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0Abstract
Nowadays, strong economic growth and extreme weather conditions increased
global electricity demand by more than 6% in 2021 after the COVID pandemic.
The fast recovery regarding this demand rapidly increased electricity consumption.
Even though renewable sources present a significant growth, electricity production
from both coal and gas sources has reached a historical level.
On the other hand, the consumption of energy by the digital technology sector

depends on its growth and its degree of energy efficiency. On this matter, although
devices at all deployment levels are energy efficient today, their massive use means
that global energy consumption continues to grow.
All these data show the need to use the energy of these devices wisely. For

that reason, this thesis work addresses the dynamic (re)deployment of software
components (containers or virtual machines) and their data to save energy. To this
extent, we designed and developed intelligent distributed scheduling algorithms to
decrease global power consumption while preserving the applications’ quality of
service.
Such algorithms execute migrations and duplications procedures considering

the natural relation between hardware components’ load/features and power con-
sumption. For that, they implement a novel manner of decentralized negotiations
based on a distributed middleware we created (Kaligreen) and multidimensional
data structures.

To operate and assess the algorithms above, appropriate tools regarding hardware
and software solutions are essential. Here, our choice was to develop our own
simulation tool called: PISCO.
PISCO is a versatile and straightforward simulator that allows users to con-

centrate only on their scheduling strategies. It enables network topologies to be
abstracted as data structures whose elements are devices indexed by one or more cri-
teria. Additionally, it mimics the execution of microservices by allocating resources
according to various scheduling heuristics.

We have used PISCO to implement, run and test our scheduling algorithms.
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CHAPTER 1

INTRODUCTION



1 Introduction

Nowadays, strong economic growth and extreme weather conditions increased
global electricity demand by more than 6% in 2021 after the COVID pandemic[99].
The fast recovery regarding this demand rapidly increased electricity consumption.
Even though renewable sources present a significant growth, electricity production
from both coal and gas sources has reached historic level[98].

Some difficulties concerning this subject have been pointed out. For instance,MD
Staff argued that the emissions from electricity need to decline by 55% by 2030 to
meet Zero-Emissions by 2050. However, in the absence of major policy action, those
emissions are set to remain around the same level for the next three years(2022-
2025). Among these significant changes, the world needs massive transformations
for the electricity sector to fulfill its critical role in decarbonizing the broader energy
system[165].
On the other hand, the consumption of energy by the digital technology sector

depends on its growth and its degree of energy efficiency. On this matter, a division
regarding three categories is highlighted[208]. First, personal devices (phones, com-
puters, tablets) correspond to the primary source of energy use, with approximate
calculations between 38%[224] and 50%[7]. Next are data centers (servers, data,
computing units) with consumption values of 1.1-1.4%[97]. Finally, communication
networks (wireless, data transport).

The afore-mentioned subdivisions had an annual increase surpassing the growth
of worldwide electricity consumption during the period comprehending from 2007
to 2012: Personal devices 10%, data centers 5%, and communication networks
4%[224].

All these data show the need to use the energy of these devices wisely. For
that reason, this thesis work addresses the dynamic (re)deployment of software
components (containers or virtual machines) and their data to save energy. To this
extent, we designed and developed intelligent distributed scheduling algorithms to
decrease global power consumption while preserving the applications’ quality of
service.
Such algorithms execute migrations and duplications procedures considering

the natural relation between hardware components’ load/features and power con-
sumption. For that, they implement a novel manner of decentralized negotiations
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Chapter 1 Introduction

based on a distributed middleware we created (Kaligreen) and multidimensional
data structures.

In order to operate and assess the algorithms above, appropriate tools regarding
hardware and software solutions are essential. For example, infrastructures cus-
tomized with specially designed middlewares (Kalimucho[51], Kubernetes[136],
etc.), measurement devices (wattmeters or uninterruptible power supply (UPS)),
among others.

Because these technologies were unavailable to us and the proven effectiveness
of power formulas (explanation in chapter 2), we introduced our own simulation
tool called: PISCO.
Regarding the formulas, we have studied, adapted existing approaches, and

proposed (if concerned) our own mathematical models to describe the energy
consumption of essential hardware components (CPU, RAM, NIC, and storage
device). For the CPU and the RAM, we have selected and adapted already tested
formulas to detail their workload, power state, and power consumption. Then, we
have proposed and tested our own energy consumption models for the storage
device and the NIC. It is relevant to indicate that each model’s parameters’ values
can be collected from different GNU/Linux interfaces (such as APIs, specialized
programs, and others).

PISCO allows the (re)deployment of software components (executing processes)
as well as their connections in the network’s nodes. Additionally, it calculates hard-
ware components’ energy consumption based on their workload over time extent.
This load can be evaluated taking into account as many hardware components as
defined.

The strength of our simulator consists of its versatility and simplicity. It enables
network topologies to be abstracted as data structures whose elements are devices
indexed by one or more criteria. Additionally, it mimics the execution of microser-
vices by allocating resources according to various scheduling heuristics. For that
reason, we have used our simulator to implement, run and test our scheduling
algorithms.

1.1 Thesis Methodology
This thesis work seeks to create and execute distributed tools and algorithms to
save energy while maintaining the notion of QoS. For this, its chapters describe
our proposal of a way forward toward intelligent distributed scheduling.

The first step on this path is to have energy information usable by any distributed
middleware and simulation tools. Chapter 2 studies this problem. In it, we provide

6



Thesis Methodology Section 1.1

energy formulas for four important hardware components (CPU, RAM, NIC, and
storage) to describe the consumption of running applications in heterogeneous
devices.

Our next step is to understand how distributed approaches work. For this, Chap-
ter 3 shows a different way of categorizing research works based on an algorithmic
procedure. The strategy considers 1) important input variables such as hardware
components load and devices positions, 2) scheduling operations as migrations
or duplications, and 3) optimized variables such as QoS and energy consumption.
Moreover, we study this flow in (de)centralized environments at different deploy-
ment levels, such as cloud, grid, or edge. That makes it easy to understand the
scope of new scheduling proposals.
Then, having explored state of the art in distributed environments, Chapter 4

describes our scheduling strategies. We have designed a distributed middleware
called Kaligreen. It is aware of the software and hardware components of the
devices on which it runs. Furthermore, it implements special communication meth-
ods that enable centralized and decentralized strategies in any network topology.
Kaligreen includes a default algorithm that performs neighborhood microservices
exchanges after negotiation and microservices-filtering processes.

Using kaligreen, we have designed, implemented, and tested a fully decentralized
algorithm inspired by multidimensional data structures, representing one of this
thesis’s major contributions. That considers the devices as nodes in a space with
as many edges as the characteristics of said nodes. In this space, each device
can find peers to negotiate microservice migrations or duplications at an optimal
computational cost.

Next, Chapter 5 shows the design and implementation of PISCO, the simulator
we created and use to deploy and evaluate our scheduling algorithms. The impor-
tance of our tool is to allow its users to focus solely on their scheduling heuristics.
For this, PISCO implements an overlay as any data structure (graphs, trees, etc.),
devices and software as dynamic objects, and middlewares as threads to execute
any scheduling policies.

Finally, the thesis finishes by showing our methods’ experiments and results in
chapter 6, and its conclussions and future work in section 7.

Regarding the structure of each chapter, each begins by defining its introduction
and context, next explaining the methodology that follows, showing its content,
and finally arguing its conclusions and contributions.

7



CHAPTER 2

PROFILING APPS’
POWER CONSUMPTION



2 Profiling applications’
power consumption

2.1 Introduction
This research work studies how to dynamically (re)deploy software components
(containers or virtual machines) and their data to save energy. To do this, we
designed and developed intelligent distributed scheduling algorithms that reduce
global power consumption, maintaining the applications’ quality of service.
They operate (migrations and duplications procedures) considering the natural
relation between hardware components’ load/features and power consumption.
In order to execute and evaluate these algorithms, we needed to use special

hardware and software tools. For example, infrastructures configured with spe-
cialized middlewares (Kalimucho[51], Kubernetes[15], etc.), measurement devices
(wattmeters or uninterruptible power supply (UPS)), among others.

However, since we did not have these technologies available and the effectiveness
of power formulas has already been demonstrated[53][38] (even taking into account
the hardware heterogeneity), we decided to implement and use our own simulation
tool.
PISCO is a highly dynamic simulator (explained in detail in chapter 4) for dis-

tributed scheduling. First, it allowed us to deploy heterogeneous nodes in any
network topology. Secondly, it served us to define different hardware components
for each physical node. Next, it found the component’s power/energy consumption
from their load and energy mathematical models. Finally, our tool executed and
evaluated our distributed scheduling approaches.
From the software point of view, PISCO allows the (re)deployment of software

components (for us, running processes) and their connections in the network’s
nodes. It also calculates said components’ energy consumption based on their
workload over time. This load can be analyzed considering as many hardware
components as defined.

In this research work, we have chosen four components to energetically profile
any running process (application, microservice, virtual machine, etc.): The CPU
(Central Processing Unit), the RAM (Random access memory), the network card,
and the storage device. We based this decision mainly 1) on the fact that for these
components, it is possible to obtain the necessary profile values from OS (operating
system) interfaces and 2) on the existence of works that analyze these components

9



Chapter 2 Profiling applications’ power consumption

to outline the energy consumption of a distributed system node. For example, while
some works understand that the most important devices to analyze global power
consumption are the CPU and RAM[120][14][155][16][1], others also take into
account other components such as the hard drive, the ethernet card, or even the
video card[16][153][238].

This chapter describes our distributed scheduling algorithms’ input criteria. In
the following paragraphs, we study each of these four components’ importance,
operation, and features. Moreover, we explain the mathematical models that relate
the workload produced by a process identifiable by a PID to the respective power
consumption.

2.2 Methodology
This chapter contains four main sections explaining the four components we study:
CPU, RAM, Network Card, and Storage device. Each section explains first the
technical hardware details regarding how the component uses power according to
a given workload. Then, it describes how several authors study and optimize the
components’ power consumption. Here we have grouped the approaches into four
levels: 1) low-level configuration, 2) software design and development, 3) launching
applications, and 4) applications already running. This categorization allows us
to identify the techniques and mathematical models compatible with distributed
energy savings strategies. If a proposal is possible with the values obtained fromOS
interfaces, we use them for our algorithm implementation. Otherwise, we develop
and use our own formulas.

It is important to say that we have made the differentiation of points 3 and 4 for
two reasons. On the one hand, the applications usually contain different startup
and post-start execution routines. On the other hand, many profiling tools need to
launch the application to analyze it. This fact creates an undesirable dependency
relation for production environments but interesting results for building a pre-
execution profile.
We present the summary section at the end of the chapter, highlighting our

contributions and procedures.

2.3 The CPU’s energy consumption
The CPU (Central Processing Unit) is the hardware component that executes the
instructions described in a program through logical/arithmetic operations (among
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others). Depending on the CPU’s structural characteristics, these instructions
can be executed at different frequencies, using different parallelism and prediction
criteria, and finally, using different amounts of energy.
Compared to the other components studied in this chapter, the CPU has the

greatest structural variations (even within the same brand) due to technological
advancement and the plurality of existing devices. Furthermore, each processor
could operate at different voltages or activate different power-related capabilities
for energy-saving purposes.
In order to understand how these mechanisms consume energy, it is necessary

to study some basic aspects of the processor’s operation, which we will describe in
the following section.

2.3.1 Background
From an electronics point of view, the CPU comprises millions of silicon transistors
that act as switches useful for generating bits from electricity. With these transistors,
each processor can execute the instructions described in its ISA (Instruction Set
Architecture) using several cores. On the one hand, each core has processing
units such as a set of ALUs (Arithmetic Logic Unit) and FPUs (Float Point Unit).
Moreover, they have other internal units such as one MMU (memory management
unit), one RS (Register Set), a CU (Control Unit), and a set of cache memories.
These last usually have three categories: 1) L1, which is the closest (and therefore
more quickly accessible) to each core. 2) L2, which each pair of cores share, and 3)
L3, which all cores can access[69][231][85].
Each time a compiler processes an application source code, it generates a set

of instructions specific to the CPU’s ISA. Then, employing internal or external
(operating system ones) selection algorithms, one or more CPU’s cores process
these instructions. If the CPU implements hyperthreading technology (two data
and instruction streams per core), the selection algorithms will also use the core’s
threads to improve parallel execution.
When executing an application, each core performs the concerning operations

using its CU to synchronously utilize its necessary internal units. This work is
performed at a frequency determined by the clock’s speed, which is dependent
on the core’s voltage. Therefore, the more frequency, the more operations in a
given time a core can process, and the more energy it uses[107].
However, the frequency and voltage are also directly related to the heat pro-

duced, which can damage the chip’s internals. For this reason, each CPU has a
TDP (Thermal Design Power) expressed in Watts, which defines the maximum
power with which a processor can work safely for an indeterminate time[111].
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It is important to mention that the TDP may be exceeded for a short amount of
time to increase processing capacity in certain circumstances. That is known as
Overclocking[107].

On the other hand, executing a program’s instructions requires correct memory
handling. To be executed, each of them must first be retrieved from RAM or the
CPU’s caches in order to be placed into the CPU‘s instruction registers. This
process is known as “fetch.” Then, through the “decode” process, the CPU discov-
ers each instruction type. Finally, in a process called “execute,” the instruction’s
data is placed in the registers of the corresponding execution unit, such as theALU
for arithmetic, logical, and branch operations or theMMU for memory retrieval
operations.
Depending on the type of instruction, there are very complex operations and

strategies to be carried out. For instance, if the required instruction’s data is not
in the core’s registers, more clock cycles are required to query the RAM[210].
To face that, the cache controller will try to predict (using special predictive
algorithms) and fetch additional to-request data. On the other hand, statements
such as “for” or ”if” may involve executing a sequence of instructions different
from the current one. These instructions are known as branch operations. As the
mentioned statements’ immediate results are unknown, branch operations can
involve unnecessary processing instructions that use indeterminately different core
processing units. This phenomenon makes parallelism difficult and the execution
efficiency of an application not optimal. To address this, using complex structures
called branch predictors, the CPU tries to predict whether a branch should be
taken or not with about 95% accuracy on modern processors[85][21].

As it is easy to see, studying theCPU’s power consumption, including parallelism
and prediction criteria particular to each model, is an extremely complex task (more
than for other components[53]). Each CPU model could also implement different
forms of energy saving, such as voltage reduction or turning off certain parts of a
particular core. However, several studies have managed to relate workloads with
the energy consumption they produce in the CPU.

The next section describes these approaches.

2.3.2 Finding and optimizing the CPU’s energy consumption

From the point of view of hardware evolution, CPU manufacturers have made
processors work at high processing frequencies, using power more and more
efficiently. For that, they have implemented two main techniques that seek to adapt
the amount of energy invested with the workload type and the chip’s temperature.
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• The DVFS (Dynamic Voltage Frequency Scaling) enables the operating sys-
tem to reach a certain P-State (Performance State). It lowers the CPU’s
frequency and voltage under certain circumstances to save energy at the cost
of processing capacity[144][145][233][114].

• TheC-States allow eachCPU’s core to turn off some of its parts as requested
by the OSPM (Operating System Directed Power Management). These states
establish the core’s idle state-level defining the following relation: The deeper
the C-state is, the more energy is saved, but the higher is the exit latency
to the active state[105]. In figure 2.1, Intel shows the C-states of some of
its processors[115] and the relation just mentioned. It is important to note
that in order to obtain the best energy-saving results, all (v)cores that share
resources such as caches should be affected by the same C-state.

Other works propose improvements in the design of the processing units to save
energy. For example, some approaches take better advantage of the turbo boost
in order to avoid cache misses and branch mispredictions[133]. For their part,
other scientists intelligently use the power gates to turn off certain processor parts
according to the workloads’ characteristics[141][151].

We can use physical sensors, mathematical models, or system-level and processor
simulators to discover the effectiveness of these approaches[18]. Although there
are several creations of this type, we do not mention them as they are beyond the
scope of this work.
Some other approaches seek to save energy from a higher level of abstraction

by tuning the operating system scheduler. They propose techniques such as 1)
modifying the run-queues to halt the CPU when power consumption reaches a
certain threshold[16], 2) grouping tasks of the same type (characteristics, number
of cycles in the CPU internals, etc.) for their execution to trigger the DVFS (using,
for example, GNU/LINUX ACPI/CPUFREQ) or the C-States[120][41][30], 3)
enabling the scheduler to predict the energy-impact of its decisions[130], or 4)
enabling CPU and GPU to work as a single unit[123][211].
For these approaches, the power/energy consumption can be estimated eighter

from 1) mathematical models that can, among others, take into account the number
of events/cycles that a thread produces in the CPU’s internals (ALU, FPU, or
caches)[16][120], 2) from the battery usage in a certain period[41], or 3) from
chip-specific measurement tools[123].
At the next level of abstraction, from the point of view of applications devel-

opment and execution, some papers relate power consumption to source code
procedures. This relation enable developers to perform different energy-aware cod-
ing strategies[91][42][172][2]. As in the other approaches, we can use APIs, physical
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Figure 2.1: Core’s C-States[105].

sensors, or measurement applications (e.g., powertutor[186]) to corroborate the
results of these techniques.
Once the application has been developed, there are tools that can execute it

by counting the number of events/operations that it generates in each of the
CPU’s internals[110][180][230][53] (i.e., integer, float point operations, etc.). These
tools then infer energy consumption using mathematical models and physical
measurement devices[120].
On the other hand, when the application is already running and identified by

its PID, it is possible to relate the frequency, voltage, or operations type that it
needs/performs from/in theCPUwith the corresponding energy amount[106][202][172].

We summarize all the methods described so far in the table 2.1.
Since we optimize the distributed-applications scheduling in this thesis, the next

section deeply describes the approaches mentioned in the last two paragraphs.

2.3.3 Proposal to measure the CPU’s power consumption
from the perspective of distributed algorithms

As Table 2.1 shows, most approaches analyze and improve the CPU’s energy
consumption using hardware and operating system features. Nevertheless, as we
study software components’ distributed scheduling, the next section describes the
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Techniques to measure CPU power/energy consumption

Approach Stage of:
Hardware

manufacturing/
low-level

configuration

Software
Design and
development

Launching
applications

Applications
already
running

Direct measurement
instruments. X X X X

System-level and
processors
simulators.

X

Relate source
code with
energy
consumption.

X

Relate CPU’s operations
(obtained from
dmidecode, perf,
intel processor counter
monitor; etc.)
with energy
consumption.

X X X

Relate battery usage with
CPU’s energy consumption. X X

Relate CPU’s frequency with
energy consumption. X X

Techniques to optimize CPU power/energy consumption
Improve the C-States
and the DVFS. X

Improve the turbo
boost usage. X X

Grouping tasks for
scheduling
improvement.

X

Improve run-queues
management. X

Energy-aware scheduling. X
GPU-CPU based
scheduling. X

Optimize development
methods. X

Perform cloud-based
scheduling operations. X X

Table 2.1: Approaches to measure and optimize CPU energy consumption
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best methods for analyzing theCPU considering two moments: When a component
is executed and when it is already running and identifiable by its PID.

Analyzing a process from the moment it is executed and when it is already
running

Currently, there are several tools (programs and APIs) compatible with certain OSs
that allow estimating the energy consumption of running applications[183][112][53].
The problem with some of them is that either they do not offer all the models they
use openly (at least in their documentation), or their results have been discussed
by other scientific works[124][172][38].

For these two reasons, we use the model offered by PowerAPI, but also consider
the fan’s power consumption. In one of its versions presented by Adel Noureddine
et al.[172], the model relates the total current CPU power consumption to the
percentage of its capacity an application uses in a given time.

𝑛𝐶𝑜𝑟𝑒𝑠∑︁
𝑖=0

𝐸𝑃𝐼𝐷𝐶𝑃𝑈𝑖
(𝑡) = 0.7 ×𝑇𝐷𝑃

𝑓𝑇𝐷𝑃 ×𝑉 2
𝑇𝐷𝑃

× 𝑓𝑖 ×𝑉 2
𝑖 ×

𝑈 𝑃𝐼𝐷
𝐶𝑃𝑈𝑖

𝑈𝐶𝑃𝑈𝑖

(𝑡) + 𝑓 𝑎𝑛𝑠𝑠 (𝑡), 𝑤ℎ𝑒𝑟𝑒

𝑓 𝑎𝑛𝑠𝑠 = 𝐽∀𝐾 (𝑓𝑖 > 𝑓𝑥 > 𝑓 𝑗 )

(2.1)

In the formula 2.1, the first factor refers to the CPU’s capacitance, which is
not always found in datasheets, nor is it easy to obtain through operating system
interfaces. For that reasons, the authors deduce it from the processor’s TDP and its
respective voltage and frequency (the same model, but in terms of the capacitance
and TDP’s corresponding values). They do that also considering an already proven
surplus proportional to 0.7. Then, the second and third factors refer to the current
frequency (𝑓 ) and the current voltage (𝑉 ), respectively. The last factor represents
the ratio between the CPU time for a process represented by its PID (𝑈 𝑃𝐼𝐷

𝐶𝑃𝑈𝑖
), and

the time the CPU is active for all the processes (𝑈𝐶𝑃𝑈𝑖
). Finally, we added the 𝑓 𝑎𝑛𝑠

variable which represents the CPU’s fan energy consumption. That assumes a
certain speed (𝑠) when a core’s frequency 𝑓𝑥 reaches a value between 𝑓𝑖 and 𝑓 𝑗 .

In the context of our algorithms, we use this formula for each core 𝑖 , considering
multithreading situations. We can obtain its values using GNU/Linux interfaces
(applications) such as turbostat[22] for the TDP (MSR_PKG_POWER_INFO in-
terface) and idle statistics,msr-tools[108] (rdmsr 0x198 -u –bitfield 47:32)/8192)
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for core voltage1, perf[180](perf stat –per-core –pid) or ps[181](ps -p PID/PSR)
for processes’ per-core CPU usage, and lm-sensors[229] for the CPU’s fan infor-
mation.
It is important to mention that CPU undervolting or C-states can formally be

triggered from the OS internal calls (mwait, htl, IA*_PERF_CTL, etc.). However,
some unofficial tools allow manual procedures[147].

In the context of our work, we indirectly consider the DFVS and C-States from
the non-linear nature of the formula 2.1.

2.3.4 Important considerations and future work
Although the model we use is quite accurate to measure the applications’ energy
consumption, we know that new processors are more complicated to study. We
will consider C-states and P-States more deeply in future works, modeling them
per level and residency.
In addition, we also know that we must evaluate special widely-used CPU

characteristics such as overclocking. To do that, in future works, we may improve
the model we described in the previous section. However, we can also use other
approaches, such as the last provided by powerAPI[38]. It dynamically learns
CPU power models by exploring the space of hardware performance counters.
On the other hand, we obtained the formula’s values using GNU/Linux inter-

faces. That allows us to prove its viability and obtain the input numbers for our
simulated environment. However, we will extend our approach by considering
different OS and tools in future works.

2.4 The RAM’s energy consumption
As it is known, the RAM (Random Access Memory) is the hardware element that
the CPU actively employs to read and write data (programs, operations, operations
results, etc.) in a program execution context. Here, each time the CPU needs to
read an n-bit word, it first checks to see if that word is in its cache memories,
spending an approximate time of two clock cycles. If so (cache hit), the CPU will
continue the program’s execution with the information found. Otherwise (cache
miss), that component will have to search the word in the RAM and swap it with
the old cache’s value, spending more time and energy[210].
The operating systems use RAM to run applications for efficiency reasons.

Permanent storage devices, such as hard drives, do not achieve enough data transfer

1 https://askubuntu.com/questions/876286/how-to-monitor-the-vcore-voltage
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speed for the CPU to operate at its optimum frequency. For example, while a solid-
state hard drive on the market today offers a transfer rate of 2000𝑀𝐵/𝑠 for reading
operations and 1700𝑀𝐵/𝑠 for writing operations[44], a current RAM can transfer
data at 35200𝑀𝐵/𝑠 for both operations[47]. For that reason, when an application is
launched, or a file is opened, the operating system first copies the concerning data
from the storage device to the RAM.
All these processes lead several RAM’s electric parts to work and spend non-

negligible amounts of energy. The following section deeply explains the necessary
RAM internals operation to understand its power consumption modeling.

2.4.1 Background

From an internal point of view, each RAM type can manage data using different
electric devices. For example, if it is an SRAM (static random access memory), it
stores 1 bit using a six transistor memory cell. Otherwise, in the case of DRAM
(dynamic random access memory), it uses a transistor and capacitor pair to do
that[45].

In the current hardware industry, SRAMs are usually employed as CPU caches
and DRAMs as user-replaceable memory modules[45]. For this reason, this section
focuses on understanding how a DRAM stick works.

Figure 2.2: Memory module structure[216].
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As Figure 2.2 shows, internally, a DRAMmodule can be seen as a hierarchically
structured hardware component[31]. Within it, the most basic element is the
memory cell. As aforementioned, to store 1 bit of data, each memory cell uses
its internal transistor as a switch and its capacitor as short-time storage of electric
charge. If the capacitor contains an electric charge, it represents a binary number 1;
otherwise, the binary represented is 0[64]. The next element is the DRAM BANK,
which contains a set of memory cell matrices. That set usually has an 8-bit size to
simultaneously process a byte per bank. Then, a set of memory banks (typically
4, 8, or 16) makes up a single memory CHIP. Finally, the memory chips that can
be accessed simultaneously by the same memory channel (the link between the
CPU memory controller and RAM modules) compose amemory RANK[160].
It is also important to mention that a RAM module can contain several ranks

and access pins distributed on both sides (both easily visible). This architecture is
known as DIMM (Dual Inline Memory Module).

The access speed and the energy usage of each DIMM depend on the number of
pins it has, the voltage it needs to work, the frequency its clock operates, and how
it executes read and write operations.
To perform the latter, current DIMMs use both the clock’s rising and falling

edges to trigger the transfer operation to the data bus[93]. This technology is
known as DDR (Double Data Rate), which has several upgrade versions over
time[48].

With the aim of reading or writing data, amodule distributes memory addresses
to each bank through a special bus. This process can be done in two ways: 1)
Consecutively per bank, or 2) evenly among banks. The latter represents a working
fashion known asmemory interleaving mode.
The mentioned bus, alongside the RAS (row address strobe) and CAS (column

address strobe) pins, are used to find the data bits to operate. First, each data bit is
stored in a data buffer after bit-line precharging operations (i.e., set the bitline
to half the voltage of the entire module). Then, the mentioned elements write the
data bit’s row and column numbers in the row and column addresses buffer.
Finally, the module interprets the WE (write enable) pin’s load to differentiate the
operation type (read or write).

The data preservation in a DDR-DIMM is given in its normal working state by
refresh cycles generated by the clock. These are synchronized with the natural
capacitors’ energy loss and the reading/writing operations described above. That
is because executing these operations always discharges capacitors, which implies
its data destruction[65].
Other RAM’s working states aim to save energy by turning off some of its

internals. They are triggered through a per-rank signal called CKE (clock en-
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able)[124][155][161], depending on the OS mode and the time that the RAM is idle.
For instance, the self-refresh state keeps the pins and banks working with the
minimum voltage necessary to avoid the data disappearance. Here, the refresh
operation is performed by a built-in timer instead of by the external clock. Other
states seek to save energy by periodically deactivating the CKE or certain ranks.
As it is possible to see, each memory module uses energy to preserve data

in each bank and perform read and write operations. However, the RAM im-
plements several energy-saving states which are triggered depending on certain
circumstances. The next section explains some approaches that seek to measure
and optimize the RAM power consumption considering the explained elements
and some software capacities.

2.4.2 Finding and optimizing the RAM’s energy consumption
Studying the RAM power consumption is a complex task that can be achieved from
a hardware or software perspective. Regarding the first, memory manufacturers
have lowered the voltage and increased the transfer rate with which the modules
work. This fact can be seen in each of the DDR versions. For instance, the DDR2,
DDR3, and DDR4 modules provide an operating voltage of 3.3, 1.35, and 1.2,
respectively[212]. It’s important to say that these values can be easily verified with
direct measurement instruments or through OS interfaces such as the dmidecode
tool[148].
On the other hand, other scientists proposed some RAM structural changes.

For example, the elimination of the DRAM chip timing circuitry, delegating its
responsibility to the memory controller. This strategy decreases the idle state
in themodules’ active mode, allowing data transfers immediately after wake-up
operations. As a result, this approach reduces energy per transfer by 50% with no
performance impact[155]. This value can be verified using tools such as x86_64
execution-driven processor simulators.
In the literature, it is possible to find more works related to hardware improve-

ment; but we will not detail them as they are outside the scope of this work.
From a software perspective, someRAM configurations can be activated from the

motherboard’s firmware. For example, the last work we cited[155] also mentions
that it is possible to decrease the power consumption by disabling the delay-locked
loops ormemory interleaving in the BIOS. However, that implies serious perfor-
mance penalties. Moreover, other approaches also use the BIOS options to modify
the RAM’s working voltage and frequency. Nevertheless, this strategy also has
efficiency negative consequences without achieving desirable power consumption
results[55].
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Techniques to measure RAM power/energy consumption

Approach Stage of:
Hardware

manufacturing/
low level

configuration

Software
Design and
development

Launching
applications

Applications
already
running

Direct measurement
instruments X X X X

Software interfaces
such as: dmidecode,
perf, intel processor
counter monitor,
heaptrack, hotspot, etc.

X X X

Execution-driven
processor simulator X

Count hardware events
(cache operations, float
point operations, etc.)

X

Model the consumption
of operations contained
in source code

X

Model the consumption
of memory based on
applications workloads
and/or applications
memory load.

X X X

Techniques to optimize RAM power/energy consumption
Reduce RAM
voltage/frequency X

Reduce unnecessary
idlestates X

Deactivate/activate
memory
interleaving

X

Smart scheduling
taking into account
hardware events or
type of operations

X X X

Table 2.2: Approaches to measure and optimize RAM energy consumption
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On the other hand, some approaches study the RAM power consumption from
a higher level of abstraction. They analyze the OS and compilers configurations,
considering the RAM workload (amount of reading and writing operations) over
time and its corresponding power states[161][160]. For example, several authors
tune the operating system to induce some banks (normally by ranks) to spend
less power. Some do that by modifying the page allocation policies[139][84]. Oth-
ers consolidate the memory allocations and/or references, preventing them from
spreading across the entire address space[170]. Finally, various authors improve
OS scheduling operations per thread considering the number of hardware events
(floating-point operations, number of memory accesses, etc.) each performs[16].

The input parameters of the latter are also useful for studying power consumption
from other points of view. For instance, the compilers and programming languages
development, the mathematical models based on a source code’s operations[1], etc.
These parameters can be obtained from applications such as Heaptrack[125] and
Hotspot[126]. Furthermore, they can also show, among others, the link between
the number of memory accesses of a running application and its corresponding
lines of code

Finally, in the context of already built applications, some tools such as perf
(Performance analysis tools for Linux)[180], Intel’s Performance Counter Moni-
tor[230], or different types of physical sensors, allow studying the number of RAM
accesses they perform when executed or when they already run. These tools are
used by works that propose methods and models to interpret the RAM energy
consumption. To do that, their authors usually consider certain types of workloads
and the presence of certain amounts of data in this component[124][53][10].

The table 2.2 summarizes the techniques described above for measuring and
optimizingRAM power consumption. It separates the approaches into four levels of
abstraction: (1) Low level, which involves hardware development or configuration,
including firmware and operating systems. (2) Medium level, which studies software
design and development (from the programing language point of view). (3,4) High
level, which comprises executing and running applications.

In this thesis, we study and optimize the scheduling of software components,
which are running applications. For that reason, the next section focuses on deeply
explaining the levels 3 and 4 mentioned in the last paragraph.
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2.4.3 Proposal to measure the RAM’s power consumption
from the perspective of distributed algorithms

As we indicated in section 2.1, this research analyzes and optimizes the energy
consumption of software components (in fact, running applications) through dis-
tributed scheduling operations. This analysis can occur from the moment an
application is launched or when it is already running. In terms of RAM, these
operations should consider two factors. On the one hand, they must be based on
information accessible to the scheduling platform (usually middleware). On the
other hand, they must attempt to get the RAM into low-power states.

Not many works have dealt with this topic since most focus on low-level aspects,
as seen in the second part of the table 2.2. However, there are some exceptions. For
instance, the creators of RAPL (Running Average Power Limit) proposed a weights-
based model to relate the RAM power consumption, the read/write operations it
performs, and its CKE state[53]. However, we didn’t find the implementation of
this model’s calibration process (the model’s weights). In addition, its accuracy has
been re-evaluated, showing mixed results, especially when the system is in idle
states[57].
As another example, one of the most relevant approaches for us is the one

proposed by Alexey Karyakin et al.[124]. Their work provided and tested (using
measurement tools and mathematical regression) a model to calculate the energy
used by the RAM when performing database operations. This model considers in
a differentiated way: (1) the background consumption, which depends only on
the RAM’s power state, and (2) the active consumption, which is generated by
the reading/writing operations it performs.

To calculate the first type of consumption, the authors considered the percentage
of a given time in which theRAM is in one of the following power states: (1)Active,
which represents the “normal” working state (2) CKEOFF, which represents all
intermediate states of power saving and (3) self-refresh, as the state of least power
consumption. Thereby, the model they propose multiplied the said time by the
corresponding power consumption. Moreover, since they used physical measuring
instruments, the model considers the additional consumption generated by each
rank in an active state as a separate attribute.

To calculate the RAM’s active consumption, the authors considered the number
of reading andwriting operations carried out in a given time. That is, theymultiplied
the number of operations of each type by the energy consumption that each one
generates. Here, the authors’ model also considers the consumption of each pre-
charge and activation cycle generated per operation.
For our part, to find an application’s energy consumption in terms of RAM,
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we use this same approach in a particular way. We also discover the RAM’s
background and active consumption but consider only the information we can
obtain from the GNU/Linux interfaces. Furthermore, we differentiate between an
application launching process and an application already running in the active
energy consumption.

The background energy consumption (𝑬𝑩𝑲 )

In order to determine the RAM’s power state residency from OS interfaces, we
consider using two different approaches:

1. Option 1: To use a processor counter monitor:
These powerful tools offer a set of easy-to-use programs that provide (among
other functionalities) very verbose RAM information. For example, its in-
ternals’ description, the global number of operations it performs in a given
time, and (in a fairly exact way) the residence of the RAM’s ranks in each
of its power states.
Among these tools, the Intel Processor Counter Monitor - PCM includes
the pcm-memory.x and pcm-power.x applications to do this[10][150].
Other vendors like AMD[6] provide similar tools for their processors.
Although PCM-tools are excellent for our purposes, they are compatible
with a limited range of processor models (even from the same brand). That
is why we consider using the relation between the memory and OS power
states, as explained below:

2. Option 2: To interpret the kernel power-states:
Following the GNU/Linux kernel specification[235], we relate its power
states with those of the RAM as follows:

• The Suspend-to-idle state and Standby state both have the equivalent
of the RAM’s CKEOFF state. The former suspends the timekeeping
and puts all I/O devices into low-power states. The latter does the same
but also disables low-level system functions.

• The Suspend-to-RAM state puts the whole system into a low-power
fashion. In the specific case of the RAM, it is set in the self-refresh
state to allow the session’s data retention.

To learn the OS power-state, we can read the /sys/power/state file[234]. Its
content usually is: 1) A string list of all available states if active state, 2)
"freeze" if StI state, 3) "deep" if StR state and 4) "standby" if SbS state.
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Using any of these options, in our approach, we consider the amount of time the
RAM was in each state (𝑇𝑥 ), multiplied by its corresponding power consumption
(𝑃𝑥 ). That can be seen in the formula 2.2.

𝐸𝐵𝐾 = 𝑇𝑠 𝑓 × 𝑃𝑠 𝑓 +𝑇𝑐𝑘𝑒𝑜 𝑓 𝑓 × 𝑃𝑐𝑘𝑒𝑜 𝑓 𝑓 +𝑇𝑎𝑐𝑡 × 𝑃𝑎𝑐𝑡 +
∑︁

𝑖∈𝑟𝑎𝑛𝑘𝑠
𝑇𝑎𝑐𝑡 × 𝑃𝑎𝑐𝑡𝑖 (2.2)

Moreover, as aforementioned, the model of Alexey Karyakin et al.[124] con-
siders additional power consumption per rank (row activations, reads, and writes)
in the CKEON state. For the case of option two, we also take this consumption
into account but consider the OS’s active state.

Memory power state Memory system state
(proposed equivalence) Value (Watts)

Self-refresh state(sf) Suspend to RAM state (StR) 0.35

CKEOFF state (ckeoff) Suspend to
Idle state (StI)

Standby
State (SbS) 0.89

CKEON state (act) Active state (act) 1.56
Additional consumption

CKEON
state per rank (𝑎𝑐𝑡𝑖 )

Active state (𝑎𝑐𝑡𝑖 ) 0.098

Table 2.3: Equivalence values to find RAM’s background power consumption

The value of each factor in the formula 2.2 can be obtained by: (1) The tools
described in the two previous options, (2) the dmidecode -t memory[148] interface
to know the number of memory ranks, and (3) the table 2.3, whose values were
provided by the measurement and regression work of Alexey Karyakin et al.[124].

The active energy consumption (𝑬𝒂𝒄𝒕 )

As Alexey Karyakin et al.[124] do, we calculate RAM’s active energy consump-
tion from the number of read-write operations carried out in a given time or by
a process. That is, we multiply the number of operations (𝑁𝑥 ) by the energy
consumption (𝐸𝑥 ) that each one generates.
The only difference with the mentioned authors is that we do not take into

account the energy consumption of the pre-charge/activation cycles. That is
because we couldn’t access this information from any OS interface.

We describe the RAM’s active energy consumption in the formula 2.3.
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𝐸𝑎𝑐𝑡 = 𝑁𝑅 × 𝐸𝑅 + 𝑁𝑊 × 𝐸𝑊 (2.3)

Following the chapter’s methodology, we analyze an application’s energy con-
sumption from the moment it is executed and when it is already running. That
is why we propose to obtain the values of each factor in the formula 2.3 in two
slightly different ways.

1. Option 1: Analyzing an application from the moment that it is exe-
cuted:
In this option, the values of each factor in the formula 2.3 can be obtained
via the following: 1) The perf (record | stat) -mem -p app command. It
provides the number of page read-write operations performed in the RAM
(this command also provides information about cache hits per level) from
the moment the app is executed. 2) The table 2.4 whose values were provided
by the measurement and regression work of Alexey Karyakin et al.[124].

Operation Value (nJ)
Page read operation 6.6
Page write operation 8.7

Table 2.4: RAM’s operations’ energy costs

2. Option 2: Analyzing an application already running:
In this option, we use the same sources as the previous one but make the perf
command receive as parameters: 1) ThePID of the process to be analyzed, and
2) the virtual folders of the CPU/RAM read-write events (cpu/mem-stores
and cpu/mem-loads): perf (record | stat) -e cpu/mem* -p pid

It is important to mention that tools based on perf, such as Heaptrack and
Hotspot[54], allow analyzing the memory accesses an application performs more
clearly (even visually). These help to understand its behavior at certain times and
consider external variables, such as the number of requests, availability of other
resources, etc.

The overall application’s energy consumption in the RAM (𝑬𝑹𝑨𝑴𝒂𝒑𝒑 )

As the Formula 2.4 shows, we consider both the active (𝐸𝑎𝑐𝑡 ) and the background
(𝐸𝐵𝐾 ) energy consumption to determine the energy consumed by an application in
the RAM.
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𝐸𝑅𝐴𝑀𝑎𝑝𝑝
= 𝐸𝐵𝐾 + 𝐸𝑎𝑐𝑡𝑎𝑝𝑝 (2.4)

Since the factors of the Formula 2.4 can be found from OS interfaces, we can
use it either to analyze a single application (process) or entire OS instances. This
consumption information is useful for distributed algorithms to make energy-
conscious scheduling decisions.

2.4.4 Important considerations and future work
As the following chapters will show, the analysis of this section allows RAM to
be an energy criterion for distributed scheduling algorithms. However, we are
aware that our model may not be exact. That’s because of the lack of analysis of
the preload cycles, variations in the hardware model, or the impressions caused by
normal OS interruptions.
For this reason, although our scheduling algorithms are based on comparative

aspects and not on exact quantities, we will improve the proposed model using
measurement devices and regression techniques in future work.

On the other hand, we obtained the model’s values using GNU/Linux interfaces.
That allows us to prove its viability and obtain the input values for our simulated
environment. However, we know that we can learn other energy models with
different tools and operating systems. We will also do this study in future work.

2.5 The NIC’s energy consumption
The NIC (Network Interface Controller) is the hardware component used by a
network node to communicate with other peers. To achieve this, a NIC supports
several transmission protocols[24] and data sending/receiving abstraction levels,
such as the proposed in the OSI model for Ethernet[119].

Different NICs types enable different network architectures, such as Ethernet,
Token Ring, Bluetooth, or Wifi[95]. Each of these cards presents different ways
of operation and, therefore, energy consumption.
In this work, we study Ethernet andWifi devices since, to our understanding,

these are the most used and studied in the distributed environments context.

2.5.1 Background
A network interface, whether it is embedded, internal, or external, typically
consists of data buses, a memory, a processor, connectors, etc. [104][226][218].
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Unlike our analysis of the CPU and RAM, we will not deeply detail the NIC’s
internals. That’s because of two reasons. On the one hand, we have not found a way
to relate the NIC circuitry’s operations to its energy consumption. On the other
hand, although network cards enable various energy-saving states (e.g., IEEE 802.11
power management specification[33]), we have not found a way to obtain their
parameters from any GNU/Linux interface. That’s why the power consumption
models that we study/propose for this component are mainly based on: 1) the
number and size of packets it receives-sends, and 2) the transfer rate it performs.

Finally, it is important to say that we study wired and wireless cards in the same
way. We do that because several differential aspects are unmanageable for us. For
example, the fixed wireless cards’ transfer-power value (which impacts the distance
of the signal) can be obtained from tools like wavemon - tx-power[227]. However,
it can only be modified by recompiling the corresponding drivers.
The following section explains some existing approaches and our proposal to

find and optimize the NICs’ power consumption.

2.5.2 Finding and optimizing the NIC’s energy consumption
In the literature, several works propose mathematical models to find the NIC’s
power consumption from different abstraction points. To do that, some study an
entire network deployment considering several aspects. Among these aspects, we
can mention protocols and topologies[39], each node involved in the transmis-
sions (NICs, routers, switches, etc.)[177][167], and the transmission power-money
costs[177]. Furthermore, they also consider the simulation of scenarios where they
relate variables such as transfer rate, the number of read/write operations, and
energy consumption[90][246].
On the other hand, from the analysis point of a single device, some scientists

study the last-mentioned relation to develop specialized platforms, applications, or
APIs[172][183].

Other different approaches study the energy consumption of point-to-point
communications. They take into account the entire network architecture[39], the
execution of packet sending/receiving/discarding operations that specific services
perform[238][73], etc.
Finally, as an example of a low-level perspective, some scientists consider the

Mbit/Joule energy consumption in antennas and other network devices’ circuitry[19].
Regarding optimizing the NICs’ power consumption, diverse solutions also

focus on different levels of abstraction. For instance, from a low-level perspective,
the GNU/Linux Kernel may use IOCTL calls to request the network driver to put
the NIC (or network subsystems) in a low-power state[129].
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From a higher point of view, other works seek to improve the behavior of some
transmission protocols. For example, they adjust the packet payload size and
transfer patterns[153], modify the number of packets transmissions[121], improve
the paths or the number of hops performed through the nodes[237][149], and others.
These strategies enable network elements to intelligently go into sleep mode or
adapt bandwidth to save energy[167].
Finally, some scientists optimize power consumption by improving data distri-

bution among the nodes. They do that to shorten data-node distances[154], apply
data consumption prediction algorithms[70], etc.

The Table 2.5 summarizes the techniques we described to find and optimize the
NIC’s power/energy consumption. We consider four abstraction levels within it:
(1) The low level, which involves hardware configuration, operating system/drivers
customization, or protocols improvement. (2) The medium level comprises software
design and development (from the conception/programming point of view) consid-
ering variables such as the amount of sending operations performed. Finally, (3,4)
the high-level analyzes executing and running applications considering variables
such as transfer rate or the number of packets received/sent.
The next section explains our approach to find the NIC power consumption

from the high-level perspective, which is compatible with distributed scheduling.

2.5.3 Proposal to measure the NIC’s power consumption from
the perspective of distributed algorithms

In this research, we analyze and optimize the software components’ energy con-
sumption by means of distributed scheduling operations. For this, we need to study
these components’ consumption from those NIC-related variables (among the
others described in this chapter) that are possible to obtain from OS interfaces.
As shown in both parts of table 2.5, several works provide useful methods to

analyze running processes from the NIC perspective. They consider variables such
as 1) the current transfer rate, 2) the number of sent-received packets in a period,
and 3) the current power status of the network card.

Although thesemodels are very interesting and potentially useful for our research,
they present some problems for us. For instance, the creators of powerAPI[172]
offer a model based on the time that the network card spends in each of its power
states. Although this model has already been tested by them, we have not found
a way to obtain these states (Power-up, idle 10/100/1000, LPI, S0, SX, among
others[116] using any GNU/Linux interface. Similarly, in order to find the NIC’s
power consumption, Feeney, L.M et al.[73] consider its power status as well as
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Techniques to measure NIC power/energy consumption

Approach Stage of:
Hardware

manufacturing/
low level

configuration

Software
Design and
development

Launching
applications

Applications
already
running

Study of topologies’
and protocols’
behavior

X

Network architecture
analysis X

Relate energy
consumption
with packets
operations
(read/write/
discard)
performed

X X X

Relate energy
consumption
with bandwidth
or transfer rate

X X

Study of devices’
circuitry X

Techniques to optimize NIC power/energy consumption
IOCTL CALLS X
Adjust payload size
and transfer patterns X

Enable devices
either to go into
sleep mode or to
adapt their
transfer rate.

X X

Study network paths
or the number of hops
performed

X X X

Intelligent distribution
of data on the
network

X X

Table 2.5: Approaches to measure and optimize NIC energy consumption
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the operations of sending, receiving and discarding packages. In addition to our
problem obtaining the power states, the packets discarding correspond to the
protocol’s operation and not necessarily to the behavior of processes. As a last
example, Nedevschi et al.[167] propose models to find the power consumption of
all the elements of a network considering the sending operations costs, processing
of network packages, device’s power states and the adaptation of transfer rates.
Although this work is very interesting, the adequacy of transfer rates and packet
processing is outside the scope of our work.

It is also important to say that, unlike previous devices, we couldn’t analyze the
NIC’s consumption differently when a process is launched and when it is already
running.

For all these reasons, we decided to propose our own energy models that relate
processes’ NIC-load with the corresponding power consumption. That is what the
next section explains.

Analyzing a process from the moment it is executed and when it is already
running

As we said above, the existing methods focus mostly on analyzing transmitted
packets, the bandwidth, and the NIC’s power states to find its power consumption.
To achieve this objective, we don’t consider the device’s power states. Instead, on
the one hand, we propose a model based on the process’s transfer rate. On the
other hand, we propose another approach based on the number of packets a process
transmits/receives.

1. Analyzing a process from the transfer rate it generates:

To obtain the NIC’s power consumption of a process, we start by finding this
component’s overall current consumption. For this, for a certain device D,
we establish a𝑊𝑢𝑑 and a𝑊𝑖𝑑 values which represent the power consumption
inWatts when its NIC is in an active and idle state, respectively.

For a current transfer rate 𝐿𝐷 ,𝑊𝑢𝐷 multiplies 𝐿𝐷 relative to its maximum
transfer capacity 𝐿𝑀𝐴𝑋𝐷

. Then, this result is added to the idle state con-
sumption. For this,𝑊𝑖𝐷 multiplies the complement of the NIC’s load (i.e.
𝐿𝑀𝐴𝑋𝐷

− 𝐿𝐷 ) relative to 𝐿𝑀𝐴𝑋𝐷
.

Finally, to obtain energy consumption in joules 𝑊𝑎𝑡𝑡𝑠 × 𝑠 , we take into
account the time 𝑇 in seconds. That is shown in the formula 2.5, which
considers a symmetrical full-duplex mode:
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𝐸𝑁𝐼𝐶𝐷
= (𝑊𝑢𝐷 ×

𝐿𝐷

𝐿𝑀𝐴𝑋𝐷

+𝑊𝑖𝐷 ×
𝐿𝑀𝐴𝑋𝐷

− 𝐿𝐷
𝐿𝑀𝐴𝑋𝐷

) ×𝑇𝐷 (2.5)

Before analyzing running processes, it’s important to mention the last-
formula factors’ sources:

• TheNIC’s transfer capacity can be obtained from standardized specifica-
tions or datasheets[153], interfaces such as ethtool input[127] for ether-
net connections, or the /sys/class/net/Interface/device /max_link_speed
(this could be different depending on the GNU/Linux distribution) in-
terface for wifi, ethernet or other types of network cards.

• The current global transfer rate can be obtained from interfaces such as
the iftop -i[94] program.

• The power consumption of the NIC’s working states can be obtained
from datasheets (e.g., the intel I219-LM datasheet[116]), or some de-
scriptive works like the one done by Chiaravalloti et al.[33].

Then, tomodel the energy consumption of a processM (identifiable by itsPID)
in terms of its workload in a device’s (D) NIC, we use the equation 2.5; but
only consider the mentioned workload (𝐿𝑀 ). However, one of our challenges
was figuring out how to handle idle time. In one first approach, given that
at a given time 𝑇 , the transfer rate is the average of the sending/receiving
operations and idle states in 𝑇 , we also considered that𝑀 generates an idle
state proportional in the same way that 𝐿𝑀 is for the current NIC’s load (𝐿𝐷 ).
We show that in the equation 2.6.

𝐸𝑁𝐼𝐶𝐷𝑀
= (𝑊𝑢𝐷 ×

𝐿𝑀

𝐿𝑀𝐴𝑋𝐷

+𝑊𝑖𝐷 ×
𝐿𝑀𝐴𝑋𝐷

− 𝐿𝐷
𝐿𝑀𝐴𝑋𝐷

× 𝐿𝑀
𝐿𝐷
) ×𝑇𝐷 (2.6)

This last formula implicitly considers the idle state at a certain moment of
transmission. However, it may have a problem. Suppose several processes
use the network card, keeping it with a relatively high load. In that case, the
energy consumption of the idle state is attributed to each process, increasing
its consumption in proportion to the load they generate. Although this
may make sense, that increase is no longer logical and becomes artificial in
different situations. For example, suppose that there is only one process that
uses the NIC at a low transfer rate, and all the NIC’s idle consumption is
attributed to it. Here, high idle power consumption affects a process that
uses the network card at a low frequency.

32



The NIC’s energy consumption Section 2.5

That is why in a second approach, we decided to consider the idle time inde-
pendent of the processes and exclusive to theNIC’s background consumption.
In this way, the power consumption of a process depends exclusively on the
operations it performs on the NIC. We show that in the formula 2.7:

𝐸𝑁𝐼𝐶𝐷𝑀
= (𝑊𝑢𝐷 ×

𝐿𝑀

𝐿𝑀𝐴𝑋𝐷

) ×𝑇𝐷 (2.7)

This model is useful when it is only possible to obtain the consumption data
of the NIC’s idle and active state. However, it does not consider the power
consumption differences that may exist between the sending and receiving
operations. That is why, if this information is available, a pertinent approach
is necessary. We will discuss it in the next paragraph.

2. Analyzing a process from the packets it sends or receives
Another way we study a process’s power consumption from its NIC usage is
by analyzing the sending/receiving operations it performs. Indeed, this simple
principle does not consider some protocol aspects, such as link-layer fragmen-
tation or unsuccessful attempts to acquire media contention[73]. However, it
enables quite accurate mathematical models based on data obtainable from
OS interfaces.

In our approach, we start defining the𝑊𝐷𝑆
and𝑊𝐷𝑅

values to represent a
device’s (𝐷) NIC power consumption (inWatts) when sending and receiving
packets. Then, to find the energy consumption (𝐸𝑁𝐼𝐶𝐷𝑀

) that a process (𝑀)
generates on the NIC, we calculate the time that said process keeps the NIC
sending and receiving data. To define this time, we first multiply the number
of packets sent (𝑁𝑆𝑀 ) or received (𝑁𝑅𝑀 ) by the respective average packets’
size (𝑆𝑥 ). Then, we divide the results by the corresponding total transfer
speed (𝐿𝑀𝐴𝑋𝑥

).

We describe that approach in the formula 2.8.

𝐸𝑁𝐼𝐶𝐷𝑀
=𝑊𝐷𝑆

× 𝑁𝑆𝑀 × 𝑆𝑠
𝐿𝑀𝐴𝑋𝑠

+𝑊𝐷𝑅
× 𝑁𝑅𝑀 × 𝑆𝑟

𝐿𝑀𝐴𝑋𝑅

(2.8)

Regarding the sources of the formula factors’, let us explain two important
points:

• The data concerning the packets, such as the quantity, size, and type of
operation performed per process, can be obtained from applications such
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as atop -n. For that, if the netatop-dkms kernel module is compiled,
the tool provides information by protocols such as UDP and TCP. If it
is the case, the model 2.8 must be extended.

• The maximum transfer rate per operation and the corresponding power
consumption values can be found from the same sources described in
the previous section.

2.6 Storage device energy consumption
The Storage Device is the hardware component that permanently stores users’ and
system’s information. As we explained in section 2.4, each time an application is
launched, theOS copies all or part of the application’s data from the storage device
to the RAM for efficiency reasons. Then, depending on the application’s behavior,
there could be data exchange between both components at a certain frequency.
Moreover, if the amount of information exceeds the RAM capacity, the OS may
use the storage device as a swap area, increasing its operational load[210].

All this flow causes the storage device to perform read and write I/O operations.
These activate internal electrical components that consume energy when working.

In the following sections, we analyze the necessary information to understand
this consumption from the perspective of running processes.

2.6.1 Background
Generally speaking, there are currently two types of storage devices for personal
computers and servers: HDD (Hard Disk Drive) and SSD (Solid State Drive). The
former comprises a stack of spinning metal disks known as platters. Each spinning
disk has trillions of fragments that can be polarized to represent bits (1s and 0s in
binary code). An actuator arm carries out this process. It magnetizes the fragments
to write information and detects their magnetic charges to read it.
On the other hand, SDDs comprise trillions of semiconductors that store infor-

mation by changing the electrical current of special internal circuits. UnlikeHDDs,
SDDs offer a higher transfer speed since their way of operating does not depend
on moving parts[62].
Finally, both types of storage devices define four power states: Active, Idle,

Standby, and Sleep. In this sequence, the more power a state saves, the longer it
takes to return to the active state[194].
As we did with the network card, we will not detail more about the storage de-

vice’s internals since the models we find-propose do not depend on them. Moreover,
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for the same reason, we consider for both the HDD and the SSD only two working
states and their corresponding power consumption: The active and the idle state.

The following sections explain our approach to model applications’ power con-
sumption from the perspective of storage devices.

2.6.2 Finding and optimizing the hard drive’s energy
consumption

In the state of the art we analyzed, not many works have studied the storage
device’s power consumption from a software management perspective. However,
some do that based on simulation techniques variables. For example, they analyze
previous physical measurements and specific hard drive’s working states (rota-
tion, writing, reading, etc.)[242], the application’s execution stages considering
I/O operations[246], etc. On the other hand, others offer energy models using
different approaches. For example, they analyze the cost of virtual machines de-
ployment[158], the size of in-disk files accessed by concurrent processes[103], and
others.
From an optimization point of view, most works study how to handle disk

accesses efficiently. For instance, some increase applications’ execution efficiency
through intelligent scheduling of I/O requests[41]. Other works reduce power
consumption by caching/buffering processes’[29] or virtual machines’[239] disk
accesses in a coordinated way. This last strategy allows the storage device to remain
idle or sleep for the necessary time to meet energy savings.
Finally, the Table 2.6 summarizes the techniques described up to this point. As

with the NIC, we couldn’t implement any of these approaches with the values
obtained from OS interfaces. The following section then explains this fact and our
own consumption model.

2.6.3 Proposal to measure the Storage Device power
consumption from the perspective of distributed
algorithms: Analyzing a process from the moment it is
executed and when it is already running

As we said in the previous section, we haven’t found any approaches that we can
implement via OS interfaces. Furthermore, the methods described in the table
2.6 analyze variables such as the size of files managed by applications or the I/O
operations they perform. Both are outside the scope of our study.
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Techniques to measure Hard Drive power/energy consumption

Approach Stage of:
Hardware

manufacturing/
low level

configuration

Software
Design and
development

Launching
applications

Applications
already
running

Perform physical
measures X X

Model consumption
taking into account
previous physical
measures

X X

Model consumption
taking into account
application’s I/O
stages

X

Model consumption
taking into account
files/VMs size

X X X

Techniques to optimize NIC power/energy consumption
Manage disk
accesses to increase
applications
execution efficiency
or to reduce the
storage device
energy consumption

X

Table 2.6: Approaches to measure and optimize storage device energy consumption
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For the mentioned reasons, we propose a model based on the power consumption
that the hard drive generates when it is in the active (performing read or write
operations) or idle state.
Our model is similar to the equation 2.5 for the NIC. To find the hard-drive

energy consumption, we establish the𝑊𝑢𝐷 and𝑊𝑖𝐷 values that represent the power
expenditure when a device’s (𝐷) hard drive is in an active and idle state. Then,
for a current transfer rate 𝐿𝐷 ,𝑊𝑢𝐷 multiplies 𝐿𝐷 relatively to the maximum transfer
capacity 𝐿𝑀𝐴𝑋𝐷

. Next, we add this result to the idle state consumption. For that,
𝑊𝑖𝐷 multiplies the complement of the hard drive load (i.e. 𝐿𝑀𝐴𝑋𝐷

- 𝐿𝐷 ) relatively
to 𝐿𝑀𝐴𝑋𝐷

. Finally, we consider a time 𝑇 to obtain the disk’s energy consumption
in joules (Watts*s), as the equation 2.9 shows.

𝐸𝐻𝐷𝐷
= (𝑊𝑢𝐷 ×

𝐿𝐷

𝐿𝑀𝐴𝑋𝐷

+𝑊𝑖𝐷 ×
𝐿𝑀𝐴𝑋𝐷

− 𝐿𝐷
𝐿𝑀𝐴𝑋𝐷

) ×𝑇𝐷 (2.9)

Then, to define the energy consumption (𝐸𝐻𝐷𝐷𝑀
) that a process𝑀 generates on

the hard drive, we use the equation 2.9; but only consider the load generated by
𝑀 (𝐿𝑀 ) relatively to 𝐿𝑀𝐴𝑋𝐷

.
As in the case of the network card, we consider the idle time independent of

the processes and exclusive to the hard drive background consumption. Thereby,
a process power consumption depends exclusively on its operations on the hard
drive, as seen in the formula 2.10.

𝐸𝐻𝐷𝐷𝑀
= (𝑊𝑢𝐷 ×

𝐿𝑀

𝐿𝑀𝐴𝑋𝐷

) ×𝑇𝐷 (2.10)

Concerning the formula’s factors sources, we have not found a GNU/Linux
interface for the𝑊𝑢𝐷 ,𝑊𝑖𝐷 and 𝐿𝑀𝐴𝑋𝐷

values. However, manyHDD and SSD brands
specify them in datasheets[195][193]. Furthermore, the transfer rate generated by
a process on the hard drive can be obtained from programs such as iotop[179].

2.7 Chapter Summary and Contributions
In this chapter, we have explained how various authors find and optimize the power
consumption of the CPU, the RAM, the NIC, and the storage device. We have
organized these approaches from a perspective of 1) hardware and operating sys-
tem configuration, 2) software design and development, 3) application launching,
and 4) applications already running.

The last two perspectives are compatible with our distributed algorithms’ logic.
For that reason, we have studied, adapted existing approaches, and proposed (if
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Chapter 2 Profiling applications’ power consumption

concerned) our own mathematical models to describe the energy consumption of
each of these components. Thereby, for the CPU and the RAM, we have selected
and adapted already tested formulas to relate their workload, power state, and their
power consumption. Finally, considering the same relation, we have proposed and
tested our own energy consumption models for the storage device and the NIC.

It is important to say that each model’s parameters’ values can be obtained from
different GNU/Linux interfaces (such as APIs, specialized programs, and others).
In this chapter, we have described the still maintained and documented ones.
The next chapter studies and classifies important distributed scheduling ap-

proaches, detailing their operations, input variables, objectives, abstraction level,
etc. As well as the models above, that study will be an input criterion for our
scheduling approaches presented later in this thesis.
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3 The Distributed Approach

3.1 Introduction
A few decades ago, traditional applications used to be only conceived in a traditional
monolithic way. In this manner, all the development processes and deployment
strategies considered only a single host. At runtime, monolithic applications’
internals communicate with each other using method invocations or function calls
to produce specific results. In this process, the operating system is the entity that
manages the required access time to each hardware resource, such as CPU, RAM,
etc[210].
Although this approach is still suitable for applications such as a kernel[210],

more modular approaches are needed today. For example, applications such as
Netflix, eBay, or Zalando engines[137] require performing massive data queries
and having the independence of location and platform to work. Thereby, for them,
a monolithic approach would present serious disadvantages such as unmanageable
scalability, low cohesion, and high coupling[56]. In addition, there are scenarios
where several nodes must interact to produce a result or satisfy a specific user’s
needs. That’s the case of horizontal ambients such as sensor networks[184] or user
device networks[51]. For these two reasons, the conception and-or the deployment
processes are carried out through distributed systems.
A distributed system is defined by Tanenbaum et al.[205] as a collection of

autonomous computing elements (in fact, software or hardware components) that
appears to its users as a single coherent system. In their article, the authors explain
that for a system to be distributed, it needs to meet some characteristics:

• Node autonomy: Each component fulfills its independent task and commu-
nicates with other peers using methods such as message passing. There-
fore, they work concurrently without sharing a global clock or shared mem-
ory[166].

• Single coherent system: The set of components behaves transparently ac-
cording to the users’ interaction level and expectations. That is, preventing
them from knowing and managing the system’s architectural characteristics
that they don’t need to know.
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Thereby, from an architectural point of view and depending on the user’s role,
it is required: 1) to know and or be able to manage the network architecture
(often an overlay) and 2) to have a technology that allows, among others (execute
security services, establish the communication between processes, etc.), executing
scheduling operations to manage the nodes’ hardware resources. This technology
is known as middleware.
Several industrial technologies and authors use said scheduling operations to

achieve different objectives. For example, as it is possible to see in some sur-
veys[250][228][236][4][43][190][175][190][152], these objectives take into account
variables such as centralized/non-centralized heuristics, mathematical/artificial
intelligence approaches, types of application and virtualization, etc. All this is to
optimize the deployment of applications time, energy consumption, load balancing,
SLA assurance, etc. However, few of them prioritize power consumption as one of
their main goals. As we will show in the following sections, they do not consider
energy-based scheduling analyzing variables such as hardware heterogeneity, smart
resources indexing, or special hardware power capabilities.

In this thesis work, we analyze and improve nodes’ hardware resource manage-
ment in a novel way to save energy without losing the notion of QoS (Quality of
Service). We schedule (middleware operations: move, duplicate, start, stop) the
components that make up a distributed application through different physical nodes
using multidimensional/spatial special structures. With them, we index elements
such as physical nodes and applications’ components at execution time according to
multiple criteria, such as the current availability of hardware resources, hardware’s
power-related features, or the application’s resource requirements. This way, our
objective is to have a system that performs the elements’ search, insertion, and
elimination at an efficient computational cost in order to perform energy-saving
scheduling strategies.
The explanation of this entire strategy is the cornerstone of our next chapter.

However, to justify and contrast it, we present an analysis of the state of art in the
present chapter, proposing a taxonomy of different scheduling techniques that we
consider important.
In the next section, we will explain the methodology that defines the structure

of the rest of the document.

3.2 Methodology
This chapter analyzes the state of the art of distributed software components
deployment and scheduling techniques. To easily contrast this analysis with our
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proposal (briefly described in the previous paragraph), we present an algorithmic-
based taxonomy that considers two scheduling moments:

• Initial deployment, which studies the correct nodes to deploy a software
component, and

• Execution-time scheduling, which involves operations such as migration
or duplication.

For each of these moments, we describe several approaches which may span one
or multiple proposals in the form of an algorithmic flow. That means we analyze
the concerning input variables, the operations that are executed, the method’s
heuristic (centralized and non-centralized), and the optimized variables.
Finally, as it is possible to see in figure 3.1, we consider it important to show

the potential extensibility of our proposal. That’s why we explain the mentioned
moments and flows considering two different levels of abstraction: Scheduling in
the cloud and Scheduling close to data sources which involve approaches such
as grid computing, edge computing, and fog computing.

Figure 3.1: Taxonomy Structure

Section 3.3 explains the works that study Scheduling in the cloud techniques,
and section 3.4 discusses the ones that study Scheduling close to data sources.
In both sections, we analyze only the approaches that we consider important from
the current state of the art. For that, we have filtered the research/industrial works
considering particularity, popularity, or topicality criteria.
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Our objective with this sample is to show the algorithms’ trends in terms of the
criteria they evaluate and the variables they optimize. To do that, we build two
descriptive tables for each section: one for the analysis of the initial deployment
approaches and another for the execution-time scheduling ones. Next, we
have converted the number of approaches that coincide at each table point (input-
optimized variable) in a ranking system that shows average trends. Finally, we
deliberately score our work to compare it with the mentioned trends, evidencing
the field of action of our contribution and its strengths.
It is important to emphasize that the scores do not represent the quality of

the analyzed approaches. They only show optimization trends useful to define our
proposal scope.

We finish the chapter by explaining the corresponding conclusions and contribu-
tions in section 3.5.

3.3 Scheduling in the cloud: Managing virtual
entities in node clusters.

Cloud computing (whether public, private, or hybrid) is the on-demand availability
of computing resources as services over the Internet (enabling the pay-per-use
basis). These services are usually offered under three different models: 1) IaaS
(Infrastructure as a service), which offers servers, storage, networking resources,
etc., 2) PaaS (Platform as a service), which offers a develop-and-deploy environment
to build cloud apps, comprising middlewares instances, development tools, data
management systems, among others, and 3) SaaS (software as a service) which
delivers applications functionalities as services to end users[35][162][163][164].

All these services comprise and-or manage applications deployed on clusters. By
definition, a cluster consists of a set of nodes (from personal computers to super
servers) connected through the network. They work together to perform common
tasks providing fast processing speed, large storage capacity, efficient data integrity,
reliability, and wide availability of resources[146]. Depending on the technology
and its objectives (such as load balancing or high availability), a cluster can cover
one or different geographical areas[60][11].
As in several distributed environments, in cloud computing systems, two prob-

lems must be solved when deploying applications and-or performing scheduling
operations: 1) The independence of applications instances concerning a specific
platform/operating system, and 2) the control of the resources quotas given to them.
Both are solved by isolating these hardware resources (CPU time, RAM quantity,
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etc.) and needed software (dependencies) in virtual execution environments. De-
pending on their operation and isolation level, they can be differentiated into VM
(virtual machines) and containers[214].

• When using VMs, an entity called a "hypervisor" virtualizes each of the
hardware components for complete instances of operating systems. Depend-
ing on its type, a hypervisor can run 1) directly on the hardware (type 1),
serving as a lower abstraction layer than any operating system, or 2) as an
application in a pre-existing operating system[67].

• When using containers, virtualization occurs using the kernel features of
the host operating system. For this, the kernel isolates the processes of the
virtualized applications in user-spaces-like systems by means of names-
paces and CGROUPS. Moreover, they keep the involved dependencies
(libraries, executables, etc.) described in a file and deployed in a folder
hierarchy[92][9][213].

Typically, the cloud systems’ engines schedule[61][12](i.e., deploy, migrate, start,
stop) both of these technologies to fulfill the different providers’ objectives related
to their offered services (IaaS, PaaS, Saas). This process seeks to make the best
possible use of the nodes’ hardware resources to achieve the desired QoS (quality
of service) while being frugal, both money and energy-wise. In this statement, it’s
important to mention that although it may have different definitions, the QoS is
usually approached as the time taken to process a hardware resource request[143].

On the other hand, some scientific works optimize virtual entities’ (re)deployment
to improve and adapt the scheduling processes to emerging architectures. For
example, to optimize the VMs deployment, some papers propose the proper, dy-
namic (resources capacities and duration) and anticipated creation of VMs based
on the historical scheduling data[245], the applications’ workflow[192], and the
type of the involved tasks[245][192]. Other works make use of external/internal
clouds resources (hybrid cloud) to deploy tasks based on internal VMs’ overload
situations, energy/cost considerations, tasks’ delay bounds, and learning meth-
ods[252][241][185]. For their part, other approaches argue for applying linear
programming models and graph theory to optimize the VMs deployment, taking
into account variables such as VMs’ resources requirements, resources availability,
non-sliceable resources management, and in-host VM interference[143].
Furthermore, some approaches rely on serverless networks, such as the one

proposed by Kirschnick et al.[131]. They propose a deployment architecture in
decentralized networks of nodes/VMS. Herein, in any node that executes the
system service, the user must provide the system specification considering the
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desired application with its service dependencies. Then, the algorithm running in
this initial node performs a breadth search to determine which peers/VMs can run
the described software components. Finally, the system starts working when the
initial node receives a positive notification of all the concerning peers.
In addition to studying the initial deployment, other approaches analyze

different ways to perform execution-time scheduling operations. For example,
Beenish et al.[89] migrate VMs to avoid overload situations and to shut down nodes
in underload situations. For that, they consider thresholds in terms of RAM and
CPU. Furthermore, they execute amatching algorithm based on the first elements of
two lists to perform an energy-efficient deployment. On the one hand, VMs ordered
in decreasing order considering their CPU requirements. On the other hand, a
list of nodes in decreasing order considering their CPUMaxCapacity/Utilization
Level and their peak/current energy expenditure. This algorithm has an algorithmic
complexity of 𝑂 (𝑛𝑁𝑜𝑑𝑒𝑠 × log(𝑛𝑁𝑜𝑑𝑒𝑠) + 𝑑𝑒𝑝𝑙𝑜𝑦𝑇𝑖𝑚𝑒 + 𝑛𝑉𝑀𝑠 × log(𝑉𝑀𝑠)).
Another interesting approach is the one proposed by Zhu et al.[251]. They use

the rolling-horizon (in fact, planning ahead) optimization for task scheduling in the
cloud. For this, the authors sort the tasks according to their deadlines. Then, they
determine in advance whether or not a task can be properly terminated considering
the current hardware resources of the deployed VMs in a set of nodes. If there
are no candidates, the concerning nodes are load-balanced by performing VMs
migration-to-create to retry the task deployment.
It is important to say that this entire process considers optimizing energy con-

sumption. On the one hand, the deployment strategy selects the VM currently
yielding minimal CPU energy consumption to execute tasks. On the other hand,
it frees up hosts to shut down in a process called scale down. For the latter, the
algorithm matches VMs - nodes by sorting the source hosts (hosts to free) by
their CPU utilization in increasing order and the destination hosts oppositely. The
entire task allocation process and the scale down operations have a complexity of
𝑂 (𝑁 + 𝑁 × log(𝑁 )) and 𝑂 (𝑁 2) respectively.

In the same line of thought, many works seek to optimize the initial deploy-
ment and the execution-time scheduling through learning techniques. For
the initial deployment, they focus on characterizing task types for scheduling
monolithic or modular applications in hybrid or single clouds. In general, they
analyze the applications’ consumption history and their resource behavior vari-
ation to predict when, how often, and what resources they will need. Then, for
the execution-time scheduling, they use the same variables in order to predict
scaling (duplicate, close) and migration operations. All these procedures aim to opti-
mize load balancing, monetary expenditures, system scalability, hardware resource
usage, and service level agreement assurance[250]. For instance, Zhiheng et al.[249]
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INITIAL DEPLOYMENT IN THE CLOUD- OPERATIONS AND FEATURES - PART 1

Ref. Input
Variables Operations Approach

Require
pre-process

ing/
learning

Consider special
energy-related

hardware features
of CPU, RAM,
HDD, and NIC.

Study
computational
complexity

[245]
[192]

- Scheduling
historical
Data
- Taks’ HW
load/needs
- VMs’ HW
resources
- Applications’
workflow

- Early/dynamic
creation of VMs
- Proper VMs-tasks
matching.

Centralized YES NO NO

[252]
[241]
[185]

- VMs’ HW
resources
- Taks’ hw
load/needs
- Tasks’
deadline
- Price and
energy
expenses.

- Perform
learning/prediction
methods
- Deploy tasks to
internal/external
clouds

Centralized YES NO NO

[143]

- VMs’ HW
resources
- Nodes’
resources
((non)sliceable)

- Perform linear
programing and
graph-based
methods
- Proper
VMs-nodes
matching.

Centralized YES NO NO

[89]

- VMs’ HW
resources
- Nodes’
resources

- Sort nodes and
VMs based on
hardware
load to match
efficiently.

Centralized YES
YES:

CPU’ MIPS and
RAM’s states

YES

[251]

- VMs’ AND
nodes HW
resources
- tasks’
deadline

- Sort nodes based
on hardware load
and tasks based
on deadlines to
match efficiently
- Apply rolling
horizon
optimization for
deployment.

Centralized YES YES:
CPU’ MIPS YES

[78]
[76]
[82]

- Tasks HW
resources
- Nodes’
resources

- Create task queues
- Deploy tasks in
order of arrival and
proportionality
of resources.

Centralized NO NO NO

Our
Work

- Nodes’ HW
resources.
- Applications’
HW
consumption.

- Scheduling based
on indexation in
multidimensional
data structures.

Centralized
and

Decentralized
NO YES YES

Table 3.1: Cloud initial-deployment approaches: Input Variables | Operations performed -
PART 1
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INITIAL DEPLOYMENT IN THE CLOUD-Optimized/Analyzed Variables-PART 1

Ref.
HW
res.
usage

Deploy.
time QoS Energy

cons.
Monet.
costs Scalab. High

avail.

Efficient
search/
insert/
delete
for

sched.
[245]
[192] X X X X

[252]
[241]
[185]

X X X X X X

[143] X X X X
[89] X X X X
[251] X X X X X
[78]
[76]
[82]

X X X X

Our
work X X X X X X

Table 3.2: Cloud initial-deployment approaches: Target Variables - PART 1

apply the k-means algorithm to classify tasks based on CPU, RAM, network,
and storage consumption. They then deploy long-running and short-running
applications, taking into account idle resources and ranking functions such as the
Least Requested priority (lowest resource utilization first). Then, for execution-
time scheduling, they use the Shortest Runtime Rescheduling algorithm to move
the lightest application that has been running for the shortest time, thus ensuring
a reduced impact on the QoS. For its part, the approach of Haitao et al.[244] is
also based on the prediction of resources for the deployment and migration (for
them, destroy and redeploy) of containers for video processing. For this, they use
service similarity matching and a time-series nearest neighbor regression on the
consumption data of the corresponding containers.
Other works seek to migrate virtual machines, especially for energy-saving

purposes. For instance, Azmy et al.[14] create a power panel that defines the
cluster’s power states. On the one hand, these states consider VMs’ allocation
policies based on thresholds or medians. On the other hand, they consider migration
policies such as the Maximum Correlation policy (VMs that consume the most
in the host), Minimum migration time policy, and Random selection policy. The
authors’ objectives are to avoid physical nodes’ overload conditions and/or achieve
underload hosts shutdown. Similarly, Siddavatam et al.[198] pursue the same goal
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INITIAL DEPLOYMENT IN THE CLOUD- OPERATIONS AND FEATURES - PART 2

Ref. Input
Variables Operations Approach

Require
pre-process

ing/
learning

Consider special
energy-related

hardware features
of CPU, RAM,
HDD, and NIC.

Study
computational
complexity

[136]
[247]
[140]
[240]

- Containers
HW
resources.
- Containers
constraints.

- Filter nodes based
on specified criteria
- Sort nodes based
on HW resources
and specified
criteria.

Centralized YES NO NO

[86]

- Nodes’
HW
resources.
- Tasks’
HW load.

- Use linear
equations to
deploy and
equitably deliver
resources based
on dominant
resources.

Centralized YES NO NO

[131]
- System/
Application
specification.

- Create a
component-based
tree.
- Perform breadth
search in the tree.

Decentralized NO NO NO

[248]

- Task
execution
time.
- Nodes’ HW
resources.

- Sort tasks and
nodes.
- Perform matching:
Most utilized
instance with
enough resources.

Centralized YES NO YES

[250]
[249]
[244]

-Applications’
consumption
history.
-Applications‘
Behavior.

- Execute
prediction
algorithms.

Survey:
Centralized

and
Decentralized

YES NO YES

[191]

- Connected
containers
graph.
- Nodes
Graph.
- Nodes’/
Containers
HW
resources.

- Linear
Programming
Minimization.

Centralized YES NO NO

[203]

- Nodes’
HW
resources.
- Containers’
HW
load.

- Random selection
- Selectionbased on
HW usage and
container
number.

Centralized NO NO NO

Our
Work

- Nodes’ HW
resources.
- Applications’
HW
consumption.

- Scheduling based
on indexation in
multidimensional
data structures.

Centralized
and

Decentralized
NO YES YES

Table 3.3: Cloud initial-deployment approaches: Input Variables | Operations performed -
PART 2
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INITIAL DEPLOYMENT IN THE CLOUD-Optimized/Analyzed Variables-PART 2

Ref.
HW
res.
usage

Deploy.
time QoS Energy

cons.
Monet.
costs Scalab. High

avail.

Efficient
search/
insert/
delete
for

scheduling
[136]
[247]
[140]
[240]

X X X X Linear
search

[86] X X X
[131] X X X X
[248] X X X X X X X
[250]
[249]
[244]

X X X X X

[191] X X X
[203] X X X X
Our
work X X X X X X

Table 3.4: Cloud initial-deployment approaches: Target Variables - PART 2

using a similar migration strategy, but based only on CPU usage. For their part,
Pawlish et al.[182] aim to avoid overhead costs. They migrate tasks from local data
centers to clouds if the average CPU load of its nodes is greater than a certain
percentage threshold.
On the other hand, important companies have developed technologies that

optimally manage the clusters’ hardware resources to achieve specific objectives.
For instance, several of them seek to improve massive data processing in parallel
using nodes in a structured way. That is the case for those who use theMapReduce
paradigm. It uses hash operations to parallel distribute and process data of common
characteristics in common nodes known as mappers and reducers. Here, the
containerized tasks’ execution order and the corresponding resources allocation
can be based on structured methods. For example, in the FIFO approach, each
task is executed by priority and in order of arrival. On the other hand, the fair-
capacity scheduling creates different queues of tasks, assigning them a proportional,
convenient, and fixed amount of resources[78][76][82].

As another example, one of the best-known technologies for container manage-
ment is Docker. This platform allows developers to easily deploy, edit or delete
their applications in GNU/Linux-based containers[203]. Docker schedules con-
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EXECUTION-TIME SCHEDULING IN THE CLOUD - OPERATIONS AND FEATURES

Ref. Input
Variables Operations Approach

Require
pre-process

ing/
learning

Consider special
energy-related

hardware features
of CPU, RAM,
HDD, and NIC.

Study
computational
complexity

[89] - Nodes’ load
thresholds set.

- Migrate, close
and deploy VMs. Centralized NO

YES:
CPU’ MIPS

and RAM’s states
YES

[251]

- VMs’ HW
resources.
- tasks’
deadline.

- Migrate, close
and deploy VMs. Centralized NO YES:

CPU’ MIPS YES

[136]

- Containers
affinity,
tolerations, etc.
- Scalability,
high availability
variables.
- Custom
schedule
criteria.

- Migrate, destroy,
start, duplicate
containers.

Centralized. NO NO Linear search

[248]

- Node’s
hardware load.
- Node’s load
time.
- Images size.
- Bandwidth.

- Migrate, destroy,
start, duplicate
containers.

Centralized NO NO YES

[14]
[198]

- Node’s
hardware load.
- Applications’
Images size.
- Bandwidth.

- Migrate
VMs/tasks. Centralized NO NO NO

[250]
[244]

-Applications’
consumption
history.
-Applications‘
Behavior.

- Predict optimal
execution-time
scheduling
operations.
- Perform
execution-time
scheduling.

Centralized
and

Decentralized
YES NO YES

[249]

- Node’s
hardware load.
- Applications’
Images size.
- Applications’
running time.

- Migrate the
lightest application
with the shortest
running time.

Centralized NO NO NO

[203]
- Node’s
hardware load
- Nodes health

- Migrate container
to the node
with enough
resources

Centralized NO NO NO

Our
Work

- Nodes’ HW
resources.
- Applications’
HW
consumption.

- Scheduling based
on indexation in
multidimensional
data structures.

Centralized
and

Decentralized
NO YES YES

Table 3.5: Cloud execution-time approaches: Input Variables | Operations performed
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EXECUTION-TIME SCHEDULING - Optimized/Analyzed Variables

Ref.
HW
res.
usage

Deploy.
time QoS Energy

cons.
Monet.
costs Scalab. High

avail.

Efficient
search/
insert/
delete
for

scheduling
[89] X X X
[251] X X X X

[136] X X X X Linear
search

[248] X X X X
[14]
[198] X X

[250]
[244] X X X X X X

[249] X X X
[203] X X X X
Our
work X X X X X X

Table 3.6: Cloud execution-time approaches: Target Variables

tainers on a cluster’s physical nodes using tools like Docker Swarm. This tool
offers centralized algorithms for cluster management such as automatic load bal-
ancing, high availability, scalability, roll-back execution, etc. In general, for the
initial deployment of a container, the manager device supports by default three
approaches based on resources and the number of containers: 1) The random selec-
tion of a node that contains enough resources, 2) the selection of nodes with more
containers to avoid application fragmentation and 3) The choice of nodes with
fewer containers to improve load balancing. Then, in order to maintain proper load
balancing and high availability, Docker Swarm destroys containers and redeploys
them on nodes with sufficient hardware resources. Swarm allows developers to
define their own reschedule policies[8][20].
Kubernetes, for his part, groups containerized tasks in entities called PODs.

Then, it seeks to schedule PODs on physical nodes or VMs according to the
tasks’ constraints and/or specifications. For that, Kubernetes uses 1) Strong task
constraints, with which the scheduler filters available nodes by creating a list of
candidates, and 2) Soft task constraints, with which the scheduler scores and sorts
the mentioned list especially considering nodes CPU and RAM. Here, the first
element in the list is the node on which the task will run[136][15]. Also, it is
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important to say that to perform execution-time scheduling on PODs (migrate or
duplicate), Kubernetes uses a controller called ReplicaSet. This special process
monitors the PODs’ status based on a linear search of all their instances identified
with certain labels in the entire cluster[135]. Finally, Kubernetes allows running
different PODs-node matching criteria such as affinity, selectors, tolerances, or
taints.
It is important to mention that some scientific works seek to improve certain

Kubernetes methods. For example, some approaches avoid the execution of the
scheduling algorithm when there is only one node. They consider additional score
criteria such as network bandwidth, disk storage[247], and GPU[240]. Other works
improve the Kubernetes scheduling by scaling the multi-resource approach to
the multi-clusters environments[140]. On the other hand, some authors use the
Kubernetes base system to create different services and reimplement the default
scheduling approach. These services aim to execute different complex deployment
and in-execution heuristics.

An important example of the last point is the one proposed by Zhiheng et al.[248].
They implement four entities to perform scheduling approaches: 1) The Resource
Profiler, which maintains an updated snapshot of VMs and tasks, 2) the Cloud
Adaptor, which performs the deployment and migration operations, 3) the Task
Packer entity, which makes scheduling decisions, and 4) the Instance cleaner
which maintains only useful instances alive.

In their system, the authors ensure that migrations are executed while maintain-
ing the running state of the containers. On the other hand, they achieve intelligent
scheduling and elastic clusters by creating special entities and services. For that,
they predict the execution time of the tasks to be deployed and group them into
two sets: 1) Permanent execution tasks (long-running) and 2) temporary exe-
cution tasks (batch jobs). Then, they deploy the first group to nodes that imply
low energy and monetary cost (time cost per billing) and the second group to nodes
with convenient hardware features. Thereby, to treat the temporary execution
tasks, they arrange each POD to the most utilized node instance with enough
requested resources in terms of CPU, RAM, and execution time. Then, to scale
and shut down some nodes, they select those being used at less than 50% capacity.
The algorithm releases them using migration operations considering virtualized
images, execution time, and available bandwidth.

It is important to say that the authors show a linear algorithmic complexity for
their deployment and scaling algorithm.

On the other hand, some technologies dynamically manage the different physical
nodes used/shared by different cluster schedulers from a higher level of abstraction.
That is the case with the Apache Mesos[80] distributed kernel. Using a master
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entity,Mesos receives the available resources from each physical node andmanages
them among the different running cluster schedulers (two-level scheduling)[87].
For that,Mesos utilizes the DRF[86] (Dominant Resource Fairness) algorithm by
default. It uses linear equations to ensure that: For each (non)containerized (default:
Mesos container) task, the percentage of its dominant resource (the most demanded
one) type that it gets cluster-wide is the same for all other tasks[159].
It’s important to mention that some technologies enrich the Mesos scheduling

approach. For instance, Aurora[75] runs on the top of Mesos kernel in order to
perform containerized task grouping, scalability operations, set replica criteria, etc.
For its part,Marathon[79] is able to launch tasks at the desired times using the
Chronos scheduler[77].
Following the same goals as Kubernetes or Swarm, some scientific works

seek to efficiently schedule containers in hardware resources[4]. For example,
Rodrigues et al.[191] optimize container deployment through Mixed Integer Linear
Programming. For this, they study the graph of physical nodes of a cluster, and the
graph made up of the connected containers deployed in it. Regarding resources,
they analyze the RAM, the CPU, and the transfer rate involved in both graphs to
create weights for each edge and vertex. Then, they determine the most optimal
deployment by minimizing an objective function that considers the quality of
service and energy consumption. Another interesting approach is the one proposed
by Pongsakorn et al.[222]. They focus on container migration based on four stages.
First, classify containers into groups of high and low duration. Secondly, group the
long-lived containers based on their allocated resources and hosts. Next, on the
one hand, find a pair of hosts whose difference in resource usage is significant. On
the other hand, select the containers whose difference between allocated and used
resources is also significant. Last, perform a swap of both containers to balance the
load.
Finally, another group of works seeks to optimize the communication between

deployed tasks. For example,Wu et al.[232], in addition to a redeployment algorithm,
they propose a routing improvement of multicast tasks in data centers of different
zones based on optimization techniques. This area of study is beyond the scope of
our research work.

3.3.1 Analysis and considerations

So far, we have explained some works whose objective is to figure out the con-
venient initial deployment and in-execution scheduling of virtual entities in
cloud clusters. We have selected and analyzed several approaches proposed by
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scientists and applied by well-known platforms and tools. We believe that overall,
the approaches analyzed here represent a strong trend of approaches today.

Following the methodology described in section 3.2, we study this trend from an
algorithmic approach. To do that, in Table 3.1, 3.2, 3.3 and 3.4 (Tables 3.3 and 3.4 are
the continuation of Tables 3.1 and 3.2), we characterize the works concerning the
initial deployment of applications. Tables 3.1 and 3.3 describe the approaches’
input variables, operations performed, or their type of policy (centralized/non-
centralized). Tables 3.2 and 3.4 illustrate the variables they analyze and/or optimize,
such as QoS or energy consumption.
Then, in Tables 3.5 and 3.6, we characterize the works concerning execution-

time scheduling considering the same analysis fields.

Figure 3.2: Cloud computing: Initial Deployment Considerations Trend

As shown in Figure 3.2, most works are based on pre-processing techniques to
deploy a software component ideally. In our case, our goal is not to ensure the best
possible initial deployment. Instead, we use a distributed data structure to have a
stable system, which on the one hand, is reactive to hardware load changes, and on
the other hand, does not need to perform expensive calculations to work.
Then, most approaches do not consider the power characteristics of several

hardware components to perform scheduling decisions. For our part, we believe
that we can profile hardware and software components from mathematical models
and operating system interfaces (see chapter 2). That allows us to have a more
extensible and clear view of a system’s energy consumption. For example, we
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study the CPU, RAM, network, and storage components’ features to perform our
scheduling algorithm.

Next, we can see that most works use centralized models to schedule. That is due
to ease of components control, stability, and scalability, among other reasons[168].
About this point, we believe in the elasticity of structured environments. Thereby,
although centralized distributed multidimensional data structures are applicable
for scheduling, we have preferred to implement our algorithm in a P2P system. In
addition to validating it for different deployment levels (cloud, grid, etc.), our goal
is to demonstrate that said architecture is an excellent candidate for energy savings
purposes. Moreover, we believe that P2P networks in the cloud would offer many
advantages such as security, privacy, autonomy, etc.
Finally, most works do not consider the computational cost of their algorithms.

In our case, we consider it important since our approach’s algorithmic behavior is
reflected in the number of network operations.

Figure 3.3: Cloud computing: Initial Deployment Variables Trend

On the other hand, Figure 3.3 shows the trend of the approaches’ analyzed /
optimized variables. Here, most of the works seek to correctly manage hardware
resources to mainly improve scalability, quality of service, monetary costs, and the
efficient deployment of applications.

For us, our main objective is to save energy without losing the notion of quality
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of service. To do this, we efficiently use multidimensional data structures based on
a correct analysis of hardware resources load. Furthermore, our technique allows
us to consider all the other variables indirectly. For example, the scalability of our
approach is addressed in the overlay used; the deployment time depends on the
nature of the data structure; the monetary costs are related to power consumption,
and the high availability is related to the mirroring operations we consider.

Figure 3.4: Cloud computing: Execution-time scheduling Considerations Trend

Regarding the execution time scheduling, in Figure 3.4, we show that, unlike
the initial deployment stage, most works do not base their approaches on pre-
processing operations. We believe this is because migration scenarios tend to
be much more dynamic and less predictable. Another significant difference is a
major concern here for the computational cost. We believe that this is because the
number of operations through the network influences energy consumption, quality
of service, and others.
We address both aspects with the efficient use of spatial data structures since

it allows us to analyze computational costs and maintain a dynamic system. The
analysis of the rest of the variables is the same as we did for Figure 3.2.
Regarding the trend of the analyzed / optimized variables at the execution-

time scheduling, Figure 3.5 shows that, unlike the initial deployment, the works
have a higher tendency to evaluate the energy consumption and scalability variables.

In our case, energy consumption is our primary objective. However, we indirectly
manage the system’s scalability performance through our chosen data structure.
We analyze the rest of the variables in the same way as we did for figure 3.3.
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Figure 3.5: Cloud computing: Execution-Time scheduling Variables Trend

The next section analyzes several works that seek to optimize the initial de-
ployment and the in-execution scheduling in devices beyond the cloud.

3.4 Scheduling close to data sources.

As seen in the previous section, cloud computing studies data processing and the
execution of different workloads in clusters of (generally) homogeneous nodes.
However, these nodes, usually located in data centers, are often physically far from
the concerning data sources. This fact represents a load management problem
since, as mentioned in IEEE innovation[102], more and more connected devices
generate data to process. For instance, billions of them generated an unprecedented
amount of data in the last year, increasing the difficulty of managing bandwidth
(despite 5g, network capability is still heterogeneous globally), energy consumption,
and computing resources are growing[102].
For these reasons, scientists and enterprises developed different systems hier-

archies. They seek to take advantage of the computational capabilities of nodes
closer to the data and workloads sources. That is the case of edge, fog, and grid
computing.
Regarding the definitions of each, some scientists consider the first two as syn-
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onyms[175][96]. For them, both approaches consist of processing workloads con-
sidering two types of closeness. On the one hand, closeness to the concerning data
source. On the other hand, closeness to where the actions related to that data are
taken[36]. Others, however, define them differently[101]. They mention that one
(fog or edge) is a kind of interface between edge devices and the cloud.

Concerning grid computing, we did not find a universal definition either. Some
authors define it as a paradigm in which heterogeneous devices connected from
different places perform tasks without centralized control[17][117].

This section indistinctly analyzes the works that study scheduling techniques in
these three areas. The reason is that, unlike the cloud level, the three involve the
management of software components in probably very heterogeneous hardware,
in much more diverse and probably dynamic[25] locations, and with a greater
tendency towards decentralized philosophies. To do said analysis, this section
applies the chapter’s methodology, studying the techniques concerning the initial
deployment and the execution-time scheduling phases.

Among theworksmentioned in the previous paragraph, some focus on improving
the overall performance of applications running on heterogeneous devices. For
example, Manjot[17] seeks to achieve this goal by improving the tasks’ initial
deployment process. For this, he maintains a centralized entity that stores all the
memory and CPU characteristics of the involved nodes. He then displays each
task considering two perspectives: 1) a first-come, first-served basis or 2) applying
a heuristic based on the time a task waits for a resource, the time that task typically
uses that resource, and the completion time of the job.

Studying the same objective, Chauhan et al.[27] conceive a dependencies-based
application as a directed acyclic graph and a set of nodes as a structured overlay.
Using these, they propose a fully decentralized scheduling algorithm that aims to
execute in parallel the largest number of application modules of the same depen-
dencies level. This algorithm maintains two types of information in the node which
starts an application (it can be any node on the network): 1) A table with informa-
tion on its neighbors such as name, IP, CPU MPIS, running tasks and subtasks,
etc., and 2) the execution characteristics of the application. Then, the node deploys
either any task of the same level of dependencies or the longest task of a higher
level of dependencies on the most suitable node. This selection considers the peer’s
load, processing capacity, task dispatch time, previous processing information, etc.
For this, the authors propose heuristics based on weights.
In another of their works, the authors use similar heuristics to implement high

availability strategies. In them, the nodes monitor their neighbors to check that
they are still working. If this is not the case, the involved task list is forwarded to
available nodes, and their corresponding tables are updated accordingly[26].
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In addition to improving application performance, other researchers consider
maintaining the network balance during the initial deployment process. For
example, Dias et al.[132] choose the best node to deploy an application from
a central entity. To do that, they consider variables such as deployment time,
download queue, and bandwidth involved. For their part, Drost et al.[63] execute
in parallel the tasks started at a node of a decentralized network. For that, the
initial node broadcasts with a specified depth looking for a peer with the necessary
resources to execute one of the tasks. The nodes that have such resources accept
the request. Those who do not, as well as those who receive the request twice,
deny it. The algorithm achieves the network balance considering the physically
closest candidates to the origin node. Finally, pursuing the same goal, Maheswaran
et al.[72] make a device capable of connecting to several fogs that can fulfill their
workloads. The algorithm approach considers the criteria of resource availability
and network latency.

Otherwise, someworks base their deployment approaches on learning techniques.
For example, Lordache et al.[118] consider a set of nodes capable of executing the
tasks to be deployed and/or executing scheduling operations based on genetic
algorithms. Thereby, each node works as an agent that can process/designate tasks
on the same processor unless they have exclusivity restrictions. Then, the first
population is initialized stochastically, and the tasks are assigned to specific proces-
sors. Thereupon, the deployment space is explored by starting chromosomes using
random generators. Here, 1) each agent displays different probability distributions
such as normal or Poisson, and 2) the fitness function is defined by the number of
processors and the total execution time of all tasks assigned (previous and current)
to each processor. For their part, Toka et al.[219] focus on improving the horizontal
scaling of Kubernetes edge clusters (explained in the previous section). To achieve
this, instead of relying on the current scaling period’s observations, the authors
perform scaling decisions based on machine learning algorithms. These analyze
request intensity over time, considering the CPU as the main component.
Besides studying the deployment of processes, other types of work focus on

improving the localization of data to process. For example, Neumann[169] et
al. propose an architecture for P2P networks called STACEE. In it, smart services
enable data characterization based on its lifetime, intermittency, and access quantity.
It allows the definition of treatment metrics based on monetary costs, energy
consumption, or data proximity. Furthermore, STACEE offers an objective-functions
minimization model, which comprises variables of existing hardware (energy costs,
CPU available, prices, et.) and customer requirements (content size, release date,
distance, et.). All this aims to deploy and migrate data and processes optimally.
For their part, other works improve data access and management through clus-
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tering techniques[13]. For example, Li et al.[142] proposes that all the nodes of
a P2P network are indexed in a multi-dimensional Cartesian plane divided into
zones. For that, one or more peers have the bits-string-based metadata of each zone.
Then, the latter are grouped hierarchically (clustering process) so that the whole
network is seen as a binary tree for efficient queries. This tree is known as VPTree.

Finally, other scientists focus on optimizing data caching on edge devices. About
this point, Shuja et al.[197] propose a wide survey that describes the approaches
concerning the when, what, where, and how to cache. They categorize the works
according to whether they focus on supervised, unsupervised, reinforcement, trans-
fer learning, and neural networks. This document explains, for example, that to
do caching at the edge and to predict data mobility and popularity, most authors
use reinforcement learning and neural networks. That is because the popularity
of content can be learned from no data or little data sets. On the other hand, the
authors describe the methods to increase the cache hit rate. This objective is one
of the most sought-after and can be achieved with supervised learning, clustering
techniques, etc. Moreover, the authors explain some device-to-device communica-
tions techniques for energy savings or transmissions balance. We do not develop
this point further since, although we assume data management, the optimization
of their treatment is outside the scope of our research work.
Other researchers consider execution-time scheduling in order to achieve

load balancing objectives. For example, Charantola et al.[25] perform migration
operations when the cloudlets (small-scale datacenter) close to the respective
data sources are saturated. The authors intelligently select which applications
should be migrated to the cloud whenever a cloudlet is overloaded. They base
this selection on the applications’ connections, the users consuming them, and
the CPU load/requirements. For their part, Puthal et al.[189] propose a system in
which each edge-cloudlet is recorded in a central entity in the cloud. Then, each
cloudlet broadcasts to register all other peers performing and offering all necessary
security methods. Thereby, if a cloudlet enters an overload condition, it performs a
breadth search for resources. It broadcasts its identity and loads data, looking for a
peer able to execute part of this load. If the security filters are reached, and another
peer has sufficient resources, the cloudlet performs migration operations.
On the other hand, other approaches consider load balancing of IoT devices.

That is the case of Chhikara et al.[32] who deploy an energy-savings container
migration strategy for IoT networks. Their proposal applies the K-means and
hierarchical clustering algorithms to classify hosts. They consider three groups
that define three host states: overload, underload, and load-balanced state. They
then select the first two groups to balance their load by freeing them from their
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INITIAL DEPLOYMENT IN THE EDGE/FOG/GRID - OPERATIONS AND FEATURES

Ref. Input
Variables Operations Approach

Require
pre-process

ing/
learning

Consider special
energy-related

hardware features
of CPU, RAM,
HDD, and NIC.

Study
computational
complexity

[17]

- Nodes’ CPU
and memory
capacity.
- task: Waiting
time for a
resource,
estimated time
of resource use

Apply
deployment
heuristics

Centralized YES NO NO

[27]

- Nodes’ CPU
capacity.
- task:
Dependencies
(Graph)
and requested
resources.
- Nodes overlay

Deploy tasks
of the same
dependency
level on
different nodes

Decentralized NO NO NO

[118]

- Nodes’ CPU
capacity.
- Nodes’ load.
- Taks’ CPU
consumption.

Apply genetic
algorithms to
find the best
tasks deployment

Decentralized YES NO NO

[169]

- Nodes’ CPU,
Storage, and
network capacity.
- User
requirements
- Data
Characteristics

- Minimization
of objective
functions.
- Efficient
deployment
of data

Decentralized YES NO NO

[13]
[142]

- Data index
- Node’s index

- Execution of
clustering
techniques

Decentralized YES NO YES/ Multid.
data structures

[132]

- Size of the
component to
display.
- Nodes’
Bandwidth.
- Node queue.

- Deployment
based on time
and resources

Centralized YES NO NO

[197]

- Data history.
- Node
Resource Usage.
- Bandwidth
Usage.
- Cache hit
level.

- Application of
supervised,
unsupervised,
reinforcement or
transfer
learning methods.

Centralized/
Decentralized YES NO NO

[63]

- Nodes’ CPU,
disk, and RAM
capacity.
- Workloads’
CPU, disk,
and RAM
requirements.

- Search for peer
resources by
broadcasting.
- Deployment and
execution of tasks
in parallel

Decentralized NO NO NO

Our
Work

- Nodes’ HW
resources.
- Applications’
HW
consumption.

- Scheduling based
on indexation in
multidimensional
data structures.

Centralized
and

Decentralized
NO YES YES

Table 3.7: GRID/FOG/EDGE initial-deployment approaches: Input Variables | Operations
performed
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INITIAL DEPLOYMENT IN THE EDGE/FOG/GRID -
Optimized/Analyzed Variables

Ref.
HW
res.
usage

Net.
Bal.

QoS/
resp.
time

Energy
cons.

Monet.
costs Scalab.

High
avail.

/
Data
Mgmt.

Efficient
search/
insert/
delete
for

scheduling
[17] X X
[27] X X
[118] X X
[169] X X X X X X
[13]
[142] X X

[132] X X
[197] X X X X
[63] X X X
Our
work X X X X X X

Table 3.8: GRID/FOG/EDGE initial-deployment approaches: Target Variables

most CPU/RAM-consuming containers. A list of new nodes in the system is sorted
according to CPU usage.

Using clustering methods as well, Elbamby et al.[68] migrate load from the end
devices to the cloudlets to improve the energy and computing resources manage-
ment. They propose a decentralized method that groups nodes into disjoint sets
based on spatial proximity and mutual interest in certain tasks. Then, the authors
get a task popularity matrix to deploy a joint task distribution and caching scheme.
In it, each cloudlet hosts as many results as possible, replacing old and less fre-
quently used data with new insertions. That seeks to optimize the latency time of
the final device.

Another way to migrate load from end devices to the edge is through a collabo-
rative system such as the one proposed by Zhang et al.[243]. In their proposal, fog
nodes register as volunteers in the non-centralized system. The system then accepts
the load transaction: End device- volunteer node based on the energy consumption,
delay history, and computing capabilities.
On the other hand, some authors also perform Execution-time scheduling

to balance network load and manage physical distances. For example, Puliafito et
al.[188] keep IoT devices as close as possible to the edge containers they use. When
an IoT device moves away from the container that consumes more than a certain
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EXECUTION-TIME SCHEDULING IN THE EDGE/FOG/GRID - OPERATIONS AND FEATURES

Ref. Input
Variables Operations Approach

Require
pre-process

ing/
learning

Consider special
energy-related

hardware features
of CPU, RAM,
HDD, and NIC.

Study
computational
complexity

[25]

- Cloudlets’
hardware load.
- Components
CPU cons.

- Smart migration
to cloud Centralized NO CPU

MIPS NO

[26]

- Nodes’ CPU
capacity.
- task: requested
resources.
- Neighbor nodes
health signal.

- Monitor the health
of neighboring nodes.
- In case of nodes
dead, redeploy the
tasks involved in
other nodes.

Decentralized NO CPU
MIPS NO

[169]

- Nodes’ CPU,
Storage, and
network capacity.
- User Reqs.
- Data Char.

- Migration and
duplication of data
and processes.

Decentralized YES NO NO

[219]

- PODs’ CPU
usage over time.
- Workload data
over time.
- PODs quantity.

- Application of
machine learning
techniques.
- PODs scaling
(including scale
down)

Centralized YES NO NO

[32]
- Nodes CPU
and RAM usage.
- Containers load.

- Cluster nodes by
their load.
- Order nodes by
their load.
- Migrate containers

Centralized and
Decentralized YES NO YES

[189] - Edge Cloudlet
load.

- Perform a broadcast
to find another peer
and negotiate load
migration

Decentralized NO NO NO

[68]
[72]

- Power and
resource status
of end devices.
- Spatial
proximity
of nodes.
- Node interest
in common tasks.
- Data Usage
Frequency.

- Migrate load from
end devices to
cloudlets.
- Execute clustering
technique for cache
and data popul. OR
- Dynamically
connect to specific
fogs according to
network load

Decentralized YES NO NO

[188]

-Distance between
container provider
and consumer
devices.
- Nodes CPU and
RAM capacity.

- Migrate containers
from one edge node
to the other peer
that is closest
to the IoT device

Centralized NO NO NO

[243]

- Nodes’ HW
capacity.
- task: requested
resources.
- Delay of tasks

- Fog node:
Volunteer.
- Migrate load:
end device - fog
node

Decentralized NO

CPU Joule/cycles
Transmission

power:
Shannon capacity

for wireless

NO

Our
Work

- Nodes’ HW
resources.
- Applications’
HW
consumption.

- Scheduling based
on indexation in
multidimensional
data structures.

Centralized
and

Decentralized
NO YES YES

Table 3.9: GRID/FOG/EDGE execution-time scheduling: Input Variables | Operations
performed
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EXECUTION-TIME SCHEDULING IN THE EDGE/FOG/GRID -
Optimized/Analyzed Variables

Ref.
HW
res.
usage

Net.
Bal.

QoS/
resp.
time

Energy
cons.

Monet.
costs Scalab.

High
avail.

/
Data
Mgmt.

Efficient
search/
insert/
delete
for

scheduling
[25] X X X
[26] X X
[169] X X X X X X
[219] X X X X
[32] X X
[189] X
[68]
[72] X X X X

[188] X X
[243] X X X X
Our
work X X X X X X

Table 3.10: GRID/FOG/EDGE execution-time approaches: Target Variables

threshold, the system executes a migration strategy. That consists of redeploying
said container in the node-edge that 1) Is the closest possible to the new location of
the device and 2) has sufficient resources in terms of CPU and RAM.

Finally, some works study the communication between tasks and distributed data
management. For example, Corneo et al.[40] propose an optimal way to retrieve
data from sensors. They aim to avoid bandwidth overload and lose the novelty of
the data. As in the previous section, this area of study is outside the scope of our
research work.

3.4.1 Analysis and considerations

This section has described some approaches that we consider important for initial
deployment and in-execution scheduling at the edge, fog, and grid levels.
Again, following the methodology described in the first section, we study this

trend from an algorithmic approach. However, unlike in the previous section, we
have changed some analysis criteria due to the natural differences between Cloud
and edge/grid/fog heuristics. Thereby, in Tables 3.7 and 3.8 , we characterize
the works concerning the initial deployment of a certain workload, taking into
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account: 1) The input variables, the operations performed, the type of approach
or special hardware considerations, and 2) the variables that the approaches ana-
lyze and/or optimize such as QoS, Energy consumption, network balance or data
management. Then, in Tables 3.9 and 3.10, we characterize the works concerning
execution-time scheduling considering the same analysis fields.

Figure 3.6: GRID/FOG/EDGE: Initial Deployment Considerations Trend

Figure 3.6 shows that most works tend to perform preprocessing operations
before deploying software components. Moreover, it is interesting to see that
very few authors analyze the characteristics of hardware components despite their
heterogeneity. In our case, we manage an efficient initial-deployment process only
with current hardware requirements information. Nevertheless, we also consider
the energy characteristics of components such as the CPU, RAM, hard disk, and
network card. This analysis is very important for us, especially when battery-
dependent devices are present, as in the case of grid or fog environments.
Another interesting fact is the more significant trend towards decentralized

scheduling approaches. That is due to the physical distances between central
entities and the worker nodes deployed close to the data sources. It’s important to
say that said central entities may even belong to higher abstraction layers such as
the cloud.
Finally, the figure does not show a great tendency to analyze algorithmic com-

plexity. In our case, we need to study that since it is directly related to the number
of operations that we perform through the network.
On the other hand, Figure 3.7 shows that most works that study the initial
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Figure 3.7: GRID/FOG/EDGE: Initial Deployment - Scheduling Variables Trend

deployment in fog-type environments focus on the proper use of hardware com-
ponents, the quality of service, and the efficient network balance. The latter, unlike
cloud environments, is often due to having more layers of abstraction in the ar-
chitecture. Thus, having intermediate nodes between the end devices and the
cloud nodes makes it imperative to manage the load at the hardware and software
resources level.
In our case, although we analyze the efficient use of hardware components

(including network load balancing), we have not studied the application of our
method in vertical hierarchies. This point represents for us one of the future works.

The analysis of the rest of the variables is the same as the one we did for figure
3.3.

Regarding the execution-time scheduling, figure 3.8 shows that several works
depend on pre-processing operations. That is due to the trend of using clustering
and prediction algorithms on variables such as resource usage, data popularity, etc.
Although we do not study these points directly, we consider them compatible

with the use of multidimensional structures and correct distance functions. That
represents a more dynamic and less computationally expensive approach.

On the other hand, Figure 3.8 shows a greater tendency to discuss special hard-

67



Chapter 3 The Distributed Approach

Figure 3.8: GRID/FOG/EDGE: Execution-time scheduling Considerations Trend

ware features than the initial deployment moment. It is important to say that
our approach addresses this point at both scheduling moments.

The analysis of the rest of the variables is the same as the one we did for figure
3.6.

Figure 3.9: GRID/FOG/EDGE: Execution-time scheduling Variables Trend

Finally, figure 3.9 shows a greater tendency to maintain an optimal network
balance and energy use. That is because many works perform scheduling operations
based on the position changes of some devices.
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Although we do not deal directly with this, we consider that position data can
belong to an extra dimension of a multidimensional data structure. In this way,
searches for nearby nodes can be performed in an efficient logarithmic complexity.
It is important to say that, as the Figure describes, the efficient use of energy is

one of our primary concerns. We study that through efficient scheduling operations.
The analysis of the rest of the variables is the same as the one we did for figure

3.7.

3.5 Chapter summary and contributions

In this chapter, we have selected and analyzed works that study distributed deploy-
ment and scheduling strategies. We made this selection considering the criteria of
diversity, strength, and the variables shown in all the presented tables.

Unlike many surveys, we propose an algorithmic way of analysis to study these
works. In it, we evaluate the problems and interest variables concerning two schedul-
ing moments: 1) when an application is being deployed (Initial deployment), and
2) when it is being scheduled at run-time (execution-time scheduling).
So many interesting aspects to evaluate become visible, such as the differences

between cloud and fog/grid/edge architectures, the management of physical
distances between devices, the energy consumption, etc. For example, while the
management of cloud clusters has a greater tendency to evaluate scalability factors,
in fog/grid/edge, there is a greater tendency to consider the physical location of
nodes.
All these aspects have allowed us to define the scope of our work and explain

some of its strengths. For example, some approaches are based on learning tech-
niques. Usually, in addition to requiring expensive computational operations, these
methods can be affected by unpredictable data variations. In our case, we be-
lieve that the efficient configuration of our approach allows a safe deployment
and scheduling based on current and dynamic data. Furthermore, many authors
propose the optimization of some variables, such as only the quality of service or
energy consumption. For our part, our approach can manage naturally as many
aspects as needed at the same time.
As we said in the introduction of this chapter, we use multidimensional data

structures to index data from both the nodes running the applications and the
applications themselves. Depending on their type, these structures are compatible
with centralized and decentralized network heuristics. They allow us to have a
representation of a custom universe of as many dimensions as needed. Based on
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them, we can perform efficient queries enabling different scheduling objectives
such as energy savings, security, location dynamism, etc.
The next chapter will present our approach’s structure, algorithm, and deploy-

ment.
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4 Multidimensional enti-
ties for energy savings

4.1 Introduction
In the previous chapter, we have explained some of the different techniques for
applications’ initial deployment and execution-time scheduling in distributed
systems. They aim to optimize several variables such as deployment time, scala-
bility, or energy consumption. To achieve this, they analyze the state of a system
deployment at a given time (input variables: hardware usage, physical location,
load, etc.) to trigger scheduling operations (i.e., tasks deployment, containers
migration, VMs duplication, etc.).
In the specific case of energy consumption, they have shown that it can be

decreased with efficient deployment and load balancing techniques or the proper
hardware features usage (prudent shutdown, CPU frequency reduction, etc.). How-
ever, they do not consider energy-based scheduling analyzing variables such as
hardware heterogeneity, intelligent and multiple hardware resources indexing, or
special hardware power capabilities.
On the other hand, as mentioned in chapter 2, we profile hardware and soft-

ware components through mathematical models. Once identified an application
by its PID, these allow us to relate the workload of the concerning hardware
devices to their energy consumption using OS (operating system) interfaces. In
this way, we can make deployment and scheduling decisions based on current
consumption/workload information without specialized measurement artifacts. Al-
though these models may not give perfectly accurate results, they allow comparing
consumption information based on time and the heterogeneity of devices.

In this chapter, we present our distributed scheduling approach for load balanc-
ing energy savings. However, before explaining it, it is necessary first to choose
the architecture of the applications to study, taking into account scheduling-based
features. For example, applications based on virtual machine instances enable
migration or duplication of these entities. On the other hand, monolithic processes
running directly on the host OS let only balance the load generated from requests.
Finally, applications based on containers enable light migration-duplication, effi-
cient deployment, modular scalability, etc.

In this thesis work, we have chosen to analyze containerized applications based
on microservices (MS). According to Paolo Di Francesco, they are small services
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that make up an application, each running in its own process and communicating
with lightweight mechanisms[58]. We chose this architecture because it enables
many scheduling advantages[74][215]:

• Microservices generally use containers as their deployment technology. There-
fore, each instance is identifiable from its PID[92].

• Easy updates via modules. A system administrator only needs to update only
one microservice to update an application functionality.

• Heterogeneity. This architecture facilitates application deployment between
different types of devices and heterogeneous platforms.

• Non-centralized storage operations.

• Extra security. The failure of one functionality does not affect the entire
system. Thus, the errors can be treated and corrected separately.

• Easy to implement new content. To add new features to an application, a
system administrator only needs to add new microservices and re-deploy
only the components that will use it.

In our work, we consider the microservices approach only as a use case. Thereby,
in a microservices deployment, we analyze and improve hardware resource man-
agement in a novel way to save energy without losing the notion of QoS (Quality
of Service). We schedule (middleware operations: move, duplicate, start, stop) the
containerized microservices that make up a distributed application through differ-
ent physical nodes using multidimensional/spatial special structures. With them,
we index elements such as physical nodes and microservices at execution time
according to multiple criteria, such as the current availability of hardware resources,
hardware’s power-related features, or the container’s resource requirements. This
way, our objective is to have a system that performs the elements’ search, insertion,
and elimination at an efficient computational cost in order to execute energy-saving
scheduling strategies.

Although we consider our technique extensible for any other type of architecture,
we leave this analysis for future work.

Another important issue is scheduling heuristics. These can be oriented to either
centralized or decentralized philosophies. Each has advantages and disadvantages
depending on the type of application, deployment politic, or deployment level
(i.e., Cloud, grid, or host). For example, important technologies like Netflix prefer
centralized microservices orchestration (Netflix uses its well-known Conductor)
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mainly for scalability matters, tight coupling, SLA agreements, etc.[168]. For their
part, de langue et al.[138] took advantage of a decentralized environment to de-
velop a non-formal learning system in CoPs (Communities of Practice) based on
a microservices architecture. In terms of platforms, Kubernetes offers central-
ized algorithms for the efficient deployment and scale of PODs[136]. For his part,
Kalimucho [52] provides a middleware platform to manage microservices; but in
a p2p network of heterogeneous devices. Kalimucho also enables intelligent mi-
croservices movement, duplication, and routing operations. Chapter 3 summarizes
both heuristics more fully.
Although our approach is extensible for both philosophies, we will study a

decentralized system in this instance. We believe that in addition to advantages
such as scalability and the absence of a single point of failure[26], anon-centralized
network is a perfect fit for energy-based scheduling. Wewill study other approaches
in future works.

4.2 Methodology

This chapter describes the non-centralized scheduling algorithms that we propose
for distributed environments. In general terms, these strategies perform device
self-analysis and negotiation procedures for load balancing and energy savings.

In order to understand how these procedures work, the chapter begins by explain-
ing the scheduling instruments that each device runs. Thus, section 4.3 describes
ourKaligreenmiddleware that consists of per-device instances of a special portable
microservice. That aims to analyze its device’s resource status, negotiate with other
peers, and execute scheduling algorithms.
Among the algorithms we implement, Kaligreen executes neighborhood mi-

croservice exchanges based on overloading and underloading situations. That
considers hardware heterogeneity and different microservices restrictions.

To enrich the operation of our middleware, section 4.3.5 explains the architecture
of Kaligreen V2. That implements special tables to describe the relationship
between running software features and hardware special characteristics.
Finally, section 4.4 explains our algorithms based on multidimensional spaces.

Such procedures use Kaligreen in its two versions and special data structures
compatible with these spaces. Subsections 4.4.1 to 4.4.5 describe the theoretical
framework and the abstract structures we define. Then, from subsection 4.4.6 to
the end of the chapter, we describe our algorithms’ procedures per se.
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4.3 Kaligreen Middleware: Establishing entities
and tools for inter-device negotiation

As mentioned in the previous section, the Kaligreen middleware[5] represents
the first step of our proposal. Kaligreen works across multiple connected devices
without belonging to specific network topology. In this manner, the devices are not
guaranteed to connect to other peers all the time (i.e., they turn off, the connection
signal is weak, etc.). For example, let us consider a network of cloud-independent
user devices. Such devices (smartphones, televisions, watches, etc.) can connect to
produce deployed applications’ results using different interfaces (Wifi, Bluetooth,
Ethernet, etc.). Here, intelligent device negotiations are the natural way to schedule
one or more applications’ microservices. In Kaligreen’s case, the main objective of
these negotiationsmay be to save themost significant amount of energy, particularly
for devices that depend on a battery.

The non-centralized nature of scheduling algorithms in Kaligreen enables each
device to offer or request resources from peers. If two devices agree, they can
execute a container migration or duplication process. However, this methodology
needs mechanisms and protocols to perform correctly.
In the next section, we explain some of Kaligreen’s features, which allow the

execution of scheduling strategies.

4.3.1 The Kalimucho middleware and devices for Kaligreen

In order to execute our algorithms, we need a tool capable of managing highly
heterogeneous decentralized environments. For that reason, we base our approach
on the Kalimucho middleware[51]. It allows to move, stop, and (re)start appli-
cation’s microservices efficiently and transparently. For that, Kalimucho reads
and understands distributed Java applications as a set of containerized components
installed on Android and desktop devices. Each component is connected to others
through special connectors that can be in an active or inactive state. That means
a component can have many connectors with several other peers without satu-
rating the network since only the necessary connectors are active. Additionally,
Kalimucho is able to move components from one device to another without losing
their execution state. To do that, if a component requests to be migrated to another
device, Kalimucho will do it by shifting its java source code along with its current
execution state using special storage files.
For Kalimucho, all these operations are platform-independent (operating sys-

tem, firmware, etc.) thanks to the portability offered by the Java virtual machine.
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In our case, we take advantage of this feature to efficiently save the energy of
user devices. We consider this a significant problem since, according to several
studies[200][223][225][176], by 2016, at least 70% of people in countries like South
Korea had mobile devices (phones, tablets, etc.). Moreover, more than 81% of people
in the world use mobile devices with the Android operating system. On the other
hand, one billion PCs runWindows, 100 million devices (desktops and smartphones)
use MacOS, and 1.6% of personal computers run GNU/Linux.
In Kaligreen, we differentiate between battery-dependent devices (laptops,

smartphones, tablets) and battery-independent devices (desktop computers). This
differentiation allows us to establish scheduling politics considering hardware
heterogeneity. For example, algorithm 1 considers battery-independent devices
prioritize being freed from Kalimucho containers but not receiving them.
For all these devices to be able to communicate and execute their scheduling

algorithm, it is necessary to implement a standard protocol. We define this protocol
through a metadata vector, which we will detail in the next section.

4.3.2 The Descriptor Vector

In order to execute a non-centralized scheduler, a device in a network must be able
to describe essential hardware resources information to other peers. In Kaligreen,
each device 𝐷𝑖 uses a descriptor vector𝑉𝑖𝑘 to depict five possible types of metadata:
1) Its resources capacity, 2) its current average hardware resource load, 3) its hard-
ware average resources availability, 4) the execution requirements of a microservice
𝑀𝑖 𝑗 , and 5) the average current load generated by𝑀𝑖 𝑗 in each resource. This way,
for example, a device 𝐷1 can send a vector 𝑉13 to other peers seeking to establish a
negotiation process to migrate𝑀12 . One goal may be to find a candidate capable of
executing𝑀12 more frugally.
Kaligreen considers the hardware resources described in chapter 2. As a first

approach, all vector 𝑉𝑖 stores CPU, RAM, network, and storage resources meta-
data in terms of GHz, MB, MB/s, and MB/s, respectively. In figures 4.1 and 4.2,
we show the five possible uses of 𝑉𝑖 . The first shows the metadata sending process
concerning the hardware resources of the first device. The second shows this
process for the hardware resources that an application needs and obtains from the
device.

In order to complete our scheduling approach, we also categorize the container-
ized microservices. That is to restrict some operations such as migration to avoid
damaging the user experience and the applications’ functionality.
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Figure 4.1: Hardware resources’ metadata sending process

4.3.3 Microservices for applications and devices’ supervision
As we explained in section 4.1, we consider that a distributed application comprises
microservices working together. One of the problems we analyze in KaliGreen
is categorizing and scheduling these microservices without damaging the user
experience or an application workflow. We treat the first issue as follows:

• UI Microservices (interactive part of the application): Kaligreen will not
migrate this type of microservices since the user is the only one who can
decide with which device to interact.

• Sensors-management Microservices: Kaligreen will not migrate this
type of microservices since this would imply stopping obtaining data from
the environment involved.

• Computation Microservices: This group includes artificial intelligence
training, video treatment, or image compression. Kaligreen can migrate or
duplicate the corresponding containers to save a device’s energy.

In order to address the second issue, we have designed a special type of microser-
vice that we call “Supervisor”. In the Kaligreen environment, it is a demon-like
process that runs by default in each device 𝐷𝑖 . Once it starts running, it enables in
𝐷𝑖 the following operations:

• Perform periodic analysis of each hardware component considering load and
energy consumption.

• Manage a list of metadata of all the running microservices.
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Figure 4.2: Application needs metadata sending process

• Send descriptor vectors to other devices.

• Receive and analyze descriptor vectors from other devices.

• Execute scheduling algorithms, which may involve container operations such
as stop, start, migration, and duplication.

All these operations allow us to define different scheduling heuristics. If all
devices connect to a single peer, the latter could run a distributed centralized
algorithm. Otherwise, the heuristic will be decentralized.

Aswe said in section 4.1, our goal withKaligreen is to implementnon-centralized
approaches. The following section explains our first algorithm based on devices’
inter-neighbor negotiations.

4.3.4 A first distributed algorithm in Kaligreen
Let us define a heterogeneous user network 𝑁 similar to the one explained in
section 4.3. 𝑁 comprises battery-dependent and non-battery-dependent devices
identified by 𝐷𝑖 . Depending on their hardware load and battery status, 𝐷𝑖 can have
two roles: 1) help seeker or 2) resource provider. Furthermore, 𝐷𝑖 can migrate a
microservice𝑀𝑖 𝑗 to a device𝐷 𝑗 after a negotiation process. We consider the devices’
inefficient energy situation (for example, a smartphone that is about to finish its
battery) to trigger these migrations.

79



Chapter 4 Multidimensional entities for energy savings

We validate these situations in a function called isInEmergencySituation().
Then, if 𝐷𝑖 enters a state of emergency, it will select the microservices to migrate.
For this, 𝐷𝑖 executes the function selectHeaviestMicroservice(n).

This last function selects the 𝑛𝑡ℎ microservice𝑀𝑖 𝑗 that generates the most signif-
icant impact on the device based on CPU, RAM, network load, and the current
remaining battery if concerns. For this selection to be possible, we set priority
values for each component (based on a previous trivial analysis of random appli-
cations). These values are 1 for Network, 0.8 for CPU, and 0.7 for RAM. With
them, the function determines the most affected component by 1) multiplying the
load that𝑀𝑖 𝑗 generates (in percentage terms) by the corresponding factor and 2)
selecting the component with the highest value.

Once 𝐷𝑖 selects a microservice𝑀𝑖 𝑗 , it extracts𝑀𝑖 𝑗 metadata and writes it in a de-
scriptor vector𝑉𝑖 𝑗 . Then𝐷𝑖 sends𝑉𝑖 𝑗 to the connected peers using the 𝑠𝑒𝑛𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝑉𝑖 𝑗
, 𝐷𝑘) function. Then, 𝐷𝑖 will wait a reasonable time to get candidate devices that
can continue executing𝑀𝑖 𝑗 . We fixed that time in 100𝑚𝑠 as an average ping result
for our first implementation[59]. For this first implementation, 𝐷𝑖 will consider
that the best candidate peer 𝐷 𝑗 is the first one who answers. As in Kalimucho,
we base this decision on the inverse relationship between physical location and
response time.

Finally, 𝐷𝑖 notifies 𝐷 𝑗 using the 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷 𝑗 ) function to avoid other
peers considering 𝐷 𝑗 as a candidate. If other candidates arrived after, 𝐷𝑖 invokes
the 𝑠𝑒𝑛𝑑𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷𝑤) function.

As a help seeker, 𝐷𝑖 succeeds in the algorithm migrating the microservice𝑀𝑖 𝑗

to 𝐷 𝑗 and quitting the emergency situation.
It is important to say that if𝑀𝑖 𝑗 cannot be moved, the algorithm tries to migrate

the next heaviest one. This process finishes when 𝐷𝑖 is no more in an emergency
situation or there are no possible microservices to move.
On the other hand, Algorithm 2 describes the procedure to make a device 𝐷 𝑗 a

resource provider. Herein, 𝐷 𝑗 must have sufficient computational capacity to run
a foreign microservice 𝑀𝑖 𝑗 from 𝐷𝑖 without entering an emergency state. For this,
it analyzes the received concerning vector𝑉𝑖 𝑗 and adds its values to its components’
current loads’ data. If any results exceed the 80% set, 𝐷 𝑗 will not offer its resources.
The supervisor microservice runs this algorithm periodically and removes all

candidate vectors after a migration process or after a maximum response time.
As we can see, kaligreen’s supervisor microservice can execute scheduling

algorithms iteratively. This fact has some advantages. For example, in our first
algorithm, the devices’ load distribution is sensitive to new changes caused by the
user (opening or closing applications) while saving energy. However, to improve
energy savings strategies, Kaligreen should also learn to use the appropriate
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Algorithm 1: Help seeker for a device 𝐷𝑖
1 𝑐 = 1;
2 𝑀𝑖 𝑗 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐻𝑒𝑎𝑣𝑖𝑒𝑠𝑡𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑐);
3 while isEmergencySituation() do
4 if 𝑀𝑖 𝑗 = 𝑁𝑈𝐿𝐿 then
5 𝑏𝑟𝑒𝑎𝑘 ;
6 𝑉𝑖 𝑗 ← 𝑏𝑢𝑖𝑙𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝑀𝑖 𝑗 );
7 foreach 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑣𝑖𝑐𝑒𝑠 𝐷𝑙 do
8 𝑠𝑒𝑛𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝑉𝑖 𝑗 , 𝐷𝑙 );
9 𝑊𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑠𝑅𝑒𝑝𝑜𝑛𝑠𝑒𝑠 (20)

10 foreach 𝑑𝑒𝑣𝑖𝑐𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 do
11 𝐷 𝑗 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ();
12 if 𝐷 𝑗 = 𝑁𝑈𝐿𝐿 then
13 𝑀𝑖 𝑗 = 𝑠𝑒𝑙𝑒𝑐𝑡𝐻𝑒𝑎𝑣𝑖𝑒𝑠𝑡𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑐 + 1);
14 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
15 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷 𝑗 );
16 foreach 𝑁𝑜𝑛𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠𝐷𝑤 do
17 𝑠𝑒𝑛𝑑𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷𝑤);
18 𝑚𝑜𝑣𝑒𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑀𝑖 𝑗 , 𝐷 𝑗 );
19 𝑤𝑎𝑖𝑡 ()

Algorithm 2: Resource provider procedure for a device 𝐷 𝑗

1 if 𝑖𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛() ≠ 𝑡𝑟𝑢𝑒 then
2 foreach 𝑉𝑒𝑐𝑡𝑜𝑟𝑠 𝑉𝑘 𝑜 𝑓 𝑒𝑎𝑐ℎ 𝑑𝑒𝑣𝑖𝑐𝑒 𝐷𝑘 do
3 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝐼𝑚𝑝𝑎𝑐𝑡 (𝑉𝑘);
4 if 𝑡𝑟𝑖𝑔𝑔𝑒𝑟𝑠𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦𝑆𝑖𝑡𝑢𝑎𝑡𝑖𝑜𝑛(𝑉𝑘) then
5 𝑑𝑒𝑙𝑒𝑡𝑒 (𝑉𝑘);

6 𝑉𝑐 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐻𝑒𝑎𝑣𝑖𝑒𝑠𝑡𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑉𝑒𝑐𝑡𝑜𝑟 ();
7 𝑠𝑒𝑛𝑑𝐶𝑜𝑛𝑓 𝑖𝑟𝑚𝑎𝑡𝑖𝑜𝑛(𝐷𝑘);
8 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑀𝑖 𝑗 );
9 𝑑𝑒𝑙𝑒𝑡𝑒𝐴𝑙𝑙𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑒𝑐𝑡𝑜𝑟𝑠;
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hardware components optimally. For that, our middleware needs to consider the
components’ usage time, capabilities, behavior, and energy savings features.

The following section shows Kaligreen’s improvement design, enabling it to be
aware of the relation of two factors: 1) The microservices processing requirements
and 2) the awareness of as many hardware features as possible. That will allow
intelligent microservices filtering as a part of scheduling procedures.

4.3.5 Kaligreen V2: A middleware aware of hardware
opportunities to save energy

To optimally save energy, a middleware that performs distributed scheduling algo-
rithms needs to consider the consumption of the devices’ components. On the one
hand, Chapter 2 explained that the four components that we analyze in this thesis
are the CPU, the RAM, the network interface, and the storage device. On the
other hand, Chapter 3 explained how some distributed approaches save energy
based on these components.
As a first step, Kaligreen only considered the load of the four components

regardless of their heterogeneity. This second version introduces microservices
filtering based on their execution characteristics and the mentioned components’
capabilities.

To explain the methodology of this section, let us define the mentioned execution
features through two variables:

• Runtime: We define a microservice as persistent when it has no known
termination point.

• Access time to a hardware component: We define that a microservice 𝑀
generates a high average load 𝐿 in a component 𝐶 𝑗 of a device 𝐷 𝑗 when 𝐿
exceeds a threshold based on the characteristics of 𝐶 𝐽 . This threshold must
be set manually before applying the scheduling algorithm.

The following section explains the analysis of the first component: The CPU.

CPU analysis

In Chapter 2, we mentioned that a CPU, at the hardware level, can implement
C-States and DVFS to save energy. Furthermore, it can implement turbo boost
technology to increment the execution frequency for a prudent moment. In a
scheduling algorithm, migration operations can be made cleverer by only consider-
ing "compatible" microservices with these features. Table 4.1 shows this correlation.
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Microservices’ Features in 𝑫 𝒊 CPU features in 𝑫𝒋

Persistent
Microservice

High CPU
Load Boosting PCPG DVFS

NO YES Candidate Candidate Candidate
NO NO – – –
YES YES – Candidate Candidate
YES NO Candidate Candidate Candidate

Table 4.1: Correlation between Microservices features and CPU
capabilities

Microservices’ Features in 𝑫 𝒊 Scheduling Operations
Persistent

Microservice High RAM Load Migration

NO YES Candidate
NO NO –
YES YES Candidate
YES NO –

Table 4.2: Correlation between RAM microservices features
and middleware operations

In Kaligreen, the supervisor microservice implements the table 4.1 from the
microservices metadata list. For example, suppose a device 𝐷𝑖 executes a persistent
microservice𝑀𝑖 that generates a high CPU load. In that case, an algorithm may
evaluate migrating it to a device𝐷 𝑗 that does not contain the boosting characteristic.
The reason is that, as we explained in chapter 2, frequencies beyond those supported
by the TDP considerably increase power consumption (the non-linearity of the
model 2.1 and the work of fans). On the other hand, the algorithm could try to keep
a persistent low-frequency demandant microservice if the CPU of 𝐷𝑖 can lower its
frequency or turn off cores and the one of 𝐷 𝑗 does not.

RAM analysis

As explained in chapter 2, the consumption that a microservice𝑀𝑖 generates in the
RAM is determined by the number of accesses𝑀𝑖 executes. Since we do not find
potential RAM energy features for filtering operations, the supervisor microservice
may only consider the RAM usage.
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In this way, a microservice that generates a high load in RAM (triggering, for
example, swap operations) is a candidate to be migrated.

The storage device analysis

In a similar way to the NIC, Chapter 2 explains that the storage device’s power
consumption is determined by its transfer rate. However, the filtering opportunity
we find here relates to the component type: 1) SSD or 2) HDD.

The supervisor microservice can implement table 4.3 for filtering. For example,
a scheduling algorithm may migrate a non-persistent microservice𝑀 with anHDD
to a device 𝐷 𝑗 if this last has an SDD. This operation might involve freeing 𝐷′𝑠
hard drive and quickly terminating𝑀 .

Microservice Features Storage Type
Persistent Microservice High Storage Load SSD HDD
NO YES Candidate –
NO NO – Candidate
YES YES Candidate –
YES NO Candidate Candidate

Table 4.3: Correlation between the storage-related microservices and storage features

The Network device analysis

Chapter 2 described that it is possible to know the energy consumption of a network
interface from its different power states. On the other hand, although some authors
perform some NIC power management operations (e.g., automatic D’link green
ethernet[50], rate adaptation[153], etc.), they are not accessible from OS interfaces.
For these reasons, the filtering implemented by the supervisor microservice
considers, on the one hand, the following criteria for a microservice𝑀 :

• Bandwidth consumption.

• The size of𝑀 , which involves migration cost.

• The size of the data coupled to𝑀 .

• The load generated by links from𝑀 to other microservices.
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On the other hand, to establish the relation with the variables above, the super-
visor microservice considers the following operations:

• Data migration: This operation depends on the degree of coupling of𝑀 with
its data.

• Microservice duplication: Useful for load balancing when it is due to foreign
connections.

• Microservice migration.

Thereby, the supervisor microservice uses table 4.4 to implement microservice
filtering considering the devices’ NIC. For example, suppose a device 𝐷𝑖 executes
a persistent microservice𝑀𝑖 that occupies 500𝑘𝑏 and saturates more than 90% of
the 𝐷𝑖 NIC’s capacity. The scheduling algorithm may try to move it, as the first
operation, to another device that does not depend on the battery or has a better type
of network card. Suppose now that𝑀𝑖 is non-persistent, occupies 1Gb, and does
not saturate the 𝐷𝑖 bandwidth. The algorithm, in this case, may avoid scheduling
𝑀𝑖 .

In future works, we will analyze different network interfaces such as Ethernet,
Wifi, or 5G.

It is important to remember that, as we describe in section 4.3.5, we define the
term “high” as exceeding a threshold based on the characteristics of each device.
This threshold must be set manually before applying the scheduling algorithm.

So far, we have explained the operation and the tools that Kaligreen offers to
execute distributed scheduling algorithms. Among these tools, the supervisor
microservices can analyze the state of its device, build descriptor vectors, nego-
tiate with peers, and perform scheduling operations. It also manages a list with
the metadata of the running microservices, which can be filtered, if necessary, in
descriptive tables. The purpose of these tables is to improve the scheduling process.
These relate the microservices execution characteristics with hardware components
capabilities or possible migration operations.
In the next section, we explain one of the cornerstones of our proposal: A

distributed algorithm based on distributed multidimensional data structures and
Kaligreen tools.
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Microservices’ Features in 𝑫 𝒊 Scheduling operations

Persistent
MS

High
MS
size

High
Bandwidth

Load

High load
generated
by the MS
connections

High
data
size

MS
Migration

MS
Duplication

MS Data
Migration

YES YES YES YES YES Candidate Candidate –
YES YES YES YES NO Candidate Candidate Candidate
YES YES YES NO YES Candidate Candidate –
YES YES YES NO NO Candidate Candidate Candidate
YES YES NO YES YES – Candidate –
YES YES NO YES NO – Candidate Candidate
YES YES NO NO YES Candidate Candidate –
YES YES NO NO NO Candidate Candidate Candidate
YES NO YES YES YES Candidate Candidate –
YES NO YES YES NO Candidate Candidate Candidate
YES NO YES NO YES Candidate Candidate –
YES NO YES NO NO Candidate Candidate Candidate
YES NO NO YES YES Candidate Candidate –
YES NO NO YES NO Candidate Candidate Candidate
YES NO NO NO YES Candidate Candidate –
YES NO NO NO NO Candidate Candidate Candidate
NO YES YES YES YES – – –
NO YES YES YES NO – – –
NO YES YES NO YES Candidate Candidate –
NO YES YES NO NO Candidate Candidate Candidate
NO YES NO YES YES – Candidate –
NO YES NO YES NO – Candidate Candidate
NO YES NO NO YES – – –
NO YES NO NO NO – – –
NO NO YES YES YES Candidate Candidate –
NO NO YES YES NO Candidate Candidate Candidate
NO NO YES NO YES Candidate Candidate –
NO NO YES NO NO Candidate Candidate Candidate
NO NO NO YES YES – – –
NO NO NO YES NO – – Candidate
NO NO NO NO YES Candidate Candidate –
NO NO NO NO NO Candidate Candidate Candidate
Table 4.4: Correlation between the network-related microservices features

and middleware operations
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4.4 An energy-saving approach: Understanding
microservices and devices as multidimensional
entities

In Chapter 3, we explained various scheduling approaches used by scientists and
well-known tools. On the one hand, these techniques can be executed in different
deployment levels such as cloud or grid. On the other hand, they can have different
objectives, such as quality of service assurance, high availability, scalability, or
energy savings. In terms of the latter criterion, most of the authors we analyzed do
not consider the characteristics of each component in depth. In addition, they base
their proposals on learning techniques, centralized migration algorithms, or the
treatment of mathematical functions.
In our case, we believe that multidimensional data structures allow hav-

ing a clear and updated view of an entire system. With them, we can index the
current data of the average consumption of the software components, loads of
the devices’ hardware elements, their energy-saving capacities, the devices‘ geo-
graphical positions, the battery status, etc. Then, for scheduling purposes, we can
perform (re)insertions, deletions, and range searches at optimal computational cost
depending on the multidimensional structure we choose.
It is important to say that our approach is abstract. Researchers can select

different data structures compatible with centralized, non-centralized, or hybrid
approaches at any level of deployment (cloud, grid, etc.). In this way, they will be
able to execute various scheduling heuristics analyzing and optimizing as many
variables as necessary.

In this thesis work, we implement this idea for the case of decentralized networks
usingKaligreen. Our algorithm identifies “ideal” host candidates for microservices’
execution and applies runtime scheduling operations (migration or duplication) to
reduce energy consumption. To do this, an overlay called MAAN (Multi-Attribute
Addressable Network)[23] allows us to interpret a decentralized network as a
multidimensional resource (capacity-demand) space, which supports range queries
in a logarithmic quantity of hops.
We useMAAN to contrast the microservices’ requirements and the hardware

availability that each device has. Thereby, in a certain period or under certain cir-
cumstances (i.e., battery problems, overload, etc.), one device running microservices
can:

• Map them in terms of their execution requirements (i.e., CPU frequency,
RAM operations, Network rate, and disk speed),
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• Select an ideal microservice𝑀 to be moved or duplicated,

• Find ideal peer(s) that meet the𝑀 requirements in an optimal computational
complexity, and

• Negotiate the migration or duplication of𝑀 considering energy consumption
and QoS criteria.

Before explaining this approach in detail, it is first necessary to understand the
concept and operations of multidimensional spaces. We detail this in the following
section.

4.4.1 Multidimensional spaces
Data management is a big concern in computer science. For this reason, some
structures allow modeling data sets as spaces with as many dimensions as the
data sets have characteristics. They allow data insertions, search, and recovery at
efficient operation costs. For example, all binary-based trees like AVL, RedBlack,
and B* perform one-dimensional data management operations in 𝑂 (𝑙𝑜𝑔(𝑁 )) for
the average case. At the same time, hash-based structures do the same in 𝑂 (1) for
the best case.
However, these operations become more complicated with the increment of

dimensions (data characteristics). Several solutions based on metrics (defined by
distance functions) and-or n-dimensional spaces deal with this problem. They can
manage multi-dimensional data sets from the viewpoint of 1) The distances among
its elements[28] (e.g., BKT, BT, or LAESA) or 2) the abstraction of the universe in
which they exist[81] (e.g., K-D-Tree, R*tree or Z-ordering).

All these data management approaches allow, on the one hand, to process queries
based on a single characteristic/dimension to obtain a single element. On the other
hand, they also retrieve all data that meet various criteria in a specific range or
region. Furthermore, depending on the structure heuristic, they operate from the
viewpoint of one particular element or the viewpoint of the entire universe. For
example, while BKT organizes the elements from a centroid-element, the RTree
models all the data universe in a rectangle-based heuristic.

Edgar Chavez et al.[28] describe the possible queries in multidimensional metric
spaces, which are also applicable in spatial access methods.

• Range query (𝑞, 𝑟 )𝑑 . Retrieve all elements which are within distance 𝑟 to 𝑞.
This is, {𝑢 ∈ 𝑈 | 𝑑 (𝑞,𝑢) ≤ 𝑟 }.
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• Nearest neighbor query 𝑁𝑁 (𝑞). Retrieve the closest element to 𝑞 in U. This
is, {𝑢 ∈ 𝑈 | ∀𝑣 ∈ 𝑈 ,𝑑 (𝑞,𝑢) ≤ 𝑑 (𝑞, 𝑣)}.

• K-Nearest neighbor query 𝑁𝑁𝑘 (𝑞). Retrieve the 𝑘 closest elements to 𝑞 in U.
This is, retrieve a set𝐴 ⊂ 𝑈 such that |𝐴| = 𝑘 and ∀𝑢 ∈ 𝐴, 𝑣 ∈ 𝑈 −𝐴,𝑑 (𝑞,𝑢) ≤
𝑑 (𝑞, 𝑣).

Our first structure implements a multidimensional space of hardware resources
for a microservices environment. In this space, we can perform energy-savings
strategies considering as many hardware features as possible (i.e., capacity, use
of special features, etc.). This way, for a microservice𝑀𝑖 𝑗 executed in a device 𝐷𝑖
generating a load 𝐿 and an energy consumption 𝐸, it is possible to find a device 𝐷′
that: 1) has at least availability of resources 𝐶 , in such a way that 𝐶 ≥ 𝐿, and 2) the
energy consumption 𝐸′ generated by𝑀 in 𝐷′ is less than 𝐸 because of final load or
particular hardware’s characteristics of 𝐷′.

The following section will explain our hardware resource space and its features.

4.4.2 The multidimensional resources space 𝑼

Managing microservices in a decentralized network environment is challenging.
Operations such as load balancing, scheduling, microservices discovery, or energy-
saving are difficult to analyze without a central entity. That is because this central
entity makes all information about the state of a system readily available.
However, as we explained with Kaligreen, we believe that it is also possible

to perform scheduling algorithms by intelligently organizing the devices of a P2P
network for opportune negotiations. Herein, a helper seeker (see section 4.3.4),
on the one hand, can migrate microservices to another peer to decrease its load
and-or save energy. For his part, a resource provider can even proactively offer
resources to other peers to process microservices more frugally.

Nevertheless, for a device to find an "ideal" peer to trade with is still a problem.
That is whymultidimensional spaces are the cornerstone of our work. Depending

on the scheduling strategy, these can be built to manage different data types. Let
us define some instances of this relation, considering heterogeneous devices as
indexable elements.

• Index current power consumption to negotiate load: In the space, devices can
search for peers with a certain power consumption value in their components.
Then, to migrate or duplicate microservices, a device may evaluate candidates
based on their hardware resources‘ load (availability).
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• Index physical positions to trade power consumption: Here, devices may
search for physically close peers as candidates. Then, their evaluation for mi-
croservices scheduling would be done considering energy criteria (hardware
components’ capabilities and load, battery status, and others.).

• Index current load of hardware components to negotiate power consumption:
Here, devices can search for peers able to run a certain microservice. Then
the candidates will be evaluated by energy criteria.

Going further, we can even combine criteria to execute mixed queries. For
example, a device could query a heterogeneous space to find all physically close
candidates that are not battery dependent, that have a given current power draw,
and whose RAM is not saturated.
In our case, we randomly decided to implement first the space described in the

third point above, leaving others for future works. Thereby, our approach abstracts
and queries hardware resources in a 4-dimensional space. It contains the devices’
available capabilities in CPU frequency, RAM capacity, NIC rate, and storage
device speed. We show this in the definition 4.1.

▶ Definition 4.1 (The space U ). Given a set of devices connected to a shared
network, we define a space U made up of 4 dimensions/axis: 1) CPU frequency
in GHz, 2) RAM capacity in MB, 3) Network transfer rate in MB/s, and 4)
Storage speed inMB/s. Devices are elements ofU in terms of their current-average
hardware resources’ availability.

◀

Queries in U allow a device to know which peers have sufficient resources to
run specific microservices in an optimal time. Then, using the Kaligreen’s tools,
the device may select the peers with outstanding features to perform migration-
duplication operations (e.g., a low CPU requirement microservice and a device
whose CPU can turn off some cores). It is important to say that U can consider
many more variables such as special hardware features or other functional as-
pects. However, we consider them at the candidate selection time in this first
implementation.
The following section discusses some distributed data structures which allow

devices and processes to be indexable nodes. The section describes centralized and
decentralized approaches as well as our choice to implement U.
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4.4.3 Multidimensional P2P structures

As previously mentioned, this implementation seeks to take advantage of some fea-
tures offered by decentralized network environments for scheduling. For instance,
the fact that no single central unit realizes decision-making allows devices to be
autonomous. Each peer can analyze its load or energy circumstances to perform
ad-hoc scheduling operations (i.e., negotiation, load balancing, query, etc.) Thus,
in addition to enabling an entirely dynamic system, this approach allows us to
eliminate a single point of global failure.

However, for a device to find other peers to negotiate or request information, it
must belong to a standard comprehensible system. For this reason, several network
overlays enable these operations in an efficient number of hops. These abstract the
network deployment as data structures whose nodes and information are indexed
through the same universe of metadata. Some notable examples are 1) an ordered
circular list iterated through hash techniques[206][134], 2) a binary tree that can be
explored through bit space and logical operations like XOR[157], and (3) a linked list
of nodes that can search for elements by making smart hops in the structure[156].

Nevertheless, there are circumstances where a structure that supports more than
one criterion (dimension) is needed. For example, in our space, we query a p2p
device network to obtain the best candidates in terms of CPU,RAM, network, and
storage availability to process a microservice. For that, some existing approaches
implement multidimensional data structures such as Rtree[66] or KD Tree[83] in a
distributed network. As in the original structure, they also keep the parent-child
relation of the tree nodes in the network devices.

All these structures allow multidimensional range querying efficiently. However,
balancing or restructuring operations when inserting or deleting nodes may be
expensive. They could involve the participation of many devices in the network
that will perform complex data movements.

On the other hand, other approaches seek to partition multidimensional spaces
into more independent structures. For example, Znet[196] divides the space using
Z-order curves. Its creators use the devices of the p2p network to form a Z-zone-
based skip graph, where each device stores part of the description of a rectangular
zone. In this way, when a query arrives at a node, it first verifies if the element (or
the range) belongs to the zone it saves by exploring the highest element of its list.
If it cannot find it, it derives the search to the node closest to the destination area,
descending one level each time the search gets closer to its destination. Figure 4.3
shows the mapping procedure.
Another interesting strategy is the one proposed by Cai et al.[23]. MAAN
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Figure 4.3: Space partitioning and mapping: (a)Z-curves at different orders, (b)
corresponding partition tree[196]

generalizes the Chord[207] approach to deploy a multidimensional space in as
many circular devices lists as the space has dimensions.
In our case, we have chosen MAAN to implement our space U. This deliber-

ate election is because this thesis does not study the (dis)advantages of different
overlays. However, we will explore other structures in future works.

Before explaining the structure of MAAN, it is necessary to explain the Chord
system. We do this in the next section.

4.4.4 The Chord system

Chord deploys an ordered circular list of devices organized in a clockwise fashion
according to an ID. Furthermore, using the same IDs’ family, the system also
identifies the elements to look for (i.e., data, processes, and others.).

For their part, each device (node) keeps a table of addresses called “Finger table”.
This structure has as many elements as the bit string length representing the
system’s highest possible ID. For instance, in Figure 4.4, the system supports up to
63 (111111 in the binary system) devices. Therefore, the devices’ finger tables can
contain up to 6 elements.

Next, each index of a device’s table is defined by its ID added to 2𝑖 , where 𝑖 goes
from 0 to the length of the bit string above. This way, every time an element E
is searched through a node N, N looks for the E’s index successor in its finger
table. That is, the highest possible index that does not exceed E’s ID. For example,
suppose that in the topology of figure 4.4, the element “22” is searched through
node “8”. The latter will find that element “22” should be in node “21” since it
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Figure 4.4: (a) Finger table entries for node 8. (b) Path of a query for key 54 starting at
node 8[207]

is stored in the index “16” (n8+8), which is the highest possible ID that does not
exceed “22” (otherwise, N8+16 = 24). In this way, the data structure used to search
for elements is a consistent hashing table.

On the other hand, becauseChordmanages an ever-changing network of devices,
nodes can join and leave at any time. The following section explains how each
join-leave operation achieves said dynamism.

The join operation

There are several procedures a node 𝑛𝑁 and other devices in the network must
perform in order for 𝑛𝑁 to join the Chord system.

First, the entering node nN gets assigned a unique ID using a SHA-1 function that
hashes the 𝑛𝑁 ′𝑠 IP address. Then, an external mechanism guarantees a connection
between 𝑛𝑁 and a Chord network pre-existent node. Here, the latter is found by
executing a query inside the network to find a node representative of an immediate
successor of 𝑛𝑁 : 𝑛𝑁 1.

The knowledge of𝑛𝑁 1 consists of an immediate circle predecessor node reference
and a finger table. 𝑛𝑁 then uses this knowledge to assign its circle predecessor
reference to the one of 𝑛𝑁 1 and fill its own finger table by copying the one of that
same node. Finally, the predecessor reference of 𝑛𝑁 1 is re-set to 𝑛𝑁 .
Once 𝑛𝑁 has been initialized, an update must be issued by walking counter-

clockwise along the circle to update previous nodes’ finger tables. The goal is to
acknowledge 𝑛𝑁 ′𝑠 existence preserving the finger tables’ consistency. This update
is done by assigning 𝑛𝑁 ′𝑠 ID to the appropriate finger table references of each
predecessor node 𝑃 if both of the following conditions are met.

93



Chapter 4 Multidimensional entities for energy savings

1. 𝑃 precedes 𝑛𝑁 by at least 2𝑖−1, where 𝑖 is delimited from 1 to the length of
finger tables.

2. The last finger entry of node 𝑃 succeeds 𝑛𝑁 .

This update operation is sustained until a previous node 𝑃 whose 𝑖𝑡ℎ finger
precedes 𝑛𝑁 is reached. Finally, the responsibility of corresponding keys gets
delegated from 𝑛𝑁 1 to 𝑛𝑁 .

The leave operation

For a node 𝐿𝑁 to leave the network, it first informs its predecessor node 𝑝𝐿𝑁 that
the 𝐿𝑁 ′𝑠 immediate successor in the circle, 𝐿𝑁1, is now its immediate successor.
Then, the circle predecessor reference of 𝐿𝑁1 is set to 𝑝𝐿𝑁 . Next, an update
operation similar to the one described for the join operation is performed, but using
the 𝐿𝑁1′𝑠 ID. This last operation aims to keep the finger tables of nodes located
counter-clock along the circle updated. Finally, the responsibility for 𝐿𝑁 ′𝑠 keys is
delegated to 𝐿𝑁 1.

4.4.5 MAAN
As mentioned above, MAAN generalizes the Chord approach to support n- di-
mensional and range queries. To begin, consider a space whose nodes have several
attributes to index. On the one hand,MAAN uses an SHA-1 hashing function to
assign an𝑚 − 𝑙𝑒𝑛𝑔𝑡ℎ bits identifier to each node. On the other hand, it implements
a locality preserving hashing function that, unlike Chord, assigns to each node’s
attribute an identifier in the𝑚 − 𝑏𝑖𝑡 space according to its value (the same space
shared by the𝑚 − 𝑏𝑖𝑡𝑠 node identifiers specified before). The latter is crucial be-
cause the SHA-1 function would destroy the locality of keys since MAAN seeks to
pair numerical attribute values to them instead of objects’ names. That allows the
execution of two different multi-attribute query resolution approaches that would
not be possible within Chord’s original system:

1. The iterative approach: It consists of a query originated in a node 𝑁 . That
is composed of an 𝑀 number of following sub-queries according to the 𝑛
number of attribute dimensions. The query returns a series of candidate lists
later intersected in 𝑁 to find the fittest candidates.

2. The single attribute query resolution: It aims to find a set of candidates 𝑋 by
performing queries fulfilling the conditions of a single dominating attribute.
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Then, sub-queries are applied to 𝑋 to obtain a sub-set of candidates whose
members meet the conditions of the other attributes. Finally, the origin node
𝑁 selects the fittest candidate by correlation.

In MAAN, join and leave operations are the same as the original Chord system.
The following section explains how we tuneMAAN to implement our multidi-

mensional resource space.

4.4.6 Implementing the space of resources U in MAAN
As previously described in section 4.4.2, we index device resources in the U space
considering the availability of their processing-related capabilities. With that, we
aim to find ideal resources to migrate or duplicate microservices and save energy
efficiently.

Resources to index

According to the definition of U, four different dimensions/axes relate to four
different hardware resources: (1) CPU frequency in GHz, (2) RAM capacity inMB,
(3) network transfer rate inMbps, and (4) storage speed inMBps. For that, we
useMAAN to index each device’s resource availability values on the corresponding
U axis.

The join operation

When a device intends to join ourMAAN network, four different logical nodes are
created in four different dimensions (axis) of the U space. These nodes follow the
same operations described in section 4.4.4 for the Chord system but with some
technical differences.
In our approach, we lack an IP address identifier for each device. Instead, we

created a locality preserving formula that, for any dimension, transforms a numeri-
cal value representing the availability of a resource into an ID coherent to the ID
space available. Formula 4.1 states a superior limit for numerical entry values and
a maximum number of nodes supported. Thus, the resource availability value 𝑉 is
multiplied by the maximum number of supported (at any time) nodes 𝑁 . Then, the
product is divided by the maximum device’s resource limit value 𝑆𝐿, where 𝑆𝐿 and
𝑁 values are relative to each dimension’s constraints.

𝐼𝐷 =

⌈
𝑉 ∗ 𝑁
𝑆𝐿

⌉
(4.1)
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This model allows us to preserve a unique universe of integer IDs that can be
assigned to nodes according to their dimensions. Thereby, in our approach, the
finger tables contain records in pairs of𝑚−𝑏𝑖𝑡 space identifiers and node references.
These elements grant us the execution of n-dimensional queries by applying an
iterative approach likeMAAN’s original procedure.
On the other hand, it is necessary to say that nodes with a repetitive value for

any attribute can join the network resulting in an identical ID assignment as a
pre-existing node. That would result in a collision causing the entering node to
be placed in the circle between said pre-existing node, further referenced as twin-
node, and its successor. We solve that in the following way. When a twin node 𝑇
joins the network and finds a node 𝑟𝑁 identified with its same 𝐼𝐷 , it enters a twin
list of 𝑟𝑁 , being 𝑟𝑁 the root of the list. Herein, each member has both predecessor
and successor twin-node pointers.

The leave operation

When a device intends to leave the network, our structure performs mostly the
same operations as the original Chord’s system but handles the twin nodes as
an added feature. For any twin list with a root node 𝑟𝑁 , if 𝑟𝑁 intends to leave the
network, its first twin successor 𝑇𝑁 gets assigned as the new 𝑟𝑁 . Then, 𝑟𝑁 copies
in 𝑇𝑁 its circle predecessor reference and its finger table. On the other hand, if a
node inside the 𝑟𝑁 ′𝑠 twin list leaves, the system removes it from the said list and
resets the concerning predecessor and successor twin-node pointers.

Data frames and the reindexing process

Section 4.4.6 explained that our structure indexes nodes based on the availability of
their resources. However, the latter is very dynamic in real environments since it
can be altered by the OS algorithms, the running applications’ behavior, etc. For
that reason, we implement the concept of “data frames” in our approach.

A data frame is a FIFO-like collection of availability measurement values related
to a resource. Each supervisor microservice implements four data frames for
the four axes of the 𝑈 space. The implementation considers the structure size,
frequency of data recollections and insertions, and run-time modifications. Then,
the supervisor microservice uses the average of the data frames values and the
formula 4.1 to find its resource’s corresponding IDs. That allows us to control
the frequency with which nodes get dynamically reindexed into our MAAN-based
approach.
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Querying for resources

In order to perform queries, we follow theMAAN’s iterative approach but consider
two new operations to treat any candidate list 𝑋 .

To begin, we implement a “candidate lock” function to prevent resource selec-
tion collisions. That phenomenon occurs when several query resolutions select
the same node candidate as the fittest one. Thereby, simultaneous microservices
migration/duplication operations may occur towards this node, causing overload
and over energy-consumption conditions.
A device 𝐷 applies candidate lock to each member 𝑥 ∈ 𝑋 , meaning that they

can be candidates to exclusively one query at a time. If 𝑥 was already taken as a
candidate by another peer, 𝐷 removes it from 𝑋 (see section 4.3.4).

On the other hand, the system must avoid the “circular saturation” phenomenon.
That occurs when 𝐷 migrates its microservices to a candidate 𝑥 , causing in it an
overload condition. The latter may trigger in 𝑥 mechanisms to mitigate thermal
energy elevation (such as a fan) and-or initiate chain migrations in the system
resulting in further network strain.
For that, the supervisor microservices implement methods that enable pro-

jecting the future percentage of each resource consumption from numeric values.
In this instance, these methods are approached in the scheduling algorithm, which
must be aware of the system’s stability.

4.4.7 The Scheduling algorithm

Once a device is inserted into our MAAN’s network configuration where the
space 𝑈 is deployed, its supervisor microservice starts executing a scheduling
algorithm (see section 4.3.3).
This section explains our scheduling algorithm that we have implemented in

this thesis. That considers running microservices deployed in our𝑈 space.
As we said in the previous section, it implements projection functions for each

hardware component. That allows devices to know the load and power consumption
they would generate if they perform microservices migrations or duplications.

The CPU Projection

Chapter 2 explained that theCPU power consumption is found from its capacitance,
frequency, and voltage. However, heterogeneity must be considered when cross
estimating (estimating from another device). That is, the frequency of a CPU
executing a process is not necessarily the same as for another.
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For that reason, for a microservice 𝑀 , we deduce the number of 𝑀′𝑠 program
instructions considering the ones that the CPU can execute per unit of time. We
can get this information from the /proc/cpuinfo file).
Thereby, if (1) 𝐷′𝑠 CPU is capable of executing 𝐼𝐷 program’s instructions in a

time 𝑇 1, and (2) M consumes 𝑋% of this component frequency 𝑋𝑀𝐷
in 𝑇 1, then𝑀

executes 𝐼𝑀𝐷
program’s instructions in a proportional way too:

𝐼𝑀𝐷
=
𝑋𝑀𝐷
× 𝐼𝐷

100
(𝑇 1) (4.2)

Then, for another device, 𝐷2, it is possible to deduce the percentage 𝑋𝑀𝐷2 of its
CPU load if it would execute𝑀 . For that, we consider the number of instructions
𝐼𝐷2 in 𝑇 1 that 𝐷2 can execute:

𝑋𝑀𝐷2 =
𝑋𝑀𝐷
× 𝐼𝐷

𝐼𝐷2
(𝑇 2) (4.3)

Finally, the energy that 𝐷2′𝑠 CPU would consume to process 𝑀 , 𝐸𝑀𝐷2 , can
be calculated following the relation shown in equation 2.1; but considering the
proportions that we explained in the last two paragraphs.

𝐸𝑀𝐷2 =
𝑋𝑀𝐷
× 𝐼𝐷 ×𝐶𝐷2 ×𝑉 2

𝐷2 × 𝐹𝐷2
100 × 𝐼𝐷2

(𝑇 ) + 𝑓 𝑎𝑛𝑠𝑠 (𝑡), 𝑤ℎ𝑒𝑟𝑒

𝐶𝐷2 =
0.7 ×𝑇𝐷𝑃𝐷2
𝑓𝑇𝐷𝑃𝐷2 ×𝑉 2

𝑇𝐷𝑃𝐷2

, 𝑎𝑛𝑑

𝑓 𝑎𝑛𝑠𝑠 = 𝐽∀𝐾 (𝑓𝑖 > 𝑓𝑘 > 𝑓 𝑗 )

(4.4)

Equation 4.4 allows obtaining from 𝐷 an estimation of the energy that 𝐷2′𝑠 CPU
would consume if it executes𝑀 . Thus, in a negotiation process, this consumption
can be analyzed before a migration or duplication operation.

It is important to remember that the formula considers the fan’s consumption at
a speed 𝑠 . Said speed is related to a certain processor frequency 𝐹𝑘 .

The RAM Projection

In chapter 2, we explained that the energy consumption of the RAM is divided
into both active and background consumption. In addition, we also explained that
the number of operations executed by RAM is strongly related to the CPU’s work.
Finally, the last section described a method to represent the work differences among
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several CPUs. Therefore, we consider implicit the heterogeneity of the RAM of
various devices in terms of said number of operations.

Thereby, to find the energy consumption that a microservice 𝑀 running in 𝐷
would produce in a device 𝐷′2𝑠 RAM, we use the formula 4.5.

𝐸𝑎𝑐𝑡 = 𝐸𝐵𝐾𝐷2 × (𝑓 𝑎𝑐) + 𝑁𝑅𝐷 × 𝐸𝑅𝐷2 × (𝑓 𝑎𝑐2) + 𝑁𝑊𝐷
× 𝐸𝑊𝐷2 × (𝑓 𝑎𝑐3) (4.5)

It is important to say that the factors of the formula 4.5 are the same as the models
2.2 and 2.3. Nevertheless, we have considered slight random differences in each
device’s 𝐸𝐵𝐾 , 𝐸𝑅 , and𝑊𝑅 for our experiments (𝑓 𝑎𝑐1, 𝑓 𝑎𝑐2, and 𝑓 𝑎𝑐3 multipliers).
We did this since the model’s original values were obtained from linear regression
and measurement operations (see section 2.4.3) on a single device, not representing
heterogeneity criteria.
In future works, we will look for more precise ways of projecting the RAM’s

energy consumption

The NIC Projection

Chapter 2 describes two ways to find the energy consumption of the NIC. One that
studies its load and another based on the number of packages sent or received.
Thus, to calculate the energy consumption that𝑀 running in 𝐷 would produce in
the 𝐷′2𝑠 NIC, we use models 2.7 and 2.8 but in terms of 𝐷2:

• Analyzing 𝑀 from the average transfer rate it generates: This projection
approach considers (1) the 𝐷2′𝑠 NIC power consumption in its active state,
𝑊𝑢𝐷2 , (2) the average load that 𝑀 produces in 𝐷′𝑠 NIC, 𝐿𝑀𝐷

, and (3) the
maximum transfer capacity of 𝐷2, 𝐿𝑀𝐴𝑋𝐷2 .

𝐸𝑁𝐼𝐶𝐷𝑀
=(𝑊𝑢𝐷2 ×

𝐿𝑀𝐷

𝐿𝑀𝐴𝑋𝐷2

) (𝑇𝐷), (4.6)

• Analyzing𝑀 from the packets it sends or receives: This projection approach
considers (1) the𝑊𝑆𝐷2 and𝑊𝑅𝐷2 values to represent 𝐷2′𝑠 NIC power con-
sumption when sending and receiving packets, (2) the number of packets
sent (𝑁𝑆𝑀𝐷

) or received (𝑁𝑅𝑀𝐷
) in 𝐷 , (3) the respective average packets’ size

(𝑆𝑥𝐷 ) in 𝐷 , and (4) the corresponding total transfer speed (𝐿𝑀𝐴𝑋𝑥𝐷2
) of 𝐷2.

𝐸𝑁𝐼𝐶𝐷2𝑀
=𝑊𝑆𝐷2 ×

𝑁𝑆𝑀𝐷
× 𝑆𝑠𝐷

𝐿𝑀𝐴𝑋𝑠𝐷2

+𝑊𝑅𝐷2 ×
𝑁𝑅𝑀𝐷

× 𝑆𝑟𝐷
𝐿𝑀𝐴𝑋𝑅𝐷2

, (4.7)
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The Storage Device Projection

As Chapter 2 explained, we propose energy models for the storage device similar
to those we use for the NIC. Thereby, we use the same arguments as the previous
section for the storage-device energy projection approach.
Formula 4.8 considers (1) the 𝐷2′𝑠 storage-device power consumption in its

active state,𝑊𝑢𝐷2 , (2) the average load that𝑀 produces in 𝐷′𝑠 storage device, 𝐿𝑀𝐷
,

and (3) the maximum storage rate capacity of 𝐷2, 𝐿𝑀𝐴𝑋𝐷2 .

𝐸𝐻𝐷𝐷𝑀
=(𝑊𝑢𝐷2 ×

𝐿𝑀𝐷
× 𝑓 𝑎𝑐

𝐿𝑀𝐴𝑋𝐷2

) (𝑇𝐷), (4.8)

So far, we have explained the projection operations for each U -space resource.
The following sections explain each device’s scheduling algorithms, considering
these operations.

4.4.8 The scheduling algorithm: Analyzing microservices in
the U space

Our algorithm considers a device-microservices deployment with the following
characteristics:

• All devices are indexed in our MAAN configuration, which implements the
U space.

• Each device is indexed on the four edges of U considering its CPU, RAM,
NIC, and storage device availability.

• A device 𝐷 can run one or several microservices [𝑀𝐷𝑖
...𝑀𝐷 𝑗

], which have
initial resource requirements for CPU, RAM, NIC, and storage rate.

• Each microservice is identifiable by a PID.

• The OS of each device executes a single-priority round-robin scheduling
algorithm. Thus, competing microservices obtain resources proportionally
to what they request.

Then, each device 𝐷𝑖 executes the scheduling algorithm 3, extending the Kali-
green helper seeker procedure (see algorithm 1). Thus, each supervisor mi-
croservice considers that a device is in an emergency state when any resource
load exceeds 85% of its capacity. Furthermore, this entity also considers a device in
an underload state when its resources (all of them) have a load under 5%.
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Algorithm 3: Help seeker for a device 𝐷𝑖 indexed in U
1 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 ← 𝐾𝑎𝑙𝑖𝑔𝑟𝑒𝑒𝑛𝑉 2𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔();
2 𝑠𝑜𝑟𝑡𝐵𝑦𝐾𝑎𝑙𝑖𝑔𝑟𝑒𝑒𝑛𝑉 1𝑓 𝑎𝑐𝑡𝑜𝑟𝑠 (𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡);
3 𝑠𝑖𝑧𝑒 ← 𝑠𝑖𝑧𝑒 (𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡);
4 while isEmergencySituation() or isUnderLoadSituation() do
5 𝑀𝑖𝑎 =𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 [𝑠𝑖𝑧𝑒];
6 𝑀𝑖𝑏 =𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 [𝑠𝑖𝑧𝑒/2];
7 𝑀𝑖𝑐 =𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 [0];
8 if MoveMicroservice(𝑀𝑖𝑎 ) = true then
9 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 .𝑑𝑒𝑙𝑒𝑡𝑒 (𝑀𝑖𝑎 );

10 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 − 1;
11 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
12 else if MoveMicroservice(𝑀𝑖𝑏 ) = true then
13 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 .𝑑𝑒𝑙𝑒𝑡𝑒 (𝑀𝑖𝑏 );
14 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 − 1;
15 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
16 else if MoveMicroservice(𝑀𝑖𝑐 ) = true then
17 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝐿𝑖𝑠𝑡 .𝑑𝑒𝑙𝑒𝑡𝑒 (𝑀𝑖𝑐 );
18 𝑠𝑖𝑧𝑒 = 𝑠𝑖𝑧𝑒 − 1;
19 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 ;
20 else
21 𝑏𝑟𝑒𝑎𝑘 ;

22 if loadEmpty(allResources) then
23 𝑠𝑙𝑒𝑒𝑝 ();
24 𝑤𝑎𝑖𝑡 ();

Whenever a device (D) enters an emergency or underload state, the algorithm
tries to migrate microservices. To do that, it first uses the KaligreenV2 tables
(section 4.3.5) to select a list of migratable microservices. Then, it sorts that list
using Kaligreen’s consumption factors approach. Finally, the algorithm attempts
to move either the heaviest microservice, the middle-positioned, or the lightest
one, recomposing the list in each iteration. We have considered only these three
“pertinent” possibilities to avoid overwhelming the network with repetitive queries.

If 𝐷 does not have microservices running (after the underload state), it enters
sleep mode to save energy.
For its part, algorithm 4 describes the migration function. It looks for device

candidates in the MAAN-based structure for each resource requested by the
microservice𝑀 . Then, it finds a single metadata list of devices capable of running
𝑀 . If the candidates are not locked and simultaneously are compatible with some
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KaligreenV2 criteria, the method projects the power consumption considering
the approaches explained in section 4.4.6. The function ends by migrating𝑀 to the
device where it will consume the least amount of power.
Algorithm 4: MoveMicroservice(M)
1 𝑉 ← 𝑏𝑢𝑖𝑙𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝑀);
2 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑠 ← 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝐹𝑖𝑛𝑑𝐼𝑛𝑈 (𝑉 );
3 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 ← 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 (𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡𝑠,𝑉 );
4 foreach 𝐷𝑙 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 do
5 𝑠𝑒𝑛𝑑𝑉𝑒𝑐𝑡𝑜𝑟 (𝑉 , 𝐷𝑙 );
6 𝐶𝑂𝑁𝐹𝐷𝑙 ←𝑊𝑎𝑖𝑡𝐹𝑜𝑟𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑅𝑒𝑝𝑜𝑛𝑠𝑒 (20);
7 𝐷𝑙𝐾𝑎𝑙𝑖𝑔𝑟𝑒𝑒𝑛𝑉 2 = 𝑖𝑠𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 (𝐷𝑙 , 𝑀);
8 if 𝐶𝑂𝑁𝐹𝐷𝑙 and 𝐷𝑙𝐾𝑎𝑙𝑖𝑔𝑟𝑒𝑒𝑛𝑉 2 then
9 𝑙𝑜𝑐𝑘 (𝐷𝑙 );

10 else
11 𝐷𝑒𝑙𝑒𝑡𝑒𝐹𝑟𝑜𝑚𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 (𝐷𝑙 );

12 if isEmpty(CandidateList) then
13 return false;

14 foreach 𝐷𝑙 in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝐿𝑖𝑠𝑡 do
15 𝑐𝑝𝑢𝑃 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝐶𝑃𝑈 (𝑉 );
16 𝑟𝑎𝑚𝑃 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑅𝐴𝑀 (𝑉 );
17 𝑛𝑖𝑐𝑃 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑁 𝐼𝐶 (𝑉 );
18 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑃 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡𝑆𝑡𝑜𝑟𝑎𝑔𝑒 (𝑉 );
19 𝑐 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 (𝑐𝑝𝑢𝑃, 𝑟𝑎𝑚𝑃, 𝑛𝑖𝑐𝑃, 𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝑃);
20 if c < calculateConsumption(cheapestDevice) then
21 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝐷𝑒𝑣𝑖𝑐𝑒 ← 𝐷𝑙 ;

22 𝑚𝑜𝑣𝑒𝑀𝑖𝑐𝑟𝑜𝑠𝑒𝑟𝑣𝑖𝑐𝑒 (𝑀,𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝐷𝑒𝑣𝑖𝑐𝑒);
23 return true;

4.5 Chapter summary and contributions

This chapter presents our distributed scheduling algorithms and the tools they need
to be deployed. Among the latter, our middleware Kaligreen implements resource
analysis and device negotiation operations in each network node. These tools have
allowed us to develop procedures considering various heuristics. For example, from
a design point of view, we have defined various types of microservices, data, and
application graphs. Then, we implemented distributed scheduling using smart
microservice-data selection, simple negotiations, multidimensional spaces, and
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special data structures to schedule them. To the best of our understanding, this is
the first work that approaches distributed scheduling for energy savings in this
way.

The next chapter will describe PISCO, the simulator we have created to execute
and test the architecture and algorithms explained here. This tool allowed us
to define heterogeneous applications, devices, and networks easily. Moreover, it
allowed us to run and evaluate our scheduling algorithms efficiently.
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5 The PISCO Simulator

5.1 Introduction
Nowadays, many architectures for software components (e.g., Docker-Kubernetes,
Kalimucho, etc.) aim to create modular applications efficiently. As described in
chapter 3, these entities are scheduled to optimize variables such as quality of
service, the physical location of devices, load balancing, or energy consumption.

As explained in chapter 4, we propose distributed scheduling strategies for load
balancing and energy savings using intelligent device negotiations and multidi-
mensional data structures. To do that, we use microservice-based applications as
the input to our algorithms and the formulas in Chapter 2 as energy measurement
tools.

This chapter explains PISCO, an innovative simulator to deploy energy-saving
methods in microservices-based networks. We have designed and implemented it
as a deployment and evaluation tool for the techniques described in the previous
paragraph. PISCO enables its users to focus uniquely on scheduling approaches
and their hardware-software repercussions. This way, they don’t need to worry
about low-level network configurations or OS issues to evaluate their methods.

PISCO can deploy and schedule (move, duplicate, start/stop) MS (microservices)
and their dependencies on various devices supporting heterogeneity criteria (MS’s
types, data and restrictions, and devices’ CPU, bandwidth, RAM, Battery, etc.).
Moreover, it manages scheduling algorithms and their repercussions, considering
the following aspects:

• Both the capabilities and the particular characteristics of each device’s hard-
ware component.

• The simple configuration (through a GUI or an API) of centralized (i.e., client-
server), decentralized (i.e., p2p architectures like kademlia[157], chord[206],
or multidimensional systems such asMAAN[23]), or hybrid networks.

• The definition and evaluation (tracking and application of linear regression
techniques) of QoS, energy metrics, and quantity of operations (movements,
duplications, deployments, and deletions) related to an algorithm.
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• The unexpected network circumstances or user strategies consisting of de-
vices appearing, disappearing, turning on, or off.

Finally, PISCO is agnostic and not dedicated to a particular middleware. It can
virtualize an environment controlled by any software that deploys and schedules
microservices. That allows researchers to create any scheduling algorithm and
measure its consequences in the terms they define.

5.2 Methodology
This chapter explains our PISCO simulator’s context, entities, and functioning. To
understand its creation and scope, section 5.3 explains and compares the framework
of several important simulators considering different abstraction levels. Then, to
explain the PISCO’s engine, section 5.4.1 details the simulator entities, which are
typically instances of java objects. Finally, pursuing the same objective, section
5.4.2 explains the operations that our tool supports.

We finish the chapter by explaining the corresponding conclusions and contribu-
tions in section 5.5.

5.3 Existing tools
To understand and evaluate any distributed environment, the scientists may use
modeling tools supporting several appropriate criteria. For example, packet-
oriented simulators allow evaluating network traffic and specific transmission
protocols. Among them, Packet Storm[178], IP WAN Emulator[100], SENS[209],
and Cisco Packet Tracer[34] allow modeling scenarios to evaluate data streaming
techniques and features, latency, data loss and duplication, and others. For its part,
the O-ICN Simulator[3] allows evaluating the network status while modeling a
particular architecture called Information-Centric Networking (ICN). Finally, Green-
Cloud[88] allows understanding of energetic issues at the packet network-protocol
level.
The simulators above are helpful for modeling protocol-oriented scenarios and

studying connection phenomena. However, we consider that these tools cannot
replicate the behavior (i.e., use of resources, application QoS and energy consump-
tion) of service-based architectures, where a higher level of abstraction is needed.

Considering a higher abstraction level, Petr Novotny et al.[173] propose a frame-
work for simulating architectures based onMANET (Mobile ad hoc network) service
networks. It includes service, messaging, and network layers to model services’
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complex message exchange behavior. For this purpose, they consider approaches
like cascading flows of messages in challenging conversations, comprehensive
client-driven workload profiles, and the propagation of faults through services.

This simulator is very efficient in studying services information exchange. How-
ever, it does not consider the energy repercussions of services deployment, nor
does it allow to know the best way to schedule them in a given network.
At the services deployment level, Cloudsim[37] is a complete simulator that

allows modeling service-based architectures with different virtualization policies
(i.e., VMs, containers, etc.) at various CLOUD/GRID layers. It enables the study of
diverse repercussions concerning energy and QoS when managing services. For its
part, DockerSim[171] considers not only strategies at service-based architecture but
also entire packet-level network and protocol behaviors. Furthermore, µqSim[246]
evaluates the execution of microservices deployed with a centralized scheduler,
analyzing their latency, requests, andQoS. This simulator has a power management
engine and handles dependencies between microservices. However, it does not
consider decentralized scheduling or heterogeneity in the execution environment.
Next, the iFogSim[90] simulator offers an approach to ensure QoS and efficient
power management by moving services from the cloud to the network’s edge. For
its part, InterSCity[71] is a robust microservices-based platform that counts on the
InterSCSimulator. It performs load balancing and microservices scheduling while
keeping awareness of power consumption and resource availability.

These simulators are very competent in analyzing scenarios in which services and
containers are deployed. However, we consider that they do not offer a straightfor-
ward way to execute and evaluate distributed algorithms of the level at abstraction
that we propose. That is, considering heterogeneous devices belonging to different
network topologies, building network overlays compatible with multidimensional
structures, analyzing the relation between energy consumption and a defined QoS,
and others.

Table 5.1 shows the characteristics above of some simulators offered by important
scientists. Herein, each letter has the following meaning:

• Feature A. Considers behavior aspects at the connection level (protocols, data
loss, etc.).

• Feature B. Considers energy consumption at connection level (protocols, data
loss, etc.).

• Feature C. Supports microservice deployment in the cloud and local network
environments.

107



Chapter 5 The PISCO Simulator

A B C D E F G H I
PacketStorm X
IPWAN X
PacketTracer X
GreenCloud X X
SENS X
O-ICN X
[Petr Novotny et al. 2016] X X X
CloudSim X X X
DockerSim X X X X
µqSim X X X X
iFogSim X X X X X
InterSCity X X X X X X
PISCO X X X X X X X

Table 5.1: Simulators’ features

• Feature D. Considers special types of microservice management.

• Feature E. Considers energetic issues when operating microservices.

• Feature F. Considers communication phenomena among services.

• Feature G. Considers Microservices dependencies when operating them.

• Feature H. Supports centralized and non-centralized scheduling algorithms,
allowing to model dynamic architectures and energy-QoS criteria easily.

• Feature I. Allows a transparent way of creating custom network overlays
such as multidimensional P2P networks.

For us, it’s important to enable deploying and scheduling modular applications,
focusing mainly on their performance and impact in any distributed environment.
For this reason, table 5.1 shows the philosophy of our simulator. PISCO is strongly
focused on applying both centralized and distributed scheduling algorithms, allow-
ing to study at deployment/execution time the following criteria: 1) The definition,
measurement, and modelization of applications QoS, 2) the workload of each node’s
hardware components, and 3) the energy consumption of a particular device (or
even one/some of its hardware components) as well as of the entire custom network.
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Furthermore, regarding this last point, PISCO also allows studying, simply and
visually, the distributed scheduling considering multidimensional aspects.

Moreover, in our algorithms context, we need a tool capable of deploying net-
work overlays with the same dynamism and multidimensionality as several data
structures. Within these, we also needed the tool to execute and evaluate different
scheduling heuristics dynamically. This dynamism consists in the definition of
heterogeneous devices, software, and topologies. As no tool we explored fulfilled
these functions, we decided to design and develop PISCO.
The next section presents PISCO’s structure, capabilities, and operations.

5.4 The PISCO simulator

To study the “best” way to deploy and schedule distributed applications in custom
networks of heterogeneous devices, we developed PISCO. PISCO is a desktop
and portable java-simulator that can manage (deploy/schedule) any distributed
application in any network architecture (i.e., non-centralized, centralized, multidi-
mensional, horizontal, and others.).
In our simulator context, an application is defined as a directed graph whose

nodes are microservices and edges the connections among them. Moreover, every
application is deployed on a graph of connected devices, where the nodes could
be: (1) devices with heterogeneous characteristics (dependant on batteries, static or
mobile, devices with different network interfaces, etc.) or (2) abstract entities such
as clusters or cloudlets. Furthermore, the device graph’s edges are the network
connections among nodes (ethernet, wireless, 4g, or Bluetooth), which can be: (1)
physically direct (cable or wireless), or (2) logical (through an overlay structure).
Both types of connections allow the transfer rate at which the microservices can
send or receive data from each other.
The following section explains the operation and interaction of each of the

elements of both graphs.

5.4.1 The simulator entities

Entities in PISCO are instances of Java classes. To understand their interaction,
Figure 5.1 shows a condensed version of our simulator’s class diagram. That schema
is deeply explained in the following sections.
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Figure 5.1: PISCO’s condensed class diagram

Device

In PISCO, a device is any processing entity identifiable by a unique ID. By default,
it supports desktop computers, laptops, and smartphones. Moreover, users can also
define and configure their own type of device.

Each device has different capabilities in terms of CPU, RAM, hard drive, network,
and battery (optional), depending on its type and custom configuration. However,
users can also create different hardware components for each device.
On the other hand, each device can execute microservices, providing hardware

resources according to their needs. For that, PISCO supports scheduling philoso-
phies such as proportional share scheduling, round-robin, or a simplified version
of CFS[128], which uses a red and black tree to organize processes.
Finally, each device implements a distributed middleware (like the supervisor

service in section 4.3). On the one hand, the latter manages the default device’s
hardware components according to the following criteria:

• CPU:
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– Current load and availability in percentage relative to the clock fre-
quency.

– Capacitance, TDP, and voltage.

– Presence or absence of PCPG, DVFS, or Overclocking.

– Custom energy formula.

– Power expenditure in Watts.

– Energy expenditure in Joules.

• RAM:

– Current and available load in percentage and MB.

– Current read and write operations.

– Custom energy formula.

– Power expenditure in Watts.

– Energy expenditure in Joules.

• NIC and storage device:

– Current and available rate in GB/s/MB/s/percentage.

– Custom energy formula.

– Power expenditure in Watts.

– Energy expenditure in Joules.

• Battery:

– Used and available in terms of Watt-Watts hours.

• GPS position:

– Latitude and longitude values.

And on the other hand, it executes distributed scheduling algorithms (i.e., moving
or duplicating a microservice to another device, performing negotiations, managing
load balancing, tracking the number of operation hops, etc.).
It is important to mention that the middleware running on each device also

enables centralized scheduling. For this, PISCO configures a node as a master,
being able to invoke the execution operations of the peers it controls.
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Network overlay

PISCO implements networks in the form of data structures in which the indexed
elements are devices. By default, our simulator supports graphs representing
networks of direct connections, n-trees representing hierarchical networks, and
multidimensional lists representing multi-attribute spaces.
The screenshots in figures 5.2 and 5.3 show two network configurations. The

first one shows a devices graph, where each device is physically connected with
some peers. For its part, the second one shows a MAAN network overlay (see
chapter 4) in its CPU dimension.

Figure 5.2: Network data structure: Devices graph

Finally, as with the other entities, the user of our simulator can create other
overlays.

Microservice

For PISCO, a microservice is a functional entity identifiable by a unique ID and
with a defined function. The latter is a string code representing the microservice
functionality and scheduling restrictions (see section 4.3.3). For instance, by default,
PISCO defines three types of microservices: graphical interface, calculation, and
data management. The differences among them are their default resource consump-
tion, the amount of data they send/receive, their size, and the restriction of being
moved or not from one device to another. On this point, it is also important to
point out that the simulator users can create their own types of microservices.

When deployed on a device, each microservice claims a certain amount of CPU,
network, RAM, and disk resources. To manage that, PISCO defines the following
two attributes for each resource:
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Figure 5.3: Network data structure: Multidimensional circular lists

• The average expected resources: It defines the microservice’s needs to run at
100% of QoS.

• The average current resources: It defines the resource status of a microser-
vice, which depends on the other peers competing for resources and the OS
heuristic.

Connection

PISCO defines and manages two kinds of connections: Physical/logical among
devices and functional connections among microservices. A physical connection
logically supports many microservices’ connections. That defines the current and
maximum possible transfer rate (i.e., between 2 devices: the maximum transmission
capacity of the device with the NIC with less transmission capacity).

Our simulator also allows graphically analyzing, on the one hand, the status (i.e.,
at energy and load level) of devices’ NICs (even if they belong to abstract entities
such as clusters or cloudlets). On the other hand, it tracks the microservices’
connections (i.e., expected transmission rate vs. real transmission rate) using
physical ones. For that, connections among microservices logically store the device
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connections they use to communicate. Thereby, the supervisor microservices are
aware of the device’s path they use and their current/expected transfer rate.

Application

PISCO defines applications as directed graphs of microservices. Herein, each node
has connections as dependency relationships with other microservices that may
run on different devices. In PISCO, applications are also identified with a unique
ID.

Operations center

If needed, PISCO holds a centralized entity that stores all references to connections
and existing devices of a deployed scenario. In this way, the simulator users can
track their algorithm’s behavior and execute centralized scheduling algorithms.

Abstract entities

Additionally, PISCO also implements entities such as cloudlets and clusters as
resource providers. Both can be deployed and connected similarly to devices
but considering different intra-scheduling politics. With them, our simulator is
compatible with small networks of user devices and networks based on cloud/edge
technologies.

5.4.2 The simulator operations
PISCO can apply different heuristics for microservices (re)deployment and schedul-
ing through a network. For that, the simulator implements the following operations:

Devices and abstract entities deployment

Any simulator user can declare default or custom devices and abstract entities (i.e.,
desktop computer, laptop, smartphone, etc.) by specifying the desired resources
(CPU, RAM, NIC, storage device, or battery). Then, the devices will be indexed by
PISCO as indicated in the add method of the network overlay. This method may
consider load, hierarchy, or energy criteria.

On the other hand, PISCO also supports physical positions in the form of longi-
tude and latitude points on a Cartesian plane, as shown in figure 5.4. That allows
studying deployment techniques based on distance heuristics or methods to improve
communication paths.
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Figure 5.4: Devices in PISCO and their positions

Devices and abstract entities suppression

PISCO implements two device suppression methods: 1) Manually, by the user’s
decision, and 2) automatically, according to the desired strategy. A user can activate
a "disappear" option for each device, causing the simulator to delete it after a
random, established, or battery-related time. This option simulates unexpected loss
of connection (i.e., a mobile device entering a building, battery loss, system crash,
etc.).

The device suppression invokes the delete function of the network overlay.

Microservices deployment

PISCO allows simulating the execution of microservices on devices. Once deployed,
a microservice uses a quantity of resources (see figure 5.4) for a determined time
or indefinitely. This time can be set by: (1) the PISCO UI in an interactive way or
(2) automatically by an operation center’s function. Furthermore, the user must
also specify the microservices’ size, defining the amount of data sent over the
network when it is moved or duplicated. This attribute allows analyzing the cost
of reconfigurations in terms of efficiency and energy.
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Microservices suppression

Like deployment, a microservice can be killed using a simulator UI button or
according to a predefined amount of time in the operation center (also set using
the simulator UI). When suppressed, the microservice will stop using the device’s
resources and will no longer be available for any item.

Microservices migration and duplication

PISCO can move or duplicate microservices from one device to another. On the one
hand, these operations can be done from the operations center, which maintains
the full list of microservices and connections. On the other hand, the operations
can be performed from a particular device (it knows only its connected devices)
according to the algorithm its runs.
When a microservice is migrated, it first releases the resources of its current

device. Then, PISCO simulates the moving process by using the active network
connection for a time based on the microservice’s size. Finally, it starts to compete
(as there could be other microservices) for the resources of the new device.

The duplication operation is similar to the previous one but without killing the
microservice on the source device.
About these operations, it’s important to mention that PISCO always keeps

(non)centralized microservices-devices graphs updated. Thus, for example, if a
microservice is moved and becomes unreachable for one of its dependencies, the
user can specify search mechanisms for the same instance in the devices graph.
Figure 5.4 is a screenshot of one of the PISCO’s UI. It shows a simple scenario

where we deployed an application consisting of three microservices (𝑀𝑆_1,𝑀𝑆_2,
and𝑀𝑆_3) communicating with each other at 50𝑀𝐵𝑝𝑠 and two connected devices
(a laptop, 𝐷_2, and a desktop computer, 𝐷_1). Then, each device shows its status in
the outline of its icon in terms of used/available network (left: 𝑋50𝑀𝐵/𝑠), RAM (top:
𝑌

15874𝑀𝐵), CPU (right: 𝑍
3.6𝐺𝐻𝑧), and storage rate(botton: 𝑊

500𝑀𝐵/𝑠).
In this example, if𝑀𝑆_3 is moved to the device𝐷_2, the transmission quality rate

between both microservices𝑀𝑆_2 and𝑀𝑆_3 declines. That is because the physical
network connection is limited to 25𝑀𝐵/𝑠 (between the two NICs, 𝐷_2′𝑠 one has
the least transfer capacity). It is important to say that this does not necessarily
affect an application’s QoS level considering its definition and type. In our case, our
algorithms always seek to have the highest possible QoS assuming the approaches
described below.
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Microservices and devices Start/Stop

PISCO allows starting and stopping devices or microservices in a scheduled or
manual way. Both operate as the mentioned deployment and suppression opera-
tions, but without deleting these entities permanently. Thereby, they can also be
restarted manually or in a scheduled way.

QoS definition

PISCO allows users to define their own QoS philosophies, either for microservices
or applications. However, the simulator offers two default heuristics: One, “non-
dependent,” and another, ”dependent.”
These default definitions aim to model different application behaviors. The

first, for example, describes applications whose modules can have: (1) different
replicas, enabling load-balancing strategies in the event of QoS affection, and (2)
non-critical functionalities, such as batch processing or backups creation. Here,
users must specify the module’s importance, as shown in the following paragraphs.
On the other hand, the second describes applications whose modules are unique
and important, causing that if one of them is affected, the behavior of the entire
application changes.

For the non-dependent approach, PISCO calculates the microservices’QoS value
in proportion to the hardware resources needed-obtained. On the other hand, the
applications’ QoS is obtained proportionally to its microservice’s QoS value.

The non-dependent microservices’ QoS is defined as follows (including equation
5.1):

• For amicroservice𝑀 being executed in a device𝐷 , PISCO defines aQoS=100%
considering the resources that𝑀 requires to run in terms of CPU frequency
in 𝐺𝐻𝑧, RAM consumption in 𝑀𝐵, network transfer rate in 𝑀𝐵/𝑠 , and
storage transfer rate in MB/s.

• Then, there might be some differences between the resources𝑀 requires to
run and those it gets from 𝐷 . We express those differences as percentages
(from 0 to 100) using the following symbols: (1) 𝐷𝐶 , for CPU frequency, (2)
𝐷𝑅 , for RAM, (3) 𝐷𝑁 , for network transfer rate, and (4) 𝐷𝐻 for storage
transfer rate.

• For each of these variables, a user must specify an impact value. This value
must be considered from 0 to 1 so that all the values add up to 1.

117



Chapter 5 The PISCO Simulator

𝑄𝑜𝑆𝑀 =𝐼1𝐷𝐶 + 𝐼2𝐷𝑅 + 𝐼3𝐷𝑁 + 𝐼4𝐷𝐻

𝑤ℎ𝑒𝑟𝑒,

4∑︁
𝑖=0

𝐼𝑖 = 1
(5.1)

For example, let us define that (1)𝑀 needs a certain quantity of GHz of CPU,
MB of RAM, and MB/s of NIC and storage transfer rate, (2) 𝑀 finds only half
of these resources in 𝐷 (𝐷𝐶 = 𝐷𝑅 = 𝐷𝑁 = 𝐷𝐻 = 50%), and (3) the user decides to
configure the impact factor of each resource equally to 0.25 for each component
(𝐼1 = 𝐼2 = 𝐼3 = 𝐼4 = 0.25). Then, the QoS of𝑀 is defined as follows:

For example, let us define that (1) 𝑀 needs a certain quantity of GHz of CPU,
MB of RAM, andMB/s of NIC and storage transfer rate, (2)𝑀 finds the following
resources available in D:[𝐷𝐶 = 90%, 𝐷𝑅 = 6%, 𝐷𝑁 = 9%, 𝐷𝐻 = 5%], and (3) the user
decides to configure the impact factors of each resource as follows:[𝐼1 = 0.7, 𝐼2 =
0.1, 𝐼3 = 0.1, 𝐼4 = 0.1]. Then, the QoS of M is defined as:

𝑄𝑜𝑆𝑀 = 0.7 × 90 + 0.1 × 6 + 0.1 × 9 + 0.1 × 5
𝑄𝑜𝑆𝑀 = 73.2%

(5.2)

As seen in the equation 5.2, the𝑀′𝑠 QoS remains at an acceptable value despite
the unavailability of RAM, network, and storage rate. That is because the user
has defined that the CPU is the most relevant component for quality of service.
For example, this scenario may belong to an application for calculating machine
learning predictions. Here, the CPU is highly required to do the calculations.
However, the only use of the rest of the peripherals may be the storage of data
executed by independent functions.

Next, the non-dependent application’s QoS, 𝑄𝑜𝑆𝑎𝑝𝑝 , is defined by the quality of
service of each of the 𝑁 microservices, 𝑄𝑜𝑆𝑖 , that compose it. Again, we consider
the impact value 𝐼𝑖 ,that the user must define in the same way as the last method.
The following formula shows this approach:

𝑄𝑜𝑆𝑎𝑝𝑝 =

𝑛∑︁
𝑖=0

𝑄𝑜𝑆𝑖 ∗ 𝐼𝑖, 𝑤ℎ𝑒𝑟𝑒
𝑛∑︁
𝑖=0

𝐼𝑖 = 1 (5.3)

On the other hand, PISCO also offers by default a "dependent" heuristic, in which
the QoS of a microservice 𝑀 is limited by the least satisfied demanded resource.
As before, we consider here the impact parameter, 𝐼 , specified by the user. The
following formula shows this approach:

𝑄𝑜𝑆𝑀 = 𝑀𝑖𝑛(𝐼𝐶 × 𝐷𝐶, 𝐼𝑅 × 𝐷𝑅, 𝐼𝑁 × 𝐷𝑁 , 𝐼𝐻 × 𝐷𝐻 ) (5.4)
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Then, the QoS of an application, 𝐴𝑃𝑃 , composed by a set of microservices,
𝑀 = [𝑀0...𝑀𝑛], is limited by the microservice𝑀𝑖 ∈ 𝑀 with the lowest QoS value,
as shows the following formula:

𝑄𝑜𝑆𝐴𝑃𝑃 = 𝑀𝑖𝑛(𝑄𝑜𝑆𝑀𝑖
) ∀ 𝑀𝑖 ∈ 𝑀 (5.5)

QoS analysis

Our simulator can show the QoS of applications and microservices at a specific
rate and time interval defined by the user while executing a scheduling algorithm.
For that and analyzing purposes, PISCO supports graphical PLOT, performance
metrics storage, and linear/polynomial regression.

Power consumption parameters definition

PISCO uses, by default, the formulas described in Chapter 2 to find the power
consumption of the CPU, RAM, NIC, and storage devices.

Power/Energy consumption analysis

Our simulator analyzes the power and energy consumption in the same way as
with the QoS. It supports graphical PLOT, performance metrics storage, and lin-
ear/polynomial regression. For example, the screenshot in Figure 5.5 shows the
QoS and power consumption metrics of Kaligreen’s default algorithm over some
of its iterations.

Figure 5.5: PISCO evaluation window
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Herein, PISCO detects the iteration in the second 45 as the best since the QoS is
the highest possible (100%) and the network power consumption the lowest (978𝑊 ).
The rest of the curve results from deploying several microservices after said second,
provoking the simulator to restart the algorithm looking for another solution.

(Non)centralized scheduling algorithm Start/Stop

When PISCO launches a scheduling algorithm, it starts the concerning middleware-
instances threads (the master’s one for centralized and all the devices’ middleware
for non-centralized). Then, the simulator automatically displays the following
metrics for performance analysis: (1) Run time, (2) number of operations performed,
(3) data transmitted by movements/duplications on a device or across the network,
(4) energy used for movements/duplications on a device or across the network, and
(5) per device and global load. For example, the screenshot in the figure 5.6 shows
these variables.

Figure 5.6: PISCO metrics window
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Save/Load scenario from an initial or an already modified state

To facilitate the evaluation of distributed algorithms, PISCO can save all the objects
of a scenario (including their state) in JSON files. Among these objects, we can
mention devices, connections, overlays, and other instances.

5.5 Chapter summary and contributions
This chapter explains the justification and operation of the simulator we created:
PISCO. Regarding the first point, we needed a tool capable of deploying network
overlays with the same dynamism and multidimensionality as several data struc-
tures. Within these, we also needed the tool to execute and evaluate different
scheduling heuristics dynamically. This dynamism consists in the definition of
heterogeneous devices, software, and topologies. Moreover, concerning the second
point, the chapter explains the entities and operations of the simulator.
To the best of our understanding, only PISCO fulfills all these needs. For this

reason, we use our tool to study our distributed algorithms.
On the other hand, given the novelty of our simulator, it was selected by SATT

Aquitaine (AST Innovation) for a maturation process. Next, a software license
and a patent were registered at INPI. Finally, two licenses are currently deployed
(Univ. La Rochelle, Univ. Paris 1 - Sorbonne), and a technological transfer is under
discussion with the international group SPIES.
The next chapter describes the experiments that demonstrate the effectiveness

of our methods from chapter 4, which we implemented in PISCO.
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6 Experiments and results

6.1 Introduction and methodology
This chapter explains the experiments and results of the measurable methods
proposed throughout this thesis. In each part, the latter offers a contribution
according to what it studies. Chapter 2 proposes mathematical models to estimate
the power consumption of the network card and storage device. Then, chapter 3
describes an algorithmic survey approach for distributed scheduling techniques. For
its part, chapter 4 explains our distributed scheduling algorithms. Finally, chapter 5
details the design structure of the simulator that we have created.
Here, we will analyze the proposals that we can evaluate through experiments.

In section 6.2, we analyze the approaches of Chapter 2, and in section 6.3, the ones
of chapter 4. In each of these, we describe the type of experiment, its settings, its
results, and the corresponding conclusions.

6.2 Analyzing the power formulas for the NIC and
storage device

To analyze the power consumption of both components, we have run specialized
benchmarks and applications for their saturation on a desktop computer. We do
this experiment while waiting to make measurements on the SPIE company servers
as part of the partnership with our laboratory and the SATT.

The specifications of our testing elements are the following:

• Desktop computer:

– Motherboard: Gigabyte GA-890GPA-UD3H.
– CPU: AMD Phenom II x4 955 - 3213.57 MHz.
– RAM: 4096 MB Dual Channel.
– Graphics card: Nvidia GeForce GT 710.
– Storage device: Western Digital WDC WDS 480 GB.
– OS: Windows 8 (free of installed programs).
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– NIC: TP-Link 72.2 Mbps

• Measuring instrument: Wiring Type Power Monitor.

6.2.1 The storage device
To measure the storage device’s power consumption, we ran for half an hour the
following benchmarks with our power monitor connected to the PC’s power source:
AS SSD Benchmark[217], Crystal Disk Mark[49], SiSoftware Sandra[199]. These
saturate the hard disk in its read and write operations, using the rest of the hardware
components as little as possible.

We did four types of experiments to study four levels of workloads in the compo-
nent. We ran the benchmarks so that they saturate 100%, 75%, 50%, and 25%, of the
storage’s read and write capacity. We choose this method to study the relationship
between workload and power consumption (see section 2.6). To perform these
percentages, we have programmed a script that interrupts the benchmark propor-
tionally to these values during each experiment’s time. We did this by mimicking
the operation of any operating system. That is, giving the full access of the resource
to a process for a time calculated from its priority and other competing processes.

Operation Without Benchmark (Watts) With Benchmark (Watts)
Workload at 100%

Writing op. 64.27 72.88
Reading op. 64.4 71.06

Workload at 75%.
Writing op. 66.01 70.24
Reading op. 66.66 69.1

Workload at 50%.
Writing op. 64.33 68,36
Reading op. 66.72 68.23

Workload at 25%.
Writing op. 65.63 67,5
Reading op. 67.20 67.7

Table 6.1:Measurement results for the Storage Device

Table 6.1 shows the measurement results. It is important to note that the differ-
ence in consumption between using and not using a benchmark is as follows:

• With a workload of 100%: 8.61 for Writing op. and 6.66 for reading op.

• With a workload of 75%: 4.2 for Writing op. and 2.5 for reading op.
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• With a workload of 50%: 4.03 for Writing op. and 1.5 for reading op.

• With a workload of 25%: 1.95 for Writing op. and 0.59 for reading op.

These results are proportional to the load generated with the benchmarks. Inaccu-
racies shown may be due to irregularities in power consumption and management
of other PC’s internals.
On the other hand, it is important to point out that the average consumption

found for a load of 100% is approximately 6 and 4 watts higher than indicated in the
disk datasheet[187], respectively, for each operation. These differences correspond
to the other peripherals’ functions.
Finally, we also find that the write operation is, on average, more expensive at

1.9W than the read operation.

6.2.2 The NIC
Using the same instruments and methodology as the previous device, we run the
SpeedTest[204] and nPerf[174] online tools at the following four intensities: 100%,
75%, 50%, and 25% of the NIC Download-Upload capacity.

Operation Without Benchmark (Watts) With Benchmark (Watts)
Workload at 100%

Down.op. 64.5 101.57
Upl. op. 65.61 78.07

Workload at 75%
Down. op. 64.3 91.49
Upl. op. 65.6 74.59

Workload at 50%
Down. op. 64.5 79.88
Upl. op. 65.61 70.9

Workload at 25%
Down. op. 64.2 71.14
Upl. op. 65.39 67.8

Table 6.2: Measurement results for the NIC

Table 6.2 shows the measurement results. The difference in consumption between
using and not using a benchmark is as follows.

• With a workload of 100%: 37.07 for Downloading op. and 12.46 for Uploading
op.
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• With a workload of 75%: 27.19 for Downloading op. and 8.99 for Uploading
op.

• With a workload of 50%: 15.38 for Downloading op. and 5.29 for Uploading
op.

• With a workload of 25%: 6.94 for Downloading op. and 2.41 for Uploading op.

These results are proportional to the load generated with the benchmarks. Inac-
curacies shown may be due to irregular power consumption of the PC’s internals.
Moreover, we also see that the download operation is, on average, more expensive
at 14.35W than the upload operation.

6.2.3 Conclusions and considerations
The results obtained from the measurements of the storage and NIC devices show
the following findings:

• The power consumption is proportional to components load. That verifies
our formulas 2.7 and 2.10. However, it is necessary to consider input and
output operations differently.

• Reading, writing, uploading, and downloading operations may have different
power consumption values.

• To improve the accuracy of consumption formulas for any component, it is
necessary to consider the behavior of other PC internals.

To enrich the results of our following experiments, we will use the values shown
here to describe the consumption of some devices in our scenarios.

6.3 Analyzing the distributed scheduling
algorithms

This section describes the experiments and results for our two main scheduling
algorithms. On the one hand, the one that Kaligreen implements by default. On
the other hand, the distributed algorithm that based on multidimensional spatial
structures.
To perform our experiments, we considered a collection of metrics to define

devices’ capabilities and hardware consumption variables. We gathered these values
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from data sheets, public hardware benchmarks, and the last section’s experiments.
That is to approximate results to real scenarios, facilitating the interpretation of
results.

Finally, we use our PISCO simulator (see section 5) as a tool for the algorithms’
deployment, execution, and analysis of results.

6.3.1 Defining devices’ capabilities

Chapter 2 considers four different devices’ hardware capabilities to study the
relation between load, QoS, and energy consumption: CPU frequency (GHz),
RAM capacity (MB), storage transfer rate (MB/s), and finally, NIC data transfer
rate (MB/s).
In our test scenarios, we considered devices with random delimited values for

each hardware component capacity. For that, we choose tools that provide us with
an insight into hardware resources available in the market.

Table 6.3 shows this heterogeneity approach.

CPU (GHz) RAM (MB) NIC (Mb/s) Disk (MB/s)

1.2-4.8 2000-32000 101.0-1000 SSD: 101.0-800
HDD: 80-160

Table 6.3: Devices’ capabilities

To define the CPU and RAM intervals, we studied public hardware benchmarks
performed independently by millions of users[221][201]. Next, to define the NIC
and storage intervals, we used hardware and software specialized websites that
perform independent tests[220][122].

6.3.2 Defining power consumption values

As for the devices’ capabilities, we selected CPU consumption values follow-
ing information sheets which consider overclocking, voltage, capacitance, and
others[109][107][113]. Then, we obtained the other components’ values from
manufacturers’ datasheets, our last experiment, and scientific hardware specifica-
tions[46][195][193][33].

Table 6.4 shows this heterogeneity approach.
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CPU RAM NIC Disk drive

Capacitance:
10 pF
Voltage:
1.2v

3-5W

Idle:
0.4944W
Working:
(Uploading & Downloading)
1.1349W

Idle (SSD/HDD):
0.05/5.4W
Working
(Reading & Writing)
(SSD/HDD):
2.2/8.0W

Table 6.4: Devices’ consumption values

6.3.3 Defining MS consumption values
Following the same methodology as in the previous sections, we have defined
consumption intervals for three types of microservice (see chapter 4). Our goal is to
automate the deployment of software components with heterogeneous hardware
needs. Table 6.5 shows this heterogeneity practice.

Resources GUI MS. Control MS. DB. MS.
CPU (GHz) 1.2-1.7 1.8-3.2 0.8-1.2
RAM (MB) 200-300 100-300 150-300
Network Upload(MB/s) 3-5 4-7 2-5
Network Download(MB/s) 2-3 4-9 3-5
Disk (MB/s) (both op.) 0.1 - 5 50 - 100 50 - 200
Microservice size (MB) 50 - 100 10 - 80 60 - 500

Table 6.5: Devices’ consumption values

6.3.4 Scalability test
The objective of this test was to challenge our scheduling algorithms with in-
creasing numbers of microservices and devices over time. The test begins with 20
heterogeneous devices and 40 heterogeneous microservices.
The duration of the experiment consists of 100 seconds, deploying ten random

microservices and ten random devices every 10 seconds for the first 80 seconds,
leaving 20 final seconds to the scheduling algorithm for stabilizing.
We performed this experiment 100 times to ensure repeatability of testing and

consistency of the results.

6.3.5 Stress test
The objective of this experiment was to prove the resilience of the algorithms when
faced with a constant change in microservices execution. For that, we introduced a
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time constraint feature for the latter, which gave them a specific “time to finish.”
That time ranged from 5 to 30 seconds for the whole test duration of 100 seconds.

This test begins with 250 random microservices deployed among 50 heteroge-
neous devices. Then we randomly added microservices while the existing ones
disappeared. Here, the test guaranteed the network to be stressed.

This experiment was also performed 100 times to ensure repeatability of testing
and consistency of the results.

6.3.6 Tests metrics definition
To evaluate the performance of our approach, we analyzed five variables in our
two experiments.

• The energy consumed by the entire network (Joules).

• The QoS achieved on average by all microservices executed in the network.

• The average number of movements performed by the algorithm.

• The data is transferred by microservices movements (MB).

• Energy cost of microservices movements (Joules).

6.3.7 Definition of “success”
To correctly interpret the data results as a “success,” we compared the ones of
our two algorithms against the original deployment consumption. For that, we
considered the same conditions and number of experiment repetitions.

We cataloged our algorithms as successful if, in their results, the energy consump-
tion is either lowered or kept the same while increasing on QoS. That is because
the latter is always a crucial variable in any distributed system.

6.3.8 Scalability test results
As table 6.6 shows, in the experiments, the multidimensional-based algorithm
proved to consume a total average of 27% less energy (692020.73 joules) than
the scenario with no algorithm (95452.72 joules) and 11% less energy against the
Kaligreen algorithm (98570.94 joules).
Furthermore, the average QoS sustained by the multidimensional-based algo-

rithm was more significant than in the other experiments. The first algorithm
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scored an average of 99.24% of QoS against 94.04% of the no-algorithm experiments
and 99.21% of the kaligreen algorithm.

It’s important to point out that the multidimensional-based and Kaligreen’s algo-
rithms performed an average of 55.70 and 50.35 movement operations, transferring
850.29 MB against 775.83 MB, respectively. However, although the number of
operations it executed was higher, the multidimensional algorithm proved to have
better overall power management.

Multid. Algorithm No algorithm Kaligreen Alg.
Average of total energy 69202.7337 95452.72 78570.94
Average of QoS 99.2414925 94.04 99.21
Average of movements 55.7014925 0 50.35
Average of data transfer 850.298507 0 775.83
Average of movements’ Energy consumption 0.00210982 0 0.00176535

Table 6.6: Devices’ consumption values

After evaluating these results, we can consider our experiment a success, stating
that our algorithm is scalable and stable.

6.3.9 Stress test results
This experiment revealed an interesting behavior for the multidimensional ap-
proach against the other alternatives. As it is possible to see in table 6.7, this
algorithm consumed a total average of 69% more energy (578315.4 joules) than the
no-algorithm experiments (340372.9 joules. Nevertheless, that keeps a low level
of QoS because of the lack of scheduling operations) and 4% less energy than the
naive algorithm (598737.0 joules).
However, the most revealing information shown by this test was the average

QoS sustained by each approach.

Multid. Algorithm No algorithm Kaligreen Alg.
Average of total energy 578315.444 340372.995 598737.071
Average of QoS 92.7182353 87.05 87.6183333
Average of movements 912.647059 0 798.583333
Average of data transfer 12610.2941 0 13243.3333
Average of movements’ Energy consumption 0.03020178 0 0.03184407

Table 6.7: Devices’ consumption values

The multidimensional algorithm scored an average of 92.71% of QoS against the
average of 87.61% sustained by Kaligreen’s algorithm and 87.05% sustained when
no algorithm was applied. That demonstrates that the movements performed by
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the first procedure did not only save energy compared to the second one; but were
also smarter, keeping the QoS level as high as possible under heavy loads.

On the other hand, these movements were higher than the Kaligreen algorithm’s,
showing an average of 912.6 operations against 798.5, respectively. Even though
this involves a higher average of data transferred (2610.29 MB and 13243.3 MB), the
difference became non-significant considering they consumed 0.030 joules against
0.031 joules consumed by the Kaligreen’s procedure. That is explained because
mainly small microservices are moved under a heavy network resource load.
Overall, our multidimensional algorithm proved to be resilient under heavy

workloads, keeping energy as low as possible and, in an inverse way, QoS as high
as possible.

6.3.10 Conclusions and considerations
The results obtained in these experiments allow us to get the following findings:

• Running any of our distributed scheduling algorithms gives better results
than the initial deployment.

• A distributed algorithm based on multidimensional data structures may per-
form fewer operations than a naive one, such as Kaligreen’s default procedure.
If the opposite happens, it is always because the QoS value increases. That is
because the structure always finds available candidates in an optimal search
time.

• Kaligreen’s default algorithm does not avoid oscillations or look for other
candidates beyond its direct neighbors. For that reason, it does not always
find good solutions in terms of consumption or QoS.

• The PISCO simulator allows efficient modeling, executing, and comparing
of different planning algorithms.
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7 Conclusions and Future work

This thesis work seeks to create and execute distributed tools and algorithms to
save energy while maintaining the notion of QoS. For this, its chapters describe
our proposal of a way forward toward intelligent distributed scheduling.

The first step on this path is to have energy information usable by any distributed
middleware and simulation tools. Chapter 2 studies this problem. In it, we provide
energy formulas for four important hardware components (CPU, RAM, NIC, and
storage) to describe the consumption of running applications in heterogeneous
devices.
For the CPU, we have adapted equations that consider its frequency, capaci-

tance, and voltage. Although this model has been tested, we believe that in the
future, we need to seek or implement new approaches that consider last-technology
capabilities such as dynamic overclocking or P-states. Then, we have also ad-
justed an already proven model for the RAM. Nevertheless, we need to study more
heterogenous-representative equations for this component in the future. Finally,
For the NIC and storage device, we have proposed and tested our formulas based
on workload. Although they proved to be quite accurate, we have to consider
further studying other interfaces like 5G, Bluetooth, different types of SSD, and
others.

All the formulas will soon be tested on heterogenous environments provided by
companies such as SPIES ICS.
Given the effectiveness of the four models described, we can argue that an

application can be modeled with data obtained from the operating system. We
have verified this fact using GNU/Linux interfaces, leaving the analysis of other
operating systems for the future.

Our next step is to understand how distributed approaches work. For this, chap-
ter 3 shows a different way of categorizing research works based on an algorithmic
procedure. The strategy considers 1) important input variables such as hardware
components load and devices positions, 2) scheduling operations as migrations
or duplications, and 3) optimized variables such as QoS and energy consumption.
Moreover, we study this flow in (de)centralized environments at different deploy-
ment levels, such as cloud, grid, or edge. That makes it easy to understand the
scope of new scheduling proposals.
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To this day, we continue to study new techniques to enrich, publish, and validate
our categorization policy.

Having explored state of the art in distributed environments, Chapter 4 describes
our scheduling strategies. We have designed a distributed middleware called Kali-
green. It is aware of the software and hardware components of the devices on
which it runs. Furthermore, it implements special communication methods that
enable centralized and decentralized strategies in any network topology. Kaligreen
includes a default algorithm that performs neighborhood microservices exchanges
after negotiation and microservices-filtering processes.

Using Kaligreen, we have designed, implemented, and tested a fully decentral-
ized algorithm inspired by multidimensional data structures, representing one of
this thesis’s major contributions. That considers the devices as nodes in a space
with as many edges as the characteristics of said nodes. In this space, each device
can find peers to negotiate microservice migrations or duplications at an optimal
computational cost. We have chosen the MAAN network as our multidimensional
space test instance. However, we have left evaluating and implementing other
structures such as skip-graph for future work.
Observing the results of our algorithm, we can conclude that it is efficient to

save energy while preserving the quality of service notion. In addition, our ap-
proach allows users to customize and prioritize their variables of interest. That is
useful in multi-cloud environments, where the prices of the contracts are directly
related to the dynamism of the quality of service offered, energy consumption, high
availability, and others. On this matter, we are in the process of coordinating with
important companies such as SPIES ICS.

On the other hand, to this day, we are implementing and evaluating an algorithm
that considers data (based on barycenter heuristics) and microservices connections.
This approach will soon be available and submitted for publication.

Finally, chapter 5 shows the design and implementation of PISCO, the simulator
we created and use to deploy and evaluate our scheduling algorithms. The impor-
tance of our tool is to allow its users to focus solely on their scheduling heuristics.
For this, PISCO implements an overlay as any data structure (graphs, trees, etc.),
devices and software as dynamic objects, and middlewares as threads to execute
any scheduling policies.

7.1 Long-term perspectives
One of the reasons for the energy waste linked to digital technology is the lack of
knowledge about software and hardware behavior. That concerns any user, even
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novice, advanced, or expert users. For that reason, the future of PISCO and our
algorithms have an industrial and scientific outlook. One free license is currently
deployed in CRI/University Paris 1-Sorbonne. Moreover, a second one is now under
deployment at L3I/ University La Rochelle. Next, a technological transfer is under
discussion with SPIES ICS with AST Innovation (SATT Aquitaine) – this latter is at
the juridic discussion level. In the coming months, we hope to verify scalability
and robustness with real use cases with SPIES ICS.

Moreover, our works will also be used as a software-conception validation tool.
In the context of a Ph.D. project (in collaboration with Spain), researchers are
analyzing the software “footprint energy cost.” The objective is to label services
(individually) and applications (set of services collaborating).

The project above, jointly with ours, may help design applications while estimat-
ing their footprint according to their composition and hardware use. For that, it
will integrate a software engineering part.

Furthermore, our contribution set (PISCO and algorithms) is one of the two core
aspects of a future industrial chair. It will be joined to a project on the domain of
warehousing (Data Lakes) to help prove new architectures. On the one hand, the ob-
jective here is to apply energy-saving techniques more commonly found in dynamic
approaches such as Edge/Fog Computing to the massive data analysis architectures,
such as data lakes. On the other hand, it aims to perform information processing
closer to their sources, enabling new analysis primitives (access/collection, clean-
ing, examination, consolidation, reporting) such as redundancies and sequencing
awareness.

In this project, we need to perform twomain operations: 1) Energetically quantify
the different functional primitives of data analysis, and 2) quantify the analysis
chains and weight them according to the architecture of the information system
(massively distributed, sparsely distributed) and external operations (data refresh
frequency, TTL - Time To Live, CRUD operation, format, and types, etc. ).
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