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Abstract

The general context of this thesis is an effort to establish a bridge between gravitational and
optical physics, specifically in the context of scattering problems using as a guideline concepts and
tools taken from the theory of non-self-adjoint operators. Our focus is on Quasi-Normal Modes
(QNMs), namely the natural resonant modes of open leaky structures under linear perturbations
subject to outgoing boundary conditions. They also are referred to as scattering resonances.

In the conservative self-adjoint case the spectral theorem guarantees the completeness and
spectral stability of the associated normal modes. In this sense, a natural question in the non-
self-adjoint setting refers to the characterization and assessment of appropriate notions of QNM
completeness and spectral stability in open non-conservative systems. This defines the general
objective of this thesis. To this aim, and in contrast with the traditional approach to scatter-
ing resonances, we adopt a methodology in which QNMs are cast as a spectral problem of an
appropriate non-self-adjoint operator. Specifically this methodology is based on following three
ingredients:

(i) Hyperboloidal approach: The hyperboloidal slicing approach is already used in gravitational
problems, we introduced it here to optical ones. The idea is to study the wave equation
in hyperbolic slices instead of usually used Cauchy slices. The system of coordinates is
more adapted to the problem of QNMs and its outgoing boundary conditions, in particular
addressing the exploding modes in the Cauchy approach. The modes are normalizable in
such coordinates and working in these slices eliminate the need of imposing the outgoing
boundary conditions.

(ii) Pseudospectrum of an operator: the notion of ε-pseudospectrum allows to assess the (in)stability
of eigenvalues of an operator in the complex plane due to a perturbation to the operator of
order ε. This thesis introduces the notion of pseudospectrum in gravitational and optical
physics in the vicinity of the eigenvalues.

(iii) Numerical Chebyshev spectral methods: On the technical level, spectral methods provides
an efficient tool when translating the problem into a numerical one. In particular we used
Chebyshev basis to expand our fields.

The results of this work touch three areas:

(i) The instability of QNMs for some class of potentials. The fundamental modes are stable
specially under small "high frequency" perturbations, whereas overtones are sensitive to
such perturbations. The instability of the overtones increases as their imaginary part grows.

(ii) The universality of the asymptotic behaviour of QNMs and pseudospectrum. We remark
an asymptotically logarithmic behavior of pseudospectrum contour lines and bounding the
opening QNMs branches from below.

(iii) QNMs expansion. We revisit Lax & Phillips asymptotic resonant expansions of a "scat-
tered field" in terms of QNMs in our physical settings. In particular , we make use of
Keldysh expansion of the generalizations of the expressions for normal modes of conser-
vative systems, specifically in terms of normalizable QNM eigenfunctions and explicit ex-
pressions for the excitation coefficients.
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Résumé

Le contexte général de cette thèse est un effort pour établir un pont entre la physique gravi-
tationnelle et optique, spécifiquement dans le contexte des problèmes de diffusion à l’aide des
concepts et des outils tirés de la théorie des opérateurs non auto-adjoints. Nous nous concentrons
sur les modes quasi-normaux (MQN), appelés les modes de résonance naturels des structures à
fuites ouvertes sous des perturbations linéaires soumises à des conditions de bords sortantes.
Ils sont également appelés résonances de diffusion. Dans le cas auto-adjoint conservateur, le
théorème spectral garantit la complétude et la stabilité spectrale des modes normaux associés.
En ce sens, une question naturelle dans le cadre de non auto-adjoint est reliée à la caractérisa-
tion et à l’évaluation des notions appropriées de complétude de MQNs et de stabilité spectrale
dans les systèmes ouverts non conservateurs. Ceci définit les objectifs de cette thèse. Pour ce
faire, et contrairement à l’approche traditionnelle des résonances de diffusion, nous adoptons une
méthodologie dans laquelle les MQNs sont présentés comme un problème spectral d’un opéra-
teur approprié non auto-adjoint. Plus précisément, cette méthodologie est basée sur les trois
ingrédients suivants :

(i) L’approche hyperboloïdale: L’approche en tranchant hyperboloïdales est déjà utilisée dans
les problèmes gravitationnels, nous l’avons introduite dans les problèmes optiques. L’idée
est d’étudier l’équation d’onde en tranches hyperboliques au lieu des tranches de Cauchy
habituellement utilisées. Le système de coordonnées est plus adapté à la problématique des
QNMs et de ses conditions aux limites sortantes, en particulier, aborder les modes explosifs
dans l’approche de Cauchy. Les modes sont normalisables en de telles coordonnées et
travailler dans ces tranches éliminent le besoin d’imposer les conditions de bords sortantes.

(ii) Pseudospectre d’un opérateur: la notion de ε-pseudospectre permet d’évaluer la (in)stabilité
des valeurs propres d’un opérateur dans le plan complexe en raison d’une perturbation
de l’opérateur d’ordre ε. Cette thèse introduit la notion de pseudospectre en physique
gravitationnel et optique au voisinage des valeurs propres.

(iii) Au niveau technique, les méthodes spectrales fournissent un outil efficace pour traduire
le problème en un problème numérique. En particulier, nous avons utilisé la base de
Chebyshev pour l’expansion des nos champs.

Les résultats de ce travail touchent trois domaines :

(i) L’instabilité des MQN pour certaines classes de potentiels. Les modes fondamentaux sont
stables spécialement sous de petites perturbations "à haute fréquence", alors que les har-
moniques sont sensibles à de telles perturbations. L’instabilité des harmoniques augmente
à mesure que leur partie imaginaire grandit.

(ii) L’universalité du comportement asymptotique des MQNs et du pseudospectre. Nous re-
marquons un comportement asymptotiquement logarithmique des lignes de contour du
pseudospectre et délimitant les branches d’ouverture des MQNs par le bas.

(iii) MQNs expansion. Nous revisitons les expansions résonantes asymptotiques de Lax &
Phillips d’un "champ diffusé" en termes de MQNs pour nos problèmes physiques. En
particulier, nous utilisons le développement de Keldysh des généralisations des expressions
pour les modes normaux des systèmes conservateurs, spécifiquement en termes de fonctions
propres MQN normalisables et d’expressions explicites pour les coefficients d’excitation.



2



Contents

I Part one: Conceptual mathematical and physical frame 7

1 Scattering theory and resonators: problems and objectives 9
1.1 Optical scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Gravitational scattering problems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 The mathematical problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Chapters organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Physical settings: Gravitational physics 15
2.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Stationary spherical symmetric black holes: Schwarzschild solution . . . . 16
2.1.2 Conformal compactification: future null infinity . . . . . . . . . . . . . . . 18
2.1.3 Black holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Physical settings: Optics 23
3.1 Wave equation of a scattering field . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Absorption with Dirichlet conditions . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Drude model with zero absorption . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Purcell factor and the need of normalization . . . . . . . . . . . . . . . . . . . . . 26

4 Scattering resonances: Quasi-Normal Modes (QNM) 29
4.1 Normal modes: spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Self-adjoint operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 QNMs - scattering resonances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Resonance in Physics: the optical case . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Resonances in Mathematics: Scattering resonances - spectral approach . . 33

4.3 Different approaches to QNMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1 Heuristic definition in the Fourier formulation . . . . . . . . . . . . . . . . 34
4.3.2 Laplace approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Dealing with exploding modes . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.4 Perfectly matched layer (PML) . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.5 A contact with hyperboloidal slices . . . . . . . . . . . . . . . . . . . . . . 41

5 QNM: completeness and stability issues 43
5.1 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.1.2 The evolved definition of completeness . . . . . . . . . . . . . . . . . . . . 44



4 CONTENTS

5.1.3 Mittag-Leffler theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.4 Heuristic approach: Resonant expansions in Laplace . . . . . . . . . . . . 46
5.1.5 Resonant expansions: Spectral approach (Lax-Phillips to Zworski) . . . . 50
5.1.6 Keldysh expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 QNM spectrum stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

II Part two: Technical formalism 53

6 Pseudospectrum 55
6.1 Spectral instability: the eigenvalue condition number . . . . . . . . . . . . . . . . 55
6.2 Pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Pseudospectrum and operator perturbations . . . . . . . . . . . . . . . . . 57
6.2.2 Pseudospectrum and operator resolvent . . . . . . . . . . . . . . . . . . . 57
6.2.3 Pseudospectrum and quasimodes . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.4 Pseudospectrum and choice of the norm . . . . . . . . . . . . . . . . . . . 58

6.3 Pseudospectrum and random perturbations . . . . . . . . . . . . . . . . . . . . . 59

7 Spectral Chebyshev methods 61
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7.1.1 Introduction to differential matrices . . . . . . . . . . . . . . . . . . . . . 62
7.2 The choice of Chebyshev polynomials . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.2.1 Conditions for choosing a basis . . . . . . . . . . . . . . . . . . . . . . . . 64
7.2.2 Chebyshev polynomials of the first kind . . . . . . . . . . . . . . . . . . . 64

7.3 Chebyshev grids: Gauss, Lobatto, Radau . . . . . . . . . . . . . . . . . . . . . . . 65
7.4 Chebyshev expansion coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5 Chebyshev differential matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7.5.1 Right Radau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.5.2 Left Radau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.5.3 Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.5.4 Lobatto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.6 Chebyshev integration formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.7 Chebyshev scalar product matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
7.8 Chebyshev Adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8 Hyperboloidal approach to QNM 75
8.1 Hyperboloidal approach: a heuristic introduction . . . . . . . . . . . . . . . . . . 75
8.2 Wave equation in the compactified hyperboloidal approach . . . . . . . . . . . . . 76
8.3 First-order reduction in time and spectral problem . . . . . . . . . . . . . . . . . 79

8.3.1 Regularity and outgoing boundary conditions . . . . . . . . . . . . . . . . 80
8.4 Scalar product: QNMs as a non-selfadjoint spectral problem . . . . . . . . . . . . 80
8.5 Hyperboloidal in 3 regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

9 Pseudospectrum in the energy norm 85
9.1 Scalar product and adjoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Induced matrix norm from a scalar product norm . . . . . . . . . . . . . . . . . . 85
9.3 Characterization of the pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . 87
9.4 Numerical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS 5

III Part three: Methodology, Implementation, and Results 89

10 Quasi-Normal Modes in Gravity 93
10.1 A toy model: Pöschl-Teller potential . . . . . . . . . . . . . . . . . . . . . . . . . 93

10.1.1 Hyperboloidal approach in Pöschl-Teller . . . . . . . . . . . . . . . . . . . 93
10.1.2 Pöschl-Teller QNM spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 95
10.1.3 Pöschl-Teller pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . . . 99
10.1.4 Pöschl-Teller perturbed QNM spectra . . . . . . . . . . . . . . . . . . . . 103

10.2 Schwarzschild QNM (in)stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
10.2.1 Hyperboloidal approach in Schwarzschild . . . . . . . . . . . . . . . . . . . 107
10.2.2 Schwarzschild QNM spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 108
10.2.3 Schwarzschild pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . . 109
10.2.4 Perturbations of Schwarzschild potential . . . . . . . . . . . . . . . . . . . 110
10.2.5 Nollert-Price BH QNM branches: instability and universality . . . . . . . 113

10.3 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
10.3.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11 More results in gravitational physics 131
11.1 Effective parameters, asymptotics and Weyl law . . . . . . . . . . . . . . . . . . . 133
11.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

12 Quasi-Normal Modes in Optics 135
12.1 Electromagnetic problem in hyperboloidal slices . . . . . . . . . . . . . . . . . . . 135
12.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
12.3 Spectrum results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

12.3.1 QNM frequencies: Convergence results . . . . . . . . . . . . . . . . . . . . 138
12.3.2 QNM eigenfunctions: Normalization . . . . . . . . . . . . . . . . . . . . . 139

12.4 Perturbation and pseudospectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
12.5 QNMs expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

12.5.1 Normal modes: selfadjoint case . . . . . . . . . . . . . . . . . . . . . . . . 142
12.5.2 QNM modes: non-selfadjoint case, Keldysh expansion . . . . . . . . . . . 150

12.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

13 Conclusions 157
13.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
13.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

14 Appendix A: Energy scalar product: Gram matrix GE 161

15 Appendix B: Pöschl-Teller QNMs and regularity 165

16 Appendix C: Differential geometry notations prerequisites 167
16.0.1 Metric tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
16.0.2 Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
16.0.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
16.0.4 Geodesics, geodesic equation . . . . . . . . . . . . . . . . . . . . . . . . . 173



6 CONTENTS

17 Appendix D: The coefficients for different grids 175

18 Appendix E: Chebyshev differential matrix 179
18.0.1 Right Radau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
18.0.2 Left Radau . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
18.0.3 Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
18.0.4 Lobatto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Bibliography 195



Part I

Part one: Conceptual mathematical
and physical frame





Chapter 1

Scattering theory and resonators:
problems and objectives

Contents
1.1 Optical scattering problems . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Gravitational scattering problems . . . . . . . . . . . . . . . . . . . . 11
1.3 The mathematical problem . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Chapters organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Quasi-normal modes (QNMs) is a subject of a big excitement nowadays. It makes an indis-
pensable part of undergoing studies in many domains of physics. In particular in gravitational
physics, optics, as well as in acoustics oceanography ... The huge interests that is carried to these
QNMs in scientific world come from its importance and necessity to understand and describe
phenomena related to open systems. Underneath the physics of QNMs in different domains,
there is the same essential mathematical problem related in an ultimate manner to non-self ad-
joint operators, where QNMs are known in mathematics, specially in the community working on
affine topics to spectral analysis as scattering resonances.
Simulations and numerical results in nano optics have shown the efficiency of describing a scat-
tered field around a nano resonator as an expansion over QNMs. On the other hand, there still
is lack of a rigorous mathematical understanding behind this efficiency. Many issues related to
QNMs still wait answers and need to be regarded more rigorously. For example: what is the
eventual error function for the expansion of the scattered field in terms of QNMs? Under which
conditions and in which sense do these modes form a complete basis in some space endowed with
some specific scalar product.
In the general relativity settings, this topic has received a lot of attention too. In astrophysical
settings that is because of the strong dependence of the ringing down phase signal (when two
black holes merge) on such modes. Motivations from mathematical relativity and gravity in high
energy settings (such as the CFT/Ads conjecture) also stress the relevance of QNMs. Although
the extensive rigorous work by Sjostrand, Zworski and others, unlike normal modes which are
well known and studied in spectral theory, we do not have yet the same level of understanding
QNMs because of the complicated structure of the resolvent of non-self-adjoint operators. In
this thesis we are concerned about studying QNMs in specific physical settings that are either
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having a gravitational potential as Pöschl-Teller one or as in Schwarzschild black holes, or hav-
ing a permittivity that follows Lorentz model. Due to the leakage of energy from the resonant
structures, that is defined by either a potential or a permittivity, and to the nature of light and
gravitational waves in free space at infinities, the natural resonant modes suffer from outgoing
boundary conditions. These conditions make the studied operator a non self-adjoint one and
results in complex modes frequency that are QNM frequencies. In the following two sections we
introduce the general physical settings in which we are casting QNM problem as an eigenvalue
problem in the third one we will show the problem from a mathematical point of view and then
we will state the thesis goals. The last section is to give a breif view of the chapters organization.

1.1 Optical scattering problems

The main interest of studying such a problem is to better understand the interaction between light
and different media. In particular we are concerned in this thesis about the simplest geometrical
model of a nano-particle as a resonator. That is to model a nano-particle as a one-dimensional
cavity. Although this model received a lot of interests and well known in study books from a
physical point of view, we still think that it is a good starting point in order to understand deeper
its interaction with light on the mathematical level. In a more concrete way, the studied problem
here is a 1-D cavity where the permittivity inside is a function of frequency and position ε(ω, x).
We consider air or vacuum outside the cavity for simplicity without loss of generalization.
A scattering problem would be: Having an electromagnetic source (or background incident field),
what is the output i.e. what is the field that this nano-particle (1-D cavity) scatters?
The equation that describes this mechanism inside the cavity in Fourier domain is:

[ε(ω, x)ω2 + ∂2
x]φ(ω, x) = S(ω, x), (1.1)

where φ(ω, x) is the scattered field ans S(ω, x) is the source. To proceed we should consider the
boundary conditions besides the equation. Having Dirichlet boundary conditions on the cavity,
that is to consider the scattered field as zero at the boundaries of the cavities, it yields the
problem to a well known one. The scattered field can be expanded perfectly in terms of the
eigenfunctions of the homogeneous equation of 1.1 (with a zero source). These eigenfunctions
are known as normal modes and the eigenvalues are real. In this thesis we are concerned about
outgoing boundary conditions that is:

x⇒ +∞, φs(ω, x) ∝ e−iωxx⇒ −∞, φs(ω, x) ∝ e+iωx (1.2)

Having these boundary conditions make the problem more complicated than the one of normal
modes and the resonance modes in this case are known as Quasi-normal modes. Still the ori-
entation in the scientific community is to asses the relation between a scattered field with these
modes.
In this work we try to understand this relation in the light of the relevant mathematical tools.
Moreover we establish a method in order to be able to normalize these modes and calculate
them numerically. On the other hand, we raise a question about the stability of the calculated
solutions to answer question such as: What is the effect of a small perturbation of the permittivity
on the eigenvalues (resonant frequencies)?
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1.2 Gravitational scattering problems

Quasi-normal modes in gravitational physics, being the resonant modes in black holes and neu-
tron stars, have received lot of studies in the literature. The ringing down behavior of gravita-
tional waves that emitted from the merger of two black holes can be described in terms of these
modes.
Having spherical symmetry the problem can be reduced to a 1-D problem. We focus in this
work on one dimensional model, where the propagating waves are the gravitational ones, and the
"resonant structure" is described by a gravitational potential. For the general case of gravita-
tional potential we do not consider any cavity or physical borders, since in general it is a smooth
function in the space. Although in neutron stars one should a box and the problem become more
similar to an optical one.
On the physical level, the main concern here is to study a Cauchy problem, that is having ini-
tial conditions on a scalar field φ(t, x): phi0 = φ(0, x) and phi1 = ∂

∂tφ(t, x)|t=0 and having the
equation that describes the physics behind how this field evolves with time, that is:

[−∂2
t + ∂2

x − V (x)]φ(t, x) = 0, (1.3)

what are the solution as a function of space and time and what are the resonant frequencies.
Under Laplace transform, 1.3 becomes:

[s2 + ∂2
x − V (x)]φ(s, x) = −sφ0 − φ1, (1.4)

we can look at the terms: −sφ0 − φ1 as a source. As in the optical case one should consider
outgoing boundary conditions too. Thus the problem described in 1.4 becomes very close to the
one in 1.1 (having in mind a relation between Laplace symbole and Fourier one as: s = iω).
Here also we are interested in calculated the modes, use again Lax and Phillips theorem to
assess the expansion of the field φ(t, x) in terms of modes (that are the solutions of 1.4 with
a zero source) and studying the stability of these modes to answer questions like: What is the
effect of a small perturbation in the gravitational potential V (x) on the eigenvalues (the resonant
frequencies) .

1.3 The mathematical problem

As we have seen in both previous paragraphs the equations behind both physical problems are
close. Actually one general equation can describe both:

[−ε(t, x) ∗ ∂2
t + ∂2

x − V (x)]φ(t, x) = 0, (1.5)

which becomes in Fourier space:

[ε(ω, x)ω2 + ∂2
x − V (x)]φ(ω, x) = S(ω, x). (1.6)

To solve a QNMs problem we put the source to zero and the equation can be written as:

Pφ(ω, x) = −ε(ω, x)ω2φ(ω, x), (1.7)

where the operator P = ∂2
x − V (x) and of course with the boundary conditions. The main

mathematical problem arise because of that the outgoing boundary conditions spoil the adjoint-
edness of the operator P . Even when ε does not depend on ω (the is no dispersion), still the
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outgoing boundary conditions cause the operator to be a non-self-adjoint one, the eigenvalues to
be complex and the modes not to be normalizable due to their explosion at infinities of space.
To transform the problem to a one in a Hilbert space, many technical approaches were used in
literature such as complex scaling. Here we are using a different approach, that is re-writing the
wave equation in compactified space-time using hyperboloidal slicing approach. Using this slices
make the modes belong to a Hilbert space and they can be normalized choosing a certain scalar
product. We cast QNM problems as an eigenvalue problem in order to calculate them.

1.4 Objectives

Due to the non-self-adjoint (moreover non normal) nature of the problem, we loose the control
on the completeness of eigenfunctions and on the stability of eigenvalues as well. Our main
objectives in this work are:

i) Assessment of the asymptotic resonant QNMs in terms of QNMs eigenfunctions in a Hilbert
space. Relation to Lax-Phillips results. Reduction to normal modes in the self-adjoint case
and assessment of completeness.

ii) Assessment of the (in)-stability of the eigenvalues due to a small perturbation of the studied
potentials or permittivity. In order to achieve the second goal intermediate objectives are :

– Definition of an appropriate scalar product of the system in order to asses the pertur-
bation size in an energy scale.

– Application of pseudospectrum notion to scattering optical and gravitational prob-
lems.

iii) Introduction/redefinition of physical quantities motivated by the spectral theory of non-
self-adjoint operators, in particular the pseudospectrum and related notions and application
in in gravitational and optical scattering problems.

1.5 Chapters organization

Part 1 of this thesis presents and addresses the studies of the problem theoretically from different
angles: gravitational physics, optics and mathematical one. After the introduction, we establish
the physical settings. In chapter 2 we show briefly the theory behind the wave equation that we
are going to treat, that is a wave equation with a gravitational potential and we provide some
relevant concepts that are necessary to understand later our methodology. Chapter 3 is concerned
about optics where the information of the scatterer is encompasses in the permittivity. Chapter
4 starts with a mathematical introduction about scattering theory of self-adjoint operators then
introducing Quasi-normal modes and different ways in the literature to deal with its divergence
at infinities of space. Chapter 5 is a core chapter that is concerned about different approaches
to expand a scattered field in terms of QNMs.

Part 2 is dedicated to explain the main approaches and tools in order to calculate QNMs,
study the spectrum and its stability, that are: well known auxiliary fields as a technical tool in
chapter 6. The concept of pseudospectrum in chapter 7, which is the tool that we are using later
to study the stability issues. The mathematics behind the numerical methods and discretization
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we use later, chapter 8. Chapter 9 is dedicated to explain hyperboloidal slicing approach showing
that this approach permit to deal in a simple way with the outgoing boundary conditions and
provides a way to normalize the modes. In chapter 10 we go back to pseudospectrum and its
related issues with numerics.

Part three mainly consists of three parts where each one is taken from an article. Chapter
11 and 12 are for gravitational problems while chapter 13 is for optical settings.

Chapter 6 explains the hyperboloidal slicing approach.
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Physical settings: Gravitational physics

Contents
2.1 General relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

In this section we give a brief idea about gravitational physics and the derivation behind a
wave equation with gravitational potential, in particular the case of spherically symmetric black
hole. Furthermore we mention the notions of conformal compactification and Penrose diagram
that will help in explaining a main benefit of using hyperboloidal slices coordinates, that is the
no need of imposing outgoing boundary conditions at the infinities.

2.1 General relativity

The general theory of relativity is one of two important pillars of modern physics, which studies
gravitational interactions, other than the quantum field theory that explains the other three
fundamental interactions in universe known till now (electromagnetic, weak, and strong). It is
the theory which gives the most accurate calculations for the corresponding observations and
experiments about gravitational interactions. Einstein’s general theory of relativity provided a
revolutionary view to understand the structure of space-time with relation to the gravitational
fields. It was developed by Albert Einstein along many years till it was culminated on 1915.
The connection he explained between the matter and the geometry of space-time makes it one
of the most beautiful theories ever. To explain it i am borrowing John Wheeler’s famous phrase:
"Einstein’s geometric theory of relativity can be summarized thus: space-time tells matter how to
move; matter tells space-time how to curve". The theory describes the gravitational interaction
in one compact equation, that can not be understood with out some of the notions of differential
geometry. It is in its general form:

Gµν + Λgµν = κTµν (2.1)

where Gµν is Einstein tensor:

Gµν = Rµν −
1

2
Rgµν (2.2)

Looking naively at his equation, one can note that the left hand side of the equation describes
the geometry of space-time structure in particular how it curves. Whereas the right side is in
relation with mass - energy and momentum expressed by Energy-momentum tensor.
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16 is dedicated to make a brief reminder of some notions of differential geometry that are neces-
sary to have the mathematical taste of the theory.
In the following subsections We shall discuss Schwarzschild solution and a sketch on the deriva-
tion of its metric. A subsection also is dedicated to conformal compactification and at the end
we give a brief explanation of a black hole region.
We basically follow here two main references that are: [99] and [84].

2.1.1 Stationary spherical symmetric black holes: Schwarzschild solution

Schwarzschild solved the Einstein equations under the assumption of spherical symmetry in 1915,
two years after their publication. We will give in this subsection a sketch on the derivation of
Schwarzschild metric.

We will use here (−,+,+,+) as a signature of the metric. The line element is:

ds2 = gµνdx
µdxν (2.3)

The solution we search is for:

• Spherical symmetry space-time. Thus it is invariant under rotation. The functions should
not depend on θ nor on φ.

• Static i.e. it is unchanged under a time-reversal t⇒ −t. Thus the metric components are
not functions of time. Also, nor any of their derivatives with respect to time.

• A vacuum solution is one that satisfies the equation Tab = 0. Using Einstein field equations,
this implies that R = 0 and Rab = 0.

Using the arguments in 2.1.1 and those in 2.1.1 make all the metric components which have cross
terms between time and space covariant tensors vanish. Thus gµν = 0, when µ 6= ν. Using again
the same arguments we get: g11 = A(r) and g22 = B(r), where the line element is:

ds2 = −g11dt
2 + g22dr

2 + g33dθ
2 + g44dφ

2 (2.4)

Every hypersurface for r = const should be the same of that in a flat space-time (to stay
invariant under rotation), thus we can write: g33 = r2 and g44 = r2 sin2(θ).
The line element could be written again as:

ds2 = −A(r)dt2 +B(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2. (2.5)

The next step is to calculate Christoffel symbols for this metric and then Ricci scalar in terms
of A(r), B(r). Making the equality between this form of Ricci scalar and zero (since we are
searching for a vacuum solution) allows to deduce A(r), and B(r). Finally, Schwarzschild metric
is for:

ds2 = −f(r)dt2 + (f(r))−1dr2 + r2(dθ2 + sin2(θ)dφ2), (2.6)

where f(r) = (1 − C
r ). Comparing with Newtonian mechanics results (as a limit of GR) f(r)

yields as f(r) = (1− 2GM
r ), where M is the mass of the source.
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Figure 2.1: Causal structure of Schwarzschild, diagram in Schwarzschild coordinates [84].

Birkhoff theorem

Birkhoff’s theorem in general relativity, states that the unique spherically symmetric solution of
the vacuum field equations is Schwarzschild solution, thus it must be static and asymptotically
flat.

Null geodisics, tortoise coordinate and effective potential

Actually the null geodesics are for:

dt

dr
= ±(f(r))−1 = ±(1− 2GM

r
)−1. (2.7)

Figure 2.1.1 shows these trajectories with light cones in different regions.
Note that light cones at r ⇒ ∞ are as in Minkowski’s, then they close more and more until

arrive at r = 2M where they completely close. Then transition to r < 2M makes light cones
open again but in different orientation, that makes the coordinate r a "time".
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The tortoise coordinate r∗ is defined:

r∗ = r + 2GM log(
r

2GM
− 1) (2.8)

so as to satisfy:
dr∗
dr

= (1− 2GM

r
)−1). (2.9)

Note that r∗ ⇒ −∞ as r ⇒ 2GM (Schwarzschild radius) and r∗ ⇒ +∞ as r ⇒ +∞. Note
also that the line element in terms of the tortoise coordinate is:

ds2 = −f(r)dt2 + (f(r))−1dr2 + r2(dθ2 + sin2(θ)dφ2) (2.10)

Let us now write massless Klein-Gordon equation:

�gφ = 0, (2.11)

where �g = gµν∇µ∇ν is the D’Alembertian operator associated with the metric g. More specif-
ically:

�g =
1√−g∂µ(gµν

√−g∂ν) (2.12)

Using Schwarzschild metric leads to a wave equation with effective potential with either axial
or polar parities, that is respectively Regger-Wheeler and Zerilli potentials. These potentials are
given by the following equations:

V RW,s
` (r) =

(
1− 2M

r

)(
`(`+ 1)

r2
+ (1− s2)

2M

r3

)
, (2.13)

for the axial case, where s = 0, 1, 2 correspond to the scalar, electromagnetic and (linearized)
gravitational cases, and

V Z
` (r) =

(
1− 2M

r

)
(

2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2

)
, (2.14)

with

n =
(`− 1)(`+ 2)

2
. (2.15)

for the polar case.

2.1.2 Conformal compactification: future null infinity

Definitions

Conformal Considering two pseudo-Riemannian manifolds equipped respectively with g, h as
metrics. These two metrics are said to be conformal if and only if h = λ2g, where λ is a real-
valued smooth function defined on the manifold and is called the conformal factor. There is an
equivalence class of such metrics which is called conformal class. The conformal relation between
these metrics preserve angles on a conformal class.
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Compactification The compactification of a topological space X is to embed it as a dense
subset of a compact space. An important thing to do (when compactifying) is to control points
that "go to infinity".
Conformal compactification A conformal compactification was first introduced by Penrose
[150]. He added new boundary points to the manifold of compactified space-time. It can be
defined as embedding of a non-compact Lorentzian manifold into a compact Lorentzian manifold
as a dense open subspace, such that the embedding is a conformal map.
Assume having a Lorentzian physical manifold (M, g), whose boundaries are at infinity and its
line element is ds2, its conformal compactification is a compact manifold with boundaries whose
line element is ds2

2. Thus:
ds2 = Ω2ds2

2, (2.16)

where Ω is the conformal factor that diverge on the boundaries.
A basic example is Rn and its conformal comactification is the sphere Sn, where the inverse of
this map is the stereographic projection.

Penrose diagram

It represents an extension of the Minkowski diagram which preserves the light cones slope at
all points. Locally the metric is conformally equivalent to that of Minkowski’s.In particular the
casual structure, and therefore light propagation are the same of that of Minkowski’s. Some
important facts are

• It is compact but it represents the whole infinite space-time.

• It has what is called null infinities where the light starts (past null infinities) and finishes
(future null infinities)

We get this diagram by starting from Minkowski diagram and we do three transformations
for the coordinates. Let us start from (t, x) as coordinates of Minkowski diagram. The first
transformation is:

u := t+ x

v := t− x
(2.17)

So we have the new coordinates along the light cones edges. The second is a conformal transfor-
mation:

p := tan−1(u)

q := tan−1(v)
(2.18)

This is to compactify the space-time and the last is to go back to a space and time like axis:

T := p+ q

X := p− q
(2.19)

In all steps we have to keep track of the ranges. Actually step one and two are necessary to
preserve the light cones slopes so the causality properties of space-time are preserved in a new
compactified space-time. In step three there is a change to be made in the metric, so that
when we draw a time-like or a space-like lines they will be as in the figure. Let us look at the
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Figure 2.2: Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v.
Figure taken from Wikipedia

null infinities of Penrose diagram. Actually if we draw the light cones at any point of these null
infinities, it will point outwards of the space-time that means that information set at any of these
points will not affect what is going on inside the space-time. The characterizes null infinities as a
"outgoing boundary" hypersurfaces. This is what we need to treat outgoing boundary conditions
in a Quasi Normal Modes problem, since they are imposed at infinities. The bottom line is that
if our surface t = 0 is set to intersect the null infinity, then outgoing boundary conditions are
automatically imposed, since light cones are outgoing at null infinity. This provides a geometrical
way of imposing the outgoing boundary conditions.

A second connection to Hyperboloidal slices approach

The idea is that certain coordinate systems are better adapted than others to address a given
particular aspect of the problem. In this sense: The coordinates (t, x) of our Cauchy problem
are badly adapted to say anything about null infinity because surfaces t = const never meet
null infinity when x → ∞ Here we will choose coordinates (τ, y) that are well adapted to null
infinity, so for τ = constant the limit x→∞ takes to null infinity, that is exactly what we want
to address. So we need to make transformation along the light line to arrive to null infinities, we
choose "Hyperbolic" transformations:

τ = t− ln(2cosh(x))

y = tanh(x)
(2.20)

Note that the second line in the (2.20) leads to a compactification of the space. Also, when
x→ +∞, τ = t− x and when x→ −∞, τ = t+ x

2.1.3 Black holes

An informal definition of a black hole is that a black hole is a region of space-time from which no
particle can escape. This region is separated from the rest of the space time by a hypersurface
called the event horizon which allows the movement of a particle just to the inside of the black
hole region.
Another definition that is very well explained in [84] is: "Let (M, g) be a space-time with a
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conformal completion at null infinity; the black hole region, or simply black hole, is the set of
points of M that are not in the causal past of the future null infinity".
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Chapter 3

Physical settings: Optics

Contents
3.1 Wave equation of a scattering field . . . . . . . . . . . . . . . . . . . . 23
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3.3 Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Purcell factor and the need of normalization . . . . . . . . . . . . . . 26

Our interest in this chapter are optical resonators i.e. structures that have different optical
properties than the surrounding material. We focus here on the permittivity as an optical
property considering the permeability is the same of that of free space in the studied models.
For sake of simplicity and to be able to focus more on the mathematical properties of our
problem, we study 1D cavity which can be in its simplest case two parallel mirrors that are
totally reflecting light. Such a cavity has Dirichlet boundary conditions (the fields are zeros on
the both boundaries). Such a system is ideal and do not exchange any energy with the outside.
A more practical example is a material that has ε as its permittivity surrounded by air with
permittivity ε0. Such a structure leaks energy and the boundary conditions are outgoing. In the
first section we remind of wave equation of a scattered field followed by a small discussion showing
that the source of the mathematical problem is the boundary conditions. In a later section we
revise Drude model of permittivity and finally the famous Purcell factor and the importance of
finding a way to normalize the modes.

3.1 Wave equation of a scattering field

We consider a nanoparticle modeled by 1D optical dispersive cavity with permittivity of ε(x, t).
We assume that the nanoparticles is surrounded by air.

The scalar field of electromagnetism in one dimension for total field is described by

[ε(x, t) ∗ ∂
2

∂t2
− ∂2

∂x2
]φt(x, t) = 0. (3.1)

Where ε(x, t) is the dielectric constant. And the equation of the background field is given by:

[
∂2

∂t2
− ∂2

∂x2
]φb(x, t) = 0. (3.2)
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We define the scattered field as φt − φb, substituting 3.2 from 3.1, we get:

[ε(x, t) ∗ ∂
2

∂t2
− ∂2

∂x2
]φs(x, t) = [(1− ε(x, t)) ∂

2

∂t2
]φb(x, t). (3.3)

Applying Fourier transformation, we get:

[ε(x, ω)ω2 +
∂2

∂x2
]φs(x, ω) = [(ε(x, ω)− 1)ω2]φb(x, ω). (3.4)

We define [(ε(x, ω) − 1)ω2]φb(x, ω) as a source I(x, ω), and the equation of the scattered field
becomes:

[ε(x, ω)ω2 +
∂2

∂x2
]φs(x, ω) = I(x, ω). (3.5)

According to optics literature [114] modes to find the modes is to find the solutions to the
homogeneous equation eq.3.5 (considering I(x, ω) = 0) taking into consideration the boundary
conditions. QNMs are the modes when the field (φ) have outgoing boundary conditions, that
are:

φ ∼ e−iωx, x→ +∞, (3.6)

φ ∼ e+iωx, x→ −∞, (3.7)

We shall discuss in the following section two particular cases, one when we do not have
such boundary conditions to show that they are the main responsible of loosing the well known
properties of normal modes, the other is when having outgoing boundary conditions but with
zero absorption.

3.1.1 Absorption with Dirichlet conditions

This little paragraph is to show that it is indeed the boundary conditions who spoil the adjoint-
edness of the operator, and the absorption alone do not.
We consider Dirichlet boundary conditions, with the equation of modes:

∂2

∂x2
φn(x, ωn) = −ε(x, ωn)ω2

nφn(x, ωn) (3.8)

In the case of ε does not depend on x we can write λ = −ε(ωn)ω2
n. Having Dirichlet conditions

makes the operator of this problem self-adjoint and the eigenfunctions form a basis for the
solutions, eigenvalues are real and the solutions are stable. However our frequencies here (ω)s
are not the eigenvalues. To calculate the frequencies, we calculate first λs, then by knowing the
dependence of ε on ω the frequencies could be calculated.

3.1.2 Drude model with zero absorption

In this section we discuss a particular case of permittivity, considering a homogeneous wave
equation and outgoing boundary conditions. Drude model describes the permittivity of a metal
by the following equation:

ε = ε∞ −
ω2
p(x)

ω2 + iΓω
, (3.9)

where ωp is the plasmon frequency, Γ describes the absorption. There exist a range of frequencies
for which Γ is negligible in comparison to ω. We will focus on this range and put Γ to zero. So
our permittivity will be:
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ε = ε∞ −
ω2
p(x)

ω2
. (3.10)

This permittivity encodes the scatterer information, and the equation of modes of resonance is:

(
d2

dx2
+ εω2)φ(ω, x) = 0. (3.11)

By replacing ε by its value from (3.10) we get:

(
d2

dx2
+ ε∞ω

2 − ω2
p(x))φ(ω, x) = 0. (3.12)

We will identify ω2
p(x) as the effective potential. We define ε∞ω2 as ω̄2. Permittivity approx-

imation in Drude model
Drude model follows from Lorentz model by considering that most electrons in the material are
free and not bounded to a nucleus, thus it is applied to metals generally. The formula of the
permittivity as follows is given by:

ε(ω, x) = ε∞(x)−
ω2
p(x)

ω2 + iΓ(x)ω
, (3.13)

where ω2
p = Nq2

ε0me
, and Γis the absorption. We linearize the permittivity first order linearization,

thus we get:

ε(ω) = ε∞ −
ω2
p

ω2

(
1− iΓ

ω

)
(3.14)

Inserting this expression in the time-independent wave equation of the scattered field 3.5, it
becomes: [

∂2

∂x2
− V (x) + ε0 (ε∞ − β(x, ω))ω2

]
φs(x, ω) = I(x, ω), (3.15)

where V (x) = ω2
p > 0, β =

iΓω2
p

ω3 << ε∞.

Negligable absorption case
Considering the absorption to be zero or the quantity iΓω2

p

ω3 is negligible in front of ε∞ for the
range of visible light. We set β to zero in eq.3.15, the equation for finding the QNMs becomes:[

∂2

∂x2
− V (x) + ε0ε∞ω

2
q

]
φq(x, ω) = 0. (3.16)

We define PV = −∆ + V (~x), thus we can write eq.3.16 in the following way:

[PV − ε0ε∞ω2
q ]φq(x, ω) = 0, (3.17)

rescalling the frequency, we write:

[PV − ω2
q ]φq(x, ω) = 0, (3.18)

Now we can see easily that following Drude model with Γ = 0 reduces the permittivity
problem to a case with a potential. Thus what runs in the potential case holds for this special
permittivity case. In particular the theory by Lax & Phillips 5.1.5 and the result of asymptotic
expansion. However we must mention that such case is purely mathematical.
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3.2 Purcell factor and the need of normalization

Studying lossy energy systems, it is indispensable to take about quality factor and mode volume,
two major characteristics of resonances. These quantities contribute in Purcell factor computing,
which describes the changes in spontaneous emission of a quantum particle. This change happens
because of the cavity.

Spontaneous emission is the process in which a quantum mechanical system (such as a
molecule, an atom or a subatomic particle) transits from an excited energy state to a lower energy
state (e.g., its ground state) and emits a quantized amount of energy in the form of a photon.
It arises due to interaction between the material and its local electromagnetic environment. A
simple relevant example could be an electric dipole between two electrons of different energy
levels. This system is represented by the dipole moment operator µ̂, where:

µ̂ = µσ̂+ + µ∗σ̂−, (3.19)

where σ̂+ and σ̂− are the two level system (TLS) raising and lowering operators.
We denote by γp the decay rate of the excited state population in vacuum, where p stands

for population. The rate of photon emission at time t is:

ξ(t) = γp < σ̂+σ̂− > (3.20)

Energy conservation requires that the decrease of the TLS excitation should at any time be
compensated by the increase of the photon number so that:

∂t < σ̂+σ̂− >= −γp < σ̂+σ̂− > (3.21)

It follows that:
γp < σ̂+σ̂− >= e−γpt (3.22)

Hence during the so-called spontaneous emission, the excited state population < σ̂+σ̂− > and
the radiation rate both decay exponentially with the characteristic time tp = γ−1

p The rate of
spontaneous emission was described by Fermi’s golden rule. But a key thing to keep here is that
Fermi’s golden rule describes transitions between eigenstates of some unperturbed Hamiltonian,
and that these eigenstates are assumed to be orthogonal during its derivation. One of the pro-
posed solutions is in the article "Theory of the Spontaneous Emission in Photonic and Plasmonic
Nanoresonators", by Lalanne. This effect is defined as the modification of a quantum system’s
spontaneous emission rate by its environment (for example, there is a change in the spontaneous
emission from a dipole between when being in a resonating optical cavity or in the vacuum).
Basically two were introduced by Purcell to quantify the maximum decay rate that can happen:

The quality factor (Q), and the mode volume (V ).

Purcell factor F describes represents the maximum acceleration for an ideal coupling between the
emitter and the cavity mode. It happens for perfect spectral, spatial, and polarization matching.
Purcell factor F is given in terms of Q, and V :

F =
3

4π2
(
λ0

n
)3Q

V
(3.23)

where λ0
n is the resonance wavelength in the material surrounding the emitter.

Purcell factor F describes represents the maximum acceleration for an ideal coupling between
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the emitter and the cavity mode. It happens for perfect spectral, spatial, and polarization
matching. Once the mode field distribution is known, any deviation from perfect coupling can
be calculated analytically. A usually used relation is:

γ

γ0
= F

ω2
0

ω2

ω2
0

ω2
0 + 4Q2(ω − ω0)2

(3.24)

The quality factor Q can be seen as spectral energy density associated to the resonant mode.
It describes how damped a resonance is, or equivalently, characterizes a resonance bandwidth
relative to its center frequency. A higher Q indicates a lower rate of energy loss relative to the
energy stored in the resonator; the oscillations of the temporal response die out more slowly and
the resonator rings longer. The Q-factor of a resonance is often defined as 2π times the ratio of
the time-averaged energy stored in the cavity to the energy dissipated per cycle.

Q =
ωre

2ωim
(3.25)

High Q could be achieved using dielectric materials. The volume initially introduced by Purcell
was a geometrical volume representing the spatial extent of the (microwave) resonator, but with
the large amount of work devoted to optical micro-cavities in the 90s, the mode volume definition
has evolved to the following expression:

V =
1

ε0n2

∫
ε(r)|E(r)|2d3r (3.26)

In his article Sauvan et al [162], they derive a new definition of V , and then to the rate between
decay rate in a cavity and in a bulk material. However this derivation depends on the assumption
that quasi normal modes (QNMs) (the natural modes in a natural optical cavity) are complete.

V =

∫
[Ẽ · ∂ωε∂ω Ẽ − H̃ ·

∂ωµ
∂ω H̃]

2ε0n2[Ẽ(r0) · u]2
(3.27)

In order to calculate the integral that appears in eq.3.27 there is a need to normalization, in the
same article of [162] a PML approach is used for this reason. The article of Stout et al. [175] also
discuss the mode volume taking into consideration the existence of a non-resonant term in the
expansion of Green function. Whatever a mode volume is defined, the need of having the field
normalizable and overcome the divergence problem is undeniable. In 12 we follow hyperboloidal
slices approach that is explained in 8.
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Chapter 4

Scattering resonances: Quasi-Normal
Modes (QNM)
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This chapter is concerned about introducing Quasi-normal modes from different aspects.
We start this chapter by revising some necessary definitions from functional analysis in order
to explain the spectral theory of self-adjoint operators. In the second section we introduce
scattering resonances namely Quasi-normal modes from physics of optics first and then from a
more rigorous mathematical side. Section three is dedicated to explicit explanations of different
approaches in literature to deal with these exploding modes at the space infinities. We finish by
introducing a contact again with hyperboloidal slices approach.

4.1 Normal modes: spectral theorem

4.1.1 Self-adjoint operators

First of all we remind of some basic definitions from functional analysis. [188], [14].
Definition : If T be a linear operator in H (Hilbert space), then its adjoint T ∗ is defined as
follows. The domain D(T ∗) consists of the vectors u ∈ H for which the map:
D(T ) → C : v 7→ 〈u, Tv〉 is bounded with respect to the H−norm. For such u there exists, by
the Riesz representation theorem, a unique vector denoted by T ∗u such that 〈u, Tv〉 = 〈T ∗u, v〉
for all v ∈ D(T ).
T is called self-adjoint if T = T ∗ and D(T ) = D(T ∗).
Definitions: (Resolvent set, spectrum, eigenvalue, point spectrum). Let T be a linear operator

in a Hilbert space H. The resolvent set often denoted by ρ(T ) consists of the complex z for
which the operator T − z : D(T ) → H is bijective and the inverse (T − z)−1 is bounded. The
spectrum σ(T ) of T is defined by σ(T ) := C \ ρ(T ) .
An eigenvalue of T is a number λ ∈ C such that Ker(T − λ) 6= 0 (that means ∃u ∈ D(T )|(T −
λ)u = 0), u is called an eigenvector.
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Note the operator T − λI may not have an inverse, even if λ is not an eigenvalue. thus the
spectrum of an operator always contains all its eigenvalues, but is not limited to them. The
point spectrum specp(T ) is the set of the eigenvalues of T .
Definitions: (Closed set, bounded set, compact set, compact operator). A closed set is a set

which contains all of its limit points. Therefore, a closed set A is one for which, ∀x /∈ A, then x
can always be isolated in some open set which doesn’t touch A.
Given a topological vector space (X, τ) over a field K , a subset B of X is called bounded in X

if: ∀(si)∞i=1 that converges to 0 and every sequence (bi)
∞
i=1 in B, the sequence (sibi)

∞
i=1 converges

to 0 in X.
A subset is called compact if it is closed and bounded.
Compact operator: Let E and F be two Banach spaces. A linear map T is said to be compact
if (equivelantely):
∀B ⊂ E with B bounded, T (B) is relatively compact in F .
∀(un) ∈ EN , where (un) is a bounded sequence, (Tun) has a convergent subsequence.

Theorem (The Spectral theorem of self-adjoint operators). Suppose T ∈ K(H) (compact
on H) be self-adjoint. Then there exists a system of orthonormal vectors φ1, φ2, φ3, φ4, ... of
eigenvectors of T and corresponding distinct eigenvalues λ1, λ2, λ3, λ4, ... such that
|λ1| ≤ |λ2| ≤ |λ3| ≤ |λ4| ... , Tx =

∑∞
k λk〈x, φk〉φk for all x ∈ H. If (λn) is infinite, then

λn → 0 as n → ∞. The series on the right hand side converges in the operator norm of B(H)
(the space of all bounded operators on H).
The eigenfunctions of a such operator are called in physics problems normal modes. An eample
from physics is a Fabry-Perot cavity with Dirichlet boundary conditions (where the field φ is 0
at boundaries).

However in physics waves problem, one frequently have to deal with boundary conditions
where the resonator leaks energy to the outside, such conditions spoil the closeness of the res-
onator, which results in making the Laplacian in the wave equation to not be a self-adjoint
operator any more with respect to the intuitive L2 norm.

4.2 QNMs - scattering resonances

In physics quasi-normal modes are the natural modes of dissipated resonances for structures
that leak energy to the outside via "outgoing boundary conditions". In optics and for a field
satisfying Helmholtz equation, Sommerfeld condition plays a role in determining the boundary
conditions at infinity. It says:
the sources must be sources, not sinks of energy. The energy which is radiated from the sources
must scatter to infinity; no energy may be radiated from infinity into ... the field. Sommerfeld
condition makes the only possible wave at infinity is an outgoing wave. When the field at infinities
is proportional to e±iωx, where x is the space coordinate and the singes in the sense of being
outgoing at each infinity, then the boundary conditions are called outgoing boundary conditions.
Similarly in gravitational waves, also acoustics, ocean waves nothing comes from infinity, and the
outgoing boundary conditions are the natural condition at infinity in waves resonating problems.
In these cases the resonance modes are called Quasi-normal modes (QNMs), and the resonance
frequencies are called Quasi-normal frequencies (QNFs).
In mathematics scattering resonances is the formal name in this context. Scattering resonances
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frequencies are known to be the poles of the resolvent in its meromorphic continuation in the
complex plan. (equivalently in physics the poles of the Green function).

4.2.1 Resonance in Physics: the optical case

Normal modes are well studied phenomena. [162] For a system which is hermitian normal modes
appears as a perfect solution to the resonance. Scattered field is consistent of super position of
these normal modes. However if energy can escape to the outside, the system would be open
and nonconservative, and the associated mathematical operator would not be hermitian in the
usual sense. For lossy system (such as an open system with radiation loss or closed system with
absorption loss), quasi normal modes (QNMs) are reported to be the response of such resonant
structures. Quasi normal modes "known" to be in optics as the solutions of Maxwell equations
without a source. The wave could be represented by the following expression:

ei(ωt−
−→
k .−→x ) (4.1)

in QNMs to find solution w must be complex which means there is absorption w = w0 + iwi So

eiω0te−ωit−i(
w
c

)x (4.2)

And the wave expression becomes:

eiω0t−i(ω0c )xe−ωit+(
ωi
c

)x (4.3)

this means there is decay in time, but with larger x, it is larger and larger. and the mode volume
is infinite

Figure 4.1: Normal modes vs Quasi normal modes in an optical cavity [136].

to understand this one can imagine that we need infinite energy to compensate this enlarging
with x and here is the problem in calculations of QNMs But what really happens ? QNMs are
the poles of the system (or the cavity) for which we have a maximum transmission when there
is an incident wave, the cavity starts to resonate if the frequency of the wave is close to the real
part of the complex frequency of QNMs the imaginary part describes the decay with time. Here



32 Scattering resonances: Quasi-Normal Modes (QNM)

arises the question about completeness of the QNMs, and the physical meaning can we describe
the scattered field as superposition of QNMs with coupling coefficients: αn : Es = ΣαnEQNMsn

Our focus: Nanoparticles

Nanoparticles have been of a growing interest in the few recent decades [8] [6] [5], thanks to
the nanotechnology which allowed to fabricate such small particles with dimensions between 10
to 100 nm. Different shapes of nanoparticles of different materials could be fabricated. Shape,
permittivity, surrounding medium permittivity, wavelength are all essential parameters to the
optical response of the nanoparticle, thus they are essential in design nanostructures with different
properties.

Nanostructures are used recently in many applications, some of them: Medicine, as delivering
drugs to tumors. Manufacturing, as nanoparticles can be dispersed in industrial coatings to
protect wood, plastic, and textiles from exposure to UV rays. Energy, where researchers have
demonstrated that sunlight, concentrated on nanoparticles, can produce steam with high energy
efficiency.

Although the wide range of nanoparticles applications, our understanding of how these par-
ticles behave under illumination is fuzzy. The frequency response is one of the most important
optical properties. The developing of analytical expressions for the resonance frequencies is still
missing lot of work. Although simulations now by softwares as Comsol could solve the problem,
still to design and control nanostructures resonance, it would be easier and more powerfull to
have analytical expressions.

The simplest way to say a nanoparticle is to consider it as a cavity which has its resonance
at discrete set of frequencies which we are investigating in this work. We aim here to develop
our knowledge about the resonance in optical cavities, which could lead and help to understand
more general questions about the resonance in other cavities up to the black holes.

Figure 4.2: Excitation of nanoparticle. Image taken from [113]

Nanoparticles are particles between 1 and 100 nanometers in size. When an electromagnetic
field is incidence, the nanoparticle could scatter and/or absorb the incident light. The power
of extinction equals the sum of the power absorb and the scattered power. One of the most
important quantities when studying the optical response of a nanoparticle is the scattering cross
section. The scattering cross section σs is defined by the relation:

dPs
dω

=
dσs
dω

Iinc , (4.4)
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where Ps is the scattered power. Iinc is the intensity of incident light. ω is a solid angle. In the
same way we can define the absorption and the extinction cross sections.

Figure 4.3: Scattering by a nanoparticle. Image taken from [44]

Peaks in the absorption happen at certain frequencies which are the resonance frequencies.
The following figure shows the optical response of a disc made of silver with radius= 0.35µm,
and height= 0.30µm

Figure 4.4: Silver nanodisk optical response

4.2.2 Resonances in Mathematics: Scattering resonances - spectral approach

We will show here the rigorous definition of a scattering resonance by [194] for a special case
of a Cauchy problem where the potential is of compact support, with some results by the same
author. The definition itself can be generalized to problems with a non-compact potential, and
to problems with permittivity. Let us consider a one-dimensional scatterer defined by a potential
V (x).
Cauchy problem. Considering a Cauchy problem with initial data: φ0 = φ(0, x) and φ1 =
∂tφ(0, x), where the field evolves with time according to the equation:

(∂2
t − ∂2

x + V (x))φ(t, x) = 0. (4.5)

Under Laplace transformation to (4.5) we get:

(∂2
x − s2 − V (x))φs(s, x) = sφ0 + φ1 = S2(s, x). (4.6)

To follow [194] consider V (x) real, bounded and with support inside a ball of radius R0,

• the operator PV is given by PV = −∆ + V
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• the resolvent RV (ω) is given by (PV − ω2I)−1

Theorem. The operator RV (λ) continues to a meromorphic family RV (λ) : L2
comp(R

3) →
L2
loc(R

3), λ ∈ C. This gives a mathematical definition of scattering resonances:
Definitions.

• Suppose that V ∈ L∞comp(R) and that RV (λ) is the scattering resolvent of the previous
Theorem. The poles of λ 7→ RV (λ) are called scattering resonances of V . If λ0 is a
scattering resonance then, in this notation with A(λ) = R0(λ), the multiplicity of λ0 is
defined as m(λ0) = Dim(spanA1(L2

comp), , AJ(L2
comp)) .

• We define λ 6= 0 as a scattering resonance of PV = −∂2
x + V, V ∈ L∞comp(R) iff

1/ λ is an eigenvalue u ∈ H2
loc(R), (PV − λ2)u = 0

2/ Outgoing boundary condition u = a±e
±iλx 6= 0;±x� 1.

• u is a resonant state for resonance λ0, iff
1/ It is an eigenfunction of the equation: (PV − λ2

0)u = 0.
2/ It has outgoing boundary conditions: ∃f ∈ L2

comp(Rn), u = R0(λ0)f

Resonance free regions

The logic behind the existence of a free zone is that the imaginary part of the resonant frequency
determines the decay of a wave localized in frequency near the real parts of that resonant fre-
quency. To have a wave that is resonating close to this real part value there will be constraints on
the decay thus on the imaginary part, thus there is a limiting relation between the the real part
and the imaginary part of the resonant frequency, which leads to have a region in the complex
plan free of resonances.
high frequency resonance free regions are typically according to [194] of the form:

Im(λ) > −F (Re(λ)), Re(λ) > C,F (x) =



(a)e−αx, α > 0

(b)M

(c)M log(x)

(d)γxβ, β ∈ R, γ > 0.

(4.7)

Where in the case of compactly supported potential the form of the free region follows (c) and
(d): for bounded potentials [194]: (c), arbitraryM for smooth potentials (d)[262]. (a) for certain
Gevery class of potential. We underline the relation between the form of the potential and the
form of the free region zone.

4.3 Different approaches to QNMs

4.3.1 Heuristic definition in the Fourier formulation

Given the wave equation without source(
− 1

c2

∂2

∂t2
+ ∆− V

)
φ = 0 , (4.8)
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where φ = φ(t,x) is a scalar field defined on R×Rn, ∆ is the Laplacian in Rn and V = V (x) is a
potential (that will be taken non-negative, V = V (x) ≥ 0). Quasi-normal modes correspond to
solutions with purely outgoing boundary solutions, corresponding to the damped propagation of
a perturbation of the system. Given the time independence of the potential V , we can consider
a Fourier decomposition in time to study the behavior of each frequency mode ω

φ(t,x) =
1

2
√
π

∫ ∞
−∞

eiωtφ̃(ω,x)dω . (4.9)

Each mode φω(t,x) = eiωtφ̃(ω,x) of fixed ω satisfies the equation(
ω2 + ∆− V

)
φ(ω,x) = 0 . (4.10)

Normal modes. To motivate quasi-normal modes, let us first remind the notion of normal
mode. If we solve (4.10) in a compact domain domain D ⊂ Rn, imposing homogeneous Dirichlet
or Neumann boundary conditions (more generally homogeneous Robin conditions) leads to the
eigenvalue problem of a self-adjoint operator. Specifically, defining

PV = −∆ + V (x) , (4.11)

the homogeneous Dirichlet problem (analogoudly for the Neumann or Robin case)

PV φλ(x) = λφλ(x) , φλ(x)|∂D = 0 (4.12)

with λ = ω2, defines a selfadjoint operator where

a) Eigenvalues are real.

b) The modes φλ provide a orthonormal basis for the solutions of Eq. (4.10) in the appropriate
functional space. In particular the expansion coefficients are determined by a projection
through the underlying scalar product.

In a general setting, with PV still self-adjoint but with domain in non-compact space, the spec-
trum of PV is real with a pure point part σp = {ωn}n∈N and a continuous part σc, and we can
write

φ(t,x) =
∞∑
n=0

cne
iωntφn(x) +

∫
ω∈σc

c(ω)eiωtφ(ω,x) . (4.13)

Points a) and b) above contain, in a conservative case, the main elements we will be concerned
with here, in a open dissipative context:

i) In an open dissipative system, outgoing boundary conditions spoil the self-adjoint character
of PV . Frequencies are generically complex and are refer to as “resonant” or “quasi-normal”
frequencies.

ii) The corresponding “eigenmodes” (they are not normalizable) do not provide in general a
basis in the space of solutions we are interested in. Assessing the conditions on V = V (x)
and D such that completeness is (in some sense to be specified) guaranteed is one of the
underlying motivations for this work.
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Quasi-normal modes: asymptotic conditions. Let us focus, for concreteness, on the 1-
dimensional case (

− 1

c2

∂2

∂t2
+

∂2

∂x2
− V (x)

)
φ(t, x) = 0 . (4.14)

Taking the Fourier transform in time, every frequency mode ω

φω(t, x) = eiωtφ(ω, x) , (4.15)

satisfies (
ω2

c2
+

d2

dx2
− V (x)

)
φ(ω, x) = 0 . (4.16)

If V = V (x) has compact support or, more generally, if it decays sufficiently fast, we can write,
for |x| � 1 (

ω2

c2
+

d2

dx2

)
φ(ω, x) = 0 , (4.17)

Writing φ(ω, x) = eikx, from the dispersion relation ω2− k2, it follows k±x, so that solutions in
these regions write as a linear combination of rightwards-moving and leftwards-moving modes

eiωtφ(ω, x) ∼ a(ω)eiω(t−x) + b(ω)eiω(t+x) , |x| � 1 . (4.18)

Considering then outgoing boundary conditions amounts to impose

x→ +∞ , b(ω) = 0 ⇔ φ(ω, x) ∼ e−iωx

x→ −∞ , a(ω) = 0 ⇔ φ(ω, x) ∼ eiωx
(4.19)

to be imposed in Eq. (4.16). As we have commented above, under these conditions the operator
PV is not self adjoint and, therefore, in general we have that solutions have complex frequencies

ω = ωR + iωI , (4.20)

with ωR = Re(ω) and ωI = Im(ω). From a physics a perspective, an open system with a finite
energy, we expect that the function φ(t, x) to decay in time. This determines the sign of ωI.
Indeed, wee see

x→ ±∞ , eiωxφ(ω, x) ∼ eiω(t∓x) = eiωte∓iωx = ei(ω
R+iωI)te∓iωx = eiω

Rte−ω
Ite∓iωx . (4.21)

We must then impose

ωI = Im(ω) > 0. (4.22)

We are now in conditions to introduce a first heuristic notion of quasi-normal mode:[194]
Quasi-normal modes are solutions φ(ωQNM, x) to Eq. (4.16) satisfying outgoing boundary

conditions (4.19). The corresponding quasi-normal mode frequencies ωQNM satisfy: Im(ωQNM) >
0.
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We note that from (4.22) it the following asymptotic behavior in space follows

x→ +∞ , φ(ω, x) ∼ e−iωx = e−iω
Rxeω

Ix

x→ −∞ , φ(ω, x) ∼ eiωx = eiω
Rxe−ω

Ix
(4.23)

That is, from condition (4.22) it follows that the mode φ(ω, x) is exponentially divergent at both
ends asymptotic ends. This is a typical behavior of quasi-normal modes (in a Cauchy slice). In
particular, we see that if an expansion of the wave field is to be found, the latter will essentially
make sense in a bounded domain.

We can point out some issues in this Fourier approach to quasi-normal modes:

a) Relation to initial data:

a.i) The Fourier analysis approach does not show light in the understanding of how quasi-
normal modes are excited by initial data perturbations. More specifically, a normal-
mode analysis relating the solution to their initial data, as in the self-adjoint case, is
not available.

a.ii) The divergence of the quasi-normal mode at spatial infinity is an artifact of having a
mode existing in time since an infinite past: due to the decay behavior in time, the
perturbation at past infinity must be arbitrarily large to survive at present time. The
system accumulates an infinite amount of energy at spatial infinity. In this sense, a
single quasi-normal mode is not a state of the system. One should rather think of
perturbations that started at some finite time, and this leads to the need of controlling
initial data.

4.3.2 Laplace approach

b) Outgoing boundary conditions in (4.19) are actually not enough to single out just a solution
(in the generic case). The asymptotic expansion must be specified in a more refined manner
in order to eliminate solutions that “hidden” under the exponential reminder [141] [139]. A
more systematic and refined treatment is therefore needed.

The introduction of quasi-normal modes (or resonances) in section 4.3.1 through a heuristic
considerations of asymptotic in a Fourier analysis setting presents some shortcomings related to
the difficulty to make contact with initial data of propagating modes, on the one hand, and to
the insufficient nature of boundary conditions (4.19) to completely determine the solution.

An approach based on the Laplace transform, rather than the Fourier transform, permits to
address these issues. General introductions to this approach can be found in [105] [139]

As in the Fourier case, the treatment requires the consideration of time independent systems.
We will consider initial data with a compact support: then the solution to equation (4.16) is
bounded and admits a Laplace transform. The Laplace transform of φ(t, x), that will denote as
L(φ)(s, t) or φ̂(t, x) is given by

L(φ)(s, t) = φ̂(t, x) =

∫ ∞
0

e−stφ(t, x)dt . (4.24)

This is an analytical function as long as the (complex) parameter s satisfies Re(s) > 0, as a
consequence of the boundedness of φ(t, x).
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In order to transform Eq. (4.14) under the Laplace transform we note that, given a function
f(t) with Laplace transform L(f)(s) = f̂(s), integration by parts leads to the relations

L(f ′)(s) = sf̂(s)− f(0)

L(f ′′)(s) = s2f̂(s)− sf(0)− f ′(0) (4.25)

Then, applying these transformations to the dynamical Eq. (4.14), we get

s2φ̂(s, x)− sφ(0, x)− ∂

∂t
φ(0, x)− φ̂′′(s, x) + V φ̂(s, x) = 0 , (4.26)

that can be rewritten as the inhomogeneous evolution equation

−φ̂′′(s, x) +
(
V (x) + s2

)
φ̂ = I(s, x) , (4.27)

with

I(s, x) = sφ(0, x) +
∂

∂t
φ(0, x) . (4.28)

Given a solution φ̂(s, x) to (5.1.4), we obtain the solution φ(t, x) to the original dynamical
equation (4.14) with initial data

φ(0, x),
∂

∂t
φ(0, x) , (4.29)

4.3.3 Dealing with exploding modes

Complex scaling approach to QNMs

When dealing with QNMs either analytically or numerically, one would face a problem in dealing
with the exploding of the modes in both infinities. The complex scaling method was suggested
first by [1], [15] and developed later to deal with a "black box" (compactly supported resonator).
In [194] details were given to deal specially with QNMs of the problem of compactly supported
potential. The advantage of this method is to allow an estimation of the resonances multiplicity,
as it can be adopted to normalize the modes. It helps to translate the problem into another
differential problem all over the space where the fields do not explode. This method can be used
for compactly supported potentials, and also for exponentially decaying potentials.

The idea behind using complex scaling is to re-construct new non self-adjoint operator whose
discrete spectrum is the same as the studied operator (PV ), but his eigen functions are different
in both regions outside the support of the potential. To make that let us define a parametrization
γ : R→ Γ ⊂ C, where Γ is a curve C1,

Let Γ consists of three parts Γ−, Γ′, and Γ+ are such in Fig.4.5
The support of V : [−R,R] ⊂ Γ′. We construct the operator PV,z = ∂2

Γ − V For example,
let us take Γ as: z = xeθ, and θ is such that there is no resonances in the region below Γ+.
On z ∈ [−R,R] the two operators are equal PV,z = PV . In both other regions Γ−, and Γ+ we
consider the solution to (P0,z − λ)Φ = 0, Φ+ = α+e−iλz, and Φ− = α−eiλz (which are different
from the solution of (PV − λ)φ = 0, where ∂x = eiθ∂z)

Finally the considered modes over the whole space is:

φ(x) =


Φ+(x), x > L

φ(x), x ∈ [−R,R]

Φ−(x), x < −L

(4.30)
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Figure 4.5: Here we show an example of a curve Γ

where they are eigenfunctions of the operator PV,z. We have seen how the method of complex
scaling helps to deal with the scattering resonance problem boundary conditions which cause the
modes to explode at infinities. In technical simulations we do not need to treat the whole space,
in particular we do not need to deal with infinities. On the other hand we need to mimic the
physical world by assuring outgoing conditions in the far field zone. In the next paragraph we
will show the widely used method to do so.

4.3.4 Perfectly matched layer (PML)

Perfectly matched layer (PML) method is a way to terminate infinite domain calculations. It
could be seen from a physical point of view as adding a totally absorbent layer around a resonator
in the far field region in order to absorb all the outgoing waves of the resonator and to not reflect
any part of it (which is exactly what is required in scattering problems).
PML was proposed by Berenger to deal with electromagnetism problems. First he introduced
an effective absorbent medium which needed for computations and simulations in 2D [18] and
later in 3D.[19]
Considering an electromagnetic wave in free space with (Ez = 0). Maxwell equations can be
written as:

∂Hz

∂t
+ σ∗Hz =

∂Ex
∂y
− ∂Ey

∂x

∂Ey
∂t

+ σEy = −∂Hz

∂x
∂Ex
∂t

+ σEx =
∂Hz

∂y
,

(4.31)

where σ is the electric conductivity, and σ∗ is the magnetic one. If σ = σ∗ then the impedance
of the medium equals that of the vacuum, so if a wave is scattering from this medium to the
vacuum, it will encounter no impedance and no reflection will occur. The genius work of Berenger
suggests splitting the magnetic field Hz into Hzx +Hzy, so Maxwell equations can be re-written
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Figure 4.6: Perfectly match layer as it was proposed by Berenger at first time. [18]

as the following:
∂Hzy

∂t
+ σ∗(y)Hzx =

∂Ex
∂y

∂Hzx

∂t
+ σ∗(x)Hzx = −∂Ey

∂x
∂Ey
∂t

+ σ(x)Ey = −∂Hz

∂x
∂Ex
∂t

+ σ(y)Ex =
∂Hz

∂y
.

(4.32)

Imposing certain conditions on the relations between σ(x), σ(y), σ∗(x) and σ∗(y), allow to
construct a medium with no reflection.

For example when σ(y) = σ∗(y) = 0 the medium can absorb a wave propagating along x and
when σ(x) = σ∗(x) = 0 the medium can absorb a wave propagating along y. If the conductivities
of these two mediums are equal, then the medium which has interface with both do not reflect
any wave as the corners as in Fig.4.3.4.

Berenger method was derived in Cartesian coordinates for simply-shaped domains with
straight (planar) artificial boundaries. Later many studies were made to improve PMLs and
make it more flexible with respect to coordinated and the shape of the scatterer. [135], [187],
[160], [112], [50], [51] A remarkable one is on a strong relation with complex scaling method. It
depends on stretching coordinates by introducing a stretching function. It can also be regarded
as changing the metric. For a TE case equivalently to Berenger PML, a change of variables could
be made to have the same results.

x′ = x+
i

ω

∫ x

0
σ(s)ds (4.33)

The method of changing variables has advantages over Berenger’s PML in curvilinear coordi-
nates. It was shown by [52] that it gives much more accurate absorbing layer in polar and other
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coordinates.
Other improvements are mentioned in the review of [152] Review and recent developments on

the perfectly matched layer (PML) method for the numerical modeling and simulation of elastic
wave propagation in unbounded domains

The method which we adopt here in this work depends also on coordinates transfer, but from
a space-time perspective. It’s called Hyperboloidal Slices Approach. It is a beautiful method
that has some advantages especially when dealing with gravitational potentials problems that
just vanish at infinities. Here we will focus on some technical details that allows the modes to
not explode at both infinities as this is the objective of the current section.

4.3.5 A contact with hyperboloidal slices

Bizoń-Mach changing coordinates is written as:

τ = t− ln(2 cosh(x))

y = tanh(x)
(4.34)

A field φ(t, x) (in the conventions we chose) is proportional to: eiωtφx(x) in the Cartesian
coordinates. The same field will be written as eiωτφy(y) in the new coordinates.
Actually

eiωtφx(x) = eiωτe+iω ln(2 cosh(x))φx(x) = eiωτφy(y), (4.35)

thus the relation between both considered fields in both coordinates systems is:

φy(y) = e+iω ln(2 cosh(x))φx(x) (4.36)

Considering modes and as ωn = ωRn + iωIn then:

φyn(y) = e−ω
I
n ln(2 cosh(x))φxn(x) (4.37)

The part e−ωIn ln(2 cosh(x)) introduce an attenuation to the mode so they do not explode at infinities.
To be more explicit at infinities a QNM is written as:

φxn(x) ∼ e−iωnx for x→ +∞
φxn(x) ∼ e+iωnx for x→ −∞

(4.38)

But the considered modes in (τ, y) coordinates are:

φyn(y) ∼ e+iωn ln(2 cosh(x))e−iωnx for x→ +∞
φyn(y) ∼ e+iωn ln(2 cosh(x))e+iωnx for x→ −∞

(4.39)

This can be re-written as:

φyn(y) ∼ eωIn(x−ln(2 cosh(x))) for x→ +∞
φyn(y) ∼ e−ωIn(x−ln(2 cosh(x))) for x→ −∞

(4.40)

Both functions do not diverge, as limx⇒∞(ln(2 cosh(x)))) = x and the term of attenuation
compensate the divergence of modes in (t, x) coordinates.
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Chapter 5

QNM: completeness and stability issues
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This chapter touches one of the most QNMs issues debating points. In the first section that
is about completeness and resonant expansion we pass by some different senses of defining QNMs
completeness in literature then we introduce the most hitting theories and approaches related
to this issue. At the end we give a starting point for the discussion of stability of resonance
frequencies by mentioning the two keys we will be using later in results chapters, that are the
pseudospectrum and conditioning number.

5.1 Completeness

5.1.1 Introduction

Quasi normal modes completeness was studied for different systems and with different defini-
tions. We aim here at discovering some different points of view about what is meant by QNMs
completeness. To start we need to have a clear vision about what are QNMs. It is widely believed
especially in optics domain, that QNMs are the eigen solutions to the time independent wave
equation with a zero source and subject to outgoing boundary conditions. However this defini-
tion is not Mathematically rigorous, where QNMs frequencies are known as scattering resonances
and defined as the poles of the meromorphic continuation of the resolvent in the complex plan.
In the field of gravitational physics, they are known nowadays by their mathematical definition.
We adopt here this definition which was mentioned by Dyatlov et al..
Many works were done to assess the relation between the spectrum and the resolvent poles de-
pending on identifying Fredholm operators. It is stated in the article [100], and then in [21], that
if T is unbounded close operator then "T has a purely discrete spectrum if and only if T has a
Riesz resolvent". For the particular case of a QNMs problem with a compactly supported po-
tential in 1D, Dyatlov et al. [68] have proved that in this case the poles of the resolvent coincide
with the points of the spectrum which is discrete. No similar work, up to our knowledge, was
done for a compactly supported permittivity in the optical domain.
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5.1.2 The evolved definition of completeness

• It seems from the old literature in gravitational physics (before 1970) that completeness
sometimes was stated although no rigorous mathematical proof was given (similar to optical
domain nowadays)(the is explained in [55].

• Also it is obvious from the article of [27] that it was believed in the equivalence relation
between having a discrete spectrum, and the completeness in the sense of that the eigen-
functions form a basis of Hilbert space. In [27], it was written: ". All linear stability
arguments in astrophysics concerning spherically symmetric stars depend crucially on the
completeness of the eigenfunctions of the associated operators, which is equivalent to the
fact that these operators have a pure point spectrum."

• In Beyer and Schmidt article they considered that the possible incompleteness in QNMs
problems results from having a continuous part in the spectrum. The completeness they
were describing is defined as the following: On an initial hyper surface of the star one is
given Cauchy data. Completeness means that a sum of modes can be constructed which
agrees with these Cauchy data.

• This was not the case anymore in [26], where their proof of the completeness in Pöschel
teller case depended on knowing the exact QNMs frequencies, and then deducing QNMs
functions and integrating in the complex plan. The definition of the completeness that was
adopted, which is our interest here, is as the following, they wrote:
"let f be some complex-valued C∞-function with compact support and let φf be the
corresponding solution with initial values:

φf (0, x) = 0, and
dφf
dt

(0, x) = f(x). (5.1)

For all real x. Denote by φf,g the following averaged function obtained from φf ,

φf,g(t) :=

{∫
g∗(x)φf (x)dx if t ≥ 0

0 if t < 0,
(5.2)

where g is some complex-valued C∞ -function with compact support. The quasi-normal
modes of V are complete, in the sense that there is a family of complex numbers cω where
ω ∈ q(A) (QNMs frequencies) such that for for a large enough t0 and for every t ∈ [t0,∞[
: (

cω

∫ ∞
−∞

uω(y′)f(y′)dy′
∫ ∞
−∞

g∗(x′)uω(x′)dx′eiωt

)
ω∈q(A)

, (5.3)

is absolutely summable with sum φg,f (t). So the summation of this sequence (using any
order of summation) gives the quasinormal mode expansion of φg,f (t) for large times".

• We would like to refer too to the completeness definition by [155] : "QN mode completeness
means that the coefficients αn and βn can be chosen so that the sum:

θ =

∞∑
−∞,odd

(αn + iβn)(eiωnx − e−iωnx)e−iωnt, (5.4)
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agrees with any specified Cauchy data at (say) t = 0. In terms of the functions
C(x) = θ(x, t = 0), and E(x) =

∫ x
0

∂
∂tθ(x

′, t)|t=0dx
′. "

• And finally in the article of Nollert et al. [140] completeness is about expressing the evolved
field in time in term of QNMs, from the article: "A complete QNMs system, satisfies:

– The solutions to the QNMs eigenvalue problem form a discrete spectrum and can be
arranged in order of increasing |Re(ωn)|.

– We consider only Cauchy data that:

∗ has support only within a compact region,
∗ belongs to a specific continuity class Cp , where p ∈ N depends on the nature of

the problem,
∗ results in a waveform which is square integrable in t, with t ∈ [tmin,+∞[, (tmin

is the moment that Cauchy initial data start to arrive to the observed point).

– For such Cauchy data, the waveform f(t) that evolves from any such allowed Cauchy
data can be written as:

f(t) =
∑
n

ane
iωnt. (5.5)

Apart from that we will discuss three different remarkable developments to approach the
QNMs expansion.

5.1.3 Mittag-Leffler theorem

The Mittag−Leffler theorem on expansion of a meromorphic function (see , ) is one of the
basic theorems in analytic function theory, giving for meromorphic functions an analogue of the
expansion of a rational function into the simplest partial fractions. Let {an}∞n=1 be a sequence of
distinct complex numbers, |a1| ≤ |a2| ≤ . . . , with limn→∞ an =∞, and let gn(z) be a sequence
of rational functions of the form

gn(z) =

In∑
k=1

1

(z − an)k
, (5.6)

so that an is the unique pole of the corresponding function gn(z). Then there are meromorphic
functions f(z) in the complex z−plane C having poles at an, and only there, with given principal
parts 5.6 of the Laurent series corresponding to the points an. All these functions f(z) are
representable in the form of a Mittag-Leffler expansion

f(z) = h(z) +
∞∑
1

[gn(z) + pn(z)], (5.7)

where pn(z) is a polynomial chosen in dependence of an and gn(z) so that the series 5.7 is
uniformly convergent (after the removal of a finite number of terms) on any compact set K ∈ C
and h(z) is an arbitrary entire function. The Mittag-Leffler theorem implies that any given
meromorphic function f(z) in C with poles an and corresponding principal parts gn(z) of the
Laurent expansion of f(z) in a neighborhood of an can be expanded in a series 5.7 where the
entire function h(z) is determined by f(z). Mittag-Leffler gave a general construction of the
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polynomials pn(z); finding the entire function h(z) relative to a given f(z) is sometimes a more
difficult problem. To obtain 5.7 it is possible to apply methods of the theory of residues.
As a result of this theorem if one knows that the scattered field is a meromorphic function in C
and it has only simple poles, then it can be expanded over these poles.

5.1.4 Heuristic approach: Resonant expansions in Laplace

Considering again the equation (4.24). Through the inverse of the Laplace transform given by
Bromwich intregal

φ(t, x) =
1

2πi

∫ c+i∞

c−i∞
estφ̂(s, x)ds , (5.8)

where c > 0. In order to construct a solution to the inhomogeneous equation we consider the
homogeneous equation:

−Ψ̂′′(s, x) +
(
V (x) + s2

)
Ψ̂ = 0 , (5.9)

Note that thus can be written as: PV Ψ̂(s, x) = −s2Ψ̂(s, x)
Which coincide with the one in the Fourrier approach. PV Ψ̂(s, x) = λΨ̂(s, x)
Where the implicit relation: s = iw is employed. Therefore points in the complex "s-space" are
related π/2 with respect to points in the complex ω-space. The general solution of is given by
the sum of the general solution to the homogeneous plus a particular solution:

Ψ̂(s, x) = Ψ̂ge(s, x) + Ψ̂p(s, x). (5.10)

Given two particular solutions of the homogeneous equation Ψ1(s, x), Ψ2(s, x), the general so-
lution of the homogeneous is written by: ˆΨa(s, x) = a(s)Ψ1 + b(s)Ψ2 On the other hand, the
particular solution Ψ̂p of the inhomogeneous equation can be constructed from an appropriate
Green function G(s, x, x′):

Ψ̂p(s, x) =

∫ +∞

−∞
G(s, x, x′)I(s, x′)dx′. (5.11)

In 1D Green function can be constructed from two linearly independent solutions to the
homogeneous solution: f−(s, x) and f+(s, x) Then, it can be shown:

G(x, x′) =
1

W(s)
f−(s, x<)f+(s, x>) =

{
1

W(s)f−(s, x′)f+(s, x) ifx′ < x,
1

W(s)f−(s, x)f+(s, x′) ifx′ > x.
(5.12)

Where x< = min(x, x′) and x> = max(x, x′), and the Wronskian W(s) = f−(s, x)f
′
+(s, x) −

f
′
−(s, x)f+(s, x). Note that the fact that f−(s, x) and f+(s, x) are solutions of the homogeneous
equation implies the independence of W(s)with respect to x.
In our treatment the initial conditions are fixed by the source I(s, x).
The information about the homogeneous equation is fully encoded in the chosen Green function.
We must determine the chosen f−(s, x) and f+(s, x). The criterion is given by the band charecter
of Ψ(t, x) i.e. in space-time. Thus implies that the Laplace transform must be also bounded in
x.
For simplicity, let us assume that V (x) is of compact support then i.e. V (x) = 0x > xmax, x <
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xmin. For x > xmax the only solution to the homogeneous (up to a constant) that doesn’t
diverge at infinity is given by f+(x) = e−sx(x > xmax)thus fixes completely f1. Likewise the
only solution to the homogeneous diverge at −∞ is esx (Here s ∈ C,withRe(s) > 0) . The
uniqueness of f− bounded at −∞ and f+ at ∞ can be shown in general cases (for potentials
decaying sufficiently fast). Therefore we have:

lim
x→−∞

f−(x) = esx <(s) > 0, (5.13)

lim
x→+∞

f+(x) = e−sx <(s) > 0. (5.14)

(5.15)

Which are completely fixed. Note that no "ad hoc" boundary condition have been imposed.
These conditions follow from the natural requirement of boundedness of the Ψ(t, x) defined in a
Cauchy problem.

Quasi-normal modes Once the Laplace transform is calculated, we can have the space-time
picture with inverse Laplace transform:

Ψ(t, x) =
1

2πi

∫ c+i∞

c−i∞
estΨ̂(s, x)ds c > 0. (5.16)

In order to evaluate this integral we deform it in the complex plane, and applying Cauchy
theorem: ∮

Ψ̂(s, x)estds = 2πiΣqRes[Ψ̂(s, x)est, sq] (5.17)

Under the following assumptions:

• The integral on the circular contour, when the radius becomes infinitely large, is infinitely
small.

• There are no essential singularities.

• f− and f+ are analytic in s.

In this case we can write:

Ψ(t, x) =
1

2πi

∫ c+i∞

c−i∞
est
∫ +i∞

∞
G(s, x, x′)I(s, x′)dx′ds (5.18)

=
1

2πi

∮
est

1

W(s)

∫ ∞
−∞

f−(x <)f+(x >)I(s, x′)dx′ds. (5.19)

The only non analycity is related to poles associated to zeros of W(s), so we have from Cauchy
theorem:

Ψ(t, x) =
1

2πi
2πiΣqe

sqtRe[
1

W(s)
, sq]

∫ +∞

−∞
f−(s, x<)f+(s, x>)I(sq, x

′)dx′. (5.20)

For a simple pole:

Res(f, c) = lim
z→c

(z − c)f(z). (5.21)
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If f(z) = g(z)
b(z) , with g(z) and b(z) analytic and b(c) = 0, b′(c) 6= 0 Using l’hopital: Res(f, c) =

lim
z→c

(z − c)f(z) = lim
z→c

d
dt

(z−c)g(z)
d
dt
b(z)

= lim
z→c

g(z)+(z−c)g(z)
b′ (z)

= g(c)

b′ (c)
˙ Therefore

Ψ(t, x) = Σesqt
1

W(sq)

∫ +∞

−∞
f−(s, x<)f+(s, x>)I(sq, x

′)dx′. (5.22)

If the initial data have a compact support [xmin, xmax] then, for x > xmax:

Ψ(t, x) = Σesqt
1

W(sq)
f+(sq, x)

∫ +∞

−∞
f−(s, x′)I(sq, x

′)dx′ (5.23)

= Σc+
q U

+
q (t, x). (5.24)

Where

c+
q =

1

W(sq)

∫ +∞

−∞
f−(s, x′)I(sq, x

′)dx′ (5.25)

U+
q (t, x) = esqtf+(s, x). (5.26)

For x < xmin:

Ψ(t, x) = Σesqt
1

W(sq)
f−(sq, x)

∫ +∞

−∞
f+(s, x′)I(sq, x

′)dx′ (5.27)

= Σc−q U
−
q (t, x). (5.28)

Where

c−q =
1

W(sq)

∫ +∞

−∞
f+(s, x′)I(sq, x

′)dx′ (5.29)

U−q (t, x) = esqtf−(s, x). (5.30)

Zeros of the Wronskian can not occur for Re(s) > 0 indeed the solutions f+(s, x) and f−(s, x)
are linearly independent, so the W(s) 6= 0. Zeros of the Wronskian can occur for adequate
potentials, of Re(s) < 0 corresponding to the analytic extension of f+(s, .) and f−(s, .) to
Re(s) < 0 If the Wronskian equals zero f+(s, x) and f−(s, x) are proportional, as a consequence
of the boundedness condition of the Laplace transform for Re(s) > 0 the analytic extension of
f(sq, x) = f−(sq, x) = f+(sq, x) to the left half complex plane satisfy:

lim
x→−∞

f(sq, x) = esx <s > 0,

lim
x→+∞

f(sq, x) = e−sx <s < 0.

Using s = iω we recover the outgoing boundary condition:

lim
x→−∞

f(sq, x) = e+iωx, (5.31)

lim
x→+∞

f(sq, x) = e−iωx, (5.32)

with Re(s) < 0 so Im(ω) > 0.
Both Leung et al. in [119], [118] and Nollert et al. in [140], [139] used the fact that a Green

function can be written as the multiplication of two solutions of the homogeneous equation over
their Wronskian.
Both also verified or set some conditions in order to assure the vanishing of the integral over the
half circle.
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Leung et al. work

In optics, the work by Leung et al. is widely used when referring to QNMs completeness. This
is justified (in physics domain) by their statement: "The derivations presented in this paper
conform to the usual standards of rigor in physics, but do not constitute a fully mathematical
proof." In [119], they have treated a scattering problem with permittivity that only depends on
x and not on ω. The homogeneous wave equation they studied is:

[ε(x)
∂2

∂t2
− ∂2

∂x2
]φ(t, x) = 0. (5.33)

They have used WKB approximation and a certain inner product to show that having a cut in
the potential (here permittivity) leads to a complete set of QNMs.
In [118] used a permittivity that depends on x and also on ω but in a certain way to assure the
vanishing of the contour integral over the half circle.

ε(ω, x) = ε∞(x) +
c

ω
+ ... (5.34)

An important point is that they have just stated Completeness inside the cavity. Complete-
ness in their articles means that we can expand the retarded Green function as a sum over the
resonant frequencies.

G(x, y; t) =
i

2

∑
j>0

fj(x)fj(y)e−iωjt

ω << fj |fj >>
. (5.35)

Or if

δ(x− y) = Re[i
∑
j>0

fj(x)fj(y)Ij(τ)

<< fj |fj >>
], (5.36)

where fj is a solution to the homogeneous equation, Ij is the source.

Nollert et al. work

Nollert et al. in [140] have treated a Cauchy problem for the following wave equation:

[
∂2

∂t2
− ∂2

∂x2
+ V (x)]φ(t, x) = 0. (5.37)

They have assumed the condition in 5.1.2. and for a certain potential "spiked truncated dipole
potential"

VSTDP (x) = VTDP (x) + Vδδ(x− xδ), (5.38)

where

VTDP (x) =

{
0 x < x0

1
x2

x ≥ x0.
(5.39)

For this specific potential they have shown an asymptotic logarithmic behavior of the eigenvalues,
then have shown the convergence of the following series:

∑n
−n ake

skt to the evolved field.
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Application to 1D optical cavity

To build the Green function, we choose the independent solutions f− and f+ of the homogeneous
equation, as in the figures.
Solution f+:

Solution f−:

Coefficients are fixed from continuity of the field and its first derivative at the interfaces. The
Wronskian is the same in the three regions, with value

W (s) = −2C. (5.40)

That is zero for the complex frequencies of QNMs:(
n− 1

n+ 1

)2

e−2nsjL = 1 . (5.41)

Completeness for Pösch-Teller potential

Beyer in [26] treated the a Cauchy problem with a Pöschel-Teller potential; that is:

V (x) :=
V0

cosh2(x/b)
, x ∈ R. (5.42)

"A main result is that after a large enough time t0 , the solutions of this equation corresponding
to C∞-data with compact support can be expanded uniformly in time with respect to the quasi-
normal modes, thereby leading to absolutely convergent series."
The sense of completeness is as in 5.1.2.

5.1.5 Resonant expansions: Spectral approach (Lax-Phillips to Zworski)

We discuss here a version of a theory stated first by [116], and adapted later by [192] to a
theorem in Rn for odd dimensions, we consider V (x) real, bounded and with support inside a
ball of radius R0 (i.e. supp(V ) ⊂ B(0, R0)), the operator PV is given by PV = −∆ + V , and the
resolvent RV (ω) is given by (PV − ω2I)−1.

Theorem [192]
Let us consider φs(t,x) be a solution of

(
∂2
t + PV

)
φs(t,x) = 0 ,

φ(0,x) = φ1(x) ∈ H1(B(0, R1)) ,

∂tφ(0,x) = φ2(x) ∈ L2(B(0, R2)) ,

(5.43)
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where R1 ≥ R2. Then for any a > 0

φs(t,x) =
∑

Im(ωj)<a

eiωjtuj(x) + Ea(t) , (5.44)

where {ωj}∞j=1 are the resonances of PV and uj are the corresponding resonant states

uj = Resω=ωj (iRV (ω)φ2 + ωRV (ω)φ1) (5.45)

and there exists a constant Ca depending on V and R1 and a such that

||Ea(t)||H1(B(0,R1)) (5.46)

≤ Cae−ta (||φ1||H1 + ||φ2||L2) , t ≥ 0 .

Remarks

• Note that uj in the expansion is the action of the resolvent on the initial data. The
translation of that to a scattering problem would be the action of the resolvent on the
source. We remind that uj is a resonant state as defined in 4.2.2 [30].

• Note that uj are not normalized, so the theory does not define coefficients for normalized
resonant states.

Here are some remarks on the result of the theorem:
There is no guaranty that t. The only fact we have is that the error is smaller than Ce−ta, where
c is a function of a.

• If C is a constant then

∀a ∈ R+ and ∃λ0 ∈ Spec(PV ) s.t. −a < λ0 :⇒
∀ε > 0 : ∃t0 s.t. ∀t > t0 ⇒ Ce−at < ε⇒

||Ea(t)||H1(B(0,R1)) ≤ ε
||φs(t,x)−

∑
Im(ωj)<a

eiωjtuj(x)||H1(B(0,R1)) ≤ ε
(5.47)

• If C is an increasing function but slower than eat such that lim
t→∞

C(a)
eat = 0 then also waiting

a proper time then the error function vanishes for t large enough.

• If lim
t→∞

C(a)
eat =∞ the error will be growing when taking more modes into account.

• If lim
t→∞

C(a)
eat = constant this means that there is always an error of expansion that does not

vanish by taking more modes, and the field is not converging exactly to the expansion.

5.1.6 Keldysh expansion

QNM Keldysh expansion

Keldysh’s asymptotic expansion of the resolvent provides explicitly the possibility to write the
resolvent (L − ω)−1 of an operator L as a sum over ω. That is in the case of non-selfadjoint
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operators [102, 103, 129, 28, 29]. However this does not mean that the general expansion in
Keldysh theorem is uniformly converging to the resolvent besides the existence of a holomorphic
function to be added to the sum.

Let us consider a non-selfadjoint operator L and its adjoint L† with respect to a given scalar
product 〈·, ·〉. Then, right- vn and left- wn (proper) eigenvectors are defined, respectively, as the
eigenvectors of L and L†

Lvn = λnvn , L†wn = λnwn . (5.48)

Notice that vn and wn are normalizable vectors. Let us assume, for simplicity, that eigenvalues
are simple. In this context, instead of a standard normalization, let us adopt the condition

〈wn, vn〉 = −1. (5.49)

This condition can be generalized (see [102, 103, 129, 28, 29], in particular taking into account
the Jordan decomposition of L). We can then normalize one of them, but in general not both.
That is, in general vn and wn are not normalized: 〈vn, vn〉 6= 1 6= 〈wn, wn〉. In this setting, we
consider a bounded domain Ωλ ∈ C. Under appropriate hypothesis (namely the discreteness
and isolation of λn, guaranteed if L− λI is Fredholm), there is a finite number N of eigenvalues
λn ∈ Ω. In this setting, Keldysh’s expansion [102, 103, 129, 28, 29] of the resolvent in λ ∈ Ω
writes, in the “bra” , “ket” notation, as

(L− λ)−1 =
∑
λn∈Ω

|vn〉〈wn|
λ− λn

+H(λ) , (5.50)

where H(λ) is analytic in Ω (see full technical details of this case in [28]). Let us denote this
formally as

(L− λ)−1 ∼
∑
λn∈Ω

|vn〉〈wn|
λ− λn

, (5.51)

namely, the resolvent in (bounded) Ω is written as a finite sum of poles plus an analytical
function.

Note that to write a more explicit Keldysh expansion is subject to the choice of the scalar
product.
A QNMs expansion relevant to 5.1.5 and 5.1.6 will be discussed with details in 12.

5.2 QNM spectrum stability

The spectral theory of self-adjoint operators tells us that they are stable under small perturbation.
This also can be extended to normal operators on some Hilbert space. That is if P is a normal
operator with a spectrum σ(P ), then adding a small perturbation operator εE, where ||E|| = 1
(the norm in the studied Hilbert space), will not displace the eigenvalues farer than a spectral
distance of the same order of ε. More specifically, due to the well known resolvent estimate, one
can write [166] : (z − P )−1 ≤ (dist(z, σ(P )))−1.
However, for non-normal operators (z − P )−1 may be very large even when z is far from the
spectrum which makes the eigenvalues very unstable under small perturbations of the operator.
Basically there are two mathematical tools that can help to estimate the instability. Those are
the pseudospectrum which is a map over the complex plan (or a chosen region of the complex plan
in practice) (see 9) and the conditioning number that can be calculated for a certain eigenvalue
to estimate how unstable it is. Both will be discussed later in details in 9, 10.1.3 and in 10.1.2
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Stability investigation is an important issue when studying eigen value problem solutions such
as when finding QNMs frequencies. ε-pseudospectrum is a powerful tool that can be calculated
for different points of complex plan, this allows to visualize different degrees of (in)stabilities in
different areas of the plan and know for an ε order perturbation of an operator, what are the
possible values of perturbed eigenvalues. Here we introduce its notions, conditioning number
and finally discussing the pseudospectrum contour lines in relation with random perturbation.
The spectrum of a non-self-adjoint operator is potentially unstable under small perturbations
of the operator. Let us consider a linear operator A on a Hilbert space with scalar product
〈·, ·〉, and denote its adjoint by A†, satisfying 〈A†u, v〉 = 〈u,Av〉. The operator A is called
normal if and only if [A,A†]=0. In particular, a self-adjoint operator A†=A is normal. In this
setting, the ‘spectral theorem’ (under the appropriate functional space assumptions) states that
a normal operator is characterized as being unitary diagonalizable. The eigenfunctions of A form
an orthonormal basis and, crucially in the present discussion, the eigenvalues are stable under
perturbations of A. The lack of such a ‘spectral theorem’ for non-normal operators entails a
severe loss of control on eigenfunction completeness and the potential instability of the spectrum
of the operator A. Here, we focus on this second aspect.

6.1 Spectral instability: the eigenvalue condition number

Let us consider an operator A and an eigenvalue λi. Left ui and right vi eigenvectors are
characterized as 1

A†ui = λ̄iui , Avi = λivi , (6.1)

with λ̄i the complex conjugate of λi. Let us consider, for ε > 0, the perturbation of A by a
(bounded) operator δA

A(ε) = A+ ε δA , ||δA|| = 1 . (6.2)
1In the matrix case u∗iA = λiu

∗
i , with u∗ = ūt , i.e. ui are indeed left-eigenvectors.
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The eigenvalues 2 in the perturbed spectral problem

A(ε)vi(ε) = λi(ε)vi(ε) , (6.3)

satisfy

|λi(ε)− λi| = ε
|〈ui, δAvi(ε)〉|
|〈ui, vi〉|

= ε
|〈ui, δAvi〉|
|〈ui, vi〉|

+O(ε2) (6.4)

≤ ε
||ui||||δAvi||
|〈ui, vi〉|

+O(ε2) ≤ ε ||ui||||vi|||〈ui, vi〉|
+O(ε2) ,

where the first line generalizes [101, 180] the expression employed (for self-adjoint operators,
where ui = vi) in quantum mechanics first-order perturbation theory, the first inequality in the
second line is the Cauchy-Schwartz inequality and in the second inequality we make explicit use of
an operator norm || · || induced from that of the vector Hilbert space, so that ||δAv|| ≤ ||δA||||v||,
and ||δA|| = 1 in (6.2). Then, defining the condition number κi associated with the eigenvalue
λi, we can write the bound for the perturbation of the eigenvalue λi

|λi(ε)− λi| ≤ εκi, κi = κ(λi) :=
||ui|| ||vi||
|〈ui, vi〉|

. (6.5)

In the normal operator case, ui and vi are proportional (namely, since A and A† commute
they can be diagonalized in the same basis). Then, again by Cauchy-Schwartz, κi = 1 and
we encounter spectral stability: a small perturbation of order ε of the operator A entails a
perturbation of the same order ε in the spectrum. In contrast, in the non-normal case, ui and
vi are not necessarily collinear. In the absence of a spectral theorem nothing prevents ui and vi
to become close to orthogonality and κi can become very large: small perturbations of A can
produce large deviations in the eigenvalues. The relative values of κi control the corresponding
instability sensitivity of different λi’s to an operator perturbation 3.

6.2 Pseudospectrum

A complementary approach to the study of the spectral (in)stability of the operator A under
perturbations consists in considering the following questions:

Given the operator A and its spectrum σ(A), which is the set of complex numbers λ ∈ C that
are actual eigenvalues of “some” small perturbation A+ δA, with ||δA|| < ε? Does this set extend
in C far from the spectrum of A?

In this setting, if we are dealing with an operator that is spectrally stable, we expect that
the spectrum of A + δA will not change strongly with respect to that of A, so that the set of
λ ∈ C corresponding to the first question above will not be far from σ(A), staying in its vicinity
at a maximum distance of order ε. On the contrary, if we find a tiny perturbation δA of order
||δA|| < ε such that the corresponding eigenvalues of A + δA actually reach regions in C at
distances far apart from σ(A), namely orders of magnitude above ε, we will conclude that our
operator suffers of an actual spectral instability.

2Specifically, we consider “proper eigenvalues” in the sense of belonging to the point spectrum σp(A) of A, in
particular not being part of the continuum spectrum σc(A) of the operator. For simplicity, we consider eigenvalues
of multiplicity one.

3Still, certain eigenvalues of a non-normal operator (but not all) can have condition number equal to one.
A ’normal eigenvalue’ is defined as an eigenvalue λ with κ(λ) = 1. This notion can be helpful in the study of
particular stable eigenvalues in the possibly unstable spectrum of a non-normal operator.
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6.2.1 Pseudospectrum and operator perturbations

The previous discussion is formalized in the notion of pseudospectrum, leading to its following
(first) definition 4.

Definition 1 (Pseudospectrum: perturbative approach). Given A ∈ Mn(C) and ε > 0, the
ε-pseudospectrum σε(A) of A is

σε(A) (6.6)
= {λ ∈ C, ∃ δA∈Mn(C), ||δA|| < ε : λ∈σ(A+ δA)}.

This notion of ε-pseudospectrum σε(A) is a crucial one in our study of eigenvalue instability
since it implies that points in σε(A) are actual eigenvalues of some ε-perturbation of A: if σε(A)
extends far from the spectrum σ(A) for a small ε, then a small physical perturbation δA of A
can produce large actual deviations in the perturbed physical spectrum. The pseudospectrum
becomes a systematic tool to assess spectral (in)stability, as illustrated in the hydrodynamics
context [179].

Although the characterization (6.6) of σε(A) neatly captures the notion of (in)stability of
A, from a pragmatic perspective it suffers from the drawback of not providing a constructive
approach to build such sets σε(A) for different ε’s (see however subsection 6.3 below, for a further
qualification of this question in terms of random perturbation probes).

6.2.2 Pseudospectrum and operator resolvent

To address the construction of pseudospectra, another characterization of the set σε(A) in (6.6)
of Definition 1 is very useful. Such second characterization is based on the notion of the resolvent
RA(λ) = (λId−A)−1 of the operator A.

An eigenvalue λ of A is a complex number that makes singular the operator (λId−A). More
generally, the spectrum σ(A) of A is the set {λ ∈ C} for which the resolvent RA(λ) does not exist
as a bounded operator (cf. details and subtleties on this notion in e.g. [101, 169]). This spectrum
concept is a key notion for normal operators but, due to spectral instabilities discussed above,
σ(A) is not necessarily the good object to consider for non-normal operators, in our context.
The notion of ε-pseudospectrum enters then in scene. Specifically, an equivalent characterization
of the ε-pseudospectrum set σε(A) in Definition 1 is given by the following definition [180, 169].

Definition 2 (Pseudospectrum: resolvent norm approach). Given A ∈ Mn(C), its resolvent
RA(λ) = (λId−A)−1 and ε > 0, the ε-pseudospectrum σε(A) of A is characterised as

σε(A) = {λ ∈ C : ||RA(λ)|| = ||(λId−A)−1|| > 1/ε}. (6.7)

This characterization captures that, for non-normal operators, the norm of the resolvent
RA(λ) can be very large far from the spectrum σ(A). This is in contrast with the normal-
operator case, where (in the || · ||2 norm)

||RA(λ)||2 ≤
1

dist(λ, σ(A))
. (6.8)

4For the sake of simplicity and clarity, we dwell at the matrix level [180]. For the discussion in general Hilbert
spaces, cf. [169].
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In the non-normal case, one can only guarantee (e.g. [180])

||RA(λ)||2 ≤
κ

dist(λ, σ(A))
, (6.9)

where κ is also a condition number, different but related to the eigenvalue condition numbers κi
in (6.5) (κ, associated with the matrix diagonalising A, provides an upper bound to the individual
κi’s; see [180] for details). In the non-normal case, κ can become very large and ε-pseudospectra
sets can extend far from the spectrum of A for small values of ε. The extension of σε(A) far from
σ(A) is therefore a signature of strong non-normality and indicates a poor analytic behavior of
RA(λ).

The important point here is that the characterization of the ε-pseudospectrum in Definition
2, namely Eq. (6.7), provides a practical way of calculating σε(A). If we calculate the norm of
the resolvent ||RA(λ)|| as a function of λ = Re(λ) + iIm(λ) ∈ C, this provides a real function
of two real variables (Re(λ), Im(λ)): the boundaries of the σε(A) sets are just the ‘contour
lines’ of the plot of this function ||RA(λ)||. In particular, ε-pseudospectra are nested sets in C
around the spectrum σ(A), with ε decreasing towards the ‘interior’ of such sets and such that
lim
ε→0

σε(A) = σ(A).

6.2.3 Pseudospectrum and quasimodes

For completeness, we provide a third equivalent characterization of the pseudospectrum in the
spirit of characterising λ’s in the ε-pseudospectrum set σε(A) as ‘approximate eigenvalues’ of A,
‘up-to an error’ ε, with corresponding ‘approximate (right) eigenvectors’ v. Specifically, it holds
[180, 169] that σε(A) can be characterised also by the following (third) definition.

Definition 3 (Pseudospectrum: quasimode approach). Given A ∈Mn(C) and ε > 0, the ε-
pseudospectrum σε(A) of A and its associated ε-quasimodes v ∈ Cn are characterised by

σε(A) = {λ ∈ C,∃v ∈ Cn : ||Av − λv|| < ε} . (6.10)

This characterisation introduces the notion of “ε-quasimode” v (referred to as “pseudo-mode”
in [180]), a key notion in the semiclassical analysis approach to the spectral study of A [169].
On the other hand, this third characterization also clearly indicates the numerical difficulty
that may occur when trying to determine the actual eigenvalues of A, since round-off errors are
unavoidable. This signals the need of a careful treating, whenever addressing numerically the
spectral problem of a non-normal operator A.

6.2.4 Pseudospectrum and choice of the norm

In this subsection we have presented the ε-pseudospectrum as a notion that may be more adapted
to the analysis of non-normal operators than that of the spectrum. We must emphasize however,
that the notion of spectrum σ(A) is intrinsic to the operator A, whereas the ε-pseudospectrum
σε(A) is not, since it also depends on the choice of an operator norm. This is crucial, since it
determines what we mean by ‘big/small’ when referring to the perturbation δA, and therefore
critically impacts the assessment of stability: a small operator perturbation δA in a given norm,
can be a large one when considering another norm. In the first case, from a large variation δλ
in the eigenvalues we would conclude instability, whereas in the second case such variation could
be consistent with stability.
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In this sense, from a mathematical perspective, the study of spectral (in)stability through
pseudospectra amounts, in a good measure, to the identification of the proper scalar product
determining the norm, that is, to the identification of the proper Hilbert space in which the
operator A acts. However, from a physical perspective we might not have such a freedom to
choose a mathematically conveniently rescaled norm, since what we mean by large and small
may be fixed by the physics of the problem, e.g. by the size of involved amplitudes, intensities or
the energy contained in the perturbations. Then, the choice of an appropriate norm, both from
a mathematical and physical perspective, is a fundamental step in the analysis (cf. discussion in
[81]). This is the rationale behind the choice of the energy norm || · ||E in (8.20). Once the norm
is chosen, the equivalent characterizations in Definitions 1, 2 and 3, respectively Eqs. (6.6), (6.7)
and (6.10), emphasize complementary aspects of the ε-pseudospectrum notion and the σε(A)
sets.

6.3 Pseudospectrum and random perturbations

When considering the construction of pseudospectra, we have presented the characterization of
σε(A) in terms of the resolvent RA(λ) in Definition 2, Eq. (6.7), as better suited than the one
in terms of spectra of perturbed operators in Definition 1, Eq. (6.6). The reason is that the
former involves only the unperturbed operator A, whereas the latter demands a study of the
spectral problem for any perturbed operator A + δA with small δA: a priori, the difficulty to
explicitly control such space of possible δA perturbations hinders an approach based on such
characterisation in Definition 1.

But the very nature of the obstacle suggests a possible solution, namely to consider the sys-
tematic study of the perturbed spectral problem under random perturbations δA as an avenue to
explore ε-pseudospectra sets. This heuristic expectation actually withstands a more careful anal-
ysis and constitutes the basis of a rigorous approach to the analysis of pseudospectra [169]. From
a practical perspective, the systematic study of the spectral problem of A+ δA with (bounded)
random δA with ||δA|| ≤ ε, has proven to be an efficient tool to explore the ‘migration’ of eigen-
values through the complex plane (inside the ε-pseudospectra) [180]. This is complementary
to (and ’technically’ independent from) the evaluation of σε(A) from the contour-lines of the
norm ||RA(λ)|| of the resolvent. Such complementarity of approaches will prove key later in our
analysis of Nollert & Price’s high-frequency perturbations of the Schwarzschild’s potential and
the related QNMs.

Two important by-products of this random perturbation approach to the pseudospectrum
are the following:

i) Random perturbations help identifying instability-triggering perturbations: ε-pseudospectra
and condition numbers κi are efficient in identifying the instability of the spectrum and/or
a particular eigenvalue λi, respectively. However, they do not inform on the specific kind of
perturbation actually triggering the instability. This can be crucial to assess the physical
nature of the found instability. The use of families of random operators adapted to specific
types of perturbations sheds light on this precise point. We will make critical use of this
in our assessment of Schwarzschild’s (in)stability.

ii) Random perturbations improve analyticity: a remarkable and apparently counter-intuitive
effect of random perturbations is the improvement of the analytic behaviour of RA(λ) in
λ ∈ C [169]. In particular, the norm ||RA(λ)|| gets reduced away from σ(A), as for normal
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operators [cf. Eq. (6.8)], so that the ε-pseudospectra sets pattern becomes “flattened” (a
signature of good analytic behaviour) below the random-perturbation scale ε.

To complement this perspective on the relation between the two given approaches to spectral
(in)stability, namely perturbation theory and ε-pseudospectra, respectively subsections 6.1 and
6.2, let us connect eigenvalue condition numbers κ(λi) with ε-pseudospectra σε(A). The question
we want to address is: how far can the ε-pseudospectrum σε(A) get away from the spectrum
σ(A)? The κi’s provide the answer.

Let us define the ‘tubular neighbourhood’ ∆ε(A) of radius ε around the spectrum σ(A) as

∆ε(A) = {λ ∈ C : dist (λ, σ(A)) < ε} , (6.11)

which is always contained in the ε-pseudospectrum σε(A) [180]

∆ε(A) ⊆ σε(A) . (6.12)

The key question is about the inclusion in the other direction. Normal operators indeed satisfy
[180]

σε2(A) = ∆ε(A) , (6.13)

where σε2(A) indicates the use of a || · ||2 norm. That is, a (||δA|| < ε) perturbed eigenvalue of
a normal operator can move up to a distance ε from σ(A). This is what we mean by spectral
stability: an operator perturbation of order ε induces an eigenvalue perturbation also of order ε.
However, in the non-normal case, where κ(λi) > 1, it holds (for small ε) [180]

σε(A) ⊆ ∆εκ(A) :=
⋃

λi∈σ(A)

∆εκ(λi)+O(ε2)({λi}) , (6.14)

so that σε(A) can extend into a much larger tubular neighbourhood of radius ∼ εκ(λi) around
each eigenvalue, signaling spectral instability if κ(λi) � 1. This bound is the essential content
of the Bauer-Fike theorem relating pseudospectra and eigenvalue perturbations (cf. [180] for a
precise formulation).
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7.1 Introduction

The goal in this chapter is to explain the tools we used to calculate numerically QNMs and its
corresponding frequencies. In particular, we used spectral methods. There are various numerical
methods that deal with partial differential equation problem. Weighted residuals methods used in
applied mathematics normally give insight into the operator. These methods are finite difference
method (FDM), finite element method (FEM), and spectral methods. Such methods depend on
discretization the studied domain I and search for numerical solution that satisfies the equation
with a least possible error. The solution in these methods (also called the trial function) is
expanded in terms of basis functions (also called approximating functions). A test function
also is used in order to achieve the least error of the approximation, by minimizing the residual
in the differential equation that is generated by using the trial function instead of the exact
solution. Finite difference method is known to be the simplest method, but it provides a point
wise approximation. Finite element method is widely used to solve physical and engineering
problems, due to its flexibility of handling complex geometries. It depends on dividing the
studied domain into many sub domains, and find the suitable expansion in each, this makes the
approximating functions local and not infinitely differentiable. Spectral methods is known to
provide the most efficient tools to solve numerically ordinary and partial differential equations,
as well as eigenvalues problems for a required accuracy.

They are known to be global methods, as they expand the solution into a basis over the whole
domain. Actually the value of the derivative of a function at a point depends on the value of the
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function at all other points. Being global methods make the resulting solutions global smooth
functions.

There are sub methods (collocation, Galerkin, tau) regarding to the test function. Tau
method enforce that the product of the residual resulting from a basis function the as many as
possible basis functions is zero. While in Galerkin the product of such a residue is enforced to be
as zero with as many as possible of a recombined basis. So when dealing with a non-self adjoint
operator one needs to study and choose a proper scalar product. Collocations method avoid such
a problem, it chooses test functions to be delta functions at a selected set of points (collocation
points) and guaranty that the residue of each of the basis functions is zero at these points.
The use of collocations method were made first for spatially periodic problems by Kreiss and
Oliger (1972) [109] and by Orszag (1972) [144]. Orszag’s work in a series of articles started by
1969 [143] is considered to be the basic work in developing spectral methods in general. Many
studies were made to compare the efficiency and accuracy of different methods using different
models of differential equations. All found that the collocations method is at the same efficiency
or the most efficient one. [144], [70], [92], [95], [121].

Regarding the basis functions, it is natural to choose Fourier basis for periodic systems.
While for non-periodic ones we need algebraically polynomials such as Chebyshev polynomials.
The work in this chapter is inspired by the book of Canuto, Hussaini, Quarteroni and Zang [38]
(the same authors of a landmark book in 1988 about modern spectral methods), and the famous
book of Trefethen [178], which put these methods in practice showing examples, and software
codes. As it follows closely the detailed work by Marcus Ansorg (2013) [9], which is the main
reference to this chapter. This chapter contains an introduction to differential matrices, then we
move to the particular case of Chebyshev, explaining different grids that could be used and its
differentiation matrices, then we shall finish by introducing the numerical method of integrating
using Chebyshev polynomials.

7.1.1 Introduction to differential matrices

Let us have a differential equation in some finite domain I in which the solution φ̃ depends on
the variable x. We will call the solution we are searching to find: φ, and will denote xi to the
grid points that discretize I, ψi give the values of the derivative of φ at the points of the grid xi.
First we shall consider a grid where it is equally sparse. h gives the step: h = xi+1 − xi. The
second order finite difference approximation is:

ψi =
φi+1 − φi−1

2h
. (7.1)

If the problem is periodic then

ψ0 =
φ1 − φN

2h
, (7.2)

and

ψN =
φ0 − φN−1

2h
. (7.3)
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And the differentiation matrix will be as in the following equation:

ψ0

...

ψN


= h−1



0 1
2 −1

2

−1
2 0

. . .

. . .

. . . 0 1
2

1
2 −1

2 0





φ0

...

φN


. (7.4)

Let us suppose that the problem is not periodic and we have homogeneous Dirichlet boundary
conditions. We will have φ−1 = φN+1 = 0. And the differential matrix becomes as in the
equation:



ψ0

...

ψN


= h−1



0 1
2 0

−1
2 0

. . .

. . .

. . . 0 1
2

0 −1
2 0





φ0

...

φN


. (7.5)

Making this point, we stress here the effect of the boundary conditions on the differential matrix.
Another way to write ψi is to consider polynomials pi, where pi(xj) = φj , and ψi = p′i(xi). We
can write pi such that:

pi(x) = φi−1a−1(x) + φia0(x) + φi+1a1(x), (7.6)

where:

a−1(x) =
(x− xi)(x− xi+1)

2h2

a0(x) = −(x− xi−1)(x− xi+1)

2h2

a1(x) =
(x− xi−1)(x− xi)

2h2

(7.7)

Differentiate pi(x) and evaluate it at xi gives ψi. I have introduced the last method in order to
generalize it from two aspects:

• A second-order approximation for the derivative of φ was used. Spectral methods the-
oretically takes this order to infinity. practically to a big number of order as possible,
which makes the derivative at one point depends on the function at all other points (global
methods).

• pi are polynomials used to expand the solution. It could be trigonometric, such as Fourier
basis polynomials, which is used for periodic problems. As it could be algebraic, such as
Chebyshev polynomials.

The next sections discuss the choice of the grid as well as the choice of the polynomial used to
expand the solution.
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7.2 The choice of Chebyshev polynomials

7.2.1 Conditions for choosing a basis

We want to approximate a function φ(x) by using basis functions φi(x), so The expansion in
terms of basis functions should verify:

• The partial sum
∑N

k=0 ckφi(x) should converges fast to the function itself as N →∞

• Given a function, the calculation of the coefficients ck should be easy. As reconstructing a
function knowing the coefficients should be easy too.

• Given a function φ(x) approximated by
∑N

k=0 ckφi(x), it should be easy to find another set
of coefficients ak such that: the derivative φ′(x) can be approximated by

∑N
k=0 akφi(x).

Chebyshev polynomials meet all the three requirements, the choice of the grid, and the require-
ments of our problem which is solving eigenvalue problem in a non-periodic settings.

7.2.2 Chebyshev polynomials of the first kind

Chebyshev polynomials of the first kind are defined through the identity :

Tk(cosθ) = cos(kθ) (7.8)

It can be written also for |x| < 1 as:

Tk(x) = cos(k arccos(x)) (7.9)

The following lines gives the few first Chebyshev polynomials:

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − x

(7.10)

Here are a few of their important properties, which will help for the rest of the chapter:

• Recursion relation
Because of:cos((k + 1)φ) + cos((k − 1)φ) = 2 cos(kφ) cos(φ) Then Chebyshev polynomials
satisfy the following recursion relation:

Tk+1 = 2xTk(x)− Tk−1(x) (7.11)

• Orthogonality relation
Chebyshev polynomials are orthogonal with respect to the weighting function 1√

(1−x2)
, on

the interval [−1,−1] they verify:

< Tn, Tm >w=

∫ +1

−1

Tn(x) Tm(x)√
(1− x2)

=

∫ π

0
cos(nφ) cos(mφ)dφ =


0 m 6= n
π

2
m = n 6= 0

π m = n = 0

(7.12)
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Figure 7.1: Runge phenomena

• Expansion
Let ψ(x) ∈ L2

w([−1,+1]), then it can be written as:

ψ(x) =
cψ0
2

+

∞∑
1

cψkTk(x) (7.13)

7.3 Chebyshev grids: Gauss, Lobatto, Radau

Keeping in mind that our problem is not a periodic one, to choose a grid, the first idea that
might comes to mind is to choose equally spaced points. However Carl Runge discovered in 1901
that a problem of oscillations at the boundaries might happen in this context when a smooth
function is interpolated by polynomials [161]. To understand this phenomena we choose here the
same function in Trefethen book:

f(x) =
1

1 + 16x2
, (7.14)

Then will calculate the values of this function at equally spaced grid, and finally interpolate a
function that fits these values (using software). The result of that is shown in Fig.7.1. Obviously
the problem appears near the edges, to avoid that a standard choice is Chebyshev nodes, since
the density of the collocation points will be more near the edges choosing this kind of grid. In
the following illustrations (as Ansorg did) we consider a domain [−1,+1]. Obviously this can be
mapped to any other single domain. Essentially Three types of grids can be taken into account.
That depends on what boundary points to consider or not, so it depends on the application:
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• Chebyshev-Gauss grid, where the points corresponds to the roots of Chebyshev polynomial.

xj = cos(
π(j + 1

2)

N + 1
) : j = 0, 1, 2, ...., N (7.15)

And φj =
π(j+ 1

2
)

N+1 . Note that this grid contains no boundary points, x0 = cos( π
2N+2) < 1,

and xN = − cos( π
2N+2) > −1.

• Chebyshev-Lobatto grid, where the points are the extrema of Chebyshev polynomial:

xj = cos(
jπ

N
) : j = 0, 1, 2, ..., N (7.16)

Note that this grids contain the two boundary points, x0 = +1, and xN = −1.

• Right Chebyshev-Radau grid. Its points correspond to the following formula:

xj = cos(
2πj

2N + 1
) : j = 0, 1, 2, ....N (7.17)

This corresponds to the Fourier points: φj = 2πj
2N+1 . So this grid contains the right boundary

edge x0 = +1 but not the left one x0 = cos( 2πN
2N+1) > −1.

• Left Chebyshev-Radau grid. Its points correspond to the following formula:

xj = − cos(
2πj

2N + 1
) = cos(

π(2N + 1− 2j)

2N + 1
) : j = 0, 1, 2, ....N (7.18)

This corresponds to the Fourier points: φj = π − 2πj
2N+1 . So this grid contains the left

boundary edge x0 = −1 but not the right one x0 = cos( π
2N+1) < 1.

Fig.7.2 shows the interpolation over Chebyshev points for the same function eq.7.14, using
Chebyshev-Lobatto grid. The error here is defined as the norm of the difference of the function
values at equally spaced grid and the value of the interpolated function at these values. Fig.7.3
shows the convergence of the error using Chebyshev grid.

7.4 Chebyshev expansion coefficients

Writing eq.7.13 for the points of a Chebyshev grid, and till a certain N one gets:

ψ(xj) =
cψ0
2

+

N∑
1

cψkTk(xj) =
c0

2
+

N∑
1

ck cos(kφj) (7.19)

With χj = χ(φj) = ψ(xj) = ψ(cosφj), one gets:

χj =
+N∑

k=−N
γke

ikφj (7.20)

Thus: γk = ck
2
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Figure 7.2: Interpolating a function using Chebyshev grid

Figure 7.3: Error of interpolating a function using Chebyshev grid
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The coefficients for different grids

• Coefficients in Gauss grid:

cm =
2

N + 1

N∑
j=0

ψ(xj)Tm(xj) (7.21)

• Coefficients in Lobatto grid:

cm =
2− δmN

4N
(ψ(1) + (−1)mψ(−1) + 2

N−1∑
j=1

ψ(xj)Tm(xj)) (7.22)

• Coefficients in Right-Radau grid:

cm =
4

2N + 1
(
ψ(1)

2
+

N∑
j=1

ψ(xj)Tm(xj)) (7.23)

• Coefficients in Left-Radau grid:

cm =
4

2N + 1
(
(−1)m ψ(−1)

2
+

N∑
j=1

ψ(xj)Tm(xj)) (7.24)

7.5 Chebyshev differential matrix

7.5.1 Right Radau

D1
mj =



N

3
(N + 1) m = j = 0

(−1)j
√

2(1 + xj)

(1− xj)
m = 0, j 6= 0

(−1)m+1

√
2(1− xm)

√
1 + xm

m 6= 0, j = 0

−1

2(1− x2
m)

m = j 6= 0

(−1)m−j

xm − xj

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(7.25)
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and those of the second order differentiation matrix:

D2
mj =



1

15
(N − 1)N(N + 1)(N + 2) m = j = 0

(−1)j
2
√

2
√

1 + xj

3(1− xj)2
[N(N + 1)(1− xj)− 3] m = 0, j 6= 0

(−1)m+1(2xm + 1)
√

2(1− xm)2(1 + xm)
3
2

m 6= 0, j = 0

−N(N + 1)

3(1− x2
m)
− xm

(1− x2
m)2

m = j 6= 0

(−1)m−j(2x2
m − xm + xj − 2)

(xm − xj)2(1− x2
m)

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(7.26)

7.5.2 Left Radau

D1
mj =



−N
3

(N + 1) m = j = 0

(−1)j+1

√
2(1 + xj)

(1− xj)
m = 0, j 6= 0

(−1)m√
2(1− xm)

√
1 + xm

m 6= 0, j = 0

1

2(1− x2
m)

m = j 6= 0

(−1)m−j

xj − xm

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(7.27)
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and those of the second order differentiation matrix:

D2
mj =



1

15
(N − 1)N(N + 1)(N + 2) m = j = 0

(−1)j
2
√

2
√

1 + xj

3(1− xj)2
[N(N + 1)(1− xj)− 3] m = 0, j 6= 0

(−1)m+1(2xm + 1)
√

2(1− xm)2(1 + xm)
3
2

m 6= 0, j = 0

−N(N + 1)

3(1− x2
m)
− xm

(1− x2
m)2

m = j 6= 0

(−1)m−j(2x2
m − xm + xj − 2)

(xm − xj)2(1− x2
m)

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(7.28)

7.5.3 Gauss

D1
mj =



xm
2(1− x2

m)
m = j

(−1)m−j

√
1− x2

j

(xm − xj)
√

1− x2
m

m 6= j

(7.29)

and those of the second order differentiation matrix:

D2
mj =



xm
(1− x2

m)2
− N(N + 2)

3(1− x2
m)

m = j

(−1)m−j

√
1− x2

j

(xm − xj)
√

1− x2
m

(
xm

(1− x2
m)
− 2

xm − xj
) m 6= j

(7.30)

7.5.4 Lobatto

D1
mj =



−2N2 + 1

6
m = j = 0

2N2 + 1

6
m = j = N

−xj
2(1− x2

j )
m = j 6= 0, N

κm
κj

(−1)m−j

(xm − xj)
m 6= j

(7.31)
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and those of the second order differentiation matrix:

D2
mj =



N2 − 1

15
m = j = 0, N

−1

(1− x2
j )

2
− N2 − 1

3(1− x2
j )

m = j 6= 0, N

2

3

(−1)j

κj

(2N2 + 1)(1− xj)− 6

(1− xj)2
0 = m 6= j

2

3

(−1)N+j

κj

(2N2 + 1)(1 + xj)− 6

(1 + xj)2
N = m 6= j

(−1)m−j

κj

x2
m + xmxj − 2

(xm − xj)2(1− x2
m)

0 6= m 6= N, j 6= m

(7.32)

where:

κj =

{
1 0 < j < N

2 j = 0, N
(7.33)

Example
To show the accuracy of these differential matrix, we have followed the Trefethen by calculating
the derivative of different functions using the differentiation matrix in Gauss grid. Fig.7.4 shows
the error for different number of points of Gauss grid.

Figure 7.4: Error of differentiating a function using Chebyshev differential matrix
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7.6 Chebyshev integration formula

General relation for all Chebyshev grids
Following Ansorg, we shall show here the integration of a function in a general Chebyshev grid

I =

∫ +1

−1
ψN (x)dx =

∫ +1

−1
[
c0

2
+

N∑
k=1

ckTk(x)]dx (7.34)

So

I = c0 +

N∑
k=1

ck

∫ +1

−1
Tk(x)dx

= c0 +
N∑
k=1

ck

∫ π

0
sin(φ) cos(kφ)dφ

= c0 +
1

2

N∑
k=1

ck

∫ π

0
sin[(k + 1)φ]− sin[(k − 1)φ]dφ

= c0 +
1

2

N∑
k=1

ck[
− cos[(k + 1)φ]

k + 1
+

cos[(k − 1)φ]

k − 1
]π0

= c0 +
1

2

N∑
k=1

ck[−
(−1)k+1 − 1

k + 1
+

(−1)(k − 1)− 1

k − 1
]

= c0 +

[N
2

]∑
k=1

c2k[
1

2k + 1
− 1

2k − 1
]

(7.35)

and finally:

I = c0 − 2

[N
2

]∑
k=1

c2k[
1

4k2 − 1
] (7.36)

where [x] is the rounding function, i.e. the largest integer which is less or equal x. Using the
expression of ck for Gauss grid and inserting it in the previous equation, we get the integral in
this grid as: Gauss

I =
2

N + 1

N∑
j=0

ψ(xj)T0(xj)−
4

N + 1

N∑
j=0

ψ(xj)

[N
2

]∑
k=1

[
T2k(xj)

4k2 − 1
]

=
2

N + 1

N∑
j=0

ψ(xj)[T0(xj)− 2

[N
2

]∑
k=1

T2k(xj)

4k2 − 1
]

(7.37)

7.7 Chebyshev scalar product matrix

To be more precise, a scalar product between η1, and η2 with respect to L2-norm is:

〈ζ1, ζ2〉 =

∫
ζ∗1 (x)ζ2(x)dx, (7.38)
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where ζ∗ is the conjugate transpose of ζ. On the level of numerics, using Chebyshev spectral
methods, let us name the discretized version of ζ as η, to perform the integration according to
eq.7.36, (and then eq.7.37 for Gauss grid, and the same for the other grids), we need to sum over
η∗1η2. Here we write the explicit formulas for the integration matrix in each of the four grids.

Gauss The proper scalar product in the case of a Gauss grid is:

〈η1, η2〉 =
2

N + 1

N∑
j=0

η∗1(xj)η2(xj)[T0(xj)− 2

[N
2

]∑
k=1

T2k(xj)

4k2 − 1
] (7.39)

This can be performed by constructing a diagonal matrix IM , and calculating the scalar
product as the following:

〈η1, η2〉 = η∗1 × IM × η2, (7.40)

where IM in the case a of Gauss grid (using eq.7.39 , and eq.7.40) is:

IMij =

T0(xj)− 2

[N
2

]∑
k=1

T2k(xj)

4k2 − 1
i = j

0 i 6= j

(7.41)

Running the same calculations for the other grids, one gets an integration matrix in each,
as the following:

• Lobatto

IMij =



0 i 6= j

1

2N
[1−

[N
2

]∑
k=1

(2− δ2k,N )
1

4k2 − 1
] i = j = 0, N

1

N
[1−

[N
2

]∑
k=1

(2− δ2k,N )
T2k(xj)

4k2 − 1
] others

(7.42)

• Right Radau

IMij =



0 i 6= j

2

2N + 1
[1− 2

[N
2

]∑
k=1

1

4k2 − 1
] i = j = 0

4

2N + 1
[1− 2

[N
2

]∑
k=1

T2k(xj)

4k2 − 1
] others

(7.43)

• Left Radau Exactly as in right Radau

IMij =



0 i 6= j

2

2N + 1
[1− 2

[N
2

]∑
k=1

1

4k2 − 1
] i = j = 0

4

2N + 1
[1− 2

[N
2

]∑
k=1

T2k(xj)

4k2 − 1
] others

(7.44)
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To conclude having a scalar product defined by the eq.7.38, is performed numerically as
in eq.7.40. For a more general scalar product, the scalar product matrix IM could become
non-diagonal, for example for the following definition of a scalar product:

〈ζ1, ζ2〉 =

∫
(∂xζ1)∗(x)(∂xζ2(x))dx, (7.45)

The new scalar product matrix G will incorporate the differentiation matrix, as the following:

G = D∗ × IM ×D (7.46)

where D is the first order differentiation matrix, and D∗ its conjugate transpose.

7.8 Chebyshev Adjoint matrix

For the numerics case, where we are dealing with a finite dimensional spaces, and for the sake
of simplicity, we shall be concerned in this section about the adjoint definition restricted to our
case.
Let V , W be finite dimensional spaces and T ∈ L(V,W ).
The adjoint of T is the unique element T ∗ ∈ L(W,V ) satisfying the identity: 〈v, T ∗w〉 = 〈Tv,w〉.
Coming back to matrices, the adjoint matrix of A is A∗ such that:

〈Aη1, η2〉 = 〈η1, A
∗η2〉 (7.47)

In the previous section, it is explains that a scalar product, could be numerically calculated
using:

〈η1, η2〉 = η†t1 ×G× η2. (7.48)

where η†t is the conjugate transpose of η (not to be mixed with ∗ here which means the adjoint
that can be defined in other ways). Applying eq.7.48 to eq.7.47, leads to:

η†t1 A
†t ×G× η2 = η1 ×G×A∗η2 (7.49)

which leads to have:
A†t ×G = G×A∗ (7.50)

and finally, the adjoint is:
A∗ = G−1 ×A†t ×G (7.51)



Chapter 8

Hyperboloidal approach to QNM

A key pillar of the general methodology we are using to study different wave equations is to write
them in hyperboloidal slices coordinates. In this chapter we explain this approach explicitly.

8.1 Hyperboloidal approach: a heuristic introduction

Our approach to QNMs strongly relies on casting the discussion in terms of the spectral problem
of a (non-selfadjoint) operator. In our scheme, this is achieved by means of a so-called hyper-
boloidal approach to wave propagation, that provides a systematic framework exploiting the
geometric asymptotics of the spacetime, in particular enforcing the relevant outgoing boundary
conditions in a geometric way. We start with a heuristic discussion of the basics, aiming at
providing an intuitive picture and explicitly sacrificing rigor.

The notion of wave zone is a familiar concept in physics. It describes a region far away
from a source where the degrees of a freedom of a given field (non-necessarily linear) propagate
as a free wave, independently of their interior sources and obeying the superposition principle.
Roughly speaking, this region is characterised by r/R � 1, where r is the location of a distant
observer and R is a typical length scale of the source. This concept is addressed formally by
taking appropriate limits r → ∞ or 1/r → 0. From a spacetime perspective, however, such a
limit must be carefully understood.

To fix ideas, let us consider a physical scenario in spherical symmetry, where a wave prop-
agating at finite speed is described in a standard spherical coordinate system (t, r, θ, ϕ) (for
simplicity, let us consider momentarily a flat spacetime where we ignore gravity effects). The
retarded time coordinate u = t−r corresponds to the time at which an outgoing wave, passing by
the observer at r at time t, was emitted by a source located at the origin. Crucially, “light rays”
propagate along (characteristic) curves satisfying u = const. In this setting, and as illustrated
in Fig. 8.1, taking the limit r → ∞ corresponds to completely different geometric statements
depending on whether one stays at the hypersurface t = const or rather on u = const. The limit
attained by ’spacelike’ (geodesic) curves satisfying the former condition (t = const) is referred to
as ’space-like infinity’ and denoted i0, whereas lightlike or null (future geodesic) curves satisfying
the latter condition (u = const) attain a limit referred to as future null infinity, denoted as I+.
It is future null infinity I+ that formally captures the intuitive notion of outgoing wave zone.

Other alternatives to the t = const and u = const hypersurfaces are possible, something
natural in a general relativistic context implementing coordinate choice freedom. A particularly
convenient possibility in our present problem consists in choosing a third alternative: to keep
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space-like hypersurfaces defined as level sets of an appropriate time function τ , while reaching
future null infinity as r → ∞ so as to enforce the outgoing character of the radiation. Such a
third option is displayed in Fig. 8.1 as a τ = const hypersurface. The asymptotic geometry of
such hypersurfaces is that of a hyperboloid, a feature giving name to the resulting hyperboloidal
approach.

The previous heuristic picture of spacetime asymptotics is formalised in the geometric notion
of conformal infinity [149, 82, 12, 13, 183, 76, 111], that provides a rigorous and geometrically
well-defined strategy to deal with radiation problems of compact isolated bodies. A conformal
compactification maps the infinities of the physical spacetime into a finite region delimited by
the boundaries of a conformal manifold. Specifically, I+ corresponds to the future endpoints of
null geodesics, whereas a time function τ will be referred to as hyperboloidal if hypersurfaces
τ = const intersect I+, being therefore adapted to the geometrical structure at the infinitely far
away wave zone.

The hyperboloidal formulation has proved to be a powerful tool in mathematical and nu-
merical relativity, permitting to obtain existence results in the non-linear treatment of Einstein
equations, as illustrated in the semiglobal result in [75], or providing a natural framework for
the extraction of the GW waveform in numerical dynamical evolutions of GW sources. Together
with those fully non-linear studies, over the last decade the hyperboloidal approach has been
successfully applied to problems defined on fixed spacetime backgrounds (see e.g. [147] and
references therein). In particular, [189] proposes a hyperboloidal approach to BH perturbation
theory.

This is our setting for QNMs, where the hyperboloidal framework permits to implement
geometrically the outgoing boundary conditions at I+, in a strategy first proposed by Schmidt
in [164]. The adopted (compactified) hyperboloidal approach provides a geometric framework to
study QNMs, that characterizes resonant frequencies in terms of an eigenvalue problem [189, 164,
69, 186, 10, 148, 147, 85, 79, 78, 80, 31]. As explained above, the scheme geometrically imposes
QNM outgoing boundary conditions by adopting a spacetime slicing that intersects future null
infinity I+ and, in the BH setting, penetrates the horizon. Since light cones point outwards
at the boundary of the domain, outgoing boundary conditions are automatically imposed for
propagating physical degrees of freedom. Along these lines, our scheme to address the BH QNM
(in)stability problem strongly relies on the hyperboloidal approach, since it provides the rationale
to define the non-selfadjoint operator on which a pseudospectrum analysis is then performed.

8.2 Wave equation in the compactified hyperboloidal approach

We focus on the propagation and, more generally, the scattering problem of (massless) linear fields
on stationary spherically symmetric BH backgrounds. For concreteness, let us first consider a
scalar field Φ, satisfying the wave equation

�Φ = ∇a∇aΦ = 0 . (8.1)

We adopt standard Schwarzschild coordinates

ds2 = −f(r)dt2 + f(r)−1dr2 + r2
(
dθ2 + sin2 θdϕ2

)
, (8.2)

and emphasize that t = const slices correspond to Cauchy hypersurfaces intersecting both the
horizon bifurcation sphere and spatial infinity i0. If we consider the rescaling

Φ =
1

r
φ , (8.3)
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⌧ = cons
t.

Figure 8.1: Schematic representation of the different “r →∞” limits along curves within different
types of spacetime hypersurfaces. Cauchy hypersurfaces, of spacelike character and represented
by the “t = const” condition in the figure, are such that this limit attains the so-called spatial
infinity i0, whereas in null hypersurfaces satisfying rather “u = const” (with u = t − r a null
’retarded time’) the limit attains the outgoing wave zone modelled by future null infinity I+. The
hyperboloidal approach offers an intermediate possibility, where the limit is taken along spacelike
hypersurfaces, formally represented by the “τ = const”, but still reaching I+ asymptotics.

then Eq. (8.1) rewrites, expanding φ in spherical harmonics with φ`m modes and using the

tortoise coordinate defined by
dr

dr∗
= f(r) (with the appropriate integration constant), as

(
∂2

∂t2
− ∂2

∂r2
∗

+ V`

)
φ`m = 0 , (8.4)

where now r∗ ∈ ] − ∞,∞[. Remarkably, when considering electromagnetic and (linearized)
gravitational fields, the respective geometric wave equations corresponding to Eq. (8.1) can be
cast in the form of Eq. (8.4) for appropriate effective scalar potentials. Specifically, two scalar
fields with different parity can be introduced, satisfying Eq. (8.4) with suitable potentials V`.
In the gravitational case, the axial parity is subject to the so-called Regge-Wheeler potential,
whereas the polar one is controlled by the Zerilli potential (cf. e.g [45, 105, 125]).

The BH event horizon and (spatial) infinity correspond, respectively, to r∗→−∞ and r∗→+∞.
We extend the domain of r∗ to [−∞,∞] and introduce the dimensionless quantities

t̄ =
t

λ
, x̄ =

r∗
λ

, V̂` = λ2V` , (8.5)

for an appropriate length scale λ to be chosen in each specific setting. More importantly, we
consider coordinates (τ, x) that implement the compactified hyperboloidal approach t̄ = τ − h(x)

x̄ = g(x)
. (8.6)
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Specifically (see Fig. 8.2):

i) The height function h(x) implements the hyperboloidal slicing, i.e. τ = const is a horizon-
penetrating hyperboloidal slice Στ intersecting future I+.

ii) The function g(x) introduces a spatial compactification from x̄ ∈ [−∞,∞] to a compact
interval [a, b].
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⌧ = const.

Figure 8.2: Schematic representation of the hyperboloidal coordinate transformation in Eq. (8.6).
Top panel: Dimensionless Schwarzschild time and tortoise coordinates (t̄, x̄). The height function
h(x) bends the time slices so that future null infinity (and/or black-hole horizon) is reached in
the limit x̄→ ±∞. Bottom panel: Spatially compactified hyperboloidal coordinates (τ, x). The
compactification function g(x) maps the infinite domain x̄ ∈] − ∞,∞[ onto the finite interval
x ∈]a, b[. Points b and a are added at the boundary, representing null infinity I+ and/or the BH
horizon. The blue stripe shows the domain of integration of the wave equation in Eq. (8.7) in
these compactified hyperboloidal coordinates, namely (τ, x) ∈] −∞,+∞[×[a, b], corresponding
to the full original domain (t̄, x̄) ∈ R2 of Eq. (8.4).

We note that the compactification is performed only in the spatial direction along the hy-
perboloidal slice, and not in time, so that the latter can be Fourier transformed in a unbounded
domain. The relevant compactification here is a partial one, and not the total spacetime com-
pactification leading to Carter-Penrose diagrams. The choice of h(x) and g(x) is, as we comment
below, subject to certain restrictions. Under transformation (8.6), the wave equation (8.4) writes[(

1−
(
h′

g′

)2
)
∂2
τ −

2

g′

(
h′

g′

)
∂τ∂x −

1

g′

(
h′

g′

)′
∂τ

− 1

g′
∂x

(
1

g′
∂x

)
+ V̂`

]
φ`m = 0 , (8.7)

where the prime denotes derivative with respect to x. Admittedly, expression (8.7) appears more
intricate than Eq. (8.4). However, this change encodes a neat geometric structure and, as we
shall argue, it plays a crucial role in our construction and discussion of the relevant spectral
problem.
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8.3 First-order reduction in time and spectral problem

The structure in Eq. (8.7) is made more apparent by performing a first-order reduction in time,
by introducing

ψ`m = ∂τφ`m , u`m =

φ`m
ψ`m

 . (8.8)

Then, Eq. (8.7) becomes

∂τu`m = iLu`m , (8.9)

where the operator L is defined as

L =
1

i

 0 1

L1 L2

 , (8.10)

with

L1 =
1

w(x)

(
∂x (p(x)∂x)− q`(x)

)
L2 =

1

w(x)

(
2γ(x)∂x + ∂xγ(x)

)
, (8.11)

and

w(x) =
g′2 − h′2
|g′| , p(x) =

1

|g′| , q`(x) = |g′| V̂`

γ(x) =
h′

|g′| . (8.12)

The structure of L1 is that of a Sturm-Liouville operator. In particular, functions h(x) and g(x)
are chosen such that they guarantee the positivity of the weight function w(x), namely w(x) > 0.
The operator L2 has also a neat geometric/analytic structure adapted to the integration by parts,

being symmetric in the following form: L2 =
1

w(x)

(
γ(x)∂x + ∂x(γ(x)·)

)
.

A key property of coordinate transformation (8.6) is that it preserves, up to the overall
constant λ, the timelike Killing vector ta controlling stationarity

ta = ∂t =
1

λ
∂t̄ =

1

λ
∂τ . (8.13)

In this sense functions t and λτ “tick” at the same pace, namely they are natural parameters
of ta, i.e. ta(t) = ta(λτ) = 1 (the role of the constant λ being just that of keeping proper
dimensions). This is crucial for the consistent definition of QNM frequencies by Fourier (or
Laplace) transformation from Eqs. (8.4) and (8.7), since variables ω respectively conjugate to t
and τ then coincide (up to the constant 1/λ). In other words: the change of time coordinate in
Eq. (8.6) does not affect the values of the obtained QNM frequencies.
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Performing then the Fourier transform in τ in the first-order (in time) form (12.38) of the
wave equation (with standard sign convention for the Fourier modes, u`m(τ, x) ∼ u`m(x)eiωτ )
we arrive at the spectral problem for the operator L

Lun,`m = ωn,`m un,`m , (8.14)

or, more explicitly  0 1

L1 L2

φ`m
ψ`m

 = iωn,`m

φn,`m
ψn,`m

 . (8.15)

8.3.1 Regularity and outgoing boundary conditions

As emphasized at the beginning of this section, a major motivation for the adopted hyperboloidal
approach is the geometric imposition of outgoing boundary conditions at future null infinity and
at the event horizon: being null hypersurfaces with light cones pointing outwards from the
integration domain, the physical causally propagating degrees of freedom (as the scalar fields
we consider here) should not admit boundary conditions, as long as they satisfy the appropriate
regularity conditions. How does this translate into the analytic scheme resulting from the change
of variables (8.6)?

The key point is that transformation (8.6) must be such that p(x) in the Sturm-Liouville
operator L1 in Eq. (8.11) vanishes at the boundaries of the compactified spatial domain [a, b]

p(a) = p(b) = 0 . (8.16)

This will be illustrated explicitly in the study cases discussed later. Then the elliptic operator
L1 is a ‘singular’ Sturm-Liouville operator, this impacting directly on the boundary conditions
it admits. Specifically, if (appropriate) regularity is enforced on eigenfunctions, then L1 does not
admit boundary conditions. Moreover, such absence of boundary conditions extends to the full
operator L in the hyperbolic problem. In brief: if sufficient regularity is imposed on the space of
functions un,`m, then wave equations (8.7), (12.38) and the spectral problem (8.14) do not admit
boundary conditions, as a consequence of the vanishing of p(x) at the boundaries of [a, b].

This is the analytic counterpart of the geometric structure implemented in the compactified
hyperboloidal approach. QNM boundary conditions are in-built, as regularity conditions, in the
‘bulk’ of the operator L in Eqs. (8.14) and (8.15).

8.4 Scalar product: QNMs as a non-selfadjoint spectral problem

The outgoing boundary conditions in the present setting define a leaky system, with a loss
of energy through the boundaries — null infinity and the black hole horizon — so that the
system is not conservative. This suggests that the infinitesimal generator of the evolution in
Eq. (8.7), namely the operator L, should be non-selfadjoint. This requires the introduction of
an appropriate scalar product in the problem. Moreover, such identification of the appropriate
Hilbert space for solutions is also key for the regularity conditions evoked above.

Eq. (8.7) describes the evolution of each mode φ`m in a background 1+1-Minkowski spacetime
with a scattering potential V`. A natural scalar product in this reduced problem (cf. [81] for
an extended discussion in terms of the full problem), both from the physical and the analytical
point of view, is given in terms of the energy associated with such scalar field mode. In the
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context of the spectral problem (8.14), we must consider generically a complex scalar field φ`m,
for which the associated stress-energy tensor writes (dropping (`,m) indices) is

Tab =
1

2

(
∇aφ̄∇bφ−

1

2
ηab∇cφ̄∇cφ+ V`φ̄φ+ c.c

)
, (8.17)

where ηab denotes the Minkowski metric in arbitrary coordinates and “c.c” indicates “complex− conjugate”.
In a stationary situation, the “total energy” contained in the spatial slice Στ and associated with
the mode φ is given [183] by

E =

∫
Στ

Tab(φ,∇φ)tanbdΣτ , (8.18)

where ta is again the timelike Killing vector associated with stationarity and na denotes the
unit timelike normal to the spacelike slice Στ . Writing explicitly the energy in the compactified
hyperboloidal coordinates (τ, x) in (8.6), we get

E(φ, ∂τφ) =

∫
Στ

Tab(φ, ∂τφ)tanbdΣτ (8.19)

=
1

2

∫ b

a

[
(g′2 − h′2)∂τ φ̄∂τφ+ ∂xφ̄∂xφ+ g′2V̂`φ̄φ

] 1

|g′|dx ,

where we identify the functions appearing in the definition of the L1 operator in (8.11) and
(8.12). In particular, if g′2− h′2 > 0 (as we have required above) and V̂` > 0 (this is required for
positivity of the norm) then, identifying ∂τφ = ψ as in (12.37), we can write the following norm
for the vector u in (12.37)

||u||2
E

=
∣∣∣∣∣∣
φ
ψ

∣∣∣∣∣∣2
E

:= E(φ, ψ) (8.20)

=
1

2

∫ b

a

(
w(x)|ψ|2 + p(x)|∂xφ|2 + q`(x)|φ|2

)
dx .

We refer in the following to this norm as the “energy norm”. We notice that γ(x) in Eq. (8.12),
associated with L2 does not enter in the norm, that is, in the energy. This norm comes indeed
from a scalar product. Rewriting, for making its role more apparent, the q`(x) function as the
rescaled potential Ṽ`

Ṽ` := q`(x) = |g′(x)|V̂` =
V̂`
p(x)

, (8.21)

and under the assumption above Ṽ` > 0, we can introduce the “energy scalar product” for vector
functions u in Eq. (12.37), as

〈u1,u2〉E =
〈φ1

ψ1

 ,

φ2

ψ2

〉
E

(8.22)

=
1

2

∫ b

a

(
w(x)ψ̄1ψ2 + p(x)∂xφ̄1∂xφ2 + Ṽ`φ̄1φ2

)
dx ,
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and, by construction, it holds ||u||2
E

= 〈u, u〉E . This will be the relevant scalar product in our
discussion.

The full operator L in (8.14) is not selfadjoint in the scalar product (8.22). In fact, the first-
order operator L2 stands for a dissipative term encoding the energy leaking at I+ and the BH
horizon [81]. One could, at a first look, consider that this is related to the first-order character
of L2, which makes it antisymmetric when integrating by parts with a L2([a, b], w(x)dx) scalar
product on ψ, in contrast with the selfadjoint character of the Sturm-Liouville operator L1 in
L2([a, b], w(x)dx) for φ functions. However, this is misleading and actually would suggest a
wrong ’bulk’ dissipation mechanism. When calculating the formal adjoint L† of the full operator
L with the scalar product (8.22), one gets

L† = L+ L∂ , (8.23)

where L∂ is an operator with support only on the boundaries of the interval [a, b], that we can
formally write as

L∂ =
1

i

 0 0

0 L∂2

 , (8.24)

with L∂2 given by the expression

L∂2 = 2
γ(x)

w(x)
(δ(x− a)− δ(x− b)) , (8.25)

where δ(x) formally denotes a Dirac-delta distribution. This is just a formal expression, that
underlines precisely the need of a more careful treatment on the involved functional spaces, but it
has the virtue of making apparent that the obstruction to selfadjointness lays at the boundaries,
as one expects in our QNM problem, and not in the bulk, as one could naively conclude from
the presence of a first-order operator L2 (cf. discussion above): L∂2 explicitly entails a boundary
dissipation mechanism. In particular, we note that L is selfadjoint in the non-dissipative L2 = 0
case, as expected, but that this has required the introduction of quite a non-trivial scalar product.

As a bottomline, in this section we have cast the QNM problem as the eigenvalue problem
of a non-selfadjoint operator. In the following section we discuss the implications of this.

8.5 Hyperboloidal in 3 regions

For the case of a compact scatterer, the wave equation differs inside the scatterer (a cavity) from
the outside. So one way of solving that is to divide the space (one dimensional in the studied case)
into three regions, write the wave equation in each, and then impose continuity conditions of the
field and its derivative at each boundary between two regions, and finally solve the whole system
of equations. Doing that does not prevent from still using auxiliary fields, or hyperboloidal slice.
Actually the eq.8.15 is still valid inside the cavity taking into account the potential (which is
indeed what indicate the existence of a scatterer), while outside the cavity assuming that it is a
free space the same equations work but with a zero potential. Let us name the field as φI , φII ,
and φIII in the three regions respectively from left to right, and the corresponding used auxiliary
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field in each region ψI , ψII , and ψIII. Then we can write:

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0

0 0 0 I 0 0

0 0 0 0 1 0

0 0 0 0 0 I


∂τ



φI

ψI

φII

ψII

φIII

ψIII



=



0 1 0 0 0 0

LI1 LI2 0 0 0 0

0 0 0 1 0 0

0 0 LII1 LII2 0 0

0 0 0 0 0 1

0 0 0 0 LIII1 LIII2





φI

ψI

φII

ψII

φIII

ψIII



(8.26)

Still the continuity conditions should be imposed. Using Chebyshev discretization, one can
model the three regions as three grids maped to y1 : −1 → tanh(−1), x : tanh(−1) → tanh(1),
and y2 : tanh(−1) → −1. The number of points in each grid is N + 1. Regarding the type of
the grid; the one for the cavity (scatterer) in the middle could be Lobatto, while the two grids of
y1 and y2 are Right Radau, and left Radau. As the fields in the three regions is expressed using
the same coordinates system, the continuity of the field could be expressed by:

φI(y1 = tanh(−1)) = φII(x = tanh(−1))

φII(x = tanh(1)) = φIII(y2 = tanh(1))

d
dy1

φI(y1 = tanh(−1)) = d
dxφII(x = tanh(−1))

d
dxφII(x = tanh(1)) = d

dy2
φIII(y2 = tanh(1))

(8.27)

And the discretized version of the last set of equations is:

φI(y1(N)) = φII(x(0))

φII(x(N)) = φIII(y2(0))

Dy1 [N, :]φI = Dy1 [0, :]φII

Dx[N, :]φII = Dy2 [0, :]φIII

(8.28)

To inserting these equations in the descretized version of 8.26, we modify 4 lines in it.
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Chapter 9

Pseudospectrum in the energy norm

In this chapter we explain issues that are using knowledge from different previous chapters. To
find the pseudospectrum for a problem with a non-self-adjoint operator such as QNM problem
there is a key need to define a suitable scalar product, the later induces a norm. However there
is a gap between an analytical definition of a scalar product and a its numerical implemented
one. Using grids such as Chebyshev’s requires additional attention to the implemented formulas.
We derive here the relevant expressions for the construction of pseudospectra in the discretised
version of the energy norm.

9.1 Scalar product and adjoint

Let us consider a general hermitian-scalar product in Cn as

〈u, v〉G = (u∗)iGijv
j = u∗ ·G · v , (9.1)

with G a positive-definite Hermitian matrix

G∗ = G , x∗ ·G · x > 0 if x 6= 0 , (9.2)

where ∗ denotes conjugate-transpose, i.e. u∗ = ūt and G∗ = Ḡt (we notice that in the prob-
lem studied in this work, the Hermitian positive-definite matrix G is actually a real symmetric
positive-definite matrix Gt = G, but we keep the discussion in full generality). Using (9.1) and
(9.2) in the relation

〈A†u, v〉G = 〈u,Av〉 , (9.3)

characterising the adjoint A† of A with respect to the scalar product (9.1), we immediately get

A† = G−1A∗G . (9.4)

9.2 Induced matrix norm from a scalar product norm

The (vector) norm || · ||G in Cn associated with the scalar product 〈·, ·〉G in (9.1), namely

||v||G = (〈v, v〉G)
1
2 , (9.5)
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induces a matrix norm || · ||G in Mn(C) defined as

||A||G = max
||x||=1,x∈Cn

{||Ax||G} , A ∈Mn(C) . (9.6)

A more useful characterisation of this L2 induced matrix norm is given in terms of the spectral
radius ρ(A†A) of A†A, where

ρ(M) = max
λ∈σ(M)

{|λ|} . (9.7)

Indeed, we can write

||A||2
G

=

(
max

||x||=1,x∈Cn

{
(〈Ax,Ax〉G)

1
2

})2

= max
||x||

G
=1,x∈Cn

{〈Ax,Ax〉G}

= max
||x||

G
=1,x∈Cn

{
〈A†Ax, x〉G

}
. (9.8)

The rest of the argument essentially follows from Rayleigh-Ritz formula for self-adjoint operators.
Explicitly, the (self-adjoint) matrix A†A is unitarily diagonalisable and non-negative definite
(that is, 〈x,A†Ax〉G ≥ 0,∀x ∈ Cn), so that we can find an orthonormal basis of eigenvectors {ei}

A†Aei = λiei , 〈ei, ej〉G = δij , (9.9)

with real non-negative eigenvalues λi that we order as

0 ≤ λ1 ≤ λ2 . . . ≤ λn . (9.10)

Expanding x =
∑
i

xiei for an arbitrary x ∈ Cn, we write

〈A†Ax, x〉G =
∑
i

λi|xi|2 ≤ λn
∑
i

|xi|2 = λn||x||2G , (9.11)

that we can recast as 〈
A†A

x

||x||G
,

x

||x||G

〉
G

≤ λn = ρ(A†A) . (9.12)

Inserting this in Eq. (9.8), we conclude

||A||2
G
≤ ρ(A†A) . (9.13)

To prove that the inequality is actually saturated, it suffices to show that there exits a vector x,
||x||G = 1, that realizes the equality, i.e. ||Ax,Ax||2

G
= ρ(A†A). If we consider x = en

||Aen||2G = 〈Aen, Aen〉G = 〈A†Aen, en〉G
= λn = ρ(A†A) , (9.14)

and we can finally conclude

||A||G =
(
ρ(A†A)

) 1
2
. (9.15)
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9.3 Characterization of the pseudospectrum

Given an invertible matrix A ∈ Mn(C) and a non-vanishing eigenvalue λ, then 1/λ is an eigen-
value of A−1 and

max
λ∈σ(A−1)

{|λ|} =

(
min
λ∈σ(A)

{|λ|}
)−1

. (9.16)

Then, for an invertible M ∈Mn(C), we can write for the squared norm || · ||G of its inverse M−1

||M−1||2
G

= ρ
(

(M−1)†M−1
)

= ρ

((
MM †

)−1
)

(9.17)

=

(
min

λ∈σ(MM†)
{λ}

)−1

=

(
min

λ∈σ(M†M)
{λ}
)−1

,

where in the passage from the first line to the second we have used (9.16) and the definition (9.7)
of the spectral radius, whereas in the last equality we have used that a matrix AB has the same
eigenvalues as the matrix BA.

We consider now the ε-pseudospectrum characterisation in Definition 2, namely Eq. (6.7),
applied to the discretised energy norm || · ||G

σε
G

(A) = {λ ∈ C : ||(λId−A)−1||G > 1/ε} . (9.18)

Using (9.17), with M = λId−A, we can write

||(λId−A)−1||G > 1/ε⇔ ε >

(
min

λ∈σ(M†M)
{λ}

) 1
2

. (9.19)

Finally, σε
G

(A) can be written as

σε
G

(A) = {λ ∈ C : smin
G

(λId−A) < ε} , (9.20)

where smin
G

(M) is the minimum of a set of “generalized singular values” of M , related to the
〈·, ·〉G scalar product

smin
G

(M) := min{
√
λ : λ ∈ σ(M †M)} . (9.21)

When choosing the energy scalar product in section 9.4, that is with G = GE (see explicit
expression in appendix 14), we recover expression (9.26) for σε

E
(A). When using the canonical

L2 product we recover the standard σε2(A) in (9.23), where

smin
2

(M) = min{
√
λ : λ ∈ σ(M∗M)} =: σmin , (9.22)

is the smallest of the singular values σi(M) =
√
λi, λi ∈ σ(M∗M), in the standard singular value

decomposition of M .
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9.4 Numerical approach

The present work is meant as a first assessment of BH QNM (in)stability by using pseudospectra.
At this exploratory stage, we address the construction of pseudospectra in a numerical approach.
As indicated in section 6.2.3, the study of the spectral stability of non-normal operators is a
challenging problem that demands high accuracy. Spectral methods provide well-adapted tools
for these calculations [180, 178, 38].

We discretize the differential operator L in (12.38)-(8.14) via Chebyshev differentiation ma-
trices, built on Chebyshev-Lobatto n-point grids, producing LN matrix approximates (we note
systematically n = N + 1 in spectral grids). Once the operator is discretized, the construction
of the pseudospectrum requires the evaluation of matrix norms. A standard practical choice
[180, 178] involves the matrix norm induced from the Euclidean L2 norm in the vector space Cn
that, starting from Eq. (6.7) in the Definition 2 of the pseudospectrum, leads to the following
rewriting [180, 178]

σε
2
(A) = {λ ∈ C : σmin(λId−A) < ε} , (9.23)

where σmin(M) denotes the smallest singular value of M , that is, σmin(M) = min{
√
λ : λ ∈

σ(M∗M)}, with M ∈Mn(C) and M∗ its conjugate-transpose M∗ = M
t.

Although Eq. (9.23) captures the spectral instability structure of A, the involved L2 scalar
product in Cn is neither faithful to the structure of the operator L in Eq. (12.38), nor to the
physics of the BH QNM problem (cf. discussion in section 6.2.4). Instead, we rather use the
natural norm in the problem, specifically the Chebyshev-discretrised version of the ‘energy norm’
(8.20), following from the Chebyshev-discretised version of the scalar product (8.22). Specifically,
we write the discretised scalar product in an appropriate basis as (we abuse the notation, since
we use 〈·, ·〉E as in (8.22), although this is now a scalar product in a finite-dimensional space Cn)

〈u, v〉E = (u∗)iGEijv
j = u∗ ·GE · v , u, v ∈ Cn , (9.24)

where GEij is the Gram matrix corresponding to (8.22) (cf. appendix 14 for its construction) and
we note u∗ = ūt. The adjoint A† of A with respect to 〈·, ·〉E writes then

A† =
(
GE
)−1 ·A∗ ·GE . (9.25)

The vector norm || · ||E in Cn associated with 〈·, ·〉E in Eq. (9.24) induces a matrix norm || · ||E in
Mn(C) (again, we abuse notation by using the same symbol for the norm in Cn and in Mn(C)).
Then, the ε-pseudospectrum σε

E
(A) of A ∈Mn(C) in the norm || · ||E writes

σε
E

(A) = {λ ∈ C : smin
E

(λId−A) < ε} , (9.26)

where sE is the smallest of the “generalized singular values”

smin
E

(M) = min{
√
λ : λ ∈ σ(M †M)} , (9.27)

with M ∈Mn(C) and its adjoint M † given by Eq. (9.25).
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Chapter 10

Quasi-Normal Modes in Gravity
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10.1 A toy model: Pöschl-Teller potential

In our study of BH QNMs and their (in)stabilities, we exploit the geometrical framework of
the hyperboloidal approach to analytically impose the physical boundary conditions at the BH
horizon and at the radiation zone (future null infinity). As discussed in section 8, a crucial feature
of such a strategy is that it allows us to cast the calculation of the QNM spectrum explicitly as
the spectral problem of a non-selfadjoint differential operator, which is then the starting point
for the tools assessing spectral instabilities presented in section 6, namely the construction of the
pseudospectrum and the analysis of random perturbations. Finally, spectral methods discussed
in section 7 are employed to study these spectral issues through a discretisation for the derivative
operators. Prior to the study of the BH case, the goal of this section is to illustrate this strategy
in a toy model, namely the one given by the Pöschl-Teller potential.

10.1.1 Hyperboloidal approach in Pöschl-Teller

The Pöschl-Teller potential 1, given by the expression

V (x̄) =
Vo

cosh2(x̄)
= Vo sech2(x̄) , x̄ ∈]−∞,∞[ , (10.1)

has been widely used as a benchmark for the study of QNMs in the context of BH perturbation
theory (e.g. [73, 26, 128]). Interestingly, QNMs of this potential have been very recently revisited
to illustrate, on the one hand, the hyperboloidal approach to QNMs in a discussion much akin
to the present one (cf. [31], cast in the setting of de Sitter spacetime) or, on the other hand,
functional analysis key issues related to the selfadjointness of the relevant operator [72]. Our
interest in Pöschl-Teller stems from the fact that it shares the fundamental behavior regarding

1Also known as Eckart, Rosen-Morse, Morse-Feshbach potential, see [35] for a discussion of the terminology.
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QNM (in)stability to be encountered later in the BH context, but in a mathematically much
simpler setting. In particular, Pöschl-Teller presents weaker singularities than the Regge-Wheeler
and Zerilli potentials in Schwarzschild, that translates in the absence of a continuous part of the
spectrum of the relevant operator L (corresponding to the “branch cut” in standard approaches
to QNMs).

Let us consider the compactified hyperboloids given by Bizoń-Mach coordinates [32, 66]
mapping R to ]− 1, 1[  τ = t̄− ln (cosh x̄)

x = tanh x̄
, (10.2)

or, equivalently  t̄ = τ − 1
2 ln(1− x2)

x̄ = arctanh(x)
. (10.3)

In the spirit of the conformal compactification along the hyperboloids described in section 8.2,
we add the two points at (null) infinity (no BH horizon here), namely x = ±1, so that we work
with the compact interval [a, b] = [−1, 1]. Under this transformation the wave equation (8.4)
reads (

(1− x2)
(
∂2
τ + 2x∂τ∂x + ∂τ + 2x∂x − (1− x2)∂2

x

)
+V
)
φ = 0 , (10.4)

namely the version of Eq. (8.7) corresponding to the transformation (10.2). We notice that
angular labels (`,m) are not relevant in the one-dimensional Pöschl-Teller problem. If x 6= 1 we
can divide by (1− x2) and, defining

Ṽ (x) =
V

(1− x2)
, (10.5)

we can write (
∂2
τ + 2x∂τ∂x + ∂τ + 2x∂x − (1− x2)∂2

x + Ṽ
)
φ = 0 . (10.6)

This expression is formally valid for any given potential V (x̄) (although analyticity issues may
appear if the asymptotic decay is not sufficiently fast, as it is indeed the case for Schwarzschild
potentials at I+). If we now insert the Pöschl-Teller expression (10.1) and notice sech2(x̄) =
1− x2, we get a remarkably simple effective potential Ṽ , actually a constant

Ṽ (x) = Vo . (10.7)

In particular, the Pöschl-Teller wave equation (10.6) exactly corresponds to Eq. (4) in [31], so
that the Pöschl-Teller problem is equivalent to the Klein-Gordon equation in de Sitter spacetime
with mass m2 = Vo. In the following, we choose λ = 1/

√
Vo in the rescaling (8.5), so that we

can set

Ṽ = 1 . (10.8)
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Performing now the first-order reduction in time (12.37)-(12.38) we get for w(x), p(x), q(x) and
γ(x) in Eq. (8.12) the values

w(x) = 1 , p(x) = (1− x2) , q(x) = Ṽ = 1

γ(x) = −x , (10.9)

and therefore the operators L1 and L2 building the operator L in Eq. (8.10) write, in the Pöschl-
Teller case, as

L1 = ∂x
(
(1− x2)∂x

)
− 1

L2 = − (2x∂x + 1) . (10.10)

As discussed in section 8.3.1, the function p(x) = 1−x2 vanishes at the boundaries of the interval
[a, b] = [−1, 1], defining a singular Sturm-Liouville operator. This is at the basis of the absence
of boundary conditions, if sufficient regularity is enforced on the eigenfunctions of the spectral
problem. Regularity therefore encodes the outgoing boundary conditions (see below). Finally,
the scalar product (8.22) writes in this case as

〈u1,u2〉E =
〈φ1

ψ1

 ,

φ2

ψ2

〉
E

(10.11)

=
1

2

∫ 1

−1

(
ψ̄1ψ2 + (1− x2)∂xφ̄1∂xφ2 + φ̄1φ2

)
dx .

10.1.2 Pöschl-Teller QNM spectrum

Exact Pöschl-Teller QNM spectrum

Pöschl-Teller QNM spectrum can be obtained by solving the eigenvalue problem (8.14)-(8.15)
with operators L1 and L2 given by Eq. (10.10). As commented above, no boundary conditions
need to be added, if we enforce the appropriate regularity. In this particular case, this eigen-
value problem can be solved exactly. The resolution itself is informative, since it illustrates this
regularity issue concerning boundary conditions.

If we substitute the first component of (8.15) into the second or, simply, if we take the Fourier
transform in τ in Eq. (10.6) (with Ṽ = 1 from the chosen λ leading to Eq. (10.8)), we get[

(1− x2)
d2

dx2
− 2(iω + 1)x

d

dx
− iω(iω + 1)− 1

]
φ = 0 , (10.12)

This equation can be solved in terms of the hypergeometric function 2F1(a, b; c; z), with z =
1− x

2
. In particular, for each value of the spectral parameter ω we have a solution that can be

written as a linear combination of linearly independent solutions obtained from 2F1(a, b; c; z).
Discrete QNMs are obtained only when we enforce the appropriate regularity, that encodes the
outgoing boundary conditions. In this case, this is obtained by enforcing the solution to be
analytic in x ∈ [−1, 1] (corresponding in z to analyticity in the full closed interval [0, 1]), which
amounts to truncate the hypergeometric series to a polynomial. We emphasize that such a need
of truncating the infinite series to a polynomial, a familiar requirement encountered in many
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different physical settings, embodies here the enforcement of outgoing boundary conditions. In
sum, this strategy leads to the Pöschl-Teller QNM frequencies (cf. e.g. [26, 35])

ω±n = ±
√

3

2
+ i

(
n+

1

2

)
, (10.13)

with corresponding QNM eigenfunctions in this setting

φ±n (x) = P (iω±n ,iω
±
n )

n (x) , x ∈ [−1, 1] , (10.14)

where P (α,β)
n are the Jacobi polynomials (see appendix 15). Two comments are in order here:

i) QNMs are normalizable: QNM eigenfunctions φ±n (x) are finite and regular when making
x̄ → ±∞, corresponding to x = ±1. This is in contrast with the exponential divergence
of QNM eigenfunctions in Cauchy approaches, where the time slices reach spatial infinity
i0. This is a direct consequence of the hyperboloidal approach with slices reaching I+.
The resulting normalizability of the QNM eigenfunctions can be relevant in e.g. resonant
expansions (cf. e.g. discussion in [114]).

ii) QNM regularity and outgoing conditions: In the present case, namely Pöschl-Teller in
Bizoń-Mach coordinates, analyticity (actually polynomial structure) implements the regu-
larity enforcing outgoing boundary conditions. Analyticity is too strong in the general case.
But asking for smoothness is not enough (see e.g. [10]). In Refs. [79, 78, 80] this problem is
approached in terms of Gevrey classes, that interpolate between analytic and (smooth) C∞

functions, identifying the space of (σ, 2)-Gevrey functions as the proper regularity notion.
The elucidation of the general adequate functional space for QNMs, tantamount of the con-
sistent implementation of outgoing boundary conditions, is crucial for the characterization
of QNMs in the hyperboloidal approach.

Numerical Pöschl-Teller QNM spectrum

Fig. 10.1 shows the result of the numerical counterpart of the Pöschl-Teller eigenvalue calculation,
whose exact discussion has been presented above, by using the discretised operators L, L1 and
L2 described in section 7

LNv(N)
n = ω(N)

n v(N)
n . (10.15)

This indeed recovers numerically the analytical result in Eq. (10.13) (we drop the “±” label,
focusing on one of the branches symmetric with respect the vertical axis).

We stress that the remarkable agreement between the numerical values from the bottom
panel of Fig. 10.1 (see also Fig. 10.5 later) and the exact expression (10.13) is far from being a
trivial result, as already illustrated in existing systematic numerical studies. This is in particular
the case of Ref. [30] (where Pöschl-Teller is referred to as the Eckart barrier potential), where
the fundamental mode ω±0 in (10.13) is stable and accurately recovered, whereas all overtones
ω±n≥1 suffer from a strong instability (triggered, according to the discussion in [30, 192], by
the C1-regularity of the approximation modelling the Pöschl-Teller potential) and could not be
recovered.

In our setting, a convergence study of the numerical values shows that the relative error

E(N)
n =

∣∣∣∣∣1− ω
(N)
n

ωn

∣∣∣∣∣ , (10.16)
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Figure 10.1: Pöschl-Teller QNM problem. Bottom panel: QNM spectrum for the Pöschl-Teller
potential, calculated in the hyperboloidal approach described in section 10.1.1, with Chebyshev
spectral methods and enhanced machine precision. Top panel: ratios of condition numbers κn
of the first QNMs over the condition number κ0 of the fundamental QNM, indicating a growing
spectral instability compatible with the need of using enhanced machine precision.

between the exact QNM ωn and the corresponding numerical approximation ω(N)
n (obtained at a

given truncation N of the differential operator) actually increases with the resolution. This is a
first hint of the instabilities to be discussed later. Indeed, the top panel of Fig. 10.2 displays the
error for the fundamental mode n = 0 and the first overtones n = 1, . . . , 4 when the eigenvalue
problem for the discretised operator is naively solved with the standard machine roundoff error
for floating point operations (typically, ∼ 10−16 for double precision).

It is astonishing how, despite the simplicity of the exact solution, the relative error grows
significantly already for the first overtones and, crucially, more strongly as the damping grows
with higher overtones. To mitigate such a drawback, one needs to modify the numerical treatment
in order to allow for a smaller roundoff error in floating point operations. The bottom panel
Fig. 10.2 shows the error E(N)

n when the calculations are performed with an internal roundoff
error according to 5×Machine Precision, i.e. ∼ 10−5×16. In this case, the fundamental QNM
n = 0 is “exactly” calculated at the numerical level (i.e. the difference between its exact value and
the numerical approximation vanishes in the employed precission). The error for the overtones
still grows, but in a safe range for all practical purposes. The values displayed in the bottom
panel of Fig. 10.1 were obtained with internal roundoff error set to 10×Machine Precision and
we can assure that the errors of all overtones are smaller than 10−100.

Condition numbers of QNM frequencies

The growth in the relative error as we move to higher overtones in Fig. 10.2, suggests an increasing
spectral instability in n of eigenvalues ω±n , triggered by numerical errors related to machine
precision, so that this instability can be reduced (but not eliminated) by improving the internal
roundoff error.

At the level of the non-perturbed spectral problem (10.15), and in order to assess more



98 Quasi-Normal Modes in Gravity

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0 10 20 30 40 50 60 70 80 90 100

E
(N)
n

N
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Figure 10.2: Convergence test for the Pöschl-Teller QNM. Top panel: double floating point op-
erations with internal round-off error set to Machine Precision. Bottom panel: double floating
point operations with internal round off error set to 5×Machine Precision. Note that missing
points for n = 0 correspond to errors that exactly vanish at the employed machine precision.

systematically such spectral instability, we can apply the discussion in section 6.1 to the Pöschl-
Teller approximates LN . Namely, solving the right-eigenvector problem (10.15) together with
left-eigenvector one (

LN
)†
u(N)
n = ω̄(N)

n uNn , (10.17)

we can compute the condition numbers κ(N)
n = κ(ω

(N)
n ) = ||v(N)

n ||E ||u
(N)
n ||E/|〈v

(N)
n , u

(N)
n 〉E | in-

troduced in Eq. (6.5). Notice that this is quite a non-trivial calculation, since it involves: first,
the construction of the adjoint operator

(
LN
)†

=
(
GE
)−1 · (LN )∗ · GE and, second, the cal-

culation of scalar products 〈·, ·〉E and (vector) energy norms || · ||E . These calculations involve
the determination of the Gram matrix GE associated with the energy scalar product (10.11) by
implementing expression (14.12). These expressions are quite non-trivial and in the following
section we provide a strong test to the associated analytical and numerical construction.

The result is shown in the top panel of Fig. 10.1. The ratio of the condition numbers κn,
relative to the condition number of the fundamental mode κ0, grows strongly with n. This indi-
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cates a strong and increasing spectral instability consistent with the error convergence displayed
in Fig. 10.2. The rest of this section is devoted to address this spectral stability issue.

10.1.3 Pöschl-Teller pseudospectrum

Motivating the pseudospectrum

As the previous discussion makes apparent, a crucial question that arises after obtaining the
QNM spectrum of the operator L in Eq. (8.10), with L1 and L2 in (10.10) is whether such
QNM eigenvalues are stable under small perturbations of L. More specifically for QNM physics,
and in the context of the wave equation (8.4), whether the QNM spectrum is stable under small
perturbations of the potential V . The latter is the specific type of perturbation we are assessing
in this work.

In the numerical approach we have adopted, perturbations in the spectrum under small
pertubations in L may arise either from numerical noise resulting from the chosen discretisation
strategy, or they can originate from “real-world sources”, namely small physical perturbations
of the considered potential V . Ultimately, in the BH setting for which Pöschl-Teller provides
a toy model, such physical perturbations could stem from a “dirty" environment surrounding a
black hole, and/or emergent fluctuations from quantum-gravity effects. Therefore, the question
of whether QNM spectrum instability is a structural feature of the operator L — i.e. not just an
artifact of a given numerical algorithm — is paramount for our understanding of the fundamental
physics underlying the problem.

A pragmatic approach to address this question consists in explicitly introducing families of
perturbations 2, and study their effect on the QNM spectra themselves [120, 16, 42, 94, 54, 124,
156]. We will make contact with this approach later in section 10.1.4, but before that, we apply
the pseudospectrum approach described in section 6.2 to the Pöschl-Teller problem. Indeed, one
of the main goals of our present work is to bring attention to and emphasise the fact that the
unperturbed operator already contains crucial information to assess such (in)stability features.
We have already encountered this fact in the evaluation of the condition numbers κn in Fig. 10.1,
that only depends on the unperturbed operator L, but we develop this theme further with the
help of the pseudospectrum notion. Indeed, pseudospectrum analysis provides a framework to
identify the (potential) spectral instability, which is oblivious to the particular perturbation
employed. Then, in a second stage, actual perturbations of the operators with a particular
emphasis on random perturbations along the lines in section 6.3, can be used to complement and
refine such pseudospectrum analysis.

Fig. 10.3 shows the pseudospectrum for the Pöschl-Teller potential in the energy norm of Eq.
(8.20) associated with the scalar product (10.11). Let us explain the content of such a figure.
According to the characterization in the Definition 1, namely Eq. (6.6), of the ε-pseudospectrum
of the operator L, the set σε(L) is the collection of all complex numbers ω ∈ C that are actual
eigenvalues for some operator L+ δL, where δL is a small perturbation of “size” smaller than a
given ε > 0. Consequently and crucially, adding a perturbation δL with ||δL||E < ε entails an
actual (“physical”) change in the eigenvalues ωn that can reach up the boundary of the σε(L)
set, marked in white lines in Fig. 10.3. The key question is to assess if ε-pseudospectra for

2In fact, as far as we are aware of the historical development, the path towards the interest in QNM in-
stability followed the opposite way: concerns about BH QNM spectra stability were raised only after modifi-
cations/approximations of the potential gave rise to unexpected results [138, 140] (Nollert’s study being itself
motivated by developments in QNMs of leaky optical cavities [118, 119, 48], namely the study of QNM complete-
ness).
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Figure 10.3: Top panel: Pseudospectrum for the Pöschl-Teller potential. QNMs (red circles)
from Fig. 10.1 are superimposed for reference on their (in)stability. The color log-scale corre-
sponds to log10ε, white lines indicating the boundaries of ε-pseudospectra sets σε, whose interior
extends upwards in the ω-complex plane. Bottom panel: Zoom into the region around the fun-
damental QNM and first overtones.

small ε can extend in large areas of C or not. This is tightly related to condition numbers κn
controlling eigenvalue spectral (in)stabilities, as explicitly estimated by the Bauer-Fike relation
(6.14) between ε-pseudospectra sets and ’tubular neighbourhoods’ ∆κε of radii εκn around the
spectrum. Let us first discuss a selfadjoint test case and, in a second stage, the actual non-
selfadjoint case 3.

Pseudospectrum: selfadjoint case

As discussed in section 8.4, setting L2 = 0 in Eq. (8.10) —while keeping L1 as in Eq. (10.10)—
leads to a selfadjoint operator L 4. Therefore the associated spectral problem is, cf. section 6.1,
stable. A typical pseudospectrum in the selfadjoint (more generally ‘normal’) case is illustrated
by Fig. 10.4: a “flat” pseudospectrum with large values of ε for ε-pseudospectra sets, when moving
“slightly” (in the C-plane) from the eigenvalues. Note also, in this case, the horizontal contour
lines far from the spectrum, indicating that all eigenvalues share the same stability properties in
the energy norm.

Let us describe Fig. 10.4 in more detail. Boundaries of ε-pseudospectra σε(A) are marked
in white lines, with ε’s corresponding to the values in the color log-scale. Pseudospectra σε(L)
are, by construction, “nested sets” around the spectrum (red points in Fig. 10.4), the latter
corresponding to the “innermost set” σε(L) when ε → 0. In this selfadjoint case, condition

3More properly and generally [180], one should distinguish the “normal” (indeed selfadjoint in the particular
discussion in the present work) and the “non-normal” operator cases.

4Such an operator is relevant by itself, since it corresponds actually to the azymuthal mode m = 0 of a wave
propagating on a sphere with a constant unit potential, indeed a conservative system. The eigenfunctions are
nothing more than the Legendre polynomials φn(x) = Pn(x), with real eigenvalues ω±n = ±

√
1 + `(`+ 1). This

provides a robust test case.
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Figure 10.4: Pseudospectrum and eigenvalue condition numbers of a self-adjoint operator (Pöschl-
Teller with L2 = 0). Top panel: Condition numbers: κn = 1 for ωn (0 ≤ n ≤ 20). Middle panel:
Pseudospectrum: “flat” pattern typical of a spectrally stable (normal) operator. Bottom panel:
Zoom near the spectrum, with concentric circles ("radius ε" tubular regions around eigenvalues)
characteristic of stability.

numbers in (6.5) must satisfy κn = 1, as we have verified and explicitly shown in the top panel
of Fig. 10.4. Then, and consistently with Eq. (6.13), the corresponding nested sets σε(L) are
actually tubular regions ∆ε(L) of “radius ε” around the spectrum, so that a change δL with a
norm of order ε in the operator L entails a maximum change in the eigenvalues of the same order
ε. Specifically, ε-pseudospectra sets show concentric circles around the spectra that quickly reach
large-epsilon values, i.e. ε ∼ O(1), when moving away from eigenvalues. As a consequence, one
would need perturbations in the operator of the same order to dislodge the eigenvalues slightly
away from their original values: we say then that L is spectrally stable. Pseudospectra sets with
small ε are then “tightly packed” in “thin throats” around the spectrum, so that light green colors
are indeed so close to spectrum “red points” that they are not visible in the scale of Fig. 10.4,
giving rise to a typical “flat” pseudospectrum figure of a “single color”.

Horizontal boundaries of ε-pseudospectra, when far from the spectrum, is a consequence (in
this particular problem) of the use of the energy norm. If another norm is used, e.g. the standard
one induced from the L2 norm in Cn, the global “flatness” of the pseudospectrum is still recovered,
especially when comparing with the corresponding scales in Fig. 10.3, indicating already a much
more stable situation than the general L2 6= 0 case. But when refining the scale, one would
observe that pseudospectra contour lines far from the spectrum are not horizontal but present
a slope growing with the frequency. This indicates that, under perturbations of the same size
in that L2 norm, higher frequencies can move further that low frequencies, this being in tension
with the equal stability of all the eigenvalues. What is going on is the effect commented in
section 6.2.4 concerning the impact of the norm choice on the notions of “big/small”: when using
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the L2 norm, we would be marking with the same “small” ε different perturbations among which
there exist δL instances that actually excite strongly the high frequencies, but such a feature
is blind to the L2 norm. If using however a norm sensitive to high-frequency effects, as it is
the case of the energy norm that has a H1 character incorporating derivative terms, those same
perturbations δL would have a norm much larger than ε, the derivative terms in the energy norm
indeed weighting more as the frequency grows. What in the L2 norm was a small perturbation
δL, turns out to be a big one in the energy one, so stronger modifications in the eigenvalues are
indeed consistent with stability. In practice, in order to construct a given ε-pseudospectrum set,
such “high-energy” perturbations δL need to be renormalized to keep ε fixed, something that the
energy norm does automatically. This is a neat example of how the choice of the norm affects
the assessment of spectral stability and, in particular, of the importance of the energy norm in
the present work, namely for high-frequency issues.

Fig. 10.4 may appear as a boring figure, but it is actually a tight and constraining test
of our construction, both at the analytical and numerical level. First of all, panels in Fig. 10.4
correspond to different calculations: the top panel results from an eigenvalue calculation (actually
two, one for L and another for L†), whereas the “map” in the middle and bottom panels is the
result of calculating the energy norm of the resolvent RL(ω) = (ωId − L)−1 at each point
ω ∈ C. Both calculations depend on the construction of the Gram matrix GE , but are indeed
different implementations. The κn = 1 values in the top panel constitute a most stringent
test, since modifications in either the analytical structure of the scalar product (10.11) or the
slightest mistake in the discrete counterpart (14.12) spoil the result. As discussed at the end
of section 10.1.2, this provides a strong test both of the analytical treatment and the numerical
discretization of the differential operator and scalar product. On the other hand, the plain
flatness of the pseudospectrum in the middle panel is a strong test of the selfadjoint character of
L when L2 = 0 that, given the subtleties of the spectral discretization explained in 7, provides
a reassuring non-trivial test to the whole numerical scheme.

Non-selfadjoint case: Pöschl-Teller pseudospectrum

In contrast with the selfadjoint case, when considering the actual L2 6= 0 of the Pöschl-Teller
case, pseudospectra sets σε(L) with small ε extend in Fig. 10.3 into large regions of C (with
typical sizes much larger than ε) and therefore the operator L is spectrally unstable: very small
(physical) perturbations δL, with ||δL||E < ε, can produce large variations in the eigenvalues up
to the boundary of the now largely extended region σε(L). Such strong variations of the spectrum
are not a numerical artifact, related e.g. to machine precission, but they rather correspond to an
actual structural property of the non-perturbed operator. Indeed, large values of the condition
numbers κn in the top panel of Fig. 10.1 entail that the tubular sets ∆εκ(L) in Eq. (6.11) extend
now into large areas in C. This fact on κn’s is consistent with the large regions in Fig. 10.3
corresponding to σε(L) sets with very small ε’s. Such an non-trivial pattern of ε-pseudospectra
is a strong indication of spectral instability, although without a neat identification of the actual
nature of the perturbations triggering instabilities.

Reading pseudospectra: “topographic maps” of the resolvent

In practice, if one wants to read from pseudospectra —such as those in Fig. 10.3 or Fig. 10.4—
the possible effect on QNMs of a physical perturbation of (energy) norm of order ε, one must
first determine the “white-line” corresponding to that ε (using the log-scale). Then, eigenvalues
can move potentially in all the region bounded by that line (namely, the ε-pseudospectrum set
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for the non-perturbed operator L) that, in Fig. 10.3, corresponds to the region “above” white
lines.

Pseudospectra can actually be seen as a “map” of the analytical structure of the resolvent
RL(ω) = (ωId − L)−1 of the operator L, taken as a function of ω. This corresponds to the
characterization in Definition 2 of the pseudospectrum, Eq. (6.7), which it is indeed the one
used to effectively construct the pseudospectrum (specifically, its realisation (9.26) in the energy
norm; cf. section 9.3 for details). In this view, the boundaries of the ε-pseudospectra (white
lines in Figs. 10.3 and 10.4) can be seen as “contour lines” of the “height function” ||RL(ω)||E ,
namely the norm of the resolvent RL(ω). In quite a literal sense, the pseudospectrum can be read
then as a topographic map, with stability characterised by very steep throats around eigenvalues
fastly reaching flat zones away from the spectrum, whereas instability corresponds to non-trivial
“topographic patterns” extending in large regions of the map far away from the eigenvalues.

In sum, this “topographic perspective” makes apparent the stark contrast between the flat
pattern of the selfadjoint case of Fig. 10.4, corresponding to stability, and the non-trivial pattern
of the (non-selfadjoint) Pöschl-Teller pseudospectrum in Fig. 10.3, in particular indicating a
(strong) QNM sensitivity to perturbations that increases as damping grows.

10.1.4 Pöschl-Teller perturbed QNM spectra

Pseudospectra inform about the spectral stability and instability of an operator, but do not
identify the specific type of perturbation triggering instabilities. Therefore, in a second stage, it
is illuminating to complement the pseudospectrum information with the exploration of spectral
instability with “perturbative probes” into the operator, always under the perspective acquired
with the pseudospectrum. A link between both pseudospectra and perturbation strategies is
provided by the Bauer-Fike theorem [180], as expressed in Eq. (6.14).

Physical instabilities: perturbations in the potential V

Not all possible perturbations of the L operator are physically meaningful. An instance of this, in
the setting of our numerical approach, are machine precision error perturbations δLN to the LN

matrix. As discussed in section 10.1.2, machine precision errors indeed trigger large deviations in
the spectrum, consistently with the non-trivial pattern of the pseudospectrum in Fig. 10.3, but
clearly we should not consider such effects as physical. They are a genuine numerical artifact,
since the structure of the perturbation δLN does not correspond to any physical or geometrical
element in the problem.

The methodology we follow to address this issue is: i) given a grid resolution N , we first
set the machine precision to a value sufficiently high so as to guarantee that all non-perturbed
eigenvalues are correctly recovered, and ii) we then add a prescribed perturbation with the
specific structure corresponding to the physical aspect we aim at studying.

In the present work we focus on a particular kind of perturbation, namely perturbations to
the potential V and, more specifically, perturbations δṼ to the rescaled potential Ṽ in (8.21).
This is in the spirit of studying the problem in [138]. That is, we consider perturbations δL to
the L operator of the form

δL =

 0 0

δṼ 0

 . (10.18)
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We note that, at the matrix level, the δṼ submatrix is just a diagonal matrix. Therefore, the
structure of δL in Eq. (10.18) is a very particular one. The pseudospectrum in Fig. 10.3 tells
us that L is spectrally unstable, and we know that machine precision perturbations trigger such
instabilities, but nothing guarantees that L is actually unstable under a perturbation of the
particular form (10.18). It is a remarkable fact, crucial for our physical discussion, that L is
indeed unstable under such perturbations and, therefore, under perturbations of the potential
V .

Random and high-frequency perturbations in the potential V

We have considered two types of generic, but representative, perturbations δL of the form given
in Eq. (10.18):

i) Random perturbations δṼr: we set the perturbation according to a normal Gaussian dis-
tribution on the collocation points of the grid. This is, by construction, a high-frequency
perturbation. Random perturbations are a standard tool [180] to explore generic properties
of spectral instability and there exists indeed a rich interplay between pseudospectra and
random perturbations [169].

ii) Deterministic perturbations δṼd: we have chosen

δṼd ∼ cos(2πk x) , (10.19)

in order to address the specific impact of high and low frequency perturbations in QNM
spectral stability, by exploring the effect of changing the wave number k.

Perturbations δṼ are then rescaled so as to guarantee ||δL||E = ε. The impact on QNM fre-
quencies resulting from adding these perturbations is shown in Fig. 10.5. In both random and
deterministic cases, the sequence of images in Fig. 10.5 shows a high-frequency instability of
QNM overtones, that “migrate” towards new QNM branches. The fundamental (slowest decay-
ing) QNM is however stable under these perturbations. More generally, such QNM instability is
sensitive with respect to both perturbations’ “size”and frequency.

Before we further discuss the details of the QNM instability, namely the nature of the new
QNM branches, an important point must be addressed: whether the values obtained correspond
to the actual eigenvalues of the new, perturbed operator L+δL, or whether they are an artifact of
some numerical noise. As in the non-perturbed case discussed in section 10.1.2, and as explained
above when introducing the employed methodology, results are obtained with a high internal
accuracy (10×Machine Precision), so that any numerical noise is below the range of showed
values. Proceeding systematically, Fig. 10.6 presents the convergence tests for a few eigenvalues
resulting from the deterministic perturbation (random perturbations do not admit this kind of
test) with norm ||δṼd||E = 10−8 and frequency k = 20 (bottom right panel of Fig. 10.5). The
relative error is calculated as

E(N)
n =

∣∣∣∣∣1− ω
(N)
n

ω
(N=400)
n

∣∣∣∣∣ , (10.20)

i.e., in the absence of exact results, we take as reference the values with a high resolutionN = 400.
As representative QNMs, we have chosen:

a) The last “unperturbed” overtone, whose value is actually very close to the (truly) unper-
turbed QNM ω4.



10.1 A toy model: Pöschl-Teller potential 105

b) The first new QNM on the imaginary axis.

c) Three QNMs along the new branch with values spread in 1 . Re(ωn) . 10 and 5 .
Im(ωn) . 8.

One observes a systematic convergence, with the relative error dropping circa 10 orders
of magnitudes when the numerical resolution increases 5 from N = 150 to N = 400. This
result confirms that the spectrum corresponds indeed to the new, perturbed operator, and is
not a numerical artifact. This neatly shows the unstable nature of the QNM spectrum of the
unperturbed Pöschl-Teller operator: eigenvalues indeed migrate to new branches under very
small perturbations.

Perturbed QNM branches and pseudospectrum

High-frequency perturbations trigger the migration of QNM overtone frequencies to new per-
turbed QNM branches. Fig. 10.7 displays the perturbed QNM spectra on the top of the pseu-
dospectra for the unperturbed operator. The remarkable “predictive power” of the pseudospec-
trum becomes apparent: perturbed QNMs “follow” the boundaries of pseudospectrum sets. That
is, QNM overtones “migrate” to new branches closely tracking the ε-pseudospectra contour lines.
This happens for both random and deterministic high-frequency perturbations. Crucially, no
such instability is observed for low-frequency deterministic perturbations, with small wave num-
ber k. Consequently, we shall refer in the following to this effect as an ultraviolet instability of
QNM overtones.

Remarkably, such high-frequency QNM instability is not limited to highly damped QNMs but
indeed reaches the lowest overtones, the random perturbations being more effective in reaching
the slowest decaying overtones for a given norm ||δV ||E = ε. This result is qualitatively consis-
tent with analyses in [140, 94] for Dirac-delta potentials (compare e.g., perturbed QNM branches
in Fig. 10.7 here with Fig. 1 in Ref. [94]). These findings advocate the use of pseudospectra
to probe QNM instability, demonstrating its capability to capture it already at the level of the
non-perturbed operator. At the same time, pseudospectra are oblivious to the nature of the per-
turbation triggering instabilities. A complementary perturbation analysis, in particular through
random perturbations, has been then necessary to identify the high-frequency nature of the in-
stability, confirming its physicality in the sense of being associated with actual perturbations of
the potential V .

High-frequency stability of the slowest decaying QNM

The high-frequency instability observed for QNM overtones is absent in the fundamental QNM.
The slowest decaying QNM is therefore ultraviolet stable. Such stability is already apparent in
the pseudospectrum in Fig. 10.3, where the order of the ε’s corresponding to ε-pseudospectra
sets around the fundamental QNM reaches the values in the stable self-adjoint case in Fig. 10.4.
This high-frequency stability is then confirmed in the perturbation analysis. Indeed, Fig. 10.7
demonstrates the need of large perturbations in the operator in order to reach the fundamental
QNM, namely (random) perturbations with a ‘size’ ||δṼ ||E of the same order as the induced
variation in ω±0 . This behaviour is a tantamount of spectral stability.

5Compare this decrease of the error as numerical resolution increases (the “expected” behaviour) with the
anomalous growth in Fig. 10.2. This reflects that the “perturbed operator” has indeed improved spectral stability
properties, as compared with the spectrally unstable “unperturbed” Poeschl-Teller operator.
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The contrast between the high stability of ω±0 and the instability of overtone resonances ω±n≥1

has already been evoked in 10.1.2, when referring to the large condition number ratios κn/κ0, in
particular referring to Bindel & Zworski’s discussion in [30, 192]. This high-frequency stability of
the fundamental mode is in tension with the instability found by Nollert in [138] for the slowest
decaying mode for Schwarzschild. We will revisit this point in section 10.2.4. For the time being,
we simply emphasize that the observed stability relies critically on the faithful treatment of the
asymptotic structure of the potential, that is in-built in the adopted hyperboloidal approach
permitting to capture the long-range structure of the potential up to null infinity I+. It is only
when we enforce a modification of the potential at “large distances” that the “low frequency”
fundamental QNM is affected. This is illustrated in Fig. 10.8 (see also [156, 3]), corresponding to
a Pöschl-Teller potential set to zero beyond a compact interval [xmin, xmax]: such “cut” introduces
high frequencies that make migrate the overtones to the new branches and, crucially, alters the
asymptotic structure so that the fundamental QNM is also modified. Such “infrared” effect is
however compatible with the spectral stability of the fundamental QNM, since such “cut” of the
potential does not correspond to a small perturbation in δL.

Regularization effect of random perturbations

Before proceeding to discuss the BH case, let us briefly comment on an apparently paradoxical
phenomenon resulting from the interplay between random perturbations and the pseudospec-
trum. In contrast with what one might expect, the addition of a random perturbation to a
spectrally unstable operator L does not worsen the regularity properties of L but, on the con-
trary, it improves the analytical behaviour of its resolvent RL(ω) [86, 88, 87, 89, 36, 131, 37, 130,
182, 142, 169]. This is illustrated in Fig. 10.9, that shows a series of pseudospectra corresponding
to random perturbations of the Pöschl-Teller potential with increasing ||δṼr||E . In addition to
the commented migration of QNM overtones towards pseudospectra contour lines, we observe
two phenomena: i) ε-pseudospectra sets with ε > ||δṼr||E are not affected by the perturbation,
whereas ii) the pseudospectrum structure for ε < ||δṼr||E is smoothed into a “flat pattern”. As we
have discussed in Fig. 10.4, such flat pseudospectra patterns are the signature of spectral stabil-
ity, a tantamount of regularity of the resolvent RL(ω). The resulting improvement in the spectral
stability of L+ δL, as compared to L, is indeed consistent with the convergence properties of the
respective QNM spectra, as illutrated by the contrast between the corresponding convergence
tests in Figs. 10.6 and 10.2. In sum, random perturbations improve regularity, an intriguing
effect seemingly related intimately to a Weyl law occurring in the large-n asymptotics of QNMs
[192, 170], with suggestive physical implications in the QNM setting, e.g. in (semi)classical limits
to smooth spacetimes from (random) structures at Planck scales.

10.2 Schwarzschild QNM (in)stability

We address now the physical BH case, namely the stability of QNMs in Schwarzschild spacetime.
Whereas the previous section has been devoted, to a large extent, to discuss some of the technical
issues in QNM stability, the spirit in this section is to focus more on the physical implications,
in particular in the perspective of assessing the pioneering work in [138, 140].
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10.2.1 Hyperboloidal approach in Schwarzschild

The attempt to implement the QNM stability analysis in the coordinate system employed for
Pöschl-Teller, namely the Bizoń-Mach chart (10.2), is unsuccessful. The reason is the bad analytic
behaviour at null infinity of Schwarzschild potential(s) in the corresponding coordinate x. Instead
of this, we resort to the ‘minimal gauge’ slicing [10, 148, 146], devised to improve regularity in
the Schwarzschild(-like) case.

We start by considering standard Schwarzschild (t, r) coordinates in the line element (8.2),
with f(r) = (1− 2M/r) and BH horizon at r = 2M . “Axial” and “polar” Schwarzschild grav-
itational parities are described by the wave equation (8.4) with, respectively, Regger-Wheeler
V RW,s
` (r) and Zerilli V Z

` (r) potentials [159, 190, 45, 105, 125]. Specifically, we have

V RW,s
` (r) =

(
1− 2M

r

)(
`(`+ 1)

r2
+ (1− s2)

2M

r3

)
, (10.21)

for the axial case, where s = 0, 1, 2 correspond to the scalar, electromagnetic and (linearized)
gravitational cases, and

V Z
` (r) =

(
1− 2M

r

)
(

2n2(n+ 1)r3 + 6n2Mr2 + 18nM2r + 18M3

r3(nr + 3M)2

)
, (10.22)

with

n =
(`− 1)(`+ 2)

2
. (10.23)

for the polar case.
To construct horizon-penetrating coordinates reaching null infinity, one defines a height func-

tion h in (8.6) by first considering an advanced time coordinate built on the rescaled tortoise
coordinate x̄ = r∗/λ, with r∗ = r+2M ln(r/2M−1), so that the BH horizon is at x̄→ −∞, and
then enforcing a deformation of the Cauchy slicing into a hyperboloidal one through the choice of
a ’minimal gauge’, prescribed under the guideline of preserving a good analytic behavior at I+.
In a second stage, the function g in (8.6) implementing the compactification along hyperboloidal
slices is implicitly determined by (note that instead of x in (8.6), we rather use σ for the spatial
coordinate, so as to keep the standard usage in [10, 148, 146])

r =
2M

σ
. (10.24)

Choosing λ = 4M in the rescaling x̄ = r∗/λ of Eq. (8.5), the steps above result (see details in
[10, 148, 146]) in the ’minimal gauge’ hyperboloidal coordinates for the transformation (8.6) t̄ = τ − 1

2

(
lnσ + ln(1− σ)− 1

σ

)
x̄ = 1

2

(
1
σ + ln(1− σ)− lnσ

) , (10.25)

that, upon addition of the BH horizon and I+ points, maps x̄ ∈ [−∞,∞] to the compact interval
σ ∈ [a, b] = [0, 1], with the BH horizon at σ = 1 and future null infinity at σ = 0.
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Implementing transformation (10.25) in the first-order reduction in time in Eqs. (12.37)-
(12.38), we get for w(σ), p(σ), q`(σ) (now explicitly depending on `) and γ(σ) in Eq. (8.12)

w(σ) = 2 (1 + σ) , p(σ) = 2σ2(1− σ) ,

q`(σ) =
(4M)2V`

2σ2(1− σ)
, γ(σ) = 1− 2σ2 ,

(10.26)

leading to the L1 and L2 operators building L in Eq. (8.10)

L1 =
1

2(1 + σ)

[
∂σ
(
2σ2(1− σ)∂σ

)
− Ṽ`

]
L2 =

1

2(1 + σ)

(
2(1− 2σ2)∂σ − 4σ

)
, (10.27)

where the rescaled potential Ṽ`(σ) := q`(σ) results, in the respective axial and polar cases, in the
explicit expressions

Ṽ RW,s
` = 2

(
`(`+ 1) + (1− s2)σ

)
Ṽ Z
` = 2

(
σ +

2n

3

(
1 + 4n

3 + 2n

(2n+ 3σ)2

))
. (10.28)

Finally, from Eqs. (10.26) and (8.22), the energy scalar product is

〈u1,u2〉E =
〈φ1

ψ1

 ,

φ2

ψ2

〉
E

(10.29)

=

∫ 1

0

(
(1 + σ)ψ̄1ψ2 + σ2(1− σ)∂xφ̄1∂xφ2 +

Ṽ`
2
φ̄1φ2

)
dσ ,

where the weight Ṽ` is fixed by Eq. (10.28) for each polarization.

10.2.2 Schwarzschild QNM spectrum

As discussed in section 8.3.1, outgoing boundary conditions have been translated into regularity
conditions on eigenfunctions. Specifically, as we have seen in the Pöschl-Teller case, the operator
L1 in (10.27) is a singular Sturm-Lioville operator, namely the function p(σ) = σ2(1−σ) vanishes
at the boundaries of the interval [a, b] = [0, 1] consistently with Eq. (8.16). This translates into
the fact that no boundary conditions can be imposed if enough regularity is required.

But there is a key difference between the Pöschl-Teller and the BH case: whereas in Pöschl-
Teller the function p(x) = (1 − x)(1 + x) vanishes linearly at the boundaries, and therefore
x = ±1 are regular singular points, in Schwarzschild this is true for σ = 1 (BH horizon) but not
for σ = 0 (I+), due to the quadratic σ2 term. Null infinity is then an irregular singular point.
This is the counterpart, in our compactified hyperboloidal formulation, of the power-law decay of
Schwarzschild potentials responsible for the branch cut in the Green function of Eq. (8.4), with
its associated “tails” in late decays of scattered fields. In the context of our spectral problem
for the operator L, this translates into the appearance of a (“branch cut”) continuous part in
the spectrum. This has an important impact on the numerical approach, since the continuous
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branch cut is realized in terms of actual eigenvalues of the discretised approximates LN . Such
eigenvalues are not QNMs and can indeed be unambiguously identified, but their presence has
to be taken into account when performing the spectral stability analysis, that becomes a more
delicate problem than in Pöschl-Teller. In this context, the latter becomes a crucial benchmark
to guide the analysis in the BH case.

The Schwarzschild (gravitational) QNM spectrum (for ` = 2) is shown in Fig. 10.10, that
presents the result of the numerical calculation of the spectrum of the L operator defined by
(10.26). This is obtained either for the Regge-Wheeler or the Zerilli rescaled potentials in (10.28),
corresponding respectively to potentials (10.21) and (10.22). This provides a crucial internal
consistency check for the analytical and numerical construction, since both potentials are known
to be QNM-isospectral (see below in section 10.2.4). The branch cut structure is apparent in the
eigenvalues along the upper imaginary axis. Such “branch cut” points can be easily distinguished
from the special QNM corresponding to ωn=8, also in the imaginary axis, simply by changing the
resolution: branch points move “randomly” along the vertical axis, whereas ωn=8 stays at the same
frequency (see later 10.2.4 for a more systematic approach to establish the “non-branch” nature of
ωn=8, when we will consider high-frequency perturbations to QNMs). Moreover, eigenfunctions
associated with algebraically special modes are polynomials, as shown in the detailed studies of
these modes for Schwarzschild and Kerr in [10, 53].

Due to the lack of an exact expression for the Schwarzschild QNMs, one must compare
the obtained values against those available in the literature via alternative approaches — see,
for instance [105, 139, 25, 107, 24, 39, 93, 174]. An estimative for the errors when QNMs are
calculated with the methods from this work is found in Ref. [146]. From the practical perspective,
and regardless of the numerical methods, it is well known that the difficulty to accurately calculate
numerically a given QNM overtone ω±n increases significantly with n. For instance, convergence
and machine precision issues similar to the ones commented above are reported in Refs. [122, 96,
74], a control of the internal roundoff accuracy being required. Alternatively, iterative algorithms
such as Leaver’s continued fraction method [117] require an initial seed relatively near a given
QNM, which must be carefully adapted when dealing with the overtones [185]. The bottomline
is that the calculation of BH QNM overtones is a challenging and very delicate issue.

In our understanding, the latter challenge is not a numerical hindrance but the consequence
of a structural feature of the underlying analytical problem, namely the spectral instability of the
Schwarzschild QNM problem. This is manifested already at the present stage of analysis, namely
the calculation of QNM frequencies of non-perturbed Schwarzschild, in the eigenvalue condition
numbers κn’s shown in the top panel of Fig. 10.10: we encounter again the pattern found in
the Pöschl-Teller case, cf. Fig. 10.1, with a growth of the spectral instability as the damping
increases, with the notably anomaly of an enhanced stability for the algebraically special QNM
frequency, with n = 8. We devote the rest of the section to explore this spectral instability with
the tools employed for Pöschl-Teller.

10.2.3 Schwarzschild pseudospectrum

The pseudospectrum of Schwarzschild is presented in Fig.10.11. As illustrated in Pöschl-Teller,
the pseudospectrum provides a systematic and global tool to address QNM spectral instability,
already at the level of the unperturbed potential. A “topographic map” of the analytic structure
of the resolvent, where regions associated with small ε-pseudospectra (light green) correspond to
strong spectral instability, whereas regions with large ε (namely O(ε) ∼ 1, dark blue) indicate
spectral stability. The superposition of the QNM spectrum shows the respective spectral stability
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of QNM frequencies.
We can draw the following conclusions from Fig. 10.11:

i) The Schwarzschild pseudospectrum indicates a strong instability of QNM overtones, an
instability that grows fast with the damping. White-line boundaries corresponding to ε-
pseudospectra with very small ε’s extend in large regions of the complex plane. This is
compatible with the results in [138], providing a rationale —already at the level of the
unperturbed potential— for the QNM overtone instability discovered by Nollert.

ii) The slowest decaying QNM is spectrally stable. Fig. 10.11 tells us that changing the
fundamental QNM frequency requires perturbations in the operator of order ||δL||E ∼ 1.
This corresponds to spectral stability and is in tension with the results in [138], where the
fundamental QNM is found to be unstable. We will address this point below.

iii) Schwarzschild and Pöschl-Teller potentials show qualitatively the same pseudospectrum
pattern, with large “green regions” producing patterns in stark contrast with the flat self-
adjoint case. On the one hand, this reinforces the usage of Pöschl-Teller as a convenient
guideline for understanding the stability structure of BH QNMs and, on the other hand,
it points towards an instability mechanism independent, at least in a certain measure, on
some of the details of the potential.

We can conclude that Fig. 10.11 demonstrates —at the level of the unperturbed operator— the
main features of the stability structure of the BH QNM spectrum, namely the QNM overtone
instability and the stability of the fundamental QNM. However, the pseudospectrum does not
inform us about the particular type of the perturbations that trigger the instabilities. This is
addressed in the following subsection.

10.2.4 Perturbations of Schwarzschild potential

Once the Schwarzschild pseudospectrum, together with the condition numbers κn, have presented
evidence of QNM spectral instability at the level of the unperturbed operator, in this section
we address the question about the actual physical character of perturbations triggering such
instabilities.

Ultraviolet instability of BH QNM overtones

The qualitative agreement between Pöschl-Teller and Schwarzschild pseudospectra, cf. Figs. 10.3
and 10.11, together with the experience gained in the study of Pöschl-Teller perturbations re-
garding the high-frequency instability of all QNM overtones and the stability of the fundamental
QNM, guide our steps in the analysis of the BH setting.

Random perturbations: spoils from the “branch cut”. The presence of a “branch cut” in
the Schwarzschild spectrum, discussed in section 10.2.2, translates into a methodological subtlety
when considering random perturbations in the BH case, as compared with the Pöschl-Teller one.
The difficulty stems from the fact that not only the QNM eigenvalues, but also the eigenvalues
associated with the discretized version of the branch cut, are sensitive to random perturbations
δṼr of the potential. As a consequence, the possible contamination from eigenvalues from the
branch cut complicates the analysis of the impact of random perturbations on QNM frequencies.
This is an artifact of our particular numerical approach, and not a problem of the differential
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operator itself, but it limits our capability to assess the triggering by random perturbation of the
QNM migration to new branches, that was observed in the Pöschl-Teller case (cf. left column
of Fig. 10.5). Other tools, either numerical refinements and/or analytical methodologies, are
required to address this specific issue in Schwarzschild.

This does not mean that random perturbations have no use in our BH discussion. An
illustrative example is the study of the stability of the algebraically special Schwarzschild QNM
ωn=8. Whereas random perturbations move “branch cut” eigenvalues away from the imaginary
axis, the algebraically special QNM stays stable. This methodology provides a powerful and
efficient tool to probe the “physicality” of specific eigenvalues in very general settings (cf. e.g.
Fig. 4 in [33]).

Deterministic perturbations. Given the limitations for random δṼr’s, in the present study
we have focused on the class of deterministic perturbations to the potential δṼd provided by
Eq. (10.19). Crucially, such perturbations do not perturb the “branch eigenvalues” as (much as)
random δṼr do, by-passing then the associated spectral instability contamination. Despite their
simplicity, they provide a good toy-model to explore the effects of astrophysically motivated
perturbations (assessment of “long range/low frequency” versus “small scale/high frequency”
perturbations), as well as those arising from generic approaches to quantum gravity (“small
scale/high frequency” effective fluctuations). They are, therefore, conveniently suited to address
these instability issues.

The left column in Fig. 10.12 depicts (with ||δṼd||E ∼ 10−8) the stability of the first over-
tones against low frequency perturbations (k = 1, top-left panel) in contrast with the instability
resulting from high-frequency perturbations (k = 20, bottom-left panel). Pushing along this line,
the right column in Fig. 10.12 zooms in to study the very first overtones, which are paramount
for the incipient field of black-hole spectroscopy. Assessing the (in)stability of the very first over-
tones is therefore crucial for current research programs in gravitational astronomy. It becomes
apparent that the first overtones, this including the very first overtone, are indeed affected with-
out any extraordinary or fine tuned perturbations δṼd. In particular, and taking the left column
as a reference, the first overtone is reached: i) either by considering a “slightly” more intense
perturbation (||δṼd||E ∼ 10−4, k = 20), or ii) perturbations with sufficiently high frequency
(||δṼd||E ∼ 10−8, k = 60).

From this perturbation analysis of the BH potential we conclude: i) all QNM overtones are
ultraviolet unstable, as in Pöschl-Teller, the instability reaching the first overtone for sufficiently
high frequency; ii) QNMs are stable under low frequency perturbations, this illustrating that
spectral instability does not mean instability under “any” perturbation, in particular long-wave
perturbations not affecting the QNM spectrum; iii) the slowest decaying QNM is ultraviolet
stable, a result in tension with the instability of the fundamental QNM found in [138]. We
revisit this point in section 10.2.4 below.

Isospectrality loss: axial versus polar spectral instability

Regge-Wheeler and Zerilli potentials for axial and polar perturbations are known to be isospectral
in the QNM spectrum (cf. [46, 45, 7, 83]; see also [125]). In particular, Chandrasekhar identified
(cf. point 28 in [45]) a necessary condition for two (one-dimensional) potentials V1(x̄) and V2(x̄),
with x̄ ∈]−∞,∞[ as the rescaled tortoise coordinate, to have the same transmission amplitude
and present the same QNM spectrum. Specifically, both potentials must render the same values
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when evaluating an infinite hierarchy of integrals

Cn =

∫ ∞
−∞

vn(x̄)dx̄ , (10.30)

with

v1 = V , v3 = 2V 3 + V ′2

v5 = 5V 4 + 10V V ′2 + V ′′2 , v2n+1 = . . . (10.31)

These quantities turn out to be the conserved quantities of the Korteweg-de Vries equation
and connect the Schwarzschild QNM isospectrality problem to integrability theory through the
inverse scattering transform of Gelfand-Levitan-Marchenko (GLM) theory (cf. [67]; see [83] for
an alternative approach in terms of Darboux transformations).

The key point for our spectral stability analysis of L is that axial and polar QNM isospectrality
is the consequence of a subtle and “delicate” integrability property of stationary BH solutions, so
we do not expect it to be robust under generic perturbations of V . In particular, given the non-
linear dependence in V of the conserved quantities Cn in (10.30), we would expect either random
δṼr or deterministic δṼd perturbations to render different values of Cn, therefore resulting in
a loss of QNM isospectrality. Fig. 10.13 confirms this expectation: whereas the fundamental
QNM mode remains stable under high-frequency perturbations, isospectrality is broken for the
overtones with a slight, but systematic, enhanced damping in the axial case. Other mechanisms
for BH isospectrality loss have been envisaged, e.g. in the study of the imprints of modified
gravity theories [42], ultraviolet QNM overtone instability providing a possible mechanism inside
general relativity. In sum, isospectrality loss provides an interesting probe into QNM instability,
with potential observable consequences and will be the subject of a specifically devoted study
elsewhere.

“Infrared instability” of the fundamental QNM

Both the pseudospectrum and the explicit perturbations of the potential indicate a strong spectral
stability of the slowest decaying Schwarzschild QNM. This is tension with the results in [138, 140],
where the instability affects the whole QNM spectrum, this including the slowest decaying QNM.
This is a fundamental point to establish, since it directly impacts the dominating frequency in
the late BH ringdown signal.

In our understanding, and as it was the case of the Pöschl-Teller potential discussed in section
10.1.4, the instability of the fundamental QNM frequency found by [138] is an artifact of the
implemented perturbations, namely step-like approximations to the Schwarzschild potential (in
particular Regge-Wheeler, but the same applies for Zerilli) that modify the potential at large
distances. Specifically, V` is set to zero beyond [xmin, xmax], fundamentally altering the long-
range nature of Schwarzschild potential that becomes of compact support. What we observe in
Fig. 10.12 is that keeping a faithful treatment of the asymptotic structure at infinity through the
compactified hyperboloidal approach keeps spectral stability.

To test this idea (cf. also the recent [156], as well as [3]), and as we did in Pöschl-Teller,
we have implemented a “cut Schwarzschild” potential in our hyperboloidal approach, setting the
potential to zero from a given distance (both towards null infinity and the BH horizon). The
result is shown in Fig. 10.14, showing a similar qualitative behaviour to Pöschl-Teller in Fig. 10.8.
Overtones are strongly perturbed into the QNM branches already observed in Fig. 10.12, con-
sistently with the high-frequencies introduced by the Heaviside cut. But, crucially, now the
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fundamental QNM is indeed also modified, in contrast with its stable behaviour under high-
frequency perturbations. This reinforces the understanding of this effect as a consequence of the
“suppression” of the large-scale asymptotics of the potential 6. However, the observed modifica-
tion of the fundamental QNM frequency is not as dramatic as the one in [138]. We do not have
a good explanation for this, but it may relate to the fact that the analysis in [138, 140] deals
directly with Eq. (8.4), in particular in the setting of a Cauchy slicing getting to spatial infinity
i0. Such asymptotic framework may be more sensitive to the modification of the potential that
the hyperboloidal one, related to null infinity I+. In this setting, and lacking a better expression,
we refer to this effect as an “infrared instability” of the fundamental QNM.

Enforcing the compact support nature of V is naturally motivated in physical contexts such
as optical cavities, and will be studied systematically in such settings [3]. In gravitation the
physicality of such an effect is more difficult to assess, since gravity is a long-range interaction
that, in contrast to the electromagnetic one, is not screened. In any case, insofar as a pertinent
gravitational scenario may be envisaged for a such “cut potential”, then the “infrared instability”
shown for the first time in [138] would constitute a physical effect.

10.2.5 Nollert-Price BH QNM branches: instability and universality

We revisit the results in [138, 140] (see also [54, 156]), under the light of the elements introduced
for the study of QNM spectral stability. Fig. 2 in [138] presents the migration of Schwarzschild
QNMs to new branches, as the result of perturbing the (Regge-Wheeler) Schwarzschild potential
with a step-like approximation with an increasing number “Nst” of steps (cf. Fig. 1 in [138]).
A salient feature of Nollert’s Fig. 2, further analysed with Price in [140], is that the new QNM
branches distribute in a perfectly structured family of lines in the complex plane, unbounded in
the real part of the frequency, that “move down” in the complex plane as Nst (i.e. the frequency
in the perturbation) increases 7. A comparison with Schwarzschild’s pseudospectrum in our
Fig. 10.11 shows two remarkable features: i) the pattern of the new branches found and studied
by Nollert and Price is qualitatively similar to the contour lines of ε-pseudospectra, ii) the effect
of increasing the frequency perturbation indeed corresponds to an increment in the ε of the
corresponding contour line (namely the “energy size” of the pertubation that, as a H1 norm,
includes the frequency). In other words, Nollert and Price’s BH QNM branches seem indeed to
be closely related to ε-pseudospectrum contour lines.

In order to test this picture, we bring our perturbation analysis in section 10.2.4 into scene.
Fig. 10.15 presents the superposition of perturbed QNM spectra in Fig. 10.12 onto the Schwarzschild
pseudospectrum in Fig. 10.11. As in the Pöschl-Teller case, perturbed QNMs closely track ε-
pseudospectra lines, demonstrating the insight gained above on Nollert’s QNM instability by
using the pseudospectrum: Nollert-Price QNM branches are identified as actual probes into the
analytical structure of the non-perturbed wave operator. Moreover, the correlation of ε-contour
lines with the “size/frequency” of the perturbations, endows the pseudospectrum not only with
an explicative but also with a predictive power, as a tool to calibrate the relation between space-
time perturbations and QNM frequency changes. The conceptual frame encoded in Fig. 10.15
is, in our understanding, the main contribution in this work.

6Such suppression must be stronger than exponential, since Poeschl-Teller shows stability of the fundamental
QNM.

7The Nollert case Nst = 1 in his method “iii)” seems special. It corresponds precisely to the “cut potential” in
section 10.2.4 and may require a separate discussion. It connects also with section 10.1.4, since method “iii)” in
[138] “regularizes” Schwarzschild with a Poeschl-Teller factor, cf. Eq. (7) in [138].
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QNM structural stability, universality and asymptotic analysis

Building on Nollert and Price’s work, our analysis strongly suggests that BH QNM overtones are
indeed structurally unstable under high-frequency perturbations: BH QNM branches migrate
to a qualitatively different class of QNM branches. Noticeably and in contrast with this, the
pseudospectrum analysis combined with the perturbation tools also suggests that the new class
of “Nollert-Price BH QNM branches” presents structural stability features pointing to a kind of
’universality’ in the QNM overtone migration pattern.

“Universality” in the high-frequency perturbations. The QNM migration pattern seems
independent of the detailed nature of the high-frequency perturbation in the Schwarzschild po-
tential. First, such universality is manifested by the similar QNM perturbation pattern produced
by very different perturbations: step-like perturbations in [138], the sinusoidal deterministic ones
showed in Fig. 10.15 and also random perturbations (not presented here due to “blurring” issues,
consequence of the “branch cut” contamination). Second, the new branches follow closely the
pseudospectra contour lines, a key point in this universality discussion, since it is completely
prior to and independent of perturbations.

“Universality” in the potential. Perhaps more importantly, universality seems to go beyond
the insensitivity to the nature of the perturbation: it seems to be shared by a whole class of
potentials. First, the same pattern of perturbed branches is found in Pöschl-Teller, cf. Fig. 10.7.
More dramatically, Nollert and Price’s analysis in [140] is particularly illuminating in this respect.
They considered a toy model capturing the effect of a (Dirac-delta) high-frequency perturbation
on a BH-like potential, referred to as “truncated dipole potential” (TDP), that contains only two
QNMs. Adding the singular (high-frequency) “spike” creates an infinite number of QNMs, again
following a QNM branch pattern compatible with our pseudospectra contour lines (cf. Fig. 5 in
[140] and see below).

But more noteworthy, and again noticed by Nollert [138], beyond the BH setting the new BH
QNM branches are strikingly similar to (curvature) w-modes in neutron-star QNMs (cf. e.g. Fig.
3 in [105] and the systematic study in Ref. [191]). This is remarkable, suggesting that exact but
unstable BH QNMs migrate to perturbed but stable QNMs branches whose qualitative pattern
may be shared by generic compact objects 8.

Asymptotic analysis and universality. How to address systematically a possible universal-
ity in the qualitative pattern of the perturbed QNM branches? Asymptotic analysis provides a
sound approach. The study of the spiked TDP QNMs by Nollert and Price [140] provides an
excellent illustration, with the identification of the large-n asymptotic form of perturbed QNM
branches, according to the logarithm dependence

Im(ωn) ∼ C1 + C2 ln
(
Re(ωn) + C3

)
, n� 1 , (10.32)

8Beyond w-modes of compact objects, such perturbed BH ’universal’ branches share also features with QNMs
of convex obstacles, where the asymptotic form of QNM branches (under a ’pinched curvature assumption’) can
be established [171, 193] as Im(ωn) ∼ K|Re(ωn)|

1
3 + C, for n� 1. Focusing on the spherical obstacle case [173]

(see also [194, 68]), if considering all angular `’s modes and taking ` as the spectral parameter (while keeping n
fixed), the similar qualitative pattern between the corresponding branches and the perturbed BH QNM branches
raises an intriguing question about a possible duality between QNM and Regge poles (cf. e.g. [61, 62, 157, 65] in a
complex angular momentum setting). In particular, the asymptotic logarithm pattern of perturbed-BH [140] and
compact object [191] QNMs is exactly recovered for Regge poles of compact objects in [145] (cf. [58] for related
asymptotics).
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with C1, C2 and C3 appropriate constants (note that C3 can be put to zero for sufficiently high
n, as in [140], since Re(ωn) → ∞ as n → ∞; we prefer to keep it to account for intermediate
asymptotics [97]). It is suggestive that this makes direct contact with the possible universality
of perturbed BH QNMs and (non-perturbed) QNMs of compact objects evoked above. Indeed,
as shown in Ref. [191], w-modes of (a class of) neutron stars present exactly this logarithm
pattern 9. Even more, this makes (an unexpected) contact with Pöschl-Teller, where the spectral
instability discussed in section 10.1.2 is explained [30, 192, 194, 68] in terms of so-called broad
“Regge resonances” (not to confuse with “Regge poles”), precisely described by such a logarithmic
dependence [158] and explained in terms of the loss of continuity at a p-th order derivative, i.e. in
terms of an underlying reduced Cp regularity (with p <∞). Along these lines of Cp regularity,
and in a WKB semiclassical analysis, such logarithmic branches have been also recovered in
[156] in their recent discussion of Nollert’s original work [138]. It would be therefore tempting
to refer to the perturbed BH QNM branches as Nollert-Price-(Regge) QNMs, but this requires
an elucidation of the role of the reduced Cp regularity in the generic perturbations we have
studied here, that in particular include C∞ regular (high-frequency) sinusoidal deterministic
perturbations (10.19). In sum, the asymptotic pattern (10.32) provides a starting point to
probe, in gravitational wave signals, the physical properties (e.g. energy, frequency) of small
scale perturbations [97].

Beyond specific models, this kind of universal behaviour, independent of the high-frequency
perturbation detailed nature and for a large class of potentials, invites for systematic semi-
classical analyses of highly-damped scattering resonances, in terms of the wave operator principal
part 10, including boundary behaviors. In the spirit adopted in this work, we expect asymptotic
tools in the semiclassical analysis of the pseudospectrum to provide a systematic approach to
assess the universality of perturbed BH QNM branches 11.

Overall perspective on Schwarzschild QNM instability

The main result of this article is summarized in Fig. 10.15. Specifically, it combines Figs. 10.10,
10.11 and 10.12 to demonstrate QNM spectral (in)stability through their respective three distinct
calculations: i) the calculation of the eigenfunctions of the exact spectral problem to calculate
condition numbers κn’s, ii) the evaluation of operator matrix norms to generate the pseudospec-
trum, and iii) the calculation of eigenvalues of the perturbed spectral problem. Calculations
i) and ii) work at the level of the unperturbed problem, whereas iii) deals with the perturbed
problem. The three calculations fit consistently through the Bauer-Fike theorem that constrains
through Eq. (6.14) the relation between the pseudospectrum and the tubular regions around the
spectrum. They lead to these main results:

i) QNM overtones:

i.1) QNM overtones are ultraviolet unstable, including the lowest overtones. The pseudospec-
trum provides a systematic explanatory and predictive framework for QNM spectral in-
stability, confirming the result by Nollert and Price [138, 140]. Such instability is indeed
realised by physical high-frequency perturbations in the effective potential V , reaching the
first overtone for sufficiently high frequencies and/or amplitudes in the perturbation.

9We thank B. Raffaelli for signaling this and also Ref. [145].
10We thank N. Besset for signaling this point.
11Such an approach is very much in the spirit of the “asymptotic reasoning” advocated in [17], where asymp-

totic analysis is understood as an efficient and systematic tool to unveil structurally stable patterns underlying
universality behaviour.
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i.2) QNM overtones are stable under low frequency perturbations. No instability appears for
low/intermediate frequency perturbations of V , consistently with studies [73, 120, 16, 42,
94] on astrophysical BH environments.

ii) Slowest decaying (fundamental) QNM:

ii.1) The slowest decaying QNM is ultraviolet stable. This holds, in Schwarzschild, for each
`-fixed branch. This feature critically relies on keeping a faithful description of the asymp-
totic structure at infinity through the compactified hyperboloidal approach. This result
is in contrast with conclusions in [138, 140], but no contradiction appears since the latter
implement a step-potential approximation fundamentally modifying V at large distances,
resulting rather in an “infrared probe” into QNMs.

ii.2) The slowest decaying QNM is stable under low and intermediate frequency perturbations in
the potential. This property is shared by the whole QNM spectrum.

ii.3) The slowest decaying QNM is “infrared unstable”. The instability of the fundamental QNM
observed in [138, 140] is physical inasmuch as fundamental modifications of the large-
distance structure of the potential are allowed.

iii) Structural stability and QNM isospectrality.

iii.1) ‘Nollert-Price BH QNM branches’ track pseudospectrum contour lines. The QNM BH
spectrum is ultraviolet structurally unstable, migrating to perturbed branches tracking
ε-contour lines of pseudospectra. Such migration pattern is largely independent of the
detailed nature of high-frequency perturbations and potential. Once on such ‘Nollert-Price
branches’, QNMs are spectrally stable. These structural stability properties result in the
universality of perturbed QNM branches.

iii.1) QNM isospectrality ultraviolet loss. High-frequency perturbations spoil the integrability
of Regge-Wheeler and Zerilli potentials, resulting in a slightly enhanced damping of axial
modes with respect to polar ones.

10.3 Conclusions and perspectives

10.3.1 Conclusions

We have demonstrated: i) fundamental BH QNMs are stable under high-frequency (ultraviolet)
perturbations, while unstable under (infrared) modifications of the asymptotics, the latter con-
sistent with [138]; ii) (all) BH QNM overtones are unstable under high-frequency (ultraviolet)
perturbations, quantifiable in terms of the energy content (norm) of the perturbation, extending
results in [138, 140] to show isospectrality loss; and iii) pseudospectrum contour lines provide
the rationale underlying the structurally stable pattern of perturbed ‘Nollert-Price QNM BH
branches’. Pseudospectra, together with tools from the analysis of non-selfadjoint operators,
have revealed the analytic structure underlying such (in)stability properties of BH QNMs, of-
fering an integrating and systematic approach to encompass a priori disparate phenomena. The
soundness of the results relies on the use of a compactified hyperboloidal approach to QNMs,
with the key identification of the relevant scalar product in the problem as associated with the
physical energy, combined with accurate spectral numerical methods.
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Caveats in the current approach to QNM (in)stability

Beyond the soundness of the results, key questions remain:

i) How much does the instability depend on the hyperboloidal approach? In other words,
is the instability a property of the equation or rather of the employed scheme to cast
it? This is a legitimate and crucial question, requiring specific investigation. In spite
of this, we are confident in the soundness of our conclusions: as discussed in detail, the
same qualitative behaviour is found systematically by other studies not relying on the
hyperboloidal approach, in particular Nollert and Price’s pioneer work. Details may change
from scheme to scheme, but the (in)stability properties seem robust.

ii) A numerical demonstration is not a proof. Moreover, numerical discretizations introduce
their own difficulties and limitations. In particular, spectral issues in the passage from
matrix approximations to the actual differential operator is a most delicate question. Again,
we are confident in our results, as a consequence of mutual consistency of existing results
and non-trivial tests like the ones described in the text. Definitely, proofs will require the
use of other methods and techniques.

iii) Could the observed QNM spectral instability be an effect of regularity loss, namely a Cp

effect? It may be, but it is difficult to conclude at this stage. Cp regularity provides
indeed a sufficient condition for logarithmic branches (10.32) that can be traced to works
by Regge [158], Berry [22, 23] or Zworski [192] and manifests in our setting in Nollert
& Price’s analysis of BH QNM instability [140] (complemented in [156]), broad “Regge
resonances” in Pöschl-Teller QNM instability [30, 194, 68], or in neutron star w-modes
[191] (cf. also [145] in related Regge poles). But we also attest the same instability
phenomenon for regular sinusoidal perturbations of sufficiently high-frequency. Moreover,
the pseudospectrum already informs of the instability (cf. contour lines) at the unperturbed
“regular” stage. If high-frequency is actually the basic mechanism, then Cp would provide a
sufficient, but not necessary condition for QNM instability. This point must be addressed.

10.3.2 Perspectives

While the pseudospectrum framework is already employed in physics (cf. e.g. [179, 180, 110,
169, 49]), there seems to be (up to our knowledge) no systematic application in the gravitational
context. The introduction of pseudospectra in gravitational physics opens an avenue to interbreed
the study of (in)stability and transients with other domains in physics (and beyond), by using
pseudospectrum analysis as a common methodological frame. In the following we mention some
possible lines of exploration in different gravitational settings, from astrophysics and fundamental
gravity physics to mathematical relativity, closing the discussion with a perspective beyond
gravity.

Astrophysics and cosmology

The astrophysical status of the ultraviolet QNM overtone instability, that reaches the lowest
overtones for generic perturbations of sufficiently high frequency and energy, requires to assess
whether actual astrophysical (and/or fundamental spacetime) perturbations are capable of trig-
gering it. Some problems in which this question is relevant are the following:
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a) BH spectroscopy. If such instability is actually present, this should be taken into account
in current approaches to BH spectroscopy. The stability of the slowest decaying QNM
guarantees that the dominating ringdown frequency is unaltered. But regarding QNM
overtones, note that in we have not referred at all to late time ringdown frequencies, but to
QNM frequencies: since such two sets of frequencies can actually decouple [138, 140, 104,
41, 108, 54, 106, 156] and, as already noticed by Nollert [138], the propagating (scattered)
field itself is not much affected by high-frequency perturbations, finding the signature of
perturbed QNMs in the gravitational wave signal may pose a very challenging problem
[97]. Awareness of this potential effect in the GW signal may however lead to specifically
tailored data analysis tools.

b) BH environment. The arrangement of perturbed QNM branches along (a priori known)
ε-contour lines of pseudospectra opens the possibility of probing, in an ‘inverse scattering’
spirit, environmental BH perturbations. One can envisage to read the “size” of the physical
perturbations by comparing observational QNM data with the “a priori” calibrated pseu-
dospectrum. This may help to assess “dry” versus “wet” BH mergers, a point of cosmological
relevance in LISA science.

c) Universality of compact object QNMs. The combination of the “universality” of the per-
turbed “Nollert-Price QNM BH branches” with Nollert’s remark on their similarity to
neutron star “w-modes”, together with the demonstrated loss of BH QNM axial/polar
isospectrality, poses a natural question: do QNM spectra of all generic compact objects
share a same pattern?

Schemes such as [124] may provide a systematic frame for the analysis of the astrophysical
implications.

d) BH QNM (in)stability in generic BHs. A natural and necessary extension of the present
work is the study of QNM (in)stability in the full BH Kerr-Newman family, in particu-
lar understanding how it intertwines with superradiance instability and the approach to
extremality.

Fundamental gravitational physics

We note some possible prospects at the fundamental level:

a) (Sub)Planckian-scale physics. Planck scale spacetime fluctuations seem a robust prediction
of different models of quantum gravity. They represent “irreducible” ultraviolet perturba-
tions potentially providing a probe into Planck scale physics that, given the universality
of BH QNM overtone instability, may be ‘agnostic’ to an underlying theory of quantum
gravity. Such a search of quantum gravity signatures in BH gravitational wave physics is
akin to [2]. Actually, it would suffice that a Planck scale “cut-off” induces an effective Cp

regularity in the otherwise smooth low-energy description, to trigger the instability phe-
nomenon. BH QNM instability might then provide a particular probe into ’discreteness’
of spacetime (e.g. [151] are references therein).

b) QNMs and (strong) cosmic censorship. In the setting of cosmological BHs, the assess-
ment of the extendibility through the Cauchy horizon in Reissner-Nordström de Sitter is
controlled by the parameter β = α/κ−, where α is the spectral gap (the imaginary part
of the fundamental QNM in our setting) and κ− is the surface gravity of the Cauchy
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horizon [91, 40]. Therefore, a good understanding in this setting of the (in)stability prop-
erties of the slowest decaying QNM, and more generally of the QNM spectrum, may be
enlightening in the assessment of the thresholds for Cauchy horizon stability.

c) Random perturbations and spacetime semiclassical limit. The “regularization effect” of
random perturbations [86, 88, 87, 89, 36, 131, 37, 130, 182, 142, 169] in the scattering
Green’s function is an intriguing phenomenon that may play a role in the transition to a
semiclassical smooth effective description of fundamental gravitational degrees of freedom
described in a more basic (quantum) theory, possibly including an irreducible randomness
ingredient. Again, the universality of the phenomenon may play a key role.

Mathematical relativity

The presented numerical evidences need to be transformed into actual proofs. Some mathemat-
ical issues to address are:

a) Regularity conditions and QNM characterization. The mathematical study of QNMs en-
tails subtle functional analysis issues. In the present hyperboloidal approach this involves,
in particular, the choice of appropriate regularity conditions and the associated func-
tional space. This connects our pseudospectrum study with the identification in [10] of
the full upper-complex plane as the actual QNM spectrum, if general C∞ eigenfunctions
are allowed. More regularity must therefore be enforced. An analysis along the lines in
[79, 78, 80], where Gevrey classes are identified as the proper functional spaces to define
QNMs, is therefore required. Likewise, a systematic comparison with QNM stability in the
framework of [91, 85] is needed (cf. also [194, 68]).

b) Semiclassical analysis and QNM (in)stability. The interest of asymptotic tools, in the study
of QNM stability, is twofold. On the one hand, an “asymptotic reasoning” [17] built on
the semiclassical analysis of QNMs (a subject taken to full maturity in Sjöstrand’s works
[90, 167, 64, 63, 60]) with a small parameter defined in terms of highly-damped QNM
frequencies, can help to assess universality patterns of perturbed Nollert-Price BH QNM
branches. On the other hand, asymptotic analysis provides powerful tools to prove rigor-
ously spectral instability and non-trivial pseudospectra (cf. e.g. [59]). In particular, the
recent work [34] provides an explicit example of scattering resonance (or QNM) instability,
sharing much of the spirit of the discussion in this work.

Beyond gravitation:“gravity as a crossroad in physics”

The disclosure of BH QNM instability [138] resulted from the fluent interchange between grav-
itational and optical physics [118, 119, 48, 47, 120], again a key ’flow channel’ in our work, e.g.
to understand the ’infrared’ instability of the fundamental QNM [3]. In this spirit, the present
work can offer some hints for further boosting such kind of transversal research in physics.

The hyperboloidal approach, with its explicit formulation of the dynamics in terms of a non-
selfadjoint operator, provides a scheme of interest whenever dealing with an open physical system
with losses at a radiation zone, a recurrent situation throughout physics (e.g. in optics, acoustics,
physical oceanography, to cite some settings). A specific lesson of the present work, to be exported
to other physical contexts, is the identification of the relevant scalar product in terms of the
system’s energy, thus casting an a priori technical issue into neat physical terms. Moreover, when
studying QNMs, the normalizability of the QNM eigenfunctions in the hyperboloidal approach
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may open an alternative avenue to the characterization of the so-called ’mode volume’ Vn of a
QNM. This is relevant e.g. in the setting of photonic/plasmonic resonances [114]: together with
the notion of ’quality factor’ Qn, given in terms of the ratio between the real and imaginary
parts of a QNM (see e.g. [153] for its connection with BH gravity physics), it characterizes the
Purcell factor Fn ∼ Qn/Vn controlling the enhancement of spontaneous emission of a quantum
system, a key notion in ’cavity quantum electrodynamics’ [184].

Regarding the pseudospectrum, this notion is relevant whenever a non-Hermitian (or more
generally non-selfadjoint operator) enters into scene, as it is typically the case in open systems
[11]. In the context of non-Hermitian quantum mechanics, it has been proposed [110] to endow
the pseudospectrum with a guiding central role in the theory, in a setting in which spectral
instability makes insufficient the standard notion of spectrum to fully characterize the relevant
operators. Apart from spectral instability, the pseudospectrum underlies purely dynamical phe-
nomena [179, 180], in particular accounting for so-called nonmodal instability [163] in the setting
of hydrodynamic stability theory and turbulence. Beyond hydrodynamics, the latter feature
turns the pseudospectrum into a powerful tool for studying both spectral and dynamical stabil-
ity issues in (open) physical systems that “trace” over a part of the total degrees of freedom and,
as a result, are governed by non-selfajoint operators. Such systems occur all over physics (e.g.
condensed matter, optics, plasmonics, acoustics, nanophysics... [11]), offering a natural arena for
extending the already large range of applications of pseudospectra [71].

Gravitational physics is remarkable in its capacity to “provide a framework that calls for the
interchange of ideas, concepts and methodologies from very different communities” [4] in physics.
The hyperboloidal approach and the pseudospectrum here discussed realize an instance of this
understanding of “gravity as a crossroad in physics” [4].
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Figure 10.5: Left column: Sequence of QNM spectra for the Pöschl-Teller potential subject
to a random perturbation δṼr of increasing “size” (in energy norm). The sequence shows how
“switching on” a perturbation makes the QNMs migrate to a new branch (that actually follows
closely a pseudospectrum contour line, compare with Fig. 10.3), in such a way that the instability
starts appearing at highly-damped QNMs and descends in the spectrum as the perturbation
grows (unperturbed values, in red, are kept along the sequence for comparison). The top panel
corresponds to the non-perturbed potential shown in Fig. 10.1, the second panel shows how
a random perturbation of with (energy) norm ||δṼr||E = 10−16 already reaches the 6th QNM
overtone, whereas in the third panel a perturbation with ||δṼr||E = 10−8 already reaches the 3rd
overtone. This confirms the instability already detected in the pseudospectrum, indicating its
high-frequency nature. Crucially, to reach the fundamental mode, a perturbation of the same
order O(1) as the variation of the eigenvalue is required, this demonstrating the stability of the
fundamental QNM in agreement with the pseudospectrum in Fig. 10.3. Right panel: Sequence
of QNM spectra for Pöschl-Teller subject to a deterministic perturbation δṼd ∼ cos(2πk x). The
first panel shows again the unperturbed potential, whereas the second one shows that a “low
frequency” (k = 1) perturbation leaves the spectrum unperturbed, in spite of the ||δṼd||E =
10−8 norm (compare with the random case with the same norm): this illustrates the harmless
character of “low frequency” perturbations. The third panel shows how keeping the norm of
the perturbation but increasing its frequency indeed “switches on” the instability, confirming the
“high frequency” insight gained from random perturbations. The fourth panel shows how the
instability increases with the frequency but less efficiently than with random perturbations of
the same norm.
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Figure 10.6: Convergence test for five significant QNMs of Pöschl-Teller perturbed under a
deterministic high-frequency perturbation δṼd (cf. text). This demonstrates that the large
QNM “migrations” observed in Fig. 10.5 are not a numerical artifact, but actually very small
perturbations of the potential can result in large variations of the QNM spectrum, consistently
with the pseudospectrum in Fig. 10.3.
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Figure 10.7: QNM spectral instability of Pöschl-Teller potential. Combination of Figs. 10.1, 10.3
and 10.5, corresponding to three independent calculations, respectively: condition numbers ra-
tios κn/κ0 (top panel), pseudospectrum and perturbed QNM spectra (bottom panel). The bot-
tom pannel demonstrates the high-frequency nature of the spectral instability, as well as the
migration of Pöschl-Teller QNMs towards pseudospectrum contour lines under high-frequency
perturbations.
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Figure 10.8: QNMs of Pöschl-Teller “cut” potential. Setting Pöschl-Teller potential to zero out-
side an interval [xmin, xmax] introduces high-frequency perturbations that make QNM overtones
migrate towards pseudospectrum contour lines, as well as an “infrared” modification that alters
the fundamental QNM frequency. Whereas the latter tends to the non-perturbed Pöschl-Teller
value as xmin → −∞ and xmax →∞, QNM overtones remain always strongly perturbed.
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||δṼr||E = 10
−16

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−14

−12

−10

−8

−6

−4

−2

0

||δṼr||E = 10
−8

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

2

4

6

8

10

12

Im(ωn)

−5

−4

−3

−2

−1

0
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Figure 10.9: Pseudospectra of Pöschl-Teller under random perturbations δṼr of increasing norm,
demonstrating the “regularizing” effect of random perturbations: pseudospectra sets σε bounded
by that “contour line” reached by perturbed QNMs become “flat”, a signature of improved analytic
behaviour of the resolvent, as illustrated in Fig. 10.4. Pseudospectra sets not attained by the
perturbation remain unchanged. Regularization of RL+δL(ω) increases as ||δṼr||E grows.
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Figure 10.10: Schwarzschild QNM problem. Bottom panel: QNMs for the ` = 2 axial and polar
gravitational modes of Schwarzschild spacetime, corresponding respectively to the (isospectral)
Regge-Wheeler and Zerilli potentials (eigenvalues along the imaginary upper half-line are the
numerical counterpart of the Schwarzschild branch cut, but also the algebraically special QNM
ωn=8; see [10] for a discussion of this). Note the normalization 4Mωn, consistent with λ = 4M
after Eq. (10.24). Top panel: condition numbers κn normalized to the condition number κ0 of
the fundamental QNM. Note the relative enhanced stability of the algebraically special QNM.
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Figure 10.11: Top panel: Pseudospectrum of Schwarzschild spacetime (` = 2 gravitational
modes, from Regger-Wheeler potential, similar for Zerilli). Again, QNM frequencies (red cir-
cles) from Fig. 10.10 are superimposed for reference on their (in)stability. The pattern of ε-
pseudospectra sets σε is qualitative similar to the Pöschl-Teller one (cf. Fig. 10.3), though
presenting an enhanced spectral instability indicated by the smaller ε values of ε-pseudospectra
contour lines (cf. range in color log-scale for log10ε in Fig. 10.3). Bottom panel: Zoom into the
region around the fundamental QNM and first overtones.
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Figure 10.12: QNM spectra for deterministic perturbations δṼd of Schwarzschild ` = 2 gravita-
tional modes (here Regge-Wheeler, similar behaviour for Zerilli, cf. Fig. 10.13), superimposed
over the unperturbed values (red). Left column: stability under low frequency perturbation (top
panel) versus high-frequency instability of QNM overtones (bottom panel). Right column: zoom
into the first QNM overtones, showing the instability of the first overtone by increasing i) the
frequency of the perturbation (top panel), and ii) the (energy) norm of the perturbation (bottom
panel).
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Figure 10.13: Loss of isospectrality in Schwarzschild, under high-frequency perturbations. The
sequence of figures shows a zoom into the perturbation of lowest ` = 2 axial and polar QNM
overtones (the branch cut has been removed), with δṼd fixed to a value reaching the first overtone,
and then increasing the frequency. The breaking of axial and polar isospectrality is demonstrated,
with perturbed axial overtones slightly more damped than polar perturbed counterparts, though
both laying over the same perturbed QNM branches (actually tracking the pseudospectra contour
lines, cf. Fig. 10.15 below). The fundamental QNM remains unchanged, consistently with its
stability, so the dominating ringdown frequency remains “isospectral”.
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Figure 10.14: “Infrared” modification of the Schwarzchild fundamental QNM. As in the Pöschl-
Teller case, cutting the Schwarzschild potential (` = 2, either Regge-Wheeler or Zerilli) outside a
compact interval [xmin, xmax] modifies the fundamental QNM, this accounting for its “instability”
found in [138]. All QNM overtones are strongly perturbed due to the high-frequencies in the
Heaviside cut, whereas (only) the fundamental QNM is recovered as xmin, xmax → ∓∞.
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||δṼd||E =10−8, k = 1

−10 −8 −6 −4 −2 0 2 4 6 8 10

Re(ωn)

0

1

2

3

4

5

6

7

8

9

10

11

12

Im(ωn)
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Figure 10.15: Gravitational QNM spectral (in)stability in Schwarzschild spacetime (here, ` =
2 axial case corresponding to the Regge-Wheeler potential, same behaviour for polar modes
with Zerilli potential). The figure shows the superposition of the pseudospectrum of Fig. 10.11,
perturbed QNM spectra in Fig. 10.12, together with exact QNMs and condition numbers κn
from Fig. 10.10. Employed norms follow from the energy scalar product in Eq. (10.29), i.e.
energy defines “big” and “small”. The pseudospectrum pattern, with ε-pseudospectra sets with
small ε extending into large regions of the complex plane, indicates spectral instability of QNM
overtones, consistently with the fastly growing κn’s. Perturbations in the potential demonstrate
the high-frequency (ultraviolet) instability of all overtones and their stability under low-frequency
perturbations. Both pseudospectrum and perturbations in the potential show the ultraviolet
stability of the fundamental QNM. Ultraviolet instability induce QNM overtones to migrate
towards ε-pseudospectra contour lines, a pattern consistent with “Nollert-Price QNM branches”
[138, 140] here illustrated up to the lowest overtone. Universality of this pattern is further
supported by comparison with Pöschl-Teller in Fig. 10.7.



Chapter 11

More results in gravitational physics

After assessing the perturbed QNM in the GW signal, we address potential consequences en-
larging BH spectroscopy into the BH astrophysical environment and fundamental physics. This
entails, though, great accuracy in the observations and challenges in the data analysis techniques.

The so-called ε-pseudospectrum (see ref. [98] for a detailed discussion) determines the bound-
aries of QNM-free regions in the complex plane. Specifically, it provides the maximal region in C
that QNMs can reach under (arbitrary) perturbations in the operator. Thus, a pseudospectrum
analysis of the unperturbed operator provides a global picture of QNM spectral (in)stability [98].
Consistent with general results in the mathematical literature [158, 116, 115, 181, 168, 127, 172,
68, 30], our BH QNM-free regions are asymptotically logarithmic: ωI

n ∼ C1 + C2 ln(ωR
n + C3).

QNMs from discontinuous potentials at the pth-derivative (Cp) are ‘optimal’ in reaching
the logarithmic QNM-free region boundaries. Their real ωR

n and imaginary ωI
n parts follow a

‘Regge-QNM’ [159, 30, 194, 68, 30] asymptotic log-pattern

ωR
n = ± π

LR
(n+ γ̃) , ωI

n =
1

LR

[
γ ln

(∣∣ωR
n

∣∣+ γ′
)
− lnS

]
, (11.1)

shown first for Cp compact-support potentials [159, 192] and extended to BH-like potentials [138,
140, 156, 123] and w-modes of (a class of) neutron stars [191] (cf. also [22, 23]). Reverberation
in chambers of ‘Regge’ length scale LR is the mechanism behind the opening to less damped
branches [159, 192, 22], modulated by ‘regularity’ γ, γ̃, γ′ and ’strength’ S parameters.

The spectra distribution within the QNM-free regions for smooth (C∞) potentials is not
known a priori, but the QNM must always lay above the logarithmic curves. QNM move towards
logarithmic pseudospectrum lines as k increases, we conjecture they reach them in the k → ∞
limit, as instanced by Regge branches (11.1). The potentials for axial and polar parities under
perturbation characterized by (ε, k) provide a testbed for the perturbed QNM distributions
and isospectrality loss identified in [98]. We observe three different regimes, separated by the
“internal" QNMs discussed sec. 2. We label their location by critical values ni(ε, k) in the overtone
number n with n1(10−3, 10) = 2 and n2(10−3, 10) = 8. The top panel of fig. 11.1 illustrate the
three different regimes for k = 10. Migrated QNMs are stable for further perturbations.

(i) Stable region: for n.n1(ε, k), perturbed polar/axial QNMs stay at a distance ε from their
original values. ∆iso

n (k, ε) := |ωa
n(k, ε) − ωp

n(k, ε)| = Cn(k)ε, with Cn(k) = Cn(k + kn)αn ., with
constants Cn, kn and αn. Near-future astrophysical observations shall measure ∆iso

n in lowest
overtones n . n1(ε, k), constraining theories via model-dependent Cn(k). The fundamental
QNM may discriminate the mechanism yielding the isospectrality-loss (e.g. [42, 124]).
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Figure 11.1: Left Panel: Regimes of axial/polar isospectrality loss (k = 10 and ε = 10−15-10−18).
As ε increases, n1(ε, k) and n2(ε, k) decrease: the “Nollert-Price” regime eats up the “w-modes”,
whereas the latter eat up the “stable" regime, finally reduced to the fundamental QNM (cf. Fig.
15 in [98]). Right Panel: Effective measures accounting for perturbed QNMs’ distribution into
“Nollert-Price" branches. QNMs’ density lead to a BH QNM Weyl Law’s length LW (top) and
branch opening G (bottom) with G = 0 (Schwarzschild) and G = 1 (Cp-potentials).
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(ii) Alternating axial/polar “w-modes”: QNMs drastically separate for n1(ε, k) . n . n2(ε, k)
with ∆iso

n (k, ε)∼O(1). Here it holds ωR
n ∼ ln(ωI

n), ωI
n ∼ n, ’opposed’ to Regge-QNMs eq. (11.1).

QNMs place themselves in an alternating pattern along the branch, as neutron star “w-modes”
do [105, 191]. Isospectrality loss is most accessible in this regime, where BHs appear as compact
star mimickers. The alternating behaviour is abruptly cut at n2(ε, k), where isospectrality loss
is enhanced since “internal" QNMs are very parity-sensitive.

(iii) Nollert-Price regime: For n & n2(ε, k) QNMs migrate further away from unperturbed
ones, to branches ωI

n ∼ ωR
n ∼ n (linear relation improving with larger ε), a stronger instability

than for alternating “w-modes”. Yet, isospectrality loss is linear in ε, as in the stable regime (i),
a feature to be studied.

Increasing ε or k, both n1(ε, k) and n2(ε, k) diminish. The “stable" region shrinks, as the
“w-mode" region starts at lower overtones. Regime (ii) also becomes smaller with the Nollert-
Price going down in C as well. Eventually, region (iii) extends up to the fundamental QNM [98].
New regimes are not excluded, but their numerical study is challenging. Indeed, high values of



11.1 Effective parameters, asymptotics and Weyl law 133

(ε, k) produce not only new Nollert-Price branches tracking pseudospectrum lines, but also an
intricate pattern on the “internal" QNMs, whose distribution and significance requires further
study. Notably, they impact the Weyl law below.

11.1 Effective parameters, asymptotics and Weyl law

We introduce QNM effective parameters for a phenomenological characterisation of spacetime
perturbations in GW data. Observing QNMs following the logarithmic pattern (11.1) is a
very strong indication of an underlying Cp-discontinuous potential. For large k perturbations,
this suggests introducing for each ωn: a ‘n-Regge length scale’ LR

n := π/|∆ωRn |, a ‘small-scale’
γn := LR

n∆ωI
n/∆ lnωR

n , and a ‘perturbation strength’ lnSn := γn(LR
n )−1 ln(ωR

n ) − ωI
n effective

parameters 1.
Such parameters are not generally adapted for low-k smooth perturbations, although ‘asymp-

totic reasoning’ [17] suggests that they may capture relevant patterns beyond its validity range.
This is the case for LR

n in regime (iii): ωR
n ∼ n implies that ∆ωRn is constant along the branch,

defining a Regge length LR := π/|∆ωR|. As in neutron stars (eq. (2.7) in [191]), this is valid be-
yond the eq. (11.1) setting, suggesting reverberation at length scales LR(k, ε) as the mechanism
making QNMs less damped and opening BH QNM branches 2

We estimate such QNM branch opening with the quality factor Qn, namely (2Qn)−1 =
|ωIn/ωRn | =: tan(θQn ) [114, 153]. Introducing G = ωR

n /|ωn| = cos(θQn ) (as n� 1), Schwarzschild
QNMs’ asymptotics [137] gives G = 0, whereas eq. (11.1) yields G = 1. Fig. 11.1’s bottom-
right panel shows the monotonic increase of G ∈ [0, 1] (for several ε’s) with k. Pseudospectra’s
logarithmic boundaries are attained for k →∞.

QNM asymptotics satisfies a Weyl’s law, providing another length scale LW. Denoting by
N(ω) the number of QNMs within the radius |ωn| < ω (ω ∈ R), QNM Weyl’s law for d = 1-
dimensional compact-support potentials [192] states: N(ω) ∼ 2(LW/π)ω (twice the Laplacian’s
Weyl law in compact manifolds [20]), with LW the potential’s support ‘length’. Non-compact
Cp potentials also follow this law (cf. eq.(11.1)), though the general non-compact case is more
open [77, 165, 170].

Remarkably, though, BH QNMs do follow a Weyl law. From Schwarzschild’s QNM asymp-
totics [137], N`(ω)=8Mω, entailing a Weyl’s length LW

Sch =4πM . Writing R = 2M , LW
Sch = 2πR

suggests QNMs created by waves ‘creeping’ [171] along the ‘horizon circumference’, akin to QNMs
from Regge’s poles [61, 62, 157, 65] in a membrane paradigm [56, 57, 154, 177]. Complementarily,
the asymptotics ∆|ωn|∼(4M)−1 = κ [132, 133, 134] in Weyl’s counting, fits the factor [126] in the
horizon area quantization ∆A = 8πL2

Planck, suggesting a connection with BH thermodynamics,
N(ω) ∼ (TW

Sch/π)ω, with a thermalizing bouncing time TW
Sch = 2LW

Sch = 2π/κ = (THawking)−1.
Beyond such heuristics, Weyl Law’s remains valid for perturbed BH potentials and LW is

always robustly defined. LW changes with perturbations, but not because of branch opening.
For instance, Fig. 11.1’s upper-right panel, shows G ∼ 0.5, for log(ε) ∼ −17 and k = 25, but
it still has LW/LW

Sch ∼ 1. Actually, branches open without changing |∆ωn| along them. This
permits, when LR is defined, to link Regge’s and Weyl’s lengths through the quality factor:

1For instance, the spiked truncated dipole potential [140] yields L ∼ xδ − x0, γ = 3/2 and S ∼ Vδ (delta-
function coefficient). Polytropic neutron stars [191] have L ∼ r∗ (star’s radius), γ ∼ N (polytropic index) and
S ∼ “potential’s discontinuity jump.

2At the last stage of the writing of this article, we became aware of ref. [123], where the authors identify precisely
the scale T = 2LR = limn→∞ 2π/|∆ωR

n | and demonstrate its key role as the relevant period for ‘echoes’ [43]
happening in Cp potentials.
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LR/LW = cos(θQ) = 2Q(1 + 4Q2)−1/2 = G. In a k →∞ limit to Regge branches (11.1), Q→∞
(G → 1) so LR ∼ LW. Changes in LW actually respond to the ‘activation’ of new ‘degrees of
freedom’, namely “internal" QNMs appearing at critical values ni(ε, k) at branch regime borders:
Fig. 11.1 shows a ‘phase transition’ with ‘order parameter’ LW/LW

Sch going from 1 to O(3), due
to “internal" QNMs becoming densely populated.

Finally, summing N`(ω) over all (`,m) gives N(ω) ∼ ω3, consistently with QNM Weyl’s law
in d dimensions [170], N(ω) ∼ CdVoldω

d. This may provide a strategy to probe the (effective)
dimension of spacetime by counting QNMs.

11.2 Conclusions

• Confirming the potential presence of high-frequency perturbed QNM overtones [98] in the
GW signal, for `-fixed modes.

• We have presented a consistent picture for the QNM migration pattern to branches opening
always above pseudospectrum logarithm curves, limit attained at ultraviolet frequencies
with (Cp) regularity loss.

• Reverberation at Regge’s length scales LR(ε, k) is proposed as underlying mechanism, with
multiple reflections decreasing QNM damping.

• Perturbed branches are stable and share basic features with generic compact object QNMs.

• We have described the patterns of isospectrality loss and introduced effective parameters
to probe the physics of BH perturbations. A BH QNM Weyl’s law has been introduced,
with hints into classical/quantum BH physics, expressing the ‘reverberation scale’ in terms
of a ‘degrees-of-freedom-counting’ Weyl’s length LW (ε, k) and QNM quality factors Q.

• The detection of perturbed QNMs (a highly degenerate inverse problem) poses a data
analysis challenge, but insights and patterns here presented may provide keys for successful
schemes, enlarging BH spectroscopy with a probe into the BH environment or the effective
regularity of spacetime.



Chapter 12

Quasi-Normal Modes in Optics

12.1 Electromagnetic problem in hyperboloidal slices

According to Lorentz model the interaction electron-nucleus is represented by a harmonic oscil-
lator. The equation for the electron-nucleus distance r is:

∂2r

∂t2
+ Γ

∂r

∂t
+ ω2

0r = −eE
m
, (12.1)

where Γ is the damping loss rate, represents the absorption, ω0 is the characteristic frequency of
the harmonic oscillator, m is the mass of the electron, and E is is the local electric field acting on
the electron. Then defining P = −Ner as the polarization, we can write the equation in terms
of P as the following:

∂2P

∂t2
+ Γ

∂P

∂t
+ ω2

0P = ω2
pε0E, (12.2)

where ω2
p = Ne2

mε0
, and N is electron density.

From Maxwell equations, we get:

∂H

∂t
= − 1

µ0
∇×E

∂E

∂t
=

1

ε0
(∇×H− ∂P

∂t
)

(12.3)

So we get the following equation for E:

∂2E

∂t2
=

1

ε0
(− 1

µ0
4E− ∂2P

∂t2
) (12.4)

As we are working in 1D system, and as P has the same direction of E, we can write a scalar
versions for (12.2) and (12.4). Writing eq.12.2 and eq.12.4 in hyperboloidal coordinates, using
eq.2.20, leads to:

∂2
τP + Γ∂τP + ω2

0P = ε0ω
2
pE

(ε0µ0 − y2)∂2
τE + 2y(1− y2)∂y∂τE

+ (1− y2)∂τE + 2y(1− y2)∂yE − (1− y2)2∂2
yE

+ µ0∂
2
τP = 0

(12.5)
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Now we introduce two auxiliary scalar fields A and B, where:

∂τP = A

∂τE = B.
(12.6)

Rewritting eq.12.7 using eq.12.6, we get:

∂τA+ ΓA+ ω2
0P = ε0ω

2
pE

(ε0µ0 − y2)∂τB + 2y(1− y2)∂yB

+ (1− y2)B + 2y(1− y2)∂yE − (1− y2)2∂2
yE

+ µ0∂τA = 0

(12.7)

Considering Fourier transformation (where ∂t = ∂τ ):

iωP = A

iωE = B

iωA = −ΓA− ω2
0P + ω2

pε0E,

iω(ε0µ0 − y2)B + iωµ0A = −2y(1− y2)∂yB

− (1− y2)B − 2y(1− y2)∂yE + (1− y2)2∂2
yE

(12.8)

Now we can write eq.12.8 in the following matricial form:
L1 L2 0 0

0 1 0 0

0 0 0 1

ω2
pε0 0 −ω2

0 −Γ




E

B

P

A



= iω


0 ε0µ0I − y2 0 µ0

1 0 0 0

0 0 1 0

0 0 0 1




E

B

P

A



(12.9)

where
L1 = −2y(1− y2)∂y + (1− y2)2∂2

y

L2 = −2y(1− y2)∂y − (1− y2)I
(12.10)

Now eq.12.9 is in the form of an eigenvalue problem, but if is written in a compact region in
space (the slice does not reach lightlike infinity), so it is still lack boundary conditions. Instead
we divide the space in three regions where the cavity region in the middle, and we wrote the
same matricial equation in each of the three regions, taking into account the different permittivity
parameters. Then we imposed continuity conditions of E and its derivative, no need for imposing
any outgoing conditions since we are solving for the whole space and the slices from two external
sides will reach to null infinities.
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12.2 Numerical implementation

We consider discretizing the grid of y in N + 1 point, that makes the dimensions of the array[
E B P A

]T
is of 4N + 4. and the two matices multiplied by it in (12.9) are of dimensions

(4N + 4) × (4N + 4). Let us call these matrices L and M , so we have: L
[
E B P A

]T
=

iωM
[
E B P A

]T
now if we want to solve in a specific domain of y so y does not goes from

−1 to +1, we have to impose some boundary conditions, to do so we make a change in two lines
in the matricial equation. We change the lines in the block acting on E corresponding to the
positions of the boundaries. As we want to solve in three domains, we will have three matricial
equations with the same ω:

Ly1

[
E B P A

]T
y1

= iωMy1

[
E B P A

]T
y1

Ly2

[
E B P A

]T
y2

= iωMy2

[
E B P A

]T
y2

Ly3

[
E B P A

]T
y3

= iωMy3

[
E B P A

]T
y3

(12.11)

The difference between the three lines of eq.12.11 is the values of permittivity parameters. As-
suming that the cavity lies between x = −a, and x = b, we will consider different grids in each
of the three domains:

• y1 ∈]− 1, tanh(−a)] : we use Chebyshev Right-Radau grid which will exclude the −1 and
keep the other domain boundary.

• y2 ∈ [tanh(−a), tanh(b)] : we use Chebyshev Lobatto grid which takes into account the
two domain boundaries.

• y3 ∈ [tanh(b),+1[ : we use Chebyshev Left-Radau grid which will exclude the +1 and keep
the other domain boundary.

eq.12.11 can be written in one matrix:


Ly1 0 0

0 Ly2 0

0 0 Ly3



ψy1

ψy2

ψy3



= iω


My1 0 0

0 My2 0

0 0 My3



ψy1

ψy2

ψy3


(12.12)

where ψi =
[
E B P A

]T
i
, and the resulting matrix is of 12(N + 1)× 12(N + 1) dimension.
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And the last step before implementing the equation using a software is to impose continuity
conditions, that is:

Ey1(y1 = tanh(−a)) = Ey2(y2 = tanh(−a))

Ey2(y2 = tanh(b)) = Ey3(y3 = tanh(b))

d

dy1
Ey1(y1 = tanh(−a)) =

d

dy2
Ey2(y2 = tanh(−a))

d

dy2
Ey2(y2 = tanh(b)) =

d

dy3
Ey3(y3 = tanh(b))

(12.13)

To do that, we replace lines number N + 1, 4N + 5, 5N + 5, and 8N + 9 in both matrices
(considering that the first line is of number 1) by lines which are equivalent to eq.12.13. So line
N + 1 in the matrix on the left becomes all zeros except for the N + 1 element and for 4N + 5
element, one of these should be +1, and the other should be −1. While the corresponding line in
the right matrix is all zeros. The same stratigy for line 5N + 5 which is supposed to expess the
continuity of E at the x = b. Concerning lines 4N + 5, and 8N + 9 we follow the same strategy
also, but here to obtain the derivative of E at certain point we have to make sure of that all the
E vector is muliplied by the suitable lines in the differentiation matrix (which depends on the
position).

Finally we get an eigenvalue problem to be solved.

12.3 Spectrum results

12.3.1 QNM frequencies: Convergence results

Fig.12.3.1 shows the logarithmic relative error ε(N)
n when increasing the number of points in each

grid. We mark a fast convergence even with few number of points.

εN = log

∣∣∣∣∣1− ω(N)

ω(NMax)

∣∣∣∣∣ . (12.14)

6 8 10 12 14 16 18

N

-6
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-4

-3

-2

-1

ϵN

The eigenvalues appear in Fig.12.4 and in Fig.12.4 as the dark spots in the complex plan.
The first figure is for a case with a constant permittivity inside the cavity and that does not
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depend on the frequency, while the second one is for a case with dispersion with no absorption:

εIN (ω, x) = ε∞ −
1

ω2
, (12.15)

In this equation the permittivity is constant along the cavity. We mark in both cases the existence
of modes with purely imaginary frequencies:

ωN = ik; k ∈ N (12.16)

These frequencies have even multiplicities.

12.3.2 QNM eigenfunctions: Normalization

One of the advantages of hyperboloidal slices method is the ability to normalize the fields in
the new coordinates. Fig.12.3.2 shows the eigenfunction corresponding to the fundamental mode
with respect to the space variable x, note that this mode is going to explode. Fig.12.3.2 shows
the eigenfunction corresponding to the fundamental mode with respect to the compactified space
variable y, note that this mode is normalizable. An important point to mention is that the field
itself differs between normal space-time coordinates (t, x) and (τ, y).
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Figure 12.1: Eigenfunction of fundamental mode as a function of the position x. We plot here
two identical eigenfunctions related one to the fundamental frequency with a positive real part:
ωf and the other with the fundamental one with a negative real part: −ω∗f .
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Figure 12.2: Eigenfunction of fundamental mode as a function of the position y. We plot here
two identical eigenfunctions related one to the fundamental frequency with a positive real part:
ωf and the other with the fundamental one with a negative real part: −ω∗f .

Also Fig.12.3.2 shows the eigenfunction corresponding to the first zero mode (ω = i) with
respect to the space variable x, note that this mode is going to explode. Fig.12.3.2 shows the
eigenfunction corresponding to the fundamental mode with respect to the compactified space.
As expected the mode in these coordinates can be normalized.
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Figure 12.3: Eigenfunctions of the first zero mode as a function of the position x. We plot
here two eigenfunctions (in blue and in red) related to the first zero mode which has double
multiplicity. The function plotted in black is the sum of both.
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Figure 12.4: Eigenfunction of the first zero mode as a function of the position y. We plot here two
eigenfunctions (in blue and in red) related to the first zero mode which has double multiplicity.
The function plotted in black line is the sum of both.

12.4 Perturbation and pseudospectrum

Following the same strategy we adopted when studying gravitational waves, here also we calculate
the pseudospectrum considering L2 norm of the eigenfunctions. Fig.12.4 shows a pseudospectrum
that is calculated for a case with permittivity inside the cavity: εIN = 2.25. This result shows a
potential instability of the higher overtones.

Figure 12.5: Pseudospecturm calculated with L2-norm for an optical cavity with a constant
permittivity inside. Dark areas of the pseudospectrum indicates the existence of eigenvalues.
The horizontal eigenvalues correspond to well known and calculated QNM frequencies, while the
purely imaginary eigenvalues are detected using hyperboloidal foliation.

Fig.12.4 shows a pseudospectrum calculated for a case with permittivity inside the cavity as:
εIN = 1 − 1

ω2 . Also in this case a potential instability appear when having bigger and bigger
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imaginary part of the frequency.

Figure 12.6: Pseudospecturm calculated with L2-norm for an optical cavity with a permittivity
with dispersion and with no absorption inside. Dark areas of the pseudospectrum indicates the
existence of eigenvalues. The eigenvalues that falls on logarithmic branches are predictable, while
the purely imaginary eigenvalues are detected using hyperboloidal foliation.

This observed instability of overtones marked in both simple cases is due to small perturbation
to the studied operator. Keeping in mind that the perturbation that we consider when studying
pseudospectrum is of the form: δE, with ||E|| = 1, we see that this is a general "mathematical"
perturbation. On the physical level, we are interested in studying the effect of small perturbations
on just the permittivity. For this reason we considered a permittivity as in the second studied
case with dispersion and with no absorption and run tests perturbing only the permittivity, The
resulting eigenvalues are the same with no displacement at all. This suggests that the branches
on which the eigenvalues situated are stable due to physical perturbation of the system.

12.5 QNMs expansion

12.5.1 Normal modes: selfadjoint case

Let us consider the initial data problem of a wave equation on a domain D × R+, with D ⊂ Rn
a compact domain, subject to conservative boundary conditions at the boundaries of D. For
concreteness, we consider a scalar wave equation with homogeneous Dirichlet (analogously for
Neumann or, more generally, Robin) boundary conditions at ∂D and initial data at D

(
∂2
t −∆ + V

)
φ = 0

φ(t = 0, x) = ϕ0(x)

∂tφ(t = 0, x) = ϕ1(x)

, (12.17)

where V is a potential that we assume, for simplicity, to satisfy V (x) > 0. The initial data
problem (12.17) is well-posed, admitting a unique solution φ(t, x). The goal now is to express
this solution in terms of so-called normal modes. We proceed in two equivalent forms.
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First version: second-order formulation

Let us proceed first with a (perhaps over-detailed) derivation underlying the relevance of the so-
called spectral theorem. We first consider the Fourier transform of Eq. (12.17) or, equivalently,
we consider insert the mode φ(t, x) = eiωtφ(x) in (12.17), leading to the eigenvalue problem

(−∆ + V )φ(x) = ω2φ(x) . (12.18)

The key point is that the operator PV = −∆ + V is selfadjoint in the scalar product L2(D,C)

〈ϕ,ψ〉2 =

∫
D
ϕ ψ dnx . (12.19)

Under these conditions, the spectral theorem tell us that PV is unitarily diagonalisable. That is,
there exists a (Hilbert) basis in L2(D,C), namely a complete and orthonormal set of eigenvectors
of PV . To be concrete, we can write

PV φj(x) = (−∆ + V )φj(x) = ω2
jφj(x) , j ∈ {1, 2, . . .} = N∗ (12.20)

with φj(x)|∂D = 0 (the discreteness of the label j follows from the compact character of D). The
set {φj∈N∗} form a Hilbert basis in L2(D,C):

i) Completeness: we can expand functions in L2(D,C)

ψ(x) =

∞∑
j=1

ajφj(x) , ψ ∈ L2(D,C) , (12.21)

where the symbol
∞∑
j=1

denotes a (proper) convergent series in L2(D,C), that is

lim
N→∞

||ψ −
N∑
j=1

ajφj || = 0 , (12.22)

with || · || the norm associated with the scalar product (12.19).

ii) Orthogonality: the eigenfunctions φj∈N∗ satisfy

〈φi, φj〉2 = δij . (12.23)

From (12.21 and (12.21) it follows

aj = 〈φj , ψ〉2 . (12.24)

Under the hypothesis V (x) > 0, the ω2
j are non-negative (their reality is assured by the

self-adjointness of PV ). For simplicity (and without loss of generality), let us assume that the
ω2
j are strictily positive

0 < ω2
1 ≤ ω2

2 ≤ . . . ω2
j ≤ . . . (12.25)

From (12.18) and (12.20) we find the “dispersion relation”

ω2 = ω2
j =⇒ ω = ±ωj , (12.26)
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where the two solutions for ω follow from the second-order in time of (12.17). Using now the
linear independence of the solutions eiωjtφj(x) and e−iωjtφj(x), the most general solution to the
homogeneous equation (12.17) can be written as

φ(t, x) =

∞∑
j=1

(
αje

iωjtφj(x) + α−je
−iωjtφj(x)

)
, (12.27)

avec αj et α−j , with j ∈ N∗ complex numbers. If we define now

ω−j := −ωj , φ−j(x) := φj(x) , (12.28)

we can write

φ(t, x) =
∞∑
j∈Z∗

αje
iωjtφj(x) . (12.29)

We determine now αj∈Z∗ from the initial data in (12.17), by using critically (12.24). In particular,
taking the time derivative in (12.30) we get

∂tφ(t, x) =
∞∑
j∈Z∗

iωjαje
iωjtφj(x) (12.30)

Then

φ(t = 0, x) =
∞∑
j∈Z∗

αjφj(x) =
∞∑
j=1

(αjφj(x) + α−jφ−j(x))

=
∞∑
j=1

(αj + α−j)φj(x)

∂tφ(t = 0, x) =
∞∑
j∈Z∗

iωjαjφj(x)

=

∞∑
j=1

i (ωjαjφj(x) + ω−jα−jφ−j(x))

=

∞∑
j=1

iωj (αj − α−j)φj(x) (12.31)

On the other hand, φ0(x) and ψ1(x) in (12.17) can be expanded in terms of φj(x)

ϕ0(x) =

∞∑
j=1

ajφj(x)

ϕ1(x) =

∞∑
j=1

bjφj(x) , (12.32)

so, from (12.17) and the basis character of φj(x) it follows aj = aj + aj

bj = iωj(aj − aj)
, (12.33)
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from which it follows

αj =
1

2

(
aj −

i

ωj
bj

)
,∀j ∈ Z∗ . (12.34)

On the other hand, from (12.24)

aj = 〈φj , ϕ0〉2 , bj = 〈φj , ϕ1〉2 , (12.35)

so we finally can write, using (12.30), (12.34) and (12.35)

φ(t, x) =
∞∑
j∈Z∗

eiωjt
1

2

(
〈φj , ϕ0〉2 −

i

ωj
〈φj , ϕ1〉2

)
φj(x) (12.36)

Third version: first-order formulation

Having in mind our discussion of the non-selfadjoint case, that is formulated in a first-order in
time setting, we revisit the previous derivation of (12.36). We start by reducing the Eq. (12.17)
to a first-order (in time) formulation

ψ = ∂tφ , u =

φ
ψ

 . (12.37)

Then, Eq. (12.17) becomes

∂tu = iLu , (12.38)

where the operator L is defined as

L =
1

i

 0 1

L1 0

 , (12.39)

with

L1 = ∆− V (x) (12.40)

and initial data given by

u(t = 0, x) =

ϕ0(x)

ϕ1(x)

 . (12.41)

The operator L in (12.84) is also selfadjoint, but crucially with respect to a different scalar
product that the one in (12.19), namely, with respect to

〈φ1

ψ1

 ,

φ2

ψ2

〉
E

(12.42)

=
1

2

∫
D

(
ψ1ψ2 +∇φ1 · ∇φ2 + V φ1φ2

)
dnx ,
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We address now the resolution of the time evolution problem (12.38) in a spectral approach, but
this time we adopt a Laplace transform approach. Specifically, we consider for Re(s) > 0φ̂(s;x)

ψ̂(s;x)

 := L

φ
ψ

 =

∫ ∞
0

e−st

φ
ψ

 dt . (12.43)

Applying this to Eq. (12.38), we get

s

φ̂(s;x)

ψ̂(s;x)

−
φ(t = 0, x)

ψ(t = 0, x)

 =

 0 1

L1 0

φ̂(s;x)

ψ̂(s;x)

 (12.44)

Dropping the explicit s-dependence and using (12.17) for the initial data, we can write(
−

 0 1

L1 0

+ s

)φ̂
ψ̂

 =

ϕ0

ϕ1

 (12.45)

Introducing the self-adjoint operator L in (12.84)

(
L+ is

)φ̂
ψ̂

 = i

ϕ0

ϕ1

 , (12.46)

namely, using the notation in (12.37)

(L+ is)u = iS , (12.47)

where the source S is defined in terms of the initial data

S :=

ϕ0

ϕ1

 . (12.48)

This is a linear non-homogeneous equation. For its resolution, to get the Fourier-transformed
u(ω;x) (or, alternatively, the related Laplace-transformed u(s;x)), we proceed in two steps.

In the first step, we consider the homogeneous part of Eq. (12.47. Rewriting the Laplace
parameter s in terms of the Fourier one ω by using the relation s = iω, we can write

(L− ω)u = iS , (12.49)

whose homogeneous part leads to the eigenvalue problem

L

φ̂n
ψ̂n

 = ωn

φ̂n
ψ̂n

 . (12.50)

We notice that this is just the spectral problem of the operator L, that we would have obtained
if applying directly the Fourier transform to (12.38), instead of passing through the Laplace one.
This is the first-order in time version of the eigenvalue problem (12.18) for the operator PV . Let



12.5 QNMs expansion 147

us then relate the eigenfunctions un =

φ̂n
ψ̂n

 of the L operator, normalized with respect to

scalar product (12.42), to the eingenfunctions φn’s of PV in (12.20), normalised with respect to
(12.42). We first rewrite (12.50) as 0 1

L1 0

φ̂n
ψ̂n

 = iωn

φ̂n
ψ̂n

 . (12.51)

This can be rewritten as

ψ̂n = iωnφ̂n , L1φ̂n = iωnψ̂n , (12.52)

so, inserting the first one in the second, we find as expected

L1φ̂n = iωn(iωn)φ̂n = −ω2
nφ̃n

PV φ̂n = ω2
nφ̂n , (12.53)

where we have used PV = −L1. Assuming for simplicity that eigenvalues of PV are simple
(non-degenarate, the general (Fredholm) case can also be treated), it follows

φ̂n = αφn . (12.54)

Imposing then the normalization

〈φ̂n
ψ̂n

 ,

φ̂m
φ̂m

〉
E

= δnm , (12.55)

and using (12.52), (12.54), the integration by parts (with homogeneous boundary conditions)
and (12.53) in (12.42), it follows

|α| = 1

ωn
, φ̂n =

1

ωn
φn (12.56)

In the second step to the resolution of the Laplace-transformed u(s;x), we need to evaluate
the ’resolvent’ (L+ is)−1 of L, so that, using (12.47) we get

u(s;x) = i(L+ is)−1S , (12.57)

In order to write the resolvent of L or, equivalently its Green function (integral Kernel of the
resolvent), we make of string use of the selfadjointness of L. Explicitly, using again Fourier
parameter ω and writing (for ω ∈ R not belonging to the spectrum of L)

Gω(x′, x) =
∑
j∈Z∗

u†j(x
′)uj(x)

ωj − ω
(12.58)

we can formally write the action of the resolvent, in terms of the integration in the x′ variable
inside the (energy) scalar product(

(L− ω)−1S
)
(ω, x) = 〈Gω(·, x), S〉E (12.59)

:=
∑
j∈Z∗

uj(x)

ωj − ω
〈uj , S〉E . (12.60)
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This notation is a bit cumbersome and can be made more transparent in the terms of formal
“bra’s”s and “ket’s”

(L− ω)−1 =
∑
j∈Z∗

|uj〉〈uj |
ωj − ω

, (12.61)

where 〈 · | and | · 〉 must be understood with respect to the energy scalar product (12.42). The
sum in (12.61) is associated with actual convergent series, this being to the selfadjointness of
L. Namely, expression (12.61) is just the consequence of the completeness of eigenfunctions uj ,
together with the “dispersion relation” (12.26).

With these elements we can write the frequency solution to the initial data problem (12.38)
as

u(ω;x) = i(L− ω)−1S = i
∑
j∈Z∗

〈uj |S〉E
ωj − ω

|uj〉 , (12.62)

where the solution can be analytically (actually meromorphically) extended in the ω-complex
plane. Writing the Laplace version (ω = −is)

u(s;x) = i(L+ is)−1S =
∑
j∈Z∗

〈uj |S〉E
s− sj

|uj〉 , (12.63)

we can recover the time solution by taking the inverse Laplace transform to (12.43), namely

u(t, x) =
1

2πi

∫ c+i∞

c−i∞
estu(s;x)ds , (12.64)

with c ∈ R+. Plugging the expression of U(s;x) in (12.63), we find

u(t, x) =
1

2πi

∫ c+i∞

c−i∞

∑
j∈Z∗

est
〈uj |S〉E
s− sj

|uj〉 . (12.65)

Let us consider now a contour C in s−C formed by the interval c− iR, c+ iR and closed on the
left half-plane by a circle (of radius R, centered at c+ i0) and denote by Ω the bounded domain
in C delimited by C, In the context of the operators we are considering, the number of ωj ∈ Ω
is finite, so (using Cauchy theorem) we can safely interchange the sum and the integral we can
write (assuming the limit exists)

u(t, x) = lim
R→∞

1

2πi

∫ c+iR

c−iR

∑
j∈Z∗

est
〈uj |S〉E
s− sj

|uj〉 (12.66)

= lim
L→∞

( ∑
ωj∈Ω

1

2πi

∮
C
est
〈uj |S〉E
s− sj

+ (circle part)

)
,

The “(circle part)” vanish by standard arguments at the R → ∞ and, applying the Cauchy
theorem, we can write

u(t, x) = lim
R→∞

∑
ωj∈Ω

esjtajuj , (12.67)
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with

aj = 〈uj |S〉E =
〈φ̂j

ψ̂j

 ,

ϕ0

ϕ1

〉
E

(12.68)

As commented, the number of terms in the sum in (12.68) is finite, so we are considering the
existence of the limit of a sequence of partial sums. It is a remarkable feature of self-adjoint op-
erators, namely the existence of a spectral theorem, that such limit exists in the norm associated
with the Hilbert scalar product, so finally we can actually write

u(t, x) =
∑
j∈Z∗

esjtajuj =
∑
j∈Z∗

eiωjtajuj , (12.69)

in the sense of a convergent series. The constant aj can be more explicity expressed as

aj =
1

2

∫
D

(
ψ̂jϕ1 +∇φ̂j · ∇ϕ0 + V φ̂jϕ0

)
dnx ,

and using ψj = iωjφj

aj =
1

2

(
− iωj

∫
D
φ̂jϕ1d

nx+

∫
D

(
∇φ̂j · ∇ϕ0 + V φ̂jϕ0

)
dnx

)
,

=
1

2

(
〈φ̂j , ϕ0〉H2

V
− iωj〈φ̂j , ϕ1〉2

)
(12.70)

with the (Sobolev’s) H1
V scalar product

〈φ1, φ2〉H2
V

:=

∫
D

(
∇φ1 · ∇φ2 + V φ1φ2

)
dnx (12.71)

Therefore, we can finally write

u(t, x) =
∑
j∈Z∗

eiωjt
1

2

(
〈φ̂j , ϕ0〉H2

V
− iωj〈φ̂j , ϕ1〉2

)
uj , (12.72)

This is the general normal mode expansion, expressed in terms of the quantities natural in the
first-order in time formulation. In order to make contact with expression (12.36) in the second-
order in time formulation, we rewriteφ

ψ

=
∑
j∈Z∗

eiωjt
1

2

(
〈φ̂j , ϕ0〉H2

V
− iωj〈φ̂j , ϕ1〉2

)φ̂j
ψ̂j

 , , (12.73)

Now, noticing φ̂j = αjφj and ψ̂j = αjψj , we can writeφ
ψ

=
∑
j∈Z∗

eiωjt
|αj |2

2

(
〈φj , ϕ0〉H2

V
− iωj〈φj , ϕ1〉2

)φj
ψj

 , (12.74)

and evaluating from (12.56)φ
ψ

=
∑
j∈Z∗

eiωjt
1

2

( 1

ω2
j

〈φj , ϕ0〉H2
V
− i

ωj
〈φj , ϕ1〉2

)φj
ψj

 . (12.75)
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Finally, writing

〈φj , ϕ0〉H2
V

=

∫
D

(
∇φj · ∇ϕ0 + V φjϕ0

)
dnx

=

∫
D

(
−∆φjϕ0 + V φjϕ0

)
dnx =

∫
D
PV φjϕ0d

nx

= ω2
j

∫
D
φjϕ0d

nx = ω2
j 〈φj , ϕ0〉2 (12.76)

we recover φ
ψ

=
∑
j∈Z∗

eiωjt
1

2

(
〈φj , ϕ0〉2−

i

ωj
〈φj , ϕ1〉2

)φj
ψj

 , (12.77)

whose first component corresponds exactly to the normal mode expansion (12.36). As in (12.36),
the sum here corresponds to a convergent series, for each fixed t. Certainly this second derivation
of the normal mode expansion based on the resolvent (Green’s function) is significantly more
cumbersome than the first derivation using directly the completeness of the eigenfunctions of
PV . However, in contrast with the latter, it has the virtue of generalizing directly to the non-
selfadjoint case.

12.5.2 QNM modes: non-selfadjoint case, Keldysh expansion

The normal mode expansion in section 12.5.1 has made explicit use of the completeness and
orthogonality properties of the eigenfunctions of a selfadjoint operator. The second derivation
in section 12.5.1 also makes critical use of the selfadjointness in the construction of the explicit
resolvent (12.61) but, avoiding the explicit use of Hilbert basis and orthogonal projections, it
provides an approach whenever we can explictly write the resolvent (L − ω)−1 of an operator
L. This precisely what Keldysh’s asymptotic expansion of the resolvent provides in the case of
non-selfadjoint operators [102, 103, 129, 28, 29].

Let us consider again 5.1.6. If we relax the condition 〈un, vn〉 = −1, we can rewrite expression
(5.51) as

(L− λ)−1 ∼
∑
λn∈Ω

|vn〉〈wn|
〈wn, vn〉

−1

λ− λn
(12.78)

=
∑
λn∈Ω

|vn〉〈wn|
〈wn, vn〉

1

λn − λ
. (12.79)

Introducing now the condition number κn associated to the eigenvalue λn

κn :=
||wn|| ||vn||
〈wn, vn〉

, (12.80)

we can write

(L− λ)−1 ∼
∑
λn∈Ω

κn
|vn〉〈wn|
||wn|| ||vn||

1

λn − λ
, (12.81)



12.5 QNMs expansion 151

and, in terms of the normalized left- and right-eingvectors

ŵn =
wn
||wn||

, v̂n =
vn
||vn||

, (12.82)

we can finally write

(L− λ)−1 ∼
∑
λn∈Ω

κn
|v̂n〉〈ŵn|
λn − λ

. (12.83)

Note that this expression formally recovers the form of Eq. (12.61) in the selfadjoint (more
generally, ’normal’) case in which ŵn = v̂n and κn = 1. However, the statement in (12.61)
is much stronger, since the sum there indicatates a series convergence. In the selfadjoint case,
expression (12.83) can indeed be extended to the whole C \ σ(L) in a convergent sense, but this
requires other (Hilbert space) techniques.

In this setting we can repeat the steps followed in 12.5.1, taking care at the proper places of
the differences between (12.83) and (12.61), in order to write a QNM resonant expansion in the
hyperboloidal approach. The starting point is the first-order (in time) evolution equation in the
hyperboloidal approach, namely Eq. (12.38) with the operator L now given by

L =
1

i

 0 1

L1 L2

 , (12.84)

where the L2 operator accounts for radiation damping. Specifically, following [98] we keep the
energy scalar product (12.42), demonstrating that L is non-selfadjoint due precisely to this
L2 term. Taking Laplace transform we get again the non-homogeneous equation (12.47), or Eq.
(12.49) in terms of the Fourier spectral parameter. However, the operator L now is not selfadjoint.
The relevant spectral problem of the homogeneous part involves both left- and right-eigenvectors,
cf. (5.48), that in terms of time frequency ωn writes

Lv̂n = ωnv̂n , L†ŵn = ωnŵn (12.85)

where we choose right and left-eigenctors v̂n and ŵn normalized with respect to the energy scalar
(12.42)

v̂n =

φ̂R
n

ψ̂R
n

 , ŵn =

φ̂L
n

ψ̂L
n

 (12.86)

From this spectral problem, the resolvant (L − ω)−1 can be constructed in a bounded Ωω ∈ C
as in (12.83) so, for λ ∈ Ωω, we can write

u(ω;x) = i(L− ω)−1S ∼ i
∑
ωj∈Ωω

κn
〈ŵj |S〉E
ωj − ω

|v̂j〉 , (12.87)

or, in terms of the Laplace spectral parameters with s ∈ Ωs with s = iω and reinserting the
analytic part of the resolvent in (12.83), we have

u(s;x) =
∑
sj∈Ωs

κn
〈ŵj |S〉E
s− sj

|v̂j〉+ iH(s)(S) . (12.88)
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Writing now

u(t, x) = lim
R→∞

1

2πi

∫ c+iR

c−iR
estu(s;x)ds = lim

R→∞

1

2πi

∫ c+iR

c−iR
est
( ∑
sj∈Ωs

κn
〈ŵj |S〉E
s− sj

|v̂j〉+ iH(s)(S)
)
ds ,

and using the semi-circular contour C in Eq. (12.66) we can write

u(t, x) = lim
R→∞

( ∑
ωj∈Ω

1

2πi

∮
C
estκn

〈ŵj |S〉E
s− sj

|v̂j〉+
1

2π

∮
C
estH(s)(S)ds+ (circle part)

)
(12.89)

The contour C integral involving the analytic expression estH(s)(S) vanishes, but nothing
guarantees that its integral along the semi-circle vanishes, this depending on the specific depen-
dence of the function H(λ), that is not fixed by Keldysh expansion. In general, the last term
gives a term CR(t;S). Using now Cauchy theorem, we can write

u(t, x) = lim
R→∞

( ∑
ωj∈Ω

esjtκn〈ŵj |S〉E v̂j + CR(t;S)
)
. (12.90)

In contrast with (12.67), nothing guarantees that this limits exists. On the one hand, for strongly
non-selfadjoint (more generally non-normal) operators the condition number κn can grow without
bound and, on the hand, the CR(t;S) does not need to converge as R goes to infinity, in particular
not needing to vanish. In this context we cannot write u(t, x) in terms of an actual convergent
series, but we can still an asymptotic QNM resonant expansion

u(t, x) ∼
∑
n

esjtκn〈ŵj |S〉E v̂j , (12.91)

or, in the Fourier spectral-parameter

u(t, x) ∼
∑
n

eiωjtκn〈ŵj |S〉E v̂j , (12.92)

meaning by this that, for a bounded domain Ω with R = max{Im(ω), ω ∈ Ω}, the number of
QNMs in finite and we can write

u(t, x) =
∑
ωj∈Ω

eiωjtκn〈ŵj |S〉E v̂j + ER(t;S) (12.93)

where the structure of the term estH(s)(S) in the circle part of (12.89) permits to bound the
“error” EL(t;S) in the estimation of u(t, x) by the (finite) resonant expansion. Explicitly, there
exists a constant CR depending on R and the operator L (but not on the initial data), such that

||EL(t;S)||E ≤ CRe−Rt||S||E . (12.94)

This is essentially the content of Lax-Phillips resonant expansion [115, 176, 194, 68], here ex-
pressed in terms of normalizable QNM functions and providing an explicit prescription for the
evaluation of the associated coefficient explicitly

u(t, x) ∼
∑
n

esjtanv̂j (12.95)
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with

an = κn〈ŵj |S〉E . (12.96)

Notice the formal recovery of the normal mode expansion (12.69), with (12.68), in the self-adjoint
case in which ŵj = v̂j and κj = 1. Of course, as explained, the sum has a different meaning,
although in this case both expressions can be actually shown to the same. Expressing this in
terms of the components of normalized vectors (12.86)φ

ψ

 ∼∑
n

eiωjtan

φ̂Rj
ψ̂Rj

 (12.97)

with

aj = κj〈ŵj |S〉E = κj

〈φ̂Lj
ψ̂Lj

 ,

ϕ0

ϕ1

〉
E

(12.98)

aj =
κn
2

∫
D

(
ψ̂Lj ϕ1 +∇φ̂Lj · ∇ϕ0 + V φ̂Lj ϕ0

)
dnx ,

and using now ψ̂Lj = iωφ̂Lj [justify from the explicit expression of L†2!], we have

aj =
κn
2

(∫
D
iωjφ̂Lj ϕ1d

nx+

∫
D

(
∇φ̂Lj · ∇ϕ0 + V φ̂Lj ϕ0

)
dnx

)
,

=
κn
2

(
− iωj

∫
D
φ̂Lj ϕ1d

nx+

∫
D

(
∇φ̂Lj · ∇ϕ0 + V φ̂Lj ϕ0

)
dnx

)
(12.99)

=
κn
2

(
〈φ̂Lj , ϕ0〉H1

V
− iωj〈φ̂Lj , ϕ1〉2

)
. (12.100)

This recovers the selfadjoint case (12.70) when making φ̂Lj → φ̂j and κn → 1. But, more
inportantly, it recovers the correct dependence in ωj . Indeed, from Eqs. (12.97) and (12.99) we
can write the QNM resonant expansion for the φ(t, x) field

φ(t, x) ∼
∑
n

eiωjtanφ̂Rj , (12.101)

with

aj =
κ

2

(
〈φ̂Lj , ϕ0〉H1

V
− iωj〈φ̂Lj , ϕ1〉2

)
(12.102)

This is the version in the Keldysh setting of the Lax-Philip’s asymptotic resonant expansion.
This crucially recovers the correct dependence in ωj , and not in the conjugated ωj (cf. e.g.
Eq.(2.50) in [194]; note the sign change in the convention for the spectral parameter). Finally,
in contrast with the self-adjoint case, the expression of an cannot be further reduced to purely
L2 scalar products, since φ̂Lj is not the eigenfunction of the operator PV . Of course, (12.36)
expression (12.36) is recovered in the selfadjoint case (with the sum now understood in terms of
a convergent series), exactly as in Eq. (2.52) in [194].
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QNM modes: non-selfadjoint case, Keldysh expansion, optical case

To find the analog expansion for an optical case with a generic permittiviy (does not necessarily
follow Lorentz model), we will write the problem in another way using one hyperboloidal slices
letting the information about different permittivity in different regions of the space, and for
different frequencies impeded in the permittivity function ε(ω, x). Considering a scalar field in
one dimension:

(ε(t, x) ∗ ∂2
t − ∂2

x)φ(t, x) = 0 (12.103)

Applying the same Hyperboloidal transformations in eq.2.20, we get:

(ε(τ, y)∗∂2
τ −y2∂2

τ +2y(1−y2)∂τ∂y+(1−y2)∂τ +2y(1−y2)∂y−(1−y2)2∂2
y)φ(τ, y) = 0 (12.104)

Performing Fourier transformation with respect to τ , and considering an auxiliary field ψ(τ, y) =
∂τ , we can write the problem in the following matricial way: 0 1

L1 L2

φ
ψ

 = iω

 1 0

0 ε(ω, y)− y2

φ
ψ

 (12.105)

with L1 = (1− y2)((1− y2)∂2
y − 2y∂y),

and L2 = −(1 − y2)(2y∂y + 1). Hence the problem can be expressed as: T (ω, y)u(ω, y) = 0,
where:

T (ω, y) =

 0 1

L1 L2

− iω
 1 0

0 ε(ω, y)− y2

 (12.106)

It follows that:

T ′ω = −i

 1 0

0 ε(ω, y)− y2 + ω ∂ε
∂ω

 . (12.107)

Calculating T ′ω, we can impose that the product:

〈wn, T ′ω|ωn , vn〉 = −1, (12.108)

where wn =

φ1n

ψ1n

, and vn =

φ2n

ψ2n

, then

〈wn, T ′ω|ωn , vn〉 = 〈

φ1n

ψ1n

 ,−i

 φ2n

(ε(ωn, y)− y2 + ωn
∂ε
∂ω |ωn)ψ2n

 (12.109)

So: Coming back to the approximation of Keldysh expansion, in this case eq.12.78 will be written
as:

(L− λ)−1 ∼
∑
λn∈Ω

|vn〉〈wn|
〈wn, T ′ω|ωn , vn〉

1

λ− λn
(12.110)

=
∑
λn∈Ω

|vn〉〈wn|
〈wn, T ′ω|ωn , vn〉

1

λ− λn
. (12.111)
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Taking into account eq.12.80, we can write:

(L− λ)−1 ∼
∑
λn∈Ω

κn
〈wn, vn〉

〈wn, T ′ω|ωn , vn〉
|vn〉〈wn|
||wn|| ||vn||

1

λ− λn
, (12.112)

and, in terms of the normalized left- and right-eingvectors

ŵn =
wn
||wn||

, v̂n =
vn
||vn||

, (12.113)

we can finally write

(L− λ)−1 ∼
∑
λn∈Ω

κ′n
|v̂n〉〈ŵn|
λ− λn

, (12.114)

where κ′n = κn
〈wn,vn〉

〈wn,T ′ω |ωn ,vn〉
. If we define: where κ′n = −κn 〈wn,vn〉

〈T ′ω |ωnvn,wn〉
, then:

(L− λ)−1 ∼
∑
λn∈Ω

κ′n
|v̂n〉〈ŵn|
λn − λ

, (12.115)

Note that 12.115 was obtained without defining a specific scalar product although the con-
tribution of different poles to the resolvent in a relation with the scalar product choice.

12.6 Conclusions

• Introducing hyperboloidal slicing approach in scattering electro-magnetic problems. This
was made assuming a Lorentz model of a permittivity in an cavity.

• Calculated QNMs are normalizable, that is due to the use of hyperboloidal slices approach.

• Introducing pseudospectrum notions and tool to study stability issues in optics.

• Using Chebyshev spectral methods to solve numerically QNM problem with three domains
using different grids. The problem was casted as an eigenvalue problem, with continuity
conditions to be imposed.

• Identification the existence of purely imaginary eigenvalues: ωn = in, these are not resonant
frequencies while it contribute to the field decay with time.

• Asymptotic resonant expansion in terms of QNMs in the case of permittivity follows Lorentz
model with zero absorption in analogy with the case of compact potential as in Lax &
Phillips theorem.

• Calculation of excitation coefficients in terms of conditioning number, by re-writing Keldysh
expansion as the resonant expansion.
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Conclusions
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The general context of this PhD deals with a scattering problem in which the propagating
field is lost at the infinities and, in the presence of a black hole, through its horizon. Such a
system can be cast as a non-unitary time evolution problem, therefore in which an infinitesimal
generator of time evolution is a non-self-adjoint operator. In a first step we have cast such a
problem in an appropriate Hilbert space setting by choosing a hyperboloidal slicing and a suitable
scalar product. Specifically, in order to address the spectral instability of the operator, we have
chosen a scalar product associated with the energy of the field. In the related energy norm,
non-unitarity is just the mathematical translation of non-conservative physical system. From
a methodological perspective, the relevant point is that we have translated the discussion of
the scattering problem into the spectral properties of a non-self-adjoint operator characteristics,
namely the Keldysh expansion, the notion of the pseudospectrum and related concepts as the
particular role of random perturbations.

13.1 Main results

The main results we have achieved can be divided in three main topics:

i) Spectrum, pseudospectrum and scalar product

• In this thesis we have introduced the pseudospectrum notion to gravitational and
optical physics. Dueling in a scattering problem, a pseudospectrum analysis of the
unperturbed operator infinitesimal time translation generator provides a global picture
of QNM spectral (in)stability [98], with the QNM problem cast as an eigenvalue
problem of the non-self-adjoint operator.

• We have introduced an energy scalar product as the appropriate one to assess the
stability problem under external physical disturbances. Other scalar products could
be necessary to assess other QNM problems, A scalar product in Gevrey classes in
order to address the problem of defining the QNMs.
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• The (energy) pseudospectrum structure of the scattering problems presents a seem-
ingly universal structure. In particular the asymptotics for large real part of frequen-
cies are logarithmic, consistently with the asymptotic of QNM free regions [68].

• The distribution of the perturbed eigenvalues attain logarithmic pseudospectrum con-
tour lines for Cp perturbations in the potential or permittivity case according to
Zworski’s theorem [192]. We observed that perturbed QNM frequencies associated
to regular deterministic perturbations approach the contour lines as the frequency
increases. We conjecture that the pseudospectrum contour lines are attained in the
infinite frequency limit following a pattern given by Regge QNMs branches.

• Perturbed branches are stable under further perturbations and share basic features
with generic compact object QNMs: we conjecture a universality of QNMs of generic
compact objects, either matter compact objects or perturbed vacuum (black holes)
ones.

ii) Gravity

• Fundamental BH QNMs are stable under high-frequency small perturbations, while
the overtones are unstable under these kind of perturbations.

• Distinction between axial and polar GW parities: isospectrality loss While both QNM
spectra coincide for the Schwarzschild BH, parity loss of generacy is a natural con-
sequence when the system is slightly perturbed. We identify three regimes of the
isospectrality loss under perturbation characterized by (ε, k), where ε is the size of
perturbation and k is its frequency, actually the wave number.

• The opening of perturbed QNMs branches opening is assessed by introducing a new
parameter: G = limn→∞ ω

R
n /|ωn|. Schwarzschild QNMs have G = 0, whereas Regge

branches yields G = 1. The tendency G → 1 as k →∞ indicates QNMs migrating to
ε−pseudospectra log-lines in the large wave-number limit. We propose this parameter
as a measure of the loss of regularity in the potential. See Regge QNM conjecture
13.1.

• Reverberation at Regge’s length scales LR(ε, k) is proposed as underlying mechanism,
with multiple reflections decreasing QNM damping.

• A BH QNM Weyl’s law has been introduced, with hints into classical/quantum BH
physics, expressing the ‘reverberation scale’ in terms of a Weyl’s length LW (ε, k). We
propose this parameter as an indication of small structure.

iii) Optics

• Introduction hyperboloidal slicing approach in scattering electro-magnetic problems,
specifically this has been made assuming a Lorentz model of a permittivity in an
cavity.

• Normalization of QNMs due to the use of hyperboloidal slices approach.

– Systematic use of pseudospectrum notion and tool to study stability issues in optics.

• Implementation of multi Chebyshev grids to solve numerically QNM problem. This is
fundamental in studying systems configured with jumps in optical properties, where
continuity conditions to be imposed.
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• Identification the existence of purely imaginary eigenvalues: ωn = in for compactly
supported potential or permittivity. These are not resonant frequencies while it con-
tribute to the field decay with time.

• Asymptotic resonant expansion in terms of QNMs in the permittivity case we imple-
ment this assuming Lorentz model with zero absorption extending Lax & Phillips
theorem.

• Calculation of excitation coefficients in terms of conditioning number, by re-writing
Keldysh expansion as the resonant expansion.

In order to assess the work of this thesis we compare with the initial objectives:

i) First objective: Resonant expansion. We have suggested to write the studied problem in
hyperboloidal slices. Defining an appropriate scalar product (energy scalar product for the
potential case) allowed re-write the problem as a one in a Hilbert space. Having the problem
in a Hilbert space and using Keldysh expansion, we could write an asymptotic resonant
expansion in terms of normalizable QNMs eigenfunctions, with a certain prescription for
the excitation coefficients. Moreover we have investigated this resonance expansion in
relation with the one in Lax-Phillips results. In the self-adjoint case we have shown that
this expansion can be reduced to an expansion of normal modes where the system of
eigenfunctions is complete.
Thus, the first objective has been partially achieved. Howeve no general assessment of
completeness in terms of convergent series has been done.

ii) Second objective: Instability and scalar product. We have assessed the (in)-stability of the
eigenvalues due to a small perturbation of the studied potentials or permittivity. In order
to achieve that, we have introduced:

– Energy scalar product for problems with potential. While we used L2-norm for the
case of optical problem, but since we found that the eigenvalues in optical case are
stable under permittivity perturbation using L2-norm, the essential goal of assessing
its stabilities is achieved.

– Pseudospectrum notion to scattering optical and gravitational problems.

iii) Third objective: Introduction diagnosis parameters. We have introduced quantities that
helps in assessing the behaviour of the open perturbed branches of QNMs. These quan-
tities can help in application in the gravitational scattering problems and it can also be
used to characterize the QNM eigenvalues of optical systems. The fact of re-writing the
QNM optical problem as a problem in a Hilbert space allows to have a new expression for
calculating the mode volume and thus the Purcell factor.
The third objective has been achieved in the sense of making a first step in the construction
of diagnosis parameters, but much further investigations is needed to consider the third
objective is fully achieved.

13.2 Perspectives

This work has led to many open questions. The most important in my opinion are:

i) General directions:
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• Is it possible to use QNMs of unperturbed operator as a basis for perturbed problem?.

• Can we find the suitable perturbation in order to get a certain form of a perturbed
spectrum. This question is particularly relevant in optical settings design.

• What are the parameters on which the structure of pseudospectrum depends?.

• Following the same methodology to study other dissipative systems with outgoing
boundary conditions, such as in oceanography waves problems.

• Following the same methodology to study problems with energy loss in the bulk.

ii) Particular questions:

• Numerical investigations of a scattered field expansion in terms of QNMs, using the
prescribed excitation coefficients we deduced.

• How to practically use the results of isospectrality loss in order to detect the pertur-
bation size to a gravitational Schwarzschild potential?.

• Study the effect of a quantum dot or a molecule on the resonant frequencies of a
nanoparticle using pseudospectrum.

• Investigation the effect of purely imaginary frequencies in the compactly support po-
tential or permittivity.

• Calculation the pseudospectrum in optical case with energy scalar product in order
to detect any inconsistency.

• Calculation pseudospectrum using other foliations of space-time.

• Calculating pseudospectrum in Cauchy slices, using an L2 scalar product defined just
on the cavity.
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Appendix A: Energy scalar product:
Gram matrix GE

Let us first consider the integral

Iµ(f, g) =

∫ 1

−1
f(x)g(x)dµ(x) , (14.1)

with dµ(x) = µ(x)dx. We can get a quadrature approximation INµ (f, g) to Iµ(f, g) by using
expression (7.36) for N -interpolants (7.13) fN and gN , combined with the particular expression
(17.22) for coefficients in the Chebyshev-Lobatto grid and the grid multiplication. We obtain
then

INµ (f, g) = f tN · CNµ · gN , (14.2)

with f tN = (f(x0), . . . , f(xN ))t, gtN = (g(x0), . . . , g(xN ))t the (N+1)-grid approximates of f and
g, respectively, and CNµ the diagonal matrix given by

(CNµ )ij = (CNµ )i δij (14.3)

(CNµ )i =
2µ(xi)

αiN

1−
bN

2
c∑

k=1

T2k(xi)
2− δ2k,N

4k2 − 1

 ,

where we have used T0(x) = 1, Tk(1) = 1 and Tk(−1) = (−1)k. Then, dropping the indices N ,
we can write the discrete version of the scalar product 〈·, ·〉E in (8.22) as

〈u1, u2〉E =
〈φ1

ψ1

 ,

φ2

ψ2

〉
E

(14.4)

=
1

2

(
ψ∗1 · Cw · ψ2 + (Dφ1)∗ · Cp · Dφ1 + φ∗1 · CṼ` · φ2

)
,

that can be rewritten in matrix form as

〈u1, u2〉E = u∗1 ·GE · u2 (14.5)

= (φ̄1, ψ̄1)

 GE1 0

0 GE2

φ2

ψ2

 ,



162 Appendix A: Energy scalar product: Gram matrix GE

with (here, the matrices CṼ` , Cp and Cw are given by (14.3), for the respective functions µ(x) =

Ṽ`(x), p(x), w(x))

GE1 =
1

2

(
CṼ` + Dt · Cp · D

)
GE2 =

1

2
Cw . (14.6)

These expressions define the Gram matrix GE for the discretised version of the energy scalar
product (8.22), in the basis determined from the Chebyshev-Lobatto spectral grid.

Grid interpolation

An important aspect to observe when performing the numerical integration is that 7.36 is exact
whenever the original function f(x) is a polynomial of order ≤ N . With this in mind, and
assuming that f(x) and g(x) are polynomials, Eq. (14.2) is exact only for the case where the
product (fg)(x) yields polynomials of order ≤ N . In practical terms, the procedure described
above hampers the accuracy of the scalar product’s numerical integration whenever the order
gets > N .

As an illustrative example, take f(x) = P`(x) and g(x) = P`′(x), with P`(x) the Legendre
polynomials. Then the integral (14.1) — with µ(x) = 1 omitted of the expression — yields
I(f, g) = 2δ`,`′/(2` + 1). If we now consider the discrete version IN (f, g) given by Eq. (14.2),
one observes that the exact result is obtained only for the cases ` + `′ ≤ N , even though each
individual function f(x) and g(x) is exactly represented for ` ≤ N and `′ ≤ N , respectively.

To mitigate this issue, we modify the integration matrix CNµ — or equivalently the Gram
matrix GE — by incorporating the following interpolation strategy.

Given an interpolant vector fN (xi) associated with a Chebyshev-Lobatto grid {xi}Ni=0, one
can obtain a second interpolant vector fN̄ (x̄i) associated with another Chebyshev-Lobatto grid
{x̄i}N̄i=0 with a resolution N 6= N̄ via

fN̄ (x̄i) =

N∑
i=0

Īii fN (xi) . (14.7)

Components Īii of the interpolation matrix I are obtained by evaluating 7.13 at the grid {x̄i}N̄i=0,
with the coefficients {ci}Ni=0 expressed in terms of fN (xi) via Eq. (17.22). Then

Īii =
1

αiN

1 +

N∑
j=1

(2− δj,N )Tj(x̄i)Tj(xi)

 . (14.8)

Note that the interpolation matrix I has size N̄ × N , which reduces to a square matrix only if
N̄ = N . In this case, Eq. (14.8) is actually the identity matrix as expected.

Then, for a fixed N , we consider the discrete integration (14.2) in terms of a higher resolution
N̄ = 2N and interpolate the expression back to the original resolutionN . In other words, defining
INµ (f, g) := IN̄µ (f, g), we can consider the grid-interpolated new discrete integration

INµ (f, g) = f tN · CNµ · gN , (14.9)
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where CNµ = It · CN̄µ · I or, in terms of its components

(CNµ )ij =

N̄∑
ī=0

N̄∑
j̄=0

(It)īi (CN̄µ )̄ij̄ Ij̄j . (14.10)

Going back to the illustrative example where f(x) = P`(x) and g(x) = P`′(x), we now obtain
IN (f, g) = 2δ`,`′/(2`+ 1) exactly whenever `, `′ ≤ N .

In the same way, we grid-interpolate the Gram matrices

GE1 = It ·GE1 · I, GE2 = It ·GE2 · I , (14.11)

that allows to perform the scalar product (14.5) via

〈u1, u2〉E = u∗1 · GE · u2

= (φ̄1, ψ̄1)

 GE1 0

0 GE2

φ2

ψ2

 . (14.12)
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Chapter 15

Appendix B: Pöschl-Teller QNMs and
regularity

We give here the derivation of Pöschl-Teller QNM frequencies (and QNM eigenfunctions in our
setting). This is done for completeness and, more importantly, to illustrate with an explicit exam-
ple the role of regularity in the enforcement of outgoing boundary conditions in the hyperboloidal
scheme.

We start from the Fourier transform in time of the Pöschl-Teller wave equation in Bizoń-Mach
coordinates, i.e. Eq. (10.12)(

(1− x2)
d2

dx2
− 2(iω + 1)x

d

dx
− iω(iω + 1)− 1

)
φ = 0 . (15.1)

This equation can be solved in terms of hypergeometric functions. Making the change x = 1−2z,
it is rewritten as (

z(1− z) d
2

dz2
(15.2)

+
(
(1 + iω)− 2(1 + iω)z

) d
dz
−
(
iω(iω + 1) + 1

))
φ = 0 ,

namely Euler’s hypergeometric differential equation(
z(1− z) d

2

dz2
+
(
c− (a+ b+ 1)z

) d
dz
− ab

)
φ = 0 , (15.3)

for the values

c = 1 + iω

a =
(2iω + 1)± i

√
3

2
(15.4)

b = (2iω + 1)− a =
(2iω + 1)∓ i

√
3

2
.

For each choice of ω, this equation admits two linearly independent solutions that can be built
from the Gauss hypergeometric function 2F1(a, b; c; z). It is only when we enforce some regularity
in the solution, that the spectral parameter ω is discretised and we recover the QNM frequen-
cies. In this particular case, it is when we truncate the hypergeometric series 2F1(a, b; c; z) to a
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polynomial, that we recover Pöschl-Teller QNM frequencies. Such truncation occurs when either
a or b is a non-positive integer. From (15.4) we can write

ω = ∓
√

3

2
+ i
(
− a+

1

2

)
= ±
√

3

2
+ i
(
− b+

1

2

)
. (15.5)

Therefore, imposing either a = −n or b = −n, with n ∈ N ∪ {0}, we finally get

ω±n = ±
√

3

2
+ i
(
n+

1

2

)
. (15.6)

Choosing the a = −n version, the corresponding eigenvectors can be written as Jacobi polyno-
mials P (α,β)

n (x), defined as

P (α,β)
n (x) =

(α+ 1)n
n!

2F1(−n, 1 + α+ β;α+ 1;
1− x

2
) , (15.7)

with (y)n the Pochhammer symbol (i.e. (y)n =
n−1∏
k=0

(y − k)). Inserting, for a given n ∈ N ∪ {0},

the values (15.4) and (15.6) into 2F1(a, b; c; z) we get, upon comparison with (15.7)

α = β = iωn , (15.8)

so that Pöschl-Teller QNM eigenfunctions write, in Bizoń-Mach coordinates, as

φ±n (x) = P (iω±n ,iω
±
n )

n (x) , x ∈ [−1, 1] . (15.9)
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Appendix C: Differential geometry
notations prerequisites

In this appendix we shall remind of some basic definitions from differential geometry that are
necessary to understand Einstein equation and its solutions.

• Topology, When studying a function, one of its important properties to look at is its
continuity. Similarly when studying spatial structures (formally topological spaces) we need
formal notions to look at its connectivity. Topology studies the properties of topological
spaces that are preserved under stretching and twisting (such as connectivity) with no
respect to a distance. One of basic examples that is a circle is homeomorphic to an ellipse.
Definition:
Let M be a set, The power set of M is the set P (M) that contains all the possible subsets
of M including Φ and M . Then T
subsetP (M) is called a topology on M if:

– Both the empty set and M are elements of T.

– ∀X ⊂ M,andY ⊂ M,⇒ X ∪ Y ⊂ M . It follows that any union of elements of T is
an element of T

– ∀X ⊂M,andY ⊂M,⇒ X ∩Y ⊂M . Any union of elements of T is an element of T.
It follows that any intersection of finitely many elements of T is an element of T.

If T is a topology on M , then the pair (M,T) is called a topological space.

• Topological Manifolds, The intuitive idea behind manifolds is to have a topological space
that has locally the structure of Rn, where n (Cartesian structure) is the dimension of the
manifold, Fig.16. Definition:
Formally, a (topological) manifold is a Hausdorff space, with a countable basis, that is
locally homeomorphic to Euclidean space, which means that each point p in the manifold
M has an open neighborhood homeomorphic to an open neighborhood in Euclidean space.
This leads to the notion of local chart, that is simply a way of parameterizing an open set
U ⊂M by an open set Ũ ⊂ Rn:

ϕ : U ⊂M → Ũ ⊂ Rn

p 7→ xµ ≡ (x0, . . . , xn−1) (16.1)
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We require that ϕ is an homeomorphism (continuous with continuous inverse), so that at
the local level the topology of M is that of Rn. We do not have “access” directly to p, but
to its coordinate representation xµ = (x0, . . . , xn−1). The coordinate representation has no
physical/geometrical content, and different labeling are possible:

ϕ1 : U1 ⊂M → Ũ1 ∈ Rn , ϕ2 : U2 ⊂M → Ũ2 ∈ Rn

p 7→ (x0, . . . , xn−1) , p 7→ (y0, . . . , yn−1)
(16.2)

so that

φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) ⊂ Ũ1 ⊂ Rn → φ2(U1 ∩ U2) ⊂ Ũ2 ∈ Rn

(x0, . . . , xn−1) 7→ (y0, . . . , yn−1) (16.3)

yi = yi(x0, . . . , xn−1) , i ∈ {1, . . . , n− 1} . (16.4)

• Vectors:

– tangent vectors, Let L be a curve on a manifold M (which is a connected subset of
M), so L can be represented by a parametrization γ : I ⊂ R ⇒ L ⊂ M . Let f be a
scalar field on M (a function f : M −→ R). At p ∈ M : p = γ(0) ∈ L. The tangent
vector v associated with γ at p is such that:

v(f) =
df

dλ
|p =

df

dxµ
xµ

dλ
|p = ∂µ(f)

xµ

dλ
|p = vµ∂µ|p(f) (16.5)

So v = vµ∂µ|p. Note that physicists normally are interested in vµ. Here as we
are studying general relativity it is of highly importance to consider how to relate
an infinitesimal change of chart coordinates with an infinitesimal change of λ which
could be different for each point of the curve in curved topological manifolds.
As we have seen we introduced notions of differentiation to the manifolds, and this
required the chart coordinates to be differentiable. We will consider just differentiable
manifolds in what follows. Indeed the tangent vectors at a point p of a manifold form
a vector space called "tangent space" at this point (TpM). The elements of T p M are
simply called vectors at p. The basis (∂µ) is called the natural basis associated with
the coordinates (xµ). And the union of the tangent vectors at all points of a manifold
is called a "tangent bundle" (TM).

– A vector field is a mapping from M into the tangent bundle TM .
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• Cotangent space (T ∗pM): It is the dual space of the tangent space TpM . It is a set of linear
forms w : TpM −→ R Its basis are dxµ such that:

〈dxν , ∂µ〉 = δνµ (16.6)

The notation (dx) stems from the fact that if we apply the linear form dxν to the infinites-
imal displacement vector dx , we get nothing but the number dxν :

〈dxν , dx〉 = 〈dxν ,dx∂µ〉 = dxν (16.7)

• Tensors: we can define the space T nm(M) of n-times contravariant and m-covariant tensor
fields as the ensemble of C∞(M)-multilinear smooth applications

T : T ∗M × . . . n × T ∗M × TM × . . .m × TM → C∞(M) . (16.8)

T nm(M) is also denoted as
(
n
m

)
. We note that TM = T 1

0 (M) and T ∗M = T 0
1 (M). Using

the notion of tensor product (over the module C∞(M)), we can write T nm(M) as

T nm(M) = TM ⊗ . . . nTM ⊗ T ∗M × . . .mT ∗M = TM⊗n ⊗ T ∗M⊗m (16.9)

This characterization has the advantage of providing directly a local chart basis in T nm(M),
in terms of tensor products of the basis. In brief, we can write

T = Tµ1µ2...µnν1ν2...νm∂µ1⊗∂µ2 . . .⊗∂µn⊗dxν1⊗dxν2 . . .⊗dxνm , ∀T ∈ T nm(M) . (16.10)

This permits us to write the transformation rule of tensors under a change of coordinates.
If we write in two coordinate systems

T = T i1...inj1...jm
∂

∂xi1
⊗ . . .⊗ ∂

∂xin
⊗ dxj1 ⊗ . . .⊗ dxjm

and
T = T ′i1...inj1...jm

∂

∂x′i1
⊗ . . .⊗ ∂

∂x′in
⊗ dx′j1 ⊗ . . .⊗ dx′jm ,

then it follows from multilinearity

T ′i1...inj1...jm =

(
∂x′i1

∂xk1

)
. . .

(
∂x′in

∂xkn

)(
∂xl1

∂x′j1

)
. . .

(
∂xlm

∂x′jm

)
T k1...kn l1...lm .

• Fields on a manifold: A tensor field of type
(
k
l

)
is a map which associates to each point

p ∈ M a tensor of type
(
k
l

)
. A scalar field is a tensor field of type

(
0
0

)
. A frame field or

moving frame is a n-uplet of vector fields (eα) such that at each point p ∈M , (eα(p)) is a
basis of the tangent space TpM . If n = 4, a frame field is also called a tetrad and if n = 3,
it is called a triad

Till now we have seen mathematical definition to enter in general relativity these notions should
be dressed with considering points of a manifold as events in the universe. Considering the
universe as a manifold shows the absence of a priori geometric meaning in the coordinates. All
structures in the theory of in general relativity must be determined dynamically. In particular,
this means that the a priori notion of (global) inertial reference frame is absent. Still, in order to
have an analytical description, we need to associate to a physical event p some “labels” (t, x, y, z).



170 Appendix C: Differential geometry notations prerequisites

However, now the “coordinates” (t, x, y, z) are completely devoid of geometric or physical mean-
ing. They do not have intrinsic meaning. Physical statements must be also independent of the
choice of coordinates.

Although to describe things In particular, we require that space-time events to be locally
parametrized by coordinates. We require that M can be locally patched to open sets in R4

(Manifold - with charts).
Still this structure have to have the notions of a measure between different events and what

are the light directions, timelike, and spacelike too. Here we come to introducing a metric tensor.

16.0.1 Metric tensor

The metric tensor introduces the notion of measure and scalar product on a smooth manifold.
It is a bilinear form that satisfies:

• g is a 2-times covariant tensor

g = gµνdx
µ ⊗ dxν (16.11)

• Symmetry: gµν = gνµ.

• Non-degenercy: if V is such that g(V ,W ) = 0, ∀W , then V = 0

The signature is a feature of the metrics, according to Sylvester’s law of inertia, the metric
which is diagonalizable has negative diagonal elements and positive onse such as the number of
all is n. If at each TpM , a basis can be chosen such that the first component is negative and the
rest are positive, then we name it a Lorentzian metric

gp =


−1

1

1

1

 (16.12)

. And the signature is (-, +,+,+). The squared-norm of a vector is given by

V 2 = g(V ,V ) = gµνV
µV ν = V µVµ (16.13)

The Lorentzian nature of gµν permit to classify the vectors in three cathegories

i) Spacelike vectors: gµνV µV ν > 0.

ii) Timelike vectors: gµνV µV ν < 0.

iii) Lightlike or null vectors: gµνV µV ν = 0.

This could be figured as attaching to every point of the manifold a "Light cone" as vectors
in TpM of zero norm, on which the light moves. If a particle is moving faster than light then its
trajectory will be outside the light cone and called spacelike trajectory, which if less than light
it is called a timelike one.
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Measuring distances: element of line.

This small section is fully taken from [99].
The light cone structure of the space-time allows us to structural the space-time in spacelike,
timelike and lightlike directions. But the metric has more structure (actually very little more, just
a scale), permitting us to measure distances spacelike curves and time intervals along timelike
curves. This is provided by the notion of element of line associated to the metric in a given
coordinate system, simply a quadratic form on infinitesimal displacements in space-time:

ds2 = gµνdx
µdxµ (16.14)

This can be seen as a generalization of Pythagoras theorem for infinitesimal triangles.
If we consider a spacelike curve γ(λ) parametrized by λ in coordinates {xµ}, i.e. (xµ(λ)), the

evaluation of (16.14) on γ(λ) gives

ds2 = gµν(γ(λ))
dxµ

dλ

dxµ

dλ
dλ2 . (16.15)

For a spacelike curves the arc length can be simply written as

ds =

√
gµν(γ(λ))

dxµ

dλ

dxν

dλ
dλ (16.16)

With our convention for the space-time signature (−1, 1, 1, 1), the element of proper time along
timelike curves is given by −c2dτ = ds2, that is

dτ =
1

c

√∣∣∣∣gµν(γ(λ))
dxµ

dλ

dxν

dλ

∣∣∣∣dλ (16.17)

.

Levi−Civita tensor Orientable manifolds means that there is a n-form ε such that for any
orthonormal basis (regarding the metric) ei it gives: ε(e1, e2, ...en) = ±1 The singes indicate the
orientation, choosing an orientation we call ε as Levi−Civita tensor.

16.0.2 Derivatives

Covariant derivative − metric dependence

We have seen notions of scalar product between two vectors, but to estimate the change of a
vector from point to another we have to be more careful since the tangent vector at a point
belongs only to the tangent space at this point and not to other tangent vector spaces. Hence
one should find an extra-structure to relate vectors from two different tangent spaces. This
structure is called an affine connection ∇, and the ∇uv is called the covariant derivative of v
along u, and defined as the following:

∇ : X(M)× X(M)→ X(M)

(u, v) 7→ ∇u(v)
(16.18)

• ∇ is bilinear.



172 Appendix C: Differential geometry notations prerequisites

• For any scalar field f :
∇fuv = f∇uv (16.19)

• Leibniz rule
∇ufv = 〈u,∇f〉v + f∇uv (16.20)

where ∇f is the differential of f .

The variation of a vector from point to another is the covariant derivative along the cotangent
vectors dv∇dxv . A vector v is parallelly transported with respect to the affine connection if
dv = 0. Having eα, eβ , eγ elements from a bases at a certain point, the variation of one of them
along another is:

∇eαeβ = Γγαβeγ (16.21)

Levi−Civita connection This connection is:

• Torsion free, i.e.
∇α∇βf = ∇β∇αf (16.22)

• ∇g = 0

Γµαβ for this connection is called Christoffel symbols, and it is given by:

Γγαβ =
1

2
gγµ(

∂gµβ
∂xα

+
∂gαµ
∂xβ

− ∂gαβ
∂xµ

) (16.23)

This leads to an important way to look at the variation of a vector:

∇v = ∇µvµ =
1√
|g|

∂

∂xµ
(
√
|g|vµ) (16.24)

Lie derivative

The extra−structure here is a reference vector field, let it be u, then:

Luv = [u, v]

= uµ
∂vα

∂xµ
− vµ

∂uα

∂xµ

(16.25)

Exterior derivative

This derivative only concerns the differential forms. The exterior derivative of a q−form ω is a
(q + 1)−form which is denoted dω. For example if ω is a 2−form:

(dω)αβγ =
∂ωαβ
∂xγ

+
∂ωβγ
∂xα

+
∂ωγα
∂xβ

(16.26)

This derivative satisfies always: ddω = 0
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16.0.3 Curvature

Actually all the previous definition has been written in order to be able to enlight the curvature.
For a torsion free affine connection the curvature is defined as:

Rµ
γαβω

γ = (∇α∇β −∇β∇α)ωµ (16.27)

Ricci tensor

Ricci tensor is given by:
Rαβ = Rµ

αµβ (16.28)

Ricci scalar is the trace of the Ricci tensor with respect to the metric g, it’s given by:

R = gµνRµν (16.29)

16.0.4 Geodesics, geodesic equation

A geodesics line represent the shortest path between two points in a manifold. Note that in a
given space-time, geodesic lines represent light (massless particles) trajectories in a space-time.
Formally it is defined as the following:
"A smooth curve L of a pseudo-Riemannian manifold (M, g) is called a geodesic iff it admits a
parametrization P whose associated tangent vector field v is transported parallelly to itself along
L : ∇vv = 0, where ∇ is the Levi-Civita connection of the metric g. " [84].
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Chapter 17

Appendix D: The coefficients for
different grids

We explain in this appendix the derivations of Chebyshev coefficients in different grids.

• Coefficients in Gauss grid:

Having k,m ∈ Z let us define q as: q = e
iπ(k−m)
2(N+1) , for the grid of Gauss, it is straight forward

that:
q4(N+1) = 1 (17.1)

Let us now calculate the following sum: S1 =
∑2N+1

j=0 ei(k−m)φj :

S1 = q
2N+1∑
j=0

(q2)j =


q(2N + 2) q = ±1

q2N+2 − 1

q2 − 1
q 6= ±1

(17.2)

But because of eq.17.1, and taking into account that −N < k,m < N , then:

S1 = 2(N + 1)δmk (17.3)

and
2N+1∑
j=0

χje
−imφj =

2N+1∑
j=0

+N∑
k=−N

γke
ikφje−imφj =

+N∑
k=−N

γk

2N+1∑
j=0

ei(k−m)φj (17.4)

2N+1∑
j=0

χje
−imφj =

+N∑
k=−N

γk(2N + 2)δmk = 2(N + 1)γm (17.5)

The last equation is a formula for calculating the coefficients as the following:

cm = 2γm =
1

N + 1

2N+1∑
j=0

χje
−imφj =

1

N + 1
(

N∑
j=0

χje
−imφj +

N+1∑
l=1

χN+le
−imφN+l) (17.6)

For 0 6 l 6 N :

φN+l =
π

N + 1
(N + l +

1

2
) = 2π − π

N + 1
(N + 1− l +

1

2
) = 2π − φN+1−l, (17.7)



176 Appendix D: The coefficients for different grids

it follows that: e−imφN+l = eimφN+1−l and χN+l = χN+1−l inserting this in eq.17.6, one
gets:

cm = 2γm =
1

N + 1
(

N∑
j=0

χje
−imφj +

N+1∑
l=1

χN+1−le
imφN+1−l) (17.8)

This leads to:

cm =
1

N + 1

N∑
j=0

χj(e
−imφj + eimφj ) =

2

N + 1

N∑
j=0

χj cos(mφj) (17.9)

and finally:

cm =
2

N + 1

N∑
j=0

ψ(xj)Tm(xj) (17.10)

• Coefficients in Lobatto grid:
I am following here exactly the same procedure as in Gauss grid, adapted to Lobatto one.
Having k,m ∈ Z let us define q as: q = e

iπ(k−m)
N , for the grid of Lobatto, it is straight

forward that:
q2N = 1 (17.11)

Now calculating the following sum: S2 =
∑2N−1

j=0 ei(k−m)φj :

S2 =
2N−1∑
j=0

qj =

{
2N q = 1

0 q 6= 1
(17.12)

then

S2 =

{
2N m− k = 2N p; p ∈ Z
0 otherwise

(17.13)

So for −N ≤ k ≤ N

S2 = 2N ×
{
δmk 0 < m < N

δNk + δ(−N)k m = N
(17.14)

Now looking at the sum:

2N−1∑
j=0

χje
−imφj =

2N−1∑
j=0

+N∑
k=−N

γke
ikφje−imφj =

+N∑
k=−N

γk

2N−1∑
j=0

ei(k−m)φj (17.15)

Using eq.17.14, then:

2N−1∑
j=0

χje
−imφj = 2N ×

{
γm 0 < m < N

γ−N + γN = 2γN m = N
(17.16)

so for 0 ≤ m ≤ N one can write:

γm =
2− δmN

4N

2N−1∑
j=0

χje
−imφj (17.17)
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The last equation is a formula for calculating the coefficients as the following:

cm = 2γm =
2− δmN

4N

2N−1∑
j=0

χje
−imφj =

2− δmN
4N

(χ0+

N−1∑
j=1

χje
−imφj+

N−1∑
l=1

χN+le
−imφN+l+χNe

−imφN )

(17.18)
For 0 6 l 6 N :

φN+l =
π(N + l)

N
= 2π − π(N − l)

N
= 2π − φN−l, (17.19)

it follows that: e−imφN+l = eimφN−l and χN+l = χN−l inserting this in eq.17.18, one gets:

cm = 2γm =
2− δmN

4N
(χ0 + (−1)mχN +

N−1∑
j=1

χje
−imφj +

N−1∑
l=1

χN−le
imφN−l (17.20)

This leads to:

cm =
2− δmN

4N
(χ0+(−1)mχN+

N−1∑
j=1

χj(e
−imφj+eimφj ) =

2− δmN
4N

(χ0+(−1)mχN+2
N−1∑
j=1

χj cos(mφj))

(17.21)
and finally:

cm =
2− δmN

4N
(ψ(1) + (−1)mψ(−1) + 2

N−1∑
j=1

ψ(xj)Tm(xj)) (17.22)

• Coefficients in Right-Radau grid:
In this grid: φj = 2πj

2N+1 Having k,m ∈ Z i define q as: q = e
i2π(k−m)

2N+1 , then:

q2N+1 = 1 (17.23)

Now calculating the following sum: S3 =
∑2N

j=0 e
i(k−m)φj :

S3 =

2N∑
j=0

qj =


2N + 1 q = 1

q2N+1 − 1

q − 1
= 0 q 6= 1

(17.24)

then

S3 =

{
2N + 1 m− k = 2N p; p ∈ Z
0 otherwise

(17.25)

So for −N ≤ k ≤ N
S3 = (2N + 1)δmk (17.26)

Now looking at the sum:

2N+1∑
j=0

χje
−imφj =

2N+1∑
j=0

+N∑
k=−N

γke
ikφje−imφj =

+N∑
k=−N

γk

2N+1∑
j=0

ei(k−m)φj (17.27)

Using eq.17.26, then:
2N+1∑
j=0

χje
−imφj = (2N + 1)γm (17.28)
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then

γm =
1

2N + 1

2N+1∑
j=0

χje
−imφj (17.29)

The last equation is a formula for calculating the coefficients as the following:

cm = 2γm =
2

2N + 1

2N+1∑
j=0

χje
−imφj =

2

2N + 1
(χ0 +

N∑
j=1

χje
−imφj +

N∑
l=1

χN+le
−imφN+l)

(17.30)
For 1 6 l 6 N :

φN+l =
2π(N + l)

2N + 1
= 2π − 2π(N + 1− l)

2N + 1
= 2π − φN+1−l, (17.31)

it follows that: e−imφN+l = eimφN+1−l and χN+l = χN+1−l inserting this in eq.17.30, one
gets:

cm = 2γm =
2

2N + 1
(χ0 +

N∑
j=1

χje
−imφj +

N∑
l=1

χN+1−le
imφN+1−l (17.32)

This leads to:

cm =
2

2N + 1
(χ0 +

N∑
j=1

χj(e
−imφj + eimφj ) =

4

2N + 1
(
χ0

2
+

N∑
j=1

χj cos(mφj)) (17.33)

and finally:

cm =
4

2N + 1
(
ψ(1)

2
+

N∑
j=1

ψ(xj)Tm(xj)) (17.34)

• Coefficients in Left-Radau grid:
In this grid: φj = π− 2πj

2N+1 , and xj = − cos 2πj
2N+1 It is more efficient to find the relation of

this grid’s coefficient in term of right-Radau grid ones. So let us use the auxiliary function:
η(x) = −ψ(x), and the points x̃j = −xj correspond to the right-Radau grid points. Using
the property of: Tm(−x) = (−1)mTm(x), one can relate the expansion in the two Radau
grids:

ψN (x) = ηN (x) =
c̃0

2
+

N∑
m=1

c̃mTm(−x) =
c̃0

2
+

N∑
m=1

(−1)mc̃mTm(x) (17.35)

then we get: cm = (−1)mc̃m Using eq.17.34:

c̃m =
4

2N + 1
(
η(1)

2
+

N∑
j=1

η(x̃j)Tm(x̃j)) =
4

2N + 1
(
ψ(−1)

2
+

N∑
j=1

ψ(xj)(−1)mTm(xj))

(17.36)
using the relation between the coefficients of the two grids:

cm =
4

2N + 1
(
(−1)m ψ(−1)

2
+

N∑
j=1

ψ(xj)Tm(xj)) (17.37)
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Appendix E: Chebyshev differential
matrix

We show here the derivation of coefficients in Chebyshev differential matrices for different grids.

18.0.1 Right Radau

Considering right Radau grid, From eq.7.20 one can write:

χ̄N (φ) =

+N∑
−N

γ̄χk e
ikφ (18.1)

where from eq.17.29, we have:

γ̄χk =
1

2N + 1

2N∑
0

χ(φj)e
−ikφj (18.2)

Taking the derivative of χ̄N (φ), gives:

χ̄′N (φm) =
+N∑
−N

ikγ̄χk e
ikφm

=

+N∑
−N

ikeikφm(
1

2N + 1

2N∑
j=0

χ(φj)e
−ikφj )

=
2N∑
j=0

∆1
mjχ(φj)

(18.3)

and the second derivative of χ̄N (φ), gives:

χ̄′′N (φm) =

+N∑
−N
−k2γ̄χk e

ikφm

=

+N∑
−N
−k2eikφm(

1

2N + 1

2N∑
j=0

χ(φj)e
−ikφj )

=
2N∑
j=0

∆2
mjχ(φj)

(18.4)
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where:

∆1
mj =

i

2N + 1

+N∑
k=−N

keik(φm−φj)

=
i

2N + 1

+N∑
k=−N

ke
2πik(m−j)

2N+1

=
i

2N + 1

+N∑
k=−N

kqk

(18.5)

and

∆2
mj =

−1

2N + 1

+N∑
k=−N

k2eik(φm−φj)

=
−1

2N + 1

+N∑
k=−N

k2e
2πik(m−j)

2N+1

=
−1

2N + 1

+N∑
k=−N

k2qk

=
−1

2N + 1

+N∑
k=−N

k2qk

(18.6)

where q = e
2πi(m−j)

2N+1 , to calculate the last sum, let us define:

f(q) =
+N∑

k=−N
qk =

qN+1 − q−N
q − 1

(18.7)

so:

f ′(q) =
+N∑

k=−N
kqk−1 =

q−N−1[(N(q − 1)− 1)q2N+1 +N(q − 1) + q]

(q − 1)2
(18.8)

f ′′(q) =
+N∑

k=−N
k(k − 1)qk−2

=
N2qN+1 − (N + 1)(2N − 1)qN +N(N + 1)qN−1 − (N + 1)2q−N +N(2N + 3)q−N−1 −N(N + 1)q−N−2

(q − 1)2

(18.9)

and because of q2N+1 = 1 and q 6= 1 (17.23), then:

f ′(q) =
(2N + 1)q−N−1

q − 1
(18.10)

f ′′(q) =
(2N + 1)(qN − q−N )

(q − 1)2
(18.11)
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thus for m 6= j:

∆1
mj =

iq

2N + 1

+N∑
k=−N

kqk−1 =
iq

2N + 1
f ′(q) =

iq−N

q − 1
(18.12)

and

∆2
mj =

−q2

2N + 1

+N∑
k=−N

k2qk−2

=
−1

2N + 1
[q2

+N∑
k=−N

k(k − 1)qk−2 + q1
+N∑

k=−N
kqk−1]

=
−1

2N + 1
[q2f ′′(q) + q1f ′(q)] =

(18.13)

developing it, one gets:

∆1
mj =

1

2

(−1)m−j

sin[ π
2N+1(m− j)] (18.14)

and

∆2
mj =

−1

2

(−1)m−j cos[ π
2N+1(m− j)]

sin2[ π
2N+1(m− j)] (18.15)

for m = j (then q = 1):
∆1
mj = 0 (18.16)

∆2
mj = −1

3
N(N + 1) (18.17)

Therefore:

χ̄′N (φm) =

2N∑
j=0

∆1
mjχ(φj) =

1

2

2N∑
j=0,j 6=m

(−1)m−j

sin[ π
2N+1(m− j)]χ(φj) (18.18)

In the same way, one gets χ̄′′:

χ̄′′N (φm) =
2N∑
j=0

∆2
mjχ(φj) = −1

2

2N∑
j=0,j 6=m

(−1)m−j cos[ π
2N+1(m− j)]

sin2[ π
2N+1(m− j)] χ(φj)−

1

3
N(N + 1)χ(φm)

(18.19)
In his notes Ansorg started by defining χN (φ) = ψN (cosφ), in order to find the relation

between the derivation matrix elements in Fourier series with the corresponding ones using
Chebyshev polynomials.

∂χN
∂φ

=−
√

1− x2ψ′N (x)

∂2χN
∂φ2

=− xψ′N (x) + (1− x2)ψ′′N (x)

∂4χN
∂φ4

=xψ′N (x) + (7x2 − 4)ψ′′N (x)− 6x(1− x2)ψ′′′N (x) + (1− x2)2ψ((4))N (x)

(18.20)
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It follows that:

ψ′N (x) =


− 1√

1− x2

∂χN
∂φ

x 6= ±1

±∂
2χN
∂φ2

x = ±1.

(18.21)

ψ′′N (x) =


− 1

(1− x2)
(
∂2χN
∂φ2

+ xψ′N (x)) x 6= ±1

1

3
(
∂4χN
∂φ4

− xψ′N (x)) x = ±1.

(18.22)

Because of χN (φN+l) = χN (φN+1−l), one can writes:

∂νχN
∂φν

(φm) = ∆ν
m0χN (φ0)+

N∑
j=1

(∆ν
mj+∆ν

m,(2N+1−j))χN (φj) = ∆ν
m0χN (φ0)+

N∑
j=1

(∆ν
mj+∆ν

m,(−j))χN (φj).

(18.23)
The last equality is because:

sin
φk−(2N+1)

2
= sin(

φk
2
− π) = − sin

φk
2

cos
φk−(2N+1)

2
= sin(

φk
2
− π) = − cos

φk
2

(18.24)

using eq.18.14 and eq.18.16, the last equations lead to:

∆1
m,2N+1−j = ∆1

m,(−j). (18.25)

On the other hand

sin
φk
2

=
1√
2

√
1− xk

cos
φk
2

=
1√
2

√
1 + xk

(18.26)

where xk = cosφk this leads to:

sin
φm ± φj

2
=

1

2
[
√

1− xm
√

1 + xj ±
√

1 + xm
√

1− xj ]

cos
φm ± φj

2
=

1

2
[
√

1 + xm
√

1 + xj ∓
√

1− xm
√

1− xj ]
(18.27)

and thus for j = 0, 1, ...N :

∆1
mj + ∆1

m,(−j) =


(−1)m−j

√
1− xm

√
1 + xj

xj − xm
j 6= m

1

2
√

1− x2
m

j = m 6= 0

(18.28)
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∆2
mj + ∆2

m,(−j) =


(−1)m−j

√
1 + xm

√
1 + xj

(xj − xm)2
(xj + xm − 2) j 6= m

−N
3

(N + 1)− xm
2(1− x2

m)
j = m 6= 0

(18.29)

and for j = 1, 2, ....N :

∆4
0j + ∆4

0,(−j) = (−1)j+1
√

2

√
1 + xj

(1− xj)2
[5 + xj − 2N(N + 1)(1− xj)] (18.30)

and finally the first, and the second derivatives are:

m 6= 0, xm 6= 1:

ψ′N (xm) =− 1√
1− x2

m

(
(−1)m√
2(1− xm)

χN (φ0)

+

N∑
j=0,j 6=m

(−1)m−j
√

1− xm
√

1 + xj

(xj − xm)2
χN (φj)

+
χN (φm)

2
√

1− x2
m

).

(18.31)

ψ′′N (xm) =− 1

1− x2
m

[
∂2χN
∂φ2

(φm) + xmψ
′
N (xm)]

=− 1

1− x2
m

[(∆2
00 + xm∆1

m0)χN (φ0) +

N∑
j=0,j 6=m

(∆2
mj + ∆2

m,(−j) + xm∆1
mj)χN (φj)]

(18.32)

m = 0, xm = 1:

ψ′N (x0) =− ∂2χN
∂φ2

(φ0)

=−∆2
00χN (φ0)−

N∑
j=0

(∆2
0j + ∆2

0,(−j))χN (φj)

=
N

3
(N + 1)χN (φ0) +

N∑
j=1

(−1)j
√

2(1 + xj)

(1− xj)
χN (φj).

(18.33)

ψ′′N (x0) =− 1

3
[
∂2χN
∂φ2

(φ0)− ψ′N (x0)]

=− 1

3
[(∆4

00 −∆1
00)χN (φ0) +

N∑
j=1

(∆4
0j + ∆4

0,(−j) −∆1
0j)χN (φj)]

(18.34)
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Now one can deduce the elements of the first order differentiation matrix:

D1
mj =



N

3
(N + 1) m = j = 0

(−1)j
√

2(1 + xj)

(1− xj)
m = 0, j 6= 0

(−1)m+1

√
2(1− xm)

√
1 + xm

m 6= 0, j = 0

−1

2(1− x2
m)

m = j 6= 0

(−1)m−j

xm − xj

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(18.35)

and those of the second order differentiation matrix:

D2
mj =



1

15
(N − 1)N(N + 1)(N + 2) m = j = 0

(−1)j
2
√

2
√

1 + xj

3(1− xj)2
[N(N + 1)(1− xj)− 3] m = 0, j 6= 0

(−1)m+1(2xm + 1)
√

2(1− xm)2(1 + xm)
3
2

m 6= 0, j = 0

−N(N + 1)

3(1− x2
m)
− xm

(1− x2
m)2

m = j 6= 0

(−1)m−j(2x2
m − xm + xj − 2)

(xm − xj)2(1− x2
m)

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(18.36)

18.0.2 Left Radau

Comparing this grid with the right one:

xjL = cos(π − 2πj

2N + 1
) = − cos(

2πj

2N + 1
) = −xjR (18.37)

where xjL, xjR correspond to the points in left Radau, and right Radau respectively. and:

ψL(xjL) = ψR(−xjL) = ψR(xjR) (18.38)

thus the differentiation relations are:

ψ′L(xjL) = ψ′R(−xjL) = −ψ′R(xjR)

ψ′′L(xjL) = ψ′′R(−xjL) = ψ′′R(xjR)
(18.39)
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So (D1
mj)L = −(D1

mj)R, and (D2
mj)L = (D2

mj)R, thus

D1
mj =



−N
3

(N + 1) m = j = 0

(−1)j+1

√
2(1 + xj)

(1− xj)
m = 0, j 6= 0

(−1)m√
2(1− xm)

√
1 + xm

m 6= 0, j = 0

1

2(1− x2
m)

m = j 6= 0

(−1)m−j

xj − xm

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(18.40)

and those of the second order differentiation matrix:

D2
mj =



1

15
(N − 1)N(N + 1)(N + 2) m = j = 0

(−1)j
2
√

2
√

1 + xj

3(1− xj)2
[N(N + 1)(1− xj)− 3] m = 0, j 6= 0

(−1)m+1(2xm + 1)
√

2(1− xm)2(1 + xm)
3
2

m 6= 0, j = 0

−N(N + 1)

3(1− x2
m)
− xm

(1− x2
m)2

m = j 6= 0

(−1)m−j(2x2
m − xm + xj − 2)

(xm − xj)2(1− x2
m)

√
1 + xj
1 + xm

0 6= m 6= j 6= 0

(18.41)

18.0.3 Gauss

Considering Gauss grid, From eq.7.20 one can write:

χ̄N (φ) =

+N∑
−N

γ̄χk e
ikφ (18.42)

where from eq.17.5 (for −N ≤ k ≤ N ), we have:

γ̄χk =
1

2(N + 1)

2N+1∑
j=0

χje
−ikφj (18.43)
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Taking the derivative of χ̄N (φ), gives:

χ̄′N (φm) =

+N∑
−N

ikγ̄χk e
ikφm

=
+N∑

k=−N
ikeikφm

1

2(N + 1)

2N+1∑
j=0

χje
−ikφj

=
2N+1∑
j=0

∆1
mjχ(φj)

(18.44)

and the second derivative of χ̄N (φ), gives:

χ̄′′N (φm) =

+N∑
−N
−k2γ̄χk e

ikφm

=
+N∑
−N
−k2eikφm(

1

2(N + 1)

2N+1∑
j=0

χje
−ikφj )

=
2N∑
j=0

∆2
mjχ(φj)

(18.45)

where:

∆1
mj =i

+N∑
k=−N

1

2(N + 1)
keik(φm−φj)

=
i

2(N + 1)

+N∑
k=−N

ke
2iπk(m−j)
2(N+1)

=
i

2(N + 1)

+N∑
k=−N

kqk

(18.46)

and

∆2
mj =

−1

2(N + 1)

+N∑
k=−N

k2qk (18.47)

where q = e
πi(m−j)
N+1 , to calculate the last sum, let us define:

f(q) =
+N∑

k=−N
qk =

qN+1 − qN
q − 1

(18.48)

so:

f ′(q) =

+N∑
k=−N

kqk−1 =
NqN+1 − (N + 1)qN + (N + 1)q−N −Nq−N−1

(q − 1)2
(18.49)
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f ′′(q) =
+N∑

k=−N
k(k − 1)qk−2

=
N(N − 1)qN+1 − 2(N + 1)(N − 1)qN +N(N + 1)qN−1 − (N + 1)(N + 2)q−N + 2N(N + 2)q−N−1 −N(N + 1)q−N−2

(q − 1)3

(18.50)

and because of q2(N+1) = 1 and q 6= 1 (note that in eq.17.23 it needs the power 4(N + 1) to
compensate the 1

2 in φ but as we are subtracting here φm − φj it needs just 2(N + 1)), then:

f ′(q) = (N + 1)qN
(q + 1)

(q − 1)
(18.51)

f ′′(q) =
(N(N − 1) + 2N(N + 2))qN+1 − (N(N + 1) + 2(N + 1)(N − 1)qN +N(N + 1)qN−1 − (N + 1)(N + 2)qN+2

(q − 1)3

=
−(N2 + 3N + 2)qN+2 + (3N2 + 3N)qN+1 − (3N2 +N − 2)qN + (N2 +N)qN−1

(q − 1)3

=(N + 1)qN−1−(N + 2)q3 + 3Nq2 − (3N − 2)q +N

(q − 1)3

=(N + 1)qN−1N(q − 1)3 − 2q(q2 − 1)

(q − 1)3

=(N + 1)qN−1[N − 2q
q + 1

(q − 1)2
]

(18.52)

thus for m 6= j:

∆1
mj =

i

2
qN+1 q + 1

q − 1
(18.53)

and

∆2
mj =

−1

2(N + 1)

+N∑
k=−N

k2qk

=
−1

2(N + 1)
[q2

+N∑
k=−N

k(k − 1)qk−2 + q1
+N∑

k=−N
kqk−1]

=
−1

2(N + 1)
[q2f ′′(q) + qf ′(q)]

(18.54)

developing it, one gets:

∆1
mj =

1

2

(−1)m−j cos[ π
2(N+1)(m− j)]

sin[ π
2(N+1)(m− j)] (18.55)

and

∆2
mj =

−(−1)m−j

2
[N +

(q + 1)2

(q − 1)2
] =
−(−1)m−j

2
[N − (

cos[ π
2(N+1)(m− j)]

sin[ π
2(N+1)(m− j))] )

2] (18.56)
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for m = j (then q = 1):
∆1
mj = 0 (18.57)

∆2
mj = −(2N2 + 1)

6
(18.58)

In his notes Ansorg started by defining χN (φ) = ψN (cosφ), in order to find the relation
between the derivation matrix elements in Fourier series with the corresponding ones using
Chebyshev polynomials.

∂χN
∂φ

=−
√

1− x2ψ′N (x)

∂2χN
∂φ2

=− xψ′N (x) + (1− x2)ψ′′N (x)

∂4χN
∂φ4

=xψ′N (x) + (7x2 − 4)ψ′′N (x)− 6x(1− x2)ψ′′′N (x) + (1− x2)2ψ((4))N (x)

(18.59)

It follows that:

ψ′N (x) =


− 1√

1− x2

∂χN
∂φ

x 6= ±1

±∂
2χN
∂φ2

x = ±1.

(18.60)

ψ′′N (x) =


− 1

(1− x2)
(
∂2χN
∂φ2

+ xψ′N (x)) x 6= ±1

1

3
(
∂4χN
∂φ4

− xψ′N (x)) x = ±1.

(18.61)

Because of χN (φ2(N+1)−l) = χN (φl), one can writes:

∂νχN
∂φν

(φm) =
N∑
j=0

(∆ν
mj + ∆ν

m,(−j))χN (φj). (18.62)

The last equality is because:

sin
φ2(N+1)−k

2
= sin(2π +

φ(−k)

2
) = sin

φ(−k)

2

cos
φ2(N+1)−k

2
= cos(2π +

φ(−k)

2
) = cos

φ(−k)

2

(18.63)

using eq.18.55 and eq.18.57, the last equations lead to:

∆1
m,2(N+1)−j = ∆1

m,(−j). (18.64)

On the other hand

sin
φk
2

=
1√
2

√
1− xk

cos
φk
2

=
1√
2

√
1 + xk

(18.65)
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where xk = cosφk this leads to:

sin
φm ± φj

2
=

1

2
[
√

1− xm
√

1 + xj ±
√

1 + xm
√

1− xj ]

cos
φm ± φj

2
=

1

2
[
√

1 + xm
√

1 + xj ∓
√

1− xm
√

1− xj ]
(18.66)

and thus for j 6= m:

∆1
mj + ∆1

m,(−j) = (−1)m−j

√
1− x2

j

(xm − xj)
√

1− x2
m

(18.67)

∆2
mj + ∆2

m,(−j) = −(−1)m−j

2
[2N −

2− x2
j − x2

m

(xm − xj)2
] (18.68)

and for j = m:
∆1
mj + ∆1

m,(−j) =
xm

2(1− x2
m)

(18.69)

∆2
mj + ∆2

m,(−j) =
−1

2
[N − x2

m

1− x2
m

] (18.70)

Then by running some calculations as in the previous subsection one can conclude the differ-
entiation matrix:

D1
mj =



xm
2(1− x2

m)
m = j

(−1)m−j

√
1− x2

j

(xm − xj)
√

1− x2
m

m 6= j

(18.71)

and those of the second order differentiation matrix:

D2
mj =



xm
(1− x2

m)2
− N(N + 2)

3(1− x2
m)

m = j

(−1)m−j

√
1− x2

j

(xm − xj)
√

1− x2
m

(
xm

(1− x2
m)
− 2

xm − xj
) m 6= j

(18.72)

18.0.4 Lobatto

Considering Lobatto grid, From eq.7.20 one can write:

χ̄N (φ) =

+N∑
−N

γ̄χk e
ikφ (18.73)

where from eq.17.17 (for −N ≤ k ≤ N ), we have:

γ̄χk =
2− δkN − δk(−N)

4N

2N−1∑
j=0

χje
−ikφj (18.74)
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Taking the derivative of χ̄N (φ), gives:

χ̄′N (φm) =
+N∑
−N

ikγ̄χk e
ikφm

=
+N∑

k=−N
ikeikφm

2− δkN − δk(−N)

4N

2N−1∑
j=0

χje
−ikφj

=

2N∑
j=0

∆1
mjχ(φj)

(18.75)

and the second derivative of χ̄N (φ), gives:

χ̄′′N (φm) =
+N∑
−N
−k2γ̄χk e

ikφm

=

+N∑
−N
−k2eikφm(

2− δkN − δk(−N)

4N

2N−1∑
j=0

χje
−ikφj )

=
2N∑
j=0

∆2
mjχ(φj)

(18.76)

where:

∆1
mj =i

+N∑
k=−N

2− δkN − δk(−N)

4N
keik(φm−φj)

=
i

2N

+N∑
k=−N

ke
πik(m−j)

N − i

4N
NqN − i

4N
(−N)q−N

=
i

2N

+N∑
k=−N

kqk

(18.77)

and

∆2
mj =

−1

2N

+N∑
k=−N

k2qk +
N

4
(qN + q−N ) (18.78)

where q = e
πi(m−j)

N , to calculate the last sum, let us define:

f(q) =
+N∑

k=−N
qk =

qN+1 − qN
q − 1

(18.79)

so:

f ′(q) =

+N∑
k=−N

kqk−1 =
NqN+1 − (N + 1)qN + (N + 1)q−N −Nq−N−1

(q − 1)2
(18.80)
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f ′′(q) =

+N∑
k=−N

k(k − 1)qk−2

=
N(N − 1)qN+1 − 2(N + 1)(N − 1)qN +N(N + 1)qN−1 − (N + 1)(N + 2)q−N + 2N(N + 2)q−N−1 −N(N + 1)q−N−2

(q − 1)3

(18.81)

and because of q2N = 1 and q 6= 1 (17.23), then:

f ′(q) =
NqN (q + 1)

q(q − 1)
(18.82)

f ′′(q) = qN−2[N2 − 4Nq

(q − 1)2
] (18.83)

thus for m 6= j:

∆1
mj =

i

2N
q

+N∑
k=−N

kqk−1

=
i

2
qN

q + 1

q − 1

(18.84)

and

∆2
mj =

−1

2N

+N∑
k=−N

k2qk +
N

4
(qN + q−N )

=
−1

2N
[q2

+N∑
k=−N

k(k − 1)qk−2 + q1
+N∑

k=−N
kqk−1] +

N

4
(qN + q−N )

=
−1

2N
[q2f ′′(q) + qf ′(q)] +

N

4
(qN + q−N )

(18.85)

developing it, when m− j 6= 2Np; p ∈ Z, one gets:

∆1
mj =

1

2

(−1)m−j cos[ π2N (m− j)]
sin[ π2N (m− j)] (18.86)

and

∆2
mj =

−1

2

(−1)m−j

sin2[ π2N (m− j)] (18.87)

In his notes Ansorg started by defining χN (φ) = ψN (cosφ), in order to find the relation
between the derivation matrix elements in Fourier series with the corresponding ones using
Chebyshev polynomials.

∂χN
∂φ

=−
√

1− x2ψ′N (x)

∂2χN
∂φ2

=− xψ′N (x) + (1− x2)ψ′′N (x)

∂4χN
∂φ4

=xψ′N (x) + (7x2 − 4)ψ′′N (x)− 6x(1− x2)ψ′′′N (x) + (1− x2)2ψ((4))N (x)

(18.88)
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It follows that:

ψ′N (x) =


− 1√

1− x2

∂χN
∂φ

x 6= ±1

±∂
2χN
∂φ2

x = ±1.

(18.89)

ψ′′N (x) =


− 1

(1− x2)
(
∂2χN
∂φ2

+ xψ′N (x)) x 6= ±1

1

3
(
∂4χN
∂φ4

− xψ′N (x)) x = ±1.

(18.90)

Because of χN (φ2N+l) = χN (φl), one can writes:

∂νχN
∂φν

(φm) =
N∑
j=0

(∆ν
mj + ∆ν

m,(−j))χN (φj). (18.91)

The last equality is because:

sin
φ(2N)−k

2
= sin(

φ(−k)

2
− π) = − sin

φ(−k)

2

cos
φ(2N)−k

2
= cos(

φ(−k)

2
− π) = − cos

φ(−k)

2

(18.92)

using eq.18.86, the last equations lead to:

∆1
m,2N−j = ∆1

m,(−j). (18.93)

On the other hand

sin
φk
2

=
1√
2

√
1− xk

cos
φk
2

=
1√
2

√
1 + xk

(18.94)

where xk = cosφk this leads to:

sin
φm ± φj

2
=

1

2
[
√

1− xm
√

1 + xj ±
√

1 + xm
√

1− xj ]

cos
φm ± φj

2
=

1

2
[
√

1 + xm
√

1 + xj ∓
√

1− xm
√

1− xj ]
(18.95)

and thus for j,m = 1, ...N − 1 and j 6= m:

∆1
mj + ∆1

m,(−j) = [(−1)m−j ][

√
1− x2

m

xj − xm
], (18.96)

so in this case

D1
mj =

(−1)m−j

(xm − xj)
. (18.97)
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For m = 1, ...N − 1 and j = m:

∆1
mj + ∆1

m,(−j) =
i

2N

+N∑
k=−N

k +
i

2N

+N∑
k=−N

ke
2imπk
N

=0 +
i

2

e
2imπ
N + 1

e
2imπ
N − 1

=
1

2

cos(mπN )

sin(mπN )

=
1

2

xm√
1− x2

m

,

(18.98)

so in this case

D1
mj =

−1

2

xm
1− x2

m

. (18.99)

For m = j = 0 (then q = 1):

∆2
00 = −−1

2N

+N∑
k=−N

k2 +
N

4
(2) = −2N2 + 1

6
, (18.100)

so D1
00 = −2N2+1

6 Then by running more computations, we get:

D1
mj =



−2N2 + 1

6
m = j = 0

2N2 + 1

6
m = j = N

−xj
2(1− x2

j )
m = j 6= 0, N

κm
κj

(−1)m−j

(xm − xj)
m 6= j

(18.101)
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and those of the second order differentiation matrix:

D2
mj =



N2 − 1

15
m = j = 0, N

−1

(1− x2
j )

2
− N2 − 1

3(1− x2
j )

m = j 6= 0, N

2

3

(−1)j

κj

(2N2 + 1)(1− xj)− 6

(1− xj)2
0 = m 6= j

2

3

(−1)N+j

κj

(2N2 + 1)(1 + xj)− 6

(1 + xj)2
N = m 6= j

(−1)m−j

κj

x2
m + xmxj − 2

(xm − xj)2(1− x2
m)

0 6= m 6= N, j 6= m

(18.102)

where:

κj =

{
1 0 < j < N

2 j = 0, N
(18.103)
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