formed by coherent étale (resp. finite étale) X-schemes endowed with the étale topology. Let Eét

Y→X

be the full subcategory of EY→X formed by V → U étale over the final object Y → X. It is clear
that Eét

Y→X is stable under finite limits in EY→X . Then, the functor (I.7.1.2) induces a functor

ϕ+ : Eét
Y→X −→ Xét, (V → U) 7−→ U,(I.7.4.1)

which endows Eét
Y→X/Xét with a structure of fibred sites, whose fibre over U is the finite étale site

UY,fét. We endow Eét
Y→X with the associated covanishing topology, that is, the topology generated

by the following types of families of morphisms
(v) {(Vm → U)→ (V → U)}m∈M , where M is a finite set and

⨿
m∈M Vm → V is surjective;

(c) {(V ×U Un → Un)→ (V → U)}n∈N , where N is a finite set and
⨿
n∈N Un → U is surjective.

It is clear that any object of Eét
Y→X is quasi-compact by I.6.4. We still denote by B the restriction

of the presheaf B on EY→X to Eét
Y→X if there is no ambiguity.

Lemma I.7.5. Let Y → X be a morphism of coherent schemes. Then, the presheaf on Schcoh
/Y

sending Y ′ to Γ(XY ′
,OXY ′ ) is a sheaf with respect to the fpqc topology ([Sta22, 022A]).

https://stacks.math.columbia.edu/tag/022A
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Proof. We may regard OXY ′ as a quasi-coherent OX -algebra over X. It suffices to show that
for a finite family of morphisms {Yi → Y }i∈I with Y ′ =

⨿
i∈I Yi faithfully flat over Y , the sequence

of quasi-coherent OX -algebras

0 // OXY // OXY ′
//// OXY ′×Y Y ′(I.7.5.1)

is exact. Thus, we may assume that X = Spec(R) is affine. We set A0 = Γ(Y,OY ), A1 = Γ(Y ′,OY ′),
A2 = Γ(Y ′×Y Y ′,OY ′×Y Y ′), R0 = Γ(XY ,OXY ), R1 = Γ(XY ′

,OXY ′ ), R2 = Γ(XY ′×Y Y
′
,OXY ′×Y Y ′ ).

Notice that Ri is the integral closure of R in Ai for i = 0, 1, 2 ([Sta22, 035F]). Consider the diagram

0 // R0
//

��

R1
////

��

R2

��
0 // A0

// A1
//// A2

(I.7.5.2)

We see that the vertical arrows are injective and the second row is exact by faithfully flat descent.
Notice that R0 = A0 ∩R1, since they are both the integral closure of R in A0 as A0 ⊆ A1. Thus, the
first row is also exact, which completes the proof. □

Proposition I.7.6. Let Y → X be a morphism of coherent schemes. Then, the presheaf B on Eét
Y→X

is a sheaf.

Proof. It follows directly from I.6.6, whose first condition holds by I.7.5, and whose second
condition holds by I.3.17 (cf. [AGT16, III.8.16]). □

Definition I.7.7 ([Fal02, page 214], [AGT16, VI.10.1]). We call (Eét
Y→X ,B) the Faltings ringed

site of the morphism of coherent schemes Y → X.

It is clear that the localization (Eét
Y→X)/(V→U) of Eét

Y→X at an object V → U is canonically
equivalent to the Faltings ringed site Eét

V→U of the morphism V → U by I.6.4 (cf. [AGT16, VI.10.14]).

I.7.8. Let Y → X be a morphism of coherent schemes. Consider the natural functors

ψ+ : Eét
Y→X −→ Yét, (V → U) 7−→ V,(I.7.8.1)

β+ : Yfét −→ Eét
Y→X , V 7−→ (V → X),(I.7.8.2)

σ+ : Xét −→ Eét
Y→X , U 7−→ (Y ×X U → U).(I.7.8.3)

They are left exact and continuous (cf. [AGT16, VI 10.6, 10.7]). Then, we obtain a commutative
diagram of sites associated functorially to the morphism Y → X by I.2.5,

Yét
ρ

{{ww
ww
ww
ww
w

##G
GG

GG
GG

GG

ψ

��
Yfét Eét

Y→X σ
//

β
oo Xét

(I.7.8.4)

where ρ : Yét → Yfét is defined by the inclusion functor, and the unlabelled arrow Yét → Xét is
induced by the morphism Y → X. Moreover, if OXét

denotes the structural sheaf on Xét sending U
to Γ(U,OU ), then σ+ actually defines a morphism of ringed sites

σ : (Eét
Y→X ,B) −→ (Xét,OXét

).(I.7.8.5)

We will study more properties of these morphisms in the remaining sections.

Lemma I.7.9. Let X be the spectrum of an absolutely integrally closed valuation ring, Y a quasi-
compact open subscheme of X. Then, for any presheaf F on Eét

Y→X , we have Fa(Y → X) = F(Y →
X). In particular, the associated topos of Eét

Y→X is local ([SGA 4II, VI.8.4.6]).

Proof. Notice that Y is also the spectrum of an absolutely integrally closed valuation ring
by I.3.11.(1) and that absolutely integrally closed valuation rings are strictly Henselian. Thus, any
covering of Y → X in Eét

Y→X can be refined by the identity covering by I.6.4. We see that Fa(Y →
X) = F(Y → X) for any presheaf F . For the last assertion, it suffices to show that the section
functor Γ(Y → X,−) commutes with colimits of sheaves. For a colimit of sheaves F = colimFi, let
G be the colimit of presheaves G = colimFi. Then, we have F = Ga and Γ(Y → X,F) = Γ(Y →
X,G) = colimΓ(Y → X,Fi). □

https://stacks.math.columbia.edu/tag/035F
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I.7.10. Let (Yλ → Xλ)λ∈Λ be a U-small directed inverse system of morphisms of U-small coherent
schemes with affine transition morphisms Yλ′ → Yλ and Xλ′ → Xλ (λ′ ≥ λ). We set (Y → X) =
limλ∈Λ(Yλ → Xλ). We regard the directed set Λ as a filtered category and regard the inverse
system (Yλ → Xλ)λ∈Λ as a functor φ : Λop → E from the opposite category of Λ to the category
of morphisms of U-small coherent schemes. Consider the fibred category Eét

φ → Λop defined by φ

whose fibre category over λ is Eét
Yλ→Xλ

and whose inverse image functor φ+
λ′λ : Eét

Yλ→Xλ
→ Eét

Y ′
λ→X′

λ

associated to a morphism λ′ → λ in Λop is given by the base change by the transition morphism
(Yλ′ → Xλ′) → (Yλ → Xλ) (cf. [AGT16, VI.11.2]). Let φ+

λ : Eét
Yλ→Xλ

→ Eét
Y→X be the functor

defined by the base change by the transition morphism (Y → X)→ (Yλ → Xλ).
Recall that the filtered colimit of categories (Eét

Yλ→Xλ
)λ∈Λ is representable by the category E−→

ét
φ

whose objects are those of Eét
φ and whose morphisms are given by ([SGA 4II, VI 6.3, 6.5])

HomE−→
ét
φ
((V → U), (V ′ → U ′)) = colim

(V ′′→U′′)→(V →U)

Cartesian

HomEét
φ
((V ′′ → U ′′), (V ′ → U ′)),(I.7.10.1)

where the colimit is taken over the opposite category of the cofiltered category of Cartesian morphisms
with target V → U of the fibred category Eét

φ over Λop (distinguish with the Cartesian morphisms
defined in I.7.1). We see that the functors φ+

λ induces an equivalence of categories by [EGA IV3,
8.8.2, 8.10.5] and [EGA IV4, 17.7.8]

E−→
ét
φ

∼−→ Eét
Y→X .(I.7.10.2)

Recall that the cofiltered limit of sites (Eét
Yλ→Xλ

)λ∈Λ is representable by E−→
ét
φ endowed with

the coarsest topology such that the natural functors Eét
Yλ→Xλ

→ E−→
ét
φ are continuous ([SGA 4II,

VI.8.2.3]).

Lemma I.7.11. With the notation in I.7.10, for any covering family U = {fk : (Vk → Uk) → (V →
U)}k∈K in Eét

Y→X with K finite, there exists an index λ0 ∈ Λ and a covering family Uλ0 = {fkλ0 :
(Vkλ0 → Ukλ0) → (Vλ0 → Uλ0)}k∈K in Eét

Yλ0
→Xλ0

such that fk is the base change of fkλ0 by the
transition morphism (Y → X)→ (Yλ0 → Xλ0).

Proof. There is a standard covanishing covering U′ = {gnm : (V ′
nm → U ′

n)→ (V → U)}n∈N,m∈Mn

in Eét
Y→X with N , Mn finite, which refines U by I.6.4. The equivalence (I.7.10.2) implies that

there exists an index λ1 ∈ Λ and families of morphisms U′
λ1

= {gnmλ1 : (V ′
nmλ1

→ U ′
nλ1

) →
(Vλ1 → Uλ1)}n∈N,m∈Mn (resp. Uλ1 = {fkλ1 : (Vkλ1 → Ukλ1) → (Vλ1 → Uλ1)}k∈K) in Eét

Yλ1
→Xλ1

such that gnm (resp. fk) is the base change of gnmλ1 (resp. fkλ1) by the transition morphism
(Y → X) → (Yλ1 → Xλ1) and that U′

λ1
refines Uλ1 . For each λ ≥ λ1, let gnmλ : (V ′

nmλ → U ′
nλ) →

(Vλ → Uλ) (resp. fkλ : (Vkλ → Ukλ) → (Vλ → Uλ)) be the base change of gnmλ1
(resp. fkλ1

)
by the transition morphism (Yλ → Xλ) → (Yλ1 → Xλ1). Since the morphisms

⨿
n∈N U

′
n → U

and
⨿
m∈Mn

V ′
nm → V ×U U ′

n are surjective, there exists an index λ0 ≥ λ1 such that the morphisms⨿
n∈N U

′
nλ0
→ Uλ0 and

⨿
m∈Mn

V ′
nmλ0

→ Vλ0×Uλ0
U ′
nλ0

are also surjective by [EGA IV3, 8.10.5], i.e.
U′
λ0

= {gnmλ0}n∈N,m∈Mn is a standard covanishing covering in Eét
Yλ0

→Xλ0
. Thus, Uλ0 = {fkλ0}k∈K

is a covering family in Eét
Yλ0

→Xλ0
. □

Proposition I.7.12 ([AGT16, VI.11]). With the notation in I.7.10, Eét
Y→X represents the limit of

sites (Eét
Yλ→Xλ

)λ∈Λ, and B = colimλ∈Λ φ
−1
λ B.

Proof. The first statement is proved in [AGT16, VI.11.3]. It also follows directly from the dis-
cussion in I.7.10 and I.7.11. For the second statement, notice that colimλ∈Λ φ

−1
λ B = (colimλ∈Λ φλ,pB)a

([Sta22, 00WI]). It suffices to show that B(V → U) = colimλ∈Λ(φλ,pB)(V → U) for each object
V → U of Eét

Y→X . It follows from the equivalence (I.7.10.2) that there exists an index λ0 ∈ Λ and an
object Vλ0 → Uλ0 of Eét

Yλ0
→Xλ0

such that V → U is the base change of Vλ0 → Uλ0 by the transition
morphism. For each λ ≥ λ0, let Vλ → Uλ be the base change of Vλ0 → Uλ0 by the transition morphism
(Yλ → Xλ) → (Yλ0 → Xλ0). Then, we have colimλ∈Λ(φλ,pB)(V → U) = colimλ∈Λ B(Vλ → Uλ)

by [SGA 4II, VI 8.5.2, 8.5.7]. The conclusion follows from B(V → U) = colimλ∈Λ B(Vλ → Uλ) by
I.3.18. □
Definition I.7.13. A morphism X → S of coherent schemes is called pro-étale (resp. pro-finite
étale), if there is a directed inverse system of étale (resp. finite étale) S-schemes (Xλ)λ∈Λ with affine
transition morphisms such that there is an isomorphism of S-schemes X ∼= limλ∈ΛXλ. We call such
an inverse system (Xλ)λ∈Λ a pro-étale presentation (resp. pro-finite étale presentation) of X over S.

Lemma I.7.14. Let X g−→ Y
f−→ S be morphisms of coherent schemes.

https://stacks.math.columbia.edu/tag/00WI
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(1) If f is pro-étale (resp. pro-finite étale), then f is flat (resp. flat and integral).
(2) Any base change of a pro-étale (resp. pro-finite étale) morphism is pro-étale (resp. pro-finite

étale).
(3) If f and g are pro-étale (resp. pro-finite étale), then so is f ◦ g.
(4) If f and f ◦ g are pro-étale (resp. pro-finite étale), then so is g.
(5) If f is pro-étale with a pro-étale presentation Y = limYβ, and if g is étale (resp. finite étale),

then there is an index β0 and an étale (resp. finite étale) S-morphism gβ0 : Xβ0 → Yβ0 such
that g is the base change of gβ0 by Y → Yβ0 .

(6) Let Z and Z ′ be coherent schemes pro-étale over S with pro-étale presentations Z = limZα,
Z ′ = limZ ′

β, then

HomS(Z,Z
′) = lim

β
colim
α

HomS(Zα, Z
′
β).(I.7.14.1)

Proof. (1) and (2) follow directly from the definition.
(3) We follow closely the proof of I.3.6. Let X = limXα and Y = limYβ be pro-étale (resp.

pro-finite étale) presentations over Y and over S respectively. As Yβ are coherent, for each α, there is
an index βα and an étale (resp. finite étale) Yβα-scheme Xαβα such that Xα → Y is the base change
of Xαβα → Yβα ([EGA IV3, 8.8.2, 8.10.5], [EGA IV4, 17.7.8]). For each β ≥ βα, let Xαβ → Yβ be
the base change of Xαβα → Yβα by Yβ → Yβα . Then, we have X = limα,β≥βα Xαβ by [EGA IV3,
8.8.2] (cf. I.3.6), which is pro-finite étale over S. For (5), one can take X = Xα.

(6) We have

HomS(Z,Z
′) = lim

β
HomS(Z,Z

′
β) = lim

β
colim
α

HomS(Zα, Z
′
β)(I.7.14.2)

where the first equality follows from the universal property of limits of schemes, and the second follows
from the fact that Z ′

β → S is locally of finite presentation ([EGA IV3, 8.14.2]). For (4), we take
Z = X and Z ′ = Y . Then, for each index β, we have an S-morphism Xα → Yβ for α big enough,
which is also étale (resp. finite étale). Then, X = limαXα = limα,β Xα ×Yβ

Y is pro-étale (resp.
pro-finite étale) over Y . □

Remark I.7.15. A pro-étale (resp. pro-finite étale) morphism of U-small coherent schemes X → S
admits a U-small pro-étale (resp. pro-finite étale) presentation. Indeed, let X = limλ∈ΛXλ be a
presentation of X → S. We may regard Λ as a filtered category with an initial object 0. Consider
the category C = X\X0,ét,aff (resp. C = X\X0,fét) of affine (resp. finite) étale X0-schemes which are
under X. Notice that C is essentially U-small and that the natual functor Λ → C op is cofinal by
I.7.14.(6) ([SGA 4I, I.8.1.3]). Therefore, after replacing C op by a U-small directed set Λ′, we obtain
a U-small presentation X = limX′∈Λ′ X ′ ([SGA 4I, I.8.1.6]).

Definition I.7.16. For any U-small coherent scheme X, we endow the category of U-small coherent
pro-étale (resp. pro-finite étale) X-schemes with the topology generated by the pretopology formed
by families of morphisms

{fi : Ui → U}i∈I(I.7.16.1)

such that I is finite and that U =
∪
fi(Ui). This defines a site Xproét (resp. Xprofét), called the

pro-étale site (resp. pro-finite étale site) of X.

It is clear that the localization Xproét/U (resp. Xprofét/U ) of Xproét (resp. Xprofét) at an object
U is canonically equivalent to the pro-étale (resp. pro-finite étale) site Uproét (resp. Uprofét) of U . By
definition, any object in Xproét (resp. Xprofét) is quasi-compact.

I.7.17. We compare our definitions of pro-étale site and pro-finite étale site with some other definitions
existing in the literature. But we don’t use the comparison result in this paper.

Let X be a U-small Noetherian scheme. Consider the category of pro-objects pro-Xfét of Xfét, i.e.
the category whose objects are functors F : A → Xfét with A a U-small cofiltered category and whose
morphisms are given by Hom(F,G) = limβ∈B colimα∈A Hom(F (α), G(β)) for any F : A → Xfét and
G : B → Xfét ([Sch13a, 3.2]). We may simply denote such a functor F by (Xα)α∈A. Remark that
limα∈AXα exists which is pro-finite étale over X. Consider the functor

pro-Xfét −→ Xprofét, (Xα)α∈A 7→ lim
α∈A

Xα,(I.7.17.1)

which is well-defined and fully faithful by I.7.14.(6) and essentially surjective by I.7.15. Thus, ac-
cording to [Sch13a, 3.3] and its corrigendum [Sch16], Scholze’s pro-finite étale site XS

profét has the
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underlying category Xprofét and its topology is generated by the families of morphisms

{Ui
fi−→ U ′ f−→ U}i∈I(I.7.17.2)

where I is finite and
⨿
i∈I Ui → U ′ is finite étale surjective, and there exists a U-small well-ordered

directed set Λ with a least index 0 and a directed inverse system of U-small coherent pro-finite étale
X-schemes (U ′

λ)λ∈Λ such that U = U ′
0, U ′ = limλ∈Λ U

′
λ and that for each λ ∈ Λ the natural morphism

U ′
λ → limµ<λ U

′
µ is finite étale surjective (cf. [Ker16, 5.5], I.7.14 and [EGA IV3, 8.10.5.(vi)]). It is

clear that the topology of our pro-finite étale site Xprofét is finer than that of XS
profét. We remark

that if X is connected, then XS
profét gives a site-theoretic interpretation of the continuous group

cohomology of the fundamental group of X ([Sch13a, 3.7]). For simplicity, we don’t consider XS
profét

in the rest of the paper, but we can replace Xprofét by XS
profét for most of the statements in this paper

(cf. [Ker16, 6]).

I.7.18. Let X be a U-small scheme. Bhatt-Scholze’s pro-étale site XBS
proét has the underlying category

of U-small weakly étale X-schemes and a family of morphisms {fi : Yi → Y }i∈I in XBS
proét is a covering

if and only if for any affine open subscheme U of Y , there exists a map a : {1, . . . , n} → I and affine
open subschemes Uj of Ya(j) (j = 1, . . . , n) such that U =

∪n
j=1 fa(j)(Uj) ([BS15, 4.1.1], cf. [Sta22,

0989]). Remark that a pro-étale morphism of coherent schemes is weakly étale by [BS15, 2.3.3.1].
Thus, for a coherent scheme X, Xproét is a full subcategory of XBS

proét.

Lemma I.7.19. Let X be a coherent scheme. The full subcategory Xproét of XBS
proét is a topologically

generating family, and the induced topology on Xproét coincides the topology defined in I.7.16. In
particular, the topoi of sheaves of V-small sets associated to the two sites are naturally equivalent.

Proof. For a weakly étale X-scheme Y , we show that it can be covered by pro-étale X-schemes.
After replacing X by a finite affine open covering and replacing Y by an affine open covering, we
may assume that X and Y are affine. Then, the result follows from the fact that for any weakly étale
morphism of rings A→ B there exists a faithfully flat ind-étale morphism B → C such that A→ C
is ind-étale by [BS15, 2.3.4] (cf. [BS15, 4.1.3]). Thus, Xproét is a topologically generating family of
XBS

proét. A family of morphisms {fi : Yi → Y }i∈I in Xproét is a covering with respect to the induced
topology if and only if for any affine open subscheme U of Y , there exists a map a : {1, . . . , n} → I and
affine open subschemes Uj of Ya(j) (j = 1, . . . , n) such that U =

∪n
j=1 fa(j)(Uj) ([SGA 4I, III.3.3]).

Notice that Yi and Y are coherent, thus {fi}i∈I is a covering if and only if there exists a finite subset
I0 ⊆ I such that Y =

∪
i∈I0 fi(Yi), which shows that the induced topology on Xproét coincides the

topology defined in I.7.16. Finally, the “in particular” part follows from [SGA 4I, III.4.1]. □
Definition I.7.20. Let Y → X be a morphism of coherent schemes. A morphism (V ′ → U ′) →
(V → U) in EY→X is called pro-étale if U ′ → U is pro-étale and V ′ → V ×U U ′ is pro-finite
étale. A pro-étale presentation of such a morphism is a directed inverse system (Vλ → Uλ)λ∈Λ

étale over V → U with affine transition morphisms Uλ′ → Uλ and Vλ′ → Vλ (λ′ ≥ λ) such that
(V ′ → U ′) = limλ∈Λ(Vλ → Uλ).

Lemma I.7.21. Let Y → X be a morphism of coherent schemes, (V ′′ → U ′′)
g−→ (V ′ → U ′)

f−→
(V → U) morphisms in EY→X .

(1) If f is pro-étale, then it admits a pro-étale presentation.
(2) If f is pro-étale, then any base change of f is also pro-étale.
(3) If f and g are pro-étale, then f ◦ g is also pro-étale.
(4) If f and f ◦ g are pro-étale, then g is also pro-étale.

Proof. It follows directly from I.7.14 and its arguments. □
Remark I.7.22. Similar to I.7.15, a pro-étale morphism in EY→X admits a U-small presentation.

I.7.23. Let Y → X be a morphism of coherent schemes, Eproét
Y→X the full subcategory of EY→X formed

by objects which are pro-étale over the final object Y → X. It is clear that Eproét
Y→X is stable under

finite limits in EY→X . Then, the functor (I.7.1.2) induces a functor

ϕ+ : Eproét
Y→X −→ Xproét, (V → U) 7−→ U,(I.7.23.1)

which endows Eproét
Y→X/Xproét with a structure of fibred sites, whose fibre over U is the pro-finite

étale site UY,profét. We endow Eproét
Y→X with the associated covanishing topology, that is, the topology

generated by the following types of families of morphisms
(v) {(Vm → U)→ (V → U)}m∈M , where M is a finite set and

⨿
m∈M Vm → V is surjective;

https://stacks.math.columbia.edu/tag/0989
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(c) {(V ×U Un → Un)→ (V → U)}n∈N , where N is a finite set and
⨿
n∈N Un → U is surjective.

It is clear that any object in Eproét
Y→X is quasi-compact by I.6.4. We still denote by B the restriction

of the presheaf B on EY→X to Eproét
Y→X if there is no ambiguity. We will show in I.7.32 that B is a

sheaf on Eproét
Y→X .

Definition I.7.24. We call (Eproét
Y→X ,B) the pro-étale Faltings ringed site of the morphism of coherent

schemes Y → X.

It is clear that the localization (Eproét
Y→X)/(V→U) of Eproét

Y→X at an object V → U is canonically
equivalent to the pro-étale Faltings ringed site Eproét

V→U of the morphism V → U by I.6.4.

Remark I.7.25. The categories Xproét, Xprofét and Eproét
Y→X are essentially V-small categories.

I.7.26. Let Y → X be a morphism of coherent schemes. Consider the natural functors

ψ+ : Eproét
Y→X −→ Yproét, (V → U) 7−→ V,(I.7.26.1)

β+ : Yprofét −→ Eproét
Y→X , V 7−→ (V → X),(I.7.26.2)

σ+ : Xproét −→ Eproét
Y→X , U 7−→ (Y ×X U → U).(I.7.26.3)

They are left exact and continuous (cf. I.7.8). Then, we obtain a commutative diagram of sites
associated functorially to the morphism Y → X by I.2.5,

Yproét

ρ

zzvv
vv
vv
vv
v

$$H
HH

HH
HH

HH

ψ

��
Yprofét Eproét

Y→X σ
//

β
oo Xproét

(I.7.26.4)

where ρ : Yproét → Yprofét is defined by the inclusion functor, and the unlabelled arrow Yproét → Xproét

is induced by the morphism Y → X. Moreover, if OXproét
denotes the structural sheaf on Xproét

sending U to Γ(U,OU ), then σ+ actually defines a morphism of ringed sites

σ : (Eproét
Y→X ,B) −→ (Xproét,OXproét

).(I.7.26.5)

Lemma I.7.27. Let Y → X be a morphism of coherent schemes. Then, the inclusion functor

ν+ : Eét
Y→X −→ Eproét

Y→X , (V → U) 7−→ (V → U)(I.7.27.1)

defines a morphism of sites ν : Eproét
Y→X → Eét

Y→X .

Proof. It is clear that ν+ commutes with finite limits and sends a standard covanishing covering
in Eét

Y→X to a standard covanishing covering in Eproét
Y→X (I.6.3). Therefore, ν+ is continuous by I.6.4

and defines a morphism of sites. □

Lemma I.7.28. Let Y → X be a morphism of coherent schemes. Then, the topology on Eét
Y→X is

the topology induced from Eproét
Y→X .

Proof. After I.7.27, it suffices to show that for a family of morphisms U = {(Vk → Uk)→ (V →
U)}k∈K in Eét

Y→X , if ν+(U) is a covering in Eproét
Y→X , then U is a covering in Eét

Y→X . We may assume
that K is finite. There is a standard covanishing covering U′ = {(V ′

nm → U ′
n)→ (V → U)}n∈N,m∈Mn

in Eproét
Y→X with N , Mn finite, which refines ν+(U) by I.6.4. We take a directed set Ξ such that

for each n ∈ N , we can take a pro-étale presentation U ′
n = limξ∈Ξ U

′
nξ over U , and we take a

directed set Σ such that for each n ∈ N and m ∈ Mn, we can take a pro-finite étale presentation
V ′
nm = limσ∈Σ V

′
nmσ over V ×U U ′

n. By I.7.14 (5), for each σ ∈ Σ, there exists an index ξσ ∈ Ξ and
a finite étale morphism V ′

nmσξσ
→ V ×U U ′

nξσ
for each n and m, whose base change by U ′

n → U ′
nξσ

is V ′
nmσ → V ×U U ′

n. Let V ′
nmσξ → V ×U U ′

nξ be the base change of V ′
nmσξσ

→ V ×U U ′
nξσ

by the
transition morphism U ′

nξ → U ′
nξσ

for each ξ ≥ ξσ. Since
⨿
m∈Mn

V ′
nmσ → V ×U U ′

n is surjective,
after enlarging ξσ, we may assume that

⨿
m∈Mn

V ′
nmσξ → V ×U U ′

nξ is also surjective for ξ ≥ ξσ
by [EGA IV3, 8.10.5.(vi)]. It is clear that

⨿
n∈N U

′
nξ → U is surjective for each ξ ∈ Ξ. Therefore,

U′
σξ = {(V ′

nmσξ → U ′
nξ)→ (V → U)}n∈N,m∈Mn is a standard covanishing covering in Eét

V→U for each
σ ∈ Σ and ξ ≥ ξσ. Notice that for each n ∈ N and m ∈ Mn, there exists k ∈ K such that the
morphism (V ′

nmσξ → U ′
nξ) → (V → U) factors through (Vk → Uk) for σ, ξ big enough by I.7.14 (6),

which shows that U is a covering in Eét
Y→X . □
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Lemma I.7.29. Let Y → X be a morphism of coherent schemes, U = {(Vk → Uk)→ (V → U)}k∈K a
covering in Eproét

Y→X with K finite. Then, there exist pro-étale presentations (V → U) = limλ∈Λ(Vλ →
Uλ), (Vk → Uk) = limλ∈Λ(Vkλ → Ukλ) over Y → X and compatible étale morphisms (Vkλ → Ukλ)→
(Vλ → Uλ) such that the family Uλ = {(Vkλ → Ukλ)→ (Vλ → Uλ)}k∈K is a covering in Eét

Y→X .

Proof. We follow closely the proof of I.3.6. We take a directed set A such that for each k ∈ K
we can take a pro-étale presentation (Vk → Uk) = limα∈A(Vkα → Ukα) over (V → U). Then,
Uα = {(fkα : Vkα → Ukα)→ (V → U)}k∈K is a covering family in Eét

V→U for each α ∈ A by I.7.28.
Let (V → U) = limβ∈B(Vβ → Uβ) be a pro-étale presentation over Y → X. For each α ∈ A, there

exists an index βα ∈ B and a covering family Uαβα = {fkαβα : (Vkαβα → Ukαβα)→ (Vβα → Uβα)}k∈K
such that fkα is the base change of fkαβα by the transition morphism (V → U) → (Vβα → Uβα)
(I.7.11). For each β ≥ βα, let fkαβ : (Vkαβ → Ukαβ) → (Vβ → Uβ) be the base change of fkαβα by
the transition morphism (Vβ → Uβ) → (Vβα → Uβα). We take Λ = {(α, β) ∈ A × B | β ≥ βα},
(Vλ → Uλ) = (Vβ → Uβ) and (Vkλ → Ukλ) = (Vkαβ → Ukαβ) for each λ = (α, β) ∈ Λ. Then, the
families Uλ = {(Vkλ → Ukλ)→ (Vλ → Uλ)}k∈K meet the requirements in the lemma (cf. I.3.6). □
Lemma I.7.30. Let Y → X be a morphism of coherent schemes, F a presheaf on Eét

Y→X , V → U an
object of Eproét

Y→X with a pro-étale presentation (V → U) = lim(Vλ → Uλ). Then, we have νpF(V →
U) = colimF(Vλ → Uλ), where ν+ : Eét

Y→X → Eproét
Y→X is the inclusion functor.

Proof. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4I,
I.3.4]

F = colim
(V ′→U ′)∈(Eét

Y →X)/F

hétV ′→U ′ .(I.7.30.1)

Thus, we may assume that F is representable by V ′ → U ′ since the section functor Γ(V → U,−)
commutes with colimits of presheaves ([Sta22, 00VB]). Then, we have

νph
ét
V ′→U ′(V → U) =hproétV ′→U ′(V → U)(I.7.30.2)

=HomEproét
Y →X

((V → U), (V ′ → U ′))

= colimHomEét
Y →X

((Vλ → Uλ), (V
′ → U ′))

= colimhétV ′→U ′(Vλ → Uλ)

where the first equality follows from [Sta22, 04D2], and the third equality follows from [EGA IV3,
8.14.2] since U ′ and V ′ are locally of finite presentation over X and Y ×X U ′ respectively. □
Proposition I.7.31. Let Y → X be a morphism of coherent schemes, F an abelian sheaf on Eét

Y→X ,
V → U an object of Eproét

Y→X with a pro-étale presentation (V → U) = lim(Vλ → Uλ). Then, for any
integer q, we have

Hq(Eproét
V→U , ν

−1F) = colimHq(Eét
Vλ→Uλ

,F),(I.7.31.1)

where ν : Eproét
Y→X → Eét

Y→X is the morphism of sites defined by the inclusion functor (I.7.27). In
particular, the canonical morphism F −→ Rν∗ν

−1F is an isomorphism.

Proof. We follow closely the proof of I.3.8. For the second assertion, since Rqν∗ν
−1F is the

sheaf associated to the presheaf (V → U) 7→ Hq(Eproét
V→U , ν

−1F) = Hq(Eét
V→U ,F) by the first assertion,

which is F if q = 0 and vanishes otherwise.
For the first assertion, we may assume that F = I is an abelian injective sheaf on Eét

Y→X (cf.
I.3.8). We claim that for any covering in Eproét

Y→X , U = {(Vk → Uk) → (V → U)}k∈K with K finite,
the augmented Čech complex associated to the presheaf νpI,

0→ νpI(V → U)→
∏
k

νpI(Vk → Uk)→
∏
k,k′

νpI(Vk ×V Vk′ → Uk ×U Uk′)→ · · ·(I.7.31.2)

is exact. Admitting this claim, we see that νpI is indeed a sheaf, i.e. ν−1I = νpI, and the vanishing
of higher Čech cohomologies implies that Hq(Eproét

V→U , ν
−1I) = 0 for any q > 0, which completes the

proof together with I.7.30. For the claim, let (V → U) = limλ∈Λ(Vλ → Uλ) and (Vk → Uk) =
limλ∈Λ(Vkλ → Ukλ) be the pro-étale presentations constructed in I.7.29. The family Uλ = {(Vkλ →
Ukλ) → (Vλ → Uλ)}k∈K is a covering in Eét

Y→X . By I.7.30, the sequence (I.7.31.2) is the filtered
colimit of the augmented Čech complexes

0→ I(Vλ → Uλ)→
∏
k

I(Vkλ → Ukλ)→
∏
k,k′

I(Vkλ ×Vλ
Vk′λ → Ukλ ×Uλ

Uk′λ)→ · · ·(I.7.31.3)

which are exact since I is an injective abelian sheaf on Eét
Y→X . □

https://stacks.math.columbia.edu/tag/00VB
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Corollary I.7.32. With the notation in I.7.31, the presheaf B on Eproét
Y→X is a sheaf, and the canonical

morphisms ν−1B → B and B → Rν∗B are isomorphisms. If moreover p is invertible on Y , then for
each integer n ≥ 0, the canonical morphisms ν−1(B/pnB)→ B/pnB and B/pnB → Rν∗(B/pnB)
are isomorphisms.

Proof. For any pro-étale presentation (V → U) = lim(Vλ → Uλ), we have ν−1B(V → U) =

colimB(Vλ → Uλ) = B(V → U) by I.7.30 and I.3.18. This verifies that B is a sheaf on Eproét
Y→X

and that ν−1B → B is an isomorphism. The second isomorphism follows from the first and I.7.31.
For the last assertion, notice that the multiplication by pn is injective on B, so that the conclusion
follows from the exact sequence

0 // B
·pn // B // B/pnB // 0.(I.7.32.1)

□

I.7.33. We regard the ordered set N of natural numbers as a filtered category (there is an arrow i→ j
if i ≤ j). Let E be a site. We denote by EN the fibred site E×N over N, and we endow the category
EN with the total topology which makes it into a site without final objects (I.6.1, cf. [AGT16, III.7,
VI.7]). Giving a presheaf F on EN is equivalent to giving a directed inverse system of presheaves
(Fn)n≥0 on E. We write F = (Fn)n≥0. Moreover, F is a sheaf on EN if and only if each Fn is a
sheaf on E.

I.7.34. Let Y → X be a morphism of coherent schemes. We obtain a fibred site Eét,N
Y→X (resp.

Eproét,N
Y→X ) over N by I.7.33. We define a sheaf B̆ on Eét,N

Y→X (resp. Eproét,N
Y→X ) by

B̆ = (B/pnB)n≥0.(I.7.34.1)

The inclusion functor ν+ : Eét
Y→X → Eproét

Y→X defines a morphism of ringed fibred sites ([SGA 4II,
VI.7.2.2])

ν̆ : (Eproét,N
Y→X , B̆) −→ (Eét,N

Y→X , B̆),(I.7.34.2)

which induces a morphism of the associated ringed topoi with respect to the total topology ([SGA 4II,
VI.7.4.13.1], cf. [AGT16, III.7.18]). If moreover the prime number p is invertible on Y , then the
canonical morphisms

ν̆−1B̆ −→ B̆ and B̆ −→ Rν̆∗B̆(I.7.34.3)

are isomorphisms by I.7.32 ( [AGT16, VI.7.7]). Combining with the canonical diagrams (I.7.8.4)
and (I.7.26.4), we obtain a canonical commutative diagram of fibred sites over N,

Y N
proét

ψ̆ //

ν̆

��

Eproét,N
Y→X

σ̆ //

ν̆

��

XN
proét

ν̆

��
Y N
ét

ψ̆ // Eét,N
Y→X

σ̆ // XN
ét

(I.7.34.4)

where we ambiguously denote by ν̆ the morphisms induced by the inclusion functors of the un-
derlying categories. Moreover, if ŎXét

(resp. ŎXproét
) denotes the sheaf (OXét

/pnOXét
)n≥0 (resp.

(OXproét
/pnOXproét

)n≥0), then the diagram (I.7.34.4) induces a commutative diagram of ringed fibred
sites

(Eproét,N
Y→X , B̆)

σ̆ //

ν̆

��

(XN
proét, ŎXproét

)

ν̆

��
(Eét,N

Y→X , B̆)
σ̆ // (XN

ét, ŎXét
)

(I.7.34.5)

Definition I.7.35. We call (Eét,N
Y→X , B̆) (resp. (Eproét,N

Y→X , B̆)) the p-adic Faltings ringed site (resp.
p-adic pro-étale Faltings ringed site) of the morphism of coherent schemes Y → X. It is a ringed site
without final objects, which can be regarded as a fibred site over N.
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I.8. Cohomological Descent of the Structural Sheaves

Definition I.8.1. Let K be a pre-perfectoid field of mixed characteristic (0, p), Y → X a morphism
of coherent schemes such that Y → XY is over Spec(K)→ Spec(OK), where XY denotes the integral
closure of X in Y . We say that Y → X is Faltings acyclic if X is affine and if for any integer n > 0
the canonical morphism

A/pnA −→ RΓ(Eproét
Y→X ,B/pnB)(I.8.1.1)

is an almost isomorphism (cf. I.5.7), where A denotes the OK-algebra B(Y → X) (i.e. XY =
Spec(A)).

Remark I.8.2. In I.8.1, the canonical morphism RΓ(Eét
Y→X ,B/pnB)→ RΓ(Eproét

Y→X ,B/pnB) is an
isomorphism as (I.7.34.3) are isomorphisms.

Lemma I.8.3. Let K be a pre-perfectoid field of mixed characteristic (0, p), Y → X a morphism of
coherent schemes such that Y → XY is over Spec(K) → Spec(OK), A = B(Y → X). Assume that
Y → X is Faltings acyclic. Then, we have:

(1) For any pseudo-uniformizer π of K, the canonical morphism A/πA→ RΓ(Eproét
Y→X ,B/πB)

is an almost isomorphism.
(2) Let Â be the p-adic completion of A. Then, the canonical morphism Â → RΓ(Eproét,N

Y→X , B̆)
is an almost isomorphism.

Proof. (1) There exists an integer n > 0 such that π′ = pn/π is a pseudo-uniformizer of K.
Since A and B are flat over OK , we have a natural morphism of exact sequences

0 // A/π′A

α1

��

// A/pnA //

α2

��

A/πA //

α3

��

0

0 // H0(Eproét
Y→X ,B/π′B) // H0(Eproét

Y→X ,B/pnB) // H0(Eproét
Y→X ,B/πB)

(I.8.3.1)

By definition, α2 is an almost isomorphism. Thus, α1 is almost injective. Since any pseudo-
uniformizer of K is of the form π′ = pn/π for some pseudo-uniformizer π of K and n > 0, α3 is almost
injective. By diagram chasing, we see that α1 is an almost isomorphism (and thus so is α3). It re-
mains to show that Hq(Eproét

Y→X ,B/πB) is almost zero for q > 0. Since Hq(Eproét
Y→X ,B/pnB) is almost

zero. By the long exact sequence associated to the short exact sequence 0 → B/π′B → B/pnB →
B/πB → 0, we see thatH1(Eproét

Y→X ,B/π′B) is almost zero and thatHq(Eproét
Y→X ,B/πB)→ Hq+1(Eproét

Y→X ,B/π′B)
is an almost isomorphism. By induction, we complete the proof.

(2) Recall that for any integer q ≥ 0 there exists a canonical exact sequence ([AGT16, VI.7.10])

0→ R1 lim
n→∞

Hq−1(Eproét
Y→X ,B/pnB)→ Hq(Eproét,N

Y→X , B̆)→ lim
n→∞

Hq(Eproét
Y→X ,B/pnB)→ 0.(I.8.3.2)

The conclusion follows from the almost isomorphisms (I.8.1.1). □
Proposition I.8.4. Let K be a pre-perfectoid field of mixed characteristic (0, p), Y → X a morphism
of coherent schemes such that Y → XY is over Spec(K) → Spec(OK), A = B(Y → X). Assume
that Y → X is Faltings acyclic and that X = Spec(R) with R being p-torsion free. Let M be an
OX-module of finite presentation with M =M(X) such that M [1/p] is a projective R[1/p]-module.
Then, the canonical morphism

M ⊗R Â[
1

p
] −→ RΓ(Eproét,N

Y→X , σ̆∗M̆)[
1

p
](I.8.4.1)

is an isomorphism, where σ̆ : (Eproét,N
Y→X , B̆) → (XN

proét, ŎXproét
) is defined in I.7.34 and M̆ =

M⊗OXproét
ŎXproét

= (M/pnM)n≥0.

Proof. Let N be the kernel of a surjective R-linear homomorphism ϕ : R⊕n → M . We take a
splitting R⊕n[1/p] =M [1/p]⊕N [1/p]. Composing with the inclusion (M ⊕N) ⊆ (M [1/p]⊕N [1/p]),
we get an injective map ϕ̃ : M ⊕ N → R⊕n[1/p]. Since M and N are finitely generated, there
exists an integer k ≥ 1 such that φ = pkϕ̃ : M ⊕ N → R⊕n ⊆ R⊕n[1/p]. It is clear that φ is
injective. We claim that the cokernel of φ is killed by p2k. Indeed, the composition of the maps
M

φ−→ R⊕n ϕ−→ M is pkidM . Thus, for any x ∈ R⊕n, the element y = pkx − φ(ϕ(x)) of R⊕n

lies in N . Thus, p2kx = φ(pkϕ(x) + y), which proves the claim. Then, there exists an R-linear
homomorphism ψ : Rn →M ⊕N such that φ ◦ψ = p4kidRn and ψ ◦φ = p4kidM⊕N ([AG20, 2.6.3]).
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Let N be the quasi-coherent OX -module associated to N . Then, for each integer q, the morphism φ

induces an Â-linear homomorphism

Hq(Eproét,N
Y→X , σ̆∗M̆)⊕Hq(Eproét,N

Y→X , σ̆∗N̆ ) −→ Hq(Eproét,N
Y→X , B̆

⊕n
),(I.8.4.2)

whose kernel and cokernel are killed by p4k by the existence of ψ. For q ̸= 0, we haveHq(Eproét,N
Y→X , B̆

⊕n
)[1/p] =

0 by I.8.3.(2), thus Hq(Eproét,N
Y→X , σ̆∗M̆)[1/p] = 0. For q = 0, we have H0(Eproét,N

Y→X , B̆
⊕n

)[1/p] =

Â⊕n[1/p] by I.8.3.(2). On the other hand, there is a canonical morphism

M ⊗R Â⊕N ⊗R Â→ H0(Eproét,N
Y→X , σ̆∗M̆)⊕H0(Eproét,N

Y→X , σ̆∗N̆ )(I.8.4.3)

whose composition with (I.8.4.2) is compatible with φ ⊗R idÂ : M ⊗R Â ⊕ N ⊗R Â → Â⊕n. Thus,
H0(Eproét,N

Y→X , σ̆∗M)[1/p] =M ⊗R Â[1/p]. □

Lemma I.8.5. Let Y → X be a morphism of coherent schemes such that Y → XY is an open
immersion. Then, the functor

ϵ+ : Eproét
Y→X −→ IY→XY , (V → U) 7−→ UV ,(I.8.5.1)

is well-defined, left exact and continuous. Moreover, we have Y ×XY UV = V .

Proof. Since U ′ = XY ×X U is integral over U , we have UV = U ′V . Applying I.3.19.(4) to
V → U ′ over Y → XY , we see that the XY -scheme UV is Y -integrally closed with Y ×XY UV = V ,
and thus the functor ϵ+ is well-defined. Let (V1 → U1) → (V0 → U0) ← (V2 → U2) be a diagram in
Eproét
Y→X . By I.3.21, UV1

1 ×UV0
0
UV2
2 = (UV1

1 ×UV0
0
UV2
2 )V1×V0

V2 = (U1×U0 U2)
V1×V0

V2 which shows the left

exactness of ϵ+. For the continuity, notice that any covering in Eproét
Y→X can be refined by a standard

covanishing covering (I.6.4). For a Cartesian covering family U = {(V ×U Un → Un)→ (V → U)}n∈N
with N finite, we apply I.3.15 to the commutative diagram⨿

n∈N V ×U Un //

��

⨿
n∈N U

V×UUn
n

//

��

⨿
n∈N Un

��
V // UV // U

(I.8.5.2)

then we see that ϵ+(U) is a covering family in IY→XY . For a vertical covering family U = {(Vm →
U)→ (V → U)}m∈M with M finite, we apply I.3.15 to the commutative diagram⨿

m∈M Vm //

��

⨿
m∈M UVm //

��

U

��
V // UV // U

(I.8.5.3)

then we see that ϵ+(U) is also a covering family in IY→XY . □

I.8.6. Let Y → X be a morphism of coherent schemes such that Y → XY is an open immersion.
Then, there are morphisms of sites

ϵ : IY→XY −→ Eproét
Y→X ,(I.8.6.1)

ε : IY→XY −→ Eét
Y→X(I.8.6.2)

defined by (I.8.5.1) and the composition of (I.8.5.1) with (I.7.27.1) respectively. We temporarily
denote by Opre the presheaf on IY→XY sending W to Γ(W,OW ) (thus O = (Opre)a). Notice that we
have B = ϵpOpre (resp. B = εpOpre). The canonical morphism ϵpOpre → ϵpO (resp. εpOpre → εpO)
induces a canonical morphism B → ϵ∗O (resp. B → ε∗O).

I.8.7. Let K be a pre-perfectoid field (I.5.1) of mixed characteristic (0, p), η = Spec(K), S =
Spec(OK), Y → X a morphism of coherent schemes such that XY is an S-scheme with generic
fibre (XY )η = Y . In particular, XY is an object of Iη→S .

Lemma I.8.8. For any ring R, there is an R-algebra R∞ satisfying the following conditions:
(i) The scheme Spec(R∞[1/p]) is pro-finite étale and faithfully flat over Spec(R[1/p]).
(ii) The R-algebra R∞ is the integral closure of R in R∞[1/p].
(iii) Any unit t of R∞ admits a p-th root t1/p in R∞.

Moreover, if p lies in the Jacobson radical J(R) of R, and if there is a p2-th root p2 ∈ R of p up to a
unit, and we write p1 = pp2, then we may require further that
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(iv) the Frobenius of R∞/pR∞ induces an isomorphism R∞/p1R∞ → R∞/pR∞.

Proof. Setting B0 = R[1/p], we construct inductively a ring Bn+1 ind-finite étale over Bn and
we denote by Rn the integral closure of R in Bn. For n ≥ 0, we set

Bn+1 = colim
T⊆R×

n

⊗t∈T

Bn

Bn[X]/(Xp − t)(I.8.8.1)

where the colimit runs through all finite subsets T of the subset R×
n of units of Rn and the transition

maps are given by the inclusion relation of these finite subsets T . Notice that Bn[X]/(Xp− t) is finite
étale and faithfully flat over Bn, thus Bn+1 is ind-finite étale and faithfully flat over Bn. Now we take
B∞ = colimnBn. The integral closure R∞ of R in B∞ is equal to colimnRn by I.3.18. We claim that
R∞ satisfies the first three conditions. Firstly, we see inductively that Bn = Rn[1/p] (0 ≤ n ≤ ∞)
by I.3.17. Thus, (i), (ii) follow immediately. For (iii), notice that we have R×

∞ = colimnR
×
n . For an

unit t ∈ R×
∞, we suppose that it is the image of tn ∈ R×

n . By construction, there exists an element
xn+1 ∈ Rn+1 such that xpn+1 = tn. Thus, t admits a p-th root in R∞.

For (iv), the injectivity follows from the fact that R∞ is integrally closed in R∞[1/p] (cf. I.5.21).
For the surjectivity, let a ∈ R∞. Firstly, since R∞ is integral over R, p also lies in the Jacobson
radical J(R∞) of R∞. Thus, 1+ p1a ∈ R×

∞, and then by (iii) there is b ∈ R∞ such that bp = 1+ p1a.
We write (b− 1)p = p1a

′ for some a′ ∈ a+ p1R∞. Thus, 1 + a′ − a ∈ R×
∞, and then by (iii) there is

c ∈ R∞ such that cp = 1 + a′ − a. On the other hand, since R∞ is integrally closed in R∞[1/p], we
have x = (b− 1)/p2 ∈ R∞. Now we have (x− c+1)p ≡ xp− cp+1 ≡ a (mod pR∞), which completes
the proof. □

Remark I.8.9. In I.8.8, it follows from the construction that Spec(R∞[1/p]) → Spec(R[1/p]) is a
covering in Spec(R[1/p])Sprofét (I.7.17).

Proposition I.8.10. With the notation in I.8.7, for any object V → U in Eproét
Y→X , there exists a

covering {(Vi → Ui)→ (V → U)}i∈I with I finite such that for each i ∈ I, UVi
i is the spectrum of an

OK-algebra which is almost pre-perfectoid (I.5.19).

Proof. After replacing U by an affine open covering, we may assume that U = Spec(A). Con-
sider the category C of étale A-algebras B such that A/pA → B/pB is an isomorphism, and the
colimit Ah = colimB over C . In fact, C is filtered and (Ah, pAh) is the Henselization of the pair
(A, pA) (cf. [Sta22, 0A02]). It is clear that Spec(Ah)

⨿
Spec(A[1/p]) → Spec(A) is a covering in

Uproét. So we reduce to the situation where p ∈ J(A) or p ∈ A×. The latter case is trivial, since the
p-adic completion of R = Γ(UV ,OUV ) is zero if p is invertible in A. Therefore, we may assume that
p ∈ J(A) in the following.

Since R = Γ(UV ,OUV ) is integral over A, we also have p ∈ J(R). Applying I.8.8 to the OK-
algebra R, we obtain a covering V∞ = Spec(R∞[1/p]) → V = Spec(R[1/p]) in Vprofét such that
R∞ = Γ(UV∞ ,OUV∞ ) is an OK-algebra which is almost pre-perfectoid by I.5.4 and I.5.20. □

Proposition I.8.11. With the notation in I.8.7, if W is an object of Iη→S such that W is the spectrum
of an OK-algebra which is almost pre-perfectoid, then for any integer n > 0, the canonical morphism

Γ(W,OW )/pnΓ(W,OW )→ RΓ(IWη→W ,O/p
nO)(I.8.11.1)

is an almost isomorphism (I.5.7).

Proof. Let C be the full-subcategory of Iη→S formed by the spectrums of OK-algebras which
are almost pre-perfectoid. It is stable under fibred product by I.5.33, I.5.30 and I.3.21, and it forms a
topologically generating family for the site Iη→S by I.8.5 and I.8.10. It suffices to show that for any
covering in Iη→S , U = {Wk →W}k∈K consisting of objects of C with K finite, the augmented Čech
complex associated to the presheaf W 7→ Γ(W,OW )/pnΓ(W,OW ) on Iη→S (whose associated sheaf
is just O/pnO),

0→ Γ(W,OW )/pn →
∏
k

Γ(Wk,OWk
)/pn →

∏
k,k′

Γ(Wk×WWk′ ,OWk×WWk′ )/p
n → · · ·(I.8.11.2)

is almost exact. Indeed, the almost exactness shows firstly that Γ(W,OW )/pn → H0(IWη→W ,O/pnO)

is an almost isomorphism (cf. [Sta22, 00W1]), so that the augmented Čech complex associated to
the sheaf O/pnO is also almost exact. Then, the conclusion follows from the almost vanishing of the
higher Čech cohomologies of O/pnO by [Sta22, 03F9].

We set R = Γ(W,OW ) and R′ =
∏
k∈K Γ(Wk,OWk

). They are almost pre-perfectoid, and
Spec(R′) → Spec(R) is a v-covering by definition. Thus, the almost exactness of (I.8.11.2) follows
from I.5.33, I.5.30 and I.5.35. □

https://stacks.math.columbia.edu/tag/0A02
https://stacks.math.columbia.edu/tag/00W1
https://stacks.math.columbia.edu/tag/03F9
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Theorem I.8.12. With the notation in I.8.7, let ϵ : IY→XY → Eproét
Y→X be the morphism of sites

defined in I.8.6. Then, for any integer n > 0, the canonical morphism

B/pnB → Rϵ∗(O/p
nO)(I.8.12.1)

is an almost isomorphism in the derived category D(OK-ModEproét
Y →X

) (I.5.7).

Proof. Since Rqϵ∗(O/pnO) is the sheaf associated to the presheaf (V → U) 7→ Hq(IV→UV ,O/pnO)

and any object in Eproét
Y→X can be covered by those objects whose image under ϵ+ are the spectrums

of OK-algebras which are almost pre-perfectoid by I.8.10, the conclusion follows from I.8.11. □

Corollary I.8.13. With the notation in I.8.7, let V → U be an object of Eproét
Y→X such that U is affine

and that the integral closure UV = Spec(A) is the spectrum of an OK-algebra A which is almost
pre-perfectoid. Then, V → U is Faltings acyclic.

Proof. It follows directly from I.8.12 and I.8.11. □

Corollary I.8.14. With the notation in I.8.7, let ε : IY→XY → Eét
Y→X be the morphism of sites de-

fined in I.8.6. Then, for any finite locally constant abelian sheaf L on Eét
Y→X , the canonical morphism

L⊗Z B → Rε∗(ε
−1L⊗Z O)(I.8.14.1)

is an almost isomorphism in the derived category D(OK-ModEét
Y →X

) (I.5.7).

Proof. The problem is local on Eét
Y→X , thus we may assume that L is the constant sheaf with

value Z/pnZ. Then, the conclusion follows from I.8.12 and I.7.32. □

Remark I.8.15. In I.8.14, if L is a bounded complex of abelian sheaves on Eét
Y→X with finite locally

constant cohomology sheaves, then the canonical morphism L ⊗L
Z B → Rε∗(ε

−1L ⊗L
Z O) is also an

almost isomorphism. Indeed, after replacing L by L ⊗L
Z Zp, we may assume that L is a complex of

Z/pnZ-modules for some integer n ([Sta22, 0DD7]). Then, there exists a covering family {(Yi →
Xi)→ (Y → X)}i∈I in Eét

Y→X such that the restriction of L on Eét
Yi→Xi

is represented by a bounded
complex of finite locally constant Z/pnZ-modules ([Sta22, 094G]). Then, the conclusion follows
directly from I.8.14.

Corollary I.8.16. With the notation in I.8.7, let Y → Xi (i = 1, 2) be a morphism of coherent
schemes such that XY

i is an S-scheme with generic fibre (XY
i )η = Y , L a finite locally constant

abelian sheaf on Eét
Y→X2

. If there is a morphism f : X1 → X2 under Y such that the natural
morphism g : XY

1 → XY
2 is a separated v-covering and that g−1(Y ) = Y , and if we denote by

u : Eét
Y→X1

→ Eét
Y→X2

the corresponding morphism of sites, then the natural morphism

L⊗Z B → Ru∗(u
−1L⊗Z B)(I.8.16.1)

is an almost isomorphism.

Proof. The morphism u is defined by the functor u+ : Eét
Y→X2

→ Eét
Y→X1

sending (V → U2) to
(V → U1) = (V → X1×X2 U2). We set V0 = Y ×X1 U1 = Y ×X2 U2. According to I.3.17, UV0

1 → UV0
2

is the base change of XY
1 → XY

2 by U2 → X2, and thus it is a separated v-covering. Notice that V0
is an open subscheme in both UV0

1 and UV0
2 , and moreover V0 = V0 ×UV0

2
UV0
1 . Applying I.3.15 to the

commutative diagram

V //

��

UV1 //

��

UV0
1

��
V // UV2 // UV0

2

(I.8.16.2)

it follows that UV1 → UV2 is also a separated v-covering. Let εi : IY→XY
i
→ Eét

Y→Xi
(i = 1, 2) be

the morphisms of sites defined in I.8.6. The sheaf Rqu∗(u−1L ⊗Z B) is associated to the presheaf
(V → U2) 7→ Hq(Eét

V→U1
, u−1L⊗Z B). We have

Hq(Eét
V→U1

, u−1L⊗Z B)→ Hq(IV→UV
1
, ε−1

1 u−1L⊗Z O)(I.8.16.3)

= Hq(IV→UV
2
, ε−1

2 L⊗Z O)← Hq(Eét
V→U2

,L⊗Z B),

where the equality follows from the fact that the morphism of representable sheaves associated to
UV1 → UV2 on Iη→S is an isomorphism by I.3.24, and where the two arrows are almost isomorphisms
by I.8.14, which completes the proof. □

https://stacks.math.columbia.edu/tag/0DD7
https://stacks.math.columbia.edu/tag/094G
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I.8.17. Let ∆ be the category formed by finite ordered sets [n] = {0, 1, . . . , n} (n ≥ 0) with non-
decreasing maps ([Sta22, 0164]). For a functor from its opposite category ∆op to the category E of
morphisms of coherent schemes sending [n] to Yn → Xn, we simply denote it by Y• → X•. Then,
we obtain a fibred site Eét

Y•→X•
over ∆op whose fibre category over [n] is Eét

Yn→Xn
and the inverse

image functor f+ : Eét
Yn→Xn

→ Eét
Ym→Xm

associated to a morphism f : [m] → [n] in ∆op is induced
the base change by the morphism (Ym → Xm) → (Yn → Xn) associated to f . We endow Eét

Y•→X•
with the total topology (I.6.1) and call it the simplicial Faltings site associated to Y• → X• ([Sta22,
09WE.(A)]). The sheaf B on each Eét

Yn→Xn
induces a sheaf B• = (B)[n]∈Ob(∆) on Eét

Y•→X•
with the

notation in I.6.5.
For an augmentation (Y• → X•)→ (Y → X) in E ([Sta22, 018F]), we obtain an augmentation

of simplicial site a : Eét
Y•→X•

→ Eét
Y→X ([Sta22, 0D6Z.(A)]). We denote by an : Eét

Yn→Xn
→ Eét

Y→X

the natural morphism induced by (Yn → Xn) → (Y → X). Notice that for any sheaf F on Eét
Y→X ,

we have a−1F = (a−1
n F)[n]∈Ob(∆) with the notation in I.6.5 ([Sta22, 0D70]).

Corollary I.8.18. With the notation in I.8.7, let L a finite locally constant abelian sheaf on Eét
Y→X ,

X• → X an augmentation of simplicial coherent scheme. If we set Y• = Y ×X X• and denote by a :
Eét
Y•→X•

→ Eét
Y→X the augmentation of simplicial site, assuming that XY•

• → XY is a hypercovering
in Iη→S, then the canonical morphism

L⊗Z B → Ra∗(a
−1L⊗Z B•)(I.8.18.1)

is an almost isomorphism.

Proof. Let b : IY•→XY•
•
→ IY→XY be the augmentation of simplicial site associated to the

augmentation of simplicial object XY•
• → XY of Iη→S ([Sta22, 09X8]). The functorial morphism of

sites ε : IY→XY → Eét
Y→X defined in I.8.6 induces a commutative diagram of topoi ([Sta22, 0D99])

I∼
Y•→XY•

•

ε• //

b

��

Eét∼
Y•→X•

a

��
I∼Y→XY

ε // Eét∼
Y→X

(I.8.18.2)

We denote by an : Eét
Yn→Xn

→ Eét
Y→X and bn : IYn→XYn

n
→ IY→XY the natural morphisms of sites.

Consider the commutative diagram

Ra∗(a
−1L⊗B•)

α3

��

L⊗B
α2 //α1oo Rε∗(ε

−1L⊗ O)

α4

��
Ra∗Rε•∗ε

−1
• (a−1L⊗B•)

α5 // Rc∗(c−1L⊗ O•) Rε∗Rb∗b
−1(ε−1L⊗ O)

(I.8.18.3)

where c = a ◦ ε• = ε ◦ b, and α2 (resp. α5) is induced by the canonical morphism ε−1B → O (resp.
ε−1
• B• → O•), and other arrows are the canonical morphisms.

Notice that α2 is an almost isomorphism by I.8.14, and that α4 is an isomorphism by [Sta22,
0D8N] as XY•

• → XY is a hypercovering in Iη→S . It remains to show that α5 ◦ α3 is an almost
isomorphism. With the notation in I.6.5, we have

a−1L⊗B• = (a−1
n L⊗B)[n]∈Ob(∆) and(I.8.18.4)

c−1L⊗ O• = (ε−1
n a−1

n L⊗ O)[n]∈Ob(∆).(I.8.18.5)

Moreover, by [Sta22, 0D97] we have

Rqε•∗(c
−1L⊗ O•) = (Rqεn∗(ε

−1
n a−1

n L⊗ O))[n]∈Ob(∆)(I.8.18.6)

for each integer q. Therefore, a−1L⊗B• → Rε•∗(c
−1L⊗O•) is an almost isomorphism by I.8.14 and

so is α5 ◦ α3. □

Lemma I.8.19. With the notation in I.8.7, assume that XY is the spectrum of an OK-algebra which
is almost pre-perfectoid. Let V → U be an object of Eproét

Y→X with U affine. Then, UV is the spectrum
of an OK-algebra which is almost pre-perfectoid.

https://stacks.math.columbia.edu/tag/0164
https://stacks.math.columbia.edu/tag/09WE
https://stacks.math.columbia.edu/tag/018F
https://stacks.math.columbia.edu/tag/0D6Z
https://stacks.math.columbia.edu/tag/0D70
https://stacks.math.columbia.edu/tag/09X8
https://stacks.math.columbia.edu/tag/0D99
https://stacks.math.columbia.edu/tag/0D8N
https://stacks.math.columbia.edu/tag/0D97
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Proof. Consider the following commutative diagram:

V //

��

UV

��
Y ×X U //

��

UY×XU //

��

U

��
Y //

��

XY //

��

X

Spec(K) // Spec(OK)

(I.8.19.1)

Since taking integral closures commutes with étale base change and filtered colimits (I.3.17, I.3.18),
all the squares in (I.8.19.1) are Cartesian (I.3.19). Notice that UY×XU is integral over U and thus
affine. Since UY×XU is pro-étale over XY , it is the spectrum of an OK-algebra which is almost
pre-perfectoid by I.5.37. As V is pro-finite étale over Y ×X U , by almost purity I.5.41 and I.5.37, we
see that UV is the spectrum of an OK-algebra which is almost pre-perfectoid. □

I.8.20. Let K be a pre-perfectoid field of mixed characteristic (0, p) which contains a compatible
system {ζn}n≥1 of primitive roots of unity, η = Spec(K), S = Spec(OK), Y → X a morphism of
coherent schemes such that XY is an S-scheme and that the induced morphism Y → XY is an open
immersion over η → S. Remark that the morphism XY

η → X over η → S is in the situation I.8.7. We
assume further that there exist finitely many nonzero divisors f1, . . . , fr of Γ(XY

η ,OXY
η
) such that

the divisor D =
∑r
i=1 div(fi) on XY

η has support XY
η \Y and that at each strict henselization of XY

η

those elements fi contained in the maximal ideal form a subset of a regular system of parameters (in
particular, D is a normal crossings divisor on XY

η , and we allow D to be empty, i.e. r = 0). We set

Y∞ = lim
n
Y [T1, . . . , Tr]/(T

n
1 − f1, . . . , Tnr − fr),(I.8.20.1)

where the limit is taken over N with the division relation. We see that Y∞ is faithfully flat and
pro-finite étale over Y .

Proposition I.8.21 (Abhyankar’s lemma). Under the assumptions in I.8.20 and with the same no-
tation, for any finite étale Y∞-scheme V∞, the integral closure XV∞

η is finite étale over XY∞
η .

Proof. We set Z = XY
η . Passing to a strict henselization of Z where D is non-empty, we may

assume that Z is local and regular and that f1, . . . , fr (r ≥ 1) are all contained in the maximal ideal.
We set Yn = Y [T1, . . . , Tr]/(T

n
1 − f1, . . . , Tnr − fr) and Zn = Z[T1, . . . , Tr]/(T

n
1 − f1, . . . , Tnr − fr)

for any integer n > 0. Notice that Zn is still local and regular (thus isomorphic to XYn
η ) and that

g0 = f
1/n
0 , . . . , gr = f

1/n
r form a subset of a regular system of parameters for Zn (see the proof of

[SGA 1, XIII.5.1]). Using [EGA IV3, 8.8.2, 8.10.5] and [EGA IV4, 17.7.8], there exists an integer
n0 > 0 and a finite étale Yn0-scheme Vn0 such that V∞ = Y∞ ×Yn0

Vn0 . We set Vn = Yn ×Yn0
Vn0

for any n ≥ n0. According to [SGA 4III, XIII.5.2], there exists a multiple n1 of n0 such that ZVn1
n1 is

finite étale over Zn1 . As Z∞ = limZn is normal, Z∞ ×Zn1
Z
Vn1
n1 is also normal and thus isomorphic

to ZV∞
∞ = XV∞

η , which shows that the latter is also finite étale over Z∞ = XY∞
η . □

Corollary I.8.22. Under the assumptions in I.8.20 and with the same notation, the natural functor
Eproét

XY∞
η →X

→ Eproét
Y∞→X sending V → U to Y∞ ×XY∞

η
V → U induces an equivalence of ringed sites

(Eproét
Y∞→X ,B)→ (Eproét

XY∞
η →X

,B).

Proof. For the equivalence of categories, it suffices to show that the induced functor u+ :
Eét
XY∞

η →X
→ Eét

Y∞→X is an equivalence by I.7.14.(6). Since u+ is a morphism of fibred categories over

Xét, it suffices to show that for each object U of Xét, the fibre functor u+U : UY∞×XU
η,fét → (Y∞×X U)fét

induced by u+ is an equivalence of categories. Notice that if we replace Y → X in I.8.20 by Y ×XU →
U , then (Y ×X U)∞ = Y∞×X U . Therefore, the equivalence of categories follows from applying I.8.21
to Y ×X U → U .

To show the equivalence of categories identifies their topologies, it suffices to show that it identifies
the vertical coverings and Cartesian coverings in I.7.23. For a finite family {(Vm → U) → (V →
U)}m∈M in Eproét

XY∞
η →X

, its image in Eproét
Y∞→X is {(Y∞ ×XY∞

η
Vm → U) → ((Y∞ ×XY∞

η
V → U)}m∈M .

Notice that Y∞ ×XY∞
η

V is a dense open subset of V as V is flat over XY∞
η ([EGA IV2, 2.3.7]),

and the same holds for Vm. Thus, the integral morphism
⨿
m∈M Vm → V is surjective if and only
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if
⨿
m∈M Y∞ ×XY∞

η
Vm → Y∞ ×XY∞

η
V is surjective. On the other hand, it is tautological that the

equivalence identifies the Cartesian coverings. Hence, the two sites are naturally equivalent.
The identification of the structural sheaves by the equivalence of sites follows from the fact that

V is integrally closed in Y∞ ×XY∞
η

V for any object V → U of Eproét

XY∞
η →X

as V is pro-étale over XY∞
η

(I.3.19). □
Corollary I.8.23. Under the assumptions in I.8.20 and with the same notation, let V → U be an
object of Eproét

Y∞→X such that UV is the spectrum of an OK-algebra which is almost pre-perfectoid, and
let V ′ → U ′ be an object of Eproét

V→U with U ′ affine. Then, U ′V ′
is the spectrum of an OK-algebra which

is almost pre-perfectoid.

Proof. It follows directly from I.8.22 and I.8.19. □
Theorem I.8.24. Under the assumptions in I.8.20 and with the same notation, let V → U be an
object of Eproét

Y∞→X . Then, the following statements are equivalent:
(1) The morphism V → U is Faltings acyclic.
(2) The scheme U is affine and UV = Spec(A) is the spectrum of an OK-algebra A which is

almost pre-perfectoid.

Proof. (2) ⇒ (1): Let V ′ → U be an object of Eproét

XY∞
η →X

whose image under the equivalence

in I.8.22 is isomorphic to V → U . Then, UV
′
= Spec(A), V ′ = UV

′

η , and RΓ(Eproét
V→U ,B/pnB) =

RΓ(Eproét
V ′→U ,B/pnB). The conclusion follows from I.8.13.

(1) ⇒ (2): Firstly, notice that the objects V ′ → U ′ of Eproét
Y∞→X satisfying the condition (2) form

a topological generating family by I.8.22 and I.8.10. Let p1 ∈ OK be a p-th root of p up to a unit.
Then, we see that the Frobenius induces an almost isomorphism B/p1B → B/pB by evaluating these
sheaves at the objects V ′ → U ′. The Frobenius also induces an almost isomorphism A/p1A→ A/pA
by I.8.3.(1), which shows that A is almost pre-perfectoid. □

I.9. Complements on Logarithmic Geometry

We briefly recall some notions and facts of logarithmic geometry which will be used in the rest of
the paper. We refer to [Kat89, Kat94, GR04, Ogu18] for a systematic development of logarithmic
geometry, and to [AGT16, II.5] for a brief summary of the theory.

I.9.1. We only consider logarithmic structures in étale topology. More precisely, let X be a scheme,
Xét the étale site of X, OXét

the structure sheaf on Xét, O×
Xét

the subsheaf of units of OXét
. A

logarithmic struture on X is a homomorphism of sheaves of monoids α : M → OXét
on Xét which

induces an isomorphism α−1(O×
Xét

)
∼−→ O×

Xét
. We denote by (X,M ) the associated logarithmic

scheme (cf. [AGT16, II.5.11]).

I.9.2. Let (X,M ) be a coherent log scheme (cf. [AGT16, II.5.15]). Then, there is a maximal
open subscheme Xtr of X on which M is trivial, and moreover it is functorial in (X,M ) ([Ogu18,
III.1.2.8]). Let (X,M ) → (S,L ) ← (Y,N ) be a diagram of fine and saturated log schemes (cf.
[AGT16, II.5.15]). Then, the fibred product is representable in the category of fine and saturated
log schemes by (Z,P) = (X,M )×fs

(S,L )(Y,N ). We remark that Ztr = Xtr×StrY tr, that Z → X×SY
is finite, and that Ztr → Z is Cartesian over Xtr ×Str Y tr → X ×S Y ([Ogu18, III 2.1.2, 2.1.6]).
Moreover, if Xtr = X, then Z = X ×S Y ([Ogu18, III.2.1.3]).

I.9.3. For an open immersion j : Y → X, we denote by jét : Yét → Xét the morphism of their étale
sites defined by the base change by j. Let MY→X be the preimage of jét∗O×

Yét
under the natural map

OXét
→ jét∗OYét

, and we endow X with the logarithmic structure MY→X → OXét
, which is called

the compactifying log structure associated to the open immersion j ([Ogu18, III.1.6.1]). Sometimes
we write MY→X as MX if Y is clear in the context.

I.9.4. Let (X,M ) be a fine and saturated log scheme which is regular ([Kat94, 2.1], [Niz06, 2.3]).
Then, X is locally Noetherian and normal, and Xtr is regular and dense in X ([Kat94, 4.1]). More-
over, there is a natural isomorphism M

∼−→ MXtr→X ([Kat94, 11.6], [Niz06, 2.6]). We remark
that if X is a regular scheme with a strict normal crossings divisor D, then (X,MX\D→X) is fine,
saturated and regular ([Ogu18, III.1.11.9]).

Let f : (X,M ) → (S,L ) be a smooth (resp. saturated) morphism of fine and saturated log
schemes (cf. [AGT16, II 5.25, 5.18]). Then, f remains smooth (resp. saturated) under the base
change in the category of fine and saturated log schemes ([Ogu18, IV.3.1.2, IV.3.1.11], resp. [Ogu18,
III.2.5.3]). We remark that if f is smooth, then f tr : Xtr → Str is a smooth morphism of schemes.
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If moreover (S,L ) is regular, then (X,M ) is also regular ([Ogu18, IV.3.5.3]). We also remark
that if f is saturated, then for any fibred product in the category of fine and saturated log schemes
(Z,P) = (X,M )×fs

(S,L ) (Y,N ), we have Z = X ×S Y ([Tsu19, II.2.13]).

I.9.5. Let K be a complete discrete valuation field with valuation ring OK , k the residue field of OK ,
π a uniformizer of OK . We set η = Spec(K), S = Spec(OK) and s = Spec(k). Then, (S,Mη→S) is
fine, saturated and regular, since N → Γ(S,Mη→S) sending 1 to π forms a chart of (S,Mη→S) (cf.
[AGT16, II.5.13, II.6.1]). Recall that an open immersion Y → X of quasi-compact and separated
schemes over η → S is strictly semi-stable ([dJ96, 6.3]) if and only if the following conditions are
satisfied ([dJ96, 6.4], [EGA IV4, 17.5.3]):

(i) For each point x of the generic fibre Xη, there is an open neighborhood U ⊆ Xη of x and a
smooth K-morphism

f : U −→ Spec(K[s1, . . . , sm])(I.9.5.1)

such that f maps x to the point associated to the maximal ideal (s1, . . . , sm) and that U \Y
is the inverse image of the closed subset defined by s1 · · · sm = 0.

(ii) For each point x of the special fibre Xs, there is an open neighborhood U ⊆ X of x and a
smooth OK-morphism

f : U −→ Spec(OK [t1, . . . , tn, s1, . . . , sm]/(π − t1 · · · tn))(I.9.5.2)

such that f maps x to the point associated to the maximal ideal (t1, . . . , tn, s1, . . . , sm) and
that U \ Y is the inverse image of the closed subset defined by t1 · · · tn · s1 · · · sm = 0.

We call an open immersion Y → X of quasi-compact and separated schemes over η → S is semi-stable
if for any point x of X there is an étale neighborhood U of x such that Y ×X U → U is strictly semi-
stable. In this case, (X,MY→X) is fine, saturated and regular which is smooth and saturated over
(S,Mη→S), since for any point x of X there is an étale neighborhood U of x such that there exists a
chart for the morphism (U,MY×XU→U ) → (S,Mη→S) subordinate to the morphism N → Nn ⊕ Nm
sending 1 to (1, . . . , 1, 0, . . . , 0) such that the induced morphism U → S ×AN ANn⊕Nm is smooth (cf.
[Ogu18, IV.3.1.18]).

I.9.6. Recall that a morphism of schemes f : X → S is called generically finite if there exists a dense
open subscheme U of S such that f−1(U)→ U is finite. We remark that for a morphism f : X → S of
finite type between Noetherian schemes which maps generic points to generic points, f is generically
finite if and only if the residue field of any generic point η of X is a finite field extension of the residue
field of f(η) ([ILO14, II.1.1.7]).

I.9.7. Let K be a complete discrete valuation field with valuation ring OK , L an algebraically closed
valuation field of height 1 extension of K with valuation ring OL, K the algebraic closure of K in L.

Consider the category C of open immersions between integral affine schemes U → T over
Spec(K) → Spec(OK) under Spec(L) → Spec(OL) such that T is of finite type over OK and that
Spec(L) → U is dominant. Let Ccar be the full subcategory of C formed by those objects U → T
Cartesian over Spec(K)→ Spec(OK).

Spec(L) //

��

Spec(OL)

��
U = Spec(B) //

��

T = Spec(A)

��
Spec(K) // Spec(OK)

(I.9.7.1)

We note that the objects of C are of the form (U = Spec(B) → T = Spec(A)) where A (resp.
B) is a finitely generated OK-subalgebra of OL (resp. K-subalgebra of L) with A ⊆ B such that
Spec(B)→ Spec(A) is an open immersion.

Lemma I.9.8. With the notation in I.9.7, we have:
(1) The category C is cofiltered, and the subcategory Ccar is initial in C .
(2) The morphism Spec(L) → Spec(OL) represents the cofiltered limit of morphisms U → T

indexed by C in the category of morphisms of schemes (cf. I.7.1).
(3) There exists a directed inverse system (Uλ → Tλ)λ∈Λ of objects of Ccar over a directed

inverse system (Spec(Kλ) → Spec(OKλ
))λ∈Λ of objects of Ccar such that Kλ is a finite

field extension of K in L, that K =
∪
λ∈ΛKλ, that Uλ → Tλ is strictly semi-stable over

Spec(Kλ)→ Spec(OKλ
) (I.9.5), and that (Uλ → Tλ)λ∈Λ forms an initial full subcategory of

Ccar.
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Proof. (1) For a diagram (U1 → T1) → (U0 → T0) ← (U2 → T2) in C , let T be the scheme
theoretic image of Spec(L) → T1 ×T0 T2 and let U be the intersection of U1 ×U0 U2 with T . It is
clear that T is of finite type over OK as OK is Noetherian, that U and T are integral and affine, that
Spec(L) → U is dominant, and that Spec(L) → T factors through Spec(OL). Thus, U → T is an
object of C , which shows that C is cofiltered. For an object (U = Spec(B) → T = Spec(A)) of C ,
we write OL as a filtered union of finitely generated A-subalgebras Ai. Let π be a uniformizer of K.
Notice that L = OL[1/π] = colimAi[1/π] and that HomK-Alg(B,L) = colimHomK-Alg(B,Ai[1/π])
by [EGA IV3, 8.14.2.2]. Thus, there exists an index i such that Spec(Ai[1/π]) → Spec(Ai) is an
object of Ccar over U → T .

(2) It follows immediately from the arguments above.
(3) Consider the category D of morphisms of Ccar,

U ′ //

��

T ′

��
Spec(K ′) // Spec(OK′)

(I.9.8.1)

such that K ′ is a finite field extension of K. Similarly, this category is also cofiltered with limit of
diagrams of schemes (Spec(L) → Spec(OL)) → (Spec(K) → Spec(OK)). It suffices to show that
the full subcategory of D formed by strictly semi-stable objects is initial. For any object U → T
of Ccar, by de Jong’s alteration theorem [dJ96, 6.5], there exists a proper surjective and generically
finite morphism T ′ → T of integral schemes such that U ′ = U ×T T ′ → T ′ is strictly semi-stable
over Spec(K ′)→ Spec(OK′) for a finite field extension K → K ′. Since L is algebraically closed, the
dominant morphism Spec(L)→ U lifts to a dominant morphism Spec(L)→ U ′ (I.9.6), which further
extends to a lifting Spec(OL) → T ′ of Spec(OL) → T by the valuative criterion. After replacing T ′

by an affine open neighborhood of the image of the closed point of Spec(OL), we obtain a strictly
semi-stable object of D over (U → T )→ (Spec(K)→ Spec(OK)), which completes the proof. □

Theorem I.9.9 ([ILO14, X 3.5, 3.7]). Let K be a complete discrete valuation field with valuation ring
OK , (Y → X) → (U → T ) a morphism of dominant open immersions over Spec(K) → Spec(OK)
between irreducible OK-schemes of finite type such that X → T is proper surjective. Then, there
exists a commutative diagram of dominant open immersions between irreducible OK-schemes of finite
type

(Y ′ → X ′)
(β◦,β) //

(f ′◦,f ′)

��

(Y → X)

(f◦,f)

��
(U ′ → T ′)

(α◦,α)
// (U → T )

(I.9.9.1)

satisfying the following conditions:
(i) We have Y ′ = β−1(Y )∩ f ′−1(U ′), i.e. Y ′ → X ′ is Cartesian over U ′ ×U Y → T ′ ×T X (cf.

I.7.1).
(ii) The morphism (X ′,MY ′→X′)→ (T ′,MU ′→T ′) induced by (f ′◦, f ′) is a smooth and saturated

morphism of fine, saturated and regular log schemes.
(iii) The morphisms α and β are proper surjective and generically finite, and f ′ is projective

surjective.

Proof. We may assume that T is nonempty. Recall that Spec(OK) is universally Q-resolvable
([ILO14, X.3.3]) by de Jong’s alteration theorem [dJ96, 6.5]. Thus, T is also universally Q-resolvable
by [ILO14, X 3.5, 3.5.2] so that we can apply [ILO14, X.3.5] to the proper surjective morphism f
and the nowhere dense closed subset X \ Y . Then, we obtain a commutative diagram of schemes

X ′ β //

f ′

��

X

f

��
T ′

α
// T

(I.9.9.2)

and dense open subsets U ′ ⊆ T ′, Y ′ = β−1(Y ) ∩ f ′−1(U ′) ⊆ X ′ such that (X ′,MY ′→X′) and
(T ′,MU ′→T ′) are fine, saturated and regular, that (X ′,MY ′→X′) → (T ′,MU ′→T ′) is smooth, that
α, β are proper surjective and generically finite morphisms which map generic points to generic
points, and that f ′ is projective (since f is proper, cf. [ILO14, X 3.1.6, 3.1.7]). Since X (resp. T )
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is irreducible and X ′ (resp. T ′) is a disjoint union of normal integral schemes (I.9.4), after firstly
replacing X ′ by an irreducible component and then replacing T ′ by the irreducible component under
X ′, we may assume that X ′ and T ′ are irreducible. Then, Y ′ → U ′ is dominant (so that f ′ is
projective surjective), since it is smooth and Y ′ is nonempty ([EGA IV2, 2.3.4]). We claim that
α maps U ′ into U . Indeed, if there exists a point u ∈ U ′ with α(u) /∈ U , then f ′−1(u) ∩ Y ′ = ∅.
However, endowing u with the trivial log structure, the log scheme (u,O×

uét
) is fine, saturated and

regular, and the fibred product in the category of fine and saturated log schemes

(u,O×
uét

)×fs
(T ′,MU′→T ′ ) (X

′,MY ′→X′)(I.9.9.3)

is regular with underlying scheme f ′−1(u) (I.9.4, I.9.2). Thus, f ′−1(u)∩Y ′ is dense in f ′−1(u), which
contradicts the assumption that f ′−1(u) ∩ Y ′ = ∅ since f ′ is surjective. Thus, we obtain a diagram
(I.9.9.1) satisfying all the conditions except the saturatedness of (X ′,MY ′→X′)→ (T ′,MU ′→T ′).

To make (X ′,MY ′→X′) → (T ′,MU ′→T ′) saturated, we apply [ILO14, X.3.7] to the morphism
(f ′◦, f ′). We obtain a Cartesian morphism (γ◦, γ) : (U ′′ → T ′′) → (U ′ → T ′) of dominant open
immersions such that (T ′′,MU ′′→T ′′) is a fine, saturated and regular log scheme, that γ is a proper
surjective and generically finite morphism which maps generic points of T ′′ to the generic point of
T ′, and that the fibred product in the category of fine and saturated log schemes

(T ′′,MU ′′→T ′′)×fs
(T ′,MU′→T ′ ) (X

′,MY ′→X′)(I.9.9.4)

is saturated over (T ′′,MU ′′→T ′′). The fibred product (I.9.9.4) is still smooth over (T ′′,MU ′′→T ′′),
and thus it is regular (I.9.4). Let X ′′ be the underlying scheme of it and let Y ′′ = (X ′′)tr. Then,
the fibred product (I.9.9.4) is isomorphic to (X ′′,MY ′′→X′′) (I.9.4). Thus, we obtain a commutative
diagram of dominant open immersions of schemes

(Y ′′ → X ′′)
(δ◦,δ) //

(f ′′◦,f ′′)

��

(Y ′ → X ′)

(f ′◦,f ′)

��
(U ′′ → T ′′)

(γ◦,γ)
// (U ′ → T ′)

(I.9.9.5)

Notice that Y ′′ = U ′′ ×U ′ Y ′ and X ′′ → T ′′ ×T ′ X ′ is finite, and that Y ′′ → X ′′ is Cartesian over
U ′′ ×U ′ Y ′ → T ′′ ×T ′ X ′ (I.9.2). Thus, we see that Y ′′ → X ′′ is Cartesian over U ′′ ×U Y → T ′′ ×T X
and that f ′′ is projective. Since T ′ (resp. X ′) is irreducible and T ′′ (resp. X ′′) is a disjoint union
of normal integral schemes (I.9.4), after firstly replacing T ′′ by an irreducible component and then
replacing X ′′ by an irreducible component on which the restriction of δ◦ is dominant, we may assume
that T ′′ and X ′′ are irreducible. In particular, δ is generically finite and so is β ◦ δ (I.9.6), and again
Y ′′ → U ′′ is dominant so that f ′′ is projective surjective. □
Lemma I.9.10. Let X be a scheme of finite type over a valuation ring A of height 1. Then, the
underlying topological space of X is Noetherian.

Proof. Let η and s be the generic point and closed point of Spec(A) respectively. Then, the
generic fibre Xη and the special fibre Xs are both Noetherian. As a union of Xη and Xs, the
underlying topological space of X is also Noetherian ([Sta22, 0053]). □
Proposition I.9.11. With the notation in I.9.7 and I.9.8, let Y → X be a quasi-compact dominant
open immersion over Spec(L)→ Spec(OL) such that X → Spec(OL) is proper of finite presentation.
Then, there exists a proper surjective OL-morphism of finite presentation X ′ → X, an index λ1 ∈ Λ,
and a directed inverse system of open immersions (Y ′

λ → X ′
λ)λ≥λ1 over (Uλ → Tλ)λ≥λ1 satisfying the

following conditions for each λ ≥ λ1:
(i) We have Y ′ = Y ×X X ′ = limλ≥λ1 Y

′
λ and X ′ = limλ≥λ1 X

′
λ.

(ii) The log scheme (X ′
λ,MY ′

λ→X′
λ
) is fine, saturated and regular.

(iii) The morphism (X ′
λ,MY ′

λ→X′
λ
) → (Tλ,MUλ→Tλ

) is smooth and saturated, and X ′
λ → Tλ is

projective.
(iv) If moreover Y = Spec(L)×Spec(OL) X, then we can require that Y ′

λ = Uλ ×Tλ
X ′
λ.

Proof. We follow closely the proof of [ALPT19, 5.2.19]. Since the underlying topological space
of X is Noetherian by I.9.10, each irreducible component Z of X admits a closed subscheme structure
such that Z → X is of finite presentation ([Sta22, 01PH]). After replacing X by the disjoint union
of its irreducible components, we may assume that X is irreducible. Then, the generic fibre of
X → Spec(OL) is also irreducible as an open subset of X. Using [EGA IV3, 8.8.2, 8.10.5], there
exists an index λ0 ∈ Λ, a proper Tλ0 -scheme Xλ0 , and an open subscheme Yλ0 of Uλ0 ×Tλ0

Xλ0 , such
that X = Spec(OL) ×Tλ0

Xλ0 and that Y = Spec(L) ×Uλ0
Yλ0 . Let η denote the generic point of

https://stacks.math.columbia.edu/tag/0053
https://stacks.math.columbia.edu/tag/01PH
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X, ηλ0
the image of η under the morphism X → Xλ0

, Zλ0
the scheme theoretic closure of ηλ0

in
Xλ0 . Notice that Spec(OL)×Tλ0

Zλ0 → X is a surjective finitely presented closed immersion. After
replacing X by Spec(OL) ×Tλ0

Zλ0 and replacing Xλ0 by Zλ0 , we may assume that X → Xλ0 is a
dominant morphism of irreducible schemes. Since Tλ0 is irreducible and L is algebraically closed, the
generic fibre of f : Xλ0 → Tλ0 is geometrically irreducible. In particular, if ξλ0 (resp. ηλ0) denotes
the generic point of Tλ0 (resp. Xλ0), then η = Spec(L)×ξλ0

ηλ0 ([EGA IV2, 4.5.9]). In the situation
of (iv), we can moreover assume that Yλ0 = Uλ0 ×Tλ0

Xλ0 .
By I.9.9, there exists a commutative diagram of dominant open immersions of irreducible schemes,

(Y ′
λ0
→ X ′

λ0
)

(β◦,β) //

(f ′◦,f ′)

��

(Yλ0 → Xλ0)

(f◦,f)

��
(U ′

λ0
→ T ′

λ0
)

(α◦,α)
// (Uλ0 → Tλ0)

(I.9.11.1)

where Y ′
λ0
→ X ′

λ0
is Cartesian over U ′

λ0
×Uλ0

Yλ0 → T ′
λ0
×Tλ0

Xλ0 , and where (X ′
λ0
,MY ′

λ0
→X′

λ0
) →

(T ′
λ0
,MU ′

λ0
→T ′

λ0
) is a smooth and saturated morphism of fine, saturated and regular log schemes, and

where α and β are proper surjective and generically finite, and where f ′ is projective surjective. We
take a dominant morphism γ◦ : Spec(L) → U ′

λ0
which lifts Spec(L) → Uλ0 since L is algebraically

closed and α is generically finite, the morphism Spec(OL)→ Tλ0
lifts to γ : Spec(OL)→ T ′

λ0
by the

valuative criterion. We set Y ′ = Spec(L) ×U ′
λ0
Y ′
λ0

and X ′ = Spec(OL) ×T ′
λ0
X ′
λ0

. It is clear that
Y ′ → X ′ is Cartesian over Y → X by base change. Let ξ′λ0

(resp. η′λ0
) be the generic points of T ′

λ0

(resp. X ′
λ0

). Since the generic fibre of f is geometrically irreducible, ξ′λ0
×ξλ0

ηλ0 is a single point
and η′λ0

maps to it ([EGA IV2, 4.5.9]). Since Spec(L)×ξλ0
ηλ0

is the generic point of X, we see that
X ′ → X is proper surjective and of finite presentation. It remains to construct (Y ′

λ → X ′
λ)λ≥λ1 .

After replacing T ′
λ0

by an affine open neighborhood of the image of the closed point of Spec(OL),
lemma I.9.8 implies that there exists an index λ1 ≥ λ0 such that the transition morphism (Uλ1 →
Tλ1)→ (Uλ0 → Tλ0) factors through (U ′

λ0
→ T ′

λ0
). For each index λ ≥ λ1, consider the fibred product

in the category of fine and saturated log schemes

(X ′
λ,MY ′

λ→X′
λ
) = (Tλ,MUλ→Tλ

)×fs
(T ′

λ0
,MU′

λ0
→T ′

λ0

) (X
′
λ0
,MY ′

λ0
→X′

λ0
),(I.9.11.2)

which is a fine, saturated and regular log scheme smooth and saturated over (Tλ,MUλ→Tλ
) (I.9.2,

I.9.4). Moreover, we have Y ′
λ = Uλ ×U ′

λ0
Y ′
λ0

, X ′
λ = Tλ ×T ′

λ0
X ′
λ0

, and in the situation of (iv),
Y ′
λ = Uλ ×Tλ

X ′
λ by base change. Therefore, (Y ′

λ → X ′
λ)λ≥λ1 meets our requirements. □

I.10. Faltings’ Main p-adic Comparison Theorem: the Absolute Case

Lemma I.10.1. Let Y be a coherent scheme, V a finite étale Y -scheme. Then, there exists a finite
étale surjective morphism Y ′ → Y such that Y ′ ×Y V is isomorphic to a finite disjoint union of Y ′.

Proof. If Y is connected, let y be a geometric point of Y , π1(Y, y) the fundamental group of Y
with base point y. Then, Yfét is equivalent to the category of finite π1(Y, y)-sets so that the lemma
holds ([Sta22, 0BND]).

In general, for any connected component Z of Y , let (Yλ)λ∈ΛZ
be the directed inverse system of

all open and closed subschemes of Y which contain Z and whose transition morphisms are inclusions.
Notice that limλ∈ΛZ

Yλ is a closed subscheme of Y with underlying topological space Z by [Sta22,
04PL] and [EGA IV3, 8.2.9]. We endow Z with the closed subscheme structure of limλ∈ΛZ

Yλ.
The first paragraph shows that there exists a finite étale surjective morphism Z ′ → Z such that
Z ′ ×Y V =

⨿r
i=1 Z

′. Using [EGA IV3, 8.8.2, 8.10.5] and [EGA IV4, 17.7.8], there exists an index
λ0 ∈ ΛZ , a finite étale surjective morphism Y ′

λ0
→ Yλ0 and an isomorphism Y ′

λ0
×Y V =

⨿r
i=1 Y

′
λ0

.
Notice that Y ′

λ0
is also finite étale over Y . Since Z is an arbitrary connected component of Y , the

conclusion follows from the quasi-compactness of Y . □

Lemma I.10.2. Let Y be a coherent scheme, ρ : Yét → Yfét the morphism of sites defined by the
inclusion functor. Then, the functor ρ−1 : Ỹfét → Ỹét of the associated topoi induces an equivalence
ρ−1 : LocSys(Yfét) → LocSys(Yét) between the categories of finite locally constant abelian sheaves
with quasi-inverse ρ∗.

Proof. Since any finite locally constant sheaf on Yét (resp. Yfét) is representable by a finite
étale Y -scheme by faithfully flat descent (cf. [Sta22, 03RV]), the Yoneda embeddings induce a

https://stacks.math.columbia.edu/tag/0BND
https://stacks.math.columbia.edu/tag/04PL
https://stacks.math.columbia.edu/tag/03RV
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commutative diagram

LocSys(Yfét)

ρ−1

��

// Yfét
hfét

//

��

Ỹfét

��
LocSys(Yét) // Yét

hét
// Ỹét

(I.10.2.1)

where the horizontal arrows are fully faithful. In particular, ρ−1 is fully faithful. For a finite locally
constant abelian sheaf F on Yét, let V be a finite étale Y -scheme representing F and let hétV (resp.
hfétV ) be the representable sheaf of V on Yét (resp. Yfét). We have F = hétV = ρ−1hfétV ([Sta22, 04D3]).
By I.10.1, hfétV is finite locally constant. It is clear that the adjunction morphism hfétV → ρ∗h

ét
V is an

isomorphism, which shows that hfétV is an abelian sheaf. Thus, ρ−1 is essentially surjective. Moreover,
the argument also shows that ρ∗ induces a functor ρ∗ : LocSys(Yét) → LocSys(Yfét) which is a
quasi-inverse of ρ−1. □

Proposition I.10.3. With the notation in I.7.8, the functors between the categories of finite locally
constant abelian sheaves

LocSys(Yfét)
β−1

−→ LocSys(Eét
Y→X)

ψ−1

−→ LocSys(Yét)(I.10.3.1)

are equivalences with quasi-inverses β∗ and ψ∗ respectively.

Proof. Notice that for any finite locally constant abelian sheaf G on Yfét, the canonical mor-
phism β−1G → ψ∗ρ

−1G, which is induced by the adjunction id → ψ∗ψ
−1 and by the identity

ψ−1β−1 = ρ−1, is an isomorphism by I.10.2 and the proof of [AGT16, VI.6.3.(iii)]. For a finite
locally constant abelian sheaf F over Yét, we write F = ρ−1G by I.10.2. Then, F = ψ−1β−1G ∼−→
ψ−1ψ∗ρ

−1G = ψ−1ψ∗F, whose inverse is the adjunction map ψ−1ψ∗F → F since the composition
of ψ−1(β−1G) → ψ−1(ψ∗ψ

−1)(β−1G) = (ψ−1ψ∗)ψ
−1(β−1G) → ψ−1(β−1G) is the identity. On the

other hand, for a finite locally constant abelian sheaf L over Eét
Y→X , we claim that L → ψ∗ψ

−1L
is an isomorphism. The problem is local on Eét

Y→X . Thus, we may assume that L is the constant
sheaf with value L where L is a finite abelian group. Let L be the constant sheaf with value L on
Yfét. Then, L = β−1L, and the isomorphism L = β−1L

∼−→ ψ∗ρ
−1L = ψ∗ψ

−1L coincides with the
adjunction map L → ψ∗ψ

−1L. Therefore, ψ−1 : LocSys(Eét
Y→X) → LocSys(Yét) is an equivalence

with quasi-inverse ψ∗. The conclusion follows from I.10.2. □

I.10.4. Let f : (Y ′ → X ′)→ (Y → X) be a morphism of morphisms between coherent schemes over
Spec(Qp)→ Spec(Zp). The base change by f induces a commutative diagram of sites

Y ′
ét

fét

��

ψ′
// Eét
Y ′→X′

fE

��
Yét

ψ // Eét
Y→X

(I.10.4.1)

Let F′ be a finite locally constant abelian sheaf on Y ′
ét. Remark that the sheaf B on Eét

Y→X is flat
over Z. Consider the natural morphisms in the derived category D(B-ModEét

Y →X
),

(Rψ∗Rfét∗F′)⊗L
Z B (RfE∗ψ

′
∗F′)⊗L

Z B
α1oo α2 // RfE∗(ψ

′
∗F′ ⊗Z B

′
),(I.10.4.2)

where α1 is induced by the canonical morphism ψ′
∗F′ → Rψ′

∗F′, and α2 is the canonical morphism.

I.10.5. We keep the notation in I.10.4 and assume that X is the spectrum of an absolutely integrally
closed valuation ring A and that Y is a quasi-compact open subscheme of X. Applying the functor
RΓ(Y → X,−) on (I.10.4.2), we obtain the natural morphisms in the derived category D(A-Mod)
by I.7.9,

RΓ(Y ′
ét,F′)⊗L

Z A RΓ(Eét
Y ′→X′ , ψ′

∗F′)⊗L
Z A

α1oo α2 // RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
).(I.10.5.1)

Definition I.10.6 ([AG20, 4.8.13, 5.7.4]). Under the assumptions in I.10.4 (resp. I.10.5) and with
the same notation, if α1 is an isomorphism (for instance, if the canonical morphism ψ′

∗F′ → Rψ′
∗F′ is

an isomorphism), then we call the canonical morphism

α2 ◦ α−1
1 : (Rψ∗Rfét∗F′)⊗L

Z B −→ RfE∗(ψ
′
∗F′ ⊗Z B

′
)(I.10.6.1)

(resp. α2 ◦ α−1
1 : RΓ(Y ′

ét,F′)⊗L
Z A −→ RΓ(Eét

Y ′→X′ , ψ′
∗F′ ⊗Z B

′
))(I.10.6.2)
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the relative (resp. absolute) Faltings’ comparison morphism associated to f : (Y ′ → X ′)→ (Y → X)
and F′. In this case, we say that Faltings’ comparison morphisms exist.

Theorem I.10.7 ([Ach17, Cor.6.9], cf. [AG20, 4.4.2]). Let OK be a strictly Henselian discrete
valuation ring with fraction field K of characteristic 0 and residue field of characteristic p. We fix an
algebraic closure K of K. Let X be an OK-scheme of finite type, F a finite locally constant abelian
sheaf on XK,ét, ψ : XK,ét → Eét

XK→X the morphism of sites defined in I.7.8. Then, the canonical
morphism ψ∗F→ Rψ∗F is an isomorphism.

Corollary I.10.8. Let OK be a strictly Henselian discrete valuation ring with fraction field K of
characteristic 0 and residue field of characteristic p. We fix an algebraic closure K of K. Let X be
a coherent OK-scheme, Y = Spec(K) ×Spec(OK) X, F a finite locally constant abelian sheaf on Yét,
ψ : Yét → Eét

Y→X the morphism of sites defined in I.7.8. Then, the canonical morphism ψ∗F→ Rψ∗F
is an isomorphism.

We emphasize that we don’t need any finiteness condition of X over OK in I.10.8. In fact, one
can replace OK by Zp without loss of generality, where Zp is the integral closure of Zp in an algebraic
closure of Qp. We keep working over OK only for the continuation of our usage of notation.

Proof of I.10.8. We take a directed inverse system (Xλ → Spec(OKλ
))λ∈Λ of morphisms of

finite type of schemes by Noetherian approximation, such that Kλ is a finite field extension of K
and K =

∪
λ∈ΛKλ, and that the transition morphisms Xλ′ → Xλ are affine and X = limλ∈ΛXλ (cf.

[Sta22, 09MV]). For each λ ∈ Λ, we set Yλ = Spec(K)×Spec(OKλ
)Xλ. Notice that Y = limYλ. Then,

there exists an index λ0 ∈ Λ and a finite locally constant abelian sheaf Fλ0 on Yλ0,ét such that F is the
pullback of Fλ0 by Yét → Yλ0,ét (cf. [Sta22, 09YU]). Let Fλ be the pullback of Fλ0 by Yλ,ét → Yλ0,ét

for each λ ≥ λ0. Notice that OKλ
also satisfies the conditions in I.10.7. Let ψλ : Yλ,ét → Eét

Yλ→Xλ
be

the morphism of sites defined in I.7.8, φλ : Eét
Y→X → Eét

Yλ→Xλ
the morphism of sites defined by the

transition morphism. Then, we have Rqψλ∗Fλ = 0 for each integer q > 0 by I.10.7, and moreover

Rqψ∗F = colim
λ≥λ0

φ−1
λ Rqψλ∗Fλ = 0(I.10.8.1)

by I.7.12, [SGA 4II, VII.5.6] and [SGA 4II, VI.8.7.3] whose conditions are satisfied because each
object in each concerned site is quasi-compact. □

Lemma I.10.9. With the notation in I.10.4, let F be a finite locally constant abelian sheaf on Yét.
Then, the canonical morphism f−1

E ψ∗F→ ψ′
∗f

−1
ét F is an isomorphism.

Proof. The base change morphism f−1
E ψ∗F → ψ′

∗f
−1
ét F is the composition of the adjunction

morphisms ([SGA 4III, XVII.2.1.3])

f−1
E ψ∗F→ ψ′

∗ψ
′−1(f−1

E ψ∗F) = ψ′
∗f

−1
ét (ψ−1ψ∗F)→ ψ′

∗f
−1
ét F(I.10.9.1)

which are both isomorphisms by I.10.3. □

I.10.10. Let K be a complete discrete valuation field of characteristic 0 with valuation ring OK whose
residue field k is algebraically closed (a condition required by [AG20, 4.1.3, 5.1.3]) of characteristic
p > 0, K an algebraic closure of K, OK the integral closure of OK in K, η = Spec(K), η = Spec(K),
S = Spec(OK), S = Spec(OK), s = Spec(k). Remark that K is a pre-perfectoid field with valuation
ring OK so we are also in the situation I.8.7.

I.10.11. With the notation in I.10.10, let X be an S-scheme, Y an open subscheme of the generic
fibre Xη. We simply denote by MX the compactifying log structure MXη→X (I.9.3). Following
[AGT16, III.4.7], we say that Y → X is adequate over η → S if the following conditions are satisfied:

(i) X is of finite type over S;
(ii) Any point of the special fibre Xs admits an étale neighborhood U such that Uη → η is

smooth and that Uη \ Y is the support of a strict normal crossings divisor on Uη;
(iii) (X,MY→X) is a fine log scheme and the structure morphism (X,MY→X) → (S,MS) is

smooth and saturated.
In this case, (X,MY→X) → (S,MS) is adequate in the sense of [AGT16, III.4.7]. We remark that
for any adequate (S,MS)-log scheme (X,M ), Xtr → X is adequate over η → S and (X,M ) =
(X,MXtr→X) (cf. I.9.4, I.9.5). Note that if Y → X is semi-stable over η → S then it is adequate (cf.
I.9.5).
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I.10.12. We recall the statement of Faltings’ main p-adic comparison theorem following Abbes-Gros
[AG20]. We take the notation and assumptions in I.10.10. Firstly, recall that for any adequate open
immersion of schemes X◦ → X over η → S and any finite locally constant abelian sheaf F on X◦

η,ét,
the canonical morphism ψ∗F→ Rψ∗F is an isomorphism, where ψ : X◦

η,ét → Eét
X◦

η→X is the morphism
of sites defined in I.7.8 ([AG20, 4.4.2]).

Let (X ′▷ → X ′)→ (X◦ → X) be a morphism of adequate open immersions of schemes over η → S
such that X ′ → X is projective and that the induced morphism (X ′,MX′▷→X′) → (X,MX◦→X) is
smooth and saturated. Let Y ′ = η ×η X ′▷, Y = η ×η X◦, f : (Y ′ → X ′) → (Y → X) the natural
morphism, F′ a finite locally constant abelian sheaf on Y ′

ét. By the first paragraph, we have the
relative Faltings’ comparison morphism associated to f and F′ (I.10.6.1),

(Rψ∗Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
).(I.10.12.1)

Remark that under our assumption, the sheaf Rqfét∗F′ on Yét is finite locally constant for each integer
q ([AG20, 2.2.25]).

Theorem I.10.13 ([Fal02, Thm.6, page 266], [AG20, 5.7.4]). Under the assumptions in I.10.12
and with the same notation, the relative Faltings’ comparison morphism associated to f and F′ is
an almost isomorphism in the derived category D(OK-ModEét

Y →X
) (I.5.7), and it induces an almost

isomorphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
)(I.10.13.1)

of OK-modules for each integer q.

Proposition I.10.14. With the natation in I.10.10, let A be an absolutely integrally closed valuation
ring of height 1 extension of OK , X a proper A-scheme of finite presentation, Y = Spec(A[1/p])×Spec(A)

X, F a finite locally constant abelian sheaf on Yét. Then, there exists a proper surjective morphism
X ′ → X of finite presentation such that the relative and absolute Faltings’ comparison morphisms
associated to f ′ : (Y ′ → X ′) → (Spec(A[1/p]) → Spec(A)) and F′ (which exist by I.10.8) are almost
isomorphisms, where Y ′ = Y ×X X ′ and F′ is the pullback of F on Y ′

ét.

Proof. Since the underlying topological space of X is Noetherian by I.9.10, each irreducible
component Z of X admits a closed subscheme structure such that Z → X is of finite presentation
([Sta22, 01PH]). After replacingX by the disjoint union of its irreducible components, we may assume
that X is irreducible. If Y is empty, then we take X ′ = X and thus the relative (resp. absolute)
Faltings’ comparison morphism associated to f ′ and F′ is an isomorphism between zero objects. If Y is
not empty, then we are in the situation of I.9.11.(iv) by takingOL = A. With the notation in I.9.11, we
check that the morphism X ′ → X meets our requirements. We set ηλ = Spec(Kλ), Sλ = Spec(OKλ

),
Tλ,ηλ = η ×ηλ Uλ, X ′

λ,ηλ
= η ×ηλ Y ′

λ, and denote by f ′λ : (X ′
λ,ηλ
→ X ′

λ) → (Tλ,ηλ → Tλ) the natural
morphism. We obtain a commutative diagram

Eét
Y ′→X′

gλ,E //

f ′
E

��

Eét
X′

λ,ηλ
→X′

λ

f ′
λ,E

��

Y ′
ét

gλ,ét //

f ′
ét

��

ψ′
hhRRRRRRRRRRRRRRRRR

X ′
λ,ηλ,ét

f ′
λ,ét

��

ψ′
λ

99sssssssss

Spec(A[1/p])ét
hλ,ét //

ψ

uullll
lll

lll
lll

l
Tλ,ηλ,ét

ψλ

&&LL
LLL

LLL
LL

Eét
Spec(A[1/p])→Spec(A)

hλ,E // Eét
Tλ,ηλ

→Tλ

(I.10.14.1)

Firstly notice that the site Y ′
ét (resp. Spec(A[1/p])ét) is the limit of the sites X ′

λ,ηλ,ét
(resp. Tλ,ηλ,ét)

and the site Eét
Y ′→X′ (resp. Eét

Spec(A[1/p])→Spec(A)) is the limit of the sites Eét
X′

λ,ηλ
→X′

λ
(resp. Eét

Tλ,ηλ
→Tλ

)

([SGA 4II, VII.5.6] and I.7.12). There exists an index λ0 ∈ Λ and a finite locally constant abelian
sheaf F′

λ0
on X ′

λ0,ηλ0
,ét such that F′ is the pullback of F′

λ0
by Y ′

ét → X ′
λ0,ηλ0

,ét (cf. [Sta22, 09YU]). Let

F′
λ be the pullback of F′

λ0
by X ′

λ,ηλ,ét
→ X ′

λ0,ηλ0
,ét for each λ ≥ λ0. We also have B

′
= colim g−1

λ,EB
′

(resp. B = colimh−1
λ,EB) by I.7.12. According to [SGA 4II, VI.8.7.3], whose conditions are satisfied
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because each object in each concerned site is quasi-compact, there are canonical isomorphisms for
each integer q,

(Rq(ψ ◦ f ′ét)∗F′)⊗Z B
∼−→ colimh−1

λ,E((R
q(ψλ ◦ f ′λ,ét)∗F′

λ)⊗Z B),(I.10.14.2)

Rqf ′E∗(ψ
′
∗F′ ⊗Z B

′
)

∼−→ colimh−1
λ,ER

qf ′λ,E∗(ψ
′
λ∗F′

λ ⊗Z B
′
).(I.10.14.3)

On the other hand, (X ′
λ,MX′

λ
) → (Tλ,MTλ

) is a smooth and saturated morphism of adequate
(Sλ,MSλ

)-log schemes with X ′
λ → Tλ projective for each λ ∈ Λ by construction. Thus, we are in the

situation of I.10.13, which implies that the relative Faltings’ comparison morphism associated to f ′λ
and F′

λ,

(Rq(ψλ ◦ f ′λ,ét)∗F′
λ)⊗Z B −→ Rqf ′λ,E∗(ψ

′
λ∗F′

λ ⊗Z B
′
)(I.10.14.4)

is an almost isomorphism for each λ ≥ λ0. Combining with (I.10.14.2) and (I.10.14.3), we see that
the relative Faltings’ comparison morphism associated to f ′ and F′,

Rψ∗(Rf
′
ét∗F′)⊗L

Z B −→ Rf ′E∗(ψ
′
∗F′ ⊗Z B

′
),(I.10.14.5)

is an almost isomorphism (and thus so is the absolute one). □

Corollary I.10.15. Under the assumptions in I.10.14 and with the same notation, there exists
a proper hypercovering X• → X of coherent schemes ([Sta22, 0DHI]) such that for each degree
n, the relative and absolute Faltings’ comparison morphisms associated to fn : (Yn → Xn) →
(Spec(A[1/p]) → Spec(A)) and Fn (which exist by I.10.8) are almost isomorphisms, where Yn =
Y ×X Xn and Fn is the pullback of F by the natural morphism Yn,ét → Yét. In particular, Y• → Y is
a proper hypercovering and XY•

• → XY is a hypercovering in Iη→S.

Proof. Let C be the category of proper A-schemes of finite presentation endowed with the pre-
topology formed by families of morphisms {fi : Xi → X}i∈I with I finite and X =

∪
i∈I fi(Xi). Con-

sider the functor u+ : C → ISpec(A[1/p])→Spec(A) sendingX toXY where Y = Spec(A[1/p])×Spec(A)X.
It is well-defined by I.3.19.(4) and commutes with fibred products by I.3.21 and continuous by I.3.15.
Lemma I.10.14 allows us to take a hypercovering X• → X in C meeting our requirement by [Sta22,
094K and 0DB1]. We see that Y• → Y is a proper hypercovering and that XY•

• → XY is a hypercov-
ering in Iη→S by the properties of u+ ([Sta22, 0DAY]). □

Lemma I.10.16. Let Zp be the integral closure of Zp in an algebraic closure of Qp, A a Zp-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation,
Y = Spec(A[1/p]) ×Spec(A) X, F a finite locally constant abelian sheaf on Yét. Let A′ = ((A/ ∩n>0

pnA)√pA)
∧ (p-adic completion), X ′ = XA′ , Y ′ = YA′ , F′ the pullback of F on Y ′

ét. Then, the following
statements are equivalent:

(1) The absolute Faltings’ comparison morphism associated to f : (Y → X)→ (Spec(A[1/p])→
Spec(A)) and F (which exists by I.10.8) is an almost isomorphism.

(2) The absolute Faltings’ comparison morphism associated to f ′ : (Y ′ → X ′)→ (Spec(A′[1/p])→
Spec(A′)) and F′ (which exists by I.10.8) is an almost isomorphism.

Proof. If p is zero (resp. invertible) in A, then the absolute Faltings’ comparison morphisms
are both isomorphisms between zero objects, since Y and Y ′ are empty (resp. the abelian sheaves F
and F′ are zero after inverting p). Thus, we may assume that p is a nonzero element of the maximal
ideal of A. Notice that ∩n>0p

nA is the maximal prime ideal of A not containing p and that
√
pA is

the minimal prime ideal of A containing p (I.2.1). Thus, (A/∩n>0 p
nA)√pA is an absolutely integrally

closed valuation ring of height 1 extension of Zp (I.2.1) and thus so is its p-adic completion A′.
We denote by u : (Y ′ → X ′) → (Y → X) the natural morphism. We have F′ = u−1

ét F. The
natural morphisms in (I.10.5.1) induce a commutative diagram

RΓ(Yét,F)⊗L
Z A

γ1

��

RΓ(Eét
Y→X , ψ∗F)⊗L

Z A
α1oo α2 //

γ2

��

RΓ(Eét
Y→X , ψ∗F⊗Z B)

γ3

��
RΓ(Y ′

ét,F′)⊗L
Z A

′ RΓ(Eét
Y ′→X′ , ψ′

∗F′)⊗L
Z A

′α′
1oo α′

2 // RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
)

(I.10.16.1)

where γ1 is induced by the canonical morphism F → Ruét∗u
−1
ét F, and γ2 (resp. γ3) is induced by

the composition of ψ∗F → RuE∗u
−1
E ψ∗F → RuE∗ψ

′
∗u

−1
ét F (resp. and by the canonical morphism

B → RuE∗B
′
). Since α1 and α′

1 are isomorphisms by I.10.8, it suffices to show that γ1 and γ3 are
almost isomorphisms.
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Since A/ ∩n>0 p
nA → (A/ ∩n>0 p

nA)√pA is injective whose cokernel is killed by
√
pA (I.4.7),

the morphism A → A′ induces an almost isomorphism A/pnA → A′/pnA′ for each n. Then, for
any torsion abelian group M , the natural morphism M ⊗Z A→M ⊗Z A

′ is an almost isomorphism.
Therefore, γ1 is an almost isomorphism by the proper base change theorem over the strictly Henselian
local ring A[1/p] ([SGA 4III, XII 5.5, 5.4]). For γ3, it suffices to show that the canonical morphism
ψ∗F ⊗ B → RuE∗(ψ

′
∗F′ ⊗ B

′
) is an almost isomorphism. The problem is local on Eét

Y→X , thus
we may assume that ψ∗F is the constant sheaf with value Z/pnZ by I.10.3. Then, ψ′

∗F′ is also
the constant sheaf with value Z/pnZ by I.10.9. Let V → U be an object of Eproét

Y→X such that
UV = Spec(R) is the spectrum of an Zp-algebra R which is almost pre-perfectoid. Since the almost
isomorphisms R/pn → (R⊗AA′)/pn (n ≥ 1) induces an almost isomorphism of the p-adic completions
R̂→ R⊗̂AA′, the Zp-algebra R ⊗A A′ is still almost pre-perfectoid (I.5.19). The pullback of V → U

in Eproét
Y ′→X′ is the object VA′ → UA′ and U

VA′
A′ is the spectrum of the integral closure R′ of R ⊗A A′

in R ⊗A A′[1/p]. Since R ⊗A A′ is almost pre-perfectoid, R′ is also almost pre-perfectoid and the
morphism (R ⊗A A′)/pn → R′/pn is an almost isomorphism by I.5.30. Therefore, the morphism
B/pnB → RuE∗(B

′
/pnB

′
) is an almost isomorphism by I.7.32, I.8.11 and I.8.12. □

Theorem I.10.17. Let Zp be the integral closure of Zp in an algebraic closure of Qp, A a Zp-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation,
Y = Spec(A[1/p]) ×Spec(A) X, F a finite locally constant abelian sheaf on Yét. Then, the absolute
Faltings’ comparison morphism associated to f : (Y → X) → (Spec(A[1/p]) → Spec(A)) and F
(I.10.6.2) (which exists by I.10.8),

RΓ(Yét,F)⊗L
Z A −→ RΓ(Eét

Y→X , ψ∗F⊗Z B),(I.10.17.1)

is an almost isomorphism in D(Zp-Mod) (I.5.7).

Proof. Let K be the p-adic completion of the maximal unramified extension of Qp. By I.10.16,
we may assume that A is a valuation ring of height 1 extension of OK . Let X• → X be the proper
hypercovering of coherent schemes constructed in I.10.15. For each degree n the canonical morphisms
(I.10.6.2)

RΓ(Yn,ét,Fn)⊗L
Z A←− RΓ(Eét

Yn→Xn
, ψn∗Fn)⊗L

Z A −→ RΓ(Eét
Yn→Xn

, ψn∗Fn ⊗Z B)(I.10.17.2)

are an isomorphism and an almost isomorphism, where Fn is the pullback of F by the natural mor-
phism Yn,ét → Yét. Consider the commutative diagram

RΓ(Yét,F)⊗L
Z A

��

RΓ(Eét
Y→X , ψ∗F)⊗L

Z A
α2 //

��

α1oo RΓ(Eét
Y→X , ψ∗F⊗Z B)

��
RΓ(Y•,ét,F•)⊗L

Z A RΓ(Eét
Y•→X•

, ψ•∗F•)⊗L
Z A

α1•oo α2• // RΓ(Eét
Y•→X•

, ψ•∗F• ⊗Z B•)

(I.10.17.3)

where F• = (Fn)[n]∈Ob(∆) with the notation in I.6.5. By the functorial spectral sequence of simplicial
sites ([Sta22, 09WJ]), we deduce from (I.10.17.2) that α1• is an isomorphism and α2• is an almost
isomorphism. Since α1 is an isomorphism by I.10.8, it remains to show that the left vertical arrow is
an isomorphism and the right vertical arrow is an almost isomorphism.

We denote by a : Eét
Y•→X•

→ Eét
Y→X the augmentation of simplicial site and by an : Eét

Yn→Xn
→

Eét
Y→X the natural morphism of sites. Notice that a−1ψ∗F = (a−1

n ψ∗F)[n]∈Ob(∆) = (ψn∗Fn)[n]∈Ob(∆) =

ψ•∗F• by I.10.9 ([Sta22, 0D70]). Since XY•
• → XY forms a hypercovering in Iη→S , the right vertical

arrow is an almost isomorphism by I.10.3 and I.8.18. Finally, the left vertical arrow is an isomorphism
by the cohomological descent for étale cohomology [Sta22, 0DHL]. □

I.11. Faltings’ Main p-adic Comparison Theorem: the Relative Case for More General
Coefficients

I.11.1. Let Y → X be a morphism of coherent schemes such that Y → XY is an open immersion.
We obtain from I.3.26, I.8.6 and I.7.8 a commutative diagram of sites

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��

ρ

""E
EE

EE
EE

EE
E

IY→XY
ε // Eét

Y→X

β // Yfét

(I.11.1.1)

where a : (Schcoh
/Y )v → Yét and ρ : Yét → Yfét are defined by the inclusion functors.

https://stacks.math.columbia.edu/tag/09WJ
https://stacks.math.columbia.edu/tag/0D70
https://stacks.math.columbia.edu/tag/0DHL
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Lemma I.11.2. With the notation in I.11.1, for any finite locally constant abelian sheaf F on Yét,
the canonical morphism ε−1ψ∗F→ Ψ∗a

−1F is an isomorphism.

Proof. The base change morphism ε−1ψ∗F → Ψ∗a
−1F is the composition of the adjunction

morphisms ([SGA 4III, XVII.2.1.3])

ε−1ψ∗F→ Ψ∗Ψ
−1(ε−1ψ∗F) = Ψ∗a

−1(ψ−1ψ∗F)→ Ψ∗a
−1F(I.11.2.1)

which are both isomorphisms by I.3.27.(2) and I.10.3. □

I.11.3. We fix an algebraic closure Qp of the p-adic number field Qp and we denote by Zp the integral
closure of Zp in Qp. We set η = Spec(Qp), η = Spec(Qp), S = Spec(Zp), S = Spec(Zp). Remark
that Qp is a pre-perfectoid field with valuation ring Zp so we are also in the situation I.8.7. Let
f : (Y ′ → X ′) → (Y → X) be a Cartesian morphism of morphisms of coherent schemes with a
Cartesian morphism (Y → XY )→ (η → S) (then, Y ′ → X ′Y ′

is Cartesian over η → S by I.3.19.(4)).
Thus, XY and X ′Y ′

are objects of Iη→S . Consider the following commutative diagram of sites
associated to f .

Y ′
ét

fét

��

ψ′

))
(Schcoh

/Y ′)v
a′oo Ψ′

//

fv

��

IY ′→X′Y ′
ε′ //

fI

��

Eét
Y ′→X′

fE

��
Yét

ψ

55(Schcoh
/Y )v

aoo Ψ // IY→XY
ε // Eét

Y→X

(I.11.3.1)

I.11.4. Following I.11.3, let g : (Ỹ → X̃)→ (Y → X) be a morphisms of coherent schemes such that
Ỹ → X̃ Ỹ is also Cartesian over η → S. We denote by g′ : (Ỹ ′ → X̃ ′)→ (Y ′ → X ′) the base change
of g by f , and denote by f̃ : (Ỹ ′ → X̃ ′)→ (Ỹ → X̃) the natural morphism which is Cartesian by base

change. Thus, X̃ Ỹ and X̃ ′Ỹ
′

are also objects of Iη→S . We write the diagram (I.11.3.1) associated f̃
equipping all labels with tildes.

Lemma I.11.5. With the notation in I.11.3 and I.11.4, let F′ be a finite locally constant abelian sheaf
on Y ′

ét and we set F ′ = Ψ′
∗a

′−1F′. Let X̃ be an object of IY→XY , Ỹ = η ×S X̃, F̃′ = g′−1
ét F′, q an

integer.
(1) The sheaf RqfI∗F ′ on IY→XY is canonically isomorphic to the sheaf associated to the

presheaf X̃ 7→ Hq
ét(Ỹ

′, F̃′).
(2) The sheaf RqfI∗(F ′ ⊗Z O ′) on IY→XY is canonically almost isomorphic to the sheaf asso-

ciated to the presheaf X̃ 7→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
).

(3) The canonical morphism (RqfI∗F ′)⊗ZO → (RqfI∗F ′⊗ZO ′) is compatible with the canonical
morphisms Hq

ét(Ỹ
′, F̃′) ⊗Z R

α1←− Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′) ⊗Z R

α2−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
),

where R = B(Ỹ → X̃) (cf.I.10.5.1).

Proof. Let F̃ ′ be the restriction of F ′ on I
Ỹ ′→X̃′Ỹ

′ . We have F̃ ′ = Ψ̃′∗ã′
−1

F̃′. We set L̃′ =

ψ̃′
∗F̃′ which is a finite locally constant abelian sheaf on Eét

Ỹ ′→X̃′ by I.10.3. Notice that the canonical

morphisms ψ̃′−1
L̃′ → F̃′ and ε̃′

−1
L̃′ → F̃ ′ are isomorphisms by I.10.3 and I.11.2 respectively.

(1) It follows from the canonical isomorphisms

Hq(I
Ỹ ′→X̃′Ỹ

′ , ε̃′
−1

L̃′)
γ1−→ Hq

v(Ỹ
′, Ψ̃′−1

ε̃′
−1

L̃′) = Hq
v(Ỹ

′, ã′
−1
ψ̃′−1

L̃′)
γ2←− Hq

ét(Ỹ
′, ψ̃′−1

L̃′),

(I.11.5.1)

where γ1 is induced by the canonical isomorphism ε̃′
−1

L̃′ ∼−→ RΨ̃′∗Ψ̃′−1
ε̃′

−1
L̃′ (I.3.27.(2)), and γ2 is

induced by the canonical isomorphism ψ̃′−1
L̃′ → Rã′∗ã′

−1
ψ̃′−1

L̃′ (I.3.9).
(2) It follows from the canonical almost isomorphism

γ3 : Hq(Eét
Ỹ ′→X̃′ , L̃′ ⊗Z B

′
) −→ Hq(I

Ỹ ′→X̃′Ỹ
′ , ε̃′

−1
L̃′ ⊗ O ′)(I.11.5.2)

which is induced by the canonical almost isomorphism L̃′ ⊗Z B
′ → Rε̃′∗(ε̃′

−1
L̃′ ⊗ O ′) (I.8.14).
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(3) Consider the following diagram

Hq
ét(Ỹ

′, ψ̃′−1
L̃′)⊗R

γ2⊗idR ≀
��

Hq(Eét
Ỹ ′→X̃′ , L̃′)⊗Rα1oo α2 //

��

Hq(Eét
Ỹ ′→X̃′ , L̃′ ⊗Z B

′
)

γ3

��

Hq
v(Ỹ

′, Ψ̃′−1
ε̃′

−1
L̃′)⊗R Hq(I

Ỹ ′→X̃′Ỹ
′ , ε̃′

−1
L̃′)⊗R∼

γ1⊗idR

oo // Hq(I
Ỹ ′→X̃′Ỹ

′ , ε̃′
−1

L̃′ ⊗ O ′)

(I.11.5.3)

where the unlabelled vertical arrow is induced by the canonical morphism L̃′ → Rε̃′∗ε̃′
−1

L̃′, and the
unlabelled horizontal arrow is the canonical morphism which induces (RqfI∗F ′)⊗ZO → RqfI∗(F ′⊗Z
O ′) on IY→XY by sheafification. It is clear that the diagram (I.11.5.3) is commutative, which com-
pletes the proof. □

I.11.6. We remark that I.11.5 gives a new definition of the relative (resp. absolute) Faltings’ com-
parison morphism without using I.10.8. Following I.11.3, let F′ be a finite locally constant abelian
sheaf on Y ′

ét and we set F ′ = Ψ′
∗a

′−1F′. We set L′ = ψ′
∗F′, which is a finite locally constant abelian

sheaf on Eét
Y ′→X′ by I.10.3. Remark that the canonical morphisms ψ′−1L′ → F′ and ε′−1L′ → F ′

are isomorphisms by I.10.3 and I.11.2 respectively. We also remark that B, O are flat over Z. The
canonical morphisms in the derived category D(B-ModEét

Y →X
) (cf. I.10.4.2),

(Rψ∗Rfét∗ψ
′−1L′)⊗L

Z B (RfE∗L′)⊗L
Z B

α1oo α2 // RfE∗(L′ ⊗Z B
′
),(I.11.6.1)

fit into the following commutative diagram

Rψ∗(Rfét∗ψ
′−1L′)⊗L

Z B

≀α3

��

(RfE∗L′)⊗L
Z B

α1oo α2 //

��

RfE∗(L′ ⊗Z B
′
)

α4

��
Rψ∗(Ra∗Rfv∗Ψ

′−1ε′−1L′)⊗L
Z B Rε∗(RfI∗ε

′−1L′)⊗L
Z B

∼
α5

oo
α6

// Rε∗RfI∗(ε′−1L′ ⊗Z O ′)

(I.11.6.2)

(1) The morphism α3 is induced by the canonical isomorphism ψ′−1L′ → Ra′∗a
′−1(ψ′−1L′) by

I.3.9, and thus α3 is an isomorphism.
(2) The morphism α5 is induced by the canonical isomorphism ε′−1L′ → RΨ′

∗Ψ
′−1ε′−1L′ by

I.3.27, and thus α5 is an isomorphism.
(3) The unlabelled arrow is induced by the canonical morphism L→ Rε′∗ε

′−1L.
(4) The morphism α4 is induced by the canonical almost isomorphism L′⊗ZB

′ → Rε′∗(ε
′−1L′⊗Z

O ′) by I.8.14, and thus α4 is an almost isomorphism.
(5) The morphism α6 is the composition of

Rε∗(RfI∗ε
′−1L′)⊗L

Z B −→ Rε∗((RfI∗ε
′−1L′)⊗L

Z O)(I.11.6.3)

with Rε∗((RfI∗ε
′−1L′)⊗L

Z O) −→ Rε∗RfI∗(ε
′−1L′ ⊗Z O ′).(I.11.6.4)

In conclusion, the arrows α3, α5, α6 and α4 induce an arrow

α−1
4 ◦ α6 ◦ α−1

5 ◦ α3 : Rψ∗(Rfét∗F′)⊗L
Z B −→ RfE∗(ψ

′
∗F′ ⊗Z B

′
)(I.11.6.5)

in the derived category of almost Zp-modules on Eét
Y→X (I.5.7). Remark that we don’t assume that α1

is an isomorphism here. We also call (I.11.6.5) the relative Faltings’ comparison morphism. Indeed,
if α1 is an isomorphism, then the relative Faltings’ comparison morphism (I.10.6.1) induces (I.11.6.5)
in D(Zp

al
-Mod) due to the commutativity of the diagram (I.11.6.2).

If X is the spectrum of an absolutely integrally closed valuation ring A and if Y = η×S X, then
applying the functor RΓ(Y → X,−) on (I.11.6.2) we obtain the natural morphisms in the derived
category D(A-Mod) by I.7.9,

RΓ(Y ′
ét, ψ

′−1L′)⊗L
Z A

≀α3

��

RΓ(Eét
Y ′→X′ ,L′)⊗L

Z A
α1oo α2 //

��

RΓ(Eét
Y ′→X′ ,L′ ⊗Z B

′
)

α4

��
RΓ((Schcoh

/Y ′)v,Ψ
′−1ε′−1L′)⊗L

Z A RΓ(IY ′→X′Y ′ , ε′−1L′)⊗L
Z A

∼
α5

oo
α6

// RΓ(IY ′→X′Y ′ , ε′−1L′ ⊗Z O ′)

(I.11.6.6)
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The arrows α3, α5, α6 and α4 induce an arrow

α−1
4 ◦ α6 ◦ α−1

5 ◦ α3 : RΓ(Y ′
ét,F′)⊗L

Z A −→ RΓ(Eét
Y ′→X′ , ψ′

∗F′ ⊗Z B
′
)(I.11.6.7)

in the derived category D(Zp
al

-Mod) of almost Zp-modules (I.5.7). We also call (I.11.6.7) the absolute
Faltings’ comparison morphism.

Lemma I.11.7. With the notation in I.11.3, let F′ be a finite locally constant abelian sheaf on Y ′
ét and

we set F ′ = Ψ′
∗a

′−1F′. Assume that X ′ → X is proper of finite presentation. Then, the canonical
morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(I.11.7.1)

is an almost isomorphism.

Proof. Following I.11.5, consider the following presheaves on IY→XY for each integer q:

Hq1 : X̃ 7−→ Hq
ét(Ỹ

′, F̃′)⊗Z B(Ỹ → X̃),(I.11.7.2)

Hq2 : X̃ 7−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′)⊗Z B(Ỹ → X̃),(I.11.7.3)

Hq3 : X̃ 7−→ Hq(Eét
Ỹ ′→X̃′ , ψ̃

′
∗F̃′ ⊗Z B

′
),(I.11.7.4)

They satisfy the limit-preserving condition I.3.25.(ii) by I.7.12, [SGA 4II, VII.5.6] and [SGA 4II, VI
8.5.9, 8.7.3]. Moreover, if X̃ = Spec(A) where A is an absolutely integrally closed valuation ring with
p nonzero in A, then the canonical morphisms

Hq1(Spec(A))← H
q
2(Spec(A))→ H

q
3(Spec(A))(I.11.7.5)

are an isomorphism and an almost isomorphism by I.10.17. Thus, the canonical morphisms Hq1 ←
Hq2 → H

q
3 induce an isomorphism and an almost isomorphism of their sheafifications by I.3.25. The

conclusion follows from I.11.5. □

Lemma I.11.8. Let Y → X be an open immersion of coherent schemes, Y ′ → Y a finite morphism
of finite presentation. Then, there exists a finite morphism X ′ → X of finite presentation whose base
change by Y → X is Y ′ → Y .

Proof. Firstly, assume that X is Noetherian. We have Y ′ = Y ×X XY by I.3.19.(4). We
write XY = SpecX(A) where A is an integral quasi-coherent OX -algebra on X, and we write A
as a filtered colimit of its finite quasi-coherent OX -subalgebras A = colimAα ([Sta22, 0817]). Let
Bα be the restriction of Aα to Y . Then, B = colimBα is a filtered colimit of finite quasi-coherent
OY -algebras with injective transition morphisms. Since Y ′ = SpecY (B) is finite over Y , there exists
an index α0 such that Y ′ = SpecY (Bα0). Therefore, X ′ = SpecX(Aα0) meets our requirements.

In general, we write X as a cofiltered limit of coherent schemes of finite type over Z with affine
transition morphisms X = limλ∈ΛXλ ([Sta22, 01ZA]). Since Y → X is an open immersion of finite
presentation, using [EGA IV3, 8.8.2, 8.10.5] there exists an index λ0 ∈ Λ, an open immersion Yλ0 →
Xλ0 and a finite morphism Y ′

λ0
→ Yλ0 such that the base change of the morphisms Y ′

λ0
→ Yλ0 → Xλ0

by X → Xλ0 are the morphisms Y ′ → Y → X. By the first paragraph, there exists a finite morphism
X ′
λ0
→ Xλ0 of finite presentation such that Y ′

λ0
= Yλ0 ×Xλ0

X ′
λ0

. We see that the base change
X ′ → X of X ′

λ0
→ Xλ0 by X → Xλ0 meets our requirements. □

Lemma I.11.9. With the notation in I.11.3, let g : Y ′′ → Y ′ be a finite morphism of finite presenta-
tion, F′′ a finite locally constant abelian sheaf on Y ′′

ét and we set F ′ = Ψ′
∗a

′−1(gét∗F′′). Assume that
X ′ → X is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(I.11.9.1)

is an almost isomorphism.

Proof. There exists a Cartesian morphism g : (Y ′′ → X ′′) → (Y ′ → XY ×X X ′) of open
immersions of coherent schemes such that X ′′ → XY ×X X ′ is finite and of finite presentation by
I.11.8. Consider the diagram (I.11.3.1) associated to g:

Y ′′
ét

gét

��

(Schcoh
/Y ′′)v

a′′oo Ψ′′
//

gv

��

IY ′′→X′′Y ′′

gI

��
Y ′
ét (Schcoh

/Y ′)v
a′oo Ψ′

// IY ′→X′Y ′

(I.11.9.2)

https://stacks.math.columbia.edu/tag/0817
https://stacks.math.columbia.edu/tag/01ZA
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We set G ′′ = Ψ′′
∗a

′′−1F′′. The base change morphism a′−1gét∗ → gv∗a
′′−1 induces a canonical iso-

morphism F ′ ∼−→ gI∗G ′′ by I.3.10. Moreover, the canonical morphism gI∗G ′′ → RgI∗G ′′ is an
isomorphism by I.11.5.(1) and I.3.25, since g : Y ′′ → Y ′ is finite ([SGA 4II, VIII.5.6]). By applying
I.11.7 to g and F′′, the canonical morphism

(RgI∗G
′′)⊗L

Z O ′ −→ RgI∗(G
′′ ⊗Z O ′′)(I.11.9.3)

is an almost isomorphism. Let h be the composition of (Y ′′ → X ′′) → (Y ′ → XY ×X X ′) → (Y →
XY ). Note that X ′′ → XY is also proper of finite presentation. By applying I.11.7 to h and F′′, the
canonical morphism

(RhI∗G
′′)⊗L

Z O −→ RhI∗(G
′′ ⊗Z O ′′)(I.11.9.4)

is an almost isomorphism. It is clear that hI = fI ◦ gI. The conclusion follows from the canonical
isomorphism F ′ → RgI∗G ′′ and the canonical almost isomorphisms (I.11.9.3) and (I.11.9.4). □

Lemma I.11.10. With the notation in I.11.3, let F ′ be a constructible abelian sheaf on Y ′
ét and we

set F ′ = Ψ′
∗a

′−1F ′. Assume that X ′ → X is proper of finite presentation. Then, the canonical
morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(I.11.10.1)

is an almost isomorphism.

Proof. We prove by induction on an integer q that the canonical morphism (RqfI∗F ′)⊗Z O →
RqfI∗(F ′ ⊗Z O ′) is an almost isomorphism. It holds trivially for each q ≤ −1. Notice that there
exists a finite morphism g : Y ′′ → Y ′ of finite presentation, a finite locally constant abelian sheaf F′′

on Y ′′
ét and an injective morphism F ′ → gét∗F′′ by [Sta22, 09Z7] (cf. [SGA 4III, IX.2.14]). Let G′

be the quotient of F ′ → gét∗F′′, which is also a constructible abelian sheaf on Y ′
ét since gét∗F′′ is so

([Sta22, 095R, 03RZ]). The exact sequence 0 → F ′ → gét∗F′′ → G′ → 0 induces an exact sequence
by I.3.27.(1),

0 // Ψ′
∗a

′−1F ′ // Ψ′
∗a

′−1(gét∗F′′) // Ψ′
∗a

′−1G′ // 0.(I.11.10.2)

We set H ′ = Ψ′
∗a

′−1(gét∗F′′) and G ′ = Ψ′
∗a

′−1G′. Then, we obtain a morphism of long exact
sequences

(Rq−1fI∗H
′)⊗ O

γ1

��

// (Rq−1fI∗G
′)⊗ O

γ2

��

// (RqfI∗F
′)⊗ O

γ3

��

// (RqfI∗H
′)⊗ O

γ4

��

// (RqfI∗G
′)⊗ O

γ5

��
Rq−1fI∗(H

′ ⊗ O ′) // Rq−1fI∗(G
′ ⊗ O ′) // RqfI∗(F

′ ⊗ O ′) // RqfI∗(H
′ ⊗ O ′) // RqfI∗(G

′ ⊗ O ′)

(I.11.10.3)

Notice that γ1 and γ2 are almost isomorphisms by induction, and that γ4 is an almost isomorphism
by I.11.9. Thus, applying the 5-lemma ([Sta22, 05QA]) in the abelian category of almost Zp-modules
over IY→XY , we see that γ3 is almost injective. Since F ′ is an arbitrary constructible abelian sheaf,
the morphism γ5 is also almost injective. Thus, γ3 is an almost isomorphism. □

Theorem I.11.11. With the notation in I.11.3, let F ′ be a torsion abelian sheaf on Y ′
ét and we set

F ′ = Ψ′
∗a

′−1F ′. Assume that X ′ → X is proper of finite presentation. Then, the canonical morphism

(RfI∗F
′)⊗L

Z O −→ RfI∗(F
′ ⊗Z O ′)(I.11.11.1)

is an almost isomorphism in the derived category D(Zp-ModIY →XY
) (I.5.7).

Proof. We write F ′ as a filtered colimit of constructible abelian sheaves F ′ = colimλ∈Λ F ′
λ

([Sta22, 03SA], cf. [SGA 4III, IX.2.7.2]). We set F ′
λ = Ψ′

∗a
′−1Fλ. We have F ′ = colimλ∈Λ F ′

λ

by [SGA 4II, VI.5.1] whose conditions are satisfied since each object in each concerned site is quasi-
compact. Moreover, for each integer q, we have

(RqfI∗F
′)⊗Z O =colim

λ∈Λ
(RqfI∗F

′
λ)⊗Z O,(I.11.11.2)

RqfI∗(F
′ ⊗Z O ′) = colim

λ∈Λ
RqfI∗(F

′
λ ⊗Z O ′).(I.11.11.3)

The conclusion follows from I.11.10. □

Lemma I.11.12. With the notation in I.11.3 and I.11.4, let F ′ be a torsion abelian sheaf on Y ′
ét,

H = Rfét∗F ′, and we set F ′ = Ψ′
∗a

′−1F ′, H = RΨ∗a
−1H. Let X̃ be an object of IY→XY , Ỹ =

η ×S X̃, F̃ ′ = g′−1
ét F ′.

https://stacks.math.columbia.edu/tag/09Z7
https://stacks.math.columbia.edu/tag/095R
https://stacks.math.columbia.edu/tag/03RZ
https://stacks.math.columbia.edu/tag/05QA
https://stacks.math.columbia.edu/tag/03SA
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(1) The sheaf RqfI∗F ′ is canonically isomorphic to the presheaf X̃ 7→ Hq
ét(Ỹ

′, F̃ ′) for each
integer q.

(2) If Y ′ → Y is proper, then there exists a canonical isomorphism H
∼−→ RfI∗F ′.

Proof. Note that the canonical morphism F ′ → RΨ′
∗a

′−1F ′ is an isomorphism by I.3.27.(1).
Thus, RfI∗F ′ = R(Ψ ◦ fv)∗a′−1F ′, whose q-th cohomology is the sheaf associated to the presheaf
X̃ 7→ Hq

v(Ỹ
′, ã′

−1
F̃ ′) = Hq

ét(Ỹ
′, F̃ ′) by I.3.9, and thus (1) follows. If Y ′ → Y is proper, then the base

change morphism a−1Rfét∗ → Rfv∗a
′−1 induces an isomorphism a−1H ∼−→ Rfv∗a

′−1F ′ by I.3.10,
and thus (2) follows. □

Theorem I.11.13. With the notation in I.11.3, let F′ be a finite locally constant abelian sheaf on
Y ′
ét. Assume that

(i) the morphism X ′ → X is proper of finite presentation, and that
(ii) the sheaf Rqfét∗F′ is finite locally constant for each integer q and nonzero for finitely many

q, and that
(iii) we have Rqψ∗H = 0 (resp. Rqψ′

∗H = 0) for any finite locally constant abelian sheaf H on
Yét (resp. Y ′

ét) and any integer q > 0.
Then, the relative Faltings’ comparison morphism associated to f and F′ (I.10.6.1) (which exists by
(iii)) is an almost isomorphism in the derived category D(Zp-ModEét

Y →X
) (I.5.7), and it induces an

almost isomorphism

(ψ∗R
qfét∗F′)⊗Z B −→ RqfE∗(ψ

′
∗F′ ⊗Z B

′
)(I.11.13.1)

of Zp-modules for each integer q.

Proof. We follow the discussion of I.11.6 and set F ′ = Ψ′
∗a

′−1F′. The canonical morphism
(I.11.6.4)

Rε∗((RfI∗F
′)⊗L

Z O) −→ Rε∗RfI∗(F
′ ⊗Z O ′)(I.11.13.2)

is an almost isomorphism by I.11.7. It remains to show that the canonical morphism (I.11.6.3)

Rε∗(RfI∗F
′)⊗L

Z B −→ Rε∗((RfI∗F
′)⊗L

Z O)(I.11.13.3)

is also an almost isomorphism. With the notation in I.11.12 by taking F ′ = F′, the complex H is a
bounded complex whose cohomologies Hq(H) are finite locally constant abelian sheaves by condition
(ii). Consider the commutative diagram (I.11.1.1),

(Schcoh
/Y )v

a //

Ψ

��

Yét

ψ

��
IY→XY

ε // Eét
Y→X

(I.11.13.4)

We set L = Rψ∗H. Then, Hq(L) = ψ∗H
q(H) by Cartan-Leray spectral sequence and condition (iii).

Hence, L is a bounded complex of abelian sheaves whose cohomologies are finite locally constant by
I.10.3 so that the canonical morphism

L ⊗L
Z B −→ Rε∗(ε

−1L ⊗L
Z O)(I.11.13.5)

is an almost isomorphism by I.8.15.
On the other hand, Hq(H ) = Ψ∗a

−1Hq(H) by Cartan-Leray spectral sequence and I.3.27.(1).
Thus, the base change morphism ε−1Rψ∗ → RΨ∗a

−1 induces an isomorphism ε−1L ∼−→H by I.11.2.
Moreover, the canonical morphism L → Rε∗ε

−1L = Rε∗H = Rψ∗Ra∗a
−1H is an isomorphism by

I.3.9. Thus, the canonical morphism

(Rε∗ε
−1L)⊗L

Z B −→ Rε∗(ε
−1L ⊗Z O)(I.11.13.6)

is an almost isomorphism by (I.11.13.5). In conclusion, (I.11.13.3) is an almost isomorphism by
(I.11.13.6) and by the canonical isomorphisms ε−1L ∼−→H

∼−→ RfI∗F ′. □

Remark I.11.14. We give two concrete situations where the conditions in I.11.13 are satisfied:
(1) Let Zp be the integral closure of Zp in an algebraic closure Qp of Qp, X ′ → X a proper and

finitely presented morphism of coherent Zp-schemes, Y ′ → Y the base change of X ′ → X

by Spec(Qp) → Spec(Zp). Assume that Y ′ → Y is smooth. Then, the condition (ii) is
guaranteed by [SGA 4III, XVI.2.2 and XVII.5.2.8.1], and the condition (iii) is guaranteed
by I.10.8.
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(2) Let OK be a strictly Henselian discrete valuation ring with fraction fieldK of characteristic 0
and residue field of characteristic p, K an algebraic closure ofK, X ′ → X a proper morphism
of OK-schemes of finite type, Y ′ → Y the base change of X ′ → X by Spec(K)→ Spec(OK).
Assume that Y ′ → Y is smooth. Then, the condition (ii) is guaranteed by [SGA 4III,
XVI.2.2 and XVII.5.2.8.1], and the condition (iii) is guaranteed by I.10.7.

I.12. A Local Version of the Relative Hodge-Tate Filtration

I.12.1. Let K be a complete discrete valuation field of characteristic 0 with valuation ring OK whose
residue field is algebraically closed (a condition required by [AG20, 4.1.3, 5.1.3]) of characteristic
p > 0, K an algebraic closure of K, OK the integral closure of OK in K, η = Spec(K), η = Spec(K),
S = Spec(OK), S = Spec(OK). Let (f, g) : (X ′▷ → X ′) → (X◦ → X) be a morphism of adequate
open immersions of schemes (I.10.11) over η → S such that g : X ′ → X is proper and that the
induced morphism (X ′,MX′▷→X′) → (X,MX◦→X) is smooth and saturated. We are in fact in the
situation I.10.12 but with a slightly different notation.

Consider the morphisms of sites defined in I.7.34:

X ′▷,N
η,ét

f̆η,ét // X◦,N
η,ét

ψ̆ // Eét,N
X◦

η→X
σ̆ // XN

ét.(I.12.1.1)

We consider σ̆ as a morphism of ringed sites σ̆ : (Eét,N
X◦

η→X , B̆)→ (XN
ét, ŎXét

), and f̆η,ét as a morphism

of ringed sites f̆η,ét : (X
′▷,N
η,ét , Z̆p)→ (X◦,N

η,ét, Z̆p), where Z̆p = (Z/pnZ)n≥0.

Theorem I.12.2 ([AG20, 6.7.5, 6.7.10, 6.7.13], III.8). Under the assumptions in I.12.1 and with the
same notation, for each integer n ≥ 0, there is a canonical GK-equivariant finite decreasing filtration
(Filq)q∈Z on the B̆Q-module ψ̆∗(R

nf̆η,ét∗(Z̆p)) ⊗Zp B̆Q (cf. I.2.6) and a canonical GK-equivariant
isomorphism for each q ∈ Z,

Grq(ψ̆∗(R
nf̆η,ét∗(Z̆p))⊗Z̆p

B̆Q) ∼= σ̆∗(Rqg∗(Ω
n−q
(X′,MX′ )/(X,MX))⊗OXét

ŎXét
(q − n))Q,(I.12.2.1)

where Grq denotes the graded piece Filq/Filq+1.

We call this filtration the relative Hodge-Tate filtration of the morphism (f, g) : (X ′▷ → X ′) →
(X◦ → X).

Remark I.12.3. We keep the notation and assumptions in I.12.1 and I.12.2.

(1) If we set Rnf̆η,ét∗(Z̆p) = L̆(n) = (L(n)
k )k≥0 where L(n)

k = Rnfη,ét∗(Z/pkZ), then L(n)
k is

a finite locally constant abelian sheaf on X◦
η,ét ([AG20, 2.2.25]), and the inverse system

(L(n)
k )k≥0 is Artin-Rees p-adic ([Fu15, 10.1.18.(iii)]).

(2) The OX -moduleMq,n−q = Rqg∗(Ω
n−q
(X′,MX′ )/(X,MX)) is coherent and its restriction to Xη is

locally free ([IKN05, 7.2], cf. the proof of [AG20, 6.7.13]).

I.12.4. Under the assumptions in I.12.1, I.12.2, I.12.3 and with the same notation, assume further
that X = Spec(R) is affine. We remark that R is p-torsion free ([AGT16, II.6.3.(ii)]). Let V → U

be an object of Eproét
X◦

η→X satisfying the following conditions:

(1) The morphism V → U is Faltings acyclic (cf. I.8.1, I.8.24).
(2) For any integers n ≥ 0 and k ≥ 0, the pullback L(n)

k |Vét
is constant with value Hn

ét,k .

We denote by A the OK-algebra B(V → U) (i.e. UV = Spec(A)), and we set Hn
ét = limk→∞Hn

ét,k.

Remark I.12.5. Let x be a geometric point of V . Then, there is a natural isomorphism Hn
ét,k
∼=

Hn
ét(X

′▷
x ,Z/pkZ) ([AG20, 2.2.25]). We remark that Hn

ét(X
′▷
x ,Zp) = limk→∞Hn

ét(X
′▷
x ,Z/pkZ) is a

finitely generated Zp-module (thus so is Hn
ét), and that the morphism of inverse systems of abelian

groups

(Hn
ét(X

′▷
x ,Zp)/pkHn

ét(X
′▷
x ,Zp))k≥0 −→ (Hn

ét,k)k≥0(I.12.5.1)

is an Artin-Rees isomorphism, by which we mean its kernel and cokernel are Artin-Rees zero (cf.
I.12.3.(1) and [Fu15, 10.1.4]).

I.12.6. Following I.12.4, notice that U◦ = X◦ ×X U is affine and geometrically normal over K and
that V is affine and normal, since X◦ is smooth over K. We assume further that the following
conditions hold:

(3) The scheme V is integral and lies over a connected component U◦
⋆ of U◦.
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(4) The function field L of V is a Galois extension of the function field K of U◦
⋆ with Galois

group Γ.
Let U◦

η,⋆ be the connected component of U◦
η over which V lies. Its function field is the composite KK

of K and K in L, which is Galois over K whose Galois group identifies with the closed subgroup GL
of GK where L is the algebraic closure of K in K. We denote by ∆ the Galois group of L over KK.
It is clear that GL = Γ/∆.

V

∆

��
Γ

��

U◦
η,⋆

//

GL

��

Spec(K)

GK

��
U◦
⋆

// Spec(K)

(I.12.6.1)

Since V is the integral closure of U◦
⋆ in L, the canonical homomorphism of groups

AutU◦
⋆
(V )op −→ AutK(L) = Γ(I.12.6.2)

is an isomorphism. In particular, Γ acts naturally on V on the right. For γ ∈ Γ with image u ∈ GK ,
we denote by fγ : V → V the right action of γ on V , and for any K-scheme Z, we denote by
fu : Zη → Zη the base change of the automorphism of η induced by u. There is a commutative
diagram

V
fγ //

��

V

��
U◦
η

fu // U◦
η

(I.12.6.3)

The natural isomorphism (induced by the base change)

f−1
γ,ét(L

(n)
k |Vét

)
∼−→ L(n)

k |Vét
(I.12.6.4)

defines a natural action of Γ on Hn
ét,k, and thus an action on Hn

ét = limkH
n
ét,k. On the other hand, Γ

also acts naturally on A as Spec(A) is the integral closure of U in L, and thus acts on the Tate twist
A(i) via the map Γ→ GK .

Theorem I.12.7. Under the assumptions in I.12.4 and with the same notation, for each integer
n ≥ 0, there is a canonical finite decreasing filtration (filq)q∈Z on Hn

ét ⊗Zp
Â[1/p] and a canonical

isomorphism for each q ∈ Z,

grq(Hn
ét ⊗Zp Â[

1

p
]) ∼= Hq(X ′,Ωn−q(X′,MX′ )/(X,MX))⊗R Â[

1

p
](q − n),(I.12.7.1)

where grq denotes the graded piece filq/filq+1. Moreover, under the assumptions in I.12.6 and with
the same notation, the filtration (filq)q∈Z and the isomorphisms (I.12.7.1) are Γ-equivariant.

Proof. We set Y = X◦
η . We start from the filtration of I.12.2. Consider the natural morphism of

ringed sites (I.7.34.2) ν̆ : (Eproét,N
Y→X , B̆)→ (Eét,N

Y→X , B̆). We obtain a filtration ν̆∗Filq on ν̆∗(ψ̆∗L̆(n)⊗Z̆p

B̆Q) with graded pieces ν̆∗Grq = ν̆∗σ̆∗M̆q,n−q(q − n)Q (as ν̆∗ = ν̆−1 is exact, cf. (I.7.34.3)). We
apply the derived functor RΓ(Eproét,N

V→U ,−) to these modules.
Consider the commutative diagram

Vét

j

��

ψ // Eét
V→U

j

��

Eproét
V→U

νoo

j

��
Yét

ψ // Eét
Y→X Eproét

Y→X
νoo

(I.12.7.2)

Since the canonical morphism j−1ψ∗L(n)
k → ψ∗j

−1L(n)
k is an isomorphism by I.10.9, j−1ψ∗L(n)

k is
constant with value Hn

ét,k by I.10.3. Thus, the restriction of ν̆−1ψ̆∗L̆(n) to Eproét,N
V→U is the inverse

system of constant sheaves (Hn
ét,k)k≥0. Therefore, the canonical morphism

Hn
ét,k ⊗Zp A −→ RΓ(Eproét

V→U , ν
∗(ψ∗L(n)

k ⊗Zp B))(I.12.7.3)
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is an almost isomorphism, since V → U is Faltings acyclic and Hn
ét,k is a finite abelian group. Notice

that for any integer q ≥ 0 there exists a canonical exact sequence ([AGT16, VI.7.10])

0→ R1 lim
k→∞

Hq−1(Eproét
V→U , ν

∗(ψ∗L(n)
k ⊗Zp B))→Hq(Eproét,N

V→U , ν̆∗(ψ̆∗L̆(n) ⊗Z̆p
B̆))

(I.12.7.4)

→ lim
k→∞

Hq(Eproét
V→U , ν

∗(ψ∗L(n)
k ⊗Zp B))→ 0.

Since the inverse system (Hn
ét,k⊗Zp A)k≥0 is Artin-Rees p-adic, R1 limk→∞H0(Eproét

V→U , ν
∗(ψ∗L(n)

k ⊗Zp

B)) is almost zero by the almost isomorphism (I.12.7.3). Moreover, we deduce that limk→∞(Hn
ét,k⊗Zp

A)→ H0(Eproét,N
V→U , ν̆∗(ψ̆∗L̆(n)⊗Z̆p

B̆)) is an almost isomorphism and that Hq(Eproét,N
V→U , ν̆∗(ψ̆∗L̆(n)⊗Z̆p

B̆)) is almost zero for q > 0. SinceHn
ét is a finitely generated Zp-module (I.12.5), we have limk→∞(Hn

ét,k⊗Zp

A) = Hn
ét ⊗Zp

Â. Therefore, the canonical morphism

Hn
ét ⊗Zp Â −→ RΓ(Eproét,N

V→U , ν̆∗(ψ̆∗L̆(n) ⊗Z̆p
B̆))(I.12.7.5)

is an almost isomorphism. Inverting p, we obtain a canonical isomorphism

Hn
ét ⊗Zp Â[

1

p
]

∼−→ RΓ(Eproét,N
V→U , ν̆∗(ψ̆∗L̆(n) ⊗Z̆p

B̆))[
1

p
].(I.12.7.6)

By taking H0(Eproét,N
V→U , ν̆∗Filq), the filtration ν̆∗Filq on ν̆∗(ψ̆∗L̆(n)⊗Z̆p

B̆Q) induces a canonical filtra-

tion filq on Hn
ét(X

′▷
x ,Zp)⊗Zp Â[1/p] (cf. I.2.6).

On the other hand, recall that Mq,n−q is the coherent OX -module associated to the coherent
R-module Mq,n−q = Hq(X ′,Ωn−q(X′,MX′ )/(X,MX)) and that Mq,n−q[1/p] is a projective R[1/p]-module
(I.12.3.(2)). By I.8.4, we see that the canonical morphism

Hq(X ′,Ωn−q(X′,MX′ )/(X,MX))⊗R Â[
1

p
] −→ RΓ(Eproét,N

V→U , ν̆∗σ̆∗M̆q,n−q)[
1

p
](I.12.7.7)

is an isomorphism. Thus, the canonical isomorphisms for the graded pieces ν̆∗Grq = ν̆∗σ̆∗M̆q,n−q(q−
n)Q induce canonical isomorphisms (I.12.7.1). This completes the proof of the first statement.

For the Γ-equivariance, let γ ∈ Γ with image u ∈ GK . We obtain from I.12.6 a commutative
diagram

(V → U)

��

(fγ ,idU ) // (V → U)

��
(Y → X)

(fu,idX) // (Y → X)

(I.12.7.8)

where the vertical arrows are the same pro-étale morphism. It induces a commutative diagram of
fibred ringed sites over N,

Eproét,N
V→U

fγ //

j

��

Eproét,N
V→U

j

��
Eproét,N
Y→X

fu // Eproét,N
Y→X

(I.12.7.9)

where the vertical morphisms induce the same localization morphism of the associated topoi ([AGT16,
III.7.9]). Recall that the GK-actions on the B̆-modules ν̆∗(ψ̆∗L̆(n) ⊗Z̆p

B̆), ν̆∗σ̆∗M̆q,n−q(q − n) on

Eproét,N
Y→X define isomorphisms

ν̆∗(ψ̆∗L̆(n) ⊗Z̆p
B̆)

∼−→ f−1
u (ν̆∗(ψ̆∗L̆(n) ⊗Z̆p

B̆)),(I.12.7.10)

ν̆∗σ̆∗M̆q,n−q(q − n) ∼−→ f−1
u (ν̆∗σ̆∗M̆q,n−q(q − n)).(I.12.7.11)

By I.12.2, up to isogenies, they are respectively compatible with the relative Hodge-Tate filtration
ν̆∗Filq and compatible with the canonical isomorphisms for the graded pieces ν̆∗Grq. Passing to
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localization by j−1, we obtain from the isomorphisms (I.12.7.10) and (I.12.7.11) the isomorphisms

j−1(ν̆∗(ψ̆∗L̆(n) ⊗Z̆p
B̆))

∼−→ j−1f−1
u (ν̆∗(ψ̆∗L̆(n) ⊗Z̆p

B̆))
∼−→ f−1

γ j−1(ν̆∗(ψ̆∗L̆(n) ⊗Z̆p
B̆)),

(I.12.7.12)

j−1(ν̆∗σ̆∗M̆q,n−q(q − n)) ∼−→ j−1f−1
u (ν̆∗σ̆∗M̆q,n−q(q − n)) ∼−→ f−1

γ j−1(ν̆∗σ̆∗M̆q,n−q(q − n)).
(I.12.7.13)

Applying the derived functor RΓ(Eproét,N
V→U ,−)[1/p] and combining with the canonical isomorphisms

(I.12.7.6) and (I.12.7.7), we obtain automorphisms ofHn
ét⊗ZpÂ[1/p] and ofHq(X ′,Ωn−q(X′,MX′ )/(X,MX))⊗R

Â[1/p](q − n), which are exactly the semi-linear actions of γ ∈ Γ on these Â[1/p]-modules defined in
I.12.6 by going through the definitions. Thus, we see that the actions of Γ are compatible with the
relative Hodge-Tate filtration and the canonical isomorphisms for the graded pieces, which completes
the proof. □
Remark I.12.8. The arguments for I.12.7 does not make use of the assumption that the residue field
of K is algebraically closed.

Remark I.12.9. In I.12.6, we take U to be an étale neighborhood of a point of the special fibre of X
which is affine and admits an adequate chart in the sense of [AGT16, III.4.4] (cf. [AGT16, III.4.7]),
and take V to be the inverse limit of the normalized universal cover (Vi) of U◦

⋆ at x (cf. [SGA 1,
V.7], [AGT16, VI.9.8]). We set UVi = Spec(Ri) and R = colim(Ri). Then, Γ = π1(U

◦
⋆ , x) and

A = R. We obtain from the adequate chart finitely many nonzero divisors f1, . . . , fr of Γ(Uη,OUη )

such that the divisor D =
∑r
i=1 div(fi) has support Uη \ U◦ and that at each strict henselization of

Uη those elements fi contained in the maximal ideal form a subset of a regular system of parameters
(cf. [AG20, 4.2.2.(ii)]). Then, A is almost pre-perfectoid and admits compatible n-th power roots of
fi ([AGT16, II.9.10]). Hence, V → U is Faltings acyclic by I.8.24, and thus Theorem I.12.7 holds in
this setting, which gives a local version of the relative Hodge-Tate filtration answering the question
of Abbes-Gros raised in the first version of [AG20] (cf. [AG20, 1.2.3]).



CHAPTER II

Sen Operators and Lie Algebras arising from Galois
Representations over p-adic Varieties

II.1. Introduction

II.1.1. Let K be a complete discrete valuation field extension of Qp, K an algebraic closure of K, K̂
the p-adic completion of K, G the Galois group of K over K. When the residue field of K is perfect,
for any finite-dimensional (continuous semi-linear) K̂-representationW of G, Sen [Sen81] associates a
canonical K̂-linear endomorphism on W , called the Sen operator, which determines the isomorphism
class of G-representations on W . Moreover, if W is the base change of a Qp-representation V of G,
Sen [Sen81, Theorem 11] relates the infinitesimal action of the inertia subgroup of G on V to the
Sen operator on W . When the residue field of K is imperfect with a p-basis of cardinality d ≥ 1,
Brinon [Bri03] defines 1+ d (non-canonical) operators on W , which also determine the isomorphism
class of G-representations on W . Moreover, if W is the base change of a Qp-representation V of G,
Ohkubo [Ohk14] relates the space generated by these 1 + d operators to the infinitesimal action of
the inertia subgroup of G on V as Sen did for d = 0. In this chapter, we construct Sen operators for
representations of the fundamental group of a p-adic affine variety with semi-stable chart. We show
that the module of Sen operators is canonically defined, independent of the choice of the chart. Indeed,
we associate to each representation a canonical Lie algebra action which gives all the Sen operators.
Moreover, when the representation comes from Qp, we relate the Sen operators to the infinitesimal
action of the inertia subgroups at height-1 primes, generalizing the results of Sen-Ohkubo. As an
application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing
a result of Pan.

II.1.2. In fact, our strategy for constructing the Sen operators in the relative situation is to glue the
Sen operators defined in the case of valuation fields. Hence, we firstly take a brief review on Brinon’s
construction of Sen operators. We take t1, . . . , td ∈ OK whose images in the residue field form a
p-basis. We fix a compatible system of primitive pn-th roots of unity ζ = (ζpn)n∈N and a compatible
system of pn-th roots (ti,pn)n∈N of ti for 1 ≤ i ≤ d. We also put t0,pn = ζpn for consistency. For any
n,m ∈ N ∪ {∞}, consider the field extension Kn,m = K(ζpn , t1,pm , . . . , td,pm) of K contained in K.
We simply set Kn,0 = Kn and we name some Galois groups as indicated in the following diagram

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(II.1.2.1)

Any finite-dimensional K̂-representation W of G descends to a K∞,∞-representation V of Γ by a
theorem of Brinon (cf. II.5.17). We remark that it can be descended further to a K∞-representation
of Γ on which ∆ acts analytically by a theorem of Tsuji (cf. II.5.18). Here, acting analytically means
that the action of any element of ∆ is given by the exponential of its infinitesimal action (cf. II.4.14).
The topological group Γ is indeed a p-adic analytic group, to which one can associate a Lie algebra
Lie(Γ) over Qp. Then, the infinitesimal action of Lie(Γ) on V extends K̂-linearly to a (non-canonical)
Lie algebra action of Lie(Γ) on W , which defines 1 + d operators of W by Brinon as Γ is locally
isomorphic to Zp ⋉ Zdp.

02020 Mathematics Subject Classification 11F80 (primary), 14F35, 14G45.
Keywords: Sen operator, Galois representation, p-adic Simpson correspondence, locally analytic vector
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This action of Lie(Γ) depends on the choice of t1, . . . , td, which prevents the generalization to
relative situation. The first question is whether we can define a canonical Lie algebra action on W ,
which gives the Sen operators defined by Brinon by choosing a basis. We answer it positively by
considering the Faltings extension of OK defined in [He21] (cf. II.5.7), that is, a canonical exact
sequence of K̂-representations of G,

0 −→ K̂(1)
ι−→ EOK

ȷ−→ K̂ ⊗OK Ω̂1
OK
−→ 0,(II.1.2.2)

where K̂(1) denotes the first Tate twist of K̂, EOK
= lim←−x 7→px

Ω1
OK/OK

is a (1 + d)-dimensional

K̂-space with a basis {(d log(ti,pn))n∈N}0≤i≤d. Taking duals and Tate twists, we obtain a canonical
exact sequence

0 −→ HomOK
(Ω̂1

OK
(−1), K̂)

ȷ∗−→ E ∗
OK

(1)
ι∗−→ K̂ −→ 0(II.1.2.3)

where E ∗
OK

= Hom
K̂
(EOK , K̂). There is a canonical K̂-linear Lie algebra structure on E ∗

OK
(1) associ-

ated to the linear form ι∗ defined by [f1, f2] = ι∗(f1)f2 − ι∗(f2)f1 for any f1, f2 ∈ E ∗
OK

(1). This will
be the canonical Lie algebra replacing Lie(Γ), so that we obtain the following canonical definition of
Sen operators.

Theorem II.1.3 (cf. II.5.35, II.5.38). Let K be a complete discrete valuation field extension of Qp
whose residue field admits a finite p-basis, G its absolute Galois group. For any finite-dimensional
K̂-representation W of G, there is a canonical G-equivariant homomorphism of K̂-linear Lie algebras
(where we put adjoint action of G on End

K̂
(W )),

φSen|W : E ∗
OK

(1) −→ End
K̂
(W ),(II.1.3.1)

which is functorial in W and satisfies the following properties:
(1) Let t1, . . . , te ∈ K with compatible systems of p-power roots (ti,pn)n∈N ⊆ K such that

dt1, . . . , dte are K-linearly independent in Ω̂1
OK

[1/p]. Consider the tower (Kn,m)n,m∈N de-
fined by these elements analogously to (II.1.2.1) and take the same notation for Galois
groups, and assume that there is a K∞-representation V of Γ on which ∆ acts analytically
(II.4.14) such that W = K̂ ⊗K∞ V . Then, Γ is naturally locally isomorphic to Zp⋉Zep, and
if we take the standard basis ∂0, . . . , ∂e of Lie(Γ) ∼= Lie(Zp ⋉Zep), then for any f ∈ E ∗

OK
(1),

φSen|W (f) =

e∑
i=0

f((d log(ti,pn))n∈N ⊗ ζ−1)⊗ φ∂i |V ,(II.1.3.2)

where φ∂i |V is the infinitesimal action of ∂i on V .
(2) Let K ′ be a complete discrete valuation field extension of K whose residue field admits a

finite p-basis, W ′ = K̂ ′ ⊗
K̂
W . Assume that K ′ ⊗K Ω̂1

OK
[1/p] → Ω̂1

OK′ [1/p] is injective.
Then, there is a natural commutative diagram

E ∗
OK′ (1)

φSen|W ′ //

��

End
K̂′(W

′)

K̂ ′ ⊗
K̂

E ∗
OK

(1)
id

K̂′⊗φSen|W
// K̂ ′ ⊗

K̂
End

K̂
(W )

≀

OO
(II.1.3.3)

Moreover, if K ′ is a finite extension of K, then the left vertical arrow is an isomorphism.

The key of its proof is to show that the map φSen|W defined by the formula (II.1.3.2) does not
depend on the choice of V and ti. For this, we use the variant of p-adic Simpson correspondence
developed by Tsuji [Tsu18] over OK (cf. II.5.31). One clue is that the period ring used in this
correspondence is constructed as the filtered colimit of symmetric tensor products of the Faltings
extension (II.1.2.2) (called the Hyodo ring, cf. II.5.13). We remark that the assumption on K ′ ⊗K
Ω̂1

OK
[1/p]→ Ω̂1

OK′ [1/p] for the functoriality is a technical condition for its proof, and we don’t know
how to remove this (cf. II.5.38).

II.1.4. Now we can generalize the construction of Sen operators in the relative situation. Let K be
a complete discrete valuation field extension of Qp with perfect residue field, π a uniformizer of K.
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For simplicity, we consider a Noetherian normal domain A flat over OK with A/pA ̸= 0 such that
there exists an étale ring homomorphism for some integers 0 ≤ r ≤ c ≤ d,

OK [T0, . . . , Tr, T
±1
r+1, . . . , T

±1
c , Tc+1, . . . , Td]/(T0 · · ·Tr − π) −→ A.(II.1.4.1)

Thus, Spec(A) is endowed with a strictly normal crossings divisor defined by T0 · · ·Td. We set
Atr = A[1/T0 · · ·Td]. We call (Atr, A) a semi-stable pair, and call (II.1.4.1) a semi-stable chart of it.
Let K be the fraction field of A, Kur the maximal unramified extension of K with respect to (Atr, A),
i.e. the union of finite field extensions K′ of K in an algebraic closure of K such that the integral
closure A′ of A in K′ is finite étale over Atr, and let A be the integral closure of A in Kur. We
remark that this chapter considers more general pairs (called quasi-adequate) than semi-stable pairs,
so that the directed system of finite subextensions of Kur/K admits a cofinal subsystem consisting
of elements K′ such that the pair (A′

tr, A
′) is quasi-adequate, where A′

tr = Atr ⊗A A′ (cf. II.9.5,
II.11.9). As before, we also consider the Faltings extension of A (cf. II.9.36), that is, a canonical
exact sequence of Â[1/p]-representations of Gal(Kur/K),

0 −→ Â[
1

p
](1)

ι−→ EA
ȷ−→ Â[

1

p
]⊗A Ω1

(Atr,A) −→ 0,(II.1.4.2)

where Ω1
(Atr,A) denotes the A-module of logarithmic 1-differentials of the pair (Atr, A) over (K,OK),

which is finite free of rank d. The canonical Â[1/p]-module EA is finite free of rank 1+d, which satisfies
the following property (cf. II.9.36, II.9.38): there is a canonicalA[1/p]-linear map lim←−x 7→px

Ω1
A/A
→ EA

such that for any element s ∈ A[1/p] ∩ A×
tr with a compatible system of p-power roots (spn)n∈N ⊆

A[1/p], there is a unique element ω ∈ EA such that the image of (sp
n−1
pn dspn)n∈N is equal to sω (we

thus denote ω by (d log(spn))n∈N). As before, we obtain a canonical exact sequence by taking duals
and Tate twists,

0 −→ HomA(Ω
1
(Atr,A)(−1), Â[

1

p
])

ȷ∗−→ E ∗
A(1)

ι∗−→ Â[
1

p
] −→ 0,(II.1.4.3)

and we endow E ∗
A(1) with the canonical Â[1/p]-linear Lie algebra structure associated to the linear

form ι∗. Now we can state the construction of Sen operators in the relative situation.

Theorem II.1.5 (cf. II.11.4, II.11.7, II.11.9). With the notation in II.1.4, for any finite projective
Â[1/p]-representation W of an open subgroup G of Gal(Kur/K), there is a canonical G-equivariant
homomorphism of Â[1/p]-linear Lie algebras (where we put adjoint action of G on End

Â[1/p]
(W )),

φSen|W : E ∗
A(1) −→ End

Â[ 1p ]
(W ),(II.1.5.1)

which is functorial in W and G, depends only on the pair (Atr, A) not on the choice of the chart
(II.1.4.1), and satisfies the following properties:

(1) Let A′ be the integral closure of A in a finite field extension K′ of (Kur)
G contained in Kur,

and let t1, . . . , te ∈ A′[1/p] ∩ A′×
tr with compatible systems of p-power roots (ti,pn)n∈N ⊆

A[1/p] such that dt1, . . . ,dte are K′-linearly independent in Ω1
K′/K . Consider the tower

(K′
n,m)n,m∈N defined by these elements analogously to (II.1.2.1) and take the same notation

for Galois groups, and let A′
n,m be the integral closure of A in K′

n,m, Ã′
∞ = colimn Â′

n.
Assume that there is a finite projective Ã′

∞[1/p]-representation V of Γ on which ∆ acts
analytically (II.4.14) such that W = Â ⊗Ã′

∞
V . Then, Γ is naturally locally isomorphic to

Zp⋉Zep, and if we take the standard basis ∂0, . . . , ∂e of Lie(Γ) ∼= Lie(Zp⋉Zep), then for any
f ∈ E ∗

A(1),

φSen|W (f) =
e∑
i=0

f((d log(ti,pn))n∈N ⊗ ζ−1)⊗ φ∂i |V ,(II.1.5.2)

where φ∂i |V is the infinitesimal action of ∂i on V .
(2) Let K ′ be a complete discrete valuation field extension of K with perfect residue field,

(A′
tr, A

′) a semi-stable pair over OK′ with fraction field K′, A→ A′ an injective ring homo-
morphism over OK → OK′ which induces an inclusion (Atr, A)→ (A′

tr, A
′), W ′ = Â′⊗

Â
W .
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Assume that K′ ⊗K Ω1
K/K → Ω1

K′/K′ is injective. Then, there is a natural commutative dia-
gram

E ∗
A′(1)

φSen|W ′ //

��

End
Â′[ 1p ]

(W ′)

Â′ ⊗
Â

E ∗
A(1) id

Â′⊗φSen|W
// Â′ ⊗

Â
End

Â[ 1p ]
(W )

≀

OO
(II.1.5.3)

The situation described in II.1.3.(1) is not special. Indeed, by a descent theorem of Tsuji [Tsu18,
14.2] when he developed the p-adic Simpson correspondence for (Atr, A), the representation W of G
can be descended to V for some A′. We remark that Tsuji proved the case when G = Gal(Kur/K),
and we prove the general case by transferring his arguments to a more general class of pairs (cf.
II.10.16). The key to the proof of II.1.5 is still checking that the map φSen|W defined by the formula
(II.1.5.2) does not depend on the choice of A′, V and ti. We reduce this problem to the case of
valuation rings II.1.3 by localizing at height-1 prime ideals of A containing p.

Definition II.1.6. We call the image Φ(W ) of φSen|W the module of Sen operators of W . We call the
image Φgeo(W ) of HomA(Ω

1
(Atr,A)(−1), Â[

1
p ]) under φSen|W the module of geometric Sen operators of

W . And we call the image of 1 ∈ Â[ 1p ] under φSen|W in Φari(W ) = Φ(W )/Φgeo(W ) the arithmetic
Sen operator of W .

The following evidence supports such a definition of arithmetic Sen operator: any two lifts of it
in End

Â[ 1p ]
(W ) have the same characteristic polynomial (cf. II.11.15).

II.1.7. We denote by Sp(A) the set of height-1 prime ideals of A containing p. For any q ∈ Sp(A)

with image p ∈ Spec(A), let Ep be the p-adic completion of the discrete valuation field Ap[1/p], Eq an
algebraic closure of Ep with an embedding of valuation rings Aq → OEq

. Let Iq ⊆ Gal(Kur/K) be the
image of the inertia subgroup of Gal(Eq/Ep). We have the following generalization of Sen-Ohkubo’s
result, which follows from the same reduction strategy as above.

Theorem II.1.8 (cf. II.11.18, II.11.9). Let G be an open subgroup of Gal(Kur/K), (V, ρ) a finite-
dimensional Qp-representation of G, W = Â[1/p]⊗Qp V . Then,

∑
q∈Sp(A) Lie(ρ(Iq)) is the smallest

Qp-subspace S of EndQp(V ) such that the Â[1/p]-module of Sen operators Φ(W ) is contained in

Â[1/p]⊗Qp S.

As a corollary, one can lift the Sen operators of Qp-representations to a universal Lie algebra
homomorphism.

Corollary II.1.9 (cf. II.11.21, II.11.23). Let G be a quotient of an open subgroup of Gal(Kur/K)
which is a p-adic analytic group. Then, there exists a canonical homomorphism of Â[1/p]-linear Lie
algebras φSen|G : E ∗

A(1) → Â[1/p] ⊗Qp Lie(G) making the following diagram commutative for any
finite-dimensional Qp-representation V of G,

E ∗
A(1)

φSen|G //

φSen|W

��

Â[ 1p ]⊗Qp Lie(G)

id
Â[ 1

p
]
⊗φ|V

��

End
Â[ 1p ]

(W ) Â[ 1p ]⊗Qp EndQp(V )
∼oo

(II.1.9.1)

where W = Â[1/p]⊗Qp V is the associated object of Repproj
cont(G, Â[1/p]), and φ|V is the infinitesimal

Lie algebra action of Lie(G) on V .

Now we can give our generalization of Pan’s result [Pan22, 3.1.2].

Theorem II.1.10 (cf. II.12.22). Let G be a quotient of Gal(Kur/K) which is a p-adic analytic group,
GH ⊆ G the image of Gal(Kur/K∞), Φgeo

G ⊆ Â[1/p]⊗QpLie(GH) the image of HomA(Ω
1
(Atr,A)(−1), Â[1/p])

under φSen|G. Then, the infinitesimal action of Φgeo
G annihilates the GH-locally analytic vectors in

Â[1/p] (see II.12.18 for a precise definition).
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For its proof, we need to extend Sen operators on the infinite-dimensional representations of
analytic functions on sufficiently small open subgroups of G. This is the reason why we insist to
consider open subgroups of Gal(Kur/K) in the previous theorems, which enables us to prove properties
related to Lie algebras but leads us to a general class of pairs more than semi-stable pairs.

Previously, we always work with representations with rational coefficients, since a finite extension
A′ of A is not a nice integral model for A′[1/p]. But in order to investigate the continuity of Sen
operators on infinite-dimensional representations, we need to consider representations with integral
coefficients as “lattices” to bound these operators. Nice properties of the Sen operators are preserved
by continuation if we have good descent and decompletion theory for integral representations over
A′. But it has not been well developed yet as A′ is not a nice integral model. However, we don’t
encounter such a problem if A′ is a valuation ring (at least for the geometric part)! So we still follow
the previous strategy: reduce the problem to the case of valuation rings by localizing at height-1
prime ideals of A containing p; and for the latter case, we can apply the descent results for small
representations with integral coefficients of the geometric fundamental group, developed by Faltings
[Fal05], Abbes-Gros [AGT16, II.14] and Tsuji [Tsu18, §11, §12]. We plan to investigate in the
future whether or not the image ΦG of φSen|G annihilates the G-locally analytic vectors in Â[1/p].

II.1.11. The article is structured as follows. In section II.3, we briefly review the theory of p-adic
analytic groups from a purely algebraic view following [DdSMS99]. In section II.4, we study the
tower (Kn,m)n,m∈N (II.1.2.1) and the infinitesimal actions of representations arising from this tower
in a general setting. Then, we revisit Brinon’s generalization of Sen’s theory in section II.5 using the
p-adic Simpson correspondence developed by Tsuji, and give our canonical definition of Sen operators.
For the generalization in the relative situation, we firstly introduce the main objects, quasi-adequate
algebras, in section II.9. They share nice properties with semi-stable pairs up to a p-power torsion
by some preparation lemmas in section II.7. Especially, we can also define Faltings extension for
such general algebra. A priori, the construction of Faltings extension in the relative situation is
not canonical. We show the canonicity of Faltings extension by reducing to the case of valuation
rings, cf. II.9.36. To glue the Sen operators defined over valuation rings, we need a “global model”
on a quasi-adequate algebra, that is, a descent of representation of the fundamental group. This is
a generalization of Tsuji’s result and done in the section II.10. We construct the Sen operators in
section II.11, and discuss their relation with Lie algebras. Finally, we extend Sen operators to infinite-
dimensional representations in section II.6 and the end of section II.11, and give an application on
locally analytic vectors in the last section II.12.
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II.2. Notation and Conventions

II.2.1. Let d ∈ N be a natural number. We endow the set (N ∪ {∞})d with the partial order
defined by m = (m1, . . . ,md) ≤ m′ = (m′

1, . . . ,m
′
d) if mi ≤ m′

i for any 1 ≤ i ≤ d. We put
|m| = m1 + · · · + md ∈ N ∪ {∞}. For any r ∈ N ∪ {∞}, we set r = (r, . . . , r) ∈ (N ∪ {∞})d and
ri = (0, . . . , r, . . . , 0) ∈ (N ∪ {∞})d where r appears at the i-th component.

We endow the set Nd>0 with the partial order defined by N |N ′ if Ni divides N ′
i for any 1 ≤ i ≤ d,

where N = (N1, . . . , Nd) and N ′ = (N ′
1, . . . , N

′
d), and we put N ′/N = (N ′

1N
−1
1 , . . . , N ′

dN
−1
d ) ∈ Nd>0.

II.2.2. All rings considered in this article are unitary and commutative. We fix a prime number p.
For a ring R, we denote by Ω1

R the R-module Ω1
R/Z of 1-differentials of R over Z, and by Ω̂1

R its p-adic
completion. For an abelian group M , we set

Tp(M) = lim←−
x 7→px

M [pn] = HomZ(Z[1/p]/Z,M),(II.2.2.1)

Vp(M) = lim←−
x 7→px

M = HomZ(Z[1/p],M).(II.2.2.2)

We remark that Tp(M) is a p-adically complete Zp-module ([Jan88, 4.4]), and that if M = M [p∞]

(i.e., M is p-primary torsion) then Vp(M) = Tp(M)⊗Zp Qp. We fix an algebraic closure Qp of Qp, and
we set Zp(1) = Tp(Q

×
p ) which is a free Zp-module of rank 1 and any compatible system of primitive

pn-th roots of unity ζ = (ζpn)n∈N in Qp (i.e. ζppn+1 = ζpn , ζ1 = 1, ζp ̸= 1) gives a basis of it. We
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endow Zp(1) with the natural continuous action of the Galois group Gal(Qp/Qp). For any Zp-module
M and r ∈ Z, we set M(r) =M ⊗Zp Zp(1)⊗r, the r-th Tate twist of M .

II.2.3. Let A be a topological ring, M a finitely generated A-module. For any A-linear surjective
homomorphism An → M with n ∈ N, if we endow An with the product topology, then the quotient
topology on M does not depend on the choice of the surjection. We call this topology on M the
canonical topology ([Tsu18, page 820]). It is clear that any homomorphism of finitely generated
A-modules is continuous with respect to the canonical topology.

If the topology on A is linear, then the canonical topology on M is also linear. For another finitely
generated A-module N , the canonical topology on M⊗AN coincides with the tensor product topology
of the canonical topologies on M and N . Moreover, let A → A′ be a continuous homomorphism of
linearly topologized rings. Then, the canonical topology on A′⊗AM as a finitely generated A′-module
coincides with the tensor product topology of the topology on A′ and the canonical topology on M .

II.2.4. Let G be a topological group, A a topological ring endowed with a continuous action by G. An
A-representation (W,ρ) of G is a topological A-module W endowed with a continuous semi-linear ac-
tion ρ of G. A morphism W →W ′ of A-representations of G is a continuous A-linear homomorphism
compatible with the action of G. We denote by Repcont(G,A) the category of A-representations of
G. Let A0 be a G-stable subring of A. The (G,A0)-finite part of an A-representation W of G is the
sum of all G-stable finitely generated A0-submodules of W .

We say that an A-representation W of G is finite projective if W is a finite projective A-
module endowed with the canonical topology. We denote by Repproj

cont(G,A) the full subcategory
of Repcont(G,A) consisting of finite projective A-representations of G.

Assume that the topology on A is linear. For any two A-representations W,W ′ of G with linear
topologies, the diagonal action of G on W ⊗A W ′ is continuous with respect to the tensor product
topology. If moreover W and W ′ are finite projective, then so is W ⊗A W ′ by II.2.3. This makes
Repproj

cont(G,A) into an additive tensor category. Moreover, let A′ be a linearly topologized ring en-
dowed with a continuous action of a topological group G′, G′ → G a continuous group homomorphism,
A→ A′ a continuous ring homomorphism compatible with the actions of G and G′. Then, the tensor
product defines a natural functor

Repproj
cont(G,A) −→ Repproj

cont(G
′, A′), W 7→ A′ ⊗AW.(II.2.4.1)

II.3. Brief Review on p-adic Analytic Groups

The theory of p-adic analytic groups (which are often referred to as “p-adic Lie groups”) was
developed by Lazard [Laz65]. We mainly follow [DdSMS99] to give a brief review.

Definition II.3.1 ([DdSMS99, Theorem 4.5]). A pro-p group G is called uniform if G is topolog-
ically finitely generated, torsion free and G/Gp (resp. G/G4) is abelian if p is odd (resp. p = 2),
where Gn denotes the closed subgroup of G generated by n-th powers for n ∈ N.

In fact, the subset of pn-th powers in a uniform pro-p group G forms a uniform and open char-
acteristic subgroup Gp

n

of G; these open subgroups {Gpn}n∈N form a fundamental system of neigh-
bourhoods of 1 ∈ G; and the map G → Gp

n

sending x to xp
n

is a homeomorphism of topological
spaces ([DdSMS99, Theorems 3.6, 4.10]).

Definition II.3.2 ([DdSMS99, Section 9.4]). A Lie algebra L over Zp is called powerful if L is a
finite free Zp-module and [L,L] ⊆ pL (resp. [L,L] ⊆ 4L) if p is odd (resp. p = 2).

For a powerful Lie algebra L over Zp and any n ∈ N, it is clear that the Lie sub-algebra pnL is
also powerful.

II.3.3. We associate to a uniform pro-p group G a powerful Lie algebra LG = (G,+G, [ , ]G) over Zp
as follows:

(1) The underlying set of LG is that of G.
(2) The additive structure on LG is given by ([DdSMS99, Definition 4.12])

x+G y = lim
n→∞

(xp
n

yp
n

)p
−n

, ∀x, y ∈ G,(II.3.3.1)

where taking pn-th root is well-defined as the map G → Gp
n

sending x to xp
n

is a homeo-
morphism.

(3) The Lie bracket on LG is given by ([DdSMS99, Definition 4.29])

[x, y]G = lim
n→∞

(x−p
n

y−p
n

xp
n

yp
n

)p
−2n

, ∀x, y ∈ G.(II.3.3.2)
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The Lie algebra LG over Zp is well-defined and powerful, and a minimal topological generating set
(g1, . . . , gd) of G forms a Zp-linear basis of LG ([DdSMS99, Theorems 4.17, 4.30 and Exercise
4.2.(ii)]). We denote by log : G→ LG and exp : LG → G the identity maps. Then, the map

Zdp −→ G, (a1, . . . , ad) 7→ exp(a1 log(g1) +G · · ·+G ad log(gd))(II.3.3.3)

is a homeomorphism of topological spaces such that the image of (pnZp)d is Gp
n

. This map is called
the system of coordinates of the first kind. Moreover, for x, y ∈ G such that xy = yx (resp. for u, v ∈
LG such that [u, v] = 0), we have log(xy) = log(x)+G log(y) (resp. exp(u+G v) = exp(u) exp(v)). In
particular, for a ∈ Zp, we have log(xa) = a log(x) for any x ∈ G, and we have exp(au) = exp(u)a for
any u ∈ LG. On the other hand, the map

Zdp −→ G, (b1, . . . , bd) 7→ gb11 · · · g
bd
d ,(II.3.3.4)

is also a homeomorphism of topological spaces such that the image of (pnZp)d is Gp
n

([DdSMS99,
Theorems 4.9, 4.10]). This map is called the system of coordinates of the second kind.

II.3.4. We associate to a powerful Lie algebra L over Zp a uniform pro-p group (L, ∗) as follows:
we endow L with a group structure given by the Baker-Campbell-Hausdorff formula ([DdSMS99,
Section 9.4])

x ∗ y = x+ y +
1

2
[x, y] +

1

12
([x, [x, y]] + [y, [y, x]]) + · · · .(II.3.4.1)

The group (L, ∗) is well-defined and uniform pro-p, and a Zp-linear basis of L forms a minimal
topological generating set of (L, ∗) ([DdSMS99, Theorem 9.8]).

Theorem II.3.5 ([DdSMS99, Theorem 9.10]). The assignments G 7→ LG and L 7→ (L, ∗) defined
in II.3.3 and II.3.4 are mutually inverse isomorphisms between the category of uniform pro-p groups
and the category of powerful Lie algebras over Zp.

Example II.3.6. The subgroup G = id + pϵMd(Zp) of the general linear group GLd(Zp) of degree
d over Zp is a uniform pro-p group, where ϵ = 1 if p is odd, and ϵ = 2 if p = 2. We have Gp

n

=
id + pn+ϵMd(Zp) for any n ∈ N. In fact, the matrix exponential and logarithm,

exp : pϵMd(Zp) −→ id + pϵMd(Zp), X 7→
∞∑
n=0

1

n!
Xn,(II.3.6.1)

log : id + pϵMd(Zp) −→ pϵMd(Zp), 1 +X 7→
∞∑
n=1

(−1)n−1

n
Xn,(II.3.6.2)

are mutually inverse homeomorphisms, which identify id+ pn+ϵMd(Zp) with pn+ϵMd(Zp). Moreover,
they induce an isomorphism of Zp-linear Lie algebras LG

∼−→ pϵMd(Zp), where pϵMd(Zp) is endowed
with the usual matrix Lie algebra structure. We can extend the matrix logarithm to log : GLd(Zp)→
Md(Qp) by setting log(X) = log(Xr)/r for some r ∈ N such that Xr ∈ id + pϵMd(Zp). Especially,
for d = 1, we can take r = p(p− 1) so that

log : Z×
p −→ Zp.(II.3.6.3)

Lemma II.3.7 ([DdSMS99, Proposition 4.31]). Let G be a uniform pro-p group, N a closed normal
subgroup of G such that G/N is a uniform pro-p group. Then, N is also a uniform pro-p group, and
the following natural sequence of powerful Lie algebras over Zp is exact

0 −→ LN −→ LG −→ LG/N −→ 0.(II.3.7.1)

Definition II.3.8 ([DdSMS99, Theorems 8.32, 9.4]). A p-adic analytic group is a topological group
which contains a uniform pro-p open subgroup. A morphism between p-adic analytic groups is a
continuous group homomorphism.

Theorem II.3.9 ([DdSMS99, Theorem 7.19]). Any compact p-adic analytic group is isomorphic to
a closed subgroup of GLd(Zp) for some d ∈ N.

Lemma II.3.10 ([DdSMS99, proof of Theorem 4.8]). Let G be a p-adic analytic group, N a closed
normal subgroup of G. Then, there exists an open subgroup G0 of G such that G0, N0 = N ∩G0 and
G0/N0 are all uniform pro-p groups.

Theorem II.3.11 ([DdSMS99, Theorems 9.6, 9.7]). Let G be a separated topological group, N a
closed normal subgroup of G, H a closed subgroup of G.

(1) If G is a p-adic analytic group, then so is H and G/N .
(2) If N and G/N are p-adic analytic groups, then so is G.
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II.3.12. The uniform pro-p open subgroups H of a p-adic analytic group G form a fundamental
system of open neighbourhoods of 1 ∈ G. Moreover, given such an H, {Hpn}n∈N is initial in this
system. Thus, for a uniform pro-p open subgroup H ′ of H, the corresponding Lie algebra LH′ over
Zp is a Zp-submodule of LH with finite index. In particular, the natural morphism

LH′ ⊗Zp
Qp −→ LH ⊗Zp

Qp(II.3.12.1)

is an isomorphism of Lie algebras over Qp.

Definition II.3.13 ([DdSMS99, Section 9.5]). Let G be a p-adic analytic group. The filtered colimit
of Lie algebras over Qp,

Lie(G) = colim
H

LH ⊗Zp Qp,(II.3.13.1)

where H is a uniform pro-p open subgroup of G with the corresponding Lie algebra LH over Zp, is
called the Lie algebra of G over Qp. We denote by dim(G) the dimension of Lie(G) over Qp and call
it the dimension of G.

Moreover, if G is compact, then there is a canonical continuous map, called the logarithm map
of G,

logG : G −→ Lie(G)(II.3.13.2)

sending g to logH(gr)/r, where r is the index of a uniform pro-p open subgroup H of G, logH : H →
LH is defined in II.3.3, and this definition does not depend on the choice of H.

Lemma II.3.14. Let G be a p-adic analytic group, N a closed normal subgroup of G. Then, there
is a canonical exact sequence of Qp-linear Lie algebras

0 −→ Lie(N) −→ Lie(G) −→ Lie(G/N) −→ 0.(II.3.14.1)

Proof. It follows from II.3.10 and II.3.7. □

II.3.15. Let G be a p-adic analytic group. For any g ∈ G, the conjugation on G sending x to gxg−1

is continuous, and thus induces an automorphism Adg of the Lie algebra Lie(G). The map

Ad : G −→ AutQp(Lie(G)), g 7→ Adg,(II.3.15.1)

is a continuous group homomorphism, which makes Lie(G) into a finite projective Qp-representation of
G, which we call the adjoint representation of G (cf. [DdSMS99, Exercise 9.11]). This construction is
functorial in G. We remark that for G = GLd(Zp), the adjoint action is given by AdX(Y ) = XYX−1

for any X ∈ GLd(Zp) and Y ∈ Lie(G) = Md(Qp).

II.4. Infinitesimal Actions of Representations arising from Kummer Towers

Definition II.4.1. Let A be a ring, π an element of A. We denote by Sπ(A) the set of prime ideals
p of height 1 containing π.

We remark that for a Noetherian normal domain A with a non-zero element π, the set Sπ(A)
coincides naturally with the finite set of generic points of Spec(A/πA), and Ap is a discrete valuation
ring for any p ∈ Sπ(A).

Lemma II.4.2. Let A→ B be an injective and integral homomorphism of domains with A normal,
π an element of A. Then, the inverse image of Sπ(A) via the map Spec(B) → Spec(A) is Sπ(B),
and the induced map Sπ(B)→ Sπ(A) is surjective.

Proof. Firstly, we note that Spec(B)→ Spec(A) is surjective. For any q ∈ Spec(B) with image
p ∈ Spec(A), if p is of height 1, then so is q, since any point of Spec(B) is closed in its fibre over
Spec(A); conversely, if q is of height 1, then so is p, since A → B satisfies going down property
([Sta22, 00H8]). This shows that the inverse image of Sπ(A) via the surjection Spec(B)→ Spec(A)
is Sπ(B). □

Proposition II.4.3. Let A → B be an injective and integral homomorphism of normal domains
with A Noetherian, π a nonzero element of A. We assume that B is the union of a directed system
(Bλ)λ∈Λ of Noetherian normal A-subalgebras.

(1) We have Sπ(B) = limλ∈Λop Sπ(Bλ), and for each q ∈ Sπ(B), if we denote by qλ ∈ Sπ(Bλ)
its image, then (Bλ,qλ

)λ∈Λ is a directed system of discrete valuation rings with faithfully flat
transition maps, whose colimit is Bq, a valuation ring of height 1.

https://stacks.math.columbia.edu/tag/00H8
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(2) For any integer n > 0, the natural map

B/πnB −→
∏

q∈Sπ(B)

Bq/π
nBq(II.4.3.1)

is injective, which thus induces an injective map of π-adic completions

B̂ −→
∏

q∈Sπ(B)

B̂q.(II.4.3.2)

Proof. (1) Since Spec(B) = limλ∈Λop Spec(Bλ) by [EGA IV3, 8.2.10], we have Sπ(B) =
limλ∈Λop Sπ(Bλ) by II.4.2. Since Bλ is a Noetherian normal domain, its localization Bλ,qλ

is a
discrete valuation ring, and the transition map Bλ,qλ

→ Bλ′,qλ′ for λ ≤ λ′ is local and injective, thus
an extension of discrete valuation rings, which completes the proof.

(2) For each λ, the map Bλ/π
nBλ →

∏
qλ∈Sπ(Bλ)

Bλ,qλ
/πnBλ,qλ

is injective by [Sta22, 031T,
0311]. If we denote by fλ : Sπ(B)→ Sπ(Bλ) the natural surjection, then

Bλ,qλ
/πnBλ,qλ

−→
∏

q∈f−1
λ (qλ)

Bq/π
nBq(II.4.3.3)

is injective as Bλ,qλ
→ Bq is faithfully flat. Thus, the composition of the two previous maps,

Bλ/π
nBλ →

∏
q∈Sπ(B)Bq/π

nBq, is injective. The conclusion follows from taking filtered colimit on
λ ∈ Λ. □

Remark II.4.4. Let A→ B be an injective and integral homomorphism of normal domains with A
Noetherian. We remark that if the fraction field of B is a finite separable extension of that of A, then
B is finite over A ([Sta22, 032L]). Thus, the assumption of II.4.3 is satisfied if the fraction field of B
is a separable extension of that of A.

Definition II.4.5. A tower of normal domains is a directed system (Aλ)λ∈Λ of normal domains with
injective and integral transition morphisms. We denote by A∞ the colimit of (Aλ)λ∈Λ.

We remark that if (Kλ)λ∈Λ is the tower of the fraction fields of a tower of normal domains
(Aλ)λ∈Λ, then in fact Aλ is the integral closure of Aλ0 in Kλ for λ, λ0 ∈ Λ with λ ≥ λ0. Moreover, for
any element π ∈ Aλ0 , we obtain an inverse system of sets (Sπ(Aλ))λ∈Λop

≥λ0
with surjective transition

maps by II.4.2, and we have Sπ(A∞) = limλ∈Λop
≥λ0

Sπ(Aλ).

Lemma II.4.6. Let A be a ring, π an element of A, M → N an injective homomorphism of π-
torsion free A-modules. Assume that M = M [1/π] ∩N ⊆ N [1/p]. Then, for any integer n > 0, the
homomorphism

M/πnM −→ N/πnN(II.4.6.1)

is injective. In particular, the homomorphism of the π-adic completions (endowed with the π-adic
topology) M̂ → N̂ is a closed embedding.

Proof. Firstly, we show that πnM = M ∩ πnN (i.e. M/πnM → N/πnN is injective). For
x ∈ M ∩ πnN , π−nx ∈ M [1/π] lies in N . Hence, π−nx ∈ M [1/π] ∩ N = M , which proves the
assertion. Then, we see that M̂ → N̂ is injective and that the π-adic topology on M̂ coincides with
the topology induced from the π-adic topology of N̂ . Since M̂ is complete and N̂ is separated, M̂ is
closed in N̂ ([Bou71, II.16, Proposition 8]). Thus, M̂ identifies with a closed topological subgroup
of N̂ . □

Definition II.4.7. Let K be a valuation field of height 1 with a non-zero element π in its maximal
ideal, (Aλ)λ∈Λ a tower of normal domains flat over OK . The π-adic completions form a directed
system (Âλ)λ∈Λ of flat OK-algebras, whose transition maps are closed embeddings with respect to
the π-adic topology by II.4.6. We set

Ã∞ = colim
λ∈Λ

Âλ.(II.4.7.1)

As Âλ/πnÂλ → Ã∞/π
nÃ∞ is also injective for any n ∈ N by II.4.6, we see that Âλ → Ã∞ is also

a closed embedding with respect to the π-adic topology and that Ã∞ is π-adically separated. Thus,
we always regard Ã∞ as a topological OK-subalgebra of the π-adic completion Â∞ of A∞.

https://stacks.math.columbia.edu/tag/031T
https://stacks.math.columbia.edu/tag/0311
https://stacks.math.columbia.edu/tag/032L
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Definition II.4.8. Let M be a separated topological Qp-module endowed with a continuous action
of a pro-p group G. For any g ∈ G and x ∈M , if the limit

lim
Zp\{0}∋a→0

a−1(ga − 1)(x)(II.4.8.1)

exists in M , then we denote it by φg(x) and call the assignment x 7→ φg(x) the infinitesimal action
of g on x.

The following lemma follows directly from the definition.

Lemma II.4.9. Let M be a separated topological Qp-module endowed with a continuous action of a
pro-p group G.

(1) Assume that the infinitesimal action of an element g ∈ G exists for any x ∈ M . Then,
φg : x 7→ φg(x) is a Qp-linear endomorphism of M , and we have φga = aφg for any a ∈ Zp.
Moreover, for any g′ ∈ G, the infinitesimal action of g′gg′−1 also exists for any x ∈M , and
we have φg′gg′−1 = g′ ◦ φg ◦ g′−1.

(2) If the infinitesimal action of two elements g, g′ ∈ G with gg′ = g′g exists for any x ∈ M ,
then g′ ◦ φg = φg ◦ g′, φg ◦ φg′ = φg′ ◦ φg, and φgg′ = φg + φg′ .

(3) Let G′ → G be a continuous homomorphism of pro-p groups, M ′ a separated topological Qp-
module endowed with a continuous action of a pro-p group G′, f : M → M ′ a continuous
Qp-homomorphism compatible with the actions of G and G′, x ∈ M , g′ ∈ G′. Assume that
the infinitesimal actions of g′ and its image g ∈ G exist for f(x) ∈ M ′ and x respectively.
Then, f(φg(x)) = φg′(f(x)).

Proposition II.4.10 ([Tsu18, 5.3]). Let A be a topological Qp-algebra endowed with a continuous
action of a topological group G. Assume that G contains a pro-p open subgroup G0 of finite index and
that there exists a tower (Aλ)λ∈Λ of normal domains flat over Zp such that there is an isomorphism
of topological rings A ∼= Ã∞[1/p] and that for any λ ∈ Λ the subalgebra Âλ[1/p] is G0-stable and
invariant by an open subgroup of G0 (via the isomorphism A ∼= Ã∞[1/p]). Then, for any g ∈ G and
any object W of Repproj

cont(G,A), there exists a unique A-linear endomorphism φg|W of W satisfying
the following conditions (we simply write φg|W by φg if there is no ambiguity):

(1) For any g ∈ G0, φg is the infinitesimal action (II.4.8.1) of g on W .
(2) For any g ∈ G and n ∈ N, we have φgn = nφg.
(3) For any g ∈ G0 and x ∈W , there exists mx ∈ N such that for any a ∈ pmxZp,

ga(x) = exp(aφg)(x) =
∞∑
k=0

ak

k!
(φg ◦ · · · ◦ φg︸ ︷︷ ︸

k copies

)(x).(II.4.10.1)

In particular, φg|W does not depend on the choice of G0 or the tower (Aλ)λ∈Λ. Thus, we still call it
the infinitesimal action of g ∈ G on W .

Proof. Firstly, assume that G = G0. Since Ã∞ is a p-adically separated flat Zp-algebra, there
is a canonical norm on Ã∞[1/p] which induces its p-adic topology (cf. II.6.3). Thus, we are in the
situation of [Tsu18, 5.3], and the conclusion follows from it. In general, for any g ∈ G, we set
φg = r−1φgr where r is the index of G0 in G and φgr is the infinitesimal action of gr ∈ G0 on finite
projective A-representation W of G0 (defined by restricting the G-action of W ). One can check easily
by II.4.9 that this φg satisfies all the required properties. □

Remark II.4.11. Let A′ be a topological Qp-algebra endowed with a continuous action of a topolog-
ical group G′ satisfying the assumptions in II.4.10. Assume that there is a morphism of topological
groups G′ → G and a morphism of topological rings A→ A′ which is compatible with the actions of
G and G′. For any object W of Repproj

cont(G,A), the base change W ′ = A′⊗AW is naturally an object
of Repproj

cont(G
′, A′) by II.2.4. Then, for any g′ ∈ G′ with image g ∈ G, we deduce from (II.4.8.1) and

II.4.10 that

φg′ |W ′ = idA′ ⊗ φg|W .(II.4.11.1)

Lemma II.4.12. Under the assumptions in II.4.10, assume further that G acts trivially on A. Then,
there is a pro-p open subgroup G1 of G such that the map

ϕ : Zp ×G1 ×W −→W,(II.4.12.1)

sending (0, g, x) to φg(x) and sending (a, g, x) to a−1(gax− x) for a ̸= 0, is continuous.
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Proof. Since G acts trivially on A by assumption, for any pro-p open subgroup G1 of G, ϕ
induces a map

ϕ̃ : Zp ×G1 −→ EndA(W ),(II.4.12.2)

sending (0, g) to φg and sending (a, g) to a−1(ga−1) for a ̸= 0. We fix an A-linear surjection Ar →W .
As W is finite projective over A, we get an A-linear surjection ψ : Mr(A)→ EndA(W ) whose quotient
topology on EndA(W ) coincides with its canonical topology (II.2.3). As the matrix multiplication
Mr(A) × Ar → Ar is continuous, the natural A-linear homomorphism EndA(W ) ×W → W is also
continuous (II.2.3). Thus, it suffices to show that ϕ̃ is continuous for some G1. Moreover, by the
definition (II.4.8.1) of φg, ϕ̃ is uniformly continuous if and only if its restriction on (Zp \ {0}) × G1

is uniformly continuous ([Bou71, II.20, Théorème 2]). We claim that the latter holds for some G1.
We note that the topology on A is defined by the p-adic topology of Ã∞. As G acts continuously

and A-linearly on W by assumption, the induced map G→ EndA(W ) is continuous. For any k ≥ 2,
we take pro-p open subgroups Gk of G whose image in EndA(W ) lies in ψ(id + pkMr(Ã∞)). For
g1, g2 ∈ G2 with g1g−1

2 ∈ Gk, let P1, P2 ∈ id+ p2Mr(Âλ) be some liftings of the images of g1, g2 ∈ G2

respectively with P1P
−1
2 ∈ id + pkMr(Âλ) for some λ ∈ Λ. In particular, P1 − P2 ∈ pkMr(Âλ), and

log(P1)− log(P2) =

∞∑
n=1

(−1)n−1

n
((P2 − id + (P1 − P2))

n − (P2 − id)n) ∈ pkMr(Âλ)(II.4.12.3)

as p2(n−1) ∈ n! · Zp for any n ≥ 1. Similarly, for any a1, a2 ∈ Zp \ {0} with a1 − a2 ∈ pkZp, we have

a−1
1 (P a11 − id)− a−1

1 (P a12 − id) =
∞∑
n=1

an−1
1

log(P1)
n − log(P2)

n

n!
∈ pkMr(Âλ),(II.4.12.4)

a−1
1 (P a12 − id)− a−1

2 (P a22 − id) =
∞∑
n=2

(an−1
1 − an−1

2 )
log(P2)

n

n!
∈ pkMr(Âλ).(II.4.12.5)

Thus, ϕ̃(a1, g1)− ϕ̃(a2, g2) belongs to ψ(pkMr(Ã∞)), which implies that ϕ̃ is uniformly continuous by
taking G1 = G2. □

Corollary II.4.13. Under the assumptions in II.4.10, assume further that G is a compact p-adic
analytic group. Let Lie(G) be the Lie algebra of G over Qp. Then, there is a unique morphism of Lie
algebras over Qp,

φ : Lie(G) −→ EndA(W ),(II.4.13.1)

such that its composition with the logarithm map of G (II.3.13.2) logG : G → Lie(G) is the map
φ : G→ EndA(W ) sending g to the infinitesimal action φg of g ∈ G on W .

We call φ the canonical Lie algebra action induced by the infinitesimal action of G on W , or
simply the infinitesimal Lie algebra action.

Proof. Recall that Lie(G) = colimG0 LG0 ⊗Zp Qp where the colimit is taken over the system
of uniform pro-p open subgroups G0 of G (see II.3.13), and that the Zp-linear Lie algebra LG0 =
(G0,+G0 , [ , ]G0) is defined in II.3.3. As log : G0 → LG0 is a homeomorphism, the uniqueness is
obvious. It remains to check that the map LG0

→ EndA(W ) sending g to φg is compatible with
addition and Lie bracket.

As G0 is topologically finitely generated, there exists λ ∈ Λ and a finite projective Âλ[1/p]-
representation Wλ of G0 such that W = A ⊗Âλ[1/p]

Wλ ([Tsu18, 5.2.(1)]). By II.4.11, it suffices
to check that the map LG0 → EndÂλ[1/p]

(Wλ) sending g to φg is compatible with addition and Lie

bracket. We take a uniform pro-p open subgroup G1 of G0 such that Âλ[1/p] is G1-invariant by the
assumptions in II.4.10. After replacing G1 by Gp

n

1 for some n ∈ N, we may assume by II.4.12 that
the map

ϕλ : Zp ×G1 ×Wλ −→Wλ,(II.4.13.2)

sending (0, g, x) to φg(x) and sending (a, g, x) to a−1(gax− x) for a ̸= 0, is continuous. As the map
LG0 → EndÂλ[1/p]

(Wλ) is compatible with multiplication by an integer by II.4.10.(2), it suffices to
check that its restriction on LG1 is compatible with addition and Lie bracket. For any g, g′ ∈ G1 and
x ∈Wλ, applying the continuity of (II.4.13.2) to the convergent sequence {(pn, (gpng′pn)p−n

, x)}n∈N ⊆
Zp ×G1 ×Wλ with limit (0, g +G1 g

′, x) by (II.3.3.1), we get

φg+G1g
′(x) = lim

n→∞
p−n(gp

n

g′p
n

x− x).(II.4.13.3)
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On the other hand,

(φg + φg′)(x) = lim
n→∞

p−n(gp
n

x+ g′p
n

x− 2x).(II.4.13.4)

Thus, φg+G1g
′(x) − (φg + φg′)(x) = limn→∞ p−n(gp

n − 1)(g′p
n

x − x) = 0, since the action G1 ×
Wλ → Wλ is continuous and limn→∞ p−n(g′p

n

x− x) = φg′(x). Similarly, applying the continuity of
(II.4.13.2) to the convergent sequence {(p2n, (g−png′−pngpng′pn)p−2n

, x)}n∈N ⊆ Zp × G1 ×Wλ with
limit (0, [g, g′]G1 , x) by (II.3.3.2), we get

φ[g,g′]G1
(x) = lim

n→∞
p−2n(g−p

n

g′−p
n

gp
n

g′p
n

x− x).(II.4.13.5)

On the other hand, applying the continuity of (II.4.13.2) to the convergent sequence {(pn, g, p−n(g′pnx−
x))}n∈N ⊆ Zp ×G1 ×Wλ with limit (0, g, φg′(x)), we get

(φg ◦ φg′ − φg′ ◦ φg)(x) = lim
n→∞

p−2n(gp
n

g′p
n

x− g′p
n

gp
n

x).(II.4.13.6)

Thus, φ[g,g′]G1
(x)− (φg ◦φg′ −φg′ ◦φg)(x) = limn→∞ p−2n(g−p

n

g′−p
n − 1)(gp

n

g′p
n

x− g′pngpnx) = 0

by the continuity of the action G1 ×Wλ →Wλ and (II.4.13.6). □

Definition II.4.14 (cf. [Tsu18, 14.1]). Under the assumptions in II.4.10, let H be a subgroup of G.
For an object W in Repproj

cont(G,A), we say that W is H-analytic if exp(φh)(x) =
∑∞
k=0 φ

k
h(x)/k!

converges to h(x) for any x ∈ W and any h ∈ H. We denote by Repproj
cont,H-an(G,A) the full

subcategory of Repproj
cont(G,A) formed by H-analytic objects.

II.4.15. Let K be a field of characteristic not equal to p, K an algebraic closure of K, (ζpn)n∈N a
compatible system of primitive p-power roots of unity in K, G = Gal(K/K). For any n ∈ N ∪ {∞},
we define a Galois extension of K in K by

Kn = K(ζpk | k ∈ N≤n).(II.4.15.1)

Consider the cyclotomic character

χ : G −→ Z×
p(II.4.15.2)

which is defined by σ(ζpn) = ζ
χ(σ)
pn for any σ ∈ G and n ∈ N. It factors through an injection

Σ = Gal(K∞/K) ↪→ Z×
p , and does not depend on the choice of the system (ζpn)n∈N. In particular,

Σ is either finite cyclic or isomorphic to the direct product of a finite cyclic group with Zp.
We fix d ∈ N. Let t1, . . . , td be elements of K with compatible systems of p-power roots (ti,pn)n∈N

in K (where 1 ≤ i ≤ d). For consistency, sometimes we also denote ζpn by t0,pn . For any n ∈ N∪{∞}
and any m = (m1, . . . ,md) ∈ (N ∪ {∞})d, we define an extension of K in K by

Kn,m = Kn(t1,pk1 , · · · , td,pkd | ki ∈ N≤mi , 1 ≤ i ≤ d).(II.4.15.3)

It is a Galois extension of K if n ≥ max{m1, . . . ,md}. Consider the continuous map

ξ = (ξ1, . . . , ξd) : G −→ Zdp(II.4.15.4)

defined by τ(ti,pn) = ζ
ξi(τ)
pn ti,pn for any τ ∈ G, n ∈ N and 1 ≤ i ≤ d. Notice that for any σ, τ ∈ G,

ξ(στ) = ξ(σ) + χ(σ)ξ(τ)(II.4.15.5)

Thus, ξ is a continuous 1-cocycle. It becomes a group homomorphism when restricted to H =
Gal(K/K∞), which factors through an injection ∆ = Gal(K∞,∞/K∞) ↪→ Zdp. In particular, ∆ is
isomorphic to Zrp for some 0 ≤ r ≤ d. For any σ ∈ Γ = Gal(K∞,∞/K) and τ ∈ ∆, we have

στσ−1 = τχ(σ),(II.4.15.6)

by the definition of χ. We have named some Galois groups as indicated in the following diagram:

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(II.4.15.7)
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We remark that Γ is a compact p-adic analytic group as an extension of Σ by ∆, and there is a
natural exact sequence of Lie algebras over Qp by II.3.14,

0 −→ Lie(∆) −→ Lie(Γ) −→ Lie(Σ) −→ 0.(II.4.15.8)

Notice that the group homomorphism log ◦χ : Γ → Zp induces a homomorphism of Qp-linear Lie
algebras log ◦χ : Lie(Γ) → Lie(Zp) = Qp which factors through Lie(Σ), where log : Z×

p → Zp is the
p-adic logarithm map (II.3.6.3). We deduce from (II.4.15.6) and (II.3.3.2) that for any x ∈ Lie(Γ)
and y ∈ Lie(∆),

[x, y] = log(χ(x)) · y.(II.4.15.9)

II.4.16. Let A be a Noetherian normal domain flat over Zp with fraction field K, ti ∈ K with a
compatible system of p-power roots (ti,pn)n∈N in K for any 1 ≤ i ≤ d. With the notation in II.4.15,
let An,m be the integral closure of A in Kn,m for any n ∈ N∪ {∞} and m ∈ (N∪ {∞})d. We remark
that An,m is a Noetherian normal domain finite over A if n,m are finite by II.4.4. Endowing N1+d

with the product order (cf. II.2.1), we call the tower of Noetherian normal domains (An,m)(n,m)∈N1+d

the Kummer tower of A defined by ζpn , t1,pn , . . . , td,pn .
Notice that Γ acts continuously on Ã∞,∞[1/p] (defined in II.4.7) which satisfies the assumptions

in II.4.13. Then, for any object W of Repproj
cont(Γ, Ã∞,∞[1/p]), there is a canonical morphism of Lie

algebras over Qp induced by the infinitesimal action of Γ on W ,

φ : Lie(Γ) −→ EndÃ∞,∞[1/p](W ).(II.4.16.1)

Lemma II.4.17 (cf. [Bri03, Propositions 5, 7]). With the notation in II.4.16, for any σ ∈ Γ, τ ∈ ∆

and any object W of Repproj
cont(Γ, Ã∞,∞[1/p]), we have

σ ◦ φτ ◦ σ−1 = χ(σ) · φτ ,(II.4.17.1)
φσ ◦ φτ − φτ ◦ φσ = log(χ(σ)) · φτ ,(II.4.17.2)

as Ã∞,∞[1/p]-linear endomorphisms on W .

Proof. As στσ−1 = τχ(σ) (II.4.15.6), we have σ ◦ φτ ◦ σ−1 = φστσ−1 = φτχ(σ) = χ(σ) · φτ
(cf. II.4.9). As [logΓ(σ), logΓ(τ)] = log(χ(σ)) · logΓ(τ) by (II.4.15.9), we have φσ ◦ φτ − φτ ◦ φσ =
φ[logΓ(σ),logΓ(τ)]

= log(χ(σ)) · φτ . □

Proposition II.4.18 (cf. [Bri03, Proposition 5], [Tsu18, 14.17]). With the notation in II.4.16,
assume that K∞ is an infinite extension of K and that Sp(A∞,∞) is finite. Then, the infinitesimal
action φτ of any element τ ∈ ∆ on any object of Repproj

cont(Γ, Ã∞,∞[1/p]) is nilpotent.

Proof. We follow the proof of [Tsu18, 14.17]. Notice that Σ identifies to an open subgroup
of Z×

p via the cyclotomic character (II.4.15.2). Thus, there exists σ ∈ Γ such that log(χ(σ)) ̸= 0.
For any q ∈ Sp(A∞,∞), the localization A∞,∞,q is a valuation ring of height 1 by II.4.3.(1), and we
denote by Lq the fraction field of the p-adic completion of A∞,∞,q. Then, the natural map

Â∞,∞[1/p] −→
∏

q∈Sp(A∞,∞)

Lq(II.4.18.1)

is injective by II.4.3.(2).
For an object W of Repproj

cont(Γ, Ã∞,∞[1/p]) and g ∈ Γ, we denote by Wq (resp. φg,q) the scalar
extension of W (resp. φg) to Lq. As Sp(A∞,∞) is finite, it suffices to show that φτ,q is nilpotent
by the injection (II.4.18.1) and II.4.11. Let Pq(T ) ∈ Lq[T ] be the characteristic polynomial of φσ,q.
We take an integer N > 0 large enough such that Pq(T −N log(χ(σ))) is prime to Pq(T ). Thus, the
endomorphism Pq(φσ,q −N log(χ(σ))) on Wq is an automorphism. By (II.4.17.2), we have

Pq(φσ,q −N log(χ(σ))) ◦ (φτ,q)N = (φτ,q)
N ◦ Pq(φσ,q) = 0.(II.4.18.2)

Hence, we have (φτ,q)
N = 0. □

Proposition II.4.19. With the notation in II.4.16, consider the following statements:
(1) We have A/pA ̸= 0 (thus Sp(A) is non-empty), and for any p ∈ Sp(A), if we denote by

K̂p the completion of K with respect to the discrete valuation ring Ap and consider the
Kummer tower (K̂p

n,m)(n,m)∈N1+d of K̂p defined by ζpn , t1,pn , . . . , td,pn , then the image of
the continuous homomorphism (II.4.15.4) Gal(K̂p

∞,∞/K̂
p
∞)→ Zdp is open.



94 II. SEN OPERATORS OVER p-ADIC VARIETIES

(2) There exists n0 ∈ N such that for any n ∈ N≥n0
, the cyclotomic character (II.4.15.2)

χ : G→ Z×
p and the p-adic logarithm map (II.3.6.3) log : Z×

p → Zp induce an isomorphism

log ◦χ : Gal(K∞,∞/Kn,∞)
∼−→ pnZp;(II.4.19.1)

and there exists m0 ∈ Nd such that for any m ∈ (Nd)≥m0 the continuous 1-cocycle (II.4.15.4)
ξ : G→ Zdp induces an isomorphism

ξ : Gal(K∞,∞/K∞,m)
∼−→ pm1Zp × · · · × pmdZp(II.4.19.2)

where m = (m1, . . . ,md).
(3) There exists (n0,m0) ∈ N1+d such that for any (n,m) ∈ (N1+d)≥(n0,m0), the natural map

Sp(An,m)→ Sp(An0,m0) is a bijection.
(4) The cardinality of Sp(An,m), when (n,m) varies in N1+d, is bounded.

Then, (1) implies (2), (3) and (4); and (3) is equivalent to (4).

Proof. Notice that for elements (n′,m′) ≥ (n,m) in N1+d, the natural map Sp(An′,m′) →
Sp(An,m) is surjective by II.4.2. Since N1+d is directed, we see that (3) and (4) are equivalent.

Now we assume (1). We take an integer m0 ∈ N such that (pm0Zp)d lies in the image of
the injective homomorphism ξ : Gal(K̂p

∞,∞/K̂
p
∞) → Zdp (II.4.15.4). We identify (pm0Zp)d with an

open normal subgroup of Gal(K̂p
∞,∞/K̂

p
∞). We claim that the invariant subextension of K̂p

∞,∞ by
pm1Zp × · · · × pmdZp ⊆ (pm0Zp)d is K̂p

∞,m for any m = (m1, . . . ,md) ∈ Nd≥m0
. Indeed, the invariant

subextension contains K̂p
∞,m by the definition of ξ. On the other hand, Gal(K̂p

∞,∞/K̂
p
∞,m) identifies

with a closed subgroup of pm1Zp×· · ·× pmdZp via ξ. Thus, the claim follows from the Galois theory.
In particular, ξ induces a natural isomorphism

ξ : Gal(K̂p
∞,∞/K̂

p
∞,m)

∼−→ pm1Zp × · · · × pmdZp.(II.4.19.3)

We claim that K̂p
∞,∞ is an infinite extension of K̂p

0,∞. Otherwise, K̂p
∞,∞ is an extension of a fi-

nite extension of K̂p by adding t1,pn , . . . , td,pn , so that the dimension of the p-adic analytic group
Gal(K̂p

∞,∞/K̂
p) is no more than d by (II.4.15.4). On the other hand, K̂p is a complete discrete

valuation field, while the valuation on K̂p
∞ is non-discrete of height 1. Thus, Gal(K̂p

∞/K̂
p) is an open

subgroup of Z×
p , which implies that the dimension of the p-adic analytic group Gal(K̂p

∞,∞/K̂
p) is

1+ d under the assumption (1) by (II.4.15.8). We get a contradiction, which proves the claim. Thus,
the image of the cyclotomic character

χ : Gal(K̂p
∞,∞/K̂

p
0,∞) −→ Z×

p(II.4.19.4)

is open. We take n0 ∈ N≥2 such that 1 + pn0Zp lies in the image of (II.4.19.4). Similarly as above,
the invariant subextension of K̂p

∞,∞ by 1 + pnZp ⊆ 1 + pn0Zp is K̂p
n,∞ by the definition of χ, for any

n ∈ N≥n0 . In particular, χ and log induce an isomorphism

log ◦χ : Gal(K̂p
∞,∞/K̂

p
n,∞)

∼−→ pnZp.(II.4.19.5)

For any (n,m) ∈ (N1+d)≥(n0,m0), we have

[K̂p
∞,m : K̂p

∞,m0
] ≤ [K̂p

n,m : K̂p
n,m0

] ≤ [Kn,m : Kn,m0 ] ≤ p
∑d

i=1(mi−m0).(II.4.19.6)

By (II.4.19.3), we see that the inequalities in (II.4.19.6) are equalities, which implies (II.4.19.2). In
particular, each fibre of Sp(An,m) → Sp(An,m0) consists of a single element (cf. [Bou06, VI.§8.5,
Cor.3]). Similarly,

[K̂p
n,∞ : K̂p

n0,∞] ≤ [K̂p
n,m0

: K̂p
n0,m0

] ≤ [Kn,m0 : Kn0,m0 ] ≤ pn−n0 .(II.4.19.7)

By (II.4.19.5), we see that the inequalities in (II.4.19.7) are equalities, which implies (II.4.19.1). In
particular, each fibre of Sp(An,m0)→ Sp(An0,m0) consists of a single element. Therefore, we obtain
(3). □

We will give in II.5.22 and II.11.2 some differential criteria for checking the condition II.4.19.(1)
for a Kummer tower.
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II.4.20. With the notation in II.4.16, for further computation (e.g. II.5.28), we introduce a standard
basis of Lie(Γ) under the assumption that the Kummer tower (An,m)(n,m)∈N1+d satisfies the condition
II.4.19.(2). We name some Galois groups as indicated in the following diagram for any n ∈ N:

K∞,∞ Kn,∞
Σn,∞oo

K∞

∆

OO

Kn
Σn

oo

ΓnIIII

ddIIII
OO

(II.4.20.1)

By the assumption II.4.19.(2), there is an isomorphism for some n0 ∈ N,

log ◦χ : Σn0,∞
∼−→ Σn0

∼−→ pn0Zp,(II.4.20.2)

and ξ identifies ∆ with an open subgroup of Zdp. The isomorphism Σn0,∞
∼−→ Σn0 identifies Γn0 with

the semi-direct product Σn0 ⋉∆ defined by σ ∈ Σn0 acting on τ ∈ ∆ by τ 7→ τχ(σ) (cf. (II.4.15.6)).
Moreover, there is an open embedding of topological groups

(log ◦χ, ξ) : Γn0 = Σn0 ⋉∆ −→ Zp ⋉ Zdp(II.4.20.3)

where Zp⋉Zdp is the semi-direct product of Zp acting on Zdp by multiplication. It induces an isomor-
phism of Qp-linear Lie algebras

Lie(Γ)
∼−→ Lie(Zp ⋉ Zdp).(II.4.20.4)

Let ∂i ∈ Lie(Γ) be the image of (0, . . . , 1, . . . , 0) ∈ Zp ⋉ Zdp (where 1 appears at the i-th component)
via the logarithm map of Zp⋉Zdp and (II.4.20.4). We deduce from (II.4.15.9) that for any 1 ≤ i, j ≤ d,

[∂0, ∂i] = ∂i and [∂i, ∂j ] = 0,(II.4.20.5)

and we deduce from (II.4.15.8) that ∂0, ∂1, . . . , ∂d form a Qp-basis of Lie(Γ), which we call the standard
basis. Moreover, if we extend ξ1, . . . , ξd to Qp-linear forms on Lie(∆), then we see that they form a
dual basis of ∂1, . . . , ∂d.

Consider an object W of Repproj
cont(Γ, Ã∞,∞[1/p]) and the canonical Lie algebra action (II.4.16.1)

φ : Lie(Γ)→ EndÃ∞,∞[1/p](W ) induced by the infinitesimal action of Γ on W . For any g ∈ G, we set

φχg = log(χ(g))φ∂0 ,(II.4.20.6)

which defines a continuous group homomorphism φχ : G → EndÃ∞,∞[1/p](W ) factoring through Γ

with φχ|Σ0,∞ = φ|Σ0,∞ and φχ|∆ = 0. We also set

φξg =
d∑
i=1

ξi(g)φ∂i ,(II.4.20.7)

which defines a continuous 1-cocycle φξ : G→ EndÃ∞,∞[1/p](W ) factoring through Γ with φξ|∆ = φ|∆
and φξ|Σ0,∞ = 0.

Lemma II.4.21. Under the assumptions in II.4.20, for any g ∈ Γ with log(χ(g)) ̸= 0, we have

logΓ(g) = log(χ(g))∂0 +
log(χ(g))

χ(g)− 1

d∑
i=1

ξi(g)∂i ∈ Lie(Γ).(II.4.21.1)

In particular, for any object W of Repproj
cont(Γ, Ã∞,∞[1/p]), we have

φg = φχg +
log(χ(g))

χ(g)− 1
φξg(II.4.21.2)

as Ã∞,∞[1/p]-linear endomorphisms of W .

Proof. Since for any r ≥ 1 we have log(χ(gr)) = r log(χ(g)) and ξ(gr)/(χ(gr)−1) = ξ(g)/(χ(g)−
1) by (II.4.15.5), it suffices to prove (II.4.21.1) for gr. Thus, we may assume that g ∈ Γn0 and let
g = τσ be the unique decomposition for some τ ∈ ∆ and σ ∈ Σn0,∞. Since log(χ(g)) = log(χ(σ)) and
ξ(g) = ξ(τ), we have log(χ(g))∂0 = logΓ(σ) and

∑d
i=1 ξi(g)∂i = logΓ(τ). It remains to check that in

Lie(Γ), we have

logΓ(g) = logΓ(σ) +
log(χ(g))

χ(g)− 1
logΓ(τ).(II.4.21.3)
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By iteratively using the identity στσ−1 = τχ(σ), we get gp
n

= τ
χ(σ)p

n
−1

χ(σ)−1 σp
n

. After enlarging n0, we
may assume that Γn0 is contained in a uniform pro-p open subgroup Γ′ of Γ. Thus, by (II.3.3.1),

g +Γ′ σ−1 = lim
n→∞

(gp
n

σ−pn)p
−n

= lim
n→∞

τ
χ(σ)p

n
−1

pn(χ(σ)−1) = τ
log(χ(g))
χ(g)−1 ,(II.4.21.4)

which completes the proof. □

II.5. Revisiting Brinon’s Generalization of Sen’s Theory after Tsuji

In this section, we revisit Brinon’s generalization [Bri03] of Sen’s theory following Tsuji [Tsu18,
§15]. More precisely, we establish a p-adic Simpson correspondence over a complete discrete valuation
field of mixed characteristic (cf. II.5.31). Then, we give a canonical definition of Sen operators, which
does not depend on choosing a p-basis of the residue field (and its p-power roots) (cf. II.5.37).

II.5.1. We use the following notation in this section. Let K be a complete discrete valuation field of
characteristic 0 whose residue field κ is of characteristic p > 0 such that [κ : κp] = pd < ∞ (i.e. κ
admits a finite p-basis, cf. [EGA IV1, 21.1.9]). We fix an algebraic closure K of K, and denote by K̂
its p-adic completion. Let t1, . . . , td be d elements of O×

K with compatible systems of p-power roots
(t1,pn)n∈N, · · · , (td,pn)n∈N in O×

K
such that the images of t1, . . . , td in κ form a p-basis. We consider

the Kummer tower (OKn,m)(n,m)∈N1+d of OK defined by ζpn , t1,pn , . . . , td,pn (II.4.16). We take again
the notation in II.4.15.

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(II.5.1.1)

Lemma II.5.2. There exists a complete discrete valuation subfield K ′ of K with OK′/pOK′ = κ
such that K is a totally ramified finite extension of K ′ and that t1, . . . , td ∈ OK′ .

Proof. Let π be a uniformizer of K. By Cohen structure theorem [EGA IV1, 19.8.8], there
exists a complete discrete valuation ring R extension of Zp with a local injective homomorphism
f : R → OK which induces an isomorphism f1 : R/pR

∼−→ OK/πOK = κ. We take s1, . . . , sd ∈ R
lifting the images of t1, . . . , td ∈ OK in κ respectively. We claim that it suffices to find a series of
homomorphisms (fn : R/pnR→ OK/πnOK)n≥2 such that fn(si) = ti and fn lifts fn−1. Indeed, this
series defines a homomorphism f∞ : R→ OK by taking limit on n, which sends si to ti and identifies
the residue fields. Thus, f∞ is finite ([Sta22, 031D]) and thus a totally ramified extension of discrete
valuation rings. The claim follows.

We construct (fn)n≥2 inductively. Suppose that we have constructed fn−1. We fix a lifting
f̃n−1 : R/pnR→ OK/πnOK of fn−1, and consider the commutative diagram

OK/πnOK // OK/πn−1OK

Z/pnZ //

OO

R/pnR

fn−1

OO

f̃n−1OOOO

ggOOOO
(II.5.2.1)

There is a map

HomR(Ω
1
(R/pnR)/(Z/pnZ), π

n−1OK/πnOK) −→ HomZ-Alg(R/p
nR,OK/πnOK)(II.5.2.2)

sending D to f̃n−1 + D ◦ dR/pnR. Recall that Ω1
(R/pnR)/(Z/pnZ) is a finite free R/pn-module with

basis ds1, . . . , dsd ([He21, 3.2]). We can take D sending dsi to ti − f̃n−1(si), as ti = fn−1(si) by
the induction hypothesis. Taking fn = f̃n−1 +D ◦ dR/pnR, we see that ti = fn(si) and fn lifts fn−1,
which completes the induction. □

Lemma II.5.3. Let K ′ be a subfield of K as in II.5.2, (OK′
n,m

)(n,m)∈N1+d the Kummer tower of OK′

defined by ζpn , t1,pn , . . . , td,pn (II.4.16).

(1) The extension K ′
n over K ′ is totally ramified, and OK′

n
= OK′ [X0]/(

Xpn

0 −1

Xpn−1

0 −1
) = OK′ [ζpn ].

https://stacks.math.columbia.edu/tag/031D
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(2) The extension K ′
n,m over K ′

n is weakly unramified, and OK′
n,m

= OK′
n
[X1, . . . , Xd]/(X

pm1

1 −
t1, . . . , X

pmd

d − td) = OK′ [ζpn , t1,pm1 , . . . , td,pmd ], where m = (m1, . . . ,md).
(3) The cyclotomic character (II.4.15.2) χ : Gal(K ′

∞,∞/K
′
0,∞)→ Z×

p is an isomorphism.
(4) The continuous homomorphism (II.4.15.4) ξ : Gal(K ′

∞,∞/K
′
∞)→ Zdp is an isomorphism.

Proof. The first two assertions follow from the fact that p is a uniformizer of the complete
discrete valuation field K ′ and that t1, . . . , td form a p-basis of its residue field (cf. [Ser79, I.§6]).
One can deduce easily the last two assertions from the first two by the arguments of II.4.19. □

Proposition II.5.4. The Kummer tower (OKn,m)(n,m)∈N1+d satisfies the condition II.4.19.(1).

Proof. We take K ′ as in II.5.2. Since K is a finite extension of K ′, the Galois group ∆ identifies
with an open subgroup of Gal(K ′

∞,∞/K
′
∞). The conclusion follows from II.5.3.(4). □

Remark II.5.5. Let n0 ∈ N≥2 such that K ∩ K ′
∞,∞ ⊆ K ′

n0,n0
. Then, for any (n,m) ∈ N1+d

≥n0
,

the natural map Gal(K∞,∞/Kn,m) → Gal(K ′
∞,∞/K

′
n,m) is an isomorphism by Galois theory. In

particular, the conclusion of II.4.19.(2) for (OKn,m)(n,m)∈N1+d holds for any (n,m) ∈ N1+d
≥n0

by II.5.3.

II.5.6. Recall that the OK-module Ω̂1
OK

(defined in II.2.2) is finitely generated whose free part has
rank d, and that Ω̂1

OK
[1/p] admits a K-basis d log(t1), . . . , d log(td) (cf. [He21, 3.3]). For simplicity,

we set (cf. II.2.2)

EOK
= Vp(Ω

1
OK/OK

) = lim←−
x 7→px

Ω1
OK/OK

.(II.5.6.1)

It is a K̂-module as Ω1
OK/OK

is p-primary torsion ([He21, 4.2]), and endowed with the natural action

of G. For any (spn)n∈N ∈ Vp(K
×
), we take k ∈ N sufficiently large such that pks1, pks−1

1 ∈ OK (thus
pks±1

pn ∈ OK). The element p−2k(pks−1
pn d(p

kspn))n∈N ∈ EOK does not depend on the choice of k,
which we denote by (d log(spn))n∈N. Similarly, we define d log(s) ∈ Ω̂1

OK
[1/p] for any s ∈ K×.

Theorem II.5.7 ([He21, 4.4]). There is a canonical G-equivariant exact sequence of K̂-modules,
called the Faltings extension of OK ,

0 −→ K̂(1)
ι−→ EOK

ȷ−→ K̂ ⊗OK
Ω̂1

OK
−→ 0,(II.5.7.1)

satisfying the following properties:
(1) We have ι((ζpn)n∈N) = (d log(ζpn))n∈N.
(2) For any s ∈ K× and any compatible system of p-power roots (spn)n∈N of s in K, ȷ(d log(spn))n∈N) =

d log(s).
(3) The K̂-linear surjection ȷ admits a section sending d log(ti) to (d log(ti,pn))n∈N for any

1 ≤ i ≤ d.
In particular, EOK

is a finite free K̂-module with basis {(d log(ti,pn))n∈N}0≤i≤d, where t0,pn = ζpn ,
on which G acts continuously with respect to the canonical topology (where K̂ is endowed with the
p-adic topology defined by its valuation ring).

Proof. The sequence (II.5.7.1) is constructed in [He21, 4.4] and (1), (3) are proved there.
Notice that (2) follows from the constructing process [He21, (4.4.5)] (see also II.9.32 for a detailed
proof). For the “in particular” part, it remains to check the continuity of the G-action. We set
αi = (d log(ti,pn))n∈N ∈ EOK for any 0 ≤ i ≤ d. For any g ∈ G and 1 ≤ i ≤ d, we have

g(α0) = χ(g)α0 and g(αi) = ξi(g)α0 + αi,(II.5.7.2)

where χ : G → Z×
p is the cyclotomic character (II.4.15.2) and ξ = (ξ1, . . . , ξd) : G → Zdp is the

continuous 1-cocycle (II.4.15.4). The elements α0, . . . , αd generate a finite free O
K̂

-submodule E +
OK

of EOK
which is G-stable. For any r ∈ N, each element of EOK

/prE +
OK

= ⊕di=0(K/p
rOK)αi is fixed

by an open subgroup of G, which implies that the map G× (EOK
/prE +

OK
)→ EOK

/prE +
OK

(given by
the action of G) is continuous with respect to the discrete topology on EOK

/prE +
OK

. Taking inverse
limit on r ∈ N, we see that G×EOK

→ EOK
is continuous with respect to the limit topology on EOK

,
which indeed coincides with the canonical topology (II.2.3). □

Remark II.5.8. The Faltings extension (II.5.7.1) is functorial in the following sense: let K ′ be a
complete discrete valuation field extension of K whose residue field admits a finite p-basis, K → K ′
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a compatible embedding of the algebraic closures of K and K ′. It defines a natural map Ω1
OK/OK

→
Ω1

O
K′/OK′

by pullback and thus a natural morphism of exact sequences

0 // K̂(1)
ι //

��

EOK

ȷ //

��

K̂ ⊗OK Ω̂1
OK

//

��

0

0 // K̂ ′(1)
ι // EOK′

ȷ // K̂ ′ ⊗OK′ Ω̂
1
OK′

// 0

(II.5.8.1)

Moreover, if K ′ is a finite extension of K, then K ′ ⊗OK Ω̂1
OK
→ K ′ ⊗OK′ Ω̂

1
OK′ is an isomorphism

(cf. the proof of [He21, 3.3]). Thus, the vertical maps in (II.5.8.1) are isomorphisms.

Corollary II.5.9. The connecting map of the Faltings extension (II.5.7.1) induces a canonical K̂∞-
linear isomorphism

K̂∞ ⊗OK Ω̂1
OK

∼−→ H1(H, K̂(1)),(II.5.9.1)

sending d log(ti) to ξi⊗ ζ, where H1 denotes the continuous group cohomology, ζ = (ζpn)n∈N ∈ Zp(1)
and ξ = (ξ1, . . . , ξd) : H → Zdp is the continuous 1-cocycle (II.4.15.4).

Proof. We remark that the Faltings extension (II.5.7.1) is an exact sequence of finite projective
K̂-representations of G, which admits a continuous splitting (not G-equivariant), so that we obtain
a long exact sequence of continuous group cohomologies (cf. [Tat76, §2]). The corollary follows
from Hyodo’s computation of H1(H, K̂(1)) (cf. [Hyo86, 2-1, 5-1]). We will give a detailed proof in
II.13.2. □

Remark II.5.10. A similar result for H1(G, K̂(1)) is given in [He21, 4.5], relying on Hyodo’s com-
putation.

II.5.11. We set

CHT = colim
n∈N

Symn

K̂
(EOK

(−1)),(II.5.11.1)

where Symn is taking the homogeneous part of degree n of the symmetric algebra, and the transition
map Symn → Symn+1 is defined by sending [x1 ⊗ · · · ⊗ xn] to [1 ⊗ x1 ⊗ · · · ⊗ xn] (where 1 denotes
the image of 1 ∈ K̂ via (II.5.7.1)). It is a K̂-module endowed with the natural action of G. There is
a natural G-equivariant exact sequence of K̂-modules induced by (II.5.7.1),

0→ Symn−1

K̂
(EOK

(−1))→ Symn

K̂
(EOK

(−1))→ K̂ ⊗OK
(Symn

OK
Ω̂1

OK
)(−n)→ 0.(II.5.11.2)

The K̂-module CHT admits a natural K̂-algebra structure induced by the multiplication morphisms
Symn ⊗ Symm → Symn+m.

Corollary II.5.12. We set ζ = (ζpn)n∈N ∈ Zp(1) and denote by ζ−1 ∈ Zp(−1) = HomZp(Zp(1),Zp)
the dual basis of ζ.

(1) There is an isomorphism of K̂-algebras,

K̂[T1, . . . , Td]
∼−→ CHT,(II.5.12.1)

sending the variable Ti to (d log(ti,pn))n∈N ⊗ ζ−1 for any 1 ≤ i ≤ d.
(2) If we endow K̂[T1, . . . , Td] with the semi-linear G-action by transport of structure via (II.5.12.1),

then for any g ∈ G and 1 ≤ i ≤ d, we have

g(Ti) = χ(g)−1(ξi(g) + Ti),(II.5.12.2)

where χ : G → Z×
p is the cyclotomic character (II.4.15.2) and ξ = (ξ1, . . . , ξd) : G → Zdp is

the continuous 1-cocycle (II.4.15.4). In particular, G acts continuously on Symn

K̂
(EOK (−1))

with respect to the canonical topology for any n ∈ N.
(3) The canonical map ȷ in (II.5.7.1) induces a canonical isomorphism of CHT-modules,

Ω1

CHT/K̂

∼−→ CHT ⊗OK Ω̂1
OK

(−1),(II.5.12.3)

and the universal differential map dCHT : CHT → CHT⊗OK Ω̂1
OK

(−1) sends Ti to d log(ti)⊗
ζ−1 for any 1 ≤ i ≤ d.
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Proof. It follows directly from II.5.7 and its arguments. □

Definition II.5.13 (cf. [Hyo89, §1], [AGT16, II.15], [Tsu18, §15]). The K̂-algebra CHT con-
structed in (II.5.11.1) is called the Hyodo ring of OK .

Corollary II.5.14. We have

colim
n∈N

Hq(H, Symn

K̂
(EOK (−1))) =

{
K̂∞ if q = 0,
0 otherwise,

(II.5.14.1)

where Hq denotes the continuous group cohomology, and Symn

K̂
(EOK (−1)) is endowed with the canon-

ical topology as a finite-dimensional K̂-module. In particular, (CHT)
H = K̂∞.

Proof. It follows from the argument of [Hyo89, (1.2.2)], which relies on the cohomological
property II.5.9 of the Faltings extension. We will give a detailed proof in II.13.5. □

Remark II.5.15. One can also obtain a similar result for Hq(G,Symn

K̂
(EOK (−1))) by the argument

of [Hyo89, (1.2.1)].

II.5.16. Taking a Tate twist of the dual of the Faltings extension (II.5.7.1) of OK , we obtain a
canonical exact sequence of finite projective K̂-representations of G,

0 −→ HomOK (Ω̂1
OK

(−1), K̂)
ȷ∗−→ E ∗

OK
(1)

ι∗−→ K̂ −→ 0(II.5.16.1)

where E ∗
OK

= Hom
K̂
(EOK , K̂). There is a canonical G-equivariant K̂-linear Lie algebra structure on

E ∗
OK

(1) associated to the linear form ι∗, defined by the Lie bracket for any f1, f2 ∈ E ∗
OK

(1),

[f1, f2] = ι∗(f1)f2 − ι∗(f2)f1.(II.5.16.2)

Thus, HomOK
(Ω̂1

OK
(−1), K̂) is a Lie ideal of E ∗

OK
(1), and K̂ is the quotient, and the induced Lie

algebra structures on them are trivial. Any K̂-linear splitting of (II.5.16.1) identifies E ∗
OK

(1) with

the semi-direct product of Lie algebras of K̂ acting on HomOK (Ω̂1
OK

(−1), K̂) by multiplication.
Let {Ti = (d log(ti,pn))n∈N ⊗ ζ−1}0≤i≤d (where t0,pn = ζpn) denote the basis of EOK

(−1), and let
{T ∗

i }0≤i≤d be the dual basis of E ∗
OK

(1). Then, we see that the Lie bracket on E ∗
OK

(1) is determined
by

[T ∗
0 , T

∗
i ] = T ∗

i and [T ∗
i , T

∗
j ] = 0,(II.5.16.3)

for any 1 ≤ i, j ≤ d. Indeed, this dual basis induces an isomorphism of K̂-linear Lie algebras

K̂ ⊗Qp Lie(Zp ⋉ Zdp)
∼−→ E ∗

OK
(1), 1⊗ ∂i 7→ T ∗

i ,(II.5.16.4)

where {∂i}0≤i≤d is the standard basis of Lie(Zp ⋉ Zdp) (cf. II.4.20).

Theorem II.5.17 ([Bri03, Théorème 1, 2], [Ohk11, §9]). The functor

Repproj
cont(Γ,K∞,∞) −→ Repproj

cont(G, K̂), V 7→ K̂ ⊗K∞,∞ V(II.5.17.1)

is an equivalence of categories.

Proposition II.5.18 ([Tsu18, 14.16]). The functor (cf. II.4.14)

Repproj
cont,∆-an(Γ,K∞) −→ Repproj

cont(Γ,K∞,∞), V 7→ K∞,∞ ⊗K∞ V(II.5.18.1)

is an equivalence.

Proof. It follows from the proof of [Tsu18, 14.16]. We note that the lemma [Tsu18, 14.17]
used in the proof holds by II.4.18, and the lemma [Tsu18, 14.18] holds since any finite field extension
of K is still a complete discrete valuation field. □

Lemma II.5.19 ([Tsu18, 15.3.(2)]). For any object V of Repproj
cont(Σ,K∞), the (Σ,K∞)-finite part

of K̂∞ ⊗K∞ V (see II.2.4) is V .

Proof. It follows from the argument of [Tsu18, 15.3.(2)] (cf. II.10.10). □
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II.5.20. We shall give an explicit way in II.5.28 to construct Higgs bundles from representations,
which generalizes [Tsu18, 15.1.(4)]. Firstly, we introduce another Kummer tower more general than
the one considered in II.5.1. We fix e ∈ N. Let t̃1, . . . , t̃e be elements of K with compatible systems
of p-power roots (t̃1,pn)n∈N, . . . , (t̃e,pn)n∈N in K. Consider the Kummer tower (OKn,l˜)(n,l˜)∈N1+e of

OK defined by ζpn , t̃1,pn , . . . , t̃e,pn . We take the notation in II.4.15 for this Kummer tower by adding
tildes.

K

K∞,∞˜

OO

K∞

∆̃

OO
H

??

K
Σ

oo

Γ̃
bbEEEEEEEE

G

dd(II.5.20.1)

We have the continuous 1-cocycle

ξ̃ = (ξ̃1, . . . , ξ̃e) : G −→ Zep,(II.5.20.2)

describing the action of G on t̃1,pn , . . . , t̃e,pn , cf. (II.4.15.4). We define 1 + e elements in EOK
(−1) ⊆

CHT by

T̃0 = 1, T̃1 = (d log(t̃1,pn))n ⊗ ζ−1, · · · , T̃e = (d log(t̃e,pn))n ⊗ ζ−1.(II.5.20.3)

Similarly to II.5.12.(2), for any g ∈ G and 1 ≤ i ≤ e, we have

g(T̃i) = χ(g)−1(ξ̃i(g) + T̃i).(II.5.20.4)

We remark that dCHT(T̃i) = d log(t̃i)⊗ ζ−1 ∈ K ⊗OK
Ω̂1

OK
(−1) by II.5.7.(2).

Lemma II.5.21. With the notation in II.5.20, we write

(T̃1, . . . , T̃e) = (T1, . . . , Td)A+B(II.5.21.1)

as elements of EOK
(−1) ⊆ CHT, where A = (aij) ∈ Md×e(K̂), B = (bj) ∈ M1×e(K̂). Then, A ∈

Md×e(K), and we have

(ξ̃1, . . . , ξ̃e) = (ξ1, . . . , ξd)A(II.5.21.2)

as vectors with value in the continuous group cohomology group H1(H, K̂). In particular, we have

dim(∆̃) ≥ rank(A).(II.5.21.3)

Proof. Notice that (dCHT(T̃1), . . . , dCHT(T̃e)) = (dCHT(T1), . . . ,dCHT(Td))A and that dCHT(T1), . . . ,dCHT(Td)

form a basis of K ⊗OK
Ω̂1

OK
(−1). Thus, A ∈ Md×e(K) as dCHT(T̃i) = d log(t̃i) ⊗ ζ−1 ∈ K ⊗OK

Ω̂1
OK

(−1). We act on (II.5.21.1) by g ∈ G, then by (II.5.20.4),

(ξ̃1(g), . . . , ξ̃e(g)) = (ξ1(g), . . . , ξd(g))A+ χ(g)g(B)−B.(II.5.21.4)

Thus, (II.5.21.2) follows from the fact that χ(H) = 1 and the map H → K̂ sending g to g(bj)− bj is
a 1-coboundry. In particular, the image of the composition of the natural maps

Hom(∆̃,Qp)→ Hom(H,Qp)→ H1(H, K̂)(II.5.21.5)

contains (ξ1, . . . , ξd)A. Since ξ1, . . . , ξd form a K̂∞-basis of H1(H, K̂) by (II.5.9.1), we see that
dim(∆̃) ≥ rank(A). □

Proposition II.5.22. With the notation in II.5.20, the following conditions are equivalent:

(1) The group ∆̃ has dimension e, i.e. the Kummer tower (OKn,l˜)(n,l˜)∈N1+e satisfies the condi-
tion II.4.19.(1).

(2) The 1 + e elements T̃0, T̃1, · · · , T̃e of EOK
(−1) ⊆ CHT are linearly independent over K̂.

(3) The e elements dt̃1, . . . , dt̃e of Ω̂1
OK

[1/p] are linearly independent over K.
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Proof. It is clear that (2) and (3) are equivalent by the splitting of the Faltings extension defined
in II.5.7.(3). We see that (3) implies (1) by (II.5.21.3). It remains to check (1) ⇒ (2).

We set αi = T̃i⊗ ζ ∈ EOK
(0 ≤ i ≤ e). Let l ∈ N be the smallest integer such that αi1 , . . . , αil are

linearly dependent for some 0 ≤ i1 < · · · < il ≤ e. Assume that l ≥ 1. We write xi1αi1+· · ·+xilαil = 0

for some xi1 , . . . , xil ∈ K̂ \ {0}. By (II.5.20.4), for any g ∈ G and 1 ≤ i ≤ e, we have

g(α0) = χ(g)α0 and g(αi) = ξ̃i(g)α0 + αi.(II.5.22.1)

We consider the cases where i1 = 0 and i1 > 0 separately.
If i1 = 0, then we may assume that (i1, i2, . . . , il) = (0, 1, . . . , l − 1). Since α0 ̸= 0, we have l > 1

and we may assume that xl−1 = 1. Thus,

0 =

l−1∑
i=0

xiαi − g(
l−1∑
i=0

xiαi)

(II.5.22.2)

=

(
x0 − χ(g)g(x0)−

l−1∑
i=1

ξ̃i(g)g(xi)

)
α0 + (x1 − g(x1))α1 + · · ·+ (xl−2 − g(xl−2))αl−2.

By the minimality of l, we have x0 = χ(g)g(x0) +
∑l−1
i=1 ξ̃i(g)g(xi), x1 = g(x1), . . . , xl−2 = g(xl−2).

Thus, x0 = χ(g)g(x0) +
∑l−1
i=1 ξ̃i(g)xi, which is a contradiction as we can take (χ(g), ξ̃1(g), . . . , ξ̃e(g))

running through an open subgroup of 0× Zep by varying g in ∆̃.
If i1 > 0, then we may assume that (i1, i2, . . . , il) = (1, 2, . . . , l) and that xl = 1. Thus,

0 =

l∑
i=1

xiαi − g(
l∑
i=1

xiαi)(II.5.22.3)

=

(
−
l−1∑
i=1

ξ̃i(g)g(xi)

)
α0 + (x1 − g(x1))α1 + · · ·+ (xl−1 − g(xl−1))αl−1.

We get a contradiction in a similar way. □

II.5.23. Following II.5.20, we assume that the equivalent conditions in II.5.22 hold, and we take the
notation in II.4.20 by adding tildes. Recall that for any object W of Repproj

cont(Γ̃,K∞,∞˜), there is a
canonical Lie algebra action induced by the infinitesimal action of Γ̃ on W defined in (II.4.16.1),

φ : Lie(Γ̃)→ EndK∞,∞˜ (W ).(II.5.23.1)

Let ∂̃0 ∈ Lie(Σ̃0,∞˜) and ∂̃1, . . . , ∂̃e ∈ Lie(∆̃) be the standard basis defined in II.4.20, and we put for
any g ∈ G,

φχ̃g = log(χ(g))φ∂̃0 , and φξ̃g =
d∑
i=1

ξ̃i(g)φ∂̃i .(II.5.23.2)

Lemma II.5.24. Under the assumption in II.5.23 and with the same notation, the map

ψ : E ∗
OK

(1) = Hom
K̂
(EOK

(−1), K̂) −→ K̂ ⊗Qp Lie(Γ̃),(II.5.24.1)

sending f to
∑e
i=0 f(T̃i) ⊗ ∂̃i, is surjective and induces a morphism of exact sequences of K̂-linear

Lie algebras

0 // HomOK
(Ω̂1

OK
(−1), K̂)

ȷ∗ //

����

E ∗
OK

(1)
ι∗ //

ψ
����

K̂ //

≀

��

0

0 // K̂ ⊗Qp Lie(∆̃) // K̂ ⊗Qp Lie(Γ̃) // K̂ ⊗Qp Lie(Σ) // 0

(II.5.24.2)

where the first row is (II.5.16.1).

Proof. The surjectivity of ψ follows from II.5.22.(2). It remains to check ψ is compatible with
Lie brackets. With the notation in II.5.21, we have

ψ(T ∗
0 ) = ∂̃0 +

e∑
j=1

bj ∂̃j , and ψ(T ∗
i ) =

e∑
j=1

aij ∂̃j , ∀1 ≤ i ≤ d,(II.5.24.3)
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where (T ∗
0 , . . . , T

∗
d ) is the dual basis of (T0, . . . , Td) defined in II.5.16. Thus, [ψ(T ∗

0 ), ψ(T
∗
i )] = ψ(T ∗

i )
and [ψ(T ∗

i ), ψ(T
∗
j )] = 0 for any 1 ≤ i, j ≤ d, which completes the proof. □

Remark II.5.25. The first vertical map in (II.5.24.2) can be defined without taking bases. Consider
the canonical maps

Hom(∆̃,Qp)→ Hom(H,Qp)→ H1(H, K̂)
∼−→ K̂∞ ⊗OK

Ω̂1
OK

(−1)(II.5.25.1)

where the first arrow is induced by the surjection H → ∆̃, and the last arrow is induced by the
connecting map of the Faltings extension of OK (II.5.9.1) which sends ξi to dCHT(Ti) for any 1 ≤ i ≤ d.
Thus, the composition of (II.5.25.1) sends ξ̃i to dCHT(T̃i) for any 1 ≤ i ≤ e by II.5.21. Since {ξ̃i}1≤i≤e
is the dual basis of the basis {∂̃i}1≤i≤e ⊆ Lie(∆̃) by construction, the composition of (II.5.25.1)
induces a natural injective K-linear map

HomQp(Lie(∆̃),K) −→ K ⊗OK
Ω̂1

OK
(−1)(II.5.25.2)

which sends f to
∑e
i=1 f(∂̃i)⊗ dCHT

(T̃i). Its dual is a natural surjective K-linear map

HomOK (Ω̂1
OK

(−1),K) −→ K ⊗Qp Lie(∆̃)(II.5.25.3)

which sends f to
∑e
i=1 f(dCHT(T̃i))⊗ ∂̃i, and induces the first vertical map in (II.5.24.2) by extending

scalars.

II.5.26. Let (C,O) be a ringed site, M an O-module. A Higgs field on an O-module F with coef-
ficients in M is an O-linear morphism θ : F → F ⊗OM such that θ(1) ◦ θ = 0, where θ(1) is the
O-linear morphism F ⊗OM→ F ⊗O ∧2M defined by θ(1)(x⊗ ω) = θ(x) ∧ ω for any local sections
x of F and ω of M.

IfM is a finite free O-module with basis ω1, . . . , ωd, then to give a Higgs field θ on F is equivalent
to give d endomorphisms θi (1 ≤ i ≤ d) of the O-module F which commute with each other. For any
local section x ofM, we have

θ(x) = θ1(x)⊗ ω1 + · · · θd(x)⊗ ωd.(II.5.26.1)

We call the d-tuple (θ1, . . . , θd) the coordinates of the Higgs field θ with respect to the O-basis
ω1, . . . , ωd ofM.

Assume that M is a finite projective O-module. We say that a Higgs field θ on an O-module F
is nilpotent if there is a finite decreasing filtration by O-submodules F = F0 ⊇ F1 ⊇ · · · ⊇ Fn = 0
such that θ(F i) ⊆ F i+1 ⊗OM for any 0 ≤ i < n.

One checks easily by II.5.12 that the universal differential map

dCHT : CHT → CHT ⊗OK
Ω̂1

OK
(−1)(II.5.26.2)

is a G-equivariant K̂-linear Higgs field on the K̂-module CHT with coefficients in K̂ ⊗OK Ω̂1
OK

(−1).

Definition II.5.27 (cf. [Tsu18, page 872]). We define a category HBnilp(Σ,K∞, Ω̂
1
OK

(−1)) as
follows:

(1) An object (M,ρ, θ) is a finite projective K∞-representation (M,ρ) of Σ (cf. II.2.4) endowed
with a K∞-linear nilpotent Higgs field θ : M → M ⊗OK

Ω̂1
OK

(−1) (with coefficients in
K∞ ⊗OK Ω̂1

OK
(−1)) which is Σ-equivariant (i.e. θ ◦ ρ(σ) = (ρ(σ) ⊗ χ−1(σ)) ◦ θ for any

σ ∈ Σ).
(2) A morphism (M,ρ, θ) → (M ′, ρ′, θ′) is a Σ-equivariant K∞-linear morphism f : M → M ′

which is compatible with the Higgs fields (i.e. θ′ ◦ f = (f ⊗ 1) ◦ θ).
It is an additive tensor category, where the tensor product is given by (M,ρ, θ) ⊗ (M ′, ρ′, θ′) =
(M ⊗K∞ M ′, ρ⊗ ρ′, θ ⊗ 1 + 1⊗ θ′).

Proposition II.5.28 (cf. [Tsu18, page 873]). Under the assumption in II.5.23 and with the same
notation, let (V, ρ) be an object of Repproj

cont,∆̃-an
(Γ̃,K∞).

(1) For any g ∈ Γ̃, we set

ρ(g) = exp(−φξ̃g)ρ(g).(II.5.28.1)

Then, ρ|∆̃ = 1 and ρ|Σ̃0,∞˜ = ρ|Σ̃0,∞˜ . Moreover, (V, ρ) is an object of Repproj
cont(Σ,K∞).
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(2) The K∞-linear homomorphism

θV : V −→ V ⊗OK Ω̂1
OK

(−1), v 7→ −
e∑
i=1

φ∂̃i(v)⊗ dCHT(T̃i)(II.5.28.2)

is a nilpotent Higgs field which is Σ-equivariant via ρ.
Therefore, there is a functor

Repproj

cont,∆̃-an
(Γ̃,K∞) −→ HBnilp(Σ,K∞, Ω̂

1
OK

(−1)), (V, ρ) 7→ (V, ρ, θV ),(II.5.28.3)

which relies on the choice of t̃1, . . . , t̃e.

Proof. (1) Notice that the infinitesimal Lie algebra action of Lie(∆̃) on V (II.4.13),

Lie(∆̃) −→ EndK∞(V ),(II.5.28.4)

is nilpotent by II.4.11 and II.4.18 (whose assumptions are satisfied as K is a complete discrete valua-
tion field). Thus, exp(−φξ̃g) and ρ(g) are well-defined endomorphisms of V . Since (V, ρ) is ∆̃-analytic
(II.4.14), if g ∈ ∆̃ then ρ(g) = exp(φg) = exp(φξ̃g) as φξ̃|∆̃ = φ|∆̃. Thus, ρ(g) = idV . It is clear that
ρ is continuous and K∞-semi-linear. It remains to show that ρ(g1g2) = ρ(g1)ρ(g2) for any g1, g2 ∈ Γ̃

(so that ρ is a K∞-representation of Γ̃/∆̃ = Σ).

ρ(g1g2) = exp(−
e∑
i=1

ξ̃i(g1g2)φ∂̃i)ρ(g1g2) (by (II.5.23.2))(II.5.28.5)

= exp(−
e∑
i=1

(ξ̃i(g1) + χ(g1)ξ̃i(g2))φ∂̃i)ρ(g1g2) (by (II.4.15.5))

= exp(−
e∑
i=1

ξ̃i(g1)φ∂̃i)ρ(g1) exp(−
e∑
i=1

ξ̃i(g2)φ∂̃i)ρ(g2) (by (II.4.17.1))

= ρ(g1)ρ(g2).

(2) Since the endomorphisms φ∂̃i on V are nilpotent and commute with each other, θV is a
nilpotent Higgs field. It remains to check the Σ-equivariance of θV . For v ∈ V and g ∈ Γ̃, we have

ρ(g)(θV (v)) = exp(−
e∑
i=1

ξ̃i(g)φ∂̃i)ρ(g)(−
e∑
j=1

φ∂̃j (v)⊗ dCHT(T̃j)) (by (II.5.23.2))

(II.5.28.6)

= exp(−
e∑
i=1

ξ̃i(g)φ∂̃i)(−
e∑
j=1

χ(g)φ∂̃j (ρ(g)(v))⊗ χ(g)
−1dCHT

(T̃j)) (by (II.4.17.1))

= −
e∑
j=1

φ∂̃j (exp(−
e∑
i=1

ξ̃i(g)φ∂̃i)ρ(g)(v))⊗ dCHT(T̃j) (as φ∂̃iφ∂̃j = φ∂̃jφ∂̃i)

= θV (ρ(g)(v)).

□

Remark II.5.29. (1) The minus sign in the definition of θV is designed for II.5.31.(4) (cf.
II.5.33).

(2) There is another definition for the Higgs field θV (II.5.28.2). Consider the canonical maps

V −→ HomQp(Lie(∆̃), V ) −→ V ⊗OK Ω̂1
OK

(−1),(II.5.29.1)

where the first map is induced by the infinitesimal Lie algebra algebra action of Lie(∆̃) on
V which sends v ∈ V to (∂̃ 7→ φ∂̃(v)), and the second map is induced by extending scalars
from the canonical map (II.5.25.2) which sends f to

∑e
i=1 f(∂̃i)⊗ dCHT(T̃i). It is clear that

the composition is −θV .

II.5.30. Let M = (M,ρ, θ) be an object of HBnilp(Σ,K∞, Ω̂
1
OK

(−1)). On the CHT-module CHT⊗K∞

M , we define a semi-linear action of G by the diagonal action g ⊗ g for any g ∈ G with image g ∈ Σ,
and a G-equivariant K̂-linear Higgs field dCHT⊗1+1⊗θ with value in K̂⊗OK Ω̂1

OK
(−1). In particular,

its K̂-submodule

V(M) = (CHT ⊗K∞ M)dCHT
⊗1+1⊗θ=0(II.5.30.1)
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is endowed with the induced semi-linear action of G.
Let W = (W,ρ) be an object of Repproj

cont(G, K̂). On the CHT-module CHT ⊗
K̂
W , we define a

semi-linear action of G by the diagonal action g ⊗ g for any g ∈ G, and a G-equivariant K̂-linear
Higgs field dCHT ⊗ 1. In particular, its K∞-submodule

D(W ) = ((CHT ⊗
K̂
W )H)(Σ,K∞)-fini(II.5.30.2)

where (−)(Σ,K∞)-fini is taking the (Σ,K∞)-finite part (cf. II.2.4), is endowed with the induced semi-
linear action of Σ and the induced Σ-equivariantK∞-linear Higgs field with value inK∞⊗OK

Ω̂1
OK

(−1)
(cf. II.5.14 and II.5.19).

We remark that the definitions of V and D do not depend on the choice of t1, . . . , td.

Theorem II.5.31 (cf. [Tsu18, 15.1]). We keep the notation in II.5.1.

(1) For any object M of HBnilp(Σ,K∞, Ω̂
1
OK

(−1)), V(M) is a finite-dimensional K̂-module on
which G acts continuously with respect to the canonical topology (thus V(M) is an object
of Repproj

cont(G, K̂)). Moreover, the canonical CHT-linear morphism (which is G-equivariant
and compatible with Higgs fields by definition)

CHT ⊗
K̂
V(M) −→ CHT ⊗K∞ M(II.5.31.1)

is an isomorphism.
(2) For any object W of Repproj

cont(G, K̂), D(W ) is a finite-dimensional K̂-module on which
Σ acts continuously with respect to the canonical topology (thus D(W ) is an object of
HBnilp(Σ,K∞, Ω̂

1
OK

(−1))). Moreover, the canonical CHT-linear morphism (which is G-
equivariant and compatible with Higgs fields by definition)

CHT ⊗K∞ D(W ) −→ CHT ⊗
K̂
W(II.5.31.2)

is an isomorphism.
(3) The functors

Repproj
cont(G, K̂)

D // HBnilp(Σ,K∞, Ω̂
1
OK

(−1))
V

oo(II.5.31.3)

are equivalences of additive tensor categories, quasi-inverse to each other.
(4) Under the assumption in II.5.23 and with the same notation, let (V, ρ) be an object of

Repproj

cont,∆̃-an
(Γ̃,K∞), M = (V, ρ, θV ) the object of HBnilp(Σ,K∞, Ω̂

1
OK

(−1)) defined by the

functor (II.5.28.3). Then, there exists a natural G-equivariant K̂-linear isomorphism

V(M)
∼−→ K̂ ⊗K∞ V(II.5.31.4)

which depends on the choice of t̃1, . . . , t̃e.

Proof. We follow the proof of [Tsu18, 15.1]. We identify CHT = K̂[T1, . . . , Td] by (II.5.12.1).
(1) Let θ :M →M ⊗OK Ω̂1

OK
(−1) denote the K∞-linear Higgs field of M . We write

θ(x) =
d∑
i=1

θi(x)⊗ dCHT
(Ti), ∀x ∈M,(II.5.31.5)

dCHT(f) =
d∑
i=1

∂f

∂Ti
⊗ dCHT(Ti), ∀f ∈ CHT,(II.5.31.6)

where θi (resp. ∂
∂Ti

) are K∞-linear (resp. K̂-linear) endomorphisms of M (resp. CHT), which
commute with each other. Since θi are nilpotent by definition, we can define a CHT-linear isomorphism

ι = exp(−
d∑
i=1

Ti ⊗ θi) : CHT ⊗K∞ M
∼−→ CHT ⊗K∞ M,(II.5.31.7)
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whose inverse is given by ι−1 = exp(
∑d
i=1 Ti ⊗ θi). We claim that the following diagram is commu-

tative.

CHT ⊗K∞ M

ι

��

dCHT
⊗1

// CHT ⊗K∞ M ⊗OK
Ω̂1

OK
(−1)

ι⊗1

��
CHT ⊗K∞ M

dCHT
⊗1+1⊗θ

// CHT ⊗K∞ M ⊗OK
Ω̂1

OK
(−1)

(II.5.31.8)

Indeed, we have

(dCHT ⊗ 1) ◦ exp(
d∑
i=1

Ti ⊗ θi)(II.5.31.9)

=exp(
d∑
i=1

Ti ⊗ θi) ◦ (dCHT ⊗ 1) +
d∑
j=1

(
exp(

d∑
i=1

Ti ⊗ θi) ◦ (1⊗ θj)

)
⊗ dCHT(Tj)

=(exp(

d∑
i=1

Ti ⊗ θi)⊗ 1) ◦ (dCHT ⊗ 1 + 1⊗ θ).

Thus, the restriction of ι induces a K̂-linear isomorphism

ι0 : K̂ ⊗K∞ M = (CHT ⊗K∞ M)dCHT
⊗1=0 ∼−→ V(M) = (CHT ⊗K∞ M)dCHT

⊗1+1⊗θ=0,(II.5.31.10)

from which we see that V(M) is finite-dimensional over K̂ and thus contained in the finite-dimensional
K̂-submodule Symn

K̂
(EOK

(−1))⊗K∞M of CHT⊗K∞M for some integer n > 0. Since V(M) is a direct
summand of Symn

K̂
(EOK (−1))⊗K∞M , the topology on V(M) induced from Symn

K̂
(EOK (−1))⊗K∞M

coincides with the canonical topology as a finite-dimensional K̂-module. Since G acts continuously
on Symn

K̂
(EOK

(−1)) ⊗K∞ M by II.5.12.(2), it acts also continuously on V(M) with respect to the

canonical topology, which means that V(M) is an object of Repproj
cont(G, K̂). Finally, notice that the

composition of the CHT-linear maps

CHT ⊗K∞ M
idCHT

⊗ι0 // CHT ⊗
K̂
V(M)

(II.5.31.1) // CHT ⊗K∞ M(II.5.31.11)

is the isomorphism ι. Thus, (II.5.31.1) is an isomorphism, which completes the proof of (1).
(4) Since the K∞-endomorphisms φ∂̃i (1 ≤ i ≤ e) on V are nilpotent and commute with each

other, we can define a CHT-linear isomorphism

ȷ = exp(−
e∑
i=1

T̃i ⊗ φ∂̃i) : CHT ⊗K∞ M
∼−→ CHT ⊗K∞ V,(II.5.31.12)

whose inverse is given by ȷ−1 = exp(
∑e
i=1 T̃i ⊗ φ∂̃i). We claim that ȷ is G-equivariant. Indeed, for

any g ∈ G and x ∈M , we have

g(ȷ(1⊗ x)) = exp(−
e∑
i=1

χ(g)−1(ξ̃i(g) + T̃i)⊗ χ(g)φ∂̃i)(1⊗ ρ(g)(x)) (by (II.5.20.4), (II.4.17.1))

(II.5.31.13)

= exp(−
e∑
i=1

T̃i ⊗ φ∂̃i) exp(−
e∑
i=1

1⊗ ξ̃i(g)φ∂̃i)(1⊗ ρ(g)(x))

= ȷ(1⊗ ρ(g)(x)) (by (II.5.23.2)).

On the other hand, by the same argument as (II.5.31.9), we see that ȷ is compatible with Higgs fields,
i.e. the following diagram is commutative.

CHT ⊗K∞ M

ȷ

��

dCHT
⊗1+1⊗θV // CHT ⊗K∞ M ⊗OK Ω̂1

OK
(−1)

ȷ⊗1

��
CHT ⊗K∞ V

dCHT
⊗1

// CHT ⊗K∞ V ⊗OK
Ω̂1

OK
(−1)

(II.5.31.14)
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Thus, the restriction of ȷ induces a G-equivariant K̂-linear isomorphism

V(M) = (CHT ⊗K∞ M)dCHT
⊗1+1⊗θV =0 ∼−→ K̂ ⊗K∞ V = (CHT ⊗K∞ V )dCHT

⊗1=0.(II.5.31.15)

(2) We apply (4) to the case where e = d and (t̃1, . . . , t̃e) = (t1, . . . , td) (with the same p-power
roots). By II.5.17, II.5.18 and (4), we see that the functor V is essentially surjective. Thus, we may
assume that W = V(M) for some object M of HBnilp(Σ,K∞, Ω̂

1
OK

(−1)). Taking the H-invariant
part of the isomorphism (II.5.31.1), by II.5.14 we get a canonical isomorphism

(CHT ⊗
K̂
W )H

∼−→ K̂∞ ⊗K∞ M.(II.5.31.16)

Taking the (Σ,K∞)-finite part, we get by II.5.19 a canonical Σ-equivariant K∞-linear isomorphism
D(W )

∼−→M compatible with Higgs fields, which completes the proof of (2).
(3) The proof of (2) shows that the canonical morphism D ◦ V → id is an isomorphism. Taking

the Higgs field zero part of the isomorphism (II.5.31.2), we see that V ◦ D → id is an isomorphism.
Using the isomorphisms (II.5.31.1) and (II.5.31.2), we see that V and D are compatible with tensor
products. This completes the proof. □

Remark II.5.32. Let L be a complete discrete valuation field of characteristic 0 with perfect residue
field of characteristic p. If OK is the p-adic completion of the localization of an adequate OL-algebra
A at some p ∈ Sp(A) (cf. II.9.5), then II.5.31 (except (4)) is a special case of [Tsu18, 15.2].

Remark II.5.33. Our construction of (II.5.28.2) has a sign difference with Tsuji’s. The essential
reason is that the G-action defined by Tsuji on the Hyodo ring CHT = K̂[T1, . . . , Td] is given by
g(Ti) = χ(g)−1(−ξi(g) + Ti) (cf. [Tsu18, page 872] and II.14.6).

Lemma II.5.34. Under the assumption in II.5.23 and with the same notation, let (V, ρ) (resp.
(Ṽ , ρ′)) be an object of Repproj

cont,∆-an(Γ,K∞) (resp. Repproj

cont,∆̃-an
(Γ̃,K∞)). Consider the K∞-linear

endomorphisms {φ∂i |V }0≤i≤d on V (resp. {φ∂̃i}0≤i≤d on Ṽ ) defined by the infinitesimal Lie algebra
action of Lie(Γ) (resp. Lie(Γ̃)). We write

(T̃1, . . . , T̃e) = (T1, . . . , Td)A+B(II.5.34.1)

as elements of EOK
(−1) ⊆ CHT, where A = (aij) ∈ Md×e(K), B = (bj) ∈ M1×e(K̂) (cf. II.5.21).

Assume that there is an isomorphism β : K̂ ⊗K∞ Ṽ
∼−→ K̂ ⊗K∞ V in Repproj

cont(G, K̂). Then, there
are identities of K̂-linear endomorphisms

β−1 ◦ (1⊗ φ∂1 |V , . . . , 1⊗ φ∂d |V ) ◦ β = (1⊗ φ∂̃1 |Ṽ , . . . , 1⊗ φ∂̃e |Ṽ )A
T,(II.5.34.2)

β−1 ◦ (1⊗ φ∂0 |V ) ◦ β = 1⊗ φ∂̃0 |Ṽ + (1⊗ φ∂̃1 |Ṽ , . . . , 1⊗ φ∂̃e |Ṽ )B
T,(II.5.34.3)

where AT and BT are the transposes of A and B.

Proof. Let M = (V, ρ, θV ) (resp. M̃ = (Ṽ , ρ′, θṼ )) be the object of HBnilp(Σ,K∞, Ω̂
1
OK

(−1))
defined by the functor (II.5.28.3). Consider the commutative diagram

CHT ⊗K∞ M̃
ȷ̃ //

ȷ−1◦(1⊗β)◦ȷ̃
��

CHT ⊗K∞ Ṽ

1⊗β
��

CHT ⊗K∞ M
ȷ // CHT ⊗K∞ V

(II.5.34.4)

where ȷ = exp(−
∑d
i=1 Ti⊗φ∂i |V ) (resp. ȷ̃ = exp(−

∑e
i=1 T̃i⊗φ∂̃i |Ṽ )) is the CHT-linear isomorphism

defined in (II.5.31.12). Notice that

((CHT ⊗K∞ M̃)H)(Σ,K∞)-fini = (K̂∞ ⊗K∞ M̃)(Σ,K∞)-fini = M̃(II.5.34.5)

where the first equality follows from II.5.14, and the second equality follows from II.5.19. Since 1⊗β,
ȷ and ȷ̃ are G-equivariant and compatible with Higgs fields by the proof of II.5.31.(4), ȷ−1 ◦ (1⊗β) ◦ ȷ̃
induces a Σ-equivariant K∞-linear map compatible with Higgs fields,

h : M̃ = ((CHT ⊗K∞ M̃)H)(Σ,K∞)-fini −→ ((CHT ⊗K∞ M)H)(Σ,K∞)-fini =M,(II.5.34.6)

so that we actually have ȷ−1 ◦ (1⊗ β) ◦ ȷ̃ = 1⊗ h (we remark that h = D(1⊗ β)).
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Notice that φ∂0 |V ◦φn∂i |V = φn∂i |V ◦ (φ∂0 |V +n) for any n ∈ N and 1 ≤ i ≤ d by (II.4.17.2). Thus,
we have

ȷ−1 ◦ (1⊗ φ∂0 |V ) ◦ ȷ(II.5.34.7)

=exp(
d∑
i=1

Ti ⊗ φ∂i |V ) ◦ (1⊗ φ∂0 |V ) ◦ exp(−
d∑
i=1

Ti ⊗ φ∂i |V )

= exp(

d∑
i=1

Ti ⊗ φ∂i |V ) ◦ exp(−
d∑
i=1

Ti ⊗ φ∂i |V ) ◦ (1⊗ φ∂0 |V −
d∑
i=1

Ti ⊗ φ∂i |V )

=1⊗ φ∂0 |V −
d∑
i=1

Ti ⊗ φ∂i |V .

Since h is compatible with Higgs fields, we have
∑e
j=1(h ◦ φ∂̃j |Ṽ ) ⊗ dCHT(T̃j) =

∑d
i=1(φ∂i |V ◦ h) ⊗

dCHT(Ti) by the definition (II.5.28.2). Notice that (dCHT(T̃1), . . . ,dCHT(T̃e)) = (dCHT(T1), . . . , dCHT(Td))A
and that dCHT(T1), . . . , dCHT(Td) are linearly independent. Thus, we have

(φ∂1 |V ◦ h, . . . , φ∂d |V ◦ h) = (h ◦ φ∂̃1 |Ṽ , . . . , h ◦ φ∂̃e |Ṽ )A
T,(II.5.34.8)

which implies (II.5.34.2), since ȷ and ȷ̃ commute with 1 ⊗ φ∂i |V and 1 ⊗ φ∂̃i |Ṽ respectively. Since
ρ′|Σ̃0,∞˜ = ρ′|Σ̃0,∞˜ by II.5.28.(1), we have an identification

φ∂̃0 |Ṽ = φ∂̃0 |M̃ ∈ EndK∞(Ṽ ) = EndK∞(M̃),(II.5.34.9)

where φ∂̃0 |Ṽ is given by the infinitesimal action of ∂̃0 ∈ Lie(Σ̃0,∞˜) via ρ′ on V , and φ∂̃0 |M̃ is given by
the infinitesimal action of ∂̃0 ∈ Lie(Σ̃0,∞˜) = Lie(Σ) via ρ′ on M . Similarly, we have φ∂0 |V = φ∂0 |M .

Since h : M̃ → M is Σ-equivariant, we deduce that h ◦ φ∂̃0 |Ṽ = φ∂0 |V ◦ h by II.4.9.(3). Using these
properties, we have

(1⊗ h)−1 ◦ (1⊗ φ∂0 |V −
d∑
i=1

Ti ⊗ φ∂i |V ) ◦ (1⊗ h)(II.5.34.10)

=1⊗ φ∂̃0 |Ṽ −
d∑
i=1

Ti ⊗ (h−1 ◦ φ∂i |V ◦ h)

=1⊗ φ∂̃0 |Ṽ −
d∑
i=1

e∑
j=1

Tiaij ⊗ φ∂̃i |Ṽ

=1⊗ φ∂̃0 |Ṽ −
e∑
j=1

(T̃j − bj)⊗ φ∂̃i |Ṽ .

By the argument of (II.5.34.7), we see that

ȷ̃ ◦ (1⊗ φ∂̃0 |Ṽ −
e∑
j=1

(T̃j − bj)⊗ φ∂̃i |Ṽ ) ◦ ȷ̃
−1 = 1⊗ φ∂̃0 |Ṽ +

e∑
j=1

bj ⊗ φ∂̃j |Ṽ(II.5.34.11)

which completes the proof. □

Theorem II.5.35. Let K be a complete discrete valuation field extension of Qp whose residue field
admits a finite p-basis, G = Gal(K/K). Then, for any object W of Repproj

cont(G, K̂), there is a
canonical homomorphism of K̂-linear Lie algebras (see II.5.16)

φSen|W : E ∗
OK

(1) −→ End
K̂
(W ),(II.5.35.1)

which is G-equivariant with respect to the canonical action on E ∗
OK

(1) defined in II.5.16 and the
adjoint action on End

K̂
(W ) (i.e. g ∈ G sends an endomorphism ϕ to g ◦ ϕ ◦ g−1), and functorial in

W , i.e. it defines a canonical functor

φSen : Repproj
cont(G, K̂) −→ Repproj(E ∗

OK
(1), K̂),(II.5.35.2)

from the category of finite projective (continuous semi-linear) K̂-representations of the profinite group
G to the category of finite projective K̂-linear representations of the Lie algebra E ∗

OK
(1).
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Moreover, under the assumption in II.5.23 and with the same notation, assume that there is
an object Ṽ of Repproj

cont,∆̃-an
(Γ̃,K∞) such that W = K̂ ⊗K∞ Ṽ . Then, for any f ∈ E ∗

OK
(1) =

Hom
K̂
(EOK

(−1), K̂),

φSen|W (f) =

e∑
i=0

f(T̃i)⊗ φ∂̃i |Ṽ .(II.5.35.3)

Proof. Recall that the base change functor

Repproj
cont,∆-an(Γ,K∞) −→ Repproj

cont(G, K̂), V 7→ K̂ ⊗K∞ V,(II.5.35.4)

is an equivalence by II.5.17 and II.5.18. Thus, there is an essentially unique object V of Repproj
cont,∆-an(Γ,K∞)

such that W = K̂ ⊗K∞ V . We claim that φSen|W defined by the formula (II.5.35.3) does not de-
pend on the choice of Ṽ and t̃i (so that φSen|W is canonically defined by the essential surjectivity of
(II.5.35.4), and functorial in W by the fully faithfulness of (II.5.35.4)). With the notation in II.5.34,
for any f ∈ Hom

K̂
(EOK (−1), K̂), we have

(f(T̃0), f(T̃1), . . . , f(T̃e))⊗ (φ∂̃0 , φ∂̃1 , . . . , φ∂̃e)
T(II.5.35.5)

=(f(T0), f(T1), . . . , f(Td))

(
1 B
0 A

)
⊗ (φ∂̃0 , φ∂̃1 , . . . , φ∂̃e)

T

=(f(T0), f(T1), . . . , f(Td))⊗ (φ∂0 , φ∂1 , . . . , φ∂d)
T

where the last equality follows from II.5.34, which proves the claim.
Notice that the map φSen|W defined by (II.5.35.3) fits into the following commutative diagram

E ∗
OK

(1)
φSen|W //

ψ &&LL
LLL

LLL
L

End
K̂
(W )

K̂ ⊗Qp Lie(Γ̃)

id
K̂
⊗φ|Ṽ

88ppppppppp

(II.5.35.6)

where ψ is the surjection (II.5.24.1), φ|Ṽ : Lie(Γ̃)→ EndK∞(Ṽ ) is the infinitesimal Lie algebra algebra

action (II.4.16.1). This shows that φSen|W is a morphism of K̂-linear Lie algebras.
It remains to check the G-equivariance of φSen|W . For any g ∈ G, we have

g ◦ φ∂̃i ◦ g
−1 = χ(g)φ∂̃i , ∀1 ≤ i ≤ e,(II.5.35.7)

g ◦ φ∂̃0 ◦ g
−1 = φ∂̃0 −

e∑
i=1

ξ̃i(g)φ∂̃i ,(II.5.35.8)

where the first follows from (II.4.17.1), and the second follows from II.4.21 and the identity ξ̃(gσ0g−1) =

ξ̃(g)(1− χ(σ0)) for any σ0 ∈ Σ̃0,∞˜ by (II.4.15.5). Therefore,

φSen|W (g · f) =
e∑
i=0

g(f(g−1T̃i))⊗ φ∂̃i

(II.5.35.9)

=(g ⊗ 1)

(
f(T̃0)⊗ φ∂̃0 +

e∑
i=1

χ(g)(f(T̃i) + ξ̃i(g
−1)f(T̃0))⊗ φ∂̃i

)
(by (II.5.20.4))

=(g ⊗ 1)

(
f(T̃0)⊗ (φ∂̃0 −

e∑
i=1

ξ̃i(g)φ∂̃i) + χ(g)

e∑
i=1

f(T̃i)⊗ φ∂̃i

)
(by (II.4.15.5))

=
e∑
i=0

g(f(T̃i))⊗ (g ◦ φ∂̃i ◦ g
−1) = g ◦ φSen|W (f) ◦ g−1

which shows the G-equivariance. □

Remark II.5.36. The same argument also shows that the K̂-linear map

W −→W ⊗
K̂

EOK (−1)(II.5.36.1)
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sending x to
∑e
i=0(idK̂

⊗φ∂̃i |Ṽ )(x)⊗ T̃i, is G-equivariant and does not depend on the choice of Ṽ or
t̃i. It naturally induces the map φSen|W (II.5.35.1). We note that it is not a Higgs field.

Definition II.5.37. Let W be an object of Repproj
cont(G, K̂). We denote by Φ(W ) the image of

φSen|W , and by Φgeo(W ) the image of HomOK
(Ω̂1

OK
(−1), K̂) under φSen|W . We call an element of

Φ(W ) ⊆ End
K̂
(W ) a Sen operator of W . We call an element of Φgeo(W ) ⊆ End

K̂
(W ) a geometric

Sen operator of W . And we call the image of 1 ∈ K̂ in Φari(W ) = Φ(W )/Φgeo(W ) the arithmetic
Sen operator of W .

Namely, we defined a canonical morphism of exact sequences of K̂-linear Lie algebras

0 // HomOK
(Ω̂1

OK
(−1), K̂)

ȷ∗ //

����

E ∗
OK

(1)
ι∗ //

����

K̂

����

// 0

0 // Φgeo(W ) // Φ(W ) // Φari(W ) // 0

(II.5.37.1)

which factors through (II.5.24.2) under the assumption of (II.5.35.3).

Proposition II.5.38. Let K ′ be a complete discrete valuation field extension of K whose residue
field admits a finite p-basis, K ′ an algebraic closure of K ′ containing K, G′ = Gal(K ′/K ′), W an
object of Repproj

cont(G, K̂), W ′ = K̂ ′ ⊗
K̂
W the associated object of Repproj

cont(G
′, K̂ ′). Assume that

K ′ ⊗OK Ω̂1
OK
→ K ′ ⊗OK′ Ω̂

1
OK′ is injective. Then, there is a natural commutative diagram

E ∗
OK′ (1)

φSen|W ′ //

����

End
K̂′(W

′)

K̂ ′ ⊗
K̂

E ∗
OK

(1)
id

K̂′⊗φSen|W
// K̂ ′ ⊗

K̂
End

K̂
(W )

≀

OO
(II.5.38.1)

where φSen are the canonical Lie algebra actions defined in II.5.35, the left vertical arrow is the
surjection induced by taking dual of the natural injection K̂ ′ ⊗

K̂
EOK

(−1) → EOK′ (−1) (cf. II.5.8),
and the right vertical arrow is the canonical isomorphism. In particular, the inverse of the right
vertical arrow induces a natural isomorphism

Φ(W ′)
∼−→ K̂ ′ ⊗

K̂
Φ(W )(II.5.38.2)

which is compatible with geometric and arithmetic Sen operators.

Proof. Let t′1,pn , . . . , t′d,pn ∈ K ′ be the images of t1,pn , . . . , td,pn ∈ K. Then, there is a commu-
tative diagram

K ′
Σ′

//
Γ′ **

G′

&&
K ′

∞
∆′

// K ′
∞,∞

// K ′

K

OO

Σ //

Γ
44

G

88K∞
∆ //

OO

K∞,∞ //

OO

K

OO(II.5.38.3)

Since d log(t′1), . . . , d log(t
′
d) are K ′-linearly independent in K ′ ⊗OK′ Ω̂1

OK′ by assumption, ∆′ is
also of dimension d by II.5.22. In particular, we have a natural isomorphism Lie(Γ′)

∼−→ Lie(Γ)
which identifies their standard bases {∂′i}1≤i≤d and {∂i}1≤i≤d defined in II.4.20. Let V be an
object of Repproj

cont,∆-an(Γ,K∞) such that W = K̂ ⊗K∞ V . Then, the object V ′ = K ′
∞ ⊗K∞ V

of Repproj
cont,∆′-an(Γ

′,K ′
∞) satisfies that W ′ = K̂ ′ ⊗K′

∞
V ′. By II.4.11, the natural identification

End
K̂′(W

′) = K̂ ′ ⊗
K̂

End
K̂
(W ) identifies id

K̂′ ⊗ φ∂′
i
|V ′ with id

K̂′ ⊗ φ∂i |V . This shows that the
diagram (II.5.38.1) is commutative which induces an isomorphism (II.5.38.2). □

Lemma II.5.39. Let W be an object of Repproj
cont(G, K̂).

(1) Geometric Sen operators of W are nilpotent and commute with each other.
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(2) If ϕ ∈ Φ(W ) is a lifting of the arithmetic Sen operator and θ ∈ Φgeo(W ) is a geometric Sen
operator, then [ϕ, θ] = θ.

(3) Moreover, we have ϕ(WG) = 0 and θ(WH) = 0.

Proof. (1) follows from II.5.28.(2) and the definition of geometric Sen operator (II.5.35.3). (2)
follows from the Lie algebra structure of E ∗

OK
(1) defined in II.5.16. (3) follows from the definition of

Sen operators, and we will give a detailed proof in II.11.12. □

Lemma II.5.40. Any object W of Repproj
cont(G, K̂) admits a canonical and functorial finite ascending

filtration {Fn}n∈N stable under the Lie algebra action φSen|W (II.5.35.1) such that any geometric Sen
operator sends Fn+1W into FnW . In particular, the arithmetic Sen operator of W acts naturally on
the graded object GrFW = ⊕n∈NGrFnW , where GrFnW = FnW/Fn−1W .

Proof. We set F0W = 0, and

F1W =
∩

θ∈Φgeo(W )

Ker(θ).(II.5.40.1)

By II.5.39, one checks easily that F1W is stable by any Sen operator of W . If W ̸= 0, then F1W
is non-zero, as θ is nilpotent. It is also functorial in W by II.5.35. Then, for any n ∈ N>0, FnW is
defined inductively by GrFnW = F1(W/Fn−1W ) =

∩
θ∈Φgeo(W ) Ker(θ|W/Fn−1W ). □

Proposition II.5.41. Let W be an object of Repproj
cont(G, K̂). Any lifting of the arithmetic Sen

operator ϕ ∈ Φ(W ) of W has the same characteristic polynomial, whose coefficients are in K.

Proof. By II.5.40, there exists a K̂-basis of W with respect to which the matrix of ϕ is upper
triangular and the matrix of any geometric operator θ of W is strictly upper triangular. We see that
ϕ and ϕ+ θ have the same characteristic polynomial. The coefficients of this polynomial lie in K by
[Bri03, Proposition 5.(a)]. □

Lemma II.5.42. Let F be a field, V,W two F -linear spaces, Φ ⊆ W ⊗F V a subset, FΦ = {f ∈
HomF (V, F ) | fW (Φ) = 0}, where fW = idW ⊗ f ∈ HomF (W ⊗F V,W ). Then, VΦ =

∩
f∈FΦ

Ker(f)

is the smallest F -linear subspace V ′ of V such that Φ ⊆ W ⊗F V ′. Moreover, an F -linear subspace
V ′ of V is equal to VΦ if and only if FΦ is equal to FV ′ = {f ∈ HomF (V, F ) | f(V ′) = 0}.

Proof. Firstly, we claim that Φ ⊆W ⊗F VΦ. Consider the exact sequence

0 // VΦ // V
(f)f∈FΦ // ∏

f∈FΦ
F.(II.5.42.1)

Since W is flat over F , we have an exact sequence

0 // W ⊗F VΦ // W ⊗F V
(idW⊗f)f∈FΦ // W ⊗F (

∏
f∈FΦ

F ).(II.5.42.2)

Since W ⊗F (
∏
f∈FΦ

F ) ⊆
∏
f∈FΦ

W , the subset Φ ⊆W ⊗F V is mapped to zero in (II.5.42.2), which
proves the claim.

Secondly, for any F -linear subspace V ′ of V , it is clear that V ′ ⊆
∩
f∈FV ′ Ker(f). This is actually

an equality, since for any element v ∈ V \ V ′ there exists f ∈ FV ′ such that f(v) ̸= 0.
Assume that Φ ⊆W ⊗F V ′. Then, FV ′ ⊆ FΦ so that VΦ =

∩
f∈FΦ

Ker(f) ⊆
∩
f∈FV ′ Ker(f) = V ′.

It shows that VΦ is the smallest F -linear subspace V ′ of V such that Φ ⊆ W ⊗F V ′. In particular,
we have FVΦ ⊆ FΦ. On the other hand, the definition of VΦ implies that FΦ ⊆ FVΦ . Thus, FVΦ = FΦ

and the final assertion follows. □

Theorem II.5.43 ([Sen81, Theorem 11], [Ohk14, 3.1]). Let I be the inertia subgroup of G, (V, ρ)
an object of Repproj

cont(G,Qp), W = K̂ ⊗Qp V the associated object of Repproj
cont(G, K̂). Then, Lie(ρ(I))

is the smallest Qp-subspace S of EndQp(V ) such that the space of Sen operators Φ(W ) is contained

in K̂ ⊗Qp S.

Remark II.5.44. We don’t know whether or not Lie(ρ(I ∩ H)) is the smallest Qp-subspace S of
EndQp(V ) such that the space of geometric Sen operators Φgeo(W ) is contained in K̂ ⊗Qp S, where
H = Gal(K/K∞). Recall that Sen-Ohkubo’s proof of II.5.43 relies on Sen’s ramification theorem on
a Galois extension of a complete discrete valuation field whose Galois group is a p-adic analytic group
([Sen73, Lemma 3], [Ohk14, 1.3]). Thus, it seems that we couldn’t apply their techniques directly
to this question. Nevertheless, we have the following weaker result.
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Corollary II.5.45. With the notation in II.5.43, the space of geometric Sen operators Φgeo(W ) is
contained in K̂ ⊗Qp Lie(ρ(I ∩H)).

Proof. Note that Φgeo(W ) = [Φ(W ),Φ(W )] by the Lie algebra structure on E ∗
OK

(1) (cf. II.5.16),
and that [Lie(ρ(I)),Lie(ρ(I))] ⊆ Lie(ρ(I ∩H)) as I/(I ∩H) ⊆ G/H = Σ is abelian. The conclusion
follows directly from the fact that Φ(W ) ⊆ K̂ ⊗Qp Lie(ρ(I)) by II.5.43. □

II.6. Extending Sen operators to Infinite-Dimensional Representations

We extend Sen operators to certain infinite-dimensional representations and their completions
over a complete discrete valuation ring. The goal is to show that geometric Sen operators still
annihilate the Galois invariant part of the representation.

II.6.1. By saying that a topological abelian group M is “complete”, we always mean that it is sepa-
rated and every Cauchy net of M admits a limit point ([GR04, 8.2.6]). The forgetful functor from
the category of complete topological abelian groups to the category of topological abelian groups ad-
mits a left adjoint, called the completion and denoted by M 7→ M̂ . The canonical map M → M̂ has
dense image and induces the topology on M from that of M̂ ([GR04, 8.2.8]). The adjoint property
implies that for any continuous group homomorphism of topological abelian groups f :M → N , there
is a unique continuous group homomorphism of the completions f̂ : M̂ → N̂ making the following
diagram commutative

M

��

f // N

��
M̂

f̂ // N̂

(II.6.1.1)

where the vertical arrows are the canonical maps. We call f̂ the continuation (or completion) of f .

II.6.2. We briefly review the definition of normed modules mainly following [Tsu18, §5], and we also
refer to [BGR84] for a systematic development. A (non-Archimedean) norm on an abelian group
M is a map | | :M → R≥0 such that |x| = 0 if and only if x = 0, and that |x− y| ≤ max{|x|, |y|} for
any x, y ∈M . For any r ∈ R>0, we denote the closed ball of radius r by

M≤r = {x ∈M | |x| ≤ r}.(II.6.2.1)

The metric topology makes M into a separated topological abelian group, where {M≤r}r∈R>0 forms
a fundamental system of closed neighbourhoods of 0. The norm map extends uniquely over the
completion M̂ of M , and M naturally identifies with a dense normed subgroup of M̂ .

A normed ring R is a ring endowed with a norm such that |xy| ≤ |x||y| for any x, y ∈ R. We
remark that there is a natural normed ring structure on R̂ induced by that of R. Given a normed
ring R, a normed R-module is an R-module M endowed with a norm such that |ax| ≤ |a||x| for any
a ∈ R and x ∈M . Moreover, we call R a Banach ring if it is complete, and we call M an R-Banach
module if M is complete.

II.6.3. For any valuation field K of height 1 extension of Qp, we fix a valuation map vK : K× → Q
normalized by vK(p) = 1, and we endow K with the norm | |K defined by |x|K = p−vK(x) for any
x ∈ K×. Let V be a normed K-module. Since pnV ≤1 = V ≤p−n

for any n ∈ N, V ≤1 is a p-adically
separated flat OK-module, and the induced metric topology on V ≤1 coincides with its p-adic topology.
We have V = V ≤1[1/p].

Conversely, given a p-adically separated flat OK-module M , we can define a norm on M [1/p]
by setting |x| = p−vM (x) for any x ∈ M [1/p] \ {0} where vM (x) is the biggest integer such that
x ∈ pvM (x)M . The metric topology defined by this norm on M [1/p] coincides with its p-adic topology
defined by M , and makes M [1/p] into a normed K-module with M [1/p]≤1 =M . We remark that V
(resp. M [1/p]) is complete if and only if V ≤1 (resp. M) is p-adically complete.

Lemma II.6.4. Let K be a complete valuation field of height 1 extension of Qp, V a normed K-
module. Then, the induced topology on any finite-dimensional K-subspace V0 of V coincides with its
canonical topology (cf. II.2.3).

Proof. The norm on V induces a norm on V0, whose associated metric topology defines the
induced topology on V0. On the other hand, any K-linear isomorphism V0 ∼= Kn defines a norm on
V0 which induces the canonical topology on V0. The conclusion follows from the fact that any two
norms on a finite-dimensional K-space are equivalent ([BGR84, 2.3.3.5]). □
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Proposition II.6.5. With the notation in II.5.1, let W be a normed K̂-module endowed with a
continuous semi-linear action of G. Assume that the (G, K̂)-finite part of W is equal to W itself (cf.
II.2.4). Then, there exists a unique K̂-linear Lie algebra action of E ∗

OK
(1) on W ,

φSen|W : E ∗
OK

(1) −→ End
K̂
(W ),(II.6.5.1)

such that for any G-equivariant continuous K̂-linear homomorphism W0 → W from an object W0

of Repproj
cont(G, K̂), φSen|W is compatible with the Lie algebra action φSen|W0 of E ∗

OK
(1) defined in

II.5.35.

Proof. The maps W0 → W form a category I. Indeed, it is the localization of the category
Repproj

cont(G, K̂) at the presheaf given by the restriction of the presheaf Hom(−,W ) on Repcont(G, K̂)
represented by W (cf. [SGA 4I, I.3.4.0]). We claim that I is filtered. Indeed, for any object
W0 → W of I, its image W1 ⊆ W is G-stable. Since the topology on W1 induced from W coincides
with the canonical topology as a finite-dimensional K̂-space by II.6.4, we see that W1 is a finite
projective K̂-representation of G and a subrepresentation of W and that W0 →W1 is a morphism in
Repproj

cont(G, K̂). As direct sums exist in I, one checks easily that I is filtered. By assumption and the
previous argument, W = colimI W0 as K̂-modules. Since the Lie algebra E ∗

OK
(1) acts functorially on

each W0, it defines a unique action on W compatible with that on each W0. □

Remark II.6.6. Let W be a K̂-Banach space endowed with a continuous semi-linear action of G
such that the (G, K̂)-finite part W f of W is dense in W . If we endow W f with the induced topology,
then its completion coincides with W ([GR04, 8.2.8.(iii)]). By II.6.5, we obtain a canonical Lie
algebra action φSen|W f on W f . If the operators on W f defined by φSen|W f are continuous, then we
can extend this action uniquely to a Lie algebra action φSen|W on W by continuation (cf. II.6.1).

However, in this work we haven’t found a simple condition to guarantee the continuity of the Sen
operators on W f . Instead, we consider two types of dense subrepresentations of W f and discuss the
continuity of Sen operators on them. Roughly speaking, the first type (considered in the rest of this
section) is the union of representations with “small lattices”, which is ad hoc but suitable for doing
descent and decompletion (so that nice properties are preserved after continuation, cf. II.6.19). The
other type (considered in the end of section II.11) is the union of representations defined over Qp,
which is more canonical but we need to reduce to the first type for proving properties (cf. II.11.26).

II.6.7. Let K be a valuation field of height 1 extension of Qp with a valuation map vK : K× → Q
normalized by vK(p) = 1, A a p-adically complete flat OK-algebra, M a p-torsion free p-adically
complete A-module. Consider an A-linear endomorphism ϕ on M such that ϕ(M) ⊆ αM for some
element α ∈ mK with vK(α) > 1

p−1 . As vK(n!) ≤ n−1
p−1 for any n ∈ N>0, the series for any x ∈M ,

exp(ϕ)(x) =

∞∑
n=0

1

n!
ϕn(x),(II.6.7.1)

log(1 + ϕ)(x) =

∞∑
n=1

(−1)n−1

n
ϕn(x)(II.6.7.2)

are well-defined and converge in M with respect to the p-adic topology. They define two A-linear
endomorphisms exp(ϕ) ∈ id + αEndA(M) and log(1 + ϕ) ∈ αEndA(M) of M such that exp(log(1 +
ϕ)) = 1 + ϕ and log(exp(ϕ)) = ϕ. Thus, we deduce easily that for any n ∈ N, p−n((1 + ϕ)p

n − 1) =
p−n(exp(pn log(1 + ϕ))− 1) ∈ αEndA(M), and that

log(1 + ϕ)(x) = lim
n→∞

p−n((1 + ϕ)p
n

− 1)(x),(II.6.7.3)

namely, log(1 + ϕ) is the infinitesimal action of 1 + ϕ on M (cf. II.4.8).

Definition II.6.8 (cf. [AGT16, II.13.1, II.13.2]). Let K be a valuation field of height 1 extension
of Qp, a an ideal of OK , A a p-adically complete flat OK-algebra endowed with a continuous action
of a topological group G by homomorphisms of OK-algebras.

(1) For any object M of Repproj
cont(G,A), we say that M is a-small if M is a finite free A-module

admitting a basis consisting of elements that are G-invariant modulo αM for some α ∈ a.
We denote by Repa-s(G,A) the full subcategory of Repproj

cont(G,A) consisting of a-small
objects.
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(2) For any object W of Repproj
cont(G,A[1/p]), we say that W is a-small if there exists a G-

stable A-submodule W+ of W generated by finitely many elements that are G-invariant
modulo αW+ for some α ∈ a. We denote by Repa-s(G,A[1/p]) the full subcategory of
Repproj

cont(G,A[1/p]) consisting of a-small objects.

Remark II.6.9. In II.6.8.(1), the G-action on M/αM may not be trivial, since this action is A-semi-
linear not A-linear. In II.6.8.(2), if W is a-small, then the canonical topology on W = W+[1/p] is
induced by the p-adic topology of W+ (cf. II.2.3). In particular, there is a natural faithful functor

Repa-s(G,A) −→ Repa-s(G,A[1/p]), M 7→M [1/p].(II.6.9.1)

We remark that even if A = OK (so that W+ is a finite free OK-module), W+ may not admit a basis
consisting of elements that are G-invariant modulo αW+, i.e. W+ may not be a-small.

II.6.10. In the rest of this section, we take again the assumptions and notation in II.5.1.

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(II.6.10.1)

Consider the following assumption on K:
(∗) Let κ be the residue field ofK, ∩n≥0κ

pn the maximal perfect subfield of κ, Kcan the algebraic
closure in K of the fraction field of the Witt ring W (∩n≥0κ

pn). Then, Kcan → K is a weakly
unramified extension of complete discrete valuation fields, i.e. a uniformizer of Kcan is still
a uniformizer of K.

This assumption is considered by Hyodo [Hyo86, (0-5)] when computing the cohomology Hq(G, K̂).
We remark that there exists a finite Galois extension of K which satisfies this assumption by Epp’s
theorem on eliminating ramification [Epp73, 1.9, 2.0.(1)]. The assumption implies that for any finite
field extension K ′

can of Kcan, we have OK′ = OK′
can
⊗OKcan

OK where K ′ = K ′
canK ([Sta22, 09E7,

09EQ]). In particular, the residue field of Kn is separable over that of K for any n ∈ N, and thus
t1, . . . , td still form a p-basis of the residue field ofKn. Hence, there is an isomorphism ofOKn -algebras
for any m = (m1, . . . ,md) ∈ Nd,

OKn [T1, . . . , Td]/(T
pm1

1 − t1, . . . , T p
md

d − td)
∼−→ OKn,m ,(II.6.10.2)

sending Ti to ti,pm ([Hyo86, 1-2]). In particular, the continuous homomorphism (II.4.15.4) ξ : ∆→
Zdp is an isomorphism, which also implies that K∞,∞ = K∞ ⊗K K0,∞.

Theorem II.6.11 (Faltings, [Fal05], cf. [AGT16, II.14.4]). Under the assumption (∗) in II.6.10
on K, let a be the ideal of OK∞ consisting of elements α with normalized valuation vK∞(α) > 2

p−1 .
Then, the functor

Repa-s(∆,O
K̂∞

) −→ Repa-s(H,O
K̂
)(II.6.11.1)

is an equivalence of categories.

Proof. It follows from the same arguments of [AGT16, II.14.4]. □

Theorem II.6.12 ([Tsu18, 11.2, 12.4]). Under the assumption (∗) in II.6.10 on K, let a be the ideal
of OK∞ consisting of elements α with normalized valuation vK∞(α) > 2

p−1 . Then, the functor

Repa-s(∆, K̂∞) −→ Repa-s(H, K̂)(II.6.12.1)

is an equivalence of categories.

Proof. It follows from the same arguments of [Tsu18, 11.2, 12.4]. □

Lemma II.6.13. Let V be an object of Repproj
cont,∆-an(Γ,K∞). Then, the associated K̂∞-representation

V̂ = K̂∞ ⊗K∞ V of ∆ is a-small for any nonzero ideal a of OK∞ .

https://stacks.math.columbia.edu/tag/09E7
https://stacks.math.columbia.edu/tag/09EQ
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Proof. Since ∆ is commutative and by II.4.11 and II.4.18 the infinitesimal Lie algebra action
φ : Lie(∆) → EndK∞(V ) is nilpotent, we can take a basis v1, . . . , vn of V as in the argument of
II.5.41 such that φτ (vi) ∈

∑
j>iK∞vj for any τ ∈ ∆ and 1 ≤ i ≤ n. Since V is ∆-analytic,

we have τ(vi) − vi = exp(φτ )(vi) − vi ∈
∑
j>iK∞vj . For any k0 ∈ N, after replacing v1, . . . , vn

by p−k1v1, . . . , p
−knvn for some integers kn ≫ · · · ≫ k1 > k0, we may assume that τ(vi) − vi ∈∑

j>i p
k0OK∞vj . Thus, the finite free OK∞-submodule V + of V generated by v1, . . . , vn is ∆-stable

and vi is ∆-invariant modulo pk0 . In particular, V̂ is pk0OK∞-small. □
II.6.14. Under the assumption (∗) in II.6.10 on K, let a be the ideal of OK∞ consisting of elements
α with normalized valuation vK∞(α) > 2

p−1 . There is a canonical commutative diagram

Repproj
cont(G, K̂) // Repa-s(H, K̂) Repa-s(H,O

K̂
)oo

Repproj
cont,∆-an(Γ,K∞) //

OO

Repa-s(∆, K̂∞)

OO

Repa-s(∆,O
K̂∞

)oo

OO
(II.6.14.1)

where the vertical arrows are equivalences of categories by II.5.17, II.5.18, II.6.12 and II.6.11, and
where the horizontal arrows of the left square are induced by these equivalences and II.6.13. It allows
us to calculate geometric Sen operators using “small lattices”.

Lemma II.6.15. Under the assumption (∗) in II.6.10 on K, let W be an object of Repproj
cont(G, K̂)

such that there exists an object W+ of Repa-s(H,O
K̂
) with W =W+[1/p] in Repa-s(H, K̂), where a

is the ideal of OK∞ consisting of elements α with normalized valuation vK∞(α) > 2
p−1 . Then, there

is a commutative diagram

E ∗
OK

(1)
φSen|W //

ψ ≀
��

End
K̂
(W )

K̂ ⊗Qp Lie(Γ) ∆
1⊗log∆

oo

id
K̂
⊗log(−)|V +

OO
(II.6.15.1)

where φSen|W is the canonical Lie algebra action defined in II.5.35, ψ is the isomorphism (II.5.24.1),
V + is the essentially unique object of Repa-s(∆,O

K̂∞
) such that W+ = O

K̂
⊗O

K̂∞
V +, and log(τ)|V +

is the O
K̂∞

-linear endomorphism on V + defined in II.6.7 for τ ∈ ∆.

Proof. Let V be the essentially unique object of Repproj
cont,∆-an(Γ,K∞) such that W = K̂⊗K∞V .

Then, we conclude by the equivalence (II.6.12.1) that V̂ = V +[1/p] in Repa-s(∆, K̂∞), where V̂ =

K̂∞ ⊗K∞ V .

W
� // W =W+[ 1p ] W+�oo

V � //
_

OO

V̂ = V +[ 1p ]

_

OO

V +�oo
_

OO(II.6.15.2)

Consider the infinitesimal Lie algebra action φ|V : Lie(Γ)→ EndK∞(V ).

E ∗
OK

(1)
φSen|W //

ψ ≀
��

End
K̂
(W )

K̂ ⊗Qp Lie(Γ)

id
K̂
⊗φ|V

88ppppppppp

∆
1⊗log∆

oo

id
K̂
⊗log(−)|V +

OO
(II.6.15.3)

The upper triangle commutes by II.5.35. It remains to check that the lower triangle commutes, i.e.
id
K̂∞
⊗ φτ |V = id

K̂∞
⊗ log(τ)|V + as K̂∞-linear endomorphisms of V̂ = V +[1/p] for any τ ∈ ∆. For

any x ∈ V whose image y in V +[1/p] lies in V +,

(id
K̂∞
⊗ φτ |V )(1⊗ x) =1⊗ lim

n→∞
p−n(τp

n

− 1)(x) (by (II.4.8.1))(II.6.15.4)

=1⊗ lim
n→∞

p−n(τp
n

− 1)(y)

=(id
K̂∞
⊗ log(τ)|V +)(1⊗ y) (by (II.6.7.3)),
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which completes the proof. □

On the other hand, one can control the Galois invariant part of the completion of a filtered colimit
of “small lattices”.

Lemma II.6.16 (cf. [AGT16, II.8.23]). Under the assumption (∗) in II.6.10 on K, let (W+
λ )λ∈Λ be

a directed system of objects in Repa-s(H,O
K̂
), where a is the ideal of OK∞ consisting of elements α

with normalized valuation vK∞(α) > 2
p−1 . Let (V +

λ )λ∈Λ be the essentially unique directed system of
objects in Repa-s(∆,O

K̂∞
) such that W+

λ = O
K̂
⊗O

K̂∞
V +
λ by II.6.11. We put W+

∞ = colimλ∈ΛW
+
λ

and V +
∞ = colimλ∈Λ V

+
λ . Then, the natural map

(V̂ +
∞ [1/p])∆ −→ (Ŵ+

∞[1/p])H(II.6.16.1)

is a bijection, where the completions are p-adic.

Proof. By virtue of [AGT16, II.8.23] (cf. (II.6.10.2)), the map (V +
λ /p

nV +
λ )∆ → (O

K̂
⊗O

K̂∞

V +
λ /p

nV +
λ )H is almost injective whose cokernel is killed by any element α ∈ OK∞ with vK∞(α) > 1

p−1 ,
and thus so is the map

(V̂ +
∞)∆ = lim

n→∞
colim
λ∈Λ

(V +
λ /p

nV +
λ )∆ −→ lim

n→∞
colim
λ∈Λ

(W+
λ /p

nW+
λ )H = (Ŵ+

∞)H .(II.6.16.2)

Inverting p, we get (V̂ +
∞ [1/p])∆ = (V̂ +

∞)∆[1/p] = (Ŵ+
∞)H [1/p] = (Ŵ+

∞[1/p])H . □

II.6.17. Let (W+
λ )λ∈Λ be a directed system of objects in Repproj

cont(G,OK̂). We putW+
∞ = colimλ∈ΛW

+
λ

as O
K̂

-modules, and denote its p-adic completion by Ŵ+
∞. We set

Wλ =W+
λ [

1

p
], W∞ =W+

∞[
1

p
], Ŵ∞ = Ŵ+

∞[
1

p
],(II.6.17.1)

endowed with the p-adic topology defined by W+
λ , W+

∞ and Ŵ+
∞ respectively. We remark that Ŵ∞ is

the completion of W∞ as topological abelian group (by the canonical isomorphism W+
∞/p

nW+
∞

∼−→
Ŵ+

∞/pnŴ
+
∞ for any n ∈ N, cf. [GR04, 8.2.8.(iii)]). As (Wλ)λ∈Λ forms a directed system of objects in

Repproj
cont(G, K̂), the canonical Lie algebra actions φSen|Wλ

defined in II.5.35 induces a homomorphism
of K̂-linear Lie algebras

φSen|W∞ : E ∗
OK

(1) −→ End
K̂
(W∞).(II.6.17.2)

We denote by Φ(W∞) its image, and by Φgeo(W∞) the image of HomOK
(Ω̂1

OK
(−1), K̂). On the other

hand, the compatible G-actions G×W+
λ →W+

λ induces an action G×W+
∞ →W+

∞ by taking colimit,

and thus induces an action G× Ŵ+
∞ → Ŵ+

∞ by taking p-adic completion.

Lemma II.6.18. We keep the notation in II.6.17.

(1) The G-actions on W+
∞ and Ŵ+

∞ are continuous with respect to the p-adic topology.
(2) If W+

∞ is p-adically separated, then the Lie algebra action φSen|W∞ of E ∗
OK

(1) on W∞ coin-
cides with the canonical Lie algebra action defined in II.6.5.

Proof. (1) For any x ∈ W+
∞, there exists xλ ∈ W+

λ for some λ ∈ Λ whose image in W+
∞ is x.

For any g ∈ G and n ∈ N, as G ×W+
λ → W+

λ is continuous, there exists an open subgroup G0 of
G such that G0g · xλ ⊆ gxλ + pnW+

λ . Thus, G0g · (x + pnW+
∞) ⊆ gx + pnW+

∞, which shows that
G ×W+

∞ → W+
∞ and G × (W+

∞/p
nW+

∞) → W+
∞/p

nW+
∞ are continuous. Taking limit on n, we see

that G× Ŵ+
∞ → Ŵ+

∞ is also continuous.
(2) If W+

∞ is p-adically separated, then it defines a norm on W∞ as in II.6.3 so that we can apply
II.6.5 to W∞. The conclusion follows directly from II.6.5 and the definition of (II.6.17.2). □

Theorem II.6.19. With the notation in II.6.17, assume that W+
λ is p3Zp-small (cf. II.6.8) for

each λ ∈ Λ. Then, any element of Φgeo(W∞) acts continuously on W∞, and it induces a K̂-linear
homomorphism by continuation,

φgeo
Sen|Ŵ∞

: HomOK
(Ω̂1

OK
(−1), K̂) −→ End

K̂
(Ŵ∞),(II.6.19.1)

whose image Φgeo(Ŵ∞) acts trivially on (Ŵ∞)H .
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Proof. We may replaceK by a finite extension and restrict the actions ofG to an open subgroup,
as this does not change the action (II.6.17.2) φSen|W∞ by II.5.38. Thus, we may assume thatK satisfies
the assumption (∗) in II.6.10 by Epp’s theorem on eliminating ramification [Epp73, 1.9, 2.0.(1)]. By
II.6.11, there is an essentially unique directed system (V +

λ )λ∈Λ of objects in Repa-s(∆,O
K̂∞

) with
W+
λ = O

K̂
⊗O

K̂∞
V +
λ in Repa-s(H,O

K̂
). We obtain O

K̂∞
-linear group actions ∆ × V +

∞ → V +
∞ and

∆× V̂ +
∞ → V̂ +

∞ by taking colimit and p-adic completion.
For each τ ∈ ∆, the compatible endomorphisms log(τ)|V +

λ
define anO

K̂∞
-endomorphism log(τ)|V +

∞

on V +
∞ (cf. II.6.7). As id

K̂
⊗ log(τ)|V +

∞
sends W+

∞ to itself, we see that any element of Φgeo(W∞) acts

continuously on W∞ by II.6.15. Thus, the Lie algebra action φSen|W∞ induces a canonical K̂-linear
homomorphism (II.6.19.1) by continuation.

Notice that ∆ acts trivially on V̂ +
∞/αV̂

+
∞ for any α ∈ OK∞ with 1

p−1 < vK∞(α) ≤ 2
p−1 . Thus,

log(τ) is a well-defined O
K̂∞

-endomorphism on V̂ +
∞ by II.6.7 for any τ ∈ ∆. Since log(τ)|

V̂ +
∞

is
compatible with log(τ)|V +

∞
by the formula (II.6.7.3), the uniqueness of continuation implies that the

following diagram is commutative as the continuation of (II.6.15.1),

HomOK (Ω̂1
OK

(−1), K̂)
φgeo

Sen|Ŵ∞ //

ψ ≀
��

End
K̂
(Ŵ∞)

K̂ ⊗Qp Lie(∆) ∆
1⊗log∆

oo

OO
(II.6.19.2)

where the right vertical arrow is induced by the map ∆→ EndO
K̂
(Ŵ+

∞) sending τ to the p-adic com-

pletion of the endomorphism idO
K̂
⊗ log(τ)|

V̂ +
∞

of O
K̂
⊗O

K̂∞
V̂ +
∞ . Since the endomorphism log(τ)|

V̂ +
∞

is the infinitesimal action of τ by (II.6.7.3), it acts trivially on (V̂ +
∞)∆. Therefore, Φgeo(Ŵ∞) acts

trivially on (V̂∞)∆ = (Ŵ∞)H by II.6.16 and (II.6.19.2). □

Remark II.6.20. Even if any element of Φ(W∞) acts continuously on W∞ (which holds in many
cases, cf. II.11.25), we don’t know whether the induced Lie algebra action φSen|Ŵ∞

by continuation
is compatible with the canonical Lie algebra action φSen|(Ŵ∞)f

on the (G,K)-finite part (Ŵ∞)f

(endowed with the topology induced from Ŵ∞) defined in II.6.5, since we don’t know the continuity
of the latter (cf. II.6.6). Thus, we couldn’t conclude easily that Φ(Ŵ∞) annihilates (Ŵ∞)G. To see
whether it is true or not, we need to study descent and decompletion of O

K̂
-representations of G and

also compare the Galois invariant part as in II.6.16. We plan to investigate this in the future.

II.7. Some Boundedness Conditions on a Ring Map

Definition II.7.1. Let A be a ring, π an element of A.
(1) We say that an A-module M is π-zero if it is killed by π. We say that a morphism of

A-modules f :M → N is a π-isomorphism if its kernel and cokernel are π-zero.
(2) We say that a chain complex of A-modules M• is π-exact if the homology group Hn(M•)

is π-zero for any n ∈ Z. We say that a morphism of chain complexes of A-modules f :
M• → N• is a π-quasi-isomorphism if it induces a π-isomorphism on the homology groups
Hn(M•)→ Hn(N•) for any n ∈ Z.

Lemma II.7.2 ([AG20, 2.6.3]). Let A be a ring, π an element of A, f : M → N a morphism of
A-modules.

(1) If there exists an A-linear homomorphism g : N → M such that g ◦ f = πidM and f ◦ g =
πidN , then f is a π-isomorphism.

(2) If f is a π-isomorphism, then there is a unique A-linear homomorphism g : N →M sending
y ∈ N to πx ∈M where x ∈ f−1(πy). In particular, g ◦ f = π2idM and f ◦ g = π2idN .

Proof. (1) is clear. For (2), for any y ∈ N , f−1(πy) is not empty as πCoker(f) = 0. The element
πx ∈ M does not depend on the choice of x ∈ f−1(πy) as πKer(f) = 0. Thus, the map g : N → M
is well-defined. It is clearly unique and satisfy the relations g ◦ f = π2idM and f ◦ g = π2idN . □

Remark II.7.3. Let A be a ring, π an element of A.
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(1) Let f• : M• → N• be a morphism of chain complexes of A-modules such that fn is a π-
isomorphism for any n ∈ Z. Then, there is a morphism of chain complexes of A-modules
g• : N• → M• defined by II.7.2.(2) such that g• ◦ f• = π2idM• and f• ◦ g• = π2idN• . We
see that f• is a π2-quasi-isomorphism. Moreover, for any A-linear endofunctor F of the
category of A-modules, F (f•) : F (M•)→ F (N•) is a π2-quasi-isomorphism.

(2) Let (fn)n∈N : (Mn)n∈N → (Nn)n∈N be a morphism of inverse systems of A-modules such
that fn is a π-isomorphism for any n ∈ N. Then, there is a morphism of inverse systems of
A-modules (gn)n∈N : (Nn)n∈N → (Mn)n∈N defined by II.7.2.(2) such that gn ◦ fn = π2idMn

and fn ◦gn = π2idNn . We see that the induced morphism Rq lim(Mn)n∈N → Rq lim(Nn)n∈N
is a π2-isomorphism for any q ∈ Z.

Lemma II.7.4. Let A be a ring, π an element of A, B → C a π-isomorphism of A-algebras. Then,
the canonical morphism C ⊗B Ω1

B/A → Ω1
C/A is a π17-isomorphism.

Proof. Let I (resp. J) be the kernel of the multiplication map B⊗AB → B (resp. C⊗AC → C).
Recall the Ω1

B/A (resp. Ω1
C/A) is canonically isomorphic to I/I2 (resp. J/J2). Consider the morphism

of exact sequences of A-modules

0 // I

��

// B ⊗A B //

��

B //

��

0

0 // J // C ⊗A C // C // 0

(II.7.4.1)

Since B → C is a π-isomorphism, B ⊗A B → C ⊗A C is a π4-isomorphism by II.7.2. By the snake
lemma, we see that I → J is a π5-isomorphism, and thus I2 → J2 is a π10-isomorphism. The snake
lemma shows that I/I2 → J/J2 is a π15-isomorphism. On the other hand, I/I2 → C ⊗B I/I2 is a
π2-isomorphism by II.7.2. We conclude that C ⊗B I/I2 → J/J2 is a π17-isomorphism. □

Proposition II.7.5. Let A be a ring, A′ and B two A-algebras, B′ = A′ ⊗A B. Then, the cone of
the canonical morphism

τ≤1(B
′ ⊗L

B LB/A) −→ τ≤1LB′/A′(II.7.5.1)

is concentrated in homological degree 2, where τ≤1 is the canonical truncation of chain complexes
([Sta22, 0118]), and LB/A denotes the cotangent complex of B over A. Moreover, if TorA1 (A′, B) is
π-zero for some π ∈ A, then (II.7.5.1) is a π-quasi-isomorphism.

Proof. We take a surjective homomorphism from a polynomial A-algebra P to B, and denote
its kernel by I. Recall that τ≤1LB/A is quasi-isomorphic to the complex I/I2 → B⊗P Ω1

P/A ([Sta22,
08RB]). Thus, in the derived category, we have

τ≤1(B
′ ⊗L

B LB/A) = τ≤1(B
′ ⊗L

B (τ≤1LB/A)) = (B′ ⊗B I/I2 → B′ ⊗P Ω1
P/A),(II.7.5.2)

where the first equality follows from the distinguished triangle τ≥2LB/A → LB/A → τ≤1LB/A →, and
the second equality can be deduced from replacing I/I2 by a flat resolution (note that B⊗P Ω1

P/A is
a free B-module).

We set P ′ = A′⊗AP and I ′ = Ker(P ′ → B′). Then, τ≤1LB′/A′ is quasi-isomorphic to the complex
I ′/I ′2 → B′ ⊗P ′ Ω1

P ′/A′ . Applying the functor P ′ ⊗P − to the exact sequence 0→ I → P → B → 0,
we obtain an exact sequence

TorP1 (P
′, B) −→ P ′ ⊗P I −→ I ′ −→ 0.(II.7.5.3)

Applying the functor B′ ⊗P ′ −, we get an exact sequence

B′ ⊗P ′ TorP1 (P
′, B) −→ B′ ⊗B I/I2 −→ I ′/I ′2 −→ 0.(II.7.5.4)

Let N be the image of the first arrow. Then, by (II.7.5.2), the cone of (II.7.5.1) is quasi-isomorphic
to the complex N [−2]. Since TorP1 (P

′, B) = TorA1 (A
′, B) as P is flat over A, we see that N is π-zero

if πTorA1 (A′, B) = 0. □

Corollary II.7.6. Let A be a ring, A′ and B two A-algebras, B′ = A′ ⊗A B. Assume that τ≤1LB/A
is π-exact for some π ∈ A. Then, τ≤1LB′/A′ is π2-exact.

Proof. Consider the convergent spectral sequence [EGA III2, 6.3.2.2]

E2
i,j = TorBi (B

′, Hj(LB/A))⇒ TorBi+j(B
′,LB/A),(II.7.6.1)

https://stacks.math.columbia.edu/tag/0118
https://stacks.math.columbia.edu/tag/08RB
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with d2i,j : E
2
i,j → E2

i−2,j+1. Then, there is an exact sequence

TorB0 (B
′,H1(LB/A)) −→ H1(B

′ ⊗L
B LB/A) −→ TorB1 (B

′, H0(LB/A)) −→ 0.(II.7.6.2)

SinceH1(LB/A) andH0(LB/A) are killed by π as τ≤1LB/A is π-exact, we see that π2H1(B
′⊗L

BLB/A) =

0. Notice that H1(B
′ ⊗L

B LB/A)→ H1(LB′/A′) is surjective by II.7.5. We see that π2H1(LB′/A′) = 0
and πH0(LB′/A′) = π(B′ ⊗B H0(LB/A)) = 0. □

Lemma II.7.7. Let A be a ring, π an element of A, B → C a homomorphism of A-algebras. Assume
that τ≤1LC/B and τ≤1LB/A are both π-exact. Then, τ≤1LC/A is π3-exact.

Proof. We see that π2H1(C ⊗L
B LB/A) = 0 by (II.7.6.2), and that πH0(C ⊗L

B LB/A) = π(C ⊗B
H0(LB/A)) = 0. By the fundamental distinguished triangle of cotangent complexes ([Ill71, II.2.1.5.6]),
we obtain an exact sequence

H1(C ⊗L
B LB/A)→ H1(LC/A)→ H1(LC/B)→ H0(C ⊗L

B LB/A)→ H0(LC/A)→ H0(LC/B)→ 0,

(II.7.7.1)

which shows that H1(LC/A) and H0(LC/A) are both killed by π3. □

Proposition II.7.8. Let A be a ring, π an element of A, B an A-algebra such that A → B is a
π-isomorphism. Then, τ≤1LB/A is π102-exact.

Proof. Let C be the image of A in B. We take a surjective homomorphism from a polynomial
C-algebra P to B, and denote its kernel by I. Let Q be the preimage of C via the surjection P → B.
It is a C-subalgebra of P such that πP ⊆ Q and that I is an ideal of Q. We remark that C = Q/I
and B = P/I = C ⊗Q P . Consider the canonical exact sequence

H1(LP/C) −→ H1(LP/Q) −→ P ⊗Q Ω1
Q/C −→ Ω1

P/C −→ Ω1
P/Q −→ 0.(II.7.8.1)

Since H1(LP/C) = 0 and P ⊗Q Ω1
Q/C → Ω1

P/C is π17-injective by II.7.4, H1(LP/Q) is killed by π17. It
is clear that πH0(LP/Q) = πΩ1

P/Q = 0 as πP ⊆ Q. It follows from II.7.6 that τ≤1LB/C is π34-exact
as B = C ⊗Q P . On the other hand, let J be the kernel of A → C which is killed by π. Then,
H1(LC/A) = J/J2 and H0(LC/A) = 0 ([Ill71, III.1.2.8.1]). It follows from II.7.7 that τ≤1LB/A is
π102-exact. □

II.7.9. Let A→ B be an injective homomorphism of normal domains flat over Zp. We fix an algebraic
closure L of the fraction field L of B, and let K be the algebraic closure of the fraction field K of A
in L. Consider an algebraic extension K′ of K in K and the integral closure A′ of A in K′. Let B′ be
the integral closure of B in the composite L′ = LK′ ⊆ L.

L′ B′oo A′oo // K′

L

OO

B

OO

oo Aoo //

OO

K

OO(II.7.9.1)

Let PA be the family of algebraic extensions K′ of K in K such that
(1) there exists a valuation ring OK′ extension of Zp contained in A′ such that its fraction field

K ′ is a pre-perfectoid field in the sense of I.5.1, and
(2) the OK′-algebra A′ is almost pre-perfectoid in the sense of I.5.19.

In particular, K ∈PA.

Definition II.7.10. With the notation in II.7.9, for any algebraic extension K′ of K in K, we say
that the map A→ B is bounded at K′ if there exists k ∈ N such that

pkCoker(B ⊗A A′ → B′) = 0.(II.7.10.1)

For any K′ ∈ PA, we say that A → B is pre-perfectoid at K′ if L′ = LK′ ∈ PB and if A → B is
bounded at K′. We say that A→ B is pre-perfectoid if it is pre-perfectoid at any K′ ∈PA.

Lemma II.7.11. We keep the notation in II.7.9.
(1) If A→ B is étale, then it is pre-perfectoid.
(2) If A→ B is pre-perfectoid, then for any algebraic extension K′ of K in K, the map A′ → B′

is also pre-perfectoid.
(3) If B → C is another injective homomorphism of normal domains flat over Zp and if A→ B,

B → C are pre-perfectoid, then so is A→ C.
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Proof. (1) Note that B⊗AA′ is a finite product of normal domains as it is étale over the normal
domain A′ ([AGT16, III.3.3]). Thus, B′ identifies with one of the components. If K′ ∈ PA, then
B ⊗A A′ is almost pre-perfectoid by I.5.37 and so is B′ (i.e. L′ ∈ PB). This shows that A → B is
pre-perfectoid.

(2) We only need to unwind the definition. For any algebraic extension K′′ of K′ in K, let A′′

be the integral closure of A in K′′, B′′ the integral closure of B in L′′ = LK′′ ⊆ L. Assume that
K′′ ∈ PA′ . By definition, we also have K′′ ∈ PA, and thus L′′ ∈ PB so that L′′ ∈ PB′ . Since
A → B is bounded at K′′, there exists k ∈ N such that pkCoker(B ⊗A A′′ → B′′) = 0. Thus,
pkCoker(B′ ⊗A′ A′′ → B′′) = 0, which means that A′ → B′ is bounded at K′′. This completes the
proof.

(3) It also follows directly from unwinding the definition. □
Theorem II.7.12 (Almost purity, [Sch12, 7.9]). Let K be a pre-perfectoid field with a non-zero
element π in its maximal ideal, R a flat OK-algebra which is almost pre-perfectoid, R′ the integral
closure of R in a finite étale R[1/π]-algebra. Then, R′ is almost pre-perfectoid and almost finite étale
over R.

Proof. Let (S, πS) be the henselization of the pair (R, πR). Then, S′ = S ⊗R R′ is the integral
closure of S in a finite étale S[1/π]-algebra. By I.5.41, we see that R′ is almost pre-perfectoid and
that S′ is almost finite étale over S. Notice that R→ R[1/π]×S is faithfully flat. By almost faithfully
flat descent [AGT16, V.8.10], we see that R′ is almost finite étale over R. □
Corollary II.7.13. Let A be a normal domain flat over Zp, B the integral closure of A in a domain
finite étale over A[1/p]. Then, the map A→ B is pre-perfectoid.

Proof. With the notation in II.7.9, for any K′ ∈ PA, B′ is almost pre-perfectoid and almost
finite étale over A′ by almost purity II.7.12. As B[1/p] is finite étale over A[1/p], B ⊗A A′[1/p] is
the integral closure of A′[1/p] in L⊗K K′, which is a finite product of normal domains and one of its
component identifies with B′[1/p]. In particular, B ⊗A A′[1/p] → B′[1/p] is surjective. We see that
there exists k ∈ N such that pkCoker(B ⊗A A′ → B′) = 0, since the B ⊗A A′-module B′ is almost
finitely generated. It follows from the definition that A→ B is pre-perfectoid. □
II.7.14. Let A be a ring, I an ideal of A, a an element of I. The affine blowup algebra A[I/a] is the
A-subalgebra of A[1/a] generated by the subset {x/a}x∈I ([Sta22, 052P]). As the ideal IA[I/a] is
generated by a, there is a unique morphism Spec(A[I/a])→ X over Spec(A), where X is the blowup
of Spec(A) in I. Moreover, if I is generated by a subset S, then {Spec(A[I/a]) → X}a∈S forms a
Zariski open covering ([Sta22, 0804]).

Lemma II.7.15. Let A be a ring, π an element of A, I an ideal of A containing a power of π,
a an element of I, Â the π-adic completion of A, I ′ = IÂ, a′ the image of a in Â. Then, the
natural morphism of affine blowup algebras A[I/a] → Â[I ′/a′] induces an isomorphism of their π-
adic completions

(A[I/a])∧
∼−→ (Â[I ′/a′])∧.(II.7.15.1)

Proof. We denote by φ : A→ Â and ϕ : A[1/a]→ Â[1/a] the natural morphisms. We need to
show that for each integer n > 0 the natural morphism

A[I/a]/πnA[I/a] −→ Â[I ′/a′]/πnÂ[I ′/a′](II.7.15.2)

is an isomorphism. We claim that Î → Î ′ is an isomorphism. Indeed, since A/I is killed by a
power of π, we get from the short exact sequence 0 → I → A → A/I → 0 a short exact sequence
0 → Î → Â → A/I → 0 by π-adic completion ([Sta22, 0BNG]). Similarly, we get from the short
exact sequence 0→ I ′ → Â→ Â/I ′ → 0 a short exact sequence 0→ Î ′ → Â→ Â/I ′ → 0. Moreover,
as πnA ⊆ I for n large enough, we deduce from the canonical isomorphism A/πnA

∼−→ Â/πnÂ that
A/I → Â/I ′ is an isomorphism. Combining with the previous short exact sequences, we see that
Î → Î ′ is an isomorphism.

For the surjectivity of (II.7.15.2), recall that the A-algebra A[I/a] is generated by the elements
{x/a}x∈I . For x′ ∈ I ′, as I/πnI → I ′/πnI ′ is surjective, there exists x ∈ I and y ∈ I ′ such
that x′ = φ(x) + πny ∈ I ′. Thus, x′/a′ ≡ ϕ(x/a) mod πnÂ[I ′/a′], which shows that (II.7.15.2) is
surjective.

For the injectivity of (II.7.15.2), as any element of A[I/a] is of the form x/ak for some x ∈ I and
k > 0, we suppose that ϕ(x/ak) = πn(x′/a′k

′
) for some x′ ∈ I ′ and k′ > 0. Thus, there exists N > 0

such that a′N (a′kπnx′−a′k′φ(x)) = 0 in I ′. In particular, φ(aN+k′x) ∈ πnI ′. Since I/πnI → I ′/πnI ′

https://stacks.math.columbia.edu/tag/052P
https://stacks.math.columbia.edu/tag/0804
https://stacks.math.columbia.edu/tag/0BNG
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is injective, there exists y ∈ I such that aN+k′x = πny. Thus, x/ak = πn(y/aN+k+k′) ∈ πnA[I/a],
which shows that (II.7.15.2) is injective. □

Lemma II.7.16. Let A be a ring, π an element of A, B an A-subalgebra of A[1/π]. Assume that the
morphism of π-adic completions Â→ B̂ is a πn-isomorphism for some n ∈ N. Then, πnCoker(A→
B) = 0.

Proof. Consider the commutative diagram

B
f ′

// B̂

A
f //

g

OO

Â

g′

OO(II.7.16.1)

For b ∈ B ⊆ A[1/π], we write πnb = g(x)/πm in A[1/π], where x ∈ A and m ∈ N. We have
πm+nf ′(b) = g′(f(x)). On the other hand, by the assumption πnCoker(g′) = 0, there exists y ∈ Â
such that πnf ′(b) = g′(y). Thus, g′(f(x)− πmy) = 0, which implies that πn(f(x)− πmy) = 0 by the
assumption πnKer(g′) = 0. By the isomorphism A/πm+nA

∼−→ Â/πm+nÂ, we have πnx ∈ πm+nA.
Therefore, πnb = g(πnx)/πm+n ∈ Im(g). □

Theorem II.7.17 ([Sch12, 6.3]). Let K be a pre-perfectoid field with a non-zero element π of its
maximal ideal, A an OK-algebra which is almost pre-perfectoid, I a finitely generated ideal of A
containing a power of π, a an element of I.

(1) The integral closure B of the affine blowup algebra A[I/a] in A[I/a][1/π] = A[1/πa] is
almost pre-perfectoid.

(2) There exists n ∈ N such that πnCoker(A[I/a]→ B) = 0.

Proof. As Â is almost flat over OK̂ by definition, Â→ (A/A[π∞])∧ is surjective and is an almost
isomorphism (I.5.27). Thus, after replacing A by A/A[π∞] ⊆ A[1/π] and I by its image (which does
not change B and Coker(A[I/a] → B)), we may assume that A is flat over OK . Let B′ (resp.
B′′) be the integral closure of Â[I ′/a′] (resp. (A[I/a])∧) in Â[I ′/a′][1/π] (resp. (A[I/a])∧[1/π]),
where the completions are π-adic, I ′ = IÂ and a′ is the image of a in Â. By II.7.15, we have
(A[I/a])∧ = (Â[I ′/a′])∧. Thus, there exists a canonical morphism B′ → B′′ and a commutative
diagram

B // B′ // B′′

A[ Ia ]
//

OO

Â[ I
′

a′ ]
//

OO

(A[ Ia ])
∧

OO(II.7.17.1)

Since the three OK-algebras in the second row are flat (I.5.20) and have the same π-adic completion
flat over OK̂ , the π-adic completions of the three OK-algebras in the first row are almost isomorphic
by I.5.29.

(1) By definition, the OK̂-algebra Â is almost perfectoid. We endow Â[1/π] with the π-adic
topology defined by Â so that it becomes a Tate K̂-algebra in the sense of [Sch12, 2.6]. If Â+

denotes the integral closure of Â in Â[1/π] (which is almost isomorphic to Â), then (Â[1/π], Â+) forms
a perfectoid affinoid K̂-algebra in the sense of [Sch12, 6.1]. Similarly, we endow Â[I ′/a′][1/π] with
the π-adic topology defined by Â[I ′/a′] so that it becomes a Tate K̂-algebra. Then, (Â[I ′/a′][1/π], B′)

is an affinoid K̂-algebra. Its completion is ((A[I/a])∧[1/π], B′′), which is the completed affinoid K̂-
algebra associated to the rational subset of Spa(Â[1/π], Â+) defined by I and a by the definition
[Sch12, 2.13]). By virtue of [Sch12, 6.3.(ii)], ((A[I/a])∧[1/π], B′′) is a perfectoid affinoid K̂-algebra.
Thus, the OK̂-algebra B′′ is almost perfectoid and bounded in (A[I/a])∧[1/π] with respect to the
π-adic topology defined by (A[I/a])∧. In particular, B′′ → B̂′′ is an almost isomorphism ([Sch12,
5.5]). Thus, B is almost pre-perfectoid, since B̂ → B̂′′ is an almost isomorphism by the discussion in
the beginning.

(2) Since (A[I/a])∧ → B′′ is injective as (A[I/a])∧ is flat over OK , the map (A[I/a])∧ → B̂ is
almost injective by the almost isomorphisms B̂ → B̂′′ ← B′′. Since B′′ is bounded in (A[I/a])∧[1/π]
with respect to the π-adic topology defined by (A[I/a])∧, there exists n ∈ N such that πn annihilates
the kernel and cokernel of (A[I/a])∧ → B̂. The conclusion follows from II.7.16. □
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Corollary II.7.18. Let A be a normal domain flat over Zp, I a finitely generated ideal of A con-
taining a power of p, a an element of I, B the integral closure of the affine blowup algebra A[I/a] in
A[I/a][1/p] = A[1/pa]. Then, the map A→ B is pre-perfectoid.

Proof. With the notation in II.7.9, for any K′ ∈ PA, notice that the affine blowup algebra
A′[I/a] is the image of A[I/a] ⊗A A′ → A′[1/a]. Thus, B′ is the integral closure of A′[I/a] in
A′[I/a][1/p] = A′[1/pa]. Thus, it is almost pre-perfectoid and pkCoker(A′[I/a] → B′) = 0 for some
k ∈ N by II.7.17, which completes the proof. □

II.8. Brief Review on Adequate Charts of Logarithmic Schemes

The main geometric object of this article, quasi-adequate algebras, stems from logarithmic ge-
ometry. In this section, we firstly review basic notions of logarithmic geometry. We refer to
[Kat89, Kat94, GR04, Ogu18] for a systematic development of logarithmic geometry, and to
[AGT16, II.5] and I.9 for a brief summary of the theory. Then, we review adequate charts of a
logarithmic scheme and the induced coverings following Tsuji [Tsu18, §4].

II.8.1. All monoids considered in this article are unitary and commutative, and we denote the monoid
structures additively. The category of monoids admits arbitrary colimits (cf. [Ogu18, I.1.1]), and
we denote the colimit of a diagram M1 ←M0 →M2 by M1 ⊕M0 M2. The forgetful functor from the
category of groups (resp. rings) to the category of monoids (resp. with respect to the multiplicative
structure) admits a left adjoint sending M to Mgp (resp. Z[M ]). For any monoid M , we denote by
expM :M → Z[M ] the canonical homomorphism of monoids. The forgetful functor from the category
of finitely generated monoids to the category of fs (i.e. fine and saturated) monoids admits a left
adjoint sending M to the saturation M fs of its image in Mgp ([Ogu18, I.1.3.5, I.2.2.5]).

II.8.2. A log schemeX is a pair (X,αX :MX → OX) consisting of a schemeX and a homomorphism
from a sheaf of monoids to the structural sheaf on the étale site of X (equivalent to the strictly étale
site of X, see below) which induces an isomorphism α−1

X (O×
X)

∼−→ O×
X , where OX = OX ét

and O×
X is

the subsheaf of units. A morphism of log schemes Y → X is a pair (f, f ♭) consisting of a morphism of
the underlying schemes f : Y → X and a homomorphism of sheaves of monoids f ♭ : f−1(MX)→MY

compatible with the natural homomorphism f−1(OX) → OY via αY and f−1(αX). A morphism of
log schemes Y → X is strict if the log structure of Y is the inverse image of that of X ([AGT16,
II.5.11]). For an open immersion of schemes j : U → X, let MU→X be the preimage of jét∗O×

Uét
via

the natural map OXét
→ jét∗OUét

. Then, the log structure αU→X :MU→X → OXét
on X is called

the compactifying log structure associated to the open immersion j ([Ogu18, III.1.6.1]).

II.8.3. A log ring is a homomorphism M → A from a monoid M to the multiplicative monoid of a
ring A. We denote by Spec(M → A) the log scheme with underlying scheme Spec(A) endowed with
the log structure associated to the pre-log structure M → OSpec(A)ét induced by M → A, and we set
AM = Spec(expM :M → Z[M ]) ([Ogu18, III.1.2.3]). A chart of a log scheme X is a homomorphism
M → Γ(X,MX) from a monoid M to the monoid of global sections of MX such that the induced
morphism of log schemes X → AM is strict ([AGT16, II.5.13]). We say that a log scheme X is
coherent (resp. fs) if strictly étale locally on X it admits a chart from a finitely generated (resp. fs)
monoid M ([AGT16, II.5.15]).

II.8.4. The inclusion functor from the category of schemes to the category of coherent log schemes
(by endowing with trivial log structures) admits a left adjoint sending X to its underlying scheme
X, and admits a right adjoint sending X to the maximal open subscheme Xtr of X on which the log
structure is trivial ([Ogu18, III.1.2.8]). The inclusion functor from the category of fs log schemes
to the category of coherent log schemes admits a right adjoint X 7→ X fs, and we remark that the
canonical morphism of underlying schemes X fs → X is finite with (X fs)tr = Xtr ×X X fs = Xtr

([Ogu18, III.2.1.5]). The category of log schemes admits finite limits, which commute with taking
underlying schemes and preserve coherence ([Ogu18, III.2.1.2]). By the universal property of the
functor X 7→ X fs, the category of fs log schemes also admits finite limits ([Ogu18, III.2.1.6]).

II.8.5. Let X be a regular fs log scheme ([Kat94, 2.1], [Niz06, 2.3]). Its underlying scheme X is
locally Noetherian and normal, and Xtr is regular and dense in X ([Kat94, 4.1]). Moreover, the
log structure on X is the compactifying log structure associated to the open immersion Xtr → X
([Kat94, 11.6], [Niz06, 2.6]). A typical example is that given a regular scheme X with a strict normal
crossings divisor D, then (X,αX\D→X) is a regular fs log scheme whose open subset of triviality of
log structure is X \D ([Ogu18, III.1.11.9]).
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II.8.6. To any morphism of log schemes Y → X, one can associate the OY -module of log differentials
Ω1
Y/X with natural maps d : OY → Ω1

Y/X and d log :MY → Ω1
Y/X ([AGT16, II.5.21]). If Y → X

is strict, then Ω1
Y/X = Ω1

Y /X . If X and Y are coherent, then Ω1
Y/X is quasi-coherent. If Y → X is a

smooth morphism of coherent log schemes, then Ω1
Y/X is locally finite free ([Ogu18, IV.3.2.1]). For

any morphism of log rings (α : M → A) → (β : N → B), if we denote by X = Spec(M → A) and
Y = Spec(N → B), then Ω1

Y/X is the quasi-coherent OY -module associated to the B-module

Ω1
(N→B)/(M→A) =

Ω1
B/A ⊕ (B ⊗Z (Ngp/Mgp))

F
(II.8.6.1)

where F is the B-submodule of Ω1
B/A⊕(B⊗Z(N

gp/Mgp)) generated by the elements (d(β(x)),−β(x)⊗
x) for any x ∈ N ([Ogu18, IV.1.2.6]). We remark that for any Cartesian diagram in the category of
(resp. fs) log schemes

Y ′ g′ //

f ′

��

Y

f

��
X ′ g // X

(II.8.6.2)

the canonical morphism g′∗Ω1
Y/X → Ω1

Y ′/X′ is an isomorphism ([Ogu18, IV.1.2.15]).

II.8.7. Let K be a complete discrete valuation field of characteristic 0 with perfect residue field
of characteristic p > 0, S the log scheme with underlying scheme Spec(OK) endowed with the
compactifying log structure associated to the open immersion Spec(K) → Spec(OK) (in particular,
S is a regular fs log scheme, cf. II.8.5), f : X → S a morphism of fs log schemes. We remark that
if f is smooth, then X is also regular ([Ogu18, IV.3.5.3]), and thus the log structure on X is the
compactifying log structure associated to Xtr → X, cf. II.8.5.

Definition II.8.8. With the notation in II.8.7, an adequate chart of f is a triple of homomorphisms
of monoids (α : N→ Γ(S,MS), β : P → Γ(X,MX), γ : N→ P ) satisfying the following conditions:

(1) The following diagram is commutative

Γ(X,MX) P
βoo

Γ(S,MS)

f♭

OO

Nαoo

γ

OO(II.8.8.1)

(2) The element α(1) ∈ Γ(S,MS) = OK \ {0} is a uniformizer of OK (in particular, S → AN is
strict).

(3) The homomorphism β induces a strict and étale morphism X → S ×AN AP (in particular,
X → AP is also strict).

(4) The monoid P is fs, and if we denote by γη : Z → Pη = Z ⊕N P the pushout of γ by the
inclusion N→ Z, then there exists an isomorphism for some c, d ∈ N with c ≤ d,

Pη ∼= Z⊕ Zc ⊕ Nd−c(II.8.8.2)

identifying γη with the inclusion of Z into the first component of right hand side.

Remark II.8.9. In II.8.8, the morphism of fs log schemes S ×AN AP → S is smooth ([AGT16,
II.5.25]), and thus so is X → S. If we set A = OK ⊗Z[N] Z[P ] and Atr = OK ⊗Z[N] Z[P gp], then
the underlying scheme of S ×AN AP is Spec(A), and Spec(Atr) is the maximal open subscheme on
which the log structure is trivial (cf. [Ogu18, III.1.2.10]). As X → S ×AN AP is strictly étale,
Xtr = Spec(Atr)×Spec(A)X and the log structure on X is the compactifying log structure associated
to the open immersion Xtr → X (cf. II.8.7). Moreover, (II.8.8.2) induces an isomorphism (cf. II.8.1)

A[
1

p
] = K ⊗Z[Z] Z[Z]⊗Z[N] Z[P ] = K ⊗Z[Z] Z[Pη] ∼= K[Zc ⊕ Nd−c],(II.8.9.1)

and A is a Noetherian normal domain (cf. II.8.5, II.8.7).

Remark II.8.10. Our definition of adequate charts is slightly different from Abbes-Gros’ definition
[AGT16, III.4.4], where they require moreover that γ is saturated (cf. [AG20, 4.2.2]). Nevertheless,
our adequate charts describe log smooth schemes over S by the following proposition due to Abbes-
Gros and Tsuji.
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Proposition II.8.11 ([Tsu18, 3.14, 3.16], cf. [AGT16, III.4.6]). With the notation in II.8.7, the
following conditions are equivalent:

(1) The morphism of fs log schemes f : X → S is smooth and the underlying generic fibre XK

is regular.
(2) Every geometric point of X admits a strictly étale neighbourhood U in X such that U →

S factors through S′ = (Spec(OK′), αSpec(K′)→Spec(OK′ )) for some tamely ramified finite
extension K ′ of K and that the induced morphism of fs log schemes U → S′ admits an
adequate chart.

Proof. (2) ⇒ (1): By the conditions in II.8.8, UK′ is étale over Spec(K ′[Zc ⊕ Nd−c]), thus
regular. Since U → S′ is smooth by II.8.9, so is U → S as S′ is étale over S.

(1) ⇒ (2): For a geometric point of the generic fibre XK , the conclusion follows directly from
[Tsu18, 3.14] (where we take S′ = S). For a geometric point of the special fibre of X, the conclusion
follows directly from [Tsu18, 3.16]. □

II.8.12. We follow Tsuji [Tsu18, §4] to construct coverings of adequate log schemes from an adequate
chart. Let γ : N → P be an injective homomorphism of fs monoids such that there exists an
isomorphism for some c, d ∈ N with c ≤ d,

Pη ∼= Z⊕ Zc ⊕ Nd−c(II.8.12.1)

identifying γη : Z → Pη = Z ⊕N P with the inclusion of Z into the first component of right hand
side as in II.8.8.(4). We identify P gp with Z1+d and Ngp with the first component of Z1+d. For any
e ∈ N>0 and r = (r1, . . . , rd) ∈ Nd>0, we define a submonoid of Q1+d by

Pe,r = {x ∈ e−1Z× r−1
1 Z× · · · × r−1

d Z | ∃k ∈ N>0 s.t. kx ∈ P}.(II.8.12.2)

It is an fs monoid ([Tsu18, 3.2]), and if we denote by Pe,r,η the pushout e−1Z⊕e−1N Pe,r, then there
is an isomorphism

Pe,r,η ∼= e−1Z⊕ r−1
1 Z⊕ · · · ⊕ r−1

c Z⊕ r−1
c+1N⊕ · · · ⊕ r

−1
d N(II.8.12.3)

induced by (II.8.12.1) (cf. [Tsu18, page 810, equation (2)]).
Let K be a complete discrete valuation field of characteristic 0 with perfect residue field of

characteristic p > 0, L a finite field extension of K, S (resp. SL) the log scheme with underlying
scheme Spec(OK) (resp. Spec(OL)) endowed with the compactifying log structure defined by the
closed point. We fix a homomorphism of monoids α : N→ OK \ {0} sending 1 to a uniformizer π of
K. For any r ∈ Nd>0, consider the fibred product in the category of fs log schemes

XL
r = SL ×fs

AN
AP1,r ,(II.8.12.4)

where the map SL → AN is induced by α and the inclusion OK → OL. We omit the index L or
r if L = K or r = 1 respectively. Let β : P1,r → Γ(XL

r ,MXL
r
) be the induced homomorphism of

monoids, and for any 1 ≤ i ≤ d, we denote by Ti,ri the image of r−1
i · 1i = (0, . . . , r−1

i , . . . , 0) ∈ P gp
1,r

in Γ(XL
r ,M

gp
XL

r
).

Γ(XL
r ,MXL

r
) P1,r

βoo

Γ(SL,MSL)

OO

Nαoo

γ

OO
(II.8.12.5)

In section II.10, we will produce a Kummer tower from XL
r → X by varying L and r. We need an

adequate chart of XL
r over SL.

Lemma II.8.13 ([Tsu18, page 812, equation (6)]). With the notation in II.8.12, the morphism of fs
log schemes XL

r → SL admits an adequate chart

(α′ : e−1N→ Γ(SL,MSL), β′ : Pe,r → Γ(XL
r ,MXL

r
), γ′ : e−1N→ Pe,r)(II.8.13.1)

where e is the ramification index of L/K, α′ is a homomorphism of monoids sending e−1 to a
uniformizer π′ of L, β′(k0/e, k1/r1, . . . , kd/rd) = π′k0 ·T k11,r1

· · ·T kdd,rd , and γ′ is induced by the inclusion
of the first component of (II.8.12.3). Moreover, the canonical morphism of log schemes induced by
this chart

XL
r −→ SL ×Ae−1N

APe,r(II.8.13.2)

is an isomorphism.
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Proof. For the convenience of the readers, we briefly recall Tsuji’s proof. Consider the commu-
tative diagram of fs monoids

Pe,r
(ι,0) // Pe,r ⊕ Z P1,r

(ι,s)oo

e−1N
(ι,0) //

γ′

OO

e−1N⊕ Z

(γ′,idZ)

OO

N
(ι,ι)oo

γ

OO
(II.8.13.3)

where we use ι to denote the inclusions, s : P1,r → Z is the projection to the first component, and
γ′ is induced by the inclusion of the first component of (II.8.12.3). The squares in (II.8.13.3) are
cocartesian in the category of fs monoids (using [Tsu18, 4.2] for the right). Notice that the map
α : N→ Γ(SL,MSL) is the composition of

N (ι,ι)−→ e−1N⊕ Z (α′,s′)−→ Γ(SL,MSL),(II.8.13.4)

where α′ is a homomorphism of monoids sending e−1 to a uniformizer π′ of L, and s′ : Z →
Γ(SL,MSL) = OL \ {0} sends 1 to the unit π/π′e. Thus, the cocartesian square in (II.8.13.3) on the
right induces the following commutative diagram of monoids by the definition XL

r = SL ×fs
AN

AP1,r

(II.8.12.4).

Γ(XL
r ,MXL

r
) Pe,r ⊕ Z

(β′,s′)oo

Γ(SL,MSL)

OO

e−1N⊕ Z
(α′,s′)oo

(γ′,idZ)

OO
(II.8.13.5)

It is clear that the induced map β′ sends an element (k0/e, k1/r1, . . . , kd/rd) ∈ Pe,r to π′k0 ·T k11,r1
· · ·T kdd,rd .

Since the morphism (II.8.13.2) is induced by the composition of (II.8.13.5) with the cocartesian square
in (II.8.13.3) on the left, it is an isomorphism by the definition XL

r = SL ×fs
AN

AP1,r (II.8.12.4). □

Proposition II.8.14 ([Tsu18, 4.3, 4.5]). With the notation in II.8.12, there exists k0 ∈ N such that
for any finite field extensions L ⊆ L′ of K and any elements r|r′ of Nd>0, we have

pk0AL
′

r′ ⊆
⊕
k∈I

OL′ ⊗OL A
L
r ·

d∏
i=1

T kii,r′i
⊆ p−k0AL

′

r′(II.8.14.1)

where ALr = Γ(XL
r ,OXL

r
), and I = {(k1, . . . , kd) ∈ Nd | 0 ≤ ki < r′i/ri, 1 ≤ i ≤ d}.

Proof. Firstly, we note that

ALr [
1

p
] = L[r−1

1 Z⊕ · · · ⊕ r−1
c Z⊕ r−1

c+1N⊕ · · · ⊕ r
−1
d N] = L[T±1

1,r1
, . . . , T±1

c,rc , Tc+1,rc+1 , . . . , Td,rd ]

(II.8.14.2)

by definition (II.8.12.4) (cf. [Tsu18, page 812, equation (5)]). Thus,
⊕

k∈I OL′ ⊗OL
ALr ·

∏d
i=1 T

ki
i,r′i

is a finite free OL′ ⊗OL
ALr -subalgebra of AL

′

r′ [1/p]. By [Tsu18, 4.5.(2)], we have

pAL
′

r ⊆ OL′ ⊗OL A
L
r ⊆ AL

′

r .(II.8.14.3)

By [Tsu18, 4.3] and the isomorphism (II.8.13.2), there exists k0 ∈ N>0 independent of L,L′, r, r′

such that (cf. [Tsu18, 4.9])

pk0−1AL
′

r′ ⊆
⊕
k∈I

AL
′

r ·
d∏
i=1

T kii,r′i
⊆ p1−k0AL

′

r′ .(II.8.14.4)

The conclusion follows from combining (II.8.14.3) and (II.8.14.4). □

II.9. Quasi-adequate Algebras and Faltings Extension

In this section, we fix a complete discrete valuation field K of characteristic 0 with perfect residue
field of characteristic p > 0, an algebraic closure K of K, and a compatible system of primitive n-th
roots of unity (ζn)n∈N in K. Sometimes we denote ζn by t0,n.
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II.9.1. Let A be a Noetherian normal domain flat over Zp, Atr a localization of A with respect to a
nonzero element of pA, K the fraction field of A, K an algebraic closure of K. The maximal unramified
extension Kur of K with respect to (Atr, A) is the union of all finite extensions K′ of K contained in
K such that the integral closure of Atr in K′ is étale over Atr. It is a Galois extension over K, whose
Galois group Gal(Kur/K) is denoted by GA. We call the integral closure A of A in Kur the maximal
unramified extension of A with respect to Atr. It is GA-stable under the natural action of GA on
Kur. We remark that the integral closure of A in any finite field extension K′ of K is a Noetherian
normal domain finite over A by II.4.4.

Definition II.9.2. A (K,OK ,OK)-triple is a triple (Atr, A,A) consisting of a Noetherian normal
domain A flat over OK with A/pA ̸= 0, a localization Atr of A with respect to a nonzero element
of pA, and the maximal unramified extension A of A with respect to Atr contained in an algebraic
closure K of the fraction field K of A containing K.

A morphism of (K,OK ,OK)-triples (Atr, A,A) → (A′
tr, A

′, A′) is a homomorphism of OK-
algebras f : A → A′ such that f(A) ⊆ A′ and f(Atr) ⊆ A′

tr. If f is injective, then it induces
an extension of the fraction fields Kur → K′

ur and thus a natural homomorphism of Galois groups
GA′ → GA.

We will use this definition to describe the functoriality of the Faltings extensions (cf. II.9.38).

II.9.3. Let (Atr, A,A) be a (K,OK ,OK)-triple. We denote by E(A) the set of morphisms of (K,OK ,OK)-
triples (Atr, A,A)→ (E,OE ,OE), where E is a complete discrete valuation field extension of K whose
residue field admits a finite p-basis. There is a natural right action of the Galois group GA on E(A)
defined by sending v ∈ E(A) to v ◦ g ∈ E(A), where g ∈ GA is regarded as a ring automorphism of A
(which also induces a ring automorphism of OK).

We fix an injection

Sp(A) −→ E(A), q 7→ ((Atr, A,A)→ (Ep,OEp
,OEq

)),(II.9.3.1)

where p ∈ Sp(A) is the image of q, OEp
is the p-adic completion of the localization Ap, Eq is an

algebraic closure of Ep, and A → OEq
is the injection induced by an extension of valuation rings

Aq → OEq
over Ap → OEp

(cf. II.4.3). In particular, there is a natural homomorphism of Galois
groups Gal(Eq/Ep)→ Gal(Kur/K) = GA by II.9.2.

Lemma II.9.4. Let (Atr, A,A) be a (K,OK ,OK)-triple. The natural map of p-adic completions

f : Â→
∏

E(A)OÊ is GA-equivariant and injective.

Proof. We note that the natural GA-action on
∏

E(A)OÊ is given by

g(xv)v∈E(A) = (xv◦g)v∈E(A)(II.9.4.1)

for any g ∈ GA. Thus, for any x ∈ Â, the v-component of g(f(x)) is the (v ◦ g)-component of f(x),
which is equal to the image of x under the composition of Â g−→ Â

fv−→ O
Ê

, i.e. the v-component of
f(gx). This shows the GA-equivariance of f . With the notation in II.9.3, the natural maps

Â −→
∏

q∈Sp(A)

(Aq)
∧ −→

∏
q∈Sp(A)

O
Êq

(II.9.4.2)

are injective by II.4.3. Their composition is also the composition of the natural maps

Â −→
∏
E(A)

O
Ê
−→

∏
q∈Sp(A)

O
Êq

(II.9.4.3)

where the second map is induced by (II.9.3.1), which completes the proof. □

Definition II.9.5. A (K,OK ,OK)-triple (Btr, B,B) is called quasi-adequate if there exists a com-
mutative diagram of monoids

B P
βoo

OK

OO

Nαoo

γ

OO(II.9.5.1)

satisfying the following conditions:
(1) The element α(1) is a uniformizer of OK .
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(2) The monoid P is fs, and if we denote by γη : Z → Pη = Z ⊕N P the pushout of γ by the
inclusion N→ Z, then there exists an isomorphism for some c, d ∈ N with c ≤ d,

Pη ∼= Z⊕ Zc ⊕ Nd−c(II.9.5.2)

identifying γη with the inclusion of Z into the first component of the right hand side.
(3) The homomorphism β induces an injective ring homomorphism of finite type A = OK ⊗Z[N]

Z[P ]→ B which is pre-perfectoid in the sense of II.7.10 such that B⊗Z[P ]Z[P gp] = Btr and
A[1/p]→ B[1/p] is étale.

We usually denote (Btr, B,B) by B, and call it a quasi-adequate OK-algebra for simplicity. The triple
(α : N→ OK , β : P → B, γ : N→ P ) is called a quasi-adequate chart of B. If we fix an isomorphism
(II.9.5.2), then we call the images t1, . . . , td ∈ B[1/p] of the standard basis of Zc ⊕ Nd−c a system of
coordinates of the chart. We call d the relative dimension of B over OK (i.e. the Krull dimension of
Btr). If A→ B is étale, then we say that B is an adequate OK-algebra and call (α, β, γ) an adequate
chart.

Remark II.9.6. In II.9.5, the condition B/pB ̸= 0 imposes that A/pA ̸= 0. As A is a Noetherian
normal domain flat over OK by II.8.9, if we set Atr = OK ⊗Z[P ] Z[P gp] and denote by A the maximal
unramified extension of A contained in B, then (Atr, A,A) is an adequate (K,OK ,OK)-triple. The
inclusion A ⊆ B induces an injective morphism of quasi-adequate (K,OK ,OK)-triples (Atr, A,A)→
(Btr, B,B). If A→ B is étale (so that B is adequate) and if we endow Spec(B) with the compactifying
log structure associated to the open immersion Spec(Btr)→ Spec(B), then it becomes a log scheme
over S = (Spec(OK), αSpec(K)→Spec(OK)) with an adequate chart in the sense of II.8.8 induced by
(α, β, γ) (cf. II.8.9).

Remark II.9.7. Let B′ be a B-algebra which is a Noetherian normal domain flat over OK with
B → B′ injective and B′/pB′ ̸= 0. We set B′

tr = Btr⊗B B′ and take a maximal unramified extension
B′ of (B′

tr, B
′) containing B. Then, B′ is a quasi-adequate OK-algebra with the same chart of B if

B[1/p]→ B′[1/p] is étale and if the ring homomorphism B → B′ is of finite type and pre-perfectoid.
This is satisfied in each of the following cases:

(1) The ring homomorphism B → B′ is étale.
(2) The B-algebra B′ is the integral closure of B in a finite étale B[1/p]-algebra (cf. II.7.13).
(3) The B-algebra B′ is the normalization of an affine blowup algebra B[I/a], where I is a

finitely generated ideal of B containing a power of p, and a is a non-zero element of I (cf.
II.7.18).

Lemma II.9.8. Let B be a quasi-adequate OK-algebra.
(1) A system of coordinates t1, . . . , td ∈ B[1/p] defines a strict normal crossings divisor on the

regular scheme Spec(B[1/p]), i.e. in the localization of B[1/p] at any point, those elements
ti contained in the maximal ideal form a subset of a regular system of parameters.

(2) Let (α : N → OK , β : P → B, γ : N → P ) be a quasi-adequate chart of B, Y = Spec(β :
P → B). Then, the generic fibre YK is regular whose log structure is the compactifying log
structure associated to the open immersion Spec(Btr)→ Spec(B[1/p]).

Proof. (1) follows from the fact that the system of coordinates t1, . . . , td ∈ B[1/p] identifies
B[1/p] with an étale K[Zc ⊕ Nd−c]-algebra (cf. II.8.9). (2) follows from the observation that YK =
Spec(Zc ⊕ Nd−c → B[1/p]) (cf. II.8.5). □
Lemma II.9.9. Let B be a quasi-adequate OK-algebra and we fix a chart of B as in II.9.5. Then,
there exists k ∈ N such that the canonical truncation of the cotangent complex τ≤1LB/A is pk-exact
in the sense of II.7.1.

Proof. Since A → B is a ring homomorphism of finite type between Noetherian rings, the
homology groups of LB/A are finitely generated B-modules ([Ill71, II.2.3.7]). The conclusion follows
from the fact that for any integer n, Hn(LB/A)[1/p] = Hn(LB[1/p]/A[1/p]) = 0 as B[1/p] is étale over
A[1/p]. □
Lemma II.9.10. There exists k ∈ N such that for any OK-algebra R, the canonical map of p-adic
completions Ω̂1

R → (Ω1
R/OK

)∧ is a pk-isomorphism.

Proof. Since K is a complete discrete valuation field extension of Qp with perfect residue field,
Ω̂1

OK
is killed by pk for some k ∈ N ([He21, 3.3]). For any r ∈ N, we see that Ω1

R/p
r → Ω1

R/OK
/pr

is surjective whose kernel Nr is killed by pk. Taking limit over r ∈ N, since limNr and R1 limNr are
also killed by pk, the conclusion follows. □
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Proposition II.9.11. Let B be a quasi-adequate OK-algebra, S a multiplicative subset of B. Then,
Ω̂1
S−1B [1/p] is a finite free (S−1B)∧[1/p]-module, where the completions are p-adic. Moreover, it

admits a basis dt1, . . . , dtd for any system of coordinates t1, . . . , td ∈ B[1/p].

Proof. We note that Ω̂1
S−1B [1/p] = (Ω1

S−1B/OK
)∧[1/p] by II.9.10. We take a quasi-adequate

chart of B as in II.9.5. By the fundamental distinguished triangle of cotangent complexes ([Ill71,
II.2.1.5.6]), we obtain an exact sequence,

H1(LS−1B/A)→ S−1B ⊗A Ω1
A/OK

α−→ Ω1
S−1B/OK

→ Ω1
S−1B/A → 0.(II.9.11.1)

By II.9.9, α is a pk-isomorphism for some k ∈ N. Taking p-adic completion, we obtain an isomorphism
(S−1B⊗AΩ1

A/OK
)∧[1/p]

∼−→ (Ω1
S−1B/OK

)∧[1/p] by II.7.3.(1). As A is of finite type over OK , Ω1
A/OK

is a finitely generated A-module. Since S−1B is Noetherian, we have (S−1B ⊗A Ω1
A/OK

)∧[1/p] =

(S−1B)∧ ⊗A Ω1
A/OK

[1/p]. The conclusion follows from the fact that A[1/p] = K[Zc ⊕ Nd−c] (cf.
II.8.9). □

Corollary II.9.12. Let B be a quasi-adequate OK-algebra with relative dimension d. Then, for any
p ∈ Sp(B) (cf. II.4.1), we have [κ(p) : κ(p)p] = pd, where κ(p) is the residue field of B at p.

Proof. Notice that Bp is a discrete valuation ring extension of Zp. Thus, the rank of the B̂p[1/p]-
module Ω̂1

Bp
[1/p] is equal to logp[κ(p), κ(p)

p], where the completions are p-adic ([He21, 3.3]). The
conclusion follows from II.9.11. □

II.9.13. Let B be a quasi-adequate OK-algebra, L its fraction field, Lur the fraction field of B,
G = Gal(Lur/L). As in II.8.12, we construct coverings of B by quasi-adequate algebras. We fix B in
the rest of this section, as well as the following notation.

We fix a quasi-adequate chart (α : N → OK , β : P → B, γ : N → P ) of B, (Atr, A,A) the
associated adequate OK-algebra defined in II.9.6, and a system of coordinates t1, . . . , td ∈ A[1/p].
Let K (resp. Kur) be the fraction field of A (resp. A). For 1 ≤ i ≤ d, we fix a compatible system of
k-th roots (ti,k)k∈N of ti in A[1/p]. For any field extension E′/E, let FE′/E (resp. Ffini

E′/E) be the
set of algebraic (resp. finite) field extensions of E contained in E′, and we endow it with the partial
order defined by the inclusion relation. For any L ∈ F fini

K/K
and any r = (r1, . . . , rd) ∈ Nd>0, we set

KLr = LK(ti,ri | 1 ≤ i ≤ d) and LLr = LKLr(II.9.13.1)

where the composites of fields are taken in Lur (which contains Kur). It is clear that KLr (resp. LLr )
forms a system of fields over the directed partially ordered set F fini

K/K
×Nd>0 (cf. II.2.1). Let ALr (resp.

BLr ) be the integral closure of A (resp. B) in KLr (resp. LLr ). We note that there is an isomorphism
of L-algebras

L[T±1
1 , . . . , T±1

c , Tc+1, . . . , Td]
∼−→ ALr [1/p](II.9.13.2)

sending Ti to ti,ri as A[1/p] = K[Zc ⊕ Nd−c] (cf. II.8.9).
Let SL (resp. XL

r ) be the log scheme with underlying scheme Spec(OL) (resp. Spec(ALr )) endowed
with the compactifying log structure associated to the open immersion Spec(L) → Spec(OL) (resp.
Spec(ALr,tr) → Spec(ALr ) where ALr,tr = Atr ⊗A ALr ). The following lemma II.9.14 guarantees the
consistency of this notation with the notation in II.8.12. Let Y Lr be the log scheme with underlying
scheme Spec(BLr ) whose log structure is the inverse image of that of XL

r via the map Spec(BLr ) →
Spec(ALr ) (i.e. Y Lr → XL

r is strict). We extend the notation above to any (L, r) ∈ FK/K×(N∪{∞})d>0

by taking filtered colimits.

Lemma II.9.14. With the notation in II.8.12 for the chart (α : N → OK , β : P → B, γ : N → P )
of B, for any L ∈ F fini

K/K
and r = (r1, . . . , rd) ∈ Nd>0, the homomorphism of monoids P1,r → ALr

sending (k0, k1/r1, . . . , kd/rd) to α(1)k0 · tk11,r1 · · · t
kd
d,rd

induces an isomorphism between Spec(ALr ) with
the underlying scheme of SL ×fs

AN
AP1,r . In particular, XL

r = SL ×fs
AN

AP1,r , where the left hand side
is defined in II.9.13.

Proof. Let Spec(A′) denote the underlying scheme of SL×fs
AN

AP1,r . By II.8.13 and II.8.9, A′ is a
Noetherian normal domain finite over A such that A′[1/p] = L[r−1

1 N⊕· · · r−1
c N⊕r−1

c+1Z⊕· · ·⊕r
−1
d Z].

Thus, A′[1/p] = ALr [1/p] by (II.9.13.2), and we obtain A′ = ALr . The “in particular” part follows from
the fact that the log structures on both sides are the compactifying log structure associated to the
open immersion Spec(ALr,tr)→ Spec(ALr ) by definition, II.8.13 and II.8.9. □
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Proposition II.9.15. Let L ∈ F fini
K/K

and r = (r1, . . . , rd) ∈ Nd>0.

(1) The (L,OL,OK)-algebra (BLr,tr, B
L
r , B) is quasi-adequate with a chart (with the notation in

II.8.12)

(αL : e−1
L N→ OL, βLr : PeL,r → BLr , γ

L
r : e−1

L N→ PeL,r)(II.9.15.1)

where eL is the ramification index of L/K, αL is a homomorphism of monoids sending e−1
L

to a uniformizer πL of L, βLr (k0/eL, k1/r1, . . . , kd/rd) = πk0L ·t
k1
1,r1
· · · tkdd,rd , and γLr is induced

by the inclusion of the first component of (II.8.12.3). Moreover, ALr = OL⊗Z[e−1
L N]Z[PeL,r].

(2) The scheme Spec(BLr [1/p]) is an open and closed subscheme of Spec(B ⊗A ALr [1/p]). The
two schemes are equal if and only if LLr = L ⊗K KLr (i.e. [LLr : L] = [KLr : K]).

(3) For any L′ ∈ F fini
K/L

and any element r′ ∈ Nd>0 · r, the morphism of generic fibres Y L
′

r′,K →
Y Lr,K is étale.

Proof. As XL
r = SL ×fs

AN
AP1,r by II.9.14, we see that XL′

r′,K → XL
r,K is étale. In particular,

YK ×fs
X X

L
r is étale over YK with underlying scheme Spec(B ⊗A ALr [1/p]) (as Y → X is strict). Since

YK is regular by II.9.8.(2), so is YK ×fs
X X

L
r . We see that Spec(B⊗A ALr [1/p]) is the disjoint union of

finitely many normal integral schemes whose set of generic points identifies with Spec(L⊗K KLr ) (cf.
II.8.5), and thus by definition Spec(BLr [1/p]) is one of these components corresponding to the generic
point Spec(LLr ), so that we obtain (2). This implies that Y Lr,K → YK ×fs

X XL
r is an open and closed

immersion. Thus, (3) follows as YK → XK is strict and étale.
For (1), we take αL, βLr , γLr as in the statement. Note that ALr = OL ⊗Z[e−1

L N] Z[PeL,r] by II.9.14
and II.8.13, and moreover it defines an adequate OL-algebra. It remains to check that the ring
homomorphism ALr → BLr satisfies the conditions in the definition II.9.5 of quasi-adequate algebras.
We have seen above that ALr [1/p] → BLr [1/p] is étale. As BLr is finite over B by II.4.4, it is of finite
type over ALr . Finally, it follows from II.7.11.(2) that A→ B being pre-perfectoid implies that so is
ALr → BLr . □

Lemma II.9.16. Let F ∈ FK/K be a pre-perfectoid field. Then, the OF -algebra BF∞ is almost
pre-perfectoid.

Proof. Recall that BF∞ is the filtered colimit of BLr over (L, r) ∈ F fini
F/K ×Nd>0 (cf. II.9.13). We

claim that the Frobenius on AF∞/pAF∞ is surjective. Recall that for any L ∈ F fini
F/K and r ∈ Nd>0, there

is an isomorphism fLr : OL ⊗Z[e−1
L N] Z[PeL,r]

∼−→ ALr sending 1⊗ exp(k0/eL, k1/r1, . . . , kd/rd) to πk0L ·
tk11,r1 · · · t

kd
d,rd

by II.9.14 and II.8.13, where πL is a uniformizer of L and x = (k0/eL, k1/r1, . . . , kd/rd) ∈
PeL,r. Since F is a non-discrete valuation field such that the Frobenius map on OF /pOF is surjective,
there exists L′ ∈ F fini

F/L such that eL′/eL is divisible by p (I.5.4). We take r′ = pr ∈ Nd>0. By definition,
we have x′ = (k0/peL, k1/r

′
1, . . . , kd/r

′
d) ∈ PeL′ ,r′ as px′ = x. Thus, there is a unit u ∈ O×

L′ such
that fLr (x) = u · fL′

r′ (x
′)p. Since the Frobenius map on OF /pOF is surjective, u admits a p-th root in

OF /pOF , and thus fLr (x) admits a p-th root in AF∞/pAF∞, which proves the claim.
Since AF∞ is normal and flat over OF , the Frobenius map induces an injection ϕ : AF∞/p1A

F
∞ →

AF∞/pA
F
∞ (I.5.21), where p1 is a p-th root of p up to a unit. By the claim above, ϕ is an isomorphism,

which means that the OF -algebra AF∞ is almost pre-perfectoid (I.5.19). The conclusion follows from
the fact that A→ B is pre-perfectoid. □

Lemma II.9.17. Let L ⊆ L′ be elements of F fini
K/K

, r|r′ elements of Nd>0. Assume that LL′

r′ =

LLr ⊗KL
r
KL′

r′ (i.e. [LL′

r′ : LLr ] = [KL′

r′ : KLr ]). Then, the finite free BLr -module

D
L′/L
r′/r =

⊕
k∈I

OL′ ⊗OL B
L
r ·

d∏
i=1

tkii,r′i
,(II.9.17.1)

identifies naturally with a finite free BLr -subalgebra of BL
′

r′ [1/p], where I = {(k1, . . . , kd) ∈ Nd | 0 ≤
ki < r′i/ri, 1 ≤ i ≤ d}. Moreover, for any finite field extension L′′ of L′ and any element r′′ ∈ Nd>0

divisible by r′ such that LL′′

r′′ = LLr ⊗KL
r
KL′′

r′′ , we have

D
L′/L
r′/r = BL

′

r′ [1/p] ∩D
L′′/L
r′′/r .(II.9.17.2)
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Proof. We put CL
′/L

r′/r =
⊕

k∈I OL′ ⊗OL
ALr ·

∏d
i=1 t

ki
i,r′i

. Thus, DL′/L
r′/r = BLr ⊗AL

r
C
L′/L
r′/r . By

assumption, we have BL
′

r′ [1/p] = BLr ⊗AL
r
AL

′

r′ [1/p] (cf. II.9.15.(2)), which is equal to DL′/L
r′/r [1/p] as

AL
′

r′ [1/p] = C
L′/L
r′/r [1/p] (cf. II.8.14). This proves the first assertion. For the “moreover” part, notice

that OL′′ ⊗OL′ D
L′/L
r′/r is a direct summand of DL′′/L

r′′/r , both regarded as OL′′ ⊗OL
BLr -submodules of

BL
′′

r′′ [1/p]. Therefore,

OL′′ ⊗OL′ D
L′/L
r′/r = (L′′ ⊗OL′ D

L′/L
r′/r ) ∩DL′′/L

r′′/r ⊇ B
L′

r′ [1/p] ∩D
L′′/L
r′′/r .(II.9.17.3)

It remains to check that BL
′

r′ [1/p]∩(OL′′⊗OL′ D
L′/L
r′/r ) = D

L′/L
r′/r . As BL

′

r′ [1/p] = D
L′/L
r′/r [1/p], restricting

to the coefficient of each
∏d
i=1 t

ki
i,r′i

by (II.9.17.1), we reduce to show that (L′⊗OLB
L
r )∩(OL′′⊗OLB

L
r ) =

OL′ ⊗OL
BLr as submodules of L′′ ⊗OL

BLr . This follows from the identity L′ ∩ OL′′ = OL′ and the
flatness of BLr over OL. □
Proposition II.9.18. Let F ∈ FK/K be a pre-perfectoid field. Then, there exists k0 ∈ N such that
for any L ∈ F fini

F/K and r ∈ Nd>0, if LF∞ = LLr ⊗KL
r
KF∞, then the natural map

BLr ⊗AL
r
AL

′

r′ −→ BL
′

r′(II.9.18.1)

is a pk0-isomorphism for any L′ ∈ F fini
F/L and r′ ∈ Nd>0 · r.

Proof. The assumption LF∞ = LLr ⊗KL
r
KF∞ implies that LL′

r′ = LLr ⊗KL
r
KL′

r′ (i.e. [LL′

r′ : LLr ] =
[KL′

r′ : KLr ]) for any L′ ∈ F fini
F/L and r′ ∈ Nd>0 · r. We take again the notation in II.9.17 and its proof,

and we put DF/L
∞/r = colimL′,r′ D

L′/L
r′/r as BLr -subalgebra of BF∞[1/p]. By II.9.17, we have

D
L′/L
r′/r = BL

′

r′ [1/p] ∩D
F/L
∞/r.(II.9.18.2)

On the other hand, since A→ B is pre-perfectoid and KF∞ ∈PA (cf. II.7.10) by II.9.16, there exists
k0 ∈ N such that

pk0Coker(B ⊗A AF∞ → BF∞) = 0.(II.9.18.3)

After enlarging k0 (independently of L,L′) by II.9.14 and II.8.14, we may also assume that

pk0AL
′

r′ ⊆ C
L′/L
r′/r ⊆ p

−k0AL
′

r′ .(II.9.18.4)

Applying the functor BLr ⊗AL
r
−, we see that the natural maps

BLr ⊗AL
r
AL

′

r′ ←− BLr ⊗AL
r
pk0AL

′

r′ −→ D
L′/L
r′/r(II.9.18.5)

are p4k0 -isomorphisms by II.7.3.(1). As DL′/L
r′/r ⊆ BL

′

r′ [1/p], we deduce that the kernel of (II.9.18.1)
is pk0-zero after replacing k0 by a constant multiple. On the other hand, as k0 is independent
of L,L′, after replacing it by a constant multiple, we deduce from (II.9.18.3) and (II.9.18.5) that
pk0BF∞ ⊆ D

F/L
∞/r. Thus, pk0BL

′

r′ ⊆ BL
′

r′ [1/p]∩D
F/L
∞/r = D

L′/L
r′/r by (II.9.18.2), which implies by (II.9.18.5)

that the cokernel of (II.9.18.1) is pk0-zero after replacing k0 by a constant multiple. □
Corollary II.9.19. Let F ∈ FK/K be a pre-perfectoid field, L ∈ F fini

F/K , r ∈ Nd>0. Assume that
LF∞ = LLr ⊗KL

r
KF∞. Then, there exists k0 ∈ N such that the truncated cotangent complex τ≤1LBL′

r′ /A
L′
r′

is pk0-exact for any L′ ∈ F fini
F/L and r′ ∈ Nd>0 · r.

Proof. We set C = BLr ⊗AL
r
AL

′

r′ .

BL
′

r′ Coo AL
′

r′
oo

BLr

OO

ALroo

OO
(II.9.19.1)

We take k1 ∈ N such that τ≤1LBL
r /A

L
r

is pk1 -exact by II.9.9 and II.9.15.(1). Thus, τ≤1LC/AL′
r′

is p2k1 -

exact by II.7.6. Since C → BL
′

r′ is a pk0-isomorphism by II.9.18, τ≤1LBL′
r′ /C

is p102k0 -exact by II.7.8.

After replacing k0 by 3max{2k1, 102k0}, we see that τ≤1LBL′
r′ /A

L′
r′

is pk0-exact for any L′ ∈ F fini
F/L and

r′ ∈ Nd>0 · r by II.7.7. □
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Corollary II.9.20. Under the assumptions in II.9.19 and with the same notation, let L′ ∈ F fini
F/L and

r′ ∈ Nd>0 · r.
(1) The canonical morphism

BL
′

r′ ⊗AL′
r′

Ω1
XL′

r′ /S
L′ −→ Ω1

Y L′
r′ /S

L′(II.9.20.1)

is a pk0-isomorphism.
(2) Let L′′ ∈ F fini

F/L′ and r′′ ∈ Nd>0 · r′. Then, the canonical morphism

BL
′′

r′′ ⊗AL′′
r′′

Ω1
XL′′

r′′ /X
L′
r′
−→ Ω1

Y L′′
r′′ /Y

L′
r′

(II.9.20.2)

is a p2k0-isomorphism.

Proof. (1) The fundamental distinguished triangle of logarithmic cotangent complexes defined
by Gabber ([Ols05, 8.29]) gives a canonical exact sequence

H1(LY L′
r′ /X

L′
r′
) −→ BL

′

r′ ⊗AL′
r′

Ω1
XL′

r′ /S
L′

α−→ Ω1
Y L′
r′ /S

L′ −→ Ω1
Y L′
r′ /X

L′
r′
−→ 0.(II.9.20.3)

Since Y L
′

r′ → XL′

r′ is strict, its logarithmic cotangent complex is quasi-isomorphic to the cotangent
complex LBL′

r′ /A
L′
r′

([Ols05, 8.22]). Thus, α is a pk0 -isomorphism by II.9.19.

(2) The proof is similar to that of (1). There are canonical exact sequences

BL
′′

r′′ ⊗BL′
r′

Ω1
Y L′
r′ /X

L′
r′
−→Ω1

Y L′′
r′′ /X

L′
r′

α−→ Ω1
Y L′′
r′′ /Y

L′
r′
−→ 0,(II.9.20.4)

H1(LY L′′
r′′ /X

L′′
r′′

) −→ BL
′′

r′′ ⊗AL′′
r′′

Ω1
XL′′

r′′ /X
L′
r′

β−→Ω1
Y L′′
r′′ /X

L′
r′
−→ Ω1

Y L′′
r′′ /X

L′′
r′′
−→ 0.(II.9.20.5)

By II.9.19, we see that α and β are pk0 -isomorphisms, and thus α ◦ β is a p2k0 -isomorphism. □

II.9.21. We start to compute some modules of log differentials and construct the Faltings extension of
B. Since L is a finite extension of K, there exists L0 ∈ F fini

K/K
and r0 ∈ N>0 such that L∩KK∞ ⊆ KL0

r0 .

As KK∞ is a Galois extension of K, we see by Galois theory that for any L ∈ F fini
K/L0

and r ∈ N>0 · r0,

LLr = LL0
r0 ⊗KL0

r0

KLr (i.e. [LLr : LL0
r0 ] = [KLr : KL0

r0 ]).(II.9.21.1)

Recall that the log structure that we put on Y K∞ is the colimit of the inverse images of log structures
on Y Lr over (L, r) ∈ F fini

K/K
× Nd>0 (cf. [GR04, 12.2.10]). In the rest of this section, we denote

by Y the log scheme with underlying scheme Spec(B) whose log structure is the inverse image of
that of Y K∞ via the map Spec(B) → Spec(BK∞). We denote by e0, . . . , ed the standard basis of
Z1+d. Recall that for any 1 ≤ i ≤ d and r ∈ N>0, the element ti,r ∈ B[1/p] is the image of
r−1ei ∈ P1,r,η = Z⊕ (r−1Z)c⊕ (r−1N)d−c via the chart (II.9.15.1). For any morphism of log schemes
Y → Z over S, we denote by d log(ti,r) ∈ Γ(Spec(B),Ω1

Y /Z
) the image of the global section r−1ei via

the canonical map d log :Mgp

Y
→ Ω1

Y /Z
(cf. II.8.6).

Lemma II.9.22 (Abhyankar’s lemma). Let L′ ∈ F fini
Lur/L, B′ the integral closure of B in L′. Then,

there exists r ∈ N>0 such that B′
r[1/p] is finite étale over Br[1/p], where B′

r is the integral closure of
B′ in L′

r = L′Lr. In particular, if we set B′
r,tr = Btr ⊗B B′

r, then (B′
r,tr, B

′
r, B) is a quasi-adequate

OK-algebra with a chart induced by the chart (II.9.15.1) of (Br,tr, Br, B).

Proof. Recall that t1, . . . , td defines a strict normal crossings divisor on the regular scheme
Spec(B[1/p]) by II.9.8.(1), and that for any r ∈ N>0, we have Ar[1/p] = A[1/p][T1, . . . , Td]/(T

r
1 −

t1, . . . , T
r
d − td) by (II.9.13.2). By Abhyankar’s lemma [SGA 1, XIII.5.2], there exists r ∈ N>0 such

that the integral closure C of B⊗AAr[1/p] in B′
tr⊗AAr[1/p] is finite étale over B⊗AAr[1/p]. Notice

that Spec(B[1/p]) is an open and closed subscheme of Spec(B ⊗A Ar[1/p]) by II.9.15.(2). By the
same argument, we also see that Spec(B′

r[1/p]) is an open and closed subscheme of Spec(C). Thus,
B′
r[1/p] is finite étale over Br[1/p]. The “in particular” part follows from II.9.7. □

Proposition II.9.23. Let F ∈ FK/K be a pre-perfectoid field (e.g. F = K). Then, for any L′ ∈
F fini

Lur/LF
∞

, the integral closure B′ of B in L′ is almost finite étale over BF∞. In particular, the cotangent
complex LB/BF

∞
is almost zero.
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Proof. By Abhyankar’s lemma II.9.22 and a limit argument (cf. I.8.21), B′[1/p] is finite étale
over BF∞[1/p]. Since BF∞ is almost pre-perfectoid (II.9.16), B′ is almost finite étale over BF∞ by almost
purity II.7.12. Thus, the cotangent complex LB′/BF

∞
is almost zero ([GR03, 2.5.37]), and so is LB/BF

∞

by taking filtered colimit. □

Lemma II.9.24. Let E′/E be an extension of discrete valuation fields, Z (resp. Z ′) the log scheme
with underlying scheme Spec(OE) (resp. Spec(OE′)) with log structure defined by the closed point.
Then, the kernel of Ω1

OE′/OE
→ Ω1

Z′/Z is killed by a uniformizer of E, and its cokernel is killed by a
uniformizer of E′.

Proof. Let π′ (resp. π) be a uniformizer of E′ (resp. E). We write π = uπ′e for some u ∈ O×
E′

and e ∈ N. Then, Z ′ → Z admits a chart (α : N → OE , β : e−1N ⊕ Z → OE′ , γ : N → e−1N ⊕ Z)
where α(1) = π, β(e−1, 0) = π′, β(0, 1) = u and γ(1) = (1, 1). By II.8.6, there is an OE′-linear
surjection

Ω1
OE′/OE

⊕OE′ ⊗ (e−1Z⊕ Z)/Z −→ Ω1
Z′/Z(II.9.24.1)

whose kernel M is generated by (du,−u ⊗ (0, 1)) and (dπ′,−π′ ⊗ (e−1, 0)). Thus, the cokernel of
Ω1

OE′/OE
→ Ω1

Z′/Z is killed by π′. Let ω ∈ Ω1
OE′/OE

∩M . We have ω = adu+bdπ′ for some a, b ∈ OE′

such that bπ′ = eau. Since 0 = dπ = π′edu+euπ′e−1dπ′, we see that πω = au(π′edu+euπ′e−1dπ′) =
0. □

Proposition II.9.25 ([Fon82, Théorème 1’]). The OK-linear homomorphism

K/OK −→ Ω1
SK/S

,(II.9.25.1)

sending p−n to d log(ζpn) for any n ∈ N, is a pk-isomorphism for some k ∈ N.

Proof. Recall that there is a fractional ideal a of K and an OK-linear isomorphism

K/a
∼−→ Ω1

OK/OK
,(II.9.25.2)

sending p−n to d log(ζpn) for any n ∈ N ([Fon82, Théorème 1’]). The conclusion follows from the
fact that Ω1

OL/OK
→ Ω1

SL/S is a p-isomorphism for any L ∈ F fini
K/K

by II.9.24. □

Lemma II.9.26. With the notation in II.9.21, there exists k0 ∈ N such that for any L ∈ F fini
K/L0

, the
BL∞-linear map

BL∞[
1

p
]d −→ Ω1

Y L
∞/SL ,(II.9.26.1)

sending p−nei to d log(ti,pn) for any 1 ≤ i ≤ d and n ∈ N, is a pk0-isomorphism.

Proof. Since XL
r = SL ×fs

AN
AP1,r for any r ∈ N>0 by II.9.14, we have Ω1

XL
r /S

L = ALr ⊗Z

(P gp
1,r/Ngp) = ALr ⊗Z (r−1Z)d, which identifies d log(ti,pn) with p−nei if pn|r (cf. II.9.21). Taking

r →∞, we obtain the conclusion by II.9.20.(1). □

Lemma II.9.27. With the notation in II.9.21, there exists k ∈ N such that for any r ∈ N>0 · r0, the
BKr -linear map

BKr [
1

p
]/BKr −→ Ω1

Y K
r /Y

L0
r
,(II.9.27.1)

sending p−n to d log(ζpn) for any n ∈ N, is a pk-isomorphism.

Proof. Since XL
r = SL ×fs

SL0
XL0
r for any L ∈ F fini

K/L0
by II.9.14, we have Ω1

XL
r /X

L0
r

= ALr ⊗OL

Ω1
SL/SL0

. Taking L running through Ffini
K/L0

, we see that there exists k ∈ N by II.9.25 such that the

map AKr ⊗OK
K/OK → Ω1

XK
r /X

L0
r

is a pk-isomorphism for any r ∈ N>0. The conclusion follows from

II.9.20.(2). □

Proposition II.9.28 (cf. [AGT16, II.7.9], [He21, 3.6]). The B-linear homomorphism

(B[
1

p
]/B)⊕B[

1

p
]d −→ Ω1

Y /S
(II.9.28.1)

sending p−nei to d log(ti,pn) for any n ∈ N and 0 ≤ i ≤ d (where t0,pn = ζpn), is a pk-isomorphism
for some k ∈ N.
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Proof. With the notation in II.9.21, consider the canonical exact sequences

BK∞ ⊗BL0
∞

Ω1

Y
L0
∞ /SL0

α1−→Ω1
Y K
∞ /SL0

β1−→ Ω1

Y K
∞ /Y

L0
∞
−→ 0,(II.9.28.2)

BK∞ ⊗OK
Ω1
SK/SL0

α2−→Ω1
Y K
∞ /SL0

β2−→ Ω1
Y K
∞ /SK −→ 0.(II.9.28.3)

By II.9.27 and II.9.25, there are pk-isomorphisms

BK∞ ⊗OK
K/OK −→ Ω1

Y K
∞ /Y

L0
∞
,(II.9.28.4)

K/OK −→ Ω1
SK/SL0

.(II.9.28.5)

On the other hand, by II.9.26, there are pk0-isomorphisms

BL0
∞ [

1

p
]d −→ Ω1

Y
L0
∞ /SL0

,(II.9.28.6)

BK∞[
1

p
]d −→ Ω1

Y K
∞ /SK .(II.9.28.7)

By considering the compositions β2 ◦α1 and β1 ◦α2, one checks easily that the BK∞-linear homomor-
phism

(BK∞[
1

p
]/BK∞)⊕BK∞[

1

p
]d −→ Ω1

Y K
∞ /SL0

(II.9.28.8)

sending p−nei to d log(ti,pn) for any n ∈ N and 0 ≤ i ≤ d, is a pl-isomorphism for some l ∈ N.
Since SL0 → S is a morphism of Noetherian fs log schemes which induces an étale morphism of the
generic fibres and induces a finite morphism of the underlying schemes, the homology groups of the
logarithmic cotangent complex LSL0/S defined by Gabber are p-primary torsion, finitely generated
OL0-modules ([Ols05, 8.30]). After enlarging l (depending only on L0), we may assume that the map
(BK∞[1/p]/BK∞)⊕BK∞[1/p]d → Ω1

Y K
∞ /S

is a pl-isomorphism. The conclusion follows from II.9.23. □

Lemma II.9.29. With the notation in II.9.21, there exists k0 ∈ N such that for any L ∈ F fini
K/L0

, the
BL∞-linear map

(BL∞[
1

p
]/r−1

0 BL∞)d −→ Ω1
Y L
∞/Y L

r0

,(II.9.29.1)

sending p−nei to d log(ti,pn) for any n ∈ N and 1 ≤ i ≤ d, is a pk0-isomorphism.

Proof. Since XL
r′ = XL

r ×fs
AP1,r

AP1,r′ for any elements r|r′ in N>0 by II.9.14, we have Ω1
XL

r′/X
L
r
=

ALr′⊗Z(P
gp
1,r′/P

gp
1,r) = ALr′⊗Z(r

′−1Z/r−1Z)d, which identifies d log(ti,pn) with p−nei if pn|r′ (cf. II.9.21).
Taking r = r0 and r′ →∞, we obtain the conclusion by II.9.20.(2). □

Proposition II.9.30 (cf. [AGT16, II.7.13], [He21, 4.2]). The B-linear homomorphism

(B[
1

p
]/B)1+d −→ Ω1

Y /Y
(II.9.30.1)

sending p−nei to d log(ti,pn) for any n ∈ N and 0 ≤ i ≤ d (where t0,pn = ζpn), is a pk-isomorphism
for some k ∈ N.

Proof. The proof is similar to that of II.9.28. With the notation in II.9.21, consider the canonical
exact sequences

BK∞ ⊗BL0
∞

Ω1

Y
L0
∞ /Y

L0
r0

α1−→Ω1

Y K
∞ /Y

L0
r0

β1−→ Ω1

Y K
∞ /Y

L0
∞
−→ 0,(II.9.30.2)

BK∞ ⊗BK
r0

Ω1

Y K
r0
/Y

L0
r0

α2−→Ω1

Y K
∞ /Y

L0
r0

β2−→ Ω1
Y K
∞ /Y K

r0

−→ 0.(II.9.30.3)

By II.9.27, there are pk-isomorphisms

BK∞ ⊗OK
K/OK −→ Ω1

Y K
∞ /Y

L0
∞
,(II.9.30.4)

BKr0 ⊗OK
K/OK −→ Ω1

Y K
r0
/Y

L0
r0

.(II.9.30.5)
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On the other hand, by II.9.29, there are pk0-isomorphisms

(BL0
∞ [

1

p
]/r−1

0 BL0
∞ )d −→ Ω1

Y
L0
∞ /Y

L0
r0

,(II.9.30.6)

(BK∞[
1

p
]/r−1

0 BK∞)d −→ Ω1
Y K
∞ /Y K

r0

.(II.9.30.7)

By considering the compositions β2 ◦α1 and β1 ◦α2, one checks easily that the BK∞-linear homomor-
phism

(BK∞[
1

p
]/BK∞)1+d −→ Ω1

Y K
∞ /Y

L0
r0

(II.9.30.8)

sending p−nei to d log(ti,pn) for any n ∈ N and 0 ≤ i ≤ d, is a pl-isomorphism for some l ∈ N.
Since Y L0

r0 → Y is a morphism between Noetherian fs log schemes which induces an étale morphism
of the generic fibres (II.9.15.(3)) and induces a finite morphism of the underlying schemes (II.4.4),
the homology groups of the logarithmic cotangent complex L

Y
L0
r0

/Y
defined by Gabber are p-primary

torsion, finitely generated BL0
r0 -modules ([Ols05, 8.30]). After enlarging l (depending only on L0 and

r0), we may assume that the map (BK∞[ 1p ]/B
K
∞)1+d → Ω1

Y K
∞ /Y

is a pl-isomorphism. The conclusion
follows from II.9.23. □

II.9.31. The B̂[1/p]-module Vp(Ω1
Y /Y

) = lim←−x 7→px
Ω1
Y /Y

(cf. II.2.2) is endowed with a natural action

of G. For any element (spn)n∈N of lim←−x7→xp
B[1/p] ∩ B×

tr, we take l ∈ N such that pls1 ∈ B. Thus,
plsrpn ∈ B for any n ∈ N and 0 ≤ r ≤ pn. Notice that the element p−2l((plsp

n−1
pn )d(plspn))n∈N of

Vp(Ω
1
Y /Y

) does not depend on the choice of l. Thus, we denote this element by (sp
n−1
pn dspn)n∈N.

Proposition II.9.32 (cf. [AGT16, II.7.22], [He21, 4.4]). There is a canonical G-equivariant exact
sequence of B̂[1/p]-modules,

0 −→ B̂[
1

p
](1)

ι−→ Vp(Ω
1
Y /Y

)
ȷ−→ B̂[

1

p
]⊗B Ω1

Y/S −→ 0,(II.9.32.1)

satisfying the following properties:
(1) We have ι(1⊗ (ζpn)n∈N) = (d log(ζpn))n∈N.
(2) For any element s ∈ B[1/p] ∩ B×

tr and any compatible system of p-power roots (spn)n∈N of
s in B[1/p], ȷ((sp

n−1
pn dspn)n∈N) = ds (cf. II.9.31).

(3) The B̂[1/p]-linear surjection ȷ admits a section sending d log(ti) to (d log(ti,pn))n∈N for any
1 ≤ i ≤ d.

In particular, Vp(Ω1
Y /Y

) is a finite free B̂[ 1p ]-module with basis {(d log(ti,pn))n∈N}0≤i≤d, where t0,pn =

ζpn .

Proof. Consider the commutative diagram

0 // 0⊕Bd //

��

(B[ 1p ]/B)⊕B[ 1p ]
d //

��

(B[ 1p ]/B)⊕ (B[ 1p ]/B)d

��

// 0

B ⊗B Ω1
Y/S

// Ω1
Y /S

// Ω1
Y /Y

// 0

(II.9.32.2)

where the vertical maps send p−nei to d log(ti,pn) for any n ∈ N and 0 ≤ i ≤ d. There exists k ∈ N
such that the vertical maps are pk-isomorphisms by II.9.8.(2), II.9.28 and II.9.30. It is clear that
the first row is exact and splits. Applying HomZp(Zp/pnZp,−) to (II.9.32.2), we get a commutative
diagram

0 //

��

(p−nB/B)⊕ 0 //

��

(p−nB/B)⊕ (p−nB/B)d

��

// 0⊕ (B/pnB)d

��

// 0

(B ⊗B Ω1
Y/S)[p

n] // (Ω1
Y /S

)[pn] // Ω1
Y /Y

[pn]
ȷ // (B ⊗B Ω1

Y/S)/p
n // 0

(II.9.32.3)
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where the connecting map ȷ sends (plsp
n−1
pn )d(plspn) to d(p2ls) (with the notation in II.9.31). The

vertical maps are p2k-isomorphisms by II.7.3.(1), and the first row is exact and splits. Taking inverse
limit on n ∈ N and inverting p, by II.7.3.(2), we get a canonical G-equivariant exact sequence, which
admits a splitting (not G-equivariant),

0 −→ Tp(Ω
1
Y /S

)[
1

p
] −→ Vp(Ω

1
Y /Y

)
ȷ−→ B̂[

1

p
]⊗B Ω1

Y/S −→ 0,(II.9.32.4)

where we used the fact that Tp(Ω1
Y /Y

)[ 1p ] = Vp(Ω
1
Y /Y

) as Ω1
Y /Y

is p-primary torsion, and that
Ω1
Y/S [1/p] is finite free over B[1/p] with basis d log(t1), . . . , d log(td). Notice that (II.9.32.3) also

implies that ι : B̂[ 1p ](1) → Tp(Ω
1
Y /S

)[ 1p ] sending 1 ⊗ (ζpn)n∈N to (d log(ζpn))n∈N is an isomorphism.
The conclusion follows. □

II.9.33. A priori, the sequence (II.9.32.1) relies on the choice of the quasi-adequate chart of B. In
the rest of this section, we show that it can be canonically defined, independently of the choice
of a chart. Firstly, we check the compatibility of (II.9.32.1) with the Faltings extension (II.5.7.1)
of a complete discrete valuation ring. Let (Btr, B,B) → (E,OE ,OE) be an element of E(B) (cf.
II.9.3). Let Z (resp. Z) be the log scheme of underlying scheme Spec(OE) (resp. Spec(OE))
with the compactifying log structure defined by the closed point. Notice that the map Ω1

OE/OE
→

Ω1
Z/Z

is a p-isomorphism by II.9.24, which thus induces a natural isomorphism of Ê-modules EOE =

Vp(Ω
1
OE/OE

)
∼−→ Vp(Ω

1
Z/Z

). The map Ω1
OE/OK

→ Ω1
Z/S is also a p-isomorphism by II.9.24, which

thus induces a natural isomorphism of E-modules Ω̂1
OE

[ 1p ] = (Ω1
OE/OK

)∧[ 1p ]
∼−→ (Ω1

Z/S)
∧[ 1p ]. By

the explicit descriptions of ι and ȷ, the exact sequence (II.9.32.1) fits into the following natural
commutative diagram

0 // B̂[ 1p ](1)
ι //

��

Vp(Ω
1
Y /Y

)
ȷ //

��

B̂[ 1p ]⊗B Ω1
Y/S

//

��

0

0 // ∏
E(B) Ê(1)

ι // ∏
E(B) EOE

ȷ // ∏
E(B) Ê ⊗OE

Ω̂1
OE

// 0

(II.9.33.1)

where the second sequence is the product of the Faltings extensions of OE defined in II.5.7.
For any q ∈ Sp(B) with image p ∈ Sp(B), consider the element (Btr, B,B)→ (Ep,OEp

,OEq
) of

E(B) defined in II.9.3. Notice that {d log(ti)}1≤i≤d forms an Ep-basis of Ω̂1
OEp

[1/p] by II.9.11 (as OEp

is the p-adic completion of the localization Bp). Thus, {(d log(ti,pn))n∈N}0≤i≤d forms an Êq-basis of
EOEp

. With respect to this basis, we can identify the projection of each vertical map in (II.9.33.1) to

the components corresponding to Sp(B) with a direct sum of the natural map B̂[ 1p ]→
∏

q∈Sp(B) Êq,
which is injective by II.9.4. In conclusion, the vertical maps in (II.9.33.1) are injective.

Lemma II.9.34. For any element s ∈ B[1/p] ∩ B×
tr and any compatible system of p-power roots

(spn)n∈N of s in B[1/p], there is at most one element ω ∈ Vp(Ω1
Y /Y

) such that sω = (sp
n−1
pn dspn)n∈N.

Proof. By the discussion in II.9.33, we have Vp(Ω1
Y /Y

) ⊆
∏

q∈Sp(B) EOEp
. Since s acts invertibly

on the latter, the unicity of ω follows. □

Proposition II.9.35. For any element s ∈ B[1/p]∩B×
tr and any compatible system of p-power roots

(spn)n∈N of s in B[1/p], there is a unique element ω ∈ Vp(Ω1
Y /Y

) such that sω = (sp
n−1
pn dspn)n∈N,

which we denote by (d log(spn))n∈N.

Proof. We note that for any p ∈ Spec(B[1/p]), the non-units of {t1, . . . , td} in Bp form a subset
of a regular system of parameters of the regular local ring Bp by II.9.8.(1). Since the divisor div(s)
on Spec(Bp) defined by s is set-theoretically contained in the union of the integral effective Cartier
divisors div(t1), . . . , div(td), we can write s = uta11 · · · t

ad
d for some u ∈ B×

p and a1, . . . , ad ∈ N ([Sta22,
0BCP]). Thus, we can take f1, . . . , fl ∈ B such that {Spec(B[1/pfi])}1≤i≤l forms an open covering
of Spec(B[1/p]) and that s admits an expression as before in each B[1/pfi]. Consider the finitely
generated ideal I = (f1, . . . , fl) of B. It contains a power of p as I[1/p] = B[1/p]. Consider the affine
blowup algebra B[I/fi] (see II.7.14) and its normalization Bi. It is clear that Bi[1/p] = B[1/pfi]. As
the image of B[I/fi]⊗BB[I/fj ] in Bi⊗BBj [1/p] = B[1/pfifj ] is the affine blowup algebra B[I2/fifj ],
we see that the integral closure Bij of Bi ⊗B Bj in Bi ⊗B Bj [1/p] coincides with the normalization

https://stacks.math.columbia.edu/tag/0BCP
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of B[I2/fifj ] for any 1 ≤ i, j ≤ l. Thus, Bi, Bij define naturally quasi-adequate OK-algebras with
the same chart induced by B (II.9.15.1) (cf. II.9.7). For the simplicity of our arguments below, we
consider the integral closures of Bi, Bij in Lur (the fraction field of B), and denote them abusively by
Bi, Bij (which may be smaller than the corresponding maximal unramified extensions). Therefore,
Bi is the integral closure of B[I/fi] in B[I/fi][1/p] = B[1/pfi], which is almost pre-perfectoid over
OK by II.7.17. Since Bij is the integral closure of Bi ⊗B Bj in Bi ⊗B Bj [1/p] = B[1/pfifj ], it is
almost pre-perfectoid and whose p-adic completion is almost isomorphic to that of Bi⊗BBj by I.5.33
and I.5.30. Since {Spec(B[I/fi]) → Spec(B)}1≤i≤l is the composition of a blowup with a Zariski
open covering, {Spec(Bi)→ Spec(B)}1≤i≤l is a v-covering by I.3.15. Thus, the descent of perfectoid
algebras in the arc-topology (due to Bhatt-Scholze, cf. I.5.35) induces an exact augmented Čech
complex

0 // B̂[ 1p ]
// ∏

1≤i≤l B̂i[
1
p ]

////
∏

1≤i,j≤l B̂ij [
1
p ].(II.9.35.1)

On the other hand, let Yi (resp. Yi) be the log scheme with underlying scheme Spec(Bi) (resp.
Spec(Bi)) whose log structure is the inverse image of that of Y (resp. Y ). Although the maxi-
mal unramified extension of the quasi-adequate algebra Bi may be bigger than Bi, the B̂i-module
Vp(Ω

1
Yi/Yi

) is finite free with basis {(d log(ti,pn))n∈N}0≤i≤d by the arguments of II.9.32 as Bi contains

(Bi)
K
∞ and almost purity still holds for it (cf. II.9.23). Similar result also holds for Bij . Thus, there

is a commutative diagram

0 // B̂[ 1p ]
1+d //

≀
��

∏
1≤i≤l B̂i[

1
p ]

1+d // //

≀
��

∏
1≤i,j≤l B̂ij [

1
p ]

1+d

≀
��

0 // Vp(Ω1
Y /Y

) // ∏
1≤i≤l Vp(Ω

1
Yi/Yi

) ////
∏

1≤i,j≤l Vp(Ω
1
Yij/Yij

)

(II.9.35.2)

where the vertical maps are isomorphisms. Thus, the second row is also exact. Recall that in
each Bi[1/p], we can write s = uta11 · · · t

ad
d for some u ∈ Bi[1/p]× and a1, . . . , ad ∈ N. Notice that

spnt
−a1
1,pn · · · t

−ad
d,pn ∈ Lur. We put upn = spnt

−a1
1,pn · · · t

−ad
d,pn , which is a pn-th root of u and thus lies in

Bi[1/p]. We see that the element

(d log(upn))n∈N +
d∑
i=1

ai(d log(ti,pn))n∈N ∈ Vp(Ω1
Yi/Yi

)(II.9.35.3)

is the unique element ωi whose multiplication by s coincides with (sp
n−1
pn dspn)n∈N (cf. II.9.34). The

unicity implies that ωi and ωj coincides in Vp(Ω1
Yij/Yij

). Therefore, by the exactness of the second row

in (II.9.35.2), we obtain an element ω ∈ Vp(Ω1
Y /Y

) such that sω = (sp
n−1
pn dspn)n∈N, which completes

the proof. □

Theorem II.9.36. Let B be a quasi-adequate OK-algebra, YK the log scheme with underlying scheme
Spec(B[1/p]) with compactifying log structure associated to Spec(Btr)→ Spec(B[1/p]), EB the B̂[1/p]-
submodule of

∏
E(B) EOE

(see II.9.33) generated by the subset

{(d log(spn))n∈N | s1 ∈ B[1/p] ∩B×
tr , spn ∈ B[1/p], sppn+1 = spn , ∀n ∈ N}.(II.9.36.1)

Then, EB is stable under the natural B̂[1/p]-semi-linear action of G = Gal(Lur/L) on
∏

E(B) EOE

(induced by the right G-action on E(B), cf. (II.9.4.1)), and there is a canonical G-equivariant exact
sequence of B̂[1/p]-modules,

0 −→ B̂[
1

p
](1)

ι−→ EB
ȷ−→ B̂ ⊗B Ω1

YK/K
−→ 0,(II.9.36.2)

satisfying the following properties:
(1) We have ι(1⊗ (ζpn)n∈N) = (d log(ζpn))n∈N.
(2) For any element s ∈ B[1/p] ∩ B×

tr and any compatible system of p-power roots (spn)n∈N of
s in B[1/p], ȷ((d log(spn))n∈N) = d log(s).

(3) If we take a quasi-adequate chart of B and fix compatible systems of p-power roots (ti,pn)n∈N ⊆
B[1/p] of the coordinates t1, . . . , td ∈ B[1/p], then the sequence (II.9.36.2) identifies with
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the image of the vertical maps in (II.9.33.1). In particular, the B̂[1/p]-linear surjection ȷ
admits a section sending d log(ti) to (d log(ti,pn))n∈N for any 1 ≤ i ≤ d.

In particular, EB is a finite free B̂[ 1p ]-module with basis {(d log(ti,pn))n∈N}0≤i≤d, where t0,pn = ζpn ,

on which G acts continuously with respect to the canonical topology (where B̂[ 1p ] is endowed with the

p-adic topology defined by B̂).

Proof. As the subset (II.9.36.1) is G-stable, we see that EB is G-stable and thus endowed
with a natural G-action. By II.9.35, Vp(Ω1

Y /Y
) identifies with EB as a submodule of

∏
E(B) EOE

via
(II.9.33.1). The conclusion follows directly from II.9.32 and II.9.33, where the “in particular part”
follows from the same arguments of II.5.7. □

Definition II.9.37. We call the canonical sequence (II.9.36.2) the Faltings extension of B.

Remark II.9.38. The Faltings extension (II.9.36.2) is functorial in the following sense: let K ′ be
a complete discrete valuation field extension of K with perfect residue field, B′ a quasi-adequate
OK′ -algebra. Consider a commutative diagram of (K,OK ,OK)-triples (see II.9.2)

(Btr, B,B)
f // (B′

tr, B
′, B′)

(K,OK ,OK)

OO

// (K ′,OK′ ,OK′)

OO
(II.9.38.1)

Then, f induces a natural map E(B′)→ E(B) sending v′ to v′ ◦ f (cf. II.9.33). It induces further a
natural map ∏

E(B)

EOE
−→

∏
E(B′)

EOE′ , (ωv)v∈E(B) 7→ (ωv′◦f )v′∈E(B′),(II.9.38.2)

which maps EB to EB′ and is compatible with the Faltings extensions.

0 // B̂[ 1p ](1)
ι //

��

EB
ȷ //

��

B̂ ⊗B Ω1
YK/K

//

��

0

0 // B̂′[ 1p ](1)
ι // EB′

ȷ // B̂′ ⊗B′ Ω1
Y ′
K′/K

′
// 0

(II.9.38.3)

Moreover, if B′ is the integral closure of B in a finite extension of L contained in Lur, then Y ′
K′ is étale

over YK by [ILO14, IX.2.1]. Assuming that K ′ is finite over K, we see that the natural map B′ ⊗B
Ω1
YK/K

→ Ω1
Y ′
K′/K

′ is an isomorphism, and thus the vertical maps in (II.9.38.3) are isomorphisms. In

particular, EB contains (d log(spn))n∈N for any element (spn)n∈N of lim←−x 7→xp
B[1/p] ∩B×

tr.

II.9.39. As in II.5.16, taking a Tate twist of the dual of the Faltings extension (II.9.36.2) of B, we
obtain a canonical exact sequence of finite projective B̂[1/p]-representations of G, which splits as a
sequence of B̂[1/p]-modules,

0 −→ HomB[ 1p ]
(Ω1

YK/K
(−1), B̂[

1

p
])

ȷ∗−→ E ∗
B(1)

ι∗−→ B̂[
1

p
] −→ 0(II.9.39.1)

where E ∗
B = Hom

B̂[1/p]
(EB , B̂[1/p]). There is a canonical G-equivariant B̂[1/p]-linear Lie algebra

structure on E ∗
OK

(1) associated to the linear form ι∗,

[f1, f2] = ι∗(f1)f2 − ι∗(f2)f1, ∀f1, f2 ∈ E ∗
B(1).(II.9.39.2)

Thus, HomB[1/p](Ω
1
YK/K

(−1), B̂[1/p]) is a Lie ideal of E ∗
OK

(1), and B̂[1/p] is the quotient, and the

induced Lie algebra structures on them are trivial. Any B̂[1/p]-linear splitting of (II.9.39.1) identifies
E ∗
B(1) with the semi-direct product of Lie algebras of B̂[1/p] acting on HomB[1/p](Ω

1
YK/K

(−1), B̂[1/p])

by multiplication. Let {Ti = (d log(ti,pn))n∈N ⊗ ζ−1}0≤i≤d (where t0,pn = ζpn) denote the basis of
EB(−1), and let {T ∗

i }0≤i≤d be the dual basis of E ∗
B(1). Then, we see that the Lie bracket on E ∗

B(1)
is determined by

[T ∗
0 , T

∗
i ] = T ∗

i and [T ∗
i , T

∗
j ] = 0,(II.9.39.3)
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for any 1 ≤ i, j ≤ d. Indeed, this dual basis induces an isomorphism of B̂[1/p]-linear Lie algebras

B̂[
1

p
]⊗Qp Lie(Zp ⋉ Zdp)

∼−→ E ∗
B(1), 1⊗ ∂i 7→ T ∗

i ,(II.9.39.4)

where {∂i}0≤i≤d is the standard basis of Lie(Zp ⋉ Zdp) (cf. II.4.20).

II.10. Descent of Representations of Arithmetic Fundamental Groups after Tsuji

Tsuji [Tsu18, §14] studied the descent of representations of the arithmetic fundamental group
of an adequate algebra. In this section, we show that his arguments still work for quasi-adequate
algebras.

II.10.1. We construct a Kummer tower from the coverings of a quasi-adequate algebra defined in
II.9.13. The following notation will be used in this section. We fix a complete discrete valuation field
K of characteristic 0 with perfect residue field of characteristic p > 0, an algebraic closure K of K,
and a compatible system of primitive n-th roots of unity (ζn)n∈N in K. Let B be a quasi-adequate
OK-algebra, L its fraction field, Lur the fraction field of B. We fix a quasi-adequate chart of B, A
the associated adequate OK-algebra defined in II.9.6, and a system of coordinates t1, . . . , td ∈ A[1/p].
Let K (resp. Kur) be the fraction field of A (resp. A). For any 1 ≤ i ≤ d, we fix a compatible system
of k-th roots (ti,k)k∈N of ti in A[1/p].

Let J be the subset of Nd>0 consisting of elements N = (N1, . . . , Nd) with Ni prime to p for any
1 ≤ i ≤ d. We endow J with the partial order defined by the divisibility relation (cf. II.2.1). For
N ∈ J , n ∈ N and m = (m1, . . . ,md) ∈ Nd, we define finite field extensions of K and K in K and
Kur respectively by

K(N)
n = K(ζpnNi | 1 ≤ i ≤ d), K(N)

n,m = K(N)
n K(ti,pmiNi | 1 ≤ i ≤ d).(II.10.1.1)

It is clear that these fields K(N)
n,m form a system of fields over the directed partially ordered set J×N×Nd

(cf. II.2.1). We extend this notation for one of the components of N,n,m being ∞ by taking the
filtered union, and we omit the index N or n or m if N = 1 or n = 0 or m = 0 respectively. We
remark that if we take again the notation in II.9.13, then K(N)

n,m = KK
(N)
n

pmN . We set L(N)
n,m = LK(N)

n,m and

let A(N)
n,m (resp. B(N)

n,m) be the integral closure of A in K(N)
n,m (resp. of B in L(N)

n,m).
For anyN ∈ J , the system (B

(N)
n,m)(n,m)∈N1+d is the Kummer tower ofB(N) defined by ζpn , t1,pn , . . . , td,pn

(cf. II.4.16). Following II.4.7, for any (n,m) ∈ (N∪{∞})1+d, we denote by B̂(N)
n,m the p-adic completion

of B(N)
n,m, and we set

B̃(N)
n,m = colim

(n′,m′)∈(N1+d)≤(n,m)

B̂
(N)
n′,m′ .(II.10.1.2)

We remark that the transition maps in the colimit of (II.10.1.2) are closed embeddings with respect to
the p-adic topology, and that B̃(N)

n,m identifies with a topological subring of B̂(N)
n,m (both endowed with

the p-adic topology) by II.4.7. We name some Galois groups as indicated in the following diagram:

Lur

L(N)
∞,∞

H(N)
∞

OO

L(N)
∞,m

∆(N)
m

OO
H(N)

m

::

L(N)
n,m

Σ(N)
n,m

oo

Γ(N)
n,mEEE

bbEEE

L

G

hh

oo

Ξ(N)

mm

(II.10.1.3)

Lemma II.10.2. For any N ∈ J , the Kummer tower (B
(N)
n,m)(n,m)∈N1+d satisfies the condition

II.4.19.(1).

Proof. For any p ∈ Sp(B
(N)), if we denote by E the completion of the discrete valuation field

B
(N)
p [1/p], then we need to show that the Kummer tower (OEn,m)(n,m)∈N1+d (defined by ζpn , t1,pn , . . . , td,pn)

satisfies the condition II.4.19.(1). It suffices to check that dt1, . . . ,dtd form an E-basis of Ω̂1

B
(N)
p

[1/p] =

Ω̂1
OE

[1/p] by II.5.22. Since B(N) is a quasi-adequate OK(N) -algebra with a system of coordinates
t1,N1 , . . . , td,Nd

by II.9.15.(1), the conclusion follows from II.9.11. □



138 II. SEN OPERATORS OVER p-ADIC VARIETIES

Proposition II.10.3. There exists n0 ∈ N such that the following statements hold for any N ∈ J
and (n,m) ∈ N1+d

≥n0
:

(1) We have L(N)
∞,∞ = L(N)

n,m ⊗Kn,m K∞,∞.
(2) The cyclotomic character (II.4.15.2) χ : G → Z×

p (describing the action on ζpn) and the
p-adic logarithm map (II.3.6.3) log : Z×

p → Zp induce an isomorphism

log ◦χ : Σ(N)
n,∞

∼−→ pnZp.(II.10.3.1)

(3) The continuous 1-cocycle (II.4.15.4) ξ : G → Zdp (describing the action on t1,pn , . . . , td,pn)
induces an isomorphism

ξ : ∆(N)
m

∼−→ pm1Zp × · · · × pmdZp(II.10.3.2)

where m = (m1, . . . ,md).
(4) The natural map Sp(B

(N)
n,m)→ Sp(B

(N)
n0,n0) is a bijection.

Proof. Since the Kummer towers (Bn,m)(n,m)∈N1+d and (An,m)(n,m)∈N1+d both satisfy the con-
dition II.4.19.(1) by II.10.2, there exists n0 ∈ N such that the conditions II.4.19.(2, 3) hold for any
(n,m) ∈ N1+d

≥n0
. In particular, the natural map Gal(L∞,∞/Ln,m) → Gal(K∞,∞/Kn,m) is an isomor-

phism of pro-p groups. Thus, L∞,∞ = Ln,m ⊗Kn,m K∞,∞ by Galois theory. As [L(N)
n,m : Ln,m] is

prime to p, we have L(N)
∞,∞ = L(N)

n,m ⊗Ln,m L∞,∞, which implies (1). Then, we deduce easily the other
statements by Galois theory. □

Lemma II.10.4. For any N ∈ J , the O
K

(N)
∞

-algebra B(N)
∞,∞ is almost pre-perfectoid.

Proof. As K(N)
∞ is a pre-perfectoid field (cf. the proof of II.13.1), the conclusion follows from

the same argument of II.9.16 (where admitting roots in the prime-to-p part is unnecessary). □

Proposition II.10.5. For any N ∈ J , there exists k0 ∈ N such that the natural map

B(N)
n,m ⊗A(N)

n,m
A

(N)
n′,m′ −→ B

(N)
n′,m′(II.10.5.1)

is a pk0-isomorphism for any elements (n′,m′) ≥ (n,m) in (N≥n0 ∪{∞})1+d, where n0 ∈ N is defined
in II.10.3.

Proof. It follows from the same argument of II.9.18 using II.10.4 instead of II.9.16. □

Lemma II.10.6 (cf. [Tsu18, 14.11]). For any N ∈ J , n ∈ N≥n0 ∪ {∞} and any elements m′ ≥ m
in (N≥n0 ∪ {∞})d with m′ ∈ m + Nd ⊆ (N ∪ {∞})d, where n0 ∈ N is defined in II.10.3, the natural
homomorphism

B̂(N)
n,m ⊗B(N)

n,m
B

(N)
n,m′ [

1

p
] −→ B̂

(N)
n,m′ [

1

p
](II.10.6.1)

is an isomorphism, and B(N)
n,m′ [1/p] is a finite free B(N)

n,m[1/p]-module.

Proof. Let I = {(k1, . . . , kd) ∈ Nd | 0 ≤ ki < pm
′
i−mi , 1 ≤ i ≤ d}. We deduce from the

conclusion of II.8.14 (cf. II.9.14) for finite indexes that there exists k0 ∈ N independent of n,m,m′

such that

pk0A
(N)
n,m′ ⊆

⊕
k∈I

A(N)
n,m ·

d∏
i=1

tki
i,pm

′
iNi

⊆ p−k0A(N)
n,m′ .(II.10.6.2)

This shows that A(N)
n,m′ is p2k0-isomorphic to a finite free A(N)

n,m-module. The same result holds for

B
(N)
n,m′ over B(N)

n,m by II.10.5, which completes the proof. □

Lemma II.10.7 (cf. [Tsu18, 14.10, 14.8]). For any N ∈ J , there exists k1 ∈ N such that for any
elements (n,m) ∈ (N≥n0 ∪{∞})1+d, where n0 ∈ N is defined in II.10.3, the following statements hold:

(1) If (n,m) ∈ N1+d, for any r ∈ N, let σ be a generator of Gal(L(N)
n+r,m/L

(N)
n,m) ∼= Z/prZ by

(II.10.3.1), then we have

B
(N)
n+r,m ⊆ p−k1(B(N)

n,m + (σ − 1)(B
(N)
n+r,m)).(II.10.7.1)
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(2) If the i-th component of m is an integer for some 1 ≤ i ≤ d, for any r ∈ N, let τ be a
generator of Gal(L(N)

∞,m+ri
/L(N)

∞,m) ∼= Z/prZ by (II.10.3.2), then we have

B
(N)
∞,m+ri

⊆ p−k1(B(N)
∞,m + (τ − 1)(B

(N)
∞,m+ri

)).(II.10.7.2)

Proof. The conclusion holds for the case B = A by [Tsu18, 14.8, 14.10]. It remains true in
general due to II.10.5. □

Definition II.10.8 (cf. [Tsu18, 7.4, 7.5, 7.6]). We say that a tower (Rn)n∈N of normal domains flat
over OK (see II.4.5) is Tate-Sen if it satisfies the following conditions:

(1) There exists a Noetherian normal domain R−1 over OK contained in R0 with R−1/pR−1 ̸= 0
such that R0 is integral over R−1 (thus II.4.4 applies to R−1 → Rn for any n ∈ N ∪ {∞}).

(2) The tower (Rn)n∈N is a Zp-tower in the following sense: if En denotes the fraction field of
Rn, then E∞ is a Galois extension of E0 with Galois group isomorphic to Zp and En is the
pnZp-invariant part of E∞ for any n ∈ N.

(3) There exists k1 ∈ N such that for any n, r ∈ N and any generator σ ∈ Gal(En+r/En), we
have

Rn+r ⊆ p−k1(Rn + (σ − 1)(Rn+r)).(II.10.8.1)

(4) For any n ∈ N, R̂n[1/p] is finite over R̂0[1/p].
(5) The set Sp(R∞) of primes ideals of R∞ of height 1 containing p is finite.

Tsuji has established a series of decompletion results for Tate-Sen towers in [Tsu18, §7].

Proposition II.10.9 (cf. [Tsu18, 14.12]). For any N ∈ J and (n,m) in (N≥n0 ∪ {∞})1+d, where
n0 ∈ N is defined in II.10.3, the following statements hold:

(1) If (n,m) ∈ N1+d, then the tower (B
(N)
n+r,m)r∈N is Tate-Sen.

(2) If the i-th component of m is an integer for some 1 ≤ i ≤ d, then the tower (B
(N)
∞,m+ri

)r∈N
is Tate-Sen.

Proof. It follows from the fact that B/pB ̸= 0, II.10.3, II.10.6, and II.10.7. □

Remark II.10.10. With the notation in II.5.1, the results of II.10.9 remain true for the Kummer
tower (OKn,m)(n,m)∈N1+d . Indeed, one can check firstly for the subfield K ′ defined in II.5.2 with the
aid of II.5.3, and then deduce the general case as we did above from A to B.

Lemma II.10.11 (cf. [Tsu18, 14.13]). For any N ∈ J , the following statements hold:

(1) The (Ξ(N), B̂[1/p])-finite part of B̂(N)
∞,∞[1/p] is B̃(N)

∞,∞[1/p] (see II.2.4).
(2) Let V be an object of Repproj

cont(Ξ
(N), B̃

(N)
∞,∞[1/p]). Then, V is the (Ξ(N), B̂[1/p])-finite part

of B̂(N)
∞,∞ ⊗B̃(N)

∞,∞
V .

Proof. We follow the proof of [Tsu18, 14.13] and take n0 ∈ N defined in II.10.3.
(1) Notice that for any (n,m) ∈ N1+d, B(N)

n,m is finite over B. Thus, B̂(N)
n,m[1/p] is a Ξ(N)-stable

finitely generated B̂[1/p]-submodule of B̂(N)
∞,∞[1/p] as B is Noetherian. Thus, B̃(N)

∞,∞[1/p] lies in the
(Ξ(N), B̂[1/p])-finite part of B̂(N)

∞,∞[1/p].
For the converse, let M be a Ξ(N)-stable finitely generated B̂[1/p]-submodule of B̂(N)

∞,∞[1/p]. For
any 1 ≤ i ≤ d and m ∈ Ni≥n0

×{∞}d−i, applying [Tsu18, 7.14] to the Tate-Sen tower (B(N)
∞,m+ri

)r∈N

(II.10.9.(2)), we see that the condition M ⊆ B̂
(N)
∞,m+∞i

[ 1p ] implies that M ⊆ B̂
(N)
∞,m+ri

[ 1p ] for some
r ∈ N. Applying this argument in the order i = 1, . . . , d, we obtain an element m ∈ Nd≥n0

such that
M ⊆ B̂(N)

∞,m[1/p]. Then, applying [Tsu18, 7.14] to the Tate-Sen tower (B
(N)
n0+r,m)r∈N (II.10.9.(1)), we

obtain an element n ∈ N≥n0 such that M ⊆ B̂(N)
n,m[1/p]. This proves the converse part.

(2) Since B̃(N)
∞,∞ is the colimit of B̂(N)

n,m and Ξ(N) is topologically finitely generated (cf. II.10.3),
there exists (n,m) ∈ N1+d

≥n0
and an object V ′ of Repproj

cont(Ξ
(N), B̂

(N)
n,m[1/p]) such that V = B̃

(N)
∞,∞⊗B̂(N)

n,m

V ′ ([Tsu18, 5.2.(1)]). As B̂
(N)
n,m is finite over B, by (1) and [Tsu18, 7.3.(3)], we see that the

(Ξ(N), B̂[1/p])-finite part of B̂(N)
∞,∞ ⊗B̂(N)

n,m
V ′ is B̃(N)

∞,∞ ⊗B̂(N)
n,m

V ′. □
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Proposition II.10.12 (cf. [Tsu18, 14.15]). For any N ∈ J , the functor

Repproj
cont(Ξ

(N), B̃(N)
∞,∞[

1

p
]) −→ Repproj

cont(Ξ
(N), B̂(N)

∞,∞[
1

p
]), V 7→ B̂(N)

∞,∞ ⊗B̃(N)
∞,∞

V(II.10.12.1)

is an equivalence of categories, and a quasi-inverse is obtained by taking the (Ξ(N), B̂[1/p])-finite part.

Proof. We follow the proof of [Tsu18, 14.15]. Let W be an object of Repproj
cont(Ξ

(N), B̂
(N)
∞,∞[1/p]).

For any 1 ≤ i ≤ d and m ∈ Ni≥n0
× {∞}d−i, we can apply [Tsu18, 7.23] to the Tate-Sen tower

(B
(N)
∞,m+ri

)r∈N (II.10.9.(2)). Applying this argument to W in the order i = 1, . . . , d, we obtain an

object W ′ of Repproj
cont(Ξ

(N), B̂
(N)
∞,m[1/p]) for some m ∈ Nd≥n0

such that W = B̂
(N)
∞,∞ ⊗B̂(N)

∞,m
W ′. Then,

applying [Tsu18, 7.24] to the Tate-Sen tower (B
(N)
n0+r,m)r∈N (II.10.9.(1)), we obtain an object V of

Repproj
cont(Ξ

(N), B̂
(N)
n,m[ 1p ]) for some n ∈ N≥n0 such that W ′ = B̂

(N)
∞,m ⊗B̂(N)

n,m
V . This shows that the

functor (II.10.12.1) is essentially surjective. The conclusion follows from II.10.11.(2). □
Proposition II.10.13 (cf. [Tsu18, 14.16]). For any N ∈ J and m ∈ Nd≥n0

, where n0 ∈ N is defined
in II.10.3, the functor (cf. II.4.14)

Repproj

cont,∆
(N)
m -an

(Ξ(N), B̃(N)
∞,m[

1

p
]) −→ Repproj

cont(Ξ
(N), B̃(N)

∞,∞[
1

p
]), V 7→ B̃(N)

∞,∞ ⊗B̃(N)
∞,m

V(II.10.13.1)

is fully faithful. Moreover, any object of Repproj
cont(Ξ

(N), B̃
(N)
∞,∞[1/p]) lies in the essential image of the

above functor for some m ∈ Nd≥n0
.

Proof. We follow the proof of [Tsu18, 14.16]. For any object W of Repproj
cont(Ξ

(N), B̃
(N)
∞,∞[1/p]),

we consider the B̃(N)
∞,∞[1/p]-linear endomorphism φτ on W given by the infinitesimal action of τ ∈

∆(N), which is nilpotent by II.4.18 (whose assumptions are satisfied by II.10.3). Then, we obtain a
continuous semi-linear action ρ of ∆(N) on W defined by ρ(τ) = exp(−φτ )ρ(τ) as in II.5.28.(1) (in
fact, ρ can be extended to Γ(N), but we don’t need this). Notice that if W = B̃

(N)
∞,∞⊗B̃(N)

∞,m
V for some

object V of Repproj

cont,∆
(N)
m -an

(Ξ(N), B̃
(N)
∞,m[1/p]), then ρ|

∆
(N)
m

acts trivially on V , which implies that

(W,ρ)∆
(N)
m = (B̃(N)

∞,∞)∆
(N)
m ⊗

B̃
(N)
∞,m

V = V,(II.10.13.2)

where the last identity follows from II.10.6. This shows that (II.10.13.1) is fully faithful.
Since B̃(N)

∞,∞ is the filtered colimit of B̃(N)
∞,m, there existsm ∈ Nd≥n0

and an object V of Repproj
cont(∆

(N), B̃
(N)
∞,m[1/p])

such that (W,ρ) = B̃
(N)
∞,∞ ⊗B̃(N)

∞,m
V ([Tsu18, 5.2.(1)]). Moreover, since any w ∈ W is fixed by an

open subgroup of ∆(N) via ρ by II.4.10, after enlarging m, we may assume that ρ|
∆

(N)
m

acts trivially

on V . By the discussion above, we have (W,ρ)∆
(N)
m = V . We claim that V is Ξ(N)-stable under ρ.

Indeed, for any g ∈ Ξ(N), τ ∈ ∆
(N)
m and v ∈ V , if we set τ ′ = g−1τg ∈ ∆

(N)
m , then

ρ(τ)(ρ(g)v) = ρ(g)(ρ(τ ′)v) = ρ(g)(exp(φτ ′)v) = exp(φτ )(ρ(g)v),(II.10.13.3)

where the second equality follows from ρ(τ ′)(v) = v, and the last equality follows from II.4.9.(1). This
shows that ρ(g)v ∈ V = (W,ρ)∆

(N)
m , and hence V is Ξ(N)-stable under ρ. As B̃(N)

∞,m[1/p]→ B̃
(N)
∞,∞[1/p]

is a closed embedding (II.4.7), so is V → W , which implies that Ξ(N) acts continuously on V .
Moreover, V is ∆

(N)
m -analytic by definition, which completes the proof. □

Lemma II.10.14 (cf. [Tsu18, 14.5]). Let L′,L′′ be two finite extensions of L∞,∞ in Lur with
L′ ⊆ L′′, B′ and B′′ the integral closures of B in L′ and L′′ respectively. Then, the inclusion
TrL′′/L′(B′′) ⊆ B′ is almost surjective.

Proof. Consider L(∞) = colimN∈J L(N), and let B′(∞) (resp. B′′(∞)) be the integral closures of
B in L′(∞) = L′L(∞) (resp. L′′(∞) = L′′L(∞)). Notice that B′′(∞) is almost finite étale over B′(∞) by
II.9.23. In particular, TrL′′(∞)/L′(∞)(B′′(∞)) ⊆ B′(∞) is almost surjective ([AGT16, V.7.12]). Thus,
for any x ∈ B′ and π ∈ mK∞ , there exists N ∈ J and y ∈ B′′(N) such that πx = TrL′′(N)/L′(N)(y).
Notice that l = [L′(N) : L′] is prime to p. We take y′ = l−1TrL′′(N)/L′′(y) ∈ B′′. Thus, πx =

TrL′′/L′(y′). □
Proposition II.10.15 (cf. [Tsu18, 14.7]). For any N ∈ J , the functor

Repproj
cont(Ξ

(N), B̂(N)
∞,∞[

1

p
]) −→ Repproj

cont(G, B̂[
1

p
]), V 7→ B̂ ⊗

B̂
(N)
∞,∞

V(II.10.15.1)
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is fully faithful. Moreover, any object of Repproj
cont(G, B̂[1/p]) lies in the essential image of the above

functor for some N ∈ J .

Proof. We follow the proof of [Tsu18, 14.7]. Firstly, B̂(N)
∞,∞ → (B̂)H

(N)
∞ is an almost isomor-

phism by almost Galois descent [Tsu18, 6.4] (whose assumptions [Tsu18, 6.1, 6.2] are satisfied by
II.10.14). It follows immediately that the functor (II.10.15.1) is fully faithful (cf. [Tsu18, 6.5]).
For an object W of Repproj

cont(G, B̂[1/p]), by almost Galois descent [Tsu18, 6.10.(1)], there exists an
open subgroup H ′ of H∞ such that for the integral closure B′ of B in L′ = LH′

ur , WH′
is a finite

projective B̂′[1/p]-module such that W = B̂ ⊗
B̂′ W

H′
. This remains true for any open subgroup of

H ′ by [Tsu18, 6.10.(2)] so that we may assume that L′ is Galois over L∞,∞. By Abhyankar’s lemma
II.9.22, there exists N ∈ J such that B′(N)[1/p] is finite étale over B(N)

∞,∞[1/p] (cf. I.8.21). After
replacing L′ by L′(N), we may assume that B′[1/p] is finite étale and Galois over B(N)

∞,∞[1/p]. Thus,
B̂′[1/p] is also finite étale and Galois over B̂(N)

∞,∞[1/p] by [Tsu18, 6.15]. By Galois descent, WH(N)
∞ is

a finite projective B̂(N)
∞,∞[1/p]-representation of Ξ(N) such that W = B̂ ⊗

B̂
(N)
∞,∞

WH(N)
∞ . □

Theorem II.10.16 (cf. [Tsu18, 14.2]). For any N ∈ J and m ∈ Nd≥n0
, where n0 ∈ N is defined in

II.10.3, the functor

Repproj

cont,∆
(N)
m -an

(Ξ(N), B̃(N)
∞,m[

1

p
]) −→ Repproj

cont(G, B̂[
1

p
]), V 7→ B̂ ⊗

B̃
(N)
∞,m

V(II.10.16.1)

is fully faithful. Moreover, any object of Repproj
cont(G, B̂[1/p]) lies in the essential image of the above

functor for some N ∈ J and m ∈ Nd≥n0
.

Proof. It follows from II.10.15, II.10.12 and II.10.13. □

II.11. Sen Operators over Quasi-adequate Algebras

In this section, we fix a complete discrete valuation field K of characteristic 0 with perfect residue
field of characteristic p > 0, an algebraic closure K of K, and a quasi-adequate OK-algebra B of
relative dimension d with fraction field L (see II.9.5). Let YK denote the log scheme with underlying
scheme Spec(B[1/p]) with compactifying log structure associated to Spec(Btr)→ Spec(B[1/p]).

II.11.1. In the following subsections, we introduce some notation that will be used in our construction
II.11.4 of Sen operators. We fix a compatible system of primitive n-th roots of unity (ζn)n∈N contained
in K. As in II.5.20, we fix e ∈ N and let t1, . . . , te be finitely many elements of B[1/p] ∩ B×

tr with
compatible systems of k-th roots (ti,k)k∈N>0 contained in B[1/p] for any 1 ≤ i ≤ e. We define the
tower (B

(N)
n,m)(N,n,m)∈J×N×Ne and name the Galois groups as in II.10.1:

Lur

L(N)
∞,∞

H(N)
∞

OO

L(N)
∞,m

∆(N)
m

OO
H(N)

m

::

L(N)
n,m

Σ(N)
n,m

oo

Γ(N)
n,mEEE

bbEEE

L

G

hh

oo

Ξ(N)

mm

(II.11.1.1)

We remark that for any N ∈ J , the system (B
(N)
n,m)(n,m)∈N1+d is the Kummer tower of B(N) defined

by ζpn , t1,pn , . . . , te,pn (cf. II.4.16).

Proposition II.11.2 (cf. II.5.22). With the notation in II.11.1, the following conditions are equiva-
lent:

(1) The Kummer tower (Bn,m)(n,m)∈N1+e satisfies the condition II.4.19.(1).
(2) The e elements dt1, . . . , dte of Ω1

L/K are linearly independent over L.

Proof. For any p ∈ Sp(B), let Ep be the completion of L with respect to the discrete valuation
ring Bp. Recall that the L-module Ω1

L/K and the Ep-module Ω̂1
Bp

[1/p] are both finite free with the
same basis dt′1, . . . , dt

′
d given by a system of coordinates t′1, . . . , t′d ∈ B[1/p] of B by (II.8.9.1) and
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II.9.11 respectively. In particular, the natural map Ω1
Bp/OK

→ Ω̂1
Bp/OK

induces a natural isomorphism
by inverting p,

Ep ⊗L Ω1
L/K

∼−→ Ω̂1
Bp

[
1

p
] = Ω̂1

Bp/OK
[
1

p
].(II.11.2.1)

Thus, dt1, . . . , dte are L-linearly independent in Ω1
L/K if and only if they are Ep-linearly independent

in Ω̂1
Bp

[1/p]. The conclusion follows from II.5.22. □

II.11.3. Following II.11.1, we assume that the equivalent conditions in II.11.2 hold. Let ∂0 ∈
Lie(Σ0,∞) and ∂1, . . . , ∂e ∈ Lie(∆) be the standard bases defined in II.4.20 for the Kummer tower
(Bn,m)(n,m)∈N1+e defined by ζpn , t1,pn , . . . , te,pn . We remark that there are natural identifications of
Lie algebras for any N ∈ J , n ∈ N and m ∈ Ne,

Lie(∆(N)
m ) = Lie(∆), Lie(Ξ(N)) = Lie(Γ), Lie(Σ(N)

n,m) = Lie(Σ).(II.11.3.1)

We define 1 + e elements of the finite projective B̂[1/p]-module EB(−1) defined in II.9.36,

T0 = (d log(ζpn))n∈N ⊗ ζ−1, T1 = (d log(t1,pn))n∈N ⊗ ζ−1, . . . , Te = (d log(te,pn))n∈N ⊗ ζ−1,

(II.11.3.2)

where ζ = (ζpn)n∈N.

Theorem II.11.4 (cf. II.5.35). Let B be a quasi-adequate OK-algebra with fraction field L, G =

Gal(Lur/L). Then, for any object W of Repproj
cont(G, B̂[1/p]), there is a canonical homomorphism of

B̂[1/p]-linear Lie algebras (see II.9.39),

φSen|W : E ∗
B(1) −→ End

B̂[ 1p ]
(W ),(II.11.4.1)

which is G-equivariant with respect to the canonical action on E ∗
B(1) defined in II.9.39 and the adjoint

action on End
B̂[1/p]

(W ) (i.e. g ∈ G sends an endomorphism ϕ to g ◦ ϕ ◦ g−1), and functorial in W ,
i.e. it defines a canonical functor

φSen : Repproj
cont(G, B̂[

1

p
]) −→ Repproj(E ∗

B(1), B̂[
1

p
]),(II.11.4.2)

from the category of finite projective (continuous semi-linear) B̂[1/p]-representations of the profinite
group G to the category of finite projective B̂[1/p]-linear representations of the Lie algebra E ∗

B(1).
Moreover, under the assumption in II.11.3 and with the same notation, assume that there exists

an object V of Repproj

cont,∆
(N)
m -an

(Ξ(N), B̃
(N)
∞,m[1/p]) for some N ∈ J and m ∈ Nd with W = B̂⊗

B̃
(N)
∞,m

V .

Then, for any f ∈ E ∗
B(1) = Hom

B̂[1/p]
(EB(−1), B̂[1/p]),

φSen|W (f) =
e∑
i=0

f(Ti)⊗ φ∂i |V ,(II.11.4.3)

where φ∂i |V ∈ End
B̃

(N)
∞,m[1/p]

(V ) is the infinitesimal action of ∂i ∈ Lie(Ξ(N)) on V defined in II.4.13.

Proof. For any q ∈ Sp(B) with image p ∈ Sp(B), consider the element (Btr, B,B)→ (Ep,OEp
,OEq

)

of E(B) defined in II.9.3. Consider the diagram (cf. II.9.38)

E ∗
B(1)

//

α

��

∏
q Êq ⊗

B̂
E ∗
B(1)

(αq)q

��

∏
q E ∗

OEp
(1)

∼oo

φSen

��

End
B̂[ 1p ]

(W ) // ∏
q Êq ⊗

B̂
End

B̂[ 1p ]
(W )

∏
q EndÊq

(Êq ⊗
B̂
W )

∼oo

(II.11.4.4)

where the product is taken over q ∈ Sp(B), and the right vertical arrow is the canonical Lie algebra
action defined in II.5.35. Notice that the horizontal arrows in the right square are isomorphisms, since
W is finite projective and both EB and EOEq

admit the same basis induced by a system of coordinates
of B (cf. II.9.33). On the other hand, the horizontal arrows in the left square are injective by II.4.3.
Therefore, there is at most one map α making this diagram commutative together with its base
change αq.



II.11. SEN OPERATORS OVER QUASI-ADEQUATE ALGEBRAS 143

We claim that taking α to be the map defined by (II.11.4.3) (under the corresponding assump-
tions) makes the diagram commute. Indeed, for any f ∈ E ∗

B(1), if fq ∈ E ∗
OEp

(1) denotes its base
change, then we need to check that

φSen|
Êq⊗

B̂
W
(fq) =

e∑
i=0

fq(Ti,q)⊗ φ∂i |V ,(II.11.4.5)

where Ti,q ∈ EOEp
(−1) is the image of the element Ti ∈ EB(−1) defined in (II.11.3.2). For simplicity,

we omit the subscripts p and q. With the notation in II.11.1, there is a commutative diagram of fields
defined by ti,k similarly as in II.10.1,

E // E(N)
0,m

Σ′
//

G′

$$
Γ′

((
E

(N)
∞,m

∆′
// E(N)

∞,∞ // E

L

OO

//

G

66
Ξ(N)

33L(N)
0,m

Σ
(N)
0,m //

OO

L(N)
∞,m

∆(N)
m //

OO

L(N)
∞,∞ //

OO

L

OO(II.11.4.6)

where we put the notation for corresponding Galois groups on the arrows. For N and m in the state-
ment, we set E′ = E

(N)
0,m and consider the Kummer tower (OE′

n,m′
)(n,m′)∈N1+e defined by ζpn , t1,pn , . . . , te,pn

(thus E′
∞ = E

(N)
∞,m and E′

∞,∞ = E
(N)
∞,∞), which satisfies the condition II.4.19.(1) by II.11.2 (as E′ is

a finite extension of E). Then, W ′ = Ê⊗
B̂
W is an object of Repproj

cont(G
′, Ê) and V ′ = E′

∞⊗B̃(N)
∞,m

V

is an object of Repproj
cont,∆′-an(Γ

′, E′
∞) such that W ′ = Ê ⊗E′

∞
V ′. By II.11.2 and (II.11.3.1), we have

natural identifications of Lie algebras

Lie(∆′) = Lie(∆), Lie(Γ′) = Lie(Γ), Lie(Σ′) = Lie(Σ).(II.11.4.7)

Moreover, the images of ∂0, . . . , ∂e in Lie(Γ′) are the standard basis ∂′0, . . . , ∂′e defined in II.4.20 for the
Kummer tower (OE′

n,m′
)(n,m′)∈N1+e defined by ζpn , t1,pn , . . . , te,pn . Therefore, applying the “moreover”

part of II.5.35 to E′ (whose assumptions are satisfied by II.11.2), for any f ′ ∈ E ∗
OE′ (1) we have

φSen|W ′(f ′) =
e∑
i=0

f ′(T ′
i )⊗ φ∂′

i
|V ′ ,(II.11.4.8)

where T ′
i ∈ EOE′ (−1) is the image of Ti ∈ EB(−1). Notice that φ∂′

i
|V ′ = idE′

∞
⊗ φ∂i |V by II.4.11.

The claim follows from the following canonical commutative diagram given by II.5.38 (as E′ is a finite
extension of E)

E ∗
OE′ (1)

φSen|W ′ //

≀
��

End
Ê
(W ′)

E ∗
OE

(1)

φSen|
Ê⊗

B̂
W

// End
Ê
(Ê ⊗

B̂
W )

(II.11.4.9)

Finally, the uniqueness of α implies that (II.11.4.3) does not depend on choice of V or ti, and the
descent II.10.16 guarantees its existence and functoriality. Its G-equivariance follows from the same
argument of that of (II.5.35.1). □

Remark II.11.5. The same argument also shows that the B̂[1/p]-linear map

W −→W ⊗
B̂

EB(−1)(II.11.5.1)

sending x to
∑e
i=0(idB̂

⊗φ∂i |V )(x)⊗ Ti, is G-equivariant and does not depend on the choice of V or
ti. It naturally induces the map φSen|W (II.11.4.1). We note that it is not a Higgs field.

Definition II.11.6. Let W be an object of Repproj
cont(G, B̂[1/p]). We denote by Φ(W ) the image

of φSen|W , and by Φgeo(W ) the image of HomB[1/p](Ω
1
YK/K

(−1), B̂[1/p]) under φSen|W . We call
an element of Φ(W ) ⊆ End

B̂[1/p]
(W ) a Sen operator of W . We call an element of Φgeo(W ) ⊆

End
B̂[1/p]

(W ) a geometric Sen operator of W . And we call the image of 1 ∈ B̂[1/p] in Φari(W ) =

Φ(W )/Φgeo(W ) the arithmetic Sen operator of W .
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0 // HomB[ 1p ]
(Ω1

YK/K
(−1), B̂[ 1p ])

ȷ∗ //

����

E ∗
B(1)

ι∗ //

����

B̂[ 1p ]

����

// 0

0 // Φgeo(W ) // Φ(W ) // Φari(W ) // 0

(II.11.6.1)

Proposition II.11.7 (cf. II.5.38). Let K ′ be a complete discrete valuation field extension of K with
perfect residue field, B′ a quasi-adequate OK′-algebra with fraction field L′. Consider a commutative
diagram of (K,OK ,OK)-triples (see II.9.2)

(Btr, B,B) // (B′
tr, B

′, B′)

(K,OK ,OK)

OO

// (K ′,OK′ ,OK′)

OO
(II.11.7.1)

with B → B′ injective. Let W be an object of Repproj
cont(G, B̂[1/p]), W ′ = B̂′ ⊗

B̂
W the associated

object of Repproj
cont(G

′, B̂′[1/p]), where G′ = Gal(L′
ur/L′). Assume that L′ ⊗L Ω1

L/K → Ω1
L′/K′ is

injective. Then, there is a natural commutative diagram

E ∗
B′(1)

φSen|W ′ //

��

End
B̂′[ 1p ]

(W ′)

B̂′ ⊗
B̂

E ∗
B(1)

id
B̂′⊗φSen|W

// B̂′ ⊗
B̂
End

B̂[ 1p ]
(W )

≀

OO
(II.11.7.2)

where φSen are the canonical Lie algebra actions defined in II.11.4, the left vertical arrow is induced
by taking dual of the natural map B̂′ ⊗

B̂
EB(−1) → EB′(−1) (cf. II.9.38), and the right vertical

arrow is the canonical isomorphism. Moreover, if we denote by B̂′Φ(W ) the image of B̂′ ⊗
B̂
Φ(W )

in B̂′ ⊗
B̂
End

B̂[ 1p ]
(W ), then the inverse of the right vertical arrow induces a natural isomorphism

Φ(W ′)
∼−→ B̂′Φ(W ),(II.11.7.3)

which is compatible with geometric and arithmetic Sen operators.

Proof. We follow the same argument of II.5.38 using II.11.2 instead of II.5.22. We may assume
that we are in the situation of the “moreover” part of II.11.4 by the descent theorem II.10.16. Let
t′i,k ∈ B′[1/p] be the image of ti,k ∈ B[1/p]. With the notation in II.11.1, there is a commutative
diagram of fields

L′ //

G′

((Ξ′(N)

++
L′(N)
0,m

// L′(N)
∞,m

∆′(N)
m

// L′(N)
∞,∞ // L′

L

OO

//

G

66
Ξ(N)

33L(N)
0,m

//

OO

L(N)
∞,m

∆(N)
m //

OO

L(N)
∞,∞ //

OO

L

OO(II.11.7.4)

Since dt′1, . . . , dt′e are L′-linearly independent in Ω1
L′/K′ by assumption, the Kummer tower (B′

n,m)(n,m)∈N1+e

defined by ζpn , t′1,pn , . . . , t′e,pn also satisfies the condition II.4.19.(1) by II.11.2. By the discussion in
II.11.3, we have a natural isomorphism Lie(Ξ′(N))

∼−→ Lie(Ξ(N)) which identifies their standard bases

{∂′i}0≤i≤e and {∂i}0≤i≤e. Moreover, V ′ = B̃′(N)

∞,m⊗B̃(N)
∞,m

V is an object of Repproj

cont,∆
′(N)
m -an

(Ξ′(N), B̃′(N)

∞,m[1/p])

with W ′ = B̂′ ⊗
B̂
W = B̂′ ⊗

B̃′(N)

∞,m

V ′. By II.4.11, the natural identification End
B̂′(W

′) = B̂′ ⊗
B̂

End
B̂[1/p]

(W ) identifies id
B̂′ ⊗ φ∂′

i
|V ′ with id

B̂′ ⊗ φ∂i |V . This shows that the diagram (II.11.7.2) is
commutative which induces an isomorphism (II.11.7.3). □
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Remark II.11.8. One can also replace B′ by a complete discrete valuation ring extension OE of OK
whose residue field admits a finite p-basis. Assuming that E ⊗L Ω1

L/K → Ω̂1
OE

[1/p] is injective, the
result of II.11.7 still holds for OE .

Corollary II.11.9. Let F fini
Lur/L be the directed system of finite field extensions L′ of L in Lur, F qa

Lur/L
the subsystem consists of L′ such that the integral closure B′ of B in L′ is a quasi-adequate OK-
algebra, where we put B′

tr = Btr ⊗B B′ and B′ = B.
(1) The subsystem F qa

Lur/L is cofinal in Ffini
Lur/L.

(2) Let L′ ∈ F qa
Lur/L with Galois group G′ = Gal(Lur/L′) ⊆ G, W an object of Repproj

cont(G, B̂[1/p])

and W ′ the object of Repproj
cont(G

′, B̂[1/p]) defined by restricting the G-action on W . Then,
there is a natural commutative diagram

E ∗
B′(1)

φSen|W ′ //

≀

��

End
B̂[ 1p ]

(W ′)

E ∗
B(1)

φSen|W // End
B̂[ 1p ]

(W )

(II.11.9.1)

Proof. (1) follows from Abhyankar’s lemma II.9.22, and (2) follows from II.9.38 and II.11.7 (as
L′ is étale over L). □
Remark II.11.10. Let L′ ∈ F fini

Lur/L with Galois group G′ = Gal(Lur/L′) ⊆ G, L′′ ∈ F qa
Lur/L

containing L′ with Galois group G′′ = Gal(Lur/L′′) ⊆ G′, W ′ an object of Repproj
cont(G

′, B̂[1/p]), W ′′

the object of Repproj
cont(G

′′, B̂[1/p]) defined by restricting the G′-action on W ′. Then, we define a Lie
algebra action φSen|W ′ of E ∗

B(1) on W ′ by assigning it to be φSen|W ′′ . This definition of φSen|W ′ does
not depend on the choice of L′′ by II.11.9. One can check that φSen|W ′ is G′-equivariant by the same
arguments in II.5.35.

Lemma II.11.11. With the notation in II.10.1, let V be an object of Repproj

cont,∆
(N)
m -an

(Ξ(N), B̃
(N)
∞,m[1/p])

for some N ∈ J and m ∈ Nd, W = B̂ ⊗
B̃

(N)
∞,m

V the associated object of Repproj
cont(G, B̂[1/p]).

(1) Let V ′ = B̃
(N)
∞,∞ ⊗B̃(N)

∞,m
V be the associated object of Repproj

cont(Ξ
(N), B̃

(N)
∞,∞[1/p]). Then,

WG = V ′G. In particular, (B̂[1/p])G = B̂[1/p].
(2) Let C = colimm′∈Nd B̂

(N)
∞,m′ , V ′′ = C⊗

B̃
(N)
∞,m

V the associated object of Repproj
cont(∆

(N), C[1/p]).

Then, WH = V ′′H .

Proof. (1) Recall that by the proof of II.10.15 we have WH(N)
∞ = B̂

(N)
∞,∞ ⊗B̃(N)

∞,m
V , and by

II.10.11.(2) its (Ξ(N), B̂[1/p])-finite part is V ′. Thus, we have WG ⊆ V ′G (and hence WG = V ′G as
V ′ ⊆W ). In particular, we have (B̂)G ⊆ (B̃

(N)
∞,∞)G. Since B̂(N)

n,m = B̂ ⊗B B(N)
n,m (as B(N)

n,m is finite over
the Noetherian ring B), we have (B̃

(N)
∞,∞)G = colim(B̂

(N)
n,m)G = colim B̂ ⊗B (B

(N)
n,m)G = B̂ (as B̂ is flat

over B).
(2) The arguments of II.10.11 also show that (∆(N), B̂

(N)
∞ [1/p])-finite part of WH(N)

∞ is V ′′. Thus,
we have WH ⊆ V ′′H (and hence WH = V ′′H as V ′′ ⊆W ). □

Proposition II.11.12. Let W be an object of Repproj
cont(G, B̂[1/p]). Then, any Sen operator of W

vanishes on WG, and any geometric Sen operator of W vanishes on WH .

Proof. By the descent theorem II.10.16, we may put ourselves in the situation of II.11.11. By
II.4.10, the infinitesimal Lie algebra action of Lie(Ξ(N)) (resp. Lie(∆(N))) on V ′ (resp. V ′′) is well-
defined and vanishes on V ′Ξ(N)

(resp. V ′′∆(N)

), and thus vanishes on WG (resp. WH) by II.11.11.
On the other hand, the infinitesimal action of Lie(Ξ(N)) (resp. Lie(∆(N))) on V ′ (resp. V ′′) is the
base change of that on V by II.4.11. Thus, these infinitesimal actions induce the (resp. geometric)
Sen operators on W by extending scalars to B̂[1/p], which completes the proof. □
II.11.13. Recall that for any finite projective moduleM over a ringR, the trace map Tr : EndR(M)→
R is the composition of the second map with the inverse of the first map:

EndR(M)
∼←−M ⊗R HomR(M,R) −→ R,(II.11.13.1)
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where for any x ∈M and f ∈ HomR(M,R), the element x⊗f is mapped to xf by the first arrow and
to f(x) by the second arrow. For any R-linear endomorphism ϕ of M , its determinant is defined as
follows ([Gol61, §1]): we write Rn =M⊕M ′ for some n ∈ N and define det(ϕ) to be the determinant
of the endomorphism ϕ⊕ idM ′ on Rn, which does not depend on the choice of M ′ and is compatible
with base change. Then, the characteristic polynomial det(T − ϕ) ∈ R[T ] of ϕ is defined as the
determinant of the R[T ]-linear endomorphism T ⊗ idM − idR[T ] ⊗ ϕ of R[T ] ⊗R M ([Gol61, §2]).
Similarly, one can define the reverse characteristic polynomial det(1−Tϕ) ∈ R[T ] as the determinant
of the R[T ]-linear endomorphism idR[T ] ⊗ idM − T ⊗ ϕ of R[T ] ⊗R M . One can check by taking
localizations of R that the reverse characteristic polynomial is also given by the formula (which is
indeed a finite sum)

det(1− Tϕ) =
∞∑
k=0

(−1)kTr(∧kϕ)T k,(II.11.13.2)

where ∧kϕ : ∧kM → ∧kM is the R-linear endomorphism of the k-th exterior power of M induced by
ϕ. By the multiplicativity of determinants, we have det(T − ϕ) = det(T ) det(1 − T−1ϕ) in R[T±1].
We remark that the coefficients of the characteristic polynomial det(T ) of the zero endomorphism
are mutually orthogonal idempotents of R, and det(T ) may not be a monomial if Spec(R) is not
connected ([Gol61, 2.2, 2.3]).

Lemma II.11.14. Let R be a ring endowed with an action of a group G, M a finite projective R-
module endowed with a semi-linear action of G, ϕ an R-linear endomorphism of M . Then, for any
g ∈ G, det(1− T (g ◦ ϕ ◦ g−1)) = g(det(1− Tϕ)).

Proof. It is clear from the definitions that Tr(g ◦ϕ ◦ g−1) = g(Tr(ϕ)) and that ∧k(g ◦ϕ ◦ g−1) =
g ◦ (∧kϕ) ◦ g−1. The conclusion follows from (II.11.13.2). □

Proposition II.11.15. Let W be an object of Repproj
cont(G, B̂[1/p]). Then, any lifting ϕ ∈ Φ(W ) of

the arithmetic Sen operator of W has the same (resp. reverse) characteristic polynomial. Moreover,
the coefficients of the reverse characteristic polynomial lie in B̂[1/p].

Proof. The first assertion follows from the diagram (II.11.4.4) and II.5.41. For the second, notice
that for any g ∈ G, g ◦ϕ◦ g−1 is also a lifting of the arithmetic Sen operator by the G-equivariance of
φSen|W . Thus, ϕ and g◦ϕ◦g−1 have the same (resp. reverse) characteristic polynomials. By II.11.14,
we see that the coefficients of the reverse characteristic polynomial det(1−Tϕ) lie in B̂[1/p]G = B̂[1/p]
by II.11.11.(1). □

Remark II.11.16. (1) If B is adequate, then the operator “φSen” on the associated Higgs
bundle defined by Tsuji ([Tsu18, page 876]) induces a lifting of the arithmetic Sen operator
of W by extending scalars to B̂[1/p] (cf. [Tsu18, 15.1.(4)]). In particular, the characteristic
polynomial of ϕ coincides with that of “φSen”. Thus, in general, we call the roots of the
characteristic polynomial of ϕ the Hodge-Tate weights of W .

(2) If W is defined over B̂[1/p], i.e. there exists an object V of Repproj
cont(G, B̂[1/p]) such that

W = B̂ ⊗B̂ V , then the characteristic polynomial det(T ) of the zero endomorphism of W

has coefficients in B̂[1/p]. The identity det(T − ϕ) = det(T ) det(1 − T−1ϕ) in B̂[1/p][T±1]

implies that the coefficients of the characteristic polynomial of ϕ also lie in B̂[1/p].

II.11.17. Let q ∈ Sp(B) with image p ∈ Sp(B), consider the element (Btr, B,B)→ (Ep,OEp
,OEq

)

of E(B) defined in II.9.3. Let Iq ⊆ G = Gal(Lur/L) be the image of the inertia subgroup of the
absolute Galois group of Ep. It is a closed subgroup of G, which we call the inertia subgroup of G at
q ∈ Sp(B).

Theorem II.11.18 (cf. II.5.43). Let (V, ρ) be an object of Repproj
cont(G,Qp), W = B̂[1/p] ⊗Qp V

the associated object of Repproj
cont(G, B̂[1/p]). Then,

∑
q∈Sp(B) Lie(ρ(Iq)) is the smallest Qp-subspace

S of EndQp(V ) such that the B̂[1/p]-module of Sen operators Φ(W ) is contained in the submodule

B̂[1/p]⊗Qp S of End
B̂[1/p]

(W ) = B̂[1/p]⊗Qp EndQp(V ).

Proof. By II.5.42, it suffices to show that for any Qp-linear form f on EndQp(V ), we have

f(Lie(ρ(Iq))) = 0 for any q ∈ Sp(B) if and only if f ′(Φ(W )) = 0, where f ′ is the B̂[1/p]-linear form
on End

B̂[1/p]
(W ) defined by extending scalars from f . We set Wq = Êq⊗

B̂
W = Êq⊗Qp V and let f ′q
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be the Êq-linear form on End
Êq

(Wq) defined by extending scalars from f . Consider the commutative
diagram

End
B̂[1/p]

(W )

f ′

��

(ιq)q // ∏
q∈Sp(B) EndÊq

(Wq)

(f ′
q)q

��

B̂[1/p] // ∏
q∈Sp(B) Êq

(II.11.18.1)

where ιq is defined by extending scalars. Notice that the horizontal arrows are injective by II.4.3.
Thus, f ′(Φ(W )) = 0 if and only if f ′q(ιq(Φ(W ))) = 0 for any q ∈ Sp(B). Notice that f(Lie(ρ(Iq))) = 0
if and only if f ′q(Φ(Wq)) = 0 by II.5.43, and that Φ(Wq) is generated by ιq(Φ(W )) by (II.11.7.3) and
II.11.8 (or directly from (II.11.4.4)). This completes the proof. □

Corollary II.11.19. With the notation in II.11.18, the B̂[1/p]-module of Sen operators Φ(W ) is zero
if and only if ρ(Iq) is finite for any q ∈ Sp(B).

Corollary II.11.20. With the notation in II.11.18, the B̂[1/p]-module of Sen operators Φ(W ) is
contained in B̂[1/p] ⊗Qp Lie(ρ(G)), and the B̂[1/p]-module of geometric Sen operators Φgeo(W ) is

contained in B̂[1/p]⊗Qp Lie(ρ(H)), where H = Gal(Lur/L∞).

Proof. The first assertion is a direct result of II.11.18. Note that Φgeo(W ) = [Φ(W ),Φ(W )]
by the Lie algebra structure on E ∗

B(1) (cf. II.9.39), and that [Lie(ρ(G)),Lie(ρ(G))] ⊆ Lie(ρ(H)) as
G/H = Σ is abelian. Thus, the second assertion follows from the first. □

Theorem II.11.21 (cf. [Sen81, Theorem 12]). Let G be a quotient of G which is a p-adic analytic
group. Then, there exists a unique homomorphism of B̂[1/p]-linear Lie algebras φSen|G : E ∗

B(1) →
B̂[1/p]⊗Qp Lie(G) making the following diagram commutative for any object V of Repproj

cont(G,Qp),

E ∗
B(1)

φSen|G //

φSen|W

��

B̂[ 1p ]⊗Qp Lie(G)

id
B̂[ 1

p
]
⊗φ|V

��

End
B̂[ 1p ]

(W ) B̂[ 1p ]⊗Qp EndQp(V )
∼oo

(II.11.21.1)

where W = B̂[1/p]⊗Qp V is the associated object of Repproj
cont(G, B̂[1/p]), φSen|W is the canonical Lie

algebra action defined in II.11.4, and φ|V is the infinitesimal Lie algebra action of Lie(G) on V (cf.
II.4.13).

Proof. Firstly, as G is a compact p-adic analytic group, it admits a faithful finite projective
Qp-representation V by II.3.9. The faithfulness implies that the map φ|V : Lie(G) → EndQp(V ) is
injective (cf. II.4.10.(3)). Thus, the uniqueness of φSen|G is clear.

Consider an injective morphism V → V ′ of faithful finite projective Qp-representations of G.
Note that W = B̂[1/p]⊗Qp V is still a subrepresentation of W ′ = B̂[1/p]⊗Qp V

′. We claim that the
natural surjection Φ(W ′) → Φ(W ) (of the images of φSen|W ′ and φSen|W ) defined by restriction is
also injective. Indeed, we regard B̂[1/p] ⊗Qp Lie(G) as a subset of End

B̂[1/p]
(W ) via id

B̂[1/p]
⊗ φ|V .

Thus, the restriction from V ′ to V induces the identity map on B̂[1/p]⊗Qp Lie(G). On the other hand,

Φ(W ) (resp. Φ(W ′)) is contained in B̂[1/p] ⊗Qp Lie(G) by II.11.18, which shows that the surjective
map Φ(W ′)→ Φ(W ) induced by the restriction is injective.

Therefore, we take a faithful finite projective Qp-representation V of G, and we define φSen|G to
be the composition of

E ∗
B(1)

φSen|W−→ Φ(W ) ⊆ Im(id
B̂[ 1p ]
⊗ φ|V ) = B̂[

1

p
]⊗Qp Lie(G).(II.11.21.2)

As any two faithful representations V and V ′ are both contained in V ⊕ V ′, we deduce easily from
the above discussions that this definition of φSen|G does not depend on the choice of V . It follows
immediately that the diagram (II.11.21.1) is commutative for faithful representations.
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In general, we take a faithful finite projective Qp-representation V ′ of G. Then, for any object
V of Repproj

cont(G,Qp), V ⊕ V ′ is also a faithful finite projective Qp-representation of G. The previous
result shows that there is a canonical commutative diagram

E ∗
B(1)

φSen|G //

φSen|W⊕W ′

��

B̂[ 1p ]⊗Qp Lie(G)

id
B̂[ 1

p
]
⊗φ|V ⊕V ′

��

End
B̂[ 1p ]

(W ⊕W ′) B̂[ 1p ]⊗Qp EndQp(V ⊕ V ′)
∼oo

(II.11.21.3)

where W = B̂[1/p]⊗Qp
V and W ′ = B̂[1/p]⊗Qp

V ′. Notice that the image of φSen|W⊕W ′ = φSen|W ⊕
φSen|W ′ lies in End

B̂[ 1p ]
(W )⊕End

B̂[ 1p ]
(W ′) (cf. II.11.4), and that the image of φ|V⊕V ′ = φ|V ⊕ φ|V ′

lies in EndQp(V )⊕ EndQp(V
′). By looking at the first component, the commutativity of (II.11.21.3)

implies that of (II.11.21.1). □

Definition II.11.22. Let G be a quotient of G which is a p-adic analytic group. We denote by ΦG the
image of φSen|G (II.11.21), and by Φgeo

G the image of HomB[1/p](Ω
1
YK/K

(−1), B̂[1/p]) under φSen|G .

We call an element of ΦG ⊆ B̂[1/p] ⊗Qp Lie(G) a Sen operator of G. We call an element of Φgeo
G a

geometric Sen operator of G. And we call the image of 1 ∈ B̂[1/p] in Φari
G = ΦG/Φ

geo
G the arithmetic

Sen operator of G.

Corollary II.11.23. Let G be a quotient of G which is a p-adic analytic group.

(1) The canonical morphism φSen|G : E ∗
B(1) → B̂[1/p]⊗Qp Lie(G) is G-equivariant with respect

to the canonical action on E ∗
B(1), B̂[1/p] and the adjoint action on Lie(G) defined in II.3.15.

(2) For any q ∈ Sp(B), let GIq ⊆ G be the image of the inertia subgroup Iq ⊆ G at q (see
II.11.17). Then,

∑
q∈Sp(B) Lie(GIq) is the smallest Qp-subspace S of Lie(G) such that ΦG is

contained in B̂[1/p]⊗Qp S.
(3) Let GH ⊆ G be the image of H = Gal(Lur/L∞) ⊆ G. Then, the Lie algebra Φgeo

G of geometric

Sen operators of G is contained in B̂[1/p]⊗Qp Lie(GH).
(4) Let K ′ be a complete discrete valuation field extension of K with perfect residue field, B′

a quasi-adequate OK′-algebra with fraction field L′ and Galois group G′ = Gal(L′
ur/L′).

Consider a commutative diagram of (K,OK ,OK)-triples (see II.9.2)

(Btr, B,B) // (B′
tr, B

′, B′)

(K,OK ,OK)

OO

// (K ′,OK′ ,OK′)

OO
(II.11.23.1)

with B → B′ injective, and let G′ be the image of the composition of G′ → G → G. Then,
there is a natural commutative diagram

E ∗
B′(1)

φSen|G′ //

��

B̂′[ 1p ]⊗Qp Lie(G′)

��

B̂′ ⊗
B̂

E ∗
B(1)

id
B̂′⊗φSen|G

// B̂′[ 1p ]⊗Qp Lie(G)

(II.11.23.2)

Moreover, if we denote by B̂′ΦG the image of B̂′ ⊗
B̂
ΦG in B̂′[ 1p ]⊗Qp Lie(G), then the right

vertical arrow induces a natural isomorphism

ΦG′
∼−→ B̂′ΦG(II.11.23.3)

which is compatible with geometric and arithmetic Sen operators.
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(5) Let L′ be an element of the directed system F qa
Lur/L defined in II.11.9, G′ = Gal(Lur/L′),

G′ ⊆ G the image of G′ ⊆ G. Then, there is a natural commutative diagram

E ∗
B′(1)

φSen|G′ //

≀

��

B̂[ 1p ]⊗Qp
Lie(G′)

≀
��

E ∗
B(1)

φSen|G // B̂[ 1p ]⊗Qp Lie(G)

(II.11.23.4)

In particular, ΦG′ = ΦG.
(6) Let G′ be a quotient of G. Then, there is a natural commutative diagram

E ∗
B(1)

φSen|G // B̂[ 1p ]⊗Qp Lie(G)

����

E ∗
B(1)

φSen|G′ // B̂[ 1p ]⊗Qp Lie(G′)

(II.11.23.5)

In particular, it induces a surjection ΦG → ΦG′ .

Proof. For (1), the G-equivariance of φSen|G follows from that of the other three arrows in the
diagram (II.11.21.1) (cf. II.11.4, II.3.15). (2) holds by applying II.11.18 to a faithful finite projective
Qp-representation V of G. (3) follows from the arguments of II.11.20.

For (4), as G′ is a closed subgroup of G, a faithful finite projective Qp-representation V of G
defines a faithful finite projective Qp-representation V ′ of G′ by restricting the action. Combining
II.11.7 with II.11.21, we obtain a natural diagram

E ∗
B′(1)

φSen|G′ //

��

B̂′[ 1p ]⊗Qp
Lie(G′)

��

id
B̂′[ 1

p
]
⊗φ|V ′

// B̂′[ 1p ]⊗Qp
EndQp

(V ′)

≀
��

B̂′ ⊗
B̂

E ∗
B(1)

id
B̂′⊗φSen|G

// B̂′[ 1p ]⊗Qp Lie(G)
id

B̂′[ 1
p
]
⊗φ|V

// B̂′[ 1p ]⊗Qp EndQp(V )

(II.11.23.6)

Notice that the left square is commutative, since the right square and the big rectangle are commu-
tative and the horizontal arrows in the right square are injective. Moreover, (II.11.7.3) implies that
the image ΦG′ of φSen|G′ coincides with the image B̂′ΦG of id

B̂′⊗φSen|G via the middle vertical arrow
(which is injective). This completes the proof of (4), and (5) is a special case of (4).

For (6), a faithful finite projective Qp-representation V of G′ can be regarded as an object of
Repproj

cont(G,Qp). Thus, we obtain a natural diagram

E ∗
B(1)

φSen|G //

φSen|W

��

B̂[ 1p ]⊗Qp Lie(G)

id
B̂[ 1

p
]
⊗φ|V

��

// // B̂[ 1p ]⊗Qp Lie(G′)

id
B̂[ 1

p
]
⊗φ|V

��

End
B̂[ 1p ]

(W ) B̂[ 1p ]⊗Qp EndQp(V )
∼oo B̂[ 1p ]⊗Qp EndQp(V )

(II.11.23.7)

Notice that the left square is commutative by II.11.21 and the right square is obviously commutative.
Since the right vertical arrow is injective, the composition of the two horizontal arrows on the top
is the unique map making the big rectangle commutative, which thus coincides with φSen|G′ by
II.11.21. □

II.11.24. Let G be a quotient of G which is a p-adic analytic group. The universal Lie algebra
homomorphism φSen|G : E ∗

B(1)→ B̂[1/p]⊗Qp Lie(G) allows us to canonically extend Sen operators to
certain infinite-dimensional representations as follows.

Let V be a Qp-Banach space endowed with a Qp-linear action of G such that G preserves the
norm of V and induces a trivial action on V ≤1/p2V ≤1, where V ≤1 is the closed ball of radius 1 in
V . Such a smallness condition implies that the infinitesimal action of G on V ≤1 is well-defined and
given by the following formula for any g ∈ G and x ∈ V ≤1 (cf. II.6.7)

log(g)|V ≤1(x) =

∞∑
n=1

(−1)n−1

n
(g − 1)n(x).(II.11.24.1)
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It defines a Lie algebra homomorphism

φ|V : Lie(G) −→ EndQp(V ),(II.11.24.2)

sending logG(g) to idQp ⊗ log(g)|V ≤1 for any g ∈ G (cf. II.12.11, II.12.15).

We put W+ = (B̂ ⊗Zp V
≤1)∧ and W = W+[1/p]. They are naturally endowed with continuous

group actions of G with respect to the p-adic topology defined by W+, cf. II.6.18.(1). Notice that
the B̂-linear endomorphism id

B̂
⊗ log(g)|V ≤1 on B̂ ⊗Zp V

≤1 extends to an endomorphism on W+ by
taking p-adic completion. Thus, we also obtain a Lie algebra homomorphism after inverting p,

B̂[
1

p
]⊗Qp Lie(G) −→ End

B̂[ 1p ]
(W ).(II.11.24.3)

We define φSen|W : E ∗
B(1)→ End

B̂[ 1p ]
(W ) to be the composition of

E ∗
B(1)

φSen|G // B̂[1/p]⊗Qp Lie(G)
(II.11.24.3) // End

B̂[ 1p ]
(W ).(II.11.24.4)

It is a G-equivariant homomorphism of B̂[1/p]-linear Lie algebras. We denote by Φ(W ) its image,
and by Φgeo(W ) the image of HomB[1/p](Ω

1
YK/K

(−1), B̂[1/p]). It follows from the construction that
any element of Φ(W ) acts continuously on W with respect to the p-adic topology defined by W+.

Lemma II.11.25. With the notation in II.11.24, for any object V0 of Repproj
cont(G,Qp) and any G-

equivariant continuous Qp-linear homomorphism V0 → V , the Lie algebra action φSen|W of E ∗
B(1) on

W defined by (II.11.24.4) is compatible with the canonical Lie algebra action φSen|W0 of E ∗
B(1) on W0

defined in II.11.4, where W0 = B̂[1/p]⊗Qp V0 is the associated object of Repproj
cont(G, B̂[1/p]).

Proof. We take a Qp-basis e1, . . . , er of V0 whose images under V0 → V lie in V ≤1. We put
V +
0 = Zpe1⊕· · ·⊕Zper ⊆ V0. Let G0 be a sufficiently small open subgroup of G whose image under the

continuous group homomorphism ρ : G → GLr(Qp) (induced by the G-action on V0) is contained in
id+p2Mr(Zp). Thus, the lattice V +

0 = Zrp ⊆ Qrp = V0 is G0-stable, and G0 acts trivially on V +
0 /p

2V +
0 .

Notice that the infinitesimal action of G0 on V +
0 is also well-defined and given by the same formula

as in (II.11.24.1). Then, the G0-equivariant homomorphism V +
0 → V ≤1 guarantees that the map

B̂[1/p]⊗Qp
Lie(G)→ End

B̂[ 1p ]
(W0) induced by the infinitesimal action of G on V +

0 is compatible with

(II.11.24.3). Thus, the conclusion follows from II.11.21 and (II.11.24.4). □

Theorem II.11.26. Let G be a quotient of G which is a p-adic analytic group, V a Qp-Banach space
endowed with a Qp-linear action of G satisfying the following conditions:

(1) The (G,Qp)-finite part of V is dense in V (cf. II.2.4).
(2) The G-action preserves the norm on V , and induces a trivial action on V ≤1/p3V ≤1, where

V ≤1 is the closed ball of radius 1 in V .

We set W = (B̂ ⊗Zp V
≤1)∧[1/p] endowed with the natural B̂[1/p]-semi-linear action of G. Then, the

canonical B̂[1/p]-linear Lie subalgebra Φgeo
G of B̂[1/p]⊗Qp Lie(G) defined in II.11.22 acts trivially on

WH via (II.11.24.3), where H = Gal(Lur/L∞) ⊆ G.

Proof. The strategy is to reduce to II.6.19. We need to construct a suitable directed system
of p3Zp-small objects in Repproj

cont(G, B̂) in order to reduce to the situation of II.6.19. By condition
(1), we fix a directed system (Vλ)λ∈Λ of finite dimensional G-stable Qp-subspaces of V such that
V∞ =

∪
λ∈Λ Vλ is dense in V . Recall that for any λ ∈ Λ ∪ {∞} and n ∈ N, we have (cf. II.4.6)

pnV ≤1
λ = V ≤p−n

λ = Vλ ∩ pnV ≤1.(II.11.26.1)

In particular, V ≤1
λ /pnV ≤1

λ → V ≤1/pnV ≤1 is injective, and V ≤1
∞ /pnV ≤1

∞ → V ≤1/pnV ≤1 is an isomor-
phism as V∞ is dense in V . Thus, V ≤1 identifies naturally with the p-adic completion of V ≤1

∞ , and
the G-action on V ≤1

λ /p3V ≤1
λ ⊆ V ≤1/p3V ≤1 is also trivial by condition (2). In conclusion, (V ≤1

λ )λ∈Λ

forms a directed system of p3Zp-small objects in Repproj
cont(G,Zp) (cf. II.6.4, II.6.8) whose transition

maps are injective and injective modulo pn for any n ∈ N.
For any λ ∈ Λ∪{∞}, we put W+

λ = B̂⊗Zp V
≤1
λ . As B̂ is flat over Zp, (W+

λ )λ∈Λ forms a directed

system of p3Zp-small objects in Repproj
cont(G, B̂) (cf. II.6.8) whose transition maps are injective and
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injective modulo pn for any n ∈ N. We put Wλ = W+
λ [1/p] and Ŵ∞ = Ŵ+

∞[1/p], where Ŵ+
∞ is the

p-adic completion of W+
∞. Remark that we have G-equivariant natural identifications

W+ = (B̂ ⊗Zp V
≤1)∧ = Ŵ+

∞.(II.11.26.2)

Thus, W =W+[1/p] = Ŵ∞.
For any q ∈ Sp(B) with image p ∈ Sp(B), consider the element (Btr, B,B) → (Ep,OEp

,OEq
)

of E(B) defined in II.9.3. We set Gq = Gal(Eq/Ep) and Hq = Gal(Eq/Ep,∞). Consider the natural
commutative diagram

Repproj
cont(G,Zp) //

��

Repproj
cont(G, B̂) //

��

Repproj
cont(Gq,O

Êq
)

��

Repproj
cont(G,Qp) // Repproj

cont(G, B̂[ 1p ])
// Repproj

cont(Gq, Êq)

(II.11.26.3)

Let W+
λ,q = O

Êq
⊗
B̂
W+
λ = O

Êq
⊗Zp V

≤1
λ and Wλ,q =W+

λ,q[1/p]. Since O
Êq

is flat over Zp, (W+
λ,q)λ∈Λ

forms a directed system of p3Zp-small objects in Repproj
cont(Gq,O

Êq
) whose transition maps are injective

and injective modulo pn for any n ∈ N. Thus, we are in the situation of II.6.19. Taking colimit of
the diagram (II.11.4.4), we get a canonical commutative diagram

E ∗
B(1)

φSen|W∞

��

// ∏
q E ∗

OEp
(1)

(φSen|W∞,q )q

��
End

B̂[ 1p ]
(W∞)

(ιq)q // ∏
q EndÊq

(W∞,q)

(II.11.26.4)

where the product is taken over q ∈ Sp(B), ιq is defined by extending scalars, and the horizontal
arrows are injective. Notice that the Lie algebra action φSen|W defined by (II.11.24.4) is the unique
continuation of φSen|W∞ by II.11.25. The variant of II.11.25 for valuation ring case shows that
φSen|W∞,q extends uniquely to φSen|Ŵ∞,q

by continuation, whose geometric part thus coincides with

that defined in II.6.19. In particular, ιq(Φ(Ŵ∞)) ⊂ Φ(Ŵ∞,q) (resp. ιq(Φgeo(Ŵ∞)) ⊂ Φgeo(Ŵ∞,q)).
Taking filtered colimit on λ ∈ Λ and then inverse limit on n ∈ N of the natural injection W+

λ /p
n →∏

qW
+
λ,q/p

n given by II.4.3, we obtain a natural injection

Ŵ∞ −→
∏
q

Ŵ∞,q,(II.11.26.5)

which particularly sends (Ŵ∞)G (resp. (Ŵ∞)H) into
∏

q(Ŵ∞,q)
Gq (resp.

∏
q(Ŵ∞,q)

Hq). Since

Φgeo(Ŵ∞,q) acts trivially on (Ŵ∞,q)
Hq for each q by II.6.19, we see that Φgeo(Ŵ∞) acts trivially on

(Ŵ∞)H . □

II.12. Application to Locally Analytic Vectors

This section is devoted to generalizing a result of Pan [Pan22, 3.1.2] to higher dimension.

II.12.1. We mainly follow [Pan22, 2.1] to briefly review the notion of locally analytic vectors. Let
M be a finite free Zp-module with a basis e1, . . . , en, V a Qp-Banach space with norm | |. We say
that a map f :M → V is (strictly) analytic (cf. [DdSMS99, Definition 6.17]) if there exists vm ∈ V
for any m = (m1, . . . ,md) ∈ Nd such that (|m| = m1 + · · ·+md)

lim
|m|→∞

|vm| = 0,(II.12.1.1)

and for any a1, . . . , ad ∈ Zp, we have

f(a1e1 + · · ·+ aded) =
∑
m∈Nd

am1
1 · · · a

md

d vm.(II.12.1.2)

Notice that f = 0 if and only if vm is zero for any m ∈ Nd. If e′1, . . . , e′d form another basis of M ,
then we can write f(a1e′1+ · · ·+ade′d) =

∑
m∈Nd a

m1
1 · · · a

md

d v′m, where v′m is a Zp-linear combination
of finitely many vm. In particular, we get supm∈Nd |v′m| ≤ supm∈Nd |vm|, and thus they are actually
equal by symmetry. In conclusion, the definition on the analyticity of f does not depend on the choice
of the basis of M . We denote by C an(M,V ) the Qp-vector space of V -valued analytic functions on
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M . We note that after fixing a basis of M , taking the coefficients vm identifies C an(M,V ) with a
subspace of

∏
m∈Nd V . We define a norm on C an(M,V ) by setting

|f | = sup
m∈Nd

|vm| ∈ R≥0,(II.12.1.3)

which does not depend on the choice of the basis of M and makes C an(M,V ) a Qp-Banach space.

Lemma II.12.2. Let M be a finite free Zp-module, V a Qp-Banach space. Then, for any n ∈ N, the
natural map

(V ≤1 ⊗Zp C an(M,Qp)≤1)/pn −→ C an(M,V )≤1/pn.(II.12.2.1)

is an isomorphism.

Proof. After fixing a basis of M , by taking coefficients we identify C an(M,V ) with

{(vm) ∈
∏
m∈Nd

V | lim
|m|→∞

|vm| = 0}.(II.12.2.2)

Notice that C an(M,V )≤1 identifies with

{(vm) ∈
∏
m∈Nd

V ≤1 | lim
|m|→∞

|vm| = 0} = (⊕m∈NdV ≤1)∧,(II.12.2.3)

where the completion is p-adic. Taking V = Qp, we get C an(M,Qp)≤1 = (⊕m∈NdZp)∧. Thus,
(V ≤1 ⊗Zp

C an(M,Qp)≤1)/pn = ⊕m∈NdV ≤1/pn = C an(M,V )≤1/pn, which completes the proof. □

Lemma II.12.3. Let V be a Qp-Banach space, g :M → N a Zp-linear homomorphism of finite free
Zp-modules. Then, the pullback of functions induces a map

g∗ : C an(N,V ) −→ C an(M,V ), f 7→ f ◦ g(II.12.3.1)

which decreases the norm. Moreover, if the cokernel of g is finite, then g∗ is injective; if g is injective,
then g∗ has dense image.

Proof. As any submodule of a finite free Zp-module is still finite free, we may decompose g as
an injection composed with a surjection, so that we can treat the two cases separately.

Assume firstly that g is surjective. We write M = N ⊕ L, and choose a basis e1, . . . , ed for
M such that e1, . . . , ec form a basis of N , where 0 ≤ c ≤ d are integers. We see that an analytic
function f(a1e1 + · · · + acec) =

∑
m∈Nc a

m1
1 · · · amc

c vm on N is pulled back to an analytic function
(f ◦ g)(a1e1 + · · ·+ aded) =

∑
m∈Nc×{0}d−c a

m1
1 · · · a

md

d vm. Thus, g∗ is injective and preserves norms.
Assume that g is injective. Since N/M is a direct sum of a finite free Zp-module with a finite

Zp-module, by writing g as a composition of two injective maps, we can treat separately the case
where g admits a retraction and the case where the cokernel of g is finite. For the first case, we can
write N = M ⊕ L. By an argument as before, we see that g∗ is surjective and decreases the norm.
For the second case, by expressing a basis of M as Zp-linear combination of that of N , we see that
g∗ decreases the norm as in II.12.1. Conversely, as N [1/p] = M [1/p], we can express a basis of N
as Qp-linear combination of that of M . Thus, any analytic function on N with only finitely many
coefficients vm non-zero is a restriction of such an analytic function on M . This shows that g∗ has
dense image. □

Definition II.12.4. Let G be a uniform pro-p group, LG its corresponding powerful Lie algebra over
Zp with identity map exp : LG → G (see II.3.3), V a Qp-Banach space. We say that a V -valued
function f : G → V is analytic if f ◦ exp : LG → V is analytic (as LG is a finite free Zp-module). We
set C an(G, V ) = C an(LG , V ) and denote its norm by | |G .

Remark II.12.5. One can also use a system of coordinates of the second kind (II.3.3.4) to define
analyticity of a function as in [Pan22, 2.1.1]. Notice that the transition map between the coordinates
of the first kind and the second kind is a homeomorphism ψ : Zdp → Zdp such that ψ and ψ−1 are
both analytic by [DdSMS99, Exercise 8.3] (or by [Sch11, 34.1], as G is p-saturable by [DdSMS99,
Notes on page 81, Theorem 7.7, Exercise 7.10]). Thus, the two definitions of C an(G, V ) and its norm
coincide (cf. [DdSMS99, Theorem 6.35]).

II.12.6. Let V be a Qp-vector space endowed with a Qp-linear action of a group G, C (G, V ) =
∏

G V
the Qp-vector space of V -valued functions on G. We mainly consider three G-actions {1 ⊗ ρL, 1 ⊗
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ρR, ρV ⊗ ρL} on C (G, V ), called the left translation action, right translation action and diagonal
action respectively, defined as follows: for any g, g′ ∈ G and f ∈ C (G, V ),

(ρ(g)f)(g′) =

 f(g−1g′) if ρ = 1⊗ ρL,
f(g′g) if ρ = 1⊗ ρR,
g(f(g−1g′)) if ρ = ρV ⊗ ρL.

(II.12.6.1)

Lemma II.12.7 ([Pan22, 2.1.2]). Let G be a uniform pro-p group, V a Qp-Banach space. Then,
C an(G, V ) is stable under the left and right translation actions of G which preserve the norm | |G.
Moreover, the left and right translation actions of Gpn on C an(G, V )≤1/pnC an(G, V )≤1 are trivial for
any n ∈ N.

Proof. For any element g ∈ G, let n be the maximal integer such that g ∈ Gpn and we set
g1 = gp

−n ∈ G \ Gp (as G → Gpn sending x to xp
n

is a homeomorphism, cf. II.3.3). Then, we take
g2, . . . , gd ∈ G such that (g1, . . . , gd) forms a minimal topological generating set of G (i.e. it forms a
Zp-basis of LG , cf. II.3.3). We obtain a system of coordinates of second kind (II.3.3.4),

Zdp −→ G, (a1, . . . , ad) 7→ ga11 · · · g
ad
d .(II.12.7.1)

The left translation by g = gp
n

1 sends the coordinate (a1, a2, . . . , ad) to (a1 − pn, a2, . . . , ad). Thus,
it preserves the analyticity of a V -valued function on G by II.12.5 as well as the norm | |G , and acts
trivially on C an(G, V )≤1/pnC an(G, V )≤1. Thus, we obtain the conclusion for the left translation. The
proof for the right translation is analogous. □

Proposition II.12.8 ([Pan22, 2.1.3]). Let G be a uniform pro-p group isomorphic to a closed sub-
group of id + p2Md(Zp) for some d ∈ N. Then, there exists a directed system of finite-dimensional
Qp-subspaces (Vk)k≥1 of C an(G,Qp) stable under the left and right translation action of G such that∪
k≥1 Vk is dense in C an(G,Qp).

Proof. We follow the proof of [Pan22, 2.1.3]. Consider the commutative diagram (cf. II.3.6)

G

logG

��

// id + p2Md(Zp)

log

��
LG

ι // p2Md(Zp)

exp

OO
(II.12.8.1)

We remark that the pullback by the injection ι induces a map C an(p2Md(Zp),Qp) → C an(LG ,Qp)
with dense image by II.12.3. For any 1 ≤ i, j ≤ d, let Xij : Md(Zp)→ Zp be the map taking the value
of the (i, j)-component. Let Wk (resp. Vk) be the space of Qp-valued functions on id + p2Md(Zp)
(resp. G) of the form P (Xij |1 ≤ i, j ≤ d) where P is a polynomial with coefficients in Qp of degree
≤ k. Since f ◦ exp ∈ C an(p2Md(Zp),Qp) for any f ∈ Wk, we have Wk ⊆ C an(id + p2Md(Zp),Qp).
Moreover, since log ◦ exp is the identity on p2Md(Zp), the set {f ◦ exp | f ∈ Wk, k ∈ N} is dense in
C an(p2Md(Zp),Qp). Therefore,

∪
k∈NWk is dense in C an(id + p2Md(Zp),Qp). By pulling back, we

see that
∪
k∈N Vk is dense in C an(G,Qp) by II.12.3. Moreover, it follows from the construction that

each Vk is stable under the left and right translation action of G. □

Definition II.12.9 ([Pan22, 2.1.4]). Let G be a uniform pro-p group, V a Qp-Banach space endowed
with a Qp-linear continuous action of G. An element v ∈ V is called G-analytic if the function
fv : G → V sending g to gv is analytic. We denote by V G-an the subset of V consisting of G-analytic
vectors.

We remark that V G-an is stable under the action of G on V , since the right translation of the
analytic function fv is still analytic by II.12.7. For any continuous group homomorphism of uniform
pro-p groups G′ → G, regarding V also as a Qp-representation of G′, then we have V G-an ⊆ V G′-an by
II.12.3. The subset V G-an is actually a Qp-subspace of V by the following lemma.

Lemma II.12.10 ([Pan22, 2.1.5]). Let G be a uniform pro-p group, V a Qp-Banach space endowed
with a Qp-linear continuous action of G. Then, the evaluation map at 1 ∈ G induces a bijection

C an(G, V )ρV ⊗ρL=1 ∼−→ V G-an,(II.12.10.1)

where ρV ⊗ ρL : C an(G, V ) → C (G, V ) is the diagonal action (see II.12.6). Moreover, the inverse of
this bijection induces a G-equivariant inclusion

V G-an −→ (C an(G, V ), 1⊗ ρR), v 7→ (fv : g 7→ gv),(II.12.10.2)

where 1⊗ ρR is the right translation of G on C an(G, V ) (see II.12.7).
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Proof. Notice that an element f ∈ C (G, V ) is fixed by ρV ⊗ ρL if and only if f(g) = g(f(1)) for
any g ∈ G. Thus, in this case f is analytic if and only if f(1) ∈ V is G-analytic by definition, so that
we have the bijection (II.12.10.1). It follows from the definition that (II.12.10.2) is G-equivariant. □

The smallness condition will give us enough analytic vectors.

Lemma II.12.11 ([Pan22, 2.1.9]). Let G be a uniform pro-p group, V a Qp-Banach space endowed
with a Qp-linear action of G. Assume that G preserves the norm of V and induces a trivial action
on V ≤1/p2V ≤1. Then, V = V G-an. In particular, for any object V0 of Repproj

cont(G,Qp), there exists a
uniform pro-p open subgroup G0 of G such V0 = V G0-an

0 .

Proof. For any g ∈ G, as (g − 1)(V ≤1) ⊆ p2V ≤1, we have g = exp(log(g)) by II.6.7 where exp
and log are defined in loc.cit. We take a minimal topological generating set (g1, . . . , gd) of G (cf.
II.3.3) so that we obtain a system of coordinates of second kind (II.3.3.4),

Zdp −→ G, (a1, . . . , ad) 7→ ga11 · · · g
ad
d .(II.12.11.1)

For any v ∈ V , we have

ga11 · · · g
ad
d (v) = exp(a1 log(g1)) · · · exp(ad log(gd))(v) (cf. II.6.7)(II.12.11.2)

=

( ∞∑
n=0

an1
n!

log(g1)
n

)
· · ·

( ∞∑
n=0

and
n!

log(gd)
n

)
(v),

which is clearly an analytic V -valued function on variables (a1, . . . , ad) ∈ Zdp (as log(gi) ∈ p2EndZp(V
≤1)).

Thus, the function fv : G → V sending g to gv is analytic by II.12.5, i.e. v is G-analytic.
For the “in particular” part, we fix a Qp-basis of V0 so that we obtain a continuous group homo-

morphism ρ : G → GLd(Qp). Let G0 be a sufficiently small uniform pro-p open subgroup of G whose
image under ρ is contained in id+ p2Md(Zp). Thus, the lattice V +

0 = Zdp ⊆ Qdp = V0 is G0-stable, and
G0 acts trivially on V +

0 /p
2V +

0 . By the assertion we just proved above, we see that V0 = V G0-an
0 . □

Moreover, one can get a slightly stronger result for the analytic vectors in C an(G, V ).

Lemma II.12.12. Let G be a uniform pro-p group, V a Qp-Banach space. Endowing the Qp-Banach
space C an(G, V ) with the left or right translation action of G, then C an(G, V ) = C an(G, V )G-an.

Proof. Firstly, the action of G on C an(G, V ) is well-defined and continuous by II.12.7. Thus,
we can talk about G-analytic vectors in C an(G, V ) by II.12.9. We fix a Zp-basis of LG . For any
f ∈ C an(LG , V ), consider the function ψ : LG×LG → V sending (x, y) to f(x∗y), where the operation
x∗y is given by the Baker-Campbell-Hausdorff formula (II.3.4.1) (which defines the multiplication in
G). Notice that ψ is analytic by [DdSMS99, Lemma 9.12], i.e. there exists a unique element vk,l ∈ V
for any k, l ∈ Nd such that |vk,l| → 0 when |k| + |l| → ∞, and that for any x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ Zdp, we have

f(x ∗ y) =
∑
k,l∈Nd

xk11 · · ·x
kd
d y

l1
1 · · · y

ld
d vk,l.(II.12.12.1)

In particular, the function fk sending y to
∑
l∈Nd y

l1
1 · · · y

ld
d vk,l is analytic, and we have |fk| → 0 when

|k| → ∞. Thus, the function on LG sending x to xf =
∑
k∈Nd x

k1
1 · · ·x

kd
d fk is analytic, which shows

that f is a G-analytic vector of C an(G, V ) with respect to the left translation. The proof for right
translation is analogous. □

The continuity condition of the G-action on V in definition II.12.9 is used to define infinitesimal
actions as follows.

Proposition II.12.13. Let G be a uniform pro-p group, V a Qp-Banach space endowed with a Qp-
linear continuous action of G. Then, for any g ∈ G, there exists a unique Qp-linear endomorphism
φg of V G-an defined by

φg(v) = lim
Zp\{0}∋a→0

a−1(ga − 1)(v), ∀v ∈ V G-an,(II.12.13.1)

such that for any a ∈ Zp,

ga(x) = exp(aφg)(v) =
∞∑
k=0

ak

k!
(φg ◦ · · · ◦ φg︸ ︷︷ ︸

k copies

)(v).(II.12.13.2)
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Proof. Let v ∈ V G-an and g ∈ G. As Zp → G sending a to ga is a continuous homomorphism of
uniform pro-p groups, v is also Zp-analytic, i.e. there exists a unique element vk ∈ V for any k ∈ N
such that |vk| → 0 when k →∞, and that for any a ∈ Zp,

gav =

∞∑
k=0

akvk.(II.12.13.3)

We see easily that v0 = v by taking a = 0 and that

v1 = lim
Zp\{0}∋a→0

a−1(ga − 1)(v).(II.12.13.4)

Thus, φg(v) = v1 is a well-defined element of V . We claim that v1 ∈ V G-an (so that φg is a Qp-linear
endomorphism of V G-an) and vk = φkg(v)/k! for any k ≥ 0 (so that (II.12.13.2) follows). Indeed, for
any b ∈ Zp, we have

ga+bv = gb

( ∞∑
k=0

akvk

)
=

∞∑
k=0

akgbvk(II.12.13.5)

where the second equality follows from the continuity of the G-action on V ; on the other hand,

ga+bv =
∞∑
k=0

(a+ b)kvk =
∞∑
k=0

ak

( ∞∑
l=0

(
k + l

l

)
blvk+l

)
(II.12.13.6)

where the second equality follows from the absolute convergence condition |vk| → 0 when k → ∞.
Combining the two expressions for ga+bv, we get

gbvk =
∞∑
l=0

(
k + l

l

)
blvk+l,(II.12.13.7)

which shows that vk ∈ V G-an and vk+1 = φg(vk)/(k + 1). The claim follows by induction. □

Lemma II.12.14. With the notation in II.12.13, we endow V G-an with the norm induced from the
norm | |G on C an(G, V ) via the canonical injection (II.12.10.2). Then, the map

ϕ : Zp × G × V G-an −→ V G-an,(II.12.14.1)

sending (0, g, v) to φg(v) and sending (a, g, v) to a−1(gav − v) for a ̸= 0, is continuous.

Proof. We fix a Zp-basis u1, . . . , ud of LG . By the homeomorphism exp : LG → G, it suffices to
verify the continuity of the map

ψ : Zp × Zdp × V G-an −→ V G-an(II.12.14.2)

sending (a0, a1, . . . , ad, v) to ϕ(a0, exp(
∑d
i=1 aiui), v). For any v ∈ V G-an, there exists a unique

element vm ∈ V for any m = (m1, . . . ,md) ∈ Nd such that |vm| → 0 when |m| → ∞, and that for
any (a1, . . . , ad) ∈ Zdp,

exp(
d∑
i=1

aiui)v =
∑
m∈Nd

am1
1 · · · a

md

d vm.(II.12.14.3)

Since v0 = v and exp(
∑d
i=1 aiui)

a0 = exp(
∑d
i=1 a0aiui), we see that for a0 ̸= 0,

ψ(a0, a1, . . . , ad, v) =
∑

m∈Nd\{0}

a
|m|−1
0 am1

1 · · · a
md

d vm.(II.12.14.4)

As the right hand side is continuous with respect to the variable a0, we see that this formula remains
valid for a0 = 0 by the definition of φg (II.12.13.1). Notice that |v|G = supm∈Nd |vm| by definition.
Thus, one deduces easily from the formula (II.12.14.4) the continuity of ψ. □

Corollary II.12.15. With the notation in II.12.13, there is a canonical morphism of Qp-linear Lie
algebras induced by the infinitesimal action of G,

φ : Lie(G) −→ EndQp(V
G-an).(II.12.15.1)

More precisely, its composition with the logarithm map logG : G → Lie(G) is the map φ : G →
EndQp(V

G-an) sending g to the infinitesimal action φg (II.12.13.1) of g ∈ G on V G-an.

Proof. The proof is the same as that of II.4.13 by using II.12.14 instead of II.4.12. □
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Remark II.12.16. With the notation in II.12.13, assume that G preserves the norm of V and induces
a trivial action on V ≤1/p2V ≤1. Then, V = V G-an by II.12.11. We remark that the infinitesimal action
(II.12.15.1) of G on V coincides with the Lie algebra action (II.11.24.2) by (II.6.7.3).

Definition II.12.17 (cf. [Pan22, 2.1.6]). Let G be a p-adic analytic group, V a Qp-Banach space
endowed with a Qp-linear continuous action of G. We say an element v ∈ V is G-locally analytic if it is
G0-analytic for some uniform pro-p open subgroup G0 of G. We set V G-la =

∪
G0
V G0-an the Qp-linear

subspace of V consisting of G-locally analytic vectors.

We obtain from II.12.15 a canonical morphism of Lie algebras over Qp,

φ : Lie(G) −→ EndQp(V
G-la),(II.12.17.1)

which is called the infinitesimal Lie algebra action on locally analytic vectors. We remark that if V
is finite-dimensional, then V = V G-la by II.12.11.

II.12.18. Let K be a complete discrete valuation field of characteristic 0 with perfect residue field of
characteristic p > 0, (Btr, B,B) a (K,OK ,OK)-triple (see II.9.2), F a Galois extension of the fraction
field L of B contained in Lur such that G = Gal(F/L) is a p-adic analytic group. We denote by GH
the image of H = Gal(Lur/L∞) under the surjection G = Gal(Lur/L)→ G, where L∞ = K∞L is the
cyclotomic extension of L, and we denote by FΣ the invariant subfield of F by GH . We name some
Galois groups as indicated in the following diagram

Lur

F∞

OO

Foo

H
aaCCCCCCCC

L∞

GH

OOH

>>

FΣ
oo

GH

OO

Loo

Σ

hh

G
``@@@@@@@@

G

mm(II.12.18.1)

Indeed, we have F∞ = K∞F = L∞ ⊗FΣ F by Galois theory. Consider the directed system F fini
Lur/L

of finite field extension L′ of L contained in Lur. For each L′, we construct the above diagram for
the Galois extension F ′ = L′F over L′ contained in Lur in the same way and add prime superscript
to the notation. There is a natural commutative diagram of fields

L′ //

G′

((
F ′

Σ G′
H

// F ′ H′
// Lur

L //

OO

G

77FΣ
GH //

OO

F
H

//

OO

Lur

(II.12.18.2)

We remark that each Galois group with prime superscript naturally identifies with an open subgroup
of the corresponding Galois group without prime superscript.

Recall that B̂[1/p] is a Qp-Banach algebra endowed with the canonical norm defined by B̂ (see
II.6.3) and the continuous action of G. Consider a B̂[1/p]-Banach module W endowed with a semi-
linear continuous action ofG. Then, theH-invariant partWH is a (B̂[1/p])H-Banach module endowed
with the induced continuous action of G. The spaces of locally analytic vectors (WH′

)G
′-la (resp.

(WH′
)G

′
H -la) form a directed system of Qp-linear subspaces of W over F fini

Lur/L. We denote its colimit
by

WG-la = colim
L′∈F fini

Lur/L

(WH′
)G

′-la(II.12.18.3)

(resp. WGH -la = colim
L′∈F fini

Lur/L

(WH′
)G

′
H -la)(II.12.18.4)

and we call it the subspace of G-locally analytic (resp. GH-locally analytic) vectors of W (we take
the colimit here for the flexibility of replacing L by a finite extension L′ in the proof of II.12.22). It
is G-stable and endowed with the infinitesimal Lie algebra action φla of Lie(G) (resp. Lie(GH)) by
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II.12.15. We extend this action B̂[1/p]-linearly to

1⊗ φla : (B̂[1/p]⊗Qp Lie(G))×WG-la −→W(II.12.18.5)

(resp. 1⊗ φla : (B̂[1/p]⊗Qp Lie(GH))×WGH -la −→W ).(II.12.18.6)

II.12.19. With the notation in II.12.18, assume that G is a uniform pro-p group. Then, we consider
three G-actions {1⊗ρL, 1⊗ρR, ρW ⊗ρL} on C an(G,W ) defined by the same formula as in (II.12.6.1).
By II.12.15 and II.12.12, there are infinitesimal Lie algebra actions φL, φR of Lie(G) on C an(G,W )
associated to the left and right translation of G, which commute with each other. We also extend
them B̂[1/p]-linearly to

1⊗ φL, 1⊗ φR : (B̂[1/p]⊗Qp Lie(G))× C an(G,W ) −→ C an(G,W ).(II.12.19.1)

Lemma II.12.20 (cf. [Pan22, 2.1.4, 3.3.5]). With the notation in II.12.18 and II.12.19, assume that
G is a uniform pro-p group. Then, the map

(WH)G-an −→ C an(G,W )(ρW⊗ρL)(G)=1, v 7→ (fv : g 7→ gv)(II.12.20.1)

is well-defined and bijective. Moreover, for any v ∈ (WH)G-an and ϕ ∈ B̂[1/p]⊗Qp Lie(G), we have

(1⊗ φla)(ϕ, v) = −(1⊗ φL)(ϕ, fv)(1) ∈W.(II.12.20.2)

Proof. The first part follows from the same argument of II.12.10. For the “moreover” part, by
assumption, we write ϕ =

∑n
i=1 ai ⊗ logG(gi) where ai ∈ B̂[1/p] and gi ∈ G. Then, by the definition,

we have

(1⊗ φL)(ϕ, fv)(1) =
n∑
i=1

ai · lim
n→∞

p−n(ρL(g
pn

i )fv − fv)(1)(II.12.20.3)

=

n∑
i=1

ai · lim
n→∞

p−n(g−p
n

i v − v)

=−
n∑
i=1

aiφgi(v) = −(1⊗ φla)(ϕ, v),

where the first equality follows from the fact that taking limits in C an(G,W ) with respect to its norm
commutes with evaluating at 1 ∈ G. □
Lemma II.12.21. With the notation in II.12.18 and II.12.19, assume that G is a uniform pro-p
group and that G/GH is isomorphic to 0 or Zp. We take σ0 ∈ G whose image in G/GH is a topological
generator, and denote by σZp

0 the closed subgroup of G generated by σ0. Then, the map

(WH)GH-an −→ {f ∈ C an(G,W ) | (ρW ⊗ ρL)(H)f = f, (1⊗ ρR)(σ
Zp

0 )f = f}(II.12.21.1)

sending v to (fv : hσa0 7→ hv), where h ∈ GH and a ∈ Zp, is well-defined and bijective. Moreover, for
any v ∈ (WH)GH-an and ϕ ∈ B̂[1/p]⊗Qp Lie(GH), we have

(1⊗ φla)(ϕ, v) = −(1⊗ φL)(ϕ, fv)(1) ∈W.(II.12.21.2)

Proof. If G/GH = 0, then we reduce to II.12.20. Assume that G/GH = Zp. Firstly, we see that
there is a canonical bijection by the same argument of II.12.10,

(WH)GH -an ∼−→ C an(GH ,W )(ρW⊗ρL)(H)=1, v 7→ (f ′v : h 7→ hv).(II.12.21.3)

Notice that GH is a uniform pro-p group and there is an exact sequence of the powerful Lie algebras
over Zp by II.3.7,

0 −→ LGH
−→ LG −→ LG/GH

−→ 0.(II.12.21.4)

We take a Zp-linear basis h1, . . . , hd of LGH . Then, σ0, h1, . . . , hd form a Zp-linear basis of LG , and
thus they also form a minimal topological generating set of G (see II.3.4). We obtain two systems of
coordinates of second kind (II.3.3.4),

Zdp −→ GH , (a1, . . . , ad) 7→ ha11 · · ·h
ad
d(II.12.21.5)

Z1+d
p −→ G, (a0, a1, . . . , ad) 7→ ha11 · · ·h

ad
d σ

a0
0 .(II.12.21.6)

By II.12.3 and II.12.5, the map of underlying sets G → GH sending ha11 · · ·h
ad
d σ

a0
0 to ha11 · · ·h

ad
d induces

an injective map by pullback

C an(GH ,W ) −→ C an(G,W ), f ′ 7→ (hσa0 7→ f ′(h)),(II.12.21.7)
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whose image is C an(G,W )(1⊗ρR)(σ
Zp
0 )=1. This shows that (II.12.21.1) is a well-defined bijection. The

“moreover” part follows from the same argument of that of II.12.20. □

Theorem II.12.22 (cf. [Pan22, 3.3.5]). With the notation in II.12.18, assume that B is a quasi-
adequate OK-algebra. Let Φgeo

G be the canonical B̂[1/p]-linear Lie subalgebra of B̂[1/p] ⊗Qp Lie(GH)

defined in II.11.22. Then, under the canonical infinitesimal action 1 ⊗ φla (II.12.18.6) by taking
W = B̂[1/p], Φgeo

G annihilates (B̂[1/p])GH-la.

Proof. Consider the cofinal subsystem F qa
Lur/L of F fini

Lur/L defined in II.11.9. Recall that for any
L′ ∈ F qa

Lur/L, we have natural identifications Φgeo
G = Φgeo

G′ by II.11.20.(5). Thus, it suffices to show

that Φgeo
G annihilates (B̂[1/p]H)GH -la. Moreover, after replacing G by a sufficiently small uniform

pro-p open subgroup, it suffices to show that Φgeo
G annihilates (B̂[1/p]H)GH -an (so that L may not lies

in F qa
Lur/L from now on). Recall that there exists a sufficiently small uniform pro-p open subgroup

G0 of G such that G0H = G0 ∩ GH and G0/G0H are both uniform by II.3.10. Replacing G by G0, we
obtain the following conditions on G:

(1) G is a uniform pro-p group isomorphic to a closed subgroup of id+p2Md(Zp) for some d ∈ N
(using II.3.9), and

(2) G/GH is isomorphic to 0 or Zp (as it is a uniform pro-p subquotient of G/H = Σ ⊆ Z×
p ).

L′ //

G′

((
F ′

Σ G′
H

// F ′ H′
// Lur

L //

OO

G

77FΣ
GH //

OO

F
H

//

OO

Lur

(II.12.22.1)

We take L′ ∈ F qa
Lur/L sufficiently large such that the image of the natural injection G′ → G is contained

in Gp3 (recall that F ′ = L′F by definition). Then, G′ acts trivially on C an(G,Qp)≤1/p3C an(G,Qp)≤1

via the left and right translation actions by II.12.7. Combining with II.12.8, we can apply II.11.26 to
the Qp-Banach space C an(G,Qp) endowed with the left translation action 1⊗ ρL of G′, so that Φgeo

G′

acts trivially on ((B̂ ⊗Zp C an(G,Qp)≤1)∧[1/p])H
′
.

Notice that there is a natural identification (B̂ ⊗Zp C an(G,Qp)≤1)∧[1/p] = C an(G, B̂[1/p]) by

II.12.2, which satisfies the following properties (by firstly checking over the submodule B̂⊗ZpC
an(G,Qp)≤1

and then taking p-adic completion):

(1) the action ofG′ on (B̂⊗Zp
C an(G,Qp)≤1)∧[1/p] defined in II.11.24 coincides with the diagonal

action ρ
B̂[1/p]

⊗ ρL on C an(G, B̂[1/p]), and

(2) the action of ΦG′ on (B̂ ⊗Zp C an(G,Qp)≤1)∧[1/p] defined by (II.11.24.3) coincides with the

infinitesimal action 1⊗ φL (II.12.19.1) on C an(G, B̂[1/p]) induced by the left translation of
G (cf. II.12.16).

Therefore, applying II.12.21 we see that for any v ∈ ((B̂[1/p])H)GH -an and any ϕ ∈ Φgeo
G ,

(1⊗ φla)(ϕ, v) = −(1⊗ φL)(ϕ, fv)(1) = 0,(II.12.22.2)

as (fv : hσa0 7→ hv) is an element of C an(G, B̂[1/p])
(ρ

B̂[1/p]
⊗ρL)(H)=1 ⊆ ((B̂⊗Zp C an(G,Qp)≤1)∧[1/p])H

′

killed by Φgeo
G′ = Φgeo

G . □

Remark II.12.23. We don’t know whether ΦG annihilates (B̂[1/p])G-la or not, cf. II.6.20.
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II.13. Appendix: Hyodo’s Computation of Galois Cohomologies

This appendix is devoted to detailed proofs of II.5.9 and II.5.14, using essentially Hyodo’s argu-
ments in [Hyo86] and [Hyo89]. We take again the notation in II.5.1.

K

K∞,∞

OO

K∞

∆

OO
H

>>

K
Σ

oo

Γ

bbEEEEEEEE

G

dd(II.13.0.1)

Lemma II.13.1 (cf. [Hyo86, 2-1]). Assume that K satisfies the assumption (∗) in II.6.10. Let
r, q ∈ N.

(1) The natural map Hq(∆,OK∞,∞/p
rOK∞,∞)→ Hq(H,OK/prOK) is an almost isomorphism.

(2) The natural map induced by the cup product ∧qHom(∆,OK∞/p
rOK∞)→ Hq(∆,OK∞,∞/p

rOK∞,∞)
is injective, and admits a natural retraction with kernel killed by ζp − 1.

Proof. (1) If we take K ′ as in II.5.2, then OK′
∞,∞

= colimn∈NOK′ [ζpn , t1,pn , . . . , td,pn ] (by
II.5.3) is a non-discrete valuation ring of height 1 such that the Frobenius map on OK′

∞,∞
/pOK′

∞,∞

is surjective. In other words, K ′
∞,∞ is a pre-perfectoid field. As K is finite over K ′, OK∞,∞ is almost

étale over OK′
∞,∞

by almost purity (II.7.12), and the conclusion follows by almost Galois descent (cf.
[AGT16, II.6.24]).

(2) By (II.6.10.2), we can decompose OK∞,∞ into a direct sum of free OK∞ -submodules of rank
1,

OK∞,∞ =
⊕
m∈Nd

⊕
k∈J≤pm

OK∞t
k1
1,pm1 · · · tkdd,pmd ,(II.13.1.1)

where J ⊆ Nd>0 is the subset of tuples with components prime to p. It induces a natural retraction
of the inclusion OK∞ → OK∞,∞ . Notice that ∆ acts on OK∞t

k1
1,pm1 · · · tkdd,pmd by the multiplication

by a group homomorphism from ∆ to the group of roots of unity contained in K
×

, which is trivial
if and only if m = 0. By [AGT16, II.8.1], we see that ∧qHom(∆,OK∞/p

r) = Hq(∆,OK∞/p
r) and

that Hq(∆,OK∞t
k1
1,pm1 · · · tkdd,pmd /p

r) is killed by ζp − 1 if m ̸= 0. □

Proposition II.13.2. The connecting map of the Faltings extension (II.5.7.1) induces a canonical
K̂∞-linear isomorphism

K̂∞ ⊗OK Ω̂1
OK

∼−→ H1(H, K̂(1)),(II.13.2.1)

sending d log(ti) to ξi⊗ζ, where ζ = (ζpn)n∈N ∈ Zp(1) and ξ = (ξ1, . . . , ξd) : H → Zdp is the continuous
1-cocycle (II.4.15.4). Moreover, for any q ∈ N, the cup product induces a natural isomorphism

K̂∞ ⊗OK ∧
q
OK

Ω̂1
OK

∼−→ Hq(H, K̂(q)).(II.13.2.2)

Proof. The statement itself defines a natural map K̂∞ ⊗OK ∧
q
OK

Ω̂1
OK
→ Hq(H, K̂(q)) for any

q ∈ N. We only need to prove that it is an isomorphism. For q = 0, this follows from Ax-Sen-Tate’s
theorem [Ax70].

Assume that K satisfies the assumption (∗) in II.6.10. Then, the natural map

∧qHom(∆,K∞/p
rOK∞) −→ Hq(H,K/prOK)(II.13.2.3)

is a p2-isomorphism by II.13.1 for any q, r ∈ N. Consider the canonical exact sequence for any q ∈ N
([AGT16, II.3.10.4, II.3.10.5])

0→ R1 lim
r∈N

Hq−1(H,K/prOK)→ Hq(H, K̂)→ lim
r∈N

Hq(H,K/prOK)→ 0.(II.13.2.4)

Since the inverse system (∧q−1Hom(∆,K∞/p
rOK∞))r∈N satisfies the Mittag-Leffler condition, we

have R1 limr∈N ∧q−1Hom(∆,K∞/p
rOK∞) = 0. Thus, R1 limr∈NH

q−1(H,K/prOK) is killed by p4

by the p2-isomorphism (II.13.2.3) and II.7.3.(2). Moreover, it is actually zero since multiplication
by p is invertible on Hq(H, K̂). Then, we get Hq(H, K̂) = ∧qHom(∆, K̂∞) by a similar argument.
Unwinding the definitions, we get the conclusion in this case.
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In general, there exists a finite Galois extension K ′ of K which satisfies the assumption (∗) in
II.6.10. Remark that the map K ′ ⊗OK

Ω̂1
OK
→ Ω̂1

OK′ [1/p] is an isomorphism. By Ax-Sen-Tate’s
theorem, we have (K̂ ′

∞)H/H
′
= K̂∞, where H ′ = Gal(K/K ′

∞). Thus,

K̂∞ ⊗OK
Ω̂1

OK
−→ (K̂ ′

∞ ⊗OK′ Ω̂
1
OK′ )

H/H′
(II.13.2.5)

is an isomorphism. In particular, the restriction map

Res : Hq(H, K̂(q)) −→ Hq(H ′, K̂(q))H/H
′

(II.13.2.6)

is surjective, since the natural map K̂ ′
∞ ⊗OK′ Ω̂1

OK′ → Hq(H ′, K̂(q)) is an isomorphism by ap-
plying the discussion above to K ′. It is also injective, since there is a co-restriction map Cor :

Hq(H ′, K̂(q))H/H
′ → Hq(H, K̂(q)) such that Cor ◦ Res = [K ′ : K] · id (cf. [Tat76, §2]). Thus, we

deduce the proposition for K from the special case for K ′. □

II.13.3. For simplicity, we put Ω̂1 = K ⊗OK
Ω̂1

OK
(−1) and Ω̂i = ∧iKΩ̂1 for any i ∈ Z (where Ω̂i = 0

if i < 0). Recall that there is a natural exact sequence (II.5.11.2) for any n ∈ Z (where Symn = 0 if
n < 0),

0 −→ Symn−1

K̂
(EOK (−1)) −→ Symn

K̂
(EOK (−1)) −→ K̂ ⊗K Symn

KΩ̂1 −→ 0.(II.13.3.1)

It induces a natural exact sequence

0 −→ K̂ ⊗K Symn−1
K Ω̂1 −→ Symn

K̂
(EOK

(−1))/Symn−2

K̂
(EOK

(−1)) −→ K̂ ⊗K Symn
KΩ̂1 −→ 0.

(II.13.3.2)

For any i, j ∈ Z, we set

Ei,j1 = Hi+j(H, K̂ ⊗K Sym−i
K Ω̂1)(II.13.3.3)

and we denote by di,j1 : Ei,j1 → Ei+1,j
1 the (i + j)-th connecting map associated to (II.13.3.2) for

n = −i. We remark that if we endow each Symn

K̂
(EOK

(−1)) with the finite decreasing filtration
(Fi)i∈Z given by

FiSymn

K̂
(EOK

(−1)) =

{
Symn

K̂
(EOK (−1)) if i < −n,

Sym−i
K̂
(EOK (−1)) otherwise,(II.13.3.4)

then the associated spectral sequence of the group cohomology ([Sta22, 012M])

nE
i,j
1 ⇒ Hi+j(H, Symn

K̂
(EOK (−1)))(II.13.3.5)

is convergent and is given by

nE
i,j
1 =

{
0 if i < −n,
Ei,j1 otherwise, nd

i,j
1 =

{
0 if i < −n,
di,j1 otherwise.

(II.13.3.6)

Lemma II.13.4 (cf. [AGT16, III.5.7, III.11.11]). For any i, j ∈ Z, we define a K-linear map
ϕi,j : Symi

KΩ̂1 ⊗K Ω̂j → Symi−1
K Ω̂1 ⊗K Ω̂j+1 by

[x1 ⊗ · · · ⊗ xi]⊗ ω 7→
i∑

k=1

[x1 ⊗ · · · ⊗ xk−1 ⊗ xk+1 ⊗ · · · ⊗ xi]⊗ (xk ∧ ω),(II.13.4.1)

for any x1, . . . , xi ∈ Ω̂1 and ω ∈ Ω̂j. Then, there is a natural commutative diagram

K̂∞ ⊗K (Sym−i
K Ω̂1)⊗K Ω̂i+j

≀αi,j

��

1⊗ϕ−i,i+j

// K̂∞ ⊗K (Sym−i−1
K Ω̂1)⊗K Ω̂i+j+1

≀αi+1,j

��
Ei,j1

di,j
1 // Ei+1,j

1

(II.13.4.2)

where the vertical maps are the natural isomorphisms induced by (II.13.2.2).

https://stacks.math.columbia.edu/tag/012M
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Proof. As in II.5.12, we set Tk = (d log(tk,pn))n∈N ⊗ ζ−1 ∈ EOK
(−1) for any 1 ≤ k ≤ d. We

remark that their images dTk in Ω̂1 form a K-basis, and that h(Tk) = ξk(h) + Tk for any h ∈ H. For
any 1 ≤ r1, . . . , ri, s1, . . . , sj ≤ d, we have

(d−i,i+j1 ◦ α−i,i+j)([dTr1 ⊗ · · · ⊗ dTri ]⊗ (dTs1 ∧ · · · ∧ dTsj ))(II.13.4.3)

=d−i,i+j1 ([dTr1 ⊗ · · · ⊗ dTri ]⊗ (ξs1 ∪ · · · ∪ ξsj ))
=(h 7→ [(ξr1(h) + Tr1)⊗ · · · ⊗ (ξri(h) + Tri)− Tr1 ⊗ · · · ⊗ Tri ]) ∪ ξs1 ∪ · · · ∪ ξsj

=

i∑
k=1

[dTr1 ⊗ · · · ⊗ dTrk−1
⊗ dTrk+1

⊗ · · · ⊗ dTri ]⊗ (ξrk ∪ ξs1 ∪ · · · ∪ ξsj )

=(α−i+1,i+j ◦ (1⊗ ϕi,j))([dTr1 ⊗ · · · ⊗ dTri ]⊗ (dTs1 ∧ · · · ∧ dTsj )).

□

Corollary II.13.5 (cf. [AGT16, III.11.12]). We have

colim
n∈N

Hq(H, Symn

K̂
(EOK

(−1))) =
{
K̂∞ if q = 0,
0 otherwise.

(II.13.5.1)

In particular, (CHT)
H = K̂∞.

Proof. For any n ∈ N>0, the differential map (II.13.4.1) defined in II.13.4 induces a natural
sequence

0 −→ Symn
KΩ̂1 ϕn,0

−→ Symn−1
K Ω̂1 ⊗K Ω̂1 ϕ

n−1,1

−→ · · · ϕ
2,n−2

−→ Ω̂1 ⊗K Ω̂n−1 ϕ
1,n−1

−→ Ω̂n −→ 0.(II.13.5.2)

which is exact by [Hyo89, Lemma 1.2] (cf. [AGT16, III.5.1]). Therefore, by II.13.4, the sequence
(E•,j

1 , d•,j1 ) is exact for any j ̸= 0, and nonzero only at E0,0
1 = K̂∞ if j = 0. Then, we see that for

any n ∈ N, the nonzero terms nE
i,j
2 of the second page of the spectral sequence (II.13.3.5) appear on

the positions

(i, j) ∈ {(0, 0), (−n, n+m) | m ∈ N}.(II.13.5.3)

In particular, the spectral sequence degenerates at the second page, and we see thatH0(H, Symn

K̂
(EOK

(−1))) =
K̂∞ and that Hq(H, Symn

K̂
(EOK

(−1)))→ Hq(H, Symn+1

K̂
(EOK

(−1))) is zero for any q ̸= 0. □

II.14. Appendix: Faltings Extensions as Graded Pieces of De Rham Period Rings

The Faltings extension and Hyodo ring (the Hodge-Tate period ring) are also constructed as
graded pieces of de Rham period ring in the literature in various p-adic geometric settings. See
[Bri08, §5] for the good reduction case, [Tsu11, §2] for the semi-stable reduction case, [Tsu18, §15]
for the adequate case, and [Sch13a, §6], [Sch16] for smooth adic spaces. This appendix is devoted
to a comparison between our construction of the Faltings extension with theirs. We fix a complete
discrete valuation field K of characteristic 0 with perfect residue field of characteristic p > 0, an
algebraic closure K of K, and a compatible system of primitive n-th roots of unity (ζn)n∈N in K.

Lemma II.14.1. Let (Atr, A,A) be a (K,OK ,OK)-triple in the sense of II.9.2, K the fraction field

of A, G = Gal(Kur/K). Then, Â[ 1p ](1)
G = 0, where (1) denotes the first Tate twist.

Proof. By II.9.4, we reduce to the case where A is a complete discrete valuation ring extension
of OK , which is proved by Tate ([Tat67, Theorem 2], cf. [Hyo86, Theorem 1]). □

Lemma II.14.2. Let (Atr, A,A) be a (K,OK ,OK)-triple in the sense of II.9.2, K the fraction field of

A, G = Gal(Kur/K). Consider an isomorphism f : E → E ′ of extensions of an Â[1/p]-representation
W of G by Â[1/p](1) making the following diagram commutative.

0 // Â[ 1p ](1)
ι // E

ȷ //

f ≀

��

W //

·(−1)

��

0

0 // Â[ 1p ](1)
ι′ // E ′ ȷ′ // W // 0

(II.14.2.1)

Let x and x′ be elements of E and E ′ respectively. Assume that ȷ(x) = −ȷ′(x′) ∈WG and g(x)−x =

g(x′)− x′ ∈ Â[1/p](1) for any g ∈ G. Then, f(x) = x′.
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Proof. If we set y = x′ − f(x) ∈ E ′, then ȷ′(y) = 0 and g(y) = y for any g ∈ G by assumption,
which implies that y = 0 by II.14.1. □

II.14.3. For simplicity, we only consider Tsuji’s construction of de Rham period ring [Tsu18, §15].
The comparison with other constructions of the Faltings extension should be clear from our arguments
in the following. We quickly review Tsuji’s construction and state properties without proofs. Let A
be an adequate OK-algebra of relative dimension d satisfying the following condition:

(1) We set X = (Spec(A), αSpec(Atr)→Spec(A)) (cf. II.9.6). Then, the monoid Γ(X,MX)/A× is
finitely generated, and the identity of Γ(X,MX) induces a chart of X (cf. [Tsu99, 1.3.2]).

We remark that any adequate OK-algebra Zariski locally satisfies this condition ([Tsu99, 1.3.3]). Let
K be the fraction field of A, G = Gal(Kur/K). Consider the tilt A

♭
= lim←−x 7→xp

A/pA of A, and we put

WOK
(A

♭
) = OK ⊗W (κ)W (A

♭
), where κ is the residue field of K, and W (−) is taking the ring of Witt

vectors. Let [−] : A♭ → W (A
♭
) denote the multiplicative lift, π a uniformizer of K with compatible

system of pn-th root (πpn)n∈N contained in OK , ξπ = π ⊗ 1− 1⊗ [(πpn)n∈N] ∈WOK
(A

♭
). There is a

canonical exact sequence

0 // WOK
(A

♭
)

·ξπ // WOK
(A

♭
)
ϑOK // Â // 0(II.14.3.1)

where ϑOK is the homomorphism of OK-algebras characterized by ϑOK (1⊗ [(an)n∈N]) = limn→∞ ãp
n

n

(where ãn ∈ A is a lift of an ∈ A/pA).
Let X be the log scheme with underlying scheme Spec(Â) whose log structure is associated to

Γ(X,MX)→ Â (different to the notation in II.9.21). Consider the fibred product of monoids

Q

��

// Γ(X,MX)

��
lim←−x7→xp

A // A

(II.14.3.2)

and let D be the log scheme with underlying scheme Spec(W (A
♭
)) whose log structure is associated

to the composition of Q → lim←−x7→xp
A → A

♭ [−]−→ W (A
♭
). The condition above on the log structure

of X implies that D is an fs log scheme, and the natural maps ϑ : W (A
♭
)→ Â and Q→ Γ(X,MX)

induce an exact closed immersion iD : X → D. We put S = (Spec(OK), αSpec(K)→Spec(OK)) and
DS = S ×Spec(W (κ)) D, where Spec(W (κ)) is endowed with the trivial log structure. Consider the

induced closed immersion of fs log schemes iDS
: X → DS (not exact). For any r,m ∈ N, let D

(r)

S,m

be the r-th infinitesimal neighbourhood of the reduction mod pm of the closed immersion iDS
in the

category of fine log schemes in the sense of [Kat89, 5.8]. Then, the natural map

(WOK (A
♭
)/ξr+1

π WOK (A
♭
))[

1

p
] −→ ( lim

m→∞
Γ(D

(r)

S,m,OD(r)
S,m

))[
1

p
](II.14.3.3)

is an isomorphism ([Tsu18, page 870, equation (33)], cf. [Tsu11, 2.5]). We define

B+
dR(A) = lim

r→∞

(
( lim
m→∞

Γ(D
(r)

S,m,OD(r)
S,m

))[
1

p
]

)
(II.14.3.4)

which is endowed with the natural action of G and a canonical G-stable decreasing filtration by ideals

FilrB+
dR(A) = Ker

(
B+

dR(A)→ ( lim
m→∞

Γ(D
(r−1)

S,m ,O
D

(r−1)
S,m

))[
1

p
]

)
= ξrπB

+
dR(A),(II.14.3.5)

where r ∈ N>0 and we put FilrB+
dR(A) = B+

dR(A) for r ≤ 0.
We put DX = X ×Spec(W (κ)) D. Consider the induced closed immersion of fs log schemes

iDX
: X → DX . For any r,m ∈ N, let D

(r)

X,m be the r-th infinitesimal neighbourhood of the reduction
mod pm of the closed immersion iDX

in the category of fine log schemes in the sense of [Kat89, 5.8].
We define

B+
dR(A) = lim

r→∞

(
( lim
m→∞

Γ(D
(r)

X,m,OD(r)
X,m

))[
1

p
]

)
(II.14.3.6)
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which is endowed with the natural action of G and a canonical G-stable decreasing filtration by ideals

FilrB+
dR(A) = Ker

(
B+

dR(A)→ ( lim
m→∞

Γ(D
(r−1)

X,m ,O
D

(r−1)
X,m

))[
1

p
]

)
,(II.14.3.7)

where r ∈ N>0 and we put FilrB+
dR(A) = B+

dR(A) for r ≤ 0. Moreover, Tsuji [Tsu18, page
871] defines a G-equivariant B+

dR(A)-linear integrable connection ∇ : B+
dR(A) → B+

dR(A) ⊗A Ω1
X/S

compatible with d : A → Ω1
X/S and d log : Γ(X,MX) → Ω1

X/S satisfying that ∇(FilrB+
dR(A)) ⊆

Filr−1B+
dR(A)⊗AΩ1

X/S . We summarize some properties of B+
dR(A) proved by Tsuji in the following.

Proposition II.14.4 ([Tsu18, §15]). We keep the notation in II.14.3.
(1) The element t = log([(ζpn)n∈N]) ∈ B+

dR(A) is a non-zero divisor such that trB+
dR(A) =

FilrB+
dR(A) for any r ∈ N. Moreover, the map ϑOK

induces a G-equivariant isomorphism

trB+
dR(A)/t

r+1B+
dR(A)

∼−→ Â[1/p](r).(II.14.4.1)

(2) Let (spn)n∈N ∈ Q with image s = s1 ∈ Γ(X,MX). Then, for any r,m ∈ N, there is a unique
element u(r)m ∈ 1 + Ker

(
Γ(D

(r)

X,m,OD(r)
X,m

)→ Γ(D
(r−1)

X,m ,O
D

(r−1)
X,m

)
)
⊆ Γ(D

(r)

X,m,O×
D

(r)
X,m

) such

that s = [(spn)n∈N] · u(r)m in Γ(D
(r)

X,m,MD
(r)
X,m

). It induces a canonical homomorphism of
monoids

q : Q −→ 1 + Fil1B+
dR(A), (spn)n∈N 7→ u = (u(r)m )r,m∈N.(II.14.4.2)

Moreover, ∇(u) = u⊗ d log(s).
(3) Let {ti}1≤i≤d be a system of coordinates of the adequate OK-algebra A with compatible

systems of p-power roots (ti,pn)n∈N contained in A[1/p]. For sufficiently large k ∈ N such
that πkti ∈ A, the element ui = q((πpn)n∈N)

−kq((πkpnti,pn)n∈N) ∈ 1 + Fil1B+
dR(A) does not

depend on the choice of k. Moreover, B+
dR(A) is the B+

dR(A)-algebra of formal power series
with d variables u1 − 1, . . . , ud − 1, and for any r ∈ Z we have

FilrB+
dR(A) =

∏
k∈Nd

Filr−|k|B+
dR(A) · (u1 − 1)k1 · · · (ud − 1)kd .(II.14.4.3)

Corollary II.14.5. With the notation in II.14.3, there is a canonical G-equivariant exact sequence
of Â[1/p]-modules,

0 −→ Â[
1

p
](1)

ι−→ Gr1B+
dR(A)

ȷ−→ Â[
1

p
]⊗A Ω1

X/S −→ 0,(II.14.5.1)

where Gr1B+
dR(A) = Fil1B+

dR(A)/Fil
2B+

dR(A), satisfying the following properties:

(1) The map ι is induced by taking Gr1 on the map B+
dR(A) → B+

dR(A). In particular, we
have ι(1⊗ (ζpn)n∈N) = log([(ζpn)n∈N]) = 1− u0, where u0 ∈ 1 + Fil1B+

dR(A) is the element
associated to (ζpn)n∈N defined in II.14.4.(2).

(2) The map ȷ is induced by taking Gr1 on the connection ∇ : B+
dR(A) → B+

dR(A) ⊗A Ω1
X/S.

In particular, for any element s ∈ A[1/p] ∩A×
tr and any compatible system of p-power roots

(spn)n∈N of s contained in A[1/p], if we denote by u ∈ 1+Fil1B+
dR(A) the element associated

to (spn)n∈N defined as in II.14.4.(2, 3), then we have ȷ(u− 1) = 1⊗ d log(s).
(3) With the notation in II.14.4.(3), the Â[1/p]-linear surjection ȷ admits a section sending

1⊗ d log(ti) to ui − 1 for any 1 ≤ i ≤ d.

In particular, Gr1B+
dR(A) is a finite free Â[1/p]-module with basis {1− ui}0≤i≤d.

Proposition II.14.6. With the notation in II.14.3, there is a unique G-equivariant Â[1/p]-linear
isomorphism

f : EA
∼−→ Gr1B+

dR(A),(II.14.6.1)

where EA is defined in II.9.36, such that for any element s ∈ A[1/p]∩A×
tr and any compatible system

of p-power roots (spn)n∈N of s contained in A[1/p], we have

f((d log(spn))n∈N) = 1− u,(II.14.6.2)
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where u ∈ 1 + Fil1B+
dR(A) is the element associated to (spn)n∈N defined as in II.14.4.(2, 3). In

particular, it induces a canonical isomorphism of Faltings extensions

0 // Â[ 1p ](1)
ι // EA

ȷ //

f ≀

��

Â[ 1p ]⊗A Ω1
X/S

//

·(−1)

��

0

0 // Â[ 1p ](1)
ι // Gr1B+

dR(A)
ȷ // Â[ 1p ]⊗A Ω1

X/S
// 0

(II.14.6.3)

Proof. We take the notation in II.14.4.(3). Recall that EA is a finite free Â[1/p]-module with
basis {αi = d log(ti,pn)n∈N}0≤i≤d, where t0,pn = ζpn . Thus, the uniqueness of f is clear. For its
existence, we define f to be the Â[1/p]-linear isomorphism sending αi ∈ EA to 1 − ui ∈ Gr1B+

dR(A)
for any 0 ≤ i ≤ d.

We claim that f is G-equivariant. Indeed, let u ∈ 1 + Fil1B+
dR(A) be the element associated to

(spn)n∈N defined as in II.14.4.(2, 3). For any g ∈ G, there is a unique element ξ(g) ∈ Zp such that
g(spn)n∈N = (ζ

ξ(g)
pn spn)n∈N. As s = [(spn)n∈N] ·u(r)m , we have u = [(ζpn)n∈N]

ξ(g)g(u). Taking logarithm
and using the identity log([(ζpn)n∈N]) = 1− u0 in Gr1B+

dR(A) (see II.14.5.(1)), we obtain that

g(1− u) = ξ(g)(1− u0) + 1− u ∈ Gr1B+
dR(A).(II.14.6.4)

As f is Â[1/p]-linear and sends the basis α0, . . . , αd to 1−u0, . . . , 1−ud, we see that f is G-equivariant
by (II.14.6.4) and (II.5.7.2).

We claim that f(α) = 1 − u, where α = (d log(spn)n∈N). Indeed, our definition of f makes the
diagram (II.14.6.3) commute by II.9.36 and II.14.5. Notice that ȷ(α) = d log(s) = −ȷ(1− u) ∈ Ω1

X/S

and that g(α) − α = ξ(g)α0 = ξ(g)(1 − u0) = g(1 − u) − (1 − u) ∈ Â[1/p](1). Thus, we can apply
II.14.2 to verify this claim.

Therefore, f satisfies all the requirements, which completes the proof. □



CHAPTER III

Almost Coherence of Higher Direct Images

III.1. Introduction

III.1.1. One of the first important results in algebraic geometry is the fact that the coherence for
modules is preserved by higher direct images by a proper morphism. The Noetherian case is due
to Grothendieck [EGA III1, 3.2.1], and the general case is due to Kiehl [Kie72, 2.9’]. The goal of
this article is to extend the following corollary to almost algebra, motivated by applications in p-adic
Hodge theory.

Theorem III.1.2 (Kiehl [Kie72, 2.9’], cf. [Abb10, 1.4.8]). Let f : X → S be a morphism of
schemes satisfying the following conditions:

(1) f is proper and of finite presentation, and
(2) OS is universally coherent.

Then, for any coherent OX-module M and any q ∈ N, Rqf∗M is a coherent OS-module.

We say that OS is universally coherent if there is a covering {Si = Spec(Ai)}i∈I of S by affine
open subschemes such that the polynomial algebra Ai[T1, . . . , Tn] is a coherent ring for any i ∈ I
and n ∈ N. Indeed, such a condition on OS implies that the coherent OX -module M is actually
pseudo-coherent relative to S, which roughly means that if we embed X locally as a closed subscheme
of AnSi

, then M admits a resolution by finite free modules over AnSi
. Theorem III.1.2 is a direct

corollary of Kiehl’s result [Kie72, 2.9’], saying that the derived pushforward Rf∗ sends a relative
pseudo-coherent complex to a pseudo-coherent complex.

III.1.3. Almost algebra was introduced by Faltings [Fal88, Fal02] for the purpose of developing
p-adic Hodge theory. The setting is a pair (R,m) consisting of a ring R with an ideal m such that
m = m2, and the rough idea is to replace the category of R-modules by its quotient by m-torsion
modules. An “almost” analogue of Theorem III.1.2 is necessary for Faltings’ approach to p-adic
Hodge theory. Indeed, under the same assumptions of III.1.2, Abbes-Gros [AG20, 2.8.14] proved
that Rqf∗ sends a quasi-coherent and almost coherent OX -module to a quasi-coherent and almost
coherent OS-module, by reducing directly to III.1.2. This result plays a crucial role in the proof of
Faltings’ main p-adic comparison theorem in the absolute case (cf. [AG20, 4.8.13]), and thus of the
Hodge-Tate decomposition (cf. [AG20, 6.4.14]). Later, Zavyalov [Zav21, 5.1.6] extended the same
almost coherence result to formal schemes.

However, the almost coherence result [AG20, 2.8.14] is not enough for Faltings’ main p-adic
comparison theorem in the relative case (thus neither for the relative Hodge-Tate spectral sequence),
since we inevitably encounter the situation whereOS is universally almost coherent but not universally
coherent. Thus, under the assumptions that

(1) f is projective, flat and of finite presentation, and that
(2) OS is universally almost coherent,

Abbes-Gros proved an almost coherence result [AG20, 2.8.18] by adapting the arguments of [SGA 6,
III.2.2], where the projectivity condition on f plays a crucial role. This is the reason why Faltings’
main p-adic comparison theorem in the relative case (and thus the relative Hodge-Tate spectral
sequence) was only proved for projective log-smooth morphisms in [AG20, 5.7.4 (and 6.7.5)].

III.1.4. In this article, we generalize the almost coherence result [AG20, 2.8.18] to proper morphisms,
which allows us to extend Abbes-Gros’ proof of Faltings’ main p-adic comparison theorem in the
relative case to proper log-smooth morphisms, and thus also their construction of the relative Hodge-
Tate spectral sequence (cf. Section III.8).

Let R be a ring with an ideal m such that for any integer l ≥ 1, the l-th powers of elements of m
generate m. The pair (R,m) will be our basic setup for almost algebra (cf. Section III.6). The main
theorem of this article is the following

02020 Mathematics Subject Classification 14F06 (primary), 13D02, 14F30.
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Theorem III.1.5 (cf. III.7.1). Let f : X → S be a morphism of R-schemes satisfying the following
conditions:

(1) f is proper, flat and of finite presentation, and
(2) OX and OS are almost coherent.

Then, for any quasi-coherent and almost coherent OX-moduleM and any q ∈ N, Rqf∗M is a quasi-
coherent and almost coherent OS-module.

Our proof is close to Kiehl’s proof of [Kie72, 2.9], cf. Section III.7. We roughly explain our ideas
in the following:

(1) We may assume without loss of generality that S is affine. AsM is not of finite presentation
over X in general, we couldn’t descend it by Noetherian approximation. But M is almost
coherent, for any π ∈ m we can “π-resolve” M over a truncated Čech hypercovering X• =
(Xn)[n]∈∆≤k

(by affine open subschemes) of X by finite free modules F•
• as in [Kie72, 2.2],

where each F•
n is a “resolution” ofM|Xn modulo π-torsion, cf. Section III.6. By Noetherian

approximation, we obtain a proper flat morphism fλ : Xλ → Sλ of Noetherian schemes
together with a complex of finite free modules F•

λ,• over a truncated Čech hypercovering of
Xλ descending f and F•

• .
(2) As in [Kie72, 1.4], the descent data of M over X• are encoded as null homotopies of the

multiplication by a certain power of π on the cone of α∗F•
m → F•

n (where α : [m]→ [n] is a
morphism in the truncated simplicial category ∆≤k), cf. Section III.3. We can descend the
latter by Noetherian approximation, from which we produce some coherent modules over
Xλ, cf. Section III.5.

(3) Applying the classical coherence result for fλ : Xλ → Sλ, we see that the Čech complex
of F•

λ,• is “pseudo-coherent” modulo certain power of π, cf. Section III.4. The same thing
holds for the Čech complex of F•

• by base change (due to the flatness of fλ). Since this
Čech complex computes RΓ(X,M) up to certain degree and modulo certain power of π, the
conclusion follows by varying π in m.

Acknowledgements. This work is completed while I am a doctoral student of Université Paris-
Saclay and Institut des Hautes Études Scientifiques, under the supervision of Ahmed Abbes. I would
like to thank him for offering me this question, his thorough review of this work and a lot of helpful
suggestions.

III.2. Notation and Conventions

III.2.1. All rings considered in this article are unitary and commutative.

III.2.2. Let A be an abelian category. When we consider “a complex in A ”, we always refer to a
cochain complex in A , and we denote it by M• with differential maps dn : Mn → Mn+1 (n ∈ Z).
For any a ∈ Z, we denote by τ≥aM• (resp. σ≥aM•) the canonical (resp. stupid) truncation of M•,
cf. [Sta22, 0118].

III.2.3. Let ∆ be the category formed by finite ordered sets [n] = {0, 1, . . . , n} (n ∈ N) with non-
decreasing maps ([Sta22, 0164]). For k ∈ N ∪ {∞}, we denote by ∆≤k the full subcategory of ∆
formed by objects [0], [1], . . . , [k]. For a category C, a contravariant functor from ∆≤k to C sending
[n] to Xn is called a k-truncated simplicial object of C, denoted by X•. Let P be a property for
objects of C. We say that X• has property P if each Xn has property P.

III.3. Isomorphisms up to Bounded Torsion

In this section, we fix a ring R and an element π of R. Consider an abelian category A with a
ring homomorphism R → End(idA ), where End(idA ) is the ring of endomorphisms of the identity
functor. Thus, π defines a functorial endomorphism on any object M of A . We denote by K(A ) the
homotopy category of complexes in A .

Definition III.3.1. (1) We say that an object M in A is π-null if it is annihilated by π. We
say that a morphism f : M → N in A is a π-isomorphism if its kernel and cokernel are
π-null.

(2) We say that a complexM• in A is π-exact if the cohomology groupHn(M•) is π-null for any
n ∈ Z. We say that a morphism of complexes f :M• → N• in A is a π-quasi-isomorphism
if it induces a π-isomorphism on the cohomology groups Hn(f) : Hn(M•) → Hn(N•) for
any n ∈ Z.

Lemma III.3.2 ([AG20, 2.6.3]). Let f :M → N be a morphism in A .

https://stacks.math.columbia.edu/tag/0118
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(1) If there exists a morphism g : N → M in A such that g ◦ f = π · idM and f ◦ g = π · idN ,
then f is a π-isomorphism.

(2) If f is a π-isomorphism, then π · idN and π · idM uniquely factor through N → Im(f) and
Im(f) → M respectively, whose composition g : N → M satisfies that g ◦ f = π2 · idM and
f ◦ g = π2 · idN .

Lemma III.3.3. Let f : M• → N• be a morphism of complexes in A . Assume the following
conditions:

(1) for any i > 0, M i = N i = 0;
(2) there is n ∈ N such that for any −n ≤ i ≤ 0, M i is projective and π ·Hi(N•) = 0.

Then, there exists a morphism si :M i → N i−1 for any −n ≤ i ≤ 0, such that

π1−i · f i = π · si+1 ◦ di + di−1 ◦ si(III.3.3.1)

as morphisms from M i to N i, where we put s1 = 0. In particular, the morphism of canonically
truncated complexes

πn+1 · f : τ≥−nM• −→ τ≥−nN•(III.3.3.2)

is homotopic to zero.

Proof. We construct si by induction. Setting 0 = s1 = s2 = · · · , we may assume that we
have already constructed the homomorphisms for any degree strictly bigger than i with identities
(III.3.3.1). As π−i · f i+1 = π · si+2 ◦ di+1 + di ◦ si+1, we see that

di ◦ (π−i · f i − si+1 ◦ di) = π−i · f i+1 ◦ di − (π−i · f i+1 − π · si+2 ◦ di+1) ◦ di = 0.(III.3.3.3)

Thus, the map π−i · f i − si+1 ◦ di :M i → N i factors through Ker(di : N i → N i+1). The assumption
π·Hi(N•) = 0 implies that the map π1−i·f i−π·si+1◦di :M i → N i factors through Im(di−1 : N i−1 →
N i). As M i is projective, there exists a morphism si :M i → N i−1 such that π1−i · f i−π · si+1 ◦di =
di−1 ◦ si, which completes the induction. In particular, for any i ≥ −n, we have

πn+1 · f i = (πn+i+1 · si+1) ◦ di + di−1 ◦ (πn+i · si).(III.3.3.4)

Recall that τ≥−nM• = (0 → M−n/Im(d−n−1) → M1−n → · · · → M0 → 0). Thus, we see that
πn+1 · f : τ≥−nM• → τ≥−nN• is homotopic to zero. □

Proposition III.3.4. Let P • be a complex of projective objects in A , M• a π-exact complex in A .
Assume that there are integers a ≤ b such that P i and M i vanish for any i /∈ [a, b]. Then, the
R-module HomK(A )(P

•,M•) is πb−a+1-null.

Proof. It follows directly from III.3.3. □

Corollary III.3.5. Let P • be a complex of projective objects in A , f : M• → N• a π-quasi-
isomorphism of complexes in A . Assume that there are integers a ≤ b such that P i, M i and N i

vanish for any i /∈ [a, b]. Then, the map HomK(A )(P
•,M•) → HomK(A )(P

•, N•) induced by f is a
π2(b−a+3)-isomorphism of R-modules.

Proof. There is an exact sequence of R-modules

HomK(A )(P
•, C•[−1])→ HomK(A )(P

•,M•)→ HomK(A )(P
•, N•)→ HomK(A )(P

•, C•)

(III.3.5.1)

where C• is the cone of f ([Sta22, 0149]). As C• and C•[−1] are π2-exact and vanish outside
[a−1, b+1], the outer two R-modules are π2(b−a+3)-null by III.3.4, whence we draw the conclusion. □

Lemma III.3.6. Let g : P • → N•, f : M• → N• be morphisms of complexes in A . Assume that
there are integers a ≤ b such that

(1) M i = N i = 0 for any i > b, and that
(2) P i is projective for any i ∈ [a, b] and zero for any i /∈ [a, b], and that
(3) the map Hi(f) : Hi(M•) → Hi(N•) is a π-isomorphism for i > a and π-surjective for

i = a.

Then, π2(b−a+1) · g lies in the image of the map HomK(A )(P
•,M•)→ HomK(A )(P

•, N•) induced by
f .

https://stacks.math.columbia.edu/tag/0149
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Proof. Let C• be the cone of f , ι : N• → C• the canonical morphism. Applying the homological
functor HomD(A )(P

•,−) to the distinguished triangle τ≤a−1C• → C• → τ≥aC• → (τ≤a−1C•)[1] in
the derived category D(A ), we obtain an exact sequence of R-modules ([Sta22, 0149, 064B])

HomK(A )(P
•, τ≤a−1C•)→ HomK(A )(P

•, C•)→ HomK(A )(P
•, τ≥aC•).(III.3.6.1)

The first term is zero by assumption (2), and τ≥aC• is π2-exact by assumption (3). As τ≥aC•

vanishes outside [a, b] by assumption (1), the third term is π2(b−a+1)-null by III.3.4. We see that
π2(b−a+1) · (ι ◦ g) is zero in HomK(A )(P

•, C•). Therefore, the conclusion follows from the exact
sequence ([Sta22, 0149])

HomK(A )(P
•,M•)→ HomK(A )(P

•, N•)→ HomK(A )(P
•, C•).(III.3.6.2)

□

III.4. Pseudo-coherence up to Bounded Torsion

In this section, we fix integers a ≤ b, a ring R and an element π of R. We remark that the
universal bound l that shall appear in each statement of this section depends only on the difference
b− a but not on R or π.

Definition III.4.1. Let M• be a complex of R-modules.
(1) A π-[a, b]-pseudo resolution of M• is a morphism f : P • →M• of complexes of R-modules,

where P • is a complex of finite free R-modules such that P i = 0 for any i /∈ [a, b], and where
the map of cohomology groups Hi(f) : Hi(P •)→ Hi(M•) is a π-isomorphism for i > a and
π-surjective for i = a.

(2) We say that M• is π-[a, b]-pseudo-coherent if M i = 0 for any i > b and if it admits a
π-[a, b]-pseudo resolution. We say that an R-module M is π-[a, b]-pseudo-coherent if the
complex M [0] is π-[a, b]-pseudo-coherent.

We follow the presentation of [Sta22, 064N] to establish some basic properties of this notion.
The author does not know whether this notion is Zariski local on R or not (cf. [Sta22, 066D]). This
ad hoc notion only serves for the proof of our main theorem.

Lemma III.4.2. For any integers a′ ≥ a and b′ ≥ b with a′ ≤ b′, a π-[a, b]-pseudo-coherent complex
of R-modules is also π-[a′, b′]-pseudo-coherent.

Proof. We only need to treat the case a = a′ and the case b = b′ separately. If a = a′, then it
is clear that M i = 0 for any i > b′ and a π-[a, b]-pseudo resolution of M• is also a π-[a, b′]-pseudo
resolution. If b = b′, then a π-[a, b]-pseudo resolution P • → M• induces a π-[a′, b]-pseudo resolution
σ≥a′P • →M•. □

Lemma III.4.3. Let M• and N• be complexes of R-modules vanishing in degrees > b, α :M• → N•

a morphism inducing a π-isomorphism on cohomology groups Hi(α) : Hi(M•) → Hi(N•) for any
i ≥ a.

(1) If M• is π-[a, b]-pseudo-coherent, then N• is π2-[a, b]-pseudo-coherent.
(2) If N• is π-[a, b]-pseudo-coherent, then M• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0

depending only on b− a.

Proof. (1) We take a π-[a, b]-pseudo resolution f : P • → M•. In particular, Hi(f) is a π-
isomorphism for any i > a and π-surjective for i = a. Hence, Hi(α ◦ f) = Hi(α) ◦ Hi(f) is
π2-isomorphism for any i > a and π2-surjective for i = a, which shows that α ◦ f : P • → N• is
a π2-[a, b]-pseudo resolution.

(2) Let g : P • → N• be a π-[a, b]-pseudo resolution. We obtain from III.3.6 a morphism f : P • →
M• lifting πl · g up to homotopy for l = 2(b− a+ 1). Thus, for any i ∈ Z, we have

Hi(πl · g) = Hi(α) ◦Hi(f).(III.4.3.1)

Notice that Hi(πl · g) is a πl+1-isomorphism for i > a and πl+1-surjective for i = a, and that Hi(α)
is a π-isomorphism for i ≥ a. We see that Hi(f) is a πl+2-isomorphism for i > a and πl+2-surjective
for i = a. Thus, f : P • →M• is a πl+2-[a, b]-pseudo resolution. □

Proposition III.4.4. Let M• and N• be two complexes of R-modules vanishing in degree > b.
Assume that they are isomorphic in the derived category D(R). Then, if M• is π-[a, b]-pseudo-
coherent, then N• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only on b− a.

https://stacks.math.columbia.edu/tag/0149
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Proof. Let P • → N• be a bounded above projective resolution with the same top degree. The
assumption implies that there is a quasi-isomorphism of complexes P • → M• ([Sta22, 064B]). The
conclusion follows from applying III.4.3 to P • →M• and P • → N•. □

Lemma III.4.5. Let α : M•
1 → M•

2 be a morphism of π-[a, b]-pseudo-coherent complexes of R-
modules. Given π-[a, b]-pseudo resolutions fi : P •

i → M•
i (i = 1, 2), there exists a morphism of

complexes α′ : P •
1 → P •

2 such that (πl · α) ◦ f1 is homotopic to f2 ◦ α′ for an integer l ≥ 0 depending
only on b− a.

Proof. It follows directly from III.3.6. □

Lemma III.4.6. Let M•
1

α−→ M•
2

β−→ M•
3

γ−→ M•
1 [1] be a distinguished triangle in the homotopy

category K(R). Assume that M•
1 is π-[a+ 1, b+ 1]-pseudo-coherent, M•

2 is π-[a, b]-pseudo-coherent,
and M i

3 = 0 for any i > b. Then, M•
3 is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only

on b− a.

Proof. We take a π-[a+1, b+1]-pseudo resolution f1 : P •
1 →M•

1 and a π-[a, b]-pseudo resolution
f2 : P •

2 →M•
2 . By III.4.5, there exists a morphism α′ : P •

1 → P •
2 lifting πl · α in K(R) for an integer

l ≥ 0 depending only on b−a. If we denote its cone by P •
3 , then we have a morphism of distinguished

triangles in K(R).

P •
1

α′
//

πl·f1
��

P •
2

β′
//

f2

��

P •
3

γ′
//

f3

��

P •
1 [1]

πl·f1[1]
��

M•
1

α // M•
2

β // M•
3

γ // M•
1 [1]

(III.4.6.1)

Let C•
1 C•

2 , C•
3 be the cones of πl · f1, f2, f3 respectively. We obtain a distinguished triangle

C•
1 → C•

2 → C•
3 → C•

1 [1] in K(R) ([Sta22, 05R0]). By assumption, τ≥(a+1)C•
1 is π2(l+1)-exact

and τ≥aC•
2 is π2-exact. Thus, we see that τ≥aC•

3 is π2(l+2)-exact. As σ≥aP •
3 vanishes outside [a, b],

σ≥aP •
3 →M•

3 is a π2(l+2)-[a, b]-pseudo resolution. □

Proposition III.4.7. Let 0 −→ M•
1

α−→ M•
2

β−→ M•
3 −→ 0 be an exact sequence of complexes of

R-modules.
(1) Assume that M•

1 is π-[a + 1, b + 1]-pseudo-coherent, M•
2 is π-[a, b]-pseudo-coherent, and

M i
3 = 0 for any i > b. Then, M•

3 is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending
only on b− a.

(2) Assume that M•
1 and M•

3 are π-[a, b]-pseudo-coherent, and M i
2 = 0 for any i > b. Then,

M•
2 is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only on b− a.

(3) Assume that M•
2 is π-[a− 1, b− 1]-pseudo-coherent, M•

3 is π-[a− 2, b− 1]-pseudo-coherent,
and M i

1 = 0 for any i > b. Then, M•
1 is πl-[a − 1, b]-pseudo-coherent for an integer l ≥ 0

depending only on b− a.

Proof. Let C• be the cone of α : M•
1 → M•

2 . Then, the natural morphism C• → M•
3 is a

quasi-isomorphism.
(1) In this case, Ci = 0 for any i > b, and actually C• is πl-[a, b]-pseudo-coherent for an integer

l ≥ 0 depending only on b − a by applying III.4.6 to the distinguished triangle M•
1 → M•

2 → C• →
M•

1 [1] in K(R). Thus, M•
3 is π2l-[a, b]-pseudo-coherent by III.4.3.(1).

(2) In this case, Ci = 0 for any i > b, and C• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0
depending only on b − a by III.4.3.(2). Thus, M•

2 is πl-[a, b]-pseudo-coherent for an integer l ≥ 0
depending only on b− a by applying III.4.6 to the distinguished triangle C•[−1]→M•

1 →M•
2 → C•

in K(R).
(3) In this case, Ci = 0 for any i > b−1, and C• is πl-[a−2, b−1]-pseudo-coherent for an integer

l ≥ 0 depending only on b− a by III.4.3.(2). Thus, M•
1 is πl-[a− 1, b]-pseudo-coherent for an integer

l ≥ 0 depending only on b− a by applying III.4.6 to the distinguished triangle M•
2 [−1]→ C•[−1]→

M•
1 →M•

2 in K(R). □

Corollary III.4.8. Let M• be a complex of R-modules vanishing in degrees > b. Assume that the
cohomology group Hi(M•) is π-[a− i, b− i]-pseudo-coherent for any i ∈ [a, b]. Then, M• is πl-[a, b]-
pseudo-coherent for an integer l ≥ 0 depending only on b− a.

Proof. We proceed by induction on b − a. If a = b, then τ≥aM• = Ha(M•)[−a] is π-[a, b]-
pseudo-coherent by assumption. Thus, M• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending

https://stacks.math.columbia.edu/tag/064B
https://stacks.math.columbia.edu/tag/05R0


170 III. ALMOST COHERENCE OF HIGHER DIRECT IMAGES

only on b− a by III.4.3.(2). In general, consider the exact sequence of complexes of R-modules

0 −→ τ≤(b−1)M• −→M• −→ (M b−1/Ker(db−1)[1− b]→M b[−b]) −→ 0.(III.4.8.1)

As the natural morphism of complexes N• = (M b−1/Ker(db−1)[1− b]→ M b[−b])→ Hb(M•)[−b] is
a quasi-isomorphism, N• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only on b− a by
III.4.3.(2). Notice that τ≤(b−1)M• is πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only on
b− a− 1 by induction. The conclusion follows from III.4.7.(2). □
Lemma III.4.9. Let M• be a π-exact complex of R-modules vanishing outside [a, b], N• a complex
of R-modules. Then, M•⊗L

RN
• is πl-exact (i.e. any complex representing the derived tensor product

M• ⊗L
R N

• is πl-exact) for an integer l ≥ 0 depending only on b− a.

Proof. We proceed by induction on b − a. If a = b, then the multiplication by π on M• =
Ha(M•)[−a] factors through zero. Hence, M•⊗L

RN
• is π-exact. In general, consider the distinguished

triangle in the derived category D(R),

(τ≤(b−1)M•)⊗L
R N

• −→M• ⊗L
R N

• −→ Hb(M•)[−b]⊗L
R N

• −→ (τ≤(b−1)M•)⊗L
R N

•[1].

(III.4.9.1)

Notice that (τ≤(b−1)M•)⊗L
RN

• is πl-exact for an integer l ≥ 0 depending only on b−a by induction.
By the long exact sequence of cohomology groups, we see that M• ⊗L

R N
• is πl-exact for an integer

l ≥ 0 depending only on b− a. □
Proposition III.4.10. Let M• be a π-[a, b]-pseudo-coherent complex of R-modules, S an R-algebra.
Then, τ≥a(S⊗L

RM
•) is represented by a πl-[a, b]-pseudo-coherent complex of S-modules for an integer

l ≥ 0 depending only on b− a.

Proof. We take a bounded above flat resolution F • → M• with the same top degree. By
III.4.3.(2), σ≥a−1F • is a πl-[a, b]-pseudo-coherent complex of flat R-modules for an integer l ≥ 0
depending only on b− a. Let P • → σ≥a−1F • be a πl-[a, b]-pseudo resolution, and let C• be its cone.
Consider the distinguished triangle in K(S),

S ⊗R P • −→ S ⊗R σ≥a−1F • −→ S ⊗R C• −→ S ⊗R P •[1].(III.4.10.1)

Notice that τ≥aC• is a π2l-exact complex vanishing outside [a, b] and that S⊗RC• ∼= S⊗L
RC

• in D(S)
by construction. After enlarging l by III.4.9, we may assume that τ≥a(S⊗RC•) = τ≥a(S⊗L

Rτ
≥aC•) is

πl-exact. By the long exact sequence associated to (III.4.10.1), we see that S⊗RP • → S⊗Rσ≥a−1F •

is a π2l-[a, b]-pseudo resolution of complexes of S-modules, and thus so is the composition

S ⊗R P • −→ S ⊗R σ≥a−1F • −→ τ≥a(S ⊗R σ≥a−1F •) = τ≥a(S ⊗R F •),(III.4.10.2)

where the target is a complex of S-modules representing τ≥a(S ⊗L
R M

•) and vanishing in degrees
> b. □
Definition III.4.11. Let M be an R-module. We say that M is of π-finite type if there exists n ∈ N
and a π-surjective R-linear homomorphism R⊕n →M .

This definition is a special case of III.6.1 below.

Lemma III.4.12. Assume that R is Noetherian. Let M be an R-module.
(1) If M is of π-finite type, then it is π-[a, b]-pseudo-coherent for any integers a ≤ 0 ≤ b.

Conversely, if M is π-[a, b]-pseudo-coherent for some integers a ≤ 0 ≤ b, then M is of
π-finite type.

(2) If M is of π-finite type, then so are its subquotients. Conversely, if M admits a finite
filtration of length l ([Sta22, 0121]) whose graded pieces are of π-finite type, then M is of
πl-finite type.

Proof. (1) If M is of π-finite type, then there is a finitely generated R-submodule N of M such
that πM ⊆ N . Since R is Noetherian, N is pseudo-coherent ([Sta22, 066E]). Hence, M is π-[a, b]-
pseudo-coherent for any integers a ≤ 0 ≤ b. Conversely, if M is π-[a, b]-pseudo-coherent, we take a
π-[a, b]-pseudo resolution P • →M [0]. As a subquotient of a finitely generated R-module, H0(P •) is
also finitely generated as R is Noetherian. Hence, M = H0(M [0]) is of π-finite type.

(2) Let N be a finitely generated R-submodule of M such that πM ⊆ N . Let M0 ⊆ M1 be two
R-submodules of M . Notice that N ∩M1 is a finitely generated R-module as R is Noetherian. The
conclusion follows from the π-surjectivity of N ∩M1 → M1/M0. Conversely, assume that there is a
finite filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆ Ml = M such that Mi+1/Mi is of π-finite type. Then, we see
that M is of πl-finite type by inductively using [AG20, 2.7.14.(ii)]. □

https://stacks.math.columbia.edu/tag/0121
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Proposition III.4.13. Assume that R is Noetherian. Let M• be a complex of R-modules.

(1) If Hi(M•) is of π-finite type for any i ≥ a and if M i = 0 for any i > b, then M• is
πl-[a, b]-pseudo-coherent for an integer l ≥ 0 depending only on b− a.

(2) If M• is π-[a, b]-pseudo-coherent, then Hi(M•) is of π-finite type for any i ≥ a.

Proof. (1) follows from III.4.12.(1) and III.4.8; and (2) follows from the same argument of
III.4.12.(1). □

III.5. Glueing Sheaves up to Bounded Torsion

In this section, we fix a ring R and an element π of R.

III.5.1. Let E/C be a fibred site, O = (Oα)α∈Ob(C) a sheaf of R-algebras over the total site E
([SGA 4II, VI.7.4.1]). We say that an O-module F = (Fα)α∈Ob(C) on E is π-Cartesian, if for every
morphism f : β → α in C, the induced map f∗Fα → Fβ is a π-isomorphism of Oβ-modules.

III.5.2. Let E be a category. Recall that a semi-representable object of E is a family {Ui}i∈I of
objects of E. A morphism {Ui}i∈I → {Vj}j∈J of semi-representable objects of E is given by a
map α : I → J and for every i ∈ I a morphism fi : Ui → Vα(i) ([Sta22, 01G0]). Assume that
E is a site ([SGA 4I, II.1.1.5]). For a semi-representable object K = {Ui}i∈I of objects of E, let
E/K =

⨿
i∈I E/Ui

be the disjoint union of the localizations of E at Ui ([Sta22, 09WK]).
Let r ∈ N ∪ {∞}. For an r-truncated simplicial semi-representable object K• = (Kn)[n]∈Ob(∆≤r)

of E (where each Kn is a semi-representable object of E), we denote by E/K• the fibred site over
the r-truncated simplicial category ∆≤r whose fibre over [n] is E/Kn

([Sta22, 0D8A]). We denote by
ν : E/K• → E the augmentation, and by νn : E/Kn

→ E the corresponding morphism of sites for any
n ∈ N≤r ([Sta22, 0D8B]).

Proposition III.5.3. Let E be a site where fibred products are representable, O a sheaf of R-algebras
on E, {Ui → X}i∈I a covering in E. Consider the 2-truncated Čech hypercovering ([Sta22, 01G6])

K• = ({Ui ×X Uj ×X Uk}i,j,k∈I // //// {Ui ×X Uj}i,j∈I ////oooo {Ui}i∈I),oo(III.5.3.1)

regarded as a 2-truncated simplicial semi-representable object of E/X . Let F• = (Fn)[n]∈∆≤2
be a π-

Cartesian O/K•-module over the 2-truncated simplicial ringed site E/K• , and we put F = ν∗F• where
ν : E/K• → E/X is the augmentation. Then, the canonical map ν∗0F → F0 is a π8-isomorphism.

Proof. For any i, j, k ∈ I, we denote by fi : Ui → X, fij : Ui ×X Uj → X, fijk : Ui ×X Uj ×X
Uk → X the canonical morphisms, and denote by Gi, Gij , Gijk the restrictions of F0, F1, F2 to Ui,
Ui ×X Uj , Ui ×X Uj ×X Uk respectively. By definition ([Sta22, 09WM]), we have

F = Eq(
∏
j∈I

fj∗Gj ⇒
∏
j,k∈I

fjk∗Gjk).(III.5.3.2)

We need to show that the canonical map (note that the restriction functor f∗i of sheaves commute
with any limits as it admits a left adjoint fi!),

f∗i F = Eq(
∏
j∈I

f∗i fj∗Gj ⇒
∏
j,k∈I

f∗i fjk∗Gjk) −→ Gi(III.5.3.3)

given by composing the projection on the i-th component with the adjunction morphism f∗i fi∗Gi → Gi,
is a π8-isomorphism for any i ∈ I. Fixing i ∈ I, for any j, k ∈ I, we name some natural arrows as
indicated in the following commutative diagram

Ui ×X Uj ×X Uk
hjk //

gjk

��

��

Uj ×X Uk

fjk

��

��
Ui ×X Uj

hj //

gj

��

Uj

fj

��
Ui

fi // X

(III.5.3.4)

https://stacks.math.columbia.edu/tag/01G0
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Thus, we obtain the following commutative diagram of sheaves on E/Ui
,

gj∗g
∗
jGi

��

// gj∗Gij

��

gj∗h
∗
jGj

��

oo f∗i fj∗Gj

��

∼oo

gjk∗g
∗
jkGi // gjk∗Gijk gjk∗h

∗
jkGjkoo f∗i fjk∗Gjk

∼oo

gk∗g
∗
kGi

OO

// gk∗Gik

OO

gk∗h
∗
kGk

OO

oo f∗i fk∗Gk

OO

∼oo

(III.5.3.5)

where the three isomorphisms are the base change isomorphisms (cf. [SGA 4III, XII.4]). Since

{gjk : Ui ×X Uj ×X Uk → Ui}j,k∈I //// {gj : Ui ×X Uj → Ui}j∈Ioo(III.5.3.6)

is a 1-truncated Čech hypercovering of Ui, the equalizer corresponding to the first column in (III.5.3.5)
is equal to

Gi = Eq(
∏
j∈I

gj∗g
∗
jGi ⇒

∏
j,k∈I

gjk∗g
∗
jkGi)(III.5.3.7)

by the sheaf property of Gi on E/Ui
. Since F• is π-Cartesian, the horizontal arrows in (III.5.3.5) are π2-

isomorphisms by III.3.2 (cf. II.7.3). Therefore, the morphisms between the equalizers corresponding
to each column in (III.5.3.5) (see the second row of (III.5.3.8) in the following) are π4-isomorphisms.
In order to show that the canonical map f∗i F → Gi (III.5.3.3) is a π8-isomorphism, it remains to
prove the square in the following natural diagram is commutative,

Gi

ι

��ggggg
ggggg

ggggg
ggggg

gggg

ggggg
ggggg

ggggg
ggggg

gggg f∗i fi∗Gioo

Eq(
∏
gj∗g

∗
jGi ⇒

∏
gjk∗g

∗
jkGi) // Eq(

∏
gj∗Gij ⇒

∏
gjk∗Gijk) Eq(

∏
f∗i fj∗Gj ⇒

∏
f∗i fjk∗Gjk)oo

OO

(III.5.3.8)

where ι is the natural map making the left triangle commutative, and in each equalizer, j goes through
I for the first product, and j, k go through I for the second product. Consider the commutative
diagram for any j, k ∈ I,

Ui ×X Uj ×X Uk

gjk

��

vvnnn
nnn

nnn
nnn

((PP
PPP

PPP
PPP

P

Ui ×X Uj

gj

((QQ
QQQ

QQQ
QQQ

QQQ
Ui ×X Uk

gk

vvmmm
mmm

mmm
mmm

mm

hk //

fik

$$I
II

II
II

II
I Uk

fk

��
Ui

fi // X

(III.5.3.9)

from which we obtain the following natural commutative diagram

gj∗Gij

uukkkk
kkkk

kkkk
kkkk

Gi
ι

uukkkk
kkkk

kkkk
kkkk

kk

(1)

f∗i fi∗Gi

ttjjjj
jjjj

jjjj
jjjj

j
oo

gjk∗Gijk Eq(
∏
gj∗Gij ⇒

∏
gjk∗Gijk)

OO

��

oo f∗i fik∗Gik
ȷ

uukkkk
kkkk

kkkk
kkkk

Eq(
∏
f∗i fj∗Gj ⇒

∏
f∗i fjk∗Gjk)oo

��

OO

gk∗Gik

iiSSSSSSSSSSSSSSS
gk∗h

∗
kGkoo

(2)

f∗i fk∗Gk

jjTTTTTTTTTTTTTTTT
∼oo

(III.5.3.10)

Indeed, the natural map ȷ : f∗i fik∗Gik = f∗i fi∗gk∗Gik → gk∗Gik is defined by applying the adjunction
morphism f∗i fi∗ → id to gk∗Gik, and other natural arrows have appeared in the diagrams (III.5.3.5)
and (III.5.3.8). Thus, the commutativity of (1) follows from applying the adjunction morphism
f∗i fi∗ → id to the canonical map Gi → gk∗Gik, and the commutativity of (2) follows from the
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following natural commutative diagram

gk∗Gik f∗i fi∗gk∗Gik
ȷoo f∗i fk∗hk∗Gik

gk∗h
∗
kGk

OO

f∗i fi∗gk∗h
∗
kGkoo

OO

f∗i fk∗hk∗h
∗
kGk

OO

f∗i fk∗Gkoo

(III.5.3.11)

where the vertical arrows are induced by the canonical map h∗kGk → Gik, and the composition of the
second row is the base change isomorphism f∗i fk∗Gk

∼−→ gk∗h
∗
kGk by definition [SGA 4III, XII.(4.1)].

In particular, we see that the natural diagram extracted from (III.5.3.10),

Gi
ι

��

f∗i fi∗Gioo

Eq(
∏
gj∗Gij ⇒

∏
gjk∗Gijk)

��

Eq(
∏
f∗i fj∗Gj ⇒

∏
f∗i fjk∗Gjk)

��

OO

gk∗Gik f∗i fk∗Gkoo

(III.5.3.12)

is commutative for any k ∈ I. This shows that the diagram (III.5.3.8) is commutative, which com-
pletes the proof. □

Remark III.5.4. We expect a generalization to any 2-truncated hypercovering K• of X as in [Sta22,
0D8E].

Example III.5.5. Let X be a quasi-compact and separated scheme, K0 = {Ui → X}0≤i≤k a finite
open covering ofX consisting of affine open subschemes. For any n ∈ N, we define a semi-representable
object of the Zariski site XZar of X,

Kn = {Ui0 ∩ · · · ∩ Uin → X}0≤i0,··· ,in≤k.(III.5.5.1)

These Kn naturally form a simplicial semi-representable object of XZar, K• = (Kn)[n]∈Ob(∆), called
the Čech hypercovering associated to K0 of X. We put

Xn =
⨿

0≤i0,...,in≤k

Ui0 ∩ · · · ∩ Uin(III.5.5.2)

which is a finite disjoint union of affine open subschemes of X, and denote by νn : Xn → X the
canonical morphism. It is clear that the site XZar/Kn

is naturally equivalent to the Zariski site Xn,Zar.
We also obtain a simplicial affine scheme X• = (Xn)[n]∈Ob(∆), and an augmentation ν : X• → X
(where we omit the subscript “Zar”).

For any OX•-module F•, we consider the ordered Čech complex Č•
ord(X•,F•), whose degree-n

term is the R-module ([Sta22, 01FG])

Čnord(X•,F•) =
∏

0≤i0<···<in≤k

Fn(Ui0 ∩ · · · ∩ Uin).(III.5.5.3)

In general, for any complex of OX•-modules F•
• , we consider the total complex of the ordered Čech

complexes Tot(Č•
ord(X•,F•

• )), whose degree-n term is the R-module (cf. [Sta22, 01FP])

Totn(Č•
ord(X•,F•

• )) =
⊕
p+q=n

∏
0≤i0<···<ip≤k

Fqp (Ui0 ∩ · · · ∩ Uip).(III.5.5.4)

Indeed, it depends only on the k-truncation (F•
n)[n]∈Ob(∆≤k). If F•

• is the pullback of a complex
of quasi-coherent OX -module F• (i.e. F•

• = ν∗F•), then there is an isomorphism in the derived
category D(X) (cf. [Sta22, 01FK, 01FM, 0FLH]),

Tot(Č•
ord(X•,F•

• ))
∼−→ RΓ(X,F•).(III.5.5.5)

Lemma III.5.6. Under the assumptions in III.5.5 and with the same notation, for any quasi-coherent
OX•-module F•, F = ν∗F• is a quasi-coherent OX-module.

Proof. By definition, F = Eq(ν0∗F0 ⇒ ν1∗F1). As νi is quasi-compact and quasi-separated
(i = 0, 1), νi∗Fi is a quasi-coherent OX -module. Hence, the equalizer F is also a quasi-coherent
OX -module. □
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Proposition III.5.7. Under the assumptions in III.5.5 and with the same notation, let r ∈ N≥2 ∪
{∞}, skr(X•) = (Xn)[n]∈Ob(∆≤r) the r-truncation of X•, F• a quasi-coherent Oskr(X•)-module of
finite type. Assume that F• is π-Cartesian (cf. III.5.1). Then, there exists a quasi-coherent OX-
module F of finite type and a π25-isomorphism ν∗F → F•.

Proof. If we also denote by ν : skr(X•) → X the augmentation, then F ′ = ν∗F• is a quasi-
coherent OX -module by III.5.6 and the canonical morphism ν∗0F ′ → F0 is a π8-isomorphism by
III.5.3. We claim that the canonical morphism ν∗F ′ → F• is a π9-isomorphism. Indeed, for any
integer 0 ≤ n ≤ r the morphism νn : Xn → X is the composition of ν0 : X0 → X with a projection
f : Xn → X0 associated to a morphism [0] → [n] in ∆. Since f∗F0 → Fn is a π-isomorphism by
assumption, we see that ν∗nF ′ → Fn is a π9-isomorphism.

For any 0 ≤ i ≤ k, we denote by Gi the restriction of F0 to the component Ui, which is a quasi-
coherent OXi -module of finite type by assumption. By III.3.2.(1), there exists a π16-isomorphism
Gi → F ′|Ui . Notice that F ′ is the filtered union of its quasi-coherent OX -submodules of finite type
by [EGA Inew, 6.9.9]. Thus, there is a sufficiently large quasi-coherent OX -submodule F of finite
type such that the π16-surjection Gi → F ′|Ui factors through F|Ui for any 0 ≤ i ≤ k. Thus, the
inclusion F ⊆ F ′ is π16-surjective, which implies that the induced morphism ν∗F → F• is a π25-
isomorphism. □

Lemma III.5.8. Under the assumptions in III.5.5 and with the same notation, let F•
• → G•• be a

π-isomorphism of complexes of quasi-coherent Oskk(X•)-modules. Then, the map

Tot(Č•
ord(X•,F•

• )) −→ Tot(Č•
ord(X•,G••))(III.5.8.1)

is a π-isomorphism. In particular, it is a π2-quasi-isomorphism.

Proof. By taking sections on an affine scheme, Fqp (Ui0 ∩ · · · ∩Uip)→ Gqp(Ui0 ∩ · · · ∩Uip) is still
a π-isomorphism. This shows that (III.5.8.1) is a π-isomorphism. The second assertion follows from
III.3.2. □

Lemma III.5.9. Under the assumptions in III.5.5 and with the same notation, let a be an integer,
F•

• → G•• a morphism of complexes of quasi-coherent Oskk(X•)-modules. Assume that for any 0 ≤
n ≤ k, the map Hi(F•

n) → Hi(G•n) is a π-isomorphism for any i > a and π-surjective for i = a.
Then, the map

Hi(Tot(Č•
ord(X•,F•

• ))) −→ Hi(Tot(Č•
ord(X•,G••)))(III.5.9.1)

is a π4(k+1)-isomorphism for any i > a+ k and π2(k+1)-surjective for i = a+ k.

Proof. As taking the ordered Čech complex onX• is an exact functor, we haveHq(Čpord(X•,F•
• )) =

Čpord(X•,H
q(F•

• )), whereHq(F•
• ) = (Hq(F•

n))[n]∈Ob(∆≤k) is a quasi-coherent Oskk(X•)-module. Thus,
there is a spectral sequence

Epq2 = Hp(Č•
ord(X•,H

q(F•
• )))⇒ Hp+q(Tot(Č•

ord(X•,F•
• ))),(III.5.9.2)

which is convergent, since Čpord(X•,Fq• ) = 0 unless 0 ≤ p ≤ k ([Sta22, 0132]).
Let K•

• be the cone of F•
• → G•• . The assumption implies that Hi(K•

n) is π2-null for any 0 ≤ n ≤ k
and i ≥ a. The convergent spectral sequence (III.5.9.2) for K•

• implies that for any i ∈ Z, there is a
finite filtration of length ≤ (k+1) on Hi(Tot(Č•

ord(X•,K•
•))) whose graded pieces are subquotients of

Ep,i−p2 where 0 ≤ p ≤ k. Since Ep,i−p2 is π2-null for any i ≥ a+k, we see that Hi(Tot(Č•
ord(X•,K•

•)))

is π2(k+1)-null for such i. The conclusion follows from the long exact sequence of cohomology groups
associated to the distinguished triangle in K(R),

Tot(Č•
ord(X•,F•

• )) −→ Tot(Č•
ord(X•,G••)) −→ Tot(Č•

ord(X•,K•
•)) −→ Tot(Č•

ord(X•,F•
• ))[1].

(III.5.9.3)

□

Proposition III.5.10. Under the assumptions in III.5.5 and with the same notation, let a ≤ b be
two integers, F•

• a complex of quasi-coherent Oskk(X•)-modules vanishing in degrees > b. Assume
that

(1) R is Noetherian, and that
(2) the R-module Hp(Č•

ord(X•,H
q(F•

• ))) is of π-finite type for any 0 ≤ p ≤ k and q ≥ a (cf.
III.4.11).

Then, the complex of R-modules Tot(Č•
ord(X•,F•

• )) is πl-[a+ k, b+ k]-pseudo-coherent for an integer
l ≥ 0 depending only on b− a and k.

https://stacks.math.columbia.edu/tag/0132
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Proof. Consider the convergent spectral sequence (III.5.9.2). Notice that for any 0 ≤ p ≤ k and
q ≥ a, a subquotient of Epq2 = Hp(Č•

ord(X•,H
q(F•

• ))) is of π-finite type by III.4.12.(2). Since there is
a finite filtration of length ≤ (k+1) on Hi(Tot(Č•

ord(X•,F•
• ))) whose graded pieces are subquotients

of Ep,i−p2 where 0 ≤ p ≤ k. We see that Hi(Tot(Č•
ord(X•,F•

• ))) is of πk+1-finite type for any i ≥ a+k
by III.4.12.(2). As Tot(Č•

ord(X•,F•
• )) vanishes in degrees > b+k by definition, the conclusion follows

from III.4.13.(1). □

III.6. Almost Coherent Modules

In this section, we fix a ring R with an ideal m such that for any integer l ≥ 1, the l-th powers of
elements of m generate m (in particular, m = m2, cf. [GR03, 2.1.6.(B)]). Let E be a site with a final
object ∗, O a sheaf of R-algebras on E.

Definition III.6.1 ([AG20, 2.7.3]). Let M be an O-module on E.
(1) We say that M is almost zero if it is π-null for any π ∈ m. We say that a morphism

f : M → N of O-modules is an almost isomorphism if its kernel and cokernel are almost
zero.

(2) We say that M is of π-finite type for some element π ∈ R if there exists a covering {Ui →
∗}i∈I in E such that for any i ∈ I there exist finitely many sections s1, . . . , sn ∈M(Ui) such
that the induced morphism of O|Ui -modules O⊕n|Ui → M |Ui has π-null cokernel. We say
that M is of almost finite type if it is of π-finite type for any π ∈ m.

(3) We say that M is almost coherent if M is of almost finite type, and if for any object U of
E and any finitely many sections s1, . . . , sn ∈M(U), the kernel of the induced morphism of
O|U -modules O⊕n|U →M |U is an O|U -module of almost finite type.

We refer to Abbes-Gros [AG20, 2.7, 2.8] for a more detailed study of almost coherent modules.
They work in a slightly restricted basic setup for almost algebra [AG20, 2.6.1], but most of their
arguments still work in our setup (R,m) by adding the following lemmas.

Lemma III.6.2. Let M be an O-module on E, π1, π2 ∈ R. If M is of πi-finite type for i = 1, 2, then
it is of (xπ1 + yπ2)-finite type for any x, y ∈ R. In particular, if there exists an integer l ≥ 1 such
that M is of πl-finite type for any π ∈ m, then M is of almost finite type.

Proof. The problem is local on E. We may assume that there exist morphisms of O-modules
fi : O⊕ni →M (i = 1, 2) with πi-null cokernels. Thus, the cokernel of f1⊕ f2 : O⊕n1 ⊕O⊕n2 →M is
killed by xπ1+yπ2. The “in particular” part follows from the assumption that the ideal m is generated
by the subset {πl | π ∈ m}. □

Lemma III.6.3. Let M be an O-module.
(1) Assume that there exists an integer l ≥ 1 such that for any π ∈ m, there exists an almost

coherent O-module Mπ and a πl-isomorphism M →Mπ. Then, M is almost coherent.
(2) Assume that there exists an integer l ≥ 1 such that for any π ∈ m, there exists an almost

coherent O-module Mπ and a πl-isomorphism Mπ →M . Then, M is almost coherent.

Proof. (1) The πl-isomorphism M →Mπ induces a π2l-isomorphism Mπ →M by III.3.2. Such
an argument shows that (1) implies (2). We also see thatM is of π3l-finite type. Hence, M is of almost
finite type by III.6.2. For any object U of E, and any morphism of O|U -modules f : O⊕n|U →M |U ,
consider the following commutative diagram

0 // Ker(f)

��

// O⊕n|U
f // M

��
0 // Ker(fπ) // O⊕n|U

fπ // Mπ

(III.6.3.1)

It is clear that Ker(f)→ Ker(fπ) is a πl-isomorphism. Since Mπ is almost coherent by assumption,
Ker(fπ) is of almost finite type. Hence, Ker(f) is of π3l-finite type by the argument in the beginning.
Thus, Ker(f) is of almost finite type by III.6.2. This verifies the almost coherence of M . □

We collect some basic properties about almost coherence that will be used in the rest of this
article. Their proofs are essentially given in [AG20], and we only give a brief sketch here.

Proposition III.6.4 ([AG20, 2.7.16]). Let 0 −→ M1
u−→ M2

v−→ M3 −→ 0 be an almost exact
sequence of O-modules on E. If two of M1,M2,M3 are almost coherent, then so is the third.
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Proof. Since almost isomorphisms preserve almost coherence by III.6.3, we may assume that
0→M1 →M2 →M3 → 0 is exact.

Assume that M2 and M3 are almost coherent. Then, M1 is of almost finite type by [AG20,
2.7.14.(iii)] and III.6.2. Hence, M1 is almost coherent as a submodule of an almost coherent O-
module M2 by definition.

Assume that M1 and M2 are almost coherent. Then, M3 is of almost finite type as a quotient
of M2. Let U be an object of E. We need to show that any homomorphism f3 : O⊕n|U → M3|U
has kernel of π2-finite type for any π ∈ m by III.6.2. The problem is local on E. Thus, we may take
a π-surjection f1 : O⊕m|U → M1|U and a lifting f ′3 : O⊕n|U → M2|U of f3. We put f2 = (f1, f

′
3) :

O⊕m+n|U →M2|U , and obtain a morphism of short exact sequences

0 // O⊕m|U //

f1

��

O⊕m+n|U //

f2

��

O⊕n|U //

f3

��

0

0 // M1|U // M2|U // M3|U // 0

(III.6.4.1)

The snake lemma shows that Ker(f2)→ Ker(f3) is π-surjective. Since Ker(f2) is of almost finite type
as M2 is almost coherent, we see that Ker(f3) is of π2-finite type.

Assume that M1 and M3 are almost coherent. Then, M2 is of almost finite type by [AG20,
2.7.14.(ii)] and III.6.2. Let U be an object of E. We need to show that any homomorphism f2 :
O⊕n|U → M2|U has kernel of π2-finite type for any π ∈ m by III.6.2. The problem is local on E.
Thus, we may take a π-surjection O⊕m|U → Ker(v ◦ f2) as Ker(v ◦ f2) is of almost finite type (M3 is
almost coherent). Thus, we obtain a commutative diagram

O⊕m|U //

f1

��

O⊕n|U //

f2

��

M3|U // 0

0 // M1|U
u // M2|U

v // M3|U // 0

(III.6.4.2)

By diagram chasing, we see that Ker(f1)→ Ker(f2) is π-surjective. Since Ker(f1) is of almost finite
type as M1 is almost coherent, we see that Ker(f2) is of π2-finite type. □

Corollary III.6.5 ([AG20, 2.7.17]). For any morphism f :M → N of almost coherent O-modules,
Ker(f), Im(f) and Coker(f) are almost coherent.

Corollary III.6.6. Assume that O is almost coherent as an O-module. Then, any cohomology group
of a complex of finite free O-modules is almost coherent.

Proof. A finite free O-module is almost coherent by III.6.4. Thus, a cohomology group of a
complex of finite free A-modules is almost coherent by III.6.5. □

Proposition III.6.7 ([AG20, 2.8.7]). Let X = Spec(A) be an affine scheme over R, F a quasi-
coherent OX-module, π ∈ m. Then, the OX-module F is of π-finite type (resp. of almost finite type,
almost coherent) on the Zariski site of X if and only if the A-module F(X) is of π-finite type (resp.
of almost finite type, almost coherent) on the trivial site of a single point.

Proof. It is clear that the statement for “of π-finite type” implies that for “of almost finite type”
and thus implies that for “almost coherent”. It remains to show that for any π ∈ m and any finitely
many elements f1, . . . , fn ∈ A generating A as an ideal, an A-module M is of π-finite type if and
only if the Afi -module Mfi is of π-finite type for any 1 ≤ i ≤ n. The necessity is obvious. For the
sufficiency, we write M =

∪
λ∈ΛMλ as a filtered union of its A-submodules of finite type. There

exists λ0 ∈ Λ large enough such that Mλ0,fi → Mfi is a π-isomorphism for any 1 ≤ i ≤ n. Hence,
Mλ0 →M is a π-isomorphism, which completes the proof. □

Lemma III.6.8 (cf. [Kie72, 2.2]). Let k ∈ N, X• = (Xn)[n]∈Ob(∆≤k) a k-truncated simplicial affine
scheme over R, M• a quasi-coherent OX•-module. Assume that the OX•-modules OX• and M• are
almost coherent. Then, for any π ∈ m, there exists a π-exact sequence of quasi-coherent OX•-modules

· · · −→ F−1
• −→ F 0

• −→M•,(III.6.8.1)

such that F in is a finite free OXn-module for any i ≤ 0 and 0 ≤ n ≤ k.
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Proof. Firstly, we construct F 0
• . For each 0 ≤ n ≤ k, we take a finite free OXn

-module Nn and
a π-surjection hn : Nn →Mn (as Mn is of π-finite type, cf. III.6.7). We put

F 0
n =

⊕
0≤m≤k

⊕
α∈Hom∆([m],[n])

α∗Nm.(III.6.8.2)

It forms naturally a finite free OX•-module F 0
• . There is a natural morphism F 0

n → Mn defined on
the (m,α)-component by the composition

α∗Nm
α∗(hm)// α∗Mm

// Mn.(III.6.8.3)

It induces a π-surjective homomorphism of OX•-modules F 0
• → M• (cf. the proof of [Kie72, 2.2]).

Notice that its kernel M−1
• is also a quasi-coherent OX•-module which is almost coherent by III.6.5.

Thus, we can apply the previous procedure to M−1
• and we construct F i• inductively for any i ≤ 0. □

III.7. Proof of the Main Theorem

This section is devoted to proving the following theorem.

Theorem III.7.1. Let R be a ring with an ideal m such that for any integer l ≥ 1, the l-th powers of
elements of m generate m. Consider a flat proper morphism of finite presentation f : X → S between
R-schemes. Assume that OX and OS are almost coherent as modules over themselves. Then, for any
quasi-coherent and almost coherent OX-module M and any q ∈ N, Rqf∗M is a quasi-coherent and
almost coherent OS-module.

Proof. The problem is local on S. Thus, we may assume that S = Spec(A) is affine. Since f is
quasi-compact and quasi-separated, Rqf∗M is a quasi-coherent OS-module for any q ∈ N. Thus, it
remains to prove that Hq(X,M) is an almost coherent A-module by III.6.7. We write X as a finite
union of affine open subschemes X =

∪
0≤i≤k Ui for some k ∈ N≥2, and consider the k-truncated

Čech hypercovering X• = (Xn)[n]∈Ob(∆≤k) (cf. III.5.5), where for any 0 ≤ n ≤ k,

Xn =
⨿

0≤i0,...,in≤k

Ui0 ∩ · · · ∩ Uin ,(III.7.1.1)

which is a finite disjoint union of affine open subschemes of X as X is separated. Let ν : X• → X
denote the augmentation.

We fix an element π ∈ m and an integer a < −(q + k + 2) in the following, and take a sequence
of quasi-coherent OX•-modules by III.6.8,

0 −→ Fa• −→ · · · −→ F−1
• −→ F0

• −→M• = ν∗M,(III.7.1.2)

such that F•
n →Mn[0] is a π-[a, 0]-pseudo resolution (cf. III.4.1) for any 0 ≤ n ≤ k. In other words,

for any a ≤ i ≤ 0 and 0 ≤ n ≤ k,
(1) F in is a finite free OXn-module, and
(2) Hi(F•

n) is π-null for any a < i < 0, and H0(F•
n)→Mn is a π-isomorphism.

For any morphism α : [m]→ [n] in ∆≤k (regarded also as a morphism Xn → Xm), we denote by C•
α

the cone of the induced map α∗F•
m → F•

n of complexes of finite free OXn -modules.

Lemma III.7.2. For any morphism α : [m] → [n] in ∆≤k, there exists a homomorphism of finite
free OXn-modules siα : Ciα → Ci−1

α for any i ≥ a+ 1 such that

π−4a · idCi
α
= si+1

α ◦ diα + di+1
α ◦ siα,(III.7.2.1)

where diα : Ciα → Ci+1
α is the differential map.

Proof. We firstly note that Ciα = F in ⊕ α∗F i+1
m is a finite free OXn-module. In particular, C•

α

vanishes outside [a − 1, 0]. By definition, Hi(F•
n) → Hi(Mn[0]) is a π-isomorphism for any i > a.

Notice that the induced map α∗Hi(Mm[0]) → Hi(Mn[0]) is an isomorphism since M• = ν∗M.
Thus, the induced map α∗Hi(F•

m)→ Hi(F•
n) is a π2-isomorphism ofOXn-modules, which implies that

Hi(C•
α) is π4-null for any i > a. Thus, the conclusion follows directly from III.3.3 (cf. (III.3.3.4)). □

Now we write A as a filtered union of finitely generated Z-subalgebras A = colimλ∈ΛAλ. By
[EGA IV3, 8.5.2, 8.8.2, 8.10.5, 11.2.6], there exists an index λ0 ∈ Λ such that π ∈ Aλ0 ,

(1) a flat proper morphism of finite presentation fλ0 : Xλ0 → Sλ0 = Spec(Aλ0) whose base
change along S → Sλ0 is f ,

(2) affine open subschemes Uλ0,i (0 ≤ i ≤ k) of Xλ0 whose base change along S → Sλ0 is Ui,
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(3) a complex of finite free OXλ0,•-modules 0 → Faλ0,• → · · · → F
−1
λ0,• → F

0
λ0,• → 0 whose

pullback along S → Sλ0 is F•
• (whereXλ0,• is the k-truncated Čech hypercovering associated

to Xλ0,0 =
⨿

0≤i≤k Uλ0,i → Xλ0),
(4) a homomorphism of finite free OXλ0,n

-modules siλ0,α
: Ciλ0,α

→ Ci−1
λ0,α

for any i ≥ a+ 1 and
any morphism α : [m]→ [n] in ∆≤k, such that

π−4a · idCi
λ0,α

= si+1
λ0,α
◦ diλ0,α + di+1

λ0,α
◦ siλ0,α,(III.7.2.2)

where C•
λ0,α

is the cone of α∗F•
λ0,m

→ F•
λ0,n

, and diλ0,α
: Ciλ0,α

→ Ci+1
λ0,α

is the differential
map.

We note that Xλ0 and Sλ0 are Noetherian.

Lemma III.7.3. For any morphism α : [m] → [n] in ∆≤k, the induced map of coherent OXλ0,n
-

modules α∗Hi(F•
λ0,m

)→ Hi(F•
λ0,n

) is a π−8a-isomorphism for any i ≥ a+ 2.

Proof. It follows directly from the relation (III.7.2.2). □

Lemma III.7.4. For any i ≥ a + 2, there exists a coherent OXλ0
-module Giλ0

and a π−200a-
isomorphism ν∗λ0

Giλ0
→ Hi(F•

λ0,•), where νλ0 : Xλ0,• → Xλ0 is the augmentation.

Proof. It follows by applying directly III.5.7 to the coherent OXλ0,• -module Hi(F•
λ0,•), whose

condition is satisfied by III.7.3. □

Lemma III.7.5. The Aλ0-module Hi(Č•
ord(Xλ0,•,H

j(F•
λ0,•))) is of π−400a-finite type for any 0 ≤

i ≤ k and j ≥ a+ 2.

Proof. Notice that by (III.5.5.5) and III.7.4, we have

Hi(Č•
ord(Xλ0,•, ν

∗
λ0
Gjλ0

)) = Hi(Xλ0 ,G
j
λ0
),(III.7.5.1)

which is an Aλ0 -module of finite type, since Xλ0 is proper over the Noetherian scheme Spec(Aλ0).
Thus, Hi(Č•

ord(Xλ0,•,H
j(F•

λ0,•))) is of π−400a-finite type by III.5.8 and III.7.4. □

Lemma III.7.6. The complex of Aλ0
-modules Tot(Č•

ord(Xλ0,•,F•
λ0,•)) is πl-[a + k + 2, k]-pseudo-

coherent for an integer l ≥ 0 depending only on a and k.

Proof. It follows directly from III.5.10 whose conditions are satisfied by III.7.5. □

Lemma III.7.7. The complex of A-modules Tot(Č•
ord(X•,F•

• )) is πl-[a + k + 2, k]-pseudo-coherent
for an integer l ≥ 0 depending only on a and k.

Proof. By III.4.10 and III.7.6, τ≥(a+k+2)(A ⊗L
Aλ0

Tot(Č•
ord(Xλ0,•,F•

λ0,•))) is represented by
a πl-[a + k + 2, k]-pseudo-coherent complex of A-modules for an integer l ≥ 0 depending only on
a and k. Since fλ0 : Xλ0 → Sλ0 is flat, A ⊗L

Aλ0
Tot(Č•

ord(Xλ0,•,F•
λ0,•)) is also represented by

A ⊗Aλ0
Tot(Č•

ord(Xλ0,•,F•
λ0,•)) = Tot(Č•

ord(X•,F•
• )). Hence, τ≥(a+k+2)(Tot(Č•

ord(X•,F•
• )) is πl-

[a+k+2, k]-pseudo-coherent for an integer l ≥ 0 depending only on a and k by III.4.4. The conclusion
follows from applying III.4.3.(2) to Tot(Č•

ord(X•,F•
• ))→ τ≥(a+k+2)(Tot(Č•

ord(X•,F•
• )). □

Lemma III.7.8. The complex of A-modules Č•
ord(X•,M•) is πl-[a+k+2, k]-pseudo-coherent for an

integer l ≥ 0 depending only on a and k.

Proof. Since F•
• → M•[0] is a π-[a, 0]-pseudo resolution, the map Hi(Tot(Č•

ord(X•,F•
• ))) →

Hi(Č•
ord(X•,M•)) is a π4(k+1)-isomorphism for any i ≥ a+ k + 1 by III.5.9. The conclusion follows

from III.4.3.(1) and III.7.7. □

Recall that we have taken a < −(q + k + 2) in the beginning. Since RΓ(X,M) is represented
by the ordered Čech complex Č•

ord(X•,M•), we see that Hq(X,M) is πl-isomorphic to an almost
coherent A-module for an integer l ≥ 0 depending only on a and k by III.6.6 and III.7.8. Since l is
independent of the choice of π ∈ m, the A-module Hq(X,M) is almost coherent by III.6.3, which
completes the proof of our main theorem III.7.1. □
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III.8. Remark on Abbes-Gros’ Construction of the Relative Hodge-Tate Spectral
Sequence

III.8.1. Let K be a complete discrete valuation field of characteristic 0 with algebraically closed
residue field of characteristic p > 0. Let (f, g) : (X ′▷ → X ′) → (X◦ → X) be a morphism of open
immersions of quasi-compact and quasi-separated schemes over Spec(K)→ Spec(OK). Consider the
following conditions:

(1) The associated log schemes (X ′,MX′) and (X,MX) endowed with the compactifying log
structures are adequate in the sense of [AGT16, III.4.7] (which holds for instance if the
open immersions X ′▷ → X ′ and X◦ → X are semi-stable over Spec(K) → Spec(OK), cf.
I.10.11).

(2) The morphism of log schemes (X ′,MX′)→ (X,MX) is smooth and saturated.
(3) The morphism of schemes g : X ′ → X is projective.

Under these assumptions, Abbes-Gros proved Faltings’ main p-adic comparison theorem in the relative
case for the morphism (f, g) [AG20, 5.7.4], and constructed a relative Hodge-Tate spectral sequence
[AG20, 6.7.5] (for an explicit local version, see [AG20, 6.9.6] and I.1.4). We explain that their proof
and construction are still valid if we replace the assumption (3) by the following assumption

(3)’ The morphism of schemes g : X ′ → X is proper.

III.8.2. The assumption on the projectivity of g has been only used in the proof of [AG20, 5.3.31].
There, they encountered a Cartesian diagram of schemes

X
′(∞)

g(∞)

��

// X ′

g

��
X

(∞) // X

(III.8.2.1)

where X
(∞)

is an OK-scheme such that O
X

(∞) and O
X

′(∞) are almost coherent as modules over
themselves ([AG20, 5.3.5.(ii)]), and a quasi-coherent and almost coherent O

X
′(∞) -module G . For

proving the almost coherence of Rig(∞)
∗ G , they applied [AG20, 2.8.18] where the assumption on the

projectivity of g has been used.
Now we replace the assumption (3) by the assumption (3)’, by replacing [AG20, 2.8.18] by our

main theorem III.7.1. Indeed, the morphism g is flat by the assumption (2) (cf. [Kat89, 4.5]),
proper by the assumption (3)’, of finite presentation by the assumptions (3)’ and (1) (as X is locally
Noetherian). Hence, so is the morphism g(∞) by base change. Therefore, we deduce the almost
coherence of Rig(∞)

∗ G from our main theorem III.7.1.





Bibliography

[Abb10] Ahmed Abbes. Éléments de géométrie rigide. Volume I, volume 286 of Progress in Mathematics.
Birkhäuser/Springer Basel AG, Basel, 2010. Construction et étude géométrique des espaces rigides. [Con-
struction and geometric study of rigid spaces], With a preface by Michel Raynaud.

[Ach17] Piotr Achinger. Wild ramification and K(π, 1) spaces. Invent. Math., 210(2):453–499, 2017.
[AG20] Ahmed Abbes and Michel Gros. Les suites spectrales de Hodge-Tate. to appear in Astérisque, 2020.
[AGT16] Ahmed Abbes, Michel Gros, and Takeshi Tsuji. The p-adic Simpson correspondence, volume 193 of Annals

of Mathematics Studies. Princeton University Press, Princeton, NJ, 2016.
[ALPT19] Karim Adiprasito, Gaku Liu, Igor Pak, and Michael Temkin. Log smoothness and polystability over valu-

ation rings. https://arxiv.org/abs/1806.09168v3, 2019.
[And18] Yves André. Le lemme d’Abhyankar perfectoide. Publ. Math. Inst. Hautes Études Sci., 127:1–70, 2018.
[Ax70] James Ax. Zeros of polynomials over local fields—The Galois action. J. Algebra, 15:417–428, 1970.
[BGR84] S. Bosch, U. Güntzer, and R. Remmert. Non-Archimedean analysis, volume 261 of Grundlehren der math-

ematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin,
1984. A systematic approach to rigid analytic geometry.

[BM20] Bhargav Bhatt and Akhil Mathew. The arc-topology. https://arxiv.org/abs/1807.04725v4, 2020.
[Bou71] Nicolas Bourbaki. Éléments de mathématique. Topologie générale. Chapitres 1 à 4. Hermann, Paris, 1971.
[Bou06] Nicolas Bourbaki. Algèbre commutative. Chapitres 5 à 7. Springer-Verlag, Berlin Heidelberg, 2006. Edition

originale publiée par Herman, Paris, 1975.
[Bou07] Nicolas Bourbaki. Topologie générale. Chapitres 5 à 7. Springer-Verlag, Berlin Heidelberg, 2007. Edition

originale publiée par Herrman, Paris, 1974.
[Bri03] Olivier Brinon. Une généralisation de la théorie de Sen. Math. Ann., 327(4):793–813, 2003.
[Bri08] Olivier Brinon. Représentations p-adiques cristallines et de de Rham dans le cas relatif. Mém. Soc. Math.

Fr. (N.S.), (112):vi+159, 2008.
[BS15] Bhargav Bhatt and Peter Scholze. The pro-étale topology for schemes. Astérisque, (369):99–201, 2015.
[BS17] Bhargav Bhatt and Peter Scholze. Projectivity of the Witt vector affine Grassmannian. Invent. Math.,

209(2):329–423, 2017.
[BS19] Bhargav Bhatt and Peter Scholze. Prisms and prismatic cohomology. https://arxiv.org/abs/1905.

08229v4, 2019.
[BST17] Bhargav Bhatt, Karl Schwede, and Shunsuke Takagi. The weak ordinarity conjecture and F -singularities.

In Higher dimensional algebraic geometry—in honour of Professor Yujiro Kawamata’s sixtieth birthday,
volume 74 of Adv. Stud. Pure Math., pages 11–39. Math. Soc. Japan, Tokyo, 2017.

[CS17] Ana Caraiani and Peter Scholze. On the generic part of the cohomology of compact unitary Shimura
varieties. Ann. of Math. (2), 186(3):649–766, 2017.

[CS19] Kestutis Cesnavicius and Peter Scholze. Purity for flat cohomology. https://arxiv.org/abs/1912.10932v2,
2019.

[DdSMS99] John Douglas Dixon, Marcus P. F. du Sautoy, Avinoam Mann, and Daniel M. Segal. Analytic pro-p groups,
volume 61 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second
edition, 1999.

[dJ96] Aise Johan de Jong. Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math.,
(83):51–93, 1996.

[EGA II] Alexander Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques
classes de morphismes. Inst. Hautes Études Sci. Publ. Math., (8):222, 1961.

[EGA III1] Alexander Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux co-
hérents. I. Inst. Hautes Études Sci. Publ. Math., (11):167, 1961.

[EGA III2] Alexander Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux co-
hérents. II. Inst. Hautes Études Sci. Publ. Math., (17):91, 1963.

[EGA Inew] Alexander Grothendieck and Jean Alexandre Dieudonné. Éléments de géométrie algébrique. I, volume 166
of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1971.

[EGA IV1] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas. I. Inst. Hautes Études Sci. Publ. Math., (20):259, 1964.

[EGA IV2] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas. II. Inst. Hautes Études Sci. Publ. Math., (24):231, 1965.

[EGA IV3] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas. III. Inst. Hautes Études Sci. Publ. Math., (28):255, 1966.

[EGA IV4] Alexander Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes
de schémas IV. Inst. Hautes Études Sci. Publ. Math., (32):361, 1967.

[Epp73] Helmut P. Epp. Eliminating wild ramification. Invent. Math., 19:235–249, 1973.
[Fal88] Gerd Faltings. p-adic Hodge theory. J. Amer. Math. Soc., 1(1):255–299, 1988.

181

https://arxiv.org/abs/1806.09168v3
https://arxiv.org/abs/1807.04725v4
https://arxiv.org/abs/1905.08229v4
https://arxiv.org/abs/1905.08229v4
https://arxiv.org/abs/1912.10932v2


182 BIBLIOGRAPHY

[Fal02] Gerd Faltings. Almost étale extensions. Astérisque, (279):185–270, 2002. Cohomologies p-adiques et appli-
cations arithmétiques, II.

[Fal05] Gerd Faltings. A p-adic Simpson correspondence. Adv. Math., 198(2):847–862, 2005.
[Fon82] Jean-Marc Fontaine. Formes différentielles et modules de Tate des variétés abéliennes sur les corps locaux.

Invent. Math., 65(3):379–409, 1981/82.
[Fu15] Lei Fu. Etale cohomology theory, volume 14 of Nankai Tracts in Mathematics. World Scientific Publishing

Co. Pte. Ltd., Hackensack, NJ, revised edition, 2015.
[Gol61] Oscar Goldman. Determinants in projective modules. Nagoya Math. J., 18:27–36, 1961.
[GR03] Ofer Gabber and Lorenzo Ramero. Almost ring theory, volume 1800 of Lecture Notes in Mathematics.

Springer-Verlag, Berlin, 2003.
[GR04] Ofer Gabber and Lorenzo Ramero. Foundations for almost ring theory – release 7.5. https://arxiv.org/

abs/math/0409584v13, 2004.
[He21] Tongmu He. Faltings extension and Hodge-Tate filtration for abelian varieties over p-adic local fields with

imperfect residue fields. Canad. Math. Bull., 64(2):247–263, 2021.
[Hyo86] Osamu Hyodo. On the Hodge-Tate decomposition in the imperfect residue field case. J. Reine Angew.

Math., 365:97–113, 1986.
[Hyo89] Osamu Hyodo. On variation of Hodge-Tate structures. Math. Ann., 284(1):7–22, 1989.
[IKN05] Luc Illusie, Kazuya Kato, and Chikara Nakayama. Quasi-unipotent logarithmic Riemann-Hilbert corre-

spondences. J. Math. Sci. Univ. Tokyo, 12(1):1–66, 2005.
[Ill71] Luc Illusie. Complexe cotangent et déformations. I. Lecture Notes in Mathematics, Vol. 239. Springer-

Verlag, Berlin-New York, 1971.
[ILO14] Luc Illusie, Yves Laszlo, and Fabrice Orgogozo, editors. Travaux de Gabber sur l’uniformisation locale et

la cohomologie étale des schémas quasi-excellents. Société Mathématique de France, Paris, 2014. Séminaire
à l’École Polytechnique 2006–2008. [Seminar of the Polytechnic School 2006–2008], With the collaboration
of Frédéric Déglise, Alban Moreau, Vincent Pilloni, Michel Raynaud, Joël Riou, Benoît Stroh, Michael
Temkin and Weizhe Zheng, Astérisque No. 363-364 (2014) (2014).

[Jan88] Uwe Jannsen. Continuous étale cohomology. Math. Ann., 280(2):207–245, 1988.
[Kat89] Kazuya Kato. Logarithmic structures of Fontaine-Illusie. In Algebraic analysis, geometry, and number

theory (Baltimore, MD, 1988), pages 191–224. Johns Hopkins Univ. Press, Baltimore, MD, 1989.
[Kat94] Kazuya Kato. Toric singularities. Amer. J. Math., 116(5):1073–1099, 1994.
[Ker16] Moritz Kerz. Transfinite limits in topos theory. Theory Appl. Categ., 31:Paper No. 7, 175–200, 2016.
[Kie72] Reinhardt Kiehl. Ein “Descente”-Lemma und Grothendiecks Projektionssatz für nichtnoethersche Schemata.

Math. Ann., 198:287–316, 1972.
[Laz65] Michel Lazard. Groupes analytiques p-adiques. Inst. Hautes Études Sci. Publ. Math., (26):389–603, 1965.
[Niz98] Wiesława Nizioł. Crystalline conjecture via K-theory. Ann. Sci. École Norm. Sup. (4), 31(5):659–681, 1998.
[Niz06] Wiesława Nizioł. Toric singularities: log-blow-ups and global resolutions. J. Algebraic Geom., 15(1):1–29,

2006.
[Niz08] Wiesława Nizioł. Semistable conjecture via K-theory. Duke Math. J., 141(1):151–178, 2008.
[Ogu18] Arthur Ogus. Lectures on logarithmic algebraic geometry, volume 178 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 2018.
[Ohk11] Shun Ohkubo. A note on Sen’s theory in the imperfect residue field case. Math. Z., 269(1-2):261–280, 2011.
[Ohk14] Shun Ohkubo. On Lie algebras arising from p-adic representations in the imperfect residue field case. J.

Algebra, 406:134–142, 2014.
[Ols05] Martin C. Olsson. The logarithmic cotangent complex. Math. Ann., 333(4):859–931, 2005.
[Pan22] Lue Pan. On locally analytic vectors of the completed cohomology of modular curves. Forum Math. Pi,

10:Paper No. e7, 82, 2022.
[Sch11] Peter Schneider. p-adic Lie groups, volume 344 of Grundlehren der mathematischen Wissenschaften [Fun-

damental Principles of Mathematical Sciences]. Springer, Heidelberg, 2011.
[Sch12] Peter Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci., 116:245–313, 2012.
[Sch13a] Peter Scholze. p-adic Hodge theory for rigid-analytic varieties. Forum Math. Pi, 1:e1, 77, 2013.
[Sch13b] Peter Scholze. Perfectoid spaces: a survey. In Current developments in mathematics 2012, pages 193–227.

Int. Press, Somerville, MA, 2013.
[Sch16] Peter Scholze. p-adic Hodge theory for rigid-analytic varieties—corrigendum [MR3090230]. Forum Math.

Pi, 4:e6, 4, 2016.
[Sch17] Peter Scholze. Etale cohomology of diamonds. https://arxiv.org/abs/1709.07343v3, 2017.
[Sen73] Shankar Sen. Lie algebras of Galois groups arising from Hodge-Tate modules. Ann. of Math. (2), 97:160–

170, 1973.
[Sen81] Shankar Sen. Continuous cohomology and p-adic Galois representations. Invent. Math., 62(1):89–116,

1980/81.
[Ser79] Jean-Pierre Serre. Local fields, volume 67 of Graduate Texts in Mathematics. Springer-Verlag, New York-

Berlin, 1979. Translated from the French by Marvin Jay Greenberg.
[SGA 1] Revêtements étales et groupe fondamental (SGA 1), volume 3 of Documents Mathématiques (Paris) [Math-

ematical Documents (Paris)]. Société Mathématique de France, Paris, 2003. Séminaire de géométrie al-
gébrique du Bois Marie 1960–61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A.
Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lec-
ture Notes in Math., 224, Springer, Berlin; MR0354651 (50 #7129)].

[SGA 4I] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Lecture Notes in Mathe-
matics, Vol. 269. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie
1963–1964 (SGA 4), Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N.
Bourbaki, P. Deligne et B. Saint-Donat.

https://arxiv.org/abs/math/0409584v13
https://arxiv.org/abs/math/0409584v13
https://arxiv.org/abs/1709.07343v3


BIBLIOGRAPHY 183

[SGA 4II] Théorie des topos et cohomologie étale des schémas. Tome 2. Lecture Notes in Mathematics, Vol. 270.
Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964
(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de N. Bourbaki, P.
Deligne et B. Saint-Donat.

[SGA 4III] Théorie des topos et cohomologie étale des schémas. Tome 3. Lecture Notes in Mathematics, Vol. 305.
Springer-Verlag, Berlin-New York, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1963–1964
(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier. Avec la collaboration de P. Deligne et B.
Saint-Donat.

[SGA 6] Théorie des intersections et théorème de Riemann-Roch. Lecture Notes in Mathematics, Vol. 225. Springer-
Verlag, Berlin-New York, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6),
Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou,
O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.

[Sta22] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2022.
[Tat67] John Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183. Springer,

Berlin, 1967.
[Tat76] John Tate. Relations between K2 and Galois cohomology. Invent. Math., 36:257–274, 1976.
[Tsu99] Takeshi Tsuji. p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent.

Math., 137(2):233–411, 1999.
[Tsu02] Takeshi Tsuji. Semi-stable conjecture of Fontaine-Jannsen: a survey. Number 279, pages 323–370. 2002.

Cohomologies p-adiques et applications arithmétiques, II.
[Tsu11] Takeshi Tsuji. Purity for Hodge-Tate representations. Math. Ann., 350(4):829–866, 2011.
[Tsu18] Takeshi Tsuji. Notes on the local p-adic Simpson correspondence. Math. Ann., 371(1-2):795–881, 2018.
[Tsu19] Takeshi Tsuji. Saturated morphisms of logarithmic schemes. Tunis. J. Math., 1(2):185–220, 2019.
[Xu22] Daxin Xu. Parallel transport for Higgs bundles over p-adic curves. https://arxiv.org/abs/2201.06697v2,

2022.
[Zav21] Bogdan Zavyalov. Almost coherent modules and almost coherent sheaves. https://arxiv.org/abs/2110.

10773v3, 2021.

https://stacks.math.columbia.edu
https://arxiv.org/abs/2201.06697v2
https://arxiv.org/abs/2110.10773v3
https://arxiv.org/abs/2110.10773v3

	Acknowledgements
	Introduction Générale
	0.1. Aperçu
	0.2. Descente Cohomologique pour le Topos Annelé de Faltings
	0.3. Généralisations des Principaux Théorèmes de Comparaison p-adiques de Faltings
	0.4. Version Locale de la Filtration Hodge-Tate Relative
	0.5. Construction Canonique des Opérateurs de Sen sur les Corps Locaux
	0.6. Construction Canonique des Opérateurs de Sen sur une Variété Affine p-adique
	0.7. Action Infinitésimale par les Sous-groupes d'Inertie
	0.8. Presque-cohérence des Images Directes Supérieures

	Chapter I. Cohomological Descent for Faltings' p-adic Hodge Theory and Applications
	I.1. Introduction
	I.2. Notation and Conventions
	I.3. The v-site of Integrally Closed Schemes
	I.4. The arc-Descent of Perfect Algebras
	I.5. Almost Pre-perfectoid Algebras
	I.6. Brief Review on Covanishing Fibred Sites
	I.7. Faltings Ringed Sites
	I.8. Cohomological Descent of the Structural Sheaves
	I.9. Complements on Logarithmic Geometry
	I.10. Faltings' Main p-adic Comparison Theorem: the Absolute Case
	I.11. Faltings' Main p-adic Comparison Theorem: the Relative Case for More General Coefficients
	I.12. A Local Version of the Relative Hodge-Tate Filtration

	Chapter II. Sen Operators and Lie Algebras arising from Galois Representations over p-adic Varieties
	II.1. Introduction
	II.2. Notation and Conventions
	II.3. Brief Review on p-adic Analytic Groups
	II.4. Infinitesimal Actions of Representations arising from Kummer Towers
	II.5. Revisiting Brinon's Generalization of Sen's Theory after Tsuji
	II.6. Extending Sen operators to Infinite-Dimensional Representations
	II.7. Some Boundedness Conditions on a Ring Map
	II.8. Brief Review on Adequate Charts of Logarithmic Schemes
	II.9. Quasi-adequate Algebras and Faltings Extension
	II.10. Descent of Representations of Arithmetic Fundamental Groups after Tsuji
	II.11. Sen Operators over Quasi-adequate Algebras
	II.12. Application to Locally Analytic Vectors
	II.13. Appendix: Hyodo's Computation of Galois Cohomologies
	II.14. Appendix: Faltings Extensions as Graded Pieces of De Rham Period Rings

	Chapter III. Almost Coherence of Higher Direct Images
	III.1. Introduction
	III.2. Notation and Conventions
	III.3. Isomorphisms up to Bounded Torsion
	III.4. Pseudo-coherence up to Bounded Torsion
	III.5. Glueing Sheaves up to Bounded Torsion
	III.6. Almost Coherent Modules
	III.7. Proof of the Main Theorem
	III.8. Remark on Abbes-Gros' Construction of the Relative Hodge-Tate Spectral Sequence

	Bibliography

