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Résumé: Cette thése porte sur les formes au-
tomorphes p-adiques et l'aspect localement an-
alytique du programme de Langlands p-adique.
Nous étudions la géométrie locale de la variété tri-
anguline et le probléme des points compagnons
sur la variété de Hecke aux points de poids de
Hodge-Tate non-réguliers. |l s’agit d'une générali-
sation des travaux de Breuil-Hellmann-Schraen qui
avaient traité le cas régulier. Nous établissons
d'abord les modéles locaux et I'irréductibilité locale
de la variété triangulines aux points génériques,
points qui peuvent avoir des poids de Hodge-Tate
non-réguliers et méme non-entiers. Nous démon-
trons alors |'existence, dans le cas cristallin Frobe-

nius générique, des points compagnons de raf-
finement fixé mais de poids différents sur la var-
iété de Hecke, en mettant en relation des pro-
priétés partiellement classiques des formes auto-
morphes p-adiques et certaines propriétés de cycles
sur les modéles locaux. De plus, nous démontrons
I'existence des points compagnons correspondant
aux autres raffinements sur la variété de Hecke en
utilisant un argument d'approximation. En con-
séquence, sous |'hypothése de Taylor-Wiles, nous
prouvons la conjecture de socle localement ana-
lytique de Breuil pour les représentations galoisi-
ennes cristallines génériques de poids de Hodge-
Tate non-réguliers.

Titre: Trianguline variety and eigenvariety at points with non-regular Hodge-Tate weights
Keywords: p-adic Langlands program, eigenvariety, companion forms

Abstract: This thesis concerns p-adic automor-
phic forms and the locally analytic aspect of the
p-adic Langlands program. We study the local ge-
ometry of the trianguline variety and the compan-
ion points problem on the eigenvariety at points
with non-regular Hodge-Tate weights. This gener-
alizes the works of Breuil-Hellmann-Schraen who
have dealt with regular cases. We first establish
the local models and local irreducibility for generic
points on the trianguline variety, the points that
might have non-regular or non-integral Hodge-
Tate weights. Then in the crystalline Frobenius

generic cases, we obtain the existence of compan-
ion points with fixed refinements but with different
weights on the eigenvariety, by relating partially
classical properties of p-adic automorphic forms
and certain properties of cycles on the local mod-
els. Furthermore, we can find companion points
corresponding to other refinements on the eigen-
variety using an approximation argument. As a re-
sult, under the Taylor-Wiles hypothesis, we prove
Breuil’s locally analytic socle conjecture for generic
crystalline Galois representations with non-regular
weights.
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Chapter 1

Introduction

This thesis studies the locally analytic aspect of the p-adic local Langlands program and p-
adic automorphic forms. In [BHS19], Breuil-Hellmann-Schraen solved the locally analytic socle
conjecture of Breuil in [[Brel6, Brel15b] and determined all companion points on the eigenvariety
of definite unitary groups in the generic crystalline cases under the Taylor-Wiles hypothesis. They
developed a theory of a local model for the trianguline variety introduced in [BHS17b] and related
the geometry of the local model and locally analytic representations of p-adic Lie groups. The
results of Breuil-Hellmann-Schraen require that the Galois representations have regular Hodge-
Tate(-Sen) weights. This thesis will remove the regularity assumptions for Hodge-Tate weights.
We will build the local models for the trianguline variety at points with non-regular weights and
prove the existence of all companion points on the eigenvariety and the locally analytic socle
conjecture in non-regular generic crystalline cases under the Taylor-Wiles hypothesis.

This introductory chapter aims to provide a self-contained overview of the backgrounds (p-
adic local Langlands program, automorphic forms of definite unitary groups, eigenvariety, etc.) of
the main results in this thesis. No results in this chapter except those in are due to the author.

In we give a brief introduction on the p-adic local Langlands program of GL2(Q)), de-
veloped by Breuil, Berger, Colmez, Paskiinas and many others, and the local-global compatibility
results of Emerton.

In §1.2] we introduce automorphic forms for definite unitary groups and explain how to attach
p-adic Galois representations to p-adic automorphic forms.

In §I.3] we construct the eigenvariety using the theory of locally analytic representations of
p-adic Lie groups, i.e. via Emerton’s Jacquet module functor. We also explain its relationship with
trianguline Galois representations.

In §1.4] we present the conjectures of Breuil and Hansen on companion points and companion
constituents, and the results of Breuil-Hellmann-Schrean.

In §1.5] we give a summary of the main results of this thesis and sketch some points of the
proofs.

Let p be a prime number and n > 2 be a positive integer. For a local or global field F', we
write G := Gal(F/F) for its absolute Galois group. We take L to be a sufficiently large finite

extension of Q, as our coefficient field, @y, to be a uniformizer of Oy, and let k;, be the residue
field of L. We fix an embedding L — @p.

1.1 The case of GLy(Q,)

The p-adic local Langlands correspondence for GL2(Q)) has now a satisfying answer. We
start by recalling classical /-adic situations.

13



14 CHAPTER 1. INTRODUCTION

1.1.1 /-adic local Langlands correspondence

The Langlands program seeks connections arising between representations of Galois groups of
number fields and automorphic forms of Lie groups. Let K be a finite extension of Q, and ¢ # p
be another prime number. Let W be the Weil group of K which lies in a short exact sequence
1 — Ix - Wg — Z — 1, where I C Gg is the inertia subgroup and is open in Wix. The
¢-adic local Langlands correspondences, proved by Harris-Taylor and Henniart, establish bijec-
tions LL,(r) <+ 7 between irreducible admissible smooth Q,-representations LL(r) of GL,,(K)
and n-dimensional continuous Frobenius semi-simple Q,-representations r of W, which are
compatible with L-functions, e-factors and the local class field theory. By Grothendieck’s ¢-adic
monodromy, the previous continuous representations of Wy are equivalent to some Weil-Deligne
representations: finite-dimensional smooth semisimple representations 7 of Wy with an action of
a nilpotent operator N satisfying that r(Frob,) N r(Frob[l) = q;(lN where ¢ is the cardinal of
the residue field of K and Froby denotes some geometric Frobenius element in Wi.

1.1.2 p-adic Galois representations

The world of p-adic Galois representations of the p-adic local field K are richer than the above
f-adic cases, and are understood thanks to fundamental works of Fontaine. Fontaine introduced his
period rings Beis, Bst, Bqr Which are equipped with continuous actions of G such that Bfffs =
BsgtK = Ky, where K denotes the maximal unramified subfield of K, and Bg{{ = K. Suppose
that r is a continuous representation of G over a finite-dimensional L-space V. The linear space
D.(r) = (V ®q, B.)Y%, over Ky if ¥ = cris/st or over K if + = dR, has dimension less
than or equal to dimg, V. Then the p-adic representation 7 is called crystalline/semistable (resp.
de Rham) if D,(r) has dimension exactly dimg, V" over Ky (resp. K). Remark that crystalline
representations are semistable and semistable representations are de Rham.

The linear spaces D, (r) turns the study of de Rham Galois representations to the study of
some simpler linear algebraic objects. The p-adic monodromy theorem, proved by Berger, André,
Mebkhout and Kedlaya, states that a continuous representation  : Gx — GL,,(L) is de Rham if
and only if it is potentially semistable (i.e. there exists some finite extension K’ of K such that the
restriction r|g,, is semistable). One can attach a potentially semistable representation r a filtered
(¢, N, G )-module as follows. Let K’ be a finite extension of K such that r|g,, is semistable.
Then Dy(r|g,.,) is a free L ®q, K{)-module with some semi-linear actions of a triple (¢, N, Gk ),
where the Frobenius operator ¢ and the nilpotent operator N act on By satisfying Ny = pp N and
the action of G factors through Gal(K’/K'). Moreover, there is a Gal(K’/K)-stable decreasing
Hodge filtration on Dar(7|g,,) = Dst(7|g,,) ®k; K’ = Dar(r) ®x K’ whose jumping degrees
are minus of the Hodge-Tate weights.

Fontaine showed in [Fon94b] that one can recover potentially semistable Galois representa-
tions from the corresponding filtered (¢, N, G )-modules. A filtered (¢, N, Gx )-module D is said
to be admissible if it arises from Galois representations (i.e. D = Dy (7|g,.,) for some potentially
semistable ). Fontaine conjectured that “weakly admissible implies admissible” which charac-
terizes admissibility of filtered (¢, IV, G )-modules by certain explicit property defined in terms
of Hodge polygons of the filtrations and Newton polygons of the ¢-modules. This conjecture of
Fontaine was proved by Colmez-Fontaine in [[CFOO].

The p-adic local Langlands program, initiated by Breuil, seeks to associate some continuous
representations II(r) of GL,,(K) over p-adic fields to p-adic continuous representations r : G —
GL,,(L) which should be determined by and determine r. By Fontaine [Fon94bl [Fon94al] or see
[BSO7, §4], there is an equivalence of categories between the category of (¢, NV, G )-modules (not
filtered) and the category of Weil-Deligne representations. Denote the Weil-Deligne representation
associated to Ds;(7|g,,) by WD(r) (with coefficients in L). Then we can attach to the semi-
simplification of WD(r) a smooth representation LL,, o WD(r) of GL,,(K') on L-spaces via some
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normalized local Langlands correspondence. However, in this way, the information of the Hodge
filtration of Dgg(r) is lost.

Remark 1.1.1. We describe WD(r) for r : G — GL,,(K) such that 7|g_, is semistable. Choose
an embedding 7 : K < L. Let WD(r) := Dy (r|g,.,) ®K)@q, Lre1 L which is stable under
the L-linear action of N. If z € W and suppose that its image under Wy — Z is a and its
image in Gal(K'/K) is T, then we require that = acts on WD(r) via Ze~/%. Then WD(r) is the
Weil-Deligne representation associated to 7 and is independent of the choice of 7.

1.1.3 Breuil’s ideas

We now focus on n = 2 and K = Q. Assume that r : Gg, — GL2(L) is de Rham with dis-
tinct Hodge-Tate weights by < ho. Let W (r) = Sym"2 ="M~ 2@ det™ ™! be the algebraic repre-
sentation of GLy /g, of the highest weight (ha, h1+1). The idea of Breuil in [Bre03b, Bre04] is to
consider GL2(Q))-invariant norms of the locally algebraic representation W (r) ®, LL,, o WD(r)
of GL2(Qy), or equivalently GL2(Q,)-invariant Oy -lattices (as unit balls for invariant norms) of
the locally algebraic representation. Such tensor product of smooth representations and algebraic
representations for GLa(Z,) already occurred for Breuil-Mézard conjecture [BM02]. Then the
completion of the locally algebraic representations with respect to the GL2(Q),)-invariant norms
are the unitary representations of GL2(Q),) over p-adic Banach space II(r). These unitary Banach
representation II(r) are the representations of GL2(Q),) that should be associated to p-adic Ga-
lois representations r in the p-adic local Langlands correspondence. The possibly non-uniqueness
of equivalent classes of invariant norms inside one locally algebraic representation corresponds to
possibly different r with the same associated Weil-Deligne representation and Hodge-Tate weights
(but different Hodge filtrations).

Moreover, the integral structures of p-adic unitary Banach representations allow reductions
modulo p so that the p-adic correspondence could be compatible with the mod-p local Langlands
correspondence of GL2(Q)), a semi-simple version of which was given by Breuil in [Bre03al
based on the classification of smooth irreducible representations of GLy(Q)) over characteristic p
fields by Barthel-Livné and Breuil.

1.1.4 Colmez’s functor and p-adic local Langlands correspondence for GL,(Q,)

The p-adic local Langlands correspondence r <+ II(r) between 2-dimensional p-adic contin-
uous representations of Gg,, and certain p-adic unitary Banach representations of GL2(Q)) was
defined for all 7, not just for the above de Rham cases, by Colmez [Coll0] using his “magical
functor”. Write G = GL2(Q),). We consider following categories in [Col10, §0.4]:

* Repy,<G: category of smooth admissible finite length O, [G]-modules that admit a central
character,

* Repos9q,: category of continuous representations of Gg, over finite length Of-modules,

* Rep; G: category of L|G]|-modules II such that IT admits a G-stable Op.-lattice II° which
is p-adically complete and I1° /p*TI° € Rep,, G for all k € N,

* Rep;Gq,: category of finite-dimensional continuous L-representations of Gg, .

Colmez constructed in [Coll0] a covariant functor V' : Repy,sG — Repi,s9q, as well as
its variant V' : Rep,G — Rep;Gg,, which factors through the theory of (i, I")-modules.
Recall a (p,I")-module with coefficient in Op, (resp. L) is a finite type module over Og :=
lim, Op, /pE[T] (%] (resp. € := O¢ [%]) equipped with continuous commuting semi-linear actions
of an operator ¢ and the group I' := ZJ. The theory of Fontaine-Wintenberger and Fontaine
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gives a functor D +— V(D) from the category of étale (¢, I')-modules over Og (resp. &) to the
category of continuous Oy -representations (resp. L-representations) of Gg,, of finite rank which
induces an equivalence of categories. Colmez constructed in loc. cit. firstly a functor IT — D(II)
from Repy,,G to the category of étale (¢, I')-modules. Then V(D(II)) € Repy,Go, and
V(II) is defined to be the twist of the Pontryagin dual of V(D(II)) by the cyclotomic charac-
ter. For IT € Repy G with an G-invariant lattice I1°, set V(II°) := lim V(II° /p*1°). Then
V(I == V(I°) 2]

Remark 1.1.2. The functor V is exact and satisfies following properties. Suppose that II €
RepyorsG is an absolutely irreducible representation of G over kr. Then V(II) = 0 if dimy, IT <
oo, dimy, V(II) € {1,2} if dimy, IT = oo and dimj, V(II) = 2 if and only if IT is not a sub-
quotient of principal series representations over kj, (equivalently, if and only if II is supersingular
under the classification of Barthel-Livné), see [[Coll0, Thm. 0.10].

The following theorem is [CDP14, Thm. 1.1] (see also [Pas13l]), which says that Colmez’s
functor V realizes the p-adic local Langlands correspondence for G. It is showed in [CDP14], us-
ing [DS13]], that an absolutely irreducible admissible L-Banach representation II lies in Rep; G.
Such IT is said to be non-ordinary if it is not a subquotient of a unitary principal series representa-
tion.

Theorem 1.1.3 (Colmez-Dospinescu-Paskiinas). The functor I1 +— V(II) induces a bijection
between isomorphism classes of absolutely irreducible admissible unitary L-Banach representa-
tions 11 of GL2(Q)p) that are non-ordinary and 2-dimensional absolutely irreducible continuous
L-representations of G,

Colmez constructed also directly representations IT(D) of GL2(Q)) for étale (¢, I")-modules
D that are free of rank 2 over O¢ or &, or for D = D(II) where II € Rep,,sG ([Coll0} I1.2.2,
IV.4]). The construction of IT( D) is essentially inverse to the functor D. If D is a (¢, I')-module of
rank two over &, then D(II(D)) is the Tate dual of D ([Col10, Cor. IV.4.11]). And if D = D(II)
where II € Rep,, G, then II(D) recovers II up to finite length (over Op) objects in Rep,,, ;G
and a twist by a character ([Col10, Thm. IV.4.1]).

Lete : QQP — L* be the cyclotomic character of QQP. If r : QQP — GLy(L) is a continuous
representation and D is the (¢, I')-module over £ associated to 7® e under Fontaine’s equivalence
of categories, then we set II(r) := II(D) for the unitary L-Banach representation of GL2(Q))
attached to r. When r is de Rham with distinct Hodge-Tate weights, the sub-G-representation
I1(r)'!8 of locally algebraic vectors of I1(r) recovers W (r) @, LLj, o WD(r) in

Remark 1.1.4. Colmez’s functor uses a direct analogy between the (¢, I')-module structures and

. . . @; Qp T X Z;; —
the actions of the mirabolic subgroup | of GLp(Qp): T' = Ly ~ 1) O¢/wy, =

kr[T][+] where kr[T] = I{:L[[(l Zip>]], and ¢ is related to the matrix (p 1) of GL2(Q)).

1.1.5 Emerton’s local-global compatibility for GL,(Q,)

The above p-adic correspondence for GL2(Q,) which factors through the theory of (¢, I')-
modules is the “right” one largely because it is compatible with global situations, as shown
by Emerton [Emell]. In global situations, we can associate p-adic global Galois representa-
tions Go — GLQ(@p) for p-adic modular forms. Emerton introduced completed cohomology in
[Eme06c] to p-adically interpolate classical modular forms. Let A°° be the ring of finite adeles

"We follow the conventions in [Emelll §3.2, §4.2] for p-adic local Langlands correspondence (without a twist of
the cyclotomic character in the Galois side for Colmez’s functor) and the normalization of the classical local Langlands
correspondence.
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and AP be the ring of adeles away from p and co. For open compact subgroups K, C GL2(Q))
and K7 C GLa(A®P), let Yk, kv be the modular curve over Q of level K, KP. Its C-points are
the Riemann surfaces

GL2(Q) \ ((C\R) x GL2(A™))/ K, KP.

Fix a tame level K? C GL3(A®>P). The completed cohomology of the tower of modular curves
= Yg,kr = -+ = YaL,(z,) k» Where K, runs over all open compact subgroups of GL2(Zp)
is defined to be

~

H*(KP)OL = @@Hgt(yf(p[(a@a OL/wnoL)
n K,

We also let ﬁl(’gL = lim, .FAll(Kp)oL and ﬁ}i = fI(*QL ®o, L. These completed cohomolo-
gies (f[ “(KP)o, , ﬁ(’gL and ﬁ}j) are equipped with continuous commuting “Hecke” actions of
GL2(Qp) x GL2(A°P) and “Galois” actions of Gg. Let p : Gg — GLa(L) be a continuous,
odd and absolutely irreducible representation which is unramified almost everywhere. For a prime
number ¢, let py := p ]g@é. The following theorem is [Emell, Thm. 1.2.1].

Theorem 1.1.5 (Emerton). Under certain conditions on p in loc. cit. (for example, the mod wr,
reduction p is absolutely irreducible, see [Emelll Thm. 1.2.3]), there is a GLa(A®°)-equivariant
isomorphism:

M(p,) @1 R)'LLy(pe) = Homgy (p, H}) (1.1.6)
L#p

where LL,(pg) are smooth representations of GL2(Qy) given by the classical local Langlands
correspondences in §1.1.1|and I1(py,) is the unitary Banach representation of GL2(Q)) attached
to py, defined in the end of §I.1.4|via Colmez’s functor.

1.1.6 Fontaine-Mazur conjecture and locally algebraic representations

An important consequence of Emerton’s local-global compatibility results is his proof of lots
of cases of the Fontaine-Mazur conjecture. The conjecture states that 2-dimensionl geometric
p-adic Galois representations of Gg with distinct Hodge-Tate weights are attached to classical
modular forms of weight > 2 up to a twist ([FM935]]). Recall, by Eichler-Shimura, that the systems
of Hecke eigenvalues of classical modular cusp forms of weight £ + 2 > 2 appear in the étale
cohomology

HY (Sym(R'm, L)) = lim H} (Ve o0 g Sym® (R'm. L))
K, KP

where m : E — YK,, v denotes the universal elliptic curves on the modular curves. These étale
cohomologies H' (Sym”(R'w,L))) are equipped with smooth GLs(A>°)-actions and are realized
in the completed cohomology via locally algebraic vectors by the following theorem ([Eme06al,
Thm. 7.4.2]).

Theorem 1.1.7 (Emerton). There is a GLa(A>) x Gg-equivariant isomorphism

P H'(Sym"(R'm.L)) L (SymFL?)Y @y " 5 (Hf)™e (1.1.8)
k>0,n€Z

where € = € ® € o det is the one-dimensional p-adic cyclotomic character of GLQ(@p) X Go,
(SymFL?)V are algebraic representations of GL2(Q),) and (H})'™® denotes the subspace of lo-
cally algebraic vectors with respect to actions of GLa(Zy).
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Suppose that p is as in (1.1.6) and that p), is de Rham with distinct Hodge-Tate weights. If we
know I1(p,)'*!# is non-zero in , then there are classical forms in the left-hand side of 1|

associated with p. This is a prototype argument for the classicality in the proof of Fontaine-Mazur
conjecture.

Kisin previously gave a proof in [KisO9b] for the Fontaine-Mazur conjecture via Breuil-
Mézard conjecture, which also relies on the p-adic local Langlands correspondence for GL2(Q,).

1.1.7 (p,T')-modules over the Robba rings and locally analytic representations

The passage from an étale (o, I')-module over £ = Og[%] to filtered (i, IV, G, )-modules
can factor through the theory of (¢, I')-modules over the Robba rings. On the other hand, the
subspace T1'*!% of locally algebraic vectors of an admissible Banach representation II of GL,, (K)
is contained in the subspace II*" of locally (Q,-)analytic vectors of II. We can hope that the
locally analytic aspect of the p-adic local Langlands should relate the two objects ((¢, I')-modules
over the Robba rings and locally analytic representations) directly.

Recall a vector v € II is locally analytic if the orbit map GL,,(Ok) — 11, g — gv is a locally
analytic function, i.e. g — gv can be written as convergent power series with coefficients in II
locally for some charts of the p-adic manifold GL,,(Of). The subspace II*" is equipped with
some topology so that IT*" is a locally analytic representation of GL,,(K) [ST02b, §3] and the
inclusion IT®" < II is continuous. Even if IT'*'¢ might be zero, IT*" is always dense in IT and the
functor IT — TI?" is exact by Schneider-Teitelbaum [STO3]].

On the Galois side, let r : Gxg — GL, (L) be a continuous representation and let D(r) be
the associated (¢, I'x)-module over £, k. Here, we let Ko, := K(p,~) be the extension of K
obtained by adding all p-th power roots of the unity, I'x := Gal(K (pp~)/K) and £f, i is ring
defined similarly as £, = £, @, but for general finite extensions K of Q,. Cherbonnier-Colmez
proved in [CCO8] that r is overconvergent, i.e. the (¢, I'x)-module D(r) = Df(r) ®et ELx

can be defined over some subring 5}2 x of £ i of overconvergent elements (see also [Ber(2,
Thm. 0.1]). Let R, i be the Robba ring of K over L. Itis a ring also equipped with continuous

commuting actions of ¢ and I'i. There is a ring homomorphism 527 x < R k. Let Drig(r) =
Di(r) ®ct Rk bethe (¢, I'x)-module over Ry, k (cf. [Nak09, Lem. 1.30]) associated to 7.
LK

Remark 1.1.9. The bounded Robba ring Rl}(d is the ring of functions f = >, ap T ap € K
that converge on the rigid annulus s < |T'|,, < 1 for some 0 < s < 1 and are bounded, i.e

R = {Z axT", ap € K{ | sup |agl, < +oo A0 < s < 1, lim |ag|,s" = 0}
keN keN n——00
where K, is the maximal unramified extension of K inside Ko and |p|, = p~*.
The Robba ring R ;¢ which contains R9 is the unbounded version, i.e.

Ri ={>_ axTF ar € Ky VO <r <1 lim |aplr* =0A30 <s <1, lim |a|ps* = 0}.
k—+o00 k——o0
keN
And we let RL,K =L ®Qp Ri.

The ring &z, i is isomorphic to L ®q, Bk where B is in the notation of [BerO8a]. The
ring 627 K 1s isomorphic to L ®q, B}( by choosing certain (in general non-canonically) element
7 € Bg so that the ring B}( is isomorphic to R?{d by sending 7" to wx ([Ber02, Prop. 1.4]).

Kedlaya constructed in [[Ked04] (see also [Ked035, [KedOS]]) some slope filtration on the cate-
gory of p-modules over R . And a (p, ' )-modules over R is said to be étale if the underlying
¢-module is pure of slope 0, equivalently if it has an étale model of a (¢, I' ' )-module over R';(d.
By [KedO8|, Prop. 1.5.5], the base change functor induces an equivalence between étale p-modules
over R%d and over R . In summary, we have the following theorem.
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Theorem 1.1.10 (Fontaine-Wintenberger, Fontaine, Cherbonnier-Colmez, Berger, Kedlaya). The
functor v — Diig () induces an equivalence of categories between the category of continuous
finite-dimensional representations of G over L and the category of étale (¢, T i )-modules over
the Robba ring R, k.

Moreover, p-adic Hodge theory invariants of 7 like Dggr(7), Deris(7), etc. can be extracted
from D (r). Berger constructed in [Ber02] functors D — Wi (D) from (¢, I )-modules over
Rk to semi-linear B}, -representations of Gx. In the case D = Dy (r), Wi (D) = 7 ®q, Bii.
Berger constructed in [Ber08a] another functor D — W, (D) from (¢, ' )-modules over R i to
continuous semi-linear B.-representations of G where B, := Bfrizsl is a principal ideal domain.
Berger showed that there exists an equivalence between (¢, ' )-modules over R i and B-paires
(W;R, We) (see [Nak09] for a R L,k -version). Berger also proved in [BerO8b] an equivalence be-
tween the category of “T"i-locally trivial” (¢, Ik )-modules over R i and the category of filtered
(¢, N, G )-modules, where étale (¢, ' )-modules over the Robba ring correspond to admissible
filtered (¢, N, G )-modules.

A motivating example of the relationship between (¢, I')-modules over the Robba rings and
locally analytic representations is that when n = 2 and K = Q,,, Colmez inserts D,z () into his
functor instead of the D(r), then the output is the subspace II(r)*" of locally analytic vectors of

I1(r), see [Coll0, V].

1.1.8 Beyond GL,(Q,)

The p-adic local Langlands correspondence is still largely conjectural beyond n = 1 and the
group GL2(Q)). With several attempts (e.g. [SV11,ISVZI4, 718, Brel5al), the full generalization
of Colmez’s functor is still in mysterious. Moreover, the p-adic or mod-p representation theory
of p-adic Lie groups is much more difficult beyond GL2(Q,). For example, Breuil-Paskiinas
constructed in [BP12] (too) many supersingular representations for GLy(K) when K is unramified
Qp and K # Q, which already shattered the hope for a bijective mod-p local Langlands for
general groups. But one could still hope that p-adic local Langlands correspondence appear in
geometry (e.g. [Schl8||Sch10} [Schl1l IDLB17, (CDN20]) or in global theories, as suggested by
¢-adic cases and Emerton’s results for GL2(Qp). If p,, : Gx — GL,, (L) can be globalized to be a
restriction of a Galois representation p : G — GL,, (L) for a global number field F' with K = F,
for some place v of F" above p, the conjectural unitary p-adic Banach representation I1(p),) attached
to p, should appear in some completed cohomology as that of modular curves (I.1.6). The mod-p
version of this approach can now determine invariants like Serre weights (e.g. [GLS15l|GK14])
and even the mod-p representations of GLo(K) in certain cases e.g. [BHH 20, HW?20, BHH21].
For the locally analytic aspect, Breuil gives the locally analytic socle conjecture in [Bre16) [Bre15bl]
describing part of the GL,, (K )-representations inside the GL,,(K)-socle of II(p,)*". Breuil’s
conjecture is verified in some cases when p,, is crystalline by Breuil-Hellmann-Schrae in [BHS19].

This thesis will work in the settings of [BHS19] and consider p-adic automorphic forms of
definite unitary groups which should be the easiest situations in higher ranks.

1.2 Automorphic forms for definite unitary groups

The goal of this section is to define, for certain Galois representations p : G — GL, (L)
where F is a global number field, certain unitary Banach representations II(p) of p-adic Lie groups
associated with p cut out from the space of p-adic automorphic forms of definite unitary groups.
We expect certain properties of II(p) will be determined by the restriction of p to decomposition
groups of places over p.

Let F be a quadratic imaginary extension of a totally real number field F'*. We will assume
that the extension F'/F is unramified. Let S, be the set of all places of F'+ above p. Assume
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that any place v € .S}, splits as v = vv° in F' where v denotes the image of v under the non-trivial
element ¢ € Gal(F/F*). In this section, we fix an isomorphism Q,, ~ C.

1.2.1 Definite unitary groups

We introduce the unitary groups. Recall n > 2. Use also * for the complex conjugation
x +— ¥ := ¢(x) forx € C. Let V = F™, an n-dimensional F’-space. An involution of second
type (—)* on B := Endp(V) = M, (F) is an F"-linear involution of B (i.e. (bib)* = b3b}
and b** = b) coinciding with * on the center F' of M, (F'). Such involutions are equivalent
to non-degenerate Hermitian forms on V' (up to factors in (F1)*) which are bi-additive maps
(=,—): V xV — F such that (ax,by) = ab*(z,y),Va,b € F,z,y € V and (z,y) = (y,z)*.
The non-degenerate Hermitian forms determine corresponding involutions by (bx,y) = (z,b*y)
forall b € B,z,y € V. Given a non-degenerate Hermitian form on V, we have the associated
unitary group over F'* defined by

G(R)={g9g€ B®p+ R| gg" =1d}

for all F'*-algebra R. For each F'"-embedding ¢ : F' — F, the projection B®p+ F — B®p, F
induces a splitting of G over F',i.e. G Xp+ F >~ GL,,/p.

Remark 1.2.1. If v is a real place of ', G Fif is isomorphic to one of the usual unitary group
U(p, q) of signature (p,q),p + g = n associated with the Hermitian form z1y7 + - -+ + zpy, —
Tpt1Ypr1 — **° — Tpyy, for z,y € C". The unitary group U(p, ¢) is definite (ie. Gp+(R) is
compact) if p = 0 or n. For a finite place v that is inert in F'™, G Fif is quasi-split if G Ff
is isomorphic to the unitary group over F,I associated with the Hermitian form x4 + -+ +
TiYpi1_; + -+ zpyi. For an inert finite place v, there are two different isomorphic classes of
unitary groups associated with F,/F, if 2 | n and one if 2 { n ([Minl1} §3.2.1]).

We take a unitary group G over 't that is definite (i.e. G(F™ ®qg R) is compact) and quasi-
split over all finite places (see the remark above). Such G exists when 2 { n or 4 | n[F* : Q| by
the Hasse principal ([Clo91, §2]). For any place v of F'*, we write G, := G(F,}) and G, =
G(F™ ®g R) = T, jeat Gv- As in [CHTO8| §3.3] or [Thol2, §6], we can choose some order
Op of B which is stable under the corresponding involution and are maximal for each place v of
F that splits in F. Using the chosen order we can obtain a model G over O+ with the same
notation. For each place v that splits in F' and a place w | v of F, we choose an isomorphism
iw : Gy — GLy(F,,) which induces G(Op+) 3 GLn(Op,) and iye = '(coiy) "

We also write G, := G(F,} ®g Qp) = Hvesp G,. For each v € S, we choose a place v of
F over v. Then (i3)yes, induces an isomorphism Gy, = ], s, GLn(F%) of p-adic Lie groups.
Let K}, C G, be the preimage of [, . s, GLn(OF;) under the isomorphism.

1.2.2 Automorphic forms and Galois representations

We review the classical theory of automorphic forms of G.

An automorphic representation m of G(A+) is an irreducible representation of G(A p+)
that appears in the space A(G) of complex smooth G -finite functions on G(F1)\G(A p+) (cf.
[BCO9, §6.2.3]). Take an automorphic representation 7w of G(A r+). Then it is necessarily a re-
stricted tensor product 7 = ®! m, where for each place v of F'*, 7, is an irreducible smooth

representation of G,,. We write Moo 1= ®y realTy aNd T 1= @y finieTy. Since G, iS compact,
T 18 a finite-dimensional representation of G, ([BCQ9, §6.7]). Take W¢ = ﬂg’o which is a

finite-dimensional irreducible complex representation of G, and let U = [, U, C G(A%;)
be an open compact subgroup such that (7)Y £ 0. Let A(W¢)Y be the space of algebraic
automorphic forms of level U and weight W¢ which are smooth functions f : G(A%,) — W¢
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such that f(gz) = goof(x) for all g = (goo,9™) € G(F') C Goo x G(AY,) and are right

U-invariant. Then (7°°)V can be realized in A(W¢)Y. Since G(F*)\G(AS,)/U is a finite set,

A(W¢)Y is finite-dimensional for all U. Furthermore, we have a G(A%,)-equivariant isomor-

phism A(W¢) := ligUC(G(AOo )A(W@)U ~ Homg,_ (W, A(G)) and under the isomorphism a
r+

decomposition
A(G) = P WY @c AWe). (1.2.2)
We
For each U = U,U? where Uy, := [[,eg, Uv, UP := [],¢g, Uv, we let Si» be the set of
all finite places of F't that split in F', such that U, is maximal and is not in .S,. We assume that
Uy = G(Op+) whenv € S{;»- For all places w of F over v € Sy, let Ty 5,0 = 1,-- - ,n be the
Hecke operators associated to the pull-back of the double cosets

[GLn((’)Fw)diag(waIi, In—z)GLn(OFw)]

under the isomorphism i,, : G, ~ GL,(F,) where I; denotes the i-th identity matrices. Let

T;U" = Z[Tw; | wlv,v € Sip,i = 1,--- ,n] be the commutative Z-algebra generated by Ty, ;.

Then TZU” acts on A(W¢)Y by the usual Hecke actions. The image of TZU ” in Endc(A(Wc)Y)
generates a finite C-algebra whose maximal ideals correspond to systems of Hecke eigenvalues  :

T;U” — C that appear in A(W¢)Y. We will introduce how to attach p-adic Galois representations
of G = Gal(F/F) for such systems of Hecke eigenvalues.

The representation W of G(F ) = (Resp+ /gG)(Q) can be defined over Q or even a num-
ber field contained in Q which splits Resp+ /@G- Extending the scalars to a large enough finite
extension L of Q,, we obtain an algebraic representation Wy, of G, = (Resp+/gG)(Qp). For an
open compact subgroup U C G(AE, ), we write Uy := [],cg, Uy and UP := [] 4g Us. We
define the space S(U, W) to be the set of all functions f : G(F)\G(A%,) — W, such that
fzupuP) = u:;lf(az) for all z € G(A$,),up € Up and v? € UP. Via the fixed isomorphism

— . S7 . . .
Q, ~ C, there is a T',"” -equivariant isomorphism

AWe)Y 5 S(U,WL) @1 Q, (1.2.3)
f e (Gp X G(AP) = Wy = (g, 57) = g, ' f(9p9"))-

Let x : T;bp — L be a system of Hecke eigenvalues that appear in S(U, W1,). Then by
[Guelll, Thm. 2.3], there exists a continuous semisimple Galois representation p, : Gp —
GL,, (L) associated to x in the sense that for any place w of F above v € S{;, py,w = Py g5, 18
unramified and the characteristic polynomial of p, (Frob,,) is equal to

Coa(i—1) n(n—1)

X't (D' T X(Twd) X"+ + (=1)"qw 2 X(Twn) (1.2.4)

where Frob,, € Gp,, is a geometric Frobenius element and ¢,, denotes the cardinal of the residue
field of F,. The condition above determines p, uniquely (up to isomorphisms). We sketch how to
obtain py. Let 7 = 7o, ® 7°° be an automorphic representation of G(A -+) such that mo, = W¥
and (7°°)Y contains Hecke eigenforms of the eigenvalues y via (1.2.2) and (1.2.3). Let BC(7) be
the base change from F'* to F' of 7 by [Labl1l Cor. 5.3] which is a cohomological automorphic
representation of GL,,(A r). If w and w* are places over some v € S{;,, then the local component
BC(7) ® BC(7)e is @ GLy,(Fy) X GLy,(F,c)-representation isomorphic to 7, o i,! ® 7, o
ims. The representation BC () is conjugate self-dual, i.e. BC(7)Y o ¢ = BC(7) where (—)V
denotes the contragredient representation given by a twist of the involution g + ‘g~! of GL,,.
In general, if IT = ®/,II,, is a cohomological cuspidal automorphic representation of GL,, (A g)
where F is a CM field, then there exists a p-adic Galois representation pr; : Gg — GL, (@p)




22 CHAPTER 1. INTRODUCTION

attached to IT where the characteristic polynomials of prj(Frob,,) and certain Hecke eigenvalues
of II,, are related similarly as in (I.2.4) for almost all finite places w of E (see for example
[CH13, Sch15, [HLTT16]). The Galois representation p, is then the p-adic Galois representation
attached to BC(7) ([Guelll Thm. 2.3]). Moreover, p, is polarized, i.e. p; ~ pl ® €"~1 where €
denotes the p-adic cyclotomic character.

Let IT = ®! II,, be a cohomological cuspidal automorphic representation of GL, (A g) and
assume that II is conjugate self-dual (ITY o ¢ ~ II). Then the following local-global compati-
bility of the correspondence II — pyy is already known. If w is a place of E and w { p, then
the Weil-Deligne representation associated with pry ,, corresponds to 1I,, via the classical local
Langlands correspondence up to Frobenius semi-simplification and certain normalization (e.g.
[Car12]]). Moreover, if w is a place of E above p, then prq 4, is de Rham and we have the same com-
patibility between II,, and the Weil-Deligne representation attached to pry (@ by [Carl4].
For p-adic places w and such conjugate self-dual II, the de Rhamness of pry,, follows from the
constructions in most cases where pr; were obtained from étale cohomologies of Shimura varieties
of some non-definite unitary groups (e.g. [Clo90, |[Clo91]]). The Hodge-Tate weights of pr1 (resp.
py) are regular and are determined explicitly by IL, (resp. o).

1.2.3 p-adic automorphic forms and p-adic Galois representations

The theory of p-adic automorphic or modular forms, pioneered by Serre, Katz, Hida, etc., was
originated to study congruences (modulo p%, N € N >1) between systems of Hecke eigenvalues.
On the Galois side, the congruences correspond to p-adic deformations of Galois representations.
There are possibly different ways to p-adically interpolate classical automorphic forms which are
realized in possibly different cohomologies for general reductive groups. For the p-adic local
Langlands correspondence, Emerton’s approach seems the most suitable, as shown for GLyq
(§I.1.5). Whatever, for the definite unitary groups which are compact at infinity, there are probably
essentially no different choices. For example, different approaches in [[Che04]], [EmeQ6c¢], [ASOS]],
etc. will lead to same eigenvarieties for our G.

We fix a compact open subgroup UP C G(A;O;p ). The space of p-adic automorphic forms
S (UP, L) of the tame level UP with coefficients in the p-adic field L is the space of all continuous
functions f : G(FT) \ G(A¥,)/UP — L. The space S(UP, L) is equipped with an action
of G, by gf(a) = f(ag) for all ¢ € G,. Moreover, §(Up7 L) can be identified with the 0-th
degree completed cohomology H Y(UP, L) of the tower (Xv,ur)u, where U, are open compact
subgroups of G, and Xy, i» := G(F) \ G(A%,)/U,UP? are discrete finite sets.

We will assume that UP is sufficiently small in the sense that for any i € G(A%,), we have
G(F*) N hK,UPh™" = {1}. Under the assumption, G(F*) \ G(A%,)/U, = [I;_; siK), for
some integer s. Hence, as a K ,-representation, S(UP, L) is equal to C(Kp, L)*® where C(K), L)
denotes the space of all continuous functions on the p-adic manifold K.

If Wy, is an algebraic representation of G}, over L as in §1.2.2] then we have an isomorphism

S(U,UP, Wp,) ~ Homp, (W}, S(e, L))Yr. Let U, and W7, vary, there isaG,xT) Sum -equivariant
isomorphism (cf. [Eme06c, §3.1])

S@UP, L) @ C~ PW) @p AWe)" (1.2.5)
147

where we have used (thus the fixed isomorphism @p ~ (C), G, acts diagonally on the
right-hand side, W, runs over all algebraic representations of ), (which all can be defined over
L) and lalg means the subspace of locally (Q,,-)algebraic vectors with respect to the action of G,.
Change the coefficient ring L in the definition of §(Up L), we can obtain similarly the
space of mod-p automorphic forms S (UP, k1) and the integral version S (UP,Op,). The unit ball
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S (UP,Op) of S (UP, L) makes S (UP, L) into a unitary Banach representation of G,. These spaces

are also equipped with actions of the Hecke algebra ’]I‘”Z% ”. We will attach Galois representations
of Gr below in corresponding coefficients for their systems of Hecke eigenvalues, using results
for classical Hecke eigenvalues in §1.2.2]

We define in a first time the p-adic Hecke algebra. For each N € N> and U, an open com-
pact subgroup of Gy, we let T(U,UP, O, /™) be the O, /'Y -algebra generated by the image of

Sip . .
TZUP m EndoL/wN(HO(XUpUP> (’)L/w]LV)) Define T(Up, OL) = @N,Up T(UpUp, OL/wN).

Then T(U?, Oy,) is a Noetherian O -algebra acting on §(U7’, Or) = ﬁO(Up, Or), as well as
HO(UP, k1) and HO(UP, L). The ring T(UP, Oy ) is isomorphic to a finite product of complete
local rings [ [, T(U?, Or,)m where m runs over finitely many open maximal ideals of T(U?, Oy,)
and T(UP, Op)m denotes the localization of T(UP, Or) at m, cf. [Pas21]. Hence we have corre-
sponding direct summands S(U?, O, )y (resp. S(UP, L)) of S(UP, O1) (resp. S(UP, L)).

A maximal ideal m of T(UP,Or) as above gives a system of mod-p Hecke eigenvalues
T(UP,Or) — T(UP,Or)/m which appears in certain finite level H°(Xy, u», k) (cf. [Pa321]
Lem. C.3]). Take the modulo p reduction of certain Galois representations in we can
attach a semi-simple mod-p Galois representation p,, : G — GL,,(T(U?, Or)/m) for m.

From now on we fix a (non-Eisenstein) maximal ideal m® of T(UP,Op) such that p :=
Pms : Gr — GL, (kL) (enlarge L suitably) is absolutely irreducible. Let S be the finite set
of finite places of F'™ consisting of all places in S, and all places v such that U, is not hyper-
special. Let Rj; s be the completed Oy -algebra parametrizing polarized deformations of p that
are unramified away from places above places in .S. Then for every finite level U,U” such that
H(Xy,ur,0L)ms # 0, p can be lifted to a representation G — GLy(T(UpUP, Of)ys) as-
suming p # 2 ([Thol2, Prop. 6.7]). From the universal property of ;s we get surjections
Rss — T(UpUP,OL)ys and hence R; s — T(U,UP,Op/w™)ys for N € N>j. Take the
inverse limit over N and U, we get a continuous surjection ¢ : R5 ¢ — T(U?, Oy ),,s which al-
lows us to attach Galois representation for any system of Hecke eigenvalues T(U?, Of,)ps — @p.
Moreover, R5 s acts continuously on S(UP,Op) s and S(UP, L) s via ¢ and the actions com-
mute with that of G

If p : Gr — GLy(L) is a continuous representation that corresponds to a prime ideal m,
of Rp,s[%], we take II(p) := S(UP,L),s [m,] to be the subspace of S(UP,L),s consisting of
elements that are annihilated by elements in m,. The subspace II(p) is a unitary Banach repre-
sentation of G, = [ ], ¢ S, GLy,(F5) consisting of p-adic automorphic eigenforms inside S(U?, L)
associated with p. The hope is that II(p) is a finite sum of copies of the unitary Banach representa-
tions of G, attached to p,, := (p5)ves, Via the conjectural p-adic local Langlands correspondence,
where p5 := p |g;. .

We already know that if TI(p) contains non-zero locally algebraic vectors, then p; are de Rham
with regular Hodge-Tate weights since we see from the corresponding systems of Hecke
eigenvalues come from classical automorphic forms (1.2.2)).

1.3 Emerton’s Jacquet module and eigenvariety

We introduce eigenvarieties, the geometric families of finite slope p-adic automorphic eigen-
forms, following Emerton via his Jacquet module functor for locally analytic representations.

The family S(U?, L),,s of p-adic automorphic forms in the last section satisfies a good finite-
ness property: as a unitary Banach representation of G, it is admissible in the sense of [ST02al, i.e.
the dual (S(UP, L))" is a finitely generated L[Kp]-module where L[K,] := L ®0, OL[K,] is
the Iwasawa algebra. However, except for cases like n = 1 or GL2(Q,,) where we have Colmez’s
functor (cf. [Emelll [Pas13]]), currently a direct way to compare such big families with families

of Galois representations, say Rj g, is out of reach. One reason is that the “fibers” II(p) are
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Gp-representations and L[] is non-commutative. Traditionally, one can restrict to families at
finite levels (also at p). One can also consider certain families of p-adic modular forms of level
'y (p"N) where p + N with possibly weights and r vary and look at the Hecke operators at p
(the Up,-operators), e.g. [CM98]]. This thesis will also restrict to certain subspace of S (ur, L)g{g,
namely the finite slope part.

First of all, let § (UP, L)® be the space of locally analytic functions

[ GE)\GAR)/UP — L

which is also the subspace of locally (Q,-)analytic vectors of S (UP, L) with respect to the action

of G. Itis a locally analytic representation of G, stable under the action of T, Up

1.3.1 Emerton’s Jacquet module functor

Emerton [Eme06bl] constructed his Jacquet module functors which are functors from locally
analytic representations of a p-adic Lie group to locally analytic representations of its Levi sub-
groups.

We identify G = [],cg, GLn(F5). Let Npo be the subgroup [],cq N(Op;) of G, where
N denotes the group of upper-triangular unipotent matrices. Let B, = [[,. Sy B(F3) be the
Borel subgroup of upper-triangular matrices and let 7,, = HUE S, T(F3;) be the dlagonal torus.
We consider the subspace S (UP, L)2Nv.0 of elements which are invariant under the action of
Npo. Let T; be the sub-monoid of 7T}, consisting of ¢t € T}, such that th70t_1 C Npp. Con-
cretely, T, is generated by the group Tp0 := [],¢ S, T(OF, ), non-invertible elements t3,; =
diag(wp, I;, In—i) € T(Fy) fori =1,--- ,n—landv € S, and t5,,,v € S). There is a Hecke
action of 7,1 on S(UP, L)™Nvo given by

1 ~
U= — > ntv, Yo € S(UP, L)*Nv0 t € T'F.
T Ny /tNy ot ’ ( ) P
’ ’ nGNp’Q/th’0t71

Then Uyjv = tv if t € T, and Uy, ; acts by the above formula. Emerton’s Jacquet module
J Bp(:S‘\ (UP, L)™) of S(UP, L)™ with respect to the Borel subgroup B, is the finite slope part
(S(UP, L)™Nv0) g of S(UP, L) Ne0 with respect to the action of T,". The formal definition is
given by [Eme06b, Def. 3.2.1]:

T, (S(UP, L)™) i= Ly 1+ (C*(Tp,1, L), S(UP, L)™Nr0)

where £b7T; denotes the space of continuous T;r -equivariant linear maps with the strong topology,
Ap 1. denotes the base change to L of the rigid space JA“ over Q, which parametrizing continuous
(equivalent locally Qp-analytic) characters of the abelian group 7}, ([Emel7 §6.4], cf. [KPX14!,
§6.1]), and Can( ».L, L) denotes the space of rigid analytic functions on T L

Remark 1.3.1. The space of characters 7 of 7 is isomorphic to G2 and Zp is a rigid open unit
disk. And T}, = T}, o HveSp,z:l,---,n Z.

Then JBP(§ (UP,L)*) is a locally analytic representation of 7}, which justifies the name
considering the Jacquet modules for smooth representations. And naively we may think the fi-
nite slope part as the part of S(UP, L)*"r0 where the action of T; can be inverted and be

extended to an action of 7},. In other words, J Bp(§ (UP,L)*") is the part where the operators
Uts ;»v € Sp,t =1, -+ ,n have no zero eigenvalues. Concretely, if § : T}, — L* is a continuous
character (so that Q(Utm) # 0), we have ([EmeQ6b, Prop. 3.2.12])

Hom+ (8, S(U?, L)™N»0) = Homy, (8, Jg, (S(U?, L)™)).
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1.3.2 The eigenvariety

~

We use the Jacquet module Jp, (S(U?, L)*") to construct the eigenvariety.
In Emerton’s language, since S(UP, L)™ is admissible, .J B, (S(UP, L)™) is essentially admis-

-~ ~

sible, which means that the strong dual Jp,(S(U?, L)*")’, a topological module over C*" (T, 1, L),
defines and is the global section of a coherent sheaf over the quasi-Stein rigid space fp’ 1, ([Eme06b),
Thm. 4.2.32][Emel7, Def. 6.4.9][EmeQ6¢cl, Prop. 2.3.2]). The projection map from the support
of this coherent sheaf to the weight space W := T, »,0 has discrete fibers ([Eme06b, 0.11]). This is
actually Emerton’s representation theoretic construction of some “spectral variety” and with little
effort we will define the eigenvariety.

Remark 1.3.2. Hida [Hid86b, [Hid86a] firstly constructed his ordinary families of p-adic modu-
lar forms using the Uj,-operator (in our setting we can take U, := Hves,, i1, m Utm' He

picked out p-adic eigenforms whose U),-eigenvalues are p-adic units (i.e. in Z; ). Later, Coleman
[Col97] constructed families of overconvergent p-adic modular eigenforms of finite slope (i.e with
non-zero Up-eigenvalues) by developing a Fredholm-Riesz spectral theory for compact operators
acting on certain Banach modules over Banach algebras. Finally, Coleman-Mazur constructed the
eigencurve in [CM98], a rigid analytic space which parametrizing all finite slope overconvergent
p-adic eigenforms of a fixed tame level.

In our setting, the compact operator U, induces operators on certain Banach modules V; related
to (S(UP, L)™N».0) over affinoid Banach algebras A; where Sp(A4;) C W are affinoid opens in
the weight space. The spectral property of U, guarantees that the finite slope part Jp, (§ (UP, L)™)
is well-behaved, cf. [BHS17b, §3.3].

Let Spf(R;,5)"® be the rigid generic fiber of the formal scheme Spf(Rj; ) in the sense of
Berthelot [dJ95], §7]. A point of Spf (Rp,g)rig corresponds to a maximal ideal m of R 5 [%] ([dJ95,
Lem. 7.1.9]) and thus also corresponds to a deformation p : G — GL, (L) for some finite
extension L' of L of p. Recall S(UP, L),s is an R; s-module. The dual J Bp(§ (UP,L)ys)" of
the Jacquet module localized at the non-Eisenstein maximal ideal m? is the global section of a

coherent sheaf over the quasi-Stein space Spf (Rp,g)rig X fp, 1, (IBHS17b, §3.1, §3.2)).

Definition 1.3.3. The eigenvariety Y (U?, p) is the scheme-theoretic support of the coherent sheaf

~

defined by Jp, (S(U?, L),s)" inside Spf(R5,.5)"8 x T, ..

The eigenvariety Y (U?, p) is reduced in our case ([BHS17b, Cor 3.20]).

Remark 1.3.4. For the definition of the eigenvariety (not just localized at m*), one can (and usu-

ally) use ’]I‘ZU " instead of R; s which serves for recording Hecke eigenvalues away from p, e.g.
[Buz07, [Che04, [Eme06c¢], see also [BHS17bl §3.3].

A point of Spf(R; g)"& x fn 1, with the residue field L is given by a pair (p,d) where p :
Gr — GL, (L) corresponds to a maximal ideal m, of Rp’s[%], 0 = Tl,es, 9, and for each v,
0y = (v, ,0un) is a continuous character of T'(F5) = (F-*)". From the definition of the

eigenvariety, such a point (p, 0) lies in Y (UP, p) if and only if
Homr, (8, /g, (I(p)™)) # 0 (1.3.5)

where recall II(p)™ = S(U?, L)[m,]*" is the locally analytic representation of G, associated
with p.

The eigenvariety Y (UP,p) satisfies the following two remarkable properties as Coleman-
Mazur eigencurves if U? is sufficiently small (recall that G(F™ ®g R) is compact).

“We hope the reader will not be confused by the U,-operator here and open compact subgroups U, of G, in ~
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Firstly, the rigid space Y (UP,p) is equidimensional of the same dimension with the weight
space WW. And the weight map Y (U?,p) — W : (p,d) — 4 |1,,, is locally (on the source) finite.
This property is deduced from the general eigenvariety machinery in [Che04] and [Buz07].

Secondly, the classical points are Zariski dense in Y (UP, ). Here we say a point (p,d) €
Y (UP,p) is classical if TI(p)'®® £ 0. For a classical point (p,d) of Y (UP,p), the Galois rep-
resentation p is associated with classical automorphic forms of G and pz,v € S, are de Rham
with regular Hodge-Tate weights. This density result is deduced from the first property above and
a classicality criterion as of Coleman [Col96] that forms with finite “small slopes™ are classical.
The density also characterizes the eigenvariety as the Zariski closure of certain set of classical
points so that different constructions (e.g. [[Che04) [Eme06c¢|) will lead to the same eigenvariety.

1.3.3 Trianguline representations and global triangulations

In the classical local Langlands correspondence, irreducible smooth representations with non-
zero Jacquet modules are subquotients of parabolic inductions and are associated with Galois
representations that are reducible. For locally analytic representations, one may wonder if we
have Jp, (II(p)*") # 0, whether the associated (¢, I")-modules D,ig(p7) over the Robba rings
R1,F; are reducible. The answer is yes thanks to the construction of the eigenvariety and the
“global triangulation”. Even the converse should be true and is verified in GL2(Q))-cases [Emel1,
§1.2.4].

We introduce the notion of the trianguline representation given by Colmez [[Col08]]. Firstly
for a p-adic local field K, there is a bijection between continuous characters of K> and (¢, 'k )-
modules of rank one. We write Ry, i () for the (¢, Ik )-modules associated with a character
d: K* — L*. Then Ry, k(6) is étale if and only if § is unitary, or equivalently § comes from a
one-dimensional representation of G via the local class field theory and then Ry, i (§) = Diig(6).

Definition 1.3.6 (Colmez). A continuous representation r : Gx — GL,, (L) is called trianguline
if Dyig(7) admits a filtration by sub- (¢, I' k' )-modules

Dyig(r) = Fil, D -+ D Fil; O --- > Fily = {0} (13.7)

such that for each 1 < i < n, Fil;/Fil;_1 ~ Ry, k(J;) for some character ; of K *. In this case,
0 = (8i)1<i<n is called the parameter of the triangulation.

Notice that in the above definition, the submodules Fil; are not required to be étale, thus
not necessarily correspond to subrepresentations of Gx. Trianguline representations include all
semistable representations, hence all crystalline representations. And we will see, all the local
p-adic Galois representations pg,v € S, arising from (p,0) € Y (UP?,p) are trianguline up to
enlarging coefficient fields.

We introduce the notion of locally algebraic characters. Let ¥ = Hom(K, L) and assume
X| = [K : Qp). Fork = (k;)rex € [[,cx Z, we write 2 for the character of K sending z to
[1,es 7(2)". We say that a character § of K* is locally algebraic characters if § = 28y, for
some k € Z* and a smooth character dgy, of K.

Set ¥, := Hom(F3, L) for all v € S, and define ¥, = Huesp Yo Tk = (ky)oes, =
(kra, - krn)res, € (Z%)™, write 25 := [Les, ZXv for the algebraic character of 7, =

[L,es, (F5 )" Let , be the automorphism of Tor
Ly : (51;,17 t 75v,n) — 5BU : ((51),1; T a(sv,iei_ly te 75v,n€n_1)

and let ¢« = Hve s, o fp, L = fp, L, where ép, is the smooth modulus character of B, and €
denotes the cyclotomic character. The following theorem is a corollary of the global triangulation
results in [KPX14, Thm. 6.3.13][Liul5] and see also [Hel12].
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Theorem 1.3.8. Assume (p,5) € Y (UP,p). Then there exists an algebraic character zX =

(Zk”)vegp of T, = [, S, (FZ)™ such that, up to enlarging the coefficient field, py is triangu-

line of a parameter z¥v1;(8,)) for all v € S),.

On the eigencurve, such result was firstly noticed by Kisin in the language of “existence of
crystalline periods” [Kis0O3]]. We explain the meaning of the global triangulation. Take v € S,,. The
starting point is that there is a Zariski-dense subset Z C Y (UP,p) such that for any z € Z, p; .
is trianguline of a parameter ¢, 1@”7 .) (and the parameter satisfies certain regularity condition).
Let pgni" be the universal representation on Y (UP, ). Then by [BCO8], the associated (i, T")-
modules also vary as a family Dy, (ps™") over the Robba ring Ry, of K over the rigid space
Y := Y (U?,p). There are universal characters 625", - -+ , 60V : X — (Y, Oy)* pulled back

v,1 »Yu,n

from ﬁ}. Then after replacing Y by a rigid space Y’ with a birational proper map f : Y/ — Y,
the pullback of Dyig(p2™") admits a filtration of (i, I')-sub-modules over Ry~ r. Moreover, the
global filtration of D;;s(p™") interpolates the triangulations of Dy (p5) at points in f~1(Z), with
graded pieces differing not much with Ry g (¢5 1 (62™");) [KPX14\ Cor. 6.3.10].

The dense subset Z C Y (UP,p) of the trianguline points for the global triangulation above
can be taken to be the set of certain classical points (p, d) of “small slope” or “non-critical” where
§ € Jp,(I(p)'*'8) and py are crystalline (hence trianguline).

1.4 Conjectures on companion forms and locally analytic socles

Given (p,d) € Y(UP,p), let W(p) := {¢ € pr | (p,d) € Y(UP,p)}. Then W(p) is
also the set of all characters of T), that appear in Jp, (II(p)*"). It can be viewed as the set of
weights of p-adic automorphic eigenforms with possibly different weights (d |z, ,) and possibly
different U),-eigenvalues (év(Utm), v € Sp,t = 1,---,n) that are associated with a same Galois
representation. We call these forms companion forms and the points on Y (U?, p) with the same as-
sociated Galois representations the companion points. Since the G-representation II(p)*" should
be largely determined by p, := (p3)ves, Vvia the conjectural p-adic local Langlands correspon-
dence, the Jacquet module, hence the set W (p), should be determined by D;ig(p) in some way.
The recipe for the set W (p) is conjectured by Breuil [Brel6, BreI5b] in some cases and later by
Hansen in general [HN17]].

We start with some notation. Let t = [],cq t,b = [icg, bv:8 = [],eg, 80 be the base
change to L of the Q,-Lie algebras of T}, B),, G, viewed also as affine spaces over L. For example
t, = Lie(T,) ®q, L = (F5)" ®q, L ~ (L**)™. Let B), be the opposite Borel with the Lie algebra
b. We identify the weight lattice X *(t) with (Z")>" in the usual way. Recall ¥, := Hom(Fj, L)
forallv € Sp and X, = [[ e, Sv-

1.4.1 Companion points

Given p € Spf (Rp,g)rig such that p is attached to at least one point on the eigenvariety. There
are already several restrictions on the set W (p).

First, by Theorem any character in W (p) has the form ¢(2X§) where z¥ is algebraic,
I | s, 0, and §,,v € S, are parameters of some triangulations of py,v € S, (after possibly
extending L).

Second, if ¢(d) € W(p), then for any v, the weights wt(d, ;) of characters d,;,5 = 1,--- ,n
counted with multiplicities coincide with the Hodge-Tate-Sen weighs of p3. Here for a local field
K with ¥ := {K < L} as before and a continuous character 6 : K* — L*, the weight wt(d) =
(wt(9))rex is the map = +— %6(exp(tx)) li=o0 in Homg, (K, L) identified with K ®q, L =
[ Iy L. For example, if § = X0 for k = (k;)rex € Z* and dgyy, is smooth, then wt, (8) = k.
And if py is trianguline of a parameter §,, = (0y.1, - , 0y ), then the T-Hodge-Tate-Sen weights



28 CHAPTER 1. INTRODUCTION

of py is the multiset {wt(d3;),i = 1,---,n}. The reason for the identification of weights
(Hodge-Tate weights and weights of characters on the eigenvariety) is that both the weights of
dv,; and the Sen polynomials of pi vary analytically on the eigenvariety and the result holds for a
Zariski dense subset, cf. [BHS17b, Prop. 2.9].

Finally, given 4, there is a partial order > on the set W (9) = [],cg, W (d,) where

kv = (kT,i)TEEU,i:1,~~~,7’L € (sz)n7
W(év) = Zkvév {WtT((SUJ) | =1, 7n}
= {wt;(0pi) + kri|i=1,---,n}, VT €3,

such that if «(8’) € W (p) and §" > &', then 1(8”) € W(p) (cf. [BHSI7a, Thm. 5.5]).
We say two characters 0., 0. satisfies that &, > §7 if we can find successive characters 0, =
Q,(JO),QS}),~-- ,Qq(,m) = QZ such that foreach s = 1,--- ,m, thereexists 7 € ¥,,1 <i < j <n
such that wt, (60%)) — wt,(61°)) € Z<g and 85"~ = 2%v6(" where ks = wt, (65°)) — wt. (3.,

krj = th((S,S‘;)) — th(éfj‘?) and kyrp = 0if 7/ # 7ori’ # i,j. And we say [[,cq 0, >
[Les, o7 if and only if 8], > &) for all v € S),. In some other language, if we identify the weights
wt(8') as points of t* the dual of t, then §' > §” if and only ¢(8")c(8")~! = §'(8”)~! is algebraic
and wt(.(8"”)) 1+ wt(.(d")) in the notation of the strong linkage principal in [HumO8, §5.1] with
respect to b.

If §, is a parameter of some triangulation of py (possibly after extending the scalar), let
Ws (p3) = {w(8,) | 0, € W(J,),d, > 4,}. Hansen’s conjecture [HN17, Conj. 6.2.3] is
the following.

Conjecture 1.4.1 (Hansen). Assume that the set W (p) of companion characters is non-empty.
Then W (p) is equal to [ T ,cg (115 Ws, (05)) where 8, runs over all parameters of triangulations
of Diig(pz) for all v € S),.

Example 1.4.2. We discuss examples of companion forms in the most classical situation. Suppose
that N is an integer prime to p. Write ¢ = €™ for z in the Poincaré upper half-plane. Let
f=q+---a;q¢" + --- be a cusp modular form of level I'y(N) C SL2(Z) and of weight k > 1.
We assume that f is an eigenform for Hecke operators 7y, ¢ 1 N (so T, f = a, f). Let «, 3 be two
roots of the polynomial X2 — a, X +p*~! and assume that a # 3, pB. Then f, = f(q) — Bf(q”)
and fz = f(q) — af(qP) are two (old) forms of weight k and of level I'o(Np). They are two
p-stabilisations of f and are eigenvectors for the classical Up-operator: Uy, fo = afa,Upfg =
Bfs. The forms f, f, f3 are associated with the same p-adic Galois representation p = py.
Moreover o and 3 are also the two ¢-eigenvalues of De,is(pf,p). The two forms f,, f5 correspond
to two different points on Coleman-Mazur’s eigencurve. On the eigenvariety, the variant of the
eigencurve defined by Emerton in [Eme06¢c, §4], f, and fg correspond to two different points

(p.d,) and (p, §5) respectively. Explicitly, as characters of (Q))?,

8, = (unr(p~'a), unr(8)z*7), 85 = (unr(p~' B), unr(a) 2> ).
If £ > 2, and vp(«) = k — 1 (equivalently v, () = 0), it’s possible that the character

8 = (unr(p~ta)z!7F, unr(8)z)

167

also lies in W (py), but &, # §,,0 3- This happens if and only if py, splits as a sum of two
characters z!~*unr(a) @ unr(3) of Gq, (see for examples [BE10, Ber14]).

In this case, ,, and 4, correspond to the same refinement of py,, but the point (p,d;,) on
the eigenvariety is not related to classical modular forms (only to p-adic modular forms). After a
twist, (p, d.,) corresponds to a point on the eigencurve associated to a finite slope p-adic modular
form g of weight 2 — k. Moreover, py ~ py @ x& ! and the form §*~!g, where 6*~! = (qdiq)k*l
is the theta operator, corresponds to the same point with f, on the eigencurve.
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1.4.2 Orlik-Strauch representations

The conjecture of companion points deals with the T,-representations Jp, (II(p)*"). Breuil’s
locally analytic socle conjecture concerns the G,-representation II(p)*". To state the conjecture,
we introduce certain finite slope Gp,-representations constructed by Orlik-Strauch in [OS15].

Recall K, is a maximal compact open subgroup of G, and T}, C B,. If H is a p-adic Lie
group, let D(H) be the strong dual of the space C*"(H, L) of locally analytic functions on H with
values in L. Then D(H ) is the algebra of distributions on H with products given by convolutions.
When H is compact, Schneider-Teitelbaum show in [STO03]| that D(H) is a Fréchet-Stein algebra
([ISTO3, Thm. 5.1]) and define a full abelian subcategory of coadmissible modules of the category
of D(H )-module. In their definition, a locally analytic representation V' of G, is admissible if
and only if the strong dual V' is coadmissible as a D(K))-module. And the duality induces an
anti-equivalence of abelian categories between the category of admissible locally analytic repre-
sentations of G, and the category of D(G,,)-modules that are coadmissible as D (K,)-modules.

Let § = 27, be a locally algebraic character of T, where d,,, is a smooth character and

A € X*(%) is an integral weight. Let (Ind%” éég;)an be the space of all locally analytic functions
p— 71) p— —
f : Gp — L such that f(bg) = (éégi)(b)f(g) forall b € B), where 0p, = [[,cg,
smooth modulus character of B, (restricted to 7},). Let G, act on (Ind%p éégi)aﬂ by right trans-
P

0p, is the

lations. Then (Ind%’ é&gi)an is a locally analytic principal series representation of G),. The dual
P
G — . —
of (Indééé L)an js equal to D(G)) ®p,) 16p,. Let D(B,, g)(= U(g)D(B))) be the sub-

algebra of D(G),) generated by D(B,,) and U(g), where U (—) denotes the universal enveloping
algebra. Then

D(Gy) ®p(g,) 3”08, = D(Gy) ®p(p, g (P(Bp:9) @pp,) = S, ).

Let M(—A) := U(g) ®5 (—A) be the Verma module of the highest weight —\ with respect to b
which lies in the BGG category O°. The locally finite b-action on M (—)\) integrates to an action
of By, hence M (—\) becomes a D(B,, g)-module. Then the D(B,, g)-module D(B,, g) ® D(f )
2 00, is equal to M (—\) ®, 6510, where U(g) acts trivially on the second factor §5;1 03, .
The Verma module has a unique irreducible quotient L(—)\) in O" and its irreducible subquotients
are of the form L(—w- ) for some w in the Weyl group of g (identified with [T, . s, (S ,)>). Here
w - A denotes the dot action w - A\ = w(A + p) — p where p denotes the half sum of all positive
roots of g with respect b. Those L(—w - A) € O also integrate to D(B,, g)-modules. Hence
D(G,) ®p(B,) 5716, admits subquotients D(G)) ®D(B,.0) (L(—w - \) @ 65n08,)-
For an integral weight A € X*(t), define

Fo! (L)), 84mb5)) = (D(Gy) @, (Z(-A)@ggniaBp))’.

Then }"g: (L(=X), 0m05 ) is an admissible locally analytic representation of GG, and is a closed
subrepresentation of (Indﬁz éégi)aﬂ

In general, let ), be a parabolic subgroup of G, such that B, C @, C G, with a Levi
subgroup M@p containing 7}, and the Lie algebra q over L. Let Ogl o be the subcategory of 07 C O
defined in [OS135] §2.5] with typical examples are L(—\) where A € X*(t) is a dominant weight
for Mg Wlth respect to Mg N B,. Orlik-Strauch construct a functor (M, V) — .7-" (M V)

from M € (’)glg and smooth adm1531b1e representations V' of M, o to admissible locally analytic
p

representations of G,. The functor is exact (on both the two arguments). If L(—\) € O" _ then

alg’
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FO(T(=N), 6,650 = FOP(T(=A), (Indee® 5. 571)) where (— )™ denotes the usual
Ep yEsSmEBy /T ap ’ Epﬂ]\/fapfsm Bp

Crs

parabolic induction for smooth representations. Moreover, if (Ind 5 ﬁsmégi)sm is irreducible,
P

then ]-'g” (Z(—)\),ésmégi) is topologically irreducible for all A\ € X*(t). See [Brel6, Thm. 2.3,
p
(2.6)] for details.

1.4.3 Locally analytic socle conjecture

For representations p such that pz,v € S, are de Rham with certain genericity condition,
Breuil’s locally analytic socle conjecture predicts all possible representations of the form Fg” (M, V)
P

that should appear in the socle of II(p)*" from the associated filtered (¢, IV, G, )-modules [Brel6)
BrelSb].

1.4.3.1 Refinements of generic crystabelline representations

We focus on the trianguline case of Breuil’s conjecture with a stronger genericity assumption.
Let r : Gx — GLy (L) be a trianguline representation with a parameter 0 = (1, - -+ , 0y, ), where
K/Q,is alocal field as in If r is potentially semistable, by Berger [BerO8b], the trianguline
filtration of Dyig(r) is equivalent to a full filtration of the filtered (y, N, G )-modules associated
to . Hence a triangulation of D, (7) determines and in fact is determined by a full filtration of the
associated Weil-Deligne representation WD(r) in Let x1,- -+, Xn be the characters of Wi
that appear in the semi-simplification of WD(r). We make the following genericity assumption.

Assumption 1.4.3. Forany i # j, x; *x; ¢ {1,unr(pf)} where f = [kx : F,] and fora € L*,
unr(a) denotes the unramified character sending a geometric Frobenius to a.

The above genericity assumption implies that WD(7) is semisimple and N = 0. Since now
WD(r) is a direct sum of characters of Wi, the corresponding (¢, N, Gx )-module is also a direct
sum of rank one objects, which implies that the action of G — Gal(K’/K) on the (¢, N, Gk )-
module factors through an abelian quotient. Hence r is crystabelline, i.e. we can assume K’ is an
abelian extension of K and r|g_, is crystalline.

Definition 1.4.4. A refinement R for a generic crystabelline representation r is a choice of an
ordering (x1,- - , Xn) of the different characters of W that appear in WD(r).

A refinement R = x = (x1, -, Xn) induces a filtration on WD(r) (the i-th submod-
ule is spanned by WK—eigenspaces of characters x1,--- , x;). By Berger’s dictionary [BerO8b|,
the refinements are in bijection with triangulations of Dyiz(r). We identify Wy with K> via
the local reciprocity map normalized by sending a geometric Frobenius to wy. The parameter
of the corresponding triangulation, as a character of (K )™, is equal to Zwr (h) X where h =
(hrti, s hen)ren € (Z™)* denotes the Hodge-Tate weights of 7 such that hep <o < hrp

and wr € (S,) is an element uniquely determined by R up to stabilizers of h in (S,)>.

Remark 1.4.5. The element wg parametrizes the relative position of the trianguline filtration on
Dar(r) = Dar(rlg,.,)9% = (Ds(rlg,.) QK K')GalUE/K) and the Hodge filtration on Dgg (7).

Then the Conjecture [I.4.1] can be formulated more explicitly for generic crystabelline repre-
sentations, knowing all the parameters of triangulations.

Conjecture 1.4.6. Let p : G — GL,, (L) be a continuous representation corresponding to a
point in Spf(Ry5 s)"8. Assume that for each v € Sy, pg is generic crystabelline. If W (p) = {4 €

Tor| (p,8) € Y(UP, D)} # 0, then

W(p) =Wipp) = [T feolz"M)x)) wo = wr,, wy € (S2)™,}
vES)
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where h, denotes the Hodge-Tate weights of py as above, R, = X, runs over all refinements of
Pz, and > denotes the usual Bruhat order on (Sn)zv.

1.4.3.2 Breuil’s conjecture

For Ry, x,» wv, hy as in Conjecture , denote by O, = to(2" (h”)xv) and for w =
(U)U)vegp, R = (Ry)vegp, write QR,w = [loes 5Rv,wv The smooth part sm of 62, w0y is in-
i—1

dependent of w,, and is equal to 6, (X1, - - - ,X1| At xnl - 5 t) where | - |, = unr(p~ )
is the usual valuation on F3. Then (Ind%’: éRv,sm(sEj)s is 1rreduc1ble under our genericity as-
sumption and its isomorphic class is independent of the refinements R, by intertwinings be-
tween smooth principal series. Let A = (Ari)res, =1, € X*(t) = (Z")*» defined by
Ari = hrpi1-i +i— 1. Then o, = zwwo'/\énvsm for all w, R where wq denotes the longest
element in [, . s, (Sp)**. The following conjecture is Breuil’s locally analytic socle conjecture
in crystabelline cases.

Conjecture 1.4.7 (Breuil). Let p : G — GL,,(L) be a continuous representation corresponding
to a point in Spf (R s)"8. Assume that for each v € S, py is generic crystabelline and W (p) =
{0 €Ty | (p,0) € Y(UP,p)} # 0. Then there is a Gp-embedding (possibly after enlarging L)

Gp — an
‘FE;,(L(_A/)aésm(sB;) — H(p)

for X' € X*(t) and a smooth character 0, of T, if and only if the locally algebraic character
2N 8 is equal to some character 6g , = waO'AéR@m € W (pp) where the set W (py,) is defined

in Conjecture

We call those representatlons]: ( (—wwo- ), 0g smdp )that appear in II(p)*" companion

constituents. Conjecture [1.4.7] 1mphes Conjecture [[.4.] thanks to an adjunction formula of Breuil
on Emerton’s Jacquet modules in [BrelSb]. In our case, we have

Homg, (fgj (M(~wwo - A)", 0 sm0p, ), L(p)™) = Homr, (Og ., J5, (LL(p)™))  (1.4.8)

where M (—wwy - \)" denotes the dual Verma module in or. By the exactness of Orlik-Strauch’s
functor and the knowledge of the subquotients of the dual Verma module, the irreducible G-

subquotients of]-'g” (M (—wwo - A)Y, 0p smlp 1) are exactlyf ( (—w'wo-A), 0 sm0p ) where
w' < w and ]-' ( ( wwo -+ A), OR sm0 Bp) is the unique 1rreduc1ble quotient of ]:P (7(—ww0 .
p

MY, 0 smOp ) In particular,

Gp 1 —
HomGp (‘FE: (L(—U}wo : A)7é7€,sm531})7 H(p)an) 7é 0= HOI’HTP (éRﬂuv JBP (H(p>an>) 7é 0.
o (1.4.9
Hence the appearance of the constituent ‘FE: (L(—wwg - N), §R7sm5§;) in II(p)*" implies that the

companion point (p, dx ,,,) appears on the eigenvariety Y (U”, ).

1.4.4 Results of Breuil-Hellmann-Schraen in regular cases

If r : Gxg — GL,(L) is a continuous representation with Hodge-Tate-Sen weights h =
(hra, -+ s hrn)res, then we say the Hodge-Tate weights are regular if h,; # h.; for all 7
and 7 # j. We make the following Taylor-Wiles hypothesis, some of which are already used to
associate Galois representations for p-adic automorphic forms.

Assumption 1.4.10. 1. p>2;
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2. F is an unramified extension of F':
3. G is quasi-split at all finite places of F'T;
4. U, is hyperspecial at all places v of F'* that are inert in F;

5. F contains no non-trivial ¥/1 and the image of p ‘Gal(? JE(YT)) is adequate, see [BHS19,
Rem. 1.1].

Note that the last assumption on the image of p is some “big image” condition, see e.g. [Thol2,
§2]. The following theorem is proved in [BHS19].

Theorem 1.4.11 (Breuil-Hellmann-Schraen). Assume that UP is small enough and the Taylor-
Wiles hypothesis (Assumption [[.4.10). Then Conjecture and Conjecture are true for
p : G — GL, (L) such that for all v € S, py are generic crystalline with regular Hodge-Tate
weights.

Remark 1.4.12. The above theorem is also proved by Ding in [Dinl9al] for n = 2. Moreover,
Ding obtained results for companion points and companion constituents for generic trianguline
but non-de Rham Galois representations [Dinl9al Cor. 5.12] when n = 2.

Remark 1.4.13. Let me emphasize that the result of Breuil-Hellmann-Schraen (Theorem [I.4.TT])
already includes a general classicality result. Let A = ()\r,z‘)rezp,izl,m,n defined before Con-
jecture Then the condition that Hodge-Tate weights are regular implies that A is a domi-
nant weight with respect to b (i.e. A;1 > --- > A, V7). Then L(—\) integrates to a finite-
dimensional algebraic representation of G, and
Gp 7 — - G —1\sm

F5/ (L), 0 smlp,) = L(=A) ® (Ind"dg 0, )*
is locally algebraic. The appearance of this companion constituent in IT(p)*" implies that I1(p)'*!& -
0. Hence p is associated to classical automorphic forms by (I1.2.5). Moreover, for a different re-
finement R’, we have

Gp 7 - Gp /7 _
FaM(L(=X), 0 smbp, ) = Fg! (L(=), R/ sm0p,) (1.4.14)
which allows one to pass from one refinement to another. These arguments are not available when
the Hodge-Tate weights are not regular.

The proof of Breuil-Hellmann-Schraen builds on their construction of the patched eigenvariety,
the trianguline variety and the study of the local geometry of the trianguline variety.

1.4.4.1 The trianguline variety

The trianguline variety, defined in [BHS17b] (see also [HS16]), which we will recall soon, is
the local Galois theoretical variant of the eigenvariety. Similar construction was firstly given by
Kisin in [Kis03]].

Let K be a p-adic local field as in and let 7 : Gg — GL, (k) be a continuous rep-
resentation. Let Ry be the framed deformation ring of 7 and let X := Spf(Rr)"® be the rigid

—

generic fiber over L. Let 7;* = (K *)", be the rigid space over L parametrizing continuous char-
acters 0 : (K*)™ — L*. In the analogy that the eigenvariety is the Zariski closure of trianguline
classical points (cf. the end of §1.3.2), the trianguline variety Xi,;(7) is defined to be the reduced
Zariski closure in X7 x T, of the subset
e 3 r is trianguline of parameter ¢,
Uuni(r) = { (r0) € Xe X Ti\ 575, # 2% 2% Vi # .k € 73,



1.4. CONJECTURES ON COMPANION FORMS AND LOCALLY ANALYTIC SOCLES 33

where € denotes the cyclotomic character. The trianguline variety X,i(7) is an equidimensional
rigid space over L. Moreover the global triangulation applies and a similar result as Theorem [I.3.8]
holds: for any point (r,d) € X4,i(7), r is trianguline of some parameter &' such that &'~ is an
algebraic character (after possibly extending the scalars). One can define and formulate parallel
conjectures on companion points on the trianguline variety, see [BHS19, §4.2].

1.4.4.2 The patched eigenvariety

The patching method of Taylor-Wiles, further developed by Kisin, is usually a key middle
step to compare Hecke algebras and Galois deformation rings, and to prove automorphy lifting
theorems. Rather than proving directly R = T, the method enrich the Hecke side T to a larger
ring T, by patching together Hecke eigensystems of some infinitely many smaller tame levels at
some auxiliary primes. On the Galois side, one replaces the global deformation ring R by R,
a power series ring over some local Galois deformation ring R'°°. Then it might be easier to
establish R, = T firstly.

In [CEG™16], the authors patched completed cohomologies, under the Taylor-Wiles assump-
tion (Assumption [I.4.10), and obtained a patched Banach representation Il of G, replacing
S (UP, L),,s which is suitable to study p-adic local Langlands correspondence. Breuil-Hellmann-
Schraen used 11, to define the patched eigenvariety and compared it with the trianguline variety
in [BHS170b].

For v € S, let R;_ be (the reduced p-torsion free quotient of) the framed deformation ring of
pyandlet Rp = Rve s, R5, - There is a complete Noetherian local ring

Ry = Rpp@Rpp [z1,-- -, 24]

over O, where R;r is some completed tensor product of certain deformation rings of p; for
v € S\ Spand g is an integer. The action of R5 g on S(UP, L),,s factors through a quotient R;s.
There are surjections R, — R /a — Rp s of rings which are compatible with local Galois
deformations where a C R is an ideal. Then Il is a unitary Banach representation of G}, with
an action of R, and an isomorphism IT.[a] ~ S(UP, L), that is compatible with the actions of
R /a and R5 s. In particular, if p : Gp — GL,,(L) corresponds to a map R; s — L and defines
prime ideals m, for R, and R s, then

~

Heo[my] = S(UP, L) s [my] = I(p).
This implies that in order to prove Conjecture and Conjecture [1.4.7] it is enough to study
.
Write 1127 for the subspace of locally Ro-analytic vectors in 11, ([BHS17b, Déf. 3.2]). The
patched eigenvariety X, () is defined as the support of the coherent sheaf defined by the dual of
Emerton’s Jacquet module Jp, (I155)" inside

Spf(Roo)™® x T, 1, ~ Spf(Ry, )" x Spf (Rpp[w1, -+ , 2] x T, = X5 x (Xpp xU9) x Ty 1.
The eigenvariety Y (U?, p) can be viewed as a closed subspace of the patched one X, (p).

Let Xui(p,) = [l,e S, Xiri(py) viewed as a closed subspace of X5, x Tp,. We extend the
automorphism ¢ of fp’ L to Xt:i(p,) by base change. Then the density of “small slope” points on
X, (p) and certain local-global compatibility imply that there is a closed embedding

Xp() = (Xui(By)) % (Xpp x U9) C (X, x Tp1) % (Xpr x V).

Moreover, both X,,(p) and ¢ (Xi(p,)) x (X x UY) are equidimensional with the same dimen-
sion. Hence the patched eigenvariety X),(p) is identified with a union of irreducible components
of ¢ (Xtri (ﬁp)) X (Xzr x UY) under the above closed embedding. This is a T = Roo-kind result
for irreducible components of the eigenvariety and the equalities will indeed hold locally around
some points.
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1.4.4.3 The cycles of companion constituents

The idea of Breuil-Hellmann-Schraen to prove Theorem [I.4.11]is to define cycles locally on
X,(p) which correspond to the appearance of companion constituents and to show that the ex-
pected cycles exist on the Galois side. The last step lies on the study of the local geometry of the
trianguline variety via the construction of a local model. The spirit of the proof goes in a similar
line with the case of mod-p representations (i.e. weight part of Serre’s conjecture and geomet-
ric Breuil-Mézard conjecture, [EG14]). We construct in this subsection the cycles of companion
constituents. R

Letz = (.) = ((pp = (Ps)vesy-8 = [ues, 8,):2) € (X5, x Tp1) % (X x U) be a point
as in Theorem i.e. each pj is generic crystalline. Let h = (hy).es, be the Hodge-Tate
weights of pz such that h.; < --- < hp,, forall T € X, without assuming regularity, and define
A as before Conjecture Then A is dominant if and only if h is regular. The properties men-
tioned in §I.4.T)and the discussions of triangulations of generic crystalline representations allow
us to suppose that 6 = z’\5737sm for a refinement R = (Ry)ves, of pp. Let Xoo 1= Spf(Rso)"8.
Then 7, := (pp, ) is a point on X . Let @xw ., be the completed local ring at r,,. We will con-
struct cycles [L(wwyp - A)] for companion constituents ]—"g: (L(—wwo - \), éR,sme]};) forw € 8,7
inside Spec(@xm,”),

Let m,, be the ideal of R, associated to 7,. We consider the associated locally analytic
representation I, [m, |*". The starting point is an adjunction formula ((BHST9, Lem. 5.2.1])

Homg, (]-“g: (L(—wwo-N), 0 nd5) ) Too[my, J*) = (Homy (g) (L(wwo-A), Moo [my, ]*) V0 ) To=0R.cm,

To form cycles, we deform r, and dx g, in the right-hand side of the above formula. That is we
consider the functor
M = Homysq) (M, T3 [mp2]) Y0 me |

for U(g)-modules M € O where [m°] denotes the subspace of elements that are killed by a power

of m;, and ms_ _ is the kernel of L[T})] — L induced by dz o, The functor is exact and the dual
of the output for M is a finitely generated module over 63600,% = 1£1Z R [%] / m;. We define the
associated cycle [M] to be the support of the finitely generated module associated with M inside
Spec(Ox_, r, ). Then

[L(wwo - N)] # 0 = Homg, (Fo’ (L(—wwo - ), 0 gnd50), Moo[my, ™) #£ 0. (14.15)

Remark 1.4.16. In [BHS19]], the cycles in Spec(@xw”) are defined to be elements in the free
abelian group generated by the irreducible closed subschemes in Spec(@xwm). In this thesis,
it is enough to consider the cycles as topological closed subspaces in Spec(@xwh), as we will
simplify the relavent arguments in [BHS19] for the main theorem [I.5.1] even in regular case.

Let X, () ww,-a be the fiber of X, (p) — IA}LL W ¢ over wwg - A € t*. Let 2, = (Y, 0% w)

. . . . _ b .
be a companion point, which may or may not exist on X, (p), of x,,, for w € S,,*. Forgetting the
characters we have maps

Spec(@Xp(p)wwO‘A@w) — Spec(@Xp(p)yxw) — Spec(@xoo,rz)

which are closed embeddings under our genericity assumption.
One input to study the cycles [M] defined above is that if we take the Verma module M (wwy -
A), then

[M(wwo ’ )\)] = [MOO ®0Xp(5) OXP(ﬁ)U}U}o-)wxw}
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by (1.4.8) where M is the coherent sheaf on X),(p) defined by Jp, (T132)". Moreover, [ M (wwy -

A)] is a union of [L(w'wp - A)] for w’ € Sy? such that L(w'wg - \) appear as subquotients of
M (wwy - A). Note that

[M (wwp - )] # 0 = Homg, (Fo” (M(—wwo - A", 0g sm5), Too[mr, ™) # 0
& Homr, (0% 4, Hoo[m,, ™) # 0
& Ty € Xp(p). (1.4.17)

Thus, one can prove the existence of the companion points on the patched eigenvariety or the
appearance of the companion constituents in ITo [m,., |*" by proving that the corresponding cycles
are non-empty.

1.5 The main results

The main result of this thesis removes the regularity assumption on the Hodge-Tate weights in
Breuil-Hellmann-Schraen’s result (Theorem [I.4.1T)) for locally analytic socle conjecture and the
existence of companion points in generic crystabelline cases.

Theorem 1.5.1. Assume that the tame level UP is small enough and assume the Taylor-Wiles

hypothesis (Assumption [.4.10). Then Conjecture and Conjecture are true for p :
Gr — GLy, (L) such that for all v € Sy, py are generic crystalline.

Remark 1.5.2. In contrast to the conjectures, the above theorem restricts to the crystalline cases.
But there should be no essential difficulty for general generic crystabelline representations, as is
noted in [BHS19, Rem. 4.2.4].

To prove the theorem, we first generalize the theory of local models for the trianguline variety
of Breuil-Hellmann-Schraen to non-regular weights. Then we match the cycles on the patched
eigenvariety with cycles on the local models using the relationship between partially classical
companion constituents and partially de Rham Galois representations. This allows us to prove the
existence of all companion points associated to the same refinements. For the companion points
associated to other refinements in the non-regular cases, we approximate the non-regular points by
regular points.

In the remaining part of this introduction, we explain those ideas in more details.

1.5.1 Local models of the trianguline variety with non-regular weights

Recall that L /Q, is a large enough coefficient field. Let G =[], (Resg, /g, GLn/F,) ®q,
L = Hzp GL,, /1, a reductive group over L. Let B C G be the Borel subgroup of (products
of) upper-triangular matrices and let 7" be (products of) the diagonal torus. Let P be a parabolic
subgroup of G consisting of upper-block-triangular matrices and let P = MpNp be the Levi
decomposition where M p is the Levi subgroup containing 7". We write g, b, p, t, mp, np respec-
tively for their Lie algebras viewed as affine spaces over L. Let W = SE ? be the Weyl group of
G and Wp be the Weyl group of Mp.

The partial Grothendieck resolution gp := G x p — g sends (g,v) € G x p to Ad(g)v
where Ad denotes the adjoint action. We construct an algebraic variety over L by the product

Xp:=gB Xg0pP-
As a closed subspace of g X G/B x G/P where G/B and G/ P are flag varieties,

Xp={(v,01B,92P) | Ad(g7 ")v € b, Ad(g; ")V € p}.
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For w € W/Wp, let Xp,, be the Zariski closure in X p of the preimage under the map Xp —
G/B x G/P of the G-orbit G(1,w) C G/B x G/P. Then Xp is equidimensional with distinct
irreducible components X p,,, w € W/Wp. The following is the key geometric property of Xp,,
for our applications.

Theorem 1.5.3. For any w € W/Wp and a point x € Xp,, the completion of the local ring
Ox Pz Of Xpa at x is irreducible.

In other words, X p,, is unibranch. If P = B, Breuil-Hellmann-Schraen proved that Xp ,, is
normal in [BHS19]] which in particular implies that X g ,, is unibranch using the Cohen-Macaulay
property of Xp,, proved by Bezrukavnikov-Riche in [BR12]. We prove that Xp,, is unibranch
at x based on the normality of X g ,, and by showing that the fiber of the natural birational proper
map Xpg,, — Xp,, over  is connected.

Now let y = (pp = (p3)ves,,d = [, 4,) be an L-point on the trianguline variety Xi(p,) =
I1.e s, Xtri (p5) such that the weights of § are integers (equivalently the Hodge-Tate-Sen weights
are integers) and ¢ satisfies the following genericity assumption.

Assumption 1.5.4. For each v € Sy, §, = (0p,1, -+ ,0pn) : (ng)" — L™, we have 5%1-6;]1- +
2K e2X foralli # jand k = (k1,--- ,kn) € Z™ where € denotes the cyclotomic character:
€(2) = [l ez, 7(2) if z € OF and e(wp,) = 1.

When py are all crystabelline, the above assumption is equivalent to the genericity assumption

Leth = (hy)ues, = (hr1 < -+ < hrp)rexs, be the Hodge-Tate-Sen weights of py,v €
Sp. Since the Hodge-Tate-Sen weights are integers, the Byr-representation

War(Drig(p5)) = War(ps) = Bar ®q, pv

of G is almost de Rham under Fontaine’s classification [Fon04)]. Then

Dyar(p5) = Dpar(War (Diig(p7))) = (War(p5) ®B,y, Bar[log(t)])"

is a finite free rank n module over L ®q, F; = Hvezv L with a nilpotent operator v, ,, induced
by the Byr-derivation of Byg [log()] such that v(log(¢)) = —1. Moreover, p; is de Rham if and
only if v, ;, = 0 on Dpqr(p3). Recall WJR(pg) = BCJ{R ®q, py- Fori € Z, let

FﬂiDde(P’ﬁ) = (WJR(P’ﬁ) ®B31—R tiBXR[IOg(t)DgFE

which define the Hodge filtration Fil® Dygr (p5) of Dpar(pz).

Let P be the parabolic subgroup of GG as in Theorem such that Wp C W = SE P is the
subgroup of the stabilizers of h. Then the Hodge-Tate-Sen weights h are regular if and only if
P = B. Moreover, the Hodge filtrations (Fil®*Dpqr(p3))ves, defines a point gz, P in the flag
variety G/ P after choosing bases for Dy,qr (p5). On the other hand, the global triangulation as in
Theorem induces a unique full filtration on the (¢, I')-module D;ig(py) with the parameter
a twist of §,, by an algebraic character. The filtrations on Dyig(py) induce a full filtration of
[l.cs, Dpar(pz) which gives a point g1, B € G/B. The nilpotent operator vy = [],cg Voy
preserves the two filtration. Hence we get a point

YpdR = (Vyagl,yB>g2,yP) € Xp.

Finally let w € W/Wp be the unique element such that the weight wt(8) € (Z")*r of the
character § coincides with w(h).

With the above data, following Breuil-Hellmann-Schraen in the regular cases and noting that
almost de Rham representations are stable under extensions and thus deformations, we have the
following theorem on the local models of the trianguline variety.



1.5. THE MAIN RESULTS 37

Theorem 1.5.5. Let y = (pp,d) be an L-point of the trianguline variety X:i(p,) such that §
satisfies the genericity assumption and is locally algebraic. Let ypqr be a point of Xp and
w be the element of W /W p associated with y as above. Then up to formally smooth maps, there
is an isomorphism

OXtri (ﬁp) Y = OXP,U} »YpdR

between the completed local rings of Xti(p,) at y and that of Xp,, at ypar. In particular, the
trianguline variety X1,i(p,) is irreducible at y.

1.5.2 Cycles on the generalized Steinberg variety

Let z = (u(y),2) = ((pp = (pv)ves,,d = Hvesp d,), 2) be a point on the patched eigen-
variety Xp(p) C (Xui(p,)) x (%pp x U9) with py generic crystalline as in §1.4.4.3, Write
re = (pp,2) € Xoo = Spf(Roo)"™®. Assume also that § = Jg ,,, for a refinement R of p,
and wy is the longest element in W. Write x,, = (74, éR,w) € Xoo X fp, . for the companion
points which may or may not lie in X,(p). Recall in there are cycles (closed subspaces)
[M(wwp - A)] and [L(wwp - A)] inside Spec(@xwm) which are non-empty if and only if the
corresponding companion points z, lie in the eigenvariety or the companion constituents
appear in I [m,, |* (1.4.153).

We now define Galois-theoretical cycles Zp,, inside Spec(@%mﬂqz) that will be compared
with [L(wwp - A)]. The Galois cycles are pulled back from Spec(@ Xpypar) i0 Theorem via
the theory of the local models and the maps

Spec(oxoo,"'z) — SpeC(O}:ﬁp,pp) <« Spec(oXt“(pp),y) = SpeC(OXP,wO 7yde) — SpeC(OXP,élpgR)
(1.5.6)
where the fact that the map Spec(Ox,;(5,),y) — Spec((’)xﬁlﬂ pp) 18 @ closed embedding is due to
the genericity assumption.
Let NV be the subvariety of nilpotent matrices in g and let ng, np be the nilradicals of b, p. The
point ypqr € Xp lies in a subvariety, the generalized Steinberg variety, defined by

Zp = {(V,ng,ggp) eN x G/B X G/P | Ad(gl_l)u S nB,Ad(gz_l)V S np}.

Similar to X p, the algebraic variety Zp is equidimensional with irreducible components Zp
parametrized by w € W/Wp. Then Spec(Oz, , 4 4 ) are closed subspaces in Spec(Oxp y qx)
and are pulled back to closed subspaces Zp, of Spec(@xmmz) via li

Remark 1.5.7. For simplicity we assume that 2 is a smooth point of Xz» x UY in this introduction.
This assumption is not needed in the actual proof. And even with the assumption and considering
only the underlying subsets, the cycles Zp,, defined here is not expected to coincide with [L(wwp-
A)] in general. One should at least replace Zp,, by characteristic cycles on Zp of some G-
equivariant D-module on G/B x G/ P localized from the U (g)-module L(wwyq - ).

The conjectures on companion points or companion constituents (Conjecture [I.4.6]and
are true on the local model side: the point y,qr € Xp lies in Xp,, (corresponding to that
[M (wwp - X)] # 0) or lies in Zp,, (corresponding to [L(wwy - A)] # 0) if and only if w > wg
in W/Wp. The last assertion for points on Xp holds if v, is zero, which is true since py are
crystalline.

1.5.3 Partial classicality and partially de Rhamness

The aim is to prove that [L(wwq - A)] # () for w > wg under the assumption Zp,, # ). One
input of the proof is that if the companion point x,, exists (for example z,,, by our assumption),
the cycle [M (wwq - \)] is non-empty and is roughly a copy of the cycle pulled back from the
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local model defined by the subscheme X p., := {(v,91B,92P) € Xpy | Ad(g; ") € np} (cf.
the end of §1.4.4.3). Hence one can compare the formula expressing [M (wwyo - )] as a union of
[L(w'wp - A\)] and as a union of Zp,. As closed subsets of Spec(Ox_ », ), we have

[M(wwo . )\)] = U’wa’ZwR [L(w/wo . A)] = Uwa’ZwRZP,w"

An example to use the above formula is the first step of Breuil-Hellmann-Schraen’s proof in the
regular cases as the following. Let P = B, w = wq and assume wy # wg, then L(\) is a finite-
dimensional algebraic representation of G,,. Moreover, the cycle [L(wowp - A)] is by definition
where Homyy () (L(A), II55 [m,]) # O for r varies in the infinitesimal neighbourhood of 7, € Xo.
Hence the cycle corresponds to the appearance of locally algebraic companion constituents in
122 [m,.]. By some local-global compatibility result, [L(wowp - A)] is contained in the locus where
pp = (p3)ves, are de Rham. However, the de Rham locus is the preimage of the subspace of
Zp defined by v = 0 from the local models, which is exactly Zp,,,. We conclude that [L()\)] C
Zpaw,- Hence the existence of w’ # wg, w’ > wg such that Zp,, # () implies that there exists
w' # wp such that [L(w'wg - A)] # 0. Then [M(w'wq - )] # 0, and the companion point
exists and some companion constituent appears.

In the non-regular cases, no non-zero locally algebraic sub-representation exists in [T, [m,_ ]?".
As areplacement, we use the so-called partially classical companion constituents or cycles, which
on the Galois side correspond to partially de Rham (¢, I')-modules over the Robba rings. The word
“classical” originally means classical automorphic forms which correspond to locally algebraic
vectors in the completed cohomology.

Let Q = Hvesp Qy = Hrezp Qr CG= erzp GL,, 1, be a parabolic subgroup of upper-
block-triangular matrices with the Levi subgroup Mg containing T". Let q = Hrezp - C g
and mg = HTezp mg, be their Lie algebras. The following theorem says that the appearance of
partially classical constituents implies that the corresponding Galois representations are partially
de Rham.

Theorem 1.5.8. Let a = (ra,6) = ((pp = (p5)ves,» 0 = [lyes, 00),2) € Xoo X fnL be an L-
point on the patched eigenvariety such that § is locally algebraic and generic (Assumption[1.5.4).
Let b, be the smooth part of §. For v € Sp, let

0 = FilgDyig(py) € -+ € FiliDrig(pz) € - -+ € FilyDhig(p3) = Drig(py)

be the unique triangulation of Dyig(p3) with a parameter a twist of 1, *(3,,) by some algebraic
character (cf. Theorem . Assume that ) € X*(t) is a dominant weight of M¢ and

Homg, (ng (L(=1), OO, ), L6 [my, ]) # 0. (1.5.9)

Then for T € ¥y,v € Sy, and if Mg, = diag(GLy,, - -, GLy,) where ny + - - - +ny = n, for any
1 <4 <'t, we have that the (o, ', )-module

gfz‘QT Drig(ps) = Filn 4., Drig(p5) /Filn; 4-oopm;_y Drig (05)
is {7 }-de Rham, i.e. the nilpotent operator v, is zero on Dde(gr?T Drig(p5)) ®@Lg, Fyior L.

We say that the points a or the Galois representations p, = (py)ves, are partially Q-de Rham
if the conclusion of the above theorem is satisfied. Suppose now that q¢ = Lie(Q,) ®q, L for a
parabolic subgroup @, of G}, with the Levi subgroup My,,. If 1 is an integral dominant weight of
MQ, then

Homa, (Fg? (T(=1), Byd351), T [y, ]) # 0 = Homysgmg (L (1), Jo, (T2 ) # 0
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where the locally analytic representation Jg, (II57 [m,,]) of Mg, is the parabolic version of Emer-
ton’s Jacquet module, and Ly, (1) is the finite-dimensional irreducible representation of m¢,, of
the highest weight n which integrates to an algebraic representation of M, . The theorem above
shows that the existence of non-zero locally algebraic vectors in the parabolic Emerton’s Jacquet
module implies that the graded pieces of the so-called paraboline filtrations of (p,I')-modules
over the Robba rings are de Rham. Thus, the theorem is a natural generalization of the classical
local-global compatibility result when Q = G (see the end of §1.2.3). And the proof of the results
is by interpolating the results for classical points on the partial eigenvariety constructed by Ding
in [Din19c] and by the global triangulation. When writing this part of the thesis, the author was
informed that Breuil-Ding pursued similar ideas in non-trianguline cases, see [BD21]].

Recall Wp is the stabilizer of the Hodge-Tate weights h and A = wo(h)+(0,--- ,n—1)ex,.
Let ng be the nilradical of q so that ¢ = mg + ng. The following theorem says that cycles Zp,,
are partially ()-de Rham if wwyg - A is a dominant weight of M.

Theorem 1.5.10. For each w € W/Wp, the irreducible component Zp,, is contained in the
subspace of Zp where Ad(gl_l)u € ng if and only if wwy - X is a dominant weight for mg.

Combining Theorem and Theorem 1.5.10} we can match certain Zp,, and [L(wwyp - )]
in the proof of the main theorem[I.5.1] And we can prove the existence of all companion points
(72, 0R 1), w > wr on Xp(p) for the refinement R such that (72, 0% ,,,) € Xp(P).

1.5.4 Companion points for different refinements

Let R’ # R be another refinement. The previous step allows us to prove the existence of
(72, 0R ), w > wr in Xp(p) and in this step, we prove that (14, oz, ) is also in X,(p).

To explain the idea, we assume that n = 2 and S, = {v} consisting of a unique place and
assume X, = {71, 72}. Suppose that the Hodge-Tate weights of py are hr, 1 = hy 2 = 0,0 =
hry1 < 1= hq, 2. After the previous results, We can assume that the point z = (pg, t(1, 92), 2) €
X5, X T\va x (X x U9) is in Xp(p) where y := (pg, (61, 92)) is in the open subset Uyi(p,) of
Xixi(pp) by taking w = wg. In other words, Dyig(p5) = [Rr,F; (01) — R F;(02)] is an extension
of Ry, r,(62) by R, r,(01) which gives the triangulation of p; of the parameter J. In this example,
we assume 0; = Tounr(a) and d; = unr(b) where we write 7 for the character 7o : K* — L*
and unr(a), unr(b) for the unramified characters of F* sending wp; to a,b € L*.

The idea is to use the results in the regular case. The strategy is to find y* := (p%, (01,05)) €
Uwi(p,) (hence Dyig(ps) = [Ri,r(61) — R r;(05)]) fori € N such that y* have regular Hodge-
Tate weights and converge to y in certain sense of rigid analytic geometry, and such that certain
companion points (")’ of y* converge to 3/ := (py, (rounr(b), unr(a))) in Xu:i(p,). Then on the
patched eigenvariety X, (p) C «(Xui(p,)) X (X2 x UY), the points (¢(y*), 2) are in X,(p) for i
large using that Xi,;(p,) is smooth at 7. Their companion points (¢((y*)"), z) are on X,(p) by the
results of Breuil-Hellmann-Schraen in regular cases. Hence the companion point (:(y'), z), as a
limit of (¢((y")"), 2), also exists on X, (p) since the latter is closed in ¢(Xi(p,)) x (X7 x U9). To
achieve this plan, we seek points y* = (pg, (61,5)) in Ui(p,) near y that satisfy the following
two conditions.

1. pL are crystalline.
2. (0%,65) = (1 “rounr(a’), unr(b?)) where i > 1,a’,b* € L*.

Then the companion points with dominant weights (y")" = (p%, (rounr(b%), 7, ‘unr(a’))) exist on
Xiri(pp). They converge to ' since (rount(b%), 7 “unr(a?))) = (12,75 ) (unr(b?), 7oy "unr(a?))
converge to (12,75 )(J2,61) = (rount(b), unr(a)) by the assumption.

Now we explain how to find such extensions

Drig(p%) = [Ri,p, (81) — Ri,r, (65)]
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near [Rp, . (61) — R, (2)]. The condition (2) for (8%, 8%) above is not hard to achieve. The
problem is to get the crystalline (or de Rham) extensions with these non-dominant weights.
The following lemma gives a criterion of de Rhamness for these extensions.

Lemma 1.5.11. Let (n1,m2) : (K*)? — L* be locally algebraic characters and d € Z>1 such
that the weights satisfy wtr, (1) — wWtr, (n2) € Z<o and wtr,(n1) — Wtr, (12) = d. Assume that
(m1,m2) is generic in the sense of Assumption Then an extension [Ry, p,(m) — Rr,r;(1n2)]
is de Rham if and only if the extension corresponds to a class in

Ker(H(l%FFg)(RLVFE(an_l)) — H(l%FFE)(t;jRL,FE(mn;l))). (1.5.12)

Here t., is a generator of the sub-(p,I'p.)-module Ry, . (12) of Ri.p,. Moreover, the kernel
above has dimension 1.

Then the required extensions are picked out in the subspace of the moduli space of all exten-
sions R, p, (m) — R,k (n2)] cut out by the condition (1.5.12) and wt, (1) — wtr, (72) = 1.

1.6 Outline of the thesis

Chapter [3] and Appendix [A] is taken from [Wu2l]. We establish the local models for the
trianguline variety (Theorem [I.5.5). Using the local models, we prove the existence of certain
companion points with non-regular integral weights on the eigenvariety, as explained in §1.5.7]
and §1.5.3]

Chapter []is [Wu22]]. We complete the proof of Theorem [I.5.1] where we find all companion
points on the eigenvariety with different refinements using the strategy explained in §1.5.4]

In Chapter [5] we generalize Theorem by removing the integral assumption on Hodge-
Tate-Sen weights, i.e. we will not require that the characters are locally algebraic. We establish the
local models and local irreducibility for points on the trianguline variety with generic parameters.
One needs to partition the Sen weights of the Galois representations by their mod Z classes. The
result is compatible with Conjecture[T.4.1]on companion points.

In Appendix B we write the proof for the unibranch result of the local models at all points,
completing the proof of Theorem[I.5.3] This is achieved by proving that certain Bott-Samelson-
Demazure type resolutions have connected fibers (but for the unibranch result we still need the
normality result in [BHS19]]). The proof of Theorem [I.5.5]doesn’t need this general result. How-
ever, the studies of the fibers are of some combinatorial interest.



Chapter 2

Résumé des résultats principaux

2.1 Conjecture sur le socle localement analytique

Soit £t un corps de nombre totalement réel et S, I’ensemble des places de F'™ au-dessus de p.
Soit F' une extension imaginaire quadratique de F'* telle que chaque place de S, est complétement
décomposée dans F', soit n > 2 un entier et soit G un groupe unitaire totalement défini en n

variables sur F'" et déployé par F. On fixe un sous-groupe compact ouvert UP = pr U, de
G(A’;Of) et une extension finie L de Q, de corps résiduel k7. Pour tout v € S, soit X, :=
{r : Ff < L} I’ensemble des plongements de F dans L et on suppose |X,| = [E,f : Q).

Pour chaque v € S, on fixe une place v de F' au-dessus de v et on identifie F,” & F;. L'espace
des formes automorphes p-adiques sur G de niveau modéré UP, noté S (UP, L) est I’espace des
fonctions continues G(F'+)\ G(AY,)/U? — L. Soit G = [],c s, G le groupe de Lie p-adique
G(Ft* ®g Q) = [Loes, G(F,). Soit B, = [l.es, Bo (tesp. T = [],eg, Tv) le sous-groupe
de Borel (resp. le tore maximal) de G, ~ [], ¢ s, GL,,(F,") des matrices triangulaires supérieures

(resp. diagonales). Le groupe G, agit sur S (UP, L) par translation a droite. Nous supposons
de plus que p > 2 et que G est quasi-déployé en toute place finie de F'™. Soit F' une cldture
algébrique de F'. On fixe une représentation galoisienne (modulaire) absolument irréductible p :
Gal(F/F) — GLy(kr) telle que p est associée a un idéal maximal de algebre de Hecke usuelle
agissant sur S(UP, L).

Suivant Emerton [Eme06c]], une méthode pour construire les variétés de Hecke est d’utiliser le
foncteur de Jacquet d’Emerton pour les représentations localement analytiques des groupes de Lie
p-adiques. Il existe un espace analytique rigide sur L (notre variété de Hecke), noté Y (U?, ). Un
point de Y (UP, p) est une paire (p, d), ol p est une représentation p-adic continue de dimension n
de Gal(F'/F) et § est un caractere continu de 7, qui apparait dans Jp, (II(p)*"). Ici II(p) est la
sous-G',-représentation de S (UP, L) associée a p découpée par I’idéal maximal associé a p de la
“grosse” algeébre de Hecke, IT(p)2" est le sous-espace de I1(p) des vecteurs localement analytiques
qui est une représentation localement analytique admissible de G, et Jp,(—) désigne le foncteur
du module de Jacquet d’Emerton de sorte que .Jp,(II(p)*") est une représentation localement
analytique du sous-groupe de Levi T}, de B,,.

2.1.1 Raffinements des représentations cristallines génériques

Soit r : Gxg — GL, (L) une représentation trianguline de parametre 6 = (1, -+ ,d,), ol
K /Q, est un corps local. Si r est potentiellement semi-stable, d’apres Berger [Ber08bl], la filtra-
tion trianguline de Dyiq(7) est équivalente a une filtration complete des (¢, NV, G )-module filtré
associé a r, et donc détermine. et est en fait déterminée par, une filtration complete de la représen-
tation de Weil-Deligne WD(r). Soient x1, - - - , x», les caracteres de W qui apparaissent dans la
semi-simplification de WD(r). Nous faisons I’hypothése de généricité suivante.

41
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Hypothese 2.1.1. Pour tout i # 7, X;lxj ¢ {1,unr(p/)} ot f = [k : F,] et pour a € L*,
unr(a) désigne le caractére non ramifié qui envoie un Frobenius géométrique sur a.

L’hypothese de généricité ci-dessus implique que WD(r) est semi-simple et N = 0. Puisque
maintenant ’action de Gx — Gal(K'/K) sur le (¢, N, G )-module se factorise par un quo-
tient abélien, r est cristabelline, ¢’est-a-dire que nous pouvons supposer que K’ est une extension
abélienne de K et que r |g,, est cristalline.

Définition 2.1.2. Un raffinement R d’une représentation cristabelline générique 7 est un choix
d’ordre (x1,- -, xn) des différents caracteres de Wi qui apparaissent dans WD(r).

Un raffinement R = x = (x1, -, Xn) induit une filtration sur WD(r) (le i-ieéme sous-
module est engendré par les sous-espaces propres des caracteres x1,--- ,x; de Wg). D’apres
Berger [BerO8bl], les raffinements sont en bijection avec les triangulations de D;ig (). Nous iden-
tifions Wy a K> via I’application de réciprocité locale normalisée en envoyant un Frobenius
géométrique a wx. Le parametre de la triangulation correspondante, en tant que caracteére de
(K>*)™, est égal & 2RMy ot h = (hr1,++ ,hrp)res € (Z") désigne les poids de Hodge-
Tate de r tels que hyy < -+ < hypetwr € (Sn)z est un élément uniquement déterminé par R

modulo le stabilisateur de h dans (S,,)*.

Remarque 2.1.3. L’ élément wg paramétre la position relative de la filtration trianguline sur Dgg (1)
Dyr(r |gK,)gK = (Dgt(7 |gyr) ® Ky, K’)Gal(K//K) et de la filtration de Hodge sur Dgg (7).

Soit ¥, := Hom(F3, L) pour tout v € S, et définissons X, = Hvesp Y. Sik = (ky)ves, =
(kra, - krn)res, € (Z*»)", on a un caractere algébrique zX = Hvesp 2Kv de Tp. Soit ¢,

I’automorphisme de fv, 1, défini par
Ly - (6'0,17 T ;511,71) — 5BU : (51;,17 T udv,iei_ly to 51)7“671—1)

et notons ¢ = Hve s, b ThL = T) 1, 0t 0p, est le caractere module lisse de B, et € désigne le
caractere cyclotomique.

Conjecture 2.1.4. Soit p : G — GLy, (L) une représentation continue et (p,d) € Y (U, p)(L).
Supposons que pour chaque v € S, py est cristalline générique. Soit W(p) = {6 € Tp, 1 |
(p.0) € Y(U?,5)}, alors

W(p)=Wipp) == [] {ea(z*™)x ), w0 > wr,, wy € (Sp)™, }
vES)

ot hy, désigne les poids Hodge-Tate de py comme ci-dessus, R, = X, sont tous les raffinements
de pg, et > désigne I’ordre de Bruhat de (S,,)>".

2.1.2 Conjecture de Breuil

Pour R, X, W, h, comme ci-dessus, notons 0z, = Lv(z“’”(h”) X ), et posons IRw =

ATy
[Toes, 9Ruw, POUr W = (Wy)ves,, R = (Ru)ves,- La partie lisse g, o, de 0, 4, est indépen-

i—1 n—1

dante de w, et est égale a dp, (X1, , Xil - o s Xnl - jox youl| - |p = unr(p*f”) est la

valuation normalisée de F3. La représentation (Ind%z éRU,smégi)sm est irréductible sous notre

hypotheése de généricité et sa classe d’isomorphisme est indépendante du choix de raffinements
Ry. Soit A = (Ar;)rex, i=1,n € X*(t) = (Z™)>» défini par Ar; = hrpy1—; + i — 1. Alors
O = ZwV-UO')\éR’Sm pour tout w, R ol wo désigne 1’élément le plus long de ], . S, (Sp)>e

) =sm

Pour A € X*(t), on a une représentation localement analytique ]-"g” (L(-=X\),8 5;;) con-
P
struite par Orlik-Strauch.
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Conjecture 2.1.5 (Breuil). Soit p : Gr — GL, (L) une représentation continue et (p,0) €
Y (UP,p)(L). Supposons que pour chaque v € S,, py est cristalline générique. Alors, il y a
un G,-plongement fermé

For(L(=N), 0gul5)) = T(p)™

» Zsm
P

pour X' € X*(t) et un caractere lisse O, de T}, si et seulement si le caractére localement al-
gébrique z/\/ésm est égal a un caractere dR o, = zwwO')‘Qstm € W(pp) défini dans la Conjecture
R.14 o0 w > wg.

Nous appelons ces représentations ]-"g: (L(—wwo-N), QRysmégj) qui apparaissent dans IT(p)*"

les constituants compagnons. La conjecture[2.1.5]est plus forte que la conjecture [2.1.4] gréce a une
formule d’adjonction de Breuil concernant les modules de Jacquet d’Emerton dans [Bre15b]. Dans
notre cas, nous avons

Homg, (fgfj (M (~wwo - N)", g sm0p, ) L(p)*") = Hom, (Og s 5, (IL(p)™))  (2.1.6)

ott M (—wwg-\)V désigne le module de Verma dual dans OF. Par I’exactitude du foncteur d’Orlik-
Strauch et la connaissance des sous-quotients du module de Verma dual, les sous-quotients irré-
. Gp 7 — Gp 7 _
ductibles de ]:§: (M (—wwq - \)Y, §R7sm53;) sont exactement les JTE: (L(—w'wg - A), éR,sméB;)
onw' < wet .7-";” (L(—wwo-N), 0 Smégi) est I’'unique quotient irréductible de ]—"g” (M (—wwy-
P ’ P

AV, éR,smél__%;)' En particulier,

Home, (Fg (E(~wwn - N), gm0 ) TH(p)™) # 0 = Homg, (35, I, (T1()™)) # 0.
2.1.7)

2.1.3 Résultats de Breuil-Hellmann-Schraen dans les cas réguliers

Sir: Gk — GL, (L) est une représentation galoisienne p-adique avec des poids de Hodge-
Tate-Sen h = (h;1, -, hrpn)rex, alors on dit que les poids de Hodge-Tate sont réguliers si
hz; # hr; pour tout 7 et ¢ # j. Nous faisons I’hypothese, dite de Taylor-Wiles, suivante.

Assumption 2.1.8. 1. p>2;
2. F est une extension non ramifiée de F'T ;
3. G est quasi-déployé en toutes les places finies de F'™ ;
4. U, est hyperspécial en toutes les places v de F't qui sont inertes dans F';

5. ¥/1¢ F etl’image de p ‘Gal(?/F( 1)) est adéquate, voir [BHS19, Rem. 1.1].

Notons que la derni¢re hypothese sur I’'image de p est une condition de “grosse image”, voir
[Thol2, §2]. Le théoréme suivant est démontré dans [BHS19].

Théoreme 2.1.9 (Breuil-Hellmann-Schraen). Supposons que UP est suffisament petit et I’hypothése

de Taylor-Wiles (Hypothése 2.1.8)). Alors Conjectures et 2.1.5] sont vraies pour p : Gp —
GL,, (L) telle que pour tout v € S, py est cristallin de poids de Hodge-Tate réguliers.

Remarque 2.1.10. Le théoréeme ci-dessus est aussi prouvé par Ding dans [Din19a] pour n = 2. De
plus, Ding a obtenu des résultats pour les points compagnons et les constituants compagnons pour
les représentations galoisiennes génériques triangulines mais non de Rham [Din19a, Cor. 5.12]
lorsque n = 2.

La démonstration de Breuil-Hellmann-Schraen repose sur leur construction de la variété de
Hecke-Taylor-Wiles, la variété trianguline et 1’étude de la géométrie locale de la variété triangu-
line.
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2.1.4 La variété trianguline

La variété trianguline, définie dans [BHS17b], est la variante galoisienne locale de la variété
de Hecke.

Soit K un corps local p-adique comme précédemment et soit 7 : Gx — GL,(kr) une
représentation continue. Soit R7 I’anneau de déformation cadré de 7 et soit X7 := Spf (R;)rig
la fibre générique rigide sur L du schéma formel Spf(R5). Soit 7" = (fx\)" 1, I’espace rigide
sur L paramétrant les caractéres continus 0 : (K*)" — L*. La variété trianguline X,i(7) est
I’adhérence de Zariski réduite dans X7 x 7" du sous-ensemble

i) = { (nd) € % x 7 | D irpene Slpamneted

ol e désigne le caractere cyclotomique. La variété trianguline X4,;(7) est un espace rigide équidi-
mensionnel sur L. De plus la triangulation globale s’applique: pour tout point (7,9) € Xy (7),
r est une représentation trianguline d’un certain paramétre &’ tel que 8’6 ' est un caractere al-
gébrique.

2.1.5 La variété de Hecke-Taylor-Wiles

La méthode de patching de Taylor-Wiles, améliorée par Kisin, est généralement une étape
intermédiaire clé pour comparer les algebres de Hecke et les anneaux de déformation de Galois,
et prouver la modularité. Plutoét que de prouver directement R = T, la méthode enrichit le c6té
Hecke T en un anneau plus grand T, en regroupant les systemes propres de Hecke de certains
une infinité de niveaux modérés et en remplagant I’anneau de déformation global R par R, un
anneau de série de puissances sur un anneau de déformation Galois local R!°°. Ensuite, il peut
étre plus facile d’établir dans un premier temps Roo = Too.

Dans [CEG™16], les auteurs ont appliqué cette méthode a la cohomologie complétée et ont
obtenu une représentation de Banach II,, de G, remplacant S (UP,L),s. Breuil-Hellmann-
Schraen ont utilisé I, pour définir la variété de Hecke-Taylor-Wiles et I’ont comparée a la variété
trianguline dans [BHS17b]].

Pour v € 5), soit R5_ (le quotient sans p-torsion réduit de) I’anneau de déformation cadré de
py et notons [ = Rve s, F5, - 1l existe un anneau local noethérien complet

Roo = Ry, @Rpo([a1,- -+, ]

sur Or, oul v est le produit tensoriel complété de certains anneaux de déformation de p; pour v €
S\ Sp et g est un entier. L’action de R5 g sur 5 (UP, L) s se factorise par un quotient R s etily a
des surjections Roc — Roo/a — R; s d’anneaux compatibles avec les déformations galoisiennes
locales olt a C R, désigne un idéal. Alors, sous I’hypothese de Taylor-Wiles (Hypothese[2.1.8)), il
existe une représentation unitaire de Banach 11 de G}, avec une action de R, et un isomorphisme
IIola] ~ S (UP, L) s compatible avec les actions de R, /a et R s. En particulier, si p : G —
GL,,(L) correspond a une application R; s — L et définit des idéaux premiers m, pour R, et
R5 s, alors on a

Hoo[mp] - S(Upv L)ms [mp] - H(p)
Donc, pour la Conjecture et la Conjecture|2.1.5} il suffit d’étudier I1.,. Ecrivons IT2" pour le
sous-espace des vecteurs localement R.-analytiques dans 11, ([BHS17b, Déf. 3.2]). La variété
de Hecke-Taylor-Wiles X,(p) est le support du dual du module Jacquet d’Emerton Jp, (II32)’
dans

Spf<Roo)rig ><fp,L =~ Spf(Rﬁp)rig X Spf(RﬁpHxlv T 7$9]])rig Xfp,L = :{ﬁp X (:{ﬁp XUQ) Xj;p,L‘
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La variété de Hecke Y (UP, p) peut étre vue comme un sous-espace fermé de X, (p).
Soit Xu:i(p,) = [1,e S, Xiri(py), vu comme un sous-espace fermé de X5, X Tp,r. On étend

I’automorphisme ¢ de fp L & Xui(p,) par changement de base. Alors la densité de points de
“petite pente” sur X,(p) et une certaine compatibilité locale-globale pour I1, impliquent qu’il y
a un plongement fermé

Xp(p) = ¢ (Xuxi(By)) % (Xpp x U9) C (X, x Tp1) % (Xpr x U9).

De plus, X,,(p) et ¢ (Xui(p,)) % (X x U9) sont équidimensionnelles avec la méme dimension
et donc la variété de Hecke-Taylor-Wiles X, (p) est identifiée a une union de composants irré-
ductibles de ¢ (Xm(ﬁp)) X (Xz x UY) par le plongement fermé ci-dessus. Il s’agit d’un résultat
du type T, = R pour les composantes irréductibles de la variété de Hecke.

2.1.6 Les cycles des constituants compagnons

L’idée de Breuil-Hellmann-Schraen pour prouver le théoreme [2.1.9)est de définir localement
des cycles sur X,(p) qui correspondent a I’apparition de constituants compagnons et de montrer
que les cycles attendus existent du c6té de Galois. La derniere étape repose sur I’étude de la
géométrie locale de la variété trianguline via leur théorie d’un modele local. L’esprit de la preuve
est similaire au cas mod-p (c’est-a-dire la partie de poids de la conjecture de Serre et la conjecture
géométrique de Breuil-Mézard, [EG14]). Nous construisons dans cette sous-section les cycles des
constituants compagnons. N

Soit z = (4.0) = ((pp = (P3)ves, 8 = [lues, 8.),2) € (X5, % Typr) x (X x U9) un
point comme dans le théoreme [2.1.9] c’est-a-dire tel que chaque py soit générique cristalline. Soit
h = (hy)es, les poids de Hodge-Tate de pg, et définissons A comme avant Conjecture
Alors A est dominant si et seulement si h est régulier. Les discussions sur les triangulations de
représentations cristallines génériques permettent de supposer que § = Z’\5R,sm pour un raffine-
ment R = (Ry)ves, de pp. Soit Xoo := Spf(Ro)™8. Alors 7, := (pp, z) est un point sur Xoo
Soit @xw,rz I’anneau local complet en .. Nous allons défini des cycles [L(wwyg - A)] associés aux
constituants compagnons ]-"g: (L(—wwy - >‘)7é7?,,sm6§;) pour w € S,” dans Spec(@xw”).

Soitm,. I’idéal de R associé ar,, et on a la représentation localement analytique [T [m,_ "
Le point de départ est une formule d’adjonction ([BHS19, Lem. 5.2.1])

Gy /7 _ n n =
Homg, (.7-“?:(L(—wwo-)\),énvsmd&}),Hoo [m;,]*") = (Homy gy (L(wwo ), Moo [, |* )Np.0) T =0 m
On considere le foncteur
M+ Homy (g (M, T35 [m72]) ¥»0 [mge ]

ou M € O estun U(g)-module, [m>°] désigne le sous-espace des éléments qui sont annulés par
une puissance de m;,, et ms, estle noyau de L[T},] — L induit par dp, .. Le foncteur est exact

et le dual de I’image de M est un module de type fini sur (’)xoo e = HI, 00[13] / my qui permet

de définir un cycle [M] dans Spec(Ox__ r.)- On définit [M] comme le support du module de type
fini associé a M dans Ox__ ,,. Ona

[L(wwo - )] # 0 = Homg, (Fg" (L(—wwp - A), 0 gnd5), Moo [my, ™) £0. (2.1.11)

Soit X, (D) ww,- la fibre de X, (p) — f L Yt en wwp - A € . Soit 7, = = (y,0r ) un

point compagnon de & = Z,, pour w € S ". En oubliant les caracteres, on a des applications
SpeC(OXp(p)wwO»)\azw) — Spec((’)Xp( )rw) Spec((’)ggoo r,) qui sont des plongements fermés
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sous notre hypothese de généricité. Si nous prenons le module de Verma M (wwg - \), alors
[M(wwo - N)] = [J,(IZ) R0, ) OX, @) 2] €N utilisant li On peut exprimer

[M (wwq - \)] comme une réunion de [L(w'wq - A)], w" € S, Notons que

[M (wwg - N)] # 0 = Homg, (Fo” (M(—wwo - 1), 0g 5nd 5 ), oo [my, J*™) # 0
< Homr, (Qnyw, Mo[m,, ]*) #0
&y € Xp(p). (2.1.12)

Donc, on peut démontrer I’existence des points compagnons sur la variété de Hecke-Taylor-Wiles
ou I’apparition des constituants compagnons dans II,,[m, ]*" en prouvant que les cycles corre-
spondants ne sont pas vides.

2.2 Les résultats principaux

Le résultat principal de cette these permet d’enlever I’hypothese de régularité sur les poids de
Hodge-Tate dans Théoreme [2.1.9]

Théoreme 2.2.1. Supposons que le niveau modéré UP est suffisamment petit et I’hypothése de

Taylor-Wiles (Hypothése [2.1.8). Alors les Conjecture et [2.1.5| sont vraies pour p : Gp —
GL,, (L) telles que pour tout v € S, py sont cristallines génériques.

Pour démontrer le théoréme, nous généralisons d’abord la théorie des modeles locaux pour
la variété trianguline de Breuil-Hellmann-Schraen aux poids non-réguliers. Ensuite, nous com-
parons les cycles sur la variété de Hecke-Taylor-Wiles avec les cycles sur les modeles locaux en
utilisant la relation entre les constituants compagnons partiellement classiques et les représenta-
tions galoisiennes partiellement de Rham. Cela permet de prouver I’existence de tous les points
compagnons associés aux mémes raffinements. Pour les points compagnons associés a d’autres
raffinements dans les cas non-réguliers, nous approximons les points non-réguliers par des points
réguliers.

Dans la partie restante de cette introduction, nous expliquons ces idées en quelques détails.

2.2.1 Modeles locaux de la variété trianguline a poids non réguliers

Rappelons que L/Q,, est un corps de coefficients suffisamment grand. Soit

G = H (ReSFa/QpGL"/Fi) ®q, L = H G'L"/L
vES) 3p

groupe réductif. Soit B C G le sous-groupe de Borel des (produits des) matrices triangulaires
supérieures et soit 1’ les (produits du) tore diagonal. Soit P un sous-groupe parabolique de G de
matrices triangulaires supérieurs par boc et soit P = Mp Np la décomposition de Levi o Mp est
le sous-groupe de Levi contenant 7'. On note respectivement g, b, p, t, mp, np pour leurs algébres
de Lie vues comme des espaces affines sur L. Soit W = SE ? le groupe de Weyl de G et Wp le
groupe de Weyl de M p.

Nous avons la résolution partielle de Grothendieck gp := G x¥ p — g envoyant (g, v)
sur Ad(g)r ot Ad désigne I’action adjointe. On obtient alors une variété algébrique sur L en
considérant le produit fibré

Xp:=gp Xg0p

ou encore comme un sous-espace fermé de g x G/B x G/P,

Xp={(v,01B,92P) | Ad(g7 ")v € b, Ad(g; ')V € p}.
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Pour w € W/Wp, on note Xp,, la cloture de Zariski dans X p de la préimage sous I’application
Xp — G/B x G/P de la G-orbite G(1,w) C G/B x G/P. Alors on peut montrer que X p
est équidimensionnel avec des composantes irréductibles distinctes X p,,, w € W/Wp. Voici la
propriété géométrique clé de X p,, utile pour les applications.

Théoréme 2.2.2. Pour tout w € W/Wp et tout point x € Xp.,, la complétion de I’anneau local
Oxp ..z de Xp,, en x est irréductible.

Autrement dit, Xp,, est unibranche. Si P = B, Breuil-Hellmann-Schraen ont démontré que
X B,w est normal dans [BHS19]| ce qui implique que X g ,, est unibranche en utilisant la propriété
de Cohen-Macaulay de X g ,, démontrée par Bezrukavnikov-Riche dans [BR12]. Nous prouvons
que Xp,, est unibranche en z en utilisant la normalit¢ de Xp ,, et en montrant que la fibre de
I’application naturelle propre birationnelle X ,, — Xp,, en x est connecté.

Soit maintenant y = (p, = (py)ves, d = ][,d,) un L-point de la variété trianguline
Xui(Pp) = e s, Xiri(py) tel que les poids de J soient des entiers (de maniére équivalente, les
poids de Hodge-Tate-Sen sont des entiers) et tel que d satisfait I’hypothése de généricité suivante.
Hypothése 2.2.3. Pour chaque v € Sp, 0, = (0,1, - ,0un) : (F2)™ — L*, nous avons
6U7i6;]1 £ 2K 2% pour tout i # jetk = (ky,---,k,) € Z" ol € désigne le caractére cyclo-
tomique : €(2) = [[,cx, 7(2) siz € Of ete(wp;) = 1.

Lorsque les pg sont toutes cristabellines, I’hypothese ci-dessus est équivalente a I’hypothese
de généricité Soith = (hy)ves, = (hr1 < -+ < hyp, T € ) les poids de Hodge-Tate-
Sen de py,v € Sp. Puisque les poids de Hodge-Tate-Sen sont des entiers, la Bgr-représentation
War(Drig(p3)) = War(ps) = Bar ®q, p5 de GF; est presque de Rham selon la classification de
Fontaine [Fon04]]. Ainsi,

Dpar(p5) = Dpar(War (Drig(p7))) = (War(p5) ®B,y Bar[log(t)])"

est un module fini de rang n libre sur L ®q, F5 = Hvezv L avec un opérateur nilpotent v, ,,
induit par la Bqr-dérivation de Bggr[log(t)] telle que v(log(t)) = —1. De plus, p; est de Rham
si et seulement si v, , = 0 sur Dyqr(pz). Soit P le sous-groupe parabolique de G comme dans
Théoreme telque Wp C W = SE P soit le sous-groupe des stabilisateurs de h. Alors les
poids de Hodge-Tate-Sen h sont réguliers si et seulement si P = B. On a de plus des filtra-
tions Hodge-Tate Fil®* Dpqr(p3) de Dpar(py) de sorte que (Fil® Dpgr (p3))ves, définit un point
g2.4P € G/P apres avoir choisi une base de Dpqr(py). La triangulation globale alors induit
une unique filtration compléte sur le (¢, I')-module Dyig(py) de parametre un produit de J,, et
de caractére algébrique, donc aussi un drapeau complet de ], . s, Dpar(pw) qui donne un point
91yB € G/B. Lopérateur nilpotent vy = [],cg vvy préserve les deux filtrations. On obtient
donc un point
Ypdr = (v, 914 B, 92,4 P) € Xp.

Soit finalement w € W/Wp I'unique élément tel que le poids wt(8) € (Z")*r du caractere §
coincide avec w(h).

Avec les données ci-dessus, en suivant Breuil-Hellmann-Schraen dans les cas réguliers et en
notant que les représentations presque de Rham sont stables sous les extensions et donc les défor-
mations, on a le théoréme suivant sur les modeles locaux de la variété trianguline.

Théoreme 2.2.4. Soit y = (pp,d) un L-point de la variété trianguline X,i(p,) tel que § est

’’’’’ 2.2.3] Soit ypar un point de Xp et w
I’élément de W /W p associé a y comme ci-dessus. Alors a des applications formellement lisses

pres, il existe un isomorphisme

OXm(ﬁp),y =~ OXp 1y ypar
d’anneaux locaux complétés de Xy (ﬁp) en y et de Xpy, en ypar . En particulier, la variété
trianguline X1,i(p,) est irréductible en y.
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2.2.2 Cycles sur la variété de Steinberg généralisée

Soit z = (u(y), 2) = ((pp = (Pv)ves, d = [lyes, ), 2) un point sur la variété de Hecke-
Taylor-Wiles X,(p) C t(Xi(p,)) X (X x U) avec py cristalline générique comme dans
Ecrivons 7, = (pp,2) € X = Spf(Reo)™™. Supposons également que § = IR w, POUT UN
raffinement R de p, et que wq soit I’élément le plus long de W. Ecrivons z,, = (T2, 0Rr.w) €

~

Xoo x T}, 1, pour les points compagnons qui possiblement ne sont pas dans X, (). Rappelons que
dans nous avons défini des cycles [M (wwq - \)] et [L(wwg - A)] dans Spec(@xw,rx). Si
les cycles sont non vides, alors les points compagnons correspondants x,, sont dans la variété de
Hecke (Voir ou les constituants compagnons correspondants apparaissent dans 1, [m,._|*"
(voir 2.T.TT).

Nous définissons maintenant les cycles de Galois Zp,, dans Spec(@xw“) qui seront com-
parés a [L(wwq - A)] et sont issus de Spec(Ox popar) Vid 1a théorie des modeles locaux (théoreme

[2.2.4) et les applications

Spec(Ox o rp) — Spec(@xﬁwpp) — Spec(OXm(ﬁpm) ~ Spec(Oxp 0 ypar) — SPEC(OXp y,ar)
(2.2.5)
ol le fait que I’application Spec(Ox, ;5.)y) — Spec((’)xﬁW pp) €St un plongement fermé est dii a
I’hypothese de généricité.
Soit N la sous-variété des matrices nilpotentes de g et soit ng, np les radicaux de b, p. Le
point ypqr € X p appartient a une sous-variété, la variété généralisée de Steinberg, définie par

Pp)sY

Zp ={(v,q1B,32P) € N x G/B x G/P | Ad(g; ")v € np, Ad(g; ")v € np}.

Semblable a X p, la variété algébrique Zp est équidimensionnelle avec des composantes irré-
ductibles Zp,, paramétrées par w € W/Wp. Alors Spec((’)zp,wyyp 4r) définit us cycle (sous-

espace fermé) dans Spec(@xm,p 4r) €t sont construits a partir de Zp,, C SPGC(@xw,rw) via
La conjecture des points compagnons et des constituants compagnons (Conjecture [2.1.4] et
est vraie du coté de modele local dans le sens ou ypqr existe dans X p,, ou Zp,, (€quivalant

a Zp,, # 0) si et seulement si w > wg dans W/Wp.

2.2.3 Propriété de partiellement classique et partiellement de Rham

Le but est de démonter que [L(wwyp - A)] # () pour w > wg sous I'hypothese Zp,, # 0. Le
point de départ de la preuve est que si le point compagnon x,, existe (par exemple x,,, selon notre
hypothese), le cycle [M (wwyp - A)] est non vide et correspond au cycle du modele local défini par
le sous-schéma X p,, := {(v,g1B,92P) € Xpy, | Ad(g;")v € np} (cf. la fin de §2.1.6). On
peut exprimer [M (wwp - )] comme une réunion de [L(w’wp - \)] et comme une réunion de Zp, .
En tant que sous-ensembles fermés de Spec(@xmm), nous avons

[M (wwo - N)] = Uy w>wr [L(w'wo - \)] = Uyzw>wr ZPu-

Un exemple d’utilisation de la formule ci-dessus est la premiere étape de la preuve de Breuil-
Hellmann-Schraen dans les cas réguliers. Soit P = B, w = wy et supposons wy # wrg, alors L(\)
est une représentation algébrique de dimension finie de G,,. De plus, le cycle [L(wowq - \)] est, par
définition, le lieu oit Homy(g) (L(A), 155 [m2°]) # 0 et correspond a I’apparition de constituants
compagnons localement algébriques. Par un résultat de compatibilité locale-globale, [ L(wowq-\)]
est contenu dans le lieu ol p, = (p5)ves, est de Rham. Cependant, le lieu de de Rham est la
préimage du sous-espace de Zp défini par v = 0 a partir des modeles locaux, qui est exactement
Zp ., Nous concluons que [L(A)] C Zp,,,. D ol le fait que I'existence de w’ # wo, w’ > wr
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tels que Zp,» # 0implique qu’il existe w’ # wy tel que [L(w'wg-A)] # (. Alors [M (w'wg-\)] #
(), le point compagnon 1z, existe et le constituant compagnon apparait.

Dans les cas non-réguliers, aucune sous-représentation localement algébrique non nulle n’existe
dans ITo[m,,]". En remplacement, nous utilisons les constituants compagnons ou cycles par-
tiellement classiques, qui du c6té de Galois, correspondent a des (¢, I')-modules partiellement de
Rham sur les anneaux de Robba. Le mot “classique” signifie des formes automorphes classiques
qui correspondent a des vecteurs localement algébriques dans la cohomologie complétée.

Soit @ = Hvegp Qv = HTegp QR C G = Hrezp GL,,/1, un sous-groupe parabolique de
matrices triangulaires supérieur par bloc avec le sous-groupe de Levi M contenant 1. Soit
q= erzp gr C getmg = H’TGEP mg, leurs algebres de Lie. Le théoreme suivant dit que
I’apparition de constituants partiellement classiques implique que les représentations galoisiennes
correspondantes sont partiellement de Rham.

Théoréme 2.2.6. Soit x = (rz,0) = ((pp = (p5)ves,, 0 = les, 0):2) € Xoo x Ty un
L-point sur la variété de Hecke-Taylor-Wiles tel que 0 est localement algébrique et générique
(hypotheése[2.2.3)). Soit 6., la partie lisse de 0. Pour v € Sy, soit

0 = FiloDyig(ps) S - -+ S FiliDyig(p3) S - -+ & Fily Drig(p3) = Drig(p3)
'unique triangulation de Dyiq(py) de paramétre le produit de 1,1 (8,)) et un caractére algébrique.
Supposons que n € X*(t) est un poids dominant de M, et

Homg, (Fg" (L(~1), Smd5)). 32y, ]) # 0. (2.2.7)

Alors pour tout T € Xy, v € Sy et si Mg, = diag(GLy,,,--- ,GLy,) ot ny + - - - +ny = n, pour
tout 1 < i <t, onaquele (p,I'E,)-module

gr?T Dyig (p5) = Fily, . yn; Drig (p3) /Fﬂm +otni_y Drig (p%)

est {T}-de Rham, c’est-a-dire que I’opérateur nilpotent v,, est nul sur

Dde(griQT Drig (Pﬁ)) ®L®@pFa71®T L.

On dit que les points x (ou les représentations galoisiennes p, = (p5)ves,) sont partiellement
(-de Rham si la conclusion du théoréme ci-dessus est satisfait. Supposons que q = Lie(Q,)®q, L
pour un sous-groupe parabolique @, C G de Levi Mg,. Sin € X*(t) est un poids qui est
dominant de Mg, alors

Homa, (Fg (T(~1), By 01), T2 e, ]) # 0 = Homysgm) (L (1), Jo, (T2 ) # 0

ou la représentation localement analytique Jg, (II132[m, ]) de Mg, est la version parabolique du
module de Jacquet d’Emerton, et Ly, (7) est la représentation irréductible de dimension finie
de mg, du poids le plus €levé n qui s’intégre a une représentation algébrique de Mg,. Le
théoréme ci-dessus montre que 1’existence de vecteurs localement algébriques non nuls dans le
module parabolique de Jacquet d’Emerton implique que les gradués des filtrations paraboliques
des (¢, I')-modules sur les anneaux de Robba sont de Rham. Ainsi, le théoréme est une générali-
sation naturelle du résultat de compatibilité locale-globale classique lorsque () = G. Et la preuve
est basée sur les résultats pour les points classiques sur la variété de Hecke partielle construite par
Ding dans [Dinl9c] et par la triangulation globale.

Rappelons que Wp est le stabilisateur des poids de Hodge-Tate h et A = wg(h)+ (0,--- ,n—
1)rex,. Soit ng le radical nil de q et g = mg + ng. Le théoréme suivant dit que les cycles Zp,,
sont partiellement ()-de Rham si wwy - A est un poids dominant de M.
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Théoréme 2.2.8. Pour chaque w € W/Wp, la composante irréductible Zp,, est contenue dans
le sous-espace de Zp ou Ad(g; l)y € ngq si et seulement si wwy - X est un poids dominant pour
mg.

En combinant le théoreme [2.2.6) et le théoreme [2.2.8] on peut faire “correspondre” certains
Zp et [L(wwp- )] dans la preuve du théoreme principal. Et nous pouvons démontrer I’ existence
de tous les points compagnons (7z,0% ,,),w > wg sur Xp(p) pour le raffinement R tel que

(T2 éR,wo) € Xp(ﬁ)-

2.2.4 Points compagnons pour différents raffinements

Soit R’ # R un autre raffinement. L’ étape précédente nous permet de démontrer I’existence de
(72, 0R ), w > wr dans X, (p) et dans cette étape, nous montrons que (7, I/ ,, ) est également
dans X, (p). Pour expliquer I’idée, nous supposons que n = 2 et S, = {v} consistent en une
place unique et supposons ¥, = {7i,72}. Supposons que les poids Hodge-Tate de py soient
heg=hrn2=00=h,1<1=hg, 2 D’apres les résultats précédents, on peut supposer que
le point = (pg, L(d1,02), 2) € X5, X T, x (X x U9) est dans X, (p) oy := (pz, (61,02))
est dans le sous-ensemble ouvert Ui(p,) de Xiri(p,) en prenant w = wg. En d’autres termes,
Drig(p3) = [Rr,F;(01) — Ri,r,(62)] est une extension de Ry, g (d2) par Ry, r, (1) qui donne
la triangulation de p; du paramétre §. Dans cet exemple, nous supposons d; = 7punr(a) et
d2 = unr(b) ol nous écrivons 1o pour le caractére 7o : K* < L* et unr(a), unr(b) pour les
caracteres non ramifiés de FT]X envoyant wr, aa,b € L*.

L’idée est d’utiliser les résultats dans le cas régulier. La stratégie consiste a trouver y* :=
(L, (51,6)) € Uun(p,) (done Driglph) = [Rr.r,(6}) — Re.r,(8))) pour i € N tel que y' ont
des poids de Hodge-Tate réguliers et convergent vers y au sens de la géométrie analytique rigide,
et de sorte que certains points compagnons (y*)" de 3 convergent vers

/

y = (py, (rounr(b), unr(a)))

dans Xyi(p,). Puis sur la variété de Hecke-Taylor-Wiles X, (p) C ¢(Xui(p,)) x (X x 1Y),
les points (¢(y*), 2) sont dans X, (p) pour i grand en utilisant que Xu:i(p,) est lisse en y et
que leurs points compagnons (¢((y*)'), z) sont sur X,(p) par les résultats de Breuil-Hellmann-
Schraen dans des cas réguliers. Par conséquent, le point compagnon ((y'), z), comme une limite
de (¢((y")"), 2), existe également sur X, (p) puisque ce dernier est fermé dans +(X1i(p,,)) X (X X
U9). Pour réaliser ce plan, on cherche des points 3" = (p};, (61, 65)) dans Uyi(p,) pres de y qui
satisfont les deux conditions suivantes.

1. p% sont cristallins.

2. (6,8%) = (1 “rounr(a’), unr(b?)) ot i > 1,a’,b* € L*.
Alors les points compagnons avec des poids dominants (y°)' = (&, (rpunr(b?), 74 “unr(a)))
existent sur X¢,i(p,) et convergent vers 1y’ puisque

(rounr(b'), 7 “unr(a'))) = (12,7 ) (unr(b), 7oy “unr(a’))

convergent vers (7o, 75 *)(J2,01) = (meunr(b), unr(a)) par I’hypothése.

Nous expliquons maintenant comment trouver des extensions Diig (p%) = [Rp, g, (01) =R, (65)]
proche de [Rr, F,(61) — Rr,r,(d2)]. La condition (2) pour (87, d5) ci-dessus n’est pas difficile a
réaliser. Le probléme est d’obtenir les extensions cristallines (ou de Rham) avec ces poids non
dominants.

Le lemme suivant donne un critere de Rham pour ces extensions.
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Lemma 2.2.9. Soient (n1,m2) : (K*)? — L* des caractéres localement algébriques et d € Z>1
tels que wtr (m1) — wtr (n2) € Z<g et wtr,(m1) — wtr, (n2) = d. Supposons que (n1,m2) est
générique au sens de I’hypothése Alors une extension [Rp p.(m) — Rr,r,(n2)] est de
Rham si et seulement si I’extension correspond a une classe dans

Ker(H, p, y(Rer, (mny ) = Higpp (R, (mng 1)) (22.10)

Ici tr, est un générateur du sous-(¢,l'r,)-module Ry, r (12) de Ry F,. De plus, le noyau ci-
dessus est de dimension 1.

Ensuite, les extensions requises sont sélectionnées dans le sous-espace de 1’espace des modules
de toutes les extensions [Rp r (1) — Rr,r;(n2)] donné par condition (2.2.10) et wtr,(11) —
Wtr, (772) =1
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Chapter 3

Local models of the trianguline variety
and partially classical families

3.1 Introduction

Let p be a prime number. This paper concerns about p-adic automorphic forms of definite
unitary groups and the locally analytic aspect of the p-adic local Langlands program. Its aim is to
generalize several results of Breuil-Hellmann-Schraen in [BHS19] (local model for the trianguline
variety, existence of companion points on the eigenvariety, locally analytic socle conjecture, etc.)
to the cases when the Hodge-Tate weights are non-regular (i.e., not pairwise distinct).

3.1.1 Companion points and main results

Let F* be a totally real number field and S, be the set of places of F't above p. Let F
be a quadratic imaginary extension of F'™ such that every place in S, splits in F, n > 2 be an
integer and G be a totally definite unitary group in n variables over F'* that is split over F. We
fix an open compact subgroup U? = [, Uy of G(AY) and a finite extension L of @, with
residue field k. For all v € S,, let &, := {7 : F,; < L} and we assume |%,| = [F :
Q). For each v € S,, we fix a place ¥ of F' above v and identify F, ~ Fj;. The space of
p-adic automorphic forms on G of tame level U?, denoted by S (UP, L), consists of continuous
functions G(F 1) \ G(A%,)/U? — L. Let G, = [I,es, Gv be the p-adic Lie group G(Ft ®q
Qp) = [yes, G(F). Let By = [1,eg, Bo (tesp. T, = [],eg, T0) be the Borel subgroup (resp.
the maximal torus) of G, ~ [], . S, GL,,(F,") consisting of upper-triangular (resp. diagonal)

matrices. Then G, acts on S (UP, L) via right translations. We assume furthermore that p > 2 and
G is quasi-split at all finite places of F'. Let F be an algebraic closure of F'. We fix a (modular)
absolutely irreducible Galois representation p : Gal(F/F) — GL, (k) so that p is associated
with a maximal ideal of some usual Hecke algebra acting on 5 (UP,L).

After Emerton [EmeQ6c¢l], one way to construct eigenvarieties, rigid analytic varieties parame-
terizing finite slope overconvergent p-adic eigenforms, is using Emerton’s Jacquet module functor
for locally analytic representations of p-adic Lie groups. There exists a rigid space over L (our
eigenvariety), denoted by Y (UP, p), on which a point is a pair (p, 0), where p is a p-adic continuous
n-dimensional representation of Gal(F/F) and § is a continuous character of 7}, which appears
in Jp,(II(p)*"). Here II(p) is the sub-G-representation of S(UP, L) associated with p cut out
by a prime ideal of certain Hecke algebra, II(p)®" is the subspace of II(p) consisting of locally
analytic vectors which is an admissible locally analytic representation of G, and Jp,(—) denotes
the Emerton’s Jacquet module functor so that Jpg, (II(p)*") is a locally analytic representation of
the Levi subgroup T}, of B,,.

53
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Take a point (p,0) on Y (UP,p). The problem of companion forms seeks to determine the
set of characters ¢’ of T),, denoted by W (p), such that pairs (p,d’) appear on Y (UP,p). The
existence of such companion points (p,d') is closely related to the appearance of certain irre-
ducible locally analytic representations of G, explicitly determined by ¢’ and p, which we call
companion constituents, inside II(p)*". The existence of such companion constituents is a spe-
cial case of the locally analytic socle conjecture of Breuil [Brel6, Brel5b]. For v € S, we let
Pv = p | Qal(FF /FH)’ The general recipe for W (p) has been conjectured by Hansen [HN17]] which
depends only on those local Galois representations p, for v € S}, and the notion of trianguline
representations introduced by Colmez [ColO8]]. One could view the problem of companion forms
or locally analytic socles as a locally analytic analogue of the weight part of Serre’s modularity
conjecture.

Let D;ig(py) be the étale (¢, I")-module over the Robba ring associated with p, for v € S).
In the p-adic local Langlands program, locally analytic representations of p-adic Lie groups are
expected to be related to (¢, I')-modules over the Robba rings which is the case for GL2(Q,,) by
Colmez [Col10, V]. Beyond the foundational works of Kisin, Colmez and Emerton for GL2(Q))
[Kis03} |Col08l, [Eme11]], we know in general and especially in our setting by the global triangula-
tion results of Liu [Liul5] or Kedlaya-Porttharst-Xiao [KPX14] that the non-triviality of the Borel
Emerton’s Jacquet module Jz, (II(p)*") (i.e. in the finite slope case) implies that p,, is trianguline,
i.e. Dyig(py) admits a full filtration

Fil* Dyig (po) : Diig(po) = Fil"Dyig(py) 2 -+ 2 Fil' Dysg(py) 2 Fil Dyig(py) = {0} (3.1.1)

of sub-(p, I')-modules such that the graded pieces are rank one (¢, I')-modules.

Under the Taylor-Wiles hypothesis on p, Breuil-Hellmann-Schraen proved in [BHS19] the
existence of all companion forms for regular generic crystalline points. In this paper, we generalize
their results to non-regular generic crystalline points. To be precise, we take a point (p,d) €
Y (UP,p). We say p (or the point (p,d)) is crystalline if for all v € S, p, is crystalline. If
p is crystalline, let (¢, ;)i=1,... » be the eigenvalues of g@f” where ¢ is the crystalline Frobenius
acting on Deis(p,) and ¢, = pv is the cardinality of the residue field of Ff'. Then we say p
(or the point (p, d)) is generic if for any v € S, gpmgp;j ¢ {1,q,} for i # j. Assume that p
is generic crystalline. A refinement R, of p, is a choice of an ordering of the pairwise distinct
eigenvalues ¢, 1, -,y and a refinement R = (Rv)vegp of p is a choice of a refinement
R, for each v € S),. In fact the refinements R, correspond to triangulations of Diig(py) as
by [BerO8b]. Then the conjectural set of characters W (p) admits a partition W (p) =
[Izx Wr(p) where Wr(p) = [l,cs, Wr.(pv) and each Wg, (p,) is a finite set which can be
explicitly described by R, and p. Remark that the partition of W (p) according to the refinements
is also the partition under the equivalence relation that § ~ ¢’ if and only if § 1§ isa Qp-algebraic
character of 7},. Our main theorem is the following.

Theorem 3.1.2 (Theorem [3.4.20). Assume that UP is small enough and assume the Taylor-Wiles
hypothesis (cf. : F is unramified over F'™, F doesn’t contain non-trivial p-th root of unity,
UP is hyperspecial at any finite place of FT that is inert in F and p(Gal(F/F(%/1))) is adequate.
Let (p,0) € Y (UP,p) be a point such that p is generic crystalline. Then there exists a refinement
R of p such that § € Wrg(p) and for any &' € Wrg(p), the point (p,d’) exists on Y (UP,p).
Moreover, all the companion constituents associated with W (p) appear in T1(p).

Remark 3.1.3. In [BHS19], the above theorem was proved under the extra assumption that for
each v € S, the Hodge-Tate weights of p,, are regular (pairwise distinct). But a stronger version
was proved in [BHST9]: in regular cases, (p,d’) exists on Y (UP,p) for any refinement R’ of p
and ' € Wx/(p). This stronger result is easy to get from Theorem in regular cases using
locally algebraic vectors in II(p) and is not available in this paper for general crystalline points
due to the non-existence of non-zero locally algebraic vectors in II(p) when p is non-regular (the
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non-existence can be seen using the results on infinitesimal characters in [DPS20]). See Remark
[3.5.37|for a partial result. The existence of all companion points in generic non-regular crystalline
cases will need other methods.

The method in [BHS19] was firstly replacing the eigenvariety Y (U?,p) by a larger patched
eigenvariety X,(p) in [BHS17b, BHS17a] constructed from the patching module in [CEG™16].
The patching method allows us to reduce the study of the geometry of the patched eigenvariety
to that of its local component, called trianguline variety, which parameterizes local trianguline
Galois representations. Then Breuil-Hellmann-Schraen used a local model to describe the local
geometry of the trianguline variety at certain points. We prove Theorem [3.1.2] by developing
further the theory of local models. The major new inputs are the following two results.

Firstly, we construct local models of the trianguline variety for certain points with possibly
non-regular Hodge-Tate weights and prove that the trianguline variety is irreducible at those points
(Theorem [3.1.6). Those local models are algebraic varieties which are similar to the regular cases
and reflect the phenomenon of the existence of companion points or companion constituents on
the eigenvariety or in the space of p-adic automorphic forms.

Secondly, we show that for a general point (p,d) € Y (UP, p) where p may not be de Rham
above p, the existence of certain companion constituents, which we call partially classical con-
stituents, will force the local Galois representations p,,, v € S}, satisfy certain special properties for
which we say p,, are partially de Rham (Theorem [3.1.8)). The partially classical constituents are
locally analytic representations of G, which will give rise to the existence of certain locally alge-
braic vectors inside some non-Borel parabolic Emerton’s Jacquet module .Jg, (II(p)*") of II(p)*",
where @, is some parabolic subgroup of ), containing B, and is not equal to B),. Let Mg, be
the Levi subgroup of @, containing 7},. Then Jg, (II(p)*") is a locally analytic representation of
Mg, which, in analogue with the case of Borel Emerton’s Jacquet module, should correspond to
some so called (after Chenevier [Chelll, see also [Berl7|])) paraboline filtrations of Drig(pv)

Filg), Drig(p0) = Drig(pv) = Filg}, Drig(pv) 2 -+ 2 Filg, Drig(py) 2 Filgy, Drig(py) = {0},v € 5,

where the ranks of the graded pieces of the above filtrations should be sizes of the blocks of
the Levi subgroup Mg,. Since we are always in the finite slope cases, we only focus on those
paraboline filtrations that are sub-filtrations of the trianguline filtrations (3.I1.1)). This means that
there exist integers 0 = 5,0 < Sp,1 < -+ - < Sy t,—1 < Sy, = N such that

Fily Drig(pv) = Fil** Dyg(py).

From (¢, I")-modules over the Robba rings one can always obtain semi-linear Galois represen-
tations over Fontaine’s ring Byr after Berger (e.g. [BerO8a]), thus we can define the de Rham
property for (¢, I')-modules as for p-adic Galois representations. Our result then states that the
appearance of certain locally algebraic vectors in Jg,, (II(p)*") implies that the graded pieces

Fil**i Dyig(py ) /Fil** =1 Dyig(py)

are de Rham (¢, I')-modules for i = 1,---t,,v € S,. Recall that locally algebraic vectors in
S (UP, L) with respect to the action of G, are p-adic avatars of algebraic regular automorphic
forms which correspond to p-adic Galois representations that are de Rham over p with regular
Hodge-Tate weights. Hence the result on partially classical constituents can be viewed as a form
of generalization with some functoriality of the classical correspondence, beyond ordinary cases

([Dinl9b], etc.).

Remark 3.1.4. Partial de Rhamness as well as partial classicality was proposed by Ding in a narrow
sense for 2-dimensional Galois representations [Dinl7a, [Din17bl IDin19a]] and partial classicality
was also mentioned by Ding for his partial eigenvariety for GL,,(Q,) [Din19c] which we will use.
Our results combine and generalize both Ding’s works.
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Our key step (Proposition[3.4.13)) to prove the existence of the companion constituents or com-
panion points for a point z = (p, ) as in Theorem goes roughly in the following way (see
also §3.1.4] especially Example 3.1.TT). It will also simplify the relavent arguments in [BHS19]
even for the regular case. As in [BHS19], there are cycles (closed subspaces) passing through x
on the eigenvariety which correspond to the appearance of companion constituents in I1(p)*". By
the second result above, those cycles corresponding to partially classical constituents (with respect
to some parabolic subgroups) are partially de Rham which means that the corresponding Galois
representations are partially de Rham. On the other hand, the local model also gives rise to cycles
near x on the patched eigenvariety, which are expected to match those cycles corresponding to
companion constituents. The point is that the partially de Rham properties are determined by the
datum of local models, and it turns out that the partially de Rham cycles on the local models are
exactly those cycles that should match partially classical constituents (Theorem [3.1.9). Then a
finer study of the local models tells that there exist non-partially de Rham cycles passing through
x which implies the existence of non-partially classical companion constituents inside I1(p). In
this way, we can obtain all companion constituents that can be seen by the local models (those
constituents in Theorem [3.1.2)).

In the remaining parts of this introduction, we give more details on the above results and their
proofs.

3.1.2 Local models for the trianguline variety

We now explain our local results on the trianguline variety. For v € S, the trianguline variety
Xi(p,) with respect to p, := 7 | Gal(FF /F) is a rigid analytic variety, a point of which is given
by a pair (r, §) where r is a deformation of p,, and § = (8;)1<;<p, is a character of T}, = ((F,")*)",
such that the subset of points (r,d), where r is trianguline and § corresponds to the graded pieces
of certain trianguline filtration of r as (3.1.1)), is Zariski dense.

We take an L-point x = (r,0) of Xi(p,). The weight wt(J;) of each character J; is a
number in F,f ®g, L ~ ®rex, L and we write wt(d;) € L for the 7-part of wt(;) for each
7 € X. The multiset {wt-(d;) | ¢ € {1,---,n},7 € X,} is also the 7-Sen weights of 7 (the
generalized Hodge-Tate weights, counted with multiplicities). Then ¢ is locally Q,-algebraic if
foralli=1,--- ,n,7 € ¥,, wt(5;) € Z.

We say d is generic if for any i # j, both §; *§; and (5i_l<5j\Norva+/Qp 1

p» Where [pl, = p~',

are not p-algebraic characters (i.e. not of the form z — [, oy, 7(2)" where k. € Z for every
T E Xy).

In the case when ¢ is generic and locally QQ,-algebraic, r is almost de Rham in the sense of
Fontaine [Fon04]. Fontaine’s theory associates r with a finite free F) ®q, L-module Dyqr(r)
of rank n and a linear nilpotent operator N acting on Dpqr (7). The space Dy,qr(r) is equipped
with two filtrations, both are stable under the action of /N. One filtration is the Hodge filtration
denoted by Fil,. Another filtration Dy := Dpqr (Fil® Dyig(r)) comes from a trianguline filtration
Fil® Dyig(r) on Dyig (1) determined by the point  (we emphasize that the functor Dpgr (—) is also
defined for these (i, I')-modules).

For 7 € %,, define Dypqr () := Dpar(r) ®L®QPF;”,1®T L, Fil,, := Fil, ®L®QPF;”,1®T L
and D; 4 := D, ®L®<@,,FU+,I®T L. Then foreach 7 € ¥, Dro : D71 C --+ C D, is a complete
flag of the L-space Dpqr, (7). The graded pieces of the Hodge filtration Fil, , have L-dimensions
that are equal to the multiplicities of the 7-Sen weights.

Let G := Resp+ /QP(GLn / #+) ®q, L =[], ex, GLy/L be the algebraic group which acts on
Dpar(r) ~ (Ff ®q, L)" ~ [I,cx, L™, P be the standard parabolic subgroup of block upper-
triangular matrices in G that is conjugate to the stabilizer subgroup of the Hodge filtration Fil,
and B the Borel subgroup of upper-triangular matrices of G. Let g (resp. b, resp. p) be the Lie
algebra of G (resp. B, resp. P). The datum (N, D,, Fil,) associated with the point = can define a
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point x,qR of the following algebraic scheme
Xp={(v,q1B,92P) € g x G/Bx G/P | Ad (97" )veb,Ad (5" ) vep}  (3.1.5)

where G/ B, G/ P are flag varieties and Ad denotes the adjoint action. Let W =~ [] .5, S, (resp.
Wp) be the Weyl group of G (resp. of the standard Levi subgroup of P) where S, denotes the
n-th symmetric group. Then Xp is equidimensional and its irreducible components Xp,, are
parameterized by w € W/Wp (see Definition . Let w = (w;)rex, € HTEEU S, be an
element such that wt. (0, (1)) < -+ < Wt7(d,, (n)) for all 7 € %, and we use the same notation
w to denote the image of w in W/Wp. The following theorem is proved in [BHS19] when P = B,
i.e. when r has regular Hodge-Tate weights (wt-(6;) # wt(J;) forall 7 € 3,7 # j).

Theorem 3.1.6 (Theorem [3.3.17). Let x = (r,0) be an L-point of Xi(p,) such that ¢ is generic
and locally Qp-algebraic. Then up to formally smooth morphisms of formal schemes, the comple-
tion )?m (D) z Of the trianguline variety Xi(p,) at x is isomorphic to the completion X Paw,zpar
of Xpw at Tpar. Moreover, the trianguline variety Xi(p,) is irreducible at x.

The proof of Theorem [3.1.6] follows the strategy for regular cases in [BHS19]]. The difficulty
in our situation is to show that X p,, is unibranch at xqR, i.e. the completion of the local ring of
Xpuw at zpar is irreducible (Theorem [3.2.14). When P = B, it was proved by Bezrukavnikov-
Riche in [BR12] that for w € W, Xp,, is Cohen-Macaulay and based on the Cohen-Macaulay
result, Breuil-Hellmann-Schraen proved that Xp ,, is normal in [BHS19] which in particular im-
plies that X' g, is unibranch. We prove that Xp,, is unibranch at x,qr based on the normality
of Xp,, (here w € W). There is a natural birational proper map f : Xp,, — Xp,, of integral
varieties. We can prove that the fiber f -1 (par) is connected (Proposition . Since X, is
normal, the connectedness of the fiber is enough to establish the unibranch property that we need
(Proposition . The important problem whether X p,, (or X4:i(p,) at x) is Cohen-Macaulay
or normal remains unsolved.

3.1.3 Partially classical families and partial de Rhamness

We need some more notation to state the result on partially classical companion constituents.
For a point (p,d) € Y(UP,p), 0 = (d,)ves, = ((6v,i)i=1,-- ;n)ves, is a character of T), =
H’UESP TU = HUGSP((F;_)X)?Z' Let

A= (AT)TEZU,’UGSP = ((AT,i)iil,"',n)TEEUﬂ}ESp = ((WtT((Si))izl,m,n)TEEvﬂ)ESp

be the weight of . When ¢ is locally algebraic for which we mean that A\;; € Z for all
T € Xy,v € Sp, Orlik-Strauch’s theory [[OS15] can construct a (generically irreducible) locally
analytic representation L(\, ¢) of G, from A and (the smooth part of) § which is a subquotient of
some locally analytic principal series representation (cf. §3.4.3).

We fix vg € S, 70 € ¥y, and a parabolic subalgebra g, of block upper-triangular matrices
of gl,,, the Lie algebra of GL,,,;,. We assume that the standard Levi subalgebra my, of qr, is
isomorphic to gl Xoexgly o oo xgl where 0 =50 < --- < §; < -+ < § =M.
Suppose that A7, is a dominant weight of m, or explicitly, A;; » > Ay, forevery a < b,a,b €
[si + 1,8i41] and 0 < ¢ < t — 1. Let LmTO(/\TO) be the finite-dimensional irreducible m.,-
representation of the highest weight \-,. Let Q, = ], s, @, be a standard parabolic subgroup
of G, such that its 7o-part Lie algebra Lie(Q,,) ® Fi, L is equal to q,,. Then the companion

$1—50 St—St—1

70
constituent £(\, ) is partially classical (with respect to @, and the set {79 }) in the sense that we
have (by an adjunction formula, see §3.5.3)

Homg, (£(X,8),TI(p)™) #0 = Homm, (Lm, (M), Jo,(p)™)) #0.  (3.1.7)
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Assume that (p, d) is a point on Y (UP, ) such that ¢ is locally algebraic and satisfies certain
generic condition. Then Dz (py,) is associated via the point (p, ) with a trianguline filtration
Fil® Drig (pu,) as which in turn leads to a filtration D, o = Hrezvo D- o of Dppgr(pu,) With
a nilpotent operator N, = (NT)T@UO where every IV keeps the filtration D, . Fori =1,--- |,
we let gr¥ Dyig(py,) := Fil* Dyig(py, ) /Fil*= Dyig (py, ) be the graded pieces of the paraboline
sub-filtration Fil®® Drig(pvo) corresponding to m,. In the case of Galois representations, an al-
most de Rham representation p, is de Rham if and only if the nilpotent operator on Dyqr(py)
is zero. We can identify DpdR, -, (81° Drig(Pvy)) := Dpdr (8% Drig(puv,)) ® Log, Fih 1@ L with
Dry.s:/Pry.s;, equipped with the restriction of the action of N,,. We say that the (¢, I')-module
gr®i Dyig (pu, ) is { 70 }-partially de Rham if the restriction of the nilpotent operator N,y on Dy, s./D+ s, ,
is zero.

Theorem 3.1.8 (Theorem(3.5.28). Let (p,d) € Y (UP,p) be a point such that 0 is locally algebraic
and generic (Definition [3.4.2). If the To-part weight A7, of 0 is a dominant weight for m., and
Homg, (L(A,0),I1(p)*) # O, then for every 1 < i < t, the graded piece gr* Diig(py,) is a
{70 }-partially de Rham (p,T")-module.

Theorem [3.1.8]is in fact a corollary of the global triangulation results and Ding’s construction
of partial eigenvarieties in [Din19c]] which was based on the work of Hill-Loeffler [HL11]. As-
sume that A7, is dominant for m,,. The partial eigenvariety of Ding, denoted by Y (U?,p)(X],).
is a subvariety of Y (UP,p) roughly consisting of points = = (p;,d,) € Y (UP,p) such that
Homy, (L, (Aro)s Jq, (I(pz)™)) # O where m] := [m,, m] is the derived subalgebra of
m,. Such construction forces that for any point (p;,d,) € Y (UP,p)()\, ), the 7o-part weight
Azro = (Az70,i)im1, n Of 0, satisfies that Ay ) o — Azrop = Arp.a — Arp are non-negative
integers independent of z for every a < b,a,b € [s; + 1,8;41] and 0 < ¢ < ¢ — 1. Then
the arguments of Berger-Colmez in [BCOS|| and the global triangulation show that the subset of
points z € Y (UP,p)(\],) such that a suitable twist of gr® Dyig(pz,) is {70 }-partially de Rham
is Zariski closed. The feature of Ding’s construction is that such constrain on the 7o-weights A, r,
still allows A, 7, to vary and to be dominant with respect to g-, := gl,, even if A, is not. The usual
eigenvariety arguments imply that the subset of classical points, where there exist non-zero locally
algebraic vectors in II(p,) and §, admit dominant weights, is Zariski dense in Y (U?, p)(X,,). It
follows from the classical local-global compatibility when ¢ = p that classical points are de Rham
(pg are de Rham) where gr*i D, (pz.4,) is automatically {7g }-partially de Rham. Combining the
Zariski dense and closed statements leads to Theorem [3.1.8]

3.1.4 Existence of companion constituents

The key observation to prove Theorem [3.1.2]is that Theorem [3.1.§] is reflected by the local
models of the trianguline variety. There is a closed embedding Y (U?,p) — X,(p). Here the
patched eigenvariety X, (p) is equidimensional and can be identified as a union of irreducible
components of X:i(p,) x Xz» x U? where Xu:i(p),) := [[,es, Xui(p,), U is an open polydisk
and X5» is certain tame part.

Letz = (p,0) € Y(UP,p) C X,(p) be a generic crystalline point as in Theorem Let
G = [les, ReSFJ/Qp(GLn/FJ) ®q, L andlet W =~ [[,cg rex, Sn be its Weyl group. A
companion character in Wx(p) is certain character d ,, for some w € W (Definition
with weight wwo - A. Here A = (Ar)rex, ves, € [lies, rex, Z" is a “dominant” weight in
the sense that A;; — A;;41 > —1forall 7 and 1 < 7 < n — 1 which is determined by the
Hodge-Tate weights of p, wyg is the longest element in W and wwyg - A denotes the usual dot
action. In [BHS19], for each companion constituent £(wwp - A, QR’w), there is an associated cycle
[L(wwy - A)] on X,(p) in the infinitesimal neighbourhood of z such that [£(wwy - A)] # 0 if and
only if Homg, (L(wwp - A, 8% ,,), 1(p)*") # 0.
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The idea of [BHS19] is to compare the cycles [L£(wwy - A)] with the cycles pulled back from
Steinberg varieties via the theory of local models for X1,i(p,). Let P = [], ¢ s, P, be the standard
parabolic subgroup of G where each P, is the parabolic subgroup determined by the Hodge filtra-
tion of p, as in Theorem and let B be the standard Borel subgroup of G. Let g, p, b be the
Lie algebras as before and let u be the nilpotent radical of b. The (generalized) Steinberg variety

Zp = {(V,ng,gQP) €egxG/BxG/P|Ad (gfl) veu Ad (g;l) vE p}

is a subvariety of Xp. Let Wp be the Weyl group of the standard Levi subgroup of P. Then
any w € Wp fixes wg - A under the dot action. The irreducible components Zp,, of Zp are also
parameterized by cosets w € W/Wp (see for details). Pulling back each Zp,, defines a
cycle 3p., on X, (p). The spirit of [BHSI9] expects that 3p., C [L(wwg - N)].

Let ¢ = mg + ng C g be the Lie algebra of a standard parabolic subgroup () of upper-
triangular block matrices of G' where ng, is the nilpotent radical and mg) is the Levi factor of
diagonal block matrices. Recall that partial de Rhamness means the vanishing of the nilpotent
operator on the graded pieces of the paraboline sub-filtration which, in the notion of local models
, is translated to that the entries of the upper-triangular matrix Ad(g; 1)1/ in certain Levi
diagonal blocks are zero. Hence if wwyg - A is a dominant weight for m¢, then Theorem
implies that the cycle [£(wwyg - A)] is contained in the locus pulled back from the subspace of Zp
cut out by the condition Ad(g; 1)1/ € ng. The following elementary result for which we state as a
theorem is the counterpart on the local models.

Theorem 3.1.9 (Theorem [3.2.26). For each w € W/Wp, the irreducible component Z P 1S
contained in the subspace of Zp where Ad(gl_l)u € ng if and only if wwg - X\ is a dominant
weight for mg.

Remark 3.1.10. When P = B, we can replace the irreducible component Zp,, in Theorem
by the characteristic variety associated with the G-equivariant D-module of the localization of the
irreducible U (g)-module L(wwy - 0) of the highest weight wwy - 0 (Proposition 3.2.32). This
will give a more conceptual proof of the “if” part of the theorem. However, we do not need
characteristic cycles in contrast to [BHS19] (our new argument will be simpler than that in /oc.
cit., even for regular cases). Moreover, it is the “only if” part that will play a role.

We illustrate how Theorem [3.1.9] works in the proof of Theorem [3.1.2] and the difference
between regular and non-regular cases by the following basic example.

Example 3.1.11. We assume n = 3, z = (p,6) € Y(UP,p) and that § = Jg ,,, has weight A
which is “dominant”. Take 9 € X,,,v9 € Sp. Assume A, 1 > Ay 2 and that for any 7 # T,
Ar1 > Ar2 > Ar3. Suppose that we are in the case when Wi (p) = {QR@O,QR’WO} where s =
(8r)res, ves, is a simple reflection such that s, - Ar = A if 7 # 70 and 57, - (Ar 1, Mg 2, Arg 3) =
(Arg,2 — 1, Arp.1 +1, Ay 3). Then there is an equality of the underlying closed subspaces of cycles
near x:

[L(wowp - A)] U [L(swowo - )] = 3Pws U 3P,swo (3.1.12)

where both sides describe the fibers of the infinitesimal neighbourhood of x over the weight wqwyg -
A. The left-hand side of (3.1.12) comes from the construction of the eigenvarietiy using Jp,(—),
and the knowledge of possible companion constituents for p in the situation. The right-hand side is
provided by the local model where both 3 p,, and 3 p 5., are non-empty. By methods in [BHS19]
and Theorem we know [L(wowo - A)] # 0 (Proposition 3.4.17). We need to prove that
[L(swowp - A)] # O which will imply (p, 0% g,,) € Y (UP,p) and

HOmGp (E(Sw()wo . A?éRﬁwo)? H(p)an) # 0

Firstly assume that the Hodge-Tate weights of p are regular. In this case A;1 > Az 2 > A, 3 for
all 7. Hence A is a dominant weight. The locally analytic representation of the form £(\, dR )
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is locally algebraic and the cycle [£(wowp - A)] is then contained in the de Rham locus. However,
Zp,u, is equal to the locus where v = 0 in Zp = Zp. From which we get [L(wowo - A)] C 3Py,
and 3psu, € [L(wowp - N)]. Hence [L(swowp - A)] # 0 by . This is the strategy used in
[BHS19] for such situation.

Now assume that the 7o-Hodge-Tate weights of p,,, are not regular and are equal to (2, 1,1) so
that Ar, = (2,2,3) and sr, - A, = (1,3, 3). Theorem [3.1.8]implies that the cycle [£(wowp - A)]
is {7p}-partially de Rham with respect to the standard Levi subalgebra gl, x gl; of gl;. Since
(1,3, 3) is not dominant with respect to gly x g, Theoremtells that the cycle 3 p s, is not
fully contained in the {7y }-partially de Rham locus (with respect to gl, X gl;). Hence 3p s, ¢

[L(wowp - \)] which forces [L(swowq - A)] # 0 by (3.1.12).

Remark 3.1.13. The above strategy also allows obtaining certain companion points or constituents
for non-de Rham trianguline representations. Theorem [3.1.9]suggests a partial classicality conjec-
ture (a converse of Theorem for almost de Rham representations with regular Hodge-Tate
weights which is closely related to the locally analytic socle conjecture (Proposition [3.5.34)).

3.1.5 Outline of the paper

We give a brief overview of the contents of the paper.

§3.2] studies the varieties appearing for the local models. The unibranch property of the local
models is proved in (Theorem [3.2.14). contains the results on the generalized Stein-
berg varieties (Theorem [3.2.26)). §3.2.6]is a complement of §3.2.5|to provide a point of view from
geometric representation theory.

§3.3] establishes the local models for the trianguline variety in the non-regular cases. This part
follows closely with [BHS19] in the regular cases. The first sections are devoted to recall and
generalize the deformation theory of trianguline (¢, I")-modules. transports the results on
the Steinberg varieties in §3.2.5|to the trianguline variety via the local models.

§3.4] contains our main results on companion points and constituents and their proofs. §3.4.1]
concerns the existence of local companion points on the trianguline variety. §3.4.2]is to recall the
global settings and recalls the theory of locally analytic representations and the definition
of companion constituents. §3.4.4]is the core part where we prove the main theorems (Theorem
3.4.18]and Theorem [3.4.20). The key induction step is Proposition [3.4.13| which uses the results
on Steinberg varieties in §3.2.5 and Theorem [3.4.10] The proof of Theorem [3.4.10] absorbs the
results, postponed in §3.5] on the partially classical companion constituents.

§3.5|concerns the partially classical families and the partial classicality. A large effort (§3.5.2}
§3.5.5) is for the construction of the partial eigenvarieties and studying their basic properties where
most results have been obtained by Ding. We adapt his method in our setting to get the patched and
more partial versions. The aim is to prove Theorem [3.5.28]in §3.5.6/ on the partial de Rhamness
of partially classical constituents which have been used in §3.4.4] §3.5.7|discusses the conjecture
on partial classicality and several results for almost de Rham representations.

In Appendix Al we generalize certain result of Berger-Colmez in [BCOS8|] on de Rham families
of Galois representations to almost de Rham families of (¢, I")-modules (Proposition[A.3.4). The
result we get is stronger than what we need (in the proof of Proposition[3.5.26/and Theorem [3.4.10)
and is possibly known to experts. We include a proof as it might be of use in the future.
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3.1.7 Notation
3.1.7.1 Reductive groups

Let GG denote a connected split reductive group over a field k& with a maximal torus 7', a Borel
subgroup B containing 7" and the Levi decomposition B = TU. Write B for the opposite Borel
subgroup and U for the unipotent radical of B. Write RT (resp. R, resp. R™) for the set of
all positive roots with respect to B (resp. roots, resp. negative roots with respect to B) of G.
Write A for the set of positive simple roots. For a root «, denote by o the corresponding coroot.
We have in particular (", ) = 2, where (—, —) denotes the pairing between the lattices of
coweights X, (7") and weights X*(7T') of T. Write W for the Weyl group of G and for @ € R,
denote by s, € W for the corresponding reflection. Let S = {s, | @ € A} be the set of
simple reflections. For every w € W, we fix an element w € Ng(7T')(k) that is sent to w via
the isomorphism Ng(T')/T ~ W where Ng(T') denotes the normalizer of 7" in W. We have
(o, 55(1)) = (s5(a), ) for a € R, B € A, p € X.(T).

We use fraktur letters g (resp. b, resp. p, resp. t, resp. u, resp. u, etc.) for the Lie algebra of
G (resp. B, resp. P, resp. T, resp. U, resp. U, etc.). Denote by Ad : G — End(g) the adjoint
representation. For a Lie algebra g, denote by U (g) the universal enveloping algebra.

If P is a standard parabolic subgroup of GG containing B, let P = MpNp be the standard
Levi decomposition, where Mp is the standard Levi subgroup containing 7T'. Let By, = BN Mp
and Uy, = U N Mp. Let Rp C R be the set of roots of Mp and let RL = Rt N Rp,Rp =
RN Rp,Ap = AN Rp. Let mp (resp. np, resp. by, resp. uys,) be the Lie algebra of Mp
(resp. Np, resp. By, resp. Ups,,). In particular, ng = u.

Write Wp for the Weyl group of Mp. Let 1g(—) denote the length of elements in W with
respect to the set of simple reflections in .S. We use the symbols <, >, <, > to denote the strong
Bruhat order (resp. partial Bruhat order) on W (resp. W/Wp) with respect to the Coxeter system
(W, S) [BBOG, §2.1, §2.5]. Write WP for the set of elements w € W that are the unique shortest
elements in the cosets wWp (cf. [BBOG, §2.4]). Then W = WP Wp. If w € W, let w = wlwp
be the unique decomposition such that w” € W wp € Wp ([BBO6, Prop. 2.4.4]). The map
W — WP w s w’ is order preserving ([BBO6, Prop. 2.5.1]) and the partial order on W/Wp
is induced by the order on W' via the bijection W < W/Wp. Forw € W/Wp, let Igp(w) :=
lg(w?) where w” € W NwWp. When it is clear from the context, for w € W, we use the same
notation w to denote the coset wWp € W/Wp. Write wy (resp. wp,) for the longest element in
W (resp. Wp).

We write BwP/P for the Schubert variety in the flag variety G/P corresponding to w €
W/Wp. It is the closure of the Schubert cell BwP/P in G/P (cf. [Jan07, 11.13.8]).

A weight A\ € X*(T') which is also viewed as a weight of t is said to be a dominant (resp.
antidominant) weight for a standard Levi subgroup Mp or its Lie algebra mp (with respect to
By, or by, if (¥, A) > 0 (resp. (¥, \) < 0) forall & € Ap.

The dot action is given by w - A = w(A + p) — pforall w € W and A € X*(T) where p is
the half sum of all positive roots.

3.1.7.2 Local fields

Let K be a finite extension of , with a uniformizer @y . Write O for the ring of integers of
K and k for the residue field. Let K be an algebraic closure of K and C be the completion of K.
Let K be the maximal unramified subfield of K. Write G := Gal(K /K) for its Galois group.
Let B:{R = B:{R(C), Bar = B:{R[%] be Fontaine’s de Rham period rings, where ¢ is Fontaine’s
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27i. Let K (uc0) be the extension of K by adding all p-th power roots of unity, and we define
Ik = Gal(K (o) /K).

Take L a finite extension of ), that splits K. Let C;, denote the category of commutative local
Artinian L-algebras with residue field L. If A € Cy, let m4 be its maximal ideal and the tensor
product — ®4 L is always with respect to the map modulo m4. Let 3 be the set of embeddings
T7: K — L.

Write 7 for the Q,,-rigid analytic space parametrizing continuous characters of K (cf. [KPX14,
Exam. 6.1.5]) and 7, = T xq, L. If A is an affinoid L-algebra, and § : K* — A* is a con-
tinuous character, i.e. locally Q,-analytic, then define the weight wt(d) € Homg, (K, A4) :  —
%5 (exp(tx)) |t=o0. We identify Homg, (K, A) with K ®q, A via the trace pairing of K and let
wt,(J) be the 7-part of wt(d) € K ®g, A = [[,c5 A

Let € be the cyclotomic character of G and we still use € to denote the character N /g, [Nk /q,|q,
of K where Ng/q, is the norm map and | — |g, is the standard valuation of Q. Forany a € L*,
let unr(a) : KX — L be the unramified character sending wy to a. If k = (k,),ex € Z~,
write 2* for the character K* — L : z — [ cx7(2)". If § = (8;)ier : (K*)! — AXisa
continuous character of (K*)” for a finite set I, we write wt(8) := (wt(&;))ier € (K ®q, A)
and similarly for wt-(0). If A is a finite local L-algebra and § : K* — A*, then we say 9 is
(Qp-)algebraic (resp. locally (Q,-)algebraic, resp. smooth) if § = 2% for some k € Z* (resp.
wt,(0) € Z C A,VT € %, resp. wt(§) = 0). Wesay § : (K*)I — AX is (Qp-)algebraic (resp.
locally (Q,-)algebraic, resp. smooth) if §; is (Q,-)algebraic (resp. locally (Q,-)algebraic, resp.
smooth) for all ¢z € I.

If X is arigid space, we write R x x for the Robba ring of K over X ([KPX14, Def. 6.2.1],
our notation follows [BHS19]]) and if A is an affinoid algebra, write R4 x := Rsp( A)K- If
d : K* — I'(X,0x)* is a continuous character, let Rx x(d) (or R4 x(5) if X = Sp(A4))
be the rank one (p, ' )-module over R x, i constructed in [KPX14, Cons. 6.24]. If Dy is a
(¢, 'k )-module over Rx f, set Dx () := Dx ®ry , Rx k(9).

3.1.7.3 Miscellaneous

For a positive integer n, write S,, for the n-th symmetric group.

If = is a point on X, a scheme locally of finite type over a field or a rigid analytic variety, then
we denote by k(x) the residue field at . Write X for the underlying reduced subspace.

If X is a scheme locally of finite type over a finite extension L of Q,, then we write X rig
for its rigid analytification ([Bos14, §5.4]). If R is a commutative Noetherian complete local ring
over Oy, of residue field finite over kz,, then we denote by Spf(R) the formal scheme defined by R
with its maximal ideal and we write Spf(R)" for its rigid generic fiber in the sense of Berthelot
(IdJ9sL §71).

If R is a commutative ring, then write Rred .— R/ J for its nilreduction where J is the nil-
radical of R. If R is a commutative Noetherian local ring, denote by R the completion of R with
respect to the maximal ideal of R.

If Z is a topologically finitely generated abelian p-adic Lie group, then we write Z for the rigid
analytic space over (Q, parameterizing continuous characters of Z (cf. [KPX14, Prop. 6.1.1]).

If g is a finite-dimensional Lie algebra over a field k, then we use the same notation g to denote
the affine scheme over k such that g(A) = A ®j, g for any commutative k-algebra A.

If V' is a module over a ring R and [ is an ideal of R, then write V' [I] for the subset {v € V' |
av = 0,Ya € I}. If V' is a vector space over a field with a linear action of a group G, then write
V& for the subspace {v € V' | gv = v,Vg € G}.
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3.2 Unibranchness

In this section, we study some generalized version of the varieties built from Grothendieck’s
simultaneous resolution in [[RicO8]], [BR12]] and [BHS19].

We fix a connected split reductive group G over a field k£ with characteristic that is very good
for G ([KW13| Def. VI.1.6], we will only need the case when char(k) = 0), with a maximal torus
T, a Borel subgroup B = T'U containing 7" and a standard parabolic subgroup P = MpNp. Let
g (resp. b, resp. p, resp. t, etc.) be the Lie algebra of G (resp. B, resp. P, resp. T, etc.). Let W
be the Weyl group of G.

3.2.1 The varieties

We shall define the varieties that we are going to study. Define the following schemes over k:

Xp:= {(u,ng,ggP) €egxG/BxG/P|Ad (gfl) veb Ad (951) Ve p}
Yp:={(v,gP) cbx G/P|Ad (g vep}.

If P = B, then Xp is defined in [BHS19]] and we denote by X := Xpg,Y := Yg. The scheme
Xp (resp. Yp) is equipped with a left G-action (resp. B-action) given by g (v, 1B, g2 P) =
(Ad(9)v,991B, ggaP) for any g € G, (v,91B,92P) € Xp (resp. b(v,gP) = (Ad(b)v,bgP)
for any b € B,(v,gP) € Yp). The morphism G xZ Yp — Xp sending (g, (v,91P)) to
(Ad (g) v, 9B, gg1 P) is an isomorphism, where the notation of G' x? Yp is taken from [Jan07,
1.5.14]. Let U be the opposite unipotent subgroup with respect to B. The projection G — G/B
is locally trivial: G is covered by open subsets of the form gUB,g € G and gUB ~ U x B as
varieties. Hence Xp ~ G x? Yp is covered by open subschemes that are isomorphic to U x Yp.
Note that U is smooth.

Suppose w € W/Wp. Let Upy, = {(g1B,92P) € G/B x G/P | g7 ' g2 P € BwP/P} be
the equivariant partial Schubert cell in G/B x G/P. Then Up,, is a locally closed subscheme in
G/B x G/P of dimension dim G — dim B + lgp(w) ([Jan07, I1.13.8]). We let

Vew = {(v,q1B,9:P) € Xp | g7 'g2P € BwP} (3.2.1)

be the preimage of Up,, in Xp under the natural projection Xp — G/B x G/P and define
Vi, = {(v,gP) € b x BwuP/P | Ad (g7") v € p} similarly.

Definition 3.2.2. For every w € W/Wp, let Xp,, (resp. Yp,,) be the Zariski closure of Vp,,
in Xp (resp. the Zariski closure of V}j » 10 Yp) equipped with the reduced induced subscheme
structure. When P = B, we write X, (resp. Y,) for Xp 4, (resp. YR 4,).

We define a variety gp := {(v,gP) € g x G/P | Ad (¢7') v € p} ~ G x” p and denote by
g := gp. The projection to the first factor ¢p : gp — g is the (partial) Grothendieck simultaneous
resolution ([KW13| VI.8]). The scheme X p is isomorphic to g x4 gp as in [BHSI9] for X.

Define prp : Xp = g X4 gp — g to be the projection to the first factor and prp,, to be its
restriction to X p,,. Similarly, we can define morphisms pr% and pr?w which send (v, gP) €
Yp CbxG/Ptov € b. Welet g'®® C g (resp. g'°®~ ) be the open subscheme of g consisting of
regular elements which by definition are those elements in g whose orbits under the adjoint action
of G have the maximal possible dimension (resp. regular semisimple elements). Let g™ :=

C]él (greg) (resp. ’eregfss = ql_al (greg—ss))'

Proposition 3.2.3. . The scheme Xp (resp. Yp) is reduced, is a locally complete intersection,
hence Cohen-Macaulay, and is equidimensional of dimension dim G (resp. dim B). Its
irreducible components are Xp,, (resp. Yp.,) forw € W/Wp.
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2. For eachw € W/Wp, the morphism prp,, : X Pw = g (resp. pr?w :Ypy — b)is proper
birational surjective and is an isomorphism over g"°& (resp. b'®% := b N g"*&).

Proof. The proof goes in the same way as that in [BHS19) §2.2] and we only give a sketch here.
The fiber of the projection Vp,, — Up,, over a point (g1 B, g2 P) € Up,, C G/B x G/P is

{(v,1B,92P) € Xp | v € Ad(g1)b N Ad(g2)p}

which is isomorphic to b N Ad(w)p as schemes where @ € W is the shortest element in wWp.
The variety b Ad(w)p is an affine space of dimension dim B —1gp(w) ([BT72, Prop. 3.9 (ii)] or
Lemmabelow). Using [BHS19, Lem. 2.2.2] we see that Vp,, is a geometric vector bundle
over Up,, of total dimension dim G. Hence Xp,, is irreducible of dimension dim G for every
w € W/Wp. The scheme Xp is a union of the subsets Xp,,, w € W/Wp and is locally cut out
by dim G — dim B + dim G — dim P equations from a smooth variety g x G/B x G/P. Thus
X p is locally of complete intersection, hence Cohen-Macaulay and equidimensional of dimension
dim G. The reducedness of X p and (2) for X p can be proved by the same arguments in the proof
of [BHS19, Thm. 2.2.6] using Lemmabelow to argue that each X p,, contains one point in
the fiber over any point of g8~ of the map prp : Xp — g. The proof of results for Yp is similar
or using the results for X p together with the isomorphism G x? Yp ~ Xp. O

There is a natural proper surjective morphism of schemes gg p : g — gp, (v, gB) — (v, gP).
In fact, the surjectivity can be tested over an algebraically closed field and for closed points since
the source and the target are both algebraic varieties. For any geometric point (v, g) € g X G
such that Ad (¢7') v € p, one can always find an element 2 € Mp such that Ad(h~ g~ ') € b,
then the point (v, ghB) € X is sent to (v, gP) € Xp by gp,p. Now we have a factorization of

qB : 9 iy ap EL g. The following lemma is a plain generalization of [BHS19, Prop. 2.1.1].

Lemma 3.2.4. The morphism qp : gp — @ is proper and surjective. It is finite over g"¢ and is
étale of degree |W/Wp| over gre&—ss,

Proof. The properness of gp comes from the factorization gp : gp < g X G/P — g and the fact
that the flag variety G/ P is proper. Since gg = qp © qp,p and gp is surjective by [BHS19, Prop.
2.1.1], ¢p must be surjective. Since gp is quasi-finite over g"°€, for any point s € g"®, the fiber
q5'(s) is finite, hence the fiber g5»' (s) = gp,p (q5'(s)) is finite using the fact that the map gp p is
surjective. Hence gp is quasi-finite over g"°® and thus is also finite over g"® since gp is proper. Let
t"°& be the open subscheme of t consisting of regular elements in the Lie algebra t of the torus 7.
By the proof of [KW13, Thm. VI.9.1] and the assumption that the characteristic of & is good for
G, the morphism t'°8 x G /T — ¢~ : (t,¢T) — (Ad (g) t, g B) is an isomorphism. The Weyl
group W acts on the right on t*°8 x G/T by w(t,gT) = (Ad(w~!)t, gwT) for w € W. Then the

composite map ¢l : '8 x G/T = gree—ss I8 gres=ss i5 a Galois covering with Galois group V.

Consider the morphism g p : "4 xG /T 5 g5t (g7e™™) By qp" (g8 ). One check that dp.p

factors through ("8 x G/T") /W p, the étale sub-covering of ¢; associated with the subgroup Wp.
We only need to verify that the induced morphism of varieties (& x G/T)/Wp — g5 (g"&™)
is an isomorphism. We may assume k is algebraically closed. If two k-points (¢1, g1), (t2, g2) €
(8 x G)(k) are sent to the same point in gp, then Ad(g;)t; = Ad(ge)t2 and g; 'go € P(k).
Since t1, to are regular, their centralizer in G is 7. Comparing the centralizer of Ad(g;)t; and
Ad(g)ta we get g5 'g1 € No(T)(k) N P(k). Thus the image of g5 'g; in the Weyl group lies in
Wp. Hence the map on k-points ((t°8 x G/T)/Wp) (k) — ¢p' (g727%)(k) is a bijection. Now
using an infinitesimal argument as in Step 2 and Step 5 of the proof of [KW13| Thm. VI.9.1],
and notice that both (t*°® x G/T")/Wp (being an étale covering of the smooth variety g°&—>°)
and qgl(gregfss) (being an open subscheme of the smooth variety gp) are smooth varieties, we
conclude that the map (8 x G/T)/Wp — qp"'(g"8~*) is an isomorphism. O
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We have a surjective proper morphism pp : X = gx49 — Xp = gXygp fromgpp: g — gp
by base change. For w € W, we will use the same notation w to denote the image wWp in
W/Wp when it is clear from the context and write Xp.,, Vpy, Upy, etc. for simplicity. The
natural morphism G/B x G/B — G /B x G/P sends Up4, to Up,, for every w € W. Thus
the open dense subscheme Vg ,, of X, is sent into the open dense subscheme Vp,, of Xp,, by
pp. Since X, is a reduced closed subscheme of X and Xp,, is Zariski closed in Xp, pp sends

each X, into Xp,,. We let pp,, be the restriction of pp on X,,. Then there is a factorization

PPw Prpw ~ . o .
Prpy @ Xw X Pw = g. Since both prg , and prp,, are proper birational morphisms by

Proposition , s0is pp,,. We have a similarly defined morphism p}gw : Yy — Yp,, for every
Y
Ppw
w € W and we get a sequence of proper birational morphisms Y, KX Ypuw

(resp. Yp,) is irreducible, we have

Prp ., .
— b. Since Xp,,

Proposition 3.2.5. For every w € W, the morphism pp., : Xy — Xp,, (resp. p}g,w Y, —
Yp,w) is a proper birational surjection.

Remark 3.2.6. Assume w € WP, then the map ppy @ Xw — Xpy (reps. pgw Yy = Ypy)
induces an isomorphism of open subvarieties Vp 4, = Vp,w (resp. Vg w 5 V}/ w): if v € band
g = bw € BwP satisfy Ad (g_l) v € p, then Ad (g_l) v € bby Lemmabelow.

The following lemma is elementary (see [BT72, Prop. 3.9 (ii)]). But it is the combinatorial
reason for several results in this section, therefore we include a proof here.

Lemma 3.2.7. Let w € W, then the following statements are equivalent:
1. we WF;
2. Ifv € b, then Ad(w) v € p if and only if Ad(w)1v € by
3 {ae Rt |w(@) e RT}NRL =0;
4. w(RJIS) C R*;
5. Ad(w)(mpNu) C u
and for any w € W, lgp(w) = [{a € R* \ R} | w(a) € R7}|.

Proof. We have so(RT) = {—a} U R" \ {a} for every « € A ([HumI2, Lem. 10.2.B]).
Hence for a € A, |[{¢/ € RT | wsy(a’) € R™}|isequalto [{o/ € RT | w(a/) € R™} — 1
if and only if w(a) € R™. Hence lg(ws,) = lg(w) — 1 if and only if w(a) € R~, from
which we deduce (3) = (1). Conversely we assume (1). Then w(Ap) C RT. Hence (1) =
(3). The equivalence between (3), (4), and (5) is trivial. The assertion (2) is equivalent to that
w Y (RT) N Rp = 0 or w(Rp) N R = () which is just (4) with a minus sign. Now if w € W
and we write w = wPwp,wp € Wp. Since wp(RT \ RL) = RT \ RS, we getlg(w?) = {a €
RT\ R |wP(a) e R} ={a € R"\ R} | w(a) € R} O

We will also need the following lemma.

Lemma 3.2.8. If w,w' € W/Wp, then Xp, N Vpy # 0 only if w > w' with respect to the
Bruhat order on W/Wp.

Proof. For w € W/Wp, let Up,, be the closure of Up,, in G/B x G/P. As Up,, ~ G x B
BwP/ P under the isomorphism G /B x G/P = G xB G/P : (¢1B, g2P) ~ (91,97 ‘g2 P), by
[Jan07, 1.5.21 (2)], Upyw ~ G xB BwP/P. Forw € W/Wp, write w? € wWp for the shortest
representative. Then by definition, w > w’ in W/Wp if and only if w” > (w’)¥ in W. Hence
by [Jan07, 11.13.8 (4)], Bw'P/P C BwP/P if and only if w > w' in W/Wp. In particular,
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Bw'P/P C BwP/P if and only if w > w' in W/Wp. Since BwP/P is B-invariant, we get
BwP/P = UU/SU,BU/P/P. Hence URw = Uy <wUpu . Thus Xp,, is contained in the closed
subspace

{(Va ng792P) € XP ’ (ng792P) S UP,w} - U’LU’S”LUVP,’LU’

of Xp by definition. As Vp,, w € W/Wp are pairwise disjoint, Xp,, N Vp,y = 0 if w’ is not
< win W/Wp. O

3.2.2 Unibranchness

We recall the notion of unibranchness. A local ring R is called unibranch if the reduced
reduction R™9 is a domain and the integral closure R’ of R™ in its field of fractions is local.
We say that a locally Noetherian scheme S is unibranch at a point s € .S'if the local ring Og , is
unibranch.

Lemma 3.2.9. Let R be a reduced excellent Noetherian local ring, then R is unibranch if and
only if its completion R with respect to the maximal ideal is irreducible.

Proof. This is [Gro65| Sch. 7.8.3(vii)]. O

Proposition 3.2.10. Ler f : Y — X be a morphism of integral algebraic varieties over a field k.
Assume that Y is normal and that f is proper and surjective. If x € X is a point such that the
fiber f=(z) of f over x is connected, then the local ring O X,z i unibranch and its completion
O X,z With respect to the maximal ideal is irreducible.

Proof. Let v : X¥ — X be the normalization of X. Since X is integral, X" is integral and
the morphism v is a finite surjection (see [Sta22, Tag 035Q] and [Sta22| [Tag 035S]). Since Y is

normal, there exists a unique factorization f : Y L; xv 4 X (see also [Sta22| Tag 035Q)]). Since
f is proper and v is finite, f” is also proper ([Sta22] Tag 01W6]). The image of f’ is then a closed
subset of X”. If f’ is not dominant, the generic point of X" is not in the image of f’, then the
generic point of X is not in the image of f, which contradicts that f is surjective. Hence f' is
surjective. We have morphisms

F @) L v (@) = Speci(a),

where k(z) denotes the residue field at z € X. Since the morphism f~!(x) 1, v~1(x) is surjec-
tive and f~1(x) is connected, we get that v~ !(z) is connected. Now assume that x is contained
in an affine open subset Spec(A) of X. Then v~*(Spec(A)) = Spec(A’) where A’ is the integral
closure of A in its field of fractions. Suppose that = corresponds to a prime ideal p of A. Then
v~ (x) = Spec(A; /pA}) where Ay, is also the normalization of A in its field of fractions ([Sta22),
Tag 0307]). As Ay, is finite over Ay, the fiber Spec(A; /pA}) is finite over Spec(k(x)) and thus is
a finite union of discrete points as a topological space. The connectedness of the fiber means that
Spec(Aj,/pAy) consists of only one point. Hence there is only one prime ideal p’ of Ay, which lies
above p. Since finite morphisms are closed, p’ is the unique maximal ideal of A; and thus A; is

local. Since Ox , is excellent, we get Ox , = A, is unibranch and O X, 18 irreducible by [Gro65,
Prop. 7.6.1] and [Gro65, Sch. 7.8.3(vii)]. O

3.2.3 Connectedness of fibers over nilpotent elements

We establish the unibranch property for Xp,, (or Yp,,) at certain points using Proposition
[3.2.10Jand the normality of X,, ((BHSI9, Thm. 2.3.6]).


https://stacks.math.columbia.edu/tag/035Q
https://stacks.math.columbia.edu/tag/035S
https://stacks.math.columbia.edu/tag/035Q
https://stacks.math.columbia.edu/tag/01W6
https://stacks.math.columbia.edu/tag/0307

3.2. UNIBRANCHNESS 67

Recall by Proposition [3.2.5] we have a sequence of birational proper surjective morphisms:

Y Y
Pp, Pr'p
Yo 5 Yo L5 b,

Let AV be the nilpotent subvariety of g consisting of nilpotent elements (cf. [KW13], VI.3]). Then
u = bNN. Denote by pr} := prgw 1Y, — b.

Proposition 3.2.11. Ifv € u C b is a closed point and w € W, then the closed subset (pr),)~1(v)
of Yy, is equal to
{(y, gB) € b x BwB/B | Ad(g~Y)v € b}.

Proof. The result is equivalent to that (pr})~!(u) = {(y, gB) € ux BwB/B | Ad(g ") € b}
as closed subsets of Y,,. We have
G xB (pr¥) " (u) = {(v,1B,92B) e N x G/B x G/B | (v,1B,2B) € X,,} = X,,
as closed subsets of X, in the notation of [BHS19, §2.4]. The Steinberg variety
Z:={(,;1B,g2B) € N x G/B x G/B | Ad (¢ ") v € u,Ad (g5 ) v € u}

has irreducible components Z,,, w’ € W which are the Zariski closures of the following subsets
(see §3.2.5|for more details)

{(v,g1B.g2B) € N x G/B x G/B | Ad (¢;") v € u,Ad (95 ") v € u, 9y *go € Bw'B/B} .

The union of the irreducible components 7, for w’ < w of the Steinberg variety is then the closed
subset

{(y,ng,ggB) ENXG/BxG/B|Ad (g7 )veuAd(g)veug'gpe BwB/B}

— G xB {(V,gB) cux BwB/B | Ad(g Y e u} ,

by the usual closure relation BwB/B = Uy <, Bw'B/B ([Jan07, 11.13.7]). By [BHSI9, Thm.
2.4.7] and the discussion after it, we have X, = Uw'<wZyw . Then we get

G xB (pr¥)L(u) = G xB {(y, gB) € ux BwB/B | Ad(g~ ) € u}

as closed subsets of X,,. Hence (pr))~!(u) = {(V, gB) €ux BwB/B | Ad(g v € u} as
closed subsets of Y,,. Finally, we have an equality

{(u, gB) €ux BwB/B | Ad(g ') ¢ u} = {(u,gB) cux BwB/B | Ad(g ') e b}

of closed subsets since the two sides are both closed subschemes in Y, and contain same closed
points. O

Now if w € W is the longest element in wWp, then BwB/ B is the preimage of BwP/P via
the natural projection G/B — G/ P (cf. [Jan07, 11.13.8 (2)]). In particular, BwBP = BwB.

Proposition 3.2.12. Assume that w € W is the longest element in wWp. If v = (Vy,9.P) €
Ypw C b x BwP/P is a closed point such that v, is nilpotent (i.e. v, € u), then the fiber
(p}f’w)*l (x) is connected.

Proof. We have a commutative diagram
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(Ppw) M (x) = (prh)Hw) Yy ¢ b x BwuB/B

y ¥ 4 y

r —— (prp,) (1) — Ypw —— bx BwP/P

where each horizontal arrow is a closed embedding and each vertical arrow is surjective and pro-
jective. One sees that the formation of the varieties Yp,, commutes with base change by fields: the
formation of the varieties V}j » and Yp commutes with base change by definition and after base
change to a separable closure of k, the Zariski closure of V}/  With the reduced structure is still
irreducible and descends (cf. [Borl2, Cor. AG.14.6]). And the fiber k(x) XYp X 1ok(2) (Y X
k(z)) = k(x) XYp o x1k(@) (Ypuw xg k(x)) XVp Yw = k(z) XYp,,, Yw- Thus we may assume
k(xz) = k by base change. The composition

(pri) Y (ve) = {(Z/m,gB) €bx BwB/B | Ad(g V), € b} — (pr?w)_l(yx) — vy X BwP/P
can be identified with the morphism
{gB € BwuB/B| Ad(g My, € b} — BwP/P : gB +— gP, (3.2.13)

where we only consider the underlying reduced varieties and have used Proposition
3.2.13)

show that the fiber (pﬁw)*l(x) is connected, we only need to show that the morphism (
has connected fibers. We pick a closed point g, B in the fiber of g, P. The fiber over g, P is

{gB € BwB/B | Ad(g Vv, € b,g5 g € P/B} ~ {gB € P/B | Ad(g™") (Ad(g;)vz) € b}

since g € P/B implies that g,g € BwBP/B = BwB/B by the assumption on w. To show that
the latter is connected, we can assume that g, is trivial and v, € u by replacing (v, g, B) with
(Ad(g; '), B). Assume that P = MpNp is the standard Levi decomposition and p = mp +np
where mp (resp. np) is the Lie algebra of Mp (resp. Np). Let By, = B N Mp, by, be its
Lie algebra and ujy, be the variety of nilpotent elements in bys,. We have P/B ~ Mp/Byy,
(JanO7, I1.1.8 (5)]). We can decompose v, = m, + n, where m; € uy, and n; € np.
Since Ad(P)np C np, an element By, € Mp/Byy, satisfies Ad(g~!)v, € b if and only if
Ad(g~Y)m. € by,. Hence there is an isomorphism

{9B € P/B|Ad(g~")(va) € b} ~ {gBun, € Mp/By, | Ad(g™")(ms) € bagy, } -

As a closed subspace of Mp/B)y,, this is the Springer fiber: the fiber of the Springer resolution
N, Mp — N over the point m, € Ny, where Ny, is the nilpotent variety of m The
nilpotent variety is normal and, unlike the Grothendieck resolution, the Springer resolution is
birational. Hence Springer fibers are connected by Zariski’s main theorem (cf. [CG97, Rem.
3.3.26] or [Yunl16) §1.4.1]). O

Theorem 3.2.14. If v = (v, 1 B, g2 P) € Xp,, (resp. x = (v, gP) € Yp,,) is a closed point such
that v is nilpotent, then the local ring Ox,,, » (resp. Oy, o) is unibranch and the completion

Oxp ..z (resp. Oyp o) is irreducible.

The Springer fiber is the reduced subvariety associated with the subscheme
{9Bump € Mp/Bup | Ad(g™")(me) € unr, } which shares the same underlying topological space with the
subscheme {gBMP € Mp/Bup | Ad(g_l)(mz) S bMP} since they have the same closed points (cf. [Yunl6,
§1.2]).
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Proof. Let w € W such that w is the longest element in wWp. Consider the surjective birational
proper morphism pp,, : X,y — Xp,, (resp. p?w : Yy — Yp,) of integral varieties. The fiber
pjjiﬂ(:z:) (resp. (p}ng)_l(a:)) is connected by Proposition and X, (resp. Y,,) is normal by
[BHS19, Thm. 2.3.6]. Hence Xp,, (resp. Yp,,) is unibranch at = and the completion O X P
(resp. @ypywvx) is irreducible by Proposition O

Remark 3.2.15. The above results are true in generality. The assumptions in Proposition [3.2.12]
that v, is nilpotent and w is the longest element in wWp can be removed. Using a Bott-Samelson-
Demazure type resolution for Xp,, in [Ric08, §1.7], one can show that for any w € W, the
fiber of pp,, : Xy — Xp, over any point x € Xp,, is connected. Thus by Proposition @
and [BHS19, Thm. 2.3.6], Xp,, is unibranch at all points. One can see also from the proof of
Proposition @ that Xp,, is in fact geometrically unibranch ([Gro64, §23.2.1]). Moreover,
Proposition [3.2.11]can be proved directly without using [BHS19, Thm. 2.4.7].

Corollary 3.2.16. If x = (v, 1B, g2P) € Xp,, is a closed point such that v is nilpotent, then the
irreducible components of Spec(Ox, ;) are Spec(Ox,, , z) for w € W/Wp such that v € X p .

Proof. Suppose that R is a reduced local excellent Noetherian ring with minimal prime ideals
P1,-- ,Pm such that every R/p; is unibranch. By definition, the normalization R’ of R is a
product of (R/p;)’, the normalizations of R/p;. Since R/p; is unibranch, (R/p;)’ is local and
thus the number of maximal ideals of R is m. By [Gro65} Sch. 7.8.3(vii)], minimal prime ideals
of R correspond bijectively to maximal ideals of R’. Hence there are exactly m minimal ideals

of R. Since the quotients ]/%/ piﬁ = ]?/E of R are integral, they correspond to all irreducible
components of Spec(R). O

3.2.4 The weight map

We prove some results for the weight map of Xp,,. Since the characteristic of £ is very good
for G, the ring morphisms S(g*) < S(g*)¢ = S(t)" induce a morphism vg : g — t/W of
k-schemes ([KW13| VI.8]). Applying this fact to the standard Levi subgroup Mp of P we get a
map Y, : mp — t/Wp. We define amap kp : gp — t/Wp : (v,9P) — vup (Ad(g*l)y)

where Ad(g—!)v denotes the image of Ad(¢g~!)v in mp under the projection p — p/np — mp.
Let 11 : Xp — t be the map sending (v, g1 B, g2 P) to the image of Ad(g; ')vin t = b/u and g
be the composition Xp = § x4 8p — 8p — t/Wp. We have the following commutative diagram

g ——— gp ——— 0

HB\L kP ”G:’YG\L

f s YWp —— W

where the horizontal arrows are natural projections. For i = 1,2,w € W/Wp, let k;,, be the
restriction of x; to the closed subscheme Xp .

Lemma 3.2.17. We have the following commutative diagram

K2,w
Xp7w 2% t/WP
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where the map t — t/W and t/Wp — t/W are natural projections and the map « : t — t/Wp
is the composition of the map Ad(w~') : t — t with the projection t — t/Wp (thus o depends
only on the class of win W/Wp).

Proof. This is a generalization of [BHS19, Lem. 2.3.4]. We only need to show K2 ., = a0 K1 4.
Since Xp,, is the closure of Vp,, = {(v,q1B,92P) € Xp | g; 'g2 € BwP} in Xp, we only
need to verify k2, = Ad(w~!)k1 ., when restricted to Vp,,. Let z = (1,91 B, g2P) € Xp(S)
for a k-algebra S and by replacing S by some fppf extension, we assume go = g1w € G(S).
Then Ad(g; ')v € b(S) and Ad(w~')Ad(g;')v € p(S). We assume w € W, Then we have
Ad(w~1)Ad(g1) v € b(S) (cf. Lemma. The image of Ad(g, ')v in mp(S) = p/np(S),
denoted by Ad(g, ')v, lies in the subset by, (S) = mp(S) N b(S). Let ¢ denote the image of
Ad(gy v in t(S) = tar, (S) = bars (S)/uary (S). Then ko () = Yarp (Ad(g;l)y) is the image
of tin (t/Wp)(S) viathe map t — t/Wp (cf. [KW13, Thm. VL.8.3]). We have that x; ,,(z) is the
image of Ad(g1) v in t(S) = b/u(S), thus t = Ad(w ™)Ky (z). Hence ko = 0 K1y [

Now let Tp := t Xy t/Wp and for all w € W/Wp,let Tp,, = {(2,Ad(w1)z) | z € t} C
t X gw t/Wp be closed subschemes of Tp. Then Tp,, =~ tis smooth for any w € W/Wp.
Similar to [BHSI9, Lem. 2.5.1], Tp is equidimensional and {Tp,, | w € W/Wp} is the set of
irreducible components of Tp. We have a map (k1,k2) : Xp — Tp and Xp,, is the unique
irreducible component of X p that dominates 1'p,, by Lemma (the dominance comes from

. . PTpw ~ . . . ..
the factorization k1 : Xpy, 5 g Bt~ T'py and that pr paw 18 surjective by Proposition

3.2.3). Suppose that z = (v, g1 B, g2P) € Xp is a closed point such that v is nilpotent and let
(0,0) = (ki1(z),k2(z)) € Tp. f x € Xp,, C Xp for some w € W/Wp, we let )?p,m (resp.
)?p’w’x, resp. fp,(w), resp. fp’w’(070)) be the completion of X p at x (resp. Xp,, at x, resp. Tp at
(0,0), resp. Tp,, at (0,0)). Since by Theorem the structure ring of X P,z 18 irreducible,
using the same argument for [BHS19, Lem. 2.5.2], we get the following lemma.

Lemma 3.2.18. The map X Puw' @ < X Pz — fp7(070) induced by the completions of the closed

embedding X p, — Xp and the map (K1, k2) factors through fp7w,(070) — fp7(070) if and only if
w' = win W/Wp.

3.2.5 Generalized Steinberg varieties

We shall study certain vanishing properties of irreducible components of generalized Steinberg
varieties which might be well-known from the perspective of geometric representation theory (at
least for the case when P = B, see §3.2.6). These vanishing properties will be the major new
ingredients in the global applications of the local models for the trianguline variety.

We pick a standard parabolic subgroup ) = Mg N of G with Lie algebra q = mg + ng and
Weyl group Wg. Let QW be the set of elements w € W such that w is the shortest element in
the coset Wow. We consider the following scheme depending on the choice of the two parabolic
subgroups P and ()

Zo,p = {(v,q1B,92P) € N x G/B x G/P | Ad(g9;")v € ng,Ad(g; " )v € p}.

As there is an isomorphism A := {(v,9) e N xG/B|Ad(g )v € b} ~ G xP u, we can
replace V in the above definition by g (cf. [CG97, §3.2]). When Q = B, Zp := Z B,p 1S some
generalized Steinberg variety considered in [DRO4]]. We have a natural closed embedding

ZQJD — Zp

and generally, Z¢ p C Zg p if Q@ C Q. For any w € Wo\W/Wp, we let Zg p,, be the Zariski
closure of the subset Ho py = {(v,1B,92P) € Zg.p | 97 '92 € QwP/P} in Zg p with the
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reduced induced scheme structure. We write Zp,, 1= Zp p,, for every w € W/Wp. There is a
unique shortest element w € W in each double coset WouwWp € Wo\W/Wp and w € W is the
shortest element in WowWp if and only if w € WP N QW ([TSPT20, Prop. 2]).

Proposition 3.2.19. 1. The scheme Zg p,, is irreducible and has dimension no more than
dim G — dimT.

2. Zp is equidimensional of dimension dim G —dim T" with irreducible components Zp ,, w €
W/Wp.

3. Forany w € Wo\W/Wp, the following statements are equivalent:

(a) Zg.pw = Zpw for some w' € WE;
(b) Ad(w)mp Nu C ng (this condition is independent of the representative of w in W);
(c) if we take a representative w € WP NCQW, then wQ,ow € wr.

And if the above statements hold, w'Wp = wg,owWp where w € WP new.
4. Zg,p is equidimensional of dimension dim G — dim T" with irreducible components
ZB,wQ,ow’ w e QW.

Proof. Take a representative w € W for w € Wg \ W/Wp and we write w instead of  for
simplicity.

(D Let Zgp := {(1,91Q,92P) e N x G/Q x G/P | Ad(gy v €ng, Ad(gy v € p} be
a generalized Steinberg variety in [DRO4]. Then Zgp = Zg.p Xg/g G/B and the natural
morphism Zg p — Z¢ p is a locally trivial fibration of relative dimension dim () — dim B. Let

Hgpw={v,0Q,0P) E N x G/Q x G/P | Ad(g;")v € ng,Ad(g; " )v € p, g7 'g2 € QuP/P}

and let 7Q7P’w be the Zariski closure of F@p,w in ZQ,P. Then Hg pw = HQ,P’w Xa/Q G/B.

We work as in Proposition or [BHSI9, Prop. 2.2.5]. The projection Hp pw — G -
(Q,wP) C G/Q x G/P is G-equivariant (with respect to the diagonal action of G on the double
flag variety). The fiber over the point (Q,wP) is the affine space ng N Ad(w)p. The G-orbit
G - (Q,wP) is smooth, irreducible of dimension dim G — dim Q N wPw~!. By Lemma [DR04,
Lem. 2.3], dim G —dim QNwPw™! = dimn,,p,-1 +dimng —dim(ngNn,p,-1) = dimnp+
dimng — dim(ng N Ad(w)np). Thus by [BHSI9, Lem. 2.2.2], Hg p,, is a vector bundle over
G - (Q,wP) xg)g G/B = {(q1B,92P) € G/B x G/P| g; g2 € QwP} and is smooth of
dimension (dim G — dim7’) — dimng — dimu + dimnp + dimng + dimng N Ad(w)mp =
(dimG —dimT') — (dimu — dimnp — dimng N Ad(w)mp) = (dimG — dimT') — (dimu N
Ad(w)mp — dimng N Ad(w)mp) (the last equality can be deduced from Lemma [3.2.7)(4) if we
take w € WT). Hence Zg p,, is also irreducible of dimension (dim G — dimT") — (dimu N
Ad(w)mp — dimng NAd(w)mp) < dim G — dim T

(2)If @ = B, then dimu N Ad(w)mp — dimng N Ad(w)mp = 0, the result follows.

(3) By the proof in (1), we see that the dimension of Zg p., is equal to dim G — dim 7" if and
only if Ad(w)mpNu C ng. This proves (a) < (b). In fact, for any w’ € Wy, dim Ad(w'w)mpN
u = dim(u — np) = dim Ad(w)mp Nu. Thus if Ad(w)mp Nu C ng, then Ad(w'w)mp Nu D
Ad(w")(Ad(w)mpnu) of the same dimension and hence Ad(w'w)mpNu = Ad(w’)(Ad(w)mpnN
u) C ng.

Now we take w € W¥. Then Ad(w)(mp Nu) C uby Lemma and in this case, we have
(similarly) Ad(w)(mp Nu) C u and therefore Ad(w)mp Nu = Ad(w)(mp Nu).

(b) = (c): Since w € WP, we get Ad(w)(mp Nu) = Ad(w)mp Nu C ng. As for any
w' € Wy, Ad(w')ng = ng, we have Ad(w'w)(mp Nu) C ng C u and we conclude by Lemma
that w'w € WP for any w' € W,.



72 CHAPTER 3. LOCAL MODELS OF THE TRIANGULINE VARIETY

(c) = (b): We have Ad(wq o) (Ad(w)mp Nu) = Ad(wg,ow)(mp Nu) is contained in u by
Lemma Since Ad(wg,0)ng = ng, Ad(wg,)(mg Nu) = mg Nuand u = mg Nu + ng,
we get

Ad(w)mp Nu = Ad(wg owg,0)(Ad(w)mp Nu) C Ad(wgo)uNu = ng.

Assume above statements hold. We take w € W N@W in (c), then lg(wg ow) = lg(wg.o) +
lg(w). Hence Bwg oBwB = BwgowB (cf. [Jan07, I1.13.5 (7)]). As Q = BwgoB ([Jan07,
IL13.2 (6)]), BwgowP = BwgoBwP C QwP. Similarly, QuP = BwqoBBwBP C
BwQﬁBwBP = BwQOwP. Let

Hég7p’,w = {(V,ng,QQP) € Zopl| gl_lgg € BwQ,owP/P}.

By the discussions in (1) and that Bwg owP is open dense in QuP (since Bwg owP is open
dense in QWP = Bwg owP which contains QwP), the Zariski closure of Hég Pw is Zg pw-
As H po C ZPuwgows We g6t ZQ Puw C Zpwg gw- Since dim Zg pay = dim Zp g guw, We
conclude that Zg p,, = Zp,wQ,Ow.

(4) When P = B, we have Ad(w)mp Nu = {0} C ng for any w € Wg\W, thus the result
follows from (3). ]

Remark 3.2.20. The result that the scheme ZQ, B in the proof of (1) of Proposition [3.2.19| (resp.
Zp,p) is equidimensional with the irreducible components parameterized by QW (resp. WP is
already known by [DRO4, Thm. 4.1] (resp. [DRO4, Thm. 3.1])

Corollary 3.2.21. For any w € W/Wp, Zp,, is contained in Zg p if and only if wWp =
wg,ow1 Wp for some w1 € WP N QW such that wgowy € wPr.

Proof. Assume Zp,, C Zg,p. Since Zg,p = Uyrewo\w/wpZQ,Puw and each Zg py is irre-
ducible, we get Zp,, C Zg p, for some w'. But 2@, P, has dimension no more than dim Zp,,,.
Hence Zpw = Zg,puw- Now the result follows from (3) of Proposition [3.2.T9 d

Corollary 3.2.22. Let x be a point of Zq B, then there exists an irreducible component Zg ,, of
Zp suchthatx € Zp,, and Zp ., C Zg B.

Remark 3.2.23. The above result for points on Zg g doesn’t hold in general for P # B. For
example, if Q = G, then Zg p = Zg pe © Zpw, if P # B.

=

Definition 3.2.24. 1. Let h € X,(7)"” be an antidominant coweight (namely h € X, (T,
(o, h) = 0,V € Ap and (o, h) < 0,Va € A). We say h is P-regular if (o, h) < 0,Va €
A\ Ap.

2. Forh € X, (T), we say h is strictly Q-dominant if (o, h) > 0,Va € Ag.

Lemma 3.2.25. Ifh € X, (T)WP is P-regular antidominant, then the set of a« € R such that
(a,h) < 0 (resp. =0, resp. > 0)is RT\ R;; (resp. Rp, resp. R~ \ Rp).

Theorem 3.2.26. For any w € W/Wp, Zp,, is contained in Zg p if and only if w(h) is strictly
Q-dominant for some (or every) P-regular antidominant coweight h € X, (T)"Vr.

Proof. We take an arbitrary P-regular antidominant coweight h € X, (T)"7. Take the represen-
tative w € W for w € W/Wp and write w for . The statement Ad(w)mp Nu C ng (which
is implied by that Zp,, is contained in Zg p by (3) of Proposition is equivalent to that
w(Rp) N RE =, or wil(RE) C R\ Rp. Since h is P-regular, for a € R, (c,h) # 0 if and
onlyif a ¢ Rp. Thus Ad(w)mpNu C ng ifand only if (w™(a), h) = (o, w(h)) # 0,Va € R&S.
On the other hand, if w(h) is strictly Q-dominant, then (o, w(h)) > 0,Va € Ra We now only
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need to prove that in the case when (o, w(h)) # 0 for all & € R}, we have w(h) is strictly
()-dominant if and only if wg ow € WP N QW by (3) of Proposition

Since now Ad(w)mp Nu C ng and w € W, we have wg ow € W* as in the proof of (3.b)
= (3.c) of Proposition Let w; = wgow. Then wy € QW if and only if wl_1 e We,
The latter is equivalent to w; 1(RZ)) C RT by Lemma We calculate that (o, w(h)) =
(wgo(a),wi(h)) = —(—wg(a), w(h)) for every a € Ra As —wQ70(R25) = —Rg = RE
(cf. [Jan07, 1I.1.5]), we get that (a, w(h)) > 0 (resp. > 0) for all o € Ré if and only if
(o, w1(h)) <0 (resp. < 0) forall a € Ra

If wi'(RS) C RT, then (a,wi(h)) = (w;'(a),h) < 0 forall @ € R, since his P-
regular antidominant. Thus (o, w(h)) > 0 for all « € RE. But we know (o, w(h)) # 0, hence
(o, w(h)) > 0 forany a € RZS. Thus w(h) is strictly ()-dominant.

Conversely if (a,w(h)) > 0 for all o € R(:S, we get (w; ' (a),h) < 0 forall a € Ra
Since h is P-regular and antidominant, we get w; *(a) € RT \ R}p,Va € Ra In particular,
wi ' (RY) C RY. Thus wy € WP N eW. O

The following lemma will be very important for us.

Lemma 3.2.27. If wWp # woWp, then there exists o € A such that sqw > w in W/Wp and
a standard parabolic subgroup Q of G satisfying both Zp,, ¢ Zg.p and Zp .. C Zg,p (which
implies that s, w(h) is strictly Q-dominant by Theorem for every P-regular antidominant
coweighth € X, (T)"7).

Proof. We assume w € W, We claim that we can take a simple root & € A such that o €
w(R* \ RE) (or equivalently (o, w(h)) < 0). If two roots aq, a2 ¢ R\ R} (equivalently
(o, h)y > 0,4 =1,2), then oy + g ¢ RT \ RE. Thus w™ (RT) N (R*\ R}) = 0 if and only if
w H(A)N(RT\ R}) = 0. Assume that RT Nw(R*\ R}) = 0. Then R~ Nwow(RT\ RE) = 0.
This is only possible if wow € Wp (cf. Lemma|3.2.7) which contradicts our assumption. Hence
we can take @ € w(R' \ R5) N A. Since so(R" \ {a}) = RT \ {a} and so(a) = —a, we
get {o/ € RY\ R} | sqw(a/) e R™} = {o/ € R"\ R} |w(e/) € R™}[[{w ' (a)}. Thus
lg(sqw) = lg(w) + 1 and s,w € W by Lemma@ Now take Q = B(a) = Bs,B the
standard parabolic subgroup with R = {a}. Then wg o = Sa, w € WX NPW and sqw ¢ CW.
By Corollary 3.2.21} Zp s, C Zg,p and Zp,, ¢ Zg,p (and now sqw(h) is strictly Q-dominant
and w(h) is not). O

The projection pp : Xp — Xp induces a proper surjective morphism Zp — Zp. Since
p(Hp.Bw) C Hp pw, We see pp sends Zp , to Zp,, for any w € W. When w € WP, the
morphism Hp g ., — Hp py is an isomorphism (cf. Remark @ and pp induces a proper
birational surjection Zp ,, — Zp,, if and only if w € WP (for the only if part, see [DR04, Thm.
3.3]). Forany w € W/Wp, let Xp,, = nl_llu(O) and X p := 7 '(0) be the scheme-theoretic
fiber over the zero weight. The underlying reduced space Yﬁ;ei] is contained in Zp. It follows
from the discussions after [BHS19, Thm. 2.4.7] that YB’UJ = Uy/<wZB,w Which we have used
in the proof of Proposition For w € W/Wp, since pp,y, : XB.w — Xpu is surjective for
any representative w € W, we get X p,, = Uw! <w,w' eW/Wp L P -

We pick an arbitrary closed point z € Xp C Xp and assume z € H B,Pw, for some w;, €
W /Wp (or equivalently « is in Vp,,, which is defined in . We have always x € Zp,,, C
Xpy forany w € W/Wp,w > w,.

Recall that if A is an excellent Noetherian local ring and A is the completion of A at the
maximal ideal, then the set of irreducible components of Spec(/T) is the disjoint union of the sets
of irreducible components of Spec(A ®4 A/p;),i € I where {pi,i € I} is the set of minimal
prime ideals of A (to see this, use [Gro65l, Prop. 7.6.1, Sch. 7.8.3(vii)] and that the normalization
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of Spec(A) is the disjoint union of normalizations of its irreducible components, see [Sta22] Tag

035P]). Moreover, Spec(A® 4 A/p;) = Spec(m) is equidimensional with the same dimension
as Spec(A/p;) (IGro63, Sch. 7.8.3(x)] and [Sta22| Tag 07NV]).
Since Spec(OyP ») is equidimensional with irreducible components Spec(QOz,, , ) for w

~

such that € Zp,,, Spec(Ox is equidimensional and its set of irreducible components is the

Pam)
disjoint union of the sets of irreducible components of Spec(Q Zp,w,:p) for w such that x € Zp,,.

~

Similarly, the subspace Spec(OyP is equidimensional and its set of irreducible components is

w 7x)
the disjoint union the sets of irreducible components of Spec(Oz,, , ) for w’ such that z € Zp,y
and w > w' in W/Wp. In summary, we have, as topological spaces, for w > wy,:

Spec(Ox, )= |J  Spec(Oz,,,.) (3.2.28)

TEL p s w>W!

where each term in the right hand side is non-empty. The closed immersion Zg p < X p induces

~

a closed immersion Spec(@ Zgpa) < Spec(Ox, ) after completion at z. The dimensions

of irreducible components of Spec(@ Zo. p.z) are no more than dim G — dim 7" and the set of all
irreducible components of dimension dim G —dim T is the disjoint union of the sets of irreducible
components of Spec(O Zp w,z) With w € W/Wp such that w(h) is strictly ()-dominant (Theorem
B.2.26).

Now we assume furthermore that the image of x in g is 0. Since Zp,, is closed and contains
the closed subset { (0, g1 B, g2P) € g x G/B x G/P | g; ‘g2 € BwP/P}, we get

{(0,ng,92P) caxG/BxG/P|grlg e BwP/P} C Zpu.
Hence in this case © € Zp,, if and only if w > w, in W/Wp, and for w > w,,

Spec(@ypﬂw’z) = U Spec(@zpyw,vx) (3.2.29)

w>w!' >wy

where each term in the right hand side is non-empty. A more practical form of Lemma [3.2.27]is
the following.

Lemma 3.2.30. If the image of v € Xp in g is 0 and w,Wp # woWp, then there exists o €
A, sqwy > wy in W/Wp and a standard parabolic subgroup @Q of G such that sqw, (h) is strictly
Q-dominant for every P-regular antidominant coweight h € X, (T)VP and the space

Spec(@f

XP,sawz T

) = Spec(@zpﬂsaww,x) U SpeC((aZp,wgc )

where Spec((j)\zpysaw’I)7 Spec(@zpwwz) # (), satisfies that Spec(@zp’sww z) C Spec(@zQ’P@)
and Spec(@zpywx z) ¢ Spec(@zQ’P,x) (where all spaces are viewed as subspaces ofSpec((/’)\XP )

Spec(@XP,z))-

3.2.6 Characteristic cycles

Contents in this subsection will not be used subsequently. We assume that k has characteristic
0 and keep the notation in the last section. Theorem can be explained using geometric
representation theory at least when P = B and is true if we replace Zp ,, by the Kazhdan-Lusztig
cycles denoted by [£(wwy - 0)] in [BHS19, Thm. 2.4.7] (see below).

We assume P = B. For each weight p1 of t, we let M(u) := U(g) ®up) ¢ be the Verma
module and let L(1) be the irreducible quotient of M (). Then for any w € W, the localization
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functor of Beilinson-Bernstein associates M (wwy - 0) (resp. L(wwyp - 0)) with a G-equivariant
(regular holonomic) D-module 9 (wwy - 0) (resp. L(wwp - 0)) on G/B x G /B ([BHS19, Rem.
2.4.3)). Let T*(G/B x G/B) ~ N x N be the cotangent bundle of G/B x G /B and identify the
Steinberg variety Zp as a closed subscheme of T*(G//B x G/B). Let Z°(Zp) be the free abelian
group generated by the codimension 0 points in Zp. The characteristic cycle [91] of a coherent
D-module M on G/B x G/B is the associated cycle in Z(Zg) of the characteristic variety
Ch(971), the scheme-theoretic support of some Or-(/Bxc/p)-module gr(M) constructed from
9t with respect to some good filtration ([BHS19, §2.4]). For w € W, let [Z B,w] be the cycles
associated with the irreducible components Zp ,, which form a basis of Z O(Z p). It follows from
[BHS19, Thm. 2.4.7(iii)] that the coefficient of [Zp ] in [£(wwy - 0)] is equal to 1. Hence
Theorem@]in this case (P = B) can be deduced from the same statement replacing Zp ,, by
[£(wwp - 0)] (viewed as a union of irreducible components).

For a finitely generated U (g)-module M, there exists a good filtration {0} = M_; C M, C
M, C --- of M such that gM; C M;y; and the S(g)-module gr(M) = &2 M;/M;_; is
finitely-generated, where S(g) is the symmetric algebra of g (cf. [BB82, §4.1]). The associated
variety V (M) is the support of gr(M ) in Spec(S(g)) = g*, the dual space of g, and is independent
of the choice of the good filtration (cf. loc. cit.). We only consider V(M) as an algebraic subset.
Let @ = Mg N be a standard parabolic subgroup of G' and Ly, (wwp - 0) be a finite-dimensional
irreducible representation of mg of the highest weight wwy - 0 for some w (which means that
wwy - 0 is a dominant weight for m¢) inflated to a representation of q. Then Mg (wwy - 0) :=
U(9) ®@u(q) Lmg (wwp - 0) is a parabolic Verma module in the category O ([HumO8, §9.4]) of the
highest weight wwy - 0 and is in the principal block of the category O. Let g be the subspace of
g* consisting of elements that vanish on g.

Lemma 3.2.31. We have V(Mg (wwy - 0)) C q+.

Proof. We follow the proof of [BB82, Thm. 4.6, Cor. 4.7]. If w = wy, then M¢(0) = U(g)/U(q),
the result is obvious. In general, Mg (wwy - 0) is a subquotient of U(g) @/ ((q,q) W for some
finite-dimensional g-module W where [q, q] denotes the commutator and the latter is equal to
U(g)/U(]g,q]) ® W by the tensor identity ([Kna88| Prop. 6.5]). By [BB82, Lem. 4.1], we
have V(U(g)/U([a,q]) ® W) = V(U(9)/U([a,4])) = [q,q]". Thus V(Mg(wwo - 0)) C
[q, q]*. Moreover V (Mg (wwy - 0)) C bt since Mg (wwyp - 0) is a subquotient of M (0). Hence
V(Mg(wwp - 0)) C b+ N [q,q1" = q". O

Now we can prove a stronger version of Theorem [3.2.26] Remark that the statement “wwy - 0
is a dominant weight for mg” is equivalent to the statement “w(h) is strictly ()-dominant for some
(or every) regular antidominant coweight h € X, (7).

Proposition 3.2.32. If L(wwq - 0) € OF, then the subset Ch(£(wwy - 0)) of Zp is contained in
ZQ,B-

Proof. By [HumO8, Prop. 9.3(e), §9.4], L(wwy - 0) is a subquotient of M¢(wwy - 0). By [HT07,
Thm. 2.2.1(ii)], we only need to prove the same result replacing L(wwy - 0) by Mg (wwy - 0).
Now let Mg (wwyp - 0) be the localization of Mg (wwy - 0) on G/B x G/B and Mg (wwy - 0)’
be the corresponding D-module on G/ B which is the usual localization of Mg (wwy - 0). Let
q: N =GxBplt - g*: (9,v) — Ad(g)v be the moment map. By [Gin86, Prop. 8.1] and
Lemma q(Ch(Mg(wwp - 0)')) = g+. As in the proof of [BHSI9, Prop. 2.4.4], we get
Ch(Mg (wwy - 0)) = G xB Ch(Mg(wwy - 0)') is contained in G xB g~1(g+). Under the usual
identification g* ~ g given by the Killing form, q* is identified with ng. One can check under
the isomorphism [BHST9, (2.15)], we have G xZ ¢71(ng) = Zg 5. Hence Ch(£(wwy - 0)) C
Zg,B- O
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Remark 3.2.33. We discuss here some possible generalization of some results of cycles on Zp
in [BR12, §2.13, §2.14] and [BHS19, §2.4] for the generalized Steinberg varieties. There exists
already a theory of localization for singular blocks in characteristic O ([BK15]]). However, the char-
acteristic cycles on Zp can be produced via K-theory by [BR12) Prop. 2.14.2] and [BR12| Prop.
2.13.5]. The K-theory of generalized Steinberg variety Zp is well-behaved ([DR14]) and can
produce Kazhdan-Lusztig cycles on Zp corresponding to elements in the Weyl group by roughly
pushing forward the cycles [t (wwy - 0)] and [£(wwg - 0)] on Zp via the map Zp — Zp ([DR14]
Thm. 2.1]). We do not know for general Zp whether the similar formula as [X g ,] = [9(ww-0)]
([BHS19, Prop. 2.4.6]) of cycles on Zp, which was crucially used in [BHS19] and proved in
[BR12, Prop. 2.14.2], holds in general for the cycles on Zp from the K-theory. It is mentioned

in [BR12, Rem. 2.14.3] that the previous formula for [X g ,,] can be deduied by deformation

arguments ([Gin86, §6] or [CG97, §7.3]). To get a generalized formula for [X p,,], it seems that
Cohen-Macaulayness of Xp,, would be needed, which is unknown to the author for P # B.

3.3 Local models for the trianguline variety

We apply the results of §3.2]to study local geometry of the trianguline variety at certain points,
generalizing the results in [BHS19, §3].

We fix a finite extension K of Q, with a uniformizer wg. Let L be a finite extension of Q,
that splits K with residue field k7, and set ¥ = Hom(K, L).

3.3.1 Almost de Rham trianguline (¢, I' x )-modules

We recall some basic notions for the deformation theory of trianguline (¢, Ik )-modules. For
details and notation, see [BHS19, §3].

Let Repp,,, (Gk) (resp. RepBgR(g K)) be the category of Byr-representations (resp. B:{R-
representations) of Gx (free of finite rank, continuous for the natural topology and semi-linear).
We have rings B;)rdR = B [log(t)] and B,qr = Bqgr[log(t)] with the actions of G satisfying that
g(log(t)) = log(t) +log(e(g)) and Bpqr admits a Bqr-derivative vp,qr such that v,qg (log(t)) =
—1 which preserves Bg dR-

If W is a Bgr-representation of Gg, then Dyqr(W) := (Bpdr ®@Byg W)gK is a finite-
dimensional K-vector space of dimension no more than dimg,, W with a linear nilpotent en-
domorphism vy . In other words, Dyqr (W) is a K -representation of the additive algebraic group
G,. The Bggr-representation W is called almost de Rham if dimg Dpgr(W) = dimp,, W.
A B;{R—representation W is called almost de Rham if the Bqgr-representation W = Wﬂ%]
is almost de Rham. The B(Ji“R—lattices which are stable under Gx in an almost de Rham Bygr-
representation W are in bijection with filtrations of Dpqr (W) as K-representations of G, via
W+ i Filjy,, (Dpar(W)) where Filjy,, (Dpar(W)) = (#'Blx ®pt WH)9 fori € 7Z
([BHS19, Prop. 3.2.1]).

Let A € Cy, be alocal Artinian L-algebra with the maximal ideal m 4. Let Rep,qg 4(Gx) be
the category of almost de Rham B4g-representations W of G together with a morphism of Q-
algebras A — EndRedeR(gK) (W) such that IV is finite free over Byr ®g, A. Let Rep 4, o k(Gq)
be the category of pairs (V4,v.4) where v 4 is a nilpotent endomorphism of a finite free A ®q, K-
module V4. The functor Dp,qr induces an equivalence of categories between Rep,qr 4(Gk) and
RepA®QpK(Ga) ([BHS19, Lemma. 3.1.4]).

We have the Robbaring R 4 i of K with A-coefficients (cf. [KPX14, Def. 6.2.1]). A (¢, 'k )-
module M 4 over R4 i [%] is defined to be a finite free R 4 i [%]—module equipped with commut-
ing semilinear actions of ¢ and I'x such that M 4 admits a (p, 'k )-stable R i -lattice D 4 which
is a (¢, 'k )-module over R with the actions of ¢ and I'x given by those of M 4. Denote by
(I)FX,K (resp. ®I'4 ) the category of (¢, ' )-modules over R 4  (resp. over RA,K[%]).
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A rank one (¢, ' )-module M 4 over R 4, K[%} is called of character type if M 4 is isomor-
phic to RAK((SA)[%] for some continuous character 64 : K* — A* ([KPX14, Cons. 6.2.4]).
A (p,Tk)-module M4 over R4 i |[4] of rank n is called trianguline if there exists an increas-
ing filtration Mo : {0} = My C Ma1 C --- C Ma, = My of (¢,I'x)-modules
over RA,K[%] such that My ;/ M1 is a (¢,I'k)-module over RA,K[%] of character type
for every 1 < ¢ < n and the filtration M 4, is called a triangulation of M 4. Moreover, if
Mpi/Maio ~ RAyK(éAJ)[%] for some characters §4; : K* — A*,1 < i < n, then we say
04 =041, ,04y)is a parameter of M 4.

We have an exact functor W(;FR(—) (resp. War(—)) from <I>FZK (resp. ®I'4 ) to RepB;rR’A(gK)
(resp. RedeR’A(gK)) ([BerO8all and [BHS19, Lem. 3.3.5]). If M 4 € ®I'4 i is trianguline with
a parameter (94 )i—1,... » and if the characters SA,Z- = 04, mod my,l < i < n are locally
algebraic, then Wyr(Ma) € Rep,qr 4(Gx) and is a successive extension of rank one de Rham
Bgar-representations of G ([BHS19, Lem. 3.3.6]).

3.3.2 Groupoids

We recall the definitions of some groupoids over C;, defined in [BHS19] §3].
Let D be a fixed (¢, 'k )-module over R, x of rank n. Let M = D[%] We assume there

exists and fix a triangulation M, of M of parameter 0 = (d1,---,0,). We assume that 0; is
locally algebraic forany ¢ = 1,--- ,n.
We let 7" be the subset of 7, that is the complement of characters (01, - - - ,0,,) where 0;/6;

or €d;/6; is algebraic for some i # j. Let 7 be the subset of 77, which is the complement of the
set of all L-points corresponding to characters of the form z¥ or ez¥ for some k € Z*. Remark
that 7;* # (To)™.

We assume that the parameter § of M (which we have assumed to be locally algebraic) lies in
(L),

Let W+ = Wi(D) € RepB;rR’L(gK), W = Wgr(M) € Repp,, .(Gk). Then W €
Repyar, (G ) and W is filtered in Repyqg 1 (Gx) with a filtration Fo : F; = Wyr(M1) C
+++ C Fp = War(My,). We fix an isomorphism « : (L ®g, K)" = Dpar(W).

The groupoid Xy over Cy, consists of triples (A, Wa, 14) where A € Cr, Wa € Reppar 4(Gk)
and 14 : Wy ®4 L = W. A morphism (4, Wa,14) — (B,Wg,tp) in Xy is a morphism
A — Bin Cr, and an isomorphism W4 ®4 B = Wpx compatible with ¢4 and ¢5. The groupoid
X consists of (A, Wa, ta, aa) where (A, W4, 14) € Xy and a g : (A®g, K)™ = Dpar(Wa)
such that a4 modulo m 4 coincides with . Similarly we have X+, X VDW by replacing W, W4
with W+, WX. We have a forgetful morphism X VDV — Xw.

The groupoid Xy 7, over Cy, consists of (A, W4, Fa.e,ta) where (A, Wa,14) € Xw and
Fae = (Fai)i=1,. n is a filtration of W, in Repp . 4(Gx) such that Fa;/Fa; 1 fori =
2,--+,nand Fa are A ®g, Bqr-modules free of rank one and ¢4 induces F4 6 ®4 L = F.
We let X%& 7. = XWr. XXy XVDV where the morphism Xy, 7, — Xy is the obvious one.

The groupoid X, over Cp, consists of trianguline (¢, I'x)-modules M4 over R k[7]
for some A € Cr, with a triangulation M 4 o of M 4 and an isomorphism j4 : M4 ®4 L 5 M
which is compatible with the filtrations.

The functor Wyr(—) induces a morphism X, — X 7. By our generic assumption
on 9, the morphism is formally smooth by [BHS19) Cor. 3.5.6] and is relatively representable
([BHS19, Lem. 3.5.3]).

Let Xp (resp. X aq) be the groupoid over Cy, of deformations of D (resp. M). Then essentially
due to Berger’s equivalence of B-pairs and (¢, ' )-modules ([Ber08al]), the morphism induced
by inverting ¢ and the functors Wag(—), Wik (—)

XD—>XM X Xw Xw+
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is an equivalence of groupoids over Cy, ([BHS19| Prop. 3.5.1]).

Let Xpm, = Xp Xx XmMe Xp = Xp Xxyp Xyp and Xp o = XD Me Xxy Xy
We let X+ 7, = X+ Xxy Xw,r, and XVDVJF,]_.. = Ww+ r. Xxw XVDV. Then W;R and Wygr
induce morphisms

XpMs = X+ 7,
O O
XpMm. = Xyy+ £,

which are formally smooth and relatively representable (as the base changes of X\ v, — Xw, 7,
up to equivalence [BHS19| Cor. 3.5.4]).

3.3.3 Representability

We start with some slight generalization of some results in [BHS19, §3.2] for cases of possibly
non-regular Hodge-Tate weights.

We keep the notation in If A € Cp, Wa € Reppgr a(Gk) and W is a BY; ®q, A-
lattice of W4, set

Dpar,r(Wa) := Dpar(Wa) ®agq, k107 A,

Filly + (Dpar,r(Wa)) = Fily, 1 (Dpar(Wa)) @ agq, k107 4,

grie . (Dpar,r(Wa)) := Fili s (Dpar,-(Wa)) /Fili L (Dpar - (Wa))
wi A Wi

A
fori e Z,7 € X.
Assume that for 7 € 3, the integers ¢ such that gri. . ) (Dpdar,~(W)) # 0 are
w

_kT,l > e > _k’r,sf

i (Dpar. (W) for 1 <i < s,. Then

for some positive integer s and we set m,; = dimzgrp o’
w+

My 1+ +ms s = nforeachr € 3. We get (partial) flags Dpgr (W) = Fil;fl"” (Dpar,~(W)) 2
ks -
-+ 2 Fil 7 (Dpar,- (W)) 2 {0} inside Dpar, (W) for 7 € X,
We set
G = Resg/q,(GL, k) xq, L = H GLy 1

TEY

Then G acts on Dpar (W) = [, ex, Dpar,- (W) via a : (L ®g, K)" = Dpar(W). We let P be
the stabilizer of the filtration Fil},, (Dpqr(W)). Then P = [] 5, Pr, where P; is the parabolic
subgroup of GL,, /7, which stabilizes the (partial) flag Fil;vkj" (Dpdr,~(W)) via a.

Recall we have the variety gp = {(v,gP) € g x G/P | Ad(g~")v € p}. Forany A € Cp,
A-points of the (partial) flag variety G/P = [],cx; GL,, 1/ Pr correspond to (partial) flags A™ =
Fil, s 2 --- D Fil,; 2 Fil,o = {0} where foreach i = 1,---,s,, Fil.;/Fil.;,_; is a free
A-module of rank m ;. An A-point of gp then corresponds to a (partial) flag (Filr i) res 1<i<s,
and a linear operator v4 = [[ o5 var € [[,cx Enda(A™) which preserves the filtration. We

thus have a point

~kre

Tyt = (ofl ((Fﬂw+ (Dde,T(W))) ) Ny = a Loy o a) cap(L)

TEY

where vy is the nilpotent operator acting on Dde(W). Given (A, WX, LA, A) € XVD[H, the
A ®q, K-module Dpqr(Wa) is equipped with a filtration Fil}, ., (Dpar(Wa)) together with an
A
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A ®q, K-linear nilpotent operator vy, which preserves the filtration. Via the isomorphism a4,
these datum give rise to an A-point

(a;l ((Fﬂ;g"(Dde,T(WA)))

of gp as in the proof of the following proposition.

-1
) ,NWA =y OZ/WAoaA>
TEY

Proposition 3.3.1. The groupoid X %H is pro-representable and the functor
- 3 7k“r .
(A, Wj, LA, aA) — (aAl <<F11W+’ (Dde’T(WA))> ) 7NWA)
A TEY

induces an isomorphism of functors between | X Il/]V+ | and g p, the completion of gp at Ty +.

Proof. The proof is essentially the same as [BHS19, Thm. 3.2.5]. For any A € Cy, by [BHSI9|

Lem. 3.2.2], the functor WX — (Dde(WA), Fil;w (Dpar(Wa)), vw A) induces an equivalence
A

between the category of almost de Rham A ®q, BIR—representations of Gx and the category of

filtered A ®q, K-representations of G, (the definition before [BHS19, Lem. 3.2.2] should be that

the graded pieces are projective A ®q, K-modules, see discussions below). If (A, WX, LA, O A) €

XVDIH, by the proof of loc. cit., @iezgr%il;v . (Dpar(Wa)) is projective over A ®g, K (which is

A
equivalent to the condition that WX is free over A®q, B(J{R) and moreover for any finite A-module

M, there is an isomorphism

M @agrrie  (Dpar(Wa)) = grie — (Dpar(M @4 Wa))

1 M@ AW}
for each i € Z. We have decompositions Dpqr(Wa) = @rexDpar,-(Wa), Fil%/:\r (Dpar(Wa)) =
@TEEFH;VX (Dde’T(WA)) and ngFil;V+ (Dde(WA)) = @Tezgr%ﬂ;v+ (Dde,T(WA)) for: € Z.

, A A
Then g]r%iI;V+ (Dpdr,-(W4)) is free over A for each 7 € ¥ and i € Z since A is local. And we

have ([BHS19, Cor. 3.2.3])
gttne | (Dpar,r(Wa)) ®4 L = grpge  (Dpar,-(W)).
w w

A
; . o —kr
Thus gri.e . (Dpar,-(Wa)) # Oifandonly ifi € {—k,1,--- ,—Fk,s }and 8rpie (Dpdr,-(Wa))
w w
is free of ragk mr; fori =1,---,s.. The datum N

: _kT,o
< (FIIWX (Dpdr,r (WA))) res VWA>

together with a4, ¢4 up to isomorphisms is then equivalent to a morphism Spec(A) — gp whose
image is in the infinitesimal neighbourhood of the L-point -+ of gp. 0

Recall that from the split group G, the parabolic subgroup P and a fixed Borel subgroup
B = TU contained in P, we have defined a scheme Xp = g x4 gp in whose irreducible
components are X p,, for w € W/Wp where W denotes the Weyl group of G. We may assume
that B3 is the group of upper-triangular matrices and 7" is the diagonal torus in G = [] .5, GL,, /L-
Let x be the L-point of the scheme X p corresponding to

(a_l (Dde ("TO)) 7a_1 (Fﬂ;/[/Jr (Dde(W))> 7NW)

and let X P = Spf (@ Xp,z) be the completion of X p at . The groupoid X VDV’ 7, is pro-represented

by the completion E of g at the point (o' (Dpar(Fe)), Nw) € g(L) (IBHSI9, Cor. 3.1.9]). Then
by the same proof as for Proposition [3.3.1] and [BHSI9, Cor. 3.1.9, Cor. 3.5.8], we have the
following generalization of [BHS19, Cor. 3.5.8].
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Proposition 3.3.2. (1) The groupoid X%’H F, IS pro-representable and the functor |XI'/3V+ }-.| is

pro-represented by Spf((/?\XP@).
(2) The groupoid le), M, is pro-representable and the functor ]XID) M. | is pro-represented by a

formal scheme which is formally smooth of relative dimension [K : Q,]|=5— n( n+1 over Xp.

The scheme Spec(@ Xp.z) is equidimensional of dimension dimg = [K : Q,|n? with irre-
ducible components Spec(Ox,,, ) for w € W/Wp such that z € Xp,, (L) (Corollary [3.2.16).
Let )A(wa = Spf(@xp’w, ) forw € W/Wp such that z € Xp,,.

For any w € W/Wp, we define xow _ — xD

W+ Fe , be

the subgroupoid of Xy;+ 7, which is the image of X under the forgetful map X Wt F

W+]—"

0w 0w
S XW+]_. and Xy —XDM XXEW; XW+,f..

Literally the same proof of [BHS19, Cor. 3.5.11] except that now we do not have the normalness
result (but still have the irreducibility of Spec(Ox,, , ») by Theorem [3.2.14) shows that

Xw+7]:.. Let XD,M. = XD,M. X x

Corollary 3.3.3. For any w € W/Wp such that v € Xp,, (L), the functor |Xg’1/'\’4.| is pro-
represented by a complete Noetherian local domain of residue field L and dimension [K : Q) (n%+

w) and is formally smooth over X P,z

3.3.4 The weight map

We keep the notation in We view the parameter § of M as an L-point of the rigid
analytic space 7;". The completion of 7;" at the point § denoted by 7" pro-represents the func-
tor from Cy, to deformations of the continuous character § : (K*)” — L*. Given an object
(A, Ma, Mae,ja) € XM, there exists a unique parameter §4 € 7T;*(A) of My such
that 64; ®4 L = §; fori = 1,--- ,n by [BHSI9, Lem. 3.3.4], which defines a morphism

P X MM, — T” of groupoids over Cy. Recall that t is the Lie algebra of 7". Let t be the
completlon of tat 0 € t. Composing the morphism wt — wt(d) : T” — t (cf. [BHSI9, (3.16))),
we get a morphism (wt — wt(5)) ows : XMmM, — t of groupoids over Cy,.

Themaprk =kp:g — t ( mduces amap g — tby completion (since NW is nilpotent).

The map kw7, : XW]E — \XW]E | ~§ — t factors through amap Xy r, — t which is also

W,
denoted by kw7, . The composition X yq a1, d5>( ) Xw,F, "W T coincides with the morphism

(wt — wt(d)) o ws ((BHSI9, Cor. 3.3.9]). Thus there is a morphism of groupoids over Cy,
XMMe — 7/? Xt Xw,F,

which is formally smooth by [BHS19, Thm. 3.4.4].

3.3.5 The trianguline variety

We now prove our main results on the local models for the trianguline variety.

We fix a continuous representation 7 : G — GL,, (k1) of Gx. Let Ry be the usual framed
Galois deformation ring of 7 which is a complete Noetherian local ring over O, with residue field
k1, and let X7 be the rigid analytic space over L associated with Spf(Ry5) (the rigid generic fiber
in the sense of Berthelot, cf. [[dJ95, §7]). Let 7;Zg be the Zariski open subset of 7, which con-
sists of points § = (01, -+ ,0y) such that §;/0; # 27k ezk foralli # jand k € ZEO. The
trianguline variety X,i(7) defined to be the Zariski closure in X7 x 7;* of the subset Uy;(T) =
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{(r J) € X7 x Treg |  is trianguline of parameter § 5 }H is a reduced rigid space over L, equidi-

mensional of dimension n? + "("H) [K : Qp] with a Zariski open dense smooth subset Us,;(T)
([BHS17b, Thm. 2.6]).

Assume that = (r,0) € Xi(F) C X7 x T;* is an L-point, then 7 is trianguline of some
parameter 0’ = (8})1<i<n such that §; 1(51’» is an algebraic character of K * for all i after possibly
enlarging the coefficient field ([KPX14, Thm. 6.3.13]). Let D = D,iz(r) be the étale (¢, 'k )-
module over R, x associated with r and M = D[%] We assume that § € 7" is locally algebraic,
then M is equipped with a unique triangulation M, of parameter ¢ ([BHS19, Prop. 3.7.1]) and
thus we are in the situation of Welet W = Wag (D), W = W[}] and Fy = War(Ma)
as before. Assume that the 7-Sen weights of r are integers h,, > --- > h;; where each
krs. > --- > k; appears in the sequence (hry, -, hy 1) with multiplicities m, s ,--- ,mr1
and m; s, ,+ -+ ms;1 = nfor 7 € ¥. The Hodge-Tate weights (k- ;)1<i<s, rex coincide with
what we have defined in We fix an isomorphism « : (L ®g, K)" = Dpar(W) and let P
be the parabolic subgroup of G defined in §3.3.3|determined by Fil};,; (Dpqr(W)) and cv.

Let V be the representation of Gy associated with r : G — GL, (L) by forgetting the
framing. Then there are groupoids X, (resp. Xy) over Cy, parameterizing liftings of r (resp.
deformations of V') ([BHS19, §3.6]). The functor D, induces an equivalence Xy 5 Xp and
there is an isomorphism of formal schemes X, ~ %T » Where %m is the completion of X7 at the
point r ([Kis09a, Lem. 2.3.3, Prop. 2.3.5]). Let Xm( ) be the completion of the trianguline

variety at the point z. Then we get a morphism Xm( )y = 3‘: 7r = X, by projection.

Let X, pm, = X X x, XX p X x,, Xp,m, Where the map X, — Xy is forgetting the framing.
Recall that the natural map Xy a1, — X Aq as well as its base change X, v, — X is a closed
immersion since we have assumed 0 € 73" ([BHS19, Prop. 3.4.6]).

—

Proposition 3.3.4. The morphism X/m(\?) . — X, factors through a closed immersion X.i(T),, —
XT,M. °

Proof. This is [BHS19, Prop. 3.7.2] (based on [KPX14, Cor. 6.3.10]) and [BHS19, Prop. 3.7.3].
The original proof for [BHS19, Prop. 3.7.2] is not complete and we write a proof here. The
argument will be needed for Theorem [3.4.10]

Pick an affinoid neighbourhood U of x in Xy (7). Let Dy be the (¢, 'k )-module over Ry
associated with the universal Galois representation of Gy pulled back from X7 (cf. [KPX14, Thm.
2.2.17]). By [KPX14]| Cor. 6.3.10], there is a birational proper morphism f : U — U, a filtration
of sub-(¢, ' )-modules D~ over R UK of D := f*Dy and invertible sheaves (Li)i=1,
such that D , = 0, D5 = D and there are 1nclu510ns Dz, /DU i < RU K(dU i) ®og E
the cokernels of Wthh are kllled by tfori=1,---,n where the characters 0 is the pullback of
the character on 7, via U—UCc X (T) = T

Let R, be the completion of Ry| p] at the maximal ideal corresponding to r so that ffr o
Spf(R,) and let R, A4, be the quotient of R, such that R, ¢, pro- represents XT M, Take an
arbitrary point 2’ € f~!(z). We firstly prove that the map R, — OU,w — OU’ , induced by

U—UCc Xtri(T) — X7 factors through the quotient R, v, . Take A a local Artin L-algebra with
residue field k(z') (A is a k(z')-algebra, [Sta22] Tag 0323]) with a composite 2z = Sp(k(z')) —
Sp(A) — V where x — Sp(A) corresponds to the reduction map A — k(z’). Then the pullback
along the map Sp(A) — U of Dﬁ,o[%] gives a triangulation M 44 of D4[}] = Diig(ra)[3] of
parameter 4 = J R0, A where r4 is the pullback of the universal Galois representation to

A via the map R, — (9 » — A. Remark that the triangulation M, ®4 E(z") of My ®4

"Here a representation r : Gx — GL,,(L') for some finite extension L’ /Q, is said to be trianguline of character &
means that the (¢, I'x)-module D.ig(r) over R+ x admits a filtration of sub- (¢, Ik )-modules whose graded pieces
are isomorphic to R x (1), -+ , R/, k (6n).
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k(2') coincides with M, ®p, k(z') where M, is the unique triangulation on M = Dy, (1) [1]
of parameter § obtained by Lemma [BHS19, Prop. 3.7.1] (and by [KPX14, Thm. 4.4.3] and
[BHS19, Lem. 3.4.3]). Let A=A X k() L € Cp, be the subring of A consisting of elements
whose reduction modulo the maximal ideal m 4 of A lie in L (cf. [Sta22, Tag O8KG]). By writing
out some L-bases of A and A, we see that the preimage of Rp, K[ ] C R, K[%] under the map
Raklt] — Ri(ar), K k(3 is Rz 7K[t]. As the reduction of r4 is 7 ®r, k(z') (resp. the reduction

of 04 : 04 ®a k(2') is 0; ®p, k(a')), 74 (resp. 04,) can be defined over A and we denote
the model by 75 (resp. 05 ,) whose reduction modulo m 3 is 7 (resp. ;). Then Dig (74) [1] =
Drlg(TA)[ ] ®A A.

We need to show that the triangulation M 4 o also has a model M 1o OVer R ik We extend

the injection

Mi = Re (@)l = Dag ()

]

to an isomorphism ®!' Ry k[1]é; — Diyig (r) [§] of Ry k[}]-modules where & is the im-
age of a generator of the rank one free module Ry, j(61)[1]. Since the reduction of the injec-
tion Ra i (641)[2] = Dyig (ra) [1] is identified via pull back with Ry x(61)[1] @ k(2) —
Dyig (1) [}] @1, k(2'), we can pick a lift e; € Diig (ra) [3] of & ®p, 1 generating the image of
the first injection. We can extend the injection to an isomorphism R4 g [+]" =~ Dyig (ra) [1] of
R 4,k [+]-modules and we may assume, after changing basis given by a matrix in GL,—1(R 4,k [}]),
the reduction of the extended basis es, - - - , e, is equal to é2 ®r, 1,--- , €, ® 1 since we have
a surjection GL,_1 (RA K[l]) —- GL,_1 (Rk( K [%]) We also take a basis €1,--- , €, of
Diyig(r A)[l] such that the reduction modulo m 5 i of e, -+ ,e, isequal to €y, - - - ,€,. The transla-
tion matrix M between the basis €1 ® 7 1,--- ,é, ® 3 land ey, -+, e, of Drig (14) [ | has trivial
reduction modulo m 4. In particular, M € GLn(R i K[ ]). This means that we can choose €; such
that e; = €; @ 5 1. Then we see the element ¢; defines an injection R 5 (35 D3] <= Drig(r7)[3]
with the quotient a (¢, I'x )-module over Ri [1] Applying the same argument on the quotient
and by induction, we see that Diig (r 5)[1] admits a filtration My, suchthat Mz (@7 A =My,
and MZ,- ®@5 L = M,. Let Ol?,m/ be the subring OU@, X k(a!) L of (55’1/. The composite map
R, — (5U7x — 61771:’ — A factors through R, — (’3(7790, — A which gives rise the deformation
rz of r, i.e. an object (ﬁ, r7) € X;. The discussion above shows that 7 ; admits a triangulation
Mz, on Diig(r3) [1] whose reduction modulo m 7 1s M, and defines an object in X, r4,. Hence
the morphism R, — A, as well as R, — A — A, factors through R, rq,. This implies that the
morphism R, — (5[7@, factors through the quotient R, a4, .

We now prove that the map R, — @U@ also factors though R, rq,. Otherwise assume there
exists a non-zero element a in the kernel of R, — R, r4, such that the image of a in @U@ is
not zero. As the morphism f : U—Uis proper and surjective, there is the Stein decomposition
f: U i/> Z % U such that g is a finite surjective morphism, f’ is a surjective proper morphism
and 07 = fi(’)ﬁ (IBGR84!, Prop. 9.6.3/5]). Then if we write U = Sp(A), Z = Sp(B), the map
A — B induced by g is a finite injection (since U is reduced and g is a surjection). Let m be the
maximal ideal of A corresponding to the point = and let ny, - - - , ny, be the maximal ideals of B
above m. Then there is an injection gm — B®y A\m ~ ;’ilB n; ([Sta22, Tag 07N9]) where A
(resp. Eni) denotes the completion of A (resp. B) with respect to the ideal m (resp. n;). Since the
image of a in ﬁm is not zero, the image of a in one of En is not zero, which we may assume to be
Bnl Let z be the point on Z corresponding to n;. By the theorem on formal functions ([BGR84,
Thm. 9.6.3/2]) (f* o= hm (Op/ni)(U 7). Hence By, — lim (Op/ni)(U /). Thus the image

of a in (O /ni)(U U) is not zero for some s. It turns out that there exists 2’ € (f')~1(z) such that
the image of a in (’)U x,/nl is not zero ([BGR84, Cor. 9.4.2/7] and [BGR84, Prop. 9.5.3/1(iii)])
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and hence the image of a in G’nl = L 7 /0§ is not zero where C' := (9~ ,. The completion

of C’nl with respect to the maximal ideal m C’nl is then equal to (JAMG9, Prop 10.12, 10.13] and
that O ,,/m3,OF ., is ni-adically complete for any s)

lim C, /mCy, = lim C/m3,C = lim Oy, /w05 ., = Op ..

Hence the morphism Cn1 — (9 , is the completion of the Noetherian local ring énl (JAMG69,
Thm. 10.26]) with respect to the max1rna1 1dea1 thus is injective (JAMG69, Cor. 10.19]). We
conclude that a is sent to a non-zero element in (’) {7 o+ This contradicts that the morphism R, —
O~

77, factors through the quotient R, 4, which we just proved! Thus we get the conclusion. [

We fix an isomorphism W =~ (S,)* by identifying n-tuples (a, 1, ,arn)rex € (Z")*
with the diagonal matrix [ .y, diag(ar1,- - ,ar,) € g. By [BHSI7D, Prop. 2.9] (and the
proof of [BHS19, Lem. 3.7.6]), the multisets of Sen weights of V' are exactly the multisets
{wt;(6;) |i=1,---,n},7 € X. Hence there exists a unique w = (w;)recx, € W/Wp such
that

(hray e shen) = w;l (Wtr(01), -+, wtr(6n)) = (Wtf((swf(l))a T 7Wt7(5w7—(n)))

for any 7 € X. We denote by w € W/Wp the element associated with the point z in this way.
Recall that there is a morphism (k1,k2) : Xp — Tp = t Xyw t/Wp in which
induces a morphism X5 DM, XW+ £ |XW+ 7 | = prde — Tp (0,0) Where 4R is the
point in X p(L associated with the pomt x € Xm( )(L) together with the fixed framing « as
in Proposition The morphism X5 DM, — TP (0,0) factors through a morphism Xp ¢, —
Tp (0,0) (se (see the end of [BHS19, §3.5]). We let O, Xm( o — Tp7(070) be the composite

map X (7 ) — Xome = Xvme =~ XD M, — Tp (0,0 Recall that there are closed formal
subschemes prw ,(0,0) Of pr(()’o) forw' € W/Wp.

~

Proposition 3.3.5. The morphism ©,, factors through TP,w,(QO) < T'p(0,0)-

Proof. Assume that x4 : Spf(A) — m) ., 18 an A-point for some A € Cr. Via the morphism

X/m(\* F), = Xpm., = Xw+ 7., the point z 4 is associated with a BJ; ®g, A-representation
WA of G, a full filtration F4 o of W4 = WA [ ] and a parameter § 4 = (d4,1,- -+ ,04,) Of the
associated (¢, I )-module M 4 over R 4 x[+], which is a deformation of the datum (W, 7, §).

We can choose a framing a4 : (A ®q, K)" = Dpar(Wa) such that a4 modulo my4 coincides
with a.. Let w4 pqr be the point

<aA1 (Dpar(Fae)) ay' ((Fﬂ;g"(Dde,T(WA))) > Nw, =a oy, o 04A> € Xpapan(A)

TEL

corresponding to the element in Xy + £, (A) given by x 4. Then ©, sends x4 to

(k1(2A,pdR); F2(T A pdr)) € (t Xy t/Wp)(A)

whose reduction module m 4 is (0,0) where 1, k2 are defined in
Explicitly, £1(z 4 par) € t(A) equals to

(VWdR(RA,K((SA,l)[%])7 LS dR(RA,K((SA,n)[%])) - (Wt<5‘4’1) o Wt(él)’ o ’Wt(éA’n) o Wt(dn))
(3.3.6)
by [BHS19, Cor. 3.3.9] (s1 and k7, in §3.3.4|are both defined using r : g — 1).
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For each 7 € X,i € Z, we let gr™ (vy, ) be the restriction of vy, on grh. e . (Dpar,~(Wa))
w

(see §3.3.3|for notation). Then !

k2 apar) € YWp(A) = [ t/Wr,(4) = [] T[] tra/ Wa...(4)

TED TeEX i=1

is (to simplify the notation we omit the identification o 4)

(WMT,l (gYT’_kT’l(VWAD v VM, (ng’_kT’ST(VWA)» . (3.3.7)
T

where we decompose the Levi subalgebra mp. = @f;lmm of p,, where p, denotes the Lie
algebra of P;, according to the projections to the graded pieces of the filtrations, M ; is the
subgroup associated withm, ;, t;; = t; Mm,; and we identify every ng’_k’Tvi (vw,) as an element
inmg ;. The map yar, , : mr;(A) — (t-;/Wh,;)(A) defined in §3.2.4)is no more than sending a
matrix to (the coefficients of) its characteristic polynomial.

We need to prove that the ©,(x4) € wa’(O’O)(A). By the definition of Tp,, in we
only need to verify the following equality

KQ(xA,IdeR) = w_l(’{l (xA,xde)) (3.3.8)

in t/Wp(A). The strategy is as in [BHS19, Lem. 3.7.4]. We will compare two factorizations
of the Sen polynomial of Wj / th. The first factorization |i will be related to the Hodge
filtrations and the second one (3.3.10) will be given by the trianguline filtrations.

First, by [BHS19, Lem. 3.7.5], the Sen polynomial of W /tW in

Ag, K[Y] = [[(A®g, K) ®asq, k1ar AV =[] AlY]

TEX TEY
is equal to
H det <Y1d +41d — gri(uWA) | gr%ﬂ. . (Dde(WA))) (3.3.9)
€L Wa
- T,— i 7]’37'1'
= [T I1 det (YId — ke gld — grm R (v, ) | grpge (Dde,T(WA))> .
rexi=1 Wi

On the other hand, by [BHS19, Lem. 3.7.6], the Sen polynomial is

(V= wt(da) = [T TV = wtr(8:) = (wtr(5a4) — wE-(5:))) (3.3.10)

1 TEY i=1

n
1=

Comparing (3.3.9) and (3.3.10), we get an equality in A[Y] of the 7-Sen polynomial of W1 /tW
foreach 7 € X

n

[TV = wto(6:) = (wtr(6a.) — Wt (5:))) (3.3.11)

i=1

- T,— i 7k7' [3
=[] det (YId — ke 1d — grm R (v ) | Bl (DdeJ(WA))> .
w

=1 A
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Modulo m 4, the right hand side of (3.3.11) calculates the 7-Sen polynomial of W+ /tW ™ in L[Y]
in the usual way using the Hodge-Tate weights:

- T,— i _kT 7
Hdet (YId — kpild — gt R (v ) | B, (Dde,T(WA)))
i=1 W4

= ﬂdet (YId ke Id — g R (o) | gt (Dpar (W)))
L Y F11W+ p \T

= H(Y — k‘ti)mﬂi
i=1

where the last equality uses the fact that gr™ ¢ (1) € m,;(L) is nilpotent (since vy is nilpo-
tent). Actually, for each 1,

det (YId — kr;1d — ng’_kT’i(l/WA) | gr;i]ff’l
w

A

(Dde,T(WA))> = (Y — k)™ mod my.

(3.3.12)
As we have assumed that k- ; # k- ; if i # j and each wt(d4 ;) — wt~(J;) is in my4, we get that
wtr(8;) 4+ (wtr(da,5) —wtr(9;)) —kri € my if and only if wt,(6;) = kr;. Apply Lemma|3.3.14
below (where we take k; = kr;,m; = mr; and a; 1, - - , @i m, are those wt-(3;) + (wt-(04,;) —

wt-(0;)) such that wt,(0;) = k- ;) for (3.3.11) and using (3.3.12)), we get
I[I = wte(8)) = (wtr(da) — wtr(65)))
5. )=k

wtr(d;

T,

=det (YId — kr;1d — ng’_kT*i(VW ) | gr;ilff ”'+
w

A

(Dde,T(WA))> :

Replace Y with Y + k. ; in the above identity, we get

[T =t (Gt (5)))) = det (nd e w) | g (Dpas <WA>>)
wtr(65)=Fkr; WA
3.3.13)
foranyt € X,i=1,---,s;.
In the following, we verify that (3.3.13)) above for all 7 and 7 implies (and is equivalent to) the
equality (3.3.8)) which we want to prove
Fix an arbltrary 11ft w = wT rex in W with the same notation for w € W/Wp. The 7-part

of w™ (m(a:A xde is (by )
wyt(wt (6a1) — wt(81), -+, Wt(64.n) — Wt(5,))
= (Wt(0 a0, (1)) = WE(8u, (1)) + s W8 A 00, (1)) — WE(Bup (1))

whose image in t,/Wp_(A) = t;1/Wh,  (A) x ---trs /Wi, (A) is (We use characteristic
polynomials to denote the image of an element of t,;(A) in t; /Wy, ,(A))

mr,1 n
I = (5w ) = %626 )) s ] (V= (WG ) = Wr (B i)
=1 1=n—mr s, +1

Recall w is chosen so that

(Wtf(éwT(l))a T >Wt‘r(5w7(n))) = (h/T,l) T ah‘r,n) = (kT,la T akT,la c 7kT,STa T ak‘r,s-r)

mr.1 Mr s+
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for all 7 € . Hence the 7-part of w™! (k1 (2 4,x,45)) can be furthermore rewritten as

I[I = wteag) —wte (@), JI (¥ = (wtr(da) — wtr(65))

wtr (867)=kr.1 Whr (8)=hr,or

Using (3.3.13), the above element is equal to
(det (YId — gr7 Tk (VWA)> , oo, det <Y1d — grhnsr (I/WA)))
= (’YMTJ (ng’_kT’l(VWA)> st s VMo s, <gr7’_k”” (VWA)))
which is exactly the 7-part of k2(z4 4 45 ) DY . We conclude that
R2(TApar) = W (K1(TA0p08))

in t/Wp(A). Thus the i image of x4 in Tp 0,0)(A) is in fP,w,(o,o) (A). Hence the morphism ©,

factors through pr ,0,0) = Tp (0,0)- O
Lemma 3.3.14. Let k1, - - - , ks be pairwise different numbers in L. Foreachi = 1,--- | s, assume
that a; 1, - , G;m; are elements in A € Cy, such that a; j — k; € mp forany j =1,--- ,m;. For

eachi = 1,--- s, let P,(Y) € A[Y] be a monic polynomial of degree m; such that P;(Y) =
(Y — ;)™ mod mu. Assume that

H H(Y - am-) = HPZ(Y
1=1j=1 i=1

in A[Y], then Hﬁil(y —a;;) = P)(Y)foreachi=1,--- ,s.

Proof. Let F'(Y) = [[;_; [I72(Y — a;;). Takeany t € {1,---,s}. We have [[7_; P;(a:1) =
F(at,1) = 0. If i # t, then P (at 1) = (k¢ — ki)™ mod my4 is not in my since k; # k;. Hence
Pi(a;1) € A*if i #t. We get P;(a,;1) = 0in A. Hence P(Y) = (Y — am)]St(Y) where P,(Y)
is a monic polynomial and P;(Y) = (Y — k;)™ ' mod m,. Using the fact that if there is a
monic polynomial G(Y) € A[Y] suchthat G(Y) = (Y —a)G1(Y) = (Y — a)G2(Y) for some
a€ Aand G1(Y),Ga2(Y) € A[Y], then G1(Y) = Ga(Y'), we get

me

TITI0 - ) | TIO = ) = ( TT 200 | 2

i#t j=1 h=2 1#t
Repeat the argument we find P(Y) = (Y —ai 1) - (Y — agm, ). O

For w' € W/Wp, we define X;ff//w. = X Mo XXpna XBZM.' The functor | X, a4, | is pro-

represented by a reduced equidimensional local ring R, p¢, of dimension n? + [K : Q] n(nH)
with minimal ideals p,,w’ € W/Wp such that R%\/t := Ry m./Pu pro-represents ]X |
(cf. [BHSI9, Thm. 3.6.2 (i)(ii)], using Proposition[3.3.2] Corollary 3.3.3).
Corollary 3.3.15. The closed immersion X/m(\?) + = X M, induces an isomorphism m) i

w
XT‘,M.'

Proof. The proof is the same with that of [BHSI9, Cor. 3.7.8] using Proposition [3.3.5] By
[BHS17b) §2.2] and discussions above, both Spec(Oyx, (7)) and Spec( R, a4, ) are reduced equidi-

mensional of dimension n?+[K : Q] n( n+1 , thus the image of Spec(O Xewi (7)) = Spec(Ry a,)
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is a union of irreducible components of Spec(R, 4, ) of the form Spec(R}ff;\A.) for some w’ €
W /Wp. For any such w’, the morphism Spec(R}fj;\A.) <5 Spec(O DX () ) induces a closed im-
mersion X" w’ — X/m(\* ), of formal schemes. The morphism Xm( )y — Xp M = Tp (0,0)
factors through pr (0,0) — Tp (0,0) by Proposition Hence X}f’ M, — Tp7(070) factors
through pr (0,0) = Tp (0,0)- We get that w = win W/Wp by Lemma @I (cf. [BHS19,

Thm. 3.6.2 (iii)]). ]
Ow w O,w Ow w O,w
Define XVM. = XV,M. XXBM XD M.’Xr‘./\/l. = XT',M. XX&M XVM.' There are
morphisms ’ ’
Xei(F), = X, X0, = X, = Xp'h, = XVDV’TJ_.. ~ Xpuwsyan (3.3.16)

where all morphisms are either isomorphisms or formally smooth and all groupoids are pro-
representable. Let w, € W/Wp be the unique element such that z,qr € Vpa,, (see (3.2.1)).

Theorem 3.3.17. Let x = (r,0) € Xui(T)(L) be a point such that § is locally algebraic and
both 6;/9; and €6;/6; are not algebraic for any i # j. Then the trianguline variety Xii(T) is
irreducible at x and we have formally smooth morphisms m) < 1 Xm How U= X Pwzpar Of
formal schemes. Moreover, w, < w in W/Wp.

Proof. The first assertions follow from Corollary[3.3.15]and (3.3.16)). We remain to prove w, < w
in W/Wp. Since X, =~ X/m(\F)x # (), we get )?P’wyxpdr{ # (). Hence zpqr € Xpw(L). Since
Xpw N Vpuw # 0only if w > w’ by Lemma[3.2.8] we get w > w, in W/Wp. O

3.3.6 Partially de Rham cycles

We transport the results of cycles on the local models obtained in §3.2.5] to the trianguline
variety. We continue to assume that x = (r,0) € X,i(7)(L) is the point fixed in §3.3.5] Then we
have a commutative diagram as in [BHS19, §4.3]:

w O,w o
erMO X’!’ M vawvxde

Xr My XEM — XP,prdR
ws
\[ ~ k1
—~  wt—wt(d)
X, s >t

where ws is the composite of the map w; defined in @ for Xy m, with X pf — Xum
and all horizontal arrows are formally smooth. It follows from the proof of [BHS19, Prop. 3.7.2]
that the composite X/m(\F) . = Xo M. = 7'5?‘ is the completion of the map v’ : X, (F) —
X7 x T{* — T/ at the points = and ¢ (cf. [BHSI9, (3.30)]). Let Xiyi(7)wt(5) denote the fiber of

the map wt o W’ : Xii(7) — t over wt(8). Let Ry ., R}y, be the complete local rings that

pro-represent the groupoids X aq,, X,y and let RT M. ,’RE /\u/}t be the square versions. The

above diagram of pro-representable group01ds gorresponds to a diagram of spectra of complete
local rings. Now take the fibers over 0 € Spec(Oy ), we get the corresponding morphisms

Spec(E:M_) — Spec(ﬁgﬁ.) e Spec(@ypyw,xpcm)

i N v

Spec(Rypm,) Spec(EEM_) — Spec((’)yP@de)
L
Spec(@xw)
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where X p and pr are defined in the end of ~ We know from - that the set of
irreducible components of Spec(O Xpoa dR) is the disjoint union of the sets of irreducible compo-

nents of Spec((’)zp W par) for w' € W/Wp such that z,qr € Zp,, and that Spec(pr roqr) 18
equidimensional. By pullback and descent through formally smooth morphisms (cf. [Sta22 Tag
06HL]), we get that Spec(ﬁn M. ) is equidimensional and there is a bijection between the irre-

ducible components of Spec(R; r4,) and the irreducible components of Spec(@ For

Xp.x dR)
each w' € W/Wp, we let 3, denote the union of irreducible components of Spec(R, a1,)

that correspond to irreducible components of Spec(@ Zp By base change, we get that

/,mde)-
Spec(R.. M.) is a union of irreducible components of Spec(R;,r4,) according to the formula
(.2.23).

Remark 3.3.18. In [BHS19, §4.3]1, 3, is defined to be a formal sum of irreducible components
(cycles). Here we only consider 3, as a set-theoretic union of irreducible components or the
underlying reduced subscheme which suffices for our applications. We also do not consider the
Kazhdan-Lusztig cycles on Spec(R,. r4,) defined as [BHST9, (4.7)]. See especially Re-
mark [3.2.33]

Take a standard parabolic subgroup @ = [[,cx @7 of G = [].cx GL,/z. Suppose that
for each 7 € 3, the standard Levi subgroup Mg consists of diagonal block matrices of the form
GLQT,l/L XX GLqT,tT/L Where q7-71+. . '+Q7’,t7— =n. FOI‘Z — 17 e ’tT’ 1Ct(71 e qT71+' . .—'I_q‘l',i'
Let Z]vT’() = 0.

Definition 3.3.19. A pair (r4, M4 .) Where 74 is a continuous representation of G K of rank n
over a finite-dimensional local L-algebra A and M 4 4 is a triangulation of Diyig(r4)[7] such that
War ( rig(74)] t]) is almost de Rham is said to be (),-de Rham if the nilpotent operator v/4 on
Dpar,» (WdR (Drig(r A) [%])) vanishes when restricted to the graded pieces

Dpar,r (War(Mag,,)) /Dparr (War(Mag,,_,)) i =1,--- ,t;

of the sub-filtration of the full filtration DR+ (War(Mae)). A such pair (14, M4 ) is said to
be ()-de Rham if it is (),-de Rham for all 7 € 3.

We have defined a closed subscheme Zg p of Xp in Moreover, there is a closed

immersion Spec((’)ZQ papar) Spec(Ox ) (we do not assume that Spec(OZQ p,xde) is

X PyZTpdr
not empty). We define R Q = RT Mo P OZQ prtpar- L€t \XTM | := Spf(R" r./\/l ) and
XP EpdR ' e e
XE}\C/QI- = XEM. X |\X AL LetX ', be the image of the subgroupoid XE}E. C X,
in X, pq,.

Lemma 3.3.20.  [. The full subgroupoid X TD w of XU .M, consists of objects
(A7, Mae, ja,an)

where A € Cyp, 4 lifts v and (Drlg(rA)[ |, MAae, ja,ca) € XMM (A) such that j4 is
the natural one and the pair (14, M a.4) is Q-de Rham.

2. The full subgroupoid XTQM. of Xy m consists of objects (A, 14, Mae,ja) € Xy m, such
that the pair (ra, Ma,) is Q-de Rham. The inclusion X?M. — X, M, is relatively

representable and is a closed immersion. Moreover, XT Mo = X?M. XX, . XFM.-

Proof (1) Recall as @ (4 ®g, K)" it Dde Wdfli (Drig(ra)[2])). Let (v,1B) € a(A)
t
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]XVDK f.\ ~ E in [BHS19, Cor. 3.1.9] induced by D,qr. It follows from the definition that
(ra, M) is Q-de Rham if and only if Ad(g; ')v € ng(A). Hence

(W(;FR (Drig(rA)) aWdR(MA,O)v LA, aA) € ’X%Jr,}‘.‘(A)

satisfies that (14, M4 ) is Q-de Rham if and only if the corresponding object (v, g1 B, g2 P) €
Xp,xde (A) under the isomorphism ]XVDVJFJ.] o~ )?p@de in (1) of Proposition satisfies
Ad(g;Y)v € ng(A), in other words, if and only if (v, g1 B, g2P) € ZQ7P7xde(A). Hence by
definition, \XE /2.\ is the subfunctor of ]XE 'w. | sending A € Cy, to the isomorphism classes of
(ra,Ma.e,ja,a)suchthat (rq, M4 o) is Q-de Rham. The description for XE/’& = XEM_ X|x0, |

r,Me
| X E‘ /’8(. | follows from the definition of the fiber product (see [Kis09a, (A.4)]).

(2) The condition for (A, 74, Mae,ja,4) € XEM. that (74, M) is Q-de Rham in (1)

is independent of the framing « 4. Hence X rD /’8‘. =X f? Mo XX X TD M, The other statements

Q .
for Xn M, are now obvious. O

Hence \XTQ . | 18 pro-represented by a formal scheme Spf (Rf2 m,) With a formally smooth
morphism Spf(RTD)a.) — Spf(RgM.). There is a closed immersion Spec(RgM.) — Spec(Ry pm.)-

By Theorem [3.2.26|and above discussions, 3, is contained in Spec(Rﬁ2 a,) if and only if w’(h)
is strictly ()-dominant where h = (h,p,--- >h7»n)fez is the Hodge-Tate-Sen weights of r in

£.3.5

3.4 Applications on companion points

In this section, we prove our main theorem (Theorem [3.4.18)) on the existence of certain com-
panion points on the eigenvariety as well as the appearance of related companion constituents in
the space of p-adic automorphic forms (Proposition [3.4.17).

3.4.1 Local companion points

We firstly generalize the result in [BHS19, §4.2] on the existence of all local companion points
on the trianguline variety for generic crystalline representations. We continue to assume that K is
a finite extension of Q,, and L/Q), is a sufficiently large coefficient field as in

Let r : Gx — GL,(L) be a crystalline representation of Gx which is a deformation of
7 : Gx — GLy (k) corresponding to an L-point on X7. Let D,is(r) be the associated ¢-module
of rank n over L®q, Ko equipped with a filtration Fil* Dar () on Dar (1) = (L®q, K) @ L, Ko
Deyis(). We assume that the Hodge-Tate weights of ~ are h = (hr 1, , hry)rex Where each
krs. > --- > k1 appears in the sequence h,, > --- > h,1 with multiplicities m,s_,--- ,ms1
and m; s ,+---+m,1 = nfor 7 € 2. Let Wp be the stabilizer subgroup of h under the action
of W ~ (S,)* asin or We fix an arbitrary embedding 7o : Ko < L. After possibly
enlarging L, we assume that the eigenvalues 1, - - - , @, of w[KoiQP} on L ®1@r0,Leg, Ko Dyis(r)
are all in L>. We say r is generic if the eigenvalues satisfy that goigpj*l ¢ {1, plFo@l} for all
1 # j. This generic assumption is independent of the choice of 7.

We assume that 7 is generic and fix an ordering ¢ := (1, -+ , ¢n) of the eigenvalues, which
is called a refinement of r, denoted by R. For any w € W/Wp, denote by z*™unr(y) the
character B

(zw(h)lunr(cpl), Ex ,Zw(h)"unr(épn)) S

of (K*)™ which lies in 7" for any w € W/Wp by our generic assumption on ¢ (recall that 7"
is defined in the beginning of §3.3.2). The ordering ¢ defines a filtration File Deyis(7) on Deyis(r),
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which, under Berger’s dictionary ([BerO8bl)), corresponds to a triangulation Drig(r). : Drig(r)l C
- C Drig(r)n of Drig(r) € @F'{K (cf. [BHS174, §2.2]) such that

Drig(r)i/ Drig(r)i—1 ~ R,k (2 wR(h)iunr(‘Pi))’

forall: = 1,--- ,n and certain wg € W/Wp determined by R. Moreover, the relative position
of the filtration Filg Deyis(r) ®k, K and the Hodge filtration Fil®* Dygr(r) is parameterized by
wr € W/Wp (that is, if we choose a basis of Dgr(r), the L-point in G/B x G/P associated
with the two filtrations lies in the Schubert cell Up,,,,, defined in §3.2.1).

For w € W/Wp, let ,, € X5 x T}* be the point corresponding to the pair (r, 2™ unr(p)).
We let © = x,,, be the dominant point and let w, = wx (to make the notation agree with [BHS19,
§4.2], the element w, will coincide with the one in Theorem . Then x,, € Uyi(T) C
X:i(7) by the definition of Uy,i(T). If 2, € X4i(7), then x,, satisfies the assumption in Theorem
m 3.3.17| Hence by Theorem w > wy in W/Wp. The converse is also true and the following
theorem is a plain generalization of [BHS19, Thm. 4.2.3] which asserts that all expected local
companion points of x,,, exist on the trianguline variety (cf. [BHS19, Def. 4.2.1]). We repeat the
proof here to introduce the notation that will be needed in the proof of Theorem [3.4.18]

Theorem 3.4.1. The point x,, € X7 % T, is in X:i(T) if and only ifw > wy in W/Whp.
Moreover, the set of points x' = (r, 5’) € X5 x T}" such that x' is in X1,i(T) is equal to

U{TZ unr( )),w > wr}

where 'R runs over all possible refinements of r.

Proof. We need a variant of Kisin’s crystalline deformation space for irregular Hodge-Tate weights
that is embedded into the trianguline variety as in [BHS17al §2.2].

Let R:J_Cr be the framed crystalline deformation ring of p-adic Hodge type determined by the
Hodge-Tate weights h in the sense of [KisO8]] over Oy, (reduced and Z,-flat) and let f{?*cr be the
rigid analytic generic fiber of Spf (Rg_cr). By [KisO8, Thm. 3.3.8], %I;_Cr is smooth, equidimen-
sional of dimension n? + ZTGE Y o< <j<s, Mr,iM7j OVer L. The beginning part of [BHS17a,

§2.2] produces mutatis mutandis a rigid analytic space 3%:3_“ = %g—cr T;'® where Trlg

T“g /Sn
is the rigid split torus over L of rank n, S, is the symmetric group so that the quotient TLg /Sn
parameterizes characteristic polynomials of the Frobenius on the Weil-Deligne representations as-
sociated with the crystalline deformations and %;‘*“ parameterizes pairs (7, (@1, -+, ©p)) where
r e %};_Cr and (p1,- -+ ,pn) is an ordering of the eigenvalues of the Frobenius on the Weil-
Deligne representation associated with r. The same proof of [BHS17a, Lem. 2.2] shows that
xh=er s reduced.

Let @?_Cr — f{?_cr be the Resg, /g, (GLy/K,) Xq, L-torsor of the trivialization of the un-
derlying coherent sheaf of the universal filtered ¢-modules over Ko X, Oxh—cr ON %l;_cr. Then
sending a crystalline representation with a trivialization of D, to its crystglline Frobenius and
Hodge filtration defines a morphism f : 92~ — ((Resg, q,(GLn/x,) X, L) xr G/P)"®
which is smooth. In fact, by [HH20, Prop. 8.17], ﬁ{?_cr is isomorphic to an open subspace
ZaSAMA(F) of ZRSAA™ where 234, is the quotient stack of the adic space associated with
(Resk, /0, (GLn/x,) X, L) X1, G/P by the action of Resy, g, (GLn/x,) Xq, L, 2™ is
an open subspace of @gfiu where there is a universal representation of Gx on a vector bundle V on
2529 and 2252 s the stack over Z5%2"™ trivializing V. Then the morphism f induces a
smooth morphism:

T B e DB (Resiey g, (GLuyi,) X, D) s 5 TH) %1 (G/P),
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where the map (Res, /g, (GLy/K,) Xq, L)' — T 18 /S, is defined by [HH20, (9-1)]. The
condition gpicpj*l ¢ {1, pl0:Qe]} for i # j cuts out a Zariski open subspace

gen L (G/P)Tig

Qe = ((RGSKO/QP (GLn,KO) XQP L)rig XTzig/Sn T£1g>
in the target of f and thus the inverse image of Z%°" under f, denoted by Z?_Cr, is Zariski
open dense in %?*Cr X yh-cr Q‘jl;*“ (smooth morphisms are open). The subspace Z?*“ is in-
variant under the action of Res /g, (GL,, / Ko) X, L (change of bases) and thus descends along

yh—cr h—cr Fyh—cr o 1i7h—cr ¢ ah—cr
X; T x ghoer Yy X5~ to a Zariski open dense subspace W ™™ of X3 .

For any ¢-module D of rank n over A ®q, Ko where A is an L-algebra, let

D7 := D ®Lgq, Ko,idor L

for 7 € Hom(Ky, L). Let o be the Frobenius automorphism of Kg. Then ¢ : D ;i — D, oi+1
where poof = 1900% = 7. Givenabasis ey, - - - , e, of the A ®q, Ko-module, equivalent bases
(e; ® Lag, Ko,idor L)i=1.... », of D for each 7 € Hom(Ky, L), the matrix of ¢ is given by M =
(M) reHom(Ko,L) € (Resk,)q,(GLn,Ky) Xq, L)(A) where M is the matrix of the morphism ¢ :
D, — Do, under the given bases. On Z8°", the condition that ¢; # ¢; fori # j allows to define

a Zariski closed subspace .7 C 25" cut out by the condition that M, = diag(a, 1, - ,arn)
are diagonal matrices where HTGHom( Ko,L) Ori = @i foralli = 1,--- ,n (this corresponds to
the choices of bases ey, --- , e, of D such that np[K‘J:QP}ei = p;e;). It is easy to see that 7 is

smooth over (G/P)"%. Let 1~ := f~1(.7) be the inverse image of .7 in X}~ X phor PR

Then %;‘*“ — WF}‘*“ is a (Resg,/q,(Gm) ®q, L)"-torsor corresponding to the trivialization
of the p-modules with the bases given by eigenvectors of go[K()’Qp] as above (such bases exist
locally because the morphism !50:@rl — ; between projective modules has cokernel and kernel
of constant ranks over a reduced base). The map T2~ — F — (G/P)" is also smooth.

For any w € W/Wp, descending along the map ‘ﬂlfcr — /I/I\?Fh*“r for the inverse image in
B of the Bruhat cell (BwP/P)"¢, where the inverse image is invariant under the action of
(Resg, /0, (Gm) ®q, L)", is a Zariski locally closed subset in Wh=er | denoted by W?lj;cr. Let

WF}‘;“ be the Zariski closure of W?h;cr in WF}‘*“. Then we have the usual closure relations

WF}";“ = Hw,gw WFh;,Cr by a similar argument as in the proof of [BHS19, Thm. 4.2.3] (using
that smooth morphisms are open) and descent. s .
Hence a point 2 = (r, ¢) with the refinement denoted by R in WP lies in WF};“ (resp.

W?}ECI) if and only wg = w (resp. wg < w). For any w € W/Wp, there is a morphism
tha @ X7 xp TP® — X7 xp T} that sends (r, ) to (7, 2*®unr(y)). We have W{‘;“ C

th ey (Ussi (7)) by [Ber08b). Hence WP, C 1% (Xowi(7)) for any w € W/Wp. Thus tp (W) C
X (F) for any w > wg which finishes the proof of the first statement of the theorem.

To prove the last statement of the theorem, by the first statement, we only need to prove that if
' = (r,8') € X4,i(F), then 2’ = x,, for some refinement R of r and w € W/Wp. This follows
from the bijection between the triangulation of Dyig(r) and the refinements of r, [KPX14, Thm.
6.3.13] and [BHS17b, Prop. 2.9]. O

3.4.2 p-adic automorphic forms and eigenvarieties

We now turn to the global settings in [BHS19, §5] (see also [BHS17bl §2.4 & §3] or [BHS17a,
§3]). We recall the basic notation and constructions. The reader should refer to loc. cit. for details.
We assume from now on p > 2.
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Let F'T be a totally real field and F//F* be a CM quadratic extension such that any prime in
Sp, the set of places of F'* above p, splits in F.

Let G be a unitary group in n > 2 variables over F'* which is definite at all real places, split
over F' and quasi-split at all finite places.

We fix a tame level U? = va s, U, where for any finite place v ¢ .Sy, U, is an open compact
subgroup of G(F}"). We assume that U? is small enough in the sense of [BHS174, (3.9)]

Let S D S, be a finite set of finite places of It that split in F' and we require that every place
of F'* that splits in F' such that U, is not maximal is contained in S. For each v € S, we fix a
place v of F above F'".

We fix an isomorphism G X -+ F' ~ GL,, r which induces i; : G(F,") = GL,(F}) for any
v € Sp.

Recall that L denotes the coefficient field, a finite extension of QQ,. We assume that L is large
enough such that [Hom(Fy, L)| = [Fy : Qp] forall v € S),.

We define the set ¥, := Hom(F3, L) for any v € S, and let ), = Uycs, Xy

Denote by B, (resp. By, resp. T,) the subgroup of G, := G(F,") which is the preimage of
the group of upper-triangular matrices (resp. lower-triangular matrices, resp. diagonal matrices)
of GLy(F5) under i3 and let By = [],cg, Bos B, = [I, es, B, and T, = = [loes, Tv. Set
GP = HUESp Go.

For v € S, let g, (resp. by, resp. by, resp. t,) be the base change to L of the Qp-Lie algebra
of G, (resp. B,, resp. B, resp. T;). We define g = Hvesp gu,t = Hvesp t,, etc. and for
v e Sp, T € Xy, Set gr = @y ®FE®QPL,T®id Lt =t ®F5®QPL,T®id L, etc..

Let S(UP, L) (resp. S(UP, O1,)) be the space of continuous functions G(FM\GAR,)/U? —
L (resp. G(FT)\G(A¥,)/UP — Or) on which G, acts via right translations. Then there is
a Hecke algebra TS (a commutative (’)L -algebra, see [BHS17bl §2.4] for details) that acts on
S (UP,Or). We fix a maximal ideal m*® of T with residue field k7, (otherwise enlarging L) such
that

S(UP,L),s # 0

and that the associated Galois representation p : Gr — GL,, (k1) is absolutely irreducible (i.e.
m* is non-Eisenstein) where G := Gal(F/F).

We assume furthermore the “standard Taylor-Wiles hypothesis”, that is we require that F' is
unramified over F'*, I contains no non-trivial p-th root of unity, U, is hyperspecial if the place v
of F* isinertin F, and p (Gal(F/F(/1))) is adequate (cf. [BHSI9, Rem. 1.1]).

The Galois deformation ring 75 5, which parameterizes polarized deformations of p unrami-
fied outside S, acts on S(U?, L)ms The subspace of locally Q,,-analytic vectors of S(UP, L) s
for the action of G, denoted by S (UP, L)%, is a very strongly admissible locally Q,-analytic
representation of G, ([Eme07, Def. 0.12]). The eigenvariety Y (UP, p) is defined to be the support

R ’
of the coherent sheaf (J B, (S(UP, L)% )) , applying Emerton’s Jacquet functor (with respect
to the parabolic subgroup B, of G}) on S (U p L) % and then taking the continuous dual, on

Spf(R;s)"& x TpL, where TpL =11 TML denotes the base change to L of the Q,-rigid

vES)
space parameterizing continuous characters of 7), = [ [, s, Tv-
Let Ry = ®U65Rp~[[ac1, -++,x4]] where for a place ¢ of F, Ri is the maximal reduced
Z,-flat quotient of the local framed deformation ring of p; = p|gF over O 1, and g is certain

determined integer. Then there is an O -module M, constructed in [CEG"16] (see [BHS17b,
Thm. 3.5] and [BHS17al §6]) equipped with actions of R, and G), so that II, := Méo[%] is
a R.c-admissible Banach representation of G, (IBHS17b, Def. 3.1]). The patched eigenvariety
X, (p) is defined to be the support of the coherent sheaf Mo, := (Jp, (HROO_&H))/, applying
Emerton’s Jacquet functor on the subspace of locally R —analytlc vectors of I, ([BHS17b) Def.
3.2]) and then taking the continuous dual, on Spf(R.,)"8 x T, »,L- Then a point & = (r,,0) €
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Spf(Roo )8 x TpL lies in X,,(p) if and only if Homy,, (8, Jp, (I~ [m,. ] @,y k(x))) # 0
where m,., denotes the maximal ideal of R..[1] corresponding to the point r, € Spf (Roo)™® (cf.
[BHS17b, Prop. 3.7]). Recall that X ( ) is reduced ([BHS17b, Cor. 3.20]). The eigenvariety
Y (UP,p) is identified with a Zariski closed subspace of the patched one X, (p).

We denote by

— rig — rig
. / S / _ . i
X5, = Spf <®veSpRpﬁ> , Xpr := Spf <®U€S\SPR%> , U9 = Spf(Op[[z1, ,xg]])"E

and X o := Spf(Ro)"8 X5, X Xpp x U9,
Let Xi(p,) := []e s, Xtri (ﬁ;) which by definition is a Zariski closed subspace of X5 xfp L

Denote by ép, := | - ’};1 @@ [ @ @] |}2" the smooth modulus character of B,
and 0p, = ®Ques,0B,- Let iy, be the automorphrsm

(51;,17 T 75v,n) — 531, : (51),17 t 75v,i€i_1a ce 5v,n€n_1)

of Ty 1, and let + = Hve s, o fp L= fp - We also use ¢ to denote the automorphism of

X5, xfn L (z,9) — (z, (5)) Then the reduced closed subvariety X, (p) of X5 x Xz xU? ><Tp L
lies in the Zariski closed subspace ¢ (th( p)) X Xz x U9 and is 1dent1ﬁed with a union of
irreducible components of ¢ (Xm(ﬁp)) x Xz x U9 ([BHS17b, Thm. 3.21]) any of which is of the
form ¢(X') x XP x U9 where X (resp. XP) is an irreducible component of X (ﬁp) (resp. Xzr). An
irreducible component X of Xii(pp,) is said to be XP-automorphic for an irreducible component
XP of Xzr if 1(X) x XP x UY is contained in X,(p).

Definition 3.4.2. 1. A character 0 = (0,)ves, € T .1 is called generic if for each v € S,
it (8,) €T, /'0» Where 7, denotes the subset Ty in for characters of (F)". Ex-

v

plicitly, we say 9 is generic 1f Oy 15 F~ “H i £ ok ek for any v € Sp,i # j, k € Z¥v.

2. Apointx = (r4,9) € Xoo X 'fp,L (ory = (p,0) € Spf(Rp,S)rig X ’fp,L) is said to be generic
if J is generic.

3.4.3 Orlik-Strauch theory

We recall the theory of Orlik-Strauch on Jordan-Holder factors of locally analytic principal
series which will be the companion constituents in the locally analytic socles.

Let O (resp. O) be the BGG category of U(g)-modules attached to the Borel subalgebra b
(resp. b) ([HumO8, §1.1]). If M is in @alg ([Brel6l §2]) and V' is a smooth representation of

T, over L, then Orlik-Strauch constructs a locally Qp-analytic representation }' (M V) of G,

(JOS13]], see [Brel6, §2], [BrelSb, §2] and [BHS19, Rem. 5.1.2]). The functor .7-" ( —) is
exact and contravariant (resp. covariant) in the first (resp. second) arguments (cf [Bre15b Thm.
22D). A = (Mo)ees, = (Arts Arn) s, ves, € Hvesp(Z”)E“, we let 2* = [Toes, 2 2
be the algebraic character of 7}, = [, S, T, which satisfies that wt, ((z’\“)i) = \,; for every
7 € Y,. Thus we may view A as a weight of t. Assume that § = (0,)ves, € Tp,r(L) is
locally algebraic of weight A (i.e. wt(0) := (Wt (0v,i))i=1, n,res,ves, € HveSP(Z”)Z” and
A = wt(d)) and we write § = 2*d,,, so that §, is a smooth character of 7},. We define

7ort@) = g1 (V@) 80 (-9) ns)

p

s~
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where —\ is viewed as a weight of b and (—)V is the dual in O (cf. [HumO8| §3.2]). By [BrelSbl
Thm. 4.3, Rem. 4.4],

Homg, (F5” (6), IT*") = Hom, (8, Jp, (II*")) (34.3)

for any very strongly admissible locally analytic representation II*" of G, over L.

For such ), let L(\) (resp. L(\)) be the irreducible U (g)-module of the highest weight A in
O (resp. in O). Let Wg,, := Hvesp (S5)*" be the Weyl group of g = [, g = erzp g acting
naturally on [, s, (Z™)** and we identify this action with the usual action of the Weyl group on

weights of t. Let
n—1 n—2+1 1—n
9 PE) 9 P aT)TEEU,UESp

p=(

be the half sum of positive roots (with respect to b) (the notation p will also be used to denote
Galois representations when it will not confuse the reader according to the context). The dot
action is given by w - y = w(u + p) — p forany w € Wg, and p € Hvesp(Z")E“.

We say A € [],c SP(Z”)EU is dominant (resp. anti-dominant) (with respect to b) if A\, ; >
Arit1, VT € Ep,i=1,--- ,n — 1 (resp. —\ is dominant). Now assume that \ € Hvesp (Z™)>v
such that A + p is dominant (so that A\ is dominant in the sense of [HumO8, §3.5] with respect
to b). Let wo = (wy,0)ves, = ((wT7O)TEEU)v€SP be the longest element in W¢, and let Wp, =
[1.e s, Wp, be the parabolic subgroup of W, consisting of elements that fix wp - A under the dot
action where B, = [, g, P denotes the parabolic subgroup of [, (Resp; g, GLn/r;) Xq, L
containing the Borel subgroup of upper-triangular matrices associated with Wp,. Now —A is
dominant with respect to b in the sense of [HumO8| §3.5] and an irreducible module f(— ) is
a subquotient of U(g) ®;5) (—wwo - A) if and only if x T wwo - A (cf. [HumO8, §5.1], the
linkage relation 1 here is defined with respect to b). One can prove that u T wwg - A if and only if
—p = —w'wg - A for some w' € W, /Wp, such that w’ < w in Wg, /Wp,. Hence we conclude
that the Jordan-Holder factors of U (g) U @) (—wwg - \) are those L(—w'wg - \) for w’ < w in
We, / Wp, (one can also use the fact that the translation functor Twoa\ is exact ([HumOs, §7.1])
and T, ;”(?_'O’\M (wwg - 0) = M (wwy - \) for all w € W, where M (—) denotes the Verma modules
with respect to b, 7% L(wwy - 0) = L(wwg - \) if w € (W, )T and T200 L(wwg - 0) = 0
ifw ¢ (WGP)PP to reduce to regular cases, cf. [HumO8, Thm. 7.6, Thm. 7.9] or [Irv90, Prop.
2.1.1).

For a locally algebraic character § € fp, 1, of weight A\, we define characters 0, := wao~Aésm
forw € Wg, / pr By the Orlik-Strauch theory ([Brel6, Thm. 2.3 & (2.6)]), if the smooth

representation Ind Gp 6 5 B, is irreducible (which will be the case in our later discussions), the lo-

) =sm

factors of }—Ep (0,,) are those ]-" ( (—w'wg - M), &4 5]§p) where w' < w in Wg,/Wp, and

) =sSm
G

’FE: (f(—wwo A, 00 Bp) is the unique irreducible quotient of ]-"g: (04)-

) =sm

cally Q,-analytic representatlon f ( (—wwo - A), 0405 ) is irreducible. The Jordan-Holder
P

3.4.4 The locally analytic socle conjecture

We prove our main results concerning the appearance of companion constituents in the com-
pleted cohomology and the existence of companion points on the eigenvariety in the situation
of non-regular Hodge-Tate weights. The proofs of Proposition and Theorem fol-
low essentially part of the proof of [BHS19, Thm. 5.3.3] with weakened assumptions. The new
ingredients are in Theorem [3.4.10] and Proposition [3.4.13]

Let A = (Arp,- - ’)‘T»”)Tezv,vesp € [les, (Z™)*v such that A + p is dominant. Then we
have the parabolic subgroup P, of [ ], . s, (Resp, /g, GLn/F;) X, L associated with A as in
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We firstly recall some representation theoretic results in [BHS19) §5.2] and the construction
of certain “family of companion constituents” in the proof of [BHS19, Thm. 5.3.3].

We write TT122 for [Tl 20, Let U, be the unipotent radical of B, and Uy be a compact open
subgroup of U,,. Suppose that II*" is a very strongly admissible locally Q,-analytic representation
of G over L. If M € Oy, then M is equipped with an action of B, and Homg;(y) (M, I1*")
is equipped with a smooth action of B,. Its space of Up-invariants Homgg) (M, Ha“)U0 is then
equipped with a Hecke action of le' ={te Ty | tUpt™! C Up} given by ([BHS19, (5.9)])

frt-f=0p,(t) > uotf.

quUg/tU0t71

The starting point is the following adjunction formula. For any finite-dimensional smooth rep-
resentation V' of T}, over L, by [BHS19, Lem. 5.2.1] (which itself follows from [BrelSb, Prop.
4.2]), we have

Homg, (ffp (Hom(M, L, V((S]g;)) ,Ha“) = Homy (V, Homyy(g) (M, Han)UO)

= Homr, (Vv <HOmU(9) (M, Han)Uo)fs) ’

where (—)g denotes Emerton’s finite slope part functor ([Eme06b}, Def. 3.2.1]) and Hom (M, L)ﬁoo
is the subspace of Hom (M, L) consisting of elements annihilated by a power of 11, base change to
L of the Q,-Lie algebra of the unipotent radical of Ep (see [Brel5b, §3]).

In particular, for any point y = (ry,d) € Xoo X TA}D, 1, with the corresponding maximal ideal

m;., for r,, such that § is locally algebraic of weight wwyg - A and has smooth part d,,,, we have
Gp (T _
Homg, (Fg* (L(=wwo - N), 805! ) T2 [me, ] @4r,) k(y) ) (3.4.4)

— Homz, (8, (Homy(g) (L(wwi - X), T, | @40, k(1)) ) -

Recall by (3.4.3), y € X,,(p) if and only if Homg, (fg: (), HES [ | @y k:(y)) # 0, and

there is an injection

Homa, (Fg (T(=wwo - X), 805! ) B[, ] @x(r,) b))

< Homg, (]fgj (8,), T2 [m,, ] @xgr,) k(y)) (3.4.5)

induced by the quotient U (g) U @) (—wwp - A) = L(—wwy - A) for any w € W,

For any w € Wg,, let Xp(p)wuw,- be the fiber of the composite map X, (p) — T L M ¢ over
wwg - A € t*. Here t* denotes the rigid space associated with Homp,(t, L) and the map wt sends a
character of T, to its weight. Since Jp, (I132) = ((I132)%0)g, the quotient U (g) ®/(p) wwo - A —
L(wwy - A) induces a closed immersion as

(Homy (g (L(wwo - X), 1)) (Homy g (wuwo - A T2 )™ )
= Homy(y) (wwo - A, Jp, (II52)) (3.4.6)

which is compatible with actions of Roo[%] and 7}, (see Step 8 of the proof of [BHS19, Thm.
5.3.3] for more details on the topology). The continuous dual Homy; ) ('LU’UJ(] W BP(H?)Q))/ of

the target is the global section of the coherent sheaf M, ®0 Xp(7) Ox, (B)uwwy-r OVEL the quasi-Stein

space X, () ww,-x (as a closed subspace of the quasi-Stein space Spf (Roo)™8 x fp, 1, cf. [Emel7,

/
Def. 2.1.17] and [STO3, §3]). Then the continuous dual (HomU(g) (L(wwo-A),Hgg)UO)f of
S
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the closed subspace corresponds to a coherent sheaf, denoted by L1, 00 Xp () ww,-» and the
continuous dual of (3.4.6) gives a surjection of coherent sheaves

Moo ®OX;D(5) OXp(ﬁ)wwo.A = Luwo-x

on X, (P)wwe-r- Let Yp(P)wuw,-» be the schematic support of L,,,,,.» Which is a Zariski-closed sub-
space of X, (P)wwy-a- Let Yy (p ){f& ,, be the underlying reduced analytic subvariety of Y},(7) yuwo-a
(cf. [BGR84, §9.5.3]).

Remark 3.4.7. We warn the reader that the subspace Y}, () wuw,-» of Xp(p) should not be confused
with any subspace of the non-patched eigenvariety Y (p, U?). Note that when L(wwy - A) is a
finite-dimensional representation of g, Y,(0)ww,-» is similar to a “partial eigenvariety” that will
be defined in §3.5.4] (by taking Q, = G, J = ¥,), but with more restriction on the weights
of characters. And in this case one can prove that Y},(p)yuw,.» i8 equidimensional by the usual
arguments for the eigenvarieties, cf. Lemma [3.5.14] We don’t know whether one should expect
that Y},()ww,-x is equidimensional when wwy - A is no longer dominant.

Letms_ be the kernel of the morphism L[T,] — L of L-algebras given by a smooth character
¢m- Then for any L-point y = (ry, 290 *6..) € Xp(P)wwer C Xoo X ’fp,L,

~

: n\ U !
‘wao-)\ ®OXP(F)wwO~)\ OXp(ﬁ)wwoA)\,y = l&n (HomU(g) (L(wwo ' )\)7 Hgo) O>fs/ (mf’?ﬂmgsm)

s,teN
(3.4.8)
. an\Up s t !
= tim (Homy(g) (L(wwy - X), T2) [, Jm§ 1)
s,teN

/
= (hg Homy (g (L(wwp - \), TI28) Y [miy”mgsmo
s,teN

where each

Homy () (L(wwp - A), 1) [m ][m§ ] = Homy g (L(wuwp - A), Mo [mg ™) [m},_]

T Ty =sm

is finite-dimensional (using that I3} is R..-admissible, the finiteness comes from the related prop-
erty of Emerton’s Jacquet module, see [BHS19, Lem. 5.2.4]).
We denote by Homyy(g) (L(wwo - M), I122) Yo [mee ][m5 ] for the last term in the bracket in

(3.4.8). Thus
Homg, (]:g: (L( wwg - A), 0r om0 ) Han[mry]) £0

if and only if (by (3.4.4))
Homy (q) (L(wwo - A), TI52)™ [my, ][ms, ] # 0
if and only if i € Y,()ww,-» Which is equivalent to that

Homy(g) (L(wwo - A), TT2)Y [m®][mg° ] # 0.

\/

Next, we take y = ((pp,d ,2) € Y},(p)wwo,\ C Xp(p) C ¢(Xui(p,)) x (Xp x UY)
a generic L-point (Definition [3.4.2) and w = (wy)ves, = (Wr)rex,ves, € Wa,/Wp, =
[Loes, (S )= /Wp, such that wt 5) = wwp - A. Write pp = (p5)ves, € Il,es, Spf (R, )"e.
Let h = (hg)yes, = (hr)res, = (hr1, -+, hrn)rex, be the anti-dominant Hodge-Tate-Sen
weights of p, where we view h as a coweight of t and “anti-dominant” means that ~,; < --- <
hrn, VT € Bp. Thenwo - A = (hra, -+ hey +i =1, S b+ — Dres, € [1eq,(27)
The stabilizer subgroup of h under the usual action of We, = (Sn)zp is Wp,.

/—\
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By Theorem [3.3.17|and the generic assumption on d, (pp, ¢~ * (8)) lies in a unique irreducible
component X of X (ﬁp) The union of irreducible components of X,,(p) that pass through y
are of the form ¢(X) x (Ule 1X?) x U9 where X¥ x UY,i € I are some irreducible components

of Xz» x UY. Then ™! induces a closed immersion Y( )Z‘jgo x = Xui(Pp)wm) X Xpp x UI

where Xii(p,,)w(n) denotes the fiber of the composite Xti(p,) — fp, I ¢ over w(h). Hence ¢
induces a surjection

~

Oth‘i(pp)w(h)7L71(ppvé)®LO%ﬁpXUg”Z — Oy, Y,(p )“*10 N

Recall in ~ 5| foreach v € S, Dyig(p5) [ ] is equipped with a unique triangulation My 4 associ-
ated with the point (pz, t;*(8,)) € Xu:i(py) and we have an isomorphism Xm(pv)(p~ 6 =

Wy

X;)‘;”M5 . by Corollary |3.3.15| In §3.3.6) we have OXm(pU)W oyt (p5.8y) = va,ng Hence

=T} = ~
OXtri(pp)w(h)7L71(ppyé) = RppaM- = ®U€SPRPT;7MT;,¢' Define RPP = ®U€SPRP6' We geta com-

posite map

~

R,, = R, pm,~O — Oy, (e (3.4.9)

Xtri(ﬁp)w(h)7L_l(pP7 ) wwq- )\’y

Let @p = [,es, [1;ex, @~ be a standard parabolic subgroup of [],cg (Resr, /g, GLy/F;) Xq,
L= Hrezp GL,,/, (with the Borel subgroup of upper-triangular matrices and the maximal torus
the diagonal matrices). For v € S, the statement “w, (hy) is strictly (),,-dominant” (Definition
3.2.24)) is equivalent to “w,w, o - A, 1S @ dominant weight for the standard Levi subgroup of @,,”.

Let Rgpp M, = (§)v65p Rgﬂ” M. where the latter is defined in the end of §3.3.6] rougly speaking,

parametrizing trianguline deformations of py that are (),,-de Rham. There are closed immersions
Spec(R,?;M.) — Spec(ﬁpIHM.) — Spec(R), ).

Theorem 3.4.10. If wwy - A is a dominant weight for the standard Levi subgroup of @), then the
morphism (3.4.9): R,, — OYP

Pl factors through RO paMat

Proof. The proof is based on Theorem [3.5.28

We have a closed immersion Y, (5 )ifgo v = Xp(p). We argue for a fixed v € S,. Let
D := Dyig(p2™) be the (o, T )-module over Ry, (5),r, associated with the universal Galois
representation p;}mi" of G pulled back from X5_ (cf. [Liul5, Def. 2.12]). By [BHS17b, Thm.
3.19] and [KPX14, Cor. 6.3.10], there is a birational proper surjective morphism f : X’ — X, (p),
a filtration of sub-(p, ', )-modules Dx o over Rx/ g, of Dxs := f*D such that for any point
y' € X', the base change Dy [}] is a triangulation of Dyy[1] = Diig(p, 7)[+] of parameter
Oy/ w15+ 0y ».n Where we use the same notations with different subscripts to denote the pullback

of the representatlon pum" characters from ﬁ,, etc.. Let Y’ be the underlying reduced analytic
red

subspace of f~ ( »(P) wiwe- /\). We pick an arbitrary affinoid neighbourhood V' of an arbitrary
pointy’ € f~1(y) in Y. By Theorem below, the definition of Y),(0)ww,-a» (3.4.4), and the
assumption that wwo A is dominant with respect to the standard Levi of (),,, we have that for any
point y” € V, D[] with the triangulation Dy 4[1] is Q,-de Rham (Definition 3.3.19).

We firstly prove that the map R, — Oy/ + factors through the quotient R v Mo The
proof is similar to that of Proposition [3.3.4] Take A a local Artin L-algebra w1th remdue field
k(y') and a composite y' = Sp(k(y')) — Sp(A) — V. The pullback D4, along the map
Sp(A) — V of the global triangulation Dy, = Dx/ 4 xx/ V gives a triangulation M 4, :=
D[] of Dyig (paz) [3] of parameter 64,41, ,64,0,n. Since the filtration Dy , is a strictly
trianguline filtration on a Zariski open dense subset of X', and the Sen polynomials vary an-
alyticly, the Sen weights of Dy ; are fixed integers (the weights of 0y, 1, -+ ,dy,:). Hence
we can apply Theorem below for each Dy;, and we get finite projective Oy -modules
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written by Dpqr(Dy,i) (in short for Dpar(War(Dvii)) = [l ex, Dpar.r(War(Dy,i))) with
Oy -linear operators vy. Check the proof of Theorem @ the filtration Dy, induces natu-
ral maps Dypqr(Dv;i) = Dpar(Dv,it1). By Theorem again, Dpqr(Dy,e) are specialized
to the k(y”)-filtration Dpqr(War(Dy»e)) for any y” € V. Since V is reduced, the sheaves
Dpar(Dy,;) form a saturated filtration of Dpgr (Dy ), i.e., Dpar(Dy;;) is mapped injectively into
Dpar(Dyi+1) and the graded pieces Dpar(Dv,i+1)/Dpar(Dyv;i) are locally free of rank one.
Moreover, forany 7 € X,,1 <i < i <nandy” €V,

(Dpdar,~(Dv,ir)/Dpar,+(Dv.i)) @0y k(Y") ~ Dparr(War (Myr it [ My 3)).

Let0 = 5,0 < -+ < 574 < --- < 874, = n be integers such that the Levi subgroup of @),
is GLs, ;5,0 X -+~ GLs_ ;5. , - % GLs,, s, , _, Since Dy[}] is Q,-de Rham for any
y' €V, vy = vy ®o, k(y") acts as zero on Dyar,r(War(Myr s /My, 1)) for 1 <
t < trand 7 € X,. As V is reduced, it follows that vy itself is zero on the graded pieces
Dypar+(Dvs,;)/Dpdar;7(Dv,s,;_,). By Theorem the same assertion holds for the base
change v4 of vy on Dpar,-(War(Ma,s, ,/Mas,,_,)). By Definition 3.3.19] Diig (paz) [1]
with the triangulation is ),,-de Rham (Definition [3.3.19).

We prove that the composite R, — Oy/ + — A factors through a map R, — jo’ Moo 7

A Let A := A Xi(y) L be the subring of A consisting of elements whose reduction modulo
the maximal ideal m4 of A lie in L. Then the map R,, — A factors through R, — Ac A
automatically. By similar arguments as in the proof of Proposition@, there exists a model p 5 -
(resp. d4,v,i, resp. Mz i o) of paz (resp. 05, ., resp. My o) over A whose reduction modulo m ; i

is py 5 (resp. Oy.v.i» resp. My 5e). This 1mphes that the map R, — Oy/ » — A factors through
Rpy — Rps My, — A C A. Moreover, Diig (pag) 3] = Drlg(ijv)[ J@gAand Mz @74 =
M .. It follows from the exactness and the functoriality of Dyqr(War(—)) that there exist
isomorphisms Dyar (War(Mz,)) ® 5 A = Dpar (War (Ma,e)) of finite free A-modules with
A-linear nilpotent operators (cf. the proof of [BHS19, Lem. 3.1.4], writing A as the cokernel of
finite free /T—modules). Since A — A is injective, the vanishing of v4 = v7 ® 7 A on the finite
free A-modules Dde,T(WdR(MA,ST,i /MASM_I )) = Dde,T(WdR(M,&ST i/ngs-r i1 )) ®EA
implies the vanishing of v 7 on Dpgr - (War(M Asrs /M Asriy )). This means that pig with the

filtration M e is also Q,-de Rham. The definition of Rgﬂ” Mo and Lemma [3.3.20| implies that

v,

the map R,. — A factors through RPQ; Moo ™ A.

By taking A = Oy, /mggyl forall j € N, we conclude that the map R, — @y/vy/ factors
Y

: Qu
through the quotient B>

Now the argument in the last part of the proof of Proposition [3.3.4] using the surjectivity and
properness of f : Y’ — Y,(p)™ | and the reducedness of Y,(p)'d |, shows that the map

wwg+ wwp\?

Rp~ — OY (p)red

wwg A

N also factors though R © S Mae O

Remark 3.4.11. We expect that the morphism R,, — 6yp (B uwwgrry 3 in Theorem |3.4.10| factors

through Rl?pp M, - However, we don’t know how to prove this stronger result.

From now on we focus on generic crystalline points. A point p, = (p5)ves, € Xp, (L) is said
to be generic crystalline if for each v € Sy, py : G, — GL,(L) is generic crystalline (in the
sense in . If py is generic, a refinement R = (R3)ves, of pp is a choice of a refinement Ry
of py foreach v € S),.

Suppose that p, € Z{pp(L) is a generic crystalline point with refinements Ry given by order-
ings p_ € (L*)" and that hg is the anti-dominant Hodge-Tate weights of p5 for v € 5. Recall

for each v € S, there exists wr. € (S,)*"/Wp, such that 2R3 (hﬁ)unr(fa) is a parameter of py
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and then the point (pg, szi(hT’)unr(gaﬁ is in Ugri(py) C Xtri(pz) (see §3.4.1). We continue to

assume \r; = hrpy1—i +i—1,V7e€X,,i=1,--- n.

Definition 3.4.12. For w = (w,)ves, € Wg,/Wp,. let iz, be the character ¢ (z*Munr(y))
of T,, where z*(®unr(y) is the abbreviation for the character [],. Sy 700 (b3)

H’UESP .

Then for each w € Wg, /Wp,, 0% ,, is generic and wwy - A is the weight of 0z .. The smooth
part 0 o = z_wwo"\ﬁﬁw is independent of w. We write wg := (wr,)ves, € Wa,/Wp,.

We already know that the point 3y, = (pp, ¢~ (O 4y )) 18 in Ui (p,). If we assume Conjec-
ture 3.23 of [BHS17b]] (which follows from a general automorphy lifting conjecture by [BHS17bl
Prop. 3.27]), we could get that the irreducible component of Xyi(p,) passing through v, is
XP-automorphic for any irreducible component XP of Xz». Hence there should exist a point
((Pps O )s 2) € Xp(P) C U Xui(p,)) x (X5 x UY). Then by [BHSI7a, Thm. 5.5], together
with the discussion on local companion points in we could expect z,, := ((pp, IR w) z) €
Xp(p) if and only if w > wg in Wg, /Whp,.

We will not consider the automorphy lifting anymore in this paper. Rather, our aim (Theorem
is to prove that all companion points x,,, w > wg are in X,(p) under the assumption
that there exists w’ € Wg, /Wp, such that z,, is in X,,(p). The assumption will always imply
T, € Xp(p) by [BHSI7a, Thm. 5.5].

The following proposition is the key new step to achieve the existence of companion points,
where Theorem [3.4.10]is used. In the proof of Theorem we will use some induction and
deformation arguments to reduce the existence of more general companion points on X,,(p) to the
special situation considered in Proposition [3.4.13|below.

unr(yp_) of T, =

Proposition 3.4.13. Assume that the points ((pp, 0 ), %) € ¢ (Xui(p,)) x (Xpe x UY) are in
Xp(p)(L) for any w > wg in Wg, /Wp, where p,, is generic crystalline and R is a refinement of
pp as above. If wrWp, # woWhp,, then ((pp, 6R wy ), 2) € Xp(p)(L).

Proof. We will prove
Homy(g) (L(wrwo - A), T18) ™ [m¥][mg® ] #0
where r, 1= (pp, 2) € Xoo. This will imply (by (3.4.4))
Homg, (Fg* (L(=wrwo - A), dr and, ) s Elmy, ] ) # 0

and by and (3.4.5), imply furthermore that ((pp, 6% .y ); 2) € X, (D).

For each v € S}, we still write wg, for the shortest representative of wg in (Sn)zv and write
WR = (ng)veSp € W, . We may assume that there exists and fix a place v such that wg is not
in the coset w, ¢ Wp, since wr Wp, # woWp,. Then by Lemma there exists a simple root
a of (Resp, /g, GLy/F,) Xq, L and a standard parabolic subgroup ) = Hvesp Qv = erzp Qr
of Hvesp (Resr, jq,GLy ;) Xq, L such that the element w' := sqwr = (wy)ves, € Wa,
where w;, = wg,, if v’ # v and w;, = sqwg, satisfies that Igp (w') = lgp (wr) + 1, w; (hy)
is strictly Q,-dominant and wg, (hg) is not strictly @Q,-dominant (Definition [3.2.24). By our
assumption, the point z := ((pp, g ), 2) is in X,(p).

In particular, M ®0x, 7 O X (Bt wy 2 Tt # 0. Equivalently, since M, is defined using

Jp, (I22) = ((1122)V0), by taking dual and arguing as in (3.4.8), we get
U
Homy () (U(g) ®u(ey w'wo - A, TE2) 7 [m][mg® ] #0,

éR,sm

(see also [BHS19, (5.16), (5.18)]).
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If Homg, (]—"g: (L( wwo  A), 0p sm0p ) Han[‘“m]) £0,

then by (3.4.3) and ( -i the point ((pp, % ,,), z) Will appear in X,(p). Then (pp, v (g ,,)) €

Xm(pp) Th1s is possible only if w > wx by Theorem Hence the irreducible constituents

of ]—" (5R ) that may appear as subrepresentations in 1125 [m”] are

Gy [+ _
F&r (T(=wwo - \), O 05!

where w' > w > wg in Wg, /Wp,,ie. w = w' orw = wg. And forany w < w',w ¢ {w', wr},
Homy ) (L(wwo - A), T32)™ [mp][mge, ] = 0.

The functor M +— Homg(q) (M, 112t [m?j][mg; Sm] is exact on the category . This fact

comes essentially from that the dual of I is a finite projective Soo [[K]] [%]—rnodule and that the
functors of taking generalized eigenspace of compact operators are exact. See discussions before
[BHS19! (5.21)] (and the arguments in [BHS17al Thm. 5.5] of proving firstly similar results for
ideals of Soo [%]).

Hence we get an exact sequence

n\ U 0o o)
0 — Homy(g) (L(w'wg - X), 1132) ™ [mP2][mg? |

Uo[

— HomU(g) (U(g) ®U(b) w/wo A, Hgg) mﬁj][mg;sm]

— Homyg) (L(wrwo - A), TP [mp2][mg? Lo

To prove Homy(g) (L(wrwo - A), [1an)Yo [mﬁ][mga ] # 0, by the above exact sequence, we
only need to show that

Homy(g) (L(w'wo - A), T2 [me¥)[m3?, ] # Homy(q) (U (8) @urgey ' - A, TE2) 7 [m m3e

Tz

or equivalently by taking dual as in (3.4.8]) to show that the map

~

Moo @0y ) OXp(ﬁ)w/wo,A,mw, — Loy wo-A ®oxp(p)w,w N OXp(ﬁ)w,wO‘)”g;w, (3.4.14)
is not an isomorphism.
We prove it by contradiction. Assume that (3.4.14) is an isomorphism. The action of Ox 5

on the right-hand side factors through

OYP(ﬁ)w/wOvVIw’ = OYP(ﬁ)w’wO-)ﬂxwl ®0Xp(ﬂ)w wg A’ T (p)w wgA? Loyl *

Thus by Lemma [3.4.16| below the O X, (7).

support whose underlying reduced subspace is Spec(OY (e

-module in the right hand side of (3.4.14) has

w’wg 2oLap!

2, ,)- Since Oy, () acts faith-
A7

fully on M, the support of M., ®o, ®) OX,(B) .y 1S SEE theoretlcally equal to X (0)wwo-A
([Sta22| Tag O0L3]) with the underlying reduced subspace X,(p yred . By Lemma|3.4.16|below,

w/wo-A
-module in the left hand

w/w0~)\7$w’

the underlying reduced subscheme of the support of the O X, (7)
side of (3.4.14) is Spec(O . ()55

). Thus we have

0>\’m w’

Spec(@ X, () )= Spec((’)y G )

wo)\7 w’wq 2T

éR,sm

w"w(yA’xw’
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By Theorem [3.4.10|and the above equality, the map

Rpp - Oth'i(ﬁp)w/(h)7L71(pp7é7€7/ )®LO% pxU9,z = OXp( yred ’

ww)\w

factors through Rif M, We now prove this is not possible. Assume that 1(X) x XP x VY is an
irreducible component of X, (p) passing through z,,» where X is the unique irreducible component
of Xy (ﬁp) passing through fl(pp, éR,w’) and X7 is an irreducible (reduced) component of Xz»
Let X,n) be the fiber of X over the weight w'(h) and let X rec(l h) be the underlying reduced
subspace. Then L(X;‘i‘%h)) x XP x 1Y is a reduced subspace of X,(p)*  and the map

wwo)\

Rpp — OXred

/(h)’ 1(pP7éR7w’)®LOprUg’Z

factors through RQ” M Hence the map R,, — O yred ) factors through Rgp’j M.

w’ v (pP7
(h)

Denote by v, = <pv, wy (hy “hunr(p.. )) the point on Xtri(pa)w;)(hg) and X, the irreducible
component passing the pomt with X, (. the fiber of X, over the weight w) (hy). We get that

the morphism R, —» RPmME L OXred factors through RQ“’M~ , 1.e.

! (hg) Yy

Spec(OX;eZlmﬁ)’ng) C Spec(R%” M) (3.4.15)

By discussions in §3.3.6/and (3.2.29)), the underlying topological space Spec((’) xred o ), which
wv(h ) I wy

as a topological space is equal to Spec(Rp~ M .), is a union of non-empty cycles denoted by
3wy and 3, in §|3.3. l By our choice of Q,, wnﬂ(hg) is not strictly ,-dominant. Then by

Lemma [3.2.30| or the discussion in the end of §3.3.6, 3., is not contained in Spec(R?; M .),

this contradicts (3.4.15))!

Lemma 3.4.16. Let A be an excellent Noetherian ring, m be a maximal idealAOf A, J be the
nilradical of A, and M be a finite A-module with a faithful action of A. Let A be the m-adic
completion of A.

1. X/\J — A/ J is the nilreduction of A.

2. A acts on M =A® A M faithfully and the underlying reduced scheme of the support of
M is Spec(A/J)

Proof (1) The sequence 0 — J—>A— A / J — 0 is exact ([AM69 Prop. 10.12] ) Moreover,
A / J is reduced ([Sta22), Tag 07NZ]]) and T is nilpotent. Hence J is the nilradical of A.

(2) We have a natural injection A — Hom A(M M) of finite A-modules. Tensoring with
A we get an injection A< HomA(M M) ®4 A= HomA(M M) ([GD60, Cor. 0.7.3.4]) of
A-modules by the flatness of A over A ([AM69, Prop. 10.14]). The injection means that A acts
faithfully on M. Hence the support of M as a A-module is Spec(A) and the underlying reduced
subscheme is Spec(A/J) by (1). O

The remaining steps mainly rely on the local irreducibility of the trianguline variety at generic
points and the crystalline deformation spaces introduced in the proof of Theorem The
following proposition reduces the existence of companion constituents in the generic crystalline
cases to the existence of companion points.
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Proposition 3.4.17. Let v = ((pp, 0 ), 2) € Xp(P)(L) C t (Xui(py)) X (Xz» x UY) be a point
such that p,, is generic crystalline with a refinement R, w € Wg,/Wp, and the weight of OR.w
(Definition is wwp - \. Let v, be the image of x in X and m,. be the corresponding
maximal ideal of ROO[%]. Then

Homg, (]—"g: (f(_wwo ), én,smégj) ,Hgg[mm]) £0.

Proof. The method is similar to Step 8 and Step 9 in the proof of [BHS19, Thm. 5.3.3]. We
will firstly prove the result for the case when w = wg which will be a consequence of (3.4.3)
and Theorem [3.4.1] For general points, notice that the appearance of the companion constituents
is equivalent to that x is in the Zariski closed subspace Y},()ww,-» of Xp(p) constructed in the
beginning of §3.4.4] Thus, it suffices to prove that x lies in the closure of generic crystalline
points in Y, () wuw,-» satisfying w = wr. This can be achieved using the variants of the crystalline

deformation space defined in the proof of Theorem
First, assume wWp, = wr Wp, and Homg, (.ng L(—wwp - \), g smOB, ) 112 “[m”]) =
p
0, then there exists w' € W, /Wp, and w' < w in W, /Wp, such that
Gp T — n
Homa, (757 (L(~w/wo - A), 6 i), M, ]) #0

since Homg,, (]—"g: (éRyw),Hgg[mrm]) # 0. Therefore Homg,, (fg: (ORr.w)s Hgg[m,nID # 0.

By |i the point ((pp, d.ur),2) € (X5, % fp,L) X (Xg» x U9) is in X,,(p). Then the point
Pps zwl(h)unr(f)) is in Xi(p,). This is not possible by Theorem 3.3.17, Hence the conclusion

holds in the case when w = wg.

In general, by Theorem and the generic assumption on p,, (pp, z“’(h)unr( )) lies in a
unique irreducible component X of Xy,i(p,). We assume that z lies in an irreducible component
of X,(p) of the form ¢+(X') x XP x UY for an irreducible component X? of Xz».

In the proof of Theorem [3.4.1, we have constructed crystalline deformation spaces wh

5—Cr
Wy

(resp. the closure W v~ "), which roughly parameterizing the pairs (p,, R,) of generic crys-
talline deformations w1th reﬁnements satisfying that wg, = w, (resp. wr, < w,). We have

also defined morphisms tp 4, : Wwhe—er Xiri(py) in the end of the proof of Theorem [3.4.1

pﬁvwv

—ho—cr

sending (pv, Rv = ¢, ) 10 (v, zw”(h@‘)unr(fv)). Let thw = [yes, thyw, © [loes, Wow, —

[Toes, Xui(P5) = Xui(pp). Then the point (pp, z*Munr(p)) is in the image of tn,, since
Nh— —cr i h— Tr-hy—cr

w > wg. Denote by W5 o =Ilues, va’wf and W2 " = Tl,es, va,wf .

We take an affinoid nelghbourhood U of (pp, w(h )unr( )) in X and pick a small open affi-
noid V' C Lh’w(U) such that (pp, “’(h)unr(g)) € thw(V). Then Wﬁ};ﬂﬁr NV is Zariski open
dense in V. Points in ¢ o Lh7w(/ﬂ7%;_£r NV) x XP x U9 C Xp(P)wwer N (L(X) x XP x UY) are
generic crystalline. Hence by the discussion above for the case w = wg, we have LOLh,w(th_lﬁrm

p’
V) x XP x U9 C Y,(P)wwo-» 1-€.

(WS AV) 5 X2 109 C (10 ) X id i)™ (Y (B)ugr)-

Since Y, (0)ww,-» 18 Zariski closed in X, (p), ((¢ © thw) x id x id) ™ (Yo (B)wwyr) N (V x XP x
U9) is Zariski closed in V x XP x U9. Hence V x XP x U9 C ((t0tn) X id X id) ™ (Y (D) wuwe-)-
This 1mphes ((ppvéR,w)v Z) € Yp(ﬁ)wwo&v O

Now we can prove our main theorem.
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Theorem 3.4.18. Assume that there exists w' € Wg, /Wp, such that the point

(P S 2) € 1 (Xui(By) X (B x 1Y)

is in X,,(p)(L) where p, is generic crystalline and R is a refinement of py,. Then ((pp, IR w) z) €
Xp(p)(L) if and only if w > wg in Wg, /Wp,.

Proof. The “only if” part follows from Theorem 3.4.1]
By [BHS174, Thm. 5.5] and the assumption ((pp, 0% .v),2) € Xp(p), we can assume

((pp7é72,w0)7 Z) € Xp(p)

We prove the “if”” part by descending induction on the integers £ < lg P, (wp) for the following
induction hypothesis:

He = if yu, = ((pp, IR we)> z) € Xp(p) is a generic crystalline point of Hodge-Tate weights
h with a refinement R, then for any w such that w > wg and lg P, (w) > ¢, the point y,, =
((PpsOp)> %) € 1 (Xui(p,)) X Xpr x UY is in X, (p).

For ¢ =lgp, (wp), there is nothing to prove. We now assume Hy and prove Hy_1.

Firstly, the assertion of H,_; holds under H, automatically for any generic crystalline y,,,
and w if Igp (wr) > £. By Proposition H, implies that if y,,, as above is in X, (p) and
lgp (wgr) = £ — 1, then y,, € X,(p). By Proposition Ywr € Yp(D)wrwo- (Proposition
[3.4.13|and[3.4.17|are proved for L-points, but the equivalent statements for companion constituents
can be proved in the same way after enlarging the coefficient field L).

Thus, the assertion of H,_1 holds at least for generic crystalline points y,,, such thatlg P, (wr) =
¢ — 1. For more general crystalline generic points yu,, w > wg and Igp, (w) > ¢ —1, we will

show that y,, lies in the closure of points y/, = ((p;,, ORI w)s ) the companion points of generic
crystalline points of the form y,, = ((p}, 0/ ,); 2) € X,(p) such thatlgp (wrs) = £ — 1. Since
Y., are in X,(p) by the previous discussions, y,, will be also in X,(p).

We take an arbitrary yuw, := ((0p; 0R wy): z) € X,(p) as in the hypothesis Hy_1, we need to
prove that for any w such that w > wg, lgp (w) = £ — 1, we have y,, € Xp(p). We may assume
lg P, (wr) < £—1 and by proving the equivalent statement on companion constituents, we may as-
sume ¥, is an L-point. Recall as in the proof of Theorem 3.4.T]or Proposition[3.4.17} for each v €
Sp, there is a variant of crystalline deformation space th,w, o : Wﬁha % — Xiyi(py) with the im-
age consisting of generic crystalline points with weights w,, o(hz) and for each w € (S,)**/Wp,,

there exists a Zariski locally closed subset wh iffr and its closure Wﬁj’wvcr = Uy’ <w, W;j’;,c '
v - v v

with an injection th_ 4, : V[N/;i — Xui(py) sending (pz, ¢ ) to (Pa, Zwv(hﬂ)unr(£5)>. The
image of tp ., consists of generic crystalline points of the weight w, (hg) such that the rela-
tive positions of the trianguline filtrations and the Hodge filtrations are parameterized by some

wl, < w, in (S,)% /Wp,. We let i, wo 1= Hves,, Uhywyo (TESP. thyw = Hves lhy w,) be the
embedding of Wg;_cr = [lyes, Wp; " (resp. /I/Ivfg;_f = [Tyes, W _Cr) into Xri(7,)-

Take w € W¢, /Whp, such that w > wg and Igp (w) = £ — 1 Let «(X) x XP x UY be
an irreducible component of X,,(p) passing through y,,, where X is the irreducible component
of Xi:i(p,) passing through ¢ ~!(p,, 65 ,,,) and XP is an irreducible component of Xz». We take
an affinoid open neighbourhood U of the point L_l(pp, IR w,) in X. Since wg < w, the point

(9 O wg) = (P 20 ™unr () is in en wO(th*“) Hence the intersection V := W;z” cr A

L}:L}O (U) is Zariski open dense in the affinoid V := Wh Tt w,(U) (we take U small enough

so that Lh7wO(U) N Wﬁl; o= Lh}wO(U) N %}ﬁlp * where %%‘p = Tles, % "=y and (pp, ) €

V. Then (10 thawy(V)) x XP x UY is a subset in X,(p). Any point in the subset satisfies the
condition in H,_; and for these points, wg = w,lg P, (wg) = ¢ — 1. Hence their companion
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points (¢ 0 th,(V)) x XP x UY is contained in X,(p) by the discussion in the beginning of the
proof where we have used Proposition [3.4.13|and #,. We get that the preimage of X, (p) under

the map (¢ 0 th ) X id x id : th_u‘jr X XP x U9 = ¢ (Xui(pp)) x XP x U9 contains the Zariski
p7

closure of V' x XP x U9 inside V' x XP x U9 which is equal to V' x XP x UY. This means that the
point y,, = (¢ (pp, 2*M™unr(p)), 2) is in X, (p). Hence Hy_1 holds. O

Remark 3.4.19. In the proof of [BHS19, Thm. 5.3.3], results in Theorem [3.4.18| were obtained
under the assumption, in addition to regular weights, that z is in the smooth locus of Xz» x U9
which is certainly expected to be not necessary. Our proof realizes this expectation!

Finally, we state the theorem for p-adic automorphic forms. Recall that there is a closed
embedding Y (U?,p) — X,(p) from the eigenvariety to the patched one and remark that we

always assume all the hypotheses in §3.4.2] Proposition [3.4.17]and Theorem [3.4.18]immediately
imply the following theorem.

Theorem 3.4.20. Let p : Gal(F/F) — GLy(L) be a continuous representation such that
pp = (plgp. )ves, is generic crystalline. Assume that p corresponds to a point (p, 0 ) €
Y (UP,p)(L) C Spf(Rzs)"8 x, fp,L where R is a refinement of p, and w' € Wg, /Wp,. Let
m, be the maximal ideal of Rﬁs[%] corresponding to p. Let \ be the weight of g .- Then
(P 0r 1) € Y(UP,p) if and only if w > wg in Wg, /Wp,, and for all w > wg,

Homg, (fg: (Z(-wwo - X), dr smd5! ) - SUP, L)k [m,]) #0.

Proof. Recall the action of 75 g on S (UP, L)ys factors through a quotient R; s. And there is an
ideal a of R, a surjection Ry /aRs — R5 s and an isomorphism

S(UP,L)ys ~ oo |a]

that is compatible with the action of R, and IZ; s on the two sides.

Suppose that under the closed embedding Y (U?,p) < X,(p), (p,dg ) is sent to the point
r = ((pp,dpu)s2) € Xp(p). Let ry = (pp, z) and let m;, be the maximal ideal of Roo[%]
corresponding to 7. Then m,., contains a. Hence there is an isomorphism of G-representations

S(UP, L)% [m,] ~ 112 [m,, ].

Note that (p,dr,,) € Y(UP,p) is equivalent to Homr, (05 4, /B, (S S(U», L) s[m,])) # 0.

Hence the assertions of the theorem follow from similar statements replacing S (UP, L) [my)]
by I122[m,. |, which are true by Proposition [3.4.17|and Theorem 3.4.18 O

3.5 The partial eigenvariety

In this section, we use Ding’s partial eigenvariety ([Din19c]) to prove some general result on
the relationship between partially classical finite slope locally analytic representations and par-
tially de Rham properties of trianguline (¢, I')-modules (Theorem which has been used
for Theorem [3.4.10] Most results around the partial eigenvariety in this section except for those in
§3.5.6|and §3.3.7|are essentially due to Ding, and we adapt his results for the patching module.

3.5.1 Notation

We keep the notation and assumptions in §3.4.2]and §3.4.3]
Foreachv € 5), let ), be a standard parabohc subgroup of GL,, /. (not Resr. /g, (GLy, k) Xq,
L!) containing the Borel subgroup of upper-triangular matrices. Write (), = Mg, Ng, for the
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standard Levi decomposition where Mg, is the standard Levi subgroup containing the diagonal
torus and Ng, is the unipotent radical. For an algebraic reductive group H, we use the notation
H' to denote the derived subgroup of H. We also use the same notation Q,, Mg, , Ng, , Mév
to denote the groups of F3-points which are identified with subgroups of the p-adic Lie group
G, via iz : G(F}) ~ GL,(F;). We have p-adic Lie groups @, := [Toes, @uv, Mg, =
[Loes, MQ“’M&?P = [loes, Méw etc.. Assume for each v € S, the standard Levi Mg, is
the group of diagonal block matrices of GL,, . of the form GLy, , /p X -+ X GLg, , /-, where
n = qu1+ -+ Q. Weletq,; = Z§:1 Qu,j forany v,1 < 7 < t, and let ¢, 0 = 0. Let
Bg, = By N MQP,EQP = Ep HMQP and write B, = T,Uq, (resp. EQP = TpUQp) for the
Levi decomposition of Bg, (resp. Bg,).

We have p-adic Lie subgroups 7, ép =T,N M’Qp, Bép =T, pr Uq, and Zyy,,  the center of
Mg,.

Recall g =[[,cg, [l ex, 8 and similarly we let mg, = [[,cq, [1 5, mq.,r (resp. m’Qp =
Mocs, rcs, ™o, -« tesp. 4, = e, Tres, (. - 1esp. b, = [oes, lres, b, - 1esp.
Mg, = [1.e s, HTEEU 3M,, 7> €tc.) be the base change to L of the QQ-Lie algebra of the p-adic
Lie group Mg, (resp. Mép, resp. Tép, resp. Bé?p, resp. Znyg, . etc.). We have t = t) , X
3Mg, MQ, = m’QF X 3Mq, and the morphism Zyz, = x Mé?p — My, is locally an isomorphism.

We pick an arbitrary nonempty subset J of ¥, and set J, = J N X, forv € S,. We let
mg 5= Iles, [lres, Mo, . to,.7 = Ilves, [1estq, - etc.. We will only need the case
when |.J| = 1 but adding this extra assumption will not simplify the notation.

We fix a uniform pro-p normal subgroup H, = [[,c s, H, of the maximal compact subgroup
Kp = [lves, Ko = Ilyes, iz (GLn(OF,)) of G, where each H, is good Fs-analytic with an
Iwahori decomposition as in [EmeO6b, Def. 4.1.3]. Let Ug, 0 = Ug, N .HZ?’ Mg, o0 = Mg, N
Hp,Ng,0 = No, N Hy, T, o = T(), N Hp, etc. and define Ug, 0, etc similarly. Let Z]T/[Qp =

[Loes, Z]J\}Qv (resp. T,f = [],es, T, resp. T]\“}Qp = [loes, Tj}Qv) be the submonoid of Z,,
(resp. T, resp. Tp,) consisting of elements ¢ such that tNg, ot~' C Ng, o (resp. tNp, ot ™! C
N, 0, resp. tUQP’Ot_1 C tUq,,0)- We use the notation (—)ts to denote Emerton’s finite slope part
functor [Eme06b, Def. 3.2.1] with respect to one of the submonoids Z;\L/[Q , T; or T]\J}Q of T},
where the exact meaning will be clear from the context. ' !
Recall that I1, is the patched representation of G, and IIZ7 denotes the subspace of locally
Ro-analytic vectors of II,,. We have an integer ¢, a ring S, in [BHS17b, §3.2] and we fix
an isomorphism So, ~ Op[[Z}]]. If H is a group, we denote by H := H x Z}. Then Tl
is equipped with an action of ép from the action of S, — Rs ([BHSI17b, §3.1]). Since the
patching module M is finite projective over So [[£,]] ((BHS17b, Thm. 3.5]), it is finite free over

Soo[[Hp]] as the ring Suo[[Hy]] is local. Hence Hoo’fjp ~ C(H,, L)™ for some integer m where

C (flp, L) denotes the space of continuous functions over .F~Ip with coefficients in L. By [BHS17b,
Prop. 3.4], Jg, (II5) is an essentially admissible locally Q,-analytic representation ([Emel7,
Def. 6.4.9]) of Z; x Mg, for some surjection Op[[Z}]] — R where Jg, is the Emerton’s
Jacquet module functor with respect to the parabolic subgroup (),,. By definition ([Eme06b, Def.

3.4.5)), Jg, (II57) is the finite slope part of Hig’NQ” " with respect to the action of the submonoid
Zy, of Zy, .
Qp Qp

3.5.2 The partial Emerton-Jacquet module functor

We recall the notion of locally 3, \ J-analytic representations introduced in [Sch10, §2] (also
see [Dinl7al §6.1] or [Din19a, Appendix B]) and the partial Emerton-Jacquet module defined in
[Din19c, §2.2.2].

Suppose that V' is a locally Q,-analytic representation of M¢g, = [],c Sy Mg, over L. A
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vector v € V is called locally 3, \ J-analytic with respect to the derived subgroup M’Qp if the
differential of the locally analytic function on Mbp : g — gv at the identity e € Mé?p, which a
priorilies in Homg, (Te Mg, , V') = Homp(mg, , V), vanishesonmp, ;= [[,cq, [1-cs, Mo, -
Remark that since ihe adj(iint action (i.f Mg, 0n~m’QU is Fy-linear, Ad(Mg, )Nm,QP’ = mg -

We fix a tuple Ay = (Ar)res = (Ar1, s Arn)res € (Z™)7 such that A, ; > A foralli >
j,7 € J. We identify A; with an element in t* := Homyp(t, L) that vanishes on [] .5 \ ; t7. De-
note by \’; the image of Asin (tg,)" == Homyp(t, ,L). Then there exists a unique algebraic rep-
resentation of [, Resp, /g, (Mév> ®q, L over L with the highest weight \’;. Let L My, (X))
be the associated (Q,-algebraic representation of the p-adic Lie group M, ép over L via the em-
bedding M, = [l,es, Mo, (F5) = Ilies, Resr/q, (Mé?“>L (L). The U(mg, )-module
LMégp () is the unique irreducible quotient of U (mg, ) DU (o, ) NjorU(mg ;) DUy, ) X,
(elements in my, _ act as zero on the module if 7 ¢ J,). We equip L M} (X;) with an action of

) P

mgp, = m’Qp D 3Mo, where the action of 3 Mo, is given by A J and denote by L Mo, (X s) for the
Q,-algebraic Mg, -representation on LMégp (A)- Let Lagg, (A;) := Homy, (LMQp (), L) be
the usual dual representation of My, .

~ Yp\J—an
If V' is a locally Qp-analytic representation of Mg, over L, let <V ®r L My, (A J>/) P

be the closed L-subspace of V ®r, L Mo, (X 7)' generated by locally ¥, \ J-analytic vectors with
~ \Zp\J—
respect to the diagonal action of M¢, . Then (V ®r Ly, ()\J)’) T s a locally ¥, \ J-

analytic representation of Mép in the sense of [Schl0l Def. 2.4] and is stable under the action of
Mg, We have

Homymy,, ) (LMQp (), V) = (LMQP (A) ®r V) Zp\J-an

as topological representations of Mg, (cf. [Dinl7a, Rem. 6.1.5]) where the action on the left hand
side is the natural one as in [BHS19, §5.2].

Now assume that V' is an essentially admissible locally Q,-analytic representation of Z; X G.
We will take V' = II22 = II%=~2" and the action of Zj is given by Op[[Z5]] - R or s = ¢
and OL[[Z}]] = Sec = Roo. We let Z5 act trivially on Lg, (As). Then Jg, (V') is an essentially
admissible representation of Zj x Mg, by [Eme06b, Thm. 4.2.32]. We define

Jo,(V)x, == Homy () (LMQ,, (A7), JQP(V)> ®r Lig, (\)

equipped with the diagonal action of Z; x Mg, There is a natural Z;, x Mg -equivariant mor-
phism:

Homy gy, ) (LMQP ), JQP(V)) ®r Ly, ) = Jo,(V): foue flu).  (3.5.1)

Lemma 3.5.2. The representation Jg,(V) . of L, x Mg, depends only on X} (in particular on

J, but not on the lift A 7). The morphism is a closed embedding and identifies Jg,(V') N,
with a closed Z;, < Mg,-sub-representation of Jg, (V).

Proof. For the injection, we can apply [Dinl7al Prop. 6.1.3] with respect to Mép. The last asser-
tion follows from the same arguments in [Dinl7b, Cor. B.2] and we prove it now. Since Jg, (V')
is an essentially admissible representation of Z; x Mgq,, Jo,(V) @1 Ly, ) ®L Lg, )
is also an essentially admissible representation of Z; x Mg, by Lemma below. By [Emel’/,
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Prop. 6.4.11], the closed sub-representation .Jg, (V) X, is an essentially admissible representation
of Z;, x Mg,. Thus the injection Jg, (V) N, = V' of essentially admissible representations of
L, x Mg, is a closed embedding by loc. cit.. O

Lemma 3.5.3. Assume that V is an essentially admissible locally analytic representation over L
of a locally analytic group G where the center Z of G is topologically finitely generated. If W is a
finite-dimensional locally analytic representation over L of G on which the action of Z is trivial,
then V ®@r W is also essentially admissible.

Proof. We have (V @ W) ~ V' @p W' as topological vector spaces. Since V' is essen-
tially admissible, by definition, there exists a covering of Z by open affinoids Z1 C Z2 cC .-
and a sequence Hy D H; D Hy--- of rigid analytic open subgroups with respect to a com-
pact open subgroup H = Hy(Q,) of G as in [Emel7, §5.2] such that the strong dual V’, as
a coadmissible module over the Fréchet-Stein algebra C**(Z, L)&D(H, L), is isomorphic to
L Can(Zn,L)®LD(H° H)@)c«m(z )8, D(H.L) V’ ([Emel7, Thm. 1.2.11, Def. 6.4.9]). Here L

denotes the coefficient field, C™(Z,L) (resp. C*™(Z,, L)) is the algebra of rigid analytic func-
tions on Z (resp. Zn) ([Emel7, Def. 2.1.18]), D(H, L) is the algebra of locally Q,-analytic
distributions on H and D(H, H) is the strong dual of H -analytic functions on H as [Eme06b)
(4.1.2)]. The isomorphism can(Z, L)&.D(H,L) ~ lim C*(Z,, L) D(H;, H) defines a
weak Fréchet-Stein structure on Can(Z, L)@LD(H, L) ([Emel7, Def. 1.2.6, Lem. 1.1.29]). We
write A = C*(Z, L)®,D(H, L) and A,, = C*(Z,, L)®,D(HS, H).

The Dirac distribution L[H|(C D(H, K)) (IST02b, §2, §31), as well as L[Z](C D(Z,L) C
¢™(Z,L)) (IEmel7 Prop. 6.4.6]), acts on (V @ W) = V' @, W’ diagonally where L[Z] acts
trivially on the second factor W’ since Z acts trivially on TW".

Denote by p the action of H on W’. There are two ring homomorphisms « : L[H] —
LH] ®p End,(W'),h — h® 1, 8 : L[H| — L[H] ®1 Endy,(W’),h — h ® p(h) and a map
v : LH] ®p End,(W') — L[H] ® Endp,(W') : h®@ m +— h & p(h)m such that 3 = 7 o a.
By [HLI11, Prop. 4.4], for each (large enough) n, «, 3, can be extended uniquely to continuous
maps oy, Oy, : D(HS, H) — D(HY, H) ®7 Endp(W') and v, : D(H,, H) @7, End(W') —
D(Hz, H) ®p Endy(W’) such that 8, = 7, o a,. Taking the complete tensor product with
C*(Zy, L), we get similar maps o, 81, : Ap, = Ap@rEndr,(W')and~), : A, @ End,(W') —
A, ®r, Endp(W') extending the maps o = id®p o, 8’ =id ®p, : L[Z] @1 L[H] — L|Z] ®L,
LH|®r Endr(W') and v = id ®, 7.

The tensor product U,, := (An@) AV’ ) @, W' is naturally an A,, ® Endy,(W')-module where
Ay, aswell as L[Z] ®r, L[H], acts on the second factor W' trivially. Then as in [HLIT], Prop. 4.6],
the map ), : A, — A, ®r End(W') equips U, a twisted action of A,, extending the diagonal
action of L[Z] ®, L[H] on U,. Since U, is a finitely generated A,, ®, Endy,(W)-module and
An ®r, Endz (W) is a finitely generated A,-module with respect to the action of A,, via both
al, and ], by [HLII, Cor. 4.5], we get that U, is a finitely generated A,-module and we have
an isomorphism An® Apy1Unt1 = Uy, with the twisted actions. Hence li m U, is a coadmissible
module over the Fréchet-Stein algebra A ([Emel7, Def. 1.2.8]). The action of A extends the action
of L[Z] ®r, L[H] on (V ® W)’ via the isomorphism V' @ W' ~ lim Uy, of topological vector
spaces. Such extension of the action of L[Z] ®, L[H] to A on (V ®1 W)’ is unique by [Emel7,
Prop. 6.4.7(ii)] and by that L[H] is dense in D(H, L) which acts continuously on (V ® W)' b
[STO2b, Lem. 3.1, Cor. 3.4], thus coincides with the usual action of A on (V @1 W)'. We get that
V ®r, W is an essentially admissible representation of G. O

Lemma 3.5.4. There is an isomorphism

T5a, (o (V)x, ) = T, (Hompgy, ) (Latg, () Ja,(V))) @13

of essentially admissible locally Qp-analytic representations of Z;, x Tj,.
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Proof. This can be proved by arguments in [Dinl9c, Cor. 2.11] together with [Dinl7a, Lem.
7.2.12]. Remark that LMQp (Ay) is J-algebraic in the sense of [Din17a, §6.1.1] and LMQp ()\J)UQP’O =

Loy, (As)907. =

Lemma 3.5.5. We have

. Ugp.0 ~ Ep\J—an,Uqg, o
(HomU(m/Qp!J) (LMQp ()\J), JQP (V)) P >f ~ ((VNQp,O & LMQp ()\J)/> P >f )

where the finite slope part is taken with respect to the Hecke action of TJ\tIQ for the left hand side
p

and that of T;r for the right hand side.

Proof. By [Eme06b), Prop. 3.2.9], (VNQP’O)f ® LMQp (XJ)/ ~ (VNQP’O ® LMQp (X;)’)f . Since
S S
the action of Z]T/[ commutes with m’Q 7» by [Eme06b, Prop. 3.2.11], we get
Qp j 2

< ~ Xp\J—an
Homy (wy, ) (LMQ,J(/\J),JQp (V)) — <<VNQp70 ®LMQP()\J)/) ’ )f‘. (3.5.6)

Now the arguments of [HL11, Thm. 5.3(2)] or [Dinl9c, Lem. 2.18] using [Eme06bl Prop.
3.2.4(ii)] shows that

~ A\ Zp\J—an\ Yap.o ~ N\ Ep\J-anUqg,,
(o)) = (oo™ )
fs

fs fs

Combining the isomorphism above with (3.5.6), we get the desired isomorphism. O

3.5.3 An adjunction formula

We prove an adjunction formula for the partial Emerton-Jacquet module functor based on
[BHS19, Lem. 5.2.1].

Suppose that IT*" is a very strongly admissible locally Q,-analytic representation over L of G,
and § = 2*J,, where 2 is the Q,-algebraic character of T}, of weight A = (Ar)res, and dg, is a
smooth character of 7). We write A\ = A+ Ay, \ s according to the decomposition t* = ;@ t*zp\ J

which means that \; (resp. Ay \ ) vanishes on ty; \ s (resp. t;). We assume that the image of A
in (tg ;)" is equal to \); in §3.5.2 Then (see §3.4.3)
an G v - an
Hom, (3,75, (1) = Home, (757 (V@) @0 (-0)8and! ) 1)
The U (q)-module U(q) @75y A admits a quotient
Ly(A) : = (®ves, resyLmg, . (Ar)) ® <®vesv,r¢JUU(va,r) QU(bgy.r) )\T> (3.5.7)
= LMQP (Ag) ®L Mme (AEP\J)'

where M, (As,\g) = U(QOzp\J)®U(prY2p\J))\EP\J and Ly, (A7) is defined as Lg, (M)
(only with a possibly different action of 3 Mo, 7)- Thus there is an injection (see the beginning of

§3.44ffor (—)*)

Homg, (}'g: (Hom (U(9) @y LiAN), L))", Qsm(s;;) ,Han) (3.5.8)

< H For ((U(g) @ (<N) 8,650 ), 110
omg, B, g U(h)( )) 2 0m By | :
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Recall there is a closed immersion Jg, (II*") < Jg, (II*") in Lemma 3.5.2 which induces a
closed embedding

Tsa, (Ja, (), ) < Jg, ()
by [Eme06b, Lem. 3.4.7(iii)] and by that Jp, (T1*) ~ Jp, (Jq, (I1**)) (HLLI} Thm. 5.3)).

Proposition 3.5.9. There exists an isomorphism

Hom, (757 (Hom (U() @0 Ls(N). 1)" 8} ) 1) 5 Hom, (5. Jnq, (1o, (07),))

such that the following diagram commutes

=00

Homa, (Fg* (Hom (U(e) @u(q) LN L) 185! ) s T") 5 Homa, (8, Jn,, (Jo, (%)) )

fe j

\% ~ P
Homa, (fﬁ;((U(g) Oy (—) 7§sm635)7nan> = Homg, (8, Jp, (II™)

where the right vertical arrow is induced by (3.5.1).

Proof. By [BHS19, Lem. 5.2.1], [Eme06b, Prop. 3.4.9] and that U(ng,, ) acts trivially on L;(\),
we have

u>®

Hom (U(g) ®U(q) LJ()\), L) 7ésm5§;> 7Haun)
S Homy () (U(8) @ur(q) Ls (M), Han)NBp’O)
5,

HOmU(me) (LJ()\)a I**[ng, ] ) NBM)

N
o

S
VS

U
:HomTp <5sm7 HomU(me) <LJ(/\), Han,NQp,0> Qp,0>
U
=Homr, (ésrm Homy(mg ) (Ls(A), Jo, (™)) QP’O)
where the last equations are given by similar arguments as in the proof of Lemma([3.5.3] Similarly

using U(g) @u ) A = U(9) ®u(q) U(q) ®u(v) A and that U (ng, ) acts trivially on U(q) @y py A =
U(mg,) ®U(bg,) A We get

Homg, ( FC (U(g)® - (—A))V 5,051 ), I
Gp \ VB, U(b) 1 9sm9p, |
an Uap.o
:I‘IOIHTp (ésm,HomU(me) (U(me) ®U(pr) )\, JQP (H )) D >
Thus the injection (3.5.8)) corresponds to the injection
any\\Uqyp,0
Hommg,, (dn Homis(ng, ) (L (M), Jo, (1) 72 )

an UQP’O
— HomTp éSrn‘) HomU(me) (U(me) ®U(pr) )\7 JQ;D (H )) °
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Firstly, we have

UanO

HOmU(meyJ) (LMQp ()\J), ‘]Qp (Han)>
:HomU(m/Qp,J)@)U(aMQP J) (LMQp (A1), JQ, (Han)>
:HomU(?)MQp,J) <1, HomU(mé;)p,J) (LMQP ()\J), JQP (Han)>)

an Yap.o
:HomU(ﬁMQp,J) (1, HOHlU(m/Qp,J) (LMQp ()\J), JQP (H )) P >

UQpaO

Ugp,0

an UQP‘O
:HOmU(tQp,J) 1, HomU(m/QpJ) <LMQp ()\J), ']Qp (H ))

where 1 denotes the trivial module of the universal envelope algebras and the last equality comes
U

from that the action of t’Qp, 7 on HomU(mb ) (LMQp(/\ 7):Ja, (Han>> WO already trivial.

Similar arguments as in Lemma replacing A there by A gives

an UQP’O
HOII]U({QP,J) 1, HomU(mbp,J) (LMQp ()\]), JQP (H ))

an UQ 0
= Homy,, ) <AJ, (JQP(H )A{]) : ) (3.5.10)
We get
an Uap, n Qp,0
Homymg, ) (LMQP()‘J)>JQp(H )) "~ Homyy,, ) <)\J, (JQ,,(H )A’) ’
3.5.11)
Hence
an U s
Homyy(mg, ) (L (M), Jg, (I1*)) %
an UQP’O
=Homi (g, ) (Latg, (M) €1 Ming, (s, Jo, (1))
/ an UQT”O
:HOIIlU(me) <Mme ()\EP\J)’LMQp()\J) ®JQP(H ))
an UQ 0
=Homyy) ()\2 \7> Homprmg, (LMQ (Ag), Jg, (1 )) [qu]) ’
an UQ 0
—Homyy(, <)\E v Homing, ) (Latg, (M), o, (1)) p)
B510) an) Ugp.0
Ho <)‘E \J,HOHIU (tp.s) <)\J, JQp H ) P >>
—Homy g ()\, Ja, (I1*) 5, ) Varo ) (3.5.12)

Finally, we get

E5D) any ) e
=Homr, <(5sm,HomU(t) ()\, (JQP(H )A&) » ))
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and similarly

Homyr, (ésmaHomU(mQ ) (U(me) DU (vg,) M JQp (Han))U%o)
(B Homur g (A, Ja, () fug, 1) 2 )

—~Homg, (8, Homyy(y (A, Jo, (1) ) )

—Homg, (8, Jq, (IT"™)Var0)

—Homyr, (4, Jg, (IT*)) .

:HOInTp

The commutativity of the diagram in the statement of the proposition can be checked by the fol-
lowing commutative diagram and by comparing with (3.5.1)) and (3.5.10)

Hom (A, Ltg, (As)' @ Jo, (1) @ Lagg, (As)V970 ) ————— Hom (A, Jo, (™))

T |

HomU(mevJ) (LIWQ;D (AJ)7 JQP (Han)> HomU(me,J) (U(me;J) ®U(pr,J) )‘Ja JQp (Han))

where we identify Ly, (Ap)Yaro = );. O

3.5.4 The partial eigenvariety

We use the partial Emerton-Jacquet functor to define the partial eigenvariety and use the usual
eigenvariety machinery to obtain its basic properties.

Since J, Ba, Jo, (1152) N, ) is an essentially admissible locally analytic representation of Zj x

/
T}, the continuous dual Jp, (JQp (1122) )\{]> is the global section of a coherent sheaf over the
quasi-Stein space Spf(Roo)"® x T, »,L- We define the partial eigenvariety X,(p)()\;) to be the
/ .
scheme-theoretic support of the coherent sheaf associated with .J Baq, (JQp (T122) X, ) on Spf( Ry ) 8 x

~

prL ‘
The closed embedding in Lemma3.5.2finduces a closed embedding Jp,, (']Qp (I122) ) ) —

JB, (T122) by [Eme06b, Lem. 3.4.7(iii)] and [HLI11, Thm. 5.3]. Taking the continuous dual and
then taking supports, we get a closed embedding X,,(p)(\;) — X,(p ) of rigid analytic spaces
over L. Let X ( ), (resp. (T,1)x,) be the fiber of Xp,(p) (resp. Tp,L) over \’; via the map

Xp(p) — Tp7 L L — (t o ;)* where t* — (t/Qp, ;) is the restriction map. Since the action of

¢ H Latg, (), Jo, (12)) 7 as well
Qy,s o0 Homymy, ) Mq, (A1), Jq, (IIZ5) as well as on

IBq, (HomU(m’Qp,J) <LMQP (), JQP(HZE)))

is zero by [Eme06bl Prop. 3.2.11], by Lemma|[3.5.4] we have a commutative diagram:

Xp(p)(N)) — Xp(P)x, —— Xp(p)
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where horizontal arrows are closed immersions.
Ifx = (y,0) € Spf(Roo)™® x Tp L is a pointin Xp,(p), with m the maximal ideal of R [ ]

corresponding to y, then equivalently Homy, (4, Jg, (T132 [my] ®k(y) k(2))) # 0 and wt(8)", the
image of the weight wt(d) of d in (t ;)" is equal to \);. Assume that A := wt(d) € (Z")*r is
integral and let 6, := 2~*J. Then by (3.5.8), there is an injection

Homg, (fg: (Hom (U(9) @u(g Ls(N), L) 6, m5§§) o fmy ™ ®40y) k(x))

= tomg, (75 (U0 85 (-0) Bands! ) Tl 1K) ) 20

Proposition 3.5.13. Let z = (y,6) € Xp(p)y, C Spf(Roo yris xfp,L be a point with A = wt(J) €
(Z™)®». Then x is in X, (p)(\;) if and only if

Homg, (Fg* (Hom (U(g) ©u(g LoV )" 005! ) Haolm, | @4, k() ) # 0.

Proof. The point z is in X,(p)(\;) if and only if

Homy, (g, Tso, (JQp(ngg)XJ ) [y @k(y) k(w)) £0.

By the left exactness of Jacquet module functors ([Eme0Q6b, Lem. 3.4.7(iii)]) and the definition
of Jq, (TT28) x,. we have Jny, (Ja, (T2)y, ) [my] @k k(w) = Tiq, (o, (2], ) @10
k(z). Since I1c[m,] is an admissible Banach representation of G, over k(y), we get IToo[m, |*" =
oo [my|Ree—an = T130[m, ] by [BHSI7Y, (3.3), Prop. 3.8] (cf. [BHSI7b, Prop. 3.7]). Hence
x € X,(p)(N)) if and only if

Hom, (8, 5y, (Ja, (Maolmy ™), ) @k k() ) # 0.
Now the result follows by applying Proposition [3.5.9] O

We now study the eigenvariety X,(5)()\;) in a standard way as in [BHS170, §3.3] or [DinI9¢|
§2.4].

For a uniform pro-p Lie group H which is a product of locally F3-analytic groups such as H,,
we let C'*(H, L) be the space of locally Qp-analytic functions on H with coefficients in L. For
every integer h > 1, letry, = ﬁ Let C™(H, L) be the subspace of C'*(H, L) defined in
[CD14, Def. IV.1]. Then C\")(H, L) is a Banach space over L and C'*(H, L) = lim, CW(H,L).
Let C¥o\J =00 (H, L) := C'3(H, L)®»\/ =0 (resp. C¥»\/—an(h) (1, L) := CW(H, L)¥»\/~21) be
the space of locally ¥, \ J-analytic functions in C'*(H, L) (resp. C'®)(H, L)) with respect to the
action of /. Remark that the notion of locally 3, \ J-analytic functions can be defined for general
products of locally F-analytic manifolds without refering to group actions, see [Sch10, Def. 2.1].
Then C¥»\/=*"(H, L) = lim, C¥\/=*>("(H, L) ([EmelZ Prop. 1.1.41]). Let D(H,L) =
C*(H, L) be the strong dual. Recall for any h, there is a closed immersion of Banach algebras
D, (H,L) = D_,-r,(H, L) defined in [STO3, §4] and note D_,,r, (H, L) = CM(H, L) is
the strong dual. Set D¥»\/=2%(H L) := C>\/~a»(H L) = lim, D_ DI\ 1) where

,rh

DZp\J an(H L) <C2p\Jfan,(h) (H, L))/ .

<p~"h

Let Dji\}:] "™ (H, L) be the completion of D*»\/=2"(H_ L) with respect to the quotient norm
from the norm on D(H, L) induced via D(H, L) < D,-r, (H, L) (cf. [Sch10, §2.5]). Hence
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ff,},;]_an(H, L) . As c¥\/=an(h)([ L) is dense in
CZP\J_an(H, L), we get an injection DZP\J_an(H, L) — Di;\_{;an(H, L). The norm on the

target is the quotient norm from the normon D_ -+, (H, L) where the surjectivity of

we have a quotient D, (H,L) — D

Yp\J—an
Dy (H, L) = DZY " (H, L)

e
follows from the Hahn-Banach theorem ([Sch13) Prop. 9.2]) and the norm on D <p~"h (H,L) is

the same as that on D, (H, L) when restricted to D(H, L) ([STO3| P162]). Hence we get a

closed embedding
Yp\J—an

DEp\J—an
<p~"h

p~"h

(H,L) < D (H,L).

In conclusion, we have the following diagram of morphisms of Banach algebras over L

D pfth(H,L) > Dpfrh(H,L) — D<p7rh(H,L)

<
N Y Y
Yp\J— Yp\J—an Yp\J—an
DY ENH, L) < DN U, L) < DZY N, L)

where each horizontal arrow is an injection and each vertical arrow is a surjection.
If H is moreover abelian, we let Hy, be the rigid analytic space over L parameterizing locally
Qp-analytic characters of H. The rigid analytic space

= T Sp\J—
Tépu(]?Ep\J’L T h?rnSp(Dpfrh an(T(/;)va’L))

over L parameterizing locally ¥, \ J-analytic characters of Tégp,o is strictly quasi-Stein, smooth

and equidimensional ([Dinl7a, Prop. 6.1.13, Prop. 6.1.14]) and is a closed analytic subspace of

Tégp,o, - By [Schl10, Prop. 2.18] (cf. [Dinl7a, §6.1.4]), the following commutative diagram is

Cartesian

Té)lNOyEP\JvL TégpvovL
dwt Lwt

*

(tg, )" ——— (t,)

where t/Qp,Ep\J ~tg /tg,,s (thus there is a closgd embedding (t’Qp,Ep\J)* = (tg,)").
We pick an element z € szr such that N;>12"Np, 02~ only consists of the identity element.

Assume that szz_l is normalized by N, o. Denote by Wy := EMQIwQ,L x T DOSALL =

Spf<Soo)rig X ZMQp’O7L x T 2.0,.5p\J,L*

Lemma 3.5.14. There exists an admissible covering of Wy by open affinoids Sp(B1) C Sp(B3) C
<+ C Sp(Bp) C --- and for any h > 1, there exist

— an orthonormalizable Banach By-module Vi,

— a compact By-map zp : Vi, — Vp, continuous Bp-maps oy, @ Vi, — Vh+1®Bh+1Bh and
O Vh-&-l@BhHBh — Vy, such that zp, = By, 0 o, and o, 0 By, = 2p41 @ 1, and

— an isomorphism of topological D(ZMQP,O, L)@LDEP\J—an(TC{)pI)’ L)-modules

N - Sp\J—an,Ug, 0\’
((Hzlol’ Qp,0 Q LMQp ()\J)/> P Qp 0) ~ @Vh
h
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such that the action of the operator ., induced by the Hecke action of z on the left hand side
coincides with the action of (21, )nen on the right hand side.
We can summarize the datum in the following commutative diagram:

n, N, ~ Ep\J—an,Ug, o ! —~ B
<<Hio Qp,0 Q LMQp ()\J)/> 2 P ) S o Vh+1 > Vh+1®Bh+1Bh g Vh
Tl'zl zh+1l Zh41 ® 1Bhl / lzh
N, ~ Sp\J—an,Ug, 0\’ . 8
((Hio ' LMQP()\J)/> ’ ’ ) > —— Vi1 > Via®p,, By S Vi

Proof. We have Iloo| 5~ C(H,,L)™ and [T = IIS=~*" ~ C'(H,, L)™ by [BHSI7H, Prop.
P
3.8]. Since H, = N, 0 X Mg, 0 X Ng,0. we have
_ Y —~ R m
0 ~ (cla(NQp,O,L)@Lcla(MQp,o,L)@Lcla(NQp,O,L)) . (3.5.15)

T'hus N, L "
an,Ng N 2 ( NQ
oo e (Cla(NQp,U’L)®L la(M p:07 ))

By the twisting lemma ([Din19c, Lem. 2.19]), we have an isomorphism of ]\A/.meo—representations
C'*(Mg, 0, L) ® Larg, (As)'| Ty 0 = C (Mg, 0, L)™ (3.5.16)
f@v= (g flg)gv)

for m' = dimy, LMQp (XJ),. Hence

n7N s N m
Hio Qp,0 ® LMQP ()\J)I

12

(€™(Nay.0. L)ELC™ (Mo, 0. L) @1 Larg, (X))
<Cla(NQp,0,L)®L (Cla(]\?@p,o, L)) >

_ Y ~ Y r
= (€(Nay0. DDELC™ (Zarg, 0, L)BLC™(Mp, 0, L))

m

12

where » = mm’. Then

an, N ~ . —_ ~ ~ ~ T
M5 @ Lagg, (V) = ting (€M (N, 0, NELCM (Zag, 0, L)BLC™M (M, 0, 1))
h

Hence by [Emel7, Prop. 1.1.41], we get

n ~ ¥p\J—an
(H;,NQp,O ®LMQP()\J)/> P

= lim (C(h) (Ng,.0. L)&c™ (ZMQP,O, L)&cPr\I—an(h) (Mg, 0 L)>r
h

=lim €™M (Ng, 0, L) @rC" (Zarg, 0, L)BLC™N M) (T, o, L)
h

@chp\kan,(h) (Tégp,Oa L)®LCZP\Jfan,(h)(UQWO, L).

Thus

~ Sp\J—an,Uq,,
(niﬁ’NQ”’O ® L, (>\J)l> ’ e

=1ig C"(Ng, 0, L) @M (Zusg, 0, L)DLCTN =M (T, 0, L)@ rC™V =Ty, o, L).
h
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We let Wj, = (C(h) (NQP,O,L)T(@LCZP\J_an’(h)(UQp,O,L))/. By [Emel7, Prop. 1.1.22, Prop.
1.1.32], we get

/

an, N, ~ % \Jfan,UQp’o ! ) R ~ N Can
<(noo %P0 ®LMQP(AJ)') ’ ) = lm W;, &, (C(h)(ZMQWO,L)@LCEP\J ’(h)(Tép’O,LD
h

. ~ o -~ Yp\J—an
= im WaB1D_pyr (Zaig, 0, L)@LD;)\_% (T}, o, L).
h

(3.5.17)

Set B, = D, (ZM%O, L&y, fo};f _an(Té)pyo, L) and V}, := W},®,B;, which is an orthonor-
malizable Banach Bj-module by definition [Buz07, §2]. Then
!/

Vi, = <<C(h) (N, 0, L)@\ —an(h) (UQP,(LL)) @Lc(h-i-l)(ZMQwO’L)®L02P\J—an,(h+1)(Té)WO’L>>

~

® D_ vy Grig, 0. D)8 Diz\_i;fl (Th, o 1yBh-
As the map
Wh1BLD_, s (Zaig, 0, DIBLDZY W (Th, 0, L) = WaBLD oy (Zatg, 0, OLDZEY ™ (Th, o, L)
factors through V},, we conclude that ((Hig’NQp QL Mg, (X 7) ) Fe\manlayo = @h Vi
We now track the action of the element z. The action of z sends (HOO)%LE to (Hoo)ggpz_l

where (Hoo)%l) is the subspace of 1127 defined in [CD14, IV.D]. By [BHS174a, Lem. 5.2 & proof

P
of Lem. 5.3], the action of z on IT22 sends (Hoo)(f?) to
P

ch=(Ng, 0, L)V (Tg, 0, L)&1.C™M (ZMQP,O, )& c™ (T, 05 L)&1C*(Uq, 0, L)®C*(Ng, 0, L)

in term of the isomorphism (3.5.15).

We assume that an homeomorphism Z;, ~ Mg, o is chosen so that the matrix coefficients
of elements in Mg, o are overconvergent analytic functions on Z;, (for example, we can choose
coordinates of Uq, o and UQWO as a product of root groups where each is identified with some
Op; and coordinates of T, g as products of some 1 —H,TftF5 Op, with t large enough. Then the matrix

coefficients are in the ring generated by polynomials and functions of the form exp(w%ﬁx}, T €

1

Op;). Since the action of g and g™~ on L Mo, (X g), forg € Mg, 0, are given by polynomial

functions on the matrix coefficients of g, g~ compositing with embeddings in >, the matrix
coefficients of the twisting isomorphism (3.5.16) in the basis given by one of that of L Mo, (Ag)
are overconvergent analytic functions on Z7. By a similar argument as in Lemma [3.5.18] below,

for any h large enough (which we may assume from now on), there is an isomorphism

)\ Vap.o ~ — PN ~ ~
<(HOO)%Z) " @ Lagg, () = CM(Ng, 0, L) &LC™ (Zatg, 0, L)BLCM (M, o, L)
and similarly the isomorphism (3.5.16)) sends

C(h_l) (NQP,O) L)m®LC(h_1) (UQp,O) L)®Lc(h) (ZMQP,O) L)®Lc(h) (TC/QP,Ov L)®Lcla(UQp,Oa L)®LMQP (XJ)/

to

"D (Ng, 0, L) &MV (Tg,.0, L)BLCM (Zasy, 0, L)SLCM (T}, o, L)EC® (Ug, .0, L)
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: () Nep o 1y
Hence the action of z on ((Hoo)g ) ® Ly, (Ag)" sends, after (3.5.16),

P

c® (NQpD? L)T®Lc(h) (ZMQP707 L)@LC(h)(Méwo, L)
to

ch=D(Ng, 0, L) &MV (Tg, 0, L)&rC™ (EMQp,m L)&rc™ (75, 0, L)®&C*(Ug, 0. L).

an, N, ~ Ep\J—an,Ug, o
Qp,0 ®LMQI] ()\J)/) p

Finally, we conclude that the Hecke action of z, denoted by 7., on (H
induces a map sending

(C(h) (Ng, 0, DBV (Tg, o, L)) LM (Zatg, 0, L)SLCZN 2 N(TY, o, L)
o

(C(h_l) (Ng, 0, L)&cZ N =2n=D(T7g o L)) "BLe® (ZMQP 0, L)@\ —an(h) (TH, 0, L)-

Taking the dual of the above map we see that 7, induces a morphism oy, 1 : Vj,—1 — Vi, ® B, Bh-1.
We also have a morphism [}, = B,’l ®1p, : Vh+1®Bh+1Bh — V}, where 6;1 is induced by the dual
of the compact map

C(h) (NQI,,OaL)r@LCZP\J_an’(h) (UQP,())L) N C(h+1)(NQp707L)T®LCZP\J_an7(h+1)(UQP,OaL)-

Hence 3, is a compact map of Banach Bj-modules. We put z;, = 3, o . Then 2,41 ® 1, =
ap 0 B. O

Lemma 3.5.18. Assume that g is an overconvergent analytic function over Z,. Then there exists

C such that for any h > C and f € C\W(Z,, L), we have gf € C")(Z,, L).
Proof. By definition ([CD14, Def. IV.1]),

S an(2) 1, lim_(0y(en) ) = +oo}

neN

cM(z,,L) = {

is a Banach space with valuation v(") (Y nenan () =infy, (vplan) —rpn). Let f =3 cvan(f) €

CM(Zy, L). We compute z (3, ey an (1)) = X pen @nz () = 2 ,cn an ((n+ (%) +n( )) _
Y on>1Man + an— 1)(%). We have

i (v (n(an +an 1)) —ran) = Tim min{(p(an) = rn), (vplan-1) = n(n — 1) = 74)} = +o00

and

oW (@Y a, (Z)) =inf (v (n(an + an-1)) = )

neN
> irﬁf min {(vp(an) — ran), (Vp(an—1) —rp(n —1) —ry)}
>inf(vp(an) —rpn) —ry = oM (F) =1y
n

We get 2" f lies in C")(Z,, L) and v (2 f) > MW (f) — rpn for any n. Since g is analytic,
we can assume g = Y bpz™. Then o™ (byz™ f) > v (f) + (vy(bn) — rpn). Since g is
overconvergent and 7, — 0 if h — oo, for h large enough, we have lim,, s oo v (f) 4 (v, (by) —
rpn) = 4o00. Hence gf = >, oy bnx™ f converges in the Banach space cth) (Zy, L). O
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We denote by Wy, := Spf(Sso )18 x EMQP,O,L X (fc’ng’L))\/J where (fc,gmo,L)A’J is the fiber of

= . = t . . .
T4, 0.1 over Xy viathe map T¢, B = @,,7)" There is an isomorphism Wy — W/

x + 22 where 2?7 is the character of T}, o on L Ma, (A;)Y@»0 in Lemmal3.5.4, The restriction

of characters from 7}, to T}, o induces a morphism wy (yy : Xp (P)(N)) — Wy, . The eigenvariety
machinery in [Buz07|] and [[Che04] leads to the following basic result on the partial eigenvariety.

Proposition 3.5.19. The partial eigenvariety X,(p)(\) is equidimensional and for any point in
X, (p)(X)), there exists an open affinoid neighborhood U such that there exists an affinoid open
subset W of WA} satisfying that the restriction of wx ) to any irreducible component of U is
finite and surjective onto W. Moreover, the image of an irreducible component of X,(p)(X;) is a
Zariski open subset of W/\f] .

Proof. The result can be proved by a slight modification of the proofs in [BHS17b, §3.3] replacing
T, (T122) (resp. Wao) in loc. cit. with the module J,, (HomU(m/QpJ) (L ro, (), T, (Hgg)) )
(resp. Wp) using Lemma [3.5.5] and Lemma [3.5.14] and then applying Lemma [3.5.4]to obtain the
results for X,(p)(\);) and Wy, . O

3.5.5 Density of classical points

We prove the density of de Rham points on the partial eigenvariety which will be the input for
the application of the partial eigenvariety in next subsection.

Suppose z = (y,8) € X,(p) C Spf(Rso )8 x fp,L is a point such that A\ = wt(d) is in
(Z")*r and is dominant with respect to b. The U(g)-module U(g) ®@u(p) A (and its quotient
U(g) ®u(q) Ls(A) in admits a unique irreducible quotient L(), and hence

For (Hom (U(8) @u(q) Ls(N), L) ,gsm(sg;) :

P

1 Gp Gp - sm GP - sm
phic to F¢ (L(A)’, (Ind5? 0,1, 05)) ) ~ L(\) © (Ind” 8,051 (cf. BHSTTEL §3.5). We
say that x is a classical point if

as well as ]-'gp (0), admits a locally Q,,-algebraic quotient ng <L()\)’ ) 65;) which is isomor-
p P

Homg, (L(V) ® (Ind 8,0,051 )™, Tacfm, ™" @1y k() ) # 0.

Remark 3.5.20. Our definition of classical points differs from [BHS17b, Def. 3.15] because we
will consider points that are crystabelline rather than only crystalline.

Proposition 3.5.21. The subset of classical points in X,(p)(XN}) is Zariski dense. Moreover, for
any point x = (y,0) € X,(p)(N}) such that ¢ is locally algebraic and any irreducible component
X of Xp,(p) (X)) such that x € X, there is an affinoid open subset U of X containing x such that
the subset of classical points is Zariski-dense in U.

Proof. The proof follows that of [BHS17b, Thm. 3.19] and [Dinl9¢, Thm. 3.12]. For each

v € Sp,1 <i < n,welet g, be the element diag(wy, - - - , @y, 1, -+ , 1) € GLy(F5) where wy
%‘,—/

is a fixed uniformizer of F3. '

By Proposition(3.5.19} we can pick a covering by open affinoids of any irreducible component
of X;,(p)(N}) such that wy »,) sends such open affinoids surjectively and finitely onto open affi-
noids of Wy, . Forany = = (y,0) € X,(p)(\);) with ¢ locally algebraic, we pick a such affinoids
U C Xp(p)(N)) and let W = wy ) (U). We prove that the subset of classical points is Zariski
dense in U.
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Since U is affinoid, the rigid analytic functions (y,0) — 6,05 (% ;) are bounded on U and
thus there exists a constant C' > 0 such that C' < |0,05 (% Z)]p over U for any v € Sp,i =

1,---,n where | - |, is the p-adic absolute value such that |p|p = E

If§ € (TQP,O,L)XJ = ZMQP,O,L i(TQ”’O’L)’\Lf and A = wt(0), then for any v € S, 7 € J,,
we have ATJU,Z._;'_]' — )\Tﬁv,i"v‘j'f‘l = /\quNU,ﬁ_j — )\Tyav,i"v‘j'f‘l > 0 for 1 < j < Qu,i+1 — 1 and
0 < i < t, — 1. We pick a constant C’ > 0 such that C|7(cwz)|, '~ ¢ > 1foranywv € S,,7 €

Y. Then the set of points in (TQp 0,..)x, with integral dominant weights (i.e. A € (Z™)*» and
Ari 2> A, VT € Xy, 10 < ) satisfying the following conditions

)\7-71' — )\7-’7;+1 > C,,Vi € {1, cee N — 1} ifv e Sp,T ¢ Jy (3.5.22)
Ari— Ariv1 > C' Vi € {Gui1, -+, Quty—1]} ifvesS,redJd, (3.5.23)

accumulates ([BHS17bl Def. 2.2]) at locally algebraic characters in (pr,o, L) b
Let Z be the subset of W consisting of points such that the images in (pr,Q L) w, Vvia the map

W C Wy = Spf(Ss )8 (pr’O, L) N, = (T\Qp,(), L) N, are locally algebraic and satisfy
and . Note that the last map is smooth, hence open. Since U contains a point with locally
algebraic character, so is W. Hence Z is Zariski dense in W.

We claim that the set of dominant points in U satisfying the conditions (3.5.22) and (3.5.23)
(i.e. w;& X, )(Z )) is Zariski dense in U. Otherwise, by the irreducibility of U, the Zariski closure

of w;&/\, )(Z ) in U has dimension strictly less than that of U. But the image of the closure of
J

w;&/\, )(Z ) in W is a closed subset containing Z, which must equal to W and hence shares the
J

same dimension with U. This contradicts the assertion on the dimension of the Zariski closure of

w;(t N )(Z ). Hence the claim holds (this is the argument in the proof of [BHS17b, Thm. 3.19]).
J

We will show that any point in w;& v )(Z ) is classical which allows us to conclude that the set
of classical points is Zariski-dense in U. The Zariski density of the classical points in the whole
X,(p)(X;) then follows from the fact that the set of locally algebraic characters is Zariski dense

in (Tg,0,2.) v, and the last assertion in Proposition 3.

Now we assume that z = (y,d) € U C X,(p )(/\’ ) C Spf(Reo)™8 x fpyL is a point such
that the weight \ of ¢ is integral dominant and satisfies and (3.5.23). We prove that x is a
classical point.

Remark that the conditions (3.5.22) and (3.5.23) are some “small slope” conditions and the
proof of the classicality will be essentially the same with the usual case (i.e., for points on X, (p)
as in [BHS17b, Thm. 3.19]). However, we cannot directly cite the proof of [BHS17b, Thm. 3.19].
This is because that under the restriction of the weights on the partial eigenvariety X,(p)(\),
the points that satisfy the full “small slope” condition as in [BHS17b| (3.11)] can not be Zariski
dense. The condition (3.5.22) and (3.5.23) here is only some weaker “small slope” condition. To
prove the classicality, one will need furthermore to use the fact that z is “partially classical”, i.e.,
x lies in the partial eigenvariety X,(p)(\’;). Ding has already proved such results in special cases
in [Dinl7a] and [Dinl9c]. Since a direct reference is not available for our situation, we would like
to write down the details of the proof below.

Without loss of generality, we assume that the residue field of = is L. By Proposition [3.5.13]
there is a non-zero morphism

- (Hom (U(g) ®u(q) Li(A), L)uoo ,ésm(%;) > Tl [my ™"

For

P
By definition (see §3.5.3)),

U(Q)®U(q)LJ(/\) = (®U€SU,T€EU\JUU(9T) ®U(bf) /\T)®(®UESU,TEJ1,U(QT) ®U(q7) LmQUJ ()\T)) .
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Hence the irreducible subquotients of U(g) ®¢(q) Ls(A) are L(wwp - ) = Qrex, L(wrwrp -
Ar) where w = (wr)rex,,wo = (wro)rex, such that if 7 € J,, then L(w;wrp - A7) is a
subquotient of U(g-) ®r(q,) Lmg, . (Ar). In particular, the weight w,w; o - A is mg, r-dominant
(with respect to bg, r) by [HumO8, Prop. 9.3(e)]. We fix one such w as above and assume

Homg, (]—'E” <L(—ww0 DN 5;;) ,Hoo[my]a“> # 0. We need prove w = wy.

B ) =sSm
For each v € Sp, let Py, = Mp, ,Np,, be the standard parabolic subgroup of upper-
triangular block matrices in GL,, /., with the standard Levi decomposition such that P, , is
maximal for wywy o - A (i.e the opposite P, is the maximal parabolic subgroup such that

L(—wywyp - Ay) € OFwwv). We also use the same notation Py, = Mp, ,Np,, for the asso-

ciated p-adic Lie groups and let P, , = [ ], s, Py v, etc.. Any irreducible constituent of

FSr (f(—wwo . /\),ésm(%;) ~ fgp

BP w,p

T My, —1\sm
(L(—wwo ), (I - 605)) )

has the form ]-'gp

w,p

induction (Indgp‘%’;\/[w’pgsmégi)sm (cf. [Brel6, Thm 2.3(ii)(iii), (2.6)]). The central character of

TMp,,, 18 Qsmégi. Since at least one of such irreducible constituents appears in IIc[m,], by
[Brel6l Cor. 3.5], we get that zwwmggmcsgi(z) € Oy, for any z lies Z]\J}P

w,

(f(—wwo “A), T MPw,p> for some irreducible constituent ™ Mp,, of the smooth

where Zy,,, 1 the
p et
center of Mp,, . Equivalently, for any v € 5),

FUeodg, 0p(2) € O (3.5.24)

Zv,sm

for any 2z € Z]J\} .

Py v

Firstly assume that there exist v € S,,7 € ¥, \ J, such that w; # w,o. Then P,, #
Gy. By (the proof of) [BHSI7b, Prop. 5.4], there exists i, € {1,---,n} such that v;; €

—1—min;(Ar;—Arit1)

ZJTJP and |fwawT’°')‘Tf’\T lp > |7 (w)lp . Since for any 7 € Xy, A\ + pp

V,iy
is StI‘iCﬂy dominant and wT/wT/,O . )\T/ — AT/ = w-,—/wq—/,O()\T/ + pT/) - ()\T’ + ,07-/), we have
A=A
Wt Wt g Apt —Ars > 1. Hence by (3.5.22) we get
p y £

U,y

v Wy '>\'U — v W ')\U*Av — —1—mi 3 )\7—1'—)\7-1'
’,y%ljsz "’ év,sm(sBj(ryﬁiv”P = |’Y§w71:] " év5B3(’Yi7,iv)|p = C’T(W5) |p minir i) >1
which contradicts (3.5.24]).

Now we assume w, = w, for every 7 ¢ J. Then for any v € S, Py» DO Q. Assume
wr # wyo for some v € S, 7 € J,. By (the proof of) [Dinl19¢, Lem. 3.18], there exists ¢, €

wTwT,O'AT_)\T _1_mlni(ATv‘7v,i_AT*‘}'v,i“'l)

{@v1,- - s Qus,—1} suchthat vz, € Z]'&Pw _and V.4, lp > |7 (@) |p
As in the previous step, by (3.5.23)), we have

’ Wy Wy,0° Ay Wy Wy, 0" Av— Ay *1*m1ni(>‘7,§v,i*)“rﬁv,rkl)

Yoie " 8y smOm (i)l = [, 8,05 (V.1,)lp = Clr(ws)lp > 1

which also contradicts (3.5.24).
Therefore we conclude w = wy and the point is classical. O

Proposition 3.5.25. If (y,9) = ((pv)ves,, 2 9) € Xp(p) C Xp, x (X xUy) X T,.1 is a classical
point, then pg is de Rham for any v € S),.

Proof. This is the local-global compatibility result of [CEG™ 16, Lemma. 4.31]. Since = is clas-
sical, after possibly enlarging L, there is an injection L(\) ® mgm < Ilo[m,], where m,, is the
corresponding maximal ideal of Roo[%] and 7y, is some smooth representation of G),. Let €2
be the Bernstein component containing 7y, (J, Asm) be a semisimple Bushnell-Kutzko type for
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2, where J is compact open subgroup of G, and Agy, is an irreducible smooth representation of
J,and 7 = (7y)es, be the corresponding inertia type (ICEG™16, §3.3, §3.4]). After possibly
enlarging L, we assume that \gy, is defined over L and then by the type theory, there is a J-
injection L(\) ® Agm <> L(A) ® gm < Ilo[my] (for the rationality problem, cf. [CEGT16,
§3.13], especially (3.15) in loc. cit). We fix a J-stable Op-lattice \° of L(\) ® Agp, then
Hom j(A°, IIc[my]) # 0. Thus Hom;(A°, IIZ [m,]) # O here m, is viewed as an ideal of R
that doesn’t contain p and 112 is the unit ball of II,. By the Schikhof duality (ICEG™16, §1.8]),
we get that my, is in the support of M., (A°) where M (A°) := Hom OH‘E[J” (Moo, (A°)") is finite
free over So (cf. [CEGT16, Lem. 4.30]), thus finite over R.,. The methods in the proof of
[CEGT16, Lem. 4.17 (1)] together with the classical local-global compatlblhty when ¢ = p show
that the action of Re, on Moo (A°) factors through Re ®5 e ®U€S RJ’T” where RJ”T” i

the framed potentially semi-stable deformation ring of Kisin ([K1s08 Thm. 2 7.6]) of 1nertla type
75 and Hodge-Tate weights hy associated with A,. This implies that p5 is potentially semi-stable
for any v € ). ]

3.5.6 Partially de Rham trianguline (¢, I')-modules

In this subsection, we use the density of de Rham points on the partial eigenvariety and the
global triangulation to prove that points on the partial eigenvariety are “partially de Rham”.

Letw = ((pags 102, %)) = (e 10(00) e - 70) € ¢ (TLues, Xun(5) ) x (0 x Uy)
be a point in X,(p) (for notation see , and assume that ¢, is locally algebraic and 6, , €
0.0, VU € Sp (Deﬁnition ,or 1(J,) is generic). Then p,, 5 is an almost de Rham representation
of G, (cf. The global trlangulatlon (on X4,i(p,)) implies that the (o, ' )-module
My = Drlg(pm,)[l] over Ry (), F~[ | is equipped with a unique triangulation of parameter
0y, (IBHSIO, Prop. 3.7.1]), denoted by {0} = Myz50 C -+ & Myzn = M,z Then for
T € Yy, Dpar,+(War (Mm’g)) is equipped with a filtration Dpgr - (WdR(szg’.)) of vector
spaces over k(x) together with a nilpotent linear operator v, , which keeps the filtration. Recall
that M, is the group of diagonal block matrices of the form GL, /g X --+ x GL, , /F,. For
ie{l,---,t,}, welet v, ,; be the action of v, on

Dyar,r (War(Ma5.g,.)) /Dpar,r (War(Mazg,, 1)) -

Recall @y is a standard parabolic subgroup of GL,, /. We denote by Q; := @y ®p; » L. Then
Vpri = O0forall i = {1,---,t,} if and only if p, 7 with the filtration M, 5 o is ();-de Rham

(Definition [3.3.19).

Proposition 3.5.26. Let x be a point as above. If x is in X,(p)(N}) C X, (p), then p, i with the
filtration M, 5 o is Qr-de Rham for any T € J,,v € Sp.

Proof. We fixi € {1,--- ,t,},v € Sp, 7 € J,. Consider the closed immersion X,,(p)(\;) —
X,(p) in Let Drlg( univ) be the (¢, I'p;)-module over R X, (p),F, associated with the
universal Galois representation p%mv of G, ([Liul5, Def. 2.12]). By Lemma below and
[BHS17b, Thm. 3.19], there is a birational proper morphism f : X' — X,(p), a (¢,T'p,)-

module M’ over R r such that for any 2’ € X' with d,/,, € T.J}; (we use the same notation
&y, etc. with different subscripts to denote the pull back of the character by, etc. from th(pp))

an isomorphism of (¢, T, )-module over Ry, i [1] : ML, [31] ~ My 55, ,/Mu 55, , where
M 5 o denotes the unique filtration of Drig(pm/’g)[%] of parameter 0/, 1, - ;04 .. We know
X' is reduced. Since the Sen polynomial varies analytically and the set of strictly trianguline
points is Zariski dense, we get that the 7-Sen polynomial of M, is equal to ng%u,i—l +1(T —
Wty (0g0,5)) for any o’ € X'. Let X” be the preimage of X,(p)()\;) under f. Then f|x~ is
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still proper ([BGR84, §9.6.2]). Let MY, be the pullback of M’ to X” and let MY, (5;(}, viy) =
M%)y @R o Rxr s (Sxh 5,)- Thus for any 2’ € X", the 7-Sen weights of M, (61

S~
Z7,0,qv

(Wt7(6$’7qu~v,i—1+1) - Wtf(éw’,vﬁv)v T ’WtT(éx/7U:q~v,i—1+QU,i) - WtT((sﬁU’vU@u))
— (Crgos i1 = Goie1) = gy = @i 1), ,0)

are all certain fixed integers (see §3.5.4). Applying Proposition[A.3.4]in Appendix [A] we conclude
that the subset of points 2’ € X" such that M/,[3](6.,, ) is 7-de Rham, the points such that the

' v,qu
nilpotent operator vanishes on Dyqg - (WdR(M - ((5;,,10’%)[%])), is Zariski closed in X”. We
denote this subset by Y. Then f(Y") is an analytic closed subset of X,()(\’;) (IBGR84, Prop.
9.6.3/3]).

We pick an affinoid U of X,(5)(\}) containing x as in Proposition so that the classical
points is Zariski dense in U. By shrinking U and its image in W/\fz suitably, we can assume
that for any point 2’ € U, §,, € w0 (this is possible since 7. is Zariski open in the space
of characters of (FEX)”) Suppose that ' is a point in U such that d, ,, is locally algebraic and
' e f71<$/). We have Ml/ﬁ,?fv,i /Mw/,i,f]vv,i—l ®k(x’) k(l’”) >~ Mﬂf”ﬁﬁv,i/Mxl/ﬁ,?fv,z‘—l' Since
War (Ri), 75 (02 0,,)[1]) is trivial ((BHST9, Lem. 3.3.7]) and the functor Wag (—) is tensor
functorial, we get that M/ 55, . /M &' 5,30.1—1 18 T-de Rham if and only if

~1
(M$,7§7‘Tu,i/Mx/757q~v,i71 ) (533’,11,21})

is 7-de Rham if and only if 2’ € f(Y"). Then by Proposition|3.5.25] f(Y) N U contains a Zariski
dense subset of U (classical points in U). Furthermore, f(Y) NU is Zariski closed in U ([BGR84,
Prop. 9.5.3/2]). Thus U C f(Y'). Hence M, 55, ./Mqs 54, , is T-de Rham. O

Lemma 3.5.27. Let X be a reduced analytic rigid space over L and M is a (¢, T i )-module over
Rx,Kk of rank n where K is a local field over Q,. We assume that there exists a Zariski dense
subset X a5 of X such that M is densely pointwise strictly trianguline ([KPX14, Def. 6.3.2]) with
respect to a parameter dx 1, - ,0xn : K* — I'(X,0x)* and the subset X, We assume
furthermore that if v € X, then 0, € T, (see . Then for any 0 < a < b < n, there
exists a birational proper map [ : X' — X and a (¢,T k)-module M' over Rx/ i such that, let
Ox71,-++,0x1 .y be the pull back of characters dx 1,- - ,dx n, the following statements hold.

(1) The set of points x € X' such that M, ~ fil,((f*M).)/fila((f*M).), where fily ((f*M),,)
is the unique strictly trianguline filtration on (f*M ), of parameter 6,1, - - , 8, contains f~(Xa1z)
and is Zariski open dense in X'.

(2) Suppose x € X' such that §,, € T". Assume that A is a finite-dimensional local L-algebra
with residue field k(x) and a map Sp(A) — X' with image x, then the pull back (f*M)a[3] is
trianguline with a unique triangulation file ((f*M) 4 [%]) of parameter 51, - - ,04 p in the sense
of §3.3.1 Moreover there is an isomorphism M/ [1] ~ fil,((f*M[}])a)/fila((f*M[}])4) and
M, [1] has a parameter 64,a41,- -+ ;04

Proof. By [KPX14, Cor. 6.3.10], after replacing X (resp. X,i5) by some X' (resp. f *1(Xa1g)),
we may assume that M/ admits a filtration file M of (¢, 'k )-modules over Rx k satisfying the
requirement (1) and (2) in loc. cit.. The uniqueness of the triangulation of given parameter in (2)
is by [BHS19, Lem. 3.4.3 & Prop. 3.4.6].

If a = 0, we can take the submodule M’ := fil, M of M. Then (1) of the Lemma is satisfied
by the choice. The existence of a triangulation of M A[%} in (2) follows from (2) in [KPX14, Cor.
6.3.10] which is of parameter 041, - , 64, and it is by our choice that M’y [1] ~ fil,(M4[1]).

By replacing M with fil, M, we may assume b = n. We need roughly pick a “quotient”
(¢, T'x)-modules of M (on some X') rather than a submodule as in the previous step. For a
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(¢,T'k)-module My over Ry, for a rigid space Y, we let My := Homg,, . (M, Ry,x) be
the dual (¢, Tk )-module of M. The dual functor (-) — (-)V of (¢, 'x)-modules commutes
with base change, is exact on short exact sequences of (¢, I'x)-modules and sends Ry, i (J) to
Ry, k(671) for any continuous character § : K* — T'(Y,Oy)* (cf. [KPX14, Con. 6.2.4]).
Then the (¢, 'k )-module MY over Rx  is densely pointwise strictly trianguline with respect
to parameters 5;(}n, e ,(5;(711 by the assumption and [KPX14, Prop. 6.2.8]. By [KPX14, Cor.
6.3.10], after replacing X (resp. X,jz) by some X " (resp. f‘l(Xalg)), we may assume that
MV admits a filtration file M of (¢, 'k )-modules over Rx i such that for any point z in a
Zariski open dense subset Z containing X, (fila MY ) is a strictly triangulation of M," with
parameters 0}, - , 0,1 and each (filM" /fil;_1 M")[}] is isomorphic to R,k (6, 11+1)[ ] up
to a line bundle. We set M’ = (fil,—qMY)V. Then for x € Z, M, ~ M, /fil, M, is trianguline
of parameter 0y q4+1--- ,02 . For x € X and A satisfying the condition in (2) of the lemma,
we get by the construction that (fil,,— aM V) a[$] is trianguline of parameter 627171, cee 52}(1 41 and
M V[ ] is trianguline of parameter 07 * Ao ,5;}1. Taking dual, we get that M A[%] is trianguline
of parameters 94,1, - ,04,, and MA[%} is trianguline of parameters 64 q4+1,- - , 04 n. O

Then we immediately get the main result of this section.

Theorem 3.5.28. Let x = ((pp,9),2) € Xp(p) C ¢ (Xui (p,)) x (Xpr x Uy) be a point such
that § is locally algebraic and generic. Let \ = wt(d) and d,, be the smooth part of §. Let y be
the image of x in X. If for some v € Sy, 7 € Xy, A; is mg, r-dominant (with respect to bq, )
and we have

G
HOHIGP (‘FP: ( ( A)? 5sm5 > [my] ®k (v) k( )) 7é 0
then py with the unique triangulation on Dyis(py) [%] of parameter 0y 1, -+ , Oy IS Qr-de Rham.

Proof. We take J = {7} C X,,. The irreducible U (g)-module L(\) of the highest weight \ is the
unique quotient of U(g) ®y/(q) Ls(A) (for the notation, see §3.5.3) by [HumO8, §9.4]. Thus by the

functoriality of ng (—,—), we get
p

Homg, (Fg” (Hom (U(8) @uq) LoV L) 80! ) ooy | @1, () ) £ 0.

Hence by Proposition [3.5.13} = € X,,(p)(\;). By Proposition [3.5.26] py with the triangulation is
(Q--de Rham. ]

3.5.7 Conjectures on partial classicality and locally analytic socle

We state a conjecture on partial classicality of almost de Rham Galois representations and
discuss its relationship with the locally analytic socle conjecture. We only state the conjecture for
the patched eigenvariety where the local model is available since in this special case the conjecture
is more accessible and the converse of the conjecture is known to some extent (Theorem [3.5.28).
We also give some partial results.

We use the notation before Theorem(3.4.10, Let z = ((pp, 6), 2) € X,(p)(L) C ¢ (Xui(p,)) X
(%50 x 1Y) be a generic point with integral weights. Let h be the Hodge-Tate weights of p, and A
be the weight of §. We assume that A + p is dominant (with respect to b). There are the companion
points Ty, = ((pp, 6,), 2) € (X5, X T, L) X (Xpr x U9) for w € Wg, where §,, is defined in
the end of §3.4.3] Let r, be the image of x in %oo and m, be the corresponding maximal ideal
of Roo [ ]. Forv € Sy, as 1,1(3,) € Ty, My := = Dyig(p5)[3] is trianguline with a unique tri-

angulatlon M o of parameter ¢, *(6,). Let Q, = H @, be a standard parabolic subgroup of G,
as in @ and let (- be the base change to L of the standard parabolic subgroup of GL,,/, via
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7: F; — Lforall 7 € ¥,,v € 5. Recall that Jg, (IToo[m,,]*") is a locally analytic represen-
tation of M¢,. Take a non-empty subset J C 3, and let J, = J N %, for all v € S;,. Following
[Din17a, §6.1], a vector v € Jg, (Il [m;,|*") is called J-classical if there is a finite-dimensional
algebraic mg, j-module V' and a mq, s-equivariant map V' — Jg, (Ilso[m,,[*") such that the
image of the map contains v.

We say that the Hodge-Tate weights h are regular if h,; # h, ; forall 7 € 3,7 # j. We now
state the conjecture on partial classicality.

Conjecture 3.5.29. Assume that h is regular and the pair (p3, Mz o) as above is ();-de Rham
forall T € J,,v € S, (Definition , then Jg, (Il [m,,]*") contains non-zero J-classical

vectors.

Remark 3.5.30. The assumption that h is regular is necessary: if p, is de Rham with non-regular
Hodge-Tate weights, ), = G}, and J = ¥, then there exists no non-zero locally algebraic vector
in ITo[m,._]*" by the local-global compatibility or [DPS20].

Next, we formulate a weak version of the locally analytic socle conjecture for the point x.
Recall that Spf(R,, r,) is isomorphic to X Pp,zpar UP to formally smooth morphisms where
Xp, is the variety defined in @ with respect to the standard parabolic subgroup P, determined
by h or A of the algebraic group Hvesp Resp, /0, (GLy/F;) xq, L as in and Tpqr =

(TpdRr.5)ves, is a point on Xp, associated with (p,, Me) = (p3, M7 e)ves, as in §3.3.5, By
$54

.6, Spec(R,, m,) C Spec(R,,) is a union of cycles of the form 3., for w € Wg,/Whp,.
Moreover, 3, # 0 if and only if TpdR € Zp,w- Letw, € Wg, / Wp, be the element as before pa-
rameterizing the relative position between the Hodge filtration and the trianguline filtration. Then
by discussions in 3w # D only if w > w, in Wg,/Whp,. In general, there exists w > w,
such that 3,, = () (for example, if h is regular and pp is not de Rham, then 3,,, = 0).

Conjecture 3.5.31. If 3, # 0, then
Hom, (Fo7 (L(=wwy - A), 6485 ) Mool ) 0.

Remark 3.5.32. This is only a weak form of the locally analytic socle conjecture as we explain
below.

For simplicity, we assume that h is regular and z is in the smooth locus of X5 x UY. As in the
proof of [BHS19, Thm. 5.3.3] or Proposition[3.4.13] the dual of

Homy () (L(wwo - A), T32)"° 7] [mg° ]

Tz =sm

is a module over (53600,% via the map Spec(@Xp(p)wwo%xw) — Spec(@xwm) (remark that
can be empty), denoted by L(wwy - A) in [BHS19, (5.22)]. Abusing the
notation, let [L(wwg - A)] be the set-theoretic support of L(wwp - A) in Spec(@xmh). For

w € Wg,, welet 3], C Spec(Ox.. ) be the preimage of the closed subset 3, in Spec(R,,)

Spec(@xp(

p)wwo&umw)

via the formally smooth morphism Spec((j)\gg00 ) — Spec(R,,). Now let €,/ be the union of
3!, w" € Wg, such that a,y v > 1 where a,y ,,» is the coefficient appeared in [BHS19), (2.16)]
(with respect to the algebraic group [ [, s, Resky g, (GL,/F,) Xq, L) so that €, is the underly-
ing set of the Kazhdan-Lusztig cycle appeared in [BHS19, (5.24)] with the same notation. Then
3, CCyand3 , C &y onlyifw >w"in We, (IBHS19, Thm. 2.4.7(iii)]).

In the spirit of the analogue between the subsets (or even real cycles) [L(wwp - A)] and €,
Conjecture expects 37, C [L(wwp - A)]. In general, it is possible that there exists some
w’ > wsuch that 3/, C &,/ (BHSI9, Rem. 2.4.5]). Hence we also expect that 3], C [£(w'wq-\)]
and thus if 3/, # (), we expect that

Homg, (.Fg: (Z(—w’wo ), gsm(s;;) Tl [mrz]an) Lo
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But now it may happen that 3/ , = ) (this will not happen if p, is de Rham, see ). Hence
Conjecture [3.5.3T] should not predict all the possible companion constituents in general.

However, Theorem imposes some restriction for elements w’ € WGP such that 3;1, C
[L(w'wg - A)] just as the restriction for the characteristic cycles in Proposition

Remark 3.5.33. The weak conjecture on locally analytic socles (Conjecture [3.5.31) still implies
the existence of the companion points on the eigenvariety: since we have 3,,, # () by definition,
we get ., € X,(p) if Conjecture[3.5.31]is true, which implies that z,, € X,(p) for all w > w,
in W¢,/Wp, by [BHS17a, Thm. 5.5].

Proposition 3.5.34. Conjecture implies Conjecture|3.5.29

Proof. Now h s regular. Let B, = [ | res, B; be the standard Borel subgroup of upper-triangular

matrices in [[,cg Resg, /q,(GLy/F;) Xq, L. Since (p5, Mzq) is Qr-de Rham for 7 € Jy, v €
Sp, by definition, we have z,qr € ZijmPp.Where Qp :=[l,c;Qr Hrng B, and Zép,Pp is defined
in @ By Corollary @ there exists w € Wg, such that xpqr € Zp,w and Zp, . C

Z@pop' Take one such w, then 3,, # (). By Thegrem 3.2.26, wwy - A is a dominant weight for

the Lie algebra of the standard Levi subgroup of @),,. In particular, L(wwyg - A) is the irreducible
quotient of U(g) ®¢7(q) Lj(wwo - A) where Lj(wwo - A) is defined via (3.5.7). The statement of

Conjecture [3.5.31|and the exactness of the functor ]-“g” imply that
P

G b _
Homy, (]—"E: (Hom (U(9) @u(q) Ls(wwo - A), L)" ,ésm%j) e [mrx]an) £ 0.
By the beginning part of the proof of Proposition we get
Homy(mg, ) (L (wwo - A), Jo, (Meo[my,]™)) # 0.

Then the non-zero image of any non-zero U (mg,, )-equivariant map L j(wwo-\) — Jg, (Teo[m,, ]*")
gives rise to non-zero J-classical vectors since Ly, () in (3.5.7) is a finite-dimensional repre-
sentation of mq, . ]

Corollary 3.5.35. Conjecture|3.5.29|is true if py is crystalline for every v € Sy,

Proof. By [BHSI9, Thm. 5.3.3], Conjecture [3.5.3T]is true for crystalline points. Hence Conjec-
ture [3.5.29]is true for such points by Proposition[3.5.34] O

Remark 3.5.36. The method in the proof of Proposition [3.4.13] based on Theorem [3.4.10| can be
used to give non-trivial evidence for Conjecture beyond de Rham cases. To convince the
reader, we sketch an example here. Let’s keep the notation and assumptions in Conjecture [3.5.37]
and Remark and assume w, = e is the identity in W¢,. Hence 3, # (. By the (dual of)
exact sequences as [BHST9, (5.21)], writing M (wowp-\) as a successive extension of subquotients
L(wwg - \),w € Wg,, we get an equality of topological spaces inside Spec(@xm,Tz):

SpeC(OXP(ﬁ)wOwO-A?CEwO) = Supp(Moo ®0Xp(ﬁ) OXp(ﬁ)wowO-Avxwo) = U [E(’LU'LUO ’ )\>]
weWa,
On the other hand, by the theory of the local model (3.2.2§), we have
SPec(Ox, () ugugring) = U 30
wEWGp

Hence we get

U [L(wwg - N)] = U 30

weEWg,, weWg,
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A priori, in the above equality, we know only 3/ # (Z).~As h is antidominant, we see that any irre-
ducible component of 3. is not contained in Spec(Rg: M.) for any standard parabolic subgroup
@p of [T,¢ s, Respy g, (GLy/F;) Xq, L unless va is the Borel subgroup by Theorem But
for any w # e, the cycle [L(wwyp - A)] is contained in Spec(R% ,) for some non-Borel va by
Theorem Hence any component of 3 is not contained in [L(wwp - A)] for any w # e.

Since 3 is equidimensional with the same dimension as Spec(O X, ( , we must have
3L C [L(wp - N\)]. Hence [L(wp - A)] # @ which implies that

p)wowo»)\azwo )

Home, (F5 (L(—wn - V), 80! ) ool ) £0.

Then z. € X,(p). By [BHS17a, Thm. 5.5], 2, € X(p) forallw € Wg,,.

Remark 3.5.37. Theorem [3.4.18] only concerns the existence of all companion constituents that
can be seen via the local models. In general, there exist companion points 2/ = ((ppv 9, z) €
Xp(P) C ¢ (Xui(p,)) X (Xzr x U9) of z such that 14" is not an algebraic character. In the situ-
ation of Theorem 2’ is one of points ((pp, ORs ) z) for some other choice of refinements
R’. The existence of all companion points of all refinements on X,() for regular crystalline points

is obtained by the existence of locally algebraic constituents of the form L(\) ® (Indgp ésmégi )5
P

in [T [m,.,]*" and the intertwining between smooth principal series (see the beginning of [BHS19]
§5.3] for details). In the non-regular crystalline cases, there exist no such locally algebraic con-
stituents in the socle of I, [m,, |*". Still, in some special cases, one can obtain the existence of
some companion points of other refinements using the locally algebraic representations of M,
that appear in Jg, (Ilc [m,, ]*") (cf. [Din19¢, Prop. 2.14]).
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Chapter 4

Companion points on the eigenvariety
with non-regular weights

Published Version: https://doi.org/10.1093/imrn/rnac080

4.1 Introduction

Let p be a prime number, then there exists pairs of (p-adic) elliptic modular eigenforms (£, g)
of level T'g(p) N T'1(IV) for some p 1 N such that f and g share the same eigenvalues for Hecke
operators Ty when ¢ t pN (i.e. f and g are associated with the same p-adic Galois representa-
tion), but have different non-zero eigenvalues for the U,-operator. The results on the existence of
such companion forms for p-adic or mod-p modular forms, as of Gross in [Gro90], have many
significant applications. For example, Buzzard and Taylor ([BT99], and see [Buz03]]) use Gross’s
results to prove the classicality of overconvergent p-adic weight one modular forms (hence certain
cases of the Artin’s conjecture), and their methods have been successfully generalized for Hilbert
modular forms of parallel weight one, e.g., [Pil17/], [PS16] and [Sas19].

In [HN17], Hansen made a conjecture on the existence of all companion forms for finite slope
overconvergent p-adic automorphic forms of general GL,, in the language of determining the set
of companion points on the eigenvariety that are associated with the same p-adic Galois represen-
tation but with possibly different U,,-eigenvalues or weights. Similar to the weight part of Serre’s
modularity conjecture, the recipes for companion forms are given by the p-adic local Galois repre-
sentations. In fact, the conjecture on companion points is closely related to Breuil’s locally analytic
socle conjecture in [Brel6][Bre15b] from the point of view of the local-global compatibility in the
locally analytic aspect of the p-adic local Langlands program.

We will work in the setting of definite unitary groups as Breuil. Let F' be a quadratic imaginary
extension of a totally real field F'™. Let S, be the set of places of F' that divide p. We assume that
each v € S, splits in F. Let G be a definite unitary group of rank n > 2 over F'* that is split over
F (so that G(F* ®q Qp) = [[,es, GLn(F;")). Then an eigenvariety Y (U?, p) of G, of certain
tame level UP and localized at a modular absolutely irreducible p : Gal(F/F) — GL,(F,), is a

rigid analytic space parametrizing pairs (p, §) where p : Gal(F /F) — GLy(Q,) are continuous
representations which lift p and § = (0,,)ves, = (0v,i)ves,,i=1,-n : HUGSP((F;F)X)” — @: is a
continuous character such that p is associated with a finite slope overconvergent p-adic automor-

phic form of G which has “weight” § |H (0%, )n and has “Up-eigenvalues” [ ]_; v, (@ p+)
F/U

vESp
forv € Sp,i=1,---n where @+ denotes some uniformizers.
v

Recall an algebraic character of £ has the form (F,")* — @; cze [Lprog 7(2)* for
FFoQ,
some k. € Z. Now take a point z = (p,d) € Y(U”,p) and assume that p, := p |q. 75/ ) 18

127


https://doi.org/10.1093/imrn/rnac080

128 CHAPTER 4. COMPANION POINTS

crystalline for all v € S, where v | v is a place of F' chosen for each v € S),. Then ¢ is locally
algebraic, i.e. § = 0,40y, Where each d,14,; is algebraic and dsp o,; is smooth. A companion
point (p, d") of x falls in one of the following two types:

(a) Opyg 7 Oalg DUt Oy, = dgy, (different “weights”);

(b) 0l # O (different “Up-eigenvalues up to some normalizations”).
Our main theorem is the following.

Theorem 4.1.1 (Theorem [4.5.2). Suppose that © = (p,8) € Y (U?,p) is a point such that p,, is
generic crystalline (see for the generic condition) for all v € S,. Assume the tame level is
sufficiently small and the usual Taylor-Wiles hypothesis (Assmptiond.5.1). Then all the companion
points of x in the conjecture of Hansen or Breuil appear on'Y (U, p).

The above theorem was already proved by Breuil-Hellmann-Schraen in [BHS19] under the
assumption that the Hodge-Tate weights of each p,, are regular (i.e. pairwise different). In [Wu21]],
the author removed the regular assumption on the Hodge-Tate weights, but only was able to prove
the existence of all companion points of the type (a) above in the non-regular cases. The task of
this paper is to find all companion points of type (b) for non-regular points. These are companion
points corresponding to different triangulation (refinements) of the trianguline (crystalline) Galois
representations.

The proof of our theorem is motivated by some arguments in ordinary cases and will use the
known results in both regular and non-regular cases. In ordinary cases, modularity lifting theorems
were proved for ordinary families of Galois representations that will specialize to companion
points with possibly non-regular weights. In our finite slope/trianguline cases, for a non-regular
point x as in Theorem 4.1.1| the naive strategy is to find a sequence of points ° on Y (U?, p) with
regular Hodge-Tate weights such that = = liny, 2 and certain companion points (z*) of x*, which
will exist on Y (UP,p) using [BHS19], satisfy that (z')" converge to a point ' on Y (U?, ) and
that 2’ is a companion point of x of type (b).

The actual proof is Galois-theoretical. Using patching methods [CEG™16] and the patched
eigenvariety [BHS17b], we can reduce the task to find those nearby regular ° to a similar prob-
lem on the trianguline variety in [BHS17b], the local Galois-theoretical eigenvariety. Those
' = (p',8%) (now p' are representations of local Galois groups) are found by studying some
“crystalline/de Rham” loci on the moduli space of trianguline (p,I")-modules in the proof of
[BHS17b, Thm. 2.6] and p* will be the Galois representations corresponding to certain étale trian-
guline (¢, I')-modules of parameter &% (the étaleness will be achieved by the results of Hellmann
in [Hel16]). The key example is the case n = 2.

Remark 4.1.2. Our proof for the existence of companion points of type (b) will not use directly
the theory of local models of the trianguline variety in [BHS19] and [Wu2ll]. However, it is the
existence of all companion points of type (a) in [Wu2l]], which used the local models, that allows
us to keep working in the smooth locus of the trianguline variety consisting of points (p, J) where
p is trianguline of parameter 9.

Remark 4.1.3. As a corollary of Theorem 4.1.1] we can determine all the companion constituents
(certain locally analytic representations of [, . s, GL,(F,")) in the Hecke-isotypic part of the
completed cohomology of GG associated with generic crystalline Galois representations in Breuil’s
locally analytic socle conjecture (Corollary[4.5.4)). Since there are no locally algebraic constituents
in the non-regular cases, the existence of all of these companion constituents could be a replace-
ment in the automorphic side to compare with de Rhamness of the Galois side in the p-adic Lang-
lands correspondence in this particular non-regular situation.

Remark 4.1.4. For non-regular weights, the existence of all companion points will not lead directly
to a classicality result of Hecke eigensystems in contrast with [BT99] since classical automorphic
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representations for definite unitary groups will have regular weights. The results of this paper
might be able to be adapted for Hilbert modular forms and have applications in classicality of
p-adic Hilbert modular forms with non-regular and possibly non-parallel weights.

The paper is organized as follows. In §4.2] and §4.3] we collect some (presumedly known)
results on (¢, I')-modules over the Robba rings. In we find the companion points on the
trianguline variety. In we apply the local results in §4.4]to the global settings and prove the
main theorem.

4.1.1 Notation

We will use the notation in [Wu2ll §1.7]. Let K be a finite extension of Q, and L/Q, be a
large enough coefficient field such that ¥ := {7 : K < L} has size [K : Q,]. Let C be the
completion of an algebraic closure of K. We have the Robba ring R, i of K over L defined in
[KPX14, Def. 6.2.1]. Lett € R, k denote Fontaine’s 27 and t = u HTGE t, for some u € REK

(see [KPX14, Not. 6.2.7] for details). Fork = (k;),cx € Z>, write tX = [l es t’T‘“T. Ifé: K* —
L* is a continuous character, let Ry, (&) be the associated rank one (i, I' i )-modules over R, x
in [KPX14, Cons. 6.2.4] where I'x = Gal(K (itoo)/K). Then t*Rp x = Ry x(z¥) where
z¥ denotes the character z — [], 5 7(2)". If @ € L*, then denote by unr(a) the unramified
character of K™ sending a uniformizer of K to a. Let 77, be the rigid space over L parametrizing
continuous characters of K * and 7y C 7, be the complement of the subset of characters § such
that 6 or e~ ! is algebraic. Here e is the character Norm K/Q,|Normpg g, |g, of K*. We can
define 7-part wt,(0) of the weight wt(d) of § (see [Wu2ll §1.7.2]). The cyclotomic character of

Gk = Gal(K/K) has Hodge-Tate weights one. We fix an integer n > 2.

4.2 Cohomology of (y, 'k )-modules

We collect some results of the cohomology of (¢, 'k )-modules (of character type). We fix
d : K* — L* to be a continuous character. Recall if D is a (¢, ' )-module over Ry, g, then
H! (D[%]) = @m—)—‘roo H, .. (t7"D),i=0,1,2 (BHSI9, (3.11))).

PyYK

Lemma4.2.1. If§ € To, thendimp, H!, | (R, x(8)) = 0fori =0,2and dimy H, . (Rr x(5))
(K : Qpl.

Proof. [KPX14, Prop. 6.2.8]. O

Recall in [BHS19, §3.3] we have a functor Wyg (resp. W(;FR) sending a (¢, 'ir)-module over
Rr, K[%] (resp. R k) to an L ®q, Bar-representations (resp. L ®q, B;R—representation) of Gg.

Lemma 4.2.2. If 6 € To and is locally algebraic, then
1Y, (R )[) 5 H (G, Wan (R 0) 1),
t t
Proof. [BHS19, Lem. 3.4.2] O
Proposition 4.2.3. Fork € Z%,i = 0,1,
dimy, H(E Ry, 1 (0)/Re.i(8)) = |{r € S| kr > 1,wt,(8) € {1, k,}}.
Proof. This follows from [Ked09, Appendix A] and [Nak09, Lem. 2.16] (and some other well-

known results: [Liu07, Thm.4.7, Cor. 4.8] and the comparison in [NakO9| Prop. 2.2], or a gener-
alized version [Nak14, Thm. 5.11]). ]
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Corollary 4.2.4. Fork ¢ Z>0, and 0 € Ty, then

dim Ker (HY, (Rp 1 (6)) = Hl o (17Re (0)))

— dimy, Coker ( L (Riw(8)) = HL, (¢ _kRL,K(d))>

—H{r € ke > 1, wt(8) € {1r, -+ k).

Corollary 4.2.5. If 6 € Ty is locally algebraic and wt,(6) < 0 for all T € ¥, then the natural
maps R, k(8) — t ¥R k(8) induce isomorphisms H! . (Rpk(6) = H,_,. (t %R k(0))
foralli=0,1,2k € ZX,

If k € 7%, write k! € Z* where k:pr =k,ifk; >1and k‘g = 0 otherwise.

Proposition 4.2.6. Assume that § € Ty is locally algebmic with weights k € Z*. Then the image
of an element x € H} . (Rp,x(8)) in H} ., (Ry, k (0)[3]) is 0 if and only if
_kt
z € Ker ( HY. (Rpx(8) = Hb., (7% RL,K(a))) .

Proof. We have wt, (02~ ) < Oforall 7 € 3. Thus by Corollary- o kﬁRL,K((S)) o~
H. . (Rik(8)[F])- O

4.3 A crystalline criterion

We need some criterion to guarantee that the points on the trianguline variety we will find in
the next section are crystalline. For the definition of de Rham or crystalline (¢, 'k )-modules, see
[HS16| Def. 2.5]. We say a trianguline (¢, Ik )-module of parameter § = (d1,- - - ,d,) is generic
if 51»5]-_1 € To forall i # j (or § € 73" in the notation of [Wu21l §3.2], remark that 7;* # (7o)"!).
Recall that a locally algebraic character § : K* — L* is crystalline (or semi-stable) if and only if
the smooth part dgy, is unramified (see [KPX14, Exam. 6.2.6]).

Lemma 4.3.1. If D is a generic trianguline (@, ' )-module over R, i of parameter § such that
all 6; are crystalline, then D is a crystalline (p, I i )-module if and only if D is de Rham.

Proof. This follows from the proof of [HS16, Cor. 2.7(i)]. Assume D is de Rham. As D is a
successive extension of crystalline (p, ' )-modules, D is semi-stable (by [BerO8b], see also the
arguments in [Ber02| §6.1]). By the generic assumption, the monodromy must be trivial. Hence
D is crystalline. O

Lemma 4.3.2. Let D be a trianguline (o, i )-module over R, i of rank n with the trianguline
filtration File D such that Fil; D /Fil;_1D ~ Ry, (;) fori =1,--- ,n. Fixig € {1,--- ,n—1}
and let Dy = Fil;,D and Dy = D/Fil;,D. Assume that § is locally algebraic and let \ =
(Ari)res izt n = Wt(0) € (Z¥)™. Assume that for every T € %, A;; < Arjifi > g > jand
that both Dy and D1 are de Rham, then D is de Rham.

Proof. This is a generalization of [HS16, Prop. 2.6]. We need to prove that dim; Wyg (D)%% =
n[K : Qp). For 7 € ¥, let k; = max;>j,Ar;. Then dimy Wi (t7¥Dg)9% = 0 as the Hodge-Tate
weights of XDy are positive and t "X Dy is de Rham. We have an exact sequence

0 = Wi (7K D)9% = Wi (t75D1)9% — H' (G, Wi (t7*Do)).

The Hodge-Tate weights of t %Dy are > 1, hence H'(Gx, Wiz (t™®Do)) = 0 by [Nakl4,
Cor. 5.6] (we have that H'(Gr,C(i)) = 0 for i # 0 by [Fon04, Prop. 2.15(ii)]). We get
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dimy, Wi (t7%D)9% = dim; Wi (t7%D1)9% = (n — io)[K : Q] since t~¥D; is de Rham
with non-positive Hodge-Tate weights. As Dg is de Rham, dimy, Wyg (Do)9% = ig[K : Qp).
Since Wi (t7%Do)[2]NW 5 (t75D) = Wi, (t7%Dy), we have Wag (Do) 95 N\W iy (t 7% D)9x =
Wik (t7%Dg)9% = {0}. Then Wi (t7%D)9% and Wyg(Do)9% span an n[K : Q,]-dimensional
L-subspace in Wqg(D)9%. O

The above lemma will be used in the following form later.

Proposition 4.3.3. Assume that D is a trianguline (o, )-module of rank n over Ry, i with
the trianguline filtration FilD such that Fil; D /Fil;_1D ~ Ry (0;) fori = 1,--- ,n. Fix
io € {1,--- ,n — 1} and let Dy = Fil;,_1D, Dy = Fil;y11D /Dy and Dy = D/Fil; 41 D. Let
A = wt(d) and assume that ¢ is locally algebraic. Assume that for every T € X, A\rj > Ariq1 if
) 75 10, )\T,i > )\7—7%‘0, )\7—71‘0_,_1 if i < 19, and )\7—7%‘ < /\7-71‘0, )\T7i0+1 ifi > 19+ 1. If Dy is de Rham,
then D is de Rham.

4.4 Critical points hunting

Let7 : Gx — GL, (k1) be a continuous representation. We firstly recall some constructions
around the trianguline variety X,;(7) in [BHS170b, §2.2]. In the first parts of this section, we will
only need the Zariski open dense subset Uy, (T) C Xi(7).

4.4.1 The trianguline variety

Let 7i¢, be the Zariski open subset of 7;" consisting of characters § = (9;)i=1,... » such that

51‘5;1 + 27K ezkfori # jand k € Zgo. There are rigid spaces S5'(F) — S, over Treg in the
proof of [BHS17b, Thm. 2.6] (and in [HS16, §2.2]) which will be used later, and we recall below.

The space S, represents the functor sending a reduced rigid space X over L to the isomor-
phic classes of quadruples (Dx,FileDx,vx,0y) where Dy is a (¢, 'i)-module of rank n
over Rx x where Rx i denotes the Robba ring of K over X, Fil,Dy is a filtration of sub-
(¢, I'c)-modules of Dx which are locally direct summands as R x, x-modules, §x € Top(X)
and vy : Fil;Dx /Fili_1Dx ~ Rx i (J;) (we omit the subscripts of the spaces for the univer-
sal characters to simplify the notation). There are obvious morphisms S,, — S,—1 xp T, —
7;2? L T C T/ Let U C S,-1 xr Tr be the preimage of 7;gg which is Zariski open
in S,—1 Xz T and let Dy be the (¢, I")-modules over U pulled back from the universal one
on S,_1. Then S, ~ Speca“(Sym'(&):tSlMK (Ruk (6n), Dy)Y)) is a geometric vector bundle
over U where Saztin (Ru,k (0n), Dy ) ~ HL},’A/K (Dy (6, 1)) is a locally free sheaf on U of rank
(n — 1)[K : Q] ([HS16, Prop. 2.3]) and the notion Spec® is taken from [Con06, Thm. 2.2.5]. It
follows from induction that the map S, — Tey C 7T/" is smooth.

Let S24™ < S, be the open subset (as adic spaces) of the admissible locus, which comes
from a rigid space, and let Sppadm S24m be the GL,-torsor trivializing the universal Ga-
lois representation over S*4™, Let Sadmt — gAdm pe the admissible open subset where
the universal framed representation G — GLn(F(SE ’adm, @) SE,adm)) factors through G —

GL, (D(8y 2™, O;D@dm)). We denote by S(7) the admissible open subset of Sy ™ where
the reduction Gx — GL, (I'(Sy ™, O;E,adm&/(?;éfadm#)) coincides with 7 (see also the dis-

cussion before [HH20, Prop. 8.17]). The map « : S (F) — S, — T}* is also smooth.

Let Ry (over Op) be the framed deformation ring of 7 and let X7 := Spf (RF)1rig be the rigid
generic fiber (we follow the notation in [BHS19] and [Wu21]] rather than [BHS17b]). We have a
subset

Ui(T) == { (1,0) € X7 X Troq ‘ r is trianguline of a parameter & }
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of X7 x T/ (see [BHS17b, §2.2]). The image of SD(F) — X7 x T/ is equal to Uy,(7) and the
trianguline variety Xy,i(7) is the Zariski closure of Usig(T) in X7 x T;* with the reduced induced
structure. The open subset Uy;(7) of X,i(7) is smooth and the map 77 : S2(F) — Uyi(F) C
Xti(T) is smooth [BHSI7Db, Thm. 2.6].

4.4.2 Some “de Rham’ locus

We will define some subspace SE(iO k) (F) C SL)(7) where the criteria in the last section will
apply for certain points on it.
We fix datum g € {1,--- ,n — 1},asubset J C Y and k; = (k;)recs € Zél. We allow J to

be @ or 2. Let 7E?Dyk.f) be the subset of characters § € 7T,q, such that WtT((SZ'O(;;O frl) = k, for all

7 € J and 51‘05;05& € To. Let t be the base change to L of the Q,-Lie algebra of (K ™)™ and view
its dual t* as the affine space of weights and we have a weight map wt : 7" — t*. Let t>(k7;0 k) be

the subspace of points (Ar;)rex i=1,... .n Such that Ar ;o — Ay ;41 = kr forall 7 € J.
Lemma 4.4.1. The rigid space T(?O k) is smooth reduced equidimensional of dimension [K : Qp|n—
EﬂioykJ)'

Proof. This follows from [Dinl7a, Prop. 6.1.13]. O

|J| and is étale over t

Consider the universal (¢, ')-modules Dx and FileDx over X = S, X T(?O k,) Of

SH(7) X 7’(?071{” pulled back from S,,. The extension
0— RX,K(éX,iO) — Fili0+1Dx/Fﬂ¢O,1DX — RX,K(6X,i0+1) —0
together with the trivialization vx defines a section sx in
Exty e (Rx i (0xig1)s Rxx (0x i) 2 H o (Rx 1 (0xig0x 5 11))-

By the main result of [KPX14], both H&,NK (RX,K(éioéi_olﬂ)) and H&mK (t*kJRXVK((SiO(S;OL))
are coherent sheaves on X. We define the subspace S, (,.k ) Or SE

)

(io,k) (7) to be the vanishing
locuson X = S, XTp 7?;0,1( 5 or SE (7) X 7?;071(]) of the image of sx under the natural map

HY (R (6ig6; 4 1)) = Hi o (T Rox 1 (850071 1))-

The vanishing loci are Zariski closed subspaces as H, (t %Ry, K (8iy0;, IH)) is locally free

(by Lemma.4.2] below).

Then the image of S5 7) in Uy (T) consists of z = (7, ) such that wt.-(; oL )=k,
n (1,0 kJ) 0" 20+1

for 7 € J, i, 62-_0 }H € 7o and the extension (the condition will be independent of the trivialization
of Ry, i (0:))

0— Rk(x),K(ézo) — Filio+1Drig(T)/Fﬂio_lDrig(T) — Rk(z),K(6i0+1) —0

corresponds to an element in H, iWK (Ri(a),x (0ig 65, }H)) which lies in the kernel of

HY (R, i (86005 51)) = Hoo o (875 Ry 10 (830030 41)-

Remark that the image of SE (io.k)) (7) in Uyyi(7) is a locus where Fil; 1 Drig (1) /Filjy—1 Dyig(7)
is de Rham if 0;, and 0;,41 are locally algebraic (cf. Lemma [4.2.2). Using this property and
Proposition[d.3.3]we will pick out certain crystalline points with regular Hodge-Tate weights in the
image of SE (ioky) (7) in Uyi(T) (Proposition . The following lemmas (particularly Lemma

i show that the geometry of SE( i k) (7) is good and will be important for the purpose.
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Lemma 4.4.2. Let X be a reduced rigid space over L and §x : K* — I'(X,Ox)* be a contin-
uous character. Assume that for any x € X, we have 6, € Ty and wt(8,) = k. forall 7 € J.
Then the coherent sheaves H}QWK (Rx k(6x)), Hc;mK (t % Rx k(6x)), as well as

KeI‘(HéNK (RX,K<5X)) — Hé,’YK (t_kJ'R,XJ(((Sx)))

and
COker(H;VK(RX,K((S)()) — H! (t_kJRX7K(5x)))

VK

are finite projective over X of rank |X|,|X|, |J|, |J| respectively and their formation commutes
with arbitrary base change.

Proof. We write Ker(dx ) or Coker(dx) for the kernel or the cokernel of the map

Hin (Rx,k(6x)) — HiWK (T Rx i (dx))

for simplicity.

For any r € X, dlmk(m) HQ}?,’YK (Rk(m),K(él‘)) = dlmk(r) H;,WK(t_k‘]Rk(x),K(éx)) = |E|
by Lemma and dimy,,) Ker(d,) = dimy,,) Coker(d,) = |J| by Corollary and our
assumptions on ¢,. The fact that Hs}:m( (Ri(a),k (0z)) and H;»'YK (t_kJRk(x),K(ém)) are locally
free and commute with base change of the form Sp(k(z)) — X for z € X follows from [HS16)

Prop. 2.3]. Thus for any = € X,

~Coker(H}, . (Rx ik (0x)) ®oy k(z) = H,  (t7Rx k(5x)) ®oy k(z))

PYK

HY o (Ri@)x(02)) = Hp o (8 Ry 1 (62)))

Thus Coker(0x ) has constant rank, hence is projective by [KPX14, Lem. 2.1.8 (1)], and commutes
with base change of the form Sp(k(z)) — X forz € X.

Let Im(dx) be the image of the map H}_ (Rx x(6x)) = H} ., (t 7% Rx k(0x)). Then
we have dimy,(,) Im(d,) = || — |J| for any = € X. By the exact sequence

0— Im((SX) — H;KYK (t_k‘]'R,XJ(((sx)) — COkeI‘(5x) —0

and Tor}QX (k(z), Coker(dx)) = 0, we get

0—Im(dx) ®oy k(z) — H;WK (t_k"Rk(m)vK(ém)) — Coker(d,) — 0

forany x € X. Hence Im(dx) ®o k(x) ~ Im(J,) forany x € X and Im(dx) is finite projective
of rank |X| — |J|. Repeat the argument using the exact sequence

0— Ker((sX) — H;/YK (’R«X,L(éX)) — Im(5x) — 0

and that Toréx (k(z),Im(0x)) = 0, we see Ker(dx) ®p,, k(z) ~ Ker(d;) and Ker(dx) is finite
projective of rank |.J|.

The statement for general base changes, which we will not essentially need, follows form
[KPX14, Lem. 4.1.5, Thm. 4.4.3 (2)] and the locally-freeness of those sheaves over the base
X. O

Lemma 4.4.3. The morphism r : S (i0.k)) () — 'T(?O k) is smooth.

)

Proof. The diagram
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SE(ioka)(?) - S”,(io,kJ)

¢ \

SHF) — S,

is Cartesian. Hence the map S” (o kJ)(F) — Sp.(io,k,) 18 smooth. The map SE(Z.O kJ)(F) —
Tio k) factors through Sn,(zo,k 5 722 k)" Therefore, we only need to prove that SH,(iO’k S
(?0 k) is smooth. In @ we have maps S; — Si 1% 1, TL. We can define S; 11 (;, k) replacing

n by o+ 1. We have T?O k) = Treg X Tio+ 7'1“ )" The section sg,, Xp T” is the pullback of

kj)

the section s via S, X7n T/ — S; X , smce the definition
Sig+1 ><7'£'0+17'(lz%+k1]) 7L 72207k1) io+1 IOH Tll

of sx only involves Fil; 11 Dx and 6;,, d;,+1. Thus the diagram

Sn,(io kg) Sio+1,(io k)

J 3

S, — Sigt1

is Cartesian. As each S; — S;_1 X, Tr, is smooth (as a geometric vector bundle over a Zariski
open subset of the image), we see so is, by base change, S; i, k,) = Si—1,(iok;) XL TL —
7220 k) 771 k) XL Ty, for i > ig + 2 if the result is true for ig + 1. Thus, we reduce to the case
when n = 19 + 1
We consider the map
Sio+1,(i0 k) > Sig+1 X ot 7le oley) 7 (Sio X1 TL) X i+ 7"

(0, kJ

Since the map S;, — 7'ZO is smooth, so is (S;, X, T1) X Tiott 7'1 )~ 7'“1211 Write V for
(Sip XL TL) X Tio+L 7'1 . We only need to prove that 510+1 (i0,k,) 18 @ geometric vector bundle
over V which Wlll 1mply all we need

Recall that S; 41 ¥ o+t 7'1O k) = Spec™ (Sym®( Fil;, Dy (6% ,))Y)) where Fil;, Dy

10+1
is the universal one pulled back from S;, and §;,; is the character pulled back from 7—('201-:]1)‘
Consider the kernel of the following composite of morphisms of coherent sheaves on V'

<pw<(

HY . (FiliyDy(5;% 1)) = Hb o (Rvik (800 41)) = Hp o (8 Ry i (806;4))  (4.4.4)

VK PK ©K
where Ry i (0;,) = Fil;, Dy /Fil;,— 1DV We denote the kernel (resp. cokernel) of the above

composite morphism by Ker(Fil;, Dy (; +1)) (resp. Coker(Fil;, Dy (d;, Jrl)))

We claim that Ker(Fil;, Dy (;, }H)) is locally free of rank (i9 — 1)|X| 4 |.J| and

Ker(Fil;, Dy (6;.}1)) ®o, k(z) ~ Ker(Fili, D(6; ) 1))

forany x € V. If iy = 1, this follows from Lemma- Now we assume 79 — 1 > 1. The
sheaves H. . (Fily, Dy (6;.11)). H} . (Rv.k(6iy6;41)) and HY (67 Ry, (6;,0;. 1)) are
locally free of ranks ig|X%|, |X| and |X| respectively and commute with base change. The morphism

H;; Vi (FﬂioDV(éz }H)) - Hé,ﬂ/K (R‘/,K<61051_0+1))

Fil;,_1D,(6;} 1)) = 0 (see [HSI6, Prop. 2.3]). Hence

is surjective since forany z € V, H, o+

va(

Coker(Fil;, Dy (5, 1)) = Coker(H, ., (RMK((LO(SIO}H)) — H, . (t *kJRV,K((sm(s;O L))
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By Lemma we get Coker(Fil;, Dy (d;, }H)) is locally free of rank |.J| and for any point
x eV, Coker(FiliODV((?;Oil)) ®o, k(z) ~ Coker(FiliODx((S;ZlOH)). Repeat the last step of
the proof of Lemma[.4.2] we get the desired claim.

The injection Ker(Fil;, Dy (9, }H)) — H,_ (Fil;, Dy (67, }H)) of projective coherent sheaves
induces a surjection

H;WK (FiliODV(éi;ﬂrl))v — Ker(FﬂiODV((Si_O}rl))V

which by [Con06l Thm. 2.2.5] induces a closed embedding

Specan(Sym°(Ker(FiliODV(élfOil))v)) — Sig+1 X o+t 7'(2?)11(])
The left-hand side is a geometric vector bundle over V' by the previous discussion, and we remain
to prove that Spec™ (Sym*® (Ker(Fil;, Dy (6;, }rl))v)) coincides with S; 41 (i, k). The statement
is local and trivial. We write a proof below.
We may take an affinoid open W = Sp(A) C V and assume that the sheaves in (4.4.4)) are
free over W. Then since all the modules are projective, we may take a basis eq, - - , €; x| of
H ém{ (Fili, Dw (65, frl)) and assume that the surjection

H} . (FiliyDw(5;.11)) = Hp o (Rwi (81007, 1))

corresponds to projection to the subspace (eq, - - - 76\E|> (equivalently choose a split of the sur-

jection). We assume that €/, - - ,eim is a basis of Hj,m{ (t_k"RW,K(&ofsi;il))- As the cok-

ernel and the kernel of the map H. . (Rw,x(8iy0;%1)) — H . (7% Rk (8,074 ,)) are

locally free, we may, after possibly shrinking W, assume that the morphism is given by sending
€l gj41> " > €|y to e\/J|+1’ . ’e\/EI and sending ey, --- , ¢y to 0. Letey,- - ,eivom be the dual
basis. Then

Specan(Sym'(ngﬁK(FiliODV(di_ofrl))V)) resp. Speca“(Sym'(Ker(FilioDv(6£i1))v))

are covered by
WN = Sp(A<pNe\1/> e 7pN€X)|Z|>) resp. Sp(A<pN€Y, e 7pN€‘\{]‘>pN€‘VZ‘+17 T apNeX)|Z\>)
where NV € N. The tautological section sy, of the sheaf
Hé,’w( (RWN,K((Sio&i;}H)) = OWN61 D---D OWN€|E\

is given by eye; + -+ + 6|V2\6\E|- Thus the image of sy, in

Hy o (8 Rivy i (81665041)) = Owyel @ - @ Owyefy,

is given by e|\{]|+1€\/J\+1 +- 4 e‘vmeizl. Hence the vanishing locus is cut out by e|\f,|+1 ==
e‘vz‘ = 0 and coincides with Sp(A(pNey,--- ,pNe|VJ|,pNe|VE|+1, e ,pNeZ\.f)‘El)). O

4.4.3 Nearby critical crystalline points

Now we fix x = (r,0) € Uqi(T)(L) C (X7 x T/*)(L). We assume that r is crystalline and
§ = zMunr(yp) := (2Munr(g;))i=1,.. » for some A = (Ar;)rexiz1,.. n € (Z")* and p € (L*)™.
Assume furthermore that ap,-goj_l ¢ {1,q} for all i # j where ¢ is the cardinal of the residue field
of Ok. This means that r is generic in the sense of [Wu2l, §4.1] or the beginning of §4.5.2] and
6 €Ty
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We continue to fix ip € {1,---,n —1}. Let J := {7 € X | A\rjy > Arjpq1 + 1}
and let k; = (kr)res = (Mrip — Arig+1)res. We have a filtration Filg Dyig(r) such that
Fil; Dyig (1) /Fili—1 Dyig (1) ~ R,k (6;). Since r is de Rham, so are Dyig(r) and the subquotient

Fili0+1 Drig (T)/Fﬂio—lDrig(T> . The extension
0— RL,K(éio) — Filio+1Drig(T)/Fﬂio_lDrig(T) — RL,K(5i0+1) — 0

defines an element in Hé,vx (RLvK(éioéi;}&-l)) (up to L) which lies in the kernel of

HY . (Rik(8ig041)) = Hp o (89 RL i (81004 1))

by Lemma[.2.2] Proposition[4.2.6] [BHSI9. Lem. 3.3.7, Lemma 3.4.2], the isomorphism

Hl(gK, L ®Qp BdR) ~ Ethl’nepL@)Q (QK)(L ®Qp Bar, L ®Qp BdR)
P

Bar
and the following lemma.

Lemma 4.4.5. Let W be an L ®q, Bqr-representation of Gi which is an extension 0 — L ®q,
Bar =& W — L ®q, Bar — 0 as representations of Gi. Then W is trivial (i.e. W =~ (L ®q,
Bqr)?) if and only if the extension splits.

Proof. If the extension splits, then W is trivial. Conversely, if W is trivial, then dimy W9% =
2[K : Q] and we have an exact sequence of L ®g, K-modules 0 — L ®q, K — W9k —
L ®g, K — 0. The extension splits and we may choose a section L ®q, K — WY9% which
induces a section L ®q, Bar — W of L ®q, B4r-representations. O

Thus z lies in the image of SE(iO k) (7). Recall the following diagram.

Sg(imk”(?) c SH(7)

Z

WS Utri(F) ~ 7—(?(),kj) - 72”

To state our main result of this section, we make some preparations in rigid geometry.

Definition 4.4.6. Let A and B be two subsets of a rigid space X over L. Then we say that A
quasi-accumulates at B if for every point b € B and every affinoid open neighbourhood Y of b,
ANY # () (compare with [BHS17b, Def. 2.2]).

Lemma 4.4.7. If A and B are two subsets of a rigid space X, then A quasi-accumulates at B if
and only if for any b € B and any affinoid open neighbourhood Y of b, b lies in the Zariski closure
of Y NAinY. In particular, if A quasi-accumulates at B, then B is contained in the Zariski
closure of Ain X.

Proof. We prove by contradiction. Assume that A quasi-accumulates at B and there exists an
affinoid neighbourhood Y of b € B such that b is not in the Zariski closure Y N A in Y. Since
Zariski open subsets in an affinoid are admissible open ([Bos14, Cor. 5.1.9]), there exists an
affinoid neighbourhood Y’ C Y \ Y N A of b. Then Y' N A = (), this contradicts the assumption.

O

Lemma 4.4.8. Let Y — X be a closed immersion of rigid analytic spaces over L. Let Z be
a subset of Y and y € Y be a point. Then Z quasi-accumulates at y in X if and only if Z
quasi-accumulates at y in Y.



4.4. CRITICAL POINTS HUNTING 137

Proof. The problem is local and we may assume X = Sp(A),Y = Sp(B) and B = A/I for an
ideal I. Assume that Z quasi-accumulates at y in X. We only need to prove that for any affinoid
neighbourhood Y’ of y in Y, there exists an affinoid neighbourhood Y” C Y’ such that Y has
the form X’ N'Y for some affinoid neighbourhood X’ of y in X. As affinoid subdomains are
open in the canonical topology ([Bos14, Prop. 3.3.19]) and Weierstrass domains form a basis of
the canonical topology ([Bos14, Lem. 3.3.8]), we may assume that Y has the form {z € YV |
|fi(z)] < 1} for f1,---, fmw € A/I. We may choose lifts ﬁ, ,fm for f1,---, fyn in A. Then
e X i@ <10y = fzeY | |fi) <1} O

We say a character § = (61,---,0,) € T;* of (K*)" is crystalline if for any 1 < i < n,
0; ’05(: 2% for some K. € Z*.

Lemma 4.4.9. Let C be a positive integer. Then the set of crystalline characters 0 € T} such
that, if we write X = wt(9), Ari — Arit1 > Cifi #ig, \j — Xig > C, A — Aig1 > Cifi < i,
N — )‘io < -C, A\ — )‘io—i-l < -C ift >1i9+1, )\7—,1‘0 = /\T,io—i-l ift € Jand )\771‘04_1 — )\7—,1‘0 >C
quasi-accumulates at the trivial character in 7"

Proof. Let ¢ = plFo@] where K is the maximal unramified subfield of K, and d = |3|.
Take a uniformizer wg of K. We prove that for any character 6 € 77, such that §(wg) = 1,
the set {6pN(q_1),N € N} quasi-accumulates at the trivial character. For some m large, we
have O = Z& x n(Ok) x Z/(q — 1) where ZZ/ exp(@wOf) is finite and 1(Ok) denotes
the p-power roots of unity in Ok (see [Neul3, Prop. II1.5.7]). We only need to consider Zg =
Lipe1 @ - - - © Lpey since the characters 7" (@=1) are trivial on the torsion subgroups of O} and
w%( when N is large. The space @ = U? which parametrizes characters of Zg is the open
polydisk in d variables 71, - - - , T;; by sending a character  to (6(e;) — 1,--- ,d(eq) — 1). Then
57" is sent to (8(ey)?" —1,---,8(eq)?" —1). Forany € C such that |z — 1|, < 1, where | — |,
denotes the standard valuation, limy_,o [27" — p = ImN_soo | Doq<icpy (piv)(ﬂs — 1), = 0.
Hence for any € > 0 and NV large enough, we have (§(e1)?" —1,--- ,d(eg)?" —1) € B(0,¢)? :=
{z € U | Ti(2)|p < €+ ,|Ta(x)], < €}. Any affinoid neighbourhood of 0 in B(0, %)d
contains a Weierstrass subdomain of the form {z € B(0, %)d | 1fi@)]p <1, [fm(2)]p, < 1}
for some fi, -+, fm € L{(p T4, - ,p~1Ty) by [Bos14, Lem. 3.3.8, Prop. 3.3.19]. Since
| £:(0)], < 1, there exists € > 0 satisfying that for all (z1,--- ,24) € C? such that [p~lz;|, < €
foralli = 1,---,d, |fi(z1,--- ,xn)lp < 1. Hence B(0,e)? C {z € B(0,1)? | |fi(2)], <
1,---|fm(z)|, < 1}. Therefore, we have {6?" (@1 N € N} quasi-accumulates at the trivial
character.

We write z, for the character that sends z € O} to 7(x) and wk to 1. For i # ig, 49 + 1,
let & = [[,es a7’ Letdsy = [[cyar [T g7 and 6ip11 = [T cyar" [1,45 277 Let
0 = (01, ,0n). Then ¢, as well as its powers, is crystalline. The set {QPN(q_l) | N € N}
quasi-accumulates at the trivial character by a similar proof as above and QPN(‘I_I) satisfies the
requirements for the weights if IV is large. O

Finally we can prove the main local results. Write 2%/ for the character KX — L* : z
HTEJ T(Z)kT .
Proposition 4.4.10. Let X be an affinoid open neighbourhood of  in Uy (T).

1. There exists a subset Z C X that quasi-accumulates at x and such that for every z =
(r:90,) € Z,

(a) z lies in the image ofSE(io,kJ)(?) c SY,

)

(b) 0, € Ty" is crystalline, and
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(c) if we write X\, for wt(0,), then for every T € X, X\, i > Ay rit1 if 1 # G0, Aori >
)\z,’r,iov )\z,’r,io—‘rl lfl < iO: )\Z,T,i < )\z,T,im )\Z,T,i0+1 le > i0+1, and )\Z,T,io < )\z,’r,io—‘rl

ifrT ¢ J.
2. Every point in Z is generic crystalline and regular (i.e. X, ;; # X\ ;. j foralli # j, 7 € ).
3. Let ¢ be the automorphism of T}" sending §' = (8}, ,0),) to

( /17 T 20717 z/'0+12kj7 5;0 7kJ7 £0+27 T 761/1)
Use also the notation  to denote the automorphism of X7 x T/* : (r,8") = (r,((8")). Then
C(Z) is a subset of X1.i(T) and quasi-accumulates at {(x) in X7 X T;*. As a consequence,
((x) lies in X4,1(F) and ((Z) quasi-accumulates at {(x) in Xy (T).

Proof. (1) By the definition of quasi-accumulation, we only need to verify that there exists one
point z € X for an arbitrary affinoid open neighbourhood X C Uyi(T) satisfying the condition
(a), (b) and (c). Let 7' (X) be the preimage of X in SH (io k )( 7). Then 7 '(X) is admissible
open. We only need to prove that there exists a point 2’ € 7' (X) such that #(2") = o' (17(2')) €
T(io,k,) satisfies the conditions in (b) and (c). As x5 : SE(ioka)(F) — 7’(?071(” is smooth by
Lemma , the image x(m- (X)), which contains §, contains an admissible open subset of
T k) that contains § by [Bos14l Cor. 9.4.2]. Then the result follows from that the set of points

i0,
d e T(Z)’kJ) that satisfy (b) and (c) quasi-accumulates at § by Lemma (since € 7" and
Ti — T2 8’ — 64’ is an isomorphism).

(2) Assume z = (r,,0,) € Z asin (1). By (c), the T-weights of ¢, are pairwise different, thus
the Sen weights of r, are regular. Since (r,, J,) lies in the image of SnD, (io.k)) (7), the extension

0— Rk(z),K((Sz,’io) — Fﬂio+1Drig(Tz)/Fﬂ'iolerig(rz) — Rk(z),K(dZ,io#»l) — 0

corresponds to an element (up to L) in the kernel of

Hy e (R, 5 (02,00 g 11)) = Hopype (87 R, 1 (82,0007 5y 11)
and in particular, in the kernel of

_ 1
Hy o (R, i (0200000 11)) = Hop e (R, i (02000 40 41) [5])-

t
Since 4.4, d2,io+1 are both locally algebraic, we get that Fily, 41 Dyig(r)/Filig—1 Drig(r2)[1] is
a direct sum of de Rham (¢, I'r)-modules over Rk(z),K[%] by [BHS19, Lem. 3.3.7]. Hence
the (¢, I'xc)-module Fil;y 11 Dyig(r2)/Filig—1 Dyig(72) over Ry.) i is de Rham. By Proposition
and the condition of weights in (c), r, is de Rham. By (b) and Lemma@4.3.1} r, is generic
crystalline.

(3) Let 2 = (p.,0,) € Z C Uwi(T). Then §, = z*:unr(yp _) for a refinement ¢ =
(@21, ,92n) Where X, is as in (c) (we abuse the notation z for a pomt and the character). Let
f/z be the refinement such that go’m = . if i # ig,i0 + 1 and ¢, iy = Prio+ls @, ol = Paio-
Let Ad°™ be the weight such that )\307“; = A riifi #ig,i0 + 1orif 7 € J and let )\30;20 =

Az rio+1s )\‘Zif’jgo 41 = Ao if 7 ¢ J. Then A%°™ is dominant and differs from A, by permuta-
tions. It is easy to verify that 22" unr(¢’) = ((2 Asunr(p _))- By [BHSI9, Thm. 4.2.3], all the

. . . . )\dom /
companion points of z exist on X,;(7). In particular the dominant point (r., 2= unr(y’ )) cor-
responding to the refinement cp’ is on X,i(7). Let z vary, we see ((Z) C X,i(T). Since Z quasi-
accumulates at x in Uy,i(T) C Xm( ), Z quasi-accumulates at = in X7 x 7;* by Lemma
Since ( is an automorphism, {(Z) quasi-accumulates at {(z) in X7 x T;*. As ((Z) C Xi(T), we
see ((Z) quasi-accumulates at {(z) € Xi(T) by Lemmaf4.4.7] O
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4.5 Companion points on the eigenvariety

We now prove the existence of all companion points for generic crystalline points on the
eigenvariety. We recall the definition of the eigenvariety for definite unitary groups in [BHS19,
§5.1] or [BHS174l §3.1].

4.5.1 The eigenvariety

Let F be a quadratic imaginary extension of a totally real field F'". Let S, be the set of places
of F'* that divide p. We assume that each v € S, splits in F and for every v € S,, we choose
a place v of F' above v. Let G be a definite unitary group of rank n > 2 over F'" that is split
over F' so that G, = Hvesp Gy = G(FT ®@q Qp) ~ Hvesp GL,,(F3) (we fix an isomorphism
G xXp+ F'~ GL, ). Let B, = [1.e S, B, be the subgroup of upper triangular matrices in G/,
and let T), = [[,c s, T, C B, be the diagonal torus. Let U? = Hv’(p U, be a sufficiently small
(see [BHSI7a, (3.9)]) open compact subgroup of G(A%Y). Write S(UP,L) == {f : G(F)\
G(A%,)/UP — L, continuous}, where L/Q, is a large enough finite extension with the residue
field k7. Let G}, act by right translations on S (UP, L). Let S be a finite set of places of F'* that
split in £ which contains all split places v ¢ .S, such that U,, is not maximal and also contains S,.
The space S (UP, L) is also endowed with some usual action of (away from S) Hecke operators
and one can talk about the p-adic representations of G := Gal(F/F) associated with Hecke
eigenvalues that appear in S(UP, L). We fix a modular absolutely irreducible p : G — GLy, (kr)
and write S (UP, L) # 0 for the localization of S (UP, L)5 at the non-Eisenstein maximal ideal
of the Hecke algebra over O, associated with p (see [BHS17b, §2.4] for details). We assume the
following “standard Taylor-Wiles hypothesis”.

Assumption 4.5.1. 1. p>2;
2. F'is an unramified extension of F'*;
3. G'is quasi-split at all finite places of F'*;
4. U, is hyperspecial at all places v of F'* that are inert in F';

5. F contains no non-trivial {/1 and the image of p ‘Gal(? JE(YT)) is adequate, see [BHS19,
Rem. 1.1].

Let R; s be the deformation ring of polarized deformations of p that are unramified outside S.
This is a Noetherian complete local ring over Oy, with residue field k7. We have an action of %5 g
over § (UP, L)z which factors through the Hecke actions and commutes with that of G, (for details,
see also [BHS17b, §2.4]). Let Spf(R; 5)"® denote the rigid generic fiber of the formal scheme
Spf (R@S) in the sense of Berthelot, cf. [[dJ93] §7]. Let fp be the rigid space over ), parametrizing
continuous characters of 7}, and we write fn 1, for its base change. Denote by S (UP, L)3" the

subspace of S (UP, L); consisting of Qp-locally analytic vectors under the action of G,,. Then

~

S(UP, L)%n is a locally analytic representation of G}, and if we apply Emerton’s Jacquet module

~

functor with respect to By, Jp,(S(UP, L)5") becomes an essentially admissible locally analytic
representation of 7, (([Emel7, Def. 6.4.9]). The dual Jp,(S(U?, L)%n)’ defines a coherent sheaf
on the quasi-Stein space Spf(R5s)"® x T, 1. We define the eigenvariety Y (U?,p) to be the
scheme-theoretical support of the coherent sheaf defined by Jp, (S(U?, L)5")" in Spf (R5.5)"& x

T,,... An L-point (p, 8) € Spf(R5 )" x T}, 1, is in Y (U, p) if and only if

Homg,, (8, 5, (S(U?, L)p[m,|™")) # 0
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where m,, is the maximal ideal of R S[ ] corresponding to p and S(U?, L)slm,] denotes the

subspace of elements in S (UP, L); annihilated by m,,.

4.5.2 The companion points

We will give the description of all companion points for a generic crystalline point. Suppose
(p,d) € Y(UP,p)(L). Let py := p |g, forv € Sp. Set By := {7 : Iy < L} forv € S
and %, := Uyeg,X,. Assume that for each v € Sy, p, is crystalline. Then we have p-modules
Dyis(py) over L ®q, F%,0, where Fj o is the maximal unramified subfield of F%5. Take 7,0 € 2.
Then !F5.0:%] acts linearly on Deyig (pw) ® L&, Fr,0,1870,0 L.Let{©y1, - ,Pvn} be the multiset
of eigenvalues of <p[ 0:Qp] Wthh is independent of the choice of 7, o. We say that p is generic
crystalline if govyzgov,] ¢ {1,plF5.0Ql} forany i # jand v € S,. A refinement R = (Ry)ves, for
the generic crystalline representation p is a choice of an ordering R, : Y, = (Pu,1, s Pun) of
the n different eigenvalues for all v € \S,,. Thus, p has (n!)1%! different refinements.

Let | - | F. be the norm of Fy such that |p| . = p~ %'l Denote by 65, the smooth character
e ®) i g @l \E” of T, ~ (FX)" and 05, = @ues, 0B, the character of 7).
We deﬁne an automorphism ¢ = (y)ves, of fp,L = Huesp T\v,L given by 1, ((dp,1,++ ,0un)) =
6B, (Op1,-++ 0yt o+ 6, n€" 1) where € denotes the cyclotomic characters.

Let h = (h;);ex, = (hr1,---,hrn)res, Where hyy < - < hg )y, are the 7-Hodge-
Tate weights of p, if 7 € X,. Let S, be the n-th symmetric group and act on the n-tuples
(hr1,-++ ,hrp) in standard ways. For w = (wy)ves, = (Wr)ves, res, € (S,)*r, define a char-
acter g ,, := (LU (zw“(hv)unr(gv)>) o of T,. Let Wp, = (Wp, )ves, rex, be the subgroup

v

P

of (S,,)* consisting of permutations that fix h. Here P, denotes the parabolic subgroup of block
upper-triangular matrices in GL,, with the Weyl group (of its Levi subgroup) identified with Wp_.
Set Dar.r(ps) = Dar(py) ®reg, oter L. If we choose a basis (e1,-- ) of Darr(p)
of eigenvectors of (!¥7.0:Q] with eigenvalues (¢u,1,° v n), then the Hodge-Tate filtration on
Dgg,+(py) corresponds to a point on the flag variety GLn /P, which lies in some Bruhat cell
Br;wg., P;/P; for some wr, € S,/Wp, and wg, is independent of scaling of the eigenvectors.
Here R signifies the refinement ¢. Let wr = (Wr, Jves, rex, € (Sn)ZP/pr.
Define a subset of points of fp’ L

W(p) == {0pw | we(S 2)>7 /Wp ,w > wgr, R is a refinement of p}

where > denotes the usual Bruhat order on S, (or its quotient). Notice that there is a natural
partition W (p) = [ [z Wr(p) and W (p) depends only on p,, v € S),.

By the control of the companion points on the trianguline variety in the generic crystalline
cases ([BHS19, §4.2] and [Wu21l, §4.1]), we have an inclusion {&’ | (p,d") € Y(UP,p)} C W(p).
Below is our main theorem.

Theorem 4.5.2. Let (p,0) € Y(UP,p)(L) be a generic crystalline point as above and recall that
we have assumed the Taylor-Wiles hypothesis (Assumption d.5.1). Then

W(p) c{d'| (p,0") € Y (U, D)}

Proof. We need the patched eigenvariety in [BHS17b, §3.2]. Forv € .S, let R’ / Or, be the maxi-
mal reduced Z,-flat quotient of the framed deformation ring of p;. We can snmlarly define R’ for
veS\S,. Let Kp = [lves, GLa(Or;) C [lves, GLn(F5) ~ Gp. Recall that under the Taylor—
Wiles assumption, there are some positive integers ¢ and ¢, a patching module M, in [CEG™16]
over the ring Ry = ®UESR%UHx11 -+, xg]], an Op-morphism So := Op[[y1,- - ,yql] = R
and a surjection Ry /a — Rj s of completed local rings over O, where a = (y1,- - ,%q4), such
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that M, is a finite projective Seo [[Kp]]-module and IT, := Hom@™ (M, L) is a Ro-admissible
Banach representation of G, with an isomorphism Il [a] ~ S, L)5 that is compatible with
the actions of R, /a and R; s (the action of Rj g factors through the quotient R s). Write I127
for the subspace of locally Roo-analytic vectors in Il ([BHS17b, Déf. 3.2]). The patched eigen-
variety X, (p) is the support of Jp, (II22)’ inside Spf(Rec)"® X T L~ Spf(®ves R )“g X
Spf(@)vES\SpR/ﬁv)rig X Spf(OLHl'l, . ’:L‘g“)rig X j:p,L = %Pp X .}:pp x U9 x TZLL' By [BHSl7b,
Thm. 3.21, §4.1], we have closed embeddings

Y(UP,p) = Xp(p) = ¢ (Xui(p,)) x (¥pr x UY) C Xp, ¥ Tpr X Xpr x U9

where X:i(p,) = [I,es, Xui(p,) and ¢ is extended to an automorphism of X5, x T, T .1, by base
change. Moreover, X, (p ) is equidimensional and is identified with a union of 1rredu01ble compo-
nents of ¢ (th(pp)) (X x UY) under the above closed embedding. By the argument as in the
first steps of the proof of [BHS19, Thm. 5.3.3], we are reduced to prove the lemma below.

Lemma 4.5.3. Assume that a point ((pp = (pv)ves,,t(0)),y) € ¢ (Xtri(ﬁp)) X (Xpr x U9) is in
X, (p)(L) where each p,,v € Sy is generic crystalline. Then ((pp, 0 .,),2) € Xp(p)(L) if and
only if w > wg in (S,)>?/ Wp, where R denotes refinements of pp.

Now we prove the lemma. By [Wu21, Thm. 4.10], we may assume

((pp = (pv)ves,, t(9)), Z) Sl (Utri(ﬁp)) X (X x U9).

Suppose that § corresponds to a refinement p = (fv)vesp. We need to prove that the companion
points for other refinements exist on the eigenvariety. We only need to prove the existence of
companion points for an arbitrary refinement ¢’ such that f; = ¢ forall v =% g for some vg
and <p;0 is the refinement permuting ¢y, i, and ¢, i,+1. By Proposition there exists a
subset Z C Xui(p,,) that quasi-accumulates at (py,, d,,,) consisting of generic regular crystalline
points and their local companion points ((Z) quasi-accumulates at {((py,,d,,)) Which is a local
companion point of (pu,, d,,) for the refinement ¢ .- Since Ui (pp) is smooth at (pp,, J), we may
assume every (z, (pv, 0, )v-£v,); 2 € Z is contained in the same irreducible component of Xt,i(p;)
with ((py, 6, )ves, ). In particular for any z € Z, (¢(2, (pv, 6y ) vty ) ¥) € Xp(P).

For 2 = (pug,2,0y,.2) € Z, 1€t Zdom = (Pug.z> Oyy.2.dom) bE the companion point of z with

0,2
dominant weight in X,i(p,,) corresponding to the same refinement as z, denoted by [ .- By

(BHS17a, Thm. 5.5], the companion points (¢(Zdom, (Pvs 9y )vte ), y) are in X, (p). Let mT be
the maximal ideal of Ro corresponding t0 7, = ((pug,2, (Pv)vstvg)s ¥) € Spf(Reo)™®. By the
classicality (which follows from applying [Wu2l, Prop. 4.9] for (¢(zdom, (Pvs0y)vstvs)s ¥), but

essentially [BHS17a, Thm. 3.9] is enough for us, and the classicality is only partial for vp), there
exist companion constituents of the form (as a representation of G, = Hve Sy Gy)

(Alg(2) ® PS(g, )Burull(d,)

inside IToo[m,., ]?". Here II(J,) are certain locally analytic representations of G, constructed by
Orlik-Strauch in [OS15] determined by J,,, Alg(z) is a finite dimensional algebraic representation
of G, determined by the weight of & and PS(QU0 _) is the smooth induction

“vg,z,dom
I de n _1—iy\sm
(In B, ®i=1 unr(‘PUo,ZﬂQvo ),

where ¢,,, is the cardinal of the residue field of F. Let gp , be the refinement of py, . from Pro
produced by exchanging only @y, ., and Qg - io+1- As 1n the discussions in the begmnmg of
[BHS19, §5.3], we have the intertwining

(IndS @Iy unr(pug - gy )™ = (I0dS? @l wnr(), gl )™
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of smooth principal series. Hence the companion constituent (Alg(z) ® PS(¢/, O’z))é’v#von(év)

also appears in Il [m, |*". This implies that some companion point of (¢(z, (Pv, 0y )vvs)s Y)

corresponding to the other refinement changing Pz 1O E; - isin X, (p). By [Wu2ll Thm. 4.10],
the companion points (¢(((2), (pv;d,)v£v,),y) are in X, (p) and quasi-accumulate at the point

~

(LC((Puy» 81)) 5 (Pus 8 )vtn ), ) i X5, x Tpr X (X x UY). Hence
(L(C((pvovévo))7 (pvaév)vsévo)’ y) € Xp(ﬁ)

by Lemmaf.4.8/and Lemma[4.4.7] O

4.5.3 Locally analytic socle conjecture

Let (p,0) € Y(UP,p)(L) be generic crystalline as before. We write A\ = (\;)rex, ves, €
(Z")¥r where Ar = (A1, -+, Arn) i= (hrmy s hei +1 — 4, hreq +n — 1), We identify
the base change to L of the Q,-Lie algebra of G, with g := Hrezp gl,/r- Let b= Hrezp b, be
the Borel subalgebra of g of lower triangular matrices and t = HTGZP t; be the Cartan subalgebra

of diagonal matrices. We view \ as a weight of t and extend it to b. For a weight 1 of t, let L(u)
be the irreducible g-module with the highest weight . in the BGG category attached to b. For a
refinement R of p, we write 0, g, for the smooth part of % 4, that is §R7sm§7_£w is an algebraic
character of T},. Notice that 5 g, is independent of w. Let B, be the opposite Borel subgroup of
By, in G),. Recall by Orlik-Strauch’s theory [OS15]], we have topologically irreducible admissible

locally analytic representations }“g: (L(—wwp - ), éR,sm(Sl;:)’ see e.g. [Wu2ll §4.3]. Here wy is

the longest element in SE P and wwy - A denotes the usual dot action. By [Wu21l, Prop. 4.9], we
have the following corollary of Theorem 4.5.2]on the locally analytic socle conjecture.

Corollary 4.5.4. Under the assumptions and notation of Theorem there is an injection

Go (T, - a an
Fg! (L(=wwo - A), 0 gmdp,) = S(UP, L)g[my] 4.5.5)

of locally analytic representations of G, for all refinements R of p and w € SnE " IWp,,w > wg.

Remark 4.5.6. Assuming that, in the situation of Theorem 4.5.2] and Corollary 4.5.4] the Hodge-
Tate weights of p,, satisfy that h; # h ; forall i # j and 7 € ¥,,, then there exists a finite length
admissible locally analytic representation I1(p,)® := ®,cs,I1(p,)® of G, in [BH20] such that the
Gp-socle of H(pp)fS coincides with the finite direct sum of pairwise non-isomorphic irreducible
admissible locally analytic representations of G, that are isomorphic to one of those in the left-
hand side of li and there exists an injection I1(p,)® — Se, L)5[m,|*" ((BH20, Thm. 1.1]).
The representation H(pp)fs is called the “finite slope part” since it is constructed from principal
series (thus has Jordan-Holder factors of the type of Orlik-Strauch). Using Corollary 4.5.4] similar
result still holds without the regular assumption on Hodge-Tate weights. One just need to notice
that [BH20, Prop. 4.8] is proved without any assumption on the regularity of weights and we
can define II(p, )™ in non-regular cases in the same way as [BH20, Def. 5.7]. Then the proof of
[BH20, Thm. 5.12] applies with minor modifications.



Chapter 5

Trianguline variety at points with
non-integral weights

The local models in [BHS19] and §3.3]for the trianguline variety are based on the theory of
almost de Rham Bgg-representations of Fontaine in [FonO4], i.e. the classification of semilinear
Bag-representations of Gx = Gal(K/K) for a finite extension K of Q, such that the Hodge-
Tate-Sen weights of their BIR-lattices are integers. However, Fontaine has classified all Byr-
representations of G in loc. cit. according to the Gx-orbits of the Sen weights in K /Z. This
suggests that a general description of the trianguline variety at general points with possibly non-
locally algebraic parameters is possible. And it turns out that the theory of almost de Rham
representations is essentially enough for our study in general trianguline cases.

The main theorem of this chapter is Theorem[5.5.3] The difference with Theorem [I.5.5]is that
Theorem [5.5.3|does not require that the Sen weights are integers.

We use the notation in Let ¥ = {7 : K — L} and L be a large enough coefficient field
such that ¥ has size [K : Q,]. Let C be the p-adic completion of an algebraic closure K of K.

5.1 Decomposition of L ®q, C'-representations

We study the decomposition of L ®q, C-representations according to the Sen weights. In this
section, we fix 7 : K «— L.

Let V¢ be a continuous semi-linear L ®, i C-representation of G that is finite free of rank
n over L @, C. Let Rep L&, Kc(g k) be the category of continuous semi-linear L ®, g C-

representation of Gx. Then ng;;(vc) = (Vé]K )¢ (in the notation of [Fon04, §2.1]) is a free
L ®; k K-module of rank n (see remark below) equipped with a semi-linear action of I'x and
a linear Sen operator V whose characteristic polynomial P(T’) lies in L ®, x K[T] = L[T’]. The

zeros of the Sen polynomial P(7T) is called the (Hodge-Tate-)Sen weights of V.
Remark 5.1.1. A priori, in [FonO4], DEes (Vo) is only known to be free over K. To show the

freeness over L @, g K, we can use ?kelré argument of [Nak(09, Lem. 1.30]. Take L' = L N K
and let ] = {7’ : L’ — L} be all the K-embeddings from L' to L. Then L ® g Ko =
HT,EI L ® 1/ Ko (We can assume that L /Q, is Galois firstly). Now each L ®. 1, K is a field
and we need to show that the L®. 1/ K -dimension of Dé(e‘;f (Ve)®Le, k1 10 L is independent
of 7/. This follows from that I'x acts transitively on I. We may also use the general theory in

[BCO8, §3.3].

We assume that all the Sen weights of V- are in L. If @ € L is a Sen weight of Vi, we
write Dé(e‘;f (Vo)q for the generalized eigenspace of V inside Vi for the eigenvalue a. Since V
commutes with the actions of L ®; g K and I'g, Dé(e‘;f (V) is a semilinear representation of

'k over L @, x K (i.e. free over L @, g K by the above remark) and is a direct summand of

143
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Dé(ejf (Vo). Let Vo, be the semilinear L ®, i C-representation of G generated by Dé(ejf (Vo)a in
V. Let A be the set of distinct Sen weights of V. Recall that we have assumed that A C L. Since
Vo = DE2 (Vo) @k, Cand DEX(Ve) = [1ueq DES (Ve)a, we get that Vo = [, 4 Vea as
a decomposition of L ®; j C-representations of Gr-. Each Vo, has the single Hodge-Tate weight
a possibly with multiplicities.

If V € Reprg, ,.c(GKk), one can define the continuous group cohomologies H Gk, V) as
usual ([Fon04, §1.1]). By checking definitions of extensions and group cohomologies using cocy-

cles, there are isomorphisms of L-spaces
H%(G, V) = Homgep, . (Gx0) (L @rc C, V)

and
HY(Gk,V) = ExtﬁepL®T o)L @k CV).

Lemma 5.1.2. Assume that V1, V2 € Reprg_, . c(Gk). Suppose that Vi, Vs share no same Sen
weights and all their Sen weights are in L. Then

HOmRepL®T’KC(gK)(‘/17 Va) =0, Ethl%epL& KC(gK)(Vl’ V5) = 0.

Proof. Let V;* = Hompg, ,c(V,L ®;k C) be the dual representation. Then one can check
DK°°(V*) Dé(e‘;f (Vi)™ With Sen operator —'V where 'V denotes the transpose map. And

Sen i

DEX (Vi @Lg, o Vo) = DE (V1) @1, 4 koo D (V2) with Sen operator V@ 1+1® V.
In particular, none of the Sen weights of Vi*® g , V2 is zero. Then as a C-representation of G,
Vi*®Lg, o Va has no zero Sen weight. We get HO(Gr, Vi ® L, o Va) = H (Gx, Vi OLs, C
V) = 0 by [Fon04, Prop. 2.15]. O

Remark 5.1.3. It is possible that V7 and V5 as in the above lemma have Sen weights that are in the
same Gc-orbits in L. In this case, Hompgep,(g,)(V1, V2) # 0 and V" ®c V» should admit zero
Sen weights.

If a € A such that there exists V(a) € Reprg_, (Gk) of rank one (over L @, ;¢ C) with
a unique Sen weight a, then Vo, @1, o V(a)* has only Sen weights zero. And L ®; x C-
representations with weights zero can be classified as in [Fon0O4]. By [Fon04, Prop. 2.15]

Ext%{epmﬂKc(gK)(L ®rk C,L®rx C) = H Gk, L ®,. C)

has dimension one over L.

Remark 5.1.4. If a € L is the T-part weight of a continuous character § : K* — L*, then
(W(;FR(RL,K((S))/t) ®Lgg, K107 L has weight a (cf. [KPX14, Lem. 6.2.12]). In general, there
might exist a € L such that all simple L ® x C-representations of G with the unique Sen weight
a have ranks (over L ®; i C) strictly greater than one. We give below an example of such a when
L = K = Q, using Fontaine’s classification.

We change, for the moment, the choice of K, and 'k to follow [FonO4]]. Let K., be the
unique Z,-extension of Q,, contained in Q,({p=). Let ' = Gal(Kw/K), T, ~ p"'Z, C

r | (:> : Py, and K, = Klr. Letn : Gg, =+ I' = Q/Z sending a generator Yo = p of
08 Xcyc
T = pZyto .
Let r be the smallest integer such that v,(p"*ta) > ]ﬁ. Let xo : Gk, = I'v — Q)
be the character sending v € p""1Z, ~ T, to exp(ay). Let Ko [a] be a simple semilinear K -
subrepresentation of I inside Noo[a] := Koo ®q, (Qp[I']®q, [, Xa)- The simple C-representation

Cla] of Gg, with weight a is C ® ., Ko|a].
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It’s enough to find a such that » > 1 and N[a] is already a simple K, -representation of I'.
Let b = exp(p"*'a). By [Fon04, Prop. 2.13], Endgep, () (No[a]) is the central simple algebra
Aqg,(n,b) over Q, of dimension (p")? generated over K. by an element c such that ¢?" = b and
cu = yo(u)c for u € K,. Moreover, the dimension of K.[a] is equal to p* where p** is the
dimension of the division algebra over Q,, that is equal to Ag, (7, b) inside Br(Q,).

Hence we only need to find a € Q) such that Ag, (7, ) is a division algebra. We can choose
firstly 7 > 1and b € 1+pZ, and then take a = p~ 17" log(b). For example, we can take r = 1 and
b =1+ p. Then Ag, (1, b) has dimension p* over Q,. If Ag, (7, b) is not a division algebra, then
Ag, (n,b) =~ My(Qp). However Ag,(n,b) is not trivial in Br(Q,) since b ¢ Nmg, /g, (K1) =
PEESI(L + p*Zp).

5.2 Decomposition of L ®q, Bqr-representations

We decompose L ®q, Bqr-representations according to the Sen weights in L modulo Z. In
this section, we still fix 7 : K < L.

Let W be an L ®g, BJy-representation of Gr. By the definition in [BHSI9. §3.2], W+ isa
finite free L ®q, Bjz-module. Let W = W [1]. Let n € N be the rank of W+ over L ®g, Bar.
Foreach 7 € X, let VVT+ =Wt ®L®@PK’1®T L and similarly for W.

We have the L ®q, C-representation W/t orthe L ®r,x C-representation W/t of Gk Let
A be the set of Hodge-Tate-Sen weights of T, /. In the notation of the last section, W/t =
Baca, (W /t),. Assume that A, C L.

Let A, := (A, +7Z)/Z C L/Z and for a € A., write @ = a+ Z for its class in A, and define
(WH/t)g := @aca(W/t)a. Setdrz := dimp (W /t)z. Then d, g is the sum of multiplicities
of all 7-Sen weights of W that lie in a + Z.

We have a functor Dpar(—) @ Wr — (W, ®p,, Bar[log(t)])9%. The output Dpar (W)
is a finite-dimensional K -vector space with a nilpotent operator vy, and an action of L. Then
Dpar (W5 ) is a finite-dimensional L-space with an L-linear nilpotent operator vy, . We have an
injection of v-graded Gx -representations ([Fon04, Thm. 4.1])

Dpar(W7) @k Bar[log(t)] < Wr ®p,, Bar[log(t)]
which induces, by taking v = 0 parts, an injection
(Dpar(Wr) @k Bar[log(t)]) W= ®1H1e W
Let W_ 5 be the image of the above map.

Lemma 5.2.1. The underlying L ®; i Bar-module of the semilinear Bqr -representation WT,G of
Gk is finite free of the rank d_g.

Proof. Since Dpar (W) is free over L, the first assertion follows from the equivalence in [BHST9)
Lem. 3.1.4]. The sub-Bggr-module WT,G is a direct summand as Bgg is a field. We only need to
prove that IW_5 is free of rank L : K] d,p over Bgg. The latter is the sum of multiplicities of
integral Sen weights of W/t as C-representations (not L ®, x C). Hence we can forget the
L-actions and the result follows from the classification of Byg-representations in [Fon0O4, §3.7],
or go back to the proof of [Fon0O4, Thm. 3.13] using [Fon04, Lem. 3.14]. ]

If § : K* — L* is a continuous character, let W3 () := Wi, (R x(6)). Assume that
wt(d) = (k;)rex € L™ Then WJR(é)T is a rank one L ®; i B(J{R—representation of G with
the Sen weight &, see the end of [Nak09, §1.4]. Then Wyr(d), = WjR(é)T[%] is the unique
L®, ik Bgr-representation of Gg or rank one which admits an L®; i B:{R—lattice with Sen weight
ink;+Z Gt W.has L ®; g B:R lattices of weight in Z and is of rank one over L ®, x Bgr, then
W! ~ L ®; i Bqg since (W/)9% £ 0).
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Remark 5.2.2. There exists a unique up to isomorphisms rank one L ®; g BgR—representation
of weight 0, using the uniqueness of the associated filtered rank one L-modules ([BHS19, Lem.
3.2.2]). The L ®; B(TR—representation WJR(é)T is also the unique rank one representation of
G with Sen weight k..

From now on, we assume the following assumption.

Assumption 5.2.3. Assume that for any 7 € ¥,a € A;, there exists a continuous character ¢ :
K* — L* such that wt-(0) = a.

This assumption will be satisfied if W+ = W;R((S) for a continuous character 6 : K* — L*.
Fora € A C L and § such that wt,(§) = a, we let W, 5 be the image of the map

(Dpar(Wr ®Le, xBax War(9)%) @k Bar[log(t)])"=° ®ra, «Bax War(6)
— Wr ®L®7,KBdR WdR(é): ®L®T,KBdR WdR(é)‘r = W-.

We write W (0~ 1); for W @1, Byr War(d)%. As in the Lemma when @ = Z, we get
that W, 5 is free of rank d, 5 over L ®; i Bgqr and admits G -invariant lattices over L ® g B:{R.
Hence we have a map

Soeq Wra = Wy (5.2.4)

which is an injection since
!/ /
HomRePL@)T KBaR (k) (WT a1’ WT ag) (gK? ( T al) ®L®7—,KBdRY WT,EQ) =0

for @; # @2 and G -invariant sub-L ®, x Bqr-modules W’ s C Wra, (see also Lemma
below). Note that WT’@_ € Reprg, (B (9K) by arguments in Remark [5.1.1] and that Gk acts

transitively on K-embeddings L <— Bggr, and W’ 5. admits Gx-invariant L ® g Bt dR 1att1ces by
[BHS19, Rem. 3.13] and a twist. By considering the Bgr-dimensions, we get that (5.2.4) induces
a decomposition
Wr = Sy Wra

For each a € A, let W:a = Wraz N I/VTJr Then it is easy to see that W:a is a Gk-
stable B -lattices of W5, saturated in W and is an L ® x B-module. Hence W:a €
RepL®T,KBjR(gK)‘ The L ®; x C-map W:E/tWT'% — W/t is an injection with image in
(W /t)a, hence induces an isomorphism I/VJr _JtW 5 (W, /t)g considering C-dimensions.
Then the B dr-Map Gy I/VJr — Wtisa surjectlon modulo t and the source and the target have
the same B dR—rank, thus is an isomorphism. Finally, we get the decomposition

N T
WT - @EEATWT,E'

Remark 5.2.5. There is a more direct way to see the decomposition of L ®; g BIR—representations.
For W, one can define D 55" (W) as [Fon04, §3.3] which is a L ®, x Koo [[t]]-module with a
semilinear action of I and from I'g, there is an L ®; i Ko-linear operator V on D(ﬁ?’*’(Wj )
such that V(t%) = at®, etc. (see also . For each ¢« € N, we have a decomposition

Koo, i Koo, 7
Dy (W /' = @y (Dyg " (W) /t')a

as L ®; g Ko-modules considering generalized eigenspaces of V. Each (Défgf" W) /g is
stable under the action of T'x. Moreover, (DK°°’+(W+) /t')z is stable under the action of ¢ since
a = a+ Z. Hence DK°°’+(W+) LZ( §§’+(W+)/tl)a is an L ®; g Koo [[t]]-semilinear
representation of I' - and we have a decomposition

Ko, + Koo,
Dgg " (W) = ®uez. Dt TWha
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Lemma 5.2.6. Let Wfr , W;r be L®: i B(TR-represenmtions of Gk such that their Sen weights are
in L and W1, Wy share no same Sen weights mod 7.. Then HomRepL® ot (Gx0) (W, Wyh) =0
7, KPdR

(gK)(Wfr, W55) = 0. Moreover if W; = W;T[L], then similar results hold

1
and Ext
Rep Lo, i

KBJR
for Wy and Wy in RePL®T7KBdR(gK)'

Proof. By considering W+ = (W;")* DL, <Bl, W5, the proof is similar to that of Lemma
[5.1.2] using [Nak14, Cor. 5.6] which follows from the fact that ([Nak14] Lem. 5.5])

H'(Gre, W) = lim HY (Gre, W /W)
J

and H (G, t/ W+ /UT'WT) = 0forall j € Z,i = 0,1if W, hence all /W /t/+1 W+, has
no integral Sen weights. ]

The above lemma implies that the decompositions of L ® BIR—representations of Gx ac-
cording to the mod Z-classes of Sen weights in L we obtained are natural.

5.3 Deformation of L. ®¢, Byr-representations

We fix W W+ A= (A;)rex as in the last section. Let A € Cp, i.e. A is a local Artinian
algebra over L such that A/m 4 = L, where m 4 is the maximal ideal of A.
Let (A,W3,t4) € Xy + where W} € Rep Awg, B, (Gk) is a semilinear representation of
D :

Gk free of rank n over A ®qQ, B:{R together with an isomorphism ¢4 : W:{ @4 L > WT. Let
WXT = WZ ®L®QpKvl®T L as before. Then ¢4 : WXT QuL S Wj The mod Z classes of the
Sen weights of the L& KBIR—representation WXT are in A, since WXT is a successive extension
of subquotients of W . Hence we have also a decomposition of L ®; BIR-representations of

Ok
+ _ +
WA,T - @GGATWAJ,E‘

Moreover, each W __ is stable under the action of A and hence is a projective A ®; x Bz~
module. The map ¢4 : W5 _/ma = W must induce isomorphisms W __/ma = W, by
Lemma By the following lemma, WX g 1s free of rank d; z over A®r K B(TR.

Lemma 5.3.1. Suppose that R is a ring and m is a nilpotent ideal of R. If M is a finite projective
R-module such that M /m is free of rank r over R/m, then M is also free of rank r over m.

Proof. Let eq,--- , e, be elements of M that lift a basis of M /mM over R/m which induces
amap f : " — M. Then (M/f(R"))/m = 0. By Nakayama’s lemma, f is a surjection.
Let K be the kernel of f. Then K is finitely generated as a direct summand of R". Using that
Torf' (M, R/m) = 0, we get K/mK = 0. Hence K = 0. O

Suppose that there is a trianguline filtration 7o : {0} CW; C --- CW; C--- C W, =W
of L ®q, Bar-representations of G of a parameter § = (01,---,d,) @ (K*)" = L%, ie.
Wi/Wi—1 = War(6;) for i = 1,--- ,n. For 7 € X, write the 7-part by W; .. Each W, ;
decomposes as W; » = Baeca. Wi ra. For each 1, there exists @ € A such that Wir/Wisir =
Wi ra/Wi-1ra and wt-(d;) € a + Z. Hence F, induces trianguline filtrations ;54 : {0} C
WI,T,E c-.-C Wi,T,E c---C Wn,T,E = WT,E of WT,E- We rewrite f’r,ﬁ,o as {0} _,C,_ »FLT,E Q

- C Fira © -0 C fdﬁ,r,a = W;g. Itis clear that we can recover F, from F; 5. where
rex,ac A,

Recall we have groupoids Xy + 7, = Xy+ Xxy, Xw,r, in [BHS19, §3.1]. Assume that we

have (A, WX,LA,.FA,.) € Xw+ 7,,16. Fae: {0} CWa1 € CWy; C--- C Wy, =Wy
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is a trianguline filtration whose graded pieces are rank one A ®q, Bqr-representations of G such

that ¢4 induces W4 ; ®4 L 5 W;. By the discussions above (replacing BIR by Bgr), for each
i» Wajir = ©zc2 Wa,ira. For each i, Wair/Wa,i-1, is a deformation of W - /W;_1 » =
Wi ra/Wi-1+a for a such that wt(J;) € a + Z and is equal to W4 ; r5/Wai—1ra. Thus Fa e
induces trianguline filtrations F4 rg.e 0n W4 5.

We define groupoids XWfaa 7., overCy, similarly as Xy + 7, replacing L®QPB§R by L&+ ik

B:{R. For each 7, a, the map (A, W;{, ta, Fa) — (A, Wir,a’ LA @, Fra,e) defines a morphism

Xw+ r, — XW% Farae of groupoids over Cy..

Lemma 5.3.2. The morphism Xy + 7, — ][] X+ x . where the product is taken

T,a’ '@y

TGE,EEXT
over Cr, induces an equivalence of categories over Cr.

Proof. The functor is fully faithful by Lemma [5.2.6] To show that the functor is essentially
surjective, we suppose that we have (A, W;{,T,a? LAra, FArae) for each @, 7. We take the di-
rect sum (EBT@WXT’E, ®ratA,ra) Which defines an object in Xy + and we can arrange the fil-
tration Fae = (Waji)i=1,..n by Wai = ©raWajira where Wa;,ra = Faraj . Where

a

jiﬁ:’{l SjSi,Wt((Sj)Tea-i-Z}‘. O

_ Wefix a € @+ Z and a character drq : K* — L such that wt(6;4) = a € Lforeacha €
A.. Write WjR(éT,a) A7 for the rank one A ®, BjR—representation W(;FR(R A,K(0rq))r of Gi
forAeCp. W _ € X+ ,then W, __hasonly Sen weights in a+Z. Hence WXTE((ST_,;,) =

T,a

W;{’Tﬁ ® A®, kB, W;R((S; b A,7 is an almost de Rham A ®; g BIR—representation of Gg. For
Warg = W3 .[1], we define

1.1
Dpar,a(Wara) = Dpar(WJ 5(0570)[5])
which is a finite free A-module of rank d,5 with an A-linear operator v4 5. Moreover, the
A-module Dyar -5 (Wa,ra) is equipped with a (Hodge-Tate) filtration
Filly+  Dparra(Wara) = (Wi, 5(070) ®py t'Bipllog(t)))?~,i € N
by finite free sub- A-modules ([BHS19, Lem. 3.2.2]).

If we replace the above a by o’ = a + k,k € Z and 0,4 by 0 ,, where wt (6, ) =d' € L,
then Dpar -a(Wa,ra) is unchanged (since Wygr (9)r ~ L®; x Bgr if wt,(0) = 0) and the partial
flag given by the Hodge filtration is also not changed with only degrees of the filtration shifted (see
Remark [5.2.2)).

We fix a framing or 5 : L™ ~ Dyqr ra(Wra). Then we can define framed version groupoids
XI,DVTE,XVDV+ , etc. over Cy, as in [BHS19, §3.1] or §3.3.2l Foreach 7 € X,a € A, we let

7—757]:7',5,0

Gra = GLdT’E and B;5 C G5 be the group of upper-triangular matrices and Tz C B, g be

the diagonal matrices. Assume that the Sen weights of W:fa areh, g =a+ (hrg1, -, hf,a,dﬁ)
where h; g1 < --- < hr,ﬁ,dT,a are integers. According to the regularity of h; 7, there is a standard
parabolic subgroup P; 5 containing B; 5 as in whose Weyl group Wp_. C Wg_ . = Sa,
is the subgroup of the stabilizers of h; ;. We have defined an algebraic variety Xp,__ in as-
sociated with P 3 C G 3. Then the framing o, 5, the L-space Dde,T,a(WT@) with the nilpotent
operator v, g, the filtration DR - 3(Fr.a,e) and the filtration Fﬂ;VtDde,T,a(WT,a) defines an L-

point 2z of Xp__ asin ~ (note thath, 7 —a € Z4% @ is now the Sen weights of Wfa(ég é .

Twisting every thing by W;R(ég ) 4.+ and applying Proposition and Proposition , we
get the following proposition.
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Proposition 5.3.3. The groupoid X

T, av}—T,E °

is pro-represented by Xpﬁ’xﬂa = Spf((’)XPT )

is pro-representable and the functor \X F |

Ta7

LetG = HreEﬁEZT Gra, B = erz,aeﬁf Bra, P = erz,aeﬁf Pra, Wp = HTEE,EEZT We

T,a

and T = HrezaeA Tra. Then Xp = HTEEGE.AT Xp, o Leta =[] o5 acA, @ra- We can
define the framed version XW+ 7 in an obvious way and using Lemma - and the above

proposition, we get the followmg representability result.

Proposition 5.3.4. The groupoid XVDVJr 7, IS pro-representable and the functor |XI%'/ . f.| is pro-
represented by )?p’m = Spf(@XP’x).

Let t, g, b, p be the lie algebras of T, G, B, P. By §3.2.4] there is a weight map x1 : Xp — t
sending (v, g1B,g2P) € Xp to the image of Ad(g~!)v under the map b — t. Since v =
HTEE acA, Vra 1s nilpotent, the image of x in t is zero. Thus we get a map XVE'VJr 7, — twhere

tis the completion of t at zero which descends to Xy + 7, — t and in fact factors through

KW, Feo :XWJ:. —>?as in

5.4 Trianguline (¢, ['x)-modules

Let D be a (p,I'x)-module of rank n over Ry x and let M = D[] which is a (¢, 'k )-
module of rank n over ’R,LK[%] Let Mg : {O} S M1 C---CM; C---C M, =Mbea
trianguline filtration of M of a parameter § = (01, -+ ,dy). Then M;/M;_; = RLK(é)[%] Let
WT =WIH(D),W = War(M) and Fy = War(Ma.).

Recall the groupoid X o M consists of objects (A, M4, ja, Mae) where A € Cr, My isa
(¢, 'k )-module over R 4 K[ ], M 4 o is a trianguline filtration of M 4 where each M 4 ;/ M 4 ;1
is of character type ([BHST9, Def. 3.3.2]) and js : My e ®a L = M,.

The functor Wygr(—) induces a morphism X g rq, — XW}]-‘.. Given (A, Ma,ja, Ma,) €
X M M., there exists a unique continuous character 0 4 = (04,1, - - (5,4 n) ¢ (KX)™ — A such
that My i/ Ma i1 ~ RAK((SAl)[ Jand 04, ®4 L = 6; fori = 1,--- ,n by [BHSI9, , Lem.
3.3.4]. The map ws : (A, My, ja, Mae) — (A,0,) defines a morphism X pq pq, — 7/'571 where
T" is the space of continuous characters of (K *)". -

We identify t with the weight space [ [ .5, A™*" of characters of (K *)" in the following way.
Recall t = HTEE,EEZT t; g where t; ;7 = Lie(T;5). For each 7,@, let jra1 < - < jrad,, be
the numbers i in {1,--- ,n} such that wt,(d;) € a + Z. Then we identify (A;gi)ra,1<i<d, , € t
with [, 5, Zaeﬂf Z?;’la AraiCrjrai € [Lrex A" where e, ;,i = 1, -+, n are the usual basis
of A™*" Then wt(J) € t.

Lemma 5.4.1. The diagram

ws o~
XM,M. — Tn

|l

KW, Fe
XWJ-‘. e

commutes.

Proof. Take (A, Ma,ja, Ma.e) € X M, Suppose that its image under ws is § 4 and its image
in Xy 7, isz = (WA,.FA,,LA). Then .7:,4,1'/.7:,4’1‘_1 = WdR((SA,i) = HreZ WdR((SA,i)T- For
any 1 < i < dra, Farai/Farai-1 = War(6a,,,,)- by the construction of Fa r5e. Apply
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(the proof of) [BHSI9, Lem. 3.3.6] to Wyr(64,i)r @A®, xBar WdR((ST_,é)AJ (which is almost de
Rham), the t 5(A) part of Ky, 7, (x) is equal to

(Wtr (0,4, 0s DL O 0) = Wr (65, 2. ®LOT2) )izt dr g = (Whr (85, 0) = Whr (0, 2 )izt s -
Hence kw7, () = wt(d4) — wt(d). O

We are going to show that the morphism X ¢, — 7/'57"0 X7 X pm,M, of groupoids over Cp, is
formally smooth under the generic condition as in the integral cases ([BHS19, Thm. 3.4.4]).

Recall 7Ty is the space of continuous characters of K * that are not of the form z¥ or ez¥ for
some k € Z*. From now on we assume that § € 7" is generic, i.e. 51-5]-_1 ¢ To forall ¢ # j.

Lemma 5.4.2. If§ : K* — L is a continuous character such that § € Ty, then the map

HY o (Re i (0)]5]) — H'(Goc, Wan (5))

induced by Wagr(—) is surjective.

Proof. If wt(0) € Z for all 7 € X, the result is proved in [BHS19, Lem. 3.4.2]. In the extreme
case that wt(6) ¢ Z for all 7 € %, the right-hand side is zero by Lemma[5.2.6]

We still follow the proof of [BHS19, Lem. 3.4.2]. The two side of the above map is not
changed if we replace & by dz—% where k = (k,),ex € N* such that wt,(6) < 0 if wt,(5) € Z.
By [BHS19, Lem. 3.3.3] or Corollary we have Hlem (Re,x(8)[3]) = Hé,'yx (Rr,k(6)).

Let W(8) = (We(0), W (0)) be the L-B pair associated to 6. Let k = [{r € ¥
wt,(8) € Z}|. Then dimy, H' (G, War(9)) = k by Lemma([5.2.6 As dimj, H'(Gx, W (9))
%], we only need to prove that the dimension of H}(Gx, W (8)) := ker(H'(Gx, W (0)) —
HY(Gx,Wqr(6))) over Lis |Z| — k. By [NakQ9, Prop. 2.11], we reduce to prove that the dimen-
sion of the kernel

ker(H' (Gre, W(e6™Y)) — H (Gre, Wel(e5™))
has dimension k. As in the proof of [BHS19, Lem. 3.4.2], the map

HY (G, W(ed™)) = H' Gk, We(ed ™))
factors through
HY(Gie, W(ed™)) = H' (Gre, W (27X e071)) = H' (Gre, We(ed ™))

where k' = (k!);ex, € Z> such that wt,(z ¥ ed™!) < 0 if wt, (27 ¥ed~!) € Z. Since we
have assumed that all integral weights of § are negative, wt,(ed ') > 1 if wt,(ed~!) € Z. By
Corollary again, the kernel of the map H' (G, W (ed~ 1)) — HY (G, W (2 ¥ ed")) has
dimension k. Thus we only need to prove that the map

HYGr, W(z%es™)) = H (G, We(z K es™ 1))

is an isomorphism.
Let 0’ = 27 6~ whose integral weights are all negative. By [Nak09, §2.1], we have a long
exact sequence

0— H(Gr, W(8") = H(Gr, We(6") & H*(Gi, Wi (")) — H(Gic, War(6"))

— H'Y(Gr, W(8)) = H' (Gr, We(&)) © H' (Gr, Wig(8")) — H' (G, War(8))
— H*(Gre, W (&)
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By the generic assumption, [Nak09, Prop. 2.14] and the Tate duality, we have H*(Gx, W (8")) = 0
if i = 0,2. And the map H'(Gx, W (0')) — H'(Gk, War(d')) are isomorphisms by Lemma
[5.1.2]and by the assumption of negative integral weights (since

HY(Gre t * WL (6" /"W (6") =0
foralli = 1,2 and k > 0). Hence H' (G, W (")) = HY (G, We(8")). O

Lemma 5.4.3. Assume that 64 : K* — A* is a continuous character where A € Cy, and

54 @a L € To. Then HY ., (G, Rak(64)[3]) = H3 . (9K, Rax(0a)[3]) = 0 and the map
Hé YK (RA,K(‘SA)[?]) — HY (G, War(0,4)) is surjective.

Proof. The assertions that H) . (Gx, R, k(64)[F]) = H2.,. Gk, Ra, k(04)[3]) = Ois exactly
[BHS19, Lem. 3.4.3(i)]. Since RAJ(((SA)[?] is a successive extension of RA,K(éL)[%} where
d, = 04 ®4 L, we can prove the surjectivity of H' by induction on the rank of a (¢, I')-module
M over Ry, k[1] which is a successive extension of R 4 x(67)[1]. The proof of [BHSI9, Lem.

3.4.3(i)] imply that H, fp i (M) = 0 for i = 0,2 for such M. Write a short exact sequence

1
0— M’ - M= RAJ(((SL)[E] —0

and assume that the map H, M) — HY (G, Wyr(M')) is a surjection. Then we have a map

‘P’YK(

0 —————> HL (M) ——— HL_ (M) —> H,, (Rpx@)}) —> o

N

HY(Gg , War(81)) —> H'(Gk,War(M')) — HY Gk, War(M)) —> H'(Gx,War(dr)) —> H?(Gk, War(M’))

between long exact sequences. By the previous lemma and the induction hypothesis, the map

Hé Vi (M ) — Hl(gK, WdR(M )) and Hé i (RL,K((SL)[%D — Hl(g[(, WdR(dL)) are surjec—
tions. The map 0 — H?(G, WdR(M’ )) is an injection. Then by a diagram chasing (the five

lemma), the map H . (M) — H' (G, War(M)) is also a surjection. O

Proposition 5.4.4. The morphism Xy p, — 7/:571 X7 XM M, of groupoids over Cr, is formally
smooth if § is generic. N

Proof. The proof is mostly the same with that of [BHS19, Thm. 3.4.4] using previous lemmas. Let
A — BbeasurjectioninCr, 64 € T3*(A) and (W4, Fae,ta) € Xpmo (A), (WB, FBoe, tB) =
(Wa,Fae ta) @a B is the image under Wyr(—) of (Mp, Mp.,jB) € Xmm, with the
parameter 05 = d4 ®4 B such that 5 ®p L = §. Fix 1 < i < n, suppose that we have
{0} S Mu1 C - C My with My j/ Mg = RAK((SAJ)[%]. We need to prove that the
map, as [BHS19, (3.23)],

4,0 YK (MA i— 1(5,4 z))

H' (G, War(Ma,i-1(54))) X HY(Gre . War(Mp,i—1(651)) Hy ., (Mpi1(553)).
is surjective. Using [BHS19, Lem. 3.4.5], we need to prove that the map

H  (Mai1(55 )) — Hl(gKywdR<MA,i—1((5Z}i))) (5.4.5)

is surjective,

HI(QK,WdR(MB,Fl@BZ))) HY (G, War(Ma,i— 1(5Az)))®AB (5.4.6)
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and

go'yK(MBZ 1(5§,1z)) = Lp'yK(MAl 1( )) ®a B. (5.4.7)
Now M 4 1(5212) is a successive extension of Ry, k(64,j0 4 Z)[ |,J < 1, hence is a successive
extension of rank one (¢, Ik )-modules of the form Ry, i (6')[1] where & € Ty. By the proof of

Lemma[5.4.3] we get that (5.4.5) is surjective.

To show li notice that also by the proof of Lemma L both H 2 v and H, 3% vanish

for Mp ;1 ((5§’i) and M4 ;1 (62711.), hence the cohomologies commute with base change, see the
proof of [BHS19, Thm. 3.4.4].

Finally, we need to prove . Since Wygr(—) is exact, we have Wyr(Mp,i— 1(5;2)) =
WdR(MA,i—1(5 )) ®4 B. Write WA = WdR(MAz 1(5A l)) WB = Wiq ®4 B and WL =
W4 @4 L. By the discussions in we have a decomposition Wi = & caer.Wira
where A’ are mod Z classes of the T—Sen weights of certain L ®; x BJy-lattices of Wi, =
Wi ® Leg, K1er L. By | we have corresponding decompositions Wy = & v zcw Wi 5
where x = A, B and W/ Ta®*L Wi T Then itis easy to see the maps W/ a®aB = Wi .
are isomorphisms. If @ # Z, then H 1(g K, . . +z) = 0 by Lemma W Hence it is enough to
prove H'(Gx, ngﬁ ®4B) = H (G, W 5) ®a B. Now W/, .+ are almost de Rham and the
result can be proved as in the proof of [BHS 19 Thm 3.4.4]. U

Recall now M = D[], W+ = W (D). By [BHSI9, Prop. 3.5.1], the morphism X —
X Mm X xyy Xyy+ 1s an equivalence. The proof of [BHS19, Lem. 3.5.3] doesn’t need that the param-
eter of M, is locally algebraic. Let Xp rq, = Xp X x,, X, M, and X%,M. = XD Mo Xx

0
X+ 7

W, Fe

Corollary 5.4.8. The morphism X[D) M, XVDVJr F, IS formally smooth and relatively repre-
sentable. The groupoid X% M, IS pro-representable and the functor |X% M. | is pro-represented
by a formal scheme which is formally smooth of relative dimension [K : Qp]—%5— ntD) Hyer X Pz =
Spf(Ox, ) where x € Xp are datum associated to (W™, Fo, ) in the end of §5

Proof. With Proposition and Proposition the corollary can be proved in the same way
as for [BHS19, Cor. 3.5.8], except for the relative dimensions. For the dimensions, notice that
the proof of [BHS19, Prop. 3.5.7] still holds whenever 0 € 7" and by the pro-representability
of |XVDV 7, | in our general situation, XEA M, 18 pro-representable and ]XEA M, | is pro-represented
by a formally smooth Noetherian complete local ring. The dimension of | XX, | In loc. cit.
isn+ [K : Q™ "H) and the relative dimension of X} MM, > XMM, 18 dlm G. Hence the
dimension of X, . is dim G + dim [X}§ v, | —n = dim G + [K : Q)5 from which we
can get the relative dimension. 0

Let W be the Weyl group of G and recall Wp C W is the parabolic subgroup. By §3.2
the irreducible components of Xp are Xp,,, w € W/Wp which are unibranch. Let Xp,, , =
Spf(O Xp.w,z) be the completion of Xp,, at z. As in we define subgroupoids Xg’;\”/l of
Xp,.m forw € W/Wp by

Xg 1/1\]/1 - XD M |X“}:‘V+’}_.| )?P,w,x
where if © ¢ Xp,, ng\”/l. is empty. Then we have subgroupoids X5\, of Xp rq, such that
the morphism XID)’%[. — XD am, 18 formally smooth.

Recall in we have a map (k1,k2) : Xp — Tp = t Xy t/Wp and irreducible
components pr of Tp such that the induced map X Pz — Tp (0,0) factors through pr ,(0,0)
if and only if w’ = w in W/Wp. The composition X DM, X Pz — Tp (0,0) factors through

Xp,M, = TP,(O,O)
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5.5 The trianguline variety

Suppose that z = (r,9) € Xi(7)(L) C (X7 x T™)(L) where § € 7 is generic and
r : Gxg — GLy(L) is continuous. Let V' be the underlying representation of r forgetting the
framing. Let D = D,ig (V). In [BHS19, §3.6], we have the formally smooth map X, — Xy and
an equivalence Xy = X p induced by Dyig(—).

Let M, W™, W be the datum associated to D as in By [BHS19, Prop. 3.7.2], M
admits a unique triangulation M, of a parameter . By [BHS19, Prop. 3.4.6], the map X, r(, =

Xy Xxp, Xpm, — Xy = Xg, is a closed immersion. By [BHS19, Prop. 3.7.2] (see also
Proposition 3.3.4|or [BD21], A.4]), the map Xm( ) e — %T . factors as

th() L>AXr/\/l.<_>AX —%rr

and is a closed immersion.

Leth = [[ 5 [1zeq. (@ + hra1, -+ sa + hrga, ) be the Sen weights of W as in §5.3
where hrg1 < -+ < hT,E,dT,a are integers (the Sen weights are in L because they coincide with
weights of §, [BHS17b, Prop. 2.9]). We have defined the groups G, P,T" and the Weyl groups
W, Wp that are associated to h. Let z,qr € Xp be the point associated to (W F,) and some
framings arg of Dpar .a(Wrg) in Proposition “ (but we change to the notation zpqr here).

Note that W acts on t = []_~ ~ L% and Wp is the stabilizer of h. Let w € W/Wp be the
element such that wt(d) = w(h) where wt(8) € t by the identification in the beginning of §5.4]

Proposition 5.5.1. The morphism m) — Xe Mo — XD M, — fp7(070) factors through

- €T
Tpw,(0,0)-

Proof. The proof has no essential difference with that of Proposition Assume that we have a
deformation (W, Fa ) of (W, F,) which comes from Xm( ) The Sen polynomial PWX (Y)
of WX is equal to

n

I 2wy ) =TT TIOV = wiz(64)) € T AlY]
TEL TeXi=1 TEY
. + + —
by [BHST9, Lem. 3.7.6]. Write W, = @aeﬂ W o Then Py, (Y) = [laez. P Wi, 7(
Recall in the beginning of jr a1 < < jrad,, are the numbers i such that wt,(J; ) €
Mod m 4, since all roots of PW+ (Y)areina + Z, we get P+ (V) = Hle (Y — wtr (95, o Z))
By Lemma(3.3.14} using that different Py,+ (Y') share no same roots for different @, we have

)-

dT,E

PWX,T,E(Y) = H(Y — wtr (5A7j7,6,i))
i=1

for all 7,a. Now WA - a(é ) has Hodge-Tate weights h,g1 < -+ < h; g4, and the Sen

polynomial Hi;f(Y +a — wt-(0a,..)). Let wrg be the component of w € W/Wp in
W:a/ Wp, . where W, 5 denotes the Weyl group of G-z = GLg, ,. The proof of Proposition
3.3.5/ shows that the image of the point in Xp__(A) corresponding to (W;{ma, Friae Qrg) in
Tpra:=ta X w,,tra /W, . lies in the component corresponding to w; 5. And we get the
desired result by taking the product over 7 and @. O

The following results can be proved in the same way as in §3.3.5](and we can define similarly
X'\, as the image of XTM = Xr Mo XXp s XD wM under the morphism X . XMl



154 CHAPTER 5. NON-INTEGRAL WEIGHTS

—

Corollary 5.5.2. The closed immersion Xi(T) +» < X, M, induces an isomorphism

—

Xtri(?)x :> X,;’:l’]M.
Let w, € W/Wp be the unique element such that zpqr € Vi, (see (3.2.1)).

Theorem 5.5.3. Let x = (1,0) € X4i(T)(L) be a point such that 0 € 7T is generic. Then the
trianguline variety Xi,i(T) is irreducible at x and we have formally smooth morphisms

/\7 ‘:’ A~
Xuni(T), |Xr,ﬁ.| = XPwapan

of formal schemes. Moreover, w, < w in W/Wp.

5.6 An application

Let (7,0) € Xti(7)(L) be as in the last section and M, be the associated trianguline filtration
of Diig(r)[§]. I8 = (81, -+, 4},) is another parameter of M, then HY | (R x (6;(67)1)[}]) #
0 for some ¢ (otherwise H&,YK (M(8))71)) = 0). Hence 6;(87)~ ! is algebraic by [BHST9, Lem.
3.3.4]. By the generic assumption on J, we get that the short exact sequence 0 — M;_1 — M,; —
Rr,k(0;) [%] — 0 must split if the i above is not 1. An argument by induction shows that 8’ € 7
is also generic. Hence we can say a trianguline representation r is generic if one of (equivalently

all) the trianguline parameters of r is generic. The following corollary is a consequence of Theo-

rem[3.3.3]

Corollary 5.6.1. Let (p,0) € Y (UP,p) be a point on the eigenvariety in the setting of
Assume that py are generic for all places v € S,. Then § is contained in the set of characters
conjectured by Hansen determined by p, = (p3)ves,-

Proof. We fix a lifting p™V : Gr — GL,,(R5,s) for the universal deformation of p : G —
GLy (k). Recall R; = Rue s, 5, where Rj_ are certain framed deformation rings. The uni-

univ
v

fiber, we get Spf(R; 5)"8 — X7, Hence there isamap f : Y (U?, p) — Spf(R5,s)"& x ﬁ,’L —
X5, % pr :(p,0) = (pp = (pv)ves, §). Recall ((Xi(p,)) is a closed subspace of X5 X fp,L.
Hence the preimage f~'(¢(Xui(p,))) is a closed analytic subset of Y (U?, p). However, the sub-
set of strictly dominant generic crystalline very classical points, in the sense of [BHS17b, Thm.
3.19], is Zariski dense in Y (U?,p). This Zariski dense subset is mapped into ¢(X:i(p,)). Thus
S (Xui(p,))) = Y(UP,p) or f(Y(UP,p)) C 1(Xui(p,)). Then this corollary follows from
the statement of w > w,, for x € Xiy (ﬁp) in Theoremm O

versal properties for the liftings p5™,v € Sy induce a map R — Rj 5. On the rigid generic

One can also wonder about possible companion constituents from the local models. For this
purpose, we generalize below the construction of locally analytic representations in [OS15] to
non-integral weights.

Let /@, be the local field as before. Let gy, be the base change to L of the Q,,-Lie algebra of
GL,,(K) and let b,, C g, (resp. t, C by) be that of B,,(K) (resp. T,,(K)) where B,, is the group
of upper-triangular (resp. diagonal) matrices of GL,,.

If A € [[,cx L™ is a weight of t,,, possibly non-integral, we have the Verma module M (\) =
U(9n) ®u(s,) A in the BGG category O and also the irreducible quotient L(A) of M()). One
has a reflection group Wy in [HumO8, §3.4]. Let Wy p be the subgroup of W, consisting of
elements w such that w - A = A. Let wy be the longest element of Wy. We assume that A is
dominant in the sense of [HumO8, §3.5]. Same as the integral cases, by [HumO08, §5.1], we have
L(w'wo - A) is a subquotient of M (wwy - ) if and only if w' < w in Wiy /Wiy p.
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Take u to be the weight of a continuous character § : 7, (K) — L. Then M (u) can be
equipped with a structure of a D(B,(K), gn)-module M (5) := D(Bn(K),gn) @p(B, (k) 9-
The D(GL,(K))-module D(GL,(K)) ®p(B, (K),g,) M(J) is a dual of certain locally analytic
principal series (§1.4.2).

We show that L(u) is also a D(B,(K), g,)-module. We fix an ordering of positive roots
Qap, - ,au of by, and let yp, - - -, v, be the standard basis of by, corresponding to negative roots
—aq, -+, —yy, (see [HumO8, §0.1]). Then M (4) is spanned by yil .- -yf;[bvu where v, denotes
a highest weight vector and ¢y, - - - ,%,, € N. On the space spanned by yll'1 e yi,g"vu, T, (K) acts
by Qal_il -~ im where we view q; as algebraic characters of T, (K ). Hence if o is a sum of
positive roots, the weight space M (J),,—n corresponding to ;v — « is stable under the action of
D(T,,(K)) and is equal to the space M (§)s,-1 where D(T,(K)) acts by the character Sa .
Let N be the kernel of M (p) — L(p). Since N € O, N can be written as a direct sum of
its weight spaces N,y C M,,. Thus N is stable under the action of D(T},(kK)). Moreover, the
kernel N is N, (K )-invariant as in the proof of [OS15] Lem. 3.2] where V,, denotes the unipotent
radical of B,,. Hence N — M(J) is also a D(B,,(K), g,)-map. Then the quotient L(\) is a
D(By(K), g,,)-module and we denote it by L(9).

The dual of D(GLy,(K)) ®p(B, (k),g.) L(9) is a subquotient of some locally analytic principal
series of GL,, (K). If we could know when these subquotients are topologically irreducible, then
the results of this chapter would help to make conjectures on the socle of the locally analytic
representations associated to trianguline representations with possibly non-integral Hodge-Tate-
Sen weights.

7Qn)
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Appendix A

Families of almost de Rham
(0, I' i )-modules

We show that the method of Berger-Colmez in [BCOS]] to construct de Rham families for Ga-
lois representations can be generalized to construct partially almost de Rham families for (¢, ' )-
modules.

A.1 Preliminary

Let K be a finite extension of Q, with a uniformizer @y, K be an algebraic closure of K and
C be the completion of K. Let K be the maximal unramified (over Qp) subfield of K. Let K,
be the extension of K by adding all p-th power roots of unity, K, = K (uy=) for m > 1. We set
Ik = Gal(Kw/K), Tk, := Gal(Ko/Kpn) and Hg := Gal(K/Ky). Lete : g — 7 be
the cyclotomic character.

Let A be an affinoid algebra over Q,. We keep the notation of the Robba rings and (¢, 'k )-
modules in Recall we have Robba rings R - which is denoted by R’y (7K ) in [KPX14,
Def. 2.2.2] for any = > 0 less than certain constant.

Recall a ¢o-module over R, j is a finite projective module M" over R, - equipped with an

~

isomorphism @*M"™ 5 M"/P = M" QR RTA/% where ¢ : RY) o — RX% and a ¢-module
over R 4 i is the base change of a cp—modufe over some RZ),K ([KPX14, Def. 2.2.6]). A (¢, 'k )-
module over R 4 i is the base change of a ¢-module equipped with a commuting semi-linear
continuous action of I' 5 over some RZO, i ([KPX14, Def. 2.2.12]).

We recall some constructions from (i, " )-modules.

Suppose that Dy is a (¢,I')-module over R4 i of rank n. By definition, D4 is the base
change of a (¢, I')-module D" over R"onK = RSP,K®QPA ([Emel7, Prop. 1.1.29]) for some rg
small enough. For any r, let m(r) be the minimal integer such that p™ (")~ K (1100 = Ko (fioo)]r >
1. Then there exists a continuous I'-equivariant injection ¢,y : Ry o = Kr[[t] (e.g.
[BerO8al §1.2]). As in [BCO8| §4.3], we define ARq, Kon[[t]] := Hm, ARq, (Km|[[t]]/t*) for any
m > m(rp) and we will always assume m > m(rp) in the remaining part of this appendix.

Let D§?’+(DA) = ADK,[[t]] R Ry D be the “localization” if m = m(r) and
r < ro where D) = D'} ®R;XO,K R4 k- Then D§F’+(DA) is a finite projective ARK,,[[t]]-
module with a semi-linear continuous action of I'x. Here the continuity means that for each
s > 1 the action of I'x on Dgg”’Jr(D A) /tngfm’Jr(D A) is continuous. In particular, for any
z € DX (D) /8Dy (D a), limyer, 1 7(x) = 2 in the finite A-Banach module

K, s EKm,
D (Da)/t* Dy " (Da).

157
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3 K Km7
Write D5 (D) := Dy (Da)[4].
Let Dé(en (Da) := D§F’+(D A) /tD(ﬁ”’Jr(D 4). Then ¢ induces I'i-equivariant isomor-

phisms (cf. [Liuldl §2.3])

DE™ (D) @k, Kmi1 = DE™(Dy),

Sen Sen

Djﬁn’ (Da) @k, Km[[t]] = D:{ime“(DA).

If B is an affinoid algebra with a morphism A — B, denote by D := M& B the (o, 'k )-
module over R k. Then by the construction, there is a natural isomorphism Dﬁ”*(D B) =~
Dﬁf;"’Jr(DA)@AB. If = is a point on Sp(A), we let D, = D4 ®4 k(x) be the (¢, 'k )-module
over Ry (), k- The following lemma is not essential.

Lemma A.1.1. There exists a finite admissible covering {Sp(A;)} of Sp(A) such that each Dcﬁ”’Jr (Da,)
(resp. DSen (Da4,)) is a free AZ@)Qp ml[t]]-module (resp. A; ®q, Ky-module).

Proof. We have ABq, Kou[[f] = lim, ABq, (Kn[[]/1F) = lm, (ABg, Kon)[[1)/#* = Ky g,

t]] (cf. [Emel7, Prop 1 2.5]) is t- adlcally complete Thus the finite projective module
DdIF’Jr(DA)@AA over Al@)(@p m[[t]] is free if and only if DSen (DA)®4A; over A; ®q, Km is
free. Therefore we only need work for DS o (Da).

Let m be a maximal ideal of A correspondlng to a point z € Sp(A). Since DY, is free over
Ri(x).5c ([Ber08a, Prop. 1.1.1]) , DEm(D,) is free over k(z) ®g, Km. As DEM(Da) ®4 Aw
is ﬁmte prOJectlve over Ay ®q, Km and m ®q, K, is contained in the Jacobson radical of
Am @, Kms DSen (Da) ®4 An is free over Ay ®q, K, by Nakayama’s lemma. We choose a
morphism (A ® K,,)" — Dé(e’g (Da) of A®q, Ky,-modules (after possibly shrinking Spec(A))
such that it induces an isomorphism (An®gq, Km)" — DEM(DA) @4 A of An®q, Km-modules
after tensoring Ay,. Let C (resp. C2) be the kernel (resp. cokernel) of this morphism. Then
C1®4 Am = Ca ®4 Ay = 0. Since A is Noetherian, we can pick a finite set {z;} of generators
of C; and Cs over A. For any x;. there exists an element a; € A such that a;x; = 0 and a; ¢ m.
Let Ag be the localization of A by inverting all a;. Then C; ® 4 Ag = Co ® 4 Ag = 0. Thus the
morphism (As®q, Kn)" — Dé(e’g (Da)®aAs of As®q, Km-modules is an isomorphism. Now
since Zariski open subsets are admissible open and every Zariski covering is admissible ([Bos14,
§5.1 Cor. 9]) and Spec(A) is quasi compact, we can find a finite covering of Sp(A) by affinoid

subdomains Sp(A;) such that DSen (Dy) ®4 A; is free. O
Thus from now on we assume that Dse’g(m) (Da)is afree A®q, Ky (r,)-module. Since the ac-

tion of ' on Ds (D 4) is continuous, there exists m1 > m(rg) such that || A, —I|| < 1 for any

v € I'k,,, where M., denotes the matrix of v on Dg ' Emro) (D a) with coefficients in A ®q,, Ky (ry)
with respect to some ba51s and the operator norm || — | | of operators on the finite Banach A-module

Dy, Kmro) (D4) is equivalent to the matrix norm given by norms of coefficients (cf. [KPX14, Prop.
2.2.14], [Emel7, Prop. 1.2.4]). Then for any v € I'k,,, , the Sen operator V : log(7)/log(e(v)) =

—~)? Km . Km
_log(i('y)) Yoy A=) o Dg " (D) converges and acts A ®q, Ky, -linearly on Dg " (Da).

1

The characteristic polynomial of the Sen operator lies in (A ®q, Kn, [T])'* = A ®q, K[T]
(cf. [FonO4, Prop. 2.5] or [KPX14, Def. 6.2.11]). We take mg > m; such that for any
1

Y € Tipys l[Tog(e() VI < |[pl[#T

K
A ®q, Km-linear operator -y on DSeI1 (Dy) = K, ®k Do) (D4) can be recovered by

m(rq) Sen

. Then for any m > mg,vy € TI'g,,. the action of the

v = exp (log(e(y))V) = D72, w Later, we will need to take m > mg to deduce the

final result on K. We remark that the same formula for v € I'x;,, may not hold on Ddlfm’+(D A)
in general.
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From now on, we assume that A is moreover an L-algebra where L is a finite extension of
Qp that splits K. We denote by ¥ the set of all embeddings of K in L. For 7 € X, we set

Dig (Da) := Dg(Da) ®ag, K17 A (resp. D" (Da) i= D™ (D) ® A, K107 A)

which is a free A @ K,,-module (resp. A® g K,,[[t]]-module) and is stable under the action of
' since I'x commutes with A ®q, K.

A.2 Almost de Rham representations

We start with the cases when A is a finite L-algebra. We will glve certain characteristic prop-
erties of almost de Rham Bgg-representations on the level of D dlg" Jr(D A) (Proposition as
is done for de Rham representations in [BCOS| Prop. 5.2.1].

Recall that the ring Bpgr = Bar[log(t)] is equipped with a Bqr-derivation vpqg (log(t)) =
—1. We pick a topological generator vx € T'g (and VKm € I'k,,). Then vx(log(t)) =
log(t) + log(e(vx)). Let V be the operator log(ny)/ log(e(+% )) for s large enough acting on
Dg;"”L(D 4) in the sense of [Fon04, Prop. 3.7]. Then V acts K,,-linearly, V(t*) = at® for
any a € Z and V(ax) = aV(x) + V(a)z for any a € K,,((t)). Formally let V(log(t)%) =
alog(t)“*l, Va € N as in [Fon04, §3.8]. The following lemma will be useful.

Lemma A.2.1. Let B € {K,,((t)), K((t))} and W be a continuous semi-linear B-representation
of T' k.. Then (W @p Bllog(t)])V=" can be identified with WY ™, the space of elements x € W
such that V acts nilpotently on x. The identification restricts to a bijection between (W ®p
Bllog(t)))' and W=D e space of elements = € W such that v — 1 acts nilpotently on
x. Moreover, under the identification, the action of the B-derivation vpar on (W @ g Bllog(t)])' %
is the action of V on W (s —1)—nil

Proof. Assume Zfio a;log(t)! € (W ®p Bllog(t)])V=" where a; € W. Then

N .
=V (Z a; log(t)”L)
i=0

N
= V(ao) + > (V(ai)log(t)’ +ia;log(t) ")

i=1

N-1
= V(ay)log(t)N + Z i+ a1 + V(a;))log(t)".
1=0

Hence a; = (—1)';V(ao) and V¥ (ag) = 0. The map (W @p Bllog(t)]))V=" — WVl ;
Zf\io a;log(t)! — ag is then a bijection with the inverse map a + Zij\io Z,) Vi(ag)log(t)® if
VN+l(a) = 0.

Now assume Zi]io a;log(t)! € (W ®p Bllog(t)])"*=! where a; € W and ay # 0. Then

2

Zaz log(t) Z i (a;) (log(t) + log(e(yx)))"

Mz )

Z <‘>7K<aa)10g( (7x))’ ™" | log(t)".

Thus a; = Z;V:z (g) log(€(vk))?~"vk (a;) for each i. We get ay = vk (an). We now prove



160 APPENDIX A. FAMILIES OF ALMOST DE RHAM (¢, T )-MODULES

(vx — 1)’an_i+1 = 0 by descending induction. Assume this is true for all i > ig. Then

(o = iy = () = a3y =Ca) = 3 ( 1) toutet) P2ty
N ]jz() N
-3 () ostetu)y (e

By the induction hypothesis, (yx — 1)V "y (a;) = v (v — 1)V~ (a;) = 0 for any j > io.
Thus (v — 1) ~t+lg, = 0 which finishes the induction step. Hence v, — 1 acts nilpotently on
ag.

Conversely, assume we are given ag such that (yx — 1)V Tlag = 0. Then VV¥+1(qg) = 0

since V' = log(v} )/ log(e(75)) = log(yx)/log(e(vx) = — S 7 on ag where

s is any large integer (since V is defined using [Fon04, Prop. 3.7], the equality should be
verified modulo #° for all s and notice that NV is independent of s). We now verify that x =

Zf\io (j)l Vi(ap) log(t)* is fixed by vg. Since vy commutes with V, v — 1 and V act nilpo-
tently on each V*(ag) as well as log(t)" and V*(ag) log(t)* (since (v — 1)(alog(t)") = (vx —
1)(a) log(t)" + 32725 (5) log(e(vx)) i (@) log(t)?). Thus i (2) = exp(log(e(yx))V)z =
(1 +>2 Wﬂ) x = x where the first two identities come from the formal calcula-
tion using V = log(vx)/log(e(yx)) on x and the last identity comes from that V(z) = 0 by
VN*1(ag) = 0 and the computation in first step.

The last assertion follows from that

o (2 e logw) =3 EV v v @) logt)

=0 =0

if VVN*l(z) = 0. O
The following proposition generalizes [BCOS|, Prop. 5.2.1] using essentially the same tech-

nique in loc. cit. and will be applied for m > my.

Proposition A.2.2. Assume that D(ﬁ”’+ is a continuous semilinear K,,[[t]]-representation of
'k, of rank n and D(ﬁ” = D(ﬁ”ﬂ%] Assume that each eigenvalue of i, on Dé{e*g =

D(ﬁ"*/th;"’*_ is equal to €(yk,,)¢ for some integer ¢ € |a,b] where a,b € 7. Then the
following statements hold.

1. There exists a Ik, -invariant K,,[[t]]-lattice N inside D(ﬁ” such that (vg,, — 1)!N C tN
for some | > 1. And we have t_aD(ﬁ"’—’_ C N C t_bD§?’+.

2. Défﬁ% = (DEr ®k,, Km[log(t)]) 5m is an n-dimensional K ,-space.
Moreover, the number | can be taken to be (b — a + 1)n.

Proof. We firstly prove that (1) implies (2). Consider operators oy, := Hle fi(vk,,) for k > 1
where we take polynomials f;(T') = (T — 1)!'hi(T) + 1 = (e(vk,,)'T — 1)!g;(T) fori > 1
thanks to Lemma below. Since (vg,, — 1)! is trivial on N/tN, oy, is the identity on
N/tN. We set ag(z) = z. We now prove by induction that (yg,, — 1)'ax(z) € t*T1N and
ar(z) — agyr(z) € "IN forany 2 € N and k > 0. If k = 0, the result is easy. As-

sume that the result is true for k. We have (e(w’?(# — D)(thtlg) = thtlyg () — thtle =

"+ (vk,, —1)(z) forany & € D" Then (v, —1)' a1 () = fre1 (V) (7K, — 1) etk (2) =

-1 1 -1 l
91 (i) (o 2Br — 1)} (¢ Qo Dhen®y g (o i (e, — 1)) (Dt pente))
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tF2N since vk, (t**2N) C t**2N and we have (yg,, — 1)1(%%) € tN by the
induction hypothesis and the assumption. Then aji1(x) — agio(x) = hrro(Vk,,) (YK, —
lagi1(x) € t**2N which finishes the induction. Hence when k — +oo0, the sequence ay ()
converges to an element in N denoted by a(z). Moreover (vx,, — 1)!a(x) = 0 and the K,,-
map o : N — N is the identity modulo ¢. Hence the image of «, denoted by Npgr, has
K ,,-dimension at least dim N/tN = n. Applying Lemma for I',,, the space N,qr can
be viewed as a subspace of Df;(dm}v Assume that N;/)dR is a I'g, -invariant finite-dimensional
K ,,-subspace of (D(ﬁ")(wﬂn_l)_“il that is stable under I',, and contains Npqr. Then the
Ky [[t]]-lattice N' generated by N[ ;g has full rank n, stable under the action of I'x,, and sat-
isfies (vx,, — 1) N’ C tN’ for some I’ > 1. Repeat the previous argument of N, I for N’, ',
we find there exists a K,-map o/ : N’ — N’ which is the identity over N'/tN" and N .
One can also prove that o/(tN') = 0 by showing that o}, (tN') C t**1N’ for any k (since
fk+1(7Km)(tk+1N/) — 9k+1(7Km)(e(7:Z# _ 1)l’(tk+1N/) C tk-i—l(,me _ 1)l’N/ C tk+2N’).
Thus Ny = o/ (Nygr) = o/ (N'/tN') has K;,-dimension n. Hence the dimension of fodT& is no
more than n (this also follows from general theory, cf. [Fon04, Thm. 3.22(ii) & Prop. 2.1]). Thus
chﬁgh is identified with Npggr via Lemma This finishes the proof of (2).
To prove (1), we have the following claim.

Claim A.2.3. Under our assumption, there exists | such that

2b—a
i K, — K,
H (Vi = €(¥c)') D™ ™ C "= D™

i=a

Proof of Claim[A.2.3] Let Fi,(T) = Hfif (T — €(7k,,)")". The characteristic polynomial of
~VK,, on the K,,-space tkDgf”’Jr/tk“Déﬁ”’Jr = tk’Dé(e’;;’Jr divides F(T) for any k € N by the
assumption. In particular, F}, (’me)tkDfiF e tk+1D§§’“+. Hence

Km, — Km,
Fb—a(’YKm)"‘FO(’YKm)Ddif * - tb a+1Ddif +'

We take | = (b — a + 1)n. Then Fy_o(T)--- Fo(T) divides []?2-“(T — e(vx,,)")". Hence

i=a

2b— ) Km, — K’n’u
II; a(VKm - G(VKm)Z)lDdif ot aHDdif " L

1=a

Now we prove (1). We let N be the sub- K, [[t]|-lattice generated by

I (ke —e(rx)) '

i€la,2b—a)\{k}

forall x € D§F’+ and k € [a,b]. Then N C t_bfoiE”’Jr by definition and vk, (N) C N.
We have t*N O {[Licia00—ap g5} (Vim — e(vk,,))x | © € Dﬁ”ﬁ,k; € [a,b]}. The im-
age of {[1;cia20—ap e} (VEm — e(vk, ) )z | © € D§F’+,k € [a,b]} in Dé(e'g is equal to
{ITicta26—ap 13 (Ve —e(vk,))'w | © € DE™ K € [a,b]}. By our assumption the characteristic
polynomial of v, on Dé(e’g is of the form J [;¢(, 4 (z — (7K, )")"™ for some n; > 0. The polyno-
mials [ [;e o o 3 (7 —e(vk,,))' k € [a, b] share no common zero and generate the constant poly-

nomial 1 by Hilbert’s Nullstellensatz. Hence {][;c(, 4\ (53 (Vim — e(vr,, ) )z |z € Dé(e’g, ke

K'"l
Sen

the characteristic polynomial of v, on Dé(efg if o ¢ [a,b]. Thus JT;cpi1,00—a) (VK — (v, )

[a, b]} generates D&™ as a K,,,-space. Moreover, we have assumed that (T'— e(7g, )*) is prime to

is a bijection on DSKe’I’f. Hence the image of {] [;¢ (4 26— ap (1} (Vi —e(vr, ) )z | @ € D(ﬁ”ﬂr, ke
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[a,b]} in D ™ generates D ™ which implies that t* N D DK’“’Jr by Nakayama’s lemma. Finally,

_ i K, — 1 Km,
(vkw D' JI (ke — (k) ) D" =t [ (v — €vn) ) D™

i€a,2b—a)\{k} i€a,2b—a)
o s kDCIE%n,-i- (Claimm
C tb+1_kN
CtN
for any k € [a,b]. Since (yg,, — 1)'*N C tN and N/tN is generated under K, by the image
of t=* [icta26—ap g1y (K — €(v0)" )lDéf;”’+ k € [a,b], we conclude that (v, — 1)!N C
tN. O

Lemma A.2.4. Forany k € Z \ {0}, there exists a polynomial fi,(T) € K[T] such that fi,(T) =
(T~ 1) hi(T) + Land fy(T) = (e(1xc, )T — 1)1gi(T) for some polynomials hy(T), (T) €
KI[T].

Proof. Theideal ((T—1)', (e(vk,,)"*T—1)!) = (1) by Hilbert’s Nullstellensatz since (v, )* #
1 for k # 0. Hence we can find hy,(T), gx(T) € K[T)] such that (e(vg,,) T — 1)!gp(T) — (T —
D) h(T) = 1. O

Lemma A.2.5. Assume that A is a finite extension of L and all the Sen weights (the roots of the
Sen polynomial) of D 4 are in Z and m > myq. Then we have

K. I'r
(DdIF(DA) QK Km[log(t)D = Dpar(War(Da)),

m

Ko Tk
(Dl (D) @i, Kunllog(®)]) " = K @1 Dpar(War(Da)).

Proof. By definition, W;R(D 4) =D’ ®ry, B;fR (the m here is large enough since ¢* D", ~

p7K7Lm

D'/, cf. [Ber08a Prop. 2.2.6(2)]) is a free A ®q, Bj;-module of rank n. The map By @, ]
D(ﬁ" T(Da) = Wi (D) induced by the injection K, [[t]] = Bly is a Gx-equivariant isomor-
phism and we have a similar statement for Ddlf (D)) = Ky ®x,, D(]Li’fK’” (D). Now let X
be the Ko[[t]]-module associated with the B -representation W, (D) in [Fon04, Thm. 3.6].
Then X; contains Dd1§°’+ (D4) by loc. cit. (our convention on I'g differs from that in [Fon04],
however the results in loc. cit. apply if we firstly replace K by some finite extension in K., and
then descent if needed). Modulo ¢ and by definition, X;/t = (Wi (Da)/t) %) = ((C ®k..

DE= (D )f, where C Q@ DSen (D4) is a semi-linear C-representation of Gx on which

Sen

Gk acts on DScn (D) via T and ((C @k, DE=(D))H Kt denotes the union of all finite-

Sen
dimensional K -subspace that is stable under ' of C' @ Dé(eif (D4) as in [Fon04, Thm. 2.4].
Thus ((C®k., Dé(ecr’f (D4))Hx) s contains DSen (D 4) and has the same K o;-rank with DSKeC;f (Dy).

Hence X/t is identified with DSen (Da) in Wi, (Da)/t. Then the inclusion D} °°’+(DA) —
X is asurjection. Hence X = Dgf°°’+(DA) in Wi (Da) and Aqr(War (Da)) = D(ﬁf" (Dy) =
Dgf"’Jr (D A)[ ] in the notation of [Fon04, Thm. 3.12].

Now by the assumption on Sen weights, the A ®g, Bqr-representation Wyg (D) is almost
de Rham. We have

Dypar(War(Da)) = (War(Da) ®p,, Barl[log(t)])7% = <(WdR(DA) ®Bar BdR[log(t)])HK)FK '

If a € Dgf" (D4) such that V¥ (a) = 0 for some N, then the sub-K-space spanned by
Vi(a) is finite-dimensional and stable under V. Thus (Dgf"(DA) Rr.. Koollog(t))V=" =
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Dyr,00 (War (D 4)) by [Fon04, Prop. 3.25]. Since Wqr (D ) is almost de Rham, Dyg oo (War(Da)) =
Koo @K Dpar(War(Da)) by [Fon04, §3.6]. The identification

B Koo V=0
Koo ®x Dpar(War (D)) = (Ddif (D4) Ok Kco[log(t)D (A.2.6)

of K -subspaces in (Wyr (D) @B, Bar[log(t)])* is T x-equivariant. Since m > my, eigen-
values of v, = exp(log(e(vx,,))V) on DE™ (D 4) are of the form €(~y,, )’ fori € Z. By Propo-

Sen

F m
sition |A.2.2| the dimension of (D(ﬁ”(DA) ®K,, Km [log(t)]>  over Ky, is equal to n[A :

r
Qp). By Hilbert 90, the dimension of the K-space (Dggn (Da) ®k,, Km [log(t)}) “is equal to
n[A : Qp]. Taking I'k-invariants on the two sides of (A.2.6) and counting dimensions, we get

Dyar(Wan(Da) = (D5 (D) 9k Kecllog)]) = (DL (Da) @1, Konllog(0)])

We may consider some more general cases. Suppose that A is a local Artinian L-algebra with
residue field L' finite over L. We assume that all the 7-Sen weights of Dy are integers for a fixed
7 € ¥ which means that we do not require other Sen weights to be integers. As a (¢, I' k' )-module
over R, i, the 7-Sen weights of D 4 are all integers since D 4 is a successive extension of Dy,.
Recall

Dpar,r(War(Da)) := Dpar(War(Da)) ®aeq, k127 A-
Thus

Dyar - (War(D) = (DA (D) ©a6g, 1167 A) @rc Kocllog(®)])
= (Dfz=(Da) @ Kocllog(0)])

as both the actions of A and K commute with I'x. By Proposition and Hilbert 90, we get

'k

Dyparr(War(Da)) = (DEF, (Da) ©xc,, Kmllog (1))

has L-rank n dimp,(A) if m > mg. Anargument of [BHST9, Lem. 3.1.4] shows that Dpqr - (War(Da4))
is flat over A and thus free of rank n over A.

A.3 A family of almost de Rham (¢, I'x)-modules

We assume that A is an affinoid algebra over L and show that Dpgr (War(D2)),z € Sp(A)
form a family under certain condition.

We take m > myg and fix 7 € X. After possibly shrinking A, we assume that D§$;+(D A) is
a free A® i K, [[t]]-module of rank n with a continuous semilinear action of I' . We assume that
for any point x € Sp(A), the 7-Sen weights, by definition the eigenvalues of V on Dé(e}f’ ~(Dyz),
are integers and lie in [a, b] where a, b € Z is independent of z. If A is a finite-dimensional local
L-algebra with a morphism A — Ao, then Dyqr - (War (D4, )) is a finite free Ap-module of rank
n equipped with an Ap-linear nilpotent operator v4, by discussions in the end of last section.
Lemma A.3.1. If the 7-Sen polynomial of DE™ (D ) is [Lic; (T —a;)" € Z[T)| where a; are in-

Sen,T

e s Ko Kom,
tegers and a; # a; if i # j, then we have HieI('me—G(VKm)al)”lDdif7T+(DA) C thif,T+(DA)'

Proof. By the Cayley-Hamilton theorem, [,(V —a;)™ = 0 on DE™ (D). Since the polynomi-

Sen,T
als (T'—a;)™, i € I are prime to each other in Q[7], we can focus on each generalized eigenspace
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after possibly shrinking Spec(A) and reduce to the case when V is nilpotent on DE™ (D), i.e.

Sen,T _
V" = 0on Dge*g’T(DA). Since m > mo, Vk,, = exp (log(e(x,,))V) = D2y —(log(ehgm))v)l
on Dgeﬁ,T(DA)- We get that (yg,, —1)” = 0 on DgeTg’T(DA). O

Lemma A.3.2. There exists an integer lo such that [ ;ci (VK. — e(vk,, ) D§K;+(DA) C
Km,+
thif,’T (DA)

Proof. Let J be the nilradical of A. We have Dy (D4, ;) = Dyt (Da)/JDgt (Da).
The (¢,I'x)-module D, satisfies the condition in Lemma at least on each connected
component of Spec(A/.J). Thus there exists an integer I’ such that

1 (k. = (v, )) DT (Da) € tD gt (Da) + Dy (Da).
i€[a,b]

Since A is Noetherian, .J is finitely generated and there is an integer N such that J = 0. Then
we can take [ = NU'. O

Lemma A.3.3. Let A be a Noetherian ring over Qp, and J be its nilradical. If P(T) € A[T] is a
polynomial such that the image of P(T) in A/ J [T is in Qp[T'] and has no factor (T'—1) in Q,[T],
then for any | > 1, there exist G1(T), Go(T) € A[T] such that 1 = G1(T)P(T) +Go(T)(T —1)!
in A[T).

Proof. Denote by P(T) the image of P(T) in Q,(T) C A/J[T]. By Hilbert’s Nullstellen-
satz, there exist G (T), G4(T) € Qp[T] such that 1 = G4(T)P(T) + G4(T)(T — 1)!. Thus
G(T)P(T) + GL(T)(T — 1)! = 1 — H(T) where H(T) € J[T]. There exists N such that
H(T)N = 0. Hence 1 — H(T) is invertible in A[T]. We let G;(T) = GX(T)(1 — H(T))~* for
i=1,2 N

The proof of the following proposition follows that of [BC08, Thm. 5.3.2].

Proposition A.3.4. Assume that for every x € Sp(A), all the roots of the T-Sen polynomial of
D, are in Z N [a, b]. Then there exists a finite projective A-module Dpar -(War(Da)) of rank n
equipped with a nilpotent A-linear operator v 4 such that there is a natural isomorphism of pairs

(Dpar,r(War(Da)) ®a Ao, va @4 Ao) = (Dpar,-(War(Da,)), v4,)
for any finite-dimensional local L-algebra and map Sp(Ag) — Sp(A).
Proof. Fork > 1, let
b—a+k b—a o 6(’)/[{ )z l
Be=| [ #Ox.) I1 (M)
j=b—a+1 i=a—b,i#0 TKm

where f;(T) is chosen by Lemma and | = (b — a + 1)l is determined by Lemma
Since m > myg, by Lemmal[A.3.2]and the argument for Claim[A.2.3]

b—a-+t+k
3 - K’"h - Kma
I (k. — etvi))'t P Dg ™ (Da) € 52Dy (D)
1=a—>b

for k > 0. Since (T—€(vx,, )T | fo_ayi(T) forany i > 1, we get thatif x € t_bDégFT’Jr(DA),
then (vx,, —1)!Bk(z) € t"“*l_“DgFjT’JF(DA). Hence if z € t_ngg’f(DA), Br(x) — Pr+1(x) €
t’“Jrl_“D(ﬁ"T’Jr (D 4) by the condition in Lemma|A.2.4, Thus /5 := lig, . P defines an A®k
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Ky, -linear map t_ngFT’Jr (Da) — t_bD(Ig;"f(DA). Let M %™ be the image of 5. Then M ™ is

stable under the action of ' and (g, —1)'!M 5™ = 0. Since the map <H?;Z?b7#0 %W)l
is an isomorphism on Mf’" and fy_air(vK,) = (Y&, — D'ho—asr(VK,,) + 1 is the iden-
tity on M f’” for £ > 1, B induces an automorphism of M ffm. The image of the charac-
teristic polynomial of vyg,, = exp (log(e(vk,,))V) on t_k’Dgng’Jr(DA)/t_k“Dﬁ’jT’JF(DA) in
A™d[T] is prime to (T — 1)! if k ¢ [a,b] (the roots have the form €(yx, )~ for some i €
[a, b]). Thus by Lemma we know there exists no non-zero (7g,, — 1)-nilpotent element in
=D (D) LDt (D) for any k ¢ [a, b]. Hence MA™ N1~ D gt (Dy) = {0}
We get that the natural A® g K,,,-module morphism Mf’” — t_ngg’ff (D,Ll)/t_‘“Lngg’:T’+ (Dy)
is an injection. The decomposition

B M s 70Dt (D g) jt= o Dl (D 4) B Mk

implies that M f’" is a finite projective A ® ¢ K,,-module as a direct summand of a finite free
A ®k K,,-module. For any finite-dimensional local Artinian L-algebra Ay with Sp(Ay) —
Sp(A), 3 also acts on t_ngt’ij(D A,) = t_ngg’:f(D 4) ®4 Ap by extending the scalars since
D(ﬁnf(D Ay) = D(ﬁ’ff(D 4) ®4 A satisfies the same result as A for the same [y in Lemma
We have that 3 is also an automorphism on M fom which is defined to be the (vg,, — 1)-
nilpotent elements in D(ﬁ?} (D 4,) (which is contained in t_ng;’ff (D 4,) by Proposition .
The image of 3 on t‘ngg’}(DAo) is Mj{’" ®4 Ag. Hence Mff’" ®4 Ag contains and thus is
equal to M fom since MA™ @4 Ag is (vk,, — 1)-nilpotent.

The A® i K,-linear action of V = log(vxk,, )/ log(e(vk,,)) on Mfm is defined since vg,, —1
is nilpotent on Mf’”. We now set Dﬁﬁ,T(WdR(DA)) = (Mffm ®K,, Km [log(t)]> Frem which

is equipped with an A ® g K,,,-linear nilpotent operator fo’" via VR in the usual way. By the
same method in the proof of Lemmal[A.2.1] there is an isomorphism

(DII)(dmRJ(WdR(DA))a me) = (Mf]\(m’ V)

of A® i K,,-modules with nilpotent operators which is not compatible with the action of I'c /T, -
For each Ay as before, via the identification in Lemma , M ffom is identified with

x Tk, K Tk,
(MAom Dk K [log(t)]) = (DdifTTT(DAo) QK Km[log(t)]> = Dpar,r(War(Da,))®k Km
by LemmalA.2.5|since m > mg. Hence

(Déiﬁ%{J(WdR(DA)) ®4 Ao, vi™ @4 Ag) = (Dpar,r(War(Day)) Ok K, vay @k Kim)

which is compatible with the action of 'k .
Now the result follows from the descent in [BCO8|, Prop. 2.2.1] by setting

(Dparer (War (Da))sva) 1= (D, (War(Da) </ Tsm B | o4 )

which is also isomorphic to ((Mfm)(WK_l)_nﬂ, V) by the same arguments in Lemma|A.2.1} [
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Appendix B

Connected fibers of
Bott-Samelson-Demazure type
resolutions

Recall in the setting of we have a reductive group G over a field k£ and a standard
parabolic subgroup P of GG. For w an element in the Weyl group W of GG, we defined a scheme
Y = Yp as well as Yp in the beginning of §3.2.11 We use Wp to denote the Weyl group of
the standard Levi subgroup of P. Then we have varieties Y, or Yp,, (as well as X,,, Xp,,) for
w € W orw € W/Wp. We know Y,, are normal for all w by [BHS19]. This appendix will prove
that for w € W, the fibers of the natural map Y, — Yp,, are connected. This will imply that Yp,,
are unibranch at all the points, as claimed in Remark [3.2.15] We will use notation of §3.2]

B.1 Example of simple reflections

In this computational section, we compute Yp,, when w = sg = so, ¢ Wp is a simple
reflection corresponding to a positive simple root oy of B. This is already done in [RicOS8| §1.4]
but the result is crucial for the sequel, thus we would like to repeat it in our notations. We may
assume that G is semisimple and simply-connected.

Letf: Yp — G/P be the natural projection. Notice that the closed subscheme g~ (BsoP/P)
is covered by locally closed subschemes VIE;O and V}; (defined after (3.2.1)), where e is the
identity element in W. Hence f~!(BsoP/P) = Yp. U Yps,. The projective line BsoP/P is
covered by two affine lines U_,, P/P and $oU_,,P/P where U_,, is given by [Spr10, Prop.
8.1.1].

We use variable = to denote the coordinate of the line U_,,P/P via u_q, : Spec(k[z]) =
U_4,- Choose ¢, for some basis of the root spaces corresponding to roots « in the Lie algebra g
and w, € t be fundamental coweights such that §(w,) = dq for positive simple roots o, f € A
(cf. [HumOS8, §0.6]). Then b = @ cp kwa ® D, cp+ keq. Let variable t,,ys denote the
coefficients of elements b = Zae A tawa + Eae R+ Ya€a € b such that the coordinate ring R of
bisk[ta,ys | @ € A, B € RT].

If 3 is a positive root and 3 # o, we have Ad(u—q,(x))eg € @jeN f—jage RRES—ja, fOr any
x € R (cf. [Sprl0] §8.2.3]). If & € A and a # «v, then Ad(u—q, (—))wa = Wa as [Wa, €—ay] =
0 since ap(wy) = 0. Hence if 8 € RT \ {ao}, then Ad(u_q,(—2))eg € b C g (write 3 as
a linear combination of positive simple roots with non-negative coefficients, then the coefficients
of B — jay in basis A are all non-positive only if S € Za since the root system is reduced, see
[Mil17, Thm. 21.11(b)]). Considering the subgroup G, ~ SLo corresponding to « as in [Spri0,
§7.1, §8.1.1], one computes that Ad(u_a,(—Z))€ay = €ay + Thay — T2€_a, Where hq, € tsuch

167



168 APPENDIX B. BOTT-SAMELSON-DEMAZURE TYPE RESOLUTIONS

that a(he,) = 2 (as in [HumO8| §0.1]). Moreover Ad(u—_qy(—2))hay = hay — @(hag)€—ay-
Hence, Ad(u_qo(—7))wWay = Wap — ¥(Wag)e—ag = Wag — €—ap- Hence if b = Y A tawa +
> wch+ Yatas the element Ad(u—q,(—2))(b) is in b if and only if —zta, — 2%ya, = 0.
Therefore the open subscheme f~1(U_,,P/P) is isomorphic to the closed subscheme of
Spec(R ®y, k[x]) defined by the ideal (—xtn, — 2%yq,). There are two irreducible components
of f~HU_ooP/P): z = 0 and Yo, + ta, = 0, where the component z = 0 is an open dense
subscheme of Yp,. and the component y,,x + to, = 0 is an open dense subscheme of Yp .
One may also consider f~!(soU_q, P/P) and find that Yp 5, ~ Proj(R[z, Y]/ (Yae® + tayy)) the
blowup of b with respect to the ideal (yq,, ta, ). The closed subscheme Yp 4, \V}j 50 = YPsoNYPe

is the preimage of the point P/P € BsoP/P under the map f|y,, .

Wesee Yp s, NYpe = {(b,gP) € Yp | to, =0,9P = P}and Yp,, N{(b,gP) € Yp | to, =
0} = {(b,gP) € Yp | to, = 0,9P € Bs; P/P}. In more down to earth description, assume that
the K-point (D" ca taWa + Y pept Yaa,9P) € (b x BsgP/P)(K) is in Yp,,(K) for some
integral domain K, then we must be in one of the following cases:

1. toy # 0 and yo, # 0, then gP € BsgP/P(K) is uniquely determined by b and we can
write P = u_qq (tay/Yuo ) Ps

2. toy # 0and yo, = 0, then gP = soP;
3. tay = 0and y,o, # 0, then gP = P;
4. ta, = 0 and y,, = 0, then g can be any element in W.
One can check directly that we have the following lemma.
Lemma B.1.1. If (v, gP) € Yp,, then Ad(g~")v shares the same Levi factor with Ad (55" )v.

Proof. Note that in general this is a consequence of [BHS19, Lem. 2.3.4]. O

B.2 The resolutions

Let pr’ : X =g x4 9 :— g be the projection to the second factor and denote its restriction to
Xy by prl, := pr'|x,, : Xy — @. By symmetry the morphism pr’/, is also proper and birational.
Now assume w € W and w = s1--- S, is a reduced expression of w with sy, ---s,, simple
reflections. We define

X(Sl,-" ,Sm) = Xsl XE XEXSma

where the morphisms in the fiber products are given in the following diagram:

X,

... X, -
pr’sx‘ pr\./ pr'|-\ pr‘%/
il i

Then the scheme X (s1,- - , sy,) can also be described as

X(s1,- ysm) ={(, 90, ,9m) €9XG/Bx---xG/B| (v,gi-1,9) € Xs,,¥1 <@ <m}.
We also define a scheme Y/(s1,- -+, sp,) :=

{(v, 91, ,gm) € (bxBs1Bx---xBsyB) | (Ad((91--gi-1)"")v,9:B) € Yy, V1 <i <m},

where we set go = 1. The variety is equipped with a right action of the group B™: if (b1, -+ ,by,) €
B™ (v,91,- s gm)(b1y-++ ybp) = (v, 9161, ,b;{lgmbm). Then we define

Y(s1, - ,8m):=Y'(s1, -+ ,8n)/B™



B.2. THE RESOLUTIONS 169

be the quotient of Y'(sq,- - ,s,,) by the action of B™. We need to show that the quotient
Y (s1,++, Sm) is an scheme and we need to introduce the Bott-Samelson-Demazure variety.

Let BSD(sy,- -, 8m) := BsiBx?...x5 Bs,, B/B be the Bott-Samelson-Demazure variety
associated with the sequence (s1, - - - , 5,,,) of simple reflections W. The notation Bs; B x5 .. x5
Bs,, B/ B should be understood to be the quotient of the variety Bs; B X --- X Bs,, B by the
B™-action given by (g1, , gm)(b1, - ,bm) = (g1b1,--- ;b1 1gby). The quotient map is
locally trivial (cf. [Jan07, §13.4]). Recall that BSD(sy, - - , s,,) is smooth and contains an open
dense subscheme BSD°(sy,- -+ ,sy) := BsiBx?-..xB(Bs,,B/B) replacing Bruhat varieties
by cells. We have natural morphisms of varieties r = r )y BSD(s1,- - ,8m) — BwB

sending (g1, ,gm) to g1 - - - gm € BwB/B which induces an isomorphism of open subschemes
Bs1B xB ... xB (Bs,,B/B) = BwB/B and the product morphisms 7 are rational resolutions
of the Bruhat varieties (see [Jan07, I11.13.6.] and [BKO7, §3.4]). Let

OBSD(s1,- -+ ,8m) :=BSD(s1, -+ ,8m) \ BSD(s1," ", S$m)

51,7 58m

be the complement of BSD®(s1, -+, 8y,) in BSD(s1, -+, $p). Then OBSD(s1,- -+, sp,) is a
divisor of BSD(s1, - - , sy,) and consists of m irreducible components:

OBSD(s1,- -+, 8m) = Ur<icmBs1B xP ... xP (Bs;B\ Bs;B) x? ... x® Bs,,B/B.
Wehaveamap Y(Sla”' 7Sm) — b X BSD(Sl"" 75’m) : (val7"' 7971) = (val gm)

Lemma B.2.1. The morphismi : Y (s1,- -+ ,8m) — bxBSD(s1, -, sy, ) identifies Y (s1,- -+ , Sm)
as a closed subscheme of b x BSD(s1,- -, $m).

Proof. If m = 1, the results hold by computations in and Y (s1) is a closed subvariety of
b x BSD(s1) locally cut out by one equation. The closed subscheme Y'(s1) < b x Bs;B is
also locally cut out by one equation since the projection BsyB — Bsi1B/B is a local trivial
bundle. The scheme Y”(s1,- -+ , sy,) is a closed subscheme of b x Bs1B x --- X Bs,, B cut out
by relations (Ad((g1,---,9i-1) v, g) € Y'(s;),1 < i < m. As the quotient map b x Bs1 B x

- X Bsp B — b x BSD(s1,- -, Sy, is locally trivial, the closed subscheme Y/ (s1,- -+, sm)
of b X Bs1B x --- X Bs,, B descends to a closed subscheme Y (s1, -, $,,) and the quotient
morphism Y/ (s1, -+, $m) = Y(s1,- -+, $,) is locally trivial. O

Remark B.2.2. Y (s1,- -+, Sy, ) is not smooth when G = GL3 and w is the longest element in the
Weyl group of G.

The scheme Y (s1,- - , $p) is equipped with a left B-action:
b(v, g1, gm) = (Ad(b)v,bgr, -, i+, Gm)
for b € B and respectively X (s1,-- -, Sp) is equipped with a left G-action:
9,90, s 9m) = (Ad(9)v, 990, -+, 99m)
for g € GG. Then the map
GxBY(s1,-- ,5m) = X(s1,- ,5m)

(gv (V7gla' o 7gm)) — (1Ad(g)1/,gjggl7 , 991 * gm>

is an isomorphism of G-schemes. Similarly X (sy, - - , s,,) admits an open subvariety
XO(s1,-0+ y8m) =V xgx - x5 Vs, ~G xBY°(s1, -, 5m).

We have natural morphisms r* : X (s1,--- ,8.,) — X sending (v, go, - , gm) to (v, go, gm) and

TY : Y(817' te 7S’m) — Ysending (Vﬂglv'” ng) to (V7gl gm)

In the remaining part of the appendix, we will focus on Y, Y,,, Yp,, etc. and omit the discus-
sions for X, X,,, Xp,, etc..
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Lemma B.2.3. The restriction of ¥ to the open subscheme Y°(s1,--- , 8,,) induces an isomor-
phism
~ Y
Yo(s1, 5 8m) = Vpa-

Proof. We have an isomorphism BSD°(s1,- -+ ,s,) — BwB/B and

Yo(s1, -, 8m)

={(v, 91, ,gm) €bx Bs;B xB ... xP Bs,,B| Ad(g;*--- g7 )v € b,V1 <i <m}.
Thus we need to verify that Ad(gi_1 o ‘gl_l)u € bVl < i < m, where g; € Bs;B for all
1 < i < m, if and only if Ad((g1---gm) *)v € b. Since s1 - - - 5, is a reduced expression of
w, the expressions sj - - - s; is reduced for all <. Hence we have Bs;---s;,B = Bs1B--- Bs;B.
We can then reduce to the case when (g1, ,gm) = (51, ,5;). Assume v = Y\ taWa +
> per+ Ypep is in b. Then Ad((s1--- $;) v € bif and only if ys = 0 for all 3 € A; where
A; == {B € R | s;---51(8) € R }cf. [Sprl0, 9.2.1]). But we have A1 C --- C A,

since the number |A;| = i is the length of s; ---s; (if z = A;_; is not contained in A; and if
s; = 8¢ for a positive simple root , then z = (s;_1---51) }(—a) € Rt and A; = A; 1 \
{(si1--51) 7 (=)D -
Proposition B.2.4. The morphism r and rY are proper, and r (resp. r¥) send X (s1,--- ,5m)

(resp. Y (s1,- -, 8m)) onto Xy, the closure of V,, in X (resp. Yy, the closure owaY in YE

Proof. We prove by induction that the ideal generalized by relations (Ad(gk_j1 g v, gk) €
Y'(sk),1 < k < iislocally generalized by i elements in Obxmxmxm foreach1 < ¢ <
m. Assume the result is true for ¢ — 1, modulo relations given by (Ad(gk__l1 Gy Yo, gr) €
Y'(sg),1 <k <i—1,weseer :=Ad((g1, - ,g9i—1) )v lies in b. Thus we only need to add
the relation (v/, g;) € Y’(s;) which is locally given by one equation (after modulo the relations
< i —1). Hence Y'(s1,- - , Sy is a closed subvariety of b x Bs1B X -+ X Bs;, B locally cut
out by m equations.

We now prove by induction on the length of w that the image of r lies in X,,. The case
lg(w) = 1 is clear. Now suppose that w = s - - - S, is a reduced expression of w and let w' =
S3++Sm,s = s1. Like for Y(s1,--- , 81 ), we can similarly define a variety Y (s, w’) such that
GxPY(s,w') = X(s,w') := X x5 X,vs. Then there exists a morphism X (s2, - - , $m) = Xy
by the induction hypothesis, as well as X (s1,- - ,8m) — X(s1,w'). So we only need to show
that the image of X (s,w’) in X, under the map induced by BsB x? Bw'B — BwB, is in
X The open subset X (s,w')® := V x3 Vy is isomorphic to V,, as in Lemma Since
the map X (s,w’) — X is proper, we only need to verify that X (s, w’)° is dense in X (s,w’).
The subscheme Y (s,w’) is locally cut out by one equation from Bs;B x? Y (w'), as in the
discussion in the beginning of the proof. Moreover Bs;B x? Y (w') is integral of dimension
dim b + 1. Hence all irreducible components of Y (s, w’) have dimension no less than that of
Y (w’) by Krull’s principal ideal theorem. So we reduced to prove that X (s, w’) \ X (s,w’)° has
strictly less dimension than that of X (w’). The complement is the union of closed subspaces of
((v. (91B. 92B)). (v, (9B, 93B))) € X (s1, ) where g1 B = g2B or (+/, g5 " 93B) € Yo \ V.,
where / = Ad(g2)~'v (for an arbitrary representative go of goB). Suppose that C' is an irre-
ducible component in the complement where g1 B = g2B, then by the example in k(') €
t® where k : b = t+n — tis the projection. Hence the intersection of C' with the open
dense subset V,,» have dimension less or equal to dimg — 1 by [BHS19, Lem. 2.3.1]. Thus
C has dimension at most dim g — 1. Now suppose that the image of an irreducible component

"We expect that Y (s1,-- -, sm) is irreducible, normal and locally of complete intersection when s; - - - s, is a
reduced expression, however we don’t know proof. There was a mistake in the proof of the previous version of this
proposition where we claimed the irreducibility. We thank Valentin Hernandez for pointing out it.
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C C X(s,w')\ X(s,w')° satisfies that the image of C' in X, is in the complement of V,,» and
assume that the image is an irreducible component C' C X, \ V.. The locus in C' where the
dimension jump by one from C’ to C' (the locus where the fibers of C' — C" have dimension 1) is
in the preimage of the non-regular locus of g by the example in But by the proof of [BHS19,
Thm. 2.3.6], C’ intersects with the regular locus, hence the non-regular locus of C’ has dimension
less or equal to dim C’ — 1. We get dim C' < dim C’. Hence the complement has strictly less
dimension than X (s, w’) and we conclude that X (s, w’) is irreducible with the open dense subset

X (s,w’)°. Then the image of X (s,w’) in X is X, since the map is proper. ]
Denote T (51, ,8m) (resp. ré1,-~~,5m)) the morphism r : X (s1,-+-,8n) — Xy (resp. Yo
Y(s1, -+, Sm) = Yy). Then T(s1, 8m) and rzgl e syy) &r€ proper surjections, and the composite
morphisms
TP’(817”' 7Sm) C= vaw © T(Sly"‘ 7Sm) : X(Sla e ,Sm) — XP,w
Y Y v
TP’(SI’”' 78"”) - = vaw © 7ﬂ(Sly"' 7Sm) : Y(Sl7 Tt 73m) — YPﬂU

are also proper. If w = w? € W, then TP,(s1, ,5m) (TESP. rg(sw, ’Sm)) induces an isomorphism

X°(s1,++,8m) 5 Vpw (resp. YO(s1,-- -, 5m) 5 V}fw).

B.3 Connectedness of fibers

We aim to show that the fibers of the morphism r(,, ... 5 ) : Y(s1,--+,5m) — Y, are con-
nected. Let (v,g) € Y. Let TFE’Sl o) Y(s1,--+,8m) — band m, : Y, — b be the natural

projections (to the first factors).
The following lemma serves as a motivation and a basic example.

b

Lemma B.3.1. If v is a regular element in b, then (77(5 ))_1 (v) contains only one point.

1,7 3Sm

Proof. This is true when w = s is a simple reflection by [BHS19, Thm 2.2.6] since Y'(s) =
Ys. This implies that for any simple reflection s, if (v,g) € Ys and v is regular, then gB is
uniquely determined by v. An easy induction shows that the fiber of Y (s1, - - , sy, ) over v is also
a single point for any v regular. This could be explained in an elementary way which motivates
the remaining arguments in this section. We assume that G = GL,,. By the computations in the
simple reflection cases of Y, we should show that if v = (v;;)i<; € bisregularand v;; = V41,41
for some i, then v; ;1 is not 0. To check the property for regular elements, by lemma|B.3.4]below,
we can conjugate v by an element in B such that szj = 0if v # vj; and VZ(’H_I = Vg if
Vii = Vi+1,i+1. Then using some permutations, we can reduce to the case that the diagonals of v
are all same. Then we can check the property is invariant under the conjugations of elementary
matrices I, + xE4p,b > a, diagonal torus and no nontrivial Weyl group element can conjugate
such v into b. The property is then true for all such regular v thanks to the Bruhat decompositions
and Jordan normal forms. 0

Recall for a subset I of the set of the positive simple roots S, we have the corresponding
standard Levi subgroup M of G containing the fixed diagonal torus 1" with I the set of positive
simple roots of M;. Let W} be the Weyl group of M; and let WI(c W) be the set of shortest
representatives in W of W/W;. Then for each w € W = W/Wp, we have a Levi subgroup
M = Ad(w)(Mj) containing 7. Let Zy ,, be the center of My ,,. Then Zr,, = Ad(w)(Zy).
Let my o, (resp. 371..,) be the Lie algebra of My (resp. Zj4,). Asjre = {A € t] (a,\) =0,Va €
I}, wegetar, ={Aet]| (w(a),\) =0,Va e I}

Lemma B.3.2. Ifw € W/, then w(I) C R*.
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Proof. This is a special case of (4) of Lemma/[3.2.7] d

It is possible that there exists different pairs (I,w € W) gives the same Levi subgroup M. Iw-
For example if n = 3 and S = {a1, as}, then Myq,) o, = Miq,} s,-

Lemma B.3.3. The two Levi subgroup M .,, Mp . of G are the same if and only if w(I) =
w'(I).

Proof. The subset w(I) of R™ is the set of positive simple roots of M ,, with respect to the Borel
subgroup B N M ,,. Hence the subset w(I) of R* determines and is uniquely determined by
My . O

Given A € t, let M, be the maximal Levi subgroup containing 7" such that A € 37 ,,. In other
words, M7 ,, is the centralizer of A and the roots of the Levi subgroup are exactly o € I such that
(o, A) = 0. Let By, = My, N B. Let by, be the Lie algebra of By .

We conjugate v € b in a “good” form by the following lemma.

Lemma B.3.4. Assume v € b with A\ € t the factor of v under the Levi decomposition of b.
Assume that the centralizer of \ is M ,, for some I C S and w € W as above. Then there exists
g € B such that Ad(g=1)v € by .

Proof. We prove by induction on the length i of o € R that there exists g € B such that if we
write Ad(g Dy = A+ acR+ Ta€a Where e, is a basis of the nilpotent radical of b, then z,, = 0
if (o, \) # 0 and Ig(a) <i.

Recall Ad(ua(—2))eg € e + @a/miatjpij>okeq for a,f € RT. Take o € RT. If we
consider the subgroup SLg corresponding to « (see [Spr10, §8.1]), we find Ad(uq(—2x))A =
A+ z{a, Aea. Hence Ad(ua(—2))v = v + (o, \)ea + D0 —intip.i.j>0 Ca’ €or fOT sOME Cor.
If (o, \) # 0, we can take x such that the coefficient of e, of Ad(us(—z))v is zero and the
coefficients of e/, where o has length strictly less than that of « or equal to that of « but o # o/,
are the same with that of v. d

We should consider the fiber

F(sl,---,sm)(y) = (71_?817”.78m))71(y) - BSD(Sh T 73m)

for v € b. Notice that if (g1, -+, 9m) € Fls, ... s,,) (), then for each i, the Levi factor \; of
Ad((g1---g;)~!)v in tis the same as that of Ad((31 ---$;)~!)v by Lemma|[B.1.1]

We take (1, w,) for A\ = )¢ as in the previous lemma. Since w € W, By, = Ad(w)(Br.) C
B and we have a closed embedding Mj .,/ Br ., — G/B induced by M ,, C G.

We can define Yy, , (t1,--- ,1;) with respect to By, where t1,--- ,t; € Sy = wSw! are
simple reflections of the Weyl group W7y 4, := wWiw™ ! of M I,w- We remark from now on, when
we write M ,,, w is always in w,

Lemma B.3.5. The morphism (v,g1,---,q1) — (Ad(s Vv, 57 g15,---,5 1 g8) induces an
isomorphism of closed subschemes Yy, ,(t1,--- ,t1) = Yy, _, (s7't1s,---,s7 ') of b X
(G xB ... xB G/B) if s is a simple reflection in S that is not in Wy ,,.

Proof. We remark that s™' By ,,s = B 1.s—1w C B in this situation since s~tw € W (otherwise
s~lw = ws' for some reflection s’ € W, by [BB06, Cor. 2.5.2], then s = ws'w™! € Wy,
but this is not possible by our choice of s, see also the next lemma). Thus Y}y, , (t1,--- ,t;) and
YMI,S_lw(S_lt]‘S’ -+, 5 ;5) are closed subschemes of b x (G x? --. x® G/B) and the maps
are well defined. The isomorphism is true because there is no substantial difference between the
two side except changing the embedding of My into G. O
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We assume now v € by, (see Lemma |B.3.4). We let T" be the sequence of s; (as a sub-
sequence of (s1,- - ,8m,)) such that \; := Ad(s;---s1)()\) is qual to A\;—; and we rename el-
ements in the sequence 1" by t1,--- ,%; (in the original order). We also rename elements in
K :=(s1, -+ ,8m)\T inthe original order by uy, - - - , uy,—;. Foreachi = 1,--- [, let h(7) be the
minimal number in {1,--- ,m — I} such that uy,(;) appears after ¢; in the sequence (s1,- -, 8n).
For each N € {1,--- ,m}, let T N KN be the truncated sequences consisting of elements in
(81, s ,SN). Let th = ((Hth(i),uJ-EKN uj)ilti(Hth(i),ujeKN Uj) e Wift; € TN, Let
WN ‘= Ujq -+ U‘KN|

We need some combinatorial lemmas. Let R;r (resp. I2}) be the set of positive (resp. negative)
roots of M;. For any w € W, we write w = wlw; where w; € Wi and w! € WZ. Then by
Lemma forw € W, 1g;(w) := lg(w’) is equal to the size of the set {a € RT\ R} | w(a) €
R}, Andlg(wy) = lg(w) — le;(w) = |{o € B} |w(a) € R} = [{a € B} |w(a) € R, }
since Ry = ij U R} is the set of roots of M and is stable under the action of W;.

Lemma B.3.6. Let w € W and s be a simple reflection in W. If w™sw is in W7y, then w™ ! sw

is also a simple reflection in Wi. If w™'sw ¢ Wy, then sw € W,

Proof. Assume w™tsw € W;. We need to prove that lg(w~!sw) = 1. We have lg;(w™lsw) =0
since w™lsw € Wy. Thus lg(w™tsw) = {a € R} | w™lsw(a) € R;}|. Since w € W,
we have w(Rf) C R*, w(R;) C R™. Thusif o € R}, such that wlsw(a) € R}, then
w(a) € R and s(w(a)) € R™. Such « is unique if it exists as s is a simple reflection in WW.
Now assume w™'sw ¢ Wy. If Ig(sw) > lg(w), we get sw € W' by [BBO6, Cor. 2.5.2].
If lg(sw) < lg(w), then by [BBO6, Prop. 1.4.2 (iii)], lg(w) = lg(sw) + 1. Write w = ssw =
s(sw)! (sw);. Since w € W' and (sw); € Wi, we get lg(w) = lg;(w) < lg(s(sw)!) <
lg((sw)?) + 1. Hence lg((sw)!) > lg(sw). The equality must hold and we get sw € W, O

Lemma B.3.7. Assume that w € W', sy - - - s is reduced expression in W and each w™'s;w lies
in Wy. Thenlg(w™ sy ---spw) = L.

Proof. We have lg(s1---s;)) = {a € w(R") | s1---s/(a) € w(R™)}. By the condition
w~ts;w € Wiy, the unique positive root that is sent to R~ by s; is in w(R}’). Hence the ac-
tion of s; keeps the sets RT \ w(R}),R™ \ w(R;) and w(R;). If « € R" is sent to R~ by
s1--- s, thena ¢ RY\w(R;). Thus =1g(s1---s;) < lg(w sy - s;w) and the equality must
hold since by the previous lemma w ™! s;w are simple reflections. O
Lemma B.3.8. The sequence (tY )t.eTn s a sequence of simple reflections in lew;wy and

N N L -1 -1 I
) '”t|TN| is a reduced expression in Wl,wg,lwu of wy 81+ sN. Moreover, wy w, € W*.

Proof. We prove by induction on /N. Assume the results hold for N — 1, then (t,fv _1)tieTN—1 isa

sequence of simple reflections of W, -1~ and is a reduced expression.
YW _1Wr

Ifsy €T, then KV = KN "N wy_y = wn, t) t =tNift; € TN"'. Hence M, , -1 , =

YW 1 Wy
M; -1, - The subgroup W, 1 = w;,l Wi, wn consists exactly of elements in W that fix
YW v PN v

Ad(wy')(A) = Ad(sn -+ - s1)(\) and sy fixes it by definition. By Lemma [B.3.6} sy is a simple

reflection in WLw;{lwy. We need to prove that Ig(w, 1s1 -+ s Nw;,lwl,) = |T¥]. Note that

N =lg(s;---sy)={a€ R |s1---sy(a) € R}
={a cwytw,(R}) | s1--sy(e) € R} +{a € RT \wylw,(R}) | s1---sn(a) € R}

1

Since sy = t%m is a simple reflection and w, “wys wa,lw,, is a simple reflection in W7y, we

see by the argument in the previous lemmas that sy keeps RT \ w;,lwl,(R}L). We get

{a € RN\wytw,(R}) | s1--sn(a) € R} = {a € RM\wylw, (Rf) | s1-+-sy-1(a) € R™}.
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Hence

1

{a € wy'w,(R) |51+ sn(a) e R} ={a € w&lwy(R;r) | s1---sn-_1(a) € R™}+ 1.

. —1 —1 . . —1
Since wy 51+ -+ sy and wy, s1 -+ Sy_1 are in WI thelr actions keep w - w, (Rr). Thus

{a e wy'wy (Rf) | 51 sn(a) € R_}
={a € wy'w, (RY) | w;,lsl —sy(a) € wy(R™ Nwy(Ry))}
+
i

={acwy Yw, (R | wN s1---sn(a) € w;,lwy(RI )}

where we have used that wl,(R 7 ) C R*. But using that w&lsl <+ sy isin W, i, again, we

have
lg(w, ts1 - sywptw,) = {a € wylw, (RY) | wy'st -+ sn(a) € wytw, (Ry )}

Hence Ig(w; 'sy - - SNwK,lwl,) = lg(w; sy - - - sN,le,lw,,) + 1 and the results hold for N by
the induction assumptions.

—1 N—-1_—1 s
If sy € KV, then Ml’w;flwy = SNMI,w;,{leSN and th = snt; sy . By definition, sy

doesn’t fix Ad(w}y" ;)()\) which means that sy isnotin W, -1 . By the induction hypothesis,
yWh Wy
w&l_lw,, e wl. By Lemma , w;,lwy = stle_lw,, isin W7, L]
Welet Fy = Fig, .. sy (V) (tesp. Fyy = Fyp (1, )(Ad(w;,l)y)) be the fiber of
Lwy wy’ |T

Y (s1,---,5Nn) over v € by, (resp. the fiber of Yi, (- ,t%Nl) over Ad(wy')(¥)).
YW Wy
Welet Fy g C b x (G xB .. xB @) be the preimage of Fyy and similarly for F, . B,

—1
w N Wy

Proposition B.3.9. There exists a morphism hy : Fyy , | — Fn p of the underlying topo-

I, YW Wy
logical spaces which induces an isomorphism after modulo B of the fiber of Y (s1,- -, sN) over
v € by, and the fiber of Yar, _, .- ,t%m) over Ad(wy')(v) where iy = 1y -+ - U |
YW Wy

and such that the map my : G xB ... xB G — G of taking the products satisfying that
mpy o hy(g) = wnmpy(g) forany g € FwN,BI

W Wy
Proof. We prove by induction on V.

We start by NV = 1. Firstly assume that s; fixes A, the Levi factor of v. Then s1 € Wy,
and we have an isomorphism B ., 5181w, /B1,w, & Bs1B/B. Hence g € B 4, 51B7 4, such
that (v,9B1w,) € Yu,,,, (s1) if and only if (v,gB) € Y(s1) by the explicit computations in
Assume that s; doesn’t fix A, there exists a unique g € Bs1B/B such that (v,¢gB) € Y (s1)
by the explicit example. Since v € by 4, we have g = s1B. Then the result follows from that
Y., (€) = b1, by the definition.

Now we assume there exists an embedding Ay_1 : Fiyy . B, 1 — Fn_1,B which
N1V

induces an isomorphism F,,, , — Fy_1 and such that my_1 o hy_1(g9) = w&almN_l(g)
forany g € Fuy ,, , . Letan_i(g) := Ad((my_1(g)) v (resp. awy_,(g9) =

W Wy

Ad((my-1)(g)"")(Ad(wy" ,)v) forany g € Fy_1 5 (resp. g € Fwal,BI ). Then

—1
W N Wy

Fn.g ={(90,9) € Fx-1,8 X" G | (an-1(90),9B) € Y (sn)}.

Assume sy € TV. Then wy = wN,l,tZN = tZN_l and sy € W; -1, . We have
b N v

meB —1

I,wN wy

B
:{(90’ ) € FwN 1) wal X N o MIlewV | (awal(go)hqBIw w ) € YM wt (SN)}'

N—1"v YN Wy



B.3. CONNECTEDNESS OF FIBERS 175

The Levi factor of ay_1(hn—1(g0)) is sy—1---s1(N\) and any—1(hn_1(g0)) = aw,_,(g0) lies
inb, 1 if g € Fyy ,.B We know for any v/ € b, -1 .9 € M,
1 174 9

I7w1<[ Wy =1 wy YW —

I’wN—l

(V/’gBLw;,lwu) isin Yar (sn) if and only if (/,gB) € Y(sn) by the case of N = 1
TN v

w;,lwl,’

or explicit computations. Thus we can define a morphism f : F,, B — Fn B by send-

I,w_lwu

ing go € Fuy_,, B, 1 to the one in Fy_1 p via the map hy_1 and the natural embedding

N1V
M; -1, <> G. This is in fact an isomorphism modulo B: the map is compatible with respect
TYN v
to the projections Fiy — F_; and F,,,, — F,,_,, the base spaces hny_1 : Fi,_, 5 Fy_jand
the morphism restricted to the fibers are all isomorphisms by the N = 1 cases.
Assume sy € K. Since sy doesn’t fix Ad(wy' |)(\), we know there is an isomorphism
Fy_i ~ Fyandif v/ € blw;fl w.» then (', gB) € Y, if and only if gB = syDB (as sy ¢
’ 1%
M
I

oyt w,)- Therefore, we still have a map

Fuy 18,2, = Fnp={(90.9) € Fy-1,5 x" G| (an-1(90),9B) € Y (sn)}

I’wN—l
sending gy € FwN—l»BI . to (hn—1(g0), $n). One can similarly verify that this is an iso-
’wale

morphism modulo B. Now the conjugation of sy induces an isomorphism F,, g _, =~

I,wy wy
N
Fon_ 1B 4 as in Lemma [B.3.5| and one can check the composite map Fy,, B ., —
’ Lawy” jwy ’ Lwy wy
F'y p satisfies our requirement. ]

Lemma B.3.10. Assume v € b with X the Levi factor of v in t. Assume that X lies in the center of
g (i.e. My, = G), then ' (v) = {g € BwB/B | Ad(g~!)v € b} and (W(bsl sm))*l(y) =

{(g1,-++ ,gm) € BsiB xB ... xB Bs,,B/B | Ad((g1 ---g;)~")v € b,Vi} as closed subspaces.

Proof. The assertion that (77?51,_“ ’sm))_1 (v) is equal to

{(91,-- sgm) € BsiB xP ... xB Bs,,B/B| Ad((g1---g;) " })v € b,Vi}
follows from the example when m = 1 (§B.I)) and by induction. We prove the morphism from
{(91,--+ .gm) € BsiB x" - x¥ Bs,;, B/B | Ad((g1---9;)')v € b,Vi}
to
{9 € BwuB/B | Ad(g ')v € b}
is surjective. We can assume g = w’ with w’ = & --- &) being a reduced expression such that

Ad(g~')v € b. Then there exists iy < --- < i), such that s;, = s} since w' < w. Moreover,

Ad(($i, -+ 85,) 1)y € b for all j by Lemmam Let ¢ = (g1, -+ ,9m) With g;; = 3,
for all j and g; = e otherwise. Then ¢’ € {(g1, - ,9m) € BsiB xP --- x8 Bs,,B/B |
Ad((g1---9:)"Y)v € b,Vi} and is sent to g. O

Remark B.3.11. The identification n.1(v) = {9 € BwB/B | Ad(g!)v € b} for all v nilpotent
means that X, contains Z,, for all w’ < w in the notation of [BHS19, §2.4].

Proposition B.3.12. The fiber of the morphismr, ... 5.y : Y (51, -+ ,8m) — Yy, over any point
(v, gB) €Yy, such that the Levi factor X\ of v lies in the center of g is connected.

Proof. We prove the fibers of the map

m:{(g1, "+ ygm) € Bs1B xB ... xB Bs,,B/B | Ad((gl---gi)_l)l/ € b,Vi}
— {9 € BuB/B | Ad(¢7")v € b}



176 APPENDIX B. BOTT-SAMELSON-DEMAZURE TYPE RESOLUTIONS

are connected. We follow the proof in the Schubert varieties cases ([BKO7, Prop 3.2.1]). We prove
by induction on m. If there is a unique g; € Bs1B/B such that Ad(g; l)u € b. Then the fibers
of r, ... s,,) are the same as the fibers of

{(92,--~ ,9m) € BssB x" - x” Bs,, B/B | Ad((g2---¢:)"")(Ad(g; ')v) € b}
— {g € BsywB/B | Ad(gil)(Ad(gl_l)V) € b}

which are connected by our induction hypothesis. Now if g; is not unique, then for any ¢g; €
Bsi1B/B, (v,g1B) € Ys, by the computations in Consider the map

f:{(91,-- ,9m) € BsiBxP ... xB Bs,,B/B | Ad((g1---¢;)"')v € b} — Bs,B/B

which restricts to a map

f" 1y o sy (9) = Bs1B/B.

For any g1 € Bs1B/B, f'~1(g1) is the fiber of the map

{(92,+ ,gm) € BsaB x® .- x® Bs,,B/B | Ad((g2--- g:) ") (Ad(g; ")v) € b}
— {9 € BsjwB/B | Ad(g~")(Ad(g; )v) € b}

over g, Ly (for any choice of g; € g1 .B) which is connected if it is not empty (by the induction
hypothesis). So we only need to prove that f’ has connected image.

Note that the fiber f'~!(g;) is not empty if and only if (Ad(gl_l)l/, gl_lg) € Ys,w if and only
if g, 'y € BsywB by Lemma Assume that the image of f’ contains at least two different
point and we prove that the image is in fact the whole projective line. Without loss of generality,
we can assume g = w’ for some w’ < w. The subset {g; € Bs;B/B | g; 'w' € BsjwB/B}
is stable under the conjugation action of the maximal torus 7' of G on P! = Bs;B/B since
Btgflwt_lB = Btgflt_le for any ¢t € T. Thus the image of f’ contains two fixed points
under the action of the torus: B,s1B € Bs;B/B. Hence syw',w' € BsjywB. If sqw’ >
w’, since s1w’ < syw, Bs1Bw' C BsiBBw'B C BsiwB. If syw’ < w’, then Bs;Bw' C
Bs1Bsisiw' C BsiBBsjw'B C Bw'B C BsjwB. In both cases, gl_lg € BsjwDB for all
g1 € Bsy B, thus the conclusion. O

Lemma B.3.13. The fibers of the map

7 :{(g1, - ,gm) € Bs;B xB ... xP Bs,,B/B | Ad((g1---g;) v € b, Vi}
—{g € BwuP/P | Ad(g ")v € p}

are connected if the Levi factor of v in t lies in the center of g. Here we don’t assume w € W
but still assume sy - - - Sy, is a reduced expression of w in W.

Proof. We prove in the same way by induction on m. If m = 1 and s,,, ¢ Wp, the result is
true since Bs;,B/B ~ Bs,, P/P. If m = 1,s,, € Wp, then {gB € Bs;,B/B | ad(g"')v €
b)} is mapped into one point P € G/P and the space {g € Bs,,B/B | ad(¢g~Y)v € b)} is
connected (it is one point or a projective line). Now for arbitrary m, take any g € G such that
Ad(g~Yv € p. We can assume for all hB € Bs;B/B, ad(h~!)v € b using the induction
hypothesis. Let I = {hB € Bs1B/B | h™'g € BsjwP/P} where syw = s3---5,. We
can safely assume g = w’ where w’ is shortest in w'Wp. If I contains at least two point, since
I is stable under the action of the diagonal torus 7', we can assume sjw’,w’ € BsywP/P. If
siw’ > w', Bs;Bw' C BsiBBw'B C Bsjw!'B. Since sjw’ € BsywP/P, syw’' < sqjw in
the Bruhat order of W/Wp. Thus Bs;Bw’' C Bsjw'P C BsywP. If w' > sjw’, BsiBw' C
Bs1Bsisjw' C BsiBBsjw'B C Bw'B C BsjwP. Then we can argue as in the previous
lemma. O
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Remark B.3.14. The above lemma can also be proved using Proposition [3.2.12] at least in special
cases.

Theorem B.3.15. Fibers of the morphism 7"221 e 5m)

Proof. Pick a point (v, gB) € Y, then we can assume v has the good form by Lemma m
v corresponds to some Levi subgroup My, and v € by,, . Since we have the morphisms
TI'E’ o) - Y(si,-+,8m) = Yu — b, the fiber over (v,gB) € Y, is the fiber of the map

81,0

Fls, . sm) (V) = G/ B over g B which is isomorphic to the fiber of FMI G my (Ad(wy, YY)
overiy tgB, _1 forsome representative g € i, M, _1 by Proposmonwhlch is also

:Y(s1,-++, 8m) — Yy are connected.

Twn, wy Twy, wy
the fiber of YM - (7, -+, t") over
(Ad (v, i gBIw;Llwu).
Since the Levi factor of Ad(w,,!)v in tis fixed by w; , the fiber is connected by applying
Proposition|[B.3.12) m for the group M; -1, ~and by Lemmaw O
Theorem B.3.16. Fibers of the composite map Y (s1,- -+ ,sm) — Yy — Yp,, are connected.

Proof. Pick a point (v, gP) € Yp,,, then we can assume v has the good form by Lemma [B.3.4}
v corresponds to some Levi subgroup My, and v € by,,. Since we have the morphisms
Y (81, ,58m) = Ypu — b, the fiber over (v, gP) € Yp,, is the fiber of the map Flo o sm) =
G/B — G/ P over gP which is isomorphic to the fiber of the map

FMI’w,le,(t{”,m,tzn) (Ad(wT_ﬂ ) ) - MIw wy, /BI wmtwy - MI Wi w,j/PI,w?nlwy
over w;}gPI wolw, DY Proposition , where PI wilw, = M Twtw, 1 P. The image of

FMI,w I wy, wy/ Iwm w

T o oy (Ad (o, v )—> M

wP

Iww

{9P} -1, € B /P

Iww

[Ad(g™ ") €yt )

-1
I,wy, wy Wy Wy

—L,)

by Lemma 0|(since the Levi factor of Ad(w;,,!)v in tis invariant under the action of W
and this map has connected fibers by Lemma[B.3.13]and Lemma[B.3.§]

Corollary B.3.17. Fibers of the map Y,, — Yp,, are all connected.
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