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Titre : Descente en théorie de Hodge p-adique et applications

Mots clés : théorie de Hodge p-adique, descente, topos de Faltings, opérateur de Sen, presque-
cohérence.

Résumé :

Nous développons et étudions trois instances de la descente en théorie de Hodge p-adique.

Dans la premiére partie, nous établissons une descente cohomologique pour la théorie de Hodge p-
adique de Faltings. L’approche de Faltings de la théorie de Hodge p-adique peut étre schématiquement
divisée en deux étapes principales : premiérement, une réduction locale du calcul de la cohomologie
étale p-adique d’une variété lisse sur un corps local p-adique a un calcul de cohomologie galoisienne
puis, ’établissement d’un lien entre ce dernier et les différentielles. Ces relations sont organisées au
travers du topos annelé de Faltings dont la définition dépend du choix d’un modéle entier de la variété,
et dont les bonnes propriétés dépendent de la lissité (logarithmique) de ce modeéle. Notre résultat de
descente cohomologique pour le faisceau structural du topos de Faltings permet d’étendre ’approche
de Faltings a tout modéle entier, c’est-a-dire sans hypothése de lissité. Un ingrédient essentiel de
notre preuve est un résultat de descente d’algébres perfectoides en topologie des arcs di & Bhatt-
Scholze. Comme premiére application de notre descente cohomologique, en utilisant une variante
du théoréme d’altération de de Jong pour les morphismes de schémas due a Gabber-Illusie-Temkin,
nous généralisons le principal théoréme de comparaison p-adique de Faltings & tout morphisme propre
et de présentation finie de schémas cohérents sur une cléture intégrale absolue de Z, (sans aucune
hypotheése de lissité) pour des faisceaux étales de torsion (pas nécessairement localement constants
constructibles). Comme deuxiéme application, nous prouvons une version locale de la filtration
relative de Hodge-Tate comme conséquence de la version globale construite par Abbes-Gros.

Dans la deuxiéme partie, nous étendons la théorie de Sen aux variétés affines p-adiques admet-
tant des cartes semi-stables. Toute représentation p-adique de dimension finie du groupe de Galois
absolu d’un corps local p-adique a corps résiduel imparfait est caractérisée par ses opérateurs arith-
métique et géométriques de Sen définis par Sen et Brinon. Nous généralisons leur construction au
groupe fondamental d’une variété affine p-adique admettant une carte semi-stable, et donnons une
formulation canonique de la théorie de Sen indépendamment du choix de la carte, ce qui est nouveau
méme dans le cas des corps locaux. Notre construction dépend d’un théoréme de descente pour la
correspondance de Simpson p-adique développée par Tsuji. Lorsque la représentation provient d’une
Qp-représentation d’un groupe analytique p-adique quotient du groupe fondamental, nous décrivons
I’action de son algébre de Lie en termes d’opérateurs de Sen. C’est une généralisation d’un résultat de
Sen et Ohkubo. Ces opérateurs de Sen peuvent étre étendus continliment & certaines représentations
de dimension infinie. Comme application, nous prouvons que les opérateurs géométriques de Sen
annulent les vecteurs localement analytiques, généralisant un résultat de Pan.

Dans la troisiéme partie, pour un morphisme propre, plat et de présentation finie entre sché-
mas a faisceaux structuraux presque-cohérents (au sens de Faltings), nous prouvons que les images
directes supérieures de modules quasi-cohérents et presque-cohérents sont quasi-cohérents et presque-
cohérents. Notre preuve utilise une approximation noethérienne dans le contexte de la presque-algébre
de Faltings, inspirée de la preuve de Kiehl de la pseudo-cohérence des images directes supérieures.
Notre résultat nous permet d’étendre la preuve d’Abbes-Gros du principal théoréme de comparaison
p-adique de Faltings dans le cas relatif des morphismes log-lisses projectifs de schémas au cas des
morphismes log-lisses propres, et donc aussi leur construction de la suite spectrale de Hodge-Tate
relative.
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Abstract :

We develop and study three instances for descent in p-adic Hodge theory.

In the first part, we establish a cohomological descent for Faltings’ p-adic Hodge theory. Faltings’
approach in p-adic Hodge theory can be schematically divided into two main steps: firstly, a local
reduction of the computation of the p-adic étale cohomology of a smooth variety over a p-adic local
field to a Galois cohomology computation and then, the establishment of a link between the latter
and differential forms. These relations are organized through Faltings ringed topos whose definition
relies on the choice of an integral model of the variety, and whose good properties depend on the
(logarithmic) smoothness of this model. Our cohomological descent result for the structural sheaf of
Faltings topos makes it possible to extend Faltings’ approach to any integral model, i.e. without any
smoothness assumption. An essential ingredient of our proof is a descent result of perfectoid algebras
in the arc-topology due to Bhatt-Scholze. As an application of our cohomological descent, using a
variant of de Jong’s alteration theorem for morphisms of schemes due to Gabber-Illusie-Temkin, we
generalize Faltings’ main p-adic comparison theorem to any proper and finitely presented morphism
of coherent schemes over an absolute integral closure of Z,, (without any assumption of smoothness)
for torsion étale sheaves (not necessarily finite locally constant). As a second application, we prove a
local version of the relative Hodge-Tate filtration as a consequence of the global version constructed
by Abbes-Gros.

In the second part, we extend Sen’s theory to p-adic affine varieties with semi-stable charts.
Any finite-dimensional p-adic representation of the absolute Galois group of a p-adic local field with
imperfect residue field is characterized by its arithmetic and geometric Sen operators defined by Sen
and Brinon. We generalize their construction to the fundamental group of a p-adic affine variety with
a semi-stable chart, and give a canonical formation of Sen’s theory independently of the choice of
the chart, which is even new in the case of local fields. Our construction relies on a descent theorem
in the p-adic Simpson correspondence developed by Tsuji. When the representation comes from a
Q,-representation of a p-adic analytic group quotient of the fundamental group, we describe its Lie
algebra action in terms of the Sen operators, which is a generalization of a result of Sen and Ohkubo.
These Sen operators can be extended continuously to certain infinite-dimensional representations.
As an application, we prove that the geometric Sen operators annihilate locally analytic vectors,
generalizing a result of Pan.

In the third part, for a flat proper morphism of finite presentation between schemes with almost
coherent structural sheaves (in the sense of Faltings), we prove that the higher direct images of quasi-
coherent and almost coherent modules are quasi-coherent and almost coherent. Our proof uses a
Noetherian approximation in the context of Faltings’ almost algebra, inspired by Kiehl’s proof of
the pseudo-coherence of higher direct images. Our result allows us to extend Abbes-Gros’ proof of
Faltings’ main p-adic comparison theorem in the relative case for projective log-smooth morphisms of
schemes to proper ones, and thus also their construction of the relative Hodge-Tate spectral sequence.
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Introduction Générale

0.1. Apercgu

0.1.1. Le fil conducteur de cette thése est celui de la descente en théorie de Hodge p-adique. Nous en
développons et en étudions trois instances correspondant aux trois chapitres de cette thése :

(1) une descente cohomologique pour le topos annelé de Faltings, ce qui nous permet de libérer
I’approche de Faltings de la théorie de Hodge p-adique de I’hypothése d’existence de bons
modéles entiers ;

(2) une descente de représentations du groupe fondamental d’une variété p-adique, ce qui nous
permet d’étendre canoniquement la théorie de Sen aux variétés affines p-adique admettant
des cartes semi-stables ;

(3) une approximation noethérienne dans la contexte de la presque-algébre de Faltings, ce qui
nous permet de prouver la presque-cohérence d’images directes supérieures généralisant un
résultat d’Abbes-Gros.

0.1.2. Commencons par la descente de représentations galoisiennes et la théorie de Sen. Soient K un

corps de valuation discréte complet extension de Q,, K une cloture algébrique de K, K le complété p-
adique de K, G le groupe de Galois de K sur K. Lorsque le corps résiduel de K est parfait, pour toute

K-représentation W de G de dimension finie (semi-linéaire et continue), Sen [Sen81] lui associe un

endomorphisme canonique K-linéaire de W, appelé "opérateur (arithmétique) de Sen, qui détermine
la classe d’isomorphisme de la représentation W de G. Lorsque le corps résiduel de K est imparfait
et admet une p-base de cardinal d, Brinon [Bri03] y ajoute d opérateurs géométriques de Sen pour
déterminer la classe d’isomorphisme de la représentation W de G. Cependant, ces opérateurs (y
compris l'opérateur arithmétique) dépendent du choix de la p-base, et ne sont donc pas canoniques
sid>1.

0.1.3. La construction de Sen et Brinon repose sur un théoréme de descente des représentations.
Plus précisément, choisissons t1,...,t4 € Ok des relévements d’une p-base du corps résiduel (que
nous appellerons une systéme de coordonnées). On fixe également un systéme compatible de racines
primitives p"-iémes de l'unité ¢ = ({pn )nen et un systéme compatible de racines p"-iémes (¢; pr )nen
de t; pour tout 1 < i < d. Nous posons également ¢ty ,» = (p» par souci de cohérence. Pour tous
n,m € NU{oo}, considérons I'extension de corps K, y, = K ((pn,t1,pm, ..., tapm) de K contenu dans
K. On pose simplement K, o = K, et on nomme les groupes de Galois comme indiqué dans le
diagramme suivant

(0.1.3.1) F\
N
)

Ko<~—K
=

Alors, toute K-représentation de dimension finie W de G se descend en une K, o-représentation V'
de T' par un théoréme de Sen et Brinon, au sens ou il existe une équivalence de catégories

cont cont

(0.1.3.2) Repliol (I, Koo o0) — Replil (G K), Vs K @k V.
Le groupe topologique I' = ¥ x A est localement isomorphe & Z,, x Zg7 et son algebre de Lie Lie(I") sur

Q, est donc de dimension 1+ d. L’action infinitésimale de Lie(I') sur V s’é¢tend alors K-linéairement
en une action (non-canonique) de lalgébre de Lie Lie(T") sur W, qui définit les 1 + d opérateurs de
W construits par Brinon.
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0.1.4. A priori, dés que ’on change le systéme de cordonnées t1, ..., tq4, la sous-représentation VC W
définie par descente change, ainsi que les 1+ d opérateurs associés sur W. La premiére question est de
savoir si on peut définir une action d’algébre de Lie canonique sur W, qui redonnerait les opérateurs
de Sen définis par Brinon une fois une base choisie. Nous y répondons positivement dans la second
partie (Chapitre II) de cette thése en considérant l’extension de Faltings de Ok définie dans [He21]|,

c’est-a-dire une suite exacte canonique de K-représentations de dimension finie de G,
(0.1.4.1) 0— K(1) -5 o, = K Q0 0, — 0,

dans laquelle K (1) désigne le premier twist de Tate de K, &o,, = I'&nx'_)px Q%Q? /0, st un K-espace de
dimension 14d ayant une base {(d1log(t; pn))nen}o<i<a. Cette suite se déduit de la suite fondamentale
des modules des différentielles associés a la tour Oz/Ok /Z,. En prenant les duaux et les twists de
Tate, on obtient une suite exacte canonique

~

(0.1.4.2) 0 — Homo, (0, (—1),K) L5 &5, (1) “5 K — 0

~

oy, = Homﬁ(éao «» K). 1l existe une structure de K-algebre de Lie canonique sur &5 (1) associée
a la forme linéaire ¢* définie par [f1, fo] = ¢*(f1)f2 — ¢*(f2)f1 pour tous f1, fo € &5, (1). Ce sera
lalgébre de Lie canonique remplagant Lie(I'). Intuitivement, le module &p, = @IHW Qb? 10K
unifie tous les systémes de cordonnées t1,...,tq, et si on fixe un systéme, alors on obtient un iso-
morphisme non-canonique d’algebres de Lie &5, (1) = Lie(I'). Au Chapitre II, nous construisons une

action de I'algébre de Lie canonique &g (1) sur chaque K-représentation de dimension finie W of G,
ce qui fournit une construction canonique des opérateurs de Sen de W.

0.1.5. Nous étendons en fait la construction des opérateurs de Sen aux variétés p-adiques au Chapitre
II. Tout d’abord, nous avons besoin de [’extension de Faltings pour les variétés p-adiques. Celle-ci a été
construite par Faltings [Fal88] en utilisant la suite fondamentale des modules des différentielles, afin
de relier la cohomologie étale et les différentielles dans sa preuve de la décomposition de Hodge-Tate.
La construction de Faltings s’étend aux variétés logarithmiques. A priori, cela dépend du choix d’une
carte pour la structure logarithmique. Néanmoins, nous prouvons au Chapitre II que la construction
est en fait canonique en se réduisant aux extensions de Faltings canoniques sur les corps locaux, ou
I'un des principaux ingrédients est la descente des algébres perfectoides en topologie des arcs due a
Bhatt-Scholze [BS19]. Nous remarquons qu’Abbes-Gros [AGT16| ont utilisé une autre approche
pour une construction canonique de ’extension de Faltings via le torseur de Higgs-Tate. Ensuite, on
construit une action d’algébre de Lie du dual de 'extension de Faltings sur les représentations du
groupe fondamental d’une variété p-adique par un théoréme de Tsuji [Tsul8] (généralisant celui de
Sen et Brinon), dont la canonicité est vérifiée en se réduisant au cas des corps locaux.

0.1.6. La descente d’algébres perfectoides en topologie des arcs est également 1'un des ingrédients clés
de la premiére partie (Chapitre I) de cette thése. Le but de cette derniére est de rendre ’approche
de Faltings de la théorie de Hodge p-adique « libre des modéles entiers » . Rappelons qu’une pierre
angulaire de ’approche de Faltings est le topos annelé de Faltings, qui est construit pour étre un
pont entre la cohomologie étale p-adique et les différentielles d’une variété p-adique. Cependant,
la définition du topos de Faltings dépend du choix d’un modéle entier de la variété, et les bonnes
propriétés du topos de Faltings dépendent de la lissité (logarithmique) de ce modeéle. Pour libérer
I’approche de Faltings de ’hypothése de lissité sur le modéle entier, nous établissons un résultat de
descente cohomologique pour le topos annelé de Faltings en utilisant la descente d’algébres perfectoides
en topologie des arcs. Nous introduisons pour cela une variante du topos de Faltings pour la topologie
v, satisfaisant de bonnes propriétés de descente cohomologique et qui peut étre considérée comme un
analogue schématique du topos v d’un espace adique. En particulier, nous établissons un résultat
de descente cohomologique de ce topos au topos de Faltings. C’est un analogue de la descente
cohomologique du topos v au topos pro-étale d’un espace adique établi par Scholze [Sch17].

Nous donnons deux applications de notre résultat de descente cohomologique. Tout d’abord,
nous étendons le principal théoréme de comparaison p-adique de Faltings, a la fois dans le cas absolu
et dans le cas relatif, aux modéles entiers généraux sans aucune condition de lissité. Le théoréme de
comparaison de Faltings a été généralisé par Scholze aux variétés analytique rigides, d’abord dans le
cas lisse puis dans le cas général. Notre application est un analogue de cette derniére généralisation.
Meéme dans le cas lisse, le théoréme de comparaison de Faltings et la généralisation de Scholze ne
peuvent étre directement déduits I'un de l'autre. Deuxiémement, nous prouvons ’existence d’une
version locale de la filtration relative de Hodge-Tate comme conséquence de la version globale con-
struite par Abbes et Gros [AG20] et de notre résultat de descente cohomologique. Nous voudrions
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mentionner une troisiéme application intéressante de notre résultat a la correspondance de Simpson
p-adique donnée par Xu [Xu22].

0.1.7. La troisiéme partie (Chapitre IIT) de cette thése vise a généraliser un résultat d’Abbes-Gros
sur la presque-cohérence des images directes supérieures par un morphisme projectif de schémas au
cas d’un morphisme propre. Le résultat de presque-cohérence est I'un des ingrédients clés de la
preuve d’Abbes-Gros du principal théoréme de comparaison p-adique de Faltings dans le cas relatif
et donc de leur construction de la suite spectrale de Hodge-Tate relative [AG20]. Notre généralisa-
tion nous permet d’étendre leurs arguments aux morphismes log-lisses propres. Notre preuve utilise
I’approximation noethérienne pour ramener le calcul des images directes supérieures au cas noethérien.
Elle est inspirée de la preuve de Kiehl de la pseudo-cohérence des images directes supérieures [Kie72].

0.2. Descente Cohomologique pour le Topos Annelé de Faltings

0.2.1. La preuve de Faltings de la décomposition de Hodge-Tate illustre son approche de la théorie
de Hodge p-adique et le role de son topos annelé. Soient K un corps de valuation discréte complet

extension de Q, & corps résiduel parfait, K une cloture algébrique de K, K le complété p-adique de
K. Pour un K-schéma propre et lisse X, Tate a conjecturé qu’il existe une décomposition canonique
Gk = Gal(K/K)-équivariante, appelée la décomposition de Hodge-Tate ([Tat67, Remark, page 180]),

(0.2.1.1) Hy (X7, Q) @, K = P HIUX, Q%) @k K(g—n),

0<q<n

ott K(q—n) est le (¢ —n)-iéme twist de Tate de K. Cette conjecture a été prouvée indépendamment
par Faltings [Fal88, Fal02|, Niziol [Niz98, Niz08| et Tsuji [Tsu99, Tsu02], et a été généralisée au
cadre analytique rigide par Scholze [Sch13a].

0.2.2. Pour un Og-schéma propre et semi-stable X de fibre générique géométrique Y = X, Faltings
a introduit un site annelé ( i{,t _x:PB), appelé le site annelé de Faltings, pour servir de pont entre la
cohomologie étale de Y et les différentielles sur X. Concrétement, ces liens s’établissent & travers des

morphismes naturels de sites
(0.2.2.1) Yo -5 B -5 Xy
qui vérifient les propriétes suivante :
(1) (Principal théoréme de comparaison p-adique de Faltings, [Fal02, Thm.8, page 223|, [AG20,

4.8.13]). Pour tout faisceau abélien localement constant constructible F sur Yz, il existe un
morphisme canonique

(0.2:2.2) R (Y, F) ©% O — RU(ESL, v, 1. F 91 %),

qui est un presque-isomorphisme, c’est-a-dire que les groupes de cohomologie de son cone
sont annulés par p” pour tout nombre rationnel r» > 0.

(2) (Calcul de Faltings de la cohomologie galoisienne, [AG20, 6.3.8]). Il existe un homomor-
phisme canonique de Ox ®o, Ox-modules

(0.2.2.3) 0% 0, (log X;) ®o, O/p" O — R0, (B/p" %)

ou X, désigne la fibre spéciale du Og-schéma X, dont le noyau et le conoyau sont annulés
par p” pour tout nombre rationnel r > %.

On remarquera que Z/p"Z = ¢.(Z/p"Z). Faltings a déduit la décomposition de Hodge-Tate de
la dégénérescence et du caractére scindé de la suite spectrale de Cartan-Leray associée au foncteur
composé RI'(X4, —) o Ro,, nommeée plus tard la suite spectrale de Hodge-Tate par Scholze. En
utilisant le théoréme d’altération de de Jong, on peut déduire la décomposition de Hodge-Tate pour
un K-schéma général propre et lisse en se ramenant au cas ou il admet un modeéle semi-stable (cf.
[Tsu02, A5]).

0.2.3. Afin d’énoncer notre résultat de descente cohomologique, nous commencgons par la définition
du site de Faltings associé & un morphisme ¥ — X de schémas cohérents (i.e. quasi-compacts et
quasi-séparés) (cf. 1.7.7). Soit E$' ,  la catégorie des morphismes de schémas cohérents V — U
au-dessus de Y — X, c’est-a-dire les diagrammes commutatifs

(0.2.3.1) V—>U

,

Y —X
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tels que U soit étale au-dessus X et que V' soit fini étale au-dessus Y x x U. Nous munissons E‘;} X
de la topologie engendrée par les familles de morphismes des types suivants :

(V) {(Vin = U) = (V= U)}mem, ot M est un ensemble fini et [, .5, Vin — V est surjectif ;
(c) {(Vxp U, = Un) = (V= U)}nen, ot N est un ensemble fini et J], .y U, — U est
surjectif.

Considérons le préfaisceau Z sur E§'_,  défini par
(0.2.3.2) BV - U)=TUY,0yv),

ou UV est la cloture intégrale de U dans V. Il s’agit en fait d’un faisceau d’anneaux, le faisceau
structural de E§! | (cf. 1.7.6).

0.2.4. Rappelons que la descente cohomologique de la cohomologie étale le long des hyper-recouvrements
propres peut étre généralisée comme suit : pour un schéma cohérent S, nous munissons la catégorie
des S-schémas cohérents Sch‘;‘gh de la topologie h de Voevodsky, qui est engendrée par des recou-
vrements étales et les morphismes propres surjectifs de présentation finie. Alors, pour tout faisceau
abélien de torsion F sur Sg;, notant a : (Sch%h)h — S¢ le morphisme naturel de sites, le morphisme
d’adjonction F — Ra,a~'F est un isomorphisme.

Ce résultat reste vrai pour une topologie plus fine, la topologie v. Un morphisme de schémas
cohérents T — S est appelé un recouvrement v si pour tout morphisme Spec(4) — S ou A est
un anneau de valuation, il existe une extension d’anneaux de valuation A — B et un relévement
Spec(B) — T. En effet, un recouvrement v est une limite des recouvrements h (cf. 1.3.6). Nous
allons décrire la descente cohomologique pour Z & l'aide d'un nouveau site construit a partir de la
topologie v, qui peut étre considérée comme un analogue schématique du site v des espaces adiques

(cf. [Sch17, 8.1, 14.1, 15.5]).

Définition 0.2.5 (cf. 1.3.23). Soit S° — S une immersion ouverte de schémas cohérents telle que S
soit intégralement clos dans S°. Nous définissons un site Igo_,g comme suit:

(1) La catégorie sous-jacente est la catégorie des S-schémas cohérents T intégralement clos dans
S° % S T.
(2) La topologie est engendrée par les familles couvrantes {T; — T'};c; pour la topologie v.
Nous appelons Igo_.g le site v des S-schémas cohérents S°-intégralement clos, et nous appelons
faisceau structural de Iso_,g le faisceau & sur Igo_,g associé au préfaisceau T +— I'(T, Or).

0.2.6. Soit p un nombre premier, Z, la cloture intégrale de Z, dans une cloture algébrique Q,, de Q.
On pose S° = Spec(Q,) et S = Spec(Z,). Considérons un diagramme de schémas cohérents

(0.2.6.1) Y XY X

A

Spec(@) —_— Spec(Zi,)

ot XV est la cloture intégrale de X dans Y et le carré est cartésien (nous n’imposons aucune condition
sur la régularité ou la finitude de Y ou X). Le foncteur et : E{Y | — Iy, xv envoyant V — U a
UV définit un morphisme naturel de sites annelés

(0.2.6.2) e:(Iyxv,0) — (EY_ x, B).

Notre résultat de descente cohomologique énoncé ci-dessous peut étre considéré comme un analogue
schématique du résultat de descente cohomologique pour le site pro-étale d'un espace adique (cf.
[Sch17, 8.8, 14.7, 15.5]) :

Théoréme 0.2.7 (Descente cohomologique pour les sites annelés de Faltings, cf. 1.8.14). Pour tout
faisceau abélien localement constant constructible I sur Egﬁ_,X, le morphisme canonique

(0.2.7.1) L ®z B — Re (e 'L ®g O)
est un presque-isomorphisme.

Corollaire 0.2.8 (cf. 1.8.18). Pour tout hyper-recouvrement propre Xo — X, si a : E‘;};HX. —
E‘?};X désigne l'augmentation du site simplicial ot Yo =Y X x X, alors le morphisme canonique

(0.2.8.1) L ®z # — Ra.(a 'L ®@z A.)

est un presque-isomorphisme.
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L’ingrédient clé de notre preuve de 0.2.7 est la descente des algébres perfectoides en topologie
des arcs (une topologie plus fine que la topologie v) due a Bhatt-Scholze [BS19, 8.10] (cf. 1.5.35).
L’analogue en caractéristique p de 0.2.7 est le calcul de Gabber de la cohomologie du faisceau struc-
tural en topologie h (cf. 1.4). Le Théoréme 0.2.7 nous permet de descendre des résultats importants
pour les sites de Faltings associés aux bons modéles aux sites de Faltings associés aux modéles
généraux.

0.3. Généralisations des Principaux Théorémes de Comparaison p-adiques de Faltings

0.3.1. Nous utilisons le Théoréme 0.2.7 pour généraliser le théoréme de comparaison de Faltings dans
le cas absolu. Soit A un anneau de valuation, extension de Zj,, de corps des fractions algébriquement
clos. Considérons un carré cartésien de schémas cohérents

(0.3.1.1) Y X

L]

Spec(A[%]) — Spec(A4)

Théoréme 0.3.2 (Principal théoréme de comparaison p-adique de Faltings dans le cas absolu, cf.
1.10.17). Supposons X propre et de présentation finie sur A. Alors, pour tout faisceau abélien locale-
ment constant constructible F sur Yz, il existe un morphisme canonique

(0.3.2.1) RI'(Yy,F) @% A — RI(ES ., .F @7 A),
qui est un presque-isomorphisme.

On remarque que le morphisme naturel ¢ : Vg, — E§', v induit une équivalence des catégories
de faisceaux abéliens localement constants constructibles sur Y et ES' ,  (cf. 1.10.3),

(0.3.2.2) LocSys(Yzt) <£*l> LocSys(E§ . ).
=

Dans la continuité des travaux d’Abbes-Gros, le morphisme canonique (0.3.2.1) (appelé le morphisme
de comparaison de Faltings) est construit en utilisant l'acyclicité de ¢ pour F, ie. ©.F = Ry, F
(donc RI' (Y, F) = RI(ES!, , ¥.F)), qui est une conséquence du résultat d’Achinger sur les schémas
K(m,1) (cf. 1.10.6 et 1.10.8). Nous proposons également une nouvelle fagon de construire le morphisme
de comparaison de Faltings dans la catégorie dérivée des presque-modules en utilisant notre résultat de
descente cohomologique 0.2.7, qui évite d’utiliser ’acyclicité de . En effet, il existe des morphismes
naturels de sites

(0.3.2.3) (Schf$%)y —&— Yy

\Ifl lw
Iy ,xv —E§_

et U est acyclique pour tout faisceau abélien de torsion F sur Yy, ie. U.(a 'F) = RV, (a"1F),
qui autorise des coefficients plus généraux et dont la preuve est beaucoup plus simple que celle pour
¥ (cf. 1.3.27). Nous remarquons que cette nouvelle construction ne nous donnera pas un « vrai
morphisme » (0.3.2.1) mais un morphisme canonique dans la catégorie dérivée des presque modules
(cf. 1.11.6).

0.3.3. Expliquons maintenant briévement la stratégie pour prouver le Théoréme 0.3.2 :

(1) Premicérement, nous utilisons le théoréme d’altération de de Jong-Gabber-Illusie-Temkin
pour les morphismes de schémas [ILO14, X.3] pour obtenir un morphisme surjectif, propre
et de présentation finie X’ — X tel que le morphisme X’ — Spec(A) soit la limite cofiltrée
d’un systéme de « bons morphismes » X{ — T\ de « bons modéles » sur O, , ou K est
une extension finie de Q,, (cf. 1.9.11).

(2) Ensuite, on applique le théoréme de comparaison de Faltings dans le cas relatif aux « bons
morphismes » X} — T (formulé par Faltings [Fal02, Thm.6, page 266] et démontré par
Abbes-Gros [AG20, 5.7.4], cf. 1.10.13). Par un argument de limite, on obtient le théoréme
de comparaison pour X'.

(3) Enfin, en utilisant notre résultat de descente cohomologique 0.2.8, nous en déduisons le
théoréme de comparaison pour X.
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0.3.4. Lesite Iy _, xv est également approprié pour globaliser le théoréme de comparaison de Faltings.
Considérons un carré cartésien de schémas cohérents

(0.3.4.1) Y — = X'

|

Y —X

ot Y — X est cartésien sur Spec(Q,) — Spec(Z,). En particulier, il existe un morphisme naturel de
sites annelés par la fonctorialité de (0.3.2.3),

(0342) fI : (IY’—)X’Y,7 ﬁ/) — (IY_>XY, ﬁ)

Théoréme 0.3.5 (cf. 1.11.11). Supposons X' — X propre et de présentation finie. Soient F' un
faisceau abélien de torsion sur Y}, et F' = W, a'~'F (cf. (0.3.2.3)). Alors, le morphisme canonique

(0.3.5.1) (Rf1.F') 9% 0 — Rf1.(F' @7 0")
est un presque-isomorphisme.

On remarque que si F' = Z/p"Z alors #' = Z/p"7Z (cf. 1.3.27), et que RYf1..#’ est le faiseau
de cohomologie étale de Y’ sur Y a coefficients F’ en topologie v (cf. 1.11.12). Trés grossiérement,
les objets de Iy _, xv sont « localement » des spectres d’anneaux de valuation, et les « fibres » de
(0.3.5.1) sont des morphismes de comparaison de Faltings (0.3.2.1) si F’ est localement constant
constructible (cf. 1.11.5). Le Théoréme 0.3.5 peut &tre considéré comme un analogue schématique
du théoréme de comparaison de Scholze pour la cohomologie étale p-adique pour un morphisme de
variétés analytiques rigides [Sch13b, 3.13].

Enfin, nous généralisons le principal théoréme de comparaison p-adique de Faltings dans le cas
relatif en utilisant les Théorémes 0.2.7 et 0.3.5.

Théoréme 0.3.6 (Principal théoréme de comparaison p-adique de Faltings dans le cas relatif, cf.
1.11.13 et 1.11.14). Supposons Y' — Y lisse et X' — X propre et de présentation finie. Alors, pour
tout faisceau abélien localement constant constructible F' sur YY;, il existe un morphisme canonique

(0.3.6.1) (R RfstuF) @F B — Rfg. (VLF @7, B ),

qui est un presque-isomorphisme, et ot fo : Y}, — Yo et fg : ES_ , — E§f_, « sont les morphismes
naturels de sites. En particulier, il existe un morphisme canonique

(0.3.6.2) (VR feeu ') @7, B — R fp(W.F 5, B ),

qui est un presque-isomorphisme, pour tout entier q.

0.4. Version Locale de la Filtration Hodge-Tate Relative

0.4.1. Une autre application de notre résultat de descente cohomologique est une généralisation de la
décomposition de Hodge-Tate au cas relatif. Soit K un corps de valuation discréte complet extension
de Q, a corps résiduel algébriquement clos, (f,g) : (X* — X’') - (X° — X) un morphisme
d’immersions ouvertes de schémas cohérents au-dessus de Spec(K) — Spec(Of). Nous supposons
que les conditions suivantes sont remplies :

(1) Les schémas logarithmiques associés (X', #x/), (X, #x) munis des structures logarith-
miques compactifiantes sont adéquats (une condition technique qui est satisfaite si les im-
mersions ouvertes X — X’ X° — X sont semi-stables sur Ok, cf. 1.10.11).

(2) Le morphisme de schémas logarithmiques (X', #x/) — (X, #x) est lisse et saturé.

(3) Le morphisme de schémas g : X’ — X est propre.

(4) Le schéma X = Spec(R) est affine et il existe un nombre fini de diviseurs non nuls fi,..., f.
de R[1/p] tels que le diviseur D = >""_, div(f;) sur Xk ait pour support X \ X3 et qu'a
chaque hensélisation stricte de Xk les élements f; contenus dans 1'idéal maximal forment
un sous-ensemble d’un systéme régulier de parameétres (en particulier, D est un diviseur a
croisements normaux sur X ).

Pour tout X j--schéma cohérent Y, on définit un Y-schéma pro-fini étale.
(0.4.1.1) Yoo =limY[Ty,...,T]/(TV — f1,..., T — fr).

Théoréme 0.4.2 (cf. 1.12.7 et 1.8.24). Sous les hypotheses de 0.4.1, soit U un schéma affine pro-
étale sur X et soit V. un Uz _ -schéma pro-fini étale (ot U° = X° xx U) satisfaisant les conditions
suivantes :
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1) La cléture intégrale de U dans V est le spectre d’une Oz-algébre A qui est presque pré-
K
perfectoide au sens de 1.5.19.
2) Pour tous entiersn > 0 et k > 0, Uimage inverse (R" fees Z/p*Z)|v,, est un faisceau constant.
g st
Soit T un point géométrique de V. Alors, pour tout entier n > 0, il existe une filtration décroissante
finie canonique (fi1?) ez sur Hi (X2, Z,) @z, A[1/p] et un isomorphisme canonique pour tout q € Z,

N 1 n -1
(0.4.2.1) g (HE(XF, 2,) @2, AL)) = HOX Q00 i) @1 AL g =),

ou gr? désigne le gradué ﬁlq/ﬁlq+1. De plus, si U° et V sont connexes et si le corps des fractions de
V est une extension galoisienne de celui de U° de groupe de Galois T, alors la filtration (fil?)4ez et
les isomorphismes (0.4.2.1) sont I'-équivariants.

Remarque 0.4.3. Les objets V' — U satisfaisant les conditions de 0.4.2 forment une famille topologique-
ment génératrice du site pro-étale de Faltings de X% — X (voir la preuve de 1.8.24).

0.4.4. Cette filtration de Hodge-Tate relative locale découle de la filtration de Hodge-Tate relative
globale construite par Abbes-Gros [AG20]. Leur filtration se construit via le topos de Faltings associé
a X% — X. Dans la premiére version de leur travail, ils ont posé la question de l'existence d’une
version locale explicite. Scholze et Caraiani [CS17] ont construit indépendamment une filtration
de Hodge-Tate relative pour des morphismes lisses et propres d’espaces adiques lisses, et Scholze
a annoncé qu’il pouvait donner une version locale, répondant & la question d’Abbes-Gros. Notre
construction est obtenue en appliquant notre résultat de descente cohomologique pour le topos annelé
de Faltings a la filtration de Hodge-Tate relative globale d’Abbes-Gros. Dans une nouvelle version de
leur manuscrit, Abbes-Gros ont donné une troisiéme construction de la filtration locale de Hodge-Tate
dans un cadre un peu plus restrictif, en utilisant un résultat de descente cohomologique qui est un
cas particulier de notre résultat.

0.5. Construction Canonique des Opérateurs de Sen sur les Corps Locaux

0.5.1. Notre stratégie pour construire les opérateurs de Sen sur les variétés p-adiques est de recoller
les opérateurs de Sen définis dans le cas de corps locaux. Nous faisons d’abord un bref rappel sur
la construction des opérateurs de Sen par Brinon. Soient K un corps de valuation discréte complet
extension de @, dont le corps résiduel est imparfait avec une p-base de cardinal d > 0, K une cloture

algébrique de K, K le complété p-adique de K, G le groupe de Galois de K sur K. Nous choisissons
t1,...,tqg € Ok des relévements d’'une p-base du corps résiduel. On fixe un systéme compatible de
racines primitives p”-iémes de l'unité ¢ = ({pn)nen et un systéme compatible de racines p™-iémes
(tipn)nen de t; pour tout 1 < ¢ < d. Nous posons également ¢y ,» = (,» par souci de cohérence.
Pour tous n,m € NU {oo}, considérons 'extension de corps K, = K ((pn,t1pm,. .., tapm) sur K
contenue dans K. On pose simplement K,, o = K,, et on nomme les groupes de Galois correspondants
comme indiqué dans le diagramme suivant

(0.5.1.1)

.
\
\

ff\

G

o

K<—K

Toute K-représentation de dimension finie W de G se descend en une Ko o-représentation V' de
I’ par un théoréme de Brinon (cf. I1.5.17). On remarque qu’elle peut étre descendue en une K-
représentation de I' sur laquelle A agit analytiquement grace a un théoréme de Tsuji (cf. 11.5.18). Ici,
agir analytiquement signifie que I'action de tout élément de A est donnée par I’exponentielle de son
action infinitésimale (cf. I1.4.14). Le groupe topologique I" est bien un groupe analytique p-adique,
auquel on peut associer une algébre de Lie Lie(T") sur Q,. L’action infinitésimale de Lie(T") sur V'

s’étend K-linéairement en une action de I'algébre de Lie (non-canonique) Lie(T') sur W, qui définit
les 1 4 d opérateurs de W par Brinon (I' est localement isomorphe & Z, x Zg).

0.5.2. Cette action de Lie(T') dépend du choix de t1,...,tq4, ce qui empéche sa généralisation aux
variétés p-adiques. La premiére question est de savoir si on peut définir une action d’algeébre de Lie
canonique sur W, qui donne les opérateurs de Sen définis par Brinon en choisissant une base. Nous y
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répondons positivement en considérant ’extension de Faltings de Ok définie dans [He21] (cf. 11.5.7),

c’est-a~dire une suite exacte canonique de K-représentations de G,

(0.5.2.1) 0— K(1) - o, = K ©0, 0, — 0,
ot K (1) désigne le premier twist de Tate de K, o, = %iLanpx Qé? /0, st un K-espace vectoriel

de dimension 1 + d ayant une base {(dlog(t; pn))nento<i<d. En prenant les duaux et les twists de
Tate, on obtient une suite exacte canonique

* . ~

(0.5.2.2) 0 — Homo, (O, (1), K) L5 &5, (1) “5 K — 0

~

ouéy, = Hom%(go > K). Tl existe une structure de K-algébre de Lie canonique sur &5, (1) associée
a la forme linéaire «* défini par [f1, fo] = ¢*(f1)fe — ¢*(f2)f1 pour tous fi, fo € &5, (1). Ce sera
Palgébre de Lie canonique remplagant Lie(I"), nous servant a obtenir la définition canonique suivante
des opérateurs de Sen.

Théoréme 0.5.3 (cf. 11.5.35, 11.5.38). Soient K un corps de valuation discréte complet extension de
Qp dont le corps résiduel admet une p-base de cardinal fini, G son groupe de Galois absolu. Pour toute

K -représentation de dimension finie W de G, il existe un homomorphisme G-équivariant canonique

d’algebres de Lie K -linéaires (ot nous considérons l'action adjointe de G sur Endﬁ(W)),

(0.5.3.1) Psen|w 1 €5, (1) — End=(W),
qui est fonctoriel en W et vérifie les propriétés suivantes :
(1) Soient tq,...,te € K muni de systéemes compatibles de mcz'nfs p"-iemes (t; pn)nen C K tels
que dty, ..., dt. soient K-linéairement indépendants dans Qf, [1/p]. Considérons la tour

(Kn,m)n.men définie par ces éléments de maniére analogue & (0.5.1.1), prenons la méme
notation pour les groupes de Galois, et supposons qu’il existe une représentation V de T’

sur laquelle A agisse analytiquement (11.4.14) telle que W = K ®x__ V. Alors, T est
naturellement localement isomorphe a Z, X Zy,, et si on prend la base standard dy, . .., 0. de
Lie(T") = Lie(Z,, x Z), alors pour tout f € &5 (1),

(0.5.3.2) psenlw (f) = Y f((dlog(tipn))nen © C) ® po,lv,
=0

ot g, |v est Uaction infinitésimale de 0; sur V.
(2) Soient K’ un corps de valuation discréte complet extension de K dont le corps résiduel admet

une p-base de cardinal fini, W' = FQ@% W. Supposons que K' @k (AZ}DK[l/p] — ﬁ%?w [1/p]
soit injectif. Alors, il existe un diagramme commutatif naturel

PSen ‘ w!

(0.5.3.3) &5, (1) End= (W)

l |

K@= &5, (1) K’ @= End=(W)

id%@ﬁDSen |w

De plus, si K' est une extension finie de K, alors la fleche verticale gauche est un isomor-
phisme.

La clé de la preuve est de montrer que lapplication @gen|w définie par la formule (0.5.3.2) ne
dépend pas du choix de V ou des ;. Pour cela, nous utilisons la variante de la correspondance de
Simpson p-adique développée par Tsuji [Tsul8] sur Ok (cf. I11.5.31). Un ingrédient est que ’anneau
de périodes utilisé dans cette correspondance est construit comme la colimite filtrée des produits
tensoriels symétriques de U'extension de Faltings (0.5.2.1) (appelée 'anneau de Hyodo, cf. 11.5.13).
Nous remarquons que I’hypothése sur K’ Q}QK[l /p] = ﬁbK/[l /p] pour la fonctorialité est une
condition technique nécessaire pour sa preuve, et nous ne savons pas comment la supprimer (cf.

11.5.38).
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0.6. Construction Canonique des Opérateurs de Sen sur une Variété Affine p-adique

0.6.1. Nous pouvons maintenant généraliser la construction des opérateurs de Sen aux variétés p-
adiques. Soient K un corps de valuation discréte complet extension de Q, & corps résiduel parfait,
7 une uniformisante de K. Pour simplifier, on considére un anneau A intégre, noethérien, normal et
plat sur O avec A/pA # 0 tel qu'il existe un homomorphisme étale d’anneaux pour certains entiers
0<r<c<d,

(0.6.1.1) Ok(To,.... T, TEY . T Ty, Ta)/(To -+ Ty — ) —> A,

Ainsi; Spec(A) est muni d’'un diviseur & croisements normaux strict défini par Ty - - - T;. Nous posons
Ay = A[1/To -+ Ty]. Nous appellerons (Ag,, A) une paire semi-stable, et (0.6.1.1) une carte semi-
stable de celle-ci. Soient K le corps des fractions de A, K., I'extension maximale non ramifiée de
K relative a (A¢, A), c’est-a-dire 'union des extensions finies de corps K’ sur K dans une cloture
algébrique de K telle que la cloture intégrale A’ de A dans K’ soit finie étale sur A;.. Soit A la
cloture intégrale de A dans K. Nous considérons dans le Chapitre IT des paires plus générales (ap-
pelées quasi-adéquates) que des paires semi-stables, telles que le systéme inductif de sous-extensions
finies de Ky /K admette un sous-systéme cofinal constitué d’éléments K’ tels que la paire (A}, A")
soit quasi-adéquate, ot Af, = Ay ®a4 A’ (cf. 11.9.5, I1.11.9). Comme précédemment, on consid-
ére également l'extension de Faltings de A (cf. I11.9.36), c’est-a-dire la suite exacte canonique de

A[1/p]-représentations de Gal(K,,/K),

=~ 1 . =1
(0.6.1.2) 0 — AL — & — AL ©4 Q4,0 — 0,

ol Q% Au,a) désigne le A-module des 1-différentielles logarithmiques de la paire (A, A) sur (K, Ok),

qui soit fini libre de rang d. Le A[l/p]-module canonique &4 est fini libre de rang 1 + d, et il vérifie
la propriété suivante (cf. 11.9.36, 11.9.38) : il existe un homomorphisme A[l/p]-linéaire canonique

. 1 —_ —X R . .
@prx le A &4 tel que pour tout élément s € A[1/p|NA,, avec un systéme compatible de racines
p

p"-iemes (spn)neny C A[1/p], il existe un élément unique w € &4 tel que I'image de (sp:_ldspn)neN
soit égale & sw (on désigne donc w par (dlog(spyn))nen). Comme précédemment, on obtient une suite
exacte canonique en prenant les duaux et les twists de Tate,

1

[7] — Oa

p

=~ 1 * o

(0.6.1.3) 0 —>HomA(Q%AmA)(—1),A[;]) L £5(1)

2))

et on munit &4 (1) de la structure de A[1/pl-algébre de Lie canonique associée a la forme linéaire ¢*.
Nous pouvons maintenant énoncer la construction canonique des opérateurs de Sen.

Théoréme 0.6.2 (cf. I11.11.4, I1.11.7, 11.11.9). Avec les notations de 0.6.1, pour toute A[l/p]-
représentation finie projective W d’un sous-groupe ouwvert G de Gal(Ky,/K), il existe un homomor-

phisme G-équivariant canonique d’algébres de Lie A[1/p]-linéaires (o nous considérons l’action ad-
jointe de G sur Endj[l/p](W)),

(0621) @Sen‘W : éaZ(l) — Endj[;](W)a

qui est fonctoriel en W et en G, ne dépend que de la paire (Aip, A) et non du choiz de la carte

(0.6.1.1), et satisfait les propriétés suivantes :

(1) Soit A’ la cloture intégrale de A dans une extension finie de corps K' sur (Ku ) contenue

dans Ky, et soient t1,...,t. € A'[1/p]N AL avec systéemes compatibles de racines p™-iémes
(tipn)nen C A[l/p] tels que dtq,...,dt. soient K'-linéairement indépendants dans Q}C,/K.
Considérons la tour (K}, ., )n,men définie par ces éléments de maniére analogue a (0.5.1.1)
et prenons la méme notation pour les groupe de Galois, et soit A/n,m la cloture intégrale de

A dans K’

projective V- de T’ sur laquelle A agit analytiquement (11.4.14) telle que W = Z@g, V.

Alors, I' est naturellement localement isomorphe a Z, x Z,, et si on prend la base standard
0o - -+, 0 de Lie(T') = Lie(Z, x Zy), alors pour tout f € &4(1),

Al = colimnzzlzl. Supposons qu’il existe une AL_[1/p]-représentation finie

(0.6.2.2) Psenlw (f) =Y F((dlog(tipn)nen @ 1) @ 0o,
=0

Vs

ot g, |v est Uaction infinitésimale de 0; sur V.
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(2) Soient K' un corps de valuation discréte complet extension de K di:orpsi“ésiduel parfait,
(Af., A") une paire semi-stable sur Ok de corps des fractions K';, A — A’ un homomor-
phisme d’anneaux injectif au-dessus de Ox — Ok qui induit un morphisme de paires
(A, A) — (AL AN, W= W@i W. Supposons que K' ®x Q}C/K — Q,IC,/K, soit injectif.
Alors, il existe un diagramme commutatif naturel

PSen ‘ w!

(0.6.2.3) &5 (1) Ends (W)
Tz
oo o T e Tl
A ®Z 514(1) idﬁ@@Sen‘W A ®Z Endz[%](W)

La situation décrite dans 0.5.3.(1) n’est pas trés restrictive. En effet, par un théoréme de de-
scente de Tsuji [Tsul8, 14.2] développé pour la correspndance de Simpson p-adique pour (A, A),
la représentation W de G peut étre descendue en V' pour certains A’. Nous remarquons que Tsuji a
prouvé le cas out G = Gal(K,,/K), et nous démontrons le cas général en transférant ses arguments a
une classe de paires plus générales (cf. 11.10.16). La clé de la preuve de 0.6.2 est encore de vérifier
que l'application @gen|w définie par la formule (0.6.2.2) ne dépend pas du choix de A’, V ou ¢;. Nous
ramenons ce probléme au cas des anneaux de valuation 0.5.3 en localisant en les idéaux premiers de
hauteur 1 contenant p.

Définition 0.6.3. Nous appelons 'image ®(W) de ¢gen|w le module des opérateurs de Sen de W.
Nous noterons ®2°°(W) I'image de HornA(Q%Atr A)(—l),Z[%]) par wsen|w et Pappellerons le module

des opérateurs géométriques de Sen de W. Nous appellerons I'image de 1 € Z[%] via @gen|w dans
QW) = (W) /D (W) 'opérateur arithmétique de Sen de W.

Le fait suivant étaie une telle définition de I'opérateur arithmétique de Sen : deux relévements
quelconques de celui-ci dans Endi[l](W) ont le méme polynome caractéristique (cf. 11.11.15).
P

0.7. Action Infinitésimale par les Sous-groupes d’Inertie

0.7.1. Reprenons les hypothéses et notations de 0.6.1 et notons &,(A) 'ensemble des idéaux premiers
de hauteur 1 de A contenant p. Pour tout q € &,(A4) d’image p € Spec(A), soient E, le complété p-
adique du corps de valuation discréte A,[1/p], Eq une cloture algégrique de E}, avec un prolongement

d’anneaux de valuation Aq — O . Soit I C Gal(Ky,/K) limage du sous-groupe d’inertie de

Gal(E,/E,). Nous avons la généralisation suivante du résultat de Sen-Ohkubo, qui découle de notre
stratégie de réduction ci-dessus.

Théoréme 0.7.2 (cf. 11.11.18, 11.11.9). Soient G un sous-groupe ouvert de Gal(Ky/K), (V,p) une
Qy-représentation de dimension finie de G, W = A[l/p] ®q, V. Alors, quep(ﬁ) Lie(p(I4)) est le

plus petit sous-Q,-espace vectoriel S de Endg, (V) tel que le j[l/p]-module des opérateurs de Sen
®(W) soit contenu dans A[1/p] @q, S.

Comme corollaire, on peut promouvoir les opérateurs de Sen des Q,-représentations en un ho-
momorphisme universel d’algébres de Lie.

Corollaire 0.7.3 (cf. I1.11.21, I1.11.23). Soit G un quotient d’un sous-groupe ouvert de Gal(Ky,/K)
qui soit un groupe analytique p-adique. Alors, il existe un homomorphisme canonique d’algébres de
Lie A[1/p]-linéaires psen|g : E4(1) — A[l/p] ®q, Lie(G) rendant le diagramme suivant commutatif
pour toute Qp,-représentation de dimension finie V de G,

Psenlg

(0.7.3.1) é&x(1) —>Z[}1—)] ®q, Lie(G)
Osen|w lid;[é](@LPV

Ends, (W) <" A[L] @, Endg, (V)

S =

ou W = ﬁ[l/p] ®q, V est lobjet associé de Repggﬁi(G,i[l/p}), et p|ly laction infinitésimale de
lalgébre de Lie Lie(G) sur V.
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Nous pouvons maintenant donner notre généralisation d’un résultat de Pan [Pan22, 3.1.2].

Théoréme 0.7.4 (cf. 11.12.22). Soit G un quotient de Gal(K,/K) qui soit un groupe analytique p-
adique, Gy C G Uimage de Gal(K:/Koo), 5 C A[1/p|®q, Lie(Gr) image de HomA(Q%AmA)(71),Z[1/p])
via Psen|g. Alors, Uaction infinitésimale de @éeo annule les vecteurs Gy -localement analytiques de

A[1/p] (voir 11.12.18 pour une définition précise).

Pour sa preuve, nous devons étendre les opérateurs de Sen aux représentations de dimension
infinie des fonctions analytiques sur des sous-groupes ouverts suffisamment petits de G. C’est la
raison pour laquelle nous insistons pour considérer des sous-groupes ouverts de Gal(KC,,/K) dans les
théorémes précédents, ce qui nous permet de prouver des propriétés lices aux algébres de Lie mais
nous conduisent & une classe de paires plus générales que les paires semi-stables.

Auparavant, on travaillait toujous avec des représentations & coefficients rationnels, car une ex-
tension finie A’ de A n’est pas un bon modéle entier pour A’[1/p]. Afin d’étudier la continuité des
opérateurs de Sen sur des représentations de dimension infinie, nous devons considérer les représenta-
tions & coefficients entiers comme des « réseaux » pour borner ces opérateurs. Les bonnes propriétés
des opérateurs de Sen sont préservées par continuité si nous avons une bonne théorie de descente et
de décomplétion pour les représentations entiéres sur A’. Cela n’a pas encore été bien développé car
A’ n’est pas un bon modeéle entier. Cependant, on ne rencontre pas un tel probléme si A’ est un
anneau de valuation (au moins pour la partie géométrique)! Nous suivons donc encore la stratégie
précédente : ramener le probléme au cas d’anneaux de valuation en localisant en les idéaux premiers
de hauteur 1 de A contenant p ; et pour ce dernier cas, on peut appliquer les résultats de descente pour
les petites représentations a coefficients entiers du groupe fondamental géométrique, développés par
Faltings [Fal05], Abbes-Gros [AGT16, I1.14] et Tsuji [Tsul8, §11, §12]. Nous prévoyons d’étudier

a I’avenir si oui ou non I'image ®g de @gen|g annule les vecteurs G-localement analytiques de A[1/p].

0.8. Presque-cohérence des Images Directes Supérieures

0.8.1. Un des premiers résultats importants en géométrie algébrique est le fait que la cohérence
pour les modules est préservée par les images directes supérieures par un morphisme propre. Le cas
noethérien est da a Grothendieck [EGA III;, 3.2.1], et le cas général est di a Kiehl [Kie72, 2.9’].
Le but du Chapitre IIT est d’étendre le corollaire suivant au cadre de la presque-algébre, motivé par
des applications en théorie de Hodge p-adique

Théoréme 0.8.2 (Kiehl [Kie72, 2.9'], cf. [Abb10, 1.4.8]). Soit f : X — S un morphisme de
schémas vérifiant les conditions suivantes :

(1) f est propre et de présentation finie, et
(2) Og est universellement cohérent.

Alors, pour tout Ox-module cohérent M et tout ¢ € N, R1f, M est un Og-module cohérent.

On dit que Og est universellement cohérent s’il existe un recouvrement {S; = Spec(A4;)}icr de
S par des sous-schémas affines ouverts tel que l’algébre polynomiale A;[T7,...,T,] soit un anneau
cohérent pour tous i € I et n € N. En effet, une telle condition sur Og implique que le Ox-module
cohérent M est en fait pseudo-cohérent relativement a S, ce qui signifie grossiérement que si on
plonge X localement comme un sous-schéma fermé de AY , alors M admet une résolution par des
modules finis libres sur A% . Le théoréme 0.8.2 est un corollaire direct du résultat de Kiehl [Kie72,
2.9’], prouvant que le foncteur dérivé R f, envoie un complexe pseudo-cohérent relatif & un complexe
pseudo-cohérent.

0.8.3. La presque-algebre a été introduite par Faltings [Fal88, Fal02| pour développer la théorie de
Hodge p-adique. Le cadre est une paire (R, m) constituée d’'un anneau R avec un idéal m tel que
m = m?, et I'idée grossiére est de remplacer la catégorie des R-modules par son quotient par des
modules de m-torsion. Un « presque » analogue du Théoréme 0.8.2 est nécessaire pour ’approche de
Faltings de la théorie de Hodge p-adique. En effet, sous les mémes hypothéses de 0.8.2, Abbes-Gros
[AG20, 2.8.14] ont prouvé que R?f, transforme un Ox-module quasi-cohérent et presque-cohérent
en un Og-module quasi-cohérent et presque-cohérent, en se réduisant directement & 0.8.2. Ce résultat
joue un role crucial dans la preuve du principal théoréme de comparaison p-adique de Faltings dans
le cas absolu (cf. [AG20, 4.8.13]), et donc de la décomposition de Hodge-Tate (cf. [AG20, 6.4.14]).
Plus tard, Zavyalov [Zav21, 5.1.6] a étendu le méme résultat de presque-cohérence aux schémas
formels.
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Cependant, le résultat de presque-cohérence [AG20, 2.8.14] n’est pas suffisant pour le principal
théoréme de comparaison p-adique de Faltings dans le cas relatif (donc pas non plus pour la suite spec-
trale de Hodge-Tate relative), car on rencontre inévitablement la situation ot Og est universellement
presque-cohérent mais pas universellement cohérent. Ainsi, sous I’hypothése

(1) f projectif, plat et de présentation finie, et
(2) Og universellement presque-cohérent,

Abbes-Gros ont prouvé un résultat de presque-cohérence [AG20, 2.8.18] en adaptant les arguments
de [SGA 6, 111.2.2|, ou la condition de projectivité sur f joue un role crucial. C’est la raison pour
laquelle le principal théoréme de comparaison p-adique de Faltings dans le cas relatif (et donc la
construction de la suite spectrale de Hodge-Tate relative) n’ont été prouvé que pour les morphismes
log-lisses et projectifs dans [AG20, 5.7.4 (et 6.7.5)].

0.8.4. Au Chapitre III, nous généralisons le résultat de presque-cohérence [AG20, 2.8.18] aux mor-
phismes propres, ce qui nous permet d’étendre la preuve d’Abbes-Gros du principal théoréme de
comparaison p-adique de Faltings dans le cas relatif aux morphismes log-lisses et propres, et donc
aussi leur construction de la suite spectrale de Hodge-Tate relative (cf. II1.8).

Soit R un anneau avec un idéal m tel que pour tout entier [ > 1, les [-iémes puissances des
éléments de m engendrent m. La paire (R, m) sera notre cadre pour la presque-algébre (cf. II1.6). Le
théoréme principal du chapitre III est le suivant.

Théoréme 0.8.5 (cf. II1.7.1). Soit f : X — S un morphisme de R-schémas vérifiant les conditions
sutvantes :

(1) f est propre, plat et de présentation finie, et

(2) Ox et Og sont presque-cohérents.
Alors, pour tout Ox-module quasi-cohérent et presque-cohérent M et tout ¢ € N, RI1f, M est un
Og-module quasi-cohérent et presque-cohérent.

Notre preuve utilise I’approximation noethérienne, et se rapproche de la preuve de Kiehl de
[Kie72, 2.9], cf. TIL.7.



CHAPTER I

Cohomological Descent for Faltings’ p-adic Hodge Theory and
Applications

I.1. Introduction

I1.1.1. Faltings and Scholze’s approaches to p-adic Hodge theory share several similarities. The most
recent approach, that of Scholze, generalizes Faltings’ main techniques from schemes to adic spaces.
Nevertheless, beyond the analogies, there is no thread connecting the two. The main difficulty stems
from the difference between the nature of their keystones, namely the Faltings topos for Faltings’
approach and the pro-étale topos of an adic space for Scholze’s approach. Faltings’ approach has
the advantage of only using schemes and their classical étale topoi. But it depends on the choice
of an integral model of the p-adic variety, which intervenes in the very definition of Faltings topos
and whose (log-)smoothness seems necessary for the good properties of this one. On the other hand,
Scholze’s approach which uses adic spaces and their pro-étale topoi, does not depend on any integral
model.

The initial goal of this work is to make Faltings’ approach “free of integral models”. For this,
we establish a cohomological descent result for Faltings ringed topos. Along the way, we introduce
a variant for the v-topology which satisfies good cohomological descent properties and which can be
regarded as a scheme theoretic analogue of the v-topos of an adic space. In particular, we establish a
cohomological descent result from this topos to Faltings topos. It is an analogue of the cohomological
descent from the v-topos to the pro-étale topos of an adic space established by Scholze [Sch17]. We
give two applications of our cohomological descent result. Firstly, we extend Faltings’ main p-adic
comparison theorem (which we refer to as “Faltings’ comparison theorem” for short in the rest of
the introduction), both in the absolute and the relative cases, to general integral models without
any smoothness condition. Faltings’ comparison theorem was generalized by Scholze to rigid analytic
varieties, first in the smooth case and then in the general case. Our application is an analogue
of this last generalization. Even in the smooth case, Faltings’ comparison theorem and Scholze’s
generalization cannot be directly deduced from each other. Secondly, we prove a local version of
the relative Hodge-Tate filtration as a consequence of the global version constructed by Abbes and
Gros [AG20] and our cohomological descent result. We would like to mention a third interesting
application of our result to the p-adic Simpson correspondence given by Xu [Xu22].

1.1.2. Faltings’ proof of the Hodge-Tate decomposition illustrates his approach in p-adic Hodge theory
and the role of his ringed topos. Let K be a complete discrete valuation field of characteristic 0 with
algebraically closed residue field of characteristic p > 0. We fix an algebraic closure K of K and denote

by K the p-adic completion of K. For a proper smooth K-scheme X, Tate conjectured that there is
a canonical G = Gal(K /K)-equivariant decomposition, now called the Hodge-Tate decomposition
([Tat67, Remark, page 180]),

(1.1.2.1) HE (X7, Q) ®, K = @ HUX, Q%) @k K(g—n),
0<g<n

where K (q—n) is the (¢—n)-th Tate twist of K. This conjecture was settled by Faltings [Fal88, Fal02]
and Tsuji [Tsu99, Tsu02| independently, and had been generalized to rigid analytic settings by
Scholze [Sch13al. There is also a version for non-proper smooth varieties showed by Faltings. Let
X° be an open subset of X whose complement is a normal crossings divisor D. Then, there is a
canonical G i-equivariant decomposition

(1.12.2) HY (X5, Q) ®0, K= @) HI(X, Q%% (log D)) @k K(q —n).
0<g<n

92020 Mathematics Subject Classification 14F30 (primary).
Keywords: cohomological descent, Faltings topos, v-topology, p-adic Hodge theory, comparison.
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1.1.3. One of the applications of our main result in this chapter is a generalization of the Hodge-Tate
decomposition to the relative case. Let (f,g) : (X — X') — (X° — X) be a morphism of open
immersions of coherent schemes over Spec(K) — Spec(Og) (“coherent” stands for “quasi-compact
and quasi-separated”). We assume that the following conditions hold:
(1) The associated log schemes (X', #x/), (X, #x) endowed with compactifying log structures
are adequate (a technical condition which holds if the open immersions X" — X', X° — X
are semi-stable over Ok, cf. 1.10.11).
(2) The morphism of log schemes (X', #x:/) — (X, #x) is smooth and saturated.
(3) The morphism of schemes g : X’ — X is projective.
(4) The scheme X = Spec(R) is affine and there exist finitely many nonzero divisors fi,..., f;
of R[1/p] such that the divisor D = >"'_, div(f;) on X has support Xx \ X5 and that
at each strict henselization of X those elements f; contained in the maximal ideal form a
subset of a regular system of parameters (in particular, D is a normal crossings divisor on
Xk).

For any coherent X -scheme Y, we define a pro-finite étale Y-scheme

(L1.3.1) Yoo = lim Y [Ty, ..., T,]/(T = f1,....,T" = f.).

Theorem 1.1.4 (cf. 1.12.7 and 1.8.24). Under the assumptions in 1.1.3, let U be an affine scheme
pro-étale over X and let V be a pro-finite étale Uz Oo-scheme (where U° = X° x x U) satisfying the

following conditions:

(1) The integral closure of U in V is the spectrum of an Oz-algebra A which is almost pre-
perfectoid in the sense of 1.5.19.
(2) For any integers n >0 and k > 0, the pullback (R™ fetxZ/P*Z)|v., is a constant sheaf.
Let T be a geometric point of V.. Then, for any integer n > 0, there is a canonical finite decreasing
filtration (fil?)gez on HE (X2, Z),) ®z, A[1/p] and a canonical isomorphism for each q € Z,

. 1 _ 1
(I.1.4.1) grq(Hét(X%DaZp) ®z, A[};]) = Hq(X/a Q?X/(f(///x/)/(x,//gx)) ®R A[};](q —n),
where gr? denotes the graded piece ﬁlq/ﬁqu. Moreover, if U° and V' are connected and if the function
field of V' is a Galois extension of that of U° with Galois group T', then the filtration (fil?),cz and the
isomorphisms (1.1.4.1) are T'-equivariant.

Remark I.1.5. The objects V' — U satisfying the conditions in I.1.4 form a topological generating
family of the pro-étale Faltings site of X2- — X (see the proof of 1.8.24).

1.1.6. This local relative Hodge-Tate filtration stems from the global relative Hodge-Tate filtration
constructed by Abbes-Gros [AG20]. Their filtration takes place on the Faltings topos associated
to Xz- — X. In the first version of their work, they asked for an explicit local version. Scholze
and Caraiani [CS17] constructed independently a relative Hodge-Tate filtration for proper smooth
morphisms of smooth adic spaces, and Scholze announced that he can give a local version, answering
the question of Abbes-Gros. Our construction is obtained by applying our cohomological descent
result for Faltings ringed topos to the global relative Hodge-Tate filtration of Abbes-Gros. In a new
version of their manuscript, Abbes-Gros gave a third construction of the local Hodge-Tate filtration
in a slightly more restrictive framework, using a cohomological descent result which is a special case
of ours.

1.1.7. Faltings ringed topos plays a central role in the proof of the Hodge-Tate decomposition. Let
X° — X be an open immersion of coherent schemes over Spec(K) — Spec(Og) such that the
associated log scheme (X, .#x) endowed with compactifying log structure is adequate. We set ¥ =
X%. The Faltings ringed site (ES 5 X,@) was constructed by Faltings and developed by Abbes-
Gros [AGT16, VI|. Faltings designed it as a bridge between the p-adic étale cohomology of Y and
differential forms of X. Concretely, these links are established through natural morphisms of sites

(L1.7.1) Yo 5 By - X

which satisfy the following properties:

(1) (Faltings’ comparison theorem, [Fal02, Thm.8, page 223|, [AG20, 4.8.13]). Assume that
X is proper over Ok . For any finite locally constant abelian sheaf F on Y, there exists a
canonical morphism

(L1.7.2) R (Y, F) ©% O — RU(ESL, v, 1. F 91 %),
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which is an almost isomorphism, that is, the cohomology groups of its cone are killed by p"
for any rational number r > 0.

(2) (Faltings’ computation of Galois cohomology, [AG20, 6.3.8]). There exists a canonical
homomorphism of Ox ®p, Of-modules

(I1.1.7.3) Q{(]X,/fx)/(&///s) ®ox Ox/p" O — Rlo.(B/p"B)

2dim(Y)+1

p—1 ’
Observing that Z/p"Z = 1. (Z/p™Z), Faltings deduced the Hodge-Tate decomposition from the degen-
eration and splitting of the Cartan-Leray spectral sequence for the composed functor RI'(Xg;, —)oRo,
later named the Hodge-Tate spectral sequence by Scholze. Using de Jong’s alteration theorem, one
can deduce the Hodge-Tate decomposition for a general proper smooth K-scheme by reducing to the
case where it admits a semi-stable model (cf. [Tsu02, A5)|).

whose kernel and cokernel are killed by p” for any rational number r >

1.1.8. In order to state our cohomological descent result, we recall now the definition of the Faltings
site associated to a morphism of coherent schemes Y — X (cf. 1.7.7). Let E'i,t _,x be the category of
morphisms of coherent schemes V' — U over Y — X, i.e. commutative diagrams

(L1.8.1) V—>U

L

Y — X

such that U is étale over X and that V is finite étale over Y xx U. We endow E%} _, x Wwith the
topology generated by the following types of families of morphisms

(v) {(Vin = U) = (V = U)}mem, where M is a finite set and [],, .5, Vin = V is surjective;
(c) {(VxuUp = Uy) = (V= U)}nen, where N is a finite set and [[,, .y U, — U is surjective.

Consider the presheaf % on E! . defined by
(1.1.8.2) BV - U)=T(UY,0pyv),

where UV is the integral closure of U in V. It is indeed a sheaf of rings, the structural sheaf of ES! |
(cf. 1.7.6).

1.1.9. Recall that the cohomological descent of étale cohomology along proper hypercoverings can be
generalized as follows: for a coherent S-scheme, we endow the category of coherent S-schemes Sch?‘fgh
with Voevodsky’s h-topology which is generated by étale coverings and proper surjective morphisms
of finite presentation. Then, for any torsion abelian sheaf F on Sg;, denoting by a : (Sch?%h)h — St
the natural morphism of sites, the adjunction morphism F — Ra,a™'F is an isomorphism.

This result remains true for a finer topology, the v-topology. A morphism of coherent schemes
T — S is called a v-covering if for any morphism Spec(A) — S with A a valuation ring, there exists
an extension of valuation rings A — B and a lifting Spec(B) — T'. In fact, a v-covering is a limit of
h-coverings (cf. 1.3.6). We will describe the cohomological descent for % using a new site built from
the v-topology, which can be regarded as a scheme theoretic analogue of the v-site of adic spaces (cf.
[Sch17, 8.1, 14.1, 15.5]).

Definition I1.1.10 (cf. 1.3.23). Let S° — S be an open immersion of coherent schemes such that S
is integrally closed in S°. We define a site Igo_, g as follows:

(1) The underlying category is formed by coherent S-schemes T' which are integrally closed in
S° % S T.
(2) The topology is generated by covering families {T; — T'},¢s in the v-topology.
We call Igo_, g the v-site of S°-integrally closed coherent S-schemes, and we call the sheaf & on Igo_,g
associated to the presheaf T'— T'(T, Or) the structural sheaf of Iss_,g.

I.1.11. Let p be a prime number, Z, the integral closure of Z, in an algebraic closure Q, of Q,. We
take S° = Spec(Q,) and S = Spec(Z,). Consider a diagram of coherent schemes

(L1.11.1) Y XY X

A

Spec(Qp) — Spec(Zy)
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where XV is the integral closure of X in Y and the square is Cartesian (we don’t impose any condition
on the regularity or finiteness of Y or X). The functor e : E§! , v — Iy, xv sending V — U to UV
defines a natural morphism of ringed sites

(L1.11.2) e: (Iy_xv,0) — (Y, x, B).

Our cohomological descent results are stated as follows, which can be regarded as a scheme theoretic
analogue of the cohomological descent result for the pro-étale site of an adic space (cf. [Sch17, 8.8,
14.7, 15.5]):

Theorem 1.1.12 (Cohomological descent for Faltings ringed sites, cf. 1.8.14). For any finite locally
constant abelian sheaf 1. on E‘§}_>X, the canonical morphism

(I.1.12.1) L®z B — Re (e 'L ®g O)
is an almost isomorphism.

Corollary 1.1.13 (cf. 1.8.18). For any proper hypercovering Xe — X, if a : E‘;{HX. — E§'
denotes the augmentation of simplicial site where Yo =Y X x X,, then the canonical morphism

(1.1.13.1) L ®z % — Ra.(a 'L ®z A.)
is an almost isomorphism.

The key ingredient of our proof of I.1.12 is the descent of perfectoid algebras in the arc-topology
(a topology finer than the v-topology) due to Bhatt-Scholze [BS19, 8.10] (cf. 1.5.35). The analogue
in characteristic p of 1.1.12 is Gabber’s computation of the cohomology of the structural sheaf in the
h-topology (cf. 1.4). Theorem 1.1.12 allows us to descend important results for Faltings sites with
nice models to Faltings sites associated to general models. On the other hand, its proof shows how to
compute the cohomologies of Faltings ringed sites locally. Using Abhyankar’s lemma, one can treat
the open case which in the generic fibre is the complement of a normal crossings divisor.

Corollary 1.1.14 (cf. 1.8.24). Under the assumptions in 1.1.4 and with the same notation, for any
integer n > 0, the canonical morphism

(1.1.14.1) A/p"A — RT(ES ,;, B/p"B)
is an almost isomorphism.

Thus, we apply the derived functor RI'(ES' ., —) to the global relative Hodge-Tate filtration
defined on the Faltings ringed site by Abbes-Gros, and then we obtain the local version 1.1.4.

I.1.15. On the other hand, we use [.1.12 to generalize Faltings’ comparison theorem in the absolute
case. Let A be a valuation ring extension of Z, with algebraically closed fraction field. Consider a
Cartesian square of coherent schemes

(1.1.15.1) X

|

Spec(A[%]) —> Spec(A4)

Theorem 1.1.16 (Faltings’ comparison theorem in the absolute case, cf. 1.10.17). Assume that X
is proper of finite presentation over A. Then, for any finite locally constant abelian sheaf F on Y,
there exists a canonical morphism

(1.1.16.1) RI(Yy,F) @ A — RI(ES , «, .F @7 A),
which is an almost isomorphism.

We remark that the natural morphism ) : Yz — ES¢ _ x induces an equivalence of the categories
of finite locally constant abelian sheaves on Y, and E§'_  (cf. 1.10.3),

b .
(I.1.16.2) LocSys(Ye;) ——= LocSys(E§!_, ).

-1
As a continuation of the work of Abbes-Gros, the canonical morphism (I1.1.16.1) (refered as Faltings’
comparison morphism) is constructed using the acyclicity of ¢ for F, i.e. ¥.F = ReF (so that
RI(Ye, F) = RI(ESL, , 9. FF)), which is a consequence of Achinger’s result on K (,1)-schemes (cf.
1.10.6 and 1.10.8). We also propose a new way to construct Faltings’ comparison morphism in the
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derived category of almost modules using our cohomological descent result 1.1.12, which avoids using
the acyclicity of ¥. Indeed, there are natural morphisms of sites

(1.1.16.3) (Schf3%)y —=— Yi

q iw

€ ét
Iy .xv —Ey

and ¥ is acyclic for any torsion abelian sheaf F on Yz, i.e. W,(a"'F) = R¥,(a"1F), which allows
more general coefficients and whose proof is much easier than that of ¥ (cf. 1.3.27). We remark that
this new construction won'’t give us a “real morphism” (I.1.16.1) but a canonical morphism in the
derived category of almost modules (cf. 1.11.6).

We briefly explain the strategy for proving 1.1.16:

(1) Firstly, we use de Jong-Gabber-Illusie-Temkin’s alteration theorem for morphisms of schemes
[ILO14, X.3| to obtain a proper surjective morphism of finite presentation X’ — X such
that the morphism X’ — Spec(A) is the cofiltered limit of a system of “nice” morphisms
X/{ — T of “nice” models over Ok, , where K is a finite extension of Q, (cf. 1.9.11).

(2) Then, we can apply Faltings’ comparison theorem in the relative case to the “nice” morphisms
X, — T (formulated by Faltings [Fal02, Thm.6, page 266| and proved by Abbes-Gros
[AG20, 5.7.4], cf. 1.10.13). By a limit argument, we get the comparison theorem for X’.

(3) Finally, using our cohomological descent result 1.1.13, we deduce the comparison theorem
for X.

1.1.17. The site Iy _, xv is also appropriate to globalize Faltings’ comparison theorem. Consider a
Cartesian square of coherent schemes

(11.17.1) Y — = X'

o

Y —X

where Y — X is Cartesian over Spec(Q,) — Spec(Z,). In particular, there is a natural morphism of
ringed sites by the functoriality of (I.1.16.3),

(11172) fI : (IY’%X’YH ﬁ/) — (IyﬁxY, ﬁ)

Theorem I1.1.18 (cf. 1.11.11). Assume that X' — X is proper of finite presentation. Let F' be a
torsion abelian sheaf on Y}, and F' = V'.a/71F' (cf. (1.1.16.3)). Then, the canonical morphism

(1.1.18.1) (Rf1.F') 9% 0 — Rf1.(F' @z 0")
is an almost isomorphism.

We remark that if 7' = Z/p"Z then .F' = Z/p"Z (cf. 1.3.27), and that R?f1..%’ is the sheafi-
fication of étale cohomologies of Y’ over Y with coefficient 7’ in the v-topology (cf. 1.11.12). Very
roughly speaking, objects of Iy_, xv are “locally” the spectrums of valuation rings, and the “stalks” of
(I.1.18.1) are Faltings’ comparison morphisms (I1.1.16.1) when F’ is finite locally constant (cf. I.11.5).
Theorem 1.1.18 can be regarded as a scheme theoretical analogue of Scholze’s comparison theorem
for p-adic étale cohomology of a morphism of rigid analytic varieties [Sch13b, 3.13].

Finally, we generalize Faltings’ comparison theorem in the relative case using 1.1.12 and 1.1.18.

Theorem 1.1.19 (Faltings’ comparison theorem in the relative case, cf. 1.11.13 and 1.11.14). Assume
that Y’ — Y is smooth and that X' — X is proper of finite presentation. Then, for any finite locally
constant abelian sheaf F' on Y/,, there exists a canonical morphism

(11.19.1) (Rp. R fse ') ©F B — R, (WF @7 %),

which is an almost isomorphism, and where fs : Y/, — Y& and fg : BSL v — ESt ., are the
natural morphisms of sites. In particular, there exists a canonical morphism

(1.1.19.2) (VR feen ') @7, B — Rifp.(W.F @5, B ),

which is an almost isomorphism, for any integer q.
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1.1.20. The paper is structured as follows. In section 1.3, we establish the foundation of the site
Is-_, 5, where proposition 1.3.27 discussing the cohomological properties of ¥ : (Sch‘;%}l)V — Igo_,gis
the key to our new construction of Faltings’ comparison morphism (cf. 1.11.6). Sections I.4 and 1.5 are
devoted to a detailed proof of the arc-descent for perfectoid algebras following Bhatt-Scholze [BS19,
8.10]. Since we use the language of schemes, the terminology “pre-perfectoid” is introduced for those
algebras whose p-adic completions are perfectoid. In sections 1.6 and 1.7, we review the definition
and some basic properties of Faltings sites and we introduce a pro-version of Faltings site to evaluate
the structural sheaf on the spectrums of pre-perfectoid algebras. Then, we prove our cohomological
descent result in section I.8. In section 1.9, we review de Jong-Gabber-Illusie-Temkin’s alteration
theorem and apply it to schemes over a valuation ring of height 1. Section 1.10 is devoted to proving
our generalization of Faltings’ comparison theorem in the absolute case. In section I.11, we give a
new construction of Faltings’ comparison morphism and our generalization of Faltings’ comparison
theorem in the relative case. Finally, we deduce from the global relative Hodge-Tate filtration an
explicit local version in section 1.12.

Acknowledgements. This work is part of my thesis prepared at Université Paris-Saclay and
Institut des Hautes Etudes Scientifiques. I would like to express my sincere gratitude to my doctoral
supervisor, Ahmed Abbes, for his guidance to this project, his thorough review of this work and his
plenty of helpful suggestions on both research and writing.

I.2. Notation and Conventions

I1.2.1. We fix a prime number p throughout this paper. For any monoid M, we denote by Frob :
M — M the map sending an element z to zP and we call it the Frobenius of M. For a ring R, we
denote by R* the group of units of R. A ring R is called absolutely integrally closed if any monic
polynomial f € R[T] has a root in R ([Sta22, 0DCK]). We remark that quotients, localizations and
products of absolutely integrally closed rings are still absolutely integrally closed.

Recall that a valuation ring is a domain V such that for any element x in its fraction field, if
x ¢ V then 7! € V. The family of ideals of V is totally ordered by the inclusion relation (|Bou06,
VI.§1.2, Thm.1]). In particular, a radical ideal of V is a prime ideal. Moreover, any quotient of V'
by a prime ideal and any localization of V are still valuations rings ([Sta22, 088Y]). We remark that
V' is normal, and that V is absolutely integrally closed if and only if its fraction field is algebraically
closed. An extension of valuation rings is an injective and local homomorphism of valuation rings.

1.2.2. Following [SGA 41, VI.1.22], a coherent scheme (resp. morphism of schemes) stands for a
quasi-compact and quasi-separated scheme (resp. morphism of schemes). For a coherent morphism
Y — X of schemes, we denote by XY the integral closure of X in Y ([Sta22, 0BAK]). For an
X-scheme Z, we say that Z is Y -integrally closed if Z = ZY*x%,

1.2.3. Throughout this paper, we fix two universes U and V such that the set of natural numbers N
is an element of U and that U is an element of V ([SGA 4y, 1.0]). In most cases, we won’t emphasize
this set theoretical issue. Unless stated otherwise, we only consider U-small schemes and we denote
by Sch the category of U-small schemes, which is a V-small category.

1.2.4. Let C be a category. We denote by C the category of presheaves of V-small sets on C. If C' is
a V-site ([SGA 41, 11.3.0.2]), we denote by C the topos of sheaves of V-small sets on C. We denote
by h¢ : C — C, z — h¢ the Yoneda embbeding ([SGA 41, L.1.3]), and by C — C, F + F* the
sheafification functor ([SGA 4y, I1.3.4]). Unless stated otherwise, a site in this paper stands for a
site where all finite limits are representable.

1.2.5. Let u™ : C — D be a functor of categories. We denote by uP : D — C the functor that
associates to a presheaf G of V-small sets on D the presheaf uPG = Gou™. If C is V-small and D is
a V-category, then uP admits a left adjoint u, [Sta22, 00VC| and a right adjoint ,u [Sta22, 00XF|
(cf. [SGA 41, 15]). So we have a sequence of adjoint functors

(I.2.5.1) Up, UP, pU.

If moreover C' and D are V-sites, then we denote by ug, u®, su the functors of the topoi C and D of
sheaves of V-small sets induced by composing the sheafification functor with the functors uy,, uP, ,u
respectively. As we only consider finite complete sites, we say that the functor u™ gives a morphism
of sites, if u™ is left exact and preserves covering families ([SGA 4;, 1V.4.9.2]). Then, we denote by

(1.2.5.2) w=(u"t u,): D—C
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the associated morphism of topoi, where u=! = us and u, = u® = uP| 7. If moreover u is a morphism

of ringed topoi, then we denote by u* = Ox Qu-104 u~! the pullback functor of modules. We remark
that the notation here, adopted by [Sta22], is slightly different with that in [SGA 4i] (cf. [Sta22,
0CMZ)).

1.2.6. Let C be an additive category. The catgory of objects of C up to isogeny (cf. [AGT16,
II1.6]) is the category Cp with a functor F : C' — Cg (called the localization functor) such that
Ob(Cgp) = Ob(C') and that

(1.2.6.1) HOHICQ (M@, NQ) = Homc(M, N) ®z Q,

where we denote by Mg the image of an object M of C via F in Cg.

For a ringed site (C, O), we denote by O-Modg the category of O-modules up to isogeny, whose
objects are called Og-modules. It is an abelian category and the localization functor O-Mod —
O-Modg sends injective objects to injective objects. We remark that if O is a Q-module, then
O-Mod — O-Mody is an equivalence. A morphism of ringed sites u : (C,0) — (C',O’) induces a
pair of adjoint functors

(1.2.6.2) u* : O'-Modg — O-Modyg, u, : O-Modg — O'-Modg.

The derived functor Ru, commutes with the localization functor.

1.3. The v-site of Integrally Closed Schemes

Definition I1.3.1. Let X — Y be a quasi-compact morphism of schemes.

(1) We say that X — Y is a v-covering, if for any valuation ring V' and any morphism Spec(V') —
Y, there exists an extension of valuation rings V' — W (1.2.1) and a commutative diagram
(cf. [Sta22, OETN])

(I.3.1.1) Spec(W) ——= X

|

Spec(V) ——Y

(2) Let 7 be an element of T'(Y, Oy). We say that X — Y is an arc-covering (resp. m-complete
arc-covering), if for any valuation ring (resp. m-adically complete valuation ring) V' of height
< 1 and any morphism Spec(V) — Y, there exists an extension of valuation rings (resp.
m-adically complete valuation rings) V' — W of height < 1 and a commutative diagram
(1.3.1.1) (cf. [BM20, 1.2], [CS19, 2.2.1]).

(3) We say that X — Y is an h-covering, if it is a v-covering and locally of finite presentation
(cf. [Sta22, OETS]).

We note that an arc-covering is simply a 0-complete arc-covering.

Lemma 1.3.2. Let Z - Y 15 X be quasi-compact morphisms of schemes, m € I'(X,Ox), T € {h,
v, w-complete arc}.
(1) If f is a T-covering, then any base change of f is also a T-covering.
(2) If f and g are T-coverings, then f o g is also a T-covering.
(3) If fog is a T-covering (and if f is locally of finite presentation when T = h), then f is also
a T-COVEring.

PRrROOF. It follows directly from the definitions. O

1.3.3. Let Sch®” be the category of coherent U-small schemes, 7 € {h, v, arc}. We endow Sche!
with the 7-topology generated by the pretopology formed by families of morphisms {X; — X}
with I finite such that [[,.; X; — X is a 7-covering, and we denote the corresponding site by Scheh,
It is clear that a morphism Y — X (which is locally of finite presentation if 7 = h) is a 7-covering if
and only if {Y — X} is a covering family in Sch®" by .3.2 and [SGA 4;, I1.1.4].

For any coherent U-small scheme X, we endow the category Sc ‘/3‘3? of objects of Sch®" over X
with the topology induced by the T-topology of Sch®® i.e. the topology generated by the pretopology
formed by families of X-morphisms {Y; — Y }ic; with I finite such that J],.; Y; — Y is a 7-covering
([SGA 44, II1.5.2]). For any sheaf F of V-small abelian groups on the site (Schi‘}?)f, we denote its
g-th cohomology by H4(X, F).

Lemma 1.3.4. Let f: X =Y be a quasi-compact morphism of schemes, 7 € T(Y, Oy).
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(1) If f is proper surjective or faithfully flat, then f is a v-covering.

(2) If f is an h-covering and Y is affine, then there exists a proper surjective morphismY’' —'Y
of finite presentation and a finite affine open covering Y’ = \J._, Y, such that Y] — Y
factors through f for each r.

(3) If f is an h-covering and if there exists a directed inverse system (fx : Xx — Y))rea of
finitely presented morphisms of coherent schemes with affine transition morphisms ¥y :
X — X and ¢y - Yo = Yy such that X =1lim X, Y = limY) and that f\ is the base
change of fr, by ¢rx, for some index \g € A and any A > Ao, then there exists an index
A1 > Ao such that fx is an h-covering for any A > .

(4) If f is a v-covering, then it is a w-complete arc-covering.

(5) Let 7' be another element of T'(Y, Oy) which divides w. If f is a w-complete arc-covering,
then it is a w' -complete arc-covering.

(6) If Spec(B) — Spec(A) is a w-complete arc-covering, then the morphism Spec(B) — Spec(A)
between the spectrums of their mw-adic completions is also a w-complete arc-covering.

PRrROOF. (1), (2) are proved in [Sta22, OETK, OETU] respectively.

(3) To show that one can take Ay > A such that f, is an h-covering, we may assume that Yj,
is affine by replacing it by a finite affine open covering by 1.3.2 and (1). Thus, applying (2) to the
h-covering f and using [EGA IVj, 8.8.2, 8.10.5], there exists an index A\; > Ao, a proper surjective
morphism Yy — Y3, and a finite affine open covering Yy = [J;_, Y/, such that the morphisms
Y, =Y’ =Y are the base changes of the morphisms Y,y — Y\ — Y}, by the transition morphism
Y — Y,,, and that lexl — Y, factors through X,. This shows that f,, is an h-covering by 1.3.2
and (1).

(4) With the notation in (I.3.1.1), if V' is a m-adically complete valuation ring of height < 1 with
maximal ideal m, then since the family of prime ideals of W is totally ordered by the inclusion relation
(I.2.1), we take the maximal prime ideal p C W over 0 C V and the minimal prime ideal ¢ C W over
m C V. Then, p C q and W’ = (W/p)q over V is an extension of valuation rings of height < 1. Since
m € m and W’ is of height < 1, the m-adic completion W is still a valuation ring extension of V' of
height <1 (cf. [Bou06, VI1.§5.3, Prop.5|), which proves (4).

(5) Since a 7'-adically complete valuation ring V is also m-adically complete ([Sta22, 090T]),
there exists a lifting Spec(W) — X for any morphism Spec(V) — Y. After replacing W by its
m’-adic completion, the conclusion follows.

(6) Let V be a m-adically complete valuation ring of height < 1. Given a morphism A Vv,
there exists a lifting B — W where V' — W is an extension of m-adically complete valuation rings of
height < 1. It is clear that B — W factors through B, which proves (6). O

1.3.5. Let X be a coherent scheme, Schl;pX the full subcategory of Sch?%1 formed by finitely presented

X-schemes. We endow it with the topology generated by the pretopology formed by families of
morphisms {Y; — Y}ic; with I finite such that [[,.;Y; — Y is an h-covering, and we denote the

corresponding site by (Sch%()h. It is clear that this topology coincides with the topologies induced

+ +
from (Sch;‘}?)v and from (Sch?‘}?)h. The inclusion functors (Schﬁ%()h LN (Sch;(}?)h < (Schi‘}?)v

define morphisms of sites (1.2.5)
(1.3.5.1) (Schf%t), — (Schf3), — (Seh'fy ).

Lemma 1.3.6. Let X be a coherent scheme. Then, for any covering family 8 = {Y; — Y}ier in
(Sch?(}?)v with I finite,
(i) there exists a directed inverse system (Yx)aea of finitely presented X -schemes with affine
transition morphisms such that Y =limY), and
(ii) for eachi € I, there exists a directed inverse system (Yix)aea of finitely presented X -schemes
with affine transition morphisms over the inverse system (Yx)aea such that Y; = limY;y,
and
(iii) for each A € A, the family Uy = {Yix — Yy }ier is a covering in (Schipx)h.

ProOOF. We take a directed set A such that for each i € I, we can write Y; as a cofiltered limit
of finitely presented Y-schemes Y; = lim,¢c 4 Vi, with affine transition morphisms ([Sta22, 09MV]).
We see that [[,.; Yia — Y is an h-covering for each a € A by 1.3.2.

We write Y as a cofiltered limit of finitely presented X-schemes Y = limgcp Y3 with affine
transition morphisms ([Sta22, 09MV]). By [EGA 1V, 8.8.2, 8.10.5] and 1.3.4.(3), for each a € A,
there exists an index 8, € B such that the morphism Y;, — Y is the base change of a finitely
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presented morphism Y;,5, — Y3, by the transition morphism Y — Yjp_ for each i € I, and that
]_[Z.el Yiag, — Y, is an h-covering. For each 8 > f,, let Y43 be the base change of Yj,3, by
Y/g — Yﬁa .
We define a category A°P, whose set of objects is {(«,8) € A x B | 8 > Ba}, and for any two
objects N = (o/, ), A = («, 8), the set Hompop (X', N) is
(i) the subset of J],.; Homy,, (Yiarp, Yiap') formed by elements f = (f;):es such that for each
i €1, fi : Yiargr — Yiap is affine and the base change of f; by Y — Yg/ is the transition
morphism Y — Y, if @/ > « and 5’ > 3;
(ii) empty, if else.
The composition of morphisms (¢; : Yiavgr — Yiwsr)ier with (fi : Yirg — Yiap )ier in A°P is
(gio f] : Yiarrgr — Yiapr), where f] is the base change of f; by the transition morphism Yg» — Yjr.
We see that A°P is cofiltered by [EGA IV3, 8.8.2]. Let A be the opposite category of A°P. For each
teland A= (a,B) € A, weset Y\ =Yp and Y;y = Yjap. It is clear that the natural functors A — A
and A — B are cofinal ([SGA 4;, 1.8.1.3]). After replacing A by a directed set ([Sta22, 0032]), the
families 4y = {Y;n — Y) }ier satisfy the required conditions. O

Lemma 1.3.7. With the notation in 1.3.5, let F be a presheaf on (Sch?fx)h, (Y)) a directed inverse
system of finitely presented X -schemes with affine transition morphisms, Y = limY,. Then, we have
vpF(Y) = colim F(Yy), where vt =& (resp. vt = (T o&t).

PRrROOF. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4,
1.3.4]

(I1.3.7.1) F = colim  hy.
Y’E(Schf/pX )7

Thus, we may assume that F is representable by a finitely presented X-scheme Y since the section
functor I'(Y, —) commutes with colimits of presheaves ([Sta22, 00VB]). Then, we have

(1.3.7.2) vphy (Y) = hy+(y)(Y) = Homx (Y, Y’) = colim Homx (Y, Y") = colim hy(Y))
where the first equality follows from [Sta22, 04D2|, and the third equality follows from [EGA V3,
8.14.2]. O

Proposition 1.3.8. With the notation in 1.3.5, let F be an abelian sheaf on (Sch?;()h, (Y)) a directed
inverse system of finitely presented X -schemes with affine transition morphisms, ¥ = limY). Let
T=hand vt =£1 (resp. T=v and vt = (T o&T). Then, for any integer q, we have

_ . f
(1.3.8.1) H(Y,v™'F) = colim H((Sch f}, )u, F).
In particular, the canonical morphism F — Rv,v~1F is an isomorphism.

PrOOF. For the second assertion, the sheaf R%v,v~1F is the sheaf associated to the presheaf
Y — HYY,v71F) = Hq((SchipY)h,]-") by the first assertion, which is F if ¢ = 0 and vanishes
otherwise.

We claim that it suffices to show that (1.3.8.1) holds for any injective abelian sheaf F = Z on
(Schi‘}()h. Indeed, if so, then we prove by induction on ¢ that (I1.3.8.1) holds in general. The case
where ¢ < —1 is trivial. We set H{(F) = HY(Y,v~'F) and H(F) = coliqu((SchipYA)h,f). We
embed an abelian sheaf F to an injective abelian sheaf Z. Consider the exact sequence 0 — F —
Z — G — 0 and the morphism of long exact sequences

(1.3.8.2) HIYT) — HIY(G) — HY(F) H{(T) H{(G)
H{™NT) — H{Y(G) — H(F) H3(T) H3(G)

If (1.3.8.1) holds for any abelian sheaf F for degree ¢ — 1, then 71, ¥2, y4 are isomorphisms and thus

vs is injective by the 5-lemma ([Sta22, 05QA]). Thus, v5 is also injective since F is an arbitrary

abelian sheaf. Then, we see that 3 is an isomorphism, which completes the induction procedure.
For an injective abelian sheaf Z on (Schipx)h, we claim that for any covering family 4 = {(Y; —

Y)}ier in (Sch%’?)T with 7 finite, the augmented Cech complex associated to the presheaf 1,7

(1.3.8.3) wI(Y) = [[mI(V) = [] wZ(ixy ¥j) =
i€l i,j€l
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is exact. Admitting this claim, we see that 1,7 is indeed a sheaf, i.e. v7!Z = 1,,Z, and the vanishing
of higher Cech cohomologies implies that H4(Y,v~Z) = 0 for ¢ > 0 by 1.3.6 ([Sta22, 03F9]), which
completes the proof together with 1.3.7. For the claim, we take the covering families 4y = {Y;y —

Yi}ier in (Sch/px)}1 constructed by 1.3.6. By 1.3.7, the sequence (1.3.8.3) is the filtered colimit of the

augmented Cech complexes

(1.3.8.4) Z(Yy) = [[Z(¥in) = ] Z(0x xv, Yia) = -+,
i€l ijel
which are exact since Z is an injective abelian sheaf on (Schf/pX)h. O

Corollary 1.3.9. Let X be a coherent scheme, F a torsion abelian sheaf on the site X¢ formed by
coherent étale X -schemes endowed with the étale topology, a : (Sch%?)v — Xg¢ the morphism of sites
defined by the inclusion functor. Then, the canonical morphism F — Ra.a™'F is an isomorphism.

ProoF. Consider the morphisms of sites defined by inclusion functors

(1.3.9.1) (Sch%%), — (Schi%), —+ (Sch®

P == Xe.

Notice that the morphism F — R 0 ). (0 £)7LF is an isomorphism by [Sta22, 0EWG]. Hence,
F — Rpsp~LF is an isomorphism by 1.3.8, and thus so is F — Ra,a™'F by 1.3.8. O

Corollary 1.3.10. Let f : X — Y be a proper morphism of coherent schemes, F a torsion abelian
sheaf on Xg;. Consider the commutative diagram

(1.3.10.1) (Schi3), —— Xe
fV\L lfét
(S hCOh)v L) o

where f, and fe& are defined by the base change by f. Then, the canonical morphism
(1.3.10.2) ay' RfesF — Rfvuay' F
is an isomorphism.

PRrOOF. Consider the commutative diagram

(1.3.10.3) (Sch3)y —> (Schf% )y —> Xy

Tl

(Sch3h), — > (Schi3), — > Yy

The canonical morphism by' R fsr. F — R fixby F is an isomorphism by [Sta22, 0EWF]. It remains
to show that the canonical morphism ('R fn.bx'F — Rfyeay' F is an isomorphism. Let Y/ be
a coherent Y-scheme and we set g : X' = Y’ xy X — X. For each integer ¢, C; R4 fh*b_ F is
the sheaf associated to the presheaf Y/ — H{(X' byigs'F) = HL (X', g;,' F) by [Sta22, 0EWH],

and RYf,.ay' F is the sheaf associated to the presheaf Y’ +— HY(X' aysgs'F) = HL (X', g5,' F) by
1.3.9. g

Lemma 1.3.11. Let A be a product of (resp. absolutely integrally closed) valuation rings (1.2.1).

(1) Any finitely generated ideal of A is principal.
(2) Any connected component of Spec(A) with the reduced closed subscheme structure is iso-
morphic to the spectrum of a (resp. absolutely integrally closed) valuation ring.

PRrROOF. (1) is proved in [Sta22, 092T], and (2) follows from the proof of [BS17, 6.2]. O

Lemma 1.3.12. Let X be a U-small scheme, y ~~ = a specialization of points of X. Then, there
exists a U-small family {fx : Spec(Vy) = X Faea of morphisms of schemes such that

-

(i) the ring Vi is a U-small (resp. absolutely integrally closed) valuation ring, and that

(ii) the morphism fx maps the generic point and closed point of Spec(Vy) to y and x respectively,
and that
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(iii) for any morphism of schemes f : Spec(V) — X where V is a (resp. absolutely integrally
closed) valuation ring such that f maps the generic point and closed point of V to y and
x respectively, there exists an element X € Ay.p such that f factors through fx and that
Vi = V is an extension of valuation rings.

PROOF. Let K, be the residue field x(y) of y (resp. an algebraic closure of k(y)). Let p, be the
prime ideal of the local ring Ox , corresponding to the point y, and let {Vi}xea,.., be the set of all
valuation rings with fraction field K, which contain Ox ,/p, such that the injective homomorphism
Ox o/py — V) is local. The smallness of Ay.., and V) is clear, and the inclusion Ox ,/p, — Vi
induces a morphism fy : Spec(V)) — X satisfying (ii). It remains to check (iii). The morphism f
induces an injective and local homomorphism Ox ;/p, — V. Notice that Ox ,/p, — Frac(V) factors
through K, and that K, NV is a valuation ring with fraction field K. It is clear that K, NV — V is

local and injective, which shows that K, NV belongs to the set {Vi}xea constructed before. [

Y~z

Lemma 1.3.13. Let f : Spec(V) — X be a morphism of schemes where V is a valuation ring.
We denote by a and b the closed point and generic point of Spec(V') respectively. If ¢ € X is a
generalization of f(b), then there exists an absolutely integrally closed valuation ring W, a prime
ideal p of W, and a morphism g : Spec(W) — X satisfying the following conditions:
(i) If z, y, « denote respectively the generic point, the point p and the closed point of Spec(W),
then g(2) = ¢, g(y) = f(b) and g(x) = f(a).
(ii) The induced morphism Spec(W/p) — X factors through f, and the induced morphism V —
W/p is an extension of valuation rings.

PROOF. According to [EGA II, 7.1.4], there exists an absolutely integrally closed valuation ring
U and a morphism Spec(U) — X which maps the generic point z and the closed point y of Spec(U)
to ¢ and f(b) respectively. After extending U, we may assume that the morphism y — f(b) factors
through b ([EGA II, 7.1.2]). We denote by x(y) the residue field of the point y. Let V' be a
valuation ring extension of V with fraction field x(y), and let W be the preimage of V' by the
surjection U — £(y). Then, the maximal ideal p = Ker(U — £(y)) of U is a prime ideal of W, and
W/p = V'. We claim that W is an absolutely integrally closed valuation ring such that W, = U.
Indeed, firstly note that the fraction fields of U and W are equal as p C W. Let v be an element of
Frac(W) \ W. If y € U, then v~ € W \ p by definition since y~! € U \ p and V is a valuation ring,
and then v € W,,. If v ¢ U, then y~! € p since U is a valuation ring, and then v ¢ W,. Thus, we
have proved the claim, which shows that W satisfies the required conditions. 0

Proposition 1.3.14. Let X be a coherent U-small scheme, X° a quasi-compact dense open subset of
X. Then, there exists a U-small product A of absolutely integrally closed U-small valuation rings and
a v-covering Spec(A) — X such that Spec(A) is X°-integrally closed (1.2.2).

PROOF. After replacing X by a finite affine open covering, we may assume that X = Spec(R).
For a specialization y ~» z of points of X, let {R — Vi}xea,.., be the U-small set constructed in
1.3.12. Let A = HyEXO Ay.z where y ~ x runs through all specializations in X such that y € X°.
We take A =[] < Va and R — A the natural homomorphism. As a quasi-compact open subscheme
of Spec(A), X° xx Spec(A) is the spectrum of A[1/7] for an element m = (7w )rep € A by 1.3.11.(1)
([Sta22, 01PH]). Notice that 7y # 0 for any A € A. We see that A is integrally closed in A[l/x]. It
remains to check that Spec(A) — X is a v-covering. For any morphism f : Spec(V) — X where V is
a valuation ring, by 1.3.13, there exists an absolutely integrally closed valuation ring W, a prime ideal
p of W and a morphism g : Spec(W) — X such that g maps the generic point of W into X° and that
W/p is a valuation ring extension of V. By construction, there exists A € A such that g factors through
Spec(Vy) — X. We see that f lifts to the composition of Spec(W/p) — Spec(Vy) — Spec(A). O

Proposition 1.3.15. Consider a commutative diagram of schemes

(I.3.15.1) YV — 7 ——= X'

L

Y —7 ——X

where 7' — 7 and X' — X are quasi-compact. Assume that Y — Y xx X' is surjective, Y — Z is
dominant, Z — X is separated and Z' — X' is integral. If X' — X is a v-covering, then Z' — Z is
also a v-covering.

PROOF. Notice that Z/ — Z xx X' is still integral as Z — X is separated. After replacing
X' = X by Z xx X' = Z, we may assume that Z = X. Let Spec(V) — Z be a morphism of
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schemes where V is a valuation ring. Since Y — Z is dominant, by 1.3.13, there exists a morphism
Spec(W) — Z where W is an absolutely integrally closed valuation ring, a prime ideal p of W such
that W/p is a valuation ring extension of V' and that the generic point £ of Spec(W) is over the image
of Y — Z. After extending W ([Sta22, 00IA]), we may assume that there exists a lifting &€ — Y of
¢ — Z. The morphism Spec(W) — Z = X admits a lifting Spec(W’') — X’ where W — W' is an
extension of valuation rings. We claim that after extending W', Spec(W’) — X’ factors through Z’.
Indeed, if &' denotes the generic point of Spec(W’), as Y/ — Y xx X' is surjective, after extending
W', we may assume that there exists an X’'-morphism £ — Y’ which is over £ — Y. Since Spec(W’)
is integrally closed in ¢ and Z’ is integral over X', the morphism Spec(W’) — X’ factors through
Z' (|Sta22, 035I]). Finally, let q € Spec(W’) which lies over p € Spec(W), then we get a lifting
Spec(W'/q) — Z' of Spec(V) — Z, which shows that Z' — Z is a v-covering. O

1.3.16. Let S° — S be an open immersion of coherent schemes such that S is S°-integrally closed
(I.2.2). For any S-scheme X, we set X° = S° xg X. We denote by Iso_,s the category formed
by coherent S-schemes which are S°-integrally closed. Note that any S°-integrally closed coherent
S-scheme X is also X°-integrally closed by definition. It is clear that the category (Iso_.s),;x of
objects of Iso_.g over X is canonically equivalent to the category Ixo_,x.

Lemma 1.3.17 ([Sta22, 03GV]). Let Y — X be a coherent morphism of schemes, X' — X a smooth
morphism of schemes, Y' =Y xx X'. Then, we have X' = XY xx X'.

Lemma 1.3.18. Let (Y — X))aea be a directed inverse system of morphisms of coherent schemes
with affine transition morphisms Yy — Yy and Xy — X\ (N > X). We set Y = limY, and
X =1im X,. Then, (X}\/*)AGA is a directed inverse system of coherent schemes with affine transition
morphisms and we have XY = lim X}\/A.

PrOOF. We fix an index Ao € A. After replacing X, by an affine open covering, we may assume
that X, is affine (I.3.17). We write X = Spec(A,) and By = I'(Y), Oy, ) for each A > Ao, and
we set A = colim Ay and B = colim By. Then, we have X = Spec(A4) and B = I'(Y, Oy) ([Sta22,
009F]). Let Ry (resp. R) be the integral closure of Ay in By (resp. A in B). By definition, we have
X}\/* = Spec(Ry) and XY = Spec(R). The conclusion follows from the fact that R = colim Ry. O

Lemma 1.3.19. Let S° — S be an open immersion of coherent schemes.

(1) If X is an S°-integrally closed coherent S-scheme, then the open subscheme X° is scheme
theoretically dense in X.

(2) If X is an S°-integrally closed coherent S-scheme and X' is a coherent smooth X -scheme,
then X' is also S°-integrally closed.

(3) If (Xx)xea is a directed inverse system of S°®-integrally closed coherent S-scheme with affine
transition morphisms, then X = limyecp Xy is also S°-integrally closed.

(4) IfY — X is a morphism of coherent schemes over S° — S such thatY is integral over X°,
then the integral closure XY is S°-integrally closed with (XY)° =Y.

PrOOF. (1), (2), (3) follow from [Sta22, 035I], 1.3.17 and 1.3.18 respectively. For (4), (X¥)° =
X° xx XV is the integral closure of X° in X° xx Y =Y by 1.3.17, which is Y itself. U

1.3.20. We take the notation in 1.3.16. The inclusion functor

(1.3.20.1) Ot :Igo 5 — Schfy, X — X,
admits a right adjoint

(1.3.20.2) ot :Schfy — Igo 5, X — X = XX,

Indeed, o7 is well-defined by 1.3.19.(4), and the adjointness follows from the functoriality of taking
integral closures. We remark that X° = X°. On the other hand, the functor

(1.3.20.3) U Ige5 — Schjgl, X — X°,
admits a left adjoint
(1.3.20.4) a1 Schiyt — Ises, YV — Y.

Lemma 1.3.21. With the notation in 1.3.16, let ¢ : I — Igo_,g be a functor sending i to X;. If
X =1lim X; represents the limit of ¢ in the category of coherent S-schemes, then the integral closure
X = XX represents the limit of v in Igo_,g with X° = X°.

PROOF. It follows directly from the adjoint pair (®*,0%) (1.3.20). O
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It follows from 1.3.21 that for a diagram X; — Xy + Xs in Igo_,g, the fibred product is
representable by
(1.3.21.1) X1 % xy X = (X1 % x, Xo) 1 *X6%2

Proposition 1.3.22. With the notation in 1.3.16, let € be the set of families of morphisms {X; —
Xtier of Lsoys with I finite such that [[,-; X; — X is a v-covering. Then, € forms a pretopology
Of Isoﬁs.

i€l

PROOF. Let {X; — X}ier be an element of €. Firstly, we check that for a morphism X’ — X
of Iso_, g, the base change {X] — X'};cr also lies in €, where Z; = X; xx X' and X| = ZZZ by

1.3.21. Applying 1.3.15 to the following diagram

(1.3.22.1) e 20 —— e Xi — i Zi
)éL/o i/ )l(/'/

we deduce that [ [, ; Xi — X' is also a v-covering, which shows the stability of 4" under base change.

For each i € I, let {X;; — X,},es, be an element of 4. We need to show that the composition
{Xi; = X}ierjey, also lies in €. This follows immediately from the stability of v-coverings under
composition. We conclude that & forms a pretopology. g

Definition 1.3.23. With the notation in 1.3.16, we endow the category Ig._,g with the topology
generated by the pretopology defined in 1.3.22, and we call Iso_,g the v-site of S°-integrally closed
coherent S-schemes.

By definition, any object in Igo_.g is quasi-compact. Let & be the sheaf on Iso_. g associated to
the presheaf X +— I'(X, Ox). We call & the structural sheaf of Igo_,g.

Proposition 1.3.24. With the notation in 1.3.16, let f : X’ — X be a covering in Lso_, g such that f
is separated and that the diagonal morphism X'° — X'° X xo X'° is surjective. Then, the morphism
of representable sheaves h%, — h% is an isomorphism.

PROOF. We need to show that for any sheaf F on Igo_,g, F(X) — F(X') is an isomorphism.
Since the composition of X’° — X’° x xo X'° — X'Xx X' factors through the closed immersion
X' — X'Xx X’ (as f is separated), the closed immersion X’ — X'Xx X' is surjective (1.3.19.(1)).
Consider the following sequence

(1.3.24.1) F(X) = F(X') = F(X'*xX'") - F(X').

The right arrow is injective as X’ — X'Xyx X’ is a v-covering. Thus, the middle two arrows are
actually the same. Thus, the first arrow is an isomorphism by the sheaf property of F. g

Proposition 1.3.25. With the notation in 1.3.16, let o : F1 — Fo be a morphism of presheaves on
Iso_.g. Assume that
(i) the morphism F1(Spec(V)) — Fa(Spec(V)) is an isomorphism for any S°-integrally closed
S-scheme Spec(V') where V is an absolutely integrally closed valuation ring, and that
(ii) for any directed inverse system of S°-integrally closed affine schemes (Spec(Ay))ren over
S the natural morphism colim F;(Spec(Ay)) — Fi(Spec(colim Ay)) is an isomorphism for
i=1,2 (cf. 1.3.19.(3)).
Then, the morphism of the associated sheaves F* — F& is an isomorphism.

PROOF. Let A be a product of absolutely integrally closed valuation rings such that X = Spec(A)
is an S°-integrally closed S-scheme. Let Spec(V) be a connected component of Spec(A) with the
reduced closed subscheme structure. Then, V' is an absolutely integrally closed valuation ring by
1.3.11.(2), and Spec(V) is also S°-integrally closed since it has nonempty intersection with the dense
open subset X° of X. Notice that each connected component of an affine scheme is the intersection of
some open and closed subsets ([Sta22, 04PP]). Moreover, since A is reduced, we have V' = colim A’,
where the colimit is taken over all the open and closed subschemes X’ = Spec(A4’) of X which contain
Spec(V). By assumption, we have an isomorphism

(1.3.25.1) colim F; (X') — colim Fo(X").

For two elements &1, ¢&] € F1(X) with ax(§1) = ax(§]) in F2(X), by (1.3.25.1) and a limit argument,
there exists a finite disjoin union X = []!_, X/ such that the images of &, and ¢} in F;(X]) are the
same. Therefore, F& — F% is injective by 1.3.14. On the other hand, for an element & € Fa(X),
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by (1.3.25.1) and a limit argument, there exists a finite disjoin union X = [[!_; X/ such that there
exists an element &; ; € F1(X]) for each i such that the image of & in F5(X]) is equal to ax:(§1,:)-
Therefore, F* — F% is surjective by 1.3.14. O

1.3.26. We take the notation in 1.3.16. Endowing Sch" with the v-topology (1.3.3), we see that the
functors ot and W' defined in 1.3.20 are left exact (as they have left adjoints) and continuous by
1.3.15 and 1.3.22. Therefore, they define morphisms of sites (I1.2.5)

(1.3.26.1) (SchS®)y % Isoos ~7» (Schie),.

Proposition 1.3.27. With the notation in 1.3.26, let a : (Sch%}é)v — 5%, be the morphism of site
defined by the inclusion functor (1.3.9).
(1) For any torsion abelian sheaf F on S, the canonical morphism U, (a"'F) — R¥,(a 1 F)
is an tsomorphism.
(2) For any locally constant torsion abelian sheaf L. on Igo_,g, the canonical morphism L —
RU, UL is an isomorphism.

PROOF. (1) For each integer ¢, the sheaf RIW,(a~1F) is the sheaf associated to the presheaf
X = HI(X°,a ' F) = HL (X, ;' F) by 1.3.9, where fs : X5 — S5, is the natural morphism. If X
is the spectrum of a nonzero absolutely integrally closed valuation ring V, then X° = Spec(V[1/7])
for a nonzero element w € V by 1.3.11.(1) and 1.3.19.(1), which is also the spectrum of an absolutely
integrally closed valuation ring (1.2.1). In this case, HZ (X°, fi;'F) = 0 for ¢ > 0, which proves (1)
by 1.3.25 and [SGA 4y, VIL5.8].

(2) The problem is local on Igo_,s. We may assume that L is the constant sheaf with value L.
Then, R1, ¥ L = 0 for ¢ > 0 by applying (1) on the constant sheaf with value L on S5,. For ¢ = 0,
notice that L is also the sheaf associated to the presheaf X — H (X, L), while ¥, U 'L is the sheaf
X + HJ(X°, L) by the discussion in (1). If X is the spectrum of a nonzero absolutely integrally
closed valuation ring, then so is X° and so that HY (X, L) = HY, (X°, L) = L. The conclusion follows
from 1.3.25 and [SGA 4y1, VIL5.8]. O

I.4. The arc-Descent of Perfect Algebras

Definition I.4.1. For any IF,-algebra R, we denote by Rpes the filtered colimit
(I1.4.1.1) Rpert = c%iglR
indexed by (N, <), where the transition map associated to ¢ < (i 4+ 1) is the Frobenius of R.
It is clear that the endo-functor of the category of F,-algebras, R — Rper¢, commutes with

colimits.

coh

1.4.2. We define a presheaf Ope ¢ on the category Schy of coherent U-small Fp-schemes X by
(I1.4.2.1) Opert(X) = T(X, Ox)pert-

For any morphism Spec(B) — Spec(A) of affine Fp,-schemes, we consider the augmented Cech complex
of the presheaf Opers,

(1422) 0— Apcrf — Bporf — chrf XA chrf — e

perf

Lemma 1.4.3 ([Sta22, 0OEWT]). The presheaf Opert is a sheaf on Sch]CFZh with respect to the fppf
topology ([Sta22, 021L]). Moreover, for any coherent F,-scheme X and any integer g,

(1.4.3.1) quppf(X, Opert) = clg)rl(i){an HY(X,Ox).

PROOF. Firstly, we remark that for any integer ¢, the functor quppf(X ,—) commutes with fil-

tered colimit of abelian sheaves on (Sch%?)fppf for any coherent scheme X ([Sta22, 0739]). Since

the presheaf O sending X to I'(X,0Ox) on Sch%‘zh is an fppf-sheaf, we have Hfoppf(X, Ogcrf) =
colimpye, HPppf(X, 0) = Opert(X). Thus, Opers is an fppf-sheaf. Moreover, quppf(X, Opert) =
colimpyop quppf(X ,O) = colimpyop H1(X, Ox) by faithfully flat descent ([Sta22, 03DW]). O

Lemma 1.4.4. Let 7 € {fppf, h, v, arc}. The following propositions are equivalent:
(1) The presheaf Opere on Sch]%‘;h is a T-sheaf and HI(X, Opert) = colimpyop H1(X, Ox) for any
coherent IF,,-scheme X and any integer q.
(2) For any 7-covering Spec(B) — Spec(A) of affine Fy-schemes, the augmented Cech complex
(1.4.2.2) is exact.
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PROOF. For an affine scheme X = Spec(A), HY(X, Ox) vanishes for ¢ > 0 and H°(X,Ox) = A.
For (1) = (2), the exactness of (1.4.2.2) follows from the Cech-cohomology-to-cohomology spectral
sequence associated to the 7T-covering Spec(B) — Spec(A) [Sta22, 03AZ|. Therefore, (1) and (2)
hold for 7 = fppf by 1.4.3. Conversely, the exactness of (1.4.2.2) shows the sheaf property for any
T-covering of an affine scheme by affine schemes, which implies the fppf-sheaf Oper¢ is a 7-sheaf
(cf. [Sta22, OETM]). The vanishing of higher Cech cohomologies implies that HI(X, Opers) = 0 for
any affine Fp-scheme X and any ¢ > 0 ([Sta22, 03F9|). Therefore, for a coherent F,-scheme X,
H1(X,Opert) can be computed by the hyper-éech cohomology of a hypercovering of X formed by
affine open subschemes ([Sta22, 01GY]). In particular, we have HI(X, Opert) = H (X, Opert) for
any integer ¢, which completes the proof by 1.4.3. 0
Lemma I.4.5 (Gabber). The augmented Cech complez (1.4.2.2) is exact for any h-covering Spec(B) —
Spec(A) of affine Fy,-schemes.

PRrROOF. This is a result of Gabber, cf. [BST17, 3.3] or [Sta22, 0EWU], and 1.4.4. O

Lemma 1.4.6 ([BS17, 4.1]). The augmented Cech complex (1.4.2.2) is exact for any v-covering
Spec(B) — Spec(A) of affine F,-schemes.

PrOOF. We write B as a filtered colimit of finitely presented A-algebras B = colim B). Then,
Spec(Bx) — Spec(A) is an h-covering for each A by 1.3.2. Notice that Bpers = colim Bj perf, then the
conclusion follows from applying 1.4.5 on Spec(B)) — Spec(A4) and taking colimit. O

Lemma 1.4.7 ([BS17, 6.3]). For any valuation ring V and any prime ideal p of V, the sequence
(L4.7.1) 0—V-5VhaV, 5 V/pV, —0

is exact, where a(a) = (a,a) and B(a,b) = a —b. If moreover V is a perfect F,-algebra, then for any
perfect V-algebra R, the base change of (1.4.7.1) by V — R,

(L4.7.2) 0—R— R/pR®R, — R,/pR, — 0

s exact.

PROOF. The sequence (1.4.7.1) is exact if and only if p = pV,,. Let a € p and s € V' \ p. Since p
is an ideal, s/a ¢ V, thus a/s € V as V is a valuation ring. Moreover, we must have a/s € p as p is
a prime ideal. This shows the equality p = pV/},.

The second assertion follows directly from the fact that Tor;?(B ,C) =0 for any ¢ > 0 and any
diagram B <+ A — C of perfect Fp-algebras ([BS17, 3.16]). O

Lemma 1.4.8 ([BM20, 4.8]). The augmented Cech complex (1.4.2.2) is exact for any arc-covering
Spec(B) — Spec(A) of affine F,-schemes with A a valuation ring.

PRrROOF. We follow the proof of Bhatt-Mathew [BM20, 4.8]. Let B = colim B) be a filtered
colimit of finitely presented A-algebras. Then, Spec(B)) — Spec(A) is also an arc-covering by 1.3.2.
Thus, we may assume that B is a finitely presented A-algebra.

An interval I = [p, q] of a valuation ring A is a pair of prime ideals p C q of A. We denote by
Ar = (A/p)q. The set T of intervals of A is partially ordered under inclusion. Let P be the subset
consisting of intervals I such that the lemma holds for Spec(B ®4 Ar) — Spec(Ay). It suffices to
show that P =T.

(1) If the valuation ring A; is of height < 1, we claim that Spec(B ®4 Ar) — Spec(Ay) is
automatically a v-covering. Indeed, there is an extension of valuation rings A; — V of height
< 1 which factors through B® 4 A;. As A; — V is faithfully flat, Spec(B®4 Ar) — Spec(Ar)
is a v-covering by 1.3.2 and 1.3.4.(1). Therefore, I € P by 1.4.6.

(2) For any interval J C I, if I € P then J € P. Indeed, applying ®r,(A)pert to the exact
sequence (1.4.2.2) for Spec(B ®4 A;) — Spec(Ay), we still get an exact sequence by the
Tor-independence of perfect Fy-algebras ([BS17, 3.16]).

(3) If p C A is not maximal, then there exists ¢ 2 p with I = [p,q] € P. Indeed, if there is no
such I with the height of A; no more than 1, then p = ﬂqu q, and thus,

(I1.4.8.1) Ap/pA, = colim Aj.
I=[p,q],a2p
Since Spec(B ®4 Ap/pAp) — Spec(A,/pA,) is an h-covering as A, /pA, is a field (and we
have assumed that B is of finite presentation over A), there exists an interval I in the above
colimit, such that Spec(B ® 4 Ar) — Spec(Ay) is also an h-covering by 1.3.4.(3). Therefore,
this I lies in P by 1.4.6.
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(4) If p C A is nonzero, then there exists q C p with I = [q,p] € P. This is similar to (3).

(5) If I, J € P are overlapping, then I U J € P. Indeed, by (2) and replacing A by A, we
may assume that I = [0,p], J = [p, m] with m the maximal ideal. In particular, A; = A,,
Ay =A/p, and Ajny = A, /pA,. Since for each R = ®Zperprcrf we have the short exact
sequence (1.4.7.2), we get TU J € P.

In general, by Zorn’s lemma, the above five properties of P guarantee that P = Z (cf. [BM20,
4.7)). O

Lemma 1.4.9 (cf. [BM20, 3.30]). The augmented Cech complex (1.4.2.2) is exact for any arc-
covering Spec(B) — Spec(A) of affine F,,-schemes with A a product of valuation rings.

PROOF. We follow closely the proof of 1.3.25. Let Spec(V') be a connected component of Spec(A)
with the reduced closed subscheme structure. Then, V is a valuation ring by 1.3.11.(2). By 1.4.8, the
augmented Cech complex

(1.4.9.1) 0— Vperf — (B Xa V>perf — (B Ra V)perf ®Vperf (B XA V)perf —

is exact. Notice that each connected component of an affine scheme is the intersection of some open

and closed subsets ([Sta22, 04PP]). Moreover, since A is reduced, we have V' = colim A’, where the

colimit is taken over all the open and closed subschemes Spec(A’) which contain Spec(V).
Therefore, by a limit argument, for an element f € ®’j,perprcrf which maps to zero in ®Z;lrprcrf,

as Spec(A) is quasi-compact, we can decompose Spec(A) into a finite disjoint union ]_L]il Spec(A4;)
such that there exists g; € ®’j{i (B ®4 A;)pert which maps to the image f; of f in ®Zi,perf(B Ra

erf

A;)pert. Since we have

N
(1.4.9.2) ®% e Boert = [ [ @4, . (B @4 Ai)pent
i=1
the element g = (g;)}., maps to f, which shows the exactness of (I.4.2.2). O

Proposition 1.4.10 (|[BS19, 8.10]). Let 7 € {fppf, h, v, arc}.

(1) The presheaf Opers is a T-sheaf over Sch]CFZh, and for any coherent F,-scheme X and any
integer q,

(1.4.10.1) HY(X, Opert) = colim H(X, Ox).
ro

(2) For any T-covering Spec(B) — Spec(A) of affine F,-schemes, the augmented Cech complex

(1.4.10.2) 0 = Apert = Bperf = Bpert @4, Bpert =+

perf

s exact.

PRrROOF. We follow closely the proof of Bhatt-Scholze [BS19, 8.10]. (1) and (2) are equivalent by
I.4.4, and they hold for 7 € {fppf, h, v} by 1.4.3, 1.4.5 and 1.4.6. In particular,

(1.4.10.3) HY(Spec(A), Opert) = Apert and HZ(Spec(A), Opert) = 0, Vg > 0.

We take a hypercovering in the v-topology Spec(A,) — Spec(A) such that A, is a product of valuation
rings for each degree n by 1.3.14 and [Sta22, 094K and 0DB1]. The associated sequence

(14104) 0— Aperf — AO,perf — Al,perf —

is exact by the hyper-Cech-cohomology-to-cohomology spectral sequence [Sta22, 01GY].

Consider the double complex (A7) where the i-th row A? is the base change of (1.4.10.2) by
Apert = Aj pert, i.6. the augmented Cech complex (1.4.2.2) associated to Spec(B ®4 A;) — Spec(4;)
(weset A_; = A). On the other hand, the j-th column A3 is the associated sequence (1.4.10.4) to the
hypercovering Spec(Ae ® 4 (®QB)) — Spec(@ﬁB), which is exact by the previous discussion. Since
At — Tot(A{)gg is a quasi-isomorphism ([Sta22, 0133]), for the exactness of the (—1)-row A®,
we only need to show the exactness of the i-th row A? for any ¢ > 0 but this has been proved in 1.4.9
thanks to our choice of the hypercovering, which completes the proof. O
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I.5. Almost Pre-perfectoid Algebras
Definition 1.5.1.

(1) A pre-perfectoid field K is a valuation field whose valuation ring Ok is non-discrete, of
height 1 and of residue characteristic p, and such that the Frobenius map on Ok /pOk is
surjective.

(2) A perfectoid field K is a pre-perfectoid field which is complete for the topology defined by
its valuation (cf. [Sch12, 3.1]).

(3) A pseudo-uniformizer w of a pre-perfectoid field K is a nonzero element of the maximal
ideal mg of O.

A morphism of pre-perfectoid fields K — L is a homomorphism of fields which induces an extension
of valuation rings O — Oy,.

Lemma 1.5.2. Let K be a pre-perfectoid field with a pseudo-uniformizer w. Then, the fraction field
K of the w-adic completion of Ok is a perfectoid field.

PRrROOF. The m-adic completion (7); of Ok is still a non-discrete valuation ring of height 1 with
residue characteristic p (cf. [Bou06, VI.§5.3, Prop.5]). If p # 0, then it is canonically isomorphic to
the p-adic completion of O, so that there is a canonical isomorphism O /pOx — 5;; / p@}, from
which we see that K is a perfectoid field. If p = 0, then the Frobenius induces a surjection O — Ok
if and only if O is perfect. Thus, 6; is also perfect, and we see that Kisa perfectoid field. O

1.5.3. Let K be a pre-perfectoid field. There is a unique (up to scalar) ordered group homomorphism
vg : K — R such that 1);(1 (0) = Oy, where the group structure on R is given by the addition. In
particular, O \ 0 = vi' (R>o) and mg \ 0 = v' (Rsg) (cf. [Bou06, VI1.§4.5 Prop.7] and [Bou07,
V.§2 Prop.1, Rem.2]). The non-discrete assumption on Ok implies that the image vy (K*) C R is
dense. We set v (0) = +o0.

Lemma 1.5.4 ([Sch12, 3.2]). Let K be a pre-perfectoid field. Then, for any pseudo-uniformizer
of K, there exists w, € mg for each integer n > 0 such that 7o = 7 and w, = U, waH for some unit
un, € O, and mg is generated by {m, }n>o0-

PROOF. If vg(m) < vk (p), since the Frobenius is surjective on O /p, there exists m; € Ok such
that vg (m — 7)) > vk (p). Then, vg(m) = v (7]) and thus 7 = w- 7} with u € Oj. In general, since
v (K*) C R is dense, any pseudo-uniformizer 7 is a finite product of pseudo-uniformizers whose
valuation values are strictly less than vk (p), from which we get a p-th root m of 7 up to a unit.
Since 7 is also a pseudo-uniformizer, we get 7, inductively. As vg(m,) tends to zero when n tends
to infinity, mg is generated by {m,}n>0. a

1.5.5. Let K be a pre-perfectoid field. We briefly review almost algebra over (O, mg) for which we
mainly refer to [AG20, 2.6], [AGT16, V| and [GRO03|. Remark that mx ®p, mx = m% = myg is
flat over Ok.

An Og-module M is called almost zero if mxgM = 0. A morphism of Og-modules M — N is
called an almost isomorphism if its kernel and cokernel are almost zero. Let .4 be the full subcategory
of the category Ox-Mod of Og-modules formed by almost zero objects. It is clear that .4 is a Serre
subcategory of Ox-Mod ([Sta22, 02MO]). Let S be the set of almost isomorphisms in Ox-Mod.
Since 4 is a Serre subcategory, S is a multiplicative system, and moreover the quotient abelian
category Ox-Mod/.# is representable by the localized category S~*Ox-Mod (cf. [Sta22, 02MS)]).
We denote S*0Ox-Mod by 0%-Mod, whose objects are called almost O -modules or simply O3 -
modules (cf. [AG20, 2.6.2]). We denote by

(1.5.5.1) o : Og-Mod — 0O%-Mod, M s M?

the localization functor. It induces an Og-linear structure on O%—Mod. For any two Og-modules
M and N, we have a natural Og-linear isomorphism (|[AG20, 2.6.7.1])

(15.5.2) Hom pa nod (M™, N*) = Homo, Mod(mix @0, M, N).
The localization functor a* admits a right adjoint
(1.5.5.3) a.: Of-Mod — Og-Mod, M — M, = Hompg noa(Oks M),
and a left adjoint
(1.5.5.4) o : O%-Mod — O-Mod, M — M, = mg ®@o,. M,.
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Moreover, the natural morphisms
(1.5.5.5) (M)™ = M, M = (My)™

are isomorphisms for any O%-module M (cf. [AG20, 2.6.8]). In particular, for any functor ¢ : I —
(’)"]"}—Mod sending i to M;, the colimit and limit of ¢ are representable by

(1.5.5.6) colim M; = (colim M;,)®, lim M; = (lim M, ).
The tensor product in Ox-Mod induces a tensor product in O%-Mod by
(1.5.5.7) M @pn N*' = (M €0, N)*

making 03-Mod an abelian tensor category ([AG20, 2.6.4]). We denote by O%-Alg the category
of commutative unitary monoids in O%-Mod induced by the tensor structure, whose objects are
called almost O -algebras or simply O3 -algebras (cf. [AG20, 2.6.11]). Notice that R*! (resp. R.)
admits a canonical algebra structure for any Og-algebra (resp. O'}‘}—algebra) R. Moreover, a* and o
induce adjoint functors between Ox-Alg and O%-Alg ([AG20, 2.6.12]). Combining with (I.5.5.5)
and (L.5.5.6), we see that for any functor ¢ : I — O%-Alg sending i to R;, the colimit and limit of ¢
are representable by (cf. [GRO03, 2.2.16])

(1.5.5.8) colim R; = (colim Ry, ), lim R; = (lim Ry, ).
In particular, for any diagram B < A — C of O%k-algebras, we denote its colimit by
(15.5.9) B®,C = (B.®a, C,)",

which is clearly compatible with the tensor products of modules. We remark that o commutes
with arbitrary colimits (resp. limits), since it has a right adjoint c. (resp. since the forgetful
functor O%-Alg — O%-Mod and the localization functor a* : Oxg-Mod — O3%-Mod commute
with arbitrary limits).

1.5.6. For an element a of O, we denote by (O /aO)*-Mod the full subcategory of 0%-Mod
formed by the objects on which the morphism induced by multiplication by a is zero. Notice that for
an (O /aOk)*-module M, M, is an Ok /aOx-module. Thus, the localization functor o* induces
an essentially surjective exact functor (O /aOx)-Mod — (O /aOk)*-Mod, which identifies the
latter with the quotient abelian category (Ox/aOk)-Mod/.# N (Ok/aOk)-Mod.

Let m be a pseudo-uniformizer of K dividing p with a p-th root m; up to a unit. The Frobe-
nius on O /7O induces an isomorphism Ok /7110 — Ok /mOf. The Frobenius on (O /m)-
algebras and the localization functor a* induce a natural transformation from the base change functor
(Ok /m)*-Alg — (O /7)*-Alg, R — (O /T) ®Frob, (05 /x) R to the identity functor.

(1.5.6.1) (O J7)M-Alg —— (Ok /m1)*-Alg —— (O /7)*-Alg

id
For an (O /m)¥-algebra R, we usually identify the (O /m1)*-algebra R/m R with the (O /)2
algebra (O /T)®@prob, (0 /=) R, and we denote by R/m R — R the natural morphism (O /7)®prob, (0 /)
R — R induced by the Frobenius (cf. [GRO03, 3.5.6]). Moreover, the natural transformations induced
by Frobenius for (O /m)-Alg and (Og /7)*-Alg are also compatible with the functor a.,. Indeed,
it follows from the fact that for any (O /m)-algebra R, the composition of
(15.6.2)

Hom(m g ,Frob)

(Ok /7)) @0 7 Hom(mg, R) —— Hom(mg, (O /7) @0, /x) R) Hom(mg, R)

is the relative Frobenius on (R), = Homo,. .Mod (i, R).

1.5.7. Let C be a site. A presheaf F of Og-modules on C is called almost zero if F(U) is almost
zero for any object U of C. A morphism of presheaves F — G of Og-modules on C' is called an
almost isomorphism if F(U) — G(U) is an almost isomorphism for any object U of C (cf. [AG20,
2.6.23]). Let .4 be the full subcategory of the category Ox-Mod¢ of sheaves of Og-modules
on C formed by almost zero objects. Similarly, .4 is a Serre subcategory of Ox-Mod¢. Let
D_y (Ok-Mod() be the full subcategory of the derived category D(Ox-Mod) formed by complexes
with almost zero cohomologies. It is a strictly full saturated triangulated subcategory ([Sta22,
06UQ]). We also say that the objects of D_y (Ox-Mod¢) are almost zero. Let S be the set of arrows
in D(Og-Mod¢) which induce almost isomorphisms on cohomologies. We also call the elements of
S almost isomorphisms. Then, S is a saturated multiplicative system ([Sta22, 05RG]), and moreover
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the quotient triangulated category D(Ox-Mod¢)/D_y (Ox-Mod() is representable by the localized
triangulated category ST!D(Ox-Modc) ([Sta22, 05RI]). The natural functor

(15.7.1) S7'D(0Ok-Mod¢) — D(03-Mod()
is an equivalence by [Sta22, 06XM] and (1.5.5.5) (cf. [GR03, 2.4.9]).

Lemma 1.5.8. Let K be a pre-perfectoid field with a pseudo-uniformizer m, M a flat Ok -module.
We fiz a system of p"-th roots (mp)n>0 of ™ up to units (1.5.4), then the map

(1.5.8.1) ﬂ 7 M — (M™), = Homo, Mod(Mx, M), a+ (z — za)
n>0

where 1, ' M C M|[1/7], is an isomorphism of O -modules. Moreover, for an extension of valuation
rings Oxg — R of height 1, we have R =, +, 7 'R and the above isomorphism coincides with the

unit map R — (R™),.

PROOF. Since my is generated by {7, }n>0, any Og-linear morphism f : mgx — M is determined
by its values f(m,) € M. Notice that (7/m,) - f(m,) = f(7) and M is m-torsion free, so that f
must be given by the multiplication by an element a = f(7)/7m € M[1/x7]. It is clear that such a
multiplication sends mg to M if and only if a € (>, 7, ! M, which shows the first assertion. If
Ok — R is an extension of valuation rings of height 1, then we directly deduce from the valuation

map v : R[1/7]\ 0 = R (I.5.3) the equality R = (1,5, 7, ' R. O

Lemma 1.5.9. Let K be a pre-perfectoid field, R an Ok-algebra, O — V an extension of valuation
rings of height 1. Then, the canonical map

(15.9.1) Homo,alg(R, V) — Hompu a1g(RY, V)
is bijective.
PROOF. There are natural maps

(1.5.9.2)
HomOK-Alg(R7 V) - HomO;l—Alg(Rala Val) = HomOK-Alg(R7 (Val)*) — HomOK-Alg(Ra V),

where the middle isomorphism is given by adjunction and the last isomorphism is induced by the
inverse of the unit map V — (V#), by 1.5.8. The composition is the identity map, which completes
the proof. 0

Definition 1.5.10. Let K be a pre-perfectoid field. We say that an O%-module M (resp. an Og-
module M) is flat (vesp. almost flat) if the functor O%-Mod — O3-Mod given by tensoring with
M is exact (resp. M?! is flat).

Remark 1.5.11. In general, one can define the flatness of a morphism of O%-algebras (cf. [GRO03,
3.1.1.(i)]). We say that a morphism of Ox-algebras A — B is almost flat if A* — B is flat.

Lemma 1.5.12. Let K be a pre-perfectoid field with a pseudo-uniformizer w. Then, an O%—module
M is flat if and only if M, is w-torsion free. In particular, an Ox-module N is almost flat if and
only if the submodule of w-torsion elements of N is almost zero.

PRrROOF. First of all, for any (’)%—modules Ly and L», we have a canonical isomorphism
(15.12.1) Hompa nod(M @0y L1, L2) = Homew noa (L1, Homo . mMoa (M, L2.)™)

by (1.5.5.2), (I.5.5.5) and (1.5.5.7). Therefore, the functor defined by tensoring with M admits a right
adjoint, and thus it is right exact. Consider the sequence

(1.5.12.2) 0— O 5 0% — (O /70K)™ — 0,

which is exact since the localization functor a* is exact. If M is flat, tensoring the above sequence
with M and applying «., we deduce that M, is w-torsion free since v is left exact (as a right adjoint
to ). Conversely, if M, is m-torsion free, then it is flat over Q. For any injective morphism
Ly — Ly of O3 -modules, L1, — Lo, is also injective, and it remains injective after tensoring with
M,. Therefore, L1 — Lo also remains injective after tensoring with M since «* is exact. This shows
that M is flat.

The second assertion follows from the almost isomorphism N — (N!), and the fact that (N?!), =
Home, .Mod (Mg, N) has no nonzero almost zero element. O
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Lemma 1.5.13. Let K be a pre-perfectoid field with a pseudo-uniformizer m, M a flat (’)?(l-module,
x an element of Ok. Then, the canonical morphism M,/xM, — (M/xM), is injective, and for
any € € myg, the image of e : (M/exM), — (M/xM). is M./xM,. In particular, the canonical
morphism

(15.13.1) lim M. /7" M, — (lim M/x" M),

is an isomorphism of Ok -modules.

ProOF. We follow the proof of [Sch12, 5.3]. Applying the left exact functor a. to the exact
sequence

(15.13.2) 0 M —2= M M/xM — 0,

we see that M, /xM, — (M/xM), is injective.

To show that the image of ¢, is M, /xM,, it suffices to show that ¢, factors through M, /xM,.
We identify (M/xzM), with Homoe, mod (Mg, M./xzM,) by (1.5.5.5) and (1.5.5.2) so that M, /xM,
identifies with the subset consisting of the Ox-morphisms mg — M, /xM, sending y to ya for some
element a € M, /xM,. For an Og-morphism f : mg — M, /exM,, let b be an element of M, which
lifts f(e). Notice that M, is m-torsion free by 1.5.12. With notation in I.5.8, we have b = (¢/m,)- f (7y)
mod exM, for n big enough so that the element b/e € M,[1/x] lies in (> 7, ' M, = M,. Moreover,
7, - (b/€) = f(m,) mod xM, for n big enough. As ¢.(f) is determined by its values on 7, for n big
enough, it follows that ¢.(f) = a, where a is the image of b/e in M, /xM,.

Finally, the previous result implies that the inverse system ((M/7"M).),>1 is Mittag-Leffler so
that the “in particular” part follows immediately from the fact that o, commutes with arbitrary limits
(as a right adjoint to a*) ([Sta22, 0596]). O

Definition 1.5.14. Let K be a pre-perfectoid field. For any Og-algebra R, we define a perfect ring
R’ as the projective limit
(1.5.14.1) R’ = lim R/pR

Frob

indexed by (N, <), where transition map associated to ¢ < (i + 1) is the Frobenius on R/pR. We call
R’ the tilt of R.

Lemma 1.5.15 ([Sch12, 3.4]). Let K be a perfectoid field with a pseudo-uniformizer m dividing p.
(1) The projection induces an isomorphism of multiplicative monoids
(I.5.15.1) l&n O — @1 Ok /m0k.
Frob Frob
In particular, the right hand side is canonically isomorphic to (OK)b as a ring.
(2) We denote by
(1.5.15.2) 4:(0Og) — Ok, x> 2,
the composition of the inverse of (1.5.15.1) and the projection onto the first component.
Then vi ot : (Ok)’\ 0 — Rxq defines a valuation of height 1 on (Of)”.
(3) The fraction field K* of (Ok)° is a perfectoid field of characteristic p and the element

(15.15.3) 7= (17 P 0) € (0)

is a pseudo-uniformizer of K", where T = u - 71'{’ with m1 € mg and u € (’)IX(.
(4) We have Oy, = (Ok)°, and there is a canonical isomorphism

(1.5.15.4) O /T Ops — Opc/TOK
induced by (1) and the projection onto the first component.

1.5.16. We see that the tilt defines a functor Ox-Alg — Og»-Alg, R — R’ which preserves almost
zero objects and almost isomorphisms. For an O%-algebra R, we set B> = ((R.)?)*' and call it the tilt
of R, which induces a functor O%-Alg — O%b—Alg, R — R’. Note that the tilt functor commutes
with the localization functor o™ up to a canonical isomorphism, and commutes with the functor
up to a canonical almost isomorphism.

Definition 1.5.17 ([Sch12, 5.1]). Let K be a perfectoid field, 7 a pseudo-uniformizer of K dividing
p with a p-th root 7 up to a unit.

(1) A perfectoid O%}—alge?m is an O%-algebra R such that
(i) R is flat over O%;


https://stacks.math.columbia.edu/tag/0596

1.5. ALMOST PRE-PERFECTOID ALGEBRAS 41

(ii) the Frobenius of R/m R induces an isomorphism R/71 R — R/mR of O%l-algebras (1.5.6);

(iii) the canonical morphism R — Jm R/7"R is an isomorphism in O%-Alg.

We denote by O#-Perf the full subcategory of O%-Alg formed by perfectoid O -algebras.
(2) A perfectoid (O /m)*-algebra is a flat (O /7)-algebra R such that the Frobenius map

induces an isomorphism R/7; R -~ R. We denote by (O /7)*-Perf the full subcategory

of (Ok /m)*-Alg formed by perfectoid (O /7)3-algebras.

Lemma 1.5.18. Let K be a pre-perfectoid field, © a pseudo-uniformizer of K dividing p with a p-th
root w1 up to a unit. Then, for an Ok -algebra R, the following conditions are equivalent:
(1) The almost algebra R2l associated to the m-adic completion R of R is a perfectoid (’)}1{1-
algebra.

(2) The Og-module R is almost flat, and the Frobenius of R/mR induces an almost isomorphism
R/m R — R/7R.

PROOF. We have seen that K is a perfectoid field in 1.5.2 and 7 is obviously a pseudo-uniformizer
of K. Since the localization functor a* : Ox-Alg — O3-Alg commutes with arbitrary limits and
colimits (I.5.5), we have a canonical isomorphism R* lim R* /7 R?l. Thus, the third condition

in .5.17.(1) holds for R™. Since there are canonical isomorphisms
(1.5.18.1) R/mR =5 R/mR, R/TR = R/nR,
the conditions (1) and (2) are clearly equivalent. O

Definition 1.5.19. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with
a p-th root m; up to a unit. We say that an Og-algebra is almost pre-perfectoid if it satisfies the
equivalent conditions in 1.5.18.

We remark that in 1.5.19, if a morphism of Og-algebras R — R’ induces an almost 1som0rphlsm
R/m"R — R'/7"R' for each n > 1, then the morphism of the m-adic completions R — R is an almost
isomorphism since a* commutes w1th limits. In particular, R is almost pre-perfectoid if and only if
R’ is almost pre-perfectoid.

Lemma 1.5.20. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Og-algebra. If R
is almost flat (resp. flat) over Ok, then the m-adic completion R is almost flat (resp. flat) over Og.

PRrROOF. For any integer n > 0, there is a canonical isomorphism
(1.5.20.1) R/7"R =+ R/7"R.

Let 2 € R be a m-torsion element. Since any 7-torsion element of R is almost zero (resp. zero) by
[.5.12, for any € € mg (resp. € = 1), the image of ex in R/7"R lies in 7" 'R/7"R. Therefore,
€x € ()50 ™" 'R = 0, which amounts to say that R is almost flat (resp. flat) over Op. O

Lemma 1.5.21. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-th
root w1 up to a unit, R a flat Ok -algebra. Then, the following conditions are equivalent:

(1) The Frobenius induces an injection R/m1R — R/mwR.
(2) For any x € R[1/7]|, if 2 € R, then x € R.

PrOOF. We follow the proof of [Sch12, 5.7]. Assume first that R/m R — R/mR is injective. Let
r € R[1/7] with 2P € R, k the minimal natural number such that y = 7fx € R. If k > 1, then
yP =t kP e 7R. T herefore, y € w1 R by the injectivity of the Frobenius. However, as R is m-torsion
free, we have 3/ = y/m = w’fflm € R which contradicts the minimality of k.

Conversely, for any = € R with 2P € 7R, we have (z/m)? € R. Thus, x/m € R by assumption,

i.e. x € m1 R, which implies the injectivity of the Frobenius. U

Lemma 1.5.22. Let K be a pre-perfectoid field, m a pseudo-uniformizer of K dividing p with a p-
th root ™ up to a unit, R an Ok-algebra which is almost flat. Then, the following conditions are
equivalent:

(1) The Frobenius induces an almost injection (resp. almost isomorphism) R/m R — R/7R.
(2) The Frobenius induces an injection (resp. isomorphism) (R*), /71 (RY), — (R™), /7n(RY)..

PRrROOF. We follow the proof of [Sch12, 5.6]. Notice that the Frobenius is compatible with
the functors a* and a, (1.5.6). (2) = (1) follows from the almost isomorphism R — (R®!).. The
“injection” part of (1) = (2) follows from the inclusions (1.5.13)

(1.5.22.1) (RM), /m (RM), C (R/m R)™)., (RM)./m(R™), C ((R/7R)™)..
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For the “isomorphism” part of (1) = (2), notice that (R™), /71 (R™), — (R™)./7x(R™), is almost
surjective. Let 7y be a p-th root of m; up to a unit (I.5.4). Then, for an element x of (R™),,

2 2
there exist elements y and 2’ of (R®!), such that 7hz = y? + 75 2’. Thus, z = y’? + 75 P2’ where

Y =y/my € (RM),[1/7] (as (R™), is flat over Ok by 1.5.12). In fact, 3/ lies in (R?!), by 1.5.21 and the

“injection” part of (1) = (2). By applying this process to ’, there exist elements y” and z” of (R™),
2 2

such that 2/ = y?+x% P2/, In conclusion, we have & = y/?+n8 “P(y/P+nb Po’") = (y 475 1y )P

mod m(R™),, which shows the surjectivity of (R™),/m1(R™), — (R™),/7(R),. O

Lemma 1.5.23. Let K be a pre-perfectoid field, R an almost flat Ok -algebra, w, 7' pseudo-uniformizers
dividing p with p-th roots 7y, 7 respectively up to units. Then, the following conditions are equivalent:

(1) The Frobenius induces an almost injection (resp. almost surjection) R/m R — R/TR.
(2) The Frobenius induces an almost injection (resp. almost surjection) R/m{R — R/7'R.

In particular, the definitions 1.5.17.(1) and 1.5.19 do not depend on the choice of the pseudo-uniformizer.

PROOF. Notice that (R*), is flat over Of by 1.5.12. The “injection” part follows from 1.5.21 and
1.5.22. For the “surjection” part, we assume that R/m R — R/mR is almost surjective. Let € € mg.
We can take a pseudo-uniformizer 7 of K dividing p with 7 = 7 and vk (7)/3 < vi (T) < vk (7)/2.
For any z € R, by the almost surjectivity, we have ex = y? + 72z for some 3,z € R. We also
have Tz = P + 7w for some v,w € R, then ex = y? + TP + Trw. Since y? + TP = (y +
m1v)? mod pR, R’ /7] R — R/7'R is almost surjective for any pseudo-uniformizer 7’ dividing p with
v (') < 4vg (7)/3. By induction, we see that R'/7{R — R/7’R is almost surjective in general. [

Proposition 1.5.24. Let K be a pre-perfectoid field of characteristic p with a pseudo-uniformizer
7w, R an Ok-algebra, R the m-adic completion of R. Then, R is almost pre-perfectoid if and only if
(R™), is perfect.

PRrROOF. Note that Oy is perfect by definition. If R is almost pre-perfectoid, then R is almost flat
so that (R™), is r-adically complete by taking M = R* in .5.13. Moreover, the Frobenius induces an
isomorphism (R™), /7"(R™), — (R™), /7P"(R™), for any integer n > 1 by 1.5.22 and 1.5.23, which
implies that (I:Eal)* is perfect. Conversely, assume that (ﬁal)* is perfect. For any m-torsion element
fe (ﬁ?‘l)k7 we have 71/P" f = 0 for any integer n > 0, which shows that R is almost flat by L.5.12.
Moreover, it is clear that the Frobenius induces an isomorphism (R, /w(R™), — (R™), /=?(R™),,
which shows that R is almost pre-perfectoid by 1.5.22 and 1.5.23. g

Proposition 1.5.25. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Ok -algebra
which is almost flat, R’ the integral closure of R in R[1/x]. If the Frobenius induces an almost
injection R/m R — R/mR, then R — R’ is an almost isomorphism.

PROOF. Since R — (R), is an almost isomorphism, we may replace R by (R*), so that we
may assume that R = (R¥),, R C R[1/x] by L5.12 and for any = € R[1/7] such that zP € R, then
x € R by 1.5.21 and 1.5.22. It suffices to show that R is integrally closed in R[1/7]. Suppose that
x € R[1/7] is integral over R. There is an integer N > 0 such that 2" is an R-linear combination of
1,z,...,2N for any r > 0. Therefore, there exists an integer & > 0 such that 7*z" € R for any r > 0.
Taking r = p", we get © € (5o 7, R = (R™). = R by 1.5.8, which completes our proof. O

Lemma 1.5.26. Let R be a ring, m a nonzero divisor of R, R the m-adic completion of R, ¢ :
R[1/7] — R[1/7] the canonical morphism. Then, = (7™ R) = 7" R for any integer n.

PROOF. Remark that R is also m-torsion free by 1.5.20. For an element z/7* € R[1/7] (where
r € R, k > 0) such that ¢(z/7%) = 7"y for some y € R. After enlarging k, we may assume that

k+mn > 0. Thus, we deduce from the canonical isomorphism R/7**"R — R/x**"R that x € 7*T"R,
which completes the proof. O

Lemma 1.5.27. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Ok -algebra such
that its w-adic completion R is almost flat (resp. flat) over O, R[n®] the R-submodule of elements of
R killed by some power of w. Then, (R[7>°])" is almost zero (resp. zero) and the canonical morphism
R— (R/R[r>])" is surjective and is an almost isomorphism (resp. an isomorphism,).

PrOOF. The exact sequence 0 — R[7*>°] - R — R/R[r>°] — 0 induces an exact sequence of the
m-adic completions

(15.27.1) 0 — (R[r>])» —> R — (R/R[r>])" — 0,
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since R/R[r>] is flat over Ok ([Sta22, 0315]). As R[] is almost zero (resp. zero) by assumption
(I.5.12), the canonical morphism R[7>=]*! — R?®! (resp. R[r*>°] — R) factors through 0, and thus so is

the morphism (R[r>])"*! — R* (resp. (R[r>])" — R). The conclusion follows from the exactness
of (L5.27.1). 0

Lemma 1.5.28. Let K be a pre-perfectoid field. Given a commutative diagram of Ok -algebras

(1.5.28.1) B—1-p

]

Ao a

we denote by C (resp. C') the integral closure of A in B (resp. of A’ in B'). Assume that f and g

are almost isomorphisms. Then, the morphism C — C’ is an almost isomorphism.

PROOF. Since C' — C’ is almost injective as g is so, it remains to show the almost surjectivity.
For any € € mg and 2/ € C’ with identity ™ + a/,_,;2" ' + --- + aj2’ + af, = 0 in B’ where

al_q,...,ay € A, there exist ap_1,...,a0 € A and z € B such that f(a;) = €"7%a} (0 < i < n)
and g(z) = ez’. Thus, g(z" + a,_12"" 1 + -+ a1x + ag) = 0. Since g is almost injective, we see that
ex € C. Tt follows that C' — C’ is almost surjective. 0

Proposition 1.5.29. Let K be a pre-perfectoid field with a pseudo-uniformizer w, A an Ok -algebra
such that its w-adic completion A is almost flat over Op. We denote by B (resp. B') the integral
closure of A in A[1/x (resp. of A in A[1/x]). Then, the canonical morphism of T-adic completions
B — B is an almost isomorphism of Ok -algebras.

PrROOF. We take a system of pF-th roots (mx)k>0 of 7 up to units (I.5.4). By 1.5.27 and 1.5.28,
we can replace A by its image A/A[r>°] in A[l/7], so that we may assume that A is 7-torsion free
(and thus so is A). Let ¢ : A[1/m] — A[1/7] be the canonical morphism. It suffices to show that ¢
induces an almost isomorphism B/7"B — B’/n" B’ for any n > 0.

For any element 2/ € B, there exists r > 0 such that 772’?" € A for any k > 0. We take an
element xy; € A such that ¢(zy;) — 72 € 7" A for i = 0,k. Thus, cp(acz;) — @(Wr(pkfl)xkk) €
7P A, By 1.5.26, we see that xig/ﬂ’”(”k’l) — xk € " A. In particular, (azko/w;(pk_l))pk € A, which
implies that xk.o/ﬂ;(pk_l) € B. Notice that cp(xko/ﬂ,z(pk_l)) — (Tl'/ﬂ'zk_l)rx/ e " =D A, Since k is
an arbitrary positive integer, we see that B/x"B — B’/x™ B’ is almost surjective.

For any element x € B such that ¢(z/7™) € B’, there exists r > 0 such that 7r’“<p($/7r")pk €
A for any k > 0. We take y € A such that 7"p(z/7")P" — ¢(y) € nA, and then we see that
7 (x/7")P" —y € TA by 1.5.26. In particular, (m/ﬂzpk_T)pk € A, which implies that x/ﬂ,?pk_r € B.
Since k is an arbitrary positive integer, we see that B/n"B — B’/n"™ B’ is almost injective. O

Corollary 1.5.30. Let K be a pre-perfectoid field with a pseudo-uniformizer m, R an Ok -algebra
which is almost pre-perfectoid, R’ the integral closure of R in R[1/w]. Then, the morphism of w-adic
completions R — R’ is an almost isomorphism. In particular, R’ is also almost pre-perfectoid.

PrOOF. We consider the following commutative diagram

(1.5.30.1) R—— R —— R[1]

Ll

R——> R' ——R[}]
where R” is the integral closure of R in ]?2[1 /7. Since R — R" is an almost isomorphism by 1.5.25,

R is also perfectoid. The conlusion follows from the fact that R — R’ is an almost isomorphism
by 1.5.29. O]

Theorem 1.5.31 (Tilting correspondence [Sch12, 5.2, 5.21]). Let K be a perfectoid field, m a pseudo-
uniformizer of K dividing p with a p-th root w1 up to a unit.
(1) The functor O%-Perf — (O /m)¥-Perf, R+ R/7TR, is an equivalence of categories.
(2) The functor O3, -Perf — (O /7°)-Perf, R+ R/m°R is an equivalence of categories,
and the functor (O /7°)* -Perf — (’)é;éb -Perf, R — R’ is a quasi-inverse.
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(3) Let R be a perfectoid O -algebra with tilt R’. Then, R is isomorphic to 0 for some
perfectoid field L over K if and only if R® is isomorphic to O, for some perfectoid field L'
over K.

In conclusion, we have natural equivalences
(1.5.31.1) Oi-Perf = (Ok /m)*-Perf 5 (O /") -Perf < O, -Perf,

where the middle equivalence is given by the isomorphism (I1.5.15.4) O /7°O g — Ok /71Of. We
remark that the natural isomorphisms of the equivalence in (2) are defined as follows: for a perfectoid
O?{lb—algebra R, the natural isomorphism R — (R/7”R)" is induced by the homomorphism of O -
algebras R, — (R,/m"R,)" sending z to (--- ,xY/?" 2}/P x) (notice that R, is perfect by L5.24);
for a perfectoid (O /m°)™-algebra R, the natural isomorphism R’/7°R’ =5 R is induced by the
projection on the first component (R.,)” — R, of Ogs-algebras (cf. [Sch12, 5.17]). Consequently, for
a perfectoid O3-algebra R, the morphism of (O /7°)* = (O /) -algebras

(1.5.31.2) R’/T’R* — R/nR
induced by the projection on the first component is an isomorphism.

Proposition 1.5.32. Let K be a perfectoid field with a pseudo-uniformizer m of K dividing p, B +
A — C a diagram of perfectoid O3 -algebras. Then, the m-adically completed tensor product B&C
is also perfectoid.

ProoOF. We follow closely the proof of [Sch12, 6.18|. Firstly, we claim that (B ®4 C)/m is flat
over (O /). Since (B®4C) /7 = (B’ ® 4 C*)/n°, it suffices to show the flatness of B ® 4, C* over
O, which amounts to say that the submodule of 7’-torsion elements of (B,)” @) (C.)" is almost
zero as B® @4, C° = ((B.)’ ®(a,) (CO)?)2L If f € (B.)° ®(a.) (C.)" is a m°-torsion element, then by
perfectness of (B,)" ®(a.) (C.)?, we have (7°)}/P" f = 0 for any n > 0, which proves the claim.

Thus, (B ®4 C)/7 is a perfectoid (O /m)*-algebra. It corresponds to a perfectoid O3 -algebra
D by 1.5.31 and it induces a morphism B&4C — D by universal property of m-adically completed
tensor product. We use dévissage to show that (B ®4 C)/7n™ — D/n™ is an isomorphism for any
integer n > 0. By induction,

(1.5.32.1) (B, C)/n" "= (B, C)/7""! ——= (B®4 C)/mr —=0
00— D/nm" ————— D/g"*! D/m 0

the vertical arrows on the left and right are isomorphisms. By snake’s lemma in the abelian category
0*_-Mod ([Sta22, 010H]), we know that the vertical arrow in the middle is also an isomorphism. In
conclusion, B® ,C — D is an isomorphism, which completes the proof. O

Corollary 1.5.33. Let K be a pre-perfectoid field, B < A — C a diagram of Ok -algebras which are
almost pre-perfectoid. Then, the tensor product B ® 4 C is also almost pre-perfectoid.

PROOF. Since a* commutes with arbitrary limits and colimits (I.5.5), we have (B®4C)* =
Bal(@‘gal C® which is perfectoid by 1.5.32. O

Lemma 1.5.34. Let K be a perfectoid field, Oxg — V an extension of valuation rings of height
1. Then, there exists an extension of perfectoid fields K — L and an extension of valuation rings
V — O over Ok.

PROOF. Let 7 be a pseudo-uniformizer of K, E the fraction field of V, E an algebraic closure of
E, V the integral closure of V in E. Let m be a maximal ideal of V. It lies over the unique maximal
ideal of V as V — V is integral. Setting W = V,, according to [Bou06, V1.§8.6, Prop.6], V — W
is an extension of valuation rings of height 1. Since W is integrally closed in the algebraically closed
fraction field E, the Frobenius is surjective on W/pW. Thus, the fraction field of W is a pre-perfectoid
field over K. Passing to completion, we get an extension of perfectoid fields K — L by 1.5.2. 0

Theorem 1.5.35 ([BS19, 8.10]). Let K be a pre-perfectoid field with a pseudo-uniformizer © dividing
p, R — R’ a homomorphism of Ok -algebras which are almost pre-perfectoid. If Spec(R’) — Spec(R)
is a w-complete arc-covering, then for any integer n > 1, the augmented Cech complex

(1.5.35.1) 0— R/m" — R /7" — (R ®@r R') /7" — -+~

1s almost exact.
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PRrOOF. We follow Bhatt-Scholze’s proof [BS19, 8.10]. After replacing O, R, R’ by their -
adic completions, we may assume that K is a perfectoid field and that R and R'® are perfectoid
O _algebras such that Spec(R’') — Spec(R) is a m-complete arc-covering by 1.3.4.(6). Moreover,
since R — (R®), is an almost isomorphism, after replacing R by (R¥), and R’ by (R¥), ®r R/, we
may assume further that R = (R),. Then, the Frobenius induces an isomorphism (resp. almost
isomorphism) R/m R — R/mR (resp. R'/m R — R'/xR') by 1.5.22, where m; is a p-th root of 7
up to a unit. Thus, we see that the projection on the first component induces an isomorphism (note
that R = (R™), is m-torsion free by 1.5.12)

(1.5.35.2) R’ /T’R* =5 R/7R
and an almost isomorphism (by the preceding isomorphism for (R'2!), or by (I1.5.31.2))
(1.5.35.3) R"/n°R” — R' /7R’

In particular, Spec(R” /) — Spec(R’/7”) is an arc-covering as Spec(R'/m) — Spec(R/) is so.
On the other hand, since the localization functor a* commutes with arbitrary limits and colimits
(I.5.5), (<§/§\>];,—iR’)al = @ZalR/al is still a perfectoid O%-algebra by 1.5.32 for any k > 0. In particular,

~k . . .
®pR is almost flat over Ok. Then, by dévissage, it suffices to show the almost exactness of the
augmented Cech complex when n = 1, i.e. the almost exactness of

(L5.35.4) 0= R/n" = R”/7" = (R’ @p R") /7" — -+ .

We claim that the natural morphism X = Spec(R”) ][] Spec(R’[1/7"]) — Y = Spec(R’) is an
arc-covering. Firstly, we see that X — Y = Spec(R’/7”)|JSpec(R’[1/7°]) is surjective as we have
shown that Spec(R"/7”) — Spec(R’/n”) is an arc-covering. Therefore, we only need to consider the
test map Spec(V) — Y where V is a valuation ring of height 1. There are three cases:

(1) If 7” is invertible in V, then we get a natural lifting R[1/7"] — V.
(2) If 7 is zero in V, then R’ — V factors through R’/n” — R/m, and thus there is a lifting
R"/n* — R' /7 — W.
(3) Otherwise, Og» — V is an extension of valuation rings. After replacing V' by an extension
(1.5.34), we may assume that V[1/7°] is a perfectoid field over K* with valuation ring V.
By tilting correspondence 1.5.31, it corresponds to a perfectoid field over K with valuation
ring V¥, together with an Og-morphism R — V*# by 1.5.9. Since R — R’ gives a m-complete
arc-covering, there is an extension V¥ — W of valuation rings of height 1 and a lifting
R’ — W. After replacing W by an extension (1.5.34), we may assume that W[l/7] is a
perfectoid field over K with valuation ring W. By tilting correspondence 1.5.31 and 1.5.9,
we get a lifting R” — W’ of R”> — V.
Now we apply 1.4.10 to the arc-covering X — Y of perfect affine F,-schemes. We get an exact
augmented Cech complex
(1.5.35.5) 0— R” — R" x Rb[ﬁ] — (R” x Rb[ﬁ]) Qpe (R” x Rb[ﬁ]) e
Since each term is a perfect IFp-algebra, the submodule of m’-torsion elements is almost zero, in other
words, each term is almost flat over O . Modulo 7°, we get the almost exactness of (1.5.35.4), which
completes the proof. O

Definition 1.5.36. Let K be a pre-perfectoid field, A — B a morphism of O-algebras.
(1) We say that A — B is almost étale if A*' — B3 is an étale morphism of O%-algebras in
the sense of [GRO03, 3.1.1.(iv)].
(2) We say that A — B is almost finite étale if it is almost étale and if B2! is an almost finitely
presented A*-module in the sense of [GR03, 2.3.10] (cf. [Sch12, 4.13], [AGT16, V.7.1]).

We remark that in 1.5.36 if A — B is a morphism of K-algebras, then it is almost étale (resp.
almost finite étale) if and only if it is étale (resp. finite étale).

Proposition 1.5.37. Let K be a pre-perfectoid field, € the full subcategory of the category of Ok -
algebras formed by those Ok -algebras which are almost pre-perfectoid.

(1) The subcategory € is stable under taking colimits and products.
(2) Let A — B be an almost étale morphism of Ok -algebras. If A € Ob(¥), then B € Ob(%).

PROOF. Let 7w be a pseudo-uniformizer of K dividing p with a p-th root 7, up to a unit.
(1) The subcategory ¥ is stable under taking tensor products by 1.5.33. Let (Ry)xea be a directed
system of objects in ¥ and R = colimyea Ry. It is clear that the Frobenuis induces an almost
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isomorphism R/m R — R/mR. On the other hand, R is the m-adic completion of colimy¢p ﬁj\ Since

the latter is almost flat over O, so is R (1.5.20). Thus, ¢ is stable under taking colimits.

Let (Rx)xea be a set of objects in €. Since R/mR = [] ., Rx/mRx, the Frobenius induces
an almost isomorphism R/m1R — R/mR. Moreover, the submodule of 7-torsion elements of R =
[Lea Ry is almost zero, which implies that R is almost flat over Op (1.5.12). We conclude that ¢
is stable under taking products.

(2) Since B is almost flat over A, it is almost flat over Ok and thus B is almost flat over O ”
(I.5.20). Since B is almost étale over A, the map B/m B — B/nB induced by the Frobenius is
almost isomorphic to the base change of the map A/m A — A/7A by A — B (J[GRO03, 3.5.13]),
which completes the proof. O

Lemma 1.5.38. Let K be a pre-perfectoid field with a pseudo-uniformizer w, R an Ok -algebra which
is almost flat and almost pre-perfectoid, R' an R-algebra which is almost finite étale. Then, the
integral closure of R in R’ is almost isomorphic to both R’ and the integral closure of R in R'[1/m].

ProOOF. Notice that R’ is also almost flat and almost pre-perfectoid by 1.5.37. Since R’ is almost
finitely generated over R as an R-module, the elements of myx R’ are integral over R (cf. [GRO3,
2.3.10]). Thus, the integral closure of R in R’ is almost isomorphic to R’. On the other hand, since
R’ is almost isomorphic to its integral closure in R’[1/7] by 1.5.25, the integral closure of R in R’ is
almost isomorphic to the integral closure of R in R'[1/7] by 1.5.28. O

1.5.39. We recall some basic definitions about affinoid algebras used in [Sch12] in order to prove the
almost purity theorem 1.5.41 by reducing to loc.cit. Let K be a complete valuation field of height 1.
A Tate K-algebra is a topological K-algebra R whose topology is generated by the open subsets aRRg
for a subring Rg C R and any a € K*. We denote by R° the subring of power-bounded elements
of R, which is thus an Og-algebra. An affinoid K-algebra is a pair (R, R™") consisting of a Tate
K-algebra R and a subring R™ of R° which is open and integrally closed in R. A morphism of
affinoid K-algebras (R,R") — (R’,R’") is a morphism of topological K-algebras f: R — R’ with
f(RT) C R'*". Such a morphism is called finite étale in the sense of [Sch12, 7.1.(1)] if R’ is finite
étale over R endowed with the canonical topology as a finitely generated R-module and if R'* is the
integral closure of Rt in R'.

For a perfectoid field K and an affinoid K-algebra (R, R™), the inclusion R* C R° is an almost
isomorphism. Indeed, for any ¢ € mx and any power-bounded element z € R°, we have (ex)” € R
for n € N large enough as R* is open. Thus, ez € RT as R™ is integrally closed. We remark that
(R,R*) is perfectoid in the sense of [Sch12, 6.1] if and only if R° is bounded and almost perfectoid
over Ok ([Sch12, 5.5, 5.6]).

1.5.40. There is a typical example for constructing affinoid algebras from commutative algebras (cf.
[And18, Sorite 2.3.1]). Let K be a complete valuation field of height 1 with a pseudo-uniformizer
7, R a flat Ok-algebra. The K-algebra R[1/7] endowed with the w-adic topology defined by R is a
Tate K-algebra. Let R be the integral closure of R in R[1/7]. It is clear that any element of R is
power-bounded. Thus, (R[1/7], R) is an affinoid K-algebra.

Let S be a finite R[1/7]-algebra endowed with the canonical topology. More precisely, the topol-
ogy can be defined as follows: we take a finite R-algebra R’ contained in S which contains a family of
generators of the R[1/7]-algebra S; then the canonical topology of S = R'[1/w] is the w-adic topology
defined by R’ (which is independent of the choice of R’). Let R’ be the integral closure of R in R'[1/7],
which is also the integral closure of R in R'[1/7]. We remark that (R[1/7],R) — (R'[1/x],R) is a
finite étale morphism of affinoid K-algebras if and only if R[1/7] — R/[1/x] is finite étale.
Theorem 1.5.41 (Almost purity, [Sch12, 7.9]). Let K be a pre-perfectoid field with a pseudo-
uniformizer m, R an Og-algebra which is almost pre-perfectoid, R’ the integral closure of R in a
finite étale R[1/w]-algebra. Then, R is almost pre-perfectoid and the w-adic completion R’ is almost
finite étale over R.

Moreover, if R is w-torsion free and if (R, mR) is a henselian pair, then R’ is almost finite étale
over R.

PRrROOF. For the first statement, by 1.5.27, we can replace R by its image R/R[7*°] in R[1/7]
(which does not change R’), so that we may assume that R is m-torsion free (and thus so is R). Let
S (resp. ') be the integral closure of R in R[1/7] (resp. of R’ @z R in R’ ®p R[1/7]). Then, we
obtain a finite étale morphism of affinoid K-algebras (R[1/],S) — (R’ ®g R[1/7],5’) by L5.40.

Since R is almost perfectoid, R — S is an almost isomorphism (I1.5.25). Thus, S is bounded and
almost perfectoid over Op. In other words, (R[1/7],S) is a perfectoid affinoid K-algebra. Then, by
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almost purity ([Sch12, 7.9.(iii)]), the Op-algebra S is almost perfectoid (thus 5" — 5" is an almost
isomorphism by definition) and almost finite étale over S.

On the other hand, the two Op-algebras R’ and R’ ®g R have the same m-adic completion R
Thus, the 7-adic completions of the integral closures of R’ and R' ®x R in R'[1/7] and R’ ®Rr R[l/w]
respectively are almost isomorphic to that of R in R/ [1/7] by 1.5.29. In other words, R — § is an
almost isomorphism. In conclusion, R’ is almost pre-perfectoid, and R’ is almost finite étale over R.

We assume moreover that R is m-torsion free and (R, 7R) is a henselian pair. Recall that the
category of almost Op-algebras finite étale over R* (resp. over }A%al) is equivalent to that over
(R/mR)™ via the base change functor (JGRO3, 5.5.7.(iii)]). Hence, there exists an R-algebra R’

which is almost finite étale over R such that (R” @5 R)™ is isomorphic to j%\’al. On the other hand,
recall that the category of finite étale R[1/7]-algebras is equivalent to the category of finite étale
R[1/7]-algebras via the base change functor ([GRO3 5.4.53]). Notice that R"[1/7] @R R R’[l/w]
by the construction of R” and that R'[1/7]®z R = R [1/7] by the almost isomorphisms R =8« 9.
Hence, there is an isomorphism R”[1/7] = R'[1/x]. By 1.5.38, we see that R” is almost isomorphic
to R’, which completes the proof. O

I1.6. Brief Review on Covanishing Fibred Sites

We give a brief review on covanishing fibred sites, which are developed by Abbes and Gros
[AGT16, VI]. We remark that [AGT16, VI| does not require the sites to admit finite limits (1.2.4).

1.6.1. A fibred site E/C' is a fibred category w : E — C whose fibres are sites such that for a cleavage
and for every morphism f : 8 — « in C, the inverse image functor f* : E, — Ejz gives a morphism
of sites (so that the same holds for any cleavage) (cf. [SGA 4y, VI.7.2]).

Let x be an object of E over o € Ob(C'). We denote by

(I.6.1.1) 1t Ey— E

the inclusion functor of the fibre category E, over « into the whole category E. A wvertical covering
of x is the image by T of a covering family {z,, — *}men in E,. We call the topology generated
by all vertical coverings the total topology on E (cf. [SGA 451, VI.7.4.2]).

Assume further that C is a site. A Cartesian covering of z is a family {x,, — z},en of morphisms
of F such that there exists a covering family {«,, = a},en in C with z,, isomorphic to the pullback
of = by «,, — « for each n.

Definition 1.6.2 ([AGT16, VI.5.3|). A covanishing fibred site is a fibred site E/C where C is a site.
We associate to E the covanishing topology which is generated by all vertical coverings and Cartesian
coverings. We simply call a covering family for the covanishing topology a covanishing covering.

Definition 1.6.3. Let E/C be a covanishing fibred site. We call a composition of a Cartesian covering
followed by vertical coverings a standard covanishing covering. More precisely, a standard covanishing
covering is a family of morphisms of

(1.6.3.1) {Tnm = TInenmem,

such that there is a Cartesian covering {z, — z}n,eny and for each n € N a vertical covering
{mnm — -’If‘n}mel\/[,p

Proposition 1.6.4 (JAGT16, V1.5.9]|). Let E/C be a covanishing fibred site. Assume that in each
fibre any object is quasi-compact, then a family of morphisms {x; — x},cr of E is a covanishing
covering if and only if it can be refined by a standard covanishing covering.

1.6.5. Let E/C be a fibred category. Fixing a cleavage of E/C, to give a presheaf F on F is
equivalent to give a presheaf F, on each fibre category E, and transition morphisms F, — fPFs
for each morphism f : § — « in C satisfying a cocycle relation (cf. [SGA 4y, V1.7.4.7]). Thus, we
simply denote a presheaf F on E by

(1.6.5.1) F = (Fa)acob(©)s

where F,, = (B F is the restriction of F on the fibre category E,. If E/C is a fibred site, then F is a
sheaf with respect to the total topology on E if and only if F,, is a sheaf on E, for each o ([SGA 4y,
VI1.7.4.7]). Moreover, we have the following description of a covanishing sheaf.

Proposition 1.6.6 (JAGT16, V1.5.10]). Let E/C be a covanishing fibred site. Then, a presheaf F
on E is a sheaf if and only if the following conditions hold:
(v) The presheaf Fo, = (BF on E, is a sheaf for any o € Ob(C).
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(c) For any covering family {f; : a; — a}icr of C, if we set a;; = a; Xo 0 and fij @ 05 — a,
then the sequence of sheaves on E,,

(1.6.6.1) Fo = [ fisFor = T FiseFouss

iel ijel

18 exact.

I.7. Faltings Ringed Sites

1.7.1. Let Y — X be a morphism of U-small coherent schemes, and let Ey_,x be the category of
morphisms V' — U of U-small coherent schemes over the morphism Y — X, namely, the category of
commutative diagrams of coherent schemes

(L7.1.1) V—>U

,

Y — X

Given a functor I — Ey _ x sending i to V; — Uy, if lim V; and lim U; are representable in the category
of coherent schemes, then lim(V; — U;) is representable by lim V; — lim U;. We say that a morphism
(V' = U') = (V= U) of objects of Ey_,x is Cartesian if V' — V xy U’ is an isomorphism. It is
clear that the Cartesian morphisms in Ey_, x are stable under base change.

Consider the functor

(1.7.1.2) ¢ By_x — Schiy, (V= U)— U.

The fibre category over U is canonically equivalent to the category Sch?‘I’JhY of coherent Uy -schemes,

where Uy =Y X x U. The base change by U’ — U gives an inverse image functor Sch;([’]}; — Sch;})};,

coh

which endows Ey _, x /Sch /X with a structure of fibred category. We define a presheaf on Ey _, x by

(1.7.1.3) BV = U)=T(UY,0pyv),
where UV is the integral closure of U in V.

Definition 1.7.2. Let Y — X be a morphism of coherent schemes. A morphism (V' —» U’) = (V —
U) in Ey_,x is called étale, if U’ — U is étale and V! — V xy U’ is finite étale.

Lemma 1.7.3. Let Y — X be a morphism of coherent schemes, (V" — U") L5 (V! — U’) N
(V = U) morphisms in Ey _ x.

(1) If f is étale, then any base change of f is also étale.

(2) If f and g are étale, then f o g is also étale.
(3) If f and f o g are étale, then g is also étale.

PRrROOF. It follows directly from the definitions. a

1.7.4. Let Y — X be a morphism of coherent schemes. We still denote by Xg; (resp. Xpet) the site
formed by coherent étale (resp. finite étale) X-schemes endowed with the étale topology. Let E‘i} X
be the full subcategory of Ey_, x formed by V — U étale over the final object Y — X. It is clear
that ES! | v is stable under finite limits in Ey_, x. Then, the functor (1.7.1.2) induces a functor

(1.7.4.1) ot ESY v — Xe, (Vo U)— U,

which endows E§! ., /X¢ with a structure of fibred sites, whose fibre over U is the finite étale site
Uy 6. We endow Eg’,t _,x Wwith the associated covanishing topology, that is, the topology generated
by the following types of families of morphisms

(v) {(Vin = U) = (V= U)}mem, where M is a finite set and [[,, ¢,
(¢) {(VxyU, = U,) = (V= U)}lnen, where N is a finite set and [ |

It is clear that any object of ES! |  is quasi-compact by 1.6.4. We still denote by % the restriction
of the presheaf Z on Ey_, x to ES! |,  if there is no ambiguity.

V., — V is surjective;

nen Un — U is surjective.

coh

Lemma 1.7.5. Let Y — X be a morphism of coherent schemes. Then, the presheaf on Sch/y
sending Y' to T(XY',Oxy+) is a sheaf with respect to the fpqe topology (|Sta22, 022A]).
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ProoOF. We may regard Oyy+ as a quasi-coherent Ox-algebra over X. It suffices to show that
for a finite family of morphisms {Y; — Y},cr with Y/ =[], .; V; faithfully flat over Y, the sequence
of quasi-coherent O x-algebras

iel

(1751) OHOXY HOXY/ :;OXY/XYY/

is exact. Thus, we may assume that X = Spec(R) is affine. We set Ag = T'(Y,Oy), A1 =T(Y’, Oy"),
Ay =T(Y' xy Y, Oyrxyyr), Ro = T(XY,0xv), Ry = (XY ,0yy'), Ro = T(XY XY [ Oyriyvr).
Notice that R; is the integral closure of R in A; for i = 0,1,2 ([Sta22, 035F]). Consider the diagram

0—— Ao —_— A1 : A2

We see that the vertical arrows are injective and the second row is exact by faithfully flat descent.
Notice that Ry = Ag N Ry, since they are both the integral closure of R in Ag as Ay C A;. Thus, the
first row is also exact, which completes the proof. O

Proposition 1.7.6. Let Y — X be a morphism of coherent schemes. Then, the presheaf B on E%}E_,X
is a sheaf.

Proor. It follows directly from 1.6.6, whose first condition holds by 1.7.5, and whose second
condition holds by 1.3.17 (cf. [AGT16, II1.8.16]). O

Definition 1.7.7 ([Fal02, page 214], [AGT16, VI.10.1]). We call (E$! ., %) the Faltings ringed
site of the morphism of coherent schemes ¥ — X.

It is clear that the localization (ES'_, y) vy of B ¢ at an object V — U is canonically
equivalent to the Faltings ringed site E‘é}%U of the morphism V' — U by 1.6.4 (cf. [AGT16, V1.10.14]).

1.7.8. Let Y — X be a morphism of coherent schemes. Consider the natural functors

(1.7.8.1) YT EY L x — Ya, (Vo U)—,
(1.7.8.2) BT Vi — EY Ly, Vi (V = X),
(1.7.8.3) o Xeg — EY L, Ur— (Y xx U = U).

They are left exact and continuous (cf. [AGT16, VI 10.6, 10.7]). Then, we obtain a commutative
diagram of sites associated functorially to the morphism Y — X by 1.2.5,

(17.8.4) Y

N

&t
Yiet ~5 EYy  x — Xa

where p : Y& — Yist is defined by the inclusion functor, and the unlabelled arrow Yz — X is
induced by the morphism Y — X. Moreover, if Ox,, denotes the structural sheaf on X¢; sending U
to I'(U, Oy ), then ot actually defines a morphism of ringed sites

(1.7.8.5) o (E$ v, %) — (Xs&,0x.,)
We will study more properties of these morphisms in the remaining sections.

Lemma 1.7.9. Let X be the spectrum of an absolutely integrally closed valuation ring, Y a quasi-
compact open subscheme of X. Then, for any presheaf F on E?%X7 we have F*(Y —- X)) =F(Y —
X). In particular, the associated topos of ES' . « is local ([SGA 41, VI1.8.4.6]).

PrOOF. Notice that Y is also the spectrum of an absolutely integrally closed valuation ring
by 1.3.11.(1) and that absolutely integrally closed valuation rings are strictly Henselian. Thus, any
covering of Y — X in Ei“,t_v( can be refined by the identity covering by 1.6.4. We see that F*(Y —
X) = F(Y — X) for any presheaf F. For the last assertion, it suffices to show that the section
functor I'(Y — X, —) commutes with colimits of sheaves. For a colimit of sheaves F = colim F;, let
G be the colimit of presheaves G = colim F;. Then, we have F = G* and T'(Y — X, F) = TI'(Y —
X,G) =colimIT'(Y — X, F;). O
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1.7.10. Let (Y — X))xea be a U-small directed inverse system of morphisms of U-small coherent
schemes with affine transition morphisms Yy, — Y and Xy — X\ (M > A). Weset (Y — X) =
limyea(Yh — X)). We regard the directed set A as a filtered category and regard the inverse
system (Y — X))aea as a functor ¢ : A°® — E from the opposite category of A to the category
of morphisms of U-small coherent schemes. Consider the fibred category Efot — A°P defined by ¢
whose fibre category over A is E% _x, and whose inverse image functor cp;\r, A\ E% Xy E§;§ X
associated to a morphism A’ — X in A°P is given by the base change by the transition morphism
(Y = Xn) — (YA = X)) (cf. [AGT16, VL11.2]). Let ¢ : E%—»@ — ES$t . ¢ be the functor
defined by the base change by the transition morphism (Y — X) — (Y, — X,).

Recall that the filtered colimit of categories (Eg’% N XA) AcA 1s representable by the category Ei}

whose objects are those of Ef’; and whose morphisms are given by ([SGA 4y, VI 6.3, 6.5])
(1.7.10.1) Homge (V= U), (V! = U")) = colim Homge (V" = U"), (V' = U")),
=

(VU= (V5 U)
Cartesian
where the colimit is taken over the opposite category of the cofiltered category of Cartesian morphisms
with target V' — U of the fibred category Ef’; over A°P (distinguish with the Cartesian morphisms
defined in 1.7.1). We see that the functors gpi induces an equivalence of categories by [EGA V3,

8.8.2, 8.10.5] and [EGA 1V, 17.7.8]
(1.7.10.2) &S EY . x

Recall that the cofiltered limit of sites (E?}A _.x,)aeA is representable by Ef;f endowed with
the coarsest topology such that the natural functors Ei’% Xy Ei} are continuous ([SGA 4,
VI1.8.2.3)).

Lemma 1.7.11. With the notation in 1.7.10, for any covering family 4 = {fr : (Vi — Ug) —» (V —
U }rere in ESE . with K finite, there exists an index \g € A and a covering family Uy, = {fix, :
Vexo = Ukxg) = (Vag = Uny) tkerx in E%oﬁxko such that fi is the base change of frx, by the
transition morphism (Y — X) — (Y, = Xi,)-

PROOF. There is a standard covanishing covering &' = {gnm : (V,,,, = U}) = (V = U) }nen,mem,
in E! . with N, M, finite, which refines 4l by 1.6.4. The equivalence (1.7.10.2) implies that
there exists an index A\; € A and families of morphisms U\ = {gnmx, : (V] = Ul) —

nmii nii
(Var = Ux)nenvamenr, (resp. thy = {fix, © (Vix, = Un) = (Vay = Un)biex) in BY Ly
such that g, (resp. fx) is the base change of gnmx, (resp. fka,) by the transition morphism
(Y = X) = (YA, — X),) and that &} refines &ly,. For each A\ > Ay, let gnma = (V0 — Uyy) —
(Vi = Uy) (resp. fiex : (Vix = Ugxn) — (Vi — Uy)) be the base change of g,ma, (resp. fia,)
by the transition morphism (Yx — X)) — (YA, — X),). Since the morphisms [], .5 U, — U
and [],,c M, V! .. — V xy U] are surjective, there exists an index A\g > A; such that the morphisms
HneN U\ —> U)\O and [[,,cnr. Viimag, = Vao XUy, Una, are also surjective by [EGA 1V3, 8.10.5], i.e.

{gnm)\o YneNmem, is a standard covanishing covering in EYA Xy . Thus, Ux, = {fer, frek

is a Covermg family in EYA O

A)X)\o'

Proposition 1.7.12 ([AGT16, VL.11]). With the notation in 1.7.10, ES® .  represents the limit of
sites (EY X Yxea, and & = colimyep N 'a.

PRrROOF. The first statement is proved in [AGT16, VI.11.3]. It also follows directly from the dis-
cussion in 1.7.10 and I.7.11. For the second statement, notice that colimyea ©3 % = (colimpen pa, p%)a
([Sta22, 00WI]). It suffices to show that Z(V — U) = colimyen(prpB)(V — U) for each object
V — U of E‘?}HX. It follows from the equivalence (I.7.10.2) that there exists an index A\g € A and an
object Vy, = Uy, of E?,txo_)xxo such that V' — U is the base change of V), — U,, by the transition
morphism. For each A > Ag, let V), — U, be the base change of V), — U, by the transition morphism
(YA = X)) = (Ya, = X),). Then, we have colimyea(prpZB)(V — U) = colimyepn B(Vy — Uy)
by [SGA 4y, VI 8.5.2, 8.5.7]. The conclusion follows from Z(V — U) = colimyep Z(Vy — Uy) by
1.3.18. O

Definition 1.7.13. A morphism X — S of coherent schemes is called pro-étale (resp. pro-finite
étale), if there is a directed inverse system of étale (resp. finite étale) S-schemes (Xy)rea with affine
transition morphisms such that there is an isomorphism of S-schemes X = limycp X). We call such
an inverse system (X )aea & pro-étale presentation (resp. pro-finite étale presentation) of X over S.

Lemma 1.7.14. Let X -V -1+ S be morphisms of coherent schemes.
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(1) If f is pro-étale (resp. pro-finite étale), then f is flat (resp. flat and integral).

(2) Any base change of a pro-étale (resp. pro-finite étale) morphism is pro-étale (resp. pro-finite
étale).

(3) If f and g are pro-étale (resp. pro-finite étale), then so is fog.

(4) If f and f o g are pro-étale (resp. pro-finite étale), then so is g.

(5) If f is pro-étale with a pro-étale presentation Y = lUm Yy, and if g is étale (resp. finite étale),
then there is an index By and an étale (resp. finite étale) S-morphism gg, : Xg, — Y3, such
that g is the base change of gg, by Y — Y3, .

(6) Let Z and Z' be coherent schemes pro-étale over S with pro-étale presentations Z = lim Z,,,
7' = lim Z/’g, then

(I.7.14.1) Homg(Z,Z') = liéncolyimHoms(Za,Zég).

PROOF. (1) and (2) follow directly from the definition.

(3) We follow closely the proof of 1.3.6. Let X = lim X, and ¥ = limYj be pro-étale (resp.
pro-finite étale) presentations over Y and over S respectively. As Y3 are coherent, for each «, there is
an index B, and an étale (resp. finite étale) Yj_-scheme X, g, such that X, — Y is the base change
of Xop, — Y3, ([EGA 1IVs, 8.8.2, 8.10.5], [EGA IVy, 17.7.8]). For each § > B, let Xo3 — Yp be
the base change of X5, — Y3, by Y3 — Yj3,. Then, we have X = lim, g>g, Xop by [EGA IV3,
8.8.2] (cf. 1.3.6), which is pro-finite étale over S. For (5), one can take X = X,,.

(6) We have

(1.7.14.2) Homg(Z,2') = liénHomS(Z, Zy) = li/rancoLimHoms(Za, Zg)

where the first equality follows from the universal property of limits of schemes, and the second follows
from the fact that Zj — S is locally of finite presentation ([EGA 1V3, 8.14.2]). For (4), we take
Z =X and Z' =Y. Then, for each index f, we have an S-morphism X, — Y3 for a big enough,
which is also étale (resp. finite étale). Then, X = lim, X = limy g Xo Xy, Y is pro-étale (resp.
pro-finite étale) over Y. O

Remark 1.7.15. A pro-étale (resp. pro-finite étale) morphism of U-small coherent schemes X — S
admits a U-small pro-étale (resp. pro-finite étale) presentation. Indeed, let X = limyep X be a
presentation of X — S. We may regard A as a filtered category with an initial object 0. Consider
the category ¢ = x\ Xost,at (resp. € = x\ Xo,tst) of affine (resp. finite) étale Xo-schemes which are
under X. Notice that % is essentially U-small and that the natual functor A — %°P is cofinal by
1.7.14.(6) ([SGA 4y, 1.8.1.3]). Therefore, after replacing €°P by a U-small directed set A’, we obtain
a U-small presentation X = limy/cpr X' ([SGA 44, 1.8.1.6]).

Definition 1.7.16. For any U-small coherent scheme X, we endow the category of U-small coherent
pro-étale (resp. pro-finite étale) X-schemes with the topology generated by the pretopology formed
by families of morphisms

(1.7.16.1) {fi : Ui > Utkier

such that I is finite and that U = |J f;(U;). This defines a site Xproer (resp. Xprofét), called the
pro-étale site (resp. pro-finite étale site) of X.

It is clear that the localization X o6t/ (resp. Xprofet/v) of Xproet (resp. Xprotsr) at an object
U is canonically equivalent to the pro-étale (resp. pro-finite étale) site Uprogt (resp. Uproter) of U. By
definition, any object in Xppoet (resp. Xproret) is quasi-compact.

1.7.17. We compare our definitions of pro-étale site and pro-finite étale site with some other definitions
existing in the literature. But we don’t use the comparison result in this paper.

Let X be a U-small Noetherian scheme. Consider the category of pro-objects pro-Xst of Xy, i.e.
the category whose objects are functors F' : A — Xtg with A a U-small cofiltered category and whose
morphisms are given by Hom(F, G) = limgep colimye 4 Hom(F (), G(B)) for any F : A — Xe and
G : B — X ([Schl3a, 3.2]). We may simply denote such a functor F' by (X4)aeca. Remark that
limye 4 X, exists which is pro-finite étale over X. Consider the functor

(I.7.17.1) pro-Xesr — Xprofét, (Xa)aca — iieraXa,

which is well-defined and fully faithful by 1.7.14.(6) and essentially surjective by 1.7.15. Thus, ac-

cording to [Sch13a, 3.3] and its corrigendum [Sch16], Scholze’s pro-finite étale site Xsrofét has the
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underlying category Xprorér and its topology is generated by the families of morphisms

(L7.17.2) w, v Ly

where I is finite and [],.; U; — U’ is finite étale surjective, and there exists a U-small well-ordered
directed set A with a least index 0 and a directed inverse system of U-small coherent pro-finite étale

X-schemes (U})xea such that U = U, U’ = limyep Uj and that for each A € A the natural morphism
Uy — lim, <) U}, is finite étale surjective (cf. [Ker16, 5.5], .7.14 and [EGA V3, 8.10.5.(vi)]). It is

clear that the topology of our pro-finite étale site Xprofs¢ is finer than that of Xprofet We remark

that if X is connected, then X3 proféet 8ives a site-theoretic interpretation of the continuous group

cohomology of the fundamental group of X ([Sch13a, 3. 7]) For simplicity, we don’t consider Xp]rofet

in the rest of the paper, but we can replace Xp;06t by X for most of the statements in this paper

(cf. [Kerl6, 6]).

prof ét

1.7.18. Let X be a U-small scheme. Bhatt-Scholze’s pro-étale site X% . has the underlying category

proét

of U-small weakly étale X-schemes and a family of morphisms {f; : ¥; = Y };cr in Xpmet is a covering
if and only if for any affine open subscheme U of Y, there exists a map a: {1,...,n} — I and affine
open subschemes U; of Y, ;) (j = 1,...,n) such that U = UJ 1 fay(Uy) ([BSl5 4.1.1], cf. [Sta22,
0989]). Remark that a pro-étale morphlsm of coherent schemes is weakly étale by [BS15, 2.3.3.1].

Thus, for a coherent scheme X, X4 is a full subcategory of Xproet

Lemma 1.7.19. Let X be a coherent scheme. The full subcategory Xprost of Xproet is a topologically
generating family, and the induced topology on Xprost coincides the topology defined in 1.7.16. In
particular, the topoi of sheaves of V-small sets associated to the two sites are naturally equivalent.

PROOF. For a weakly étale X-scheme Y, we show that it can be covered by pro-étale X-schemes.
After replacing X by a finite affine open covering and replacing Y by an affine open covering, we
may assume that X and Y are affine. Then, the result follows from the fact that for any weakly étale
morphism of rings A — B there exists a faithfully flat ind-étale morphism B — C such that A — C
is ind-étale by [BS15, 2.3.4] (cf. [BS15, 4.1.3|). Thus, Xproct is a topologically generating family of
Xfr%et A family of morphisms {f; : Y; = Y}ier in X060 is a covering with respect to the induced
topology if and only if for any affine open subscheme U of Y, there exists amap a : {1,...,n} — I and
affine open subschemes U; of Y,(;) (j = 1,...,n) such that U = UJ 1 fay (Uy) ([SGA 4, 111.3.3]).
Notice that Y; and Y are coherent, thus {f;}icr is a covering if and only if there exists a finite subset
Iy C I such that Y = [, fi(Yi), which shows that the induced topology on Xjes coincides the
topology defined in 1.7.16. Finally, the “in particular” part follows from [SGA 4, 111.4.1]. O

Definition 1.7.20. Let Y — X be a morphism of coherent schemes. A morphism (V' — U’) —
(V = U) in Ey_,x is called pro-étale if U’ — U 1is pro-étale and V' — V xy U’ is pro-finite
étale. A pro-étale presentation of such a morphism is a directed inverse system (Vi — Ux)aea
étale over V' — U with affine transition morphisms Uy, — Uy and Vy, — V) (N > \) such that
(V’ — U’) = lim)\eA(Vk — U)\).

Lemma 1.7.21. Let Y — X be a morphism of coherent schemes, (V" — U") - (V! — U') N
(V = U) morphisms in Ey _ x.

(1) If f is pro-étale, then it admits a pro-étale presentation.

(2) If f is pro-étale, then any base change of f is also pro-étale.
(3) If f and g are pro-étale, then f o g is also pro-étale.

(4) If f and f o g are pro-étale, then g is also pro-étale.

Proor. It follows directly from 1.7.14 and its arguments. g

Remark 1.7.22. Similar to 1.7.15, a pro-étale morphism in Ey _, x admits a U-small presentation.

1.7.23. Let Y — X be a morphism of coherent schemes, Eﬁ’fif; the full subcategory of Ey_, x formed

by objects which are pro-étale over the final object Y — X. It is clear that El;,rie;( is stable under

finite limits in Ey _,x. Then, the functor (I.7.1.2) induces a functor
(17231) ¢+ : El;/rf;( — Xproét7 (V - U) — Ua

which endows ngfﬁc /Xprost With a structure of fibred sites, whose fibre over U is the pro-finite

étale site Uy, profst. We endow E?ff;( with the associated covanishing topology, that is, the topology

generated by the following types of families of morphisms

V) {(Viy = U) = (V = U)}imerr, where M is a finite set and [] Vin — V is surjective;

meM
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() {(VxyU, = U,) = (V= U)}nen, where N is a finite set and [ | U,, — U is surjective.

neN
It is clear that any object in El;rif; is quasi-compact by 1.6.4. We still denote by Z the restriction
of the presheaf Z on Ey_,x to E?ffﬁ( if there is no ambiguity. We will show in 1.7.32 that % is a

proét
sheaf on Ey.” .

Definition 1.7.24. We call (E?}f&, 2B) the pro-étale Faltings ringed site of the morphism of coherent
schemes Y — X.

It is clear that the localization (EP°%) /(v—u) of EP°% at an object V — U is canonically
equivalent to the pro-étale Faltings ringed site EP'°C; of the morphism V — U by L1.6.4.

Remark 1.7.25. The categories Xprost, Xprotér and Efff& are essentially V-small categories.

1.7.26. Let Y — X be a morphism of coherent schemes. Consider the natural functors

(1.7.26.1) U BV — Viour, (V2 U) — V,
<I7262) 5+ : Yprofét — ngrif;(7 V — (V — X>7
(1.7.26.3) ot Xppost — BYS, Ur— (Y xx U = U).

They are left exact and continuous (cf. 1.7.8). Then, we obtain a commutative diagram of sites
associated functorially to the morphism Y — X by [.2.5,

(17264) Yproét
Yprofét <T E)pfrif;( 5 = “‘proét

where p : Y06t — Yprofés is defined by the inclusion functor, and the unlabelled arrow Yy o6t — Xprost
is induced by the morphism Y — X. Moreover, if OXPmét denotes the structural sheaf on Xp,o¢t
sending U to ['(U, Oy ), then o actually defines a morphism of ringed sites

(1.7.26.5) o BV, B) — (Xprocts OX,proc,)-

Lemma 1.7.27. Let Y — X be a morphism of coherent schemes. Then, the inclusion functor
(1.7.27.1) vTES — EX (VS U) s (V= U)

defines a morphism of sites v : Epyrf;( —E ..

PROOF. It is clear that v commutes with finite limits and sends a standard covanishing covering
in E§! .\ to a standard covanishing covering in EX'°% (1.6.3). Therefore, vt is continuous by 1.6.4

and defines a morphism of sites. O

Lemma 1.7.28. Let Y — X be a morphism of coherent schemes. Then, the topology on E‘iﬁﬁx 1
proét

the topology induced from Ey." .

PROOF. After 1.7.27, it suffices to show that for a family of morphisms 4 = {(V;, — Uy) = (V —
U)trex in B, o, if v (8l) is a covering in Eg),riég(, then 4 is a covering in E! , . We may assume
that K is finite. There is a standard covanishing covering W' = {(V,},, = U}) = (V = U) }nen mem,
in B with N, M, finite, which refines v+ (4) by 1.6.4. We take a directed set = such that
for each n € N, we can take a pro-étale presentation U], = lim¢cs U;lg over U, and we take a
directed set ¥ such that for each n € N and m € M, we can take a pro-finite étale presentation
V) =limeex V) over V xy U),. By 1.7.14 (5), for each o € 3, there exists an index &, € = and
a finite étale morphism V| . — V xy Uy, for each n and m, whose base change by U;, — U,
is Voo = V xu Uy, Let Vi o — V xy Uy, be the base change of V|, . — V xy U by the
transition morphism U, — Uy, for each £ > &,. Since [,,cps Ve — V xu U, is surjective,
after enlarging &, we may assume that [[, c\ V,.0e = V Xv U, is also surjective for £ > &,
by [EGA 1V, 8.10.5.(vi)|. It is clear that [[, .y U — U is surjective for each § € =. Therefore,
Uoe ={(Vinoe = Upe) = (V= U)tnen,menm, is a standard covanishing covering in E$ ., for each
o € ¥ and £ > £,. Notice that for each n € N and m € M, there exists k € K such that the
morphism (V... = Up¢) = (V — U) factors through (Vi — Uy) for 0, & big enough by 1.7.14 (6),
which shows that il is a covering in ES! | . O
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Lemma 1.7.29. LetY — X be a morphism of coherent schemes, L= {(Vi; = Uy) = (V = U)}rex a
covering in Epyric;( with K finite. Then, there exist pro-étale presentations (V — U) = limyea (V) —
Uy), (Vi = Ug) = limyxea (Vix = Ugyx) over Y — X and compatible étale morphisms (Vi — Ugy) —
(Vi — Uy) such that the family 8y = {(Vix — Ura) = (Va = Ux) }rex is a covering in ES . .
PrOOF. We follow closely the proof of 1.3.6. We take a directed set A such that for each k € K
we can take a pro-étale presentation (Vi — Ug) = limpea(Via — Uka) over (V. — U). Then,
Uo = {(fra : Vea = Uka) = (V = U) brek is a covering family in ES' ,;; for each a € A by 1.7.28.
Let (V — U) = limgep (Vs — Ug) be a pro-étale presentation over Y — X. For each o € A, there
exists an index (3, € B and a covering family 4.5, = {frass : (Viase = Ukag.) = (V. — U, ) rek
such that f. is the base change of frap, by the transition morphism (V — U) — (Vz, — Ug,)
(I.7.11). For each 8 > fB,, let fraB : (Vka,@ — Uka/g) — (V/@ — Ulg) be the base change of frs, by
the transition morphism (Vg — Ug) — (Vg, — Ug,). We take A = {(o,8) € AX B | 5 > Ba},
(Vi = Ux) = (Vs = Ug) and (Viex = Ugr) = (Viag — Ukap) for each A = (o, 5) € A. Then, the
families $y = {(Vkx = Ugx) = (Vi = Uy) }rex meet the requirements in the lemma (cf. 1.3.6). O

Lemma 1.7.30. Let Y — X be a morphism of coherent schemes, F a presheaf on E‘;}HX, V—->Uan
object of EX'°C% with a pro-étale presentation (V — U) = lim(Vy — Uy). Then, we have v, F(V —
U) = colim F(Vy — Uy), where v : B, — B s the inclusion functor.

PRrROOF. Notice that the presheaf F is a filtered colimit of representable presheaves by [SGA 4,
1.3.4]

(1.7.30.1) F= colim h
(V’—>U’)€(E§}Hx)/F

Thus, we may assume that F is representable by V' — U’ since the section functor T'(V — U, —)
commutes with colimits of presheaves ([Sta22, 00VB]). Then, we have
(1.7.30.2) vph$t i (V = U) =h2r (V= U)

:HomE;;/r:é;(((V —U), (V' =U"))

=colimHomge (VA = Ux), (V' = U'))

=colim b, 1 (Vi — Uy)
where the first equality follows from [Sta22, 04D2|, and the third equality follows from [EGA V3,
8.14.2] since U’ and V"’ are locally of finite presentation over X and Y x x U’ respectively. O
Proposition 1.7.31. Let Y — X be a morphism of coherent schemes, F an abelian sheaf on E?,t_»(,
V — U an object of EI;,rOj;( with a pro-étale presentation (V — U) = Uim(Vyx — Uy). Then, for any
integer q, we have
(1.7.31.1) HUEY°S v F) = colim HU(ES ., F),
where v : Effif; — E$' |, is the morphism of sites defined by the inclusion functor (1.7.27). In
particular, the canonical morphism F — Ru, v~ ' F is an isomorphism.

Proor. We follow closely the proof of 1.3.8. For the second assertion, since Ry, v~'F is the
sheaf associated to the presheaf (V — U) — Hq(EI‘)/rif[tJ, v=LF) = HY(E$ ,;, F) by the first assertion,
which is F if ¢ = 0 and vanishes otherwise.

For the first assertion, we may assume that 7 = Z is an abelian injective sheaf on ES! x (ct.

1.3.8). We claim that for any covering in Eﬁ’,rié;(, U=A{(Vik = Ux) = (V= U)}lrex with K finite,
the augmented Cech complex associated to the presheaf 1,7,
(L7.31.2) 0= IV = U) = [[wI(Vi = Us) = [ wZ(Vi xv Vie = Uk xp Us) = -+
k kK

is exact. Admitting this claim, we see that 1,7 is indeed a sheaf, i.e. v7!Z = 1,,Z, and the vanishing
of higher Cech cohomologies implies that H q(EI"/rif(t], v~17T) = 0 for any ¢ > 0, which completes the
proof together with 1.7.30. For the claim, let (V — U) = limyea(Va — Uy) and (Vi — Ug) =
limyea (Viex — Uga) be the pro-étale presentations constructed in 1.7.29. The family Uy = {(Vin —
Un) = (Va = Ux)}rex is a covering in ES! . . By 1.7.30, the sequence (1.7.31.2) is the filtered
colimit of the augmented Cech complexes
(L7.31.3) 0= Z(Va = Ux) = [[Z(Via = Ura) = [ Z(Via xvs Vier = Una X, Upra) = -

k koK

which are exact since Z is an injective abelian sheaf on E§! | . O
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Corollary 1.7.32. With the notation in 1.7.31, the presheaf B on Eﬁ’ff& is a sheaf, and the canonical
morphisms v % — B and B — Rv, B are isomorphisms. If moreover p is invertible on'Y, then for
each integer n > 0, the canonical morphisms v~ (B /p"B) — B/p" % and B|p" % — Rv.(B/p"B)
are isomorphisms.

PROOF. For any pro-étale presentation (V — U) = lim(Vy — U,), we have v ' Z(V — U) =
colim B(Vy, — Uy) = #(V — U) by 1.7.30 and 1.3.18. This verifies that % is a sheaf on E{’ffg(
and that v'% — % is an isomorphism. The second isomorphism follows from the first and 1.7.31.
For the last assertion, notice that the multiplication by p™ is injective on %, so that the conclusion
follows from the exact sequence

(1.7.32.1) 0 B> B|p" B —0.
O

1.7.33. We regard the ordered set N of natural numbers as a filtered category (there is an arrow i — j
if i < j). Let E be a site. We denote by EV the fibred site E x N over N, and we endow the category
E"N with the total topology which makes it into a site without final objects (I.6.1, cf. [AGT16, II1.7,
VL.7]). Giving a presheaf 7 on EY is equivalent to giving a directed inverse system of presheaves
(Fn)n>o0 on E. We write F = (F,)n>0. Moreover, F is a sheaf on E if and only if each F, is a
sheaf on E.

1.7.34. Let Y — X be a morphism of coherent schemes. We obtain a fibred site E;’/t_N) y (resp.
EPNY over N by 1.7.33. We define a sheaf 2 on ESP o (resp. EPFSUN) by

9

(1.7.34.1) B = (B|p"B)n>0-

The inclusion functor v+ : ESt ,  — Epyroj; defines a morphism of ringed fibred sites ([SGA 4y,

VL7.2.2))
(1.7.34.2) b (BN ) s (BN ),

which induces a morphism of the associated ringed topoi with respect to the total topology ([SGA 4y,
VI.7.4.13.1], cf. [AGT16, II1.7.18]). If moreover the prime number p is invertible on Y, then the
canonical morphisms

v

(L7.34.3) 1B B and B — Rin B

are isomorphisms by 1.7.32 ( [AGT16, VL.7.7]). Combining with the canonical diagrams (1.7.8.4)
and (1.7.26.4), we obtain a canonical commutative diagram of fibred sites over N,

(L.7.34.4) yN LEpyrié;éN o xN

proét proét

l” l” l,;
& SN 3
Vi T XY
where we ambiguously denote by © the morphisms induced by the inclusion functors of the un-
derlying categories. Moreover, if Ox,, (resp. Ox,,) denotes the sheaf (Ox,, /p"Ox,, )n>0 (resp.
(OX 106 /P OX, o6 Jn>0), then the diagram (1.7.34.4) induces a commutative diagram of ringed fibred
sites

(1.7.34.5) (EYN, ) — 2= (XN g0, Ox

T

9

7 7N —_— 5. \/
(EiftﬁX7 ‘%) (Xgm OXét)

proce)

Definition 1.7.35. We call (Ei,tﬁx,@) (resp. (E?ff&N,@)) the p-adic Faltings ringed site (resp.
p-adic pro-étale Faltings ringed site) of the morphism of coherent schemes Y — X. It is a ringed site
without final objects, which can be regarded as a fibred site over N.
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1.8. Cohomological Descent of the Structural Sheaves

Definition 1.8.1. Let K be a pre-perfectoid field of mixed characteristic (0,p), ¥ — X a morphism
of coherent schemes such that Y — XV is over Spec(K) — Spec(Ok), where XY denotes the integral
closure of X in Y. We say that Y — X is Faltings acyclic if X is affine and if for any integer n > 0
the canonical morphism

(1.8.1.1) A/p"A — RI(ERS B /p" B)
is an almost isomorphism (cf. 1.5.7), where A denotes the Of-algebra Z(Y — X) (i.e. XY =
Spec(A4)).

Remark 1.8.2. In .8.1, the canonical morphism RI'(E$! | ., Z/p" %) — RF(EI}’,YiéE(,@/p”@) is an
isomorphism as (1.7.34.3) are isomorphisms.

Lemma 1.8.3. Let K be a pre-perfectoid field of mized characteristic (0,p), Y — X a morphism of
coherent schemes such that Y — XY is over Spec(K) — Spec(Ok), A = B(Y — X). Assume that
Y — X s Faltings acyclic. Then, we have:
(1) For any pseudo-uniformizer m of K, the canonical morphism A/mA — RF(E};ff;O@/W@)
is an almost isomorphism. y
(2) Let A be the p-adic completion of A. Then, the canonical morphism A RF(E%TfE(’N,@)
is an almost isomorphism.

PRrROOF. (1) There exists an integer n > 0 such that ' = p"/w is a pseudo-uniformizer of K.
Since A and Z are flat over O, we have a natural morphism of exact sequences

(1.8.3.1)
0

A/n’'A A/p™A A/rA——0

- - -

0 — HO(EP°% B /n' B) — HO (BN B /p"B) — HO (B | B/ B)

By definition, s is an almost isomorphism. Thus, «; is almost injective. Since any pseudo-
uniformizer of K is of the form 7’ = p™ /7 for some pseudo-uniformizer = of K and n > 0, a3 is almost
injective. By diagram chasing, we see that oy is an almost isomorphism (and thus so is «3). It re-
mains to show that HI(EY°% %/n %) is almost zero for ¢ > 0. Since H%E?f%,@ip”@)ﬁis almost
zero. By the long exact sequence associated to the short exact sequence 0 — B/’ B — B/p" B —
B|n R — 0, we see that H' (EY°CS, 7/’ B) is almost zero and that HI(EN S\, B/nB) — HIT (EVS B /n' B)
is an almost isomorphism. By induction, we complete the proof.
(2) Recall that for any integer ¢ > 0 there exists a canonical exact sequence ([AGT16, VI.7.10])
(1.8.3.2) 0 — R! lim HI"Y(EY°% B/p"%B) — HI(EY NN %B) — lim H 1EN S, B/ B) — 0.

n—oo

The conclusion follows from the almost isomorphisms (1.8.1.1). O

Proposition 1.8.4. Let K be a pre-perfectoid field of mized characteristic (O,p)LY — X a morphism
of coherent schemes such that Y — XY is over Spec(K) — Spec(Ok), A = B(Y — X). Assume
that Y — X s Faltings acyclic and that X = Spec(R) with R being p-torsion free. Let M be an
Ox-module of finite presentation with M = M(X) such that M[1/p] is a projective R[1/p]-module.
Then, the canonical morphism

~1 . e 1
(1.8.4.1) M Qg A[g] — RI(EYGN, 5*/\4)[5]
is an isomorphism, where & : (Epyrif;éN,é) - (xN Ox is defined in 1.7.34 and M =

9] proét?
M ®0Xproét OXproét = (M/pnM)nZO

PROOF. Let N be the kernel of a surjective R-linear homomorphism ¢ : R®" — M. We take a
splitting R®"[1/p] = M[1/p] @ N[1/p]. Composing with the inclusion (M & N) C (M[1/p]® N[1/p]),
we get an injective map ¢ : M & N — R®"[1/p]. Since M and N are finitely generated, there
exists an integer k& > 1 such that ¢ = p*¢ : M ® N — R®" C R®"[1/p]. It is clear that ¢ is
injective. We claim that the cokernel of ¢ is killed by p**. Indeed, the composition of the maps
M %5 R®" %5 M is pFidy. Thus, for any @ € R®", the element y = pba — ¢(¢(z)) of RO
lies in N. Thus, p?*x = p(p*¢(x) + y), which proves the claim. Then, there exists an R-linear
homomorphism 1) : R* — M @ N such that ¢ ot = p**idg~ and ¥ o p = p**idyen (|[AG20, 2.6.3)).

proct)
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Let A be the quasi-coherent O x-module associated to N. Then, for each integer g, the morphism ¢
induces an A-linear homomorphism

(1.8.4.2) HUERSN 5 M) & HIBRON 5 A7) — HO(BPN %),

. . roé —=on
whose kernel and cokernel are killed by p** by the existence of 1. For q # 0, we have H q(Ei’, H;N, P )1/p] =
0 by 18.3.(2), thus HI(EPN 5 A4)[1/p] = 0. For ¢ = 0, we have HO(EP N Z°™")[1/p] =

E@"[l/p] by 1.8.3.(2). On the other hand, there is a canonical morphism
(1.8.4.3) M@rA® N @g A — HU(EXWN 5 M) @ HO(ERAN 5N

whose composition with (1.8.4.2) is compatible with ¢ ®r idz : M ®r AON@rA— A%, Thus,
HO B, 6" M)[1/p] = M @r A[1/p]. O

Lemma 1.8.5. Let Y — X be a morphism of coherent schemes such that Y — XY is an open
immersion. Then, the functor

(1.8.5.1) TLENY STy v, (Vo U)—UY,
is well-defined, left exact and continuous. Moreover, we have Y X xy UV = V.

PROOF. Since U’ = XY xx U is integral over U, we have UY = U'V. Applying 1.3.19.(4) to
V = U over Y — XV, we see that the XY -scheme UV is Y-integrally closed with Y x xv UV =V,
and thus the functor €™ is well-defined. Let (Vi — Uy) — (Vo — Up) < (Vo — Us) be a diagram in
EY% . By 1.3.21, UXI?UOVO Uy = (U X o Uy2)V1*v V2 = (U xy, Up)V**% V2 which shows the left

exactness of €. For the continuity, notice that any covering in E%’fﬂfﬁc can be refined by a standard

covanishing covering (I1.6.4). For a Cartesian covering family 4 = {(V xy U, = U,) = (V = U) }nen
with N finite, we apply 1.3.15 to the commutative diagram

(1852) HTLEN Vv Xy Un - HnEN U’I‘L/XUUH - HTLEN Un
1% uv U

then we see that et (i) is a covering family in Iy _, yv. For a vertical covering family & = {(V,,, —
U) = (V= U)}men with M finite, we apply 1.3.15 to the commutative diagram

(1.8.5.3) Hen Vin —=pens UV —=U
1% uv U
then we see that et (4) is also a covering family in Iy _, xv. O

1.8.6. Let Y — X be a morphism of coherent schemes such that Y — XY is an open immersion.
Then, there are morphisms of sites

(1.8.6.1) e: Ty, xv — EMOS
(1.8.6.2) e:lyxv — Eff ¢

defined by (I.8.5.1) and the composition of (1.8.5.1) with (I.7.27.1) respectively. We temporarily
denote by €P™ the presheaf on Iy _, xv sending W to I'(W, Ow ) (thus & = (€P")?). Notice that we
have Z = €? O™ (resp. % = ePO**). The canonical morphism e? GP™ — eP & (resp. ePOP™ — ePO)
induces a canonical morphism % — €, 0 (resp. B — e, 0).

1.8.7. Let K be a pre-perfectoid field (I.5.1) of mixed characteristic (0,p), n = Spec(K), S =
Spec(Ok), Y — X a morphism of coherent schemes such that XY is an S-scheme with generic
fibre (X)), =Y. In particular, X is an object of I, 5.

Lemma 1.8.8. For any ring R, there is an R-algebra Ry, satisfying the following conditions:
(i) The scheme Spec(Rx[1/p]) is pro-finite étale and faithfully flat over Spec(R[1/p]).
(ii) The R-algebra R is the integral closure of R in Rso[1/p].
(iii) Any unit t of Reo admits a p-th root t'/? in R...
Moreover, if p lies in the Jacobson radical J(R) of R, and if there is a p*-th root p» € R of p up to a
unit, and we write py = ph, then we may require further that
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(iv) the Frobenius of Reo/pRoo induces an isomorphism R /p1 Roo — Roo/PRoo-

PROOF. Setting By = R[1/p], we construct inductively a ring B, ind-finite étale over B,, and
we denote by R, the integral closure of R in B,,. For n > 0, we set
(1.8.8.1) Busi = colim R B [X]/(X? — 1)

:0.0. n+1 TCRX B, n

where the colimit runs through all finite subsets 1" of the subset R of units of R,, and the transition
maps are given by the inclusion relation of these finite subsets T'. Notice that B,[X]/(XP —t) is finite
étale and faithfully flat over B,,, thus B, ;1 is ind-finite étale and faithfully flat over B,,. Now we take
By, = colim,, B,,. The integral closure R, of R in B, is equal to colim,, R, by 1.3.18. We claim that
R satisfies the first three conditions. Firstly, we see inductively that B, = R,[1/p] (0 < n < o0)
by 1.3.17. Thus, (i), (ii) follow immediately. For (iii), notice that we have R = colim, R)}. For an
unit t € RX, we suppose that it is the image of ¢, € R)X. By construction, there exists an element
Tp4+1 € Ryt such that xflﬂ =t,. Thus, £ admits a p-th root in R.

For (iv), the injectivity follows from the fact that R is integrally closed in Roo[1/p] (cf. 1.5.21).
For the surjectivity, let a € R.,. Firstly, since Ry is integral over R, p also lies in the Jacobson
radical J(Rs) of Rs. Thus, 14+pia € RY, and then by (iii) there is b € Ro such that ¥ = 1+ pa.
We write (b — 1)P = pya’ for some @’ € a + p1Ro. Thus, 1 +a’ —a € RZ, and then by (iii) there is
¢ € Ry such that ¢®» = 1+ a’ — a. On the other hand, since R, is integrally closed in R..[1/p], we
have x = (b—1)/p2 € Roo. Now we have (x —c+1)P = aP — P+ 1 = a (mod pR~ ), which completes
the proof. O

Remark 1.8.9. In 1.8.8, it follows from the construction that Spec(Ro[1/p]) — Spec(R[1/p]) is a
covering in Spec(R[1/p])5, e (L7-17).
Proposition 1.8.10. With the notation in 1.8.7, for any object V. — U in Eﬁ’,rf;(, there exists a
covering {(Vi — U;) = (V = U)}ies with I finite such that for each i € I, U)* is the spectrum of an
Ok -algebra which is almost pre-perfectoid (1.5.19).

PROOF. After replacing U by an affine open covering, we may assume that U = Spec(A). Con-
sider the category ¢ of étale A-algebras B such that A/pA — B/pB is an isomorphism, and the
colimit A" = colim B over €. In fact, € is filtered and (A% pA") is the Henselization of the pair
(A,pA) (cf. [Sta22, 0A02]). It is clear that Spec(A")]]Spec(A[l/p]) — Spec(A) is a covering in
Uproct- So we reduce to the situation where p € J(A) or p € A*. The latter case is trivial, since the
p-adic completion of R = ['(UY, Oyv) is zero if p is invertible in A. Therefore, we may assume that
p € J(A) in the following.

Since R = I'(UY,Opv) is integral over A, we also have p € J(R). Applying 1.8.8 to the Ox-
algebra R, we obtain a covering Vo, = Spec(Roo[1/p]) — V = Spec(R[1/p]) in Vprorer such that
Ry =T(UV>,Opyv.. ) is an Og-algebra which is almost pre-perfectoid by 1.5.4 and 1.5.20. O

Proposition I.8.11. With the notation in 1.8.7, if W is an object of I, 5 such that W is the spectrum
of an Ok -algebra which is almost pre-perfectoid, then for any integer n > 0, the canonical morphism

is an almost isomorphism (1.5.7).

PRrROOF. Let € be the full-subcategory of I, s formed by the spectrums of Og-algebras which
are almost pre-perfectoid. It is stable under fibred product by 1.5.33, 1.5.30 and 1.3.21, and it forms a
topologically generating family for the site I, by 1.8.5 and 1.8.10. It suffices to show that for any
covering in I, g, 4 = {W), = W}rck consisting of objects of ¢ with K finite, the augmented Cech
complex associated to the presheaf W — I'(W, Ow)/p"T' (W, Ow) on I, _,¢ (whose associated sheaf
is just €0 /p"0),

(I8.11.2) 0= T(W,0w)/p" = [[T (Wi, Ow,)/p" = [ T(Wixw Wi, Opyc, ) /0™ = -+
k k,k!

is almost exact. Indeed, the almost exactness shows firstly that I'(W, Ow ) /p" — H°(Ly, _w, 0 /p™0)
is an almost isomorphism (cf. [Sta22, 00W1]), so that the augmented Cech complex associated to
the sheaf & /p" 0 is also almost exact. Then, the conclusion follows from the almost vanishing of the
higher Cech cohomologies of & /p"& by [Sta22, 03F9).

We set R = I'(W,0w) and R' = [],cx (Wi, Ow,). They are almost pre-perfectoid, and
Spec(R’) — Spec(R) is a v-covering by definition. Thus, the almost exactness of (1.8.11.2) follows
from 1.5.33, 1.5.30 and 1.5.35. O
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Theorem 1.8.12. With the notation in 1.8.7, let € : Iy _,xv — Effﬂf} be the morphism of sites
defined in 1.8.6. Then, for any integer n > 0, the canonical morphism

(I.8.12.1) BIp" B — Re.(O)p"0)

is an almost isomorphism in the derived category D(Ox-Modgproe: ) (1.5.7).
Y—-X

PROOF. Since Rle, (& /p™0) is the sheaf associated to the presheaf (V — U) — HI(Iy_yv, O /p"0)

and any object in E%}rfg( can be covered by those objects whose image under €™ are the spectrums
of Ok-algebras which are almost pre-perfectoid by 1.8.10, the conclusion follows from 1.8.11. g

Corollary 1.8.13. With the notation in 1.8.7, let V. — U be an object of Ei}r:e;( such that U is affine
and that the integral closure UV = Spec(A) is the spectrum of an Ox-algebra A which is almost
pre-perfectoid. Then, V — U is Faltings acyclic.

Proor. It follows directly from 1.8.12 and 1.8.11. 0

Corollary 1.8.14. With the notation in 1.8.7, let € : Iy _, xv — E‘§}_>X be the morphism of sites de-
fined in 1.8.6. Then, for any finite locally constant abelian sheaf L on ESt . -, the canonical morphism

(1.8.14.1) L®z B — Re.(c 'L ®z 0)

is an almost isomorphism in the derived category D(Ox-Modge: ) (1.5.7).

PROOF. The problem is local on E$! |, thus we may assume that L is the constant sheaf with
value Z/p"Z. Then, the conclusion follows from 1.8.12 and 1.7.32. g

Remark 1.8.15. In 1.8.14, if L is a bounded complex of abelian sheaves on E?_,X with finite locally
constant cohomology sheaves, then the canonical morphism L ®@% B — Re, (e7'L ®% 0) is also an
almost isomorphism. Indeed, after replacing L by L ®% Z,,, we may assume that L is a complex of
Z/p™Z-modules for some integer n ([Sta22, 0DD7]). Then, there exists a covering family {(¥; —
X;) = (Y = X)}ier in E§f_,  such that the restriction of I on E§! _, . is represented by a bounded
complex of finite locally constant Z/p"Z-modules ([Sta22, 094G]). Then, the conclusion follows
directly from 1.8.14.

Corollary 1.8.16. With the notation in 1.8.7, let Y — X; (i = 1,2) be a morphism of coherent
schemes such that XY is an S-scheme with generic fibre (XZ-Y)77 =Y, L a finite locally constant
abelian sheaf on E?a)@' If there is a morphism f : X7 — X5 under Y such that the natural
morphism g : XY — XJ s a separated v-covering and that g~ (Y) = Y, and if we denote by
U Eé{,t_>X1 — E‘é‘,t_»(z the corresponding morphism of sites, then the natural morphism

(1.8.16.1) L ®z % — Ru.(u 'L ®z B)

is an almost isomorphism.

PROOF. The morphism u is defined by the functor u* : E{f v — E{f_, \ sending (V — Us) to
(V=U)=(V = X1 xx,Us). Weset Vo =Y xx, Uy =Y xx, Us. According to 1.3.17, U}* — U)°
is the base change of X} — XJ by Uy — Xy, and thus it is a separated v-covering. Notice that Vj
is an open subscheme in both Ulv0 and U2V°, and moreover Vy =V Xy U1V°. Applying 1.3.15 to the

commutative diagram

(1.8.16.2) V—U/ — U

L

it follows that U} — Uy is also a separated v-covering. Let &; : Iy ,yv — E§f (i = 1,2) be
the morphisms of sites defined in 1.8.6. The sheaf R7u, (u™L ®z &) is associated to the presheaf
(V = Us) = HYES!,; ,u™'L ®z ). We have
(1.8.16.3) HYEY_y,,u 'Ly B) = HI(Ly_yv,e1 'u” 'L &g 0)

= Hq(IVﬁUz‘/aEZ‘_l]L Qz ﬁ) < Hq(Eé{/?%Uz’L Xz @)a
where the equality follows from the fact that the morphism of representable sheaves associated to

UY — UY onI,,g is an isomorphism by 1.3.24, and where the two arrows are almost isomorphisms
by 1.8.14, which completes the proof. O
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1.8.17. Let A be the category formed by finite ordered sets [n] = {0,1,...,n} (n > 0) with non-
decreasing maps ([Sta22, 0164]). For a functor from its opposite category A°P to the category E of
morphisms of coherent schemes sending [n] to Y,, — X,,, we simply denote it by Y, — X,. Then,
we obtain a fibred site E§! . over A°P whose fibre category over [n] is E?,tn _x, and the inverse
image functor f*: E§f |\ — E§ _ | associated to a morphism f : [m] — [n] in A is induced
the base change by the morphism (Y, = Xp,) = (Y, — X,,) associated to f. We endow E§! _ ¢
with the total topology (I1.6.1) and call it the simplicial Faltings site associated to Yo — X, ([Sta22,
09WE.(A)]). The sheaf Z on cach E§f _,  induces a sheaf %y = (%) [jcon(a) on ESL _ 5, with the
notation in I.6.5.

For an augmentation (Yo — Xo) — (Y — X) in E ([Sta22, 018F]), we obtain an augmentation
of simplicial site a : E v — E{f_, \ (|Sta22, 0D6Z.(A)]). We denote by a, : ES _x — E§f_
the natural morphism induced by (V,, — X,,) — (Y — X). Notice that for any sheaf F on E$! | y,
we have a ™' F = (a,,* F)[z)cob(a) with the notation in 1.6.5 (|[Sta22, 0D70]).

Corollary 1.8.18. With the notation in 1.8.7, let L a finite locally constant abelian sheaf on E?,tﬁx,
Xo — X an augmentation of simplicial coherent scheme. If we set Yo =Y Xx X4 and denote by a :
E%’t.%X. — Eg"ﬁﬁx the augmentation of simplicial site, assuming that XY* — XY is a hypercovering
in I,g, then the canonical morphism

(1.8.18.1) L ®z % — Ra.(a 'L @7 B,)
is an almost isomorphism.

Proor. Let b : Iy,  yve — Iy ,xv be the augmentation of simplicial site associated to the

augmentation of simplicial object XY* — XV of I, , s ([Sta22, 09X8]|). The functorial morphism of
sites £ : Iy, xv — E§! | i defined in 1.8.6 induces a commutative diagram of topoi (|[Sta22, 0D99])

(1.8.18.2) Iy

X0

bl l

~ € ét~
IY—)XY EY*}X

Ce bt~
EY.—>X.

We denote by a,, : E(;E’tnﬁXn, —E§ .y and b, : I
Consider the commutative diagram

Y, s xYn Iy _, xv the natural morphisms of sites.

(1.8.18.3) Ra, (0 'L ® By <— LB — 2 > Re, ('L ® O)
ag,i \LO&;
Ra,Reaeg (a7 L @ By) —2> Rey (¢ 7L ® O,) =—— Re, Rb,b 1 (e 7L © 0)

where ¢ = aog, = c0b, and ay (resp. as) is induced by the canonical morphism e~*% — & (resp.
5:1@. — 0,), and other arrows are the canonical morphisms.

Notice that as is an almost isomorphism by 1.8.14, and that a4 is an isomorphism by [Sta22,
0D8N] as XY+ — XY is a hypercovering in I,s. It remains to show that as o a3 is an almost
isomorphism. With the notation in 1.6.5, we have

(1.8.18.4) a 'L ® By = (a;lﬂl@@)[n]eou& and
(1.8.18.5) 'L ® Of = (e, a;, "L ® O)njcon(a)-
Moreover, by [Sta22, 0D97] we have

(1.8.18.6) Rq€.*(671L ® O4) = (Rile,4 (é‘glagl]L ® ﬁ))[n]GOb(A)

for each integer q. Therefore, a 'L ® %y — Reex(c 'L ® O,) is an almost isomorphism by 1.8.14 and
S0 is a5 0 arg3. O

Lemma 1.8.19. With the notation in 1.8.7, assume that XY is the spectrum of an Ok -algebra which
is almost pre-perfectoid. Let V — U be an object of EX'°C\ with U affine. Then, UV is the spectrum

of an O -algebra which is almost pre-perfectoid.
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ProoF. Consider the following commutative diagram:

(1.8.19.1) V— UV
i |

Y xx U UY»xU U

| ! i

Y XY X

l l

Spec(K) —— Spec(Ok)

Since taking integral closures commutes with étale base change and filtered colimits (I.3.17, 1.3.18),
all the squares in (1.8.19.1) are Cartesian (1.3.19). Notice that UY *xU is integral over U and thus
affine. Since UY *xV is pro-étale over XY, it is the spectrum of an Og-algebra which is almost
pre-perfectoid by 1.5.37. As V is pro-finite étale over Y X x U, by almost purity 1.5.41 and 1.5.37, we
see that U" is the spectrum of an O g-algebra which is almost pre-perfectoid. d

1.8.20. Let K be a pre-perfectoid field of mixed characteristic (0,p) which contains a compatible
system {(,}n>1 of primitive roots of unity, n = Spec(K), S = Spec(Ok), ¥ — X a morphism of
coherent schemes such that XY is an S-scheme and that the induced morphism Y — XY is an open
immersion over n — S. Remark that the morphism X,%/ — X over n — S is in the situation 1.8.7. We
assume further that there exist finitely many nonzero divisors fi,..., f, of F(X}; ,O Xﬂy) such that
the divisor D = Y77, div(f;) on X" has support X} \'Y and that at each strict henselization of X’
those elements f; contained in the maximal ideal form a subset of a regular system of parameters (in
particular, D is a normal crossings divisor on X}; , and we allow D to be empty, i.e. r =0). We set

(1.8.20.1) Yoo =lim YTy, ... . T,]/(T = f1,....,T" — f.),

where the limit is taken over N with the division relation. We see that Y., is faithfully flat and
pro-finite étale over Y.

Proposition 1.8.21 (Abhyankar’s lemma). Under the assumptions in 1.8.20 and with the same no-
tation, for any finite étale Yyo-scheme Vi, the integral closure X,‘I/Oc is finite étale over X:w.

Proor. We set Z = X}; . Passing to a strict henselization of Z where D is non-empty, we may
assume that Z is local and regular and that f1,..., f (r > 1) are all contained in the maximal ideal.
We set Y, = Y[T1,...,T.]/(T] — f1,...,T" = f) and Z, = Z[Ty,...,T.]/(T]" — f1,....,T" — f)
for any integer n > 0. Notice that Z, is still local and regular (thus isomorphic to X}I/ ») and that
Jgo = fé / n g = fﬁ /™ form a subset of a regular system of parameters for Z,, (see the proof of
[SGA 1, XIIL.5.1]). Using [EGA 1V3, 8.8.2, 8.10.5] and [EGA IVy, 17.7.8|, there exists an integer
ng > 0 and a finite étale Y, -scheme V,,, such that Vo, = Y XY, Vg Weset V,, =Y, XY, Vo
for any n > ng. According to [SGA 41, XII1.5.2], there exists a multiple ny of ng such that Z,‘L/f’l is
finite étale over Z,,,. As Z,, = lim Z,, is normal, Z,, x Zn, ZT‘L/;” is also normal and thus isomorphic
to ZV~ = XXW, which shows that the latter is also finite étale over Z,, = X}I/‘X’. 0

Corollary 1.8.22. Under the assumptions in 1.8.20 and with the same notation, the natural functor

proét proét . . . . .
XYooy x — Ey " x sending V. — U to Y X x Yoo V' — U induces an equivalence of ringed sites
7).

x .
(B 1, ) - (BUSS

PROOF. For the equivalence of categories, it suffices to show that the induced functor u™ :

Eifx Ly E§ _ x is an equivalence by 1.7.14.(6). Since u™ is a morphism of fibred categories over
X, it suffices to show that for each object U of Xg;, the fibre functor u$ : U:}%fXU = (Yoo Xx U)tet

induced by u™ is an equivalence of categories. Notice that if we replace Y — X in1.8.20 by Y x x U —
U, then (Y X x U)o = Yoo X x U. Therefore, the equivalence of categories follows from applying 1.8.21
toY xx U —=U.

To show the equivalence of categories identifies their topologies, it suffices to show that it identifies
the vertical coverings and Cartesian coverings in 1.7.23. For a finite family {(V,, —» U) — (V —
U)}mem in E?;g:_}x, its image in EpYr:iX is {(Yo X xyoo Vin = U) = (Yo Xxyeo V = U)}bmen-
Notice that Yo, Xxye Vs a dense open subset of V as V is flat over X}f” ([EGA IV, 2.3.7]),

and the same holds for V,,,. Thus, the integral morphism [] Vi — V is surjective if and only

meM
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if [T, Yoo X x Yoo Vin = Yoo X x Yoo V' is surjective. On the other hand, it is tautological that the
equivalence identifies the Cartesian coverings. Hence, the two sites are naturally equivalent.

The identification of the structural sheaves by the equivalence of sites follows from the fact that
V is integrally closed in Y, X xyee V for any object V' — U of EprOCtHX as V is pro-étale over X)>

(1.3.19). O

Corollary 1.8.23. Under the assumptions in 1.8.20 and with the same notation, let V. — U be an
object of E1Droet “ « such that UV is the spectrum of an Ok -algebra which is almost pre-perfectoid, and

let V! — U’ be an object of EI‘}rfltj with U’ affine. Then, U’ V' is the spectrum of an O -algebra which
is almost pre-perfectoid.

PRrROOF. It follows directly from 1.8.22 and 1.8.19. O

Theorem 1.8.24. Under the assumptions in 1.8.20 and with the same notation, let V. — U be an

object of Epyroix Then, the following statements are equivalent:

(1) The morphism V' — U is Faltings acyclic.
(2) The scheme U is affine and UV = Spec(A) is the spectrum of an Og-algebra A which is
almost pre-perfectoid.

PRrROOF. (2) = (1): Let V' — U be an object of EprOét_)X whose image under the equivalence
in 1.8.22 is isomorphic to V' — U. Then, UV = Spec(4), V' = UV/, and RI(EP°S B/p" %) =
RI(EYCY, B/p" ). The conclusion follows from 1.8.13.

(1) = (2): Firstly, notice that the objects V' — U’ of EPerCt “. x satisfying the condition (2) form
a topological generating family by 1.8.22 and 1.8.10. Let p; € OK be a p-th root of p up to a unit.
Then, we see that the Frobenius induces an almost isomorphism %/p; % — %/p% by evaluating these

sheaves at the objects V' — U’. The Frobenius also induces an almost isomorphism A/p; A — A/pA
by 1.8.3.(1), which shows that A is almost pre-perfectoid. O

1.9. Complements on Logarithmic Geometry

We briefly recall some notions and facts of logarithmic geometry which will be used in the rest of
the paper. We refer to [Kat89, Kat94, GR04, Ogul8]| for a systematic development of logarithmic
geometry, and to [AGT16, 11.5] for a brief summary of the theory.

1.9.1. We only consider logarithmic structures in étale topology. More precisely, let X be a scheme,
X the étale site of X, Ox,, the structure sheaf on X4, O% » the subsheaf of units of Ox,,. A
logarithmic struture on X is a homomorphlsm of sheaves of mon01ds o M — Ox,, on X¢ which
induces an isomorphism o~ (0%, ) — 0%, . We denote by (X,.#) the associated logarithmic
scheme (cf. [AGT16, I1.5.11]).

1.9.2. Let (X, .#) be a coherent log scheme (cf. [AGT16, I1.5.15]). Then, there is a maximal
open subscheme X of X on which .# is trivial, and moreover it is functorial in (X, .#) (|Ogul8,
I11.1.2.8]). Let (X,.#) — (S,.%) < (Y, A4) be a diagram of fine and saturated log schemes (cf.
[AGT16, 11.5.15]). Then, the fibred product is representable in the category of fine and saturated
log schemes by (Z, 2) = (X, #) X‘ES&j)(Y, A). We remark that Z% = X" X g V¥, that Z — X xgY
is finite, and that Z* — Z is Cartesian over X" Xgu Y — X x5V (|Ogul8, 1I 2.1.2, 2.1.6]).
Moreover, if X" = X, then Z = X xgY (|Ogul8, 111.2.1.3]).

1.9.3. For an open immersion j : Y — X, we denote by jg : Y&y — X the morphism of their étale
sites defined by the base change by j. Let .#y _, x be the preimage of jét*O;ét under the natural map
Ox,, — JjetxOy,,, and we endow X with the logarithmic structure .#y_.x — Ox,,, which is called
the compactifying log structure associated to the open immersion j ([Ogul8, II1.1.6.1]). Sometimes
we write Ay _,x as #x I Y is clear in the context.

1.9.4. Let (X, .#) be a fine and saturated log scheme which is regular ([Kat94, 2.1], [Niz06, 2.3|).
Then, X is locally Noetherian and normal, and X is regular and dense in X ([Kat94, 4.1]). More-
over, there is a natural isomorphism .# — #xuw_x ([Kat94, 11.6], [Niz06, 2.6]). We remark
that if X is a regular scheme with a strict normal crossings divisor D, then (X, .#x\p_x) is fine,
saturated and regular (|Ogul8, I11.1.11.9]).

Let f : (X, #) — (5,.Z) be a smooth (resp. saturated) morphism of fine and saturated log
schemes (cf. [AGT16, II 5.25, 5.18]). Then, f remains smooth (resp. saturated) under the base
change in the category of fine and saturated log schemes ([Ogul8, IV.3.1.2, IV.3.1.11], resp. [Ogul8,
I11.2.5.3]). We remark that if f is smooth, then f* : X' — S* is a smooth morphism of schemes.
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If moreover (S,.Z) is regular, then (X,.#) is also regular ([Ogul8, IV.3.5.3]). We also remark
that if f is saturated, then for any fibred product in the category of fine and saturated log schemes
(2, P) = (X, M) x50y (Y, N), we have Z = X x5V ([Tsul9, 11.2.13]).

1.9.5. Let K be a complete discrete valuation field with valuation ring Ok, k the residue field of Ok,
7 a uniformizer of Ox. We set n = Spec(K), S = Spec(Ok) and s = Spec(k). Then, (S, #,_s) is
fine, saturated and regular, since N — I'(S, .4, 5) sending 1 to m forms a chart of (S,.#),_s) (cf.
[AGT16, 11.5.13, I1.6.1]). Recall that an open immersion ¥ — X of quasi-compact and separated
schemes over n — S is strictly semi-stable ([dJ96, 6.3]) if and only if the following conditions are
satisfied ([dJ96, 6.4], [EGA 1V, 17.5.3|):

(i) For each point x of the generic fibre X, there is an open neighborhood U C X,, of z and a
smooth K-morphism

(1.9.5.1) f:U — Spec(K[s1,...,5m))

such that f maps x to the point associated to the maximal ideal (s1,. .., s;,) and that U\Y
is the inverse image of the closed subset defined by s; - - - s, = 0.

(ii) For each point x of the special fibre X, there is an open neighborhood U C X of z and a
smooth Og-morphism

(1.9.5.2) f:U — Spec(Ok[t1, . tn, 81,y Sm]/(m =11+ 1,))

such that f maps z to the point associated to the maximal ideal (t1,...,tn,S1,...,8m) and
that U \ 'Y is the inverse image of the closed subset defined by t1 -+ t, - 81+ 8y = 0.

We call an open immersion Y — X of quasi-compact and separated schemes over  — S is semi-stable
if for any point z of X there is an étale neighborhood U of x such that Y x x U — U is strictly semi-
stable. In this case, (X, #y_ x) is fine, saturated and regular which is smooth and saturated over
(S, M), since for any point x of X there is an étale neighborhood U of x such that there exists a
chart for the morphism (U, 4y« cv—v) — (S, #,—s) subordinate to the morphism N — N” ¢ N™
sending 1 to (1,...,1,0,...,0) such that the induced morphism U — S X, Axngnm is smooth (cf.
[Ogul8, IV.3.1.18]).

1.9.6. Recall that a morphism of schemes f : X — S is called generically finite if there exists a dense
open subscheme U of S such that f~1(U) — U is finite. We remark that for a morphism f : X — S of
finite type between Noetherian schemes which maps generic points to generic points, f is generically
finite if and only if the residue field of any generic point 7 of X is a finite field extension of the residue
field of f(n) (ILO14, I1.1.1.7]).

1.9.7. Let K be a complete discrete valuation field with valuation ring O, L an algebraically closed
valuation field of height 1 extension of K with valuation ring Oy, K the algebraic closure of K in L.

Consider the category % of open immersions between integral affine schemes U — T over
Spec(K) — Spec(Ok) under Spec(L) — Spec(Op) such that T is of finite type over Ok and that
Spec(L) — U is dominant. Let %, be the full subcategory of ¢ formed by those objects U — T
Cartesian over Spec(K) — Spec(Ok).

(1.9.7.1) Spec(L) Spec(Op)

| |

U = Spec(B) —— T = Spec(A)

| |

Spec(K) —— Spec(Ok)

We note that the objects of € are of the form (U = Spec(B) — T = Spec(A)) where A (resp.
B) is a finitely generated Og-subalgebra of O (resp. K-subalgebra of L) with A C B such that
Spec(B) — Spec(A) is an open immersion.

Lemma 1.9.8. With the notation in 1.9.7, we have:

(1) The category € is cofiltered, and the subcategory Gear s initial in €.

(2) The morphism Spec(L) — Spec(Or) represents the cofiltered limit of morphisms U — T
indexzed by € in the category of morphisms of schemes (cf. 1.7.1).

(3) There exists a directed inverse system (Ux — Tx)aca of objects of Gear over a directed
inverse system (Spec(Kx) — Spec(Ok,))aca of objects of Cear such that Ky is a finite
field extension of K in L, that K = Usea K, that Ux — T is strictly semi-stable over
Spec(Ky) — Spec(Ok, ) (1.9.5), and that (Ux — Tx)xea forms an initial full subcategory of
Gear-
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PRrROOF. (1) For a diagram (U; — T1) — (Uy — Tp) + (U — T3) in €, let T be the scheme
theoretic image of Spec(L) — Ty X1, Tz and let U be the intersection of Uy Xy, Uz with T. Tt is
clear that T is of finite type over Ok as O is Noetherian, that U and T are integral and affine, that
Spec(L) — U is dominant, and that Spec(L) — T factors through Spec(Op). Thus, U — T is an
object of €, which shows that € is cofiltered. For an object (U = Spec(B) — T = Spec(A4)) of €,
we write Op, as a filtered union of finitely generated A-subalgebras A;. Let m be a uniformizer of K.
Notice that L = Op[1/7] = colim A;[1/7] and that Homg_a1g(B, L) = colim Homg_a1g(B, A;[1/7])
by [EGA IV3, 8.14.2.2]. Thus, there exists an index 4 such that Spec(A;[1/7]) — Spec(4;) is an
object of Geor over U — T

(2) It follows immediately from the arguments above.

(3) Consider the category 2 of morphisms of 6.,

(1.9.8.1) U T

| |

Spec(K') —— Spec(Ok)

such that K’ is a finite field extension of K. Similarly, this category is also cofiltered with limit of
diagrams of schemes (Spec(L) — Spec(Or)) — (Spec(K) — Spec(O%)). It suffices to show that
the full subcategory of 2 formed by strictly semi-stable objects is initial. For any object U — T
of Gear, by de Jong’s alteration theorem [dJ96, 6.5], there exists a proper surjective and generically
finite morphism 7" — T of integral schemes such that U’ = U x7 T' — T’ is strictly semi-stable
over Spec(K') — Spec(Ok) for a finite field extension K — K'. Since L is algebraically closed, the
dominant morphism Spec(L) — U lifts to a dominant morphism Spec(L) — U’ (1.9.6), which further
extends to a lifting Spec(Or) — T” of Spec(Or) — T by the valuative criterion. After replacing 7"
by an affine open neighborhood of the image of the closed point of Spec(Qr), we obtain a strictly
semi-stable object of & over (U — T') — (Spec(K) — Spec(Ofk)), which completes the proof. O

Theorem 1.9.9 ([ILO14, X 3.5, 3.7]). Let K be a complete discrete valuation field with valuation ring
Ok, Y - X) = (U — T) a morphism of dominant open immersions over Spec(K) — Spec(Ok)
between irreducible Ok -schemes of finite type such that X — T is proper surjective. Then, there
exists a commutative diagram of dominant open immersions between irreducible O -schemes of finite
type

(19.9.1) v — x Ay S ox)

(f”ﬁf’)l l(f",f)

U ~T) = U —=T)

satisfying the following conditions:
(i) We have Y' = =1 (Y)N f/=YU"), i.e. Y — X' is Cartesian over U' xy Y — T’ x7 X (cf.
L.7.1).
(ii) The morphism (X', My _x1) — (T", My —71') induced by (f'°, f') is a smooth and saturated
morphism of fine, saturated and regular log schemes.
(iii) The morphisms o and B are proper surjective and generically finite, and f’ is projective
surjective.

PROOF. We may assume that T is nonempty. Recall that Spec(OQk) is universally Q-resolvable
(ILO14, X.3.3]) by de Jong’s alteration theorem [dJ96, 6.5]. Thus, T is also universally Q-resolvable
by [ILO14, X 3.5, 3.5.2] so that we can apply [ILO14, X.3.5] to the proper surjective morphism f
and the nowhere dense closed subset X \ Y. Then, we obtain a commutative diagram of schemes

(1.9.9.2) x Lo x

)

'—>T

and dense open subsets U’ C T', Y/ = B~Y(Y) N f/~Y(U’) € X’ such that (X', . #y:'_,x/) and
(T', My 1) are fine, saturated and regular, that (X', #y _x/) = (T, . #y—7) is smooth, that
a, 3 are proper surjective and generically finite morphisms which map generic points to generic
points, and that f’ is projective (since f is proper, cf. [ILO14, X 3.1.6, 3.1.7]). Since X (resp. T
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is irreducible and X’ (resp. T") is a disjoint union of normal integral schemes (1.9.4), after firstly
replacing X’ by an irreducible component and then replacing T” by the irreducible component under
X', we may assume that X’ and T” are irreducible. Then, Y’ — U’ is dominant (so that f’ is
projective surjective), since it is smooth and Y’ is nonempty ([EGA IVy, 2.3.4]). We claim that
« maps U’ into U. Indeed, if there exists a point u € U’ with a(u) ¢ U, then f'~'(u)NY' = 0.
However, endowing u with the trivial log structure, the log scheme (u, O, ) is fine, saturated and
regular, and the fibred product in the category of fine and saturated log schemes

(1.9.9.3) (4, O%) XCrr ar oy (Xl x0)

is regular with underlying scheme f’'~!(u) (1.9.4, 1.9.2). Thus, f/~!(u)NY” is dense in f'~*(u), which
contradicts the assumption that f'~1(u) N Y’ = @ since f’ is surjective. Thus, we obtain a diagram
(1.9.9.1) satisfying all the conditions except the saturatedness of (X', 4y x/) = (T", My —17).

To make (X', My x/) = (T, My 1) saturated, we apply [ILO14, X.3.7] to the morphism
(f"°, f'). We obtain a Cartesian morphism (v°,v) : (U” — T") — (U’ — T’) of dominant open
immersions such that (T, #y»_7) is a fine, saturated and regular log scheme, that + is a proper
surjective and generically finite morphism which maps generic points of 7" to the generic point of
T’, and that the fibred product in the category of fine and saturated log schemes

(1.9.9.4) (T", My _pn) ><§ST,)/”UMT,) (X', My x1)

is saturated over (T", #y_7). The fibred product (1.9.9.4) is still smooth over (T, #y» 1),
and thus it is regular (1.9.4). Let X” be the underlying scheme of it and let Y = (X”)*. Then,
the fibred product (1.9.9.4) is isomorphic to (X", #y_x~) (1.9.4). Thus, we obtain a commutative
diagram of dominant open immersions of schemes

(1.9.9.5) (v x) O

(f”oﬁf”)l J/(f/odc,)

V" = T") s (U = T)

Y — X)

Notice that Y = U” xyr Y’ and X" — T" x7 X' is finite, and that Y — X" is Cartesian over
U'xp Y = T" xp X' (1.9.2). Thus, we see that Y — X" is Cartesian over U” xy YV — T" x7 X
and that f” is projective. Since T” (resp. X') is irreducible and 7" (resp. X") is a disjoint union
of normal integral schemes (1.9.4), after firstly replacing 7" by an irreducible component and then
replacing X" by an irreducible component on which the restriction of 6° is dominant, we may assume
that T" and X" are irreducible. In particular, § is generically finite and so is S 0§ (1.9.6), and again
Y"” — U" is dominant so that f” is projective surjective. O

Lemma 1.9.10. Let X be a scheme of finite type over a valuation ring A of height 1. Then, the
underlying topological space of X is Noetherian.

PROOF. Let n and s be the generic point and closed point of Spec(A) respectively. Then, the
generic fibre X, and the special fibre X, are both Noetherian. As a union of X, and X,, the
underlying topological space of X is also Noetherian ([Sta22, 0053]). O

Proposition 1.9.11. With the notation in 1.9.7 and 1.9.8, let Y — X be a quasi-compact dominant
open immersion over Spec(L) — Spec(Opr) such that X — Spec(Or) is proper of finite presentation.
Then, there exists a proper surjective Op-morphism of finite presentation X' — X, an index A1 € A,
and a directed inverse system of open immersions (Y — X\ )a>x, over (Ux — Th)a>x, satisfying the
following conditions for each X > Aq:
(i) We have Y' =Y X x X' = lim)\z)\l Y/\/ and X' = lim)\z,\l X;\
(ii) The log scheme (X}, %y}(_v(;\) is fine, saturated and reqular.
(i) The morphism (X}, #y; x;) — (Tx, Mv,—,) is smooth and saturated, and X\ — T} is
projective.
(iv) If moreover Y = Spec(L) Xgpec(0,) X, then we can require that Yy = Uy x1, X}.

PROOF. We follow closely the proof of [ALPT19, 5.2.19]. Since the underlying topological space
of X is Noetherian by 1.9.10, each irreducible component Z of X admits a closed subscheme structure
such that Z — X is of finite presentation ([Sta22, 01PH]). After replacing X by the disjoint union
of its irreducible components, we may assume that X is irreducible. Then, the generic fibre of
X — Spec(Oy) is also irreducible as an open subset of X. Using [EGA IVs, 8.8.2, 8.10.5], there
exists an index Ao € A, a proper T),-scheme X, and an open subscheme Y, of Uy, X1y, X, such
that X = Spec(Op) xr,, X», and that Y = Spec(L) xu,, Y5, Let n denote the generic point of
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X, My, the image of 7 under the morphism X — X,,, Z,, the scheme theoretic closure of n,, in
X, Notice that Spec(Op) X1, Z), — X is a surjective finitely presented closed immersion. After
replacing X by Spec(Or) xr,, Z», and replacing Xy, by Z),, we may assume that X — X, is a
dominant morphism of irreducible schemes. Since T}, is irreducible and L is algebraically closed, the
generic fibre of f : X, — T, is geometrically irreducible. In particular, if &, (resp. 7),) denotes
the generic point of Ty, (resp. X)), then n = Spec(L) x¢, nr, ([EGA IVz, 4.5.9]). In the situation
of (iv), we can moreover assume that Yy, = Uy, x1,, X,-

By 1.9.9, there exists a commutative diagram of dominant open immersions of irreducible schemes,

(L9.11.1) (v1, = x40 2 (v, o x,)

(f“’yf')l l(f‘ﬁf)

(U3, = T4,) s (U, = To,)
where VY — X} is Cartesian over Uy xu,  Ya, = Ty, X1, X»,, and where (X}, #y; x; ) =
(1%, //ZUQU _>T*,0) is a smooth and saturated morphism of fine, saturated and regular log schemes, and
where « and [ are proper surjective and generically finite, and where f’ is projective surjective. We
take a dominant morphism ~° : Spec(L) — U}  which lifts Spec(L) — Uy, since L is algebraically
closed and « is generically finite, the morphism Spec(Or) — Tj, lifts to v : Spec(Or) — T} by the
valuative criterion. We set Y’ = Spec(L) Xuy, Yy, and X’ = Spec(Op) X1y X, It is clear that
Y" — X' is Cartesian over Y — X by base change. Let £} (resp. 7} ) be the generic points of T3
(resp. X} ). Since the generic fibre of f is geometrically irreducible, &} ~x £, o is a single point
and 7}, maps to it (([EGA 1V2, 4.5.9]). Since Spec(L) x¢, 7, is the generic point of X, we see that
X'’ — X is proper surjective and of finite presentation. It remains to construct (Y — X{)x>»,-

After replacing T/’\0 by an affine open neighborhood of the image of the closed point of Spec(Oy,),
lemma 1.9.8 implies that there exists an index A; > Ag such that the transition morphism (U, —
Ty,) = (Ux, — T,) factors through (U} — T}, ). For each index A > Ay, consider the fibred product
in the category of fine and saturated log schemes

(1.9.11.2) (XX, My x;) = (T, Mo, 1) XfST;O,J/;U,A ) (Xgs Ay —x31,):
0 0

which is a fine, saturated and regular log scheme smooth and saturated over (T, #u, —1,) (1.9.2,

1.9.4). Moreover, we have Y| = U, XUy Yy, Xy = Tx Xy X),» and in the situation of (iv),
0 0

Y{ = U xp, X} by base change. Therefore, (Y{ — X})a>x, meets our requirements. O

1.10. Faltings’ Main p-adic Comparison Theorem: the Absolute Case

Lemma 1.10.1. Let Y be a coherent scheme, V' a finite étale Y -scheme. Then, there exists a finite
étale surjective morphism Y' —'Y such that Y' Xy V is isomorphic to a finite disjoint union of Y'.

PROOF. If Y is connected, let ¥ be a geometric point of Y, 71 (Y, %) the fundamental group of YV’
with base point J. Then, Y4 is equivalent to the category of finite m (Y, 7)-sets so that the lemma
holds ([Sta22, 0BND]).

In general, for any connected component Z of Y, let (Yx)aeca, be the directed inverse system of
all open and closed subschemes of Y which contain Z and whose transition morphisms are inclusions.
Notice that limyea, Yy is a closed subscheme of Y with underlying topological space Z by [Sta22,
04PL] and [EGA 1Vj, 8.2.9]. We endow Z with the closed subscheme structure of limyea, Yi.
The first paragraph shows that there exists a finite étale surjective morphism Z’ — Z such that
Z' xy V =1]._, Z". Using [EGA IV3, 8.8.2, 8.10.5] and [EGA IVy, 17.7.8], there exists an index
Ao € Az, a finite étale surjective morphism Yy — Yi, and an isomorphism Yy xy V =][;_; Y} .
Notice that Y)fo is also finite étale over Y. Since Z is an arbitrary connected component of Y, the
conclusion follows from the quasi-compactness of Y. d

Lemma 1.10.2. Let Y be a coherent scheme, p : Yoo — Yiey the morphism of sites defined by the
inclusion functor. Then, the functor p=' : Yie, — Y& of the associated topoi induces an equivalence
p~! : LocSys(Yis) — LocSys(Ye:) between the categories of finite locally constant abelian sheaves
with quasi-inverse py.

PROOF. Since any finite locally constant sheaf on Yz (resp. Yist) is representable by a finite
étale Y-scheme by faithfully flat descent (cf. [Sta22, 03RV]), the Yoneda embeddings induce a
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commutative diagram

(I.10.2.1) LocSys(Yiet) — Yiat R Yt
hét —~

LocSys(Yz) Yy Ye

where the horizontal arrows are fully faithful. In particular, p=! is fully faithful. For a finite locally

constant abelian sheaf F on Yg, let V be a finite étale Y-scheme representing F and let hS' (resp.
Rhi€%) be the representable sheaf of V on Y (resp. Yis). We have F = h$t = p~1hl¢t ([Sta22, 04D3)).
By L.10.1, A% is finite locally constant. It is clear that the adjunction morphism hift — p.hSt is an
isomorphism, which shows that h%}:‘t is an abelian sheaf. Thus, p~! is essentially surjective. Moreover,
the argument also shows that p, induces a functor p. : LocSys(Ys) — LocSys(Y:et) which is a
quasi-inverse of p~ 1. O

Proposition 1.10.3. With the notation in 1.7.8, the functors between the categories of finite locally
constant abelian sheaves

1 , -1
(I.10.3.1) LocSys(Yiet) 5 LocSys(E{ _ ) LN LocSys(Yet)
are equivalences with quasi-inverses B, and 1, respectively.

PRrROOF. Notice that for any finite locally constant abelian sheaf G on Y4, the canonical mor-
phism 87'G — ,p 'G, which is induced by the adjunction id — .~ and by the identity
1371 = p~1 is an isomorphism by 1.10.2 and the proof of [AGT16, VI.6.3.(iii)]. For a finite
locally constant abelian sheaf F over Yz, we write F = p~'G by 1.10.2. Then, F = ¢~ !571G —
Y M p G = 14, F, whose inverse is the adjunction map ¥~'¢.F — T since the composition
of ¥~ HB7IG) = Y (b N(BTIG) = (Y)Y H(BTIG) — ¢ (B7IG) is the identity. On the
other hand, for a finite locally constant abelian sheaf L over E§' , , we claim that L — 1)~ 'L
is an isomorphism. The problem is local on ES! _x- Thus, we may assume that IL is the constant
sheaf with value L where L is a finite abelian group. Let L be the constant sheaf with value L on
Yi¢¢. Then, L = B~'L, and the isomorphism L = 87'L = 1),p~ 'L = 1,1~ 'L coincides with the
adjunction map L — t,¢p~ L. Therefore, 1y~ : LocSys(ES! , ) — LocSys(Y) is an equivalence
with quasi-inverse 1,. The conclusion follows from 1.10.2. g

1.10.4. Let f: (Y = X’) = (Y — X) be a morphism of morphisms between coherent schemes over
Spec(Q,) — Spec(Z,). The base change by f induces a commutative diagram of sites

(1.10.4.1) Y, Y- E&, .,

fétl ifE
P

S ét
Yo EY%X

Let F/ be a finite locally constant abelian sheaf on Y7,. Remark that the sheaf % on E§! |  is flat
over Z. Consider the natural morphisms in the derived category D(%—MOdngt N ),

(110.4.2) (RUR fursF') 0 <2 (R fiath, ) 0% T — 2o R fi (01 F 02, ),
where «; is induced by the canonical morphism ¢,F" — Ra.F', and «ay is the canonical morphism.

1.10.5. We keep the notation in 1.10.4 and assume that X is the spectrum of an absolutely integrally
closed valuation ring A and that Y is a quasi-compact open subscheme of X. Applying the functor
RI'(Y — X,—) on (1.10.4.2), we obtain the natural morphisms in the derived category D(A-Mod)
by 1.7.9,

(L10.5.1)  RI(Y/,F') @Y A <" RI(E, , o, YLF) @k A —2= RI(ES, |, Y\F ®, 7).

étr

Definition 1.10.6 (JAG20, 4.8.13, 5.7.4]). Under the assumptions in 1.10.4 (resp. 1.10.5) and with
the same notation, if a; is an isomorphism (for instance, if the canonical morphism ¢, F" — Ry, F is
an isomorphism), then we call the canonical morphism

(1.10.6.1) azoa;’ : (RpuRfs.F) ®% Z — R, (V.F @7 B )
(1.10.6.2) (resp. azoaj': RI(Y,,F)®% A — RI(ES, , v '.F &z Z))
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the relative (resp. absolute) Faltings’ comparison morphism associated to f: (Y = X') = (Y — X)
and F’. In this case, we say that Faltings’ comparison morphisms ezist.

Theorem I.10.7 ([Achl7, Cor.6.9], cf. [AG20, 4.4.2]). Let Ok be a strictly Henselian discrete
valuation ring with fraction field K of characteristic 0 and residue field of characteristic p. We fix an
algebraic closure K of K. Let X be an Ok -scheme of finite type, F a finite locally constant abelian
sheaf on X?,éw (NS Xf,ét — E§§7_>X the morphism of sites defined in 1.7.8. Then, the canonical
morphism P, F — R, F is an isomorphism.

Corollary I.10.8. Let Ok be a strictly Henselian discrete valuation ring with fraction field K of
characteristic 0 and residue field of characteristic p. We fix an algebraic closure K of K. Let X be
a coherent (i)f-scheme, Y = Spec(K) XSpec(0) X F a finite locally constant abelian sheaf on Y,
Y : Yo — ESF,  the morphism of sites defined in 1.7.8. Then, the canonical morphism ¢, F — R, F

is an isomorphism.

We emphasize that we don’t need any finiteness condition of X over O in 1.10.8. In fact, one
can replace O by Z,, without loss of generality, where Z,, is the integral closure of Z,, in an algebraic
closure of Q,. We keep working over O only for the continuation of our usage of notation.

PrOOF OF 1.10.8. We take a directed inverse system (X — Spec(Ok,))aea of morphisms of
finite type of schemes by Noetherian approximation, such that K is a finite field extension of K
and K = Uxea K, and that the transition morphisms Xy, — X are affine and X = limyep X (cf.
[Sta22, 09MV]). For each A € A, we set Y = Spec(K) XSpec(Ox, ) Xa- Notice that ¥ = lim Y. Then,
there exists an index A\g € A and a finite locally constant abelian sheaf Fy, on Y}, ¢ such that I is the
pullback of Fy, by Ys, — Y, (cf. [Sta22, 09YU]). Let Fy be the pullback of Fy, by Y ¢ — Y,
for each A > Xg. Notice that O, also satisfies the conditions in 1.10.7. Let ¥y : Y} ¢t — E%axx be
the morphism of sites defined in 1.7.8, ¢y : E , y — Ei’%_)XA the morphism of sites defined by the
transition morphism. Then, we have Ry, ,F, = 0 for each integer ¢ > 0 by 1.10.7, and moreover

(1.10.8.1) R, F = colim ¢} 'R%\.Fy = 0
A> N

by 1.7.12, [SGA 4y, VIL5.6] and [SGA 4y, VI.8.7.3] whose conditions are satisfied because each
object in each concerned site is quasi-compact. O

Lemma 1.10.9. With the notation in 1.10.4, let F be a finite locally constant abelian sheaf on Yg.
Then, the canonical morphism fﬁlz/}*IF — w;féglF is an isomorphism.

Proor. The base change morphism fg L F — o fé_tllF is the composition of the adjunction
morphisms ([SGA 4y, XVII.2.1.3|)

(1.10.9.1) S ' F = ' (fg ' 0uF) = i i (07 uF) = L f'F
which are both isomorphisms by 1.10.3. g

1.10.10. Let K be a complete discrete valuation field of characteristic 0 with valuation ring Ok whose
residue field k is algebraically closed (a condition required by [AG20, 4.1.3, 5.1.3]) of characteristic
p >0, K an algebraic closure of K, O the integral closure of Ok in K, n = Spec(K), 7 = Spec(K),
S = Spec(Ok), S = Spec(O%), s = Spec(k). Remark that K is a pre-perfectoid field with valuation
ring O so we are also in the situation 1.8.7.

1.10.11. With the notation in 1.10.10, let X be an S-scheme, Y an open subscheme of the generic
fibre X,. We simply denote by .#x the compactifying log structure .#Zx, ,x (1.9.3). Following
[AGT16, I11.4.7], we say that Y — X is adequate over n — S if the following conditions are satisfied:

(i) X is of finite type over S;
(ii) Any point of the special fibre X, admits an étale neighborhood U such that U, — 7 is
smooth and that U, \ Y is the support of a strict normal crossings divisor on U,;
(i) (X, #y_x) is a fine log scheme and the structure morphism (X, #y_x) — (S, #s) is
smooth and saturated.

In this case, (X, #y_x) — (S, #s) is adequate in the sense of [AGT16, I11.4.7]. We remark that
for any adequate (S,.#s)-log scheme (X,.#), X" — X is adequate over n — S and (X,.#) =
(X, Mxe_x) (cf. 1.9.4,1.9.5). Note that if Y — X is semi-stable over n — S then it is adequate (cf.
1.9.5).
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1.10.12. We recall the statement of Faltings’ main p-adic comparison theorem following Abbes-Gros
[AG20]. We take the notation and assumptions in 1.10.10. Firstly, recall that for any adequate open
immersion of schemes X° — X over n — 5 and any finite locally constant abelian sheaf F on X7 .,
the canonical morphism ,F — R, F is an isomorphism, where v : X ot ES Xoosx is the morphism
of sites defined in 1.7.8 (JAG20, 4.4.2]).

Let (X — X') — (X° — X) be a morphism of adequate open immersions of schemes over n — S
such that X’ — X is projective and that the induced morphism (X', #x»_,x/) = (X, #xo_x) is
smooth and saturated. Let Y/ =7 x, X®, YV =7 %, X°, f: (Y - X') - (Y — X) the natural
morphism, F’ a finite locally constant abelian sheaf on Y/,. By the first paragraph, we have the
relative Faltings’ comparison morphism associated to f and F/ (1.10.6.1),

(1.10.12.1) (R, Rfeen ) @F B — R, (V.F @1, 2 ).

Remark that under our assumption, the sheaf R? fg .’ on Yz is finite locally constant for each integer
¢ ([AG20, 2.2.25)).

Theorem 1.10.13 ([Fal02, Thm.6, page 266|, [AG20, 5.7.4]). Under the assumptions in 1.10.12
and with the same motation, the relative Faltings’ comparison morphism associated to f and F' is
an almost isomorphism in the derived category D(Og-Modge ) (1.5.7), and it induces an almost
isomorphism

(1.10.13.1) (<R fersF') 92 B — R f (Y,F @2 B)
of Og-modules for each integer q.

Proposition 1.10.14. With the natation in 1.10.10, let A be an absolutely integrally closed valuation
ring of height 1 extension of O, X a proper A-scheme of finite presentation, Y = Spec(A[1/p]) Xgpec(a)
X, F a finite locally constant abelian sheaf on Yz . Then, there exists a proper surjective morphism
X' — X of finite presentation such that the relative and absolute Faltings’ comparison morphisms
associated to f': (Y — X') — (Spec(A[1/p]) — Spec(A4)) and F' (which exist by 1.10.8) are almost
isomorphisms, where Y' =Y xx X' and F' is the pullback of F on Y.

PrROOF. Since the underlying topological space of X is Noetherian by 1.9.10, each irreducible
component Z of X admits a closed subscheme structure such that Z — X is of finite presentation
([Sta22, 01PH]). After replacing X by the disjoint union of its irreducible components, we may assume
that X is irreducible. If Y is empty, then we take X’ = X and thus the relative (resp. absolute)
Faltings’ comparison morphism associated to f’ and [’ is an isomorphism between zero objects. If Y is
not empty, then we are in the situation of 1.9.11.(iv) by taking O = A. With the notation in 1.9.11, we
check that the morphism X’ — X meets our requirements. We set 7y = Spec(K), Sy = Spec(Ok, ),
Thas =1 Xpy Uxy X} 55 = 7 Xy, Y3, and denote by f1 : (X} 7o — X)) = (Th 7z — T») the natural
morphism. We obtain a commutative diagram

(1.10.14.1) ES E¥  _x
AN
\ U
9/\ ét ’
A€t
fl/Z fe/tl/ lf;et f;\,E
hx,e
Spec(A[1/p])ee ——= T .t
/ K
h)\,E &t
B ce(A[1/p])—Spec(4) ET, -

Firstly notice that the site Yy, (resp. Spec(A[1/p])¢;) is the limit of the sites X} — ; (resp. Tx 7x,¢t)
and the site EY, _, y/ (resp. E‘étpeC(A[l/p])HSpec(A)) is the limit of the sites E‘é(, XS (resp. ETA Hn)

([SGA 4y, VIL5.6] and 1.7.12). There exists an index A9 € A and a ﬁmte locally constant abehan
sheaf F\ on X} -— . suchthat F’ is the pullback of F'\ by Y, — Xéxmﬁ,ét (cf. [Sta22, 09YU]). Let

F, be tﬁe pullback of {')\0 by X3 -6 — X} Mo 6t for each A > \y. We also have Z = colim g;ﬁ@l
(resp. A = colim h;g%) by 1.7.12. According to [SGA 4y, VI.8.7.3], whose conditions are satisfied
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because each object in each concerned site is quasi-compact, there are canonical isomorphisms for
each integer ¢,

(1.10.14.2) (R0 f4)F") @z % — colimhy 5 (R1(¥x 0 f &) F) @z B),
(1.10.14.3) R ff, (W,F @z B ) > colim h xR f} g (V3. F\ @z B ).

On the other hand, (X}, # X;) — (T, #r1,) is a smooth and saturated morphism of adequate
(Sx, As, )-log schemes with X} — T projective for each A € A by construction. Thus, we are in the
situation of 1.10.13, which implies that the relative Faltings’ comparison morphism associated to f§
and F,

(1.10.14.4) (RY(4hx © o)< F2) ©2 B — RIfy g, (V4 Fh @2 B )
is an almost isomorphism for each A > \g. Combining with (I.10.14.2) and (1.10.14.3), we see that
the relative Faltings’ comparison morphism associated to f’ and F’,

(110.14.5) Riu (Rf3.F) ©F B — R (LF 92 7).
is an almost isomorphism (and thus so is the absolute one). 0

Corollary 1.10.15. Under the assumptions in 1.10.14 and with the same notation, there exists
a proper hypercovering Xe — X of coherent schemes ([Sta22, ODHI]) such that for each degree
n, the relative and absolute Faltings’ comparison morphisms associated to f, : (Y, — X,) —
(Spec(A[1l/p]) — Spec(A)) and F,, (which exist by 1.10.8) are almost isomorphisms, where Y, =
Y xx X, and IF,, is the pullback of F by the natural morphism Yy, ¢t — Ysi. In particular, Yo — Y is
a proper hypercovering and XYs — XY is a hypercovering in I 5

PRrROOF. Let € be the category of proper A-schemes of finite presentation endowed with the pre-
topology formed by families of morphisms { f; : X; — X };er with I finite and X = (J,¢; fi(X;). Con-
sider the functor u™ : € — Igpec(a[1/p])—Spec(a) Sending X to XY where Y = Spec(A[1/p]) X Spec(A4) X -
It is well-defined by 1.3.19.(4) and commutes with fibred products by 1.3.21 and continuous by 1.3.15.
Lemma 1.10.14 allows us to take a hypercovering X, — X in ¢ meeting our requirement by [Sta22,
094K and 0DB1]. We see that Y, — Y is a proper hypercovering and that XJ* — XY is a hypercov-
ering in I 5 by the properties of u™* ([Sta22, 0DAY]). O

Lemma 1.10.16. Let Z,, be the integral closure of Z, in an algebraic closure of Q,, A a Z,-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation,
Y = Spec(A[1/p]) Xspec(a)y X, F a finite locally constant abelian sheaf on Ye. Let A" = ((A/ Nn>o
p"A) pa)" (p-adic completion), X' = Xar, Y' = Yar, F' the pullback of F on Y,. Then, the following
statements are equivalent:
(1) The absolute Faltings’ comparison morphism associated to f : (Y — X) — (Spec(4A[1/p]) —
Spec(A)) and F (which exists by 1.10.8) is an almost isomorphism.
(2) The absolute Faltings’ comparison morphism associated to f' : (Y’ — X') — (Spec(A’[1/p]) —
Spec(A’)) and F" (which exists by 1.10.8) is an almost isomorphism.

PROOF. If p is zero (resp. invertible) in A, then the absolute Faltings’ comparison morphisms
are both isomorphisms between zero objects, since Y and Y’ are empty (resp. the abelian sheaves F
and F’ are zero after inverting p). Thus, we may assume that p is a nonzero element of the maximal
ideal of A. Notice that N,~op™A is the maximal prime ideal of A not containing p and that /pA is
the minimal prime ideal of A containing p (I.2.1). Thus, (4/Ny>0p" A), 5 is an absolutely integrally
closed valuation ring of height 1 extension of ZT, (I.2.1) and thus so is its p-adic completion A’.

We denote by u : (Y’ — X') — (Y — X) the natural morphism. We have F' = ug'F. The
natural morphisms in (I.10.5.1) induce a commutative diagram

63}

(110.16.1)  RI(Yy,F) @% A RI(ES , o, 1.F) @ A —2 > RI(ES o, . F @y B)

RI(Y.,,F) ®F A/ < RT(ES, ., 0\F) % A/ —2= RT(ES, ., V.F @, 7 )

where ; is induced by the canonical morphism F — RUét*ué_tlF, and vo (resp. ~vs3) is induced by
the composition of Y, F — RuE*uglw*F — RuE*z/);ué_tlF (resp. and by the canonical morphism

B — RuE*@/). Since a; and o} are isomorphisms by 1.10.8, it suffices to show that 77 and 73 are
almost isomorphisms.
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Since A/ Npso p"A — (A/ Nnso p"A) /pz s injective whose cokernel is killed by /pA (1.4.7),
the morphism A — A’ induces an almost isomorphism A/p"A — A’/p"A’ for each n. Then, for
any torsion abelian group M, the natural morphism M ®z A — M ®z A’ is an almost isomorphism.
Therefore, 7, is an almost isomorphism by the proper base change theorem over the strictly Henselian
local ring A[1/p] ([SGA 4y, XII 5.5, 5.4]). For s, it suffices to show that the canonical morphism
v, F® B — Rup.('F' ® Z) is an almost isomorphism. The problem is local on ES$' |, thus
we may assume that ¢,F is the constant sheaf with value Z/p"Z by 1.10.3. Then, ¢¥.F’ is also
the constant sheaf with value Z/p"Z by 1.10.9. Let V. — U be an object of E%’,m:;( such that
UV = Spec(R) is the spectrum of an Z,-algebra R which is almost pre-perfectoid. Since the almost
isomorphisms R/p™ — (R®4 A’)/p™ (n > 1) induces an almost isomorphism of the p-adic completions
R— R®4 A, the Zy-algebra R ®4 A’ is still almost pre-perfectoid (1.5.19). The pullback of V — U
in E?f,oitx, is the object V4 — Uas and UX,A' is the spectrum of the integral closure R’ of R ® A’
in R®g A'[1/p]. Since R ®4 A’ is almost pre-perfectoid, R’ is also almost pre-perfectoid and the
morphism (R ®4 A’)/p™ — R'/p™ is an almost isomorphism by 1.5.30. Therefore, the morphism
BB — Rup. (@//p"@,) is an almost isomorphism by 1.7.32, 1.8.11 and 1.8.12. O

Theorem 1.10.17. Let Z, be the integral closure of Z, in an algebraic closure of Q,, A a Z,-algebra
which is an absolutely integrally closed valuation ring, X a proper A-scheme of finite presentation,
Y = Spec(A[1/p]) Xspec(a) X, F a finite locally constant abelian sheaf on Yg. Then, the absolute
Faltings’ comparison morphism associated to f : (Y — X) — (Spec(A[l/p]) — Spec(A4)) and F
(I.10.6.2) (which exists by 1.10.8),

(1.10.17.1) RI(Yy,F) ©% A — RI(ES ., .F @7 4),
is an almost isomorphism in D(Z,-Mod) (L.5.7).

PRrROOF. Let K be the p-adic completion of the maximal unramified extension of Q,. By 1.10.16,
we may assume that A is a valuation ring of height 1 extension of Of. Let X, — X be the proper

hypercovering of coherent schemes constructed in 1.10.15. For each degree n the canonical morphisms
(1.10.6.2)

(1.10.17.2)  RT'(Yne0,Fn) ®F A «— RI(ES |« ¢n.Fn) ®F A — RT(ES 0. Fr @2 2)

are an isomorphism and an almost isomorphism, where F,, is the pullback of F by the natural mor-
phism Y, 4y — Ys;. Consider the commutative diagram

aq

(110.17.3)  RI(Ya,F) ®% A RI(ES , o, 9.F) @ A —2 > RI(EY o, .F @y B)

| | |

RI (Y o0, Fo) ©F A<= RI(ES, | x, ve.Fo) @ A == RI(E{,  x,, ¥o.Fo @z B.)

where Fq = (F,,)[5)con(a) With the notation in 1.6.5. By the functorial spectral sequence of simplicial
sites ([Sta22, 09WJ]), we deduce from (1.10.17.2) that e is an isomorphism and s, is an almost
isomorphism. Since a; is an isomorphism by 1.10.8, it remains to show that the left vertical arrow is
an isomorphism and the right vertical arrow is an almost isomorphism.

We denote by a : E{ _,  — E§_ y the augmentation of simplicial site and by a,, : E{f |y —
E$! .,  the natural morphism of sites. Notice that a ™', F = (a, ' ¢.F)mjcoba) = (YneFn)micoba) =
exIFe by 1.10.9 ([Sta22, 0D70]). Since XJ* — XV forms a hypercovering in I, 3, the right vertical
arrow is an almost isomorphism by 1.10.3 and 1.8.18. Finally, the left vertical arrow is an isomorphism
by the cohomological descent for étale cohomology [Sta22, 0DHL)]. g

I.11. Faltings’ Main p-adic Comparison Theorem: the Relative Case for More General
Coefficients

I1.11.1. Let Y — X be a morphism of coherent schemes such that ¥ — XY is an open immersion.
We obtain from 1.3.26, 1.8.6 and 1.7.8 a commutative diagram of sites

(L11.1.1) (Schf$?)y —2— Yi

\Pi ld,\
g ét 6
Iy sxv —Ey_ x — Yiet

coh

where a : (Sch /Y)V — Ys and p: Yy — Yig are defined by the inclusion functors.
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Lemma 1.11.2. With the notation in 1.11.1, for any finite locally constant abelian sheaf F on Yg,
the canonical morphism e 1, F — W, a™F is an isomorphism.

PROOF. The base change morphism ¢ '¢,F — W,a"'F is the composition of the adjunction
morphisms ([SGA 4y, XVII.2.1.3|)

(1.11.2.1) e F = U U ey, F) = Uoa (¢ 1 F) = Ve 'F
which are both isomorphisms by 1.3.27.(2) and 1.10.3. O

1.11.3. We fix an algebraic closure Q, of the p-adic number field Q, and we denote by Z, the integral
closure of Z, in Q,. We set = Spec(Q,), 7 = Spec((@p) = Spec(Z,), S = Spec(Z,). Remark
that Qp is a pre-perfectoid field with valuation ring Z so we are also in the situation 1.8.7. Let
f: (" = X') - (Y - X) be a Cartesian morphlsm of morphisms of coherent schemes with a
Cartesian morphism (Y — XY) — (7 — S) (then, Y’ — X"¥" is Cartesian over 7 — S by 1.3.19.(4)).
Thus, XY and XY are objects of I35 Consider the following commutative diagram of sites
associated to f.

w/
(11131) }/C/t (L%/ (Sch(/:oyhz)v L IY’*}X/Y/ g Eét,A)X,
fétl fvl lfl le
Yoy =—— (SChCOh) — Iy ,xv ——=E§
K

I.11.4. Following I.11.3, let g : (37 — )Z') = (Y = X) be a morphisms of coherent schemes such that
Y — XV is also Cartesian over 7j — 5. We denote by ¢’ (Y = X') = (Y' = X') the base change
of g by f, and denote by f (Y’ — X ) — (Y - X ) the natural morphism which is Cartesian by base

/

change. Thus, XY and X’ are also objects of Iﬁ_@. We write the diagram (I.11.3.1) associated f
equipping all labels with tildes.

Lemma I1.11.5. With the notation in 1.11.3 and 1.11.4, let F" be a finite locally constant abelian sheaf
on Y/, and we set F' = W, a'7'F'. Let X be an object of Iy ,xv, Y =7 ><SX F = =g 'F', q an
1nteger.

(1) The sheaf RIfr.. 7' on Iy_ xv is canonically isomorphic to the sheaf associated to the
presheaf X — HZ (Y, F').

(2) The sheaf Rif1.(F' @z O') on Iy_,xv is canonically almost isomorphic to the sheaf asso-
ciated to the presheaf X — H‘J(E‘it T Vv F ®z @/)

(3) The canonical morphism (quI* FQzO — (qul*ﬁ’"’@Z 0") is compatible with the canonical
morphisms H, (Y’ F') @z R <& Hq(Eet X”z/)’ F') @z R 22 Hq(Eet X”z/)’ F' ®z %)
where R = ZB(Y — X) (c£1.10.5.1).

PROOF. Let .Z’ be the restriction of .Z’ on I_ . We have F = /\Iﬁ*(;’_l]FN". We set I/ =
Y X7
' F’ which is a finite locally constant abelian sheaf on E%af' by 1.10.3. Notice that the canonical

~_1~ ~ ~—1 ~ —
morphisms ¢/ L/ — F’ and &/ L' — %’ are isomorphisms by 1.10.3 and 1.11.2 respectively.
(1) It follows from the canonical isomorphisms

(L11.5.1)
~—1~ ~ ——1~—1~ ~ ~—1~—1~ = ~—1~
HU(I_ o0 )25 HIY W & L) =HIY & @ L) HE(Y ¢ L),
Y X7
B e Py P
where 7 is induced by the canonical isomorphism ¢/ L' — RU’, ¥/ ¢ L' (1.3.27.(2)), and 72 is
~—1~ s P
induced by the canonical isomorphism ¢/ L’ — Ra’,a’ ¢’ L' (1.3.9).
(2) It follows from the canonical almost isomorphism

(111.5.2) s HUEBY, o U @p B) — HI(I

o / !
X i XVY/,E L@ﬁ)

which is induced by the canonical almost isomorphism L/ @7 Z — Re! (& ' ® 0') (1.8.14).
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(3) Consider the following diagram
(L11.5.3)

a2

v o o & iy 2 ~ p—
HE(Y 0! )@ R<————HI(EY, o L)@ R HYEY, U ©zB)

X X

Y2®idR | \L J/’Y:s

~ ——1~—1~ ~—1~ ~—1~
HYY' v ¢ 1L = HI(I 5,6 L H(I 5,6 L !
V( ) € )®Rm ()77_»?«/3/76 )®R4) (177—5(\7‘,76 ®ﬁ)
~ ~ ~—1~
where the unlabelled vertical arrow is induced by the canonical morphism I/ — Re’,e’ L/, and the
unlabelled horizontal arrow is the canonical morphism which induces (R? f1,.%") ®z 0 — R fr.(F' ®z
0') on Iy_, xv by sheafification. It is clear that the diagram (I.11.5.3) is commutative, which com-
pletes the proof. O

1.11.6. We remark that I.11.5 gives a new definition of the relative (resp. absolute) Faltings’ com-
parison morphism without using 1.10.8. Following 1.11.3, let F’ be a finite locally constant abelian
sheaf on Y, and we set F' = W\.a/~'F'. We set L’ = ¢,F’, which is a finite locally constant abelian
sheaf on E$,_, v, by 1.10.3. Remark that the canonical morphisms ¢'~1L’ — F’ and ¢'~'L’ — F’
are isomorphisms by 1.10.3 and 1.11.2 respectively. We also remark that %, ¢ are flat over Z. The
canonical morphisms in the derived category D(@—ModEﬁﬁx) (cf. 1.10.4.2),

(I.11.6.1) (RO, Rfstnt)' ") @ B <2 (Rfg.l) @% B — 2> Rfg. (L' @7 %),
fit into the following commutative diagram
(I1.11.6.2)

Ripy Rfen V" 1L) @ B<~——"1 Rfg L) QL Z —= > Rfp. (L @, %)

| | -

Rip, (Ra,R fr O/~ 1e' L) ©F B <o Reu(Rfne’ ') @k B —— Re.Rfr. (e 'L @z 0)

(1) The morphism a3 is induced by the canonical isomorphism 'L’ — Rala'~1(y/~!L') by
1.3.9, and thus a3 is an isomorphism.

(2) The morphism «j is induced by the canonical isomorphism &=L/ — RW,¥'~1¢/~1L by
1.3.27, and thus ajs is an isomorphism.

(3) The unlabelled arrow is induced by the canonical morphism L — Ree’~!L.

(4) The morphism a4 is induced by the canonical almost isomorphism L' ®Z@/ — Re! (671l @y
0") by 1.8.14, and thus a4 is an almost isomorphism.

(5) The morphism «g is the composition of

(1.11.6.3) Re, (Rfre L) @% B — Re, (R fre’ L) @% 0)
(1.11.6.4) with Re,((Rfre’ L) @% 0) — Re, Rfr (e 'L @7 0").

In conclusion, the arrows ag, as, ag and a4 induce an arrow

(1.11.6.5) a;toagoastoas: Ru(RfesF) ®F B — Rifw.(V.F @y Z)

in the derived category of almost Z,-modules on E§! | (I.5.7). Remark that we don’t assume that a;
is an isomorphism here. We also call (I.11.6.5) the relative Faltings’ comparison morphism. Indeed,
if vy is an isomorphism, then the relative Faltings’ comparison morphism (I1.10.6.1) induces (1.11.6.5)
in D(Tpal—Mod) due to the commutativity of the diagram (1.11.6.2).

If X is the spectrum of an absolutely integrally closed valuation ring A and if Y =7 x5 X, then
applying the functor RI'(Y — X, —) on (I.11.6.2) we obtain the natural morphisms in the derived
category D(A-Mod) by 1.7.9,

(1.11.6.6)

RI(Y/,, '~ L") ®L A RT(ES, ., L)) @k A RI(ES, L @y %)

| | -

RT((Seh$h),, ¥~ 1e' 1L/ @F A <2 RU Ly yivr, &' L) @5 A ——> RD(Ly_ v, 'L @ 0)

[e5] a2
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The arrows agz, as, ag and a4 induce an arrow

(1.11.6.7) a;toagoastoaz: RT(YY,F) @% A — RI(ES v/, . @z @/)

in the derived category D(Tpal—Mod) of almost Z,-modules (1.5.7). We also call (1.11.6.7) the absolute
Faltings’ comparison morphism.

Lemma 1.11.7. With the notation in 1.11.3, let F' be a finite locally constant abelian sheaf on Y/, and
we set F' = W.a/7'F'. Assume that X' — X is proper of finite presentation. Then, the canonical
morphism

(1.11.7.1) (Rf1.F") @5 O — Rf1.(F' @7 0")
is an almost isomorphism.

PRrOOF. Following 1.11.5, consider the following presheaves on Iy _, xv for each integer g:

(1.11.7.2) HI: X — HL(Y',F) @, BY = X),
(1.11.7.3) Hy: X — HUES o 0\ F) @ BY — X),
(I11.7.4) HE: X v HIEBY, o / F ey %),

They satisfy the limit-preserving condition 1.3.25.(ii) by 1.7.12, [SGA 41, VIL.5.6] and [SGA 4y, VI
8.5.9, 8.7.3]. Moreover, if X = Spec(A) where A is an absolutely integrally closed valuation ring with
p nonzero in A, then the canonical morphisms

(1.11.7.5) 19 (Spec(A)) « HI(Spec(A)) — HI(Spec(A))

are an isomorphism and an almost isomorphism by 1.10.17. Thus, the canonical morphisms H{ «+
H3 — HI induce an isomorphism and an almost isomorphism of their sheafifications by 1.3.25. The
conclusion follows from 1.11.5. O

Lemma 1.11.8. Let Y — X be an open immersion of coherent schemes, Y' — Y a finite morphism
of finite presentation. Then, there exists a finite morphism X' — X of finite presentation whose base
change by Y — X isY' =Y.

PROOF. Firstly, assume that X is Noetherian. We have Y/ = Y xx XY by 1.3.19.(4). We
write XY = Specy(A) where A is an integral quasi-coherent Ox-algebra on X, and we write A
as a filtered colimit of its finite quasi-coherent Ox-subalgebras A = colim A, ([Sta22, 0817]). Let
B, be the restriction of A, to Y. Then, B = colim B,, is a filtered colimit of finite quasi-coherent
Oy-algebras with injective transition morphisms. Since Y’ = Specy (B) is finite over Y, there exists
an index «ag such that Y’ = Specy (B,,). Therefore, X’ = Specy (A,,) meets our requirements.

In general, we write X as a cofiltered limit of coherent schemes of finite type over Z with affine
transition morphisms X = limyeca X, ([Sta22, 01ZA]). Since Y — X is an open immersion of finite
presentation, using [EGA IVj, 8.8.2, 8.10.5] there exists an index A9 € A, an open immersion Yy, —
X, and a finite morphism Yy — Y}, such that the base change of the morphisms Yy — Yy, — X,
by X — X, are the morphisms Y’ — Y — X. By the first paragraph, there exists a finite morphism
X;\O — X, of finite presentation such that Y;O = Y3, Xx,, Xf\o. We see that the base change
X" = X of X — X, by X = X, meets our requirements. O

Lemma 1.11.9. With the notation in 1.11.3, let g : Y — Y’ be a finite morphism of finite presenta-
tion, B a finite locally constant abelian sheaf on Y{] and we set F' = V'.a'~ (g F"). Assume that
X' — X 1is proper of finite presentation. Then, the canonical morphism

(1.11.9.1) (Rf1..F") @% O — Rf1.(F' @7 0")
is an almost isomorphism.

PROOF. There exists a Cartesian morphism g : (Y” — X”) — (Y — XY xx X’') of open
immersions of coherent schemes such that X” — XY x x X’ is finite and of finite presentation by
I.11.8. Consider the diagram (1.11.3.1) associated to g:

(1.11.9.2) Y < (Sch$$h )y ——= Ty, xovr

gét l 9v l g1 l
’ \I/,

Y/ <o (schjgkt)vﬁly,ﬂx,y,


https://stacks.math.columbia.edu/tag/0817
https://stacks.math.columbia.edu/tag/01ZA
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We set ¢ = U”a”"~1F”. The base change morphism a’~'g¢. — gv-a”~! induces a canonical iso-
morphism .#' % ¢g1.%9" by 1.3.10. Moreover, the canonical morphism ¢r.%9” — Rgr.%4" is an
isomorphism by 1.11.5.(1) and 1.3.25, since g : Y — Y” is finite ([SGA 4y, VIIL.5.6]). By applying
1.11.7 to g and F”, the canonical morphism

(1.11.9.3) (Rgr.9") @% 0’ — Ryp. (9" @7 0")
is an almost isomorphism. Let A be the composition of (Y — X") — (Y — XY xx X') = (Y —

XY). Note that X” — XY is also proper of finite presentation. By applying 1.11.7 to h and F”, the
canonical morphism

(1.11.9.4) (Rh1.9") @% 0 — Rhp (9" @7 0")
is an almost isomorphism. It is clear that hy = f1 o g1. The conclusion follows from the canonical
isomorphism %’ — Rgr.%4” and the canonical almost isomorphisms (1.11.9.3) and (1.11.9.4). O

Lemma 1.11.10. With the notation in 1.11.3, let F' be a constructible abelian sheaf on Y/, and we
set F' = Wa/ " F'. Assume that X' — X is proper of finite presentation. Then, the canonical
morphism

(1.11.10.1) Rf1.F') @5 O — Rf1,(F @7 0")
is an almost isomorphism.

PROOF. We prove by induction on an integer g that the canonical morphism (R?f1..%') ®z € —
RIf1.(F' ®z 0') is an almost isomorphism. It holds trivially for each ¢ < —1. Notice that there
exists a finite morphism ¢ : Y — Y” of finite presentation, a finite locally constant abelian sheaf F”
on Y/{ and an injective morphism F' — g¢.F” by [Sta22, 09Z27] (cf. [SGA 4y, 1X.2.14]). Let G’
be the quotient of 7' — gs.F”, which is also a constructible abelian sheaf on Y7, since geiF” is so
([Sta22, 095R, 03RZ]). The exact sequence 0 — F' — g¢.F” — G’ — 0 induces an exact sequence
by 1.3.27.(1),

(I.11.10.2) 00—V a1 F ——= Va1 (gsuF') — V,a'"1G' ——0.
We set #' = U.a'"1(gs.F") and 4’ = W.a'~1G’. Then, we obtain a morphism of long exact
sequences
(1.11.10.3)

R fuA)© 0 —— R fu¥) 00 —— R 1.7 )@ 0 —— R f. ) © 0 —— R fLY) @0

l’Vl \L'}? l')ﬁ i"ﬂl l'YE)

Rq_lfl*(%/ ® ﬁ/) e Rq_lfl*(gl ® ﬁ/) —— qul*(g/ ® ﬁ/) I qul*(%/ ® ﬁ/) e qul*(g/ ® ﬁ/)
Notice that v; and 5 are almost isomorphisms by induction, and that 4 is an almost isomorphism
by 1.11.9. Thus, applying the 5-lemma ([Sta22, 05QA]) in the abelian category of almost Z,-modules

over Iy_, xv, we see that -3 is almost injective. Since F’ is an arbitrary constructible abelian sheaf,
the morphism ~5 is also almost injective. Thus, 73 is an almost isomorphism. O

Theorem 1.11.11. With the notation in 1.11.3, let F' be a torsion abelian sheaf on Y/, and we set
F' =W a1 F'. Assume that X' — X is proper of finite presentation. Then, the canonical morphism

(1.11.11.1) (Rft.7') @% 0 — Rf1.(F' ®4 0")

is an almost isomorphism in the derived category D(Z,-Mody ) (1.5.7).

Y-xY

PRrROOF. We write F' as a filtered colimit of constructible abelian sheaves F’' = colimycp Fy
(|Sta22, 03SA], cf. [SGA 4y, 1X.2.7.2]). We set .Z| = V,a/"'F). We have .Z' = colimyep Z5
by [SGA 41, VI.5.1] whose conditions are satisfied since each object in each concerned site is quasi-
compact. Moreover, for each integer ¢, we have

(I1.11.11.2) (RUf1.F") @7 O = cgli{r\n(quI*ﬁ)'\) Rz O,
c
(L.11.11.3) RIf1.(F' @y 0") = CS\)li/r\n R fr.(F\ @7 0").
€
The conclusion follows from 1.11.10. O

Lemma 1.11.12. With the notation in 1.11.3 and 1.11.4, let F' be a torsion abelian sheaf on Y,
H = RfesF', and we set F' = W a1 F, # = RU,a"'H. Let X be an object of Iy _,xv, ¥ =
Txg X, F =gl ' F.


https://stacks.math.columbia.edu/tag/09Z7
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(1) The sheaf R1f1.F' is canonically isomorphic to the presheaf X — Hgt(ﬁ,}/’) for each
integer q.
(2) If Y' =Y is proper, then there exists a canonical isomorphism # — R f1.. 7.

PRrROOF. Note that the canonical morphism .#’ — RU’a’~'F’ is an isomorphism by 1.3.27.(1).
Thus, Rf1«.Z' = R(V o f,).a’ "' F’, whose g-th cohomology is the sheaf associated to the presheaf
X — Hg(}?/’,g’ilj-"v’) = Hef’t(ifv’,j’-'v’) by 1.3.9, and thus (1) follows. If Y’ — Y is proper, then the base
change morphism a 'Rfs» — Rfywa’~! induces an isomorphism a='H — Rf,.a’"'F’ by 1.3.10,
and thus (2) follows. O

Theorem 1.11.13. With the notation in 1.11.3, let F/ be a finite locally constant abelian sheaf on
Y/.. Assume that
(i) the morphism X' — X is proper of finite presentation, and that
(ii) the sheaf R fsr F' is finite locally constant for each integer q and nonzero for finitely many
q, and that
(iii) we have R4, H = 0 (resp. RIY.H = 0) for any finite locally constant abelian sheaf H on
Yi (resp. Y/, ) and any integer g > 0.
Then, the relative Faltings’ comparison morphism associated to f and F' (1.10.6.1) (which exists by
(iii) ) is an almost isomorphism in the derived category D(pr—ModquX) (1.5.7), and it induces an
almost isomorphism

(1.11.13.1) (VuR feF') @7 B — R [ (W.F @, B )
of Zy-modules for each integer q.

PRrOOF. We follow the discussion of 1.11.6 and set .#’ = W’ a/~!'F’'. The canonical morphism
(L11.6.4)

(1.11.13.2) Re, ((Rf1.Z') @5 0) — Re R, (F' @7 0")
is an almost isomorphism by I.11.7. It remains to show that the canonical morphism (I.11.6.3)
(1.11.13.3) Re,.(Rf1..7) % B — Re (Rf1..F') @% 0)

is also an almost isomorphism. With the notation in I1.11.12 by taking ' = F’, the complex H is a
bounded complex whose cohomologies H4(#) are finite locally constant abelian sheaves by condition
(ii). Consider the commutative diagram (I.11.1.1),

(1.11.13.4) (Schi$")y —*— Y

q lw

€ ét
Iy sxv —Ey_ x

We set £ = Ry, H. Then, H1(L) = ¢, H9(H) by Cartan-Leray spectral sequence and condition (iii).
Hence, £ is a bounded complex of abelian sheaves whose cohomologies are finite locally constant by
1.10.3 so that the canonical morphism

(1.11.13.5) L&Y B — Re. (e LY O)
is an almost isomorphism by 1.8.15.

On the other hand, HY(#) = V,a 'H4(H) by Cartan-Leray spectral sequence and 1.3.27.(1).
Thus, the base change morphism e 'R/, — RW¥,a~! induces an isomorphism e ~'£ — 5 by 1.11.2.

Moreover, the canonical morphism £ — Re,e 'L = Re, ¢ = Ry,Ra.a™'H is an isomorphism by
1.3.9. Thus, the canonical morphism

(1.11.13.6) (Rewe L) @Y B — Re, (e 1L @y O)
is an almost isomorphism by (I.11.13.5). In conclusion, (I.11.13.3) is an almost isomorphism by
(I.11.13.6) and by the canonical isomorphisms e '£ — # = R f1..%". O

Remark 1.11.14. We give two concrete situations where the conditions in 1.11.13 are satisfied:

(1) Let Z, be the integral closure of Z,, in an algebraic closure Q, of Q,, X’ — X a proper and
finitely presented morphism of coherent Z,-schemes, Y' — Y the base change of X’ — X
by Spec(Q,) — Spec(Z,). Assume that Y’ — Y is smooth. Then, the condition (ii) is
guaranteed by [SGA 4y, XVI.2.2 and XVIL5.2.8.1], and the condition (iii) is guaranteed
by 1.10.8.
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(2) Let Ok be a strictly Henselian discrete valuation ring with fraction field K of characteristic 0
and residue field of characteristic p, K an algebraic closure of K, X’ — X a proper morphism
of Og-schemes of finite type, Y’ — Y the base change of X’ — X by Spec(K) — Spec(Of).
Assume that Y/ — Y is smooth. Then, the condition (ii) is guaranteed by [SGA 4y,
XVI.2.2 and XVIIL.5.2.8.1], and the condition (iii) is guaranteed by 1.10.7.

I1.12. A Local Version of the Relative Hodge-Tate Filtration

1.12.1. Let K be a complete discrete valuation field of characteristic 0 with valuation ring Ok whose
residue field is algebraically closed (a condition required by [AG20, 4.1.3, 5.1.3]) of characteristic
p > 0, K an algebraic closure of K, O the integral closure of Ok in K, n = Spec(K), 77 = Spec(K),
S = Spec(Ok), S = Spec(O%). Let (f,g) : (X" — X') — (X° — X) be a morphism of adequate
open immersions of schemes (1.10.11) over n — S such that g : X’ — X is proper and that the
induced morphism (X', #x»_x') — (X, #xo_x) is smooth and saturated. We are in fact in the
situation 1.10.12 but with a slightly different notation.

Consider the morphisms of sites defined in 1.7.34:

>N Fiet N ¥ 6t,N & N
(L12.1.1) X7 Xt E}%H ~ —= XJ.

We consider & as a morphism of ringed sites & : (E;’%N L B) — (XL, 0x,,), and f; ¢ as a morphism

of ringed sites ]z%7ét (XN Zp) — (X2 Zp)7 where Zp = (Z/p"Z)n>0.

7,6t 7,6t?
Theorem 1.12.2 (JAG20, 6.7.5, 6.7.10, 6.7.13], II1.8). Under the assumptions in 1.12.1 and with the
same notation, for each integer n > 0, there is a canonical Gk -equivariant finite decreasing filtration
(Fil%)4ez on the Bg-module LZ*(R”fﬁ,ét*(Zp)) ®z, Bo (cf. 12.6) and a canonical G -equivariant
isomorphism for each q € Z,

(I~12~2-1) Grq(z/v’*(Rnfﬁ,ét*(Zp)) ®Zp @Q) = &*(ng*(Q?);/q,//;X,)/(X,///X)) ®Oxét éxét (q— n))@,
where Gr? denotes the graded piece Fil? /Fil9T!,

We call this filtration the relative Hodge-Tate filtration of the morphism (f,g) : (X" — X') —
(X° — X).

Remark 1.12.3. We keep the notation and assumptions in 1.12.1 and 1.12.2.

(1) If we set R™fy s (Z,) = L0 = (]L,(C"))kzo where ]L,(cn) = R" f7.6+(Z/p*Z), then L,(C") is

a finite locally constant abelian sheaf on X7 . ([AG20, 2.2.25]), and the inverse system

(L) k0 is Artin-Rees p-adic ([Ful5, 10.1.18.(iii)]).
(2) The Ox-module M?"~9 = Rig, (Q?)E'q//;x,)/(x %X)) is coherent and its restriction to X, is
locally free ([IKINO5, 7.2], cf. the proof of [AG20, 6.7.13]).

1.12.4. Under the assumptions in 1.12.1, 1.12.2, 1.12.3 and with the same notation, assume further

that X = Spec(R) is affine. We remark that R is p-torsion free (JAGT16, I1.6.3.(ii)]). Let V — U
By

(1) The morphism V' — U is Faltings acyclic (cf. 1.8.1, 1.8.24).
(2) For any integers n > 0 and k > 0, the pullback IL,(:')|VQ,t is constant with value Hg , .

We denote by A the Ok-algebra Z(V — U) (i.e. UV = Spec(A)), and we set H} = limy_,0o HE .

be an object of  satisfying the following conditions:

Remark 1.12.5. Let T be a geometric point of V. Then, there is a natural isomorphism H, Sk =

H2 (X2, Z/p*Z) (JAG20, 2.2.25]). We remark that H2 (X2, 7Z,) = limg_0o HL (X2, Z/p*Z) is a
finitely generated Z,-module (thus so is HZ ), and that the morphism of inverse systems of abelian
groups

(L12.5.1) (H&(XF, Zp) [P HE(XE L) )kz0 — (HE k)i>0

€

is an Artin-Rees isomorphism, by which we mean its kernel and cokernel are Artin-Rees zero (cf.
1.12.3.(1) and [Ful5, 10.1.4]).

1.12.6. Following 1.12.4, notice that U° = X° xx U is affine and geometrically normal over K and
that V is affine and normal, since X° is smooth over K. We assume further that the following
conditions hold:

(3) The scheme V is integral and lies over a connected component U of U°.
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(4) The function field £ of V is a Galois extension of the function field K of Uy with Galois
group I'.
Let Uz , be the connected component of Uz over which V' lies. Its function field is the composite KK
of K and K in £, which is Galois over K whose Galois group identifies with the closed subgroup G,
of G where L is the algebraic closure of K in K. We denote by A the Galois group of £ over KK.
It is clear that G =T'/A.

(1.12.6.1)

1%
/ lA
F/ U%’V*HSpec(F)
\ |e
\

L \LGK
U? — Spec(K)
Since V is the integral closure of U} in £, the canonical homomorphism of groups
(I1.12.6.2) Autye (V)P — Autg (L) =T

is an isomorphism. In particular, I' acts naturally on V' on the right. For v € " with image u € Gk,
we denote by f, : V' — V the right action of v on V, and for any K-scheme Z, we denote by
fu © Zy — Zz the base change of the automorphism of 7 induced by u. There is a commutative
diagram

(112.6.3) vy

L,

u

Uﬁo — Uﬁc>
The natural isomorphism (induced by the base change)

(1.12.6.4) e ) = L v,

7,6t
defines a natural action of I' on Hg ;, and thus an action on Hy = limy Hj, ;. On the other hand, I
also acts naturally on A as Spec(A) is the integral closure of U in £, and thus acts on the Tate twist
A(7) via the map I’ — Gk.

Theorem 1.12.7. Under the assumptions in 1.12.4 and with the same motation, for each integer
n > 0, there is a canonical finite decreasing filtration (fil?),ez on HE ®z, A[1/p] and a canonical
isomorphism for each q € Z,

-~

n n ]‘ ~ n—
(L.12.7.1) grl(HE ®z, A[];}) = Hq(X',Q(X/q,//zX/)/(X,J/zX)) ®R A[I—)](q —-n),

where gr?¢ denotes the graded piece ﬁlq/ﬁlqﬂ. Moreover, under the assumptions in 1.12.6 and with
the same notation, the filtration (fil%)4ez and the isomorphisms (1.12.7.1) are I'-equivariant.

ProOF. Weset Y = X2. We start from the filtration of 1.12.2. Consider the natural morphism of
ringed sites (1.7.34.2) U : (Epyrf;N,@) — (E?EX,@). We obtain a filtration #*Fil? on * (¢, L™ ®z,
Bg) with graded pieces 7*Gr? = v*5* M@ 4(q — n)g (as ¥* = v~ is exact, cf. (1.7.34.3)). We

apply the derived functor RF(E“)/rgf;jN, —) to these modules.

Consider the commutative diagram

P é v roé
(1.12.7.2) Ve, —>Ef,; <"—EV°p
‘/j J{j ij

Yet v Eg}/t—>X . ngrié;(

. . . .1 (n) .1 (n) . . . .1 (n) .
Since the canonical morphism j~*4,L,"" — ,j7 'L, is an isomorphism by 1.10.9, j~ ., is
constant with value Hg , by 1.10.3. Thus, the restriction of ﬁ_liﬁ*]]:(”) to Eﬁ)ff(t]’N is the inverse
system of constant sheaves (H, &t &)k>0- Therefore, the canonical morphism

(1.12.7.3) HE . ®z, A — RU(EYS, v* (0,1 @z, B))

€
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is an almost isomorphism, since V' — U is Faltings acyclic and H , is a finite abelian group. Notice
that for any integer ¢ > 0 there exists a canonical exact sequence ([AGT16, VI.7.10])

(1.12.7.4)
0— R lim HIY(EDSY v (), L\ @5 B)) —HIU(EREN, % (4, L0 ®;, %))

k— o0

— lim HUEN S v ()L™ @y B)) — 0.

k—o0

Since the inverse system (Hg , ®z, A)x>0 is Artin-Rees p-adic, R limy o0 HO(EI‘}rif(tj, u*(w*]L,(C") ®z,

%)) is almost zero by the almost isomorphism (1.12.7.3). Moreover, we deduce that limy o (Hg ;, ®z,

A) — HO(EYSN % (4, L ®z, é)) is an almost isomorphism and that H9(EP 5" 7* (¢, LM ®z,

2)) is almost zero for ¢ > 0. Since HZ is a finitely generated Z,-module (1.12.5), we have limy— 00 (HE; @2,

€
A) = H}, @z, A. Therefore, the canonical morphism

(1.12.7.5) HY, ©z, A — ROERS, v (0,10 ©, %))

is an almost isomorphism. Inverting p, we obtain a canonical isomorphism

v

~ 1 ~ roé vx/ 7 1 (n — 1
(1.12.7.6) HE, @z, AL ] = RI(EY G, o (0. L") @ 2]

By taking HO(EI"/riéEN, 7*Fil?), the filtration 7*Fil? on * (¢, L") ®z, é@) induces a canonical filtra-
tion filY on HE (X7, 7Z,) ®z, A[1/p] (cf. 1.2.6).

On the other hand, recall that M%7~ is the coherent Ox-module associated to the coherent
R-module M@"~1 = HUX" Q! | /(x ay)) and that M@"=4[1/p] is a projective R[1/p]-module
(I.12.3.(2)). By 1.8.4, we see that the canonical morphism

n— ~1 r0ét,N vxox AYg,n— 1
(1.12.7.7) HYUX Q5 g/ (xoa) OR A[z—)] — RT(EY Y, 05 M q)[];]

is an isomorphism. Thus, the canonical isomorphisms for the graded pieces *Gr? = ﬁ*é*Mq’"_q(q—
n)g induce canonical isomorphisms (1.12.7.1). This completes the proof of the first statement.

For the I'-equivariance, let v € I' with image u € Gx. We obtain from 1.12.6 a commutative
diagram

(1.12.7.8) W =) —N
v = x) Ly x

where the vertical arrows are the same pro-étale morphism. It induces a commutative diagram of
fibred ringed sites over N,

(1.12.7.9) Eproeh _Iv gprodt

) |

proét,N fu proét,N
EY—>X EY—>X

where the vertical morphisms induce the same localization morphism of the associated topoi ((AGT16,

II1.7.9]). Recall that the G k-actions on the Z-modules 7 (4, LM ®z, B), v*5* MP"4(q —n) on

ét,N . .
EY Y define isomorphisms

(1.12.7.10) 7 (L™ @y B) = [N (6L ®; ),
(1.12.7.11) PEEMI (g —n) = fHFFMI (g — n)).

By 1.12.2, up to isogenies, they are respectively compatible with the relative Hodge-Tate filtration
U*Fil? and compatible with the canonical isomorphisms for the graded pieces U*Gr?. Passing to
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localization by j~', we obtain from the isomorphisms (1.12.7.10) and (1.12.7.11) the isomorphisms

(1.12712)
L (L @y %‘)) G (L @y

(1.12.7.13)
FTHE MO (g =) S R ET MO (g = n)) S £ TR ST ME T (g - n)).

v v
— v —

B) == £ LW @y B)),

P

Applying the derived functor RF(EI";O:;JN7 —)[1/p] and comblnlng with the canonical isomorphisms

(I.12.7.6) and (1.12.7.7), we obtain automorphisms of H% ®z, A[1/p] and of HI(X', Q?X'Q%X,)/(X x))®R

A[1/p](q — n), which are exactly the semi-linear actions of € I' on these A[1/p]-modules defined in
1.12.6 by going through the definitions. Thus, we see that the actions of I' are compatible with the
relative Hodge-Tate filtration and the canonical isomorphisms for the graded pieces, which completes
the proof. O

Remark I.12.8. The arguments for 1.12.7 does not make use of the assumption that the residue field
of K is algebraically closed.

Remark 1.12.9. In 1.12.6, we take U to be an étale neighborhood of a point of the special fibre of X
which is affine and admits an adequate chart in the sense of [AGT16, II1.4.4] (cf. [AGT16, I11.4.7]),
and take V to be the inverse limit of the normalized universal cover (V;) of U at T (cf. [SGA 1,
V.7], [AGT16, VI1.9.8]). We set U"" = Spec(R;) and R = colim(R;). Then, I' = 7 (U2,Z) and
A = R. We obtain from the adequate chart finitely many nonzero divisors fi,..., f, of I'(U,, Ou,)
such that the divisor D = Y_!_, div(f;) has support U,, \ U°® and that at each strict henselization of
U,, those elements f; contained in the maximal ideal form a subset of a regular system of parameters
(cf. [AG20, 4.2.2.(ii)]). Then, A is almost pre-perfectoid and admits compatible n-th power roots of
fi (|[AGT16, 11.9.10]). Hence, V — U is Faltings acyclic by 1.8.24, and thus Theorem 1.12.7 holds in
this setting, which gives a local version of the relative Hodge-Tate filtration answering the question
of Abbes-Gros raised in the first version of [AG20] (cf. [AG20, 1.2.3]).



CHAPTER II

Sen Operators and Lie Algebras arising from Galois
Representations over p-adic Varieties

II.1. Introduction

I1.1.1. Let K be a complete discrete valuation field extension of Q,, K an algebraic closure of K, K
the p-adic completion of K, G the Galois group of F over K. When the residue field of K is perfect,

for any finite-dimensional (continuous semi-linear) K-representation W of G, Sen [Sen81] associates a

canonical K-linear endomorphism on W, called the Sen operator, which determines the isomorphism
class of G-representations on W. Moreover, if W is the base change of a Q)-representation V' of G,
Sen [Sen81, Theorem 11] relates the infinitesimal action of the inertia subgroup of G on V' to the
Sen operator on W. When the residue field of K is imperfect with a p-basis of cardinality d > 1,
Brinon [Bri03| defines 1+ d (non-canonical) operators on W, which also determine the isomorphism
class of G-representations on W. Moreover, if W is the base change of a Q,-representation V' of G,
Ohkubo [Ohk14]| relates the space generated by these 1 + d operators to the infinitesimal action of
the inertia subgroup of G on V as Sen did for d = 0. In this chapter, we construct Sen operators for
representations of the fundamental group of a p-adic affine variety with semi-stable chart. We show
that the module of Sen operators is canonically defined, independent of the choice of the chart. Indeed,
we associate to each representation a canonical Lie algebra action which gives all the Sen operators.
Moreover, when the representation comes from Q,,, we relate the Sen operators to the infinitesimal
action of the inertia subgroups at height-1 primes, generalizing the results of Sen-Ohkubo. As an
application, we prove that the geometric Sen operators annihilate locally analytic vectors, generalizing
a result of Pan.

I1.1.2. In fact, our strategy for constructing the Sen operators in the relative situation is to glue the
Sen operators defined in the case of valuation fields. Hence, we firstly take a brief review on Brinon’s
construction of Sen operators. We take tq,...,t; € Ok whose images in the residue field form a
p-basis. We fix a compatible system of primitive p™-th roots of unity ¢ = ({,»)nen and a compatible
system of p™-th roots (t; pn)nen of ¢; for 1 < ¢ < d. We also put tg pn = (pn for consistency. For any
n,m € NU {oo}, consider the field extension K, ,, = K((pn,t1pm,...,tqm) of K contained in K.
We simply set K, o = K,, and we name some Galois groups as indicated in the following diagram

(IL.1.2.1) K
A

G
H Koo,oc
| N
Kow~—K
bl

Any finite-dimensional K-representation W of G descends to a Ko oo-representation V of T' by a
theorem of Brinon (cf. I1.5.17). We remark that it can be descended further to a K.-representation
of T on which A acts analytically by a theorem of Tsuji (cf. I1.5.18). Here, acting analytically means

that the action of any element of A is given by the exponential of its infinitesimal action (cf. 11.4.14).
The topological group T is indeed a p-adic analytic group, to which one can associate a Lie algebra

Lie(I") over Q,. Then, the infinitesimal action of Lie(I') on V extends K-linearly to a (non-canonical)
Lie algebra action of Lie(T') on W, which defines 1 4+ d operators of W by Brinon as I' is locally
isomorphic to Zj, x Z.

92020 Mathematics Subject Classification 11F80 (primary), 14F35, 14G45.
Keywords: Sen operator, Galois representation, p-adic Simpson correspondence, locally analytic vector
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This action of Lie(T") depends on the choice of ¢i,...,t4, which prevents the generalization to
relative situation. The first question is whether we can define a canonical Lie algebra action on W,
which gives the Sen operators defined by Brinon by choosing a basis. We answer it positively by
considering the Faltings extension of Ok defined in [He21| (cf. IL.5.7), that is, a canonical exact

sequence of K-representations of G,
(11.1.2.2) 0— K(1) - o, = K ©0, 0, — 0,

where K (1) denotes the first Tate twist of K, o, = I.me»—mx Q}Qf oy 1 a (1 + d)-dimensional

K-space with a basis {(dlog(t; yn))nen}to<i<a- Taking duals and Tate twists, we obtain a canonical
exact sequence

(IL1.2.3) 0 — Homo, (0, (—1),K) L5 &5, (1) “5 K — 0

~

where &5 = Hom%(é’o «+ K). There is a canonical K-linear Lie algebra structure on &g (1) associ-
ated to the linear form +* defined by [f1, fo] = ¢*(f1)fa — ¢*(f2) f1 for any fi, fo € &5, (1). This will
be the canonical Lie algebra replacing Lie(T"), so that we obtain the following canonical definition of
Sen operators.

Theorem II.1.3 (cf. 11.5.35, I1.5.38). Let K be a complete discrete valuation field extension of Q,
whose residue field admits a finite p-basis, G its absolute Galois group. For any finite-dimensional

K -representation W of G, there is a canonical G-equivariant homomorphism of K -linear Lie algebras
(where we put adjoint action of G on Endﬁ(W)),

(I1.1.3.1) Psenlw 1 65, (1) — End=(W),

which is functorial in W and satisfies the following properties:
(1) Let ti,...,te € K with compatible systems of p-power roots (t; pn)nen C K such that
dty,...,dt. are K-linearly independent in Q%’)K [1/p]. Consider the tower (K m)nmen de-
fined by these elements analogously to (I1.1.2.1) and take the same notation for Galois

groups, and assume that there is a Ko -representation V' of I' on which A acts analytically
(11.4.14) such that W = K ®@k_ V. Then, T is naturally locally isomorphic to Z, x Z5, and

if we take the standard basis Oy, . .., 0. of Lie(T') = Lie(Z,, x Zj), then for any f € &5, (1),

(11.1.3.2) senlw () =D F((dlog(tspm))nen ® (1) ® @a,lv,
=0

where @, |v is the infinitesimal action of 9; on V.

(2) Let K' be a complete discrete valuation field extension of K whose residue field admits a
finite p-basis, W' = F(XJ% W. Assume that K' Qg SAI%QK [1/p] — SAI%QK, [1/p] is injective.
Then, there is a natural commutative diagram

PSen |/

(I1.1.3.3) 5., (1) End— (W)

l |

K@= &5, (1) K’ @= End=(W)

ld=®¢psen [w

Moreover, if K' is a finite extension of K, then the left vertical arrow is an isomorphism.

The key of its proof is to show that the map @gen|w defined by the formula (II.1.3.2) does not
depend on the choice of V' and ¢;. For this, we use the variant of p-adic Simpson correspondence
developed by Tsuji [Tsul8] over Ok (cf. IL.5.31). One clue is that the period ring used in this
correspondence is constructed as the filtered colimit of symmetric tensor products of the Faltings
extension (I1.1.2.2) (called the Hyodo ring, cf. 11.5.13). We remark that the assumption on K’ ®g
(AZ}QK 1/p] — Q}Qw [1/p] for the functoriality is a technical condition for its proof, and we don’t know
how to remove this (cf. I1.5.38).

I1.1.4. Now we can generalize the construction of Sen operators in the relative situation. Let K be
a complete discrete valuation field extension of @, with perfect residue field, 7 a uniformizer of K.
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For simplicity, we consider a Noetherian normal domain A flat over Ok with A/pA # 0 such that
there exists an étale ring homomorphism for some integers 0 < r < ¢ < d,

(I1.1.4.1) Ok(Toy ... T, TEY  TE T, Ta) )/ (Ty -+ T — 1) — Al

Thus, Spec(A) is endowed with a strictly normal crossings divisor defined by Tp---Ty. We set
Ay = A[1/To -+ Ty]. We call (A, A) a semi-stable pair, and call (I1.1.4.1) a semi-stable chart of it.
Let K be the fraction field of A, IC,,; the maximal unramified extension of IC with respect to (A, A),
i.e. the union of finite field extensions K’ of K in an algebraic closure of K such that the integral
closure A’ of A in K’ is finite étale over A, and let A be the integral closure of A in Ku.. We
remark that this chapter considers more general pairs (called quasi-adequate) than semi-stable pairs,
so that the directed system of finite subextensions of K,;/K admits a cofinal subsystem consisting
of elements K’ such that the pair (Af,, A") is quasi-adequate, where Af, = Ay, ®4 A" (cf. I1.9.5,
I1.11.9). As before, we also consider the Faltings extension of A (cf. I11.9.36), that is, a canonical

exact sequence of A[1/p]-representations of Gal(KC,,/K),

4

(IL1.4.2) 0— i[p E

(1) =& A p] ®4 a4, a9 — 0,

where Q% Ao A) denotes the A-module of logarithmic 1-differentials of the pair (A, A) over (K, Ok),

which is finite free of rank d. The canonical j[l /p]-module &4 is finite free of rank 1+d, which satisfies

the following property (cf. 11.9.36, 11.9.38): there is a canonical A[1/p]-linear map ]'glx’_}pw le/A — &4

such that for any element s € A[1/p] N A,, with a compatible system of p-power roots (Spn)nen C
A[1/p], there is a unique element w € &4 such that the image of (sg:ﬂdspn)neN is equal to sw (we
thus denote w by (dlog(spn))nen). As before, we obtain a canonical exact sequence by taking duals
and Tate twists,

) 2= 650) = Al

(11.1.4.3) 0—> HomA(Q%AmA)(—l)j[ ] —0,

S

1
p

and we endow &% (1) with the canonical A[l/p]-linear Lie algebra structure associated to the linear
form ¢*. Now we can state the construction of Sen operators in the relative situation.

Theorem II.1.5 (cf. 11.11.4, I1.11.7, 11.11.9). With the notation in 11.1.4, for any finite projective
A[1/p]-representation W of an open subgroup G of Gal(K../K), there is a canonical G-equivariant

homomorphism of A[1/p]-linear Lie algebras (where we put adjoint action of G on Endj[l/p](W)),

(IL1.5.1) Psen|w : €4(1) — End= | (W),

Al

which is functorial in W and G, depends only on the pair (Ai, A) not on the choice of the chart
(I1.1.4.1), and satisfies the following properties:

(1) Let A" be the integral closure of A in a finite field extension K' of (Ku:)¥ contained in K.,

and let ty,...,t. € A'[L/p] N ALY with compatible systems of p-power roots (t; pm)nen C

A[l/p] such that dti,...,dt, are K'-linearly independent in Q}C,/K. Consider the tower

(K m)n.men defined by these elements analogously to (11.1.2.1) and take the same notation

for Galois groups, and let A}, ,, be the integral closure of A in K}, ., Al = colimnf/lzt.

Assume that there is a finite projective A’_[1/p]-representation V' of T on which A acts
analytically (11.4.14) such that W = A ®z, V. Then, T' is naturally locally isomorphic to
Zy % Zs,, and if we take the standard basis Qp, . .., 0. of Lie(I') = Lie(Z, x Z,), then for any
fe&il),

(I1.1.5.2) psenlw () =Y F((dlog(tipn ) nen © ¢1) @ wa,|v,
1=0

where g, |v is the infinitesimal action of 0; on V.
(2) Let K' be a complete discrete valuation field extension of K with perfect residue field,
(AL, A") a semi-stable pair over Ok with fraction field K', A — A’ an injective ring homo-

morphism over Ox — O+ which induces an inclusion (A, A) — (A}, A)), W/ = W@iW.
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Assume that K' Qx Q}C/K — Q}C,/K, is injective. Then, there is a natural commutative dia-

gram
* Psen|ws
(I1.1.5.3) &5 (1) L Endf[%](W’)
Tz
T o £ T 9~ End-
A ®Z (g}A(l) idﬁ@tpsﬂ.\w A ®Z Endz[%](W)

The situation described in I1.1.3.(1) is not special. Indeed, by a descent theorem of Tsuji [Tsul8,
14.2] when he developed the p-adic Simpson correspondence for (Ay,, A), the representation W of G
can be descended to V for some A’. We remark that Tsuji proved the case when G = Gal(K,,/K),
and we prove the general case by transferring his arguments to a more general class of pairs (cf.
I1.10.16). The key to the proof of II.1.5 is still checking that the map @gen|w defined by the formula
(I1.1.5.2) does not depend on the choice of A’, V' and t;. We reduce this problem to the case of
valuation rings I1.1.3 by localizing at height-1 prime ideals of A containing p.

Definition I1.1.6. We call the image ®(W) of ¢gen|w the module of Sen operators of W. We call the

A

image ®&°° (W) of Hom 4 (Q%AmA)(—l),Z[%]) under @sen|w the module of geometric Sen operators of

W. And we call the image of 1 € Z[}%] under pgen|w in @¥(W) = &(W)/®8(W) the arithmetic
Sen operator of W.

The following evidence supports such a definition of arithmetic Sen operator: any two lifts of it

in Endj[ N ](W) have the same characteristic polynomial (cf. I1.11.15).

I1.1.7. We denote by &,(A) the set of height-1 prime ideals of A containing p. For any q € &,(A)
with image p € Spec(A), let E, be the p-adic completion of the discrete valuation field 4,[1/p], E4 an
algebraic closure of F,, with an embedding of valuation rings A5 — Og,- Let I C Gal(Ky:/K) be the

image of the inertia subgroup of Gal(E,/E,). We have the following generalization of Sen-Ohkubo’s
result, which follows from the same reduction strategy as above.

Theorem I1.1.8 (cf. 11.11.18, I1.11.9). Let G be an open subgroup of Gal(K,,/K), (V,p) a finite-
dimensional Q,-representation of G, W = A[1/p] ®q, V. Then, quesp(Z) Lie(p(1q)) is the smallest

~

Qp-subspace S of Endg, (V) such that the A[1/p]-module of Sen operators ®(W) is contained in
All/pl ®g, S.

As a corollary, one can lift the Sen operators of (Q,-representations to a universal Lie algebra
homomorphism.

Corollary I1.1.9 (cf. 11.11.21, 11.11.23). Let G be a quotient of an open subgroup of Gal(Ky./K)
which is a p-adic analytic group. Then, there exists a canonical homomorphism of A[l/p]-linear Lie
algebras psenlg + E4(1) — A[l/p] ®q, Lie(G) making the following diagram commutative for any

finite-dimensional Qp-representation V of G,

PSenlg

(I1.1.9.1) &41(1) ———— A[1] g, Lie(9)
@Sen|w lid;‘[;]&pv

Endg, (W) <" A1) ©g, Endg, (V)

o =

where W = j[l/p] ®q, V is the associated object of Repgéfl{(G,j[l/p]), and |y is the infinitesimal
Lie algebra action of Lie(G) on V.

Now we can give our generalization of Pan’s result [Pan22, 3.1.2].
Theorem I1.1.10 (cf. 11.12.22). Let G be a quotient of Gal(Ky,/K) which is a p-adic analytic group,
Gu C G the image of Gal(Ky /Koo ), @ C j[l/p]@)QPLie(gH) the image ofHomA(Q%AWA)(fl),j[l/p])
under @sen|g. Then, the infinitesimal action of @éeo annthilates the Gy -locally analytic vectors in
j[l/p} (see 11.12.18 for a precise definition).
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For its proof, we need to extend Sen operators on the infinite-dimensional representations of
analytic functions on sufficiently small open subgroups of G. This is the reason why we insist to
consider open subgroups of Gal(/C,,/K) in the previous theorems, which enables us to prove properties
related to Lie algebras but leads us to a general class of pairs more than semi-stable pairs.

Previously, we always work with representations with rational coefficients, since a finite extension
A’ of A is not a nice integral model for A’[1/p]. But in order to investigate the continuity of Sen
operators on infinite-dimensional representations, we need to consider representations with integral
coefficients as “lattices” to bound these operators. Nice properties of the Sen operators are preserved
by continuation if we have good descent and decompletion theory for integral representations over
A’. But it has not been well developed yet as A’ is not a nice integral model. However, we don’t
encounter such a problem if A’ is a valuation ring (at least for the geometric part)! So we still follow
the previous strategy: reduce the problem to the case of valuation rings by localizing at height-1
prime ideals of A containing p; and for the latter case, we can apply the descent results for small
representations with integral coefficients of the geometric fundamental group, developed by Faltings
[Fal05]|, Abbes-Gros [AGT16, I1.14] and Tsuji [Tsul8, §11, §12]. We plan to investigate in the

future whether or not the image ®g of @gen|g annihilates the G-locally analytic vectors in A[1/p].

I1.1.11. The article is structured as follows. In section II.3, we briefly review the theory of p-adic
analytic groups from a purely algebraic view following [DASMS99|. In section II.4, we study the
tower (K m)n,men (II.1.2.1) and the infinitesimal actions of representations arising from this tower
in a general setting. Then, we revisit Brinon’s generalization of Sen’s theory in section I1.5 using the
p-adic Simpson correspondence developed by Tsuji, and give our canonical definition of Sen operators.
For the generalization in the relative situation, we firstly introduce the main objects, quasi-adequate
algebras, in section I1.9. They share nice properties with semi-stable pairs up to a p-power torsion
by some preparation lemmas in section II.7. Especially, we can also define Faltings extension for
such general algebra. A priori, the construction of Faltings extension in the relative situation is
not canonical. We show the canonicity of Faltings extension by reducing to the case of valuation
rings, cf. 11.9.36. To glue the Sen operators defined over valuation rings, we need a “global model”
on a quasi-adequate algebra, that is, a descent of representation of the fundamental group. This is
a generalization of Tsuji’s result and done in the section II.10. We construct the Sen operators in
section II.11, and discuss their relation with Lie algebras. Finally, we extend Sen operators to infinite-
dimensional representations in section II.6 and the end of section II.11, and give an application on
locally analytic vectors in the last section I1.12.
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I1.2. Notation and Conventions

I1.2.1. Let d € N be a natural number. We endow the set (N U {oo})? with the partial order
defined by m = (my,...,mq) < m' = (m},...,m}) if m; < m] for any 1 < i < d. We put
Im| = my +---+mg € NU{oco}. For any r € NU {co}, we set = (r,...,7) € (NU {o0})¢ and
r, =(0,...,7,...,0) € (NU{oo})? where r appears at the i-th component.

We endow the set N2 ) with the partial order defined by N[N’ if N; divides N for any 1 < i < d,
where N = (Ny,...,Ng) and N’ = (N{,...,N}), and we put N'/N = (N{N; ',...,N/N; ') e N¢ .

I1.2.2. All rings considered in this article are unitary and commutative. We fix a prime number p.
For a ring R, we denote by Q}, the R-module Qy, ; of 1-differentials of R over Z, and by Qj, its p-adic
completion. For an abelian group M, we set

(I1.2.2.1) Tp(M) = lim M([p"] = Homg(Z[1/p]/Z, M),
(I1.2.2.2) Vp(M) = lim M = Homg(Z[1/p], M).

We remark that T,(M) is a p-adically complete Z,-module ([Jan88, 4.4]), and that if M = M[p>]
(i.e., M is p-primary torsion) then V,,(M) = T,,(M)®z, Q,. We fix an algebraic closure Q,, of Q,, and
we set Z,(1) = Tp(@; ) which is a free Z,-module of rank 1 and any compatible system of primitive
p"-th roots of unity ( = ((pr)nen in Q, (i.e. anﬂ = (pm, (1 =1, ¢, # 1) gives a basis of it. We
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endow Z,(1) with the natural continuous action of the Galois group Gal(Q,/Q,). For any Z,-module
M and r € Z, we set M(r) = M ®z, Z,(1)®", the r-th Tate twist of M.

I1.2.3. Let A be a topological ring, M a finitely generated A-module. For any A-linear surjective
homomorphism A™ — M with n € N, if we endow A™ with the product topology, then the quotient
topology on M does not depend on the choice of the surjection. We call this topology on M the
canonical topology ([Tsul8, page 820]). It is clear that any homomorphism of finitely generated
A-modules is continuous with respect to the canonical topology.

If the topology on A is linear, then the canonical topology on M is also linear. For another finitely
generated A-module N, the canonical topology on M ® 4 N coincides with the tensor product topology
of the canonical topologies on M and N. Moreover, let A — A’ be a continuous homomorphism of
linearly topologized rings. Then, the canonical topology on A’® 4 M as a finitely generated A’-module
coincides with the tensor product topology of the topology on A’ and the canonical topology on M.

I1.2.4. Let G be a topological group, A a topological ring endowed with a continuous action by G. An
A-representation (W, p) of G is a topological A-module W endowed with a continuous semi-linear ac-
tion p of G. A morphism W — W’ of A-representations of G is a continuous A-linear homomorphism
compatible with the action of G. We denote by Rep,,:(G, A) the category of A-representations of
G. Let Ap be a G-stable subring of A. The (G, Ap)-finite part of an A-representation W of G is the
sum of all G-stable finitely generated Ag-submodules of W.

We say that an A-representation W of G is finite projective if W is a finite projective A-
module endowed with the canonical topology. We denote by Replioi(G, A) the full subcategory
of Rep,,,.: (G, A) consisting of finite projective A-representations of G.

Assume that the topology on A is linear. For any two A-representations W, W’ of G with linear
topologies, the diagonal action of G on W ® 4 W' is continuous with respect to the tensor product
topology. If moreover W and W’ are finite projective, then so is W @4 W’ by I1.2.3. This makes
Repli 1 (G, A) into an additive tensor category. Moreover, let A’ be a linearly topologized ring en-
dowed with a continuous action of a topological group G’, G’ — G a continuous group homomorphism,
A — A’ a continuous ring homomorphism compatible with the actions of G and G’. Then, the tensor
product defines a natural functor

(11.2.4.1) Repl® (G, A) — Rep™™ (G, A), W A @4 W.

cont cont

I1.3. Brief Review on p-adic Analytic Groups

The theory of p-adic analytic groups (which are often referred to as “p-adic Lie groups”) was
developed by Lazard [Laz65]. We mainly follow [DASMS99] to give a brief review.

Definition I1.3.1 ([DASMS99, Theorem 4.5]). A pro-p group G is called uniform if G is topolog-
ically finitely generated, torsion free and G/GP (resp. G/G%) is abelian if p is odd (resp. p = 2),
where G™ denotes the closed subgroup of G generated by n-th powers for n € N.

In fact, the subset of p™-th powers in a uniform pro-p group G forms a uniform and open char-
acteristic subgroup G?" of G; these open subgroups {Gpn }nen form a fundamental system of neigh-
bourhoods of 1 € G; and the map G — G?" sending z to zP" is a homeomorphism of topological
spaces (|[DASMS99, Theorems 3.6, 4.10]).

Definition I1.3.2 ([DASMS99, Section 9.4]). A Lie algebra L over Z, is called powerful if L is a
finite free Z,-module and [L, L] C pL (resp. [L, L] C 4L) if p is odd (resp. p = 2).

For a powerful Lie algebra L over Z, and any n € N, it is clear that the Lie sub-algebra p™L is
also powerful.

I1.3.3. We associate to a uniform pro-p group G a powerful Lie algebra Lg = (G, +¢, [, |g) over Z,,
as follows:

(1) The underlying set of L¢ is that of G.
(2) The additive structure on L¢ is given by ([DASMS99, Definition 4.12])

(I1.3.3.1) T+gy= ILm (P yP" VP Va,y € G,

where taking p"-th root is well-defined as the map G — GP" sending x to xP" is a homeo-
morphism.
(3) The Lie bracket on L¢ is given by ([DASMS99, Definition 4.29])

(I1.3.3.2) [z,y]¢ = lim (ac_pny_pnzchny”n)pfzn7 Vz,y € G.
n—0o0
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The Lie algebra Lg over Z, is well-defined and powerful, and a minimal topological generating set
(91,-..,94) of G forms a Z,-linear basis of Lg ([DASMS99, Theorems 4.17, 4.30 and Exercise
4.2.(i1)]). We denote by log : G — Lg and exp : Lg — G the identity maps. Then, the map

(11.3.3.3) Zz — G, (a1,...,aq) — exp(ailog(g1) +¢ - - +c aqlog(ga))

is a homeomorphism of topological spaces such that the image of (p"Z,)? is GP". This map is called
the system of coordinates of the first kind. Moreover, for x,y € G such that zy = yx (resp. for u,v €
L¢ such that [u,v] = 0), we have log(zy) = log(z) +¢ log(y) (resp. exp(u+¢ v) = exp(u) exp(v)). In
particular, for a € Z,, we have log(z®) = alog(z) for any € G, and we have exp(au) = exp(u)* for
any u € Lg. On the other hand, the map

(I1.3.3.4) 78— G, (b1,...,ba) = gi* - g,

is also a homeomorphism of topological spaces such that the image of (p"Z,)? is GP" ([DdSMS99,
Theorems 4.9, 4.10]). This map is called the system of coordinates of the second kind.

I1.3.4. We associate to a powerful Lie algebra L over Z, a uniform pro-p group (L, *) as follows:
we endow L with a group structure given by the Baker-Campbell-Hausdorff formula ([DdSMS99,
Section 9.4])

1 1
(I13.4.1) vey=a+y+ gyl + sl ool + b lyal) +
The group (L,x) is well-defined and uniform pro-p, and a Z,-linear basis of L forms a minimal
topological generating set of (L, *) (|[DASMS99, Theorem 9.§]).

Theorem I1.3.5 ([DASMS99, Theorem 9.10]). The assignments G — Lg and L — (L,*) defined
in 11.3.3 and 11.3.4 are mutually inverse isomorphisms between the category of uniform pro-p groups
and the category of powerful Lie algebras over Z,.

Example I1.3.6. The subgroup G = id + p*My(Z,) of the general linear group GL4(Z,) of degree
d over Zj, is a uniform pro-p group, where € = 1 if p is odd, and € = 2 if p = 2. We have Gr' =
id + p"*t*My4(Z,) for any n € N. In fact, the matrix exponential and logarithm,

=1
(IL.3.6.1) exp : pMa(Zy) — id +p"Ma(Zy), X = ) —X",
n=0
oo -1 n—1
(11.3.6.2) log : id + pMa(Zy) — pMa(Zy), 1+ X ) %Xn’
n=1

are mutually inverse homeomorphisms, which identify id + p"™**M4(Z,,) with p"TMgy(Z,). Moreover,
they induce an isomorphism of Z,-linear Lie algebras Lg — p*My(Z,), where pMy(Z,,) is endowed
with the usual matrix Lie algebra structure. We can extend the matrix logarithm to log : GL4(Zp) —
M4(Q,) by setting log(X) = log(X")/r for some r € N such that X" € id + p*M4(Z,). Especially,
for d = 1, we can take r = p(p — 1) so that

(I1.3.6.3) log : ) — Zy.

Lemma I1.3.7 ([DASMS99, Proposition 4.31]). Let G be a uniform pro-p group, N a closed normal
subgroup of G such that G/N is a uniform pro-p group. Then, N is also a uniform pro-p group, and
the following natural sequence of powerful Lie algebras over Z, is exact

(I1.3.7.1) 0— Ly — Lg — Lg/y — 0.

Definition I1.3.8 ([DASMS99, Theorems 8.32, 9.4]). A p-adic analytic group is a topological group
which contains a uniform pro-p open subgroup. A morphism between p-adic analytic groups is a
continuous group homomorphism.

Theorem I1.3.9 ([DASMS99, Theorem 7.19]). Any compact p-adic analytic group is isomorphic to
a closed subgroup of GL4(Z,) for some d € N.

Lemma I1.3.10 ([DASMS99, proof of Theorem 4.8]). Let G be a p-adic analytic group, N a closed
normal subgroup of G. Then, there exists an open subgroup Gg of G such that Gy, Ng = N NGy and
Go/Ny are all uniform pro-p groups.

Theorem I1.3.11 ([DASMS99, Theorems 9.6, 9.7]). Let G be a separated topological group, N a
closed normal subgroup of G, H a closed subgroup of G.

(1) If G is a p-adic analytic group, then so is H and G/N.

(2) If N and G/N are p-adic analytic groups, then so is G.
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I1.3.12. The uniform pro-p open subgroups H of a p-adic analytic group G form a fundamental
system of open neighbourhoods of 1 € G. Moreover, given such an H, {HP"},cy is initial in this
system. Thus, for a uniform pro-p open subgroup H’ of H, the corresponding Lie algebra Ly over
Zy is a Zyp-submodule of Ly with finite index. In particular, the natural morphism

(11.3.12.1) Ly ®z, Qp — Ly ®z, Q)
is an isomorphism of Lie algebras over Q,.

Definition I1.3.13 ([DASMS99, Section 9.5]). Let G be a p-adic analytic group. The filtered colimit
of Lie algebras over Q,,

(11.3.13.1) Lie(G) = colim Ly ®z, Qy,

where H is a uniform pro-p open subgroup of G with the corresponding Lie algebra Ly over Z,, is
called the Lie algebra of G over Q,. We denote by dim(G) the dimension of Lie(G) over Q, and call
it the dimension of G.

Moreover, if G is compact, then there is a canonical continuous map, called the logarithm map
of G,

(11.3.13.2) logg; : G —» Lie(G)

sending g to logy (¢")/r, where r is the index of a uniform pro-p open subgroup H of G, log, : H —
Ly is defined in I1.3.3, and this definition does not depend on the choice of H.

Lemma I1.3.14. Let G be a p-adic analytic group, N a closed normal subgroup of G. Then, there
is a canonical exact sequence of Qp-linear Lie algebras

(I1.3.14.1) 0 — Lie(N) — Lie(G) — Lie(G/N) — 0.
ProoF. It follows from I1.3.10 and II.3.7. O

I1.3.15. Let G be a p-adic analytic group. For any g € G, the conjugation on G sending x to gzg~!

is continuous, and thus induces an automorphism Ady of the Lie algebra Lie(G). The map
(I1.3.15.1) Ad: G — Autg, (Lie(G)), g+ Ady,

is a continuous group homomorphism, which makes Lie(G) into a finite projective Q,-representation of
G, which we call the adjoint representation of G (cf. [DASMS99, Exercise 9.11]). This construction is
functorial in G. We remark that for G = GL4(Z,), the adjoint action is given by Adx(Y) = XY X!
for any X € GL4(Z,) and Y € Lie(G) = M4(Q,).

I1.4. Infinitesimal Actions of Representations arising from Kummer Towers

Definition I1.4.1. Let A be a ring, 7 an element of A. We denote by &,(A4) the set of prime ideals
p of height 1 containing .

We remark that for a Noetherian normal domain A with a non-zero element 7, the set &,(A)
coincides naturally with the finite set of generic points of Spec(A/7A), and A, is a discrete valuation
ring for any p € &,(A).

Lemma I1.4.2. Let A — B be an injective and integral homomorphism of domains with A normal,
7 an element of A. Then, the inverse image of &,(A) via the map Spec(B) — Spec(A) is S,(B),
and the induced map &r(B) — &,(A) is surjective.

PROOF. Firstly, we note that Spec(B) — Spec(A) is surjective. For any q € Spec(B) with image
p € Spec(A), if p is of height 1, then so is g, since any point of Spec(B) is closed in its fibre over
Spec(A); conversely, if ¢ is of height 1, then so is p, since A — B satisfies going down property
([Sta22, 00HS]). This shows that the inverse image of &,(A) via the surjection Spec(B) — Spec(A)
is 6,(B). O

Proposition 11.4.3. Let A — B be an injective and integral homomorphism of normal domains
with A Noetherian, ™ a nonzero element of A. We assume that B is the union of a directed system
(Bx)xea of Noetherian normal A-subalgebras.

(1) We have 6,(B) = limyecpor S,(B)), and for each q € S (B), if we denote by qx € S (B))
its image, then (Bx,q,)rea s a directed system of discrete valuation rings with faithfully flat
transition maps, whose colimit is By, a valuation ring of height 1.
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(2) For any integer n > 0, the natural map

11.4.3.1 B/n"B — B,/m"B
q q
q€S . (B)

is injective, which thus induces an injective map of m-adic completions

(11.4.3.2) B— ]
9€6+(B)

PROOF. (1) Since Spec(B) = limyepor Spec(By) by [EGA IVs, 8.2.10], we have 6,(B) =
limyepor ©(By) by 11.4.2. Since B, is a Noetherian normal domain, its localization B) 4, is a
discrete valuation ring, and the transition map By q, — Bx/q,, for A < X is local and injective, thus
an extension of discrete valuation rings, which completes the proof.

(2) For each A, the map Bx/7"Bx =[], es, () Brar/T"Bxg, is injective by [Sta22, 031T,
0311]. If we denote by fy : 6,(B) — &,(B,) the natural surjection, then

(I1.4.3.3) Bxgy/®"Brgy — [ Ba/7"Bq
gefyt(ax)
is injective as By, — Bq is faithfully flat. Thus, the composition of the two previous maps,

Bx/7"Bx = [l4es, (5) Ba/m™" By, is injective. The conclusion follows from taking filtered colimit on
AeA. O

Remark I1.4.4. Let A — B be an injective and integral homomorphism of normal domains with A
Noetherian. We remark that if the fraction field of B is a finite separable extension of that of A, then
B is finite over A ([Sta22, 032L]). Thus, the assumption of I1.4.3 is satisfied if the fraction field of B
is a separable extension of that of A.

Definition I1.4.5. A tower of normal domains is a directed system (Ax)xea of normal domains with
injective and integral transition morphisms. We denote by A, the colimit of (Ay)xea-

We remark that if (Cx)xea is the tower of the fraction fields of a tower of normal domains
(Ax)aea, then in fact Ay is the integral closure of Ay, in Ky for A, A\g € A with A > A\g. Moreover, for
any element 7 € Aj,, we obtain an inverse system of sets (Gx(Ax))reacr  With surjective transition

ZA0

maps by 11.4.2, and we have 6, (Ax) = hmAE/\%‘}O Gr(Ayn).

Lemma I1.4.6. Let A be a ring, ® an element of A, M — N an injective homomorphism of m-
torsion free A-modules. Assume that M = M[1/7] NN C N[1/p]. Then, for any integer n > 0, the
homomorphism

(I1.4.6.1) M/7"*M —s N/7"N

is injective. In particular, the homomorphism of the m-adic completions (endowed with the m-adic
topology) M — N 'is a closed embedding.

PROOF. Firstly, we show that #"M = M Na"N (i.e. M/7"M — N/7™N is injective). For
x € MNa"N, n~ "z € M[1/7r] lies in N. Hence, 7"z € M[1/ns]N N = M, which proves the
assertion. Then, we see that M — Nis injective and that the m-adic topology on M coincides Wlth
the topology induced from the w-adic topology of N. Slnce M is complete and N is separated, M is
closAed in N ([BouT1, I1.16, Proposition 8]). Thus, M identifies with a closed topological subgroup
of N. O

Definition I1.4.7. Let K be a valuation field of height 1 with a non-zero element 7 in its maximal
ideal, (Ax)xea a tower of normal domains flat over Ok. The 7w-adic completions form a directed
system (ﬁ A aen of flat Og-algebras, whose transition maps are closed embeddings with respect to
the m-adic topology by 11.4.6. We set,

11.4.7.1 Ao = colim A,.
(A7 gl
As 121\)\/71'”;{)\ — ZOO/W"EOO is also injective for any n € N by 11.4.6, we see that EA — Zoo is also

a closed embedding with respect to the 7-adic topology and that goo is m-adically separated. Thus,
we always regard A, as a topological Og-subalgebra of the m-adic completion A, of Ay


https://stacks.math.columbia.edu/tag/031T
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Definition I1.4.8. Let M be a separated topological (Q,-module endowed with a continuous action
of a pro-p group G. For any g € G and x € M, if the limit

11.4.8.1 li gt -1

( ) im0 (" = 1)(z)

exists in M, then we denote it by ¢4(x) and call the assignment x — ¢, (z) the infinitesimal action
of g on z.

The following lemma follows directly from the definition.

Lemma I1.4.9. Let M be a separated topological Q,-module endowed with a continuous action of a
pro-p group G.
ssume that the infinitesimal action of an element g € G exists for any v € M. en
1) A that the infinitesimal acti lement g € G emist y M. Then,
g 1 T+ pg(x) is a Qp-linear endomorphism of M, and we have ggo = apy for any a € Z,.
Moreover, for any g’ € G, the infinitesimal action of g'gg’~! also exists for any x € M, and
we have Qg1 =g o pgogt
e infinitesimal action of two elements g,g9' € G wi = exists for any x € M,
2) If the infinitesimal acti t l ts g, € G with g9’ = ¢'g exist M
then g’ o Pg = Pg © g, Pg O Py = Pgr 0 g, and Pggr = Qg + Pgr.
e — e a continuous homomorphism of pro-p groups, a separated topological Q,,-
3) LetG' - G b ti h hi M’ ted topological Q,
module endowed with a continuous action of a pro-p group G', f : M — M’ a continuous
Qp-homomorphism compatible with the actions of G and G', x € M, ¢’ € G'. Assume that
the infinitesimal actions of ¢’ and its image g € G exist for f(x) € M’ and x respectively.

Then, f(pq(x)) = g (f())-

Proposition I1.4.10 ([Tsul8, 5.3]). Let A be a topological Q,-algebra endowed with a continuous
action of a topological group G. Assume that G contains a pro-p open subgroup Go of finite index and
that there exists a tower (AA))\GA of normal domains flat over Z, such that there is an isomorphism
of topological rings A = Ax[1/p] and that for any A € A the subalgebra A,\[l/p] is Go-stable and
invariant by an open subgroup of Gy (via the isomorphism A = Aoo[l/p]). Then, for any g € G and
any object W of RepLl (G, A), there exists a unique A-linear endomorphism og|lw of W satisfying
the following conditions (we simply write @q4|w by g4 if there is no ambiguity):

(1) For any g € Go, @4 is the infinitesimal action (I1.4.8.1) of g on W.

(2) For any g € G and n € N, we have @gn = ng,.

(3) For any g € Gy and x € W, there exists my € N such that for any a € p™=Z,,
ok

(11.4.10.1) g% (x) = exp(apy)(z) = %(wg 00 pg)(x).
k—0 . \—,—/

k copies

In particular, pq|lw does not depend on the choice of Gy or the tower (Ax)xea. Thus, we still call it
the infinitesimal action of g € G on W.

PrOOF. Firstly, assume that G = Gj. Since ZOO is a p-adically separated flat Z,-algebra, there
is a canonical norm on A [1/p] which induces its p-adic topology (cf. 11.6.3). Thus, we are in the
situation of [Tsul8&, 5.3], and the conclusion follows from it. In general, for any g € G, we set
g =1, where r is the index of Gy in G and ¢+ is the infinitesimal action of g" € Gy on finite
projective A-representation W of G (defined by restricting the G-action of W). One can check easily
by 11.4.9 that this ¢, satisfies all the required properties. O

Remark I1.4.11. Let A’ be a topological Q,-algebra endowed with a continuous action of a topolog-
ical group G’ satisfying the assumptions in I1.4.10. Assume that there is a morphism of topological
groups G’ — G and a morphism of topological rings A — A" which is compatible with the actions of
G and G'. For any object W of Rep”™% (G, A) the base change W’ = A’ ® 4 W is naturally an object

of Rep®’% (G, A’) by 11.2.4. Then, for any ¢’ € G’ with image g € G, we deduce from (I1.4.8.1) and

cont

I1.4.10 that
(11.4.11.1) Py lw =1dar ® pglw.

Lemma I1.4.12. Under the assumptions in 11.4.10, assume further that G acts trivially on A. Then,
there is a pro-p open subgroup Gy of G such that the map

(I1.4.12.1) G: Ly x GrxW — W,
sending (0, g,) to p,(x) and sending (a,g,x) to a= (g — z) for a # 0, is continuous.
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PROOF. Since G acts trivially on A by assumption, for any pro-p open subgroup Gy of G, ¢
induces a map

(11.4.12.2) ¢ : 7, x Gy — End (W),

sending (0, g) to ¢4 and sending (a, g) to a=*(g*—1) for a # 0. We fix an A-linear surjection A”™ — W.
As W is finite projective over A, we get an A-linear surjection ¢ : M,.(4) — End (W) whose quotient
topology on End (W) coincides with its canonical topology (I1.2.3). As the matrix multiplication
M, (A) x A” — A" is continuous, the natural A-linear homomorphism End4 (W) x W — W is also
continuous (I1.2.3). Thus, it suffices to show that 5 is continuous for some G1. Moreover, by the
definition (I1.4.8.1) of ¢y, ¢ is uniformly continuous if and only if its restriction on (Z,\ {0}) x G
is uniformly continuous ([Bou71, I1.20, Théoréme 2]). We claim that the latter holds for some Gj.
We note that the topology on A is defined by the p-adic topology of Aoo. As G acts continuously
and A-linearly on W by assumption, the induced map G — End 4 (W) is continuous. For any k > 2,
we take pro-p open subgroups Gj of G whose image in End4 (W) lies in ¢ (id + pkMT(KOO)). For
g1, 92 € G4 with glggl € Gy, let P, P, € id + p*M, (EA) be some liftings of the images of g1, g2 € G2
respectively with Py Py ! € id + p*M,.(A,) for some A € A. In particular, P, — P, € p*M,.(A,), and

1)n—1

(I14.12.3)  log(Py) — log(Py) = i (_7((132 —id 4 (P, — Py))" — (P, —id)") € p"M,(Ay)

n

as p? (=Y € n!- Z, for any n > 1. Similarly, for any ay,as € Z, \ {0} with a; — as € p*Z,, we have

o0

log(Py)" — log(Py)™ .
(I1.4.12.4) e (PP —id) —ap (P —id) = > apt og(F1) - 08(P2)" o i, (A,
n=1 .
0 1 P,)" N
(11.4.12.5) ap (Pt —id) —ay ' (Ps? —id) = ) (a7 - agfl)og(ni,2> € pFM,(A)).
n=2 :

Thus, $(a1, g1) — 5((12, g2) belongs to 1 (p*M,. (Zloo)), which implies that 5 is uniformly continuous by
taking G, = Gs. O

Corollary I1.4.13. Under the assumptions in 11.4.10, assume further that G is a compact p-adic
analytic group. Let Lie(G) be the Lie algebra of G over Q,. Then, there is a unique morphism of Lie
algebras over Qp,

(I1.4.13.1) ¢ : Lie(G) — End s (W),

such that its composition with the logarithm map of G (11.3.13.2) logs : G — Lie(G) is the map
¢ : G — Enda(W) sending g to the infinitesimal action ¢4 of g € G on W.

We call ¢ the canonical Lie algebra action induced by the infinitesimal action of G on W, or
simply the infinitesimal Lie algebra action.

PROOF. Recall that Lie(G) = colimg, Lg, ®z, Qp where the colimit is taken over the system
of uniform pro-p open subgroups Gy of G (see I1.3.13), and that the Z,-linear Lie algebra Lg, =
(Go,+Gos [ 5 ]a,) 1s defined in I1.3.3. As log : Gy — Lg, is a homeomorphism, the uniqueness is
obvious. It remains to check that the map Lg, — Enda(W) sending g to ¢, is compatible with
addition and Lie bracket. R

As Gy is topologically finitely generated, there exists A € A and a finite projective Ax[1/p]-
representation Wy of Go such that W = A®z (/) W ([Tsul8, 5.2.(1)]). By IL.4.11, it suffices

to check that the map Lg, — Endg /p](WA) sending g to ¢, is compatible with addition and Lie

bracket. We take a uniform pro-p open subgroup G; of G such that /Ab\[l /p] is Gi-invariant by the

assumptions in 11.4.10. After replacing G by G’l’n for some n € N, we may assume by 11.4.12 that
the map

(11.4.13.2) O Zp X Gy x Wy — Wi,

sending (0, g,z) to p,(x) and sending (a, g, x) to a=!(g%x — z) for a # 0, is continuous. As the map
Lg, — Endgk[l/p](W,\) is compatible with multiplication by an integer by 11.4.10.(2), it suffices to

check that its restriction on L¢, is compatible with addition and Lie bracket. For any ¢,¢" € G and
x € Wi, applying the continuity of (I1.4.13.2) to the convergent sequence {(p™, (¢*?" ¢'*" )?" ", ) }nen C
Zy x Gy x Wy with limit (0,9 +¢, ¢',z) by (I1.3.3.1), we get

(I1.4.13.3) Pgta, e (T) = ILm p (" g — ).
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On the other hand,
(I1.4.13.4) (pg +¢g)(@) = lim p (¢ + g — 22).

Thus, ¢gtq,¢(T) = (g + @g)(T) = limy, 00 p~"(g"" — 1)(¢’""x — x) = 0, since the action G; x
Wy — W)y is continuous and lim,, .. p~"(¢""" z — z) = g (). Similarly, applying the continuity of
(I1.4.13.2) to the convergent sequence {(p2™, (g7 ¢’ P g*" g"" )P~ " &) }nen C Zy, x G x Wy with
limit (0, [g, ¢']lc,,z) by (I1.3.3.2), we get

(I1.4.13.5) Plo.ge, () = nlLH;Op_2”(g_png’_pngp"g’pnm — ).

On the other hand, applying the continuity of (I1.4.13.2) to the convergent sequence {(p", g, p~"(g'?" z—
z)) nen C Zp x G1 x Wy with limit (0, g, ¢4 (2)), we get

(114136) (%Oq o (pq/ — qul [e] @q)(x) = hm p_Qn(gp"g/pnx _ g/;l?ngp"x)_

s ‘ s s L
Thus, Qﬁ[ghq/]cl (1’) — (ng Oy — Py O SDg)(x) = lim,— 00 p72n(gfp"g/,pn _ 1)(gpng/pnm B g/pngpnx) -0
by the continuity of the action Gy x Wy — Wy and (I1.4.13.6). O

Definition 11.4.14 (cf. [Tsul8, 14.1]). Under the assumptions in I11.4.10, let H be a subgroup of G.
For an object W in RepPiol (G, A), we say that W is H-analytic if exp(pn)(z) = Yoo, ok (x)/k!

cont

converges to h(z) for any z € W and any h € H. We denote by Rep. (G, A) the full

cont,H-an

subcategory of RepP™® (G, A) formed by H-analytic objects.

cont

I1.4.15. Let K be a field of characteristic not equal to p, K an algebraic closure of K, (pn )nen a
compatible system of primitive p-power roots of unity in K, G = Gal(K/K). For any n € NU {oo},
we define a Galois extension of K in K by

(I1.4.15.1) K, = K(Gr | k€ Ney).
Consider the cyclotomic character

(I1.4.15.2) x:G—1Z;

which is defined by o({n) = ;ﬁgg) for any 0 € G and n € N. It factors through an injection
¥ = Gal(K«/K) < Z,, and does not depend on the choice of the system ((yn)nen. In particular,
Y is either finite cyclic or isomorphic to the direct product of a finite cyclic group with Z,.

We fix d € N. Let t1,...,tq be elements of K with compatible systems of p-power roots (¢; pn )nen
in K (where 1 < < d). For consistency, sometimes we also denote ,» by to ,». For any n € NU{co}

and any m = (my,...,mq) € (NU{c0})?, we define an extension of K in K by

(I1.4.15.3) Knm = Kn(typras o s tgpra | ki € Nam,, 1 <0< d).
It is a Galois extension of K if n > max{mj,...,m4}. Consider the continuous map
(11.4.15.4) E=(&,....&):G— 17l

defined by 7(t; pn) = (f);i(ﬂti@n for any 7 € G, n € Nand 1 <14 < d. Notice that for any 0,7 € G,
(I1.4.15.5) &(or) =&(0) + x(0)&(T)

Thus, ¢ is a continuous 1-cocycle. It becomes a group homomorphism when restricted to H =
Gal(K/Ko), which factors through an injection A = Gal(Koso 00/Koo) < Z$. In particular, A is
isomorphic to Z;, for some 0 <7 < d. For any 0 € I' = Gal(Kw oo /K) and 7 € A, we have

(I1.4.15.6) oro~ ! =X,

by the definition of y. We have named some Galois groups as indicated in the following diagram:
F
\ A \\

K<7K
P

(I1.4.15.7)
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We remark that I' is a compact p-adic analytic group as an extension of ¥ by A, and there is a
natural exact sequence of Lie algebras over Q, by I1.3.14,

(I1.4.15.8) 0 — Lie(A) — Lie(T') — Lie(X) — 0.
Notice that the group homomorphism logoy : I' = Z, induces a homomorphism of Q,-linear Lie
algebras log ox : Lie(I') — Lie(Z,) = Q, which factors through Lie(X), where log : Z) — Z,, is the

p-adic logarithm map (I1.3.6.3). We deduce from (11.4.15.6) and (11.3.3.2) that for any = € Lie(T")
and y € Lie(A),

(I1.4.15.9) [z,y] = log(x(x)) - v.

I1.4.16. Let A be a Noetherian normal domain flat over Z, with fraction field K, ¢; € K with a
compatible system of p-power roots (¢; pn)nen in K for any 1 < i < d. With the notation in 11.4.15,
let A, be the integral closure of A in K, ,, for any n € NU{oo} and m € (NU {oo})?. We remark
that A,, ,, is a Noetherian normal domain finite over A if n,m are finite by 11.4.4. Endowing N'*¢
with the product order (cf. I1.2.1), we call the tower of Noetherian normal domains (A 1) (n,m)ent +4
the Kummer tower of A defined by (pn,tipn,...,tdpn.

Notice that I" acts continuously on A, o [1/p] (deﬁned in I1.4.7) which satisfies the assumptions
in 11.4.13. Then, for any object W of Repl) (T, Aoog[l/p]), there is a canonical morphism of Lie

cont
algebras over Q, induced by the infinitesimal action of I' on W/,

(I1.4.16.1) ¢ Lie(l') — Endg 3/, (W).

Lemma 11.4.17 (cf. [Bri03, Propositions 5, 7). With the notation in I1.4.16, for any o €T, 7 € A
and any object W of Rep®d(I', Ao 5o[1/p]), we have

cont

(IL4.17.1) gopro0 ! =x(0)-r,
(11.4.17.2) Po O 7 — pr 0 @y = log(x(0)) - ¢r,

as Aoo so[1/p]-linear endomorphisms on W.

PROOF. As oro~ ! = 7X(9) (11.4.15.6), we have 0 0 ¢, 00! = Qorp1 = Prxey = X(0) - 7

(cf. 11.4.9). As [logp(0),logp(7)] = log(x(0)) - logp(7) by (I1.4.15.9), we have ¢, 0 @ — @, 0 Y, =
Pliogy (o) logr(1)] = 108(x(0)) - 7 =

Proposition II.4.18 (cf. [Bri03, Proposition 5|, [Tsul8, 14.17]). With the notation in 11.4.16,
assume that Ko, is an infinite extension of K and that & (AOO o) 15 finite. Then, the infinitesimal

action @, of any element T € A on any object of Rep?™© (T, Aoo@[l/p]) is nilpotent.

cont
ProOOF. We follow the proof of [Tsul8, 14.17]. Notice that ¥ identifies to an open subgroup
of Z,' via the cyclotomic character (I1.4.15.2). Thus, there exists o € I' such that log(x(c)) # 0.

For any q € 6,(Ax ), the localization A o q is & valuation ring of height 1 by I1.4.3.(1), and we
denote by L4 the fraction field of the p-adic completion of A o,q- Then, the natural map

(I1.4.18.1) Awsell/pl — I La
9ESH(Aso,00)
is injective by 11.4.3.(2).
For an object W of Rep®™ (I, Aoo@[l/p]) and g € I', we denote by Wy (resp. ¢4, q) the scalar

cont

extension of W (resp. ¢g) to Lq. As 6,(Ax o) is finite, it suffices to show that ¢, 4 is nilpotent
by the injection (I1.4.18.1) and H.4.11. Let Py(T) € Lq[T] be the characteristic polynomial of ¢ 4.
We take an integer N > 0 large enough such that Py(T — Nlog(x(o))) is prime to P,(T"). Thus, the
endomorphism Py(¢s,q — Nlog(x(c))) on Wy is an automorphism. By (I1.4.17.2), we have

(I1.4.18.2) Py(#0,q — Nlog(x(0))) © (¢r,0)Y = (¢r,0)" © Py(0,q) = 0.

Hence, we have (¢, 4)Y = 0. O

Proposition I1.4.19. With the notation in 11.4.16, consider the following statements:
(1) We have A/pA # 0 (thus 6,(A) is non-empty), and for any p € S,(A), if we denote by
KP the completz’oll of K with TespectAto the discrete valuation ring A, and consider the
Kummer tower (K}, ) (nm)yeni+a of KP deﬁned by Cpn,tlypn’ oy tapn, then the image of
the continuous homomorphism (11.4.15.4) Gal(K /K" ) = Z2 is open.
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(2) There exists ng € N such that for any n € Nx,,, the cyclotomic character (I1.4.15.2)
X : G — Z; and the p-adic logarithm map (11.3.6.3) log : Z)* — Z;, induce an isomorphism

(I1.4.19.1) log oy : Gal(Koo,00/Knoo) — D" Zp;

and there exists mg € N? such that for any m € (Nd)Zm the continuous 1-cocycle (11.4.15.4)
E:G— Zg induces an isomorphism

(I1.4.19.2) € Gal(Koo oo/ Koom) == p™Zy X -+ X p™Z,,

where m = (M1, ..., Mq).
ere exists (ng, mg) € such that for any (n,m) € >(no.mo), the natural map
3) Th mo) € Nt such that f N9 (g mo)s th l
Sp(Anm) = Sp(Ang.my) s a bijection.
(4) The cardinality of &,(An,m), when (n,m) varies in N+, is bounded.

Then, (1) implies (2), (3) and (4); and (3) is equivalent to (4).

PRrROOF. Notice that for elements (n’',m’) > (n,m) in N'*¢  the natural map &,(A, m/) —
S, (A, m) is surjective by 11.4.2. Since N'* is directed, we see that (3) and (4) are equivalent.

Now we assume (1). We take an integer mo € N such that (p™°Z,)? lies in the image of
the injective homomorphism ¢ : Gal(f(go@/f(go) — Zg (I1.4.15.4). We identify (p™°Z,)¢ with an
open normal subgroup of Gal(K oo JK?.). We claim that the invariant subextension of K, s DY

P™MZy X - X pTaZ, C (pTZ,)? is I?go,m for any m = (my,...,mq) € N%mo. Indeed, the invariant
subextension contains K 5.m by the definition of §. On the other hand, Gal(K, Booof K b.m) identifies
with a closed subgroup of p""'Z,, x - - - x p™¢Z,, via £. Thus, the claim follows from the Galois theory.

In particular, £ induces a natural isomorphism

(11.4.19.3) €: Gal(KE o/ KP )) 5 p™ Ly % - X pZ,,.

We claim that IA(‘;O’Q is an infinite extension of [A(g,g. Otherwise, [A(('jo’@ is an extension of a fi-
nite extension of K by adding i yn,...,tqp», so that the dimension of the p-adic analytic group
Gal(K3, . /KP) is no more than d by (I1.4.15.4). On the other hand, KP is a complete discrete

valuation field, while the valuation on K > is non-discrete of height 1. Thus, Gal(IA( v/ K*) is an open
subgroup of Z), which implies that the dimension of the p-adic analytic group Gal(KE, . /K?) is
1+ d under the assumption (1) by (I11.4.15.8). We get a contradiction, which proves the claim. Thus,

the image of the cyclotomic character
(11.4.19.4) X Gal(Kgmg/Kg’@) — Zy

is open. We take ng € N>o such that 1+ p™°Z, lies in the image of (I1.4.19.4). Similarly as above,
the invariant subextension of K%, . by 1+p"Z, C 1+ p"°Z, is K} . by the definition of x, for any
n € N>,,. In particular, x and log induce an isomorphism

(I1.4.19.5) logox : Gal(.f(\'go’@/ AE’@) == p"Zy.
For any (n,m) € (N'"9) ;) m,), We have

~ ~ ~ ~ d —m
(I1.4.19.6) (K5t KB ) SRSy K5 ) < (Kot K] < p2=imimi7m0),

By (I1.4.19.3), we see that the inequalities in (I1.4.19.6) are equalities, which implies (I11.4.19.2). In
particular, each fibre of &,(Anm) — &,(Anm,) consists of a single element (cf. [Bou06, VI.§8.5,
Cor.3|). Similarly,

(I1.4.19.7) (KR KR J<[KE . o KP ] < [Knmg : Kngmo < P70

nQ,00. n,mo no,mo

By (I1.4.19.5), we see that the inequalities in (I1.4.19.7) are equalities, which implies (11.4.19.1). In
particular, each fibre of &, (A, m,) — Sp,(An,,m,) consists of a single element. Therefore, we obtain
(3). O

We will give in 11.5.22 and I1.11.2 some differential criteria for checking the condition 11.4.19.(1)
for a Kummer tower.
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I1.4.20. With the notation in I1.4.16, for further computation (e.g. 11.5.28), we introduce a standard
basis of Lie(I") under the assumption that the Kummer tower (A, ) (n,m)ent+a satisfies the condition
I1.4.19.(2). We name some Galois groups as indicated in the following diagram for any n € N:

Y00
(11.4.20.1) Koooo < Kn oo

AT \n\ T
K,

Ko

By the assumption 11.4.19.(2), there is an isomorphism for some ng € N,
(I1.4.20.2) logox : Lngco — Lng — P Zp,

and ¢ identifies A with an open subgroup of Zg. The isomorphism %,,, .o — Y, identifies I',,, with

the semi-direct product ¥,,, x A defined by o € ¥,,, acting on 7 € A by 7+ 7X(7) (cf. (I1.4.15.6)).
Moreover, there is an open embedding of topological groups

(11.4.20.3) (logox, &) : Ty = Sy X A — Zyy X Z)

where Z,, x Zg is the semi-direct product of Z, acting on Zg by multiplication. It induces an isomor-
phism of Q,-linear Lie algebras

(11.4.20.4) Lie(I) % Lie(Z, x Z).

Let 0; € Lie(T') be the image of (0,...,1,...,0) € Z, x Z¢ (where 1 appears at the i-th component)
via the logarithm map of Z,, x Zg and (I1.4.20.4). We deduce from (I1.4.15.9) that for any 1 < 4,5 < d,

(114205) [80, 81] = (91' and [81, 8]] =0
and we deduce from (I1.4.15.8) that dg, 1, . . . , Oq form a Q,-basis of Lie(T"), which we call the standard
basis. Moreover, if we extend &1, ...,&4 to Qp-linear forms on Lie(A), then we see that they form a

dual basis of 91, ..., 0.
Consider an object W of Rep”™% (I', Ay 5[1/p]) and the canonical Lie algebra action (I1.4.16.1)

cont

¢ : Lie(T) — Endj; oo[l/p](W> induced by the infinitesimal action of I' on W. For any g € G, we set

(11.4.20.6) oy = log(x(9))va,,

which defines a continuous group homomorphism ¢* : G — End; ](W) factoring through T’

o [l/p
with X|g, . = @[z, .. and pX[a = 0. We also set

d
(11.4.20.7) 05 =Y &i(9)pa,

i=1
which defines a continuous 1-cocycle ¢¢ : G — End ; (/] (W) factoring through T' with ¢%|A = p|a
and [y, = 0.

Lemma I1.4.21. Under the assumptions in 11.4.20, for any g € T with log(x(g)) # 0, we have

log(
(I1.4.21.1) logr(g) = log(x(g))9% + g )1) Z& )0; € Lie(T).
In particular, for any object W of RepP™d (I, As o[1/p]), we have
(I1.4.21.2) 0y = X+ log( (g))go

7 x(g) -1

as Aoo so[1/p]-linear endomorphisms of W.

PROOF. Since for any r > 1 we have log(x(g")) = rlog(x(g)) and £(¢")/(x(9")—1) = £(9)/(x(9)—
1) by (11.4.15.5), it suffices to prove (I11.4.21.1) for g". Thus, we may assume that g € T',,, and let

g = 7o be the unique decomposition for some 7 € A and 0 € ¥, «. Since log(x(g)) = log(x(c)) and

£(g) = &(1), we have log(x(g))0 = logr(o) and Z?Zl &i(9)0; = logp (7). It remains to check that in
Lie(T"), we have

(I1.4.21.3) logr(g) = logp (o) + w logp (7).
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n Ln*l n .
By iteratively using the identity o7o~! = 7X(9) we get gP" = X1 g After enlarging ng, we

may assume that I',,, is contained in a uniform pro-p open subgroup I of I'. Thus, by (I1.3.3.1),
“n x()?" —1 log(x ()

(I1.4.21.4) g+r o = lim (¢*" o P )P " = lim 77" G@-0 = 7 x(a)-1

n—oo n—oo

which completes the proof. O

I1.5. Revisiting Brinon’s Generalization of Sen’s Theory after Tsuji

In this section, we revisit Brinon’s generalization [Bri03] of Sen’s theory following Tsuji [Tsul8,
§15]. More precisely, we establish a p-adic Simpson correspondence over a complete discrete valuation
field of mixed characteristic (cf. I1.5.31). Then, we give a canonical definition of Sen operators, which
does not depend on choosing a p-basis of the residue field (and its p-power roots) (cf. 11.5.37).

I1.5.1. We use the following notation in this section. Let K be a complete discrete valuation field of
characteristic 0 whose residue field x is of characteristic p > 0 such that [k : kP] = p? < oo (i.e. K

admits a finite p-basis, cf. [EGA IVy, 21.1.9]). We fix an algebraic closure K of K, and denote by K
its p-adic completion. Let ¢1,...,tq be d elements of O with compatible systems of p-power roots
(t1,p7)neNs -+ 5 (ta,pn Jnen In O% such that the images of t1,...,t; in k form a p-basis. We consider
the Kummer tower (Of,, ,,)(n,m)ent+¢ of O defined by Cyn,ty pn,. .. tgpn (11.4.16). We take again
the notation in I1.4.15.

(I1.5.1.1) K

ot

K<—K
P

Lemma I1.5.2. There exists a complete discrete valuation subfield K' of K with Ok /pOk: = k
such that K is a totally ramified finite extension of K’ and that tq,...,tq € Og.

PROOF. Let 7 be a uniformizer of K. By Cohen structure theorem [EGA IVy, 19.8.8], there
exists a complete discrete valuation ring R extension of Z, with a local injective homomorphism
f : R — Og which induces an isomorphism f; : R/pR — O /mOx = k. We take s1,...,5¢ € R
lifting the images of t1,...,tq € Ok in k respectively. We claim that it suffices to find a series of
homomorphisms (f,, : R/p"R — Ok /7" Ok )n>2 such that f,(s;) =t; and f, lifts f,,—1. Indeed, this
series defines a homomorphism f., : R — Ok by taking limit on n, which sends s; to t; and identifies
the residue fields. Thus, f is finite ([Sta22, 031D]) and thus a totally ramified extension of discrete
valuation rings. The claim follows.

We construct (f,)n>2 inductively. Suppose that we have constructed f,—i. We fix a lifting

]?n,l :R/p"R — Ok /1" Ok of f,_1, and consider the commutative diagram

(II.5.2.1) OK/WTLOKHOK/W"_loK
RN
frn-1 Sr-1
\

Z/p"% ———— R/p"R
There is a map

(I1.5.2.2) HomR(Q%R/an)/(Z/an), 1" Ok /7" O ) — Homgz aig(R/p"R, O /7" Ok)

sending D to ﬁz—l + D odg/pnr- Recall that Q%R/an)/(Z/an) is a finite free R/p™-module with

basis dsi,...,dsq (|[He21, 3.2]). We can take D sending ds; to t; — ﬁt,l(si) as t; = fn—1(s;) by
the induction hypothesis. Taking f,, = fn—1 + D o dg/pn g, we see that t; = f,,(s;) and f, lifts f,,_1,
which completes the induction. 0

Lemma I1.5.3. Let K’ be a subfield of K as in 11.5.2, (Ok: ) n.m)ent+a the Kummer tower of O
defined by Cpn,t1pn, ... tapn (11.4.16).

(1) The extension K, over K' is totally ramified, and Ok: = O [XO]/(%) Ok [Cpn].
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(2) The extension K, ,, over KJ, is weakly unramified, and Or;, == Ok, [X1,. .. X/ (XPT
th,... 7X§md —tq) = Ok/[Cpn,t1pmrs ..., tapma], where m = (m1,...,mq).
(3) The cyclotomic character (11.4.15.2) x : Gal(KY, /K o) = Z,5 is an isomorphism.
(4) The continuous homomorphism (11.4.15.4) £ : Gal(K/,  /K/,) — Z& is an isomorphism.

PrOOF. The first two assertions follow from the fact that p is a uniformizer of the complete
discrete valuation field K’ and that t1,...,ts form a p-basis of its residue field (cf. [Ser79, 1.§6]).
One can deduce easily the last two assertions from the first two by the arguments of 11.4.19. 0

Proposition I1.5.4. The Kummer tower (Ok,, ,.)n m)eni+a satisfies the condition 11.4.19.(1).

Proor. We take K’ as in I1.5.2. Since K is a finite extension of K’, the Galois group A identifies

with an open subgroup of Gal(K, ./K/,). The conclusion follows from II.5.3.(4). O
Remark II.5.5. Let ng € N>y such that K N K/, € K, .. Then, for any (n,m) € ngnﬁ,

the natural map Gal(Ke oo/ Knm) — Gal(K, /K, ) is an isomorphism by Galois theory. In
particular, the conclusion of 11.4.19.(2) for (Ok,, ,..)(n,m)ent+a holds for any (n,m) € N1>J7r1((i) by IL.5.3.

I1.5.6. Recall that the Og-module Q}QK (defined in I1.2.2) is finitely generated whose free part has

rank d, and that Q}QK [1/p] admits a K-basis dlog(t1),...,dlog(ts) (cf. [He21, 3.3]). For simplicity,
we set (cf. 11.2.2)

(11561) gOK = VP(Q%QY/OK) = I&H Q%QV/OK'

TpT

It is a K-module as Q}O? /oy is p-primary torsion ([He21, 4.2]), and endowed with the natural action

of G. For any (spn)nen € VP(FX), we take k € N sufficiently large such that p¥s;,pFs; ' € O (thus
pksfn1 € Of). The element p’%(pks;nld(pkspn))neN € Sov, does not depend on the choice of £,

which we denote by (dlog(spn))nen. Similarly, we define dlog(s) € Q%QK [1/p] for any s € K*.

Theorem I1.5.7 ([He21, 4.4]). There is a canonical G-equivariant exvact sequence of K-modules,
called the Faltings extension of O,

(IL5.7.1) 0— K(1) - o, = K @0, Qb — 0,

satisfying the following properties:

(1) We have 1((Gpn)nen) = (dlog(Cpn))nen- o

(2) Foranys e K* and any compatible system of p-power roots (spn)nen of s in K, 3(dlog(spn))nen) =
dlog(s).

(3) The K-linear surjection j admits a section sending dlog(t;) to (dlog(tipn))nen for any
1<3<d.

In particular, o, is a finite free K-module with basis {(dlog(t; pn))nento<i<d, where topm = Cpn,

on which G acts continuously with respect to the canonical topology (where K is endowed with the
p-adic topology defined by its valuation ring).

PRrROOF. The sequence (I1.5.7.1) is constructed in [He21, 4.4] and (1), (3) are proved there.
Notice that (2) follows from the constructing process [He21, (4.4.5)] (see also 11.9.32 for a detailed
proof). For the “in particular” part, it remains to check the continuity of the G-action. We set
a; = (dlog(tipn))nen € oy for any 0 < i < d. For any g € G and 1 < i < d, we have

(I1.5.7.2) glao) = x(g)ao and  g(a;) = &(g)ao + i,
where x : G — Z) is the cyclotomic character (I1.4.15.2) and § = (&1,...,&) : G — Zg is the
continuous 1-cocycle (I1.4.15.4). The elements ay, ..., a4 generate a finite free Oi—submodule é"gK

of o, which is G-stable. For any r € N, each element of &p, /prggK = ad (K /p"Ox)a; is fixed
by an open subgroup of G, which implies that the map G x (8o, /p’”éagK) — 04/ prcg)g}( (given by
the action of () is continuous with respect to the discrete topology on &p,./ p’"éagK. Taking inverse
limit on r € N, we see that G x p,, — o, is continuous with respect to the limit topology on &o,,
which indeed coincides with the canonical topology (11.2.3). O

Remark II.5.8. The Faltings extension (IL.5.7.1) is functorial in the following sense: let K’ be a
complete discrete valuation field extension of K whose residue field admits a finite p-basis, K — K’
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a compatible embedding of the algebraic closures of K and K’. It defines a natural map 9%97 JOx

Q%QW /O by pullback and thus a natural morphism of exact sequences

(IL.5.8.1) 0 K(1) ——> b0, ——=K 20, Qb,, —0

Lo

00— K'(1) *L>é"oK, *j>ﬁ®ol{, ﬁéw —0

Moreover, if K’ is a finite extension of K, then K’ ®o, Q}DK — K' ®o0,, ﬁbw is an isomorphism
(cf. the proof of [He21, 3.3]). Thus, the vertical maps in (I11.5.8.1) are isomorphisms.

Corollary I1.5.9. The connecting map of the Faltings extension (11.5.7.1) induces a canonical I/(:o—

linear isomorphism

—

(I1.5.9.1) Koo @0, Qb — HY(H,K(1)),
sending dlog(t;) to & ® ¢, where H' denotes the continuous group cohomology, ¢ = (Cpn )nen € Zp(1)
and & = (&1,...,&a) : H — Z2 is the continuous 1-cocycle (11.4.15.4).

PROOF. We remark that the Faltings extension (I1.5.7.1) is an exact sequence of finite projective

K-representations of G, which admits a continuous splitting (not G-equivariant), so that we obtain
a long exact sequence of continuous group cohomologies (cf. [Tat76, §2]). The corollary follows

from Hyodo’s computation of H!(H, K (1)) (cf. [Hyo86, 2-1, 5-1]). We will give a detailed proof in
I1.13.2. O

Remark I1.5.10. A similar result for H(G, K (1)) is given in [He21, 4.5], relying on Hyodo’s com-
putation.

I1.5.11. We set

(I1.5.11.1) Gur = cggén Syrrﬂ;{(@“’oK (1)),

where Sym” is taking the homogeneous part of degree n of the symmetric algebra, and the transition
map Sym” — Sym™ ! is defined by sending [z, ® --- @ z,] to [1 @ 21 @ - -- @ x,,] (where 1 denotes
the image of 1 € K via (I1.5.7.1)). It is a K-module endowed with the natural action of G. There is

a natural G-equivariant exact sequence of K-modules induced by (I1.5.7.1),

(IL5.112) 0 Sym™ (o, (1)) = SymZ(fo, (~1)) = K ®o, (Sym?, QL )(—n) = 0.

The K-module Gy admits a natural K-algebra structure induced by the multiplication morphisms
Sym” ® Sym™ — Sym" "™,

Corollary IL.5.12. We set ¢ = ((pn)nen € Zp(1) and denote by (' € Z,(—1) = Homg, (Z,(1), Z,)
the dual basis of C.

(1) There is an isomorphism of K -algebras,
(IL5.12.1) KTy, ..., Ty = Gur,
sending the variable T; to (d1log(t; pn))nen ® (71 for any 1 <i < d.

(2) If we endow K[Th, . .., Ty with the semi-linear G-action by transport of structure via (11.5.12.1),
then for any g € G and 1 < i < d, we have

(I1.5.12.2) 9(T3) = x(9)"" (&ilg) + T0),
where x : G — L, is the cyclotomic character (11.4.15.2) and & = (£1,...,8a) : G — Zg is
the continuous 1-cocycle (11.4.15.4). In particular, G acts continuously on Sym%(éa@K(—l))
with respect to the canonical topology for any n € N.

(3) The canonical map j in (I1.5.7.1) induces a canonical isomorphism of €ur-modules,

(11.5.12.3) O = i Bo o, (1),

and the universal differential map degyy * Cur — Cur Q04 QEK(—I) sends T; to dlog(t;) ®
¢t for any 1 <i <d.
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ProoF. It follows directly from I1.5.7 and its arguments. g
Definition I1.5.13 (cf. [Hyo89, §1|, [AGT16, I1.15], [Tsul8, §15]). The K-algebra %ur con-
structed in (I1.5.11.1) is called the Hyodo ring of Ok.
Corollary I1.5.14. We have

. n I/(\OO ifqg=0
q 43 _ — )
(I1.5.14.1) cglelénH (H,SymZ (8o, (—1))) { 0 otherwise,

where H? denotes the continuous group cohomology, and Synﬁ;{(é’ok (—1)) is endowed with the canon-
ical topology as a finite-dimensional K-module. In particular, (¢ur)? = I/(O\O

PRrROOF. It follows from the argument of [Hyo89, (1.2.2)], which relies on the cohomological
property I1.5.9 of the Faltings extension. We will give a detailed proof in 11.13.5. O

Remark II.5.15. One can also obtain a similar result for H(G, Sym%(é"ok (—1))) by the argument
of [Hyo89, (1.2.1)].

I1.5.16. Taking a Tate twist of the dual of the Faltings extension (IL.5.7.1) of Ok, we obtain a

canonical exact sequence of finite projective K-representations of G,

(IL5.16.1) 0 — Homo, (0, (—1),K) L5 &5, (1) “5 K — 0

-~

where &5 = Homﬁ(é’oK,K ). There is a canonical G-equivariant K-linear Lie algebra structure on
&6, (1) associated to the linear form ¢*, defined by the Lie bracket for any fi, f2 € &5, (1),

(I1.5.16.2) [f1 fo] = (f1) fa = (o) -

Thus, Home, (ﬁé}((—l)f) is a Lie ideal of &5 (1), and K is the quotient, and the induced Lie
algebra structures on them are trivial. Any K-linear splitting of (IL.5.16.1) identifies &% (1) with

the semi-direct product of Lie algebras of K acting on Hom@K(ﬁ}jK(fl),F) by multiplication.
Let {T; = (dlog(t;pn))nen ® (" }o<i<a (Where tg,m = (pn) denote the basis of &, (—1), and let
{T} }o<i<a be the dual basis of &5 (1). Then, we see that the Lie bracket on &5 (1) is determined
by

K2

(I1.5.16.3) (15,77 =177 and [I7,T;] =0,

for any 1 < 1i,j < d. Indeed, this dual basis induces an isomorphism of %—linear Lie algebras
(IL.5.16.4) K ®q, Lie(Z, x Z%) < &5 (1), 1@ — T,

where {0; }o<i<q is the standard basis of Lie(Z, x Zg) (cf. 11.4.20).

Theorem I1.5.17 ([Bri03, Théoréme 1, 2|, [Ohk11, §9]). The functor

(IL5.17.1) Repl% (I, Koo o) — Repl (G K), Vs Kog, V

cont cont

is an equivalence of categories.
Proposition I1.5.18 ([Tsul8, 14.16]). The functor (cf. 11.4.14)

(I1.5.18.1) RepP') (T, Kuoo) — Rep2 (T, Koo o), V = Koooo Q.. V

cont,A-an cont

is an equivalence.

PrOOF. It follows from the proof of [Tsul8, 14.16]. We note that the lemma [Tsul8, 14.17]
used in the proof holds by I1.4.18, and the lemma [Tsul8, 14.18] holds since any finite field extension
of K is still a complete discrete valuation field. O

Lemma I1.5.19 ([Tsul8, 15.3.(2)]). For any object V of Rep>® (2, K.o), the (3, Koo )-finite part
of Koo @K, V (see11.2.4) is V.

PRrROOF. It follows from the argument of [Tsul8, 15.3.(2)] (cf. I1.10.10). O
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I1.5.20. We shall give an explicit way in I1.5.28 to construct Higgs bundles from representations,
which generalizes [Tsul8, 15.1.(4)]. Firstly, we introduce another Kummer tower more general than
the one considered in I1.5.1. We fix e € N. Leﬂfl, ..., t. be elements of K with compatible systems
of p-power roots (t1,pn)nens - .-, (tepn)nen In K. Conuder the Kummer tower ((’)KM)( Dentte of
Ok defined by Cpn,tNLPn, . ,tNe,pn. We take the notation in I1.4.15 for this Kummer tower by adding
tildes.

(11.5.20.1)

We have the continuous 1-cocycle

(11.5.20.2) £=(&,...,&): G — L,

describing the action of G on ty yn, ..., Lo pn, cf. (I1.4.15.4). We define 1 + e elements in o, (—1) C
Cur by

(11.5.20.3) To=1, Ty = (dlog(typn))n @ 7Y, -+, To = (dlog(Tepn))n @ ¢ L

Similarly to I11.5.12.(2), for any g € G and 1 < i < e, we have

(11.5.20.4) 9(T) = x(9) " (&(9) + T0)-

We remark that de,,, (T3) = dlog(#;) @ (7 € K @0, ﬁbK(—l) by I1.5.7.(2).
Lemma I1.5.21. With the notation in 11.5.20, we write
(I1.5.21.1) (Ty,....,T.) = (Ty,...,T))A+ B

~

as elements of 6o, (—1) C Gur, where A = (a;;) € dee( ), B = (bj) € Mixe(K). Then, A €
Mgxe(K), and we have

(I15.21.2) (€ &) = (€1, E)A

~

as vectors with value in the continuous group cohomology group H*(H,K). In particular, we have
(I1.5.21.3) dim(A) > rank(A).

PROOF. Notice that (deyy (T1), -, degyr (1)) = (Aeiyr (T1), - - - digyyr (Tu)) A and that digyey (T1), - - -, digyer (Ta)
form a basis of K ®o, Qf, (—1). Thus, A € Mgy (K) as dggHT( 3) = dlog(ty) @ ¢! € K Qo
ﬁbK(—l). We act on (I1.5.21.1) by g € G, then by (11.5.20.4),

(IL5.21.4) (&1(9), - &c(9)) = (&1(9),- .-, €al9)) A + x(9)9(B) — B.

Thus, (I1.5.21.2) follows from the fact that x(H) = 1 and the map H — K sending g to g(b;) — b; is
a l-coboundry. In particular, the image of the composition of the natural maps

(IL5.21.5) Hom(A,Q,) — Hom(H,Q,) — H'(H,K)

contains (&1,...,&4)A. Since &1,...,& form a K o-basis of Hl(H,%) by (I1.5.9.1), we see that
dim(A) > rank(A). O

Proposition I1.5.22. With the notation in 11.5.20, the following conditions are equivalent:

(1) The group A has dimension e, i.c. the Kummer tower ((’)Kn_l)(n,DGNue satisfies the condi-
tion 11.4.19.(1).

(2) The 1+ e elements Ty, T, -, To of o, (—1) € Gur are linearly independent over K.

(3) The e elements dty,...,dt, of (AZ}QK [1/p] are linearly independent over K.
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PROOF. It is clear that (2) and (3) are equivalent by the splitting of the Faltings extension defined
in I11.5.7.(3). We see that (3) implies (1) by (II.5.21.3). It remains to check (1) = (2).

We set oy = T} ®( € o, (0<i<e). Let I € N be the smallest integer such that «;,, ..., «a;, are
linearly dependent for some 0 < iy < --- < 4; < e. Assume that [ > 1. We write ;, o, +- - -+x;,05, = 0

for some x;,,...,2; € %\ {0}. By (11.5.20.4), for any g € G and 1 < i < e, we have

(I1.5.22.1) glao) = x(g)ao  and  g(a;) = &(g)ap + o
We consider the cases where i3 = 0 and i; > 0 separately.
If iy = 0, then we may assume that (i1,42,...,4) = (0,1,...,0 —1). Since ag # 0, we have [ > 1
and we may assume that z;_; = 1. Thus,
(I1.5.22.2)

-1 -1
0= inai - g(z Ti00)
i=0 i=0

-1
= (300 = x(9)g(z0) — Zg(g)g(:vl)> ag + (21— g(z1))ar + -+ + (@12 — g(T1-2))u—2.
i=1

By the minimality of [, we have xg = x(g)g(zo) + Ei: E(9)g(xs), o1 = g(x1), ..., T1_o = gla1_2).
Thus, z¢ = x(g)g(xo) + Zi;i &(g)a;, which is a contradiction as we can take (x(g),&1(9), ..., &(g))
running through an open subgroup of 0 x Z; by varying g in A.

If 41 > 0, then we may assume that (i1,42,...,%) = (1,2,...,1) and that 2; = 1. Thus,

l l
(I1.5.22.3) 0=> wia; —g()_ wia;)
=1 1=1

-1
= < ngi(g)g(l“i)> o + (z1 — g(z1))o + -+ + (-1 — g(T1-1) ) v 1.

We get a contradiction in a similar way. 0

I1.5.23. Following I1.5.20, we assume that the equivalent conditions in II.5.22 hold, and we take the
notation in I1.4.20 by adding tildes. Recall that for any object W of Repoi (I, K o), there is a

cont

canonical Lie algebra action induced by the infinitesimal action of T on W defined in (1I1.4.16.1),

(I1.5.23.1) ¢ Lie(I') = Endg,  (W).

Let & € Lie(iop\g) and 1, ...,0. € Lie(A) be the standard basis defined in 11.4.20, and we put for
any g € G,

~ d -
(I1.5.23.2) oy =log(x(9))es,, and  ¢5=> &(9)es,
=1

Lemma I1.5.24. Under the assumption in 11.5.23 and with the same notation, the map

~

(IL5.24.1) V2 65, (1) = Hom= (80, (—1), K) — K g, Lie(T),

sending f to Zf:o f(ﬁ) ® 51-, is surjective and induces a morphism of exact sequences of K -linear
Lie algebras

*
~ 7 ¥

(11.5.24.2) OHHomoK(QéK(*l)aﬁ) —65,.(1)

i 5 |

00— K ®q, Lie(A) K ®q, Lie(T') — K ®q, Lie(Z) —= 0

where the first row is (11.5.16.1).

PROOF. The surjectivity of ¢ follows from I11.5.22.(2). It remains to check v is compatible with
Lie brackets. With the notation in I1.5.21, we have

(11.5.24.3) Y(T) =0+ bidj, and Y(T7) = a;d;, V1<i<d,
j=1

Jj=1
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where (T7,...,T5) is the dual basis of (Tp,...,Ty) defined in I1.5.16. Thus, [(T}), ¥(T7)] = (T})

K2

and [¢(T7),¥(T;)] = 0 for any 1 < i,j < d, which completes the proof. O

Remark I1.5.25. The first vertical map in (I1.5.24.2) can be defined without taking bases. Consider
the canonical maps

(IL.5.25.1) Hom(A,Q,) — Hom(H, Q,) — H'(H,K) - Ko ®0, Qb (1)

where the first arrow is induced by the surjection H — ﬁ and the last arrow is induced by the
connecting map of the Faltings extension of O (IL.5.9.1) Wthh sends &; to deg,. (T;) for any 1 <4 < d.
Thus, the composition of (IL.5.25.1) sends & to dchT( ;) for any 1 < ¢ < e by I1.5.21. Since {51}1<1<e

is the dual basis of the basis {81}1366 C Lie(A) by construction, the composition of (I1.5.25.1)
induces a natural injective K-linear map

(11.5.25.2) Homg, (Lie(A), K) — K ®0, (b, (1)
which sends f to 3¢_, f(9;) ® degyr (T3). Tts dual is a natural surjective K-linear map
(11.5.25.3) Homo, (5, (—1), K) — K ®q, Lie(A)

which sends f to D7 ; f(dgyr (T})) ®9;, and induces the first vertical map in (11.5.24.2) by extending
scalars.

I1.5.26. Let (C,O) be a ringed site, M an O-module. A Higgs field on an O-module F with coef-
ficients in M is an O-linear morphism 6 : F — F ®» M such that (1) 0 § = 0, where () is the
O-linear morphism F ®o M — F @0 A’ M defined by 0 (z ® w) = 6(x) A w for any local sections
x of F and w of M.

If M is a finite free O-module with basis wy, .. .,wy, then to give a Higgs field 8 on F is equivalent
to give d endomorphisms 6; (1 < ¢ < d) of the O-module F which commute with each other. For any
local section x of M, we have

(115261) G(x) = 01(1’) Qwy+ - ed(l') ® wq.

We call the d-tuple (61,...,604) the coordinates of the Higgs field 6 with respect to the O-basis
w1, ..., wg of M.

Assume that M is a finite projective O-module. We say that a Higgs field 6 on an O-module F
is nilpotent if there is a finite decreasing filtration by O-submodules F = F° D F1 D ... D F* =0
such that 0(F") C Fit! @0 M for any 0 < i < n.

One checks easily by I1.5.12 that the universal differential map

(11.5.26.2) degyr © Gur — Gur Qoy ﬁéK(—l)
is a G-equivariant K-linear Higgs field on the K-module $yr with coefficients in K ®¢ ﬁbK (—1).

Definition II.5.27 (cf. [Tsul8, page 872]). We define a category HBnﬂp(Z,KOC,@}QK(—l)) as
follows:
(1) An object (M, p,0) is a finite projective K .-representation (JAW, p) of ¥ (cf. 11.2.4) endowed
with a K.-linear nilpotent Higgs field 6 : M — M ®o, Q, (—1) (with coefficients in
Ko ®o (AZ}QK(—l)) which is Y-equivariant (i.e. 6o p(o) = (p(o) @ x~1(0)) o 6 for any
oe€).
(2) A mosphism (M,p,0) — (M',p',0') is a Y-equivariant K.-linear morphism f : M — M’
which is compatible with the Higgs fields (i.e. 8’ o f = (f ® 1) 0 0).
It is an additive tensor category, where the tensor product is given by (M, p,0) @ (M’',p',0") =
(Mo M,p2p,001+12¢).
Proposition I1.5.28 (cf. [Tsul8, page 873]). ynder the assumption i 11.5.23 and with the same
notation, let (V,p) be an object of ReplcDrOJ ~ (I, Kw).

ont,A-an

(1) For any g € T, we set

(I1.5.28.1) p(g) = exp(—25)pl9).

Then, p|x =1 and ﬁ|§0@ = p|§:010~0. Moreover, (V,p) is an object of RepE) (3, Ko ).

cont
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(2) The Koo-linear homomorphism
(11.5.28.2) Oy -V — V @0, Qb (—1), v — Z ©5,(0) @ degyyr (T2)

is a nilpotent Higgs field which is %-equivariant via p.
Therefore, there is a functor

(11.5.28.3) Rep”™ - (T, Koo) — HByitp (%, Koo, U, (=1)), (V,p) = (V,5,6v),

cont,A-an
which relies on the choice of ty, ..., te.
PROOF. (1) Notice that the infinitesimal Lie algebra action of Lie(A) on V' (11.4.13),
(I1.5.28.4) Lie(A) — Endg_ (V),
is nilpotent by I1.4.11 and I1.4.18 (whose assumptions are satisfied as K is a complete discz?te valua-
tion field). Thus, exp(—gog) and p(g) are well-defined endomorphisms of V. Since (V, p) is A-analytic
(I1.4.14), if g € A then p(g) = exp(p,) = exp(gpg) as cpg|£ = ¢|x. Thus, p(g) = idy. It is clear that

p is continuous and K.-semi-linear. It remains to show that p(g192) = p(g1)p(g2) for any g1, g2 € r
(so that p is a K.-representation of I'/A = X).

(I1.5.28.5) p(g192) = exp(— Z& (9192)5,)p(9192) (by (I1.5.23.2))

i=1
e

=exp(— > _(&(g1) + x(91)&(92))95,)p(g192)  (by (I1.4.15.5))

= exp(— Z &(91)¢5,)p(g1) exp(— Z &(g2)95,)p(g2) (by (IL4.17.1))
= p(g1)p(g2)-

(2) Since the endomorphisms ¢z on V' are nilpotent and commute with each other, 6y is a
nilpotent Higgs field. It remains to check the ¥-equivariance of 8y . For v € V and g € f, we have
(I1.5.28.6)

p(9)(0v (v)) = exp(— Z& Zsoa ) ® digr (T5))  (by (I1.5.23.2))
= exp(— Zé(g Z (v)) @ x(9) " dir () (by (IL4.17.1))
i=1 j=1
=-> g, (exp(— Zfz (v)) ® dgyyr (T;)  (as 05,95, = $5,%5,)
=1
= 0v (p(g)(v)).
U
Remark I1.5.29. (1) The minus sign in the definition of v is designed for 11.5.31.(4) (cf.
11.5.33).
(2) There is another definition for the Higgs field 6y (I1.5.28.2). Consider the canonical maps
(11.5.29.1) V —s Homg, (Lie(A), V) — V @0, Qb (~1),

where the first map is induced by the infinitesimal Lie algebra algebra action of Lie(ﬁ) on
V which sends v € V to (8 ¢ 5(v)), and the second map is induced by extending scalars
from the canonical map (I1.5.25.2) which sends f to > ;_; £(0;) ® degyr (T}). Tt is clear that
the composition is —0y .

I1.5.30. Let M = (M, p,0) be an object of HBij,(X, Ko, Q%QK (=1)). On the Gyr-module €ur @K
M, we define a semi-linear action of G by the diagonal action g ® g for any g € G with image g € 3,
and a G-equivariant K-linear Higgs field de,,, ® 1 +1®6 with value in K ®0,, (AZ%QK (—1). In particular,
its K-submodule

(I1.5.30.1) V(M) = (Gur @k M) enr©1H190=0
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is endowed with the induced semi-linear action of G.
Let W = (W, p) be an object of RepP'% (G, K). On the %yr-module G ®= W, we define a

cont

semi-linear action of G by the diagonal action ¢ ® ¢ for any ¢ € G, and a G-equivariant K-linear
Higgs field de, ® 1. In particular, its K.-submodule

(I1.5.30.2) D(W) = (($ur ®= W)H ) (S Koo)-fini

where (—)Keo)-fini i taking the (X, Ko )-finite part (cf. 11.2.4), is endowed with the induced semi-
linear action of ¥ and the induced X-equivariant K -linear Higgs field with value in Koo ®0 (AZ}QK (-1)
(cf. 11.5.14 and I1.5.19).

We remark that the definitions of V and DD do not depend on the choice of t1,..., 4.

Theorem I1.5.31 (cf. [Tsul8, 15.1]). We keep the notation in I11.5.1.

(1) For any object M of HBiip (2, Koo, Q%QK(—l)), V(M) is a finite-dimensional K -module on
which G acts continuously with respect to the canonical topology (thus V(M) is an object

of Rep™™® (G, K)). Moreover, the canonical €yr-linear morphism (which is G-equivariant

and compatible with Higgs fields by definition)
(11.5.31.1) Cur ®% V(M) — Gur @, M

is an isomorphism.
(2) For any object W of RepP™i(G, K) D(W) is a finite-dimensional K-module on which

cont
Y acts continuously with respect to the canonical topology (thus D(W) is an object of
HB.i1p (2, Koo, U, (—1))).  Moreover, the canonical €ur-linear morphism (which is G-

equivariant and compatible with Higgs fields by definition)
(11.5.31.2) Gur QK. D(W) — Gur ®% w

is an isomorphism.

(3) The functors

~

: = D ~
(11.5.31.3) Repioit (G, K) —= HB,i1p(2, Koo, Qp, (—1))

cont
v

are equivalences of additive tensor categories, quasi-inverse to each other.
(4) Under the assumption in 11.5.23 and with the same notation, let (V,p) be an object of
Rep”™ — ([, Ky ), M = (V,p,0v) the object of HBpinp (3, Koo, Qb (—1)) defined by the

cont,A-an

functor (11.5.28.3). Then, there exists a natural G-equivariant K -linear isomorphism

=D

(11.5.31.4) VM) = Kok, V

oo

which depends on the choice of t1,. .., te.

Proor. We follow the proof of [Tsul8, 15.1]. We identify €T = [Tl7 .., Ty] by (11.5.12.1).
(1) Let 0 : M — M ®0, QOK( 1) denote the K -linear Higgs field of M. We write

(11.5.31.5) Ze ) @ degyr (T3), YV € M,
of
(II5316) d‘KHT(f) - 8T ®d<za”HT( ) Vf ecgHTa
where 0; (resp. aiTi) are Koo-linear (resp. %—linear) endomorphisms of M (resp. %ur), which

commute with each other. Since 6; are nilpotent by definition, we can define a ér-linear isomorphism

d
(I1.5.31.7) v=exp(— Y Ti®0;) : Gur @k, M — Gur @k, M,

i=1
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whose inverse is given by (! = exp(z:f:1 T; ® 0;). We claim that the following diagram is commu-
tative.

dngT ®1

(IL5.31.8) Gur @k, M Gur Ok, M @0, U, (-1)

L \LL@I

degyyp ©14+106
Cur Ok, M —— bur Ok, M Qo QO ( 1)
Indeed, we have

d

(11.5.31.9) (degr ® 1) 0 exp(d_Ti ® 0;)
=1

d d d
:exp(z T; ®0;) 0 (d%HT ® 1) + Z (exp(ZTi ® 91) o(l® 0])) @ gy (TJ)

i=1 j=1 i=1
d
=(exp(>_Ti®6;) @1) 0 (degyyy @ 1+ 1),
i=1
Thus, the restriction of ¢ induces a K-linear isomorphism

(1153110) Lo ZF@KOO M = (chT K., M)d%HT®1 =0 _> V( ) (%HT ®K., M)d%”HT®1+1®9:07

from which we see that V(M) is finite-dimensional over K and thus contained in the finite-dimensional
K-submodule Sym%(é”@K (-1)®Kk. M of Gur®xK., M for some integer n > 0. Since V(M) is a direct
summand of Synﬂ;{(&gK (—1))®K. M, the topology on V(M) induced from Sym%(é‘bk (-1) @k, M

coincides with the canonical topology as a finite-dimensional K-module. Since G acts continuously
on Sym%(éaoK(—l)) ®K.. M by I1.5.12.(2), it acts also continuously on V(M) with respect to the

canonical topology, which means that V(M) is an object of Rep®™% (G, K K). Finally, notice that the
composition of the ¥yr-linear maps

idegr ®to (I1.5.31.1)

(I1.5.31.11) Cur O, M

ur ®% V(M)

Gur O, M

is the isomorphism ¢. Thus, (I1.5.31.1) is an isomorphism, which completes the proof of (1).
(4) Since the K.-endomorphisms ¢z (1 < i < e) on V are nilpotent and commute with each
other, we can define a ¥yr-linear isomorphism

(I1.5.31.12) g=exp(—= Y T;®p5) : Gur @k, M = Gur @k, V,
=1

whose inverse is given by ;7! = exp(}_;_, T, ® ¢35 ). We claim that j is G-equivariant. Indeed, for
any g € G and x € M, we have

(11.5.31.13)

g1 ®x)) = exp(— Z x(g )+ T) (g)gﬁgi)(l ®p(g)(z)) (by (I11.5.20.4), (I1.4.17.1))

:exp ZT@(pa eXp Zl®€z 1®p( )( ))

i=1

=1 @n(g)(x)) (by (H~5-23-2))-

On the other hand, by the same argument as (I11.5.31.9), we see that j is compatible with Higgs fields,
i.e. the following diagram is commutative.

de 1410
(IL5.31.14) Gt O, M~ Gy @, M @0, O, (—1)

J l]@l

degpp ®1 ~
Gur Ok, V - Gt k.. V @0y, o, (—1)
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Thus, the restriction of j induces a G-equivariant K-linear isomorphism
(IL5.31.15) V(M) = (Gur @k M)dear@1HO0v=0 =, B oV = (Gur Qx. V)Ienr@1=0,

(2) We apply (4) to the case where e = d and (ty,...,t.) = (t1,...,tq) (with the same p-power
roots). By I1.5.17, 11.5.18 and (4), we see that the functor V is essentially surjective. Thus, we may
assume that W = V(M) for some object M of HBnilp(E,Koo,ﬁ}QK(—l)). Taking the H-invariant
part of the isomorphism (I1.5.31.1), by 11.5.14 we get a canonical isomorphism

(I1.5.31.16) (Gur @= W) = Ko 0, M.

Taking the (3, K )-finite part, we get by I11.5.19 a canonical Y-equivariant K.-linear isomorphism
D(W) —s M compatible with Higgs fields, which completes the proof of (2).

(3) The proof of (2) shows that the canonical morphism D oV — id is an isomorphism. Taking
the Higgs field zero part of the isomorphism (I1.5.31.2), we see that VoD — id is an isomorphism.
Using the isomorphisms (I1.5.31.1) and (I1.5.31.2), we see that V and D are compatible with tensor
products. This completes the proof. O

Remark I1.5.32. Let L be a complete discrete valuation field of characteristic 0 with perfect residue
field of characteristic p. If O is the p-adic completion of the localization of an adequate Op-algebra
A at some p € G,(A) (cf. 11.9.5), then I1.5.31 (except (4)) is a special case of [Tsul8, 15.2].

Remark I1.5.33. Our construction of (II.5.28.2) has a sign difference with Tsuji’s. The essential

reason is that the G-action defined by Tsuji on the Hyodo ring éur = K|[T1,...,Ty] is given by
9(Ty) = x(9) "' (=¢&i(g) + T3) (cf. |Tsul8, page 872] and 11.14.6).

Lemma I1.5.34. Under the assumption in 11.5.23 and with the same notation, let (V,p) (resp.
(V,p')) be an object of Rept.? (T, Ky) (resp. Rep™™ - (T, Ky)). Consider the Ko -linear

cont,A-an cont,A-an

endomorphisms {@a,|v }o<i<a on V (resp. {@@}Ogigd on ‘7) defined by the infinitesimal Lie algebra
action of Lie(T') (resp. Lie(I')). We write

(I1.5.34.1) (Ty,...,T.) = (Ty,...,Ty))A+ B

as elements of o, (—1) C Cur, where A = (a;;) € Maxe(K),B = (b;) € Mlxe(%) (cf. 11.5.21).

~

Assume that there is an isomorphism B : K Q. V= K®k,_Vin Reppmj (G,K). Then, there

cont

are identities of K -linear endomorphisms

(I15.342) Bl o(1®palv,...,1®ps,lv)0B= (1895 l5: ... 1@ ¢z [5)AT,

(I1.5.34.3) B o(1®galv)oB=1®p5ly + (1@ w5 lp,---, 1 © 95 |5) BT,
where AT and BT are the transposes of A and B.

PROOF. Let M = (V,p,0y) (resp. M= (‘7,?, 65)) be the object of HBnilp(Z,Koo,ﬁ}gK(—l))
defined by the functor (I1.5.28.3). Consider the commutative diagram

(IL.5.34.4) Gur O M —L> Gy 0 V
310(1®/3)0J~l ll@ﬂ
Gur Ok, M —2> Gur Ok, V
where 7 = exp(— Z?:l T; @ po,|v) (resp. J=exp(—> i, T, ® ¢3,|y7)) is the Gyr-linear isomorphism
defined in (I1.5.31.12). Notice that
(I1.5.34.5) (ur @, M)T)EKerfint — (K M) e find = pp

where the first equality follows from I1.5.14, and the second equality follows from I1.5.19. Since 1® §3,
7 and j are G-equivariant and compatible with Higgs fields by the proof of I1.5.31.(4), 7 1o (1® )07
induces a Y-equivariant K.-linear map compatible with Higgs fields,

(I1.5.34.6) h:M = ((Gur @k M)T)SKo)fin __ ((Gp @ M) ) Koo)fini — pp

)

so that we actually have 377! o (1® ) 0 7= 1 ® h (we remark that h = D(1 ® 3)).
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Notice that ¢g, (pa,|lv +mn) for any n € Nand 1 < i < d by (11.4.17.2). Thus,

we have
(I1.5.34.7) 7 o (1®pg,lv) oy
d
) ( ® 9030|
i=1
d d d
—exp(Y T ® pa,|v) o exp(— o (1® palv — v)
i=1 i=1 i=1
d
=1® [2r |V -
i=1
Since h is compatible with Higgs fields, we have > 7_, (h o s, l7) ® degyer (T, i) = Zle( v oh)®

di,. (T3) by the definition (I1.5.28.2). Notice that (deg,. (T1), - ., dge (T2)) = (digyy (T1), - - -, deger (T)) A
and that degyp (Th), - - -, Ay (T4) are linearly independent. Thus, we have

(I1.5.34.8) (poylv oh,....09,lvoh)=(hoyzl|y,....,ho (,056|‘7)AT,
which implies (I1.5.34.2),
s, . =F'ls, . by 11.5.28.(1), we have an identification

& respectively. Since

(11.5.34.9) 5,7 = ©5,l5 € Bndg (V) = Endy (M),

where @3 | is given by the infinitesimal action of do € Lie(ioygg) via p" on V', and 3 |57 is given by
the infinitesimal action of &y € Lie(iov%) = Lie(X) via p’ on M. Similarly, we have @a,|v = @a, |-

Since h : M — M is S-equivariant, we deduce that h o ©3,l7 = $aolv o h by 11.4.9.(3). Using these
properties, we have

(I1.5.34.10) (1@ h)" o (1@ palv —

v)o(1®h)
i=1

d
=1® ¢, |y — > T @ (h " opy|voh)

=1
d e
=l®pgly =) > Tay @ esly
i=1 j=1
=1® ¢5,ly = (L) — b)) ® 95,15
=1

By the argument of (11.5.34.7), we see that
(IL5.34.11) To(l®eslp =Y (T =)@y lp)eT ' =10e5 |y + Y bi@esly
j=1 j=1

which completes the proof. O

Theorem 11.5.35. Let K be a complete discrete valuation field extension of Q, whose residue field
admits a finite p-basis, G = Gal(K/K). Then, for any object W of Rep™® (G, K) there is a

cont

canonical homomorphism of K-linear Lie algebras (see 11.5.16)
(I1.5.35.1) OSen|w : 65, (1) — End?(VV)7

which is G-equivariant with respect to the canonical action on &5 (1) defined in 11.5.16 and the
adjoint action on Endﬁ(W) (i.e. g € G sends an endomorphism ¢ to go ¢ og~1), and functorial in
W, i.e. it defines a canonical functor

~

(I11.5.35.2) Psen : Repl2 (G, K) —s Rep™™i (&5, (1), K),

from the category of finite projective (continuous semi-linear) K -representations of the profinite group

G to the category of finite projective K -linear representations of the Lie algebra &5, (1),
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Moreover, under the assumption in 11.5.23 and with the same notation, assume that there is
an object V of Rep™™ - (I, Ku) such that W = K ®@x_ V. Then, for any f € 65, (1) =

cont,A-an
Hom= (8o, (— 1),?),

€

(11.5.35.3) psenl (F) =D F(T) @ 95 |-
=0

PROOF. Recall that the base change functor

(IL.5.35.4) Rep?™ (I, Ko) — Rep?™ (G, K), Vs K @ V.

cont,A-an cont

is an equivalence by I1.5.17 and I1.5.18. Thus, there is an essentially unique object V of Rep?*® (T, Ky)

cont,A-an

such that W = K ®Kr., V. We claim that pgen|w defined by the formula (I1.5.35.3) does not de-
pend on the choice of V and (so that wgen|w is canonically defined by the essential surjectivity of
(I1.5.35.4), and functorial in W by the fully faithfulness of (11.5.35.4)). With the notation in I1.5.34,

for any f € Hom%(é"ok(fl),F), we have

(IL.5.35.5) (F(T0), F(T1), -, F(T) @ (03,05, 95.)"

U@ @, ST (5 ) 0 og0m,0e )"

:(f(TO)vf(Tl)v .- ’f(Td)) ® (4103()’90817 i '7903d)T

where the last equality follows from I1.5.34, which proves the claim.
Notice that the map pgen|w defined by (11.5.35.3) fits into the following commutative diagram

@SenlW

(I1.5.35.6) &5, (1) End= (1)

X @:\v
K ®q, Lie(T)

where ¢ is the surjection (I1.5.24.1), ¢l : Lie(T') — Endg_ (V ) is the infinitesimal Lie algebra algebra

action (I1.4.16.1). This shows that @gen|w is a morphism of K-linear Lie algebras.
It remains to check the G-equivariance of @gen|w. For any g € G, we have

(I1.5.35.7) gowz og ' =x(9)ps, V1 <i<e,
e
(I1.5.35.8) gops 09 =wz — Y &i(9)es,

where the first follows from (I1.4.17.1), and the second follows from I1.4.21 and the identity g(goog_l) =
£(9)(1 — x(00)) for any o¢ € Xg,o by (11.4.15.5). Therefore,

(I1.5.35.9)
Gsenlw (g - f) Zg ) ® 3,
=(g@1) (f(fo) ® ¢z, + Z X(@)(F(T) + &g f(Th) @ @5,) (by (I1.5.20.4))
=(g®1) (f ® (05, — Z&Z )Z f(T) ® %) (by (I1.4.15.5))
=Zg(f(i-)) ®(gowz 09 ") =gopsenlw(f)og™!
which shows the G-equivariance. O

Remark I1.5.36. The same argument also shows that the K-linear map

(I1.5.36.1) W — W ®= o, (1)
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€

sending x to Ei:o(idﬁ ® @z |7)(T) ® T;, is G-equivariant and does not depend on the choice of V or
t;. Tt naturally induces the map Ysen|w (I1.5.35.1). We note that it is not a Higgs field.

Definition I1.5.37. Let W be an object of Rep2® (G, K). We denote by ®(W) the image of

cont
©sen|w, and by ®8°(W) the image of Hom@K(ﬁéK(—l),f) under @gen|w. We call an element of
d(W) C End%(W) a Sen operator of W. We call an element of ®&*°(W) C End%(W) a geometric

Sen operator of W. And we call the image of 1 € K in QW) = ®(W) /(W) the arithmetic
Sen operator of W.

Namely, we defined a canonical morphism of exact sequences of K-linear Lie algebras

"
J I’

(IL5.37.1) 0 —— Homo, (O, (~1),K) —2= &, (1) 11(

Eeo (1Y)

0

which factors through (I1.5.24.2) under the assumption of (II.5.35.3).

Proposition I11.5.38. Let K’ be a complete discrete valuation field extension of K whose residue
field admits a finite p-basis, K' an algebraic closure of K' containing K, G' = Gal(K'/K'), W an
object of RepE™ (G, K), W' = K’ ®=W the associated object of Repl(G',K). Assume that

K' ®0, Q}DK - K' ®o0,, Q%QK, is injective. Then, there is a natural commutative diagram

PSen ‘ w!

(I1.5.38.1) 5., (1) End— (W)

i |

— idﬁ@%SenlW —
K@= 65, (1) K@= Endﬁ(W)

where Ysen are the canonical Lie algebra actions defined in 11.5.35, the left vertical arrow is the
surjection induced by taking dual of the natural injection K’ ®= Eox(—1) = Eo,.,(—1) (cf. 11.5.8),
and the right vertical arrow is the canonical isomorphism. In particular, the inverse of the right
vertical arrow induces a natural isomorphism

(11.5.38.2) (W) — K' @= ®(W)
which is compatible with geometric and arithmetic Sen operators.
PRrROOF. Let t'm,n, e 7t:i,p" € K’ be the images of Lipny..oytgpn € K. Then, there is a commu-
tative diagram
G/
% o

Since dlog(t),...,dlog(t,) are K’'-linearly independent in K’ ®o,, ﬁ}oK, by assumption, A’ is
also of dimension d by I1.5.22. In particular, we have a natural isomorphism Lie(T") — Lie(T)
which identifies their standard bases {0)}1<i<q and {9;}1<i<q defined in 11.4.20. Let V be an

object of RepP'®l (I, Ks) such that W = K ®k_ V. Then, the object V! = K. ®x_V

cont,A-an

of Rep™™ (I, K.,) satisfies that W’ = K’ ®g,_ V'. By IL4.11, the natural identification

cont,A’-an
Endﬁ(W’) = K’ ®= Endﬁ(W) identifies id= ® vy with d= © ©o,|V. This shows that the
diagram (11.5.38.1) is commutative which induces an isomorphism (I1.5.38.2). O

Lemma I1.5.39. Let W be an object of Rep® (G, ).

cont

(1) Geometric Sen operators of W are nilpotent and commute with each other.
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(2) If p € (W) is a lifting of the arithmetic Sen operator and 0 € ®&°(W) is a geometric Sen
operator, then [¢,0] = 6.
(3) Moreover, we have (W) =0 and §(WH) = 0.

PRrROOF. (1) follows from I1.5.28.(2) and the definition of geometric Sen operator (11.5.35.3). (2)
follows from the Lie algebra structure of &%, (1) defined in I1.5.16. (3) follows from the definition of
Sen operators, and we will give a detailed proof in I1.11.12. O

Lemma I1.5.40. Any object W of Repcp;fli(G,F) admits a canonical and functorial finite ascending
filtration {F, }nen stable under the Lie algebra action pgen|w (11.5.35.1) such that any geometric Sen
operator sends Fp, 1 W into F,,W. In particular, the arithmetic Sen operator of W acts naturally on
the graded object Gr¥ W = @neNGrEW, where GrSW =F,W/F,_W.

Proor. We set FoW = 0, and

(I1.5.40.1) FiW= () Ker(0).
gedseo (W)
By I1.5.39, one checks easily that F1W is stable by any Sen operator of W. If W # 0, then F1 W

is non-zero, as # is nilpotent. It is also functorial in W by I1.5.35. Then, for any n € Nyq, F,,W is
defined inductively by Gry W = F1(W/F, 1 W) = Npe o) Ker(Olwye,_,w)- O

Proposition I1.5.41. Let W be an object of Reppmj(G,%). Any lifting of the arithmetic Sen

cont
operator ¢ € ®(W) of W has the same characteristic polynomial, whose coefficients are in K.

PRrROOF. By I1.5.40, there exists a K-basis of W with respect to which the matrix of ¢ is upper
triangular and the matrix of any geometric operator 6 of W is strictly upper triangular. We see that
¢ and ¢ + 6 have the same characteristic polynomial. The coefficients of this polynomial lie in K by
[Bri03, Proposition 5.(a)]. O

Lemma I1.5.42. Let F be a field, V,W two F-linear spaces, ® C W Q@ V a subset, Fo = {f €
Homp(V, F) | fw(®) = 0}, where fw =idw ® f € Homp(W @ V,W). Then, Vo = ¢z, Ker(f)
1s the smallest F-linear subspace V' of V' such that ® C W @ V'. Moreover, an F-linear subspace
V' of V' is equal to Vg if and only if Fo is equal to Fy» = {f € Homp(V, F) | f(V') = 0}.

PRrROOF. Firstly, we claim that ® C W ®p V. Consider the exact sequence

(Nress
(I1.5.42.1) 0 Ve Vv ergq, F.

Since W is flat over F', we have an exact sequence

(idw®f)

(IL.5.42.2) 0—=WarVe ——>WerV ——""2War ([, F)
Since W @ ([ ez, F) € ez, W, the subset ® C W ®p V' is mapped to zero in (11.5.42.2), which
proves the claim.

Secondly, for any F-linear subspace V' of V, it is clear that V' C FE Ker(f). This is actually
an equality, since for any element v € V' \ V' there exists f € §y~ such that f(v) # 0.

Assume that ® C W ®p V', Then, Fy/ C Fo so that Vg = ﬂfe&p Ker(f) C ﬂfesv/ Ker(f)=V".
It shows that Vg is the smallest F-linear subspace V' of V such that ® C W ®p V’. In particular,
we have v, C Fo. On the other hand, the definition of Vg implies that §o C Fv,. Thus, Fv, = Fo
and the final assertion follows. O

Theorem I1.5.43 ([Sen81, Theorem 11|, [Ohk14, 3.1]). Let I be the inertia subgroup of G, (V,p)
an object of Replrol(G,Q,), W = K ®q, V the associated object of Rep™% (G, K). Then, Lie(p(I))

cont

is the smallest Qp-subspace S of Endg, (V) such that the space of Sen operators ®(W) is contained
in K R, S.

Remark I1.5.44. We don’t know whether or not Lie(p(I N H)) is the smallest Q,-subspace S of
Endg, (V) such that the space of geometric Sen operators ®&°°(W) is contained in K ®q, S, where
H = Gal(K/Kx). Recall that Sen-Ohkubo’s proof of 11.5.43 relies on Sen’s ramification theorem on
a Galois extension of a complete discrete valuation field whose Galois group is a p-adic analytic group

([Sen73, Lemma 3], [Ohk14, 1.3]). Thus, it seems that we couldn’t apply their techniques directly
to this question. Nevertheless, we have the following weaker result.
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Corollary I1.5.45. With the notation in 11.5.43, the space of geometric Sen operators ®&° (W) is
contained in K ®q, Lie(p(I N H)).

PROOF. Note that ®&°(W) = [®(W), ®(WW)] by the Lie algebra structure on & (1) (cf. 11.5.16),
and that [Lie(p(I)),Lie(p(I))] C Lie(p(I N H)) as I/(IN H) C G/H = X is abelian. The conclusion

X

follows directly from the fact that ®(W) C K ®q, Lie(p(I)) by I11.5.43. O

I1.6. Extending Sen operators to Infinite-Dimensional Representations

We extend Sen operators to certain infinite-dimensional representations and their completions
over a complete discrete valuation ring. The goal is to show that geometric Sen operators still
annihilate the Galois invariant part of the representation.

I1.6.1. By saying that a topological abelian group M is “complete”, we always mean that it is sepa-
rated and every Cauchy net of M admits a limit point ([GRO04, 8.2.6]). The forgetful functor from
the category of complete topological abelian groups to the category of topological abelian groups ad-
mits a left adjoint, called the completion and denoted by M > M. The canonical map M — M has
dense image and induces the topology on M from that of M (|GRO4, 8.2.8]). The adjoint property
implies that for any continuous group homomorphism of topological abelian groups f : M — N, there
is a unique continuous group homomorphism of the completions f: M — N making the following
diagram commutative

(IL6.1.1) M—LonN
~ 7 X
M ——N
where the vertical arrows are the canonical maps. We call fthe continuation (or completion) of f.

I1.6.2. We briefly review the definition of normed modules mainly following [Tsul8, §5|, and we also
refer to [BGR84] for a systematic development. A (non-Archimedean) norm on an abelian group
M isamap | | : M — Rx¢ such that |z| = 0 if and only if x = 0, and that |z — y| < max{|z|,|y|} for
any x,y € M. For any r € Ry, we denote the closed ball of radius r by

(11.6.2.1) M="={zeM ||z <r}.

The metric topology makes M into a separated topological abelian group, where {M <T}T6R>D forms
a fundamental system of closed neighbourhoods of 0. The norm map extends umquely over the
completion M of M, and M naturally identifies with a dense normed subgroup of M.

A normed ring R is a ring endowed with a norm such that |zy| < |z||y| for any =,y € R. We
remark that there is a natural normed ring structure on R induced by that of R. Given a normed
ring R, a normed R-module is an R-module M endowed with a norm such that |az| < |a||x| for any
a € R and x € M. Moreover, we call R a Banach ring if it is complete, and we call M an R-Banach
module if M is complete.

I1.6.3. For any valuation field K of height 1 extension of Q,, we fix a valuation map vg : KX - Q
normalized by vk (p) = 1, and we endow K with the norm | | defined by |z|x = p~?5®) for any
x € K*. Let V be a normed K-module. Since p"V=! = V=P"" for any n € N, V=! is a p-adically
separated flat O x-module, and the induced metric topology on V<! coincides with its p-adic topology.
We have V = V=1[1/p].

Conversely, given a p-adically separated flat Ox-module M, we can define a norm on M|[1/p]
by setting |z| = p~* @) for any x € M[1/p] \ {0} where vys(x) is the biggest integer such that
x € p*™ (@) M. The metric topology defined by this norm on M|[1/p] coincides with its p-adic topology
defined by M, and makes M[1/p] into a normed K-module with M[1/p]<! = M. We remark that V'
(resp. M[1/p]) is complete if and only if V<! (resp. M) is p-adically complete.

Lemma I1.6.4. Let K be a complete valuation field of height 1 extension of Q,, V a normed K-
module. Then, the induced topology on any finite-dimensional K-subspace Vy of V' coincides with its
canonical topology (cf. 11.2.3).

PrOOF. The norm on V induces a norm on Vj, whose associated metric topology defines the
induced topology on V5. On the other hand, any K-linear isomorphism Vj & K™ defines a norm on
Vo which induces the canonical topology on V;. The conclusion follows from the fact that any two
norms on a finite-dimensional K-space are equivalent ([BGR84, 2.3.3.5]). O
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Proposition I1.6.5. With the notation in 11.5.1, let W be a normed K-module endowed with a
continuous semi-linear action of G. Assume that the (G, K)-finite part of W is equal to W itself (cf.
11.2.4). Then, there erists a unique K -linear Lie algebra action of &5, (1) on W,

(11.6.5.1) Psenlw 1 65, (1) — End=(W),

such that for any G-equivariant continuous K-linear homomorphism Wy — W from an object Wy

of Rep™® (G, K), @sen|lw is compatible with the Lie algebra action psen|w, of &5, (1) defined in

cont

I1.5.35.

PrROOF. The maps Wy — W form a category Z. Indeed, it is the localization of the category
Rep’ (G, K) at the presheaf given by the restriction of the presheaf Hom(—, W) on Rep,, (G, K)

cont

represented by W (cf. [SGA 4, 1.3.4.0]). We claim that Z is filtered. Indeed, for any object
Wy — W of Z, its image W1 C W is G-stable. Since the topology on Wi induced from W coincides

with the canonical topology as a finite-dimensional K-space by 11.6.4, we see that W, is a finite

projective K-representation of G and a subrepresentation of W and that W, — W is a morphism in

Repggﬁ{(G,F). As direct sums exist in Z, one checks easily that 7 is filtered. By assumption and the
previous argument, W = colimz W, as K-modules. Since the Lie algebra Ed e (1) acts functorially on

each Wy, it defines a unique action on W compatible with that on each Wj. g

Remark I1.6.6. Let W be a K-Banach space endowed with a continuous semi-linear action of G

such that the (G, K)-finite part W¥ of W is dense in W. If we endow W' with the induced topology,
then its completion coincides with W (|[GRO4, 8.2.8.(iii)]). By II.6.5, we obtain a canonical Lie
algebra action @gen|pt on WE. If the operators on Wt defined by ¢sen|wt are continuous, then we
can extend this action uniquely to a Lie algebra action @gen|w on W by continuation (cf. 11.6.1).
However, in this work we haven’t found a simple condition to guarantee the continuity of the Sen
operators on W, Instead, we consider two types of dense subrepresentations of W' and discuss the
continuity of Sen operators on them. Roughly speaking, the first type (considered in the rest of this
section) is the union of representations with “small lattices”, which is ad hoc but suitable for doing
descent and decompletion (so that nice properties are preserved after continuation, cf. 11.6.19). The
other type (considered in the end of section II.11) is the union of representations defined over Q,,
which is more canonical but we need to reduce to the first type for proving properties (cf. 11.11.26).

I1.6.7. Let K be a valuation field of height 1 extension of Q, with a valuation map vk : K* — Q
normalized by vk (p) = 1, A a p-adically complete flat Ok-algebra, M a p-torsion free p-adically
complete A-module. Consider an A-linear endomorphism ¢ on M such that ¢(M) C oM for some
element o € mg with v (a) > p%l. As vg(n!) < % for any n € N5, the series for any « € M,

(I1.6.7.1) exp(¢)(z) = Z %(b”(x),
n=0

(IL.6.7.2) log(1+¢)(x) = %d)"(x)
n=1

are well-defined and converge in M with respect to the p-adic topology. They define two A-linear
endomorphisms exp(¢) € id + aEnd 4 (M) and log(l + ¢) € aEnda(M) of M such that exp(log(1 +
$)) = 1+ ¢ and log(exp(¢)) = ¢. Thus, we deduce easily that for any n € N, p~"((1 + ¢)?" — 1) =
p " (exp(p™log(l+ ¢)) — 1) € aEnd 4 (M), and that

(11.6.7.3) log(1+ ¢)(z) = lim p~"((1+ o) —1)(x),
namely, log(1 + ¢) is the infinitesimal action of 1 + ¢ on M (cf. 11.4.8).

Definition I1.6.8 (cf. [AGT16, I1.13.1, I1.13.2]). Let K be a valuation field of height 1 extension
of Qp, a an ideal of O, A a p-adically complete flat Og-algebra endowed with a continuous action
of a topological group G' by homomorphisms of Ok-algebras.

(1) For any object M of RepE®l (G, A), we say that M is a-small if M is a finite free A-module
admitting a basis consisting of elements that are G-invariant modulo M for some « € a.
We denote by Rep®®(G, A) the full subcategory of Rep’yi(G, A) consisting of a-small

objects.
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(2) For any object W of Repl® (G, A[1/p]), we say that W is a-small if there exists a G-
stable A-submodule W+ of W generated by finitely many elements that are G-invariant
modulo W™ for some o € a. We denote by Rep®®(G, A[1/p]) the full subcategory of

Prol (. A[1/p]) consisting of a-small objects.

cont

Rep

Remark I1.6.9. In 11.6.8.(1), the G-action on M /oM may not be trivial, since this action is A-semi-
linear not A-linear. In I1.6.8.(2), if W is a-small, then the canonical topology on W = W*[1/p] is
induced by the p-adic topology of W (cf. 11.2.3). In particular, there is a natural faithful functor

(IL.6.9.1) Rep™ (G, A) — Rep™ (G, A[1/p]), M s MI[1/p].

We remark that even if A = O (so that W is a finite free O-module), WT may not admit a basis
consisting of elements that are G-invariant modulo oW, i.e. W may not be a-small.

I1.6.10. In the rest of this section, we take again the assumptions and notation in I1.5.1.

\

\K .
Consider the following assumption on K:

(*) Let & be the residue field of K, ﬂnzonpn the maximal perfect subfield of k, K.,, the algebraic
closure in K of the fraction field of the Witt ring W(ﬁnzom”n). Then, K.a, — K is a weakly
unramified extension of complete discrete valuation fields, i.e. a uniformizer of K ,, is still
a uniformizer of K.

(11.6.10.1)

This assumption is considered by Hyodo [Hyo86, (0-5)] when computing the cohomology H4(G, K).
We remark that there exists a finite Galois extension of K which satisfies this assumption by Epp’s
theorem on eliminating ramification [Epp73, 1.9, 2.0.(1)]. The assumption implies that for any finite
field extension K[, of Kcan, we have O = Ok: Qo Ok where K’ = K[, K ([Sta22, 09E7,

can can

09EQ)). In particular, the residue field of K, is separable over that of K for any n € N, and thus

t1,...,tq still form a p-basis of the residue field of K,,. Hence, there is an isomorphism of O -algebras
for any m = (my,...,mq) € N%,
(11.6.10.2) Ok, [Thy - Tl /(TP =ty T —tg) =5 Ok,

sending T; to ¢; ,m ([Hyo86, 1-2]). In particular, the continuous homomorphism (I1.4.15.4) £ : A —
Zg is an isomorphism, which also implies that Ko oo = Koo ®x Ko oo-

Theorem I1.6.11 (Faltings, [Fal05|, cf. [AGT16, 11.14.4]). Under the assumption (*) in 11.6.10
on K, let a be the ideal of Ok consisting of elements a with normalized valuation vi__ (o) > p—zl.
Then, the functor

(I1.6.11.1) Rep™ (A, Op=) — Rep™™(4, 0=)
is an equivalence of categories.

PRrROOF. It follows from the same arguments of [AGT16, 11.14.4]. O

Theorem I1.6.12 ([Tsul8, 11.2, 12.4]). Under the assumption (x) in 11.6.10 on K, let a be the ideal

of Ok, consisting of elements o with normalized valuation vi__ (o) > p%l. Then, the functor

(11.6.12.1) Rep®®(A, Ko.) — Rep™(H, K)
is an equivalence of categories.

PRrROOF. It follows from the same arguments of [Tsul8, 11.2, 12.4]. O

Lemma I1.6.13. Let V' be an object ofReppmj (T, Kx). Then, the associated I/(O\o-representation

cont,A-an

V= I/(O\O QK. V of A is a-small for any nonzero ideal a of Ok __
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PRrROOF. Since A is commutative and by 11.4.11 and I11.4.18 the infinitesimal Lie algebra action
¢ : Lie(A) — Endg__ (V) is nilpotent, we can take a basis vy,...,v, of V as in the argument of
I1.5.41 such that ¢ (v;) € > . ; Koov; for any 7 € A and 1 < i < n. Since V is A-analytic,
we have 7(v;) — v; = exp(p,)(vi) — v; € Zj>i Kovj. For any ky € N, after replacing v1,...,v,
by p~*vy,...,p kv, for some integers k,, > --- > k; > ko, we may assume that 7(v;) — v; €
ijpko Ok..v;j. Thus, the finite free Ox_-submodule V't of V' generated by v1,. .., v, is A-stable

and v; is A-invariant modulo p*o. In particular, Vis pko Ok -small. O

I1.6.14. Under the assumption (x) in I1.6.10 on K, let a be the ideal of O__ consisting of elements
a with normalized valuation vg__(a) > %. There is a canonical commutative diagram

Rep™*(H, K) <—— Rep™*(H, 0-)

|

RepPiol Aun(ls Koo) —= Rep™ (A, Koo) < Rep™ (A, 0—)

cont,A-an

(IL6.14.1) Rep™™ (G, K)

cont

where the vertical arrows are equivalences of categories by I1.5.17, I11.5.18, 11.6.12 and I1.6.11, and
where the horizontal arrows of the left square are induced by these equivalences and 11.6.13. It allows
us to calculate geometric Sen operators using “small lattices”.

Lemma IL.6.15. Under the assumption () in 11.6.10 on K, let W be an object of Rep®™%) (G, K)
such that there exists an object W+ of Rep®®(H, O=) with W = W+[1/p] in Rep®™(H, K), where a
is the ideal of Ok, consisting of elements o with normalized valuation vi__ (o) > p%l. Then, there
is a commutative diagram

PSen|W

(1I1.6.15.1) gg}{(l) End%(W)
wlz Tid;®108(—)|v+
K ®qQ, Lie(T") Tolosn

where Ygen|w 18 the canonical Lie algebra action defined in 11.5.35, ¢ is the isomorphism (11.5.24.1),
V' is the essentially unique object of Rep®*(A, Oz—) such that W+ = O=®0 V. andlog(7)|y+
is the O -linear endomorphism on VT defined in I1.6.7 for 7 € A.

PROOF. Let V be the essentially unique object of Repgéﬁi’A_an (T, Ko ) such that W = K®g__ V.

Then, we conclude by the equivalence (I1.6.12.1) that V = V[1/p] in Rep™ (A, Koo ), where V =
Kook V.

(I1.6.15.2) W W =W <— Wt

1
T | T
ViV =V <—V*
Consider the infinitesimal Lie algebra action ¢|y : Lie(T') — Endg_ (V).

$PSen | w

(11.6.15.3) &5, (1) End= (W)

”’lz Ao Tio%@logum
K
A

K ®g, Lie(I)

1®log A

The upper triangle commutes by 11.5.35. It remains to check that the lower triangle commutes, i.e.
id— ® ¢y = id= ®log(7)|v+ as Koo-linear endomorphisms of V' = V*[1/p] for any 7 € A. For
any x € V whose image y in V[1/p] lies in VT,

(I1.6.15.4) (d @ - lv)(1@z) =1 nlggop*”(fp" —1)(z) (by (I1.4.8.1))
=1® nli_{r;op_”(f”n = 1)(y)
=(idj ®@log(7)|v+)(1®y) (by (IL6.7.3)),
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which completes the proof. O

On the other hand, one can control the Galois invariant part of the completion of a filtered colimit
of “small lattices”.

Lemma I1.6.16 (cf. [AGT16, 11.8.23]). Under the assumption (x) in 1L.6.10 on K, let (W )rea be
a directed system of objects in Rep®™®(H, Oﬁ)? where a is the ideal of Ok consisting of elements a
with normalized valuation vk __(c) > Tzl' Let (ViF)aea be the essentially unique directed system of
objects in Rep” (A, O—) such that Wi = O= R0~ Vit by IL6.11. We put W = colimyep Wy
and VI = colimyep V;. Then, the natural map

(11.6.16.1) (VSS[1/p))® — (Was[1/p)) "
is a bijection, where the completions are p-adic.

PROOF. By virtue of [AGT16, 11.8.23] (cf. (I16.10.2)), the map (V)" /p"V,")* — (02 o,

Vit /p" V) is almost injective whose cokernel is killed by any element o € Ok_ with vg__ () >
and thus so is the map

1
p—1’

(I1.6.16.2) (‘//OE)A = nh_)m cohm(V"’/p”VA A — 1Ln;oc§\>h/1{n(W+/p"W)\) (@)H
Inverting p, we get (‘75[1/1)])A = (V;S)A[l/p] = (WoJS)H[l/p] = (Wot[l/p])H 0

I1.6.17. Let (W;)rea be a directed system of objects in RepErol (G, O= =). We put W = colimyea Wi

cont

as O§—modules7 and denote its p-adic completion by Wz. We set

1 1 — 1
(I1.6.17.1) Wy =W{[=], We=WZE[=], W= WOO[ ],
p p p
endowed with the p-adic topology defined by W;r , Wi and W& respectively. We remark that ﬁ/; is

the completion of Wy, as topological abelian group (by the canonical isomorphism WZE /p"Wi —
W /p" W for any n € N, cf. [GRO4, 8.2.8.(iii)]). As (W))aea forms a directed system of objects in

Replc’;ﬁjt(G K ), the canonical Lie algebra actions ¢gey|w, defined in I1.5.35 induces a homomorphism

of K-linear Lie algebras

(11.6.17.2) Psen| W+ 6 (1) — End= (W),

We denote by ®(W,) its image, and by ®8° (W) the image of Home, ((AZO (-1),K g) On the other
hand, the compatible G-actions G X VVJr — W;r induces an action G x WE — WX by taking colimit,

and thus induces an action G X W+ — W3 by taking p-adic completion.
Lemma I1.6.18. We keep the notation in 11.6.17.

(1) The G-actions on W3, and Wi are continuous with respect to the p-adic topology.
(2) If W1 is p-adically separated, then the Lie algebra action ¢sen|w., of &5, (1) on Wu coin-
cides with the canonical Lie algebra action defined in 11.6.5.

PROOF. (1) For any x € W, there exists zy € W, for some A € A whose image in Wi is x.
For any g € G and n € N, as G X W;‘ — W;‘ is continuous, there exists an open subgroup Gq of
G such that Gog - 2y C gz + p"W,F. Thus, Gog - (z + p"WF) C gz + p"W, which shows that
GxWE — WL and G x (WL /p"WZ) — WE/p"WZ are continuous. Taking limit on n, we see
that G x W& — W is also continuous.

(2) If W1 is p-adically separated, then it defines a norm on Wy, as in 11.6.3 so that we can apply
I1.6.5 to Weo. The conclusion follows directly from I1.6.5 and the definition of (I1.6.17.2). O

Theorem I1.6.19. With the notation in 11.6.17, assume that W;' is p*Zy-small (cf. 11.6.8) for

each X\ € A. Then, any element of ®5° (W) acts continuously on W, and it induces a K -linear
homomorphism by continuation,

(11.6.19.1) 0| Homo, (O, (1), K) — End=(W),

—

whose image @gco(ﬁf;) acts trivially on (Wuo)H.
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PRrROOF. We may replace K by a finite extension and restrict the actions of G to an open subgroup,
as this does not change the action (I1.6.17.2) wgen|w.. by I1.5.38. Thus, we may assume that K satisfies
the assumption (*) in I11.6.10 by Epp’s theorem on eliminating ramification [Epp73, 1.9, 2.0.(1)]. By
I1.6.11, there is an essentially unique directed system (ViF)aea of objects in Rep®®(A, OE;) with

Wi = O= @0, Vil in Rep®™®(H, (’)?). We obtain O;—-linear group actions A x VP — Vb and
A X 1//03 — 1//£ by taking colimit and p-adic completion.

For each 7 € A, the compatible endomorphisms log(7) |V;r define an O z—-endomorphism log(7)]y+
on VZ (cf. 11.6.7). As id= ®@log(T)|y,; sends WX to itself, we see that any element of ®8° (W) acts
continuously on W, by I1.6.15. Thus, the Lie algebra action @gen|w,, induces a canonical %—Hnear
homomorphism (I1.6.19.1) by continuation.

Notice that A acts trivially on Vi /aVsh for any o € Ok with ﬁ < g, (a) < %. Thus,

log(7) is a well-defined Oz—-endomorphism on ‘//OE by 11.6.7 for any 7 € A. Since 10g(7’)\;¢ is

compatible with log(7)|;,+ by the formula (I1.6.7.3), the uniqueness of continuation implies that the
following diagram is commutative as the continuation of (I1.6.15.1),

geul .
PSen | Wy o

(11.6.19.2) Homo, (0}, (~1),K) End= (W)

d=(
il T
A

K ©g, Lie(A)

1®log A

—

where the right vertical arrow is induced by the map A — End@? (W) sending 7 to the p-adic com-

pletion of the endomorphism ido_ ® 1og(7’)|;¢ of O= ®o Vb, Since the endomorphism log(7)|—

v
is the infinitesimal action of 7 by (I1.6.7.3), it acts trivially on (Vs5)?. Therefore, @geo(ﬁfo\o) acts
trivially on (Va)® = (Woo)¥ by 11.6.16 and (11.6.19.2). O

Remark I1.6.20. Even if any element of (W) acts continuously on W, (which holds in many
cases, cf. I11.11.25), we don’t know whether the induced Lie algebra action ¢sen |~ by continuation

is compatible with the canonical Lie algebra action g056n|(ﬁ,\)f on the (G, K)-finite part (VT/O\C)f

(endowed with the topology induced from W;) defined in I1.6.5, since we don’t know the continuity
of the latter (cf. I1.6.6). Thus, we couldn’t conclude easily that @(@) annihilates (W;)G To see
whether it is true or not, we need to study descent and decompletion of Oﬁ—representations of G and
also compare the Galois invariant part as in I11.6.16. We plan to investigate this in the future.

I1.7. Some Boundedness Conditions on a Ring Map

Definition IL.7.1. Let A be a ring, 7 an element of A.

(1) We say that an A-module M is m-zero if it is killed by 7. We say that a morphism of
A-modules f: M — N is a w-isomorphism if its kernel and cokernel are m-zero.

(2) We say that a chain complex of A-modules M, is m-exact if the homology group H,,(M,)
is m-zero for any n € Z. We say that a morphism of chain complexes of A-modules f :
M, — N, is a m-quasi-isomorphism if it induces a m-isomorphism on the homology groups
H,(M,) — H,(N,) for any n € Z.

Lemma I1.7.2 ([AG20, 2.6.3]). Let A be a ring, m an element of A, f : M — N a morphism of
A-modules.

(1) If there exists an A-linear homomorphism g : N — M such that go f = widy and fog =
widy, then f is a w-isomorphism.

(2) If f is a w-isomorphism, then there is a unique A-linear homomorphism g : N — M sending
y € N to mx € M where x € f~Y(wy). In particular, go f = w%idys and f o g = 72idxy.

PROOF. (1)is clear. For (2), for any y € N, f~!(7y) is not empty as mCoker(f) = 0. The element
7z € M does not depend on the choice of x € f~!(ry) as nKer(f) = 0. Thus, the map g : N — M
is well-defined. It is clearly unique and satisfy the relations g o f = 7%idy; and f o g = 72idy. O

Remark I1.7.3. Let A be a ring, 7 an element of A.
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(1) Let fo : My — N, be a morphism of chain complexes of A-modules such that f,, is a -
isomorphism for any n € Z. Then, there is a morphism of chain complexes of A-modules
ge : No — M, defined by I1.7.2.(2) such that ge o fo = 72idps, and f, 0 go = 72idy,. We
see that f. is a m2-quasi-isomorphism. Moreover, for any A-linear endofunctor F of the
category of A-modules, F(f,) : F(M,) — F(N,) is a m2-quasi-isomorphism.

(2) Let (frn)nen @ (Mn)neny — (Np)nen be a morphism of inverse systems of A-modules such
that f,, is a m-isomorphism for any n € N. Then, there is a morphism of inverse systems of
A-modules (gn)nen @ (Nn)nen — (Mp)nen defined by 11.7.2.(2) such that g,, o f, = m2idyy,
and f,, 0g, = m2idy, . We see that the induced morphism R?lim(M,,)nen — RIHm(N,, ) nen
is a m2-isomorphism for any ¢ € Z.

Lemma I1.7.4. Let A be a ring, m an element of A, B — C' a w-isomorphism of A-algebras. Then,
the canonical morphism C Qp QlB/A — QIC/A is a T'7-isomorphism.

PROOF. Let I (resp. J) be the kernel of the multiplication map B®4B — B (resp. C®4C — C).
Recall the Q7 /a (Tesp. QL /) is canonically isomorphic to I/1 2 (vesp. J/J?). Consider the morphism
of exact sequences of A-modules

(I1.7.4.1) 0——>I—>B®yB—>B——>0

o

0—sJ —C®uC——C——=0

Since B — C is a m-isomorphism, B ®4 B — C ®4 C is a m-isomorphism by I1.7.2. By the snake
lemma, we see that I — J is a m°-isomorphism, and thus I2 — J? is a 7'%-isomorphism. The snake
lemma shows that I/1? — J/J? is a w'5-isomorphism. On the other hand, I/I?> — C ®p I/I? is a
n2-isomorphism by I1.7.2. We conclude that C ®@p I/I?> — J/J? is a w'7-isomorphism. O

Proposition I1.7.5. Let A be a ring, A’ and B two A-algebras, B’ = A’ @4 B. Then, the cone of
the canonical morphism
(11751) Tgl(Bl ®% LB/A) — TSlLB’/A’

is concentrated in homological degree 2, where T<1 is the canonical truncation of chain complezes
(ISta22, 0118]), and L, 4 denotes the cotangent complex of B over A. Moreover, if Torf(A',B) 18
m-zero for some w € A, then (11.7.5.1) is a w-quasi-isomorphism.

PrOOF. We take a surjective homomorphism from a polynomial A-algebra P to B, and denote
its kernel by I. Recall that 7<1Lp/4 is quasi-isomorphic to the complex I/I? - B®p Q}D/A ([Sta22,

08RB]J). Thus, in the derived category, we have

(IL.7.5.2) T<1(B' @ Lpja) = 7<1(B' © (r<1lpja)) = (B @p I/I? = B @p Qp) 4),

where the first equality follows from the distinguished triangle 7>oLp/4 — Lp/a — 7<1Lp/a —, and
the second equality can be deduced from replacing /12 by a flat resolution (note that B ®@p Q} /A is
a free B-module).

Weset P’ = A’®4 P and I' = Ker(P" — B’). Then, 7<1Lp/ /s is quasi-isomorphic to the complex
I'/)T"? — B @p Q}D,/A,. Applying the functor P’ ® p — to the exact sequence 0 -+ I — P — B — 0,
we obtain an exact sequence
(I1.7.5.3) Torl (P',B) — P' ®@p I — I' — 0.

Applying the functor B’ ® pr —, we get an exact sequence
(I1.7.5.4) B' ®@p Tort (P',B) — B @p I/I*> — I'/T"* — 0.

Let N be the image of the first arrow. Then, by (I1.7.5.2), the cone of (I1.7.5.1) is quasi-isomorphic
to the complex N[—2]. Since Tor! (P, B) = Tor{' (4’, B) as P is flat over A, we see that N is m-zero
if 7Tor{ (A’, B) = 0. O

Corollary I1.7.6. Let A be a ring, A" and B two A-algebras, B’ = A’ ® B. Assume that T<1Lp/a
is m-exact for some m € A. Then, T<1Lprjas is w2-ezact.

PRrROOF. Consider the convergent spectral sequence [EGA III,, 6.3.2.2]
(I1.7.6.1) E}; = Tor} (B',Hj(Lga)) = Tor’ ;(B',Lp/a),


https://stacks.math.columbia.edu/tag/0118
https://stacks.math.columbia.edu/tag/08RB
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with d? ; : E?; = E7 5 ;.. Then, there is an exact sequence
(11.7.6.2) Tory (B', Hi(Lg/a)) — Hi(B' ®} Lpja) — Tor{ (B, Hy(Lp/a)) — 0.

Since Hy(Lp,4) and Ho(Lg,4) are killed by 7 as 7<1 L 4 is m-exact, we see that 72Hy (B'®@%Lg/4) =
0. Notice that Hy(B' ®% Lg/a) — H1(Lp//a) is surjective by I1.7.5. We see that 7 Hy(Lp/ja/) =0
and WHO(LB//A/):W(B/ ®B HO(LB/A)) :0 D

Lemma I1.7.7. Let A be a ring, ™ an element of A, B — C a homomorphism of A-algebras. Assume
that T<1Lcoyp and T<1Lp 4 are both mw-exact. Then, T<1Lc/a is m3-exact.

PROOF. We see that m>H1(C ®% Lg/a) = 0 by (IL7.6.2), and that 7Hy(C @ Lpa) = 7(C ®p
Hy(Lpsa)) = 0. By the fundamental distinguished triangle of cotangent complexes ([I1171, I1.2.1.5.6]),
we obtain an exact sequence
(I1.7.7.1)

H\(C®p% Lpja) = Hi(Leya) = Hi(Loyp) = Ho(C ®5 Lpja) — Ho(Leya) = Ho(Leyp) — 0,

which shows that Hy(L¢ya) and Ho(Leya) are both killed by 7. O

Proposition I1.7.8. Let A be a ring, ™ an element of A, B an A-algebra such that A — B is a
m-isomorphism. Then, T<1Lp/a is w102 ezact.

PROOF. Let C be the image of A in B. We take a surjective homomorphism from a polynomial
C-algebra P to B, and denote its kernel by I. Let @ be the preimage of C' via the surjection P — B.
It is a C-subalgebra of P such that 7P C @ and that I is an ideal of ). We remark that C = Q/I
and B = P/I = C ®¢ P. Consider the canonical exact sequence

(11.7.8.1) Hy(Lpjc) — Hi(Lp/q) — P®q Q5/c — Qpjc — Qpjg — 0.

Since Hy(Lp/c) = 0 and P ®q QlQ/C — Q}D/C is w!7-injective by 11.7.4, H1(Lp/q) is killed by 7'7. It
is clear that 7Ho(Lp/q) = WQ}D/Q =0as 7P C Q. It follows from I1.7.6 that 7<1Lp,c is m**-exact
as B = C ®g P. On the other hand, let J be the kernel of A — C which is killed by 7. Then,
Hy(Leya) = J/J? and Ho(Lcya) = 0 ([TI71, T11.1.2.8.1]). It follows from II1.7.7 that 7<1Lp/4 is
m102-exact. O

I1.7.9. Let A — B be an injective homomorphism of normal domains flat over Z,,. We fix an algebraic
closure £ of the fraction field £ of B, and let K be the algebraic closure of the fraction field IC of A
in £. Consider an algebraic extension K’ of K in K and the integral closure A’ of A in K'. Let B’ be
the integral closure of B in the composite £ = LI’ C L.

(IL7.9.1) c B’ A K
I .
c B A K

Let 224 be the family of algebraic extensions K’ of K in K such that

(1) there exists a valuation ring Ok extension of Z,, contained in A’ such that its fraction field
K’ is a pre-perfectoid field in the sense of 1.5.1, and
(2) the Ok/-algebra A’ is almost pre-perfectoid in the sense of 1.5.19.

In particular, K € Z4.

Definition I1.7.10. With the notation in I1.7.9, for any algebraic extension K’ of K in K, we say
that the map A — B is bounded at K’ if there exists k € N such that

(I1.7.10.1) p*Coker(B®s A — B') = 0.

For any K' € £2,, we say that A — B is pre-perfectoid at K' if L' = LK' € &g and if A — B is
bounded at K'. We say that A — B is pre-perfectoid if it is pre-perfectoid at any K’ € Z4.

Lemma I1.7.11. We keep the notation in 11.7.9.
(1) If A — B is étale, then it is pre-perfectoid.
(2) If A — B is pre-perfectoid, then for any algebraic extension K' of K in K, the map A’ — B’
is also pre-perfectoid.
(3) If B — C is another injective homomorphism of normal domains flat over Z,, and if A — B,
B — C are pre-perfectoid, then so is A — C.
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PROOF. (1) Note that B®4 A’ is a finite product of normal domains as it is étale over the normal
domain A’ ([AGT16, II1.3.3]). Thus, B’ identifies with one of the components. If K' € 4, then
B ®4 A’ is almost pre-perfectoid by 1.5.37 and so is B’ (i.e. £ € &g). This shows that A — B is
pre-perfectoid.

(2) We only need to unwind the definition. For any algebraic extension K" of K’ in K, let A”
be the integral closure of A in K", B” the integral closure of B in £” = LK"” C L. Assume that
K" € 24 . By definition, we also have K" € £, and thus L’ € g so that L” € Pp/. Since
A — B is bounded at K", there exists k € N such that p*Coker(B @4 A” — B”) = 0. Thus,
p*Coker(B’ ®4: A” — B") = 0, which means that A’ — B’ is bounded at K”. This completes the
proof.

(3) It also follows directly from unwinding the definition. O

Theorem I1.7.12 (Almost purity, [Sch12, 7.9]). Let K be a pre-perfectoid field with a non-zero
element w in its mazimal ideal, R a flat Ok -algebra which is almost pre-perfectoid, R’ the integral
closure of R in a finite étale R[1/7]-algebra. Then, R is almost pre-perfectoid and almost finite étale
over R.

PrOOF. Let (S, 7S5) be the henselization of the pair (R, 7R). Then, S’ = S ®g R’ is the integral
closure of S in a finite étale S[1/x]-algebra. By 1.5.41, we see that R’ is almost pre-perfectoid and
that S’ is almost finite étale over S. Notice that R — R[1/7] xS is faithfully flat. By almost faithfully
flat descent [AGT16, V.8.10], we see that R’ is almost finite étale over R. O

Corollary I1.7.13. Let A be a normal domain flat over Z,, B the integral closure of A in a domain
finite étale over A[1/p]. Then, the map A — B is pre-perfectoid.

Proor. With the notation in I1.7.9, for any K' € £24, B’ is almost pre-perfectoid and almost
finite étale over A’ by almost purity 11.7.12. As B[1/p] is finite étale over A[l/p], B ®4 A’[1/p] is
the integral closure of A’[1/p] in £ ®x K', which is a finite product of normal domains and one of its
component identifies with B'[1/p]. In particular, B ®4 A'[1/p] — B'[1/p] is surjective. We see that
there exists k € N such that p*Coker(B ®4 A’ — B') = 0, since the B ®4 A’-module B’ is almost
finitely generated. It follows from the definition that A — B is pre-perfectoid. O

I1.7.14. Let A be a ring, I an ideal of A, a an element of I. The affine blowup algebra A[I/a] is the
A-subalgebra of A[1/a] generated by the subset {z/a}.er ([Sta22, 052P]). As the ideal T A[I/a] is
generated by a, there is a unique morphism Spec(A[I/a]) — X over Spec(A), where X is the blowup
of Spec(A) in I. Moreover, if I is generated by a subset S, then {Spec(A[I/a]) = X}.cs forms a
Zariski open covering ([Sta22, 0804]).

Lemma II1.7.15. Let A be a ring, ™ an element of A, I an ideal of A containing a power of m,
a an element of I, A the m-adic completion of A, I' = IA a’ the image of a in A. Then, the
natural morphism of affine blowup algebras A[l/a] — A[I’/a] mduces an isomorphism of their m-
adic completions

(I1.7.15.1) (A[I/a))" = (A]I'Ja)".

PROOF. We denote by ¢ : A — A and ¢ : A[1/a] — A[1/a] the natural morphisms. We need to
show that for each integer n > 0 the natural morphism

(11.7.15.2) Al /a)/7™ A[I Ja] — A[I'Jd') /=" A[l' }d]

is an isomorphism. We claim that I - Tis an isomorphism. Indeed, since A/I is killed by a
power of m, we get from the short exact sequence 0 — I — A — A/I — 0 a short exact sequence
01— A— ATl >0 by m-adic completion ([Sta22, 0BNG]). Similarly, we get from the short
exact sequence 0 — I’ — A — A/I’ — 0 a short exact sequence 0 — I’ — A — A/I’ — 0. Moreover,
as 7" A C I for n large enough, we deduce from the canonical isomorphism A/7"A A/ 7" A that
A/I — A/I " is an isomorphism. Combining with the previous short exact sequences, we see that
T— T isan isomorphism.

For the surjectivity of (I1.7.15.2), recall that the A-algebra A[I/a] is generated by the elements
{z/a}tzer. For o/ € I', as I/a"] — I'/n"I' is surjective, there exists x € I and y € I’ such
that ©' = o(z) + 7"y € I'. Thus, 2’'/d’ = ¢(x/a) mod ﬂ'”g[l’/a’], which shows that (I1.7.15.2) is
surjective.

For the injectivity of (I1.7.15.2), as any element of A[I/a] is of the form x/a* for some x € I and
k > 0, we suppose that ¢(z/a¥) = n™(2/ /a’*") for some z’ € I’ and k' > 0. Thus, there exists N > 0
such that o’V (a’*n"2’ —a’* p(z)) = 0 in I’. In particular, o(aV*t* z) € 7" I’. Since I/7"I — I' /z"T'
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is injective, there exists y € I such that a™ ¥z = 7"y, Thus, z/a* = 7" (y/aN T+ € 77 A[I/a],
which shows that (I1.7.15.2) is injective. O

Lemma I1.7.16. Let A be a ring, ™ an element of A, B an A-subalgebra of A[1/x]. Assume that the
morphism of w-adic completions A — B is a m™-isomorphism for some n € N. Then, n"Coker(A —
B)=0.

ProoF. Consider the commutative diagram
B B
AL 4
For b € B C A[l/n], we write #"b = g(z)/7™ in A[l/x], where x € A and m € N. We have

7 f(b) = ¢'(f(z)). On the other hand, by the assumption 7" Coker(g’) = 0, there exists y € A
such that 7" f’ ( ) =¢'(y). Thus, ¢'(f(x) — 7™y) = 0, which implies that 7 (f(x) — 7™y) = 0 by the

g
assumption 7"Ker(g’) = 0. By the isomorphism A/7™*"A =5 A/a™m+" A we have "2 € 7™t A,
Therefore, 7"b = g(7™z) /7™ € Im(g). O

(I1.7.16.1)

Theorem I1.7.17 ([Sch12, 6.3]). Let K be a pre-perfectoid field with a non-zero element w of its
maximal ideal, A an Ok-algebra which is almost pre-perfectoid, I a finitely generated ideal of A
containing a power of @, a an element of I.
(1) The integral closure B of the affine blowup algebra A[l/a] in A[l/a][l/w] = A[l/ma] is
almost pre-perfectoid.
(2) There exists n € N such that 7" Coker(A[I/a] — B) = 0.

PROOF. As A is almost flat over O by definition, A — (AJA[r>])" is surjective and is an almost
isomorphism (I.5.27). Thus, after replacing A by A/A[x>°] C A[1/7] and I by its image (which does
not change B and Coker(A[l/a] — B)), we may assume that A is flat over Og. Let B’ (resp.
B") be the integral closure of A[I'/d'] (resp. (A[I/a))") in A[I'/d')[1/7] (resp. (A[I/a])"[1/7]),
where the completions are m-adic, I' = IA and o is the image of a in A. By I1.7.15, we have
(A[I/a])" = (A[I’/a/])". Thus, there exists a canonical morphism B’ — B’ and a commutative
diagram

(I1.7.17.1) T ?f ?”
AlL] AL (AL

Since the three Ok-algebras in the second row are flat (1.5.20) and have the same m-adic completion
flat over O, the m-adic completions of the three O-algebras in the first row are almost isomorphic
by 1.5.29.

(1) By definition, the Og-algebra A is almost perfect01d We endow A[l1/x] with the m-adic
topology defined by A so that it becomes a Tate K- algebra in the sense of [Sch12 2. 6] If A+
denotes the integral closure of A in A[l /7] (which is almost isomorphic to A), then (A [1 /7], AT) forms
a perfectoid affinoid K- algebra in the sense of [Sch12, 6.1]. Similarly, we endow A[I’/a |[1/7] with
the 7-adic topology defined by A[I’/a’] so that it becomes a Tate K-algebra. Then, (A[I’/a/][1/x], B’)
is an affinoid K-algebra. Its completion is ((A [I/a]) [1/7r] B, which is the completed affinoid K-
algebra associated to the rational subset of Spa(A[l/7], A*) defined by I and a by the definition
[Sch12, 2.13]). By virtue of [Sch12, 6.3.(ii)], ((A[I/a])"[1/7], B") is a perfectoid affinoid K-algebra.
Thus, the Og-algebra B” is almost perfectoid and bounded in (A[I/a])"[1/7] with respect to the
m-adic topology defined by (A[I/a])". In particular, B” — B” is an almost isomorphism ([Sch12,
5.5]). Thus, B is almost pre-perfectoid, since B — B” is an almost isomorphism by the discussion in
the beginning.

(2) Since (A[I/a])® — B" is injective as (A[I/a])" is flat over Ok, the map (A[I/a))" — B is
almost injective by the almost isomorphisms B — B” «+ B". Since B is bounded in (A[I/a))"1/7]
with respect to the m-adic topology defined by (A[I/a])", there exists n € N such that 7" annihilates
the kernel and cokernel of (A[I/a])™ — B. The conclusion follows from I1.7.16. O
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Corollary I1.7.18. Let A be a normal domain flat over Z,, I a finitely generated ideal of A con-
taining a power of p, a an element of I, B the integral closure of the affine blowup algebra A[I/a] in
All/a][1/p] = A[1/pa]. Then, the map A — B is pre-perfectoid.

Proor. With the notation in II.7.9, for any K’ € £24, notice that the affine blowup algebra
A'[I/a] is the image of A[I/al ®4 A’ — A’[l1/a]. Thus, B’ is the integral closure of A’'[I/a] in
A'lI/a][1/p] = A’'[1/pa]. Thus, it is almost pre-perfectoid and p*Coker(A’[I/a] — B’) = 0 for some
k € N by I1.7.17, which completes the proof. O

I1.8. Brief Review on Adequate Charts of Logarithmic Schemes

The main geometric object of this article, quasi-adequate algebras, stems from logarithmic ge-
ometry. In this section, we firstly review basic notions of logarithmic geometry. We refer to
[Kat89, Kat94, GRO04, Ogul8| for a systematic development of logarithmic geometry, and to
[AGT16, I1.5] and 1.9 for a brief summary of the theory. Then, we review adequate charts of a
logarithmic scheme and the induced coverings following Tsuji [Tsul8, §4].

I1.8.1. All monoids considered in this article are unitary and commutative, and we denote the monoid
structures additively. The category of monoids admits arbitrary colimits (cf. [Ogul8, I1.1.1]), and
we denote the colimit of a diagram M; < My — Ma by M; @, Ma. The forgetful functor from the
category of groups (resp. rings) to the category of monoids (resp. with respect to the multiplicative
structure) admits a left adjoint sending M to MeP (resp. Z[M]). For any monoid M, we denote by
expys : M — Z[M] the canonical homomorphism of monoids. The forgetful functor from the category
of finitely generated monoids to the category of fs (i.e. fine and saturated) monoids admits a left
adjoint sending M to the saturation M™ of its image in M&P ([Ogul8, 1.1.3.5, 1.2.2.5]).

I1.8.2. A log scheme X is a pair (X, ax : Mx — Ox) consisting of a scheme X and a homomorphism
from a sheaf of monoids to the structural sheaf on the étale site of X (equivalent to the strictly étale
site of X, see below) which induces an isomorphism a ' (0%) — 0%, where Oy = Ox,, and O% is
the subsheaf of units. A morphism of log schemes Y — X is a pair (f, f*) consisting of a morphism of
the underlying schemes f : ¥ — X and a homomorphism of sheaves of monoids f* : f~*(Mx) — My
compatible with the natural homomorphism f~!(Ox) — Oy via ay and f~!(ax). A morphism of
log schemes Y — X is strict if the log structure of Y is the inverse image of that of X ([AGT16,
IL5.11]). For an open immersion of schemes j : U — X, let My, x be the preimage of jei.Op;,  via
the natural map Ox,, — jet«Ouv,,. Then, the log structure ay_,x : My_x — Ox,, on X is called
the compactifying log structure associated to the open immersion j ([Ogul8, 111.1.6.1]).

I1.8.3. A log ring is a homomorphism M — A from a monoid M to the multiplicative monoid of a
ring A. We denote by Spec(M — A) the log scheme with underlying scheme Spec(A4) endowed with
the log structure associated to the pre-log structure M — Ogpec(a),, induced by M — A, and we set
Apr = Spec(expy, : M — Z[M]) (|Ogul8, 111.1.2.3]). A chart of a log scheme X is a homomorphism
M — T'(X, Mx) from a monoid M to the monoid of global sections of M x such that the induced
morphism of log schemes X — Ay is strict ([AGT16, I1.5.13]). We say that a log scheme X is
coherent (resp. fs) if strictly étale locally on X it admits a chart from a finitely generated (resp. fs)
monoid M ([AGT16, I1.5.15]).

I1.8.4. The inclusion functor from the category of schemes to the category of coherent log schemes
(by endowing with trivial log structures) admits a left adjoint sending X to its underlying scheme
X, and admits a right adjoint sending X to the maximal open subscheme X'* of X on which the log
structure is trivial (|Ogul8, I11.1.2.8]). The inclusion functor from the category of fs log schemes
to the category of coherent log schemes admits a right adjoint X — X, and we remark that the
canonical morphism of underlying schemes X®™ — X is finite with (X®™)" = Xt xy X® = x*
(|[Ogul8, I11.2.1.5]). The category of log schemes admits finite limits, which commute with taking
underlying schemes and preserve coherence ([Ogul8, I11.2.1.2]). By the universal property of the
functor X ~ X' the category of fs log schemes also admits finite limits ([Ogu18, I11.2.1.6]).

I1.8.5. Let X be a regular fs log scheme ([Kat94, 2.1], [Niz06, 2.3]). Its underlying scheme X is
locally Noetherian and normal, and X" is regular and dense in X ([Kat94, 4.1]). Moreover, the
log structure on X is the compactifying log structure associated to the open immersion X% — X
([Kat94, 11.6], [Niz06, 2.6]). A typical example is that given a regular scheme X with a strict normal
crossings divisor D, then (X, ax\p_x) is a regular fs log scheme whose open subset of triviality of
log structure is X \ D ([Ogul8, II1.1.11.9]).
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I1.8.6. To any morphism of log schemes Y — X, one can associate the Oy-module of log differentials
Q%//X with natural maps d : Oy — Q%//X and dlog : My — Q%,/X ([AGT16, I1.5.21]). If Y — X
is strict, then Q%,/X = QlX/X' If X and Y are coherent, then Q%,/X is quasi-coherent. If Y — X is a
smooth morphism of coherent log schemes, then /x 18 locally finite free ([Ogul8, 1V.3.2.1]). For
any morphism of log rings (o : M — A) — (8 : N — B), if we denote by X = Spec(M — A) and
Y = Spec(N — B), then Q%//X is the quasi-coherent Oy-module associated to the B-module

Qf 4 ® (B @z (N&/M5P))
B/A
(I1.8.6.1) Q%N—>B)/(M—>A) =2 Ja

where F'is the B-submodule of QE/A@(B@)Z(ng/Mgp)) generated by the elements (d(3(z)), —3(z)®
x) for any x € N (|[Ogul8, IV.1.2.6]). We remark that for any Cartesian diagram in the category of
(resp. fs) log schemes

(11.8.6.2) vy 2oy

)

x 9. x

the canonical morphism QI*Q%//X — Q%,,/X, is an isomorphism ([Ogul8, IV.1.2.15]).

I1.8.7. Let K be a complete discrete valuation field of characteristic 0 with perfect residue field
of characteristic p > 0, S the log scheme with underlying scheme Spec(Og) endowed with the
compactifying log structure associated to the open immersion Spec(K) — Spec(O) (in particular,
S is a regular fs log scheme, cf. 11.8.5), f : X — S a morphism of fs log schemes. We remark that
if f is smooth, then X is also regular ([Ogul8, IV.3.5.3]), and thus the log structure on X is the
compactifying log structure associated to X** — X, cf. 11.8.5.

Definition I1.8.8. With the notation in I1.8.7, an adequate chart of f is a triple of homomorphisms
of monoids (a: N — T'(S,Mg), 8: P —T(X,Mx), 7v: N — P) satisfying the following conditions:

(1) The following diagram is commutative

B

(IL.8.8.1) (X, Mx)<—P
AT
I'(S,Mg) <*—N

(2) The element a(1) € T'(S, Mg) = Ok \ {0} is a uniformizer of Ok (in particular, S — Ay is
strict).

(3) The homomorphism f induces a strict and étale morphism X — S xa, Ap (in particular,
X — Ap is also strict).

(4) The monoid P is fs, and if we denote by =, : Z — P, = Z @&y P the pushout of v by the
inclusion N — Z, then there exists an isomorphism for some ¢,d € N with ¢ < d,

(I1.8.8.2) P, 2707 oNi©
identifying -, with the inclusion of Z into the first component of right hand side.

Remark II.8.9. In I1.8.8, the morphism of fs log schemes S x5, Ap — S is smooth ([AGT16,
I1.5.25]), and thus so is X — S. If we set A = Ok @z Z[P] and Ay, = Ok Qg Z[P*®P], then
the underlying scheme of S x,, Ap is Spec(A), and Spec(Ay,) is the maximal open subscheme on
which the log structure is trivial (cf. [Ogul8, II1.1.2.10]). As X — S xu, Ap is strictly étale,
X' = Spec(Ay) Xgpec(4) X and the log structure on X is the compactifying log structure associated
to the open immersion X* — X (cf. 11.8.7). Moreover, (I1.8.8.2) induces an isomorphism (cf. I1.8.1)
(1I1.8.9.1) A[%] = K ®z)7) Z|Z] @z Z[P) = K Qg Z|Py) = K[Z° & Nd=],

and A is a Noetherian normal domain (cf. I1.8.5, I1.8.7).

Remark I1.8.10. Our definition of adequate charts is slightly different from Abbes-Gros’ definition
[AGT16, 111.4.4], where they require moreover that - is saturated (cf. [AG20, 4.2.2]). Nevertheless,
our adequate charts describe log smooth schemes over S by the following proposition due to Abbes-
Gros and Tsuji.
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Proposition II.8.11 (|Tsul8, 3.14, 3.16], cf. [AGT16, II1.4.6]). With the notation in 11.8.7, the
following conditions are equivalent:
(1) The morphism of fs log schemes f : X — S is smooth and the underlying generic fibre X j
is regular.
(2) Every geometric point of X admits a strictly étale neighbourhood U in X such that U —
S factors through S' = (Spec(Ok’), Agpec(k’)—Spec(Oy,)) for some tamely ramified finite
extension K' of K and that the induced morphism of fs log schemes U — S’ admits an
adequate chart.

PROOF. (2) = (1): By the conditions in I1.8.8, Uy is étale over Spec(K'[Z¢ @ N¢=¢]), thus
regular. Since U — S’ is smooth by 11.8.9, so is U — S as S’ is étale over S.

(1) = (2): For a geometric point of the generic fibre X j, the conclusion follows directly from
[Tsul8, 3.14] (where we take S’ = S). For a geometric point of the special fibre of X, the conclusion
follows directly from [Tsul8, 3.16]. O

I1.8.12. We follow Tsuji [Tsul8, §4] to construct coverings of adequate log schemes from an adequate
chart. Let v : N — P be an injective homomorphism of fs monoids such that there exists an
isomorphism for some ¢,d € N with ¢ < d,

(I1.8.12.1) P, =707 @ NI~¢

identifying v, : Z — P, = Z ®n P with the inclusion of Z into the first component of right hand
side as in 11.8.8.(4). We identify P2P with Z!*¢ and N&P with the first component of Z!*?. For any
e € Nog and r = (rq,...,rq) € N2, we define a submonoid of Q' by

(I11.8.12.2) P.,={ze€e'Zxr{'Zx---xr;'Z| 3k € Nyg s.t. kx € P}.
It is an fs monoid (|Tsul8, 3.2]), and if we denote by P, , ,, the pushout e *Z @®.-1y P. ., then there

is an isomorphism
(11.8.12.3) Popn2e'Zor'Z@-@r'Zaor A\No - @&r;'N

induced by (I1.8.12.1) (cf. [Tsul8, page 810, equation (2)]).

Let K be a complete discrete valuation field of characteristic 0 with perfect residue field of
characteristic p > 0, L a finite field extension of K, S (resp. S*) the log scheme with underlying
scheme Spec(Ok) (resp. Spec(Or)) endowed with the compactifying log structure defined by the
closed point. We fix a homomorphism of monoids a : N — O \ {0} sending 1 to a uniformizer 7 of
K. For any r € Nio, consider the fibred product in the category of fs log schemes

(11.8.12.4) Xl =8"xE Ap,,
where the map S — Ay is induced by « and the inclusion Ox — Op. We omit the index L or
rif L = K or r = 1 respectively. Let 8 : Py, — F(XLL,MXT;) be the induced homomorphism of

monoids, and for any 1 < i < d, we denote by T; ., the image of r;l -1, =(0,... ,r;l, ...,0) e Pﬁg
in F(XKL,M?L).

(IL.8.12.5) N(XE, Mxu) <2— Py,

T i
I'(St, Mgr) =<—“—N

In section I1.10, we will produce a Kummer tower from XLL — X by varying L and r. We need an
adequate chart of XKL over S,

Lemma I1.8.13 ([Tsul8, page 812, equation (6)]). With the notation in 11.8.12, the morphism of fs
log schemes Xé‘ — ST admits an adequate chart

(I1.8.13.1) (@ e 'N=I(S" Mgr), f/: Py = D(XE, Mxz), v/ e 'N— Peoy)

where e is the ramification index of L/K, o' is a homomorphism of monoids sending e~ to a
uniformizer " of L, B'(ko/e, k1/r1,. .. ka/rqa) = ﬂ’kO'Tﬁlrl . 'Tf‘id,
of the first component of (11.8.12.3). Moreover, the canonical morphism of log schemes induced by

this chart
(11.8.13.2) X — St xu ., Ap.,

is an isomorphism.

and ' is induced by the inclusion



124 II. SEN OPERATORS OVER p-ADIC VARIETIES

PROOF. For the convenience of the readers, we briefly recall Tsuji’s proof. Consider the commu-
tative diagram of fs monoids

(11.8.13.3) p, % p oz p,

T"// T(W’)idz) T"y
()

-1 (¢,0) 1
e’ N—>e 'NpZ~<~—"—N

where we use ¢ to denote the inclusions, s : P, — Z is the projection to the first component, and
/!

~" is induced by the inclusion of the first component of (II1.8.12.3). The squares in (I1.8.13.3) are
cocartesian in the category of fs monoids (using [Tsul8, 4.2] for the right). Notice that the map
a:N = T(SE Mge) is the composition of

(IL.8.13.4) N Y o IN g 7 %) 1S, Mg,

where o/ is a homomorphism of monoids sending e~! to a uniformizer 7’ of L, and s’ : Z —
[(SL, Mgr) = O\ {0} sends 1 to the unit 7/7’¢. Thus, the cocartesian square in (I1.8.13.3) on the
right induces the following commutative diagram of monoids by the definition X} = S¥ x§ Ap,
(I1.8.12.4).

(11.8.13.5) (X}, Mxr) £ Pey ©Z

e

T(S5%, Mgr) L2 o-INg 7

It is clear that the induced map 3’ sends an element (ko /e, k1 /71, ..., ka/ra) € Pe, to w'*o -le)ln . ~Tf1d.

Since the morphism (I1.8.13.2) is induced by the composition of (I1.8.13.5) with the cocartesian square
in (I1.8.13.3) on the left, it is an isomorphism by the definition X} = S* ><f§N Ap, , (IL8.124). O

Proposition I1.8.14 ([Tsul8, 4.3, 4.5]). With the notation in 11.8.12, there exists ko € N such that
for any finite field extensions L C L' of K and any elements r|r’ of Nio, we have

d
(I1.8.14.1) P Al PO wo, AL T[T cp oAl
kel =1
where AL =T(X}F,0xr), and I ={(ky,... ,kq) e N* | 0 <k; <r/ri, 1 <i<d}.
Proor. Firstly, we note that

(11.8.14.2)

1
Aé[;)] =Lr'Ze - er]'Zer ] AN e 'N = LITE, . TE Tevires - Ta]

by definition (I1.8.12.4) (cf. [Tsul8, page 812, equation (5)]). Thus, P;c; O ®o, AL H?:l Tzkr,
is a finite free O ®p, Ak-subalgebra of Ag [1/p]. By [Tsul8, 4.5.(2)], we have
(I1.8.14.3) pAL' C O @0, AL C AL

By [Tsul8, 4.3] and the isomorphism (I1.8.13.2), there exists kg € Ns¢ independent of L, L' r, 1’
such that (cf. [Tsul8, 4.9])

d
(I1.8.14.4) protay c @Ay [k cpt oAl
kel =1
The conclusion follows from combining (I1.8.14.3) and (I1.8.14.4). O

I1.9. Quasi-adequate Algebras and Faltings Extension

In this section, we fix a complete discrete valuation field K of characteristic 0 with perfect residue
field of characteristic p > 0, an algebraic closure K of K, and a compatible system of primitive n-th
roots of unity ({,)nen in K. Sometimes we denote (,, by o .
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I1.9.1. Let A be a Noetherian normal domain flat over Z,, A, a localization of A with respect to a
nonzero element of pA, K the fraction field of A, K an algebraic closure of K. The mazimal unramified
extension Ky, of K with respect to (Ayy, A) is the union of all finite extensions K’ of K contained in
K such that the integral closure of Ay, in K’ is étale over Ay,. It is a Galois extension over X, whose
Galois group Gal(K,;/K) is denoted by G 4. We call the integral closure A of A in K, the mazimal
unramified extension of A with respect to Ai.. It is G 4-stable under the natural action of G4 on
Ku. We remark that the integral closure of A in any finite field extension K’ of K is a Noetherian
normal domain finite over A by 11.4.4.

Definition I1.9.2. A (K, Ok, Of)-triple is a triple (Ag, A, A) consisting of a Noetherian normal
domain A flat over Ok with A/pA # 0, a localization A;, of A with respect to a nonzero element
of pA, and the maximal unramified extension A of A with respect to A, contained in an algebraic
closure K of the fraction field K of A containing K.

A morphism of (K, Ok, Oz)-triples (A, A, A) — (A}, A’, A’) is a homomorphism of Oz-
algebras f : A — A’ such that f(A) C A" and f(Ay) C Af,. If f is injective, then it induces
an extension of the fraction fields Ky, — K/, and thus a natural homomorphism of Galois groups
Ga — Ga.

We will use this definition to describe the functoriality of the Faltings extensions (cf. 11.9.38).

I1.9.3. Let (A, A, A) be a (K, Ok, Oz)-triple. We denote by €(A) the set of morphisms of (K, O, Of)-
triples (A, A, A) = (E, O, Of), where E is a complete discrete valuation field extension of K whose
residue field admits a finite p-basis. There is a natural right action of the Galois group G 4 on €(A)
defined by sending v € €(A) to vog € €(A), where g € G 4 is regarded as a ring automorphism of A
(which also induces a ring automorphism of O).

We fix an injection

(11.9.3.1) &p(A) — €(A), q+ ((Aw, A, 4) = (B, Op,, 0F,)),

where p € &,(A) is the image of q, Op, is the p-adic completion of the localization A,, Eq is an
algebraic closure of E,, and A — Oﬁq is the injection induced by an extension of valuation rings
Ay — Oﬁq over A, — Op, (cf. 11.4.3). In particular, there is a natural homomorphism of Galois
groups Gal(Ey/E,) — Gal(K.,/K) = G4 by 11.9.2.

Lemma I1.9.4. Let (A, A, A) be a (K,Of,Of)-triple. The natural map of p-adic completions

f:A— H@(A) O@ is G 4-equivariant and injective.
PrOOF. We note that the natural G 4-action on H@(A) Oﬁ is given by
(I1.9.4.1) 9(Tv)vee(a) = (Tvog)vee(a)

for any g € G4. Thus, for any x € A, the v-component of g(f(z)) is the (v o g)-component of f(x),
which is equal to the image of z under the composition of A —+ 4 LN Oﬁ’ i.e. the v-component of
f(gx). This shows the G 4-equivariance of f. With the notation in I1.9.3, the natural maps
11.9.4. A A,)" -
(11.9.4.2) A— Hi(Aq) — HioEq

qeG,(4) q€6,(A)

are injective by 11.4.3. Their composition is also the composition of the natural maps

(11.9.4.3) A—J]0:— H, Oz
€(A) qe6,(A)
where the second map is induced by (I1.9.3.1), which completes the proof. O

Definition I1.9.5. A (K, Ok, Oz)-triple (B, B, B) is called quasi-adequate if there exists a com-
mutative diagram of monoids

B P

T

0K<a7

B

-

(I9.5.1)

satisfying the following conditions:
(1) The element (1) is a uniformizer of Ok.
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(2) The monoid P is fs, and if we denote by =, : Z — P, = Z @&y P the pushout of v by the
inclusion N — Z, then there exists an isomorphism for some ¢,d € N with ¢ < d,

(11.9.5.2) P, 2707 oNI°

identifying v, with the inclusion of Z into the first component of the right hand side.
(3) The homomorphism 3 induces an injective ring homomorphism of finite type A = O ®z[N]

Z[P] — B which is pre-perfectoid in the sense of I1.7.10 such that B ®zp) Z[P#] = By, and

A[l/p] — BI[1/p] is étale.
We usually denote (By,, B, B) by B, and call it a quasi-adequate Ok -algebra for simplicity. The triple
(a:N— Ok, f: P— B, 7:N— P)is called a quasi-adequate chart of B. If we fix an isomorphism
(I1.9.5.2), then we call the images ty,...,tq € B[1/p] of the standard basis of Z¢ @ N¢=¢ a system of
coordinates of the chart. We call d the relative dimension of B over O (i.e. the Krull dimension of
By,). If A — B is étale, then we say that B is an adequate Ok -algebra and call («, 8,v) an adequate
chart.

Remark I1.9.6. In I1.9.5, the condition B/pB # 0 imposes that A/pA # 0. As A is a Noetherian
normal domain flat over Ok by I1.8.9, if we set Ay, = Ox ®z(p) Z[P#P] and denote by A the maximal
unramified extension of A contained in B, then (A, A, A) is an adequate (K, O, Ox)-triple. The
inclusion A C B induces an injective morphism of quasi-adequate (K, O, Oz)-triples (A, A, A) —
(Bir, B, B). If A — B is étale (so that B is adequate) and if we endow Spec(B) with the compactifying
log structure associated to the open immersion Spec(B;,) — Spec(B), then it becomes a log scheme
over S = (Spec(Ox ), Agpec(K)—Spec(0x)) With an adequate chart in the sense of I1.8.8 induced by

(, 8,7) (cf. 11.8.9).

Remark I1.9.7. Let B’ be a B-algebra which is a Noetherian normal domain flat over Ok with
B — B’ injective and B’ /pB’ # 0. We set Bf, = By, ® g B’ and take a maximal unramified extension
B’ of (B{,, B') containing B. Then, B’ is a quasi-adequate Ox-algebra with the same chart of B if
B[1/p] — B'[1/p] is étale and if the ring homomorphism B — B’ is of finite type and pre-perfectoid.
This is satisfied in each of the following cases:
(1) The ring homomorphism B — B’ is étale.
(2) The B-algebra B’ is the integral closure of B in a finite étale B[1/pl]-algebra (cf. I1.7.13).
(3) The B-algebra B’ is the normalization of an affine blowup algebra B[I/a], where I is a
finitely generated ideal of B containing a power of p, and a is a non-zero element of I (cf.
I1.7.18).

Lemma I1.9.8. Let B be a quasi-adequate O -algebra.

(1) A system of coordinates t1,...,tq € B[1/p] defines a strict normal crossings divisor on the
regular scheme Spec(B[1/p]), i.e. in the localization of B[1/p] at any point, those elements
t; contained in the mazimal ideal form a subset of a reqular system of parameters.

(2) Let (¢ : N = Ok, B: P — B, v:N—= P) be a quasi-adequate chart of B, Y = Spec(f :
P — B). Then, the generic fibre Yk is regular whose log structure is the compactifying log
structure associated to the open immersion Spec(By,) — Spec(B[1/p]).

PrOOF. (1) follows from the fact that the system of coordinates t1,...,tq € B[1/p] identifies
B[1/p] with an étale K[Z¢ @ N¢~¢]-algebra (cf. 11.8.9). (2) follows from the observation that Yz =
Spec(Z°¢ @ N¥=¢ — B[1/p]) (cf. 11.8.5). O

Lemma I1.9.9. Let B be a quasi-adequate Ok -algebra and we fix a chart of B as in 11.9.5. Then,
there exists k € N such that the canonical truncation of the cotangent complex T<1Lp/a is pF-ezact
in the sense of I1.7.1.

PROOF. Since A — B is a ring homomorphism of finite type between Noetherian rings, the
homology groups of L, 4 are finitely generated B-modules ([I1171, 11.2.3.7]). The conclusion follows
from the fact that for any integer n, H,(Lp,a)[1/p] = Hn(Lp[/p)/a11/p) = 0 as B[1/p] is étale over
All/p]. O
Lemma I1.9.10. There exists k € N such that for any Ok-algebra R, the canonical map of p-adic
completions ﬁ}g — (Q}%/OK)A is a p*-isomorphism.

PRrROOF. Since K is a complete discrete valuation field extension of Q, with perfect residue field,
Q4. is killed by p* for some k € N (JHe21, 3.3]). For any r € N, we see that Qf/p" — Q}%/OK/pT

is surjective whose kernel N, is killed by p*. Taking limit over r € N, since lim N,. and R! lim N, are
also killed by p*, the conclusion follows. 0
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Proposition I1.9.11. Let B be a quasi-adequate Ok -algebra, S a multiplicative subset of B. Then,
Qg 1 p5[1/p] is a finite free (S™*B)"[1/p]-module, where the completions are p-adic. Moreover, it
admits a basis dtq, . ..,dtq for any system of coordinates t1,...,tq € B[1/p].

PROOF. We note that ﬁé,lB[l/p] = (QIS,IB/OK)/\[l/p] by 11.9.10. We take a quasi-adequate
chart of B as in I1.9.5. By the fundamental distinguished triangle of cotangent complexes ([I1171,
I1.2.1.5.6]), we obtain an exact sequence,

(IL.9.11.1) Hi(Ls-1p/4) = S 'B@a QY 0, — Vs-15/0, = V154 = 0.

By 11.9.9, a is a p*-isomorphism for some k € N. Taking p-adic completion, we obtain an isomorphism
(ST'B®a QY 0, )" [1/P] — (Qs-15/0,)"[1/p] by ILT.3.(1). As A is of finite type over Ok, Q)
is a finitely generated A-module. Since S~!B is Noetherian, we have (S7'B ®4 Qi/OK)A[l/P] =
(S7IB)N ®a Qi/ok [1/p]. The conclusion follows from the fact that A[l/p] = K[Z¢ @ N4=¢] (cf.
11.8.9). O

Corollary I1.9.12. Let B be a quasi-adequate Ok -algebra with relative dimension d. Then, for any
p € 6,(B) (cf 1L4.1), we have [k(p) : k(p)P] = p?, where k(p) is the residue field of B at p.

PRrROOF. Notice that By, is a discrete valuation ring extension of Z,,. Thus, the rank of the 1/3; [1/p]-
module Q}gp [1/p] is equal to log,[k(p), k(p)P], where the completions are p-adic ([He21, 3.3]). The
conclusion follows from I1.9.11. O

I1.9.13. Let B be a quasi-adequate Og-algebra, £ its fraction field, £, the fraction field of B,
G = Gal(Ly/L). As in 11.8.12, we construct coverings of B by quasi-adequate algebras. We fix B in
the rest of this section, as well as the following notation.

We fix a quasi-adequate chart (o : N — Ok, 3: P — B, v: N — P) of B, (A, A, A) the
associated adequate Og-algebra defined in 11.9.6, and a system of coordinates t1,...,tq € A[l/p)].
Let K (resp. Kyur) be the fraction field of A (resp. A). For 1 < i < d, we fix a compatible system of
k-th roots (t;x)ken of t; in A[1/p]. For any field extension E'/E, let Fp/ /g (resp. .FM ) be the

E'/E
set of algebraic (resp. finite) field extensions of E contained in E’, and we endow it with the partial
order defined by the inclusion relation. For any L € 9%%( and any r = (rq,...,74) € N%, we set
(11.9.13.1) Kl=LK(tiy, |1<i<d) and L =LK}

where the composites of fields are taken in Ly, (which contains Ky;). It is clear that K[ (resp. £F)
forms a system of fields over the directed partially ordered set ﬁ%‘yK x N4 (cf. 11.2.1). Let A£ (resp.

BF) be the integral closure of A (resp. B) in K[ (resp. £L). We note that there is an isomorphism
of L-algebras

(11.9.13.2) LITE L TE Toga, .. Ty) = AL[1/p]

sending T to t; ,, as A[1/p] = K[Z° & N4=¢] (cf. 11.8.9).

Let ST (resp. XL) be the log scheme with underlying scheme Spec(Qy,) (resp. Spec(AL)) endowed
with the compactifying log structure associated to the open immersion Spec(L) — Spec(Or) (resp.
Spec(AL,,) — Spec(AL) where AL, = Ay ®4 AL). The following lemma 11.9.14 guarantees the

T,tr
consistency of this notation with the notation in 11.8.12. Let Y,F be the log scheme with underlying
scheme Spec(BF) whose log structure is the inverse image of that of XL via the map Spec(BE) —
Spec(Af) (ie. ?KL — X is strict). We extend the notation above to any (L, r) € Fg i ¥ (NU{OS})iO
by taking filtered colimits.

Lemma I1.9.14. With the notation in 11.8.12 for the chart (¢ : N — Ok, 86: P —- B, 7v: N — P)

of B, for any L € y%‘}iK and r = (r1,...,71q) € N‘io, the homomorphism of monoids P; , — A£
sending (ko, k1/71, ..., kq/rq) to a(1)ko -t]f,ln - thrd induces an isomorphism between Spec(AL) with

the underlying scheme of S* ><f§N Ap, .. In particular, XEL =Sk ngN Ap, ., where the left hand side
is defined in 11.9.13.

PROOF. Let Spec(A’) denote the underlying scheme of ST ><f§N Ap .. ByIl.8.13 and I1.8.9, A" is a
Noetherian normal domain finite over A such that A’[1/p] = L[r; 'N&---r;'Ner_ L Za& - &r;'Z).
Thus, A'[1/p] = AE[1/p] by (11.9.13.2), and we obtain A’ = AL. The “in particular” part follows from

the fact that the log structures on both sides are the compactifying log structure associated to the
open immersion Spec(A%, ) — Spec(Af) by definition, I1.8.13 and IL.8.9. O

T,tr
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Proposition 11.9.15. Let L € ﬁﬂni andr = (r1,...,rq) € NI,

(1) The (L, Oy, O%)-algebra (Bftr7
11.8.12)

(I1.9.15.1) (" e'N= 0Oy, BE Py — Bl A ief' N> Py )

Br, B) is quasi-adequate with a chart (with the notation in

where ey, is the ramification index of L/ K, o is a homomorphism of monoids sending ezl
to a uniformizer 7, of L, BE(ko/er,k1/r1, ... ka/ra) = 7Tk0 t]fl,l . tzdrd, and vE is induced

by the inclusion of the first component of (11.8.12.3). Moreover, AL = O ®zfe=1n) Z[P., ..

(2) The scheme Spec(B[F[1/p]) is an open and closed subscheme of Spec(B @4 AL[1/p]). The
two schemes are equal if and only if LE = L@k KE (i.e. [CE: L] =KL : K]).

(3) For any L' € 5\;’}2 and any element 1’ € N - r, the morphism of generic fibres Y;:K —
YKL,K is €tale.

ProOOF. As X} = ST RS Ap,, by 11.9.14, we see that X% K — XF ‘i Is étale. In particular,
Yie x% XFE is étale over Yy with underlying scheme Spec(B ® 4 AL[l/pD (as Y — X is strict). Since
Y is regular by 11.9.8.(2), so is Y x& XE. We see that Spec(B ®4 AZ[1/p]) is the disjoint union of
finitely many normal integral schemes whose set of generic points identifies with Spec(L @k KE) (cf.
I1.8.5), and thus by definition Spec(BZ[1/p]) is one of these components corresponding to the generic
point Spec(LE), so that we obtain (25 This implies that Y%, — Y x% XF is an open and closed
immersion. Thus, (3) follows as Y — Xk is strict and étale. -

For (1), we take o, 8%, 4} as in the statement. Note that AF = O, ®gfezN] Z[P., ;] by 11.9.14
and I1.8.13, and moreover it defines an adequate Op-algebra. Tt remains to check that the ring
homomorphism AL — B satisfies the conditions in the definition I1.9.5 of quasi-adequate algebras.

We have seen above thatiAﬁL[l/p] — BE[1/p] is étale. As BY is finite over B by IL4.4, it is of finite
type over Aé. Finally, it follows from I1.7.11.(2) that A — B being pre-perfectoid implies that so is
Al — BE. O

Lemma I1.9.16. Let F € yf/}( be a pre-perfectoid field. Then, the Op-algebra B; is almost
pre-perfectoid.

PROOF. Recall that BL is the filtered colimit of B} over (L,r) € 927}( x N2 (cf. 11.9.13). We
claim that the Frobenius on AF oo/ pAF is surjective. Recall that for any L € 9{;7‘[{ and r € N2, there

is an isomorphism f} : Op ®je ] Z|P., ;] — AL sending 1 ®@ exp(ko/er, k1/r1,. .., ka/rq) to ko
tlflrl . -t’;j’},d by 11.9.14 and I1.8.13, where 7y, is a uniformizer of L and « = (ko/er, k1/r1,...,ka/rqa) €

P,, . Since F is a non-discrete valuation field such that the Frobenius map on Op /pOp is surjective,
there exists L' € fg?‘L such that ey, /ey, is divisible by p (1.5.4). We take r’ = pr € N¢,. By definition,
we have ' = (ko/per,k1/71,... ka/r})) € P.,, v as pr’ = x. Thus, there is a unit u € OF, such
that fF(z) = u- f5 (z')P. Since the Frobenius map on Or/pOp is surjective, u admits a p-th root in
Op/pép, and thus fL( ) admits a p-th root in AL /pA which proves the claim.

Since A; is normal and flat over Op, the Frobenius map induces an injection ¢ : Ag /plAg —
A;/pA; (I.5.21), where p; is a p-th root of p up to a unit. By the claim above, ¢ is an isomorphism,

which means that the Op-algebra A; is almost pre-perfectoid (1.5.19). The conclusion follows from
the fact that A — B is pre-perfectoid. O

Lemma I1.9.17. Let L C L’ be elements of flﬁ(’}‘K, rlr’ elements of N&,. Assume that [lg =

LE @ ICEL, (i.e. [.CEL, (LH = [ICf, : KE]). Then, the finite free BE-module

(11.9.17.1) DLt =P oL ©o, BE- Ht

kel
identifies naturally with a finite free BE-subalgebra of BKL/ [1/p], where I = {(k1,...,kq) € N¢ |0 <
ki <rl/ri, 1 <i<d}. Moreover, for any finite field extension L" of L' and any element r" € N
divisible by v’ such that L'g,/ = L'£ ®xcr /Cf,/,/, we have

(11.9.17.2) D/t =B/ nDp L.
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PROOF. We put C; /T " = By On @0, LTI, . Thus, DY/ = BE @y CL, /T L By
assumption, we have Bz, [1/p] = BE @ac Aﬁ, [1/p] (cf. 11.9.15.(2)), which is equal to D ,/T “11/p) as

AL/ [1/p] = cl'/ L[l /p] (cf. 11.8.14). This proves the first assertion. For the “moreover” part, notice

,/7”
that O ®o,, D ,// is a direct summand of DL,,/L

E// 7 [1/p]. Therefore,

both regarded as Or» ®p, Bf—submodules of

(11.9.17.3) O ®o,, Dy} = (L' @0, D)/ N Dy, 1F 2 BEL/pN D%/f.

It remains to check that BLl [l/p] (Opr®o,, DL,//TL) = L,//TL As BL [1/p] = ,/r “11/p], restricting
to the coefficient of each Hl Lt by (I19.17.1), we reduce to show that (L'®o, BF)N(OL»®e, BE) =

Or ®p, BL as submodules of L” ®0, BE. This follows from the identity L' N Op» = O/ and the

flatness of BEL over Orp,. O
Proposition 11.9.18. Let F € ﬂ?/K be a pre-perfectoid field. Then, there exists kg € N such that
or any L € FW_ and r e N¢, if LE = LL @) KE, then the natural map
F/K >0 oo} T = Voo

(I11.9.18.1) BE @ AL — BY
is a p*o-isomorphism for any L' € ﬁg?lL and 1’ € N2, -r.

ProOF. The assumption EF = EL QL ICF implies that Cr/ = Eé ke ICEL/' (i.e. [EKL,/ : LEL] =
[lCﬁ/ : /Cé]) for any L' € Zi0 and ' € Nio r. We take again the notation in I1.9.17 and its proof,

F/L
and we put Doo/ﬁ = colimp/ ,» D ,//TL as Bf-subalgebra of B [1/p]. By 11.9.17, we have
(I1.9.18.2) DY/F = BE [1/pln DL

On the other hand, since A — B is pre-perfectoid and IC; € P4 (cf. 11.7.10) by 11.9.16, there exists
ko € N such that

(I1.9.18.3) p*Coker(B @4 AL, — BE) =0.

After enlarging ko (independently of L, L’) by 11.9.14 and 11.8.14, we may also assume that
(I1.9.18.4) pAl c ot Cphoal

Applying the functor B£L ®@4L —, we see that the natural maps

(I1.9.18.5) BE @41 AL «— BE @1 pP AL — DLJE

are p*fo-isomorphisms by 11.7.3.(1). As DL,//TL C BL'[1/p], we deduce that the kernel of (I1.9.18.1)

is pFo-zero after replacing ko by a constant multlple. On the other hand, as kg is independent

of L, L', after replacing it by a constant multiple, we deduce from (11.9.18.3) and (11.9.18.5) that
pBE € DI/L. Thus, ptBE C BE[1/pnDL/} = Dy, /f by (11.9.18.2), which implies by (I1.9.18.5)

that the cokernel of (I1.9.18.1) is p*°-zero after replacing ko by a constant multiple. O

Corollary I1.9.19. Let F € fF/K be a pre-perfectoid field, L € 321{17}(, r € N‘io. Assume that
L; = ,CL kL ICF . Then, there exists kg € N such that the truncated cotangent complex T§1LBL/ /AL

is p*o-exact for any L' € 5‘272 andr’ € N -r.
PROOF. We set C' = BLL @ AL AEL,/.

(I1.9.19.1) B ~—— C<— AL
]
By <— A;
We take k1 € N such that T<iLpr ar is pFi-exact by 11.9.9 and 11.9.15.(1). Thus, Tgch/ALJf is p?k
exact by I1.7.6. Since C' — Bw is a p*o-isomorphism by 11.9.18, T<1LBLl/C is pw%o—exactlby I1.7.8.
After replacing ko by 3 max{2ky, 102k}, we see that T<1LBL//AU is pFo-exact for any L' € 5‘}”/‘}: and
reNdg.rby ILT.7. 0
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Corollary I1.9.20. Under the assumptions in 11.9.19 and with the same notation, let L' € ﬁ;‘/‘i and
r' e Nio -T.
(1) The canonical morphism

(11.9.20.1) BE ®AL/ Q! — Q!

XL//SL/ YL//SL/

is a p* -isomorphism.
(2) Let L" € fg?‘L, and 1" € N -1'. Then, the canonical morphism

(11.9.20.2) BL ® AL O —

XL///XL/ YI;////YL/

is a p**o-isomorphism.

PROOF. (1) The fundamental distinguished triangle of logarithmic cotangent complexes defined
by Gabber (|Ols05, 8.29]) gives a canonical exact sequence

(119203) H (LYL//XL/) — BT’ ®AL/ QXLI/SL/ —> QYL//SL/ — QYL//XL/ — 0

Since Y;/ — XEL,/ is strict, its logarithmic cotangent complex is quasi-isomorphic to the cotangent
complex Lgrr 41/ ([O1s05, 8.22]). Thus, « is a p*0-isomorphism by 11.9.19.

(2) The proof is similar to that of (1). There are canonical exact sequences

(119204) BT‘” ®BL,/ QYL//XL/ *)QYL,‘,”/XfI *} QYI,’,“/YI,’/ — 0,
(119205) H (LYI,’,”/XLN) — BT” ®AL// QXL”/XL/ *)QYL,‘,”/XLI — QYI,’,”/XiL,/,/ — O
By I11.9.19, we see that a and 3 are pFo-isomorphisms, and thus o o 3 is a p?*°-isomorphism. O

I1.9.21. We start to compute some modules of log differentials and construct the Faltings extension of
B. Since L is a finite extension of K, there exists Ly € .Zi" and ry € Ny such that Eﬂng - leOO.

e K/K
As KX is a Galois extension of K, we see by Galois theory that for any L € .71 fg}‘L and r € N5 ¢ - 7o,
(11.9.21.1) Lh=rh Dty Ky (e [LF: L] = [KF - K0

Recall that the log structure that we put on Yg is the colimit of the inverse images of log structures
on Y over (L,r) € i x N&; (cf. [GRO4, 12.2.10]). In the rest of this section, we denote

J K/K _
by Y the log scheme with underlying scheme Spec(B) whose log structure is the inverse image of
that of YX via the map Spec(B) — Spec(BK). We denote by eq,...,e; the standard basis of

Z1+d. Recall that for any 1 <i < dand r € Nug, the element ¢;,, € B[1/p] is the image of
“le; € Py, =7Z®(r'Z)°® (r~'N)4=¢ via the chart (I1.9.15.1). For any morphism of log schemes
Y — Z over S, we denote by dlog(t;,) € I'(Spec(B), Q% ) the image of the global section 7~ 'e; via

Y/z
the canonical map dlog : M — Q;/Z (cf. I1.8.6).

Lemma I1.9.22 (Abhyankar’s lemma). Let L' € fgfj/ﬁ, B’ the integral closure of B in L. Then,
there exists r € Nso such that BJ[1/p] is finite étale over B,[1/p], where B, is the integral closure of

B"in L. = L'L,. In particular, if we set B, ,, = By ®@p By, then (B, ,,
Ok- algebm with a chart induced by the chart (11.9.15.1) of (B4, By, B).

B , B) is a quasi-adequate

PrROOF. Recall that t1,...,t; defines a strict normal crossings divisor on the regular scheme
Spec(B[1/p]) by 11.9.8.(1), and that for any r € Nsg, we have A,[1/p] = A[1/p|[Th,...,Tu]/(IT] —
t1,...,T5 —tq) by (I1.9.13.2). By Abhyankar’s lemma [SGA 1, XIIL5.2], there exists » € N5¢ such
that the mtegral closure C' of B4 A, [1/p] in B, ®4 A, [1/p] is ﬁmte étale over B®4 A, [1/p]. Notice
that Spec(B[1/p]) is an open and closed subscheme of Spec(B ®4 A.[1/p]) by 11.9.15.(2). By the
same argument, we also see that Spec(B,.[1/p]) is an open and closed subscheme of Spec(C). Thus,
B![1/p] is finite étale over B,[1/p]. The “in particular” part follows from II.9.7. O

Proposition 11.9.23. Let F' € F5% - be a pre-perfectoid field (e.g. F = K). Then, for any L' €
J@’g‘rj/ﬁg, the integral closure B' of B in L' is almost finite étale over B;. In particular, the cotangent
complex LE/BF s almost zero.
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PRrROOF. By Abhyankar’s lemma I1.9.22 and a limit argument (cf. 1.8.21), B’[1/p] is finite étale
over BL [1/p]. Since BL is almost pre-perfectoid (I1.9.16), B’ is almost finite étale over BL by almost
purity I1.7.12. Thus, the cotangent complex Lp//pr is almost zero (|[GRO3, 2.5.37]), and so is LE/Bg;“O
by taking filtered colimit. N O

Lemma I1.9.24. Let E'/E be an extension of discrete valuation fields, Z (resp. Z') the log scheme
with underlying scheme Spec(Og) (resp. Spec(Opgr)) with log structure defined by the closed point.
Then, the kernel of Q%,)E//OE — le,/Z 1s killed by a uniformizer of E, and its cokernel is killed by a
uniformizer of E’.

PROOF. Let 7" (resp. m) be a uniformizer of E’ (resp. E). We write 7 = un’® for some u € OF,
and e € N. Then, Z’ — Z admits a chart (o« : N = Op, 8:e"'N®Z — Op, v:N = e INa@ Z)
where a(1) = 7, (e 1,0) = 7', 5(0,1) = u and v(1) = (1,1). By IL8.6, there is an Op-linear

surjection

(11.9.24.1) 00,10, ® O ® (e LOL) L — Ny y

whose kernel M is generated by (du,—u ® (0,1)) and (dn’, —7’ ® (e~%,0)). Thus, the cokernel of
QéE,/OE — le,/z is killed by 7/, Let w € Q}QE//OE NM. We have w = adu+bdr’ for some a,b € O/

such that br’ = eau. Since 0 = dr = 7'¢du+ eun’*~1dr’, we see that 7w = au(n’*du+ eun’®~tdn’) =
0. O

Proposition I1.9.25 ([Fon82, Théoréme 1’|). The O-linear homomorphism
(11.9.25.1) K/Oz — le?/s,
sending p~" to dlog(Cpn) for anyn € N, is a pF-isomorphism for some k € N.

PROOF. Recall that there is a fractional ideal a of K and an O%-linear isomorphism

(I1.9.25.2) K/a = Q6 10,

sending p~" to dlog({y~) for any n € N ([Fon82, Théoréme 1’]). The conclusion follows from the
fact that Q}DL/OK — Q}sL/S is a p-isomorphism for any L € 9%7[( by 11.9.24. O
Lemma 11.9.26. With the notation in 11.9.21, there exists kg € N such that for any L € 9%7%, the
Bé—linear map

(11.9.26.1) B;[%]d — Q51 51,

sending p~"e; to dlog(t; pn) for any1 <i<d andneN, isa pFo-isomorphism.

PROOF. Since XEL = St XRSN Ap . for any r € Ny by 11.9.14, we have Q%(L/SL = AEL Rz
(PfY/NeP) = AL @y (r1Z)¢%, which identifies dlog(t; ) with p~"e; if p™[r (cf. 11.9.21). Taking
r — 00, we obtain the conclusion by I11.9.20.(1). O

Lemma I1.9.27. With the notation in 11.9.21, there exists k € N such that for any r € Nsq - 7o, the
Bf—lmear map

J— 1 J—

(11.9.27.1) Bf[];}/BﬁK — Q;E/YEO’
sending p~™ to dlog((pn) for any n € N, is a p*-isomorphism.

PROOF. Since X% = SL x,  XLo for any L € 3?%7% by 11.9.14, we have Q;{LL/XEO = Al ®o,
leL/SLO. Taking L running through ﬁ%’}i , we see that there exists k£ € N by 11.9.25 such that the

0
map Af R0 K/O% — Q;? /xEo is a pF-isomorphism for any r € Nyg. The conclusion follows from
11.9.20.(2). - O
Proposition 11.9.28 (cf. [AGT16, 11.7.9], [He21, 3.6]). The B-linear homomorphism
— 1, — =1

(11.9.28.1) (B[E]/B) ® B[;]d — Op

sending p~"e; to dlog(t; ,n) for anyn € N and 0 < i < d (where ton = (pn ), is a p*-isomorphism
for some k € N.
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Proor. With the notation in I1.9.21, consider the canonical exact sequences

(11.9.28.2) BE @10 O P 2, e yzo — 0,
(11.9.28.3) BE @0, QL Jsto 2 xe /50 2 Qpre/ge — 0

By I1.9.27 and 11.9.25, there are p*-isomorphisms

(11.9.28.4) BE 9o, KOz — QyK/YLoa

(11.9.28.5) K/Ox — Qi g1,

On the other hand, by I1.9.26, there are pF°-isomorphisms

1.,

(I1.9.28.6) BL [];] — Qo gr;
_—

(I1.9.28.7) BE [];] — Qe e

By considering the compositions 52 o a1 and S o ag, one checks easily that the Bg—linear homomor-
phism
1

(I1.9.28.8) (B [ ]/BK) @ BE [p] — Q;K/SLO
sending p~"e; to dlog(t; ) for any n € N and 0 < i < d, is a p'-isomorphism for some [ € N.
Since S0 — S is a morphism of Noetherian fs log schemes which induces an étale morphism of the
generic fibres and induces a finite morphism of the underlying schemes, the homology groups of the
logarithmic cotangent complex Lgr, /g defined by Gabber are p-primary torsion, finitely generated
Or,-modules (|O1s05, 8.30]). After enlarging [ (depending only on Ly), we may assume that the map
(BE[1/p]/BE) @ BE[1/p]* — Q%/K/S is a p'-isomorphism. The conclusion follows from 11.9.23. O
Lemma 11.9.29. With the notation in 11.9.21, there exists kg € N such that for any L € G\Ifg}lL , the
Bé—lmear map

1
(11.9.29.1) (B;[];]/TalBé)d — Qrvrs

sending p~"e; to dlog(t n) for any n € N and 1 <i < d, is a p*o-isomorphism.

PROOF. Since X%

=

XL XAP Apl ,, for any elements r|r’ in N5 by I1.9.14, we have QXL,/XL =
Aﬁ@Z(Plgz,/Pﬁg) = Af,@z = 1Z/r_1Z) , which identifies d log(t; p» ) with p~"e; if p" |1’ (cf. H.9.21).

Taking r = rg and 7’ — 0o, we obtain the conclusion by 11.9.20.(2). O
Proposition 11.9.30 (cf. [AGT16, I11.7.13], [He21, 4.2|). The B-linear homomorphism

(I1.9.30.1) (F[%]/E)”d — Q)

sending p~"e; to dlog(t; pn) for anyn € N and 0 < i < d (where tom = (pn ), is a p*-isomorphism
for some k € N.

PROOF. The proof is similar to that of I1.9.28. With the notation in I1.9.21, consider the canonical
exact sequences

B

(11.9.30.2) BE® BLo Ol Yo jyo Q;K/Y’ R Q;é/y% — 0,
B

(11.9.30.3) BE s @pr QYK v Q;K v —2> Q;g g — 0

By I1.9.27, there are p*-isomorphisms

(11.9.30.4) By ®0, K/O — Qe vk

(I1.9.30.5) BE @0, K/Og — QYK v
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On the other hand, by 11.9.29, there are pF°-isomorphisms

1

(11.9.30.6) (BL [5]/@13;)4 — Qoo
— 1 _ —_

(I1.9.30.7) (Bl V/ro B — e

By considering the compositions 52 o a1 and S o ao, one checks easily that the Bg—linear homomor-
phism

_— 1 _
(11.9.30.8) (Bg[];]/Bg)”d — Q;g/yio

sending p~"e; to dlog(t; ) for any n € N and 0 < i < d, is a p'-isomorphism for some [ € N.

Since Yrﬁ" — Y is a morphism between Noetherian fs log schemes which induces an étale morphism

of the generic fibres (I1.9.15.(3)) and induces a finite morphism of the underlying schemes (I1.4.4),

the homology groups of the logarithmic cotangent complex Ly, 1, Y defined by Gabber are p-primary
ro

torsion, finitely generated Bl0-modules (|O1s05, 8.30]). After enlarging ! (depending only on Ly and

79), we may assume that the map (Bg[z%] /BE)i+d — 0 Jy 152 pl-isomorphism. The conclusion

follows from I11.9.23. U

I1.9.31. The %[1/p]—module VP(Ql?/Y) =lim . Qly/y (cf. 11.2.2) is endowed with a natural action

of G. For any element (spr)nen of lim B[1/p] N By, we take [ € N such that p's; € B. Thus,
plsgn € Bforany n € Nand 0 < r < p". Notice that the element p‘m((plsg,fl)d(plspn))neN of

Vp(Q2 does not depend on the choice of I. Thus, we denote this element by (sgz_ldspn)neN.

1
?/Y)
Proposition I1.9.32 (cf. [AGT16, 11.7.22|, [He21, 4.4]). There is a canonical G-equivariant exact
sequence of B[1/p]-modules,

(11.9.32.1) 0 — B @B Qys — 0,

satisfying the following properties:

(1) We have t(1 ® (Cpn)nen) = (dlog(Cpn))nen-
(2) For any element s € B[1/p] N By, and any compatible system of p-power roots (spn)nen of

s in B[1/p], j((szzfldspn)neN) =ds (c¢f. 11.9.31).

(3) The B[1/p]-linear surjection 5 admits a section sending dlog(t;) to (dlog(ti pn))nen for any
1<e<d.

In particular, VP(Ql?/Y) is a finite free %[%]—module with basis {(d1og(t; pn))nento<i<d, where to pm =
Cor

PRrROOF. Consider the commutative diagram
(119.322) 0— =008 — - (B[}]/B) @ B[;]* — (B[}]/B) @ (B[;]/B)* —=0

| | |

B 1 1 1
B®p Qg Q?/s Q?/Y 0

where the vertical maps send p~"e; to dlog(t; ) for any n € N and 0 <14 < d. There exists k € N
such that the vertical maps are p*-isomorphisms by 11.9.8.(2), 11.9.28 and 11.9.30. It is clear that
the first row is exact and splits. Applying Homg, (Z,,/p"Z,, —) to (11.9.32.2), we get a commutative
diagram

(11.9.32.3)

0 (p"B/B)®0— (p"B/B)® (p"B/B) —= 0@ (B/p"B)* —=0

| | | |

(B®s )" — ()] ———= Q"] —— (B@p Q) 5)/p" —0
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where the connectmg map j sends (p's g Yd(plsym) to d(p*s) (with the notation in 11.9.31). The
vertical maps are p**-isomorphisms by I1.7.3.(1), and the first row is exact and splits. Taking inverse
limit on n € N and inverting p, by 11.7.3.(2), we get a canonical G-equivariant exact sequence, which
admits a splitting (not G-equivariant),

1 il
(I1.9.32.4) 0—1T (Qly/s)[p] V0, D Bl l®s 055 — 0,

where we used the fact that T, (Q;/Y)[l] =1V (Q;/Y) le/y is p-primary torsion, and that
Y/S[l/p} is finite free over B[1/p] with basis dlog(t1),...,dlog(ts). Notice that (I1.9.32.3) also

implies that ¢ : B[ (1) = T, (Q;/S)[l] sending 1 ® ((pn )nen to (dlog({pn))nen is an isomorphism.

The conclusion follows O

11.9.33. A priori, the sequence (I1.9.32.1) relies on the choice of the quasi-adequate chart of B. In
the rest of this section, we show that it can be canonically defined, independently of the choice
of a chart. Firstly, we check the compatibility of (I1.9.32.1) with the Faltings extension (I.5.7.1)
of a complete discrete valuation ring. Let (B, B,B) — (E,Og,Of) be an element of €(B) (cf.
11.9.3). Let Z (resp. Z) be the log scheme of underlying scheme Spec(Og) (resp. Spec(Of))
with the compactifying log structure defined by the closed point. Notice that the map Q}QE Jop
QIZ /7 is a p-isomorphism by I1.9.24, which thus induces a natural isomorphism of E-modules &p,, =

Vi (QOE/OE) =V, (97/2) The map Q}QE/OK — le/s is also a p-isomorphism by I1.9.24, which

thus induces a natural isomorphism of E-modules Q}QE[%] (Qé)E/OK)/\[%] (le/S)A[%j]. By
the explicit descriptions of ¢ and 7, the exact sequence (I1.9.32.1) fits into the following natural

commutative diagram

~

BIAJ(1) — V(0 ) — B[} @5 O} g —0

] |

= . ; =
0—— H@(B) E(l) — He(B) Eop —> He(B) E®og QOE —0

(11.9.33.1) 0

where the second sequence is the product of the Faltings extensions of O defined in IL.5.7.
For any q € &,(B) with image p € &,(B), consider the element (By,, B, B) — (Ey, OEp,OEq) of

€(B) defined in I1.9.3. Notice that {dlog(t;) }1<i<q forms an E,-basis of (AZ%QEP [1/p] by I1.9.11 (as Og,

is the p-adic completion of the localization By). Thus, {(dlog(t; yn))neno<i<a forms an Eq-basis of
5@Ep . With respect to this basis, we can identify the projection of each vertical map in (I1.9.33.1) to

Djb

the components corresponding to &,(B) with a direct sum of the natural map E[%] — 11, cs, (@) Fa

which is injective by I1.9.4. In conclusion, the vertical maps in (I11.9.33.1) are injective.

Lemma I1.9.34. For any element s € B[1/p] N B;x and any compatible system of p-power roots

(8pn)nen of s in B[1/p], there is at most one element w €V, (Q;/Y) such that sw = (sgz_ldspn)neN.

PROOF. By the discussion in 11.9.33, we have V, (QY/Y) C Hqu B) 605, - Since s acts invertibly
on the latter, the unicity of w follows. O

Proposition 11.9.35. For any element s € B[1/p| N B and any compatible system of p-power roots
(8pn)nen of s in B[1/p], there is a unique element w €V, (Q;/Y) such that sw = (sgnfldspn)neN,

which we denote by (dlog(spn))nen.

PrOOF. We note that for any p € Spec(B[1/p]), the non-units of {¢1,...,tq} in B, form a subset
of a regular system of parameters of the regular local ring B, by I1.9.8.(1). Since the divisor div(s)
on Spec(B,) defined by s is set-theoretically contained in the union of the integral effective Cartier
divisors div(ty), . .., div(tq), we can write s = ut{* - - - t3* for some u € By and ay,...,aq € N ([Sta22,
0BCP]). Thus, we can take fi,..., fi € B such that {Spec(B[1/pf;])}1<i<; forms an open covering
of Spec(B[1/p]) and that s admits an expression as before in each B[1/pf;]. Consider the finitely
generated ideal I = (f1,..., f;) of B. It contains a power of p as I[1/p] = B[1/p]. Consider the affine
blowup algebra B[I/f;] (see I1.7.14) and its normalization B;. It is clear that B;[1/p] = B[1/pf;]. As
the image of B[I/fi]@p B[I/f;] in B;®g B;[1/p] = B[1/pf:f;] is the affine blowup algebra B[I?/ fi f;],
we see that the integral closure B;; of B; ® g B; in B; ®p B;[1/p] coincides with the normalization
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of B[I?/f;f;] for any 1 < i,j <. Thus, B;, B;; define naturally quasi-adequate Og-algebras with
the same chart induced by B (I1.9.15.1) (cf. I1.9.7). For the simplicity of our arguments below, we
consider the integral closures of B;, B;; in L, (the fraction field of B), and denote them abusively by
B, B;; (which may be smaller than the corresponding maximal unramified extensions). Therefore,
B; is the integral closure of B[I/f;] in B[I/f;][1/p] = BJ1 /pfi]; which is almost pre-perfectoid over
Oz by IL.7.17. Since B, is the integral closure of B; @5 B; in B; ®5 B;[1/p] = B[1/pf;f;], it is
almost pre-perfectoid and whose p-adic completion is almost isomorphic to that of B; @+ vl B by 1.5.33
and 1.5.30. Since {Spec(B[I/fi]) — Spec(B)}1<i<; is the composition of a blowup with a Zariski
open covering, {Spec(B;) — Spec(B)}1<i<; is a v-covering by 1.3.15. Thus, the descent of perfectoid
algebras in the arc-topology (due to Bhatt-Scholze, cf. 1.5.35) induces an exact augmented Cech
complex

—

(11.9.35.1) 0 B[] [licici Bilyl == << Biily)

On the other hand, let Y; (resp. Y;) be the log scheme with underlying scheme Spec(B;) (resp.
Spec(B;)) whose log structure is the inverse image of that of Y (resp. Y). Although the maxi-

mal unramified extension of the quasi-adequate algebra B; may be bigger than B;, the B;-module

V;?(Ql?i/yi) is finite free with basis {(dlog(t; p» ))nen }o<i<a by the arguments of 11.9.32 as B; contains

(Bi>£ and almost purity still holds for it (cf. 11.9.23). Similar result also holds for B;;. Thus, there
is a commutative diagram

o~ —

(11.9.35.2) 0—— E[%]H—d - H1<7,<l B; [ }H_d = H1<z,j<l Bi; [ ]H_d

l l l

00—V (Q%//y) - ngigl Vp(m?i/yi) = ngi,jgl VP(Q%/YU)

where the vertical maps are isomorphisms. Thus, the second row is also exact. Recall that in
each B;[1/p], we can write s = ut{" .-ty for some v € B;[1/p]* and ai,...,aq € N. Notice that
Sprtypn = tyoi € Lur. We put upn = spnty pn -+t 0%, which is a p"-th root of u and thus lies in
B;[1/p]. We see that the element

d
(IL.9.35.3) (d1og(upn))nen + ) ai(d1og(tipm))nen € Vo(Q4r )

=1

is the unique element w; whose multiplication by s coincides with (ngfldspn)neN (cf. 11.9.34). The

unicity implies that w; and w; coincides in V, (Q— Vi /v, ). Therefore, by the exactness of the second row
in (I1.9.35.2), we obtain an element w € V, (Q?/Y) such that sw = (siz_ldspn)neN, which completes
the proof. O

Theorem 11.9.36. Let B be a quasi-adequate Ok -algebra, Yi the log scheme with underlying scheme

Spec(B[1/p]) with compactifying log structure associated to Spec(By,) — Spec(B[1/p]), &5 the B[1/p]-
submodule of [[¢p) 60, (see 11.9.33) generated by the subset

(I1.9.36.1) {(dlog(spn))nen | 81 € B[1/p] N B, sy € B[1/p), Spni1 = Spn, Vn € N}

Then, &g is stable under the natural ﬁ[l/p}—semi—lmear action of G = Gal(Lw/L) on [[¢p) &
(induced by the right G-action on €(B), ¢f. (11.9.4.1)), and there is a canonical G-equivariant exact

sequence of B[1/p]-modules,

(11.9.36.2) 0— BJ(1) — 5 =5 Bop O, — 0,

1
p
satisfying the following properties:
(1) We have (1 & (Cpr)nen) = (d1og(Cpn))nen-
(2) For any element s € B[1/p] N B: and any compatible system of p-power roots (Spn)nen of

s in B[1/p], 3((dlog(spn))nen) = dlog(s).
(3) If we take a quasi-adequate chart of B and fix compatible systems of p-power 100ts (t; pr )nen C
B[1/p] of the coordinates t1,...,tq € B[1/p], then the sequence (11.9.36.2) identifies with
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the image of the vertical maps in (11.9.33.1). In particular, the B[1/p|-linear surjection j
admits a section sending dlog(t;) to (dlog(t; pn))nen for any 1 <i <d.

In particular, &g is a finite free E[%]—module with basis {(d1og(t; pn))nen to<i<d, where topn = G,
on which G acts continuously with respect to the canonical topology (where E[%] is endowed with the
p-adic topology defined by B).

PROOF. As the subset (11.9.36.1) is G-stable, we see that &p is G-stable and thus endowed
with a natural G-action. By I1.9.35, V;,,(le/y) identifies with &5 as a submodule of [[¢ ) €0, via

(I1.9.33.1). The conclusion follows directly from I1.9.32 and 11.9.33, where the “in particular part”
follows from the same arguments of I1.5.7. 0

Definition I1.9.37. We call the canonical sequence (I11.9.36.2) the Faltings extension of B.

Remark I1.9.38. The Faltings extension (11.9.36.2) is functorial in the following sense: let K’ be
a complete discrete valuation field extension of K with perfect residue field, B’ a quasi-adequate
Ok-algebra. Consider a commutative diagram of (K, Ok, Ox)-triples (see 11.9.2)

f

(11.9.38.1) (B, B,B) —— (By,, B, B')

| |

(K,Ok,0x) — (K', Ok, O%7)

Then, f induces a natural map €(B’) — &(B) sending v’ to v’ o f (cf. 11.9.33). It induces further a
natural map

(11.9.38.2) 11 ¢0x — 1] 0w @oveem) = (Woop)vees),
&(B) €(B)

which maps &p to &5/ and is compatible with the Faltings extensions.

o~

(I1.9.38.3) 0——B[l1) —> & —>Besl,, —0

Ao

(1)
0—=B/[2](1) ==& — =B @p Q) 0 —=0
K,

Moreover, if B’ is the integral closure of B in a finite extension of £ contained in L, then Y}, is étale
over Yx by [ILO14, IX.2.1]. Assuming that K’ is finite over K, we see that the natural map B’ ®p
Q%/K/K — Q%,I,(//K, is an isomorphism, and thus the vertical maps in (I1.9.38.3) are isomorphisms. In

particular, &g contains (dlog(spn))nen for any element (spn)nen of fm B[1/p] N B,..
11.9.39. As in I1.5.16, taking a Tate twist of the dual of the Faltings extension (I1.9.36.2) of B, we

obtain a canonical exact sequence of finite projective B[1/p]-representations of G, which splits as a
sequence of B[1/p]-modules,

1 5 o~

(11.9.39.1) 0—s HomB[;](QlyK/K(—l),ﬁ[p]) g1 S BlE] — 0

1
p
where &5 = Hom§[1 . (€5, B[1/p]). There is a canonical G-equivariant B[1/pl-linear Lie algebra

structure on &5 (1) associated to the linear form +*,

(11.9.39.2) [f1, fol = S (f1) f2 = (f2) fr, Vs fa € E5(D).

Thus, HomB[l/p](Q%/K/K(—l),ﬁ[l/p}) is a Lie ideal of &5 (1), and ﬁ[l/p] is the quotient, and the
induced Lie algebra structures on them are trivial. Agy B[1/p]-linear splitting of (I1.9.39.1) idEntiﬁes

&5 (1) with the semi-direct product of Lie algebras of B[1/p] acting on Homp(; /) (Q%/K/K(—l), B[1/p])

by multiplication. Let {T; = (dlog(t; yn))nen ® (' }o<i<a (Where tg,n = (pn) denote the basis of
&p(—1), and let {T} }o<i<a be the dual basis of &7(1). Then, we see that the Lie bracket on &7(1)
is determined by

(11.9.39.3) T3, 7] =T and [T}, T]] =0,

7
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for any 1 <i,j < d. Indeed, this dual basis induces an isomorphism of B[1/p]-linear Lie algebras

~

=1 ~
(11.9.39.4) Bl ®q, Lie(Z, x Zd) <=5 &5(1), 100, = T7,
where {8;}o<i<a is the standard basis of Lie(Z, x Z¢%) (cf. 11.4.20).

I1.10. Descent of Representations of Arithmetic Fundamental Groups after Tsuji

Tsuji [Tsul8, §14] studied the descent of representations of the arithmetic fundamental group
of an adequate algebra. In this section, we show that his arguments still work for quasi-adequate
algebras.

11.10.1. We construct a Kummer tower from the coverings of a quasi-adequate algebra defined in
11.9.13. The following notation will be used in this section. We fix a complete discrete valuation field
K of characteristic 0 with perfect residue field of characteristic p > 0, an algebraic closure K of K,
and a compatible system of primitive n-th roots of unity ({,)nen in K. Let B be a quasi-adequate
Og-algebra, L its fraction field, £y, the fraction field of B. We fix a quasi-adequate chart of B, A
the associated adequate Og-algebra defined in I1.9.6, and a system of coordinates t1,...,tq € A[1/p)].
Let K (resp. Kyr) be the fraction field of A (resp. A). For any 1 < i < d, we fix a compatible system
of k-th roots (¢; )ren of t; in A[1/p].

Let J be the subset of Nio consisting of elements N = (Ny, ..., Ng) with N; prime to p for any
1 < i < d. We endow J with the partial order defined by the divisibility relation (cf. II1.2.1). For
NeJ,neNand m= (mi,...,mg) € N we define finite field extensions of K and K in K and
Ky respectively by

(I1.10.1.1) K™ = Ky, |1<i<d), K = KDOK(t; ymin, | 1<i<d).

n,m

It is clear that these fields K%ﬂm) form a system of fields over the directed partially ordered set J x NxN¢
(cf. 11.2.1). We extend this notation for one of the components of N, n,m being co by taking the
filtered union, and we omit the index N or n or m if N =1 or n = 0 or m = 0 respectively. We

()
remark that if we take again the notation in I1.9.13, then K;ﬂm) = ICII)(L,?A. We set L%ﬂm) = EIC;,HE) and
let A%ﬂm) (resp. Bé%) be the integral closure of A in IC%ML,)L (resp. of B in £%ﬂm))
For any N € J, the system (B,(L,ﬂm))(n,m)eNHd is the Kummer tower of BY) defined by Cpmstipn, .. tdpn

- A , :
(cf. 11.4.16). Following I1.4.7, for any (n,m) € (NU{oo})!™% we denote by By 1 the p-adic completion
of By(%,)“ and we set

(11.10.1.2) BX) — colim BYY .

n,m s
(n/,m) (N ) <) my

We remark that the transition maps in the colimit of (I1.10.1.2) are closed embeddings with respect to

the p-adic topology, and that E,(Lﬁm) identifies with a topological subring of E,(lﬂm) (both endowed with
the p-adic topology) by I1.4.7. We name some Galois groups as indicated in the following diagram:

(11.10.1.3) J
Afg )T \
neo [ g o ©
\ ,7\ =)
‘ AM )
A AN
L8 < L ~—L

Lemma I1.10.2. For any N € J, the Kummer tower (thﬂm))(n,m)eN”d satisfies the condition
11.4.19.(1).

PrOOF. For any p € GP(B(E)), if we denote by E the completion of the discrete valuation field
Bgﬂ) [1/p], then we need to show that the Kummer tower (Og,, ,,.) (n,m)ent+ (defined by ij’ tipny .-y bdpn)
satisfies the condition I1.4.19.(1). It suffices to check that dt¢y, ..., dts form an E-basis of Q}B(M [1/p] =

P

(AZ}QE [1/p] by 11.5.22. Since BWY) is a quasi-adequate O -algebra with a system of coordinates
t1,Nys - - -5 ta,n, by 11.9.15.(1), the conclusion follows from I1.9.11. O
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Proposition I1.10.3. There exists ng € N such that the following statements hold for any N € J
and (n,m) € N4,

>TLO

(1) We have Loalﬁ = E%ﬂm) OKym Koo,o0-
(2) The cyclotomic character (11.4.15.2) x : G — Z, (describing the action on (yn) and the
p-adic logarithm map (11.3.6.3) log : Zy — Ly induce an isomorphism

(I1.10.3.1) logox : B =5 p"Z,.

(3) The continuous 1-cocycle (11.4.15.4) & : G — Z& (describing the action on tyyn,. .. tamm)
induces an isomorphism

11.10.3.2 AR Ty gz x pMe
m P P

where m = (my, .. md)
(4) The natural map 6 ( ) -6 (Bno no) is a bijection.

PROOF. Since the Kummer towers (Bp ) (n,m)ent+a and (An m)(n,m)ent+¢ both satisfy the con-
dition I11.4.19.(1) by I1.10.2, there exists ng € N such that the conditions 11.4.19.(2, 3) hold for any
(n,m) € N;ﬁ. In particular, the natural map Gal(Loo . 00/Ln.m) = Gal(Koo,00/Kn,m) is an isomor-
Ks,00 by Galois theory. As [E%ﬂm) : Lpm] is
prime to p, we have Eoo 0 = E(N) ®L,.m Loo,c0, Which implies (1). Then, we deduce easily the other
statements by Galois theory. 0

phism of pro-p groups Thus, Loo,co = Lnm @k

n,m

Lemma I1.10.4. For any N € J, the OK(N) -algebra BOO 50 15 almost pre-perfectoid.

Proor. As K& is a pre-perfectoid field (cf. the proof of 11.13.1), the conclusion follows from
the same argument of I1.9.16 (where admitting roots in the prime-to-p part is unnecessary). 0

Proposition I1.10.5. For any N € J, there exists kg € N such that the natural map
(I1.10.5.1) B ©,w AN, — B,

is a p*o-isomorphism for any elements (n',m’) > (n,m) in (Ns,, U{co})'*?, where ng € N is defined
in 11.10.3.
ProoOF. It follows from the same argument of 11.9.18 using I1.10.4 instead of 11.9.16. U

Lemma I1.10.6 (cf. [Tsu18 14.11]). For any N € J, n € N, U {oo} and any elements m’ > m
in (Nsp, U {oo})? with m’ € m + N? C (NU {oco})?, where ng € N is defined in 11.10.3, the natural
homomorphism

5 1
(I1.10.6.1) BT(L% ®pw B N) [p] B(N) [p]

’
n,m nm

is an isomorphism, and B( m [1/D) s a finite free BE m[l/p] module.

PROOF. Let I = {(k1,...,kq) € N* | 0 < k; < p™~™ 1 < i < d}. We deduce from the
conclusion of 11.8.14 (cf. 11.9.14) for finite indexes that there exists kg € N independent of n, m,m’
such that

k(J C (N) —k?(J (ﬂ)
(11.10.6.2) AN kQBA Htw i, SO AL

This shows that An e 1S p?Fo-isomorphic to a finite free A m -module. The same result holds for

Bflﬂ), over B( ) m by 11.10.5, which completes the proof. O

m

Lemma II1.10.7 (cf. [Tsul8, 14.10, 14.8]). For any N € J, there exists k1 € N such that for any
elements (n,m) € (Ns,, U{oco})1 4, where ng € N is defined in 11.10.3, the following statements hold:

(1) If (n,m) € N**?_ for any r € N, let o be a generator of Gal(L +,,m/£n m) > Z/p"Z by
(I1.10.3.1), then we have

(I1.10.7.1) BE ,, Cp ™ (BY) + (0 - 1)(BYE.L).

n4+r,m
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(2) If the i-th component of m is an integer for some 1 < i < d, for any r € N, let 7 be a

generator of Gal(/i((ggwrr /E(N) )X Z/p"Z by (11.10.3.2), then we have

(I1.10.7.2) B, Cp (B, + (r—1)(BE, 1)

PRrROOF. The conclusion holds for the case B = A by [Tsul8, 14.8, 14.10]. It remains true in
general due to I1.10.5. 0

Definition I1.10.8 (cf. [Tsul8, 7.4, 7.5, 7.6]). We say that a tower (R, )nen of normal domains flat
over Ok (see I1.4.5) is Tate-Sen if it satisfies the following conditions:

(1) There exists a Noetherian normal domain R_; over Ok contained in Ry with R_1/pR_1 # 0
such that Ry is integral over R_; (thus I1.4.4 applies to R_1 — R,, for any n € NU {o0}).

(2) The tower (R,,)nen is a Zy-tower in the following sense: if &, denotes the fraction field of
R, then £ is a Galois extension of & with Galois group isomorphic to Z, and &, is the
p" Zp-invariant part of £, for any n € N.

(3) There exists k1 € N such that for any n,r € N and any generator o € Gal(E,1,/E,), we
have

(I11.10.8.1) Ruir Cp " (R, + (0 — 1)(Rpyr)).

(4) For any n € N, f{;[l/p] is finite over If-{\o[l/p].
(5) The set 6,(Roo) of primes ideals of Ry, of height 1 containing p is finite.

Tsuji has established a series of decompletion results for Tate-Sen towers in [Tsul8, §7].

Proposition I1.10.9 (cf. [Tsul8, 14.12]). For any N € J and (n,m) in (N>, U {co})!T¢, where
ng € N is defined in 11.10.3, the following statements hold:

(1) If (n,m) € N+ then the tower (B(N) Jren is Tate-Sen.

n4+r,m
(2) If the i-th component of m is an integer for some 1 < i < d, then the tower (Bgoﬂ,)m+zi)7’€N
is Tate-Sen.

ProoF. It follows from the fact that B/pB # 0, 11.10.3, 11.10.6, and I1.10.7. O

Remark I1.10.10. With the notation in I1.5.1, the results of I11.10.9 remain true for the Kummer
tower (Ok,, ,..)(n,m)ent+a- Indeed, one can check firstly for the subfield K’ defined in I1.5.2 with the
aid of I1.5.3, and then deduce the general case as we did above from A to B.

Lemma I1.10.11 (cf. [Tsul8, 14.13]). For any N € J, the following statements hold:
(1) The (X, B[1/p))-finite part of Eoévoo[l/p] is E(ﬂ&o[l/p] (see 11.2.4).
(2) Let V be an object of Rep®ol (2, B(N) L [1/p]). Then, V is the (), B[1/p])-finite part
of Eg& @ pan) V.

PRrROOF. We follow the proof of [Tsul8, 14.13] and take ng € N defined in 11.10.3.

(1) Notice that for any (n,m) € N'*+4, BT(LN,% is finite over B. Thus, E,LNm[l/p] is a =) stable
finitely generated B[1/p]-submodule of Bc(>C &o[l /p] as B is Noetherian. Thus, B(N) so[1/p] lies in the
(2@, B[l/p])—ﬁnlte part of B so0l1/P].

For the converse, let M be a =) stable finitely generated B[1/p]-submodule of E(,oﬂ?,o[l /p]. For
any 1 <i<dandm e N, ~x {00}4=% applying [Tsul8, 7.14] to the Tate-Sen tower (B(N) )reN

[eS] m+r
(IL.10.9.(2)), we see that the condition M C Bgo 2n+oo [7] implies that M C Bgo 3n+T [ ] for some
r € N. Applying this argument in the order i = 1,...,d, we obtain an element m € N,no such that

M C E&oﬂzn[l/p] Then, applying [Tsul8, 7. 14] to the Tate-Sen tower (B7(70+rm)?”€N (I1.10.9.(1)), we
obtain an element n € N>, such that M C B [1 /p]. This proves the converse part.

(2) Since Béolﬁ is the colimit of Bn,m and "(N ) is topologically finitely generated (cf. I1.10.3),
there exists (n,m) € ngni and an object V' of RepP% (2, BY m[l/p]) such that V = BéO (),o ®gan

cont
V' ([Tsul8, 5.2.(1)]). As E(Nm is finite over B, by (1) and [Tsul8, 7.3.(3)], we see that the
)

su
E[l/p]) finite part of BOO 20 @z V' is B(N) s V' O

n,m

(E =N
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Proposition 11.10.12 (cf. [Tsul8, 14.15]). For any N € J, the functor

cont 00,00

. ~ 1 . ~
(I1.10.12.1) Rep®l (2 B [];]) — Repliol G, B [5]) Vs BE) ®- sV

is an equivalence of categories, and a quasi-inverse is obtained by taking the (2, B[l/p])—ﬁmte part.

PROOF. We follow the proof of [Tsul8, 14.15]. Let W be an object of Rep?™% (2 B [1/p]).

cont

For any 1 < i < d and m € Ny~ x {o0}?", we can apply [Tsul8, 7.23| to the Tate- Sen tower
(Bg)m+£.)reN (I1.10.9.(2)). Applying this argument to W in the order i = 1,...,d, we obtain an
N> s W', Then,

object W’ of Rep?%l (2, B(N) m[1/p]) for some m € N& ~such that W = BE
applying [Tsul8, 7.24] to the Tate-Sen tower (B(*) )ren (11.10.9.(1)), we obtain an object V of

cont

no+r,m
Rep?™l (2@ B(N)[ ]) for some n € N>, such that W' = Béévzn ®pen V. This shows that the
functor (11.10.12.1) is essentially surjective. The conclusion follows from I1.10.11. (2). O

Proposition 11.10.13 (cf. [Tsul8, 14.16]). For any N € J and m € Nzno’ where ng € N is defined
in 11.10.3, the functor (cf. 11.4.14)

N
Cont,A(l*) _an oo, m cont 00,00

. ~ 1 ~ 1 ~
(I110.13.1) Rep™ (EWM, B [];]) — Repl2l (2, B [5]), Vs BE) @zan V

is fully faithful. Moreover, any object of Rep2ol (Y, B [1/p]) lies in the essential image of the
above functor for some m € N>n0

PROOF. We follow the proof of [Tsul8, 14.16]. For any object W of Rep2® (1Y), BYE [1/p])
we consider the E&,ﬂiﬁ [1/p]-linear endomorphism ¢, on W given by the infinitesimal actlon of T €
A®  which is nilpotent by 11.4.18 (whose assumptions are satisfied by 11.10.3). Then, we obtain a
continuous semi-linear action 7 of A on W defined by 5(7) = exp(—p,)p(7) as in 11.5.28.(1) (in

fact, p can be extended to F(ﬂ) but we don’t need this). Notice that if W = Bga)x, R ~ B, V for some

object V' of Reppmi AW oy (2@, BOQVQn[l/p]) then ﬁlA(ﬂ) acts trivially on V, which 1mphes that

(N)

(11.10.13.2) (W, p) 2

where the last identity follows from I1.10.6. This shows that (I1.10.13.1) is fully faithful.
Since B, is the filtered colimit of B, there exists m € N¢, . and an object V of Repling (A, B [11/p)

= (é(ML)Aﬁn) Dz V=V,

00,00

cont

such that (W,p) = Eﬁoﬂlﬁ ®@zw) V (|Tsul8, 5.2.(1)]). Moreover, since any w € W is fixed by an

open subgroup of A via binI.4.107 after enlarging m, we may assume that p| A acts trivially

on V. By the discussion above, we have (W, p)NN) = V. We claim that V is E®)_stable under p.

Indeed, for any g € Z&) | 7 € A(m) andv eV, if weset 7/ =g lrg € A%% then

(I1.10.13.3) p(7)(p(g)v) = p(g)(p(7")v) = p(g)(exp(pr)v) = exp(p-)(p(g)v),

where the second equality follows from p(7')(v) = v, and the last equality follows from 11.4.9.(1). This
shows that p(g)v € V = (W, p) ARY , and hence V is 2™ stable under p. As BY [1/p] — Bgévoo[l/p]
is a closed embedding (I1.4.7), so is V — W, which implies that (&) acts continuously on V.
Moreover, V is Ag)—analytic by definition, which completes the proof. O

Lemma I1.10.14 (cf. [Tsul8, 14.5|). Let L', L"” be two finite extensions of Loo oo in Ly with
L C L", B’ and B” the integral closures of B in L and L" respectively. Then, the inclusion
Trpn e/(B") € B’ is almost surjective.

Proor. Consider £(2) = colimyey L&, and let B'(%) (resp. B”(®)) be the integral closures of
Bin £() = £'£() (resp. L£"() Sy L£(2)). Notice that B”(2) is almost finite étale over B'(2) by
11.9.23. In particular, Tt zi(ce) ) 2100 (B"()) C B'(*®) is almost surjective ([AGT16, V.7.12]). Thus,
for any z € B’ and m € mg_, there exists N € J and y € B"Y) such that mz = Tr i) gy (y)-
Notice that [ = [£'®) . £'] is prime to p. We take 3 = I"'Trpnw o0 (y) € B”. Thus, mo =
Trenye(y'). 0
Proposition I1.10.15 (cf. [Tsul8, 14.7]). For any N € J, the functor

1 =
(I1.10.15.1) Repiiol (2™, B [5]) — Rep™l (@G, B[ 1), Ve Begw V

cont
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proj
cont

is fully faithful. Moreover, any object of Rep (G,ﬁ[l/p]) lies in the essential image of the above

functor for some N € J.

PRrROOF. We follow the proof of [Tsul8, 14.7]. Firstly, E(,oﬁzﬁ — (E)HS) is an almost isomor-
phism by almost Galois descent [Tsul8, 6.4] (whose assumptions [Tsul8, 6.1, 6.2] are satisfied by
I1.10.14). Tt follows immediately that the functor (I1.10.15.1) is fully faithful (cf. [Tsul8, 6.5]).

For an object W of Rep2® (G, B[1/p]), by almost Galois descent [Tsul8, 6.10.(1)], there exists an

cont
open subgroup H' of Hy such that for the integral closure B’ of B in L' = /JuHr/, WH' is a finite
projective B'[1/p]-module such that W = B Qp WH'. This remains true for any open subgroup of
H' by [Tsul8, 6.10.(2)] so that we may assume that £’ is Galois over Lo . By Abhyankar’s lemma
11.9.22, there exists N € J such that B'™)[1/p] is finite étale over Bg&[l/p] (cf. 1.8.21). After

replacing £’ by £'™) we may assume that B’[1/p] is finite étale and Galois over B((,OﬂlE [1/p]. Thus,

/B\’[l/p] is also finite étale and Galois over B\éoﬁzg[l/p] by [Tsul8, 6.15]. By Galois descent, WHE o
a finite projective E%gﬁ[l/p]-representation of =) guch that W = B ® 5 WwHEY 0

o,

Theorem I1.10.16 (cf. [Tsul8, 14.2]). For any N € J and m € N‘ino, where ng € N is defined in
11.10.3, the functor -

E

&
"=

(I1.10.16.1) Rep”™ (W), W)

N
cont, ALY -an o0,

]) — Repl®i (G,

cont

), V ’-)E@Eéoﬂzn 1%
is fully faithful. Moreover, any object of Repgéﬁ{(G7§[l/p]) lies in the essential image of the above
functor for some N € J and m € N%no.

Proor. It follows from I1.10.15, 11.10.12 and I1.10.13. U

I1.11. Sen Operators over Quasi-adequate Algebras

In this section, we fix a complete discrete valuation field K of characteristic 0 with perfect residue
field of characteristic p > 0, an algebraic closure K of K, and a quasi-adequate Ox-algebra B of
relative dimension d with fraction field £ (see I1.9.5). Let Yx denote the log scheme with underlying
scheme Spec(B[1/p]) with compactifying log structure associated to Spec(Bt,) — Spec(B[1/p]).

I1.11.1. In the following subsections, we introduce some notation that will be used in our construction
I1.11.4 of Sen operators. We fix a compatible system of primitive n-th roots of unity ({,)nen contained
in K. As in I1.5.20, we fix e € N and let ¢y,...,t¢. be finitely many elements of B[1/p] N By with
compatible systems of k-th roots (¢; x)ken., contained in B[1/p] for any 1 < i < e. We define the

tower (B,S?m))@,n,m)emme and name the Galois groups as in I1.10.1:

(IL11.1.1) L

N

G,
N
-

\Qwﬁ‘}ﬂ
. N

L8, Lo L

n)

(1

We remark that for any N € J, the system (B,(Lﬂm) )(n,m)eni+a is the Kummer tower of BW) defined
by Cpnstigns - - tepn (cf. TL4.16).

Proposition I1.11.2 (cf. 11.5.22). With the notation in I1.11.1, the following conditions are equiva-
lent:

(1) The Kummer tower (Bpm)n,m)ent+e satisfies the condition 11.4.19.(1).
(2) The e elements dtq,...,dt. of Q,lc/K are linearly independent over L.

PRrROOF. For any p € &,(B), let E, be the completion of £ with respect to the discrete valuation
ring By. Recall that the £-module Q. and the Ey-module Qp [1/p] are both finite free with the
same basis dt/,...,dt, given by a system of coordinates t},...,t, € B[1/p] of B by (I1.8.9.1) and
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I1.9.11 respectively. In particular, the natural map Qpr JOx ﬁ}gp JOx induces a natural isomorphism
by inverting p,

~ A1 ol A 1
(IL.11.2.1) Ey @ Qp e — Qp, [E] =05 0, [13]’
Thus, dtq,...,dt. are L-linearly independent in Q}: K if and only if they are Ey-linearly independent
in Q}Bp [1/p]. The conclusion follows from I11.5.22. O

I1.11.3. Following II.11.1, we assume that the equivalent conditions in II1.11.2 hold. Let 9y €
Lie(¥0,00) and 01, ...,0, € Lie(A) be the standard bases defined in I1.4.20 for the Kummer tower

(Bnm)(n,m)ent+e defined by Cpn,t1pn, ... tepn. We remark that there are natural identifications of
Lie algebras for any N € J, n € N and m € N¢,
(I1.11.3.1) Lie(AQ)) = Lie(A), Lie(E®) =Lie(I'), Lie(Z)) = Lie(X).

We define 1 + e elements of the finite projective %[1/p]—module &p(—1) defined in 11.9.36,

(IL11.3.2)

Ty = (dlog(Gpr))nen ® (71, Ty = (dlog(trpm))nen ® (71, ooy Te = (dlog(te,pm ) nen © ¢,
where ¢ = ((pn )nen-
Theorem I1.11.4 (cf. I1.5.35). Let B be a quasi—aciequate Ok -algebra with fraction field L, G =
Gal(Lur/L). Then, for any object W of Replioi(G, B[1/p]), there is a canonical homomorphism of

cont
BJ[1/p]-linear Lie algebras (see 11.9.39),
(I1.11.4.1) Ysen|w : Ep(1) — Endﬁ[l]
which is G-equivariant with respect to the canonical action on &5 (1) defined in 11.9.39 and the adjoint
action on End=_, (W) (i.e. g € G sends an endomorphism ¢ to go ¢og~?t), and functorial in W,

S Bl1/p]*
i.e. it defines a canonical functor

W),

1

(IL11.4.2) esen + ReplZyl (G B ) — RepP(53(1). B

cont

D,

from the category of finite projective (continuous semi-linear) B[1/p]-representations of the profinite

group G to the category of finite projective B[1/p]-linear representations of the Lie algebra &7 (1).
Moreover, under the assumption in 11.11.3 and with the same notation, assume that there exists

an object V of Rep™™ EW, B [1/p)) for some N € J and m € N¢ with W = Bozwm V.

N
cont,AL,T -an

Then, for any f € &4(1) = Homﬁ[l/p](53(—1),?[1/}9]),

€

(I1.11.4.3) psenlw (f) = ) [(Ti) ® o,
=0

(V) is the infinitesimal action of 9; € Lie(E)) on V defined in 11.4.13.

vV

where @y, |v € Endégoﬂznu/p]

PROOF. Forany q € &,(B) with image p € S,,(B), consider the element (B, B, B) — (Ey, O, , O%,)
of &(B) defined in I1.9.3. Consider the diagram (cf. 11.9.38)

(I1.11.4.4) &5(1) [1, Eq ®= 65(1) ~ I 65, (1)
éa (aq)q lgﬂse"
; o ;
Endg (W) —— 1, By @5 Bndg ) (W) <], Endg, (Bq @5 7)

where the product is taken over q € &,(B), and the right vertical arrow is the canonical Lie algebra
action defined in I1.5.35. Notice that the horizontal arrows in the right square are isomorphisms, since
W is finite projective and both &g and &p - admit the same basis induced by a system of coordinates
of B (cf. 11.9.33). On the other hand, the horizontal arrows in the left square are injective by I1.4.3.
Therefore, there is at most one map a making this diagram commutative together with its base
change ay.
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We claim that taking « to be the map defined by (I1.11.4.3) (under the corresponding assump-
tions) makes the diagram commute. Indeed, for any f € &5(1), if fq € éaéEp (1) denotes its base
change, then we need to check that

(11.11.4.5) @Sen‘E DWW fq qu iq ®906 |Va
1=0

where T} g € 6o, (—1) is the image of the element T; € &5(—1) defined in (I1.11.3.2). For simplicity,
we omit the subscripts p and q. With the notation in I1.11.1, there is a commutative diagram of fields
defined by t; j, similarly as in 11.10.1,

G/
/F/\
(IL11.4.6) E ES) —~ES), —~ELL —FE
T T =5 T N T
L Jo R &) L

where we put the notation for corresponding Galois groups on the arrows. For N and m in the state-

ment, we set £/ = E( " and consider the Kummer tower (OE’ )(n myent+e defined by Cpn, 1 pn, ... te pn

(thus E_ = ) m and El = = B¢ ())o) which satisfies the condltlon I1.4.19.(1) by IL.11.2 (as F’ is
a finite extension of E). Then7 W' = E® W is an object of Rep”™% (G, 7) and V' = El_ ®@zw) V

cont

is an object of Rep?™®! (T, EL.) such that W’ = E ®pg_ V'. By I1.11.2 and (I1.11.3.1), we have

cont,A’-an
natural identifications of Lie algebras

(I1.11.4.7) Lie(A’) = Lie(A), Lie(I”) = Lie(T'), Lie(¥') = Lie(X).
Moreover, the images of Oy, . . ., d. in Lie(I') are the standard basis 9y, . .., 0, defined in I1.4.20 for the
Kummer tower (O B ) (n,myent+e defined by (pn,ty pn, ... n. Therefore, applying the “moreover”

part of 11.5.35 to E (Whose assumptions are satisfied by H 11 2) for any [/ € &6, (1) we have

(I1.11.4.8) Psenlw (f Z F1(T)) ® parlvr,

where T} € &o,,(—1) is the image of T; € é”B(— ) Notice that pa|v: = idg ® @a,|v by 1L4.11.
The claim follows from the following canonical commutative diagram given by 11.5.38 (as E’ is a finite
extension of F)

PSen ‘ w!

(I1.11.4.9) é"(}‘El (1) End w)
| H
WSen‘E(g W
éaéE (1) EndE(E ®§ w)

Finally, the uniqueness of « implies that (I1.11.4.3) does not depend on choice of V or ¢;, and the
descent I1.10.16 guarantees its existence and functoriality. Its G-equivariance follows from the same
argument of that of (I1.5.35.1). O

Remark I1.11.5. The same argument also shows that the §[1 /p]-linear map
(IL11.5.1) W — W @= &p(-1)

sending z to Y .;_,(i = v)(2) ® T}, is G-equivariant and does not depend on the choice of V' or

t;. It naturally induces the map @gen|w (I1.11.4.1). We note that it is not a Higgs field.

Definition I1.11.6. Let W be an object of Rep?™] (G,%[l/p]). We denote by ®(W) the image

cont
of pgen|w, and by ®&°(WW) the image of Hompi p) (Q%,K/K(—l),g[l/p]) under @gen|w. We call

an element of ®(W) C Endﬁ[l/p](W) a Sen operator of W. We call an element of ®8°(W) C

dfz[l/ ](W) a geometric Sen operator of W. And we call the image of 1 € %[1/;)] in (W) =
O(W)/Ps°(W) the arithmetic Sen operator of W.

)
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(IL11.6.1) ()HHomB[%](Q%,K/K(—l)’ﬁ[%D T gn) — B[] 0
0 oo (1) (W) (W) ——0

Proposition I1.11.7 (cf. 11.5.38). Let K’ be a complete discrete valuation field extension of K with
perfect residue field, B’ a quasi-adequate Ok -algebra with fraction field L. Consider a commutative
diagram of (K, Ok, Ox)-triples (see 11.9.2)

(IL11.7.1) (B, B,B) — (B}, B',B')

| |

(K,Ok,0x) — (K', Ok, O%7)

cont
object of RepPl (¢, B’[l/p]), where G' = Gal(Ll,/L'). Assume that L' @ Q}:/K — Q}:,/K, is
injective. Then, there is a natural commutative diagram

with B — B’ z'njectz've Let W be an object of Rep™® (G, B[1/p]), W' = B’ ®=W the associated

PSen ‘ w!

(I1.11.7.2) &r(1) End= , (W)

B'[1]
1d—®¥’Sen|W —

TZ

/
B &g Endg, (W)

B @= 65(1)

where Ysen are the canonical Lie algebra actions defined in 11.11.4, the left vertical arrow is induced
by taking dual of the natural map B’ ®= 6p(—1) = &p(-1) (cf 11.9.38), and the mght vertical

arrow is the canonical isomorphism. Moreover, if we denote by B’<I>(W) the image of B’ ®= (W)

in B’ ®= Endﬁ[l](W), then the inverse of the right vertical arrow induces a natural isomorphism
P

(I1.11.7.3) (W' = B'd(W),
which is compatible with geometric and arithmetic Sen operators.

ProoF. We follow the same argument of I1.5.38 using 11.11.2 instead of 11.5.22. We may assume
that we are in the situation of the “moreover” part of I1.11.4 by the descent theorem I1.10.16. Let
ti, € B'[1/p] be the image of ¢;; € B[1/p]. With the notation in I.11.1, there is a commutative

diagram of fields
G/
ﬂl \
0 ) T

(I1.11.7.4) L55m Lodoe —= L'
- A’(N)
] 1[ 1 A(N) I{ 1
L Lg;g ,c< n L ——=L
G
Since dt}, ..., dt, are L'- linearly independent in Qlﬁ, - by assumption, the Kummer tower (B;, ,,,) (n,m)ent +

defined by (pn,t} o, ..t also satisfies the condltlon 11.4.19.(1) by I1.11.2. By the discussion in
I1.11.3, we have a natural isomorphism Lie(Z/™)) = Lie(Z(¥)) which identifies their standard bases

{0!}o<i<e and {9 }o<i<e. Moreover, V' = (*) B(N) V is an object ofReppmJtyA/(ﬂ)_ (2/@, B’Oom[l/ 1)

with W’/ = B’ ®=W = B’ ~(N) V’. By I1.4.11, the natural identification EndA(W') B ®=
End= (W) identifies id—= @ <p0/|vf with id= ® ¢g, |v. This shows that the diagram (I1.11.7.2) is

B[1/p]
commutative which mduces an isomorphism (II.11.7.3). O
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Remark I1.11.8. One can also replace B’ by a complete discrete valuation ring extension O of Ok
whose residue field admits a finite p-basis. Assuming that E @, Q) — Qo [1/p] is injective, the
result of I1.11.7 still holds for Og.

Corollary I1.11.9. Let cg‘\ﬁni be the directed system of finite field extensions L' of L in L., fqar/ﬁ
the subsystem consists of E such that the integral closure B’ of B in L' is a quasi-adequate O -
algebra, where we put B, = By, ® g B’ and B’ =B.

(1) The subsystem 9 © ¢ s cofinal in ygm/ﬁ )
( ) Let L' € yqa "y with Galois group G = Gal(ﬁur/ﬁ’) C G, W an object OfRepproj (G,E[l/p})

cont

and W' the object of Rep®*i(G', B g[l/p]) defined by restricting the G-action on W. Then,

cont
there is a natural commutative diagram

(I1.11.9.1) (1) — el Endz (W)

2

£ (1) — el Endg, (V)

ProOF. (1) follows from Abhyankar’s lemma 11.9.22, and (2) follows from I1.9.38 and I1.11.7 (as
L' is étale over L). O

Remark I1.11.10. Let £’ € ﬂgfri/ﬁ with Galois group G’ = Gal(L,,/L') C G, E” SE Y.

containing £" with Galois group G = Gal(Ly/L") € G', W' an object of Rep™ (G, [1/p]) w”
the object of RepP™® (G”, B[1/p]) defined by restricting the G’-action on W’. Then, we define a Lie

cont

algebra action gen|w of &4 (1) on W’ by assigning it to be @sen|w . This definition of pgen|w does
not depend on the choice of E” by I1.11.9. One can check that @gen|w- is G’-equivariant by the same
arguments in 11.5.35.

Lemma I1.11.11. With the notation in 11.10.1, let V be an object ofReppmfC Aﬁnﬂ)-an(E(N) BE).[11/p))

for some N € J and m € N4, W = B ®pw) V' the associated object of Rep™® (G, B[1/p)]).

(1) Let V! = BE, ®@zw) V' be the associated object of Rept'o) () Boooo[l/p]) Then,

oo, m

W& = V'C. In particular, (B[l/p]) = B[1/p].
(2) Let C = colim, ey Bgo T)n,; V" = C@ga V the associated object of Rep™™ (A C[1/p]).
Then, WH = v"H

PrROOF. (1) Recall that by the proof of I11.10.15 we have WHE — Bc(goo ®B(N) V, and by

11.10.11.(2) its (2@, B[1/p])-finite e part is V'. Thus, we have WY C V'Y (and hence W& = V'¢ a
V! C W). In particular, we have (B)G - (B(N) )¢, Since B,(L T,)l = B®sp B(N) (as B,(L m 18 finite over
the Noetherian ring B), we have (E%&)G = cohm(By(Lm)) = colim B ®p (B,(fg) = B (as B is flat
over B).

(2) The arguments of 11.10.11 also show that (A&, B [1/p])-finite part of WHE 5y, Thus,
we have WH C V" (and hence WH = V" as V"' C W). O

Proposition I1.11.12. Let W be an object of Rep® % (G, B[1/p]). Then, any Sen operator of W

cont
vanishes on W&, and any geometric Sen operator of W vanishes on W

PRrROOF. By the descent theorem I1.10.16, we may put ourselves in the situation of I1.11.11. By
I1.4.10, the infinitesimal Lie algebra action of Lie(E) (resp. Lie(A®))) on V' (resp. V") is well-

defined and vanishes on V/=" (resp. V”A(m)7 and thus vanishes on W& (resp. W#) by IL11.11.
On the other hand, the infinitesimal action of Lie(E®)) (resp. Lie(A®))) on V' (resp. V") is the
base change of that on V by I1.4.11. Thus, these infinitesimal actions induce the (resp. geometric)

Sen operators on W by extending scalars to B[1/p], which completes the proof. O

I1.11.13. Recall that for any finite projective module M over aring R, the trace map Tr : Endr(M) —
R is the composition of the second map with the inverse of the first map:

(I1.11.13.1) Endg(M) <~ M ®g Homp(M, R) — R,
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where for any € M and f € Hompg(M, R), the element 2 ® f is mapped to = f by the first arrow and
to f(x) by the second arrow. For any R-linear endomorphism ¢ of M, its determinant is defined as
follows ([Gol61, §1]): we write R™ = M @ M’ for some n € N and define det(¢) to be the determinant
of the endomorphism ¢ @ idy;s on R™, which does not depend on the choice of M’ and is compatible
with base change. Then, the characteristic polynomial det(T — ¢) € R[T] of ¢ is defined as the
determinant of the R[T-linear endomorphism 7' ® idys — idgr) ® ¢ of R[T] ®r M (|Gol61, §2]).
Similarly, one can define the reverse characteristic polynomial det(1—T¢) € R[T] as the determinant
of the R[T]-linear endomorphism idgir) ® idyy — T ® ¢ of R[T] ®g M. One can check by taking
localizations of R that the reverse characteristic polynomial is also given by the formula (which is
indeed a finite sum)
(I1.11.13.2) det(1—T¢) =Y (~1)"Tx(AF¢)T

k=0
where AF¢ : AFM — AFM is the R-linear endomorphism of the k-th exterior power of M induced by
¢. By the multiplicativity of determinants, we have det(T — ¢) = det(T) det(1 — T~ '¢) in R[T*!].
We remark that the coefficients of the characteristic polynomial det(T") of the zero endomorphism
are mutually orthogonal idempotents of R, and det(7T) may not be a monomial if Spec(R) is not
connected ([Gol61, 2.2, 2.3]).

Lemma 11.11.14. Let R be a ring endowed with an action of a group G, M a finite projective R-
module endowed with a semi-linear action of G, ¢ an R-linear endomorphism of M. Then, for any

g€ G, det(1—T(gopog™)) = g(det(l — T¢)).

PROOF. It is clear from the definitions that Tr(go¢og™!) = g(Tr(¢)) and that AF(gopog™?) =
go (AF¢) o g~L. The conclusion follows from (I.11.13.2). O

Proposition IL.11.15. Let W be an object of Rep™° (G, B[1/pl). Then, any lifting ¢ € ®(W) of
the arithmetic Sen operator of W has the same (resp. reverse) characteristic polynomial. Moreover,

the coefficients of the reverse characteristic polynomial lie in E[l/p]

PROOF. The first assertion follows from the diagram (11.11.4.4) and 11.5.41. For the second, notice
that for any g € G, godo g~ is also a lifting of the arithmetic Sen operator by the G-equivariance of
@sen|w. Thus, ¢ and gogpog~! have the same (resp. reverse) characteristic polynomials. By I1.11.14,

we see that the coefficients of the reverse characteristic polynomial det(1—T¢) lie in B[1/p]¢ = B [1/p]
by IL.11.11.(1). O

Remark I1.11.16. (1) If B is adequate, then the operator “pse,” on the associated Higgs
bundle defined by Tsuji ([Tsul8, page 876]) induces a lifting of the arithmetic Sen operator

of W by extending scalars to B[1/p] (cf. [Tsul8, 15.1.(4)]). In particular, the characteristic

polynomial of ¢ coincides with that of “pgc,”. Thus, in general, we call the roots of the

characteristic polynorrAlial of ¢ the Hodge-Tate weights of W. _ R
(2) If W is defined over B[1/p], i.e. there exists an object V of Rephori (G, B[1/p]) such that
W = § ®g V, then the characteristic polynomial det(T") of the zero endomorphism of W
has coefficients in B[1/p]. The identity det(T — ¢) = det(T') det(1 — T'¢) in %[1/]9] [T+
implies that the coefficients of the characteristic polynomial of ¢ also lie in B[1/p].
I1.11.17. Let q € 6,(B) with image p € &,(B), consider the element (B, B, B) — (E,, OEp,OEq)
of €(B) defined in 11.9.3. Let I C G = Gal(Ly /L) be the image of the inertia subgroup of the

absolute ( Galois group of Fy. It is a closed subgroup of G, which we call the inertia subgroup of G at
q € 6,(B).

cont

the associated object of Rep™ (G, B[1/p]). Then, > qes, ) Lie(p(ly)) is the smallest Qp-subspace

cont

S of Endg, (V) such that the %[l/p]—module of Sen operators ®(W) is contained in the submodule

E[l/p] ®QP S Of Endﬁ[l/p] (W) = E[l/p] ®QP Ende(V).

ProoF. By I1.5.42, it suffices to show that for any Q,-linear form f on Endg,(V'), we have
f(Lie(p(I4))) = 0 for any q € &,(B) if and only if f/(®(W)) = 0, where f is the B[1/p]-linear form

on Emdg[1 I ]( ) defined by extending scalars from f. We set Wy = E Q=W = E,®q,V and let f;

Theorem I1.11.18 (cf. 11.5.43). Let (V,p) be an object of Rept:l (G, Qp), W = %[1/1}] ®q, V
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be the Fy-linear form on Endﬁ (Wq) defined by extending scalars from f. Consider the commutative
q

diagram
(ta)q
(I1.11.18.1) Endﬁ[l/p] (W) e 1€, (B) Endﬁq (Wy)
/| Joon
B[1/p] HqEG (B )E

where ¢4 is defined by extending scalars. Notice that the horizontal arrows are injective by II.4.3.
Thus, f'(®(W)) = 0 if and only if f](1q(®(W))) = 0 for any q € &,(B). Notice that f(Lie(p(I4))) = 0
if and only if fi(®(W,)) = 0 by 11.5.43, and that ®(W,) is generated by 4(®(W)) by (I.11.7.3) and
I1.11.8 (or directly from (I1.11.4.4)). This completes the proof. O

Corollary I1.11.19. With the notation in 11.11.18, the B[1/p]-module of Sen operators ®(W) is zero
if and only if p(1) is finite for any q € &,(B).

Corollary I1.11.20. With the notation in 11.11.18, the ﬁ[l/p]—module of Sen operators ®(W) is
contained in B[1/p] ®q, Lie(p(G)), and the B[1/p]-module of geometric Sen operators ®&°(W) is
contained in B[1/p] ®q, Lie(p(H)), where H = Gal(Ly/Loo)-

PRrROOF. The first assertion is a direct result of II1.11.18. Note that ®&° (W) = [ W), ®(W)]
by the Lie algebra structure on &5 (1) (cf. 11.9.39), and that [Lie(p(G)),Lie(p(G))] C Lie(p(H)) as
G/H = ¥ is abelian. Thus, the second assertion follows from the first. O

Theorem I1.11.21 (cf. [Sen81, Theorem 12]|). Let G be a quotient of G which is a p-adic analytic
group. Then, there exists a unique homomorphism of B[1/p]-linear Lie algebras psen|g @ E5(1) —
B[1/p] ®q, Lie(G) making the following diagram commutative for any object V of Repo (G, Q,),

Psenlg

(I1.11.21.1) &5(1) 4>§[%] ®q, Lie(g)

id=
@Senlwl ll B[%]®¢|V

~

Endg , (W W) <~— B[}] ©g, Endg, (V)

where W = B[1/p| @q, V is the associated object of Repluei(G, B[L/p]), ¢sen|w is the canonical Lie

algebra action defined in 11.11.4, and ¢|v is the infinitesimal Lie algebra action of Lie(G) on V (cf.
11.4.13).

PRrROOF. Firstly, as G is a compact p-adic analytic group, it admits a faithful finite projective
Q,-representation V' by I1.3.9. The faithfulness implies that the map @[y : Lie(G) — Endg, (V) is
injective (cf. I1.4.10.(3)). Thus, the uniqueness of pgen|g is clear.

Consider an injective morphism V' — V' of faithful finite projective Q,-representations of G.

Note that W = B[1/p] ®q, V is still a subrepresentation of W’ = B[1/p] ®g, V. We claim that the
natural surjection ®(W') — ®(W) (of the images of Ygen|w and @sen|w) defined by restriction is

also injective. Indeed, we regard B[1/p] ®q, Lie(G) as a subset of End§[1/ ](W) via 1d§[1/ ! ® plv

Thus, the restriction from V' to V induces the identity map on E[l/p} ®q, Lie(G). On the other hand,

®(W) (resp. ®(W’)) is contained in B[1/p] ®q, Lie(G) by I1.11.18, which shows that the surjective
map ®(W') — ®&(W) induced by the restriction is injective.

Therefore, we take a faithful finite projective Q,-representation V' of G, and we define @pgen|g to
be the composition of

en =1 .
(I1.11.21.2) E5(1) Psenly (W) C Im(i d B2 ® ¢lv) = B[~] ®q, Lie(G).
»l p
As any two faithful representations V and V' are both contained in V & V', we deduce easily from
the above discussions that this definition of ¢gen|g does not depend on the choice of V. Tt follows

immediately that the diagram (I1.11.21.1) is commutative for faithful representations.
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In general, we take a faithful finite projective Q,-representation V' of G. Then, for any object
V of Rephot(G.Qp), V @ V' is also a faithful finite projective Q,-representation of G. The previous

cont
result shows that there is a canonical commutative diagram

$Psenlg

(H.ll.?l.3) é"é( ) _— B[ ] R, Lle(g)
PSen|waw! \L'd]};’ ®plygv

Endg, (W& W) ~—— B[}] ®q, Endg, (V& V')

where W = §[1/p] ®q, V and W' = §[1/p] ®q, V'. Notice that the image of Ysen|Wwaw’ = @sen|w @
©Sen|w lies in Endﬁ[l](W) @ Endﬁ[l](W’) (cf. I1.11.4), and that the image of p|lyav = ©lv B ¢l

lies in Endg, (V') ® Endg, (V'). By lcfoking at the first component, the commutativity of (I11.11.21.3)
implies that of (I1.11.21.1). O

Definition 11.11.22. Let G be a quotient of G which is a p-adic analytic group. We denote by ®¢ the
image of @gen|g (II.11.21), and by @éeo the image of HomB[l/p](Q%/K/K(—l),ﬁ[l/p]) under @senlg-
We call an element of ®g C B[1/p] ®q, Lie(G) a Sen operator of G. We call an element of ®F a

geometric Sen operator of G. And we call the image of 1 € B[1/p] in ®¥' = &g /®E™ the arithmetic
Sen operator of G.

Corollary I1.11.23. Let G be a quotient of G which is a p-adic analytic group.

(1) The canonical morphism psenlg : E5(1) — B[l/p] ®q, Lie(G) is G-equivariant with respect

to the canonical action on &5(1), [l/p] and the adjoint action on Lie(G) defined in 11.3.15.
(2) For any q € S,(B), let G;, € G be the image of the inertia subgroup I, C G at q (see
11.11.17). Then, EqGGP(E) Lie(Gy,) is the smallest Q,-subspace S of Lie(G) such that ®g is

contained in B[1/p] ®g, S.
(3) Let Gy C G be the image of H = Gal(Ly:/Lo) € G. Then, the Lie algebra CI%CO of geometric

Sen operators of G is contained in B[1/p] ®q, Lie(Gx).

(4) Let K’ be a complete discrete valuation field extension of K with perfect residue field, B’
a quasi-adequate O -algebra with fraction field L and Galois group G' = Gal(L],/L).
Consider a commutative diagram of (K, Ok, Ox)-triples (see 11.9.2)

(I1.11.23.1) (B, B, B) (B{,,B',B)

| |

(K, Ok, Og) — (K', O+, Ox7)

with B — B’ injective, and let G’ be the image of the composition of G' = G — G. Then,
there is a natural commutative diagram

o~

PSen |g/

(I1.11.23.2) Ep (1) —————— B[} ®@q, Lie(¢')

| |

— 1d7®¢>s@n\g =
B o= 64(1) —— o B[1] 0q, Lie(d)

Moreover, if we denote by B’<I>g the image of B ®= Pg in B’[ | ®q, Lie(G), then the right
vertical arrow induces a natural isomorphism

(11.11.23.3) dg -+ B'dg

which is compatible with geometric and arithmetic Sen operators.
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(5) Let L' be an element of the directed system fgi-/ﬁ defined in 11.11.9, G’ = Gal(Ly /L),

G' C G the image of G’ C G. Then, there is a natural commutative diagram

WSen‘g’

(IL.11.23.4) 4 (1) —=7 L Bl @g, Lie(d')

| i?

E3(1) — 2L B[] @q, Lie(G)

L

In particular, ®g = Pg.
(6) Let G' be a quotient of G. Then, there is a natural commutative diagram

(I1.11.23.5) &E5(1) %ﬁ[i] ®q, Lie(G)
@@5(1) ‘PSen‘g/ ﬁ[%] ®Qp Lle(g/)

In particular, it induces a surjection ®g — Dgr.

PRrROOF. For (1), the G-equivariance of @gen|g follows from that of the other three arrows in the
diagram (11.11.21.1) (cf. 11.11.4, 11.3.15). (2) holds by applying I1.11.18 to a faithful finite projective
Qyp-representation V of G. (3) follows from the arguments of 11.11.20.

For (4), as G’ is a closed subgroup of G, a faithful finite projective Q,-representation V' of G
defines a faithful finite projective Qp-representation V' of G’ by restricting the action. Combining
I1.11.7 with 11.11.21, we obtain a natural diagram

id= ]®Lp‘vl -

enlc/ - E/[l
(I1.11.23.6) &5 (1) — 2Bl g Lie(@) — B[L] ©q, Endg, (V')

idﬁ[l]@)sﬂv -

— idﬁ@lps%\g —
B 0= 63(1)

B'[;] ®q, Lie(9) -

B'[;] @q, Endg, (V)

1
P

Notice that the left square is commutative, since the right square and the big rectangle are commu-
tative and the horizontal arrows in the right square are injective. Moreover, (II.11.7.3) implies that
the image ®¢g: of Ygen|g: coincides with the image B'®g of id§®<psen|g via the middle vertical arrow
(which is injective). This completes the proof of (4), and (5) is a special case of (4).

For (6), a faithful finite projective Q,-representation V' of G’ can be regarded as an object of
Rep”™i (g, Qp). Thus, we obtain a natural diagram

cont

(I1.11.23.7) &5(1) $Senlg ﬁ[l] ®q, Lie(G) ﬁ[l] ®q, Lie(G')
¢Sen|WL lldg[})](@LPV lldé[;]@pv
Endﬁ[%](W) <~ B[i] ®q, Endg, (V) == B[] ®¢, Endg, (V)

Notice that the left square is commutative by I11.11.21 and the right square is obviously commutative.
Since the right vertical arrow is injective, the composition of the two horizontal arrows on the top
is the unique map making the big rectangle commutative, which thus coincides with @gen|g: by
I1.11.21. O

11.11.24. Let G be a quotient of G which is a p-adic analytic group. The universal Lie algebra

homomorphism @sen|g : €5(1) — B[1/p] ®q, Lie(G) allows us to canonically extend Sen operators to
certain infinite-dimensional representations as follows.

Let V' be a Q)-Banach space endowed with a Q,-linear action of G such that G preserves the
norm of V and induces a trivial action on V=!/p?V<=1 where V<! is the closed ball of radius 1 in
V. Such a smallness condition implies that the infinitesimal action of G on V=! is well-defined and
given by the following formula for any g € G and x € V<! (cf. 11.6.7)

(IL11.24.1) log(g)ly<:(z) = Y %(9 —1)"(x).
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It defines a Lie algebra homomorphism
(I1.11.24.2) ¢lv : Lie(G) — Endg, (V),

sending logg(g) to idg, ® log(g)|y<: for any g € G (cf. 11.12.11, I1.12.15).

We put W+ = (B ®z, V=')" and W = WT[1/p]. They are naturally endowed with continuous
group actions of G with respect to the p-adic topology defined by W cf. 11.6.18.(1). Notice that
the B-linear endomorphism id= ® log(g)|y<1 on B ®z, V=" extends to an endomorphism on W+ by
taking p-adic completion. Thus, we also obtain a Lie algebra homomorphism after inverting p,

=1 .
(I1.11.24.3) B[I;] ®q, Lie(G) — Endﬁ[%}(W).
We define pgen|w : 5(1) — Endﬁ[l](W) to be the composition of
(IT.11.24.4) E5(1) — 21 Bl1/p) @, Lie(G) —2 P End- | (W),

B[]

It is a G-equivariant homomorphism of B[1/pl-linear Lie algebras. We denote by ®(W) its image,
and by ©&°°(WW) the image of Hompy1 /) (Qy, /r(—1), B[1/p]). It follows from the construction that
any element of ®(W) acts continuously on W with respect to the p-adic topology defined by W+.

Lemma I1.11.25. With the notation in 11.11.24, for any object Vo of RepP1(G,Q,) and any G-
equivariant continuous Qp-linear homomorphism Vy — V', the Lie algebra action psen|w of &5(1) on

W defined by (11.11.24.4) is compatible with the canonical Lie algebra action ogen|w, of &5(1) on Wy
defined in 11.11.4, where Wy = B[1/p] ®q, Vo is the associated object of RepLioi (G, B[1/p)).

Proor. We take a Q,-basis e1,...,e, of Vj whose images under Vj; — V lie in V<l We put
Vol = Zpe1 @- - -®Zpe, € Vy. Let Gy be a sufficiently small open subgroup of G whose image under the
continuous group homomorphism p : G — GL,(Q,) (induced by the G-action on V}) is contained in
id+p?M,.(Z,). Thus, the lattice V" = Z;, € Qy, = Vj is Go-stable, and Gy acts trivially on Vot /p?Vyt.
Notice that the infinitesimal action of Gy on V' is also well-defined and given by the same formula
as in (IL.11.24.1). Then, the Go-equivariant homomorphism V;" — V<! guarantees that the map

B[1/p] ®q, Lie(G) — Endﬁ[l]
(I1.11.24.3). Thus, the conclusion follows from I11.11.21 and (I1.11.24.4). O

(Wp) induced by the infinitesimal action of G on V" is compatible with

Theorem I1.11.26. Let G be a quotient of G which is a p-adic analytic group, V a Qp-Banach space
endowed with a Qp-linear action of G satisfying the following conditions:
(1) The (G, Qp)-finite part of V' is dense in 'V (cf. 11.2.4).
(2) The G-action preserves the norm on V, and induces a trivial action on V='/p3V=1 where
V=1 s the closed ball of radius 1 in V.

We set W = (§ @z, V=1M1/p] endowed with the natural ﬁ[l/p]-semi-lmear action of G. Then, the

canonical B[1/p]-linear Lie subalgebra ®F° of B[1/p] ®q, Lie(G) defined in 11.11.22 acts trivially on
WH via (11.11.24.3), where H = Gal(Ly:/Lo) C G.

PROOF. The strategy is to reduce to 11.6.19. We need to construct a suitable directed system
of pZ,-small objects in RepP:°! (G, B) in order to reduce to the situation of I11.6.19. By condition

cont

(1), we fix a directed system (V))aca of finite dimensional G-stable Q,-subspaces of V' such that
Voo = Uxea Vi is dense in V. Recall that for any A € AU {oo} and n € N, we have (cf. 11.4.6)

I1.11.26.1 PV = VI = vy npn VST
X p)

In particular, V;='/p"V,=" — V=1 /p* V=1 is injective, and VE'/p"VED — V=1 /p" V<! is an isomor-
phism as V,, is dense in V. Thus, V<! identifies naturally with the p-adic completion of V.51, and
the G-action on V/\Sl/p?’V/\Sl C V=1/p3V =l is also trivial by condition (2). In conclusion, (V)\Sl)AGA
forms a directed system of p?Z,-small objects in Rep®:d (G, Z,) (cf. 11.6.4, 11.6.8) whose transition
maps are injective and injective modulo p" for any n € N.

For any A € AU{cc}, we put Wy = B®y, V/\Sl. As B is flat over Zp, (W) e forms a directed

proj

Prl(G, B) (cf. 11.6.8) whose transition maps are injective and

system of p®Z,-small objects in Rep
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injective modulo p™ for any n € N. We put W, = W;[l/p] and Wo\o = W[1/p], where Wi is the
p-adic completion of W7 . Remark that we have G-equivariant natural identifications

(I1.11.26.2) W+ = (B oy, VI = Wi,
Thus, W:W+[1/p]jwo\o _

For any q € 6,(B) with image p € &,(B), consider the element (By,, B, B) — (Ep,OEp,(’)Eq)
of &(B) defined in 11.9.3. We set G4 = Gal(Ey/E,) and Hy = Gal(FEq/FE, ). Consider the natural

commutative diagram

(I1.11.26.3) Repl’%(G, Z,) — Repll% (G, B)

cont cont

Rep?™® (G, 0= )

cont E,

|

Repproj (g’ Qp) . Repproj (G, E[%]) - - RepPrOJ (GWEC')

cont cont cont
Let W;q = OA ®3 Wi = (97 ®z, V— and Wy o = Wy q1/p]. Since O= s flat over Z, (W e
‘1
cont

forms a dlrected system of p3Zp small objects in RepprOJ (Gq, OE ) whose transition maps are injective
q

and injective modulo p™ for any n € N. Thus, we are in the situation of 11.6.19. Taking colimit of
the diagram (I1.11.4.4), we get a canonical commutative diagram

(I1.11.26.4) Ex(1) I, 65, (1)

LPSen‘WOC \L(S"Senlww’q)q

Endﬁ[l](Woo)(L—)LH Endz, (Wae,q)

where the product is taken over q € &,(B), tq is defined by extending scalars, and the horizontal
arrows are injective. Notice that the Lie algebra action pgen|w defined by (I1.11.24.4) is the unique
continuation of @gen|w., by I1.11.25. The variant of I1.11.25 for valuation ring case shows that
t,Osen|Woqu extends uniquely to 4,4756,]ﬂ|v70;l by continuation, whose geometric part thus coincides with

that defined in 11.6.19. In particular, Lq((b(ﬁ/;)) C @(Woo\q) (resp. ¢ ((Pgeo(W )) C @geo(@)).
Taking filtered colimit on A € A and then inverse limit on n € N of the natural injection W)\ /p" —
I, W/\fq/p” given by I1.4.3, we obtain a natural injection

(I1.11.26.5) Weo — [[ Weors:
q

which particularly sends (Wso)€ (resp. (@)H) into Hq(ﬂ//;;)Gq (resp. Hq(@)HQ). Since
@geO(Woo q) acts trivially on (W.O\C,)HfI for each q by 11.6.19, we see that @geo(ﬁfo\o) acts trivially on
(WOO)H . O
I1.12. Application to Locally Analytic Vectors
This section is devoted to generalizing a result of Pan [Pan22, 3.1.2] to higher dimension.

I1.12.1. We mainly follow [Pan22, 2.1] to briefly review the notion of locally analytic vectors. Let

M be a finite free Z,-module with a basis e1,...,e,, V a Q,-Banach space with norm | |. We say
that a map f : M — V is (strictly) analytic (cf. [DASMS99, Definition 6.17]) if there exists v, € V'
for any m = (ma,...,mq) € N such that (|m|=m; +--- erd)
(I1.12.1.1) lim |v,| =

|m|—o0
and for any a1,...,aq € Zy, we have
(I1.12.1.2) flarer + -+ ageq) = Z ai™ - al v,

meNd

Notice that f = 0 if and only if v, is zero for any m e N Ifef,.. ed form another basis of M,
then we can write f(a1€] +---+aqe)) =D cnaay™ - ay vy, where v;, is a Z,-linear combination

of finitely many v,,. In particular, we get sup,,cna |vm| < SUp,,end |vm|, and thus they are actually
equal by symmetry. In conclusion, the definition on the analyticity of f does not depend on the choice
of the basis of M. We denote by €*"(M, V') the Qp-vector space of V-valued analytic functions on
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M. We note that after fixing a basis of M, taking the coefficients v, identifies " (M, V) with a
subspace of [[,,cya V. We define a norm on ¢*"(M, V') by setting

(I1.12.1.3) || = sup |vm| € R>o,

meNd
which does not depend on the choice of the basis of M and makes ¢*"(M,V) a Q,-Banach space.

Lemma I1.12.2. Let M be a finite free Zy-module, V' a Qp,-Banach space. Then, for anyn € N, the
natural map

(IL12.2.1) (V=4 @g, €M, Q,)=") /p" — € (M, V)= /p".
is an isomorphism.

PROOF. After fixing a basis of M, by taking coefficients we identify €2 (M, V) with

(I1.12.2.2) {(om)e J] VI lim [oy|=0}

meNd |m|—o00
Notice that €2*(M,V)<! identifies with

(1112.23) {w) € TL VT lim fou] = 0) = @penaV )",

meNd

where the completion is p-adic. Taking V = Q,, we get ¢**(M,Q,)=! = (DeneZp)”. Thus,
(V= @y, €°(M,Qp)SY)/p" = @pene VS /p™ = €°7(M, V)= /p", which completes the proof. [

Lemma I1.12.3. Let V' be a Qp-Banach space, g : M — N a Zy-linear homomorphism of finite free
Zy-modules. Then, the pullback of functions induces a map

(I1.12.3.1) g (N, V) — (M, V), frfog

which decreases the norm. Moreover, if the cokernel of g is finite, then g* is injective; if g is injective,
then g* has dense image.

PROOF. As any submodule of a finite free Z,-module is still finite free, we may decompose g as
an injection composed with a surjection, so that we can treat the two cases separately.

Assume firstly that g is surjective. We write M = N @ L, and choose a basis eq,...,eq for
M such that e, ..., e, form a basis of N, where 0 < ¢ < d are integers. We see that an analytic
function f(aije; +--- +ace.) = > cneal" ---al’vy, on N is pulled back to an analytic function
(fog)(arer +---+aqgeq) = ZmENCZ{O}d_C a" ---ay""vy,. Thus, g* is injective and preserves norms.

Assume that g is injective. Since N/M is a direct sum of a finite free Z,-module with a finite
Zy-module, by writing ¢ as a composition of two injective maps, we can treat separately the case
where g admits a retraction and the case where the cokernel of g is finite. For the first case, we can
write N = M @& L. By an argument as before, we see that g* is surjective and decreases the norm.
For the second case, by expressing a basis of M as Z,-linear combination of that of N, we see that
g* decreases the norm as in I1.12.1. Conversely, as N[1/p] = M[1/p], we can express a basis of N
as Qp-linear combination of that of M. Thus, any analytic function on N with only finitely many
coefficients v, non-zero is a restriction of such an analytic function on M. This shows that ¢g* has
dense image. O

Definition I1.12.4. Let G be a uniform pro-p group, Lg its corresponding powerful Lie algebra over
Z, with identity map exp : Lg — G (see I1.3.3), V a Q,-Banach space. We say that a V-valued
function f : G — V is analytic if foexp: Lg — V is analytic (as Lg is a finite free Z,-module). We
set €**(G,V) = €*"(Lg, V) and denote its norm by | |g.

Remark II.12.5. One can also use a system of coordinates of the second kind (II.3.3.4) to define
analyticity of a function as in [Pan22, 2.1.1|. Notice that the transition map between the coordinates
of the first kind and the second kind is a homeomorphism 1) : Zg — Zg such that ¢ and ¢! are
both analytic by [DASMS99, Exercise 8.3] (or by [Schll, 34.1], as G is p-saturable by [DASMS99,
Notes on page 81, Theorem 7.7, Exercise 7.10]). Thus, the two definitions of €**(G, V) and its norm
coincide (cf. [DASMS99, Theorem 6.35]).

I1.12.6. Let V be a Q,-vector space endowed with a Q,-linear action of a group G, ¢(G,V) = Hg \%
the @Q,-vector space of V-valued functions on G. We mainly consider three G-actions {1 ® pr,,1®
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PR, PV ® pL} on €(G,V), called the left translation action, right translation action and diagonal
action respectively, defined as follows: for any ¢g,¢' € G and f € €(G,V),

flg™tg)  ifp=1®pr,
(I1.12.6.1) (p(9)f)g) =14 f(d'9) if p =10 pr,

9(f(g79")) if p=pv @ pu.
Lemma I1.12.7 ([Pan22, 2.1.2]). Let G be a uniform pro-p group, V a Qp,-Banach space. Then,
€ (G,V) is stable under the left and right translation actions of G which preserve the norm | |g.

Moreover, the left and right translation actions of GP" on €**(G, V)= /p"€**(G, V)= are trivial for
any n € N.

PROOF. For any element g € G, let n be the maximal integer such that ¢ € GP" and we set
g1=g" " €G\GP (as G — GP" sending x to zP" is a homeomorphism, cf. I1.3.3). Then, we take

g2,---,94 € G such that (g1,...,94) forms a minimal topological generating set of G (i.e. it forms a
Zy-basis of Lg, cf. 11.3.3). We obtain a system of coordinates of second kind (11.3.3.4),

(I1.12.7.1) 78— G, (ai,...,aq) = gt - g5t

The left translation by g = gfn sends the coordinate (aj,as,...,aq) to (a1 — p™,as,...,aq). Thus,

it preserves the analyticity of a V-valued function on G by 11.12.5 as well as the norm | |g, and acts
trivially on €20(G, V)<t /pn¢*1 (G, V)=!. Thus, we obtain the conclusion for the left translation. The
proof for the right translation is analogous. 0

Proposition 11.12.8 ([Pan22, 2.1.3]). Let G be a uniform pro-p group isomorphic to a closed sub-
group of id + p*My(Z,,) for some d € N. Then, there exists a directed system of finite-dimensional
Qp-subspaces (Vi)g>1 of €*"(G,Q,) stable under the left and right translation action of G such that
Ui>1 Vi is dense in €°7(G,Qp).

PRrROOF. We follow the proof of [Pan22, 2.1.3]. Consider the commutative diagram (cf. 11.3.6)
(I.12.8.1) G ——id + p*My(Z,)

loggl cxpT J{log

Lg —— p*Ma(Zy)

We remark that the pullback by the injection ¢ induces a map €**(p*M4(Z,),Q,) — €**(Lg, Qp)
with dense image by I1.12.3. For any 1 < i,j <d, let X;; : Mg(Z,) — Z,, be the map taking the value
of the (i, j)-component. Let W}, (resp. Vi) be the space of Q,-valued functions on id + p*M4(Z,)
(resp. G) of the form P(X;;|1 <4,j < d) where P is a polynomial with coefficients in Q, of degree
< k. Since foexp € € (p*My(Z,),Q,) for any f € Wi, we have Wy, C € (id + p*Ma(Z,), Q,).
Moreover, since logoexp is the identity on p*My(Z,), the set {f oexp | f € Wi, k € N} is dense in
¢ (p*Ma(Zp), Q). Therefore, |J,cny Wi is dense in 2" (id + p*My(Z,), Qp). By pulling back, we
see that (J,cn Vi is dense in €%(G, Q,) by I1.12.3. Moreover, it follows from the construction that
each V} is stable under the left and right translation action of G. O

Definition I1.12.9 ([Pan22, 2.1.4]). Let G be a uniform pro-p group, V' a Q,-Banach space endowed
with a @Qp-linear continuous action of G. An element v € V is called G-analytic if the function
fv : G — V sending g to gv is analytic. We denote by V92 the subset of V consisting of G-analytic
vectors.

We remark that V92" ig stable under the action of G on V', since the right translation of the
analytic function f, is still analytic by I1.12.7. For any continuous group homomorphism of uniform
pro-p groups G’ — G, regarding V also as a Q-representation of G’, then we have y9-an C yG'-an by
11.12.3. The subset V92" is actually a Qp-subspace of V' by the following lemma.

Lemma I1.12.10 ([Pan22, 2.1.5]). Let G be a uniform pro-p group, V a Q,-Banach space endowed
with a Qp-linear continuous action of G. Then, the evaluation map at 1 € G induces a bijection

(I1.12.10.1) €0 (G, V)Pver=l 2, yg-an

where py @ pr, 1 € (G, V) = €(G,V) is the diagonal action (see 11.12.6). Moreover, the inverse of
this bijection induces a G-equivariant inclusion

(I1.12.10.2) VI (G, V), 1@ pRr), v (fo: g+ gv),
where 1 ® pr is the right translation of G on €*™(G, V) (see 11.12.7).



154 II. SEN OPERATORS OVER p-ADIC VARIETIES

PROOF. Notice that an element f € (G, V) is fixed by py ® py, if and only if f(g) = g(f(1)) for
any g € G. Thus, in this case f is analytic if and only if f(1) € V is G-analytic by definition, so that
we have the bijection (I1.12.10.1). It follows from the definition that (I1.12.10.2) is G-equivariant. [

The smallness condition will give us enough analytic vectors.

Lemma I1.12.11 ([Pan22, 2.1.9]). Let G be a uniform pro-p group, V a Q,-Banach space endowed
with a Qp-linear action of G. Assume that G preserves the norm of V' and induces a trivial action

on VEU/p?VSL, Then, V = V922 In particular, for any object Vy of RepP™l (G,Qp), there exists a

G cont
0-an

uniform pro-p open subgroup Gy of G such Vo =V}
PROOF. For any g € G, as (g — 1)(V=1) C p?V=! we have g = exp(log(g)) by 11.6.7 where exp

and log are defined in loc.cit. We take a minimal topological generating set (g1,...,94) of G (cf
I1.3.3) so that we obtain a system of coordinates of second kind (I1.3.3.4),
(IL.12.11.1) 78— G, (a1,...,aq) — g7t - g5
For any v € V, we have
(I1.12.11.2) 91" -+ gyt (v) =exp(ailog(g1)) - - -exp(aqlog(ga))(v) (cf. 11.6.7)

e am " 0 am N

= (Z —7log(g1) > (Z —+log(g4) ) (v),

n=0 n=0

which is clearly an analytic V-valued function on variables (aq, ..., aq) € Zg (aslog(gi) € p*Endy, (V=1)).

Thus, the function f, : G — V sending g to gv is analytic by I1.12.5, i.e. v is G-analytic.

For the “in particular” part, we fix a Qp-basis of V;; so that we obtain a continuous group homo-
morphism p : G — GL4(Q,). Let Gy be a sufficiently small uniform pro p open subgroup of G whose
image under p is contained in id + pQMd(Zp). Thus, the lattice V}j‘ Q Qd Vo is Go-stable, and

Go acts trivially on V0+ /p2V0+. By the assertion we just proved above7 we see that Vp = Vogo a0
Moreover, one can get a slightly stronger result for the analytic vectors in €**(G, V).

Lemma I1.12.12. Let G be a uniform pro-p group, V a Qu-Banach space. Endowing the Q,-Banach
space €™ (G, V) with the left or right translation action of G, then €*(G,V) = €*(G,V)9-an,

PROOF. Firstly, the action of G on €**(G,V) is well-defined and continuous by 11.12.7. Thus,
we can talk about G-analytic vectors in ¢*"(G,V) by I1.12.9. We fix a Z,-basis of Lg. For any
f e €*™(Lg,V), consider the function ¢ : Lg x Lg — V sending (z,y) to f(z*y), where the operation
x*y is given by the Baker-Campbell-Hausdorff formula (I11.3.4.1) (which defines the multiplication in
G). Notice that 9 is analytic by [DASMS99, Lemma 9.12], i.e. there exists a unique element vy ; € V

for any k,l € N? such that |vg;| — 0 when |k| + |I| — oo, and that for any = (z1,...,24),y =
(yla s 7yd) € Zg, we have
k,leNd

In particular, the function f; sending y to ) ya yll1 e yff%,é is analytic, and we have |f;| — 0 when
|E| — oo. Thus, the function on Lg sending x to o f = >, cya x’fl ~~x§de is analytic, which shows

that f is a G-analytic vector of €*"(G, V) with respect to the left translation. The proof for right
translation is analogous. O

The continuity condition of the G-action on V in definition I1.12.9 is used to define infinitesimal
actions as follows.

Proposition 11.12.13. Let G be a uniform pro-p group, V a Qp-Banach space endowed with a Q-
linear continuous action of G. Then, for any g € G, there exists a unique Qp,-linear endomorphism
g of V9-an defined by

_ . —1/,a G-an
(I1.12.13.1) pg(v) = Zp\{%l}n;aﬁoa (9 = 1)(v), VveVyan

such that for any a € Z,,

%,_/

k copies

a — a
(I1.12.13.2) 9°(x) = explagy)(v) = > 57(pg © -+ 0 9g)(v):
k=0
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PROOF. Let v € V92" and g € G. As Z, — G sending a to g is a continuous homomorphism of
uniform pro-p groups, v is also Z,-analytic, i.e. there exists a unique element vy € V for any £ € N
such that |vgy| — 0 when k — oo, and that for any a € Z,,

(I1.12.13.3) g'v=">a"v.
k=0
We see easily that vg = v by taking a = 0 and that
11.12.13.4 = i g = 1)(v).
( ) w=, Jm a7 et - ()

Thus, ¢,(v) = vy is a well-defined element of V. We claim that v; € V92" (so that ¢, is a Q,-linear
endomorphism of V9-") and vy, = ¢%(v)/k! for any k > 0 (so that (I1.12.13.2) follows). Indeed, for
any b € Z,, we have

(I1.12.13.5) ¢t = ¢ (Z akvk> = Zakgbvk
k=0 k=0

where the second equality follows from the continuity of the G-action on V; on the other hand,

a+b,, __ k _ k l
(I1.12.13.6) gty = §(a+ b)Fu = ];a (Z < z )b vk_,_l)

k= 1=0

where the second equality follows from the absolute convergence condition |vg| — 0 when k — oo.

Combining the two expressions for g**tPv, we get
— (k+1
(IL12.13.7) g =3 ( ZF )blkarb
1=0
which shows that vy, € V9 and vj41 = ¢4(vk)/(k + 1). The claim follows by induction. O

Lemma I1.12.14. With the notation in 11.12.13, we endow V9" with the norm induced from the
norm | |g on €**(G,V) via the canonical injection (I11.12.10.2). Then, the map

(I1.12.14.1) ¢: Ty x Gx VI __ygan
sending (0,9,v) to ¢g4(v) and sending (a,g,v) to a=*(g%v — v) for a # 0, is continuous.

Proor. We fix a Z,-basis u1,...,uq of Lg. By the homeomorphism exp : Lg — G, it suffices to
verify the continuity of the map
(I1.12.14.2) § 1 Ly x L x VIR — yoan
sending (ag,ai,...,aq,v) to gb(ao,exp(Z?:l a;u;),v). For any v € V93 there exists a unique
element v, € V for any m = (my,...,mq) € N such that |v,,| — 0 when |m| — oo, and that for
any (a1,...,aq) € Zg,

d
(I1.12.14.3) exp(z a;u;)v = Z ai™ - ay v,
i=1 meNd

Since vy = v and exp(zg:l a;u;)% = eXp(X:?:1 apa;u;), we see that for ag # 0,
(11.12.14.4) Y(ag,ar,.. . ag,v) = > ag e - al .
meN4\ {0}

As the right hand side is continuous with respect to the variable ag, we see that this formula remains
valid for ag = 0 by the definition of ¢, (I1.12.13.1). Notice that |v|g = sup,,ena [vm| by definition.
Thus, one deduces easily from the formula (I1.12.14.4) the continuity of . O

Corollary I1.12.15. With the notation in 11.12.13, there is a canonical morphism of Q,-linear Lie
algebras induced by the infinitesimal action of G,

(IL12.15.1) ¢ : Lie(G) — Endg, (V9™).

More precisely, its composition with the logarithm map logg : G — Lie(G) is the map ¢ : G —
Endg, (V9"") sending g to the infinitesimal action ¢4 (11.12.13.1) of g € G on V922,

PrROOF. The proof is the same as that of I11.4.13 by using 11.12.14 instead of 11.4.12. 0
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Remark I1.12.16. With the notation in I1.12.13, assume that G preserves the norm of V' and induces
a trivial action on Vgl/p2V§1. Then, V = V92" by 11.12.11. We remark that the infinitesimal action
(I1.12.15.1) of G on V coincides with the Lie algebra action (I1.11.24.2) by (11.6.7.3).

Definition I1.12.17 (cf. [Pan22, 2.1.6]). Let G be a p-adic analytic group, V' a Q,-Banach space
endowed with a Q-linear continuous action of G. We say an element v € V is G-locally analytic if it is
Go-analytic for some uniform pro-p open subgroup Gy of G. We set V912 = Ug0 Y 9o-an the Qp-linear
subspace of V' consisting of G-locally analytic vectors.

We obtain from II.12.15 a canonical morphism of Lie algebras over Qy,
(I1.12.17.1) ¢ : Lie(G) — Endg, (V9'),

which is called the infinitesimal Lie algebra action on locally analytic vectors. We remark that if V'
is finite-dimensional, then V = V918 by I1.12.11.

I1.12.18. Let K be a complete discrete valuation field of characteristic 0 with perfect residue field of
characteristic p > 0, (B, B, B) a (K, O, Og)-triple (see 11.9.2), F a Galois extension of the fraction
field £ of B contained in L,, such that G = Gal(F /L) is a p-adic analytic group. We denote by Gy
the image of H = Gal(Ly,;/Lw) under the surjection G = Gal(L,,/L) — G, where L, = K, L is the
cyclotomic extension of £, and we denote by Fx, the invariant subfield of F by Gy. We name some
Galois groups as indicated in the following diagram

(I1.12.18.1)

Loo<~—Fs~—0FL

=

Indeed, we have Foo = Koo F = Loo @5, F by Galois theory. Consider the directed system ﬁz‘f‘“ /c
of finite field extension £’ of £ contained in L,,. For each L', we construct the above diagram for
the Galois extension F' = L'F over £’ contained in L, in the same way and add prime superscript
to the notation. There is a natural commutative diagram of fields

g/
/_M\ ’
(11.12.18.2) cl FL—=F s Ly
1]
g
g

We remark that each Galois group with prime superscript naturally identifies with an open subgroup
of the corresponding Galois group without prime superscript.

~

Recall that B[1/p] is a Q,-Banach algebra endowed with the canonical norm defined by B (see
I1.6.3) and the continuous action of G. Consider a %[1 /p]-Banach module W endowed with a semi-
linear continuous action of G. Then, the H-invariant part W* is a (§[1 /p])*-Banach module endowed
with the induced continuous action of G. The spaces of locally analytic vectors (VV”I)QI'1a (resp.

(WH)9u712) form a directed system of Q,-linear subspaces of W over Fpm /- We denote its colimit
by

(I1.12.18.3) W9l = colim (W9l
LeFE e
(I1.12.18.4) (resp. W9r1a = colim (WH')9u-12)

’ fini
L eﬂaur/ﬁ

and we call it the subspace of G-locally analytic (resp. Gp-locally analytic) vectors of W (we take
the colimit here for the flexibility of replacing £ by a finite extension £’ in the proof of 11.12.22). Tt
is G-stable and endowed with the infinitesimal Lie algebra action ¢'* of Lie(G) (resp. Lie(Gg)) by
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I1.12.15. We extend this action ﬁ[l/p]—linearly to
(11.12.18.5) 1® ¢l : (B[1/p] @, Lie(G)) x WIa — W

(I1.12.18.6) (resp. 1 ® a (ﬁ[l/p] ®q, Lie(Gn)) x WHla W).

11.12.19. With the notation in I1.12.18, assume that G is a uniform pro-p group. Then, we consider
three G-actions {1® pr,, 1 ® pr, pw ® pr.} on €**(G, W) defined by the same formula as in (11.12.6.1).
By I1.12.15 and I1.12.12, there are infinitesimal Lie algebra actions ¢r,, or of Lie(G) on €**(G, W)
associated to the left and right translation of G, which commute with each other. We also extend

them %[1/p]—linearly to
(IL.12.19.1) 1® o1, 1@ : (B[1/p] ®g, Lie(G)) x €°(G, W) — €™ (G, W).

Lemma I1.12.20 (cf. [Pan22, 2.1.4, 3.3.5]). With the notation in 11.12.18 and 11.12.19, assume that
G is a uniform pro-p group. Then, the map

(11.12.20.1) (WHyG-an _ gan(g W) ew@pL)(G=L 4y s (f, 2 g gu)

is well-defined and bijective. Moreover, for any v € (WH)9-3% and ¢ € ﬁ[l/p] ®q, Lie(G), we have

(11.12.20.2) (1@ ¢™)(¢,0) = (1@ or)(, f2)(1) € W.

PROOF. The first part follows from the same argument of 11.12.10. For the “moreover” part, by

assumption, we write ¢ = > | a; ® logg(g;) where a; € B[1/p] and g; € G. Then, by the definition,
we have

(I1.12.20.3) (1®L)(, fu)( Zaz Tim p~"(pr(g! ) fo = £2)(1)

_ . H —n fp" _
= z; a; nlgr;o p "(g; " v—)
3

:*Z%Sﬁg@ ]‘®<)O )(¢7v)7

where the first equality follows from the fact that takmg limits in €2 (G, W) with respect to its norm
commutes with evaluating at 1 € G. O

Lemma 11.12.21. With the notation in 11.12.18 and 11.12.19, assume that G is a uniform pro-p
group and that G/Gy is isomorphic to 0 or Z,. We take o9 € G whose image in G/Gy is a topological

generator, and denote by U?’ the closed subgroup of G generated by og. Then, the map

(IL1221.1) (W) — (£ € €°(G, W) | (ow ® pu)(H)S = f, (1® pr)(0")f = f}
sending v to (fy : ho§ — hv), where h € Gy and a € Z,, is well-defined and bijective. Moreover, for
any v € (WH)91-22 and ¢ € B[1/p] ®q, Lie(G), we have

(11.12.21.2) (L@ ¢™)(9,v) = —(1@¢L)(¢, f)(1) € W.

PrOOF. If G/Gy = 0, then we reduce to I1.12.20. Assume that G/Gy = Z,,. Firstly, we see that
there is a canonical bijection by the same argument of 11.12.10,

(I1.12.21.3) (WH)Gu-an =y gan (G W) pw@PL) (D=1 "0y s (£ 2 b o).

Notice that Gy is a uniform pro-p group and there is an exact sequence of the powerful Lie algebras
over Z, by I1.3.7,

(11.12.21.4) 0— Lg, — Lg — Lg/g, — 0.

We take a Z,-linear basis hi,...,hq of Lg,. Then, o9, h1,...,hq form a Zy-linear basis of Lg, and
thus they also form a minimal topological generating set of G (see 11.3.4). We obtain two systems of
coordinates of second kind (11.3.3.4),

(I1.12.21.5) 78— Gy, (ay,...,aq) = h{* -+ b
(I11.12.21.6) 7,7 — G, (ag,ay,...,aq) = h{* - hGiog®

By I1.12.3 and I1.12.5, the map of underlying sets G — Gp sending hi* - - - hi?o¢° to h{* - - - hy® induces
an injective map by pullback

(11.12.21.7) €N G, W) — €G,W), ' (hag — f'(h)),
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whose image is €°*(G, W)(1®/’R)(‘7§p)=1. This shows that (11.12.21.1) is a well-defined bijection. The
“moreover” part follows from the same argument of that of I1.12.20. 0

Theorem 11.12.22 (cf. [Pan22, 3.3.5]). With the notation in 11.12.18, assume that B is a quasi-

adequate Ok -algebra. Let ®&° be the canonical B[1/p]-linear Lie subalgebra of B[1/p] ®q, Lie(Gr)
defined in 11.11.22. Then, under the canonical infinitesimal action 1 ® @' (11.12.18.6) by taking

W = B[1/p], ®%° annihilates (B[1/p])91 ™.

PROOF. Consider the cofinal subsystem 7" . of Z/™ . defined in IL.11.9. Recall that for any

L' e F: ., we have natural identifications ®¢° = @& by I1.11.20.(5). Thus, it suffices to show
that ®F° annihilates (B[1/p]*)9#-%. Moreover, after replacing G by a sufficiently small uniform

pro-p open subgroup, it suffices to show that (I%eo annihilates (B[1/p]*)95-2" (so that £ may not lies
in ﬁgi s from now on). Recall that there exists a sufficiently small uniform pro-p open subgroup
Go of G such that Gog = Go NGy and Gy /Gy are both uniform by I11.3.10. Replacing G by Gy, we

obtain the following conditions on G:

(1) G is a uniform pro-p group isomorphic to a closed subgroup of id +p*M4(Z,) for some d € N
(using 11.3.9), and
(2) G/Gn is isomorphic to 0 or Z, (as it is a uniform pro-p subquotient of G/H = X C Z)).

g/
/\ ’
(11.12.22.1) c b s Lo
1
’C\\ff/f H Lur
g

We take £ € fgl /c sufficiently large such that the image of the natural injection G’ — G is contained

in G7° (recall that F’ = £'F by definition). Then, G’ acts trivially on (G, Q)= /pPe™(G,Q,)=t
via the left and right translation actions by 11.12.7. Combining with II1.12.8, we can apply 11.11.26 to
the Qp-Banach space €*"(G,Q,) endowed with the left translation action 1 ® pr, of G, so that ®g°

acts trivially on ((B ®z, %an(g,Qp)Sl)A[l/p])H/~
Notice that there is a natural identification (B ®z, €*"(G,Q,)<")"[1/p] = €**(G, B[1/p]) by

I1.12.2, which satisfies the following properties (by firstly checking over the submodule E@Zp ¢ (G,Q,) St
and then taking p-adic completion):

(1) the action of G’ on (ﬁ@zp (G, Q,)<')"1/p] defined in I1.11.24 coincides with the diagonal
a‘Ction %[1/17] ® pL On/‘:gan(g7 B[]'/p])a a’nd

(2) the action of ®g: on (B ®z, €*(G,Q,)<")"[1/p] defined by (I1.11.24.3) coincides with the
infinitesimal action 1 ® ¢y, (I1.12.19.1) on ¥**(G, B[1/p]) induced by the left translation of
G (cf. 11.12.16).

Therefore, applying 11.12.21 we see that for any v € ((ﬁ[l/p])?‘)gff'an and any ¢ € ®F”,
(11.12.22.2) (1®¢™)(¢,0) = —(1@ ¢1)(¢, f)(1) =0,

as (f, : ho — hv) is an element of <5"1“(9,ﬁ[l/p])(pﬁ[l/m(@m)(m:l - ((ﬁ@zp%an(g,Qp)él)A[l/p])H/
Killed by ®E° = BE°. 0

Remark I1.12.23. We don’t know whether ®¢g annihilates (ﬁ[l/p])g‘la or not, cf. 11.6.20.
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11.13. Appendix: Hyodo’s Computation of Galois Cohomologies

This appendix is devoted to detailed proofs of I1.5.9 and I1.5.14, using essentially Hyodo’s argu-
ments in [Hyo86] and [Hyo89]. We take again the notation in II.5.1.

(I1.13.0.1) K

i /; i;\\\\c
\\AT \\

Ko<~—"K
P

Lemma I1.13.1 (cf. [Hyo86, 2-1|). Assume that K satisfies the assumption (%) in 11.6.10. Let

r,q € N.
The natural map H1(A, Ok K — H1(H, O+ —) is an almost isomorphism.
(1) Th I'map HY(A, Ok, . /p"O oo,oc) U(H,O0%/p"OF) i l ' phi

(2) The natural map induced by the cup product ASHom(A, O /p" O ) — HI(A, OKoo oo /P"OK . o)
is injective, and admits a natural retraction with kernel killed by ¢, — 1.

Proor. (1) If we take K’ as in I1.5.2, then Ok, = colimuen Ok [Cpn,t1pn, ... tapm] (by
I1.5.3) is a non-discrete valuation ring of height 1 such that the Frobenius map on Ok _/pOk:_
is surjective. In other words, K7, . is a pre-perfectoid field. As K is finite over K, O Km; is almost
étale over Ok __ by almost purit?(II.?.lQ), and the conclusion follows by almost Galois descent (cf.
[AGT16, 11.6.24)).

(2) By (I1.6.10.2), we can decompose Of__ . into a direct sum of free Ok -submodules of rank
1

)

(IL.13.1.1) Ok = B P Oxthifpm - thtma,

meNd k€J<m
where J C Nio is the subset of tuples with components prime to p. It induces a natural retraction
of the inclusion Ok — Ok, . Notice that A acts on Ok tlf}pml "‘t];dp'm,d by the multiplication

by a group homomorphism from A to the group of roots of unity contained in FX, which is trivial
if and only if m = 0. By [AGT16, I1.8.1], we see that AYHom(A, Ok__ /p") = HI(A,Ok_ /p") and
that HI(A, Oty m, -ty m, /p7) is killed by ¢, — 1 if m # 0. O

Proposition I1.13.2. The connecting map of the Faltings extension (I11.5.7.1) induces a canonical
K -linear isomorphism

(IL.13.2.1) Koo ®0y Qb = HY(H,K(1)),
sending dlog(t;) to &®C, where ¢ = (Cpn)nen € Zp(1) and & = (&1,...,8q) - H — Zg is the continuous
1-cocycle (11.4.15.4). Moreover, for any q € N, the cup product induces a natural isomorphism

(I1.13.2.2) Ko ®0, N, Qb — HI(H, K(q)).

PRrOOF. The statement itself defines a natural map Koo RO /\%K(AZ}QK — HY(H,K(q)) for any
q € N. We only need to prove that it is an isomorphism. For ¢ = 0, this follows from Ax-Sen-Tate’s
theorem [Ax70].

Assume that K satisfies the assumption () in 11.6.10. Then, the natural map

(11.13.2.3) AHom(A, Koo /p Ok..) — HY(H, K /p"O%)

is a p2-isomorphism by II.13.1 for any ¢, € N. Consider the canonical exact sequence for any ¢ € N
([AGT16, 11.3.10.4, 11.3.10.5])

(11.13.2.4) 0— R! lim HYY(H,K /p"Ox) — HI(H, %) — lim HY(H,K/p"Ox) — 0.
S re

Since the inverse system (A?"'Hom(A, K /p"Ok..))ren satisfies the Mittag-Leffler condition, we
have R!lim,eny A7 'Hom(A, Koo /p"Ok..) = 0. Thus, R'lim,ey H7H(H, K /p"Og) is killed by p*
by the p?-isomorphism (II.13.2.3) and 11.7.3.(2). Moreover, it is actually zero since multiplication
by p is invertible on HY(H, K). Then, we get HI(H, K) = A9Hom(A, [/(O\o) by a similar argument.
Unwinding the definitions, we get the conclusion in this case.
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In general, there exists a finite Galois extension K’ of K which satisfies the assumption (x) in
I1.6.10. Remark that the map K’ ®o, Q}DK — Q%QK/ [1/p] is an isomorphism. By Ax-Sen-Tate’s

theorem, we have (K/_)H/H" = K, where H' = Gal(K/K"_). Thus,

—

(IL.13.2.5) Ko ®0, Qb, — (K, ®0,, Qb )T/
is an isomorphism. In particular, the restriction map

(11.13.2.6) Res : HY(H,K(q)) — HY(H',K(q))"/"

is surjective, since the natural map I/{(’; R0 (AZ}QK/ — HY(H',K(q)) is an isomorphism by ap-
plying the discussion above to K’. It is also injective, since there is a co-restriction map Cor :
HY(H', K (q))"/"" — HI(H,K(q)) such that Cor o Res = [K’ : K] -id (cf. [Tat76, §2]). Thus, we
deduce the proposition for K from the special case for K'. O

I1.13.3. For simplicity, we put ! = K ®0,. Q%QK(—I) and Q' = ALQ for any i € Z (where (' =0
if i < 0). Recall that there is a natural exact sequence (I11.5.11.2) for any n € Z (where Sym"™ = 0 if
n < 0),

(I1.13.3.1) 0— sym%*l(go,((—l)) — Sym’ (6o, (—1)) — K ox Sym’- Q' — 0.

It induces a natural exact sequence

(I1.13.3.2)
0 — K @k Sym’ Q! — synﬂl}(&gk(—1))/sym%*2((§ok(—1)) — K ® SympQ' — 0.

For any ¢,j € Z, we set
(I113.3.3) EY = H*+(H,K @k SympQY)

and we denote by di7 : E" — EY the (i + j)-th connecting map associated to (I1.13.3.2) for
n = —i. We remark that if we endow each Sym%(éa@K(—l)) with the finite decreasing filtration

(F%);cz given by

. . Sym%(é”@K(—l)) iti < —n,
(I1.13.3.4) F'SymZ (6o, (—1)) = Sym_'(6o,(~1)) otherwise,
then the associated spectral sequence of the group cohomology ([Sta22, 012M])
(I1.13.3.5) nEY = H™(H,Sym’ (6o, (~1)))

is convergent and is given by

. 0 ifi<—n vj 0 ifi<-—n
11.13.3. WE =1 o nd =0 i ise
(I1.13.3.6) 1 { E}?  otherwise, ! { d}?  otherwise.

Lemma II.13.4 (cf. [AGT16, I11.5.7, IIL.11.11]). For any i,j € Z, we define a K-linear map
¢ Symb Q' @ Y — Sym’ 'O @i WL by

(I1.13.4.1) 1@ Qx| ®w — Z[xl R DTpl ® Ty @ - Q23] Q (Tp Aw),
k=1
for any x1,...,x; € Q' andw € I Then, there is a natural commutative diagram
_ . ~ . 1@e—biti o .
(11.13.4.2) Ko @k (Symzg' Q') @ QI _lee T o QK (Sym}“lﬁl) ®p QL
awlz ai-%-l,jlz
. 49 . .
7, i+1,
E}? - BT

where the vertical maps are the natural isomorphisms induced by (11.13.2.2).


https://stacks.math.columbia.edu/tag/012M

11.14. APPENDIX: FALTINGS EXTENSIONS AS GRADED PIECES OF DE RHAM PERIOD RINGS 161

PROOF. As in I1.5.12, we set T = (dlog(tkpn))nen ® (! € o, (—1) for any 1 < k < d. We
remark that their images dT} in Q' form a K-basis, and that h(Ty) = & (h) + T for any h € H. For
any 1 <7rq,...,74,81,...,8; < d, we have

(I1.13.4.3) (dy " 0@ (AT, @ - @ dT),] @ (dTs, A--- AdTY,))
:dl_i7i+j([dTT1 Q- dTTL} ® (581 u---u gsj-))
:(h = [(§7‘1 (h’) + TT‘1) Q- (gn (h) + TH) - T7'1 ®-® TTL]) U 581 Uu---u gsj

:Z[dTﬁ & ®dTTk71 ®dT7“k+1 @ ®dTT¢] ® (frk U€S1 U--- Ugs]‘)
k=1

=(a T o (1® ¢™)) ([T, @ - @ dT},] ® (dTs, A--- AdTL,)).

g
Corollary I1.13.5 (cf. [AGT16, I11.11.12]). We have
. Ke ifq=0
(IL135.1) ReN. ( 7Sy%(<§@K( ) { 0 otherwise.

In particular, (¢gr)™ = I?o\o

PROOF. For any n € Ny, the differential map (I1.13.4.1) defined in I1.13.4 induces a natural
sequence

¢2,n72 —~

~ n,0 ~ ~ n—1,1 —~ 1,n—1 _
(IL135.2) 0 — SympO! 25 Sym? 'l @ 1 s - 5 Qe 0n 25 o — .

which is exact by [Hyo89, Lemma 1.2| (cf. [AGT16, I11.5.1]). Therefore, by I1.13.4, the sequence

(E;’j,d;’j) is exact for any j # 0, and nonzero only at E(l)’0 = I/(:o if j = 0. Then, we see that for
any n € N, the nonzero terms ,, E5” of the second page of the spectral sequence (I1.13.3.5) appear on

the positions
(I1.13.5.3) (i,7) € {(0,0),(—m,n+m) | m € N}.

In particular, the spectral sequence degenerates at the second page, and we see that H°(H, Synﬂ;{(éoo (1)) =

K and that HI(H, Sym%(éaoK(—l))) — HI(H, Sym%Jrl(é’oK(—l))) is zero for any ¢ # 0. O

I1.14. Appendix: Faltings Extensions as Graded Pieces of De Rham Period Rings

The Faltings extension and Hyodo ring (the Hodge-Tate period ring) are also constructed as
graded pieces of de Rham period ring in the literature in various p-adic geometric settings. See
[Brio8, §5] for the good reduction case, [Tsull, §2] for the semi-stable reduction case, [Tsul8, §15]
for the adequate case, and [Sch13a, §6], [Sch16] for smooth adic spaces. This appendix is devoted
to a comparison between our construction of the Faltings extension with theirs. We fix a complete
discrete valuation field K of characteristic 0 with perfect residue field of characteristic p > 0, an
algebraic closure K of K, and a compatible system of primitive n-th roots of unity (¢, )nen in K.
Lemma I1.14.1. Let (A¢,, A, A) be a (K, O, O)-triple in the sense of 11.9.2, K the fraction field

~

of A, G = Gal(K/K). Then, Z[%](l)G =0, where (1) denotes the first Tate twist.
Proor. By I1.9.4, we reduce to the case where A is a complete discrete valuation ring extension
of Ok, which is proved by Tate (|[Tat67, Theorem 2|, cf. [Hyo86, Theorem 1]). O

Lemma I1.14.2. Let (A, A, A) be a (K, O, Of)-triple in the sense of 11.9.2, K the fraction field of
A, G = Gal(K/K). Consider an isomorphism f : & — &' of extensions of an A[1/p]-representation

~

W of G by A[1/p](1) making the following diagram commutative.

(I1.14.2.1) 0—=A[L(1) —> & =W 0

ftz l-(l)

0—=A[LJ1) =& =W 0

Let x and 2’ be elements of & and &' respectively. Assume that j(z) = —j'(2') € WY and g(z) —z =
g(z') — 2’ € A[1/p](1) for any g € G. Then, f(x) =’
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PROOF. If we set y = 2’ — f(x) € &', then j'(y) = 0 and g(y) = y for any g € G by assumption,
which implies that y = 0 by I1.14.1. O

I1.14.3. For simplicity, we only consider Tsuji’s construction of de Rham period ring [Tsul8, §15].
The comparison with other constructions of the Faltings extension should be clear from our arguments
in the following. We quickly review Tsuji’s construction and state properties without proofs. Let A
be an adequate Og-algebra of relative dimension d satisfying the following condition:

(1) We set X = (Spec(A), agpec(a,,)—Spec(a)) (cf. 11.9.6). Then, the monoid I'(X, Mx)/A* is
finitely generated, and the identity of I'(X, Mx) induces a chart of X (cf. [Tsu99, 1.3.2]).

We remark that any adequate Og-algebra Zariski locally satisfies this condition (|Tsu99, 1.3.3]). Let
K be the fraction field of A, G = Gal(K,,/K). Consider the tilt A = hm A/pA of A, and we put
Woy (Zb) = Ok @w(x) V[/(Zb)7 where & is the residue field of K, and W (—) is taking the ring of Witt
vectors. Let [—] : x - W(Zb) denote the multiplicative lift, 7 a uniformizer of K with compatible
system of p™-th root (mpn )nen contained in O, & =7 ® 1 —1® [(mpn )nen] € Woy (Zb). There is a

canonical exact sequence

— . — v =
(I114.3.1) 0 ——> Wo, () —> W, (A) ~25 4 —0

where 9o, is the homomorphism of Ox-algebras characterized by Yo, (1® [(an)nen]) = limy, o a2
(where @, € A is a lift of a,, € A/pA).

Let X be the log scheme with underlying scheme Spec(A) whose log structure is associated to
NX,Mx)— A (different to the notation in 11.9.21). Consider the fibred product of monoids

~

(11.14.3.2) Q ——T'(X, Mx)

| |

@m»—).ﬂ’ Z Z

and let D be the log scheme with underlying scheme Spec(W (A")) whose log structure is associated
to the composition of Q — I.me»—mp A— Zb i) W(Zb). The condition above on the log structure

of X implies that D is an fs log scheme, and the natural maps ¥ : W(Zb) — Aand Q — I'(X, Mx)
induce an exact closed immersion i : X — D. We put S = (Spec(Ok ), agpec(ik)—Spec(0x)) and

Dg =S8 X Spec(W (k) D, where Spec(W (k)) is endowed with the trivial log structure. Consider the

induced closed immersion of fs log schemes iz : X — Dgs (not exact). For any r,m € N, let Egzn

be the r-th infinitesimal neighbourhood of the reduction mod p™ of the closed immersion iz in the
category of fine log schemes in the sense of [Kat89, 5.8]. Then, the natural map

- | . —(r) 1
(11.14.3.3) (Wor(X)/€:H Wor (X))[] — ( im T(DS),. Op L]
is an isomorphism ([Tsul8, page 870, equation (33)], cf. [Tsull, 2.5]). We define

— . . —(r) 1
(I1.14.3.4) Bl = tim (( tim 108,050 V)
which is endowed with the natural action of G and a canonical G-stable decreasing filtration by ideals

_ _ (e 1 _
(I1.14.3.5) Fil" B}, (4) = Ker (BjR(A) — ( lim T(Dj m”,oD(T_U))[p]) — ¢ B (A),
m—oo ’ S,m

where r € N5 and we put Fil" B (A) = B (A) for r < 0.

We put Dx = X Xspec(W (x)) D- Consider the induced closed immersion of fs log schemes

By - X — Dx. For any r,m € N, let Eﬁ?m be the r-th infinitesimal neighbourhood of the reduction

mod p™ of the closed immersion i in the category of fine log schemes in the sense of [Kat89, 5.8].
We define

(11.14.3.6) B (A) = lim (( lim r(ﬁﬁ?,’m,oﬁgo ))[1]>

r—00 m—oo ,m p
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which is endowed with the natural action of G and a canonical G-stable decreasing filtration by ideals

_ _ r 1
(I1.14.3.7) Fil” 81, (A) = Ker (@;R(A) (lim T(DY m”,oD“ 1)))[}9]),

m— o0
where 7 € Ny and we put Fil"Z ;(4) = Biz(A) for r < 0. Moreover, Tsuji [Tsul8, page
871] defines a G-equivariant B (A)-linear integrable connection V : B, (A) — B (A) ®4 QL /s
compatible with d : A — QX/S and dlog : T'(X,Mx) — Qx/s satisfying that V(Fil" 1, (4)) C
Fil' ' B (A) @4 O X/s- We summarize some properties of 1 (A) proved by Tsuji in the following.

Proposition I1.14.4 ([Tsul8, §15]). We keep the notation in 11.14.3.

(1) The element t = log([(Cpn)nen]) € Bigr(A) is a non-zero divisor such that t"Bji(A) =
FilTB(J{R(Z) for any r € N. Moreover, the map 9o, induces a G-equivariant isomorphism

(I1.14.4.1) t"Biz(A) /" BiL (A) — Al1/p)(r).

(2) Let (spn)nen € Q with image 3 =s; € I'(X, Mx). Then, for anyr,m € N, there is a unique

element ull) € 1+ Ker( (DXm,O—m ) — F(Dg: ,n,i),OE(rfl))) C F(DXm,(’)im ) such
X,m

that s = [(Spn)nen] - u W in F(D();)m,/\/lﬁr) ). It induces a canonical homomorphzsm of
X,m
monoids
(I1.14.4.2) q:Q — 1+ Fil'BL(A), (spr)nen = u= (ul)), men-

Moreover, V(u) = u ® dlog(s).

(3) Let {tit1<i<a be a system of coordinates of the adequate Of-algebra A with compatible
systems of p-power roots (t; pn)nen contained in A[1/p|. For sufficiently large k € N such
that w%t; € A, the element u; = q((mpn Jnen) "q((Thutipn Jnen) € 1+ Fil' B (A) does not

depend on the choice of k. Moreover, @IR(A) is the B;{R(A)—algebm of formal power series

with d variables w1 — 1,...,uq — 1, and for any r € Z we have
(11.14.4.3) Fil’ B, (A) = [[ Fir® B A) - (uy — )™ -+ (ug — 1)
keNd

Corollary I1.14.5. With the notation in 11.14.3, there is a canonical G-equivariant exact sequence
of A[1/p]-modules,

=~ 1 . _ =~ 1
(I1.14.5.1) 0— A[E](l) - Gr' B (A) L A[E] ®4 Q)5 — 0,

where Grl,@j‘R(Z) = Fill.@j{R(Z) / Fil2%’3'R(Z), satisfying the following properties:

(1) The map ¢ is induced by taking Gr' on the map Blz(A) — Ziz(A). In particular, we
have (1 ® (Cpn )nen) = 10g([(Cpn )nen]) = 1 — uo, where ug € 1+ Fil' B, (A) is the element
associated to (Con)nen defined in 11.14.4.(2).

(2) The map j is induced by taking Gr' on the connection V : Biz(A) — Biz(A) @4 Qk/s.
In particular, for any element s € A[1/p] N A}y and any compatible system of p-power Toots
(8pn )nen of s contained in A[1/p], if we denote by u € 1+Fil' B, (A) the element associated
to (spn)nen defined as in 11.14.4.(2, 3), then we have j(u — 1) = 1 ® dlog(s).

(3) With the notation in 11.14.4.(3), the A[l/p]-linear surjection 7 admits a section sending
l®dlog(t;) tou; — 1 for any 1 <4 <d.

In particular, Gr' B}, (A) is a finite free A[1/p]-module with basis {1 — wu;}o<i<d-

Proposition I1.14.6. With the notation in 11.14.3, there is a unique G-equivariant A[1/p]-linear
isomorphism

(I1.14.6.1) f:é4 = Gr' B (A),

where &4 is defined in 11.9.36, such that for any element s € A[1/p]N A and any compatible system
of p-power roots (spn)nen of s contained in A[1/p], we have

(IL14.6.2) F((d10g(spn)nex) = 1 — ,
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where u € 1+ Fil' Bl (A) is the element associated to (spn)nen defined as in 11.14.4.(2, 3). In
particular, it induces a canonical isomorphism of Faltings extensions

(I1.14.6.3) 0 Hj[%](l) T j[:z%] @4 Ly —=0
flz l(—l)
0 Hj[%}(l) s Grlﬂng(Z) s j[%] XA Q%{/S —0

PROOF. We take the notation in I1.14.4.(3). Recall that &4 is a finite free A[1/p]-module with
basis {a; = dlog(t; pn )nento<i<d, where to,n = (pn. Thus, the uniqueness of f is clear. For its
existence, we define f to be the A[1/p]-linear isomorphism sending a; € &4 to 1 — u; € Gr' B, (4)
for any 0 <7 < d. -

We claim that f is G-equivariant. Indeed, let u € 1 + Fil' B, (A) be the element associated to
(Spn )nen defined as in I1.14.4.(2, 3). For any g € G, there is a unique element £(g) € Z, such that
9(Spn)nen = (ng(lg)spn)neN. As s = [(spn )nen] Al we haveg = [(¢pr )nen)é@g(u). Taking logarithm
and using the identity log([(¢pn )nen]) = 1 — ug in Gr' B (A4) (see 11.14.5.(1)), we obtain that

(I1.14.6.4) g(1 —u) =&(g)(1 —up) + 1 —u € Gr' B (A).

As f is A[1/p]-linear and sends the basis g, ..., aq to 1 —ug, ..., 1 —ug, we see that f is G-equivariant
by (I1.14.6.4) and (IL5.7.2).

We claim that f(a) = 1 — u, where o = (dlog(spn)nen). Indeed, our definition of f makes the
diagram (I1.14.6.3) commute by I1.9.36 and II.14.5. Notice that j(or) = dlog(s) = —j(1 —u) € QU /g

and that g(a) — a = &(g9)ap = &€(9)(1 —up) = g(1 —u) — (1 —u) € j[l/p](l) Thus, we can apply
11.14.2 to verify this claim.
Therefore, f satisfies all the requirements, which completes the proof. O



CHAPTER III

Almost Coherence of Higher Direct Images

II1.1. Introduction

ITI.1.1. One of the first important results in algebraic geometry is the fact that the coherence for
modules is preserved by higher direct images by a proper morphism. The Noetherian case is due
to Grothendieck [EGA III;, 3.2.1], and the general case is due to Kiehl [Kie72, 2.9°]. The goal of
this article is to extend the following corollary to almost algebra, motivated by applications in p-adic
Hodge theory.

Theorem II1.1.2 (Kiehl [Kie72, 2.9, c¢f. [Abbl0, 1.4.8]). Let f : X — S be a morphism of
schemes satisfying the following conditions:

(1) f is proper and of finite presentation, and
(2) Og is universally coherent.

Then, for any coherent Ox-module M and any q € N, RYf, M is a coherent Og-module.

We say that Og is universally coherent if there is a covering {S; = Spec(A;)}icr of S by affine
open subschemes such that the polynomial algebra A;[Th,...,T,] is a coherent ring for any i € I
and n € N. Indeed, such a condition on Og implies that the coherent Ox-module M is actually
pseudo-coherent relative to S, which roughly means that if we embed X locally as a closed subscheme
of Ag , then M admits a resolution by finite free modules over A . Theorem III.1.2 is a direct
corollary of Kiehl’s result [Kie72, 2.9’], saying that the derived pushforward Rf. sends a relative
pseudo-coherent complex to a pseudo-coherent complex.

II1.1.3. Almost algebra was introduced by Faltings [Fal88, Fal02] for the purpose of developing
p-adic Hodge theory. The setting is a pair (R, m) consisting of a ring R with an ideal m such that
m = m?, and the rough idea is to replace the category of R-modules by its quotient by m-torsion
modules. An “almost” analogue of Theorem III.1.2 is necessary for Faltings’ approach to p-adic
Hodge theory. Indeed, under the same assumptions of II1.1.2, Abbes-Gros [AG20, 2.8.14] proved
that R?f, sends a quasi-coherent and almost coherent Ox-module to a quasi-coherent and almost
coherent Og-module, by reducing directly to III.1.2. This result plays a crucial role in the proof of
Faltings’ main p-adic comparison theorem in the absolute case (cf. [AG20, 4.8.13]), and thus of the
Hodge-Tate decomposition (cf. [AG20, 6.4.14]). Later, Zavyalov [Zav21, 5.1.6] extended the same
almost coherence result to formal schemes.

However, the almost coherence result [AG20, 2.8.14] is not enough for Faltings’ main p-adic
comparison theorem in the relative case (thus neither for the relative Hodge-Tate spectral sequence),
since we inevitably encounter the situation where Og is universally almost coherent but not universally
coherent. Thus, under the assumptions that

(1) f is projective, flat and of finite presentation, and that
(2) Og is universally almost coherent,

Abbes-Gros proved an almost coherence result [AG20, 2.8.18] by adapting the arguments of [SGA 6,
II1.2.2], where the projectivity condition on f plays a crucial role. This is the reason why Faltings’
main p-adic comparison theorem in the relative case (and thus the relative Hodge-Tate spectral
sequence) was only proved for projective log-smooth morphisms in [AG20, 5.7.4 (and 6.7.5)].

II1.1.4. In this article, we generalize the almost coherence result [AG20, 2.8.18] to proper morphisms,
which allows us to extend Abbes-Gros’ proof of Faltings’ main p-adic comparison theorem in the
relative case to proper log-smooth morphisms, and thus also their construction of the relative Hodge-
Tate spectral sequence (cf. Section IIL.8).

Let R be a ring with an ideal m such that for any integer [ > 1, the I-th powers of elements of m
generate m. The pair (R, m) will be our basic setup for almost algebra (cf. Section II1.6). The main
theorem of this article is the following

92020 Mathematics Subject Classification 14F06 (primary), 13D02, 14F30.
Keywords: almost coherent, higher direct image, proper morphism, bounded torsion
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Theorem II1.1.5 (cf. II1.7.1). Let f: X — S be a morphism of R-schemes satisfying the following
conditions:

(1) f is proper, flat and of finite presentation, and
(2) Ox and Og are almost coherent.

Then, for any quasi-coherent and almost coherent Ox-module M and any g € N, R1f,. M is a quasi-
coherent and almost coherent Og-module.

Our proof is close to Kiehl’s proof of [Kie72, 2.9], cf. Section III.7. We roughly explain our ideas
in the following:

(1) We may assume without loss of generality that S is affine. As M is not of finite presentation
over X in general, we couldn’t descend it by Noetherian approximation. But M is almost
coherent, for any 7 € m we can “m-resolve” M over a truncated Cech hypercovering X, =
(Xn)njea., (by affine open subschemes) of X by finite free modules 73 as in [Kie72, 2.2],
where each F? is a “resolution” of M|x, modulo 7-torsion, cf. Section I11.6. By Noetherian
approximation, we obtain a proper flat morphism fy : X, — S\ of Noetherian schemes
together with a complex of finite free modules F X Over a truncated Cech hypercovering of
X descending f and FJ.

(2) As in [Kie72, 1.4], the descent data of M over X, are encoded as null homotopies of the
multiplication by a certain power of 7 on the cone of a*F3, — Fo (where a : [m] — [n] is a
morphism in the truncated simplicial category A<y), cf. Section II11.3. We can descend the
latter by Noetherian approximation, from which we produce some coherent modules over
X, cf. Section IIL.5.

(3) Applying the classical coherence result for fy : X\ — S\, we see that the Cech complex
of F3 , is “pseudo-coherent” modulo certain power of m, cf. Section IIL.4. The same thing
holds for the Cech complex of F? by base change (due to the flatness of fy). Since this
Cech complex computes RT'(X, M) up to certain degree and modulo certain power of 7, the
conclusion follows by varying 7 in m.
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Saclay and Institut des Hautes Etudes Scientifiques, under the supervision of Ahmed Abbes. I would
like to thank him for offering me this question, his thorough review of this work and a lot of helpful
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II1.2. Notation and Conventions
I11.2.1. All rings considered in this article are unitary and commutative.

I11.2.2. Let &/ be an abelian category. When we consider “a complex in 7", we always refer to a
cochain complex in ¢/, and we denote it by M*® with differential maps d™ : M"™ — M"*! (n € Z).
For any a € Z, we denote by 72%M* (resp. 02%M?*) the canonical (resp. stupid) truncation of M*,
of. [Sta22, 0118].

IT1.2.3. Let A be the category formed by finite ordered sets [n] = {0,1,...,n} (n € N) with non-
decreasing maps ([Sta22, 0164]). For k € NU {oo}, we denote by A<y the full subcategory of A
formed by objects [0],[1],...,[k]. For a category C, a contravariant functor from A< to C sending
[n] to X, is called a k-truncated simplicial object of C, denoted by X,. Let P be a property for
objects of C'. We say that X, has property P if each X,, has property P.

IT1.3. Isomorphisms up to Bounded Torsion

In this section, we fix a ring R and an element 7 of R. Consider an abelian category </ with a
ring homomorphism R — End(id./), where End(id./) is the ring of endomorphisms of the identity
functor. Thus, 7 defines a functorial endomorphism on any object M of o/. We denote by K (&) the
homotopy category of complexes in o7 .

Definition II1.3.1. (1) We say that an object M in « is w-null if it is annihilated by 7. We
say that a morphism f : M — N in & is a w-isomorphism if its kernel and cokernel are
m-null.

(2) We say that a complex M*® in &/ is 7-exact if the cohomology group H™(M?*) is w-null for any
n € Z. We say that a morphism of complexes f : M®* — N*® in & is a w-quasi-isomorphism
if it induces a w-isomorphism on the cohomology groups H"(f) : H*(M*®) — H"™(N*) for
any n € Z.

Lemma II1.3.2 ([AG20, 2.6.3]). Let f: M — N be a morphism in <.
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(1) If there exists a morphism g : N — M in o such that go f =7 -idpys and fog =7 -idy,
then f is a w-isomorphism.

(2) If f is a w-isomorphism, then 7 -idy and 7 -idy uniquely factor through N — Im(f) and
Im(f) — M respectively, whose composition g : N — M satisfies that go f = % -idys and
fog=mn?-idy.

Lemma II1.3.3. Let f : M®* — N°® be a morphism of complexes in /. Assume the following
conditions:

(1) foranyi >0, M* = N'=0;

(2) there is n € N such that for any —n < i <0, M? is projective and w- H'(N*®) = 0.
Then, there exists a morphism s' : M* — N*=1 for any —n < i <0, such that

(II1.3.3.1) =g sl odi - di o s

as morphisms from M to N%, where we put s' = 0. In particular, the morphism of canonically
truncated complexes

(111332) 7rn+1 . f : TZ_VLM. [N TZ—TLNO

is homotopic to zero.

PROOF. We construct s’ by induction. Setting 0 = s! = s = ..., we may assume that we

have already constructed the homomorphisms for any degree strictly bigger than i with identities
(IL3.3.1). As 7% fitl = 7. 5120 d*1 4+ d% 0 s+, we see that

(I1.3.3.3)  dio(n ' - fil—stlod) =a~t. fitflod' — (0. fiHl — 7. 52 0d ) od! = 0.
Thus, the map 7% fi — st od?: M* — N factors through Ker(d’ : N® — N**1). The assumption
7-H(N*®) = 0 implies that the map 7!~%. fi—7-stT1od’ : M* — N’ factors through Im(d*~! : Ni=1 —
N%). As M is projective, there exists a morphism s’ : M* — N?~! such that 7' =% f —7.siTlod! =
di~! o 5%, which completes the induction. In particular, for any i > —n, we have

(I1L.3.3.4) At ft = (g Y o df 4 A o (27 Y.

Recall that 727 "M® = (0 - M~"/Im(d"""%) - M'"™ — ... — M° — 0). Thus, we see that
At f 727" M® — 727" N* is homotopic to zero. O

Proposition 111.3.4. Let P*® be a complex of projective objects in </, M® a m-exact complex in < .
Assume that there are integers a < b such that P' and M® vanish for any i ¢ |a,b]. Then, the
R-module Homg or)(P®, M*) is w*~ 1 -null.

PRrROOF. It follows directly from III.3.3. g

Corollary III.3.5. Let P® be a complexr of projective objects in <7, f : M®* — N°® a w-quasi-
isomorphism of complexes in of. Assume that there are integers a < b such that P', M* and N*
vanish for any i ¢ [a,b]. Then, the map Homg (o) (P®, M*®) — Homg ) (P*, N*®) induced by f is a
72(=at3) isomorphism of R-modules.

PROOF. There is an exact sequence of R-modules

(II1.3.5.1)
HOInK(M)(P',C.[—l]) — HomK(d)(P',M') — HOI’HK(Q{)(P.,N.) — HOHIK(Q{)(P',C.)

where C*® is the cone of f ([Sta22, 0149]). As C* and C*[—1] are m2-exact and vanish outside
[a—1,b+1], the outer two R-modules are 72(b=a+3)_nyll by I11.3.4, whence we draw the conclusion. [

Lemma II1.3.6. Let g : P* — N°®, f: M®* — N°* be morphisms of complexes in o7 . Assume that
there are integers a < b such that
(1) M* = N*=0 for any i > b, and that
(2) P! is projective for any i € [a,b] and zero for any i ¢ [a,b], and that
(3) the map H'(f) : HY(M®) — H'(N®) is a m-isomorphism for i > a and w-surjective for
1 =a.
Jz’hen, w2b=atl) . g lies in the image of the map Homg (o) (P®, M*®) — Homg ) (P*, N*®) induced by
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PROOF. Let C*® be the cone of f, ¢ : N®* — C*® the canonical morphism. Applying the homological
functor Homp ) (P*®, —) to the distinguished triangle rsa-loe 5 C* — 1290 — (r5971C*)[1] in
the derived category D(/), we obtain an exact sequence of R-modules ([Sta22, 0149, 064B])

(I11.3.6.1) Homg (o) (P*, 7% 1C*) — Homg (o) (P*,C*) — Homg (o) (P®, 72°C®).

The first term is zero by assumption (2), and 72¢C*® is 72-exact by assumption (3). As 72¢C*®

vanishes outside [a,b] by assumption (1), the third term is 72(=a+Y_null by I11.3.4. We see that
m20=atl) . (L0 g) is zero in Homg.(P*,C*). Therefore, the conclusion follows from the exact
sequence ([Sta22, 0149])

(111362) HOIHK(%) (P., M.) — HOIHK(M) (P., N.) — HOIDK(M) (P., C.)

IT1.4. Pseudo-coherence up to Bounded Torsion

In this section, we fix integers a < b, a ring R and an element w of R. We remark that the
universal bound [ that shall appear in each statement of this section depends only on the difference
b — a but not on R or .

Definition II1.4.1. Let M*® be a complex of R-modules.

(1) A m-[a,b]-pseudo resolution of M*® is a morphism f : P* — M?* of complexes of R-modules,
where P*® is a complex of finite free R-modules such that P? = 0 for any i ¢ [a, b], and where
the map of cohomology groups H*(f) : H*(P®*) — H*(M?*) is a m-isomorphism for i > a and
m-surjective for i = a.

(2) We say that M® is 7-[a,b]-pseudo-coherent if M* = 0 for any i > b and if it admits a
m-]a, b]-pseudo resolution. We say that an R-module M is 7-[a,b]-pseudo-coherent if the
complex M|0] is 7-[a, b]-pseudo-coherent.

We follow the presentation of [Sta22, 064N] to establish some basic properties of this notion.
The author does not know whether this notion is Zariski local on R or not (cf. [Sta22, 066D]). This
ad hoc notion only serves for the proof of our main theorem.

Lemma II1.4.2. For any integers a’ > a and b/ > b with o' <V, a w-[a,b]-pseudo-coherent complex
of R-modules is also w-[a’,b']-pseudo-coherent.

PRrROOF. We only need to treat the case a = o’ and the case b = b’ separately. If a = @, then it
is clear that M*® = 0 for any i > b’ and a 7-[a, b]-pseudo resolution of M* is also a 7-[a, b']-pseudo
resolution. If b = ¥, then a 7-[a, b]-pseudo resolution P* — M*® induces a 7-[a’, b]-pseudo resolution
o9 P* — M. O

Lemma IT1.4.3. Let M*® and N*® be complexes of R-modules vanishing in degrees > b, o : M®* — N*®
a morphism inducing a w-isomorphism on cohomology groups H' () : H'(M®) — H*(N®) for any
1> a.
(1) If M* is 7-[a, b]-pseudo-coherent, then N*® is w2-[a, b]-pseudo-coherent.
(2) If N* is m-[a,b]-pseudo-coherent, then M*® is 7'-|a,b]-pseudo-coherent for an integer | > 0
depending only on b — a.

PROOF. (1) We take a m-[a, b]-pseudo resolution f : P* — M?®. In particular, H'(f) is a 7-
isomorphism for any i > a and m-surjective for i = a. Hence, H'(a o f) = H'(a) o H'(f) is
n2-isomorphism for any i > a and w2-surjective for i = a, which shows that a o f : P* — N® is
a 72-[a, b]-pseudo resolution.

(2) Let g : P* — N* be a 7-[a, b]-pseudo resolution. We obtain from III.3.6 a morphism f : P®* —
M* lifting 7! - g up to homotopy for | = 2(b— a + 1). Thus, for any i € Z, we have

(I11.4.3.1) Hi(xl.g) = H'(a) o H'(f).

Notice that Hi(r! - g) is a 7/*!-isomorphism for i > a and 7!*!-surjective for i = a, and that H(«)
is a m-isomorphism for i > a. We see that H'(f) is a 7'T2-isomorphism for i > a and 7'*2-surjective
for i = a. Thus, f: P* — M* is a 7' 72-[a, b]-pseudo resolution. O

Proposition II1.4.4. Let M*® and N°® be two complexes of R-modules vanishing in degree > b.
Assume that they are isomorphic in the derived category D(R). Then, if M*® is ©-[a,b]-pseudo-
coherent, then N*® is 7'-[a, b]-pseudo-coherent for an integer | > 0 depending only on b — a.
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PROOF. Let P®* — N°® be a bounded above projective resolution with the same top degree. The
assumption implies that there is a quasi-isomorphism of complexes P®* — M* ([Sta22, 064B]). The
conclusion follows from applying 111.4.3 to P* — M*® and P®* — N°. 0

Lemma IIT.4.5. Let a : M — M3 be a morphism of w-[a,b]-pseudo-coherent complezes of R-
modules. Given m-[a,b]-pseudo resolutions f; : P? — M? (i = 1,2), there exists a morphism of
complexes o : PP — P3 such that (7' - &) o f1 is homotopic to fo 0’ for an integer | > 0 depending
only on b — a.

Proor. It follows directly from III.3.6. O

Lemma II1.4.6. Let My - M3 N M3 s MP[1] be a distinguished triangle in the homotopy
category K(R). Assume that My is m-[a + 1,b + 1]-pseudo-coherent, M3 is w-[a, b]-pseudo-coherent,
and M% =0 for any i > b. Then, M3 is 7il-la, b]-pseudo-coherent for an integer | > 0 depending only
onb—a.

PROOF. We take a m-[a+1, b+ 1]-pseudo resolution f; : P — M7 and a 7-[a, b]-pseudo resolution
f2: P§ — M3. By IIL.4.5, there exists a morphism o : P} — Py lifting 7’ - o in K(R) for an integer
[ > 0 depending only on b —a. If we denote its cone by Ps, then we have a morphism of distinguished
triangles in K(R).

’ [5, "Y,

(I11.4.6.1) pp —>P3 Py Pr{1]
Wl‘flJ/ le fal lﬂl~f1[1]
Y « 'Y ﬁ ° Y (]
M Ms; M3 M?1]

Let C? C3, C% be the cones of 7! - fi, fa, f3 respectively. We obtain a distinguished triangle
cy — C3 — C3 — Cp[1] in K(R) ([Sta22, 05R0]). By assumption, 72@+FDC? is 720+ exact
and 72°C3 is w2-exact. Thus, we see that 72°C3 is 72(*2)-exact. As 02%P§ vanishes outside [a, b],
0Z22Py — M3 is a w2(+2)_[a, b]-pseudo resolution. O

Proposition I11.4.7. Let 0 — M -5 M3 2, M3 — 0 be an exact sequence of complexes of
R-modules.

(1) Assume that M7 is m-la + 1,b + 1]-pseudo-coherent, M3 is 7-|a,b]-pseudo-coherent, and
Mi =0 for any i >b. Then, M3 is 7'-[a,b]-pseudo-coherent for an integer | > 0 depending
only on b — a.

(2) Assume that M? and M3 are 7-|a,b]-pseudo-coherent, and M4 = 0 for any i > b. Then,
My is w'-[a, b]-pseudo-coherent for an integer | > 0 depending only on b — a.

(3) Assume that M3 is w-la — 1,b — 1]-pseudo-coherent, M3 is w-la — 2,b — 1]-pseudo-coherent,
and M? = 0 for any i > b. Then, M} is w'-[a — 1,b]-pseudo-coherent for an integer | > 0
depending only on b — a.

PRrROOF. Let C® be the cone of o : My — Mj3. Then, the natural morphism C* — M3S is a
quasi-isomorphism.

(1) In this case, C* = 0 for any i > b, and actually C* is 7'-[a, b]-pseudo-coherent for an integer
[ > 0 depending only on b — a by applying II1.4.6 to the distinguished triangle M7y — M3 — C* —
M?[1] in K(R). Thus, M3 is w%-[a, b]-pseudo-coherent by 111.4.3.(1).

(2) In this case, C* = 0 for any i > b, and C* is 7'-[a, b]-pseudo-coherent for an integer I > 0
depending only on b — a by I11.4.3.(2). Thus, M3 is 7'-[a, b]-pseudo-coherent for an integer | > 0
depending only on b — a by applying II11.4.6 to the distinguished triangle C*[—-1] — My — M3 — C*
in K(R).

(3) In this case, C* = 0 for any i > b—1, and C*® is w'-[a — 2, b — 1]-pseudo-coherent for an integer
I > 0 depending only on b — a by 111.4.3.(2). Thus, M} is 7'-[a — 1, b]-pseudo-coherent for an integer
[ > 0 depending only on b — a by applying I11.4.6 to the distinguished triangle M3[—1] — C*[-1] —
Mg — Mg in K(R). 0

Corollary II1.4.8. Let M*® be a complex of R-modules vanishing in degrees > b. Assume that the
cohomology group H*(M®) is w-[a — i,b — i]-pseudo-coherent for any i € [a,b]. Then, M*® is 7'-[a, b]-
pseudo-coherent for an integer | > 0 depending only on b — a.

PROOF. We proceed by induction on b — a. If @ = b, then 72¢M* = H*(M*)[—a] is 7-[a, b]-
pseudo-coherent by assumption. Thus, M* is 7'-[a, b]-pseudo-coherent for an integer [ > 0 depending
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only on b — a by 111.4.3.(2). In general, consider the exact sequence of complexes of R-modules
(I11.4.8.1) 0 — 7=V — M — (M ' /Ker(d®Y)[1 — b] — M°[—b]) — 0.

As the natural morphism of complexes N® = (M?~!/Ker(d*=')[1 — b] — M°[—b]) — H*(M*)[-b] is
a quasi-isomorphism, N* is 7!-[a, b]-pseudo-coherent for an integer [ > 0 depending only on b — a by
I11.4.3.(2). Notice that 7<(®=Y M* is 7'-[a, b]-pseudo-coherent for an integer [ > 0 depending only on
b—a — 1 by induction. The conclusion follows from I11.4.7.(2). O

Lemma I11.4.9. Let M*® be a m-exzact complex of R-modules vanishing outside [a,b], N® a complex
of R-modules. Then, M*® ®r§ N°* is wl-ezact (i.e. any complex representing the derived tensor product
M* @Y% N* is wl-ezact) for an integer 1 > 0 depending only on b — a.

PRrROOF. We proceed by induction on b — a. If a = b, then the multiplication by w on M*® =
H%(M?*)[—a] factors through zero. Hence, M*®% N*® is m-exact. In general, consider the distinguished
triangle in the derived category D(R),

(I11.4.9.1)
(=DM @% N* — M* @% N* — HY(M®*)[-b] ®% N* — (r=C"D ) @b N°[1].

Notice that (7=~ Are) ®% N*® is 7l-exact for an integer [ > 0 depending only on b — a by induction.
By the long exact sequence of cohomology groups, we see that M*® @% N*® is wl-exact for an integer
I > 0 depending only on b — a. O

Proposition 111.4.10. Let M*® be a 7-[a, b]-pseudo-coherent complex of R-modules, S an R-algebra.
Then, T=%(S®% M*®) is represented by a 7l-la, b]-pseudo-coherent complex of S-modules for an integer
[ > 0 depending only on b — a.

PrROOF. We take a bounded above flat resolution F* — M® with the same top degree. By
11.4.3.(2), 029 1F* is a 7'-[a, b]-pseudo-coherent complex of flat R-modules for an integer [ > 0
depending only on b — a. Let P* — 021 F*® be a 7!-[a, b]-pseudo resolution, and let C'* be its cone.
Consider the distinguished triangle in K(.5),

(IT1.4.10.1) S@rP* — S®@p o2 1F* — S®rC* — S®p P°[1].

Notice that 722C*® is a m?-exact complex vanishing outside [a, b] and that S®zrC*® = S®LC* in D(9)
by construction. After enlarging [ by I11.4.9, we may assume that 72¢(S®@rC*®) = 724(S®%T24C") is
ml-exact. By the long exact sequence associated to (I11.4.10.1), we see that S®r P* — S®@po2* "L F*

is a 72!-[a, b]-pseudo resolution of complexes of S-modules, and thus so is the composition
(I11.4.10.2) S@prP* — S@p o= 'F* — 129(S @r 021 F®) = 72%(S @R F*),

where the target is a complex of S-modules representing 72¢(S ®Ij% M?*) and vanishing in degrees
> b. O

Definition IT1.4.11. Let M be an R-module. We say that M is of w-finite type if there exists n € N
and a 7w-surjective R-linear homomorphism R®" — M.

This definition is a special case of I11.6.1 below.

Lemma I11.4.12. Assume that R is Noetherian. Let M be an R-module.

(1) If M s of w-finite type, then it is 7-[a,b]-pseudo-coherent for any integers a < 0 < b.
Conversely, if M is m-[a,b]-pseudo-coherent for some integers a < 0 < b, then M is of
w-finite type.

(2) If M is of m-finite type, then so are its subquotients. Conversely, if M admits a finite
filtration of length 1 (|[Sta22, 0121]|) whose graded pieces are of w-finite type, then M is of
wl-finite type.

PrOOF. (1) If M is of w-finite type, then there is a finitely generated R-submodule N of M such
that #¥M C N. Since R is Noetherian, N is pseudo-coherent ([Sta22, 066E|). Hence, M is 7-[a, b]-
pseudo-coherent for any integers a < 0 < b. Conversely, if M is 7-[a, b]-pseudo-coherent, we take a
7-[a, b]-pseudo resolution P* — M]0]. As a subquotient of a finitely generated R-module, H°(P*®) is
also finitely generated as R is Noetherian. Hence, M = H?(M]0]) is of w-finite type.

(2) Let N be a finitely generated R-submodule of M such that #M C N. Let My C M; be two
R-submodules of M. Notice that N N Mj is a finitely generated R-module as R is Noetherian. The
conclusion follows from the m-surjectivity of N N My — M;/My. Conversely, assume that there is a
finite filtration 0 = My C M; C --- C M; = M such that M;;1/M; is of w-finite type. Then, we see
that M is of 7'-finite type by inductively using [AG20, 2.7.14.(ii)]. O
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Proposition I11.4.13. Assume that R is Noetherian. Let M® be a complex of R-modules.

(1) If HY(M®) is of m-finite type for any i > a and if M* = 0 for any i > b, then M*® is
nt-[a, b]-pseudo-coherent for an integer | > 0 depending only on b — a.
(2) If M* is 7-[a, b]-pseudo-coherent, then H'(M?®) is of m-finite type for any i > a.

ProoF. (1) follows from II1.4.12.(1) and II1.4.8; and (2) follows from the same argument of
111.4.12.(1). O

IT1.5. Glueing Sheaves up to Bounded Torsion

In this section, we fix a ring R and an element 7 of R.

ITL.5.1. Let E/C be a fibred site, O = (Oqa)acob(c) @ sheaf of R-algebras over the total site £
([SGA 411, VI.7.4.1]). We say that an O-module F = (Fa)acon(c) on E is w-Cartesian, if for every
morphism f: 3 — « in C, the induced map f*F, — Fz is a m-isomorphism of Og-modules.

IT1.5.2. Let F be a category. Recall that a semi-representable object of E is a family {U;}ier of
objects of E. A morphism {U;}icr — {V}}jes of semi-representable objects of E is given by a
map « : I — J and for every ¢ € I a morphism f; : Uy — V,q) ([Sta22, 01G0]). Assume that
E is a site ([SGA 4y, I1.1.1.5]). For a semi-representable object K = {U,};cr of objects of E, let
Ekx = [l;c; E/u, be the disjoint union of the localizations of £ at U; ([Sta22, 09WK]).

Let r € NU {oo}. For an r-truncated simplicial semi-representable object K¢ = (Kp)mjcob(a.,)
of E (where each K, is a semi-representable object of E), we denote by E/k, the fibred site over
the r-truncated simplicial category A<, whose fibre over [n] is E/k, ([Sta22, 0D8A]). We denote by
v: E g, — F the augmentation, and by v, : E/g, — E the corresponding morphism of sites for any
n € N, ([Sta22, 0DSB]).

Proposition II1.5.3. Let E be a site where fibred products are representable, O a sheaf of R-algebras
on E, {U; - X}ier a covering in E. Consider the 2-truncated Cech hypercovering ([Sta22, 01G6])

(111531) K. = ({Uz Xx Uj Xx Uk}i7j7ke] = {[]z Xx Uj}i,jel == {Ui}ieI>7

regarded as a 2-truncated simplicial semi-representable object of E/x. Let Fo = (Fpn)mjea., be a -
Cartesian O, -module over the 2-truncated simplicial ringed site E/ g, , and we put F = v Fe where
v:E/g, = E/x is the augmentation. Then, the canonical map viF — Fo is a n8-isomorphism.

ProOOF. For any 7;7j,k S I, we denote by fl : Uz — X, fij : Ul Xx Uj — )(7 fijk : Uz Xx Uj Xx
U, — X the canonical morphisms, and denote by G;, G;;, Giji the restrictions of Fo, Fi, F2 to U,
Ui xx Uj, U; xx Uj xx Uy, respectively. By definition ([Sta22, 09WM]), we have

(I11.5.3.2) F=Bq[] £i:G;i = [ FirGir)-

JeI j.kel

We need to show that the canonical map (note that the restriction functor f;* of sheaves commute
with any limits as it admits a left adjoint f;),

(I11.5.3.3) FF=Ea([] 7G5 = 1] F fimeGin) — Gi
JEI kel

given by composing the projection on the i-th component with the adjunction morphism f; f;.G; — G,
is a m®-isomorphism for any i € I. Fixing i € I, for any j, k € I, we name some natural arrows as
indicated in the following commutative diagram

h]'
(I11.5.3.4) U xx U; xx Uy —=>U; xx Uy

TN

i XX Uj Uj fik

S

Py
ng\

/

9j fi

f X
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Thus, we obtain the following commutative diagram of sheaves on E,y,,

(111.5.3.5) 9j29;Gi — 9+ Gij < g3 Gy <——— f7 [;:G;

L l |

9jks 95191 — ik Gijk < Gjkx1jGjk <~ fF fikeGik

] T |

G+ 95Gi —— G Gik ~—— Grsh; G <——— [7 fii G
where the three isomorphisms are the base change isomorphisms (cf. [SGA 4y, XII.4]). Since

(111536) {gjk : Uz X x Uj X x Uk — Ui}j,kej == {gj : Uz X x Uj — Ui}jel

is a 1-truncated Cech hypercovering of U;, the equalizer corresponding to the first column in (111.5.3.5)
is equal to

(I11.5.3.7) G =Ea([[ 954950 = ] 9ike05092)

jel kel

by the sheaf property of G; on E/y;,. Since F, is m-Cartesian, the horizontal arrows in (II1.5.3.5) are w2-
isomorphisms by II1.3.2 (cf. I1.7.3). Therefore, the morphisms between the equalizers corresponding
to each column in (II1.5.3.5) (see the second row of (I11.5.3.8) in the following) are 7%-isomorphisms.
In order to show that the canonical map ffF — G; (IIL.5.3.3) is a wS-isomorphism, it remains to
prove the square in the following natural diagram is commutative,

(111.5.3.8)

/ G fifisGi
Eq([19+9;9: = 119jr9519:) — Ea(I19+Gi; = 11 95k+Gijn) <—— Ba(I1 fi £5x9; = 11 f7 firGir)

where ¢ is the natural map making the left triangle commutative, and in each equalizer, j goes through
I for the first product, and j,k go through I for the second product. Consider the commutative
diagram for any j, k € I,

(111539) Ul Xx Uj Xx Uk

/\

UZ'XXUj UXXUkHU;@

\ / \fk

from which we obtain the following natural commutative diagram

(I11.5.3.10)
g]*glj / /f fz*gz
gjk*gz]k <~ Eq(H gj*gz] j Hg]k*gzjk f fzk*gzk -~ Eq Hf f]*g] = Hf f]k*g]k)
gk:* ik gk*hkgk = f*fk*gk

Indeed, the natural map j : f; fixsGir = [ fixGr+Gik — gr«Gir is defined by applying the adjunction
morphism f f;« — id to gx+Gik, and other natural arrows have appeared in the diagrams (II1.5.3.5)
and (I11.5.3.8). Thus, the commutativity of (1) follows from applying the adjunction morphism
f¥fix — id to the canonical map G; — gr.Gir, and the commutativity of (2) follows from the
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following natural commutative diagram

(I11.5.3.11) 9 Gite <——— [ [ix GG 7 s Gin

T | |

rx P G <—— 7 fisxGrshjGr I froshish Gy <—— f7 freGr

where the vertical arrows are induced by the canonical map h;Gr — Gix, and the composition of the

second row is the base change isomorphism f; f.Gx = 9r«hjGr by definition [SGA 4y, XII.(4.1)].
In particular, we see that the natural diagram extracted from (I11.5.3.10),

(I11.5.3.12) Gi [ fixGi

| !

Ea([19j+Gi; = [19jk«Gij) Ea([]f7 f5+G; = TLf7 fieeGir)

l |

gk*gik fi*fk*gk

is commutative for any k € I. This shows that the diagram (II1.5.3.8) is commutative, which com-
pletes the proof. O

Remark ITI1.5.4. We expect a generalization to any 2-truncated hypercovering K, of X as in [Sta22,
0D8E].

Example III.5.5. Let X be a quasi-compact and separated scheme, Ky = {U; — X }o<i<i a finite
open covering of X consisting of affine open subschemes. For any n € N, we define a semi-representable
object of the Zariski site Xy, of X,

(111551) K, = {Uzo n---N Uin — X}ogim... in<k-

These K,, naturally form a simplicial semi-representable object of Xza,, K¢ = (K, )njeon(a), called
the Cech hypercovering associated to Ky of X. We put

(I11.5.5.2) X.= J[ U,n---nU;

0<ig,-. - in<k

which is a finite disjoint union of affine open subschemes of X, and denote by v, : X,, — X the
canonical morphism. It is clear that the site Xza,/k, is naturally equivalent to the Zariski site X, zar-
We also obtain a simplicial affine scheme X, = (X,,)mjcon(a), and an augmentation v : X, — X
(where we omit the subscript “Zar”).

For any Ox,-module F,, we consider the ordered Cech complex C’;rd(X.,f.), whose degree-n
term is the R-module ([Sta22, 01FG])

(I1L5.5.3) CraXe,F)= ] FulUiyn---nU).

0<ip<-+<i, <k

In general, for any complex of Ox,-modules F, we consider the total complex of the ordered Cech

complexes Tot(C? (X, Fy)), whose degree-n term is the R-module (cf. [Sta22, 01FP])

(IIL.5.5.4) Tot"(Coa(Xe, F2)) = €P I Fw,n--nuv,).

Ptqg=n 0<ip<---<ip <k

of quasi-coherent Ox-module F* (i.e. F? = v*F*), then there is an isomorphism in the derived

category D(X) (cf. [Sta22, 01FK, 01FM, OFLH]),

Indeed, it depends only on the k-truncation (F3)mjcon(a,)- If F¢ is the pullback of a complex

(I11.5.5.5) Tot(C24(Xe, F2)) — RI(X, F*).
Lemma IIL.5.6. Under the assumptions in I11.5.5 and with the same notation, for any quasi-coherent
Ox,-module Fo, F = Vi Fe 1S a quasi-coherent Ox -module.

PROOF. By definition, F = Eq(vo«Fo = v1.F1). As v; is quasi-compact and quasi-separated
(i = 0,1), v F; is a quasi-coherent Ox-module. Hence, the equalizer F is also a quasi-coherent
Ox-module. O
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Proposition II1.5.7. Under the assumptions in I11.5.5 and with the same notation, let r € N>o U
{oo}, sk.(Xe) = (Xn)mleon(a,) the r-truncation of Xo, Fe a quasi-coherent Ogy (x,)-module of
finite type. Assume that F, is m-Cartesian (cf. 111.5.1). Then, there exists a quasi-coherent Ox -
module F of finite type and a w°-isomorphism v*F — F,.

PRrROOF. If we also denote by v : sk,.(X,) — X the augmentation, then 7/ = v, F, is a quasi-
coherent Ox-module by II1.5.6 and the canonical morphism viF' — Fy is a wo-isomorphism by
II1.5.3. We claim that the canonical morphism v*F’ — F, is a m°-isomorphism. Indeed, for any
integer 0 < n < r the morphism v, : X,, — X is the composition of vy : Xy — X with a projection
f: X, — Xo associated to a morphism [0] — [n] in A. Since f*Fy — F,, is a m-isomorphism by
assumption, we see that v F’ — F,, is a m°-isomorphism.

For any 0 < i < k, we denote by G; the restriction of Fy to the component U;, which is a quasi-
coherent Ox,-module of finite type by assumption. By II1.3.2.(1), there exists a m!%-isomorphism
G; — F'|u,. Notice that F' is the filtered union of its quasi-coherent Ox-submodules of finite type
by [EGA Iy, 6.9.9]. Thus, there is a sufficiently large quasi-coherent Ox-submodule F of finite
type such that the w'6-surjection G; — F'|y, factors through F|y, for any 0 < i < k. Thus, the
inclusion F C F’ is m'6-surjective, which implies that the induced morphism v*F — F, is a 72°-
isomorphism. O

Lemma II1.5.8. Under the assumptions in 111.5.5 and with the same notation, let F3 — Gs be a
w-isomorphism of complexes of quasi-coherent Ogy, (x,)-modules. Then, the map

(I11.5.8.1) Tot(Cq(Xe, F2)) — Tot(Coy(Xe, G2))
is a m-isomorphism. In particular, it is a w2-quasi-isomorphism.

PROOF. By taking sections on an affine scheme, 74 (U;, N---NU;,) = GL(Us, N ---NU;,) is still
a m-isomorphism. This shows that (I11.5.8.1) is a w-isomorphism. The second assertion follows from
II1.3.2. 0

Lemma IT1.5.9. Under the assumptions in 111.5.5 and with the same notation, let a be an integer,
Fe — Ge a morphism of complexes of quasi-coherent O, (x,)-modules. Assume that for any 0 <
n < k, the map HY(F2) — HY(G?) is a m-isomorphism for any i > a and mw-surjective for i = a.
Then, the map

(I11.5.9.1) H'(Tot(Coq(Xe, F2))) — H'(Tot(C4(Xe, G2)))
is a 7+t isomorphism for any i > a + k and w** V) _surjective for i = a + k.

PROOF. As taking the ordered Cech complex on X, is an exact functor, we have H9 (C’g’r 1(Xe, F2))
C? ((Xo, HI(F?)), where H1(F?) = (H9(Fp))mjeob(a,) is a quasi-coherent Oy, (x,)-module. Thus,
there is a spectral sequence

(I11.5.9.2) E = HP(C® 4 (Xe, HU(F2))) = HP Y (Tot(Coy(Xe, F2))),

ord

which is convergent, since C? ;(X,, Fd) = 0 unless 0 < p < k ([Sta22, 0132]).

Let K2 be the cone of F? — G3. The assumption implies that Hi(lC,'L) ism2-null forany 0 < n < k
and ¢ > a. The convergent spectral sequence (I111.5.9.2) for K¢ implies that for any ¢ € Z, there is a
finite filtration of length < (k+1) on H*(Tot(C®.4(X., K2))) whose graded pieces are subquotients of

ord

E2"™P where 0 < p < k. Since EZ"" is w2-null for any i > a+ k, we see that H*(Tot(C®,4(X.,K2)))
is w25+ _null for such 7. The conclusion follows from the long exact sequence of cohomology groups

associated to the distinguished triangle in K(R),
(IT1.5.9.3)

Tot(Cra(Xe, 7)) — Tot(CFq(Xe, G2)) — Tot(CSq(Xe, K)) — Tot(C5q(Xe, F2))[]-

O O (¢} O

O

Proposition I11.5.10. Under the assumptions in I11.5.5 and with the same notation, let a < b be
two integers, Fg a complex of quasi-coherent Oy, (x,)-modules vanishing in degrees > b. Assume
that

(1) R is Noetherian, and that

(2) the R-module HP(C3.4(Xe, H1(F?))) is of m-finite type for any 0 < p < k and g > a (cf.

I11.4.11).

Then, the complex of R-modules Tot(C';rd(X., F?)) is wl-la+ k,b+ k]-pseudo-coherent for an integer
[ > 0 depending only on b —a and k.
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PRrROOF. Consider the convergent spectral sequence (II1.5.9.2). Notice that for any 0 < p < k and
q > a, a subquotient of E5? = HP(C* (Xe, H1(F?))) is of m-finite type by I11.4.12.(2). Since there is
a finite filtration of length < (k+ 1) on H*(Tot(C? 4(Xe, Fes))) whose graded pieces are subquotients
of B where 0 < p < k. We see that H*(Tot(C®.4(X., F2))) is of 7%+ -finite type for any i > a+k
by 111.4.12.(2). As Tot(C?,4(Xe, F2)) vanishes in degrees > b+ k by definition, the conclusion follows
from I111.4.13.(1). O

II1.6. Almost Coherent Modules

In this section, we fix a ring R with an ideal m such that for any integer [ > 1, the [-th powers of
elements of m generate m (in particular, m = m?, cf. [GRO03, 2.1.6.(B)]). Let E be a site with a final
object *, O a sheaf of R-algebras on F.

Definition I1I.6.1 (JAG20, 2.7.3]). Let M be an O-module on E.

(1) We say that M is almost zero if it is m-null for any # € m. We say that a morphism
f+ M — N of O-modules is an almost isomorphism if its kernel and cokernel are almost

Zero.
(2) We say that M is of m-finite type for some element 7 € R if there exists a covering {U; —
*}ier in E such that for any ¢ € I there exist finitely many sections s1,...,s, € M(U;) such

that the induced morphism of O|y,-modules O%"|y;, — M|y, has m-null cokernel. We say
that M is of almost finite type if it is of w-finite type for any 7= € m.

(3) We say that M is almost coherent if M is of almost finite type, and if for any object U of
E and any finitely many sections s1,...,s, € M(U), the kernel of the induced morphism of
O|y-modules O%™|; — M|y is an O|y-module of almost finite type.

We refer to Abbes-Gros [AG20, 2.7, 2.8| for a more detailed study of almost coherent modules.
They work in a slightly restricted basic setup for almost algebra [AG20, 2.6.1], but most of their
arguments still work in our setup (R, m) by adding the following lemmas.

Lemma I11.6.2. Let M be an O-module on E, m, 79 € R. If M is of m;-finite type fori = 1,2, then
it is of (xm + yme)-finite type for any x,y € R. In particular, if there exists an integer I > 1 such
that M is of m'-finite type for any © € m, then M is of almost finite type.

PROOF. The problem is local on E. We may assume that there exist morphisms of O-modules
fi: O%"i — M (i = 1,2) with m;-null cokernels. Thus, the cokernel of fi @ fo : OP™" @ O%"2 — M is
killed by xm 4+yms. The “in particular” part follows from the assumption that the ideal m is generated
by the subset {n! | 7 € m}. O

Lemma I11.6.3. Let M be an O-module.

(1) Assume that there exists an integer I > 1 such that for any m € m, there exists an almost
coherent O-module M, and a 7*-isomorphism M — M. Then, M is almost coherent.

(2) Assume that there exists an integer | > 1 such that for any m € m, there exists an almost
coherent O-module M, and a w*-isomorphism M, — M. Then, M is almost coherent.

PROOF. (1) The ml-isomorphism M — M, induces a m2!-isomorphism M, — M by I11.3.2. Such
an argument shows that (1) implies (2). We also see that M is of 73!-finite type. Hence, M is of almost
finite type by II1.6.2. For any object U of E, and any morphism of O|y-modules f : O%"|y — M|y,
consider the following commutative diagram

(I1.6.3.1) 0 — > Ker(f) — = 0%, — = u1

| ]

0 —— Ker(fr) — 0%y —— M,

It is clear that Ker(f) — Ker(f,) is a w'-isomorphism. Since M, is almost coherent by assumption,
Ker(f,) is of almost finite type. Hence, Ker(f) is of 7%-finite type by the argument in the beginning.
Thus, Ker(f) is of almost finite type by II1.6.2. This verifies the almost coherence of M. O

We collect some basic properties about almost coherence that will be used in the rest of this
article. Their proofs are essentially given in [AG20], and we only give a brief sketch here.

Proposition 111.6.4 ([AG20, 2.7.16]). Let 0 — M; — My — M3z — 0 be an almost evact
sequence of O-modules on E. If two of My, My, M3 are almost coherent, then so is the third.
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PROOF. Since almost isomorphisms preserve almost coherence by II1.6.3, we may assume that
0— M; — My — M3 — 0 is exact.

Assume that My and M3 are almost coherent. Then, M; is of almost finite type by [AG20,
2.7.14.(iii)] and II.6.2. Hence, M; is almost coherent as a submodule of an almost coherent O-
module My by definition.

Assume that M; and M, are almost coherent. Then, Mj is of almost finite type as a quotient
of M. Let U be an object of E. We need to show that any homomorphism f3 : O%"|; — M3y
has kernel of m2-finite type for any 7 € m by I11.6.2. The problem is local on E. Thus, we may take
a m-surjection f1 : O®™|y — M|y and a lifting f; : O%"|y — M|y of f3. We put fo = (f1, f3) :
O®™* |, — Ms|y, and obtain a morphism of short exact sequences

(I11.6.4.1) 0 —— 0%y ——= O®mtn|, 0%y 0
ifl lfz lfs
0 —— M|y —— Ma|u M3y 0

The snake lemma shows that Ker(fz) — Ker(f3) is m-surjective. Since Ker(f2) is of almost finite type
as Mo is almost coherent, we see that Ker(f3) is of m2-finite type.

Assume that M; and Mj are almost coherent. Then, M is of almost finite type by [AG20,
2.7.14.(i1)] and I11.6.2. Let U be an object of E. We need to show that any homomorphism fs :
0%y — Ms|y has kernel of 72-finite type for any m € m by I11.6.2. The problem is local on E.
Thus, we may take a m-surjection O%™|; — Ker(v o f3) as Ker(v o f3) is of almost finite type (M3 is
almost coherent). Thus, we obtain a commutative diagram

(I11.6.4.2) oMy —— 0%y M;slu 0
J{h lfz
0 M|y —— M|y —— M3y 0

By diagram chasing, we see that Ker(f;) — Ker(f3) is m-surjective. Since Ker(f1) is of almost finite
type as M; is almost coherent, we see that Ker(fs) is of m2-finite type. O

Corollary I11.6.5 ([AG20, 2.7.17]). For any morphism f: M — N of almost coherent O-modules,
Ker(f), Im(f) and Coker(f) are almost coherent.

Corollary II1.6.6. Assume that O is almost coherent as an O-module. Then, any cohomology group
of a complex of finite free O-modules is almost coherent.

PROOF. A finite free O-module is almost coherent by II1.6.4. Thus, a cohomology group of a
complex of finite free A-modules is almost coherent by II1.6.5. O

Proposition III.6.7 ([AG20, 2.8.7]). Let X = Spec(A) be an affine scheme over R, F a quasi-
coherent Ox -module, m € m. Then, the Ox-module F is of w-finite type (resp. of almost finite type,
almost coherent) on the Zariski site of X if and only if the A-module F(X) is of w-finite type (resp.
of almost finite type, almost coherent) on the trivial site of a single point.

PROOF. It is clear that the statement for “of 7w-finite type” implies that for “of almost finite type”
and thus implies that for “almost coherent”. It remains to show that for any 7 € m and any finitely
many elements fi,..., f, € A generating A as an ideal, an A-module M is of 7-finite type if and
only if the Ay-module My, is of m-finite type for any 1 < ¢ < n. The necessity is obvious. For the
sufficiency, we write M = (J,c, M as a filtered union of its A-submodules of finite type. There
exists A\g € A large enough such that My, , — My, is a m-isomorphism for any 1 < ¢ < n. Hence,
M)y, — M is a m-isomorphism, which completes the proof. O

Lemma II1.6.8 (cf. [Kie72, 2.2]). Let k € N, X¢ = (Xy)mjcoba.,) @ k-truncated simplicial affine
scheme over R, M, a quasi-coherent Ox,-module. Assume that the Ox, -modules Ox, and M, are
almost coherent. Then, for any m € m, there exists a m-exact sequence of quasi-coherent Ox,-modules

(I11.6.8.1) e FJV S FY — M,

such that Ffl is a finite free Ox, -module for any i <0 and 0 <n < k.
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PRrROOF. Firstly, we construct F,0 . For each 0 < n < k, we take a finite free Ox,_ -module N,, and
a m-surjection h,, : N,, — M, (as M, is of w-finite type, cf. II1.6.7). We put

(I11.6.8.2) FO = @ @ a*N,y,.

0<m<k a€Homa ([m],[n])

It forms naturally a finite free Ox,-module F?. There is a natural morphism FC — M,, defined on
the (m, a)-component by the composition

* o (hm) *
(111.6.8.3) &Ny —= a* My, — M,
It induces a m-surjective homomorphism of Ox,-modules F? — M, (cf. the proof of [Kie72, 2.2]).
Notice that its kernel M, ! is also a quasi-coherent Ox,-module which is almost coherent by II1.6.5.
Thus, we can apply the previous procedure to M, ! and we construct F? inductively for any i < 0. [

II1.7. Proof of the Main Theorem
This section is devoted to proving the following theorem.

Theorem IIL.7.1. Let R be a ring with an ideal m such that for any integer 1l > 1, the l-th powers of
elements of m generate m. Consider a flat proper morphism of finite presentation f : X — S between
R-schemes. Assume that Ox and Og are almost coherent as modules over themselves. Then, for any
quasi-coherent and almost coherent Ox-module M and any ¢ € N, R4f, M is a quasi-coherent and
almost coherent Og-module.

PROOF. The problem is local on S. Thus, we may assume that S = Spec(A) is affine. Since f is
quasi-compact and quasi-separated, R?f, M is a quasi-coherent Og-module for any ¢ € N. Thus, it
remains to prove that H4(X, M) is an almost coherent A-module by II1.6.7. We write X as a finite
union of affine open subschemes X = U0<i<k U; for some k € N>o, and consider the k-truncated

Cech hypercovering X, = (Xo)mjeob(a,) (cf. IL5.5), where for any 0 < n <k,
(I11.7.1.1) X.= I U,n--nU,

0<ig, . in <k

which is a finite disjoint union of affine open subschemes of X as X is separated. Let v : Xy — X
denote the augmentation.

We fix an element 7 € m and an integer a < —(q + k + 2) in the following, and take a sequence
of quasi-coherent Ox,-modules by II.6.8,

(I11.7.1.2) 00— Fl— - — Fol s FO— My ="M,
such that F? — M,,[0] is a 7-[a, 0]-pseudo resolution (cf. II1.4.1) for any 0 < n < k. In other words,
foranya<i<0Oand 0 <n <k,

(1) F! is a finite free Ox, -module, and

(2) H(Fp2) is m-null for any a < i < 0, and H°(F2) — M., is a m-isomorphism.
For any morphism « : [m] — [n] in A<y, (regarded also as a morphism X,, — X,,,), we denote by C?
the cone of the induced map o*F;, — F. of complexes of finite free Ox, -modules.

Lemma IIL.7.2. For any morphism o : [m] — [n] in A<y, there exists a homomorphism of finite
free Ox, -modules s, : Ci, — Ci=1 for any i > a + 1 such that

(I11.7.2.1) 74 ides = s odl, +dif o sk,
where A%, : C¢ — CiFL is the differential map.

PrOOF. We firstly note that C?, = F @ o*FiH! is a finite free Ox, -module. In particular, C
vanishes outside [a — 1,0]. By definition, H*(F2) — H*(M,[0]) is a m-isomorphism for any i > a.
Notice that the induced map a*H!(M,,[0]) — H*(M,[0]) is an isomorphism since M, = v*M.
Thus, the induced map o* H'(F2,) — H'(Fp) is a w?-isomorphism of O, -modules, which implies that
Hi(C?) is 7*-null for any i > a. Thus, the conclusion follows directly from I11.3.3 (cf. (IIL.3.3.4)). O

Now we write A as a filtered union of finitely generated Z-subalgebras A = colimyecp Ax. By
[EGA 1V3, 8.5.2, 8.8.2, 8.10.5, 11.2.6], there exists an index Ao € A such that = € Ay,
(1) a flat proper morphism of finite presentation fy, : X, = S, = Spec(A,,) whose base
change along S — S, is f,
(2) affine open subschemes Uy, ; (0 < i < k) of X, whose base change along S — S, is Uj,
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(3) a complex of finite free Ox, ,-modules 0 — F§ , — -+ — .7:;0 .

— fgo,. — 0 whose
pullback along S — S), is Fe (where X, o is the k-truncated Cech hypercovering associated
t0 X0 = [o<i<k Unosi = Xo);

(4) a homomorphism of finite free Ox,  ,-modules $ho.a C;O o

— C;\gla for any ¢ > a+ 1 and
any morphism « : [m] — [n] in Agk, such that

—4 . _ i+1
(I11.7.2.2) T 1dcgo)a =S\t o ody, ot dy, . ©° B
where C3 , is the cone of o* 3, — F3 ., and df\o o Cﬁ\ma — Cf\ﬁla is the differential

map.

We note that X, and S, are Noetherian.

Lemma II1.7.3. For any morphism o : [m] — [n] in A<y, the induced map of coherent Ox, -
modules a*Hi(}")\'mm) — Hi(]-';mn) is a w8 isomorphism for any i > a + 2.

PrOOF. It follows directly from the relation (II1.7.2.2). O

Lemma II1.7.4. For any i > a + 2, there exists a coherent OXA(, -module gf\o and a w—200a_

isomorphism v GY — H'(Fy, ,), where vy, : Xx,.0 = Xy, is the augmentation.

Proor. It follows by applying directly I11.5.7 to the coherent OXAOJ—module Hi(]-'xo).), whose
condition is satisfied by II1.7.3. 0

Lemma III.7.5. The Aj,-module Hi(C’grd(XAoy.,Hj(f/{o,.))) is of w400 finite type for any 0 <
1<kandj>a+2.

PRrROOF. Notice that by (II11.5.5.5) and II1.7.4, we have

(111751) Hi(éc:rd(XAO-,Ov V;()gg\o)) = Hi(XAoa gg\o)v
which is an Ajy,-module of finite type, since X, is proper over the Noetherian scheme Spec(Ay,).
Thus, H (C2 4 (Xxy,e, H( Xo.0))) 18 of 7400 _finite type by II1.5.8 and II1.7.4. O

Lemma II1.7.6. The complex of Ay,-modules Tot(C®,

ord
coherent for an integer I > 0 depending only on a and k.

(Xxo,00Fnge)) @8 wl-la + k + 2, k]-pseudo-

PRrROOF. It follows directly from II1.5.10 whose conditions are satisfied by II1.7.5. O

Lemma II1.7.7. The complex of A-modules Tot(C® (Xe, F2)) is w'-la + k + 2, k]-pseudo-coherent
for an integer 1 > 0 depending only on a and k.

PRrOOF. By IIL4.10 and IIL7.6, 72(e+k+2)(4 @f , Tot( 20.a(Xxo.0: F%,8))) is represented by

a 7'-[a + k + 2, k]-pseudo-coherent complex of A—modules for an integer [ > 0 depending only on
a and k. Since fy, : Xx, — S, is flat, A ®A Tot(C® (Xxg,0:Fxy.e)) is also represented by

ord
A ®AA0 TOt( ord(X)\o ) Xo,o)) = TOt( ord(XN]: )) Hence? ,7_2((1+k:+2) (TOt( ord(XN'F )) is 7Tl_
[a+k+2, k]-pseudo-coherent for an integer [ > 0 depending only on a and k by I11.4.4. The conclusion
follows from applying I11.4.3.(2) to Tot(C®,4(Xe, F2)) — 72@TF2)(Tot(C2 4 (Xe, F2)). O

Lemma II1.7.8. The complex of A-modules C®,4(Xe, Ma) is m'-[a+ k + 2, k]-pseudo-coherent for an
integer | > 0 depending only on a and k.

PROOF. Since F7 — M,[0] is a 7-[a, 0]-pseudo resolution, the map H*(Tot(C® (X, F2))) —

HY(CS ((Xe, M,)) is a 74+ _isomorphism for any i > a + k + 1 by IIL.5.9. The conclusion follows
from I11.4.3.(1) and II1.7.7. O

Recall that we have taken a < —(¢ + k + 2) in the beginning. Since RF(X M) is represented
by the ordered Cech complex C®.,(X., M,), we see that H9(X, M) is ml-isomorphic to an almost
coherent A-module for an integer [ > 0 depending only on a and k by II1.6.6 and II1.7.8. Since [ is
independent of the choice of # € m, the A-module H?(X, M) is almost coherent by II1.6.3, which
completes the proof of our main theorem III1.7.1. 0



II1.8. REMARK ON ABBES-GROS’ CONSTRUCTION OF THE RELATIVE HODGE-TATE SPECTRAL SEQUENQE9

ITI1.8. Remark on Abbes-Gros’ Construction of the Relative Hodge-Tate Spectral
Sequence

IT1.8.1. Let K be a complete discrete valuation field of characteristic 0 with algebraically closed
residue field of characteristic p > 0. Let (f,¢g) : (X" = X’) = (X° — X) be a morphism of open
immersions of quasi-compact and quasi-separated schemes over Spec(K) — Spec(Ok). Consider the
following conditions:

(1) The associated log schemes (X', #x/) and (X, .#x) endowed with the compactifying log
structures are adequate in the sense of [AGT16, I111.4.7] (which holds for instance if the
open immersions X — X’ and X° — X are semi-stable over Spec(K) — Spec(Of), cf.
1.10.11).

(2) The morphism of log schemes (X', #x') — (X, .#x) is smooth and saturated.

(3) The morphism of schemes g : X’ — X is projective.

Under these assumptions, Abbes-Gros proved Faltings’ main p-adic comparison theorem in the relative
case for the morphism (f, g) [AG20, 5.7.4], and constructed a relative Hodge-Tate spectral sequence
[AG20, 6.7.5] (for an explicit local version, see [AG20, 6.9.6] and 1.1.4). We explain that their proof
and construction are still valid if we replace the assumption (3) by the following assumption

(3)’ The morphism of schemes g : X’ — X is proper.

IT1.8.2. The assumption on the projectivity of g has been only used in the proof of [AG20, 5.3.31].
There, they encountered a Cartesian diagram of schemes

—/(00)

(II1.8.2.1) Xy
9<°°>J/ lg
Y(OO) X

where Y(OO) is an Ogx-scheme such that OY(‘”‘” and (’)7@0) are almost coherent as modules over
themselves (|[AG20, 5.3.5.(ii)]), and a quasi-coherent and almost coherent O («)-module &. For

proving the almost coherence of R? g£oo)% , they applied [AG20, 2.8.18] where the assumption on the
projectivity of g has been used.

Now we replace the assumption (3) by the assumption (3)’, by replacing [AG20, 2.8.18] by our
main theorem IIL.7.1. Indeed, the morphism g is flat by the assumption (2) (cf. [Kat89, 4.5]),
proper by the assumption (3)’, of finite presentation by the assumptions (3)’ and (1) (as X is locally
Noetherian). Hence, so is the morphism () by base change. Therefore, we deduce the almost
coherence of R? gff’o)g from our main theorem II1.7.1.
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